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Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the
spontaneous organization of multiple subunits (macromolecules, particles, etc.) into ordered multiunit
structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting
of dispersed disassociated subunits and the other consisting of a bulk-condensed state of unlimited
size. This review focuses on the more specialized class of self-limiting assembly, which describes
equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and
basic question, how do thermodynamic processes involving noncovalent interactions between
identical subunits “measure” and select the size of assembled structures? This review begins with
an introduction to the basic statistical mechanical framework for assembly thermodynamics that is
used to highlight the key physical ingredients ensuring that equilibrium assembly will terminate at
finite dimensions. Then examples of self-limiting assembly systems are introduced, and they are
classified within this framework based on two broad categories: self-closing assemblies and open-
boundary assemblies. These include well-known cases in biology and synthetic soft matter
(micellization of amphiphiles and shell and tubule formation of tapered subunits) as well as less
widely known classes of assemblies, such as short-range attractive or long-range repulsive systems
and geometrically frustrated assemblies. For each of these self-limiting mechanisms, the physical
mechanisms that select equilibrium assembly size, as well as the potential limitations of finite-size
selection, are described. Finally, alternative mechanisms for finite-size assemblies are discussed, and
contrasts are drawn with the size control that these can achieve relative to self-limitation in
equilibrium, single-species assemblies.
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I. INTRODUCTION

A. Overview

Self-assembly is a process in which multiple subunits, or
“building blocks,” spontaneously organize into collective and
coherent structures. This process is ubiquitous in living
systems, where it underpins a wide range of structures at
the cellular and subcellular scales, from lipid membranes to
multiprotein filaments and capsules (Alberts et al., 2002).
Inspired by biology’s successful strategies to build functional
nanostructures, self-assembly is forming the basis of modern
approaches to generate materials from the “bottom up”
(Hamley, 2003). Chemical techniques enable the synthesis
of a bewildering array of small-molecule, macromolecular, or
particulate subunits that are engineered to self-assemble into
high-order architectures (Klok and Lecommandoux, 2001;
Stupp and Palmer, 2014; Boles, Engel, and Talapin, 2016). As
in the biological context, the assemblies bridge between the
scales of molecules and chemical function (nanometer and
subnanometer) to size scales that are useful for controlling
material properties (microns and beyond).
In different domains of science and engineering, the

term “self-assembly” often connotes a range of distinct, if
overlapping, physical processes. In its broadest usage, self-
assembly implies the collective association of multiple ele-
ments into organized configurations, by dynamics that start
from a relatively “disorganized” state and evolve with at least
some degree of randomness. The great conceptual appeal of
self-assembly in materials science is that the instructions for a
desirable or useful structure may somehow be imprinted on
the assembling subunits themselves, such that in a simple
mixture the desired target structures emerge from the random
processes of Brownian motion and subunit association.
In this review, we focus on self-limiting assembly (SLA),

which is defined as self-assembly processes that terminate at
an equilibrium state in which superstructures have a well-
defined and finite spatial extent in one or more dimensions.
Many examples of finite assemblies can be found in biologi-
cal systems, where the assembly of identical subunits into
larger, yet finite-sized, superstructures is common and func-
tionally vital. As shown in Fig. 1, examples include (i) the
protein shells that enclose viruses (Caspar and Klug, 1962;
Mateu, 2013; Perlmutter and Hagan, 2015) and microcom-
partments (Tanaka et al., 2008; Kerfeld, Heinhorst, and
Cannon, 2010; Rae et al., 2013), (ii) finite-size protein
superstructures in photonic tissues (Prum et al., 2009;
Saranathan et al., 2012; McPhedran and Parker, 2015),
and (iii) finite-diameter bundles and fibers of cytoskeletal
or extracellular protein filaments (Neville, 1993; Fratzl, 2003;
Popp and Robinson, 2012). Each of these examples shares the
notable feature that the finite size of the assembled structure
far exceeds the nanometer size scale of the protein subunits.
Crucial to their biological roles, the functional properties of
these protein superstructures are regulated through the control

of their finite size: respectively, (i) selective encapsulation
and transport, (ii) optical response, and (iii) stiffness and
strength. In this way, nature exploits self-assembly to deploy
structures, built from the same or similar subunits, in diverse
intracellular and extracellular environments and adapts their
performance and functions by controlling the size of the
assembled structure.
In contrast to these examples, most typical mechanisms of

self-assembly in synthetic systems result in unlimited organ-
ized states, such as crystalline or liquid-crystalline meso-
phases. In these states, structure may be well defined on some
microscopic scale, such as the unit cell dimension, but its
overall size is uncontrolled by assembly thermodynamics.
This result, which may be described as bulk phase separation,
is a generic consequence of the thermodynamic trade-off
between entropic and energetic drives. In the most general
case, once the net cohesive drive for a subunit to join an
assembled structure exceeds the entropic penalty for giving up
its higher configurational freedom as a disassociated unit,
there is no thermodynamic reason to stop this process. Thus,
subunits continually add to the aggregate until it reaches
macroscopic proportions and the subunits are nearly depleted.
This review describes the basic physical ingredients and

common outcomes of assembly mechanisms that terminate at
well-defined, finite sizes. We draw upon examples of SLA from
biological systems, and consider the requirements to achieve
such assemblies in synthetic systems. For clarity, we specifically
focus on assemblies comprising a single species of identical
subunits. Moreover, we restrict our definition of SLA to
equilibrium assembly mechanisms, meaning that assembly
terminates at a finite-sized free energy minimum structure.

FIG. 1. Functional, finite-sized assemblies of proteins in biol-
ogy: (a) protein shells of clathrin (left panel) and viral capsids of
Herpes simplex (right panel), (b) photonic nanostructures formed
by keratin aggregates in feather barbs of plum-throated continga
(inset), and (c) finite-diameter fibers in reconstituted fibrin clot.
(a), left panel: adapted from Royle, 2012. (a), right panel: adapted
from Baker, Olson, and Fuller, 2000. (b): adapted from Dufresne
et al., 2009. (c): adapted from Weisel, 2004.

Michael F. Hagan and Gregory M. Grason: Equilibrium mechanisms of self-limiting assembly

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025008-2



Equilibrium assembly processes deserve special focus for
both conceptual and practical reasons. A key advantage is that
they are described by well-defined and generic statistical
mechanical principles. This allows one, as we attempt to do
in this article, to draw sharp distinctions between assemblies that
either are or are not self-limiting. Reaching thermodynamic
equilibrium requires subunits to associate and disassociate from
aggregates sufficiently freely that a thermodynamically large
collection of subunits behaves ergodically, sampling a suffi-
ciently large ensemble of aggregation states in an experimentally
relevant time. For systems at or near room temperature, such
conditions are accessible when assembly is driven by non-
covalent and reversible interactions, of the type that characterize
physical association between macromolecules and colloidal
particles in solutions (Russel, Saville, and Schowalter, 1989;
Israelachvili, 2011), including van der Waals, electrostatic,
hydrophobic, hydrogen-bonding, and depletion forces.
The ability of reversibly associating assemblies, if given

sufficient time, to proceed toward one specific, thermody-
namically defined state points to practical advantages
of equilibrium assembly. As evidenced by the previously
referenced synthetic approaches to size-controlled structures,
nonequilibrium control over finite dimensions of assemblies
requires extensive protocols to control the assembly envi-
ronment, such as precisely regulating the temporal sequence
of temperatures and subunit concentrations. This makes it
exceedingly difficult, if not impossible, to deploy these
nonequilibrium size-control strategies in uncontrolled envi-
ronments, such as the complex and dynamic milieu of living
organisms. In such scenarios where assembly cannot be
carefully supervised, equilibrium mechanisms of assembly
offer the distinct advantage that the final states may still be
well defined. For example, viruses can exert only limited
control over the intercellular media of their host organisms.
Nevertheless, to be infectious, size-controlled capsid shells
must assemble with high fidelity from the capsomer subunits.
While this assembly process is in general not purely at
equilibrium, biology often achieves such high fidelity by
building upon equilibrium processes. For example, many
viral capsids can spontaneously assemble from their purified
components under (near) equilibrium conditions, with struc-
tures that are indistinguishable from capsids formed within a
host cell (Wingfield et al., 1995; Johnson and Speir, 1997;
Fox et al., 1998; Wang et al., 2015), and in some cases are
even infectious (Fraenkel-Conrat and Williams, 1955).
At the center of this specialized focus on equilibrium

mechanisms for self-limiting single-species assembly is the
following puzzle: how can equilibrium association processes
“measure” the assembly to select a thermodynamically pre-
ferred state that is larger than a single subunit, yet less than
infinite (i.e., bulk)? Because thermodynamic equilibrium is
independent of the history of system, this state cannot be
defined by the temporal process in which subunits arrive to the
aggregate. Nor do these identical subunits have specific
“addresses” that prescribe where they are supposed to sit in
a particular aggregation state. The answers, not surprisingly, lie
in how the shape and interactions of subunits conspire to
determine the dependence of assembly energetics on size. For
example, in the canonical example of SLA, formation of

spherical micelles from amphiphilic molecules (Israelachvili,
Mitchell, and Ninham, 1976), the assembly motif favors
individual subunits to span the assembly from the solvophobic
core to the solvophilic surface. Hence, in this case it is intuitive
that energetics favors aggregates that are limited to sizes that are
comparable to the lengths of the amphiphiles themselves. Far
less intuitive is how single-species assemblies select finite
equilibrium sizes that are much bigger than the subunit
dimensions, or the range of their interactions. That is, what
are limits of self-limitation, i.e., how large can a self-limited
structure be, and howdoes this size limit depend on the physical
characteristics (shape, interactions, etc.) of the subunits?

B. Outline

With these basic questions in mind, this review has two
broad aims. We first overview the generic statistical and
thermodynamic elements of SLA, then present a classification
for known mechanisms of SLA of identical subunits. The
review is organized into two main sections based on these
aims. In Sec. II, we present the thermodynamic principles of
SLA based on the statistical mechanics of ideal aggregation of
identical subunits. This begins with an introduction to ideal
aggregation theory and illustration of the more generic case of
unlimited assembly. Following this, we introduce a generic
description of the ingredients for SLA. We review how the
onset of aggregation, known as the critical aggregation
concentration (CAC), the self-limiting size of aggregates,
and the statistics of aggregate size fluctuations depend on the
functional form for the size dependence of the intra-aggregate
interaction energy. We then review the conditions for “poly-
morphic” SLA, in which assemblies exhibit multiple states of
aggregration (some finite, some not). These systems are
characterized by so-called secondary CACs, in which increas-
ing concentration sufficiently far above the CAC leads to
additional transitions between aggregation states.
Section III describes physical systems that exhibit SLA and

classifies the models that capture their behavior into two
categories illustrated schematically in Fig. 2: self-closing and
open-boundary assembly. The former category describes

self-closing assembly(a)

(b) open boundary assembly

inter-subunit
“bond”

open boundary

intra-aggregate 
stress 

e.g. tapered particles 
with anisotropic binding

e.g. “misfit” particles 
with multi-direction binding

FIG. 2. Schematic illustrations of two classes of SLA described
in Sec. III. (a) Self-closing assembly, in which inter-subunit
rotations lead to cohesive assembly into closed, boundary-free
aggregations. (b) Open-boundary (self-limiting) assembly, in
which intra-aggregate stress accumulates with assembly and
restrains the cohesive drive toward unlimited size.
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assembly processes that terminate because they close upon
themselves [Fig. 2(a)] and applies to shell and tubule
formation, as well as the micellar assembly of surfactants,
copolymers, and other amphiphiles. The last category applies
to arguably lesser known classes of systems that have
short-range attractions and long-range repulsions or form
geometrically frustrated assemblies. These conditions
enable assembly to terminate when the aggregate still has
open boundaries characterized by a finite surface energy
[Fig. 2(b)]. For this case, we introduce a generic framework
for understanding how the interplay between intra-aggregate
stress accumulation and aggregate surface energy controls
the finite size of aggregates and the phase boundary between
self-limiting and bulk aggregation.
While the core focus of this review is on the ingredients and

outcomes of SLA from the point of view of thermodynamic
equilibrium, the kinetic processes by which such systems
reach equilibrium states (or, in some cases, do not) are
essential to their study, particularly from the experimental
point of view. A comprehensive review of kinetic limitations
on assembly, which is relevant to both self-limited and
unlimited assembly, is beyond the scope of this review.
Nevertheless, we provide an introduction to some key con-
siderations of assembly kinetics in Sec. IV. In that section, our
purpose is to illustrate how those features of the assembly
energetics that give rise to size selection in equilibrium
influence the principle kinetic pathways of their formation.
Before concluding, we provide a discussion in Sec. V of

physical mechanisms leading to finite-size aggregates that fall
outside the primary scope of the review, namely, nonequili-
brium and multispecies SLA, and questions these pose to the
forgoing discussion for the more limited focus on single-
species equilibrium SLA. We conclude with some remarks
about open challenges in the application of the mechanisms
and principles of SLA.

C. Scope of review

This review considers equilibrium assembly mechanisms
that terminate at well-defined, finite sizes. As this focus
suggests, we leave out discussion of nonequilibrium processes
in general and, more specifically, what might be called active-
assembly processes, such as the steady-state length of tread-
milling and severing cytoskeleltal filaments (Desai and
Mitchison, 1997; Mohapatra et al., 2016; Pollard, 2016).
Beyond that, we specifically consider assembly mechanisms
of a single species of identical subunits. To be sure, this leaves
out an emerging and interesting area of research on so-called
addressable assemblies (Jacobs and Frenkel, 2016; Zeravcic,
Manoharan, and Brenner, 2017), where mixtures of multiple
distinct subunit species may be “programmed” to assemble
into a specifically defined 3D structure in equilibrium. In this
review, we provide only a limited discussion of size-controlled
multispecies assembly and possible trade-offs with single-
species mechanisms, particularly how the number of required
species increases with target size.
Although the fabrication and synthesis of finite, size-

controlled structures is well known in synthetic materials,
such as size-controlled nanoparticles of atoms (Yin and
Alivisatos, 2005; Cozzoli, Pellegrino, and Manna, 2006)

and macromolecules (Hiemenz and Lodge, 2007), these
examples raise a key distinction between equilibrium and
nonequilibrium assembly. The control over finite size in all
of these foregoing examples relies on the nonequilibrium
process by which they form. For example, the size distribution
of metal nanoparticles (Yin and Alivisatos, 2005; O’Brien,
Jones, and Mirkin, 2016) is selected through spatiotemporal
control of the physical-chemical factors that control nano-
crystal growth (concentrations, temperature, ionic conditions,
etc.). Indeed, as we later discuss, in generic conditions under
which such assemblies form, allowing these assemblies to
proceed to thermodynamic equilibrium would destroy the size
control. Finite sizes are possible only when these processes are
driven, maintained, and arrested out of equilibrium. In this
sense, we reserve the term “self-limiting” for those rarefied
assembly processes that result in finite-size structures in
thermodynamic equilibrium. The physical mechanisms of
equilibrium assembly that achieve such size control are the
central focus of this review.

II. THERMODYNAMIC ELEMENTS

We begin with a review of the elementary statistical
mechanical framework to describe equilibrium aggregation.
We then illustrate the statistical thermodynamics of aggrega-
tion in models of what we will call canonical aggregation,
where assembly proceeds via cohesive short-range and stress-
free assembly of elemental units into 1D, 2D, and 3D
aggregates. We illustrate how so-defined canonical assemblies
do not exhibit self-limitation. We then describe the generic
conditions for self-limiting (finite) equilibrium assembly and
give an overview of the concentration-dependent thermody-
namics of self-limiting assembly. Finally, we discuss models
of competing finite aggregates and polymorphic transitions
between finite and unlimited assembly, both of which may be
characterized by multiple aggregation thresholds in the ideal
theory.

A. Equilibrium principles

In this review we concern ourselves with equilibrium
association of single subunits, or monomers, into states with
aggregation number n subunits, or n-mers. Our purpose is to
describe the minimal ingredients of assembly dominated by
structures with finite aggregation number n. To this end, we
restrict our presentation to ideal aggregation theory, where
interactions between distinct aggregates are neglected. This is
not to say that interactions among subunits within the same
aggregate are neglected; quite the contrary. As we describe
later, the intra-aggregate energetics and its n-dependence are
critical for determining whether association leads to self-
limited states or, instead, to more canonical states of bulk
aggregation.

1. Classical aggregation theory: Fixed total concentration,
noninteracting aggregates

Ideal aggregation theory is well established for certain
classes of self-assembly systems, particularly in the context of
amphiphiles and surfactants. As such, this theory was better
described, in greater depth, by Tanford (1974), Israelachvili,
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Mitchell, and Ninham (1976), Gelbart, Ben-Shaul, and Roux
(1994), and Safran (1994). Here our purpose is to consider the
application and implications of ideal aggregation theory to a
broader class of self-limiting assembly systems. Hence, we
present only a minimal introduction to the elements necessary
to describe aggregation to self-limiting states.
We consider a solution of N total subunits in a fixed total

volume V. In what follows, we refer to unnassembled single
subunits as monomers.1 To describe the concentration of
subunits, it is convenient to scale concentration by the reference
state concentration v−10 ; i.e., v0 is the volume per subunit in the
reference state.2 In this way, we can define concentration in
nondimensional terms as the total volume fraction of subunits,
Φ ¼ Nv0=V.

3 TheN subunits are distributed among distinct n-
mer aggregates, with the volume fraction of subunits in n-mers
defined as ϕn. In the following, we refer to ϕn as the subunit
fraction distribution. Throughout this review, it is also useful to
introduce a separate variable for the aggregate distribution
ρn ≡ ϕn=n, which describes the relative count of n-mers in the
mixture.Defined in thisway,ϕn and ρn are less than unity for all
n. Moreover, for the particular assumptions of ideal aggrega-
tion to hold (i.e., two-body contacts between aggregates are
vanishingly rare), these quantities must all remain much less
than unity. To simplify the nomenclature, throughout the
review we refer to the nondimensional concentration (volume
fraction) simply as the concentration.
We define nϵðnÞ as the free energy of intra-aggregate

interactions; i.e., ϵðnÞ is the per subunit aggregation free
energy in an n-mer. The total free energy F for the ideal
distribution of aggregates is given by

F
ðV=v0Þ

¼
X∞
n¼1

ϕn

�
ϵðnÞ þ kBT

n
½lnðϕn=nÞ − 1�

�
; ð1Þ

with the two terms in the parentheses, respectively, represent-
ing the intra-aggregate interaction free energy and transla-
tional entropy (in the ideal solution approximation) of n-mers,
with the 1=n in the latter term reflecting the critical fact that all
subunits of an n-mer share a common, single center-of-mass
degree of freedom.
To obtain the equilibrium aggregate size distribution, we

minimize Fwith respect to ϕn subject to the constraint that the
total subunit concentration is fixed:

X∞
n¼1

ϕn ¼ Φ; ð2Þ

i.e.,

∂
∂ϕn

�
F þ μ

�
Φ −

X∞
n¼1

ϕn

��
¼ 0; ð3Þ

with μ playing the role of a Lagrange multiplier. This yields

μ ¼ ϵð1Þ þ kBT lnϕ1 ¼ ϵð2Þ þ kBT
2

lnðϕ2=2Þ

¼ … ¼ ϵðnÞ þ kBT
n

lnðϕn=nÞ ¼
∂F
∂ϕn

; ð4Þ

showing that μ is the subunit chemical potential. This
condition requires that subunits have the same chemical
potential in all aggregates, and it derives from both the
energetics of the assembly and the ideal translational entropy
of the n-mer. Note that the prefactor of 1=n of the translational
entropy, derived from the sharing of a single center of mass in
an n-mer, reflects a generically higher translational entropy of
disaggregated states. The limit n → ∞ gives μ ¼ ϵð∞Þ,
describing the equilibrium between monomers and a bulk
phase-separated condensate that has no translational entropy.
For simplicity, throughout this review we choose to define
energies such that ϵð1Þ ¼ 0, in which case ϵðnÞ is defined as
the difference of the per subunit energy between an n-mer and
disassembled monomers.
It is convenient to use the first equality in Eq. (4) to recast

the chemical potential in terms of the unknown monomer
concentration, from which we can reformulate the generic
chemical equilibrium conditions in terms of the law of mass
action

ϕn ¼ nðϕ1e−βϵðnÞÞn; ð5Þ

where β−1 ≡ kBT. Inserting the expression for ϕnðϕ1Þ into the
fixed number concentration [Eq. (2)] and summing over n
then results in an equation of state relating the total concen-
tration Φ to the monomer concentration ϕ1. This equation of
state and the underlying distribution of assemblies ϕn derive
from the specific n dependence of aggregate interactions, with
equilibrium states that are dominated by self-limited aggre-
gates occurring only for certain forms of ϵðnÞ.

2. Unlimited assembly: Short-range cohesive aggregation

Before describing models that give rise to SLA, we consider
the thermodynamics of the simplest models of physical
association, described by short-range attractions between
subunits. While these models are relevant to a broad range of
physical scenarios like colloidal crystallization (Manoharan,
2015; Morphew et al., 2018), they do not exhibit SLA. Yet
they serve as a useful reference point for illuminating the
necessary conditions for SLA. Specifically, these models
result in either a single dispersed state whose most populous
aggregate state is n ¼ 1 (the free monomer) or coexistence
between the dispersed monomer-dominated state and an

1In literature on amphiphile aggregation the term “unimer” is often
used to describe the single subunit to avoid overlap with the
connotation of “monomer” as the chemical repeat of macromolecular
chain, which is often a component of self-assembling molecular
subunits.

2For concreteness, we may take v0 to be the subunit volume in the
disassociated state, which provides a convenient and nondimensional
measure of concentration that will be much less than unity for dilute
conditions. However, the formalism is independent of choice of
reference state; for example, v0 ¼ 1=NAV L with the reference state
concentration of 1 mol=L commonly used in the life sciences.
Changing the definition of the reference state just uniformly rescales
the free energy of intra-aggregate interactions ϵðnÞ.

3Throughout, we also refer to Φ more colloquially as the
“concentration” of subunits.
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unlimited aggregate (macrophase separation). The absence of
equilibrium finite-sized states will be traced to the generic size
dependence of the cost of open boundaries at the edges of
cohesive aggregates. In subsequent sections we show mech-
anisms that compete against the open-boundary cost to
enable SLA.
Here we consider models where inter-subunit association

promotes uniform d-dimensional aggregates, such as one-
dimensional chainlike or two-dimension sheetlike aggregates.
Every internal subunit forms, on average, z attractive bonds of
strength −u0, and subunits at the free boundary have δz fewer
contacts [Fig. 3(a)]. For example, in a d ¼ 1 chainlike
assembly z ¼ 2 and δz ¼ 1. For generic dimensionality, the
interaction free energy takes the form

ϵðnÞ ¼ −ϵ0 þ
Δ0

n1=d
; ð6Þ

where ϵ0 ¼ u0z=2 and represents the per subunit cohesive
free energy in the bulk (i.e., n → ∞) structure. The second
term derives from the growth in the number of particles at
the boundary (∼nðd−1Þ=d) and their deficit of cohesive bonds
(δz), so that Δ0 is equal to u0ðδzÞ times a geometric factor
accounting for the mean bond geometry at the boundary. The
bonding geometry in these assemblies permits the structure
to grow uniformly without disrupting this local contact
structure at any size scale, a condition that we revisit when
describing examples of self-limiting assembly in Sec. III.
We define the concentration ϕs ≡ e−βϵ0 , so that the law of

mass action, Eq. (5), takes the form

ϕn ¼ nðϕ1=ϕsÞne−βΔ0nα ; ð7Þ

where α ¼ 1 − 1=d is an exponent that characterizes the
geometric growth of the exposed boundary with n. As shown
in Fig. 3(b), ϕ1 ≤ ϕs and the distribution ρn ¼ ϕn=n decreases
exponentially with aggregate size for large n, and for any d.

Hence, under these conditions Φ, the sum over the subunit
fraction distribution in Eq. (2), is finite, implying the
existence of conditions where the concentration of subunits
achieves equilibrium in the suspension. However, no such
equilibrium exists for ϕ1 > ϕs, implying that ϕ1 → ϕs is an
upper limit to concentrations that may be in equilibrium in a
dispersed state. In other words, when Φ is sufficiently large
that ϕ1 ¼ ϕs, the solution is saturated, and additional
subunits (further increasing Φ) must phase separate to the
macroscopic state (i.e., n → ∞).
First consider the linear case (d ¼ 1), where the equation of

state can be readily computed from Eq. (7) with α ¼ 0 and the
geometric series

Φ ¼ e−βΔ0
ϕ1ϕs

ðϕs − ϕ1Þ2
for d ¼ 1; ð8Þ

which diverges as ϕ1 → ϕs. As plotted in Fig. 3(c), this
divergence indicates that the monomer concentration
increases with total concentration but never reaches the point
of saturation (i.e., ϕ1 < ϕs for any finite Φ). Hence, for all
subunit concentrations the system maintains ϕ1=ϕs < 1,
implying that the distribution of linear aggregates is always
exponential, ϕn=n ∝ e−n=hni, where the number-average
length is hni ¼ 1= lnðϕs=ϕ1Þ.4 Noting that ϵ0 ¼ Δ0 for a
1D chain assembly, the growth of mean length with end
energy in the limit of high concentration hni ≃ eβΔ0=2

ffiffiffiffi
Φ

p
,

which is well known for equilibrium polymers (Hiemenz and
Lodge, 2007) and cylindrical micelles (Gelbart, Ben-Shaul,
and Roux, 1994; Safran, 1994), highlights the mechanism
that prevents “bulk” assembly for 1D aggregation. In this
dimension, the probability of introducing a free end remains
finite ∼eβΔ0 in the n → ∞ limit, analogous to the statistics of

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

(a) (c)(b)  (aggregation no.)
 (

ag
gr

eg
at

e 
di

st
rib

ut
io

n)
 (

ag
gr

eg
at

e 
di

st
rib

ut
io

n)  (
fr

ee
 m

on
om

er
 v

ol
. f

ra
c.

)

 (total subunit vol. frac.)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. (a) Examples of d-dimensional (linear, planar, and spherical) short-range cohesive aggregation. (b) Plots of the aggregation
distributions (relative counts of n-mers) for d ¼ 1 (top panel) and d ¼ 2 (bottom panel) for monomer concentrations increasing to
saturation (i.e., ϕ1 ¼ ϕs) for Δ0 ¼ 1kBT. While the dispersity (and mean size) of linear aggregates diverges as ϕ1 → ϕs, it remains finite
for d ≥ 2 at saturation. (b) Equation of state (ideal aggregation theory) for the free monomer population ϕ1 as a function of the total
concentration Φ for linear, planar, and spherical aggregates for Δ0 ¼ 2.75kBT. For d ¼ 2 and d ¼ 3 the free monomer concentration
saturates at a finite Φ where ϕ1 ¼ ϕs. For linear aggregation, saturation is not reached in the ideal theory.

4The number-average aggregate size is hni¼ðPnnρnÞ=ð
P

nρnÞ¼
ðPnϕnÞ=ð

P
nϕn=nÞ, where ϕn=n is the distribution of n-mers, while

the mass-average aggregate size is hniM ¼ ðPn nϕnÞ=ð
P

n ϕnÞ.
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domain walls in the 1D Ising model at finite temperature
(Fisher, 1984). However, while the mean size is finite, this
case is distinct from what we describe here as self-limiting
assembly, in both the strong dependence of hni on total
concentration and, perhaps more significantly, the fact that
fluctuations in aggregate size are always comparable to the
mean; that is, hðn − hniÞ2i1=2 ∝ hni.
For higher assembly dimensionality (d > 1), the geometric

growth of the free boundary cost restrains the n → ∞
divergence in the distribution [Eq. (7)] as the solution
approaches saturation. For ϕ1 ¼ ϕs the distribution takes
the form ϕnðϕ1 → ϕsÞ ¼ ne−βΔ0nα , the sum over which
converges for α > 0 when d > 1. For example, we can
approximate the sum for planar aggregates (d ¼ 2) by
replacing the sum over aggregation number n with dimension-
less aggregate radius n ¼ πr2, i.e.,

P
n ϕn → 2π

R
drrϕðrÞ.

At saturation, aggregate sizes are exponentially distributed,
ϕðrÞ ≃ πr2e−

ffiffi
π

p
βΔ0r, yielding a saturation concentration

Φsðd ¼ 2Þ ≃ 12

�
kBT
Δ0

�
4

; ð9Þ

at which point the ideal solution of aggregates reaches
equilibrium with the bulk condensate. Thus, with the excep-
tion of the special case of the d ¼ 1 assembly, short-range
cohesive aggregation is characterized by a finite saturation
concentration Φs ¼ Φðϕ1 ¼ ϕsÞ, above which subunits phase
separate into an unlimited bulk structure.
The thermodynamics of these examples are plotted in

Fig. 3(c) in terms of the equation of state ϕ1ðΦÞ for each
dimensionality. Note that while the distributions of short-
range interacting systems have finite mean sizes in the absence
of macrophase separation, their distributions are dominated by
monomers; i.e., the concentration of n-mers ρn is always
maximal for n ¼ 1, a property that sharply contrasts with the
SLA behavior described next in Sec. II.B.

B. Self-limiting assembly: Elements and outcomes

Here we describe the generic ingredients and thermody-
namic outcomes of assembly models that exhibit self-limita-
tion. That is, unlike the previously described short-range
cohesive models, these systems undergo ideal assembly into
self-limiting states dominated by aggregates with a finite size
n� that is larger than 1, yet smaller than bulk unlimited states.
The physical mechanisms that give rise to this behavior are

discussed in detail in Sec. III. Here we give an overview of the
essential thermodynamic ingredients and behavior based on a
generic description of the energetics of a self-limiting system.
We consider the assembly behavior in terms of a generic
function for the interaction free energy per subunit ϵðnÞ,
which as sketched in Fig. 4(a) favors aggregation at a
particular finite size, or possibly several distinct finite sizes.
To highlight its distinct role from the translational entropy of
aggregation, we use the term aggregation energetics to refer
to ϵðnÞ, but we note that this describes a free energy per
subunit, as interactions in general have both energetic and
entropic contributions.
Given a known formof the ϵðnÞ, the discussion in this section

addresses several key questions. First, what determines the

onset of aggregation from the dispersed state? Second, what
selects the dominant size of finite aggregates? And third, what
are the conditions for driving transitions between different
states of self-limiting aggregation, or between self-limited and
unlimited aggregation states?

1. Aggregation threshold

We first describe the simplest picture of the concentration
dependence of ideal aggregation. We begin with the
assumption of an energy per subunit ϵðnÞ of the form shown
in Fig. 4(a), which has a single energy minimum at a finite
aggregation number nT, which we call the target size. The
basic dependence of aggregation on concentration for such a
model is sketched in Fig. 4(b). There are two dominant
populations of aggregates, monomers and n-mers, with the
n-mers narrowly distributed around the most populous
state n� ≈ nT.
For large enough n�, the thermodynamics of aggregation

can be captured, to a first approximation, by a two-state, or
bimodal, distribution in which fluctuations around free
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FIG. 4. (a) Schematic plot of the aggregation free energy per
subunit shown as a continuous function of aggregation number n.
The dashed line shows a harmonic expansion around a local
minimum at the target size n ¼ nT. (b) Schematic plots of the
aggregate distribution for a model of the type sketched in (a).
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monomers and the n-mer aggregate peak are neglected. We
self-consistently test the validity of this approximation
later; see Eq. (18). When subunits are distributed strictly
between the n ¼ 1 and n ¼ n� states, the conservation of
subunit mass is simply Φ ¼ ϕ1 þ ϕn�. Chemical equilibrium
then gives the concentration in preferred aggregates
ϕn� ¼ n�ðϕ1e−βϵ� Þn� , where ϵ� ≡ ϵðn�Þ < 0 is the per subunit
energy gain upon aggregation into the optimal size. Defining
the concentration scale

ϕ� ≡ ½n�e−n�βϵ� �−1=ðn�−1Þ ≈ eβϵ�=n1=n�� ð10Þ

yields the following equation of state, relating total concen-
tration to monomer concentration:

Φ
ϕ�

¼ ϕ1

ϕ�
þ
�
ϕ1

ϕ�

�
n�
; ð11Þ

a result derived originally by Debye to explain scattering in
soap solutions (Debye, 1949). The dependence of the pop-
ulations of monomers and n�-mers on total concentration is
plotted in Fig. 5(a) and can be summarized as follows. For low
concentration, Φ ≪ ϕ� and additional subunits added to the
system go predominantly to monomers since ϕ1 ≈Φ, while
ϕn� ≈ ϕ�ðΦ=ϕ�Þn� ≪ Φ. The population of aggregates in this
regime ϕn� is simply proportional to the random probability of
n� free subunits spatially coinciding Φn� times the enhanced
Boltzmann factor for aggregation e−n�βϵ� ≈ ϕ−n�� , and hence it
is diminishingly small. In the large concentration regime
Φ ≫ ϕ�, the dominant populations are reversed: the n�-mer
population increases in proportion to total concentration
(ϕn� ≈Φ), while monomers increase much more slowly
[ϕ1 ≈ ϕ�ðΦ=ϕ�Þ1=n� ≪ Φ]. These two regimes are character-
ized by a crossover near Φ ≈ ϕ�, which is known as the CAC,
although it is not strictly a phase transition for finite n�.

5 As
illustrated in Fig. 5(a), the aggregation crossover becomes
increasingly sharp as the aggregation number n� increases.
Figure 5(b) shows an example of CAC behavior observed in
experiments with hepatitis B virus capsid protein assembly
(Ruan, Hadden, and Zlotnick, 2018).
Underlying the transition is a thermodynamic trade-off

between translational entropy and the interaction free energy
that drives aggregation. Maximizing the ideal translational
entropy of aggregates favors maximization of the number of
independent translational degrees of freedom, i.e., the number
of independent centers of mass in the mixture. To form an
aggregate, n� monomers must give up their n� centers of mass
for the single center of mass of the aggregate. Only when the
aggregation free energy is sufficient to “pay” this entropic
price (i.e., when the concentration of “excess” monomers is
sufficiently large) does aggregation become thermodynami-
cally favorable. Hence, the CAC depends on not only

aggregation energetics but also the aggregation number n�.
According to Eq. (11), ϕ� exhibits a modest increase with n�
(as ∼n−1=n�� ) due to the increased translational entropy loss for
when joining larger aggregates. We return to the implications
of the n� dependence of aggregation thresholds in the
discussion of competing aggregate states later on. Notice
that, although the model ignores physical interactions between
distinct aggregates, the change in translational entropy cou-
ples n� units, making aggregation a cooperative process. For
this reason, the CAC becomes progressively sharper and tends
toward a thermodynamic transition as n� → ∞ [Fig. 5(a)].
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FIG. 5. (a) Plots of a “two-state” model composed only of
monomers (n ¼ 1) and aggregates of a single peak size
(n ¼ n� ≈ nT) as functions of the total concentration Φ and
for different finite aggregate sizes. The critical aggregation
concentration (CAC), here ϕ�, characterizes the concentration
range beyond which aggregates dominate the subunit population.
(b) Assembly behavior of hepatitis B virus (HBV) capsid protein
in vitro as a function of concentration. The concentration
dependence of the fraction of subunits (protein dimer) is shown
in two states: free subunits and assembled capsids composed of
120 subunits. Notice that as the total concentration crosses the
CAC (labeled KD;app) the concentration of free subunits is nearly
constant, with almost all additional subunits assembling into
capsids. From Ruan, Hadden, and Zlotnick, 2018.

5The CAC is commonly referred to as the critical micelle
concentration (CMC) in the amphiphile literature. In the virus
assembly literature it is often called the pseudocritical concentration
to emphasize that it does not correspond to a true phase transition for
finite n�, and because the CAC observed in finite-time experiments
typically exceeds the equilibrium CAC due to nucleation barriers.
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2. Finite aggregates: Mean size and size dispersity

Here we review the conditions for the most probable or
optimal aggregate size n� given a known form of ϵðnÞ, which
we assume for the moment to have a single minimum at target
size nT. The optimal size n� corresponds to the maximum in
the aggregate distribution ρn ¼ ðeβ½μ−ϵðnÞ�Þn or, equivalently,
the minimum in the free energy n½ϵðnÞ − μ�, which includes
the total interaction free energy and entropy cost of forming an
n-mer from free monomers. However, except under conditions
where monomers are buffered to a fixed concentration, the
chemical potential μ ¼ kBT lnϕ1 varies as the equilibrium
monomer population changes with total concentration.
Naively, this might suggest that the optimal aggregate size
should strongly vary with total concentration. Here we
illustrate why, notwithstanding the variation of μ with con-
centration, n� is nearly independent of Φ and almost entirely
determined by the form of aggregation energetics ϵðnÞ.
Following this, we summarize the effects of dispersity [i.e.,
the finite width of the aggregation peaks in Fig. 4(b)] on
aggregation thermodynamics, which is necessary to account
for the weak concentration dependence of the optimal aggre-
gate size.

a. Two-state aggregation

As a first approximation, consider the two-state aggregation
model deep into the aggregation regime, i.e., well above the
CAC (Φ ≫ ϕ�). The optimal aggregate size derives from the
condition dρn=dnjn� ¼ 0, or

ϵðn�Þ þ n�ϵ0ðn�Þ − μ ¼ 0; ð12Þ

where ϵ0 ¼ dϵ=dn. Using the fact that ϕ1ðΦ ≫ ϕ�Þ ≃
ϕ�ðΦ=ϕ�Þ1=n� ¼ eϵ� ðΦ=n�Þ1=n� from Eq. (11) in Sec. II.B.1,
this transforms to the condition for the optimal (peak)
aggregate size

ϵ0ðn�Þ ¼
kBT
n2�

lnðΦ=n�Þ ðtwo stateÞ: ð13Þ

From Eq. (13) we may draw two key conclusions. First, in the
limit of large target size n� ≫ 1, the optimal size corresponds
to a minimum of ϵðnÞ. That is, since ϵ0ðn�Þ → 0, n� → nT and
the aggregate peak is selected by minimizing the subunit
aggregation energy, independent (to a first approximation) of
concentration. Second, the right-hand side of Eq. (13), which
is proportional to the translational free energy of a dilute
concentration of n�-mers, is negative, and hence ϵ0ðn�Þ < 0.
Combining this with Eq. (12), we find

μ < ϵðn�Þ: ð14Þ

Equation (14) shows that the equilibrium chemical potential
approaches from below, but never quite reaches, the inter-
action energy of the optimal aggregate ϵðn�Þ (excepting the
unphysical limit Φ=n� → 1).
Finally, the fact that n� corresponds to a maximum in the

aggregate size distribution suggests the following condition
from d2ρn=dn2 < 0:

ϵ00ðn�Þ > −
2ϵ0ðn�Þ
n�

> 0: ð15Þ

As the right-hand side goes to zero as ∼n−3� , the aggregation
energetics must be convex in the vicinity of the optimal size.
Strictly speaking, however, a stronger condition than con-
vexity alone is needed to justify the neglect of aggregation
number fluctuations in the two-state approximation, as dis-
cussed next.

b. Gaussian approximation

We now consider the effect of convexity of the aggregation
energetics, characterized by the second derivative of ϵðnÞ at
the peak aggregate size. As before, we restrict our analysis to
the case of a single, well-defined minimum in ϵðnÞ occurring
at a finite target size nT > 1. Close to the minimal-energy size,
the energetics have the form

ϵðnÞ ≃ ϵT þ
ϵ00T
2
ðn − nTÞ2; ð16Þ

where ϵT < 0 and ϵ00T > 0, respectively, characterize the
minimum energy and convexity of the target aggregate, as
illustrated in the harmonic approximation in Fig. 4(a).
Physically, ϵ00T, which we call the convexity, quantifies twice
the energetic cost to alter the aggregate number from its target
by�1. In Sec. III, we describe the physical effects that control
convexity in different models of self-limiting assembly. Here
we see that the concentration dependence of the mean (or
peak) self-limiting size, as well as the size dispersity, is
controlled by a single combination of ϵ00T and nT.
The effect of finite convexity is to allow fluctuations in n

around the peak size n�. When ϵ00T and nT are sufficiently large,
the aggregate distribution follows a Gaussian

ρnðn ≫ 1Þ ≃ en�βðμ−ϵ�Þe−ðn−n�Þ2=2hΔn2i; ð17Þ

where hΔn2i characterizes the variance of aggregate sizes
relative to n�. Assuming that the Gaussian distribution of
aggregates is well separated from the monomer peak, the
size fluctuations around n� may be summed in ϕn ¼ nρn,
yielding the same mass-action formula as Eq. (11), but with a
redefined CAC

ϕ� ≈
eβϵ�

ðn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhΔn2i

p
Þ1=n� ðGaussianÞ: ð18Þ

Compared to the two-state approximation, ϕ� is depressed by
a factor proportional to hΔn2i1=2n� due to the comparative
increase in the number of aggregate states and associated
entropy. Likewise, well above the CAC, the monomer
population is depressed (relative to the two-state approxima-
tion) by the same factor. Combining this effect into the
chemical potential with the peak aggregate condition in
Eq. (12) gives the following prediction for the peak (mean)
aggregate:
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n� ≃ nT

�
1þ kBT

n3Tϵ
00
T
ln

�
Φ

nT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhΔn2i

p ��
ðGaussianÞ; ð19Þ

where we are considering only the leading correction to
n� − nT. In this same limit, aggregate dispersity becomes

hΔn2i1=2
nT

≃
1

ðn3Tβϵ00TÞ1=2
ðGaussianÞ; ð20Þ

where again averages are taken with respect to aggregate
distribution ρn (i.e., the number average).
The results of the Gaussian approximation in Eqs. (19)

and (20) highlight two physical effects of convexity. First, in
Eq. (19), the mean aggregate size always falls slightly below
the minimal-energy target size (i.e., becauseΦ < 1, and hence
the logarithmic factor is always negative). This “suboptimal”
aggregate size derives from the translational entropic
preference for smaller-n aggregates, and hence this weak
depression of n� decreases with increasing supersaturation as
the translation free energy of aggregates ðkBT=nTÞ lnðΦ=nTÞ
tends toward zero. Second, the relative shift of mean aggre-
gation number ðn� − nTÞ=nT and the relative size variance
hΔn2i1=2=nT decrease with the reciprocal of ϵ00Tn

3
T=kBT.

Hence, corrections from size variations become small, in
relative terms, either for sharp minima when ϵ00T ≫ kBT or for
larger aggregate number when nT ≫ ðkBT=ϵ00TÞ1=3. While at
first glance this might suggest a generic tendency toward
monodisperse aggregation in the large-nT limit, SLA models
described in Sec. III show convexity to be a decreasing
function of nT. Hence, as it turns out the decrease of relative
size fluctuations with target size becomes nontrivially depen-
dent on the geometric sensitivity of aggregation energy.

c. Self-limitation without minima

Before considering landscapes with more complex equi-
libria, we note that it is possible to construct functional forms
of ϵðnÞ that exhibit self-limitation without local minima. As an
example, consider a variation of the general type of energetics
described in Sec. II.A.2,

ϵðnÞ ¼ −ϵ0 þ ΔðnÞ ð21Þ
where ΔðnÞ is a monotonically decreasing, and convex,
function of n so that the minimal energy per particle occurs
for infinite aggregates, i.e., ϵðn → ∞Þ ¼ −ϵ0. The condition
for a maximum in ρn in Eq. (12) gives

μþ ϵ0 ≡ −ðΔμÞ∞ ¼ Δðn�Þ þ n�Δ0ðn�Þ. ð22Þ
Because the chemical potential is bounded from above by −ϵ0
[from Eq. (14)] and hence ðΔμÞ∞ > 0, the conditions for finite
optimal aggregate size can be satisfied (at some accessible μ)
provided that ΔðnÞ decreases faster than 1=n or, more
specifically, that

Δ0ðnÞ
ΔðnÞ < −

1

n
ð23Þ

for some range of finite n. For example, for any model that
approaches the bulk energy as a power law ΔðnÞ ¼ Δ0=nγ,

where γ > 1, it is straightforward to show that the peak size
obeys n� ¼ ½ðγ − 1ÞΔ0=ðΔμÞ∞�1=β, which increases continu-
ously with concentration as Δμ∞ → 0 from above.
While the previous argument shows that it is possible to

construct mathematical examples of minima-free energy
densities that result in finite-n peaks in ρn, physical cases
of SLA fall outside of this category. For example, generic
physical grounds suggest that aggregates possess a boundary,
or surface, at which the assembly energy is different (generally
higher) than in the interior, as described for cases of short-
range cohesive interactions in Sec. II.A.2. In the limit of large
n, the asymptotic contribution to the energy density from this
boundary n−1=d, where d ≥ 1, will dominate over other
possible terms falling off faster than n−1 [such as the ΔðnÞ
term in Eqs. (21) and (23)], leading to unlimited assembly.
Hence, we exclude such anomalous cases and focus the
discussion on situations where self-limitation is directly
associated with well-defined minima of ϵðnÞ.

3. Competing states of aggregation

Sections II.B.1 and II.B.2 describe the simplest case of
self-limiting assembly: a concentration-controlled crossover,
or “pseudotransition,” from a monomer-dominated state to a
state dominated by aggregates of one finite size. The finite
aggregate size corresponds to a single minimum in ϵðnÞ, and
the transition occurs at a single CAC. In this section, we
overview the thermodynamics of cases in which assembly is
characterized by multiple local minima, or instead by
transitions between self-limiting and unlimited aggregation
states. In these cases, the aggregation thermodynamics can
exhibit a more complex dependence on concentration cor-
responding to secondary CACs between different aggrega-
tion states. While concentration-dependent transitions
between different aggregates are commonly attributed to
interactions between aggregates (Israelachvili, 2011), it is
less widely appreciated that they can also occur in ideal
aggregation models, which strictly neglect interaggregate
interactions. As we review in Sec. III.A.2, the possibility of
an “ideal” secondary CAC was first considered in the context
of transitions between spherical and cylindrical surfactant
micelles (Porte et al., 1984; May and Ben-Shaul, 2001). In
this section, we describe this behavior as a generic conse-
quence of the translational entropy preferences for smaller
aggregate sizes. As such, ideal secondary CACs can occur in
a much broader class of SLA models.

a. Two finite aggregate states

We first describe a simple model with only two states of
finite aggregates in equilibrium with a population of free
monomers, for simplicity ignoring number fluctuations
around these three states. We consider two states of small
and large aggregates, corresponding to two well-defined local
minima of ϵðnÞ, at nS and nL > nS subunits, respectively, as
shown schematically in Fig. 6(a). In this case, aggregation is
controlled not only by the difference in the respective energy
minima ϵS and ϵL but also by the difference in the aggregation
number. To understand aggregation in the presence of multiple
minima, it is convenient to define the nominal CACs corre-
sponding to either aggregate state, from Eq. (10),
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ϕ�
ν ≡ ½nνe−βnνϵν �−1=ðnν−1Þ ≈

eβϵν

n1=nνν

for ν ¼ S;L. ð24Þ

These are concentrations at which aggregates of either type
would overtake free monomers, were it not for the additional
equilibrium between the populations of small and large
aggregates. In terms of these concentration scales, the law
of mass action takes the form

Φ ¼ ϕ1 þ ϕ�
S

�
ϕ1

ϕ�
S

�
nS þ ϕ�

L

�
ϕ1

ϕ�
L

�
nL
; ð25Þ

where the last two terms represent the respective populations
of subunits in nS-mers and nL-mers, which we denote as ΦS
andΦL. As shown previously for a single minimum in ϵðnÞ, in
the limit of high concentration aggregation always proceeds
toward the state with the lowest energy. However, in this case
there are two possible thermodynamic scenarios for the
concentration dependence, depending on the relative energy
difference between small and large aggregates:

(i) ϵS < ϵL: Because nS < nL, in this case it is always
true that ϕ�

S < ϕ�
L, which means that as concentra-

tion increases ϕ1 → ϕ�
S before reaching ϕ�

L. Above
the threshold where ϕ1 ≈ΦS, monomers remain
effectively buffered at ϕ1 ≈ ϕ�

S, and it is straightfor-
ward to show that ΦL ≪ ΦS.

6 Thus, when the
smaller aggregate has a lower per subunit aggrega-
tion energy, aggregation proceeds as if there is only a
single target state with a CAC at ϕ�

S and never yields
a significant number of large aggregates.

(ii) ϵS > ϵL: When the large aggregates are energetically
favored, there are two possibilities. First consider the
case of large energy differences, such that eβðϵL−ϵSÞ <
n1=nLL =n1=nSS . For this first regime ϕ�

L < ϕ�
S, and there

is only a single CAC at the lower critical concen-
tration for large aggregates. For the second regime,
when the energy difference between large and small
aggregates is smaller, in the range 1 > eβðϵL−ϵSÞ >
n1=nLL =n1=nSS the order of the CACs reverses,
ϕ�
S < ϕ�

L, and leads to two CACs. As shown in
Fig. 6(b), for this case, with increasing concentration
from the dilute limit, the concentration reaches a first
CAC at Φ ≈ ϕ�

S, with a transition to a state domi-
nated by small aggregates (i.e., ΦS ≫ ϕ1;ΦL). This
state persists until reaching a second CAC at
Φ ≈ ϕ��, defined by a crossover in dominant ag-
gregation state to ΦL > ΦS. The concentration
threshold condition can be estimated by solving
for the monomer concentration at which ΦSðϕ1Þ ¼
ΦLðϕ1Þ ≫ ϕ1 from Eq. (25):

ϕ�� ≈ ϕ�
L

�
ϕ�
L

ϕ�
S

�
nS=ðnL−nSÞ

; ð26Þ

which is larger than the “bare” value ϕ�
L owing to the

depletion of free monomers by small aggregates and
corresponds to a total concentrationΦ�� ≈ 2ϕ��. The
high-concentration regime above the second CAC is
dominated by minimal-energy large aggregates
but maintains a sizable amount of small aggregates
(i.e., ΦL ≫ ΦS ≫ ϕ1) approximately buffered at the
second CAC concentration.
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FIG. 6. (a) Schematic plot of the aggregation energetics for a case with two local minima corresponding to small and large finite
aggregates containing nS and nL respective subunits in their target sizes. The solid curve shows a case where small aggregates are the
global minimum of ϵðnÞ, while the dashed curve shows a case where the larger aggregate is the global minimum. The latter case can lead
to secondary CAC transitions between small and large aggregates, as shown in (b), which plots the monomer, small aggregate, and large
aggregate populations as functions of total concentration for large aggregates that are slightly energetically more favorable than small
ones (eβðϵL−ϵSÞ ¼ 0.8). In this case, small aggregates dominate at intermediate concentrations but ultimately are overtaken by a second
population of large aggregates above a second CAC. (c) Assembly state map for the two finite aggregate model, as a function of the per
subunit energy difference between small and large aggregates and total concentration. The color scale shows the mean aggregate size,
while the solid lines indicate boundaries between states dominated by monomers, nS-mers, and nL-mers. The dashed lines indicate
where subdominant aggregates reach the monomer concentration. (b),(c) Results of the two finite aggregate model for
nS ¼ 10 and nL ¼ 50.

6The assumptions of ideal aggregation require that Φ must remain
below unity, a condition that requires ϕ1 ≪ ϕ�

L for case (i).
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To summarize this two-aggregate model, it is possible to
have two pseudocritical transitions [as in Fig. 6(b)], first
from disassembled monomers to small aggregates and then
from small to large aggregates, provided that the energy
difference between aggregates is sufficiently small, in the
window

0 < ϵS − ϵL <
kBT
nS

ln nS −
kBT
nL

ln nL: ð27Þ

This is consistent with the secondary CAC behavior shown in
the assembly state diagram in Fig. 6(c) calculated for the case
of nS ¼ 10 and nL ¼ 50.
The physical origin of this double CAC behavior can be

traced to a competition between the higher cohesive energy of
large aggregates pitted against the higher per subunit trans-
lational entropy of smaller aggregates. This can be cast in
terms of the chemical equilibrium between large and small
aggregates, which requires

μ ¼ ϵS þ
kBT
nS

ln ρS ¼ ϵL þ
kBT
nL

ln ρL: ð28Þ

Energetically favorable large aggregates (ϵL < ϵS) require
aggregate concentrations to adjust to maintain a suitably
higher translational entropy of small aggregates, namely,
ð1=nSÞ ln ρS < ð1=nLÞ ln ρL, specifically

ρS=ρL ¼ enSβðϵL−ϵSÞ

ρðnL−nSÞ=nLL

. ð29Þ

Equation (29) shows that the larger entropy of smaller
aggregates requires that ρS=ρL > 1 provided that the concen-
tration of large aggregates remains sufficiently small (below
ρL < ρ��L ¼ ½eβðϵL−ϵSÞ�nSnL=ðnL−nSÞ). Hence, when nS and the
differential in aggregation energy are small enough, small
aggregates remain more populous than large aggregates up to
total concentrations that exceed the first CAC to the small
aggregate state until the second CAC.
This simplified model illustrates a generic conclusion. Even

if an aggregate state does not correspond to the global
minimum of ϵðnÞ, it may exhibit an entropically stabilized
window of thermodynamic dominance at intermediate con-
centrations provided that its target size is sufficiently small
and its energy is sufficiently close to the global minimum.
Next we illustrate this entropic stabilization of finite compact
aggregates in models for which the competing states are
unlimited.

b. Finite and unlimited aggregates

While polymorphic assembly into multiple finite-number
aggregates occurs in some natural and biomimetic systems
(Wingfield et al., 1995; Sun et al., 2007; Lutomski et al.,
2018) and may be desirable for nanomaterials applications,
cases in which aggregates change dimensionality are more
common: that is, aggregate structures that remain finite in at
least one spatial direction but undergo essentially unlimited
growth in other directions. The most common examples
are amphiphilic assemblies, which can form spherical

micelles (finite in all directions), cylindrical micelles (finite
in two spatial dimensions, unlimited in one), or lamellar or
layered assemblies (finite in one dimension, unlimited in
two). In Sec. III.A.2 we describe the molecular ingredients
that lead to polymorphic transitions between aggregate
dimensionality based on a model of surfactant assembly
(May and Ben-Shaul, 2001; Bergström, 2016). In this
section, we illustrate how the principles of secondary
CAC behavior apply to models that can exhibit states of
finite aggregation number (such as spherical aggregates) that
can transition to states of 1D aggregation or a bulk unlimited
morphology.
Since our primary interest is to describe conditions where

ideal aggregation gives rise to concentration-dependent tran-
sitions in morphology, we consider a minimal description of a
generic model including finite and unlimited aggregation
states. As summarized in Fig. 7(a), this model considers three
disconnected “branches” of assembly:

(1) Finite compact aggregates with respective target size
and energy nF and ϵF.

(2) 1D aggregates with energy per subunit

ϵðnÞ ¼ ϵ1D þ Δ0=n;

where Δ0 > 0 characterizes the cost of finite end caps
and ϵ1D < 0 is the limiting n → ∞ per subunit
assembly energy in this morphology.

(3) Bulk aggregates with energy density ϵbulk. Here we
consider only one macroscopic aggregate (n → ∞)
with negligible boundary energy.

Based on the foregoing analysis of the two-finite assembly
state model, it can be anticipated that secondary CAC
behavior from finite to 1D aggregation takes places when
the n → ∞ energy density of 1D aggregates is lower than for
finite aggregates, but the energy gap is sufficiently small that
the translational entropy associated with the compact aggre-
gates can stabilize a window of nF-mer aggregates. Likewise,
when the energy density of the bulk state falls below these
dimensionally limited states, we anticipate an upper limit to
concentration (i.e., saturation) that can maintain equilibrium
with dispersed aggregates.
With this in mind, we consider a simplified law of mass

action for subunit populations

Φ ¼ ϕ1 þΦF þΦ1D þΦbulk; ð30Þ

where the terms, respectively, describe the populations of free
monomers, subunits in a single finite aggregate size, 1D
aggregates of various size, and bulk aggregation. The pop-
ulation of subunits in finite aggregates is given by (neglecting
number fluctuations)

ΦF ¼ nFðϕ1e−βϵFÞnF ; ð31Þ

while the 1D aggregate population is given by
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Φ1D ≃
X∞
n¼nF

ne−βΔ0ðϕ1e−βϵ1DÞn

≃ nFe−βΔ0
ðϕ1e−βϵ1DÞnF
1 − ϕ1e−βϵ1D

: ð32Þ

In Eq. (32), we made the additional assumptions that 1D
assembly is not favorable below some aggregate size close to
nF > 1, and that the monomer concentration remains well
below the value eβϵ1D where Φ1D diverges.7 The results are not
qualitatively sensitive to these approximations.
Based on these forms, it is straightforward to find the free

monomer concentration ϕ��
1 where finite aggregates and 1D

aggregates are equally populous, i.e., ΦFðϕ��
1 Þ ¼ Φ1Dðϕ��

1 Þ,

ϕ��
1 ¼ eβϵ1Dð1 − e−βδÞ; ð33Þ

where

δ ¼ Δ0 þ nFðϵ1D − ϵFÞ ð34Þ

is the energy difference, or “barrier,” between an nF-mer and a
1D aggregate of the same size; see Fig. 7(a). As previously
described, a stable aggregate population requires at least a
local minimum in the energy and hence a barrier necessarily
separates aggregation states associated with distinct local
maxima in population. The size of this barrier determines
the window of secondary CAC transition behavior as follows.
First, note that δ > 0 implies that the energy of

forming two end caps on the 1D aggregate exceeds that of
the target nF-mer. Second, the existence of a second CAC
requires this concentration to exceed the primary CAC to a
nF-mer dominated state, that is, the condition ϕ��

1 > ϕ�
F ≃

eβϵF=n1=nFF . This gives an upper limit to the energy gap
between nF-mer aggregation and 1D assembly for second
CAC behavior ϵF − ϵ1D < Δϵmax, with

Δϵmax ≈
kBT
nF

ln nF þ kBT lnð1 − e−βδÞ; ð35Þ

the stability window of the nF-mer state expands, in terms of
Δϵmax, with both decreasing target size and increasing energy
barrier to 1D aggregation. For energy gaps larger than this
limiting condition, the intermediate nF-mer state disappears.8

Last, note that monomers reach chemical equilibrium with
the bulk state at a concentration ϕ1 ¼ eβϵbulk , which sets an
additional condition for second CAC behavior ϕ��

1 < eβϵbulk.
This gives the upper limit to the energy gap between 1D and
bulk assembly for second CAC behavior before saturation

ϵ1D − ϵbulk < −kBT lnð1 − e−βδÞ. ð36Þ

Equation (36) shows that the concentration range of the 1D
aggregate state diminishes with an increasing energy barrier
between compact and 1D aggregates.
An example of an assembly state diagram for this model

under conditions ϵF > ϵ1D > ϵbulk is shown in Fig. 7(b). The
concentration-dependent state of aggregation is plotted versus
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FIG. 7. (a) Schematic plot of polymorphic aggregation ener-
getics with three competing branches of assembly: finite aggre-
gates with a local minimum at nF, 1D aggregates, and bulk
aggregates (n → ∞ energy shown as a horizontal dashed line). In
this case, the infinite 1D aggregate has a lower per subunit energy
than finite aggregates, and there is a barrier in total energy δ that
separates these states at n ¼ nF, i.e., the double arrow in (a)
corresponds to δ=nF. (b) Phase diagram for concentration-depen-
dent size selection. The dominant aggregation state is shown for a
system with coexistence among finite aggregates with nF ¼ 100
subunits, separated by an energy gap ϵF − ϵ1D and a barrier of δ
[Eq. (34)] to 1D aggregates. There is an additional per subunit
energy gap of ϵ1D − ϵbulk ¼ 0.0005kBT between the 1D and bulk
aggregates. The horizontal axis gives the energy gap between
spheres and cylinders, and the vertical axis gives the total concen-
tration relative to the CAC for finite aggregates ϕ�

F ≃ eβϵF=nF. The
boundaries between monomers, finite aggregates, and 1D aggre-
gates are determined by crossovers in the most populous aggregate
type from Eq. (30), while the point of bulk saturation is determined
by the point whenμ ¼ ϵbulk. In this example, the energy per subunit
in finite aggregates is fixed at ϵF ¼ −10 kBT and the end cap
energy of the spherocylinders is Δ0 ¼ 20 kBT. The maximum
energy gap for which second CAC behavior occurs [Δϵmax ≈
0.14kBT; Eq. (35)] is indicated along the x axis.

7Specifically, we assume nF > eβδ. For nF < eβδ, Φ1D ≃
e−βΔðϕ1e−βϵ1DÞnFþ1ð1 − ϕ1e−βϵ1DÞ−2, ϕ��

1 ≈ eβϵ1Dð1 − e−βδ=2=n1=2F Þ.
8Note that Eq. (35) is an implicit relation for Δϵmax since δ is a

function of ϵ1D − ϵF. However, in the limit δ ≫ 1 the maximum gap
is Δϵmax ≈ ðϵ1D þ kBT ln nFÞ=nF. Similarly, in the limit nF < eβδ,
Δϵmax ≈ ðΔ0 − 2kBTÞ=nF; see footnote 7.
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the energy gap between nF-mers and 1D aggregates for
variable ϵF with fixed nF, Δ, ϵ1D, and ϵbulk. Under these
conditions, when the aggregation energy of compact nF-mers
is larger than, but sufficiently close to, that of infinite 1D
aggregation, the system undergoes a sequence of concen-
tration-driven transitions: first from monomers to finite
aggregations, then to 1D aggregates, and finally to bulk
unlimited assembly. In Sec. III, we revisit the possibility of
multi-CAC behavior in the context of polymorphism of
surfactant aggregates, focusing on its microscopic origin
for this effect in terms of an underlying molecular model
of aggregation.

III. MECHANISMS AND MODELS OF SELF-LIMITING
ASSEMBLY

In Sec. II, we overviewed the basic thermodynamics of
ideal aggregation and described some of the generic ingre-
dients and outcomes of finite-size equilibria. We showed that
the key ingredient is a per subunit aggregation free energy that
has one or more local minima as a function of aggregation
number (for finite-number aggregates), or as a function of the
size of one or more spatial dimensions of the aggregate (for
spatially finite aggregates like quasicylindrical or planar
structures). In this section, we review four broad mechanisms
of self-limiting assembly and a physical example of each
mechanism. In each case, we first focus on the physical
ingredients that give rise to the self-limiting aggregation
energetics and then illustrate some of the implications of
the generic phenomonology overviewed in Sec. II.
To organize the discussion, we divide these mechanisms

into two broadly delineated classes: self-closing assembly and
open-boundary assembly. These classes are distinguished by
the presence or absence of an open boundary and gradients in
intra-aggregate stress in the target assembly. Self-closing
assembly describes aggregates in which the subunits, by
and large, share the same cohesive environment of neighbor-
ing subunits and further adopt a common shape in the target
assembly. In contrast, self-limitation of open-boundary assem-
blies requires gradients of the inter-subunit forces throughout
the aggregate. Within the discussion, we highlight the distinct
outcomes and potential trade-offs between these different
mechanisms in terms of size selection.
We divide the remainder of Sec. III into two main parts,

focusing, respectively, on self-closing and open-boundary
assemblies. Following the introduction of each broader class
of SLA, we further subdivide each into two subclasses
representing four basic physical mechanisms of SLA. For
each of the four basic mechanisms, we overview the appli-
cable physical systems and then introduce a simple example
model that captures the emergence of self-limited assembly.

A. Self-closing assembly

We define self-closing assembly (SCA) as a class of self-
limiting assembly that achieves a finite target size, or finite
target dimension, due to anisotropic binding between neigh-
bors that leads to a preferred rotation of neighbor bonds. Such
interactions generically arise when subunits are tapered or
wedge shaped, such that cohesive bonding leads to a relative

rotation of the axes of neighbor units; see Figs. 2(a) and 9(a).
In combination with the relative displacement of subunit
centers, this relative rotation, when built up over multiple
subunits, leads to a preferred intra-assembly curvature along
one or more principal directions. In the simplest case, this can
be visualized as 1D loops of subunits, whose preferred
curvature radius Rclose leads the structure to close upon itself.
We include in the SCA class structures that close

upon themselves in all directions of assembly and thus
achieve a finite number of subunits, such as the spherical
shell in Fig. 8(a), as well as structures that close in one or more
directions but remain unlimited in others, such as the tubule in
Fig. 8(b). In the latter case, structures have an unlimited
number of subunits but achieve a finite size in the self-closing
direction(s). For example, the tubule is unlimited in the axial
direction but has a well-defined radius and corresponding
number of subunits in the circumferential direction. The
underlying principles for size selection remain the same as
for finite number; namely, the self-limiting size W of a self-
closing direction is determined by the minimum of the energy
per subunit with respect to W. This can be readily understood
by considering a system with nearly all of its N subunits
assembled in aggregates of unlimited number, and corre-
spondingly a negligible fraction of free monomers. To first
approximation, the energetic costs of free edges and the
translational entropy of the unlimited aggregates can be
neglected, and the concentration of free monomers can be
assumed to be a small contribution to the total free energy
F ≈ NϵðWÞ. Hence, the thermodynamic equilibrium at fixed
N corresponds to the selection of the energy-minimizing size
W�, which corresponds to ∂WϵjW� ¼ 0. We describe similar
considerations for self-limiting, open-boundary assemblies in
Sec. III.B.1.
Strictly speaking, for a SCA it need not be necessary to

identify a continuous loop of bonds along the self-closing
direction(s) or that target curvatures are strictly uniform. We
require only that there are one or more periodic directions on a
representative 2D surface of the aggregate (such as the surface
spanned by the subunit centers). Moreover, the preferred
curvature does not need to select a perfectly commensurate
number of subunits per cycle, since physical subunits generi-
cally possess some flexibility of shape and cohesion (bonding)
that permits fluctuation in the interunit rotation. In the
simplest case, such as with fluidlike intra-assembly order, a
SCA may accommodate such strains through uniform

A B

self-closing 
directions

self-closing
direction

unlimited direction
(a) (b)

FIG. 8. (a) Schematic of spherical shell assembly with two
independent self-closing directions of assembly. (b) Schematic of
tubule assembly with one self-closing direction (circumferential)
and one unlimited direction (axial) of assembly.
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deformation of subunits and their bonds. However, certain
physical examples introduce extra geometric constraints (such
as solidlike, spherical shells) that require at least some variable
intra-assembly strains. Notwithstanding the possibility of such
gradients, we categorize an assembly as self-closing if its
target size is selected through the curvature radius Rclose, as
opposed to the accumulation of stress gradients, which is later
described as a distinct class of self-limiting assembly.
Physical examples of SCA can be divided roughly into two

groups according to the ratio of subunit size, characterized by
some thickness d, and the target curvature radius Rclose. When
Rclose=d ≫ 1 the target number of units per cycle is propor-
tionately large. This case describes tubules, shells, and
capsules. The second case Rclose ≈ d describes assemblies
whose curvature (and thus self-limited size) is most often
selected and regulated by the molecular dimension itself,
which is characteristic of amphiphiles and their micellar
aggregates.

1. Shells, capsules, and tubules

We first review the case of tubule or shell-like assemblies.
Examples of these are common in biology, where tapered
protein subunits select a preferred radius of assembly curva-
ture (Oosawa and Asakura, 1975). Quasicylindrical (tubular)
examples include microtubules (Nogales, 2000; Cheng,
Aggarwal, and Stevens, 2012) and the bacterial flagella
(Namba and Vonderviszt, 1997), while quasispherical (shell
and capsule) examples include clathrin cages (Kirchhausen,
Owen, and Harrison, 2014; Giani et al., 2017; Bucher et al.,
2018; Mettlen et al., 2018), viral capsids (Zlotnick and
Mukhopadhyay, 2011; Mateu, 2013; Hagan, 2014;
Bruinsma and Klug, 2015; Perlmutter and Hagan, 2015;
Hagan and Zandi, 2016; Twarock et al., 2018; Zandi et al.,
2020), bacterial microcompartments (Schmid et al., 2006;
Iancu et al., 2007; Kerfeld, Heinhorst, and Cannon, 2010; Rae
et al., 2013; Chowdhury et al., 2014; Bobik, Lehman, and
Yeates, 2015; Kerfeld and Melnicki, 2016), and other protein-
shell organelles (Sutter et al., 2008; Pfeifer, 2012; Nott et al.,
2015; Zaslavsky et al., 2018). Recently, engineered tapered or
patchy colloids have also drawn interest for their ability to
realize synthetic analogs of self-closing tubules and shells (Li,
Josephson, and Stein, 2011; Morphew and Chakrabarti,
2017), although many if not most such realizations to date
are properly categorized as analogs to micelles where curva-
tures are comparable to colloidal dimension. Whatever the
underlying subunit structure, the existence of 1D curvature
ensures equilibrium self-limitation along only one of the two
assembly dimensions in the tubular constructs, while the
preferred positive Gaussian curvature of shells and capsules
leads to equilibrium states with finite subunit number.
To illustrate the self-limiting thermodynamics of shells and

capsules, where target curvature radii are much larger subunit
dimensions, consider the following minimal model. Spherical
fluid capsules, shown schematically in Fig. 9(a), are com-
posed of subunits with nominal area a0 and a tapered shape
that favors a preferred target spherical curvature radius RT.
Here we restrict the analysis to cases in which the curvature
preference sufficiently disfavors locally anisotropic curvature
(Lázaro, Dragnea, and Hagan, 2018) to limit incomplete

assembly to caplike aggregation states with positive
Gaussian curvature. Competition between incomplete assem-
blies with positive and zero Gaussian curvature was recently
considered by Mendoza and Reguera (2020). We assume that
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FIG. 9. (a) Schematic geometry of a “fluid capsule” of tapered
subunits that assumes partial shell geometries of spherical caps
with aperture angle 0 < Θ ≤ π. (b) Contour map of the energy
density landscape of the capsule model as a function of aperture
angle and the ratio of subunits n to the preferred number in the
ideal closed shell nT. Low (high) values of ϵðnÞ appear in purple
(red). The dotted line shows a partial shell with the target
curvature, while the solid line indicates the minimal-energy
cap, whose curvature radius is slightly compressed by the line
tension of the boundary. Beyond a threshold cap size
n ¼ nS ≃ 0.4nT, this open cap becomes unstable to preclosure
and the minimal-energy branch runs along Θ → π. This land-
scape corresponds to a dimensionless line tension λ̄ ¼ 0.1.
(c) Plots of the minimal energy branches of assembly. Incomplete
caps are shown as colored curves (metastable portions are
dashed), and the closed shell (Θ → π) is shown as a black curve.
Inset: the size nS corresponding to the preclosure, or “snap,”
transition between stable open caps and closed shells as a
function of line tension.
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the cap covers an axisymmetric “cap” domain of radius R
from its pole up to the aperture angle Θ; see Fig. 9(a). While a
closed capsule with a preferred curvature RT has a target
aggregation number nT ¼ 4πR2

T=a0, a capsule may realize a
different aggregation number n ¼ 2πR2ð1 − cosΘÞ provided
that it is either open (i.e., Θ ≠ π) or deformed from its
preferred taper (i.e., R ≠ RT).
Taking the simplest possible model, we assume that the

intrashell order is fluidlike, such that the only elastic penalty
derives from bending deformations away from target curva-
ture, which we consider via a membranelike bending energy

Ebend ¼
B
2

Z
dA

�
1

R
−

1

RT

�
2

; ð37Þ

where B is a bending modulus and the area integration is
carried out over the incomplete shell. Additionally, we
consider the line energy associated with the open edge for
an incomplete cap

Eopen ¼ 2πR sinΘλ; ð38Þ

where λ is the energy per unit length of the exposed edge,
associated with fewer cohesive bonds as well as a difference in
solvation of subunits at the edge. The aggregation energy as a
function of n then takes the form

ϵðn;ΘÞ ¼ −ϵT þ
2πB
nT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTð1 − cosΘÞ

2n

r
− 1

�
2

þ
ffiffiffiffiffiffiffiffiffiffi
2πa0

p
λ

n1=2
sinΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosΘ

p ; ð39Þ

where −ϵT is the bare aggregation energy for subunits in the
bulk of undeformed capsules.
The form of ϵðn;ΘÞ in Eq. (39) has a global minimum for

closed capsules of the target size (i.e., n ¼ nT and Θ ¼ π).
Nevertheless, the combination of bending elasticity and the
edge energy of incomplete shells influences assembly for
n ≠ nT. This can be seen by plotting the landscape of
assembly energetics in the n=nT–Θ plane, as shown in
Fig. 9(b). For small aggregate sizes n=nT ≪ 1, caps lock
into the preferred curvature R → RT described by the con-
dition cosΘ → 1 − 2n=nT, which is shown as a dotted line in
Fig. 9(b). As n increases, the edge energy favors compression
of the open caps to smaller curvature radii R < RT. The
amount of this shape compression grows up to a critical
aggregation number nS, beyond which the minimal-energy
capsule snaps discontinuously to a closed shell of suboptimal
size, that is, Θ → π for nS < n < n0.
Hence, the minimal aggregration versus n generically

exhibits two branches [Fig. 9(c)]: an open cap for n < nS
and an edge-free closed shell for nS < n < nT. The transition
between these two branches can be understood in terms of
“nucleation” of an open pore in an overcurved shell, where
nT − nS corresponds to the size of the critical nucleus. The
inset of Fig. 9C shows that the critical preclosure size nS
generically decreases with an increasing dimensionless ratio
of edge energy and bending stiffness λ̄≡ ða0nT=8πÞ1=2λ=B.

Notwithstanding the generic existence of a transition
between open-cap and preclosed branches of the energy
landscape, the transition does not lead to stable partial shells
[i.e., a minima in ϵðnÞ for n ≠ nT]. Hence, while the open-cap
branch and its transition to the closed shell may have
implications for assembly pathways and kinetics, the equi-
librium distribution of self-limiting capsules is independent of
the edge energy and generically governed by the energetics of
the closed-shell branch. This fact has further generic conse-
quences for the concentration dependence and dispersity of
aggregate size, both of which are governed by the product of
the convexity and cube of the target size ϵ00ðnTÞn3T=kBT
according to Eqs. (19) and (20). The Θ → π limit of
Eq. (39) shows that ϵ00ðnTÞ ¼ Bπ=n3T. Hence, the decrease
of convexity with target assembly size precisely cancels that
entropic factor of n3T, such that the relative shift in mean
aggregate size and relative dispersity, ðn� − nTÞ=nT and
hΔn2i1=2=nT, respectively, are limited only by the ratio of
bending modulus to thermal energy B=kBT and are indepen-
dent of self-closing target size.9 Therefore, to regulate the self-
limiting size of self-closing assemblies in absolute terms, the
rigidity of subunits and their angular interactions must grow
with target size.
The predicted growth of size fluctuations with target size

would seem to contradict observations of the best studied
example of self-closing shells, icosahedral virus capsids. At
conditions of optimal assembly, size polydispersity of viruses
is remarkably small. In fact, this high degree of monodisper-
sity has been exploited by using 3D crystalline arrays of virus
capsids for optical applications requiring precise spatial
periodicity (Young et al., 2008; Dang et al., 2011; Minten
et al., 2011; Steinmetz et al., 2011; Judd et al., 2014; Malyutin
et al., 2015; Chen et al., 2016; Delalande et al., 2016; Park
et al., 2016; Rother et al., 2016; Brillault et al., 2017). While
high-precision measurements of size dispersity in capsids
are challenging, electron microscopy structures that were
obtained without the assumption of icosahedral symmetry
show that as many as 40% of alphavirus nucleocapsid core
particles exhibit defects (Wang et al., 2015; Wang,
Mukhopadhyay, and Zlotnick, 2018), and hence some dis-
persity in shape. Some nonicosahedral structures, like imma-
ture human immunodeficiency virus (HIV) caspids, exhibit
variations in the number of subunits (∼1000 GAG protein
subunits) that are of the order of the mean capsid size (Briggs
et al., 2009), although such effects may also be attributed to
assembly kinetics (Dharmavaram et al., 2019). More recently
size distributions of hepatitis B virus (HBV) capsids (and
capsids of other viruses) have been achieved at or near single-
subunit precision using resistive pulse sensing (Zhou et al.,
2011, 2018), mass spectrometry (Uetrecht et al., 2011), and
charge detection mass spectrometry (Pierson et al., 2014,
2016; Lutomski et al., 2018). Although metastable defective
capsids have been observed (Pierson et al., 2016; Lutomski

9This continues until the asymptotic limit of zero spontaneous
curvature (nT → ∞), at which point the free energy per subunit is
independent of size and the size distribution becomes an unlimited
exponential (Helfrich, 1986), as shown for 1D assemblies in
Sec. II.A.2.
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et al., 2018), these measurements show that at long times
(potentially corresponding to a near equilibrium state) the
population is dominated by icosahedral capsids with the
native size.10

To place these measurements in the context of the results for
the fluid shell model, we note that bending moduli for virus
capsids have been estimated from the force-displacement
curves measured in nanoindentation experiments in which
virus capsids are compressed using an AFM tip.11 Estimated
bending modulus values vary from 10kBT to 200kBT, but
typical values fall in the higher end of the range
[ð100–200ÞkBT]. [For comparison, bending moduli of lipid
bilayer membranes are typically in the range ð10–20ÞkBT.]
Using the previous result that hΔn2i1=2 ≈ n0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πB=kBT

p
, with

n0 ¼ 120 and an estimate of B ∼ 60kBT for HBV,12 gives a
root mean squared size fluctuation of about nine dimers,
considerably larger than the long-time experimental estimates.
This discrepancy highlights two physical ingredients

neglected in the previously described model: the discrete
subunit size and the fact that most virus capsids, as well as
most other protein shells, are crystalline rather than fluid. As
discussed in Sec. V.B, the arrangement of proteins within
icosahedral capsids can be mapped onto a triangular net.
However, tiling a spherical topology with a triangular lattice
requires the formation of 12 fivefold sites, often considered
defects in a hexagonal packing. A number of equilibrium
calculations have shown that the elastic energy of the defects
themselves and interdefect elastic interactions significantly
affect the energy landscape of such shells (Bruinsma et al.,
2003; Zandi et al., 2004; Chen, Zhang, and Glotzer, 2007; Li
et al., 2018, 2019; Mendoza and Reguera, 2020). These
effects are reflected in local minima in the aggregate energy at
certain “magic numbers” of subunits (Zandi et al., 2004).
These minima correspond to shells with high degrees of
symmetry, with the in-plane bonding energies corresponding
to shells with icosahedral symmetry. Thus, when including the
energetics of this bond ordering a size fluctuation of even one
subunit can incur a significant energy cost (≳10kBT) since it
requires disruption of the low-energy geometry, for example,
through the introduction of a pair of fivefold and sevenfold defects. In fact, the metastable structures observed in HBV

capsids are typically found at discrete intervals corresponding
to deviations of multiple subunits from the native capsid size
(Pierson et al., 2014, 2016; Lutomski et al., 2018), suggesting
that typical fluctuations correspond to insertion or deletion of
multisubunit oligomers (such as hexamers of the capsid
protein), which would minimize disruptions to the capsid
symmetry. For example, Figs. 10(a) and 10(b) show cryo-
electron microscopy (cryo-EM) images and examples of 2D
class averages, respectively, of in vitro assembly products of
woodchuck hepatitis B virus (WHV) capsid proteins, which
exhibit heterogeneous structures including icosahedral cap-
sids, elongated closed shells, and shells with overlapping
edges. Figure 10(c) shows a hypothetical model of a non-
icosahedral closed shell in which insertion of additional
hexamers leads to a prolate structure.
Computational models of icosahedral assembly have also

identified ensembles of defective capsules in which additional
hexamers were added to the icosahedral shell (Nguyen,
Reddy, and Brooks, 2009; Elrad and Hagan, 2010), although

FIG. 10. Examples of well-formed and defective woodchuck
hepatitis B virus (WHV) capsids. (a) Portion of a representative
cryo-EM image of empty WHV capsids assembled in vitro in
the absence of RNA (from capsid proteins with the C-terminal
RNA binding deleted, wCp149). The population of capsids is
structurally heterogeneous; the black arrow indicates an exam-
ple of a T ¼ 4 icosahedral capsid, while the white arrows
indicate examples of defective capsids. (b) 2D class averages of
(1) icosahedral and (2)–(4) defective particles. The red arrows
in (2) and (4) indicate locations where the capsid shell is
overgrown and overlaps itself. (c) Schematic model of a T ¼ 4
icosahedral HBV capsid, with the monomers forming the 12
fivefold vertices colored green, and the others colored blue.
(d) Hypothetical model of the structure of a capsid that is
nonicosahedral but closed, with an elongated structure con-
taining 150 protein dimers (the icosahedral capsid has 120
dimers). Here the green dimers are in pentamers or extend
between pentamers and hexamers, and the blue dimers are in
hexamers or extend between two hexamers. Adapted from
Pierson et al., 2016.

10In fact HBV is dimorphic. Both in vitro and in vivo HBV capsid
assembly yields mostly 120 protein dimer capsids with T ¼ 4

icosahedral symmetry in the Caspar-Klug nomenclature (see
Sec. V.B), but also a few percent of T ¼ 3 icosahedral capsids.
However, size fluctuations around the dominant T ¼ 4 population
were shown to be insignificant at long times.

11Note that estimating elastic moduli from the force-displacement
curve is sensitive to the value chosen for thickness of the capsid shell,
and the relationship between the atomic structure and the effective
mechanical thickness remains at least somewhat obscure (May et al.,
2011; May and Brooks, 2011).

12The bending modulus is calculated from the 3D Young’s
modulus E ¼ 0.26 GPa obtained from nanoindentation measure-
ments by Roos, Bruinsma, and Wuite (2010), and while assuming a
thin shell model so that the 2D Young’s modulus and bending
modulus are, respectively, given by Y ¼ Et and B ¼ Yt3=12ð1 − ν2Þ,
with t ¼ 2.1 nm the effective shell thickness (Wynne, Crowther, and
Leslie, 1999; Roos, Bruinsma, and Wuite, 2010) and ν ¼ 0.4 the
Poisson ratio (Uetrecht et al., 2008; Roos and Wuite, 2009).
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these models and the corresponding defective structures differ
from the HBV system. Hence, for more realistic models that
incorporate both bending and bond-network elasticity we
expect that these corrugations in the energy landscape (i.e.,
due to communicability with icosahedral symmetry) versus n
will be superposed on the smooth landscapes illustrated in
Fig. 9 for the fluid shell model, which may account for size
fluctuations to be restricted for a limited set of low-energy
values of n at or near high symmetry, or magic number
capsomer arrangements.

2. Amphiphilic aggregates

Arguably the most common and well-studied class of self-
limiting assemblies is amphiphiles. In the broadest sense,
these refer to subunits with chemically dissimilar ends, which
consequently favor distinct solvent environments. For exam-
ple, lipids and surfactants possess oily hydrocarbon tails
attached to a polar or charged head group (Israelachvili,
2011), which imparts a respective hydrophobic or hydrophilic
character to either end of the same molecule [Fig. 11(a)].
Dispersing such amphiphiles in a solvent that has higher
affinity to one end of the molecule generically drives them to
form aggregates that partially hide, or sequester, the solvo-
phobic portions while maintaining exposure of the solvophilic
portions. Examples of such aggregrates, spherical and cylin-
drical micelles, and bilayer sheets are shown schematically in
Figs. 11(b) and 11(c). These structures curve upon them-
selves, but do so on a length scale that is limited by, and
comparable to, the size of the amphiphile itself, such as the
molecular tail length in Fig. 11(a). The tendency to exclude
unfavorable solvent from the core of the aggregate, in
combination with the packing constraints of filling this region
with the solvophobic portions, requires each amphiphilic
subunit to span the entire thickness of the aggregate, which
is fundamental to their self-limiting assembly.
In this section we describe a simple model to capture the

self-limiting assembling of amphiphiles and highlight, in
particular, how thermodynamic considerations of changes
in aggregate thickness shape the preferred aggregate curvature
but also give rise to polymorphism in the dimensionality of
aggregates (spheres, cylinders, membranes, etc.). For illus-
tration, we review a model for the thermodynamics of
surfactant aggregation, of the type shown in Fig. 11(a),
capturing central ingredients of the well-known packing
model developed by Israelachvili, Mitchell, and Ninham
(1976) and Israelachvili (2011). While this model aims to
capture molecular elements of low-molecular weight surfac-
tants and lipids, the essential thermodynamic features carry
over to other amphiphilic assemblies, such as block copoly-
mers in selective solvents (Leibler, Orland, and Wheeler,
1983; Halperin, Tirrell, and Lodge, 1992; Zhang and
Eisenberg, 1996; Jain and Bates, 2003). The thermodynamics
of amphiphile aggregation incorporates three ingredients:
(i) the thermodynamics of area per solvophilic head group,
(ii) the thermodynamics of molecular extension, and (iii) the
constraint of uniform density in the solvophobic core, which
links the first two elements.
A simple model to describe the head-group energetics

considers the per subunit energy to form aggregates with
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FIG. 11. (a) Sketch of a single-tailed surfactant molecule.
(b) Schematic of a spherical micelle with the thickness of the
solvophobic core l and the area per head group a highlighted.
A wedgelike portion of the micelle is cut away to illustrate the
interior packing of tails. (c) Spherocylinder model of a wormlike
micelle, which has a cylindrical portion of length L capped by
two hemispherical micelles of equal radius. (d) Energy landscape
for spherocylinders described by the model in Eq. (44) with
P−1 ¼ 2.25 and k̄ ¼ 0.1. The dashed orange line shows the L¼0
spherical micelle branch and the dashed pink line shows the
L ¼ ∞wormlike micelle branch, whose corresponding energy as
a function of reduced aggregation number is plotted in (e).
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an area a at the solvent-core interface (Israelachvili, Mitchell,
and Ninham, 1976; Israelachvili, 2011). The generic tendency
to “hide” amphiphiles from the solvent is parametrized by a
surface energy cost γa, where γ > 0 favors dense lateral
packing of head groups. Competing against this lateral
compression is the cost of interunit repulsive interactions,
which in the simplest case are described by the two-body term
in the virial series, giving a per subunit energy A2=a, where
A2 > 0 (Tanford, 1974). These two terms can be combined
into a single form

ϵint ¼ γ

�
aþ a20

a

�
; ð40Þ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffi
A2=γ

p
is the optimal head-group area.

In combination with the tendency to achieve the optimal
head-group area are additional thermodynamics of tail pack-
ing in the core, and the costs to extend its length l. There are
various models proposed for this effect, including a finite-
maximum extension (Israelachvili, Mitchell, and Ninham,
1976; Israelachvili, 2011) or instead treating the core as a melt
of flexible polymers (Dill and Flory, 1980; Ben-Shaul,
Szleifer, and Gelbart, 1984; Nagarajan and Ruckenstein,
1991; Nagarajan, 2002). Here we adopt a simplified model
used by May and Ben-Shaul for the free energy of tail length l
that spans from the solvent-core interface into the center of the
aggregate

ϵstretch ¼
k
2
ðl − l0Þ2; ð41Þ

where k is an elastic constant for intrasubunit stretch and l0 is
a preferred length, which parametrizes the free energy cost of
deformations from a preferred conformation state of the short
tail. We consider k and l0 as a minimal description of the
extensional thermodynamics and, like γ and a0, these param-
eters can be varied through a combination of subunit structure
and physical-chemical conditions, such as temperature and
solvent properties.
Extensional energetics are linked by packing constraints

associated with occupying the core with a fixed density of
solvophobic portions of the subunits (Israelachvili, Mitchell,
and Ninham, 1976; Israelachvili, 2011). These constraints
vary with the dimensionality of the limited directions in the
aggregate: dL ¼ 3, spherical micelles; dL ¼ 2, cylindrical
micelles; and dL ¼ 1, planar bilayers.13 By considering the
ratio between the core volume and interfacial area of an
aggregate of thickness (radius) l, it is straightforward to show
that the solvophobic volume per subunit satisfies

v0 ¼
al
dL

: ð42Þ

As aggregates change their shape and number, uniform
density requires adjustment of a and l to maintain constant

v0. Using this constraint, we rewrite the assembly energy in
terms of a single dimensionless thickness

r≡ l
ðv0=a0Þ

¼ dL
a0
a

ð43Þ

giving

ϵðr; dLÞ
γa0

¼
�
dL
r
þ r
dL

�
þ k̄
2
ðr − P−1Þ2 þ ϵ0; ð44Þ

where k̄ ¼ kv20=ðγa30Þ is a scaled stretch modulus of the tail,
and ϵ0 parametrizes the negative energetic gain to assemble.
The parameter P was introduced by Israelachvili as the
packing parameter, a measure of the commensurability of
the preferred shape with accessible aggregate geometries,

P≡ a0l0

v0
: ð45Þ

Written in this way, it is straightforward to understand how
area and stretch thermodynamics compete to determine the
optimal aggregate morphology. While area terms favor a
thickness r ¼ dL, stretch thermodynamics favors a thickness
r ¼ 1=P. Only for particular preferred head-group areas and
subunit lengths do these two values coincide, i.e., when
P ¼ 1=dL; otherwise there is at least some shape frustration
between these terms. As a heuristic, we therefore expect
aggregation to favor the dimensionality dL closest to 1=P,
which corresponds to the tapered geometry that most closely
approximates the favored areal and thickness packing at
uniform density.
A more complete picture of the polymorphism of aggre-

gates is given by considering assembly landscapes that allow
for transitions of micellar dimension. Figure 11(c) shows the
structure of a “wormlike” micelle, modeled as a spherocy-
linder composed of a length L of cylindrical micelle capped by
two equal-radius hemispherical micelle caps. As L increases,
the fraction of the aggregate in the dL ¼ 2 (versus dL ¼ 3)
packing increases, and thus consideration of the energy as a
function of both n and L illustrates the landscape of aggre-
gates intermediate to a uniformly cylindrical or spherical
geometry. An example landscape is shown in Fig. 11(d), for a
packing parameter P−1 ¼ 2.25 intermediate to spheres and
cylinders, which exhibits two branches of local minima. In
the spherical branch, L ¼ 0 and changes in number are
accommodated purely through changes in micelle radius.
The second, cylindrical branch appears only above a
threshold aggregate number (n ≃ 111v20=a

3
0), beyond which

further subunit addition is accommodated by increasing the
length. The per subunit aggregation energies for these two
branches are shown in Fig. 11(e). An energy barrier separates
the convex minimum of the spherical branch from the
cylindrical branch, which asymptotically approaches the
global minimum of ϵ at n → ∞ via the 1=n falloff character-
istic of 1D assembly. The origin of this barrier between
spherical and cylindrical aggregates derives from the fact that
the preferred radii of these two micelle types are different,
and hence the confinement energy of the end caps on the
spherocylindrical micelle exceeds that of a minimal-energy

13Note that dL refers to the number of limited directions, while we
use d to refer to the dimensionality of the unlimited directions, e.g.,
d ¼ 1 and d ¼ 2 for cylindrical and lamellar aggregates.
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(larger radius) sphere. We note that this spherocylinder
geometry will overestimate the cost of end caps relative to
a more realistic model that includes, say, variation of
the radial thickness along the micelle (May and Ben-
Shaul, 2001).
As described in Sec. II.B.3, the existence of multiple low-

energy branches of aggregation leads to a rich phase behavior,
which can be analyzed according to the law of mass action
[Eq. (5)]. As summarized in Appendix A, we analyze the
polymorphic assembly of the model described by Eq. (44),
making several simplifying assumptions. Specifically, we
adopt the continuum limit for n, calculate the optimal
spherocylinder radius for each length L by minimizing the
per-molecule energy [Eq. (44)] as a function of r (i.e.,
neglecting radius fluctuations), and numerically calculate

the mass fractions of spheres, spherocylinders, and mem-
branes as functions of k, P, and Φ from Eq. (5).
Figure 12(a) shows the phase diagram as a function of the

packing parameter and total concentration Φ for a dimension-
less stretching stiffness k̄ ¼ 1. Analogous to the phase
diagram of the generic model in Fig. 7(b), with increasing
packing parameter the system undergoes dimensional tran-
sitions from spheres to spherocylindrical assemblies and
finally to bulk lamellar aggregates (corresponding to packing
dimensionalities of dL ¼ 3; 2; 1). The infinite-concentration
limits of the phase boundaries [indicated by dashed lines in
Fig. 12(a)] correspond to the packing parameter values where
the bulk free energy per subunit of two aggregate geometries
are equal: ϵ3 ¼ ϵ2 at the sphere-spherocylinder boundary, and
ϵ2 ¼ ϵ1 at the spherocylinder-lamella boundary, with ϵdL the
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FIG. 12. (a) Assembly state phase diagram for the amphiphilic aggregate model in Eq. (44) for dimensionless stiffness k̄ ¼ 1 and
v20=a

3
0 ¼ 10, where ϕ� is the nominal CMC for cylinders. Solid lines mark the boundaries between the most populous aggregate type,

and dashed lines indicate the boundaries in the infinite Φ limit. Inset: enlargement near the boundary between cylinders and bilayers
illustrating an extremely narrow window of secondary CMC behavior due to the large mean (finite) size of cylinders. (b) Summary of the
polymorphic assembly of the amphiphile model in the plane of stiffness k̄ and inverse packing parameter P−1 for v20=a

3
0 ¼ 10. Regimes

of single CMC behavior are shown in solid red, white, and blue for bilayers, cylinders, and spheres, respectively. The regime of
polymorphic concentration-driven sphere-to-spherocylinder transitions is colored on a blue-green scale according to the ratio of the
second CMC (spheres to spherocylinders) to the first CMC (monomers to spheres). (c)–(f) Cryo-transmission electron micrographs of
micelles formed by dimeric (gemini) surfactancts, at 25 °C at increasing weight percent: (c) 0.26%, (d) 0.5%, (e) 0.62%, and (f) 0.74%
(scale bars equal 100 nm). The coexistence of cylindrical micelles of increasing total length for (d)–(f), and absence of
lengths intermediate to spheres and the shortest cylinders is consistent with a concentration-dependent second CMC. The inset
of (f) shows the bulbous ends of a cylindrical micelle (scale bar, 25 nm), which is consistent with an energy barrier between
spherical and long cylinders due to a mismatch in preferred radius. (c)–(f) Adapted from Bernheim-Groswasser, Zana, and
Talmon, 2000.
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optimal energy per subunit in the aggregate interior for
aggregates with dimensionality dL. For values of the
packing parameter near each of these dimensional transitions,
there is a concentration-dependent dimensional transition.
That is, for packing parameter values close to the infinite-
concentration value for the spherocylinder-sphere transition
2.45≳ P−1 ≳ 2.3, spheres are favored at low concentrations,
with a transition to spherocylinders occurring above a thresh-
old concentration that diverges exponentially as the packing
parameter approaches the transition value, i.e., P−1 → 2.45.
An analogous behavior occurs at the spherocylinder-lamella
transition (Fig. 12 inset), but the range of P−1 values is
exceptionally narrow due to the large (yet finite) mean size of
spherocylinder aggregates (see the forthcoming discussion).
In Fig. 12(b), we show an overview of the polymorphic

assembly in terms of the two control parameters of the
amphiphile aggregation model P−1 and k̄. Boundaries in
the P−1-k̄ space are shown for infinite-concentration
sphere-spherocylinder and spherocylinder-lamella transitions,
indicated by blue and red lines, respectively, with gray dashed
lines corresponding to the values of these transitions in the
extensionally “floppy” (k̄ → 0) and “stiff” (k̄ → ∞) limits.14

We also show the region in P−1-k̄ space for which there is a
concentration-driven sphere-spherocylinder transition (a sec-
ondary CMC), with color indicating the width in concen-
tration space of the transition. More specifically, the color
scale indicates the ratio of pseudocritical concentrations
Φcyl=Φsph where spherocylinders or spheres, respectively,
become the most populous subunit state (i.e., greater than
50%) at a given value of stiffness and packing parameter.
The emergence of the polymorphic, concentration-

driven transition between spherical and spherocylindrical
micelles captured in Fig. 12 can be understood in terms of
the three ingredients of the secondary CAC behavior encoded
in Eq. (35): the energy gap between minimal-energy spheres
and infinite cylinders Δϵ ¼ ϵ3 − ϵ2, the finite aggregation
number in spherical micelles nsph, and an energy barrier δ
separating the spherical aggregates from spherocylinders [as
in Fig. 11(d)]. Below the blue curve in Fig. 12(b), where
Δϵ > 0, the physical origin of the intermediate concentration
state of spheres is the higher (per subunit) entropy associated
with their fewer subunits. This window of second CMC
behavior widens inΦ as the gap between infinite cylinders and
spheres vanishes to zero, which happens as the inverse
packing parameter increases and approaches the blue curve
in Fig. 12(b). Likewise, from Eq. (44) it is straightforward to
see that the gap between dL ¼ 3 and 2 vanishes as k̄ → 0 since
the is no obstacle to achieving the optimal head-group packing
(a → a0) for any dL in the absence of extensional stiffness.
Hence, the ratio of the second CMC (spheres to spherocy-
linders) relative to the first (monomers to spheres) grows large
in both of these regimes.
The regime of second CMC behavior is restricted to lower

values of extensional stiffness and disappears above a thresh-
old value of k̄ due to its effect on the energy barrier between

the spheres and spherocylinder micelles. In the limit of k → 0,
the thickness of spheres and cylinders is determined purely by
head-group packing, and hence dL ¼ 3 and 2 micelles have
different radii, implying a finite frustration cost for the
hemispherical end caps of the spherocylindrical micelles.
As summarized in Eq. (35), the window of second CMC
behavior is widened with increasing energy barrier between
compact and 1D assemblies. With increasing k̄, this barrier
diminishes, ultimately vanishing in the k̄ → ∞ limit, because
the high stiffness requires the micelle thickness to maintain
l ¼ l0 independent of dimensionality. Hence, as is the case
for the ladder model of cylindrical micelle thermodynamics
(Missel et al., 1980), in the absence of an energy barrier
between spheres and elongated cylinders there is only a single
CMC in a state where mean aggregation number continuously
increases with Φ.
Similar arguments apply to the spherocylinder-lamella

transition, except that spherocylindrical aggregates have a
small translational entropy due to their large mean size, and
thus are stabilized by entropy over a vanishingly narrow
region of parameter space.
Evidence for the secondary CMC transition between

spherical and cylindrical micelles has been reported for range
of surfactant systems; see Bergström (2016) for a review.
Many experiments have reported an indirect signature of an
inflection point, and secondary upturn, in the mean aggrega-
tion number as a function of concentration. For example, the
convex dependence of viscosity on concentration for certain
ionic surfactants was interpreted by Porte et al. (1984) as a
secondary CMC and provided motivation for their model
with an energetic gap between spherical and cylindrical states
for second CMC behavior. Elsewhere, experimental imaging
of the concentration-dependence micelle morphologies has
been used to probe second CMC behavior. For example,
Figs. 12(c)–12(f) show cryo-EM images of micelles formed
by dimeric (gemini) surfactants (Bernheim-Groswasser, Zana,
and Talmon, 2000). Above the first CMC, but still below a
second threshold concentration, cryo-EM shows monodis-
perse spherical micelles (Fig. 12). With increased concen-
tration [Figs. 12(d)–12(f)], cryo-EM shows the appearance
of cylindrical, or wormlike, micelles. While these grow in
length with concentration, they also coexist with a popula-
tion of spherical micelles. This, along with an observed
gap in micelle sizes intermediate to spheres and the
shortest cylinders, is consistent with the secondary CMC
transition induced by an energetic gap between spheres and
cylinders. As previously described, and consistent with the
apparently “bulbous” ends of wormlike micelles [Fig. 12(f)],
such an energetic gap is a natural consequence of the
mismatch between radii of spherical and cylindrical micelle
packings.
To conclude the overview of amphiphilic aggregation, we

return to the question of the convexity of the energetics
described by Eqs. (40)–(44) for spherical micelles (dL ¼ 3). It
is straightforward to consider two simple limits to estimate the
dependence of convexity on target size. When k̄ ≪ 1, ener-
getics are dominated by head-group area terms and
ϵ00Tðk̄ ≪ 1Þ ∝ γv2=30 =n7=3T , whereas the opposite limit is con-
trolled by length elasticity, and ϵ00Tðk̄ ≫ 1Þ ∝ kv2=30 =n4=3T . As
with the fluid capsule model in Sec. III.A.1, convexity

14The transitionvalues betweendL andd1þ1 areP−1¼½dðd−1Þ�1=2
and P−1 ¼ dL − 1=2 in the stiff (k̄ → ∞) and floppy (k̄ → 0) limits,
respectively.
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generically decreases with target size, but not nearly as
quickly. In particular, for the amphiphile model the
product n3Tϵ

00
T=kBT is always increasing with nT (i.e.,

as n2=3T and n5=3T for small and large k̄, respectively).
Hence, according to Eq. (20) the relative number fluctuations
of micelles decrease with mean size. This is in marked
contrast to the predictions for the bending elasticity of the
fluid shell model, for which ϵ00T ∝ n−3T and size fluctuations
grow in proportion to mean size. The origin of this relatively
sharper minima of aggregation energetics, and the corre-
spondingly tighter control of aggregate size, can be traced to
the fact the closure radius is on the scale of the subunit
thickness (i.e., Rclose ≈ t) or, more specifically, the additional
considerations of tail packing constant density in the micellar
cores, which are absent for the membrane bending elasticity
of fluid capsules.

B. Self-limited, open-boundary assembly

Here we describe a class of self-limiting assembly charac-
terized by an open boundary, a surface that separates the
aggregate interior from the solution of freely associating
subunits. Unlike the previously described SCA, in open-
boundary assemblies (OBAs) this free boundary is maintained
in the target of self-limiting states. Therefore, the target state
has a finite surface energy associated with loss of short-range
cohesion or differences in solvation at its exterior.
As described in Sec. III.A.1, a finite boundary energy

alone generically favors unlimited aggregates. Hence, to be
self-limited OBA structures require additional interaction
terms that grow with aggregate dimensions, and thus balance
the generic tendency to minimize the boundary to interior
ratio. We define this additional nonsurface energetics as the
excess energy, and its essential feature is a regime of
superextensive growth, meaning that the total excess energy
increases with size faster than the number of subunits n. We
later describe two examples of mechanisms that generate
such a form of excess energy, but the key underlying feature
is the existence of gradients in stress throughout the
aggregate. Whereas SCA can realize finite target dimensions
with uniform subunit shape and packing, in OBA long-range
gradient patterns of intra-aggregate stress are required for
self-limitation and ultimately dictate the range of possible
self-limiting sizes.
Before introducing these two physical mechanisms, which

illustrate the microscopic origins of excess energy accumu-
lation, we begin with a generalized description of the
thermodynamics of OBA.

1. Limits of self-limitation

To describe the aggregation energetics of OBA, we con-
sider a structure with an open boundary that can grow in D
possible spatial dimensions (directions). We let dL of these
directions be potentially self-limiting, while in the remaining
d ¼ D − dL directions the structure undergoes unlimited
growth. Denoting the limited and unlimited dimensions of
the structure asW and L, respectively, we find that the scaling
of aggregate volume gives n ∝ WdLLd. In the limit that
L ≫ W, the amount of the open boundary then grows as

Ab ∼WdL−1Ld.15 For example, consider subunits that can bind
in all three spatial dimensions, i.e., D ¼ 3. Quasicylindrical
aggregates of such subunits accrue a surface energy cost
derived from their full boundaries, which are limited in two
transverse spatial dimensions (dL ¼ 2) and unlimited in the
axial direction (d ¼ 1), whereas finite-thickness planar aggre-
gates are limited along the normal direction (dL ¼ 1), but
unlimited in the two in-plane directions (d ¼ 2). Such
structures are self-limiting spatially but do not necessarily
have a finite or even well-defined peak aggregation number.16

Nevertheless, equilibrium in these cases (such as finite-thick-
ness filaments and slabs) derives from the optimal energy per
subunit with respect to the self-limiting dimension(s) of the
assembly.
Because surface subunits typically have fewer cohesive

bonds with neighbor subunits and potentially more unfavor-
able contacts with surrounding solvents, an open boundary
generically accrues a surface energy cost proportional to Ab.
Parametrizing this cost by the boundary energy Σ and the bare
aggregation energy for interior subunits −ϵ0, we may write the
following generic form for the per subunit aggregation energy
as a function of the self-limiting dimension W:

ϵðWÞ ¼ −ϵ0 þ
Σ
W

þ ϵexðWÞ: ð46Þ

For simplicity, we absorbed a geometric factor associated with
the dimensionality of the boundary into the definition of Σ.
The first two terms describe the short-range cohesive inter-
actions, with a constant bulk energy gain and a surface energy
penalty, while the final term defines the excess energy relative
to the short-range model. An example of energy of this form is
shown in Fig. 13(a). As we later illustrate, such an excess
energy arises from effects such as long-range inter-subunit
repulsions or elastic stresses that increase with aggregate size.
In self-limiting assemblies, these cumulative effects give rise
to an excess energy per subunit that increases monotonically
in size; hence, ϵexðWÞ captures energetic effects that grow
superextensively with aggregate size. In any physical system,
this superextensive energy growth will only persist up to some
threshold assembly size, crossing over from convex (e.g.,
power-law) growth at small sizes to some asymptotically
saturating energy density as W → ∞. The large-W saturation
of excess energy can occur for a variety of reasons. For
example, long-range repulsions may be screened beyond
some length scale. Alternatively, above a threshold excess
energy cost, it will become energetically favorable for sub-
units to reorganize or deform to avoid further excess energy
accumulation. Notwithstanding its microscopic origin, the
effect of this saturating excess energy is to renormalize the per
subunit energetics from its bare value to −ϵ0 þ ϵ∞.

15For D ¼ 2, assemblies are sheetlike and the boundary corre-
sponds to a 1D edge due to fewer lateral cohesive bonds, while for
D ¼ 3 the boundary corresponds to the entire 2D surface surrounding
the aggregate.

16Indeed, cylindrical aggregates have an exponential length dis-
tribution, while planar aggregates (such as plates and membranes)
correspond to a bulk state according to the analysis in Sec. II.A.2.

Michael F. Hagan and Gregory M. Grason: Equilibrium mechanisms of self-limiting assembly

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025008-22



In OBA, self-limitation follows directly from the balance
between the accumulating cost of ϵexðWÞ and the generic
decrease of surface energy with increasing W. It is then
straightforward to show that equilibrium assemblies satisfy
the following equation of state that links the finite equilibrium
size W� to the surface energy:

Σ ¼ W2�ϵ0exðW�Þ; ð47Þ

with ϵ0ex ¼ ∂Wϵex. Stability criteria additionally require that
ϵ00ex > 0, but the basic results of the competition between
surface energy and excess energy accumulation are shown
schematically in Fig. 13. Since the surface energy always
drives assembly toward larger sizes, the equilibrium finite size
W� generically increases with Σ given a fixed form of ϵexðWÞ.
Self-limitation can arise in two ways: either the equilibrium

width can increase continuously with Σ to the bulk state
(i.e., W� → ∞) or, as illustrated in Fig. 13(b), self-limitation
will persist only up to a maximal finite size before a
discontinuous transition to bulk assembly occurs. In the latter
case, the energy density of the finite state eventually increases
with surface energy, to the point where the energy densities of
the finite and bulk unlimited states become equal; i.e.,
ϵðW → ∞Þ ¼ −ϵ0 þ ϵ∞. For surface energies above this
maximal value, the bulk unlimited state is favored. Hence,
such systems can be characterized by a maximal self-limiting
size Wmax and a maximal surface energy Σmax, below which
equilibrium structures are finite [Fig. 13(b)].
For a general OBA, it is then useful to consider the

following question: What is the range of possible self-limited
equilibrium states that a given system can exhibit? As
described in Sec. II.B.2, provided that the concentration is
well above the aggregation threshold (CAC), the mean
aggregate size is determined by the minimum of the per
subunit energy ϵðnÞ. Thus, the answer to this generic question
depends only on the excess energy and its accumulation with
width.17

To see this, we reformulate the condition for equilibrium of
the self-limiting state relative to bulk assembly [ϵðW�Þ <
ϵðW → ∞Þ] in terms of the surplus of energy in the bulk
relative to the finite state

ΔϵðW�Þ≡ ϵðW → ∞Þ −
�

Σ
W�

þ ϵexðW�Þ − ϵ0

�
ð48Þ

¼ ∂
∂W�

fW�½ϵ∞ − ϵexðW�Þ�g; ð49Þ

where we use the equation of state linking stable size to
surface energy in Eq. (47). The condition that ΔϵðW�Þ > 0 is
required for equilibrium finite self-limited states can then be
simply formulated in terms of the first integral of surplus bulk
energy

AðWÞ≡W½ϵðW → ∞Þ − ϵðWÞ� ¼ W½ϵ∞ − ϵexðWÞ� − Σ;

ð50Þ

so the equilibrium of finite structures relative to bulk corre-
sponds to the condition

�∂A
∂W

�
Σ
> 0: ð51Þ

We refer to the functionAðWÞ as the accumulant and note that
graphically it corresponds to the area of the rectangular
regions of the plot of ϵexðWÞ vs W highlighted in Fig. 14(a)
for model 1, which is described by the blue curve. Because
the fixed-Σ partial derivative in Eq. (51) is independent of
surface energy, for a given form of excess energy the
accumulant may be constructed for any value of surface
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FIG. 13. (a) Schematic plot of the aggregation energetics per
subunit for self-limiting open-boundary assembly, where the
blue, red, and black curves, respectively, show the surface energy
density, excess energy, and total energy density. The dashed curve
shows power-law growth of excess energy at small size. The red
point highlights the equilibrium self-limiting width W�. Inset:
variation of this equilibrium width with increasing surface energy
Σ assuming a fixed ϵexðWÞ. (b) Schematic plot of the equilibrium
width as a function of Σ, where the dashed portion indicates the
possibility of a finite-width branch that is metastable relative to
the bulk state W → ∞. The boundary between equilibrium self-
limiting and bulk states is marked by a maximum self-limiting
size Wmax, denoted as the escape size.

17Equation (19) shows a small concentration-dependent shift of
the optimal size n� below the size corresponding to the minimum of
ϵðnÞ; the optimal size approaches the energy-minimizing size as
Φ → ∞.
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energy and analyzed as a function of W to consider potential
finite-size equilibria at all values of Σ.
According to Eq. (51), finite-W equilibria correspond to the

range of increasing AðWÞ. Figure 14 illustrates two models of
excess energy, both of which are characterized by crossovers
from power-law growth at smallW to asymptotic saturation to
finite values of ϵexðW → ∞Þ ¼ ϵ∞ but do so via different
functional dependencies on the finite size W.
For model 1 (blue curve), the range of increasing AðWÞ

extends only up to a maximum, with corresponding
width Wmax, indicating that a first-order transition between
finite and bulk states occurs at Wmax and the corresponding

value of Σmax.
18 For model 2 (orange curve), the monoton-

ically increasing range of the accumulant extends to W → ∞.
This indicates that model 2 supports equilibrium self-limited
states at all values of Σ and reaches bulk assembly only in the
limit of infinite surface cost. Hence, even if the excess energy
saturates in the W → ∞ limit, self-limitation may still, in
principle, extend to all possible size ranges, depending on the
nature of the asymptotic approach to the bulk energy.
Given the form of the accumulant defined in Eq. (50) and

the condition (51) for its increase, the possibility for self-
limited states that extend continuously up to the bulk state
(i.e., limΣ→∞ W� → ∞) can be deduced from the asymptotic
form of the residual energy ΔϵðWÞ ¼ ϵexð∞Þ − ϵexðWÞ as
W → ∞. Following an argument made by LeRoy (2018) and
Terzi, LeRoy, and Lenz (2020), we assume that this residual
vanishes as a power law ϵexð∞Þ − ϵexðWÞ ∼W−ν. It is then
straightforward to show that when ν > 1, AðWÞ decreases as
W → ∞. Such cases correspond to the first-order type self-
limitation exhibited by model 1 in Fig. 14. Alternatively, when
0 < ν < 1, indicating a slower saturation of excess energy, the
accumulant continues to increase as W → ∞, indicating the
existence of self-limited equilibria extending up to the bulk
state. The case of ν ¼ 1 is marginal and can exhibit either first-
or second-order-like behavior. Later we describe models in the
context of geometrically frustrated assemblies that can illus-
trate both types of behavior, involving either a continuous or
discontinuous transition between the finite and bulk states
depending on the mechanisms underlying the accumulation of
excess energy.

2. Short-range attractions, long-range repulsions

As described in Sec. III.B.1, self-limitation in OBA requires
superextensive growth of the excess energy. In this first class
of examples, the accumulation of excess energy derives
from long-range interactions between subunits, specifically,
interactions characterized by short-range attraction and long-
range repulsion (SALR) (Groenewold and Kegel, 2001;
Sciortino et al., 2004). Models of such systems usually
consider isotropic pair potentials uðrÞ that can be split into
two parts,

uðrÞ ¼ uSAðrÞ þ uLRðrÞ; ð52Þ

where the short-range potential describes cohesive inter-
actions uSAðrÞ < 0 between neighboring subunits, which
act on scales comparable to the subunit hard-core diameter
d, i.e., uSAðr ≫ dÞ ≃ 0. Outside of this cohesive range, the
potential is dominated by a long-range repulsion uLRðrÞ > 0
that extends over sizes much larger than single particles. Even
when the repulsive interactions between neighboring subunits
are much weaker than the cohesion, the fact that repulsive
interactions extend far beyond the first shell of neighbors can
lead to superextensive growth of repulsive energy with
increasing assembly size. A model of this form has been
applied to explain finite-sized aggregate formation in a broad
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FIG. 14. (a) Schematic plots of excess energy vs width for two
different models of OBA: model 1 (blue curve) and model 2
(orange curve). Both cross over from power-law growth at small
size to saturating excess energy at large size but do so with
different functional forms (the asymptotic approach to ϵ∞ is
slower in model 2 than in model 1). The area of the blue
rectangles graphically illustrates the definition of the accumulant
in Eq. (50). (b) Accumulant AðWÞ as a function of width for the
two models shown in (a). Regions of increasing AðWÞ corre-
spond to possible ranges of equilibrium self-limiting sizes for a
given form of ϵexðWÞ. That is, values ofW for which A0ðWÞ > 0
correspond to energy minima of ϵðWÞ, which are lower in energy
than the bulk state ϵðW → ∞Þ, for a particular value of the
surface energy Σ given by Eq. (47). Hence, model 1 shows an
upper limit for maximal self-limiting size Wmax, while model 2
exhibits stable self-limiting equilibria at all sizes.

18Defining the accumulant in terms of the Σ ¼ 0 energetics, i.e.,
AðWÞ≡W½ϵ∞ − ϵexðWÞ�, as in Fig. 14(b), it can easily be shown
that Σmax ¼ AðWmaxÞ.
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range of systems (Dinsmore, Dubin, and Grason, 2011),
including protein complexes (Stradner et al., 2004;
Cardinaux et al., 2007; Foderà et al., 2013), charged nano-
particles (Nguyen et al., 2015), colloidal particles in low-
dielectric solvents (Sedgwick, Egelhaaf, and Poon, 2004; van
Schooneveld et al., 2009), dipolar mesophases (Seul and
Andelman, 1995), and even models of nuclear matter (Caplan
and Horowitz, 2017).
To illustrate the mechanism of self-limitation in this class

of systems, we consider the following specific model:
Short-range cohesive interactions lead to −u0 per neighbor
contact, and aggregates maintain an approximately uniform
density ρ0 ≈ d−3. For repulsive interactions, we assume that
subunits are isotropic and repel according to a screened
Yukawa repulsion

uLRðrÞ ¼
q2

r
e−κr: ð53Þ

Here q is the electrostatic charge per subunit, assumed to be
fixed, and κ is the screening length, which arises from Debye-
Hückel screening by mobile ions in solution and truncates the
far-field repulsions for r ≫ κ−1. For simplicity, we illustrate a
simplified version of the theory by Groenowold and Kegel
(GK) (Groenewold and Kegel, 2001). In our presentation, we
consider the case where charge per subunit is fixed, a point
that we revisit later. Our primary purpose is to illuminate a
model with the minimal ingredients for a self-limiting
equilibrium and, due to its finite screening length, the long-
range Yukawa potential provides a convenient example. For
purposes of illustration, we consider spherical aggregates with
radius R, whose interaction free energy can be described by

ϵðRÞ ¼ −u0
hzi
2

þ 3Σ
R

þ ϵexðRÞ; ð54Þ

where hzi is the mean number of neighbor contacts in the
bulk of the aggregate and Σ ≈ u0=d2 is the surface energy
associated with fewer short-range cohesive contacts at the
boundary. Here the excess energy derives directly from
the sum of long-range, pairwise repulsions in the aggregate
volume V as19

ϵexðRÞ ¼
q2ρ0
2V

Z
V
d3r d3r0uLRðjr − r0jÞ

¼ q2ρ0
2κ2

�
1 −

3ð1þ κRÞ
2ðκRÞ3 ð1þ e−2κRÞ½κR − tanhðκRÞ�

�
:

ð55Þ

The behavior encoded in ϵexðRÞ is plotted in Fig. 15(b) and
can be understood physically by considering the asymptotic
limits of small and large aggregate size relative to the
screening length of the repulsive interactions, as shown
schematically in Fig. 15(a). For small aggregates,
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FIG. 15. (a) Schematics of aggregates of particles interacting via short-range (i.e., contact) interactions and long-range repulsions, with
a screening length κ−1, which can be large or small relative to the aggregate size R. (b) Excess energy of spherical aggregates vs radius
showing a crossover from power-law growth for R ≪ κ−1 to an asymptotically saturating bulk energy for R ≫ κ−1. (c) Plot of the
equilibrium finite radius R� of the SALR model vs surface energy Σ showing a continuous divergence to the bulk at a finite Σ ¼ Σmax.
The second-order-like transition from finite to bulk states predicted by this model (solid curve) is consistent with the monotonically
increasing form of the accumulant plotted in the inset, where this result assumes that the bulk state has uniform density. Assuming
instead that the bulk state has a lower-energy, nonuniform density [such as a periodic aggregate morphology (Zhang et al., 2019)], the
transition will be first order, as illustrated by the nonmonotonic accumulant shown as a dashed line. (d) Confocal microscope image of
clusters of charged colloidal particles (radius 660 nm). In these experiments short-range attractions are induced by depletion forces
generated by inert polymers in suspension, while electrostatic repulsions are maintained at relative long range due to the low
concentration of mobile ions in the host organic solvent. Adapted from Stradner et al., 2004.

19The form of the self-energy can be readily calculated using
Green’s theorem, where the total repulsive energy can be written asR
V d

3rqρðrÞϕðrÞ with a potential that satisfies the linearized Debye-
Hückel equation ð∇2 þ κ2ÞϕðrÞ ¼ 4πqρðrÞ. Solving this for spheri-
cally symmetric aggregates ρðr ≤ RÞ ¼ ρ0 and ρðr > RÞ yields the
explicit form of screened electrostatic energy.
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ϵexðR ≪ κ−1Þ ≃ q2ρ0
5

R2; ð56Þ

which derives from the fact that, when repulsions extend over
the entire aggregate, the per subunit cost of the Coulomb self-
energy of an aggregate is roughly Q2=ðnRÞ ∝ R2, where the
total aggregate charge Q ¼ qn ∝ R3. In the opposite regime,
where aggregate sizes far exceed the screening length,

ϵexðR ≫ κ−1Þ ≃ ϵ∞

�
1 −

3

2κR
þ 3

2ðκRÞ3
�
; ð57Þ

where ϵ∞ ≡ q2ρ0κ−2=2. This leading term R → ∞ derives
from the fact that each subunit in the bulk of the aggregate
experiences repulsive interactions with roughly ρ0κ

−3 other
subunits within a screening length, while the first correction
accounts for the surface layer of thickness κ−1 with fewer
neighbors within the screening length. The subleading 1=R3

term can be associated with a square-curvature cost per unit
area for deforming the boundary shape from planar, which
alters the distribution of repulsive particles near the free
surface of the aggregate.
Figure 15(c) shows the predicted equation of state for

the self-limiting radius R� as a function of surface energy
ΣðR�Þ ¼ R2�ϵ0exðR�Þ=3. For small Σ, the balance between the
charging energy of aggregates and surface energy leads to a
growth R� ∼ Σ1=3, which proceeds until the optimal aggregate
size grows beyond the screening length. In the large aggregate
regime, the asymptotic approach to ϵ∞ leads to an aggregate
size that diverges continuously at a critical surface energy
Σmax ¼ κϵ∞=2. The origin of the second-order-like transition
to the bulk in this model can be traced to the R ≫ κ−1 form of
the excess energy in Eq. (57). The leading correction to
ϵexðR → ∞Þ ¼ ϵ∞ goes as −1=R, that is, in the notation of
Sec. III.B.1, ν ¼ 1. Hence, this leading correction at large R
behaves like a negative contribution to the surface energy
Σeff ¼ Σ − Σmax due to the reduced electrostatic repulsion
within a screening length of the surface. When Σ < Σmax, the
effective surface energy is negative and the aggregate equi-
librium derives from the balance between the −1=R drive to
create more surface and the subleading þ1=R3 term to give

R� ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∞κ

−3

Σmax − Σ

s
; ð58Þ

which diverges continuously as Σ → Σmax. This prediction,
that there is a maximal cohesive surface energy for aggregates
but that their equilibrium self-limiting size extends to arbi-
trarily large values, is consistent with the plot in the Fig. 15(c)
inset, which shows the accumulant of spherical aggregates to
be monotonically increasing over the full range of R.
The result that self-limitation can extend up to arbitrarily

large sizes (i.e., Wmax → ∞) for this simplified model may be
surprising, as it implies that the thermodynamics are sensitive
to the finite size of aggregates over much larger size ranges
than the finite interaction range κ−1. That is, a subunit whose
interactions extend only κ−1 can still “sense” that it should join
an aggregate with a radius smaller than R� ≫ κ−1, but not a
larger one. The resolution of this puzzle is that the physical

term that restrains aggregate growth in this R� ≫ κ−1 regime
derives from the square-curvature cost of the free boundary
(contributing as þ1=R3 to the excess energy). Although
repulsions are short ranged compared to large aggregates
(i.e., R ≫ κ−1), they are sufficiently nonlocal to sense
the curvature of the boundary and, thereby, the global radius
of the aggregate. That is, repulsions in this regime give
rise to precisely the type of square-curvature energetics that
selects for finite sizes in self-closing assemblies in
Sec. III.A.1, i.e., with a preferred boundary curvature that
vanishes as Σ → Σmax.

20

While self-limited assembly due to a competition between
cohesive boundary costs and accumulation of long-range
repulsion is generic, the specific features of this simplified
model, including continuously diverging finite size for
R� ≫ κ−1, require several caveats. Foremost, the convexity
of the assembly energetics decreases with aggregate size as
ϵ00� ∼ n−3� for R� ≫ κ−1 for this model, similar to the case of
self-closing shells in Sec. III.A.1. Thus, according to Eq. (20),
fluctuations in n grow with self-limiting size and diverge at the
threshold as hðΔnÞ2i1=2 ∝ n� ∼ ðΣc − ΣÞ−3=2. Hence, for all
practical purposes the self-limitation to finite and well-defined
sizes will not persist to arbitrarily large structures.
Beyond this, the model is oversimplified and fails to

incorporate a number of physical ingredients, which can
influence the form of excess energy accumulation. For
example, more realistic models would include a finite com-
pressibility of the short-range cohesive forces, which allows
for density variation with aggregate size and position within
the aggregate and, for charged subunits in solvent, the effects
of dielectric contrast between the aggregates and the solvent,
as well as variable degrees of charge condensation and
dissociation as aggregates vary in size. Indeed, when initial
applications of this GK model aimed to understand the
aggregation of lysozyme proteins in low-salt aqueous solu-
tions, comparison to scattering measurements of the aggregate
size suggested that variable ionization of subunits could not be
neglected (Zaccarelli, 2007). While to a first approximation it
was argued that subunit charging is independent of aggrega-
tion number (Groenewold and Kegel, 2001), the charge per
subunit and the screening length, which varies with counterion
concentration, both vary with total concentration of ionizable
subunit species (Cardinaux et al., 2007). Hence, accounting
quantitatively for the concentration dependence of aggrega-
tion for these electrostatic systems requires consideration of
subunit charge in a self-consistent fashion, leading potentially
to aggregation-dependent renormalization of repulsive inter-
actions (Nguyen et al., 2015), not to mention additional effects
associated with nonspherical aggregate shapes (Sciortino,
Tartaglia, and Zaccarelli, 2005). The nonspherical nature of
aggregates of charged particles is evident in confocal images
of a colloidal analog to the aggregation of nanoscopic proteins
(Sedgwick, Egelhaaf, and Poon, 2004), as shown Fig. 15(d).

20Consistent with this result, performing an analogous calculation
for a planar slab geometry shows that the self-limited size diverges
exponentially above a threshold value of Σ due to the absence of such
a curvature term.
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Finally, even beyond specific physical considerations of
electrostatic SALR systems, the prediction of the simplified
Yukawa model of diverging finite aggregate size assumes a
spatially uniform bulk state, whereas models of systems with
short-range attractions and long-range repulsions have been
shown to form periodically modulated aggregate phases,
such as stripes, layers, and spheres, at high concentration
(Seul and Andelman, 1995; Sear and Gelbart, 1999; Sciortino
et al., 2004; Zhuang and Charbonneau, 2016). That is, at
sufficiently high densities, the uniform density bulk state is
unstable to lower free energy periodic bulk states such that
ϵ∞ðperiodicÞ ¼ ϵ∞ðuniformÞ. If the stability of equilibrium
self-limitation is reanalyzed in terms of a competition with a
lower-energy, nonuniform bulk state, then the maximal size
range of self-limiting equilibrium becomes finite; see the
accumulant plot in Fig. 15(d). The full thermodynamics of the
transition between a dilute phase of self-limiting aggregates
(above the CAC) to the long-range ordered bulk aggregate
phases requires consideration beyond the ideal aggregation
thermodynamics considered here.

3. Geometrically frustrated assembly (GFA)

The notion of geometric frustration (GF) originally
emerged in the context of low-temperature condensed matter
systems (magnetic materials, spin models, etc.) (Vannimenus
and Toulouse, 1977). It refers to the impossibility of propa-
gating an energetically preferred arrangement throughout
space due to global geometric constraints (Kléman, 1989;
Sadoc and Mosseri, 2006). For bulk, infinite systems, GF
leads to a rich phenomenology: extensive arrays of topological
defects thread through the highly degenerate bulk ground
states that populate a rough energy landscape.
Recently it has been recognized that GF gives rise to new

behaviors in self-assembling materials (Grason, 2016) derived
from two key features. First, the constituent subunits (poly-
mers, colloids, proteins, etc.) are relatively “soft” and held
together by weak, noncovalent forces. Second, assemblies
need not reach bulk states and thus have additional degrees of
freedom associated with the potentially finite size and shape of
the assembled domain. Unlike bulk or rigid systems where GF
must be resolved by defects (Sadoc andMosseri, 2006), in soft
assemblies it can be tolerated, at least over some size range, by
smooth gradients in the subunit shapes and packings. As an
illustration, see the schematic of “warped jigsaw” particles in
Fig. 16(a), where the tapering of the particle shape favors
curvature along one row of the lattice assembly (Grason,
2017). Provided that particles or their interactions are suffi-
ciently deformable, aggregates can accommodate frustration
through strain gradients, leading to arrangements that are more
(less) relaxed near (far from) the free boundary of the
aggregate.
This self-organization of long-range stress gradients is the

defining characteristic of GFA, giving rise to the form of
accumulating excess energy that can limit assembly size
(Sec. III.B.1). The balance between the surface energy and
the superextensive cost of GF can select equilibrium domain
sizes that are finite and, in principle, arbitrarily larger than the
subunits themselves.

To date GFA has been implicated in the emergent structures
of various soft matter systems, including self-twisting protein
bundles (Aggeli et al., 2001; Turner et al., 2003; Grason and
Bruinsma, 2007; Yang, Meyer, and Hagan, 2010; Brown,
Kreplak, and Rutenberg, 2014; Hall et al., 2016; Cameron,
Kreplak, and Rutenberg, 2018), twisted molecular crystals
(Haddad et al., 2019; Li et al., 2020), chiral smectics (Hough
et al., 2009; Matsumoto, Alexander, and Kamien, 2009) and
membranes (Selinger et al., 2004; Ghafouri and Bruinsma,
2005; Gibaud et al., 2012; Armon et al., 2014; Sharma et al.,
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FIG. 16. (a) Heuristic warped jigsaw model for GFA from
Grason (2017), in which directional interactions promote curva-
ture along rows of a locally preferred 2D “lattice.” Assembly in
both bonding directions leads to “misfits,” as in the tetrameric
aggregate. (b) Schematic plot of the excess energy per subunit for
the warped jigsaw model due to the superextensive buildup of
elastic costs of misfits. Intra-assembly strains are illustrated via
particle color, from unstrained (yellow) to highly strained (red).
The excess energy shows the characteristic crossover from
power-law growth at small aggregates to an asymptotic approach
to a strained bulk state (in this case envisioned as shape flattening
of jigsaw particles). (c) Schematic phase diagram for a generic
model GFA in Eq. (59), considered (at fixed concentration and
temperature) as a function of the ratio of surface energy to elastic
stiffness and a measure of the strength of frustration f0.
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2014; Kang and Lubensky, 2017; Sakhardande et al., 2017),
particle-coated droplets (Bausch, 2003; Irvine, Vitelli, and
Chaikin, 2010; Meng et al., 2014; Yu, Ghosh, and Hagan,
2016), curved protein shells (Zandi et al., 2004; Li et al.,
2018), and phase-separated lipid vesicles (Schneider and
Gompper, 2005). Consideration of GF in these systems has
primarily stemmed from experimental observations of
assemblies that (a) terminate at finite size and/or (b) exhibit
defect-ordered morphologies. Continuum models that con-
sider the interplay between the elastic costs of misfit and
domain formation have been developed to address a range of
distinct frustration mechanisms, including frustration of 2D
liquid-crystalline or crystalline order on non-Euclidean
manifolds (Nelson and Peliti, 1987; Bowick and Giomi,
2009), metric and orientational frustration of chiral fibers
(Brown, Kreplak, and Rutenberg, 2014; Grason, 2015;
Haddad et al., 2019), shape frustration in stacking assem-
blies of curved layers (DiDonna and Kamien, 2003; Achard
et al., 2005; Matsumoto, Alexander, and Kamien, 2009),
chirality frustration in crystalline (Ghafouri and Bruinsma,
2005; Armon et al., 2014) and liquid-crystalline membranes
(Selinger, Spector, and Schnur, 2001; Kang and Lubensky,
2017), and the assembly of nontiling polygonal particles
(Lenz and Witten, 2017).
We first describe a heuristic model that highlights the

common thermodynamic features of these apparently diverse
realizations of GFA, which are encoded in a simplified form of
the excess energy

ϵexðWÞ ≈ k
2
δ2ðf;WÞ þ C

2
ðs − s0Þ2: ð59Þ

Here k is a generalized elastic parameter for straining interele-
ment packing, as measured by a generalized mean strain
δðf;WÞ, which itself varies with the finite size W of the
domain and a parameter f that measures the strength of
frustration. To be clear, local strains vary with position
throughout the assembly, as we later describe for a specific
example, but for simplicity we focus here on how the
magnitude of strain varies with size and frustration. While
frustration mechanisms vary considerably among distinct
GFA systems, they all exhibit power-law growth of strain
with domain size W. This can be modeled heuristically as

δ ≈ fðsÞWη; ð60Þ

where η and f vary for different cases of GFA. For example,
the orientational strains in 2D liquid crystal domains grow
linearly with domain size (η ¼ 1), whereas positional strains
in frustrated 2D crystals grow quadratically (η ¼ 2) (Grason,
2016; Niv and Efrati, 2018). The definition of frustration
strength f depends on the specific GF mechanism; however, it
can generally be expressed as a function fðsÞ of the local
shape of inter-subunit packing (such as inter-subunit bend or
twist), which we denote generically with the shape parameter
s. In many cases, the frustration strength can be expressed as a
simple power law of shape

fðsÞ ≈ sμ; ð61Þ

where μ is a positive exponent. For the example of a
crystalline cap on a spherical surface (Grason, 2016), f
corresponds to the Gaussian curvature, which is the square
of the 1D curvature in this geometry and thus corresponds to a
shape parameter with μ ¼ 2. In the form of Eq. (61), the
strength of frustration generically vanishes, intuitively, in the
limit in which the shape flattens to s → 0. The second term in
Eq. (59) describes generic costs for deformations away from
an ideal, misfitting shape with s ¼ s0 ≠ 0, which incur elastic
penalties described by the shape modulus C.
This basic form of Eq. (59) implies a generic size

dependence for the excess energy shown schematically in
Fig. 16(b). For small sizes, assemblies retain their preferred,
misfitting shape (s ≃ s0) leading to a power-law growth of
excess energy ϵexðW → 0Þ ≃ kf20W

2η=2, where f0 ¼ fðs0Þ ¼
sμ0 is the frustration strength of the preferred shape. If power-
law growth of ϵexðWÞ is extended to all size scales, then the
compromise between costs of GF and surface energy would
select a finite equilibrium sizeW� ∼ f−2=ð2η−1Þ0 for any surface
energy Σ. However, in any physical system, the excess energy
can accumulate only up to some maximal size scale, beyond
which the assemblies escape frustration through one of a
number of competing morphological “modes” (Hall et al.,
2016; Hall and Grason, 2017). These include, for example, the
formation of topological defects that screen far-field frus-
tration stresses (Grason, 2012; Li et al., 2019), as well as
shape flattening, which refers to the smooth deformation of an
incompatible (i.e., misfit) shape to a uniformly strained,
compatible one (Grason, 2020). Because subunits and their
interactions are generically soft, the excess energy required to
escape frustration must be finite. Thus, as shown in Fig. 16(b),
ϵexðWÞ generically crosses over from power-law accumulation
at small W to an asymptotic approach to this finite energy
ϵexðW → ∞Þ ¼ ϵ∞. In the minimal description of Eq. (59),
the cost of shape flattening is simply ϵ∞ ¼ Cs20=2 per subunit.
Comparing power-law accumulation at small sizes to the

asymptotic shape-flattened energy, one expects a crossover
between these regimes at a characteristic flattening size
Wflat ≈ ½ðC=kÞ=s2ðμ−1Þ0 �1=η. This size scale defines the maxi-
mum size for which assemblies will tolerate the accumulating
frustration cost, beyond which deformation to an unfrustrated
shape (s → 0) becomes energetically favorable. Intuitively,
this length scale also sets a bound on the escape size Wmax ≤
Wflat since for W ≫ Wflat the bulk energy is simply renor-
malized by the cost of flattening. In general, the escape size is
set by the lowest-energy mode of relaxing frustration in
the bulk state, which may also involve Wigner lattice states
of defects that neutralize the long-range cost of frustration
(Li et al., 2019). Understanding the practical limit of self-
limitation then requires one to consider all possible competing
modes of relaxing frustration and determine which of these
has the lowest energy for a particular regime of assembly. This
distinction between a power-law growth of energy density
with W and an asymptotic approach to a constant value was
proposed by Meiri and Efrati (2021) to classify distinct
regimes of GF itself as, respectively, cumulative and non-
cumulative frustration. The analysis of the accumulant in
Sec. III.B.1 translates that criteria directly into their thermo-
dynamics consequences for equilibrium SLA.
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Notwithstanding which mode facilitates escape to the bulk,
the heuristic picture of GFA implies a common phase diagram
[Fig. 16(c)] spanned by the bare frustration strength f0 on one
axis and the ratio of cohesion to intra-assembly stiffness Σ=k
on the other (say, for fixed subunit concentration and temper-
ature). Above a critical frustration strength, there is a regime
of self-limiting aggregates between the dispersed state (below
the CAC) and the bulk state. Within the self-limited regime,
the equilibrium domain size increases with Σ=k but decreases
with frustration strength f0.
As a specific example of the origin and implications of

GFA, we now discuss a well-studied model for crystalline
ribbons frustrated by chirality (Selinger et al., 2004; Ghafouri
and Bruinsma, 2005; Armon et al., 2014). This model has
been developed to understand the polymorphic assembly of
chiral surfactant bilayers that adopt a variety of quasi-1D
structures (Oda et al., 1999; Selinger, Spector, and Schnur,

2001; Ziserman et al., 2011; Zhang et al., 2019); i.e., they
form 2D sheets that are much narrower in width than length
(W ≪ L). Ghafouri and Bruinsma (2005) first described this
mechanism of frustration, posing it as a competition of the
bending cost of a chiral anisotropic membrane against the
elastic costs of in-plane stretching for a 2D crystal with
Gaussian curvature. More recently this model has been
extended (Armon et al., 2014; Grossman, Sharon, and
Diamant, 2016) to describe experimental observations of
bola-amphiphile ribbons by Zhang et al. (2019).
For this discussion, we present here only a simplified

picture of the frustration and its effects in chiral ribbons and
provide a more detailed summary in Appendix B. As shown in
Fig. 17(a), we consider assemblies of ribbons of width W and
much longer (unlimited) length L ≫ W. For the case of
sufficiently narrow ribbons, it can be shown that the favored
morphology is that of a helicoid: a strip whose width axis
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FIG. 17. (a) Schematic of a chiral, crystalline ribbon, where colors indicate the local extensional strains required by negative Gaussian
curvature, from low (blue) to high (red). (b) Plots of the equilibrium shape relaxation of the narrow-ribbon model of Ghafouri and
Bruinsma (2005) as a function of increasing ribbon width for curvature components Cij and Gaussian curvature KG, which is
approximately uniform over the ribbon. The solid branches show the minimal-energy configurations, while the dashed line indicates the
unstable helicoidal equilibrium. Widths are scaled by the characteristic length Wun defined in Eq. (63). (c) Schematics of the shape
equilibrium, in particular, the shape transition from helicoids to spiral ribbons at a critical width Wc. (d),(e) Respective excess energies
for helicoidal (dashed lines) and helicoid-spiral shape branches (solid lines). While both shape modes predict an asymptotically relaxed
frustration energy and a finite self-limiting width, spiral ribbons expel KG at a much faster rate, leading to a narrower range of self-
limitation. (e)–(g) Transmission electron microscopy images of ribbons assembled from chiral bola-amphiphiles. Illustrated are
morphologies evolving with assembly time (scale bars, 100 nm): in (e) helicoids are observed after 24 hours, in (f) spiral ribbons are
observed after one week, and, finally, in (g) closed tubules are observed after 5 months. Adapted from Zhang et al., 2019.
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twists around a straight central ribbon at a uniform rate Ω. In
this regime, the excess energy of the helicoidal chiral ribbon
takes the following form (see Appendix B):

ϵexðWÞ ¼ Ya0
1440

Ω4
0W

4 þ Ba0ðΩ − Ω0Þ2; ð62Þ

where a0 is the area per subunit in the membrane and Y and B
are the respective in-plane stretching and out-of-plane bending
moduli for the assembled membrane. Here Ω plays the role of
a shape parameter in the previously introduced heuristic
model, and the second term has the form of a chiral bending
energy that favors uniform twist Ω0 (Helfrich and Prost, 1988;
Ghafouri and Bruinsma, 2005). The first term derives from the
elastic cost of in-plane deformation of the 2D lattice of the
ribbon and describes the accumulating elastic cost of frus-
tration. It is intuitive to understand the growth of stretching
energy with ribbon width by considering the contour length
per helical turn of the longitudinal strip of the ribbon at a
distance r from the center ð2π=ΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩrÞ2

p
. Because of the

resistance to shearing and stretching of local elements in the
2D solid, this motif leads to strains that grow with relative
longitudinal extension compared to the midline, ≈ðΩrÞ2 to
lowest order, and hence it generates an elastic energy density
of ∼YðΩ2W2Þ2. It can be shown that the underlying source for
stress gradients in such an assembly derives from the
incompatibility of a 2D planar metric with the nonzero
negative Gaussian curvature of the membrane KG ≃ −Ω2

(Ghafouri and Bruinsma, 2005; Armon et al., 2014). In the
language of the previously introduced heuristic picture, we
can identify the strength of frustration with KG, and hence
η ¼ μ ¼ 2, due to the quartic growth of frustration cost with
shape misfit Ω and width W.
An instructive, albeit oversimplified, analysis of the size

dependence of frustration in chiral ribbons considers only the
relaxation of helicoidal twist for variable width. For small
widths, the ribbon adopts a preferred twist Ω�ðW → 0Þ ¼ Ω0

due to the vanishing cost of frustration as W → 0 and
ϵex ≈ YΩ4

0W
4. For large widths W → ∞, the balance between

stretching and bending favors unwinding of the pitch,
Ω� ≃ Ω0ðWun=WÞ4=3, where

Wun ≡
�
720B
YΩ2

0

�
1=4

ð63Þ

defines a characteristic unwinding size. That is, for W ≪ Wun
the ribbon retains roughly the twist preferred by chirality and
the power-law (∼W4) accumulation in excess energy, while
for much larger ribbons the prohibitive cost of frustration
causes the ribbon to unwind, expelling Gaussian curvature.
Figure 17(d) (dashed curve) shows the characteristic crossover
in the excess energy of helicoidal ribbons, with an asymptotic
flattening of the excess energy characterized by the exponent
ν ¼ 4=3, which implies that self-limiting widths are not stable
in the unwinding region; see Sec. III.B.1. In terms of the
accumulant analysis [Fig. 17(d) inset], the escape of frus-
tration by helicoid unwinding would imply a maximum self-
limiting size of WmaxðhelicoidÞ ≃ 2.1Wun.
How do we understand physical parameters that determine

the range of possible self-limiting widths? Here we note that it

arises from the combination of two physical lengths. One of
these derives from the ratio of bending to stretching moduliffiffiffiffiffiffiffiffiffi
B=Y

p ≡ t, which is typically of the order of the thickness of
an elastic membrane. In other words, it is expected that t is of
the order of the molecular (≈ nanometer) size of the con-
stituent amphiphiles. The second length scale is the preferred
pitch P0 ¼ 2π=jΩ0j, which derives from the chiral preference
for local skew packing of neighbor amphiphiles (Zhang et al.,
2019). Unlike t, the size range of P0 is mesoscopic, of the
order of hundreds of nanometers. With these definitions, we
see that the unwinding size scale, and hence the maximum
self-limiting width, is the geometric mean of these two length
scales Wun ≃ 11

ffiffiffiffiffiffiffi
tP0

p
, one molecular and one mesoscopic. It

is then understood that frustration can limit the size of
helicoids up to a size range intermediate to these molecular
and mesoscopic sizes, that is, ribbons of the order of tens of
nanometers in width.
As we describe in more detail in Appendix B, frustration

escape in chiral ribbons is more complex than suggested by
considering only helicoidal shapes. As chiral ribbons grow
beyond a critical width Wc ¼

ffiffiffi
2

p
Wun [Figs. 17(b) and 17(c)],

they become mechanically unstable to a new class of shape
equilibria, spiral ribbons (Ghafouri and Bruinsma, 2005;
Armon et al., 2014). With increasing width, this class of
shapes approaches an isometric strip that is wound helically
around a cylinder. Hence, unlike the helicoid, this more
complex shape relaxation allows the assembly to retain some
residual chiral twist while at the same time expelling the
Gaussian curvature that includes in-plane stresses. Therefore,
these spiral shapes facilitate a more efficient escape of
frustration than helicoidal unwinding; see Fig. 17(d).
Notwithstanding the quantitative frustration relaxation for

large widths, it can be shown that the mechanical instability
does not change the basic conclusion, namely, that the scale of
the self-limiting width is set by the geometric mean of the t
and P0. That is, according to the accumulant analysis of the
spiral ribbon branch [Fig. 17(d) inset], Wmax ≃ 0.85Wun, and
the instability only reduces the numerical prefactor of the
unwinding scale. This is consistent with a recent experimental
study of ribbon morphologies of bola-amphiphiles (Zhang
et al., 2019) [Figs. 17(e)–17(g)]. In this system, the molecular
size suggests that t ≈ 3–4 nm, while skewed packing of chiral
neighbors in the crystal leads to much larger pitches of
200 nm. The observation of helicoidal ribbons up to
≈50 nm (consistent with the geometric mean of molecular
size and helical pitch) demonstrates that frustration stress can
propagate far beyond molecular dimensions. When ribbons
grow beyond this size, they do not grow to infinitely wide and
untwisted sheets but instead transition to a second mechanism
of self-limitation, forming closed tubules of finite diameter
proportional to the pitch.
The preceding discussion has neglected relaxation of

frustration by defects. For 2D solid chiral ribbons this can
be justified because the critical width for defect formation in
helicoids21 far exceeds the transition to a shape-flattening

21This can be conjectured to be ∝ jΩ0j−1 based on standard
arguments of Gaussian curvature screening; see Bowick and Giomi
(2009).
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state, whose lower energy is facilitated by the soft bending
modes of thin solids. This conclusion does not hold in general,
even when the same morphologies arise, if the underlying
mechanism of frustration differs. For example, chiral ribbons
with only liquid-crystalline (LC) in-plane order (e.g., hexatic)
would be described by the same shape (bending) elasticity, but
with a frustration cost that arises from orientational strains
from Gaussian curvature (Vitelli and Turner, 2004; Mbanga,
Grason, and Santangelo, 2012). Such angular strains grow
with a weaker power law ∼KGW than positional strain (Niv
and Efrati, 2018), and hence are an example of η ¼ 1 strain
growth. This “softer” growth of frustration energetics implies
a shape-flattening transition that takes place at a much larger
size that is proportional to the mesoscopic pitch jΩ0j−1. This is
a size scale at which disclinations may also be expected to
lower the ribbon energy, implying that frustration escape for
LC ribbons likely falls into a different class than for solid
ribbons, one that may mix both smooth (shape-flattening) and
singular (defect-mediated) modes.

IV. KINETIC PATHWAYS TOWARD SELF-LIMITING
EQUILIBRIUM

As the primary focus of this review is the equilibrium
ingredients and thermodynamics of SLA, we have not
considered the nonequilibrium pathways by which such
systems, starting from an out-of-equilibrium initial condi-
tion, may arrive at a self-limited equilibrium distribution.
However, the kinetics of assembly can have significant
influence over the size distributions and resulting morphol-
ogies formed in experimental systems of SLA systems since
they are necessarily limited to observations at finite times.
Hence, interpretation of practically all experiments must
allow for the possibility of nonequilibrium effects. In this
section, we provide a basic introduction to a few of the key
principles for understanding and modeling kinetics of SLA.
Rather than giving an exhaustive review, our purpose is
largely to illustrate how the language and formalism intro-
duced in the foregoing discussions of equilibrium SLA
translates to the basic conceptual and theoretical frameworks
used for analyzing these same systems out of equilibrium.
Far more thorough and general descriptions of the interplay
between kinetics and assembly products, in both bulk and
SLA processes, were given in several previous reviews (Sear,
2007; Agarwal and Peters, 2014; Hagan, 2014; Whitelam
and Jack, 2015).
Theory, computation, and experiments have shown that the

ability of a self-assembling system to approach equilibrium
within practical timescales depends on a delicate balance
between thermodynamic and kinetic effects (Zlotnick et al.,
1999; Ceres and Zlotnick, 2002a, 2002b; Endres and Zlotnick,
2002; Whitesides and Grzybowski, 2002; Zlotnick, 2003;
Hagan and Chandler, 2006; Jack, Hagan, and Chandler, 2007;
Nguyen, Reddy, and Brooks, 2007; Wilber et al., 2007;
Rapaport, 2008; Whitelam et al., 2009; Wilber et al., 2009;
Grant, Jack, and Whitelam, 2011; Hagan, Elrad, and Jack,
2011; Klotsa and Jack, 2011; Cheng, Aggarwal, and Stevens,
2012; Grant and Jack, 2012; Hagan, 2014; Whitelam and
Jack, 2015). In a broad variety of systems, yields are non-
monotonic with the strength of cohesive interactions that drive

assembly. Optimal assembly occurs when the cohesive free
energy is on the order of ð5–10ÞkBT per subunit-subunit
contact depending on the initial subunit concentration and
valency of the subunit contacts. To understand this behavior,
we require a consideration of the kinetics of assembly.
To begin, we consider a typical bulk in vitro assembly

kinetics experiment, such as solution assembly of reconsti-
tuted proteins into multiunit structures. To prepare an initial
state, the system is equilibrated under conditions that do not
lead to assembly; i.e., the total subunit concentration is below
the CAC (Φ < ϕ�) and thus the equilibrium aggregate dis-
tribution is peaked at monomers (see Fig. 4). In practice, this is
accomplished by setting a low subunit concentration, a
solution pH and salt concentration that ensure weak sub-
unit-subunit attractions, or sufficiently high temperature
that the translational entropy of unassembled subunits
dominates over inter-subunit attractions. The system is then
rapidly quenched into a condition that favors assembly
(Φ > ϕ�), either by increasing the subunit concentration Φ
or by decreasing the CAC above the current concentration,
by changing temperature or physicochemical changes that
increase subunit-subunit interactions (such as changes to pH
and salt concentration). That is, the new equilibrium
state (postquench) corresponds to a population of aggregates
coexisting with monomers as described in Sec. II. However,
the prequench distribution is out of equilibrium, consisting
predominantly of unassembled monomers, and as such
gradients in the system free energy will drive the assembly
toward lower free energy states with assembled clusters.
Note that this scenario can describe experiments of both
unlimited (e.g., bulk crystals) and self-limited (e.g., capsu-
les) assembly equally well.
The study of assembly kinetics is concerned with the

timescale required to approach the equilibrium state, as well
as the structures and lifetimes of long-lived metastable states
that may occur along the way. To understand the influence of
kinetics on practical applications or biological functions, these
timescales must be compared to those that are accessible to an
experimenter or a biological organism.

A. Classical nucleation theory and assembly timescales

A useful starting point for understanding the dependence of
assembly timescales on control parameters is given by the
framework of classical nucleation theory; see Becker and
Döring (1935), Binder and Stauffer (1976), Oxtoby (1992),
De Yoreo and Vekilov (2003), Hagan and Elrad (2010),
Agarwal and Peters (2014), and Hagan (2014), as well as
Oxtoby (1992) for a review. In this approach, the assembly of
a cluster is broken into two phases: nucleation and growth
(often called “elongation” in the context of finite structures).
Nucleation refers to the process of overcoming a free energy
barrier to form a small but relatively stable aggregate, while
the second phase describes growth of such an aggregate to its
final optimal size. We see next that for most assembly
reactions to be productive (i.e., observable on experimentally
realistic timescales) nucleation must be the rate-limiting
process, and thus the assembly timescale can be estimated
by calculating the nucleation rate.
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1. Nucleation kinetics

Consider a general form of aggregation free energy for
aggregates that describes assembly driven by short-range
cohesive interactions, with possible additional terms to describe
higher-order effects such as those that give rise to SLA:

ϵðnÞ ¼ −ϵmin þ
Δ0

n1=d
þ ϵexðnÞ; ð64Þ

where ϵmin is the bulk energy per subunit in the aggregate with
optimal size, Δ0 accounts for the surface energy [as in Eq. (6)]
and, following Sec. III.B.1, we define ϵexðnÞ as the excess
energy relative to the bulk and surface effects, including effects
that are superextensive in n.22 Note that this description may
apply equally to either self-limiting (i.e., with a minimum at a
finite n ¼ nT and ϵT ¼ −ϵmin from Sec. II.B) or unlimited
[i.e., where ϵðnÞ is minimal for n → ∞ and ϵT ¼ −ϵmin per
Sec. II.A.2] assembly. We begin the discussion by considering
nucleation for the simplest case ϵexðnÞ ¼ 0, i.e., unlimited
assembly. We see shortly that this analysis also qualitatively
applies to most SLA examples since nucleation occurs at small
sizes, where the size dependence of the excess energy ϵexðnÞ is
much smaller than that of the surface terms, whose large values
at small sizes constitute the generic origin of the nucleation
barrier.
As noted in Sec. II.A.2, small aggregates generically have a

smaller cohesive energy than large aggregates because the
fraction of subunits at the aggregate surface with unsatisfied
interactions [accounted for by the second term Δ0 in Eq. (6)]
decreases with aggregate size. In contrast, the bulk energy ϵmin
dominates over surface terms for large aggregates. We define
the critical nucleus size nnuc as the crossover between these
two regimes. Below nnuc disassembly is favored over
assembly because the bulk cohesive energy driving assembly
is outcompeted by this unfavorable surface energy and the
greater translational entropy of unassembled monomers.
Above the critical nucleus size, on the other hand, the bulk
cohesion dominates and assembly is favored.23

Because forward assembly of prenuclei aggregates is
unfavorable, growth of an aggregate to the critical nucleus
size is improbable and nucleation is a rare event. In particular,
we see that productive assembly requires nucleation to be a
rare event on the timescale of typical subunit-subunit asso-
ciation. This gives rise to a separation of timescales: pre-
nucleated aggregates rapidly reach a quasiequilibrium on
timescales much shorter than the overall timescale required
for the assembly process to approach equilibrium. Thus, based
on this assumption, the aggregation distribution for sizes
below the critical nucleus size nnuc can be modeled by a
variant of the law of mass action

ϕn ¼ nðϕ1e−βϵðnÞÞn ¼ ne−βΩðnÞ for n < nnuc; ð65Þ

where ΩðnÞ ¼ n½ϵðnÞ − μ� with μ ¼ −kBT lnϕ1 as the size-
dependent grand free energy of n-mers (sometimes referred to
as the excess free energy) that accounts for the interaggregate
interactions as well as the entropy cost incurred by subunits
joining an aggregate. It is important to point out that this
nonequilibrium description is a departure from the thermo-
dynamic one introduced in Sec. II, in which μ and ϕ1 are
thermodynamically defined by the total concentration
and temperature. Here the chemical potential is used to
define only the partial equilibrium of prenuclei with free
monomers. Hence, in this usage ϕ1, and therefore μ and Ω
should be understood as time-dependent quantities according
to the depletion of free monomers as assembly proceeds.
However, the quasiequilibrium approximation assumes that
these quantities vary slowly relative to the timescale required
for the prenuclei aggregate distribution to reach this form.
By substituting Eq. (6) for the aggregate energy into

Eq. (65), we see that (for d > 1) there will be a maximum
in the grand free energy ΩðnÞ at a size

nnuc ¼
�
d − 1

d
Δ0

−ϵmin − μ

�
d
;

owing to the competing drives of negative bulk assembly and
positive surface growth. This corresponds to the critical
nucleus size since aggregate growth beyond nnuc will decrease
the free energy. Here the factor Δ0=ð−ϵmin − μÞ gives a ratio
of the unfavorable surface energyΔ0 that impedes assembly to
the net thermodynamic driving force for the assembly
−ϵmin − μ. This provides a natural measure for how far out
of equilibrium the initial conditions are,

Δμ≡ −ϵmin − μ ¼ kBT ln

�
Φ
Φs

�
≥ 0; ð66Þ

where we have taken ϕ1 ≃Φ since we are considering the
initial conditions where nearly all subunits are free. We have
defined Φs ≡ eβϵmin so that the ratio Φ=Φs approximately
measures how far the total subunit concentration exceeds the
CAC and is often referred to as the supersaturation.
The key argument of classical nucleation theory is that,

because aggregates of the critical nucleus size are rarefied, the
nucleation timescale grows exponentially with the barrier
height

τnuc ∼ e−βΩðnnucÞ: ð67Þ

There are several important points to make here. First,
this is the initial nucleation timescale at the inception of
the assembly; the nucleation timescale increases as assembly
proceeds because free subunits are depleted and thus μ
decreases, in turn increasing ΩðnnucÞ. Second, Eq. (65) applies
only up to nnuc. Above the critical nucleus size the decreasing
free energy implies that growth is relatively rapid, and thus
postnuclei aggregates do not reach a quasiequilibrium.
Instead, there is a predominant flux of monomers (via
association to intermediates) from the population of prenuclei

22Here the notion of excess energy is shifted by an unimportant
constant relative to Eq. (46).

23Specifically, critical nucleus denotes a structure for which either
complete disassembly or growth to a large aggregate is equally
probable. In general, for a particular system there will be an ensemble
of critical nuclei that have different structures and (if size is not a
complete reaction coordinate) different sizes; see Pan and Chandler
(2004).
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toward larger aggregates, either toward system-sized aggre-
gates in the case of unlimited assembly or toward a population
of target-sized structures in SLA. Third, if the barrier height
becomes too small [e.g., ΩðnnucÞ≲ 10kBT depending on the
relevant timescales], the separation of timescales that enabled
the quasiequilibrium approximation breaks down, and
Eq. (67) will underpredict nucleation timescales since free
subunits are rapidly depleted. Fourth, for SLA, additional
corrections to this classical nucleation picture will arise (such
as an apparent size-dependent surface tension) if the critical
nucleus size approaches the finite system size due to the
higher-order effects captured by the excess energy (Alder and
Wainwright, 1962; Mayer and Wood, 1965; Thompson et al.,
1984; Reguera et al., 2003). Fifth, this analysis has assumed
that aggregate size n is a good “reaction coordinate,” meaning
that it accounts for all relevant slow degrees of freedom, and
thus the dynamics and probability of an aggregate successfully
nucleating can be determined as a function of n. In practice, a
complete reaction coordinate must include other aggregate
characteristics such as its surface area (Pan and Chandler,
2004). Sixth, a variety of other extensions to classical
nucleation theory have been investigated, but it remains
highly challenging to quantitatively predict nucleation rates
(McGraw and Laaksonen, 1997; Auer and Frenkel, 2001;
Peters, 2009; Jacobson, Hujo, and Molinero, 2010; Knott
et al., 2012; Loeffler et al., 2012; Joswiak et al., 2013; Statt,
Virnau, and Binder, 2015; Zimmermann et al., 2015).
While the discussion thus far has considered an aggregate

energy form that drives unlimited assembly, in general, the
results are qualitatively similar for SLA with large target
structures since the interaction terms that eventually limit
assembly grow superextensively and thus are small for small
aggregates. As an example, here and in the remainder of this
section, we consider the fluid capsid model of Sec. III.A.1 for
which self-closing leads to a finite assembly size nT. To
simplify the presentation, we assume the limit of high bending
modulus B → ∞, so the curvature radius of the assembling
shell is fixed to RT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0nT=4π
p

, and the free energy
becomes

ϵðnÞ ¼ −ϵmin þ λ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nT − n

n

r
; ð68Þ

with the effective line tension associated with the boundaries
of incomplete shells (which gives rise to the nucleation
barrier) given by λ̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πa0=nT
p

λ, with λ the bare line energy.
Notice that, in the limit of small n, Eq. (68) reduces to a bulk
cohesive energy ϵmin and a surface term ∝

ffiffiffi
n

p
, as anticipated.

This specific B → ∞ model was considered in the context
of viral capsid assembly by Zandi et al. (2006) and Hagan and
Elrad (2010). The grand free energy that corresponds to
Eq. (68) is given by

ΩðnÞ ¼ Δμnþ λ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnT − nÞ

p
; ð69Þ

which corresponds to a barrier height (Zandi et al., 2006) of

ΩðnnucÞ ¼
nTλ̃
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ 1

p
− ΓÞ; ð70Þ

where Γ ¼ Δμ=λ̃ defines a measure of the dimensionless
quench depth,; i.e., the driving force for assembly in the initial
state compared to the line energy that impedes the assembly
(Zandi et al., 2006).
Figure 18(a) shows the grand free energy as a function of

aggregate size for several values of the target shell size nT, as
well as for unlimited assembly into a flat disk nT → ∞. Here
we have plotted the portions of the free energy profiles below
(above) the critical nucleus size as solid (dashed) lines to
emphasize that the quasiequilibrium assumption applies
only below the critical nucleus. That is, ϕðnÞ ∝ e−βΩðnÞ for
n ≤ nnuc, but for n > nnuc there is a constant flux of subunits
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FIG. 18. The grand free energy Ω for the capsid model with
fixed curvature RT [Eq. (70)] as a function of partial capsid size n.
(a) ΩðnÞ for indicated complete capsid sizes nT, with the limit
nT → ∞ corresponding to unlimited assembly (a flat disk). The
calculation is performed for a chemical potential difference
Δμ ¼ −ϵT − μ ¼ −4kBT and a per subunit binding free energy
ϵT ¼ −15kBT, corresponding to a subunit-subunit contact energy
of 7.5kBT and tetravalent subunits (Zlotnick et al., 2000; Ceres
and Zlotnick, 2002b). We set the line energy to λ ¼ ϵT=2a

1=2
0 ,

corresponding to one unsatisfied contact per subunit on the partial
shell rim. (b) ΩðnÞ as a function of the chemical potential
difference Δμ for ϵT ¼ −15kBT and complete capsid size
nT ¼ 120. In (a) and (b), the solid lines correspond to sizes
for which the quasiequilibrium approximation described in the
text applies (i.e., n ≤ nnuc), and thus the concentration of
intermediates is given by ϕðnÞ ∝ e−βΩðnÞ. The dashed lines
correspond to sizes n > nnuc for which this assumption is not
valid and the intermediate concentrations cannot be described by a
quasiequilibrium (except approximately for the case Δμ ¼ 0).
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toward complete shells and the nonequilibrium distribution of
intermediate concentrations does not follow the law of
mass action.
Notice that the free energy profiles for the self-limited cases

are qualitatively similar to that of the unlimited case at small
aggregate sizes, which is consistent with the previous analysis.
However, the shell geometry that gives rise to SLA does have
quantitative effects: the shell curvature causes the length of the
unfavorable free boundary to decrease relative to a flat disk
(i.e., of equal area). Thus, the critical nucleus size and barrier
height increase with target size, asymptotically approaching
the flat disk limit. Note that, while in this case the self-closing
physics giving rise to SLA decreases the nucleation barrier
relative to the unlimited case, SLA effects can in general shift
it in either direction. For example, the strain energy that gives
rise to GFA in Sec. III.B will increase the barrier beyond the
surface costs. We reiterate, though, that the effects of SLA on
nucleation are typically quantitative rather than qualitative.
Figure 18(b) shows the grand free energy as a function of

aggregate size for several values of the supersaturation, at
fixed target size and line tension. We see that as the
supersaturation decreases the critical nucleus size and corre-
sponding barrier height increase since the translational
entropy of free monomers increases, and thus the net assembly
driving force decreases. Note that the different curves corre-
sponding to different supersaturation levels in Fig. 18(a) can
be viewed from two perspectives. On the one hand, each
supersaturation level can correspond to the initial condition of
a separate experiment with a different total subunit concen-
tration Φ, with each curve corresponding to the aggregate free
energy at the beginning of the experiment. In this interpre-
tation, Eq. (67) describes the initial nucleation rate and its
dependence on quench conditions. On the other hand, as a
single experiment proceeds the supersaturation is continually
decreasing as free monomers are depleted by assembly, and
curves at decreasing supersaturation levels reveal the instanta-
neous nucleation rate as the experiment proceeds (and sub-
units are effectively removed from the prenuclei pool). Notice,
then, that the barrier height increases as the reaction proceeds,
and thus the nucleation rate decreases over time. For large
target sizes (nT ≫ 1), as the reaction proceeds the nucleation
barrier eventually becomes so large in comparison to the
thermal energy that assembly ceases on relevant timescales;
thus, the reaction only asymptotically approaches equilibrium.
Finally, the curve corresponding to no supersaturation

(Δμ ¼ 0) corresponds to the equilibrium state with coexist-
ence of shells and free monomers (hence the entire curve is
plotted with a solid line). In this case the critical nucleus size is
given by nnuc ¼ nT=2, corresponding to a half shell. Notice
that at equilibrium intermediates are higher in free energy than
free monomers or complete shells due to the unfavorable line
energy at the boundaries and are thus present only at low
concentrations; see also Sec. II.B.2.

2. Growth

We define growth as the process by which a critical nucleus
assembles to its final state, commensurate with the optimal
aggregation size. In contrast to unlimited assembly (such as
bulk crystal growth), for SLA there is a well-defined mean

timescale for growth of the aggregate since about nT − nnuc ≈
nT subunits must associate to reach the optimal size.24

The physical process of growth differs fundamentally from
nucleation. Nucleation is a highly cooperative process: from
Eq. (70), we see that the nucleation timescale decreases
exponentially with subunit interaction strength ϵmin and
decreases with subunit concentration according to ϕnnuc

1 .
The latter condition reflects the fact that nnuc subunits must
come together within a short timescale in order to create a
stable nucleus. In contrast, because postnucleus intermediates
are relatively stable, the growth phase can proceed through
independent additions of individual subunits or small oligom-
ers. Thus, one can generally expect the growth timescale τgrow
to depend only weakly on ϵmin. Moreover, one can expect
τgrow to vary inversely with subunit concentration τgrow ∝ ϕ−1

1

since the rate of addition should increase in proportion to
concentration unless growth requires overcoming any secon-
dary nucleation barriers. The latter prediction was tested and
confirmed experimentally for the hepatitis B capsid assembly
by Selzer, Katen, and Zlotnick (2014).
In general, the mean growth timescale can be estimated as

τgrow ¼ nαT
ϕ1fassem

; ð71Þ

where we have assumed that nT ≫ nnuc so that
nT − nnuc ≈ nT. The quantity fassem is the association rate
constant for subunit addition, averaged over the growth phase
since it may vary with aggregate size. The factor in the
numerator indicates that the growth timescale generically
increases with optimal aggregate size (i.e., α > 0) since
OðnTÞ independent subunit additions must occur. The value
of the exponent α will depend on factors such as the
dimensionality, the aggregate geometry, and the relative
stability of the intermediates. For example, for growth of a
globular aggregate in 3D (i.e., a crystal or the SALR system of
Sec. III.B.2) we expect α ≈ 1=3 if growth is proportional to the
diffusion limited rate. For the capsid example that we consider
in this section, we expect 1=2 ≤ α ≤ 2. In particular, if
assembly is strongly biased over disassembly during growth
and the assembly rate is proportional to the perimeter of the
free boundary, we obtain α ¼ 1=2 (Hagan and Elrad, 2010).
For moderately biased assembly, growth tends to occur along
a single point on the perimeter, giving α ¼ 1, while for weakly
biased assembly (near the reversible limit) the growth time-
scale approaches that of a random walk, giving α ¼ 2.

3. Beyond nucleation and growth

We note that not all assembly processes can be adequately
described by the nucleation and growth mechanism. In some
systems there are additional timescales that may become rate
limiting. These include subunit conformational changes and
cooperative global rearrangements required to achieve the
optimal self-limited structure. For example, strains must
propagate across scales of the order of the size of the structure
in the frustrated open-boundary assemblies described in

24However, even for a system with no minimum in its aggregation
free energy, one can define a growth timescale to reach a given finite
size, which can be analyzed as described here.
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Sec. III.B. Similar behaviors may occur in self-closing aggre-
gates; for example, recent evidence suggests that assembly of
empty HBV capsids proceeds by nucleation, growth into large
but defective or disordered intermediates, followed by a
“completion phase” in which the intermediate rearranges into
the icosahedral capsid structure (Chevreuil et al., 2020).
Additional multistep mechanisms are possible if we move
beyond the scope of this review (SLA from a single species).
For example, computation and experiments have shown that
assembly around a substrate or template can proceed by an
alternative en masse pathway (Hagan, 2008; Elrad and Hagan,
2010; Tsvetkova et al., 2012; Garmann et al., 2014, 2016;
Perlmutter, Perkett, and Hagan, 2014; Panahandeh et al.,
2020). In this process, subunits rapidly adsorb on a substrate
in a disorderedmanner, then cooperatively rearrange to form an
ordered aggregate. While that process involves condensation
and assembly of individual substrates, it is also possible for the
assembling components to undergo bulk phase separation into
a metastable liquid phase prior to assembly. For example, in
many virus families the host cell undergoes liquid-liquid phase
separation to form a domain that is concentrated in viral
proteins and nucleic acids, within which the nucleocapsid
(capsid assembled around the viral RNA) assembles (Nikolic
et al., 2017; Schoelz and Leisner, 2017; Brocca et al., 2020;
Carlson et al., 2020; Fernández de Castro, Tenorio, and Risco,
2020; Guseva et al., 2020; Kieser et al., 2020; Savastano et al.,
2020). A related mechanism occurs for unlimited assembly: it
has been shown that crystallization can proceed with use of a
two-step mechanism in which subunits first condense into a
metastable liquid phase and formation of an ordered crystal
follows; see tenWolde and Frenkel (1997), Nicolis and Nicolis
(2003), Gliko et al. (2005), Veesler et al. (2006), Fortini, Sanz,
and Dijkstra (2008), Basios et al. (2009), Sear (2009),
Whitelam (2010), and Schubert et al. (2017).

B. Interplay between thermodynamic stability, assembly rates,
and kinetic traps

Achieving productive assembly requires thermodynamic
stability of the target structure, which implies that subunit
interactions must be strong enough to overcome the transla-
tional and rotational entropy losses incurred by the subunits
forming an aggregate. Achieving productive assembly in finite
time places even more restrictive conditions on interactions,
based on the kinetics of assembly. Interactions must be strong
enough to ensure that the previously discussed nucleation
timescale falls within relevant timescales. However, overly
strong subunit interactions lead to kinetic traps, or metastable
states that evolve toward equilibrium slowly. These kinetic
traps can be broadly classified into two categories. We discuss
each category and its effects in turn and follow up with a
survey of open questions for optimizing assembly kinetics.

1. Overnucleation (i.e., monomer starvation)

First, the monomer starvation trap arises when nucleation
timescales are short in comparison to growth timescales, or the
time required for a nucleated aggregate to grow to its
equilibrium size. In this situation, so many nuclei form that
the system becomes depleted of monomers before most nuclei

grow to completion. Subsequent evolution to equilibrium
requires either redistribution of subunits from smaller to larger
aggregates (Ostwald ripening), which incurs significant free
energy barriers, or coalescence of large intermediates, which
is rare and frequently leads to misassembled structures.
In the context of SLA, this condition becomesmore stringent

as the target assembly size increases since about nT monomers
will eventually be depleted during the growth of each nucleus,
and the growth timescale typically increases with target size
since the critical nucleus size depends at most weakly on nT.
The parameter regimes that give rise to the monomer starvation
trap can be understood from the different dependence of
nucleation and growth timescales on subunit-subunit interac-
tion strengths and subunit concentrations (Zlotnick et al., 1999;
Endres and Zlotnick, 2002; Hagan and Elrad, 2010). In
particular, from Eq. (67) the initial nucleation timescale for
the capsid model is τnucðΦÞ ∼ exp f−βΩ½nnucðΦÞ�g. However,
as previously noted the nucleation timescale increases as the
reaction proceeds due to monomer depletion. By evolving
aggregates according to the kinetics described by Eq. (C1), we
can integrate the cumulative depletion of monomers as a
function of time, from which one can obtain the following
median assembly time τ1=2, which is defined as the time
required for half of the subunits to be assembled ϕ1ðτ1=2Þ ¼
Φ=2 (Hagan and Elrad, 2010) (see Appendix C for details):

τ1=2 ∼
τnucðΦÞ
ΦnT

: ð72Þ

The boundary between productive assembly (which we
define as having initial nucleation times shorter than, say, one
day) and monomer starvation can be estimated by the locus in
parameter space at which the median assembly time and
growth time are equal. Figure 19 shows this and boundaries
between other kinetic regimes as a function of supersaturation
and nT for the previously described capsid model. For any
optimal size, we see that, as the total subunit concentration
increases, the system transitions from a monomer-dominated
equilibrium phase to a state in which the monomer rich phase
is metastable only with respect to aggregates, but assembly
does not occur on relevant timescales due to a large nucleation
barrier, to a window of productive assembly, and finally to the
monomer starvation regime. Notice that the concentration at
which assembly becomes kinetically accessible can signifi-
cantly exceed the CAC, showing that accurately inferring the
CAC from experimental measurements can be challenging.
Moreover, the region of productive assembly between the
nucleation threshold and the monomer starvation trap narrows
with increasing target size due to the different dependencies of
the nucleation and elongation timescales on nT. In particular,
the median assembly time increases with nT at small sizes due
to the previously discussed rim curvature but decreases as
1=nT at large sizes because the nucleation time saturates while
each nucleus consumes nT subunits; see Eq. (72). Further, the
growth time increases with nT [Eq. (71) with α ¼ 1].25

25Note that a similar analysis can be performed for crystallization
in a finite-sized system to tune nucleation and growth rates so that a
single nucleus forms on accessible timescales but grows to system
size before additional nuclei arise.
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2. Malformed assemblies

In the second class of kinetic traps, misassembled struc-
tures arise when incorrectly bound subunits do not have time
to anneal before becoming trapped within the aggregate by
binding of additional subunits. That is, subunit interactions
must be reversible on the timescale of subunit association,
even in the growth phase of aggregate assembly. This
condition depends on both the cohesive interaction strength
and initial monomer concentration since the annealing time
increases exponentially with interaction strength, while the
time interval between subunit association events decreases
inversely with monomer concentration. Moreover, in the case
of open-boundary assembly (and possibly some instances of
curvature-controlled assembly), subunit association must
occur sufficiently slowly and close to reversibility that
strains due to frustration have time to propagate across
the structure. Otherwise, defects or cracks that allow the
system to escape frustration may occur. The conditions
leading to such escape scenarios remain an open question
in open-boundary assembly.

A similar trade-off between thermodynamic and kinetic
considerations applies to the orientational specificity of
subunit interactions. While some degree of orientational
specificity is required to stabilize the target structure over
other competing morphologies and to avoid misassembly,
overly high specificity (such as extremely precise lock-and-
key interactions) leads to small kinetic cross sections for
subunit association and thus low assembly rates (Whitelam
et al., 2009).

3. Nonequilibrium protocols for optimal kinetics

Finally, we note that it may be possible to achieve faster
assembly and/or higher assembly yields of SLA over a larger
region of parameter space by using nonequilibrium protocols
in which assembly driving forces are varied over time, for
example, by varying the temperature, solution conditions, or
concentration. An intuitive approach is to use strong subunit
interactions for sufficient duration to rapidly form a desired
number of nuclei, then to reduce subunit interactions to a level
where postnuclei intermediates can undergo growth but
further nucleation is suppressed by a large nucleation barrier.
Several approaches have been developed to use feed forward
or feedback control to optimize such time varying protocols
(Klotsa and Jack, 2013; Tang, Rupp et al., 2016; Tang et al.,
2017; Pineros et al., 2018; Green et al., 2019; Grover, Griffin,
and Tang, 2019). A simpler but highly effective strategy is to
seed nucleation of particular structures (Mohammed and
Schulman, 2013). This is related to the more general context
of harnessing nonequilibrium assembly pathways to achieve
size-controlled aggregates out of equilibrium, which we return
to in detail in Sec. V.

V. FINITE SIZES BY OTHER MEANS

In Secs. II.B and III, we overviewed the statistical thermo-
dynamics of known physical mechanisms for identical sub-
units to achieve equilibrium states with well-defined and finite
dimensions. Here we survey two broad classes of mechanisms
for achieving size-controlled assemblies that fall outside of
this basic paradigm: nonequilibrium size control and pro-
grammable assembly multiple species.

A. Nonequilibrium mechanisms of size-controlled assembly

While we showed in Sec. IV that kinetic effects introduce
limitations to the practical ability to achieve equilibrium SLA,
in this section we consider how nonequilibrium effects can be
exploited to achieve size control of finite assemblies even
when the equilibrium states are non-self-limiting.
Such nonequilibrium mechanisms leading to size-con-

trolled assembly distributions can be further classified into
two categories. (i) In kinetically controlled assembly reac-
tions, kinetic effects drive a system to a well-defined meta-
stable state that either is sufficiently long-lived for practical
applications or can subsequently be stabilized by additional
reactions. Examples of such kinetically controlled reactions
include polymer-particle synthesis processes (de Pablo et al.,
2019), nonequilibrium formation of finite-size droplets in
microemulsions (Woltornist et al., 2015, 2017), flow-driven
aggregate breakup (Conchúir and Zaccone, 2013) and
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FIG. 19. (a) Assembly “phase diagram” for the capsid model
(B → ∞ model of the fluid capsule model). The boundaries
between the different kinetics regimes discussed in the text are
shown as a function of capsid size and supersaturation
Φ=Φs ¼ e−βΔμ. The calculation was performed using Eqs. (68),
(5), and (71) with α ¼ 1, as well as Eq. (C2). We set ϵmin ¼
−15kBT and λ ¼ ϵT=2a

1=2
0 as in Fig. 18. (b),(c) TEM images of

in vitro assembly of empty capsids from cowpea chlorotic mottle
virus capsid proteins. (b) corresponds to productive assembly,
while (c) corresponds to assembly of long-lived partial shells (the
monomer starvation trap) that occurs under stronger subunit-
subunit interactions. From Zlotnick et al., 2000.

Michael F. Hagan and Gregory M. Grason: Equilibrium mechanisms of self-limiting assembly

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025008-36



kinetically arrested coarsening (Siggia, 1979). (ii) The second
class, typically referred to as nonequilibrium assembly mech-
anisms, requires continual energy input into the system to
stabilize the self-limited size distribution. These mechanisms
use energy consumption to modify the aggregate size depend-
ence of subunit association and/or dissociation rates. In both
equilibrium and nonequilibrium mechanisms, a stable assem-
blage requires association and dissociation rates to be equal at
a finite aggregate size. The resulting fixed point must also be
stable, requiring dissociation rates to exceed association rates
at larger aggregate sizes and association rates to be larger for
smaller aggregates. These conditions are guaranteed in an
equilibrium system by the criteria for self-limited assembly
sizes discussed in Sec. II.B.2. However, additional nonequili-
brium mechanisms to modify association or dissociation rates
can also lead to stable finite sizes. For example, a number of
biological mechanisms have been proposed in which
assembly sizes are regulated by energy-consuming processes,
such as active assembly and disassembly by molecular
machines, or coupling between protein conformational states
and phosphotransfer reactions (changes in a protein’s phos-
phorylation state or hydrolysis of a bound, nucleotide tri-
phosphate, etc.). Similarly, assembly and disassembly rates
can be modulated by externally controlled gradients in
monomer concentrations or nucleation factors, as occurs
during embryogenesis (Briscoe and Small, 2015).
In a well-studied example, the lengths of microtubules or

actin filaments are regulated by a suite of accessory proteins
that modulate assembly and disassembly rates at filament
ends, as well as molecular motors that actively remove
subunits from filament ends or sever filaments in their
interiors (Desai and Mitchison, 1997; Mohapatra et al.,
2016; Pollard, 2016). Moreover, the subunits themselves
undergo conformational changes powered by hydrolysis of
nucleotide triphosphates [adenosine triphosphate (known as
ATP) or guanosine triphosphate (GTP)]. The hydrolysis event
shifts subunits into geometries that are incompatible with the
global filament structure, thus inhibiting further assembly and/
or weakening the existing structure. These nonequilibrium
processes allow not only stable finite-length distributions but
also structural dynamics, such as actin treadmilling and
microtubule dynamical instability, that allow the cellular
cytoskeleton to rapidly respond and reconfigure to environ-
mental cues. Using models ranging from idealized one-
dimensional filaments to geometrically realistic particle-based
dynamical simulations (Mohapatra et al., 2016; Bollinger and
Stevens, 2018; Fai et al., 2019; Tong and Voth, 2020; Hemmat
and Odde, 2021), researchers have identified multiple mech-
anisms by which active filament assembly and disassembly
processes and energy-driven subunit conformational changes
can lead to 1D filaments that exhibit dynamical instabilities
and/or have well-defined stable sizes. In contrast, recall from
Sec. II.A.2 that equilibrium 1D filaments generically exhibit
exponential length distributions.
Other biological structures thought to be subject to non-

equilibrium size regulation include coat protein (known as
COP) bound vesicles in the eukaryotic secretory system (Foret
and Sens, 2008), neuronal synapses (Lisman andRaghavachari,
2006, 2015; Burlakov et al., 2012; Broadhead et al., 2016; Liu,
Hagan, andLisman, 2017;Miermans et al., 2017; Shomar et al.,

2017), transcriptional regulatory complexes (enhancers) (Hnisz
et al., 2017; Cho et al., 2018; Chong et al., 2018; Sabari et al.,
2018), and other phase-separated liquid domains (Zwicker
et al., 2014; Zwicker, Hyman, and Julicher, 2015; Weber et al.,
2019). The key characteristic of all of these systems is that the
finite size of the assembled structure depends on continual
energy consumption; e.g., through the replacement of
“inactive” subunits with “active” ones using the disassembly
of GDP-bound tubulin subunits and reassembly of GTP-bound
tubulin at amicrotubule end, or the continual dephosphorylation
and rephosphorylation of subunits by phosphatases and kinases
within a neuronal synapse (Lisman and Raghavachari,
2006, 2015).
More broadly, it has been known since Turing’s seminal

paper (Turing, 1952) that combining imbalances in diffusion
rates with interconverting molecular species (such as through
chemical reactions) can lead to compositional inhomogene-
ities with well-defined steady-state sizes (Haselwandter et al.,
2011, 2015; Halatek and Frey, 2018). More recently advances
in stochastic thermodynamics (Seifert, 2008, 2012) have
demonstrated that active processes can play important roles
in regulating the structures and functions of assembly and self-
organization (Nguyen and Vaikuntanathan, 2016; Marsland
and England, 2018). Moreover, theoretical and experimental
studies suggest that spatiotemporal patterns with well-defined
domain sizes can occur in some active matter systems whose
constituent components consume energy at the particle scale
to drive motion (Marchetti et al., 2013; Bechinger et al., 2016;
Needleman and Dogic, 2017; Doostmohammadi et al., 2018;
Bär et al., 2020; Shaebani et al., 2020).

B. Addressable assembly of programmable subunit mixtures

In Sec. III, we reviewed two broad categories of self-
limiting assemblies, both of which achieve equilibrium finite-
size assemblies from a single species of subunit. Here we
describe an emerging class of self-assembling systems that
also realizes equilibrium finite-size assembly but which falls
(at least partly) outside of these two categories.
We refer to this class of systems as addressable assemblies

(AAs) following the terminology introduced by Jacobs,
Reinhardt, and Frenkel (2015, 2016). AAs are formed by
mixtures of multiple assembling subunit species (species A, B,
C,D, etc.), each with specific interactions that selectively bind
to a subset of all subunit species (e.g., A binds selectively only
to D, while B binds to itself as well as C). The core design
principle of AAs is this: one can “program” the matrix of
species interactions to match the 3D adjacency matrix of a
desired structure, perhaps uniquely, such that this target
structure becomes the equilibrium assembly state in mixtures
of controlled subunit stoichiometry (Hormoz and Brenner,
2011). That is, each particle has an address (or set of
addresses) where it sits in the 3D target assembly.
Examples of AAs include colloids and nanoparticles

functionalized by single-stranded DNA tethers that mediate
interactions via complementary base pairing (Jones, Seeman,
and Mirkin, 2015), as well as DNA bricks assembled by
mixtures of oligomeric DNA strands whose sequences are
designed to interleave ends into 3D patterns via complemen-
tary base pairing (Ke et al., 2012). Each of these systems has
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been considered and studied for its potential to selectively
design and assemble target superstructrures that terminate at
specifically predetermined dimensions (Zeravcic, Manoharan,
and Brenner, 2014). In the sense that the self-limiting target
structure can be designed to be stress free with each cohesive
bond ideally satisfied, finite AAs can be thought of as
multispecies analogs to self-closing structures, albeit with
more complex bond networks. As an example, rectangular
beams with precisely defined and finite cross-sectional
dimensions were assembled using the programmable DNA
bricks (Ke et al., 2014). The different values of the target finite
dimension each required mixtures composed of different
numbers of distinct oligomeric species. For example, finite-
width beams of 6 × 6, 8 × 8, and 10 × 10 double-stranded
DNA helices across were assembled, respectively, from
mixtures containing 60, 112, and 180 distinct oligomers.
Generically, equilibrium termination at specific size via AA
requires a number of distinct subunit species nS that grows
with the finite target size W� (Ong et al., 2017), presumably
with some power law nS ∼Wβ

� (e.g., β ¼ 2 if distinct subunits
are required in every 2D cross section of a beam).
The unbounded growth of the number of subunit species

with target size for such an implementation of AAwould seem
to limit its practical applicability due to the cost (in terms of
design, synthesis, and processing) and limited scalability of
the programmable mixture. This raises basic questions about
AA: Are there optimal strategies that minimize the complexity
(such as the number of distinct species) of a subunit mixture
needed to achieve self-limiting AAs of a given topology, and
how do these scale in the limit of large target size? The self-
assembly of viral shells, or capsids, may provide clues for how
to approach these questions.
Capsids are “crystalline” shells composed of protein sub-

units (capsomers) that self-assemble to enclose the viral
genome. Since the enclosed genome has to code for the
capsomers themselves, it has been understood since Crick and
Watson’s seminal paper (Crick and Watson, 1956) that such
assemblies should be economical. That is, a viral capsid is
under selective pressure to enclose the largest possible volume
using the minimal number of distinct capsomer types. Caspar
and Klug (CK) proposed that viruses achieve this optimization
by exploiting symmetry principles (Caspar and Klug, 1962).
In their well-known construction, quasispherical capsid struc-
tures are mapped to high-symmetry triangulations of the
sphere, in which each triangle is constituted of three capso-
meric subunits (Prasad and Schmid, 2012). Based on this
reasoning, CK conjectured that optimal capsids correspond to
subtriangulations of the icosahedron. Each CK structure can
be classified by the number T ¼ h2 þ k2 þ hk of subtriangles
in each of the 20 triangular faces of the icosahedron, where h
and k are positive integers. Since regular triangulations of the
sphere are not possible beyond those corresponding to
Platonic solids, CK noted that higher triangulation numbers
require capsomers to accommodate different local environ-
ments corresponding to variations in neighbor spacing,
orientation, and the number of neighbors. In CK capsids,
the triangulation number T is the number of symmetry-
inequivalent capsomer positions.
In this way, we might view CK capsids as a highly

symmetric and economical limit of AA. While the complete

shell could be assembled from 60T distinct and specifically
interacting capsomeric subunits, the large number of sym-
metry elements of the icosahedral net implies that there are
many redundancies in such a design, and in fact the same
unique target structure could be realized from specific
interactions of only T distinct units. This approach has been
adopted by the protein design community, enabling research-
ers to engineer proteins that assemble into icosahedral shells
of various sizes (King et al., 2014; Lai et al., 2014; Bale et al.,
2016; Butterfield et al., 2017; Mosayebi et al., 2017).
Recently the CK design principles have been repurposed
for the de novo design of triangular DNA origami particles
with precisely defined geometry and edge interactions that
selectively assemble into T icosahedral shells (Sigl et al.,
2021). They show that such capsids can be uniquely pro-
grammed and assembled from even a fewer number of distinct
subunit species, ⌈T=3⌉ because each triangle can have three
inequivalent edges.
In its simplest implementation, a CK capsid can be

assembled by synthesizing a distinct subunit species for each
of the T symmetry-equivalent positions. While some small
viruses follow this approach, it becomes increasingly imprac-
tical as the target capsid size grows since the number of
distinct species scales linearly with the capsid area. In
practice, there are two mechanisms to reduce the number
of distinct subunits that need to be synthesized by a virus (or
by any other manufacturer). In many viruses, the capsid
protein interconverts between different “quasiequivalent”
conformations with slightly different interaction geometries
that accommodate the different local symmetry environ-
ments in the capsid, thus enabling assembly of capsids with
T > 1 from a single-subunit species (Caspar and Klug, 1962;
Johnson and Speir, 1997). More broadly, it has been shown
that such high-symmetry constructions correspond to free
energy minima of assembled structures with spherical
topologies with relatively generic types of short-range
cohesive subunit-subunit interactions, although the free
energy minimum symmetry depends on the size of the
assembled structure (Zandi et al., 2004; Chen, Zhang, and
Glotzer, 2007). Correspondingly, CK-like capsids emerge
naturally from the assembly of elastic structures from
subunits resembling the tapered subunits discussed in
Sec. III.A.2 (Chen, Zhang, and Glotzer, 2007; Fejer,
Chakrabarti, and Wales, 2010; Lázaro, Dragnea, and
Hagan, 2018; Lázaro, Mukhopadhyay, and Hagan, 2018;
Reguera, Hernández-Rojas, and Gomez Llorente, 2019), and
many of the principles discussed in that section can be
extended to systems that form CK capsids. However, the
assembly dynamics of such structures remains an open
question: how does the right subunit conformation end up
in the appropriate location within an assembling capsid
(Berger et al., 1994; Elrad and Hagan, 2008; Morton et al.,
2010; Stockley, Ranson, and Twarock, 2013; Perlmutter and
Hagan, 2015; Perkett, Mirijanian, and Hagan, 2016; Li et al.,
2018; Panahandeh, Li, and Zandi, 2018; Twarock et al.,
2018; Panahandeh et al., 2020; Zandi et al., 2020)? More
recently the CK construction has been extended to account
for other viruses in which capsomers accommodate more
extreme differences in local environments and other sym-
metry classes (Twarock, 2004; Luque and Reguera, 2010;
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Twarock and Luque, 2019). In a second strategy, finite shells
are assembled from a single (or a few) subunit types that do
not adopt explicitly distinct conformations but are suffi-
ciently deformable to accommodate different local symmetry
environments by the formation of inhomogeneous strains
within the capsid structure. It is easy to imagine that these
two strategies (different conformations with specific inter-
actions or subunits with deformable interaction geometries)
could be combined to extend the size and complexity of a
shell that can be assembled by the CK mechanism.
Returning to the context of AA, CK constructions and their

extensions can be viewed as limiting cases of AA in which one
uses symmetry to putatively minimize the number of distinct
subunits types need to enclose a given volume. The CK
framework suggests that there is a trade-off between the
complexity of the mixture of distinct subunits and the
complexity, or asymmetry, of the target assembly (i.e., fewer
symmetry elements in the target structure implies more
subunit species). This idea can be extended more broadly
to designing self-limiting AAs that target other, nonspherical
topologies. In this context, a more precise and potentially
useful notion of economy may be to consider the ratio of the
target finite size to the number of subunit types W�=nS, and
ask what the analogs to CK designs for arbitrary topologies
are that maximize this ratio in the limit of increasing W�.

VI. CONCLUDING REMARKS: SELF-LIMITING
ASSEMBLY BY DISCOVERY AND DESIGN

In this review we attempted to provide a unified theoretical
perspective on assembly processes that, while occurring in
chemically and physically diverse systems, share the common
thread of autonomously terminating at a well-defined equi-
librium finite size. Starting from the framework of ideal
aggregation theory, we showed that the necessary conditions
for such self-limited assembly are linked to the existence of a
minimum in the size-dependent aggregation energetics ϵðnÞ.
In contrast, systems that do not meet these conditions
generically assemble bulk structures such as crystals. We
saw that properties of self-limited assembly reactions can be
identified from the functional form of ϵðnÞ, including the
onset of aggregation with increasing subunit concentration
and the size of fluctuations around the optimal aggregate size.
Systems with multiple local minima in ϵðnÞ can exhibit
polymorphic self-limited assembly, with concentration-depen-
dent transitions (secondary CACs) between different aggre-
gation states. We saw that the small, but nonzero, translational
entropy of the aggregates plays a key role in driving
secondary CACs.
The existence of local minima at nontrivial sizes nT ≫ 1

implies that the energetics of assembly, as mediated by the
shape and interactions between the subunits themselves,
requires the ability to sense the aggregate size on scales
comparable to the optimal size. Surveying known examples of
equilibrium SLA from identical subunits, we argued that there
are two broad classes of physical mechanisms that achieve
this. Either the subunit interaction geometries encode a
target assembly geometry that “returns to itself” after a
characteristic number of subunits or, instead, there is a source
of intra-assembly stress gradients that can propagate up to the

finite-size scale of the assembly. An important feature of the
latter mechanism is that it enables finite-sized aggregates that
have open boundaries. We presented generic descriptions for
understanding each of these mechanisms, including how to
assess the limits to the finite size that can be achieved. Toward
that end, we considered mechanisms by which the system can
escape finite size, resulting in bulk assembly products. For
example, a system can curtail the accumulation of stress
gradients with assembly size by expelling strain to its
periphery or by locally relaxing strain through defects. We
presented distinct physical mechanisms that can give rise to
accumulating stress gradients: the interplay between short-
range attractions and long-range repulsions or an incompat-
ibility between the preferred local subunit packing and the
large-scale assembly geometry. We also presented examples
of experimental systems that may correspond to each of these
SLA mechanisms.
In part, our purpose in spotlighting the relatively rarefied

conditions required for equilibrium self-limitation is to
reframe broadly open challenges in understanding and engi-
neering SLA. One such challenge could be described as the
experimental inference of SLA. That is, for a given set of
experimental observations of assembly, is it possible to
determine whether finite aggregates are the result of equilib-
rium self-limitation? This is a particularly vexing issue for
experimental observations of both synthetic and biological
assemblies that appear to be finite and well defined. While it is
often desirable to link the observations to specific microscopic
models that recapitulate aspects of finite assembly a posteriori,
such models often require assumptions about the interactions
and energetics of complex subunits that are poorly under-
stood. Thus, it is challenging to rule out alternative mecha-
nisms of kinetic trapping of assembly in such systems. As one
example, in living tissues collagen forms fibrillar assemblies
that appear to have well-defined diameters reaching up to
microns, well beyond the nanometer-scale width of a single
procollagen molecule (Ottani et al., 2002). Moreover, the
mean diameter varies considerably between tissue types.
Fibers in tendons have mean diameters in excess of
≳1 μm, while those found in corneal tissue have a tighter
distribution of around ≲50 nm (Wess, 2008). Such observa-
tions combined with the functional needs of these different
tissues (Meek, 2009), high stiffness versus optical trans-
parency, respectively, suggest a need to regulate the assembly
of the same subunits to form architectures of tunable finite
size. Indeed, physical models have proposed mechanisms of
geometric frustration deriving from the chiral organization
within fibers as a means of imposing a self-limited diameter
(Turner et al., 2003; Grason and Bruinsma, 2007; Yang,
Meyer, and Hagan, 2010; Brown, Kreplak, and Rutenberg,
2014). While these explanations are plausible and broadly
consistent with observations of finite-diameter collagen fibers
and other fibrous biofilament structures, these physical mod-
els require knowledge of parameters describing chiral inter-
molecular forces and intermolecular mechanics, which are
difficult to predict under conditions relevant to assembly
(Grason, 2020). Without direct knowledge of these intermo-
lecular and intramolecular parameters, not to mention the
nonequilibrium conditions of assembly, at best such models
can plausibly explain the finite size of fiber diameters.
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Developing generalizable experimental methodologies that
strictly prove (or disprove) mechanisms of equilibrium self-
limitation, particularly from complex biomolecular subunits
for which the intermolecular aggregation energetics is poorly
understood, remains a more distant and unmet goal.
A related challenge is to use advances in synthetic tech-

niques to design and engineer self-limiting assemblies that
target a priori finite dimensions. Great advances have been
made in designing shape-controlled particles (Glotzer and
Solomon, 2007; Sacanna and Pine, 2011) whose symmetries
and interactions direct assembly to targeted structures.
However, assembly targets have thus far been largely
restricted to various bulk structures (albeit with complex unit
cells), or 1D or 2D aggregates of uncontrolled ultimate size.
Alternately, the field of supramolecular chemistry has lever-
aged chemical synthesis of a variety of architecturally and
compositionally defined macromolecules to direct their
assembly. The chemical control over these precision amphi-
philes has significantly increased one’s ability to rationally
design and form periodic mesophases, thermotropic supra-
molecular crystals, or liquid crystals (Su et al., 2020).
However, while the symmetries of these phases have become
increasingly complex, they remain bulk structures. Synthetic
advances in amphiphile assembly have largely focused on
imbuing micellar assemblies with functional properties, such
as the controlled uptake and release of drugs (Geng et al.,
2007; Oltra, Nair, and Discher, 2014). While micellar assem-
blies are finite size in terms of diameter, as in the case of
traditional surfactants, the finite size remains limited to the
size of the molecules that span the aggregate core. Thus,
notwithstanding tremendous advances in synthesizing shape-
and interaction-controlled subunits, controlling the finite size
of target superstructures, particularly on size scales much
larger than the subunits themselves, remains a relatively
unexplored aspect of engineered assemblies. While recent
advances in methods such as DNA nanotechnology seem to
pave the way for geometric control of subunits needed to
realize bioinspired capsules and tubules (Rothemund et al.,
2004; Tian et al., 2014; Benson et al., 2015; Sigl et al., 2021),
it remains to be explored what the experimentally realizable
upper limits to finite sizes are, and what mechanisms of self-
limitation are needed to reach this limit.
A further challenge is to design supramolecular structures

that do not have a single finite size but rather can exist in
multiple different sizes, all of which are stable. Such classes of
structures enable essential functions in biology. For example,
recent evidence suggests that a neuronal synapse changes size
during long-term memory storage but then must remain stable
at that size over the lifetime of a memory (Lisman and
Raghavachari, 2006; Tang, Chen et al., 2016). Designing such
variable-size stable structures is also becoming of interest to
nanomaterials science since materials capable of learning or
remembering multiple stable configurations (Murugan, Zou,
and Brenner, 2015; Zhong, Schwab, and Murugan, 2017)
could adapt their structures to store information, self-heal, or
respond to environmental cues. Despite this interest and
insights from biology, the principles underlying such varia-
ble-size stable structures remain far from clear. In this context,
it would be of interest to extend the considerations in
Sec. II.B.3 of secondary CACs to understand more broadly

how the interplay between aggregate translational entropy and
interaction energies can lead to controllable transitions
between structures with different finite number sizes and/or
dimensionalities. Similarly, can these principles be combined
with the concepts of nonequilibrium assembly to design
subunits that are preprogrammed to organize into nanoscale
machines capable of autonomously manipulating matter or
performing other functions currently found only in living
organisms?
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APPENDIX A: POLYMORPHIC AMPHIPHILE ASSEMBLY
PHASE DIAGRAM

Here we summarize the calculation of the polymorphic
assembly phase diagram for the amphiphile model in Fig. 12.
The aggregate energy for each of the dimensionalities is given
by Eq. (44). To determine the phase diagram, we calculate the
following law of mass action for subunit populations:

Φ ¼ ϕ1 þΦ3 þΦ2 þΦ1; ðA1Þ

with ΦdL the mass fraction of subunits in spherical, cylindri-
cal, or planar aggregates for dL ¼ 3; 2; 1, respectively, and ϕ1

the free monomer population
Adopting the continuum limit, the mass fraction of subunits

in spheres is given by

Φ3;cont ¼
Z

∞

0

dr4πr2n0ϕ3ðrÞ;

ϕ3ðrÞ ¼ nsphðrÞ expf−β½ϵsphðrÞ − μ�nsphðrÞg; ðA2Þ

with ϵsphðrÞ ¼ ϵðr; 3Þ from Eq. (44), nsphðrÞ ¼ ð4=3Þπr3n0,
and n0 ¼ v20=a

3
0 a dimensionless number density.

Likewise, the mass fraction in spherocylinders is

Φ2¼
Z

∞

LB

dL
Z

∞

0

dr2πrn0ϕ2ðr;LÞ

ϕ2ðr;LÞ¼½nsphðrÞþncylðr;lÞ�
×expf−β½ϵSCðr;LÞ−μ�½nsphðrÞþncylðr;LÞ�g; ðA3Þ

with LB set by the minimal length of the stable spherocylinder
branch (calculated later), ncylðr; LÞ ¼ n0πr2L, and
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ϵSCðr; LÞ ¼
nsphðrÞϵsphðrÞ þ ncylðr; lÞϵcylðrÞ

nsphðrÞ þ ncylðr; LÞ
; ðA4Þ

with ϵcylðrÞ ¼ ϵðr; 2Þ from Eq. (44). Note that the first
term in the numerator of Eq. (A3) corresponds to the end
cap energy arising from the hemispherical cap at either end of
the spherocylinder. We make the simplest assumption, that the
radius of the hemispherical cap is equal to that of the
cylindrical portion of the micelle, so that solvophobic tails
remain shielded from solvent contact at the cylinder–end cap
connection. More realistic models consider lower-energy
shapes that smoothly connect bulbous ends to cylindrical
cores (May and Ben-Shaul, 2001).
Finally, Φ1 is the mass fraction in layers and is calcu-

lated later.
To proceed, recall from Sec. II.B.2 that, for the case of a

minimum in the aggregate size around an optimal size nT,
fluctuations vanish in the limit of large nT or ϵ00jnT.
Specifically, consider a generic aggregate energy function
ϵðnÞ with a minimum ϵ� at the optimal size nT. The mass
fraction of subunits in aggregates is then given by

ΦT ¼
Z

∞

0

dn n expfβ½μ − ϵðnÞ�g: ðA5Þ

Performing a saddle point as in Sec. II.B.2 then results in

Rfluc ¼
ΦT

ΦTðnTÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

βϵ00jnTnT

s
; ðA6Þ

with ΦTðnTÞ ¼ nTe−βðϵ�−μÞnT the mass of subunits in aggre-
gates if fluctuations are neglected. Thus, we see that when
βϵ00jnTnT ≳ 1 the width of the distribution is smaller than a
subunit, and fluctuations are negligible. For spherocylinders,
we see that the contribution due to fluctuations in the radial
direction r diminishes with length as Rfluc ∼ L−1=2. Thus, even
for narrow spherocylinders, fluctuations become negligible in
the large-length limit.
With this in mind, we account for polydispersity in

micelles as follows. We first calculate the optimal radius
for spherical aggregates r̄sph by minimizing ϵsphðrÞ for given
values of k and P. We then numerically calculate the location
of the barrier between the spherical and spherocylindrical
branches of Eq. (A4), as LB ¼ argmaxL½minrϵSCðr; LÞ�, i.e.,
the length at which a spherocylinder of optimal radius has a
maximum energy per particle. The number of particles at the
barrier is then given by nB ¼ nsphðrBÞ þ ncylðrBÞ, with rB ¼
argmaxrϵSCðr; LBÞ the optimal radius at the barrier.
To calculate the mass of spherical micelles, we numerically

integrate the expression in Eq. (A2). To maintain the assump-
tions of Sec. III.A.2, we perform the integral over the range
n ∈ ½n̄sph; nB�, with n̄sph ¼ nsphðr̄sphÞ, although the result is
largely insensitive to increasing these integration bounds. We
then include fluctuations only when they exceed the size of a
single subunit by setting

Φ3 ¼ max ½Φ3;cont; n̄sphe−β½ϵsphðn̄sphÞ−μ�n̄sph �; ðA7Þ

where the second argument is simply the concentration of
micelles at the optimal size.
For spherocylinders we make the simplifying assumption

that radial fluctuations can be neglected at all lengths and
take the optimal radius r̄SCðLÞ ¼ argmaxrϵSCðr; LÞ as a
function of spherocylinder length L. In practice, we found
that the numerics are more tractable if the integral is
performed over particle number n rather than spherocylinder
length L, so we calculate the optimal spherocylinder
length LSCðnÞ ¼ argmaxLϵSC½r̄SCðn; LÞ; L�, with r̄SCðn̂; LÞ
determined from the volume of the spherocylinder
nsphðr̄SCÞ þ ncylðr̄SC; LÞ ¼ n̂. To make the integral numeri-
cally tractable, we perform the integral to a predefined large
size nmax, beyond which we assume that the effect of
changing radius from the hemispherical caps is negligible,
so that the optimal radius is given by the minimum of the
cylinder energy r̄SC ≈ r̄cyl ¼ argmaxrϵcylðrÞ, and the ener-
getics becomes simply the 1D energetics of the form in
Sec. II.A.2:

Φ2 ≈
Z

nmax

nB

dnΦ2fr̄SC½n; LSCðnÞ�; LSCðnÞg þΦ∞ðnmaxÞ;

ðA8Þ

with the contribution from the spherocylinders with sizes
larger than nmax given by

Φ∞ðnmaxÞ ¼ e−βϵcapeβðμ−ϵ̄cylÞnmax
1þ βðϵ̄cyl − μÞnmax

β2ðϵ̄cyl − μÞ2 ; ðA9Þ

with ϵ̄cyl ¼ ϵcylðr̄cylÞ the energy per particle within the
cylindrical region and ϵcap ¼ nsphðr̄cylÞ½ϵsphðr̄cylÞ − ϵ̄cyl� the
total extra energy that arises due to the unfavorable hemi-
spherical caps.
Finally, the fraction of subunits in layers Φ1 is calculated

by noting that the free subunit chemical potential can never
exceed the chemical potential of a subunit in a sheet
ϕ1 ≤ eβϵ̄layer , with ϵ̄layer ¼ minr ϵlayerðrÞ, where ϵlayerðrÞ ¼
ϵðr; 1Þ from Eq. (44). Thus, the amount of subunits in layers
and the corresponding free subunit concentration are given by
mass conservation as

Φ1 ¼ max ½Φ −Φ3 −Φ2 − eβϵ̄layer ; 0�;
ϕ1 ¼ Φ −Φ3 −Φ2 −Φ1; ðA10Þ

effectively treating layers as an unlimited bulk phase, with
negligible edge energy.
Phase boundaries in Fig. 12(a) are calculated from

Eqs. (A2),(A3),(A4),(A5),(A6),(A7),(A8),(A9),(A10) by
determining the total subunit concentration at which the
fraction of subunits in an aggregate of a given dimensionality
exceeds 50%. That is, the concentrations corresponding to
transitions between monomers and layers, layers and spher-
ocylinders, and spherocylinders and spheres are calculated as
the lowest total concentration at which ΦðΦ1 ¼ 0.5Þ,
ΦðΦ2 ¼ 0.5Þ, and ΦðΦ3 ¼ 0.5Þ, respectively. The concen-
trations in Fig. 12 are normalized by the CAC for cylinders
(ϕ� ¼ eβϵ̄cyl ). Note that ϕ� is the only result in this section that
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depends on the cohesive energy strength ϵ0; the relative
concentrations corresponding to the transitions depend only
on the elastic and boundary energy terms.
The CAC ratio shown within the spheres and spherocy-

linders coexistence region in Fig. 12(b) is computed
as ΦðΦ3 ¼ 0.5Þ=ΦðΦ2 ¼ 0.5Þ. The infinite-concentration
transitions, shown as solid red and blue lines in Fig. 12(b),
are calculated from ϵ̄layerðk̄; PÞ ¼ ϵ̄cylðk̄; PÞ and ϵ̄cylðk̄; PÞ ¼
ϵ̄sphðk̄; PÞ, respectively.
Finally, the boundary of the spheres and spherocylinders

coexistence region [the solid green line in Fig. 12(b)] is
estimated as the minimum concentration at which either the
height of the barrier between the sphere and spherocylinder
branches goes to zero [i.e., corresponding to δ ¼ 0 in Eq. (34)
of Sec. II.B.3] or the point at which the transition concen-
tration from spheres to spherocylinders becomes equal to the
threshold concentration for assembling cylinders in the
absence of other aggregates [Eq. (35)].

APPENDIX B: CONTINUUM ELASTIC THEORY OF
FRUSTRATED CHIRAL RIBBONS

Here we present details of the “narrow-ribbon” theory of
frustrated chiral ribbons. As the model has been described
elsewhere (Ghafouri and Bruinsma, 2005; Armon et al., 2014;
Grossman, Sharon, and Diamant, 2016), our primary aim is to
provide more details on the physical ingredients of the model,
and further to describe how the elastic instability of wide
helicoids quantitatively alters the picture of “frustration
escape” presented in Sec. III.B.3.
Following the approach of Ghafouri and Bruinsma (2005),

we consider a simplified theory that describes the shape of
ribbons in terms of the surface curvature tensor Cij along the
midline of ribbons, written in terms of coordinate directions x̂e
and x̂p that point, respectively, along and perpendicular to the
wide direction of the ribbon; see Fig. 17(a). Specifically, this
assumes that the in-plane curvatures vary slightly away from
the midline of the ribbon, which is strictly valid when the
ribbon widths are narrow with respect to their curvature radii.
Since the ribbons effective flatten in shape as they grow wider,
this narrow-ribbon approximation provides at least a qualita-
tive picture of the ribbons’ thermodynamics over the entire
range of the widths.
The excess energy derives from two elastic contributions

Eelast ¼ Eintrinsic þ Eextrinsic; ðB1Þ

where the first term depends on the intrinsic geometry or
metric distortions away from a planar 2D lattice, while the
second term describes the elasticity of the extrinsic geometry
of the ribbon, i.e., a generalized form of its bending energy
expressed as quadratically in terms of curvature elements Cij.
The former term is captured by a 2D elastic energy

Eintrinsic ¼
Z

dA σijuij; ðB2Þ

with uij and σij ≈ Yuij as the respective in-plane stress and
strain of the 2D crystal ribbon order, and Y as the 2D Young’s
modulus of the crystal (Seung and Nelson, 1988). Assuming

that the crystalline packing favors uniform inter-subunit
spacing, there is a geometrical and mechanical coupling
between in-plane stress and out-of-plane deflections described
by the so-called compatibility equation

∇2⊥σii ¼ −YKG; ðB3Þ

where σii ¼ σpp þ σee and KG ≃ CeeCpp − C2
ep is the

Gaussian curvature (neglecting variations of KG across the
ribbon width). Assuming approximately uniform negative
curvature, it is straightforward to show that Eintrinsic=WL ¼
YK2

GW
4=1440 (Ghafouri and Bruinsma, 2005; Grason, 2016).

The extrinsic energy takes the form of the generalized
bending energy

Eextrinsic ¼
1

2

Z
dA½BppC2

pp þ BeeC2
ee þ 2BepðCep − Ω0Þ2�;

ðB4Þ

where Bij are bending coefficients for different curvature
elements. Here we consider the case of B¼Bpp ¼Bee ¼Bep;
relaxing this restriction does not alter the qualitative behavior.
Symmetry considerations (i.e., lack of inversion symmetry)
argue that chirality at the subunit scale generates a linear
coupling to the off-diagonal curvature component, which we
define as the ribbon twist

Ω≡ Cep; ðB5Þ

and hence Ω0 can be associated with the preferred rotation, or
twist, of the tangent plane along the edge or pitch axis
(Helfrich and Prost, 1988). At a subunit scale, this preference
for mesoscopic twist derives form a energetic preferrence for
locally skewed packing of molecules in the membrane (Zhang
et al., 2019), although a predictive understanding of the
relationship between preferred pitch and structure of constitu-
ent chiral molecules is a notoriously complex and long-
standing issue in and of itself; see Harris, Kamien, and
Lubensky (1999).
Combining these and dividing by the number of subunits

per ribbon n ¼ WL=a0 gives the excess energy

ϵexðWÞ ¼ Ya0
1440

ðCppCee − C2
epÞ2W4

þ Ba0
2

½C2
pp þ C2

ee þ 2ðCep − Ω0Þ2�; ðB6Þ

where, again, the curvature components in this expression are
taken to correspond to the ribbon shape at the midline, and
further assumed to be constant along the length of the ribbon.
Reconsidering the comparison to the heuristic description in
Eq. (59), inspection of the chirality-frustrated ribbon energy in
Eq. (B6) shows that Gaussian curvature plays the role of
frustration strength [i.e., f → KG ≃ detðCijÞ], while the shape
parameter can be captured by the curvature tensor (i.e.,
s → Cij) with a preferred (tensorial) shape component that
is nonzero only along the off-diagonal elements.
The shape equilibrium of the ribbon varies with width from

the roots of the equations
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∂ϵex
∂Cee

¼ ∂ϵex
∂Cpp

¼ ∂ϵex
∂Cep

¼ 0 ðB7Þ

for fixed W. The shape equilibrium is characterized by two
branches. The first is the helicoidal branch,

Cee ¼ Cpp ¼ 0

Cep þ YW4

720BC
3
ep ¼ Ω0

)
ðhelicoidÞ: ðB8Þ

This is the branch of equilibria discussed in the main text.
Helicoid twist tends to its preferred value for narrow ribbons
CepðW ≪ WunÞ ≃ Ω0; and the helicoid unwinds in the wide
limit as CepðW ≫ WunÞ ≃ Ω0ðWun=WÞ4=3, where the unwind-
ing size Wun ≡ ð720B=YΩ2

0Þ1=4, defined in Eq. (63), charac-
terizes the crossover width between the two regimes.
The second branch corresponds to a symmetry-breaking

transition to a spiral ribbon shape,

Cee ¼ Cpp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
ep − Ω2

0ðWun=WÞ4
q

Cep ¼ Ω0=2

9=
; ðspiral ribbonÞ:

ðB9Þ

Note that this branch exists only above a critical width
Wc ¼

ffiffiffi
2

p
Wun, for which Cee and Cpp are real.

The critical value corresponds to an elastic instability. For
W < Wc the helicoid branch is stable, and no spiral equilib-
rium exists. For W ≥ Wc, the helicoid branch becomes
unstable, and the stable branches become the two degenerate
spiral states, which differ by signs of Cee and Cpp. The shape
equilibria and excess energy of both branches are plotted in
Figs. 17(b) and 17(c), respectively.
Notice that for wide ribbons the Gaussian curvature

of both branches vanishes: for unstable helicoids KG ¼
−C2

epðW ≫ WunÞ ≈ −Ω2
0ðWun=WÞ2=3, and for stable spiral

ribbons KGðW ≥ WcÞ ¼ −Ω2
0ðWun=WÞ4. The difference in

power law suggests a much more rapid expulsion with
Gaussian curvature with increasing width of spirals.
Notwithstanding the faster frustration escape of spiral ribbons,
the accumulant analysis shown in the inset of Fig. 17(c)
predicts that the maximum self-limiting size preempts the
mechanical stability with Wmax ¼ 0.85Wun < Wc ¼

ffiffiffi
2

p
Wun.

Hence, a generic prediction of this narrow-ribbon model is
that self-limiting ribbons can only be helicoidal in shape
(Ghafouri and Bruinsma, 2005; Armon et al., 2014).

APPENDIX C: ASSEMBLY TIMESCALES AND KINETIC
TRAPS

From Eq. (67) the initial nucleation timescale for the capsid
model is

τnucðϕÞ ≈
exp f−βΩ½nnucðϕÞ�g
Zfassem½nnucðϕÞ�

; ðC1Þ

with Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βλ̃=πnT

p
ð1þ Γ2Þ3=4 the Zeldovich factor that

accounts for the time the system spends in the vicinity of
the critical nucleus and fassemðnnucÞ ≈ fassem.

The median assembly time is then given by using Eq. (C1)
to integrate the cumulative depletion of monomers as a
function of time, approximately accounting for reversibility
of the reaction as in Hagan and Elrad (2010), resulting in

τ1=2 ≈ 2nnucðΦÞ−1=½nnucðΦÞ − 1�fT
τnucðΦÞ
ΦnT

; ðC2Þ

in which we made the approximation that the critical
nucleus size remains constant over time (nnuc½ϕ1ðtÞ� ≈
nnucðΦÞ≡ nnucðΦÞ).
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