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Laser-cooled and trapped atomic ions form an ideal standard for the simulation of interacting quantum
spin models. Effective spins are represented by appropriate internal energy levels within each ion, and
the spins can be measured with near-perfect efficiency using state-dependent fluorescence techniques.
By applying optical fields that exert optical dipole forces on the ions, their Coulomb interaction can
be modulated to produce long-range and tunable spin-spin interactions that can be reconfigured by
shaping the spectrum and pattern of the laser fields in a prototypical example of a quantum simulator.
Here the theoretical mapping of atomic ions to interacting spin systems, the preparation of complex
equilibrium states, and the study of dynamical processes in these many-body interacting quantum
systems are reviewed, and the use of this platform for optimization and other tasks is discussed. The
use of such quantum simulators for studying spin models may inform our understanding of exotic
quantum materials and shed light on the behavior of interacting quantum systems that cannot be
modeled with conventional computers.
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I. INTRODUCTION

Interacting quantum systems cannot generally be efficiently
simulated using classical computational techniques, due to the
exponential scaling of the information encoded in a quantum
state with the size of the system. Accurate modeling of
quantum phenomena such as the magnetism of interacting
spins, material superconductivity, electronic structure and
molecules and their chemistry, Fermi-Hubbard models of
electron transport in solids, and interactions within atomic
nuclei is beyond the reach of classical computation even
for small numbers of interacting degrees of freedom. A
quantum simulator exploits the controlled manipulation of
a standard quantum system in order to mimic the properties or
evolution of a different (perhaps intractable) quantum system
(Feynman, 1982; Trabesinger, 2012). A quantum simulator is
a restricted quantum computer (Nielsen and Chuang, 2000;
Ladd et al., 2010), with operations that may not be universal
but instead may be tailored to a particular quantum physical
model under study. While useful general purpose and
universal quantum computers are still a future prospect,
special purpose quantum simulations have already been
demonstrated and may in fact become the first useful
application of quantum computers.
The equivalence of quantum bits (qubits) and their quantum

gates to effective spin-1=2 systems and their interactions has
guided one of the most important classes of quantum
simulations: interacting spin systems and quantum magnet-
ism. The most advanced physical system for quantum bits or
effective spins is arguably a collection of trapped atomic ions
(Steane, 1997; Wineland et al., 1998; Wineland and Blatt,
2008; Monroe and Kim, 2013; Brown, Kim, and Monroe,
2016). This is evidenced by the number of controlled and
interacting qubits, the quality of quantum gates and inter-
actions, and the high fidelity of quantum state initialization
and measurement. Trapped atomic ions, held in a vacuum
chamber and confined by electromagnetic fields to be distant

*Corresponding author.
monroe@umd.edu

C. Monroe et al.: Programmable quantum simulations of spin systems …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025001-2

https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.93.025001&domain=pdf&date_stamp=2021-06-11
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/RevModPhys.93.025001


from surfaces or solids, laser cooled to be nearly at rest and
“wired” together with external laser or microwave fields,
offer a clean quantum system to perform quantum simulations
(Porras and Cirac, 2004; Deng, Porras, and Cirac, 2005;
Taylor and Calarco, 2008; Blatt and Roos, 2012).
This review assesses recent progress in the quantum

simulation of magnetism and related phenomena using
trapped atomic ion crystals. Following an introduction of
the mapping of spins to atomic ions, we first cover exper-
imental results on the simulation of magnetic ordering,
equilibrium states, and phase transitions in quantum magnetic
systems. Then we move to dynamical studies of quantum
magnetism, touching on general issues of information and
entanglement dynamics, quantum thermalization, inhibitors to
thermalization such as many-body localization and pretherm-
alization, “time crystals,” dynamical phase transitions, and
Hamiltonian engineering and sequencing techniques that
translate quantum physics models to effective magnetic spin
models. Recent techniques of variational quantum simulations
(VQSs) and quantum approximate optimization algorithms
are also reviewed in the context of trapped-ion systems. We
conclude with speculations on how these types of simulations
with trapped ions may scale in the future and perhaps guide
the development of a real magnetic material function or more
general quantum simulations as special cases of quantum
computations. Trapped-ion spin simulators generally exploit
the collective motion of the ions to generate many-body spin
interactions, with a controlled coupling through collective
bosonic harmonic oscillator modes, or phonons. While not a
focus of this review, the phonon degree of freedom itself is an
interesting medium to host quantum simulations of bosonic
models and is complementary to the field of photonic cavity
QED in atomic (Raimond, Brune, and Haroche, 2001; Ye,
Kimble, and Katori, 2008) and superconducting (Wallraff
et al., 2004) systems. There have been many demonstrations
of phonon control and phonon-based simulations in systems
of a few trapped ions (Ben-Kish et al., 2003; Um et al., 2016;
Kienzler et al., 2017), including bosonic interference
(Leibfried et al., 2002; Toyoda et al., 2015), blockades
(Debnath et al., 2018; Ohira et al., 2020), sampling molecu-
lar vibronic spectra (Shen et al., 2018), quantum walks
(Schmitz et al., 2009; Zähringer et al., 2010), spin-boson
simulations (Lv et al., 2018), phononic “lasing” (Vahala
et al., 2009; Ip et al., 2018) and energy transfer (Gorman
et al., 2018), three-body phonon interactions (Ding et al.,
2018), quantum thermodynamics (An et al., 2015), and
quantum heat engines and refrigerators (Roßnagel et al.,
2016; Maslennikov et al., 2019).
We note that there are many other quantum

systems amenable to quantum spin simulation, including
superconducting circuits (Kandala et al., 2017; Otterbach
et al., 2017; Arute et al., 2019), neutral atoms in optical
lattices (Gross and Bloch, 2017), and solid-state arrays of
effective individual spin systems (J. Choi et al., 2017;
S. Choi et al., 2017). Comparisons to these other platforms
is made where appropriate, although many of the simulations
covered in this review rely on individual quantum state
control with long-range interactions not native to other
platforms.

A. Atomic ion spins

We represent a collection of spins by a crystal of electro-
magnetically trapped atomic ions, with two electronic energy
levels within each ion behaving as an effective spin-1=2
particle. The choice of electronic levels depends on the atomic
element and also the desired type of control fields used to
manipulate and measure the spin state. The most important
features of these spin states for executing quantum simulations
are (a) the spin levels are long lived and exhibit excellent
coherence properties, (b) the spin states have appropriate
strong optical transitions to auxiliary excited states, with
selection rules allowing for qubit initialization through optical
pumping and qubit detection through fluorescence, and (c) the
spins interact through a coherent coupling that can be
externally controlled and gated. These requirements restrict
the atomic species to a handful of elements and spin states that
are encoded in either S1=2 hyperfine or Zeeman ground states
of single outer-electron atoms (such as Beþ, Mgþ, Caþ, Srþ,
Baþ, Cdþ, Znþ, Hgþ, and Ybþ) with radio-frequency or
microwave frequency splittings or ground and D or F
metastable electronic excited states of single or dual outer-
electron atoms (such as Caþ, Srþ, Baþ, Ybþ, Bþ, Alþ, Gaþ,
Inþ, Hgþ, Tlþ, and Luþ) with optical frequency splittings.
Some species (such as Baþ, Luþ, and Ybþ) have sufficiently
long D or F metastable excited state lifetimes to host spins in
their hyperfine or Zeeman levels with radio-frequency or
microwave splittings.
In any of these systems, we label the two relevant spin

states as j↓i≡ j↓zi and j↑i≡ j↑zi, eigenstates of the Pauli
operator σz separated by energy E↑ − E↓ ¼ ℏω0. In the
transverse bases of the Bloch sphere, we define by convention
the eigenstates of σx as j↓xi≡ ðj↓i − j↑iÞ= ffiffiffi

2
p

and j↑xi≡
ðj↓i þ j↑iÞ= ffiffiffi

2
p

, and the eigenstates of σy as j↓yi≡ ðj↓i þ
ij↑iÞ= ffiffiffi

2
p

and j↑yi≡ ðij↓i þ j↑iÞ= ffiffiffi
2

p
. We note that in this

review the spin direction is often not explicitly labeled, in
which case the notation adopts the context of the material.
A typical quantum simulation in the ion-trap system is

composed of three sequential steps: initialization, interaction,
and measurement, as depicted in Fig. 1. The spins are
initialized through an optical pumping process that prepares
each spin in a nearly pure quantum state (Happer, 1972). By
applying resonant laser radiation that couples the spin states to
short-lived excited states, each spin can be initialized with
>99.9% state purity in a few microseconds. This relies on
appropriate selection rules for the excited states as well as
sufficiently split energy levels of the spin states themselves
[Fig. 1(a)]. Laser cooling can prepare the motional states of
the ions to near the ground state of harmonic motion
(Leibfried et al., 2003), which is important for the control
of the spin-spin interactions detailed later.
Each spin can be coherently manipulated by driving the

atomic ions with external fields that couple the spin states.
This can be accomplished by resonantly driving the spin levels
with appropriate radiation at frequency ω0; in Fig. 1(b), this is
depicted as a two-field Raman process, with a beat note of two
optical fields at ω0 driving the spin (this is assumed through-
out unless otherwise indicated). This coherent coupling can
also drive motional sideband transitions (Leibfried et al.,
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2003) that couple the spin to the motion of the ion. For
multiple ions, this can be used to generate spin-spin couplings
mediated by the Coulomb interaction, described in more detail
later (Wineland and Blatt, 2008). These external fields provide
exquisite control over the effective spin-spin interaction, with
the ability to gate the interaction, program different forms of
the interaction strength and range, and even reconfigure the
interaction graph topology.
At the end of the quantum simulation, the spins are

measured by applying resonant laser radiation that couples
one of the two spin states to a short-lived excited state through
a cycling transition and detecting the resulting fluorescence
(Bergquist et al., 1986; Nagourney, Sandberg, and Dehmelt,
1986; Sauter et al., 1986). This is depicted in Fig. 1(c), where
we take the j↑i or “bright” state as fluorescing and the j↓i or
“dark” state as not fluorescing. Even though the photon
collection efficiency may be small (typically less than 1%),
the effective spin detection efficiency can be well above 99%
owing to the low probability of leaving the fluorescence
cycle or having the other (dark) state entering the cycle (Acton
et al., 2006; Hume, Rosenband, and Wineland, 2007;
Benhelm et al., 2008; Myerson et al., 2008; Noek et al.,

2013). To detect the spins in other bases in the Bloch sphere
(σx or σy), prior to fluorescence measurement the spins are
coherently rotated by polar angle π=2 along the y or x axis of
the Bloch sphere, respectively.

B. Coulomb-collective motion of trapped-ion crystals

Atomic ions can be confined in free space with electro-
magnetic fields supplied by nearby electrodes. Two types of
ion traps are used for quantum simulation experiments: the
linear radio-frequency (rf) trap and the Penning trap. The
linear rf trap (Fig. 2) (Raizen et al., 1992) juxtaposes a static
axial confining potential with a two-dimensional rf quadru-
pole potential that provides a time-averaged or ponderomotive
transverse confinement potential (Dehmelt, 1968; Wolfgang,
1990). The trap anisotropy is typically adjusted so that the
static axial confinement is much weaker than the transverse
confinement and that laser-cooled ions reside on the axis of
the trap where the rf fields are null, resulting in a one-
dimensional chain of trapped-ion spins. A harmonic axial
confinement potential results in an anisotropic linear ion
spacing (James, 1998), but the ions can be made nearly
equidistant by applying an appropriate quartic axial confining
potential (Lin et al., 2009). The Penning trap [Fig. 2(b)]
employs a uniform axial magnetic field with static axial
electric field confinement, where the transverse confinement
is provided by the E × B drift toward the axis (Brown and
Gabrielse, 1986; Bohnet et al., 2016). Here the trap anisotropy
is typically adjusted so that the ions form a two-dimensional
crystal perpendicular to and rotating about the axis. Both rf
and Penning traps can be modified to support other types of
crystals in any number of spatial dimensions, but the quantum
simulations reviewed here are either 1D chains in rf traps or
2D crystals in Penning traps. However, the dimensionality of
the spin-spin interaction graph does not necessarily follow that
of the spatial arrangement of spins.
Ions are typically loaded into traps by generating neutral

atoms of the desired element and ionizing the atoms once in
the trapping volume via electron bombardment or photoioni-
zation. Ion-trap depths are usually much larger than room
temperature, so rare collisions with background gas do not
necessarily eject the ion from the trap, but they can tempo-
rarily break up the crystal and scramble the atomic ions in
space. Under typical ultrahigh-vacuum conditions, these
collisional interruptions occur roughly once per hour per
ion (Wineland et al., 1998), but cryogenic vacuum chambers,
where the trapped ions can be undisturbed for weeks or longer
between collisions, can reduce the collision rate by orders of
magnitude.
When atomic ions are lase cooled and localized well below

their mean spacing, they form a stable crystal, with the
Coulomb repulsion balancing the external confinement force.
Typical spacings between adjacent ions in trapped-ion crystals
are ∼3–20 μm, depending on the ion mass, the number of ions
in the crystal, the characteristic dimensions of the electrodes,
and the applied potential values. The equilibrium positions of
ions in the crystal can be calculated numerically (Steane,
1997; James, 1998; Sawyer et al., 2012). The motion of the
ions away from their equilibrium positions is well described
by harmonic normal modes of oscillation (phonon modes),

(b) (c)(a)

FIG. 1. Reduced energy level diagram of a single atomic ion.
Effective spin-1=2 systems are encoded within each atomic ion as
stable electronic energy levels j↓i and j↑i. A typical quantum
simulation is composed of three steps. (a) Resonant radiation
(blue solid arrows) connects one of the two spin states to a pair of
excited state levels (linewidth γ) and optically pumps each spin to
the j↓i state through spontaneous emission (red wavy arrows).
Here we assume that the excited state jei couples only to j↑i,
while the other excited state je0i couples to both spin states.
(Other sets of selection rules are also possible.) (b) In the case of
ground-state (Zeeman or hyperfine) defined spins separated by
frequency ω0, two tones of off-resonant radiation (purple solid
lines) can drive stimulated Raman transitions between the spin
states. The two beams have resonant Rabi frequencies g1;2
connecting respective spin states to excited states and are detuned
by Δ ≫ γ and have a difference frequency (beat note) detuned
from the spin resonance by μ. This coherently couples the spin
states to create superpositions (μ ¼ 0) and for non-copropagating
beams also couples to the motion of the ion crystal (μ ≠ 0). These
processes can also be driven directly by radio-frequency or
microwave signals, or, for optically defined spin states, a single
laser tone. (c) Resonant radiation (blue solid arrow) drives the
j↑i ↔ jei cycling transition, causes the j↑i state to fluoresce
strongly (red wavy arrow), while the j↓i state is far from
resonance and therefore dark. This allows the near-perfect
detection of the spin state by the collection of this state-dependent
fluorescence depicted by the eye.
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with frequencies in the range ωm=2π ∼ 0.1–10 MHz. The
thermal motion of laser-cooled ions and also the driven motion
by external forces are typically at the 10–100 nm scale. This is
much smaller than the inter-ion spacing, so nonlinearities to
the phonon modes (Marquet, Schmidt-Kaler, and James,
2003) can be safely neglected and the harmonic approxima-
tion to the phonon modes is justified. Calculations of the
phonon mode frequencies and normal mode eigenfunctions
follow straightforwardly from the calculated ion spacings
(Steane, 1997; James, 1998; Sawyer et al., 2012). For the
systems described here, we primarily consider the motion
along a single spatial dimension labeled X. We write the X
component of the position of the ith ion as X̂i ¼ X̄i þ x̂i,
separating the mean stationary position X̄i of the ith ion from
the small harmonic oscillations described by the quantum
position operator x̂i. The motion of ions in the crystal is tightly
coupled by the Coulomb interaction, so it is natural to express
the position operator in terms of the m ¼ 1;…; N normal
phonon modes x̂i ¼

P
N
m¼1 bimξ̂m, where bim is the normal

mode transformation matrix, with
P

i bimbin ¼ δnm andP
m bimbjm ¼ δij. Each phonon mode ξ̂m oscillates at fre-

quency ωm and can be described as a quantum harmonic

oscillator with zero-point spatial spread ξð0Þm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Mωm

p
,

where M is the mass of a single ion. In the interaction frame

for each phonon mode, the position of the ith ion is thus
written as

X̂i ¼ X̄i þ
XN
m¼1

bimξ
ð0Þ
m ða†meiωmt þ ame−iωmtÞ; ð1Þ

where a†m and am are bosonic raising and lowering operators
for each mode, with ½an; a†m� ¼ δnm.
In general, the structure of transverse phonon modes of a

1D or 2D ion crystal (motion perpendicular to the axis or plane
of the ions) has the center-of-mass (c.m.) mode as its highest
frequency, with the lowest frequency corresponding to zigzag
motion where adjacent ions move in opposite directions, as
shown in Fig. 3 for a 1D linear chain of 32 ions and a 2D
crystal of about 345 ions. The bandwidth of the transverse
modes can be controlled by tuning the spatial anisotropy of
the trap.

C. Programmable magnetic fields and interactions between
trapped-ion spins

Effective magnetic fields and spin-spin interactions can be
realized by applying external microwave or optical fields to
the ions. We consider the case of optical fields, since not only

(a) (b)

FIG. 2. (a) Radio-frequency (rf) linear trap used to prepare a 1D crystal of atomic ions. The geometry in this trap has three layers of
electrodes, with the central (gray) layer carrying rf potentials to generate a 2D quadrupole along the axis of the trap. The outer (gold)
electrodes confine the ions along the axis of the trap. For sufficiently strong transverse confinement, the ions form a linear crystal along
the trap axis, with an image of 64 ions shown above with characteristic spacing 5 μm for 171Ybþ ions. From Islam et al., 2011.
(b) Penning trap used to prepare a 2D crystal of atomic ions. The cylindrical (gold) electrodes provide a static quadrupole field that
confines the ions along the vertical axis, and the vertical magnetic field stabilizes their orbits in the transverse plane. For sufficiently
strong axial confinement, the lowest energy configuration of the ions is a single plane triangular lattice that undergoes rigid body
rotation, with an image of ∼200 9Beþ ions shown above with a characteristic spacing of 20 μm. From Bohnet et al., 2016. For both traps,
wide arrows (green) indicate non-copropagating optical dipole force (ODF) laser beams that provide spin-dependent forces along their
wave vector difference, giving rise to Ising couplings. The other arrows indicate cooling and spin detection beams (imaging objectives
are not shown).
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can they be used to provide effective site-dependent magnetic
fields for the spins through tight focusing, but the strong
dipole forces from laser beams can also drive effective Ising
interactions between the spins (Cirac and Zoller, 1995;
Solano, de Matos Filho, and Zagury, 1999; Sørensen and
Mølmer, 1999; Milburn, Schneider, and James, 2000). Such
forces can be applied to pairs of ions in order to execute
entangling quantum gates applicable to quantum computing
(Wineland and Blatt, 2008). When such forces are instead
applied more globally, the resulting interaction network allows
the quantum simulation of a variety of spin models, such as
the Ising and Heisenberg spin chains (Porras and Cirac, 2004;
Deng, Porras, and Cirac, 2005; Taylor and Calarco, 2008).
Following Fig. 1(b) and assuming that the spins are

encoded in stable (Zeeman or hyperfine) levels, the ion crystal
is addressed with two laser beams detuned from the excited
states by much more than the excited state radiative linewidth
(Δ ≫ γ). By adiabatically eliminating the excited states, this
drives coherent Raman transitions between the spin states.
Alternatively, optically defined spin levels can be coupled
with a single laser beam (Benhelm et al., 2008), but this is
more difficult technically, as the spins acquire an optical phase
that requires extreme positional stability of the optical setup.
With rf- or microwave-defined spin states, the relevant phase
is that of the microwave beat note between the Raman beams,
which has a much longer wavelength and is easier to control
and stabilize. The two Raman beams are oriented to have a
projection δk of their wave vector difference along the X axis
of motion. The Raman beat note is detuned by frequency
ω0 þ μi from the resonance of spin i with beat-note phase δϕi.

The resonant Raman Rabi frequency on ion i is
Ωi ¼ gi1g

i
2=2Δ, where gi1;2 are the direct single field Rabi

frequencies of the associated transitions through the excited
states [see Fig. 1(b)], proportional to the respective applied
optical electric fields. The atom-light interaction Hamiltonian
in a frame rotating at the spin resonance frequency ω0 ≫ Ωi
(optical rotating-wave approximation) takes the form (ℏ ¼ 1)

H¼ 1

2

X
i

½ΩiðσiþeiðδkX̂i−μit−δϕiÞ þσi−e−iðδkX̂i−μit−δϕiÞÞþdiσiz�:

ð2Þ

The last term is an ac Stark shift of the ith spin by amount di
and arises from differential ac Stark shifts between the two
spin levels from the Raman beams. This shift includes the
“two-photon” differential Stark-shift terms scaled by ðg21 þ
g22Þω0=4Δ2 and summed over each excited state detuned by Δ,
where ω0 ≪ Δ; see Fig. 1. There are also “four-photon” Stark
shifts scaled by Ω2

i =4μi and summed over each two-photon
Raman resonance detuned by μ, where Ωi ≪ μi. The magni-
tude of these shifts depends greatly on the atomic energy level
structure and light polarization; see Lee et al. (2016) for a
discussion of Raman-coupled qubits (Fig. 1) and Häffner et al.
(2003) for direct optically coupled qubits. These Stark shifts
can be either absorbed into the definition of the spin energy
levels or used as an effective axial magnetic field for
simulations.
We assume here that the ions are confined to the Lamb-

Dicke limit (Wineland et al., 1998; Leibfried et al., 2003),

(a) (b)

FIG. 3. Raman upper sideband spectrum of the transverse motion of trapped atomic ion crystals. The spectrum is measured by
preparing all of the ions in the (dark) state j↓i and driving them with global Raman laser beams with beat-note detuning μ from the spin-
flip resonance and measuring the total fluorescence of the chain, which responds when the beat note matches a sideband resonance.
(a) 32 trapped 171Ybþ atomic ions in a linear chain; see Fig. 2(a). Here the Raman excitation is sensitive to both the X and Y principal
axes of transverse motion, and the theoretical position of both sets of 32 modes along X and Y are indicated at the top. The highest
frequency sidebands correspond to center-of-mass (c.m.) modes at 4.19 MHz for the X direction and 4.05 MHz for the Y direction.
Based on unpublished data from the University of Maryland. (b) Measured (black) and calculated [red (gray) lines between 0.6 and
0.8 MHz] sideband spectrum for a 2D crystal of 345� 25 9Beþ ions in a Penning trap; see Fig. 2(b) with rotation frequency 43.2 kHz. As
in the linear chain, the highest frequency sideband at 795 kHz corresponds to c.m. motion. Features at the rotation frequency and its
harmonics harmonics at low frequency [green (gray)] are due to residual couplings to in-plane degrees of freedom from imperfect beam
alignment. Adapted from Sawyer et al., 2012.
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where the excursion of ion motion is much less than the
associated wavelength of radiation driving transitions:
δkhx̂2i i1=2 ≪ 1. This is typically a good assumption for
trapped ions laser cooled to near their ground state, with a

zero-point spatial spread of all modes ξð0Þm that is typically of
the order of nanometers in experiments.

1. Effective magnetic fields

For a resonant “carrier” interaction (μ ¼ di ¼ 0) and under
the rotating-wave approximation (ωm ≫ Ωi), the time depend-
ence of X̂ averages to zero and the Hamiltonian of Eq. (2) is
simply

HB ¼ 1

2

X
i

Ωiσ
i
βi
; ð3Þ

where the transverse-field spin operator is defined by

σiθi ≡ σiþe−iθi þ σi−eiθi ¼ σix cos θi þ σiy sin θi: ð4Þ

This Hamiltonian of Eq. (3) describes the precession of spin i
about an effective transverse magnetic field in the x-y plane of
the Bloch sphere at an angle

βi ¼ δϕi − δkX̄i ð5Þ

that can be controlled through the phase δϕi. In cases where
δk ≠ 0, the Rabi frequency acquires a dependence on the
motion of the ions through Debye-Waller factors (Wineland
et al., 1998), but these are small in the Lamb-Dicke limit
(Sørensen and Mølmer, 2000; Leibfried et al., 2003).
Tuning the Raman laser beat note away from the carrier

with μ ≫ Ωi generally results in a four-photon ac Stark shift
of the previously discussed spin levels, given by the last term
in Eq. (2) (Häffner et al., 2003; Lee et al., 2016). When each
spin is exposed to a unique intensity of light and/or detuning
of a single beam, parametrized by di, this gives rise to a site-
dependent effective axial (z) magnetic field.

2. Effective Ising interactions

When the frequency μi is tuned to the neighborhood of the
phonon modes ωm, the spin i is coupled to the ion motion
through the spatial variation of the phase factor in Eq. (2). This
generates an effective spin-spin interaction between the
exposed ions, mediated by the collective transverse vibrations
of the chain. For most simulation experiments, the transverse
modes of motion are used to mediate the spin-spin interaction
because their frequencies are tightly packed and all contribute

to the effective spin Hamiltonian, allowing control over the
form and range of the interaction, described further later on.
Transverse modes also oscillate at higher frequencies, leading
to better cooling and less sensitivity to external heating and
noise (Zhu, Monroe, and Duan, 2006).
In general, when non-copropagating laser beams form

bichromatic beat notes at frequencies ω0 � μi symmetrically
detuned from the carrier with μi ≈ ωm, both upper and lower
motion-induced sidebands of the normal modes of motion are
driven in the ion crystal, giving rise to a spin-dependent force
at frequency μi (Solano, de Matos Filho, and Zagury, 1999;
Sørensen and Mølmer, 1999; Milburn, Schneider, and James,
2000; Porras and Cirac, 2004). Owing to the symmetry of the
detuned beat notes, the four-photon Stark shift is generally
negligible. However, when the bichromatic beat notes are
asymmetrically detuned from the carrier by ω0 þ μiþ and
ω0 − μi−, the effective spin-dependent force occurs at fre-
quency μi ¼ ðμiþ þ μi−Þ=2 and the asymmetry provides a
Stark shift that gives rise to an effective uniform axial
magnetic field in Eq. (2) with di ¼ ðμiþ − μi−Þ=2.
Under the rotating-wave approximation (ω0 ≫ μi ≫ Ωi)

with symmetric detuning μi ¼ μiþ ¼ μi− and within the
Lamb-Dicke limit, the exponential function in Eq. (2) can
be expanded to lowest order, resulting in (Zhu, Monroe, and
Duan, 2006)

HðtÞ ¼ 1

2

X
i;m

ηimΩiσ
i
θi
½a†me−iðδimtþψ iÞ þ ameiðδimtþψ iÞ�: ð6Þ

Here the beat-note detuning on ion i from the mth motional
sideband is defined as δim ¼ μi − ωm and the Lamb-Dicke

parameter ηim ¼ bimδkξ
ð0Þ
m describes the coupling between ion

i and mode m.
Equation (6) includes two phases: a “spin phase” θi that

determines the angle of the ith spin operator in the X-Y plane
of the Bloch sphere that diagonalizes the spin-dependent
force, and a “motion phase” ψ i that determines the phase of
the optical forces (but does not play a role in the spin-spin
interactions developed later). These phases depend on the
geometry of the bichromatic laser beams and there are two
cases written in Eqs. (7) and (8) (Haljan et al., 2005; Lee et al.,
2005). When the upper and lower sideband running wave beat
notes propagate in the same direction (δk has the same sign for
both), this is termed the “phase-sensitive” geometry. On the
other hand, when the upper and lower sideband running waves
propagate in opposite directions (opposite signs of δk for the
two beat notes), this is called “phase insensitive.” The phases
for each configuration are written

spin phase motion phase

Phase sensitive θi ¼
�
δϕiþ þ δϕi−

2

�
− δkX̄i −

π

2
; ψ i ¼

�
δϕiþ − δϕi−

2

�
;

ð7Þ

Phase insensitive θi ¼
�
δϕiþþδϕi−

2

�
; ψ i ¼

�
δϕiþ−δϕi−

2

�
−δkX̄i−

π

2
: ð8Þ

Here δϕiþ and δϕi− are the beat-note phases associated with the upper and lower sideband fields, respectively. The additional π=2
phase factors compared with Eq. (5) originate from the imaginary linear term in the Lamb-Dicke expansion of eikx̂i .
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The sensitivity of the spin phase to δkX̄i has great importance
in the practical implementation of spin-spin Hamiltonians. In the
phase-sensitive geometry, this dependence may be desired when
the phase of other Hamiltonian terms [such as the carrier spin-flip
operation ofEq. (3)] have the same form, as inEq. (5). This allows
a phase-sensitive diagnosis of individual spin operations.
However, sensitivity to δkX̄i over sufficiently long times can
lead to decoherence if there are drifts in the relative path length of
non-copropagating beams or the ion chain position along the X
direction. The phase-insensitive configuration is therefore useful
for long simulation evolution times.
We note that the phase-insensitive geometry using Raman

couplings [Fig. 1(b)] can remove the spin-phase sensitivity to
not only the absolute optical phase of the optical source but
also the relative optical path length difference between the
counterpropagating beams by setting δϕiþ ¼ −δϕi− (Haljan
et al., 2005; Lee et al., 2005). This is not possible with direct
optical upper and lower sideband transitions on spins with an
optical energy splitting, as their optical phases add regardless
of the geometry.
For either phase configuration, the evolution operator under

this Hamiltonian can be written from the Magnus expansion,
which terminates after the first two terms (Zhu, Monroe, and
Duan, 2006)

UðτÞ ¼ exp

�
−i

Z
τ

0

dtHðtÞ − 1

2

Z
τ

0

dt1

Z
t1

0

dt2½Hðt1Þ; Hðt2Þ�
�

ð9Þ

¼ exp

�X
i

ζ̂iðτÞσiθi − i
X
i<j

χi;jðτÞσiθiσ
j
θi

�
: ð10Þ

The first term of Eq. (10) is a spin-phonon coupling with the
operator

ζ̂iðτÞ ¼
X
m

½αi;mðτÞa†m − α�i;mðτÞam�; ð11Þ

representing the spin-dependent coherent displacements
(Glauber, 1963; Leibfried et al., 2003) of the mth motional
mode through phase space by an amount

αi;mðτÞ ¼ −
i
2
ηimΩi

Z
τ

0

dte−iðδimtþψ iÞ

¼ −
ηimΩie−iψ i

2δim
ð1 − e−iδimτÞ: ð12Þ

The second term of Eq. (10) is the key result: a spin-spin
interaction between ions i and j with coupling strength

χi;jðτÞ ¼
1

2
ΩiΩj

X
m

ηimηjm

Z
τ

0

dt1

Z
t1

0

dt2 sinðδimt1 − δjmt2Þ ð13Þ

¼ ΩiΩj

X
m

ηimηj;m
2δimδjm

��
δim þ δjm

2

�
τ −

�
sin δimτ þ sin δjmτ

2

��
ð14Þ

¼ ΩiΩj

X
m

ηimηj;m
2δm

�
τ −

sin δmτ
δm

�
for δim ¼ δm: ð15Þ

Fractional corrections to this expression arising from higher-order terms in the Lamb-Dicke expansion leading to Eq. (6) can be
shown to be of the order of η2imη

2
j;mn̄

2
m for each mode (Sørensen and Mølmer, 2000), where n̄m is the average number of vibrational

quanta in mode m. In this review, we generally consider global spin Hamltonians that are realized by exposing all the ions to the
spin-dependent force. However, for the special case of applying a spin-dependent force to just two ions i and j in the chain, which
is common for the execution of entangling two-qubit quantum logic gates (Sørensen and Mølmer, 1999, 2000), the evolution
operator in Eq. (10) reduces to

UijðτÞ ¼ e−iχijðτÞj↑θi↑θjih↑θi↑θj j
Y
m

D̂m½αimðτÞ þ αjmðτÞ� ð16Þ

þe−iχijðτÞj↓θi↓θjih↓θi↓θj j
Y
m

D̂m½−αimðτÞ − αjmðτÞ� ð17Þ

þeiχijðτÞj↑θi↓θjih↑θi↓θj j
Y
m

D̂m½αimðτÞ − αjmðτÞ� ð18Þ

þeiχijðτÞj↓θi↑θjih↓θi↑θj j
Y
m

D̂m½−αimðτÞ þ αjmðτÞ�: ð19Þ

In this expression, the spin projection operators are eigenvectors of σθi : j↑θii ¼ ðj↑ii þ e−iθi j↓iiÞ=
ffiffiffi
2

p
, j↓θii ¼ ðj↑ii −

e−iθi j↓iiÞ=
ffiffiffi
2

p
and h↑θi jσθi j↑θii ¼ þ1, h↓θi jσθi j↓θii ¼ −1. The coherent displacement operator on mode m is D̂mðαÞ ¼

eαa
†
m−α�am (Glauber, 1963).
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There are two regimes where the collective modes of motion
contribute to the spin-spin coupling, taking evolution time τ to
be much longer than the ion normal mode oscillation periods
ðωmτ ≫ 1Þ. In the “resonant” regime (Solano, de Matos Filho,
and Zagury, 1999; Milburn, Schneider, and James, 2000;
Sørensen and Mølmer, 2000), the optical beat-note detuning
μ is close to 1 or more normal modes and the spins become
entangled with the motion through the spin-dependent displace-
ments. However, at certain times of the evolution αi;mðτÞ ≈ 0

for all modes m and the motion nearly decouples from the spin
states, which is useful for applying synchronous entangling
quantum logic gates between the spins. For closely spaced
modes such as the transverse modes seen in Fig. 3, resolving
individual modes becomes difficult and may require laser-
pulse-shaping techniques (Zhu, Monroe, and Duan, 2006). For
generating pure spin Hamiltonians, we instead operate in the
“dispersive” regime (Sørensen and Mølmer, 1999; Porras and
Cirac, 2004), where the optical beat-note frequency is far from
each normal mode relative to that mode’s sideband Rabi
frequency ðjδimj ≫ ηimΩiÞ. In this case, the phonons are only
virtually excited as the displacements become negligible
[jαi;mðtÞj ≪ 1]. The spin-phonon part of the evolution
[Eq. (11)] is therefore negligible, and the spin-spin interaction
evolution [Eq. (10)] is dominated by the secular terms of
Eqs. (14) and (15) that are linear in time τ. The final result is an
effective fully connected Ising Hamiltonian

HJθ ¼
X
i<j

Jijσiθiσ
j
θj
; ð20Þ

where the Ising matrix is given by

Jij ¼ ΩiΩjωrec

X
m

bimbjm
4ωm

�
1

δim
þ 1

δjm

�
ð21Þ

¼ ΩiΩjωrec

X
m

bimbjm
2ωmδm

for δim ¼ δm: ð22Þ

Here we use ωrec ¼ ℏðδkÞ2=2M as the recoil frequency
associated with the transfer of momentum ℏðδkÞ to a single ion.
Substituting the exact values for the normal mode matrix

bim and assuming that the optical force is detuned at
frequencies higher than all phonon modes (δm > 0), we find
that for a uniform Rabi frequency over the ions Ωi ¼ Ω the
Ising matrix is well approximated by a long-range antiferro-
magnetic (AFM) coupling that fall off as an inverse power law
with distance

Jij ¼
J0

ji − jjα ; ð23Þ

with the nearest-neighbor Ising coupling J0. The exponent α
that determines the range of the Ising interaction can be set to
0 < α < 3 by simply adjusting the laser detuning μ > ωm
(Porras and Cirac, 2004; Islam et al., 2011). The true
asymptotic long-chain behavior of a trapped-ion chain is
more subtle (Nevado and Porras, 2016), but the power-law
approximation is good, as shown in Fig. 4, comparing
numerically exact couplings with best-fit power laws for
various detunings in both a linear and a 2D crystal.
When the detuning μ is tuned between the modes of motion,

many other patterns of the Ising graph can be realized (Lin,
Monroe, and Duan, 2011; Korenblit et al., 2012). The spin-
spin interaction profile Jij can in principle be programmed
arbitrarily with sufficient control of the individual spin-
phonon couplings on N trapped ions. For example, N unique
bichromatic Raman beat notes applied at frequencies ω0 � μn,
with μn ≈ ωn (n ¼ 1; 2;…; NÞ, can be used with local
intensity control over each ion to create an arbitrary inter-
action graph

Jij ¼
X
n

Ωi;nΩj;nωrec

X
m

bimbjm
2ωmðμn − ωmÞ

: ð24Þ

(a) (b) (c)

FIG. 4. Theoretical comparison of exact Ising couplings to the inverse power-law form of Eq. (23). (a) Calculated Ising couplings to
edge ion in a 1D crystal of ten ions confined with a harmonic external axial potential. The Raman detuning from the c.m. mode, scaled to
the bandwidth Δω of the transverse modes, is δc.m.=Δω, with the best-fit power law (line) of α ¼ 1. Adapted from Islam, 2012. (b) Best-
fit inverse power-law exponent α for calculated Ising couplings within a 1D crystal of 25 ions with harmonic axial confinement, plotted
as a function of the Raman detuning from the c.m. mode δc.m.=Δω. The spread of the points at a given detuning considers various
bandwidths Δω (axial c.m. confinement frequencies ranging from 100 to 350 kHz with a transverse c.m. confinement frequency of
5 MHz), and the c.m. sideband Rabi frequency ηi;c.m.Ω is always less than 1=3 of the detuning δc.m. in order to limit direct phonon
excitation. Adapted from Islam, 2012. (c) Calculated Ising couplings from Eq. (22) in a 2D crystal of 217 ions vs a sampling of the
distance dij between ion pairs (circles). The lines are best-fit power-law exponents α (lines) for various detunings from the c.m. mode of
795 kHz. Adapted from Britton et al., 2012.
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Here Ωi;n is the Rabi frequency corresponding to the nth beat
note on the ith ion. Note that Jij is nonlinear under the OðN2Þ
experimental control parametersΩi;n and μn, and hence tuning
the quantum simulator requires nonlinear optimization meth-
ods (Korenblit et al., 2012; Teoh et al., 2020). Alternative
approaches to realizing a target interaction graph without
tuning the full Rabi frequency matrixΩi;n include modifying a
global Mølmer-Sørensen coupling profile [such as Eq. (23)]
by local spatial control of spins in hybrid analog-digital ways
(Hayes, Flammia, and Biercuk, 2014; Rajabi et al., 2019).
This review mainly considers Ising interactions in the slow

dispersive regime in order to engineer the pure spin
Hamiltonians given by Eqs. (3) and (20) that do not directly
involve the bosonic phonon operators. An important class of
models in quantum magnetism that appear throughout this
review is the transverse-field Ising model, which is one of the
simplest physical models that admits a quantum phase
transition (Sachdev, 2011) owing to its noncommunting spin
operators

HTI ¼
X
i<j

Jijσixσ
j
x þ By

X
i

σiy: ð25Þ

In ion-trap systems, this model can be generated with a
combination of the effective magnetic field in Eq. (3) and the
Ising interactions in Eq. (20) with appropriate settings of the
spin phases θi in Eqs. (5), (7), and (8). When both non-
commuting terms are simultaneously applied, additional spin-
dependent (σiz) phonon terms appear in higher orders of the
Magnus expansion of Eq. (9) (Wang and Freericks, 2010,
2012), which is discussed in Sec. II.A. It is often desired to
implement interacting spin models with multiple components
of Ising interactions along various axes of the Bloch sphere,
with the most general being the anisotropic Heisenberg model
involving a sum of all three Ising terms

HHeis ¼ Jxijσ
i
xσ

j
x þ Jyijσ

i
yσ

j
y þ Jzijσ

i
zσ

j
z: ð26Þ

Subclasses of the Heisenberg model arise naturally in physics
and can possess useful symmetries (Sachdev, 2011). For
example, the isotropic Heisenberg model ðJxij ¼ Jyij ¼ JzijÞ
is relevant to natural 3D magnetic interactions. The XXZ
model ðJxij ¼ JyijÞ and the XY model ðJxij ¼ Jyij; J

z
ij ¼ 0Þ result

from standard transformations of fermionic Hubbard models
to spin models (Jordan and Wigner, 1928; Bravyi and Kitaev,
2002), which is discussed in Sec. V. The XXZ and XY models
also conserve the z component of the total spin in the system,
allowing simplifications to the spin dynamics and the inter-
pretation of measurements.
Ion-trap quantum simulators can generate generic

Heisenberg models with the previously discussed primitive
of the Ising interaction using a variety of extensions. First, the
three separate Ising terms in the Hamiltonian can exploit three
independent modes (or spatial directions) of motion (Porras
and Cirac, 2004), although this may not easily produce the
same form or range of Ising interactions for all three axes.
Second, the desired interactions can be applied sequentially in
a Trotter expansion of the desired Hamiltonian (Trotter, 1959;
Suzuki, 1985; Lloyd, 1996; Lanyon et al., 2011; Johri,

Steiger, and Troyer, 2017), as discussed in Sec. V. Third, a
transverse-field Ising model [Eq. (25)] can be applied with
By ≫ Jij, so the field overwhelms the Ising interactions. This

can be seen by expanding the Ising term as σixσ
j
x ¼

ðσiþ þ σi−Þðσjþ þ σj−Þ ≈ σiþσj− þ σi−σ
j
þ ¼ σixσ

j
x þ σiyσ

j
y. Here

the strong field energetically forbids double spin flips or,
equivalently, bestows fast oscillations to the σi�σ

j
� terms,

which average to zero in an effective rotating-wave approxi-
mation (Cohen et al., 2015).

II. SPIN HAMILTONIAN BENCHMARKING
AND MANY-BODY SPECTROSCOPY

A compelling Hamiltonian quantum simulation usually
results in some type of nontrivial ground state or dynamics
that may elude classical computation. It is therefore important
to verify that the desired Hamiltonian is indeed being correctly
implemented by the quantum simulator (Cirac and Zoller,
2012; Hangleiter et al., 2017). For systems that are small
enough and tractable for a direct comparison between the
simulator’s results and a theoretical calculation, this provides
some confidence that the proper simulation has been run. But
scaling up the system can introduce additional imperfections
that may call into question the accuracy of the applied
Hamiltonian.
Two approaches for verifying quantum simulators beyond

classically computability are the use of fault-tolerant tech-
niques in the expression of the simulation in terms of discrete
error-corrected gates (Gottesman, 1998; Preskill, 1998), and
the comparison of the results of multiple quantum simulators
built upon different platforms (Leibfried, 2010). Though this
list is not comprehensive [see Hangleiter et al. (2017)], we
now examine these two approaches.
Universal Hamiltonian digital quantum simulators (DQSs)

as discussed in Sec. V break up the simulation evolution into a
series of time steps, and the error ϵ introduced by this “Trotter”
expansion is bounded and inversely proportional to the
number of steps M (Lloyd, 1996). This approach was notably
employed for the implementation of various Hamiltonians,
including many-body magnetic couplings, in a system of
trapped ions (Lanyon et al., 2011). Because DQSs relie on
discrete quantum gate sets, one possibility for its verification
is that this can in principle be accomplished through fault-
tolerant error correction on the gates (Terhal, 2015). This
increases the number of operations required, and it has been
shown that the run-time can scale exponentially with the
desired precision of the parameter being computed, in which
case the resource cost for a fault-tolerant DQS for parameter
estimation is similar to that of universal quantum computing
(Brown, Clark, and Chuang, 2006; Clark et al., 2009). Further,
simulations with systems that lack universal gate sets or the
digital simulation of open systems may render fault tolerance
unavailable in a DQS (Hauke et al., 2012). Since the cost of
introducing currently known methods for fault tolerance is too
high for precision DQSs (Kendon, Nemoto, and Munro,
2010), other methods for verifying non-fault-tolerant DQSs
are needed.
Another way that one might test quantum simulators is to

compare the results of two simulations. This could involve
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comparing the results of simulations performed on different
platforms (Leibfried, 2010), or even comparing the results
obtained by using different simulation methods on the same
machine. A variation on this second theme is to run a
Hamiltonian simulation forward and then backward in time
(Cirac and Zoller, 2012), which may reveal flaws that are not
undone by the time reversal, such as dissipation. An initial
experiment demonstrated this time-reversal technique for a
trapped-ion quantum simulation by adiabatically ramping
from an initial state of high magnetization along y, through
a phase transition, and then back again (Islam et al., 2013).
Measurements of the magnetization at all three extrema in this
time sequence revealed a revival in the magnetization,
achieving an average of hSyi ¼ 68ð4Þ% of the initial value,
in agreement with closed-system numerical integration.
Recently a variational eigensolver approach was combined

with an ion-trap quantum simulator to perform a VQS of the
lattice Schwinger model that combines some ways to verify
some features of the result (Kokail et al., 2019). The VQS uses
feedback with a classical computer that translates measure-
ment results from the AQS into expectation values of a
software Hamiltonian to find energy eigenstates of the under-
lying Hamiltonian. Since the conversion between the meas-
urement and its interpretation happens in classical software, it
provides a way to perform some verification of the resulting
states because both the eigenvalues and their variances are
accessible. For instance, the VQS demonstrated by Kokail
et al. (2019) measured the expectation value of the simulated
Hamiltonian E ¼ hHi, as well as the expectation value of
ðH − EÞ2, which should be zero if the state is an energy
eigenstate of H with eigenvalue E. While this does not
guarantee that the state found by the VQS is the ground
state, this verification can be used to assess the confidence in
the state being an eigenstate.

A. Sources of error

Quantum simulations with trapped ions can be susceptible
to unwanted interactions that lead to inaccuracies in the
simulation. Many such error sources are common to both
simulations and trapped-ion quantum computing gates, such
as spontaneous emission from the lasers driving spin tran-
sitions, and have been examined in detail elsewhere (Wineland
et al., 1998; Ozeri et al., 2007). Further, the simulation
protocol itself may have known approximations (such as
the Trotterization errors and nonadiabatic evolution) that may
be rigorously bounded, though their effects may not be fully
understood.
The inclusion of a transverse effective magnetic field to the

spin-dependent force of Eq. (6) includes higher-order terms
beyond the simple transverse Ising model of Eq. (25) (Wang
and Freericks, 2012). These additional terms can create
substantial spin-motion entanglement that can affect measure-
ments in bases other than the Ising direction. For transverse-
field strengths that exceed the Ising coupling, the system
begins to attain the character of an XY model with both σixσ

j
x

and σiyσ
j
y couplings, and the strong-field Ising model can break

down. The spins in this case do not strictly decouple from the
phonons at any point in time, but it has been shown that they

can typically be made small for experimentally accessible
timescales (Wall, Safavi-Naini, and Rey, 2017).
Protocols that rely on adiabatic ramping through a small

gap can be susceptible to the breakdown of the adiabatic
approximation in the region where the gap is small. As we
discuss later, for a linear ramp of BðtÞ through a system energy
gap of size Δ, the adiabaticity criterion is approximately
j _By=Δ2j ≪ 1. For cases where the gaps are known, the ramp
rate can be adaptively matched to the gap to maximize
adibaticity, a technique known as local adiabatic evolution
(Roland and Cerf, 2002). However, since repeated experi-
ments can be used to gather statistics about the final state, it
has been shown that significant nonadiabaticity can be present
and still allow the ground-state spin configuration to be found
due to its statistical prevalence (Richerme, Senko, Smith
et al., 2013).
State preparation and measurement (SPAM) errors, which

are to some degree common to simulators and gate-based
quantum computers, are another source of errors in lattice spin
simulators. Given an uncorrelated, single-shot, single ion
SPAM fidelity F, the probability of a single SPAM error is
1 − FN . The current state-of-the-art SPAM fidelity for single
qubits is F ¼ 0.999 71ð3Þ, which produces one error on
average for single-shot projective measurements of a register
with N ≥ ln 2=ð1 − F Þ ≈ 2400 qubits (Christensen et al.,
2020). In certain special cases, repeated experiments can be
used to mitigate this error through statistical methods (Shen
and Duan, 2012). Cross talk between neighboring ions can
also lead to measurement errors, and the ion positions must be
calibrated to define a region of interest on the camera for each
ion’s fluorescence detection. State detection infidelity from
neighboring ions is typically no more than a few percent per
qubit (Zhang et al., 2017), although this error can be sup-
pressed to well below 1% (Cetina et al., 2020) and can be
made even smaller with ion shuttling (Kielpinski, Monroe,
and Wineland, 2002).
There are various sources of decoherence quantum simu-

lations in the trapped-ion platform, such as stray magnetic and
electric fields, mode frequency drifts, off-resonant motional
excitation, and spontaneous emission. While these errors have
been analyzed in the context of quantum computing
(Wineland et al., 1998), decoherence can set a practical time
limit for quantum simulations that may lead to other errors,
such as diabatic errors. Since many of these error sources
increase with system size, it may be necessary to employ
methods of mitigation such as magnetic field shielding (Ruster
et al., 2016).
Off-resonant excitation to motional modes is nominally

already considered in the spin-motional coupling described by
Eq. (12). The probability of motion-induced spin-flip errors in
a chain of N ions can be estimated by ε ¼ P

N
i;m jαi;mj2,

summing over all modes. By neglecting the time dependence
and assuming equally contributing modes, this error is
expected to scale as ε ∼ NðηΩ=δÞ2, where δ is the smallest
detuning from any mode. This same approximation was made
in the derivation of Eq. (22), leading to the scaling
Jij ∼ ðηΩÞ2=δ. Motion-induced spin-flip errors can therefore
be mitigated by increasing both δ [Eq. (6)] and the Raman
Rabi frequency Ω ¼ g1g2=2Δ to keep the same spin-spin
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interaction. However, increasing the Rabi frequency may
increase spontaneous emission errors, which grow linearly
with Rabi frequency for large detuning as Γ ¼ γΩ=4Δ,
where the atomic linewidth γ is defined in Sec. I.A and
Δ ≫ γ is assumed. Given a level of motion-induced spin-flip
error ε, it can be shown that the spontaneous emission error
during the interaction time tJ0 ¼ 2π=J0 scales as

ffiffiffiffiffiffiffiffiffi
N=ε

p
(Kim

et al., 2010).

B. Benchmarking Ising couplings

For the Ising spin models considered in this review, it is
important to validate the strength of the Ising-coupling matrix
Jij ofEqs. (20)–(22) and effectivemagnetic fields inEq. (3). For
small numbers of spins, it is possible to directly extract the Ising
couplings and fieldsbypreparing the spins in aσz eigenstate and
subjecting them to the σθ Ising interactions or field terms. The
resulting oscillations in population are given by the energies
of the occupied states, so performing a Fourier transform on
these oscillations directly provides the energy differences.
An example of directly measured Ising oscillations and their

resulting Fourier transform is shown in Figs. 5(a) and 5(b) for
N ¼ 3 spins. The extracted interaction strengths are shown in
Fig. 5(c). This technique is effective in the context of both
continuous (Kim et al., 2011) and digital (Lanyon et al., 2011)
simulations of Ising models. A similar method has been used to
extract the strengths of magnetically induced spin-spin cou-
plings (Khromova et al., 2012; Piltz et al., 2016). Neither
technique scales well to more than a few spins owing to the
difficulty in extracting many closely spaced frequencies in the
spin oscillations.
Individual Ising couplings within a given spin chain can be

measured using an auxiliary state of the ions, even for large
numbers of spins. Because the Ising couplings depend on the

vibrational mode spectrum, all ions must be physically present
in the trap to obtain a meaningful result, but the spectrum of
the population oscillations illustrated in Fig. 5 are difficult to
obtain if all spins participate in the many-body dynamics. An
alternative approach is to perform a separate measurement for
each individual Ising coupling by “hiding” all ions except the
pair of interest into an auxiliary internal state that does not
experience the spin-dependent force giving rise to Ising
couplings. In this manner, the frequency with which the ions
of interest i and j oscillate between correlated states j00i and
j11i allows for the determination of the Ising matrix Jij
(Jurcevic et al., 2014). For large collections of spins with long-
range interactions, benchmarking of weak Ising interactions
can be accomplished by measuring the global precession of
the spins. Here the spins are each prepared in an identical state
that is tipped away from the Bloch sphere axis of the Ising
interaction and the resulting dynamics of the global Ising
interaction can be recorded. Figure 6 shows measurements of
this type of benchmarking in a collection of more than 200
trapped-ion spins (Britton et al., 2012), which agrees well
with mean-field theory. For sufficiently strong Ising inter-
actions, as shown in this experiment, the mean-field approxi-
mation breaks down, indicating the entanglement between
the spins.
Other spectroscopic techniques for probing the energy

spectrum of the bare Ising Hamiltonian are also possible
(Senko et al., 2014). For instance, in the tranverse Ising model
of Eq. (25), modulating the effective field ByðtÞ at a frequency
commensurate with an energy difference in the full spin
Hamiltonian will drive transitions between the two differing
states. Specifically, taking ByðtÞ ¼ B0 þ Bp sinðωmodtÞ with
Bp ≪ J, the frequency ωmod at which such transitions occur is
directly related to the Ising couplings Jij (Senko et al., 2014).
Figures 7(a) and 7(b) illustrate examples where the Ising

(c)(a)

(b)

FIG. 5. Direct measurement of Ising nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions for N ¼ 3 trapped-ion spins.
(a) Measured time evolution of the probability of state j↓↓↓i subject to global Ising interactions, with the spins initialized in the state
j↓ij↓ij↓i. The solid line is a fit to theory with an empirical exponential decay. (b) The Fourier spectrum of the oscillations in (a) exposes
the frequency splittings of the Ising Hamiltonian. (c) Extracted Ising couplings J1 and J2 from the Fourier spectra as a function of
the applied beat-note detuning μ, scaled so that the c.m., tilt, and zigzag modes of transverse motion occur at ðμ2 − ω2

c.m.Þ=ω2
z ¼ 0, −1,

and −2.4, respectively. The squares (J1) and circles (J2) are experimentally measured couplings, and the lines are calculated from
Eq. (22) with no free fit parameters. The particular measurements in (a) and (b) correspond to the scaled laser beat-note detuning
ðμ2 − ω2

c.m.Þ=ω2
z ¼ −1.2 indicated by the points highlighted by the rectangle in (c). Adapted from Kim et al., 2009.
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matrix is directly measured using this technique to confirm
the validity of the power-law approximation described in
Eq. (23) for a handful of spins. The technique of applying a
small oscillating term can be generalized to other cases such as
measurement of the critical minimum gap between the ground
and first excited states of the transverse-field Ising model, as
shown in Fig. 7(c).

III. EQUILIBRIUM STUDIES

Finding ground states of a nontrivial Hamiltonian is
important in various disciplines across condensed matter
physics, quantum chemistry, and computer science. In con-
densed matter physics, the rich phenomenon of complex
quantum systems can be understood by finding the ground
states of the corresponding many-body Hamiltonian (Kohn,
1999; Foulkes et al., 2001; Schollwöck, 2005). In quantum
chemistry and molecular physics, the central problem is to
determine the electronic structure and the ground-state energy
of atoms and molecules (Jensen, 1989). In computer science,
the ground state of the complex quantum Hamiltonian can
encode other computational problems such as satisfiability
and optimization (Kolsgaard et al., 2001; Lloyd, 2008; Albash
and Lidar, 2018).
The computational tasks of finding the ground state of

nontrivial Hamiltonians are classically demanding because of
the exponentially increasing Hilbert space of the Hamiltonian.
A quantum simulator is expected to provide a solution beyond
the limitations of classical computation. Recently various
theoretical schemes for the ground-state problem have been
proposed and proof-of-principle experimental demonstrations

FIG. 6. Mean-field benchmarking of Ising couplings in a 2D
crystal of 206(10) ions confined in a Penning trap. The spins are all
initialized in a separable product state slightly tipped from the axis
of a subsequently applied (weak) long-range Ising interaction. The
resulting global spin precession of the ions is measured as a
function of the detuning of the optical dipole force laser beams
from the axial c.m. mode; see Sec. I and Fig. 3(b). Each point is
generated by measuring the mean Ising coupling at a particular
laser beam intensity I. The solid decaying line is the prediction of
mean-field theory that accounts for couplings to all N transverse
modes, with no free parameters. The line’s breadth reflects
experimental uncertainty in the initial tipping angle of the spins.
The mean-field prediction for the average value of the power-law
exponent α from Eq. (23) is indicated by the expanding solid line
(right axis, linear scale). For stronger Ising interactions, the mean-
field approach breaks down. Adapted from Britton et al., 2012.

(a)

(b)

(c)

FIG. 7. (a) All elements of an Ising-coupling matrix measured with a spectroscopic probe in the form of a modulated transverse field.
(b) Measurements of two sets of Ising-coupling matrices demonstrating two different effective interaction ranges across the chain, with the
solid lines the best fits to inverse power-law form expected in Eq. (23). (c) Rescaled populations in the approximate ground state vs a static
transverse-field offset B0 and the modulation frequency of a small additional transverse field. Calculated energy levels based on
measurements of trap and laser parameters are overlaid as thin white lines, and the lowest coupled excited state is overlaid as the thick lowest
line, showing the critical gap near B0=2π ¼ 1.4 kHz. The energy of the ground state is always taken to be zero. From Senko et al., 2014.
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have been performed, including adiabatic preparation
(Friedenauer et al., 2008; Edwards et al., 2010; Kim et al.,
2010, 2011; Islam et al., 2011, 2013; Richerme, Senko,
Korenblit et al., 2013), direct cooling by bath engineering
(Barreiro et al., 2011; Lin et al., 2013), and algorithmic
cooling schemes (Baugh et al., 2005; Xu et al., 2014; Zhang
et al., 2020). In the case of the adiabatic method, it has been
shown to be closely related to adiabatic quantum computation,
which has proven to be equivalent to a universal quantum
computer (Albash and Lidar, 2018).
We focus on the adiabatic preparation of the ground state of

quantum spin models with trapped atomic ion spins, includ-
ing a description of the general scheme of the experimental
procedure and various adiabatic ramping protocols. Following
a discussion of the adiabatic protocol applied to varying
numbers of trapped-ion spins, we consider how this protocol
can be optimized and applied to broader classes of spin
models and discuss the case of a spin-1 system. These
quantum spin models show the essences of the adiabatic
quantum simulation with wide applications. Moreover, these
quantum spin models can describe a large class of many-body
quantum physics in condensed matter such as quantum
magnetism (Moessner and Ramirez, 2006), spin glasses
(Binder and Young, 1986), and spin liquids (Balents,
2010). The solutions of certain spin Hamiltonians are also
connected to many other computational problems, including
optimization problems, when the system is extended to two
dimensions (Albash and Lidar, 2018).

A. Adiabatic ground-state preparation

Adiabatic ground-state preparation is analogous to that of
adiabatic quantum computation (Farhi et al., 2000; Albash
and Lidar, 2018): a quantum system is initialized to the ground
state of a trivial Hamiltonian Htriv. Next the Hamiltonian is
adiabatically deformed into the Hamiltonian of interest Hprob,
whose ground state encodes the solution of a problem that has
been mapped to this final Hamiltonian. The adiabatic evolu-
tion is generated by

HðsÞ ¼ ð1 − sÞHtriv þ sHprob; ð27Þ

where s ¼ sðtÞ is a time-dependent parameter changing
from 0 to 1 during the time interval from t ¼ 0 to t ¼ tf.
In the context of trapped-ion spin models, the trivial spin
Hamiltonian can be an effective magnetic field, as described
by Eq. (3), and the Hamiltonian of interest can be a fully
connected transverse Ising model of Eq. (25). The determi-
nation of ground states of the long-range transverse-field Ising
model cannot always be predicted, even with just a few dozen
spins (Sandvik, 2010).
Although the fidelity of remaining in the ground state of

Eq. (27) can always be improved by evolving more slowly, a
practical upper limit on the transition time is enforced by the
finite coherence time of the chosen experimental platform.
Given a fixed transition time, it is possible to further optimize
the preparation fidelity by adjusting the transition rate based
on the local energy gap to the nearest excited state (Richerme,
Senko, Smith et al., 2013). Such “local adiabatic evolution”
can be used for improved preparation and determination of

many-body ground states in a trapped-ion quantum simulator.
Compared to other adiabatic methods, local adiabatic evolu-
tion (Roland and Cerf, 2002) yields the highest probability of
maintaining the ground state in a system that is made to evolve
from an initial Hamiltonian to the Hamiltonian of interest.
Compared to optimal control methods (Krotov, 1996; Khaneja
et al., 2005), local adiabatic evolution may require knowledge
of only the lowest ∼N eigenstates of the Hamiltonian rather
than all 2N values. These methods have been used in both
linear Paul traps (Richerme, Senko, Smith et al., 2013) and
Penning traps (Safavi-Naini et al., 2018) to demonstrate
optimized ground-state preparation as well as a method to
find the ground-state spin ordering, even when the evolution is
nonadiabatic.
For example, to find the ground state of a fully connected

Ising Hamiltonian in Eq. (25) via an adiabatic protocol, the
spins can be initialized to point along the transverse magnetic
field direction with By ≫ maxðJijÞ. This initial state is, to
good approximation, the instantaneous ground state of the full
equation (25). After initialization, the time-dependent trans-
verse field ByðtÞ can then be ramped adiabatically from
Byðt ¼ 0Þ ¼ B0 to Byðt ¼ tfÞ ¼ 0, ensuring that the system
remains in its instantaneous ground state during its evolution,
as depicted in Fig. 8. At the conclusion of the ramp, the
ground-state spin ordering of the Ising Hamiltonian [the first
term in Eq. (25)] may be either directly read out or used as a
starting point for further experiments.

1. Adiabatic ramp profiles

Figure 9 shows the energy level spectrum for the
Hamiltonian in Eq. (25) for N ¼ 6 spins. Since the
Hamiltonian obeys Z2 symmetry (Sachdev, 2011) (as well
as parity symmetry in the experiments), the ground state jgi is
coupled to only a subset of the excited energy eigenstates. The
first coupled excited state, shown in red in Fig. 9, is the lowest
energy excited state jei for which hejσyjgi ≠ 0. This state
displays a general property seen in most adiabatic quantum
simulations, namely, the existence of a critical gap Δc that is
central to parametrizing the adiabaticity of a given ramp.
Many different ramp profiles allow one to transform from the
initial Hamiltonian to the Ising Hamiltonian, each with
different implications for adiabaticity and ground-state prepa-
ration. Three possibilities are discussed next.
Linear ramps.—For a linear ramp, the time-dependent

transverse field By in Eq. (25) takes the form Blin
y ðtÞ ¼

B0ð1 − t=tfÞ, with a ramp profile shown in Fig. 10(a). To
determine whether or not such a ramp is adiabatic, it can be
compared to the adiabatic criterion (Messiah, 1962)

����
_ByðtÞϵ
Δ2

c

���� ≪ 1; ð28Þ

where _ByðtÞ is the rate at which the transverse field is changed
and ϵ ¼ max½hejdH=dByjgi� is a number of the order of unity
that parametrizes the coupling strength between the ground
state jgi and the first coupled excited state jei. Equation (28)
highlights that fast ramps and small critical gaps can greatly
decrease adiabaticity.
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To satisfy the adiabatic criterion, a linear ramp must
proceed slowly enough that the total time tf ≫ B0=Δ2

c. For
the N ¼ 6 Ising Hamiltonian shown in Fig. 9, B0 ¼ 3.9 kHz
and Δc ¼ 0.29 kHz, giving the adiabaticity requirement
tf ≫ 46 ms. This time is long compared to the typical
coherence time of ion-trap quantum simulation experiments.
It is therefore desirable to seek alternative ways to decrease
BðtÞ more quickly while maintaining adiabaticity.
Exponential ramps.—Decreasing the transverse field expo-

nentially according to Bexp
y ðtÞ ¼ B0 expð−t=τÞ, with tf ¼ 6τ,

can yield a significantly more adiabatic evolution than linear
ramps for the same tf. Figure 9 shows that the instantaneous
gap Δ between the ground and first coupled excited state is
large at the beginning of the ramp and small only when B
approaches 0. Exponential ramps exploit this gap structure by
quickly changing the field at first, then gradually slowing the
rate of change as t → tf. Such ramps have been used to
produce ground states in several of the previously discussed

experiments, such as those given by Kim et al. (2010) and
Islam et al. (2011, 2013).
At the critical point of the Hamiltonian shown in Fig. 9,

j _BexpðtÞj ¼ 0.3B0=tf. The adiabaticity criterion of Eq. (28)
then requires tf ≫ 14.5 ms, a factor of 3 less time than the
requirement found for linear evolution. Note that the adiaba-
ticity gains of exponential ramps can be realized whenever
the critical gap occurs toward the end of the ramp
(Bc=B0 < τ=tf), which is generally the case for the transverse
Ising Hamiltonian of Eq. (25).
Local adiabatic ramps.—Local adiabatic ramps seek to

keep the adiabaticity fixed at all points along the evolution by
adjusting _ByðtÞ based on the instantaneous gap Δ½ByðtÞ� that
varies with the field profile ByðtÞ (Roland and Cerf, 2002;
Quan and Zurek, 2010). If the adiabaticity parameter is
defined as

γ ¼
����Δ½ByðtÞ�2

_ByðtÞ

����; ð29Þ

then a local adiabatic ramp would follow the profile ByðtÞ that
solves the differential Eq. (29) with γ fixed. Adiabaticity then
requires γ ≫ 1.
To solve Eq. (29), it is necessary to know ΔðtÞ everywhere

along the evolution. This requires knowledge of the first
coupled excited state of the N-spin Hamiltonian of Eq. (25),
which is always the first excited state at By ¼ 0 and the
ðN þ 1Þst excited state at large By. Determining the local
adiabatic evolution profile therefore relies on calculation of
only the lowest ∼N eigenvalues, which is much more
computationally approachable than direct diagonalization of
a 2N × 2N matrix (Lanczos, 1950).
For a local adiabatic ramp, the total evolution time tf may

be calculated by integrating Eq. (29). Since _ByðtÞ is negative
throughout the evolution,

tf ¼ γ

Z
B0

0

dB
Δ2ðBÞ ; ð30Þ

FIG. 9. Low-lying energy eigenvalues of Eq. (25) for N ¼ 6,
with the ground-state energy Eg set to 0, B0 ¼ 5Jmax, and the
long-range Jij couplings determined from experimental con-
ditions (see the text). The bold line indicates the first coupled
excited state, the minimum of which determines the critical
field Bc and the critical gap Δc. From Richerme, Senko, Smith
et al., 2013.

FIG. 8. After preparing the spins in the ground state of a y-polarized field By, the spins evolve subject to a long-range transverse Ising
model described by Eq. (25), with the condition Byðt ¼ 0Þ ≫ Jij. During the evolution, the strength of the field (upper decaying curve)
is reduced to zero or an intermediate value compared to the Ising couplings (lower constant curve). Finally, the spins are measured along
any axis of the Bloch sphere. [In much of the work reported later, the measurements are taken to be along the Ising-coupling (x) direction
of the Bloch sphere for each ion.] If the evolution were adiabatic, the resulting state should have remained in the ground state of the
Hamiltonian throughout. Adapted from Islam et al., 2011.

C. Monroe et al.: Programmable quantum simulations of spin systems …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025001-15



which shows a linear relationship between the total time tf
and the adiabaticity parameter γ. Satisfying the adiabaticity
condition γ ≫ 1 for the Hamiltonian in Fig. 9 implies
tf ≫ 3.6 ms, a factor of 4 and 12 less time than exponential
and linear ramps, respectively. The fact that local adiabatic
evolution can lead to faster ramps while satisfying adiabaticity
was well explored by Roland and Cerf (2002), who showed
that local adiabatic ramps could recover the quadratic speedup
of Grover’s quantum search algorithm (Nielsen and Chuang,
2000). In contrast, it was found that linear ramps offer
no improvement over classical search algorithms (Farhi et al.,
2000).
Figure 10(a) compares linear, exponential, and local adia-

batic ramp profiles for the Hamiltonian shown in Fig. 9. The
local adiabatic ramp spends much of its time evolution in the
vicinity of the critical point, since the transverse field changes
slowly on account of the small instantaneous gap. This is
further illustrated in Fig. 10(b), which shows that at the critical
point the slope of the local adiabatic ramp is minimized and
smaller than slopes of the exponential or linear ramps. As a
result, the inverse adiabaticity 1=γ peaks near the critical point
for exponential and linear ramps, greatly increasing the
probability of nonadiabatic transitions away from the ground
state; see Fig. 10(c). By design, the local adiabatic ramp
maintains constant adiabaticity for all values of B and does not
suffer from large nonadiabaticities near Bc.

2. General adiabatic simulation issues

To determine the effects of a chosen adiabatic ramp
protocol, the probability of creating the ground state can be
measured following any chosen ramp profile of identical
times. Richerme, Senko, Smith et al. (2013) used N ¼ 6

ions and chose the trap voltages and the laser detuning μ to
give AFM spin-spin interactions of the form Jij ≈
ð0.77 kHzÞ=ji − jj. These long-range AFM interactions lead
to a fully connected, frustrated system, as all couplings cannot
be simultaneously satisfied. Nevertheless, the ground state of
this system reduces to an equal superposition of the two Néel-
ordered AFM states ðj↓↑↓↑↓↑i þ j↑↓↑↓↑↓iÞ= ffiffiffi

2
p

.
The data in Fig. 11 show how the AFM ground-state

probability grows during a single 2.4 ms linear, exponential,

or local adiabatic ramp. Each data point is the result of 4000
repetitions of the same experiment, with error bars that
account for statistical uncertainty as well as estimated drifts
in the Ising-coupling strengths. In agreement with the pre-
vious arguments, the data show that local adiabatic ramps
prepare the ground state with higher fidelity than exponential
or linear ramps. The ground-state population grows quickly
under local adiabatic evolution since the transverse field BðtÞ
is reduced quickly at first. In contrast, the linear ramp does not
approach the paramagnetic-to-AFM phase transition until
∼2 ms, and the AFM probability is suppressed until this time.
The solid lines in Fig. 11 plot the theoretical prediction of

the ground-state probability with no free parameters. In each
case, the Schrödinger equation is numerically integrated
using Hamiltonian (25), the desired BðtÞ, and the initial state
jψð0Þi ¼ j↓↓↓…iy. At the end of the ramp, the overlap
between the final state jψðtfÞi and the AFM ground state

ðj↓↑↓…i þ j↑↓↑…iÞ= ffiffiffi
2

p
is calculated to extract the prob-

ability of the ground-state spin configuration. Effects of
decoherence-induced decay in the ground-state probability
are included by multiplying the calculated probability at time t

(a) (b) (c)

FIG. 10. (a) Local adiabatic ramp profile calculated for the energy levels in Fig. 9, along with a linear ramp and an exponential ramp
with decay constant τ ¼ tf=6. (b) The slope of the local adiabatic (LA) ramp is minimized at the critical field value Bc, and is smaller
than the slopes of the exponential and linear ramps at the critical point. (c) The inverse of the adiabaticity parameter γ (see the text) is
peaked near the critical point for exponential and linear ramps but constant for the local adiabatic profile. Adapted from Richerme,
Senko, Smith et al., 2013.

FIG. 11. Probability of preparing the AFM ground state for
various times during tf ¼ 2.4 ms simulations with three differ-
ent ramp profiles. The linear ramp takes ∼2.3 ms to reach the
critical point, while the local adiabatic and exponential ramps
need only 1.2 ms. Locally adiabatic ramps yield the highest
preparation fidelity at all times. Adapted from Richerme,
Senko, Smith et al., 2013.
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by expð−t=tdÞ, where td is the measured 1=e coherence time
of the spin-spin interactions. The key to all adiabatic protocols
is that the ramp rate must remain slow when compared to the
critical energy gap, as shown in Eq. (28). However, determin-
ing the scaling of the critical gap with system size is itself a
difficult problem in the general case (Albash and Lidar, 2018).
For simple problems, such as the ground state of a Lipkin-
Meshkov-Glick model, the gap is known to shrink only
polynomially for large N (Caneva, Fazio, and Santoro,
2008). For more complex problems, such as those in the
NP-complexity class, the gap may close exponentially
quickly with increasing system size (Das and Chakrabarti,
2008; Morita and Nishimori, 2008). In these cases, or in cases
for which the gap scaling is unknown, experimental imple-
mentations require exponentially longer ramp times to ensure
that adiabaticity is maintained as the problem size grows.
One obvious question is whether quantum adiabatic pro-

tocols are useful for solving complex computation or quantum
many-body type problems. There are some reasons to be
hopeful. For certain problems, such as the Grover search
algorithm, the use of local adiabatic ramp profiles has been
shown to provide the same quadratic quantum advantage as
found in the circuit model (Roland and Cerf, 2002). For other
problems, such as finding the ground state of a transverse-field
Ising model, adiabatic quantum protocols can provide a
polynomial speedup over simulated annealing (Kadowaki
and Nishimori, 1998). Although exponential speedups are
more elusive, finding such examples is nevertheless an active
area of research.
While adiabatic simulation protocol allows for the prepa-

ration of the ground state of nontrivial spin models, main-
taining the adiabatic condition [Eq. (28)] for a large system
within the constraint of an experimentally realistic coherence
time will be challenging. Alternate protocols have been
explored to bypass the strict requirements of adiabaticity
while achieving high ground-state probability. For example, a
“bang-bang” control of the Hamiltonian has been suggested
(Viola and Lloyd, 1998; Balasubramanian et al., 2018) where
the initial trivial Hamiltonian can be quenched to an

intermediate Hamiltonian, followed by a final quench to
the problem Hamiltonian. In another approach, a classical-
quantum hybrid protocol [the quantum approximate optimi-
zation algorithm (QAOA) (Farhi, Goldstone, and Gutmann,
2014)] theoretically enables an ultrafast creation of ground
states (Ho, Jonay, and Hsieh, 2019). Implementations of this
method are discussed in detail in Sec. V.B.2. Here we restrict
our discussions to adiabatic simulation protocols.

B. Experimental progress in adiabatic quantum simulation

1. Transverse Ising model with a small number of spins

The adiabatic preparation of the ground state for the
transverse Ising model was first demonstrated with two
trapped-ion spins, as shown in Fig. 12 (Friedenauer et al.,
2008; Schneider, Porras, and Schaetz, 2012), followed by
experiments with three spins (Kim et al., 2009, 2010, 2011;
Edwards et al., 2010; Khromova et al., 2012). These entry
experiments demonstrated the adiabatic evolution from para-
magnetic initial state to magnetically ordered ground state and
allowed tests of adiabaticity (Edwards et al., 2010) and direct
measures of entanglement in the ground state (Kim et al.,
2010, 2011). The three-spin system, moreover, supports spin
frustration, or a competition between the nearest and next-
nearest couplings in the case of AFM ground states. By tuning
the system to have either FM or AFM ground states, two
different types of magnetic order were indeed measured,
paralleling the two different classes of entanglement known
to exist with exactly three spins (Acín et al., 2001).
For the case of three Ising spins, the transverse Ising

Hamiltonian (25) is reduced to

H3 ¼ J1
�
σð1Þx σð2Þx þ σð2Þx σð3Þx

	
þ J2σ

ð3Þ
x σð1Þx

þ ByðtÞ
�
σð1Þy þ σð2Þy þ σð3Þy

	
; ð31Þ

where the transverse field and the Ising interaction are
chosen to act along the y axis and x axis, respectively. This is
the simplest Hamiltonian that can exhibit frustration in the

FIG. 12. (a) Observed adiabatic evolution of two trapped-ion spins from a paramagnetic state to a ferromagnetic (FM) state. (b) The
observed parity oscillation signal of the resulting FM state upon a subsequent rotation of both spins reveals the amount of entanglement
in the ground state. From Friedenauer et al., 2008.
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ground state due to a compromise between the various
Ising couplings.
As seen in Eq. (22), the sign and the strength of the Ising

couplings Jij can be controlled by the proper choice of the
driving field detuning δm from the motional modes. For three
spins, the expected and measured nearest-neighbor (NN)
interactions J1 ≡ J1;2 ¼ J2;3 and the next-nearest-neighbor
(NNN) interaction J2 ≡ J1;3 are shown in Fig. 5. For certain
ranges of the drive field detuning, both NN and NNN
couplings have AFM interactions (J1; J2 > 0), and for other
domains both show FM interactions (J1; J2 < 0).
Figure 13(a) shows the time evolution for the Hamiltonian

frustrated with nearly uniform AFM couplings and gives
almost equal probabilities for the six AFM states j↓↓↑i,
j↑↓↓i, j↓↑↑i, j↑↑↓i, j↓↑↓i, and j↑↓↑i (labeled in the x

basis of the Bloch sphere and accounting for 3=4 of all
possible spin states) at By ≈ 0. Because J2 < 0.8J1 for these
data, a population imbalance also develops between symmet-
ric (j↓↑↓i and j↑↓↑i) and asymmetric (j↓↓↑i, j↑↓↓i, j↓↑↑i,
and j↑↑↓i) AFM states. Figure 13(b) shows the evolution to
the two ferromagnetic states (j↓↓↓i and j↑↑↑i) as By → 0,
where all interactions are FM.
The adiabatic evolution of the ground state of Hamiltonian

(31) from By ≫ Jrms to By ≪ Jrms should result in an equal
superposition of all ground states and therefore be entangled.
For instance, for the isotropic AFM case, the ground state is
expected to be j↓↓↑i þ j↑↓↓i þ j↓↑↑i − j↑↑↓i − j↓↑↓i −
j↑↓↑i. For the FM case, the ground state is a Greenberger-
Horne-Zeilinger (GHZ) state j↓↓↓i − j↑↑↑i. The entangle-
ment in the system at each point in the adiabatic

(a) (b)

(c) (d)

FIG. 13. Evolution of each of the eight spin states, measured with a CCD camera, plotted as By=Jrms is ramped down in time. The
dotted lines correspond to the populations in the exact ground state and the solid lines represent the theoretical evolution expected from
the actual ramp. (a) All interactions are AFM. The FM-ordered states vanish and the six AFM states are all populated as By → 0.
Because J2 ≈ 0.8J1, a population imbalance also develops between symmetric and asymmetric AFM. (b) All interactions are FM, with
evolution to the two ferromagnetic states as By → 0. (c) Entanglement generation for the case of an all AFM interaction, where the
symmetric W-state witness WW is used. The entanglement emerges for By=Jrms < 1.1. (d) Entanglement generation for the all FM
interactions, where the GHZ witness WGHZ is used. The entanglement occurs when jByj=Jrms < 1. In both (c) and (d) the error bars
represent the spread of the measured expectation values for the witness, likely originating from the fluctuations of experimental
conditions. The solid black lines are theoretical witness values for the exact expected ground states, and the black dashed lines describe
theoretically expected values at the actual ramps of the transverse field By. The blue (gray) lines reveal the oscillation and suppression of
the entanglement due to the remaining spin-motion couplings, showing better agreement with the experimental results. Adapted from
Kim et al., 2011.
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evolution can be characterized by measuring particular
entanglement witness operators (Gühne and Tóth, 2009).
When the expectation value of such an operator is negative,
this indicates entanglement of a particular type defined by the
witness operator. For the AFM frustrated case shown in
Fig. 13(c), the expectation of the symmetric W-state witness
WW ¼ ð4þ ffiffiffi

5
p ÞÎ − 2ðĴ 2

x þ Ĵ 2
yÞ is measured (Gühne and

Tóth, 2009). For the FM case shown in Fig. 13(d), the

expectation of the symmetric GHZ witness operator WGHZ ¼
9Î=4 − Ĵ 2

x − σð1Þy σð2Þy σð3Þy (Sackett et al., 2000; Gühne and
Tóth, 2009) is measured, where Î is the identity operator and

Ĵ i ≡ ð1=2Þðσð1Þl þ σð2Þl þ σð3Þl Þ is proportional to the lth
projection of the total effective angular momentum of the
three spins. In both cases, as shown in Figs. 13(c) and 13(d),
entanglement of the corresponding form is observed during
the adiabatic evolution.

2. Onset of quantum many-body effects
with increasing system size

The ground state in the transverse-field Ising model
[Eq. (25)] undergoes a crossover between polarized or para-
magnetic and magnetically ordered spin states, as the relative
strengths of the transverse field By and the Ising interactions
Jij are varied. For jBy=Jijj ≫ 1, the ground state has the
spins independently polarized (paramagnetic phase). For
jBy=Jijj ≪ 1, the ground state is magnetically ordered for
jBy=Jijj ≪ 1, with ferromagnetic order for Jij < 0 in Eq. (25).
A second-order quantum phase transition is predicted for this
model in the thermodynamic limit (Sachdev, 2011) when the
magnitude of the transverse field is comparable to the
interaction strength. The presence or absence of a spin order
can be quantified by adopting a suitable order parameter. For
example, the average absolute magnetization per site along the
Ising direction

mx ¼
1

N

XN
s¼0

jN − 2sjPðsÞ ð32Þ

differentiates between a ferromagnetic state and para-
magnetic state. Here PðsÞ is the probability of finding s spins
in the j↑i state (s ¼ 0; 1; 2;…; N) along x. To remove a
finite size effect due to the difference between binomial
and Gaussian distributions, a scaled order parameter m̄x ¼
ðm0

x;N −mxÞ=ðm0
x;N − 1Þ can be adopted. Here m0

x;N ¼
ð1=N2NÞPN

s¼0ðNsÞjN − 2sj is the average absolute magneti-
zation of the paramagnetic state. This scaled order parameter
assumes a value of m̄x ¼ 1 in the ideal ferromagnetic state,
and a value of m̄x ≈ 0 in the paramagnetic state. A finite
system does not support a phase transition but shows a smooth
crossover from the paramagnetic to the spin-ordered phases
that becomes sharper as the system size is increased. Higher-
order moments of the distribution of measured spins may be
more suitable to extract the phase transition point from
experiments performed on finite system sizes. For instance,
the fourth magnetization moment is known as the Binder
cumulant

g ¼
P

N
s¼0ðN − 2sÞ4PðsÞ

½PN
s¼0ðN − 2sÞ2PðsÞ2�2 : ð33Þ

The Binder cumulant can also be scaled to remove the finite
size effect, as before, by defining ḡ ¼ ðg0N − gÞ=ðg0N − 1Þ,
where g0N ¼ 3 − 2=N is the Binder cumulant for the para-
magnetic phase.
Figure 14 shows measurements of the mean magnetization

and Binder cumulant in a transverse Ising system ranging
from N ¼ 2 to N ¼ 9 atomic ion spins (Islam et al., 2011).
The observed sharpening of the crossover from paramagnetic-
to-ferromagnetic spin order with system size (Fig. 14) is
consistent with an onset of the quantum phase transition. In
Fig. 14(a), theoretical values of both order parameters are
shown for up to N ¼ 100 spins in an all-to-all coupled
ferromagnetic transverse Ising model, with measurements
and comparison to theory given in Figs. 14(b)–14(d). Both
metrics have been scaled to take into account finite size effects
(Islam et al., 2011). Ferromagnetic spin order was also
observed in adiabatic quantum simulation experiments with
up to N ¼ 16 ions by directly measuring a bimodal distribu-
tion of magnetization (Islam et al., 2013).
AFM ground states of the transverse-field Ising model

[Eq. (25) with Jij > 0] are more difficult to prepare because
the long-range AFM interactions lead to competing pairwise
spin order, or frustration, as detailed with N ¼ 3 spins (Kim
et al., 2010) in Sec. III.B.1. Intuitively, the longer the range of
AFM interactions, the less energy it takes to create spin-flip
excitations. Thus the critical field required to destroy the AFM
spin order is less than that with a relatively short-range
interaction. The “critical gap” in the many-body energy
spectra also decreases with increasing range of the AFM
couplings (Fig. 15). The reduction of the critical gap with
increased range of interaction was experimentally probed in a
quantum simulation of the transverse-field Ising model
[Eq. (25)] with the interaction profile following an approxi-
mate AFM power law [Eq. (23)] for N ¼ 10 spins (Islam
et al., 2013). The ratio of the transverse field to the Ising
couplings was varied quasiadiabatically from a high trans-
verse field to a final value of B=J0 ¼ 0.01. As the interaction
range was increased and the critical gap closed, more
excitations were created, resulting in a reduction in the
ground-state order. This was observed through a decrease
in the measured structure function

SðkÞ ¼ 1

N − 1

����
XN−1

r¼1

CðrÞeikr
����; ð34Þ

where the average correlation of spins along the Ising
direction x and separated by r sites is

CðrÞ ¼ 1

N − r

XN−r

m¼1

�
hσðmÞ

x σðmþrÞ
x i − hσðmÞ

x ihσðmþrÞ
x i

	
: ð35Þ

The measured structure function for N ¼ 10 spins [Fig. 15(a)]
shows a decline at k ¼ π as the interaction range is made
longer, thus quantifying the degradations of nearest-neighbor
antiferromagnetic spin order as the ground-state gap shrinks.
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FIG. 15. (a) Structure function SðkÞ for various ranges of AFM interactions, for B=J0 ¼ 0.01 in a system of N ¼ 10 spins. The
increased level of frustration for the longer-range interactions reduces the observed antiferromagnetic spin order. The detection errors
may be larger than shown here for the longest range of interactions, owing to spatial cross talk from their closer spacing. (b) Distribution
of observed states in the spin system, sorted according to their energy Ei (with E0 denoting the ground-state energy) calculated exactly
from Eq. (25) with B ¼ 0. Data are presented for two ranges (red for α ¼ 1.05 and blue for α ¼ 0.76). The dashed lines indicate the
cumulative energy distribution functions for these two ranges. Adapted from Islam et al., 2013.

FIG. 14. Paramagnetic-to-ferromagnetic crossover in a small collection of trapped-ion spins. (a) Theoretical values of order parameters
vs ratio of transverse field to average Ising coupling B=jJj for N ¼ 2 and 9 spins with nonuniform Ising couplings following the
experiment given by Islam et al. (2011) and assuming perfect adiabatic time evolution. The order parameters, the Binder cumulant, and
the magnetization are calculated by directly diagonalizing the relevant Hamiltonian [Eq. (25)]. Order parameters are also calculated for a
moderately large system (N ¼ 100) with uniform Ising couplings to show the difference between these order parameters. (b) Measured
magnetization vs B=jJj (and simulation time) plotted for N ¼ 2 − 9 spins, and scaled to the number of spins. As B=jJj is lowered, the
spins undergo a crossover from a paramagnetic to a ferromagnetic phase. The crossover curves sharpen as the system size is increased
from N ¼ 2 to 9, prefacing a phase transition in the limit of infinite system size. The oscillations in the data arise from the imperfect
initial state preparation and nonadiabaticity due to finite ramping time. Measured (c) magnetization and (d) Binder cumulant vs B=jJj for
N ¼ 2 (circles) and 9 spins (diamonds) with representative detection error bars. The data deviate from unity at B=jJj ¼ 0 owing to
decoherence driven by the Raman transitions creating the Ising couplings. The theoretical curves (solid line for N ¼ 2 and dashed line
for N ¼ 9 spins) are calculated by averaging over 10 000 quantum trajectories. From Islam et al., 2011.
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3. Ground-state identification

The ground-state spin ordering may still be determined
experimentally even when the ramp is nonadiabatic. The key
to ground-state identification is to examine the probability
distribution of all spin configurations at the conclusion of the
ramp and select the most prevalent state in the final eigenbasis.
Consider an experiment where the spins are initialized into
j↓↓↓…iy (as usual) and the transverse field BðtÞ is instantly
switched from B ¼ B0 to B ¼ 0. Measurement along the x
direction would yield an equal superposition of all spin states;
in this instance, the ground state is just as probable as any
other state. If the transverse field BðtÞ is instead ramped at a
fast but finite rate, the quantum simulation is slightly more
adiabatic than the instantaneous case, and the ground state
becomes slightly more prevalent than any other state. When
BðtÞ is ramped slowly enough, the ground-state population is
nearly 100% and dominates over that of any other state.
A close analogy may be drawn with a Landau-Zener

process (Zener, 1932) in a two-level system composed of
the ground and first coupled excited states. Adiabatic ramps
correspond to half of a Landau-Zener process, in which BðtÞ
starts with B ≫ J and ends at B ¼ 0. One can write an
analytic expression to calculate the transition probability for
this half-Landau-Zener evolution (Damski and Zurek, 2006),
which has a maximum value of 0.5 for an instantaneous ramp.
Any fast but finite ramp will give a transition probability
< 0.5, so the ground state will always be more prevalent than
the excited state.
The technique of identifying the most prevalent state as

the ground state is subject to some limitations. First, the
initial state (before the ramp) should be a uniform super-
position of all spin states in the measurement basis, a
condition satisfied by preparing the state j↓↓↓…iy and
measuring along x̂. If some spin states are more prevalent
than the ground state initially, then some nonzero ramp time
will be necessary before the ground-state probabilities
“catch up” and surpass these initially prevalent states.
Second, the ramp must not cross any first-order transitions
between ordered phases, as nonadiabatic ramps may not
allow sufficient evolution time toward the new ground-state
order. In addition, the initial and final states must share the
same symmetry properties.
Finally, a good determination of the ground state requires

that the difference between the measured ground-state prob-
ability Pg and the next excited state probability Pe be large
relative to the experimental uncertainty, which is fundamen-
tally limited by quantum projection noise ∼1=

ffiffiffi
n

p
after n

repetitions of the experiment (Itano et al., 1993). This implies
that the most prevalent ground state can be determined reliably
after repeating the measurement n > ðP2

g þ P2
eÞ=ðPg − PeÞ2

times. Assuming an exponential distribution of populated
states during the ramp (as may be expected from Landau-
Zener-like transitions), the number of required runs should
then scale as n ∼ ðĒ=ΔÞ2 in the limit Ē ≫ Δ, where Ē is the
mean energy imparted to the spins during the ramp and Δ is
the energy splitting between the ground and first coupled
excited state.
If the gap shrinks exponentially with the number of spins N

(i.e., Δ ∼ e−N), ground-state identification thus requires an

exponential number of measurements n in the simulation.
However, in cases where the gap shrinks like a power law
(Δ ∼ N−α), the most prevalent state can be ascertained in a
time that scales polynomially with the number of spins.
Regardless of the scaling, techniques that improve the
ground-state probability (such as local adiabatic evolution)
can greatly increase the contrast of the most prevalent state
and reduce the number of necessary repetitions.
Figure 16 shows a direct identification of the ground-state

AFM order of N ¼ 14 trapped-ion spins by imaging the
most prevalent state created after a ramp. Each box in
Fig. 16(a) contains an ion that scatters many photons when
in the state j↑i and essentially no photons when in the
state j↓i.
Figure 16(b) demonstrates the resiliency of the most

prevalent state selection to ramps that are far from adiabatic.
Identification of the ground state is clear, even though the total
ground-state probability is only ∼3%. The requirement to
satisfy the adiabatic criterion is replaced only by the require-
ment that the most prevalent state probabilities are accurately
resolvable compared to those of any other state. While the
method should remain robust for even larger N, ramps that are
more adiabatic (by using longer ramp times or stronger spin-
spin couplings) will decrease the number of experimental
repetitions needed to resolve the state probabilities.

4. Classical Ising model

Adiabatic protocols can also be used to create the ground
states of a classical spin model, catalyzed by quantum
fluctuations. Consider the following system described by
the transverse Ising model of Eq. (25) accompanied by a
longitudinal field Bx:
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FIG. 16. (a) Fluorescence images of both AFM ground states
prepared for N ¼ 14 trapped-ion spins, with bright ¼ j↑i and
dark ¼ j↓i along the x direction of the Bloch sphere of each spin.
(b) State probabilities of all 214 ¼ 16 384 spin configurations
for a 14-ion system following a local adiabatic ramp, ordered
by binary index of the states (i.e., j↓↓…↓i ¼ 0 and
j↑↑…↑i ¼ 16 383). The Néel-ordered ground states 5461 and
10 922 are unambiguously the most prevalent, despite a total
probability of only 3%. From Richerme, Senko, Smith et al.,
2013.

C. Monroe et al.: Programmable quantum simulations of spin systems …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025001-21



H ¼
X
i<j

Jijσixσ
j
x þ Bx

X
i

σix þ ByðtÞ
X
i

σiy . ð36Þ

When the transverse field By is set equal to 0 and the
longitudinal field Bx is varied, this Hamiltonian exhibits
many distinct ground-state phases separated by first-order
classical phase transitions. Yet even for just a few spins the
various ground states at different Bx are classically inacces-
sible in a physical system at or near zero temperature due to
the absence of thermal fluctuations to drive the phase
transitions (Sachdev, 2011). Quantum fluctuations are there-
fore required to reach these various ground states in a physical
system.
Such quantum fluctuations can be introduced to the system

by applying a transverse magnetic field, which does not
commute with the longitudinal-field Ising Hamiltonian. Using
N ¼ 6 or 10 spins, this technique has been used to exper-
imentally identify the locations of the multiple classical phase
transitions and to preferentially populate each of the classical
ground states that arise for varying strengths of the longi-
tudinal field (Richerme, Senko, Korenblit et al., 2013). The
ground-state spin ordering reveals a Wigner-crystal spin
structure (Wigner, 1934) that maps to particular energy
minimization problems (Katayama and Narihisa, 2001) and
shows the first steps of the complete “devil’s staircase” (Bak
and Bruinsma, 1982) expected to emerge in the N → ∞ limit.
Figure 17(a) shows the energy eigenvalues of the

Hamiltonian given in Eq. (36) with By ¼ 0 for a system of

six spins. The ground state passes through three level cross-
ings as Bx is increased from 0, indicating three classical first-
order phase transitions separating four distinct spin phases.
For each Bx, there is a critical point at some finite By

characterized by a critical gap Δc [inset of Fig. 17(b)].
When Bx is near a classical phase transition, the near energy
degeneracy of spin orderings shrinks the critical gap, as shown
in Fig. 17(b).
Long-range interactions give rise to many more ground-

state spin phases than does a local Ising model. Consider
an N-spin nearest-neighbor AFM model (Ising coupling J)
and a ground-state ordering j…↓↑↓↑↓↑…i. An excited state
at longitudinal field Bx ¼ 0 may have an additional spin
polarized along j↓i, by making either a kink of type
j…↓↑↓↓↑↓…i or a spin defect of type j…↓↑↓↓↓↑…i.
The interaction energy gain of making n kinks is 2nJ, while
the field energy loss is 2nBx. At Bx=J ¼ 1, multiple energy
levels intersect to give a first-order phase transition. Similarly,
the energy gain of making n spin defects is 4nJ and the loss is
2nBx, so a second phase transition occurs at Bx=J ¼ 2. Only
three different ground-state spin phases are observable as Bx is
varied from 0 → ∞, independent of N, and there is a large
degeneracy of spin eigenstates at the phase transitions. The
presence of long-range interactions lifts this degeneracy and
admits ½N=2� þ 1 distinct spin phases with f0; 1;…; ½N=2�g
spins in state j↑i, where ½N=2� is the integer part of N=2.
To create the various spin phases, the experiment of

Richerme, Senko, Korenblit et al. (2013) begins by optically
pumping the effective spins to the state j↓↓↓…iz. The spins
are then coherently rotated into the equatorial plane of the
Bloch sphere so that they point along B⃗ ¼ Bxx̂þ Byð0Þŷ, with
Bx varied between different simulations. The Hamiltonian of
Eq. (36) is then switched on at t ¼ 0 with the chosen value of
Bx and Byð0Þ ¼ 5Jmax. The transverse field (which provides
the quantum fluctuations) is ramped down to By ≈ 0 expo-
nentially with a time constant of 600 μs and a total time of
3 ms, which sacrifices adiabaticity in order to avoid
decoherence effects. At t ¼ 3 ms, the Hamiltonian is switched
off and the x component of each spin is measured by applying
a global π=2 rotation about the ŷ axis, illuminating the ions
with resonant light, and imaging the spin-dependent fluores-
cence using an intensified CCD camera. Experiments are
repeated 4000 times to determine the probability of each
possible spin configuration.
The order parameter of net magnetization along x, Mx ¼

N↑x
− N↓x

, can then be investigated as a function of longi-
tudinal-field strength. The magnetization of the ground-state
spin ordering of Eq. (36) is expected to yield a staircase with
sharp steps at the phase transitions [the red line in Fig. 18(a)]
when By ¼ 0 (Bak and Bruinsma, 1982). The experimental
data [the blue points in Fig. 18(a)] show an averaged
magnetization with heavily broadened steps due largely to
the nonadiabatic exponential ramp of the transverse field. The
deviation from sharp staircaselike behavior is predicted by
numerical simulations [the solid blue line in Fig. 18(a)], which
account for the implemented experimental parameters and
ramp profiles. Differences between theory and experiment are
largest near the phase transitions, where excitations are easier
to make due to the shrinking critical gap [Fig. 17(b)].

(a)

(b)

FIG. 17. (a) Low-lying energy eigenvalues of Eq. (36) for
By ¼ 0 for N ¼ 6 spins, with the long-range Jij couplings
determined from experimental conditions (see the text). Inset:
level crossings indicate the presence of first-order phase tran-
sitions in the ground state. (b) The critical gap Δc shrinks to zero
at the three phase transitions (vertical dashed lines). Inset: low-
lying energy levels of Eq. (36) with Bx ¼ 0. From Richerme,
Senko, Korenblit et al., 2013.
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The ground-state spin configuration at each value of Bx can
be extracted by looking at the probability distribution of
all spin states and selecting the most prevalent state [inset
of Fig. 18(a)] (Richerme, Senko, Smith et al., 2013). The
magnetization of the spin states found by this method [the
black points in Fig. 18(a)] recover the predicted staircase
structure. The steps in the experimental curve agree with the
calculated phase transition locations to within experimental
error [the gray bands in Fig. 18(a)], which accounts for the
statistical uncertainty due to quantum projection noise and
estimated drifts in the strengths of Jij, Bx, and By.
Figure 18(b) shows approximately 1000 averaged camera

images of the most probable spin configuration observed at
each plateau in Fig. 18(a). Each box contains an ion that scatters
many photons when in the state j↑i and essentially no photons
when in the state j↓i along the x axis of the Bloch sphere. The
observed spin orderings in Fig. 18(b) match the calculated
ground states at each magnetization, validating the technique of
using quantum fluctuations to preferentially create these clas-
sically inaccessible ground states. (For magnetizations Mx ¼ 0
and Mx ¼ −4, two ground-state orderings are observed due to
the left-right symmetry of the spin-spin interactions.)
To further illustrate the necessity of using quantum fluc-

tuations to catalyze the magnetic phase transitions, alternate
ramp trajectories can be used to reach a final chosen value
of Bx. Figure 19(a) shows the ground-state phase diagram of
the Hamiltonian in Eq. (36), with the sharp classical phase
transitions visible along the bottom axis (By=Jmax ¼ 0). In
addition, it shows two possible trajectories through the phase
diagram that start in a paramagnetic ground state (which is
easy to prepare experimentally) and end at the same value of
Bx with By ¼ 0.
The first trajectory, in which Bx is fixed and By is ramped

from 5Jmax to 0, was the one used in Fig. 18 to experimentally
verify the locations of the three classical phase transitions and
to experimentally create the four different ground-state

phases. Along this trajectory, Fig. 19(b) plots the probability
of creating each ground state as a function of Bx and finds
populations of ∼40%–80%. A smooth crossover between the
four ground-state phases was observed, with the classical
phase transitions occurring at the crossing points. This arises
since distinct spin eigenstates have degenerate energies at the
phase transition, causing the critical gap between them to
close and allowing quantum fluctuations to populate both
states equally; see Fig. 17.
The second trajectory in Fig. 19(a) is purely classical, with

By set to 0. The spins are initialized into the state j↓↓↓↓↓↓i
along x, and Bx is ramped from 5Jmax to its final value at a
rate of 5Jmax=3 ms. Figure 19(c) shows that, in a classical
system without thermal or quantum fluctuations, the phase
transitions remain undriven and the initial state j↓↓↓↓↓↓i
remains dominant for all values of Bx. The ground-state
phases with magnetizations 0 and −2 [blue and green in
Fig. 19(c)] are separated from the initial state by several
classical phase transitions and have essentially zero proba-
bility of being created.

5. Spin-1 simulations

As with the previously described spin-1=2 systems, spin-1
systems (spanned by the three basis kets jþi, j0i, and j−i) can
likewise exhibit a variety of interesting new physics and
ground-state phases. As a notable example, Haldane (1983)
conjectured that integer-spin Heisenberg chains with nearest-
neighbor AFM interactions are gapped, in contrast to gapless
half-integer spin chains. This energy gap in integer-spin
systems corresponds to short-range exponentially decaying
correlation functions, as opposed to long-range power-law
decaying correlations in half-integer systems. It was later
suggested (den Nijs and Rommelse, 1989) that this Haldane
phase of the spin-1 chain is governed by a hidden order that
can be characterized by a nonlocal string order parameter and

(a)

(b)

FIG. 18. (a) Magnetization (Mx ¼ N↑ − N↓) of six ions for increasing axial field strength. Solid staircase line, magnetization of the
calculated ground state, with the step locations indicating the first-order phase transitions; diamond points, average magnetization of
4000 experiments for various Bx; solid smooth line, magnetization calculated by numerical simulation using experimental parameters;
black dashed line, magnetization of the most probable state (see inset) found at each Bx value. Gray bands indicate the experimental
uncertainty in Bx=Jmax at each observed phase transition. (b) Fluorescence images of the six ions with bright¼ j↑i and dark ¼ j↓i along
the x direction of the Bloch sphere of each spin, showing the ground states found at each step in (a): j↓↑↓↑↓↑i and j↑↓↑↓↑↓i
(Mx ¼ 0), j↓↑↓↓↑↓i (Mx ¼ −2), j↓↓↑↓↓↓i and j↓↓↓↑↓↓i (Mx ¼ −4), and j↓↓↓↓↓↓i (Mx ¼ −6). Adapted from Richerme, Senko,
Korenblit et al., 2013.
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is consistent with a full breaking of a hidden Z2 × Z2

symmetry (Kennedy and Tasaki, 1992). The Haldane phase
can also be described by a doubly degenerate entanglement
spectrum (Pollmann et al., 2010), hinting at a topologically
protected phase in one dimension. Effective spin-1 particles
can be represented by three hyperfine levels in the 2S1=2
ground manifold of 171Ybþ ions: jþi≡ jF ¼ 1; mF ¼ 1i,
j−i≡ jF ¼ 1; mF ¼ −1i, and j0i≡ jF ¼ 0; mF ¼ 0i. The
j0i and j�i states are separated by frequencies ω�, as shown
in Fig. 20. Here jþi, j−i, and j0i are the eigenstates of Sz with
eigenvalues þ1;−1, and 0, respectively; F and mF are
quantum numbers associated with the total angular momen-
tum of the atom and its projection along the quantization axis,
defined by a magnetic field of ∼5 G. Spin-1 Ising couplings
can be generated analogously to the spin-1=2 case detailed in
Sec. I. Laser beams are applied to the ion chain with a wave
vector difference along a principal axis of transverse motion,
but here driving stimulated Raman transitions between both
the j0i and j−i states and the j0i and jþi states with balanced
Rabi frequencies Ωi on ion i (Kim et al., 2009). To generate
spin-1 XY interactions, two beat frequencies are applied at
ω− þ μ and ωþ − μ to these respective transitions, where
μ − ωm ¼ δm is the detuning from the transverse motional
mode m sideband, as shown in Fig. 20. Under the approx-
imations that the beat notes are far detuned (jδmj ≫ ηi;mΩi)
and that ω� ≫ μ ≫ Ωi (the rotating-wave approximation), the
resulting interaction Hamiltonian in the Lamb-Dicke regime is
(Senko et al., 2015)

Heff ¼
X
i<j

Jij
4
ðSiþSj− þ Si−S

j
þÞ

þ
X
i;m

Vi;m½ð2a†mam þ 1ÞSiz − ðSizÞ2�; ð37Þ

where Si� are the spin-1 raising and lowering operators.
The pure “XY” or “flip-flop” spin-spin interaction in the
first term of Eq. (37) follows the same formula as for
generating spin-1=2 Ising interactions in Eq. (22) (Kim et al.,
2009)
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FIG. 19. (a) Ground-state phase diagram of the system, along with two different trajectories that end at the same value of Bx.
(b) Probabilities of the four different ground-state spin phases when By is ramped in a six-ion system. Circles, j↓↑↓↑↓↑i or j↑↓↑↓↑↓i;
squares, j↓↑↓↓↑↓i; diamonds, j↓↓↑↓↓↓i or j↓↓↓↑↓↓i; triangles, j↓↓↓↓↓↓i. Gray bands are the experimental uncertainties of the
phase transition locations. (c) Probabilities of creating the four different ground states when Bx is ramped. Most of the ground states are
classically inaccessible in our zero-temperature system. Adapted from Richerme, Senko, Korenblit et al., 2013.

(a)

(b)

(c)

FIG. 20. (a) Level diagram for 171Ybþ highlighting relevant
states for spin-1 physics. (b) Sketch of the experimental geometry
showing the directions of the laser wave vectors and the real
magnetic field relative to the ion chain. Both beams are linearly
polarized, one along the B⃗ field (providing π light) and one
orthogonal to the B⃗ field (providing an equal superposition of σþ
and σ− light). Multiple beat notes are applied by imprinting
multiple frequencies on one beam (in this case, the π-polarized
beam). (c) Detailed level diagram of the 2S1=2 ground state
showing Raman beat notes in relation to Zeeman splittings and
motional sidebands for the center-of-mass mode. Level splittings
are not drawn to scale. From Senko et al., 2015.

C. Monroe et al.: Programmable quantum simulations of spin systems …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025001-24



Jij ¼ ΩiΩj

X
m

ηi;mηj;m
2δm

: ð38Þ

As in the case for spin-1=2 interactions, when δm > 0 is larger
than transverse mode frequencies, Jij falls off with distance
approximately with a power-law form from Eq. (23), where
nearest-neighbor Ising coupling J0 is typically of the order of
≈1 kHz and α can be tuned between 0 and 3 as previously
discussed (Porras and Cirac, 2004; Islam et al., 2013).
The second term in Eq. (37) represents additional spin-

phonon terms and is parametrized by the factor Vi;m ¼
ðηi;mΩiÞ2=ð8δmÞ. For long-range spin-spin interactions with
α≲ 0.5, or for small numbers of ions, the Vi;m terms are
approximately uniform across the spin chain. In these
instances, the Vi;m coefficient can be factored out of the
sum over ions in Eq. (37), leaving only global Siz and ðSizÞ2
terms. For shorter-range interactions or longer chain lengths,
the Vi;m terms can be eliminated by adding an additional set of
beat frequencies at ω− − μ and ωþ þ μ, which would generate
Ising-type interactions between effective spin-1 particles using
the Mølmer-Sørensen gate (Mølmer and Sørensen, 1999).
As theoretically proposed by both Cohen et al. (2015) and

Gong et al. (2016), the previously discussed range of spin-1
phenomena can be accessed in trapped-ion quantum spin
simulators. Cohen et al. (2015) showed how to generate the
full spin-1 XXZ Hamiltonian

H ¼
X
i<j

JijðSixSjx þ SiyS
j
y þ λSizS

j
zÞ þD

X
i

ðSizÞ2; ð39Þ

where the Siγ terms are the spin-1 Pauli operators on site i
along the γ direction, λ is the ZZ Ising anisotropy, and D is
analogous to a magnetic field B term of Eq. (3) for spin-1=2
systems. The interacting terms in Eq. (39) arise from a
generalization of the Mølmer-Sørensen gate (Mølmer and
Sørensen, 1999) to spin-1 systems, followed by a trans-
formation to the interaction picture; the on-site D term can
be generated by imposing frequency detunings D on all
previous driving fields.
Generating the ground state of the Haldane phase (Haldane,

1983) can be realized by an adiabatic ramp procedure (Cohen
et al., 2015). To begin, the spin-1 system can be initialized into

a product state of j0i on each site, which is the trivial ground
state when D ≫ J. Adiabatically reducing D will then drive
the system toward the Haldane phase. As the system size
increases and the critical gap between the D and Haldane
phase closes, a symmetry-breaking perturbation can be
implemented to circumvent the phase transition. For example,
adding a site-specific term Hpert ¼ −h

P
ið−1ÞiSiz will break

all symmetries of the Haldane phase, allowing for a finite
energy gap along the entire ramp path. The ground state can
then be characterized using site-specific measurements to
determine the spin correlation functions hSzi Szji and the string-
order correlation Sz

ij ≡ hSzi Szj
Q

i<k<jð−1ÞS
z
ki.

Since the interactions Jij in Eq. (39) are long range, this can
lead to both quantitative and qualitative differences in the
phase diagram relative to the nearest-neighbor XXZ model
(Gong et al., 2016). For instance, the positions of the phase
boundaries shift for long-range AFM interactions, whereas
long-range FM interactions can destroy the Haldane phase and
support a new continuous symmetry-broken phase. Each of
these possible phases can be distinguished by comparing the
measured values of the previously described spin and string-
order correlation functions.
The first experimental steps toward Haldane physics in

an ion-trap quantum simulator implemented the model in
Eq. (39) with λ ¼ 0 (Senko et al., 2015). To generate the
ground states of this effective spin-1 XY model, for two- and
four-ion spin chains, the spins were initially prepared in the
state j00 � � �i. This is the approximate ground state of Eq. (39)
in the presence of a large D field. This field was then ramped
down slowly until D ≈ 0; the resulting state populations,
shown in Fig. 21, match reasonably well with the exactly
calculated ground state. Detection of the spin-1 states was
accomplished by imaging the spin-dependent fluorescence
(Olmschenk et al., 2007) onto an intensified CCD camera
and observing which ions were dark, an indication of the
presence of the j0i state. Because both of the j�i states appear
bright during the detection process and are scattered into an
incoherent mixture of the jF ¼ 1i states, such a setup does not
allow discrimination among all three possible spin states in a
single experiment. However, the population of either jþi or j−i
can be measured by repeating the experiment and applying a π
rotation to the appropriate j0i ↔ j�i transition before the

(a)

(b)

(d)

(c)

FIG. 21. Measurements of the prepared (a)–(c) two-spin and (d) four-spin states after ramping an S2z field (narrow blue bars) compared
to the values expected for the calculated ground state (gray bars). (a)–(c) Measured populations when the dark state is set at j0i, j−i, or
jþi, respectively. The dark state is set at j0i in (d). Adapted from Senko et al., 2015.
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fluorescence imaging. For instance, measuring an ion in the
dark state after a π pulse between j0i ↔ jþi indicates that the
spin was in the jþi state before detection. This binary
discrimination is not a fundamental limit to future experiments,
since populations could be “shelved” into atomic states that do
not participate in the detection cycle (Christensen et al., 2020).
Measurements of populations in the Sz basis necessarily

discard phase information about components of the final
state. This can be important in many spin models, including
the XY model, where such measurements alone cannot
discriminate between different eigenstates. For example,
the ground state of an XY model with two spin-1 particles
is j00i= ffiffiffi

2
p

− ðj −þi þ j þ −iÞ=2, while the highest
excited state is j00i= ffiffiffi

2
p þ ðj −þi þ j þ −iÞ=2, differing

only by a relative phase. Senko et al. (2015) verified
ground-state production by employing a modified parity
entanglement witness procedure (Sackett et al., 2000).
First, global π=2 rotations were applied on both the
j0i ↔ jþi and j0i ↔ j−i transitions, with a relative phase φ.
Then parity ΠðφÞ ¼ P

2
n¼0ð−1ÞnPn of the number of spins

in state j0i was measured, where Pn is the probability of n
spins appearing in state j0i. This is expected to result in
ΠðφÞ ¼ 3=8� ð1=2Þ cosφ, where þ and − correspond to the
ground and highest excited states, respectively. The data
shown in Fig. 22 show the phase of the parity oscillations
to be consistent with having prepared the two-spin ground
state of the spin-1 XY model.

IV. NONEQUILIBRIUM PHASES OF MATTER
AND DYNAMICS

Trapped-ion simulators are well suited for studying non-
equilibrium phenomena, as well as the equilibrium properties
discussed in Sec. III. Nonequilibrium dynamics might even be
considered more natural, since the study of equilibriumlike

properties requires a specific protocol for preparing the
corresponding ground or thermal state, unlike conventional
condensed matter materials that directly thermalize through
phonon interactions. The simplest nonequilibrium studies, on
the other hand, can start with an initial product state and then
simply evolve the system under a time-dependent Hamiltonian
of interest.
Trapped-ion quantum simulators allow for the study of

nonequilibrium dynamics over a broad range of both spatial
and temporal resolution. The effective long-range spin-spin
interactions described in Sec. I.C.2 can be modulated in time
by turning the laser-ion interactions on or off. This allows
nonequilibrium states to be prepared via quenches or strobo-
scopic application of the Ising Hamiltonian, while their
subsequent dynamics are observed over timescales both
shorter and longer than the natural timescale of interactions
1=Jij. Single spin resolution can be achieved even as the
system size is scaled to many particles, allowing access to
nontrivial observables such as spin-spin correlations and
magnetic domain sizes. Since strongly interacting and highly
frustrated Ising spin models are often employed in analytical
and numerical studies of nonequilibrium quantum dynamics,
the results of trapped-ion spin simulations serve as an
important benchmark for these theoretical predictions.
Perhaps the most natural nonequilibrium experiments

are global and local quenches. In a global quench experiment,
a simple initial state evolves under a time-independent
Hamiltonian. A global quench originates from situations
where the simple initial state can be naturally thought of as
the ground state of some simple Hamiltonian, in which case
the dynamics ensues when the Hamiltonian is changed
(quenched). A local quench allows for the comparison of
the nonequilibrium dynamics between two initial states that
differ by the application of a locally applied unitary operation.
A particular example of a local quench is a situation where one
of the two initial states is an eigenstate of the Hamiltonian.
Short-time spin dynamics over timescales of up to 1=Jij

allows for investigation of the quantum information propa-
gation across the system discussed in Sec. IV.A. Longtime
dynamics well beyond 1=Jij, on the other hand, can indicate
whether the system eventually approaches some effective
steady state and, if so, how this steady state is approached.
Effective thermalization is often expected, even in a closed
system of spins where a subset of the spin system uses its
complement as the bath (D’Alessio et al., 2016). However,
as discussed in Sec. IV.B, disorder can often prevent such
thermalization, leading to many-body localization. Similarly,
as discussed in Sec. IV.C, even in cases where the system
eventually thermalizes, it is possible that dynamics dramati-
cally slows and actual thermalization takes a long time to
occur, in a phenomenon known as prethermalization.
There are many forms of inducing and probing spin

dynamics in trapped-ion systems. One example is the periodic
modulation of a Hamiltonian, which gives rise to stroboscopic
Floquet dynamics. In Sec. IV.D, we discuss such dynamics in
trapped-ion systems in two complementary contexts. The first
focuses on the application of a Hamiltonian and its negative
counterpart in order to measure so-called out-of-time-ordered
correlation (OTOC) functions. The second focuses on the

FIG. 22. Following an adiabatic ramp, the parity of the final state
is measured as a function of the final rotation phase φ as a witness
for spin-1 entanglement (see the text for rotation protocol). The
dashed and dot-dashed lines represent the theoretically expected
values for the ground state [j00i= ffiffiffi

2
p

− ðj −þi þ j þ −iÞ=2] and
the highest excited state [j00i= ffiffiffi

2
p þ ðj −þi þ j þ −iÞ=2], re-

spectively. The amplitude and phase of the measured oscillation
reveal that the prepared state are consistent with the expected
ground state. From Senko et al., 2015.
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spontaneous breaking of discrete time-translation symmetry,
leading to the emergence of time crystalline order.

A. Information propagation

Many properties of a many-body quantum system depend
on how quickly quantum information can propagate in that
system. Indeed, the speed of a quantum computation through
an array of qubits is boosted by sending quantum information
faster across the array. Similarly, fast information propagation
through qubits may allow for faster preparation of highly
entangled states of the array. With its tunable approximately-
power-law-decaying interactions, a trapped-ion chain is an
ideal test bed for studying how much such long-range
interactions can speed up quantum information propagation
relative to nearest-neighbor interactions and for elucidating
the implications of such speedups.
To make connection with the native interactions in trapped-

ion spin crystals, we assume that the interactions fall off with
distance as a power law J0=ji − jjα between ions i and j, with
0 ≤ α ≤ 3, as derived in Eq. (23) and previously discussed.
For the purposes of studying the bounds on the speed of
information propagation, it is convenient to express the spin
Hamiltonian in the following general form:

H ¼
X
i<j

hij þ
X
i

hi; ð40Þ

where hi is a Hamiltonian acting on spin i and where the two-
spin Hamiltonian hij acting on spins i and j is subject to the
bound

khijk ≤
J0

ji − jjα : ð41Þ

Here kOk indicates the operator (or spectral) norm of operator
O or the magnitude of its largest absolute eigenvalue. We are
interested in studying how quickly quantum information can
propagate when the system evolves unitarily under Eq. (40).
Various notions of information propagation can be defined,
depending on the problem (Tran, Chen et al., 2020).
We first focus on the dynamics following a local quench

(Jurcevic et al., 2014). Let B be a unitary operator acting on a
single site, and let A be a single-site observable acting on
another site a distance r away. Let jψi be an arbitrary initial
state, and let AðtÞ be the Heisenberg evolution of A under the
Hamiltonian H in Eq. (40). Then the effect on observable A
due to the disturbance B can be defined as the difference
between the expectation values of AðtÞ in the original state jψi
and in the quenched state Bjψi,

jhψ jB†AðtÞBjψi − hψ jAðtÞjψij
¼ jhψ jB†½AðtÞ; B�jψij ≤ k½AðtÞ; B�k: ð42Þ

The signal after time t a distance r away is thus bounded
by the unequal-time commutator k½AðtÞ; B�k. Intuitively, the
operator AðtÞ can be thought to originate on a given site at
t ¼ 0 (and commuting with operator B on another site at
distance r away) and then spread in time until its support
significantly overlaps with the support of B and thus allows
for a substantial commutator k½AðtÞ; B�k.

Upper bounds on k½AðtÞ; B�k subject to the Hamiltonian in
Eq. (40) are referred to as Lieb-Robinson-type bounds, named
after the original work considering nearest-neighbor inter-
actions (α ¼ ∞) (Lieb and Robinson, 1972). The region in the
r-t plane outside of which k½AðtÞ; B�k must be small is called
the causal region, while its boundary is called the effective
light cone. While the Hamiltonian in Eq. (40) is time
independent, Lieb-Robinson bounds also hold for time-
dependent hij subject to Eq. (41) and for arbitrary time-
dependent hi. A growing body of theoretical literature places
upper bounds on k½AðtÞ; B�k and therefore derives tighter and
tighter light cones for different values of α (Hastings and
Koma, 2006; Lashkari et al., 2013; Gong et al., 2014a; Foss-
Feig et al., 2015; Storch, Worm, and Kastner, 2015; Matsuta,
Koma, and Nakamura, 2017; Tran, Ehrenberg et al., 2019;
Tran, Guo et al., 2019; Chen and Lucas, 2019; Guo et al.,
2019; Sweke, Eisert, and Kastner, 2019; Else et al., 2020;
Kuwahara and Saito, 2020; Tran, Chen et al., 2020). At the
same time, a complementary growing body of theoretical
literature considers specific Hamiltonians and protocols dem-
onstrating larger and larger causal regions (Kastner, 2011;
Bachelard and Kastner, 2013; Eisert et al., 2013; Hauke and
Tagliacozzo, 2013; Hazzard et al., 2013, 2014; Jünemann
et al., 2013; Knap et al., 2013; Schachenmayer et al., 2013;
Worm et al., 2013; Gong et al., 2014a; Nezhadhaghighi and
Rajabpour, 2014; Cevolani, Carleo, and Sanchez-Palencia,
2015; Rajabpour and Sotiriadis, 2015; Storch, Worm, and
Kastner, 2015; Buyskikh et al., 2016; Cevolani, Carleo, and
Sanchez-Palencia, 2016; Maghrebi et al., 2016; Van
Regemortel, Sels, and Wouters, 2016; Eldredge et al.,
2017; Lepori, Trombettoni, and Vodola, 2017; Cevolani et al.,
2018; Chen, Zhou, and Xu, 2018; Frérot, Naldesi, and
Roscilde, 2018; Chen and Zhou, 2019; Guo et al., 2019;
Kloss and Bar Lev, 2019; Luitz and Lev, 2019). These works
have culminated in the establishment of provably tight (up to
subpolynomial corrections) light cones for all α > d, where d
is the dimension of the system: t ≳ log r for α ∈ ðd; 2d�
(Hastings and Koma, 2006; Tran, Deshpande et al., 2020),
t≳ rα−2d for α ∈ ð2d; 2dþ 1Þ (Chen and Lucas, 2019; Tran,
Deshpande et al., 2020), and t≳ r for α ∈ ½2dþ 1;∞Þ (Chen
and Lucas, 2019; Kuwahara and Saito, 2020; Tran, Chen
et al., 2020).
Thanks to Eq. (42), Lieb-Robinson bounds on k½AðtÞ; B�k

directly constrain information propagation after local
quenches. A local-quench experiment on a trapped-ion chain
has realized the XY model of hopping hard-core bosons
corresponding to hi ¼ 0 and hij¼Jij=ji−jjαðσþi σ−j þσ−i σ

þ
j Þ

in Eq. (40) (Jurcevic et al., 2014). Figure 23 shows results for
a local quench on 15 spins from the experiment. After flipping
up the middle spin (corresponding to B ¼ σx8) in a chain of
down spins, the experiment measures A ¼ σzi for various i.
Since the number of flipped spins is conserved during the
time evolution, the evolution in this restricted Hilbert space
of spins is well described using the language of single-flip
eigenstates called magnons.
Information propagation can also be studied in global

quench experiments, where connected correlations are mea-
sured as a simple initial state (such as a product state) evolves
under a given Hamiltonian. Linear light-cone-like spreading
of such correlations due to a nearest-neighbor Hamiltonian
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was first measured in neutral atoms confined in an optical
lattice (Cheneau et al., 2012). For long-range interacting
systems such as trapped-ion spins, the spread of correlations
may no longer be confined within a linear light cone. In
particular, suppose that the system starts in an initial product
state jψi and evolves under the Hamiltonian in Eqs. (40)
and (41). At time t ¼ 0, the connected correlation function
CijðtÞ ¼ hOiðtÞOjðtÞi − hOiðtÞihOjðtÞi (where the operator
Oi acts on site i) vanishes since the first expectation value
factorizes. As time goes on, the support of OiðtÞ and OjðtÞ
grows, making CijðtÞ grow in return. For the case of short-
range interactions, CijðtÞ is bounded in the r-t plane (where
r ¼ ji − jj) by a linear light cone similar to the corresponding
light cone for the unequal-time commutator k½AðtÞ; B�k
(Bravyi, Hastings, and Verstraete, 2006). For general α, a
bound on k½AðtÞ; B�k can also be used to derive a bound on
CijðtÞ (Gong et al., 2014b; Tran, Chen et al., 2020), but the
relationship between the two light cones is not as trivial as in
the nearest-neighbor (α ¼ ∞) case. However, the physical
picture is similar: the Lieb-Robinson bound constrains the
spread of operators OiðtÞ and OjðtÞ, so if the support of OiðtÞ
[OjðtÞ] has not spread significantly outside of a ball of radius
r=2 around i (j), then OiðtÞ and OjðtÞ have approximately
disjoint supports, leading to small CijðtÞ.
Connected correlations following a global quench were

measured in a chain of trapped ions (Richerme et al., 2014).

Richerme et al.’s experiment also studied the XY model
corresponding to hi ¼ 0 and hij ¼ Jij=ji − jjαðσxi σxj þ σziσ

z
jÞ

in Eq. (40). Figure 24 shows data on ten ions following a
global quench. Starting with an initial state of all spins
pointing down (in the z basis), the experiment measures
the time evolution of connected correlations CijðtÞ ¼
hσzi ðtÞσzjðtÞi − hσzi ðtÞihσzjðtÞi. The growth of connected cor-
relations following a global quench may also be accompanied
by the growth of entanglement, as was observed experimen-
tally by Friis et al. (2018).
Experiments on ultracold polar molecules (Yan et al., 2013)

and solid-state defect centers (J. Choi et al., 2017) have not yet
had the single-spin resolution necessary for studying the shape
of the causal region after local or global quenches in long-
range-interacting systems. On the other hand, experiments on
ultracold neutral atoms interacting via Rydberg-Rydberg
interactions (Bernien et al., 2017; Zeiher et al., 2017;
Guardado-Sanchez et al., 2018; Lienhard et al., 2018) should
be able to access the interesting parameter regime of α ¼ 3

(dipolar interactions) (de Léséleuc et al., 2019) in one, two,
and three spatial dimensions.

B. Disorder-induced localization

Many-body localization (MBL) has become one of the
most studied nonequilibrium phases of matter, receiving
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FIG. 23. (a)–(c) Measured magnetization hσzi ðtÞi (color coded) following a local quench. From (a) to (c), the interaction ranges are
α ≈ 1.41; 1.07; 0.75. In (a), an effective light cone is evident and the dynamics is approximately described by nearest-neighbor
interactions only. Red lines, fits to the observed magnon arrival times [examples shown in (d)]; white lines, light cone for averaged
nearest-neighbor interactions; orange dots, fits after renormalization by the algebraic tail. (b),(c) As the interaction range is increased, the
light cone disappears and nearest-neighbor models fail to capture the dynamics. (d) Magnetization of spins (ions) 6 and 13 from (a) (top
panel) and (c) (bottom panel). Solid lines, Gaussian fits to measured magnon arrival. Top panel: for α ¼ 1.41, a nearest-neighbor Lieb-
Robinson bound captures most of the signal (shaded region). Bottom panel: for α ¼ 0.75, the bound does not. (e) Maximum group
velocity. With increasing α, the measured magnon arrival velocities (solid circles) approach the group velocity of the nonrenormalized
nearest-neighbor model (gray dash-dotted line). If renormalized by the algebraic tail, the nearest-neighbor group velocity increases at
small α (open circles), but much less than the increase of the observed magnon velocity. For small α, the measured arrival times are
consistent with the divergent behavior predicted for full power-law interactions (black line). Adapted from Jurcevic et al., 2014.
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considerable scrutiny in both experiment and theory in the
past decade (Oganesyan and Huse, 2007; Nandkishore and
Huse, 2015; Schreiber et al., 2015; Choi et al., 2016; Abanin
et al., 2019). The localization effect is a generalization of
single-particle Anderson localization, which is characterized
by a cessation of quasiparticle transport in noninteracting
systems subject to a random potential landscape (Anderson,
1958). In the case of MBL similar insulatorlike properties
are observed even when particles are strongly interacting
(Oganesyan and Huse, 2007; Nandkishore and Huse, 2015;
Abanin et al., 2019). When prepared with a quench, the
quantum states become highly entangled many-body super-
positions of excited eigenstates spanning the entire energy
spectrum of the disordered system Hamiltonian. MBL can
be distinguished from Anderson localization by the loga-
rithmic growth of entanglement entropy at long times
(Bardarson, Pollmann, and Moore, 2012). The distribution
of eigenstates occupied in a MBL phase is decidedly non-
thermal and a number of observables have been identified to
characterize phase transitions between MBL and thermal
states when varying the interaction strength or disorder in the
Hamiltonian (Serbyn et al., 2014; Luitz, Laflorencie, and
Alet, 2015; Nandkishore and Huse, 2015; Abanin et al.,
2019).
Signatures of MBL were observed in a trapped-ion quan-

tum simulator by both Smith et al. (2016) and Brydges et al.
(2019) by engineering a locally disordered but programmable
potential (HD) that was applied simultaneously with an

effective long-range-interacting transverse-field Hamiltonian
(see Sec. I.C)

HMBL ¼
X
i<j

Jijσxi σ
x
j þ

B
2

X
i

σzi þHD: ð43Þ

The disordered potential is implemented with single-site
resolution across the ion chain such that

HD ¼
X
i

Diσ
z
i ; ð44Þ

where Di is sampled from a uniform distribution Di ∈
½−W=2; W=2� with width W. For finite system sizes, this
Hamiltonian exhibits features consistent with many-body
localization and demonstrates a disorder-induced, long-lived
memory of the system’s initial conditions (Hauke and Heyl,
2015; Maksymov et al., 2017). Understanding the thermo-
dynamic stability of localization with power-law interactions
remains an open problem (Burin, 2006, 2015; Yao et al., 2014;
Nandkishore and Sondhi, 2017).
In both experiments, the MBL state is created by initially

preparing the ten-spin Néel state with staggered order
ðjψ0i ¼ j↓↑↓↑↓↑↓↑↓↑izÞ, which is highly excited with
respect to the disordered Ising Hamiltonian in Eq. (43).
This Hamiltonian is rapidly quenched on and the resulting
single-spin magnetization dynamics hσzi ðtÞi is measured for
times of up to t ¼ 10=J0. The experiment is repeated under

(a) (b) (d) (e)

(f)

(g) (h)

(i)

(j) (k)

(l)

(c)

FIG. 24. (a) Spatial and time-dependent correlations, (b) extracted light-cone boundary (chosen as the contour Ci;j ¼ 0.04), and
(c) correlation propagation velocity following a global quench of a long-range XY model with α ¼ 0.63. The curvature of the boundary
shows (b) an increasing propagation velocity, quickly exceeding (c) the short-range Lieb-Robinson velocity bound vLR. Solid lines give a
power-law fit to the data that slightly depends on the choice of contour Ci;j. Complementary plots for (d)–(f) α ¼ 0.83, (g)–(i) α ¼ 1.00,
and (j)–(l) α ¼ 1.19. As the range of the interactions decreases, correlations do not propagate as quickly through the chain. (j)–(l) For
the shortest-range interaction, the experiment demonstrates a faster-than-linear growth of the light-cone boundary despite having α > 1.
Error bars, 1 s.d. Adapted from Richerme et al., 2014.
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multiple instances of disorder with Stark shifts ðDiÞ applied
programmatically to each ion using a rastered individual
addressing laser (Lee et al., 2016). This individual addressing
laser is also used create the initial Néel state using a sequence
of controlled spin flips.
In the absence of disorder these initial spin states thermalize

if the uniform transverse field B is sufficiently large (Deutsch,
1991; Srednicki, 1994; Rigol, Dunjko, and Olshanii, 2008).
Smith et al. (2016) used global rotations to prepare eigenstates
of both σx and σz and measure the resulting single ion
magnetization projected in those directions after evolution
under HMBL. In the case of a thermalizing system, memory of
the initial spin configuration is lost in all directions of the
Bloch sphere, namely, hσxi i ¼ hσzi i ¼ 0 at long times. Above
the threshold transverse field (B≳ 4J0) the system rapidly
thermalizes to zero magnetization after relatively short time-
scales (t < 5=J0) [Fig. 25(a)].
However, with the transverse field held fixed at B ¼ 4J0,

the data show that applied disorder localizes the spin chain,
retaining memory of the initial Néel state in measurements of
the z magnetization hσzi i [Fig. 25(b)]. Each measurement of
magnetization dynamics for disorder width W is repeated,
with at least 30 different realizations of disorder that are
subsequently averaged together. This is sufficient to reduce
the finite depth disorder sampling error to be of the same
order as other noise sources. After some initial decay and

oscillations, the magnetization of each spin settles to a steady-
state value for J0t ≥ 5. The degree of localization can be
quantified using the normalized Hamming distance

DðtÞ ¼ 1

2
−

1

2N

X
i

hσzi ðtÞσzi ð0Þi

¼ 1

2
−

1

2N

X
i

ð−1Þihσzi ðtÞi: ð45Þ

This observable counts the number of spin flips from the
initial state, normalized to the length of the spin chain. At long
times, a randomly oriented thermal state shows D ¼ 0.5,
while one that remains fully localized has D ¼ 0 [Fig. 25(c)].
The average steady-state value hDðtÞi for J0t ≥ 5 can serve

as an order parameter to display the crossover between the
localizing and thermalizing regimes. The most relevant
adjustable experimental control parameters for probing the
MBL phase diagram are the amplitude of disorder W and the
interaction range α. Increasing W pins each spin closer to its
initial state and pushes the entire spin chain toward a localized
regime [Fig. 25(d)]. Likewise, the localization strengthens as
α is increased toward shorter-range interactions [Fig. 25(e)],
recovering Anderson localization via a Jordan-Wigner trans-
formation (Jordan and Wigner, 1928) in the α → ∞ limit.
Numerical studies have confirmed that full localization occurs

(a)

(d) (e)

(f)

(b)

(c)

FIG. 25. Many-body localization. (a),(b) Temporal dynamics for each of the ten ions’ z magnetizations hσzi ðtÞi in the case of zero
disorder and strong disorder for (a) and (b), respectively. (c) The normalized Hamming distance DðtÞ has plateaued to a steady-state
value for J0t ≥ 5 at all measured disorder strengths. (d) The time-averaged steady-state value hDðtÞi after the plateau shows the onset of
a crossover between a thermalizing regime ½hDðtÞi ¼ 0.5� and a localizing regime ½hDðtÞi ¼ 0� as disorder increases. (e) The steady-
state Hamming distance increases with longer-range interactions. (f) The half-chain entropy growth in the absence of disorder (red
points) and for a disordered chain withW ¼ 6J0 (blue points), compared with numerical simulations of unitary dynamics (dotted lines)
and including known sources of decoherence (solid lines). (a)–(e) Adapted from Smith et al., 2016. (f) Adapted from Brydges
et al., 2019.
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within experimentally accessible disorder strengths and inter-
action ranges (Wu and Das Sarma, 2016).
The slow growth of entanglement entropy (S) has long

been understood as a distinguishing feature of localization
(Bardarson, Pollmann, and Moore, 2012). A short-range
interacting MBL state should exhibit a slower entanglement
growth rate than interacting quantum states without disorder,
where entanglement spreads ballistically. The dynamics of the
entanglement entropy are also quite different for noninteract-
ing Anderson localized systems, where the entanglement
saturates at short times once the system’s dynamics have
reached the localization length (Abanin et al., 2019). In a
trapped-ion quantum simulator with algebraically decaying
interactions the entanglement entropy of an MBL state should
also grow algebraically (S ∼ tq), but with q < 1 the dynamics
are still distinct from those of nonlocalized or Anderson
localized systems (Pino, 2014).
It is generally difficult to measure entanglement entropy in

quantum simulators due to the exponential system-size scaling
of the number of measurements required for full state
tomography. Smith et al. (2016) used the observed slow
growth in quantum-Fisher information as a proxy for half-
chain entanglement entropy, motivated by a similar scaling
with disorder and interaction strength as observed in numeri-
cal simulations. A more direct measurement was made by
Brydges et al. (2019), who developed a technique to probe the
second-order half-chain Rényi entanglement entropy in their
ten-ion quantum simulator [Sð2Þðρ½1→5�Þ] using randomized
measurements. They found the entanglement growth to be
significantly suppressed in the presence of strong disorder,
which was in good agreement with numerical predictions
[Fig. 25(f)].
Anderson localization can be explored using the same long-

range disordered Hamiltonian, even though it is not strictly
noninteracting, by observing the dynamics of a single-spin
excitation in the ion chain. For example, Maier et al. (2019)
observed the transport efficiency of a spin excitation from the
initial site i ¼ 3 to the target site i ¼ 8 as a function of time in
a ten-ion spin chain [Fig. 26(a)]. The evolution of this single-
spin excitation can be described by an XY model Hamiltonian

H ¼
X
i≠j

Jijðσþi σ−j þ σ−i σ
þ
j Þ þ

X
i

½Bi þWiðtÞ�σzi ; ð46Þ

where the disorder field contains single-site static ðBiÞ and
time-dependent ½WiðtÞ� components [Fig. 26(b)]. In the
absence of disorder, the XY interaction term in this
Hamiltonian conserves the total magnetization of the system,
allowing a single-spin excitation to hop around the chain. The
transport efficiency on site i ¼ 8 is then quantified by
integrating the instantaneous probability of the excitation
appearing on spin 8,

η8 ≡
Z

tmax

0

hσz8ðtÞi þ 1

2
dt; ð47Þ

over the full duration of the experiment tmax.
The transport efficiency is reduced in the presence of strong

static disorder (Bmax > J0), consistent with Anderson locali-
zation of the initial spin excitation (Fig. 26, main panel).

However, adding temporal variations in the form of white
dephasing noise in WiðtÞ destroys the localization, a phe-
nomenon known as environment-assisted quantum transport
(ENAQT) (Rebentrost et al., 2009). The spectral density
of the Markovian-like noise [SðωÞ ∝ W2

max] in WiðtÞ deter-
mines the rate of dephasing γ ¼ SðωÞ. This experiment can
access regimes where transport is inhibited by either Anderson
localization (γ < J0) or the quantum Zeno effect (γ > J0). In
the ENAQT regime, when γ ≈ J0 the temporal noise modifies
the destructive interference necessary for Anderson localiza-
tion and transport is revived. Section IV.D further explores
experiments studying trapped-ion spin dynamics under the
influence of both static disorder and a periodically time-
varying Hamiltonian.
Many-body localization is a unique case in which a closed

quantum system remains nonergodic and localized even up to
infinite times. The trapped-ion quantum simulations given by
Smith et al. (2016) and Brydges et al. (2019) were limited by
finite experimental coherence times to only one decade in J0t.
This makes it difficult for these experiments to quantify how
long lived the magnetization or slow the entanglement growth
might be. Other experiments that have studied MBL using

FIG. 26. Breakdown of Anderson localization. Main panel:
transport efficiency η8 to the target (ion 8) under different strengths
of static disorder (blue, Bmax¼0.5J0; red, Bmax¼2.5J0) and
Markovian-like dephasingwith rate γ. Experimental points (shown
as dark squares and triangles) result from averaging over 20–40
random realizations of disorder and noise, with 25 experimental
repetitions each. The regimes of localization, ENAQT (Rebentrost
et al., 2009), and the quantumZeno effect are indicated in gray. The
data agree well with theoretical simulations of the coin-tossing
random process (light bullets) realized in the experiment, while
simulations with ideal Markovian white noise (lines) under-
estimate ENAQT at large γ. (a) Sketch of the transport network.
The ions experience a long-range coupling, with darker and thicker
connections indicating higher coupling strengths. The green
arrows denote the source (3) and the target (8) for the excitation
in the ion network. (b) Sketch of the ion chain representing
interacting spin-1=2 particles as circles, with the spin states
denoted by arrows. The ions are subject to random static and
dynamic on-site excitation energies, indicated by Bi and WiðtÞ.
From Maier et al., 2019.
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cold neutral atoms can achieve several orders of magnitude
longer evolution time relative to their interaction timescale.
For example, MBL can be realized using cold fermions in
quasirandom 1D optical lattices (Schreiber et al., 2015;
Lüschen, Bordia, Scherg et al., 2017; Kohlert et al., 2019;
Lukin et al., 2019), verifying MBL-like behavior in a variety
of Hubbard Hamiltonians. This system has also been used to
confirm the breakdown of MBL in open quantum systems
(Bordia et al., 2016; Lüschen, Bordia, Hodgman et al., 2017).
Moreover, experiments have started to probe whether MBL
can exist in systems with dimensionality > 1 (Kondov et al.,
2015; Choi et al., 2016; Bordia et al., 2017), where the
stability of MBL is still an open question (De Roeck and
Imbrie, 2017). Other experimental platforms have used
novel metrics to probe many-body localization, including
many-body spectroscopy (Roushan et al., 2017), measure-
ment of out-of-time-order correlators (Wei, Ramanathan, and
Cappellaro, 2018) (see Sec. IV.D), and performance of full
state tomography to compute entanglement entropy (Xu
et al., 2018).

C. Prethermalization

Hamiltonians that support MBL are believed to be non-
ergodic, even after evolution times that are exponentially long
in system size (Nandkishore and Huse, 2015). There are also
systems that are nonergodic for a shorter amount of time (but
often still much longer than the coherence time of typical
quantum simulation experiments) before eventually thermal-
izing. These systems are not usually disordered and can be
described by models of weakly interacting (quasi)particles,
such as 1D Bose gases (Kinoshita, Wenger, and Weiss, 2006;
Gring et al., 2012; Langen et al., 2015). The generic behavior
of such a system is called prethermalization, meaning that the
system relaxes to a quasistationary state other than the thermal
state before thermalizing eventually. The prethermal quasista-
tionary state is usually believed to be described by a
generalized Gibbs ensemble (GGE) (Rigol et al., 2007) that
corresponds to the model of quasiparticles without the weak
interactions. Such a state will have a partial memory of the
initial state, because the quasiparticle occupation numbers are
conserved if interactions are ignored. At sufficiently long
times, the weak interactions are expected to break the
integrability of the system and lead to thermalization in the
end. This picture of prethermalization has been well studied
in both theory (Berges, Borsányi, and Wetterich, 2004;
Manmana et al., 2007; Polkovnikov et al., 2011) and experi-
ment (Gring et al., 2012; Langen et al., 2015).
In a programmable ion-trap quantum simulator, owing to

long-range spin interactions new types of prethermalization
can occur with prethermal states not described by a standard
GGE. A sample study was first proposed theoretically (Gong
and Duan, 2013) and later demonstrated experimentally
(Neyenhuis et al., 2017). The central idea is that, with
sufficiently long-range interactions, a nondisordered and
homogeneous system can have a strong emergent inhomoge-
neity due to the open boundary condition of an experimental
spin chain. This emergent inhomogeneity can lead to trapping
of quasiparticles before the system relaxes to the GGE. As
both kinetic energy and weak interactions can delocalize

trapped quasiparticles, the dynamics of the system can reveal a
rich interplay between quantum tunneling and interaction
effects, leading to new types of relaxation beyond conven-
tional prethermalization.
The model studied by Gong and Duan (2013) and

Neyenhuis et al. (2017) is the same transverse-field Ising
model described by Eq. (25). With long-range interactions,
HTI is generally nonintegrable, in contrast to the nearest-
neighbor case, where the 1D model is integrable through a
Jordan-Wigner transformation (Sachdev, 2011), so thermal-
ization is anticipated in the longtime limit according to the
eigenstate thermalization hypothesis (Rigol, Dunjko, and
Olshanii, 2008). To better understand the dynamics of such
a prethermal Hamiltonian, we can map each spin excitation
along the z direction into a bosonic particle to turn Eq. (25)
into a bosonic model with two parts: an integrable part
composed of noninteracting spin-wave bosons that can be
used to construct a GGE, and an integrability-breaking part
consisting of interactions among the spin-wave bosons that is
responsible for the thermalization (Neyenhuis et al., 2017).
When the initial state has a low spin or bosonic excitation
density and the magnetic field is much larger than the average
Ising coupling Jij, the bosonic excitation density remains low
during the dynamics and the interactions among the bosons
remains weak.
The experiment conducted by Neyenhuis et al. (2017)

began with the preparation of a single-spin excitation on
either edge of a seven-ion chain jψRi ¼ j↓↓↓↓↓↓↑iz or
jψLi ¼ j↑↓↓↓↓↓↓iz. The spins then evolved under Eq. (25)
and the time evolution of the spin projection in the z basis was
measured. The magnetic field B was at least an order of
magnitude larger than J0 in the experiment, so the number of
spin excitations along the z direction was approximately
conserved in the short-time dynamics where the system can
be regarded as a single-spin excitation. But in the long-time
dynamics, multiple spin excitations are created and interact
with each other.
To characterize the dynamics of the spin excitations, we

introduce a single observable that measures the relative
location of the spin excitation in the chain

C ¼
XN
i¼1

�
2i − N − 1

N − 1

��
σzi þ 1

2

�
; ð48Þ

where N is the number of ions. The expectation value of C
varies between −1 and 1 for a spin excitation on the left and
right ends, respectively. The choice of initial states ensures
that the initial value of hCi is either 1 or −1. Because of the
spatial inversion symmetry of the underlying Hamiltonian in
Eq. (25), both the GGE and thermal values of hCi should be 0.
In Figs. 27(c) and 27(d) the value of hCi along with its

cumulative time average hC̄i is shown for the two initial states
with a single spin flips on either end of the spin chain. In the
short-range interacting case (α ¼ 1.33), where the system
rapidly evolves to a prethermal state predicted by the GGE
associated (with hC̄i ¼ 0) with the integrals of motion
corresponding to the momentum space distribution of the
single particle representing the spin excitation. The memory of
the initial spin excitation location is thus not preserved.
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However, in the long-range-interacting case (α ¼ 0.55),
the position of the spin excitation reaches a quasistationary
value that retains memory of the initial state out to the
longest experimentally achievable time of 25=Jmax. This
prethermal state differs from a thermal state and the GGE
prediction, which both maintain the left-right spatial sym-
metry of the system.
For evolution times too short to generate more than one spin

flip, the dynamics of the Hamiltonian in Eq. (25) for the initial
states are similar to those of a free particle in a potential, with
the location of the particle representing that of the single-spin
excitation. For short-range spin interactions, the shape of the
potential is approximated by a square well due to the open
boundary condition and no explicit spatial inhomogeneity of
the interactions. However, as we increase the range of spin-
spin interactions, the shape of the potential distorts from a
square-well to a double-well shaped potential formed by the
two hard walls at the ends of the spin chain and the bump at
the center of the chain, as shown in Fig. 27(a). For a single
particle on a lattice with a double-well potential, there will be
an extensive number of near-degenerate eigenstates that are
symmetric and antisymmetric superpositions of wave func-
tions in the left and right potential wells. For seven lattice
sites, the spectrum of energy differences between all pairs of
eigenstates as a function of α is shown in Fig. 27(b), together
with the overlap of eigenstates with the initial state. For the
longest-range interaction (α ¼ 0.55), the two lowest energy
states are almost degenerate, with an energy difference
approximately 1000 times smaller than Jmax. This stems from
the tunneling rate between the two double wells, which is
exponentially small in the barrier height, resulting in the spin

excitation remaining in its initial well until it tunnels across
the potential barrier at long times.
To go beyond the previous single-particle picture, the

experiment of Neyenhuis et al. (2017) prepared initial states
with two spin excitations. In this case, there are weak
interactions between the two particles that represent the spin
excitations, similar to the scenario for many-body localization
(Smith et al., 2016). Despite the presence of weak inter-
actions, similar prethermal states were found, as shown in the
bottom panel of Figs. 27(c) and 27(d): Relaxation to the GGE
is found for shorter-range interactions (α ¼ 1.3), while for
longer-range interactions the system does not relax to the
GGE. Similar results were also found in a spin chain of
22 ions, as shown in Fig. 28 (Neyenhuis et al., 2017). The
persistence of the same prethermalization observed with more
than a single-spin excitation is attributed by the existence
of extensive number of nearly degenerate eigenstates for
the single-particle spectrum in the double well shown in
Fig. 28(a). Thus an extensive number of spin excitations near
one end of the chain will still be localized by the double well
before tunneling happens at a later time.
The interplay between single-particle tunneling in the

effective double-well and particle-particle interactions is
always present in this system; even when initialized in a
single-spin excitation state, the finite transverse field in
Eq. (25) will create more spin excitations over time. The
effect of interactions will thermalize the system, while the
effect of tunneling will bring the system to the GGE. Thus,
depending on the range of spin-spin interactions, it is possible
to either observe the prethermalization to the GGE after
the prethermalization caused by the trapping in double-well

(a)

(b)

(c) (d)

FIG. 27. (a) An initial spin excitation is prepared on one side of a seven-ion chain subject to open boundary conditions and long-range
XY interactions. As the interaction range increases (α decreases), the effective potential energy for the single excitation changes from a
square-well potential to a potential resembling a double well. (b) The double-well potential gives rise to near-degenerate eigenstates
when α is decreased, as seen in the calculated energy difference between all pairs of eigenstates vs α. The height of the plot quantifies the
off-diagonal density matrix elements of the initial state. (c) In the case of short-range interactions, either one or two spin flips delocalize
across the chain during time evolution, so that the quantity hCi ≈ 0 in the long-time limit, consistent with the prediction of GGE. (d) For
long-range interactions memory of initial conditions is preserved in a long-lived perthermal state. In both (c) and (d), the open squares
and circles plot hCi for initial states prepared on the left and right sides of the spin chain, while the filled circles and squares plot the
cumulative time average hC̄i for these data. Adapted from Neyenhuis et al., 2017.
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potential or observe thermalization directly after the observed
prethermalization. Determining which scenario is relevant
would require a much longer coherence time than is possible
in current experiments. While improving the experimental
coherence time of the spin interactions may be challenging,
simulating the long-time dynamics of a nonintegrable, long-
range interacting spin chain is equally, or even more, chal-
lenging on a classical computer.
We emphasize that the emergence of an effective double-

well potential for the spin excitations is a phenomenon unique
to an open spin chain with strongly long-range interactions. A
spin chain with periodic boundary conditions and without
spatial inhomogeneity is fully translationally invariant, and
translational invariance is not expected to be broken in the
long-time behavior of the system. Changing boundary con-
ditions of a long-range interacting system can significantly
impact its bulk properties. Prethermalization in trapped-ion
spin crystals is thus a good example of new physics that is
possible with programmable quantum simulators, reaching
beyond existing condensed matter frameworks, as also dem-
onstrated by other experiments mentioned in this section.

D. Stroboscopic dynamics and Floquet phases of matter

Section IV.B treated static time-independent Hamiltonians
whose nonequilibrium nature arises from the presence of
quenched disorder leading to many-body localization; such
localization prevents the system’s internal dynamics from
thermalizing and leads to a certain memory of local initial
conditions (Nandkishore and Huse, 2015; Abanin et al.,
2019). An alternate setting for exploring nonequilibrium
phases is to begin with a time-dependent Hamiltonian
whose equations of motion are intrinsically dynamical. This
setting is ideal for trapped-ion quantum spin simulators, where
pulsed control of both the interactions and fields of the

transverse-field Ising model of Eq. (25) naturally allows for
the realization of time-dependent Hamiltonians; see Sec. III.A,
where time-dependent magnetic fields are utilized.
Recently a tremendous amount of theoretical and exper-

imental work has been devoted to exploring the mildest case
of such time dependence, where the system is governed by a
periodic Hamiltonian Hðtþ TÞ ¼ HðtÞ. Such Floquet sys-
tems (Floquet, 1883; Bukov, D’Alessio, and Polkovnikov,
2015; Kuwahara, Mori, and Saito, 2016) are ideal from the
perspective of quantum simulation since they do not require
the complexities of cooling to the many-body ground state in
order to observe novel dynamical phenomena (Bloch,
Dalibard, and Zwerger, 2008). In the case of trapped ions,
as we discussed in Sec. II, there exists a natural capability to
stroboscopically apply different microscopic Hamiltonians,
making this platform an ideal Floquet quantum simulator.
Here we focus on two specific examples.
First, we describe the implementation of a novel class

of measurements termed OTOC functions (Larkin and
Ovchinnikov, 1969; Maldacena, Shenker, and Stanford,
2016). Such correlators have recently been proposed as
powerful diagnostics of quantum chaos, and their dynamical
behavior remains the subject of intense interest (Swingle et al.,
2016; Landsman et al., 2019; Yoshida and Yao, 2019); indeed,
the possibility of defining a quantum Lyapunov exponent
based on the exponential growth of OTOCs in certain systems
has led to a conjectured bound on the rate of thermalization
in many-body quantum systems (Maldacena, Shenker, and
Stanford, 2016).
The functional form of the OTOC is typically written as the

expectation

FðτÞ ¼ hW†ðτÞV†ð0ÞWðτÞVð0Þi; ð49Þ

where W and V are two commuting operators, with WðτÞ ¼
eiHτWe−iHτ the evolved operatorW under the Hamiltonian H.
The OTOC compares two quantum states obtained by either
(a) applying V, waiting for a time t, and then applying W, or
(b) applying W at time t, going back in time to apply V at
t ¼ 0, and then letting time resume its forward progression
to t. The OTOC FðτÞ thus describes how initially commu-
ting operators W and V fail to commute at later times
due to the interactions generated by H and have a diffe-
rent form than the conventional autocorrelation func-
tion hW†ðτÞVð0ÞW†ðτÞVð0Þi. Operationally, measuring an
OTOC requires an intermediate step of time reversal, repre-
senting a major challenge from an experimental implementa-
tion perspective (Gärttner et al., 2017; Li et al., 2017).
In the case of ions, it is possible to directly measure an

OTOC stroboscopically applying both an interaction
Hamiltonian and its negative counterpart, thus effectively
reversing time evolution. This was experimentally demon-
strated by Gärttner et al. (2017) by using a two-dimensional
array of laser-cooled 9Beþ ions in a Penning trap; it is
summarized in Fig. 29. Here the spin-dependent optical
dipole force couples to the axial center-of-mass motion of
the 2D crystal [see Fig. 2(b)], resulting in a nearly uniform all-
to-all Ising interaction [Eq. (23) with α ≈ 0]. Such an all-to-all
interacting Ising model does not possess the complexity of

FIG. 28. Measured time evolution (darker points) and cumu-
lative time average (lighter points) of the averaged center of
excitation hCi in a 22-ion chain (ion chain image shown at the
top). The ion spins are initialized with a single-spin excitation on
the left end (middle ion chain image). After evolving in the XY
spin Hamiltonian for time t ¼ 36=J0, where J0 is the nearest-
neighbor coupling and the spin excitation is delocalized, but its
average position remains stuck on the left half of the chain
(bottom ion chain image), the signature of prethermalization.
Effective range of the interaction is α ≈ 0.9. Adapted from
Neyenhuis et al., 2017.
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interactions from a quantum chaos perspective. However, this
system is well suited for OTOC studies, because the sign of
the Hamiltonian can be controlled. Since the Ising interaction
strength scales as J ∼ 1=δ [Eq. (22) with only a single mode
contributing and δm ¼ δ], this allows for the implementation
of a Hamiltonian sign reversal by simply changing the sign of
the detuning. With the ability to stroboscopically apply bothH
and −H, a family of different OTOCs can then be measured
through the collective magnetization of the system, as shown
in Fig. 29 (Gärttner et al., 2017). We finally note that a
recent experiment has measured OTOCs in a chain of trapped
atomic ions using measurements in random spin bases (Joshi
et al., 2020).
The second example of stroboscopic Hamiltonian simu-

lation with trapped-ion spin systems is the quantum simu-
lation of Floquet systems, or periodically modulated
Hamiltonians (Bukov, D’Alessio, and Polkovnikov, 2015;
Deng et al., 2015; Kuwahara, Mori, and Saito, 2016). In a
broader context, such time-periodic manipulations have long
been used for controlling quantum systems including NMR
qubits and atomic ensembles (Goldman et al., 2014; Oka and
Kitamura, 2019). However, recent explorations of Floquet
systems have stumbled upon an intriguing question beyond
the landscape of quantum control: in particular, can Floquet

systems host intrinsically new phases of matter that do not
have any equilibrium equivalent (Moessner and Sondhi, 2017;
Else et al., 2020)?
In the noninteracting single-particle case, the question has

been affirmatively answered with the discovery of a host of
novel band structures that can exist only in the presence of
periodic driving (Kitagawa et al., 2010; Lindner, Refael, and
Galitski, 2011; Cayssol et al., 2013; Rechtsman et al., 2013;
Titum et al., 2016). The many-body case is more subtle. On
the one hand, one might naturally suspect that new phenom-
ena can in principle arise when the driving frequency is of the
order of the intrinsic energy scales of the system; indeed, this
limit is far from the Suzuki-Trotter limit (as discussed in
Sec. V.A), where to first order the effective Hamiltonian
describing the Floquet system is simply a sum of its strobo-
scopic components. On the other hand, it is generally expected
that a driven many-body system will absorb energy from the
driving field and ultimately heat to infinite tempera-
ture (Bukov, D’Alessio, and Polkovnikov, 2015; Ponte,
Chandran et al., 2015). However, recent theoretical advances
have demonstrated that it is possible to avoid such Floquet
heating. One general scheme is to utilize many-body locali-
zation as discussed in Sec. IV.B. In principle, a Floquet MBL
system (Ponte, Papić et al., 2015; Abanin, Roeck, and

FIG. 29. Out-of-time-order-correlators (OTOC) in a 2D Penning trap ion simulator; see Fig. 2(b) for experimental schematic.
(a) Demonstration of the ability to tune the sign of the Ising interaction through the symmetric detuning of the optical dipole force
around a single mode of motion. Plotted is the residual spin-phonon couplings vs detuning from the center-of-mass mode. A positive
(negative) detuning gives rise to an antiferromagnetic (ferromagnetic) interaction. (b) Experimental sequence used to measure an out-of-
time-ordered correlation function with alternation in the sign of the Ising coupling. (c) Measured Fourier amplitudes of collective
magnetization dynamics under the Ising spin-spin interactions for N ¼ 111 spins, showing the sequential buildup of higher-order spin-
spin correlations. Adapted from Gärttner et al., 2017.
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Huveneers, 2016) can exhibit stable dynamical phases of
matter for infinitely long times (Else, Bauer, and Nayak, 2016;
Khemani et al., 2016; Potirniche et al., 2017). Recent studies
suggest an alternative disorder-free approach can also be used
to combat Floquet heating, albeit not to infinite times. In
particular, for large enough driving frequencies, the system
can enter a regime of Floquet prethermalization (Kuwahara,
Mori, and Saito, 2016; Mori, Kuwahara, and Saito, 2016),
where exotic nonequilibrium phases can be observed for
exponentially long timescales (Else, Bauer, and Nayak,
2017; Machado et al., 2019, 2020). The underlying essence
of Floquet prethermalization is analogous to the discussions of
prethermalization in Sec. IV.C. The key difference is that here
the lifetime of the quasistationary state is controlled by the
Floquet drive frequency.
We now turn to recent experiments that demonstrated a

Floquet quantum simulation using a one-dimensional
trapped-ion spin chain, depicted in Fig. 30 (Zhang et al.,
2017). In these experiments, a combination of high-preci-
sion spatial and temporal control allowed for the imple-
mentation of three distinct types of time evolution applied
repeatedly in sequence: (1) global spin rotations, (2) long-
range Ising interactions, and (3) disordered on-site fields
[Fig. 30(a)].
The stroboscopic combination of these evolutions is the

basis for realizing a discrete time crystal (DTC) (Else, Bauer,
and Nayak, 2016; Khemani et al., 2016; von Keyserlingk,
Khemani, and Sondhi, 2016; Yao et al., 2017; Else et al.,
2020), where a system exhibits a spontaneous breaking of the
time-translation symmetry generated by the Floquet evolution.
The characteristic signature of a DTC, which is consistent
with experimental observations in chains of up to L ¼ 14 ions
(Zhang et al., 2017), is the robust synchronization of oscil-
lations at subharmonic frequencies relative to that of the drive,
as shown in Figs. 30(b) and 30(c). Within the decoherence
timescale of the experiments, the observed signatures of
DTC order are independent of the initial state. The robustness
of the subharmonic oscillations depends on the presence of
strong interactions in the system; in the absence of

interactions, even small perturbations immediately destroy
signatures of a time crystal.
In addition to implementations in trapped-ion systems, a

number of other experimental platforms have also observed
signatures of time crystalline order (S. Choi et al., 2017;
Rovny, Blum, and Barrett, 2018). Here we note a particular set
of experiments performed using ensembles of nitrogen-
vacancy color centers in diamonds (S. Choi et al., 2017).
We emphasize this particular platform because it shares a
number of similar features with the trapped-ion system (i.e.,
long-range interactions and disorder) but also has a number of
crucial differences (i.e., three-dimensional system with time-
dependent disorder). Both platforms exhibit similar signatures
of interaction stabilized time-translation symmetry breaking,
although these signatures appear to be limited to timescales
before local thermalization has fully completed (Else et al.,
2020). To this end, such cross-platform verifications are
especially valuable once controlled quantum simulators reach
a regime where classical computers cannot calculate
(Leibfried, 2010; Calarco, Fazio, and Mataloni, 2018). In
this regard, comparing the results from analog quantum
simulators to those from digital quantum computers would
also be helpful in cross-checking and assessing validity
(Mahadev, 2018).

E. Dynamical phase transitions

Having discussed the simulation of nonequilibrium phases
in both disordered and periodically driven trapped-ion experi-
ments, we now turn to the question of understanding phase
transitions in such out-of-equilibrium systems. Novel dynami-
cal phases can emerge after a quantum quench, and the
transition between them can be observed experimentally by
measuring nonanalytic changes in the dynamical response of
the many-body spin system (Jurcevic et al., 2017; Zhang,
Pagano et al., 2017). As described in Secs. IV.B and IV.C,
out-of-equilibrium systems do not necessarily behave
thermodynamically, so it is a fundamental question as to
how to properly establish analogies and differences among

FIG. 30. Floquet quantum simulation of a discrete time crystal (DTC). (a) Schematic depiction of the Floquet evolution of a trapped-
ion spin chain. Three Hamiltonians are applied sequentially in time: (i) a global nominal π pulse ð2gt ¼ πÞ around the spin y axis with
fractional perturbation ε, (ii) long-range Ising interactions (see Sec. II), and (iii) site-dependent disorder along the spin x axes. (b) The x
magnetization of each spin is measured after each Floquet sequence, up to 100 periods. The Fourier transform of the oscillations show a
clear peak observed at half the driving frequency, even with a programmed perturbation on the global π pulses of ε ¼ 0.03, signaling the
discrete breaking of time-translation symmetry and the “rigidity” of the time crystal. (c) When the perturbation is too strong (ε ¼ 0.11),
we cross the boundary from the DTC into a symmetry-unbroken phase. (d) For stronger interactions parametrized by the nearest-
neighbor Ising coupling J0, the DTC can tolerate larger imperfections to the global rotation pulse, leading to a qualitative phase diagram
(Yao et al., 2017). Adapted from Zhang et al., 2017.
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thermodynamic equilibrium phases and their dynamical coun-
terparts (Heyl, 2018; Titum et al., 2019) in terms of order
parameters (Ajisaka, Barra, and Žunkovič, 2014; Žunkovič
et al., 2018), scaling and universality (Heyl, 2015), and discrete
or continuous symmetry breaking (Žunkovič, Silva, and
Fabrizio, 2016; Weidinger et al., 2017; Huang, Banerjee,
and Heyl, 2019).
Dynamical phases can be separated by dynamical quantum

phase transitions (DQPTs), characterized by a nonanalytic
response of the physical system as a function of quench
parameters. Two types of DQPT signatures have been defined
for an interacting spin-1=2 chain (Žunkovič et al., 2018)
governed by the Hamiltonian in Eq. (25) with the field along
the z axis

H ¼
X
i<j

Jijσixσ
j
x þ B

X
i

σiz; ð50Þ

where the spin-spin interactions Jij and the transverse field Bz

are generated using the technique explained in Sec. I.C.2.
Both types of DQPT have been experimentally observed
in a trapped-ion quantum simulator (Jurcevic et al., 2017;
Zhang, Pagano et al., 2017). The first type of DQPT (type I)
is based on the formal analogy between the nonanalytic
behavior of the return probability to the initial state jψ0i
after a quantum quench under the Hamiltonian H, defined as
GðtÞ ¼ hψ0je−iHtjψ0i, and the partition function of the cor-
responding equilibrium system Z ¼ Trðe−H=kBTÞ (Heyl,
Polkovnikov, and Kehrein, 2013). It is possible to define
the complex counterpart of the thermodynamic free energy
density f ¼ −N−1kBT logðZÞ using the rate function λðtÞ ¼
−N−1 log½GðtÞ�. This quantity, in the thermodynamic limit,
exhibits dynamical real-time nonanalyticities that play an
analogous role as the nonanalytic behavior of the free energy
density of a thermodynamic system at equilibrium. It is
possible to observe experimentally these nonanalyticities in
an interacting spin chain after a quantum quench evolving

under the long-range transverse-field Ising Hamiltonian
of Eq. (50).
This type of DQPT has been observed experimentally with

a linear chain of trapped 40Caþ ion spins (Jurcevic et al.,
2017). The spins are initialized in the ground state of the
interaction part of the transverse Ising model, namely,
jψ0i ¼ j↓↓↓…↓ix. Then the transverse-field Hamiltonian
[Eq. (50)] is suddenly switched on (quenched) with
B > J0, with J0 the average nearest-neighbor spin-spin
coupling. As shown in Fig. 31(a), in this regime the rate
function λ exhibits pronounced nonanalyticities at the critical
times tc. This behavior can be related to other observables,
such as the global average magnetization Mx ¼ N−1 P

i σ
x
i .

Since the initial state breaks the Z2 symmetry of the
Hamiltonian (25), the system restores this symmetry during
the evolution at the times where the magnetization changes
sign, which also corresponds to the critical times in the
Loschmidt echo observable, as shown in Fig. 31(b).
The second type of DQPT (type II) has an order parameter

defined in terms of long time-averaged observables, such as
asymptotic late-time steady states of local observables

Ā ¼ lim
T→∞

1

T

Z
T

0

AðtÞdt; ð51Þ

where the operator A is the magnetization or higher-order
correlators between the spins. Here the DQPT occurs as the
ratio B=J0 is varied and the order parameter changes abruptly
from ferromagnetic (B < J0) to paramagnetic order (B > J0).
The onset of this nonanalytic behavior can be observed by
measuring the late-time average values of the two-body
correlator

C2 ¼
1

N2

X
ij

hσxi σxji ð52Þ

after a quantum quench with Hamiltonian (50).

(a) (b)

FIG. 31. Trapped-ion quantum simulation of DQPT type I. (a) Measured rate function λ for three different system sizes at B=J0 ≈ 2.38,
with τ ¼ tB the dimensionless time. The kinks in the evolution become sharper for larger N. To take the Z2 degeneracy of the ground
state of H0 into account, here the rate function is defined based on the return probability to the ground-state manifold, namely,
λðtÞ ¼ N−1 logðPjψ0i þ Pj−ψ0iÞ, where j − ψ0i ¼ j↑↑↑ � � �↑ix. (b) Comparison between rate function λðtÞ and magnetization evolution
MxðtÞ. The inversion of the magnetization sign corresponds to the nonanalyticity of the rate function λðtÞ. Solid lines are exact numerical
predictions based on experimental parameters ðB=J0 ¼ 2Þ. Adapted from Jurcevic et al., 2017.
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This type of DQPT measurement was observed in a linear
chain of trapped 171Ybþ ion spins (Zhang, Pagano et al.,
2017). Here the measured late-time correlator C2 exhibits a
dip at the critical point that sharpens scaling up the system
size N up to 53 171Ybþ ions, as shown in Fig. 32(a). This
represents one of the largest quantum simulations ever
performed on individual spins. Further evidence of the
occurrence of the phase transition can also be observed in
higher-order correlations, such as the distribution of domain
sizes throughout the entire chain shown in Fig. 32(b). The
occurrence of the DQPT is observed in the decreased
probabilities of observing long strings of aligned ions at
the critical point. This is more clearly shown by measuring
the mean largest domain size as a function of the transverse-
field strength for late times and repeated experimental shots,
which exhibits a sharp transition across the critical point of
DQPT type II. Note this measurement is in general an Nth-
order spin correlation function, requiring high fidelity
readout of all spins in a single shot, which is an attribute
that is unique to trapped-ion systems.

V. HAMILTONIAN SEQUENCING AND ENGINEERING

The tailored interactions between spins available in
trapped-ion systems can also be used to realize a DQS, which
is a many-body quantum system with enough control to
perform a universal set of quantum operations or gates. In
other words, it is a quantum computer used to implement
Hamiltonian evolution rather than other quantum algorithms
(Feynman, 1982). The universality means that these simu-
lations are not limited to the inherent interactions, but any
local Hamiltonian can be designed and implemented as a
circuit (Lloyd, 1996). Additionally, error bounds and error
correction protocols using fault-tolerant gate sets are appli-
cable to large digital simulations (Steane, 1999).
Arbitrary Hamiltonians can be transformed into spin or

qubit forms via the Jordan-Wigner (Jordan and Wigner, 1928)
or Bravyi-Kitaev (Bravyi and Kitaev, 2002) transformation.
First-quantization mapping can also been used (Bravyi et al.,
2017; Babbush et al., 2018). There are several methods for
approximating time evolution or adiabatic ramps through

(a)

(e) (f) (g)

(h)

(b) (c) (d)

FIG. 32. (a)–(d) Trapped-ion quantum simulation of a dynamical quantum phase transition of type II following the long-range
transverse Ising Hamiltonian with α ≈ 1. Long-time averaged values of the two-body correlations C2 for different numbers of spins in
the chain ranging from 8 to 53. Solid lines are exact numerical solutions to the Schrödinger equation, and the shaded regions take into
account uncertainties from experimental Stark-shift calibration errors. Dashed lines in (a) and (b) are calculations using a canonical
thermal ensemble with an effective temperature corresponding to the initial energy density. (e)–(g) Domain statistics and corresponding
image samples after late-time evolution for various values of B=J0 with 53 spins. The reconstructed ion chain images are based on
single-shot binary detection of each ion spin state. The top image shows a chain of 53 ions all in bright spin states as a baseline. The other
three images show 53 ions in combinations of bright and dark spin states. (e)–(g) Distribution of domain sizes for three different values
of B=J0, plotted on a logarithmic scale. Dashed lines are fits to exponential functions, which are expected for an infinite-temperature
thermal state. Long tails of deviations are visible, and their prevalence depends on B=J0. (h) Mean of the largest domain size in each
single experimental shot vs B=J0, showing a kink at the phase transition. Dashed lines represent a piecewise linear fit, used to extract the
transition point B=J0 ¼ 0.89ð7Þ. Adapted from Zhang, Pagano et al., 2017.
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discrete operations in a DQS, Trotterized evolution (Trotter,
1959; Suzuki, 1985) or variational techniques (Yuan et al.,
2019). These include the variational quantum eigensolver
(VQE) (Peruzzo et al., 2014) and QAOA (Farhi et al., 2000)
techniques. Alternatives include quantum walks (Childs et al.,
2003) and Taylor series expansions. We note that the latter has
potential for fault-tolerant devices due to its optimal asymp-
totic scaling, but this has not been demonstrated experimen-
tally (Berry et al., 2015).

A. Trotter Hamiltonian expansion

To decompose the unitary evolution under a given
Hamiltonian into discrete operations or gates, Suzuki-
Trotter (Trotter, 1959; Suzuki, 1985) formulas are commonly
used. These provide an approximate factorization of the
unitary time-evolution operator Û. For a time-independent
Hamiltonian H containing a sum of terms Hk, the first-order
Trotter approximation Û ¼ e−iĤt=ℏ ¼ limn→∞ðΠke−iĤkt=nℏÞn
for finite n leads to a sequence of small time steps δt ¼ t=n
with local evolution operators Ûk ¼ e−iĤδt=ℏ that is repeated n
times. These operators can then be deconstructed into the
operations from the simulator’s universal set. Similarly, a
time-dependent Hamiltonian can be simulated by breaking the
evolution down into short segments (Poulin et al., 2011).
Since the unitaries Uk do not commute in general for finite n,

the sequence deviates from the target evolution. These
Trotter errors are bounded for small step sizes but undergo
a dynamical phase transition (Heyl, Hauke, and Zoller, 2019),
above which the evolution exhibits many-body quantum chaos
(D’Alessio et al., 2016; Sieberer et al., 2019).
This technique was used by Lanyon et al. (2011) in a

trapped-ion experiment to simulate a range of different
interaction models and interaction graphs of two to six
spin-1=2 particles. This spin-model problem matches the
system and does not require a transformation. Using the
operations available from the toolbox described in Sec. I.C.2,
a universal set of operations is realized. The versatility of this
approach is shown by simulating the dynamics of two
particles under an XX- (Ising), XY-, and XYZ-type interac-
tion, and an adiabatic ramp of the interaction strength.
Figure 33(a) shows the dynamics of four spins initialized
along z under a long-range (all-to-all) Ising interaction. The
oscillation frequencies correspond to energy gaps in the
system. Figure 33(b) presents the collective oscillation of
six spins under a σ1yσ

2
xσ

3
xσ

4
xσ

5
xσ

6
x interaction, composed digi-

tally of Ising-type interactions and indvidual σz rotations,
periodically producing a six-spin GHZ state.
Interleaving different native operations has also been

proposed for creating an XXZ interaction in a spin-1 system
(Cohen et al., 2015). This will allow for the study of an
integer-spin systems under Heisenberg-type interactions,

FIG. 33. Digital simulations of dynamics in four- and six-spin systems. Initially, all spins point up. (a) Four-spin long-range Ising
system. Each digital step is given by operators C ¼ expð−iθCΣiσ

i
zÞwith θC ¼ π=32 andD ¼ expð−iθDΣi<jσ

i
ϕD
σjϕD

Þ, with θD ¼ π=16

and ϕD ¼ 0. (b) Six-body interaction with six spins. F ¼ expð−iθσzÞ with θ variable, and 4D ¼ expð−iθ0Σi<jσ
i
ϕ0
σjϕ0

Þ, with θ0 ¼
π=4 and ϕ0 ¼ 0. Bounds for the quantum process fidelity Fp are given at θ ¼ 0.25π. Lines, exact dynamics; unfilled shapes, ideal
digitized; filled shapes, data (squares, P0; diamonds, P1; circles, P2; triangles pointing up, P3; triangles pointing right, P4; triangles
pointing down, P5; triangles pointing left, P6, where Pi is the total probability of finding i spins pointing down). Adapted from
Lanyon et al., 2011.
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including the Haldane phase (Haldane, 1983). Adding optical
pumping as an incoherent process to the set of operations was
used by Barreiro et al. (2011) to create the ability to engineer
open-system dynamics, and show the dissipative preparation
of multiqubit stabilizer states for quantum error correction.
Evolution by DQS can also be combined with standard
computational gates to measure quantities of interest. A digital
simulation of the two-site Fermi-Hubbard model was given
by Linke et al. (2018). After a Trotterized adiabatic ramp
composed of two-qubit XX interactions and single-
qubit rotations, the second Rényi entropy was measured. In
contrast to the approach taken by Brydges et al. (2019), this is
achieved by creating two copies of the state and measuring the
expectation value of the SWAP operator following (Horodecki
and Ekert, 2002; Johri, Steiger, and Troyer, 2017).
The DQS approach has also been proposed for quantum

field theory simulations using trapped ions (Bañuls et al.,
2019). The Schwinger model, an example of a lattice gauge
theory, describes fermions coupled to an electromagnetic field
in one spatial dimension. After mapping the model to qubits
with the Jordan-Wigner transformation using open boundary
conditions, the Hamiltonian reads (Muschik et al., 2017;
Kokail et al., 2019)

ĤS ¼ w
XN−1

n¼1

ðσ̂þn σ̂−nþ1 þ σ̂−n σ̂
þ
nþ1Þ þ

m
2

XN
n¼1

ð−1Þnσ̂zn þ g
XN−1

n¼1

L̂2
n;

ð53Þ

where n labels the lattice sites. Following a Kogut-Susskind
encoding, spin-down (spin-up) on an odd (even) lattice site
indicates the presence of a positron (electron). The first term
represents particle-antiparticle pair creation and annihilation
with coupling w. The second term is a mass term and the
third term represents the energy of the electric field L̂n with
coupling g. The model reproduces key features of more
complex high-energy physics theories such as quantum
chromodynamics (Gattringer and Lang, 2010), which are
extremely challenging for classical numerical methods.
An experiment realizing the Schwinger model in a

trapped-ion spin chain was implemented by Martinez et al.
(2016)) and showed good agreement with the ideal evolu-
tion for the real-time dynamics of a two-site (four-qubit)
model. The difficulty in mapping gauge theories to spins
lies in the infinite-dimensional Hilbert space of the gauge
field operators. Instead of truncating the model to the
size of the simulator, Martinez et al. analytically integra-
ted out the gauge fields using Gauss’s law, allowing the
electric field to be expressed in terms of Pauli operators:
L̂n ¼ ϵ0 − ð1=2ÞΣN

l¼nþ1½σ̂zl þ ð−1Þl�. This creates a spin
Hamiltonian with asymmetric long-range couplings (Hamer,
Weihong, and Oitmaa, 1997), which can be directly imple-
mented by a sequence of multi-ion spin-spin operations
(Martinez et al., 2016; Muschik et al., 2017). By construction,
the scheme constrains the evolution within the subspace
allowed by Gauss’s law and hence maintains the gauge
invariance of the theory (Muschik et al., 2017). These
features, as well as the linear scaling of the number of gate
operations and qubits with lattice size, make DQSs with

trapped ions a promising avenue for the simulation of more
complex gauge theories.
Quantum walks provide an alternative framework to dis-

cretize a unitary evolution for a DQS. Quantum walks, the
quantum equivalent of classical random walks (Childs et al.,
2003), see a system evolve into a discrete grid or continuum of
spacial locations based on the superposition of a quantum coin.
Discrete step quantum walks have been mapped to represent
simulations of different physical systems (Chandrashekar,
Banerjee, and Srikanth, 2010; Di Molfetta and Pérez, 2016),
including the evolution of a particle under the Dirac equation
(Mallick et al., 2019). The latter was realized in trapped ions by
mapping the position space to multiqubit spin states, where
different particle masses were chosen by varying the weight of
the quantum coin (Huerta, Alderete et al., 2020). Trapped-ion
experiments have previously realized quantum walks (Schmitz
et al., 2009; Zähringer et al., 2010) and separately a Dirac
equation (Gerritsma et al., 2010) simulation, using the har-
monic-oscillator degrees of freedom in the trap rather than
mapping to spins. A nonvariational digital simulation of spin
models was also performed with superconducting qubits
(Salathé et al., 2015).

B. Variational quantum simulation

VQS implements the versatile classical method of varia-
tional simulation (Balian and Vénéroni, 1988; Szabo and
Ostlund, 2012; Shi, Demler, and Ignacio Cirac, 2018) on a
quantum computer by employing a quantum-classical hybrid
approach. Hybrid quantum algorithms are a promising way to
solve potentially difficult problems on non-fault-tolerant,
near-term quantum systems (Preskill, 2018) by combining
classical and quantum resources. They distribute the task
between a quantum and a classical computer. The quantum
system is running a parametrized sequence of operations to
generate a classically intractable state of interest following an
approximate evolution under a Hamiltonian or a quantum gate
sequence. The classical system varies the parameters to
minimize a cost function evaluated by measuring the quantum
state, a task that is considered relatively easy based on its
complexity class (Yuan et al., 2019). Employing trapped-ion
spin simulators, this concept has been used to train a
generative model, a routine from classical machine learning,
using an ion-trap-based digital quantum circuit with up to
26 parameters (Zhu et al., 2019). Zhu et al. showed that the
choice of optimizer is crucial as the parameter space grows.
One of the challenges of this approach lies in the cost function
landscapes, which can exhibit so-called barren plateaus
(McClean et al., 2018), making optimization hard. Finding
the classical optimization strategy and making efficient use of
quantum resources is an active area of research (Wecker,
Hastings, and Troyer, 2015; Yang et al., 2017; Cirstoiu et al.,
2019; Sundar et al., 2019).
VQS employs such a hybrid approach to simulating

physical models. For solving static problems, the Rayleigh-
Ritz variational method is generalized to the quantum regime.
The ground-state energy of a Hamiltonian Ĥ ¼ λiĥi, given as
a linear combination of tensor products of local operators ĥi,

can be estimated by considering trial wave functions jϕðθ⃗Þi
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with parameters θ⃗ ¼ ðθ1; θ2;…Þ and approximating the
ground-state energy using an upper bound (Yuan et al., 2019)

E0 ≤ Eest
0 ¼ min

a⃗
hϕða⃗ÞjĤjϕða⃗Þi: ð54Þ

Eest
0 is obtained by preparing jϕðθ⃗Þi through a sequence of

parametrized quantum operations. Different circuit parameters

implement different instances of θ⃗, and hϕða⃗ÞjĤjϕða⃗Þi is
obtained by measuring each term hϕða⃗Þjĥijϕða⃗Þi and calcu-
lating the linear combination given by fλig. A classical
optimization routine such as a gradient-descent algorithm
uses this value as a cost function to converge to Eest

0 .
An illustration of this method was presented by Kokail et al.

(2019), who performed a VQS of the Schwinger model
described in Sec. V.A. Starting from jΨ0i ¼ j↑↓…↑↓i, which
corresponds to the bare vacuum state, they applied finite-range
Ising interactions (see Sec. I.C.2) to all ions and alternated
with individual σ̂z shifts realized with a Stark-shift beam. The
set of discrete operations used in this ansatz enforces the
symmetries of the problem, namely, Gauss’s law and gauge
invariance. Each operation is parametrized and the cost

function is given by hΨðθ⃗ÞjĤSjΨðθ⃗Þi, where ĤS is the

Schwinger Hamiltonian from Eq. (53) and jΨðθ⃗Þi is the trial
wave function. The cost function is evaluated by expressing
ĤS as a string of Pauli operators and measuring their expect-
ation values by projecting the experimental output state in
the appropriate basis. An adaptive classical optimization
process based on the dividing rectangles algorithm (Liu et al.,
2015) is employed in a quantum-classical feedback loop to
find the minimum. At the minimum, the classical parameters

θ⃗0 describe a sequence to prepare the approximate ground-
state wave function, and the cost function gives an upper
bound estimate of the ground-state energy. Kokail et al. (2019)
used this method with 20 (16) ions to optimize over an up to
15-dimensional parameter space and achieve 85% (90%)
ground-state fidelity and an estimate of the ground-state
energy within 2σ uncertainty. One of the challenges in
variational quantum algorithms is the verification of conver-
gence since classical simulation cannot provide a measure of
success. For eight ions, Kokail et al. (2019) used the variance
of the cost function as a termination criterion by measuring the
Hamiltonian in additional sets of bases to determine hĤ2

Si,
making the optimization “self-verifying.” In a final eight-ion
measurement, a phase transition (Byrnes et al., 2002) was
observed by varying the mass in the Schwinger Hamiltonian
and observing an order parameter (Kokail et al., 2019). Here
the Rényi entropy was shown to peak at the critical point using
the method described by Brydges et al. (2019). To over-
come the deep circuits required for digital lattice gauge
theory simulations, an analog approach with tailored spin-
spin interactions in an ion chain was recently proposed
(Davoudi et al., 2020).
Different ways to construct circuits or sequences of quan-

tum operations for preparing the trial wave function have been
used. On the one hand, there is the so-called hardware-
efficient ansatz as used by Kokail et al. (2019), who
constructed the sequence from available operations without

trying to reproduce the precise problem Hamiltonian. It is
straightforward to implement but more susceptible to opti-
mization problems like barren plateaus (McClean et al.,
2018). On the other hand, the physically inspired ansatz
prescribes a more problem-specific construction for the trial
states based on unitary coupled-cluster (UCC) theory, as
mentioned later. The cost function tends to better match the
underlying problem, but it can quickly lead to deep circuits as
the complexity of the physical system increases (Shehab, Kim
et al., 2019).
For the simulation of physical models two flavors of

variational algorithms are distinguished, which are both based
on the VQS method but used in different domains of
application, the VQE (Peruzzo et al., 2014) for the determi-
nation of Hamiltonian eigenvalues (Yuan et al., 2019), such as
in the determination of ground-state and excited state energies
in quantum chemistry, and the QAOA (Farhi, Goldstone, and
Gutmann, 2014) for combinatorial optimization such as graph
problems and approximate state preparation. In the following
sections, results on both are reviewed from recent work with
trapped ions. We note that a probabilistic variant has also
been proposed for implementation with trapped ions (Zhang
et al., 2020).

1. Variational quantum eigensolvers

The VQE is a DQS algorithm for the calculation of operator
eigenvalues that has been employed to tackle molecular
electronic structure and molecular dynamics problems in
quantum chemistry (Peruzzo et al., 2014; Yung et al.,
2014; McClean et al., 2016) as an efficient alternative to
quantum phase estimation (Aspuru-Guzik et al., 2005). Under
the Born-Oppenheimer approximation, which fixes the inter-
nuclear distances, the quantum chemistry Hamiltonian can be
written in a second quantization formulation using a basis of
molecular orbitals. These are formed following the Hartree-
Fock method by a linear combination of atomic orbitals
(Helgaker, Jørgensen, and Olsen, 2000). The electronic part
of the Hamiltonian then reads

Ĥ ¼
XM
pq

hpqâ
†
pâq þ

1

2

XM
pqrs

hpqrsâ
†
pâ

†
qârâs; ð55Þ

where the summation is over all of the M molecular basis
states. The factors hpq and hpqrs are related to one-electron
and two-electron transitions, respectively, and are calculated
numerically (Yung et al., 2014). The fermionic creation and
annihilation operators fulfill fâ; â†g ¼ 1, which enforces the
antisymmetry of the wave function. The Hamiltoninan is
mapped to spins (Jordan and Wigner, 1928; Bravyi and
Kitaev, 2002) and the expectation values are calculated for
trial wave functions of the ground state, generated via an
ansatz circuit as previously described. A reference state, which
represents a classical approximation to the ground state such
as a Hartree-Fock solution, usually a product state, can be
chosen as the initial state. A physically inspired ansatz circuit
for this type of problem is the UCC (Helgaker, Jørgensen, and
Olsen, 2000). The scheme prescribes a series of fermionic
operators called cluster operators T ¼ T1 þ T2 þ � � � þ TN
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for an N-electron system (Peruzzo et al., 2014). These are
essentially electron-hopping operators of increasing order that
form a unitary to evolve the system into the ground state
through the exploration of Hilbert space by going to increas-
ing Hamming distances from the initial state (McClean et al.,
2016), ÛUCC ¼ eθðT−T†Þ. Using a pseudo-time-evolution of
this unitary by first-order Trotterzation is a good approxima-
tion of this evolution (Yung et al., 2014; Hempel et al., 2018):

ÛUCC ≃ ΠieθiðTi−T
†
i Þ. In the spin basis, this creates circuits of

higher-order spin-spin interactions, which can be realized on a
quantum computer, particularly in trapped ions via multi-ion
Ising operations, or Mølmer-Sørensen (MS) gates. Classical
coupled-cluster calculations can be employed to find reason-
able starting values for θ (Romero et al., 2018). The computa-
tional complexity of the UCC method scales polynomially
with the number of molecular orbitals M. The procedure can
be repeated for different nuclear configurations to sample out
the energy surface. Alternatively, a quantum phase estimation
algorithm can be employed to this end (Yuan et al., 2019).
We later document recent implementations of VQE with

trapped ions, although VQE has also been implemented with
other experimental platforms (Peruzzo et al., 2014; O’Malley
et al., 2016; Kandala et al., 2017; Colless et al., 2018;
Dumitrescu et al., 2018; Arute et al., 2020a). The VQE
was implemented in trapped 171Ybþ ions (Shen et al., 2017) to
simulate the electronic structure of the molecular cation
HeHþ. Instead of Ising operations, Shen et al. used the four
available states in the ground level of a 171Ybþ ion coupled by
microwave-driven and radio-frequency-driven transitions. The
experiment matches the ground-state energy from exact
diagonalization. Shen et al. also looked for excited states
by measuring the expectation value of a changed target
Hamiltonian to hðĤ − λ1Þ2i. The measurement involved
scanning λ and looking for zero-valued expectation values
and resolved three out of four excited states.
Hempel et al. (2018) mapped two molecular problems to

spins realized in chains of trapped 40Caþ ions, the hydrogen
molecule (H2), and lithium hydride (LiH). For H2, the
molecular orbitals are formed by linear combinations of the
two 1s orbitals of each atom. The Bravyi-Kitaev (Bravyi and
Kitaev, 2002) and Jordan-Wigner (Jordan and Wigner, 1928)
encodings are used to map the problem onto two and four
qubits, respectively. The former is more efficient since both
the Hamiltonian and the UCC ansatz can be reduced to two
qubits by appropriate choice of reference state (O’Malley
et al., 2016). In both mappings, the UCC operator leads to a
single-parameter ansatz circuit, which is implemented using a
pair of MS gates based on a technique developed by Müller
et al. (2011). They made a full sweep of the parameter as well
as a VQE optimization to map out the ground-state potential
energy using a Nelder-Mead search algorithm, which was
found not to converge in some instances due to the presence
of noise. For the simulation of LiH, a minimal basis set for
the molecular orbitals was chosen. The four electrons fill the
energy-ordered orbitals, as determined by a Hartree-Fock
calculation. The UCC ansatz is truncated to single and double
excitations (UCCSD) and an active space of two electrons and
three orbitals is identified (Kandala et al., 2017). The two core
electrons can be considered not to contribute to molecular

bonding (Roos, Taylor, and Sigbahn, 1980). Using the
classical theory of configuration interaction of singles and
doubles (Shavitt, 1984), they further reduced the active
space to two singlet excitations. This active space is illustrated
in Fig. 34(a). The resulting UCC unitary was mapped to
spins via Bravyi-Kitaev encoding, which results in a three-
qubit operator with two circuit parameters, ÛUCCSDðα; βÞ ¼
e−iασ

x
0
σy
1e−iβσ

x
0
σy
2 , which was realized in the circuit shown in

Fig. 34(c). Hempel et al (2018) performed a grid scan of the
parameters at different internuclear distances and recon-
structed the potential energy curve for the electronic ground
state by fitting the minimum in two ways, by Gaussian process
regression (GPR) and to a 2D quadratic surface, where the
latter yields good results, reproducing the well depth within
statistical uncertainties; see the line plots in Fig. 34(b).
Hempel et al. (2018) also performed a feedback VQE using
a classical optimizer that incorporates elements of simulated
annealing and matches the results of the grid scan, see data
points in Fig. 34(b).
Nam et al. (2020) estimated the ground-state energy of the

water molecule (H2O). The UCC ansatz circuits are optimized
by taking advantage of an active subspace and by sorting the
UCC operators into bosonic and nonbosonic excitations from
the Hartree-Fock ground state. Bosonic terms refer to exci-
tations of two electrons into a molecular orbital such that their
spins pair up. These excitations can be represented by a single-
qubit operation. Nonbosonic excitations are implemented via
the Jordan-Wigner transformation. The resulting circuits are
further optimized by term ordering (Hastings et al., 2014).
Nam et al. presented the cost of adding an increasing number
of ansatz terms to the circuit in terms of qubits and MS gates
[depicted in Fig. 35(a)]. Their results show that chemical
accuracy can be reached with about 15 terms, which corre-
sponds to 11 qubits and 140 MS gates. Experimentally, Nam
et al. realized circuits with up to three terms and three qubits.
The measurement results agree within errors with classical
calculations, as shown in Fig. 35(b). Finally, they proposed the
implementation of this simulation problem with a growing
number of terms as a benchmark for quantum computing
platforms (Nam et al., 2020).
The VQE was used by Shehab, Landsman et al. (2019) to

solve a nuclear physics problem, finding the binding energy
of the deuteron nucleus. The nuclear interaction was modeled
on pionless effective field theory following Dumitrescu et al.
(2018). The Hamiltonian is expressed in the N-oscillator
basis

ĤD ¼
XN−1

n;n0¼0

hn0jðT̂ þ V̂Þjniâ†n0 ân; ð56Þ

where the operators â†n and ân create and annihilate,
respectively, a deuteron in the harmonic-oscillator s-wave
state. Using finite harmonic-oscillator spaces introduces
errors by imposing sharp cutoffs in both position and
momentum space, called IR and UV errors. These depend
on the basis size and the potential (König et al., 2014). Using
the Jordan-Wigner transformation (Shehab, Landsman et al.,
2019), one finds the qubit Hamiltonians for N ¼ 2, 3, and 4.
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The value of the largest coefficient in the Hamiltonian grows
with basis size N and its uncertainty bounds the overall
uncertainty of the Hamiltonian expectation value. This
means that increasing the basis, which already comes with
more gates and qubits, also requires an increase in the
number of measurements that need to be taken to reproduce
the gain in model accuracy experimentally. The UCC ansatz
used is based on single excitations of the different s-wave
states (Lu et al., 2019) and leads to an iterative scheme for
circuit construction with N − 1 variational parameters.
Shehab, Landsman et al. (2019) performed a line sweep
of the parameters for N ¼ 4 and measured the expectation
values at theoretically optimal parameters for N ¼ 2, 3, and
4. An error mitigation scheme was also used, based on
Richardson extrapolation (Temme, Bravyi, and Gambetta,
2017; McArdle, Yuan, and Benjamin, 2019), by which each
circuit is implemented with an increasing number of pair-
wise-canceling MS gates, i.e., 3, 5, 7,… MS gates per actual
circuit gate. These additional measurements are used to scale
the noise and extrapolate the value of each Hamiltonian term
to zero noise. These extrapolated values are then combined to
give the final ground-state energy estimate. For the three- and
four-qubit ansatz circuits the theoretical predictions lie
within the error bars of the experimental results (Shehab,
Landsman et al., 2019).
The VQE implementation of the deuteron nuclear binding

energy problem was also improved upon by Shehab, Kim

et al. (2019) by applying the so-called past-light-cone method
to the VQE circuits. This breaks them down into minimal
circuits for each term in the Hamiltonian at the cost of a larger
number of measurements. Shehab, Kim et al. showed a
significant reduction of 80% in the error of the estimated
ground-state energy. This made it consistent with the theo-
retical value without using error mitigation.
The VQE is also applicable to condensed matter problems.

Rungger et al. (2019) designed and implemented a variational
algorithm to solve dynamical mean-field theory (DMFT)
problems. DMFT is a correction to density functional theory
and describes materials with strongly correlated electrons
(Georges et al., 1996). The model problem consists of an
interacting impurity coupled to a bath and is hard to solve
using classical means. After the Jordan-Wigner transformation
the Hamiltonian can be expressed in terms of orbital electron
creation and destruction operators, which in turn are linear
combinations of Pauli operators. The number of qubits
required is 2ðNimp þ NbathÞ, where Nimp and Nbath are the
number of impurity and bath spin orbitals included, respec-
tively. Rungger et al. (2019) used a hardware-efficient ansatz.
The procedure consists of two nested optimization loops. The
inner loop is a quantum-classical hybrid VQE optimization
that solves for the eigenvalues based on a set of impurity
Hamiltonian parameters. The outer loop is purely classical
and calculates local retarded Green’s functions for the original
lattice model and the impurity problem. It updates these

(a)

(c)

(b)

FIG. 34. Variational quantum eigensolver simulation of the lithium hydride (LiH) molecule with three trapped-ion qubits. (a) LiH
molecular orbitals (MOs) formed out of atomic orbitals (AOs) contributed by each element. The active space in which the implemented
UCC excitation operators act is highlighted in yellow (light gray). (b) The theoretical LiH potential energy surface calculated for the
minimal basis set (black solid line) is shown in comparison to the experimentally obtained results, offset to overlap at maximum distance
R to better illustrate the well-depth differences in the grid-scan reconstructions. The data points result from sampling the energy
landscape using the VQE algorithm or a parameter grid scan and fitting the explored space with a GPR-based machine learning
algorithm (dashed line) or a 2D quadratic fit [blue (gray) solid line]. The error bars are obtained from the fits with the underlying data
weighted by quantum projection noise. (c) Abstract quantum circuit implementing each of the two target UCCSD unitary operators for
the qubits indexed Q0, Q1, and Q2. A fully entangling gate (MS) acts locally between the enclosed qubits and surrounds a local qubit
rotation z quantified by parameters α and β, respectively. Adapted from Hempel et al., 2018.
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parameters until a set of self-consistent impurity parameters is
achieved (Liebsch and Ishida, 2012). From these, the elec-
tronic structure of the system can be calculated.

2. Quantum approximate optimization algorithms

The QAOA (Farhi, Goldstone, and Gutmann, 2014) is a
framework for using a quantum simulator to perform tasks
such as combinatorial optimization or solving satisfiability
and graph problems. The QAOA can also be employed for
producing highly entangled target states or finding the ground
state and energy spectrum of critical Hamiltonians (Ho and
Hsieh, 2019). The QAOA encodes the objective function of
the optimization in a spin HamiltonianHA, which is applied in
a bang-bang protocol followed by a noncommuting mixing
operator HB and can provide resource-efficient approximate
answers, making it attractive for applications on current
systems with limited gate depth or coherence time; see
Fig. 36(a). The sequence is repeated p times, where each
layer i is characterized by the variational parameters or angles
ðγi; βiÞ, giving rise to the following evolution:

jβ⃗; γ⃗i ¼
Yp←1

i

e−iβiHBe−iγiHA jψ0i; ð57Þ

where jψ0i is the initial state.
For certain classes of problems the QAOA has been

shown to provide results that cannot be generated efficiently
on a classical device (Farhi and Harrow, 2016), but in
practice its performance is highly problem-dependent and

problem-instance-dependent (Willsch et al., 2019). Later we
highlight recent QAOA implementations in trapped ions,
although there have been implementations of the QAOA in
other quantum computing platforms (Otterbach et al., 2017;
Qiang et al., 2018; Bengtsson et al., 2019; Willsch et al.,
2019; Arute et al., 2020b).
A seven-qubit digital processor based on 171Ybþ trapped-

ion spins was used to execute a QAOA-inspired protocol (Zhu,
Johri et al., 2019) in order to generate a “thermofield-double”
(TFD) state (Wu and Hsieh, 2019). The TFD state is a pure
two-mode squeezed state that behaves as a thermal state for
one mode when traced over the other mode, and it is of great
interest in a number of areas of physics. These states provide a
way to prepare thermal Gibbs states of a many-body
Hamiltonian in a quantum simulator, which underpin phe-
nomena like high temperature superconductivity (Lee,
Nagaosa, and Wen, 2006) and quark confinement in quantum
chromodynamics (Gross, Pisarski, and Yaffe, 1981). TFD
states also play a key role in the holographic correspondence,
where they represent so-called traversable wormholes
(Gao, Jafferis, and Wall, 2017; Maldacena, Stanford, and
Yang, 2017), and a number of approaches for their preparation
have been proposed (Maldacena and Qi, 2018; Cottrell et al.,
2019; Martyn and Swingle, 2019; Wu and Hsieh, 2019). A
TFD state corresponding to inverse temperature β is defined
on a joint system of two identical Hilbert spaces A and B as

jTFDðβÞi ¼ 1

ZðβÞ
X
n

e−βEn=2jniAjniB; ð58Þ

(a) (b)

FIG. 35. VQE simulation of the ground-state energy of the water molecule (H2O). (a) Metrics for each circuit are labeled HFþ N, as
up to N of the most significant interaction terms are added to the ansatz state. The bosonic terms through HFþ 5 can be represented
as pair excitations to reduce the qubit resource requirements, while the MO selection strategy prunes the two least significant
molecular states to reduce the qubit count slightly at the expense of accuracy at the millihartree level. Energies should be compared to
the full configuration-interaction (FCI) ground-state energy, which is the exact result of diagonalizing the complete Hamiltonian in the
minimal chemical basis. (b) Comparison of ground-state energy estimates as additional interactions are included in the UCC ansatz
state (labeled HFþ N for N significant determinants). The orange diamonds indicate experimental results from implementations with
up to three qubits, with 1σ error bars from the bootstrap distribution. The remaining points are from the in silico VQE simulation and
show how the ansatz states converge to the full configuration-interaction ground state (indicated by the dot-dashed line).
Computational error equivalent to the bound for chemical accuracy (1.6 mHa) is indicated by the shaded region. Adapted from
Nam et al., 2020.
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where ZðβÞ is a normalization factor and jniA and jniB are the
eigenstates in space A and B with corresponding energy En.
Zhu, Johri et al. (2019) generated a TFD state similar in

form to Eq. (58) under a nearest-neighbor transverse-field
Ising Hamiltonian at various temperatures, with three qubits
per subsystem. Preparation starts by initializing a product of
Bell-pair singlets j↓iAj↑iB − j↑iAj↓iB between pairs of A and
B qubits. This is an infinite-temperature TFD state since ρA is
maximally mixed. The evolution alternates between intersys-
tem coupling HAB ¼ P

i Xi;AXi;B þ Zi;AZi;B and the intra-
system Hamiltonians HA þHB, where HA and HB are
identical transverse-field Ising Hamiltonians of the subsys-
tems HXX þ gHZ ≡P

L
i¼1 XiXiþ1 þ g

P
L
i¼1 Zi. This evolu-

tion was approximated by variational application of these
Hamiltonians. The sequence was executed with theoretically
optimal parameters for p ¼ 1 and found to reproduce the
expected intersystem and intrasystem correlators well. Zhu,

Johri et al. also used a related approach (Ho, Jonay, and Hsieh,
2019) to directly prepare the zero-temperature ground state
of the quantum critical transverse-field Ising model with
seven trapped-ion spins using quantum-classical feedback,
starting from a random point for p ¼ 1 and from the ideal
parameters for p ¼ 2.
The QAOA approach was used in an ion-trap system to

approximately generate the critical ground-state energy of
the long-range antiferromagnetic transverse-field Ising model
[Eq. (25)] (Pagano et al., 2020), where the spin-spin inter-
action Jij is as defined in Eqs. (22) and (23) and B is the
transverse field. Here we set HA as the Ising-coupling term
and HB as the field term in Eq. (25). The QAOA was
employed with up to 40 qubits in this system, using both
grid search and closed-loop approaches. In the grid search

approach, the entire parameter space ðβ⃗; γ⃗Þ was explored
experimentally to find the optimum; in the closed-loop

FIG. 36. QAOA applied to transverse-field long-range Ising model. (a) QAOA protocol. The system is initialized along the y direction
on the Bloch sphere in the ground state of the mixing Hamiltonian HB, namely, jþi⊗N . The unitary evolution under HAðBÞ is
implemented for angles γiðβiÞ and repeated p times. At the end of the algorithm global measurements in the x and the y basis are
performed to compute the average energy Eðβ⃗; γ⃗Þ ¼ hβ⃗; γ⃗jHjβ⃗; γ⃗i. The measurement results are then processed by a classical
optimization algorithm to update the variational parameters. (b) Closed-loop optimization for p ¼ 1 andN ¼ 20 qubits. Starting from an
initial guess, the local gradient is approximated by performing the energy measurements along two orthogonal directions in parameter
space. To quantify the performance of the QAOA, the dimensionless quantity η≡ ½Eðβ⃗; γ⃗Þ − Emax�=ðEgs − EmaxÞ is used, where
Emax ðEgsÞ are the energies of the highest (lowest) excited state, therefore mapping the entire many-body spectrum to the [0, 1] interval.
The algorithm converges after about seven iterations. Adapted from Pagano et al., 2020.
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approach the analog trapped-ion quantum simulator was
interfaced with a greedy gradient-descent algorithm to opti-
mize the measured energy [Fig. 36(a)] starting from an initial
guess. In the p ¼ 1 QAOA, the optimization trajectory in the
experiment can be visualized on the theoretical performance
surface as shown in Fig. 36(b).
Shehab, Kim et al. (2019) mapped the max-cut problem for

a specific five-node graph to a five-qubit trapped-ion proces-
sor and solved it approximately using an optimized QAOA
protocol that reduces circuit width and depth by splitting it
into circuits for each Hamiltonian term or correlator at the cost
of a larger number of measurements. For the five-node dragon
graph, Shehab, Kim et al. reported a 36% improvement in
the accuracy of the solution over the standard circuit in their
system.
Finally, we note that VQS can also be used to study

dynamics by employing generalizations of time-dependent
variational principles (Broeckhove et al., 1988) to simulate
real (Li and Benjamin, 2017; Heya et al., 2019) and imaginary
(Chen et al., 2019; Jones et al., 2019; McArdle et al., 2019)
time evolution of pure quantum systems, as well as mixed
states (Yuan et al., 2019).

VI. OUTLOOK AND FUTURE CHALLENGES

Quantum interacting spin models are among the simplest
many-body quantum systems with nontrivial features that can
elude classical computational approaches. Trapped atomic ion
spins offer the ability to implement and control quantum spin
models with tunability of the interaction form and range.
Much of the research in this field has concentrated on studies
of the long-range transverse Ising model, which can feature
frustrated ground states with associated degeneracies and
entanglement in the ground state. The many types of phase
transitions and dynamical processes in this system form a
fruitful test bed for studying quantum nonequilibrium proc-
esses, in many cases challenging classical computational
power even for small numbers of spins. There are many
extensions in this physical system to simulating more complex
spin models with trapped ions such as Heisenberg couplings
(Graß and Lewenstein, 2014), higher-dimensional spin mod-
els, and interactions involving three or more spins. These
future directions may allow for the quantum simulation of
more exotic spin phases such as spin liquids (Balents, 2010) or
topological orders in spin systems such as the Haldane chain
(Haldane, 1983) or the Kitaev lattice (Kitaev, 2006). There are
a number of technical challenges to overcome in the path of
scaling trapped-ion systems up to ∼100 qubits and beyond.
However, none of these obstacles are fundamental and many
groups have shown effective mitigation techniques in this
growing area of research. With a single linear chain of ions, it
should be possible to extend the number of ions to hundreds
using anharmonic trapping potentials that generate uniform
spacing and thus avoid structural phase transitions for larger
ion crystals (Lin et al., 2009; Pagano et al., 2018). Two
technical challenges include the increased sensitivity of
equally spaced ion crystals to background fluctuating electric
fields (Cetina et al., 2020) and the shorter lifetime of the ion
chain due to collisions with the background gas. Solutions to
these challenges include the use of cryogenic trapped-ion

systems, which significantly lower the vacuum pressure so
that storage times of hours or longer can be achieved with
large ion crystals (Poitzsch et al., 1996; Pagano et al., 2018)
and the use of sympathetic cooling with multiple species of
ions in the system (Larson et al., 1986; Lin et al., 2009; Chou
et al., 2010; Pino et al., 2020), allowing the background
heating to be quenched without disturbing the spins in the
simulation.
With a 1D ion chain, it is possible to simulate any frustrated

spin graph with multiple engineered laser pulses (Korenblit
et al., 2012; Davoudi et al., 2020). However, it is possible
to further increase the number of ions in a quantum simulator
by using higher-dimensional ion crystals (Wang, Shen, and
Duan, 2015). The Penning trap geometry is amenable to 2D
and 3D crystal structures, as discussed in this review. In a rf
trap, 2D or 3D ion crystals are necessarily accompanied by
significant rf micromotion for ions not positioned at a rf null
(Dehmelt, 1968), which is limited to a point or a line in space.
Although micromotion introduces a number of subtleties for
laser cooling, gate operations, and ion detection, it is a
coherent and well-controlled motion whose effects can be
mitigated through proper gate design and the engineering of
spin interactions (Shen, Zhang, and Duan, 2014; Wang, Shen,
and Duan, 2015). Alternatively, an array of rf traps can be
engineered to create multidimensional designer ion crystals
(Cirac and Zoller, 2000; Kumph et al., 2016), although this
may require small distances between the ions and the electro-
des to generate sufficiently strong spin interactions. Apart
from offering an avenue to increase the ion number, 2D and
3D ion crystals provide a natural platform to realize rich
frustrated spin Hamiltonians in a more complicated geometry
that can match the native dimension of the underlying target
spin Hamiltonian.
Finally, we note that well-known modular approaches to

scaling trapped-ion systems can be directly applied to quan-
tum spin simulations. For instance, large numbers of ions can
be grouped in spatially separated modules, where each module
contains many trapped-ion spins with the Coulomb-mediated
spin-spin couplings discussed in Sec. I. Here the system is
scaled by shuttling subsets of ions between modules to extend
the size of the system (Kielpinski, Monroe, and Wineland,
2002; Pino et al., 2020). Because the idle spin states are nearly
perfectly decoupled from ion motion between modules, the
scaling procedure is largely a systems engineering task.
Ultimately, separated modules of trapped-ion crystals can
also be connected via heralded photonic interconnects, even
between separated trap structures, for a remote modular
scalable architecture (Duan and Monroe, 2010; Li and
Benjamin, 2012; Monroe et al., 2014).
Useful quantum simulations should have unambiguous

benchmarks to indicate performance beyond what is possible
with classical computational simulation. As opposed to recent
simulations of random quantum circuit evolution (Arute et al.,
2019), we desire a benchmark that also indicates the useful-
ness of the underlying problem. When we use a quantum
simulator to probe the ground state of a quantum many-body
Hamiltonian, for instance, a possible heuristic bench-
mark could be the ground-state variational energy of the
Hamiltonian. Although in general there is no quantum
algorithm to guarantee that we can successfully find the
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genuine ground state of a many-body Hamiltonian, the
associated variational energy of the approximate ground state
realized by a quantum simulator can always be efficiently
measured by the experimental setup. If such a measured
energy is lower than the energy obtained by any classical
simulation even with the most powerful computers, it is an
indication that the quantum simulator finds a useful solution
that better approximates the ground state of the target
Hamiltonian than any known classical method. There is a
close relationship between spin simulations and quantum
computations with qubits, and the underlying mechanism
behind the Ising couplings in trapped-ion spin simulations is
exactly that used for discrete quantum gates between trapped-
ion qubits (Sørensen and Mølmer, 2000), which are some-
times called Ising gates. Quantum simulations in this sense
can be considered a special case of quantum computation, and
we expect that as trapped-ion quantum computers scale in the
future (Monroe and Kim, 2013; Brown, Kim, and Monroe,
2016; Wright et al., 2019; Pino et al., 2020), so will the reach
of trapped-ion quantum spin simulators.
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