
 

Simulation methods for open quantum many-body systems

Hendrik Weimer*

Institut für Theoretische Physik, Leibniz Universität Hannover,
Appelstraße 2, 30167 Hannover, Germany

Augustine Kshetrimayum

Dahlem Center for Complex Quantum Systems, Physics Department,
Freie Universität Berlin, 14195 Berlin, Germany

Román Orús

Donostia International Physics Center, Paseo Manuel de Lardizabal 4,
E-20018 San Sebastián, Spain
and Ikerbasque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain

(published 24 March 2021)

Coupling a quantum many-body system to an external environment dramatically changes its
dynamics and offers novel possibilities not found in closed systems. Of special interest are the
properties of the steady state of such open quantum many-body systems, as well as the relaxation
dynamics toward the steady state. However, new computational tools are required to simulate open
quantum many-body systems, as methods developed for closed systems cannot be readily applied.
Several approaches to simulating open many-body systems are reviewed, and advances made in
recent years toward the simulation of large system sizes are pointed out.
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I. INTRODUCTION

A. The open quantum many-body problem

Open quantum many-body systems have witnessed a surge
of interest in recent years, chiefly for two reasons. On the one
hand, these systems offer the possibility of using controlled
dissipation channels to engineer interesting quantum many-
body states as the stationary state of their dynamics (Diehl
et al., 2008; Verstraete, Wolf, and Ignacio Cirac, 2009;
Weimer et al., 2010). On the other hand, open quantum
many-body systems are attractive from a fundamental per-
spective, as their dynamics exhibits a wide range of features
not found in equilibrium systems. As in the case of closed
quantum systems, the complexity of the problem scales
exponentially with the size of the system, requiring the use
of sophisticated simulation methods to obtain useful results.
An additional important reason is that systems in nature are
not perfectly isolated. They are constantly interacting with
their environment in the form of heat transfer, decoherence
(Schlosshauer, 2005; Vinjanampathy and Anders, 2016), etc.
In practice, modeling the effect of the environment can be*hweimer@itp.uni-hannover.de
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quite complex, implying that the mathematical description of
open systems is more complex than that of isolated ones.
Thus, to realistically mimic nature through quantum simu-
lation experiments, numerical methods, etc., one needs to take
into account the effects of dissipation.
Open quantum many-body systems are even harder to

simulate on classical computers than closed systems, while
at the same time the stationary state of an open quantum
system is much easier to experimentally prepare than the
ground state of a closed system. These properties make open
quantum systems one of the prime candidates to show a
quantum advantage of quantum simulators over classical
methods within noisy intermediate-scale quantum devices
(Preskill, 2018). However, this requires a thorough assessment
of the capabilities of classical simulation methods, which we
provide in this review.
In our review, we first provide a general introduction to

open quantum many-body systems, placing particular empha-
sis on the key differences relative to simulating closed
quantum systems and on the paradigmatic models that have
emerged in benchmarking simulation methods for open
systems. In the main part, we first review stochastic methods
commonly known as wave-function Monte Carlo techniques,
which are based on a numerical exact treatment of the total
Hilbert space of the problem. We then turn to tensor network
simulation techniques aiming to describe the “physical cor-
ner” of the Hilbert space, i.e., the quantum states that are most
relevant for describing the dynamical evolution and steady
states of open quantum many-body systems. Subsequently, we
review variational methods that employ similar strategies,
including variational methods that are based on a tensor
network description. We also cover phase-space methods and
closely related counterparts. Finally, we include a section on
linked-cluster expansion. Within our review, we do not cover
methods derived from a field-theoretical description of open
quantum systems within the Keldysh formalism, as this was
already extensively covered in a previous review (Sieberer,
Buchhold, and Diehl, 2016). We also do not cover integrable
models (Prosen, 2008, Prosen, 2011a; 2011b; Medvedyeva,
Essler, and Prosen, 2016; Foss-Feig et al., 2017; Guo and
Poletti, 2018) for which analytical techniques such as the
Bethe ansatz can be employed.

B. The Markovian quantum master equation

The state of an open system is described by its density
operator ρ, which can be described as a statistical ensemble of
pure states

ρ ¼
X
i

pijψ iihψ ij; ð1Þ

where pi denotes the probability of finding the system in the
state jψ ii. Note that the decomposition into pure states is not
unique. In our review, we limit ourselves to the discussion of
Markovian systems, i.e., dynamical systems in which the
generator of the dynamics L½ρ� (commonly called the
Liouvillian) depends only on the state at the present time t,
not on the state at earlier times. For an introduction to the
Markovian master equation, see Manzano (2020) or the

lecture notes given by Preskill (2020). Such Markovian
systems form a dynamical semigroup and can be described
by a quantum master equation in Lindblad form

d
dt

ρ ¼ L½ρ�

¼ −i½H; ρ� þ
X
μ

�
LμρL

†
μ −

1

2
L†
μLμρ −

1

2
ρL†

μLμ

�
; ð2Þ

whereH is the Hamiltonian of the system and fLμ; L
†
μg are the

Lindblad operators responsible for the incoherent dynamics
arising from the coupling to an external environment, which
are also known as the jump operators (Gorini, Kossakowski,
and Sudarshan, 1976; Lindblad, 1976) acting at site μ.
The validity of the Lindblad master equation (2) for a

concrete physical system depends on the separation of several
timescales. Considering a system of interest coupled to a
larger environment, one first assumes a weak coupling
between system and environment, such that the entanglement
between system and environment remains low. Furthermore,
the environment must not retain any memory of the system
degrees of freedom. The approximations related to these
conditions are commonly referred to as the Born-Markov
approximation (Breuer and Petruccione, 2002) and require
that the correlation time of the environment τE is much smaller
than the relaxation time of the system τR. Finally, the
differences in eigenfrequencies in the system ωs have to be
large relative to the inverse relaxation time τ−1R .
These approximations are well justified in quantum optical

systems, in particular, atoms coupled to electronically excited
states (Raitzsch et al., 2009; Baumann et al., 2010; Barreiro
et al., 2011; Krauter et al., 2011; Malossi et al., 2014). There
the optical frequencies of the transition leave a large timescale
to observe the complete relaxation to its equilibrium state.
Additionally, the relaxation of the electronic excitation into
the vacuum of the radiation field as the correlation time of the
radiation field is related to the photon frequency (Breuer and
Petruccione, 2002), which again is much larger than the
relaxation rate τ−1R . Artificial atomic systems such as the
nitrogen-vacancy center in diamond (Jelezko et al., 2004; Dutt
et al., 2007; Robledo et al., 2011) offer similar benefits.
Another advantage of quantum optical systems for studying

open quantum many-body systems is the possibility to drive
them with time-dependent laser fields. If all the jump
operators in the master equation describe transitions between
the eigenstates of the Hamiltonian, the resulting steady state of
the system is guaranteed to be a thermal state (Breuer and
Petruccione, 2002). However, if an oscillatory driving term is
added to the system Hamiltonian, it is possible to observe
nonequilibrium steady states in the rotating frame of the
driving. Optically excited atoms can also exhibit strong
interactions when excited to Rydberg states (Saffman,
Walker, and Mølmer, 2010), which can be used to realize a
variety of driven-dissipative quantum many-body systems
(Lee, Häffner, and Cross, 2011; Ates et al., 2012; Glaetzle
et al., 2012; Carr and Saffman, 2013; Lemeshko and Weimer,
2013; Rao and Mølmer, 2013).
There are also interesting solid-state platforms to study

strong interaction and dissipation. One example is that of
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semiconductor polaritonic systems [see Carusotto and Ciuti
(2013)], where semiconductor microstructures are used to
embed quantum wells or quantum dots, becoming a photonic
resonator where strong interactions can be induced. Another
example is that of circuit-quantum electrodynamics (QED)
systems (Fitzpatrick et al., 2017; Ma et al., 2019), where
superconducting circuits can be used to construct Bose-
Hubbard lattices of microwave photons and dissipation can
be engineered, so that one can have a tailored reservoir.
It is important to remark that the Lindblad operators are

usually considered to be local, but this approximation holds
only in the weak-coupling limit. To be more precise, a
Markovian master equation with quasilocal Lindblad oper-
ators holds as long as the coupling between the system and the
environment is weak, which in practice amounts to (1) a slow
development of correlations between system and environ-
ment, (2) fast decay of excitations of the environment, and
(3) neglect of fast-oscillating terms when making a compari-
son to the typical system timescale. One should be careful,
however, since when dealing with strongly correlated systems,
strong interactions within the system of interest may lead to a
breakdown of the local Lindblad dissipation (Wichterich et al.,
2007; Beaudoin, Gambetta, and Blais, 2011). In these cases, it
may be necessary to consider additional steps to derive the
correct Lindblad operators (Reiter and Sørensen, 2012). For
the purpose of our review, we assume that the correct Lindblad
form has already been derived.
Although the Lindblad master equation is widely used to

describe open quantum many-body systems and can also
handle extensions such as time-dependent Hamiltonian driv-
ing, the approximations made in its derivation signal that there
are physical systems that have to be described by other means.
This refers to non-Markovian dynamics (de Vega and Alonso,
2017), where the system retains a memory of its previous
state. One particular area where this plays an important role is
the behavior of systems under continuous measurement
and feedback: while instantaneous feedback gives rise to a
feedback master equation in Lindblad form (Hofer et al.,
2013; Hofer and Hammerer, 2015; Lammers, Weimer, and
Hammerer, 2016), delayed feedback generically results in
non-Markovian dynamics.

C. Steady-state solution versus time evolution

Typically there are two different aspects that are of interest
when studying open quantum many-body systems. First, one
wants to understand the properties of one or several steady
states that the system reaches in the long time limit. This is
similar to understanding the ground state properties of a
closed many-body system. Second, one is interested in the
dynamical evolution of the system toward the steady state.
The latter is particularly interesting when the system exhibits
several steady states that can be reached depending on the
initial condition of the system.
While the requirements for the appearance of a unique

steady state are well understood for finite systems (Spohn,
1976), many-body systems add the additional complication
that the long time limit and the thermodynamic limit do not
necessarily commute. In some cases, even when chiefly
interested in the steady state, it is more efficient to compute

the full time evolution of the system. This is comparable to
imaginary time evolution algorithms to find the ground state
of a closed many-body system. In our review, we contrast the
two approaches and address this distinction when discussing
individual simulation methods in the main part of our review.
Investigating the full time evolution also offers the pos-

sibility to investigate interesting many-body effects during the
relaxation dynamics. For instance, it is possible for open
many-body systems exhibiting a trivial steady state, while the
relaxation behavior is dominated by complex glassy quantum
dynamics (Olmos, Lesanovsky, and Garrahan, 2012).

D. Differences to equilibrium problems

To find the steady state of an open quantum many-body
system, it might first be tempting to take well established
methods for ground state calculations for closed systems and
try to adapt it to the open case. This approach fails in many
cases. For example, quantum Monte Carlo methods that are
highly successful for ground state calculations require one to
rewrite the partition function of the quantum system to a
corresponding classical system. However, for the steady state
of an open system it is unclear a priori [and often incorrect
(Sieberer et al., 2013)] whether the steady state of the system
is a thermal state that can be described in terms of a partition
function. The same argument holds for density functional
theory approaches trying to minimize the ground state energy;
usually, the steady state of an open system is completely
different than the ground state of the Hamiltonian. This is even
true in the limit of infinitely weak dissipation, as the strength
of the dissipation predominantly controls the relaxation rate
rather than the properties of the steady state.
Some methods from the study of closed quantum systems

out of equilibrium can be adopted to open systems; we discuss
these cases in detail here. In general, the simulation of an open
quantum system is computationally much harder than for a
closed system due to the statistical nature of the state.
Additionally, one can benefit to some extent from the vast

body of work committed to the study of classical nonequili-
brium dynamics. For example, the importance of the sym-
metries of the open quantum many-body dynamics is just as
important as in the classical case (Hohenberg and Halperin,
1977) and allows for the classification of dissipative phase
transitions in terms of their universality classes.

E. Paradigmatic models

Within the analysis of ground state many-body problems,
there are a number of particular models that have found
especially wide interest and are often used as a first example to
benchmark a numerical method. These models include the
Ising model in a transverse field, the Heisenberg model, and
the Hubbard model (both bosonic and fermionic). A similar
observation can be made about open quantum many-body
problems, where these paradigmatic models are often derived
from the corresponding ground state counterparts; i.e., the
Hamiltonian dynamics is the same. However, adding dissi-
pation to a closed many-body model can be done in different
ways and can lead to drastically different results. In the
following, we present and briefly discuss the two most
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prominent dissipative many-body models; we provide a more
detailed discussion in later sections when referring to par-
ticular numerical strategies to tackle them.

1. Dissipative Ising model

One of the most widely studied open many-body models in
recent years is the transverse field Ising model with longi-
tudinal dissipation (Lee, Häffner, and Cross, 2011). Its
Hamiltonian is of the form of the conventional Ising model,
given in terms of Pauli matrices σα by

H ¼ h
2

X
i

σðiÞx þ V
4

X
hiji

σðiÞz σðjÞz ; ð3Þ

where h is the strength of the transverse field and V accounts
for the Ising interaction limited to nearest neighbor only.
The dissipation is incorporated in terms of jump operators
of the form ci ¼ ffiffiffi

γ
p

σ−, with γ the rate of dissipative flips from
the spin up to the spin down state described by the spin
lowering operator σ− ¼ σx − iσy. An important aspect is
that the dissipation breaks the Z2 Ising symmetry of the
Hamiltonian; i.e., the quantum master equation does not
exhibit such a symmetry. The model is also relevant to
ongoing experiments in the field of interacting Rydberg atoms
(Carr et al., 2013; Malossi et al., 2014).
Within a mean-field calculation (Lee, Häffner, and Cross,

2011), the model is predicted to support a large range of h
values for which the system exhibits two stable steady states.
We discuss in later sections of our review how different
numerical approaches address the question on the existence of
such a bistable thermodynamic phase. According to mean-
field theory, the bistable region ends in a critical point that
belongs to the Ising universality class (Marcuzzi et al., 2014).

2. Driven-dissipative Bose-Hubbard model

Another important dissipative model is the driven-dissipa-
tive Bose-Hubbard model. While there are different ways to
generalize the famous Bose-Hubbard model (Fisher et al.,
1989) to the dissipative case, the most commonly studied one
involves a dissipative particle loss that can be countered by a
coherent driving term (Carusotto and Ciuti, 2013; Le Boité,
Orso, and Ciuti, 2013). Its Hamiltonian is given by

H ¼ −J
X
hi;ji

b†i bj þ
X
i

�
U
2
n2i − Δωni þ Fðbi þ b†i Þ

�
: ð4Þ

In this model, J describes the hopping of bosons between
neighboring sites, while the on-site interaction U involves the
square of the density operator ni ¼ b†i bi, where b†i and bi
correspond to the bosonic creation and annihilation operators
at site i. Furthermore, Δω is the chemical potential for the
bosons, and F describes the aforementioned coherent driving.
Finally, the quantum jump operators capturing the loss of a
single boson are given by ci ¼ ffiffiffi

γ
p

bi. While the dissipation
term also breaks the Uð1Þ symmetry of the conventional Bose-
Hubbard model, here the symmetry is already broken on the
level of the Hamiltonian by the inclusion of the driving
term F.

As with the dissipative Ising model, the driven-dissipative
Bose-Hubbard model has an intriguing mean-field phase
diagram where several islands of multistability occur in a
way that is somewhat reminiscent of Mott lobes (Le Boité,
Orso, and Ciuti, 2013); see Fig. 1. The stability of the mean-
field solutions has been evaluated by considering density
matrices of the form

ρ ¼
Y
i

ðρMF
i þ δρiÞ; ð5Þ

with ρMF
i the mean-field solution for the steady state.

Expanding the quantum master equation up to first order in
δρi allows one to evaluate the stability by checking whether
none of eigenvalues of the Liouvillian have a positive real part.

II. STOCHASTIC METHODS

The statistical nature inherent in open quantum systems
makes them especially amendable to treating their dynamics
as stochastic processes. For an introduction to the probability-
theoretic concepts and some of the numerical methods
discussed here, see Breuer and Petruccione (2002).
At first glance, the computational complexity of an open

quantum system in terms of the Hilbert space dimension d
appears to be at least Oðd2Þ, as there are Oðd2Þ independent
entries in the density matrix ρ. However, the density matrix at
an initial time t0 can be written as a statistical ensemble of pure
states ρðt0Þ ¼

P
i pijψ iðt0Þihψ iðt0Þj. Instead of propagating

the entire density matrix, the key strategy is to propagate the
individual trajectories consisting of pure states jψ ii to the time
t and then calculate observables according to

hOi ¼ TrfOρg ¼
X
i

pihψ ijOjψ ii; ð6Þ
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FIG. 1. Mean-field phase diagram of the driven-dissipative
Bose-Hubbard model. The numbers inside the plot represent
the number of stable mean-field solutions. The yellow region
exhibits two mean-field solutions, one of which is unstable. From
Le Boité, Orso, and Ciuti, 2013.
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where O is an operator whose expectation value we want to
compute. The probability distribution pi can then be sampled
using standard Monte Carlo techniques, which is why the
approach is often called the wave-function Monte Carlo
method. In most cases, one starts from an initial pure state
jψ0i, which is the same for all trajectories. ForM trajectories,
the probabilities pi are then simply given by pi ¼ 1=M. Since
the trajectories jψ ii are independent from each other, the
statistical error associated with the observable behaves as
ΔO ∼ 1=

ffiffiffiffiffi
M

p
. The entire computational cost isOðMdÞ, which

is already considerably lower than d2 for modest system sizes.
The requirement to repeat the simulationM times results in the
simulation time being significantly longer than for a compa-
rable closed quantum system. Depending on the observable,
M ≈ 1000 is a reasonable choice to get the statistical error
down to a few percent. For spin 1=2 systems, this essentially
means that the system sizes that can be studied in an open
system consist of log2 M ≈ 10 particles fewer than in a closed
system.

A. Quantum state diffusion

The central question now is how a single trajectory jψ ii
can be propagated such that the ensemble of all trajectories
satisfies ρðtÞ ¼Pi pijψ iðtÞihψ iðtÞj. One possibility is to
describe the evolution of the density operator in terms of a
quantum state diffusion approach (Gisin and Percival, 1992;
Percival, 1998), in which the incoherent dynamics from the
Lindblad operators is captured in terms of a stochastic
Schrödinger equation

dψ iðtÞ ¼ −iHeff jψ iðtÞidtþ
X
j

Mjjψ iðtÞidWj; ð7Þ

where dWj refers to the Wiener increments. The effective
Hamiltonian Heff describes the drift of the state vector in the
Hilbert space

Heff ¼ H þ
X
j

2hc†jicj − c†jcj − hc†jihcji: ð8Þ

The diffusion operators Mj describe the random fluctuations
arising from each associated jump operator cj:

Mj ¼ cj − hcji: ð9Þ

This stochastic Schrödinger equation conserves the norm of
the state vector and can be solved by standard techniques for
stochastic differential equations.

B. Quantum jump method

An alternative strategy to propagate a single trajectory is the
quantum jump method (Dalibard, Castin, and Mølmer, 1992;
Dum, Zoller, and Ritsch, 1992; Mølmer, Castin, and Dalibard,
1993; Plenio and Knight, 1998). This approach was reviewed
extensively by Daley (2014), so we cover only the basic
strategy here. Within the quantum jump method, the dynamics
is split into two parts. First, the state jψ ii is propagated under
an effective non-Hermitian Hamiltonian HNH,

HNH ¼ H −
i
2

X
j

c†jcj: ð10Þ

Once the norm of the state drops below a previously drawn
random number r, a quantum jump occurs. Which quantum
jump occurs is drawn from the probability distribution

pj ¼ N hψ ijc†jcjjψ ii; ð11Þ

with N a normalization factor. While the high-order integra-
tion of HNH is straightforward, a high-order simulation of
the quantum jumps requires a more subtle identification of the
time the jump operator needs to be applied. For instance, the
popular QuTiP library (Johansson, Nation, and Nori, 2012,
2013) uses a logarithmic secant method to numerically solve
the equation hψ iðtÞjψ iðtÞi ¼ r for the time t.
No matter which approach is used to propagate a single

trajectory, the computations can be highly parallelized since
the trajectories are independent from each other by construc-
tion. Doing so, it is possible to simulate open many-body spin
1=2 models with up to 20 spins (Raghunandan, Wrachtrup,
and Weimer, 2018). The relatively small system sizes relative
to equilibrium problems demand the development of new data
analysis techniques, such as those concerning finite-size
scaling methods. One possibility is to use anisotropic system
sizes to obtain more data points for a reliable finite-size
scaling extrapolation. Close to a phase transition, the suscep-
tibility χ of a system may be expressed as

χ ¼ Nαχ̃ðλÞ; ð12Þ

where N is the number of particles and α is an exponent
associated with the underlying phase transition (Binder
and Wang, 1989). The reduced susceptibility χ̃ is only a
function of the anisotropy λ of the system and can be
determined by symmetry considerations as well as numerical
data (Raghunandan, Wrachtrup, and Weimer, 2018).
The wave-function Monte Carlo method has been used to

analyze the one-dimensional dissipative Ising model of Eq. (3)
(Ates et al., 2012; Hu, Lee, and Clark, 2013). While previous
works have not found a bistable phase as predicted by mean-
field theory, a significant increase in the spin correlations has
been reported in the same region (Hu, Lee, and Clark, 2013).
Additionally, finite-size scaling of a similar two-dimensional
model believed to lie in the same universality class as the
dissipative Ising model has produced evidence of a first-order
transition (Raghunandan, Wrachtrup, and Weimer, 2018).

III. TENSOR NETWORK METHODS

Tensor network techniques are state-of-the-art numerical
methods for studying strongly correlated, quantum many-
body systems. They are built on genuine quantum correlations
and therefore automatically go beyond the mean-field approx-
imations. Other advantages of these techniques include the
ability to access large system size, no sign problem for
fermionic or frustrated systems, etc. For an introduction to
tensor network techniques and their diagrammatic notation,
see Verstraete, Murg, and Cirac (2008), Cirac and Verstraete
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(2009), Eisert (2013), and Orus (2014, 2019). In the follow-
ing, we discuss how these techniques have been used for
studying open quantum systems.

A. One spatial dimension

We first describe the important numerical techniques that
have been developed for studying open quantum many-body
systems using matrix product states (MPSs), which are a
one-dimensional ansatz of the tensor network (TN) family.
MPSs are by far the most successful and widely used ansatz
in comparison to other ansatz of the tensor network family,
thanks to the success of the density matrix renormalization
group (DMRG) (White, 1992, 1993) and related techniques
(Vidal, 2003, 2004). Not only are its properties well under-
stood, but contraction of MPS tensors can be done efficiently
and exactly unlike the case for its higher-dimensional
counterparts (Schuch et al., 2007; Haferkamp et al., 2020).
For these reasons, MPSs have been used extensively and
produce extremely accurate results, however, mostly in the
context of ground state calculations of many-body systems
(Schollwöck, 2005). The application to open quantum sys-
tems, meanwhile, is more rare and there are only a few known
approaches that one can take for such systems. Not only are
open systems more computationally challenging (since we
need to deal with matrices in place of vectors for the pure
states), but there are also several intrinsic bottlenecks such as
the positivity Hermiticity in the numerical optimization of the
density matrix. Nevertheless, many of the ideas in the pure
state formalism have been successfully applied in the context
of open systems using the concept of matrix product operators
(MPOs) or matrix product density operators (MPDOs) (Pirvu
et al., 2010; Cirac et al., 2017). These approaches have also
been used to study thermodynamic properties of 1D systems.
We discuss them next.

1. Matrix product density operators

In 2004, Verstraete, García-Ripoll, and Cirac (2004) intro-
duced the concept of MPDOs, which extended the MPS
formalism from pure to mixed states. We recall that an MPS
can be written in the following form:

jψi ¼
Xd

s1;…;sN¼1

As1
1 ;…; AsN

N js1;…; sNi; ð13Þ

where the A’s are matrices whose dimension is bounded by
some fixed number D (also called the bond dimension χ) and
d is the physical dimension of the local Hilbert space labeled
by s1;…; sN. A MPDO ρ of N d-level particles with
(D1; D2;…; DN)-dimensional bonds is then defined as

ρ ¼
Xd

s1;s01;…;sN ;s0N¼1

ðMs1;s01
1 ;…;M

sN;s0N
N Þjs1;…; sNihs01;…; s0N j;

ð14Þ

where M
sk;s0k
k are D2

k ×D2
kþ1 matrices that can be

decomposed as

Ms;s0
k ¼

Xdk
a¼1

As;a
k ⊗ ðAs0;a

k Þ�; ð15Þ

where dk is at most dDkDkþ1 and the matrices As;k
k are of size

Dk ×Dkþ1. Such a construction of MPDOs automatically
ensures the positivity of the reduced density matrix ρ. This is
shown in Fig. 2. This MPDO can be expressed in terms of a
pure state MPS by defining it over a larger Hilbert space and
using the concept of purification (Nielsen and Chuang, 2000).
This can be done by associating an ancilla with a Hilbert space
of dimension dk with each physical system. One can then
choose an orthonormal basis jsk; aki for these physical and
ancilla indices. The corresponding MPS for this system can be
written as

jΨi ¼
X

s1;…;sN

X
a1;…;aN

As1;a1
1 ;…; AsN;aN

N js1a1;…; sNaNi. ð16Þ

The MPDO ρ can be obtained by tracing over the ancillas, i.e.,
ρ ¼ TraðjΨihΨjÞ. This process is illustrated in Fig. 3. The
original Ak matrices can be recovered fromMk by doing some
eigenvalue decomposition. To determine the evolution of a
Hamiltonian of a mixed state in real and imaginary time,
Verstraete, García-Ripoll, and Cirac (2004) simply simulated
the evolution of the purification by updating the Ak matrices
using an iterative procedure similar to the standard DMRG in
this technique. The purification could then be used to
reconstruct the density operator at any time and compute
the expectation values of the observables. Such a purification
scheme can be used for mixed state evolution under dis-
sipation as well as for thermal equilibrium and can be
implemented irrespective of periodic or open boundary con-
ditions and finite or infinite systems. The main source of errors
in this procedure, as in most other TN techniques are

(a) (b)

FIG. 2. (a) Writing a wave function jψi as a MPS for six sites.
Each site has a physical dimension d. (b) A density matrix ρ can
be written as a MPDO, an extension of the MPS formalism. Such
a construction automatically ensures positivity of the density
matrix.

(a)

(b)

(c)

FIG. 3. (a) Defining a MPS jΨi over the enlarged Hilbert space
using ancillas (in red). (b) Taking the projector of the MPS with
ancillas. (c) Tracing out the ancillas from the projector to obtain
the MPDO ρ.
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(i) Trotter error and (ii) truncation error. Such an approach
with ancillas was also applied to study the thermodynamic
properties of several spin chains by Feiguin and White (2005).
Although the MPDOs given by Verstraete, García-Ripoll, and
Cirac (2004) are positive by construction, it was shown by
De las Cuevas et al. (2013) that such a MPDO description of
mixed states is not exactly equivalent to that obtained using
local purification schemes. In particular, it was shown that the
bond dimension of the locally purified MPS D0 is not upper
bounded by the bond dimension of the MPDO D. In fact, the
local purification techniques can be much more costly than the
MPDO form itself. Thus, De las Cuevas et al. (2013)
concluded that a description of mixed states that is both
efficient and locally positive semidefinite does not exist and
that one can make only approximations.

2. Vectorized density matrices

Around the same time, Zwolak and Vidal (2004) proposed
another technique to study the mixed state dynamics in one-
dimensional lattice systems. Their technique, which is also
based on MPSs, used the time-evolving block decimation
(TEBD) to simulate the real time Markovian dynamics given
by a master equation with nearest-neighbor couplings. At the
heart of this algorithm lies the concept of a “Choi isomor-
phism.” This is more of a mathematical trick, and it states that
one can rewrite the coefficients of a matrix as those of a vector.
In other words, this is simply turning a bra index into a ket
index for a density matrix (understanding the coefficients of ρ
as those of a vectorized density matrix denoted by jρi♯). And
in the language of TN diagrams, it can be regarded as
reshaping one of the legs and gluing it to the other
(Fig. 4). Once vectorized, jρi♯ now lives in the n-fold tensor
product of Cd2 and the master equation can be written in the
vector form. The mixed state now looks as follows:

jρi♯ ¼
Xd2−1
i1¼0

� � �
Xd2−1
iN¼0

ci1���iN ji1i♯ ⊗ � � � ⊗ jiNi♯; ð17Þ

where jili♯ is an orthonormal basis of Cd2 for site l. Further
assuming that the Liouvillian superoperator L can be decom-
posed into terms involving at most nearest neighbors, i.e.,
L½ρ� ¼Pl Ll;lþ1½ρ�, one could in principle use the usual
TEBD algorithm to solve Eq. (2) by starting from some initial
MPO (shown on the left side of Fig. 4). This was the basic idea
behind the technique used by Zwolak and Vidal (2004). One
of the first applications of this technique was the study of the
driven-dissipative Bose-Hubbard model in the context of
optical resonators (Hartmann, 2010). A more detailed explan-
ation of this vectorization process is given later when we
discuss the case for higher-dimensional systems. Although the

technique has proven to be extremely simple and efficient, the
issue of positivity still remains at large. In fact, checking the
positivity of a reduced density matrix is known to be a difficult
problem in physics (Kliesch, Gross, and Eisert, 2014).
Another approach was taken by Werner et al. (2016) to

solve the problem of positivity. In this approach, instead of
expressing ρ directly as a MPO, at every stage of the algorithm
ρ was kept in its locally purified ρ ¼ XX†, where the
purification operator X is decomposed as a variational tensor
network:

½X�s1;…;sN
r1;…;rN ¼

X
m1;…;mN−1

A½1�s1;r1
m1

A½2�s2;r2
m1;m2

;…; A½N�sN;rN
mN−1 ; ð18Þ

where 1 ≤ sl ≤ d, 1 ≤ rl ≤ K, and 1 ≤ ml ≤ D. A½l� are rank-
4 tensors with physical dimension d, bond dimension D, and
Kraus dimension K. Then a technique similar to the usual
TEBD was used to update the tensors. Such an approach never
required to contract the two TN layers (X and X†) together,
thereby ensuring positivity at all times during the evolution.
The technique also provided more control of the approxima-
tion error with respect to the trace norm.

3. Direct MPO approaches

Cui, Ignacio Cirac, and Bañuls (2015) took an interesting
and different approach based on MPOs for finding the steady
states of dissipative 1D systems governed by the master
equation of the Lindbladian form dρ=dt ¼ L½ρ�, where L is
the Liouvillian superoperator. In this technique, instead of
doing the full real time evolution of the Liouvillian, they
proposed a variational method that searches for the null
eigenvector of L, which is by definition the steady state of
the master equation in the Lindbladian form. Their results
were based on the principle that if ρs is the steady state of the
Lindbladian master equation satisfying L̂jρsi♯ ¼ 0, then jρsi♯
will also be the ground state of the nonlocal Hamiltonian L̂†L̂
(since it is Hermitian and positive semidefinite), where jρsi♯ is
the vectorized form of the steady-state density matrix. Then
using a variational algorithm, they directly targeted the ground
state of L̂†L̂ to find the steady state of the Lindbladian master
equation for a finite chain. One of the reasons why directly
targeting the ground state of L̂†L̂ might be advantageous is
that unlike imaginary time evolution, where the sequence of
states visited by the algorithm is unimportant, the simulation
of a master equation requires us to follow real time evolution.
Therefore, if there are errors in the intermediate states visited
by the algorithm, it may lead to problems in the convergence
of our steady state. For example, some of the intermediate
states may require large bond dimensions of the MPO,
although it is known that the final steady state can be well
represented by a MPO of small bond dimensions (Cai and
Barthel, 2013; Bonnes, Charrier, and Läuchli, 2014). In
addition, one does not need to worry about the large-
entanglement growth of real time evolution. A similar
approach was taken by Mascarenhas, Flayac, and Savona
(2015), where the algorithm, instead of doing a time evolution,
searched for the null eigenvalue of the Liouvillian super-
operator L by sweeping along the system. Their method was

FIG. 4. Choi isomorphism: vectorizing a density matrix written
in terms of an MPO. In a TN diagram, it is simply reshaping one
of the indices and gluing it to the other, thereby giving us a MPS.
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claimed to work even in the weakly dissipative regime by
slowly tuning the dissipation rates along the sweeps. However,
we note that such techniques, while advantageous numeri-
cally, cannot be used for obtaining the transient states.
Gangat, I, and Kao (2017) applied this idea to infinite 1D

systems (i.e., the thermodynamic limit) using a hybrid
technique of both imaginary and real time evolution. They
took a local auxiliary Hamiltonian H whose ground state is a
good approximation to the ground state of the nonlocal
Hamiltonian L̂†L̂ by taking its kth root as

H ¼
X
r∈Z

ðL̂†
rL̂rÞ1=k; ð19Þ

where L̂ ¼Pr∈Z L̂r since L̂ is a translationally invariant local
operator. The kth root was taken in order to yield faster
convergence. The idea is that if the gap between the two
lowest eigenvalues of L̂†

rL̂r is less than 1, then k > 1 will
increase the gap since L̂†

rL̂r is positive semidefinite, thereby
achieving faster convergence to the ground state. Gangat, I,
and Kao then performed a real time evolution to obtain a more
accurate steady state. In summary, the main steps of the
algorithm are as follows:

(i) Imaginary time evolution of the auxiliary Hamilto-
nian H starting from some vectorized initial density
matrix jρ0i:

jρGi ≈ lim
τ→∞

e−Hτjρ0i
ke−Hτjρ0ik

. ð20Þ

(ii) Real time evolution of the Liouvillian superoperator
starting from jρGi:

jρSi ≈ lim
T→∞

eLT jρGi
keLT jρGik

. ð21Þ

jρSi is the desired steady state of the Liouvillian master
equation. Imaginary time evolution in step (i) ensures that one
does not pass through a highly entangled transient regime.
Step (ii) improves the accuracy of the stationary state since
jρGi is the ground state of H, which is a truncated approxi-
mation of the nonlocal Hamiltonian L̂†L̂.
In one spatial dimension, many of the previously mentioned

techniques and their combinations have been used not only for
studying other important dissipative models (Höning, Moos,
and Fleischhauer, 2012; Pižorn, 2013; Mascarenhas, Flayac,
and Savona, 2015; Carollo et al., 2019), including the
dissipative Ising model of Eq. (3) (Höning et al., 2013;
Mendoza-Arenas et al., 2016), but also in the dissipative
preparation of topologically ordered materials (Iemini et al.,
2016) as well as in the energy transport (Guo, Mukherjee, and
Poletti, 2015). Recently MPO based techniques have been
applied to the study of vibronic states, which has extended
applications to quantum biology and organic photovoltaics
(Somoza et al., 2019), and also to the study of the dynamics of
photonic circuits with time delays and quantum feedback
(Pichler and Zoller, 2016). We do not discuss the last two
works due to the non-Markovian nature of the problem, which

is beyond the scope of this review. Similar MPS based
techniques that go beyond the Lindblad master equation
(Xu et al., 2019) or the Markovian approximation (Guo et al.,
2018) are also not discussed here.

B. Extensions to higher dimensions

Unlike the case in one dimension, the generalization of
MPS in higher dimensions, also known as projected entangled
pair states (PEPSs) or tensor product states, comes with
serious limitations and there are still many open problems
(Cirac, Garre-Rubio, and Pérez-García, 2019). Not only does
the PEPS algorithm require significant programming effort,
but exact contraction of PEPSs is known to be a mathemati-
cally difficult problem (Schuch et al., 2007; Haferkamp et al.,
2020). To achieve this, one requires additional PEPS con-
traction algorithms (Jordan et al., 2008; Orús and Vidal, 2009;
Orús, 2012) that are nevertheless known to give accurate
results, particularly for gapped systems. Even for critical
systems with algebraically decaying correlations, the PEPS
contraction schemes are known to provide reasonably accurate
results with sufficiently high bond dimension of the environ-
ment (Orús and Vidal, 2009). In fact, techniques have recently
been introduced to capture the infinite correlation length of 2D
critical systems using infinite-PEPS algorithm (iPEPS) based
on finite correlation length scaling (Corboz et al., 2018; Rader
and Läuchli, 2018). Thus, despite the higher requirement of
numerical dedications and limitations, PEPS algorithms are
becoming state-of-the-art numerical tools for strongly corre-
lated two-dimensional systems. PEPSs have provided the best
variational energy for the 2D Hubbard model (Corboz, 2016a)
and offered several new insights on paradigmatic models
and real materials in the lab (Matsuda et al., 2013; Corboz
and Mila, 2014; Liao et al., 2017; Kshetrimayum, Balz et al.,
2020). The successes of PEPS thus far, however, are confined
mostly to ground state calculations and partially to thermal
states (Czarnik, Cincio, and Dziarmaga, 2012; Czarnik
and Dziarmaga, 2015; Czarnik, Dziarmaga, and Oleś,
2016; Dai et al., 2017; Kshetrimayum et al., 2019; Mondal,
Kshetrimayum, and Mishra, 2020) using the concept of
projected entangled pair operators (PEPOs) or tensor product
operators, which we discuss in more detail later and, more
recently, to time evolution (Czarnik, Dziarmaga, and Corboz,
2019; Hubig and Cirac, 2019; Kshetrimayum, Goihl et al.,
2020; Kshetrimayum, Goihl, and Eisert, 2020). For the
context of open dissipative quantum systems, thus far there
is only one known approach using PEPSs (Kshetrimayum,
Weimer, and Orús, 2017) and another one using a corner space
renormalization method (Finazzi et al., 2015). We describe
them next. We also discuss other potential implementation
techniques and possible issues while using the PEPS formal-
ism, particularly for such open systems.

1. Corner space renormalization method

The corner space renormalization method (Finazzi et al.,
2015) solves the master equation in a corner of the Hilbert
space through an iterative procedure. It starts by finding the
steady-state density matrix for small lattice systems (say, ρA

and ρB for systems A and B, respectively). This can be done
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using a brute force integration of the master equation since the
system size is small. The steady-state density matrices can be
diagonalized and written as

ρA ¼
X
i

pA
i jϕA

i ihϕA
i j;

ρB ¼
X
i

pB
i jϕB

i ihϕB
i j; ð22Þ

where the states jϕA
i i form an orthonormal basis for HA (the

Hilbert space corresponding to system A) and pA
i are the

corresponding probabilities. A similar notation follows for
system B. The two systems are then merged and the χ most
probable product states spanning the so-called corner space
are selected; i.e., we keep only the subspace generated by the
orthonormal basis fjϕA

i1ijϕB
i01i; jϕA

i2ijϕB
i02i;…; jϕA

iχijϕB
i0χig,

where the products of the probabilities of the two systems
are arranged in decreasing order of magnitude. In this way, we
keep only the χ most probable pair of states. The steady state
of the density matrix in this corner space can be determined by
using either direct numerical integration in time (for small χ)
or a stochastic wave-function Monte Carlo algorithm for large
χ; see Sec. II. One can then increase the size of the corner χ
until convergence in some observables is reached. Larger
systems can be simulated by merging more systems, as we
discussed in the initial steps. A simplified summary of the
steps involved is shown in Fig. 5.
The proposed corner space renormalization method was

used to study the driven-dissipative Bose-Hubbard model
in two dimensions in both periodic and open boundary
conditions for system sizes up to 16 × 16 lattice sites. The
technique has also been used to study the critical Heisenberg
model (Rota et al., 2017) for system sizes up to 6 × 6 lattice
sites and, more recently, the critical regime in the Bose-
Hubbard model (Rota et al., 2019) for up to 8 × 8 lattices.
The size of the lattice that can be simulated using this
technique depends on the entanglement of the steady state.
Even if it is not obvious at first sight, the structure of the
density operator generated by the corner space renormaliza-
tion method amounts to that of a tree tensor network (Shi,

Duan, and Vidal, 2006). As such, this particular method, even
if understood in terms of TNs, is tailored to driven-dissipative
systems of finite size. For generalizing it to the thermody-
namic limit or for nondriven nondissipative systems, one
needs to use more general TN techniques. We now discuss one
such technique that we developed recently.

2. Vectorized projected entangled pair operators

In 2017, we made use of the concept of PEPOs by
vectorizing them (Kshetrimayum, Weimer, and Orús,
2017). PEPOs are simply the operator version of PEPSs, in
the same way that a MPO is the operator version of MPS for
the 1D case. Hence, PEPOs are used to represent mixed states
ρ in two dimensions, even beyond dissipative systems, such as
for thermal states (Czarnik, Cincio, and Dziarmaga, 2012;
Czarnik and Dziarmaga, 2015; Czarnik, Dziarmaga, and Oleś,
2016; Kshetrimayum et al., 2019). As mentioned earlier, such
a construction of density matrices using PEPOs does not
automatically guarantee the positivity of the density matrix.
However, for simulations targeting the steady states, this lack
of exact positivity is not a bottleneck if the fixed point is not
highly entangled. For the moment, we restrict our discussion
to this case. Once we have our PEPO, we vectorize it, i.e.,
rewrite the coefficients of the PEPO as a PEPS (also called
Choi’s isomorphism). Once vectorized, the PEPO ρ can be
understood as a PEPS of physical dimension d2 and bond
dimension D (now called jρi♯), as shown in Fig. 6. The
vectorized form of the Lindblad master equation (2) can be
written as

d
dt

jρi♯ ¼ L♯jρi♯; ð23Þ

where the vectorized Liouvillian operator is given by

L♯ ≡ −iðH ⊗ I − I ⊗ HTÞ

þ
X
μ

�
Lμ ⊗ L�

μ −
1

2
L†
μLμ ⊗ I −

1

2
I ⊗ L�

μLT
μ

�
: ð24Þ

H is the Hamiltonian of the system and I corresponds to the
identity operator. Lμ and L†

μ correspond to the on-site
Lindblad or jump operators responsible for dissipation. The
tensor product ⊗ separates the operator acting on the ket and
bra index of ρ before the vectorization. When the vectorized
Liouvillian superoperator L♯ is independent of time, Eq. (23)
can be integrated as

(a)

(b)
Truncate

Diagonalize

Diagonalize

FIG. 5. (a) Steady-state density matrices of two systems A and B
are first obtained using brute force. They are then expressed in
their respective diagonal forms. (b) We then merge the two
systems and keep only the χ most probable pair of states. The
process is repeated for different χ’s until we get some conver-
gence. Larger systems can be simulated by merging more systems
in step (b).

FIG. 6. TN diagram for the PEPO of ρ on a 2D square lattice
with bond dimension D and physical dimension d. When
vectorized, it can be understood as a PEPS for jρi♯ with physical
dimension d2.
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jρðtÞi♯ ¼ eL♯tjρð0Þi♯; ð25Þ

where jρð0Þi♯ is some vectorized initial density matrix, written
as a PEPS. In the limit of t → ∞, we obtain the nonequili-
brium steady state (NESS) as the fixed point of the master
equation that we denote by jρsi♯. From Eq. (23), it is also
obvious that jρsi♯ is the right eigenvector of L♯ with zero
eigenvalue so that

L♯jρsi♯ ¼ 0: ð26Þ

For a Liouvillian L consisting of local terms, say,
L½ρ� ¼Phi;ji L½i;j�½ρ�, the vectorized form of the Lindblad
equation (2) yields a parallelism with the calculation of
ground states of local Hamiltonians by imaginary time
evolution, which we detail in Table I. Given this parallelism,
one can adapt, at least in principle, the methods to compute
imaginary time evolution of a pure state as generated by local
Hamiltonians to compute also the real time evolution of a
mixed state as generated by local Liouvillians. This was, in
fact, the approach taken by Zwolak and Vidal (2004) for
finite-size 1D systems, using MPOs to describe the 1D
reduced density matrix and proceeding as in the TEBD
algorithm for ground states of 1D local Hamiltonians
(Vidal, 2003, 2004, 2007; Orús and Vidal, 2008), as pre-
viously discussed. In 2017, we extended this implementation
for the case of 2D systems using the concept of PEPOs with
physical dimension d and bond dimension D (Kshetrimayum,
Weimer, and Orús, 2017); see Fig. 6. For the case of an
infinite-size 2D system, this setting is actually equivalent to
that of the iPEPS to compute ground states of local
Hamiltonians in 2D in the thermodynamic limit. Thus, in
principle, one can use the full machinery of the iPEPS to
tackle the problem of 2D dissipation and steady states.
There is, however, one problem with this idea: unlike in

imaginary-time evolution, we are now dealing with real
time. In the master equation, part of the evolution is generated
by a Hamiltonian H and part by the Lindblad operators Lμ.
The Hamiltonian part corresponds actually to a unitary
“Schrödinger-like” evolution in real time, which typically
increases the “operator entanglement” in jρi♯, up to a point at
which it may be too large to handle for a TN representation

(such as 1D MPOs or 2D PEPOs) with a reasonable bond
dimension. In one dimension this is the reason why the
simulations of master equations are only for only a finite
amount of time. In two dimensions, simple numerical experi-
ments indicate that in a typical simulation the growth of
entanglement is even faster than in one dimension. This is not
a dead end: if the dissipation is strong compared to the rate of
entanglement growth, then the evolution drives the system
into the steady state before hitting a large-entanglement
region. In fact, even if there is too much entanglement for
the TN at intermediate times, the dissipation may still drive the
evolution toward a good approximation of the correct steady
state. In short, dissipation limits the growth of entanglement if
the fixed point attractor is strong enough. This can be verified
numerically by plotting the operator-entanglement entropy for
different dissipation strengths as it flows into the NESS. This
is shown in Fig. 7. Details on how to compute this quantity
were given by Kshetrimayum (2017) and Kshetrimayum,
Weimer, and Orús (2017).
Hence, one can apply the iPEPS machinery to compute

the time evolution in two dimensions with a local Liouvillian
L and an initial state. This procedure was used to investigate
the dissipative Ising and the XYZ model, confirming and
offering several insights that were inaccessible before
using mean-field and other techniques, for example, for the
dissipative Ising model of Eq. (3) given by the Hamiltonian

H ¼ ðV=4ÞPhi;ji σ
½i�
z σ

½j�
z þ ðhx=2Þ

P
iσ

½i�
x and Lindblad oper-

ators Lμ ¼ ffiffiffi
γ

p
σ½μ�− . The phase diagram is controversial with

some researchers suggesting the existence of a bistable steady
state (Lee, Häffner, and Cross, 2011; Marcuzzi et al., 2014)
and others supporting a first-order transition (Weimer, 2015a,
2015b; Maghrebi and Gorshkov, 2016). Our technique found
bistability for low bond dimensions of the PEPO (D ¼ 1; 2),
which was replaced by a first-order transition for higher D’s,
thus confirming that the bistability is an artifact of the mean
field. This is shown in Fig. 8. Furthermore, some studies
suggested the existence of an antiferromagnetic region in the
presence of the transverse field hx (Lee, Häffner, and Cross,
2011; Weimer, 2015a). Once again, while our technique
produced evidence of such an antiferromagnetic (AFM)
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FIG. 7. Operator-entanglement entropy Sop for a block of 2 × 2
unit cells for real time evolution of the master equation for
different values of dissipation strength. Stronger dissipation
implies lower entanglement growth and faster convergence to
the NESS. From Kshetrimayum, Weimer, and Orús, 2017.

TABLE I. Ground state calculation in a closed quantum system
(left column) and steady-state calculation in an open quantum system
(right column). The former requires an imaginary time evolution,
while the latter follows a real time evolution. Both the HamiltonianH
and the vectorized Liouvillian L♯ can be decomposed as a sum of
local terms. je0i is the ground state of the many-body Hamiltonian
with e0 as its ground state. jρsi♯ is the nonequilibrium steady state of
the Liouvillian in their vectorized forms.

Ground states Steady states

H ¼Phi;ji h½i;j� L♯ ¼
P

hi;ji L
½i;j�
♯

e−Ht eL♯t

je0i jρsi♯
he0jHje0i ¼ e0 ♯hρsjL♯jρsi♯ ¼ 0

Imaginary time Real time
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region, it eventually shrank with increasing bond dimension
until it finally disappeared for large enough D. Results of the
dissipative Ising model have been reproduced independently
using a different update scheme (Czarnik, Dziarmaga, and
Corboz, 2019) than that used by Kshetrimayum, Weimer, and
Orús (2017). While the technique also employed vectorization
along with the iPEPS, the update scheme is based on
maximizing the fidelity between two consecutive steps of
the update of the iPEPS tensors. For the case of the dissipative
Heisenberg model (Lee, Gopalakrishnan, and Lukin, 2013)
with the Hamiltonian

H ¼
X
hi;ji

ðJxσixσjx þ Jyσiyσ
j
y þ Jzσizσ

j
zÞ ð27Þ

and the same Lindblad operators as before, our studies found
no phenomenon of reemergence in the phase diagram,
confirming a prediction by studies using cluster mean-field
approaches (Jin et al., 2016). Our extensive numerical experi-
ments have revealed that although this technique, based on
vectorization, does not explicitly preserve the positivity of the
density matrix, it can still give accurate results for the
nonequilibrium steady states of most models, especially when
the steady state is not highly entangled. This is shown in
Fig. 2(d) of Kshetrimayum, Weimer, and Orús (2017), where
contributions of negative eigenvalues of the reduced density
matrices are small in most of the regimes. Thus, the issue of
positivity might be even less of a problem here than in the 1D
case. One plausible explanation for this is the so-called
entanglement monogamy (Coffman, Kundu, and Wootters,
2000; Koashi and Winter, 2004; Terhal, 2004; Osborne and
Verstraete, 2006), where the correlation is spread out across
several bonds in two dimensions, unlike in one dimension,
and therefore one requires only a small bond dimension of the
iPEPS for an accurate description of these steady states. The
same is true in other settings, where it has been found that a
small bond dimension of the PEPS is enough for accurate
description of ground states of relevant and interesting 2D
models (Verstraete, Murg, and Cirac, 2008; Orus, 2014).

3. Preserving positivity of the density matrix

To the best of our knowledge, we have discussed most of
the state-of-the-art numerical techniques based on a TN for the

study of open quantum many-body systems in both one and
two spatial dimensions. We now discuss some ideas that
could be helpful in improving the existing algorithm and
possible new implementation techniques, especially in two
dimensions. We first remark that the previously suggested
2D algorithm does not guarantee the positivity of the
density matrices. This problem can be solved by starting
from an initial state that is positive by construction, for
example, by taking the product of two PEPOs that are the
conjugates of each other (A and A�). One can then think
about using a positivity preserving algorithm such as the
one given by Werner et al. (2016). Such an algorithm
will ensure the positivity of the density matrix at all times
of the evolution. We can call this initial density matrix the
projected entangled pair density operator (PEPDO), as
shown in Fig. 9. While such an approach may avoid the
problem of negative eigenvalues of the density matrix, in
practice it may require a high bond dimension of the
PEPDO, and one therefore needs to consider the practical
aspect of the implementation.
The other possibility would be to target the ground state

of the Hermitian and positive semidefinite operator L†
♯L♯.

This ground state could be computed using an imaginary
time evolution. However, there are two major hurdles
associated with this approach. The crossed products in
L†
♯L♯ are nonlocal, and therefore the usual algorithms for

time evolution are difficult to implement unless one
introduces extra approximations in the range of the crossed
terms. Another option is to approximate the ground state
variationally via the density matrix renormalization group
(White, 1992, 1993) in one dimension, or variational PEPS
in two dimensions (Corboz, 2016b). In the thermodynamic
limit, however, this approach does not look promising
because of the previously mentioned nonlocality of L†

♯L♯.
In any case, one could always represent this operator as a
PEPO (in two dimensions), which simplifies some of the
calculations, but at the cost of introducing a large bond
dimension in the representation of L†

♯L♯. For instance, if a

typical PEPO bond dimension for L♯ is ∼4, then for L†
♯L♯

it is ∼16, which in two dimensions implies extremely
slow calculations. Another option is to target the varia-
tional minimization of the real part for the expectation
value of L.

FIG. 8. Our study based on iPEPS found bistability in the phase
diagram of the dissipative Ising model for low bond dimensions
D ¼ 1; 2. The bistability is replaced by a first-order transition for
higher D’s. From Kshetrimayum, Weimer, and Orús, 2017.

FIG. 9. TN diagram for the PEPDO of ρ on a 2D square lattice
with bond dimension D and physical dimension d. When
vectorized, it can be understood as a PEPS for jρi♯ with physical
dimension d2.
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IV. VARIATIONAL METHODS

Variational techniques have a long history of finding
approximate solutions to the ground state of quantum systems;
see Schwabl (2010) for an introduction to the general concept.
The successes of density functional theory (Kohn, 1999) and
matrix product state approaches (Schollwöck, 2011) have
made variational formulations a particularly powerful tool to
analyze quantum many-body systems. As we discuss in this
section, variational methods can also be successfully applied
to open quantum many-body systems.

A. The variational principle for open quantum systems

1. Steady-state solution

Variational methods generically consist of two steps. The
first step is a parametrization of the state of the system in terms
of a set of variational parameters fαig. For an open quantum
system, it is convenient to parametrize the density matrix, i.e.,
ρ ¼ ρðfαigÞ, although parametrizations based on statistical
ensembles of pure states are also possible (Transchel, Milsted,
and Osborne, 2014). The second step is to identify a suitable
functional that can be optimized by tuning the variational
parameters. For open quantum systems, it is natural to apply a
variational principle to find the steady state of the quantum
master equation, which can be found by solving the equation
_ρ ¼ 0. The exact steady state can no longer be determined
after the variational parametrization, as the steady state will
generically lie outside the variational manifold. Hence, the
best possible option is to find the variational parameters that
will minimize the functional kLρk for a suitable norm
(Weimer, 2015b).
The correct norm for the variational optimization can be

identified as the trace norm kLρk ¼ Trfj_ρjg, i.e., the sum of
the absolute values of the eigenvalues of _ρ (Weimer, 2015b).
This choice can be motivated by different grounds. First, the
trace distance, being the natural distance measure for density
matrices (Nielsen and Chuang, 2000), is highly suggestive of
the trace norm being the natural norm for the tangent space _ρ.
This can be formalized in the sense that the trace norm
describes an optimal measurement to distinguish _ρ from the
zero matrix (Gilchrist, Langford, and Nielsen, 2005). A
second motivation for exploring the trace norm is to consider
classes of possible alternatives. It can be shown that all
Schatten p norms of the form ðj_ρjpÞ1=p are inherently biased
toward the maximally mixed state for all values of p > 1
(Weimer, 2015b). Since functionals with p < 1 do not
constitute proper norms, this leaves the trace norm as the
only valid choice. One can also understand the variational
principle as a direct solution of the overdetermined steady-
state equation Lρ ¼ 0 in terms of a trace norm minimization.
In general, the evaluation of the variational functional is still

an exponentially difficult problem, as the computation of the
trace norm requires the diagonalization of the matrix _ρ.
However, it is possible to construct upper bounds to the
variational norm that retain the variational character (Weimer,
2015b) and appear to introduce only small quantitative
deviations even close to phase transitions (Weimer, 2015a).
The upper bound depends on the variational manifold and its
tangent space, i.e., the degree of additional correlations that

can be built up by applying the Liouvillian to states within the
variational manifold. For example, for a variational class of
product states of the form ρ ¼Qi ρi, the upper bound D can
be given as

D ¼
X
ij∈T

Trfj_ρijjg; ð28Þ

where T contains pairs of sites that are connected to each
other by the Liouvillian (Weimer, 2015b).
The variational principle has been applied to find the

steady states of the dissipative Ising and Bose-Hubbard
models introduced in Eqs. (3) and (4), respectively
(Weimer, 2015a, 2015b), as well as dissipative Ising models
including a Z2 symmetry (Overbeck et al., 2017), purely
dissipative Heisenberg models (Weimer, 2017), dissipative
Rydberg gases (Weimer, 2015a), dissipative ensembles of
nitrogen-vacancy centers (Raghunandan, Wrachtrup, and
Weimer, 2018), entanglement generation in cavity QED
arrays (Lammers, Weimer, and Hammerer, 2016), and dis-
sipative Fermi-Hubbard models (Kaczmarczyk, Weimer, and
Lemeshko, 2016). In the last case, the study of fermionic
models was realized by employing a two-dimensional
Jordan-Wigner transformation, where the appearance of
nonlocal Wigner strings was ruled out by the choice of
the variational manifold.

2. Field-theoretical treatment of fluctuations

In the case where the steady state of the system is close to
criticality, it is possible to construct a dissipative Ginzburg-
Landau theory based on the variational principle (Overbeck
et al., 2017). The essential step is to perform a series
expansion of the variational norm of Eq. (28) in terms of
an order parameter field ϕðxÞ and its spatial gradient ∇ϕðxÞ,
leading to

D½ϕ� ¼
Z

dx
X
m

vm½∇ϕðxÞ�m þ
X
n

un½ϕðxÞ�n: ð29Þ

All the coefficients vn and un can be calculated from the
microscopic quantum master equation. The series can be
truncated at low orders of m and n, as higher-order terms are
irrelevant close to criticality. In the case of steady states with
thermal statistics due to the presence of a dynamical symmetry
(Sieberer et al., 2013), it is possible to construct a Ginzburg-
Landau-Wilson functional integral for an effective partition
function (Hohenberg and Krekhov, 2015) given by

Zeff ¼
Z

Dϕ exp ð−βeffD½ϕ�Þ: ð30Þ

Here the effective inverse temperature βeff can be derived from
the u0 coefficient, as this coefficient captures the strength of
fluctuations beyond a spatially homogeneous order parameter
field (Overbeck et al., 2017). The subsequent statistical field
theory of Eq. (30) can then be analyzed using standard
techniques such as the perturbative renormalization group.
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3. Time evolution

Finally, the variational principle can also be extended
toward the full time evolution of open quantum systems
(Overbeck and Weimer, 2016), following similar ideas to
those discussed in the context of the time-dependent varia-
tional principle (Kraus and Osborne, 2012; Transchel,
Milsted, and Osborne, 2014). There the variational functional
is replaced by a variational integration of the quantum master
equation for small time steps τ. For example, in the lowest-
order Euler approximation, it is given by

D ¼ Trfjρðtþ τÞ − ρðtÞ − τLρðtÞjg; ð31Þ

where ρðtþ τÞ is the density matrix containing the variational
parameters. Higher-order schemes exist as well, but construct-
ing an upper bound similar to Eq. (28) requires one to consider
higher-order correlations due to multiple applications of the
Liouvillian to the density matrix. A good compromise is the
implicit midpoint method, which is exact up to second order in
τ while requiring only a single application of the Liouvillian
(Overbeck and Weimer, 2016).

B. Comparison with mean-field methods

For equilibrium problems, the variational method based on
product states is exactly equivalent to a mean-field decoupling
of the interaction terms. This is not the case in open quantum
systems. Within the mean-field approach to open systems
(Diehl et al., 2010; Tomadin et al., 2010), a set of effective
single site master equations that is obtained by tracing out the
rest of the system is considered. For the ith site, the mean-field
master equation reads as

d
dt

ρi ¼ Tr =i

�
d
dt

ρ

�
¼ −i½HMF

i ; ρi� þDiðρiÞ; ð32Þ

where HMF
i and Di are the mean-field Hamiltonian and the

mean-field dissipators, respectively. This set of equation is
then solved self-consistently, while for translationally invari-
ant systems it is often sufficient to consider an effective single
site problem.

1. Mean-field bistability

Because of the nonlinear structure of the mean-field
equations of motion, it is possible to have two or more
independent solutions for the steady state (Lee, Häffner, and
Cross, 2011); see Fig. 10. This also occurs within mean-field
theory for equilibrium systems close to first-order transi-
tions. However, there one can always resort to the free
energy, which has to be minimal in thermal equilibrium.
Unless one invokes the variational principle, one cannot
decide which of the solutions of mean-field theory are stable
and which ones are not. The solutions according to the
variational principle and mean-field theory are identical only
in the limit of infinite dimensions, where both approaches
become exact (Weimer, 2015b).
Mean-field theory predicts bistability for a wide range of

models, including the dissipative Ising model (Lee, Häffner,
and Cross, 2011; Lee and Cross, 2012; Marcuzzi et al., 2014)

or extended spin models (Parmee and Cooper, 2018), as well
as driven-dissipative Bose-Hubbard models (Jin et al., 2013;
Le Boité, Orso, and Ciuti, 2013, 2014; Mertz et al., 2016). To
date mean-field bistability has been found in the absence of
symmetries in the underlying master equation; i.e., the two
solutions are not connected by a symmetry transformation.
These properties have led to speculation that bistability could
be a genuine nonequilibrium phase, which has stimulated
several investigations into whether this could indeed be the
case. However, the results of these investigations have all been
negative thus far. Specifically, the variational principle pre-
dicts that bistability will be replaced by a first-order transition
both in the dissipative Ising and in the driven-dissipative Bose-
Hubbard model (Weimer, 2015b). For the dissipative Ising
model, the existence of the first-order transition has been
confirmed in tensor network simulations, where bistability is
found for low bond dimensions, but a first-order transition
appears for higher bond dimensions (Kshetrimayum,
Weimer, and Orús, 2017); see Sec. III.B. In the case of
the driven-dissipative Bose-Hubbard model, the first-order
transition has also been found in a field-theoretic treatment
based on the Keldysh formalism (Maghrebi and Gorshkov,
2016), again confirming the variational prediction. These
results underscore that the conventional argument of mean-
field theory becoming qualitatively correct if the spatial
dimension becomes large enough appears to be incorrect for
open quantum systems. On the other hand, this argument
seems to be much more justified when applied to the
variational principle [especially when considering the con-
nection to equilibrium statistical physics through the exist-
ence of the dissipative Ginzburg-Landau theory of Eq. (29)];
however, even there one may have possible counterexamples
(Mesterházy and Hebenstreit, 2017) that are not yet fully
understood.
Nevertheless, these findings do not rule out genuine

bistability in open quantum systems per se, but only that
such mean-field results need to be taken with caution.
Classical models exhibiting extended coexistence regions
(Muñoz, de los Santos, and Telo da Gama, 2005) might
still exhibit bistability after including quantum fluctuations.

FIG. 10. Comparison of the solutions according to the varia-
tional principle (solid line), the mean-field decoupling (dashed
line), and wave-function Monte Carlo simulations for 4 × 4
lattices for the up-spin density nr of the dissipative Ising model.
The mean-field solution displays a region of bistability, while the
variational solution correctly predicts a first-order transition.
From Weimer, 2015a.
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The situation is similar when it comes to limit cycles
of open quantum many-body systems (Chan, Lee, and
Gopalakrishnan, 2015), which have been predicted to exist
in sufficiently high-dimensional systems (Owen et al., 2018).

2. Extensions of mean-field theory

One systematic extension of mean-field theory is cluster
mean-field theory, where the trace in Eq. (32) is not carried out
over all but one site but results in a larger cluster that again has
to be solved self-consistently (Jin et al., 2016). This strategy is
in close analogy to the cluster mean-field theory for statistical
mechanics and ground state problems (Bethe, 1935; Oguchi,
1955). Essentially, cluster mean-field approaches treat the
short-range physics more accurately than bare mean-field
theory, leading to better quantitative estimates for phase
transitions. However, the qualitative limitations of bare
mean-field theory remains, as these are the result of long-
range fluctuations in the system. For open quantum many-
body models, cluster mean-field theory has been used to
calculate the phase diagram of the dissipative Heisenberg
model given by Eq. (27) (Jin et al., 2016) and dissipative Ising
models with and without a Z2 symmetry (Jin et al., 2018).
Finally, it is also possible to systematically go beyond the

mean-field approximation using open system dynamical
mean-field theory (DMFT). DMFT is a mapping of a
many-body lattice model onto a single impurity problem that
has to be solved in a self-consistent way (Georges et al.,
1996). Within DMFT, the approach is to start with an effective
dynamical Green’s function G0, which serves as a time-
dependent version of a mean-field coupling. Considering
the Fermi-Hubbard model as an example, G0 can be used
to express the effective action of a single site as

Seff ¼−
Z

β

0

dτ
Z

β

0

dτ0
X
σ

f†σðτÞG−1
0 fσðτ0ÞþU

Z
β

0

f†↑f↑f
†
↓f↓;

ð33Þ

where fσ annihilates a fermion with spin σ, β is the inverse
temperature, and U is the on-site interaction. The central idea
of DMFT is to consider a self-consistent solution that
reproduces the dynamical Green’s function G0. This constraint
is satisfied by the solution to the DMFT equations for the local
Green’s function G0, the dynamical Green’s function G0, and
the self-energy Σ evaluated at the Matsubara frequencies
ωn ¼ ð2nþ 1Þπ=β,

G0ðiωnÞ ¼ hcσðiωnÞc�σðiωnÞiSeff ; ð34Þ

G0ðiωnÞ ¼ ½G0ðiωnÞ−1 − ΣðiωnÞ�−1; ð35Þ

G0ðiωnÞ ¼
Z

dϵ
NðϵÞ

iωn þ μ − ΣðiωnÞ − ϵ
; ð36Þ

where μ is the chemical potential and NðϵÞ is the density of
states (Kollar, 2011). The first step in bringing DMFT to open
systems was to use effective Lindblad master equations to
describe quantum transport in closed quantum systems using
DMFT (Arrigoni, Knap, and Linden, 2013; Titvinidze et al.,

2015, 2016). Recently this approach was extended to the case
where the initial many-body problem already describes an
open quantum system (Panas et al., 2019).
A different method to systematically extend mean-field

theory is to use projection operator methods. The central idea
is to consider a single site of the many-body problem, with the
rest of the system forming a non-Markovian environment.
This non-Markovian master equation is then solved using
standard projection operator techniques such as the Nakajima-
Zwanzig method or the time-convolutionless master equation
(Breuer and Petruccione, 2002). Initially, this approach was
used to describe the relaxation dynamics of local observables
in a closed quantum system (Weimer et al., 2008), and the
approach was later extended to the Lindblad dynamics of open
systems (Degenfeld-Schonburg and Hartmann, 2014). In the
second approach, the initial step is to introduce corrections
ΔL to the mean-field Liouvillian LMF that are introduced
according to

L ¼ LMF þ ΔL: ð37Þ

The projection P removes all correlations and projects the
system onto a product state, i.e.,

Pρ ¼
Y
i

ρi: ð38Þ

If the initial state at time t0 is also a product state, the projected
Lindblad master equation may be formally written as

P
d
dt

ρðtÞ ¼ LMFPρðtÞ þ PΔL
Z

t

0

dt0Kðt; t0ÞPρðt0Þ; ð39Þ

where the generator K is introduced (Degenfeld-Schonburg
and Hartmann, 2014). The generator K may then be expanded
in terms of a power series of the beyond mean-field correc-
tions ΔL. This projection operator approach has been used to
investigate both dissipativeXY models (Degenfeld-Schonburg
and Hartmann, 2014) and the dissipative Heisenberg model
(Owen et al., 2018). In the latter case a limit cycle behavior
has been reported, which for sufficiently large spatial dimen-
sions also survives under inclusion of the terms beyond mean
field. Consequently, it would be interesting to learn whether
the projection operator approach is also capable of correctly
identifying the replacement of mean-field bistability by a first-
order transition in the dissipative Ising model.

C. Variational tensor network methods

Given the successes of tensor network methods discussed in
Sec. III, it is natural to combine them with variational methods
for the study of open quantum many-body systems. However,
the main challenge is that the natural trace norm for con-
structing the variational principle cannot be calculated effi-
ciently in a tensor network representation. This has led to the
use of different norms as possible alternatives (Cui, Ignacio
Cirac, and Bañuls, 2015; Mascarenhas, Flayac, and Savona,
2015); see Sec. III.A.
On the one hand, the choice of the norm is not really

relevant if the value of the norm is low (i.e., comparable to the
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machine precision of the numerical simulation), as then the
solution is almost exact from any point of view. On the other
hand, choosing a non-natural norm is a potential source of
errors that is not under the control of the variational algorithm.
In practice, this difficulty will mostly manifest itself for
higher-dimensional problems, as there the bond dimensions
that can be reached are severely constrained by the computa-
tional resources (Kshetrimayum, Weimer, and Orús, 2017).
But even for one-dimensional systems, there are computa-
tionally challenging problems involving long relaxation times
(Carollo et al., 2019), where an arbitrarily low variational
norm might not be reachable.
A way out of this problem can be realized by representing

the density matrix in terms of an ensemble of pure states and
use a variational tensor network formulation for these pure
states (Transchel, Milsted, and Osborne, 2014). In this case,
the density matrix is parametrized according to

ρ ¼
Z

pðα; ᾱÞjψðαÞihψðαÞjdαdᾱ; ð40Þ

where jψðαÞi is a variational wave function with variational
parameters α and pðα; ᾱÞ is the associated probability dis-
tribution. The variational norm associated with the effective
Hamiltonian of the master equation Heff ¼ H − ði=2ÞPic

†
i ci

can now be calculated as

DH ¼ jHeff jψðαÞij2: ð41Þ

This expression both can be computed efficiently using tensor
network methods and corresponds to the natural trace norm
when evaluated over the full ensemble. The quantum jump
terms of the master equation can be treated in a similar fashion
(Transchel, Milsted, and Osborne, 2014).

D. Variational quantum Monte Carlo methods

The central idea behind variational quantum Monte Carlo
methods is to rewrite a quantum many-body problem in terms
of a sampling over a classical probability distribution
(Batrouni and Scalettar, 2011). However, the existence of
destructive interference in quantum mechanics can lead to
corresponding classical probabilities that are negative, which
is the root of the famous sign problem. One common work-
around is to sample over the absolute value of the probability
distribution instead, but this comes at the price of the
complexity of the computation increasing exponentially with
the system size (Troyer and Wiese, 2005). Open quantum
many-body systems are especially prone to the sign problem
since the eigenvalues of the Liouvillian can be complex (Nagy
and Savona, 2018). Nevertheless, Monte Carlo sampling can
be useful even in the presence of the sign problem if the
required resources for the Monte Carlo sampling are lower
than for a full solution of the problem.
The first quantum Monte Carlo simulation of an open

quantum many-body problem was based on a nonvariational
full-configuration-interaction Monte Carlo algorithm (Nagy
and Savona, 2018), which is better equipped to deal with the
sign problem without completely negating it. For the mag-
netization of a dissipative XYZ model on small lattices, the

quantum Monte Carlo simulation is in excellent agreement
with wave-function Monte Carlo results.
Recently variational Monte Carlo methods have been

applied to open quantum systems (Hartmann and Carleo,
2019; Nagy and Savona, 2019; Vicentini, Biella et al., 2019;
Yoshioka and Hamazaki, 2019). These approaches were
inspired by using variational wave functions corresponding
to restricted Boltzmann machines (RBMs) (Carleo and Troyer,
2017), which were first introduced in the context of neural
network simulations. The main idea behind RBM wave
functions is shown in Fig. 11, where an additional hidden
layer introduces variational parameters associated with the
quantum correlations of the many-body state. The entries of
the vectorized density matrix are then given by

♯hσ; τiρ♯ ¼
1

Z

X
fhjg

exp

�X
ij

Wijσihj þW�
ijτihj

�

× exp

�X
i

aiσi þ a�i τi þ
X
j

bjhj

�
; ð42Þ

where Z is the partition function for normalization, Wij, ai,
and bj are the variational parameters, and σi, τi, and hj refer to
the spins of the physical and the hidden layers, respectively;
see Fig. 11. There is a close connection between RBM wave
functions and matrix product states (Deng, Li, and Das Sarma,
2017; Chen et al., 2018); however, RBMs are potentially also
capable of describing long-range entangled quantum states.
For the variational Monte Carlo samplings, different norms

have been put forward. One possibility is to consider the
Hilbert-Schmidt norm of the time evolution (Hartmann and
Carleo, 2019) or the steady state (Vicentini, Biella et al.,
2019). In the latter case, the variational norm D has been
normalized according to the purity Trfρ2g, i.e.,

D ¼ Trf_ρ2g
Trfρ2g : ð43Þ

This norm is not biased toward the maximally mixed state, as
mentioned earlier. An alternative approach to constructing a

FIG. 11. Node structure of a restricted Boltzmann machine
for open quantum systems. The vectorized density matrix is
realized in terms of a physical layer σi corresponding to a set of
spin 1=2 variables. These are coupled to the nodes of a hidden
layer hi, which are again coupled to the third layer τi, which
represents the adjoint of the physical layer.
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suitable norm is to minimize the Hermitian L†L in close
analogy to a ground state problem (Yoshioka and Hamazaki,
2019). Finally, it is possible to consider the equivalent of an
expectation value for vectorized density matrices according to

♯hρjL♯jρi♯=♯hρjρi♯ (Nagy and Savona, 2019). With respect to
the more natural trace norm for density matrices, the RBM
approaches behave similarly to the tensor network simulations
discussed in Sec. IV.C. However, since RBMs can be applied
to two-dimensional models in a straightforward way, it will be
interesting to see how these methods perform for the inves-
tigation of dissipative phase transitions, particularly in critical
systems.

V. PHASE-SPACE AND RELATED METHODS

Other methods have also been used with relative success in
the study of open quantum systems, such as phase-space
methods, as well as methods based on hierarchy equations.
In this section we explain two such examples, namely,
truncated Wigner approximations and Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchies. On the one
hand, the truncated Wigner approximation is a semiclassical
approximation of the dynamics of an open system obtained by
replacing Moyal’s equation, which governs the dynamics of
operators in phase space (Marzlin and Deering, 2015), with
the classical Liouville’s equation. On the other hand, the
BBGKY hierarchy is a set of coupled equations of motion for
the reduced density matrices of the system (Requist, 2012).
The resulting methods are general in purpose and can be
applied to a wide variety of systems, but in what follows we
discuss concrete examples.

A. Truncated Wigner approximation

In the context of phase-space related methods, truncated
Wigner approximations were first used by Carusotto and
Ciuti (2005) in a driven-dissipative microcavity polariton
system coherently driven into the optical parametric
oscillator regime that was also reviewed by Carusotto and
Ciuti (2013) and revisited in Dagvadorj et al. (2015) as an
example of a 2D driven-dissipative nonequilibrium phase
transition. We revisit this example here. The Hamiltonian for
the system is given by

HS ¼
Z

dr⃗ðψ†
Xψ

†
CÞ
�
−∇2=2mXþðgX=2ÞjψXj2 ΩR=2

ΩR=2 −∇2=2mC

�

×

�
ψX

ψC

�
; ð44Þ

with cavity and photon field operators ψX;Cðr⃗; tÞ, spatial
coordinate r⃗ ¼ ðx; yÞ, mX;C the exciton and photon masses,
gX the exciton-exciton interaction strength, and ΩR the Rabi
splitting. One introduces the effect of an external drive (pump)
as well as incoherent decay by adding a system-bath (SB)
Hamiltonian given by

HSB ¼
Z

dr⃗½Fðr⃗; tÞψ†
Cðr⃗; tÞ þH.c:�

þ
X
k⃗

X
l¼X;C

fξl
k⃗
½ψ†

l;k⃗
ðtÞBl;k⃗ þH.c:� þωl;k⃗B

†
l;k⃗
Bl;k⃗g;

ð45Þ

with ψ l;k⃗ðtÞ the Fourier transform of the field operators in real

space and Bl;k⃗ and B†
l;k⃗

the bath’s bosonic annihilation and

creation operators with energy ωl;k⃗, which describes the decay
for both excitons and cavity photons. The decay is compen-
sated for by an external homogeneous coherent pump

Fðr⃗; tÞ ¼ fpeiðk⃗p·r⃗−ωptÞ injecting polaritons with momentum

k⃗p and energy ωp.
By using standard quantum optical methods, one can trace

out the bath within the Markovian approximation and obtain a
master equation for the system. There is, however, an
alternative approach by means of phase-space techniques.
In particular, one can represent the quantum fields as quasi-
probability distribution functions. The Fokker-Planck partial
differential equation that governs the dynamics of such
distributions can be mapped to a stochastic differential
equation, which can be solved using different techniques.
For the example that we are discussing, one solves the
equation on a finite grid with lattice spacing a. The most
suitable quasiprobability distribution for this example is the
Wigner representation, which is also the most suitable one for
numerical implementation. By truncating the corresponding
Fokker-Planck equation in the limit gX=κX;Ca2 ≪ 1, with κX;C
the exciton and photon decay rates, and keeping up to second-
order derivatives only, one obtains the stochastic differential
equation

id

�
ψX

ψC

�
¼
�
H0

MF

�
ψX

ψC

�
þ
�
0

F

��
dtþ i

� ffiffiffiffiffi
κX

p
dWXffiffiffiffiffi

κC
p

dWC

�
: ð46Þ

In Eq. (46), dWl¼X;C are Wiener noise terms and H0
MF is

given by

H0
MF ¼

 
−∇2=2mX þ gXðjψXj2 − 1=a2Þ − iκX ΩR=2

ΩR=2 −∇2=2mC − iκC

!
; ð47Þ

with the different symbols as previously defined. The
resulting stochastic differential equation can then be solved
using standard methods and software packages designed
for this purpose.

We add that this method has also recently been used to
study critical slowing down in photonic lattices (Vicentini
et al., 2018) and extended to disordered quantum many-body
system (the so-called optical stochastic unraveling for
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disordered systems) (Vicentini, Minganti et al., 2019).
Moreover, additional developments include the discrete sam-
pling of the Wigner function (Schachenmayer, Pikovski, and
Rey, 2015b), together with the explicit calculation of the
quantum corrections (Ivanov and Breuer, 2017). In the last
case, the new formalism was applied explicitly to an exciton
transport model. As such, these methods can also be gener-
alized to other scenarios, such as spin systems (Khasseh
et al., 2020).

B. BBGKY hierarchy equations

It is also possible to study open quantum systems via the so-
called Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
(Liboff, 2003). In a nutshell, this is a hierarchy of equations
aimed to describe a system of a large number of interacting
particles. As such, the idea is generic. But, as shown by Navez
and Schützhold (2010), it can also be applied directly in the
context of open dissipative systems to obtain a hierarchy of
equations for the different reduced density matrices. The way
this approach works is intuitive. Consider the reduced density

matrices for one lattice site ρμ, two lattice sites ρμν, etc. We
separate the correlated parts as ρμν ¼ ρcμν þ ρμρν, as well as
ρμνλ ¼ ρcμνρλ þ ρcμλρν þ ρcνλρμ þ ρμρνρλ, etc. The method dis-
cussed in what follows is based on the scaling hierarchy of
correlations

ρcS ¼ OðZ1−jSjÞ; ð48Þ
with jSj the number of lattice sites in set S. The different
reduced density matrices can also be computed using
the generating functional F ðαμÞ ¼ log Tr½ρQμðIμ þ αμÞ�,
with αμ an arbitrary operator acting on an on-site μ. Using
such a functional one has ρμ ¼ ∂F=∂αμjα¼0, as well as
ρcμν ¼ ∂2F=∂αμ∂ανjα¼0, etc. Next the Liouville operators
Lμ and Lμν acting on one and two sites are introduce via
the dissipation equation i∂tρ¼½H;ρ�þPμLμρþ

P
μνLμνρ=Z,

with Z the coordination number of the Hamiltonian (e.g., the
number of tunneling neighbors at any given site for a
Hubbard-like Hamiltonian). Following these equations, the
time evolution of F is given by

i
∂
∂tF ðαÞ ¼

X
μ

Trμ

�
αμLμ

∂F
∂αμ
�
þ 1

Z

X
μν

Trμν

�
ðαμ þ αν þ αμανÞLμν

� ∂2F
∂αμ∂αν þ

∂F
∂αμ

∂F
∂αν
��

: ð49Þ

Using this equation, one can take derivatives and obtain a set of equations for the correlated density matrices

i
∂
∂tρ

c
S ¼
X
μ∈S

Lμρ
c
Sþ

1

Z

X
μν∈S

Lμνρ
c
Sþ

1

Z

X
k∉S

X
μ∈S

Trk

�
LS
μkρ

c
S∪kþ

XP∪P̄¼Snfμg

P⊆Snfμg
LS
μkρ

c
fμg∪Pρ

c
fkg∪P̄

�

þ 1

Z

X
μν∈S

XP∪P̄¼Snfμ;νg

P⊆Snfμ;νg

�
Lμνρ

c
fμg∪Pρ

c
fνg∪P̄−Trν

�
LS
μν

�
ρcfμ;νg∪P̄þ

XQ∪Q̄¼P̄

Q⊆P̄

ρcfμg∪Qρ
c
fνg∪Q̄

��
ρcfνg∪P

�
; ð50Þ

with LS
μν ¼ Lμν þ Lνμ. This hierarchy of equations for the reduced density matrices is preserved in time. Moreover, it allows us to

write explicit equations for the one- and two-site density matrices. For the one-site matrix one gets

i
∂
∂t ρμ ¼ Lμ þ

1

Z

X
k

Trk½LS
μkðρcμk þ ρμρkÞ�; ð51Þ

and for the two-site matrix one has

i
∂
∂t ρμν ¼ Lμρ

c
μν
1

Z
Lμνðρcμν þ ρμρνÞ þ

1

Z

X
k≠μ;ν

Trk½LS
μkðρcμνk þ ρcμνρk þ ρcνkρμÞ� −

ρμ
Z
Trμ½LS

μνðρcμν þ ρμρνÞ� þ ðμ ↔ νÞ: ð52Þ

By combining Eqs. (51) and (52) with Eq. (48), one can
expand in powers of 1=Z and obtain different approxima-
tions for the one- and two-particle behavior.
This approach can be implemented for a variety of

systems (spins, bosons, fermions, etc.) and has the advan-
tage of being independent of the dimensionality of the
system. Navez and Schützhold (2010) applied it to a lattice
Bose-Hubbard model. The method can be used to obtain
analytical expansions, as well as to facilitate efficient
numerical simulations.

VI. LINKED-CLUSTER EXPANSION METHODS

Methods based on linked-cluster expansions have also
recently been put forward in the study of open quantum
many-body systems. While the method has been broadly
applied to isolated systems (Tang, Khatami, and Rigol, 2013),
for open systems only the case of two-dimensional spin
systems with incoherent spin relaxation (Biella et al., 2018)
has been considered. The method numerically targets expect-
ation values of observables in the steady state at long times of
the master equation.
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Mathematically, the procedure is as follows: One expands
the Liouvillian as a sum of quasilocal terms, i.e.,

L ¼
X
hki

αkLk; ð53Þ

with αk a local coupling strength and k a combined index that
runs over all sites taking part in the respective interaction. For
example, a nearest-neighbor two-body term would lead to a
set of k≡ ði; jÞ, with i and j adjacent sites. The expectation
value O of an observable Ô can be expanded in terms of
powers of αk, i.e.,

OðfαkgÞ ¼
X
fnkg

Ofnkg
Y
k

αnkk ; ð54Þ

with nk running over all non-negative integers for all k. It is
clear that all possible polynomials in αk are included in
Eq. (54), which can be reorganized in clusters as follows:

O ¼
X
c

W½O�ðcÞ; ð55Þ

with c a nonempty set of k indexes identifying the sites
belonging to the cluster. The cluster weight W½O�ðcÞ contains
all terms in the expansion with at least one power of αk, for all
k in c, and no powers of αk of k belong to c. These terms obey
the recurrence relation

W½O�ðcÞ ¼ OðcÞ −
X
s⊂c

W½O�ðsÞ; ð56Þ

with

OðcÞ ¼ Tr½ÔρsðcÞ� ð57Þ

the expectation value of the observable in the steady state
ρsðcÞ for the finite cluster c. Taking into account symmetries
in the system, the expectation value per site in the thermo-
dynamic limit can be written as

O
L
¼
X∞
n¼1

�X
cn

lðcnÞW½O�ðcnÞ
�
; ð58Þ

with L → ∞ the size of the system, the outer sum running
over all possible cluster sizes n, and the inner sum running
over all topologically different clusters cn of size n, with lðcnÞ
their multiplicity. This series expansion can be truncated up to
a cluster size R, thus giving rise to a plausible approximation
method that is also valid for open systems.
The linked-cluster expansion works well for the dissipative

Heisenberg model (Biella et al., 2018), where an exact product
state solution can be used as a starting point of the expansion.
In this case, it is even possible to calculate phase boundaries
and critical exponents of a dissipative phase transition
between a paramagnet and a ferromagnet. The situation is
quite different for the dissipative Ising model, where the
expansion series failed to converge even for a tenth-order
expansion (Jin et al., 2018).

VII. SUMMARY AND OUTLOOK

The substantial effort to develop novel simulation methods
to investigate open quantum many-body systems has enabled
us to review a variety of numerical methods. Specifically, in
this review we considered methods for the Markovian
quantum master equation (assuming a weak-coupling limit),
including mean-field stochastic methods, tensor networks,
variational methods, quantum Monte Carlo methods, a trun-
cated Wigner approximation, BBGKY hierarchy equations,
and linked-cluster expansions. While no method has yet
emerged that is universally optimal for all cases, there have
been several promising developments with different methods
for different regimes. Even with the major technical advances
discussed in this review, there are still many open problems
that are inaccessible with these state-of-the-art numerical
techniques. To give concrete examples of actual physical
problems, one may consider a common setting in the context
of Rydberg atoms in which the interaction is often long range
and cannot be approximated with just a nearest-neighbor
Hamiltonian (Schachenmayer, Pikovski, and Rey, 2015a;
Browaeys, Barredo, and Lahaye, 2016; Labuhn et al.,
2016). Even TN techniques will face a difficult challenge
(especially in two dimensions) while encountering such
problems, although there have been promising developments
in this direction recently (O’Rourke and Chan, 2020). Other
challenging problems include the existence of AFM order in
the 3D dissipative Ising model, which is an open question that
appears to be difficult to answer. This is again relevant to
ongoing experiments with Rydberg atoms, which one cannot
reliably simulate at the moment (Carr et al., 2013; Malossi
et al., 2014; Helmrich, Arias, and Whitlock, 2018). Phase
transitions and universality classes of dissipative models form
another class of problem that has proven to be difficult for
numerical techniques (Diehl et al., 2010; Carmichael, 2015;
Biondi et al., 2017; Fink et al., 2017).
The most confidence in a simulation result can be achieved

if it is reproducible when using a complementary simulation
approach. Despite these caveats, one can make several key
observations about the particular methods covered in this
review. The first observation is that mean-field methods are
considerably less reliable for open systems than their counter-
parts for closed systems, although the reason for this discrep-
ancy is still an open question. Furthermore, tensor network
methods have demonstrated their ability to successfully tackle
many hard problems surrounding open many-body systems
and resolve long-standing open questions. A particularly
interesting and promising case is that of open 2D systems,
which are unexplored territory to a large extent. As for the
variational methods discussed in this review, there appears to
be a trade-off between the formal suitability of the norm and
its efficient computability. It will be interesting to see if and
how this trade-off will be resolved in future work. We provide
a summary in Table II comparing the different techniques that
we have discussed.
Progress in recent years in simulating open quantum

systems has brought the field to a level where one has a
wide range of tools at hand to systematically make a
comparison to experimental results, particularly in the context
of quantum simulations. Combined with the experimental ease
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of preparing the steady state of an open quantum system,
these are good reasons to believe that the study of strongly
correlated open quantum many-body systems will become a
research topic with an impact on other areas of science, such
as material design and quantum computation.
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Rader, Michael, and Andreas M. Läuchli, 2018, “Finite Correlation
Length Scaling in Lorentz-Invariant Gapless iPEPS Wave Func-
tions,” Phys. Rev. X 8, 031030.

Raghunandan, Meghana, Jörg Wrachtrup, and Hendrik Weimer,
2018, “High-Density Quantum Sensing with Dissipative First
Order Transitions,” Phys. Rev. Lett. 120, 150501.

Raitzsch, U., R. Heidemann, H. Weimer, B. Butscher, P. Kollmann,
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Büchler, 2010, “A Rydberg quantum simulator,” Nat. Phys. 6,
382–388.

Weimer, Hendrik, 2015a, “Variational analysis of driven-dissipative
Rydberg gases,” Phys. Rev. A 91, 063401.

Weimer, Hendrik, 2015b, “Variational Principle for Steady States of
Dissipative Quantum Many-Body Systems,” Phys. Rev. Lett. 114,
040402.

Weimer, Hendrik, 2017, “Tailored jump operators for purely dis-
sipative quantum magnetism,” J. Phys. B 50, 024001.

Weimer, Hendrik, Robert Löw, Tilman Pfau, and Hans Peter Büchler,
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