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Events with vector bosons produced in association with jets have been extensively studied at hadron
colliders and provide high-accuracy tests of the standard model. A good understanding of these
processes is of paramount importance for precision Higgs physics, as well as for searches for new
physics. In particular, associated production of γ, W, or Z bosons with light-flavor and heavy-flavor
jets is a powerful tool for testing perturbative QCD calculations, Monte Carlo event generators, and
can also constrain the parametrizations used to describe the parton content of the proton. Furthermore,
events with a W or Z boson produced with two well-separated jets can be used to distinguish
between electroweak and strong production mechanisms, and to set limits on contributions of physics
beyond the standard model. This review summarizes the historical theoretical developments and the
state-of-the-art in the modeling of vector-boson-plus-jet physics while focusing on experimental
results by the LHC collaborations in run 1 and run 2 and including comparisons with recent
measurements at the Tevatron.
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I. INTRODUCTION

Vector boson production associated with hadronic jets is
one of the most important classes of processes that can be
measured at hadron colliders. While the vector bosons, i.e.,
photons, Z, and W bosons, are the carriers of electroweak
interactions, associated hadronic jets stem from the presence
of strong interactions as a result of the process of fragmenta-
tion and hadronization of energetic partons (quarks and
gluons). Figure 1 shows a proton collision event recorded
by the CMS experiment with a Z boson produced in
association with two jets. The two jets were identified as
likely originating from charm quarks. Each jet is a spray of
hadronic particles collimated in the general direction of the
initial parton, carrying the bulk of its total energy and
transverse momentum.
The study of V þ jets (V ¼ γ, W, Z) events constitutes an

ideal probe for testing quantum chromodynamics (QCD) and
electroweak (EW) interactions as well as a major source of
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backgrounds to searches for new physics. Measurements of
V þ jets also validate the adequacy of the approximations
used in theoretical calculations and models used for back-
ground estimates in precision measurements. For example, the
modeling of V þ jets has a significant impact on studies of the
Higgs boson and top-quark sectors of the standard model
(SM), or in searches for physics beyond the standard model.
Thanks to their large cross sections, the colorless nature of the
γ, W, and Z bosons as carriers of electromagnetic and weak
forces, respectively, and their high sample purities, accurate
studies of V þ jets are of paramount importance for the
success of a hadron collider physics program.
More specifically, a precise understanding of γ þ jet pro-

duction and its modeling plays an important role in new
physics searches, as γ þ jets constitute a background to the
production of high-mass resonances in the search for excited
quarks in quark-compositeness models or quantum black
holes in models of extra spatial dimensions, among others.
Similarly, reliable W=Z þ jet calculations are important to
correctly model the SM backgrounds in many searches of new
particles in processes producing one or two charged leptons1

with associated multijets, as they occur in supersymmetric
theories, among others.

Vector boson production processes associated with jets
containing heavy-flavor hadrons play important roles in
several measurements at hadron colliders. From them, the
dynamics of the underlying heavy-flavor quark processes
can be inferred. In particular, they can give access to the
heavy-flavor content of the proton, which is a limiting
factor in several analyses at the Large Hadron Collider
(LHC). In addition, a detailed understanding of heavy-flavor
quark dynamics in these processes was of paramount
importance to the recent observation of the Higgs boson
decay into a b-quark pair (ATLAS Collaboration, 2018d;
CMS Collaboration, 2018f) and is vital for many new
physics searches.
In the last 30 years many measurements of V þ jet event

properties have been carried out starting with the UA1 and
UA2 experiments (Arnison et al., 1983a, 1983b, 1983c,
1984a, 1984b; Bagnaia et al., 1983, 1984; Banner et al.,
1983; Appel et al., 1986) at the Super Proton–Antiproton
Synchrotron (Spp̄S). Extensive measurements of such proc-
esses by the CDF and the D0 collaborations at the Tevatron
have prompted significant development in the understanding
of the underlying QCD dynamics, including new techniques
for calculating high-precision theoretical predictions as well
as nonperturbative modeling in Monte Carlo (MC) event
generators. Tevatron data provided an important stepping-
stone for V þ jet analyses at the LHC, despite the large
difference in center-of-mass energies between the two col-
liders. The measurements carried out by the LHC collabora-
tions, ATLAS, CMS, and LHCb, in LHC run 1 and run 2 have
motivated further developments in the theoretical description
of such processes in both the QCD and EW sectors. The wide
range of center-of-mass energies, from 1.96 TeV in pp̄
collisions at the Tevatron to 7, 8, and 13 TeV in pp collisions
at the LHC, allows one to explore QCD dynamics in different
energy regimes over a broad range of energy scales. The
ranges of V þ jet cross sections at the LHC compared to
inclusive vector boson production and other SM processes are
shown in Fig. 2.
The underlying physics for the production of V þ jet

processes at the LHC cannot be considered a simple rescal-
ing of scattering processes at the Tevatron. The differing
beam types and center-of-mass energies between the two
colliders lead to a different relative importance of the various
underlying production mechanisms and their associated
phenomenology. More specifically, the LHC reaches far
larger energy scales Q than the Tevatron thanks to the higher
beam energies, while it can simultaneously probe a lower
Bjorken-x range. The inclusive production of a W boson at
the LHC is dominated by events with a Bjorken x in the range
10−4–10−1 andQ2 ≈M2

W , while the exclusive production of a
W boson and at least one jet is shifted to larger values of x,
with the majority of events in the x range of 10−2–3 × 10−1

and larger Q2 values.
As a consequence the two colliders are sensitive to

particulars of the parametrizations of the parton densities
inside the proton, and their collision events are subject to
different production mechanisms. For instance, at the
Tevatron V þ jet processes have a significant valence-quark
contribution from qq̄ interactions, where the quark (q)

FIG. 1. A vector-boson-plus-jet event recorded by the CMS
experiment in proton collisions at 13 TeV center-of-mass energy.
The two solid lines on the left correspond to two reconstructed
muons from the decay of a Z boson. The two cones on the right
contain two collimated sprays of particles reconstructed as
hadronic jets. The internal composition of the jets indicate that
both are likely to have originated from charm quarks, and one of
them contains a muon from a displaced hadronic decay. From
CMS Collaboration, 2019a.

1In the review “charged lepton” refers to an electron or a muon,
unless explicitly stated otherwise, since W=Z þ jet measurements
have primarily focused on electronic and muonic decay channels of
the W and Z bosons.
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originates from the colliding proton and the antiquark (q̄)
originates from the colliding antiproton. On the other hand,
at the LHC there are significant gluon (g) and sea-quark
contributions, including q̄g, qg, and gg interactions. For
example, the Z þ 2 jet production, i.e., the qg → Z þ qg
process, contributes around 75% at the LHC, but only
around 25% at the Tevatron. At the LHC the relative fraction
of subprocesses initiated by qq=qq̄=q̄ q̄, gq=gq̄, and gg
interactions varies with the number of associated jet pro-
duction in the final state. InW þ jet processes the fraction of
qq=qq̄=q̄ q̄ (gq=gq̄) subprocesses increases (decreases) from
18% ð82%Þ with one jet to 21% ð73%Þ, 23% ð70%Þ, and
25% ð67%Þ with two, three, and four jets, respectively,
while for gg subprocesses it increases from 0% with one jet
to 6%, 7%, and 8% with two, three, and four jets; see Kom
and Stirling (2010).
As a result of the LHC sensitivity to large contributions

of sea-quark and gluon densities, V þ jet cross sections are
far larger at the LHC than at the Tevatron. For example,
the W þ 4-jet cross section at the LHC is 500 times
larger than that at the Tevatron with a similar kinematic
selection, while the inclusive Z þ b cross section at the
LHC is 50 times larger than that at the Tevatron (Campbell
et al., 2004).
This review examines the evolution of the theoretical

developments in the description of V þ jets physics for the
Tevatron and the LHC, focusing on the recent achieve-
ments for LHC run 1 and run 2. An overview of
experimental analysis techniques to identify V þ jet events
and reconstruct their kinematics is given together with a
selection of measurements at different center-of-mass

energies. The review of experimental results of W=Z þ
jets focuses on the leptonic decays of the W and Z bosons.
Comparisons between experimental measurements and
cutting-edge theoretical predictions are highlighted. This
review starts with a discussion of the production of
vector bosons associated with light-flavor jets in Sec. II,
followed by a presentation of the EW production of vector
bosons in Sec. III and the associated production of a vector
boson and heavy-flavor jets, i.e., V þ b or c jets, in
Sec. IV. Each of these sections starts with a discussion
of the theoretical predictions for the different V þ jet
production modes, specifically highlighting the most recent
developments on higher-order calculations and MC event
generators, then proceeds with the discussion of the
experimental results and their comparison with the theory.
In this review we do not attempt to accomplish the arduous
task of exhaustively presenting all available measurements
but strive to highlight selected examples of measurements
that give specific insight into V þ jet production dynamics.
The numerous measurements of V þ jets make it difficult
to select a representative set of results; therefore, we
choose to provide a balanced representation of the
different types of measurements and the different experi-
ments at the Tevatron and the LHC. Section V illustrates
some examples of analyses and interpretations of exper-
imental V þ jet results, for example, for tuning of MC
generators, constraining the proton parton densities, and
setting limits on anomalous contributions to SM inter-
actions. The review concludes in Sec. VI with a summary
and an outlook for V þ jet analyses at future LHC runs and
future colliders.
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FIG. 2. Summary of production cross sections for processes with a W or Z boson produced in association with light- or heavy-flavor
jets studied at different center-of-mass energies at the LHC, and their cross sections compared to other SM processes. From CMS
Collaboration, 2020f.
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II. ASSOCIATED PRODUCTION OF A VECTOR BOSON
AND LIGHT-FLAVOR JETS

A. Theoretical predictions

The production of a single vector boson, γ, W, or Z, is the
class of processes with the largest cross sections among the
electroweak processes at hadron colliders. While the massive
vector bosons W and Z can be produced by simple quark-
antiquark annihilation without additional final-state partons at
leading order (LO), photons, as the massless gauge boson of
QED, are measurable only when they have finite transverse
momentum and therefore always need at least one parton to
recoil against.
To set the stage, the Feynman diagrams of the dominant

leading and next-to-leading order (NLO), in both the strong
and the electroweak couplings αs and α, production proc-
esses of inclusive massive gauge bosons are detailed in
Fig. 3. A substantial fraction of all events with single
massive vector bosons are accompanied by additional
hadronic jet activity. These processes are of specific interest
due to their clean signature and the relative precision with
which they can be calculated in the standard model.
Representative leading-order Feynman diagrams are shown
in Fig. 4.

Single-photon production, on the other hand, is always
accompanied by hadronic recoil, as previously discussed.
Figure 5 shows representative diagrams of photon production
associated with jets.

1. Higher-order computations

The effort to increase the available accuracy of the
theoretical predictions2 for inclusive W- and Z-boson pro-
duction processes started early. While the first results beyond
leading-order accuracy date back 40 years (Altarelli, Ellis, and
Martinelli, 1979), the current standard sees the inclusive cross
sections determined at next-to-next-to-leading order (NNLO)
in QCD with NLO EW corrections, i.e., NNLO QCDþ NLO
EW (Hamberg, van Neerven, and Matsuura, 1991; Anastasiou
et al., 2004; Melnikov and Petriello, 2006a, 2006b; Catani
et al., 2009; Gavin et al., 2011; Li and Petriello, 2012). The
NNLO QCD-EW mixed contributions of OðαsαÞ are known
in the pole approximation (Dittmaier, Huss, and Schwinn,
2014), which is valid in the region where the invariant mass of

(a) (b) (c)

FIG. 3. Representative Feynman diagrams for the production of a pair of charged leptons (a) at LO, and representative contributions at
(b) NLO QCD and (c) NLO EW.

(a) (b) (c)

FIG. 4. Representative Feynman diagrams for the production of a pair of charged leptons associated with (a) one jet, (b) two jets, and
(c) three jets at LO.

2Theoretical uncertainties are typically estimated by varying all
unphysical scales of the calculation, e.g., the renormalization and
factorization scale. The resulting quoted error estimate has, however,
no statistical interpretation.

Azzurri, Schönherr, and Tricoli: Vector bosons and jets in proton collisions

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025007-4



the charged-lepton pair is close to the respective gauge
boson’s mass. Figure 6 (left panel) displays such a state-of-
the-art calculation for the inclusive transverse momentum of
the positively charged lepton in the inclusive production of a
charged-lepton pair, showing the relatively large corrections
received through the higher-order QCD corrections with
respect to the leading-order calculation.
Another key inclusive experimental observable is the

transverse-momentum distribution of the vector boson itself.
Its description, however, depends on an accurate description
of its recoil. It thus vanishes identically at leading order and
starts only at OðαsÞ or OðαÞ. Its precise description is further
complicated by large logarithms in the small-transverse-
momentum region, as a result of an infrared divergence at
pT ¼ 0, which spoil the convergence of the perturbative
expansion in the coupling parameters. As the same logarithms
reappear order by order, however, they can be resummed, and
the respective results are detailed in Sec. II.A.2. In the
medium- to large-transverse-momentum region, a fixed-order
expansion is sufficient to achieve percent-level accuracy.

While the QCD two-loop amplitudes have been available
for some time (Garland et al., 2002a, 2002b; Moch, Uwer, and
Weinzierl, 2002), the inception of novel subtraction formal-
isms (Kosower, 1998; Gehrmann-De Ridder, Gehrmann, and
Glover, 2005; Catani and Grazzini, 2007; Currie, Glover, and
Wells, 2013; Boughezal, Focke, Giele et al., 2015; Gaunt
et al., 2015; Catani et al., 2019) along with the computational
frameworks that are able to deal with the complexity of the
infrared structure of such a calculation have only recently
become available. They paved the way for precise NNLO
QCD calculations for this kinematic region (Boughezal,
Focke, Liu, and Petriello, 2015; Gauld et al., 2017;
Boughezal et al., 2016; Boughezal, Liu, and Petriello,
2016a, 2016b; Gehrmann-De Ridder et al., 2016a, 2016b,
2016c, 2018, 2019; Campbell, Ellis, and Williams, 2017b), as
is detailed in Fig. 6 (right panels).
At the same time, the electroweak corrections for both

the vector boson transverse momentum and vector-boson-
plus-jet production in general are also known (Denner et al.,
2011; Kühn et al., 2005a, 2007, 2008; Kühn, Lindert,

(a) (b) (c)

FIG. 5. Representative Feynman diagrams for (a) the production of a photon at LO, (b) representative contributions at NLO QCD, and
(c) photon production from quark fragmentation that enters at the same order.

FIG. 6. Left panel: charged-lepton transverse momentum in the inclusive production of two charged leptons at NNLO QCD plus
NLO EW. From Li and Petriello, 2012. Right panels: transverse momentum of two charged leptons in the production of two charged
leptons associated with at least one jet at LO, NLO, and NNLO QCD. From Gehrmann-De Ridder et al., 2016b.
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Pozzorini et al., 2005; Actis et al., 2013; Denner et al., 2013,
2015; Hollik et al., 2015; Kallweit, Lindert, Maierhöfer et al.,
2015; Kallweit, Lindert, Pozzorini et al., 2015; Kallweit et al.,
2016; Lindert et al., 2017). In their combination with the
higher-order QCD corrections, two schemes are typically
followed. They can be combined additively, corresponding
to a strict next-to-leading-order expansion, commonly denoted
as NLO QCDþ EW. Or they can be combined multiplica-
tively, referred to as NLO QCD × EW, which assumes a
factorization of both effects and is especially suitable if the
typical scales of both processes are well separated. The
difference is formally of higher order and can be used to
estimate the potential size of the mixed QCD − EW NNLO
corrections.
Conversely, the inclusive photon production cross section,

as it is always accompanied by hadronic activity, starts at
OðαsαÞ at the Born level and is thus of the same level of
complexity as W=Z þ 1-jet production. Hence, all pieces of
the calculation at NNLO accuracy in the strong coupling were

computed only recently (Campbell, Ellis, and Williams,
2017a, 2017b; Chen et al., 2020), while the NLO EW
corrections have been known for a slightly longer period
(Kühn et al., 2006; Kallweit, Lindert, Pozzorini et al., 2015;
Lindert et al., 2017).
In addition, owing to their nature as massless gauge bosons,

photons can both be produced promptly by the hard inter-
action and emerge from a fragmentation process; see Fig. 5.
Thus, unless the photon is identified using the smooth cone
isolation procedure (Frixione, 1998), which completely
removes the fragmentation component by construction, such
additional fragmentation processes have to be considered
starting at the next-to-leading order (Glück et al., 1994;
Aurenche et al., 2006). We note that smooth cone isolation
cannot be adopted by the experiments due to finite detector
resolution, while the standard cone isolation that is typically
used experimentally necessitates the use of fragmentation
functions in theoretical calculations. Thus, for all calculations
using smooth cone isolation the correspondence of its

FIG. 7. Left panels: transverse momentum of the reconstructed vector boson (from top to bottom: Z,W−,Wþ, and γ) in inclusive vector
boson production at NLO and NNLO QCD plus nNLO EW. From Lindert et al., 2017. Right panels: pairwise ratios of the differential
cross section in the transverse momentum of the reconstructed vector bosons in inclusive vector boson production at NLO and NNLO
QCD plus nNLO EW. From Lindert et al., 2017.
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parameters to approximately match the experimentally used
ones needs to be confirmed. Mixed schemes, such as a smooth
or standard cone hybrid (Siegert, 2017), can be used to
mediate such differences.
The transverse-momentum distribution of a Z boson

decaying into neutrino pairs is of particular interest for new
physics searches at the LHC, such as a background to searches
for dark matter, as it has a similar topology and features
particles that are invisible to the LHC detectors. Because of
this fact, however, measuring this standard model background
independently proves to be challenging. Typically it is
indirectly inferred by measuring the transverse momentum
of a leptonically decaying Z or W boson or a photon instead,
relying on theoretical predictions to estimate to the sought-
after Z → νν̄ distribution. The needed ratios of production
cross sections of the different processes can now be predicted
with high precision (Bern et al., 2011; Campbell, Ellis, and
Williams, 2017b; Lindert et al., 2017; Gehrmann-De Ridder
et al., 2018; Bizoń et al., 2019) thanks to the recently available
accurate NNLO QCD plus NLO EW predictions, as dis-
cussed, and an understanding of the correlations across
processes. Figure 7 details the predictions for these ratios,
which are found to have percent-level accuracy for vector
boson transverse mementa up to around 1 TeV, growing to
5%–10% in the regions beyond.
Finally, vector boson production associated with multiple

jets is also of interest. Not only are such final states
frequently measured at the LHC, but they also often
constitute backgrounds to searches for particular new phys-
ics models. With the adoption of the anti-kt-jet definition
(Cacciari, Salam, and Soyez, 2008), a sequential recombi-
nation algorithm of the longitudinally-invariant-kt family

(Catani et al., 1993; Dokshitzer et al., 1997; Ellis and Soper,
1993), by the LHC experiments as their default jet definition,
long-standing issues around the compromised infrared
safety of the Tevatron era jet algorithms (Blazey et al.,
2000) were resolved. This allows for high-precision higher-
order calculations to be made for the precise observable that
is measured.
The NLO QCD predictions are available for W plus up to

five jets (Campbell and Ellis, 2002; Berger et al., 2009, 2011;
Ellis, Melnikov, and Zanderighi, 2009; Bern et al., 2013) and
Z plus up to four jets (Campbell and Ellis, 2002; Berger et al.,
2010; Ita et al., 2012), and approximate NNLO corrections,
named n̄NLO, can be calculated through the LOOPSIM method
(Rubin, Salam, and Sapeta, 2010; Maître and Sapeta, 2013).
At the same time, NLO EW corrections are known for fully
off-shell production only up to two jets (Denner et al., 2015;
Kallweit et al., 2016), and in the on-shell approximation for
up to three jets (Kallweit, Lindert, Maierhöfer et al., 2015;
Chiesa, Greiner, and Tramontano, 2016). The effect of these
corrections is detailed in Fig. 8. Processes with up to nine
jets can be calculated at LO accuracy (Höche, Prestel, and
Schulz, 2019).

2. Resummation calculations

Fixed-order calculations fail to yield reliable cross-section
predictions in phase-space regions where large, typically
logarithmic, terms appear at every order of the perturbative
expansion. Consequently, a truncation of the perturbative
series fails to converge quickly enough after the first, second,
or third order. To render a truncation after any finite number of
orders meaningful, a resummation of the terms spoiling the
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convergence is mandated. As the functional form of these
convergence-impairing terms is dependent of the phase-space
region probed by the respective observable, all resummation
formulations are observable specific. In the literature, several
approaches to identify and resum the relevant logarithms have
been formulated; see Collins, Soper, and Sterman (1985),
Ladinsky and Yuan (1994), Balazs and Yuan (1997), Becher
and Neubert (2011), Bozzi et al. (2011), Mantry and Petriello
(2011), Catani et al. (2014), Monni, Re, and Torrielli (2016),
Ebert and Tackmann (2017), Bizoń et al. (2018), Bermudez
Martinez et al. (2019), Coradeschi and Cridge (2019), and
Bacchetta et al. (2020). This is particularly relevant for
electroweak precision measurements like the W mass, or
for probing so-called intrinsic transverse momentum of the
partons inside the proton.
For the production of vector bosons associated with light-

flavor jets, the transverse momentum of the vector boson is of
particular interest. In this observable, resummation is required
to accurately describe the small-pT region, whereas the large-
pT region suffers no such effects and is most accurately
described by fixed-order perturbation theory. Thus, to achieve
the best predictions for the spectrum, the resummed calcu-
lation at small pT has to be matched to the fixed-order
calculation at large pT. Several solutions fitting the various
resummation procedures are available. Figure 9 displays two
examples. On the left, the state-of-the-art next-to-next-to-next-
to-leading logarithmic (N3LL) resummation matched to the
NNLO fixed-order prediction in QCD is shown (Bizoń et al.,
2018). The effect of resumming large logarithms in the
expansion of the cross section in the strong coupling αs, as
well as the large logarithms appearing in the simultaneous
expansion in the electroweak coupling α, is shown in the right
panels of Fig. 9 (Cieri, Ferrera, and Sborlini, 2018; de Florian,
Der, and Fabre, 2018). Although the effects are somewhat
small in this case, they will be needed for a meaningful
interpretation of the high-precision data to be taken in future
LHC runs.

Other resummed calculations are available for related
observables, such as the ϕ� distribution (Banfi, Dasgupta,
and Marzani, 2011), which can be measured with superior
experimental precision (Vesterinen and Wyatt, 2009; Banfi
et al., 2011), or the jet veto efficiency (Stewart, Tackmann,
and Waalewijn, 2011; Banfi et al., 2012; Tackmann, Walsh,
and Zuberi, 2012).

3. Monte Carlo event generators

The previously discussed high-precision calculations suffer
from one important shortcoming: they are parton-level cal-
culations and do not fully account for parton evolution or
nonperturbative effects. Thus, to arrive either at particle-level3

predictions that can be directly compared to detector-corrected
experimental data or at simulated detector readouts to derive
the detector corrections in the first place, these high-precision
calculations need to be interfaced with parton-shower calcu-
lations and multiparton interaction and hadronization models,
as well as hadron decays. This is implemented in so-called
Monte Carlo event generators such as HERWIG (Bellm et al.,
2016), PYTHIA (Sjöstrand et al., 2015), and SHERPA

(Bothmann et al., 2019). They can produce fully differential
calculations, i.e., results that explicitly provide the flavor and
four-momentum of every particle that is produced in a high-
energy collision. This allows the predictions to be projected
onto arbitrary observables a posteriori.
Within the Monte Carlo event generators, the parton

showers (PSs) provide a fully differential resummation of
the parton splitting process in terms of their respective
evolution variables, albeit at a lower theoretical accuracy than
the inclusive observable-specific resummations discussed in

FIG. 9. Left panels: transverse momentum of the charged-lepton pair in the inclusive production of two charged leptons at NNLO,
NNLLþ NLO, and N3LLþ NNLO QCD, showing the QCD scale uncertainties. From Bizoń et al., 2018. Right panels: transverse
momentum of the charged-lepton pair in the inclusive production of two charged leptons at NNLLþ NNLO QCD plus LLþ LO and
NLLþ NLO QED, showing the QED-related uncertainties only. From Cieri, Ferrera, and Sborlini, 2018.

3Particles with a lifetime of cτ > 10 mm are considered stable
in the typical collider experiments. The stage of event evolution
where all remaining particles are stable on this scale is referred to as
particle level.
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Sec. II.A.2. They are matched to fixed-order expressions for
the hard scattering at the leading, next-to-leading, and next-to-
next-to-leading orders to improve the precision of the calcu-
lation outside the strongly hierarchical regime. While the
matching to LO matrix elements is trivial, there are two
general variants of matching strategies for the combination
with next-to-leading order matrix-elements, POWHEG (Nason,
2004; Frixione, Nason, and Oleari, 2007; Höche et al., 2011a)
and MC@NLO (Alwall et al., 2014; Frixione and Webber,
2002; Höche et al., 2012). Both are formulated in a generic
way and especially the MC@NLO method can be applied in an
automated way to arbitrary processes. These methods have
been applied to inclusive vector boson production (Frixione
and Webber, 2004; Alioli et al., 2008; Hamilton, Richardson,
and Tully, 2008; Höche et al., 2011a) as well as vector boson
production associated with up to three jets (Alioli et al., 2011;
Frederix et al., 2012; Höche et al., 2012, 2013b; Re, 2012;
Campbell et al., 2013; Ježo, Klasen, and König, 2016; Siegert,
2017). In addition, at least in the POWHEG approach for
the inclusive Drell-Yan production, next-to-leading-order
electroweak corrections have been matched to coevolving
QCDþ QED parton showers (Barzè et al., 2012; Bernaciak
andWackeroth, 2012; Barzè et al., 2013; Mück and Oymanns,
2017). They constitute state-of-the-art tools for calculating
standard model predictions for electroweak precision mea-
surements, such as the W mass and the angular coefficients
and charged-lepton asymmetry in lepton-pair production.
The current logarithmic accuracy of parton showers,

however, allows them to be matched only to matrix elements
at NNLO accuracy with the most trivial color structure.
Thus, results are available only for inclusive W- and
Z-boson production, not for their production associated
with a jet. Here again two different schemes exist: for
NNLOPS-matched calculations, MINLO (Hamilton et al.,
2013; Hamilton, Nason, and Zanderighi, 2012) simulations
reweighted to inclusive NNLO distributions (Karlberg, Re,
and Zanderighi, 2014; Monni et al., 2020), and qT slicing

combined with MC@NLO predictions in the UN2LOPS
scheme (Höche, Li, and Prestel, 2015). Figure 10 details
the results of both approaches, including their uncertainties,
and compares them to the fixed-order results with the same
accuracy. In both approaches, the advantages of combining
the resummation properties of the parton shower with the
fixed-order matrix element become apparent throughout the
respective spectrum. The otherwise unphysical description
of the low transverse-momentum region of the weak boson is
now described in a reliable way. For prompt-photon pro-
duction, as it is always accompanied by a jet at leading order,
no NNLOPS description is available.
Beyond the description of a fixed multiplicity at the

highest possible accuracy, the inclusive production of a
vector boson with any number of jets is of prime interest
in the experiments. Thus, multijet-merged calculations aim
to combine the advantages of both high-precision descrip-
tions of hard and wide-angle radiation through fixed-order
matrix elements with the description of the soft-collinear
intrajet dynamics offered by the parton shower. Prescriptions
to merge multiple LO-accurate parton-shower (LOPS) cal-
culations of successive jet multiplicities into inclusive
calculations were derived about 20 years ago. They can
be grouped with the CKKW-like methods (Catani et al., 2001;
Lönnblad, 2002; Lavesson and Lönnblad, 2008b; Hamilton,
Richardson, and Tully, 2009; Höche et al., 2009, 2011b;
Hamilton and Nason, 2010; Lönnblad and Prestel, 2012,
2013b) on the one hand, and the MLM-like approaches
(Mangano, Moretti, and Pittau, 2002; Alwall et al., 2008),
on the other hand.
The CKKW-like approaches split the emission phase space of

a lower-order process into a matrix-element region and a
parton-shower region using the merging scale Qcut as a
separator. While the soft and collinear phase space is popu-
lated by the parton shower acting on lower-multiplicity matrix
elements, radiation into the matrix-element region is vetoed.
This veto, as it is determined from the parton-shower emission
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FIG. 10. Left panels: lepton transverse momentum in the inclusive production of a charged-lepton pair calculated at NNLO QCD
accuracy matched to the parton shower using the UN2LOPS method as implemented in SHERPA compared to MC@NLO and NNLO
calculations. From Höche, Li, and Prestel, 2015. Right panels: reconstructed Z-boson transverse momentum in the production of a
charged-lepton pair calculated at NNLO QCD accuracy matched to the parton shower using the MINLO method as implemented in
POWHEG interfaced to PYTHIA8 compared to DYNNLO and NNLOPS calculations. From Karlberg, Re, and Zanderighi, 2014.
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probability, now provides the correct Sudakov weight for the
higher-multiplicity matrix element to correctly include the
respective resummation properties in this region.
Conversely, the MLM-like prescriptions attach an uncon-

strained parton shower to the matrix-element configuration of
each jet multiplicity, letting it run its course without any
awareness of the merging scale that was used to define the
matrix-element region initially. However, at this point of the
generation jets are reconstructed using a given jet algorithm
and matched, in both direction and transverse momentum, to
their counterparts in the originating matrix element. If non-
matching jets are found in either configuration, the event is
discarded, in this way providing the needed Sudakov weights.
Although the two methods yield comparable results (Alwall
et al., 2008), it should be noted that a formal proof of the
mathematical correctness exists only for the CKKW-like
approaches (Höche et al., 2009).
These methods have then subsequently been promoted to

merging NLOPS-matched calculations, both in the CKKW-like
approach [see Lavesson and Lönnblad (2008a), Gehrmann
et al. (2013), andHöche et al. (2014, 2013a) for theMEPS@NLO

variant; see Lönnblad and Prestel (2013a), Plätzer (2013), and
Bellm, Gieseke, and Plätzer (2018) for the UNLOPS variant;
and see Alioli et al. (2015) for the GENEVA variant] and in the
MLM-like prescription (FXFX) (Frederix and Frixione, 2012).
In the former, possibilities to complement the NLOPS-
accurate prescriptions of the lowest few multiplicities with
LOPS-accurate higher multiplicities have been formulated
(Hamilton and Nason, 2010; Höche et al., 2011b, 2014;
Gehrmann et al., 2013). Figure 11 displays the results of these
state-of-the art computations compared to data taken by the
ATLAS experiment at the LHC at 7 TeV. When contrasted, the
NLO-accurate predictions prove to be superior in both their
central values and their uncertainties.

As discussed in Sec. II.A.1, electroweak corrections are
important not only for precision measurements but also in
observables probing regions of large momentum transfers.
Thus far, however, no solution to incorporate the exact NLO
electroweak corrections in the TeV regime has been formu-
lated. Nonetheless, there are two methods to incorporate the
dominant electroweak correction in this region in an approxi-
mate way. The first method (Chiesa et al., 2013) supplements
the leading-order matrix elements used in a LO-accurate
multijet-merged prediction with multiplicative EW Sudakov
form factors (Denner and Pozzorini, 2001a, 2001b).
Conversely, the second method (Kallweit et al., 2016)
completes the NLO QCD components of NLO-accurate
multijet-merged calculations with exact NLO EW virtual
corrections and approximate NLO EW real emission correc-
tions integrated over the single-emission phase space. The
latter can, where needed, be supplemented with subleading
LO corrections to account for further relevant contributions.
Results for both methods are shown in Fig. 12, and the general
feature of a logarithmic suppression of the production cross
section, the so-called EW Sudakov correction, can be
observed, reaching several tens of percent for the transverse
momentum of the vector boson.
Electroweak effects also become relevant through the

radiation of either massive weak bosons (again, mostly
relevant for TeV scale objects) (Christiansen and Sjöstrand,
2014; Krauss et al., 2014) or photon bremsstrahlung (Bloch
and Nordsieck, 1937; Yennie, Frautschi, and Suura, 1961;
Barberio, Eijk, and Wąs, 1991; Seymour, 1992; Hamilton and
Richardson, 2006; Schönherr and Krauss, 2008). The latter
mainly affects observables that depend on the charged-lepton
kinematics, ranging from a few percent on charged-lepton pT
spectra to Oð1Þ effects on invariant mass distributions below
resonance peaks or threshold-induced shoulders. In particular,

FIG. 11. Left panel: inclusive jet multiplicity in the production of a charged lepton and a neutrino associated with jets using the
MEPS@NLO method and merging up to two jets at NLO and four jets at LO accuracy as implemented in SHERPA, compared to
MENLOPS predictions and ATLAS data. From Höche et al., 2013a. Right panels: exclusive jet multiplicity in the production of a
charged lepton and a neutrino associated with jets using the FXFX method and merging up to two jets at NLO accuracy as implemented in
MadGraph5 AMC@NLO and HERWIG++. From Frederix et al., 2016.
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since QED is an infrared-free theory, various different
charged-lepton definitions can be and are used in measure-
ments at various colliders: bare charged leptons take the final-
state charged lepton at face value, and dressed charged leptons
recombine all photonic energy in a cone of size ΔR with the
bare charged lepton. While the bare charged-lepton definition
demands a charged-lepton mass carried through at least some
parts of the calculation (Dittmaier, Kabelschacht, and
Kasprzik, 2008), the dressed charged-lepton definition is
suitable also for calculations with massless leptons through
its insensitivity to collinear radiation. The historic and occa-
sionally still used Born charged-lepton definition relies on

event record documentation entries4 and is not infrared safe at
any higher order. It thus should be abandoned, particularly for
precision measurements. Figure 13 details the corrections
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FIG. 12. Left panels: reconstructedW boson transverse momentum in the production of a charged lepton and a neutrino associated with
jets calculated using the MEPS@NLO method, including approximate electroweak corrections as implemented in SHERPA. From Kallweit
et al., 2016. Missing transverse momentum in neutrino-pair production associated with jets at leading order in QCD, including EW
corrections in the Sudakov approximation as implemented in ALPGEN and HERWIG. From Chiesa et al., 2013.

4In event generators, before NLO EW parton-shower-matched
calculations were available and, in fact, in most cases still now, the
charged-lepton kinematics are generated first at LO accuracy before
dressing the interaction by photon radiation. The Born charged-
lepton definition then relates the physical bare or dressed charged
lepton to its Born-level counterpart by using the recorded technical
details of how the previous calculation was carried out.
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effected through photon bremsstrahlung, where the dominant
effect originates in the changes of the charged-lepton trans-
verse momentum and invariant mass distributions, which
influence the efficiency of the kinematic selection.
Besides providing a fully exclusive event description

at parton level, event generators comprise tools to
calculate nonperturbative effects like multiparton inter-
actions (Sjöstrand and Zijl, 1987; Butterworth, Forshaw,
and Seymour, 1996; Sjöstrand and Skands, 2004; Bähr,
Gieseke, and Seymour, 2008; Corke and Sjostrand, 2010;
Gieseke, Loshaj, and Kirchgäßer, 2017), parton-to-hadron
transitions (Field and Feynman, 1977; Andersson et al.,
1983; Field and Wolfram, 1983; Webber, 1984; Winter,
Krauss, and Soff, 2004), and hadron decays to arrive
at a fully differential event description at particle level.
Since methods to calculate these effects on timescales of
Oð1 CPU sÞ per event are not currently available, phenom-
enological models with tunable, a priori unknown, param-
eters are used. These parameters, believed to be universal,
have to be determined by a finite set of measurements in
dedicated phase-space regions, to be used in all other
calculations. The size of these nonperturbative corrections
is typically estimated by using HERWIG and PYTHIA, and
Fig. 14 shows an example of these corrections for an ATLAS
Z þ jet study at the LHC. These corrections are usually
applied to partonic calculations, such as the fixed-order
NNLO QCD calculations described in Sec. II.A.1, to be
compared to data.

B. Experimental results

The extensive program for measurements of V þ jet proc-
esses at the Tevatron has provided critical incentive for the
development of sophisticated higher-order calculations and
MC generators. In the first years of the LHC data taking, LHC
experiments benefited from the availability of accurate cal-
culations and MC generators tuned to Tevatron data; however,
the production of V þ jet events at the LHC is not a simple
rescaling of Tevatron scattering. Therefore, a new program for
extensive measurements of V þ jet processes was set up early
on in the LHC physics program and V þ jet papers were

among the first published by the LHC collaborations (ATLAS
Collaboration, 2011b, 2011c; CMS Collaboration, 2011b,
2012a). While the first LHC measurements of V þ jet proc-
esses established SM measurements and assessed the validity
of theoretical predictions at the LHC energy scales, later
measurements considerably improved the experimental pre-
cision, reaching the percent level, and were thus able to expose
data-prediction discrepancies and shortcomings in calcula-
tions. Such precision measurements highlighted the need for
the development of more precise higher-order calculations in
QCD and electroweak physics at the LHC, as detailed in
Sec. II.A.
With the high precision achieved by LHC experiments,

accurate definitions of the quantities that are experimentally
measured are of great importance, as they must be theoreti-
cally sound; i.e., independent of the order of the theoretical
approximation used, they must be related to fundamental
physical quantities rather than parameters in theoretical
models and as close as possible to experimental definitions
to minimize model-dependent extrapolations. These general
guidelines allow for accurate comparison of experimental
results with theoretical predictions and ensure that results can
be compared with future predictions without prior knowledge
of the experimental apparatus or possibly dated theoretical
models. In this spirit, V þ jet measurements at the Tevatron
and the LHC are primarily reported in fiducial phase spaces.
Cross-section measurements for W=Z þ jet processes at the
LHC are reported with decay charged leptons defined at
“dressed-level,” and corrections to a Born-level definition are
often provided; see Sec. II.A.3. The cross sections measured
in different decay channels of the W or Z bosons can be
combined when the charged leptons are defined at Born level.
However, a channel combination with charged leptons defined
at dressed level is also done with a per-mille accuracy, i.e.,
below the experimental precision of the measurements. For a
discussion of phase space and particle definitions at the LHC,
see ATLAS Collaboration (2015c). For the measurements of
the γ þ jet production cross sections, isolation requirements
are imposed on the photon to improve the identification at
detector level and to suppress the contribution of photons
from the fragmentation of quarks and gluons at particle level;
see Sec. II.A.

jetN
0 1 2 3 4 5 6 7 8

F
ra

gm
en

ta
tio

n 
co

rr
ec

tio
n

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ATLAS
Simulation

) + jets-e+ e→*(γZ/
 jets, R = 0.4,tanti-k

| < 4.4
jet

 > 30 GeV, |yjet

T
p

ALPGEN+HERWIG AUET2
ALPGEN+PYTHIA PERUGIA2011C

jetN
0 1 2 3 4 5 6 7 8

U
E

 c
or

re
ct

io
n

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ATLAS
Simulation

) + jets-e+ e→*(γZ/
 jets, R = 0.4,tanti-k

| < 4.4
jet

 > 30 GeV, |yjet

T
p

ALPGEN+HERWIG AUET2
ALPGEN+PYTHIA PERUGIA2011C

jetN
0 1 2 3 4 5 6 7 8

U
E

 a
nd

 F
ra

gm
en

ta
tio

n 
co

rr
ec

tio
n

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ATLAS
Simulation

) + jets-e+ e→*(γZ/
 jets, R = 0.4,tanti-k

| < 4.4
jet

 > 30 GeV, |yjet

T
p

ALPGEN+HERWIG AUET2
ALPGEN+PYTHIA PERUGIA2011C

FIG. 14. Nonperturbative correction factors calculated using HERWIG and PYTHIA for the ATLAS Z þ jet measurement in the electron-
pair decay channel as a function of the number of accompanying jets: (left panel) fragmentation, (middle panel) underlying event, and
(right panel) the result of the two. From ATLAS Collaboration, 2013e.
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Experimental measurements include absolute or normal-
ized differential cross sections in a fiducial phase space. The
differential cross sections are measured as a function of
several observables, i.e., event-based observables (jet multi-
plicity Njets, boson transverse momentum pT, HT that is the
scalar sum of the pT of clustered jets, event shapes, etc.)
and jet-based observables (nth-jet pT or rapidity y).
Measurements also include angular correlations between
final-state objects (jet-jet, lepton-jet, Z-jet, γ-jet objects,
etc.), such as the azimuthal difference Δϕ, the rapidity

difference Δy;ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δϕ2 þ Δη2
p

, and the invariant mass
of the two leading jets mjj.
Particle-level measurements are finally compared to theo-

retical predictions from MC simulations or to fixed-order
calculations. While MC simulations provide particle-level
final states, fixed-order calculations [such as those using
BlackHat (Berger et al., 2008, 2009, 2010, 2011; Ita et al.,
2012; Bern et al., 2013), MCFM (Campbell and Ellis, 2010) or
JETPHOX (Catani et al., 2002; Aurenche et al., 2006)] are at
parton level and are often corrected for nonperturbative
effects, such as underlying event and hadronizations (3% to
4% corrections), as discussed in Sec. II.A.3. Uncertainties in

fixed-order NLO calculations in perturbative QCD (pQCD)
due to missing higher-order terms are conventionally esti-
mated by variations of the scales (renormalization and
factorization) and are typically found in the 4%–20% range.
These are followed by uncertainties on parton densities in the
1%–4% range, and on αs in the 1%–3% range.
Figure 15 shows the breadth of V þ jet measurements at

different center-of-mass energies at the LHC and gives an
overview of the level of agreement between measurements and
state-of-the-art theoretical predictions. It is impressive to see
such a level of agreement overall; however, in the most precise
experimental measurements, such as the ratios ofW þ jets and
Z þ jets, discrepancies are visible. These discrepancies
becomemore significant, up to 2 standard deviations or greater,
in some regions of phase space in differential cross-section
measurements. These measurements and comparisons with
theoretical predictions are presented in greater detail later.

1. Experimental event reconstruction

In experimental analyses, V þ jet events are reconstructed
by identifying particles, such as photons, leptons, and clusters
of particles such as jets, and applying selection requirements

FIG. 15. Summary of ratios of vector boson þX cross-section measurements and predictions at 5, 7, 8, and 13 TeV center-of-mass
energies in pp collisions at the LHC. From ATLAS Collaboration, 2019e.
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to purify the data samples. After background subtraction
and corrections for the detector efficiency and resolution
(unfolding), the production cross sections are measured
inclusively or differentially in a fiducial phase space at particle
level that is defined as close as possible to the detector-level
kinematic selection. The unfolding of experimental results is
an important part of the process of extraction of experimental
measurements, as it allows for the direct comparison with
theoretical predictions with no prior knowledge of the detector
layout, efficiency, or resolution.

a. Particle reconstruction: Photons, electrons, muons, missing
transverse momentum, and jets

The selection of photons is based on energy clusters
reconstructed in the electromagnetic calorimeter, and depend-
ing on the number of matching tracks in the tracker they can
be classified as unconverted or converted photons. Photons are
reconstructed within the tracker acceptance, typically of jηj <
1.0 at the Tevatron and jηj < 2.37–2.5 in the ATLAS and
CMS detectors at the LHC. See CMS Collaboration (2015g)
and ATLAS Collaboration (2019a) and references therein
for a representative selection of recent articles on photon
reconstruction, calibration, and identification strategies and
performance at ATLAS and CMS. Since the reconstruction of
the photon momentum relies on measurements of energy
deposits in cells in the calorimeter system, the transverse
momentum of the photon is often reported as transverse
energy (ET). Measurements of prompt-photon production
require an isolation of photons to avoid a large contribution
from neutral-hadron decays into photons. While a smooth
cone isolation criterion (see Sec. II.A) is used for photon
isolation in theoretical calculations, experimentally a cone-
base isolation technique is most suitable for finite-granularity
detectors: the photon is required to be isolated based on the
amount of transverse energy in a cone of typical size ΔR ¼
0.4 around the photon.
An electron is reconstructed as a charged-particle track

geometrically associated with energy clusters in the electro-
magnetic calorimeter, while a muon is identified as a track
segment in the muon system consistent with a track in the
inner tracker and can be associated with a minimum ionization
signature in the calorimeters. Both electrons and muons are
reconstructed within the inner tracker acceptance and are
required to be isolated to further suppress background from
misidentified objects, such as hadrons and semileptonic
heavy-flavor decays. The isolation requirements are tuned
so that the electron or muon isolation efficiencies are high
for the signal, typically greater than 90%. See CMS
Collaboration (2015f, 2020d), LHCb Collaboration (2015c,
2019c), ATLAS Collaboration (2016d, 2019a), and Aaij et al.
(2019) and references therein for details on electron and muon
reconstruction, calibration, and identification, as well as their
performance at the LHC. Small correction factors, typically
within 1%, are applied to correct differences in the photon,
muon, and electron efficiencies between data and simulation.
Jets are clustered from energy deposits in the calorimeters

in the ATLAS detector (ATLAS Collaboration, 2016g, 2020a)
and from particle candidates reconstructed by a particle flow
algorithm in the CMS detector (CMS Collaboration, 2017d,

2017i, 2020e). Different jet algorithms are used at the
Tevatron and the LHC. At the Tevatron, iterative cone
algorithms (such as the midpoint algorithm) with split-merge
prescriptions to resolve cases of overlapping stable cones are
used with a typical cone radius of R ¼ 0.4–0.7. The experi-
ments at the LHC migrated to the anti-kt infrared and
collinear-safe jet algorithm, which also produces cone-
shaped clustered jets. Jets are calibrated based on the jet
pT response in MC simulations, and the pileup (the particle
production from multiple interactions per bunch crossing)
contribution to the jet energy is subtracted on an event-by-
event basis in the calibration process using data-driven
techniques. In situ measurements of the momentum balance
in the dijet γ þ jet, Z þ jet and multijet events are used to
correct for any residual difference in the jet energy scale
between data and simulation.
In W þ jet analyses with the W decaying leptonically, the

event selection purity can be improved by imposing a require-
ment on the presence of missing transverse momentum in the
event since the neutrino escapes direct detection. The missing
transverse momentum is calculated as the negative vectorial
sum of the transverse momenta of the final-state particles. In
the CMS experiment particles are reconstructed by a particle
flow algorithm and are used as inputs to the computation of
the missing transverse momentum, while in the ATLAS
experiment the selected final-state particles (such as elec-
trons, muons, photons, and jets) are used together with soft
particles that are not associated with any other selected
object, i.e., low-energy deposits in the calorimeter or low-
momentum tracks associated with the primary vertex (LHCb
Collaboration, 2015c; ATLAS Collaboration, 2018e; CMS
Collaboration, 2019e).

b. Event reconstruction: Photonþ jets

Events with a photon and jets reconstructed in the final
states are recorded using highly efficient (close to 100%
efficiency) single-photon triggers; see CMS Collaboration
(2017j) and ATLAS Collaboration (2020b) and references
therein for a representative selection of articles on photon
trigger architecture and performance at the LHC. Despite the
application of the tight identification and isolation require-
ments on the photon, a non-negligible background originating
from hadrons misidentified as photons contaminates the
selected sample. The signal purity is typically higher for a
photon reconstructed centrally in the detector, increases as
the photon ET or jet pT increases, and can reach values in
the 70%–90% range at high photon ET. The background
is subtracted using data-driven methods based on signal-
suppressed control regions. The photon reconstruction and
selection efficiencies depend on the photon ET and η and are
in the range of approximately 70%–100%. They decrease with
an increasing number of jets in the event, primarily due to the
photon isolation requirement.
Photons are selected in a broad range of minimum ET

requirements, approximately 20–200 GeV; similarly, the
minimum jet pT requirement varies and ranges from about
15 to 100 GeV.
The γ þ jet cross-section measurements are dominated by

experimental systematic uncertainties, such as photon cali-
bration and identification and jet energy scale, at the level of a
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few percent over a broad range of jet or photon transverse
momenta. However, at around the TeV energy scale statistical
uncertainty in the data becomes the leading contribution at
the LHC.

c. Event reconstruction: W=Z þ jets

Events with a W or Z boson provide clean experimental
signatures in the leptonic decay channels that can be triggered
by single high-pT electron or muon, or low-pT dilepton
(electron and muon) triggers (CMS Collaboration, 2017j;
Aaij et al., 2019; LHCb Collaboration, 2019a; ATLAS
Collaboration, 2020b). The two leptonic channels with one
(in W events) or two (in Z events) electrons or muons provide
useful cross-checks of the results and can provide additional
information to constrain experimental uncertainties in the
combination of the cross sections. In addition to requirements
for the charged-lepton and jet transverse momenta and
(pseudo)rapidity acceptance, in W þ jet events further
requirements for the missing transverse momentum or the
transverse invariant mass are applied, while for Z þ jet
event reconstruction a requirement on the dilepton invariant
mass is imposed in a window around the nominal Z-boson
mass. Typical selection requirements for W=Z þ jet events
include electrons or muons with a minimum pT in the
range 20–30 GeV within the tracker acceptance, jets
with a distance parameter in the range R ¼ 0.4–0.7, with
a pT requirement in the range 20–50 GeV, and in
rapidity ranges that vary from about two to five units, with
a minimal separation between the lepton and jets of
ΔR ðlepton; jetÞ > 0.4–0.7. In the LHCb experiment
the weak boson decay charged leptons are reconstructed
in the forward pseudorapidity region, in the range
2.0 < η < 4.5, while jets are reconstructed in the pseudor-
apidity range 2.2 < ηjet < 4.2. W þ jet and Z þ jet events
have different levels of background contamination. While at
high jet multiplicity the background from tt̄ production is
dominant for both processes, W þ jet events have a larger
background contribution from multijet production in which
hadronic particles are misidentified as an electron or a muon.
The multijet background is estimated using data-driven
techniques and contributes to ≈ 5%–15% of the W þ jet
data samples. The background from tt̄ events contributes to
about 0% (1 jet), 20% (Z þ 6 jets), and 80% (W þ 6 jets) and
is estimated by MC or with data-driven techniques, and it can
be suppressed by a b-jet veto. Figure 16 shows the jet
multiplicity distributions and the levels of background
contamination in W þ jet and Z þ jet events in the muon
decay channels in the CMS detector.
Experimental uncertainties are dominated at low jet pT or

low Njets by systematics associated with the energy scale and
resolution of the jets. At high jet pT or high Njets, unfolding
and statistical uncertainties become important. At high Njets
the uncertainties on the backgrounds dominate in W þ jet
analyses. Figure 17 shows the level of experimental uncer-
tainties in the Z þ jet production cross-section measurement
as a function of the jet multiplicity, and the level of jet energy
calibration uncertainty in Wþ ≥ 1 jet events as a function of
the leading-jet rapidity. The levels of experimental uncertain-
ties in W=Z þ jets are similar in analyses at 7, 8, and 13 TeV

center-of mass energies at the LHC and comparable with
Tevatron experiments.
Measurements of ratios of differential cross sections allow

for partial cancellations of uncertainties (both experimental
and theoretical). The comparison of the experimental uncer-
tainties in Fig. 17 (bottom-right panel) for W þ jets and in
Fig. 18 for the ratio of W þ jet to Z þ jet differential cross
sections, known as Rjets, shows that in Rjets the experimental

FIG. 16. Top panels: reconstructed data, simulated signal, and
background events in the jet multiplicity distributions in pp
collisions at 13 TeV center-of-mass energy at the LHC for W þ
jet events in the muon decay channel of theW boson. From CMS
Collaboration, 2017e. Bottom panels: similar reconstructed data,
simulated signal, and background events for Z þ jet events in the
muon decay channel of the Z boson. From CMS Collaboration,
2018d.
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systematics, and especially those associated with jets, cancel
from about 40% to about 5% at high jet rapidity. This large
cancellation of uncertainties allows for an accurate test of SM
predictions at the percent level in a wide region of
phase space.

2. Cross sections and jet rates

Measurements of V þ light-jet production cross sections as
functions of the jet multiplicity, jet transverse momenta, and
jet rates are carried out at hadron colliders, as they provide

benchmarks for an understanding of the underlying QCD
dynamics and its modeling in MC generators. This section
starts with a presentation of the measurements of the asso-
ciated production of jets and a photon and concludes with a
discussion of the measurements of the associated productions
of jets and a massive vector boson, i.e., W or Z.

a. Photonþ jets cross-section measurements

The processes of γ þ jet production have the largest cross
sections of all V þ jet processes and they approach the
W=Z þ jet cross sections at high photon transverse momen-
tum, i.e., in the regime where weak boson mass effects play a
lesser role. Figure 19 presents the triple differential cross
section as a function of the photon transverse momentum, and
the γ and jet pseudorapidities, at the Tevatron in pp̄ collisions
at 1.96 TeV center-of-mass energy and at the LHC in pp
collisions at 7 TeV center-of-mass energy. The D0 measure-
ment is carried out in two regions of the jet rapidity and in
event configurations in which the jet and photon have either
the same or opposing signs in rapidity, while the CMS
analysis is in two regions of the jet pseudorapidity and in
four regions of the photon pseudorapidity. In both cases the
measurements span several orders of magnitude in the
production cross sections. The predictions include the NLO
pQCD calculation implemented in JETPHOX and, in the CMS
analysis, the tree-level matrix elements with up to three parton
jets matched to parton showering in the SHERPA generator. The
predictions are overall consistent with the data but unable to
describe the cross-section variations across the entire mea-
sured range of phase space. Tevatron results are an important
benchmark for theoretical calculations and have served as a
stepping-stone for more accurate modeling of such processes
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for the LHC. However, despite this progress in theoretical
predictions some data-theory discrepancies are observed at the
LHC in specific kinematic regions of γ þ jets. For example, in
regions with large photon η and pT in γ þ 1-jet events, the
ratios between the data and the NLO pQCD predictions
generated by JETPHOX and SHERPA are in the range of
50%–70% (CMS Collaboration, 2014e), and in the photon
pT region greater than 750 GeV in γ þ 2-jet events (ATLAS
Collaboration, 2017b) the discrepancy between the data and
the NLO calculation reaches about 2σ.
In addition to testing QCD calculations and MC predic-

tions, the measurements of photonþ jet production can be
used to constrain the parton density functions (PDFs). The
results in Fig. 20 are shown as an example of ratios between
theory and LHC data for the measurement of the differential

cross section for γ þ jet production as a function of the
photon ET. The measurement is carried out in two photon
and two jet rapidity regions, while the figure shows the
results in the forward photon and forward jet bin. The
measurement shows good agreement between the LHC data
and NLO predictions in pQCD from JETPHOX. As Fig. 20
(top panel) shows, the experimental and theoretical uncer-
tainties are comparable, and the theoretical jet scale uncer-
tainty dominates the theoretical uncertainties in the NLO
pQCD approximation. Figure 20 (bottom panel) shows the
NLO prediction generated by JETPHOX using various NLO
PDF sets. Although the differences between the studied PDF
sets are small and subleading with respect to the scale
uncertainty estimated in the NLO pQCD approximation,
new calculations at higher orders in QCD with smaller scale
uncertainties, i.e., next-to-next-to-leading order, are avail-
able (Campbell, Ellis, and Williams, 2017a, 2017b; Chen

FIG. 20. Ratios of NLO (JETPHOX) predictions to data as a
function of the photon transverse energy in γ þ jet events in the
forward photon and jet rapidity regions in pp collisions at the
LHC with 13 TeV center-of-mass energy. Top panel: contribution
of the scale uncertainty to the total theoretical uncertainty in the
NLO JETPHOX calculation compared to the experimental uncer-
tainties. Bottom panel: NLO JETPHOX calculation with various
NLO PDF sets compared to the experimental uncertainties. From
CMS Collaboration, 2019c.
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et al., 2020) and provide motivation for the use of such
measurements at the LHC to improve the gluon and other
PDFs (Campbell et al., 2018), especially in the kinematic
regions where the experimental uncertainties are smaller or
comparable to theoretical uncertainties, such as in the low to
middle range of photon ET.

For other inclusive photon and photonþ light-jet measure-
ments carried out at the Tevatron and at the LHC, see the
analyses given by D0 Collaboration (2010a, 2011b), ATLAS
Collaboration (2011a, 2011b, 2012g, 2013a, 2014b, 2016e,
2017d, 2019d, 2019f, 2020c), CMS Collaboration (2011a,
2011b, 2013f, 2019d).

b. W=Z þ jets cross-section measurements

A typical measurement of W=Z þ jet processes is the
production cross section (multiplied by the leptonic branching
ratio) as a function of jet multiplicity, as shown in Fig. 21 for
Z þ jet production. Such a measurement is important for
assessing the accuracy of SM predictions that are used to
estimate the W=Z þ jet yield in searches of new physics
signatures.
The production of W=Z þ jets is a multiscale process and

various observables can be used to define the scale of the
process, depending on the kinematic configuration. A
common variable used to set the scale inW=Z þ jet processes
isHT, which is also used to discriminate the new physics from
the SM background, as in supersymmetry searches. This
variable has, however, different definitions: in ATLAS it is
defined as the scalar sum of the transverse momenta of leptons
(including neutrinos) and jets in the event, while in CMS it is
defined as the scalar pT sum of the jets only. Figure 22 shows
two examples of the differential cross section for Wþ ≥ 1 jet
production as a function of HT by the CMS and ATLAS
experiments. The measurements in Figs. 21 and 22 show
excellent agreement with theoretical predictions over 4 orders
of magnitude in the cross section. The multitude of models
that are compared to data show the variety of theoretical
approaches that can be validated with such measurements.
These results show that MC simulations with multiparton

FIG. 21. Cross section as a function of the inclusive jet
multiplicity for Z þ jet events at 13 TeV center-of-mass energy
in pp collisions at the LHC. From CMS Collaboration, 2018d.
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calculations in the matrix element matched to the parton
shower are in agreement with the data up to high jet
multiplicity and in a broad energy scale range. The high
experimental precision also exposes discrepancies between
measurements and predictions. In Fig. 22 (right panels)
discrepancies with pQCD NLO calculations (BlackHat)
are visible at largeHT values, when the jets are measured in a
broad rapidity region (jyjetj < 4.4). The accuracy of the
calculation improves when higher-order pQCD corrections
are included, i.e., in Njetti NNLO (Boughezal, Focke, Liu,
and Petriello, 2015; Gehrmann-De Ridder et al., 2016b) or
with the exclusive sum approach (Alcaraz Maestre et al.,
2012) in BlackHat (Berger et al., 2010, 2011; Bern et al.,
2013), in which NLO information from higher-multiplicity
processes are included with the standard fixed-order pre-
diction; see Sec. II.A.
The large statistics ofW=Z þ jet events allows one to carry

out double differential measurements, as is typically done in
inclusive jet or γ þ jet measurements; see the two examples
given in experiments by CMS Collaboration (2017g) and

ATLAS Collaboration (2019b). Figure 23 shows an example
of a double differential cross section as a function of the
leading-jet pT and rapidity that is performed in a broad region
of phase space up to jet pT ¼ 500 GeV and jyj ¼ 4.7. Such
measurements are expected to provide valuable input for
our understanding of parton density functions in addition
to QCD dynamics. However, in several regions of phase
space the precision of experimental results is higher than
current prediction-to-prediction differences, and discrepan-
cies between the data and theoretical predictions can be up to
40%, i.e., larger than the effects from PDFs, and thus the
potential PDF sensitivity of the data cannot be exploited. The
MC simulation that includes NLO QCD corrections provides
a more accurate normalization and better modeling of
the shapes of the distributions than LO QCD predictions.
Similar conclusions can be reached from several other results
on Z þ jet and W þ jet processes: the inclusion of higher-
order QCD corrections in fixed-order calculations and MC
simulations generally provides predictions that more accu-
rately describe the data and are also more precise. Figures 24
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and 25 show examples of such an effect. Better agreement
with the data and smaller uncertainties are found in pre-
dictions that include higher-order corrections, such as in the
NLO MadGraph5_aMC@NLO MC prediction with respect
to the LO MadGraph, the n̄NLO approximation with
LOOPSIMþ MCFM (Rubin, Salam, and Sapeta, 2010) and
the NNLO Njetti calculation, for the distribution of the
leading-jet pT at the Tevatron up to 400 GeV, and at the
LHC up to 1 TeV. Such an effect was corroborated by other
studies, such as those of CMS Collaboration (2017e, 2018d)
and ATLAS Collaboration (2019b), where data are compared
to NNLO predictions. These experimental results also

show that such processes can test theoretical calculations
in a broad region of phase space with great precision, i.e.,
with an uncertainty as low as a few percent in theWþ ≥ 1-jet
events.
The jet multiplicity in W=Z þ jet events is correlated to the

energy scale of the process. Figure 26 shows the correlation
between the average jet multiplicity (hNjeti) andHT inW þ jet
and Z þ jet events at the Tevatron and at the LHC, and a
similar correlation is demonstrated between hNjeti and the Z
boson pT in Z þ jets events in Fig. 27. At HT ≈ 300 GeV in
W events or pZ

T ≈ 300 GeV in Z events, the average jet
multiplicity is about 2, while at HT ¼ 1000 GeV the average
jet multiplicity reaches 3. In the Tevatron study in Fig. 26 (left
panels) a fixed-order NLO calculation is used to compute the
mean number of jets in an inclusive W þ n-jet sample by
using the following prescription to improve the description
beyond the NLO approximation: hNjetsi ¼ nþ ðdσNLOnþ1 þ
dσLOnþ2Þ=dσNLO (Alcaraz Maestre et al., 2012). Such a calcu-
lation describes this effect well, while the MC simulations
underestimate the effect of the correlation. At the LHC good
agreement between data and simulation is found.
Multidifferential cross-section measurements of the vector

boson production allow detailed studies of QCD dynamics.
In the absence of QED corrections, the five-dimensional
differential cross section dσ=ðdpZ

Tdy
ZdmZd cos θ dϕÞ that

describes the kinematics of the two leptons from the
Z-boson decay can be decomposed into a sum of nine
harmonic polynomials Piðcos θ;ϕÞ and eight dimensionless
angular coefficients Ai ¼ AiðpZ

T; y
Z; mZÞ (i ¼ 0 − 7), which

represent the ratios of helicity cross sections with respect
to the unpolarized one (σUþL) (Mirkes, 1992; Mirkes and
Ohnemus, 1994),5
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jet pT inWþ ≥ 1-jet events with 8 TeV pp collisions at the LHC.
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FIG. 24. Differential cross section and data-to-theory ratios as a function of the leading jet pT for Zþ ≥ 1-jet events in 1.96 TeV pp̄
collisions at the Tevatron. From CDF Collaboration, 2015.

5In the presence of QED corrections, the expansion in terms of
spherical harmonics does not terminate after l ¼ 2 but instead turns
into an infinite sum.
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dσ=ðdpZ
Tdy

ZdmZdcosθdϕÞ
¼ 3dσUþL=ð16πdpZ

Tdy
ZdmZÞfð1þ cos2θÞ

þ 1
2
A0ð1−3cos2θÞþA1 sin2θcosϕþ 1

2
A2sin2θcos2ϕ

þA3 sinθcosϕþA4 cosθþA5sin2θ sin2ϕ

þA6 sin2θ sinϕþA7 sinθ sinϕg: ð1Þ

In this formulation the dependence on the QCD dynamics
from the Z-boson production mechanism, i.e., pZ

T, y
Z, and

mZ, is entirely provided by the Ai coefficients and σUþL.
However, to access all eight coefficients, the full dependence
on θ and ϕ has to be analyzed. In particular, for Z production
at LO in QCD, i.e.,Oðα0sÞ, only A4 is nonzero, while at NLO,
i.e., OðαsÞ, A0−3 also receive nonzero contributions due to
the spin-1 nature of the additional gluon. The final coef-
ficients A5−7 receive contributions starting at NNLO QCD,

i.e., Oðα2sÞ, arising through the effective ggZ interaction
(Hagiwara, Kuruma, and Yamada, 1992), and they are thus
comparatively small.
The CDF Collaboration at the Tevatron carried out a

measurement of some of the Ai angular coefficients in pp̄
collision data at a center-of-mass energy of 1.96 TeV (CDF
Collaboration, 2011), and the average value of the A4 coef-
ficient was used to indirectly measure the weak mixing angle
sin2 θW (CDF Collaboration, 2013a). The ATLAS and CMS
collaborations at the LHC measured the angular coefficients
for W-boson polarization at 7 TeV (CMS Collaboration,
2011c; ATLAS Collaboration, 2012e), and more recently for
the Z boson at 8 TeV (CMS Collaboration, 2015b; ATLAS
Collaboration, 2016b). From the Z-boson angular coefficient
A4measured at the LHC, the sin2 θW parameter is also extracted
(ATLAS Collaboration, 2018d). Other measurements of
sin2 θW at the LHC are included in CMS Collaboration
(2011d, 2018e), ATLAS Collaboration (2015b), and LHCb
Collaboration (2015a), while CDF and D0 Collaborations
(2018) provided a legacy combination of Tevatron measure-
ments (see references therein for individual Tevatron measure-
ments). As illustrated in Fig. 27, for high values of the Z-boson
pT the measurements become sensitive to the production of the
Z boson associated with jets. Although NLO and NNLO are in
general agreement with the Ai distributions as functions of the
Z-boson pT in the data, the A2 coefficient, which is among the
most sensitive coefficients to higher-order corrections,
increases less steeply in the data than in the calculations as
the Z-boson pT increases; see Fig. 28. The difference between
the A0 and A2 coefficients, i.e., A0 − A2, is particularly
interesting since it is zero if calculated at NLO in pQCD,
the so-called Lam-Tung relation (Lam and Tung, 1978, 1980),
and becomes positive at NNLO in pQCD. As Fig. 29 (top
panel) shows, the measured values of A0 − A2 increase for
increasing values of pZ

T, up to about 0.15, while significant
deviations are observed in the comparisonwithMCpredictions
that include NLO pQCD calculations matched to the parton
shower. While ATLAS and CMS experimental measurements
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are consistent, the CMSmeasurement is not sufficiently precise
to show significant disagreement between data and predictions.
These measurements prompted a dedicated study (Gauld et al.,
2017) of the Ai coefficients in Z-boson events that calculated
Oðα3sÞ pQCD corrections and their uncertainties on A0 − A2.
As seen in Fig. 29 (bottom panels), the Oðα3sÞ corrections are
large and lead to a significant improvement in the agreement
with the data; however, a tendency of underestimating the data
is visible at high Z-boson pT. Note that in Fig. 29 (bottom
panels), unlike in the results shown in Figs. 28 and 29 (top
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panel), the Oðα2sÞ and Oðα3sÞ calculations are denoted as NLO
and NNLO, respectively.
The studies of QCD scaling properties are useful for a better

understanding of QCD dynamics and in analyses that employ
jet vetoes to separate signal processes from W=Z þ jet back-
grounds (Berends et al., 1989; Gerwick et al., 2012).
Figure 30 from ATLAS Collaboration (2013e) reports a study
of two different types of scaling in Z þ jets in the exclusive
jet multiplicity ratios Rðnþ1Þ=n ¼ NZþðnþ1Þ=NZþn. When a
symmetric selection of the jet transverse momenta is
applied, i.e., pT > 30 GeV for all jets, the so-called staircase
scaling is seen, whereas when an asymmetric selection of
the jet transverse momenta is applied, i.e., pTðleadingÞ>
150GeV and pT > 30 GeV for all other jets, a falling
distribution is seen, i.e., the so-called Poisson scaling.
The scaling properties measured in the data are well
reproduced by the theory. The staircase scaling is a property
of non-Abelian theories with Rðnþ1Þ=n ¼ R ¼ e−b, as
σn ¼ σ0e−bn, and occurs in events with democratic jet
selection and no major scale separations. The first bin of
the distribution in Fig. 30 (top panels), i.e., R1=0, is sup-
pressed by PDF effects by about 60%. The Poisson scaling
(already known from final-state-radiation QED at eþe−

colliders) occurs in events that feature large differences
between the scale Q of the process and the radiation cutoff
scale Q0. For Q ≫ Q0 each emission is independent from
the previous one (the primary emission is typically off the
hard parton leg), while for Q ≈Q0 the emissions are
correlated (for secondary emissions from secondary quark
lines). In this configuration the ratio Rðnþ1Þ=n ¼ hni=nþ 1
follows a Poissonian distribution with Pn ¼ ð1=n!Þhnine−hni
and occurs in Abelian theories too. Asymptotically the
staircase approximation dominates for large Njets, as can
be seen in Fig. 30 (bottom panels).

For other cross-section measurements of W=Z þ jet proc-
esses at the Tevatron run 2 and at the LHC, see CDF
Collaboration (2008b, 2008c), D0 Collaboration (2008a,
2009d, 2011c), ATLAS Collaboration (2011c, 2012f, 2012h,
2017h, 2019b), CMS Collaboration (2012a, 2015c, 2015e,
2017e, 2018d), and LHCb Collaboration (2016, 2019b).

3. Event properties

The measurements of angular distributions provide impor-
tant tests of the modeling of QCD in the theory, as these
measurements are sensitive to the parton emission at small and
large angles. Hard emissions at large angles are typically
calculated by matrix elements, while unresolved soft or
collinear radiation is typically modeled in MC generators
by the parton shower. Measurements of the angular
[Δϕðj1; j2Þ] or rapidity [Δyðj1; j2Þ] separation between the
two associated leading jets or their invariant mass (mjj)
distribution are important for studies of vector boson fusion
or scattering to disentangle the electroweak from the QCD
production mechanism; see Sec. III. Figures 31 and 32
show selected measurements of Δyðj1; j2Þ and mjj at the
Tevatron and the LHC, respectively, in events with aW boson
produced associated with at least two jets selected in a broad
kinematic region, i.e., jet pT>30ð20ÞGeV and jyj< 4.4 ð3.2Þ
at the LHC (Tevatron). The fixed-order NLO calculation
(BlackHat) is in good agreement with data on Δyðj1; j2Þ,
especially at the LHC. A similar level of discrepancy is seen at
the Tevatron and the LHC for SHERPA, while ALPGEN

and HEJ [based on Balitsky-Fadin-Kuraev-Lipatov (BFKL)-
like resummation] MC generators are in better agreement with
the data. The fixed-order NLO calculation (BlackHat) is in
good agreement with the data in the mjj distribution in the
range accessible by the Tevatron, i.e., up to about 300 GeV.
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The LHC measurement of the mjj distribution extends to
2 TeV, and the fixed-order NLO calculation is compared to
LHC data up to 1 TeV, showing good agreement up to
approximately 500 GeV. The HEJ simulation is in agreement
with data over the entire mjj range at the Tevatron and the
LHC, but its associated uncertainties are large. Significant
discrepancies in the high-mjj region at the LHC are visible in
LO and NLO multileg MC predictions in the SHERPA and
MEPS@NLO calculations. In such a kinematic region important
contributions are expected from the modeling of the beam
remnant, underlying event, multiparton interactions, and
parton shower. Similar measurements at the LHC (ATLAS
Collaboration, 2017h; CMS Collaboration, 2017a, 2017g) in a
restricted phase space, i.e., jet jyj < 2.4 and mjj up to
700 GeV–1 TeV, are compatible with those presented

previously but in such a kinematic region do not show
significant data-theory discrepancies. In an updated analysis
of Wþ ≥ 2-jet events at the LHC in the same broad phase
space of jet pT > 30 GeV and jyj < 4.4, which extends the
reach of the mjj distribution to 3 TeV (ATLAS Collaboration,
2018b), good agreement is found between the data and
updated theoretical calculations, while the same level of
discrepancy is observed with the older LO SHERPA version
(1.4). These measurements show that the extension of the
kinematic reach of the LHC can expose theoretical mismod-
eling and can be used to improve the theoretical predictions.
D0 Collaboration (2013d) studied the probability of emis-

sion of a third jet in events with aW and at least two associated
jets, as a function of the rapidity separation between the
two tagged jets, under various definitions of jet tagging (two
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most-rapidity-separated jets, the two highest-pT jets, or the
two highest-pT jets with a third jet produced in the rapidity
gap between them); see Fig. 33. Such a measurement provides
a laboratory for studies of rapidity gaps, central jet veto, and
vector boson fusion jet dynamics. They can test the high-pT
and the wide-angle jet production, in a manner complemen-
tary to studies of dijet events. The results show that in such
configurations there are competing effects of increasing phase
space for high-pT jet emission between jets and decreasing
PDFs at large x. The BFKL-based resummation calculation in
the HEJ generator best describes the data.
The study of events with a photon and jets is used for

searches of new physics signatures, such as heavy resonance
states decaying into a photon and a jet. Such new physics
processes can produce distinct features in the γ þ jet final
state, such as deviation in the invariant mass of the photon and
the jet (mγ−jet) or angular correlations between the photon and
the jet with respect to SM expectations. Figure 34 presents
measurements of differential cross sections as a function of
mγ−jet in γ þ jet events at the LHC at 13 TeV center-of-mass
energy, and as a function of azimuthal angular separation
between the photon and the third leading jet in events with a
photon and at least three jets in pp collisions at 8 TeV center-
of-mass energy. The differential cross section of dσ=dmγ−jet

shown in Fig. 34 (top panels) is monotonically decreasing by
more than 4 orders of magnitude up to the highest measured
value of mγ−jet ¼ 3.25 TeV. Both NLO QCD predictions
(fixed-order JETPHOX and SHERPA MC generator that includes
the matching of the NLO matrix element with parton
showering) describe the data within the experimental and
theoretical uncertainties. However, in the highest mγ−jet range
a trend of the simulation to overestimate the data is seen.
Figure 34 (bottom panel) shows that the cross section
dσ=Δϕγ−jet 3 increases as Δϕγ−jet 3 increases, indicating the
preference for back-to-back configuration between the photon

and the third leading jet in γ þ jet events. The fixed-order
NLO pQCD prediction by BlackHat gives an adequate
description of the angular correlations and their evolution with
the energy scale that, however, shows a tendency to system-
atically overestimate the data.
A recent analysis of γ þ 2 jetsþ X production at 13 TeVat

the LHC with 36.1 fb−1 of integrated luminosity is carried out
in two distinct regions of phase space: one enriched with direct
photon production and one with photon fragmentation proc-
esses. Experimental cross sections are measured as a function
of several observables, including mjetþjet, mγþjetþjet as well as
azimuthal and rapidity differences between the photon and the
leading jet and between the two jets. Good agreement between
data and MC predictions with tree-level multijet matrix
element merged to parton shower or with NLO accuracy in
QCD are observed in the sample enriched with direct photon
production, whereas discrepancies are observed in the sample
enriched with fragmentation processes. The precision of the
measurement is significantly better than the differences
between the predictions, indicating that theoretical uncertain-
ties are much larger than those of an experimental nature
(ATLAS Collaboration, 2020c).
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The real emission of a vector boson from an initial- or final-
state quark has a collinear divergence in the limit of a massless
boson. This may be detected as a collinear enhancement in the
distribution of the angular separation between the vector
boson and the closest jet. Parton-shower algorithms are
implemented in MC generators to account for QCD and
QED emissions in the soft and collinear approximation, and
an analogous mechanism occurs for the emission of real weak
bosons. At high energies the real emission of weak bosons in
dijet events can significantly contribute to the inclusive W þ
jet measurement. Measurements of W þ jet production at the
LHC are often insensitive to such an effect, as they require
large separation between the decay charged lepton and any of
the jets. ATLAS Collaboration (2017e) analyzed event con-
figurations in which a muon from a W decay was produced
close to a high-transverse-momentum jet. Figure 35 shows the
differential cross section for W þ jet events with at least one
jet with pT > 500 GeV or higher, and any additional jets with
pT > 100 GeV, as a function of the ΔR distance between the
W decay muon and the closest jet. An enhancement of the
collinear event fraction is expected for increasing values of
the leading-jet pT, as theW emission from the jet is enhanced.
This effect is illustrated in Fig. 35: as the value of leading-jet
pT increases from pT > 500 GeV to pT > 650 GeV, the
fraction of events in the collinear region at low ΔR increases
with respect to the fraction of events in the back-to-back
configuration. The ALPGEN MC simulation for W þ jet pro-
duction overestimates the data, especially in the collinear
region. The prediction by PYTHIA8, which is modified to
explicitly include the process of W-boson emission as
electroweak final-state radiation in the parton shower of a

dijet event, underestimates the data in the collinear region. The
best agreement over the entire distribution is provided by
SHERPA + OpenLoops W þ 1-jet and W þ 2-jet calculations
that incorporate NLO QCD and NLO EW corrections. In the
high-pT regime the NLO EW corrections have a significant
effect, up to about 20%. The “Wþ ≥ 1 jet Njetti NNLO”
prediction, which uses a technique based on N jettiness to split
the phase space for the real emission corrections, provides a
description similar to SHERPA + OpenLoops. Such a top-
ology will be more accessible and important with run 2 data at
13 TeV center-of-mass energy and with larger datasets at the
LHC, as well as at higher proton collision energies, for
example, at future higher-energy proton colliders.
Other studies of correlations between the vector boson and

the jets have been undertaken, as they provide important
benchmarks for calculations and for the tuning of MC
simulations. One example is the study of the Z-boson
production in a boosted regime of the Z boson that is
important for modeling the background from a Z boson
decaying into neutrinos in searches of new physics with
missing transverse energy in the final state. Figure 36 shows
different levels of azimuthal correlations between the Z boson
and the three leading jets [ΔϕðZ; jiÞ] in Zþ ≥ 3-jet events in
two different event configurations, i.e., with pZ

T > 0 GeV or
pZ
T > 150 GeV. Large correlations are visible between the Z

boson and the leading jet, whereas smaller correlations are
present between the Z boson and the subleading jets. In events
with a boosted Z the correlation between the Z boson and the
leading jet is enhanced. Good modeling is provided by LO
multileg (SHERPA, MadGraph) and NLO Z þ 1 -jet (POWHEG)
generators. The PYTHIA6 prediction, which relies on the
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parton-shower simulation for parton emission, shows better
modeling in the small-Δϕ region in the high-Z pT regime,
where the soft and collinear approximation of the parton
shower is most applicable.
Multiparton interations (MPIs) are a necessary ingredient of

simulations for the description of particle multiplicities and
energy flow, and they may contaminate event samples for
precision measurements (such as those for Higgs boson
properties) and new physics searches. The greater the

ffiffiffi

s
p

(and thus the lower the parton momentum fraction x), the
bigger the impact of MPIs at high pT. Therefore, the MPI
contribution is generallymore significant at the LHC than at the
Tevatron. The impact of MPIs in physics processes is difficult
to measure, as it coexists with initial- and final-state radiation,
beam remnants, and the hard interaction. Experimentally the
MPI contribution must also be disentangled from pileup
interactions. Double parton scattering (DPS) is a specific case
of MPIs and its production cross section is typically para-
metrized as σDPS ¼ σAσB=σeff , where σA and σB are the parton-
level cross sections of the two underlying processes (assumed
to be independent), while σeff is an effective area parameter and
is assumed to be independent of phase space and process. These

assumptions are tested by measuring σeff in several processes
and at different energy scales. The DPS contribution to the
inclusive W production was studied in W þ 2-jet events by
ATLAS Collaboration (2013b) and CMS Collaboration
(2014f). Figure 37 (top panels) shows examples of the
two contributions to the W þ 2 − jet event sample: DPS
(top-left panel) and single parton scattering (SPS) (top-
right panel). The fraction of DPS events in W þ 2 − jet
data and σeff are extracted from a fit of DPS and SPS
templates to the normalized transverse-momentum balance
Δrel

pT
¼ ðjp⃗j1

T þ p⃗j2
T jÞ=ðjp⃗j1

T j þ jp⃗j2
T jÞ. Figure 37 shows the

template fit results compared to the data. The values of σeff
measured at 7 TeV by the ATLAS and CMS experiments are
15� 3ðstatÞþ5

−3ðsystÞ and 20.7� 0.8ðstatÞ � 6.6ðsystÞ mb,
respectively. To test the energy dependence of σeff , it is
important to repeat such measurements at experiments with
greater center-of-mass energies. Moreover, higher

ffiffiffi

s
p

in
future measurements implies a larger phase space available
for DPS, and thus a greater need for more precise DPS
measurements.
For other measurements of V þ jet properties, see

D0 Collaboration (2010b), CMS Collaboration (2011c),

(a)

(a)

(b)

(b)

FIG. 36. Topology of Z þ jet events for (top-left panel) ΔϕðZ; j1Þ → π and (bottom-left panel) ΔϕðZ; j1Þ ≪ π. Normalized ΔϕðZ; jiÞ
(i ¼ 1; 2; 3) distributions for the inclusive Njets ≥ 3 for (top-right panel) pZ

T > 0 GeV and (bottom-right panel) pZ
T > 150 GeV, with

8 TeV pp collisions at the LHC, compared to theoretical predictions from MC generators. From CMS Collaboration, 2013c.
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ATLAS Collaboration (2013c, 2013e, 2017f, 2017h), and
LHCb Collaboration (2014b).

4. Cross-section ratios

Measurements of production cross sections of individual
V þ jet processes are limited in high-statistics regions of
phase space by systematic uncertainties that are common
between processes, while measurements of ratios of different
V þ jet processes exploit partial cancellations of experimental
uncertainties as well as theoretical effects that are common
between the two processes in the ratio. Such ratios can provide
high-precision tests of the standard model, as they are
sensitive to nonuniversal corrections in QCD and electroweak
calculations as well as PDFs. In this section several ratios are
presented. In the ratio of Wþ to W− productions, pQCD and
electroweak effects cancel to a large extent, making this
measurement particularly sensitive to PDFs, and specifically
to the ratio of up quark to down quark at high Bjorken x. In the
W-to-Z-boson ratio, effects from nonperturbative QCD proc-
esses largely cancel at high energy scales, whereas other
effects do not cancel, such as boson mass effects at low energy
scales, quark-gluon and quark-antiquark contributions to V þ
jet productions, and nonuniversal electroweak corrections.
Such a ratio is therefore useful for validating theoretical
predictions used to estimateW þ jet or Z þ jet backgrounds in
searches for new physics. Similarly, in the ratio of Z to γ
bosons, mass effects cancel at high energy scales, whereas
higher-order QCD and electroweak corrections can have large
contributions, thus making such a ratio a precise test of higher-
order effects in perturbative calculations.

In the analysis presented by ATLAS Collaboration (2018b)
measurements are carried out for W� production, as well as
for Wþ and W− production and the cross-section ratio of
Wþ=W− in events with theW boson produced with associated
jets, as a function of a number of variables that are sensitive to
higher-order terms and the PDFs. In the Wþ=W− ratio in W
events with at least one associated jet, many of the exper-
imental and theoretical uncertainties cancel out, making it a
more precise test of the theoretical predictions, especially in a
kinematic regime with x values higher (approximately up to
x ¼ 0.1–0.3) than what is typically accessible in measure-
ments of inclusive W production at ATLAS and CMS
(10−4 < x < 10−1). Figure 38 shows the differential cross
section as a function of the pT of theW boson for events with
W�þ ≥ 1 jet production. Good overall agreement is found
between the data and most of the LO, NLO, and NNLO
calculations. Variations in the modeling of different SHERPA

generator versions are seen, whereas different parton-shower
models interfaced to the ALPGEN generator show little impact,
with PYTHIA providing a slightly better description of the data.
In theWþ=W− cross-section ratio in Fig. 39, differences due to
QCD and electroweak higher-order effects cancel out to a
large extent. In the ratio, the experimental precision is greatly
improved and most predictions show a trend to overestimate
the data. The data are also compared with different PDF
sets with a common calculation using the MCFM program.
Sensitivity to PDFs is visible in the variation of agreement
between the data and the different PDF sets, especially in the
region of pT ≈ 200–400 GeV, where experimental uncertain-
ties are in the 2%–6% range. In this region the predictions from
different PDF sets may differ by about 2% to 5% and, in some
cases, differ from the data up to 2 to 3 standard deviations.
The production mechanisms of W þ jets and Z þ jets are

similar once the kinematic effect of the different boson masses
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and the leptonic branching ratios are taken into account. In
ratios of differential cross sections in W þ jet and Z þ jet
events (Rjets), the experimental uncertainty cancels signifi-
cantly, as seen in Fig. 18. Theoretical uncertainties, if treated
as correlated between the two types of processes, can be
significantly reduced too: QCD scale variations, estimated at
NLO in pQCD, and PDF uncertainties overall account for a

2%–4%-level uncertainty in Rjets with at least one jet in the
final state with jet pT ≃ 800 GeV, compared to the 20% level
of uncertainty in events with a W boson with at least one
associated jet. Such a reduction in theoretical uncertainty is
also visible in the phenomenological study presented in Fig. 7
in Sec. II.A.1. Figure 40 shows that the level of mismodeling
of the MC simulations that is seen in the cross-section
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measurement as a function of mjj for W þ jets in Fig. 32 is
largely reduced in Rjets. This effect points toward an under-
lying cause for the mismodeling in MC generators that has the
same effect in both processes. The low part of the mjj
distribution in W þ jet or Z þ jet events has sensitivity to
jet kinematics and nonperturbative effects in soft QCD
radiation that differ between W and Z events and do not
cancel in the Rjets ratio, as seen in the Rjets values lower than 1

for mjj < 100 GeV in Fig. 40 (left panels). The agreement
between predictions and data in the region of high rapidity of
the pT-leading jet [see Fig. 40 (right panels)] can be affected
by the modeling of the parton shower and PDF. Such a ratio
measurement is important not only for a better understanding
of the theoretical modeling of W=Z þ jet processes but also
for the estimation of backgrounds on searches for new
physics. For example, the calculation of such a ratio is used
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as a transfer factor to estimate the Zð→ ννÞ þ jet background
yield in a search signal region by extrapolating the measure-
ment of the Wð→ lνÞ þ jet yield from a data control region;
see the examples given by CMS Collaboration (2012c, 2017c,
2019f) and ATLAS Collaboration (2014d, 2014h, 2016i).
The ratio of γ þ jets and Z þ jets is also of great interest,

especially in the high-pT region of the vector bosons, where
the Z-boson mass effects play a less significant role than in the
low-pT region. This ratio can test the impact of QCD and
electroweak higher-order corrections with greater experimen-
tal accuracy, thanks to cancellation of experimental systematic
uncertainties such as jet energy calibration and luminosity; see
Fig. 41. The NLO pQCD calculation with BlackHat
describes the Z-boson pT spectrum well, but it tends to
underestimate the low part of the photon pT spectrum in
events with at least two associated jets. In the LO multileg MC
generators (MadGraph + PYTHIA6 and SHERPA) a similar
systematic trend of mismodeling the Z pT in Zþ ≥ 2 jets is
seen, as is a significant bias at modeling the shape of the
photon pT distribution; see the MadGraph + PYTHIA6 pre-
diction. The pT distribution of the Z=γ ratio flattens at high
boson pT values, i.e., those greater than 350 GeV. The boson
pT shape mismodeling observed in the individual Z and γ
production events largely cancels out in the Z=γ ratio and a
residual overestimation of the ratio by a flat 20% is observed
in QCD LO multileg MC generators; see the MadGraph +
PYTHIA6 prediction. A less significant systematic mismodel-
ing is also visible in the NLO fixed-order calculation by
BlackHat.
The production of W and Z bosons associated with jets is

studied in the forward region of proton-proton collisions with
the LHCb experiment. Such measurements provide additional
tests of the SM in a region of phase space not directly
accessible by ATLAS and CMS at the LHC and provide
additional constraints on PDFs in a different range of Bjorken
x. As shown in Fig. 42, in the LHCb experiment the charged
leptons from the weak boson decay are reconstructed in the
forward pseudorapidity region of 2.0 < ηl < 4.5, while jets
are in the region 2.2 < ηjet < 4.2 with the anti-kt algorithm
with distance parameter R ¼ 0.5 and pjet

T > 20 GeV (LHCb

Collaboration, 2016). Cross sections and their respective
ratios are measured for Wþþ ≥ 1 jet, W−þ ≥ 1 jet, and
Zþ ≥ 1 jet. In addition, the asymmetry of Wþþ ≥ 1 jet
andW−þ ≥ 1 jet production and the asymmetry as a function
of the charged lepton η are measured. Owing to the cancella-
tion of the scale uncertainties, the ratios as a function of the
charged lepton η are expected to provide sensitivity to the
PDFs. Figure 42 shows the broad range of measurements that
are carried out in this analysis and the extensive comparisons
with predictions from different MC generators and PDFs.
Overall good agreement is seen between data and predictions;
however, slightly larger values of the asymmetry and the ratio
ofWþþ ≥ 1 jet toW−þ ≥ 1 jet cross sections are seen in the
data than in the NLO QCD predictions in the first bin of the
charged lepton η.

III. ELECTROWEAK PRODUCTION OF A VECTOR
BOSON AND TWO JETS

A. Theoretical predictions

The production of a single vector boson in vector boson
fusion (VBF) constitutes an experimental signature of special
interest because of its sensitivity to the self-interactions of the
electroweak gauge bosons. It presents a prime test bed for
searches for new physics signals that are connected to the
electroweak symmetry breaking.
The electroweak production of a single vector boson

proceeds at Oðα4Þ at leading order and contains multiple
distinct topologies. Of particular interest are (a) the classic
vector boson fusion topologies, (b) the closely related multi-
peripheral topologies, (c) bremsstrahlung-like electroweak
boson emission off electroweak quark scattering topologies,
and (d) semileptonic diboson production topologies (s-chan-
nel). They are depicted in Fig. 43. Although not all topologies
exist for all external flavor configurations, the different
diagrams of Fig. 43 interfere and cannot be separated.
Nonetheless, in different regions of the phase space different
topologies will dominate and suitable approximations can be
constructed. In addition to the diboson region, in which both
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FIG. 42. Summary of theW=Z þ jet measurements performed in a fiducial region with the LHCb experiment at 8 TeV pp collisions at
the LHC (left panel) compared with predictions from two MC generators. The cross sections for Wþþ ≥ 1 jet, W−þ ≥ 1 jet, and
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Azzurri, Schönherr, and Tricoli: Vector bosons and jets in proton collisions

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025007-31



the invariant mass of the lepton pair and the invariant mass of
the two final-state jets are close to the nominalW and Z boson
masses, the vector boson fusion region is of particular interest.
This region is characterized by a large invariant mass of the
two final-state jets and their large separation in rapidity,
typically mjj > 600 GeV and Δy > 4.5. Here a subclass of
the diagrams in Fig. 43(a) dominate the cross section.6

The main irreducible background in experimental measure-
ments of the electroweak production of a single vector boson
associated with at least two jets is its QCD production
channel, proceeding at Oðα2sα2Þ at LO.7 As the electroweak
production mode is characterized by a color-neutral t-channel
exchange, it exhibits reduced hadronic activity in the central
region between the leading jets. Such a suppression does not
exist in its QCD production mode, and a veto on central or, in
fact, any additional jet activity can further enhance the sought-
after signal. Such jet vetoes, however, are typically poorly
described by fixed-order perturbation theory due to the
emergence of logarithms of the ratio of the hard scale and
the jet veto scale, and the best available description for this
observable is offered by conventional parton showers.

1. Higher-order computations

All higher-order calculations to date have been performed
in the previously introduced vector boson fusion approxima-
tion wherein not only are s-channel contributions neglected
but also t- and u-channel interferences are not taken into
account. This simplifies the calculation immensely in two
ways. First, it separates the two quark lines in color space, thus
effectively rendering the calculation a “double–deep-inelastic
scattering” one. Second, it facilitates the calculation of its
NLO QCD correction by removing all components atOðαsα4Þ
that possess EW divergences with respect to theOðαsα3Þ Born
process. The production processes of all EW vector bosons,
W, Z, and γ, in this approximation are implemented in the
VBFNLO library (Oleari and Zeppenfeld, 2004; Jäger, 2010;
Baglio et al., 2014). Figure 44 displays the results for W and
photon production in vector boson fusion, respectively. As can
be seen, the NLO QCD corrections are generally small.

Complete EW corrections are not known and will have to
be calculated for the full Oðα4Þ process.

2. Monte Carlo event generators

The previously mentioned fixed-order NLO QCD
calculations have been matched to parton showers.
Explicit implementations exist in the POWHEG generator
(Jäger, Schneider, and Zanderighi, 2012; Schissler and
Zeppenfeld, 2013) but are also available in the automated
NLOPS tools. Further, multijet-merged calculations exist at
LO accuracy.
One key aspect in the selection of VBF-type events

is the aforementioned rapidity gap. Therefore, a good
description of the radiation pattern of the third jet, and
any further higher-order radiation, is mandatory. Care must
be taken to ensure that the initial color and starting scale
assignment in the parton showers is correct in order to
preserve the unique rapidity gap structure and not spuri-
ously fill it with additional radiation. The supplementation
with LO matrix elements in the previously mentioned
matching helps in controlling the associated uncertainties
on the level of a few percent, but higher accuracy would be
desirable.

B. Experimental results

Initial measurements of the electroweak production of a
vector boson and two jets were performed by the CMS
Collaboration in the final state with two charged leptons and
two jets (VBF Z channel) with 7 TeV proton collision data
(CMS Collaboration, 2013b). The precision obtained in this
first measurement was around 30%, limited mostly by
systematic uncertainties on the jet energy scale and the
background modeling.
Improved measurements were obtained with 8 TeV data by

both ATLAS Collaboration (2014e) and CMS Collaboration
(2015d), with precisions of around 20% and signal signifi-
cances just above 5 standard deviations. Measurements of
the VBF Z process with 13 TeV were also performed by
ATLAS Collaboration (2017c) with 2015 data, CMS
Collaboration (2018a) with 2016 data, and ATLAS
Collaboration (2021) with the full run 2 data. These
ATLAS and CMS measurements reach overall precisions
of 20% and 10%, respectively.
We note that the measurements provided by ATLAS and

CMS are significantly different but complementary. Since the
first measurement, CMS has defined the VBF Z signal in an
inclusive phase space in the four-fermion final state lljj, with

(a) (b) (c) (d)

FIG. 43. Representative Feynman diagrams for the production of two charged leptons associated with two jets at Oðα4Þ: (a) vector
boson fusion and (b) multiperipheral, (c) bremsstrahlung-like, and (d) semileptonic diboson production.

6Typically, to maximize the data statistics, experimental measure-
ments apply much looser cuts. The suitability of the VBF approxi-
mation in such a phase space must be confirmed if theory predictions
calculated in this approximation are to be tested against the data.

7This distinction between QCD and EW production channels is
tied to a leading-order interpretation of the process where their
interference is small in the VBF phase-space region. It breaks down
in other regions or at higher orders.
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mll > 50 GeV and mjj > 120 GeV, in which all pure EW
diagrams of order α4EW contribute to the signal definition,
whereas ATLAS has performed measurements with the signal
defined in higher dijet mass fiducial phase-space regions. The
ATLAS signal definition is at particle level, where the dijet
invariant mass condition is implemented on the two pT-
leading jets after clustering the final-state particles, and the
simulation setup includes NLO QCD corrections, imple-
mented with POWHEG (Jäger, Schneider, and Zanderighi,
2012; Oleari and Zeppenfeld, 2004), and does not include

s-channel diboson contributions. Figure 45 (left panels) shows
the dijet invariant mass distribution that is used by ATLAS to
extract the signal contribution in the high dijet mass tail with
8 TeV data (ATLAS Collaboration, 2014e). Measurements
by CMS are extracted by fitting the dijet invariant mass but
also making use of more sophisticated multivariate discrim-
inants with different event observables. Among the CMS
multivariate inputs is an internal jet composition discriminator
used to separate features of quark- and gluon-initiated jets,
applied to the two VBF tagging jets (CMS Collaboration,

FIG. 44. (a) Leading tagging-jet transverse momentum in prompt-photon production associated with at least two jets through vector
boson fusion calculated at LO and NLO QCD accuracy using VBFNLO. From Jäger, 2010. (b) Invariant mass of the tagging-jet pair in the
production of a charged lepton and a neutrino associated with at least two jets through vector boson fusion calculated at LO and NLO
QCD accuracy using VBFNLO. From Oleari and Zeppenfeld, 2004.
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2013e, 2017b). The ATLAS measurements include several
additional fiducial regions where inclusive cross sections are
also measured. Figure 45 (right panels) shows a summary of
such inclusive measurements with 13 TeV data (ATLAS
Collaboration, 2017c). The most recent ATLAS results
(ATLAS Collaboration, 2021) focus on differential cross-
section measurements, both for the electroweak signal com-
ponent and, inclusively for the signal and background
production, for different observables. Table I shows a sum-
mary of inclusive VBF Z cross sections that have been
measured to date at the LHC.
Analogous measurements were performed in the single

charged-lepton plus dijet final state (VBF W channel)
by CMS with 8 TeV collision data (CMS Collaboration,
2016), ATLAS with 7 and 8 TeV collision data (ATLAS
Collaboration, 2017g), and CMS with 13 TeV collision data
(CMS Collaboration, 2020b). A variety of signal definitions
have also been chosen for the VBF W channel. The CMS
Collaboration has used four-fermion LO definitions with
mjj > 120 GeV (as for VBF Z) and with mjj > 1 TeV, while
the ATLAS Collaboration makes use of NLO signal modeling
withmjj > 0.5, 1, and 2 TeV cuts defined at particle level after
parton showering and jet clustering. Figure 46 shows the
multivariate output distribution used to measure the inclusive
cross section at 13 TeV in the electron channel, and different

particle-level fiducial cross sections performed at 8 TeV,
respectively, by CMS and ATLAS. Table II shows a summary
of inclusive VBFW cross sections that have been measured to
date at the LHC.
Both of the VBF Z and W measurements by ATLAS at

8 TeV (ATLAS Collaboration, 2014e, 2017g) include a large
number of differential distributions unfolded to particle level
for both inclusive and signal contributions in different fiducial
regions, as shown in Fig. 47.
Interference effects between signal and background sources

have been evaluated in the range of 2%–12% of the total
signal, depending on the channel and the selected phase space,
and are generally positive. Results by CMS include a full
simulation of interference contributions that are implemented
in the cross-section extraction fits.
The structure of the WWZ and WWγ triple gauge cou-

plings (TGCs) can be explored with VBF Z and W mea-
surements, and anomalous contributions to the TGCs were
searched for by both ATLAS and CMS in the context of the
LEP effective Lagrangian approach (Hagiwara et al., 1987)
and effective field theory operators in the Hagiwara-Ishihara-
Szalapski-Zeppenfeld basis (Hagiwara et al., 1993). Limits
on anomalous coupling parameters were extracted by
ATLAS fitting alternatively the dijet invariant mass and
the leading-jet pT in fiducial signal regions (ATLAS
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TABLE I. Summary of VBF Z production cross sections measured at the LHC in the lljj final state with different mjj definitions and
different proton collision energies. All quoted cross sections are for a single lepton flavor.

mjj cut
ffiffiffi

s
p ¼ 7 TeV

ffiffiffi

s
p ¼ 8 TeV

ffiffiffi

s
p ¼ 13 TeV

120 GeV 154� 58 fb
(CMS Collaboration, 2013b)

174� 43 fb
(CMS Collaboration, 2015d)

534� 60 fb
(CMS Collaboration, 2018a)

250 GeV 54.7� 11.2 fb
(ATLAS Collaboration, 2014e)

119� 26 fb
(ATLAS Collaboration, 2017c)

1 TeV 10.7� 2.1 fb
(ATLAS Collaboration, 2014e)

37.4� 6.5 fb
(ATLAS Collaboration, 2021)
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Collaboration, 2014e, 2017g). Limits were also extracted by
the CMS Collaboration, fitting the pT distributions of the two
charged leptons or the single charged lepton in a more
inclusive Vjj phase space (CMS Collaboration, 2018a,
2020b), and turned out to be more stringent because of
the larger

ffiffiffi

s
p

of the analyzed dataset, and of a larger
acceptance in the high-pT tails where anomalous TGC
effects are generally expected. Examples of kinematic dis-
tributions used to fit anomalous TGC contributions are
shown in Fig. 48. The reported TGC sensitivities are
comparable or even more stringent than some obtained from
diboson channels with the same data luminosity, revealing an
unexpected high sensitivity in the TGC studies from VBF V
measurements.
The full run 2 ATLAS results (ATLAS Collaboration, 2021)

focus on extracting limits on the interference between the
standard model and dimension-6 scattering amplitudes.
A number of QCD studies of hadronic activity in the

selected V plus two jets events have been carried out by
CMS and ATLAS using 7 and 8 TeV data (ATLAS

Collaboration, 2014e, 2017g; CMS Collaboration, 2013b,
2015d). Inclusive studies of “radiation patterns” have been
performed following the prescriptions and suggestions
given by Binoth et al. (2010), where model dependencies
were estimated by comparing different generators. CMS
Collaboration (2013b) results show good agreement
between the data and the predictions by a MadGraph
interfaced to PYTHIA parton shower for all chosen observ-
ables that are sensitive to hadronic activity. Dedicated
studies, restricted to the additional hadronic activity in
the expected rapidity gap between the two tagging jets,
have also been performed. They are particularly interesting
when making use of the larger 13 TeV dataset (CMS
Collaboration, 2018a, 2020b). The hadronic activity in
the rapidity gap is measured in signal-enriched regions
that have similar signal and background yields, using as
observables the standard reconstructed jets or jets recon-
structed by clustering tracks (“soft track jets”) from
charged particles. The latter are used, as they can be
effectively cleaned from pileup contributions allowing

TABLE II. Summary of VBF W production cross sections measured at the LHC in the lνjj final state with different mjj definitions and
different proton collision energies. All cross sections are for a single lepton flavor.

mjj cut
ffiffiffi

s
p ¼ 7 TeV

ffiffiffi

s
p ¼ 8 TeV

ffiffiffi

s
p ¼ 13 TeV

120 GeV 6.23� 0.62 pb
(CMS Collaboration, 2020b)

500 GeV 2.76� 0.67 pb
(ATLAS Collaboration, 2017g)

2.89� 0.51 pb
(ATLAS Collaboration, 2017g)

1 TeV 0.42� 0.10 pb (CMS Collaboration, 2016)
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precise low-pT measurements (CMS Collaboration, 2009,
2010). Monte Carlo based studies of the additional jet
activity in VBF W and Z channels revealed interesting
differences in the prediction of different parton-shower
setups (Schissler and Zeppenfeld, 2013).
Figure 49 shows the gap veto efficiency for the “soft” HT

observable, i.e., the scalar sum of track jets pT in the rapidity
gap region, in signal- and background-enriched samples. In
the background dominated sample the agreement of the data

with the predictions is good. The data in the signal region
disfavor the background-only predictions and are in reason-
able agreement with the presence of the signal with the
HERWIG++ PS predictions for gap activities above 20 GeV,
while the signal with PYTHIA PS seems to generally overesti-
mate the gap activity. In the events with low gap activity,
particularly below 10 GeV, as measured with the soft track
jets, the data also indicate gap activities below the HERWIG++
PS predictions.
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IV. ASSOCIATED PRODUCTION OF A VECTOR BOSON
AND HEAVY-FLAVOR JETS

A. Theoretical predictions

The third important class of vector boson production proc-
esses is the production in associationwith heavy quarks, namely,
b and c quarks. The characterizing feature of these quark flavors
is their large mass relative to the proton, in combination with a
lifetime long enough to form hadrons that decay after macro-
scopic path lengths. Indeed, this feature, which leads to the
presence of differentiable secondary decay vertices, is used in
most tagging algorithms that identify the presence of heavy-
flavor hadrons. The top-quark associated production features
different dynamics and is not discussed in this review.
In Sec. IV.A.1, the features and availability of calculations

for this process class are reviewed. A comprehensive review of
the calculation techniques was given by Febres Cordero and
Reina (2015).

1. Higher-order calculations and flavor schemes

Heavy-quark processes in general can be calculated in at
least two different approaches. For definiteness, when b-quark
associated production is considered either only the dusc
quarks are considered massless and the full mass dependence

of the b quark is retained (the four massless flavor scheme
nf ¼ 4, also referred to as 4F) or all five light-quark flavors
are considered massless (the five massless flavor scheme,
nf ¼ 5, also referred to as 5F). While the former correctly
describes all effects that are due to the bmass, the latter allows
for the b quark to be extracted directly from the proton,
resumming its contribution to the proton’s parton density. For
consistency, the b quark is thus also only included in the
running of the strong coupling in the nf ¼ 5 scheme. The
choice of scheme thus has a non-negligible effect on the value
of the strong coupling constant on scales beyond the b-quark
mass. In particular, the value of αsðmZÞ differs in both
schemes.8 Thus, ideally one would like to have a calculation
with both the finite-mass and the resummation effects
accounted for. As a consequence of these considerations,
methods have been formulated that combine both Ansätze,
like the fixed-order plus next-to-leading-logarithm (FONLL)
method (Cacciari, Greco, and Nason, 1998; Forte et al., 2010).
The diagrams contributing in the respective cases are shown in
Figs. 50 and 51 for W and Z associated heavy-flavor produc-
tion, respectively.

(a) (b) (c)

FIG. 50. Representative Feynman diagrams for the production of a W boson and at least one b quark at LO in (a) the nf ¼ 5 scheme,
(b) the nf ¼ 4 scheme, and (c) additional contributions in the production of at least one c quark associated with the W boson.

(a) (b)

FIG. 51. Representative Feynman diagrams for the production of a Z boson and at least one b quark at LO in (a) the nf ¼ 5 scheme and
(b) the nf ¼ 4 scheme.

8A possible remedy was explored by Bertone, Carrazza, and Rojo
(2015), who introduced doped PDFs, running αs in nf ¼ 5 and the
evolution of the PDFs in nf ¼ 4, which, however, has not seen a
widespread use thus far.
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The generalization for the different mass-dependence treat-
ments of charm quarks is mostly straightforward (Ball et al.,
2016). Because the charm quark’s isospin partner, the strange
quark, is not mass suppressed, in contrast to the bottom’s
isospin partner, the top quark, and the respective intergener-
ational mixing matrix elements Vcd are sizable in comparison
to Vub and Vcb, additional topologies contribute in W
associated charm production that are strongly suppressed in
W associated bottom production; see Fig. 50(c).
One particular aspect of all parton-level calculations that

has to be kept in mind is that no flavor-jet-related observable
can be defined in complete analogy to the experimental
definitions. This is rooted in the fact that the identification
of heavy flavors in an experimental setting relies on the
properties of heavy-flavor hadrons, in particular, their finite
lifetime allowing for a measurable spatial separation of
production and decay vertices. A parton-level heavy-flavor
tag, on the other hand, can involve only the partonic jet
constituents. The requirement for infrared safety then gen-
erally necessitates a signed counting of heavy-flavor quanta
to guarantee that a collinear g → qq̄ splitting does not alter
the jet flavor tag. One useful example here is the flavor-kT
algorithm (Banfi, Salam, and Zanderighi, 2006). Its anti-kT
relative, however, is not infrared safe starting at NNLO, as
through its conelike structure soft wide-angle g → qq̄ split-
tings carry the possibility of losing one heavy quark, thereby
again altering the jet flavor tag (Gauld et al., 2020). This is
problematic in the limit in which the splitting gluon itself
comes from a soft q → qg splitting, rendering the cancella-
tion of its infrared divergence incomplete (Banfi, Salam, and
Zanderighi, 2006).
Four- and five-flavor calculations thus exist for

W=Z=γ þ b,W=Z=γ þ bb̄ andW=Z=γ þ bb̄þ jet production
at NLO QCD (Campbell et al., 2006, 2007; Febres Cordero,
Reina, and Wackeroth, 2009; Stavreva and Owens, 2009;
Hartanto and Reina, 2014) and NLO EW (Figueroa et al.,

2018) accuracy. Figure 52 shows selected calculations for the
W þ bb̄ and Z þ b processes. A Z=γ þ b calculation at
NNLO QCD accuracy in the nf ¼ 5 scheme became available
recently (Gauld et al., 2020) that accounted for b-quark mass
effects at NLO QCD accuracy with the aforementioned
FONLL method and is expected to impact heavy-flavor
PDF extractions, in particular. Recently a calculation of W þ
c production in the nf ¼ 5 scheme at NNLO QCD accuracy
also became available (Czakon et al., 2020).

2. Monte Carlo event generators

Along with the automation of matching NLO QCD calcu-
lations to parton showers, the availability of precision
Monte Carlo event generation has grown for this process
class. Thus, the existing NLO QCD matched results produced
by the MC@NLO (Frederix et al., 2011) or POWHEG (Oleari and
Reina, 2011) generators represent the state of the art for any
fixed flavor number scheme. Recently multijet-merged pre-
dictions at NLO accuracy became available in the MEPS@NLO

method combining the nf ¼ 4 and nf ¼ 5 scheme (Höche,
Krause, and Siegert, 2019). Typically, in the multijet merging
approach problems arise with double counting of contributions
already present in the general V þ jets multijet-merged cal-
culations in the massless limit. Therefore, various strategies
have been devised to address this issue. Besides a more
phenomenological and not theoretically rigorous approach,
known as heavy-flavor overlap removal (Mangano, Moretti,
and Pittau, 2002), applied thus far to LO-accurate simula-
tions only, more rigorous approaches use schemes equivalent
to the FONLL approach (Höche, Krause, and Siegert, 2019).
Figure 53 shows the results of both approaches.

B. Experimental results

Processes involving vector bosons associated with
bottom or charm quarks provide stringent tests of QCD
predictions and are the largest backgrounds in studies of the

FIG. 52. Left panels: di-b-jet invariant mass in the pair production of a charged lepton and a neutrino associated with at least two b jets
calculated at LO and NLO QCD in both the nf ¼ 4 and nf ¼ 5 massless quark flavor schemes. From Febres Cordero, Reina, and
Wackeroth, 2009. Right panels: leading b-jet transverse momentum in the pair production of two charged leptons associated with
at least one b jet calculated at NLO QCD with and without NLO EW corrections in the nf ¼ 5 massless quark flavor scheme. From
Figueroa et al., 2018.
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Higgs boson decaying to two b quarks, in measurements of
the properties of the productions of a single top quark or
pairs of top quarks, and in numerous searches for physics
beyond the SM.

1. Heavy-flavor identification in jets

The identification of jets originating from b or c quarks
(heavy-flavor jets) is of primary importance for many
measurements and searches with proton collision data.
Detectors with precise charged-particle tracking as well as
electron and muon identification are well suited for identi-
fying heavy-flavor jets, exploiting mainly the presence of
displaced tracks from which a secondary vertex may be
reconstructed. Figure 54 shows examples of distributions
of combined multivariate algorithms and reconstructed

secondary-vertex mass used to identify and separate
heavy-flavor jets associated with vector bosons. The
heavy-flavor identifications algorithms and their perfor-
mances have been described in detail for LHC 7 and
8 TeV proton collision data (CMS Collaboration, 2013d;
ATLAS Collaboration, 2016f) and 13 TeV collision data
(ATLAS Collaboration, 2018f; CMS Collaboration, 2018b).
In simulated events different procedures can be applied to

assign a flavor to a jet. A simple parton-level angular associ-
ation was used for the most part by Tevatron and LHC run 1
data. A particle-level definition commonly employed for LHC
run 2 data makes use of a ghost association (Cacciari and
Salam, 2008) of heavy-flavor hadrons to generator-level
particle jets. In all definitions, precedence is given first to
the b-quark flavor, then to the c-quark flavor.

FIG. 53. Left panels: reconstructed Z-boson transverse momentum in the pair production of two charged leptons associated with at
least one b jet calculated using the fusing method to combine the nf ¼ 4 and nf ¼ 5 schemes in the MEPS@NLO method in SHERPA.
From Höche, Krause, and Siegert, 2019. Right panels: reconstructed vector boson transverse momentum in the production of a pair of
charged leptons, and a charged lepton and neutrino associated with a pair of b jets calculated at NLO QCDmatched to the parton shower
in aMC@NLO. The bottom panels show the ratios of the aMC@NLO result over the corresponding NLO (solid lines), aMC@NLO (dashed
lines), and LO (crosses) results. From Frederix et al., 2011.
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Both parton- and particle-based heavy-flavor definitions
have been used to define the V plus heavy-flavor-jet mea-
surements described in the following.

2. V + b-quark productions

Studies of the production of prompt photons associated
with b quarks have been performed with Tevatron data and
compared with various QCD predictions. D0 Collaboration
(2009c, 2012, 2013a) measurements were performed differ-
entially in the photon pT, and in the photon and jet rapidity for
both the γ þ b and γ þ c productions, separating the jet flavors
with a combined displaced track jet probability. Similar results
were produced by CDF (CDF Collaboration, 2010a, 2013b),
alternatively making use of the invariant mass of reconstructed
secondary vertices to separate jet flavors. All results showed a
need for higher-order perturbative QCD corrections beyond
NLO in the larger pT > 70 GeV regions.
The ATLAS Collaboration measured isolated-photon plus

heavy-flavor-jet production in 8 TeV proton collisions
(ATLAS Collaboration, 2018a). Results were provided
differentially in the transverse energy of the photon and in
two photon pseudorapidity regions and compared with LO
and NLO QCD calculations involving 5F and 4F schemes, as
shown in Fig. 55. The NLO predictions underestimate the
data in the kinematic region with Eγ

T ≥ 125 GeV using the
4F scheme, and in the kinematic region with Eγ

T ≥ 200 GeV
using the 5F scheme. The 4F predictions for the cross-section
ratios overestimate the data for Eγ

T ≥ 65 GeV. The best
description of the data is provided by SHERPA predictions,
which include up to three additional partons and are
computed using the 5F scheme. The first measurement of
the associated production of a Z boson with a b jet was
performed by D0 Collaboration (2005) and indicated a ratio

to light jets of around 2%, which is in agreement with
existing NLO QCD predictions. Similar results where
derived also by CDF Collaboration (2006) and included a
fiducial Z þ b cross section with a total uncertainty of
around 40%.
A subsequent CDF analysis with a larger data sample

reported similar results for the fractions of associated b jets,
with improved precision, and differential distributions in jet
ET, jet η, Z-boson transverse-momentum, number of jets, and
number of b jets (CDF Collaboration, 2009b). Results were
consistent with predictions from LO Monte Carlo generators
and NLO QCD calculations within uncertainties. The invari-
ant mass distribution of the tracks forming the secondary
vertex was used to extract the b-jet fractions.
More recent measurements by D0 determined the b-jet

ratios to light jets with a precision of around 10% using a
peculiar technique that combines the properties of the tracks
associated with the jet (D0 Collaboration, 2011a). A more
recent D0 publication reported the fractions of b-to-light-jet
associated production as a function of the Z-boson transverse
momentum, the jet transverse momentum, the jet pseudor-
apidity, and the azimuthal angle between the Z boson and the
jet (D0 Collaboration, 2013c). Existing predictions from
Monte Carlo event generators did not provide a consistent
description of all the examined variables.
In the meantime the first measurements of Z þ b

productions with LHC data were performed by ATLAS
Collaboration (2012b) using 7 TeV proton collision data,
reporting both a fiducial cross section and the ratio to the
inclusive Z cross section in the same fiducial region, both with
a precision of around 30%. Similar measurements were then
performed by CMS Collaboration (2012b) with a larger data
sample, allowing the precision to improve to better than 20%.
The measured cross sections and the kinematic distributions of
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the b jet and charged leptons were found to be in reasonable
agreement with existing predictions.
Dedicated measurements of the production of two b

hadrons (B) together with a Z boson were performed with
7 TeV data by CMS with particular focus on the angular
correlations between the b hadrons and the Z boson (CMS
Collaboration, 2013a). The b hadrons are identified by means
of displaced secondary vertices, without the use of recon-
structed jets, permitting the study of b-hadron pair production
with an angular separation smaller than the jet radius. The
results shown in Fig. 56 indicate that the 5F description
may not be well suited for describing the collinear production
of b hadrons.
Other measurements of total cross sections were carried out

separately for a Z boson produced with exactly one b jet and
with at least two b jets by CMS Collaboration (2014c). For
those results data favor the predictions in the five-flavor
scheme, where b quarks are assumed to be massless, while
predictions in the four-flavor scheme show a clear disagree-
ment in the Z þ 1b-jet final state.
The LHCb Collaboration has produced complementary

measurements of a Z þ b-jet cross section in the forward
pseudorapidity range 2.0 < η < 4.5 and with jet pT above 10
or 20 GeV (LHCb Collaboration, 2015b). The results yield
25%–30% precision and are in reasonable agreement with
both massless and massive bottom-quark calculations.
Further differential measurements of Z þ b-jet productions

were performed by ATLAS with 7 TeV data (ATLAS
Collaboration, 2014c), and CMS with 8 TeV data (CMS
Collaboration, 2017h). The ATLAS total cross-section results
are generally in good agreement with predictions made using
MCFM. Predictions obtained using MadGraph5_aMC@NLO
with a 4F scheme underestimate the Z þ 1b cross sections,
while predictions with the 5F scheme seem to underestimate
the Z þ 2b yields. Interesting disagreements between pre-
dictions and data are also reported in the differential
distributions, such as the angular separation between the
Z boson and the b jet shown in Fig. 57, where missing

higher-order QCD corrections in the predictions might
explain the discrepancies.
The CMS results for Z þ b productions with 8 TeV collision

data have also been compared with a variety of predictions,
yielding fair agreement with the data results. Predictions with
4F scheme seem to underestimate the totalZþ1b cross sections
and fail to simultaneously describe both the low- and high-pT b-
jet regions. In the case of a Z boson associated with two b jets,
the data distributions are generally well reproduced by pre-
dictions, such as the dijet mass shown in Fig. 57.
Measurements of Z þ b and Z þ bb productions

with 13 TeV collision data were performed by ATLAS
Collaboration (2020d). A summary of the total measured
cross sections and comparisons with different predictions is
shown in Fig. 58. The 5F scheme predictions at NLO accuracy
show better agreement with the data than 4F scheme ones, and
the 4F predictions underestimate the data in events with at
least one b jet.
Early measurements of W þ b rates by CDF Collaboration

(2010b) with Tevatron data revealed some excess over the
existing predictions with LO multijet-merged (Mangano,
Moretti, and Pittau, 2002) and NLO-accurate calculations
(Febres Cordero, Reina, and Wackeroth, 2006; Campbell
et al., 2007, 2009) that were not confirmed by subsequent
similar D0 measurements (D0 Collaboration, 2013b).
Meanwhile, first measurements of W þ b productions with

LHC data were performed by ATLAS Collaboration (2012c)
with 7 TeV proton collision data. Events are required to have
exactly one b-tagged jet reducing significantly the top-quark
background. Results are unfolded to a fiducial phase space
at particle level, where b jets are defined by the presence
of a b hadron associated with the jet and are compared with
QCD NLO predictions performed in the five-flavor scheme
(Campbell et al., 2012) and other leading-order predictions.
Results with a larger dataset were subsequently produced by
ATLAS Collaboration (2013d), allowing for improved pre-
cision and differential measurements as a function of the b-jet
pT, which are shown in Fig. 59.
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Dedicated measurements of the production of a W boson
and two b jets were performed by CMS with both 7 TeV
(CMS Collaboration, 2014d) and 8 TeV (CMS Collaboration,
2017f) proton collision data. Events are required to have
exactly two b-tagged jets and the top-quark background is
reduced, requiring no additional jets or isolated electrons or
muons. Figure 60 (left panel) shows the data and postfit
Monte Carlo distributions for ΔRðb; bÞ. Results are given in
terms of a fiducial W þ bb cross section and are in good
agreement with several predictions made using MCFM, cor-
rected for DPS and hadronization effects, and using
MadGraph + PYTHIA, with different PDF flavor schemes,
as shown in Fig. 60 (right panels).
Finally, we remark that, in the context of the measurements

of the Higgs boson decays to bottom quarks in the associated
VH production mode, the ATLAS and CMS Collaborations

both determined normalization “scale factors” for the W=Z þ
bðbÞ background sources, with respect to NLO QCD pre-
dictions, and with a precision in the 10%–20% range (ATLAS
Collaboration, 2018d; CMS Collaboration, 2018f). In this
phase space of the Higgs to bottom-quark measurements,
CMS reported significantly large scale factors for W þ bðbÞ
productions, up to a factor of 2 with respect to the reference
NLO QCD predictions, while ATLAS normalizations are
consistent with predictions.

3. V + c-quark productions

First measurements of associated production of Z bosons
with charm-quark jets were performed by D0 Collaboration
(2014), which reported an integrated fraction of c jets of 8%
with a 10% relative uncertainty, and a ratio to b-jet production

 [p
b]

b-
je

ts
/N

R
(Z

,b
)

Δd
*(

Z
b)

σd
-210

-110

1

10
aData

-1 = 7 TeV, 4.6 fbs
MCFM
aMC@NLO 5FNS
aMC@NLO 4FNS
ALPGEN+HJ
SHERPA

ATLAS 1 b-jet≥Z+
(Z)>20 GeV

T
p

D
at

a
N

LO

0.5

1

1.5

R(Z,b)Δ
0 1 2 3 4 5 6

D
at

a
LO

 m
ul

til
eg

0.4
0.6
0.8

1
1.2

50 100 150 200 250 300 350

 (
pb

/G
eV

)
bb

 / 
dM

σ d

-410

-310

-210
Data

MadGraph 5FS + Pythia6

MadGraph 4FS + Pythia6

MadGraph-aMC@NLO + Pythia8

Powheg MINLO + Pythia8

 (8 TeV)-119.8 fbCMS

 ll) + at least 2 b jets→*(γZ/

 (R = 0.5) jetsTanti-k

| < 2.4jetη > 30 GeV, |
jet

T
p

50 100 150 200 250 300 350

/ D
at

a

0.5

1

1.5 , stat. uncertainty onlyNNLOσMadGraph 5FS + Pythia6, normalized to

, stat. uncertainty onlyNLOσMadGraph 4FS + Pythia6, normalized to

6, nooormoormo cc6, noormooooooooooooo uncertuncunccertccccccccccccccccc yy

50 100 150 200 250 300 350

T
he

or
y

0.5

1

1.5

, stat. + syst. uncertainties onlyNLOσMadGraph-aMC@NLO + Pythia8, normalized to

 (GeV)bbM
50 100 150 200 250 300 350 400

0.5

1

1.5

, stat. +syst. uncertainties onlyNLOσPowheg MINLO + Pythia8, normalized to 

FIG. 57. Measured Z þ b differential cross sections at 7 TeV (left panels) and 8 TeV (right panels). Left panels: Z plus b-jet cross
section as a function of ΔRðZ; bÞ. From ATLAS Collaboration, 2014c. Right panels: Z plus 2 b-jets cross section as a function of the
invariant mass of the b-jet pair. From CMS Collaboration, 2017h.

6 8 10 12 14 16 18 20 22 24

 1 b-jet) [pb]≥(Z + σ

Data (stat.) Data (stat.+syst.)

 1 b-jet≥ll) + →Z(

Sherpa 5FNS (NLO)
MGaMC+Py8 Zbb 4FNS (NLO)
MGaMC+Py8 5FNS (NLO)
Sherpa Zbb 4FNS (NLO)
Sherpa Fusing 4FNS+5FNS (NLO)
Alpgen+Py6 4FNS (LO)
Alpgen+Py6 (rew. NNPDF3.0lo)
MGaMC+Py8 5FNS (LO)

 0.23 pb± 1.08 ± 0.03 ±10.90

ATLAS
-1=13 TeV, 35.6 fbs

0.5 1 1.5 2 2.5 3 3.5

 2 b-jets) [pb]≥(Z + σ

Data (stat.) Data (stat.+syst.)

 2 b-jets≥ll) + →Z(

Sherpa 5FNS (NLO)
MGaMC+Py8 Zbb 4FNS (NLO)
MGaMC+Py8 5FNS (NLO)
Sherpa Zbb 4FNS (NLO)
Sherpa Fusing 4FNS+5FNS (NLO)
Alpgen+Py6 4FNS (LO)
Alpgen+Py6 (rew. NNPDF3.0lo)
MGaMC+Py8 5FNS (LO)

 0.03 pb± 0.21 ± 0.01 ±1.32

ATLAS
-1=13 TeV, 35.6 fbs

FIG. 58. Measured cross sections for (left panel) a Zþ ≥ 1 b jet and (right panel) Zþ ≥ 2 b- jets. The data are compared to different
predictions in the 4F and 5F approximations. The yellow band corresponds to the statistical uncertainty of the data, and the green band
corresponds to statistical and systematic uncertainties of the data, added in quadrature. The error bars on the SHERPA 5F (NLO)
predictions correspond to the statistical and theoretical uncertainties added in quadrature. Only statistical uncertainties are shown for the
other predictions. From ATLAS Collaboration, 2020d.

Azzurri, Schönherr, and Tricoli: Vector bosons and jets in proton collisions

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025007-42



of about 4 with a 15% relative uncertainty. The cross-section
ratios were also measured differentially as a function of jet and
Z-boson transverse momenta showing significant deviations
from existing perturbative QCD calculations and event gen-
erator predictions.
The first observation of Z þ c production at LHC was

reported by LHCb in the forward region 2 < y < 4 with data
from proton collisions at 7 TeV and made use of fully re-
constructed D0 and D� decays (LHCb Collaboration, 2014a).
The CMS Collaboration has performed a measurement of

associated Z + charm production in proton collisions at 8 TeV
(CMS Collaboration, 2018c). The selection of event candi-
dates relies on the identification of semileptonic decays of c or
b hadrons with a muon in the final state and through the
reconstruction of exclusive decay channels of D� and D��

(2010) mesons. The total Z þ c cross section is measured
with a precision of 10%, while the cross-section ratio
ðZ þ cÞ=ðZ þ bÞ is determined to be 2.0� 0.3. Differential
cross sections are measured as a function of the transverse

momentum of the Z boson and the heavy-flavor jet. The
measurements are in agreement with NLO QCD predictions,
including parton-shower development and nonperturbative
effects. Results in the highest transverse-momentum regions
are compatible with predictions using PDF sets with no
intrinsic charm component. Results with 13 TeV collision data
were released recently that made use of jet secondary-vertex
mass distributions to separate light, charm, and bottom flavor
components (CMS Collaboration, 2020a, 2020c). Results are
given in terms of b=light, c=light, and c=b production
ratios, both inclusively and differentially with respect to the
Z-boson pT and the jet pT. The experimental results are in
reasonable agreement with current theoretical predictions that,
however, carry a larger uncertainty. Figure 61 shows Z þ c
cross-section measurements at 8 TeV and c=b cross-section
ratio measurements at 13 TeV, both as a function of the heavy-
flavor-jet pT.
Measurements of the production of a W boson and charm

quarks are carried out by determining the charge sign of
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the W boson and the charm quark and separating events with
same-sign (SS) and opposite-sign (OS) charges. Contributions
from W þ c processes are inferred after performing a sub-
traction of SS events from OS ones, that effectively removes
most background sources.
Initial W þ c measurements were performed by CDF

Collaboration (2008a) and subsequently reached a 20%
overall precision (CDF Collaboration, 2013c), with results
compatible with existing theoretical expectations. A 15%
constraint on the jVcsj Cabibbo-Kobayashi-Maskawa quark
mixing matrix element was also derived from these results.

The first measurements of W þ c productions at the LHC
were performed with 7 TeV proton collision data by CMS
Collaboration (2014a), where hadronic and inclusive semi-
leptonic decays of charm hadrons are used to select the presence
of c jets. Cross sections and cross-section ratios were measured
inclusively to precisions of 3%–7%, and differentially with
respect to the absolute value of the pseudorapidity of the
charged lepton from the W-boson decay, shown in Fig. 62.
Results are directly sensitive to the strange-quark content of the
proton and are consistent with the predictions based on global
fits of parton distribution functions; see Sec. V.
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The ATLAS Collaboration (2014f) performed measure-
ments ofW þ c production at 7 TeV where the charm quark is
similarly tagged either by a semileptonic decay or by the
presence of a charmed meson. Results where also found to be
in good agreement with theoretical predictions for the cross
sections with different choices of the PDF set, with a
preference for PDFs with an SUð3Þ-symmetric light-quark
sea, as discussed in Sec. V.
The CMS Collaboration (2019b) has also produced W þ c

measurements with 13 TeV collision data using only charm
quarks tagged via the full reconstruction of D mesons.
Figure 63 shows differential W þ c cross sections measured
at 13 TeV by CMS.
Measurements of W boson productions associated with b

and c quarks have also been carried out in the forward regions
of proton collisions at 7 and 8 TeV by LHCb Collaboration
(2015d). A dedicated secondary-vertex tagger is used to
identify and separate the presence of heavy-flavor jets.
Results are generally in agreement with QCD predictions
and do not support a large contribution from intrinsic b-quark
content in the proton, but the precision is not sufficient to rule
out such a contribution at O(10%).

V. THEORETICAL INTERPRETATIONS OF
DATA FROM VECTOR BOSON PRODUCTION
WITH ASSOCIATED JETS

The production of high-statistics V þ jet Monte Carlo
samples is key to many of the Tevatron and LHC physics
programs. The validation of MC event generators available
with different levels of approximations in pQCD and
different nonperturbative QCD model implementations
require careful comparisons between predictions and with
data. Several investigations into the tuning of related MC
parameters and evaluations of uncertainties on their
predictions have been carried out by communities of both
experimentalists and theorists based on V þ jet processes.
Examples of validation and tuning studies of V þ jet MC

event generators were given by ATLAS Collaboration
(2014g, 2016a, 2016c, 2016h; 2017a) and Cooper et al.
(2012).
An example is the comparison of the MC generators used

by LHC experiments in run 2 analyses with V þ jet mea-
surements performed at 7 TeV center-of mass energy in run 1
(ATLAS Collaboration, 2016c). The same generators were
then used to simulate events at the run 2 center-of-mass energy
of 13 TeV to further investigate the differences between the
predictions and assess the theoretical uncertainties. Given the
increase in cross section for the W=Z þ jet production
processes in run 2 with respect to run 1, it was important
to carefully assess the accuracy of the MC generators in the
new kinematic regime. Predicted differential cross sections
were compared to unfolded distributions in data using the
RIVET package (Buckley et al., 2013; Bierlich et al., 2020).
Although a good overall description of the data is provided by
all considered generators, as Fig. 64 shows, some differences
between prediction and data at 7 TeV were visible in some
observables. This type of study has prompted a new tuning of
model parameters (ATLAS Collaboration, 2014g) and
improvements in the calculations. Comparisons were also
made in phase-space regions and for processes that became
more relevant for run 2 analyses due to the larger statistics,
such as the production of vector bosons associated with
heavy-flavor jets and for electroweak V þ 2 jets production
(ATLAS Collaboration, 2017a). As a result of these studies the
uncertainties associated with the normalization and shapes of
the predictions of the MC generators for V þ jet processes
have been routinely assessed on different MC event gener-
ators, including variations of matching and merging schemes,
parton-shower realizations as well as fragmentation and
underlying event models, the strong coupling constant,
and PDFs.
An understanding of the proton PDF, and specifically

the flavor composition of the quark sea, is important for the

FIG. 64. Comparison between different MC generator models
and data for events with a W and at least two jets, in the
distribution of the invariant mass of the two leading jets, at 7 TeV
pp collisions. From ATLAS Collaboration, 2016c.
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LHC physics program as a whole. The strange-quark PDF
has a direct impact on the measurement of the W-boson
mass. In addition to measurements of charm production in
deep-inelastic scattering experiments with neutrinos, the
strange-quark content of the nucleon can be obtained from
the measurements of inclusive differential W- and Z-boson
cross sections, Wþ charm production as well as W=Z þ jets.
Inclusive differential W- and Z-boson cross sections at
ffiffiffi

s
p ¼ 7 TeV (ATLAS Collaboration, 2012d, 2017i; CMS
Collaboration, 2012d, 2014b) allowed the strange content of
the sea to be measured rather than assumed to be a fixed
fraction of the light sea quarks. A QCD interpretation of
inclusive W- and Z-boson production data by the ATLAS
Collaboration together with data from deep-inelastic scatter-
ing at HERA (ATLAS Collaboration, 2012a) showed the
sensitivity to the light-quark sea composition of the proton at
the LHC. The ratio of the strange-to-down sea-quark dis-
tributions was determined to be consistent with one at
momentum transfer squared Q2 ¼ 1.9 GeV2 and Bjorken
x ¼ 0.023, therefore supporting a symmetric composition of
the light-quark sea at low x. The CMSW þ cmeasurement at
ffiffiffi

s
p ¼ 7 TeV (CMS Collaboration, 2014a) identified proc-
esses where a c quark is produced in association with a W
boson and was used for the determination of the strange-
quark distribution in the proton. This analysis was followed
recently by a measurement at 13 TeV center-of-mass energy
(CMS Collaboration, 2019b). The CMS results point toward
a strangeness suppression with respect to light sea-quark
densities in agreement with measurements in neutrino
scattering experiments. These results are hence in tension
with ATLAS studies based on the analysis of inclusive
W- and Z-boson production (ATLAS Collaboration, 2017i)
and Wþ charm production at

ffiffiffi

s
p ¼ 7 TeV (ATLAS

Collaboration, 2014f), which were found to be consistently
and significantly better described by an unsuppressed strange
sea at low-x values. Figure 65 shows the cross section
measured by the CMS experiment for the production of

W þ c compared to various PDF fits, including one by the
ATLAS Collaboration (ATLASepWZ16) that makes use of
inclusive W and Z cross-section data as an input.
The cross-section ratio R�

c ¼ σðWþ þ c̄Þ=σðW− þ cÞ can
be sensitive to the s − s̄ asymmetry in the PDFs that was
suggested by neutrino data (Goncharov et al., 2001). The
results by CMS (see Fig. 62) and ATLAS [see Fig. 12 of
ATLAS Collaboration (2014f)] are compatible, within 1
standard deviation, with predictions obtained using PDF
parametrizations with no asymmetry or a small asymmetry
of the order of few percent. Those LHC measurements of the
R�
c ratio at 7 TeV were limited by statistical uncertainties.

Given the far larger dataset collected by LHC experiments at
higher center-of-mass energies, it will be interesting to see
such measurements repeated at greater precision.
As discussed in Sec. II.B.4 the study of W- or Z-boson

production with jets allows one to access the high-x region of
the parton phase space that is of great importance for PDF
fitting, as it is currently poorly constrained by data and subject
to nonperturbative effects with large uncertainties from
phenomenological models. The Tevatron W� asymmetry data
are not subject to such uncertainties; however, the results from
CDF and D0 experiments are in tension (CDF Collaboration,
2009a; D0 Collaboration, 2015). The production of W=Z þ
jets at the LHC provides a new and independent dataset that
can be used as input to PDF fits to access partons at high x.
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Given the ATLAS and CMS tension on the strange-quark
PDF, it is therefore of particular interest to check the impact
of the new W þ jet data on the strange-quark density.
Figure 66 shows the results of the PDF analysis of the
ATLAS measurement of the W-boson pT spectrum (ATLAS
Collaboration, 2018b) in W þ jet events at a center-of-mass
energy of 8 TeV. This is shown in Fig. 39 fitted together with
ATLAS inclusive W and Z production measurements at
7 TeV and HERA deep-inelastic scattering data. The PDF fit
is performed at NNLO in pQCD and was made possible by
recent theoretical developments providing NNLO predic-
tions for such processes (Boughezal, Focke, Liu, and
Petriello, 2015; Gehrmann-De Ridder et al., 2016b). The
fraction of the strange-quark density in the proton can be
defined by the quantity Rs ¼ ðsþ s̄Þ=ðūþ d̄Þ, which is
shown in Fig. 66. The effect of the W þ jet data is most
significant in the kinematic region x > 0.02, where the
uncertainty is significantly lower and the fit results in a
Rs distribution that falls from about 1 at x ≈ 0.01 to about 0.3
at x ≈ 0.1. At low x, i.e., x < 0.023, the fit with the W þ jet
data is compatible with the unsuppressed strange-quark
density that was found in previous ATLAS analyses with
different datasets.
Further measurements at the LHC with even greater

precision (including W=Z þ jets) aided by NNLO W þ c
calculations (Czakon et al., 2020) will help us to understand
this apparent tension between different experimental
datasets in the determination of the strange-quark content
of the proton.

VI. CONCLUSIONS AND OUTLOOK

This review has addressed achievements in the under-
standing of the production of vector bosons associated with
light- or heavy-flavor jets, with a focus on the LHC results.
These processes are of great importance to the success of
physics programs at hadron colliders since they are major
backgrounds to new physics searches and are ideal testing
grounds for new calculations and models in the QCD and
electroweak sectors of the standard model. This review has
summarized theoretical techniques developed to describe
experimental results in pp̄ collisions at the Tevatron and in
pp collisions at the LHC and has highlighted a few of the
several measurements that were carried out by the CDF and
D0 collaborations at the Tevatron as well as the ATLAS, CMS,
and LHCb collaborations at the LHC at different center-of-
mass energies. Detailed comparisons between the experimen-
tal results and cutting-edge predictions have been presented
together with discussions of differences in phase spaces and
production mechanisms between the Tevatron and the LHC.
The modeling of V þ jet processes improved significantly

at the Tevatron, and measurements of such processes have
prompted the development of high-order QCD calculations
and new techniques for their modeling in MC generators.
Tevatron datasets were used to tune theoretical predictions and
MC generators, and those tunes also turned out to be accurate
at describing the first V þ jet data results at the LHC run 1
despite the large difference in center-of-mass energy. Tevatron
data still provide an important legacy for V þ jet analyses at
the LHC. The measurements carried out by the LHC

experimental collaborations, thanks to the greater statistics
in V þ jet samples, have led to further developments in the
theoretical description of such processes in both the QCD and
electroweak sectors. These processes have been at the center
of both the so-called next-to-leading-order and next-to-next-
to-leading-order revolutions in perturbative QCD calculations
and their implementations in MC generators.
In several kinematic regions the experimental uncertainties

are significantly smaller than the uncertainties in the predic-
tions. Such a high experimental precision has allowed
theoretical predictions and models to be tested and constrained
(including parton density functions) in a broad kinematic
region (including extreme regions of phase space) that is
relevant for new physics searches.
Despite the great theoretical progress in the past decades

and the many years of understanding the V þ jet production
mechanism, there are still theoretical uncertainties that can be
further reduced in future developments, for example, higher-
order QCD and electroweak contributions in hard scattering
matrix elements, parton showers, and their matching algo-
rithms, or better constrained by data like PDFs and underlying
event modeling. Improvements in the understanding of these
sources of uncertainties in V þ jet processes are critical for
improvements in the precision of measurements and in the
reach of searches at the LHC and at future collider experiments.

A. Outlook

Studies of V þ jet physics will necessarily continue in
future LHC runs and at possible future colliders, as the success
of the physics programs of such experiments will rely on a
good understanding of such processes. The higher and higher
expected statistics, precision, and extended phase space,
such as to higher jet multiplicities or higher energy scales,
will challenge theoretical predictions to perform calculations
at higher-orders in QCD, i.e., at N3LO,9 to systematically
include higher-order electroweak corrections in MC gener-
ators together with mixed electroweak-QCD terms and to
improve MC generators for a more accurate estimation of the
various sources of uncertainties in the modeling.
Studies of the QCD production of V þ jets will remain

critical to the understanding of QCD dynamics as well as
for a better understanding of electroweak corrections, as
they will become more significant at higher energy scales.
Experimental analyses are expected to become more sophis-
ticated in studying statistical and systematic correlations
between differential cross sections in the same and in different
V þ jet processes, such that several observables can be used
simultaneously as inputs to PDF global fits, MC tunes, and
indirect searches for new physics. With more accurate and
precise theoretical predictions new measurements will become
interesting, such as the extraction of the strong coupling αs
from jet rates in V þ jet events.10

9A first result for lepton-pair production via virtual photon
exchange was presented in Duhr, Dulat, and Mistlberger (2020a,
2020b).

10A precursor to this was presented by Johnson and Maître (2018).
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We expect that electroweak analyses will become predomi-
nant in the future for searching for anomalies in the gauge
structure of the standard model. A good understanding of
vector boson fusion production of V þ jets is important for
studies of Higgs production, and for a thorough investigation
of anomalies in the gauge couplings a comprehensive and
simultaneous analysis of several electroweak processes
will be beneficial. An example of an electroweak process
that has not been investigated due to experimental challenges
is the eletroweak production of two jets associated with a
photon. This process will provide a new window into the
studies of anomalous couplings. Developments in the sep-
aration of jets induced by quarks or gluons may have a
significant impact in the discrimination of electroweak V þ
jet processes from QCD-induced background in future
analyses and may impact the constraints on quark and gluon
PDFs. At higher center-of-mass energies the study of the
emission of massive vector bosons collinearly with jets in
W=Z þ jets will become more important and the develop-
ment and testing of electroweak showering models more
relevant than it has been thus far.
As experimental results become more precise, preservation

and sharing of analysis details will become more important.
Future studies are expected to include multiple differential
cross-section measurements, and such a large amount of
experimental results will be a wealth for the understanding
of the SM and beyond the SM physics. The analysis
algorithms as well as the experimental results must be
preserved for current and future generations. The LHC
experimental data with their uncertainties are stored in the
HepData repository (Maguire, Heinrich, and Watt, 2017),
which has become an essential tool for archiving detailed
experimental results, for comparisons against MC predictions,
and for tuning and constraining theoretical models, such as the
underlying event and PDFs. In recent years the RIVET project
(standing for Robust Independent Validation of Experiment
and Theory) (Buckley et al., 2013; Bierlich et al., 2020) has
been considered as the most important repository for analysis
algorithms (a combination of fiducial phase-space definitions
and physics objects). This project was originally intended as a
tool kit for the validation of MC event generators; however,
thanks to its large and ever growing set of experimental
analyses and its link to the HepData repository for exper-
imental data points from the collider experiments, it has also
become useful as a long-term repository of analysis algo-
rithms. RIVET also provides useful algorithms to extract
observable quantities from different MC generators in a
model-independent way, i.e., without prior knowledge of
specific algorithm implementations or specific event record
definitions. Such repositories and analysis tools will become
more critical in multiprocess fits such as PDFs and effective
field theory, including for storing information about correla-
tions between measurements.
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