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Poincaré and gauge groups and to their linear or nonlinear action in field space. The focus is on the
lepton sector, and the different types of symmetries describing neutrino masses and the lepton mixing
matrix are reviewed. Several illustrative examples are presented for each type of symmetry, and
specific strengths and limitations are discussed.

DOI: 10.1103/RevModPhys.93.015007

CONTENTS

I. Introduction 1
II. Origin of Neutrino Masses 4

A. Neutrino masses and the standard model 4
B. Origin of neutrino masses: Standard framework 4

1. The case for right-handed neutrinos 5
2. Tree-level origin of the Weinberg operator 6
3. Radiative origin of the Weinberg operator 7

C. Lower scale origin of neutrino masses 7
III. Symmetries: General Considerations 8

A. The flavor puzzle 8
B. Flavor symmetry group and representation 9
C. Exact flavor symmetries 10
D. Symmetry breaking 10

1. Vacuum alignment 12
2. Kinetic terms 13
3. The space of invariants 14

E. The role of CP 15
F. Nonlinear flavor symmetries 17

IV. Standard Flavor Symmetries 18
A. Perturbative breaking: Mild corrections to flavor

observables 19
1. Flavor symmetries at low scales 19
2. Flavor symmetries at high scales 20

B. Non-Abelian models and leading order breaking 22
1. Discrete non-Abelian symmetries and the

sequestering assumption 23
2. Exact sequestering, rigid PMNS 24
3. Approximate sequestering and rigid PMNS 25

a. Origin of the corrections to approximate
sequestering 28

b. Size of the corrections 29
c. Structure of the corrections 29

4. Nonrigid determination of the PMNS matrix 30
5. Extension to quarks 32
6. Outlook 33

V. CP-like Flavor Symmetries 33
A. Sequestering and residual symmetries 34
B. Parameter counting 34
C. Examples 35

1. μ − τ reflection symmetry 35

2. G ¼ S4 ⋊ CP 35
3. Δð3n2Þ and Δð6n2Þ 35
4. Other examples 36
5. Extension to quarks 36

D. Outlook 37
VI. Nonlinearly Realized Flavor Symmetries 37

A. The modular group Γ̄ 37
B. Modular invariant supersymmetric theories 38
C. Modular invariance and CP 39
D. Modular invariance and standard flavor symmetries 40
E. Modular invariance and local supersymmetry 40
F. Models 40
G. Extension to quarks 42
H. Outlook 42

VII. What Have We Learned? 42
Acknowledgments 44
References 44

I. INTRODUCTION

The replica of fermion families and their masses and
intergenerational properties constitute one of the most inter-
esting mysteries of particle physics. While gauge symmetry
strongly restricts matter interactions mediated by spin 1
particles, it leaves essentially unconstrained scalar-fermion
interactions responsible for fermion masses and mixing
angles. In the flavor sector of the standard model (SM) there
are as many independent parameters as the number of charged
fermion masses and quark mixing parameters. The toll is
raised to 22 if we include, in a general low-energy description,
neutrino masses and lepton mixing parameters. We are facing
a puzzle with many known pieces that we are still unable to
put together in a coherent picture. The discovery of neutrino
oscillations has brought great hopes for the solution of this
puzzle. Neutrinos are extremely light, calling for a different
origin of their masses, potentially related to new undiscovered
properties of particle interactions. Moreover atmospheric and
solar neutrino oscillations require large lepton mixing angles,
a completely unexpected feature, clashing against the proper-
ties of the quark sector. As we review here, many of these
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properties have been determined to good precision and there
are excellent prospects for future improvements aimed at
pinning down the few unknown aspects. Nevertheless, while
neutrino data stimulated a great deal of theoretical activity,
they also heightened the mystery of fermion masses, in that no
compelling underlying principle to describe this aspect of
elementary particles has uniquely emerged thus far. Neutrinos
and charged leptons possess special features that are the focus
of this review, although any description applicable to this
sector alone should be viewed as only a partial answer to the
general problem of fermion masses.
The observation and study of neutrino oscillations have

established that neutrinos are massive. Two independent
squared mass differences and three lepton mixing angles have
been determined with an accuracy approaching the percent
level, moving the entire field into a precision era. Most of the
experimental results can be coherently interpreted in the
context of three light active neutrinos and CPT invariance.
Experiments sensitive to solar, atmospheric, reactor, and
accelerator neutrinos provide a consistent picture supported
by many redundant tests. In Table I we report the results of
recent fits to the oscillation parameters. Notation and con-
ventions are those of the Review of Particle Physics by the
Particle Data Group (PDG) (Tanabashi et al., 2018) unless
otherwise stated. The mixing pattern in the lepton sector
appears to be totally different than that in the quark sector,
with two large mixing angles and a third one similar in size to
the Cabibbo angle.
Global analyses start to be sensitive both to the mass

ordering and to the Dirac CP-violating phase δ. A preference
for normal mass ordering (NO) over inverted mass ordering
(IO) is emerging from the data, at the level of about 3σ. The
best fit value for the Dirac CP-violating phase is δ ≈ ð1.2 −
1.3Þπ for NO, but uncertainties are large and CP conservation
is still allowed within 2σ.
Dedicated experiments have been planned to determine the

mass ordering and δ. Mass ordering measurements with an
individual significance of more than 3σ could be realized with
several different technologies and methods, exploiting atmos-
pheric (KM3NeT/ORCA, PINGU, INO), reactor (JUNO), and
accelerator (DUNE, Hyper-K) neutrinos. DUNE and Hyper-K

have planned sensitivities to CP violation higher than 5σ for
most of the allowed range, even though a precise determi-
nation of δ around the maximal value would be challenging.
The absolute neutrino mass scale is still unknown, although

it is well constrained by both laboratory and cosmo
logical observations. The current laboratory limit mν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i jUeij2m2
i

p
< 1.1 eV (90% C.L.), recently set by the

KATRIN experiment (Aker et al., 2019), is expected to be
further improved in the future. At present cosmology provides
the most stringent bound on the sum of neutrino masses,P

i mi < 0.12 − 0.68 eV, although it is subject to uncertain-
ties inherent to the adopted cosmological model: the number
of free parameters used to fit observations and the actual set of
data included in the analysis (Tanabashi et al., 2018). Upper
bounds on neutrino masses become weaker when the data are
analyzed in the context of extended cosmological models or
when a conservative set of data is used, but they are not
considerably weaker. These bounds are expected to improve
significantly in the future thanks to recently planned experi-
ments. If the Λ cold dark matter model of the Universe is
confirmed, and if neutrinos have standard properties, non-
vanishing neutrino masses should be detected at the level of at
least 3σ (Tanabashi et al., 2018).
The impressive suppression of neutrino masses is peculiar,

even compared to that of the lightest charged fermions. Not
only is the electron mass suppressed by only a factor Oð105Þ
but the latter suppression follows from the interfamily
hierarchy displayed by charged fermion masses, with sub-
sequent families separated by only about 2 orders of magni-
tude. Conversely, all three neutrino families are separated
from the electroweak scale by at least 11 orders of magnitude.
The striking size of neutrino masses might be related to the
possibility that the total lepton number L is violated, although
this is certainly not the only possible explanation. Violation of
the individual lepton numbers has been established, but we
still do not know whether or not L is violated in nature. The
experimental clarification of this central aspect might shed
light on the possible origin of flavor. Indeed, from the theory
viewpoint the simplest explanation of the smallness of
neutrino masses is in terms of the violation of L at a large
scale, possibly not far from the grand unified scale.
Experimentally, the most promising L-violating transition

is the neutrinoless double beta (0νββ) decay. If interpreted in
the context of three light Majorana neutrinos, present experi-
ments allow researchers to set an upper bound on jmeej ¼
jPi U

2
eimij, a combination of neutrino masses, mixing angles,

and Majorana phases. Despite the uncertainties due to the lack
of knowledge of absolute masses and Majorana phases, jmeej
can be constrained by neutrino oscillation data alone and, at
least in the case of IO, the allowed region is getting closer to
the range explored by current 0νββ decay experiments.
In Table II we report on some recent experimental results.
We refer the interested reader to reviews given by Päs
and Rodejohann (2015), Dell’Oro et al. (2016), Vergados,
Ejiri, and Śimkovic (2016), and Dolinski, Poon, and
Rodejohann (2019).
Few experimental anomalies require additional observatio-

nal support or a coherent theoretical interpretation. These
include (i) the so-called reactor anomaly (Mention et al.,

TABLE I. Best fit values and 1σ errors of the three-flavor
oscillation parameters in the global analysis given by Esteban et al.
(2019). The results include data on atmospheric neutrinos provided
by the Super-Kamiokande Collaboration. There is a difference of
Δχ2ðIO − NOÞ ¼ 10.4 between inverted ordering (IO) and normal
ordering (NO). Note that Δm2

3l ¼ Δm2
31 > 0 for NO and Δm2

3l ¼
Δm2

32 < 0 for IO. For other recent global analysis, see De Salas et al.
(2018), Gariazzo et al. (2018), and Capozzi et al. (2019).

Normal ordering Inverted ordering

sin2 θ12 0.310þ0.013
−0.012 0.310þ0.013

−0.012

sin2 θ23 0.563þ0.018
−0.024 0.565þ0.017

−0.022

sin2 θ13 0.02237þ0.00066
−0.00065 0.02259þ0.00065

−0.00065
δ=π 1.23þ0.22

−0.16 1.57þ0.13
−0.14

Δm2
21=10

−5 eV2 7.39þ0.21
−0.20 7.39þ0.21

−0.20

Δm2
3l=10

−3 eV2 2.528þ0.029
−0.031 −2.510þ0.030

−0.031
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2011), i.e., evidence for the disappearance of electron anti-
neutrinos in short baseline experiments; (ii) the gallium
anomaly (Abdurashitov et al., 1999, 2006; Kaether et al.,
2010), i.e., the observed deficit in the gallium radioactive
source experiments; and (iii) indications of νμ → νe conver-
sion from the LSND (Aguilar-Arevalo et al., 2001) and
MiniBoone (Aguilar-Arevalo et al., 2018) experiments.
Taken at face value, these effects do not fit the standard
framework with three light neutrinos, and explanations invok-
ing a fourth sterile neutrino have been adopted. Even in such
an extended scheme the anomalies do not find a coherent
interpretation, due to the tensions between appearance and
disappearance data (Dentler et al., 2018), which indicates
either the need for a less minimal framework or the invali-
dation of some of the experiments. While the discovery of a
sterile neutrino would represent a major result of the current
experimental activity and a nontrivial challenge for its
interpretation in the context of the flavor puzzle, here we
assume a low-energy framework with three light active
neutrinos and CPT invariance. New states are not excluded
but are assumed to be heavy, allowing for an effective
description of current experiments where only the light
degrees of freedom take action.
There are few theoretical tools allowing for a quantitative

and predictive description of neutrino mass and mixing
parameters. The focus of this review is on flavor symmetries,
one of the most appealing options, given the role that
symmetries have played in accounting for the properties of
fundamental interactions. The idea that relations among mass
parameters can be enforced by symmetries is an old one. The
most predictive case is represented by exact symmetries, a
prototype of which is gauge invariance in quantum electro-
dynamics, guaranteed only if the photon is massless. Exact
symmetries do not apply to fermion masses and mixing
angles. For example, SM Yukawa couplings break the large
non-Abelian global symmetry of quark gauge interactions,
down to the baryon number and to the global hypercharge
transformations, which provide no restrictions to mass param-
eters. The lepton sector follows a similar fate and a realistic
description of fermion masses should necessarily rely on
approximate symmetries. As a consequence, breaking terms
are crucial for determining the correct pattern of masses and
mixing angles. Moreover, in interesting cases flavor sym-
metries are realized far from the exact phase, with symmetry
breaking effects playing a leading role. This feature makes it

difficult to single out a baseline model or a unique candidate
for the flavor group.
For these reasons a large part of this review is devoted to a

general discussion of symmetries and symmetry breaking that
is independent of their specific realization in model building.
We provide a general classification of flavor symmetries that is
compatible with a local, gauge-invariant, and relativistic
quantum field theory. We distinguish between symmetries
acting linearly or nonlinearly in field space. In particular,
dealing with the nonlinear case, we go beyond the well-
established Callan-Coleman-Wess-Zumino formalism (Callan
et al., 1969; Coleman, Wess, and Zumino, 1969), which does
not cover the relevant case of discrete symmetries. We offer a
more general description that accommodates all cases of
interest. We also distinguish symmetries commuting with
the Poincaré and gauge groups from those that do not. The
latter choice includes CP-like flavor symmetries, which have
received significant attention in recent years, especially in
connection with discrete symmetry groups. This classifica-
tion, meant to cover not only the lepton sector but also the
entire fermion area, is particularly relevant to clearly identify
the uncharted directions from the previously explored ones.
Moreover, in our view it should not be viewed as a formal
mathematical exercise since it reflects important physical
aspects of the symmetries in question. For example, CP-like
flavor symmetries are especially efficient in constraining
physical phases. Symmetries whose action is nonlinear can
potentially enhance the predictive power of the model, as they
are able to relate operators of different dimensionality.
We also examine how symmetry breaking can be efficiently

described through the use of spurions, allowing one to capture
the cases of both explicit and spontaneous breaking. We
discuss how predictions about the mixing matrix can be
viewed as a solution to a problem of vacuum alignment.
When the vacuum arises from the minimization of an energy
density functional, general results are encoded in the space of
invariants of the theory and in the structure of its boundaries.
We provide, for the first time in the context of flavor
symmetries, a concise review of this important topic, where
the problem of symmetry breaking finds its most natural
mathematical formulation. The rest of our review is devoted to
summarizing the state of the art in model building, organized
according to our general classification of flavor symmetries.
Aware that this part can easily become obsolete in a short time,
we emphasize the general features of model building, limiting
the discussion of specific models to a few examples in each
category. We also comment on the possibility of extending
each type of symmetries from the lepton sector to the quark
one. The number of possibilities offered to model building is
large, and many of them have already been surveyed in
excellent reviews (Altarelli and Feruglio, 2010; Ishimori et al.,
2010; Smirnov, 2011; King and Luhn, 2013; King et al., 2014;
King, 2017; Petcov, 2018; Xing, 2019).
Flavor symmetries do not exhaust all possible quantitative

approaches to the flavor puzzle. For example, mass and
mixing low-energy parameters can satisfy fixed-point rela-
tions, originating from the renormalization group flow of
generic input parameters defined at a high-energy scale.
Infrared stable fixed points of the renormalization group
equations for Yukawa couplings and fermion masses were

TABLE II. Lower bound on T0ν
1=2 (90% C.L.) and upper bound on

jmeej from GERDA (Agostini et al., 2018), CUORE (Alduino et al.,
2018), KamLAND-Zen (Gando et al., 2016), and EXO-200 (Anton
et al., 2019). The quoted range reflects the uncertainty in the nuclear
matrix elements required to translate the half-life T0ν

1=2 into jmeej.

Isotope
Lower bound
on T0ν

1=2 (yr)
Upper bound
on jmeej (meV) Collaboration

76Ge 8.0 × 1025 120 − 260 GERDA
130Te 1.5 × 1025 110 − 520 CUORE
136Xe 1.07 × 1026 61 − 165 KamLAND-Zen
136Xe 3.5 × 1025 93 − 286 EXO-200
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studied long ago. In the lepton sector, no acceptable relations
among the mixing angles have been found in the CP-
conserving regime (Chankowski and Pokorski, 2002), while
in the CP-violating regime the only viable constraint (Casas
et al., 2000) requires a strong degeneracy between the closest
neutrino masses.
Another possibility is offered by the mechanism of radiative

mass generation, when a combination of mass parameters that
accidentally vanishes at the classical level gets a nonvanishing
calculable contribution at higher orders of perturbation theory.
In particular, it has been suggested that the lightness of
neutrinos might arise in this context from loop suppression
factors. States running in the internal lines of the loop can be
sufficiently light to be probed at existing facilities, which is at
variance with the typically heavy states of the seesaw
mechanism. The new states can also lead to lepton flavor
violation, which will potentially be observable at current or
future high-intensity facilities. We comment on such a
possibility when discussing the mechanism for neutrino
masses.
This review consists of seven sections. After recalling the

possible origin of neutrino masses in Sec. II, in Sec. III we
present a general classification of flavor symmetries and
discuss general aspects of symmetry breaking. Sections IV–
VI provide a more specific description and several illustrative
examples of the type of symmetries classified in Sec. III.
Finally, in Sec. VII we summarize our thoughts on the subject.
There are many related topics that we only briefly mention or
have deliberately left out of this work. This list is long and
includes extension to the quark sector within grand unified
theories or string theory, realization in the context of extra
dimensions, relation to lepton flavor violation searches and
leptogenesis, and mathematical aspects such as group theory.
We refer the interested reader to the aforementioned literature.

II. ORIGIN OF NEUTRINO MASSES

A. Neutrino masses and the standard model

Neutrinos are massless in the standard model according to
its usual definition as a renormalizable theory involving left-
handed neutrinos only. While such a prediction is certainly at
odds with everything we have learned about neutrinos in
recent decades and represents an incontrovertible reason to
extend the SM, it can at the same time be considered a success
of the SM since it offers a basis for the understanding of the
peculiar smallness of neutrino masses.
The SM gauge structure is indeed crucial in forbidding

neutrinos from getting a mass. In the effective theory below
the electroweak scale, with SUð3Þc × Uð1Þem the gauge group,
both the charged fermions and the neutrinos are allowed to get
a mass. Therefore, the peculiar size of neutrino masses is not
addressed by the gauge structure in this case.
The neutrino mass term allowed in the SUð3Þc × Uð1Þem

theory is of Majorana type, and as such it violates the total
lepton number. The fact that such a mass term is not generated
by the SM completion can therefore be seen as a consequence
of the accidental conservation of lepton number in the SM (or
from direct inspection: no renormalizable interaction gives

rise to neutrino masses after electroweak symmetry breaking,
as we have not introduced, so far, right-handed neutrinos).
Accidental symmetries are not imposed by hand; they just

happen to be global symmetries of the most general renor-
malizable Lagrangian invariant under the given gauge trans-
formations. The SM turns out to have four independent
accidental symmetries, associated with the conservation of
baryon number B and of the three individual lepton numbers
Li. The total lepton number L ¼ P

i Li is therefore also
accidentally conserved. As we later discuss, the SM accidental
symmetries are a residual subgroup of the Uð3Þ5 × Uð1ÞH
global symmetry that the SM acquires when its Yukawa
couplings are set to zero, which in turn underlies the idea of
flavor symmetries.
The emergence of lepton number as an accidental symmetry

is one of the notable features of the SM. On the one hand, it
predicts the suppression of lepton-number-violating processes
in nature (thus providing a zeroth order approximation for the
smallness of Majorana neutrino masses mν ¼ 0). On the other
hand, since lepton number is not postulated to be a funda-
mental symmetry, small lepton-number-violating effects are
not forbidden. This is welcome, as a small (but conceptually
and practically important) breaking of lepton and baryon
number takes place even within the SM because of non-
perturbative effects (’t Hooft, 1976a, 1976b). Moreover, it is
welcome because it leaves room for a small breaking of lepton
number and, in particular, for small Majorana neutrino
masses, originating from possible UV completions of the
SM. Grand unified theories (GUTs) explicitly break lepton
and baryon number and are therefore not compatible with
enforcement of the conservation of lepton number by hand.

B. Origin of neutrino masses: Standard framework

Section II.A laid the groundwork for a basic understanding
of the origin and size of neutrino masses. Such an under-
standing is based on the sole hypothesis that the new
ingredients needed to be added to the SM to account for
neutrino masses, whatever they are, lie at a scale significantly
larger than the electroweak scale.
If that is the case, effective field theory (EFT) ensures that it

is possible to account for the effect (including neutrino
masses) of such new ingredients at lower scales by adding
to the SM Lagrangian additional nonrenormalizable, or
“effective,” operators. The nonrenormalizable Lagrangian
one obtains is called the SM effective field theory (SMEFT).
The effective operators are suppressed by powers of the

scale of the new physics generating them, the “cutoff” Λ. The
perturbative validity of the theory is limited to energies well
below the cutoff. There the impact of an effective operators is
suppressed by a factor of ðE=ΛÞD−4, whereD is the dimension
of the operator in energy. Therefore, the most relevant
operators are in principle the lowest-dimensional ones. In
the E ≪ Λ regime, the theory can be renormalized with a
finite number of counterterms order by order in an expansion
in the operator dimension.
The effective operators contain SM fields only and simply

need to obey the SM gauge invariance, so no actual knowl-
edge of the physics originating from them is required to
account for its low-energy effect.
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The single lowest dimensional operator allowed in the
SMEFT, the D ¼ 5 Weinberg operator (Weinberg, 1979)

cij
2Λ

ðliHÞðljHÞ; ð2:1Þ

is precisely what is needed to account for neutrino masses. In
Eq. (2.1), li, i ¼ 1; 2; 3, are the lepton doublets and H is the
Higgs doublet. There and below, SUð2ÞL-invariant contrac-
tions of the doublet indices are understood because of the
2 × 2 antisymmetric tensor in Eq. (2.1). The splitting of the
coefficient into a dimensionless numerator cij and a dimen-
sionful denominator Λ is arbitrary. Λ is supposed to represent
the scale of the new degrees of freedom whose virtual
exchange gives rise to the operator, and cij is intended to
group the coupling, mixings, and loop factors involved, which
are not supposed to be larger than Oð1Þ in a perturbative
regime and Oð4πÞ in a nonperturbative one.
The origin of the operator in Eq. (2.1) must be associated

with lepton-number-violating physics, as the operator itself
breaks the lepton number by two units. It also breaks B − L,
an important ingredient for high-scale baryogenesis (Kuzmin,
Rubakov, and Shaposhnikov, 1985). After electroweak sym-
metry breaking, the operator gives rise to a neutrino Majorana
mass term in the form

mij

2
νiνj; ð2:2Þ

with

mij ¼ cij
v2

Λ
; ð2:3Þ

where v is the electroweak scale, with v ¼ jhHij ≈ 174 GeV.
The peculiarity of neutrino masses is now accounted for by

their differing dependence on the electroweak scale. While
charged fermion masses are linear in v, neutrino masses turn
out to be quadratic in v and thus suppressed by a factor of v=Λ
with respect to the former. Their suppression is attributed to
the heaviness of the scale Λ at which lepton number is
violated. If mh is the heaviest neutrino mass and ch is the
heaviest eigenvalue of the matrix cij, we have

Λ ≈ 0.5 × 1015 GeVch

�
0.05 eV

mh

�
: ð2:4Þ

The scale Λ of the new physics associated with the neutrino
masses can be as large as 1015 GeV, hence hinting at a
possible connection with GUT physics, or much smaller if the
couplings λUV on which ch depends are small. As ch usually
depends quadratically on λUV, UV couplings of the order of
10−2 are sufficient to bring Λ down to 1011 GeV.
While the Weinberg operator is the lowest-dimensional, and

therefore in principle the most relevant, effective operator
giving rise to neutrino masses, higher order operators may
become relevant if the former turns out to be suppressed. On
the other hand, higher order operators contributing to neutrino
masses simply contain additional pairs of conjugated Higgs
fields. Therefore, any symmetry suppressing the Weinberg

operator would also suppress those higher order operators.
Barring an accidental suppression of the former, the latter
hardly have a chance to dominate. The situation changes in
extensions of the SMHiggs sector by a singlet and/or a second
doublet. Then it is possible to define symmetries forbidding
the D ¼ 5 operator, but not higher order ones (Babu, Nandi,
and Tavartkiladze, 2009; Bonnet et al., 2009; Gogoladze,
Okada, and Shafi, 2009). In such cases, neutrino masses turn
out to be suppressed by higher powers of v=Λ, which lowers
the needed scale of Λ. Higher order operators can also involve
new fields that do not get a vacuum expectation value (VEV)
and still contribute to neutrino masses, if the new field lines
close into a loop. If the new fields are heavy and integrated
out, this possibility can still be accounted for in terms of the
D ¼ 5 Weinberg operator (see the following comment on its
radiative origin).

1. The case for right-handed neutrinos

While the previously mentioned framework offers a simple
and compelling understanding of the size of neutrino masses,
it relies on the absence of a “right-handed” counterpart of the
SM neutrinos. All the left-handed charged fermions contained
in the quark and lepton doublets qi ¼ ðui; diÞT , li ¼ ðνi; liÞT
have SUð2ÞL singlet partners1 uci , d

c
i , e

c
i leading to Dirac

masses through the Yukawa interactions λUiju
c
i qjHþ

λDijd
c
i qjH

� þ λEije
c
i ljH

� þ H.c., so it is not unnatural to postu-
late that the neutrinos νi should also be accompanied by an
SUð2ÞL singlet partner νci , leading to a neutrino Dirac mass
term through the Yukawa interaction

λNijν
c
i ljH þ H.c. ð2:5Þ

If so, what would make neutrino masses peculiar?
Note that the existence of the singlet neutrinos νci is

predicted in a number of extensions of the SM providing
an understanding for the SM gauge quantum numbers, and
thus further motivated. This is the case of extensions based on
the left-right symmetric gauge group GLR¼SUð3Þc×SUð2ÞL×
SUð2ÞR×Uð1ÞB−L, the Pati-Salam group GPS ¼ SUð4Þc×
SUð2ÞL × SUð2ÞR, or the grand unification group SO(10).
The special size of neutrino masses can be accounted for

even in the presence of singlet partners for the neutrinos as
well, as such singlet neutrinos carry their own peculiarity. For
them to give rise to a neutrino mass term through gauge-
invariant Yukawa interactions, the fields νci should be singlets
under the entire SM group.2 The previously mentioned SM
extensions also predict them to be SM singlets. Therefore, the
neutrino singlets would be the only fermions allowed to have
an explicit, gauge-invariant (and lepton-number-violating)
mass term

1The superscript c in fc denotes the charge conjugate of the right-
handed component of f in the Dirac spinor formalism, or a left-
handed field independent of f in the Weyl spinor formalism.

2If the field νc is allowed to have more than one component, it
could alternatively be a SUð2ÞL triplet. The argument that follows
would still go through, as it is based on νc being the only fermion in a
real representation of the SM group, with all the others belonging to a
fully chiral representation.
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Mij

2
νci ν

c
j þ H.c. ð2:6Þ

Such a mass term has no ties to the electroweak scale, as it
survives in the limit in which the electroweak scale vanishes.
Hence, there is no reason why it could not be much heavier
than the electroweak scale. If that is the case, the singlet
neutrinos simply represent a specific and prototypical reali-
zation of the previously discussed framework: new degrees of
freedom lying at a scale significantly larger than the electro-
weak scale. It must therefore be possible to account for their
effect at the electroweak scale and below in terms of effective
operators. Indeed, integrating them out [as reviewed by
Altarelli and Feruglio (2004)] precisely generates the
Weinberg operator with, in matrix notation,

c
Λ
¼ −λTNM−1λN; ð2:7Þ

where λN and M are the parameters in Eqs. (2.5) and (2.6),
respectively. The light neutrino masses end up being given by
the seesaw formula (Minkowski, 1977; Gell-Mann, Ramond,
and Slansky, 1979; Yanagida, 1979; Glashow, 1980;
Mohapatra and Senjanovic, 1980)

mν ¼ −mT
DM

−1mD; ð2:8Þ

where mD ¼ λNv is a Dirac-like neutrino mass term. The
advantage of the EFT derivation over the diagonalization of
the 6 × 6 matrix of the νi þ νci system is that it allows one to
organize the computation of potentially large, log-enhanced
radiative corrections to the seesaw formula by means of the
renormalization group equations. The coefficient of the
Weinberg operator is calculated from Eq. (2.7) at the singlet
neutrino scale, and the Weinberg operator is subsequently run
down to the electroweak scale. Within the SM, gauge
interactions and quark Yukawa interactions only affect (at
one loop) the overall neutrino mass scale, while flavor-
dependent effects from lepton Yukawa interactions are neg-
ligible. Sizable flavor corrections can arise in two Higgs
doublet schemes in the large tan β regime in the presence of an
“unstable” (Domcke and Romanino, 2016) neutrino mass
approximate degeneracy; see Chankowski and Pokorski
(2002). If the heavy neutrinos are hierarchical, threshold
effects associated with their sequential decoupling may also
be important.

2. Tree-level origin of the Weinberg operator

We have seen that neutrino singlets, unless unexpectedly
light, represent a specific realization of the general situation in
which the new physics needed to account for neutrino masses
lies at a scale significantly higher than the electroweak scale.
We then wonder what is the most general form of the heavy
new physics giving rise to the Weinberg operator. A simple
and complete answer is found in the assumption that the
Weinberg operator is generated at the tree level. In such a case,
the virtual heavy states can have only three types of SM
quantum numbers, corresponding to type-I, type-II (Magg and
Wetterich, 1980; Lazarides, Shafi, and Wetterich, 1981;

Mohapatra and Senjanovic, 1981),3 and type-III (Foot et al.,
1989) seesaw. We now list them using the notation ðr3; r2; yÞ
for the SM gauge quantum numbers, where r3 is the SUð3Þc
representation, r2 is the SUð2ÞL representation, and y is the
value of the hypercharge (in units in which the SM Higgs
sector has y ¼ 1=2).

Type I.—The virtual messengers are fermions νc with
SM quantum numbers (1,1,0); i.e., they are SM
singlets. This is essentially the case discussed earlier,
with the only variation that the number n of singlet
neutrinos is not bound to be 3. To reproduce both the
atmospheric and solar squared mass differences, n ≥ 2
is needed. The relevant high-scale Lagrangian is given
by Eqs. (2.5) and (2.6) as

−LI ¼ λNkjν
c
kljH þMkh

2
νckν

c
h þ H.c.; ð2:9Þ

where the number of singlet neutrinos is now n, the
Yukawa coupling λN is an n × 3 matrix, and the mass
term M is an n × n symmetric matrix. The effective
Weinberg operator and the neutrino masses are again
given by

c
Λ
¼ −λTNM−1λN; mν ¼ −mT

DM
−1mD: ð2:10Þ

Type II.—The virtual messengers are complex scalars
Δk, k ¼ 1;…; n, with SM quantum numbers (1,3,1);
i.e., they are SUð2ÞL triplets with hypercharge Y ¼ 1.
The relevant high-scale Lagrangian is

−LII ¼ 1
2
ðyijkliσaljΔa

k þ μkHσaHΔa�
k þ H.c.Þ

þM2
khΔa�

k Δa
h; ð2:11Þ

where the mass matrix M2 is now Hermitian and Δa,
a ¼ 1; 2; 3, are the components of the triplets Δ.
Integrating them out gives rise to the Weinberg
operator and neutrino masses, with

cij
Λ

¼ −yijhðM2Þ−1hkμk; ðmνÞij ¼ −v2yijhðM2Þ−1hkμk:
ð2:12Þ

The role of the cutoff Λ is now played by the
combination M2=μ, where μ2 can be expected to be
of the same order as M2. Unlike in the type-I and
type-III cases, one triplet is in principle sufficient to
reproduce both the atmospheric and solar squared
mass differences.

Type III.—This case is similar to type I, but the
messengers are now SUð2ÞL triplets. That is, they
are fermions Tk, k ¼ 1;…; n, with SM quantum

3Schechter and Valle (1980, 1982) noted that a scalar triplet VEV
directly contributes to neutrino masses, with no seesaw suppression
by the triplet mass.
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numbers (1,3,0), and again n ≥ 2. The relevant high-
scale Lagrangian is

−LIII ¼ λTijT
a
i ljσaH þMij

2
Ta
i T

a
j þ H.c.; ð2:13Þ

where Ta, a ¼ 1; 2; 3, are the components of the
triplets T. Integrating them out generates theWeinberg
operator and neutrino masses, with

c
Λ
¼ −λTTM−1λT; mν ¼ −mT

TM
−1mT; ð2:14Þ

where mT ¼ vλT .
A simple analysis based on gauge invariance shows that the

tree-level diagrams in Fig. 1, which correspond to the three
previously mentioned seesaw Lagrangians, are the only
possible ones (Ma, 1998). A complex scalar with quantum
numbers (1,1,1) cannot play a role at the tree level, as it
couples to the antisymmetric combination of lilj but not to hh.

3. Radiative origin of the Weinberg operator

While a tree-level origin of the Weinberg operator is the
most appealing option [and the only one with unbroken
supersymmetry (Megrelidze and Tavartkiladze, 2017)], the
possibility of a radiative origin is not excluded; see (Cai et al.
(2017) for a recent review. Depending on the specific field
content of the UV theory, a tree-level origin may not be
available, while the Weinberg operator can arise through
quantum corrections at the loop level. The topologies of
the corresponding Feynman diagrams have been classified up
to two-loop order (Babu and Leung, 2001; de Gouvea and
Jenkins, 2008; Bonnet et al., 2012; Angel, Rodd, and Volkas,
2013; Aristizabal Sierra et al., 2015) and require at least two
new multiplets to play the role of intermediate states (Law and
McDonald, 2014). Once those states are integrated out, within
an effective-theory approach, the Weiberg operator is not
generated at the tree level. Other lepton-number-violating
operators are, however, and they give rise to the Weinberg one
through loops involving SM interactions and fields. The new
states cannot be far from the electroweak scale, and the
suppression of the neutrino masses compared to the latter is at
least partially accounted for by the loop factor ½1=ð16π2Þ�l,
where l is the loop order at which the diagram arises, if l is
sufficiently large.
Such models may be characterized by a possibly interesting

phenomenology at colliders and in charged-lepton flavor

violation (CLFV) experiments, although their aesthetic appeal
does not match the tree-level seesaw one. On the one hand, the
suppression of neutrino masses is better accounted for when l
is relatively large. On the other hand, the increase of l leads to
a rapid increase of the number of diagrams. The structure and
field content of the model is not as constrained as in the tree-
level case. On the contrary, a plethora of possibilities are
available. Finally, the model parameters often need to be fine-
tuned to cope with the present bounds on CLFVand reproduce
neutrino masses and mixings. For further information on such
class of models, see the reviews given by Boucenna, Morisi,
and Valle (2014) and Sugiyama (2015).

C. Lower scale origin of neutrino masses

As we have seen, effective field theory provides a simple
and compelling understanding of the origin and peculiar
smallness of neutrino masses, under the sole hypothesis that
the new degrees of freedom needed to account for non-
vanishing neutrino masses lie significantly above the electro-
weak scale. Neutrino masses, on the other hand, can also
originate well below the electroweak scale. Dirac neutrinos are
the prototypical example. The SM neutrinos in such a case get
a purely Dirac mass from Yukawa couplings to otherwise
massless singlet neutrinos [M ¼ 0 in Eq. (2.6)]. While the
standard framework unavoidably leads to lepton-number-
violating Majorana neutrino masses, Dirac neutrinos conserve
lepton number, which offers an opportunity to experimentally
probe the origin of neutrino masses.
Before ending up with M ¼ 0 and purely Dirac neutrinos,

we consider the intermediate possibility that M does not
vanish but is not significantly larger than the electroweak
scale, so the SMEFT approach used in Sec. II.B does
not apply.
If the singlet neutrino masses are not far from the electro-

weak scale, they can play a role in future collider phenom-
enology (Antusch and Fischer, 2015; Deppisch, Bhupal Dev,
and Pilaftsis, 2015). As those masses can in principle be as
large as the Planck scale, their proximity to the electroweak
scale, about 15 orders of magnitude smaller, would represent a
nontrivial accident.
In the presence of a single family, a singlet neutrino

mass M ∼ TeV requires a neutrino Yukawa coupling as
small as

λN ∼ 1.3 × 10−6
�

mν

0.05 eV
M
TeV

�
1=2

: ð2:15Þ

FIG. 1. Diagrammatic representation of the three types of seesaw mechanisms. They all give rise to the Weinberg effective operator in
Eq. (2.1) once the intermediate states are integrated out. The crosses denote lepton-number-violating mass insertions.
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The smallness of the neutrino masses is accounted for by the
smallness of λ, and such a small coupling would make collider
effects hardly observable.
With three families, though, larger Yukawa couplings are

allowed if cancellations take place in the seesaw formula.
Nonaccidental cancellations can be forced by appropriate
symmetries, such as the lepton number itself, allowing the
large Yukawa couplings while forbidding the neutrino masses
(Kersten and Smirnov, 2007; Xing, 2009), and can involve
additional singlets (Mohapatra, 1986; Mohapatra and Valle,
1986; Akhmedov et al., 1996a, 1996b; Barr, 2004; Malinsky,
Romao, and Valle, 2005; Barr and Dorsner, 2006; Ibarra,
Molinaro, and Petcov, 2010). The larger Yukawa couplings
then have a chance to be probed at colliders. Such symmetric
couplings are no longer directly related to the origin of neutrino
masses (and their size), which in this case is instead associated
with the symmetry breaking parameters (and their smallness).
The collider prospects are richer when interactions besides

those directly related to neutrino masses provide additional
production or detection channels. This is the case when the
heavy states feel gauge interactions. For example, the SM
singlet neutrinos can be charged under extensions of the SM
group containing an SUð2ÞR factor (Keung and Senjanovic,
1983; Nemevsek et al., 2011; Das et al., 2012). Even sticking
to the SM group, the components of Δ and T (in type-II and
type-III seesaws, respectively) charged under the SM can
enrich the collider phenomenology (Akeroyd and Aoki, 2005;
Han et al., 2007; del Aguila and Aguilar-Saavedra, 2009).
The collider bounds on the charged component of Δ and T

prevent the type-II and type-III seesaws from being extrapo-
lated below the electroweak scale (barring an unnatural
splitting among neutral and charged components). On the
other hand, the singlet neutrino mass in the type-I seesaw can
be arbitrarily small, or zero, as previously argued.
In the intermediate regime in which the singlet neutrino

masses are lighter than the electroweak scale but significantly
larger than the energy of the relevant neutrino processes, it is
still possible to integrate out the singlet neutrinos. As the SM
group is badly broken in such a regime, it is appropriate in this
case to start from the SUð3Þc × Uð1Þem invariant Lagrangian
(Altarelli and Feruglio, 1999b)

mD
ijν

c
i νj þ

Mij

2
νci ν

c
j þ H.c.; ð2:16Þ

which still leads to the seesaw formula in Eq. (2.8).
Otherwise, if the singlet neutrinos are light enough to be

produced or not far from that, a full treatment of the neutrino
sector, including the sterile states and their mixing with the
active ones, is necessary. In such a regime, the size of neutrino
masses requires the relevant parameters to be particularly
small. For example, singlet neutrinos in the eV range [a
motivated possibility; see Giunti and Lasserre (2019) for a
review] require the Yukawa couplings λN and the singlet
masses M in Eqs. (2.5) and (2.6) to be as small as

λN ≲ 10−11; M ≲ 10−18MPl ð2:17Þ

(and imply a mild fine-tuning, keeping Dirac and Majorana
neutrino masses within 1 or 2 orders of magnitude).

Finally, if the Majorana mass term M is even smaller than
the Dirac mass term, solar neutrino experiments forceM to be
well below the heavier active neutrino mass range (de Gouvea,
Huang, and Jenkins, 2009), and we approach the Dirac
neutrino limit, in whichM ¼ 0. In such a limit, lepton number
is conserved in the neutrino sector, and the only role of the
sterile fields is to pair to the active ones in the Dirac mass term.
The corresponding degrees of freedom can hardly be
observed, as their production and detection with an energy
E is suppressed by a factor of mν=E.
In the cases considered here, the size of the neutrino masses

is accounted for by the often striking smallness of the
Lagrangian parameters. While such a smallness may seem
quite ad hoc, ideas are available to account for it. The
suppression of the Majorana mass term can be associated
with the approximate or exact conservation of lepton number.
This comes at the price of giving up one of the successes of the
SM, as the approximate conservation of lepton number
observed in nature would no longer be accounted for by
accidental symmetries. Lepton number needs to be enforced
as a symmetry by hand, with the drawbacks discussed in
Sec. II.A. The smallness of the Yukawa couplings can instead
be given a dynamical origin. Small, nonzero couplings can
arise through the spontaneous breaking of a symmetry
forbidding them (Chikashige, Mohapatra, and Peccei, 1981;
Gelmini and Roncadelli, 1981; Georgi, Glashow, and
Nussinov, 1981; Chacko et al., 2004; Chen, de Gouvea,
and Dobrescu, 2007; Gu et al., 2009), or from a more
fundamental theory living in more than four dimensions
(Dienes, Dudas, and Gherghetta, 1999; Dvali and Yu.
Smirnov, 1999; Mohapatra, Nandi, and Perez-Lorenzana,
1999; Barbieri, Creminelli, and Strumia, 2000; Grossman
and Neubert, 2000; Lukas et al., 2000, 2001; Arkani-Hamed
et al., 2001; Gonzalez-Garcia and Nir, 2003).

III. SYMMETRIES: GENERAL CONSIDERATIONS

A. The flavor puzzle

Having reviewed possible origins of the neutrino masses
and their overall scale, we now come to the main subject of
this review: the origin, if any, of the pattern of lepton masses
and mixings, i.e., of the flavor structure of the lepton mass
matrices, which is part of the so-called SM flavor puzzle.
The flavor puzzle in the SM, here extended to include a

source of neutrino masses, has two aspects. The first one is the
existence of three fermion families replicating the same set of
gauge quantum numbers. Or, equivalently, the invariance of
the SM gauge Lagrangian under a global Uð3Þ5 global
symmetry, where each U(3) factor mixes the three families
of fermions with identical gauge quantum numbers: qi, uci , d

c
i ,

li, eci , i ¼ 1; 2; 3. The Higgs Lagrangian is invariant under a
further Uð1ÞH rephasing of the Higgs doublet field. Thus,
Gmax ≡ Uð3Þ5 × Uð1ÞH is the maximal group of global SM
field transformations commuting with the actions of the
Poincaré and gauge groups. It includes the hypercharge global
transformations. In SM extensions, Gmax can be larger if the
matter field content is extended (singlet neutrinos, for exam-
ple, or additional Higgs fields), or smaller if the gauge group is
extended.
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If the source of neutrino masses is neglected, Uð3Þ5 ×
Uð1ÞH is explicitly broken by the SM Yukawa interactions
with the four SM accidental symmetries [the U(1) trans-
formations associated with the individual lepton numbers Le,
Lμ, Lτ and the total baryon number B] and to the hypercharge
global transformations. The accidental symmetries are anoma-
lous unless they are combinations of B − Le=3, B − Lμ=3, and
B − Lτ=3. If neutrino masses are accounted for at the weak
scale by the Weinberg operator, the three individual lepton
numbers are also broken and only B survives at the perturba-
tive level, although it is anomalous. If neutrino masses are of
Dirac type, i.e., they are accounted for at the weak scale by
Yukawa couplings to otherwise massless right-handed
neutrinos, both B and L survive from an initial
Gmax ¼ Uð3Þ6 × Uð1ÞH, and only the B − L combination is
nonanomalous.
The second aspect of the flavor puzzle is the peculiar

pattern of fermion masses and mixings originating from the
explicit breaking of Uð3Þ5 × Uð1ÞH. The masses of the three
families of charged fermion masses turn out to be hierarchical
and the quark mixing is small. Lepton mixing is instead large
and at least two neutrino masses are separated by less than an
order of magnitude.
The two aspects of the flavor puzzle may be related. The

fact that the flavor Lagrangian breaks an underlying Uð3Þ5 ×
Uð1ÞH symmetry, manifest in the gauge Lagrangian, may
suggest that it originates from the spontaneous breaking of the
previously mentioned group or of one of its subgroups
G ⊆ Uð3Þ5 × Uð1ÞH. This is the idea underlying theories
based on flavor symmetries (Froggatt and Nielsen, 1979),
where G is called the flavor group. The action of G is
traditionally assumed to be linear and to commute with gauge
and Poincaré transformations. On the other hand, new avenues
evading such an assumption have recently been considered.
Correspondingly, denoting by ψ i a generic set of matter fields,
we now consider three types of symmetries.

(1) The action of G is linear (and thus unitary in order to
preserve canonically normalized kinetic terms) and
commutes with gauge and proper Poincaré transfor-
mations

g ∈ G∶ ψ iðxÞ → Uψ ðgÞijψ jðxÞ: ð3:1Þ

In such a case, G is a subgroup of Gmax and UψðgÞ is a
unitary representation of G. Such a standard frame-
work is reviewed next and in Sec. IV.

(2) The action of G is linear, but it does not commute with
proper Poincaré and/or gauge transformations. The
case in which flavor and Poincaré transformations do
not commute leads to symmetries of the form
G ¼ Gf ⋊ CP, where Gf is a subgroup of Gmax as
in the previous case

g∈Gf∶ψ iðxÞ→Uψ ðgÞijψ jðxÞ; ψ iðxÞ⟶CP Xijψ
�
jðxÞ:
ð3:2Þ

Here UψðgÞij and Xij are unitary representations of Gf

and CP, respectively. This scenario is reviewed next

and in Sec. V. The case in which G commutes with
Poincaré but does not commute with gauge trans-
formations has received less attention thus far (Reig
et al., 2017).

(3) The action of G is nonlinear: it commutes with the
gauge group and with proper Poincaré transforma-
tions. G is not necessarily a subgroup of Gmax. In the
realization that we consider, the framework includes
an additional scalar sector, typically consisting of
fields τ singlet under the gauge group.

g∈G∶τ→ fgðτÞ; ψ iðxÞ→Uψðg;τÞijψ jðxÞ; ð3:3Þ

where fgðτÞ and Uψðg; τÞij describe the nonlinear
realization of G on τ and ψ iðxÞ, respectively. This
case will be reviewed next and in Sec. VI.

A fourth possibility, also discussed in Sec. VI, arises by
combining cases (2) and (3).

B. Flavor symmetry group and representation

We first consider flavor models based on a flavor group G
whose action on fields is linear and commutes with Poincaré
and gauge transformations.G then acts on the flavor indices of
each set of fields ψ i sharing the same Lorentz and gauge
quantum numbers

g ∈ G∶ ψ iðxÞ → UψðgÞijψ jðxÞ: ð3:4Þ

The representation Uψ ðgÞ is unitary, as the kinetic terms are
assumed to be canonically normalized. Moreover, gauge fields
must be invariant underG, and the action ofG on the full set of
matter fields can be assumed to be faithful without loss of
generality. Therefore, G can be identified with a subgroup
of the unitary internal transformations. More precisely,
Gmax ⊆

Q
r UðnrÞ, where nr is the number of identical copies

of each irreducible representations r of the Poincaré and gauge
groups on matter fields. The Lagrangian is assumed to be
invariant under the action of G, and this constrains its flavor
structure. The symmetry may be spontaneously broken by a
set of scalar fields ϕ called “flavons,” or explicitly broken.
Different types of flavor groups can be considered:G can be

a Lie group or a discrete group, Abelian or non-Abelian,
simple or nonsimple, it can be assumed to be a symmetry or
arise accidentally (Ferretti, King, and Romanino, 2006), or it
can act rigidly on the fields or be gauged. In the case of gauge
groups, proper care should be taken of anomalies, possibly
canceling them by adding an appropriate heavy field content.
Most often, the scale at which G is spontaneously broken is
taken to be significantly higher than the weak scale. As a
consequence, the flavons are bound to be SM singlets (they
can, however, transform nontrivially under extensions of the
SM group).
Flavor symmetry breaking at the electroweak scale or below

faces a number of challenges. If G is gauged, constraints from
flavor-changing neutral current (FCNC) processes set a lower
bound on the mass of the corresponding gauge bosons, and
therefore also on the breaking scale. If G is a nonanomalous
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global Lie group, its spontaneous breaking gives rise to
massless Goldstone bosons, which must be then sufficiently
weakly coupled to SM fields. This is the case if the coupling is
mediated by sufficiently heavy degrees of freedom or, in the
effective-theory description, if they couple through nonrenor-
malizable interactions suppressed by a sufficiently heavy
scale. The heavy fields mediating flavor breaking can them-
selves be a source of FCNC. The scale at which G is broken is
then again also bound to be correspondingly large. The same
argument applies if G is anomalous, unless would-be
Goldstone bosons (and therefore the flavor breaking scale)
are heavy enough. In the case of the spontaneous breaking of
finite groups, a further constraint comes from the need to
avoid domain walls (Riva, 2010; Antusch and Nolde, 2013;
Chigusa and Nakayama, 2019). Still, relatively low scales of
flavor breaking can be achieved even in the case of gauged
models (Grinstein, Redi, and Villadoro, 2010). The possibility
that the flavor symmetry is broken together with the electro-
weak symmetry by means of Higgs doublets has also been
considered (Grimus and Lavoura, 2003; Ma, 2007a; Morisi
and Peinado, 2009; Morisi et al., 2011). Here we consider the
safest case, in which the breaking of the flavor symmetry is
due to SM singlets above the electroweak scale.

C. Exact flavor symmetries

We first dismiss the possibility that the flavor symmetry is
exact. This is also important because it shows that no overall
exact unbroken subgroup can survive the breaking of the
flavor symmetry. To begin with, we consider the effective
description of neutrino masses through the Weinberg operator.
The flavor group acts in the lepton sector through two unitary
representations of g ∈ G, one on the lepton doublets li and one
on the lepton singlets eci ,

li → UlðgÞijlj;
eci → UeðgÞijecj : ð3:5Þ

The Higgs field could in principle also transform under G, but
its transformation can, without loss of generality, be reab-
sorbed in those of li and eci , and we therefore neglect it.4

If the flavor symmetry is not broken, the invariance of the
lepton flavor Lagrangian

λE0ije
c
i ljH

� þ c0ij
2Λ

ðliHÞðljHÞ ð3:6Þ

constrains the couplings λE0ij and c0ij, or equivalently the
charged fermion and neutrino mass matrices M0

E and m0
ν, as

follows:

M0
E ¼ UeðgÞTM0

EUlðgÞ;
m0

ν ¼ UlðgÞTm0
νUlðgÞ; ð3:7Þ

for any g ∈ G. The superscript 0 stresses that the lepton
couplings and mass matrices are assumed here to be exactly

symmetric under G. It turns out that the previously mentioned
constraints can lead to fully viable mass matrices (i.e., can be
associated with three nonvanishing charged-lepton masses,
three nondegenerate neutrinos, and three nonvanishing mixing
angles) only if the representation on the lepton doublets is
trivial UlðgÞ ¼ �1. The representation on the eci fields must
also be trivial and identical to the one on the lepton doublets.
In other words, the only accidental symmetry of the SM
Lagrangian augmented by the Weinberg operator is Z2. The
argument is simple and is best formulated in the charged-
lepton mass basis, in which M0

E is diagonal and positive. The
charged-lepton masses relegate G to a subgroup of
Uð1Þe × Uð1Þμ × Uð1Þτ, the three lepton number U(1)’s: as
Ul and Uec must commute with ðM0

EÞ2, which is nondegen-
erate, Ul and Uec must both be diagonal matrices of phases; as
M0

E is nonsingular, Eq. (3.7) forces Uec ¼ U�
l . The

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix further
reduces G to a subgroup of the total lepton number U(1):
inserting m0

ν ¼ U�ðm0
νÞdiagU†, where U is the PMNS matrix,

in Eq. (3.7), we see that the combination U†UlU commutes
with ½ðm0

νÞdiag�2 and must also be a diagonal matrix of phases.
Since all elements of the PMNS matrix are nonvanishing, this
means that Ul is just an overall phase, i.e., G acts as a
subgroup of the total lepton number. Finally, the Majorana
nature of the neutrino operator allows only the Z2 subgroup,
as can be shown by substituting Ul ¼ eiϕ1 into Eq. (3.7).
Needless to say, a trivial representation such as UlðgÞ ¼
UecðgÞ ¼ �1 does not constrain lepton masses and mixings at
all, as any ME and mν would satisfy Eq. (3.7). An accurate
nontrivial description of lepton flavor thus requires a sponta-
neously broken flavor symmetry. Moreover, the flavor sym-
metry should be fully broken. No residual nontrivial subgroup
should survive the breaking, except possibly the previously
mentioned trivial Z2. The same conclusion holds if the flavor
symmetry constrains the renormalizable theory from which
the Weinberg operator originates, provided that the heavy
fields stay heavy in the exactly symmetric limit. This is
because Eq. (3.7) still holds, as a consequence of the
invariance of the full theory.
This assumes a high-scale origin of neutrino masses. In the

paradigmatic caveat of Dirac neutrinos masses originating
from Yukawa couplings to three right-handed neutrinos, the
analysis is different but the conclusion is the same. The only
possible exact flavor symmetry in the lepton sector is in this
case the total lepton number U(1) or one of its subgroups.
Such a flavor group would not constrain lepton masses and
mixings at all, as any form of the lepton mass matrices would
be allowed.
Finally, these considerations extend to the quark sector. The

only allowed exact symmetry is in that case the total baryon
number. The latter, however, does not provide any constraints
on the quark mass matrices.

D. Symmetry breaking

Having to abandon the idea that lepton masses and mixing
angles can be inferred from an exact flavor symmetry, the
usefulness of the entire approach relies substantially on the
knowledge of breaking effects. In general we can distinguish

4This is not necessarily true in extensions of the SM Higgs sector
with two or more Higgs fields.
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between an explicit breaking, where the nature of the breaking
terms is unrelated to the dynamics of the system, and a
spontaneous breaking originating from the noninvariance of
the vacuum state. Typically the spontaneous breaking offers
better chances in terms of predictability, especially if some
dynamical requirement, like the minimization of the energy
density of the system, is invoked to select the vacuum of the
theory. There are, however, exceptions to this general trend. In
addition, the case of explicit breaking can retain some
predictability if breaking terms are not completely arbitrary.
Actually, to some extent the two cases can be described within
the same formalism. Consider, for example, the charged-
lepton Yukawa coupling λEije

c
i ljH

� þ H.c. and assume that the
singlets ec and the doublets l transform according to unitary
representations rec and rl of the flavor group G. It is useful to
write the Yukawa coupling in the form

λEije
c
i ljH

� ¼
X
Iα

SIαðΓI
ijαe

c
i ljÞH�; ð3:8Þ

where the combinations ðΓI
ijαe

c
i ljÞ (α ¼ 1;…; dI) transform in

the irreducible representations rI (of dimension dI) of the
group G occurring in the decomposition of the tensor product
rec ⊗ rl. In the case of Nf fermion generations we have the
constraint

P
I dI ¼ N2

f, and ΓI
ijα are Clebsch-Gordan coef-

ficients. The Yukawa interaction can be seen as an invariant of
the flavor group, provided that SIα are interpreted as spurions
transforming in the conjugate representation r̄I . Arbitrary
Yukawa couplings λEij are traded by arbitrary spurions SIα, and
at this stage we see no benefit. However, in model building we
can complement the previously mentioned decomposition
with some additional assumptions about the set of allowed
spurion representations, their size, and their relative orienta-
tion in flavor space and thus gather information on the pattern
of λEij, through the relation λEij ¼

P
Iα S

I
αΓI

ijα.
In general the model is specified by the gauge groupGg and

the flavor group G together with the field content, which
includes matter fields, spurions, and their representations
under Gg and G. To cover the general case where the fields
SIα in Eq. (3.8) are functions of the fundamental G multiplet
SIα ¼ SIαðφÞ, we denote the set of allowed spurions by φ. In the
context of flavor symmetries such spurions are simply the
flavons. They transform under a possibly reducible represen-
tation rφ of the group G. A common, but not mandatory,
choice is to assume that spurions φ are singlets under the
gauge group. The Yukawa couplings λEijðφÞ become functions
of the spurions φ constrained by the flavor symmetry. If they
can be expanded in powers of φ, they assume the following
form:

λEijðφÞ ¼ λE0ij þ λEα1ijφα þ λEαβ2ij φαφβ þ � � � ; ð3:9Þ

and the corresponding interactions are given by

ecλEðφÞlH� ¼ ðeclÞ1H� þ ðeclφÞ1H� þ ðeclφφÞ1H� þ � � � ;
ð3:10Þ

where flavor indices are understood and ð·Þ1 stands for a G-
invariant combination ðeclÞ1 ¼ eci λ

E
0ijlj, ðeclφÞ1 ¼ eci λ

Eα
1ijφαlj,

etc. This type of description is equally good for both non-
dynamical spurions and new dynamical degrees of freedom
described by the fields φ. In the first case we reproduce an
explicit breaking ofG, while in the second case the breaking is
spontaneous, as it is related to the VEV of φ. In the previous
description φ are dimensionless. Fields with canonical dimen-
sions are easily recovered by the replacement φ → φCD=Λ,
where Λ stands for a new physical scale related to flavor
dynamics. Then the expansion of Eq. (3.10) contains operators
of growing dimensionality providing, in the spirit of an EFT, a
low-energy description of the flavor sector valid at energy
scales much lower than Λ. The scale Λ controlling the spurion
expansion does not necessarily coincide with that introduced
in Eq. (2.1), which breaks the lepton number L. Operators of
high dimensions can be helpful to describe light fermions if
the expansion parameter hφi is sufficiently small.
As an example (Linster and Ziegler, 2018) we take G ¼

Uð2Þ ∼ SUð2Þ ⊗ Uð1Þ and let the lepton fields transform
as in Table III. The product rec ⊗ rl decomposes as
ð1; 1Þ ⊕ ð2; 1Þ ⊕ ð2; 2Þ ⊕ ð1; 2Þ ⊕ ð3; 2Þ. The corresponding
combinations ðΓI

ijαe
c
i ljÞ are given in Table IV. The elements of

a generic Yukawa coupling λEij are classified as λE33∼ð1;−1Þ,
λE3a∼ð2;−1Þ, λEa3 ∼ ð2;−2Þ, ðλE12 − λE21Þ=

ffiffiffi
2

p
∼ ð1;−2Þ, and

(λE11; ðλE12 þ λE21Þ=
ffiffiffi
2

p
; λE22) ∼ ð3;−2Þ. In the absence of any

indication about the type, size, and orientation of the spurions,
this decomposition brings no useful information. We now
assume that the only allowed spurions are φ1 and φ2, trans-
forming as φ1 ∼ ð1;−1Þ and φ2 ∼ ð2;−1Þ under
SUð2Þ × Uð1Þ, invariant under the gauge group, and with
the VEV orientation hφ2iT ¼ ðhφ21i; 0Þ. The choice of this
direction in flavor space is not restrictive if the spurions
describe vacuum configurations of dynamical fields, since
options related by G transformations lead to equivalent
physical systems. In this case, if we consider terms linear
in spurions only, the only nonvanishing entries of λEij are λ

E
33 ¼

hφ1i and λE32 ¼ hφ21i. To fill the matrix λEij we need terms of
higher order. To second order we get

λE ¼

0
BB@

0 ahφ1i2 0

−ahφ1i2 bhφ21i2 chφ1ihφ21i
0 hφ21i hφ1i

1
CCA; ð3:11Þ

where the coefficients a, b, and c are parameters related to
independent invariant combinations. The vanishing entries of
λE can be filled by invariants of higher order. An assumption
about the relative size of hφ1i and hφ21i can further shape
the pattern of λE.
The setup we have illustrated is based on an effective

description of the flavon interactions with the SM fields and is
sufficient for most of our purposes. We now discuss the

TABLE III. Representation of leptons, Higgs, and spurions under
G ¼ SUð2Þ × Uð1Þ (a ¼ 1; 2).

G ec3 eca l3 la H φ1 φ2

SUð2Þ × Uð1Þ (1,0) (2,1) (1,1) (2,1) (1,0) ð1;−1Þ ð2;−1Þ
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possible UV origin of such a setup. This parallels the
discussion of the UV origin of the Weinberg operator in
Sec. II.B.2.
Consider for simplicity a D ¼ 5 operator involving a single

flavon, in the form

cij
Λ

φfci fjH: ð3:12Þ

The latter contributes to the Yukawa interaction λijfci fjH for
the charged leptons and neutrinos f ¼ l, fc ¼ ec, νc (or for
the quarks f ¼ q, fc ¼ dc, uc). As for the Weinberg one, there
are only three possible UV renormalizable origins of the
operator in Eq. (3.12). They correspond to the exchange of
heavy vectorlike messengers with the same SM quantum
numbers as f, fc, or H. We now consider the following
exchange of n vectorlike messengers with the quantum
numbers of f: Fα þ F̄α, α ¼ 1;…; n. The renormalizable
Lagrangian contains

−LF ¼ ηαiF̄αfiφþ yiαfci FαH þMαβF̄αFβ þ H.c.; ð3:13Þ

where the couplings are constrained by the flavor symmetry.
Integrating out the F, F̄ fields generates the operator in
Eq. (3.12), with [cf. Eq. (2.7)]

c
Λ
¼ −yM−1η: ð3:14Þ

Note that in the presence of a single family of messengers
the Yukawa couplings generated by Eq. (3.13) have rank 1:
λij ¼ −yiηjðhφi=MÞ. The first two charged fermion families
vanish in this limit and can be generated by subleading effects
involving heavier messengers. This way hierarchical charged
fermion masses (and a viable mixing pattern for quarks and
leptons) can be accounted for without imposing any flavor
symmetries (Ferretti, King, and Romanino, 2006). At the
same time a Uð2Þfc × Uð2Þf symmetry arises accidentally in
the limit in which additional contributions to the Yukawa
interactions from heavier messengers are neglected.

1. Vacuum alignment

Lepton mixing angles and phases can be determined only
when both the neutrino and the charged-lepton sectors have
been specified. For instance, when the lepton number L is
violated, at low energy the relevant Lagrangian is

ecλEðφÞlH� þ 1

2Λ
ðlHÞcðφÞðlHÞ þ H.c.; ð3:15Þ

where the matrices λE and c are now functions of the fields5 φ
and the Lagrangian is invariant under the groupG. The mixing
matrix is given by

U ¼ U†
eUν; ð3:16Þ

where Ue and Uν are the unitary matrices that diagonalize the
combination λE†λE and c, respectively,

U†
eλE†λEUe ¼ ðλ̂EÞ2; UT

ν cUν ¼ ĉ: ð3:17Þ

Here λ̂E and ĉ are non-negative diagonal matrices and their
eigenvalues have been properly ordered, which also accounts
for the type of neutrino mass spectrum. After suitable
rephasing of the combination U†

eUν, we can put the mixing
matrix in a conventional form, for instance, the one used by
the PDG, and read the physical parameters. The latter follow
necessarily from the interplay of both neutrinos and charged
leptons.
Such a trivial observation has important implications on

model building. Since both λEðφÞ and cðφÞ depend on φ, a
realistic pattern of lepton masses and mixing angles can be
achieved only if the VEVs of the fields φ have the right size
and orientation in flavor space. If these fields are dynamical,
the problem of deriving the desired VEV from the minimi-
zation of the energy density is called the vacuum alignment
problem. Although the group G is completely broken in the
low-energy regime, it might be that the charged-lepton sector
and the neutrino sector separately possess an exact or
approximate residual symmetry under subgroups Ge and
Gν, respectively. Actually, this scenario has been extensively
studied in the context of discrete flavor symmetries to predict
or constrain the lepton mixing angles. This special case of
vacuum alignment can be implemented by separating φ into
two sets φ ¼ ðφe;φνÞ such that λE and c depend mainly on φe
and φν, respectively. The desired residual symmetries are
obtained if the VEVof φe is invariant under Ge and that of φν

is invariant under Gν. This possibility is discussed in greater
detail in Sec. IV.B.1.
This discussion already shows the advantages and limi-

tations of the considered setup. The perspective that fermion
masses and mixing angles are determined by some dynamical
principle is interesting and makes contact with more funda-
mental theories like string theory, where in principle Yukawa
couplings are calculable functions of a set of fields describing
the vacuum configuration. A drawback of the approach is

TABLE IV. Combinations ðΓI
ijαe

c
i ljÞ and their transformation properties under G ¼ SUð2Þ × Uð1Þ (a ¼ 1; 2).

G ec3l3 ec3la ecal3 ðec1l2 − ec2l1Þ=
ffiffiffi
2

p
(ec1l1; ðec1l2 þ ec2l1Þ=

ffiffiffi
2

p
; ec2l2)

SUð2Þ × Uð1Þ (1,1) (2,1) (2,2) (1,2) (3,2)

5If cðφÞ originate from the exchange of heavy degrees of freedom
whose mass depends on φ, it might be singular as φ vanish, and a
series expansion like the one in Eq. (3.9) might not be possible.

Ferruccio Feruglio and Andrea Romanino: Lepton flavor symmetries

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015007-12



exhibited by Eqs. (3.9) and (3.10). If a realistic description of
fermion masses and mixing angles requires the presence of
several terms in the expansion, a large number of free
parameters might be required, to the detriment of predict-
ability. The predictions can also be affected by the uncertainty
related to the entire tower of higher-dimensional operators,
unless the expansion parameters hφi are small. Moreover, if
we insist in deriving the appropriate pattern of a VEV for the
fields φ from the minimization of the energy density, the
solution of the vacuum alignment problem might require
complicated constructions, with many auxiliary fields that do
not play any role in shaping λE and c and additional
symmetries to forbid unwanted terms in the scalar potential.
To avoid or reduce the complexity of the vacuum alignment
problem, we can give up the possibility that symmetry
breaking is dynamically determined. This is a frequent option
in models realized in the presence of extra dimensions, where
the symmetry breaking can be achieved through an appro-
priate set of boundary conditions. Examples of this type of
breaking for models of neutrino masses were given by Csaki
et al. (2008), Kobayashi, Omura, and Yoshioka (2008),
Hagedorn and Serone (2011), and Hagedorn and
Serone (2012).
It is worth noting that this formalism is covariant under a

general change of basis in the field space, provided that both
the charged-lepton and neutrino sectors are consistently
addressed. Let the group G act, in the original basis, as

ψ → Uψ ðgÞψ ; ψ ¼ ðec; l;φÞ; ð3:18Þ

withUψ ðgÞ unitary matrices depending on the generic element
g of the group. If we perform an arbitrary change of basis
described by the following set of unitary matrices Ωψ :

ψ → ψ 0 ¼ Ωψψ ; ð3:19Þ

we end up with new matrices ðλEÞ0 ¼ ΩT
ecλ

EΩl and c0 ¼
ΩT

l cΩl in our Lagrangian. The matrices that diagonalize
ðλE†λEÞ0 and c0 are now Uec

0 ¼ Ω†
l Uec and U0

ν ¼ Ω†
l Uν. All

the physical parameters are unchanged. In the new basis the
group G acts as

ψ 0 → U0
ψðgÞψ 0; U0

ψðgÞ ¼ ΩψUψðgÞΩ†
ψ : ð3:20Þ

A feature that is not captured by the previous formalism is
the possibility that the flavor symmetry is nonlinearly realized.
In this case the various terms of the expansion in Eq. (3.10) are
not expected to be individually invariant under G trans-
formation, as occurred previously as a result of assuming
linear unitary representations. This means that the coefficients
λE0ij,λ

Eα
1ij, λ

Eαβ
2ij ;… might all be related to provide a Yukawa

interaction invariant under the group G. This case might
present the advantage of requiring fewer free parameters,
thereby making it more predictive.

2. Kinetic terms

In general the breaking of the flavor symmetry affects not
only the Yukawa interactions, as in Eqs. (3.10) and (3.15), but

also the kinetic terms, leading to additional contributions to
mass and mixing parameters. The kinetic terms read

iēcσ̄μKecðφÞ∂μec þ il̄σ̄μKlðφÞ∂μlþ � � � ; ð3:21Þ

where the ellipsis stands for terms including ∂μKfðφÞ
ðf ¼ ec; lÞ, required by a Hermitian Lagrangian, and
KfðφÞ are positive-definite Hermitian matrices in flavor space
depending on the flavon fields, here assumed to be real. In
effective field theories and in linearly realized flavor sym-
metries, KfðφÞ can be expanded in powers of φ. Assuming a
choice of basis where Kfð0Þ ¼ 1, we have

KfðφÞ ¼ 1þ Kfα
1 φα þ Kfαβ

2 φαφβ þ � � � ; ð3:22Þ

where K
fα1;…;αp
p are numerical matrices constrained by the

requirement of G invariance. When flavons acquire a VEV,
canonical kinetic terms are recovered through the transforma-
tions

f →

�
1 − 1

2
Kfα

1 φα þ � � �
�
f ðf ¼ ec; lÞ; ð3:23Þ

and the Yukawa interactions are modified accordingly. For
instance the charged-lepton Yukawa couplings become

λEðφÞ → λEðφÞ − 1
2
Kecα

1 φαλ
EðφÞ − 1

2
λEðφÞKlα

1 φα þ � � � .
ð3:24Þ

The consequences of such a change differ depending upon
whether we are dealing with a supersymmetric or a non-
supersymmetric theory. In a nonsupersymmetric theory, the
transformation (3.24) merely results in a redefinition of the
parameters of the Yukawa matrix λEðφÞ, since λEðφÞ exhausts
all the polynomial invariants depending on the flavons φ and
describing charged-lepton Yukawa couplings. In the super-
symmetric case, λEðΦÞ are holomorphic functions of chiral
multiplets Φ, while in the kinetic terms we should distinguish
between holomorphic and antiholomorphic variables. The
function KfðΦ;Φ†Þ depends on both of them

KfðΦ;Φ†Þ ¼ 1þ Kfα
1 Φα þ Kfα†

1 Φ†
α þ � � � . ð3:25Þ

The transformation (3.24) becomes

λEðΦÞ → λEðΦÞ − 1
2
½Kecα

1 Φα þ Kecα†
1 Φ†

α�λEðΦÞ
− 1

2
λEðΦÞ½Klα

1 Φα þ Klα†
1 Φ†

α� � � � ; ð3:26Þ

which induces a nonholomorphic dependence of the physical
Yukawa couplings on the flavons. In general this entails
additional parameters to the description of masses, mixing
angles, and phases. Such effects were analyzed by Dudas,
Pokorski, and Savoy (1995), Binetruy, Lavignac, and Ramond
(1996), Dudas, Pokorski, and Savoy (1996), Dreiner and
Thormeier (2004), Jack, Jones, and Wild (2004), and Dreiner,
Murayama, and Thormeier (2005) for Abelian flavor sym-
metries, by King and Peddie (2004) and Ross, Velasco-
Sevilla, and Vives (2004) for non-Abelian continuous flavor
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symmetries, by Hamaguchi, Kakizaki, and Yamaguchi (2003)
and Chen et al. (2012, 2013) for non-Abelian discrete flavor
symmetries, and by Chen, Ramos-Sanchez, and Ratz (2019)
for modular flavor symmetries. Kakizaki and Yamaguchi
(2003) exploited such a contribution to explain the hierarchy
between the top and the other quark masses. Kawamura
(2019) explored a scenario where the flavor group G remains
unbroken in Yukawa interactions and the breaking is due
entirely to kinetic terms. A model-independent discussion for
linearly realized flavor symmetries in the supersymmetric case
was given by Espinosa and Ibarra (2004). For degenerate
neutrinos, the impact of the kinetic term is especially relevant
due to the strong dependence of the mixing angles on new
contributions. For hierarchical neutrinos the Kähler potential
is expected to provide a contribution to the mixing of the same
order of the contribution from the superpotential. Such an
effect could be important, for instance, to explain the devia-
tions from maximality, possibly enforced by the superpoten-
tial, of the solar and atmospheric mixings. In either case the
kinetic terms bring additional free parameters, to the detriment
of predictability.

3. The space of invariants

There are general features of the vacuum alignment
problem that can be discussed in terms of the symmetry G
and the representation assigned to the fields φ without
reference to the explicit form of the energy density functional.
Consider a Lagrangian LðφÞ that is invariant under the action
of a group G, depending on a set of scalar fields φ, trans-
forming in a representation rφ of the group. The fields φ live in
a vector space M, the field space, whose dimension is dφ,
which is the dimension of rφ. In nonlinear theories,M can be
a manifold. If the theory is G invariant, two distinct points in
M related by a G transformation lead to the same predictions
for any physical observable. In particular, in any of two such
points the system has the same residual symmetry, or little
group, up to a conjugation. Thus, the field space offers a
redundant description of the physical system that can be
simplified by studying the orbits of the group; i.e., the set of
points in the field space M that are related by group
transformations. The union of orbits having isomorphic little
groups forms a stratum. The full field space M is partitioned
into several strata. For instance, the origin ofM belongs to the
stratum of type G, since for φ ¼ 0 the symmetry is unbroken.
Most of the field spaceM is made of orbits having a minimal
little group; i.e., the symmetry G is broken down to its
minimum possible subgroup, which is unique, up to con-
jugation. This subset of M is called the principal stratum.
A useful tool is the orbit space MI . MI can be para-

metrized by the values of invariants, which are constant on the
orbits. It is sufficient to consider invariants IðφÞ that are
polynomials in the components of the multiplet φ. The ring of
invariant polynomials is infinite, but it is generated by a finite
number of invariants γαðφÞ, which means that any invariant
polynomial can be written as a polynomial in γα. The
invariants γα might be related by a number of algebraic
relations, or syzygies, ZSðγÞ ¼ 0. The space MI is spanned
by the values of the invariants γα of the theory. An entire orbit
of M is mapped into a single point of MI , which completely

characterizes the physical properties of the system, including
its symmetry breaking pattern. The crucial property of MI is
that while M has no boundaries, MI has boundaries that
describe the possible breaking chains of the group. The tools
that allow one to characterize the orbit space MI are the
Jacobian matrix (Cabibbo and Maiani, 1970)

J≡ ∂γ
∂φ ; ð3:27Þ

and the so-called P matrix

P ¼ JJT: ð3:28Þ

The space MI is identified using the requirements that (i) γ
belongs to the surface ZSðγÞ ¼ 0 and (ii) the matrix P is
positive semidefinite, resulting in a set of inequalities involv-
ing the invariants γα (Abud and Sartori, 1981, 1983; Procesi
and Schwarz, 1985; Talamini, 2006).
As an example, consider the group G ¼ SUð3Þ and the real

scalar fields φ ¼ φaλ
a, transforming in the adjoint represen-

tation of the group, where λa (a ¼ 1;…; 8) are the Gell-Mann
matrices. As independent invariants in MI(SUð3Þ) we can
take γ1 ¼ trðφ2Þ and γ2 ¼ detðφÞ. The P matrix is

P ¼

0
B@ 8γ1 12γ2

12γ2 γ21=3

1
CA; ð3:29Þ

and it is positive semidefinite under the conditions γ1 ≥ 0 and
detðPÞ ¼ 8γ31=3 − 144γ22 ≥ 0. These inequalities define the
space of invariantsMI(SUð3Þ), which is spanned by γ1;2. The
space MI(SUð3Þ) is bidimensional and its interior corre-
sponds to the point satisfying γ31 − 54γ22 > 0 and γ1 > 0. In
any point of the interior the matrices J and P have rank 2 and
the group SU(3) is broken down to a subgroup isomorphic to
Uð1Þ × Uð1Þ. The one-dimensional boundary is defined by
γ31 − 54γ22 ¼ 0 and γ1 > 0 and consists of the two branches

γ2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
γ31=54

p
. Here the matrices J and P have rank 1 and

the group SU(3) is broken down to its subgroup
SUð2Þ × Uð1Þ. Finally, the two branches meet at γ1 ¼ 0,
which is a zero-dimensional boundary where J and P have
rank 0 and the group SU(3) is unbroken.
It can be shown that such a decomposition of MI is

completely general. The boundaries of MI can be found by
studying the rank of J. In the interior of MI the matrix J has
maximum rank rmax. In this region G is broken down to the
smallest residual symmetry group Gmin. On the boundaries P
has some vanishing eigenvalue and the rank of J is reduced. If
the dimension of MI is d, in general we have (d − 1)-
dimensional boundaries where rankðJÞ ¼ rmax − 1. Along
these boundaries G is broken down to groups containingGmin.
These boundaries meet along (d − 2)-dimensional spaces,
where rankðJÞ ¼ rmax − 2. Here the residual symmetry
further increases until the one-dimensional boundaries meet
in a point where the entire group G is preserved.
This consideration can be useful when looking for the

extrema of a generic smooth function VðφÞ that is invariant
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under G. Such a function depends on φ through the invariants
γαðφÞ and the extrema lay on orbits of the group. The extrema
of VðφÞ are defined by

∂V
∂φi

¼ ∂V
∂γα

∂γα
∂φi

¼ ∂V
∂γα Jαi ¼ 0. ð3:30Þ

Consider the previous example with G ¼ SUð3Þ (Michel and
Radicati, 1973). Along the orbits of the principal stratum,
mapped in the interior ofMI , J has rank 2 and the derivatives
ð∂V=∂γ1; ∂V=∂γ2Þ should satisfy

∂V
∂γ1 ¼

∂V
∂γ2 ¼ 0 ðγ31 − 54γ22 > 0; γ1 > 0Þ: ð3:31Þ

Here SU(3) is broken down to the smallest residual symmetry
Uð1Þ × Uð1Þ. Along the orbits satisfying γ31 − 54γ22 ¼ 0 and
γ1 > 0, providing the one-dimensional boundary ofMI , J has
rank 1 and Eq. (3.30) is solved by requiring
ð∂V=∂γ1; ∂V=∂γ2Þ to be one eigenvector of JT corresponding
to the vanishing eigenvalue. This condition reads

J11
∂V
∂γ1 þ J21

∂V
∂γ2 ¼ 0 ðγ31 − 54γ22 ¼ 0; γ1 > 0Þ: ð3:32Þ

Here the group SU(3) is broken down to its maximal subgroup
SUð2Þ × Uð1Þ. Finally, the orbit γ1 ¼ 0 corresponds to a
vanishing J. There are no further conditions on the derivatives
ð∂V=∂γ1; ∂V=∂γ2Þ and the symmetry is unbroken. The possible
breaking patterns in the γ2-γ1 plane are summarized in Fig. 2.
From this example we see that the extrema along the

boundaries of MI are more natural than the extrema in the
interior since they require fewer conditions on the scalar potential
V. The extremum where G is unbroken is always present,
regardless of the specific form of the G-invariant function V.

The corresponding orbit is isolated; that is, in a sufficiently small
neighborhood we find no other orbits with the same little group.
Any such orbit is always an extremum, regardless of the form of
V (Michel, 1971; Michel and Radicati, 1971).
Moreover, if the extremum is subject to the condition that φ

is nonvanishing and bound to a compact manifold, V always
has extrema having a maximal little group (Michel, 1971;
Michel and Radicati, 1971). To reduce the vector space V
where the flavons φ live to a compact space, we need to
minimize first with respect to the overall normalization of the
flavon fields. An assumption is then needed on the scalar
potential: given any direction in the flavon space, the overall
normalization has a nonzero, symmetry breaking, local mini-
mum; such minima form at least one smooth submanifold M
(and hence compact and invariant) in V. Michel’s theorem can
now be applied. The little groups found on M are the same as
the ones in V, except for G itself, which is found in V (φ ¼ 0)
but not in M (flavor singlets can be neglected without loss of
generality). This is welcome, as the trivial minimum φ ¼ 0 is
not relevant here. The extrema of V guaranteed by the theorem
are then those corresponding to the maximal little groups of
M, i.e., to the little groups in V not contained in any larger
little group but G itself. As an example, consider the
previously given SU(3) example. The renormalizable scalar
potential is given by

V ¼ μ21γ1 þ μ2γ2 þ λγ21: ð3:33Þ

The condition for the flavor group to be broken in any
direction in flavor space is μ21 < 0. Under such a condition,
a critical point corresponding to the breaking of SU(3) to the
maximal little group SUð2Þ × Uð1Þ is guaranteed to exist. This
is not the case if μ21 > 0.
Extrema on orbits of the principal stratum might be

compatible only with specific forms of V. For instance, in
the example of Eq. (3.33), extrema with little group Uð1Þ ×
Uð1Þ are allowed only if μ2 ¼ 0. For a nonvanishing μ2, the
only allowed little groups of the extrema are SU(3) or
SUð2Þ × Uð1Þ. A limitation of this approach is that, without
further inputs, we do not know whether the extrema are
maxima or minima or saddle points of V.

E. The role of CP

In Secs. III.B–III.D, we considered flavor groups commuting
with the proper Poincaré group and with gauge transformations.
We now relax this hypothesis. We argue that, under mild
hypotheses, paritylike transformations are the only possible
alternative. Indeed, by the Coleman-Mandula theorem
(Coleman and Mandula, 1967), any symmetry of the scattering
matrix should provide an automorphism of the Poincaré algebra.
Up to Poincaré transformations, i.e., changes of reference frame,
and dilatations, which require the theory to be conformally
invariant in the symmetric limit, there are only two independent
nontrivial automorphisms: parity and time reversal. The action of
both on the Poincaré algebra is involutive: it squares to the
identity. Dilatations are only allowed if the theory is scale
invariant to begin with, which is not a case that we are interested
in. Because of theCPT theorem, it suffices to consider paritylike
automorphisms.

FIG. 2. Space of invariants for G ¼ SUð3Þ and φ in the real
adjoint representation. The green region is the interior, which is
defined by γ31 − 54γ22 > 0 and γ1 > 0. The red point, where the
full SU(3) symmetry is unbroken, is the intersection of the one-
dimensional boundaries.
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Consider now the following action of such symmetry on the
entire collection of matter fields, bosonic and fermionic,
including conjugates, denoted by Φi:

ΦiðxÞ → XijΦ
†
jðxPÞ; ð3:34Þ

where ðxPÞμ ¼ xμ. It follows that left-handed Weyl spinors fa
transform into right-handed ones fa → Xabf̄b.

6 While the
action of this symmetry on the Poincaré algebra is involutive,
it does not have to be involutive on the fields ΦiðxÞ, and in
general XX� corresponds to a standard flavor transformation
that is not necessarily equal to the identity. Additional
conditions hold in a gauge theory, where a gauge group Gg

acts on the fields Φi through its unitary representation ρijðgÞ.
For the paritylike transformation to be consistent, equivalent
field configurations (related by gauge transformations) should
be transformed by the paritylike action into equivalent field
transformations. Moreover, the gauge interactions should be
invariant. The two previous requirements lead to the following
two consistency conditions (Grimus and Rebelo, 1997).

• There must exist an automorphism g ∈ Gg → g0 ∈ Gg
such that

XρðgÞ�X−1 ¼ ρðg0Þ: ð3:35Þ

• The paritylike transformation must transform the gauge
fields AμðxÞ ¼ Aμ

aðxÞta, where ta are the gauge group
generators as

AμðxÞ → A0
μðxPÞ; ð3:36Þ

where ta → t0a is the generator automorphism induced
by g → g0.

The existence of a paritylike transformation inverting the sign
of commuting gauge charges is guaranteed (Grimus and
Rebelo, 1997) in any gauge theory. This is by definition a
CP transformation. On the other hand, a parity transformation
commuting with gauge transformations can exist only if the
fermions are not chiral, as is well known. Types of interplay
with gauge invariance other that the ones defining P and CP
are in principle also possible.

Under a CP transformation gauge interactions are auto-
matically invariant, which is not necessarily the case for
Yukawa interactions. Indeed, when we turn off the Yukawa
couplings of the SM, the theory also becomes invariant under
CP transformations, whose action in flavor space is usually
assumed to be trivial and thus irrelevant as flavor symmetry.
However, generalizations of this action are possible (Ecker,
Grimus, and Neufeld, 1987; Neufeld, Grimus, and Ecker,
1988). We consider a theory with a “conventional” (commut-
ing with Poincaré and gauge) global flavor symmetry group
Gf.

7 IfGf includes all flavor transformation leaving the theory

invariant, a meaningful action of CP is guaranteed only for
special choices of the flavor group and/or its representations.
Indeed, in the presence of a global symmetry Gf, CP trans-
formations should satisfy a set of consistency conditions
(Feruglio, Hagedorn, and Ziegler, 2013; Holthausen,
Lindner, and Schmidt, 2013a) similar to the one in
Eq. (3.35). In such a theory the transformations of the fermion
fields f read

f → UðgÞf; f → XCPf̄; ð3:37Þ

where UðgÞ is a unitary representation of Gf, g is a generic
element of Gf, and XCP a unitary matrix representing the
action of CP in flavor space. Under the combination of a CP
transformation followed by a Gf transformation and an
inverse CP transformation, the theory remains invariant.
This implies that for each g ∈ Gf an element g0 ∈ Gf should
exist such that

XCPU�ðgÞX−1
CP ¼ Uðg0Þ: ð3:38Þ

The map g0 ¼ uðgÞ, implicitly defined by the previous
relation, is an automorphism of the group Gf, since it
reshuffles the elements of Gf while preserving the composi-
tion law. Moreover, since CP relates particles and antipar-
ticles, the function g0 ¼ uðgÞ should map each representation r
of the group Gf onto its conjugate r̄. We call such an
automorphism a complex conjugation. In general, a given
group Gf can possess automorphisms other than complex
conjugations. When Gf is a continuous semisimple group
with an appropriate choice of basis in field space, the
constraint (3.38) can always be solved by XCP ¼ 1
(Grimus and Rebelo, 1997). Moreover, up to compositions
with a transformation of the group Gf, XCP ¼ 1 is essentially
the most general solution of Eq. (3.38). A single exception is
provided by the groups SO(2N) (N ≠ 4), which admit
independent solutions.
The major difference with respect to the case of continuous

gauge symmetries is that, if Gf is a discrete group, complex
conjugations are not guaranteed to exist. It is useful to
distinguish between inner automorphisms of Gf that can be
cast in the form uðgÞ ¼ hgh−1 ðh ∈ GfÞ and outer auto-
morphisms, which do not allow such a description. The inner
automorphisms map each representation of Gf onto an
equivalent one, while outer automorphisms can permute the
representations. Thus, inner automorphisms can describe
solutions of Eq. (3.38) only if the flavor group representation
is vectorlike. If it is chiral, the automorphism solving
Eq. (3.38) should necessarily be a complex conjugation of
the outer type (Holthausen, Lindner, and Schmidt, 2013a). It
follows that discrete groupsGf can be divided into two classes
(Chen et al., 2014). Those not possessing outer complex
conjugations are called type-I groups. Theories having this
type of flavor symmetry in general do not allow a consistent
definition of CP, at least for a generic field content. An
example of a type-I group is Δð27Þ. To define CP in such
theories, we should restrict the field content to a suitable
subset of the available representations, on which an

6More precisely, the full CP transformation on Weyl spinors reads
fa → Xabðϵf†bÞ.

7Recent reviews on the combination of global and CP symmetries
were given by Trautner (2016, 2017) and Chen and Ratz (2019).
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automorphism of the group acts as a complex conjugation.
Type-II groups possess outer complex conjugation. Theories
invariant under such groups admit a consistent definition of
CP. Examples of type-II groups are S3;4, A4;5, and T 0.
Depending on the choice of the input parameters, these
theories can be CP invariant or not, exactly as happens for
the SM, that admits a consistent action of CP but is CP
invariant only for special values of the parameters.
A CP transformation is involutive, up to inner automor-

phisms (Nishi, 2013). This can be seen by applying Eq. (3.38)
twice, which gives

XCPX�
CPUðgÞX−1�

CP X−1
CP ¼ U(u2ðgÞ); u2ðgÞ≡ u(uðgÞ):

ð3:39Þ

Since XCPX�
CP represents the action of some element s of Gf,

we have

UðsÞUðgÞUðsÞ−1 ¼ U(u2ðgÞ); ð3:40Þ

which implies that u2ðgÞ ¼ sgs−1 is an inner automorphism.
The relation uðsÞ ¼ s also follows. If sn is the identity for
some integer n, which is always true for finite groups, it
follows that ðXCPX�

CPÞn ¼ 1.
Finally, if XCP is a complex conjugation solving the

constraint (3.38), then X0
CP ¼ UðhÞXCP is also for any fixed

element h of the group Gf. The action of X0
CP differs from that

of XCP. For example, we might have a canonical XCP ¼ 1 and
a generalized X0

CP acting in a nontrivial way. It is important to
stress that X0

CP and XCP set the same constraint on the theory,
since X0

CP is the combination of XCP with a symmetry
transformation. Nevertheless, when considering the breaking
of the full flavor symmetry group, it can be useful to exploit
generalized CP transformation to classify the available break-
ing chains and their features. Combining a flavor group Gf

with CP results in the group G ¼ Gf ⋊ CP if CP2 ¼ 1. In
general, requiring invariance under G sets additional restric-
tions among parameters with respect only to enforcing Gf.
Physical phases can be constrained or predicted, as discussed
in Sec. V.

F. Nonlinear flavor symmetries

The action of the flavor group G on the matter multiplets
can also be nonlinear. A natural realization of this scenario
involves the introduction of a set of real scalar fields φα,
neutral under the SM gauge group, living in a manifold M
equipped with the metric gαβðφÞ. Many SM extensions predict
the existence of new scalar degrees of freedom. For instance,
in string theory components of the metric tensor describing
size and shape of the compactified space are scalar in four
dimensions. In this context φα play the role of flavons. Terms
with two derivatives read

Lφ ¼ 1
2
gαβðφÞ∂μφ

α∂μφ
β: ð3:41Þ

Under a reparametrization of M, φα → fαðφÞ, the metric
transforms as

gαβðφÞ → g̃αβðφÞ ¼
∂fγ
∂φα gγδ(fðφÞ)

∂fδ
∂φβ ; ð3:42Þ

and the Lagrangian becomes

Lφ → L̃φ ¼ 1
2
g̃αβðφÞ∂μφ

α∂μφ
β: ð3:43Þ

The isometries are reparametrizations leaving invariant the
metric and hence the Lagrangian

g̃αβðφÞ ¼ gαβðφÞ; L̃φ ¼ Lφ: ð3:44Þ

They form the isometry group GI ofM. The flavor groupG is
identified with a subgroup of GI . This framework defines a
nonlinear σ model invariant underGI, to which matter fields of
the SM are coupled. For simplicity we consider the SM
fermions, collectively denoted by ψ i, in the limit where gauge
interactions are turned off. A minimal coupling comprises

Lψ ¼ ihijðφÞψ̄ iσ̄μ∂μψ
j þ kijαðφÞψ̄ iσ̄μψ j∂μφ

α þ H.c. ð3:45Þ

Under a reparametrization of M, the fermions transform as
ψ i → χiðφ;ψÞ ¼ ξijðφÞψ j þ � � �, where the ellipisis stands for
possible contributions of higher order in ψ . Here we consider
fermion transformations nonlinear in φ but linear in ψ , which
is the easiest way to guarantee that the transformed fields have
the same gauge quantum numbers as the original ones. Hence,
a generic reparametrization reads

φα → fαðφÞ; ψ i → ξijðφÞψ j: ð3:46Þ

Group properties are guaranteed by the relations

φ⟶
g1 fg1ðφÞ⟶

g2 fg1(fg2ðφÞ) ¼ fg1g2ðφÞ;
ψ⟶

g1
ξg1ðφÞψ⟶

g2
ξg1(fg2ðφÞ)ξg2ðφÞψ ¼ ξg1g2ðφÞψ ; ð3:47Þ

and

feðφÞ ¼ φ; ξeðφÞ ¼ 1: ð3:48Þ

Under Eq. (3.46) the metric hijðφÞ and the connection
kijαðφÞ≡ hilðφÞkljαðφÞ transform as8

hijðφÞ → ξk�i hkl(fðφÞ)ξlj;

kijαðφÞ → ðξ−1Þimkmlβ(fðφÞ)ξlj
∂fβ
∂φα þ iðξ−1Þil

∂ξlj
∂φα : ð3:49Þ

If the transformation of Eq. (3.46) is an isometry, the metric
and connection are required to be invariant. From Eq. (3.49)
we understand the role of the connection kijαðφÞ: even when
the isometry of the scalar manifold M is realized by global
transformations on φα, the fermion transformations are always
local due to the explicit space-time dependence of the

8Indices are lowered and raised by the metric hijðφÞ and the
inverse metric hijðφÞ, respectively.
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functions ξijðφÞ. The two terms in Eq. (3.45) can be combined
into a covariant derivative

ðDμψÞi ≡ ½δij∂μ − ikijαðφÞ∂μφ
α�ψ j; ð3:50Þ

which under an isometry transforms as the fermions ψ i

ðDμψÞi → ξijðφÞðDμψÞj: ð3:51Þ

In the case treated in Sec. VI the isometries act on the fermion
fields in the following way:

ψ i →

�
det

�∂f
∂φ

��
−k=2

ρijψ
j; ð3:52Þ

where k is a real number called the weight and ρ is a φ-
independent unitary representation of a compact coset G=H,
where G ⊆ GI and H is a normal subgroup of G. A beneficial
property of the transformation (3.52) is that it manifestly
provides a nonlinear realization of G. Indeed, considering two
subsequent isometries we have

ψ i⟶
g1

�
det

�∂fg1
∂φ

��
−k=2

ðρg1Þijψ j

⟶
g2

�
det

�∂fg1
∂φ

��
−k=2

φ→fg2 ðφÞ

�
det

�∂fg2
∂φ

��
−k=2

ðρg1Þikðρg2Þkjψ j

¼
�
det

�∂fg1g2
∂φ

��
−k=2

ðρg1g2Þijψ j; ð3:53Þ

and the group composition property is guaranteed. Invariance
of the metric hijðφÞ under the isometry (3.52) requires that

hij(fðφÞ) ¼
�
det

�∂f
∂φ

��
k
ρmi hmnðφÞðρ†Þnj : ð3:54Þ

Equation (3.52) can be generalized by allowing different pairs
ðk; ρÞ for distinct irreducible representations ψ ðIÞ of the gauge
group

ψ i
ðIÞ →

�
det

�∂f
∂φ

��
−kI=2

ρðIÞijψ
j
ðIÞ: ð3:55Þ

Invariance of a fermion bilinear9

LY ¼ λðφÞijψ i
ðI1Þψ

j
ðI2Þ þ H.c. ð3:56Þ

requires a Yukawa coupling λðφÞij satisfying

λ(fðφÞ)ij ¼
�
det

�∂f
∂φ

��ðkI1þkI2 Þ=2½ρðI1Þ�k�i λðφÞkl½ρ†ðI2Þ�lj:

ð3:57Þ

The overall Lagrangian

L ¼ 1
2
gαβðφÞ∂μφ

α∂μφ
β þ hijðφÞψ̄ iσ̄μDμψ

j

þ λðφÞijψ i
ðI1Þψ

j
ðI2Þ þ H.c. ð3:58Þ

is invariant under the nonlinearly realized flavor symmetry:

φα → fαðφÞ; ψ i
ðIÞ →

�
det

�∂f
∂φ

��
−kI=2

ρðIÞijψ
j
ðIÞ: ð3:59Þ

Notice that this formalism, unlike the Callan-Coleman-Wess-
Zumino construction (Callan et al., 1969; Coleman, Wess, and
Zumino, 1969), covers both the case of a global flavor
symmetry and that of a discrete one. The purpose of this
approach is to select G, G=H, ρðIÞ, and kðIÞ so as to constrain
as much as possible the function λðφÞ. In an ideal case, the
functional dependence of λðφÞ on φ is completely determined
up to an overall constant and all dimensionless parameters
such as mass ratios, mixing angles, and physical phases are all
fixed functions of φ, which provides a highly constrained
system of predictions. Thus far this program has been
explored in the context of a supersymmetric σ model where
the flavor group G is the modular group SLð2; ZÞ contained in
GI ¼ SLð2; RÞ and G=H is a finite modular group.

IV. STANDARD FLAVOR SYMMETRIES

We now consider specific flavor symmetry models. We
begin with the “standard” case in which the flavor symmetry
commutes with the gauge and Poincaré transformations, in the
context of the standard framework discussed in Sec. II.B, in
which the origin of neutrino masses lies at scales higher than
the electroweak scale. We consider flavor symmetries con-
straining the effective electroweak scale Lagrangian contain-
ing the Weinberg operator in Eq. (2.1) and also flavor
symmetries constraining its possible renormalizable high-
scale origins (and comment on the equivalence of the two
approaches). We also classify models according to whether the
symmetry breaking affects the flavor observables mildly or
prominently.
We saw in Sec. III.D that a viable flavor symmetry must be

broken by a set of flavon or spurion fields ϕ, transforming
under a representation Uϕ of G. The lepton couplings and
mass matrices then acquire a dependence on ϕ,ME ¼ MEðϕÞ,
mν ¼ mνðϕÞ. Because the full Lagrangian is assumed to be
invariant under G, the mass matrices satisfy

MEðϕÞ ¼ UeðgÞTME(UϕðgÞϕ)UlðgÞ;
mνðϕÞ ¼ UlðgÞTmν(UϕðgÞϕ)UlðgÞ ð4:1Þ

for any g ∈ G.
It is often but not always the case that the functions MEðϕÞ

and mν ¼ mνðϕÞ are continuous for ϕ → 0, and they admit an
expansion in the flavons and their conjugates around their
symmetric forms M0

E ¼ Mð0Þ, m0
ν ¼ mνð0Þ [which satisfy

Eq. (3.7)]. Flavor symmetry models can be either in the
“perturbative” regime in which the symmetry breaking terms
provide a moderate correction to the flavor observables or in

9For notational convenience we set the Higgs multiplet H to 1,
which can be easily reintroduced in our expressions. In addition, H
can undergo a transformation of the type of Eq. (3.55).
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the “leading order breaking” regime in which symmetry
breaking is necessary even for a leading order understanding
of the flavor observables. The latter is the case when the
neutrino or the charged-lepton mass matrix vanishes in the
symmetric limit. In Sec. IV.A, we consider the first possibility.
The leading order breaking case is discussed in Sec. IV.B.

A. Perturbative breaking: Mild corrections to flavor observables

We saw in Sec. III.C that the symmetric forms M0
E, m

0
ν of

the lepton mass matrices cannot provide a nontrivial, accurate
description of lepton masses and mixings. It is possible,
however, that they provide an approximate description. This is
how nonexact symmetries of nature have often emerged.
Pions, for example, are close to an isospin symmetric limit in
which the charged and neutral pion masses and couplings are
equal. Analogously, one wonders whether lepton flavor
observables are close to the symmetric predictions of a flavor
theory. If this is the case, we can say that the understanding of
the leading order pattern of lepton flavor lies in the flavor
symmetry itself, and symmetry breaking effects provide only a
moderate correction to the observables needed for their
accurate description.

1. Flavor symmetries at low scales

We first consider the case in which neutrino masses are
fully described by the Weinberg operator and the flavor
symmetry operates on the Lagrangian in Eq. (3.6). In such
a case, the flavor symmetry constrains the lepton mass
matrices as in Eqs. (3.7) and a complete study of the
perturbative option is possible. In fact, given a mass and
mixing pattern considered to be a viable leading order
approximation, the full set of flavor groups and representa-
tions leading to that pattern in the symmetric limit can be
characterized in terms of the structure of the decomposition of
Ul, Uec into irreducible components; namely, in terms of the
type (real, complex, or pseudoreal), dimension, and equiv-
alence of the irreducible components. To be conservative, all
the symmetric predictions in which the following three
conditions apply are deemed to be viable:

(i) The PMNS matrix is not fully undetermined.

(ii) Both the θ23 and θ12 angles are allowed to be
nonvanishing.

(iii) The nonvanishing charged-lepton masses are not
forced to be degenerate.

The flavor symmetry models compatible with these require-
ments are then those whose representations on the SM leptons
have one of the six decompositions listed in Table V
(Reyimuaji and Romanino, 2018).
Note that only Abelian representations are allowed (with

the only possible exception of a non-Abelian two-dimensional
representation on ec1, e

c
2 whenme ¼ mμ ¼ 0). Either neutrinos

have an inverted hierarchy or the neutrino mass matrix is
completely unconstrained. This is because there are only two
possibilities for the representation on lepton doublets. When
Ul ∼ 1þ 1þ 1, at most the three lepton doublets can trans-
form by an overall sign under G. The neutrino mass matrix is
then completely unconstrained, and any neutrino masses and
mixings are possible. The flavor symmetry is useless in the
neutrino sector, where it leads to anarchy (Altarelli, Feruglio,
and Masina, 2003; Hall, Murayama, and Weiner, 2000; Haba
and Murayama, 2001; Hirsch and King, 2001; de Gouvea and
Murayama, 2003) (it may still be useful to explain the
charged-lepton mass hierarchy). When Ul ∼ 1þ 1þ 1̄, the
neutrino masses are in the form ð0aaÞ in the symmetric limit,
which is close to the inverted hierarchical spectrum.
Therefore, if this hint for normal hierarchy was transformed
into evidence, we would conclude that no flavor symmetry can
provide a nontrivial approximate understanding of lepton
flavor in the symmetric limit. Symmetry breaking effects
would then play a leading role in determining at least some of
the flavor observables.
In all cases, no precise prediction on any of the lepton

observables can be obtained (except possibly θ13 ¼ 0, which
is not precise on the experimental side), as the representation
Ul on lepton doublets is always found to be Abelian and
because of the unknown Oð1Þ factors involved in each matrix
element. Note that the one-dimensional representations are
always Abelian and that Abelian groups have only one-
dimensional irreducible representations. On the other hand,
the one-dimensional representations in Table V can also

TABLE V. Classification of flavor groups and representations leading to an approximately viable prediction in the symmetric limit. The
Weinberg operator is assumed to describe neutrino masses. The decompositions of the representation on the charged-lepton doublets and
singlets li and eci into irreducible components is shown in the first two columns. The notation shows the dimension and type
(boldface ¼ complex, roman ¼ real) of the representation. Identical symbols are associated with equivalent representations, while 1̄ is the
complex conjugate of 1. r denotes a generic, possibly reducible, representation. The predicted charged-lepton and neutrino mass patterns are
shown in the third and fourth columns. The fifth column shows the type of neutrino mass hierarchy [normal or inverted hierarchical (NH or IH)].
The last column specifies whether or not the PMNS matrix contains a zero and, if so, in which position. In the second line the 13 entry can either
vanish or not depending on an unknown “12” rotation determined by the symmetry breaking effect. On the last line, the position of the zero
depends on the relative sizes of A, B, and C. In the cases corresponding to the last four rows, the hierarchy of charged-lepton masses is not
explained by the flavor model and is accounted for by a hierarchy among the free parameters A, B, and C.

Ul Uec (mτmμme) (m3m2m1) ν hierarchy PMNS zeros

1 1 1 1 r⊉ 1 ðA00Þ ðabcÞ NH or IH none
1 1 1̄ 1̄ r⊉1 1̄ ðA00Þ ð0aaÞ IH none (13)
1 1 1 1 1 r ≠ 1 ðAB0Þ ðabcÞ NH or IH none
1 1 1̄ 1̄ 1̄ r ≠ 1 ðAB0Þ ð0aaÞ IH 13
1 1 1 1 1 1 ðABCÞ ðabcÞ NH or IH none
1 1 1̄ 1̄ 1̄ 1 ðABCÞ ð0aaÞ IH 13, 23, 33
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belong to non-Abelian groups. In the case in whichG ¼ Uð1Þ,
the one-dimensional representations are specified by their
charges under U(1).
Examples of flavor models corresponding to the nontrivial

examples in Table V have long been known. As mentioned,
the three cases corresponding to the trivial representation Ul ∼
1þ 1þ 1 correspond to anarchical neutrinos. No special
prediction is obtained, but the mixing angles and neutrino
mass ratios are all expected to be Oð1Þ. Indeed, the neutrino
spectrum does not need mass ratios smaller than a factor of
1=5–6, and the smallest mixing element is jUe3j ∼ 1=7.
Moreover, they can arise from moderately small Yukawa
couplings in the context of the seesaw, as the neutrino Yukawa
couplings are squared in the seesaw formula. The size of jUe3j
had an upper bound only, when anarchy was first considered.
The measurement of a value not far from that bound
corroborated the proposal (Altarelli et al., 2012; de Gouvea
and Murayama, 2015). The three cases have different Uec

values. The use of a nontrivial representation on the ec fields
can forbid the electron and the muon masses in the symmetric
limit and can therefore be used to account for the hierarchy of
charged-lepton masses even in the presence of anarchical
neutrinos.
As for the three nonanarchical cases, they require continu-

ous or discrete groups with a complex one-dimensional
representation “1” and a representation on the lepton doublets
decomposing as 1þ 1þ 1̄. A simple choice isG ¼ Uð1Þwith
charges ðql1; ql2; ql3Þ ¼ ð−1; 1; 1Þ on the three lepton doublets.
In all cases, the neutrino mass matrix is of the form

mν ¼

0
B@

0 a b

a 0 0

b 0 0

1
CAþ corrections; ð4:2Þ

where the corrections are provided by symmetry breaking
effects. Depending on whether or not Uec matches Ul, the
lighter charged-lepton masses may or may not vanish in the
symmetric limit, thus providing a rationale for their hierarchy.
One obtains in fact

M0
E ¼

0
B@
0 0 0

0 0 0

0 B A

1
CA;

0
B@
0 0 0

0 D C

0 B A

1
CA;

0
B@
E 0 0

0 D C

0 B A

1
CA ð4:3Þ

in the three cases of Table V before switching on symmetry
breaking effects.
In the U(1) example, the last pattern of Eq. (4.3) can be

reproduced by choosing opposing charges ðqec1 ; qe
c

2 ; q
ec
3 Þ ¼

ð1;−1;−1Þ for the three ec fields. This corresponds to a U(1)
symmetry with charge Lτ þ Lμ − Le (Barbieri et al., 1998);
similar symmetries were considered by Zeldovich (1952),
Konopinski and Mahmoud (1953), and Petcov (1982). None
of the charged-lepton hierarchies me ≪ mμ ≪ mτ are
accounted for. Moreover, the PMNS matrix contains a zero
in the symmetric limit that should be identified with the U13,
but it can appear in the 12 or 33 position, depending on which
charged-lepton family ends up being lighter. To get rid of both
drawbacks, one can depart from Lτ þ Lμ − Le by using

different representations Uec ≠ U�
l , forcing me ¼ 0 and pos-

sibly mμ ¼ 0 in the symmetric limit. In all cases, the solar
mixing angle is maximal in the symmetric limit and requires
significant corrections from symmetry breaking; see
Sec. IV.B.3.
A normal hierarchy can be obtained in an important class of

models that does not appear in Table V, in which the neutrino
mass matrix is of the form (Barbieri et al., 1998; Grossman,
Nir, and Shadmi, 1998; Irges, Lavignac, and Ramond, 1998)

mν ¼

0
B@

0 0 0

0 c b

0 b a

1
CAþ corrections: ð4:4Þ

Such a texture is obtained if Ul ¼ 1þ 1þ 1. We use roman
and boldface fonts to denote real and complex representations,
respectively (see Table V). This texture is sometimes called
“semianarchy,” as the 23 block of the neutrino mass matrix
(corresponding to the trivial representation 1þ 1), but not the
entire one, is now unconstrained. In the symmetric limit, the
solar angle is predicted to vanish (θ12 ¼ 0), a prediction that is
far from the observation. For the previously mentioned texture
to be phenomenologically viable, the correction to θ12 from
symmetry breaking effects cannot be mild. On the contrary, it
must be fully responsible for the observed value of θ12.
Therefore, such models belong to the class considered in
Sec. IV.B. On the other hand, the Oð1Þ correction to θ12 does
not need the symmetry breaking effects to be large. This is
because of another drawback of the texture in Eq. (4.4): it does
not account for the observed suppression Δm2

12 ≪ jΔm2
23j.

The latter needs an accidental cancellation in the determinant
ac − b2, which should vanish up to Oðm2=m3Þ corrections.
Once such a mild accident is accepted, subleading Oðm2=m3Þ
symmetry breaking effects are sufficient to generate a Oð1Þ
solar angle.
Note that predictions based on accidental relations may be

unstable with respect to renormalization group equations
(Chankowski and Pokorski, 2002) or generic corrections
(Marzocca and Romanino, 2014; Domcke and Romanino,
2016). An apparently accidental suppression can be accounted
for in the seesaw context, as we discuss later.
The results in Table V can be extended to the quark sector.

The constraints one obtains there are independent of those
previously discussed. However, in the context of grand unified
theories, unified quarks and leptons cannot be treated sepa-
rately, as they must be subject to the same flavor representa-
tion. This leads to additional constraints. For example, in
minimal SU(5) unification, only the anarchical cases in
Table V turn out to be allowable.

2. Flavor symmetries at high scales

The previous conclusions were based on the assumption
that the flavor symmetry constrains the effective electroweak
scale Lagrangian containing the Weinberg operator. The latter,
however, presumably represents the low-scale remnant of a
more fundamental higher scale renormalizable Lagrangian.
One then wonders whether the conclusions summarized in
Table V would still hold if the flavor symmetry were assumed
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to constrain the higher scale Lagrangian. In particular, one
wonders whether the choice between anarchy and inverse
hierarchy is still necessary if the symmetric predictions are
required to be viable. This is part of a more general issue
concerning the results obtained in the symmetric limit. Are the
predictions obtained when the flavor symmetry acts on a high-
scale Lagrangian equivalent to those obtained when the same
symmetry constrains the corresponding effective Lagrangian?
The answer is no. On the other hand, the converse is true: given
a flavor symmetry constraining the effective Lagrangian, it is
always possible to extend its action to a high-scale Lagrangian
providing the same predictions. Therefore, while the low-scale
effective flavor theory does not capture all the features of the
high-scale one, an appropriate high-scale realization always
captures the features of the low-scale effective one.
There are two reasons why the high-scale predictions might

not coincide with the low-scale ones (Reyimuaji and
Romanino, 2020). The most obvious is that the mass of some
of the high-scale fields vanishes when the symmetry is exact.
This happens if the flavor group representation on the high-
scale fields is not vectorlike. In such a case, the heavy fields
cannot be integrated out (as some of them are massless) before
symmetry breaking effects have been switched on. Once the
breaking effects are added, all the high-scale fields acquire a
mass, including those whose mass vanished in the symmetric
limit. The latter get a mass from subleading symmetry
breaking effects. Therefore, their mass is expected to be
lighter, and as a consequence their exchange dominates the
effective Lagrangian and neutrino masses. In standard seesaw
language, this corresponds to the so-called single or sequential
right-handed neutrino dominance (Barbieri et al., 1998; King,
1998; Altarelli and Feruglio, 1999a; King, 1999, 2000;
Antusch and King, 2004b), which arise also in the context
of non-Abelian models (King, 2005).
Even in the cases in which all the relevant heavy fields stay

heavy when the symmetry is exact, the high- and low-scale
predictions can differ. Consider for definiteness a type-I
seesaw Lagrangian (with an arbitrary number of singlet
neutrinos), and assume that the singlet neutrinos are non-
singular in the limit in which the flavor symmetry is exact. It
turns out that there is a precise condition under which the
high- and low-scale predictions of the flavor symmetry are
equivalent: this is the case if and only if the vectorlike part10 of
the representation on the lepton doublets is contained in the
representation on the neutrino singlets.
We consider these two possibilities in turn. We start with the

case in which the mass of some of the high-scale fields
vanishes when the symmetry is exact, in the context of a type-I
seesaw model. The possible equivalence of the high- and low-
scale approaches in the symmetric limit can still be inves-
tigated when the limit mνðϕÞ for ϕ → 0 exists and is finite.11

In some cases, the two descriptions can still be equivalent.
Consider, for example, U(1) seesaw models in which the
flavons have charges with definite sign (negative, for example)
and the leptons have non-negative charges. We also invoke
supersymmetry to prevent a positively charged flavon to be
mimicked by a conjugated flavon. In such a case, the high-
and low-scale descriptions are equivalent in the symmetric
limit, regardless of whether some of the right-handed neu-
trinos are massless in that limit. Consider, for example, the
case of a single flavon with VEV θ (in terms of the cutoff
scale) with charge −1, and let qli ≥ 0, qν

c

i ≥ 0 be the lepton
doublet and singlet neutrino charges i ¼ 1; 2; 3. Then in the
broken phase, the low-scale flavor theory predicts that

ðmLS
ν Þij ¼ cLSij θ

qliþqlj ; ð4:5Þ

where c is a generic, unknown 3 × 3 dimensionful matrix. In

the high-scale theory, we have instead ðmDÞij ¼ ðcDÞijθq
νc
i þqlj ,

Mij ¼ Cijθ
qν

c
i þqν

c
j for the Dirac and singlet Majorana mass

matrices, respectively. Therefore, the light neutrino mass
matrix is

ðmHS
ν Þij ¼ cHSij θ

qliþqlj ; ð4:6Þ

where cHS ¼ −cTDC−1cD is also a generic, unknown 3 × 3

matrix. Therefore, the high- and low-scale definitions of the
flavor theories are equivalent.
On the other hand, the two descriptions can be inequivalent.

Suppose that the lepton doublets and singlet neutrinos have
charges ðql1; ql2; ql3Þ ¼ ð0; 1; 1Þ and ðqνc1 ; qν

c

2 ; q
νc
3 Þ ¼ ð0; 0;−1Þ

under a U(1) model. Then, in the unbroken limit, the low- and
high-scale versions of the same U(1) model provide quite
different results

mLS
ν ¼

0
B@

a 0 0

0 0 0

0 0 0

1
CA; mHS

ν ¼

0
B@

0 0 0

0 c b

0 b a

1
CA; with

ac − b2 ¼ 0: ð4:7Þ

The high-scale result follows from the following forms of the
unbroken Dirac and Majorana matrices:

mD ¼

0
B@

0 0 0

0 0 0

0 B A

1
CA; M ¼

0
B@

α β 0

β γ 0

0 0 0

1
CA: ð4:8Þ

In the “almost unbroken” limit, the seesaw is dominated by the
exchange of νc3, the only one taken into account in Eq. (4.7).
This is the previously mentioned single right-handed domi-
nance mechanism in its most classical realization, which now
accounts for the apparently accidental suppression of the
determinant ab − c2 needed in Eq. (4.4).
As mentioned, there is a second case in which the high- and

low-scale formulations of the same flavor model are certainly

10By vectorlike part, we mean the maximal subrepresentation that
is vectorlike, i.e., made of real representations, pairs of complex
conjugated representations, or pairs of equivalent pseudoreal repre-
sentations.

11In some cases, the analysis can be extended to the cases in which
the limit diverges by normalizing the neutrino mass matrix to the
largest entry when taking the limit.
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inequivalent, even when all the right-handed neutrinos are
allowed to be massive in the unbroken limit, i.e., even when
the representation of G on them is vectorlike. This is the case
if the vectorlike part of the representation on the lepton
doublets is not contained in the representation on the neutrino
singlets (Reyimuaji and Romanino, 2020). We illustrate the
latter possibility with an example (Altarelli and Feruglio,
1999a). Suppose that the lepton doublets and singlet neutrinos
have charges ðql1; ql2; ql3Þ ¼ ðn; 0; 0Þ and ðqνc1 ; qν

c

2 ; q
νc
3 Þ ¼

ð1;−1; 0Þ under U(1), with n ≠ �1; 0. Then the unbroken
Dirac, singlet, and light neutrino matrices are

mD ¼

0
B@

0 0 0

0 0 0

0 B A

1
CA; M ¼

0
B@

0 β 0

β 0 0

0 0 α

1
CA;

mHS
ν ¼

0
B@

0 0 0

0 c b

0 b a

1
CA; with ac − b2 ¼ 0; ð4:9Þ

as a ¼ A2=α, b ¼ AB=α, and c ¼ B2=α. Note that the
vanishing of the determinant is obtained as a consequence
of the seesaw mechanism without the need to invoke the
presence of a lighter singlet neutrino. In the symmetric limit,
the model predicts large θ23, m1 ¼ m2 ¼ 0, and θ12 unde-
fined. Enforcing the same flavor symmetry in the low-scale
effective theory gives, on the other hand, Eq. (4.4), with no
condition on the determinant. Therefore, the unbroken pre-
dictions are different: m2 now does not vanish and θ12 ¼ 0.
As discussed, most instances of the perturbative breaking of

flavor symmetries discussed in this section are associated with
models having Abelian symmetries. These have been widely
studied in the first wave of model building following the
measurement of a large atmospheric angle. Additional exam-
ples and further details were given in earlier reviews.

B. Non-Abelian models and leading order breaking

In the case of leading order (LO) breaking of the flavor
symmetry, the symmetry breaking effects cannot be disre-
garded even for a leading order understanding of lepton flavor.
This happens when the unbroken limit is not a good
approximation. According to the conservative definition used
in Sec. IV.A, this is the case when (i) the PMNS matrix is fully
undetermined or (ii) either the θ23 or θ12 angle is forced to
vanish or (iii) two of the charged-lepton masses are forced to
be degenerate and do not vanish in the unbroken limit.
Correspondingly, there are three possible ways out from the
results in Table V.
Violating condition (iii) is not appealing. Charged-lepton

masses are hierarchical. Therefore, models with degenerate
charged leptons in the unbroken limit require a fine-tuned
symmetry breaking contribution. We disregard such a
possibility.
If θ23 or θ12 vanishes in the unbroken limit [case (ii)], the

symmetry breaking corrections must be sizable enough to
strongly modify the symmetric prediction. This is a concrete
possibility whose realization does not require large symmetry
breaking corrections. As previously discussed, subleading

corrections may be sufficient, in the presence of the mild
accident needed to account for the m2=m3 hierarchy [which
can arise naturally in the seesaw context; see Eqs. (4.7)
and (4.9)]. This possibility was widely considered and
discussed in Sec. IV.A.
We are left with the possibility that the PMNS is fully

undetermined in the symmetric limit [case (i)]. This section
deals mainly with such a possibility, which arises when either
m0

ν ¼ 0 or m0
E ¼ 0 (the suffix 0 denotes the symmetric limit).

Predictability is an independent motivation to consider
models leading to m0

E ¼ 0, as we now discuss. This may
seem paradoxical, as the PMNS matrix is completely unde-
termined in such a case, which is the poorest possible
prediction. In fact, the predictions one gets in such cases
have little to do with the symmetry itself and much to do with
the details of symmetry breaking.
To see how a predictive model may lead tom0

E ¼ 0, we first
note that non-Abelian flavor groups are welcome because they
provide precise predictions. The predictive power of Abelian
models is limited by the fact that they admit only d ¼ 1

irreducible representations (here and to follow d denotes the
dimension of the representation). As a consequence, each
flavor matrix entry corresponds to an independent invariant
Lagrangian operator (see Sec. III.D), with an independent,
unknown dimensionless coupling. In the spirit of flavor
models, aiming at providing a dynamical explanation of
hierarchies, such couplings can be assumed to be Oð1Þ.
This means, however, that predictions are typically plagued
by Oð1Þ uncertainties [barring predictions associated with
texture zeros (Björkeroth et al., 2019)]. In the charged fermion
sector, which is characterized by significant hierarchies, a
prediction of up to an Oð1Þ factor is significant. But in the
neutrino sector, where most flavor parameters turn out to be
themselves Oð1Þ, a prediction up to an Oð1Þ factor is less
exciting. To avoid systematic Oð1Þ uncertainties and attempt
significant predictions in the neutrino sector, d > 1 irreducible
representations are then needed. The latter allow one to
correlate different matrix entries through symmetry trans-
formations. From this point of view, the highest predictive
power is achieved, in principle, when all three neutrinos, i.e.,
the three lepton doublets, belong to a single d ¼ 3 irreducible
representation.
We can now appreciate the connection with m0

E ¼ 0: the
matrixm0

E is forced to vanish if the lepton doublets belong to a
d ¼ 3 irreducible representation Ul of the flavor group in
order to avoid having three degenerate, massive
charged leptons in the unbroken limit. To prove the last
statement, we note that Eq. (3.7) implies that
Ulðm0

E
†m0

EÞ ¼ ðm0
E
†m0

EÞUl. Since Ul is assumed to be irre-
ducible, ðm0

E
†m0

EÞ ¼ α1 by Schur’s lemma. For the charged
leptons to not be massive and degenerate, we need α ¼ 0, i.e.,
we need mE to be forced to vanish in the unbroken limit. As a
corollary, non-Abelian models with m0

E ≠ 0 require the lepton
doublets to transform as doubletþ singlet under the fla-
vor group.
Non-Abelian symmetries can be continuous or discrete.

Before reviewing the case of finite non-Abelian groups, we
discuss some examples of continuous ones. Continuous (Lie)
group models share some of the features of the discrete ones,
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which is discussed in greater detail in the following sections.
In particular, they can lead to precise predictions for some
mixing parameters, with substantial help from the scalar
potential, arranging proper VEV alignments. In practice, this
is most often the case in models in which the three families of
lepton doublets belong to a single irreducible d ¼ 3 repre-
sentation of the flavor group.
Simple Lie groups with irreducible representations of

dimension d ≤ 3 are SUð2Þ ∼ SOð3Þ, SU(3). The simple
factors can be combined, with U(1) factors as well, in larger
groups. First, consider the simplest possibilities, with the only
possible addition of a U(1) factor. The group SU(2) is indeed
often combined with a U(1) factor suppressing the light
charged fermion families into Uð2Þ ¼ SUð2Þ × Uð1Þ
(Barbieri, Dvali, and Hall, 1996; Barbieri, Hall, and
Romanino, 1997; Barbieri et al., 1997). Neutrino masses
and mixings can also be accounted for (Raby, 2003; Linster
and Ziegler, 2018); see also Sec. III.D. The SO(3) case can
lead to tri-bimaximal mixing (discussed later) within what was
called “constrained sequential dominance” (King, 2005; King
and Malinsky, 2006), can originate from gauge-family uni-
fication in an SO(18) grand unified theory (Reig, Valle, and
Wilczek, 2018), and can underlie A4 models (Bazzocchi,
Morisi, and Picariello, 2008; Berger and Grossman, 2010;
Grossman and Ng, 2015). The SU(3) group is more “dem-
ocratic” than SO(3). The action of SO(3) in terms of real
matrices singles out a real vector subspace in the three family
complex flavor space. Moreover, SU(3) is, up to a U(1) factor,
the maximal flavor group for fermions with given quantum
numbers. In fact, in the case of grand unified SO(10) models,
Gmax ¼ SUð3Þ × Uð1Þ. As SU(3) [U(3)] typically forces the
Yukawa couplings to vanish in the symmetric limit, it must be
strongly broken by the top Yukawa coupling to a weakly
broken SU(2) [U(2)]. Maximal atmospheric and substantial
solar mixing can be obtained together with hierarchical
charged fermions (King and Ross, 2003; Ross, Velasco-
Sevilla, and Vives, 2004; Antusch, King, and Malinsky,
2008; Bazzocchi et al., 2009). Tri-bimaximal mixing can
also be achieved consistently with SO(10) (de Medeiros
Varzielas and Ross, 2006; de Anda and King, 2018). This
is not as easy as it is with finite group models, where the
flavor quantum numbers are often different within a single
family.
An example of a less minimal, and in fact almost maximal,

flavor group is provided by G ¼ SUð3Þ5 × SOð3Þ. The
SUð3Þ5 term is [neglecting U(1) factors] the maximal SM
flavor group; see Sec. III.A. If the SM field content is
supplemented by three singlet neutrinos νci , i ¼ 1; 2; 3, and
G is required to allow a flavor-universal Majorana mass
term in the form Mνci ν

c
i =2, the maximal flavor group also

contains an SO(3) factor acting on the νci fields. The Yukawa
couplings are assumed to arise as VEVs of flavons trans-
forming as YU ∼ 3uc × 3q, YD ∼ 3dc × 3q, YN ∼ 3νc × 3l, and
YE ∼ 3ec × 3l underG, in the spirit of minimal flavor violation
(D’Ambrosio et al., 2002), extended to the neutrino sector
(Cirigliano et al., 2005; Alonso et al., 2012, 2013). The
structure of the Yukawa couplings then depends on the scalar
potential that they minimize. The techniques introduced in
Sec. III.D.3 can be used to study which values of Y can arise as

critical points (Alonso et al., 2011; Espinosa, Fong, and
Nardi, 2013).

1. Discrete non-Abelian symmetries and the sequestering
assumption

Discrete non-Abelian groups can provide precise
predictions for lepton mixing.12 Their study gained consider-
ablemomentumwhen themeasured value of the solar anglewas
found in agreement with the prediction of the tri-bimaximal
(TB) mixing pattern (Harrison, Perkins, and Scott, 2002;
Harrison and Scott, 2002b, 2003) sin2 θ12 ¼ 1=3. This pattern
also corresponds to a maximal atmospheric angle sin2 θ23 ¼
1=2 and to θ13 ¼ 0. The TB pattern, in turn, is predicted by
flavor models based on relatively simple discrete groups. The
θ13 angle ended up to be larger than predicted in most of the
early models. However, the tools and ideas developed in this
context are still useful and widely used.
We saw in Sec. III.C that G must be completely broken (up

to an irrelevant Z2) by the full (including breaking effects)
lepton mass matrices ME, mν. On the other hand, ME and mν

might separately be invariant under nontrivial subgroups Ge,
Gν ⊆ G. A popular model-building strategy relies on the
following nontrivial assumption: the subgroups Ge, Gν are
nontrivial and rigidly fix, up to phases, the charged-lepton and
neutrino mass bases. As the PMNS matrix is nothing but a
measure of the misalignment between the two mass bases, the
previous requirement unambiguously determines the PMNS
matrix in terms of Ge, Gν. Since G must eventually be
completely broken (up to an overall sign change of the lepton
fields), their intersection must be trivial (Ge ∩ Gν ⊆ Z2),
where Z2 acts as an overall sign change.
The assumption is nontrivial because Ge and Gν could well

be trivial. In other words, both ME and mν could individually
break G completely so that Ge, Gν would not carry any
information on the PMNS matrix. Another possibility, illus-
trated in Sec. IV.B.4, is that Ge and Gν are nontrivial but do
not fully determine the mass eigenstates. Therefore, while
most easily handled and interpreted, the results obtained
within the “rigid PMNS” assumption do not exhaust all
model-building possibilities associated with discrete groups.
As a consequence of Ge and Gν rigidly fixing the mass

bases, it is possible to choose a basis in flavor space for the li
and eci fields in which the invariance of ME and mν forces
them to be in the form

ME ¼

0
B@

A 0 0

0 B 0

0 0 C

1
CA; mν ¼ U�

0

0
B@

a 0 0

0 b 0

0 0 c

1
CAU†

0;

ð4:10Þ

with unconstrained complex diagonal entries and fixed U0.
The PMNS matrix is then determined up to phases and
permutations U ¼ PeU0PνΨ, where Ψ is a diagonal matrix
of Majorana phases and Pe, Pν are permutation matrices

12For a “physicist-oriented” review of discrete group theory see
Altarelli and Feruglio (2010), Ishimori et al. (2010), Ramond (2010),
and Grimus and Ludl (2012).

Ferruccio Feruglio and Andrea Romanino: Lepton flavor symmetries

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015007-23



arising because the definition of the PMNS matrix assumes
lepton masses to have a specific ordering.
Equation (4.10) illustrates three general features of models

relying on the previous assumption: Majorana phases are not
constrained, the PMNS matrix is predicted up to permutations
of its rows and columns (and only one of the possible forms is
usually suitable), and neutrino and charged-lepton masses are
unconstrained. In particular, the charged-lepton mass hierar-
chies are not accounted for. As a remedy to the last drawback,
this approach can be complemented by adding an additional,
possibly Abelian, group factor GFN, taking care of the
charged-lepton hierarchy. The breaking ofGFN is perturbative,
and it is arranged in such a way that the first two charged-
lepton families get suppressed through a standard Froggatt-
Nielsen (FN) mechanism (Froggatt and Nielsen, 1979).
The spontaneous breaking ofG is achieved as usual through

the VEVof flavon fields ϕ, breaking G completely. This setup
can be implemented if (i) there exist subsets ϕe, ϕν (not
necessarily disjoint) of the full set of flavons breaking G to Ge
and Gν, respectively, and (ii) only ϕe (ϕν) entersME (mν). We
therefore refer to such an assumption as the “sequestering”
approximation.
The sequestering can hardly be exact: no ordinary flavor

symmetry can prevent ϕe and ϕν from contaminating both
parts of the Lagrangian. It can, however, happen to hold at
some order in a perturbative expansion in the number of
flavons. In other words, sequestering is “accidental,” in the
same sense that the lepton and baryon numbers are accidental
in the SM. To see that the flavor symmetry cannot prevent
contamination, we consider for simplicity the case in which
neutrino masses are accounted for by the Weinberg operator.
Suppose that only ϕe (ϕν) enters ME (mν) so that neutrino
and charged fermion masses follow from the invariant
Lagrangian

Lseq ¼ fðϕνÞijðliHÞðljHÞ þ gðϕeÞijeci ljH� ð4:11Þ

when ϕν;e → hϕν;ei. The dependence on the flavons is often
simple, but in order to be general, we consider generic (say,
polynomial) functions f and g. The invariance of the
Lagrangian requires that

fðϕνÞ ¼ UT
l fðUϕν

ϕνÞUl; gðϕeÞ ¼ UT
ecgðUϕe

ϕeÞUl;

ð4:12Þ

where Uϕν
and Uϕe

are the representations of G on the flavons
ϕν and ϕe, respectively. It is then easy to see that terms
breaking the sequestering assumption are allowed. As an
example, terms such as

L0 ¼ ½fðϕνÞg†ðϕeÞgðϕeÞ�ijðliHÞðljHÞ
þ ½gðϕeÞf†ðϕνÞfðϕνÞ�ijeci ljH� ð4:13Þ

are allowed and can spoil the invariance of mν, ME under Gν,
Ge. Therefore, no symmetry argument can prevent the
sequestering to be spoiled at higher orders in the flavon

expansion.13 In particular, if the typical size of symmetry
breaking corrections in the neutrino sector is ϵ, the sequester-
ing-breaking corrections in the charged-lepton sector can be
expected to be at least Oðϵ2Þ and vice versa.
Even if generically present, mixed ϕν − ϕe corrections to

Eq. (4.11) can be negligible. In such a case, it must be possible
to account for the exact values of lepton flavor observables in
the limit of exact sequestering. In Sec. IV.B.2 we review this
class of models,14 assuming that Ge and Gν rigidly determine
the mass bases, while models in which non-negligible
corrections are needed in order to fit the data are considered
in Sec. IV.B.3. In Sec. IV.B.4, we consider the case in which
Ge and Gν loosely determine the lepton mass bases.

2. Exact sequestering, rigid PMNS

We consider the possibility that the corrections to seques-
tering are negligible so that lepton flavor is accounted for,
within the present experimental accuracy, by the Lagrangian
in Eq. (4.11). The VEVs of the flavons ϕν and ϕe break G to
the Gν and Ge subgroups, respectively, under which the full
mν and ME are invariant. The subgroups Gν and Ge are
assumed to unambiguously (up to phases) identify the
neutrino and charged-lepton mass eigenstate directions in
flavor space. In this context, a nonvanishing θ13 must be
obtained directly from the misalignment ofGν and Ge. Simple
groups such as A4 and S4 leading to θ13 ¼ 0 are considered in
Sec. IV.B.3.
The forms of ME and mν are subject to general constraints.

By using a flavor basis in which ME or mν is diagonal and
assuming that all neutrinos are massive, we see that Ge ⊆
Uð1Þe × Uð1Þμ × Uð1Þτ and Gν ⊆ Z3

2, where one of the Z2 in
an overall sign change and is therefore irrelevant. On the other
hand, for the mass basis to be rigidly identified by the residual
groups and assuming that the residual groups are finite, we
need Ge to contain either Zn, with n a prime number and
n ≥ 3, or Z2

2.
15 On the neutrino side, we need Gν ⊇ Z2

2.
Therefore, we conclude that

13Any further symmetry added to take care of the sequestering can
be included in G so that the argument would still hold. In the case of
supersymmetric models, the holomorphicity of the superpotential
prevents the corrections in Eq. (4.13) from arising within the
superpotential. On the other hand, they can still arise in the Kähler
potential and propagate to the flavor Lagrangian once the Kähler is
brought into its canonical form; see Sec. III.D.

14Such models are also called “direct” (King and Luhn, 2009b).
15To prove this result, we first observe thatGe must contain at least

three elements; otherwise the charged-lepton mass basis would not be
fully determined. Given a z ∈ Ge, z ≠ 1, there exists a minimum
n ∈ N such that zn ¼ 1. If n ≥ 3, the result is proven (if n ¼ p × q is
not prime, one uses recursively that Zp×q contains both Zp and Zq).
If n ≤ 2, then z2 ¼ 1. We call w ≠ 1; z a third element ofG. Again we
must have wn ¼ 1 for a minimum n ∈ N. If n ≥ 3, the statement is
proven. Otherwise, w2 ¼ 1, andGe contains twoZ2. Moroever, since
w and z belong to an Abelian subgroup of Uð1Þe × Uð1Þμ × Uð1Þτ, w
and z must commute, and so also the two Z2. Therefore, in the case
G ⊇ Z2 × Z2, and the statement is proven. Analogously one shows
that Gν must contain Z2 × Z2.
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Znðn≥ 3 primeÞor Z2
2 ⊆Ge⊆Uð1Þe×Uð1Þμ×Uð1Þτ

Z2
2⊆Gν ⊆Z3

2 ðnonzero neutrino massesÞ:
ð4:14Þ

Neutrino data are compatible with one vanishing neutrino
mass. If one neutrino is massless, the constraint on Gν

becomes

Zn × Z2ðn ≥ 3 primeÞ ⊆ Gν ⊆ Uð1Þ × Z2
2

ðone vanishing neutrino massÞ: ð4:15Þ

If one neutrino is massless, there is then more freedom in the
choice of Gν, which is otherwise constrained to be the Klein
group Z2 × Z2 (up to a third, irrelevant Z2).

16

A systematic analysis of the phenomenologically viable
PMNS matrices that can be obtained in this context has been
carried out under the assumption that all neutrinos are massive
and that the groupG is finite (Fonseca and Grimus, 2016). The
only possible viable PMNS matrices are in a “trimaximal”
form (TM2; see Sec. IV.B.3), with jUe2j2 ¼ jUμ2j2 ¼
jUτ2j2 ¼ 1=3, which predicts sin2 θ12 ≥ 1=3. More precisely
[ðjUj2Þij ≡ jUijj2],

jUj2 ¼ 1

3

0
BB@

1þ ReðσÞ 1 1 − Reð#1Þσ
1þ ReðωσÞ 1 1 − ReðωσÞ
1þ Reðω2σÞ 1 1 − Reðω2σÞ

1
CCA; ð4:16Þ

where σ ¼ expð2iπp=nÞ is a root of unity and
ω ¼ expð2πi=3Þ. The integers p and n can be taken as
coprime, in which case the minimal discrete group leading
to a PMNS matrix in the previously mentioned form is

• Δð6m2Þ, where 3m is the least common multiple of 6 and
n if 9 does not divide n;

• ðZm × Zm=3Þ ⋊ S3, where m is the least common multi-
ple of 2 and n if 9 divides n.

The definition of these groups were given by Ishimori et al.
(2010). Equation (4.16) determines the absolute values of the
PMNS entries. The Majorana phases are not constrained, as
discussed. The Dirac phase is instead fixed and predicted to be
trivial (sin δ ¼ 0) in all viable cases, which also predict a non-
negligible deviation from maximal θ23. For a given choice of σ
(and hence of the group), Eq. (4.16) corresponds to one of the
36 possible permutations of rows and columns that can in
principle arise.
One of the first attempts at achieving θ13 ≠ 0 directly from

the interplay of Gν and Ge used the Δð96Þ group [m ¼ 4,
n ¼ 12, σ ¼ expðiπ=6Þ] (de Adelhart Toorop, Feruglio, and
Hagedorn, 2011; de Medeiros Varzielas and Ross, 2012; Ding,
2012; King, Luhn, and Stuart, 2013) but overshot the
experimental value of θ13. Experimentally viable possibilities
were considered by Holthausen, Lim, and Lindner (2013),
King, Neder, and Stuart (2013), Hagedorn, Meroni, and Vitale

(2014), and Talbert (2014). The smallest viable Δð6m2Þ group
corresponds tom ¼ 22 (n ¼ 11; 22; 33; 66) and is of the order
of 2904, while the smallest viable ðZm × Zm=3Þ ⋊ S3 corre-
sponds to m ¼ 18 (n ¼ 9; 18) and is of the order of 648. Such
groups are more cumbersome than the ones originally
proposed to account for the neutrino mixing pattern. Note
that a dynamical mechanism to spontaneously break G and
preserve an accurate sequestering also needs to be exhibited.
As mentioned, neutrino data are compatible with a single

neutrino being massless. If that is the case, the rules of the
game allow Gν to be larger than the Klein group Z2 × Z2, and
the structure of the flavor group to be different. In all models
studied thus far, non-negligible corrections to the leading
order (exact sequestering) results are needed in order to obtain
a phenomenologically viable model (Joshipura and Patel,
2013, 2014a; King and Ludl, 2016).

3. Approximate sequestering and rigid PMNS

In this section, we still assume that Gν and Ge rigidly
determine the lepton mass eigenvectors up to phases, and
therefore also the PMNS matrix. However, we allow the
PMNS matrix thus obtained to be only a leading order
approximation of the measured one, and we rely on sublead-
ing corrections for an accurate agreement.
Before discussing their origin, we illustrate some possible

leading order forms of the PMNS matrix and the size of the
needed corrections. Before the measurement of θ13, model-
building efforts were based mainly on three forms of the
PMNS matrix, all associated with simple discrete flavor
symmetries. They all correspond to maximal θ23 and vanish-
ing θ13 and differ only by the value of the solar angle θ12.

Tri-bimaximal (TB): sin2 θ12 ¼ 1=3, sin2 θ23 ¼ 1=2,
sin2 θ13 ¼ 0 (Harrison, Perkins, and Scott, 2002;
Harrison and Scott, 2002b, 2003).

Bimaximal (BM): sin2 θ12 ¼ 1=2, sin2 θ23 ¼ 1=2,
sin2 θ13 ¼ 0 (Barger et al., 1998; Fukugita, Tanimoto,
and Yanagida, 1998).

Golden ratio (GR): tan2 θ12 ¼ 1=ϕ or cos θ12 ¼ ϕ=2,
ϕ ¼ ð1þ ffiffiffi

5
p Þ=2 (golden ratio), sin2 θ23 ¼ 1=2,

sin2 θ13 ¼ 0 (Datta, Ling, and Ramond, 2003;
Kajiyama, Raidal, and Strumia, 2007; Rodejo-
hann, 2009).

In all three cases, the PMNS matrix, up to external phases, is
of the form

U ¼

0
BB@

c12 s12 0

− s12ffiffi
2

p c12ffiffi
2

p − 1ffiffi
2

p

− s12ffiffi
2

p c12ffiffi
2

p 1ffiffi
2

p

1
CCA; ð4:17Þ

with different values of θ12, as previously specified.
We compare the predictionswith the experimental values. The

present 1σ ranges of the neutrino mixing angles as obtained
from global fits (see Table I) are sin θ12 ¼ 0.56� 0.01,
sin θ23 ¼ 0.75� 0.02, sin θ13 ¼ 0.150� 0.002, while the pre-
dictions obtained in the previously mentioned schemes are

16Another opportunity to enlarge Gν arises with Dirac neutrinos
(Esmaili and Smirnov, 2015).
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ðsin θ12ÞTB ¼ 0.58, ðsin θ12ÞBM ¼ 0.71, ðsin θ12ÞGR ¼ 0.59 or
0.62, ðsin θ23Þall ¼ 0.71, and ðsin2 θ13Þall ¼ 0.
Most encouraging is the TB prediction for θ12, which is in

close agreement with the precise experimental determination.
Parametrizing the corrections to Eq. (4.17) in a power series in
λC ¼ 0.22 (the Cabibbo angle, an expansion parameter
borrowed from the quark sector), we see that the agreement
is so precise that only corrections Oðλ2÷3C Þ or less are allowed.
This provided a considerable boost to models accounting for
TB mixing, at a time when the θ13 angle was still unknown.
The experiment now shows that θ13 departs from zero by
OðλCÞ. If that is the expected size of corrections to Eq. (4.17),
the success of the TB prediction for θ12 should be considered
accidental. Within the same OðλCÞ accuracy, the measured
value of θ12 is compatible with the BM prediction θ12 ¼ π=4.
It has in fact been observed that the empirical relation θ12 þ
λC ≈ π=4 (“quark-lepton complementarity”) (Minakata and
Smirnov, 2004; Raidal, 2004; Datta, Everett, and Ramond,
2005; Everett, 2006; Schmidt and Smirnov, 2006) approx-
imately holds. The size of the corrections hinted at by the
value of θ13 in this class of models partly jeopardizes the
predictivity motivation.
We now focus on the TB scheme and illustrate the model-

building logic underlying it. This also serves as an illustration
of the ideas and techniques underlying more involved models.
The tri-bimaximal form of the PMNS matrix is, up to external
phases,

UTB ¼

0
BB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1
CCA: ð4:18Þ

The form of the PMNS matrix determines the relative
orientation of Ge and Gν in G, the commutation relations of
the corresponding elements in G, and consequently the
minimal structure of G. The procedure to find the minimal
G (when it exists: only specific forms of the PMNS originate
from finite groups) is simple. First, we need to specify Gν and
Ge. ForGν the choice is essentially unique, as we assume here
that all three neutrinos are massive: Gν ¼ Z2 × Z2. We call u
and s the nontrivial elements of the two Z2. In a neutrino mass
basis, their representation on the lepton doublets is

Uν
l ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA; Sνl ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA: ð4:19Þ

The choice of Ge is not unique; see Eq. (4.14). The smallest
(in terms of number of elements) option is Z3. We call t one of
its nontrivial elements. Without loss of generality, its repre-
sentation on the l and ec fields in a charged-lepton mass basis
is

Te
l ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA; Te

ec ¼

0
B@

1 0 0

0 ω2 0

0 0 ω

1
CA; ð4:20Þ

where ω ¼ expð2πi=3Þ. Therefore, with the present choice of
Gν, Ge, the full group G must contain the identity, the three
elements u, s, t, and all of their products. Under the
assumption that the representation on the leptons is faithful,
the group elements can be identified with their representations
on the lepton doublets Ul, Sl, Tl. We need, however, to write
them in the same basis. Choose, for example, a charged-lepton
mass basis. Then Tl is given by Eq. (4.20), while Ul and Sl
must be rotated from the neutrino basis used in Eq. (4.19). The
rotation is given by the PMNS matrix U (beware of the abuse
of the notation “U”): Ue

l ¼ UUν
l U

†, Sel ¼ USνl U
†. Here is

where the chosen form of U enters. In the TB case,
U ¼ ΨUTBΦ, whereΨ andΦ are diagonal matrices of phases.
With a proper choice of the phases of the charged leptons,
Ψ ¼ 1, while Φ cancels in the products so that
Ue

l ¼ UTBUν
l U

†
TB, S

e
l ¼ UTBSνl U

†
TB. All in all,

Ue
l ¼ −

0
B@

1 0 0

0 0 1

0 1 0

1
CA; Sel ¼

1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA;

Te
l ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA: ð4:21Þ

By taking all possible products of the three matrices in
Eq. (4.21), it is easy to show that the group G generated
by them is finite, contains 24 distinct elements, and is
isomorphic to S4, the permutation group of four elements.
The S4 group has two d ¼ 3, one d ¼ 2, and two d ¼ 1

irreducible representations, denoted by 31, 32, 2, 11, 12. The 31
representation is defined by S, T, U in Eq. (4.21) and the 32
has the opposite U. The 2 representation has

S ¼
�
1 0

0 1

�
; T ¼

�
ω 0

0 ω2

�
; U ¼

�
0 1

1 0

�
;

ð4:22Þ

and the 11, 12 representations have S ¼ T ¼ 1 and U ¼ �1,
respectively.
There is motivation to pursue the S4 option for TB mixing,

and it has been widely studied (Mohapatra, Parida, and
Rajasekaran, 2004; Cai and Yu, 2006; Hagedorn, Lindner,
and Mohapatra, 2006; Ma, 2006; Zhang, 2007; Bazzocchi and
Morisi, 2009; Bazzocchi, Merlo, and Morisi, 2009a, 2009b;
Dutta, Mimura, and Mohapatra, 2009; Ishimori, Shimizu, and
Tanimoto, 2009; Ding, 2010; Dutta, Mimura, and Mohapatra,
2010; Hagedorn, King, and Luhn, 2010; Meloni, 2010;
Bhupal Dev, Mohapatra, and Severson, 2011; Ishimori and
Kobayashi, 2011; Morisi, Patel, and Peinado, 2011;
Bhupal Dev et al., 2012; Smirnov and Xu, 2018); however,
its simplest implementation requires a nontrivial fine-
tuning to reproduce hierarchical charged leptons, as we
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now show.17 To implement the S4 symmetry, we first need to
assign the lepton fields li and eci to the S4 representations.
Equation (4.21) assigns the li fields to 31. The representation
on the eci fields should be such that T

e
ec is given by Eq. (4.20),

which in turn requires them to form one of the following four
representations: 31, 32, 2þ 11, or 2þ 12. The l and ec fields
must then couple to a combination of flavon fields, with a T-
preserving VEV, in an S4-invariant Yukawa interaction. All
possible combinations lead to a diagonal charged-lepton mass
matrix with at least two diagonal elements of equal size (and
possibly different sign). To obtain hierarchical and nonvanish-
ing charged-lepton masses, a fine-tuning of independent
contributions to those diagonal entries must then be invoked.
The argument is based on the assumption that T in not broken
in the charged-lepton sector (so that its mass basis is rigidly
determined) at leading order. The possibility that T is broken
is considered in Sec. IV.B.4.
This fine-tuning can be avoided if S4 arises accidentally in

models based on A4 (Ma and Rajasekaran, 2001; Babu, Ma,
and Valle, 2003; Hirsch et al., 2004; Ma, 2004a, 2004b;
Altarelli and Feruglio, 2005; Chen, Frigerio, and Ma, 2005;
Hirsch et al., 2005; Ma, 2005a, 2005b; Zee, 2005; Adhikary
et al., 2006; Altarelli and Feruglio, 2006; He, Keum, and
Volkas, 2006; Ma, Sawanaka, and Tanimoto, 2006; Altarelli,
Feruglio, and Lin, 2007; Hirsch et al., 2007; Lavoura and
Kuhbock, 2007; Ma, 2007b; Morisi, Picariello, and Torrente-
Lujan, 2007; Yin, 2007; Adhikary and Ghosal, 2008; Altarelli,
Feruglio, and Hagedorn, 2008; Bazzocchi, Frigerio, and
Morisi, 2008; Bazzocchi, Kaneko, and Morisi, 2008;
Grimus and Kuhbock, 2008; Hirsch, Morisi, and Valle,
2008; Honda and Tanimoto, 2008; Altarelli and Meloni,
2009; Ciafaloni et al., 2009; Lin, 2009a, 2009b; Morisi,
2009; del Aguila, Carmona, and Santiago, 2010; Kadosh and
Pallante, 2010; Antusch, King, and Spinrath, 2011; BenTov,
He, and Zee, 2012; Gupta, Joshipura, and Patel, 2012; Forero
et al., 2013; Holthausen, Lindner, and Schmidt, 2013b; Morisi
et al., 2013; Chu and Smirnov, 2016), its subgroup of even
permutations. The last has 12 elements and is generated by S
and T only. The flavor symmetry extends to S4 if the
Lagrangian (at some order in the flavon expansion) turns
out to be accidentally invariant under the U generator. This
option is appealing for a number of reasons: the A4 group is
even more minimal than S4; the invariance of the Lagrangian
under the U transformation is accidental, which allows
corrections to TB mixing; and, as mentioned, no fine-tuning
is required in order to obtain hierarchical, nonvanishing
charged leptons. Both A4 and S4 can arise from continuous
non-Abelian groups (Bazzocchi, Morisi, and Picariello, 2008;
Bazzocchi et al., 2009; Berger and Grossman, 2010;

Grossman and Ng, 2015) and can be related to compactifi-
cation in models with two extra dimensions (Altarelli,
Feruglio, and Lin, 2007; Kobayashi, Omura, and Yoshioka,
2008) and to the modular group (Altarelli and Feruglio, 2006);
see also Sec. VI.
We see how to implement these ideas in a concrete model

based on A4 (Altarelli and Feruglio, 2005, 2006). We first
need to specify the A4 representation on the lepton fields li and
eci . The A4 group has one d ¼ 3 and three d ¼ 1 irreducible
representations, denoted by 3, 1, 10, 100. The 3 representation is
defined by S, T in Eq. (4.21) and the 1, 10, 100 representations
are defined by S ¼ 1 and T ¼ 1, ω, ω2, respectively.
Equation (4.21) assigns the li fields to 3. The representation
on the eci fields should be such that T

e
ec is given by Eq. (4.20).

Hence, either ec ∼ 3 or ec ∼ 1þ 10 þ 100. The first option is
not welcome, as it allows the charged lepton to get degenerate,
nonvanishing, leading order masses. To avoid it, one choo-
ses ec ∼ 1þ 10 þ 100.
We now need to couple the leptons to flavons in such a way

that Ge and Gν are preserved at leading order by ME and mν.
In the A4 case, Gν is generated by S and Ge by T. Gν ¼ Z2

alone is not sufficient to determine the neutrino mass basis up
to phases, but it gets help from the U transformation, under
which mν turns out to be accidentally invariant. To break G to
Ge, S must be broken, but T must not. This can be achieved
only by using a flavon triplet φT , as 1, 10, 100 are all invariant
under S. The index T refers to the invariance under T, which
forces hφTi ¼ ϵTð1; 0; 0ÞT . A4 invariance allows φT to couple
to ecl at the linear level. The most general charged-lepton
Yukawa Lagrangian at leading order in the flavon expansion is
then

Lð1Þ
e ¼ λ1ec1ðφTlÞ1H� þ λ2ec2ðφTlÞ10H� þ λ3ec3ðφTlÞ100H�;

ð4:23Þ

where φT is dimensionless, i.e., normalized to some cutoff
scale Λ, and ðÞ1;10;100 denote the triplet contractions trans-
forming as 1; 10; 100 under A4. More precisely, if a and b
transform as 3, ðabÞ1 ¼ a1b1 þ a2b3 þ a3b2, ðabÞ10 ¼
a3b3 þ a1b2 þ a2b1, ðabÞ100 ¼ a2b2 þ a1b3 þ a3b1 in the
basis specified by Eq. (4.21).
Before switching to the neutrino sector, we comment on the

previous result. The Lagrangian in Eq. (4.23) generates a
diagonal charged-lepton mass matrix as desired, with
ðMEÞii ¼ λiϵTv, where v is the Higgs VEV. The identification
of the three families with the e, μ, τ mass eigenstates depends
on the relative size of the diagonal entries and might require
field permutations. The mass hierarchy can be reproduced,
without fine-tuning, by an appropriate choice of the λi’s, but it
is not explained. To account for it and get rid of the
permutation ambiguity, an additional Uð1ÞFN factor can be
added to the flavor group. The latter is assumed to broken by a
flavon VEV hφFNi ¼ ϵ ≪ 1. By a proper choice of their
charge under Uð1ÞFN, the individual monomials in Eq. (4.23)
can be forced to contain different powers of φFN. The
corresponding diagonal masses then get suppressed by differ-
ent powers of ϵ.
Alternatively, the role of φFN can be played by the A4

flavons themselves (Altarelli and Meloni, 2009; Lin, 2009b).

17The fine-tuning is associated with the underlying μ-τ symmetry
(Fukuyama and Nishiura, 1997; Mohapatra and Nussinov, 1999;
Balaji, Grimus, and Schwetz, 2001; Lam, 2001; Ma and Raidal,
2001; Ma, 2002; Grimus and Lavoura, 2013; Xing and Zhao, 2016)
corresponding to theU generator of S4. While the need of fine-tuning
in the context of the μ-τ symmetry was pointed out long ago
(Kitabayashi and Yasue, 2003), the general argument provided here
holds in S4 independently of the viable choice of the lepton and
flavon representations.
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Suppose that hφTi ¼ ϵTð0; 1; 0ÞT . Such a VEV breaks T, and
in fact the entire A4 and S4. Moreover, hðφ2

TÞ3i ¼ ϵ2Tð0; 0; 1ÞT
and hðφ3

TÞ3i ¼ ϵ3Tð1; 0; 0ÞT , where the superscript 3 denotes
the component transforming as the 3 of A4. Therefore,
multiple insertions of hφTi are associated with different
families and are increasingly suppressed by higher powers
of ϵT : the A4 flavon φ effectively plays the role of a FN flavon.
We now come to the neutrino mass matrix and consider for

simplicity its description in terms of the Weinberg operator.
We first note that A4 allows an invariant term ðlHlHÞ1=ΛL
corresponding to three degenerate neutrinos. This invariant
term needs to be of a similar size as the symmetry breaking
terms, which may be expected to be suppressed, if a
perturbative flavon expansion is to be meaningful. The
invariant term can be correspondingly suppressed by forcing
it to break ad hoc symmetries. With this in mind, we allow the
“invariant” and symmetry breaking contributions to the
neutrino mass matrix to be comparable.
To break G down to Gν, T must be broken, but S must not.

T can in principle be broken by a 3, 10, or 100 representation. To
have accidental invariance under U for generic values of the
Lagrangian parameters, G should be broken by a flavon triplet
φS, where the subscript S refers to the invariance under S,
which forces hφSi ¼ ϵSð1; 1; 1ÞT . A4 invariance allows φS to
couple to the Weinberg operator at the linear level. The most
general neutrino Lagrangian at the linear order in the flavon
expansion is then

Lð1Þ
ν ¼ ϵ

ðlHlHÞ1
2ΛL

þ φS
ðlHlHÞ3S

2ΛL
; ð4:24Þ

where, in the previously used notation, the symmetric con-
traction of the lepton indices into a triplet is ðabÞ3S¼ð2a1b1−
a2b3−a3b2;2a2b2−a3b1−a1b3;2a3b3−a1b2−a2b1Þ. The
corresponding neutrino mass matrix is

mð1Þ
ν ¼

0
B@

aþ 2b −b −b
−b 2b a − b

−b a − b 2b

1
CA;

a ¼ ϵ
v2

ΛL
; b ¼ ϵS

v2

ΛL
: ð4:25Þ

The matrix mð1Þ
ν is accidentally invariant under U, as desired.

Moreover, together withME, it leads to TB mixing. As mð1Þ
ν is

not the most general matrix invariant under S and U, the
relation m3eiα31 ¼ m1 − 2m2eiα21 holds among the neutrino
masses and the Majorana phases α21, α31 [defined as in
Eq. (4.37)].18 In the context of seesaw models, an analogous
relation holds for the inverse masses.

We have seen that TB mixing can be obtained from the
Lagrangian Lð1Þ

e þ Lð1Þ
ν . Crucial to this result is the fact that

the Lagrangian is in the form in Eq. (4.11), with ϕe ¼ φT
entering only the charged-lepton mass matrix and ϕν ¼ φS
entering only the neutrino mass matrix. To enforce such a
sequestering, φT and φS must be given different quantum
numbers under an additional group factor. For example, one
can add a Z3 factor, under which φT and ecl are invariant,
while φS and lHlH transform nontrivially in conjugated
representations. This way the Lagrangian is forced to be of

the form Lð1Þ
e þ Lð1Þ

ν at the leading order in the flavon
expansion.
A complete model must also account for the specific

alignment of the VEVs, φT ∝ ð1; 0; 0Þ, φS ∝ ð1; 1; 1Þ,
assumed earlier. Indeed, the TB prediction crucially depends
on such an alignment, more than from the flavor group itself or
the choice of the flavon fields. In other words, what actually
underlies the TB prediction is the flavon potential determining
the flavon VEVs. It can be shown (Altarelli and Feruglio,
2006) that the needed alignment can be naturally obtained in
supersymmetric models.
We have illustrated how TBmixing can be obtained from an

A4 flavor group (supplemented with additional symmetry
factors and a proper flavon potential) at the leading order in a
flavon expansion. Other finite groups aside from A4 and S4
can lead to TB mixing, such as PSL2ð7Þ (Luhn, Nasri, and
Ramond, 2007a; King and Luhn, 2009a, 2010; Ferreira et al.,
2012; Chen, Prez, and Ramond, 2015), Δð27Þ (Luhn, Nasri,
and Ramond, 2007b; de Medeiros Varzielas, King, and Ross,
2007; Grimus and Lavoura, 2008; Ma, 2008; Björkeroth et al.,
2016, 2017), Z7 ⋊ Z3 (Luhn, Nasri, and Ramond, 2007c;
Hagedorn, Schmidt, and Smirnov, 2009; Cao et al., 2011;
Vien and Long, 2014; Bonilla et al., 2015; Cárcamo
Hernández and Martinez, 2016), and Z13 ⋊ Z3 (Hartmann
and Zee, 2011; Kajiyama and Okada, 2011; Hartmann, 2012;
Pérez et al., 2019). Other mixing schemes can be obtained
closely following the outlined model-building lines for S4 and
A4. For example, BM mixing can be obtained from S4
(Altarelli, Feruglio, and Merlo, 2009; Meloni, 2011) and
GR schemes can be obtained from A5 (Kajiyama, Raidal, and
Strumia, 2007; Everett and Stuart, 2009; Feruglio and Paris,
2011; Hernandez and Smirnov, 2012; Gehrlein, Oppermann
et al., 2015; Gehrlein, Petcov et al., 2015).

a. Origin of the corrections to approximate sequestering

The simplest non-Abelian finite group models lead to TB,
BM, or GR forms of the PMNS matrix and therefore need to
be corrected in order to account for θ13 ≠ 0. Such corrections
are also needed in models based on higher order finite groups
leading to a θ13 ≠ 0, but they are still not in agreement with
the experimental value. The previous predictions were
obtained at LO in the flavon expansion, at which the
Lagrangian has the form of Eq. (4.11), supplemented by a
flavon potential providing the necessary alignment of ϕe and
ϕν. The corrections are associated with higher order terms and
can affect the LO predictions by either (i) spoiling the
sequestering or (ii) spoiling the alignment mechanism pro-
vided by the leading order potential. Such corrections are
usually G invariant, but they can also be noninvariant because

18Which of the three eigenvalues j3bþ aj, jaj, j3b − aj are
identified with m1, m2, m3 in their standard ordering depends on
their relative sizes. For the TB form of the PMNS matrix not to be
spoiled by permutations of its columns, the identification should give
m1 ¼ j3bþ aj,m2 ¼ jaj,m3 ¼ j3b − aj. The relation among masses
and phases is an example of mass sum rules (King, Merle, and Stuart,
2013; Gehrlein, Merle, and Spinrath, 2015).
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(i) part of G arises at LO as an accidental symmetry or (ii) the
group G is not gauged and the corrections are of a gravita-
tional nature. For the latter case to be phenomenologically
relevant, the cutoff scale Λ characterizing the operator
expansion should be sufficiently close to the gravity cutoff.
While the form of the corrections is model dependent, a few
model-independent considerations can be made.

b. Size of the corrections

The range of the corrections is important to assess whether
they can lead to viable predictions and how much they spoil
the predictability of the model.
The corrections to the LO predictions are associated with

higher orders in the flavon expansion. There are two expan-
sion parameters associated with the typical size of the VEVs
of the ϕe and ϕν flavons: ϵe ∼ hϕei, ϵν ∼ hϕνi (note that the
flavons are dimensionless here, i.e., normalized to some cutoff
scale Λ). We expect corrections to the neutrino and charged-
lepton mass matrices to be at least as large as Oðϵ2eÞ and
Oðϵ2νÞ, respectively, as discussed in Sec. IV.B.1.
The ranges of ϵe, ϵν are often loosely constrained at LO.

We first focus on ϵe and consider the form of Lð1Þ
e in

Eq. (4.23), where ϕe ≡ φT and ϵe ≡ ϵT . At LO, the tau
lepton mass is given by mτ ¼ λτϵev, where λτ is the largest
among the three couplings in Eq. (4.23). The product λτϵe is
fixed by the tau mass, but ϵe is allowed to vary in quite a
broad range 10−2 ≈ mτ=v ≲ ϵe ≲ 1. The upper bound is
required for the perturbative expansion to be meaningful,
and the lower bound corresponds to a coupling λτ in the
perturbative regime λτ ≲ 1. The result still holds if the
charged-lepton mass hierarchy is accounted for by an inde-
pendent suppression factor ϵFN associated with an Abelian
U(1) factor. In the latter case, mei ¼ λiϵ

ni
FNϵev, where ni is an

Abelian charge.
The size of ϵν may be even less constrained. We consider

the Lagrangian in Eq. (4.24), where ϕν ≡ φS and ϵν ≡ ϵS.
Equation (4.25) shows that b is bound to be of the order of the
light neutrino masses, but a small ϵν is allowed provided that
ΛL and ϵ are correspondingly small. For ΛL ≳ TeV and
normal hierarchy, one gets 10−12 ≲ ϵν ≲ 1.
The ranges for ϵe and ϵν are broad enough to allow the next-

to-leading order corrections to be negligible or substantial, in
either Me or mν, or in both, and in general to allow the
expansion parameters and LO corrections to have different
sizes in the charged-lepton and neutrino sectors. Such quali-
tative considerations can be refined or modified in a number of
ways. For example, the mass matrices can be nonhomogene-
ous in ϵe, ϵν. This is the case if the A4 flavons play the role of
FN flavons and ϵFN ¼ ϵe (Altarelli and Meloni, 2009; Lin,
2009b). In such a case, the size of ϵe is determined by the
charged-lepton mass ratios. Moreover, additional constraints
on the expansion parameters can arise in models accounting
for leptogenesis (Mohapatra and Nasri, 2005; Mohapatra,
Nasri, and Yu, 2005; Jenkins and Manohar, 2008; Bertuzzo
et al., 2009; Branco et al., 2009; Hagedorn, Molinaro, and
Petcov, 2009; Lin, 2009a; Riva, 2010; Aristizabal Sierra,
Bazzocchi, and de Medeiros Varzielas, 2012; Gehrlein, Petcov
et al., 2015).

c. Structure of the corrections

The PMNSmatrix gets contributions from both the neutrino
and charged-lepton sectors (U ¼ U†

eUν), as in Eq. (3.16).
Corrections to the LO form of the PMNS matrix can be due to
corrections to ME (affecting Ue) and to mν (affecting Uν). A
special case arises when only one of the two corrections is
significant.
First consider the case in which the corrections come from

the charged-lepton sector (Giunti and Tanimoto, 2002a,
2002b; Antusch and King, 2004a; Altarelli, Feruglio, and
Masina, 2004; Frampton, Petcov, and Rodejohann, 2004;
Romanino, 2004; Antusch and King, 2005; King, 2005;
Masina, 2006). This can happen if ϵe is on the lower side
of its range so that the Oðϵ2eÞ corrections to mν are negligible.
The charged-lepton mass matrix is diagonal at LO due toGe

invariance. Therefore, the leading order form of the PMNS
matrix (TB, BM, GR, or otherwise) is U0 ¼ U0

ν, where U0
ν

diagonalizes the LO form of mν. At higher orders, ME is
nondiagonal and mν is unaffected. Thus, the PMNS matrix
gets a correction from the charged-lepton sector U ¼ U†

eU0.
This observation is not constraining per se: any PMNS

matrix U can now be obtained by choosing an appropriate
Ue ¼ U0

νU†. The study of charged-lepton corrections is useful
when Ue has a nongeneric, motivated pattern. This is indeed
often the case, as Ue is in turn constrained by the hierarchy of
charged-lepton masses, if the latter is to be stable under small
perturbations (Marzocca and Romanino, 2014). If ME

31 is not
unexpectedly large, jME

31j=mτ ≪ sin θ13, Ue is approximately
of the form

Ue ¼ RT
23ðθe23ÞRT

12ðθe12Þ ð4:26Þ

up to external phases, where RijðθÞ is a 2 × 2 rotation by an
angle θ in the ij block and the transpose is conventional. In all
cases illustrated in Sec. IV.B.3, θ13 ¼ 0 in U0; hence U0

ν is of
the same form

U0
ν ¼ R23ðθν23ÞR12ðθν12Þ ð4:27Þ

up to external phases. The θ13 angle then originates purely
from the interplay of 23 and 12 rotations, and the PMNS
matrix is given by

U ¼ R12ðθe12ÞΦR23ðθ023ÞR12ðθν12Þ ð4:28Þ

up to external phases, where Φ ¼ diag½1; expð−iδ0Þ; 1�. In
Eq. (4.28), θν12 corresponds to the LO prediction for θ12 and is
fixed by the model (sin θν12 ¼ 1=

ffiffiffi
3

p
and 1=

ffiffiffi
2

p
in the TB and

BM schemes, respectively). The precise relations between the
parametrization in Eq. (4.28) and the standard one was given
by Marzocca et al. (2013). In a first approximation, θ23 ¼ θ023
and δ ¼ δ0 up to the Oðs213Þ and Oðs13Þ corrections, respec-
tively. Moreover, sin θ13 ¼ sin θe12 sin θ23 and sin θ12 ¼
sin θν12ð1þ sin θe12 cot θ

ν
12 cos θ23 cos δÞ up to the Oðs213Þ and

Oðs13Þ corrections, respectively.
The relation sin θ13 ¼ sin θe12 sin θ23 allows one to deter-

mine the size of the charged-lepton angle θ12, which turns out
to be close to the Cabibbo angle, for θ23 ¼ π=4 (Minakata and
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Smirnov, 2004; Raidal, 2004; Datta, Everett, and Ramond,
2005; Everett, 2006). Motivating such an empirical relation
within GUT models, while at the same time accounting for the
mμ=ms andme=md ratios, is not straightforward (Antusch and
Maurer, 2011; King, 2012; Antusch et al., 2013; Marzocca
et al., 2011). Both the deviation of θ13 from zero and the
deviation of θ12 from the LO prediction θν12 are determined by
θe12, and they are therefore expected to be of the same size.
Indeed, one gets

θ12 ¼ θν12 þ θ13 cot θ23 cos δþOðθ213Þ: ð4:29Þ

Equation (4.29) is sometimes called the “solar sum rule.” It
allows one to predict the CP-violating phase δ for a given LO
prediction θν12. A solution for δ can be found for TB, GR, and
other LO θ12 predictions not too far from the measured values.
Actually, as the measured value of θ13 is not so small, θ12 is

expected to deviate quite significantly from its LO prediction
δ sin θ12= sin θ12 ∼ 0.15 cos δ. In this context, the success of
the TB prediction, corresponding to δ sin θ12= sin θ12 ≲ 0.03,
looks somewhat accidental. Indeed, sizable CP violation, i.e.,
small cos δ, is predicted to be necessary in order to accom-
modate TB mixing in this context (Marzocca et al., 2013). On
the other hand, a measurement of a small cos δ would restore
the success of the θ12 prediction.
One can wonder whether the charged-lepton effect on θ12 is

large enough to account for the observed significant deviation
from the BM prediction θ12 ¼ π=4. The correction in
Eq. (4.29) falls short of providing the necessary deviation
(Ballett et al., 2014; Girardi, Petcov, and Titov, 2015a, 2015b).
Further corrections, pushing θ12 in the desired range, can be
obtained if Ue is not in the form in Eq. (4.28). This can be the
case if ME

31 is relatively large. A sizable ME
31 may, however,

generate sizable contributions to the electron and muon
masses that need fine-tuned cancellations, unless the
charged-lepton mass matrix has special structures
(Marzocca and Romanino, 2014). Such a sizable ME

31 can
also be used within asymmetric textures to correct the TB
prediction, while leading to a prediction for the CP-phase δ in
agreement with the present hints (Rahat, Ramond, and Xu,
2018; Pérez et al., 2019).
Sizable corrections to θ12 from the neutrino sector are more

constrained if the neutrino masses are inverted hierarchically.
In such a case, a maximal θ12 can be easily obtained from
pseudo-Dirac structures in the neutrino mass matrix, which in
turn naturally arise within both non-Abelian groups (as in the
BM case; see Sec. IV.B.3) and Abelian groups [as in
Eq. (4.2)]. In this context, the needed correction to θ12, if
arising in the neutrino sector, tends to destabilize the
jΔm2

12=Δm2
23j ≪ 1 hierarchy, thus leading to fine-tuning

(Domcke and Romanino, 2016). To avoid that, the bulk of
the corrections to θ12 ¼ π=4 should come from the charged-
lepton sector.

4. Nonrigid determination of the PMNS matrix

The discussion in this section has been based thus far on the
assumption that Ge and Gν, the subgroups of G preserved by
ME and mν, are nontrivial, and they rigidly determine the
charged-lepton and neutrino mass bases up to phases. Such an

assumption allows one to unambiguously determine the
PMNS matrix directly from Ge and Gν. While such an
approach is powerful and predictive, the assumption on which
it relies is nontrivial. The subgroups Ge and Gν can well be
trivial, in which case they would not lead to the identification
of any mass eigenstate. An intermediate possibility is that Ge
and Gν are nontrivial, but they identify the mass basis only
partially. We review such a possibility here.19 To realize it,
sequestering is still needed, as Gν and Ge still need to be
different, with a trivial intersection.
The case in which Gν does not fully determine the neutrino

mass basis, while Ge does, has been widely considered (Ge,
Dicus, and Repko, 2011, 2012; Hernandez and Smirnov,
2013a). In such a case, the only potentially interesting
possibility is Gν ¼ Z2. The residual symmetries now deter-
mine the PMNS matrix up to a 2 × 2 rotation and a phase
(and Majorana phases and permutations, as before)
U ¼ U0Uijðθ;ϕÞ, where

U23ðθ;ϕÞ ¼

0
B@

1 0 0

0 cos θ sin θe−iϕ

0 − sin θeiϕ cos θ

1
CA;

θ ∈ ½0; π=2�;
ϕ ∈ ½0; 2π�.

ð4:30Þ

Analogously, U12ðθ;ϕÞ and U13ðθ;ϕÞ have the 2 × 2 rotation
embedded in the 12 and 13 blocks, respectively.
If Gν is a subgroup of Z2 × Z2 rigidly determining the

neutrino mass basis, as in Secs. IV.B.2 and IV.B.3, and U0 is
the PMNS matrix obtained when Z2 × Z2 is unbroken, the
block on which the 2 × 2 rotation Uijðθ;ϕÞ acts depends on
which of the three Z2 subgroups of Z2 × Z2 survives. If U, S
are defined as in Eq. (4.19), the three subgroups are generated
by U, S, US. Correspondingly, the PMNS matrix is given by

U ¼ U0Uijðθ;ϕÞ;

where ij ¼
8<
:

12 if Z2 is generated byU;

13 if Z2 is generated by S;

23 if Z2 is generated byUS.

ð4:31Þ

Taking into account the diagonal Majorana phases Ψ and the
possible permutations Pe, Pν of the lepton mass bases, one
obtains U → PeUPνΨ in Eq. (4.31).
In practice, Eq. (4.31) means that it is possible to loosen the

rigid predictions illustrated in Sec. IV.B.2 and IV.B.3 by
breakingG to aZ2 subgroup ofZ2 × Z2 in the neutrino sector.
Such a possibility is welcome in the models discussed in
Sec. IV.B.3, where the θ13 prediction obtained in the rigid case
needs to be corrected. The correction is provided by the Uij

rotation. For the rotation to affect θ13, it should act in either the
13 or the 23 block. In the 13 case (S preserving), the second
column of U0 appears to be identical in U. In the 23 case (US
preserving), the first column of U0 appears to be identical
in U.
We apply these ideas to models leading, in the rigid limit, to

TB mixing. We focus on the simple option reviewed in

19Such models are sometimes called “semidirect.”
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Sec. IV.B.3, with G ¼ S4 arising accidentally at LO from an
A4-symmetric sequestered Lagrangian. Note that the acciden-
tal S4 invariance arises because no flavon in the 10, 100

representations is used to break A4, in which case Ge is
generated by T, Gν is generated by U and S in Eq. (4.21), and
U ¼ UTB at LO (up to external phases and assuming that
lepton masses are correctly ordered).
To reduce Gν to Z2 and preserve S, it is then sufficient to

introduce flavons φ0, φ00 in 10, 100 representations of A4 (King
and Luhn, 2011; Ma and Wegman, 2011; Shimizu, Tanimoto,
and Watanabe, 2011; Cooper, King, and Luhn, 2012). Since
we still want T to be preserved by ME, φ0 and φ00 should be
sequestered in the neutrino part of the LO Lagrangian.
Another possibility is that the role of φ0, φ00 is played by
the 10, 100 components of φ2

S. In such a case, the accidental
symmetry breaking, i.e., the corrections to TB mixing, is
suppressed by only one power of hφSi ∼ ϵS (Lin, 2010)
[compare this with the case in which U is not accidental
and the corrections are expected to be atOðϵ2TÞ]. In both cases
[breaking by φ0, φ00 or by ðφ2

SÞ10, ðφ2
SÞ100 ], the Lagrangian is no

longer accidentally invariant under U and Gν is generated by
S. The PMNS matrix is then in the form of Eq. (4.31), with
ij ¼ 13,

UTM2
¼ UTBU13ðθ;ϕÞΨ

¼

0
BB@

ffiffi
2
3

q
cθ 1ffiffi

3
p

ffiffi
2
3

q
sθe−iϕ

− cθffiffi
6

p þ sθffiffi
2

p eiϕ 1ffiffi
3

p − cθffiffi
2

p − sθffiffi
6

p e−iϕ

− cθffiffi
6

p þ sθffiffi
2

p eiϕ 1ffiffi
3

p cθffiffi
2

p − sθffiffi
6

p e−iϕ

1
CCAΨ; ð4:32Þ

where we have now explicitly included the diagonal matrix of
Majorana phases Ψ. This form of the PMNS matrix merits a
few comments. A nonvanishing θ13 has been induced by the
rotation θ. With θ as a free parameter, any value of sin θ13 ≤
ð2=3Þ1=2 can be obtained. The size of sin θ13 is controlled by
hφ0i, hφ00i, and its relative smallness can be accounted for in
terms of a mild suppression of hφ0i, hφ00i [or by the extra ϵS
insertion if φ0 ∼ ðφ2

SÞ10 , φ00 ∼ ðφ2
SÞ100 ]. A CP-violating phase is

also generated (δ ≈ ϕ). The solar angle is larger than its TB
prediction sin θ12 ≥ 1=

ffiffiffi
3

p
, but only by a Oðsin2 θ13Þ amount.

The maximal θ23 prediction is also modified, at theOðsin θ13Þ
order. The precise expression of the PMNS parameters in
terms of θ, ϕ is given in Table VI. With four parameters
expressed in terms of two, Eqs. (4.32) lead to two predictions
(“sum rules”) (Grimus and Lavoura, 2008)

1 ¼ 3cos2θ13sin2θ12; cos δ ¼ cos 2θ13 cot 2θ23
sin θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3sin2θ13

p :

ð4:33Þ

The first relation of Eq. (4.33) is in relatively good agreement
with present data, with the central value of the rhs ≈ 0.91 and
tension at the 2σ level. In the second relation of Eq. (4.33) the
absence of CP violation (cos δ ¼ �1) would require θ23 to be
significantly nonmaximal at the boundary of its 3σ range. As
θ23 approaches π=4, δ approaches �π=2.
The second column of UTM2

coincides with that of UTB and
corresponds to a neutrino ν2 ¼ ðνe þ νμ þ ντÞ=

ffiffiffi
3

p
with equal

components in νe, νμ, ντ. Such a pattern is called trimaximal
mixing (Haba, Watanabe, and Yoshioka, 2006; He and Zee,
2007, 2011; Grimus and Lavoura, 2008; Albright and
Rodejohann, 2009; Albright, Dueck, and Rodejohann,
2010; Ishimori et al., 2011). We adhere to a common
convention by denoting the form of the PMNS matrix in
Eq. (4.32) as “TM2,” in order to distinguish it from the form
“TM1” obtained by combining UTB with a U23 rotation. The
subscripts 1 and 2 refer to the UTB column unaffected by the
rotation. Strictly speaking, only when the second column is
unchanged (TM2) do we actually have trimaximal mixing.
The form TM1 of the PMNS matrix is obtained from rigid

TB models when the residual Z2 is generated by US (de
Medeiros Varzielas and Lavoura, 2013; Grimus, 2013; Luhn,
2013). As US is not part of A4, such a possibility requires
larger flavor groups. The S4 group is viable from this point of
view. The PMNS matrix is of the form of Eq. (4.31), with
ij ¼ 23,

UTM1
¼ UTBU23ðθ;ϕÞΨ

¼

0
BB@

ffiffi
2
3

q
cθffiffi
3

p sθffiffi
3

p e−iϕ

− 1ffiffi
6

p cθffiffi
3

p þ sθffiffi
2

p eiϕ − cθffiffi
2

p þ sθffiffi
3

p e−iϕ

− 1ffiffi
6

p cθffiffi
3

p − sθffiffi
2

p eiϕ cθffiffi
2

p þ sθffiffi
3

p e−iϕ

1
CCAΨ: ð4:34Þ

The solar angle is smaller than the successful TB prediction
this time (sin θ12 ≤ 1=

ffiffiffi
3

p
), but only by a Oðsin2 θ13Þ amount.

The first column of UTM1
coincides with that of UTB. The

expression of the PMNS parameters in terms of θ, ϕ is given in
Table VI and leads to two predictions (sum rules) (Albright
and Rodejohann, 2009)

2 ¼ 3cos2θ13cos2θ12;

cos δ ¼ −
ð1 − 5sin2θ13Þ cot 2θ23

2
ffiffiffi
2

p
sin θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3sin2θ13

p : ð4:35Þ

TABLE VI. Predictions of the TM1 and TM2 (i.e., trimaximal) mixing patterns as a function of the parameters θ ∈ ½0; π=2� and
ϕ; α; β ∈ ½0; 2π�.
Pattern sin2 θ23 sin2 θ13 sin2 θ12 δ α21 α31

TM1 1
2
ð1 − cosϕ 2

ffiffi
6

p
sin 2θ

5þcos 2θ Þ sin2 θ
3

cos2 θ
2þcos2 θ arg ð2e−iϕ − 3eiϕ cos2 θ

sin2 θÞ α β þ 2δ

TM2 1
2
ð1þ cosϕ

ffiffi
3

p
sin 2θ

2þcos 2θÞ
2
3
sin2 θ 1

2þcos 2θ arg ðe−iϕ − 3eiϕ cos2 θ
sin2 θÞ α β þ 2δ

Ferruccio Feruglio and Andrea Romanino: Lepton flavor symmetries

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015007-31



The first relation of Eq. (4.35) is in good agreement with the
present data, well within 1σ, with the central value of the rhs
being ≈2.0. The second relation of Eq.(4.35) shows that CP
invariance (cos δ ¼ �1) is not compatible with the present 3σ
range for θ23. As θ23 approaches π=4, δ approaches �π=2.
Up to external phases, UTM1

(UTM2
) is the most general

unitary matrix with the first (second) column, as in UTB.
As discussed, the Majorana phases in Ψ are unconstrained

in this setup. On the other hand, we see in Sec. V that flavor
symmetries not commuting with the Poincaré group may
constrain them. A general parametrization of Ψ that is useful
in Sec. V is

Ψ ¼

0
BB@

1 0 0

0 eiα=2 0

0 0 eiðβ=2þϕÞ

1
CCA: ð4:36Þ

Note that the Majorana phases are sometimes defined through
the following parametrization of the PMNS matrix

U¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13
s12s23−c12c23s13siδ −c12s23−s12c23s13siδ c23c13

1
CCA

×

0
BB@
1 0 0

0 eiα21=2 0

0 0 eiα31=2

1
CCA: ð4:37Þ

The relation between their parametrizations in terms of α, β
and in terms of α21, α31 is shown in Table VI.
We have illustrated the possibility of loosening the predic-

tions of rigid models by reducing Gν in such a way that the
neutrino mass basis is only partially determined by Gν.
Analogously, one can consider the possibility that the
charged-lepton mass basis is only partially determined by
Ge. In such a case, Ge does not necessarily need to contain Z3

or Z2 × Z2 [cf. Eq. (4.14)]; it is sufficient that it contains Z2.
The possibility that Ge ¼ 1 may also be viable. While in the
latter case Ge would not constrain the charged-lepton mass
matrix at all, a hierarchical structure may be enforced by an
additional group factor, playing the role of a FN symmetry, or
by organizing the couplings of the flavons in a specific way.
If Ge is loosened, a rigid prediction U0 is modified by a

unitary transformation appearing on the left side of U0,
mixing its rows. We are thus in the presence of charged-
lepton corrections to the PMNS matrix, as in Sec. IV.B.3. A
contribution to θ13 can again be induced. If the charged
leptons end up having a hierarchical structure, as they should,
such corrections are typically too small to fully account for
θ13. Note that the charged-lepton mass hierarchy can now be
achieved in S4 without fine-tuning since the T generator can
be broken; see the discussion in Sec. IV.B.3. Even if the
charged-lepton contribution to θ13 is subleading, it can still be
useful when U0 corresponds to a nonvanishing θ13 not too far
from its experimental range. The small corrections from the
charged-lepton sector can then be sufficient to bring θ13 into
the experimental range. An example is Δð96Þ (de Adelhart

Toorop, Feruglio, and Hagedorn, 2011; Ding, 2012; King,
Luhn, and Stuart, 2013). The PMNS matrix is in the latter case
in the so-called bi-trimaximal form, a special case of
TM2 mixing corresponding to

ffiffiffiffiffiffiffiffi
2=3

p
sin θ ¼ ð1 − 1=

ffiffiffi
3

p Þ=2.
Another possibility is G ¼ PSLð2; 7Þ (Hernandez and
Smirnov, 2013a), in which a good fit of the mixing angles
can be obtained for near-maximal CP violation, δ ∼ π=2,
or δ ∼ 3π=2.

5. Extension to quarks

The approach followed thus far aims at understanding
lepton flavor observables. On the other hand, a complete
theory of flavor should account for the quark sector as well.
The extension of the ideas discussed in this section to the
quark sector is not straightforward.
One of the main features of the lepton models considered is

that all the charged-lepton masses vanish in the symmetric
limit, because a d ¼ 3 irreducible representation is used for
the lepton doublets. Such a setting is not suitable for the up
quark sector, which is characterized by a top Yukawa coupling
λt ¼ Oð1Þ. The size of λt suggests that the latter is invariant, at
least under the flavor group G considered in the lepton
sector.20 Hence, the up quark mass matrix does not vanish
in the G-symmetric limit. An invariant λt requires both the
third family quark doublet q3 and up quark singlet tc to be in
conjugated d ¼ 1 representations of the entireG. This require-
ment naturally leads to models in which both of the lighter
Yukawa couplings are forced to be small because they are not
invariant, in contrast to models based on sequestering that do
not constrain the values of the Yukawa couplings per se.
The different strategies needed in the quark and lepton

sectors are not necessarily in conflict. Quarks and leptons can
be constrained by different, independent factors of the flavor
group, broken by two independent sets of flavons, effectively
leading to separate models in the two sectors. It is worthy to
combine those strategies, however. As mentioned in
Sec. IV.B.3, a FN-type continuous symmetry suppressing
light Yukawa couplings can operate in the charged-lepton
sector, in combination with a discrete one. Moreover, the two
strategies can be combined even more effectively within the
discrete groups setup by using discrete groups such as the
double tetrahedral group T 0 (Frampton and Kephart, 1995). As
a subgroup of SU(2) with doublet representations, T 0 contains
the necessary ingredients to account for the (2þ 1) quark
structure along the lines of U(2) models (Aranda, Carone, and
Lebed, 2000a, 2000b). On the other hand, as T 0 contains the
representations of A4, it also contains the ingredients neces-
sary to reproduce the lepton observables along the lines of A4

models (Aranda, 2007; Chen and Mahanthappa, 2007;
Feruglio et al., 2007; Frampton and Kephart, 2007; Ding,
2008; Frampton and Matsuzaki, 2009; Aranda et al., 2010;
Everett and Stuart, 2011; Carone, Chaurasia, and Vasquez,

20A large λt ¼ Oð1Þ might arise from the breaking of a larger
group G̃. In such a case, the corresponding flavon VEV needs to be
close to the cutoff scale, hϕti ∼ Λ, and G should be identified with a
subgroup of G̃ unbroken by hϕti. What follows still holds if
considered in reference to G.
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2017; Carone and Merchand, 2019). In the previous example,
the quark mixing is correlated to the quark mass hierarchy.
One can wonder whether the same residual subgroup tech-
niques introduced to predict the lepton mixing matrix could be
extended to the quark sector. This is possible but not
straightforward. The residual subgroups should determine
the relative orientations of the up and down quark mass
bases. The small quark mixing angles then require a flavor
group large enough to contain closely aligned subgroups
(Lam, 2007; Blum, Hagedorn, and Lindner, 2008; Araki et al.,
2013; Holthausen and Lim, 2013; Yao and Ding, 2015; de
Medeiros Varzielas, Rasmussen, and Talbert, 2017; Li, Lu,
and Ding, 2018).
Once the flavor symmetry is extended to the quark sector,

one can aim at a model compatible with gauge unification. In
such a case, the flavor structures of the quark and lepton
sectors are necessarily coupled, in a way dictated by the
unified group. In grand unified theories such as SU(5), one
family of SM fermions is unified into a 5i þ 10i of SU(5):
5i ∼ ðli; dci Þ, 10i ∼ ðeci ; qi; uci Þ. As the flavor group is assumed
here to commute with the gauge group, the flavor quantum
numbers of SM fields belonging to the same irreducible SU(5)
representation should be the same. Since q3 and tc both belong
to 103, q3 and tc should be in a real d ¼ 1 representation of G;
i.e., they should be invariant up to a sign change. As τc is also
unified with q3 and tc, it should also be in a real d ¼ 1
representation. This is not compatible with the A4 and S4
settings in the form illustrated in Sec. IV.B.3, which require τc

to belong to a complex representation. A nonstandard A4

realization can be achieved with one extra dimension
(Altarelli, Feruglio, and Hagedorn, 2008). Unified flavor
models were reviewed by King (2017).

6. Outlook

The model-building avenues explored in this section are
based on the interplay of two distinct subgroups Gν and Ge of
G. The group-theoretical construction and the structure of G
crucially depend on the choice of Gν and Ge and of their
relative orientation. We consider both cases in which the
subgroups fully or partially determine the flavor directions
corresponding to the lepton mass eigenstates. In all cases,
though, mν and ME are by definition invariant under Gν

and Ge.
The model-building options are far from exhausted, even

within finite non-Abelian group models. For example, there is
no reason why Gν and Ge should be nontrivial and fully, or
partially, determine the lepton mass bases. Another nontrivial
and nonessential assumption has to do with the forms of mν

and ME, the matrices invariant under Gν and Ge. The
constraints on Gν and Ge in Eqs. (4.14) and (4.15) assume
that mν and ME provide nonvanishing, nondegenerate masses
for all the leptons, with the only possible exception of the
lightest neutrino. This is not really necessary. In early models,
mν and ME could be identified with the exact mass matrices
(the PMNS matrix was still compatible with being exactly in
TB form). On the other hand, this is not in line either with the
generic theoretical expectation of higher order corrections to
sequestering or with the experimental determination of the
mixing parameters (except in the cases discussed in

Sec. IV.B.2). Thus, the matrices mν and ME allowed by Gν

and Ge should not be identified with the exact mass matrices
in this context. They are approximations, expected to be
corrected by higher order effects, in some cases as large as
OðλCÞ. The mass eigenvalues are then also expected to be
corrected, as the mixing angles are, and there is no reason to
demand thatmν andME provide nonvanishing, nondegenerate
masses for all leptons. In fact, they could correspond equally
well with me ¼ 0 or me ¼ mμ ¼ 0 or mν1 ¼ mν2. The cor-
rections to such patterns necessary to obtain viable lepton
masses are smaller than those commonly assumed to affect the
mixing angles. Such a possibility was considered in con-
nection with partially degenerate neutrinos (Hernandez and
Smirnov, 2013b; Joshipura and Patel, 2014b). In principle,
any mass pattern that can be considered sufficiently close to
the observed one could be considered as well, in the spirit of
the discussion in Sec. IV.A.
This shows that the program based on linear, Lorentz-

scalar, discrete non-Abelian flavor groups has not been fully
explored. Still, it is fair to say that such a program has only
partially fulfilled initial expectations. The approach focuses on
mixing angles. The predictability potential of the simplest
models, one of their stronger motivations, has been frustrated
by the experimental determination of the θ13 angle that once
again challenged theoretical prejudice. Two opposite strate-
gies can be pursued to accommodate the value of θ13, both
leading to a certain loss of predictability. On the one hand, one
can stick to relatively simple models, at the price of accepting
relatively large corrections, which reduce predictability. On
the other hand, one can aim at more involved models with
predictions close to the experiment, at the price of scanning a
dense landscape of models. The significance of the prediction
is then reduced by the correspondingly dense number of
alternatives available. On the model-building side, the pre-
dictions are associated not really with the flavor group but
rather to the symmetry breaking effects (ultimately to the
detailed structure of the potential determining the VEV
alignments), and to a set of auxiliary symmetries and quantum
numbers needed to arrange the proper set of couplings in the
Lagrangian. On the other hand, the theoretical landscape is
still broad, as argued, and we hope that its exploration will
provide new insights.

V. CP-LIKE FLAVOR SYMMETRIES

The main purpose of including CP transformations in the
flavor symmetry group is to constrain Majorana phases.
Dedicated reviews on this topic were given by King et al.
(2014), King (2015, 2017), Neder (2015), Hagedorn (2017),
Coloma and Pascoli (2018), and Petcov (2018). In a theory
invariant under both a flavor symmetry group Gf and CP,
besides Eq. (4.1), the following constraint holds for the lepton
mass matrices21

21In the presence of a single Higgs, a possible phase in its CP
transformation can be reabsorbed in the transformation of the lepton
fields.
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M�
EðϕÞ ¼ XT

ecMEðXϕϕ
�ÞXl;

m�
νðϕÞ ¼ XT

l mνðXϕϕ
�ÞXl; ð5:1Þ

where we denote with Xf ðf ¼ ec; l;ϕÞ unitary matrices
describing the action of CP on the field f and we assume
Majorana neutrinos. In such a theory CP can be broken only
spontaneously and the conditions that realize the breaking are
as follows:

(i) Xϕϕ
� ≠ ϕ on the vacuum.

(ii) No other consistent CP transformation leaving both
the theory and the vacuum invariant exists.

A. Sequestering and residual symmetries

As in the case of a flavor symmetry commuting with the
proper Poincaré group, to some extent it is possible to analyze
the predictions of the theory without referring to an explicit
realization, relying on the residual symmetries associated with
the charged-lepton sector and the neutrino sector (if any).
Provided that ME and mν depend on two separate sets of
flavons ϕE and ϕν, we can contemplate independent residual
symmetries for the two sectors

UϕðgEÞϕE ¼ ϕE; UϕðgνÞϕν ¼ ϕν; ð5:2Þ

where gE and gν run in different subgroups of Gf and these
relations hold in the vacuum. To constrain Majorana phases
we should further assume that CP is conserved in the neutrino
sector

Xϕϕ
�
ν ¼ ϕν: ð5:3Þ

By combining Eqs. (4.1) and (5.1), we end up with the
relations

ðM†
EMEÞ ¼ UlðgEÞ†ðM†

EMEÞUlðgEÞ;
mν ¼ UlðgνÞTmνUlðgνÞ; m�

ν ¼ XT
l mνXl; ð5:4Þ

which constrain the lepton mixing angles and both Dirac and
Majorana phases at the same time.
This program has been carried out in the context of discrete

flavor symmetry groups Gf. A variety of cases arises from the
different possible assignments of the residual symmetries.
Assuming three generations, in the neutrino sector the most
general group leaving neutrino masses unconstrained is the
Klein group Z2 × Z2. To avoid mass degeneracies,22 the
matrix Xl is required to be symmetric (XT

l ¼ Xl) (Feruglio,
Hagedorn, and Ziegler, 2013). Since Xl is also unitary, this
automatically implies CP2 ¼ 1.23 To guarantee that the action
of CP on lepton electroweak doublets is always represented
by a symmetric matrix, Xl is required to commute with the
four elements of the Klein group. Given the antilinear action

of CP, commutation is expressed through relations of the
type

XlUðgKÞ� ¼ UðgKÞXl; ð5:5Þ

where gK stands for an element of the Klein group. Indeed,
X0
l ¼ UðgKÞXl represents another CP transformation and

Eq. (5.5) implies that the matrix X0
l is symmetric. It also

follows that four CP transformations can be selected as
residual symmetries of the neutrino sector. Conversely, given
these four allowed CP transformations, the Klein group can be
fully reconstructed (Chen, Li, and Ding, 2015; Everett and
Stuart, 2017). Usually the group Ge consists of a direct
product of cyclic symmetries Zm1

× � � � × Zmp
, such that all

the charged leptons are distinguished by their different trans-
formation properties. Among the residual symmetries of the
charged-lepton sector there can also be an accidental CP
symmetry that is independent of the one acting in the neutrino
sector.

B. Parameter counting

The freedom in the definition of the model gives rise to
many cases and, depending on the specific set of assumptions,
the PMNS matrix is determined up to a number of continuous
free parameters (listed in Table VII). These parameters arise as
follows. The invariance under CP provides, in a suitable basis,
a reality condition on the neutrino mass matrix, which can be
parametrized in terms of three masses and three angles. An
additional Z2 × Z2 symmetry fully determines these angles,
while a single parity Z2 leaves one angle unconstrained. The
three angles remain free parameters if the only residual
symmetry of the neutrino sector is CP. In the charged-lepton
sector the choice Ge ¼ Zm1

× � � � × Zmp
, when all leptons

have different transformation properties, leaves no free
parameters beyond masses. One free angle originates from
Ge ¼ Z2 × CP and one angle and one phase from Ge ¼ Z2.
Adding the parameters of the two sectors reproduces
Table VII. This approach leaves lepton masses unconstrained,
and the PMNS matrix is always determined up to permuta-
tions of rows and columns. Moreover, the intrinsic parity of

TABLE VII. Number of continuous free parameters describing the
lepton mixing matrix Uðθij; δ; α21; α31Þ (Chen, Li, and Ding, 2015;
Lu and Ding, 2017). The first and second columns list the residual
symmetries Ge and Gν of the charged-lepton sector and the neutrino
sector, respectively. The cyclic symmetry Zm1

× � � � × Zmp
is as-

sumed to distinguish the charged leptons by their different trans-
formation properties. The residual symmetry Z2 × Z2 × CP is also
equivalent to the one generated by the four allowed CP trans-
formations of the neutrino sector; see the text. On the fourth line, CP
and CP0 are in general independent CP transformations.

Ge Gν Parameters

Zm1
× � � � × Zmp

Z2 × Z2 × CP 0
Zm1

× � � � × Zmp
Z2 × CP 1

Z2 × CP Z2 × Z2 × CP 1
Z2 × CP0 Z2 × CP 2
Zm1

× � � � × Zmp
CP 3

Z2 Z2 × CP 3

22Degeneracies in the neutrino mass spectrum in this context were
analyzed by Joshipura and Patel (2018).

23In Sec. III.E we saw that ðX�
l XlÞn ¼ 1 holds for a finite group.
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neutrinos, that is, the relative sign of their masses, cannot be
established. As a result the physical phases are fixed mod-
ulo π.

C. Examples

1. μ− τ reflection symmetry

A simple example is provided by the so-called μ − τ
reflection symmetry (Harrison and Scott, 2002a, 2002b;
Grimus and Lavoura, 2004; Harrison and Scott, 2004).24 In
the basis where the charged-lepton mass matrix is diagonal
and ordered from smaller to bigger masses, the CP trans-
formation acting on neutrinos is specified by

Xl ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ð5:6Þ

and the constraint m�
ν ¼ XT

l mνXl implies the relations
sin θ23 ¼ 1=

ffiffiffi
2

p
, sin θ12 cos θ12 sin θ13 cos δ ¼ 0, and

sin α21 ¼ sin α31 ¼ 0. Data require sin θ12 cos θ12 sin θ13 ≠ 0
and this scheme predicts a maximal Dirac CP
phase, j sin δj ¼ 1.

2. G =S4 ⋊ CP

If we assume Ge ¼ Zm1
× � � � × Zmp

and Gν ¼ Z2 × CP in
the neutrino sector (see the second row of Table VII), the
PMNS matrix depends on a continuous parameter. An
example is provided by G ¼ S4 ⋊ CP, Ge ¼ Z3 (Feruglio,
Hagedorn, and Ziegler, 2013). Because of the different
embedding of the Z2 subgroup in S4, there are five inequi-
valent choices of Z2 × CP transformations that leave the
neutrino sector invariant. Four of them, labeled I, II, IV, and V,
reproduce particular cases of the so-called trimaximal mixing
pattern.
Models I and II reproduceUTM2

, while models IVandV give
rise to UTM1

, with ϕ, α, and β (see Sec. IV.B.4) quantized and
while assuming only the values shown in Table VIII. Models I
and IV predict a maximal atmospheric mixing angle, maximal
Dirac CP violation, and trivial CP Majorana phases and
provide two realizations of the μ − τ reflection symmetry

having an additional prediction. Models II and V predict no
lepton CP violation of the Dirac or Majorana type.
Equations (4.33) apply to model I (II) with j cos δj ¼ 0 ð1Þ.
A general property of TM2 is sin2 θ12 > 1=3. By letting sin2 θ13
vary in its 3σ allowed range, the first relation in Eqs. (4.33)
predicts that sin2θ12 ¼ 0.340 − 0.342, which is presently
allowed within 3σ but out of the 2σ range. In model II, tan2 δ ¼
0 and the 3σ allowed range of sin2 θ13 results in
sin2θ23¼f0.388−0.398g∪f0.602−0.611g. The prediction
falling in the first octant is excluded at 3σ, whereas the one
falling in the second octant is allowed at 2σ. Avanishing sin δ is
disfavored by the current data, but it is not excluded at 3σ.
Equations (4.35) for model IV (V) require that j cos δj ¼ 0 ð1Þ.
In TM1 we always have sin2 θ12 < 1=3. By letting sin2 θ13 vary
in its 3σ allowed range, the first relation of Eqs. (4.35) predicts
that sin2θ12 ¼ 0.316 − 0.319, which is in good agreement with
the present data. Model V is ruled out since the second relation
of Eqs. (4.35) with tan2 δ ¼ 0 leads to values of sin2 θ23 that are
excluded by the data. The quoted ranges have been derived
from the results of the global fit given by Esteban et al. (2019).
The group G ¼ A4 ⋊ CP leads to the TM2 mixing pattern
shown in Table VI, with j sinϕj ¼ 0 or j sinϕj ¼ 1 and sin α ¼
sin β ¼ 0 employed as in models I and II (Ding, King, and
Stuart, 2013; Feruglio, Hagedorn, and Ziegler, 2013; Li, Lu,
and Ding, 2016; Nishi, 2016). Explicit models were con-
structed for this case by Ding, King, and Stuart (2013) and Li,
Lu, and Ding (2016). Starting from G ¼ S4 ⋊ CP, the models
given by Ding et al. (2013) and Feruglio, Hagedorn, and
Ziegler (2014) reproduce a nearly TM2 mixing pattern, while
those given by Li and Ding (2014) come close to the TM1

scheme. Other examples of models within G ¼ S4 ⋊ CP were
given by Luhn (2013), Li and Ding (2015a), Penedo, Petcov,
and Titov (2017), and Ding, King, and Li (2019).

3. Δð3n2Þ and Δð6n2Þ
The groups A4 and S4 are particular cases of the series

Δð3n2Þ and Δð6n2Þ, respectively, realized with n ¼ 2.
General results for the entire series were given by Ding,
King, and Neder (2014), Hagedorn, Meroni, and Molinaro
(2015), Ding and King (2016), de Medeiros Varzielas et al.
(2017), and Joshipura (2018). For G ¼ Δð3n2Þ ⋊ CP broken
into Ge ¼ Z3 and Gν ¼ Z2 × CP the mixing pattern is still of
TM2 type and depends on a continuous parameter. When G ¼
Δð6n2Þ ⋊ CP is broken into Ge ¼ Z3 and Gν ¼ Z2 × CP,
more complex mixing patterns arise beyond the trimaximal
one. The particular cases G ¼ Δð48Þ ⋊ CP and G ¼ Δð96Þ ⋊
CP were also comprehensively studied by Ding and Zhou

TABLE VIII. Specific mixing pattern in four of the five independent cases arising from S4 and CP invariance, broken down to Z3 in the
charged-lepton sector and to Z2 × CP in the neutrino sector G ¼ S4 ⋊ CP (Feruglio, Hagedorn, and Ziegler, 2013) as a function of the
parameters θ ∈ ½0; π=2�.
Model Pattern j sinϕj sin α sin β sin2 θ23 sin2 θ13 sin2 θ12 j sin δj sin α21 sin α31

I TM2 1 0 0 1
2

2
3
sin2 θ 1

2þcos 2θ
1 0 0

II TM2 0 0 0 1
2
ð1�

ffiffi
3

p
sin 2θ

2þcos 2θÞ
2
3
sin2 θ 1

2þcos 2θ
0 0 0

IV TM1 1 0 0 1
2

sin2 θ
3

cos2 θ
2þcos2 θ

1 0 0

V TM1 0 0 0 1
2
ð1 ∓ 2

ffiffi
6

p
sin 2θ

5þcos 2θ Þ sin2 θ
3

cos2 θ
2þcos2 θ

0 0 0

24See Zhou (2014), Mohapatra and Nishi (2015), Joshipura and
Patel (2015), Rodejohann and Xu (2017), Zhao (2017), Nishi,
Sánchez-Vega, and Souza Silva (2018), and Sinha, Roy, and Ghosal
(2019) for more recent applications related to the topic of this section.
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(2014, 2015) and Ding and King (2014), respectively. As an
example of an interesting mixing pattern, we show in Table IX
the predictions of a case arising in G ¼ Δð384Þ ⋊ CP when
Ge ¼ Z3 and Gν ¼ Z2 × CP are chosen. In addition to one
real continuous parameter θ, they depend on two discrete
parameters m and s, specifying the embedding of the Z2 and
CP transformations, respectively, within Δð384Þ. Good agree-
ment with the mixing angles is obtained if j sin δj is large and
m ¼ 4. In this case the bound j sin δj > 0.71 holds. This
mixing pattern is of the TM1 type. For s ¼ 1 and s ¼ 2 the
parameter jmeej relevant for neutrinoless double beta decay
has a nontrivial lower bound, whereas for s ¼ 4 both
Majorana phases are trivial and a cancellation cannot be
avoided for normal ordering of the neutrino masses. Apart
from the constraints on CP phases the lepton mixing angles
are strongly restricted, which further sharpens the prediction
of jmeej.

4. Other examples

A remnant CP symmetry in combination with texture
zeros was examined by Barreiros, Felipe, and Joaquim
(2019). In the case of G ¼ A5 ⋊ CP, one-parameter families
of PMNS matrices have been studied (Ballett, Pascoli, and
Turner, 2015; Di Iura, Hagedorn, and Meloni, 2015; Li and
Ding, 2015b; Di Iura, López-Ibánez, and Meloni, 2018;
López-Ibáñez et al., 2019), and they typically have trivial or
maximal Dirac CP phase and trivial Majorana phases. This
study was generalized by Turner (2015) to include lepton
mixing matrices depending on three parameters. Other
groups that have been combined with CP invariance include
T 0 (Girardi et al., 2014), Δð27Þ (Nishi, 2013), the series

Dð1Þ
9n;3n (Li, Yao, and Ding, 2016), Σð36 × 3Þ (Rong, 2017),

and PSL2ð7Þ (Rong, 2019). Variants of this setup exploiting
a generalized CP symmetry were considered by Girardi,
Petcov, and Titov (2016), Chen et al. (2018), and Ding,
King, and Li (2018); . Yao and Ding (2016) performed a
scan of all groups of an order less than 2000 while assuming
that either ðGe; GνÞ ¼ ðZm1

× � � � × Zmp
; Z2 × CPÞ or

ðGe;GνÞ ¼ ðZ2 × CP0; Z2 × Z2 × CPÞ, with physical quan-
tities depending on one continuous real parameter. The
lepton mixing matrices in good agreement with the data
fall into eight different categories up to possible row and
column permutations. These viable mixing patterns can be
reproduced starting from the discrete flavor groups Δð6n2Þ,
Dð1Þ

9n;3n, A5, and PSL2ð7Þ combined with CP symmetry.
Most of them are of the TM2 type or a deformation thereof.
Exceptions are those related to the survival symmetries

ðGe;GνÞ ¼ ðZ2 × CP0; Z2 × Z2 × CPÞ or those derivable
from A5 ⋊ CP.
If we assume that Ge ¼ Zm1

× � � � × Zmp
and Gν ¼ Z2 ×

Z2 × CP in the neutrino sector, we potentially end up with the
most predictive scenario, as shown in the first row of
Table VII. In this case, after specifying the embedding of
the residual groups Zm1

× � � � × Zmp
and Z2 × Z2 in the full

flavor group G, the PMNS matrix is fully determined, up to
permutations of rows and columns. However, as shown by
King and Neder (2014) and Chen, Yao, and Ding (2015), in
this case the only viable PMNS matrix can only be of
trimaximal TM2 type with trivial δ, α31 ¼ 0, and α21 a rational
multiple of π. Equations (4.33) with tan δ ¼ 0 and the relative
comments apply. The inverse problem of determining the most
general residual CP symmetry of the neutrino sector com-
patible with the present data was studied by Everett, Garon,
and Stuart (2015) and Everett and Stuart (2017) and, assuming
tri-bimaximal mixing, by Chen et al. (2019a, 2019b). For a
generic PMNS matrix, however, it is not guaranteed that the
residual symmetries of the neutrino and charged-lepton
sectors fit into a finite group.
The possibility of exploiting invariance under CP to predict

or constrain physical phases find a natural application in the
context of leptogenesis. This aspect was analyzed by Chen,
Ding, and King (2016), Hagedorn and Molinaro (2017), Li
and Ding (2017), Hagedorn et al. (2018), and Samanta, Sinha,
and Ghosal (2018).

5. Extension to quarks

Flavor symmetries embedding CP have been also applied
to the more general problem of simultaneously describing
quarks and lepton masses. Indeed, taking quarks into account
is unavoidable. While the latter could in principle be invariant
under the action of a standard flavor group operating on the
lepton sector, a CP symmetry must transform all fermion
fields. Its spontaneous breaking in the quark sector must also
be assured to reproduce the observed CP violation in the
Cabibbo-Kobayashi-Maskawa matrix.
Several difficulties arise when one tries to extend flavor

symmetries embedding CP to the quark sector. Most of them
are common to the general framework of discrete symmetries
and not due to the specific inclusion of CP. As we have seen,
the approach based on selective residual symmetries makes
predictions not about masses but rather only about angles. In
this context the correlation between quark masses and mixing
angles suggested by data and supported by Abelian sym-
metries is lost. Quark mass hierarchies are typically repro-
duced with the help of parameters poorly related to the mixing
and CP properties. Moreover, to simultaneously describe both
lepton and quark mixing angles, flavor groups of large order
are generally required. Indeed, the small misalignment
between up and down quarks calls for sufficiently close
residual symmetries in the two sectors, which usually occurs
if the group Gf has a large number of densely distributed
subgroups. For example, when quark and lepton electroweak
doublets are assigned to irreducible triplets of Gf, groups as
large as Δð294Þ (Li, Lu, and Ding, 2018; Lu and Ding, 2018)
or Δð384Þ (Hagedorn and König, 2018a, 2018b) are needed.
Apart from aesthetic considerations, implementing the

desired symmetry breaking pattern in a concrete model
requires a large number of flavon representations. This in

TABLE IX. Results for lepton mixing parameters from
Gf ¼ Δð384Þ, m ¼ 4, and several CP transformations XðsÞ
(Hagedorn, Meroni, and Molinaro, 2015). The continuous parameter
θ has been optimized to reproduce sin2 θ13.

s sin2 θ13 sin2 θ12 sin2 θ23 sin δ j sin αj ¼ j sin βj
s ¼ 1 0.0220 0.318 0.579 0.936 1=

ffiffiffi
2

p
0.0220 0.318 0.421 −0.936 1=

ffiffiffi
2

p
s ¼ 2 0.0216 0.319 0.645 −0.739 1
s ¼ 4 0.0220 0.318 0.5 ∓ 1 0
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turn generates a serious alignment problem, implying that
additional cyclic symmetries or selection rules have to be
invoked to get only the desired interaction terms. Explicit
examples of these constructions have been realized via a
stepwise breaking of Gf ¼ Δð384Þ combined with CP, where
charged fermion mass hierarchies are reproduced through
operators with different numbers of flavons (Hagedorn and
König, 2018a). These examples also show that a direct
embedding in GUT is problematic, since matter and flavon
representations do not fit GUT multiplets.
To reduce the order of the group while preserving predict-

ability about phases of the mixing matrices, the use of dihedral
groups in combination with CP has been suggested. This
approach takes up the old observation that dihedral groups are
suitable to accommodate quark mixing angles (Lam, 2007;
Blum, Hagedorn, and Lindner, 2008). Dihedral groups do not
possess three-dimensional irreducible representations and
quarks and lepton electroweak doublets are assigned to
singlets and doublets of the flavor group. By choosing Gf ¼
D14 and including CP, quark and lepton mixing angles and
phases can both be accommodated by adjusting two continu-
ous free parameters in each sector (Lu and Ding, 2019). It
would be desirable to show that the symmetry breaking
pattern invoked in this analysis can be effectively realized
within a concrete model.

D. Outlook

The embedding of CP in the flavor symmetry provides a
valuable complement to the setup dealing with ordinary flavor
groups and fully commuting with the proper Poincaré trans-
formations. In such more restricted framework lepton mixing
angles, Dirac and Majorana phases can all be predicted
simultaneously in terms of a single continuous real parameter
in the most realistic and predictive cases. Many explicit
models support the viability of such an approach, with similar
disadvantages affecting models dealing with ordinary flavor
groups: a complicated symmetry breaking sector, additional
auxiliary symmetries and fields to trigger the desired pattern
of symmetry breaking, and a limited prediction accuracy due
to higher-dimensional operators.

VI. NONLINEARLY REALIZED FLAVOR SYMMETRIES

A. The modular group Γ̄

Nonlinearly realized flavor symmetries have been consid-
ered in the context of N ¼ 1 supersymmetric theories by
adopting as flavor group the modular group Γ̄. The idea that
modular invariance can play a central role in describing
Yukawa couplings is an old one, and it has been naturally
realized in the context of string theory (Dixon et al., 1987;
Hamidi and Vafa, 1987; Lauer, Mas, and Nilles, 1989, 1991;
Erler, Jungnickel, and Lauer, 1992), in D-brane compactifi-
cation (Cremades, Ibanez, and Marchesano, 2003;
Blumenhagen et al., 2005; Abel and Goodsell, 2007;
Blumenhagen et al., 2007; Marchesano, 2007; Antoniadis,
Kumar, and Panda, 2009; Kobayashi, Nagamoto, and Uemura,
2017), in magnetized extra dimensions (Cremades, Ibanez,
and Marchesano, 2004; Abe et al., 2009; Kobayashi,

Nagamoto et al., 2018), and in orbifold compactification
(Ibáñez, 1986; Casas, Gomez, and Munoz, 1993; Lebedev,
2001; Kobayashi and Lebedev, 2003). Modular invariance
was also incorporated in early flavor models (Binetruy and
Dudas, 1995; Brax and Chemtob, 1995; Dudas, 1996; Dudas,
Pokorski, and Savoy, 1996; Leontaris and Tracas, 1998). A
step forward has been taken with the observation that it can be
implemented in a bottom-up perspective relying on the group
transformation properties of the building blocks of the theory
(Feruglio, 2019).
In N ¼ 1 supersymmetric theories, the field τ, called the

modulus, is a chiral supermultiplet whose scalar component is
restricted toH, the upper half of the complex plane. Under Γ̄ it
transforms as

τ → γτ ¼ aτ þ b
cτ þ d

; ð6:1Þ

with a, b, c, and d integers and ad − bc ¼ 1. The group Γ̄ is
discrete, infinite, and noncompact. It has the following
presentation in terms of the two generators S and T:

τ⟶
S

−
1

τ
; τ⟶

T
τ þ 1 ð6:2Þ

satisfying

S2 ¼ ðSTÞ3 ¼ 1: ð6:3Þ

The modular group is ubiquitous in string theory. It is the
invariance group of a lattice Λ defined in the complex plane C.
Two lattices Λ and Λ0 with basis ðe1; e2Þ and ðe01; e02Þ, such
that Imðe1=e2Þ and Imðe01=e02Þ are both positive, coincide if
and only if

�
e01
e02

�
¼

�
a b

c d

��
e1
e2

�
; ð6:4Þ

with a, b, c, and d integers and ad − bc ¼ 1. A frequently
considered compactification of two extra dimensions gives
rise to a torus, defined by the quotient C=Λ modulo rotations
and scale transformations, which allow one to chose the basis
of Λ of the form ðτ; 1Þ [ImðτÞ > 0]. It follows that two tori
defined by τ and γτ coincide; see Fig. 3. From this viewpoint Γ̄
can be thought of as a gauge symmetry. With a gauge choice it

FIG. 3. Two equivalent lattices with basis ðτ; 1Þ and (τ þ 2; 1).
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is always possible to restrict τ to a fundamental region, a
representative of which is shown in Fig. 4.

B. Modular invariant supersymmetric theories

We can define the action of Γ̄ on a set of matter chiral
multiplets ϕðIÞ by specifying a compact quotient of Γ̄. A series
of compact groups can be constructed by taking the quotient
of Γ̄ by a principal congruence subgroup Γ̄ðNÞ with elements
obeying a; d ¼ 1ðmod NÞ and b; c ¼ 0ðmod NÞ, with N a
natural number called the level. Γ̄ðNÞ are normal subgroups of
Γ̄ of finite index, so the quotients ΓN ¼ Γ̄=Γ̄ðNÞ are finite
groups admitting finite-dimensional unitary representations.
For the first few levels, they are isomorphic to permutation
groups: Γ2 ¼ S3, Γ3 ¼ A4, Γ4 ¼ S4, and Γ5 ¼ A5. We have
∂ðγτÞ=∂τ ¼ ðcτ þ dÞ−2, and under the modular group the
matter fields ϕðIÞ transform as (Ferrara, Lust, and Theisen,
1989; Ferrara et al., 1989)

ϕðIÞ → ðcτ þ dÞkIρðIÞðγÞϕðIÞ: ð6:5Þ

Equation (6.5) is completely defined by the weight kI , the
level N, and the unitary representation ρðIÞðγÞ of ΓN . We also
recall that modular forms of level N and weight k are
holomorphic functions YðτÞ of the modulus satisfying

YðγτÞ ¼ ðcτ þ dÞkYðτÞ ð6:6Þ

for any γ ∈ Γ̄ðNÞ. They form a linear space Mk(ΓðNÞ) of
finite dimension dk(ΓðNÞ) (Gunning, 1962). Under the full
modular group Γ̄ a basis YðτÞ of Mk(ΓðNÞ) transforms as
YðγτÞ ¼ ðcτ þ dÞkρðγÞYðτÞ, with ρðγÞ a unitary, possibly
reducible representation of ΓN .
Turning off gauge interactions, the action S of an N ¼ 1

global supersymmetric theory depending on the modulus τ
and a set of supermultiplets ϕ, comprising matter fields ϕðIÞ of
the same level N and possibly different weights kI , reads

S ¼
Z

d4xd2θd2θ̄Kðτ;ϕ; τ̄; ϕ̄Þ þ
Z

d4xd2θwðτ;ϕÞ

þ
Z

d4xd2θ̄ w̄ðτ̄; ϕ̄Þ; ð6:7Þ

where K and w are the Kähler potential and the superpotential,
respectively. Invariance under the transformations of
Eqs. (6.1) and (6.5) requires a modular invariant super-
potential and a Kähler potential modular invariant up to
Kähler transformations

Kðτ;ϕ; τ̄; ϕ̄Þ → Kðτ;ϕ; τ̄; ϕ̄Þ þ fðτ;ϕÞ þ f̄ðτ̄; ϕ̄Þ;
wðτ;ϕÞ → wðτ;ϕÞ: ð6:8Þ

Equation (6.8) is easily satisfied by minimal forms of the
Kähler potential, with an example

Kðτ;ϕ; τ̄; ϕ̄Þ ¼ −h logð−iτ þ iτ̄Þ þ
X
I

ð−iτ þ iτ̄ÞkI jϕðIÞj2;

ð6:9Þ

where h is a positive constant. Conversely, the requirement of
modular invariance severely restricts the superpotential
wðτ;ϕÞ. Consider the following expansion of wðτ;ϕÞ in
power series of the supermultiplets ϕðIÞ:

wðτ;ϕÞ ¼
X
n

YI1;…;InðτÞϕðI1Þ � � �ϕðInÞ: ð6:10Þ

For the nth order term to be modular invariant, the functions
YI1;…;InðτÞ should be holomorphic functions of τ transforming
as

YI1;…;InðγτÞ ¼ ðcτ þ dÞkY ðnÞρðγÞYI1;…;InðτÞ; ð6:11Þ

with the weight kYðnÞ and the unitary representation ρ such
that the following are true:

(1) The weight kYðnÞ should compensate for the overall
weight of the product ϕðI1Þ � � �ϕðInÞ so that

kYðnÞ þ kI1 þ � � � þ kIn ¼ 0: ð6:12Þ

(2) The product ρ × ρI1 × � � � × ρIn contains an invariant
singlet.

The holomorphic functions YI1;…;InðτÞ of Eq. (6.11) are
modular forms of level N and weight k ¼ kYðnÞ. This
property sharply constrains the allowed Yukawa couplings,
to the point of completely determining in some cases the
corresponding mass matrix as a function of τ up to a single
overall constant.
As an example, choose N ¼ 3 and consider three copies of

lepton doublets l and one Higgs supermultiplet Hu trans-
forming, respectively, as irreducible triplets of Γ3 ¼ A4 with
weight −1 and as a singlet of Γ3 with zero weight. Assuming
neutrino masses described entirely by the Weinberg operator,
the relevant superpotential reads

FIG. 4. Fundamental region F : a connected region of H such
that each point ofH can be mapped ontoF by a Γ̄ transformation,
but no two points in the interior of F are related under Γ̄.
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wν ¼
1

2Λ
ðliHÞYijðτÞðljHÞ; ð6:13Þ

where the holomorphic functions YijðτÞ should be modular forms of level 3, weight þ2 transforming as one of the multiplets in
the decomposition ð3 × 3ÞSYM ¼ 1þ 10 þ 100 þ 3. The spaceM2(Γð3Þ) is spanned by three linearly independent modular forms
YiðτÞ (i ¼ 1; 2; 3), transforming as a 3 under Γ3 such that

Y1ðτÞ ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0(ðτ þ 1Þ=3)
η(ðτ þ 1Þ=3) þ η0(ðτ þ 2Þ=3)

η(ðτ þ 2Þ=3) −
27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω2

η0(ðτ þ 1Þ=3)
η(ðτ þ 1Þ=3) þ ω

η0(ðτ þ 2Þ=3)
η(ðτ þ 2Þ=3)

�
;

Y3ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω

η0(ðτ þ 1Þ=3)
η(ðτ þ 1Þ=3) þ ω2

η0(ðτ þ 2Þ=3)
η(ðτ þ 2Þ=3)

�
; ð6:14Þ

where ηðτÞ is the Dedekind eta function defined in the
upper complex plane as

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞq≡ ei2πτ: ð6:15Þ

It follows that wν consists of a unique modular invariant
combination and is fully determined up to an overall
constant. In a suitable basis the neutrino mass matrix reads

mν ¼ m0

0
BB@

2Y1ðτÞ −Y3ðτÞ −Y2ðτÞ
−Y3ðτÞ 2Y2ðτÞ −Y1ðτÞ
−Y2ðτÞ −Y1ðτÞ 2Y3ðτÞ

1
CCA: ð6:16Þ

As long as supersymmetry is unbroken there are no
corrections coming from higher-dimensional holomorphic
operators. The matrix mν in Eq. (6.16) is exact and all the
terms in the expansion in powers of τ are completely
determined.
Nonvanishing modular forms transforming under ΓN

require even integer non-negative weights (Gunning, 1962).
Modular forms of vanishing weight are constant, that is, τ
independent. Modular forms for the first few levels N have
been explicitly constructed and the combinations transforming
as irreducible representations of ΓN have been identified for
the first few weights. The results for Γ2 ≈ S3 (Kobayashi,
Tanaka, and Tatsuishi, 2018), Γ3 ≈ A4 (Feruglio, 2019), Γ4 ≈
S4 (Penedo and Petcov, 2019), Γ5 ≈ A5 (Ding, King, and Liu,
2019b; Novichkov et al., 2019b), and Γ7 ≈ Σð168Þ (Ding

et al., 2020) are summarized in Table X. Modular forms of
generic integer weights were discussed by Liu and Ding
(2019), together with their application to neutrino mass
models. They have been shown to form representations of
the homogeneous finite modular groups Γ0

N , double coverings
of ΓN .

C. Modular invariance and CP

The action of CP on τ is uniquely determined up to modular
transformations (Dent, 2001a, 2001b; Baur et al., 2019a,
2019b; Novichkov et al., 2019a)

τ⟶
CP

− τ�: ð6:17Þ

Such a law corresponds to the following outer automorphism
of Γ̄:

S⟶
CP

S; T⟶
CP

T−1: ð6:18Þ

By choosing a suitable basis for the generators S and T, where
both are described by symmetric matrices in any representa-
tion of ΓN , the action of CP on matter multiplets ϕ reduces to
the canonical one

ϕ⟶
CP

XCPϕ
�; XCP ¼ 1: ð6:19Þ

In this basis the requirement of CP invariance amounts to
restricting all the Lagrangian parameters to real values. In such
a theory CP invariance can only be spontaneously broken.

TABLE X. Dimension ofMk(ΓðNÞ) and decomposition of multiplets of modular forms in representations of the finite modular group ΓN for
the first few levels and weights. Modular forms of higher weight can be obtained from polynomials of modular forms of lower weight. Partial
knowledge is available for modular forms of weight 2 for levels 8 and 16 (Kobayashi and Tamba, 2019).

dk(ΓðNÞ) k ¼ 2 k ¼ 4 k ≥ 6

Γ2 ≈ S3 k=2þ 1 2 1þ 2 � � �
Γ3 ≈ A4 kþ 1 3 1þ 10 þ 3 � � �
Γ4 ≈ S4 2kþ 1 2þ 30 1þ 2þ 3þ 30 � � �
Γ5 ≈ A5 5kþ 1 3þ 30 þ 5 1þ 3þ 30 þ 4þ 5þ 5 � � �
Γ7 ≈ Σð168Þ 14k − 2 3þ 7þ 8þ 80 1þ 3þ 6þ 60 þ 7þ 70 þ 8þ 80 þ 800 � � �
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The values of τ preserving CP lie along the imaginary τ axis or
along the border of the fundamental region shown in Fig. 4,
where −τ� ¼ τ, up to a modular transformation.

D. Modular invariance and standard flavor symmetries

It is worth mentioning that in the low-energy theory arising
from string theory compactification the flavor group generally
comprises both modular transformations and ordinary trans-
formations acting linearly on matter fields. The consistent
combination of the two types of transformations was analyzed
by Nilles, Ramos-Sánchez, and Vaudrevange (2020a, 2020b).
The ordinary linear transformations belong to a groupG, leave
the modulus τ invariant, and act on the fields ϕðIÞ through a
unitary matrix UðIÞðgÞ as follows:

τ → τ; ϕðIÞ → UðIÞðgÞϕðIÞ: ð6:20Þ

The two sets of transformations with Eqs. (6.1) and (6.5) and
Eq. (6.20) should obey the consistency condition

ρðIÞðγÞUðIÞðgÞρðIÞðγ−1Þ ¼ UðIÞðg0Þ ð6:21Þ

for some element g0 ∈ G. It follows that G is a normal
subgroup of the overall flavor group Gecl, called eclectic by
Nilles, Ramos-Sánchez, and Vaudrevange, generated by both
ordinary and modular transformations. At the same time the
modular transformations define an automorphism ofG that, in
the nontrivial cases, is of the outer type. This construction
allows for a unified description of standard, nonlinear and CP-
like transformations. Not all groups G can be embedded in
such a framework, which may open new possibilities in model
building.

E. Modular invariance and local supersymmetry

This setup can easily be extended to the case ofN ¼ 1 local
supersymmetry, where Kähler potential and superpotential are
not independent functions since the theory depends on the
combination

Gðτ;ϕ; τ̄; ϕ̄Þ ¼ Kðτ;ϕ; τ̄; ϕ̄Þ þ logwðτ;ϕÞ þ log w̄ðτ̄; ϕ̄Þ:
ð6:22Þ

The modular invariance of the theory can be realized in two
ways (Ferrara et al., 1989). EitherKðτ;ϕ; τ̄; ϕ̄Þ and wðτ;ϕÞ are
separately modular invariant or the transformation of
Kðτ;ϕ; τ̄; ϕ̄Þ under the modular group is compensated for
by that of wðτ;ϕÞ. An example of the second possibility is
given by the Kahler potential of Eq. (6.9), with the super-
potential wðτ;ϕÞ transforming as

wðτ;ϕÞ → eiαðγÞðcτ þ dÞ−hwðτ;ϕÞ. ð6:23Þ
In the expansion (6.10) the Yukawa couplings YI1;…;InðτÞ
should have weight kYðnÞ such that kYðnÞ þ kI1 þ � � � þ kIn ¼
−h and such that the representation ρðγÞ is subject to
requirement 2 in Eq. (6.12). When we have
kI1 þ � � � þ kIn ¼ −h, we get kYðnÞ ¼ 0 and the functions
YI1;…;InðτÞ are τ-independent constants. This occurs for

supermultiplets belonging to the untwisted sector in the
orbifold compactification of the heterotic string.

F. Models

Models of lepton masses and mixing angles have been
constructed for levels 2–5, following two different approaches
depending on whether the charged-lepton mass matrix
depends only on τ, as the neutrino one, or on a separate
set of flavons. In either case the VEVof τ is usually treated as
an additional parameter and scanned in order to maximize
agreement with the data. We show here an example for each
possibility. In both examples neutrino masses arise from the
type-I seesaw mechanism and, after integrating out the right-
handed neutrinos Nc, the low-energy superpotential reads

w ¼ −EcTYeHdL −
1

2Λ
ðHuLÞTðYT

ν C−1YνÞðHuLÞ: ð6:24Þ

An example of the first possibility is the model given by
Novichkov et al. (2019a, 2019c) that is realized at level 4, with
the particle content displayed in Table XI.
The matrices Ye, Yν, and C are given by

Ye¼

0
BB@

αY3 αY5 αY4

βðY1Y4−Y2Y5Þ βðY1Y3−Y2Y4Þ βðY1Y5−Y2Y3Þ
γðY1Y4þY2Y5Þ γðY1Y3þY2Y4Þ γðY1Y5þY2Y3Þ

1
CCA;

ð6:25Þ

Yν ¼ g

2
64
0
B@

0 −Y1 Y2

−Y1 Y2 0

Y2 0 −Y1

1
CAþ g0

g

0
B@

2Y3 −Y5 −Y4

−Y5 2Y4 −Y3

−Y4 −Y3 2Y5

1
CA
3
75;

C ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ð6:26Þ

where Y1;2 and Y3;4;5 are the five independent modular forms
of weight 2 and level 4. They transform as 2 and 30 under
Γ4 ≈ S4, respectively. Invariance under CP implies that g=g0 is
real. Charged-lepton masses can be correctly reproduced by
adjusting α, β, and γ. The remaining Lagrangian parameters
are an overall scale and g=g0. The VEV of τ is treated as an
additional free parameter.
An example of the second possibility is the model given by

Criado and Feruglio (2018) that is realized at level 3, with the
particle content displayed in Table XII.

TABLE XI. Chiral supermultiplets, transformation properties, and
weights of the model given by Novichkov et al. (2019a, 2019c).

ðEc
1; E

c
2; E

c
3Þ Nc L Hd Hu

SUð2ÞL × Uð1ÞY ð1;þ1Þ (1,0) ð2;−1=2Þ ð2;−1=2Þ ð2;þ1=2Þ
Γ4 ≈ S4 ð10; 1; 10Þ 30 3 1 1
kI ð0;−2;−2Þ 0 −2 0 0
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The matrices Ye, Yν and C are given by

Ye ¼

0
B@

aφ1 aφ3 aφ2

bφ2 bφ1 bφ3

cφ3 cφ2 cφ1

1
CA; Yν ¼ y0

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

C ¼

0
B@

2Y1ðτÞ −Y3ðτÞ −Y2ðτÞ
−Y3ðτÞ 2Y2ðτÞ −Y1ðτÞ
−Y2ðτÞ −Y1ðτÞ 2Y3ðτÞ

1
CA: ð6:27Þ

Beyond the parameters a, b, and c, which control charged-
lepton masses, the low-energy Lagrangian depends on a single
parameter, the overall scale y20=Λ. Additional parameters are
provided by the VEVs of τ and the flavon φ, which are
assumed to be aligned along the (1; 0;Reðφ3Þ) direction. The
results of the two models are collected in Table XIII.
In both models the mass ordering is normal. The atmos-

pheric mixing angle is close to maximal but predicted to lie in
the first octant. CP is broken spontaneously by the VEVof τ
and both Dirac and Majorana phases are predicted. In
addition, the absolute value of neutrino masses and the
combination relevant to 0νββ are predicted. The lightest
neutrino has a mass close to 0.01 eV, resulting in a relatively
large jmeej ≈ 10 meV for a normally ordered mass spectrum.
Several other models of lepton masses and mixing angles

have been built at level 2 (Kobayashi, Tanaka, and Tatsuishi,
2018; Kobayashi et al., 2019d), level 3 (Criado and Feruglio,
2018; Kobayashi, Omoto et al., 2018; Ding, King, and Liu,
2019a; Ding et al., 2019; Feruglio, 2019; Nomura and Okada,
2019; Novichkov, Petcov, and Tanimoto, 2019), level 4
(Criado, Feruglio, and King, 2019; King and Zhou, 2019;
Novichkov et al., 2019c; Penedo and Petcov, 2019; Liu, Yao,
and Ding, 2020; Novichkov, Penedo, and Petcov, 2020), and
level 5 (Criado, Feruglio, and King, 2019; Ding, King, and
Liu, 2019b; Novichkov et al., 2019b). The higher the level N,
the more solutions that are found in H, corresponding to
physically distinct sets of predictions in good agreement with

data. Most of the solutions predicting NO prefer a nearly
degenerate spectrum withm1 > 10 meV and jmeej on the high
side of the allowed range. This is shown in Fig. 5.
A common feature of all proposed models is the minimal

form of the Kähler potential [Eq. (6.9)]. While this is the
simplest choice, it is not the most general one compatible with
modular invariance. The symmetry of the Kähler potential K
of Eq. (6.9) is bigger than the modular one. Indeed, K is
invariant under transformation of SLð2;RÞ and the modulus τ
parametrizes the coset SLð2;RÞ=SOð2Þ. Such a continuous
symmetry is broken by the superpotential down to the modular
group. In a bottom-up approach there is no reason to exclude
from the Kähler potential K terms that are invariant only under
the discrete modular group. In particular, a candidate modi-
fication of the Kähler potential (6.9) is an additive contribution
depending explicitly on both the matter supermultiplets and
the modular forms YðτÞ (Feruglio, 2019). The power counting
controlling the size of these contributions is unknown, but
examples in the string theory context suggest that, in the
parameter region ImðτÞ ¼ Oð1Þ that is the one of interest in
neutrino physics, they might be of similar importance as K in
Eq. (6.9). Indeed, these types of corrections were analyzed by
Chen, Ramos-Sanchez, and Ratz (2019), who showed that the
new parameters appearing in the Kähler potential considerably
reduce the predictability of the approach. Currently, the
problem of better controlling the Kähler potential remains
unresolved.
An interesting question concerns the dynamical determi-

nation of the VEVof τ. It has been conjectured (Cvetic et al.,
1991; Kobayashi et al., 2019c) that extrema of modular
invariant scalar potentials of N ¼ 1 supergravity theories
lie on the imaginary τ axis or along the border of the
fundamental region F of Fig. 4. This is precisely the region
where CP is unbroken if the theory is CP invariant. In
concrete models a small deviation from the border of F
suffices to allow for sizable CP-violating effects. For instance
in the model given by Novichkov et al. (2019a, 2019c) the
value of τ that maximizes agreement with the data is

TABLE XII. Chiral supermultiplets, transformation properties, and weights of the model given by Criado and Feruglio
(2018).

ðEc
1; E

c
2; E

c
3Þ Nc L Hd Hu φ

SUð2ÞL × Uð1ÞY ð1;þ1Þ (1,0) ð2;−1=2Þ ð2;−1=2Þ ð2;þ1=2Þ (1,0)
Γ3 ≈ A4 ð1; 100; 10Þ 3 3 1 1 3
kI −4 −1 þ1 0 0 þ3

TABLE XIII. Results of the N ¼ 4model given by Novichkov et al. (2019a, 2019c) for τ ¼ 0.099 22þ i1.0578 and g=g0 ¼ −0.020 93 and of
the N ¼ 3 model given by Criado and Feruglio (2018), for τ ¼ −0.2005þ i1.0578 and φ ¼ ð1; 0; 0.117Þ.
N r≡ jΔm2

sol=Δm2
atmj sin2 θ12 sin2 θ13 sin2 θ23 δ=π

4 0.0298 0.305 0.0214 0.486 1.641
3 0.0299 0.306 0.0211 0.459 1.438

N α21=π α31=π m1 ðmeVÞ m2 ðmeVÞ m3 ðmeVÞ jmeej ðmeVÞ
4 0.346 1.254 12.1 14.8 51.4 12.0
3 1.704 1.201 10.9 13.9 51.1 10.4
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0.099 22þ i1.0578. An attempt to dynamically determine the
VEVof τ was given by Kobayashi et al. (2019a), who worked
in the context of supergravity. At the minima of the scalar
potential the energy density is negative, and some ad hoc
mechanism should be invoked to reproduce the correct
cosmological constant. This is confirmed by the analysis
given by Gonzalo, Ibáñez, and Uranga (2019), who found no
minima with positive energy density. Corrections from super-
symmetry breaking have been shown to be negligible (Criado
and Feruglio, 2018) provided that there is a sufficient gap
between the sparticle masses and the messenger scale. The
modulus-electron interactions can be directly tested in neu-
trino oscillations provided that the modulus is extremely light
(Ding and Feruglio, 2020). In such a case scalar nonstandard
neutrino interactions can affect lepton mass matrices and
produce deviations in oscillation patterns in media with a
sufficiently large electron number density.

G. Extension to quarks

The possibility of extending modular invariance to the
quark sector was investigated by Kobayashi et al. (2019d),
Okada and Tanimoto (2019a, 2019b, 2020) and, in a GUT
context, by de Anda, King, and Perdomo (2018) and
Kobayashi et al. (2019b). Description of the quark sector
alone seems to require a large number of parameters, often
larger than the number of observables. Having many param-
eters at our disposal, it is not surprising that a unified
description of leptons and quarks, adopting the same value
of τ to simultaneously describe the two sectors, can be
achieved. One of the major obstacle toward the realization
of a more economical model is the fact that each charged
fermion mass requires an independent parameter. In its present
realization, modular invariance seems unable to provide
predictions concerning the charged fermion masses, which
should be described by an ad hoc set of parameters. To
improve this aspect, two suggestions have recently been put
forward. If quark and charged-lepton masses cannot be
precisely predicted, at least their order of magnitude can be
captured by letting the modular weights play the role of
Froggatt-Nielsen charges (Criado, Feruglio, and King, 2019;

King and King, 2020). Assigning different weights to electro-
weak singlet fermions, we can achieve a natural relative
suppression of charged fermion masses that is similar to what
happens in ordinary Abelian symmetries. As a consequence,
dimensionless free parameters are not reduced in number, but
their values have the same order of magnitude. A second
observation is that modular invariance can naturally enforce
texture zeros, which are known to increase the predictive
power of flavor models. Along these lines, Lu, Liu, and Ding
(2019) built several models at level 3. They made use of odd
weight modular forms and assigned quarks to both singlet and
doublet representations of Γ0

3 ≈ T 0, the double covering of Γ3.
In a specific model all 22 fermion mass and mixing observ-
ables are reproduced using 17 independent parameters and the
best fit value of τ is close to −1=2þ i

ffiffiffi
3

p
=2, a fixed point

under the action of ST.
For moderately large values of ImðτÞ, modular forms have a

nearly exponential dependence on τ, which at first sight seems
ideal for describing the hierarchical mass spectrum that we
observe in quarks and charged leptons. This suggests that we
might not have fully exploited all the possibilities offered by
this approach.

H. Outlook

Modular invariance is an interesting candidate for a realistic
flavor symmetry. Compared to the traditional linear realization
of discrete symmetries, it allows one to predict not only
mixing angles and phases but also neutrino masses. It requires
fewer flavons: in minimal realizations no flavon beyond τ is
needed. In the most favorable cases, as long as supersymmetry
is exact, the superpotential is completely determined by
symmetry requirements, to any order in the τ power expan-
sion, up to an overall constant. In the exact supersymmetry
limit the superpotential does not receive any perturbative or
nonperturbative corrections, a unique feature compared to the
models based on linearly realized symmetries. A lesson that
we can learn from the proposed models is that a low level N
and modular forms of low weights minimize the number of
free parameters. Thus far the approach has allowed no
prediction to be made for the charged-lepton masses. The
charged-lepton sector might require a substantially different
description, perhaps in terms of additional moduli (Ferrara,
Lust, and Theisen, 1989; de Medeiros Varzielas, King, and
Zhou, 2020) or some conventional flavon. The models
proposed thus far have relied on a minimal form of the
Kähler potential, which, however, is not justified in a bottom-
up approach. Modular invariance allows for additional terms
in the Kähler potential, and their impact in the parameter
region of interest to neutrinos has been shown to be important.

VII. WHAT HAVE WE LEARNED?

The discovery of neutrino oscillations has led to a major
advance in our knowledge about the flavor sector. On the one
hand, there is still considerable room for improvement in the
data. The uncertainty on the absolute neutrino masses is large
since only mass-squared differences have been measured. CP-
odd phases (in particular, the Majorana ones, if present) will
not really be known with good precision for a long time. On

FIG. 5. Regions allowed in the ðmlightest; jmeejÞ plane for normal
ordering (red) and inverted ordering (green), and predictions of
modular invariant models at levels 3–5.
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the other hand, experimental outcomes in recent years have
brought neutrino physics into a precision era, with several
combinations of mass and mixing parameters known with a
precision approaching the percent level. Tracing those param-
eters back to some fundamental organizing principle is part of
an ambitious program, the solution of the flavor puzzle. In this
wider context, we cannot avoid considering both leptons and
quarks, probably within some kind of unified framework
emerging when physics is probed at a high-energy scale.
Actually, the need of reconciling the differing features of the
quark and lepton sectors might provide important clues to
correctly address and solve the puzzle. Quark intergenera-
tional hierarchy is much more pronounced, especially in the
up sector. Mixing angles are small, with the third generation
feebly coupled to the first two. Conversely, neutrino masses
are of the same order of magnitude, with the possible
exception of the lightest state, and still compatible with being
massless. The lepton mixing pattern is completely different
from the quark one, with the smallest mixing angle being
similar in size to the Cabibbo angle. Nevertheless, the
description of the lepton sector has borrowed many ideas
and techniques originally developed in the context of the
quark sector.
An appealing approach that has pervaded the entire field for

decades is the one based on flavor symmetries, which is
supported by the success that symmetry considerations have
achieved in the past century in the description of particle
interactions. Flavor symmetries of the leptonic sector have
been realized in a vast number of ways, as shown by the
extensive literature of the field. Perhaps one of the most
striking things that captures one’s attention is the fact that,
despite all past efforts, a baseline model interpreting neutrino
masses and mixings in the context of a flavor symmetry is still
missing. Many early models have been discarded by gathering
increasingly precise data, but the range of remaining pos-
sibilities is still large, even taking into account the constraints
from the quark sector. This is closely related to the fact that, in
any realistic model of lepton masses relying on flavor
symmetries and retaining some degree of predictability, the
underlying symmetry is cleverly hidden and breaking effects
are a decisive factor in constraining the relevant observables.
Actually, one of the few firm points is the fact that there

cannot be exact flavor symmetries for either quarks or leptons
alone. The observed masses and mixing angles break any
initial flavor symmetry, except possibly for the total baryon
and lepton numbers. Once it is ruled out that exact flavor
symmetries can be allowed by the data, we can wonder
whether they can provide at least some reasonable first order
approximation to the observed lepton mass and mixing
pattern. It turns out that under mild assumptions symmetries
compatible with this requirement are not powerful. In the
normal mass ordering case, the neutrino mass matrix is
completely unconstrained and any neutrino masses and
mixings are possible. The flavor symmetry is useless in the
neutrino sector, where it leads to anarchy. Therefore, if this
hint at normal hierarchy were to be confirmed, we would
conclude that symmetry breaking effects would play a leading
role in a realistic nontrivial model of lepton masses.
Indeed, the common denominator of most predictive

models is the breaking of the flavor symmetry induced by

a set of spurions. The prototype of these models makes use of
a spontaneously broken Abelian continuous group. While
Abelian symmetries have played a pivotal role in the develop-
ment of the field, they can lead to predictions matching the
present experimental accuracy only in the presence of texture
zeros, as each entry of the mass matrices is predicted order of
magnitude–wise, with intrinsic uncertainties of order 1. Any
successful model of neutrino masses and mixings based on
flavor symmetries should rely on a sizable departure of the
predictions from the symmetric limit, most often of a non-
Abelian group.
If they are so well hidden, flavor symmetries can be difficult

to identify from the data. Moreover, in model building sizable
breaking effects analyzed to the desired level of accuracy
typically involve a non-negligible set of parameters, which
weakens the aimed-for predictive power of the construction.
In the absence of a symmetric limit reasonably close to
observation, the entire symmetry approach seems to be
undermined. In that case, why do we not abandon it? We
believe there are several examples to counter this negative
conclusion. Perhaps the most impressive one is provided by
the modular symmetry that, being nonlinearly realized, does
not allow any limit where the full modular group remains
unbroken. The geometrical interpretation of this feature is
particularly transparent. The modular transformations can be
seen as gauge transformations describing all possible equiv-
alent parametrizations of the same torus in terms of a modular
parameter. For the modular group to be unbroken, we would
need a torus that does not admit distinct equivalent para-
metrizations, which is impossible by construction. Thus, in
modular invariant flavor models there is no notion of a
symmetric limit, and this does not prevent predictability
and precision, at least in principle. In the most favorable
cases, the neutrino mass matrix is completely determined by
symmetry requirements as a function of the modular param-
eter up to an overall constant. In the exact supersymmetry
limit, the superpotential does not receive any perturbative or
nonperturbative corrections, a unique feature relative to the
models based on linearly realized symmetries.
The requirement of being far from the symmetric limit does

not forbid that, separately, the neutrino and the charged-lepton
sectors can be approximately invariant under independent
symmetries, arising as subgroups of the full symmetry group.
This occurs when spurions with different breaking properties
are accidentally sequestered. Since the most general symmetry
leaving the neutrino mass matrix invariant and its eigenvalues
unconstrained is the Klein symmetry, the more economical
realizations of such sequestering adopts discrete flavor groups.
Owing to unavoidable corrections, exact sequestering can
hardly occur and should rather be viewed as an ideal limit
useful for identifying approximate mixing patterns. Even
considering the smallest discrete groups allowing three-
dimensional irreducible representations, semirealistic mixing
patterns such as the tri-bimaximal one can easily be obtained.
Tri-bimaximal mixing is ruled out by the data and, to identify
realistic mixing patterns in the framework of exact sequester-
ing, we should move to larger discrete groups. Otherwise,
working with small discrete groups, we can relax sequestering
by allowing sizable corrections or by reducing the residual
symmetries.
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Aweak point of this approach is that sequestering requires a
specific vacuum alignment that in turn is often realized at the
price of a complicated scalar sector and additional ad hoc
symmetries. Additional ingredients are needed to constrain
masses and Majorana phases. The phases can be dealt with by
exploiting flavor symmetries incorporating CP. The hierar-
chical nature of charged-lepton masses can be accounted for
with traditional suppression mechanisms, but order-of-mag-
nitude uncertainties cannot be evaded. Modular invariant
models have limitations too. The models proposed to date
rely on a minimal form of the Kähler potential. Modular
invariance alone allows for more general Kähler potentials,
which introduces more parameters reducing the predictability
of the approach. Such freedom and the related impact on
predictability are common to all supersymmetric models
independently from the specific flavor group, but they are
particularly relevant in the modular case, where the super-
potential can be almost uniquely determined and where
realistic values of the modular parameter are nonperturbative.
Even considering these limitations, flavor symmetries

remain one of the few tools we have to address the flavor
puzzle with the desired level of predictability and precision. In
spite of the large number of relevant contributions to the field
that we have tried to highlight in this review, we believe there
are still many directions to examine. We do not know whether
this approach will eventually succeed, but we are certainly
encouraged by the present results to proceed and further
explore new territory.
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