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Topological semimetals (TSMs) are characterized by bulk band crossings in their electronic
structures, which are expected to give rise to gapless electronic excitations and topological features
that underlie exotic physical properties. The most famous examples are Dirac and Weyl semimetals,
in which the corresponding low-energy fermionic excitations, i.e., the Dirac and Weyl fermions, are
direct analogs of elementary particles in quantum field theory. The last decade has witnessed an
explosion of research activities in the field of TSMs thanks to precise theoretical predictions, well-
controlled material synthesis, and advanced characterization techniques including angle-resolved
photoemission spectroscopy, scanning tunneling microscopy, magnetotransport measurements,
optical spectroscopy, etc. Here recent progress in three-dimensional TSMs is reviewed with an
emphasis on their characteristic bulk electronic structures, including dimensionality (such as zero-
dimensional nodal points, one-dimensional nodal lines, and two-dimensional nodal surfaces),
degeneracy (twofold, threefold, fourfold, sixfold, or eightfold) of the band crossing, the slope (type
I and type II) and order (linear, quadratic, or cubic) of the band dispersion near the crossing, the
characteristic topological invariants (such as monopole charges), and the crystallographic symmetries
that stabilize the band crossings. The distinct signatures of the various topological semimetal phases,
such as the nontrivial surface states (including Fermi arcs of Dirac and Weyl semimetals) and the
unique transport and optical responses (such as chiral anomaly-induced negative magnetoresistance
in Dirac and Weyl semimetals), are also reviewed.
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I. INTRODUCTION

One of the major themes of condensed-matter physics has
been the discovery, classification, and characterization of
miscellaneous phases of matter, especially for solids.
Historically, i.e., before the 1980s, it was believed that
Landau-Ginzburg theory (Landau and Lifshitz, 1980), which
characterizes states through the principle of spontaneous
symmetry breaking and local order parameters, can give a
universal description of all kinds of states as well as the
phase transitions among them. In the 1980s, the discovery
of quantum integer and fractional Hall states (Klitzing,
Dorda, and Pepper, 1980; Laughlin, 1981; Tsui, Stormer,
and Gossard, 1982; Laughlin, 1983), which occur in high-
mobility 2D electron gasses under an intense magnetic field,
evaded the traditional Landau-Ginzburg-Wilson paradigm,
as no symmetry is spontaneously broken. Instead, the
quantum Hall states are described by a topological invariant,
the Thouless-Kohmoto-Nightingale-Nijs number, or the
Chern number (Thouless et al., 1982; Simon, 1983), which
is a global parameter determined by the topological structure
of the enclosing manifold. The topological understanding
of the quantum Hall effect is a landmark, opening up a new
era of condensed-matter physics: topological quantum states
of matter.
In the last 40 years, we have witnessed the emergence of

many types of topological states and topological phase
transitions, including quantum integer and fractional Hall
states (Klitzing, Dorda, and Pepper, 1980; Laughlin, 1981;
Tsui, Stormer, and Gossard, 1982; Laughlin, 1983), quantum

spin Hall states (Kane and Mele, 2005a, 2005b; Bernevig,
Hughes, and Zhang, 2006; Fu and Kane, 2006; König et al.,
2007), quantum anomalous Hall states (Haldane, 1988; Yu
et al., 2010; Chang et al., 2013), topological insulators (TIs)
(Fu and Kane, 2007; Fu, Kane, and Mele, 2007; Moore and
Balents, 2007; Hsieh et al., 2008; Qi, Hughes, and Zhang,
2008; Chen et al., 2009; Hsieh et al., 2009; Roy, 2009; Y. Xia
et al., 2009; Zhang et al., 2009; Hasan and Kane, 2010; Qi and
Zhang, 2011), topological crystalline insulators (Fu, 2011;
Dziawa et al., 2012; Hsieh et al., 2012; Tanaka et al., 2012;
Ando and Fu, 2015; Wang, Alexandradinata et al., 2016; J.
Ma et al., 2017), topological Kondo insulators (Dzero et al.,
2010; Jiang et al., 2013; Lu et al., 2013; Neupane et al., 2013;
Xu et al., 2013), topological semimetals (TSMs) (Wan et al.,
2011; G. Xu et al., 2011; Wang et al., 2012; Young et al.,
2012; Armitage, Mele, and Vishwanath, 2018) (see Fig. 1),
and high-order topological insulators and semimetals
(Benalcazar, Bernevig, and Hughes, 2017; Langbehn et al.,
2017; Song, Fang, and Fang, 2017; Imhof et al., 2018;
Peterson et al., 2018; Schindler et al., 2018; Schindler,
Cook et al., 2018; Serra-Garcia et al., 2018), as well as
topological insulator (Sato et al., 2011; S.-Y. Xu et al., 2011;
Xu et al., 2012; Wu et al., 2013) and semimetal transitions
(Burkov and Balents, 2011; Young et al., 2011; Singh et al.,
2012; Wang et al., 2012; Liu and Vanderbilt, 2014; Cheng
et al., 2016; Collins et al., 2018; Xu, Zhao et al., 2018).
Particularly significant effort has been devoted to searching
and characterizing topological semimetal phases in the past
ten years.
It is well known that semimetals possess a small or

vanishing density of states near the Fermi energy (EF).
Among them, there exists a specific class of materials in
which the finite density of states is caused by crossings or
touching of conduction and valence bands in the three-
dimensional (3D) Brillouin zone (BZ). Such band touchings
usually would result in a topological phase transition and can
be associated with a topological invariant (Wang et al., 2012).
In other words, semimetals with band touchings are generally
topologically distinct from others; therefore, they are referred
to as TSMs (Fang, Weng et al., 2016; Weng, Dai, and Fang,
2016; Hasan et al., 2017; Yan and Felser, 2017; Armitage,
Mele, and Vishwanath, 2018). In the past few years, TSMs
have stimulated intensive research interest, and many TSMs
with different types of fermionic excitations, known as
topological fermions, have been discovered (an incomplete
table list of experimentally confirmed TSMs can be found in
Appendix A). These TSMs can be simply divided into three
groups according to the dimensionality of the band crossings.
The first group has zero-dimensional (0D) band crossings,
generally known as nodes or nodal points. The most famous
examples include Dirac semimetals (DSMs) and Weyl semi-
metals (WSMs), in which two doubly or singly degenerate
bands cross each other at discrete points near EF, forming the
fourfold Dirac points or twofold Weyl points. The corre-
sponding low-energy excitations behave as Dirac and Weyl
fermions, respectively, in high-energy physics. The solid-state
realizations of Dirac and Weyl fermions gave not only new
insights into long-sought-after particles in high-energy phys-
ics but also provided platforms to examine their unique
topological features, including the Fermi-arc surface states
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(Wan et al., 2011) and the chiral anomaly effect (Nielsen and
Ninomiya, 1983; Hosur, Parameswaran, and Vishwanath,
2012; Kim et al., 2013; Parameswaran et al., 2014).
Moreover, researchers also predicted many other types of
nodal points in which the fermionic excitations have no
analogs in high-energy physics, such as type-II nodal points
(Soluyanov et al., 2015), threefold, sixfold, and eightfold
degenerate nodal points (Heikkilä and Volovik, 2015; Bradlyn
et al., 2016; Hyart and Heikkilä, 2016; Weng et al., 2016a,
2016b; Wieder et al., 2016; G. Chang et al., 2017b), with
several of them experimentally confirmed recently (B. Q. Lv
et al., 2017; Ma et al., 2018; Lv et al., 2019; Rao et al., 2019;
Sanchez et al., 2019; Schröter et al., 2019; Takane
et al., 2019).
The second group has fourfold or twofold band crossings

along one-dimensional (1D) lines in the momentum space.
Materials with such nodal lines are generally called topologi-
cal nodal-line semimetals (TNLSMs) (Burkov, Hook, and
Balents, 2011; Heikkilä and Volovik, 2011; Chiu and
Schnyder, 2014; Fang et al., 2015). Compared to the 0D
nodal points, the 1D nodal lines form a much larger variety of
topological configurations, which may either take the form of
an extended line running across the BZ (Chen, Xie et al.,
2015) or wind into a closed-loop inside the BZ (G. Xu et al.,
2011; Bian et al., 2016), or even form chains (Bzdušek et al.,
2016; Yu, Wu et al., 2017; Zhang, Yu et al., 2017; Feng et al.,
2018), links as well as knots (Bi et al., 2017; Chang and Yee,
2017; Chen, Lu, and Hou, 2017; Ezawa, 2017b; Z. Yan et al.,
2017). Like WSMs, TNLSMs are also accompanied by
distinct surface states, the so-called drumhead surface states
(Weng, Liang et al., 2015), which are characterized by flat
surface bands that are embedded inside the surface projection
of the bulk nodal lines. Conversely, the drumhead surface
states are not topologically protected, and a small perturbation
to the surface can destroy the flatness of the surface bands
(Fang, Weng et al., 2016). In addition to the 0D nodal points
and 1D nodal lines, recent advances in band theory have
further expanded the scope of TSMs by proposing another
type of band crossing that is preserved in a 2D surface in the

3D BZ; materials with such band crossings are called topo-
logical nodal-surface semimetals (Liang et al., 2016; Zhong
et al., 2016). Compared to Dirac, Weyl, and nodal-line
semimetals, nodal-surface semimetals have not been exten-
sively explored. To date only a few nodal-surface semimetals
have been predicted, and the nodal surface has been observed in
the ZrSiS family of materials recently (Fu et al., 2019b).
TSMs are well known for characteristic bulk band cross-

ings, distinct surface states, and other physical consequences,
such as the Weyl-fermion-related chiral anomaly effect.
Theoretically, first-principles calculations have demonstrated
the unprecedented capability for predicting and engineering a
variety of topological phases in solids. Experimentally, angle-
resolved photoemission spectroscopy (ARPES), due to its
unique capability to directly probe the 3D band structure even
with its spin polarization, can play a leading role in pinning
down the existence of topological phases in single-crystal
materials (Hasan et al., 2017; Yang, Liang et al., 2018; Lv,
Qian, and Ding, 2019). Meanwhile, other experimental
techniques, including scanning tunneling microscopy
(STM), scanning tunneling spectroscopy (STS), transport,
and optical measurements, have also had success in achieving
a comprehensive understanding of the distinct consequences
of these TSMs. To name a few, one of the transport signatures
of Dirac and Weyl fermions, the chiral anomaly effect, is
evident by observing negative magnetoresistance (X. Huang
et al., 2015; Xiong et al., 2015; Hirschberger et al., 2016; Li,
He et al., 2016; Zhang et al., 2016) and/or the planar Hall
effect (PHE) (Guo et al., 2016; Li, Wang et al., 2018; Wu
et al., 2018). The nontrivial π Berry phase of Dirac and Weyl
fermions can be deduced by Shubnikov–de Haas (SdH)
oscillations (He et al., 2014; Cao et al., 2015; Xiang et al.,
2015; Zhao et al., 2015b). In addition to ARPES, the non-
trivial surface states can be also visualized by STS measure-
ments (Batabyal et al., 2016; Inoue et al., 2016; Zheng et al.,
2016a, 2016b; Sessi et al., 2017; H. Zheng et al., 2017). The
optical manifestations of 3D Dirac and Weyl and nodal-line
fermions, i.e., the ω-linear and ω-independent optical con-
ductivity σ1ðωÞ, respectively, can be proved by optical
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FIG. 1. Timeline of developments of topological quantum phases in condensed-matter systems. IQHE, integer quantum Hall effect;
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spectroscopy (Chen, Zhang et al., 2015; Neubauer et al., 2016;
B. Xu et al., 2016; Schilling et al., 2017; Shao et al., 2019).
This review, written from an experimental perspective,

makes the growing field of TSMs accessible to a broad
community of researchers by capturing the major develop-
ments of various types of TSMs. The review is organized as
follows. We begin in Sec. I with a brief introduction to the
developments of TSMs. Then in Sec. II we systematically
discuss the basics, topological features, and classifications of
TSMs. In Secs. III and IV, we review recent theoretical
proposals, ARPES and STM confirmations, and characteristic
transport and optical properties of topological nodal point
semimetals, topological nodal-line and nodal-surface semi-
metals, respectively. Finally, in Sec. V the remaining issues,
challenges, and an outlook regarding the TSMs are provided.
In this review, we include the major developments of TSMs

at this stage. Given the tremendous amount of work on TSMs
that has been published, this review cannot provide complete
coverage of the subject, so the examples highlighted and the
literature cited in this review should not be considered
exhaustive. Some aspects of this subject have been described
in other reviews. For example, Dirac and WSMs were recently
reviewed by Burkov (2016, 2018), Jia, Xu, and Hasan (2016),
Hasan et al. (2017), Armitage, Mele, and Vishwanath (2018),
Crassee, Sankar et al. (2018), Manna et al. (2018), and Zheng
and Zahid Hasan (2018); many theorists have reviewed the
ab initio approach to the discovery and characterization of
TSMs (Weng, Dai, and Fang, 2014; Bansil, Lin, and Das,
2016; Fang, Weng et al., 2016; Weng, Dai, and Fang, 2016;
Yu, Fang et al., 2017; Bernevig et al., 2018; Hirayama,
Okugawa, and Murakami, 2018; Yang, Yang et al., 2018);
transport or optical properties of TSMs were reviewed by
Hosur and Qi (2013), Burkov (2015a), He and Li (2016), Xu
and Jia (2016), Li, Wang et al. (2017), Lu and Shen (2017),
Song et al. (2017), Wang, Lin et al. (2017), Gooth et al.
(2018), X.-C. Pan et al. (2018), Schoop, Pielnhofer, and
Lotsch (2018), Wang and Wang (2018), and Pronin and
Dressel (2021). Furthermore, there are also many reviews
on other related topological phases in condensed-matter
systems, such as topological insulators and/or topological
superconductors (Hasan and Kane, 2010; Qi and Zhang, 2011;
Cayssol, 2013; Vafek and Vishwanath, 2014; Wehling, Black-
Schaffer, and Balatsky, 2014; Hasan, Xu, and Bian, 2015;
Schnyder and Brydon, 2015; Sato and Ando, 2017).

II. TSMS IN THREE DIMENSIONS

A. Background

In solids, the nearly free quasiparticles are usually
described by the well-known Schrödinger equation with the
Hamiltonian Hs ¼ p2=2m�, where p is the momentum, m� is
the so-called effective mass, which is a quantity used to
simplify and describe the low-energy excitations. These low-
energy excitations are often simply referred to as “Schrödinger
fermions.”
The Schrödinger equation provides a successful description

of nearly free quasiparticles; however, there are many other
types of low-energy excitations that do not obey the
Schrödinger Hamiltonian, such as graphene (Novoselov et al.,
2005; Castro Neto et al., 2009) and high-temperature d-wave
superconductors (Bednorz and Müller, 1986; Damascelli,
Hussain, and Shen, 2003). To describe these quasiparticles,
new equations have been utilized, i.e., realistic Dirac andWeyl
equations (Herring, 1937). In solids, the Dirac Hamiltonian
has the following form:

HD ¼ νFα · kþ βmνF
2 ¼

�
νFσ · k mν2F

mν2F −νFσ · k

�
. ð1Þ

Here k ¼ ðkx; ky; kzÞ represents the momentum, νF is the
Fermi velocity (a quantity tied to the dispersions of the bands),
andm is the effective mass. Equation (1) has the same form as
the Dirac Hamiltonian in high-energy physics, with the
effective speed of light c given by the Fermi velocity, and
is therefore called the Dirac Hamiltonian of condensed-matter
systems. The Dirac fermions in condensed-matter systems
obey a similar relativistic energy-momentum relation, i.e.,
E� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ν4F þ k2ν2F

p
, which naturally leads to spectral gap

Δ ¼ 2mν2F at k ¼ 0, as shown in Fig. 2. Thus, the effective
mass is directly related to the spectral gap.
In the special case of vanishing effective mass (m → 0), the

Dirac Hamiltonian becomes Block diagonal, that is,

Hm¼0
D ¼

�
νFσ · k 0

0 −νFσ · k

�
. ð2Þ

As a result, the spectrum of this massless Dirac Hamiltonian is
gapless at k ¼ 0, giving rise to a fourfold-degenerate node

EF

Massless Dirac Weyl

Dirac point Weyl point

 Massive Dirac 

E

k

FIG. 2. Schematic plots of the band structures of Schrödinger, massive Dirac, massless Dirac, and Weyl fermions. The curves with
mixed and uniform colors represent doubly degenerate and nondegenerate bands, respectively.
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with linear dispersion in all the kx, ky, and kz directions,
known as the Dirac point (Fig. 2). The corresponding low-
energy excitations at the Dirac point are massless Dirac
fermions, and materials with such 3D Dirac band crossings
near EF are called DSMs.
When m ¼ 0, the upper two components (ψþ) and the

lower two components (ψ−) of ψ are no longer coupled. Thus,
the Bloch diagonal HD can be written in a simpler 2 × 2 form

H� ¼ �νFσ · k. ð3Þ

This is the Weyl Hamiltonian of condensed-matter systems,
and � corresponds to different chirality of the massless Weyl
fermion: right handed (þ1) or left handed (−1). Either Hþ or
H− has two eigenvalues, i.e., E ¼ �νFjkj, which implies that
the spectrum of Weyl Hamiltonian is also gapless, and two
linearly dispersed and nondegenerate bands cross each other at
k ¼ 0 and form a two-fold-degenerate point, called the Weyl
point. A fourfold-degenerate Dirac point can therefore be
considered the composite of two Weyl points of opposite
chirality. As expected, quasiparticles near the Weyl point act
like massless relativistic Weyl fermions, and materials with
such Weyl points in the 3D BZ can be termed topologi-
cal WSMs.

B. Topological aspects

1. Magnetic monopoles

The previously discussed nontrivial electronic structure of
WSMs can be further characterized by a topological invariant,
i.e., the Fermi surface (FS) Chern number (CFS) or the
monopole charge (Wan et al., 2011), which can be expressed
as the following integration of Berry curvature over a closed
Fermi surface:

CFS ¼ 1

2π
∯
FS
ΩðkÞ · dS. ð4Þ

Consider the 3D Weyl nodes described by Eq. (3), the
corresponding Berry curvature and Chern number are found
to be

Ω�ðkÞ ¼ ∇k × A�ðkÞ ¼ � êk
2k2

;

C�
FS ¼ 1

2π
∯
FS
Ω�ðkÞ · dS ¼ �1. ð5Þ

Equations (5) reveal several special features of Weyl points.
First, a Weyl point is a singularity (source or drain) of the
Berry curvature, which is a close analog of the magnetic field
but is defined in k rather than real space. Therefore, Weyl
points of opposite chirality can be regarded as the magnetic
monopole and antimonopole in k space (Fang, 2003; Balents,
2011; Wan et al., 2011; G. Xu et al., 2011). Second, to satisfy
the periodic BZ boundary condition, the Berry curvature must
begin and end somewhere within the BZ, if there is one. This
leads to an important conclusion, the so-called no-go theorem
(Nielsen and Ninomiya, 1981a, 1981b), indicating that the
Weyl points should always come in pairs of opposite chirality

so that the total monopole charge integrated over the first BZ
is zero. Consequently, the only way to eliminate the Weyl
points without breaking charge conservation is to annihilate
them pairwise, which happens only if one can move them to
the same k point (Burkov and Balents, 2011; Wan et al., 2011;
Zyuzin, Wu, and Burkov, 2012). Thus, the Weyl points are
topologically stable as long as they remain separated in k
space. Finally, we note the difference between the T -breaking
WSMs and P-breaking WSMs. In a P-breaking Weyl system,
for a Weyl point at k there must be another Weyl point with the
same chirality −k, since the T invariance imposes the
condition that the Berry curvatures at the k and −k points
are negatives of each other, i.e., ΩðkÞ ¼ −Ωð−kÞ. However,
for a T -breaking system, the presence of P symmetry requires
ΩðkÞ ¼ Ωð−kÞ, which implies that Weyl points at k and −k
should have opposing monopole charges. Combined with the
no-go theorem, one can hence conclude that an P-breaking
Weyl semimetal possesses at least two pairs of Weyl points in
the BZ, whereas a T -breaking Weyl semimetal can have a
minimum of one pair of Weyl points at k and −k of opposite
chirality in the BZ.

2. Fermi-arc surface states

One of the most striking consequences of the fact that the
Weyl nodes behave as monopoles of the Berry curvature field
is the appearance of unique surface states, i.e., the Fermi arcs
(Balents, 2011; Wan et al., 2011; G. Xu et al., 2011). The
reason for this can be interpreted intuitively as follows.
Consider the simplest example of a hypothetical “hydrogen
atom” of a WSM containing only one pair of Weyl nodes
near EF in which the T symmetry is naturally broken.
As shown in Fig. 3(a), the two Weyl nodes sit at ð0; 0; k0Þ
and one can rewrite the two Weyl Hamiltonians as
H� ¼�νF½kxσxþkyσyþmðkzÞσz�, where mðkzÞ ¼ kz � k0.
This rewriting is suggestive, as for every mðkzÞ ≠ 0, i.e.,
kz ≠ �k0, there is precisely a massive or gapped 2D kx-ky-
plane Dirac Hamiltonian. Assuming that all trivial states are
far away from EF, this implies that band structures within the
kx-ky plane should be fully gapped unless the slice cuts
through a Weyl point (kz ¼ �k0 plane). Since the Weyl
nodes are sources or sinks of Berry curvature, there must be a
Berry flux penetrating all the 2D layers between the two
Weyl nodes of opposite monopole charge. Hence, all these
2D k planes between the two Weyl nodes have a nonzero
Chern number, indicating the existence of a topological edge
state in this region (−k0 < kz < k0), whereas the net Berry
flux is zero in other planes (−k0 > kz or kz > k0), resulting in
a Chern number of zero. In other words, each 2D BZ that lies
between the pair of Weyl nodes can be viewed as a Chern
insulator state, which is associated with a chiral edge state
that is guaranteed to cross EF. Note that one can also
consider a 2D cylinder that encloses a single Weyl point.
Similarly, this 2D cylinder can be viewed as a Chern
insulator, and one would expect a chiral edge state on
the 1D curve that encircles the projection of the bulk
Weyl point, as shown in Figs. 3(b) and 3(c). By stringing
the topological edge states of all possible 2D Chern insulator
planes together, one arrives at a Fermi-arc surface state.
Specifically, the locus of all these edge state crossings
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forms an unclosed contour shape that starts from the
projection of one Weyl point and ends at the other with
the opposite monopole charge and is thus accordingly
called a Fermi arc. This unique surface state is illustrated
in Figs. 3(d)–3(f). A more detailed investigation tells us that
the E − k dispersions of the chiral surface states can be
mapped to a helicoidal structure [Fig. 3(e)] (Fang, Lu et al.,
2016), and the top and bottom surface states have opposing
Fermi velocities.
Generally speaking, one would expect the Fermi surface to

form closed loops, such as the Fermi surface of a normal
metal, but the existence of Fermi arcs in WSMs is apparently
an exception. Therefore, this unusual type of surface state is
viewed as a hallmark of WSMs.

3. Chiral anomaly

The fact that each Weyl node is a chiral magnetic monopole
leads to another extraordinary phenomenon: the condensed-
matter manifestation of the Adler-Bell-Jackiw anomaly
(Adler, 1969; Bell and Jackiw, 1969) or the chiral anomaly
(Nielsen and Ninomiya, 1983; Hosur, Parameswaran, and
Vishwanath, 2012; Kim et al., 2013; Parameswaran et al.,
2014). The simplest way to understand the chiral anomaly is
by introducing the quantum limit and Landau levels. To start
we consider the simplest Weyl semimetal with only one pair of
Weyl nodes of opposite chirality located at EF. As shown in
Fig. 4, in the absence of electromagnetic field E and B the

left-handed and right-handed Weyl fermions have equal
chemical potentials, which implies that more electrons of
one chirality than of the other cannot exist, the chirality of
Weyl fermions is thus conserved.
When a magnetic field is applied, the Weyl bands for-

mulates Landau levels, which can be expressed as

εn ¼ νFsgnðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏjnjeBþ ðℏk · B̂Þ2

q
; n ¼ �1;�2;…;

ε0 ¼ −χℏνFk · B̂; ð6Þ

where n is the index of the Landau level, νF is the Fermi
velocity of the Weyl bands, and χ is the chirality of the Weyl
nodes, i.e., χ ¼ �1. Comparing this with the chiral Weyl
bands, one immediately realizes that the zeroth Landau level is
also linearly dispersed and chiral, as shown in Fig. 4(b). Only
the zeroth Landau band crosses EF, and the energy gap of the
first Landau level is νF

ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
. At low temperatures, suppose

that the temperature-induced electron excitations is much
smaller than the energy gap. Then only the zeroth Landau
band is relevant for the low-energy physics and we are in the
so-called quantum limit (Nielsen and Ninomiya, 1983).
Now if also we apply an external electric field E, the E
component parallel to B would generate a coherent motion of
electrons. For simplicity, imagine EkB. The electrons are then
accelerated at a rate of eE in the −E direction. This motion
would cause electron pumping between right-moving and

(a)

(d) Fermi arc

Top surface

Bottom surface

Bulk

MMP MMP

Fermi arc

kz

ky
kx

(c)

(e) (f)

(b)

Fermi arc

kx
kz

kx

kz

–1+1

FIG. 3. (a) Schematic drawing of one pair of Weyl nodes of opposite chirality in 3D momentum space. (b),(c) Consider a 2D cylinder
enclosing a Weyl node; a chiral edge state appears due to the nonzero Chern number. (d)–(f) Connection of surface states to bulk Weyl
nodes. AWeyl node behaves as a magnetic monopole (MMP) in momentum space, and the helicoid edge states appear as a Fermi arc on
the surface connecting projections of two Weyl nodes of opposite chirality. Adapted from Wan et al., 2011, Lv et al., 2015b, and Fang,
Lu et al., 2016.
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left-moving zeroth Landau bands, and results in the following
modified charge continuity equation for each Weyl node of
opposite chirality:

∂ρχ
∂t ¼ −χ

e3

4π2ℏ2
E · B; ð7Þ

where ρχ is the charge density of χ chirality Weyl fermions.
One immediately finds that there is charge flow around an
individual Weyl point, and the chiral charge of each Weyl
node is thus not conserved. Note that if consider all the chiral
charge in the BZ, one finds that the total charges are conserved
as ð∂=∂tÞðρþ þ ρ−Þ ¼ 0. In short, the presence of parallel E
and B fields induces a charge pumping from one Weyl node to
the other, leading to an imbalance of chiral charge within an
individual Weyl point known as the chiral anomaly. (Son and
Spivak, 2013; Burkov, 2014, 2015b).
One direct consequence of the chiral anomaly is negative

longitudinal magnetoresistance (NLMR) (Nielsen and
Ninomiya, 1983), as explained later. Since the Weyl nodes
are separated in momentum space, the previously discussed
charge pumping can be relaxed only by the inter-Weyl
impurity scattering, and the final chiral imbalance can thus
be expressed as

∂
∂t ðρþ − ρ−Þ ¼ −

e3

2π2ℏ2
E · B · τint; ð8Þ

where τint is the intervalley relaxation time. Equation (8)
defines an extra electric current along the magnetic field. In a

sufficiently clean system, the backscattering of electrons of
opposite chirality is suppressed, resulting in a large τint that is
nearly independent of the magnetic field in a certain range.
Consequently, the longitudinal conductivity along the applied
magnetic field is large and proportional to the magnitude of B.
In other words, the resistivity decreases with increasing
magnetic field, leading to NLMR.
Note that the NLMR is a simple but not universal behavior

of chiral anomaly. For example, if B⊥E, the system will have
a positive magnetoresistance due to the Lorentz force. In
addition, the quantum limit condition requires that no other
states (such as trivial bands) cross EF, otherwise, the zeroth
Landau-level contribution and the NLMR would be smeared
out. What is more, in a strong magnetic field the relaxation
time can be proportional to jBj−1, which cancels out the
dependence on the magnitude of the magnetic field in Eq. (8).
Finally, in the semiclassical limit or weak magnetic field case,
researchers found that the magnetoresistance is always neg-
ative and proportional to B2 (Kim et al., 2013; X. Huang et al.,
2015; Xiong et al., 2015; Li, He et al., 2016; Li, Kharzeev
et al., 2016).
Recent advances besides NLMR reveal that the chiral

anomaly and the nonzero Berry curvature in WSMs can lead
to another key effect, the PHE (Burkov, 2017; Nandy et al.,
2017), which refers to the appearance of a large in-plane
transverse voltage when the coplanar electric and magnetic
fields are not perfectly aligned. Theoretically, the chiral-
anomaly-induced PHE resistivity (ρPHExy ) and related longi-

tudinal anisotropic magnetoresistance (ρplanarxx ) in pure WSMs
can be described as

ρPHExy ¼ −Δρchiral sin θ cos θ;

ρplanarxx ¼ ρ⊥ − Δρchiralcos2θ; ð9Þ

where Δρchiral ¼ ρ⊥ − ρk is the anisotropic resistivity and ρ⊥
and ρk represent the resistivity with the planar magnetic field
perpendicular or parallel to the current, respectively. θ is
illustrated in Fig. 4(c). Experimentally, observation of both the
NLMR and the PHE with a specific angular dependence given
by Eq. (9) is believed to give strong evidence for the chiral
anomaly.
Note that in addition to engendering the NLMR and

PHE, the chiral anomaly can also lead to a large thermopower
and a strong magnetic field dependence of the thermoelectric
transport coefficients called the axial gravitational anomaly
(Landsteiner, Megías, and Pena-Benitez, 2011; Lundgren,
Laurell, and Fiete, 2014; Lucas, Davison, and Sachdev,
2016; Gooth et al., 2017).

4. Other phenomena

Beyond the previously discussed consequences, the non-
trivial electronic structure of Dirac and Weyl semimetals can
generate many other interesting effects.

(i) One important transport feature expected for the
case of magnetic WSMs (Fang, 2003; G. Xu et al.,
2011; Yang, Lu, and Ran, 2011) is the intrinsic
anomalous Hall effect. Consider again a T -breaking
magnetic Weyl semimetal with a pair of Weyl nodes

n = 0n = 0

(a) (b)E

k
EF

+

(c) (d)

E

B

ν ν

+

FIG. 4. (a) Schematic band dispersions of one pair of Weyl
nodes of opposite chirality. (b) Illustration of the chiral anomaly
based on a Landau-level spectrum of Weyl fermions in parallel
electric and magnetic fields in the quantum limit. Filled (empty)
circles denote occupied (unoccupied) states, while red and green
areas indicate the right-handed (þ) electrons and left-handed (−)
electrons, respectively. (c) Schematic diagram for the planar
Hall effect measurement geometry (VH is the Hall voltage).
(d) Angular dependence of planar Hall conductivity for B ¼ 5 T
and γ ¼ 0 (γ is the tilt parameter). Adapted from Lv et al., 2015c,
Nandy et al., 2017, and Yan and Felser, 2017.
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along the kz direction, which is shown in Fig. 3.
As discussed in Sec. II.B.1, the region between the
twoWeyl points of opposite monopole charge can be
seen as a collection of 2D Chern insulators. Owing
to the nonzero Chern number, these 2D planes
would naturally exhibit chiral edge states and
quantized Hall conductance. Finally, the total Hall
conductivity of the system should be directly given
by the integral of dkz as

σtotalxy ¼ 1

2π

Z
π

−π
σxyðkzÞdkz ¼

e2

2πh
ðkwþ − kw−Þ; ð10Þ

where kwþ and kw− are the momentum locations of the
two Weyl points. The total Hall conductance can be
considered a “quantized” Hall response of a Weyl
semimetal in the sense that the ratio of σtotalxy and
kwþ − kw− is quantized as e2=2πh. Note that the
anomalous Hall effect principally diminishes in a
P-breaking Weyl semimetal; this is because a P-
breaking WSM possess at least two pairs of Weyl
points in the BZ, and the total Berry phase contrib-
uted by the two Weyl pairs cancel each other.
Instead, a spin Hall effect arises in a P-breaking
WSM (Sun et al., 2016) and, similarly, this can be
understood in the framework of 2D topological
insulators with the spin-dependent Berry phase.

(ii) Generally, for Dirac systems with linear band
dispersion, such as graphene, TIs, DSMs, and
WSMs, a nontrivial π Berry phase could be induced
as the electron orbits enclose a single Dirac or Weyl
point. This nontrivial Berry phase, another distin-
guishing feature of Dirac and Weyl fermions, has
been identified using SdH oscillations (He et al.,
2014; Cao et al., 2015; Xiang et al., 2015; Zhao
et al., 2015b; Pan et al., 2016).

(iii) Dirac and Weyl semimetals also manifest them-
selves in specific optical responses. One such
manifestation is the real part of their optical con-
ductivity σ1ðωÞ. Specifically, the interband optical
transition in the vicinity of 3D Dirac or Weyl nodes
is expected to give rise to a ω-linear σ1ðωÞ (Hosur,
Parameswaran, and Vishwanath, 2012; Ashby and
Carbotte, 2013, 2014; Bácsi and Virosztek, 2013;
Timusk et al., 2013; Tabert and Carbotte, 2016;
Tabert, Carbotte, and Nicol, 2016). For WSMs with
Weyl nodes located at different energies there would
be a chiral chemical potential between the Weyl
nodes, and this can give rise to unique nonlinear
optical properties, such as the quantized circular
photogalvanic effect (CPGE) (Chan, Lindner et al.,
2017; de Juan et al., 2017; Q. Ma et al., 2017;
Osterhoudt et al., 2019).

(iv) Other effects such as nonlocal transport
(Parameswaran et al., 2014), the chiral gauge ano-
maly (Liu, Ye, and Qi, 2013), unusual plasmon
modes (Liu, Ye, and Qi, 2013; Panfilov, Burkov, and

Pesin, 2014; Zhou, Chang, and Xiao, 2015; Araki
and Nomura, 2016), and topological superconduc-
tivity (TSC) (Meng and Balents, 2012; Hosur
et al., 2014; Bednik, Zyuzin, and Burkov, 2015;
Kobayashi and Sato, 2015) have also been studied.

C. Topological classifications

As discussed, only three types of fermions are allowed in
high-energy physics, while the zoology of quasiparticles in
TSMs is much more abundant; this is because low-energy
excitations in TSMs are constrained by the space-group
symmetries of the crystal, which are much lower than the
Poincaré symmetry imposed in high-energy physics. Indeed,
condensed-matter physics is witnessing a rapid expansion of
TSMs with various types of band crossings in the BZ, with
examples including 1D topological nodal lines, type-II band
crossings, symmetry-enforced twofold, threefold, fourfold,
sixfold, and eightfold band crossings, and quadratic and cubic
band crossings. In the following, we classify and discuss these
uncovered band crossings in condensed-matter systems.

1. Accidental and essential band crossings

Depending on the formation mechanism, the band crossings
in TSMs can be broadly divided into two major categories:
accidental and essential band crossings (Wang et al., 2012;
Young et al., 2012; Yang and Nagaosa, 2014). The first type of
band crossings is formed by band inversions in certain regions
of the BZ, and the band crossings can be removed without
changing the symmetry of the system; therefore, they are
referred to as accidental band crossings. The second category
consists of the so-called essential or symmetry-enforced band
crossings. Unlike the accidental crossings, these essential band
crossings are enforced by specific space-group symmetries,
such asT symmetry and nonsymmorphic group symmetry, and
cannot be removed as long as the symmetry is maintained.

a. Accidental band crossings

Band inversion is arguably the most intuitive picture and
most practically useful guideline for the initial screening of
possible accidental band crossings. Strictly speaking, band
inversion involves the energy order switching of two elec-
tronic states around a certain time-reversal-invariant momenta
(TRIM) in the BZ when compared with the conventional
discrete energy level in the atomic limit. Generally, band
inversion may happen when atoms form a periodical lattice
and acquire sufficient band dispersion, such as a HgTe/CdTe
quantum well (Bernevig, Hughes, and Zhang, 2006). In
particular, when the two inverted electronic bands are located
near EF, the band inversion usually leads to nontrivial
topological states, including 2D and 3D TIs, DSMs,
WSMs, and TNLSMs.
To be explicit, we consider two electronic bands close to EF

around the high-symmetric point, that is, the Γ point. As
illustrated in Fig. 5, far from this point, the red band is
occupied and energetically lower than the unoccupied blue
state. However, close to this high-symmetric point the two
states would have inverted energy ordering with the blue state
lower and occupied. Assuming that the two inverted bands are
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not coupled in the absence of spin-orbit coupling (SOC), they
must cross at certain k points, and together these band
crossings form a 1D spinless nodal line in the BZ.
However, this accidental nodal line is typically vulnerable
to SOC. When SOC is taken into account, this nodal line will
transfer into the following topological states, depending on the
crystal symmetries, SOC strength, and orbital character.

(i) If the system hasP and T symmetry, the inclusion of
SOC will, in general, hybridize the two inverted
electronic states and open up an energy gap at the
band crossings, turning the system into a bulk
insulator if the EF is located within the energy
gap. This gapped state may be topologically non-
trivial and may host conducting surface states
depending on the coupling terms. Examples include
the 3D TI Bi2Se3 (Zhang et al., 2009), the topo-
logical crystalline insulator PbTe family (Hsieh
et al., 2012), the Mackay-Terrones crystal (Weng,
Liang et al., 2015), etc. However, if the system
has additional symmorphic symmetry (i.e., point
group rotations coupled with Bravais lattice trans-
lations), such as n-fold uniaxial rotation symmetry
(n ¼ 3; 4; 6), the band crossings along the rotation
axis are stabilized after including SOC since the two
inverted bands belong to different irreducible rep-
resentations, or rotation eigenvalues. Each of the
two inverted bands is doubly degenerate protected
by PT symmetry; therefore, pairs of fourfold-
degenerate Dirac points would appear along the
rotation axis, turning the system into a 3D DSM in
the presence of SOC. This mechanism leads to the
successful prediction of two well-known DSM
materials Na3Bi and Cd3As2 (Wang et al., 2012,
2013).

(ii) On the contrary, if the system has no P or T
symmetry, taking into account SOC the spinless
nodal line can be transformed into the following
topological states:
(a) If the system has no other symmetries that protect

the band crossings, the inclusion of SOC can turn
the system into a fully gapped TI such as CaAgAs
(Yamakage et al., 2016).

(b) Specifically, under a proper strength of SOC, the
two electronic states with the orthogonal orbital
component can touch at a discrete k point, and at
the same time everywhere else is gapped, trans-
ferring the system into a WSM state. Examples
include the first experimentally confirmed WSM
TaAs family (S.-M. Huang et al., 2015; Weng,
Fang et al., 2015).

(c) When the system respects the combined PT
symmetry, the bands remain spin degenerate after
the inclusion of SOC. Therefore, a DSM state can
be realized if there is additional crystal symmetry,
such as screw rotational symmetry, to protect the
Dirac point. An example is the antiferromagnetic
CuMnAs (Tang et al., 2016), in which the Dirac
points are protected by the twofold screw rotation
(S2z) symmetry.

(d) If the system has a reflection mirror symmetry,
this protects the nodal line on the mirror-invariant
plane in the absence of SOC. In the PT -
asymmetric case, the mirror-protected nodal line
can split into two twofold-degenerate Weyl nodal
lines within the mirror plane after the inclusion of
SOC. For example, the PbTaSe2 family of ma-
terials lacks inversion symmetry, and two spinful
Weyl nodal rings appear within the mirror plane
when SOC is included (Bian et al., 2016).

(e) Recently researchers also predicted and exper-
imentally confirmed the existence of another type
of band crossings in a class of noncentrosym-
metric (without P symmetry) and nonmagnetic
(with T symmetry) materials, that is, the triply
degenerate points (Weng et al., 2016a, 2016b;
Zhu et al., 2016; B. Q. Lv et al., 2017). These
triply degenerate points are protected by the C3

rotation symmetry and can be viewed as the
“intermediate species” between the fourfold
Dirac and twofold Weyl points. The low-energy
excitations near the triply degenerate point, i.e.,
class-I three-component fermions, have no high-
energy counterparts; thus, they are called uncon-
ventional fermions, or new fermions.

b. Essential band crossings

(i) Kramers-Weyl fermions. As discussed, to realize acci-
dental Weyl points in the BZ several conditions should be
satisfied simultaneously, including band inversion, proper
strength of SOC, breaking T or P symmetry, and irreducible
representation of electronic states that protect the band cross-
ings from hybridization. There is a relatively easy way to
create Weyl points in crystals, i.e., Kramers-Weyl points. To
be explicit, start from one band protected by the P and T
symmetries and the combination of these two symmetries will
always force the band to be doubly degenerate everywhere. If
inversion symmetry is broken, this degeneracy can be lifted
with the help of SOC. However, at some specific high-
symmetry points in the BZ (only the ones where kx, ky,
and kz are all either 0 or π), i.e., TRIM, T symmetry still
enforces twofold degeneracy and the band splits everywhere
else, giving rise to Weyl points at all TRIMs, as illustrated in
Fig. 6. Unlike the usual Weyl points, these Weyl points are
protected by SOC and the Kramers theorem, and thus are also
attributed to Kramers-Weyl points (Chang et al., 2018). To
realize Kramers-Weyl points, two criteria should be met: one
breaks P but respects T symmetry, whereas the other is the
removal of double degeneracy at non-TRIMs. In particular,
the second criterion forbids symmetries that can cause addi-
tional band degeneration, such as mirror or glide-mirror
symmetry. Therefore, a chiral lattice, which contains only
T , rotation, and screw symmetries and has a well-defined
handedness due to the lack of inversion, mirror, or other
rotoinversion symmetries, is essential for realizing Kramers-
Weyl fermions.
(ii) Nonsymmorphic symmetry-enforced band degeneracy
The Kramers theorem enforces the lowest band degeneracy,

i.e., twofold degeneracy. At the same time, if additional
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nonsymmorphic symmetries are introduced, the following
higher-order band degeneracies can be imposed at the BZ
boundary, depending on the nonsymmorphic space group of
the crystal.

Fourfold band degeneracy.—Young et al. (2012) proposed
the first class of nonsymmorphic symmetry-enforced TSMs,
i.e., the Dirac semimetal with fourfold band degeneracy. They
systematically examined the conditions under which the

FIG. 5. Schematic illustration of possible band-inversion-induced topological states. The curves with mixed and uniform colors
represent doubly degenerate bands and nondegenerate bands, respectively. WNL, Weyl nodal line; TPSM, triple point semimetal.
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FIG. 6. Schematic plot of the band structure for space group 16 with and without SOC. From Chang et al., 2018.
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symmetries of the crystal allow fourfold degeneracy with
linear dispersion and revealed that such an essential Dirac
point could occur only in the case of nonsymmorphic space
groups. Concretely, when the double point group of a crystal,
i.e., the group that represents the symmetries of the lattice
doubled by the spin degree of freedom, possesses a four-
dimensional irreducible representation, a Dirac point can
appear at high-symmetry momenta on the BZ boundary.
The main challenge of this proposal is the requirement of a
near-EF degeneracy point, as well as linearly dispersed and
spin-degenerate bands around the degeneracy point. Recently
it was pointed out that in addition to the conventional Dirac
point with zero topological charges, such fourfold irreducible
representations can give rise to the other two types of
symmetry-enforced fourfold band degeneracies with nonzero
monopole charge (as shown in Fig. 7), and the corresponding
low-energy excitations near these points are termed double
Weyl or charge-2 fourfold fermions (C ¼ �2) and spin-3=2
Weyl fermions (C ¼ �4), respectively (Tang, Zhou, and
Zhang, 2017), which violate the Poincaré symmetry of
high-energy physics and can exist only in condensed-matter
physics.
Threefold, sixfold, and eightfold band degeneracy.—

Besides the four-dimensional irreducible representation,
nonsymmorphic space groups may also host other-dimen-
sional irreducible representations, and the dimension deter-
mines the number of bands that meet at the high-symmetric
point in the BZ. Wieder et al. (2016) predicted the existence
of eight-dimensional irreducible representations, or eightfold
band degeneracy, at the BZ corner and showed that 7 of the
157 nonsymmorphic space groups could exhibit such a
nodal point, called the double Dirac point, as illustrated in
Fig. 7. Soon thereafter, Bradlyn et al. (2016) systematically
examined all possible irreducible representations in non-
symmorphic space groups and revealed two other types
of symmetry-enforced band degeneracy: threefold- and
sixfold-degenerate points. They provided a full list of non-
symmorphic space groups that admit the previously
mentioned threefold, sixfold, and eightfold band degener-
acies. The corresponding low-energy excitations around
these band degeneracies, i.e., class-II three-component,
six-component, and eight-component or double Dirac
fermions, are also termed unconventional fermions, in the

sense that they are beyond the conventional Dirac-Weyl-
Majorana classification.
Nodal lines and others.—Nonsymmorphic space groups

can not only enforce the previously mentioned zero-dimen-
sional threefold,fourfold, sixfold, and eightfold nodal points at
high-symmetric points but also protect 1D nodal lines or 2D
nodal surfaces at the BZ boundaries. The combination of PT
and nonsymmorphic symmetries retains the fourfold-degen-
erate Dirac nodal lines in the ZrSiS (Chen et al., 2017) and
AIrO3 (Chen, Lu, and Kee, 2015; Kim, Chen, and Kee, 2015)
families of materials. On the other hand, in PT -asymmetric
systems, such as Ta3TeI7 (Wu, Liu et al., 2018), the non-
symmorphic symmetry can guarantee the Weyl nodal surfaces
at the BZ boundaries. What is interesting about these nodal
lines or nodal surfaces is that they are guaranteed to appear at a
specific 2D surface of the BZ boundary, and they cannot be
gapped by SOC. Recently it was also demonstrated that
nonsymmorphic symmetries might give rise to other uniden-
tified types of band crossings, such as hourglass band
dispersions along high-symmetry lines of the BZ (Wang,
Jian, and Yao, 2017), and nodal chains that are formed by two
or more nodal lines (Bzdušek et al., 2016).

2. Cataloging the key attributes of the band crossings

a. Dimensionality, degeneracy, and monopole charges

TSMs come in different varieties, which can be distin-
guished based on the origin of the band crossings, that is,
whether they are symmetry enforced or they arise as a result of
a band inversion. A more intuitive distinction can be made
according to the key attributes of the band crossings, and the
band degeneracy can be characterized in at least the following
four aspects. The first is the dimensionality of the band
crossings, based on which types of band crossings may be
broadly classified into three categories: 0D nodal points, 1D
nodal lines, and 2D nodal surfaces.
The second is the degeneracy of the band crossings.

Explicitly speaking, 0D band crossings can be further clas-
sified into twofold, threefold, fourfold, sixfold, and eightfold-
degenerate nodal points. One-dimensional nodal lines, on the
other hand, can be divided into two subsets, Dirac nodal lines
with fourfold degeneracy and Weyl nodal lines with twofold
degeneracy, respectively.

DFWF RSWF

DPWP

ThreefoldTwofold Fourfold Sixfold

RSWPTP

Class-II TCF

(ii)(i) (iii) (iv)

CFF

Eightfold

DDP

DDF

(v)

DTCF

C = ± 1

DTPCFP

C = ± 4C = ± 2C = 0C = ± 2 C = 0C = ± 4

FIG. 7. Schematic plot of the band structure of various symmetry-enforced band degeneracies in condensed-matter systems. WF, Weyl
fermion; WP, Weyl point; TCF, three-component fermion; TP, triple point; DF, Dirac fermion; DP, Dirac point; CFF, charge-2 fourfold
fermion; CFP, charge-2 fourfold point; RSWF, Rarita-Schwinger-Weyl fermion; RSWP, Rarita-Schwinger-Weyl point; DTCF,
double class-II three-component fermion; DTP, double triple point; DDF, double Dirac fermion; DDP, double Dirac point. Adapted
from Lv et al., 2019.
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The third aspect is regarding the topological property of the
band crossings. Nodal points can be characterized by the
monopole charge that they host. In particular, a twofold Weyl
point can exhibit three different monopole charges, i.e., C ¼
�1;�2;�3 (Liu and Zunger, 2017) (a derivation can be found
in Appendix B.1), depending on the order of band dispersion,
which we discuss later. Whereas a threefold nodal point can
have no monopole charge (Weng et al., 2016b) or a monopole
charge of �2 (Bradlyn et al., 2016) (a derivation can be found
in Appendix B.2), depending on the crystal symmetry that
protects it. Moving on to fourfold band degeneracy, we
note two types of band crossings differentiated by the
topological charges and band dispersions besides the well-
known Dirac points with zero charge: charge-2 fourfold points
with C ¼ �2 and Rarita-Schwinger-Weyl points with C ¼
�4 (Tang, Zhou, and Zhang, 2017) (a derivation can be found
in Appendix B.3). For even higher band degeneracies, shown
in Figs. 7(iv) and 7(v), theory predicted a sixfold-degenerate
point with C ¼ �4 and an eightfold-degenerate point with
C ¼ 0 (Bradlyn et al., 2016), which can be viewed as a
nontrivial doubling of threefold points withC ¼ �2 and Dirac
points with C ¼ 0, respectively.
The fourth aspect, which usually couples with the monop-

ole charge, is the band dispersion around the degeneracy
point. Next we discuss two classes of band crossings with
distinct band dispersions.

b. Type-I, type-II, and type-III band crossings

Strictly speaking, in condensed-matter systems the high-
energy counterparts of realistic Dirac fermions and Weyl
fermions should respect Lorentz invariance and obey the Dirac
and Weyl equations [Eqs. (2) and (3)], which give rise to an
isotropic Dirac or Weyl cone with linear band dispersion in all
momentum directions. However, band crossings in crystals are
constrained by the symmetries of the 230 space groups rather
than by Lorentz invariance, giving rise to the possibility of
finding other types of band crossings. Soluyanov et al. (2015)
predicted a distinct type of twofold band crossing with a
highly tilted Weyl cone along a certain k direction, as shown in
Fig. 8. The quasiparticle excitations near the tilted Weyl cone
violate Lorentz invariance and are thus called type-II Weyl
fermions.

The essential physics of type-II Weyl points can be
captured by adding a tilting term to the simplest 2 × 2
Weyl Hamiltonian

H ¼ �ν0σ · kþ t · kI2; ð11Þ
where ν0 is the Fermi velocity, k ¼ ðkx; ky; kzÞ is the momen-
tum vector, σ ¼ ðσx; σy; σzÞ is the vector of 2 × 2 Pauli
matrices, I2 is the 2 × 2 identity matrix, and t is the tilt
vector. To be explicit, consider the right-handed fermion and
assume that the vector t is along the kz direction. The
Hamiltonian can then be further written as

H ¼ ν0

�
kzð1þ t=ν0Þ kx − iky
kx þ iky −kzð1 − t=ν0Þ

�
. ð12Þ

Equation (12) leads to the following two branches of the
energy spectrum:

ε�ðkÞ ¼ �ν0ðkx þ kyÞ � ν0

�
1� t

ν0

�
kz. ð13Þ

Here ν0k and tkz can be viewed as the kinetic and potential
parts of the energy spectrum. These two energy branches cross
each other and form a Weyl node at k ¼ 0, and the potential
energy tkz introduces an overall tilt of the Weyl cone, which
consequently breaks the Lorentz invariance of Weyl fermions
in quantum field theory. Depending on the ratio between ν0kz
and tkz, the Weyl points can be divided into one of two types.
In a type-I Weyl point, tkz always less than ν0kz ðt=ν0 < 1Þ, it
is implied that the two linearly dispersed Weyl bands always
have opposite velocities along any k direction, and εðkÞ ¼ 0
occurs only at the k ¼ 0 point. All these physical properties
are similar to the standard Weyl cones that obey Eq. (3); hence
they are classified as type-I Weyl points. However, if the
potential energy exceeds the kinetic energy, i.e., t=ν0 > 1, the
two energy branches have the same sign of Fermi velocity
along the kz direction; in other words, the Weyl cone is tipped
over along the kz direction. At a particular region in BZ, the
equation of εðkÞ ¼ 0 has solutions not only at k ¼ 0 but also
at certain other nonzero kz points. Therefore, instead of a
closed and pointlike Fermi surface for a type-I Weyl cone, this
leads to a qualitatively different Fermi surface structure, i.e.,
the Fermi surface becomes open electron and hole pockets,

N  = 1

IIIIII

2

e h- +

FIG. 8. Schematic plot of the band dispersion and Fermi surfaces of type-I, type-II, and type-III Dirac and Weyl points. From Huang,
Jin, and Liu, 2018.
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which touch at the Weyl point as shown in Fig. 8. This kind of
Weyl point is the so-called type-II Weyl point.
At the boundary or interface, i.e., t=ν0 ¼ 1, instead of a

nonzero Fermi velocity one of the Weyl bands would have a
zero velocity along the kz direction. Consequently, this gives
rise to another distinct type of Fermi surface, i.e., the Weyl-
line Fermi surface, and this kind of transition state is thus
called the type-III Weyl fermion state (Volovik, 2016, 2018;
Volovik and Zhang, 2017; Huang, Jin, and Liu, 2018).
We previously discussed the characteristic electronic struc-

tures of type-I, type-II, and type-III Weyl points from a simple
Weyl equation. Such distinctive type-II and type-III Weyl
states can give rise to peculiar transport and optical features.
To name a few, the magnetic-field-induced tunneling between
the electron and hole pockets of a type-II WSM can lead to a
magnetic breakdown when the Fermi energy approaches
the Weyl point (O’Brien, Diez, and Beenakker, 2016). This
magnetic breakdown, a momentum space counterpart of Klein
tunneling, can be characterized by an additional quantum
oscillation frequency in the de Haas–van Alphen effect
measurements. In addition to the magnetic breakdown, the
dumbbell-like Fermi pockets of a type-II WSM can also
manifest as a strong anisotropy in the cyclotron resonance
(Koshino, 2016), which can be detected by polarization-
dependent optical conductivity measurements. Other impor-
tant transport and optical signatures of type-II Weyl points
include the Landau-level collapse effect (regardless of the
magnetic field strength) (Yu, Yao, and Yang, 2016), the
anisotropic chiral anomaly depending on the current direction
(Tchoumakov, Civelli, and Goerbig, 2016; Udagawa and
Bergholtz, 2016), the intrinsic anomalous Hall effect (Zyuzin
and Tiwari, 2016), the absence of optical absorption tails, and
new types of optical transitions (Tchoumakov, Civelli, and
Goerbig, 2016; Yu, Yao, and Yang, 2016). For the transitional
type-III Weyl state, in which the Weyl point is composed of a
flatband and a dispersive band, unique characteristics such as
the solid-state analog of the black hole horizon (Volovik, 2016,
2018; Volovik and Zhang, 2017), the critical chiral anomaly
effect, can be pursued (Huang, Jin, and Liu, 2018).
Recently the concept of type-II and type-III Weyl points

was extended to the Dirac points and nodal lines, leading to
the discovery of type-II and type-III Dirac points (Huang,
Zhou, and Duan, 2016; T.-R. Chang et al., 2017; Huang, Jin,
and Liu, 2018) and nodal lines (Li, Yu et al., 2017; Zhang, Jin
et al., 2017; Liu, Jin et al., 2018) in condensed-matter
systems. In fact, the Lorenz invariance breaking type-II
topological phases are not rare. Many materials exhibit
touching electron and hole pockets near EF, forming type-
II Weyl points such as MoðWÞTe2 (Soluyanov et al., 2015;
Sun et al., 2015; T.-R. Chang et al., 2016; Wang, Gresch et al.,
2016), type-II Dirac points such as VAl3 (T.-R. Chang et al.,
2017), and type-II nodal lines such as Mg3Bi2 (Zhang, Jin
et al., 2017). For type-III band crossings, this review stays
mostly at the theoretical model and concept stage. Regarding
material candidates, to our best knowledge the type-III Weyl
fermion state has not been found; the type-III Dirac point and
nodal line have been proposed to exist only in Zn2In2S5
(Huang, Jin, and Liu, 2018) and CaPd (Liu, Jin et al., 2018)
compounds, respectively. Furthermore, it was shown that
type-I and type-II Weyl points could even coexist in a single

material such as NbP, giving rise to a hybrid Weyl semimetal
state and unique topological responses (Li, Luo et al., 2016;
Wu, Sun et al., 2017).

c. Quadratic and cubic band crossings

Thus far we have focused on band crossings with linearly
dispersed bands; actually, band crossings in crystals can be
accompanied by different dispersion powers in different k
directions. Generally speaking, in SOC systems respecting T
symmetry (230 nonmagnetic space group), since the allowed
rotation symmetries are C2, C3, C4, C6, it was pointed out that
the degeneracy of multiband crossings in k space could be 2,
3, 4, 6, and 8; the dispersion power at the crossing point could
be linear, quadratic (k2), or cubic (k3), respectively (Liu and
Zunger, 2017). The twofold, threefold, fourfold, sixfold, and
eightfold band degeneracies have been discussed previously;
here we focus on quadratic and cubic band dispersions.
In contrast to massless Weyl points with a monopole charge

of�1, Weyl points with quadratic and cubic dispersions along
certain momentum directions would havemonopole charges of
�2 and �3, respectively, as illustrated in Fig. 9. Accordingly,
the low-energy excitations are called double (or quadratic) and
triple (or cubic) Weyl fermions (Fang et al., 2012). A direct
consequence of Weyl points with higher monopole charge is
the equivalent increase of the number of Fermi arcs, as the
number of chiral edge states is identical to CFS. Besides, the
increase of monopole charge will also enhance a series of
effects predicted or observed inWSMs with a single monopole
charge, including the anomalous Hall effect, and the ones
related to the chiral anomaly: negative magnetic resistance and
others. Beyond this, the intrinsically anisotropic Weyl cone
with quadratic or cubic dispersion will induce novel physics
absent in a single Weyl fermion, such as unconventional
correlation effects (Jian and Yao, 2015; Lai, 2015; Ahn,
Hwang, and Min, 2016; Roy, Goswami, and Juričić, 2017)
and unique quantum transports (Chen and Fiete, 2016; Dai
et al., 2016; Li, Roy, and Das Sarma, 2016; Huang, Zhou, and
Shen, 2017; Park et al., 2017). The double Weyl nodes are
predicted to exist in the ferromagnetic phase of HgCr2Se4, with
one pair of double Weyl nodes along the kz direction (G. Xu
et al., 2011), as well as in SrSi2 (S.-M. Huang et al., 2016),
whereas cubic-Weyl nodes have not yet been found. Liu and
Zunger (2017) systematically searched for and summarized
possible material candidates with quadratic and cubic band
crossings using density functional theory, suggesting the
existence of cubic Dirac points in AMoX3 (A ¼ Na, K, Rb,
In, Tl; X ¼ S, Se, Te) materials.
In condensed-matter systems, the richness of space-group

symmetries gives rise to a variety of TSMs. Herewe catalog the
known TSMs from two major aspects, i.e., the nature and the
key attributes of band crossings. However, we point out that
the full classification of TSMs has not yet been obtained since
many new types of band crossings continual to be predicted or
realized in solids. A general classification of degeneracies in
1651magnetic groups was recently performed (Cano, Bradlyn,
andVergniory, 2019); however, a full list of candidate materials
is still lacking due to the complexity of magnetic order. Given
the diversity of space-group symmetries, it is expected that
more and more TSMs with new types of band crossings will be
identified in the near future.
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III. TOPOLOGICAL SEMIMETALS WITH 0D NODAL
POINTS

A. Dirac semimetals

DSMs are characterized by a fourfold Dirac point, which is
usually formed by two spin-degenerated and linearly dis-
persed bands. In recent years, several DSMs have been

identified, including the Na3Bi, Cd3As2, and PdTe2 families.
We now highlight some DSMs and discuss their main features.

1. Dirac semimetals Na3Bi and Cd3As2
a. Theoretical prediction and ARPES

As the first experimental confirmed 3D TSMs, Na3Bi and
Cd3As2 have attracted extensive attention since their discov-
ery. Wang et al. (2012, 2013) predicted that DSM might be
realized in a hexagonal phase of alkali pnictides A3B
(A ¼ alkali metal, B ¼ As, Sb, or Bi) represented by Na3Bi
and a tetragonal structure of Cd3As2 material. Taking Na3Bi
as a representative, we see that it crystallizes in the hexagonal
space group P63=mmc with C3 rotation symmetry, which is
crucial for the stabilization of Dirac points. The calculated
electronic structure without SOC [Fig. 10(a)] shows a band
inversion at the Γ point. In the presence of SOC, most of the
band crossings of the two inverted bands are gapped out,
except for band crossings along the rotational axis, i.e., the
Γ-A axis because the two crossing bands belong to two
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(c)

(b)
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FIG. 10. (a) Calculated band structure of Na3Bi with and without including the SOC. (b) Bulk and projected ð010Þ surface BZs of
Na3Bi.The red arrows indicate the momentum location of the Dirac points. (c) Schematic band dispersions near the Dirac points in the
kDx -kDy and kDx -kDz planes, respectively. (d) 3D ARPES intensity plots, showing the band dispersion of the bulk Dirac cone along the in-
plane (kDx -kDy -plane) and out-of-plane (kDy -kDz -plane) directions, respectively. (e) ARPES intensity plot shows the band dispersion of the
upper Dirac cone along the Γ̄-M̄ direction after the in situK doping. Adapted from Wang et al., 2012, and Liu et al., 2014b.

Quadratic (C = ±2) Cubic (C = ±3)Lorentz (C = ±1)  

FIG. 9. Band crossings with linear, quadratic, and cubic
dispersions.
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different irreducible representations under C3 rotational sym-
metry. Since both the T and P symmetries are present in this
system, each band is spin degenerate; therefore, the band
inversion results in two isolated Dirac points along the Γ-A
line, as illustrated in Fig. 10(b). In the vicinity of each Dirac
point, the Dirac bands disperse linearly along all the kx, ky,
and kz directions, but with different Fermi velocities. The
energy-momentum relation near the Dirac point can thereby
be written as ED ¼ νxkDx þ νykDy þ νzkDz , where νx, νy, and νz
are the Fermi velocities along the x, y, and z directions,
respectively, and kDx , kDx , and kDx represent the momentum
measured from the Dirac point. Specifically, in Na3Bi,
νx ∼ νy, and νx ∼ 13νz this gives rise to a nearly isotropic
2D Dirac cone on the kx-ky plane, and a highly anisotropic 2D
Dirac cone on the kx-kz or ky-kz plane, as shown in Fig. 10(c).
With the unique capability to directly visualize the elec-

tronic structure of a single crystal, ARPES has played an
important role in the verification of TSMs. The first TSM
to be experimentally verified by ARPES is the DSM Na3Bi
(Liu et al., 2014b). Figure 10(d) summarizes the ARPES
measurements of two projections of 3D Dirac cones in the
kx − ky − E and ky − kz − E subspaces, showing a nearly
isotropic 2D Dirac cone and a highly anisotropic 2D Dirac
cone, respectively. These results, which are consistent with the
prediction made by Wang et al. (2012), directly demonstrate a

pair of 3D anisotropic Dirac cones with linear dispersions in
Na3Bi. Furthermore, the upper branch of the Dirac cone was
also accessed by in situ K-atom surface doping, as shown in
Fig. 10(e), providing direct evidence for the existence of
nongap bulk band crossings, i.e., the Dirac point, in Na3Bi.
As discussed, each Dirac point can be regarded as two Weyl

points of opposite monopole charge overlapping with each
other as long as the crystalline symmetry protecting the band
crossings stands. This fact leads to the coexistence of both
bulk 3D Dirac cones and Fermi-arc surface states on certain
surfaces. Like WSMs, the Fermi arcs in DSMs connect the
projection of two Dirac points. Distinctively, there should be
one pair of Fermi arcs that start or end at the projection of one
Dirac point since each Dirac point consists of two Weyl points
of opposite chirality. We now return to Na3Bi, shown in
Fig. 10(b). On the ð001Þ surface, the two Dirac points project
onto the same Γ̄ point and the projection of the bulk 3D Dirac
cone overlaps with the surface states, so the Fermi-arc surface
states are invisible. In contrast, for the side ð010Þ and ð100Þ
surfaces, on which two Dirac cones are projected at two
different points, the two surface Fermi arcs that connect the
projection of two Dirac points can be resolved, as shown in
Figs. 11(a) and 11(b). The two surface bands cross each other
at the TRIM Γ̄ point and form a Dirac cone that is well
separated from the bulk states and therefore ARPES
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FIG. 11. (a) Calculated Fermi-arc surface states and their spin textures (in-plane components) for the ð010Þ surface of Na3Bi.
(b) Similar to (a), but obtained from the fitted effective Hamiltonian with additional exchange field h1 ¼ 6 meV. (c) Calculated band
structure of Na3Bi for the ð100Þ surface. (d) ARPES intensity plot at EF in the ð100Þ surface of Na3Bi recorded at hυ ¼ 55 eV. SS,
surface states. (e) ARPES intensity plot for 2D k slices shown in (d). Adapted from Wang et al., 2012, and S.-Y. Xu et al., 2015d.
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detectable. Indeed, both the Fermi arcs and the accompanying
surface Dirac cones have been confirmed by subsequent
ARPES measurements on the ð100Þ surface of Na3Bi, as
summarized in Figs. 11(d) and 11(e) (S.-Y. Xu et al., 2015d).
These results demonstrate that Na3Bi is a topological DSM

that features a pair of Fermi-arc surface states connecting the
projection of two Dirac points on the side surface. It seems
that the two Fermi arcs form a closed Fermi surface at EF that
is similar to the Dirac cone surface states of topological
insulators. Intrinsically, the Dirac cone surface states are
different from those of TIs in the following two aspects.
First, as shown in Figs. 11(a) the seemingly closed surface is
formed by two Fermi arcs that eventually merge into the bulk
states at the Dirac points; hence, the Fermi velocity of surface
Dirac bands is ill defined at the two singular points corre-
sponding to the projection of bulk Dirac points. The arc nature
of the surface states is further illustrated in Fig. 11(b), where
under an exchange field that breaks T symmetry each Dirac
point splits into two separate Weyl points in momentum space.
Consequently, the seemingly closed Fermi surface also splits
into two open segments, which are precisely Fermi arcs that
connecting the projection of two Weyl point of opposite
chirality. Second, the spin texture of surface states has a
helical structure, similar to that of TIs, while it does not always
obey the “spin-momentum locking” feature. The magnitude of
the spin vector vanishes at the singular points.
Theoretically, Na3Bi is an ideal DSM with a single pair of

Dirac points located exactly at EF. In practice, Na3Bi was
found to be unstable in air, making it challenging for
experimental verification and future applications. On the other
hand, the low-temperature phase (space group I41cd) of
Cd3As2 was also predicted to exhibit a single pair of Dirac
points near EF along the Γ-A axis resulting from the band
inversion at the Γ point, and the Dirac points are protected by
the C4 rotational symmetry instead of the C3 rotational
symmetry (Wang et al., 2013). We point out that Cd3As2
has relatively complex crystal structures as a function of
temperature (Steigmann and Goodyear, 1968; Pietraszko and
Åukaszewicz, 1973; Ali, Gibson et al., 2014). Nevertheless,
the Dirac points in Cd3As2 have also been confirmed by
ARPES (Borisenko et al., 2014; Liu et al., 2014a; Neupane
et al., 2014). Liu et al. (2014a) concluded the presence of a
pair of 3D Dirac nodes along the ½112� axis (or alternatively,
along the ½111� axis when an approximately cubic unit cell is
considered), while Borisenko et al. (2014) and Neupane et al.
(2014) reported the observation of a pair of 3D Dirac cones at
the C4 rotational axis, i.e., the ½001� axis, which is consistent
with the expectations based on symmetry arguments, as
discussed. Moreover, a more recent vacuum ultraviolet
(VUV) ARPES experiment (Roth et al., 2018) performed
on the ð112Þ natural cleavage surface of Cd3As2 also revealed
a sharp Dirac cone that closely resembles the one previously
reported on by Liu et al. (2014a)-. However, they concluded
that the observed Dirac cone does not come from the bulk but
instead originates from the surface states based on systematic
photon-energy-dependent ARPES measurements.
In addition to the disagreements in ARPES measurements,

there are considerable discrepancies in Cd3As2 among
ARPES, STM (Jeon et al., 2014), magnetotransport (Zhao
et al., 2015b), and magneto-optical measurements (Akrap

et al., 2016; Hakl et al., 2018). One primary difference is the
energy scale of the Dirac cones ED, i.e., the energy distance
between the upper and lower saddle points of one pair of Dirac
cones. Specifically, while ARPES measurements imply that
ED extends over a few hundred meV, the magneto-optical and
STM measurements demonstrate a much lower energy scale
(several tens of meV), which we discuss later. Other discrep-
ancies, such as the momentum location and the shape of the
Dirac cone, were systematically summarized in a recent
review on Cd3As2 (Crassee, Sankar et al., 2018). Overall,
there is still some controversy on the structure of the Dirac
cones, and further bulk-sensitive soft x-ray ARPES measure-
ments might be better able visualize the bulk Dirac cones in
the low-temperature polymorph of Cd3As2.

b. STM and STS

Like ARPES, the real-space surface measurement tech-
niques STM and STS played an important role in the studies
of TSMs. As with ARPES, STM measurements have been
performed on both Cd3As2 (Ali, Gibson et al., 2014; Jeon
et al., 2014) and Na3Bi (Kushwaha et al., 2015), showing the
existence of Dirac points with linear band dispersions.
Figure 12 summarizes the main STM results from the
ð112Þ natural cleaved surface of Cd3As2. The Fourier-
transform scanning tunneling spectroscopy (FT-STS) mea-
surements at different energies show an isotropic set of
scattering wave vectors [Fig. 12(a)]. Specifically, Jeon et al.
(2014) found that the outermost scattering vectors [the red dots
in Fig. 12(a)] exhibit an approximately linear energy evolution,
demonstrating the existence of Dirac bands, though the band
dispersions close to the Dirac point were not resolved.
In addition to the FT-STS technique, scanning the energy

structure of Landau levels formed in strong magnetic fields
can provide another way to characterize the bulk electronic
structure. As mentioned, in 3D materials applying a mag-
netic field leads to the formation of Landau levels dispersing
along the momenta parallel to the field. The van Hove
singularities of these Landau levels generate peaks in the
density of states, which can be measured by STM. For 3D
Dirac materials, the corresponding Landau-level energies for
a linearly dispersing band are expected to scale as
EN ¼ EDP � νF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏeBjNjp

, where EDP is the Dirac point
energy, e is the electron charge, B is the magnetic field, N is
the orbital index (N ¼ 0, �1, �2, �3), and νF is an effective
Fermi velocity averaged over the directions perpendicular to
the magnetic field. Hence, the van Hove singularities are
expected to occur for all Landau levels with nonzero orbital
index N, and the square-root dependence of these singular-
ities in the energy spectrum indicates the linear dispersion of
Dirac bands with the slope corresponding to the effective
Fermi velocity. Indeed, Jeon et al. (2014) utilized this
technique to quantify the bulk 3D dispersion of Cd3As2
by applying a magnetic field perpendicular to the cleaved
ð112Þ surface of the sample. Figures 12(b) and 12(c)
summarize their main Landau-level STS measurements.
The measured dI=dV spectra exhibit intensity oscillations
with pronounced peaks dispersing toward positive energies
with increasing magnetic field, indicating the formation of
electronlike Landau levels in Cd3As2. The energy position of
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these Landau-level peaks exhibits a scaling EN ∝
ffiffiffiffiffiffiffi
NB

p
,

providing evidence of the linear dispersion of the bands. In
addition, the measured slope or effective νF of the Dirac
band, i.e., 9.4 × 105 m=s, is consistent with that of the
quasiparticle interference (QPI) results [Fig. 12(c)], con-
firming the observation of Dirac bands with both techniques.
Note that Jeon et al. (2014) performed Landau-level simu-
lations and concluded that there is a much smaller energy
scale (∼20 meV) of massless Dirac fermions in Cd3As2, in
contrast to the ARPES results.

c. Quantum transport

Quantum transport measurement is another important tool
for characterizing 3D topological materials. In recent years,
DSMs, especially Na3Bi and Cd3As2, have been studied
extensively using quantum transport measurements. Many
transport phenomena have been revealed, including high
carrier mobilities and large linear magnetoresistivity (Liang
et al., 2015), strong SdH oscillations and a nontrivial π Berry
phase (He et al., 2014), chiral-anomaly-induced NLMR
(Xiong et al., 2015) and PHE effect (Guo et al., 2016; Li,
Wang et al., 2018; Liang, Lin et al., 2018; Wu et al., 2018),
thermal power suppression (Jia et al., 2016), Fermi-arc-
induced anomalous quantum oscillation, the Aharonov-
Bohm effect (Moll, Nair et al., 2016; Wang, Li et al.,

2016), and the 3D quantum Hall effect (QHE) (C. Zhang
et al., 2019b), and the anomalous Hall and Nernst effect
(Liang et al., 2017; Liang et al., 2018), as well as point-
contact-induced superconductivity (Wang, Wang et al., 2016).
In the following, we focus on three of these features: SdH
oscillations, chiral-anomaly-induced NLMR and PHE, and
Fermi-arc transport. For more information about the transport
properties of DSMs, see He and Li (2016), Lu and Shen
(2017), Song et al. (2017), Armitage, Mele, and Vishwanath
(2018), Gooth et al. (2018), Schoop, Pielnhofer, and Lotsch
(2018), and Wang and Wang (2018).
SdH oscillations and nontrivial π Berry phase.—Quantum

oscillations stem from the Landau quantization of electronic
states under a high magnetic field. As the applied magnetic
field is increased, EF crosses over the quantized Landau
levels one after another, leading to an oscillation of the
density of states as well as the associated physical param-
eters, such as magnetoresistance. The oscillation of the
density of states can be detected by Landau-level STS, as
shown in Fig. 12(b). On the other hand, the oscillation
of magnetoresistance, better known as SdH oscillations,
can be directly measured by transport measurements.
Semiclassically, the SdH oscillation for a 3D Dirac system
can be described by the Lifshitz-Kosevich (LK) theory
(Lifshitz and Kosevich, 1956; Murakawa et al., 2013; He
et al., 2014):
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FIG. 12. STM measurements of Cd3As2. (a) Fourier transforms of dI=dV conductance maps of Cd3As2 at different energies. The red
and cyan dots show the scattering of the bulk conduction band and a second electronlike band, respectively. (b) Landau-level point
spectra measured at 400 mK (I ¼ 400 pA, V ¼ −250 mV, Vosc ¼ 0.8 mV). Indices correspond to the Landau-level assignment.
(c) Summary of the Dirac conduction band deduced from the quasiparticle interference pattern (indicated by red dots) and the Landau-
level spectra (indicated by yellow circles). Blue and green curves are guides for the eye. Adapted from Jeon et al., 2014.
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Δσxx ∝ cos

�
2π

�
F
B
þ 1

2
þ β

��
; ð14Þ

where Δσxx is the oscillatory amplitude of longitudinal
conductivity σxx, F is the SdH frequency of the oscillations,
and 2πβ is the Berry phase. For the parabolic band
dispersion as in the case of conventional metals, β should
be zero; for Dirac systems with linear dispersion, there
should be a nontrivial π Berry phase as the electron orbits
enclose a single Dirac point.
The SdH measurement is powerful: in principle, various

physical parameters, such as carrier density and electron
mobility, the geometry of the 3D Fermi surface, the cyclotron
effective mass, and the scattering mechanism, can be
extracted from the shape, period, and phase of the quantum
oscillations. Therefore, this technique has been widely
applied to investigate the electronic structure of DSMs,
including Na3Bi (Xiong et al., 2015) and Cd3As2 (He et al.,
2014; Cao et al., 2015; Feng et al., 2015; Liang et al., 2015;
Narayanan et al., 2015; Pariari, Dutta, and Mandal, 2015;
Zhang, Liu et al., 2015; Pan et al., 2016). Figure 13 shows an
example of SdH oscillation measurements on the Cd3As2
single crystal. Oscillations of magnetoresistance as a func-
tion of 1=B can be resolved in Fig. 13(a). By employing the
fast Fourier transform method, He et al. (2014) identified a
single oscillation frequency of F ¼ 58.3 T. Therefore, one
can directly obtain the cross-sectional area of the Fermi
surface normal to the applied field (AF) via the Onsager
relation F ¼ ðΦ0=2π2ÞAF, where Φ0 ¼ h=2e is the flux
quantum. Then the corresponding Fermi momentum (kF)
can also be extracted by assuming a circular Fermi surface

cross section, i.e., AF ¼ πk2F. A
ð112Þ
F and kð112ÞF were deter-

mined as ∼5.6 × 10−3−2 and ∼0.042−1, respectively, which is
in agreement with the ARPES measurements.
The nontrivial π Berry phase, a distinct feature of

Dirac fermions, can also be identified by SdH oscillations.
Generally, any closed cyclotron orbit that is quantized
under an external magnetic field can be described by the

Lifshitz-Onsager quantization rule (Lifshitz and Kosevich,
1956)

AF
ℏ
eB

¼ 2π

�
nþ 1

2
þ β þ δ

�
; ð15Þ

where n is the Landau-level index, 2πβ is the Berry phase, and
2πδ is the additional phase shift that results from the curvature
of the Fermi surface in the kz direction, taking the value δ ¼ 0
for a quasi-two-dimensional cylindrical Fermi surface and δ ¼
�1=8 (þ for holes and − for electrons) for a corrugated 3D
Fermi surface. Therefore, the Berry phase can be experimen-
tally accessed by plotting the Landau index (n) versus the
inverse magnetic field (1=B) and tracking the intercept in the
limit B → ∞. Indeed, the nontrivial π Berry phase has been
detected in Cd3As2. As an example, Fig. 13(b) presents the
Landau index plots of two Cd3As2 single crystals from He
et al. (2014). As expected from the Lifshitz-Onsager quan-
tization rule, the data points from the two samples fall into two
straight lines, and the linear extrapolation gives the intercepts
of 0.58� 0.01 and 0.56� 0.03, respectively. Before coming
to a conclusion, we note that one should always keep in mind
whether oscillation peaks or valleys are used to identify the
Landau indices since the two different treatments can intro-
duce an artificial phase difference of π. This difference might
be confusing, as a trivial state with n identified from
oscillation peaks could have the same intercept value with
a nontrivial Dirac state with n identified from oscillation
valleys. Returning to Fig. 13(b), He et al., 2014 assigned
integer Landau indices to the valley positions. Thus, according
to the Lifshitz-Onsager quantization rule the obtained inter-
cepts are identical to β þ δ, i.e., 0.58 and 0.56. This value was
claimed as strong evidence for the existence of a nontrivial π
Berry phase (β ¼ −1=2) in Cd3As2.
One should remember that the applied magnetic field in

Fig. 13 is fixed along the ð112Þ direction rather than the
rotational axis, i.e., the ð001Þ direction, and this breaks the C4

rotational symmetry in Cd3As2, leading to a gap opening at
the Dirac point. Consequently, the Berry phase is no longer π

FIG. 13. SdH oscillations of Cd3As2. (a) SdH oscillatory component ΔRxx as a function of 1=B at various temperatures. The current is
in the ð112Þ plane, and the magnetic field is perpendicular to the ð112Þ plane. (b) Landau index plot n vs 1=B for two Cd3As2 samples.
The filled circles denote the integer index (valley), and the empty circles indicate the half-integer index (peak). From He et al., 2014.
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and will change as a function of magnetic fields or the induced
mass term. If the gap is large enough, the Berry phase will
reduce to zero. In the case of Fig. 13, the field-induced Dirac
gap is small (∼8 meV at 14.5 T), which might explain the
observation of the nontrivial Berry phase. Actually, several
research groups (Cao et al., 2015; Xiang et al., 2015; Zhao
et al., 2015b) reported that the value of the Berry phase
depends on the magnitude, orientation, and angle of the
magnetic field by systematic SdH measurements, which might
suggest possible topological phase transitions induced by the
magnetic field.
Negative longitudinal magnetoresistance and planar Hall

effect.—In a 3D DSM, the Dirac point described by a four-
component massless Dirac equation is composed of two
overlapped Weyl nodes with opposing monopole charges.
Theoretically, applying a magnetic field breaks the T sym-
metry, and the two overlapping Weyl points in the DSMs
would be split into two separate Weyl points along the

direction of the external magnetic field, resulting in a
transition from the DSM to the WSM phase (Gorbar,
Miransky, and Shovkovy, 2013). Indeed, negative magneto-
resistance, a simple signature of the Weyl fermion-induced
chiral anomaly, has been observed in both Na3Bi and Cd3As2
single crystals (Li et al., 2015; Xiong et al., 2015; Li, He et al.,
2016; C. Zhang et al., 2017b), thus demonstrating the
emergence of chiral Weyl fermions under the magnetic field.
Before showing the data, we note that many conditions

need to be met to observe the chiral-anomaly-induced NLMR
in DSMs or WSMs, including clean single crystals with
negligible internode scattering and the quantum limit con-
dition with only nontrivial Dirac or Weyl cones located at EF.
The quantum limit condition explains why the chiral-
anomaly-induced NLMR is observed in Na3Bi bulk materials
and Cd3As2 nanostructures with near-EF Dirac points and low
carrier density [Fig. 14(c)], while in n-type Cd3As2 bulk
materials with ∼200 meV below EF Dirac points and high

(c)

(b)(a)

(d)

Na3Bi

B (T) B (T)

Cd3As2

FIG. 14. (a) Resistance measured at 4.5 K with the applied magnetic field direction changing from perpendicular (ϕ ¼ 90°) to parallel
(ϕ ¼ 0°) to the electric-field direction in the x-y plane (½001� surface) of Na3Bi (inset). (b) Longitudinal magnetoresistance of Na3Bi
measured at temperatures ranging from 4.5 to 300 K, with BkIkx. (c) Angle-dependent magnetoresistance of the Cd3As2 microribbon
measured at 2 K. Here the applied constant current is along the [110] growth direction. (d) Corresponding temperature-dependent
longitudinal magnetoresistance of the Cd3As2 microribbon. Adapted from Xiong et al., 2015, and Li, He et al., 2016.
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carrier density a large positive linear magnetoresistance
was observed (Liang et al., 2015). Figure 14 summarizes
the measured NLMR from Na3Bi bulk materials and Cd3As2
nanostructures. In both materials, the observed negative
magnetoresistance shows the following features: (i) sensitivity
to the angle between magnetic and electrical fields,
and (ii) robustness against temperature, with the observed
negative magnetoresistance persisting up to 100 K in Na3Bi
[Fig. 14(b)] and 300 K in Cd3As2 [Fig. 14(d)]. This sample
and electric-field geometry-independent, carrier density, and
angle-dependent NLMR was attributed to the chiral anomaly
effect.
It is well known that the NLMR may have other physical

origins, which requires consideration before ascribing the
NLMR to the chiral anomaly. One origin is the quantum-
interference-induced weak localization effect (Kim et al.,
2013; Lu and Shen, 2015), which usually appears at low
temperatures since the phase coherence length decreases
rapidly with increasing temperature. Because the observed
NLMR is robust against temperature in both Na3Bi and
Cd3As2, it cannot be fully attributed to the weak localization
effect. In addition, the observed NLMR cannot be ascribed to
the crystal anisotropy effect, as it is a sample and is electric
field geometry independent. Last, the NLMR may arise from
the inhomogeneous current distribution inside the sample,
the so-called current jetting effect (Yoshida, 1976; Hu,

Rosenbaum, and Betts, 2005). To study the influence of this
effect, C. Zhang et al. (2017b) performed a nonlocal transport
experiment in the Cd3As2 nanodevice and distinguished the
chiral-anomaly-induced NLMR from the conventional mag-
netoresistance anisotropy through valley diffusion.
In addition to the NLMR, the PHE, a recently arising

phenomenon closely related to the chiral anomaly and the
nonzero Berry curvature, has also been observed in Cd3As2
microstructures or nanostructures (Guo et al., 2016; Li, Wang
et al., 2018; Wu et al., 2018). Figure 15 summarizes the main
result from Cd3As2 nanoplates. Wu et al. (2018) concluded
that the observed PHE originated from the chiral anomaly
based on the following evidence: (1) The observed planar Hall
resistivity shows a strict sin 2θ angular dependence and can be
well fitted by Eq. (9). (2) Accompanied by the large planar
Hall resistivity, a negative longitudinal magnetoresistivity is
observed, both of them can be suppressed synchronously by
increasing the temperature, indicating that the two effects are
engendered by the same origin. (3) In contrast to the conven-
tional Hall effect, which originates from the Lorentz force, the
observed planar Hall resistivity does not obey the antisym-
metry principle, i.e., ρxy ≠ −ρyx. This behavior further signi-
fies that they are induced by the chiral anomaly. (4) The
extrinsic current jetting effect is minimized by using nano-
plates with a large aspect ratio and well-separated Hall-bar
contacts.

(a)

(c) (d)

(b)

10 µm

FIG. 15. PHE of Cd3As2 nanoplates. (a) Scanning electron microscope (SEM) image of a Cd3As2 nanoplate device. Lower left inset:
schematic of the measurement configuration. Lower right inset: the thickness of the nanoplates determined by SEM is ∼90 nm.
(b),(c) Measured planar Hall resistivity and negative longitudinal magnetoresistivity at different temperatures. (d) Corresponding
temperature-dependent amplitudes of both the planar Hall resistivity and the negative longitudinal magnetoresistivity. Adapted from
Wu et al., 2018.
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In addition to Cd3As2, the PHE has been observed in other
TSMs, including ZrTe5 (Li, Zhang et al., 2018; Liang et al.,
2018), GdPtBi (Kumar et al., 2018), WðMoÞTe2 (Chen et al.,
2018; Wang, Gong et al., 2018; Liang et al., 2019), VAl3
(Singha et al., 2018), Na3Bi (Liang, Lin et al., 2018), the
TaAs family (J. Yang et al., 2019; Q. R. Zhang et al., 2019),
the PdTe2 family (Vashist et al., 2018; Xu, Wang et al., 2018;

Li et al., 2020; Meng et al., 2020), NiTe2 (Q. Liu et al., 2019),
ZrSiSe (Wei et al., 2019), and Co3Sn2S2 (Shama, Gopal, and
Singh, 2020). We point out that the chiral anomaly is not the
origin of the PHE in some of these materials. Actually, the
PHE has a number of other origins in various systems,
including the orbital magnetoresistance effect (Kumar et al.,
2018), interactions of magnetic order and spin-orbit coupling

(c)

(b)(a)

(d)

(e)

59 nm
66 nm
71 nm

(f)

z

x

FIG. 16. (a) Weyl orbits in a slab of WSM of a finite thickness (L) in the presence of a perpendicular magnetic field. (b) Fourier
transform of magnetoresistance measured on the Cd3As2 microplates (150 nm) at 2 K, with magnetic fields parallel (90°, blue curve) and
perpendicular (0°, red curve) to the ð010Þ surface, respectively. (c) Aharonov-Bohm oscillations in conductance as a function of
magnetic flux, measured at variable temperatures in a Cd3As2 nanowire with a diameter of ∼115 nm. (d) Magnetic field dependence of
Hall resistance Rxy measured at the three pairs of Hall electrodes, in a wedge-shaped Cd3As2 nanostructure, as illustrated in the inset.
Scale bar, 15 μm. (e) Magnetic field dependence of Ryx measured in ð112Þ-oriented Cd3As2 thin films with thicknesses of 12 and 23 nm.
The corresponding filling factors are labeled, with determined degeneracy factors of 2 and 1 for 12 and 23 nm thick films, respectively.
(f) Gate voltage (VG) dependence of Rxy under a rotating magnetic field from 0° (along the ½112� crystal direction) to 54.7° (along the
½001� crystal direction). Adapted from Potter, Kimchi, and Vishwanath, 2014, Moll, Nair et al., 2016, Wang, Li et al., 2016, Uchida
et al., 2017, Lin et al., 2019, and C. Zhang et al., 2019b.
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in ferromagnetic metals (Tang et al., 2003; Nazmul et al.,
2008), and topological surface states in TIs (Taskin et al.,
2017). Beyond these, as with NLMR, the planar Hall
resistivity measurements suffer from extrinsic effects
such as the current jetting effect. In short, considering the
various physical origins of NLMR and PHE and to provide
reliable evidence for the chiral-anomaly-induced NLMR and
PHE in DSMs and WSMs, it is important to obtain a
comprehensive understanding of their band structures, such
as the locations of Dirac and Weyl points, and to exclude
other possible origins through systematic magnetotransport
measurements.
Fermi-arc transport.—In contrast to the surface-sensitive

ARPES and STM techniques, transport experiments are
usually bulk sensitive. Indeed, the aforementioned transport
phenomena in DSMs are all related to their bulk states, i.e.,
linearly dispersed Dirac cones. As we know, TSMs demon-
strate their nontrivial topology not only from the bulk states
but also from the topological surface states, such as the Fermi
arcs of Dirac and Weyl fermions. Thus, one would ask
whether it is possible to detect the Fermi arcs in topological
Dirac or WSMs with transport measurements.
Potter, Kimchi, and Vishwanath (2014) gave a positive

answer when considering a slab of WSM of finite thickness.
As illustrated in Fig. 16(a), in the simplest case, assuming that
the WSM has only one pair of Weyl points along the kz
direction, the Fermi-arc surface states are thus expected on the
top and bottom ð010Þ surfaces, on which the projections of the
two Weyl points are well separated in the k space. In the
presence of a static magnetic field perpendicular to the ð010Þ
surface, the surface electrons may propagate between the top
and bottom surfaces via the bulk states without destroying the
phase coherence if the propagation distance, i.e., the thickness
of the slab, is smaller than the quantum mean free path of the
electron. Under such conditions, the two Fermi arcs connect-
ing the projection of Weyl nodes with opposite chirality from
the top and bottom surfaces and the chiral bulk states couple
and form a novel closed magnetic orbit, namely, the Weyl
orbit. This Weyl orbit, which appears only in DSMs and
WSMs with finite thickness under a perpendicular magnetic
field, can be viewed as a sign of the Fermi arcs.
Experimentally, such a Weyl orbit can be detected by transport
measurements, as it will lead to additional quantum oscil-
lation. Indeed, such Fermi-arc oscillation was observed in
Cd3As2 microflakes and nanoflakes (Moll, Nair et al., 2016;
G. Zheng et al., 2017). Figure 16(b) shows the main results
from ∼150 nm thickness Cd3As2 microflakes. While a single
frequency (FB ¼ 36.5 T) arising from the bulk Fermi surface
was observed when the magnetic field was applied parallel to
the ð010Þ surface (90°), an additional higher frequency
(FS ¼ 61.5 T) appeared for the perpendicular magnetic field
(0°). Systematic measurements and analysis found that the
observed additional oscillation strongly depends on the
sample thickness and the angle of the magnetic field, with
the oscillating frequency close to the theoretical calculation of
the Fermi-arc oscillation frequency. Therefore, the observa-
tion was ascribed to the manifestation of the Weyl orbits
connecting the Fermi arcs from the opposing ð010Þ surfaces
of Cd3As2.

Along with the Fermi-arc oscillations, the Aharonov-Bohm
(AB) effect (Bardarson, Brouwer, and Moore, 2010; Peng
et al., 2010; Zhang and Vishwanath, 2010) provides an
effective method for proving the surface-state transport.
Concretely, for a nanowire with perimeter comparable to
the mean free path of carriers, due to the quantum confinement
effect, the surface bands are enforced into discrete subbands.
As it sweeps the magnetic field parallel to the nanowire
direction, the Fermi energy crosses over the subbands one
after another, leading to an oscillation of the carrier density of
states, namely, AB oscillations. The corresponding oscillation
period is described by Φ=Φ0, where Φ is the total magnetic
flux threading the nanowire cross section and Φ0 ¼ h=e is the
flux quantum. Such AB oscillations have been observed in TIs
(Peng et al., 2010) and DSM nanowires (Wang, Li et al.,
2016). Figure 16(c) shows the main result from a Cd3As2
nanowire with a diameter ∼115 nm that was reported by
Wang, Li et al. (2016). Upon increasing the applied parallel
magnetic field along the nanowire ½112� direction, they
observed periodic conductance oscillations, with the conduct-
ance oscillation peaks appearing at odd integers of h=2ewith a
period of h=e, signifying that the Fermi-arc surface states were
induced by the AB effect.
The third consequence of the Weyl orbits is the so-called

3D QHE predicted by Wang, Sun et al. (2017). Unlike the
conventional QHE that originated from 2D electron gas, the
3D QHE in WSMs is supported by the bulk-state-connected
top and bottom surface Fermi arcs. Therefore, it can be
viewed as another transport signature of Fermi arcs.
Experimentally, the QHE has been observed in both
Cd3As2 thin films and Cd3As2 nanostructures (Uchida et al.,
2017; C. Zhang et al., 2017a, 2019b; Nishihaya et al., 2018;
Schumann et al., 2018; Lin et al., 2019); however, the
underlying mechanism has remained controversial. To be
more specific, C. Zhang et al. (2019b) provided evidence of
Weyl-orbit-based QHE in wedge-shaped Cd3As2 nanostruc-
tures by observing thickness-dependent (50–100 nm) and
angle-dependent (direction of the magnetic field) quantum
Hall resistance, as partly shown in Fig. 16(d). Uchida et al.
(2017) also observed thickness-dependent quantum Hall
resistance in ð112Þ-oriented Cd3As2 thin films with thick-
nesses of up to 23 nm [Fig. 16(e)], and they attributed the
observed QHE to the confined 2D bulk subbands. The third
mechanism solely for DSMs consists of the surface states on
a single surface. Concretely, the two surface Fermi arcs on a
single surface of DSMs can form a closed Fermi loop, and
thereby can support the conventional QHE without involving
the Weyl orbits. Such a scenario was recently confirmed
through observations of both the odd and even integer
QHE in ∼80 nm Cd3As2 nanoplates with a magnetic field
along the ½001� and ½112� crystal directions, respectively, as
shown in Fig. 16(f) (Lin et al., 2019). In summary, the QHE
in DSMs or WSMs can have different origins. Further
investigations are required to distinguish the Weyl-orbit-
induced QHE from other mechanisms. For example, high-
quality WSM films can naturally exclude the surface-state
scenario in DSMs. STM measurements should be able to
probe the chiral edge states on one edge of the top and
bottom surfaces.
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d. Optical spectroscopy

Optical spectroscopy is another powerful tool to evidence
the 3D massless Dirac fermions. Consider a noninteracting
electron system consisting of 3D isotropic Dirac or Weyl
cones with the EF located near the nodes. The real part of
optical conductivity that arises from interband transitions
across the linear Dirac or Weyl cone is given by (Hosur,
Parameswaran, and Vishwanath, 2012; Ashby and Carbotte,
2013; Bácsi and Virosztek, 2013; Timusk et al., 2013;
Neubauer et al., 2016)

σ1ðωÞ ¼
e2N
12h

ω

νF
Θfℏω − 2EFg; ð16Þ

where N is the number of nondegenerate cones, νF is the
Fermi velocity, ω is the photon frequency, and Θfxg is the
Heaviside step function.
The linear frequency dependence of σ1ðωÞ has been

observed in several 3D Dirac systems, including quasicrys-
tals (Timusk et al., 2013), ZrTe5 (Chen, Zhang et al., 2015),
Cd3As2, and Na3Bi (Jenkins et al., 2016; Neubauer et al.,
2016), and has been considered strong evidence for 3D
massless Dirac fermions. Figure 17(a) shows the measured
σ1ðωÞ of the ½001�-oriented Cd3As2 (Neubauer et al., 2016),
from which three features can be deduced. First is the
observation of superlinear behavior of σ1ðωÞ with a broad
frequency (2000–8000 cm−1) and temperature (10–300 K)
range, and such behavior was interpreted as the manifesta-
tion of interband transitions between Dirac bands of sub-
linear dispersion. Second, the σ1ðωÞ at low temperature
almost vanishes at around 1300 cm−1, signifying the
position of the EF. Last, from Eq. (16), Neubauer et al.
(2016) further estimated the value of νF. As shown in the
inset of Fig. 17(a), the νF obtained is energy dependent and
ranges from 1.2 × 105 to 3 × 105 m=s. Here it is important to
mention that the νF determined from optical conductivity

contains contributions from all momentum directions; there-
fore, it is not as accurate for Cd3As2, which hosts quite
anisotropic Dirac cones.
Along with temperature and photon energy, the optical

properties of Cd3As2 have been explored in other parameter
spaces, such as magnetic field, carrier concentration, pres-
sure, and crystal orientations. Akrap et al. (2016) performed
magneto-optical measurements on both the ð112Þ- and
ð001Þ-oriented Cd3As2 samples and observed a

ffiffiffiffi
B

p
depend-

ence of the cyclotron resonance energy in both orientations,
as shown in Fig. 17(b). The

ffiffiffiffi
B

p
Landau-level resonance

persists up to the quantum limits and therefore is inconsistent
with the 3D massless Dirac fermions, in which the character-
istic B-independent zeroth Landau level dominates the
interband transitions in the quantum limits. Instead, the
observation was found to be consistent with the Kane-
Bodnar model (Kane, 1957; Bodnar, 1977), indicating that
the observed cyclotron resonance results from the so-called
massless Kane fermions. Based on the Landau-level spec-
troscopy, Kane and Bodnar further estimated that the
response of Dirac fermions appears at an energy scale
(below 40 meV) (Hakl et al., 2018) that is much smaller
than the early surface-sensitive VUV ARPES studies
(Borisenko et al., 2014; Liu et al., 2014a; Neupane et al.,
2014), in which the observed conical bands extend over a
few hundred meV. Bulk-sensitive soft x-ray ARPES should
be a good choice to visualize the bulk Dirac cones in Cd3As2.
In addition to the Landau-level resonance, other interesting
properties, such as the mass generation and topological
phase transition (Yuan et al., 2017), the nonuniform carrier
density (Crassee et al., 2018), the pressure-induced phase
transitions (Uykur et al., 2018), the efficient terahertz
harmonic generation (Cheng, Kanda et al., 2020), the
relaxation of the chiral anomaly (Cheng, Schumann et al.,
2019), and the large effective phonon magnetic moment
(Cheng, Schumann et al., 2020), were also revealed by
optical experiments.

FIG. 17. (a) Real part of the optical conductivity of a ½001�-oriented Cd3As2 sample measured at different temperatures. The black
dashed line represents σ1ðωÞ ∝ ω1.65, whereas the green line represents the linear fit. Inset: deduced Fermi velocity at 10 K. (b)

ffiffiffiffi
B

p
dependence of the Landau-level transition energy measured at 1.8 K, on ð001Þ- and ð112Þ-oriented Cd3As2 samples. The black dashed
and dotted lines show the calculated curves based on the gapless Kane and Dirac models, respectively. Adapted from Akrap et al., 2016,
and Neubauer et al., 2016.
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2. Type-II Dirac semimetals

a. Theoretical prediction and ARPES

Na3Bi and Cd3As2, which possess a pair of linearly
dispersed Dirac cones along the Γ-A direction, belong to
type-I DSMs. In addition to the Lorentz-preserving type-I
Dirac points, condensed-matter systems in 230 space groups
are also allowed to host Lorentz-violating type-II Dirac points,
which are manifested in highly tilted Dirac cones in the
energy-momentum space. Evoked by the discovery of type-II
Weyl points (Soluyanov et al., 2015), researchers have
predicted a variety of type-II DSMs, such as the VAl3 family
(T.-R. Chang et al., 2017), transition-metal dichalcogenides
(PtSe2, PtTe2, PdTe2, and PtBi2) (Huang, Zhou, and Duan,
2016), the KMgBi family (Le et al., 2017), C4Li (Cuamba
et al., 2017), the YPd2Sn class (Guo et al., 2017),
La1.77Sr0.23CuO4 (Horio et al., 2018), Heusler compounds
XInPd2 (X ¼ Ti;Zr;Hf) (Mondal et al., 2019), and NiTe2
(Ghosh et al., 2019). In the following, we discuss the type-II
DSM phase in the transition-metal dichalcogenides, which
have been experimentally verified by multiple research groups
(Noh et al., 2017; M. Yan et al., 2017; Zhang, Yan et al., 2017;
Bahramy et al., 2018; Clark et al., 2018; Fei et al., 2018; Fu
et al., 2019a).
Taking PtTe2 as a representative, as with Na3Bi, it has T ,P,

and C3 rotation symmetries, which are required for the
stabilization of type-II Dirac points. Figure 18(a) shows the

calculated bulk band structure of PtTe2 with the inclusion of
SOC. There is a clear band crossing feature at ∼0.9 eV below
EF along the Γ-A line. As the two crossing bands belong to
different irreducible representations under the C3 rotational
symmetry, the band crossing is protected against hybridiza-
tion. Owing to the coexistence of PT symmetry, the two
crossing bands are always doubly degenerate; thus, the
unavoidable band crossing forms a fourfold-degenerate
Dirac point at D ¼ ð0; 0; 0.346c�Þ, c� ¼ 2π=c, as illustrated
in Fig. 18(b). The Dirac cone is strongly tilted along the out-
of-plane (Γ-A) direction but not tilted along the in-plane
(S-D-T) direction, which is the characteristic feature of type-II
Dirac fermions. This 3D type-II Dirac cone has been directly
observed by ARPES measurements, as shown in Figs. 18(d)
and 18(e). However, the observed type-II Dirac points in
PtTe2 reside far below EF, which hinders the investigation of
unique transport or optical properties of type-II Dirac fer-
mions, as they make little contribution to the low-energy
quasiparticle excitations at EF. Recently Fei et al. (2018) and
Fu et al. (2019a) reported that the energy position of the type-
II Dirac points in PtTe2 could be easily tuned by element
substitution, such as that with Ir. As shown in Fig. 18(c),
1T − IrTe2, which is isostructural to PtTe2, has an electronic
structure similar to PtTe2 and hosts a pair of type-II Dirac
points at ∼0.2 eV above EF. The energy position of the
Dirac points can be further adjusted by Pt doping, and the
Dirac point can be tuned to EF in Ir1−xPtxTe2, with x ¼ 0.1, as
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FIG. 18. Type-II Dirac semimetal in PtTe2. (a) Calculated bulk band structures of PtTe2 along the in-plane (S-D-T) and out-of-plane
(A-Γ-A) directions through the Dirac point with SOC included. (b) Bulk BZ and the projected ð001Þ surface BZ, with high-symmetry
points indicated. Red dots (labeled as D) mark the positions of type-II Dirac points. (c) Calculated bulk bands of IrTe2 along the S-D-T
direction through the Dirac point with SOC included. (d),(e) ARPES intensity plots showing the band dispersion of the bulk Dirac cone
along the (d) in-plane and (e) out-of-plane directions, respectively. (f) Second derivative intensity plot showing the Dirac point lying
at EF for the x ¼ 0.1 (Ir1−xPtxTe2) sample. Dashed lines are guides for the eye indicating the linear Dirac bands. Adapted from M. Yan
et al., 2017, and Fei et al., 2018.
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demonstrated in Fig. 18(f). Thus, Ir1−xPtxTe2 offers a practical
platform for further study of the transport properties of type-II
Dirac fermions. The substitution of Pt in IrTe2 not only raises
the chemical potential, making the type-II Dirac points
approach EF, but also introduces bulk superconductivity into
the system, making Ir1−xPtxTe2 a promising material for
studying the TSC of both bulk and surface states in DSMs.

b. Quantum transport

In addition to ARPES, the geometry of 3D Fermi surfaces
in PdTe2 (Y. Wang et al., 2016b; Fei et al., 2017; Zheng et al.,
2018), PtTe2 (Fu et al., 2018; Pavlosiuk and Kaczorowski,
2018), and PtSe2 (Yang, Schmidt et al., 2018) have also been
investigated using SdH and de Haas–van Alphen (dHvA)
measurements. Take PdTe2 as a representative. Figure 19(a)
shows the measured oscillatory components of the out-of-
plane (Bkc) magnetization at various temperatures. By
employing the fast Fourier transform method, Fei et al.
(2017) identified multiple sets of oscillations [α to ζ in
Fig. 19(b)], which is in agreement with the multiband feature
of the PdTe2 compound. As with Eq. (14), the dHvA
oscillation of a 3D Dirac system can be described using
the LK formula (Lifshitz and Kosevich, 1956):

ΔM ∝ RTRDRS sin

�
2π

�
F
B
−
�
1

2
− ϕ

���
; ð17Þ

where RT ¼ χT= sin hðχTÞ is the temperature damping
factor, RD ¼ expð−χTDÞ is the Dingle damping factor,
and RS ¼ cosðπgm�=2meÞ is the spin damping factor.
χ ¼ 2π2kBm�=eBℏ, andm� andme are the effective cyclotron
mass and free electron mass, respectively. TD ¼ ℏ=2πkBτq is
the Dingle temperature, where τq is the cyclotron relaxation
time. The phase factor ϕ ¼ β − δ, where 2πβ is the Berry
phase and 2πδ is a second phase shift that takes values of 0 and
�1=8 for 2D and 3D Fermi surfaces, respectively. Several
physical parameters can be extracted based on the LK
formula. For example, at a fixed magnetic field, the amplitude
of the quantum oscillation is proportional to RT . Therefore,m�

can be obtained by fitting the oscillation amplitude at different
temperatures, as shown in Fig. 19(b). Similarly, at a fixed
temperature TD or τq can be extracted by the fit of the Dingle
damping factor RD.
Specifically, the Berry phase can be determined by plotting

the Landau index versus 1=B and tracking the intercept. As
summarized in Fig. 19(c), Fei et al. (2017) got an intercept of
0.46 by assigning integer Landau indices to the valleys of α

(a)

(d)(c)

(b)

B II c

FIG. 19. dHvA oscillations for PdTe2. (a) Oscillatory components of the out-of-plane magnetization vs 1=B at various temperatures.
(b) Temperature dependence of the fast Fourier transformation (FFT) amplitude for six oscillation modes (α to ζ). The solid lines
represent the LK fits for the effective mass. Inset: FFT spectra of ΔM oscillations. (c) Landau-level fan diagram of the α mode. Inset: fit
of the Dingle temperature. (d) The calculated electronic structures of PdTe2 along high-symmetry lines. The Dirac point and the hole
pocket with the α mode are indicated by red arrows. Adapted from Fei et al., 2017.
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oscillation (8 T).This implies that the Berry phase is close to π,
a signature of nontrivial Dirac transport. By making a further
comparison to first-principles calculations, Fei et al. identified
that the αmode originates in the hole pocket of the tilted type-
II Dirac cone; therefore, they ascribed the observed Berry
phase of α mode to the type-II Dirac fermions. Last, we
mention that the PHE has been observed in the PdTe2 family
(Vashist et al., 2018; Xu, Wang et al., 2018; Li et al., 2020;
Meng et al., 2020). However, detailed analysis (Li et al., 2020;
Meng et al., 2020) revealed that the observed PHE results
from anisotropic orbital magnetoresistance rather than the
chiral anomaly.

3. Symmetry-enforced Dirac semimetals

The mechanism underpinning the Dirac points in the
aforementioned type-I and type-II DSMs combines band
inversion with crystal rotational symmetry. Young et al.
(2012) proposed that certain nonsymmorphic space groups
that admit four-dimensional irreducible representations can
also enforce fourfold Dirac points at high-symmetry momenta
on the BZ boundary. Though many nonsymmorphic space
groups can host such fourfold irreducible representations, to
realize an ideal nonsymmorphic Dirac semimetal phase the
material should also satisfy the following criteria: (i) the Dirac
point should be located at or close to EF and no other trivial
Fermi surfaces should cross EF, so that the low-energy
excitations come only from the Dirac nodes; (ii) the Dirac
band should remain doubly degenerate and disperse linearly in
all k directions in the vicinity of the Dirac point; and (iii) the
two Dirac bands should carry zero total monopole charge.
Several promising material candidates have been predicted to
host such Dirac points, such as beta-cristobalite BiO2 (Young
et al., 2012), Bi-containing distorted spinels (Steinberg et al.,
2014), a family of cluster compounds AðMoXÞ3, with A ¼
ðNa;K;Rb; In;TlÞ and X ¼ ðSe;TeÞ, and HfI3 (Gibson et al.,
2015). Take BiO2 as an example; the calculated band structure
in Fig. 20 reveals band crossings with linear dispersion at the
X points. As the material has both the inversion and T
symmetries, each crossing band is doubly degenerate, and
thus these band crossings form fourfold-degenerate Dirac
points at EF. Therefore, BiO2 is a promising nonsymmorphic
DSM with three essential Dirac cones located at the center of

the three zone faces of the first BZ. As for experimental
efforts, despite many predictions experimental evidence of
nonsymmorphic DSMs has remained elusive.

4. Quadratic and cubic Dirac semimetals

In addition to linear dispersion, Dirac cones can also have
quadratic or cubic band dispersions along certain k directions.
Quadratic Dirac points were found to exist in several com-
pounds with a cubic lattice structure, such as α-Sn (Groves
and Paul, 1963; Zhang, Wang et al., 2018), Cu2Se (Zhu, Liu
et al., 2018), and Pr2Ir2O7 (Kondo et al., 2015). Take α-Sn as
a representative. As with BiO2, α-Sn crystallizes in the
nonsymmorphic face-centered-cubic crystal structure
(SG227) with both the inversion and T symmetries. Thus,
each band is double degenerate. The quadratic conduction and
valence bands touch each other at the Γ point, form a quadratic
Dirac point, as shown in Fig. 21(a). Materials with such a
quadratic band touching at EF are known as Luttinger
semimetals (Moon et al., 2013). The Luttinger semimetal
phase is usually adjacent to a variety of topological phases,
including topological insulator, massless Dirac semimetal,
type-I, type-II, and double Weyl semimetal phases, which can
be induced and engineered in α-Sn by external strain,
magnetic field, and circularly polarized light (Zhang, Wang
et al., 2018). Indeed, several ARPES groups reported real-
izations of the topological insulator phase or linear Dirac
semimetal phase in α-Sn=InSb films by inducing compressive
or epitaxial strains (Barfuss et al., 2013; Ohtsubo et al., 2013;
C.-Z. Xu et al., 2017). Regarding the pristine quadratic Dirac
point, we note the observation of the quadratic bulk valence
band at the Γ point in α-Sn=InSb films made by Barfuss et al.
(2013), as shown in Fig. 21(b), though the quadratic Dirac
point and the conduction band were not observed by conven-
tional ARPES, as it lies above EF.
The cubic Dirac point, a fourfold-degenerate nodal point

with cubic dispersion in a plane and a linear dispersion in the
third direction, has rarely been reported in real materials. One
reason for this is that the stabilization of a cubic Dirac point
requires at least the following four symmetries, P, T , C3, and
C6 rotation, and nonsymmorphic symmetries, and these
requirements exclude most of the space groups. Still, the
density functional theory has identified two groups of
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FIG. 20. Symmetry-enforced Dirac semimetal beta-cristobalite BiO2. (a) Calculated bulk band structures along high-symmetry lines.
(b) Summary of 3D bulk Dirac cones at the center of the three zone faces of the BZ. Adapted from Young et al., 2012.
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promising material candidates, i.e., AðMoXÞ3, with space
group P63=m (no. 176) (Liu and Zunger, 2017), and the
nonferroelectric phase of LiOsO3 compound with space group
R3̄c (no. 167) (Yu et al., 2018). Figure 21(c) shows the
calculated bulk band dispersion of TlðMoTeÞ3, a representa-
tive of quasi-1D AðMoXÞ3 compounds that is immune to
Peierls distortion. Four types of Dirac points can be identified.
(i) One cubic Dirac point at A, which shows a cubic dispersion
along the A-H direction. (ii) Three linear Dirac points
stabilized by the nonsymmorphic symmetry at the L points,
which are identical to those in beta-cristobalite BiO2. (iii) and
(iv) Band-inversion-induced quadratic (Λ1) and linear Dirac
points (Λ2) along the Γ-A direction in the conduction bands.
Recently ARPES measurements were performed on the
ð1100Þ surface of the TlðMoSeÞ3 compound (Nakayama et al.,
2018) and revealed the linearly dispersed Dirac bands along
the chain direction (kz), as shown in Fig. 21(d). However, the
cubic or linear Dirac points at the A or L points were not
resolved, as they shift above EF as a result of the imperfection
of the crystal, i.e., the Tl deficiency.

5. Magnetic Dirac semimetals

The previously discussed DSMs are all nonmagnetic ones
preserving both T and P symmetries, which are necessary to
protect the double degeneracy of the Dirac bands. It is thus

natural to ask whether Dirac fermions can exist in T -breaking
magnetic materials. Tang et al. (2016) answered this question
in the affirmative when considering a specific three-dimen-
sional system with an antiferromagnetic (AFM) order that
breaks both T and P symmetries but respects their combi-
nation (PT symmetry). With the combined PT symmetry
satisfying ðPTÞ2 ¼ −1, the double degeneracy is reserved for
the generic momentum k. Therefore, a crossing of two bands
protected by certain crystal symmetry can give rise to a
fourfold-degenerate Dirac point. Specifically, Tang et al.
predicted that AFM CuMnAs and CuMnP could host the
Dirac fermions around EF. As shown in Fig. 22(a), ab initio
calculations show a band inversion at the X point of the BZ.
Without considering SOC (red curves), this band inversion
leads to unavoidable band crossings, e.g., along the X-Γ, X-U,
and X-Z directions. These band crossings together form a 1D
nodal line on the ky ¼ 0 plane. When SOC is turned on,
assuming that the orientation of magnetic moments is along
the z direction, most of the band crossings are fully gapped,
except for the band crossing along the X-U line, as the two
doubly degenerate crossing bands carry opposite S2z
[S2z ¼ fC2zj(ð1=2Þ; 0; ð1=2Þ)g] eigenvalues along this direc-
tion. Therefore, CuMnAs holds one pair of fourfold Dirac
points along the X-U line, which is protected by the combined
PT and twofold screw rotation (S2z) symmetries. The
topological feature of these Dirac points is further confirmed
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FIG. 21. (a) Calculated bulk band structures of α-Sn along high-symmetry lines. (b) ARPES spectra on α-Sn=InSb film, measured
along the kx direction with 119 eV photon energy, which corresponds to the Γ point of the BZ. (c) Calculated bulk band structures of
TlðMoTeÞ3 as a representative of stable AðMoXÞ3 compounds. The cubic and symmetry-enforced Dirac point at A, the linear and
symmetry-enforced Dirac point at L, and the band-inversion-induced Dirac points along Γ-A are marked with red, blue, and purple
circles, respectively. (d) ARPES spectra on TlðMoSeÞ3 measured along the kz direction with 50 eV photon energy. Adapted from
Barfuss et al., 2013, Liu and Zunger, 2017, Nakayama et al., 2018, and Zhang, Wang et al., 2018.
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by the appearance of nontrivial surface states. As shown in
Fig. 22(b), one pair of Fermi arcs that connect the projection
of two gapless Dirac points is identified on the ð010Þ surface.
The Dirac points along the X-U line in T -breaking AFM

CuMnAs are induced by band inversion. Recent progress has
also been achieved in extending the symmetry-enforced Dirac
semimetal states to magnetic systems in both two (Wang,
2017a; Young and Wieder, 2017) and three dimensions
(Wang, 2017c; Watanabe, Po, and Vishwanath, 2018). In
these systems, the Dirac points are mandated at high-sym-
metry momenta by the symmetries of the magnetic space
group, i.e., the combination of crystal symmetries (either
symmorphic or nonsymmorphic) and an essential antiunitary
symmetry composed of T and a half translation, and cannot be
gapped without lowering the previously mentioned sym-
metries. In particular, Watanabe, Po, and Vishwanath
(2018) performed a systematic symmetry-based analysis of
band topology in all 1651 magnetic space groups and
identified an exhaustive list of magnetic space groups, which
for specific electron filling constraints are capable of hosting
symmetry-enforced gapless states. Watanabe, Po, and
Vishwanath (2018) predicted that the magnetic compounds
YFe4Ge2 and LuFe4Ge2 would be realistic magnetic Dirac
semimetal candidates featuring essential Dirac points at high-
symmetry momenta near EF. In short, magnetic systems can
host fourfold Dirac points either induced by band inversion or
enforced by crystal symmetries. Material candidates include
CuMnAs(P), YðLuÞFe4Ge4, EuCd2As2 (Hua et al., 2018),
CeSbTe (Schoop et al., 2018), etc.

6. Dirac semimetals without Fermi arcs

A fingerprint of WSMs is the existence of surface Fermi
arcs connecting the projection of Weyl points of opposite
monopole charge. In view of DSMs, since a Dirac point can be
viewed as twoWeyl points of opposite chirality overlapping, it
is natural to expect the surface states in a DSM to be two
copies of the Fermi arc of a WSM, i.e., the double Fermi arcs
shown schematically in Figs. 23(a) and 23(b). However, it has
been pointed out that the double Fermi arcs are not topologi-
cally protected and that bulk perturbation preserving the Dirac

nodes and all crystal symmetries can in principle deform the
double Fermi arcs into a conventional Fermi contour
(Kargarian, Randeria, and Lu, 2016; Kargarian, Lu, and
Randeria, 2018), as shown in Fig. 23(c). Note that though
the double Fermi arcs are not topologically protected, the
previously discovered DSMs, including Na3Bi and Cd3As2,
still exhibit seemingly robust double Fermi arcs (Shtanko and
Levitov, 2018).
Le et al. (2018) provided a concrete material candidate β-

CuI that manifests the lack of topological protection for
double surface Fermi arcs in DSMs. Like Na3Bi, β-CuI
exhibits a pair of Dirac points along Γ-Z protected by the
P, T , and C3 rotational symmetries, as shown in Fig. 23(d).
Figure 23(e) shows the calculated surface states on the ð100Þ
surface in the conventional cell. As with Na3Bi, the two
surface states form a single Dirac point at the Γ point, which is
protected by the nontrivial Z2 invariant in the kz ¼ 0 plane.
Conversely, the energy difference between the surface Dirac
point at Γ and the projection of the bulk Dirac point is small,
yielding two flat surface states along Γ-Z that exhibit non-
monotonic dispersions and vanish at the projection of bulk
Dirac points. The lower surface state first sinks below the
energy level of the bulk Dirac point (ED), then rises above,
and finally bends down and sinks into the Dirac point,
resulting in three crossing points for ky ¼ 0 at ED (denoted
by white and red circles). The corresponding Fermi surface of
the ð100Þ surface at ED is shown in Fig. 23(f). There is one
closed nontrivial Fermi pocket with spin helical texture
(shown with green arrows) centered around kz ¼ 0 and two
trivial pockets centered around kz ¼ π that originate from the
nontrivial Z2 invariant in the kz ¼ 0 plane and the trivial Z2

invariant in the kz ¼ π plane, respectively. The nontrivial
closed Fermi surface around kz ¼ 0 does not pass through the
projections of the bulk Dirac points (red circles), indicating
the absence of Fermi arcs. To summarize, the DSM β-CuI
exhibits a closed Fermi surface instead of double Fermi arcs
on its side surfaces, providing explicit proof that the Fermi
arcs in DSMs are not topologically protected.
We previously discussed several distinctive types of DSMs.

In addition to these materials, considerable groups of materials
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FIG. 22. AFM Dirac semimetal in CuMnAs. (a) Calculated bulk band structures of CuMnAs along the high-symmetric lines without
(red lines) and with (blue lines) SOC. In the SOC case, the orientation of magnetic moments is along the z direction. (b) Calculated
Fermi surface contour on the ð010Þ surface. The red stars indicate the projection of the gapless Dirac points. Adapted from
Tang et al., 2016.
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have also been proposed as DSMs; see Tang et al. (2019),
Vergniory et al. (2019), and T. Zhang et al. (2019).

B. Weyl semimetals

As discussed in Sec. II, Weyl fermions, which have not yet
been discovered in high-energy physics, can be realized in
WSMs as an emergent phenomenon by breaking either T or P
symmetry in DSMs. This has inspired two broad categories of
proposals for realizing WSMs in condensed-matter systems,
i.e., T -breaking magnetic and P-breaking nonmagnetic non-
centrosymmetric WSMs.
Historically, the first proposal to realize Weyl fermions in

condensed-matter systems was suggested by Wan et al.
(2011), for a class of magnetic pyrochlores Rn2Ir2O7 (Rn
is Y or another rare-earth element) with all-in–all-out non-
collinear magnetic order, where 24 pairs of Weyl points
emerge as the system undergoes the magnetic phase transition.
A relatively simple WSM system was then proposed by G. Xu
et al. (2011), who considered the ferromagnetic half-metal
HgCr2Se4 and predicted that the ferromagnetic phase would
give rise to a pair of Weyl points with quadratic band
crossings, the so-called double Weyl points. Another route
to the realization of T -breaking WSMs involves a fine-tuned
heterostructure of alternating layers of a magnetically doped
topological insulator and a normal insulator (Burkov and

Balents, 2011). All of these proposed WSM candidates are
T -breaking magnetic materials. However, experimental detec-
tion of magnetic WSM states using ARPES or other tech-
niques faces several obstacles, including complex magnetic
domains, strong correlations, and destruction of sample
quality upon magnetic doping.
On the other hand, WSM can also be generated by breaking

P symmetry. Compared to magnetic WSMs, P-breaking
nonmagnetic WSMs are more feasible for experimental
verifications, as the alignment of magnetic domains is no
longer required. Different routes were explored to realize the
WSM phase in noncentrosymmetric systems. The first one is a
superlattice system formed by alternately stacking trivial and
topological insulators (Halász and Balents, 2012; Zyuzin, Wu,
and Burkov, 2012; Das, 2013). The second takes advantage of
the phase transition between the trivial and topological
insulators in noncentrosymmetric materials (Singh et al.,
2012; Liu and Vanderbilt, 2014), as such a phase transition
must happen via an intermediate Weyl semimetal phase
(Shuichi, 2007). The third is a model based on the zinc
blende lattice with fine-tuning of the relative strength between
SOC and the P-breaking term (Ojanen, 2013). The fourth
involves tellurium or selenium crystals under certain values of
pressure (Hirayama et al., 2015). However, there has been no
experimental realization of the previously mentioned propos-
als thus far, as they require a fabrication of heterostructure, a

(a)

(d) (f)(e)

(c)(b)

FIG. 23. (a) DSM showing a pair of Dirac points along the kz axis in the bulk BZ and double Fermi arcs on the side surfaces. Note that
the surface perpendicular to the z axis [ð001Þ surface] has no arcs. (b) Surface spectral density showing the existence of double Fermi
arcs connecting the projection of two Dirac points (solid red circles) on the ð100Þ surface. (c) Deformation of double Fermi arcs into a
closed Fermi contour by perturbations. (d) Calculated bulk band structures of β-CuI along high-symmetry lines with SOC. The orbital
weights are represented by the areas of circles and triangles. (e) The projected surface density of states of β-CuI for the ð100Þ surface.
(f) Fermi surface at the energy of bulk Dirac points for the ð100Þ surface. The green arrows indicate the spin textures of the closed
nontrivial Fermi pocket centered at the Γ point. From Kargarian, Randeria, and Lu, 2016, and Le et al., 2018.
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fine-tuning of the SOC, or an application of pressure. Looking
for Weyl semimetal candidates in naturally P-breaking non-
centrosymmetric and stoichiometric compounds allows one to
easily avoid the previously mentioned obstacles. Indeed, by
following this route many distinctive experimentally feasible
WSM candidates have been identified, including the TaAs
family (S.-M. Huang et al., 2015; Weng, Fang et al., 2015),
which was the first experimentally verified WSM.

1. P-breaking Weyl semimetal TaAs family

a. Theoretical predictions and ARPES

Bulk Weyl nodes.—The TaAs family (TaAs, TaP, NbAs,
NbP) crystallizes in the body-centered tetragonal structure
with nonsymmorphic space group I41md (no. 109). If we take
TaAs as a representative, the crystal structure consists of
alternating As and Ta layers [Fig. 24(a)]. The adjacent TaAs
layers are rotated 90° and shifted by a=2, leading to a lack of
inversion symmetry. Instead, the space group contains two
mirror planes, namely, Mx and My, which are necessary to
protect the nodal rings, as discussed later. The calculated band

structure of TaAs without SOC shows band inversion
and multiple band crossing features near EF, as shown in
Fig. 24(b). Detailed symmetry analysis shows that the two
crossing bands belong to different mirror irreducible repre-
sentations, and hence the corresponding band crossings are
protected by the mirror symmetry. Together these protected
band crossing points form several nodal rings in the two
mirror-invariant planes, as shown in Fig. 24(c). For each of the
mirror-invariant planes, after turning on SOC the nodal rings
are fully gapped within the plane. The valence and conduction
bands accidentally touch at several discrete k points slightly
off the mirror plane, leading to the appearance of gapless Weyl
nodes in TaAs. More precisely, there are 12 pairs of Weyl
points with monopole charges of �1 in the entire BZ, four
pairs of Weyl points (labeled as W2) are located exactly in the
kz ¼ 0 plane, and another eight pairs of Weyl points (labeled
as W1) are located off the kz ¼ 0 plane with a larger k
distance, as illustrated in Fig. 24(c).
Taking advantage of the bulk-sensitive soft x-ray ARPES,

both the W1 and W2 bulk Weyl cones in the TaAs family,
which includes TaAs, TaP, NbAs, and NbP, have been
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FIG. 24. (a) Crystal structure of TaAs. The arrow indicates that the cleavage occurs between the As and Ta atomic layers, producing
two kinds of ð001Þ surfaces with either As- or Ta-terminated atomic layers. (b) The calculated band structure of TaAs without SOC.
(c) 3D view of the nodal rings (without SOC, green circles) and Weyl points (with SOC, blue and red dots) in the BZ. The red and blue
areas represent opposite chiralities of the Weyl nodes. (d) ARPES intensity plots along the ky and kz directions through a pair of W1
Weyl nodes. The white dashed lines are guides for the eye. (e) ARPES intensity plots along the kx and ky directions near the Weyl nodes
W2. For comparison, the calculated bands are plotted (red curves) on top of the experimental data. Adapted from Lv et al., 2015c, Weng,
Fang et al., 2015, and S.-Y. Xu et al., 2015b.
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confirmed (Lv et al., 2015c; S.-Y. Xu et al., 2015a, 2015b,
2015c; N. Xu et al., 2016, 2017). We again take TaAs as our
example. As shown in Figs. 24(d) and 24(e), both the W1 and
W2 bulk Weyl cones are confirmed by the measured linearly
dispersed band crossings along the in-plane (kx, ky) and out-
of-plane (kz) directions, which matches well with the
calculations.
Surface Fermi arcs.—A striking topological consequence

of the monopole feature of Weyl points is the existence of
surface Fermi arcs on both the top and bottom surfaces
connecting the projections of Weyl points of opposite chirality
as illustrated in Fig. 3(d). In the case of TaAs, the crystals were
cleaved in the ð001Þ plane in the ARPES measurements. As
illustrated in Fig. 24(a), the cleavage occurs easier by breaking
two Ta—As bonds (red arrows) per unit cell instead of
breaking four bonds (dashed blue arrows), giving rise to
two kinds of ð001Þ surfaces with either As-terminated (bottom
surface) or Ta-terminated (top surface) atomic layers. As
shown in Fig. 24(c), because W1 Weyl points at positive and
negative kz have the same sign of chirality, their projection
onto the ð001Þ surface naturally carries a monopole charge of
�2, whereas the projection of W2 has a charge of �1.
Therefore, it is expected that two Fermi arcs terminate at
W1, and one Fermi arc terminates at W2. These general
aspects are independent of the surface terminations.
Several distinct criteria have been established to prove the

existence of Fermi arcs. Among them, one of the most direct
pieces of evidence is the disjoint Fermi surface, i.e., any
surface-state constant-energy contour with an open curve is a
Fermi arc. Besides, one can also count the number of Fermi
surface crossings. As we know, a closed Fermi surface can
cross an arbitrary k loop in the surface BZ only an even
number of times, and only an open Fermi arc can possibly
cross this loop an odd number of times (Lv et al., 2015b).
Therefore, if one can find a specific loop containing a total odd
number of Fermi surface crossings, Fermi arcs must exist.
Another criterion is a nonzero Chern number, and one
effective way is to add up the signs of the Fermi velocities
of all surface states around a closed k loop in the surface BZ
where the bulk band structure is everywhere gapped. One can
assign þ1 for right movers and −1 for left movers, and the
sum is the number of chiral edge states (Fermi arcs) enclosed
in this loop, corresponding to a Chern number on a bulk (S.-Y.
Xu et al., 2015c). In principle, all of the previously mentioned
signatures are experimentally accessible in ARPES measure-
ments of surface states, and any surface band structure that
satisfies any one of the previously mentioned criteria is
sufficient to demonstrate the presence of topological Fermi
arcs. In practice, these criteria may not always be met.
Specifically, in the TaAs family with multiple pairs of
Weyl nodes, the Fermi arcs near the W1 Weyl points always
appear in pairs, which together may form a closed contour
rather than disjoint arcs. Besides, some of the TaAs family
(e.g., NbP) may not have a nonzero Fermi surface Chern
number, as the energetic position of the nodes is far from EF

(N. Xu et al., 2017).
Though the topological nature of a WSM requires each

Fermi arc to start and end at the surface projections of two
Weyl nodes with opposite chirality, the surface connection

pattern is not uniquely determined by the bulk band structure.
It can be sensitive to other parameters, such as the lattice
constants, the surface condition (surface relaxations, recon-
structions, etc.), and the chemical potential. For the TaAs
family with multiple pairs of Weyl nodes, such as on the ð001Þ
As-terminated surface of TaAs, there are topologically non-
trivial surface states forming Fermi arcs as well as trivial
surface states forming closed FS pockets. These trivial surface
states, which usually mix with the Fermi arcs, will also
complicate the identification of Fermi arcs. Nevertheless, the
first-principles calculations [Fig. 25(a)] and surface-sensitive
VUV ARPES measurements [Figs. 25(b) and 25(c)] have
identified a5 as one of the surface Fermi arcs connecting the
projections of W1 points on the ð001Þ As-terminated surface,
although there are some controversies on the complete Fermi-
arc connection pattern.
Aside from TaAs, the Fermi arcs of the other three

transition-metal monoarsenides have also been identified by
VUVARPES (D.-F. Xu et al., 2015; Belopolski et al., 2016b;
Liu et al., 2016; Souma et al., 2016; Min et al., 2019). In
particular, Liu et al. (2016) carried out a systematic ARPES
study on different compounds (NbP, TaP, and TaAs), revealing
that the momentum separation of one pair of W1 Weyl points
of opposite chirality and the length of corresponding Fermi
arcs are proportional to the strength of the SOC, i.e.,
decreasing in the order TaAs, TaP, NbAs, and NbP. N. Xu
et al. (2017) performed a comprehensive study on the
relationship between the Fermi arcs and the intrinsic bulk
Fermi surface topology in TaAs, TaP, and NbP and concluded
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FIG. 25. (a) Fine k-point sampling calculations of surface states
at EF near the WPs. W1 are indicated by dashed circles since the
chemical potential is located slightly away from the nodes.
Yellow and red areas represent opposite chiralities. (b) ARPES
intensity plot at EF along Γ̄-Ȳ collected at different photon
energies (48–68 eV), showing the observation kz-nondispersive
surface states. (c) ARPES intensity plot at EF recorded on the As-
terminated ð001Þ surface at hυ ¼ 20 eV. Adapted from Lv et al.,
2015b, and Yang et al., 2015.
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that, while the chiral Fermi surfaces exist only when the
chemical potential is located in the energy window between
two saddle points of the Weyl cone structure, the correspond-
ing Fermi-arc states extend to a larger energy scale.
As discussed previously, there are two kinds of cleaved

ð001Þ surfaces in the TaAs family, i.e., the anion-terminated
(As, P) and cation-terminated (Ta, Nb) surfaces. In principle,
two such terminations must always appear on opposite
cleaved surfaces as long as the crystal is composed of a
single domain. In ARPES measurements, the samples were
cleaved randomly with the ½001� axis directed either upward or
downward. Therefore, one expects to access both surface
terminations after cleaving sufficient samples. In practice, the
Fermi arcs on the anion-terminated surfaces have been
observed in the entire transition-metal monopnictide family.
In contrast, the Fermi arcs on the cation-terminated surfaces
have been reported only in TaP and NbP thus far (Souma
et al., 2016; N. Xu et al., 2016). Figure 26 shows the measured
surface states in NbP for opposing ð001Þ surfaces. At first
glance, one can find that the Fermi surface topology is
considerably different between these two terminations.
Detailed analysis given by Souma et al. (2016) revealed that
the Fermi surface S2 is a nontrivial Fermi arc on the P-
terminated surface, and the Fermi surfaces S8 and S9 are Fermi
arcs on the Nb-terminated surface. The observed nonequiva-
lent nature of the Fermi arcs between the Nb- and P-
terminated surfaces suggests the possibility of controlling
the shape of the Fermi arcs by tuning the surface conditions by
the guest atom deposition (H. F. Yang et al., 2019).
The long-sought-after bulk Weyl nodes and the nontrivial

surface Fermi arcs have been directly observed in the TaAs
family using soft x-ray and VUVARPES. The Fermi arcs are
the traces at EF of the chiral edge states. Since the chiral edge
state is spin polarized, the Fermi arcs naturally possess a
momentum distribution of spin, namely, spin texture, which
can be directly detected by spin-resolved ARPES. In the case
of the TaAs family, the spin texture of Fermi arcs on the ð001Þ
As-terminated surface of TaAs has been investigated by both
calculations and spin-resolved ARPES (Lv et al., 2015a; Sun,

Wu, and Yan, 2015; S.-Y. Xu et al., 2016), as summarized in
Fig. 27. It has been shown that spin polarization signals in
ARPES can also arise from the states that possess no net spin
polarization due to final-state effects, and the nonintrinsic spin
signal depends on the incident photon energy and polarization
(Starke et al., 1996; Jozwiak et al., 2011; Heinzmann and Dil,
2012). Lv et al. (2015a) performed systematic photon-energy
and polarization-dependent spin-resolved ARPES measure-
ments to exclude the possible extrinsic effects, and the
measured spin polarization does not change as a function
of photon energies and polarizations, which supports the
deduction that the observed spin polarizations reflect the
intrinsic spin structure of the initial states in TaAs.

b. STM and STS

In addition to ARPES, STM, a real-space surface meas-
urement technique that measures the local density of states as
well as the quasiparticle scattering and interference, has also
been utilized to explore the surface states in the TaAs family
(Batabyal et al., 2016; G. Chang et al., 2016b; Inoue et al.,

(b)(a)

FIG. 26. (a) Left panel: crystal structure of NbP with two different ð001Þ surface terminations. Right panel: schematics of the
corresponding ARPES Fermi surface contours around X̄ for the two surface terminations. (b) Summary of measured Fermi surfaces
from the Nb-terminated (blue loops) and P-terminated (red loops) surfaces. The projections of the W2 Weyl points at the intersection of
Fermi surfaces are overlaid by solid circles, whereas open circles show other intersections. Possible W1 Weyl nodes are also indicated
with diamonds. From Souma et al., 2016.
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FIG. 27. (a) Photoemission intensity plot at EF of the ð001Þ
As-terminated surface of TaAs. The red and yellow arrows
indicate the direction of spin polarization on the inner and
outer Fermi surfaces at the high-symmetry lines, respectively.
(b) Corresponding theoretical spin texture of surface states.
Adapted from Lv et al., 2015a.
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2016; Kourtis et al., 2016; Zheng et al., 2016b; Sessi et al.,
2017; H. Zheng et al., 2017). Inoue et al. (2016) performed
systematic STS measurements on the ð001Þ As-terminated
surface of TaAs and revealed ten different scattering wave
vectors [Fig. 28(a)], which are well reproduced by the
calculated spin-dependent scattering probability map
[Fig. 28(c)] based on the weighted Fermi surfaces on the
topmost As layer [Fig. 28(b)]. In particular, they identified the
scattering between a Fermi arc and a trivial band (e.g., Q2 and
Q3). They found that the observed QPI pattern can be
understood with a theory that takes into account the shape,
spin texture, and momentum-dependent propagation of the
Fermi-arc surface states into the bulk. Therefore, these
observations not only provide evidence for the specific
scattering (e.g., Q2 and Q3) indicative of surface Fermi arcs
in TaAs but also serve as an important signature of the unique
topological sink effect of surface Fermi arcs. Batabyal et al.
(2016) also performed STS measurements on the TaAs ð001Þ
As-terminated surface and obtained similar QPI patterns, as
shown in Fig. 28(d). They performed an unusual analysis on

the measured OPI pattern, i.e., subtracting the ellipselike
pattern that appears around theG�y point from the QPI pattern
that appears at the zone center (q ¼ 0). In this way, the
ellipselike pattern at the central region was eliminated
[Fig. 28(e)], indicating a replication of this ellipselike pattern
at G�y. On the contrary, the leaflike QPI patterns in which
surface Fermi arcs were involved were unaffected after the
subtraction, signifying that this QPI pattern was not replicated
at Bragg points. Batabyal et al. found that the residual QPI
pattern fit well with the calculated scatterings between the
Fermi arc along Γ-Y and the nearby bulk states, as shown in
Fig. 28(f). These results demonstrate that the QPI patterns
involving the Fermi arcs are not replicated at Bragg peaks;
therefore, Batabyal et al. believe that the Fermi arcs are
unsusceptible to the underlying crystal structure.
Finally, we note that the transmission electron microscopy

measurements have also been performed on the TaAs family
and revealed that the single crystals contain a high density of
defects, such as stacking faults and vacancies, which leads to a
shift of the position of the bulk Weyl points relative to EF

(f)(d)

(c)(b)(a)

(e)

FIG. 28. (a) Fourier transform of the dI=dV conductance map measured at VB ¼ 40 meV on the ð001Þ As-terminated surface of TaAs.
The red dot indicates the (2π=a, 2π=a) point in the reciprocal space. (b) Weighted Fermi surface (WFS) calculated by projecting the
electronic states only to the topmost As layer. The Q vectors indicate the expected scattering wave vectors. (c) Calculated spin-
dependent scattering probability (SSP) map based on the Fermi surface shown in (b). The orange rectangles in (a) and (c) indicate the
corresponding quasiparticle interference vectors. (d) Similar to (a) but measured at VB ¼ 0 meV. (e) Subtraction of ellipselike QPI
peaks at Bragg points [G�y in (d)] times α ¼ 1.14 from the central BZ. (f) Calculated SSP of Fermi arcs alone. Inset: contributing
scattering processes (Q4a–Q4c) within the Fermi arc along Γ-Y. From Batabyal et al., 2016, and Inoue et al., 2016.
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(Besara et al., 2016). In addition, Liu, Richard et al.
(2016) performed a comparative polarized Raman study of
TaAs, NbAs, TaP, and NbP and confirmed the existence of
various types of phonons modes that involve different atom
vibrations.

c. Quantum transport

The identification of Weyl fermions in the TaAs family
paves the way for the exploration of exotic transport phenom-
ena. One of the most intriguing transport phenomena is the
chiral-anomaly-induced NLMR, which has been reported in
TaAs (X. Huang et al., 2015; Zhang et al., 2016), TaP (Arnold
et al., 2016), and NbP (Z. Wang et al., 2016; Niemann et al.,
2017). X. Huang et al. (2015) reported the observation of
NLMR in TaAs. They found that the observed NLMR is

sensitive to the angle between the electric and magnetic fields
and that the NLMR at various temperatures can be well fitted
by the chiral anomaly formula in the semiclassical regime,
signifying that the observed NLMR originates from the chiral
anomaly, as shown in Figs. 29(a) and 29(b). Zhang et al.
(2016) summarized several pieces of supporting evidence to
show that the observed NLMR in TaAs is induced by the
chiral anomaly. These include the following: (i) There is a
sharp dependence of the NLMR on the angle between B
and E, as described by X. Huang et al. (2015). (ii) In
contrast, the observed NLMR does not depend on the
direction of the E field with respect to the crystalline axis,
as shown in Fig. 29(c). (iii) The NLMR is closely related to the
energy position of the Weyl points. Specifically, the measured
chiral coefficient, which characterizes the magnitude of the
chiral anomaly, diverges as the chemical potential approaches

(a)

(d)(c)

(b)

E || B || a

E || B || c

B (T)

FIG. 29. (a) Angle-dependent magnetoresistance (MR) of a TaAs single crystal measured at T ¼ 1.8 K, with I along the a axis. Here θ
is defined as the angle between B and z. Inset: the extracted minima of MR at different angles in a magnetic field from 1 to 6 T. (b) The
measured longitudinal resistance (open circles) and the corresponding fitting curves (red dashed lines) at various temperatures.
(c) Longitudinal magnetoresistance of TaAs measured at T ¼ 2 K, with BkI along the a and c axes. The green curves are the fits to the
longitudinal MR data in the semiclassical regime. (d) Chemical potential dependence of the chiral coefficient CW . The chiral coefficient
is defined asCW ¼ e4τa=4π4ℏ4gðEFÞ, where gðEFÞ is the density of states at EF and τa is the axial charge relaxation time. BC is a critical
field that characterizes the crossover between the weak antilocalization (WAL) regime and the negative magnetoresistance regime, and
CWAL is the coefficient describing the magnitude of the 3D WAL effect. Adapted from X. Huang et al., 2015, and Zhang et al., 2016.
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the energy of the Weyl points [Fig. 29(d)], which is consistent
with the changes of the Berry curvature field.
As discussed in Sec. III.A.1.c, the chiral anomaly is not the

only possible origin of NLMR. Other mechanisms, such as
current jetting (Yoshida, 1976; Hu, Rosenbaum, and Betts,
2005), weak localization (Kim et al., 2013; Lu and Shen,
2015), neutral and ionic impurity-induced scattering
(Goswami, Pixley, and Das Sarma, 2015), helicity relaxation
(Andreev and Spivak, 2018), and conductivity fluctuations
(Schumann et al., 2017), can also lead to NLMR. In particular,
considerable concern has been raised about the validity of
NLMR in high-mobility materials such as the TaAs2 family
(Luo et al., 2016; Yuan et al., 2016) and the TaAs family
(Arnold et al., 2016; dos Reis, Ajeesh et al., 2016; Li, Wang
et al., 2017; J. Yang et al., 2019) due to the strongly enhanced
current jetting effect. Figure 30 shows the measured apparent
longitudinal magnetoresistance of NbP and TaP under differ-
ent voltage contact configurations; one can see a strong
dependence of the magnetoresistance on the geometry and
even the NLMR can be realized under a specific geometry.
The observed geometry-dependent magnetoresistance, which
can be reproduced by a current conservation model taking into
account the field-induced inhomogeneous current distribution,
suggests that the current jetting effect is the predominant cause
of the observed NLMR in NbP and TaP. Thus, we conclude
that extrinsic effects like the current jetting effect must be
seriously considered, and other complementary techniques are
needed before we interpret measurements of the NLMR as
evidence for the chiral anomaly in DSMs or WSMs.
The previously introduced NLMR at low fields has been

controversial due to possible artifacts. Using intense magnetic
fields to drive WSMs into the quantum limit provides a path
for studying the pure Weyl phenomena. Indeed, many distinct
features of Weyl fermions have been revealed by high-field
measurements. Moll, Potter et al. (2016) uncovered a pro-
nounced magnetic torque anomaly in NbAs manifests as a
sudden reversal of the slope of the magnetic torque at the
quantum limit, as shown in Fig. 31(a). This torque reversal

was understood as a direct consequence of the nonzero Berry
phase of Weyl points. In the high-field measurements on TaP
(C.-L. Zhang et al., 2017), a sharp sign reversal of Hall
resistivity was observed for a magnetic field corresponding to
the momentum separation of the W1 Weyl nodes [Fig. 31(b)],
i.e.,

ffiffiffiffiffiffiffiffiffiffiffi
eB=ℏ

p
∼ Δkw1. This finding points to the magnetic-

tunneling-induced Weyl node annihilation, another topologi-
cal phenomenon associated with Weyl fermions. Ramshaw
et al. (2018) pushed the magnetic field to the extreme up to
95 T to drive the Weyl semimetal TaAs far into its quantum
limit regime, where two interesting phenomena were unveiled.
(i) The gap opening of the lowest Landau level due to theWeyl
node annihilation is evidenced by the rapid increase of the ρzz
above 50 T [Fig. 31(c)]. (ii) The abrupt increase of ultrasonic
attenuation [Fig. 31(d)] at T < 2.5 K and B > 80 T is
possibly indicative of a field-induced phase transition.
Other distinct features such as the additional oscillatory modes
arising from the instability of Weyl electrons in TaAs (Zhang,
Tong et al., 2016), which is characteristic of Weyl nodes, the
Berry paramagnetic response in NbP (Modic et al., 2019), the
topological phase transition associated with the suppression of
the Weyl dispersion in TaAs (Q. R. Zhang et al., 2019), and
the nonsaturating quantum magnetization in TaAs (C.-L.
Zhang et al., 2019) have also been revealed when the systems
enter the quantum limit.
Magnetotransport measurements have also revealed other

properties of the WSM TaAs family, such as ultrahigh carrier
mobility (Shekhar et al., 2015), large positive transverse MR
embedding with strong SdH oscillations (Luo et al., 2015;
Zhang, Guo et al., 2015), and the nontrivial Berry phase
related to Weyl fermions (Hu et al., 2016a). Specifically, we
note that the angle-dependent SdH oscillations play an
important role in reconstructing the 3D bulk Fermi surface
and precisely locating the energy position of Weyl points in
the TaAs family, even under high pressure (Arnold, Naumann
et al., 2016; dos Reis, Wu et al., 2016; Klotz et al., 2016).
As discussed in Sec. III.A.1.c, Fermi-arc surface states can

lead to unique transport phenomena, such as Weyl-orbit-based
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FIG. 30. (a) Magnetic field dependence of the voltage for two different contact configurations (inset) in NbP, measured at 2 K with BkI.
The dotted lines are the corresponding simulations of the voltage distribution taking into account the contact configurations and the
field-induced inhomogeneous current distribution. (b) Experimental (left panel) and simulated (right panel) magnetic field dependence
of the longitudinal MR (MR� ¼ ½VðBÞ − V0�=V0) for three different geometries in TaP, measured at 1.85 K with BkIka axis. Adapted
from Arnold et al., 2016, and dos Reis, Ajeesh et al., 2016.
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quantum oscillations and 3D QHE, which have been exten-
sively studied in Cd3As2 films or nanostructures. In addition
to Weyl orbits, Gorbar et al. (2016) pointed out that Fermi-arc
transport is dissipative as a result of the surface-to-bulk
scattering. Resta et al. (2018) found that the Fermi-arc
curvature in the momentum space has a strong influence on
surface transport. They predicted that a straight Fermi arc is
disorder tolerant and can lead to a high surface conductivity
that is up to 1 to 2 orders of magnitude larger than a
comparable TI. Such Fermi-arc-enhanced surface conduc-
tivity was recently confirmed in WSM NbAs nanobelts with
thicknesses of 100–300 nm (C. Zhang et al., 2019a), where
sheet conductance of up to 5–100 S per □ (per surface) is
realized, beyond other 2D and quasi-2D systems, such as 2D
electron gases and TI surface states, as summarized in Fig. 32.

d. Optical spectroscopy

Triggered by the peculiar optical properties of Dirac and
Weyl fermions, which include linear optical conductivity,
optical spectroscopy has been utilized to examine several
WSM candidates, such as pyrochlore iridates R2Ir2O7 (R,
rare-earth and Y ions) (Sushkov et al., 2015; Ueda, Fujioka,
and Tokura, 2016; Cheng et al., 2017), YbMnBi2 (Chinotti

et al., 2016; Chaudhuri et al., 2017), TaAs (B. Xu et al.,
2016, 2017; Kimura et al., 2017; Yuan et al., 2018, 2020),
Mn3Sn (Cheng, Wang et al., 2019), and Co3Sn2S2 (Yang,
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FIG. 31. (a) Magnetic torque and resistivity of NbAs measured at 4 K and an angle of 25° off the c axis toward the a axis. The orange
line indicates the quantum limit determined as the position of the last quantum oscillations. (b) ρxx and ρyx of TaP as a function of the
magnetic field at 1.5 and 4.2 K. t and s correspond to the Landau levels from the electronlike and holelike Weyl pockets, respectively,
with the subscripts denoting the Landau indices. (c) Longitudinal magnetoresistance of TaAs for IkBkc measured at different
temperatures. Inset: microstructured TaAs device. (d) Ultrasonic attenuation of TaAs measured at 315 MHz for kkBkc, where k is the
propagation wave vector of the longitudinal sound. Inset: enlargement of the data from 0 to 65 T. Adapted fromMoll, Potter et al., 2016,
C.-L. Zhang et al., 2017, and Ramshaw et al., 2018.

FIG. 32. The mobility–carrier density scaling plot of various 2D
and quasi-2D systems. From C. Zhang et al., 2019a.
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Zhang et al., 2020). Specifically, Fig. 33(a) shows the
measured σ1ðωÞ of TaAs at 5 K (B. Xu et al., 2016), from
which two ω-linear components with different slopes can be
identified. The low-energy component persists down to
∼70 cm−1 (8.7 meV), which implies that 2EF < 8.7 meV
based on Eq. (16). Therefore, this low-energy linear conduc-
tivity was reasonably attributed to the interband transitions in
the vicinity of the four pairs of Weyl points (W2 in Fig. 24),
which lie on the kz ¼ 0 plane and are predicted to be only
∼2 meV above EF. On the other hand, the high-energy linear
conductivity (∼230 cm−1) was concluded to arise from the
interband transitions that involve both the 12 pairs of Weyl
points and the trivial bands in TaAs.
As discussed in Sec. III.A.1.d, the chiral zeroth Landau

level of Weyl fermions can be checked by pushing the system
into the quantum limits, i.e., under a high magnetic field.
Indeed, Yuan et al. (2018) provided evidence for the character-
istic zeroth Landau level in NbAs through a high-field
magneto-optical study. As summarized in Fig. 33(b), Yuan
et al. identified three specific cyclotron resonance absorptions
in the quantum limits, denoted as C1–C3. These three modes,
following neither linear-in-B or linear-in-

ffiffiffiffi
B

p
dependence, can

be fitted by the optical transitions involving the zeroth Landau
levels of the two types of Weyl nodes, suggesting the existence
of two inequivalent chiral Weyl nodes in NbAs.
Apart from the linear optical measurements, the nonlinear

optical and thermal measurements likewise revealed many
interesting features of Weyl fermions in the TaAs family, such
as the CPGE, which is attributed to the asymmetric optical
excitation of the Weyl cone and can be utilized to detect the
Weyl fermion chirality (de Juan et al., 2017; Q. Ma et al.,
2017; Sun, Sun et al., 2017; Osterhoudt et al., 2019; Sirica
et al., 2019), the mixed axial–gravitational anomaly–induced
positive magnetothermoelectric conductance (Gooth et al.,
2017). Beyond those features, the TaAs family exhibits other
interesting properties or applications such as the resonance-
enhanced SHG efficiency in TaAs (Wu, Patankar et al., 2017;

Patankar et al., 2018), the tip- or ion-induced superconduc-
tivity (Aggarwal et al., 2017; Bachmann et al., 2017; Li et al.,
2017; H. Wang et al., 2017), the wide-range photodetection
(Chi et al., 2018), and the hydrogen evolution reaction
catalysts (Rajamathi et al., 2017).

2. Type-II Weyl semimetals

a. Theoretical prediction and ARPES

Type-II WSMs, manifested as a strongly tilted and Lorentz-
violating Weyl cone in the bulk band structure, were first
proposed by Soluyanov et al. (2015) in orthorhombic WTe2.
Following this proposal, more material candidates were
identified, such as the Mo1−xWxTe2 family (Sun et al.,
2015; T.-R. Chang et al., 2016; Wang, Gresch et al.,
2016), the LaAlGe family (S.-Y. Xu et al., 2017), and
Ta3S2 (G. Chang et al., 2016a). Among them the most
intensively studied materials are the Mo1−xWxTe2 family
(Belopolski et al., 2016a; Deng et al., 2016; L. Huang et al.,
2016; Tamai et al., 2016; C. Wang et al., 2016). Figure 34(b)
shows the calculated electronic band structure of MoTe2 in the
presence of SOC along a specific K-K0 direction in the kz ¼ 0
plane. The electron and hole pockets touch each other at
6 meV (labeled as W1) and 59 meV (labeled as W2) above
EF, forming four pairs of type-II Weyl points with monopole
charges of �1, as illustrated in Fig. 34(a). Consequently,
topological Fermi arcs are expected to emerge on the ð001Þ
surface, connecting the projections of the W1 and W2 Weyl
points with opposite chirality, as shown in Fig. 34(c).
Experimentally, it is difficult to distinguish the surface
Fermi arcs from the trivial surface states or projected bulk
states, as both of them are squeezed into the narrow surface
gap between the projected bulk electron and hole pockets
[Fig. 34(d)]. Nevertheless, the type-II WSM states in the
Mo1−xWxTe2 family were confirmed by various spectroscopic
measurements. Deng et al. (2016) confirmed the existence of
surface Fermi arcs on the ð001Þ surface of MoTe2 [Fig. 34(e)]

(a) (b)

NbAs

FIG. 33. (a) Real part of the optical conductivity of TaAs measured at 5 K. The blue and black lines are guides for the eye. Inset:
corresponding spectra weight SðωÞ, which is proportional to ω2. (b) Landau-level resonance energy vs Bmeasured at 5 K for NbAs. C1
and C3 (W2) and C2 (W1) denote the interband transitions that involve the zeroth chiral Landau-level of Weyl bands (W1 has a higher
Fermi velocity), respectively; the blue and red lines are the corresponding fitting curves. T1 represents the nonzero Landau-level
transition, which follows a

ffiffiffiffi
B

p
dependence. Adapted from B. Xu et al., 2016, and Yuan et al., 2018.
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by performing systematic ARPES. Taking advantage of
pump-probe ARPES, Belopolski et al. (2016a) demonstrated
the type-II Weyl fermion state in Mo0.25W0.75Te2 by observing
a topological Fermi arc above EF [Figs. 34(f) and 34(g)].

b. STM and STS

In addition to ARPES, STM and STS have been employed
to visualize the topological surface states of the Mo1−xWxTe2
family (Zheng et al., 2016a; Deng et al., 2017; Zhang, Wu
et al., 2017; Rüßmann et al., 2018). Take Mo0.66W0.34Te2 as
an example. First-principle calculations revealed four pairs of
Weyl points in the BZ: two pairs are located at 15 meV above
EF (W1), while the other two pairs sit at 62 meV (W2).
Figure 35(a) shows the calculated surface states and projected
bulk states on the ð001Þ surface; the middle segments of the
large semicircular contours are the surface Fermi arcs that
connect the projection of Weyl nodes. Several scattering
vectors can be identified from Fig. 35(a). Two dominant
scattering vectors involving the projected Weyl pockets are
Q1, which connects the two electron Weyl pockets, and Q2,
which links the electron Weyl pocket and the topological
trivial surface pocket; two dominant scattering processes
involving the surface Fermi arcs are Q3, which connects
two Fermi-arc-derived surface contours, and Q4, which links
the Fermi arcs to the trivial surface state, as illustrated in

Fig. 35(b). These scatterings form QPI patterns in the
Fourier transform of conductance maps. By comparing the
experimental QPI pattern [Fig. 35(d)] with the calculations
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FIG. 34. (a) 3D bulk BZ and the projected ð001Þ surface BZ of MoTe2. Weyl points with positive and negative monopole charges are
displayed as green and gray dots. (b) Calculated fine band structure of MoTe2 along the K-K0 direction crossing two types of Weyl
points. (c) Calculated spectral intensity maps of MoTe2 at EF þ 5 meV. (d) Calculated spectral intensity maps of MoTe2 at EF (shifted
by −0.02 eV to account for the slight hole doping). The white dashed boxes indicate the regions of interest shown in (c). (e) ARPES
intensity maps of MoTe2 measured at EF with a 6.3 eV laser. (f),(g) ARPES intensity plot and the calculated electronic structure of
Mo0.25W0.75Te2 at kx ∼ kw along the ky direction. The red lines indicate the energy positions of the surface band bottom, the W1 point,
and the W2 point, respectively. Adapted from Sun et al., 2015, Belopolski et al., 2016a, and Deng et al., 2016.
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FIG. 35. (a) The calculated surface and projected bulk states of
Mo0.66W0.34Te2 ð001Þ surface at E ¼ 50 meV. The black and
white dots represent the projected Weyl nodes with opposing
chiralities. (b) Same as (a), but with only the surface states
considered. (c) Calculated QPI patterns based on (b). (d) Exper-
imental QPI patterns at E ¼ 50 meV. The white dotted rectangles
in (c) and (d) highlight the Fermi-arc-derived QPI patterns.
Adapted from Zheng et al., 2016a.
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[Fig. 35(c)], Zheng et al. (2016a) unveiled the Fermi-arc-
derived quantum interference patterns (Q3=Q4), signifying the
existence of surface Fermi arcs. Furthermore, they also found
that the contribution of bulk states to the QPI pattern (e.g.,
Q1=Q2) is negligible and interpreted as the signature of a
pronounced topological sink effect; i.e., a surface electron
from Fermi arcs can sink into the bulk Weyl cones due to a
topological bulk-surface connection and thereby does not
contribute to the surface standing waves.

c. Quantum transport

Quantum transport measurements have intensively studied
the Mo1−xWxTe2 family. To begin, SdH oscillation measure-
ments revealed multiple Fermi pockets, and large nonsaturat-
ing magnetoresistance manifested as the perfect compensation
for electron and hole carriers (Ali et al., 2014; Cai et al., 2015;
Zhao et al., 2015a; Zhu et al., 2015). The anisotropic chiral
anomaly effect, a distinctive feature of type-II WSMs, was
recently confirmed in gate-tunable WTe2 thin flakes (Y. Wang
et al., 2016a), Fermi-level, delicately adjusted WTe1.98 single
crystals (Y.-Y. Lv et al., 2017), CVD-grown WTe2 nanosheets
(E. Zhang et al., 2017), andWTe2 nanoribbons (Li, Wen et al.,
2017) through anisotropic NLMR observation.
As we know, in type-I WSMs the chiral-anomaly-induced

NLMR always appears, regardless of the direction of the
parallel magnetic field. In contrast, in type-II WSMs the chiral
anomaly occurs only if the external magnetic field is applied
along the direction where the kinetic energy of electrons is
larger than their potential energy, e.g., the tilt direction of the
Weyl cones. Indeed, the chiral-anomaly-induced NLMR is
observed along the tilt direction of the Weyl cones (i.e., the b
axis) in WTe2, whereas only positive longitudinal magneto-
resistance is observed under the BkIka-axis condition, as
shown in Figs. 36(a) and 36(b). Note that the strength of the
chiral anomaly contribution or the anomaly coefficient is
determined by the energy location of the Weyl points, which
can be tuned via gate voltage; therefore, the observation of
gate-tunable NLMR in Figs. 36(a) and 36(c) further supports
its chiral anomaly origin. Along with the anisotropic NLMR,
an extraquantum oscillation (78 T), which is absent in the
WTe2 bulk form, was observed in WTe2 nanoribbons in the
presence of a perpendicular magnetic field (Bkc), as shown in
Fig. 36(d). This oscillation was attributed to the Weyl orbit
formed by the connection between the ð001Þ surface Fermi
arcs and the bulk Weyl points. Last, we point out that the PHE
has been observed in both WTe2 and MoTe2 (Chen et al.,
2018; Wang, Gong et al., 2018; Liang et al., 2019); however,
it is still under debate whether the observed PHE arises from
the chiral anomaly.

3. Magnetic Weyl semimetals

The proposals of magnetic WSMs are not rare, and many
materials have been predicted to be magnetic WSMs, such as
HgCr2Se4 (G. Xu et al., 2011), magnetic pyrochlores A2Ir2O7

(A ¼ rare-earth element) (Wan et al., 2011), YbMnBi2
(Borisenko et al., 2019), magnetic Heusler and half-Heusler
compounds (Wang, Vergniory et al., 2016; Chadov et al.,
2017), the antiferromagnetic Mn3Sn family (Yang, Sun et al.,
2017), the layered half-metal Co3Sn2S2 (Xu, Liu et al., 2018),

and GdSI (Nie et al., 2017). Despite so many proposals,
experimental evidence has been scant. Recently the large
intrinsic anomalous Hall conductivity, one of the distinct
signatures of magnetic Weyl fermions, was observed in half-
Heusler GdPtBi (Suzuki et al., 2016; Shekhar et al., 2018),
Mn3Ge (Nakatsuji, Kiyohara, and Higo, 2015; Nayak et al.,
2016), and Co3Sn2S2 (E. Liu et al., 2018; Wang, Xu et al.,
2018), indicating the existence of Weyl fermions in these
systems. In particular, recent ARPES and STS measurements
have provided direct evidence for the existence of the
magnetic Weyl semimetal phase in YbMnBi2 (Borisenko
et al., 2019) and Co3Sn2S2 (D. F. Liu et al., 2019; Morali
et al., 2019) by identifying the characteristic surface Fermi
arcs or linearly dispersed bulk Weyl cones.
Take Co3Sn2S2 as a representative. It crystallizes in a

rhombohedral structure with the magnetic moments of cobalt
atoms aligned along the c direction. In the absence of SOC,
there are several band inversions centered at the L points, and
these band inversions result in several nodal rings located
at the three mirror planes in the BZ, as shown in Figs. 37(a)
and 37(b). When SOC is taken into account, these nodal rings
are gapped out and pairs of Weyl points appear off the high-
symmetry line at ∼60 meV above EF. These Weyl points give
rise to pairs of nontrivial surface Fermi arcs on the ð001Þ
surface, as shown in Fig. 37(c), which can be directly detected
by ARPES. Indeed, ARPES measurements performed by D. F.
Liu et al. (2019) visualized the surface Fermi arcs on the ð001Þ
Sn-terminated surface, as shown in Fig. 37(d). Furthermore,
by in situ electron doping, the Fermi level was raised in
Co3Sn2S2, enabling direct observation of the bulk Weyl
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FIG. 36. (a) NLMR of a WTe2 thin flake measured at various
gate voltages under the BkIkb-axis condition. Inset: schematic
structure of the gated four-probe devices. (b) Positive longitudinal
magnetoresistance with current along the a axis. (c) Chiral
coefficient (CW) extracted from (a), where the maximum value
of CW indicates the crossing of the type-II Weyl points. (d) FFT
spectra of the b-axis WTe2 ribbon. An extra frequency of 78 T
shows at B > 8.0 T relative to the bulk WTe2. Adapted from
Y. Wang et al., 2016a, and Li, Wen et al., 2017.
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points, as shown in Fig. 37(e). In addition to ARPES
measurements, transport and STS measurements have also
been performed and revealed the Weyl nodes induced by large
anomalous Hall conductivity [Fig. 37(f)] (E. Liu et al., 2018;
Wang, Xu et al., 2018) and the surface Fermi arcs on different
surface terminations [Figs. 37(g) and 37(h)] (Morali et al.,
2019), respectively. Last, we mention that Yin et al. (2019)
performed a systematic STS measurement and further
observed a unique spin-orbit coupled flatband at EF, which
is associated with the Berry curvature field in Co3Sn2S2.

4. Double and triple Weyl semimetals

Apart from traditional WSMs with a linear-dispersed Weyl
cone and C ¼ �1, there are multiple WSMs in which the
monopole charges of Weyl points are larger than unity. Two
known examples are double and triple WSMs, with monopole
charges of �2 and �3, respectively. Accordingly, the double
(triple) Weyl nodes have quadratic (cubic) dispersions in two
momentum directions and linear dispersion in the third
direction. The double Weyl nodes, usually protected by C4

or C6 rotation symmetry, are predicted to be realized in
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FIG. 37. (a) 3D bulk BZ (black) and the projected ð001Þ surface BZ (red) of Co3Sn2S2. The green lines and red and blue dots indicate
the locations of the nodal lines and the Weyl points in the BZ. (b) Calculated band structures of Co3Sn2S2 along high-symmetry lines
with and without SOC. (c) Calculated spectral intensity maps for the ð001Þ Sn-terminated surface of Co3Sn2S2 at EF þ 60 meV.
(d) ARPES intensity plots recorded with 124 eV photons. Red arrows indicate surface Fermi arcs (SFA). (e) ARPES intensity plot along
the direction parallel to ky [green line in (c)], showing the linear band dispersion across the Weyl point. (f) Temperature-dependent
anomalous Hall conductivity measured at zero magnetic field. Inset: logarithmic temperature dependence of σAH . (g) Fourier transform of
a dI=dV map taken at Vbias ¼ 7.5 meV on the ð001Þ Sn-terminated surface, showing hexagonal-shaped QPI patterns originating from
the scattering processes involving Fermi arcs [pink arrows in (ii)] and surface-projected bands [red arrows in (ii)]. (h) Fourier transform
of a dI=dV map taken at Vbias ¼ 70 meV on the ð001Þ Co-terminated surface showing QPI broad peaks along Γ-M [marked with pink
ellipses in (i)] that originate from the scattering processes involving the Fermi-arc bands [pink arrows in (ii)]. Adapted from E. Liu et al.,
2018, Xu, Liu et al., 2018, D. F. Liu et al., 2019, and Morali et al., 2019.
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HgCr2Se4 in the ferromagnetic phase, with a pair of double
Weyl nodes along the Γ-Z direction (Fig. 38), as well
as in SrSi2 (Singh et al., 2018). Conversely, the triple Weyl
node can be protected only by the largest rotation symmetry,
the C6 symmetry, and it has not yet been realized in any
material candidates. Multiple WSMs are expected to exhibit
many distinct features. One direct consequence of multiple
Weyl fermions is the existence of the same number of surface
Fermi arcs on certain surfaces connecting the projection of
two bulk Weyl nodes of opposite charges. Indeed, HgCr2Se4
exhibits double Fermi arcs on the side surface BZ, as shown in
Figs. 38(d) and 38(e). Besides, since the multiple Weyl nodes
are protected by Cn invariance, an applied strain or magnetic
field that breaks such symmetry can split a multiple Weyl node
into several single Weyl nodes. Thus, multiple WSMs also
offer a promising platform to examine quantum phase
transitions.

5. Ideal Weyl semimetals

The first Weyl semimetal phase was discovered in the TaAs
family, in which up to 12 pairs of Weyl nodes, as well as many
trivial hole and electron Fermi pockets, coexist near the EF.
Such complicated electronic structures have led to many
debates on the spectroscopic and transport properties, espe-
cially the origin of the NLMR. Therefore, to avoid such
controversies and ensure the robustness of the Weyl fermion-
induced features, it is desirable to find ideal and robust WSMs

with simpler electronic structures. Generally, an ideal and
robust Weyl semimetal should meet the following criteria:
(i) It is a material with fewer pairs of Weyl nodes residing at
EF. (ii) Weyl points of opposite chirality are well separated in
the momentum space. This large separation naturally guar-
antees large surface Fermi arcs. (iii) No other trivial band
structures overlap with Weyl points near EF. Several prom-
ising material candidates that fully or partly satisfy these
criteria have been proposed. Jin et al. (2017) predicted that
magnetic, with magnetization along the [110] direction,
β-V2OPO4 is a promising ideal WSM, with a minimum
number of two well-separated Weyl points, as well as long
surface Fermi arcs for a ð001Þ surface. In addition to
β-V2OPO4, magnetic GdSI is also predicted to be an ideal
T -breaking Weyl semimetal with two pairs of Weyl nodes
residing at EF (Nie et al., 2017). As for ideal P-breaking
WSMs, type-II WSM TaIrTe4 (Koepernik et al., 2016) has a
minimum number of four Weyl points located close to EF;
however, many trivial states coexist with the Weyl points near
EF. Besides, the CuTlTe2 family of materials provides
promising type-I WSMs with four pairs of Weyl points sitting
at EF (Ruan et al., 2016). Furthermore, Ta3S2 (G. Chang
et al., 2016a) and the InSTl family of materials (Wang, Zhao
et al., 2017) are predicted to be robust WSM candidates with
well-separated Weyl points and long surface Fermi arcs near
EF. Despite the previously mentioned proposals, ideal WSMs
still await experimental evidence.
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FIG. 38. (a) Calculated band structure of HgCr2Se4 after including SOC [with majority spin aligning to the ð001Þ direction]. Two kinds
of band crossings (labeled A and B) are observed near EF. (b) Band crossings in k space. Crossing A gives rise to two isolated Weyl
points along the Γ-Z line, and the trajectory of crossing B is a closed loop surrounding the Γ point along the kz ¼ 0 plane. (c) Schematic
of the in-plane quadratic band dispersion around the Weyl nodes. Inset: chiral spin texture. (d) Calculated edge states for the plane with
kz ¼ 0.06π. The red and green lines indicate the states located at different edges. (e) Calculated surface Fermi arcs for the (ky, kz) side
surface. From G. Xu et al., 2011.
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We have discussed several distinctive types of WSMs,
including type-I and type-II WSMs, magnetic WSMs, multi-
ple WSMs, and ideal and robust WSMs. In addition, consid-
erable groups of materials have also been proposed as WSMs,
such as Kramer symmetry-enforced WSMs in chiral space
groups (Chang et al., 2018), Weyl-Kondo semimetals (Xu,
Yue et al., 2017), and Weyl ferroelectric semimetals (Di Sante
et al., 2016; He et al., 2018).

C. Unconventional fermions

1. Nonsymmorphic symmetry-enforced unconventional fermions

As discussed in Sec. II.C.1, nonsymmorphic crystal sym-
metries can enforce threefold, fourfold, sixfold, and eightfold
degeneracies at high-symmetry points. The low-energy exci-
tations near the threefold band degeneracy, namely, three-
component fermions, could also be regarded as spin-1 Weyl
fermions, as they can be described by a higher spin gener-
alization of the Weyl Hamiltonian H ¼ k · S, where instead of
the spin-1=2 2 × 2 Pauli matrices, S takes 3 × 3 spin-1
matrices. The spin-1 Weyl point carries a topological charge
of �2 (a derivation can be found in Appendix B.3) and can be
viewed as a generalization of conventional spin-1=2 Weyl
fermions. Similarly, S can also take 4 × 4 spin-3=2 matrices,
and the quasiparticle excitations are called spin-3=2 Rarita-
Schwinger-Weyl fermions, which correspond to fourfold band
degeneracy and a monopole charge of �4. The sixfold and
eightfold fermions, on the other hand, can be viewed as
doublings of spin-1 Weyl fermions and Dirac fermions,
respectively.
First-principles calculations (Bradlyn et al., 2016) have

predicted the presence of these unconventional fermions in
numerous materials with specific nonsymmorphic group
symmetry. For example, Pd3Bi2S2 in SG 199 has threefold
band degeneracy at the P point, K3BiTe3 in SG 198 exhibits
sixfold band degeneracy at the R point, and Ta3Sb in SG 223
can stabilize eightfold degeneracy at the R point, as shown in
Fig. 39. However, in many proposed material candidates, the
multifold band degeneracies either are located far from EF or
overlap in energy with the other trivial Fermi surfaces.
Obtaining ideal material candidates with well-isolated band
degeneracy at EF is still difficult.
Until 2018, transition-metal silicides in the CoSi family of

materials (space group P213) were proposed to host various

types of unconventional fermions owing to the chiral lattice
(Tang, Zhou, and Zhang, 2017; Chang et al., 2018; Zhang,
Song et al., 2018). As shown in Fig. 40(a), first-principles
calculations without SOC suggest that CoSi exhibits two types
of symmetry-protected unconventional crossings near EF, one
at the Γ point with threefold degeneracy and the other at the R
point with fourfold degeneracy. The nodes at the Γ and R
points carry nonzero Chern numbers of �2, where the
quasiparticle excitations are described as spin-1 Weyl fer-
mions and charge-2 fourfold fermions, respectively. These
two near-EF band crossings are well separated in the
momentum space as they are pinned to the Γ and R points.
They also do not overlap in energy with the other Fermi
surfaces, suggesting that CoSi could provide a favorable
platform for accessing the physical phenomena associated
with these unconventional fermions using a variety of exper-
imental techniques. Several ARPES groups (Rao et al., 2019;
Sanchez et al., 2019; Takane et al., 2019) first systematically
studied the electronic structure of CoSi and directly observed
the threefold-degenerate point and fourfold-degenerate point
near EF, as shown in Figs. 40(b) and 40(c). Because the
threefold and fourfold nodes in CoSi carry Chern numbers of
�2, it is expected that two surface Fermi arcs emanate from
their projections on certain surfaces. Specifically, on the ð001Þ
surface, the Γ and R points are projected onto the center and
corner of the surface BZ, respectively; therefore, there should
be two Fermi arcs connecting the Γ̄ and M̄ points. These two
surface Fermi arcs were directly observed using surface-
sensitive VUV ARPES. As shown in Figs. 40(d) and 40(e),
the measured Fermi surfaces at hυ ¼ 75 and 110 eV shows
two surface Fermi arcs stretching diagonally across the entire
ð001Þ surface BZ to connect the bulk FS pockets at the Γ̄ and
M̄ points, which is consistent with expectations. The double
Fermi arcs were further evidenced by their chiral band
dispersions on the loop that encircles the projection of the
charge-2 Weyl node, as shown in Fig. 40(f).
STM and STS measurements were performed on various

surfaces of CoSi to characterize the Fermi arcs (Yuan et al.,
2019). Figure 40(g) summarizes the QPI pattern on the ð001Þ
surface. By comparing it to simulations [Fig. 40(h)], Yuan
et al. concluded that the eye-shaped features (yellow arrows)
and the crescent-moon-shaped features (black arrows) resulted
from the scattering between surface Fermi arcs, indicated by
q1 and q2 in Fig. 40(i).

FIG. 39. The calculated band structures of the representative compounds Pd3Bi2S2 (SG 199), K3BiTe3 (SG198), and Ta3Sb (SG 223)
showing the existence of threefold, sixfold, and eightfold band degeneracies, respectively. From Bradlyn et al., 2016.

B. Q. Lv, T. Qian, and H. Ding: Experimental perspective on three-dimensional …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025002-42



Several groups recently investigated the transport and
optical responses of chiral fermions. Concretely, transport
measurements revealed energy-dependent interband and intra-
band electron scatterings (Pshenay-Severin, Ivanov, and
Burkov, 2018), and a large phonon-drag-induced Nernst effect
in CoSi at intermediate temperatures (Xu et al., 2019). As for
the optical responses, the ω-linear optical conductivity, a

signature of linearly dispersed band crossings, was predicted
and observed in RhSi, as shown in Fig. 41(a) (Li, Iitaka et al.,
2019; Sánchez-Martínez, de Juan, and Grushin, 2019;
Maulana et al., 2020). Besides, the fact that the two bulk
nodes at the Γ and R points have large energy separation in
Co(Rh)Si makes it possible to realize a specific nonlinear
optical phenomenon, the quantized CPGE. Specifically, under
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FIG. 40. (a) Calculated band structures of CoSi along high-symmetry lines without spin-orbit coupling. Inset: calculated 3D bulk
Fermi surfaces. (b),(c) Curvature intensity plot of the ARPES data together with the calculated band structure (red curves) showing the
band dispersions along the R-Γ-R andM-Γ-M directions, respectively. (d) ARPES intensity maps at EF, measured with (i) hυ ¼ 75 eV
and (ii) hυ ¼ 110 eV. (e) Surface Fermi arcs extracted from the ARPES intensity maps with 75 (blue dots) and 110 eV (red dots) photon
energy showing the connection between the ð001Þ surface projections of the bulk Fermi surfaces at Γ̄ and M̄. (f) ARPES intensity plot
showing the chiral band dispersions on the closed loop indicated in (d). (g) Experimental QPI patterns taken on the ð001Þ surface of CoSi
at U ¼ 0 mV. (h) Corresponding QPI simulations including SOC. The dotted rectangles in (g) and (h) mark the surface’s first BZ, and
the yellow and green arrows highlight the Fermi-arc-derived QPI patterns. (i) The calculated surface states of the CoSi ð001Þ surface at
EF with SOC included. Adapted from Tang, Zhou, and Zhang, 2017, Rao et al., 2019, and Yuan et al., 2019.
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circularly polarized light the rate of photocurrent generation
associated with optical transitions near a monopole is propor-
tional to its charge (de Juan et al., 2017; Flicker et al., 2018).
Recently the CPGE effect was reported in RhSi, as shown in
Fig. 41(b) (Rees et al., 2020). However, Rees et al. realized
that the measured photocurrent rate is not precisely quantized
to the monopole charge due to some specific factors, such as
hot carries. The data reveal a current cutoff at 0.65 eV, which
is in quantitative agreement with the prediction from the
electronic structure.
We note that SOC was not considered in the previous

discussion. When considering SOC, the bands split at arbi-
trary non-TRIM due to the lack of inversion symmetry, except
for those at the BZ boundaries whose double degeneracy is
protected by T and nonsymmorphic screw symmetries.
Consequently, at the Γ point, the sixfold node is split by
SOC into two crossing points with twofold and fourfold
degeneracy, corresponding to a Weyl fermion and a spin-3=2
Rarita-Schwinger-Weyl fermion with C ¼ þ4. Similarly, at
the R point, the eightfold degeneracy point splits into sixfold
and twofold degeneracy points, which give rise to double spin-
1 fermions with C ¼ − 4 and Weyl fermions, respectively.
However, this band splitting is of the order of meV, and thus
the SOC effects can be ignored in the experimental work.
Materials with heavy elements are desired to resolve the band
splitting and charge-4 fermions. Indeed, recent soft x-ray
ARPES measurements resolved the band splitting and the
fourfold and sixfold band degeneracy in AlPt and PdBiSe (Lv
et al., 2019; Schröter et al., 2019), providing evidence for the
existence of spin-3=2 fermions and double spin-1 fermions in
solids.

2. Symmorphic symmetry-protected unconventional fermions

Nonsymmorphic symmetries can enforce threefold, sixfold,
and eightfold degenerate points at the TRIM. In addition to

nonsymmorphic symmetries, the combination of band
inversion and proper symmorphic crystal symmetries such
as mirror and rotational symmetries can also protect the triply
degenerate points on the high-symmetry lines. These triply
degenerate points are accidental degeneracy points between
the bands of one- and two-dimensional irreducible represen-
tations. They can be viewed as an intermediate species
between twofold Weyl points and fourfold Dirac points.
Three-component fermions exhibit many unique properties,
such as Fermi surface Lifshitz transitions. As shown in
Fig. 42(a), when the cut of the Fermi surfaces is placed
above, between, and below the two triple points, one can
observe two electron pockets, one hole pocket and one
electron pocket, and two hole pockets, respectively. In other
words, at each triple point a topological Lifshitz transition
takes place. Another notable feature is that the Fermi surfaces
touch near the triple points for arbitrary EF because the triple
points are tied to one doubly degenerate nodal line. The Fermi
surface touching may cause a “magnetic breakdown” in
quantum oscillations whereby the semiclassical orbits become
undefined as a result of tunneling between the touching Fermi
surfaces (Weng et al., 2016b). Moreover, these bulk electron
or hole pockets near the triple points also have a topologically
robust spin texture with a winding number of 2 (Weng
et al., 2016b).
Many material candidates have been predicted to host three-

component fermions, such as materials in space group 187
with tungsten carbide-type structure (such as WC, MoP, TaN,
and ZrTe) (Weng et al., 2016a, 2016b; Zhu et al., 2016; G.
Chang et al., 2017a), InAs0.5Sb0.5 (Winkler et al., 2016), half-
Heusler materials (Yang, Yu et al., 2017), and the NaCu3Te2
family (Wang, Sui et al., 2017). In particular, triple points
have been observed in MoP and WC (B. Q. Lv et al., 2017;
Ma et al., 2018). If we take WC as a representative, the
calculated band structure shows two crossings between

(a) (b)

FIG. 41. (a) Experimental and calculated real part of the optical conductivity of RhSi. The linear-in-frequency region (below
∼600 meV) was assigned to transitions between the linear crossing bands near the Γ and R points. (b) Measured circular photogalvanic
effect (CPGE) amplitude of RhSi as a function of photon energy. Inset: schematic photon-energy dependence of the CPGE, which is
proportional to the total flux (C) of the Berry curvature passing through the surface SW . For ℏw < Ec (blue shaded region), SW
corresponds to a single surface enclosing the Γ point, and C is thereby identical to the Chern number at the Γ point, i.e., 4. Above Ec, SW
encloses two nodes of opposite chirality at the Γ and R points, resulting in a zero C and a vanishing CPGE. From Maulana et al., 2020,
and Rees et al., 2020.
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doubly degenerated bands and nondegenerated bands along
the Γ-A direction, as shown in Fig. 42(b). These two band
crossings, namely, the triple points, are protected by a
combination of mirror symmetry and C3 rotational sym-
metries. Specifically, the no. 1 triple point, located close to
EF, has been directly visualized by soft x-ray ARPES, as
shown in Fig. 42(c).
As discussed, the topological nature of the bulk nodes is

usually characterized by Chern numbers. However, near the
triple point the Chern numbers are undefined, as the triple
point arises from the crossing between a nondegenerate band
and a doubly degenerate band, and it is impossible to enclose
it with a sphere on which the band structure is fully gapped.
While the topological invariant for the triple point is an open
question, the band topology within the kz ¼ 0 and π planes
can be identified by Z2 topological invariants. The calculated
Z2 numbers for the kz ¼ 0 and π planes are 0 and 1,
respectively, which implies that the kz ¼ π plane is a quantum
spin Hall insulator plane and that topologically protected
Dirac cone surface states should appear along the Ã-R̃ line of
the ð100Þ surface BZ. Indeed, ARPES measurements show a
surface Dirac cone (SS2) located at the Ã point, with its upper
and lower branches connected to the conduction and valence
bands, respectively (Ma et al., 2018). As summarized in
Figs. 42(d) and 42(e), the surface states forming the topo-
logical Dirac cone emerges from a pair of Fermi arcs
connecting the projection of the triple points, which is similar

to the Fermi arcs in DSMs Na3Bi and Cd3As2. In addition to
SS2, the ARPES data [Fig. 42(d)] show two other pairs of
surface Fermi arcs (SS1) emerging from the triple point.
However, they are not topologically protected, as Z2 is zero
for the kz ¼ 0 plane. Apart from pairs of Fermi arcs on the
ð100Þ surface, other distinguished quantum phenomena have
also been reported. Kumar et al. (2019) reported extremely
low resistivity and high mobility of carriers in MoP, as shown
in Fig. 43(a). He et al. (2017) observed an anisotropic
magnetoresistivity in WC that shows NLMR only under
the BkIkx configuration [Fig. 43(b)], in contrast to the
isotropic one in type-I Dirac points and WSMs.
We have summarized the unconventional fermions in T -

invariant nonmagnetic symmorphic and nonsymmorphic
space groups. Recently Cano, Bradlyn, and Vergniory
(2019) enumerated the unconventional band degeneracies
that can occur in 1651 magnetic space groups and revealed
that only threefold, sixfold, and eightfold degeneracies are
possible (in addition to the conventional twofold and fourfold
degeneracies), as in nonmagnetic space groups. They pro-
vided a list of space groups as well as several material
candidates where these unconventional fermions can be
realized, including three-component fermions in Mn3IrSi,
sixfold fermions in Cu3O6Te, and eightfold fermions in
Zr2V6Sb9. These results can serve as a foundation for finding
multifold nodal fermions in realistic magnetic systems and
exploring their topological phenomena, such as Fermi arcs,
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FIG. 42. (a) Schematics of the band structures of three-component fermions (left) and the equal-energy contours at three different
energy cuts: below, between, and above the two triple points. (b) Calculated band structures of WC near the triple point with SOC. The
black dots indicate the triple points. The green and red curves represent doubly degenerate and nondegenerate bands, respectively.
(c) ARPES intensity plot of WC along the ky direction with hυ ¼ 555 eV (corresponds to the no. 1 triple point in WC). (d) ARPES
intensity plot at −200 meV recorded with hυ ¼ 555 eV. The white and green rectangles indicate the ð100Þ surface BZ (SBZ) and the
bulk BZ (BBZ) on the kx ¼ 0 plane, respectively. (e) Schematic of surface Fermi arcs (red and pink curves) connecting the surface
projections of bulk TPs (green dots) on the ð100Þ surface as well as the surface-state (SS) bands along the Γ̃-X̃ and Ã-R̃ directions.
Adapted from Ma et al., 2018.
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large anomalous Hall conductances, and nonlinear optical
responses.

IV. TOPOLOGICAL NODAL-LINE AND NODAL-SURFACE
SEMIMETALS

A. Distinct features

In Sec. III, we discussed TSMs with 0D band crossings, i.e.,
discrete nodes. As we know, in addition to discrete points, the
band crossing points can form 1D loops in 3D momentum
space. Materials with such 1D band crossings at or close to EF
are called topological nodal-line semimetals. Compared to
Dirac and WSMs, TNLSMs manifest several distinct features:

(i) TNLSMs with 1D band crossings naturally have the
1D bulk Fermi surface, in contrast to the 0D Fermi
surfaces of DSMs and WSMs.

(ii) In contrast to massless Weyl and Dirac cones, which
have linear band dispersion in all k directions, 1D
nodal lines exhibit linear band dispersion only along
directions perpendicular to the nodal line. As a
result, the low-energy excitations of nodal-line
semimetals are massless along the two transverse
directions but massive along the direction tangent to
the nodal lines. Therefore, nodal-line fermions have
no counterpart of particles in high-energy physics.
This unique electronic structure of nodal-line semi-
metals also gives rise to a higher density of states of
low-energy excitations that is proportional to
jE − EFj, in contrast to the ðE − EFÞ2-like density
of states seen in WSMs. Consequently, stronger
electron correlation effects are expected in nodal-
line semimetals. It is predicted that the Coulomb
interaction will be only partially screened, and long-
range Coulomb interactions are expected due to the
vanishing density of states at EF (Huh, Moon, and
Kim, 2016).

(iii) Generally, topological materials can be associated
with nontrivial topological invariants. For example,

topological nodal point semimetals can be charac-
terized by monopole charges. For TNLSMs, one can
also associate each nodal line with a topological
invariant whose form depends on the symmetry
group that protects the nodal-line structure. Given
the variety of symmetry groups that protect the nodal
lines, different types of topological invariants can be
found (Burkov, Hook, and Balents, 2011; Chiu and
Schnyder, 2014; Fang et al., 2015; Kim, Wieder
et al., 2015; Yu et al., 2015; Fang, Weng et al., 2016;
Hyart, Ojajärvi, and Heikkilä, 2018), such as the Z2

Berry phase or monopole charge or topological
charge characterized nodal lines protected by PT
symmetries, a mirror-reflection symmetry-protected
nodal line with a Z invariant and a nonsymmorphic
symmetry-enforced nodal line with a Z invariant.

To further elucidate the variety of topological
invariants of nodal lines, we consider two of the
simplest examples in spinless systems (neglecting
the SOC). In the first example, consider a single
nodal line on the mirror plane, as illustrated in
Fig. 44(a). Since the nodal line is protected by the
mirror symmetry, one can use the mirror eigenvalues
as the topological invariant. One can pick two points
P1 and P2 at the two sides of the nodal line and
count the number of bands below EF that have
mirror eigenvalues of þ1, denoted as N1 and N2.
The corresponding topological invariant is then
given by Z ¼ jN1 − N2j. Z ¼ 1 indicates that the
two crossing bands have opposing mirror eigenval-
ues, and the nodal line is topologically protected by
the mirror symmetry. The other widely encountered
topological invariant comes from the Berry phase.
Specifically, in spinless systems with both P and T
symmetries, it has been proven that the Berry phase
along any closed loop must be quantized as an
integer multiple of π. As a result, any loop encircling
the nodal line has a nontrivial π Berry phase,

(a) (b)

MoP
WC

FIG. 43. (a) Temperature-dependent charge-carrier mobility of MoP. Inset: crystallographic directions in the hexagonal representation.
(b) Longitudinal magnetoresistance of WCmeasured at various temperatures for BkIkx (inset). Adapted from He et al., 2017 and Kumar
et al., 2019.
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whereas the other loops have zero Berry phase,
as these loops can smoothly shrink to an infinitesi-
mal loop, which necessarily has zero Berry phase
[Fig. 44(b)]. Therefore, one can take the π Berry
phase as a topological invariant to characterize the
PT -symmetric nodal lines in the absence of SOC.
We point out that in addition to the π Berry phase,
the PT -symmetric nodal lines can further carry a
nonzero Z2 monopole charge. Unlike the π Berry-
phase-protected nodal-line systems, in which a
single nodal line can exist, the nodal lines with
nonzero monopole charges can be created or anni-
hilated only in pairs, in analogy to Weyl points
(Fang, Weng et al., 2016).

(iv) Crystallographic symmetries are necessary for sta-
bilizing nodal lines. However, none of the sym-
metries that protected the nodal lines, including
mirror reflection, inversion, and nonsymmorphic
symmetries, are preserved on the surfaces. There-
fore, the bulk-edge correspondence may not be
applied to TNLSMs, and the surface states in
TNLSMs are not topologically protected by bulk
nodal lines. Nevertheless, TNLSMs are still accom-
panied by distinct surface states, which are em-
bedded inside the gap between the conduction and
valence bands in the surface projection of the bulk
nodal lines. The distinguishing feature of these
surface states is that they are flat in dispersion
and are therefore referred to as “drumhead” surface
states (Weng, Liang et al., 2015). These drumhead
surface states give rise to a large density of states at
EF; consequently, they could potentially realize
high-temperature superconductivity, surface mag-
netism, or other interesting correlated effects on
the surface (Heikkilä, Kopnin, and Volovik, 2011;
Kopnin, Heikkilä, and Volovik, 2011). These drum-
head surface states are not topologically protected,
and a small perturbation to the surface will destroy
the “flatness” of the surface bands and can even push
the surface states into the bulk continuum spectrum.

(v) Finally, the unique bulk and surface electronic
structures of TNLSMs have also been predicted to
lead to interesting transport and optical pheno-
mena, such as the nondispersive Landau-level
spectrum (Rhim and Kim, 2015), distinct collec-
tive modes (Yan, Huang, and Wang, 2016), and a

quasitopological electromagnetic response (Rama-
murthy and Hughes, 2017).

One-dimensional nodal lines are not rare in condensed-
matter systems. In recent years, various TNLSMs that can be
distinguished based on the characteristics of nodal lines have
been identified, such as crystal symmetry or generation
mechanisms; the degeneracy of the band crossing, slope,
and order of band dispersion; and the linking structure of
multiple nodal lines. In the following, we review these
characteristic features and some representative material
candidates.

B. Nodal lines in the absence of SOC

1. PT -symmetry-protected nodal lines

Crystallographic symmetries play an important role in
realizing 1D nodal lines. Without SOC, the combination of
T symmetry and inversion or mirror symmetries can stabilize
the 1D band crossings arising from band inversion. For PT -
symmetry-protected nodal lines, various materials have been
theoretically proposed, including Cu3PdN (Kim,Wieder et al.,
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L(a) (b)
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FIG. 44. (a),(b) Schematic illustration of the topological invariants of mirror-symmetry-protected and PT -symmetry-protected nodal
lines in spinless systems, respectively. The blue and red curves in (a) indicate the crossing valence and conduction bands of opposing
mirror eigenvalues. The red circles and ϕ in (b) indicate the closed loop (L) and the corresponding Berry phases. Adapted from Fang,
Weng et al., 2016.
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FIG. 45. (a) 3D bulk BZ and the projected ð001Þ surface BZ of
Cu3PdN. The orange curves and red points indicate the locations
of nodal rings and nodal points without and with SOC included,
respectively. (b) Calculated band structures of Cu3PdN along
high-symmetry lines without SOC. (c) Calculated surface band
structures and density of states for ð001Þ surface without SOC.
Adapted from Yu et al., 2015.
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2015; Yu et al., 2015), graphene networks (Weng, Liang et al.,
2015), CaTe (Du, Tang et al., 2017), compressed black
phosphorus (Zhao et al., 2016), the CaP3 family (Quan,
Yin, and Pickett, 2017; Xu, Yu et al., 2017), LaX
(X ¼ N; P;As; Sb;Bi) (Zeng et al., 2015), WHM (W ¼ Zr,
Hf, or La; H ¼ Si, Ge, Sn, or Sb; M ¼ O, S, Se, and Te)
(Schoop et al., 2016) (nodal lines near EF are discussed later),
and Mg3Bi2 (Zhang, Jin et al., 2017). Take Cu3PdN as an
example, without SOC included. Band inversion happens at
the R point, forming three nodal rings perpendicular to each
other, as shown in Fig. 45. On the ð001Þ surface, the nearly flat
surface bands, namely, the drumhead surface states, which are
nestled inside the projected node rings, can be seen around the
M̄ point.

2. Mirror-symmetry-protected nodal lines

a. Theoretical prediction and ARPES

As mentioned, mirror symmetry, including mirror reflection
and mirror glide, can stabilize nodal lines on the mirror plane.
Examples of mirror-reflection symmetry-protected nodal lines
include TaAs (Weng, Fang et al., 2015), Ca3P2 (Xie et al.,
2015; Chan, Chiu et al., 2016), CaAgAs (Yamakage et al.,
2016), and HfC (Yu, Wu et al., 2017). In TaAs, the band
inversion leads to 12 nodal rings in the two mirror planes,
which allows the two crossing bands to have two different
irreducible representations, as shown in Fig. 24(c).

Similarly, many materials with mirror-glide symmetry-pro-
tected nodal lines have also been predicted, such as SrIrO3

(Chen, Lu, andKee, 2015),WHM (W ¼ Zr, Hf, or La;H ¼ Si,
Ge, Sn, or Sb;M ¼ O, S, Se, and Te) (Schoop et al., 2016), and
IrO2 (Sun, Zhang et al., 2017). Among these, the most well-
studied materials are WHM. Take ZrSiS as a representative.
It is a tetragonal PbFCl-type compound with nonsymmorphic
space group P4=nmm (no. 129). The crystal structure includes
the PT , C2v, fC2xjð1=2; 0; 0Þg and fC2yjð0; 1=2; 0Þg screw,
and mirror-glide fMZjð1=2; 1=2; 0Þg symmetries, which are
required for protecting the nodal-line structures in ZrSiS.
Figures 46(b) and 46(c) display the calculated bulk electronic
structure of ZrSiSwithout andwith SOC.Without SOC, several
Dirac-like band crossings can be identified near EF, e.g., along
the Γ-X, Γ-M, Z-R, and Z-A high-symmetry lines. These near-
EF band crossings, protected by the mirror-glide and C2v
symmetries, together form multiple interconnected nodal lines
in the BZ, as displayed in Fig. 46(a) (red dashed lines). In
addition, the screw and mirror-glide symmetries enforce band
degeneracies in the kx ¼ π and ky ¼ π planes [the yellowplanes
in Fig. 46(a)]. However, these band degeneracies are located
relatively far from EF. Note that the band degeneracies in the
yellow planes are different from those near-EF 1Dnodal lines in
the sense that they have Dirac-like band dispersions along only
one k direction that is transverse to the plane, such as the Γ-X or
Z-R direction. Such band degeneracies, located at the 2D BZ
boundaries, give rise to Dirac nodal surfaces, as discussed later.

Low

High

(a) (b) (c)

(d) (e) (f)

FIG. 46. (a) 3D bulk BZ and the projected ð001Þ surface BZ of ZrSiS. The red dashed lines and yellow planes indicate the momentum
locations of nodal lines and nodal surfaces without SOC. The green lines represent the Dirac nodal lines in the presence of SOC.
(b),(c) Calculated band structures of ZrSiS along high-symmetry lines without and with SOC, respectively. Differently colored lines in
(b) represent different irreducible representations. (d) 3D intensity plot of the ARPES spectra measured with hυ ¼ 436 eV showing the
nodal-line structure in the kz ¼ 0 plane. (e),(f) ARPES intensity plots showing the band dispersion along the A-Z and Z-R directions,
respectively. Adapted from Schoop et al., 2016, and Fu et al., 2019b.
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Experimentally, the electronic structures of WHM have
been explored extensively by ARPES measurements (Lou
et al., 2016; Neupane et al., 2016; Schoop et al., 2016; Chen
et al., 2017; Topp et al., 2017; Hosen et al., 2018). In
particular, we note that the bulk nodal lines and nodal surfaces
of ZrSiS were recently verified by bulk-sensitive soft x-ray
ARPES (Fu et al., 2019b). Figures 46(d)–46(f) summarize the
measured electronic structure in the kz ¼ 0 and π planes. The
band crossings along the Γ-X, Γ-M, and Z-A directions can be
resolved, providing direct evidence of the mirror-glide sym-
metry-protected Dirac nodal lines in the kz ¼ 0 and π planes.
Moreover, the observation of Dirac points at the X and R
points indicate the existence of nodal surfaces in ZrSiS.
Note that when SOC is turned on, all the near-EF Dirac

nodal lines are gapped out. Similarly, most of the band
degeneracies in the two nodal surfaces also split after the
inclusion of SOC. However, the nonsymmorphic-protected
crossings along the A-M and R-X directions [Fig. 46(a)] are
robust against SOC, giving rise to two nodal lines, although
the nodal line is buried below EF. In practice, the SOC-
induced band gaps (∼20 meV) and band splitting are small
and can be ignored in experiments.

b. STM and STS

The electronic topology and band-selective scattering of
WHM have been visualized using STM and STS measure-
ments (Butler et al., 2017; Lodge et al., 2017; Bu et al., 2018;
Jiao et al., 2018; Su et al., 2018; Zhu et al., 2018). Lodge et al.
(2017) performed STS measurements on ZrSiS at 4.5 K and
resolved the QPI arising from scattering and interactions with
single-atom defects, as shown in Figs. 47(a)–47(c). In
particular, they observed a split feature of the Q2 vector

[red ellipses in Fig. 47(b)] at energy close to the line node
(∼200 meV above EF). This splitting, consisting with the T-
matrix calculation [Fig. 47(c)], provides evidence of pseudo-
spin conservation near the line nodes. As discussed, in WHM
the nonsymmorphic symmetries enforce bulk band degener-
acies along the kx ¼ π and ky ¼ π planes, such as the X-M
line shown in Fig. 47(d). However, the nonsymmorphic
symmetries break at the surface and give rise to a unique
floating surface state [the red curves in Fig. 47(d)], which has
been directly visualized by ARPES measurements, as shown
in Fig. 47(e). In addition to the ARPES measurements, a
recent STS study (Zhu et al., 2018) of ZrSiSe also identified
the characteristic properties of the floating band surface state,
i.e., rotational symmetry breaking interference near EF and
the healing effect at a higher bias (∼400 meV), and half-
missing Umklapp scattering manifests as a double-parallel arc
QPI pattern near the Bragg point [Fig. 47(f)].

c. Quantum transport

The previously mentioned calculated electronic structure
and ARPES results show that the nodal lines are the only
feature near EF, making ZrSiS a promising platform for
studying the physical properties governed by Dirac nodal-line
fermions. Indeed, several interesting transport phenomena
have been found in this material system. One popular feature
is the so-called butterfly-shaped angular magnetoresistance
(Ali et al., 2016; X. Wang et al., 2016; H. Pan et al., 2018;
Chiu et al., 2019), which shows a maximum when the applied
current and magnetic field form an angle of 45°, as shown in
Fig. 48(a). A recent quantum oscillation study revealed
some high-frequency oscillations induced by magnetic
breakdown across gaps along the nodal loop, as shown in
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FIG. 47. (a) Calculated surface spectral weight of ZrSiS at EF − 100 meV illustrating the possible scattering vectors. (b),
(c) Experimental and T-matrix-calculated QPI patterns of ZrSiS at EF þ 200 meV, respectively. (d) Schematic illustration of the
bulk nodal lines (black curves) and surface floating band (red curves) of ZrSiS without SOC. (e) ARPES intensity plot of a bare ZrSiS
surface showing the high-intensity surface states (SS and SS0) and the bulk bands (BS). (f) Experimental single-defect-induced QPI
patterns of ZrSiSe measured at EF þ 400 meV. Adapted from Lodge et al., 2017, Topp et al., 2017, and Zhu et al., 2018.
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Figs. 48(b) and 48(c). Pezzini et al. (2018) also observed an
unconventional mass enhancement around the nodal loop
[Fig. 48(d)], demonstrating strong correlation effects associ-
ated with the Dirac-like quasiparticles in ZrSiS. Other
interesting phenomena such as large nonsaturating magneto-
resistance (Sankar et al., 2017; Singha et al., 2017), the
nontrivial π Berry phase as a consequence of Dirac-type band
dispersions (Hu et al., 2016b; Kumar et al., 2017), and strong
Zeeman splitting (Hu et al., 2017) have also been revealed.

d. Optical spectroscopy

Dirac and Weyl fermions in solids are known to manifest
themselves in unique transport and optical responses. For
example, the interband optical response of linearly dispersed
d-dimensional Dirac and Weyl bands is expected to follow a
power-law frequency dependence, i.e., σ1ðωÞ ∝ ωd−2 (Hosur,
Parameswaran, and Vishwanath, 2012; Ashby and Carbotte,
2013; Bácsi and Virosztek, 2013; Timusk et al., 2013).
Specifically, 2D and 3D Dirac fermions give rise to an ω-
independent and an ω-linear σ1, respectively. Equivalently,
nodal lines exhibit distinct optical phenomena. In the simplest
case, consider an energy-flat, gapless, and electron-hole-

symmetric nodal line, the corresponding σ1ðωÞ under a
perpendicular electric-field component of the probing light
(E⊥kline) is predicted to be (Kotov and Lozovik, 2016; Ahn,
Mele, and Min, 2017; Barati and Abedinpour, 2017; Carbotte,
2017; Mukherjee and Carbotte, 2017)

σ1ðωÞ ¼
e2k0N
16h

Θfℏω − 2EFg; ð18Þ

where k0 is the length of the nodal-line, N is the degeneracy of
the nodal-line, e is the electron charge, h is Planck’s constant,
and Θfxg is the Heaviside step function. From Eq. (18), one
can conclude that σ1ðωÞ is frequency independent for a flat
nodal line, as shown in Fig. 49(a). Note that Eq. (18) assumes
E⊥kline; conversely, if Ekkline, σ1ðωÞ vanishes. More gen-
erally, when we consider an energy-dispersive and gapped
nodal line, Eq. (18) is replaced by (Shao et al., 2019)

σ1
iðωÞ ¼ e2N

16h
k0ðωÞ

υ2i
υ1υ2

�
1þ 4Δ2

ω2

�
Θfℏω − 2Δopg; ð19Þ

where υi is the asymptotic velocity along the E direction,
k0ðωÞ is the effective length of the nodal line where the
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FIG. 48. (a) Polar plot of the angular magnetoresistance of ZrSiS measured at different magnetic fields. (b) Calculated FSs of ZrSiS in
the 3D bulk BZ. (c) Fast Fourier transform of the magnetoresistance sweep at T ¼ 1.5 K. α and β represent the frequencies of the hole
and electron pockets [indicated in (b)], respectively. Labels A and B correspond to the “inner” and “outer” breakdown orbits,
respectively, as illustrated in the inset. (d) Field-dependent effective masses for the α and β pockets. The dashed and dotted lines are
guides for the eye under the assumption that the zero-field mass is unrenormalized or renormalized, respectively. Adapted from Ali et al.,
2016, and Pezzini et al., 2018.
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interband transition takes place, 2Δ is the SOC-induced
energy gap, and 2Δop ¼ 2ðΔþ EFÞ is the optical gap.
Again, along the nodal-line direction υ3 ¼ 0 σ1

3ðωÞ thereby
vanishes. Put simply, if the nodal line is linearly energy
dispersed, k0ðωÞ is found to be k0ðωÞ ¼ ω=υk, where υk
corresponds to the slope of the energy shift along the nodal
line. The corresponding σ1

iðωÞ is thereby given by
σ1

iðωÞ ∼ ðυ2i =υ1υ2Þω. Note that this ω-linear behavior is valid
only in a certain frequency range. In other words, when the
entire dispersive nodal line is photon activated above a certain
photon energy (E > kmaxυk), σi1ðωÞ becomes ω independent,
as shown in Fig. 49(b).
Experimentally, the flat or ω-linear σ1ðωÞ has been con-

firmed in several nodal-line materials, including ZrSiS
(Schilling et al., 2017; Ebad-Allah et al., 2019), YbMnSb2
(Qiu et al., 2019), and NbAs2 (Shao et al., 2019). Figure 49(c)
shows the measured σ1ðωÞ for ZrSiS. One can see that σ1ðωÞ
is nearly ω independent in a broad range of 250 to 2500 cm1.
Such flat optical conductivity was fairly assigned to the
transitions between the quasi-2D nodal-line Dirac bands near
EF (Schilling et al., 2017). On the other hand, in another
compound NbAs2, which hosts both energy-flat and energy-
dispersive gapped nodal lines, a more complex σ1ðωÞ with
steps was observed, as shown in Fig. 49(d). Shao et al. (2019)
found that the low-temperature (10 K) σ1ðωÞ can be well fitted
by Eq. (19) by considering interband transitions from both the

dispersive and flat nodal lines. This observation thus dem-
onstrates the existence of nodal lines in NbAs2.

C. Nodal lines in the presence of SOC

1. Mirror-symmetry-protected Weyl nodal lines

As clarified in Sec. II.C.1, in the presence of SOC the
nodal-line state can transform into a trivial insulator, TI, DSM,
WSM, or triple point semimetal state, depending on the crystal
symmetries and the strength of SOC. Specifically, two types
of nodal lines can be stabilized in the presence of SOC, i.e.,
the mirror-symmetry-protected Weyl nodal lines and non-
symmorphic symmetry-enforced Dirac nodal lines. Mirror-
symmetry-protected Weyl nodal lines can be stabilized in the
systems with breaking of either P or T symmetry, and
material candidates include HgCr2Se4 (G. Xu et al., 2011),
PbðTlÞTaSe2 (Bian et al., 2016), KCu2EuTe4 (Yang, Yang
et al., 2018), and InNbS2 (Du, Bo et al., 2017). When the
magnetization is along the ½001� axis, the T -breaking
HgCr2Se4 hosts a Weyl nodal line inside the kz ¼ 0 mirror
plane, as shown in Fig. 38(b). On the other hand, in non-
centrosymmetric PbTaSe2 without inversion symmetry, two
Weyl nodal rings appear within the kz ¼ π mirror plane
around the H point when SOC is included, as shown in
Fig. 50. SOC also gives rise to another accidental nodal ring
centered at the K point on the kz ¼ 0 plane. The ARPES

(c) (d)

(a) (b)

NbAs2

FIG. 49. (a) Schematic illustrations of the electronic structure and the corresponding σ1ðωÞ for (a) energy-flat and (b) energy-dispersive
nodal lines. E and kline denote the direction of the electric field and the nodal line, respectively. 2Δ in (b) denotes the gap induced by
SOC, and kmaxυk indicates the threshold of the ω-linear region. (c) σ1ðωÞ of ZrSiS measured at various temperatures. (d) Real part of the
optical conductivity of NbAs2 for Ekb. The blue dotted line is the fit to σ1

bðωÞ at 10 K. Gray dashed and solid lines represent the
contributions from the energy-dispersive and energy-flat nodal lines, respectively. Inset: ratio σ1

bðωÞ=σ1aðωÞ above the gap region.
Adapted from Schilling et al., 2017, and Shao et al., 2019.
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measurements along M̄-K̄-Γ̄ show the dispersion of both the
bulk and surface states, which is consistent with the calculated
surface bands for a ð001Þ Pb-terminated surface, thus support-
ing the existence of a Weyl nodal line protected by the mirror-
reflection symmetry in PbTaSe2.

2. Nonsymmorphic symmetry-enforced Dirac nodal lines

The combination of PT and nonsymmorphic crystalline
symmetries can enforce the Dirac nodal lines at the boundary
of the BZ. Multiple material candidates in nonsymmorphic
space groups are predicted to host Dirac nodal lines,
including SrIrO3 (Chen, Lu, and Kee, 2015), WHM
(Schoop et al., 2016), BaMX3 (M ¼ V, Nb, or Ta; X ¼ S
or Se) (Liang et al., 2016), IrF4 (Bzdušek et al., 2016), and
InBi (Ekahana et al., 2017). As discussed in Sec. IV.B.2.a,
ZrSiS has been proven to host mirror-glide symmetry-
enforced nodal lines at the BZ boundary (Fig. 46); however,
the nodal lines are located far from EF. On the other hand,
IrF4 was predicted to exhibit near-EF nodal lines. IrF4
belongs to space group 43, which contains two mutually
orthogonal glide planes, formed by a reflection with respect
to the ð100Þ and ð010Þ planes, respectively. The density
functional theory revealed several band crossings near the
EF, such as those along the Γ-X and Γ-Y high-symmetry
lines, as shown in Fig. 51(a). These near-EF band crossings,
protected by mirror-glide symmetry, form two nodal loops in
the ð100Þ and ð010Þ planes, as plotted in Fig. 51(b). The two

nodal loops touch at a specific k point in the X-Y direction,
thereby forming a nodal-chain structure.

D. Type-I and type-II nodal lines

By analogy to the type-I and type-II Weyl and DSMs,
nodal-line semimetals could also be classified as type I or

(a) (b)

(c) (d)
HighLow

FIG. 50. (a) 3D bulk BZ and the projected ð001Þ surface BZ of PbTaSe2. (b) Calculated band structures of PbTaSe2 along the A-H-L
and Γ-K-M lines with SOC. (c) ARPES intensity plot showing band dispersion along the high-symmetry path M̄-K̄-Γ̄. (d) Calculated
surface bands of the ð001Þ surface with Pb termination along the same high-symmetry path. Adapted from Bian et al., 2016.
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FIG. 51. (a) Calculated band structures of paramagnetic
IrF4 along high-symmetry lines with SOC. The solid red lines
and dotted green lines correspond to bands determined from
density functional theory and a tight-binding model with chiral
symmetry, respectively. (b) Nodal-chain structure in IrF4. The
solid and dotted lines indicate nodal lines in the visible and
hidden faces of the box, respectively. Different colors represent
different orientations of the nodal loops. Adapted from
Bzdušek et al., 2016.
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type II, depending on the band dispersion. As illustrated in
Fig. 52(a), type-I nodal lines are typically formed by the
crossing between an electronlike band and a holelike band,
and the two crossing bands have opposing signs of Fermi
velocities along the transverse directions of nodal lines. While
type-II nodal lines emerge from the crossing between two
electronlike or two holelike bands, consequently, the two
crossing bands have the same sign for their slopes along one
transverse direction of the nodal lines. Under such a classi-
fication, the previously mentioned material candidates, includ-
ing Cu3PdN, PbTaSe2, and ZrSiS, all belong to type-I nodal-
line semimetals. As for type-II nodal lines, several compounds
have been proposed recently, including K4P3 (Li, Yu et al.,
2017), Mg3Bi2 (Zhang, Jin et al., 2017), and Na3N (D. Kim
et al., 2018).
Take Mg3Bi2 as a representative. Without SOC, a band

inversion centered at the Γ point gives rise to a nodal line
surrounding the Γ point, as shown in Fig. 52(c). The nodal
line, wiggling slightly with respect to the kz ¼ 0 plane, is
simply protected by a combination of PT symmetries. As
shown in Fig. 52(b), in the vicinity of the nodal point on the
kz ¼ 0 plane the two bands have the same sign for their slope
in one transverse direction, i.e., the Γ-K direction, and form a
highly tilted type-II cone structure. Detailed band calculations
revealed that this type-II feature holds on every point of the
nodal line, demonstrating that Mg3Bi2 is a type-II nodal-line
semimetal. ARPES measurements were performed to verify

the type-II nodal-line phase. As shown in Fig. 52(d), the
measured electronic structure along the Γ̄-K̄ direction is
consistent with the calculated surface bands with SOC for
the Bi-terminated ð001Þ surface, confirming the surface
electronic structure of Mg3Bi2 and supporting the existence
of type-II bulk nodal lines. Last, we note that, in addition to
type-I and type-II nodal lines, there is a third type of nodal
lines, termed hybrid nodal lines, composed of both type-I and
type-II crossing points (Zhang, Yu et al., 2018).

E. Magnetic nodal lines

Another important identity of nodal lines, magnetism, is
based on which nodal lines can be divided into nonmagnetic
and magnetic nodal lines (Wang, 2017b). Several magnetic
nodal-line materials have been uncovered, including
Fe3GeTe2 (K. Kim et al., 2018), CrO2 (Wang, Zhao et al.,
2018), Cs2ZrCu3F12 (Roychowdhury, Rocklin, and Lawler,
2018), LnX (Ln ¼ La, Gd; X ¼ Cl, Br) (Nie, Weng, and
Prinz, 2019), and Eu5Bi3 (Wu et al., 2019). In particular, the
ferromagnetic Weyl nodal lines and the corresponding drum-
head surface states were recently observed in a full Heusler
compound Co2MnGa (Belopolski et al., 2019).
Co2MnGa is known to be ferromagnetic, with a Curie

temperature of up to 690 K (Ido and Yasuda, 1988). The
calculated bulk majority spin states [Fig. 53(a)] exhibit several
band crossings near EF. These twofold band crossings, which

(a) (b)

(c) (d) (e)

FIG. 52. (a) Schematic plots of the characteristic electronic structures of type-I and type-II nodal lines. (b) Calculated electronic band
structure of Mg3Bi2 along theM-Γ-K direction without SOC. (c) 3D plot of the type-II nodal line in the bulk BZ of Mg3Bi2. (d) ARPES
intensity plot measured with hυ ¼ 74 eV, showing band dispersion in the Γ̄-K̄ direction. (e) Corresponding calculated band structure
with SOC for a Bi-terminated ð001Þ surface. Adapted from Zhang, Jin et al., 2017, and Chang et al., 2019.
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are protected by the crystal mirror symmetries, form three
types of Weyl nodal lines near the BZ boundaries, as depicted
in red, yellow, and blue in Fig. 53(b). Among them, the two
yellow nodal lines are interlinked, forming a Hopf link. In
addition, nodal lines of each type are pinned to one other,
forming a nodal chain. Recently Belopolski et al. (2019)
identified these bulk Weyl nodal lines by systematic ARPES
measurements, as marked by letters a–d in Figs. 53(c) and
53(d). They directly observed a drumhead surface state
stretching across the bulk Weyl lines [Fig. 53(e)], thus
demonstrating the nontrivial bulk-boundary topological cor-
respondence in Co2MnGa.

F. Nodal chain, nodal link, and nodal knots

Topological nodal-line semimetals manifest as 1D band
crossings in the BZ. Compared to the 0D nodal points, the 1D
nodal lines allow richer topological configurations in the
momentum space. They can (i) be isolated, (ii) touch at certain
points, (iii) link with each other, and (iv) entangle with
themselves, enabling the formation of a single nodal line,
nodal chains, nodal links, and nodal knots, respectively. Nodal
chains were initially proposed in several nonsymmorphic
space groups, such as IrF4 in space group 43 (Bzdušek et al.,
2016), which is displayed in Fig. 51. Since the initial proposal,

more and more material candidates have been discovered,
including HfC (Yu, Wu et al., 2017), Co2MnGa (G. Chang
et al., 2017c) [illustrated in Fig. 53(b)], andMB2 (M ¼ Sc, Ti,
V, Zr, Hf, Nb, and Ta) (Zhang, Yu et al., 2017; Feng et al.,
2018), which exhibit nodal chains in their electronic structure,
and AsRhTi, which possesses a nodal link structure (Lian
et al., 2019). As for experimental evidence, nodal-chain states
have recently been confirmed in a metallic-mesh photonic
crystal (Yan et al., 2018), TiB2 (Z. Liu et al., 2018; Yi et al.,
2018), and the previously discussed Co2MnGa (Belopolski
et al., 2019).
As discussed, topological nodal lines can be categorized

based on the crystal symmetry or generation mechanism, the
degeneracy of band crossing, the slope of band dispersion, the
linking structure of multiple nodal lines, and the magnetism of
nodal lines. Beyond these, topological nodal lines can also be
distinguished by the order of band dispersion into three
categories: linear, quadratic, and cubic nodal lines, which
have linear, quadratic, and cubic band dispersions along one
transverse direction, respectively (Yu et al., 2019).

G. Nodal surfaces

TSMs can be classified based on the dimensionality of band
crossings. Materials with 0D nodal points, such as DSMs and
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FIG. 53. (a) Calculated electronic structures of Co2MnGa in the ferromagnetic state without SOC. The red arrow indicates the Weyl
band crossing near the K point. (b) 3D plot of the three types of Weyl nodal lines in the bulk BZ of Co2MnGa. The yellow and red nodal
lines lie on theMx,My, andMz mirror planes. The blue nodal lines are located on theMxy,Mx̄y,Myz,Mȳz,Mxz, andMx̄z mirror planes.
(c) ARPES constant-energy contour of Co2MnGa at EB ¼ 0.01 eV measured at ℏυ ¼ 50 eV and T ¼ 20K. (d) Calculated constant-
energy surface at EB ¼ 0.08 eV for the ð001ÞMnGa-terminated surface, showing consistent multiple nodal-line features, as marked by
letters a–d. (e) ARPES intensity plot in the ka direction [the white line in (d)] highlighting the bulk line nodes (yellow ovals) and the
drumhead surface states (green ovals). Adapted from Belopolski et al., 2019.
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WSMs, and with 1D nodal lines have been intensively studied
in the past few years. For a 3D system, the band crossings may
also form a 2D nodal surface. Specifically, any point on the
nodal surface is a band degeneracy point of two bands, and the
two crossing bands have linear dispersion only along one
specific direction, i.e., the surface normal direction. Materials
with such band degeneracies are thus called topological nodal-
surface semimetals. Topological nodal-surface semimetals are
also expected to exhibit distinct features in their electronic,
transport, and optical properties, such as the constant density
of states near the nodal surface, a stronger quantum oscil-
lation, and peculiar plasmon excitations (Wu, Liu et al., 2018).
In the absence of SOC, the nodal surfaces can either be

protected by the combination of PT symmetry and sublattice
symmetry, e.g., graphene networks (Zhong et al., 2016), or
dictated by nonsymmorphic symmetry, e.g., BaVS3 (Liang
et al., 2016), ZrSiS (Chen et al., 2017; Topp et al., 2017),
K6YO4 (Wu, Liu et al., 2018). In particular, the nodal-surface
states in the BZ boundaries of ZrSiS have recently been
confirmed by soft x-ray ARPES measurements (Fu et al.,
2019b). In the presence of SOC, the previously mentioned
node surfaces are usually destroyed or reduced into 1D node
lines. The nodal surfaces in ZrSiS are reduced into two nodal
lines along the A-M and R-X paths after the inclusion of SOC
(Chen et al., 2017; Topp et al., 2017). Especially in 3D
systems with either breaking inversion or breaking time-
reversal symmetry, the nonsymmorphic symmetry can guar-
antee the Weyl nodal surfaces at the BZ boundaries, which are
robust against SOC. Ta3TeI7 (Wu, Liu et al., 2018) was
predicted to host such Weyl nodal surfaces. Ta3TeI7 crystal-
izes a hexagonal crystal structure with space group P63mc
(no. 186), which does not have inversion symmetry; instead,
the crystal structure contains the S2z screw and T symmetries,
which guarantee a nodal surface on the kz ¼ π plane. The
bands are doubly degenerate in the R-H direction and non-
degenerate with linear dispersion in the E-R direction, which
is perpendicular to the kz ¼ π plane, demonstrating the
existence of nodal surfaces in the kz ¼ π plane, as shown
in Fig. 54 (Wang, Liu et al., 2018).

V. CONCLUSIONS AND OUTLOOK

We have reviewed recent progress in the understanding and
classification of various TSMs. We note that what has been
presented in this review is not a complete account of TSMs;

some theoretical insights and experimental observations were
not highlighted. For example, recent theoretical progress in
systematically searching for and classifying topological
phases of matter was not discussed (Bradlyn et al., 2017;
Po, Vishwanath, and Watanabe, 2017; Tang et al., 2019;
Vergniory et al., 2019; T. Zhang et al., 2019). Looking
forward, many interesting issues deserve future attention
and effort.
(i) One crucial issue is to find new types of topological

semimetal phases. As noted, recent theoretical break-
throughs in topological phase screening have pointed
to the fact that more than 27% of all materials in nature
are topological (Vergniory et al., 2019). Given the
variety of materials in nature, we believe that the
current classification of gapless TSMs is far from
complete, and that many new types of gapless topo-
logical states will be discovered in the near future.
Indeed, recently Xu et al. (2020) predicted the
existence of new types of antiferromagnetic topologi-
cal materials, such as higher-order magnetic Dirac
semimetals with hinge arcs. T. Zhang et al. (2020)
proposed twofold quadruple Weyl nodes in chiral
cubic crystals.

(ii) In addition to new types of topological semimetal
phases, many predicted topological phases are still
waiting for stronger experimental evidence, including
eightfold fermions (Wieder et al., 2016), magnetic
multifold fermions (Cano, Bradlyn, and Vergniory,
2019), quadratic and cubic fermions (Liu and Zunger,
2017), and symmetry-enforced nodal surfaces (Wu,
Liu et al., 2018).

(iii) The search for ideal TSMs is also a critical issue in this
field. In the past few years, many different types of
TSMs have been realized; however, most of the
existing materials are not ideal. For example, the
DSM Cd3As2 has a complicated superstructure of
As vacancies, which tune the Dirac points away from
EF. The other well-studied DSM Na3Bi hosts a pair of
Dirac points sitting close to EF; however, it is not
stable in air. As for WSMs, the TaAs family contains
12 pairs of WPs that are not well separated in the
momentum space. In contrast, type-II WSMs of the
WTe2 family have fewer Weyl points, but trivial bands
coexist with the Weyl nodes near EF. Finally, regard-
ing nodal-line materials, PbTaSe2 hosts many trivial
bands overlapping with the Weyl nodal line near EF,
and the near-EF Dirac nodal lines in ZrSiS are
complicated and not robust against SOC. Taken
together, these considerations suggest that a search
for ideal TSMs is necessary. An ideal TSM should
exhibit the following features: (i) it should be air
stable; (ii) the nodal points or nodal lines should be
located sufficiently close to EF, with no other states at
EF; (iii) it should contain the fewest nodal points or
nodal lines possible; and (iv) pairs of nodal points
or nodal lines should be well separated in the mo-
mentum space. To realize ideal TSMs, one direct way
is to continue searching for new material candidates.
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FIG. 54. (a) 3D bulk BZ with high-symmetry points indicated.
R and E are the midpoints of the paths A-L and Γ-M, respectively.
(b) Calculated electronic structure of Ta3TeI7 along the E-R-H
path in the presence of SOC. Adapted from Wu, Liu et al., 2018.
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Specifically, recent achievements in high-throughput
topological phase screening and database develop-
ment (Tang et al., 2019; Vergniory et al., 2019;
T. Zhang et al., 2019) will hasten the discovery of
new materials that fully or partly meet the previous
criteria. The second way is to tailor the known TSMs
by a method such as chemical doping or electrostatic
gating, both of which have been widely used in
tuning the Fermi level of TSM films. Last, we
mention that an alternative way to realize ideal
topological phases is by artificial periodic structures,
including photonic crystals (Ozawa et al., 2019),
optical lattices (Jiang, 2012; Sun et al., 2012), and
phononic crystals (Xiao et al., 2015; Li, Huang et al.,
2018). The ideal type-I and charge-2 Weyl phases
were realized in photonic crystals (B. Yang et al.,
2018; Yang, Gao et al., 2020), and the ideal type-II
Weyl points were observed in phononic crystals
(Huang et al., 2020).

(iv) It is also of significant interest, from both fundamental
and practical points of view, to explore the interplay
between the nontrivial topology of TSMs and other
effects, including e-e interactions, superconductivity,
magnetism, charge order, etc. In particular, WSMs
offer novel and diverse platforms for realizing topo-
logical superconductivity due to the naturally non-
trivial topology. Topological superconductivity can
give rise to Majorana quasiparticles, which are be-
lieved to obey non-Abelian statistics in two dimen-
sions and can potentially be used for topological
quantum computing (Nayak et al., 2008). Actually,
superconducting TSMs have been realized in multiple
systems: Ir1−xPtxTe2 (Fei et al., 2018; Fu et al.,
2019a), MgB2 (Jin et al., 2019; Zhou et al., 2019),
PbTaSe2 (Bian et al., 2016; Guan et al., 2016), etc. On
the other hand, some external tunings, such as point
contact (Wang, Wang et al., 2016), pressure (Kang
et al., 2015; Pan et al., 2015), and the proximity effect
(Bachmann et al., 2017), have also been reported to
introduce superconducting pairs in a TSM. Despite
these diverse superconducting TSMs, the possible
Majorana boundary states remain to be explored.
Looking forward, we highlight three possible path-
ways for creating Majorana quasiparticles in TSMs.
First, a time-reversal-invariant TSC could be realized
in electron-hole nesting WSMs with a nontrivial total
of Fermi surface Chern number (Qi et al., 2009;
Zhang, Kane, and Mele, 2013), and the Majorana
Kramer modes could be found on their boundary or
topological defects. Second, pair density waves in a
spin-orbit coupled 2D DSM could support a single
Majorana zero mode and effective TSC in their frac-
tional quantized superconducting vortex (Chan, Zhang
et al., 2017). Last, it has been predicted that Majorana
zero modes could emerge from 3D DSMs with rota-
tional symmetry breaking (König and Coleman, 2019;
Qin et al., 2019). In this case, the quasiparticles of a
superconducting vortex perform similarly to that of a

superconducting TI. Recently evidence has been
reported in an impurity-assisted vortex of a LiFeAs
superconductor (Kong et al., 2020), which signifies
the incorporation of a DSM state into a Majorana
playground. In addition to topological superconduc-
tivity, the e-e interactions could also lead to new
topological states of matter, such as a fractionalized
analog of the WSMs, the fractional chiral metal
(Meng et al., 2016), and the Weyl Mott insulator
(Morimoto and Nagaosa, 2016). Beyond the e-e
interaction, many other correlation effects, including
the interplay of the chiral anomaly and collective
modes (spin or charge) in WSMs (Liu, Ye, and Qi,
2013; Panfilov, Burkov, and Pesin, 2014), also
deserve further exploration. Specifically, we note a
recent study reporting the observation of an axionic
charge-density wave in the WSM ðTaSe4Þ2I (Gooth
et al., 2019).

(v) Light, a time-periodic wave, can interact with solids
through the Floquet effect, which offers a platform to
create Floquet states of matter on ultrafast timescales.
On the theoretical front, there have been extensive
studies on Floquet engineered TSM phases. For
example, a Floquet-WSM state can be induced from
a DSM (Chan, Oh et al., 2016; Hübener et al., 2017)
or TNLSM (Narayan, 2016; Taguchi et al., 2016; Yan
and Wang, 2016; Ezawa, 2017a) under the irradiation
of circularly polarized light, which breaks time-
reversal symmetry. Other systems, such as TIs (Wang
et al., 2014), band insulators (Zhang, Ong, and
Nagaosa, 2016), and 3D stacked graphene systems
(Zou and Liu, 2016), have also been predicted to
exhibit Floquet-WSM states. In addition to Floquet
WSMs, there have also been proposals of Floquet
DSMs and NLSMs in various systems (Narayan, 2015;
Li, Lee, and Gong, 2018; Liu, Sun et al., 2018; Kim,
Kwon, and Park, 2019). In terms of detection, the most
direct way would be time-resolved ARPES. However,
ARPES evidence of Floquet-TSM states and phase
transitions is lacking, which could be due to a lack
of promising materials or limitations in energy
resolution, pump fluence, or photon energy of
time-resolved ARPES. On the other hand, light-
electron interactions in TSMs can also result in
interesting phenomena: the anomalous Hall effect
(Chan, Lee et al., 2016), the circular photogalvanic
effect (Chan, Lindner et al., 2017; de Juan et al.,
2017), the macroscopic surface chiral current
(González and Molina, 2016), and the nonlinear
Hall effect (Zhang, Sun, and Yan, 2018) in DSMs
and WSMs, the chiral pumping effect (Ebihara,
Fukushima, and Oka, 2016), and the Weyl half-metal
phase and spin-filter effect (Li, Wang et al., 2019) in
DSMs, etc. Specifically, the circular photogalvanic
effect has been observed in the WSM TaAs (Q. Ma
et al., 2017; Sun, Sun et al., 2017; Osterhoudt et al.,
2019) and the chiral semimetal RhSi (Rees et al.,
2020). In short, the current experimental investigations
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of light-electron interactions in TSMs are at a pre-
liminary stage; more efforts are desired.

(vi) Most of the discovered TSMs are in macroscopic
single-crystal or polycrystalline forms, which usually
contain defects and impurities. High-quality thin films,
nanoparticles, and heterostructures are more desirable,
from both a fundamental and an applied standpoint.

(vii) TSMs have been investigated intensively in the last
decade, not only because of fundamental interest but
also due to their potential for applications in future
devices and technologies. The following is an incom-
plete list of applications of TSMs. First, TSMs exhibit
many unique properties that may provide platforms
for device applications, such as exploiting the chiral
anomaly effect and the bulk Weyl nodes by employing
WSMs in so-called chiral electronic devices, including
chiral batteries and high-sensitivity magnetic field
sensors (Kharzeev and Yee, 2013), axial-current-based
valleytronic devices (Parameswaran et al., 2014; Jiang
et al., 2015), and even the quantum computing chiral
qubit (Kharzeev and Li, 2019). By reducing the
dimension of 3D TSMs to two dimensions, both the
quantum spin and anomalous Hall phases can be
achieved; the robust spin-polarized edge states can
give rise to possible Hall-effect devices such as a spin-
filter transistor (Shi, Wang, and Wu, 2015). It was also
predicted that the interplay of Dirac or Weyl fermions
and Néel spin-orbit torques in antiferromagnetic
DSMs and WSMs could open up possibilities for
antiferromagnetic spintronics (Šmejkal et al., 2017).
Second, TSMs with nonzero monopole charges such
as WSMs are characterized by robust Fermi-arc sur-
face states, which, like TIs, could provide a good
platform for surface-related chemical processes, in-
cluding catalysis (Chen et al., 2011; Kong and Cui,
2011). Indeed, it has been reported that the WSM
TaAs family can be used as a high-activity hydrogen
evolution reaction catalyst thanks to its topological
surface states (Rajamathi et al., 2017). The low-
dissipation Fermi-arc transport gives rise to ultrahigh
surface conductivity, which was recently confirmed in
NbAs nanobelts (C. Zhang et al., 2019a), facilitating
electronic applications such as thermoelectric conver-
sion and supercapacitors. Third, the 2D analog of
Dirac or Weyl semimetals, graphene, is an attractive
photosensitive material due to the linear-dispersed
crossing bands, which can potentially absorb photons
with an arbitrarily long wavelength (F. Xia et al.,
2009; Mueller, Xia, and Avouris, 2010). Three-dimen-
sional DSMs andWSMs such as Cd3As2 and TaAs not
only possess the same advantages of graphene as a
high-performance photodetector but also show good
potential in realizing ultrafast broadband photodetec-
tors owing to their fast photorelaxation time and
enhanced absorption efficiency (Q. Wang et al.,
2017; Yavarishad et al., 2017; Zhu et al., 2017; Chi
et al., 2018). Last, as discussed previously, TSMs
exhibit not only unique electrical transport and optical

behaviors but also interesting thermal phenomena. In
particular, it has been found that the linearly dispersed
Dirac or Weyl cones can give rise to the axial
gravitational anomaly (Landsteiner, Megías, and
Pena-Benitez, 2011; Gooth et al., 2017), a large Nernst
effect, and quantized thermoelectric Hall conductivity
(Han et al., 2020; W. Zhang et al., 2020), providing an
interesting platform for high-performance thermoelec-
tric applications such as heat reservoirs and highly
efficient thermoelectric energy converters. In sum-
mary, TSMs are a promising frontier in condensed-
matter physics, but the explorations are far from
complete. With the continuous and integrated efforts
of theoretical modeling and predictions, material
synthesis, characterization, and device demonstra-
tions, more and more breakthroughs are expected in
this rapidly developing field.
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APPENDIX A: TABLE LIST OF EXPERIMENTALLY
CONFIRMED TSMS

We summarize, to the best of our knowledge, the exper-
imentally confirmed topological semimetals in Table I.

APPENDIX B: MONOPOLE CHARGES

1. Monopole charges of linear, quadratic, and cubic-Weyl
fermions

Consider a Weyl semimetal with certain rotational sym-
metry along the z axis. The crossing bands can have linear,
quadratic, or cubic dispersions in two in-plane momentum
directions, i.e., the kx and ky directions, and linear dispersion
in the rotation axis, i.e., the kz direction. Accordingly, the
Weyl Hamiltonian in the vicinity of the Weyl point can be
written as

H� ¼ �
 

νzkz νkðkx − ikyÞN
νkðkx þ ikyÞN −νzkz

!
; ðB1Þ

where νz and νk are constants and N ¼ 1; 2; 3 correspond to a
Weyl point with linear, linear, quadratic, or cubic dispersion.
Correspondingly, the eigenvalues or energy-momentum
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relations are given by ε�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2zk2z þ ν2kðk2x þ k2yÞN

q
, with

the positive and negative values corresponding to the con-
duction and valence bands, respectively. Without losing
generality, we assume that the Weyl point is slightly above
the chemical potential and consider the valence band. In polar
coordinates, the corresponding eigenstates of H� are given by

juþðk; θ; fÞi ¼
�

sinðθ=2Þ
− cosðθ=2ÞeiNf

�
;

ju−ðk; θ; fÞi ¼
�

cosðθ=2Þ
sinðθ=2ÞeiNf

�
; ðB2Þ

where cos θ ¼ νzkz=Ek, tan f ¼ ky=kx, and Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2zk2z þ ν2kðk2x þ k2yÞN

q
. The Berry connections are given as

Aþ ¼ ðAk; Aθ; AfÞ ¼
�
0; 0;−N

cos2ðθ=2Þ
k sin θ

�
;

A− ¼
�
0; 0;−N

sin2ðθ=2Þ
k sin θ

�
. ðB3Þ

The Berry curvature then can be expressed as

TABLE I. An incomplete survey of experimentally confirmed TSMs. DSM, Dirac semimetal; WSM,Weyl semimetal; UTSM, unconventional
topological semimetal; TNLSM, topological nodal-line semimetal; WNL, Weyl nodal line; DNL, Dirac nodal line.

TSM Classification Material References

DSM Type I Na3Bi (Liu et al., 2014b; S.-Y. Xu et al., 2015d)
Type I Cd3As2 (Borisenko et al., 2014; Liu et al., 2014a;

Neupane et al., 2014)
Type I Black phosphorus (Kim, Baik et al., 2015)
Type II PtTe2 family (Noh et al., 2017; M. Yan et al., 2017; Zhang,

Yan et al., 2017)
Type II NiTe2 (Ghosh et al., 2019)
Type II La1.77Sr0.23CuO4 (Horio et al., 2018)
Quadratic α-Sn (Barfuss et al., 2013; Ohtsubo et al., 2013;

C.-Z. Xu et al., 2017)
Cubic TlðMoSeÞ3 (Nakayama et al., 2018)
T breaking CeSbTe (Schoop et al., 2018)

WSM P breaking TaAs family (Lv et al., 2015b; S.-Y. Xu et al., 2015b; Yang et al., 2015)
P breaking ðTaSe4Þ2I (Gooth et al., 2019; Li, Deng et al., 2019)
Type II Mo1−xWxTe2 (Belopolski et al., 2016a; Deng et al., 2016;

L. Huang et al., 2016)
Type II LaAlGe (S.-Y. Xu et al., 2017)
Type II TaIrTe4 (Belopolski et al., 2017; Haubold et al., 2017;

Zhou et al., 2018)
Type II MoP2 (Razzoli et al., 2018; Yao et al., 2019)
T breaking YbMnBi2 (Borisenko et al., 2019)
T breaking Mn3Ge (Nakatsuji, Kiyohara, and Higo, 2015; Nayak et al., 2016)
T breaking GdPtBi (Suzuki et al., 2016; Shekhar et al., 2018)
T breaking Co3Sn2S2 (E. Liu et al., 2018; Wang, Xu et al., 2018;

D. F. Liu et al., 2019; Morali et al., 2019)
T breaking EuCd2As2 (Ma et al., 2019)
T breaking Sr1−yMn1−zSb2 (Liu et al., 2017)

UTSM Class I threefold MoP, WC (B. Q. Lv et al., 2017; Ma et al., 2018)
Charge 2 CoSi, RhSi (Rao et al., 2019; Sanchez et al., 2019; Takane et al., 2019)
Charge 4 AlPt, PdGa (Schröter et al., 2019, 2020)
Charge 4 PdBiSe (Lv et al., 2019)

TNLSM Without SOC CaAgAs family (X.-B. Wang et al., 2017; Nayak et al., 2018; Takane et al.,
2018; N. Xu et al., 2018)

Without SOC MgB2 (Zhou et al., 2019)
Without SOC PtSn4 (Wu et al., 2016)
Without SOC SrAs3 (Song et al., 2020)
Mirror WNL PbTaSe2 (Bian et al., 2016)
Nonsymmorphic DNL ZrSiS family (Lou et al., 2016; Neupane et al., 2016; Schoop et al., 2016)
Nonsymmorphic DNL InBi (Ekahana et al., 2017)
Nonsymmorphic DNL IrO2 (Nelson et al., 2019)
Nonsymmorphic DNL RuO2 (Jovic et al., 2019)
Nodal chain TiB2 family (Z. Liu et al., 2018; Yi et al., 2018)
Type II Mg3Bi2 (Chang et al., 2019)
T breaking Co2MnGa (Belopolski et al., 2019)
Hourglass Ta3SiTe6 (Sato et al., 2018)
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Ω�ðkÞ ¼ ∇k × A�ðkÞ

¼ 1

k sin θ

�∂ðAf sin θÞ
∂θ

�
êk ¼ �N

êk
2k2

. ðB4Þ

Finally, the monopole charge can be calculated by integrating
the Berry curvature over an arbitrary Fermi surface that
encloses the Weyl node

C�
FS ¼ 1

2π
∯
FS
Ω�ðkÞ · dS ¼ �N. ðB5Þ

This indicates that the monopole charge of the Weyl node is
closely related to the dispersion power at the crossing point.
Specifically, Weyl points with linear, quadratic, and cubic
dispersions along certain momentum directions would have
monopole charges of �1, �2, and �3, respectively.

2. Monopole charges of class-II threefold fermions

The effective k · p model of a class-II threefold fermion is
given by (Bradlyn et al., 2016)

H3×3 ¼ vFk · S1 ¼ vF

0
B@

0 ikx −iky
−ikx 0 ikz
iky −ikz 0

1
CA; ðB6Þ

where k ¼ ðkx; ky; kzÞ represents the momentum and S1 ¼
ðSx; Sy; SzÞ stands for the spin-1 generators. νF is the Fermi
velocity. As expected, the three eigenvalues of Eq. (B6) are
E� ¼ �νFjkj and E0 ¼ 0. This means that their spectrum
consists of two linearly dispersed bands and one flatband, that
these three bands cross each other at k ¼ 0, and that they form
a threefold degenerate point. In polar coordinates, the corre-
sponding eigenfunctions can be expressed as

ψ� ¼ 1ffiffiffi
2

p

0
B@

� sin θ

−i cos f ∓ cos θ sin f

i sin f ∓ cos θ cos f

1
CA;

ψ0 ¼

0
B@

i cos θ

i sin θ sin f

i sin θ cos f

1
CA; ðB7Þ

where cos θ ¼ kz=k, tan f ¼ ky=kx, and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
.

The associate Berry connections are given by

A� ¼ ihψ�j∇kjψ�i ¼ ðA�
k ; A

�
θ ; A

�
f Þ ¼

�
0; 0;� cos θ

k sin θ

�
;

A0 ¼ ihψ0j∇kjψ0i ¼ ð0; 0; 0Þ. ðB8Þ
The Berry curvature then is given as

Ω�ðkÞ ¼ ∇k × A�ðkÞ ¼
1

k sin θ

�∂ðAf sin θÞ
∂θ

�
êk ¼∓ êk

k2
;

Ω0ðkÞ ¼ 0. ðB9Þ
Finally, the Chern numbers of Ω� are calculated as

C�
FS ¼ 1

2π
∯
FS
Ω�ðkÞ · dS ¼∓ 2. ðB10Þ

Equations (B6)–(B10) demonstrate that the threefold spin-1
fermions hold a Chern number of �2.

3. Monopole charges of fourfold fermions

For fourfold degeneracy, three species exist. The famous
example is Dirac fermions, which can be described by Eq. (2).
Since a Dirac point can be viewed as two overlapping Weyl
points of opposite chirality, it naturally has a monopole charge
of zero.
On the other hand, two Weyl points of the same chirality

can also overlap and form a fourfold degenerate point. As with
Eq. (2), the corresponding low-energy excitations of such a
fourfold point can be written as

H2
4×4 ∼

�
σ · k 0

0 σ · k

�
. ðB11Þ

The corresponding Chern number is the direct sum of two
identical Weyl points, i.e., �2. The low-energy excitations
are thus called charge-2 fourfold fermions (Zhang, Song
et al., 2018).
The third example is so-called spin-3=2 Weyl fermions

(Mañes, 2012; Bradlyn et al., 2016; Ezawa, 2016; Isobe and
Fu, 2016; Liang and Yu, 2016). As with Eq. (B6), the effective
Hamiltonian can be expressed as

H4
4×4 ∼ k · S3=2 ¼ 1

2

0
BBBBB@

3kz
ffiffiffi
3

p ðkx − ikyÞ 0 0ffiffiffi
3

p ðkx þ ikyÞ kz 2ðkx − ikyÞ 0

0 2ðkx þ ikyÞ −kz
ffiffiffi
3

p ðkx − ikyÞ
0 0

ffiffiffi
3

p ðkx þ ikyÞ −3kz

1
CCCCCA; ðB12Þ

where k ¼ ðkx; ky; kzÞ represents the momentum and
S3=2 ¼ ðSx; Sy; SzÞ stands for the spin-3=2 generators.
The eigenvalues of Eq. (B12) are given by

Ej ¼ jjkj; j ¼ �1
2
; �3

2
. ðB13Þ

As a result, the energy spectrum is formed by two types of
linearly dispersed bands that differ by the Fermi velocity.
These four bands degenerate at k ¼ 0. In polar coordi-
nates, i.e., ðkx; ky; kZÞ ¼ kðsin θ cos f; sin θ sin f; cos θÞ,
the corresponding Berry curvature then can be given as
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ΩjðkÞ ¼ ∇k × A�ðkÞ ¼ j
êk
k2

. ðB14Þ

The Chern numbers of Ωj are given by

Cj ¼
1

2π

Z Z ∯
FS
ΩjðkÞ · dS ¼ 2j ¼ −1;−3; 1; 3. ðB15Þ

Therefore, the total Chern number of spin-3=2 fermions
is C�

FS ¼ �ð1þ 3Þ ¼ �4.
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Heikkilä, T. T., and G. E. Volovik, 2015, New J. Phys. 17, 093019.
Heinzmann, U., and J. H. Dil, 2012, J. Phys. Condens. Matter 24,
173001.

Herring, C., 1937, Phys. Rev. 52, 365.
Hirayama, M., R. Okugawa, S. Ishibashi, S. Murakami, and T.
Miyake, 2015, Phys. Rev. Lett. 114, 206401.

Hirayama, M., R. Okugawa, and S. Murakami, 2018, J. Phys. Soc.
Jpn. 87, 041002.

Hirschberger, M., S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C.
Belvin, B. Bernevig, R. Cava, and N. Ong, 2016, Nat. Mater. 15,
1161.

Horio, M., et al., 2018, Nat. Commun. 9, 3252.
Hosen, M. M., et al., 2018, Phys. Rev. B 97, 121103.
Hosur, P., X. Dai, Z. Fang, and X.-L. Qi, 2014, Phys. Rev. B 90,
045130.

Hosur, P., S. A. Parameswaran, and A. Vishwanath, 2012, Phys. Rev.
Lett. 108, 046602.

Hosur, P., and X. Qi, 2013, C.R. Phys. 14, 857.
Hsieh, D., D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z.
Hasan, 2008, Nature (London) 452, 970.

Hsieh, D., et al., 2009, Nature (London) 460, 1101.
Hsieh, T. H., H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, 2012, Nat.
Commun. 3, 982.

Hu, J., T. F. Rosenbaum, and J. B. Betts, 2005, Phys. Rev. Lett. 95,
186603.

Hu, J., Z. Tang, J. Liu, Y. Zhu, J. Wei, and Z. Mao, 2017, Phys. Rev.
B 96, 045127.

Hu, J., et al., 2016a, Sci. Rep. 6, 18674.
Hu, J., et al., 2016b, Phys. Rev. Lett. 117, 016602.
Hua, G., S. Nie, Z. Song, R. Yu, G. Xu, and K. Yao, 2018, Phys. Rev.
B 98, 201116.

Huang, H., K.-H. Jin, and F. Liu, 2018, Phys. Rev. B 98, 121110.
Huang, H., S. Zhou, and W. Duan, 2016, Phys. Rev. B 94, 121117.
Huang, L., et al., 2016, Nat. Mater. 15, 1155.
Huang, S.-M., et al., 2015, Nat. Commun. 6, 7373.
Huang, S.-M., et al., 2016, Proc. Natl. Acad. Sci. U.S.A. 113, 1180.
Huang, X., W. Deng, F. Li, J. Lu, and Z. Liu, 2020, Phys. Rev. Lett.
124, 206802.

Huang, X., et al., 2015, Phys. Rev. X 5, 031023.
Huang, Z.-M., J. Zhou, and S.-Q. Shen, 2017, Phys. Rev. B 96,
085201.
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M. Schmidt, and C. Felser, 2017, Phys. Rev. B 96, 075119.

Klitzing, K. V., G. Dorda, and M. Pepper, 1980, Phys. Rev. Lett. 45,
494.

Klotz, J., et al., 2016, Phys. Rev. B 93, 121105.
Kobayashi, S., and M. Sato, 2015, Phys. Rev. Lett. 115, 187001.
Koepernik, K., D. Kasinathan, D. V. Efremov, S. Khim, S.
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