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Over the last decade impressive progress has been made in the theoretical understanding of transport
properties of clean, one-dimensional quantum lattice systems. Many physically relevant models in
one dimension are Bethe-ansatz integrable, including the anisotropic spin-1=2 Heisenberg (also
called the spin-1=2 XXZ chain) and the Fermi-Hubbard model. Nevertheless, practical computations
of correlation functions and transport coefficients pose hard problems from both the conceptual and
technical points of view. Only because of recent progress in the theory of integrable systems, on the
one hand, and the development of numerical methods, on the other hand, has it become possible to
compute their finite-temperature and nonequilibrium transport properties quantitatively. Owing to the
discovery of a novel class of quasilocal conserved quantities, there is now a qualitative understanding
of the origin of ballistic finite-temperature transport, and even diffusive or superdiffusive subleading
corrections, in integrable lattice models. The current understanding of transport in one-dimensional
lattice models, in particular, in the paradigmatic example of the spin-1=2 XXZ and Fermi-
Hubbard models, is reviewed, as well as state-of-the-art theoretical methods, including both
analytical and computational approaches. Among other novel techniques, matrix-product-state-based
simulation methods, dynamical typicality, and, in particular, generalized hydrodynamics are covered.
The close and fruitful connection between theoretical models and recent experiments is discussed,
with examples given from the realms of both quantummagnets and ultracold quantum gases in optical
lattices.
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I. INTRODUCTION

The physics of strongly correlated quantum systems in one
dimension has long attracted the interest of theoreticians

(Giamarchi, 2004; Schönhammer, 2004; Cazalilla et al.,
2011; Guan, Batchelor, and Lee, 2013) because of its
intriguing properties. For instance, quantum fluctuations
can have a particularly pronounced effect in one dimension,
leading to the absence of finite-temperature phase transitions
and to the breakdown of Landau’s Fermi liquid theory,
rendering one dimension unique in many regards. A particu-
larly appealing aspect of many-body physics in one dimension
is the existence of exact solutions for a subset of microscopic
models, including both systems in the continuum such as the
Gaudin-Yang model (Gaudin, 1967; Yang, 1967) and the
Lieb-Liniger gas (Lieb and Liniger, 1963) and lattice models
such as the spin-1=2 XXZ and the Fermi-Hubbard chain. For
the aforementioned models, versions of the Bethe ansatz are
exploited in order to arrive at such solutions, and these are
considered instances of integrable quantum models.1

Because of the wide range of available theoretical
approaches, there is the appealing ambition of developing a
full theoretical understanding of these systems, both quanti-
tative and qualitative. Moreover, many quasi-one-dimensional
(quasi-1D) materials from quantum magnetism, are, to a good
approximation, described by relatives of the integrable
spin-1=2 Heisenberg or the Fermi-Hubbard chain. Ultracold
quantum gases (Bloch, Dalibard, and Zwerger, 2008) provide
another avenue for the experimental study of 1D systems,
ranging from degenerate quantum gases in the continuum [see
Kinoshita, Wenger, and Weiss (2004, 2006), Paredes et al.
(2004), Hofferberth et al. (2007), Liao et al. (2010), and
Langen et al. (2015)] to fermionic or bosonic lattice gases [see
Cheneau et al. (2012), Ronzheimer et al. (2013), Xia et al.
(2015), Kaufman et al. (2016), Salomon et al. (2019), and
Vijayan et al. (2020)], including realizations of Heisenberg
Hamiltonians (Fukuhara et al., 2013; Fukuhara, Schauß et al.,
2013; Hild et al., 2014). A renewed interest in 1D systems
originates from the fields of nonequilibrium dynamics in
closed quantum systems [for reviews, see Polkovnikov et al.
(2011), Eisert, Friesdorf, and Gogolin (2015), Calabrese,
Essler, and Mussardo (2016), D’Alessio et al. (2016), and
Gogolin and Eisert (2016)] and many-body localization [for
reviews, see Altman and Vosk (2015), Nandkishore and Huse
(2015), and Abanin et al. (2019)], where 1D systems are the
playground and testing ground for new concepts, novel phase
transitions, or far-from-equilibrium dynamics. Because of the
integrability of some 1D systems, one can systematically
study the transition between integrability and quantum-cha-
otic behavior; see D’Alessio et al. (2016), Essler and Fagotti
(2016), and Vidmar and Rigol (2016) and references therein.
One of the most generic nonequilibrium situations is

steady-state transport. This concept has a rich history. It
was Joseph Fourier who in 1807 presented his manuscript to
the French Academy describing heat transport in terms of the
diffusion equation (Fourier, 1822). The work was ground-
breaking in several ways (Narasimhan, 1999). Prior to its
publication, physicists were trying to understand heat con-
duction in terms of the complicated motion of the constituent
particles, but Fourier changed that mindset by suggesting

1The notion of integrability in quantum systems is commented
upon later.
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an effective continuum description in terms of a partial
differential equation. Fourier’s law (or its extensions to
other conserved quantities such as Fick’s law and Ohm’s
law) states that the energy current jðEÞ is proportional to the
temperature difference and to the inverse of the system’s
length2 L. Empirically, it holds in real materials. However,
the microscopic origin of such normal, i.e., diffusive, trans-
port is even today not entirely understood. Particularly in
low-dimensional systems, one often finds that simple
Hamiltonian systems do not obey Fourier’s law: instead,
transport is anomalous with a nontrivial power-law scaling of
the current jðEÞ ∼ 1=Lγ with γ ≠ 1. Understanding under
which conditions one gets normal transport is one of the
main challenges of theoretical physics (Bonetto, Lebowitz,
and Rey-Bellet, 2000; Buchanan, 2005).
In classical systems, this question has been studied since

Fermi, Pasta, Ulam, and Tsingou’s work on equilibration in
anharmonic chains (Fermi, Pasta, and Ulam, 1955; Dauxois,
2008), which eventually led to the birth of the theory of
classical Hamiltonian chaos. One would naively expect
integrable systems to be ballistic conductors, i.e., that they
would exhibit a zero bulk resistivity, while chaotic ones
should display diffusion; this is rooted in the existence of
extra conservation laws, which may prevent currents from
decaying. Such a distinction, however, is not as clear cut as
one might think. While no rigorous conclusions have been
reached yet [for reviews, see Lepri, Livi, and Politi (2003),
Dhar (2008), and Benenti, Lepri, and Livi (2020)], explicit
examples demonstrate that even systems without classical
chaos can display a wide spectrum of transport types.
In the quantum domain, the situation is even more interest-

ing. There has been significant progress in recent years in the
understanding of transport in 1D quantum lattice systems,
thanks to both analytical and numerical work. Because of the
large number of studies since the latest overview articles
appeared (Zotos, 2002; Zotos and Prelovšek, 2004; Zotos,
2005; Heidrich-Meisner, Honecker, and Brenig, 2007), there
is the need for a comprehensive survey of the state of the art of
this field. The aim of this review is to give an overview over
the transport properties of 1D quantum lattice models at finite
temperatures, to describe the established results, to identify
open questions, and to point out future directions. Specifically,
we are interested in lattice systems in the thermodynamic
limit, including examples of integrable and nonintegrable
cases.
We stress that the field was driven not only by theoretical

questions but also (equally importantly) by experiments on
quantum magnets (Hess, 2007, 2019; Sologubenko, Lorenz
et al., 2007), which show that low-dimensional quantum
magnets typically feature significant contributions from mag-
netic excitations to the thermal conductivity. Moreover,
experiments with ultracold atomic gases in optical lattices
can investigate transport properties as well (Schneider et al.,
2012; Ronzheimer et al., 2013; Hild et al., 2014; Xia et al.,
2015; Scherg et al., 2018; Brown et al., 2019; Nichols et al.,

2019; Schemmer et al., 2019; Guardado-Sanchez et al., 2020;
Jepsen et al., 2020; Malvania et al., 2020).
The universal features of 1D quantum systems at low

temperatures are well captured by the Tomonaga-Luttinger
low-energy theory, which can be solved using bosonization;
see Giamarchi (2004) and Schönhammer (2004) for reviews.
This reflects the general failure of the Landau quasiparticle
description and accounts for the phenomenon of spin-charge
separation. Moreover, many numerical tools work particularly
well in the one-dimensional case, such as the density-matrix-
renormalization group (DMRG) technique and its relatives
(White, 1992; Schollwöck, 2005, 2011). As a consequence,
many of the equilibrium properties of one-dimensional
quantum systems are well understood. Despite the power of
such methods, there are, nevertheless, open questions and
limitations. In the universal low-energy theory, it is not
straightforward to capture nontrivial conservation laws of
the microscopic lattice models, and a description of the
transport properties therefore remains a challenging task.
Numerical methods often suffer from limitations in the
accessible timescales and system sizes, rendering the calcu-
lation of dc transport coefficients particularly difficult.
A number of specific 1D Hamiltonians allow for exact

solutions via Bethe-ansatz techniques (Bethe, 1931). These
include the isotropic spin-1=2 Heisenberg, its anisotropic
extension, the spin-1=2 XXZ chain (Takahashi, 1999), and
the Fermi-Hubbard chain (Essler et al., 2005), which serve as
paradigmatic models of 1D quantum physics. For concrete-
ness and because of its significance within the scope of the
review, we now detail the Hamiltonian of the anisotropic
Heisenberg chain. It can be written as H ¼ P

r hr;rþ1, with

hr;rþ1 ¼ Jðsxrsxrþ1 þ syrs
y
rþ1 þ Δszrszrþ1Þ: ð1Þ

Here sx;y;zr are spin-1=2 operators at site r (ℏ ¼ 1), J is the
exchange coupling constant, and Δ parametrizes the exchange
anisotropy. We choose J > 0, i.e., an antiferromagnetic
coupling, unless stated otherwise. The spin-1=2 XXZ chain
is gapless for jΔj ≤ 1 and features a gapped charge-density-
wave phase for Δ > 1. By using a Jordan-Wigner trans-
formation (Giamarchi, 2004), the model can be mapped to the

following system of spinless lattice fermions cð†Þr :

hr;rþ1 ¼
J
2
c†rcrþ1 þ H.c:þ JΔ

�
nr −

1

2

��
nrþ1 −

1

2

�
: ð2Þ

The limit Δ ¼ 0 corresponds to free fermions and can thus be
solved analytically by a simple Fourier transform from real to
(quasi)momentum space. Because of this mapping, the spin-
1=2 XXZ chain is often considered to be one of the simplest
models of interacting spinless fermions.
While the aforementioned Bethe-ansatz methods provide

access to the eigenenergies (Orbach, 1958; Essler et al.,
2005), thermodynamics [see Gaudin (1971), Takahashi
(1971, 1973), Klümper (1993), Takahashi (1999), and
Klümper and Johnston (2000)], and even the response
functions [see Caux and Maillet (2005) and Klauser et al.
(2011)] of such Hamiltonians (Schollwöck et al., 2004),

2As we deal in the review with lattice Hamiltonians, we use L for
denoting the number of sites as well, with the understanding that the
lattice spacing is set to unity.
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calculating exactly their transport coefficients is difficult and
has remained an open problem for decades.
The notion of integrability is not unambiguously defined in

quantum physics (Caux and Mossel, 2011). Within the scope
of this review, we deal exclusively with examples of Bethe-
ansatz integrable models that possess an infinite number of
local conservation laws. These are primarily the spin-1=2
XXZ chain and the 1D Fermi-Hubbard model. The non-
integrable models covered here emerge from these integrable
models by adding perturbations that are expected to break all
nontrivial conservation laws, such as generic spin-1=2 ladders,
chains with a staggered magnetic field, frustrated spin chains,
and dimerized spin chains.
The following discussion is based on the description of

transport within linear-response theory, which relates trans-
port coefficients to current autocorrelation functions via Kubo
formulas. At zero temperature (T ¼ 0), the transport coef-
ficients of clean systems are well understood (Kohn, 1964;
Shastry and Sutherland, 1990; Scalapino, White, and Zhang,
1993): in gapless phases, we deal with ideal metals and hence
a divergent dc conductivity. This divergence is captured via
the so-called Drude weight, the prefactor of a δ singularity in
the real part of the conductivity. At T ¼ 0, the presence or
absence, respectively, of such a singularity simply distin-
guishes metallic behavior from insulators and, therefore, in
this limit integrability of the microscopic model is not relevant
for the existence of nonzero Drude weights.
An intriguing property of integrable models with regard to

their transport properties is that they can be ideal finite-
temperature conductors despite the presence of two-body
interactions. This connection was comprehensively worked
out in seminal papers (Castella, Zotos, and Prelovšek, 1995;
Zotos and Prelovšek, 1996; Zotos, Naef, and Prelovšek, 1997)
and is explained by the presence of nontrivial conservation
laws preventing current autocorrelation functions from
decaying to zero. This is reflected by a nonzero finite-
temperature Drude weight in the corresponding transport
coefficient.3 Similarly, one can view this as a quantum-quench
problem: Imagine a current is induced in a ring at finite
temperature by applying and then turning off a force. If there
is an overlap with conserved quantities, then the induced
current will never decay, even in the thermodynamic limit
(Mierzejewski, Prelovšek, and Prosen, 2014). Therefore, there
is an intimate connection to the intensely debated topic of
thermalization and relaxation in closed quantum many-body
systems (Polkovnikov et al., 2011; Eisert, Friesdorf, and
Gogolin, 2015; D’Alessio et al., 2016; Essler and Fagotti,
2016; Gogolin and Eisert, 2016; Vidmar and Rigol, 2016).
The existence of a finite-temperature Drude weight is trivial

in a system of free fermions (or bosons) such as the spin-1=2
XX chain. In an ordinary metal and in the Drude model, a

finite Drude weight arises in the limit of a diverging relaxation
time. In a Fermi liquid, this occurs in the limit of T → 0,
where the quasiparticle lifetime becomes infinite provided that
there are no impurities.
In some famous cases of integrable interacting models, the

conservation laws relevant for ballistic transport properties are
easy to identify (Grabowski and Mathieu, 1995): For thermal
transport in the spin-1=2 XXZ chain, the total energy current
J ðEÞ itself is conserved, rendering the transport coefficients
for thermal (or energy) transport divergent. The conservation
of J ðEÞ is also sufficient to prove that spin transport is ballistic
at any finite magnetization mz ¼ 2hSzi=L ≠ 0 where Sz ¼P

r s
z
r (Zotos, Naef, and Prelovšek, 1997). For thermal

transport in spin-1=2 XXZ chains at zero magnetization,
the energy Drude weight4 was computed from Bethe-ansatz
methods (Klümper and Sakai, 2002; Sakai and Klümper,
2003; Zotos, 2017).
For spin transport and at zero magnetization (in either the

canonical or the grand-canonical ensemble), the problem
turned out to be much harder and has evolved into one of
the key open questions in the theory of low-dimensional
quantum systems. While a first Bethe-ansatz calculation
(Zotos, 1999) indicated nonzero spin Drude weights in a
wide parameter range, which is consistent with exact diag-
onalization (Zotos and Prelovšek, 1996; Narozhny, Millis, and
Andrei, 1998; Heidrich-Meisner et al., 2003), the actual
relevant conservation laws were not known until 2011.
Exact diagonalization was often argued to be inconclusive
due to the small accessible system sizes (Sirker, Pereira, and
Affleck, 2009, 2011), while the Bethe-ansatz results from
Zotos (1999) were challenged as well: The calculation of the
spin Drude weight cannot be done in the same rigorous
manner as that of the energy Drude weight, and qualitatively
different results were obtained from another Bethe-ansatz
calculation using different assumptions (Benz et al., 2005).
Therefore, the question as to whether the spin Drude weight is
finite in the spin-1=2 XXZ chain at mz ¼ 0 and how to
compute it quantitatively attracted the attention of theoret-
icians using a range of methods such as quantum Monte Carlo
(Alvarez and Gros, 2002c; Heidarian and Sorella, 2007;
Grossjohann and Brenig, 2010), field theory (Fujimoto and
Kawakami, 2003; Sirker, Pereira, and Affleck, 2009, 2011),
DMRG simulations at finite temperatures (Karrasch,
Bardarson, and Moore, 2012; Karrasch et al., 2013), dynami-
cal typicality (Steinigeweg, Gemmer, and Brenig, 2014),
DMRG simulations of open quantum systems (Prosen and
Žnidarič, 2009; Žnidarič, 2011a), and more recently gener-
alized hydrodynamics (GHD) (Ilievski and De Nardis, 2017b;
Bulchandani et al., 2018). GHD is a hydrodynamic descrip-
tion valid for general Bethe-ansatz integrable models that
was developed by Bertini et al. (2016) and Castro-Alvaredo,
Doyon, and Yoshimura (2016); see also the recent review by
Doyon (2020).
The question of the finiteness of the finite-temperature spin

Drude weight in the gapless regime (jΔj < 1) of the spin-1=2
XXZ chain was resolved in 2011 (Prosen, 2011b; Prosen and

3We note that in this review the term “transport coefficient” refers
to the entire frequency-dependent object, including potential zero-
frequency singularities such as the Drude weight. Note further that a
nonzero Drude weight does not exclude the existence of nonzero and
nondivergent zero-frequency contributions stemming from the regu-
lar part; see Spohn (2012) for a review and references therein. This is,
in fact, a generic situation in normal fluids in the continuum.

4Throughout this review, we use the term energy Drude weight
instead of thermal Drude weight.
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Ilievski, 2013) upon the discovery of so-called quasilocal
charges, which were derived, quite unexpectedly, from an
exact solution of a boundary-driven many-body Lindblad
master equation. These conserved quantities are fundamentally
different from the previously known local conserved charges
derived from the algebraic Bethe ansatz since they break spin-
reversal symmetry. This can be interpreted as a consequence of
the dissipative, non-time-reversal invariant setup that they are
derived from. Soon after the quasilocal charges were extended
to periodic (or, more generally, twisted) boundary conditions
(Pereira et al., 2014; Prosen, 2014c), and generalized to a one-
parameter family (Prosen and Ilievski, 2013). The existence of
these hitherto unknown quasilocal charges quantitatively
explains the results of numerical simulations and qualitatively
confirms the thermodynamic Bethe-ansatz (TBA) result (Zotos,
1999). The lower bound to the spin Drude weight agrees
exactly with recent analytical results for the spin Drude weight
based on GHD (Ilievski and De Nardis, 2017b) and the
thermodynamic Bethe ansatz (Zotos, 1999; Urichuk et al.,
2019). Table I summarizes the Drude weights covered in this
review for the spin-1=2 XXZ chain.
Along with the issue of Drude weights, there are equally

interesting questions concerning diffusion and finite-
frequency behavior.5 In the gapless regime of the spin-1=2
XXZ chain (jΔj < 1), a regular diffusive subleading contri-
bution to transport was advocated for by Sirker, Pereira, and
Affleck (2009, 2011), while a pseudogap structure in the low-
frequency window was suggested by Herbrych, Steinigeweg,
and Prelovšek (2012). In the regime jΔj > 1, anomalous
low-frequency properties were observed on finite systems
(Prelovšek et al., 2004), while most studies indicate a nonzero
dc spin conductivity and thus a finite diffusion constant
(Prosen and Žnidarič, 2009; Steinigeweg and Gemmer,
2009; Steinigeweg and Brenig, 2011; Žnidarič, 2011a;
Karrasch, Moore, and Heidrich-Meisner, 2014). Diffusion
in integrable systems was recently explained within the GHD
framework and also yielded a quantitative prediction for the
diffusion constant (De Nardis, Bernard, and Doyon, 2018;
Gopalakrishnan and Vasseur, 2019). Moreover, numerical
evidence for superdiffusive spin transport with a dynamical
exponent of z ¼ 3=2 at the Heisenberg point Δ ¼ 1was found

by Ljubotina, Žnidarič, and Prosen (2017, 2019) and self-
consistently explained within GHD (De Nardis et al., 2019;
Gopalakrishnan and Vasseur, 2019; De Nardis, Medenjak
et al., 2020). This is the same exponent as in the Kardar-Parisi-
Zhang universality class (Kardar, Parisi, and Zhang, 1986),
which leads to the actively investigated question as to whether
this scenario is realized in the spin-1=2 Heisenberg chain
and possibly other systems with SUð2Þ-symmetric exchange
(Ljubotina, Žnidarič, and Prosen, 2017, 2019; De Nardis
et al., 2019; De Nardis, Medenjak et al., 2020; Dupont and
Moore, 2020; Spohn, 2020a; Weiner et al., 2020).
While much of the research has concentrated on the linear-

response regime of the spin-1=2 XXZ chain, current activities
have evolved in a number of interesting directions. An imme-
diate goal (Karrasch, Kennes, andMoore, 2014; Jin et al., 2015;
Karrasch, Kennes, and Heidrich-Meisner, 2016; Karrasch,
2017b; Karrasch, Prosen, and Heidrich-Meisner, 2017) is to
establish a complete picture for the linear-response transport in
the Fermi-Hubbard chain, which is perhaps the other equally
important integrable lattice model with regard to experimental
realizations. Significant theoretical progress has recently been
made by using the GHD framework; see Ilievski and De Nardis
(2017a), Ilievski et al. (2018), and Fava et al. (2020).
Next, having real materials in mind, we see that another

important question asks how robust transport properties are
against perturbations. This has triggered much research involv-
ing nonintegrable models; see Saito, Takesue, and Miyashita
(1996), Zotos and Prelovšek (1996), Prosen (1999), Alvarez
and Gros (2002a), Heidrich-Meisner et al. (2002, 2003,
2004b), Rabson, Narozhny, and Millis (2004), Zotos (2004),
Jung, Helmes, and Rosch (2006), Jung and Rosch (2007),
Huang, Karrasch, and Moore (2013), Steinigeweg, Gemmer,
and Brenig (2015), and Steinigeweg, Herbrych, Zotos, and
Brenig (2016) and further references mentioned in Sec. VIII. In
this regime, numerical methods play a crucial role. While the
expectation is that nonintegrable models should exhibit dif-
fusive transport at finite temperature, demonstrating this in an
exact manner or in numerical simulations is a challenging task.
Significant progress has been made with modern computa-
tional methods that allow one to obtain diffusion constants at
least at high temperatures (Žnidarič, 2011a; Karrasch, Moore,
and Heidrich-Meisner, 2014; Steinigeweg, Gemmer, and
Brenig, 2015; Steinigeweg, Herbrych, Zotos, and Brenig,
2016). The generic description of nonintegrable models at
low temperatures results from extensions of Tomonaga-
Luttinger low-energy theories for gapless systems (Sirker,
Pereira, and Affleck, 2009, 2011) or field theories for gapped
situations (Sachdev and Damle, 1997; Damle and Sachdev,
2005). Moreover, nonintegrable models in one dimension may
still possess long-lived dynamics and hydrodynamic tails, and
it is by no means obvious that diffusion is the only possible
scenario; see DeNardis,Medenjak et al. (2020) andMedenjak,
De Nardis, and Yoshimura (2020) for recent work.
In the discussion of nonintegrable models, we exclude

systems with disorder (Altman and Vosk, 2015; Nandkishore
and Huse, 2015; Luitz and Lev, 2017; Abanin et al., 2019;
Gopalakrishnan and Parameswaran, 2020). Many-body lattice
systems with disorder are believed to host both ergodic and
many-body localized phases; see also the recent discussions
by Panda et al. (2019), Sierant, Delande, and Zakrzewski

TABLE I. Overview of the different finite-temperature Drude
weights of the antiferromagnetic spin-1=2 XXZ chain whose
differing behaviors are covered in this review: the spin Drude
weight DðSÞ

w and the energy Drude weight DðEÞ
w as a function of

magnetization mz ¼ 2hSzi=L and the model parameters, where Δ is
the exchange anisotropy. The actual definitions for the Drude weights
are given in Sec. II and the theoretical predictions are covered in
Secs. III and VI.

Transport channel mz 0 ≤ Δ < 1 Δ ¼ 1 Δ > 1

Energy Drude weight DðEÞ
w

0, ≠ 0 > 0 > 0 > 0

Spin Drude weight DðSÞ
w

0 > 0 0 0

Spin Drude weight DðSÞ
w

≠ 0 > 0 > 0 > 0

5The range of possible transport types (ballistic, diffusive, super-
diffusive, subdiffusive) is introduced in Sec. II.B; see also Fig. 1.
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(2020), Šuntajs et al. (2020), and Abanin et al. (2021). The
transport properties of the ergodic phase are interesting and
there are a number of studies (Agarwal et al., 2015; Žnidarič,
Scardicchio, and Varma, 2016) that claim the existence of a
subdiffusive regime within the ergodic phase. This result,
however, is still controversial (Barišić et al., 2016;
Steinigeweg, Herbrych, Pollmann, and Brenig, 2016; Bera
et al., 2017). Nevertheless, the ergodic phase of disordered
models is often considered a generic example of a thermal-
izing phase with diffusive transport (then obviously excluding
the putative subdiffusive regime).
Moreover, there has been fervent activity concerning the

studies of more general forms of transport. For instance,
manifestly nonequilibrium situations with inhomogeneous
density profiles have been investigated (Ruelle, 2000;
Aschbacher and Pillet, 2003; Gobert et al., 2005; Langer
et al., 2009, 2011; Lancaster and Mitra, 2010; Jesenko and
Žnidarič, 2011; Karrasch, Ilan, and Moore, 2013; Bertini
et al., 2016; Castro-Alvaredo, Doyon, and Yoshimura, 2016;
Ljubotina, Žnidarič, and Prosen, 2017; Steinigeweg, Jin,
Schmidtke et al., 2017), partially because such initial con-
ditions can be realized with both quantum magnets (Otter
et al., 2009; Montagnese et al., 2013) and quantum gases
(Schneider et al., 2012; Fukuhara et al., 2013; Fukuhara,
Schauß et al., 2013; Ronzheimer et al., 2013). In addition,
there is growing interest in using insights from conformal field
theory (CFT) and AdS=CFT correspondence for the descrip-
tion of such nonequilibrium situations (Bernard and Doyon,
2012; Bhaseen et al., 2015; Dubail et al., 2017).
For the description of both transport in the linear-response

regime and nonequilibrium situations, GHD has been estab-
lished as a powerful theoretical framework for Bethe-
ansatz integrable quantum lattice models (Bertini et al.,
2016; Castro-Alvaredo, Doyon, and Yoshimura, 2016). The
approach allows one to compute Drude weights (Ilievski and
De Nardis, 2017b) and diffusion constants (De Nardis,
Bernard, and Doyon, 2018) and can provide the full temper-
ature dependence of both quantities. Moreover, subleading
corrections to transport coefficients such as diffusive or
superdiffusive corrections can be extracted in the presence of
a Drude weight (Agrawal et al., 2020). GHD often allows for
developing an intuition and interpretation, as it is based on a
kinetic theory of the characteristic excitations of integrable
models. While GHD is a recent development, it is promi-
nently featured throughout the review.
Furthermore, we complement the picture emerging from

linear-response theory or closed quantum system simulations
with insights from studies of open quantum systems. In our
context, these are long pieces of spin or Fermi-Hubbard chains
coupled to an environment via boundary driving. The theo-
retical description is based on quantum master equations, and
the Lindblad equation is the most commonly employed
starting point. The boundary-driving terms can be used to
induce a temperature or magnetization difference across the
region of interest. The focus is on the steady state that can be
close to or far away from equilibrium and is referred to as a
nonequilibrium steady state (NESS). While there are methods
to solve such setups exactly for free systems (Prosen, 2008,
2010) and statements about the existence and uniqueness of
the steady state (Evans, 1977; Frigerio, 1977; Spohn, 1977),

one frequently needs to resort to numerical methods, particu-
larly when dealing with interacting systems. Time-dependent
DMRG has emerged as a useful solver and comparably large
systems sizes have been studied (Prosen and Žnidarič, 2009).
The scaling behavior of the NESS current with system size
allows one to characterize transport as diffusive, ballistic, or
superdiffusive (or subdiffusive) and is therefore a valuable
complementary approach. For instance, the notion of super-
diffusive dynamics in the spin-1=2 Heisenberg chain was
first established using open quantum system simulations
(Žnidarič, 2011a). One can also extract diffusion constants
that in certain limiting cases should agree with the results
from linear-response theory (Žnidarič, 2019). Open quantum
system simulations were extensively used to investigate
transport in spin-1=2 XXZ chains, the Fermi-Hubbard
chain, and spin ladders, to name a few examples; see
Michel et al., 2003, 2008; Mejia-Monasterio and
Wichterich, 2007; Prosen and Žnidarič, 2012; Mendoza-
Arenas, Grujic et al., 2013; Mendoza-Arenas, Clark, and
Jaksch, 2015; Katzer et al., 2020.
As in any review, choices regarding the scope, topics, and

focus need to be made. This review will not discuss transport
in mesoscopic systems, systems with disorder, or continuum
models. Out of the wide range of transport theory in lattice
models, here we emphasize certain Hamiltonians, results from
the Bethe ansatz, the role of newly discovered quasilocal
charges, results from GHD and a range of numerical methods,
and a comparison between linear-response theory and open
quantum systems. Field-theoretical approaches are important,
but complete coverage of the technical aspects and its
predictions are beyond the scope of this work; the interested
reader is referred to recent reviews (Sirker, 2020) and the
original literature for more details. The same goes for a wide
range of results for nonintegrable models, Floquet systems
[see Lange, Lenarčič, and Rosch (2018), Lenarčič, Altman,
and Rosch (2018), and Lenarčič, Lange, and Rosch (2018)],
transport in disordered systems, and many nonequilibrium
studies that are not covered here in full detail.
This review is organized as follows. First, we introduce the

calculations of transport coefficients within linear-response
theory in Sec. II. Then we discuss how nontrivial conservation
laws can constrain the dynamics of current correlations,
approaches based on the Bethe ansatz, and generalized
hydrodynamics in Sec. III. In Sec. IV, we cover recent
developments in theoretical and numerical methods, which
are intimately intertwined with the progress in the theory of
finite-temperature transport. The introductory sections are
concluded in Sec. V, which discusses open quantum systems.
After discussing the theoretical background and the methods,
in Secs. VI–X we cover specific models and results.
We extensively discuss the properties of the spin-1=2 XXZ

chain and stress the importance of local and quasilocal
conservation laws in Sec. VI. We provide an overview of
the established results and open questions for the Hubbard
chain in Sec. VII, while Sec. VIII is devoted to transport in
nonintegrable systems. Section IX covers examples of far-
from-equilibrium transport.
Finally, we provide a brief overview of key experimental

results in Sec. X. Besides experiments investigating the
steady-state thermal conductivity in quantum magnets, these
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also include measuring spin diffusion using NMR methods
and a more recent approach, namely, the driving
of spin currents in quantum magnets via the Seebeck
effect (Hirobe et al., 2017). In parallel, ultracold quantum
gases have emerged as an additional platform to inves-
tigate transport in 1D lattice models; see Ronzheimer et al.
(2013), Hild et al. (2014), Xia et al. (2015), and Vijayan
et al. (2020). A major result is the first observation
of ballistic nonequilibrium mass transport in a 1D inte-
grable model of strongly interacting bosons (Ronzheimer
et al., 2013).
The theoretical progress in characterizing the different

spin-transport regimes in the spin-1=2 XXZ chain that
include ballistic transport (i.e., finite Drude weights) and
diffusive and superdiffusive dynamics have stimulated
recent experiments with both quantum magnets and quan-
tum gases. A neutron-scattering study carried out in the
high-temperature regime on KCuF3 reports evidence for
superdiffusive spin dynamics that is consistent with the
Kardar-Parisi-Zhang behavior (Scheie et al., 2021). A
nonequilibrium optical-lattice experiment using 7Li atoms
has investigated the crossover from ballistic transport to
superdiffusion and diffusion in the same model as a
function of Δ (Jepsen et al., 2020).

II. LINEAR-RESPONSE THEORY

In most studies of transport in interacting 1D lattice
quantum systems, the linear response is the dominant
approach. In the context of this review, one reason is that
much of the focus has been on ballistic transport in integrable
models, which in linear-response theory is conveniently
characterized by the Drude weight. One appealing aspect of
linear-response theory is that correlation functions, in terms of
which transport coefficients are expressed, and specifically
their Fourier transformations (i.e., spectral functions) are
readily accessible in various scattering experiments.

A. Framework

We are interested in the transport of conserved quantities.
Specifically, we consider extensive quantities Q that (i) are
conserved (½Q;H� ¼ 0), and (ii) are expressed as a sum of
local terms qr whose support is localized around the site r,
Q ¼ P

r qr. These quantities are often referred to as
“conserved charges.” If Q is not conserved, one cannot,
in the strict sense, speak about transport because Q is not
just transported from one place to another but also locally
generated. To be concrete, in the review we often refer to a
specific example of a local Hamiltonian, i.e., the spin-1=2
XXZ model with H ¼ P

r hr;rþ1 and hr;rþ1 given in Eq. (1).
We focus on the two most local conserved quantities that
are connected to global symmetries of the model: energy
qr ¼ hr;rþ1 stems from the invariance under time trans-
lations, while conservation of magnetization or spin qr ¼ szr
is due to the Uð1Þ symmetry associated with rotations
around the z axis. For spin and energy, we have Q ¼ Sz ¼P

r s
z
r and Q ¼ H, respectively.

The definition of the corresponding local current jðQÞ
r ,

where the superscript labels the conserved quantity

Q,6 follows from requiring the validity of a continuity
equation and Heisenberg’s equation of motion. For instance,
take the total magnetization Sz½l;l0 � ≔

P
l0
r¼l s

z
r of a chain

subsection with indices fl; lþ 1;…; l0g. The time derivative
of Sz½l;l0 � should be given by the difference of local spin currents

jðSÞr flowing at the section’s edge,

dSz½l;l0 �
dt

þ jðSÞl0 − jðSÞl−1 ¼ 0; ð3Þ

which together with Heisenberg’s equation of motion _Sz½l;l0 � ¼
i½H; Sz½l;l0 �� naturally leads to the identification

jðSÞr ≔ i½szr; hr;rþ1�
¼ Jðsxrsyrþ1 − syrsxrþ1Þ: ð4Þ

Similarly, energy conservation leads to the energy current jðEÞr ,
defined as

jðEÞr ≔ i½hr−1;r; hr;rþ1�
¼ J½ΔðjðSÞr−1s

z
rþ1 þ szr−1j

ðSÞ
r Þ − jðSÞr−1;rþ1s

z
r�; ð5Þ

where the explicit expression is again written for
the XXZ model (1), and a two-index spin current is

jðSÞr−1;rþ1 ≔ Jðsxr−1syrþ1 − syr−1s
x
rþ1Þ. We note that the continuity

equation (3) does not uniquely define the current; one can
always add a divergence-free operator (such as a constant).
This ambiguity does not affect the dc conductivity, yet it
may affect the finite-frequency behavior. While energy
and spin currents can be defined microscopically, a defi-
nition of heat requires an excursion into thermodynamics
[see Ashcroft and Mermin (1976)], which is beyond the
scope of this review.
Before writing the linear-response expressions, we

give a simple classical example that illustrates their general
form. We assume that we are following a particle with a
coordinate xðtÞ and are interested in the variance Σ2 ≔ hx2ðtÞi,
where the average can be taken over different realizations
of the stochastic trajectory xðtÞ (or the distribution of
positions). Kinematics gives xðtÞ ¼ R

t
0 vðt1Þdt1, and therefore

the variance becomes
R
t
0

R
t
0hvðt1Þvðt2Þidt1dt2. Provided

that the process becomes stationary at long times and
hvðtÞi → 0, the correlation function depends only on the time
difference hvðt1Þvðt2Þi ¼ hvðt1 − t2Þvð0Þi, leading to Σ2 →R
t
0 2ðt − τÞhvðτÞvð0Þidτ in the long time limit. If in addition
the correlation function decays to zero for large τ (which is
assumed at this point but may not necessarily happen for a
specific model), one finally gets

Σ2 !t→∞
2Dt; D ≔

Z
∞

0

hvðτÞvð0Þidτ: ð6Þ

6For simplicity and in order to be consistent with the bulk of the
literature in the field, we use the labels S and E for spin and energy,
respectively.
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The interpretation is simple: the diffusion constant of the
coordinate is given by an integral of an autocorrelation
function of a “coordinate current”: the velocity. This is the
spirit of all linear-response formulas for transport coefficients
and rests on simple kinematics or, equivalently, on the
continuity equation for a conserved quantity. As we later
see, the same type of kinematic relation (an equality of the
second moment of the density autocorrelation function and
the integral of the current autocorrelation function) holds also
in lattice systems; see Sec. II.C.1. One remark is that the
aformentioned derivation is exact because it involves the full
nonequilibrium process vðtÞ, while in linear response the
validity is limited to small gradients of driving fields.
Linear-response theory deals with the response of a system

to an additional perturbation in the Hamiltonian. It sprouted
up from studies conducted in the 1950s that connected
equilibrium correlation functions and nonequilibrium proper-
ties, leading to the fluctuation-dissipation relation obtained by
Callen and Welton (1951) and to Green-Kubo type formulas
for the transport coefficients obtained by Green (1952, 1954)
and Kubo (1957); for an early review, see Zwanzig (1965).
The frequency-dependent conductivity LQQðωÞ is defined

via a Fourier-space proportionality J ðQÞðωÞ¼LQQðωÞFQðωÞ,
where FQðtÞ¼ ð1=2πÞR∞

−∞FQðωÞe−iωtdω is the driving field
and J ðQÞðωÞ is the extensive current, which in a lattice model
is J ðQÞðωÞ ≔ R∞

−∞ J ðQÞðtÞeiωtdt, with

J ðQÞðtÞ ≔
X
r

jðQÞ
r ðtÞ ð7Þ

a sum of local currents at lattice sites r. Note that here
and in the following we use the Heisenberg picture, i.e.,
J ðQÞðtÞ ≔ eiHtJ ðQÞe−iHt. One can think of the spin conduc-
tivity in the XXZ chain as a concrete example. In this case,
Q ¼ Sz ¼ P

r s
z
r, and the role of the driving field is played by

the gradient of the magnetic field. For the spin conductivity,
we use the following notation throughout this review:

σðωÞ ≔ LSSðωÞ: ð8Þ

Calculating the lowest-order response of the current oper-
ator to a Hamiltonian perturbation that consists of a linearly
increasing potential corresponding to a homogeneous field F
or, equivalently, the linear perturbation of an equilibrium
initial density operator, one gets the conductivity7

LQQðωÞ ¼ β lim
t→∞

lim
L→∞

Z
t

0

eiωτ
KJ ðQÞJ ðQÞ ðτÞ

L
dτ;

KABðtÞ ≔
1

β

Z
β

0

hBAðtþ iλÞidλ; ð9Þ

where KABðtÞ is the so-called Kubo (or canonical) correlation
function, with the brackets denoting the canonical average,
h•i ≔ trðe−βH•Þ=Z, Z ≔ trðe−βHÞ, and β ¼ 1=T ðkB ¼ 1Þ. The

conductivity LQQðωÞ has a standard form, as it is a Fourier
transformation of the correlation function in Eq. (9).
The Kubo correlation function KABðtÞ is real (Kubo, 1957)

for Hermitian A and B, and therefore LQQðωÞ is complex
LQQðωÞ ≔ L0

QQðωÞ þ iL00
QQðωÞ, where L0

QQðωÞ ¼ L0
QQð−ωÞ

and L00
QQðωÞ ¼ −L00

QQð−ωÞ [as well as L00
QQðω > 0Þ ≥ 0]. In

the context of the electrical conductivity, where Q is the
electrical charge, LQQðωÞ is often called the optical conduc-
tivity because it can be probed with light-reflectivity mea-
surements.8 The order of limits in Eq. (9) is important: taking
the limit t → ∞ first, one would probe the edge or finite-size
effects instead of bulk physics.
In the classical limit ℏ → 0 or in the high-temperature

limit β → 0, the Kubo correlation function goes to a
classical correlation function KABðtÞ → hBAðtÞi, and there-
fore one gets a classical expression for the conductivity
LQQðωÞ¼ limt→∞limL→∞ðβ=LÞ

R
t
0 e

iωτhJ ðQÞJ ðQÞðτÞidτ. The
zero-frequency conductivity at infinite temperature T → ∞
is therefore

lim
β→0

LQQð0Þ
β

¼ lim
t→∞

lim
L→∞

1

L

Z
t

0

hJ ðQÞJ ðQÞðτÞidτ. ð10Þ

This infinite-temperature limit is frequently referred to in this
review. Instead of the Kubo correlation KJ ðQÞJ ðQÞ ðtÞ, one
can express Eq. (9) in terms of other types of correlation
functions. For instance, one has the relation (Pottier, 2010)
KABðωÞ ¼ ð2=βωÞξABðωÞ with the spectral function ξABðtÞ ≔
ð1=2Þh½AðtÞ; B�i. Because KJ ðQÞJ ðQÞ ðtÞ is real and even,
KJ ðQÞJ ðQÞ ðωÞ is real as well and can be written as
KJ ðQÞJ ðQÞ ðωÞ¼ 2

R
∞
0 cosðωtÞKJ ðQÞJ ðQÞ ðtÞdt. Such a “one-

sided” Fourier transformation is exactly what is needed for
L0
QQðωÞ in Eq. (9) and results in the real part of the conductivity

L0
QQðωÞ ¼

i
ω

Z
∞

0

lim
L→∞

sin ðωτÞ
L

h½J ðQÞðτÞ;J ðQÞ�idτ; ð11Þ

wherewe have assumed that ξJ ðQÞJ ðQÞ ðtÞ is odd and we perform
the limit t→∞. Similarly, KABðωÞ¼½ð1−e−βωÞ=βω�CABðωÞ,
whereCABðtÞ ≔ hAðtÞBi, leading to the equivalent expressions

L0
QQðωÞ ¼

1 − e−βω

ω

Z
∞

0

lim
L→∞

Re½eiωτhJ ðQÞðτÞJ ðQÞi�
L

dτ

¼ 2thðβω=2Þ
ω

Z
∞

0

lim
L→∞

cos ðωτÞ
L

RehJ ðQÞðτÞJ ðQÞidτ:

ð12Þ

The imaginary part L00
QQðωÞ can be obtained using Kramers-

Kronig (Plemelj-Sokhotski) relations (Stone and Goldbart,
2009) or the fluctuation-dissipation theorem.

7For a concise derivation, see Kubo (1957), and for a more
pedagogical exposition, see Kubo, Toda, and Hashitsume (1991) or
Pottier (2010).

8Energy scales of correlated electrons in most materials are of the
order of electron volts (coinciding with visible light), the magnetic-
field strength is negligible, and the penetration depth of light in a
conductor ∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμ0LQQ

p
(≈2–20 nm) is larger than the lattice

spacing (≈0.5 nm) such that one probes the zero-wave-vector limit
of the driving field described by LQQðωÞ.
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If H conserves the total number of particles, so does the
current J ðQÞ, and therefore the same expression also holds
for a grand-canonical average with the density operator
ρ ∼ e−βðH−μNÞ, where μ is the chemical potential and N is
the particle number. In case the average current is not zero
(hJ ðQÞi ≠ 0), which happens if the total momentum is
conserved, one has to take the connected correlation function
or work in an ensemble with zero total momentum. For a
detailed discussion and definition of the corresponding con-
nected correlation functions, see Bonetto, Lebowitz, and
Rey-Bellet (2000) and Lepri, Livi, and Politi (2003).
The linear-response formulas for the specific case of energy

transport are somewhat trickier to derive, as there is no obvious
microscopic driving potential (Zwanzig, 1965) [see also
Gemmer, Steinigeweg, and Michel (2006) for studies in
concrete systems], such as the magnetic or electric field for
magnetization or particle transport. The driving force is the
gradient of the inverse temperature, which is a thermodynamic
quantity and not a microscopic one. This is connected to the fact
that the Hamiltonian, whose expectation value is the energy, is
itself the generator of dynamics and therefore plays a special
role in thermodynamics. Nevertheless, one can identify a
perturbation Hamiltonian that is equivalent to a thermal
perturbation, ultimately leading to the same Green-Kubo type
expression (Luttinger, 1964; Pottier, 2010) as for the previously
discussed generic conductivity LQQðωÞ. Defining the energy-
transport coefficient κðωÞ ¼ βLEEðωÞ as the proportionality
factor of the energy current J ðEÞðωÞ ¼ −κðωÞ∇TðωÞ (at
vanishing expectation value of the particle current), one gets

κðωÞ¼ βLEEðωÞ¼ lim
t→∞

lim
L→∞

β2
Z

t

0

eiωτ
KJ ðEÞJ ðEÞ ðτÞ

L
dτ: ð13Þ

The difference compared to the conductivity given in Eq. (9) is
an additional factor of β ¼ 1=T stemming from the fact that κ is
the proportionality factor between the current and ∇T instead
of ∇T=T.
In general, one can also have nonzero cross-transport

coefficients, in which case one has to deal with the entire
Onsager matrix9 L̃QQ0 . To ensure that the matrix L̃ has
the correct symmetry,10 one has to be careful (Mahan,
1990; Pottier, 2010) with the choice of driving forces FQ,
which are equal to gradients of intensive quantities obtained
by entropy derivatives. One way is to start from the entropy
production rate ds=dt ¼ P

Q J ðQÞFQ=L, from which one can

identify currents J ðQÞ and corresponding forces FQ. To linear
order, the relations between currents and forces take the form

J ðQÞ ¼
X
Q0

L̃QQ0FQ0 : ð14Þ

Since the entropy production rate is
P

Q;Q0 L̃QQ0FQFQ0 , the

Onsager matrix has to be positive semidefinite, L̃ ≥ 0. Using
Hamiltonian linear-response theory, L̃QQ0 are given by the

Kubo correlation function KJ ðQÞ _AQ
, where AQ is the operator

coupled to FQ.
11 For instance, one has _AE ¼ TJ ðEÞ and

FE ¼ ∇ð1=TÞ for energy transport and _AS ¼ TJ ðSÞ and
F S ¼ −∇ðb=TÞ for spin transport (b is the magnetic field),
so that zero-frequency transport coefficients can be written as

L̃QQ0 ¼
Z

∞

0

lim
L→∞

KJ ðQÞJ ðQ0 Þ ðτÞ
L

dτ: ð15Þ

In the uncoupled case, i.e., L̃ES ≡ 0, one has κ ¼ L̃EE=T2 and
σ ¼ L̃SS=T, recovering Eqs. (13) and (9).
The conductivity satisfies various sum rules: formulas

expressing moments of LQQðωÞ in terms of correlation
functions (or derivatives thereof) at t ¼ 0. They are useful
mostly in phenomenological theories as well as in experiments
because they represent rigorous constraints on LQQðωÞ, for
instance, on the large-frequency behavior. For their form see
Pottier (2010). A particularly simple example is

Z
∞

−∞
dω lim

β→0

LQQðωÞ
β

¼ π lim
L→∞

tr½J ðQÞJ ðQÞðt ¼ 0Þ�
LZ0

; ð16Þ

with Z0 ¼ Zðβ → 0Þ. For sum rules for the thermal conduc-
tivity κðωÞ see Shastry (2006).
Linear response is limited to sufficiently small driving

fields. While the range of validity of linear response is system
specific, we now comment on the validity of perturbation
theory used in its derivation. One can argue (Kubo, Toda, and
Hashitsume, 1991) that linear response should not work since
the microscopic evolution is, in general, unstable against
perturbations. This applies, in particular, to the limit t → ∞
needed to evaluate the conductivity. The point is rather subtle:
it is true that for generic observables and initial pure states
perturbation theory will fail, yet, nevertheless, in the linear-
response regime we are interested in smooth observables and
specific states: the equilibrium density matrices. A perturba-
tion will change microscopic dynamics and potentially even
make it chaotic, but this same chaoticity also guarantees that at
long times the system will locally self-thermalize such that the
density matrix will change little. In short, a generic system
with good thermalization properties is microscopically unsta-
ble but macroscopically stable (Dorfman, 1999).

B. Ballistic versus diffusive transport in the context
of current correlations

In this section, we discuss the small-frequency behavior of
transport coefficients. This is of special importance because
the limit ω → 0 probes the slowest long-wavelength modes
that are often of a hydrodynamic nature (note that we also
implicitly take the momentum q → 0, preceding frequency
ω → 0). Here and in Sec. II.C.1, we exclusively focus on the
case of spin transport σðωÞ ¼ LSSðωÞ.
Of particular interest is the real part of the conductivity

σðωÞ, with the imaginary part being zero [σ00ð0Þ ¼ 0] due to
the symmetry σ00ðωÞ ¼ −σ00ð−ωÞ. σ0ðω → 0Þ can diverge.9Note that L and L̃ differ by a factor of β.

10For a time-reversal invariant system and observables with the
same parity under time reversal, L̃ is symmetric. 11Note that AQ ≠ Q. For spin transport,Q ¼ Sz and AQ ¼ P

r rs
z
r.
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To this end, it is useful to decompose σ0ðωÞ into a singular and
a regular part

σ0ðωÞ ≔ 2πDðSÞ
w δðωÞ þ σregðωÞ; ð17Þ

where the prefactor DðSÞ
w is called the Drude weight (Kohn,

1964; Scalapino,White, and Zhang, 1992).We use the notation

DðSÞ
w to distinguish it from the diffusion constantDðSÞ. In older

literature, it is often called spin stiffness (Shastry and
Sutherland, 1990). Alternatively, using Kramers-Kronig rela-

tions, one can see that σ00ðω→ 0Þ¼ limϵ→0½2ω=ðω2þ ϵ2Þ�DðSÞ
w ,

and therefore DðSÞ
w ¼ limω→0þðω=2Þσ00ðωÞ.

To get an idea of the typical behavior of σðωÞ, it is
instructive to take a look at the simple Drude model
of conduction (Ashcroft and Mermin, 1976).12 The
original Drude model consists of classical charged particles
that are accelerated by the electric field and damped by a force
proportional to their velocity. One gets σðωÞ ¼ σ0=ð1 − iωτÞ,
where τ is the relaxation (damping) time and σ0 ≔ ne2τ=m,
with m the mass and n the carrier density.13 The real part is
therefore σ0ðωÞ ¼ σ0=ð1þ ω2τ2Þ, while the imaginary
part is σ00ðωÞ ¼ σ0ωτ=ð1þ ω2τ2Þ. At finite τ, one has dif-
fusive transport with a Lorentzian σ0ðωÞ corresponding
to an exponential decay of the autocorrelation function
CJ ðSÞJ ðSÞ ðtÞ ∼ e−t=τ. In the limit of no relaxation τ → ∞, σ0

diverges as ∼τ at its peak at ω ¼ 0, resulting in a nonzero

Drude singularity σ0ðω→0Þ→2πDðSÞ
w δðωÞ, with DðSÞ

w ¼ ne2=
ð2mÞ. In the opposite limit of fast relaxation τ → 0, where the
autocorrelation function is CJ ðSÞJ ðSÞ ðtÞ ∼ δðtÞ, one gets a broad
white noise conductivity σðωÞ ¼ const.
The definition of the Drude weight by Eq. (17) is not unique

per se; namely, for a physicist the Dirac delta function simply
indicates a singularity without specifying its type, with
different possible representations. The singularity can be
characterized with a scaling exponent α as

σ0ðω → 0Þ ∼ jωjα: ð18Þ
We use a self-consistent convention where the singularity with
α ¼ −1 (as in the Drude model in the limit of zero relaxation)
is put into the Dirac delta, while weaker integrable singular-
ities with −1 < α < 0 are retained in σreg. Note that in systems
with a bounded local Hilbert space (or in an unbounded one at
finite energy density) the singularity cannot be stronger than
1=jωj. That is, if one splits the correlation function

C0
J ðSÞJ ðSÞ ðtÞ ≔

RehJ ðSÞðtÞJ ðSÞi
L

¼ hJ ðSÞðtÞJ ðSÞi þ hJ ðSÞð−tÞJ ðSÞi
2L

ð19Þ

as C0
J ðSÞJ ðSÞ ðtÞ ≔ C̄0

J ðSÞJ ðSÞ þ C̃0
J ðSÞJ ðSÞ ðtÞ into the average

C̄0
J ðSÞJ ðSÞ ≔ limt→∞ð1=tÞ

R
t
0 C

0
J ðSÞJ ðSÞ ðτÞdτ and a time-depen-

dent part C̃0
J ðSÞJ ðSÞ ðtÞ, the Green-Kubo formula (11) gives

σ0ðωÞ ¼ βπC̄0
J ðSÞJ ðSÞδðωÞ

þ 2thðβω=2Þ
ω

Z
∞

0

cos ðωτÞ C̃0
J ðSÞJ ðSÞ ðτÞdτ: ð20Þ

Comparing Eq. (20) with Eq. (17), we see that

DðSÞ
w ¼ β

2
C̄0
J ðSÞJ ðSÞ : ð21Þ

DðSÞ
w can now be used to classify transport, following initial

studies performed in the zero-temperature case (Shastry and
Sutherland, 1990; Scalapino, White, and Zhang, 1992, 1993).

Since the Drude weight DðSÞ
w in Eq. (21) trivially vanishes in

the high-temperature limit β → 0, a suitable quantity for the

classification of transport is not DðSÞ
w itself but rather the

quantity

D̃ðSÞ
w ≔

DðSÞ
w

β
: ð22Þ

If D̃ðSÞ
w ≠ 0, i.e., α ¼ −1, one speaks of an ideal conductor,

exhibiting a kind of transport that we refer to as ballistic in the

review. If D̃ðSÞ
w ¼ 0, one can distinguish among three situations

(see Fig. 1): (i) if 0 < σregð0Þ=β < ∞, i.e., α ¼ 0, the system is
a normal, diffusive conductor; (ii) if σregðω → 0Þ=β → ∞, i.e.,
−1 < α < 0, one has superdiffusion; and (iii) if σregð0Þ=β ¼ 0,
i.e., α > 0, one has subdiffusive transport (including

the extreme case of localization). If D̃ðSÞ
w ≠ 0, the transport

types (i)–(iii) must be understood as subleading corrections to
ballistic transport.
In case (i) one obtains a finite diffusion constant. While

σregðωÞ is a microscopic quantity, this is not the case for the
diffusion constant and one has to define it in terms of an
appropriate phenomenological macroscopic relation. A
common way is via Fick’s law

FIG. 1. The three different scenarios that one can envision for
the behavior of the regular part of the optical conductivity σ0ðωÞ
(solid lines) at finite temperature. The point at ω ¼ 0 indicates the
Drude weight, which may coexist with a nonzero regular part.

12To this end, we make use of the mapping of spin-1=2 degrees of
freedom to spinless fermions via the Jordan-Wigner transformation.

13In good conductors at room temperature, τ ∼ 10−14 s, corre-
sponding to a mean free path of a few lattice spacings.
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J ðSÞ ¼ −DðSÞ∇Sz; ð23Þ

where DðSÞ is the spin-diffusion constant. We can express it
with σregðω → 0Þ using Eqs. (14) and (15). At fixed T, we also
have J ðSÞ ¼ −LSS∇ðbÞ=T, which after equating it with Fick’s
law gives the spin-diffusion constant

DðSÞ ¼ σregð0Þ
χ

; ð24Þ

where b is the magnetic field. The denominator is equal to
the static spin susceptibility χ¼ðβ=LÞ½hðSzÞ2i− hSzi2�, which
goes as β=4 in the limit of infinite temperature. In turn, the
diffusion constant at infinite T is

DðSÞ ¼ 4 lim
t→∞

lim
L→∞

1

L

Z
t

0

hJ ðSÞJ ðSÞðτÞidτ: ð25Þ

We stress that Eq. (25) holds in the case of a vanishing Drude
weight only.
The Drude weight can also be connected to the sensitivity of

the spectrum to a threading flux ϕ, in essence probing the
sensitivity to boundary conditions. This was originally used
for the ground state (Kohn, 1964) and then extended to finite T
by Castella, Zotos, and Prelovšek (1995), leading to

DðSÞ
w ¼ 1

L

X
α

pα
1

2

∂2Eα

∂ϕ2

����
ϕ¼0

; ð26Þ

where Eα are eigenenergies and pα ≔ e−βEα=Z are the
Boltzmann weights. Completely analogous Drude weights
can also be defined for the transport of other quantities.
A finite Drude weight implies that the current autocorre-

lation function exhibits a plateau at long times. Such a nonzero
plateau is typically an indication of a conserved quantity.
Indeed, it is intuitively clear that a conserved operator that has
a nonzero overlap with the current operator causes a plateau in
the current autocorrelation function. The argument can be
formalized in the form of the so-called Mazur (in)equality,
first studied by Mazur (1969) and Suzuki (1971), which
bounds the time-averaged autocorrelation C̄0

J ðSÞJ ðSÞ by con-
stants of motion. One has

C̄0
J ðSÞJ ðSÞ ≥

X
n

1

L
hJ ðSÞQni2

hQ2
ni

; ð27Þ

where the sum runs over Hermitian constants of motion Qn,
½Qn;H�¼0, which are chosen to be orthogonal (hQnQmi∝
δnm). The equality in Eq. (27) holds if the sum is over a
complete set of all Qn. The bracket is a standard canonical
average. However, if one wants to bound the Kubo autocorre-
lation function, one uses the Kubo-Mori (Mori, 1965) (also
called Bogoliubov) inner product KJ ðSÞQn

ð0Þ as defined in
Eq. (9). Mazur’s inequality (27), together with Eq. (21), can be
used to bound the Drude weight from below (Zotos, Naef, and
Prelovšek, 1997) as

DðSÞ
w ≥

β

2
lim
L→∞

X
n

1

L
hJ ðSÞQni2

hQ2
ni

: ð28Þ

We remark that using a complete set of eigenstate projectors
instead ofQn in Eq. (28) does not work because the right-hand
side is zero since the sum is exponentially small in L. The
important conserved quantities are (quasi)local conserved Qn
for which overlaps are not necessarily exponentially small.
For anomalous superdiffusive transport, the Drude weight is

zero but the decay of the autocorrelation function is slow,
resulting in a diverging diffusion constant DðSÞ. We note that
in such anomalous cases the application of the linear-response
formula is in practice not straightforward (Kundu, Dhar, and
Narayan, 2009; Wu and Berciu, 2010).
We previously discussed the effect of exact conservation

laws, captured via Mazur’s inequality. Weakly violated or
approximately conserved quantities may also affect the long-
time decay of current autocorrelation functions; see Rosch
(2006) for a discussion.

C. Time evolution of inhomogeneous densities

1. Generalized Einstein relations

Another widely used approach to study transport (we again
focus exclusively on the spin case) is to prepare a non-
equilibrium initial state

ρ ≠ ρeq ð29Þ

and follow the dynamics of expectation values

hδszrðtÞi ¼ tr½ρðtÞδszr�; ð30Þ

where ρðtÞ ¼ e−iHtρeiHt is the unitary time evolution in an
isolated quantum system governed byH and δszr ¼ szr − hszrieq
measures the deviation of the local density szr from its value
hszrieq at equilibrium. In such a situation, a variety of different
initial states can be prepared: They can be mixed or pure,
entangled or nonentangled, close to or far from equilibrium, as
resulting from sudden quenches or from joining two semi-
infinite chains at different equilibria; see Sec. IX.B. Various
initial profiles can be realized as well: They can be spatially
localized, domain walls, staggered, etc. We stress that the
situations considered in this section are not necessarily limited
to the linear-response regime and are therefore more general.
A general strategy for analyzing dynamical behavior is

given by the spatial variance

Σ2ðtÞ ¼
X
r

�hδszrðtÞi
hδSzi r2 −

�hδszrðtÞi
hδSzi r

�
2
�
; ð31Þ

with the time-independent sum hδSzi ¼ P
rhδszrðtÞi [i.e.,P

rhδszrðtÞi=hδSzi ¼ 1 is properly normalized], and we
assume that hδszrðtÞi > 0. Thus, the spatial variance yields
information on the overall width of the profile. In the case in
which diffusive dynamics is realized at all times,

d
dt

Σ2ðtÞ ¼ 2DðSÞ: ð32Þ

Here the quantity DðSÞ is a time- and space-independent
diffusion constant.
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In general, the spatial variance in Eq. (31) is unrelated to the
previously discussed linear-response functions. However, a
relation can be derived if the initial state ρ is close enough to
the equilibrium state ρeq. To this end, consider the specific
nonequilibrium state

ρ ∝ exp

�
−β

�
H − ε

X
r

prszr

��
; ð33Þ

i.e., a thermal state of the Hamiltonian H, but now with
an additional potential

P
r prszr of strength ε. As shown by

Kubo, Toda, and Hashitsume (1991), Eq. (33) can be
expanded in ε as

ρ ¼ ρeq

�
1þ ε

Z
β

0

dβ0
X
r

preβ
0Hδszre−β

0H þOðε2Þ
�
: ð34Þ

If ε is a sufficiently small parameter, the expansion can be
truncated to linear order. Using this truncation, the expectation
values hδszrðtÞi become

hδszrðtÞi ¼ εβ
X
r0
pr0Kδszr0δs

z
r
ðtÞ: ð35Þ

Assuming that hδszrðtÞi remains negligibly small at the
boundary of the lattice, the time derivative of the spatial
variance can be written in the form (Bohm and Leschke, 1992;
Steinigeweg, Wichterich, and Gemmer, 2009; Yan, Jiang, and
Zhao, 2015)

d
dt

Σ2ðtÞ ¼ 2DðSÞðtÞ; ð36Þ

where the time-dependent diffusion constant is given by

DðSÞðtÞ ¼ β

χ

Z
t

0

dt0KJ ðSÞJ ðSÞ ðt0Þ ð37Þ

with the static susceptibility

χ ¼ β

L
KδSzδSz : ð38Þ

As mentioned, one has χ ¼ β=4 for the specific case of high
temperatures.
Equation (37) is a generalized Einstein relation as it holds

for any time t. In particular, in the longtime limit t → ∞, it
simplifies to the usual Einstein relation if the current auto-
correlation function decays sufficiently fast to zero

lim
t→∞

DðSÞðtÞ ¼ DðSÞ ¼ σdc
χ

; ð39Þ

where σdc ¼ σregð0Þ is the dc conductivity as obtained from
linear-response theory; i.e., Eq. (39) is identical to Eq. (24).
Therefore, the existence of σdc implies a diffusive scaling of the
spatial variance in time, at least for the specific initial state ρ in
Eq. (33) with a small parameter ε. However, it is worth pointing
out that the requirement of a strictly mixed state can be relaxed
by employing the concept of typicality; see Sec. IV.C.

Since the generalized Einstein relation is not restricted to
the limit of large times or to the case of diffusion, it allows one
to investigate both different time scales and different types
of transport. For example, it predicts a ballistic scaling
DðSÞðtÞ ∝ t and Σ2ðtÞ ∝ t2 at short times t ≪ τ before a
diffusive scaling DðSÞðtÞ ¼ DðSÞ and Σ2ðtÞ ∝ t may finally
set in at intermediate times t > τ. It also captures the influence

of a Drude weight DðSÞ
w > 0. A finite Drude weight DðSÞ

w > 0

implies a ballistic scaling

DðSÞðtÞ ∝ DðSÞ
w

χ
t ð40Þ

and Σ2ðtÞ ∝ t2 at large times.
Finally, we remark that a power-law scaling of

Σ2ðtÞ ∝ tα
0 ð41Þ

indicates subdiffusion for 0 < α0 < 1 and superdiffusion for
1 < α0 < 2; see Fig. 2. Because of the generalized Einstein
relation in Eq. (37), such a power-law scaling in time also
implies that the frequency dependence of the conductivity
σ0ðωÞ is given by the power law (Maass et al., 1991; Dyre
et al., 2009; Stachura and Kneller, 2015; Luitz and Lev, 2017)

σ0ðωÞ ∝
Z

∞

0

dt eiωttα
0−2 ∝ jωj1−α0 ; ð42Þ

i.e., Eq. (18) with α ¼ 1 − α0.

2. Diffusion

While the spatial variance in Eq. (31) is a useful quantity for
studying transport, it yields no information beyond the overall
width of a profile. In particular, to draw reliable conclusions
on the existence of diffusion it is necessary to require the full
spatial dependence of a profile to be described by the diffusion
equation. In one dimension and for a discrete lattice, the
diffusion equation reads

dhδszrðtÞi
dt

¼ DðSÞ½hδszr−1ðtÞi − 2hδszrðtÞi þ hδszrþ1ðtÞi�; ð43Þ

FIG. 2. Different scenarios for the time-dependent diffusion
constant DðSÞðtÞ: ballistic, superdiffusive, and diffusive (top to
bottom). The behavior in the short-time limit is always ballistic,
and the typical exponents in the longtime dynamics are indicated
as t1, tα (0 < α < 1), and t0, respectively.
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where DðSÞ again denotes a time- and space-independent
diffusion constant and the right-hand side can be viewed as a
discretized version of the Laplacian ∂2=∂r2. It is important to
note that Eq. (43) is a phenomenological description for the
expectation values hszrðtÞi and their irreversible relaxation
toward equilibrium. A rigorous justification is still a challenge
to theory (Casati et al., 1984; Bonetto, Lebowitz, and Rey-
Bellet, 2000; Lepri, Livi, and Politi, 2003; Buchanan, 2005;
Michel, Mahler, and Gemmer, 2005; Dhar, 2008; Ljubotina,
Žnidarič, and Prosen, 2017). For such a description and in the
following discussion, one does not need to specify the initial
state in detail; however, note that this statistical description is
often discussed in the context of correlation functions
(Kadanoff and Martin, 1963; Steiner, Villain, and Windsor,
1976; Forster, 1990). We stress that the diffusion in Eq. (43) is
a statistical process starting at time t ¼ 0 and occurring
between individual lattice sites; i.e., it implicitly assumes a
mean free time τ ¼ 0 and a mean free path l ¼ 0. Since τ > 0

and l > 0 in specific models, it holds only when the density
profile has become sufficiently broad. In terms of the density
modes discussed later, statistical behavior is thus restricted to
sufficiently small momenta.
For a local injection at some site r0, i.e., hδszr¼r0 ð0Þi ≠ 0 and

hδszr≠r0 ð0Þi ¼ 0, the solution of Eq. (43) reads

hδszrðtÞi
hδSzi ¼ expð−2DðSÞtÞIr−r0 ð2DðSÞtÞ; ð44Þ

where IrðtÞ is the modified Bessel function of the first kind
and of the order of r. This lattice solution is well approximated
by the corresponding continuum solution

hδszrðtÞi
hδSzi ¼ 1ffiffiffiffiffi

2π
p

ΣðtÞ exp
�
−
ðr − r0Þ2
2Σ2ðtÞ

�
; ð45Þ

where the spatial variance Σ2ðtÞ ¼ 2DðSÞt was introduced in
Sec. II.C.1. Thus,

hδszr¼r0 ðtÞi ∝
1

ΣðtÞ ∝
1ffiffi
t

p : ð46Þ

Since the diffusion equation is a linear differential equation,
the general solution can be constructed as a superposition of δ
injections at different positions.
At this point, it is instructive to provide a link

to correlation functions. To this end, consider the specific
initial state ρ in Eq. (33) with coefficients pr¼r0 ≠ 0 and
pr≠r0 ¼ 0. For sufficiently small ε, the expectation values
hδszrðtÞi become

hδszrðtÞi ¼ εβpr0Kδszr0δs
z
r
ðtÞ: ð47Þ

For high temperatures, Kδszr0δs
z
r
ð0Þ ∝ δr;r0 , and in the case of

diffusion hδszrðtÞi satisfies Eqs. (44) and (45) (Steinigeweg,
Jin, Schmidtke et al., 2017).
Returning to the general case, we find that it is often

convenient to study diffusion not only in real space but also in
the space of lattice momenta (reciprocal space)

q ¼ 2πk
L

; k ¼ 0;…; L − 1: ð48Þ

Note that the lattice spacing is set to 1. The quasimomentum
representation is particularly useful since a discrete Fourier
transform

hδszqðtÞi ¼
1ffiffiffiffi
L

p
X
r

eiqrhδszrðtÞi ð49Þ

decouples the diffusion equation in Eq. (43). Hence, after this
transformation it becomes the simple rate equation

dhδszqðtÞi
dt

¼ −q̃2DðSÞhδszqðtÞi; ð50Þ

where the momentum dependence q̃2 ¼ 2ð1 − cos qÞ may be
given as q̃2 ≈ q2 for sufficiently small q. The solution of
Eq. (50) is an exponential decay of the form (Steiner, Villain,
and Windsor, 1976)

hδszqðtÞi
hδszqðt ¼ 0Þi ¼ e−q̃

2DðSÞt: ð51Þ

Thus, the general solution of the diffusion equation can also be
written as a superposition of exponential decays at different
momenta. For instance, the Bessel solution in Eq. (44) can be
written in the form

hδszrðtÞi
hδSzi ¼ 1

L

X
q

e−iqðr−r0Þe−q̃2DðSÞt: ð52Þ

This form makes it particularly clear when the Gaussian in
Eq. (45) is a good approximation: The quasimomentum q
must be sufficiently dense; i.e., L must be sufficiently large
and, in addition, time t must be sufficiently long.
As the Fourier modes hδszqðtÞi decay exponentially in the

case of diffusion, their spectral representation

hδszqðωÞi ¼
Z

∞

0

dt eiωthδszqðtÞi ð53Þ

becomes a Lorentzian of the form (Kadanoff and Martin,
1963)

Re

� hδszqðωÞi
hδszqðt ¼ 0Þi

�
¼ q̃2DðSÞ

ðq̃2DðSÞÞ2 þ ω2
; ð54Þ

with the sum rule

Z
∞

−∞
dωRe

� hδszqðωÞi
hδszqðt ¼ 0Þi

�
¼ π: ð55Þ

This Lorentzian line shape occurs for all momenta and
frequencies, which reflects the fact that the diffusion equa-
tion (43) assumes a mean free path l ¼ 0 (and mean free time
τ ¼ 0). However, if l and τ are finite, a Lorentzian line shape
can occur only in the hydrodynamic limit where momentum
and frequency are both sufficiently small.
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Finally, it is instructive to discuss correlation functions
again. Focusing on the specific initial state ρ in Eq. (33),
starting from Eq. (47) and assuming translation invariance
of H, it is straightforward to show that

hδszqðtÞi ¼ εpr0χqðtÞ; ð56Þ

with the correlation function

χqðtÞ ¼ βKδszqδs
z
−q
ðtÞ: ð57Þ

Therefore, in the case of diffusion the correlation function
χqðtÞ is an exponential and the real part of its Fourier
transform χqðωÞ is a Lorentzian.
The continuity equation in momentum space

dδszqðtÞ
dt

¼ ðeiq − 1ÞjðSÞq ðtÞ ð58Þ

allows one to relate χqðtÞ to the correlation function

σqðtÞ ¼ βK
jðSÞq jðSÞ−q

ðtÞ: ð59Þ

In the time domain, this relation reads

σqðtÞ ¼ −
1

q̃2
d2χqðtÞ
dt2

ð60Þ

and as a function of frequency it becomes

Re σqðωÞ ¼
ω2

q̃2
Re χqðωÞ: ð61Þ

Therefore, if the dynamics is diffusive, the Lorentzian in
Eq. (54) implies that

Re

�
σqðωÞ

χqðt ¼ 0Þ
�
¼ DðSÞω2

ðq̃2DðSÞÞ2 þ ω2
: ð62Þ

In the limit of small momentum, one thus obtains the Einstein
relation

lim
q→0

Re

�
σqðωÞ

χqðt ¼ 0Þ
�
¼ DðSÞ: ð63Þ

Note that no frequency dependence is left as the mean free
time is assumed to be τ ¼ 0. This broad conductivity also
arises in the Drude model of conduction discussed earlier.
To summarize this section, Fig. 3 sketches diffusion in

(a) time t and real space r, (b) time t and momentum space q,
and (c) frequency ω and momentum space q.

III. EXPLOITING INTEGRABILITY

In this section, we see how integrability affects the finite-
temperature transport properties. Here we emphasize the
important role played by local and quasilocal conservation
laws, showing that they can lead to ballistic transport.
Specifically, in Sec. III.A we show that a systematic con-
struction of quasilocal charges provides lower bounds for
Drude weights and diffusion constants. In Secs. III.B
and III.C, we describe methods to obtain closed-form ana-
lytical predictions for these quantities. In particular,
Sec. III.B.3 reports on the predictions for spin and energy
Drude weights obtained using the TBA formalism, whereas
Sec. III.C gives an introduction to GHD and describes its
predictions for the Drude weights and diffusion constants of
all conserved charges. Most of the ideas are exemplified in the
paradigmatic case of the spin-1=2 XXZ chain.
Sections III.B.1 and III.B.2 give a detailed introduction to

the Bethe ansatz and TBA and establish a coherent formalism
to express both the TBA results for transport coefficients
and GHD.

A. Role of local and quasilocal conserved charges

Quantum integrability is based on the existence of two
key objects (Korepin, Bogoliubov, and Izergin, 2005;
Faddeev, 2016). The first one is the R matrix, which can
be understood as an abstract unitary scattering operator Řj;lðλÞ
acting over a pair of local finite-dimensional physical Hilbert
spaces Hj ≃Hl ≃ Cd. The R matrix depends on a free
complex spectral parameter λ and satisfies the Yang-Baxter
equation. The second key object is the Lax operator Lj;aðλÞ,
which acts on a pair of Hilbert spaces that are in principle
different: the local Hilbert spaceHj and the so-called auxiliary
space Va of dimension Na, which can be finite or infinite.
These two spaces carry the physical and auxiliary represen-
tation of the quantum symmetry of the problem, respectively.
This symmetry is concisely expressed by the so-called RLL
relation14

FIG. 3. Diffusive spreading of a spin-density perturbation as a
function of (a) time t and real space r, (b) time t and momentum
space q, and (c) frequency ω and momentum space q.

14RLL stands for R-matrix—Lax matrix—Lax matrix.
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Řj;lðμÞLj;a

�
λþ μ

2

�
Ll;a

�
λ −

μ

2

�

¼ Lj;a

�
λ −

μ

2

�
Ll;a

�
λþ μ

2

�
Řj;lðμÞ: ð64Þ

The RLL equation is another form of the Yang-Baxter
relation. For a given Řj;lðμÞ, one can construct the two-site
local Hermitian operator

hj;jþ1 ¼
d
dλ

Řj;jþ1ðλÞjλ¼0; ð65Þ

which gives the Hamiltonian density (H ¼ P
L
j¼1 hj;jþ1) of the

corresponding integrable model, where periodic boundary
conditions can be assumed for simplicity.
A critical consequence of integrability is the existence of an

extensive number of local conserved quantities, which are
generated via logarithmic derivatives

Qn ¼
dn

dλn
log τðλÞjλ¼λ0

ð66Þ

of the fundamental transfer matrix, an operator over ⊗j Hj ≃
ðCdÞ⊗L defined as follows:

τðλÞ ¼ tr0L1;0ðλÞL2;0ðλÞ � � �LL;0ðλÞ: ð67Þ

Here Lj;0ðλÞ is the Lax operator in the fundamental repre-
sentation, where the auxiliary space is isomorphic to the local
physical space. At the special point λ ¼ λ0, the Lax operator
Lj;0ðλÞ degenerates to a permutation operator Lj;0ðλ0Þ ¼ Pj;0

acting as Pjψi ⊗ jϕi ¼ jϕi ⊗ jψi. This property is instru-

mental for showing that Qn ¼
P

L
l¼1 q

ðnÞ
l are in fact extensive

sums of local densities qðnÞl . The conservation law property
½H; τðλÞ�≡ ½H;Qk�≡ 0 is then a simple consequence of the
RLL relation (64), and, similarly, the involution property
½τðλÞ; τðμÞ�≡ ½Qj;Qk�≡ 0 follows from another form of
Yang-Baxter equation. In fact, one can fix normalization such
that H ¼ Q1.
This construction applies to the paradigmatic example of

the spin-1=2 XXZ chain. In this case, the local Hilbert space
is Hj ¼ C2 and Řj;lðλÞ is the standard six-vertex R matrix
(Baxter, 1982). Using the parametrization

Δ ¼ cosðηÞ; ð68Þ
the general Lax operator can be written as

Lj;aðλ; sÞ ¼
2 sin η
sin λ

ðSþa s−j þ S−a s
þ
j Þ

þ cosðηSzaÞ1þ 2ðcot λÞ sinðηSzaÞszj; ð69Þ

where the local spin operators sαj ¼ ð1=2Þσαj , α ∈ fþ;−; zg,
act over the local physical space, while Sþ;−;z

a span an
irreducible highest-weight representation of the q-deformed
angular momentum algebra (q ¼ eiη) SUqð2Þ. This represen-
tation depends on a free complex parameter s ∈ C and is
generically infinite dimensional

Sza ¼
X∞
n¼0

ðs − nÞjnihnj;

Sþa ¼
X∞
n¼1

sin nη
sin η

jn − 1ihnj;

S−a ¼
X∞
n¼1

sinð2s − nþ 1Þη
sin η

jnihn − 1j: ð70Þ

However, either (i) for half-integer spin s ∈ ð1=2ÞZ or (ii) for
any s ∈ C but root-of-unity anisotropies η ¼ πl=m (l; m
coprime integers) this irreducible representation truncates to a
finite dimension Na ¼ 2sþ 1 or Na ¼ m, respectively. In this
case, the sums in Eqs. (70) run up to n ¼ Na − 1. One can thus
define a general family of commuting transfer matrices

τðλ; sÞ ¼ traL1;aðλ; sÞL2;aðλ; sÞ � � �LL;aðλ; sÞ; ð71Þ
satisfying ½H; τðλ; sÞ� ¼ 0 for all λ, s, again as a consequence
of Eq. (64), while τðλ; 1=2Þ≡ τðλÞ.
For every fixed s, the transfer matrix τðλ; sÞ generates the

following sequence of additional conserved charges:

Qn;s ¼
dn

dλn
log τðλ; sÞjλ¼η=2: ð72Þ

Therefore, one can argue that the sequence of local chargesQn
stemming from the fundamental transfer-matrix equation (67)
is not complete and is not sufficient to describe the statistical
mechanics of integrable models. Indeed, Ilievski, Medenjak,
and Prosen (2015) showed that for s > 1=2 the charges in
Eq. (72) are linearly independent from the family of local
charges Qn;s ≡Qn;1=2 and are essentially local. More for-
mally, for any size L, a generic charge Q ¼ Qn;s in Eq. (72)
can be written as an extensive series Q ¼ P

r

P
L
l¼1 ql;r of r-

site local densities ql;r with an exponentially decaying vector
norm (i.e., h½ql;r�2i < Ce−r=ξ for some fixed C; ξ > 0). This
property, called quasilocality, implies extensivity in the sense
that 0 < limL→∞hQ2i=L < ∞. One may argue that those in
Eq. (72), together with the total magnetization Sz, form a
complete set of charges for jΔj ≥ 1. Note that for any Δ one
can establish a one-to-one correspondence between the known
(quasi)local charges and the string excitations using the so-
called string-charge duality (Ilievski, Quinn et al., 2016).
All the chargesQn;s generated by unitary representations of

SUqð2Þ are even under a generic Z2 particle-hole symmetry
of the model, as in the case of the spin-1=2 XXZ chain, under
the spin-reversal (spin-flip) transformation F ¼ Q

L
l¼1 σ

x
l ,

FQn;s ¼ Qn;sF. However, the spin current J ðSÞ is odd,
J ðSÞF ¼ −FJ ðSÞ, and hence hJ ðSÞQn;si ¼ 0. In other words,
irrespective of the temperature, these charges cannot contrib-
ute to the Mazur bound [Eq. (28)] at vanishing magnetization.
Nevertheless, one can explore nonunitary representations

of the symmetry algebra SUqð2Þ to search for charges that are
not invariant under spin-reversal using the general relation
Fτðλ; sÞF−1 ¼ τðπ − λ; sÞT. For root-of-unity anisotropies
η ¼ πl=m (l; m coprime integers), this procedure leads to
an additional family of quasilocal conserved charges that are
non-Hermitian and odd under spin reversal (Prosen, 2014c).
They can be expressed as
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ZðλÞ ¼ sinðλÞ2
2η sinðηÞ ∂sτðλ; sÞ

����
s¼0

−
sinðλÞ cosðλÞ

sinðηÞ Sz; ð73Þ

where λ lies inside the analyticity strip S ¼ fλ ∈ C; jReλ −
π=2j < π=2mg and Sz ¼ P

L
r¼1 s

z
r denotes the total magneti-

zation in the z direction.

1. Lower bound on spin Drude weight at high temperature

Since the quasilocal charges generated from nonunitary
representations are not spin-reversal invariant, they have a
nonvanishing overlap with the spin current and may contribute
to the Mazur bound. For example, in the high-temperature
regime (β → 0), the overlap is also extensive [hZðλÞJ ðSÞi ¼
iL=4], yielding a finite contribution to Eq. (28). However, the
ZðλÞ are not mutually orthogonal and their overlaps are given
by the following analytic kernel:

Kðλ; μÞ ¼ lim
L→∞

hZðλ̄Þ†ZðμÞi
L

¼ −
sinðλÞ sinðμÞ sin ½ðm − 1Þðλþ μÞ�

2sin2ðηÞ sin ½mðλþ μÞ� ;

while hZðλÞZðμÞi≡ 0. The Mazur bound for the spin Drude
weight generally follows (Ilievski and Prosen, 2013) from
finding an extremum of the non-negative action

S½f� ≔ lim
t→∞

lim
L→∞

1

L
hðBL;t½f�Þ†BL;t½f�i ≥ 0 ð74Þ

with respect to an unknown function fðλÞ. Here we
introduce

BL;t½fðλÞ� ≔
1

t

Z
t

0

dsJ ðSÞðsÞ −
Z
S
d2λfðλÞZðλÞ: ð75Þ

The variation δS=δfðλÞ ¼ 0 results in the following Fredholm
equation of the first kind on the two-dimensional complex
domain S:

Z
S
d2μKðλ; μÞfðμÞ ¼ hZðλÞjðSÞi; ð76Þ

which for the spin-1=2 XXZ chain with Δ ¼ cosðπl=mÞ
yields

fðλÞ ¼ m sin2ðπ=mÞ
iπj sin λj4 : ð77Þ

This in turn results in the following rigorous lower bound for
the leading coefficient in the high-temperature expansion of

the Drude weight D̃ðSÞ
w in β, defined as

D̃ðSÞ
w ¼ lim

β→0

DðSÞ
w

β
≥
1

2

Z
S
dλ2fðλÞhZðλÞjðSÞ0 i

¼ 1

16

sin2ðπl=mÞ
sin2ðπ=mÞ

�
1 −

m
2π

sin

�
2π

m

��
: ð78Þ

Note that the rhs of Eq. (78) is a nowhere continuous function
of Δ whose graph is a fractal set. The dependence on Δ is
illustrated in Fig. 4.
See Sec. VI for a detailed discussion of the saturation of this

bound and Matsui (2020) for an explanation of why the
natural non-quasilocal extension of the quasilocal charges
given in Eq. (72) cannot improve the bound. A more
comprehensive review on quasilocal charges was given by
Ilievski, Medenjak et al. (2016), while the extension of Drude
weights and quasilocal charges to integrable periodically
driven Floquet systems was given by Ljubotina, Zadnik,
and Prosen (2019).

2. Lower bounds on spin-diffusion constant at high temperature

In typical integrable models such as the spin-1=2 XXZ
chain for jΔj ≥ 1 and the 1D Fermi-Hubbard model, the spin
or charge Drude weight vanishes at zero magnetization mz ¼
2hSzi=L ¼ 0 and in the half-filled sector ρ ¼ N=L ¼ 1=2,
respectively. However, moving slightly away from half
filling, one typically obtains a finite Drude weight. More
precisely, calling δ the small deviation from either zero
magnetization or half filling, one observes a Drude-weight

scaling as DðQÞ
w ∝ δ2. At first sight, this seems to exclude the

onset of spin diffusion: a finite Drude weight implies a
diverging diffusion constant. Nevertheless, for large L, the
Hilbert-space sector at δ ¼ 0 dominates over all sectors with
δ ≠ 0. Therefore, one may argue that, after performing a
careful (grand) canonical average, the two effects compensate,
giving rise to a finite spin- or charge-diffusion constant in the
thermodynamic limit.
In fact, this argument can be justified rigorously by

studying the Mazur bound for the dynamical susceptibility
in a double-scaling limit L → ∞ and t → ∞, with L=t > vLR,
giving rise to a universal lower bound on the diffusion
constant DðQÞ in terms of the curvature of the Drude

weight DðQÞ
w ðβ; δÞ around δ ¼ 0 (Medenjak, Karrasch, and

Prosen, 2017); see also Spohn (2018). For spin transport,
one obtains

FIG. 4. Lower bound for the spin Drude weightDðSÞ
w of the spin-

1=2 XXZ chain according to Eq. (78), as obtained by Prosen and

Ilievski (2013), and another lower bound for DðSÞ
w , as previously

obtained by Prosen (2011b). Both bounds exhibit a pronounced
fractal-like (i.e., nowhere continuous) dependence on the
anisotropy parameter Δ.
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DðSÞðβÞ ≥ 1

8βvLRχðβÞf1ðβÞ
∂2

∂δ2 D
ðSÞ
w ðβ; δÞ

����
δ¼0

; ð79Þ

where vLR is the Lieb-Robinson velocity (Lieb and Robinson,
1972) and

f1ðβÞ ¼ lim
L→∞

1

2L
∂2

∂δ2 FLðβ; δÞ
����
δ¼0

ð80Þ

is a second derivative of the free-energy density at zero
magnetization, while χðβÞ is the static susceptibility
χðβÞ=β ¼ limL→∞ hðSzÞ2i − ðhSziÞ2=L. The inequality holds
in general, even for a nonintegrable system, if there are
conserved quantities that would make Drude weights
nonvanishing away from the symmetric Hilbert-space
sector δ ¼ 0. However, for integrable systems with a well-
understood quasiparticle content, such as the spin-1=2 XXZ
chain, the inequality can be further refined by decomposing
the contribution to the diffusion constant in terms of the
curvatures of the Drude-weight contributions associated
with independent Bethe-ansatz quasiparticle species; see
Sec. III.C.1. In this case, the velocity vLR can be replaced
by the corresponding dressed quasiparticle velocity (Ilievski
et al., 2018).
One can approach lower bounds on diffusion constants

from another angle. In the same way as with the Mazur bound,
Eq. (28) suggests that a nonvanishing high-temperature Drude
weight is connected to the existence of linearly extensive (i.e.,
proportional to the volume) (quasi)local charges, one might
argue that a nonvanishing high-temperature diffusion constant
suggests the existence of conserved charges that are quad-
ratically extensive. Indeed, for any locally interacting lattice
system, the existence of an almost conserved quadratically
extensive operator Q that has an overlap with any current

operator jðQ
0Þ

r associated with some charge Q0 leads to a
rigorous bound on high-temperature diffusion constants
(Prosen, 2014b) associated with that current. In other words,

DðQ0Þðβ → 0Þ ≥ jQjj2
8vLRq

; ð81Þ

where the commutator ½H;Q� contains only boundary terms

(0 < q ≔ limL→∞hQ2i=L2 < ∞) and Qj ≔ limL→∞hjðQ
0Þ

r Qi
is finite.
This gives nontrivial lower bounds for spin-diffusion

constants in the spin-1=2 Heisenberg chain as well as for
spin- and charge-diffusion constants for the 1D Fermi-
Hubbard model. The bound has recently been generalized
and formalized using the method of hydrodynamic projections
by Doyon (2019a) (see Sec. III.C.1), who used similar ideas to
provide bounds on anomalous (e.g., superdiffusive) transport,
i.e., to estimate the dynamical exponents.

B. Bethe-Ansatz techniques

Here we consider an important subclass of integrable
models: those treatable by the collection of techniques
grouped under the name of Bethe ansatz. The key property
of these models is that their energy eigenstates can be

expressed as scattering states of stable quasiparticles (Essler
et al., 2005; Korepin, Bogoliubov, and Izergin, 2005; Faddeev,
2016). This gives direct access to their energy spectrum and,
more generally, to their thermodynamic properties. Although
the stable quasiparticles of integrable models generically
undergo nontrivial scattering processes, integrability ensures
that every scattering process can always be decomposed into a
sequence of two-particle scatterings.
Focusing on the paradigmatic example of the spin-1=2 XXZ

chain, we introduce the central equations of the Bethe ansatz
(the Bethe equations), which give access to all possible
eigenstates of the systems. Then we explain how to take
their thermodynamic limit, arriving at the so-called TBA
description (Takahashi, 1999), where one characterizes the
eigenstates in terms of “densities” of quasiparticles. Finally,
we recall some results for the energy and spin Drude weight
obtained using the TBA.

1. Bethe equations

There are two known routes to diagonalize the Hamiltonian
using Bethe-ansatz techniques. The first one consists in
writing an ansatz many-body wave function in real coordinate
space. This is the original method introduced by Bethe (1931)
and is now known as the coordinate Bethe-ansatz approach.
The second, more recent route consists of constructing a basis
of eigenstates of the fundamental transfer matrix (67) for all
values of the spectral parameter λ; cf. Sec. III.A. This is
always possible since transfer matrices with different spectral
parameters commute. Since the Hamiltonian is proportional to
the logarithmic derivative of the transfer matrix [cf. the
discussion after Eq. (67)], these states are also eigenstates
of H. The latter route, called the algebraic Bethe ansatz, is
more powerful: it gives direct insights into the conservation
laws of the system and correlation functions (Essler et al.,
2005; Korepin, Bogoliubov, and Izergin, 2005; Faddeev,
2016). For brevity, we do not describe such approaches in
detail but report only the final results; see the aforementioned
references for the derivations.
The Bethe-ansatz procedure yields the eigenstates of the

system parametrized by a set of generically complex numbers
fλjg called rapidities and obtained by solving a set of
nonlinear algebraic equations. For example, in the case of
the spin-1=2 XXZ chain, the eigenstates with magnetization
L=2 − N are parametrized by the solutions fλjgNj¼1 of

�
sinhðλj þ iη=2Þ
sinhðλj − iη=2Þ

�
L

¼ −
YN
k¼1

�
sinhðλj − λk þ iηÞ
sinhðλj − λk − iηÞ

�
ð82Þ

for j ¼ 1;…; N. These are the Bethe equations, first given
by Bethe (1931) for Δ ¼ 1 and then by Orbach (1958) for
generic Δ.
All Bethe-ansatz integrable models produce sets of non-

linear, coupled algebraic equations of this form. In some
cases, however, one needs to repeat the procedure multiple
times before finding the eigenstates of the Hamiltonian. This
produces multiple sets of equations similar to Eq. (82)
involving different sets of rapidities that are coupled together.
This procedure is known as the nested Bethe ansatz and is
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necessary for the Fermi-Hubbard model. For simplicity,
we restrict the discussion to the non-nested case in our
presentation.
The eigenvalues of the quasimomentum15 and the

Hamiltonian in the eigenstate parametrized by fλjgNj¼1 are
given by

P¼
�XN
k¼1

p

�
λk;

1

2

��
mod 2π; E¼

XN
k¼1

eðλkÞþe0L; ð83Þ

where we set pðλ; sÞ ¼ i log ½sinhðλ − iηsÞ= sinhðλþ iηsÞ�,
eðλÞ ¼ − sin η=2∂λpðλ; 1=2Þ, and e0 ¼ Δ=4. An expression
similar to the one for the energy holds for higher local
and quasilocal conservation laws [Eq. (72)]. In particular,
in the eigenvalue of Qn;s the function eðλÞ is replaced by
qnðλ; sÞ ¼ ð− sin η=2Þn∂n

λpðλ; sÞ, while the constant shift e0 is
replaced by 0.
The Bethe equations might be viewed as convoluted

quantization conditions for the momenta (or, better, some
function of the momenta) of a gas of quasiparticles confined in
a finite volume L. However, one should be careful with such
an interpretation as the solutions to these equations are
generically complex: this is a common feature of many
Bethe-ansatz integrable models.
To understand the distribution of the roots in the complex

plane, it is useful to look at the solutions for L → ∞ and fixed
N (Takahashi, 1999; Essler et al., 2005). In this case, any
Im½λj� ≠ 0 causes the lhs to go to either infinity or 0.
Requiring the rhs to do the same forces the solutions to
follow ordered patterns in the complex plane known as
“strings.” Strings can be interpreted as stable bound states
formed by the elementary particles (Essler et al., 2005) and
appear in all Bethe-ansatz integrable models with complex
rapidities, but their specific form depends on the model and on
the values of its parameters. Specifically, in the spin-1=2 XXZ
chain, the string structure depends on whether η is real
(jΔj < 1) or imaginary (jΔj > 1). For instance, for η ∈ R,
we have strings of the form (Takahashi, 1999)

λkα;a ¼ λkα þ i
η

2
ðnk þ 1 − 2aÞ þ i

π

4
ð1 − υkÞ þ δkα;a; ð84Þ

where λkα ∈ R is called the string center, k ¼ 1;…; Ns is called
the string type, α ¼ 1;…;Mk labels different strings of the
same type, and a ¼ 1;…; nk labels rapidities in the same
string. Finally, the string deviations δkα;a are exponentially
small in L.
The number Ns of type of strings, the length nk of the kth

string, and its parity υk depend on η in a discontinuous way:
they change drastically depending on whether or not η=π is
rational. For example, for η ¼ π=m, we have Ns ¼ m,
nk ¼ ðk − 1Þð1 − δk;mÞ þ 1, and υk ¼ 1–2δk;m. A similar par-
ametrization of strings can also be performed for iη ∈ R and,
more generally, for other Bethe-ansatz integrable models
(Takahashi, 1999).

2. Thermodynamic Bethe-ansatz formalism

For small numbers of rapidities N, the Bethe equations can
be easily solved on a computer; see Hagemans (2007) and
Shevchuk (2012). For a full classification of the solutions
of Eq. (82), this is feasible for N ≤ L ¼ 10. However, this
procedure quickly becomes impractical when N and L
increase. In particular, to study the thermodynamic limit
(N;L → ∞ with finite N=L) a brute force numerical solution
of the equations is unfeasible and some analytical treatment
becomes unavoidable. The standard approach (known as the
TBA) is based on the assumption that the solutions to Eq. (82)
continue to follow the string patterns even at finite density
(Bethe, 1931; Takahashi, 1971), i.e., when N is not fixed but
instead goes to infinity with L. Although this assumption
(usually called the string hypothesis) does not strictly hold for
all states in large but finite systems, it is believed to describe
exactly the thermodynamic properties of all Bethe-ansatz
integrable models. In particular, Tsvelick and Wiegmann
(1983) proved the self-consistency of the string hypothesis
for the spin-1=2 XXZ chain at finite temperature. A more
rigorous alternative to the string hypothesis exists (Suzuki and
Inoue, 1987; Klümper, 1992, 1993) and is often referred to as
the quantum-transfer-matrix approach. Even though this
approach is powerful, it is generically less versatile than
the TBA (most of the results have been found for thermal
states). The two approaches have been shown to give an
equivalent description of the thermodynamic properties of the
spin-1=2 XXZ chain at finite temperatures (Klümper, 1992;
Kuniba, Sakai, and Suzuki, 1998).
Embracing the string hypothesis and multiplying together

all Bethe equations referring to particles in the same string,
one arrives at a set of equations (known as Bethe-Takahashi
equations) for the real string centers; cf. Eq. (84). These
equations can readily be viewed as quantization conditions
for the momenta of the original particles and all their bound
states and are most commonly expressed in logarithmic form
(taking −i log½·� of both sides). In particular, the Bethe-
Takahashi equations for the spin-1=2 XXZ chain read as
(Takahashi, 1999)

LθjðλjαÞ −
XNs

k¼1

XMk

γ¼1

Θjkðλjα − λkγÞ ¼ 2πIðjÞα ; ð85Þ

where the quantum numbers IðjÞα are integer (half-odd integers)
for odd (even) L −Mj (also their allowed ranges depend on

fMjg) and the string centers λjα lie in the symmetric interval
½−Λ;Λ� ⊂ R, while the smooth functions θjðxÞ and ΘijðxÞ can
be expressed as

θjðxÞ ¼ fðx; nj; υjÞ; ð86Þ
ΘijðxÞ ¼ fðx; jni − njj; υiυjÞ þ fðx; ni þ nj; υiυjÞ

þ 2
Xminðni;njÞ−1

k¼1

fðx; jni − njj þ 2k; υiυjÞ: ð87Þ

Both Λ and the form of the auxiliary function fðx; n; υÞ
depend on whether jΔj < 1 or ≥ 1; their form is reported in
Table II.

15On the chain, the quasimomentum operator is defined as
−i logΠ (Π acts as the one-site-shift operator).

B. Bertini et al.: Finite-temperature transport in one-dimensional …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025003-18



Furthermore, by substituting the string hypothesis into the
expectation value of the energy density [see Eq. (83)], we have

E ¼
XNs

k¼1

XMk

γ¼1

ekðλkγÞ þ e0L; ð88Þ

where ekðλÞ≡ −sgnðΔþ 1Þ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ2 − 1j

p
=2�∂λθkðλÞ are known

as “bare energies.” We see that the energy of an eigenstate is
obtained by summing up the bare energies of all quasiparticles
characterizing it. A similar expression holds for higher
conservation laws.
The set fIðjÞα g is in one-to-one correspondence with the set

of string centers (or particle rapidities) fλðjÞα g and can be used
to specify the state of the system, much like momentum
occupation numbers in free systems. We note that the

correspondence between fIðjÞα g and the solutions of the
Bethe equations has been used to prove the combinatorial
completeness of the Bethe ansatz for the XXZ chain (Kirillov,
1984; Kirillov and Liskova, 1997) and the Fermi-Hubbard
model (Essler, Korepin, and Schoutens, 1991). The corre-
spondence is explicitly established by introducing the count-
ing functions

zjðxjfλðjÞα gÞ≡ θjðxÞ −
1

L

XNs

k¼1

XMk

γ¼1

Θjkðx − λkγÞ: ð89Þ

These functions are monotonic in x and by definition satisfy

zjðλðkÞγ jfλðjÞα gÞ ¼ 2πIðkÞγ =L [this is simply a rewriting of

Eq. (85)]. There are, however, some holes fλ̄jγg⊄fλðjÞα g such

that zjðλ̄jγjfλðjÞα gÞ ¼ 2πJðjÞγ =L, with fJðjÞα g integers (or half-
odd integers) in the allowed range to be quantum numbers but

not appearing in fIðjÞα g (they can be thought of as empty slots).
In the thermodynamic limit, both particle and hole rap-

idities become dense in ½−Λ;Λ� (differences of neighboring
rapidities scale like L−1) and it is convenient to switch to a
coarse grained description of the system in terms of their
densities fρjðλÞg and fρhj ðλÞg (h stands for hole). It is easy to

verify that 2πσj½ρjðλÞþρhj ðλÞ�¼ limL→∞∂λzjðλjfλðjÞα gÞ, where
the sign σj ¼ f�1g accounts for strings where zjðxjfλðjÞα gÞ
is monotonically decreasing (they occur for jΔj < 1)
(Takahashi, 1999). Computing the derivative explicitly, we
find the so-called thermodynamic Bethe-Takahashi equations

ρtjðλÞ≡ ρjðλÞ þ ρhj ðλÞ ¼ σjajðλÞ −
XNs

k¼1

σjTjk � ρkðλÞ: ð90Þ

Here we have introduced the driving ajðλÞ ¼ ð1=2πÞ∂λθjðλÞ
and the kernel TjkðλÞ ¼ ð1=2πÞ∂λΘjkðλÞ (encoding all infor-
mation about the interactions), while the asterisk denotes the
convolution f � gðxÞ ¼ R

Λ
−Λ dyfðx − yÞgðyÞ.

Equation (90) fixes the densities of holes in terms of the
densities of particles. In other words, for each state it provides
the densities ρtjðλÞ of rapidity slots (called “vacancies”) that
can be occupied by a particle. Because of the interactions, the
density of slots depends on the state; cf. the second term on the
rhs of Eq. (90). Integral equations of this form are common in
the TBA. In the following, we find many instances of these
equations with the same kernel but different driving functions.
Even though each eigenstate of the Hamiltonian corre-

sponds to a set of densities fρjðλÞg, the correspondence is
generically not one to one: in a large finite volume L, there are
approximately exp½Ls½ρ�� eigenstates of the Hamiltonian
corresponding to the same set of densities fρjðλÞg, where
the functional s½ρ�¼P

k

R
dλðρtk logρtk−ρk logρk−ρhk logρhkÞ is

known as the Yang-Yang entropy density. This fact is often
referred to by saying that the densities of rapidities specify a
“macrostate” of the system, as opposed to a single eigenstate
of the Hamiltonian, which is called a “microstate.”
The densities of rapidities in principle allow one to compute

the expectation values of all local operators in the thermo-
dynamic limit. In practice, however, explicit expressions are
known for only a few classes of observables; see also
Sec. III.C. A relevant example is that of local and quasilocal
conserved-charge densities. Specifically, considering the den-
sity of the generic charge Q, we have

q½ρ� ¼
XNs

k¼1

Z
dλqkðλÞρkðλÞ; ð91Þ

where the set of functions qkðλÞ specifies the charge and is
often called the bare charge. The energy density is obtained by
replacing qkðλÞ with ekðλÞ and adding the constant shift e0.
Moreover, setting qkðλÞ ¼ qn;kðs; λÞ for an appropriate
qn;kðs; λÞ, one reproduces the density of higher conservation
laws (72). In particular, for the densities qn½ρ� of the higher
local conserved charges (66), we have qkðλÞ¼ qn;kðλÞ¼
f−sgnðΔþ1Þ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ2−1j

p
=2�∂λgnþ1θkðλÞ.

The TBA can also be used to analyze excitations over
macrostates. We now take a large finite volume L and consider
the system in one of the microstates corresponding to the
densities fρjðλÞg. Injecting an extra string of type j and
rapidity λ induces a change in the expectation values of the
conserved charges

Lq½ρ� ↦ Lq½ρ� þ qdj ðλÞ: ð92Þ

Owing to the presence of interactions, fqdj ðλÞg differ from the
bare charges of Eq. (91) and are commonly referred to as
dressed charges. Specifically, given a set of bare charges
fqjðλÞg one can find the corresponding dressed charges
through the following integral equation:

∂λqdj ðλÞ ¼ ∂λqjðλÞ −
XNs

k¼1

σk½Tjk � ϑk∂λqdk �ðλÞ; ð93Þ

TABLE II. Auxiliary function fðx; n; υÞ for the spin-1=2 XXZ
chain for Δ ¼ cos η. We define γ ≡ jηj.

jΔj < 1 jΔj ≥ 1

Λ ∞ π=2
fðx;n;υÞ

2

�
υatan½ tanh x

½tan ðnγ=2Þ�υ�; nγ ∉ Z;
0; nγ ∈ Z

atan½ tan x
tanh ðnγ=2Þ� þ πbxπ þ 1

2
c
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where we have introduced the filling function

ϑjðλÞ≡ ρjðλÞ
ρtjðλÞ

: ð94Þ

Even though the momentum is conserved only modulo 2π, a
dressed momentum is well defined as long as pd

j ðλÞ < 2π. In
particular, since the bare charge related to the momentum is
θjðλÞ [cf. Eq. (83)], the dressed momentum fulfills
∂λpd

j ðλÞ ¼ 2πσjρ
t
jðλÞ. This can be established by comparing

the equation for the dressed momentum with Eq. (90)
and allows us to express the group velocity of the excitation
ðλ; jÞ as

vdj ðλÞ ¼
∂λedj ðλÞ
∂λpd

j ðλÞ
¼ ∂λedj ðλÞ

2πσjρ
t
jðλÞ

: ð95Þ

In other words, 2πσjρtjðλÞvdj ðλÞ fulfills Eq. (93) with ∂λejðλÞ
as a driving. In addition to the dressed charge, we can
associate another “dressed” quantity, sometimes called the
effective charge, to each quasilocal conservation law (and also
to the momentum). For a given bare charge qjðλÞ, we define
the associated effective charge qeffj ðλÞ as the solution of the
following equation, which has qjðλÞ as its driving term,

qeffj ðλÞ ¼ qjðλÞ −
XNs

k¼1

σk½Tjk � ϑkqeffk �ðλÞ: ð96Þ

Note that in this case, one directly dresses the charge
and not its derivative, and hence dressed and effective charges
do not coincide. We have, however, ∂λ(qdj ðλÞ) ¼ (∂λqjðλÞ)eff
such that we can equivalently express Eq. (95) as vdj ðλÞ ¼
(∂λejðλÞ)eff=(∂λpjðλÞ)eff . This formulation is used in a large
portion of the GHD literature.
In closing, we remark that, even though here we assume the

system to be in an eigenstate of the Hamiltonian, the TBA
description can also be used for some stationary mixed states.
This is true every time a generalized microcanonical repre-
sentation applies (Essler and Fagotti, 2016; Vidmar and
Rigol, 2016). In essence, this means that the expectation
values of all local observables in the mixed state can be
reproduced in the thermodynamic limit by expectation
values in a single, appropriately chosen eigenstate of the
Hamiltonian. For example, the densities corresponding to a
generalized Gibbs ensemble (GGE) ρGGE ∝ exp½−P

nβnQn�
can be found minimizing the generalized free energy
f½ρ� ¼ P

n βnqn½ρ� − s½ρ�, which yields the following inte-
gral equation (Yang and Yang, 1969):

logηjðλÞ¼
X
n

βnqn;jðλÞþ
XNs

k¼1

σkTkj � log½1þη−1k �ðλÞ; ð97Þ

where we have introduced the function

ηjðλÞ≡ ρhj ðλÞ
ρjðλÞ

¼ 1

ϑjðλÞ
− 1: ð98Þ

These equations, together with Eq. (90), completely fix the
densities of the generalized Gibbs state. Note that if fρjðλÞg
and fρhj ðλÞg solve Eqs. (90) and (97), the generalized free
energy can be written compactly as

f ¼ e0
T
−
XNs

k¼1

σk

Z
Λ

−Λ
dλ akðλÞ log

�
1þ ρkðλÞ

ρhkðλÞ
�
: ð99Þ

We also remark that the derivatives of log ηkðλÞ with respect
to the chemical potentials βn are related to the dressed
quantities. Indeed, comparing Eqs. (93) and (97) we find
∂βn log ηkðλÞ ¼ −sgnðΔþ 1Þ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ2 − 1j

p
=2�∂λqdn−1;kðs; λÞ. To

find the explicit form of qn;kðλÞ, we use the explicit form of
qn;kðλÞ reported after Eq. (91).

3. Drude weights from the TBA

As an application of the TBA formalism, here we present
the calculation of certain Drude weights. We remark that the
calculation of generic Drude weights remained unfeasible for
a long time even in Bethe-ansatz integrable models. Indeed,
Drude weights are expressed in terms of dynamical correla-
tions and the calculation of the latter falls outside the compass
of standard Bethe-ansatz techniques. In some cases, however,
it has been possible to relate Drude weights to simple spectral
or thermodynamic properties that can be efficiently deter-
mined using the TBA. In particular, here we review Zotos’s
calculations of the energy (Zotos, 2017) and spin (Zotos,
1999) Drude weights for the spin-1=2 XXZ chain with Δ ¼
cosðπ=mÞ at finite temperature T. The results for the energy
Drude weight are directly generalized to any Δ while those
for the spin Drude have been extended to Δ ¼ cosðπl=mÞ
with coprime integers l and m (Urichuk et al., 2019); see
Sec. III.C.1 for a discussion.
We begin by considering the case of the energy Drude

weight, which is considerably simpler. The crucial observation
(Zotos, Naef, and Prelovšek, 1997) is that in the spin-1=2

XXZ chain the total energy current J ðEÞ ¼ P
r j

ðEÞ
r [see

Eq. (5)] is itself a conserved quantity. In particular, in our
notation J ðEÞ coincides withQ2; see Eq. (66). This means that
one can define a generalized Gibbs ensemble including such a
current as a charge, i.e., ρGGE ∝ e−βH−ξJ ðEÞ

, and compute its
root densities following the method at the end of Sec. III.B.2.
In particular, the free-energy density fξ of this state takes the
form of Eq. (99), where the densities of rapidities fulfill
Eqs. (90) and (97) with β1 ¼ β, β2 ¼ ξ, and βn≥3 ¼ 0. The
Drude weight is then straightforwardly evaluated as [see
Eq. (21)]

DðEÞ
w ¼ β2

2L
hðJ ðEÞÞ2i ¼ −

β3

2
∂2
ξfξjξ¼0: ð100Þ

Note that this identity was first used by Klümper and Sakai
(2002) to compute the energy Drude weight within the
quantum-transfer-matrix approach. The results are shown in
Fig. 5. Subsequently, Zotos found the explicit result from the
TBA by combining Eqs. (90) and (97). Using some straight-
forward identities among the TBA functions [see Urichuk
et al. (2019)], the final expression can be written as
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DðEÞ
w ¼ β2

2

XNs

k¼1

Z
Λ

−Λ
dλ

ρtkðλÞ½eeffk ðλÞ�2½vdkðλÞ�2
½1þ ηkðλÞ�½1þ η−1k ðλÞ� ; ð101Þ

where eeffk ðλÞ ¼ −2πsgnðΔþ 1Þ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ2 − 1j

p
=2�σkρtkðλÞ is

the effective energy and vdkðλÞ is the group velocity of the
dressed excitations; cf. Eq. (95). The same method can be used
to find higher cumulants of J ðEÞ (Urichuk et al., 2019;
Zotos, 2017).
The complication arising when considering the spin Drude

weight is that the total spin current, as opposed to the total
energy current, is not conserved. The calculation, however,
can still be performed by avoiding the explicit evaluation of
correlation functions. The idea is to consider the system in a
large finite volume L, introduce a finite magnetic flux ϕ
through the chain, and compute the Drude weight using the
finite-T Kohn formula (26), i.e., in terms of the second
derivative of the energy density with respect to the magnetic
flux. The insertion of a magnetic flux can be easily treated in
the Bethe ansatz and results in a phase (“twist”) eiϕ multi-
plying the rhs of Eq. (82). For ϕ finite in the thermodynamic
limit (i.e., when ϕ does not scale with the volume), the twist
modifies the position of the rapidities of the strings only at
subleading orders. This leads to

λjα;LðϕÞ ¼ λjα;∞ þ g1;jðλjα;∞;ϕÞ
L

þ g2;jðλjα;∞;ϕÞ
L2

; ð102Þ

where we have neglected OðL−3Þ and introduced the sub-
scripts L and ∞ to label rapidities in finite and infinite
volumes, respectively. The ϕ-dependent functions g1;jðx;ϕÞ
and g2;jðx;ϕÞ fulfill some integral equations determined
through a 1=L expansion of the Bethe-Takahashi equa-
tions (85). Plugging Eq. (102) into Eq. (88), one can determine
the second derivative of the energy density with respect to the
twist in the thermodynamic limit and hence the Drude weight.
This method was introduced by Fujimoto and Kawakami
(1998) for the calculation of the charge Drude weight in the
Fermi-Hubbard model and was applied by Zotos (1999) to the
spin-1=2 XXZ chain. In the case of the XXZ chain, the result
can be cast into the following form:

DðSÞ
w ¼ β

2

XNs

k¼1

Z
Λ

−Λ
dλ

ρtkðλÞ½neffk ðλÞ�2½vdkðλÞ�2
½1þ ηkðλÞ�½1þ η−1k ðλÞ� ; ð103Þ

where neffk ðλÞ ¼ 2πσkρ
t
kðλÞ∂ϕg1;kðλÞ fulfills the dressing equa-

tion (96) by replacing neffk ðλÞ → qeffk ðλÞ with driving nk, thus
replacing qkðλÞ with nk in Eq. (96); cf. Eq. (84) for the

definition of nk. The temperature dependence of DðSÞ
w is

illustrated in Fig. 6.
As we see in Sec. III.C, GHD provides a general framework

for computing Drude weights in the TBA formalism. In
particular, Eqs. (101) and (103) are both special cases of
the generic GHD result given in Eq. (116), which describes the
Drude weights of all conserved charges.

C. Generalized hydrodynamics

The theory of generalized hydrodynamics concerns the
evolution of integrable systems initially prepared in a state ρ0
that is spatially inhomogeneous and then left to evolve
unitarily with a homogeneous Hamiltonian. The main idea
is that at large times the expectation values of local observ-
ables become slowly varying functions of x and t. This is
much like the situation observed in the case of homogeneous
quantum quenches [see Eisert, Friesdorf, and Gogolin (2015),
Essler and Fagotti (2016), and Gogolin and Eisert (2016)]:
initially the expectation values of local observables display
fast oscillations, but the latter dephase away for large times
and expectation values become stationary even in the presence
of a coherent unitary evolution. In the slow, late-time regime,
it is reasonable to expect that the expectation values can be
described by a quasistationary state, namely,

tr½Oxe−iHtρ0eiHt� ∼t≫τ0 tr½Oxρstðx; tÞ�; ð104Þ

where H is the Hamiltonian of the system, Ox is a generic
observable localized around the point x, ρstðx; tÞ is the density-
matrix describing the quasistationary state (retaining a slow
space-time dependence), and τ0 is the timescale for local
relaxation. In general, the x dependence in Eq. (104) is
nontrivial for large but finite times, while it is typically
washed away at infinite times. Think of the free expansion
of a gas released from a trap: the density of the gas vanishes
for all x at infinite times, corresponding to an x-independent
limt→∞ ρstðx; tÞ. There are some cases, however, where

FIG. 6. TBA results for the spin Drude weight DðSÞ
w of the spin-

1=2 XXZ chain vs Δ for different temperatures T (measured in
units of J). From Zotos, 1999.

FIG. 5. Exact results for the energy Drude weight of the spin-
1=2 XXZ chain given in Eq. (1) at zero magnetization. The data
were taken from Klümper and Sakai (2002).
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nontrivial effects of the problem’s inhomogeneity persist even
at infinite times. In that case, one can explicitly take the
infinite-time limit of Eq. (104), thereby turning it into an exact
statement. An example is the so-called bipartitioning protocol,
where one suddenly joins together two systems that are
initially in different stationary states; see Sec. IX.B.
The state ρstðx; tÞ in Eq. (104) has been termed the

locally quasistationary state by Bertini and Fagotti (2016).
Specifically, it was argued that, at the leading order in time,
ρstðx; tÞ is a generalized Gibbs state constructed with the
charges of the Hamiltonian that controls the unitary time
evolution and ðx; tÞ-dependent chemical potentials. Note that
the timescale at which the simplification (104) arises (often
referred to as Euler timescale) is much larger than the local
relaxation timescale τ0. This means that, at fixed ðx; tÞ,
ρstðx; tÞ is homogeneous and stationary and admits a “micro-
canonical” representation in terms of a TBA representative
eigenstate or, equivalently, of a set of densities of rapidities
fρkðλ; x; tÞg. Determining such space-time–dependent func-
tions is the central objective of the theory.
A macroscopic number of constraints on these functions are

obtained by considering the expectation values of the con-
tinuity equations of all local and quasilocal conserved charges
from Eq. (72), namely,

∂tq
ðnÞ
x ðtÞ þ jðnÞx ðtÞ − jðnÞx−1ðtÞ ¼ 0; x ¼ 1;…; L; ð105Þ

where qðnÞx is the density of charge Qn and jðnÞx is its
current.16 Here and in the following we suppress the additional
index s, keeping only the generic index n for conserved
charges. Assuming the validity of Eq. (104), one obtains that,
to leading order in time, the expectation value of Eq. (105)
reads as

∂ttr½qðnÞ0 ρstðx; tÞ� þ ∂xtr½jðnÞ0 ρstðx; tÞ� ¼ 0: ð106Þ

We remark that this equation is already in the thermodynamic
limit and, moreover, on its rhs, there are subleading correc-
tions of Oðt−bÞ with b > 0. As shown by Bertini et al. (2016)
and Castro-Alvaredo, Doyon, and Yoshimura (2016),
the constraint (106) is sufficient to fix the densities of
rapidities to leading order in time. Specifically, Eq. (106) is
equivalent to the following continuity equation for the
densities of rapidities:

∂tρkðλ; x; tÞ þ ∂xðvdkðλ; x; tÞρkðλ; x; tÞÞ ¼ 0: ð107Þ

Here vdkðλ; x; tÞ is the group velocity of dressed excitations on
the state ρstðx; tÞ. The physical interpretation of this equation
is straightforward: to leading order in time, the dynamics of
fρkðλ; x; tÞg can be described as if they were quasimomentum
distributions for Ns species of free classical particles moving
in a density-dependent background. Indeed, the only effect of
the interaction is a dressing of the group velocity. These
classical particles can be thought of as an asymptotic version

of the stable modes characterizing Bethe-ansatz integrable
models. Indeed, for long times and large distances, the modes
lose all phase information and behave like classical particles.
The crucial step in passing from Eq. (106) to Eq. (107)

makes use of the following expression for the expectation
value of generic currents on the macrostate fρnðλÞg:

jQ½ρ� ¼
XNs

k¼1

Z
dλqkðλÞvdkðλÞρkðλÞ; ð108Þ

where qkðλÞ is the bare charge of the associated density; cf.
Eq. (91). This form was originally proposed for relativistic
integrable quantum-field theories with diagonal scattering
(Castro-Alvaredo, Doyon, and Yoshimura, 2016) through a
crossing-symmetry argument, and for the spin-1=2 XXZ chain
(Bertini et al., 2016) through a semiclassical argument.
Initially, however, its validity could be established only
numerically (Bertini et al., 2016; Ilievski and De Nardis,
2017a) or for some special currents (Bertini et al., 2016;
Urichuk et al., 2019). The numerical accuracy of Eq. (108)
and its model-independent form triggered a fervent activity
aimed at proving it rigorously (Fagotti, 2017a; Vu and
Yoshimura, 2019; Borsi, Pozsgay, and Pristyák, 2020;
Yoshimura and Spohn, 2020) for all Bethe-ansatz integrable
models. This endeavor was concluded by Pozsgay (2020),
who reported a complete proof of Eq. (108) in the framework
of the quantum-inverse scattering method. This proof encom-
passes all Yang-Baxter integrable lattice systems. In particular,
this includes all Bethe-ansatz integrable lattice models
(nested or not), such as the spin-1=2 XXZ chain and the
one-dimensional Fermi-Hubbard model. Finally, we remark
that the form of Eq. (108) for the expectation values of
currents has also been shown to hold for certain integrable
classical field theories (Bastianello et al., 2018; Bulchandani,
Cao, and Moore, 2019; Cao, Bulchandani, and Spohn, 2019;
Doyon, 2019b; Spohn, 2020b).
The simplification introduced by Eq. (107) is noteworthy:

to determine the late-time properties of an integrable quantum
many-body system, one needs to solve a system of differential
equations for a function of three variables, rather than the
Schrödinger equation for a number of particles of the order of
the Avogadro number. After discretizing the rapidity, one can
treat these equations using standard methods for initial-value
partial differential equations (Møller and Schmiedmayer,
2020), characteristics (Bulchandani, 2017; Doyon, Spohn,
and Yoshimura, 2018), or molecular dynamics (Doyon,
Yoshimura, and Caux, 2018), i.e., by simulating the dynamics
of the classical gas whose rapidity distributions obey
Eq. (107). There is, however, a remaining nontrivial step to
make before a solution can be obtained: one has to find the
right initial conditions for fρkðλ; x; tÞg. This problem has not
yet been solved for all initial states ρ0, but rather only for a
number of particular choices (Bulchandani et al., 2017, 2018;
Doyon et al., 2017; Caux et al., 2019). Some of these choices
give a good characterization of experimentally accessible
initial configurations. This was explicitly demonstrated in
two recent cold-atom experiments (Schemmer et al., 2019;
Malvania et al., 2020) that showed that GHD describes the
dynamics of nearly integrable 1D Bose gases accurately in all
accessible interaction regimes.

16We simplify here the notation introduced in Sec. II by writing

jðnÞx instead of jðQnÞ
x .
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We now focus on the most popular initial configuration
accessible with GHD: the bipartitioning protocol, i.e., the time
evolution of an initial state composed of the tensor product
of two different homogeneous states ρ0 ∼ ρL ⊗ ρR; see
Sec. IX.B. As mentioned earlier, since in this case we can
explicitly take the infinite-time limit, Eq. (107) becomes
exact. The solution is a function of the scaling variable
ζ ¼ x=t, usually termed the “ray,” and can be implicitly
written as (Bertini et al., 2016; Castro-Alvaredo, Doyon,
and Yoshimura, 2016)

ϑkðλ; ζÞ ¼ ½ϑLk ðλÞ − ϑRk ðλÞ�Θ½vdkðλ; ζÞ − ζ� þ ϑRk ðλÞ; ð109Þ

where ΘðxÞ is the step function and ϑL=Rk ðλÞ characterize the
homogeneous GGE emerging at infinite distance from the
junction on the left and right, respectively.17 This solution is
implicit because vdkðλ; ζÞ itself depends onϑkðλ; ζÞ. The explicit
result is obtained by formulating an initial guess for vdkðλ; ζÞ and
iterating Eqs. (109), (90), and (96) until convergence is reached
(typically in fewer than ten steps). This protocol has been used
for studying nonlinear transport in integrable quantum many-
body systems on the lattice (Bertini et al., 2016; De Luca,
Collura, and De Nardis, 2017; Bertini and Piroli, 2018; Bertini,
Piroli, and Calabrese, 2018; Collura, De Luca, and Viti, 2018;
Mazza et al., 2018; Gruber and Eisler, 2019) as well as on the
continuum (Castro-Alvaredo, Doyon, and Yoshimura, 2016;
Bertini, Piroli, and Kormos, 2019; Mestyán et al., 2019).
Moreover, it has also been used for analyzing the dynamics
of entanglement in inhomogeneous situations (Alba, 2018;
Bertini et al., 2018; Alba, Bertini, and Fagotti, 2019; Mestyán
and Alba, 2020). In Sec. III.C.1, we discuss how this protocol
can be used for computing Drude weights.
In concluding this review of GHD, we mention that

Eq. (107) does not represent an end point: there are currently
many ongoing efforts to extend its range of applicability. To
begin, the equation furnishes only a leading-order-in-time
characterization or, more precisely, describes the system for
long times t and length scales x ∼ t. In analogy with ordinary
hydrodynamics, however, one would expect GHD to also
describe the asymptotic behavior of the system on other length
scales, such as the diffusive one where x ∼

ffiffi
t

p
. This can be

achieved by finding the subleading corrections in t to
Eq. (107). In particular, in Sec. III.C.2, we discuss a
correction, recently identified by De Nardis, Bernard, and
Doyon (2018), which can describe diffusive behaviors.
Currently, however, a systematic method to find all subleading
corrections to Eq. (107) has been devised only in the non-
interacting case (Fagotti, 2017b; Fagotti, 2020). Another
active research strand is to extend Eq. (107) to the case in
which the time evolution is determined by a spatially
inhomogeneous or time-dependent Hamiltonian, where space
and time variations are slow. In particular, Doyon and
Yoshimura (2017) presented an extension that is valid in

the case of a system confined to a slowly varying trapping
potential, Bastianello, Alba, and Caux (2019) considered the
case of position-dependent Hamiltonian parameters, and
Bastianello and De Luca (2019) studied the effects of time-
dependent magnetic fields. Finally, there are ongoing efforts to
describe the evolution of the initial-state correlations under
Eq. (107) (Ruggiero et al., 2020).

1. GHD results for Drude weights

Drude weights can be computed within GHD following two
different approaches that give coinciding results. Both
approaches give access to the most general Drude weight

Dðn;mÞ
w ¼ β

2
lim
t→∞

1

t

X
r

Z
t=2

−t=2
dshjðnÞr ðsÞjðmÞ

0 ð0Þic

¼ β

2
lim
t→∞

X
r

Re½hjðnÞr ðtÞjðmÞ
0 ð0Þic�; ð110Þ

where h·ic denotes the connected expectation value in a grand-
canonical Gibbs ensemble ρGE ∝ exp½−βH þP

i λiNi� [the
sum in the exponent of ρGE runs over all conserved Uð1Þ
chargesNi of the system, such as the total particle number and
the magnetization]. In Eq. (110), n and m can label two
different conserved charges. In the case where n ¼ m, one
recovers the usual diagonal Drude weight of the charge Qn.
All results, however, can be directly extended to the case of
expectation values in more general GGEs. Note that (i) in
order to treat all charges on the same footing, we divided the
energy Drude weight by β, and (ii) the correlation function in
Eq. (110) is not the Kubo correlation used in Eq. (9). In the
limit t → ∞, the two expressions can be shown to coincide
under mild assumptions (Ilievski and Prosen, 2013).18

The first approach, proposed by Bulchandani et al. (2017)
and Ilievski and De Nardis (2017b), evaluates the Drude
weight using the following formulation. One considers a
bipartitioning protocol that connects two halves of the system
[left (L) and right (R)] initially prepared for the following
GGEs:

ρGGE;L=R ∝ exp

�
−βH þ

X
i

μiNi � ðβm=2ÞQm

�
; ð111Þ

where Qm is the mth conserved charge of the system. In this

setting, one can computeDðn;mÞ
w as follows (Vasseur, Karrasch,

and Moore, 2015):

Dðn;mÞ
w ¼ lim

βm→0
lim
t→∞

β

2tβm
tr½jðnÞ0 e−iHtρ0eiHt�; ð112Þ

where ρ0 ∼ ρGGE;L ⊗ ρGGE;R. Then, using Eq. (108) one can
express this relation in terms of TBA quantities as

17We assume that ρL=R have cluster decomposition
properties; namely, that they satisfy limjx−yj→∞hO1ðxÞO2ðyÞiL=R ¼
hO1ðxÞiL=RhO2ðyÞiL=R, where the operatorsOiðxÞ are local (i.e, they
act trivially far from the site xi) and hOðxÞiL=R≡ tr½OðxÞρL=R�.

18For integrable models, limt→∞
P

rhjðnÞr ðtÞjðnÞ0 ð0Þic turns
out to be real. This implies that the Drude weight can also be

defined using an asymmetric integration, namely, Dðn;mÞ
w ¼

ðβ=2Þlimt→∞ð1=tÞ
P

r

R
t
0 dshjðnÞr ðsÞjðmÞ

0 ð0Þic.
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Dðn;mÞ
w ¼ β

2

XNs

k¼1

Z
dζ

Z
Λ

−Λ
dλqn;kðλÞ

∂½vdkðλ; ζÞρkðλ; ζÞ�
∂βm

����
βm¼0

;

ð113Þ

where qn;kðλÞ are the bare charges corresponding to Qn.
The second approach, introduced by Doyon and Spohn

(2017), computes the Drude weight using hydrodynamic
projections. The idea is to write the Drude weight in the
form of Eq. (110) and expand it in the basis of appropriately
orthogonalized conserved charges. More precisely, one views

X
r

hjðnÞr ðtÞjðnÞ0 ð0Þic ≡ ðjðnÞjjðmÞÞ ð114Þ

as a scalar product in the space of local operators and assumes
that the only contributions surviving at infinite times are
coming from the overlap with conserved-charge densities

lim
t→∞

ðjðnÞjjðmÞÞ ¼
X
k;k0

ðjðnÞjqðkÞÞ½C−1�kk0 ðqðk0ÞjjðmÞÞ; ð115Þ

where we define Cnm ¼ ðqðnÞjqðmÞÞ. This reasoning is similar
in spirit to that leading to the Mazur bound, but it is carried out
directly in the thermodynamic limit. In general, this approach
can be used to compute the asymptotic behavior (large t,
large x) of dynamical correlation functions in generic inho-
mogeneous situations (Doyon, 2018).
The quantities appearing in Eq. (115) are all directly

computed within GHD and lead to the following final result:

Dðn;mÞ
w ¼ β

2

XNs

k¼1

Z
Λ

−Λ
dλ

ρtkðλÞ½vdkðλÞ�2qeffn;kðλÞqeffm;kðλÞ
½1þ ηkðλÞ�½1þ η−1k ðλÞ� ; ð116Þ

where vdkðλÞ and qeffm;kðλÞ are the group velocity of excitations
and the effective charge in the Gibbs state, respectively [i.e.,
with densities of rapidities obtained from solving Eqs. (90)
and (97) with all Lagrange multipliers vanishing except β
and μ]. As shown by Doyon and Spohn (2017), this expres-
sion agrees with that obtained from Eq. (113) if one plugs in
the implicit solution [Eq. (109)] of the GHD equation for the
bipartitioning protocol and takes the derivative explicitly.
Three generic features of Eq. (116) are (i) it is symmetric

under the exchange of n and m, which is in accord with
Onsager reciprocal relations; (ii) the Drude weight is obtained
by summing up elementary Drude weights [the integrand of
Eq. (116)] for each quasiparticle in the system; and (iii) the
Drude weight of a certain quantity vanishes when the
associated effective charges vanish. This happens in the case
of the spin transport in the spin-1=2 XXZ chain with jΔj ≥ 1 at
zero magnetization and for the charge transport in the Fermi-
Hubbard model at half filling.
Equation (116) holds for all TBA solvable models. Its

generalization to the nested case was first reported by Ilievski
and De Nardis (2017a) and, again, corresponds to a sum of
elementary Drude weights for each type of quasiparticle in the
system. In particular, we see that Eq. (116) agrees with the
special cases of Eqs. (101) and (103) discussed in Sec. III.B.3
once one restores the trivial β factor in the energy Drude

weight. Moreover, the nested generalization of Eq. (116)
reproduces the result given by Fujimoto and Kawakami
(1998) for the charge Drude weight in the Fermi-Hubbard
model. This follows from a direct comparison between
Eqs. (5) and (7) of Ilievski and De Nardis (2017a) and the
expression derived by Fujimoto and Kawakami (1998) [see
Eq. (35) in their work]; nonetheless, to the best of our
knowledge it has not been noticed in the literature. The main
point is to note that ξcðkÞ; ξskðλÞ; ξbkðλÞ given by Fujimoto
and Kawakami (1998) are exactly the effective electron
charges for the Fermi-Hubbard chain; cf. Eqs. (A46) in the
Supplemental Material of Ilievski and De Nardis (2017a). In
other words, they fulfill the nested generalization of the
dressing equations (96) with driving terms, respectively, given
by ξ0cðkÞ ¼ 1, ξ0skðλÞ ¼ 0, ξ0bkðλÞ ¼ 2k; cf. Eqs. (15)–(17)
and (29)–(31) of Fujimoto and Kawakami (1998).

2. GHD results for diffusion constants

To access the diffusive regime, one needs to identify the
leading corrections to Eq. (106), which go beyond the Euler
scale. A scheme to achieve this goal (based on two main
assumptions) was proposed by De Nardis, Bernard, and
Doyon (2018); see also Gopalakrishnan et al. (2018), De
Nardis, Bernard, and Doyon (2019), and Gopalakrishnan and
Vasseur (2019). The first assumption is that for large t the
system can also be characterized using hydrodynamics on
length scales x ∼

ffiffi
t

p
. Namely, one assumes that local observ-

ables are still described by a slowly varying quasistationary
state ρstðx; tÞ. This state, however, cannot be interpreted as a
space-time–dependent GGE anymore, but it has contributions
proportional to the spatial derivatives of the Lagrange multi-
pliers. Under this assumption, Eq. (106) also continues to hold
to the first subleading order. The expectation values of the
currents are no longer given by Eq. (108) and include
corrections written in terms of spatial derivatives of the
densities of rapidities. Specifically, they can be written as
(De Nardis, Bernard, and Doyon, 2019)

tr½jn;0ρstðx;tÞ�¼
XNs

k¼1

Z
dλqn;kðλÞvdkðλÞρkðλ;x;tÞ

−
1

2

Z
dλdμ

XNs

k;k0¼1

qn;kðλÞDk;k0 ðλ;μÞ∂xρk0 ðμ;x;tÞ;

ð117Þ

where the kernel Dk;k0 ðλ; μÞ depends on fρkðμ; x; tÞg. This
kernel is related to the diffusion (Onsager) matrix defined as19

Dn;m ¼
X
r

Z
∞

−∞
dt

�
hjðnÞr ðtÞjðmÞ

0 ð0Þic − 2

β
Dðn;mÞ

w

�
ð118Þ

as follows (De Nardis, Bernard, and Doyon, 2018):

19Note that Eq. (118) does not coincide with the Onsager matrix
given in Eq. (15), as in the latter we use Kubo correlation functions.
Once again, however, the two matrices can be shown to coincide
under mild assumptions (Ilievski and Prosen, 2013).
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Dn;m ¼
X
p

Z
dλdμ

XNs

k;k0¼1

qn;kðλÞDk;k0 ðλ; μÞqp;k0 ðλÞCpm;

ð119Þ

where the first sum is over all conserved charges of the system
and the matrix Cpm was introduced after Eq. (115). Note that it
is always possible to add a derivative term ∝ ox − ox−1 to a
charge density (where ox is a local operator) without modi-
fying the total charge. This introduces an ambiguity in the
definition of charge densities beyond the leading order; see
Fagotti (2020) for more details. In particular, the kernel
Dk;k0 ðλ; μÞ depends on the specific choice of the densities
of charges, while the Onsager matrix is invariant (De Nardis,
Bernard, and Doyon, 2019). The simple relation (119) is

obtained by taking charges and currents to be scalar under PT
symmetry (De Nardis, Bernard, and Doyon, 2019). Finally,
we remark that corrections similar to Eq. (117), i.e., depending
on the spatial derivatives of the densities of rapidities, appear
in the expectation values of all local observables with kernels
that are generically unknown.
The explicit TBA expression for Eq. (118) in models

with a single species of quasiparticles was determined by
De Nardis, Bernard, and Doyon (2018) through an expan-
sion in finite-temperature form factors.20 In particular, it
has been shown that Eq. (118) is fully determined by form
factors involving two particle-hole excitations. The expres-
sion for an arbitrary number of quasiparticles species was
later presented by De Nardis, Bernard, and Doyon (2019)
and reads as

Dn;m ¼
Z

dμ1dμ2
2

XNs

k;k0¼1

�
ρhkðμ1Þ

1þ ηkðμ1Þ
ρhk0 ðμ2Þ

1þ ηk0 ðμ2Þ
�
Teff
k0;kðμ2; μ1Þqeffn;k0 ðμ2Þ

σk0ρ
t
k0 ðμ2Þ

−
Teff
k;k0 ðμ1; μ2Þqeffn;kðμ1Þ

σkρ
t
kðμ1Þ

�

×

�
Teff
k0;kðμ2; μ1Þqeffm;k0 ðμ2Þ

σk0ρ
t
k0 ðμ2Þ

−
Teff
k;k0 ðμ1; μ2Þqeffm;kðμ1Þ

σkρ
t
kðμ1Þ

�
jvdkðμ1Þ − vdk0 ðμ2Þj

	
; ð120Þ

where both the effective charges qeffn;kðλÞ and the effective
scattering kernel Teff

k;k0 ðλ; μÞ fulfill Eq. (96), with driving
functions given by qn;kðλÞ and Tk;k0 ðλ − μÞ [Teff

k;k0 ðλ; μÞ for
fixed values of its second arguments k0 and μ], respectively.
We note that to obtain Eq. (120) De Nardis, Bernard, and
Doyon conjectured a general form for the kinematical poles
for finite-density form factors: this represents the second
main assumption made by De Nardis, Bernard, and Doyon
(2018).
Equation (120) can be interpreted by realizing that at the

diffusive scale the conserved modes of interacting integrable
models, i.e., the quasiparticles, do not follow exactly free
classical trajectories. As a consequence of the scattering, they
undergo a noisy motion around the classical trajectories with a
variance that grows as

ffiffi
t

p
. Such noisy motion is responsible

for the diffusive behavior (Gopalakrishnan et al., 2018; De
Nardis, Bernard, and Doyon, 2019; Gopalakrishnan and
Vasseur, 2019). This simple argument can be refined to obtain
a quantitative prediction in agreement with Eq. (120) in the
linear-response regime (Gopalakrishnan et al., 2018).
Moreover, in accordance with this interpretation, Eq. (120)
vanishes for noninteracting models. Finally, we mention that a
nontrivial check of Eq. (120) was recently presented by
Doyon (2019a) and Medenjak, De Nardis, and Yoshimura
(2020), who reobtained the equation using the hydrodynamic
projection method.
Including the diffusive correction equation (117) in the

expectation value of the currents, the continuity equation for
the space-time–dependent densities of rapidities takes the
following Navier-Stokes form (De Nardis, Bernard, and
Doyon, 2018):

∂tρkðλ; x; tÞ þ ∂x(vdkðλ; x; tÞρkðλ; x; tÞ)

¼ 1

2
∂x

�Z
dμ

XNs

k0¼1

Dk;k0 ðλ; μÞ∂xρk0 ðμ; x; tÞ
�
: ð121Þ

Of particular interest for this review is the case of the spin-1=2
XXZ chain with jΔj > 1 for small perturbations around a
zero-magnetization (mz ¼ 0) equilibrium state. In this case,
Eq. (121) leads to the following heatlike equation for the
profile mðx; tÞ of the magnetization density (De Nardis,
Bernard, and Doyon, 2019):

∂tmzðx; tÞ ¼ DðSÞ∂2
xmzðx; tÞ; ð122Þ

where the spin-diffusion constant is given by the sum over the
elementary diffusion constants of different quasiparticles

DðSÞ ¼
XNs

k¼1

Z
π=2

−π=2
dμ

ρhkðμÞ
1þ ηkðμÞ

jvdkðμÞjW2
k. ð123Þ

Here the rapidity-independent coefficient Wk reads as (De
Nardis et al., 2019)

Wk ¼ lim
k0→∞

Teff
k0;kðμ; λÞ
ρtk0 ðμÞ

¼ 1

2TχðβÞ ∂δneffk ; ð124Þ

where neffk is the effective magnetization [cf. Eq. (84) for the
definition of nk and Eq. (96) for that of effective charges], T is
the temperature, χðβÞ is the static susceptibility, and δ is a
small deviation from zero magnetization.
As shown by De Nardis et al. (2019), substituting Eq. (124)

into Eq. (123) and performing a few manipulations, one
obtains an expression for the diffusion constant that has the

20In this context, the term “form factor” indicates the matrix
element of a local operator between two Hamiltonian eigenstates.
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same form as the right-hand side of the bound in Eq. (79) but
involves a modified spin Drude weight.

IV. THEORETICAL AND COMPUTATIONAL METHODS

While integrable systems as such in principle allow for
analytically exact solutions, computing the current autocorre-
lation functions that enter into the Kubo formalism is a
formidable task, and no complete and general solution
from Bethe-ansatz techniques currently exists. Moreover,
for nonintegrable models one needs to resort to mostly
numerical methods or universal low-energy descriptions such
as bosonization.
We concentrate here on the discussion on the specifics of

the spin-1=2 XXZ chain for concreteness and point out aspects
that are important for the theoretical treatment of other models
when necessary.

A. Low-energy theory

1. Field theory

The low-energy excitations of a large class of 1D models
are not fermionic quasiparticles but rather collective bosonic
modes, forming the so-called Tomonaga-Luttinger liquid
(TLL) (Giamarchi, 2004; Schönhammer, 2004). The low-
energy theory can be solved using bosonization, and the
corresponding bosonic field theory takes the form (for one
fermionic species)

H ¼ v
2

Z
dx ½Π2 þ ð∂xϕÞ2�; ð125Þ

where Π is the conjugate momentum of the bosonic field ϕ
with the commutation relation ½ϕðxÞ;ΠðyÞ� ¼ iδðx − yÞ. The
TLL parameter K, which usually appears as a prefactor 1=K2

in front of the second term, has already been absorbed via a
canonical transformation of the fields. For multiple species,
such as the case of the Hubbard chain, the low-energy
Hamiltonian is a sum of independent Luttinger liquids. For
the Hubbard chain, these describe collective charge and spin
excitations.
For integrable systems, both K and the spin velocity v can

be computed from the Bethe ansatz. For example, for the spin-
1=2 XXZ chain, one obtains [see Essler and Konik (2005)]

K ¼ π

2

1

π − arccosðΔÞ ; v ¼ J
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

p

arccosΔ
: ð126Þ

The current operators associated with the spin density ∼∂xϕ
and the energy density of the Tomonaga-Luttinger-liquid
Hamiltonian take the form (Heidrich-Meisner et al., 2002;
Giamarchi, 2004)

J ðSÞ ¼ −v
ffiffiffiffi
K
π

r Z
dxΠ; J ðEÞ ¼ −v2

Z
dxΠ∂xϕ

ð127Þ

and are both strictly conserved. The corresponding Drude
weights read

DðSÞ
w ¼ Kv

2π
; DðEÞ

w ¼ π

6
vT: ð128Þ

If a certain microscopic model falls into the TLL univer-
sality class, the low-energy behavior of various correlation
functions, such as the momentum distribution or the local
density of states, is determined by Eq. (125). Transport
properties, however, are nonuniversal: On the microscopic
level of lattice Hamiltonians, they depend on integrability and
the model parameters. In contrast, all gapless spin chains fall
into the TLL universality class and at low T map to Eq. (125),
which by virtue of Eq. (128) describes a ballistic conductor
(Giamarchi, 1991, 1992). Information about the microscopic
origin of the integrability and the conserved charges is thus
lost by going to the continuum limit. The information on
integrability is in principle contained in relations between
the irrelevant operators that are discarded in the process.
Accounting for these relations in the calculation of transport
coefficients in a systematic manner is technically difficult and
has not yet been accomplished.
To describe transport beyond the purely ballistic case, one

needs to resort to a more generic low-energy Hamiltonian. The
RG irrelevant corrections to Eq. (125) that are most important
in this context are given by umklapp scattering and band
curvature as

Hu ¼ λu

Z
dx cos ð4

ffiffiffiffiffiffiffi
πK

p
ϕÞ;

Hb ¼
Z

dx½λþð∂xϕLÞ2ð∂xϕRÞ2 þ λ−ð∂xϕLÞ4 þ λ−ð∂xϕRÞ4�;

ð129Þ

where ϕ ¼ ϕL þ ϕR, and the prefactors λu;þ;− are known for
integrable systems (Lukyanov, 1998). In an extension of
earlier works (Giamarchi and Schulz, 1988; Giamarchi,
1992), the influence of these terms was studied via a finite-
T bosonic self-energy perturbation theory (Sirker, Pereira, and
Affleck, 2009, 2011). This leads to a purely diffusive form of
the optical spin conductivity

σqðωÞ ¼
Kv
π

iω
½1þ bðTÞ�ω2 − ½1þ cðTÞ�v2q2 þ 2iγðTÞω ;

ð130Þ

whose real part takes the following Lorentzian form in the
long-wavelength limit q → 0:

σ0ðωÞ ¼ Kv
π

2γðTÞ
½1þ bðTÞ�2ω2 þ 4γðTÞ2 : ð131Þ

The coefficients bðTÞ and cðTÞ as well as the decay rate γðTÞ
are functions of v; K; λu;þ;−, with γ; b; c → 0 for T → 0. In the
zero-temperature limit, Eq. (131) recovers the expression

for DðSÞ
w from Eq. (128). The Drude-weight contribution to

the conductivity at finite T, however, is missed and can
presently be accounted for only by hand (Sirker, Pereira, and
Affleck, 2011) using a memory-matrix approach; see Rosch
and Andrei (2000).
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Other exceptions to Luttinger-liquid universality are real-
time, real-space correlators, which for free lattice fermions are
already governed by high-energy excitations. Further insights
can be gained from nonlinear TLL theory (Imambekov,
Schmidt, and Glazman, 2012).
The previously mentioned bosonic self-energy perturba-

tion-theory approach (Sirker, Pereira, and Affleck, 2011)
can also be used to compute the density correlation function.
One finds that at long times the density autocorrelations are
governed by a diffusive term ∼

ffiffiffiffiffiffiffi
γ=t

p
, which is consistent with

numerical time-dependent DMRG (tDMRG) data (Karrasch,
Pereira, and Sirker, 2015) but disagrees with earlier field-
theory predictions (Narozhny, 1996). The formalism was
subsequently extended to incorporate the effects of nonlinear
Luttinger liquids at finite temperature (Karrasch, Pereira, and
Sirker, 2015). While the integrability of a system drastically
affects the longtime behavior of the global current autocorre-
lation function (i.e., the Drude weight), one does not expect
such a drastic influence on the density-density correlations of
local density operators such as szr. Thus, there is no need to
incorporate conserved quantities by hand, and field-theoretical
approaches can be used to determine the longtime behavior of
these quantities at low energies (Sirker, Pereira, and Affleck,
2011; Karrasch, Pereira, and Sirker, 2015).

2. Semiclassical approach

Damle and Sachdev introduced a semiclassical picture of
thermally excited particles to compute the low-temperature
behavior of the integrable, gapped, quantum Oð3Þ nonlinear
sigma model (Sachdev and Damle, 1997; Damle and Sachdev,
1998), as well as that of the sine-Gordon field theory (Damle
and Sachdev, 2005). The former describes the low-energy
behavior of integer-S (i.e., gapped) quantum spin chains in the
limit of large S, for which the work of Damle and Sachdev
predicts a zero Drude weight (Sachdev and Damle, 2000) and
diffusive dynamics with a conductivity that at low temper-
atures diverges as σdc ∝ 1=

ffiffiffiffi
T

p
. The methodology was sub-

sequently extended into various directions: for example, a
hybrid semiclassical-DMRG framework was developed
(Moca, Kormos, and Zaránd, 2017) and out-of-equilibrium
setups were studied (Bertini, Piroli, and Kormos, 2019;
Werner et al., 2019).
The range of validity of the semiclassical approach was

investigated both for the sine-Gordon model and for integer-S
spin chains by comparing them with DMRG or GHD results
(Moca, Kormos, and Zaránd, 2017; Bertini, Piroli, and
Kormos, 2019; De Nardis et al., 2019; Werner et al.,
2019). The current belief is that semiclassics give the correct
qualitative prediction for the low-temperature limit.

B. Exact diagonalization

Exact diagonalization (ED) has been a major workhorse
in the numerical analysis of finite-temperature transport
properties (Zotos and Prelovšek, 1996; Narozhny, Millis,
and Andrei, 1998; Heidrich-Meisner et al., 2003; Rabson,
Narozhny, and Millis, 2004; Herbrych, Prelovšek, and Zotos,
2011; Karrasch et al., 2013). The entire spectrum and all
eigenstates are computed, and therefore practically any

observable or correlation function can be extracted.
However, there is the limitation that only small system sizes
can be accessed. For the spin-1=2 XXZ chain, routinely, the
Hamiltonian can be diagonalized for L ∼ 20 sites by exploit-
ing translational invariance [see Sandvik (2010) for the
implementation of Uð1Þ and discrete symmetries in ED].
Accessing L ∼ 24 is possible with some effort (Heidrich-
Meisner, Honecker, and Vekua, 2006) for spin-1=2 chains. For
the Hubbard chain, the larger local Hibert space of four states
further restricts the accessible system sizes, which can be
overcome by using dynamical typicality as described in
Sec. IV.C. Technically, one needs to properly account for
the fermionic statistics, which is important for correlation
functions yet a standard and well-known aspect of the
numerical treatment of fermionic systems.

1. Formal expressions evaluated in ED

We illustrate the main aspects for the example of the
thermal and the spin conductivity in the spin-1=2 XXZ chain.
The relevant expressions result from Eq. (12) by expanding
the thermal expectation values in a basis of many-body
eigenstates jni, which we understand to be taken from a
subspace with fixed total magnetization Sz. Strictly speaking,
by doing so we work with a finite system and hence take
t → ∞ first and L → ∞ next. We first discuss the expressions
and then comment on this conceptual aspect. Note that one
can work in a canonical ensemble, i.e., at a fixed Sz. In this
case, the sums in the following expressions run over all
eigenstates from that subspace. Alternatively, one can carry
out a grand-canonical average over all values of Sz. Then the
sums have to be understood as

X
n

→
X
Sz

X
nðSzÞ

; ð132Þ

where the second sum runs over all eigenstates in the subspace
with fixed Sz.
For the spin conductivity, we obtain the following generic

situation in which both the Drude weight DðSÞ
w and the regular

part σregðωÞ can be nonzero in finite systems:

DðSÞ
w ¼ 1

2L

�
h−Tkini − 2

X
n;n0

En≠En 0

pn
jhnjJ ðSÞjn0ij2
En0 − En

�
; ð133Þ

σregðωÞ¼
π

L
1−e−βω

ω

X
n;n0

En≠En 0

pnjhnjJ ðSÞjn0ij2δ(ω− ðEn0−EnÞ);

ð134Þ

where pn ¼ e−βEn=Z in the canonical case and e−βEn−βbSz=Z
in the grand-canonical case and Z is the partition function (b is
the magnetic field). Tkin is the kinetic energy, which for the
spin-1=2 XXZ chain from Eq. (1) contains all terms except
those proportional to szrs

z
rþ1.

In a 1D system, the Drude weight can also be obtained from
the diagonal matrix elements of the current operator plus
contributions from degenerate subspaces:
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DðSÞ
w ¼ 1

2TL

X
n;n0

En¼En0

pnjhnjJ ðSÞjn0ij2; ð135Þ

which results from the absence of any superfluid density in a
1D system at finite temperatures (Zotos, Naef, and Prelovšek,
1997). Equations (133) and (135) are identical at (i) β ¼ 0 and
(ii) β > 0 in the thermodynamic limit. Practically, they are
already indistinguishable at sufficiently high temperatures for
the accessible system sizes L ≲ 20 (Heidrich-Meisner et al.,
2003; Mukerjee and Shastry, 2008).
An example for ED data for the spin Drude weight

of the XXZ chain is shown in Fig. 7; the data were obtained
in a grand-canonical ensemble using periodic boundary
conditions. These results are discussed further in Sec. VI.
Here we note that for β ¼ 0 and the commensurate value
Δ ¼ cos ðπ=3Þ ¼ 1=2, the convergence seems fast and indeed
yields agreement with other methods such as the lower bound
(Prosen and Ilievski, 2013), tDMRG (see the discussion in
Sec. VI.C.4) or the TBA (Zotos, 1999; Urichuk et al., 2019).
A recent Bethe-ansatz-based calculation (Klümper and Sakai,
2019) of the spin Drude weight for commensurate values such
as m ¼ 3; 4; 5; 6 in Δ ¼ cos ðπ=mÞ observes increasingly
large finite-size effects at lower temperatures. One should
realize, though, that this calculation extracts the Drude weight
from a set of rapidities, which is unlike the grand-canonical or
canonical ensemble used in exact diagonalization. Therefore,
no quantitative insight on the finite-size dependencies of other
methods can be gained from Klümper and Sakai (2019).
For thermal transport (or any transport channel for which

the current is exactly conserved), the expression for the
associated Drude weight can be further simplified from the
form of Eq. (135), resulting in

DðEÞ
w ¼ 1

2T2L

X
n

pnhnjðJ ðEÞÞ2jni: ð136Þ

This quantity exhibits the same mild finite-size dependencies
as the specific heat (Alvarez and Gros, 2002a). For instance,

for L ¼ 20 the ED data agree well with the exact solution for

DðEÞ
w down to T ≳ 0.25J (Heidrich-Meisner et al., 2002).
As an alternative to the aforementioned expressions, one

can also extract the spin Drude weight from the average
curvature of many-body eigenstates in systems with twisted
boundary conditions parametrized via ϕ (Kohn, 1964):

DðSÞ
w ¼ 1

2L

X
n

pn

�∂2EnðϕÞ
∂ϕ2

�����
ϕ¼0

: ð137Þ

This has the advantage that only eigenenergies need to be
evaluated, but a numerical differentiation is required.

2. Role of boundary conditions, symmetries, and choice of
ensemble

The choice of the boundary conditions, symmetries, and
ensemble can all affect the finite-size data and their con-
vergence to the L → ∞ limit.
For systems with periodic boundary conditions, one

observes weight in σregðωÞ in a frequency window ω < 1=L
for certain values of the anisotropy Δ (Naef and Zotos, 1998;
Herbrych, Steinigeweg, and Prelovšek, 2012). Similarly, for
systems with open boundary conditions, the Drude weight
is exactly zero for finite L, but there are precursor peaks
in σregðωÞ at small frequencies that move toward ω ¼ 0

as L increases (Rigol and Shastry, 2008; Brenes et al.,
2018). These observations suggest subtleties in extracting

DðSÞ
w from finite-size data at exactly zero frequency. A useful

strategy is to work with twisted boundary conditions [also
inspired by Kohn’s expression (137)] and a finite nonzero twist
angle. This reduces the symmetries of the problem (see the later
discussion) and the convergence with respect to L can be
accelerated (Sánchez and Varma, 2017).
The choice of the ensemble for the computation of the

Drude weight can matter as well. Specifically, states appearing
in the sum over n in Eq. (135) can be chosen from either a
single subspace with a fixed Sz (canonical approach) or an
average over all Sz (grand-canonical version). For concrete-
ness, we focus on the case of a vanishing external magnetic
field corresponding to a vanishing average hSzi ¼ 0. For large
systems, one expects these different ensembles to yield the
same result, which is confirmed in numerical simulations
(Karrasch et al., 2013; Sánchez and Varma, 2017), yet in finite
systems the differences can be significant. For instance,
at Δ ¼ 0 the grand-canonical version converges faster to
the L ¼ ∞ result, while close to Δ ¼ 1 the convergence of
canonical data seems to be faster (Herbrych, Prelovšek, and
Zotos, 2011; Karrasch et al., 2013).
Symmetry constraints on the matrix elements of hnjJ ðSÞjmi

play another important role and are at the root of some of the
aforementioned finite-size dependencies. For instance, in the
Sz ¼ 0 subspace (L even) that is symmetric under spin
inversion F†szrF ¼ −szr, all diagonal matrix elements vanish
identically, i.e., hnjJ ðSÞjni ¼ 0, since the spin current is
antisymmetric under F. One can extend this to show that
there is no contribution from the Sz ¼ 0 subspace on finite
systems with L even and incommensurate values of Δ ≠
cosðπl=mÞ (for m > l and l; m coprimes, L > 2m) at all

FIG. 7. Finite-size scaling of the spin Drude weight DðSÞ
w in the

high-temperature limit β ¼ 0, as presented by Steinigeweg,
Gemmer, and Brenig (2014, 2015). Crosses indicate dynamical
quantum typicality (DQT) data while other symbols indicate ED
data. Similar ED data were given by Zotos and Prelovšek (1996),
Heidrich-Meisner et al. (2003), Rabson, Narozhny, and Millis
(2004), Herbrych, Prelovšek, and Zotos (2011), and Karrasch
et al. (2013).
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(Sánchez and Varma, 2017). Therefore, in a canonical

evaluation of DðSÞ
w , the leading contribution for small Sz

comes from odd L and Sz ¼ 1=2 (Herbrych, Prelovšek,
and Zotos, 2011). For commensurate Δ ¼ cosðπl=mÞ, degen-
eracies appear forL ≥ Lmin ¼ 2m (Sánchez andVarma, 2017),
implying that for certain values of Δ and small L essential

contributions toDðSÞ
w aremissed. Because of the sum rule, these

contributions must sit at small frequencies on smaller system
sizes, and therefore a rather intricate, size-dependent transfer of
weight from low to zero frequency occurs; see Naef and Zotos
(1998) for an early discussion. A comprehensive discussion of
symmetry constraints on thematrix elements of the spin current
and an analysis of contributions of degenerate and nondegen-
erate subspaces were given by Narozhny, Millis, and Andrei
(1998), Mukerjee and Shastry (2008), and, in particular,
Sánchez and Varma (2017).
A theory for the finite-size dependencies of the Drude

weight would be highly desirable. An interpretation was put
forward by Steinigeweg, Herbrych, and Prelovšek (2013) [see
also Prosen (1999)]: the Drude weight [see Eq. (135)] up to
degeneracies measures the spread of diagonal matrix elements
of current operators in eigenstates and is thus a measure of
how closely this observable already obeys the eigenstate
thermalization hypothesis (ETH) (D’Alessio et al., 2016)
on finite systems. On general grounds, one therefore expects
an exponential decrease with system size for nonintegrable
models [which is consistent with many ED studies; see Zotos
and Prelovšek (1996), Prosen (1999), and Heidrich-Meisner
et al. (2004b)], which obey ETH, and a power-law depend-
ence for integrable models. These qualitative expectations for
the L dependence of the Drude weight are supported in most
cases for system sizes larger than a crossover length scale
(Steinigeweg, Herbrych, and Prelovšek, 2013).
The calculation of the regular part requires a strategy to deal

with the δ functions such as broadening or binning procedures
when working directly in frequency space. The finite system
size sets a lower bound on the accessible frequency range
below which finite-size effects dominate. At low temper-
atures, a conservative estimate is ω≳ 1=L, while at high
temperatures much lower frequencies can be accessed due to
the dominant contributions from dense portions of the many-
body spectrum.

3. Pitfalls

We now discuss the subtle point of the order of limits that
was taken, i.e., L → ∞ after t → ∞, which is the opposite of
what is formally required. This is born out of the desire to
operate with a closed expression for Drude weights rather
than having to compute time-dependent quantities first and
then carry out the limits. In fact, there is no known way of
expressing the Drude weight other than introducing a discrete
set of eigenstates and hence going to infinite t at finite L first.
In ED, this approach is unavoidable, since system sizes are

finite by definition. What could go wrong? One might be
worried about mistaking a nonintegrable system for a ballistic
conductor, since every finite system with discrete lattice
translation invariance can have nonzero finite-T Drude
weights in the spin, charge, or energy channel. Thus, a careful
finite-size analysis is required to deal with this. In those cases

for which exact or accepted results for the Drude weight are
known (such as free systems or the energy Drude weight of the
spin-1=2 XXZ chain), increasing the system size in ED data
leads to systematic convergence to the correct result. This
observation lends confidence to the reliability of the analysis
of finite-size trends. Care must be taken in the vicinity of
integrable points, including limiting cases of free particles
such as the spin-1=2 XX chain, where the generic expectation
is that microscopic physics will unveil itself only once large
systems are reached. Thus, the ED analysis of nonintegrable
points better commences from points deep in the nonintegr-
able regime (Heidrich-Meisner et al., 2004b).
Another pitfall can arise in the analysis of finite-frequency

contributions, either from real-time data or directly in fre-
quency space. A conservative approach is to consider only
data that are L independent, thus discarding the long times and
low-frequency regime. An example is illustrated in the upper
panel of Fig. 8; if the Fourier transformation is cut off at a
short timescale, convergence in L can be achieved. The
Fourier transformation of longtime data (lower panel) shows
significant finite-size effects at small frequencies (Prelovšek
et al., 2004; Jin et al., 2015).

C. Dynamical quantum typicality

The concept of quantum typicality essentially states that a
single pure state jψi can have the same properties as the
ensemble density matrix ρ (Gemmer and Mahler, 2003;
Goldstein et al., 2006; Popescu, Short, and Winter, 2006).
To be specific, here we look at the expectation value of an
observable A, i.e.,

tr½ρðtÞA� ¼ hψðtÞjAjψðtÞi þ ε ð138Þ

(Reimann, 2007; Bartsch and Gemmer, 2009), where ε
is a negligibly small correction (as discussed later in more

FIG. 8. Frequency dependence of the charge conductivity in the
Fermi-Hubbard chain at U=th ¼ 16 and β ¼ 0 and at half filling,
as obtained from Fourier transforming real-time data that uses
(a) short times that are L independent, tmaxth ¼ 4, and (b) long
times of tmaxth ¼ 100 (Jin et al., 2015). See Sec. VII and
Eq. (178) for the definition of the Hamiltonian.
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detail). If jψi ¼ jni is a single eigenstate with energy En and
ρ ¼ ρmc is the microcanonical ensemble in an energy shell
E ≈ En, then Eq. (138) becomes the diagonal part of the well-
known ETH

tr½ρmcA� ¼ hnjAjni þ ε ð139Þ

(Deutsch, 1991; Srednicki, 1994; Rigol, Dunjko, and
Olshanii, 2008). Even though the ETH is an assumption,
there is solid evidence that it holds for local few-
body observables in nonintegrable many-body systems
(Nandkishore and Huse, 2015; D’Alessio et al., 2016).
However, in contrast to ETH, Eq. (138) is a mathematically
rigorous statement if jψi is essentially drawn at random from
a sufficiently large Hilbert space (Reimann, 2007; Bartsch
and Gemmer, 2009). In fact, the idea of using random states
jψi has a long history (Alben et al., 1975; De Raedt and De
Vries, 1989; Jaklič and Prelovšek, 1994) and is at the basis of
various numerical approaches to the density of states (Hams
and De Raedt, 2000), thermodynamic quantities (De Vries
and De Raedt, 1993; Sugiura and Shimizu, 2012, 2013;
Wietek et al., 2019), equilibrium correlation functions (Iitaka
and Ebisuzaki, 2003; Elsayed and Fine, 2013; Steinigeweg,
Gemmer, and Brenig, 2014; Steinigeweg, Herbrych, Zotos,
and Brenig, 2016; Rousochatzakis et al., 2019), nonequili-
brium processes (Monnai and Sugita, 2014; Endo, Hotta, and
Shimizu, 2018; Richter, Lamann et al., 2019), and ETH
(Steinigeweg, Khodja et al., 2014). In this review, we focus
on the case of equilibrium correlation functions.
Using the idea of quantum typicality and considering the

canonical ensemble ρ ∝ e−βH, the equilibrium autocorrelation
function of an operator A can be written as (Iitaka and
Ebisuzaki, 2003; Elsayed and Fine, 2013; Steinigeweg,
Gemmer, and Brenig, 2014; Steinigeweg, Herbrych, Zotos,
and Brenig, 2016)

RehAðtÞAi ¼ Rehψ jAðtÞAjψi þ ε; ð140Þ

with the pure state

jψi ¼
ffiffiffi
ρ

p jΦiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΦjρjΦip ; ρ ∝ e−βH; ð141Þ

where the reference pure state jΦi reads

jΦi ¼
X
k

ckjki: ð142Þ

Here jki can be any orthonormal basis; for example, it can be
the common eigenbasis of symmetries. In the basis consid-
ered, the complex coefficients ck must be chosen according to
the unitary invariant Haar measure (Bartsch and Gemmer,
2009); i.e., Reck and Imck have to be drawn at random from a
Gaussian distribution with zero mean.21 Assuming A to be a
local operator in real space (or a sum of L such operators), the
statistical error ε in Eq. (140) is bounded from above by

ε < Oð1= ffiffiffiffiffiffiffiffiffiffiffiffi
dimeff

p Þ, where dimeff ¼ tr½e−βðH−E0Þ� is the parti-
tion function with the ground-state energy E0. At β ¼ 0,
dimeff ¼ dim. Thus, ε decreases exponentially fast as L is
increased and eventually vanishes for L → ∞. At β ≠ 0, ε can
still be expected to decrease exponentially, but less quickly.
The accuracy of the approximation (140) for finite L is
illustrated in Fig. 9 and can be checked in practice by
comparing it to the exact correlation function or by comparing
the results for two or more randomly drawn pure states. For a
discussion of the full probability distribution of pure-state
expectation values, see Reimann and Gemmer (2019).
The central advantage of the rhs of Eq. (140) is that its

evaluation can be done without knowing eigenstates and
eigenenergies. To this end, it is convenient to introduce the
two auxiliary pure states

jΦβðtÞi ¼ e−iHt ffiffiffi
ρ

p jϕi; jφβðtÞi ¼ e−iHtA
ffiffiffi
ρ

p jϕi ð143Þ

and rewrite Eq. (140) as

RehAðtÞAi ¼ RehΦβðtÞjAjφβðtÞi
hΦβð0ÞjΦβð0Þi

þ ε ð144Þ

(Iitaka and Ebisuzaki, 2003; Elsayed and Fine, 2013;
Steinigeweg, Gemmer, and Brenig, 2014; Steinigeweg,
Herbrych, Zotos, and Brenig, 2016). Then the dependence
on t and β occurs as a property of pure states only and can be
obtained by solving the Schrödinger equation in real and
imaginary time, respectively. For this purpose, any forward-
iteration scheme can be used, including standard fourth-order
Runge-Kutta (Elsayed and Fine, 2013) or more sophisticated

FIG. 9. Accuracy of the DQT approximation, illustrated for the
spin-current autocorrelation function in the spin-1=2 XXZ chain
at the isotropic point Δ ¼ 1 and infinite temperatures β ¼ 0
(Steinigeweg, Gemmer, and Brenig, 2015). (a) ED vs DQT for a
chain (with a total Hilbert-space dimension of dim ¼ 2L) and an
uncoupled ladder (dim ¼ 4L ≫ 2L) with L ¼ 10. (b) DQT for
L ¼ 33 and two randomly drawn pure states. For the behavior of
spin-spin correlations see Balz et al. (2018).

21Note that other types of randomness have also been suggested
(Alben et al., 1975; Iitaka and Ebisuzaki, 2004).
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Suzuki-Trotter decompositions (De Vries and De Raedt,
1993) and Chebyshev polynomials (Tal-Ezer and Kosloff,
1984; Dobrovitski and De Raedt, 2003; Weiße et al., 2006).
Since in these schemes the required matrix-vector multi-
plications can be performed without storing full matrices in
computer memory, they can access longtime dynamics in large
Hilbert spaces. For instance, the spin Drude weight of the
spin-1=2 XXZ chain with L ¼ 33 (dim ¼ 233) (Steinigeweg,
Gemmer, and Brenig, 2014) (see Fig. 7) and the charge Drude
weight of the Fermi-Hubbard chain with L ¼ 16 (dim ¼ 232)
(Jin et al., 2015) have been calculated. As with tDMRG (see
Sec. IV.E), real-time data can be Fourier transformed to obtain
information in frequency space (Iitaka and Ebisuzaki, 2003)
such as the optical conductivity (Steinigeweg, Herbrych,
Zotos, and Brenig, 2016).
Note that recently dynamical quantum typicality has been

combined with numerical linked-cluster expansions (Tang,
Khatami, and Rigol, 2013) to obtain current autocorrelations
in the thermodynamic limit (Richter and Steinigeweg, 2019).

D. Microcanonical Lanczos method

The microcanonical Lanczos method (MCLM) (Long et al.,
2003) also works with single pure states drawn at random. Yet,
in contrast to Sec. IV.C, these states are constructed so as to
give an accurate approximation to equilibrium expectation
values in the microcanonical ensemble; i.e., Eq. (141) becomes

jψi ¼
ffiffiffi
ρ

p jΦiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΦjρjΦip ; ρ ¼ ρmc ∝
XN
n¼1

jnihnj; ð145Þ

where ρmc is a projector onto an energy shell that (i) is narrow
but at the same time (ii) contains sufficiently many energy
eigenstates N ≫ 1. Therefore, because of (ii), ETH is not
required and typicality arguments can still be applied
(Steinigeweg, Khodja et al., 2014). Moreover, the MCLM
has been designed to work directly in frequency space (instead
of the time domain discussed before). See Long et al. (2003) for
an extensive discussion of the method.
In the algorithm presented by Long et al. (2003), a pure

state jψi is prepared around a desired energy E by performing
a Lanczos procedure on K ¼ ðH − EÞ2. Then the conductivity
is obtained from

σ0ðωÞ ¼ −lim
η→0

Imhψ jJ ðSÞ½1=ðz −H þ EÞ�J ðSÞjψi
πhψ jðJ ðSÞÞ2jψi ; ð146Þ

where z ¼ ωþ iη by using a continued fraction expansion.
The quality of the corresponding results was demonstrated for
σ0ðωÞ of spin-1=2 XXZ chains (Long et al., 2003). For the
extraction of the Drude weight, which cannot be directly
resolved in this approach but appears to be a contribution at
small frequencies ω < 1=L, an ad hoc integration over a low-
frequency regime needs to be employed.
Since the MCLM is a pure-state, Lanczos-based approach,

it can access system sizes comparable to those accessible by
the schemes based on dynamical quantum typicality. For
example, for spin-1=2 chains the method can access systems
of L ¼ 32 sites. The approach has been applied to various

physical situations, including spin-1=2 chains (Long et al.,
2003; Mierzejewski, Bonča, and Prelovšek, 2011; Herbrych,
Steinigeweg, and Prelovšek, 2012; Okamoto et al., 2018),
ladders (Zotos, 2004; Steinigeweg, Herbrych, Zotos, and
Brenig, 2016), spin-1 chains (Karadamoglou and Zotos,
2004), spinful fermions (Prelovšek et al., 2004), and disor-
dered spin systems (Karahalios et al., 2009; Barišić et al.,
2016). Although the MCLM was originally formulated in the
frequency domain, carrying out microcanonical calculations
in the time domain is also possible (Steinigeweg, Khodja
et al., 2014). Moreover, energy filters other than K¼ðH−EÞ2
can be chosen (Yamaji, Suzuki, and Kawamura, 2018). For
reviews on the MCLM and other methods in the context of
Lanczos diagonalization, see Dagotto (1994), Jaklič and
Prelovšek (2000), and Prelovšek and Bonča (2013).

E. Finite-temperature matrix-product-state methods

The DMRG method was originally devised as a tool to
accurately determine static ground-state properties of
one-dimensional systems (White, 1992). The method was
later extended in various directions, such as accessing
spectral functions, real-time evolutions, or thermodynamics
(Schollwöck, 2005). From a modern perspective, all DMRG
algorithms can be formulated elegantly if one introduces the
concept of matrix-product states (MPSs) (Schollwöck, 2011)

jψi ¼
X
fσrg

tr½Mσ1 ·Mσ2 � � �MσL �jσ1σ2…σLi; ð147Þ

where σr denote single-site quantum numbers at the rth site.
The so-called bond dimension χ of the matrices Mσl grows
exponentially with the amount of entanglement in the state
jψi. The idea of a ground-state DMRG calculation is to
determine Mσl variationally for a fixed, small χ, which is a
tactic well suited to 1D systems obeying the area law (Eisert,
Cramer, and Plenio, 2010).
This language allows one to deal with pure states and is thus

not directly applicable at finite temperatures. To access T > 0,
one can introduce the notion of matrix-product operators
or, equivalently, one can purify the thermal density matrix
ρ ¼ e−βH=Z by expressing it as a partial trace over a pure state
living in an enlarged Hilbert space

ρ ¼ trQjΨβihΨβj; ð148Þ

where auxiliary degrees of freedom Q encode the thermal
bath (Verstraete, García-Ripoll, and Cirac, 2004; Feiguin and
White, 2005; Barthel, Schollwöck, and White, 2009; Barthel,
2013). This purification step is not unique, and a simple
choice is for the bath to be a copy of the system’s degrees of
freedom, yet without any unitary dynamics of its own.
The key point is that a purification of the infinite-

temperature state ρ ¼ 1=Z can be written down analytically.
Again the representation of this state is not unique and a
common choice is to put each physical degree of freedom into
a maximally entangled state with its copy in the bath by
putting both into a singlet state. A subsequent imaginary
time evolution where H acts only on the physical degrees
of freedom that is carried out using standard DMRG
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time-evolution methods can then in principle provide a
purified version of the thermal state ρ at any finite temper-
ature. The final thermal expectation values are obtained by
taking the trace over the auxiliary degrees of freedom. Note
that imaginary, real-time evolution and the trace operation are
linear, and therefore we exploit the fact that they can be
applied in arbitrary order.
For instance, correlation functions can be obtained [similar

to Eq. (140)] using

hAðtÞBi ¼ hΨ0je−βH=2UðtÞ†AUðtÞBe−βH=2jΨ0i; ð149Þ

where the matrix-product state jΨ0i purifies ρ ¼ 1=Z at
β ¼ 0. If the Hamiltonian at hand contains only short-range
interactions, both the real and imaginary time evolutions
appearing in Eq. (149) can be computed straightforwardly
(Daley et al., 2004; Vidal, 2004; White and Feiguin, 2004)
by splitting them into small steps UðtÞ ¼ expð−iHtÞ ¼
expð−iHδtÞ expð−iHδtÞ � � �. One can then Trotter decompose
the exponentials expð−iHδtÞ into mutually commuting local
terms, which can be applied straightforwardly to a MPS
(Vidal, 2004; Schollwöck, 2011; Paeckel et al., 2019). Other
ways to incorporate finite temperatures within the DMRG
include a Lindbladian superoperator approach (Zwolak and
Vidal, 2004), a transfer-matrix formulation (Sirker and
Klümper, 2005), and a probabilistic sampling over pure states
(White, 2009; Stoudenmire and White, 2010).
The crucial step when applying e−iHδt to a given MPS is to

truncate the bond dimension by neglecting singular values
below a certain threshold. This is the best approximation in the
2-norm of the wave function. The discarded weight is the key
numerical control parameter; fixing it means fixing the error
of the calculation. One usually runs calculations for several
different values until physical observables have converged up
to a desired accuracy [an example for this is shown in
Fig. 10(c)].
If entanglement builds up linearly with time, the bond

dimension χ grows exponentially, and so does the computa-
tional effort. This severely limits the accessible timescales
(Barthel, Schollwöck, and White, 2009). For the tDMRG data
in Fig. 10 and the calculation of expressions such as current
correlations in general, one can choose system sizes such that
on the accessible timescales, the results are for the thermo-
dynamic limit [due to a finite effective speed of information
propagation (Lieb and Robinson (1972)]. Moreover, tDMRG
is not limited to integrable models or translationally invari-
ant cases.
At finite temperatures, one can exploit the fact that some

of the entanglement growth is “unphysically” taking place
in Q and thus can be removed (Karrasch, Bardarson,
and Moore, 2012, 2013). Mathematically, the state jΨβi
appearing in Eq. (148) is not unique but only determined
up to an arbitrary unitary rotation, which can be chosen
such that the entanglement is minimized. If this unitary is
taken as a backward time evolution inQwith an operatorHQ

that has the same form asH (but acts inQ), which amounts to
replacing UðtÞ with ŨðtÞ ¼ expf−iðH −HQÞtg in Eq. (149),
then the entanglement growth is slowed significantly and
larger timescales become accessible. This is illustrated in

Fig. 10(a) and by Karrasch, Bardarson, and Moore (2012,
2013). It was later shown that the backward time evolution in
Q appears naturally in an operator-space language (Barthel,
2013; Tiegel et al., 2014). Its form can also be motivated
from the fact that jΨβi is an eigenstate of H −HQ but not of
H (Kennes and Karrasch, 2016). Further optimization
schemes were discussed by Barthel (2013) and Karrasch,
Bardarson, and Moore (2013). A method that in practice
allows one to find the minimally entangled representation by
iteratively minimizing the second Renyi entropy was pre-
sented by Hauschild et al. (2018).
Moreover, it was suggested (Barthel, 2013) to rewrite

hAð2tÞBi ¼ hAðtÞBð−tÞi as

hAð2tÞBi ¼ hΨ0je−βH=2AŨðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
hϕ1j

ŨðtÞBe−βH=2jΨ0i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
jϕ2i

; ð150Þ

and to determine the states jϕ1;2i via separate time evolutions.
This again gives access to larger timescales by about a factor
of 2 or less; see Fig. 10(b).

FIG. 10. Benchmark of the improved finite-T tDMRG algo-
rithm for the spin-1=2 XXZ chain [Eq. (1)]. (a) Spin autocorre-
lation function for Δ ¼ 0 computed using both the standard
algorithm [Eq. (149)] and the improved version (U replaced by
Ũ) with a fixed bond dimension of χ ¼ 60. The exact solution is
shown as a reference. The data were taken from Karrasch,
Bardarson, and Moore (2012). (b) Spin-current autocorrelation
function at Δ ¼ 0.5 calculated using Eq. (150) with a fixed
discarded weight. The data were taken from Karrasch, Kennes,
and Heidrich-Meisner (2015). Both the analytical result given by
Prosen and Ilievski (2013) (horizontal dashed line) and the
timescale reached in the tDMRG calculation given by Sirker,
Pereira, and Affleck (2009) (vertical dotted line) are shown for
comparison. (c) Same as (b) but for discarded weights that each
differ by 1 order of magnitude [the two values denote the
discarded weight during the two different time evolutions in
Eq. (150); see Kennes and Karrasch (2016)]. Data obtained using
a fixed bond dimension of χ ¼ 200 are shown for comparison.
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The improved finite-T tDMRG algorithm can be used to
determine Drude weights and diffusion constants by looking
at the longtime limit of the current correlation function
(Karrasch, Bardarson, and Moore, 2012; Karrasch et al.,
2013; Karrasch, Kennes, and Moore, 2014; Karrasch,
Moore, and Heidrich-Meisner, 2014; Karrasch, Kennes, and
Heidrich-Meisner, 2015) or from local quenches (Karrasch,
Moore, and Heidrich-Meisner, 2014; Karrasch, Prosen, and
Heidrich-Meisner, 2017), as well as in the bipartitioning
protocol (Vasseur, Karrasch, and Moore, 2015; Karrasch,
2017a). The strength of such quenches can be tuned in order
to reduce the buildup of entanglement and thus extend the
simulation time, and we observe that certain bipartitioning
protocols (see also Sec. IX.B) are best suited to determine
Drude weights (Karrasch, 2017a). Frequency-resolved quan-
tities can be determined from Fourier transformations
(Karrasch, Kennes, and Moore, 2014; Karrasch, Kennes,
and Heidrich-Meisner, 2015, 2016), which can be improved
by using so-called linear prediction methods (Barthel,
Schollwöck, and White, 2009).
Another possibility to obtain transport properties on longer

timescales is to employ the time-dependent variational prin-
ciple approach (Haegeman et al., 2011), but the approach has
its own advantages (Leviatan et al., 2017) and shortcomings
(Kloss, Lev, and Reichman, 2018). Descendants of Lanczos
DMRG methods, which directly yield frequency-dependent
quantities (Holzner et al., 2011; Tiegel et al., 2014), are
another promising avenue, but one that has not yet been
pursued in transport setups. A promising direction was
recently pursued by Rakovszky, von Keyserlingk, and
Pollmann (2020). Operators with a local support are evolved
in the presence of a bath with a coupling strength Γ that
controls dissipation. The diffusion constant is recovered in the
limit of Γ → 0 and agreement with previous studies has been
observed (Steinigeweg, Heidrich-Meisner et al., 2014).

F. Quantum Monte Carlo methods

For all spin systems on nonfrustrated lattices, quantum
Monte Carlo methods, such as the stochastic series expansion
(Syljuåsen and Sandvik, 2002; Sandvik, 2010) and the cluster
methods using loop updates (Evertz, Lana, and Marcu, 1993),
provide essentially exact results for the thermodynamics and
static correlations on large systems. Computing frequency-
resolved quantities, though, is difficult due to the ill-defined
problem of the analytic continuation from imaginary time to
real time. One can avoid the problem by directly computing
the response on the imaginary axis and comparing it to
theoretical predictions expressed in imaginary rather than
real time. This method works best at low temperatures, where
the set of available Matsubara frequencies ωn ¼ 2πn=β
(n ∈ Z) is more dense. Therefore, quantum Monte Carlo
(QMC) studies of transport in 1D spin systems (Alvarez and
Gros, 2002b, 2002c; Louis and Gros, 2003; Heidarian and
Sorella, 2007; Grossjohann and Brenig, 2010) and Fermi-
Hubbard models (Kirchner, Evertz, and Hanke, 1999) are
complementary to finite-temperature DMRG, ED, and
dynamical typicality. The conclusions of some of these
QMC studies conflict with the bulk of the literature. For
instance, both Kirchner, Evertz, and Hanke (1999) and

Heidarian and Sorella (2007) claimed evidence of ballistic
transport in gapless nonintegrable models. While there has not
been any systematic comparison between QMC data and other
numerical methods (which is hampered by the different
temperature regimes that these methods work in), a generic
issue related to the analytical continuation from the imaginary
axis to the real-frequency axis arises at low temperatures.
Since Matsubara frequencies ωn ∝ T, there is a poor reso-
lution whenever the width of a peak in the spectral feature is
smaller than kBT.
The statistical errors in QMC calculations are typically

larger for higher-order correlation functions, and it is therefore
preferable (Alvarez and Gros, 2002b, 2002c; Grossjohann and
Brenig, 2010) to work with two-site correlation functions
instead of directly evaluating current-current correlations
(Heidarian and Sorella, 2007). At finite momentum q and
frequency ωn, one can relate the dynamical conductivity
σqðωnÞ given by (Alvarez and Gros, 2002c)

σqðωnÞ ¼
h−Tkini − JðSÞq ðωnÞ

ωn
ð151Þ

to the dynamical spin susceptibility SqðωnÞ via

h−Tkini − JðSÞq ðωnÞ ¼
ω2
n

q̃2
SqðωnÞ: ð152Þ

Note that unlike in Eq. (61) there is a minus sign, due to
imaginary time. The expressions entering here are

JðSÞq ðωnÞ ¼
1

L

Z
β

0

eiωnτhjðSÞq ðτÞjðSÞ−q ð0Þidτ; ð153Þ

SqðωnÞ ¼
1

L

Z
β

0

eiωnτhszqðτÞsz−qð0Þidτ; ð154Þ

where τ is imaginary time.
The strategy pursued by Alvarez and Gros (2002b, 2002c)

was to fit the numerical data to a phenomenological ansatz;
see Alvarez and Gros (2002c) for details. One notable result
given by Alvarez and Gros (2002b, 2002c) was a Drude
weight DðSÞ

w ðTÞ ¼ const at low temperatures for commensu-
rate points Δ ¼ cosðπ=mÞ (m ¼ 1; 2;…) in the gapless phase
of the spin-1=2 XXZ chain, in contradiction to the TBA results
for the temperature dependence (Zotos, 1999). It thus remains
an open question as to whether or not the specific ansatz given
by Alvarez and Gros (2002c) is justified and whether or not
finite temperatures were actually resolved in these QMC
studies, which reproduce the zero-temperature Drude weight
away from Δ ¼ 1 with excellent accuracy.
Another QMC work (Grossjohann and Brenig, 2010)

focused on the spin-1=2 XXX chain and aimed at verifying
the field-theoretical prediction given by Sirker, Pereira, and
Affleck (2009, 2011) for the dynamical spin susceptibility
SqðωnÞ. Qualitatively, a diffusive form at small wavelength is
expected based on the perturbative bosonization analysis
given by Sirker, Pereira, and Affleck (2009); cf. Sec. IV.A.
This is consistent with QMC data, but quantitative deviations
for the decay rate γ were reported.
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V. OPEN QUANTUM SYSTEMS

In this section, we describe methods that use an explicit
external driving, such that a system evolves to a NESS
(Schmittmann and Zia, 1995; Marro and Dickman, 1999).
The NESS describes a time-averaged system’s density oper-
ator, from which one can then evaluate expectation values of
observables. A particular emphasis is put on the boundary-
driven Lindblad setting being the most frequently used
framework to obtain the NESS.
We note that open quantum systems are sometimes also

studied numerically with a unitary time evolution; i.e., the
leads are treated on the Hamiltonian level and as a finite
system. We do not further discuss this approach here but
mention studies that looked at spin chains (Branschädel,
Schneider, and Schmitteckert, 2010; Lange, Ejima, and
Fehske, 2018, 2019) or electronic systems (Heidrich-
Meisner et al., 2010; Kirino and Ueda, 2010; Knap, von
der Linden, and Arrigoni, 2011; Einhellinger, Cojuhovschi,
and Jeckelmann, 2012) sandwiched between leads. An
alternative formulation used in studies of mesoscopic sys-
tems, particularly in the absence of interactions, is to
describe the system’s properties using a scattering matrix
and the leads by occupation numbers, leading to Landauer-
Büttiker type formulas (Nazarov and Blanter, 2009). Finally,
we mention that there are some settings that are able to
produce a NESS within the unitary dynamics. One is the
bipartitioning protocol where one prepares two semi-infinite
chains in different initial states and then evolves unitarily in
time; see Sec. IX.B. Another is to use a Lagrange multiplier
to add a current operator to the Hamiltonian; see Antal, Rácz,
and Sasvári (1997).

A. Nonequilibrium steady-state driving

A canonical way of studying nonequilibrium properties is
to induce a NESS using some kind of reservoirs and to
measure its properties. In studies of classical systems (Lepri,
Livi, and Politi, 2003; Dhar, 2008), where many different
types of reservoirs are available, this is in fact a method of
choice to study transport (Schmittmann and Zia, 1995; Marro
and Dickman, 1999; Derrida, 2007). Compared to linear-
response calculations, no extra care is needed when treating
anomalous transport often observed in classical nonintegrable
1D systems, such as that in the Fermi-Pasta-Ulam-Tsingou
model (Fermi, Pasta, and Ulam, 1955; Dauxois, 2008).
Quantum NESS studies are fewer, with one reason being that
it is not easy to construct quantum reservoirs that one can
efficiently simulate. As we see in this section, the situation has
been changing in recent years, with increased research into
quantum master equations.
In a one-dimensional system it suffices to use one reservoir

at each chain end and, provided that they are different, the
system will evolve into a NESS ρ∞ after a long time. Once one
gets the NESS, the main quantity used to assess the transport
is the NESS current jðSÞ, which is simply the expectation value
of the current operator. The current is always defined such that
the continuity equation holds. Therefore, at sites r on which
the reservoirs act it must account also for the bath action. In
the bulk, though, where the evolution is unitary, the current

operator is the standard jðSÞr obtained from the commutator
between hr and the local density szr [see Eq. (4)], and therefore

the NESS current is jðSÞ ¼ trðρ∞jðSÞr Þ. Because of the con-
tinuity equation, jðSÞ is independent of the lattice site r.
Provided that one has diffusion, the current will scale as jðSÞ ¼
−DðSÞΔμ=L (i.e., Fourier’s, Fick’s, or Ohm’s law), where Δμ
is the difference in driving potentials22 and DðSÞ is a diffusion
constant. If the system is not diffusive, one will instead have a
more general scaling; namely, keeping Δμ fixed the current
will scale with system length L as

jðSÞ ∼
1

Lγ : ð155Þ

Depending on γ one has (i) diffusive transport for γ ¼ 1,
(ii) ballistic transport for γ ¼ 0, (iii) superdiffusive transport
for 0 < γ < 1, or (iv) subdiffusive transport for γ > 1.
Localization corresponds to γ → ∞. See Dhar, Kundu, and
Kundu (2019) for a review of anomalous transport in classical
systems. The type of transport can also be recognized from
the NESS profile of a conserved density. As in classical
systems, one expects some finite boundary “jumps” close to
the location of driving, i.e., an impedance mismatch.
Disregarding those, in the bulk one will have a linear profile
for a diffusive system, a flat profile for a ballistic system, and a
domain-wall-like profile for an insulator. In short, in order to
keep jðSÞ constant, local areas with higher resistivity will
support higher density gradients and vice versa. Heuristic
profile shapes can also be associated with anomalous γ
(Žnidarič, 2011b; Žnidarič, Scardicchio, and Varma, 2016),
though it is not clear how universal they are. Assuming a
single-exponent scaling (Li and Wang, 2003), these γ are
connected to the corresponding dynamical exponents in the
context of linear-response functions [see Eq. (41)]

α0 ¼ 2

γ þ 1
: ð156Þ

A crucial question is how to efficiently implement reser-
voirs. One possibility is to describe the system and the infinite
reservoirs as one large Hamiltonian system. Then one can
derive the evolution equation of the system alone by tracing
out the reservoir degrees of freedom. A problem with this
approach is that the obtained equations are in general
complicated. For instance, the resulting master equation is
nonlocal in time with a complicated memory kernel and in
general is no easier to solve than the original problem (Breuer
and Petruccione, 2002). Depending on further approximations
one gets a so-called Redfield master equation (Redfield,
1965), which we do not discuss here, or a simpler
Lindblad master equation. An exception involves quadratic
systems (i.e., noninteracting), where the physics is simple
since quadratic translationally invariant systems display bal-
listic transport.

22For spin transport Δμ will be equal to a magnetization difference
between chain ends and should not be confused with the chemical
potential.
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A more pragmatic approach is to simply seek an evolution
equation for the system’s density matrix that is able to describe
the NESS situation and that is as simple as possible, meaning
that it still obeys all the rules of quantum mechanics. After all,
in the thermodynamic limit, the bulk conductivity or transport
type should not depend on the details of the driving provided
that the dynamics is sufficiently ergodic. While this is
seemingly natural, this assumption has to be checked in each
individual system, especially in integrable systems. Next we
elaborate on such a setting.

B. Lindblad master equation

We now argue for the simplest master equation governing
the evolution of the system’s density operator. Quantum
mechanics is linear, and therefore we require the evolution
of ρðtÞ to also be linear, and furthermore that it maps density
operators to density operators. Namely, if ρð0Þ ≥ 0, ρðtÞ ≥ 0
should also hold. Requiring also that a map that is trivially
extended to a larger space (i.e., one that acts as an identity on
added degrees of freedom) also maps any positive semi-
definite operator on that larger space to a positive semidefinite
operator means that such a map should be completely positive
and not just positive. Such maps are known as completely
positive trace-preserving (CPTP) maps (Alicki and Lendi,
2007). The class of CPTP maps is still too broad of a set, and
therefore one requires an additional property, namely, that the
action of reservoirs is as random as possible. In other words,
the maps have no memory; i.e., they correspond to a
Markovian evolution. Formally, this means that the evolution
generated by the linear (super)operator L should form a
dynamical semigroup: the evolution can be split into smaller
steps ρðt1 þ t2Þ ¼ eL·ðt1þt2Þρð0Þ ¼ eL·t1eL·t2ρð0Þ. It has been
shown that any such evolution in a finite Hilbert space
(Gorini, Kossakowski, and Sudarshan, 1976) as well as in
an infinite one (Lindblad, 1976) can be written in the form
of the Lindblad master equation (also Lindblad, Gorini,
Kossakowski, and Sudarshan, which is known as LGKS)

d
dt

ρðtÞ ¼ L(ρðtÞ) ¼ i½ρðtÞ; H� þ Ldiss(ρðtÞ);
LdissðρÞ ¼

X
j

½Ljρ; L
†
j � þ ½Lj; ρL

†
j �; ð157Þ

where Lj are Lindblad operators that describe the action of
reservoirs. Note that the Lj can be any operators, including
non-Hermitian ones. Conversely, a Lindblad master equation
with given Lj and H generates a CPTP map. For a historical
account and earlier uses and occurrences of such an equation,
see Chruściński and Pascazio (2017). In a finite-dimensional
Hilbert space, Brouwer’s fixed point theorem (Milnor, 1965)
guarantees the existence of at least one fixed point. Namely, a
continuous map, eLt in our case, of a compact convex set (a set
of density matrices) on itself has a fixed point Lρ∞ ¼ 0.
Typically and under certain algebraic conditions on Lj and H
(Evans, 1977; Frigerio, 1977; Spohn, 1977), there is exactly
one steady state, and therefore any initial state converges after
a long time to that unique NESS limt→∞eL·tρð0Þ ¼ ρ∞.
Systems described by the Lindblad equation are often called
open systems (Breuer and Petruccione, 2002; Alicki and

Lendi, 2007), as opposed to closed systems, where the
evolution is unitary.
Depending on the driving type, one can distinguish the

cases of global Lj (Saito, Takesue, and Miyashita, 2000);
Saito and Miyashita, 2002; Saito, 2003a) and local Lj cases
(Michel et al., 2003; Mejia-Monasterio and Wichterich, 2007;
Steinigeweg, Ogiewa, and Gemmer, 2009). A somewhat
related scheme is that of a stochastic heat bath in which
one measures and stochastically resets the boundary spin
(Mejia-Monasterio, Prosen, and Casati, 2005; Mejia-
Monasterio and Wichterich, 2007). Another hybrid way to
model a bath is by describing it as a lead with a certain number
of lattice sites that is also coupled to a Lindbladian dissipation.
For noninteracting leads, one can construct dissipators that
thermalize such free systems (Dzhioev and Kosov, 2011;
Ajisaka et al., 2012; Guimarães, Landi, and de Oliveira, 2016)
or model nontrivial spectral properties of the bath (Arrigoni,
Knap, and von der Linden, 2013; Schwarz et al., 2016;
Brenes, Mendoza-Arenas et al., 2020). For a discussion of
thermalization properties of such baths, see Reichental
et al. (2018).
One of the simplest choices involves local Lj that act only

on the edges of the chain such that the bulk dynamics is still
fully coherent and determined by H; see Fig. 11. This is
similar to the way in which classical nonequilibrium lattice
models are driven (Schmittmann and Zia, 1995; Marro and
Dickman, 1999; Derrida, 2007), where the bath acts only on
the boundary. The resulting locally driven Lindblad equation
is a mathematically sound NESS setting, without shortcom-
ings such as the violation of positivity at short times
encountered in the Redfield equation. Moreover, this setting
often allows for the simulation of large systems (hundreds
of spins) and sometimes even permits exact solutions.
Justifying local Lj on microscopic grounds is not easy; the
standard weak-coupling microscopic derivation (Breuer and
Petruccione, 2002) typically results in nonlocal Lj. In par-
ticular, requiring an exact thermal steady state for equilibrium
driving demands nonlocal Lj [so-called Davies generators
(Davies, 1974)] that have to be constructed by diagonalizing
each H. This is neither practical nor an effective bath
description that is system independent. From a practical point
of view, demanding exact thermal states is too strong as it
suffices that one is sufficiently close. For a system possessing

FIG. 11. Top panel: NESS boundary Lindblad driving. Bottom
panel: typical NESS density profiles for diffusive (blue line),
superdiffusive (red line), and ballistic transport (black line).
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good thermalization properties, it should not matter how one
drives such a system in the thermodynamic limit. The reason
for this is that far from the boundaries a generic system self-
thermalizes anyway, and therefore boundary effects protrud-
ing a finite distance into the system are expected to cause
only subleading corrections. This behavior, however, is not
guaranteed in an integrable system (Žnidarič et al., 2010;
Mendoza-Arenas, Clark, and Jaksch, 2015).
Note that things are different if one studies small systems:

there one should pay close attention to thermodynamic details
of local Lindblad driving (Barra, 2015), as well as to the fact
that quantities such as the temperature might not have a well-
defined thermodynamic meaning (Hartmann, Mahler, and
Hess, 2004; Kliesch et al., 2014). One can nevertheless also
provide a kind of microscopic picture of local Lj. Hermitian
Lj, such as the dephasing Lj ∼ szj, can be obtained via
Gaussian noise (Gardiner and Zoller, 1991), while general
Lj can be somewhat more artificially obtained by a continuous
nonideal measurement (Breuer and Petruccione, 2002) or by
an instantaneous repeated interaction with a bath (Attal and
Pautrat, 2006; Karevski and Platini, 2009).

1. Infinite-temperature magnetization driving

We now take a closer look at one of the simplest cases of
Lindblad driving, where the Lindblad operators act on a single
site and induce infinite-temperature spin transport. A one-site
driving is given by two Lindblad operators that flip a spin up
or down with different probabilities, thereby trying to induce a
net magnetization at that site. They are given by

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ μÞ

p
sþr ; L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1 − μÞ

p
s−r ; ð158Þ

where Γ is the coupling strength, μ is the driving strength, and
s�r ¼ sxr � isyr . In the absence of any Hamiltonian, that is,
driving a single-site system, they have a unique one-site
steady state ρ ∼ 1þ μ2szr, and therefore they model a bath that
tries to induce a magnetization þμ at site r, i.e., 2trðszrρÞ ¼ μ.
To induce a NESS in a long chain, one uses one such pair of

L’s at each chain end. For instance, usingþμ driving at the left
end and −μ at the right end results in a NESS with a position-
dependent magnetization along the chain and a nonzero spin
current; see Fig. 11. Similar Lindblad driving was already in
use in early studies (Michel et al., 2003; Michel, Gemmer, and
Mahler, 2004; Wichterich et al., 2007) and in numerous
subsequent ones (Prosen and Žnidarič, 2009; Mendoza-
Arenas, Al-Assam et al., 2013; Popkov, Karevski, and
Schütz, 2013; Landi et al., 2014; Balachandran et al.,
2018). For μ ¼ 0, one has a trivial steady state ρ ∼ 1, i.e.,
an infinite-temperature state, and one can interpret Eq. (158)
as spin driving at infinite temperature. For nonzero μ, the
NESS current jðSÞ is nonzero and is the main observable.
As described in Sec. V.A, the transport type can then be

extracted by evaluating the expectation value of the current

jðSÞr and the magnetization szr¼1;L. Owing to a “boundary
resistance” associated with a particular driving, one typically
has boundary jumps in magnetization: the expectation value of
szr¼1;L is not exactly �μ. However, the size of such a jump is

proportional to jðSÞ and therefore goes to zero in the

thermodynamic limit provided that the current goes to zero,
which is true for sub-ballistic transport. In the thermodynamic
limit, the difference in driving potential is therefore simply
Δsz ¼ μ, and furthermore the current expectation value in the
NESS can be evaluated at any site r. From its dependence on
L, which is given in Eq. (155), one can therefore extract the
transport type and, in the case of diffusion, also the diffusion
constant from jðSÞ ¼ −DðSÞμ=L.
We note that the Lindblad driving parameters are in general

not simply related or equal to thermodynamic parameters. For
instance, for a one-site spin driving (158) and H ¼ 0 one gets
a one-site steady-state density operator ρ ∼ 1þ μσz for which
the ratio of the probabilities of finding the spin in up and down
states is ð1þ μÞ=ð1 − μÞ. Arguing that this ratio can be
equated to e−ΔE=T given by the equilibrium distribution,
where ΔE is the energy difference between the up and down
states, would incorrectly associate a particular finite T with a
given μ. At the boundary where the L act, there is a nontrivial
interplay between driving and a nonzeroH (boundary effects),
causing the state there in general not to be thermal. However,
far from the boundaries one does expect thermalization (at
least in nonintegrable systems), and therefore thermodynamic
parameters describing local equilibrium can be determined
from local observables (Žnidarič et al., 2010; Mendoza-
Arenas, Clark, and Jaksch, 2015); see also Shirai and Mori
(2020) for an alternative.
An important question is whether the linear-response

Green-Kubo type calculation and the NESS one in the limit
of small μ give the same transport coefficient. This is in
general a difficult question, with no rigorous mathematical
connection between the two transport coefficients known in
general for either quantum or classical systems (Bonetto,
Lebowitz, and Rey-Bellet, 2000). We now outline one specific
result for the spin driving given in Eq. (158).
In the limit of weak driving μ ≪ 1, one can use perturbation

theory to get the NESS linear-response correction to the
infinite-temperature equilibrium state ∼1. As in classical
systems (Kundu, Dhar, and Narayan, 2009), one can derive
a NESS Kubo-like expression (Kamiya and Takesue, 2013;
Žnidarič, 2019) for the diffusion constant DðSÞ at infinite
temperature

DðSÞ ¼ lim
L→∞

4L
Z

∞

0

tr½jðSÞr jðSÞr0 ðtÞ�
2L

dt; ð159Þ

for any r and r0, where jðSÞr ðtÞ ≔ eL0tjðSÞr , with L0 the
equilibrium Liouvillian propagator (i.e., L with μ ¼ 0).
Although looking similar to the equilibrium Kubo formula
equation (12), the content is quite different. For instance, the
time integral is always well defined due to the dissipative
nature of L0, even for finite L. Alternatively, the expression
can be rewritten as (Žnidarič, 2019)

DðSÞ ¼ Lð8ΓÞ2
Z

∞

0

tr½szLsz1ðtÞ�
2L

dt; ð160Þ

where sz1ðtÞ ≔ eL0tsz1. The NESS diffusion constant DðSÞ is
equal to the transfer probability across the chain under
evolution by L0 that is unitary in the bulk and dissipative
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at the edges. Even though it looks as ifDðSÞ depends on Γ, this
is not the case. One can show that in the thermodynamic limit,
provided that the unitary dynamics is perfectly diffusive and
all parameters are held fixed (including Γ), this dependence is
exactly compensated for by a dissipative decay of sz1ðtÞ,
resulting in exactly the same diffusion constant as in the
unitary Green-Kubo approach (Žnidarič, 2019). Quantitative
agreement between the Lindblad and unitary linear-response
Green-Kubo calculations of the diffusion constant has been
verified in chaotic models such as the spin-1=2 XX ladder
(Žnidarič, 2013a; Steinigeweg, Heidrich-Meisner et al.,
2014). Similarly, one can compare the Lindblad approach
with the unitary dynamics in an out-of-equilibrium setting.
Once again, to have a meaningful comparison one should
focus on quantities accessible by both methods, such as the
diffusion constant. An extensive comparison has yet not been
performed; however, an example is shown in Fig. 12 for a
spin-1=2 XXZ model in the presence of a quasiperiodic
potential. Specifically, the figure shows a comparison between
the diffusion constant obtained in the Lindblad evolution
using a driving as specified in Eq. (158) and that extracted
from the domain-wall spreading in a bipartitioning protocol;
see Sec. IX.B.
For nondiffusive systems (i.e., superdiffusive or subdiffu-

sive ones) the relationship between unitary and NESS
approaches is less clear, although the same scaling exponent
is usually observed [both for superdiffusive systems such as
the spin-1=2 Heisenberg chain (Ljubotina, Žnidarič, and
Prosen, 2017) and for subdiffusive dynamics in a quasiperi-
odic potential (Varma and Žnidarič, 2019)]. It has been also
demonstrated (Jin, Filippone, and Giamarchi, 2020) that for
ballistic systems the Lindblad driving (158) gives the same
result as the Landauer-Büttiker formula at infinite temper-
ature. One case that is believed to be special, where NESS and
unitary dynamics do not agree, is a noninteracting critical
model displaying multifractality (Varma, de Mulatier, and
Žnidarič, 2017; Purkayastha et al., 2018). One should also be
aware that in the non-linear-response regime, i.e., at large μ,
one can get a different behavior. An explicit example is the

spin-1=2 XXZ chain at maximal driving μ ¼ 1 (Prosen,
2011a) or close-to-maximal driving (Benenti, Casati,
Prosen, and Rossini, 2009; Benenti, Casati, Prosen, Rossini,
and Žnidarič, 2009). It remains to be explored whether
and how a boundary-driven Lindblad setting can be used
to extract the Drude weight or a frequency-dependent
conductivity. Using simply a time-periodic driving μ in a
Markovian Lindblad equation (Floquet Lindblad) [see
Žnidarič, Žunkovič, and Prosen (2011)] likely does not give
the same information as σ0ðωÞ.
Note that the coupling strength Γ introduces an energy scale

into the system, and therefore the limits of Γ → 0 (or Γ → ∞)
will typically not commute with either the thermodynamic
limit or the limit ofΔ → ∞ in the Heisenberg model. The limit
of weak boundary coupling Γ → 0 causes a decoupling of the
bulk from the boundary, resulting in a different scaling of
current and density with Γ (Prosen, 2011b). This means that
weak boundary coupling Γ ≪ 1 cannot be used to probe bulk
transport. Similar caution is also required in the limit of
Γ → ∞, especially if there is any other diverging energy scale
with which a scale introduced by Γ can compete. As an
example, if one takes the limit ofΔ → ∞ in the spin-1=2 XXZ
spin chain, then a different behavior of the diffusion constant
might be obtained depending on how one scales Γ (Žnidarič,
2011a). This is a likely cause of the discrepancy between the
value of the diffusion constant at large Δ between closed-
system Kubo formula calculations (Steinigeweg and Gemmer,
2009; Karrasch, Moore, and Heidrich-Meisner, 2014) and the
NESS result (Žnidarič, 2011a) obtained for a particular
coupling-strength scaling Γ ∼ Δ. Namely, in the studies by
Steinigeweg and Gemmer (2009) and Karrasch, Moore, and
Heidrich-Meisner (2014) the infinite-temperature limit is
taken first. Therefore, even at large Δ one has a coupling
between all states. The Lindblad setting, by contrast, with its
finite but large Γ, is closer to the case in which one takes the
limit Δ → ∞ first; i.e., at finite T in the limit Δ → ∞ one
decouples states with differing numbers of domain walls.

2. Solving the Lindblad equation

How does one solve a many-body Lindblad equation?
Provided that the entire Liouvillian is quadratic in fermionic
operators, one can use the so-called third quantization method
(Prosen, 2008), simplifying diagonalization of the full 4L × 4L

Liouvillian to a diagonalization (Prosen, 2010) of a 2L × 2L
matrix describing decay modes. In some exceptional quadratic
(Žnidarič, 2010b) as well as nonquadratic systems [see Prosen
(2011a), Karevski, Popkov, and Schütz (2013), Popkov and
Livi (2013), Prosen (2014a), Prosen (2015), Ilievski (2017),
and Vanicat, Zadnik, and Prosen (2018)], one can even get a
closed matrix-product-operator (MPO) NESS solution.
Numerically, one can use full diagonalization (allowing

L ≈ 10 for spin-1=2 operators), or an explicit integration of
an exponential set of differential equations; see Weimer,
Kshetrimayum, and Orus (2021) for an overview. An alter-
native approach often used in atomic, molecular, and optical
systems is the quantum-trajectory method (Breuer and
Petruccione, 2002), which evolves jψðtÞi and averages over
stochastic jumps to get ρ. Writing jψðtÞi in full one is again
limited to small systems L ≈ 16 (Johansson, Nation, and Nori,

FIG. 12. Comparison of results for the spin-diffusion constant
DðSÞ obtained from NESS simulations (empty symbols) and
unitary domain-wall spreading (solid symbols) in the spin-1=2
XXZ chain with a quasiperiodic magnetic field of amplitude λ.
Details were given by Žnidarič and Ljubotina (2018). Unitary
domain-wall spreading is a particular case of a bipartitioning
protocol; see Sec. IX.B for details.
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2012); however, using the MPS ansatz one can extend the
available system sizes (Daley, 2014). For the large systems
needed in transport studies, the method of choice is a version
of tDMRG (Daley et al., 2004; Verstraete, García-Ripoll, and
Cirac, 2004; White and Feiguin, 2004; Zwolak and Vidal,
2004), also called the time-evolved block-decimation
method, used to evolve in time ρðtÞ until the NESS is
reached. One could also try to avoid time evolution by
directly targeting the NESS (i.e., the ground state of a non-
Hermitian L) using Lanczos type methods (Arnoldi, L ≈ 15)
or again employ the DMRG (Cui, Cirac, and Bañuls, 2015;
Casagrande, Poletti, and Landi, 2020). Invariably, though, as
in time evolution, the bottleneck will be a small spectral gap
of L (Žnidarič, 2015).
The tDMRG for Lindblad equations works by writing the

state ρ in terms of a matrix-product-operator ansatz, the same
as for pure states (147), with the only difference being that the
local Hilbert-space dimension in the operator space is the
square of the pure-state dimension. For instance, for spin-1=2
operators, it is 4, spanned by Pauli matrices and the identity,
which are orthogonal with respect to the Hilbert-Schmidt
inner product. By discretizing the time evolution into small
time steps δt and by using a Trotter-Suzuki decomposition of
the time-evolution operator resulting in eLδt, one propagates
an initial density operator, such as ρð0Þ ∼ 1, in time until it
converges to the NESS. The basic ingredient is a two-site
nearest-neighbor transformation similar to the time evolution
of matrix-product states (Schollwöck, 2011). Because non-
unitary evolution eventually spoils the optimal truncation
via Schmidt decomposition, it is worthwhile to occasionally
reorthogonalize the state; see Žnidarič (2010a). For further
implementations by various groups, including open-
source codes, see Al-Assam, Clark, and Jaksch (2016),
Bernier et al. (2018), Brenes et al. (2018), Schulz et al.
(2018), Volokitin et al. (2019), and Fishman, White, and
Stoudenmire (2020).
In unitary tDMRG simulations of MPSs or MPOs (see

Sec. IV.E), where one needs to account for the unavoidable
entanglement growth, one fixes the discarded weight to a set
number. As a consequence, the bond dimension necessary to
maintain the same truncation per time step grows as a
function of time generically in an exponential way
(Schollwöck, 2011). As a consequence, the accessible time-
scales are of the order of several 10=J. The tDMRG
simulations for solving Lindblad master equations, on the
other hand, are often carried out with a fixed bond dimen-
sion. This methodological choice (fixed bond dimension) is
motivated by two arguments: First, dissipative dynamics is
expected to exhibit a much milder entanglement growth than
pure-state simulations, albeit a still present growth; see the
discussion given by Prosen and Žnidarič (2009). Second, one
is not interested in the time evolution of currents as such, but
instead only in their NESS values. Since the NESS is unique
in the cases of interest, different initial states should lead to
the same NESS. Thus, numerical errors in accounting for the
real-time evolution due to working at a fixed bond dimension
should, to a certain degree, not prevent the system from
converging to the correct NESS. A detailed analysis regard-
ing the role of the discarded weight in tDMRG simulations of

Lindblad equations has not been reported in the literature.
For instance, it is unclear whether significant truncation
errors during the time evolution can possibly spoil the
approach to the correct NESS. In the practical analysis of
tDMRG simulations of Lindblad systems, one checks the
convergence of the NESS currrent with the bond dimension,
as we illustrate next.
There are two main quantities that determine the efficiency

and accuracy of the tDMRG simulations for Lindblad equa-
tions. One is the truncation error caused by representing the
NESS with a finite-bond MPO, and the other is the required
convergence time to the NESS that is given by the inverse gap
of the Lindbladian superoperator L from Eq. (157). Note that
the Trotter time step should be chosen small enough that it does
not dominate over the truncation error. The size of the
truncation error is connected to the operator “entanglement”
(Prosen and Pižorn, 2007) of the resulting NESS ρ∞ ¼P

k

ffiffiffiffiffi
λk

p
Ak ⊗ Bk given by the Shannon entropy of the non-

negative λk (
P

k λk ¼ 1) obtained via the operator Schmidt
decomposition, for instance, for a symmetric bipartition.
If one starts from an identity initial state, which has zero
operator entanglement, the operator entanglement will typi-
cally monotonically grow with time until it reaches its
maximum value once the NESS is reached. Provided that
the operator entanglement of the NESS is low, the method is
efficient, as a small bond dimension suffices. For a small
magnetization driving μ [Eq. (158)], one typically observes the
asymptotic scaling

λk ∼ μ2Lr=kp ð161Þ

for large k, with the model-dependent power-law exponents r
andp. The powers r andp determine the size of the truncation
error, and therefore the required bond dimension χ.
An example of the truncation-error analysis for the isotropic

spin-1=2 Heisenberg model is shown in Fig. 13. Note that in
this case the NESS spin current (4) scales superdiffusively

FIG. 13. Schmidt spectrum for the NESS of a boundary-driven
spin-1=2 Heisenberg chain (Δ ¼ 1) with L ¼ 64 sites,
μ ¼ 0.005, and MPO bond dimensions χ ¼ 60–500. The dashed
line is the best-fitting asymptotic decay. Inset: convergence of the
NESS current jχ obtained from a fixed-χ calculation, with the
dashed line the predicted error from the main plot ðj∞ − jχÞ=j∞ ≈
L=90χ (no fitting parameters).
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with jðSÞ ≈ μð0.39= ffiffiffiffi
L

p Þ (Žnidarič, 2011a). We evolve with a
fixed bond dimension χ until the NESS is reached. The
spectrum λk in the NESS is plotted in Fig. 13. Analyzing its
dependence on L and k one gets that the two exponents
characterizing the NESS are r ≈ 1 and p ≈ 2. At fixed bond
dimension χ, the discarded probability weight is given by all
dropped eigenvalues

P∞
k¼χ λk and therefore scales as

≈ μ2ðL=40χÞ, where 1=40 is an empirically fitted parameter
obtained in the main plot of Fig. 13. Since one has ρ∞ ∼ 1þ
OðμÞ for small μ, the largest eigenvalue is trivially λ0 ≈ 1. For
relative precision, what matters is the ratio of the discarded
weight and the first nontrivial eigenvalue λ1, which is λ1 ≈
2.3μ2 for the data shown. The relative error of the NESS
calculated using a finite χ can therefore be estimated as
≈ L=90χ [1=90 ≈ 1=ð2.3 × 40Þ]. Even though the error of a
particular observable, such as the current, could involve some
extra factors due to overlaps of Schmidt eigenvectors with the
observable, we see in the inset of Fig. 13 that the agreement of
the error estimate based only on the Schmidt spectrum with
the actual error of the NESS current without any additional
fitting parameters is good.23 For the boundary-driven
Heisenberg chain, one therefore has to increase the bond
dimension as χ ∝ Lr=ðp−1Þ ∼ L if one wants to keep the error
constant. For instance, χ ∼ 100 results in a relative error of
about 1% at L ¼ 100. If a slightly larger error of a few percent
suffices and one uses larger χ, even systems with close to
L ¼ 103 sites can be simulated. Such simulations, though,
take weeks of CPU time.
The other important parameter is the relaxation time

required to converge to the NESS. For the spin-1=2
Heisenberg model, it scales as ∼L3 (Žnidarič, 2015), and
therefore the complexity of finding the NESS with a fixed
precision (χ ∼ L) scales as L3Lχ3 ∼ L7. However, in the spin-
1=2Heisenberg chain, it turns out that the spin current actually
relaxes on a shorter timescale ∼L1.5 (Žnidarič, 2011b), and
therefore a fixed-precision NESS current can be obtained in
OðL5.5Þ steps.
We note that if the Schmidt spectrum λk decays slower than

1=k2 (which often happens), the required bond-dimension
scaling will be worse; see Prosen and Žnidarič (2009) for
some examples. Nevertheless, at infinite or sufficiently high
temperature, when the NESS is close to 1 (which is a product
operator), the method typically works well since high temper-
atures are expected to decrease entanglement, especially
compared to unitary evolution, for which the complexity of
ρðtÞ typically grows exponentially with time, regardless of
whether dynamics is chaotic or integrable (Prosen and
Žnidarič, 2007). For slow transport (such as strongly sub-
diffusive dynamics), a long convergence time to the steady
state can become a problem, rendering a boundary-driven
Lindblad setting less suitable.
The previously described single-site driving can be gener-

alized to many sites. That is, one can choose Lindblad
operators such that in the absence of H the steady state on
those sites is a thermal state (or any other ρ) (Prosen and

Žnidarič, 2009; Žnidarič et al., 2010). Such many-site driving
is required to have an efficient coupling to the energy density
(being at least a two-site operator) and therefore is used to
study energy transport (Prosen and Žnidarič, 2009; Žnidarič,
2011b; Mendoza-Arenas, Clark, and Jaksch, 2015; Palmero
et al., 2019). An exception involves weakly coupled systems
(Michel et al., 2003, 2008; Steinigeweg, Ogiewa, and
Gemmer, 2009), for which energy transport is essentially
the same as spin transport.
Comparisons of Lindblad and other master equations, such

as the Redfield one, were given by Wichterich et al. (2007),
Prosen and Zunkovic (2010), Purkayastha, Dhar, and Kulkarni
(2016), and Xu et al. (2019), and a comparison to the
Landauer-Büttiker formalism was given by Jin, Filippone,
and Giamarchi (2020).

VI. TRANSPORT IN THE SPIN-1=2 XXZ CHAIN

Recently significant progress has been made in the com-
putation of finite-temperature linear-response transport prop-
erties of one of the seemingly simplest interacting one-
dimensional lattice models, the spin-1=2 XXZ chain.
In this section, we give an overview of the current under-

standing rather than an account of its historical development.
We are presenting the results in the following order and
discuss the relation between them: (i) exact statements,
(ii) analytical results involving assumptions, and (iii) results
from numerical methods. We first discuss results for κðωÞ and
σðωÞ in the linear-response regime in Secs. VI.B–VI.D and
then cover insights from numerical open-quantum-system
simulations in Sec. VI.E.
In the evolution of the field, Zotos, Naef, and Prelovšek

(1997) played a seminal role, as they established the first exact
lower bounds to the energy and spin Drude weight of the spin-
1=2 XXZ chain. Numerous early exact-diagonalization studies
laid out the foundations for much of the future research; see
Zotos and Prelovšek (1996), Fabricius and McCoy (1998),
Naef and Zotos (1998), and Narozhny, Millis, and Andrei
(1998). The next milestone involved Klümper and Sakai
(Klümper and Sakai, 2002; Sakai and Klümper, 2003), who
computed the full temperature dependence of the energy
Drude weight in the entire parameter range of the model
from the quantum-transfer-matrix method at zero magnetiza-
tion. Finite-temperature Bethe-ansatz calculations of the spin
Drude weight were carried out by Zotos (1999) and Benz et al.
(2005) using different assumptions; see the discussion in
Sec. III.B.3. The significance of the work by Prosen (2011b)
and Prosen and Ilievski (2013) in proving the existence of
nonzero finite-temperature Drude weights at vanishing mag-
netization was highlighted in Sec. III.A. GHD has recently
emerged as a complete theoretical framework for the descrip-
tion of transport in integrable lattice models (Bertini et al.,
2016; Castro-Alvaredo, Doyon, and Yoshimura, 2016) and is
thus frequently referred to later in the review. From the field-
theory side, Sirker, Pereira, and Affleck (2009, 2011) played a
particularly important role as they established the generic
expectation for a gapless model after accounting for umklapp
scattering. This can be considered the currently most advanced
effective theory for the low-temperature transport of non-
integrable models (Sirker, 2020). For the integrable spin-1=2

23The current jðSÞ∞ ¼ jðSÞχ→∞ was estimated using linear extrapola-
tion in 1=χ.
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XXZ chain, the theory predicts a diffusive form of spin
autocorrelations at low T (Karrasch, Pereira, and Sirker,
2015). For a recent review on transport in this model
from the field-theory and Bethe-ansatz perspectives, see
Sirker (2020).
Many results from numerical methods, such as ED,

tDMRG, and dynamical typicality, were covered in Sec. IV
and are mentioned in the context of the spin-1=2 XXZ chain in
this section.
In the context of transport in the spin-1=2 XXZ chain and

related models, open quantum systems had already been
studied by Saito, Takesue, and Miyashita (1996), Michel
et al. (2003, 2008), and Saito (2003a), yet acquired a much
larger weight and higher reception after the first studies using
tDMRG as the solver of the underlying Lindblad equations
(Prosen and Žnidarič, 2009; Žnidarič, 2011a). Numerical
tDMRG solutions of Lindblad equations for transport through
spin-1=2 XXZ chains were first in making predictions for
superdiffusion in the spin-1=2 Heisenberg chain and provided
strong support for diffusive dynamics in the regime of Δ > 1
(Žnidarič, 2011a).

A. The model

The Hamiltonian governing the spin-1=2 XXZ chain is
given in Eq. (1). For our choice of units (J > 0), Δ > 0 and
< 0 correspond to the antiferromagnetic and ferromagnetic
regimes, respectively. By using a Jordan-Wigner transforma-
tion (Giamarchi, 2004)

sþr ¼ c†reiπ
P

r−1
k¼1

nk ; szr ¼ nr − 1
2
; ð162Þ

the spin-1=2 XXZ chain can be mapped to the following

system of spinless lattice fermions cð†Þr :

hr;rþ1 ¼
J
2
c†rcrþ1þH:c:þJΔ

�
nr−

1

2

��
nrþ1−

1

2

�
: ð163Þ

The limit Δ ¼ 0 corresponds to free fermions and can thus be
solved analytically by a simple Fourier transform from real to
(quasi)momentum space.24

In this section, we focus mainly on mz ¼ 2hszri ¼ 0, which
corresponds to zero magnetization (half filling) in the spin
(fermion) language. The system is then gapless for jΔj ≤ 1
and at low energies falls within the Tomonaga-Luttinger-
liquid universality class (Giamarchi, 2004). A gap opens for
jΔj > 1. There the ground state is twofold degenerate and
exhibits staggered spin order in the antiferromagnetic regime
Δ > 1, while in the ferromagnetic case Δ < −1 the system
exhibits phase separation. For finite 0 < jmzj < 1, the system
is a gapless Tomonaga-Luttinger liquid at any Δ.

B. Thermal transport

The energy-current operator, which is given in Eq. (5),
is exactly conserved for periodic boundary conditions
½H;J ðEÞ� ¼ 0 (Huber and Semura, 1969; Niemeijer and

van Vianen, 1971; Zotos, Naef, and Prelovšek, 1997).
Thus, the zero-frequency thermal conductivity is divergent
at all temperatures and, as a consequence, the Drude weight is
nonzero

DðEÞ
w ðT > 0Þ > 0; κreg ¼ 0: ð164Þ

At Δ ¼ 0, the XXZ chain maps to free fermions via Eq. (163)

and DðEÞ
w can be obtained analytically for any T ≥ 0:

DðEÞ
w ¼ 1

4πT2

Z
π

−π
½ϵkvkfðϵkÞ�2eϵk=Tdk; ð165Þ

where ϵk ¼ J cosðkÞ denotes the single-particle dispersion,
vk ¼ ∂kϵk, and fðϵÞ ¼ 1=ð1þ eϵ=TÞ.
The energy Drude weight of the XXZ chain has been

calculated analytically for Δ ≠ 0 and arbitrary temperatures
by exploiting the integrability of the system (Klümper and
Sakai, 2002; Sakai and Klümper, 2003). Since J ðEÞ is a

conserved quantity, DðEÞ
w ∼ hðJ ðEÞÞ2i. This time-independent

expectation value can be computed from a modified partition
function ρ ∝ tr½e−βHþλJ ðEÞ �, which serves as a generating
functional and which can be determined within a quantum-
transfer-matrix formalism. One ultimately obtains an expres-

sion for DðEÞ
w in terms of a set of nonlinear integral equations.

For high and low temperatures, these equations were solved
analytically, and the result in the gapless phase jΔj ≤ 1 reads

DðEÞ
w ¼

8>>><
>>>:

π

6
vT; T → 0

1

128π

�
3þ sinð3ηÞ

sinðηÞ
�
J4

T2
; T → ∞;

ð166Þ

with v as defined in Eq. (126) and Δ ¼ cosðηÞ. The low-T
limit agrees with Eq. (128), which was obtained using
bosonization (Heidrich-Meisner et al., 2002). In the gapped

regime, one finds DðEÞ
w ∼ 1=T2 at high T as well as DðEÞ

w ∼
e−δ=T=

ffiffiffiffi
T

p
at low T, where δ is the one-spinon gap in the

antiferromagnetic regime Δ > 1 and the one-magnon gap in
the ferromagnetic regime Δ < −1. For arbitrary T, the set of
nonlinear integral equations can be solved numerically.
Results for 0 ≤ Δ ≤ 1 and jΔj > 1 were presented by
Klümper and Sakai (2002) and Sakai and Klümper (2003),

respectively. The temperature dependence of DðEÞ
w is shown in

Fig. 5 for three values of Δ.
It was subsequently shown that for jΔj < 1 the energy

Drude weight can also be computed using the thermodynamic

Bethe ansatz (Zotos, 2017). On the numerical side, DðEÞ
w was

calculated via an exact diagonalization of small systems
(Alvarez and Gros, 2002a; Heidrich-Meisner et al., 2002).
At sufficiently high temperatures, the ED results are in
agreement with the exact ones (obtained in the thermody-
namic limit).
The energy Drude weight away from zero magnetization

was obtained exactly using the quantum-transfer-matrix
approach (Sakai and Klümper, 2005) and the TBA (Zotos,
2017) as well as via exact diagonalization (Louis and Gros,24We assume translational invariance.
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2003; Heidrich-Meisner, Honecker, and Brenig, 2005) and
quantum Monte Carlo simulations (Louis and Gros, 2003).
Magnetothermal corrections to the energy Drude weight due
to the coupling of the energy to the spin current were
addressed by Louis and Gros (2003), Heidrich-Meisner,
Honecker, and Brenig (2005), Sakai and Klümper (2005),
Psaroudaki and Zotos (2016), and Zotos (2017).
For a discussion of the energy Drude weight in

other integrable spin chains, see Ribeiro, Crampé, and
Klümper (2010).

C. Spin transport: Drude weight

For the spin Drude weight, the following picture has been

established at zero magnetization.DðSÞ
w is known exactly in the

limit T ¼ 0 via the Bethe ansatz (Shastry and Sutherland,
1990), as well as in the limit Δ ¼ 0 at any T via a mapping to

free fermions. At T ¼ 0, DðSÞ
w > 0 for jΔj ≤ 1 and DðSÞ

w ¼ 0
otherwise. Using the Mazur inequality, one can prove for a
dense set of commensurate anisotropies covering the range

jΔj < 1 that DðSÞ
w is nonzero for any temperature T > 0

(Prosen, 2011b; Prosen and Ilievski, 2013). These are the
only exact statements available at mz ¼ 0; they are comple-
mented by various analytical and numerical results. The spin
Drude weight can be computed using GHD at T > 0 for anyΔ
(Ilievski and De Nardis, 2017b; Bulchandani et al., 2018). For
jΔj < 1, the GHD prediction coincides with the lower Mazur
bound at infinite temperature (Prosen and Ilievski, 2013), as
well as with the result obtained using the thermodynamic
Bethe ansatz (Zotos, 1999) at any T > 0 (Urichuk et al.,
2019). At jΔj > 1, GHD predicts that the Drude weight will
vanish. In addition to these analytical statements, numerical
data for the Drude weight are provided by ED, tDMRG, and
dynamical typicality; see Secs. IV.B–IV.E.
Away from zero magnetization (mz ≠ 0), the Drude weight

is finite for any value of T and Δ. This follows from the exact
Bethe-ansatz calculation at T ¼ 0 (Shastry and Sutherland,
1990) and the exact lower Mazur bound (Zotos, Naef, and
Prelovšek, 1997), respectively. The Drude weight was also
computed numerically (Heidrich-Meisner, Honecker, and
Brenig, 2005).
We now discuss the previous results in more detail; see

Fig. 14 for a summary.

1. Free fermions and Bethe ansatz at T = 0

At Δ ¼ 0, the spin Drude weight DðSÞ
w can be obtained

analytically for any T ≥ 0 by using the mapping to free
fermions. The result is given by (Giamarchi, 2004)

DðSÞ
w ¼ 1

4πT

Z
π

−π
½vkfðϵkÞ�2eϵk=Tdk: ð167Þ

In the zero-temperature limit, the spin Drude weight can be
computed exactly for any Δ by evaluating Kohn’s formula
[Eq. (26)] (Kohn, 1964) via the Bethe ansatz (Shastry and
Sutherland, 1990). The result for jΔj ≤ 1 reads

DðSÞ
w ¼ Kv

2π
; ð168Þ

with K and v given in Eq. (126) for mz ¼ 0. This agrees with
Eq. (128), which was obtained using bosonization. For
jΔj > 1, the Drude weight vanishes. Note that Eq. (168) does

not approach zero for Δ↗1, and DðSÞ
w thus shows a disconti-

nuity at Δ ¼ 1 for T ¼ 0.

2. Mazur bounds

Away from zero magnetization (i.e., for mz ≠ 0), the spin
Drude weight is finite for any value of T and Δ. This can be
shown by evaluating the Mazur inequality [Eq. (28)] with the
energy-current operator as a single conserved local charge
Q2 ¼ J ðEÞ that has a nonzero overlap with J ðSÞ in the
thermodynamic limit. At high T, the bound can be evaluated
analytically (Zotos, Naef, and Prelovšek, 1997)

DðSÞ
w ≥

J2

T
Δ2m2

z

4

ð1 −m2
zÞ

1þ Δ2ð2þ 2m2
zÞ

> 0; ð169Þ

which is valid for any value ofΔ. In the gapless phase at low T
and close to mz ¼ 0, one can add a Zeeman term b

P
r s

z
r to

the Hamiltonian (b is the magnetic field) and then use
bosonization to obtain (Sirker, Pereira, and Affleck, 2011)

DðSÞ
w ≥

Kv
2π

1

1þ ðπ2=3KÞðT=bÞ2 > 0: ð170Þ

Directly at zero magnetization, the energy-current operator
has a vanishing overlap with the spin-current operator and thus
does not yield a nonzero contribution to the Mazur inequality
[Eq. (28)]. This follows from symmetry arguments and can
also be seen by setting mz ¼ 0 in Eq. (169): Q2 is even under
the transformation szr → −szr, s�r → s∓r while J ðSÞ is odd, and
hence hQ2J ðSÞi ¼ 0. The same holds true for all other strictly
local conserved quantities associated with the integrability of
the system. Note that the vanishing of hQ2J ðSÞi also implies

FIG. 14. (a) Overview of all known exact results [free fermions,
Bethe ansatz (BA) at T ¼ 0, and Mazur bounds] as well as
predictions obtained using GHD and numerics for the spin Drude
weight of the spin-1=2 XXZ chain at zero magnetization.
(b) Overview of the high-temperature results for the leading
contribution at low but finite frequencies. In the regime jΔj < 1,
this low-frequency contribution is either superdiffusive or
diffusive.
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the absence of a magnetothermal correction in the zero-
magnetization sector (Louis and Gros, 2003), while this term
generally contributes at finite magnetizations.
As discussed in detail in Sec. III.A, an exact lower bound can

be derived for zero magnetization as well by using quasilocal
conserved charges that do have a nonzero overlapwith the spin-
current operator (Prosen, 2011b; Prosen and Ilievski, 2013).
This bound is given in Eq. (78) and is visualized in Fig. 4 (see
also Fig. 15); it generally features a fractal dependence on Δ.
An important question concerns the completeness of this set
of charges: a numerical study of finite systems suggests that
there are no additional charges beyond the known ones
(Mierzejewski, Prelovšek, and Prosen, 2015).

3. Bethe ansatz at T > 0 and GHD

An exact Bethe-ansatz calculation at finite T using Kohn’s
formula is hindered by the fact that excited states can be
treated only approximately. Zotos (1999) carried out the
calculation by means of the thermodynamic Bethe ansatz,
which as discussed in Sec. III.B.2 involves the string hypoth-
esis for bound states of magnons. An alternative calculation
based on a spinon-antispinon basis was presented by Benz
et al. (2005). The thermodynamic Bethe-ansatz approach

predicts that DðSÞ
w ðTÞ is finite in the gapless phase and

decreases monotonically with T except at the isotropic point

Δ ¼ 1 where DðSÞ
w ðT > 0Þ ¼ 0. At low T, one obtains a

nontrivial power-law dependence for commensurate values
of Δ ¼ cosðπ=mÞ, m ¼ 1; 2;…:

DðSÞ
w ðTÞ ¼ DðSÞ

w ðT ¼ 0Þ − const × Tα; α ¼ 2

m − 1
: ð171Þ

For Δ ¼ 1, a second Bethe-ansatz-based calculation
(Carmelo, Prosen, and Campbell, 2015) concludes in favor

of DðSÞ
w ¼ 0, which is in agreement with GHD (Ilievski

et al., 2018).
One can show that for commensurate values of Δ ¼

cosðlπ=mÞ (l, m coprime) the TBA result given by Zotos
(1999) coincides with the GHD prediction (Ilievski and De
Nardis, 2017b; Bulchandani et al., 2018) at any temperature
(Urichuk et al., 2019). Moreover, it also coincides with the
exact lower bound given by Prosen and Ilievski (2013) at
infinite temperature, which is given in Eq. (78) and shown in
Fig. 4. In a nutshell,

DðSÞ
w jTBA
β

¼ DðSÞ
w jGHD
β

¼T→∞D̃ðSÞ
w jbound: ð172Þ

For Δ > 1, both GHD (Ilievski and De Nardis, 2017b) and a
TBA-based analytical calculation (Peres et al., 1999) suggest
that the Drude weight vanishes in this regime.

4. Numerical approaches

Avariety of numerical methods have been used to compute
the spin Drude weight DðSÞ

w in the thermodynamic limit,
including (i) exact diagonalization, which is limited to small
systems L ≤ 20 (Zotos and Prelovšek, 1996; Narozhny,
Millis, and Andrei, 1998; Heidrich-Meisner et al., 2003;
Rabson, Narozhny, and Millis, 2004; Herbrych, Prelovšek,
and Zotos, 2011; Karrasch et al., 2013; Sánchez and Varma,
2017); (ii) the microcanonical Lanczos method, which is also
limited to small L ≤ 28 (Long et al., 2003); (iii) quantum
Monte Carlo methods, which requires an analytical continu-

ation to extract DðSÞ
w (Alvarez and Gros, 2002c; Heidarian and

Sorella, 2007); (iv) the time-dependent DMRG, where the
accessible timescales are bounded by the entanglement growth
(Karrasch, Bardarson, andMoore, 2012; Karrasch et al., 2013;
Karrasch, Kennes, and Moore, 2014; Karrasch, Kennes, and
Heidrich-Meisner, 2015; Karrasch, 2017a); and (v) dynamical
typicality (Steinigeweg, Gemmer, and Brenig, 2014, 2015),
which is also limited in terms of the system size L ≤ 36.
Figure 15 shows a comparison of tDMRG (Karrasch,

Bardarson, and Moore, 2012; Karrasch et al., 2013;
Karrasch, Kennes, and Moore, 2014; Karrasch, Kennes,
and Heidrich-Meisner, 2015; Karrasch, 2017a), exact diago-
nalization (Herbrych, Prelovšek, and Zotos, 2011; Karrasch
et al., 2013), and dynamical typicality data (Steinigeweg,
Gemmer, and Brenig, 2014, 2015) with the lower bound
(Prosen and Ilievski, 2013) at infinite temperature. Note that
the numerical results are also shown away from commensurate
Δ. At certain commensurate points such as Δ ¼ 1=2, the
numerical results and the bound agree well. For generic values
at Δ > 1=2, all methods result in larger values than the bound.
For 0 < Δ < 1=2 and, in particular, close to Δ ¼ 0, the
disagreement is evident and has not yet been resolved; see
Secs. IV.B, IV.C, and IV.E for a discussion of the strengths
and limitations of the numerical approaches, and Sec. VI.E
for a discussion of open questions concerning the spin-1=2
XXZ chain.

FIG. 15. Comparison of different results for the spin Drude
weight DðSÞ

w in the high-temperature limit β ¼ 0 at zero mag-
netization: the solid line shows the lower bound (Prosen and
Ilievski, 2013), which is given by Eq. (78) and which at infinite
temperature coincides with the TBA result (Zotos, 1999; Urichuk
et al., 2019; Pavlis and Zotos, 2020) and the GHD prediction
(Ilievski and De Nardis, 2017b; Bulchandani et al., 2018).
Moreover, we show ED (Herbrych, Prelovšek, and Zotos,
2011), DQT (Steinigeweg, Gemmer, and Brenig, 2014, 2015),
and tDMRG data taken fromKarrasch, Kennes, andMoore (2014)
and Karrasch, Kennes, and Heidrich-Meisner (2015); see also
Karrasch, Bardarson, and Moore (2012), Karrasch et al. (2013),
and Karrasch (2017a). For the tDMRG data, the Drude weight is
taken as the value of hJ ðSÞðtÞJ ðSÞi=L at the largest accessible time
without any further extrapolation. Note that while the lower bound
was computed only for commensurate Δ ¼ cosðlπ=mÞ, numeri-
cal data are also shown away from these points.
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For Δ > 1, there are no exact results available for T > 0 at
zero magnetization. Both GHD and a TBA-based analytical
calculation (Peres et al., 1999) suggest that the Drude weight
vanishes in the regime. Numerical studies also point in this
direction (Zotos and Prelovšek, 1996; Heidrich-Meisner et al.,
2003; Karrasch, Bardarson, and Moore, 2012; Steinigeweg,
Gemmer, and Brenig, 2014). In particular, one observes a

clean scaling of the Drude weight asDðSÞ
w ∝ 1=L in systems of

finite size. As an example, Fig. 7 shows the scaling found by
Steinigeweg, Gemmer, and Brenig (2014, 2015).
At Δ ¼ 1, exact-diagonalization results indicate a vanish-

ing (Herbrych, Prelovšek, and Zotos, 2011) or at best small
Drude weight (Heidrich-Meisner et al., 2003), with the actual
numbers depending on details of the finite-size extrapo-
lation (Karrasch et al., 2013; Sánchez and Varma, 2017);
see Sec. IV.B. Both dynamical typicality (Steinigeweg,
Gemmer, and Brenig, 2014, 2015) and tDMRG (Sirker,
Pereira, and Affleck, 2009; Karrasch, Bardarson, and
Moore, 2012; Kennes and Karrasch, 2016) yield a current
correlation function hJ ðSÞðtÞJ ðSÞi that decays slowly. The
DQT data were interpreted in terms of a zero (finite) Drude
weight at infinite (finite) temperature; the tDMRG results
were interpreted in terms of a finite Drude weight.
The previous discussion focused on infinite temperature,

but the temperature dependence of the Drude weight is also of
interest (Zotos, 1999; Alvarez and Gros, 2002c; Fujimoto and
Kawakami, 2003; Heidrich-Meisner et al., 2003; Benz et al.,
2005; Karrasch et al., 2013). The verification of the TBA
result for the low-T behavior [Eq. (171)] in a numerical
calculation has not yet been accomplished (Alvarez and Gros,
2002c; Karrasch et al., 2013).

D. Spin transport: Finite frequencies

We recall that it is now established exactly that at zero
magnetization the Drude weightDðSÞ

w is finite for Δ < 1 at any
temperature T ≥ 0. For the regime Δ > 1, the current under-

standing is that DðSÞ
w vanishes. In recent years, there has been

substantial progress in understanding the spin transport in the
XXZ chain beyond the mere existence of the spin Drude
weight. In this section, we summarize results for the regular
part of the spin conductivity in the three different regimes
Δ > 1, < 1, and ¼ 1. We focus exclusively on zero mag-
netization. See Gopalakrishnan, Vasseur, and Ware (2019) for
a recent GHD study of spin transport and dynamics in the
mz ≠ 0 regime.
As outlined in Sec. II.B, one can envision three different

scenarios for the low-frequency behavior: The spin conduc-
tivity is (a) diffusive σregðω → 0Þ ¼ σdc > 0, (b) superdiffu-
sive σregðωÞ ∼ ωα, with α < 0, or (c) subdiffusive
σregðωÞ ∼ ωα, with α > 0. This is illustrated in Fig. 1.

1. Δ > 1

A lower bound for the diffusion constant, which is related to
the dc conductivity via Eq. (24), was established by
Medenjak, Karrasch, and Prosen (2017) and Ilievski et al.
(2018); see Sec. III.A.2. The diffusion constant is expressed in
terms of the magnetization dependence (i.e., curvature) of the
Drude weight, which can be bounded from below using

conserved charges. It was shown that the bound is finite
for Δ > 1, which rules out a subdiffusive form of σregðωÞ in
this regime (Medenjak, Karrasch, and Prosen, 2017; Ilievski
et al., 2018). This is an exact result.
One can define a time-dependent diffusion constant DðSÞðtÞ,

DðSÞðt → ∞Þ ¼ DðSÞ using the generalized Einstein rela-
tion (37) via a time integral of the current autocorrelation
function (Bohm and Leschke, 1992; Steinigeweg and Gemmer,
2009; Yan, Jiang, and Zhao, 2015). This quantity was evaluated
using GHD at infinite temperature and arbitrary Δ (De Nardis,
Bernard, and Doyon, 2019; Gopalakrishnan and Vasseur,
2019). In the limit of large Δ, the result takes the form

lim
Δ→∞

lim
t→∞

DðSÞðtÞ ¼ lim
Δ→∞

DðSÞ ≈ 0.42J; ð173Þ

which is consistent with the nonvanishing lower bound for
the diffusion constant given by Ilievski et al. (2018) and,
moreover, predicts that transport is diffusive and not super-
diffusive. Within GHD, the finite-time corrections have the
form DðSÞðtÞ ¼ aþ b=

ffiffi
t

p
.

The time-dependent diffusion constant has also been
calculated numerically via ED and DQT (Steinigeweg and
Gemmer, 2009; Steinigeweg, Gemmer, and Brenig, 2015) as
well as by using tDMRG (Karrasch, Moore, and Heidrich-
Meisner, 2014). We show DðSÞðtÞ at infinite temperature for
Δ ¼ 1.5 and 3 in Figs. 16(a) and 16(b), respectively (the
curves with Δ ¼ 0.5, 1 are discussed later). The system size
can be chosen large enough, within both DQT and tDMRG,
such that the results are effectively in the thermodynamic limit
at the largest time depicted in the figure, which is illustrated
explicitly in the case of DQT. These data were interpreted in
terms of a finite diffusion constant DðSÞ ¼ DðSÞðt → ∞Þ and

FIG. 16. (a) Comparison of different results for the time-
dependent diffusion constant DðSÞðtÞ of the spin-1=2 XXZ chain
at Δ ¼ 1.5 in the infinite-temperature limit β ¼ 0: ED (Steini-
geweg and Gemmer, 2009), DQT (Steinigeweg, Gemmer, and
Brenig, 2015), and tDMRG (Karrasch, Moore, and Heidrich-
Meisner, 2014). (b) tDMRG data for DðSÞðtÞ at various Δ
[obtained from integrating the current autocorrelation function
given by Karrasch, Kennes, and Moore (2014) and Karrasch,
Kennes, and Heidrich-Meisner (2015)].
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thus regular diffusive transport. In Fig. 17, we show a
comparison between the GHD prediction for large Δ and
the value of DðSÞ extracted from the tDMRG data (Karrasch,
Moore, and Heidrich-Meisner, 2014); the results agree in the
limit Δ → ∞. The tDMRG results close to Δ ¼ 1 give a lower
bound only to the true diffusion constant.
The time-dependent diffusion constant was also studied via

perturbation theory in powers of Δ under the assumption that
the current autocorrelation function decays monotonically in
time to zero (Steinigeweg and Schnalle, 2010; Steinigeweg,
2011). A good agreement with numerics was found at short
and intermediate timescales, where this assumption is well
satisfied.
The full frequency-dependent conductivity σregðωÞ was

investigated for Δ > 1 using ED and the MCLM
(Prelovšek et al., 2004). As illustrated in Fig. 18, for system
sizes accessible to those methods, σregðωÞ typically has an
anomalous form, with strongly reduced spectral weight at
small ω in the vicinity of the finite-size spin Drude weight

DðSÞ
w and a pronounced shoulder at larger ω. As argued by

Prelovšek et al. (2004), however, the position of this shoulder
moves with increasing system size to smaller ω as 1=L and
might eventually take on a simple form with a well-behaved
low-frequency part and a finite dc conductivity in the
thermodynamic limit. Whether this anomalous form is indeed
a spurious effect of small systems or whether it persists for
large systems is still an open problem; see the discussion in
Sec. IV.B. Yet it is clear that the degree of anomalous behavior
substantially depends on the frequency scale or, equivalently,
the timescale considered (Jin et al., 2015; Steinigeweg,
Herbrych, Pollmann, and Brenig, 2016).
The full frequency-dependent conductivity σregðωÞwas also

calculated for Δ > 1 via a Fourier transform of finite-time
tDMRG data (Karrasch, Kennes, and Moore, 2014). It shows a
regular diffusive peak at small frequencies as well as con-
tributions for frequencies above the spectral gap.
In addition to the numerous works on current-current

correlations, a significant body of works has studied den-
sity-density correlations as well, in either momentum or real
space (Huber and Semura, 1969; Fabricius, Löw, and Stolze,
1997; Fabricius and McCoy, 1998). This allows one to also

study the momentum dependence of the diffusion coefficient.
In the context of diffusion, a result from exact and Lanczos
diagonalization (Steinigeweg and Brenig, 2011; Steinigeweg
et al., 2012) is that the time-dependent susceptibility χqðtÞ
defined in Eq. (57) decays at small β according to

dχqðtÞ
dt

¼ −q̃2DðSÞ
q ðtÞχqðtÞ: ð174Þ

Here the decay rate DðSÞ
q ðtÞ becomes independent of q for

small momenta q > 0 in a finite lattice and coincides with the
time-dependent diffusion coefficient DðSÞðtÞ in the Einstein
relation (37). The number of diffusive momenta was shown to
decrease with decreasing temperature, while the diffusion
constant increases as long as the temperature is sufficiently
larger than the gap.

2. Δ < 1

The Drude weight has been shown to be finite for any
commensurate value of Δ < 1 with Δ ¼ cosðlπ=mÞ and is
thus conjectured to be finite everywhere. An exact lower
bound for the diffusion constant was also obtained in this
regime (Ilievski et al., 2018). It was shown analytically that
the bound is finite for commensurate Δ ¼ cosðπ=mÞ, which
rules out a subdiffusive form of σregðωÞ for these parameters.
For incommensurate values of Δ (i.e., almost everywhere), the
lower bound diverges, and transport cannot be diffusive
but must be faster than diffusive. Combined with the expect-
ation that the frequency-integrated conductivity should be
continuous everywhere due to sum rules, this hints at
the possibility of superdiffusive corrections away from the
commensurate points. This conjecture was put onto firmer
ground by Agrawal et al. (2020). We now consider a value
Δ ¼ cosðπη∞Þ, where η∞ is a generic irrational number. The
reasoning uses the fact that η∞ can be approximated by a
series of rational values ηm ¼ l=m with growing denomi-
nators m. Using fairly general arguments, one can show
that the dc conductivity at infinite temperature can be
approximated as

FIG. 17. Diffusion constant of the spin-1=2 XXZ chain at
infinite temperature as a function of 1=Δ for Δ > 1. tDMRG
results (Karrasch, Moore, and Heidrich-Meisner, 2014) are
compared to the GHD prediction for Δ → ∞ [cf. Eq. (173)]
and Δ < ∞ (De Nardis, Bernard, and Doyon, 2019). The
tDMRG results close to Δ ¼ 1 give only a lower bound to the
true diffusion constant.

FIG. 18. Real part of the optical conductivity σðωÞ of the spin-
1=2 XXZ chain, as obtained by Prelovšek et al. (2004) from ED
and the MCLM for Δ ¼ 2 and infinite temperature β ¼ 0. The
anomalous scaling with system size is still consistent with a well-
behaved low-frequency part and a finite dc conductivity in the
thermodynamic limit. The solid line results from computing
frequency moments (FM).
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σdcðηmÞ ∼m2α=ð1−αÞ: ð175Þ

Equation (175) leads to a subleading correction to σ0ðωÞ at η∞
that diverges, giving rise to subdiffusion (Agrawal et al.
2020).
GHD allows one to obtain the exponents associated with the

superdiffusive correction (Agrawal et al., 2020): The low-
frequency conductivity behaves as σregðωÞ ∝ ω−α, with α ¼
1=2 for generic values of Δ. This divergence is cut off at the
rational points, leading to a diffusive correction. Furthermore,
a qualitative picture emerges from GHD: the subleading
correction arises from scattering of charged quasiparticles
off neutral quasiparticles, and an interpretation in terms of a
Lévy flight has been put forward (Agrawal et al., 2020).
At low temperatures, a field-theory calculation that incor-

porates the leading irrelevant umklapp term and accounts for
conserved charges via the memory-matrix formalism suggests
a diffusive form of the subleading σregðωÞ (Sirker, Pereira, and
Affleck, 2011); see Sirker (2006) for earlier work. This is
consistent with earlier results for the generic behavior of a
Tomonaga-Luttinger liquid in the presence of umklapp scat-
tering (Giamarchi, 1991), but it is an open question as to
whether field theory away from commensurate values of Δ is
consistent with the GHD result that subleading correction
cannot be diffusive there. The field theory was used to
compute the density-density correlation function and a dif-
fusive behavior was found, in agreement with tDMRG data
(Karrasch, Pereira, and Sirker, 2015).
The spin conductivity has been computed numerically via

various approaches. Using Lanczos diagonalization, it was
concluded that σregðωÞ ∼ ω2 at low frequencies (Herbrych,
Steinigeweg, and Prelovšek, 2012), which is at odds with the
lower bound established by Ilievski et al. (2018). The Fourier
transform of finite-time tDMRG data is consistent with a finite
σregðω → 0Þ ¼ σdc > 0, and for certain values of Δ it suggests
an additional peak structure at larger frequencies (Karrasch,
Kennes, and Heidrich-Meisner, 2015). For completeness,
Fig. 16(b) depicts tDMRG results for DðSÞðtÞ at Δ ¼ 0.5.
One finds that DðSÞðtÞ ∼ t for tJ ≳ 10 due to the finite Drude
weight. A convincing numerical confirmation of the GHD
prediction for the power-law decay of CðtÞ at generic values of
Δ toward the Drude weight is still missing.

3. Δ = 1

While no exact results are available, the current belief is that
the Drude weight vanishes at the isotropic point Δ ¼ 1 in the
thermodynamic limit. There is in principle the possibility of
diffusive transport occurring (Sirker, Pereira, and Affleck,
2009, 2011). However, this scenario has been controversially
discussed in the literature and, in contrast to the regime Δ > 1,
there is mounting evidence that diffusion is not realized.
The exact lower bound on the diffusion constant diverges in

the limit Δ → 1 at infinite temperature (Ilievski et al., 2018),
which is indicative of superdiffusion at this point. A diver-
gence was also obtained within the GHD approach, and for
Δ → 1þ it was found that (De Nardis, Bernard, and Doyon,
2019)

DðSÞ ¼ lim
t→∞

DðSÞðtÞ ∝ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Δ − 1

p : ð176Þ

The same result has been derived via a GHD-based kinetic
picture (Gopalakrishnan and Vasseur, 2019), and the time-
dependent diffusion constant was predicted to scale as
DðSÞðtÞ ∝ t1=3. This was confirmed in another GHD study
(Agrawal et al., 2020).
This superdiffusive behavior is consistent with finite-time

tDMRG data for DðSÞðtÞ at Δ ¼ 1 [see Fig. 16(b)] as well as
with numerical linked-cluster expansions (Richter and
Steinigeweg, 2019; Richter et al., 2020). Signatures of super-
diffusion at Δ ¼ 1 were found in the unitary evolution of
inhomogeneous initial states (Ljubotina, Žnidarič, and Prosen,
2017). In particular, for initial states with a magnetization
profile of the domain-wall type, the profiles at later times
collapse after a rescaling of space with the power law t3=2,
which corresponds to DðSÞðtÞ ∼ t1=3 (Ljubotina, Žnidarič, and
Prosen, 2017).
The field-theory calculation given by Sirker, Pereira, and

Affleck (2009, 2011) was also carried out directly at Δ ¼ 1. It
predicts diffusive dynamics of density-density correlations in
the hydrodynamic regime of small momenta q → 0 and low
frequencies ω → 0, where the diffusion constant scales with
temperature as

DðSÞ ∝
lnT
T

: ð177Þ

The possibility of diffusion in the hydrodynamic regime
was also scrutinized in quantum Monte Carlo simulations
(Grossjohann and Brenig, 2010), where the bosonization
prediction was transformed to imaginary time to avoid trans-
formations of Monte Carlo data to real times. A fit of these
QMC data to the bosonization result supports a finite diffusion
constant DðSÞ. It is presently not fully understood how this can
be reconciled with the fact that the lower bound and GHD
predict superdiffusion at Δ ¼ 1.

E. Open quantum systems

Complementary to works on Kubo response functions in
closed systems, one can study open quantum systems,
particularly using the Lindblad equation with a driving at
the two boundaries of the XXZ chain; cf. Sec. V.B. For Δ > 1

and in the case of weak driving, i.e., in the linear-response
regime, a linear magnetization profile as well as a spin-current
scaling as J ðSÞ ∝ 1=L was observed, which corresponds to
diffusion (Michel et al., 2008; Prosen and Žnidarič, 2009;
Žnidarič, 2011a). In the limit of large Δ, the Lindblad
approach yields a scaling of the diffusion constant as DðSÞ ∝
1=Δ (Žnidarič, 2011a), which is different from the DðSÞ ¼
const result coming from tDMRG calculations (Karrasch,
Moore, and Heidrich-Meisner, 2014) and generalized
hydrodynamics (De Nardis, Bernard, and Doyon, 2019;
Gopalakrishnan and Vasseur, 2019); see Fig. 17. However,
an equivalence of the linear-response and open-system results
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is not expected for the choice of the system-bath coupling
made by Žnidarič (2011a), where Γ ∼ Δ.
At Δ ¼ 1 and high T, the open-system spin current no

longer scales as J ðSÞ ∝ 1=L but is instead found to scale
slower according to the power law J ðSÞ ∝ 1=

ffiffiffiffi
L

p
; see Fig. 19.

Since the magnetization profile does not show a significant
dependence on L, this scaling of the spin current shows the
emergence of superdiffusion in the Lindblad approach
(Žnidarič, 2011a, 2011b), which was the first observation
of this behavior in the spin-1=2 Heisenberg chain. This is in
agreement with numerics for unitary time evolution
(Ljubotina, Žnidarič, and Prosen, 2017) and with the fact
that the lower bound to the diffusion constant diverges for
Δ → 1 (Ilievski et al., 2018).

F. Open questions

As discussed earlier, our theoretical understanding of
transport in the spin-1=2 XXZ chain at nonzero temperatures
has seen substantial progress over the past decade due to a
combination of various analytical and numerical techniques.
Yet there are many open questions. A few of these questions
are summarized in the following.
One important question is whether or not the exact lower

bound for the spin Drude weightDðSÞ
w in Eq. (78) is exhaustive

for all commensurate values of jΔj < 1. It is now established
that at infinite temperature this lower bound coincides with the
TBA (Zotos, 1999) and GHD (Ilievski and De Nardis, 2017b;
Bulchandani et al., 2018) results, which are also identical at
any T for jΔj < 1 (Urichuk et al., 2019). However, a central
assumption invoked within the TBA and therefore GHD,
which is formulated in the TBA language, is the string
hypothesis. It is an interesting open question as to whether
or not GHD can be formulated without resorting to the string
hypothesis. Similarly, the question remains whether the spin
Drude weight can be computed in a Bethe-ansatz approach
without resorting to the string hypothesis. A recent study by

Klümper and Sakai (2019) carried out such an alternative
calculation without using the string hypothesis. Results for

DðSÞ
w ðTÞ were obtained by using a numerical solution of the

resulting nonlinear equations for Δ ¼ cos ðπ=mÞ. These
exhibit finite-size effects that become more significant as
temperature is lowered. Eventually, the data converge to the
TBA results given by Zotos (1999) in the thermodynamic
limit.
Moreover, while the possibility of a fractal-like dependence

of DðSÞ
w on Δ is intriguing, no numerical method will likely be

capable to confirm the fractal structure. The sudden drop of

DðSÞ
w when going from Δ ¼ 0 to Δ > 0 has not yet been

numerically verified. Particularly useful would be a lower
bound with finite-size corrections, which would allow for
more reliable extrapolations to the limit of large system sizes
as well.
Another important and closely related issue concerns

subleading corrections to the spin Drude weight DðSÞ
w in the

regime jΔj < 1. It is now established from exact lower
bounds and GHD that the diffusion constant is finite for
commensurate values of Δ but diverges away from these
points (Ilievski et al., 2018; Agrawal et al., 2020). This rapid
change is explained by a significant weight transfer in the
low-frequency window as one goes from commensurate
values of Δ to incommensurate ones; concrete exponents for
the divergence of σregðωÞ at generic values of Δ < 1 and ¼ 1

were obtained from GHD (Agrawal et al., 2020). This
results in a more appealing picture as it satisfies the physical
expectation of a smooth parameter dependence of at least
the integral over the low-frequency part of σregðωÞ.
Nevertheless, at least within GHD, the distinction between
rational and irrational values again relates to properties of
the quasiparticles, and thus the existence of both diffusive
and superdiffusive corrections may also rely on Takahashi’s
string hypothesis. This leads to the same question again: can
the string hypothesis be replaced in GHD and what would
the results be? A convincing numerical confirmation of the
exponents for the subleading correction for generic values of
Δ < 1 is also missing.
Several open questions remain in the regime Δ > 1 as

well. While an analytical calculation based on certain
assumptions (Carmelo, Prosen, and Campbell, 2015) con-

cludes in favor of DðSÞ
w ¼ 0 at T > 0, a strict proof is still

missing. An exact lower bound to the diffusion constant was
obtained and shown to be finite, ruling out subdiffusion
(Ilievski et al., 2018). While substantial evidence has been
provided that spin dynamics is diffusive, it still needs to be
qualitatively explained why diffusion can occur in inte-
grable systems, where concepts such as chaos, ergodicity,
etc., do not apply. It would be interesting to obtain a
better numerical estimate for the diffusion constant in the
longtime limit, since the deviation from the GHD data in
Fig. 17 is most likely related to the finite times reached in
the simulations.
Another puzzling issue concerns the notion of a mean free

path. While the quantitative values for the diffusion constant
suggest a mean free path on the order of one lattice site, strong
finite-size effects and anomalous scaling to the thermodynamic
limit appear nonetheless (Prelovšek et al., 2004),which suggests

FIG. 19. Results from the Lindblad quantummaster equation for
simulating spin transport in the spin-1=2 XXZ chain, as obtained
by Žnidarič (2011a) for Δ ¼ 1. (a) Superdiffusive scaling of the
spin current as jðSÞ ∝ 1=

ffiffiffiffi
L

p
. (b) L-independent magnetization

profile.
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that the mean free path is not the only length scale involved for a
finite system (Steinigeweg et al., 2012). It would be interesting
to investigate the behavior of higher-order current correlation
functions (Steinigeweg and Prosen, 2013).
At the isotropic point Δ ¼ 1, transport at infinite temper-

ature is faster than diffusive since the exact lower bound to the
diffusion constant diverges for Δ → 1 (Ilievski et al., 2018);
such a divergence is also observed in GHD calculations (De
Nardis, Bernard, and Doyon, 2019; Agrawal et al., 2020).
Numerical simulations (Žnidarič, 2011a; Prosen and
Žunkovič, 2013) point to the emergence of superdiffusion.
However, the origin and nature of this nondiffusive process is
not yet fully understood. First attempts have been undertaken,
and there is mounting support for the dynamical exponent
of z ¼ 3=2 (Ljubotina, Žnidarič, and Prosen, 2017), which
is consistent with Kardar-Parisi-Zhang (KPZ) scaling
(Ljubotina, Žnidarič, and Prosen, 2019) and was further
corroborated and discussed by Gopalakrishnan and Vasseur
(2019), Bulchandani (2020), De Nardis, Gopalakrishnan et al.
(2020), Spohn (2020a), and Weiner et al. (2020). Whether the
KPZ-like scaling persists in other isotropic spin models with
or without integrability is currently the object of intense
scrutiny; see De Nardis et al. (2019) and Dupont and Moore
(2020). Recent studies concluded that superdiffusion with an
exponent of z ¼ 3=2 is generally realized in all integrable,
Heisenberg-like magnets that are invariant under global non-
Abelian continuous symmetry (Ilievski et al., 2020; Krajnik,
Ilievski, and Prosen, 2020). A first-principle derivation of
KPZ scaling for these integrable models (besides predicting
the exponent) is still lacking and the possibility of other types
of superdiffusion in integrable spin chains cannot be fully
ruled out either (Žnidarič, 2013b).
From a methodological point of view, it is unclear

how the field-theory prediction of diffusion (Sirker, Pereira,
and Affleck, 2009) and the associated low-T QMC data
(Grossjohann and Brenig, 2010) for Δ ¼ 1 can be reconciled
with the exact statement that the diffusion constant diverges at
high T. Note that GHD also predicts superdiffusion at the
isotropic point (Ilievski et al., 2018; Agrawal et al., 2020) and
includes more types of excitations such as bound states than
what is captured by field theory.
Numerical methods such as ED, DQT, and tDMRG become

less useful at low T since the relevant time scales and finite-
size effects are known to increase substantially as temperature
is reduced from infinity; see the discussion in Secs. IV.B
and IV.E.
To date there has been no example of the spin-1=2 XXZ

chain for which open-system simulations and the linear
response agree for the actual values of the diffusion constants.
It would be interesting to further investigate whether or not
agreement between the open-system and linear-response
calculations can be achieved. This is also of fundamental
interest, and respective studies may shed light on the
differences between the dynamics in isolated and open
systems in a much broader context.
A phenomenological picture of transport in the spin-1=2

XXZ chain was developed by Huber (2012) and Sánchez,
Varma, and Oganesyan (2018). The rich phenomenology of
transport in the XXZ chain [ballistic with (super)diffusive
corrections for 0≤Δ≤1, superdiffusive atΔ ¼ 1, and diffusive

forΔ > 1] partially carries over to other integrable spinmodels;
see Piroli and Vernier (2016) and Dupont and Moore (2020).
For instance, the S ¼ 1 Zamolodchikov-Fateev model
(Zamolodchikov and Fateev, 1980) exhibits a similar transport
behavior (Dupont andMoore, 2020),with the exception of extra
superdiffusion at Δ ¼ 0. The exact general necessary and
sufficient criteria for superdiffusion to occur, such as the role
of SUðNÞ symmetry, are not fully understood.
Our discussion focused entirely on the longitudinal current

component. However, in the presence of time-dependent
transverse magnetization components hsxrðtÞi and hsyrðtÞi,
transverse current components arise as well [see
Steinigeweg et al. (2011) for theoretical work and the experi-
ment by Hild et al (2014)].
Generally, it is an important question as to if and for how

long the rich dynamical behavior of the spin-1=2 XXZ
chain is stable against weak integrability-breaking perturba-
tions (Zotos, 2004; Jung, Helmes, and Rosch, 2006; Jung
and Rosch, 2007; Huang, Karrasch, and Moore, 2013;
Steinigeweg, Herbrych, Zotos, and Brenig, 2016); see
Sec. VIII. From a theoretical point of view, this question
is challenging because conventional perturbation theory
starts from a noninteracting problem. From an experimental
point of view, this question is vital, because the coupling to
environments or other degrees of freedom can never be
suppressed completely; see also Sec. X.

VII. TRANSPORT IN THE HUBBARD CHAIN

The 1D fermionic Hubbard model H ¼ P
r hr with

hr ¼−th
X
σ

ðc†rσcrþ1σ þH:c:ÞþUðnr↑− 1
2
Þðnr↓− 1

2
Þ ð178Þ

is a more general integrable model than the spin-1=2 XXZ
chain, as it also includes charge fluctuations. Much less
attention has been devoted to computing its finite-temperature
transport properties for charge, spin, or thermal transport. The
main thermodynamic parameters characterizing transport
properties in the Hubbard chain are, besides temperature T,
the chemical potential and the magnetic field. These control
the filling ρ ¼ ðN↑ þ N↓Þ=ð2LÞ and the magnetization den-
sity mz ¼ ðN↑ − N↓Þ=L. Here we mostly assume a canonical
situation where ρ and mz are fixed.
The fermionic Hubbard model possesses a pair of global

SUð2Þ symmetries (Essler et al., 2005) where one of them, the
spin symmetry, is related to transport of magnetization, while
the other, the so-called η-spin symmetry, is related to charge
conservation and transport of charge. While the integrability
of the Hubbard model was already shown by the coordinate
Bethe ansatz by Lieb and Wu (1968), it was only in 1986
when Shastry (1986) proposed the Lax operator and the
toolbox of algebraic integrability, which allowed him to
explicitly construct an infinite sequence of local conservation
laws. These conservation laws allow one to obtain some
rigorous results for transport properties.
GHD has also been applied to investigate Drude weights

(Ilievski and De Nardis, 2017a; Ilievski et al., 2018; Fava
et al., 2020) and the emergence of diffusion and super-
diffusion, as well as KPZ behavior (Fava et al., 2020) in
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the Hubbard chain. A comprehensive overview was given by
Fava et al. (2020).

A. Thermal conductivity

The energy-current operator J ðEÞ is given by (Zotos, Naef,
and Prelovšek, 1997)

J ðEÞ ¼
X
r;σ

t2h

�
ðic†rþ1σcr−1σ þ H:c:Þ

−
U
2
ðjðCÞr−1σ þ jðCÞrσ Þ

�
nrσ̄ −

1

2

��
; ð179Þ

where jðCÞr;σ is the charge current and σ̄ ¼ ↑ ð↓Þ for σ ¼ ↓ ð↑Þ.
Here we restrict the discussion to the case of a vanishing
chemical potential and magnetic field, and therefore half
filling and zero magnetization. Under these conditions, the
energy current does not couple to the charge or spin current
and off-diagonal matrix elements in the Onsager matrix of
transport coefficients can be ignored (Mahan, 1990). This is
equivalent to saying that the Seebeck coefficient, which is
proportional to hJ ðEÞðtÞJ ðCÞi, vanishes identically at half
filling at all temperatures (Beni and Coll, 1975), where J ðCÞ is
the particle current.
Similar to the spin-1=2 XXZ chain, the Hubbard model is a

ballistic thermal conductor (Zotos, Naef, and Prelovšek, 1997).
This is a rigorous statement:WhileJ ðEÞ is not conserved, it still
has a nonzero overlap with a local conserved quantityQ2. This
Q2 is the first nontrivial conserved charge in the Hubbard chain
beyond energyE, particle numberN, and the z component Sz of
the total spin, and it happens to be similar to J ðEÞ in structure:
Q2 results from J ðEÞ by U=2 → U. Consequently, the Mazur
inequality (28) provides a nonzero lower bound.
The lower bound to the energy Drude weight was evaluated

analytically by Zotos, Naef, and Prelovšek (1997) for T ¼ ∞
and reads as

DðEÞ
w ≥

β2

2L

X
σ

2ρσð1−ρσÞ

þU4

4

½Pσ2ρσð1−ρσÞð2ρ2−σ −2ρ−σ þ1Þ�2P
σ2ρσð1−ρσÞ½1þU2ð2ρ2−σ −2ρ−σþ1Þ� ; ð180Þ

where ρσ is the density of electrons with spin σ ¼ ↑;↓. A
tDMRG study showed that contributions from other con-
served charges Qn>2 with a nonzero overlap with J ðEÞ are
fairly small for all U=th (Karrasch, Kennes, and Heidrich-
Meisner, 2016) at infinite temperature and half filling.
The full temperature dependence of the energy Drude

weight was computed only recently from both finite-T
tDMRG (Karrasch, Kennes, and Heidrich-Meisner, 2016;
Karrasch, 2017a) and GHD (Ilievski and De Nardis,
2017a), which are in quantitative agreement. This Drude
weight has, for U ≫ th, two maxima: the low-temperature
regime T ≲ ΔMott is dominated by spin excitations, where

ΔMott is the charge gap. This part of D
ðEÞ
w ðTÞ agrees well with

the results for the spin-1=2 Heisenberg chain given by
Klümper and Sakai (2002). At high temperatures, charge
contributions are activated and dominate the thermal transport.

This behavior is illustrated in Fig. 20. A more complete
picture of the various temperature regimes and the relevant
contributing excitations was described by Fava et al. (2020).
Since the energy current is not exactly conserved, there are

finite-frequency contributions that were studied by Karrasch,
Kennes, and Heidrich-Meisner (2016), but a conclusion about
the nature of the subleading correction at low frequencies
could not be drawn. Other related directions include the
thermolelectric response of the model (Zemljič and Prelovšek,
2005; Peterson et al., 2007).

B. Charge conductivity

The local conserved charges have a nonzero overlap with
the charge current away from half filling ρ ≠ 1=2. Using the
Mazur inequality (28), one can thus show that charge transport

is ballistic, i.e., the charge Drude weight is nonzero DðCÞ
w > 0

(Zotos, Naef, and Prelovšek, 1997; Garst and Rosch, 2001).
This is a rigorous statement. At half filling, which corresponds
to the most symmetric and thermodynamically dominant
sector, the Mazur bound based on the known local charges
vanishes. However, this does not imply that the Drude weight
necessarily has to be zero.
Nevertheless, some rigorous results have been obtained at

half filling. It was shown by Carmelo, Nemati, and Prosen
(2018) that for any U > 0 and any positive temperature T > 0
and within the canonical ensemble where N ¼ N↑ þ N↓ − L
is held fixed (while L → ∞) one has a strict upper bound on
the charge Drude weight

DðCÞ
w jcanonical ≤

c0ðUÞt2h
T

Lð2ρ − 1Þ2; ð181Þ

which scales as 1=L at half filling ρ ¼ 1=2 since, by including
leading finite-size corrections, 2ρ−1¼0þOð1=LÞ. Therefore,
the rhs of Eq. (181) vanishes in the thermodynamic limit.
One can argue that within the grand-canonical ensemble

where the number of electrons fluctuates according to the law
of large numbers,

h½2ðN=LÞ − 1�2igrand-can ∝ 1=L; ð182Þ

FIG. 20. Energy Drude weight of the Fermi-Hubbard chain as a
function of temperature computed from the finite-T tDMRG
(Karrasch, Kennes, and Heidrich-Meisner, 2016; Karrasch,
2017a) and GHD (Ilievski and De Nardis, 2017a).

B. Bertini et al.: Finite-temperature transport in one-dimensional …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025003-48



this bound is no longer useful. There one can instead derive an
improved bound that holds only within leading order in 1=T
but for any value and sign of U

DðCÞ
w jgrand-can ≤

cðUÞt2h
T

ð2ρ − 1Þ2: ð183Þ

This bound indicates that DðCÞ
w ¼ 0 if ρ ¼ 1=2, which is

consistent with the GHD result (Ilievski et al., 2018). The full

temperature dependence of the charge Drude weight DðCÞ
w at

0 < ρ < 1=2 was computed in a recent GHD study (Ilievski
and De Nardis, 2017a). Ballistic charge transport away from
half filling was observed numerically in a tDMRG study
(Karrasch, 2017a).
The question of whether or not the charge Drude weight

in the half-filled Fermi-Hubbard chain is zero has historically
been a controversial topic. Several early studies reported
evidence for a finite Drude weight (Fujimoto and Kawakami,
1998; Kirchner, Evertz, and Hanke, 1999). This result was
later challenged by Bethe-ansatz studies that emphasized
symmetry constraints on the diagonal matrix elements of the
charge-current operator (Carmelo, Gu, and Sacramento,
2013; Carmelo, Nemati, and Prosen, 2018). Numerically,
charge transport was studied using exact diagonalization
and the MCLM (Prelovšek et al., 2004), finite-T tDMRG
(Karrasch, Kennes, and Moore, 2014; Karrasch, Kennes, and
Heidrich-Meisner, 2016), dynamical typicality (Jin et al.,
2015), and tDMRG simulations of open quantum systems
(Prosen and Žnidarič, 2012). All these studies agree insofar
as they find no evidence for a ballistic contribution. As an
example, we show the infinite-temperature Drude weight
computed from dynamical typicality in Fig. 21 as a function
of system size for several values of U=th. The Drude weight
decays with a power law in 1=L, which is consistent with the
observation for other integrable models; see the large Δ
phase of the spin-1=2 XXZ chain (Heidrich-Meisner et al.,
2003; Steinigeweg, Gemmer, and Brenig, 2014).
A rigorous lower bound using the method given by

Medenjak, Karrasch, and Prosen (2017) for the charge-
diffusion constant was recently obtained (Ilievski et al.,
2018). This bound diverges at half filling, which shows that
transport cannot be diffusive. Therefore, the charge transport
is similar to the spin transport in the spin-1=2 Heisenberg

chain, with presumably no Drude weight in both cases and
superdiffusion. Still, the spreading of density perturbations at
finite times and in finite systems is indicative of diffusion
(Steinigeweg, Jin, De Raedt et al., 2017) (see also Sec. IX.A),
which leaves the reconciliation of these two observations as an
open problem.
Using finite-T tDMRG (Karrasch, Kennes, and Moore,

2014), an attempt was made to extract the temperature
dependence of the dc conductivity at low temperatures in
order to verify field-theoretical predictions given by Sachdev
and Damle (1997) and Damle and Sachdev (1998). The
presence of anomalous finite-size effects in σ0ðωÞ was pointed
out in the MCLM study given by Prelovšek et al. (2004). Both
of these numerical works and Jin et al. (2015) argued for a
diffusive form of the conductivity, which is at odds with the
rigorous results given by Ilievski et al. (2018).
Prosen and Žnidarič (2012) used the steady-state master

equation with boundary Lindblad reservoirs to investigate
transport in the Hubbard model. It was argued that transport is
diffusive in the thermodynamic limit (results were reported for
L ∼ 100). Indications for superdiffusion were presented for
short systems and large U=th, leading to the speculation that
the two limits U=th → ∞ and L → ∞ may not commute
(Prosen and Žnidarič, 2012).

C. Spin conductivity

For a nonzero magnetization mz ≠ 0, the Mazur inequal-
ity (28) shows that the spin Drude weight is finite (Zotos,
Naef, and Prelovšek, 1997).
One can make rigorous statements similar to Eqs. (181)

and (183) about spin transport in the Hubbard model U < 0.
Specifically, under a partial particle-hole transformation
where ðcr↑; c†r↑; cr↓; c†r↓Þ → ðcr↑; c†r↑; c†r↓; cr↓Þ, the sign of
U changes (U → −U), while the spin current (spin Drude
weight) maps to charge current (charge Drude weight) and
vice versa. At asymptotically high temperatures, the sign of U
becomes irrelevant, and we then have a full symmetry between
spin and charge transport. For example, at zero magnetization,
the leading term in a high-T expansion of the spin Drude

weight vanishes. It is believed that DðSÞ
w ¼ 0 at mz ¼ 0.

The full temperature dependence of the spin Drude weight

DðSÞ
w at 0 < mz < 1 was computed in a recent GHD study

(Ilievski and De Nardis, 2017a). At zero magnetization, GHD

predicts DðSÞ
w ¼ 0 (Ilievski et al., 2018), and in the same

regime the spin-diffusion constant was shown to diverge
(Ilievski et al., 2018). Ballistic spin transport away from
mz ¼ 0 was observed numerically in a tDMRG study of the
spreading of density wave packets (Karrasch, Prosen, and
Heidrich-Meisner, 2017).
Clarifying the nature of the deviations from diffusion

and investigating exactly how the Heisenberg regime is
recovered out of the transport properties of the Hubbard
chain in the low-temperature regime are open problems. For
instance, the most recent developments of finite-T tDMRG
methods have not yet been exploited to address these ques-
tions again (Karrasch, 2017a).
In a recent GHD study, several aspects of spin transport

were explored, including the crossover from the spin-coherent

FIG. 21. Charge Drude weight of the Fermi-Hubbard chain at
half filling and infinite temperature versus system size obtained
from dynamical typicality (Jin et al., 2015), plotted using a
logarithmic scale on both axes.
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to the spin-incoherent regime and the emergence of super-
diffusion at points with non-Abelian symmetry (vanishing
chemical potential and/or magnetic field) (Fava et al., 2020).

VIII. BEYOND INTEGRABLE SYSTEMS

While integrability is particularly appealing because it
allows for exact solutions, most systems of relevance in
condensed matter physics (experimental or theoretical) do
not share this property. In particular, even though the spin-1=2
XXZ chain describes many features of real materials (such as
thermodynamics and spectral functions), it cannot describe
generic transport. Indeed, the latter is governed by relaxation
mechanisms and external scattering off impurities or phonons
is unavoidable.
In this section, we assume that the only relevant conserved

quantities are energy, particle number, and magnetization.
Hence, we exclude Floquet systems, where energy is not
conserved, and unusual or specifically engineered nonintegr-
able systems that possess a finite number of nontrivial
conserved quantities.
Theoretically, there is much interest in the stability of

properties of integrable models against adding integrability-
breaking perturbations. In classical systems of few particles,
the Kolmogorov-Arnold-Moser theorem (Gutzwiller, 1990)
makes a precise statement on this stability, whereas there is no
such result for quantum systems. Within the wider field of
nonequilibrium dynamics in closed quantum systems, the
accepted view is that in most cases any arbitrarily small
strength of an integrability-breaking term leads to thermal-
ization (D’Alessio et al., 2016) and diffusive transport. This,
however, may not be easy to see in actual numerical
simulations. For finite timescales, the perturbed system
may well still remember the existence of now only approx-
imately conserved quantities and exhibit prethermalization
behavior (Moeckel and Kehrein, 2008; Kollar, Wolf, and
Eckstein, 2011; Essler et al., 2014; Bertini et al., 2015;
Mallayya, Rigol, and De Roeck, 2019). For transport, there
have been only a few studies that have explicitly made a
connection between prethermalization and the respective
behavior in a transport coefficient [see the discussion given
by Nessi and Iucci (2015)], while a number of studies have
touched upon the topic; see Jung, Helmes, and Rosch (2006)
and Jung and Rosch (2007). The observation of slow
dynamics in finite-size simulations is ascribed to weak
violations of conservation laws or quasilocalization physics
in translational invariant systems; see Schiulaz and Müller
(2014), Yao et al. (2016), and Michailidis et al. (2018).
We concentrate the discussion on nonintegrable models that

result from perturbing the spin-1=2 XXZ chain. The choice of
the integrability-breaking term is motivated by a particular
relevance for experiments (such as spin-1=2 Heisenberg
ladders), by the possibility of obtaining analytical or exact
results (e.g., for the spin-1=2 XXZ chain with a staggered
magnetic field), or by the desire to obtain the simplest possible
cases (such as spin-1=2 XX ladders or simple types of short-
range interactions). See Fig. 22 for an illustration of ladders
and frustrated chains.
In this section, we present the statements that describe the

majority of those models and cover selected examples for

which there are particularly convincing either numerical or
analytical results. Relevant and important results have cer-
tainly been obtained for many other models that are not
covered in detail here. These include spin-S XXZ chains with
S > 1=2 (Karadamoglou and Zotos, 2004; Richter, Casper
et al., 2019; Dupont and Moore, 2020), Kitaev-Heisenberg
chains and ladders (Steinigeweg and Brenig, 2016;
Metavitsiadis and Brenig, 2017; Metavitsiadis, Psaroudaki,
and Brenig, 2019; Pidatella, Metavitsiadis, and Brenig, 2019),
and Hubbard models with integrability-breaking terms
(Žnidarič, 2013a, 2013b; Karrasch, Kennes, and Moore
(2014); Karrasch, Kennes, and Heidrich-Meisner, 2016;
Karrasch, 2017a, 2017b). We focus here on results obtained
via the Kubo formula for closed quantum systems; studies of
open quantum systems were given by Žnidarič, 2013a, 2013b;
Mendoza-Arenas, Clark, and Jaksch, 2015.

A. Universal description of the low-energy behavior

We first turn to the predictions from field theory for the low-
temperature behavior. In a generic gapless system, the field
theory developed by Sirker, Pereira, and Affleck (2011)
provides the generic behavior: a Tomonaga-Luttinger liquid
becomes a diffusive conductor after including sufficiently
many umklapp terms (Rosch and Andrei, 2000). As an
example for spin transport in a gapless system, we consider
a spin-1=2 XXZ chain with a staggered magnetic field of
strength h that breaks the integrability. For small values of h,
the system is in the Tomonaga-Luttinger-liquid phase, and by
applying the field theory given by Sirker, Pereira, and Affleck
(2011) one obtains (Huang, Karrasch, and Moore, 2013)

σdc ∝ h−2T3−2K; ð184Þ

where K is the TLL parameter. Further related studies were
conducted by Szasz, Ilan, and Moore (2017) and Bulchandani,
Karrasch, and Moore (2020).
Another generic insight can be drawn from the fact that, at

low-energy scales, regular momentum emerges as an addi-
tonal approximate conserved quantity due to the mapping to
a continuum model. This does not give rise to a finite Drude
weight at small but finite temperatures but causes the dc
conductivities of those currents with a finite overlap with
momentum to be exponentially large as a function of
decreasing temperature (Rosch and Andrei, 2000; Rosch,

(a)

(b)

FIG. 22. (a) Spin-1=2 ladder with a coupling strength J and J⊥
along the legs and rungs, respectively, and (b) a frustrated chain
with a next-nearest-neighbor coupling of strength J0.
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2006). These predictions are based on a memory-matrix
formalism.
For gapped systems, the semiclassical theory given by

Damle and Sachdev (1998) leads to (see Sec. IV.A)

σdc ∝
1ffiffiffiffi
T

p . ð185Þ

This divergence (as T → 0) can be understood from the
fact that, on the one hand, the density of carriers
is exponentially suppressed but, on the other hand, this
dilution leads to an exponential suppression of scattering
as well. The available tDMRG results (Karrasch, Kennes,
and Moore, 2014) for the Hubbard chain with a nearest-
neighbor repulsion and the gapped phase of the integrable
spin-1=2 XXZ chain seem to be more consistent with a 1=T
dependence. An outstanding question is to compute σdcðTÞ
for a spin-1 chain or a spin-1=2 ladder, for which the
predictions given by Damle and Sachdev (2005) were
developed.

B. Absence of Drude weights

Within our previously given working definition of non-
integrable models, there is no nonzero Mazur bound for
Drude weights. Hence, the expectation is that Drude weights
vanish at any finite temperature. Note that at zero temper-
ature any metallic phase has a nonzero Drude weight as long
as the system preserves translational invariance (Scalapino,
White, and Zhang, 1993; Mastropietro, 2013). This nonzero
spin and charge Drude weight results from the fact that the
low-energy theory is a gapless Tomonaga-Luttinger liquid
with one or more modes and is thus a consequence of the
conservation of momentum in the continuum limit. Yet these
zero-temperature Drude weights are not related to the
integrability of the microscopic models. A concrete example
is the frustrated spin-1=2 Heisenberg chain, which in its
gapless phase has a nonzero spin Drude weight at T ¼ 0
(Bonča et al., 1994).
Most numerical studies confirm the expectation that spin,

charge, and energy Drude weights vanish in nonintegrable
models at any T > 0, including spin-1=2 Heisenberg ladders
(Heidrich-Meisner et al., 2003; Zotos, 2004; Rezania et al.,
2014), frustrated spin-1=2 Heisenberg chains (Heidrich-
Meisner et al., 2003, 2004a, 2004b, 2005), dimerized
spin-1=2 Heisenberg chains (Heidrich-Meisner et al.,
2003, 2004a), spin-1=2 XXZ chains with additional near-
est-neighbor interactions SzrS

z
rþ2 (equivalent to spinless

fermions with density-density interactions) (Zotos and
Prelovšek, 1996), and spin-1=2 XXZ chains with staggered
magnetic fields (Huang, Karrasch, and Moore, 2013;
Steinigeweg, Gemmer, and Brenig, 2015).
In the vicinity of integrable models and on finite systems,

the Drude weight may still account for most of the weight
in the conductivity σ0ðωÞ with only a slow transfer of
weight to finite frequencies. An interesting example is the
spin-1=2 frustrated Heisenberg chain where the relevant
parameter is the ratio α ¼ J0=J and J ðJ0Þ are the nearest
(next-to-nearest) neighbor exchange couplings; see
Fig. 22(b). The Hamiltonian reads

H ¼ J
XL
r¼1

hr;rþ1 þ J0
XL
r¼1

hr;rþ2; ð186Þ

where we assume periodic boundary conditions. As an
example, we show exact-diagonalization data for the energy
Drude weight in Fig. 23; specifically, for its leading

coefficient D̃ðEÞ
w in a 1=T expansion

DðEÞ
w ¼ D̃ðEÞ

w

T2
þ � � � : ð187Þ

At small values of α≲ 0.3 and for the accessible system

sizes, D̃ðEÞ
w decays only mildly relative to the integrable case

and seems to saturate (Alvarez and Gros, 2002a; Heidrich-
Meisner et al., 2004b). Upon increasing α, though, the

decrease of D̃ðEÞ
w with L becomes faster and is consistent

with an exponential decay, or at least one that is faster than
any power law. The latter is expected from ETH arguments
(Steinigeweg, Herbrych, and Prelovšek, 2013) and has been
numerically observed in nonintegrable models far from
integrable limits (Zotos and Prelovšek, 1996; Prosen,
1999; Heidrich-Meisner et al., 2004b; Rabson, Narozhny,
and Millis, 2004; Jin et al., 2015).
For the frustrated spin-1=2 chain, there is a theoretical

argument that explains why on small system sizes and for
small values of α≲ 0.3 the thermal Drude weight still amounts
to a substantial fraction of the total spectral weight. It turns out
that the energy-current conservation is violated only at next-
to-leading order in α (Jung, Helmes, and Rosch, 2006). Within
the memory-matrix formalism, one can then show that current
lifetimes are enhanced in the small-α regime.
Other cases in which the proximity to integrable limits can

lead to a slow decay of Drude weights on finite systems (or to
a slow temporal decay of current autocorrelations computed
with tDMRG) are certain spin-1=2 dimerized XXZ chains
(Karrasch, Ilan, and Moore, 2013) and gapped quantum
models in large magnetic fields (Langer et al., 2010;
Psaroudaki et al., 2014; Stolpp et al., 2019). In the former

FIG. 23. Infinite-temperature energy Drude weight of frustrated
spin-1=2 Heisenberg chains computed with exact diagonalization
(Heidrich-Meisner et al., 2003, 2004b).
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case, the existence of several integrable limits (vanishing
dimerization, zero exchange anisotropy Δ ¼ 0, decoupled
dimers) has been speculated to give rise to a slow decay of
current correlation functions. In the latter case, the application
of a longitudinal magnetic field induces a transition into a
gapless phase. For spin-1 chains (Psaroudaki et al., 2014), the
field-induced phase can be approximately described by an
effective spin-1=2 XXZ chain Hamiltonian, which explains
the numerically observed large finite-size Drude weights. In
none of these examples is there any theoretical evidence to
believe that the finite-size Drude weights remain nonzero for
L → ∞. Other claims of nonzero Drudeweights in generic spin
ladders, frustrated spin chains, or dimerized spin chains were
either based on a mapping to noninteracting effective theories
(Orignac, Chitra, and Citro, 2003; Saito, 2003b) or due to the
difficulties involved with interpreting finite-size exact diago-
nalization (Alvarez and Gros, 2002a) or QMC data (Kirchner,
Evertz, and Hanke, 1999).

C. Frequency dependence of the conductivity

The simplest picture for the frequency dependence was
already given in Sec. II and is based on the Drude model: a
Lorentzian whose width is controlled by a single relaxation
time. One may wonder whether such a simple structure is
possible at all in strongly correlated models in one dimension
where there is no Landau quasiparticle picture in the first place.
For infinite temperature, there are many numerical results

available. A particularly clear picture emerges for spin-1=2
XX ladders. In that case, the integrable limits are two chains

that have only a Drude weight, i.e., σ0ðωÞ ¼ 2πDðSÞ
w δðωÞ. The

Hamiltonian reads (with Δ ¼ 0 in the hk;⊥r terms)

H ¼ Hjj þH⊥ ¼ J
X
l¼1;2

XL
r¼1

hjjl;r;rþ1 þ J⊥
XL
r¼1

h⊥r : ð188Þ

l ¼ 1; 2 labels the two legs of the ladder. Upon coupling the
chains with a nonzero J⊥, the Drude peak is broadened into a
Lorentzian. This is illustrated in Fig. 24, obtained from
tDMRG (Karrasch, Kennes, and Heidrich-Meisner, 2015),
which agrees with dynamical typicality and perturbation
theory (Steinigeweg, Heidrich-Meisner et al., 2014; Richter,
Jin et al., 2019; Richter et al., 2020). For more complicated
models, the situation is less clear based on the numerical
data. For instance, in spin-1=2 Heisenberg ladders, there is
presumably superdiffusion for J⊥ ¼ 0 (see Sec. VI.D.3) and
it is not obvious (Richter et al., 2020; Dabelow and Reimann,
2021) that there is a single Lorentzian at low frequencies.
Numerical results for σ0ðωÞ of nonintegrable models are
available for spin-1=2 XXZ ladders (Karrasch, Kennes, and
Heidrich-Meisner, 2015), spin-1=2 XXZ chains with a stag-
gered magnetic field (Huang, Karrasch, and Moore, 2013),
dimerized spin-1=2 Heisenberg chains (Langer et al., 2010),
interacting spinless fermions with next-to-nearest-neighbor
and nearest-neighbor hopping (Mukerjee, Oganesyan, and
Huse, 2006), and the Fermi-Hubbardmodel with next-nearest-
neighbor interactions (Karrasch, Kennes, and Moore, 2014).
The thermal conductivity κðωÞ was computed numerically for
spin-1=2 XXZ chains with a staggered magnetic field (Huang,

Karrasch, and Moore, 2013; Steinigeweg, Gemmer, and
Brenig, 2015).
While a finite dc limit is enough to classify the system as a

normal conductor, there remains the possibility of potential
anomalous low-frequency behaviors; see Garst and Rosch
(2001) for a discussion of the mass-imbalanced Hubbard
model. Evidence for such a situation was reported for a
nonintegrable model of spinless fermions (Mukerjee,
Oganesyan, and Huse, 2006), where σ0ðωÞ¼ a−b

ffiffiffiffiffiffijωjp þ���
was observed in numerical data and explained as a hydro-
dynamic tail. The corresponding σ0ðωÞ is shown in Fig. 25.
A systematic study of such tails in nonintegrable models for
larger systems and a broader class of models remains to be
done [see also Zotos (2004)], in particular, by making more
quantitative contact with the predictions of hydrodynamics.

D. dc conductivity and diffusion constant

We next turn to the available results for the temperature
dependence of dc conductivities and diffusion constants and

FIG. 24. Spin conductivity of a spin-1=2 XX ladder for various
rung couplings J⊥ (Karrasch, Kennes, and Heidrich-Meisner,
2015).

FIG. 25. Real part of the conductivity of a nonintegrable model
vs ω (in units of t), namely, spinless fermions with a nearest-
neighbor repulsion of strength V ¼ 2t and an additional next-to-
nearest-neighbor hopping t0 ¼ t, where t is the nearest-neighbor
hopping matrix element. The exact-diagonalization data indicate
that the low-frequency behavior is incompatible with a simple
Lorentzian; see Mukerjee, Oganesyan, and Huse (2006) for a
discussion. Other examples of a similar shape were reported
by Zotos (2004) and Heidrich-Meisner et al. (2005). From
Mukerjee, Oganesyan, and Huse, 2006.
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their dependence on model parameters. The latter dependency
is relevant to understand the effect of integrability-breaking
terms (parametrized by a coupling constant Jpert). The cross-
over from GHD describing integrable models to regular
hydrodynamics in nonintegrable models was discussed by
Friedman, Gopalakrishnan, and Vasseur (2020). Based on
Fermi’s golden rule, one generically expects DðQÞ ∝ 1=J2pert
and thus a similar scaling for the conductivity (Zotos, 2004;
Jung and Rosch, 2007; Steinigeweg, Herbrych, Zotos, and
Brenig, 2016).
We first discuss the infinite-temperature limit and then

move on to cover predictions and results for finite temper-
atures. Numerical results for the diffusion constant and
(via Einstein relations) the dc conductivity are available
for spin transport in spin-1=2 XX and XXZ ladders (Žnidarič,
2013a; Steinigeweg, Heidrich-Meisner et al., 2014;
Karrasch, Kennes, and Heidrich-Meisner, 2015) and thermal
transport in spin-1=2 XXZ ladders (Heidrich-Meisner et al.,
2003; Zotos, 2004; Steinigeweg, Herbrych, Zotos, and
Brenig, 2016) and spin-1=2 chains with staggered magnetic
fields (Huang, Karrasch, and Moore, 2013; Steinigeweg,
Gemmer, and Brenig, 2015), as well as for charge transport
in the mass-imbalanced Fermi-Hubbard chain (Jin et al.,
2015; Heitmann et al., 2020); see also Garst and Rosch
(2001).
Figure 26 shows the dependence of the spin-diffusion

constant DðSÞ on J⊥ for spin-1=2 XX ladders: at small J⊥,
DðSÞ ∝ 1=J2⊥, which is in agreement with perturbation theory
(Steinigeweg, Heidrich-Meisner et al., 2014; Richter et al.,
2020) with a crossover to DðSÞ ¼ const at large J⊥ ≫ J.
The latter behavior is typical for systems with a band
structure (here controlled by J⊥ in the strong dimer limit)
at T ¼ ∞. A perturbative dependence of diffusion constants
on an integrability-breaking parameter was reported for
thermal transport in spin ladders as well (Zotos, 2004;
Steinigeweg, Herbrych, Zotos, and Brenig, 2016).
Numerical methods now also give access to a wider

temperature range. As an example, we show the thermal
conductivity of spin-1=2 XXZ chains with a staggered
magnetic field in Fig. 27 (Huang, Karrasch, and Moore,
2013; Steinigeweg, Gemmer, and Brenig, 2015); see also

(Prosen and Žnidarič (2009). The maximum at a temperature
T ∼OðJÞ is resolved, while the data indicate a power-law
dependence at low T.

E. Special cases and outlook

We conclude in this section by giving an account of special
cases and ongoing directions.
Local perturbations that act on only one or a few sites can

behave completely differently from global perturbations that
have been covered thus far. Having in mind that integrable
systems possess infinitely long-lived excitations, this is not
surprising: looking at the transmission from one end to the
other, an excitation scatters only once, regardless of the
system’s length, and therefore one has zero bulk resistance
and ballistic transport.
We now take a concrete model, the spin-1=2 XXZ

Heisenberg chain [Eq. (1)] and a single impurity at the middle
of the chain described by ðh=2ÞszL=2, where h is a local
magnetic field. Analyzing the distribution of energy spacings
between nearest-eigenenergy levels (Santos, 2004, 2008;
Barišić et al., 2009; Torres-Herrera and Santos, 2014;
Fagotti, 2017a; Brenes et al., 2018), one observes level
repulsion and agreement with random-matrix theory for a
wide range of h (in the thermodynamic limit likely for any
nonzero h), which is typical of quantum-chaotic systems.
Studies of spin transport with a boundary-driven Lindblad
setting as well as with a linear-response calculation of σ0ðωÞ
suggest ballistic transport (Brenes et al., 2018; Brenes,
LeBlond et al., 2020); see Fig. 28 and Brenes, Goold, and
Rigol (2020). We note that in order to identify a nonzero
Drude weight, one has to carry out a careful finite-size scaling
analysis of σ0ðωÞ because under open boundary conditions

DðSÞ
w gets transferred to finite frequencies (Rigol and Shastry,

2008), getting a Lorentzian (Cauchy) representation of a Dirac
delta function whose width decreases to ∼1=L, while its
height increases as ∼L. For the case of a spin-S impurity with

FIG. 26. Spin-diffusion constant of the spin-1=2 XX ladder as a
function of r ¼ J⊥=J at infinite temperature, as obtained from
dynamical typicality for L ¼ 12; 14; 17 rungs (i.e., 2L sites in the
ladder) (Steinigeweg, Heidrich-Meisner et al., 2014) and pertur-
bation theory (PT) (Richter et al., 2020), withDðSÞ=J ¼ 1=ð2γr2Þ
and γ ≈ 0.63 in the limit of small r with no free parameter.

(a)

(b)

FIG. 27. Temperature dependence of the thermal conductivity κ
in a Heisenberg chain with a staggered field, as given by
Steinigeweg, Gemmer, and Brenig (2015); see also Huang,
Karrasch, and Moore (2013). τ is the relaxation time, defined
as the time at which the current correlation has decayed to a
fraction of 1=e (Steinigeweg, Gemmer, and Brenig, 2015).
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S > 1=2, this was interpreted byMetavitsiadis et al. (2010) and
Metavitsiadis (2011) as an “anomalous incoherent” energy
and spin transport. One therefore has a quantum-chaotic
system according to the level-spacing statistics but ballistic
transport, which is typically associated with integrability and
conserved quantities.
How can one reconcile these two seemingly contradicting

findings? In a many-body system, the level spacing is
exponentially small in L in the thermodynamic limit.
Therefore, starting with eigenstates of the integrable spin-
1=2 XXZ chain, even a small local perturbation can cause
mixing of close eigenenergies, leading to level repulsion.
However, level spacing measures properties on an exponen-
tially small energy scale that can potentially be irrelevant for
local physics. For transport, timescales that are polynomial in
L are what matters.
A currently investigated question concerns the precise

timescale and conditions for hydrodynamics to set in; see
Khemani, Vishwanath, and Huse (2018), Glorioso et al.
(2021), and Lopez-Piqueres et al. (2021). This question is
not new, yet numerical methods are now in a position to
simulate this while novel theoretical concepts from quantum
information theory such as entanglement spreading or out-of-
time-ordered correlators provide for a complementary view of
this problem. In that regime, the system should behave
classically and be subject to the laws of hydrodynamics
(Lux et al., 2014; Bohrdt et al., 2017; Leviatan et al.,
2017; Rakovszky, Pollmann, and von Keyserlingk, 2018;
Ye et al., 2020). Recently a generalized relaxation-
time approximation framework was proposed to study the
crossover from generalized hydrodynamics, applicable to
integrable systems, to hydrodynamics in a generic model
(Lopez-Piqueres et al., 2021). Related efforts address the
emergence of hydrodynamics in random unitary circuits;
see Nahum, Ruhman, and Huse (2018) and Rakovszky,
Pollmann, and von Keyserlingk (2018).
Earlier work studied the emergence of diffusion in

Hamiltonian systems with random couplings (Steinigeweg,
Gemmer, and Michel, 2006; Steinigeweg, Breuer, and
Gemmer, 2007). In addition to a hydrodynamical description
as a generic framework and numerical approaches, a

semiclassical method based on the truncated Wigner approx-
imations has recently been developed to study diffusion in
spin systems (Wurtz and Polkovnikov, 2020). Finally, the
possibility of anomalous transport in nonintegrable models is
still of interest, and an example of subdiffusion has been
reported in systems that conserve dipole and/or higher
moments (Feldmeier et al., 2020).

IX. FAR-FROM-EQUILIBRIUM TRANSPORT

There is growing interest in the nonequilibrium dynamics
induced by initial states with inhomogeneous densities across
various branches of theoretical physics, including condensed
matter theory (Liu and Andrei, 2014), quantum-field theory
(Bernard and Doyon, 2016), AdS=CFT correspondence
(Bhaseen et al., 2015), statistical physics (Antal, Rácz, and
Sasvári, 1997), and ultracold quantum gases (Schneider et al.,
2012; Ronzheimer et al., 2013; Vidmar et al., 2015; Vidmar,
Iyer, and Rigol, 2017).

A. Spreading of density perturbations

A prototypical nonequilibrium setup is to prepare a local
energy-, charge-, or spin-density perturbation in an otherwise
equilibrated background. Such a wave packet can be realized
via an initial density matrix of the form ρLðTÞ ⊗ ρC ⊗ ρRðTÞ,
where the density matrices ρL;R associated with the left and
right regions have the standard equilibrium form. The center
region can be chosen as a thermal density matrix with a
different temperature T þ ΔT in order to model an energy-
density perturbation.
In Sec. II.C.1, it was discussed that if this initial local

perturbation is small (ΔT → 0 and the size of the center region
C small in the previously mentioned example), the time
evolution of its variance ΣðtÞ is related to the time-dependent
diffusion constant via Eq. (37) (Bohm and Leschke, 1992;
Steinigeweg, Wichterich, and Gemmer, 2009; Yan, Jiang,
and Zhao, 2015). This implies that at long times Σ ∼ t for
ballistic transport and Σ ∼

ffiffi
t

p
for diffusive transport, with

the prefactors given by the Drude weight and the diffusion
constant, respectively. In the context of this review, the
validity of the time-dependent Einstein relation was con-
firmed numerically for spin, charge, and energy transport
within the spin-1=2 XXZ chain and the Fermi-Hubbard
model by tDMRG (Karrasch, Prosen, and Heidrich-
Meisner, 2017) and dynamical typicality calculations
(Steinigeweg, Jin, De Raedt et al., 2017; Steinigeweg, Jin,
Schmidtke et al., 2017).
One still expects that the longtime behavior of the variance

is of the previously mentioned form (Σ ∼ t and Σ ∼
ffiffi
t

p
,

respectively), even if one considers the spreading of local
perturbations that are not necessarily small. This was first
shown for the integrable spin-1=2 XXZ chain as well as
nonintegrable systems at zero temperature using tDMRG
(Langer et al., 2009, 2011; Jesenko and Žnidarič, 2011).
For instance, it was illustrated that spin propagates ballis-
tically for Δ < 1 and diffusively for Δ > 1, in agreement with
the zero-temperature behavior of the Drude weight, which is
finite in the former case but vanishes in the latter (Langer

FIG. 28. Dependence of the NESS spin current on system size L
for a spin-1=2 XXZ chain (Δ ¼ 0.5) with a single impurity of
strength h. Adapted from Brenes et al., 2018.
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et al., 2009), while energy always propagates ballistically at
any Δ (Langer et al., 2011).
These studies were extended to finite temperatures and to

pure-state dynamics, and the spreading of spin and energy
wave packets were studied for the spin-1=2 XXZ chain, spin
ladders, and the Fermi-Hubbard model (Foster, Yuzbashyan,
and Altshuler, 2010; Foster et al., 2011; Karrasch, Moore,
and Heidrich-Meisner, 2014; Karrasch, Prosen, and
Heidrich-Meisner, 2017; Steinigeweg, Jin, Schmidtke et al.,
2017; Richter et al., 2018; Richter, Jin et al., 2019),
including the mass-imbalanced case (Heitmann et al.,
2020). For instance, one can prepare a spin-polarized
central region in a T ¼ ∞ background within the XXZ
chain, which leads to a simultaneous propagation of spin
and energy densities. In this setup, spin propagates diffu-
sively and energy propagates ballistically for Δ > 1, and
both quantities propagate ballistically for Δ < 1. The typical
behavior of the spin and energy densities after local quenches
of this type is illustrated in Fig. 29 for Δ ¼ 1.5. On the
timescales accessed in these tDMRG simulations, the vari-
ance behaves as Σ2 ∝ t1.2 for the spin density and Σ2 ∝ t2 for
the energy density (Karrasch, Moore, and Heidrich-Meisner,
2014). Similar initial states can be prepared within the
Fermi-Hubbard model and could in principle be realized
in a cold-atom experiment (Karrasch, Prosen, and Heidrich-
Meisner, 2017).
The generic behavior of a diffusive spreading of a local

perturbation in nonintegrable models was investigated by
Langer et al. (2009), Kim and Huse (2013), Karrasch, Kennes,
and Heidrich-Meisner (2016), and Leviatan et al. (2017).

We mention that solving the problem of the real-time
evolution from a state with a few spins flipped compared
to a background of full polarization is also of interest in the
integrability community, as some aspects of the finite-time
dynamics can be understood exactly in this case; see Ganahl
et al. (2012) and Liu and Andrei (2014).
Recently the analysis of the time- and space-dependent

densities was extended beyond just the spatial variance; see
Ljubotina, Žnidarič, and Prosen (2017) and Steinigeweg, Jin,
Schmidtke et al. (2017). For Δ > 1, as illustrated in Fig. 30,
clean Gaussian profiles can be observed and provide addi-
tional strong evidence of diffusion.

B. Bipartitioning protocols

Bipartitioning protocols have emerged in the last
two decades as a paradigmatic setting to study far-from-
equilibrium transport in the context of isolated quantum
many-body systems.25 These protocols are simple: one
prepares the two halves of the system in different homo-
geneous states, then joins them and lets the entire system
evolve under the dynamics of a spatially homogeneous
Hamiltonian. In formulas, the state of the system at time t
is represented as

ρðtÞ ¼ e−iHtðρL ⊗ ρRÞeiHt; ð189Þ

whereH is the homogeneous Hamiltonian of the entire system
and ρR=L are the two initial homogeneous states of the two
halves. See Fig. 31 for a pictorial illustration of the setting.
Relevant examples, extensively studied in the literature,
include the sudden junction of two half chains prepared
at different temperatures [see Ogata (2002), Aschbacher
and Pillet (2003), Aschbacher and Barbaroux (2006), De
Luca et al. (2013, 2014), Karrasch, Ilan, and Moore (2013),
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FIG. 29. Densities as a function of time t and position r for a
local quench inducing (a) spin dynamics and (b) energy dynamics
in the spin-1=2 XXZ chain atΔ ¼ 1.5 at T ¼ ∞. The dynamics is
induced by introducing a local perturbation in the initial state.
Adapted from Karrasch, Moore, and Heidrich-Meisner, 2014.

FIG. 30. Spatial dependence of magnetization profiles at differ-
ent times as obtained by Steinigeweg, Jin, Schmidtke et al. (2017)
for a spin-1=2 XXZ chain at Δ ¼ 1.5, the full Hilbert space of
L ¼ 36 sites, and a randomly chosen initial pure state with a δ
peak on top of a many-particle background at high temperatures.
These profiles are well described by Gaussian fits over several
orders of magnitude. Similar Gaussian profiles were found by
Ljubotina, Žnidarič, and Prosen (2017).

25For a recent and more extended discussion, see the reviews by
Bernard and Doyon (2016) and Vasseur and Moore (2016), which are
dedicated to the subject.
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Castro-Alvaredo et al. (2014), Collura and Karevski (2014),
Collura and Martelloni (2014), Eisler and Zimborás (2014),
Bhaseen et al. (2015), De Luca, Martelloni, and Viti (2015),
Doyon (2015), Doyon et al. (2015), Bertini et al. (2016),
Biella et al. (2016), Castro-Alvaredo, Doyon, and Yoshimura
(2016), Karrasch (2017b), Kormos (2017), Zotos (2017),
Bertini and Piroli (2018), Mazza et al. (2018), Bertini,
Piroli, and Kormos (2019), Karevski and Schütz (2019),
Mestyán et al. (2019), and Nozawa and Tsunetsugu
(2020)] or at different averaged magnetizations or filling
[see Antal et al. (1998, 1999), Gobert et al. (2005), Antal,
Krapivsky, and Rákos (2008), Calabrese, Hagendorf, and Le
Doussal (2008), Santos (2008, 2009), Lancaster, Gull, and
Mitra (2010), Lancaster and Mitra (2010), Santos and Mitra
(2011), Eisler and Rácz (2013), Sabetta and Misguich (2013),
Alba and Heidrich-Meisner (2014), Hauschild, Pollmann, and
Heidrich-Meisner (2015), Vidmar et al. (2015), Bertini et al.
(2016), Eisler, Maislinger, and Evertz (2016), Viti et al.
(2016), De Luca, Collura, and De Nardis (2017),
Ljubotina, Žnidarič, and Prosen (2017), Misguich, Mallick,
and Krapivsky (2017), Piroli et al. (2017), Vidmar, Iyer, and
Rigol (2017), Collura, De Luca, and Viti (2018), and Collura
et al. (2020)]. We note that the latter kind of bipartitioning
protocols, also referred to as geometric quenches in the
literature (Mossel, Palacios, and Caux, 2010), can be realized
in experiments on the sudden expansion of quantum gases in
optical lattices; cf. Sec. X.B.
In the two previous examples, the two halves are prepared in

homogeneous stationary states. This means that a nontrivial
time evolution is observed only in a region, the “light cone,”
expanding from the junction at the maximal allowed speed. In
locally interacting lattice models with a finite-dimensional
Hilbert space, this velocity is finite (Lieb and Robinson, 1972).
The light-cone region contains information about the inhomo-
geneous nature of the system; see Fig. 31. In general, one can
also prepare the two halves in homogeneous, nonstationary
states also generating nontrivial dynamics away from the
junction. However, the information about the inhomogeneous
nature of the system is still contained in a light-cone region
expanding from the junction at the maximal speed.
Bipartitioning protocols are appealing because they give a

minimal setting in which a genuine NESS, i.e., steady states
supporting nontrivial currents, can be observed at infinite
times. This was first analytically observed in noninteracting

systems (Antal et al., 1999), then in conformal field
theories (Bernard and Doyon, 2012, 2015), and finally
(with the introduction of GHD) in interacting integrable
models (Bertini et al., 2016; Castro-Alvaredo, Doyon, and
Yoshimura, 2016). On the contrary, for generic systems (at
least for those with Hamiltonians invariant either under space
inversion P or time reversal T ) currents are seen to vanish in
numerical studies (Karrasch, Ilan, and Moore, 2013; Biella
et al., 2016, 2019; Karrasch, 2017b).
This fact can be explained using the hydrodynamic picture

discussed in Sec. III.C. Assuming that at large times the
expectation values of local observables can be computed in a
locally quasistationary state, we generically have

lim
t→∞

tr½jðQÞ
x e−iHtρ0eiHt� ¼ tr½jðQÞ

0 ρstðx;∞Þ� ð190Þ

for any current jðQÞ
x . For generic systems, we can assume that

at the leading order in time ρstðx; tÞ is a Gibbs ensemble with a
space-time–dependent inverse temperature [and chemical
potential if the system has some Uð1Þ symmetry]. Generic
lattice systems with a P-invariant Hamiltonian have no P-odd
charge since momentum is not conserved (P is parity). This
means that if the Hamiltonian is P symmetric, so is the Gibbs

state. Noting that jðQÞ
x is P odd, we then conclude that

Eq. (190) vanishes. The same reasoning applies for T -
symmetric systems (T is time reversal). On the contrary,
for integrable models, the state ρstðx; tÞ is a GGE at each fixed
ðx; tÞ, and it generically includes parity-odd and time-reversal-
odd charges. In this case, the expectation values of the currents
are generically nonzero. Note that this reasoning applies only
in the infinite-time limit. At finite times, the quasistationary
state of a nonintegrable system is not exactly a space-time–
dependent Gibbs ensemble: it includes corrections (propor-
tional to gradients of temperature and chemical potentials) that
produce nonzero expectation values of the currents. These
corrections, however, vanish at infinite times.
For integrable systems, this argument can be checked by

comparing the GHD solution; cf. Eq. (109) with tDMRG. In
particular, note that for bipartitioning protocols GHD predicts
that ρstðx; tÞ will become a function of the scaling variable
ζ ¼ x=t for large times, which is in agreement with previous
observations in the context of noninteracting systems (Antal
et al., 1999). This can be understood intuitively by noting that
an observer moving away from the junction at velocity ζ
measures quasiparticles coming from the left (right) state if
their velocity is larger (smaller) than ζ. Since quasiparticles
from the left and right states have different densities, it is
natural to expect the result of the measurement to depend on ζ.
Therefore, when studying bipartitioning protocols, it is
customary to view expectation values of physical quantities
for large times as functions of ζ. As a representative example,
in Fig. 32 we report the comparison between GHD and
tDMRG for profiles of energy and spin currents as a function
of ζ for the spin-1=2 XXZ chain for different values of
Δ ∈ ½0; 1� taken from Bertini et al. (2016). The upper panel of
Fig. 32 displays the profile of the energy current at infinite
times after joining together two chains prepared at different
temperatures, while the lower panel describes the profile of the
spin current at infinite times after connecting two chains

FIG. 31. Pictorial representation of a generic bipartitioning
protocol. The two halves of the chain are prepared in two
different homogeneous states at time t ¼ 0. A nonequilibrium
region emerges from the junction at the middle and expands at the
maximal allowed speed.
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prepared in two ferromagnetic states with opposite magneti-
zation. This state is also known as the “domain-wall” state.
From Fig. 32, we see that the current is finite within a light
cone propagating from the junction, with a velocity that
generically depends on the interaction strength.
The emergence of a nonzero current at infinite times in

integrable models signals ballistic transport of the related
charge by the stable quasiparticles and corresponds to a finite
Drude weight in the linear-response regime. In accordance
with the linear-response physics, also when studying biparti-
tioning protocols, there can be cases where certain currents
vanish at infinite times, signaling sub-ballistic transport. Such
an inhibition of the transport of specific charges is typically
caused by discrete symmetries. For instance, this happens for
the transport of spin in the spin-1=2 XXZ chain with jΔj ≥ 1,
where all local conserved charges are invariant under a Z2

spin-reversal symmetry except for the total magnetization
(Piroli et al., 2017). In this case, considering a bipartitioning

protocol that connects a chain in a certain state with one in its
spin-reversed copy (for example, two thermal states at the
same temperature but with opposite magnetization), one finds
a vanishing spin current in the infinite-time limit. In particular,
the transport of spin has been observed to be diffusive for
jΔj > 1 and superdiffusive for Δ ¼ 1 (Ljubotina, Žnidarič,
and Prosen, 2017, 2019). The former case is described by
GHD with diffusive corrections (De Nardis, Bernard, and
Doyon, 2019) (see Sec. III.C.2), while a complete theoretical
description of the latter is still missing and the problem is
currently the subject of active research (De Nardis et al., 2019;
Gopalakrishnan and Vasseur, 2019; Agrawal et al., 2020;
Bulchandani, 2020; De Nardis, Medenjak et al., 2020;
Medenjak and De Nardis, 2020; Weiner et al., 2020).
Finally, we note that, even though in generic spin chains no

nontrivial NESS is believed to emerge at infinite times, NESS-
like physics can emerge in some intermediate-time window.
This is the case for gapless systems subject to low-temperature
bipartitioning protocols. Namely, these are bipartitioning
protocols connecting two thermal states at different temper-
atures that are both small (Bernard and Doyon, 2016). In this
regime, for large intermediate times the behavior of energy
density and current is well described by the Tomonaga-
Luttinger-liquid theory. The energy current is nonzero in
the light-cone region and takes a conformal form (Bernard and
Doyon, 2012, 2015). On the other hand, for describing the
profiles of generic observables, such as the spin current in the
gapless phase of the spin-1=2 XXZ chain, it is necessary to
keep track of the nonlinearities in the dispersion of low-energy
modes. One can make progress in this direction by using the
framework of nonlinear Tomonaga-Luttinger liquids (Bertini,
Piroli, and Calabrese, 2018). For gapless integrable models at
low temperatures, this approach reproduces the low-T expan-
sion of the GHD solution (Bertini and Piroli, 2018; Mestyán
et al., 2019).

X. OVERVIEW OVER EXPERIMENTS

In this final section, we give an account of some of the
experimental efforts devoted to investigating transport in
either quantum magnets or with ultracold quantum gases.
We stress that the survey of the literature cannot be complete
and refer the interested reader to recent reviews where they
are available (Chien, Peotta, and Di Ventra, 2015; Krinner,
Esslinger, and Brantut, 2017; Tarruell and Sanchez-Palencia,
2018; Hess, 2019).

A. Quantum magnets

While this review focuses on theoretical developments and
results, the field has also been strongly driven by experimental
results. Most notably, many cuprate-based low-dimensional
magnets exhibit a contribution from magnetic excitations
to the thermal conductivity; see Hess (2007, 2019) and
Sologubenko, Lorenz et al. (2007) for reviews. The values
of the thermal conductivity κ can be extremely large given
that these materials are electrical insulators and that they
typically have complicated structures. Originally the largest
thermal conductivities were reported for spin-ladder materials
(Sologubenko, Gianno et al., 2000; Hess et al., 2001), but

FIG. 32. Profiles of the local currents in the spin-1=2 XXZ chain
for different values of Δ ¼ cosðηÞ as a function of rescaled
position x=t. Symbols denote time-evolving block-decimation
data for a chain of length L ¼ 60 (top panel), L ¼ 120 (bottom
panel), and different times; full black lines are the GHD
predictions. Top panel: energy current after the two halves of
the system were initially prepared at inverse temperatures βL ¼ 1
and βR ¼ 2. Bottom panel: spin current after the two halves were
prepared in two ferromagnetic states with opposite magnetiza-

tion. Inset: time-dependent approach of jðSÞx (solid colored lines)
to the prediction (dashed lines). Adapted from Bertini et al.,
2016.
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later on much purer samples of the spin-chain materials
SrCuO2 (Hlubek et al., 2010) and Sr2CuO3 (Hlubek et al.,
2012; Kawamata et al., 2008) became available that
show higher thermal conductivities; see Sologubenko,
Felder et al. (2000) and Sologubenko et al. (2001) for earlier
experimental results. Those compounds are good realizations
of the isotropic Heisenberg spin-chain model formed by
Cu–O–Cu bonds, with the exchange coupling J=kB ∼
2000–3000 K and the coupling between the chains jJ⊥=Jj∼
10−1. The results for κðTÞ, probing energy transport at low
temperatures (kBT ≪ J), are shown in Fig. 33. Considering
the complicated structure of these materials, the conductivities
are large. Other examples of one-dimensional materials that
show a similar phenomenology are copper pyrazine dinitrate
(Sologubenko, Berggold et al., 2007), CaCu2O3 (Hess et al.,
2007), and Haldane chains (Sologubenko et al., 2008).
While it is tempting to relate these large conductivities

to the integrability of the underlying spin-chain Hamiltonians,
a rigorous experimental or theoretical verification of

such a connection is difficult: measuring thermal transport
necessarily requires a coupling of phonons to spins, and
thus a complete theory of thermal transport in such material
requires the incorporation of phonons; see Narozhny (1996),
Shimshoni, Andrei, and Rosch (2003), Chernyshev and
Rozhkov (2005, 2016), Louis and Zotos (2005), Rozhkov
and Chernyshev (2005), Louis, Prelovšek, and Zotos (2006),
Boulat et al. (2007), Gangadharaiah, Chernyshev, and Brenig
(2010), Bartsch and Brenig (2013), and Chernyshev and
Brenig (2015).
Assuming simple additivity of different contributions to

conductivity, one can subtract the phononic contribution by
measuring κ in the direction orthogonal to the orientation of
spin chains [where only phonons contribute and whose con-
tribution can be well described (Kawamata et al., 2008) by the
Debyemodel]. The resultingmagnetic κmag contribution is then
finite despite the ballistic energy transport in the Heisenberg
model. This is caused by residual scattering on a few magnetic
impurities (due to residual impurity of solvents used in the
crystal growth) or a nonzero interchain coupling and/or due to
spinon-phonon scattering. One can even deliberately introduce
impurity doping (Kawamata et al., 2008) and study how such
disorder reduces transport (Hlubek et al., 2011; Mohan et al.,
2014). Precisely accounting for different scattering effects is
not easy (Hlubek et al., 2012); however, a picture that seems to
account for most experimentally measured features seems
to be compatible with a dominant impurity scattering at low
temperatures (T < 50 K), while spinon-phonon scattering is
the leading term at higher T. One can in fact infer
(Sologubenko, Felder et al., 2000) the mean free path lmag

of magnetic excitations (spinons) by using a simple kinetic
expression for the conductivity of spinons κmag ¼ Cvlmag,
where C and v are the heat capacity and the velocity of
spinons, respectively. The heat capacity of the spin-1=2
Heisenberg model at low T is proportional to T (Takahashi,
1973), leading to lmag ∝ κmag=kBT; see Fig. 33, bottom panel.
The quasi-2D parent compounds of the high-temperature

superconductors (HTC’s) also exhibit a magnon contribution
to the thermal conductivity in La2CuO4 (Hess et al., 2003),
Sr2CuO2Cl2 (Hofmann et al., 2003), Ba2Cu3O4Cl2 (Ohno
et al., 2019), or Nd2CuO4 (Jin et al., 2003). The values are
smaller than in their quasi-one-dimensional relatives (where
lmag ∼ 1 μm; see Fig. 33), yet this can be partially ascribed to
the dependence of the specific heat on dimensionality.
Thermal transport in quantum magnets can be measured not

only in the steady state but also by using time-resolved
methods or at specific finite frequencies. In the context of
spin ladders, both the time-domain thermoreflectance method
(Hohensee et al., 2014) and the fluorescent microthermal
imaging technique (Otter et al., 2009, 2012) were used.
Moreover, one can induce a heat pulse on one end of a
macroscopically large sample and then measure the time-
resolved evolution of temperature at its other end (Montagnese
et al., 2013). Such techniques can be used to extract the
electron-phonon coupling strength.
Measuring spin transport is much more difficult: until

recently, the only experiments were indirect ones using
NMR (Thurber et al., 2001; Kühne et al., 2009) or muon-
spin resonance (μSR) techniques to obtain a relaxation rate of

FIG. 33. Top panel: experimental data for the thermal conduc-
tivity of SrCuO2 for two sample purities [2N (black curves) and
4N (red curves)]. The high-quality samples (4N) show a high
thermal conductivity κc in the crystal direction that is parallel to
the spin chains, which is attributed to spin excitations. In the
transverse directions, presumably only phonons contribute. From
Hlubek et al., 2010. Bottom panel: extracted magnetic mean free
paths of spinons. From Hlubek et al., 2012.
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a nuclear spin in NMR or a muon in μSR, which is given
by the spin autocorrelation function. The frequency
dependence of the latter can be probed by the mag-
netic-field dependence of the relaxation rate, allowing one
to distinguish diffusive from ballistic behavior from the
tail of the spin autocorrelation function. NMR studies on
SrCuO2 found diffusive relaxation (Thurber et al., 2001),
while μSR experiments on high-purity samples found
ballistic relaxation (Maeter et al., 2013) (both studies
probe kBT ≪ J). μSR measurements on an organic salt
(Pratt et al., 2006) or CuðC4H4N2ÞðNO3Þ2 (Xiao et al.,
2015) were interpreted in terms of diffusion, while a more
recent μSR experiment (Huddart et al., 2021) on
½pym-CuðNO3Þ2ðH2OÞ2� and ½CuðpymÞðH2OÞ4�SiF6 · H2O
reported ballistic and diffusive dynamics, respectively.26

Recently the spin-Seebeck effect was exploited to directly
induce and measure spin currents in a quasi-1D cuprate
material (Hirobe et al., 2017).
We mention that within solid-state NMR, experimental

schemes were developed to study spin transport in quasi-
1D spin-chain systems after initializing the system in a
state with an inhomogeneous magnetization. An example
is an apatite crystal in which flourine atoms form chains
that can be under an appropriate pulse sequence described
by a nearest-neighbor dipolar Hamiltonian (related to the
XX Hamiltonian by a unitary transformation), and with an
interchain coupling as small as jJ⊥=Jj ∼ 0.02. A mixed
initial state with a boundary imbalance of magnetization
can be prepared (exploiting different energy scales of
bulk and boundary spins) whose time evolution can
then be studied (Ramanathan et al., 2011; Kaur and
Cappellaro, 2012).
Besides experiments with bulk materials, there are novel

synthetic one-dimensional structures that may be used in the
future to study transport in correlated one-dimensional sys-
tems. These include arrays of atoms arranged on various
surfaces (metallic, insulating, or superconducting), whose
properties are in some realizations believed to be related to
the physics of spin systems (Khajetoorians et al., 2013;
Toskovic et al., 2016).
The prediction of superdiffusive dynamics of the Kardar-

Parisi-Zhang type for the spin-1=2 Heisenberg chain has
stimulated a recent neutron-scattering study using the well-
known quasi-one-dimensional material KCuF3 (Scheie et al.,
2021). By studying the regime of high temperatures
ℏω ≪ kBT, Scheie et al. reported evidence that the data are
more consistent with KPZ behavior than diffusive or ballistic
dynamics.
As a future challenge for theory, the development of

efficient numerical methods for the description of transport
in electron-phonon systems is desirable. An open question is
the applicability of wave-function-based methods to the study
of transport in spin-phonon systems. Recent advances with
DMRG methods using optimized local phonon bases (Zhang,
Jeckelmann, and White, 1998) have already given us access to
real-time dynamics in electron-phonon systems (Guo et al.,

2012; Brockt et al., 2015; Dorfner et al., 2015; Kloss,
Reichman, and Tempelaar, 2019; Stolpp et al., 2020), which
calls for extensions to finite temperatures (Jansen, Bonča, and
Heidrich-Meisner, 2020) and spin-phonon systems [see also
Köhler, Stolpp, and Paeckel (2021)].

B. Ultracold quantum gases in optical lattices

Ultracold quantum gases provide another promising route
to experimentally study the transport properties of low-
dimensional many-body systems. In optical lattices, both
Fermi-Hubbard and Bose-Hubbard models can be rather
routinely realized (Bloch, Dalibard, and Zwerger, 2008;
Gross and Bloch, 2017). A direct emulation of Heisenberg
models or, even more generally, spin-1=2 XXZ systems is
more difficult: starting from single bands and contact inter-
actions, these models arise only in the strong-coupling regime
of Hubbard models, and the degree to which they can be
realized with high fidelity depends on the quality of the
loading processes and the state preparation. The fact that here
we are interested in finite-temperature properties implies that
no particular cooling schemes are needed, unlike in the
ongoing efforts to reach the regime of long-range antiferro-
magnetic correlations in the Fermi-Hubbard model (Jördens
et al., 2008; Schneider et al., 2008; Cheuk et al., 2015, 2016a,
2016b; Edge et al., 2015; Haller et al., 2015; Hart et al., 2015;
Omran et al., 2015; Parsons et al., 2015; Boll et al., 2016;
Cocchi et al., 2016; Greif et al., 2016; Parsons et al., 2016;
Hilker et al., 2017; Mazurenko et al., 2017; Salomon
et al., 2019).
In addition to working with the Fermi-Hubbard model, one

can also emulate the Heisenberg model in two-component
Bose-Hubbard models. Using this route, the decay of a spin-
spiral initial state was studied in 1D and 2D Heisenberg
systems with a ferromagnetic exchange coupling (Hild et al.,
2014). For a 1D system with an isotropic exchange interaction,
a diffusive decay of the spin spiral was found. A recent study
succeeded in extending this to the entire range of exchange
anisotropies by working with a different atomic species
(namely, the bosonic isotope 7Li) and by exploiting a specific
Feshbach resonance (Jepsen et al., 2020). As a main result, the
transition from a ballistic decay at Δ ¼ 0 to a variety of
transport behaviors is reported: superdiffusion for a range of
0 < Δ < 1, diffusion at Δ ¼ 1, and subdiffusive dynamics for
Δ > 1. These observations are quite different from the linear-
response predictions discussed in Sec. VI.C, but the initial
spiral state may lead to genuinely nonequilibrium dynamics.
Studying the role of integrability directly with Fermi-

Hubbard models may be a promising route. Given the rapid
emergence of many fermionic quantum-gas microscopes
(Cheuk et al., 2015, 2016b; Edge et al., 2015; Haller et al.,
2015; Omran et al., 2015; Parsons et al., 2015, 2016; Boll
et al., 2016; Cocchi et al., 2016; Greif et al., 2016; Hilker
et al., 2017; Mazurenko et al., 2017; Brown et al., 2019;
Nichols et al., 2019; Salomon et al., 2019; Guardado-Sanchez
et al., 2020), which all work with the two-dimensional Fermi-
Hubbard model and which allow one to chop such 2D systems
into individual 1D systems (Boll et al., 2016; Salomon et al.,
2019; Vijayan et al., 2020), the finite-temperature transport
properties of the 1D Fermi-Hubbard model might be the

26Both materials are perfect realizations of the antiferromagnetic
isotropic Heisenberg model with J=kB∼10–50K and jJ⊥=Jj≲ 10−3.
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easiest accessible integrable lattice model. Ultracold quantum
gases have some drawbacks: particle numbers and system
sizes cannot be made arbitrarily large, the systems have a
finite lifetime, and they realize closed quantum systems; i.e., it
is not straightforward to couple such a gas to leads; see
Brantut et al. (2012, 2013), Stadler et al. (2012), and Krinner,
Esslinger, and Brantut (2017). Nevertheless, one could exploit
the single-site manipulation and resolution capabilities of
quantum-gas microscopes to investigate the spreading of
perturbations in the particle or spin density, as suggested
by Karrasch, Prosen, and Heidrich-Meisner (2017).
Numerical simulations show that it is possible to resolve
the difference between presumably diffusive and ballistic
dynamics at high temperatures T ≫ J on timescales of less
than 4=th, where th is the hopping-matrix element and thus
within the time window of coherent many-body dynamics in
such systems (Trotzky et al., 2012). Such an experiment could
directly probe the linear-response regime. A recent experiment
addressing spin-charge separation in the 1D Hubbard model
utilizes a similar protocol to induce spin and charge dynamics
(Vijayan et al., 2020).
Nonequilibrium mass transport can be investigated in a

much more straightforward fashion using optical lattices. In
the so-called sudden expansion, an originally trapped quan-
tum gas is released from its confining potential and allowed to
expand in a homogeneous and flat optical lattice. This method
was used to study the nonequilibrium transport of the 2D
Fermi-Hubbard model (Schneider et al., 2012) and the Fermi-
Hubbard chain (Scherg et al., 2018), as well as of bosons in
1D and 2D lattices (Ronzheimer et al., 2013). In Ronzheimer
et al.’s experiment with bosons, an impressive difference
between the dynamics of strongly interacting bosons in 1D
versus 2D lattices was observed: in 1D, the sudden expansion
is as fast as for noninteracting bosons (assuming the same
initial conditions), while in 2D the cloud expands much
slower, which is more consistent with the notion that inter-
actions should induce scattering and degrade currents; see
Fig. 34. The reason for the behavior of such strongly
interacting 1D gases lies in their exact mapping onto spinless
noninteracting fermions via a Jordan-Wigner transformation
(Cazalilla et al., 2011). Therefore, strongly interacting bosons
with densities not exceeding unity realize an integrable model
in 1D equivalent to the spin-1=2 XX chain. Experimentally,
integrability can be broken in three ways: (i) coupling 1D
systems to a 2D system, (ii) inducing double occupancies in
the initial state, and (iii) going to finite interaction strength
0 < U=th < ∞, where the Bose-Hubbard model is nonintegr-
able. All three cases show deviations from the fast and ballistic
expansion of hard-core bosons. In cases (i) and (ii), this can be
traced back to the breaking of integrability (Vidmar et al.,
2013; Steinigeweg, Heidrich-Meisner et al., 2014). The
dynamics in the 1D Bose-Hubbard model at U=th < ∞ is
more involved in this particular experiment as it also involves
a quantum quench in the interaction and thus probes the
dynamics at different energy densities, depending on U=th
(Vidmar et al., 2013). The experiment (Ronzheimer et al.,
2013) is therefore a realization of integrability-protected
ballistic mass transport in the spirit of this review, albeit in
the nonequilibrium regime; see Sec. IX.B. Extensions of this
approach are possible using quantum-gas microscopes as

well, where to date only the expansion dynamics of two
bosons has been investigated (Preiss et al., 2015; Tai et al.,
2017). More recent experiments studied transport in the two-
dimensional Fermi-Hubbard model using the capabilities of
quantum-gas microscopes (Brown et al., 2019; Nichols et al.,
2019; Vijayan et al., 2020). All of these studies investigated
the interplay of spin and charge in transport, with Vijayan
et al. (2020) focusing on spin-charge separation in one
dimension, while Brown et al. (2019) and Nichols et al.
(2019) observed diffusion in two-dimensional systems.
We note that experiments with ultracold bosons in optical

lattices in the strongly interacting regime thus offer a unique
and controlled way to study integrability breaking by per-
turbing around the limit of the spin-1=2 XX chain, resulting
then in the 2D XX model or ladders (Vidmar et al., 2013;
Steinigeweg, Heidrich-Meisner et al., 2014; Hauschild,
Pollmann, and Heidrich-Meisner, 2015). In addition to meas-
uring densities, one can further study one-body correlations in
such sudden expansions, for which theory predicts a dynami-
cal quasicondensation phenomenon (Micheli et al., 2004;
Rigol and Muramatsu, 2004) as a result of the emergent
eigenstate solution for this nonequilibrium problem (Vidmar,
Iyer, and Rigol, 2017). Even this effect, the dynamical
quasicondensation, another consequence of integrability in
nonequilibrium transport, has been observed experimentally
(Vidmar et al., 2015).

XI. SUMMARY AND OUTLOOK

This review has examined the state of the art of the
understanding of transport in translationally invariant one-
dimensional quantum lattice models at finite temperatures
from the theoretical physics perspective. We have discussed,
in particular, the important role of integrability and its

FIG. 34. Expansion velocity of a cloud of bosons that are
released from a trap into an empty optical lattice. Main panel:
experimental and DMRG data for the expansion velocity as a
function of interaction strength U=Jx extracted from the half
width at half maximum. Jx is the hopping-matrix element along
the x direction of the two-dimensional lattice and Jx ¼ J for the
one-dimensional case. U is the on-site interaction strength in the
Bose-Hubbard model. Inset: DMRG data for the radial velocity as
a function of U=J. Both noninteracting and strongly interacting
bosons expand ballistically with the same expansion velocity
(Ronzheimer et al., 2013).
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breaking, focusing primarily on the paradigmatic spin-1=2
XXZ and the Fermi-Hubbard chain as minimal models for
spin, charge, and energy transport. The progress that has been
achieved in recent years for these systems and their theoretical
description in general is due to methodological breakthroughs,
in fundamental concepts, such as establishing the existence of
quasilocal conservation laws (Prosen, 2011b, 2014c; Prosen
and Ilievski, 2013; Pereira et al., 2014; Ilievski, Medenjak,
and Prosen, 2015) and their connection to a complete hydro-
dynamic description [the so-called generalized hydrodynam-
ics (Bertini et al., 2016; Castro-Alvaredo, Doyon, and
Yoshimura, 2016)], as well as in numerical methods such
as matrix-product-based techniques (Karrasch, Bardarson, and
Moore, 2012, 2013; Karrasch, 2017a) and dynamical typi-
cality (Steinigeweg, Gemmer, and Brenig, 2014; Steinigeweg,
Herbrych, Zotos, and Brenig, 2016) for utilizing time-
evolution methods at finite temperatures for the calculation
of transport properties. Establishing time-dependent DMRG
as a solver of Lindblad master equations (Prosen and Žnidarič,
2009) opened up possibilities for complementary qualitative
and quantitative insights from studying open quantum systems
(Žnidarič, 2011a).
We can say that the understanding of ballistic transport at

high temperatures or even in nonequilibrium states has by now
matured. The thermal Drude weight in both the spin-1=2 XXZ
chain and the 1D Fermi-Hubbard model were computed as a
function of model parameters and temperature (Klümper and
Sakai, 2002; Sakai and Klümper, 2003; Ilievski and De
Nardis, 2017a; Karrasch, 2017a). The exact and complete
calculation of magnetothermal corrections involving off-
diagonal coefficients and the spin Drude weight at finite
magnetizations remains an open task (Louis and Gros, 2003;
Heidrich-Meisner, Honecker, and Brenig, 2005; Sakai and
Klümper, 2005; Zotos, 2017), particularly for the Fermi-
Hubbard model, where in principle three currents can couple.
The calculation of all cross coefficients could be accomplished
using the methodology of GHD.
For spin transport in the spin-1=2 XXZ chain, the existence

of a finite-temperature Drude weight at nonzero magnetization
and any Δ (Zotos, Naef, and Prelovšek, 1997) and for zero
magnetization at jΔj < 1 is now well established and accepted
(Zotos, 1999; Prosen, 2011b; Prosen and Ilievski, 2013;
Pereira et al., 2014; Urichuk et al., 2019). Its full temperature
dependence is accessible as well (Zotos, 1999; Ilievski and De
Nardis, 2017b; Urichuk et al., 2019) yet has not been
convincingly computed with numerical methods. The agree-
ment between the TBA, GHD, and the lower bound supports
the notion of a fractal structure as a function of Δ, yet neither
approach is rigorous, as the approach either involves
Takahashi’s string hypothesis or relies on the assumption of
knowing all relevant charges. For the spin-1=2 Heisenberg
chain, the overwhelming evidence suggests that the spin Drude
weight vanishes at finite temperature. The same goes for the
regimeofΔ > 1, while in both cases a rigorous proof ismissing.
For those cases that prohibit ballistic transport channels or

when studying subleading corrections, the situation is still
much less clear, yet actively studied. Although normal
diffusion is the most commonly observed type of nonballistic
transport, in both integrable (De Nardis, Bernard, and Doyon,
2018) and nonintegrable quantum lattice systems (Sirker,

Pereira, and Affleck, 2009; Sirker, Pereira, and Affleck,
2011), one also often encounters other types of transport,
including, in particular, superdiffusive dynamics (Žnidarič,
2011a; Ljubotina, Žnidarič, and Prosen, 2017). Notably, the
conjectured KPZ scaling (Ljubotina, Žnidarič, and Prosen,
2019) [see also Das et al. (2019), Bulchandani (2020), De
Nardis, Gopalakrishnan et al. (2020), Dupont and Moore
(2020), Fava et al. (2020), Ilievski et al. (2020), and Krajnik
and Prosen (2020)] of spin-correlation functions and spin
transport in the isotropic Heisenberg chain and other inte-
grable models of magnetism with non-Abelian symmetries is a
particularly pressing question on which much work is
expected in the near future [for a recent review on super-
diffusion, see Bulchandani, Gopalakrishnan, and Ilievski
(2021)]. Another universal option suggested by recent studies
is the one of marginally superdiffusive transport characterized
by a diffusive exponent and a logarithmic correction (De
Nardis, Medenjak et al., 2020). The exact nature of subleading
corrections in the ballistic regimes of the 1D Fermi-Hubbard
model or the exact nature of spin and charge transport at zero
magnetization and filling is much less well understood. In
general, a complete qualitative understanding of the emer-
gence of diffusion in integrable models is still lacking.
The now solidly established aspects of spin transport in the

spin-1=2 XXZ chain and the open questions on superdiffusion
and the connection between linear-response behavior and
transport in specific far-from-equilibrium settings have stimu-
lated additional recent experiments using both quasi-one-
dimensional materials (Scheie et al., 2021) and ultracold
atoms (Hild et al., 2014; Jepsen et al., 2020). The neutron-
scattering study conducted by Scheie et al. (2021) reported
consistency of their data with the KPZ scenario.
For nonintegrable models, we presented examples where

the notion of diffusion is supported by approximate analytical
methods as well as numerically exact techniques. These
include the dimerized spin-1=2 XX ladder (Steinigeweg,
Heidrich-Meisner et al., 2014), spin-1=2 chains with a
staggered magnetic field (Huang, Karrasch, and Moore,
2013; Steinigeweg, Gemmer, and Brenig, 2015), and general
spin ladders and frustrated chains (Zotos, 2004; Karrasch,
Kennes, and Heidrich-Meisner, 2015; Steinigeweg, Herbrych,
Zotos, and Brenig, 2016). In the final category, the longtime
dynamics is usually more complex and diffusion is harder to
establish. At low energies, field-theoretical studies are strongly
suggestive of diffusive dynamics as well; see, in particular,
Sirker, Pereira, and Affleck (2011).
Although the work presented here considers only quantum

lattice systems, it is not clear whether the transport phenomena
are in any fundamental way affected by the quantum nature of
the microscopic equation of motions relative to the classical
deterministic Hamiltonian dynamics governing classical lat-
tice systems. Thus far we have seen no argument against
the conclusion that all the emerging transport phenomena at
finite temperatures have analogous counterparts in classical
lattice models. An exception might be the putative many-
body localization (Nandkishore and Huse, 2015; Abanin
et al., 2019), where temperature is ill defined. However,
both a systematic semiclassical analysis and elucidating the
quantum-classical correspondence for transport in many-body
lattice systems will be desirable in the future.
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The transition between diffusion to types of nondiffusive
transport can be expected to be a manifestation of a form of
ergodicity breaking. The latter is currently being intensely
studied even in translationally invariant, disorder-free settings,
with prominent examples being the so-called quantum scars in
models with constrained dynamics; see Bernien et al. (2017),
Lan et al. (2018), Moudgalya, Regnault, and Bernevig (2018),
and Turner et al. (2018). However, a possible connection to
finite-temperature transport in such models has not been
investigated. Another interesting set of open questions in
relation to ergodicity breaking concerns the connection
between spectral statistics, described by random-matrix
theory, and transport properties. Since spectral statistics
contain information on different timescales, it may turn out
(Brenes et al., 2018) that models with a local integrability
breaking are ergodic on the Heisenberg timescale, i.e., on
timescales controlled by the inverse mean level spacing, while
transport is ballistic on shorter timescales.
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2005, The One-Dimensional Hubbard Model (Cambridge Univer-
sity Press, Cambridge, England).

Essler, F. H. L., S. Kehrein, S. R. Manmana, and N. J. Robinson,
2014, Phys. Rev. B 89, 165104.

Essler, F. H. L., and R. M. Konik, 2005, From Fields to
Strings: Circumnavigating Theoretical Physics (World Scien-
tific, Singapore).

Essler, F. H. L., V. E. Korepin, and K. Schoutens, 1991, Phys. Rev.
Lett. 67, 3848.

Evans, D. E., 1977, Commun. Math. Phys. 54, 293.
Evertz, H. G., G. Lana, and M. Marcu, 1993, Phys. Rev. Lett. 70,
875.
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Klümper, A., 1993, Z. Phys. B 91, 507.
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, 2004, Nature
(London) 429, 277.

Parsons, M. F., F. Huber, A. Mazurenko, C. S. Chiu, W. Setiawan, K.
Wooley-Brown, S. Blatt, and M. Greiner, 2015, Phys. Rev. Lett.
114, 213002.

Parsons, M. F., A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and M.
Greiner, 2016, Science 353, 1253.

Pavlis, A., and X. Zotos, 2020, J. Stat. Mech. 013101.
Pereira, R., V. Pasquier, J. Sirker, and I. Affleck, 2014, J. Stat. Mech.
P09037.

Peres, N. M. R., P. D. Sacramento, D. K. Campbell, and J. M. P.
Carmelo, 1999, Phys. Rev. B 59, 7382.

Peterson, M. R., S. Mukerjee, B. S. Shastry, and J. O. Haerter, 2007,
Phys. Rev. B 76, 125110.

Pidatella, A., A. Metavitsiadis, and W. Brenig, 2019, Phys. Rev. B
99, 075141.

Piroli, L., J. De Nardis, M. Collura, B. Bertini, and M. Fagotti, 2017,
Phys. Rev. B 96, 115124.

Piroli, L., and E. Vernier, 2016, J. Stat. Mech. 053106.
Polkovnikov, A., K. Sengupta, A. Silva, and M. Vengalattore, 2011,
Rev. Mod. Phys. 83, 863.

Popescu, S., A. J. Short, and A. Winter, 2006, Nat. Phys. 2, 754.
Popkov, V., D. Karevski, and G. M. Schütz, 2013, Phys. Rev. E 88,
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Prosen, T., and M. Žnidarič, 2007, Phys. Rev. E 75, 015202.
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