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The current understanding of the role of topology in non-Hermitian (NH) systems and its far-reaching
physical consequences observable in a range of dissipative settings are reviewed. In particular, how
the paramount and genuinely NH concept of exceptional degeneracies, at which both eigenvalues and
eigenvectors coalesce, leads to phenomena drastically distinct from the familiar Hermitian realm is
discussed. An immediate consequence is the ubiquitous occurrence of nodal NH topological phases
with concomitant open Fermi-Seifert surfaces, where conventional band-touching points are replaced
by the aforementioned exceptional degeneracies. Furthermore, new notions of gapped phases
including topological phases in single-band systems are detailed, and the manner in which a given
physical context may affect the symmetry-based topological classification is clarified. A unique
property of NH systems with relevance beyond the field of topological phases consists of the
anomalous relation between bulk and boundary physics, stemming from the striking sensitivity of NH
matrices to boundary conditions. Unifying several complementary insights recently reported in this
context, a picture of intriguing phenomena such as the NH bulk-boundary correspondence and the
NH skin effect is put together. Finally, applications of NH topology in both classical systems
including optical setups with gain and loss, electric circuits, and mechanical systems and genuine
quantum systems such as electronic transport settings at material junctions and dissipative cold-atom
setups are reviewed.
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I. INTRODUCTION

One of the basic axioms of quantum mechanics requires
observables, such as the Hamiltonian of a closed system, to be
self-adjoint operators, which are typically represented by
Hermitian matrices. Real physical systems, however, are at
least to some extent coupled to their environment, where the
presence of dissipative processes renders their description
more complex: In general, the familiar Schrödinger equa-
tion with a Hermitian Hamiltonian there is replaced by a
Liouvillian superoperator governing the time evolution of the
density matrix (Breuer and Petruccione, 2002). In certain
regimes, such open systems in contact with an environment
can be accurately described by approaches such as Lindblad
quantum master equations (Lindblad, 1976), Feynman-
Vernon theory (Feynman and Vernon, 1963), and the
Keldysh formalism (Keldysh, 1964). While immensely
powerful, the technical complexity of these methods severely
limits the range of systems that can be efficiently studied.
Effective non-Hermitian (NH) Hamiltonians provide a con-
ceptually simpler and intuitive alternative to fully microscopic
approaches and have already led to profound insights with
applications. The spectrum of physical platforms ranges from
classical systems, including optical settings, electrical circuits,
and mechanical systems, which may be mapped to an effective
NH Schrödinger equation, all the way to quantum materials
(Datta, 2005; Bender, 2007; Rotter, 2009; El-Ganainy et al.,
2018; Miri and Alù, 2019; Ozawa et al., 2019).
In a wider historical context, effective NH concepts have

been ubiquitous for many decades (Majorana, 1931a;
Pancharatnam, 1955; Kato, 1966; Hatano and Nelson,
1996; Brouwer, Silvestrov, and Beenakker, 1997; Efetov,
1997a, 1997b; Hatano and Nelson, 1997; Berry and
O’Dell, 1998; Silvestrov, 1998, 1999; Berry, 2004), for
example, for describing resonances and broadening in
scattering problems in atomic and particle physics, as well
as in nuclear reactions (Majorana, 1931a, 1931b; Breit and
Wigner, 1936; Feshbach, Porter, and Weisskopf, 1954;
Feshbach, 1958; Fano, 1961), all the way to applications in
biological systems (Nelson and Shnerb, 1998; Lubensky and
Nelson, 2000). Following the seminal insight that NH
Hamiltonians preserving the combination of parity and
time-reversal (PT) symmetry stably feature real spectra
(Bender and Boettcher, 1998; Bender, 2007), relinquishing
the assumption of Hermiticity has even been considered a
fundamental amendment to quantum physics. By now, PT-
symmetric Hamiltonians are well established as an effective
description of dissipative systems with balanced gain and loss
(El-Ganainy et al., 2018).
In parallel to these developments, the advent of topological

phases such as topological insulators and semimetals
has revolutionized the classification of matter and led to

groundbreaking discoveries of topologically robust physical
phenomena (Hasan and Kane, 2010; Qi and Zhang, 2011;
Chiu et al., 2016; Armitage, Mele, and Vishwanath, 2018).
With motivation provided by experiments reporting novel
topological states in dissipative settings (Poli et al., 2015;
Zeuner et al., 2015; Chen et al., 2017; Hodaei et al., 2017;
Weimann et al., 2017; Bandres et al., 2018; Zhou et al., 2018;
Cerjan et al., 2019; Helbig et al., 2020), extending the notion
of topological phases to NH systems has become a broad
frontier of current research. In this context a plethora of
uniquely non-Hermitian aspects of topological systems have
been revealed (Gong et al., 2018; Kunst et al., 2018; Yao and
Wang, 2018; Kawabata, Shiozaki et al., 2019). Salient
examples in the focus of our review include an anomalous
bulk-boundary correspondence accompanied by the non-
Hermitian skin effect (Lee, 2016; Kunst et al., 2018;
Martinez Alvarez, Barrios Vargas, and Foa Torres, 2018;
Xiong, 2018; Yao andWang, 2018), the ubiquitous occurrence
of exceptional nodal phases (Szameit et al., 2011; Kozii and
Fu, 2017; Zhou et al., 2018; Budich et al., 2019; Okugawa
and Yokoyama, 2019; Rui, Hirschmann, and Schnyder, 2019;
Yoshida et al., 2019) with open Fermi-Seifert surfaces
(Carlström and Bergholtz, 2018; Lee, Li et al., 2018;
Carlström et al., 2019), and a new system of generic
symmetries (Bernard and LeClair, 2002) forming the basis
for the topological classification of both gapless (Budich
et al., 2019; Kawabata, Bessho, and Sato, 2019) and gapped
(Esaki et al., 2011; Leykam et al., 2017; Lieu, 2018b; Shen,
Zhen, and Fu, 2018; Kawabata, Shiozaki et al., 2019; Zhou
and Lee, 2019) NH topological phases. In this review, we
provide a comprehensive overview of these developments
with an emphasis on their relation to exceptional degeneracies
at which both eigenvalues and eigenvectors coalesce, a para-
mount spectral feature unique to NH systems.
Exceptional degeneracies in NH two-level systems.—As

preparation for the NH Hamiltonian formalism to be detailed,
we discuss a minimal two-level example that may serve as an
intuitive basis for understanding many of the key concepts
unique to NH matrices, in particular, the aforementioned
exceptional degeneracies. Specifically, we consider the effec-
tive Hamiltonian

H ¼
�
0 α

1 0

�
; α ∈ C; ð1Þ

whose complex energy eigenvalues

E� ¼ � ffiffiffi
α

p ð2Þ

generate a generically nonunitary time evolution. Another key
observation is that the eigenspectra of NH systems are not
analytic in the system parameters due to the divergence of
j∂αEðαÞj → ∞ as α → 0, which has been proposed as a
mechanism for new sensing devices (Chen et al., 2017;
Hodaei et al., 2017). In contrast to the Hermitian case, the
right eigenvectors defined by HψR;� ¼ E�ψR;� and left
eigenvectors satisfying ψL;�H ¼ ψL;�E� are generically
different. Here explicitly
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ψR;� ¼
�� ffiffiffi

α
p

1

�
; ψL;� ¼ ð 1 � ffiffiffi

α
p Þ. ð3Þ

Hence, in clear contrast to Hermitian Hamiltonians,
ψR;� ≠ ψ†

L;�, while ψR=L;þ and ψR=L;− are not orthogonal
for α ≠ 1. At the exceptional point (EP), α ¼ 0, H assumes a
Jordan block form, and, in addition to the twofold degeneracy
of the eigenvalue at E ¼ 0, the eigenvectors coalesce such that
only a single right and a single left eigenvector remain (Heiss,
2012); see Eq. (3). On a more technical note, at the EP the
matrix H becomes defective, meaning that the geometric
multiplicity (number of linearly independent eigenvectors) is
smaller than the algebraic multiplicity (degree of degeneracy
in the characteristic polynomial) for the eigenvalue E ¼ 0.
To better understand the consequences of this scenario, we

consider tracing a loop in the complex plane with the
parameter α so as to enclose the EP at α ¼ 0. With α ¼
jαjei argðαÞ we have E ¼ �jαj1=2ei argðαÞ=2, with −π<argðαÞ≤π
on the principal domain. Note that away from the EP there is
always a finite complex-energy gap ΔE ¼ 2jαj1=2ei argðαÞ=2,
and one can thus unambiguously track the energies and the
corresponding eigenstates. However, following an eigenstate
and its corresponding energy while encircling the exceptional
point through argðαÞ → argðαÞ þ 2π one readily finds that

ψR=L;� → ψR=L;∓; E� → E∓: ð4Þ

This swapping of eigenvalues, as a manifestation of the
complex energy living on a two-sheeted Riemann surface
known from the behavior of the complex square-root function
around the origin, is directly associated with the presence of
second-order exceptional points; cf. Eq. (2). A striking
implication is that while encircling the EP at α ¼ 0, the real
part of the energy crosses zero exactly once, namely, when it
passes the branch cut on the negative real line, i.e., at
argðαÞ ¼ π. In Sec. II, precisely this property is shown to
lead to the occurrence of novel NH Fermi arcs, and higher-
dimensional generalizations thereof, as a unique and ubiqui-
tous feature of NH band structures.
The remainder of this review article is organized as follows.

In Sec. II, we discuss in detail the topological band theory of
non-Hermitian systems including both nodal phases, which
are found to be much more abundant than in the Hermitian
realm, and various notions of gapped systems generalizing the
concept of insulators. In Sec. III, we discuss how the bulk-
boundary correspondence, i.e., the direct relation between
bulk topological invariants and the occurrence of protected
surface states, is qualitatively modified in NH systems. This
phenomenon is shown to be closely related to the NH skin
effect, i.e., the accumulation of a macroscopic number of
eigenstates at the boundary of systems with open boundary
conditions. In both Secs. II and III, we clarify the direct
relation of the uniquely NH phenomenology to the presence or
proximity of EPs. In Sec. IV, we then give an overview of both
classical and quantum systems in which the fundamental
aspects of NH topology have been predicted to occur or have
even already been experimentally demonstrated. A concluding
discussion is presented in Sec. V, providing an outlook toward

a conclusive understanding of the role of topology in NH
systems.
Throughout this review we aim for a self-contained

presentation; however, a basic knowledge of Hermitian
topological band structures is helpful, for which we refer
the interested reader to reviews given by Hasan and Kane
(2010), Qi and Zhang (2011), Chiu et al. (2016), and
Armitage, Mele, and Vishwanath (2018).

II. NON-HERMITIAN TOPOLOGICAL BAND THEORY

In this section, we systematically review the topological
properties of Bloch bands in NH systems. The recent pursuit
of topologically classifying NH band structures has led to the
experimental discovery and theoretical explanation of various
topologically stable phenomena that have no direct counter-
part in the Hermitian realm, including a novel system of
gapped and gapless (symmetry-protected) NH topological
phases discussed in this section.

A. Basic concepts and minimal examples

To get an intuitive feeling for the topological properties of
NH Bloch bands, we start by discussing some elementary
examples.

1. Topological one-band models

Hatano-Nelson model.—In sharp contrast to Hermitian
systems, even a band structure consisting only of a single
band may be topologically nontrivial in the NH context. A
paradigmatic example along these lines is provided by the
Hatano-Nelson model, which was initially proposed to study
localization transitions in superconductors (Hatano and
Nelson, 1996),

H ¼
X
n

ðJLc†ncnþ1 þ JRc
†
nþ1cnÞ; JL; JR ∈ R; ð5Þ

where c†n (cn) creates (annihilates) a state on site n, and with
jJLj ≠ jJRj in general; see Fig. 1(a). The complex-energy
spectrum reads as Ek ¼ ðJL þ JRÞ cosðkÞ þ iðJL − JRÞ sinðkÞ
and, as a function of k, winds around the origin in the
clockwise (counterclockwise) direction when jJLj − jJRj < 0
(jJLj − jJRj > 0), as shown in the inset of Fig. 1(b). These
phases are formally (homotopically) distinguished by the
integer quantized value w ¼ −1 ð1Þ of the spectral winding
number (Gong et al., 2018; Shen, Zhen, and Fu, 2018)

w ¼ 1

2πi

Z
π

−π
dk∂k lnEk: ð6Þ

A transition between the two topologically distinct regimes
then requires Ek ¼ 0 for some k (here at jJLj ¼ jJRj). We
stress the conceptual difference between the topological
invariant (6), which distinguishes inequivalent paths in the
complex energy plane, and standard Hermitian topological
invariants, which quantify some winding of the eigenstates
based on the Berry connection. On a more technical note, the
Hatano-Nelson model [Eq. (5)] represents a minimal example
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of a system with a so-called point gap around the singular
point E ¼ 0 in the spectrum (Kawabata, Shiozaki et al.,
2019); see Sec. II.C for a more detailed discussion. For
general multiband models, we note that Ek is simply replaced
by detHðkÞ in Eq. (6), where HðkÞ denotes the effective NH
Hamiltonian in reciprocal space (Bloch Hamiltonian), such
that the winding number in Eq. (6) generically has integer (Z)
values.
Non-Hermitian skin effect.—The asymmetric hopping

strength jJRj ≠ jJLj in the Hatano-Nelson model [Eq. (5)]
gives rise to another exotic feature unique to NH systems: In
the case of open boundary conditions, a macroscopic number
of eigenstates pile up at one of the ends, a phenomenon known
as the non-Hermitian skin effect (Kunst et al., 2018; Martinez
Alvarez et al., 2018; Xiong, 2018; Yao and Wang, 2018);
cf. Fig. 1(b). The end at which the weight of the eigenstates
accumulates depends on which direction of hopping is
dominant. This becomes particularly intuitive when one of
the hopping directions is entirely turned off, e.g., JL ¼ 0 in
Eq. (5). In this case the Hamiltonian with open boundary
conditions can be written as a single Jordan block such that the
energy spectrum features an exceptional point of order N,
where N is the total number of sites. The proximity to such
high-order exceptional points, the order of which scales with
system size (Martinez Alvarez, Barrios Vargas, and Foa
Torres, 2018; Kunst and Dwivedi, 2019), in generic models
with open boundary conditions are at the heart of the break-
down of the conventional bulk-boundary correspondence as
discussed in Sec. III.
Complex-energy vortices.—It is natural to consider

higher-dimensional extensions of the Hatano-Nelson
model. There we find that zeros in the spectrum lead to the
formation of topologically stable vortices in the complex
energy. For instance, consider the single-band non-Hermitian
nearest-neighbor single-band model corresponding to the
spectrum

EðkÞ ¼ sinðkxÞ þ i sinðkyÞ; ð7Þ

which has vortices (zeros) when both momenta are at 0 or π
yielding a total of four zeros in the BZ. Focusing on the zero at
k ¼ 0 it is clear that it is associated with a finite winding
number w ¼ 1=ð2πiÞ H Cdk∂k lnEk, where the closed path C
now encloses the origin but no other zeros. This winding has
the intriguing consequence that it implies the existence of
robust lines of zero real and imaginary energy, connecting the
zeros in the spectrum.
A model with a minimal number of two complex zeros can

be constructed with

EμðkÞ ¼ sinðkxÞ þ cosðkyÞ þ μþ i sinðkyÞ; ð8Þ

which displays the stability of the vortices upon varying μ:
The vortices split at a singular point when μ is increased from
zero and, after traveling in opposite directions through the BZ,
merge again at μ → 2, as shown in Figs. 1(c)–1(g).
On a more conceptual note, the considered two-

dimensional systems represent a dimensional extension to
a gapless topological phase from a point-gapped lower-
dimensional model (the Hatano-Nelson model). This phe-
nomenology bears similarities to Weyl semimetals in the
Hermitian realm in three spacial dimensions that may be seen
as families of Chern insulators in two spacial dimensions,
where the Weyl points correspond to topological quantum
phase transitions between different Chern numbers (Armitage,
Mele, and Vishwanath, 2018). To see this analogy, we can
rewrite Eq. (8) as

EμðkÞ ¼ ½sinðkxÞ þ μ� þ eiky ; ð9Þ

which, seen as a one-dimensional Hatano-Nelson type model
at fixed kx, changes its winding number [see Eq. (6)] precisely
at the position of the complex zeros (vortices). Since the

(a) (c) (d)

(f) (g)

(e)

(b)

FIG. 1. (a) Schematic depiction of the Hatano-Nelson model; see Eq. (5). (b) Sum of absolute squares of amplitudes per site of all right
eigenstates for the Hamiltonian in Eq. (5) with OBCs for 100 sites and jJLj=jJRj ¼ 2. Inset: energy in the complex plane, which winds
around the base point EB in the complex plane with winding number w ¼ 1 when jJLj > jJRj (in this case jJLj=jJRj ¼ 2). (c)–(g)
Absolute value of Eq. (8) for different values of μ, as indicated: (c) μ ¼ 0. (d) μ ¼ 0.5. (e) μ ¼ 1. (f) μ ¼ 1.5. (g) μ ¼ 2. The plotting
axes are shown in (c), and the color corresponds to the argument of Eμ with the color bar in (g). For μ increasing from zero, two vortices
(Eμ ¼ 0) split and merge again when μ → 2. The vortices are shown by red (gray) spheres. There is an additional zero-energy solution
when μ ¼ 0, which is shown with a black sphere in (c), at ðkx; kyÞ ¼ ð−π=2; 0Þ, which is gapped rather than split upon increasing μ.
Note that if we were to decrease μ from 0 to −2, it would be this (black) zero that splits into vortices, and the other zero (red) would be
gapped out.
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instantaneous 1D model corresponds to unidirectional hop-
ping in the positive y direction and sinðkxÞ þ μ is a simple
shift of all energy levels, all eigenstates coalesce and are
located at the end site in an open chain geometry. Hence, the
aforementioned NH skin effect occurs at all kx, while the
winding number also changes as a function of kx, thus
highlighting the fact that there is no direct correspondence
between these two phenomena unless further assumptions are
included, as discussed in Sec. III.A.2.

2. Two-banded NH models

The conceptually simplest framework for understanding
most of the topological properties of NH band structures,
including the occurrence of exceptional degeneracies in
momentum space as well as the role of important symmetries,
is provided by two-banded systems. We hence proceed by
considering NH model Hamiltonians, which in reciprocal
space at lattice momentum k are of the generic form

HðkÞ ¼ dðkÞ · σ þ d0ðkÞσ0; ð10Þ

where d ¼ dR þ idI with dR;dI ∈ R3, d0 ∈ C, σ the vector of
standard Pauli matrices, and σ0 the 2 × 2 identity matrix. The
complex-energy spectrum then explicitly reads as

E� ¼ d0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2R − d2I þ 2idR · dI

q
; ð11Þ

where we drop the k dependence of all quantities for brevity.
Abundance of exceptional degeneracies.—For Hermitian

systems (implying dI ¼ 0), degeneracies in the spectrum
[Eq. (11)] occur only if all three components of dR are
simultaneously tuned to zero. This is the basic reason why
topologically stable nodal phases such as Weyl semimetals
occur in three spatial dimensions in conventional band
structures. However, allowing for dI ≠ 0 in NH systems,
from Eq. (11) we see that degeneracies occur when

d2R − d2I ¼ 0; dR · dI ¼ 0 ð12Þ

are satisfied simultaneously, i.e., upon satisfying only two real
conditions (Berry, 2004). This implies that nodal points in a
NH band structure are generic and stable in two spatial
dimensions, as shown schematically in Fig. 2.
Another key difference to Hermitian systems is that any

nontrivial solutions to Eq. (12) lead to degeneracies in the
form of exceptional points, where the NH Hamiltonian
becomes defective since the two eigenstates coalesce (become
linearly dependent) upon approaching the degenerate eigen-
value. This is not the case for the trivial solution dR ¼ dI ¼ 0,
known as the diabolic point. The diabolic point concurs with
the aforementioned Hermitian degeneracy condition but has a
much lower abundance, as it requires fine-tuning of six
parameters in the NH context. These simple algebraic obser-
vations on NH matrices have profound implications on the
topological classification and physical properties of NH
systems, which is elaborated on in Sec. II.B.

B. Nodal phases

A natural question that has recently been the subject of
intense theoretical and experimental study addresses to what
extent the paramount algebraic phenomenon of EPs affects the
physical properties of NH systems. In this section, we review
recent results along these lines regarding both the topological
classification and the physical phenomenology of NH band
structures exhibiting EPs.

1. Topological non-Hermitian metals

We illustrate the stable occurrence of NH nodal points in two
spatial dimensions by perturbing a Hermitian two-dimensional
(2D) Weyl point described by the model Hamiltonian

HðkÞ ¼ kxσx þ kyσy ð13Þ

in a NH fashion in various ways. The Hermitian perturbation
ϵσz is readily seen to immediately open a gap of the order of
ϵ > 0 [see Eq. (11) and Fig. 3], demonstrating the fine-tuned
character of a 2D Weyl point in the Hermitian realm. By
contrast, if we add the corresponding anti-Hermitian pertur-
bation ibzσz, bz ∈ R from plugging dR ¼ ðkx; ky; 0Þ, dI ¼
ð0; 0; bzÞ into Eq. (12), we find a ring of exceptional
degeneracies at k2 ¼ b2z . That is, the system remains gapless;
see Fig. 3. However, when considering the combination of
these two perturbations, Eq. (12) amounts to k2 þ ϵ2 ¼ b2z ,
bzϵ ¼ 0, meaning that there is a gap as soon as both ϵ and bz

FIG. 2. (a) Solutions to d2R − d2I ¼ 0 (solid line) and dR · dI ¼ 0
(dashed line) [cf. Eq. (12)] form closed loops in a two-
dimensional parameter space. Exceptional points appear when
both equations are satisfied simultaneously, i.e., when the two
loops intersect. (b) Exceptional points are connected by (imagi-
nary) Fermi arcs: When dR · dI ¼ 0 and d2R − d2I < 0 (gray
region), Re½E� ¼ 0 [green (light gray) line], while Im½E� ¼ 0

[dark green (dark gray)] when dR · dI ¼ 0 and d2R − d2I > 0
(outside the gray region).
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are finite, thus rendering the aforementioned nodal ring
unstable. More precisely, in Sec. II.B.2, we discuss the fact
that such nodal structures of higher dimension are stable only
in the presence of certain NH symmetries.
Next we choose an anti-Hermitian term ibxσx, which at

ϵ ¼ 0 gives rise to degeneracies when k2 ¼ b2x and bxkx ¼ 0,
i.e., at the isolated points ðkx; kyÞ ¼ ð0;�bxÞ (Fig. 3). In
contrast to the ring degeneracy, these isolated EPs are stable
against ϵ > 0, and for that matter against any small NH
perturbation. More specifically, the isolated EPs will contin-
uously move in momentum space as a function of generic
perturbations and can be removed only if they meet in
momentum space. This renders NH 2D systems with isolated
nodal points in the form of EPs a topologically stable
phenomenon defining a NH Weyl phase. On a more formal
note, as mentioned in Sec. I, the complex-energy spectrum at
an isolated second-order EP behaves like a complex square-
root function around the origin. Hence, such EPs in two
dimensions form branch points in energy that can be removed
only by contracting the branch cut connecting them.
An important physical consequence of the concomitant

phase winding of the complex energy around the EPs is the
existence of contours with purely imaginary (purely real)
energy emanating from them, also called NH Fermi arcs
(imaginary NH Fermi arcs, or i-Fermi arcs), which are
equivalent to the aforementioned branch cuts; see Fig. 2(b)
(Kozii and Fu, 2017; Carlström and Bergholtz, 2018; Zhou
et al., 2018; Yang et al., 2019). While in our simple continuum
model such contours can extend to infinite momenta, the
compact nature of reciprocal space (the first Brillouin zone) in
Bloch bands describing crystalline structures strictly enforces
them to form open arcs connecting the EPs, which is some-
what reminiscent of Fermi arcs in conventional 3D semimet-
als. However, a crucial difference from their Hermitian
counterpart is that NH Fermi arcs are a bulk phenomenon
(similar in this regard to standard Fermi surfaces), while the
surface Fermi arcs in 3D Weyl semimetals connect the
projection of the Weyl points to a given surface (Armitage,
Mele, and Vishwanath, 2018). Thus, 2D NH Weyl phases

distinguished by the number of pairs of EPs are a NH
counterpart of metallic dispersions in solids, while generic
Hermitian 3D Weyl systems represent semimetallic band
structures in this solid-state context.
Knotted non-Hermitian metals.—Moving to three spatial

dimensions, the simple parameter counting in Sec. II.A.2 tells
us that EPs in three dimensions generically, i.e., without
relying on fine-tuning or symmetries, form closed nodal lines
in reciprocal space rather than occurring at isolated points
(Xu, Wang, and Duan, 2017; Cerjan et al., 2019). This allows
for a new category of topologically stable NH metallic phases
where the nodal lines themselves represent topologically
nontrivial objects such as links (Carlström and Bergholtz,
2018; Yang and Hu, 2019) or knots (Carlström et al., 2019;
Stålhammar et al., 2019). By slicing such 3D systems into
layers of 2D systems in reciprocal space, the aforementioned
argument on NH Fermi arcs may be readily generalized to the
3D case in the following sense: Exceptional nodal lines

FIG. 3. Schematic plot of the energy spectrum of a Hermitian, two-dimensional Weyl node H ¼ kxσx þ kyσy. Upon adding a mass
term ϵσz, a gap opens in the spectrum (here shown for ϵ ¼ 0.1). When instead an imaginary term ibzσz is added to the Hamiltonian, a
ring of exceptional points, i.e., an exceptional ring, appears (here shown in red for bz ¼ 0.3). The addition of an imaginary term ibxσx
leads to the appearance of exceptional points (here shown in red for bx ¼ 0.3). The orange plots represent the absolute value of the
energy �jEj, which for the Hermitian case simply corresponds to the energy E, whereas the pink and blue plots show the real and
imaginary parts of the energy Re½E� and Im½E�, respectively.

FIG. 4. Exceptional rings or knots where the energy is degen-
erate [in red (dark gray)] and Seifert surfaces where Re½E� ¼ 0 [in
green (light gray)] appearing in the spectra of short-range
hopping models resulting in (a) an exceptional ring, (b) a trefoil
knot, (c) two exceptional rings, and (d) a Hopf link. See
Carlström et al. (2019) for Hamiltonian details.

Bergholtz, Budich, and Kunst: Exceptional topology of non-Hermitian systems

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015005-6



necessarily bound open NH Fermi surfaces, which for knotted
nodal structures appear in the form of Seifert surfaces; see
Fig. 4. Not only are these phenomena mathematical possibil-
ities of academic interest, but in fact simple microscopic tight-
binding models within experimental reach have recently been
shown to exhibit a variety of linked and knotted NH nodal
structures (Carlström et al., 2019; Li, Lee, and Gong, 2019;
Stålhammar et al., 2019; Yang, Chiu et al., 2020). The
phenomenon of knotted nodal NH band structures has no
direct counterpart in Hermitian systems. There, owing to the
higher codimension of nodal points, additional symmetries are
necessary to stabilize knotted or linked nodal lines (Bi et al.,
2017), and such fine-tuned nodal structures would not entail
Fermi-Seifert surfaces.

2. Symmetry-protected nodal phases

Requiring symmetries is well known to generally refine a
topological classification by constraining the set of eligible
physical systems. Concretely, two model Hamiltonians that
would be considered equivalent in the absence of a given
symmetry may become distinct in its presence if any path
adiabatically connecting them necessarily breaks that sym-
metry. This phenomenon defines the notion of symmetry-
protected topological (SPT) phases (Chen et al., 2013; Chiu
et al., 2016).
Symmetries in Hermitian systems.—In conventional

Hermitian systems, a primary example of nodal SPT phases
is provided by Dirac semimetals. There the spin-degenerate
Dirac points may be continuously removed individually
unless protecting symmetries such as the combination of
parity and time-reversal symmetry (TRS) are postulated. This
is in contrast to Weyl semimetals, the individual Weyl points
of which are topologically stable without symmetries other
than the lattice momentum conservation defining the Bloch
band structure.
A comprehensive symmetry classification was achieved in a

seminal paper by Altland and Zirnbauer (AZ) (Altland and
Zirnbauer, 1997). The AZ classification is based on generic
symmetry constraints characterizing ensembles of mesoscopic
systems beyond standard unitary symmetries that commute
with the system Hamiltonian. Specifically, the considered
constraints are the antiunitary TRS defined by1

T�H�T−1
� ¼ H; T�T�

� ¼ �1; ð14Þ

where the asterisk denotes complex conjugation, the particle-
hole constraint (PHC)

C�H�C−1
� ¼ −H; C�C�

� ¼ �1; ð15Þ

and, resulting from the combination of TRS and PHC, the
chiral symmetry (CS)

UCHU†
C ¼ −H; UCU

†
C ¼ U†

CUC ¼ U2
C ¼ 1: ð16Þ

Considering all independent combinations of these constraints
gives rise to the ten AZ symmetry classes, on the basis of
which the periodic table of topological insulators was con-
structed (Schnyder et al., 2008; Kitaev, Lebedev, and
Feigel’man, 2009; Ryu et al., 2010). Later on, also consid-
ering conventional commuting unitary symmetries such as
crystalline symmetries resulted in the identification of a
plethora of additional (both gapped and nodal) topolo-
gical band structures (Fu, 2011; Ando and Fu, 2015; Chiu
et al., 2016).
Generic symmetries in non-Hermitian systems.—The natu-

ral question of how the AZ symmetry classification may be
generalized to NH systems was addressed by Bernard and
LeClair (BLC) (Bernard and LeClair, 2002), who derived a
43-fold symmetry classification for ensembles of NH matri-
ces. This system of symmetries was proposed for the
topological classification of bosonic Bogoliubov–de Gennes
Hamiltonians by Lieu (2018b). Here we review key elements
of the general BLC classification and its recently proposed
amendments (Kawabata, Shiozaki et al., 2019), focusing on
qualitative differences to the AZ classification in Hermitian
systems. In essence, the main complication in NH systems
relative to the Hermitian realm is that transposition (H → HT)
and complex conjugation (H → H�) are inequivalent oper-
ations, and even Hermitian conjugation (H → H†) may act
nontrivially on a given NH effective Hamiltonian H; see
Kawabata, Shiozaki et al. (2019) for a detailed discussion
along these lines. As a consequence, both TRS and PHC split
into two inequivalent NH generalizations, distinguished by
whether or not complex conjugation is replaced by trans-
position in Eqs. (14) and (15), respectively. Furthermore, the
nontrivial action of Hermitian conjugation gives rise to so-
called pseudo-Hermiticity constraints (Mostafazadeh, 2002)

Q�H†Q−1
� ¼ �H; Q�Q

†
� ¼ Q†

�Q� ¼ 1; ð17Þ

where Qþ (Q−) are ordinary commuting (chiral anticommut-
ing) symmetry constraints for Hermitian H, but gives rise to
new symmetry classes in the generic NH case. Note that
symmetries involving Hermitian conjugation leave the (quasi)
momentum k invariant, and thus lead to local constraints in
reciprocal space, which change the codimension of the EPs in
the complex spectra of Bloch Hamiltonians (as discussed
later).
Since an additional minus sign upon complex conjugation

may be generated simply by multiplication by the imaginary
unit (H → iH), TRS and PHS as defined in Eqs. (14) and (15)
may be mapped onto one another by considering iH instead of
H (Kawabata, Higashikawa et al., 2019). The identification of
these operations for classification then is, at least at a formal
level, justified by the fact that the spaces of eligible
Hamiltonians differing by a prefactor of i are isomorphic.
However, since physically a multiplication by i has quite
dramatic effects, it is fair to say that in real models these two
cases may still correspond to quite different scenarios; see also
Sec. II.D. Taking into account all aforementioned symmetry
constraints and relations, a counting of all independent
symmetry classes leads to a grand total of 38 (Kawabata,

1We state the symmetry constraints in Eqs. (14)–(16) for a free
Hermitian Hamiltonian in first-quantized form, on which the action
of transposition and complex conjugation are equivalent.
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Shiozaki et al., 2019), rather than the 43 symmetry classes
originally proposed by BLC.
NH symmetries and abundance of EPs.—Given this NH

symmetry classification, we now review and illustrate the
effect of NH symmetries on the occurrence and stability of
exceptional nodal structures in NH band structures (Budich
et al., 2019). As discussed in Sec. II.A.2, in the absence of
symmetries EPs have codimension 2 [see Eq. (12)] and thus
generically appear at isolated points in 2D NH band structures
and as closed lines in 3D NH band structures.
Some basic intuition about how NH symmetries change this

behavior can be gained again by considering two-banded
models as introduced in Sec. II.A.2 preserving the symmetry
Qþ. For concreteness, we make the explicit choice Qþ ¼ σx.
Then the symmetry (17) in Eq. (10) implies the constraint
dR ¼ ðdxR; 0; 0Þ, dI ¼ ð0; dyI ; dzIÞ, which trivializes one of the
conditions, namely, dR · dI ¼ 0 [see Eq. (12)], for obtaining
EPs. Thus, the codimension of exceptional degeneracies is
reduced from 2 to 1. As an immediate consequence, EPs at
isolated points appear in one dimension, and closed lines of
EPs occur in two dimensions; see Fig. 3 for the appearance of
an exceptional ring. This dimensional shift promotes the
aforementioned bulk Fermi arcs to open Fermi volumes, as
the surfaces bounded by the EPs now have the same spatial
dimension as the system itself.
This phenomenology is not limited to the minimal two-

band setting at hand but has been shown to generalize to
generic NH band structures in numerous BLC classes that
contain reality constraints on the complex spectrum (Budich
et al., 2019). A K-theory-based classification of gapless nodal
NH phases was recently reported on by Kawabata, Bessho,
and Sato (2019), and we thus arrive at periodic tables
encompassing all 38 symmetry classes, as proposed by
Kawabata, Shiozaki et al. (2019). Instructive examples start-
ing from four-band Dirac models were worked out explicitly
by Rui, Zhao, and Schnyder (2019), and symmetry-protected
rings of EPs are know to naturally emerge in honeycomb-
based systems (Szameit et al., 2011; Yoshida et al., 2019).

3. Higher-order exceptional points

We now discuss the existence of higher-order EPs, which
we encountered in our discussion of the Hatano-Nelson
model; see Sec. II.A.1. In multiband systems, an EP of the
order of n appears when the Hamiltonian matrix features an
n-dimensional Jordan block J as in the following:

J ¼

0
BBBBBB@

E 1 0 0 0

0 E 1 0 0

0 0 E � � � 0

0 0 ..
. . .

.
1

0 0 0 0 E

1
CCCCCCA
; ð18Þ

with E the eigenvalue of the EP. As the Hamiltonian
matrix may feature multiple such Jordan blocks of varying
dimensions, EPs of different orders can coexist in the band
spectrum. To find an nth-order EP one needs to tune 2n − 2
parameters (Höller, Read, and Harris, 2020), such that the
appearance of EPs of higher order requires an increasing
amount of parameter fine-tuning. Thus, largely unexplored
topological nodal phases featuring EPs of the order of n
are readily predicted to generically occur in d ¼ 2n − 2
dimensions.
Perturbing around an EP of the order of n with ω generally

leads to the Puiseux series E ≈ E0 þ ω1=nE1 þ ω2=nE2þ
Oðω3=nÞ, which means that an nth-order EP scales with the
nth root. Demange and Graefe (2012) showed, however, that
not all higher-order EPs scale in this fashion. For example, a
third-order EP may feature square-root behavior (Demange
and Graefe, 2012). In Sec. III we discuss that even though EPs
with high order are in principle rare in the space of all models,
they readily appear in the open-boundary-condition spectrum
of models that break conventional bulk-boundary correspon-
dence due to their close relation with the NH skin effect.
A simple example of this can be observed for the Hatano-
Nelson model with unidirectional hopping; cf. Eq. (5), which
at JL ¼ 0 or JR ¼ 0 takes the form of Eq. (18) for open
boundary conditions.

C. Gapped phases

We now turn to the topological classification of gapped NH
systems, again focusing on crucial differences to the conven-
tional Hermitian realm, where the periodic table of topological
insulators and superconductors based on the AZ symmetry
classification by now has become a widely known amendment
to the theory of Bloch bands.

1. Point gaps versus line gaps

The first crucial observation when moving to NH band
structures with complex-energy spectra is that there is no

FIG. 5. Schematic depiction of (a) gaps in Hermitian models, (b) point gaps and (c) line gaps in NH models, with the bulk bands shown
in red (gray).
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canonical way of defining a spectral gap. To overcome this
issue, Kawabata, Shiozaki et al. (2019) recently proposed to
classify complex-energy gaps into two categories: point and
line gaps. A NH model is said to have a point gap when the
complex-energy bands do not cross a base point EB, and
where crossing this base point defines a gap closing transition;
see Fig. 5. A line gap, on the other hand, is defined by a line
in the complex-energy plane, which has no intersections with
the energy bands; see Fig. 5. Note that models with a line gap
also always have a point gap. Line gaps in complex spectra
carry close similarities to energy gaps in Hermitian models
(Kawabata, Shiozaki et al., 2019), as a spectrum of a
Hermitian model is said to be gapped when there are no
energy bands that cross the Fermi energy EF. Indeed, in both
the Hermitian and NH cases, the individual bands in a
spectrum with a line gap can be contracted to single points.
Point gaps that do not generalize to line gaps do not have a
direct Hermitian counterpart and are thus genuinely non-
Hermitian.
Recently it was shown that certain d-dimensional NH

models with a point gap can be naturally interpreted as the
“surface theory” of (dþ 1)-dimensional, Hermitian models
(Gong et al., 2018; Foa Torres, 2019; Lee et al., 2019; Terrier
and Kunst, 2020), where these models are formally related via
a doubling procedure and dimensional ascension or reduction
(Lee et al., 2019). Following Lee et al. (2019), this relation
may be intuitively understood at the level of the Hatano-
Nelson model [see Eq. (5)]: In the long-time limit, there is
only one chiral mode in the system. Indeed, at ReðEkÞ ¼ 0,
i.e., k ¼ �π=2, it is possible to find two modes with oppo-
site chirality: one mode with group velocity vπ=2 ¼
Reð∂kEkÞjk¼π=2 ¼ −ðJL þ JRÞ, and another mode with
v−π=2 ¼ JL þ JR. The lifetime of these modes is set by
ImðEkÞ, which is found to be positive (negative) for the mode
with group velocity vπ=2 (v−π=2). In the long-time limit, only
the mode with ImðEkÞ > 0 survives, such that we are left with
a single chiral mode. In this sense, this one-dimensional non-
Hermitian model realizes the anomalous edge behavior of the
two-dimensional quantum Hall effect, and can thus be
interpreted as the “edge theory” of the latter (Lee et al., 2019).

2. Symmetry-protected point-gapped phases

The base energy EB with respect to which a point gap is
defined may without loss of generality be chosen as EB ¼ 0,
which at most amounts to adding a constant complex-energy
shift to a given Hamiltonian. Then the set of all admissible NH
Bloch Hamiltonians is simply given by the general linear
group formed of all regular complex matrices GLðn;CÞ,
where n is the number of bands. Without additional sym-
metries, the set of inequivalent strong topological NH phases
in d spatial dimensions for n > d=2 is then given by

πd½GLðn;CÞ� ¼
�
Z; d odd;

0; d even;
ð19Þ

i.e., by the dth homotopy group of GLðn;CÞ (Schnyder et al.,
2008; Budich and Trauzettel, 2013). Non-symmetry-protected
topological NH band structures thus occur in odd spatial
dimensions (Gong et al., 2018), in stark contrast to Hermitian

systems, where the mth Chern number in d ¼ 2m character-
izes topological band structures that do not rely on additional
symmetries (Ryu et al., 2010). For the simplest conceivable
case d ¼ n ¼ 1, the explicit invariant characterizing a given
model Hamiltonian is given by the spectral winding number
defined in Eq. (6). This can be generalized to an arbitrary
n > 1 by simply replacing Ek → detHðkÞ, and to odd d > 1

as a standard higher-dimensional analog of the winding
number known from chiral symmetric systems in the
Hermitian realm; see Eq. (21) (Ryu et al., 2010). This
correspondence is not a coincidence, and it was shown by
Gong et al. (2018) that any NH Hamiltonian H may be
augmented by a CS-preserving Hermitian Hamiltonian

H̃ ¼
�

0 H

H† 0

�
ð20Þ

acting on a doubled Hilbert space, such that the standard
Hermitian chiral invariant associated with H̃ concurs with the
NH spectral winding invariant

w2nþ1 ¼
ð−1Þnn!
ð2nþ 1Þ!

�
i
2π

�
nþ1

ϵα1α2���

×
Z
BZ

tr½H−1ð∂kα1
HÞH−1ð∂kα2

HÞ � � ��d2nþ1k ð21Þ

in d ¼ 2nþ 1 dimensions (Schnyder et al., 2008; Budich and
Trauzettel, 2013). Based on these observations and the AZ
symmetry classification (Altland and Zirnbauer, 1997) (see
also Sec. II.B.2), Gong et al. (2018) arrived at a first NH
counterpart of the periodic table of topological insulators.
However, as discussed in more detail in Sec. II.B.2, the
nontrivial action of Hermitian conjugation in NH systems
naturally refines the tenfold AZ classification to the 43-fold
BLC classes, later proposed to be reducible to a 38-fold way
(Kawabata, Shiozaki et al., 2019). Adapting the K-theory
methods used by Kitaev (Kitaev, Lebedev, and Feigel’man,
2009) for the Hermitian periodic table to this NH scenario,
topological classification tables for gapped phases based on
the BLC symmetry classification have recently been derived
(Kawabata, Shiozaki et al., 2019; Zhou and Lee, 2019).

3. Symmetry-protected line-gapped phases

Regarding gaps in the shape of a straight line in the energy
spectrum, in principle any offset and orientation in the
complex plane may be considered to start with. However,
as in the point-gapped case, by means of a constant energy
shift, the gap line may be transformed to cross the origin.
Furthermore, by rescaling the Hamiltonian with a complex
constant, such a gap line may then be rotated to, say, the real
energy axis. Since such a rotation of the energy spectrum may
violate, or at least transform, generic NH symmetries,
Kawabata, Shiozaki et al. (2019) still distinguished line gaps
along the real and imaginary axis due to their distinct behavior
under spectral reality constraints.
For the case of a real line gap, any NH model Hamiltonian

may be continuously deformed into a Hermitian Hamilto-
nian without breaking of symmetries, which reduces the
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classification problem to that of Hermitian matrices. In the
case of an imaginary gap a similar deformation to an anti-
Hermitian HamiltonianHa is always possible. However, since
the NH symmetries may be transformed in a nontrivial way
when rotating to the Hermitian Hamiltonian iHa, the classi-
fication problem of NH Hamiltonians with imaginary line
gaps amounts to that of Hermitian systems up to a shift in
symmetry class. Based on these observations, periodic tables
for line-gapped Hamiltonians in all 38 symmetry classes were
obtained by Kawabata, Shiozaki et al. (2019). Furthermore,
Liu and Chen (2019) considered the classification of defects in
the BLC classes and generalizations thereof.

D. Complementary classification approaches

Thus far our discussion of NH topological band structures
has been based on the BLC symmetry classification, which is
a direct NH generalization of the celebrated AZ classification
of electronic systems in the Hermitian realm. Given the broad
spectrum of applications of effective NH Hamiltonians (see
Sec. IV for an overview), depending on the given physical
situation, differing from the BLC classification by considering
other symmetries and physical constraints can be natural. In
the following, we briefly highlight some prominent examples
of deviations from the classification discussed in Secs. II.B
and II.C.

1. Other symmetries

The combination of time-reversal symmetry and parity,
widely known as PT symmetry, was originally considered a
fundamental NH amendment to quantum physics (Bender and
Boettcher, 1998), as it gives rise to reality constraints on the
spectrum known as pseudo-Hermiticity (Mostafazadeh,
2002), similar to the aforementioned constraint Qþ [see
Eq. (17)] from the BLC system of symmetries. By now,
PT symmetry is widely established in effective NH descrip-
tions of a variety of physical settings including photonic
systems (Regensburger et al., 2012; Zyablovsky et al., 2014;
Yuce, 2015; Feng, El-Ganainy, and Ge, 2017; Özdemir et al.,
2019). In particular, in the context of NH topology, states
protected by PT symmetry had been observed in optical
systems (Weimann et al., 2017) even before the systematic
classification of NH symmetry-protected topological phases
(see Secs. II.B and II.C) was reported. As a second example
outside of the BLC classification, a loose analog of super-
symmetry, considered in high energy as a fundamental
amendment to the standard model, has been identified in
certain optical settings (Miri et al., 2013; Heinrich et al.,
2014). Moreover, Liu, Jiang, and Chen (2019) have classified
NH phases with reflection symmetry, while a topological
classification beyond the Hermitian realm was presented for
dynamically stable systems by De Nittis and Gomi (2019).

2. Fundamental constraints in quantum many-body systems

The BLC symmetry classification applies to generic NH
matrices. However, when NH Hamiltonians are employed to
effectively describe some form of dissipation in quantum
many-body systems, inherent physical constraints reduce the
space of eligible matrices. For example, the spectrum of

effective Hamiltonians derived from a retarded Green’s
function including a NH self-energy is constrained to lie in
the lower complex half plane Im½E� ≤ 0; see Bergholtz and
Budich (2019) for a recent discussion in the context of NH
topological phases. This immediately rules out spectral wind-
ing around the origin [cf. Eq. (6)] and vortices in the complex
spectrum as discussed in Sec. II.A.1, thus directly affecting the
topological classification. A similar constraint appears when
considering Liouvillian operators governing the dynamics of
open quantum systems as NH matrices (Song, Yao, and Wang,
2019a; Lieu, McGinley, and Cooper, 2020). The basic
physical meaning of such constraints is that quantum dis-
sipation can damp out energy eigenstates (negative imaginary
part) or leave them decoherence free (zero imaginary part) but
not amplify their weight, which would correspond to a
positive imaginary part.

3. Homotopy perspective

Finally, we note that from Hermitian systems it is well
known that there are so-called fragile topological phases [for a
recent discussion see Kennedy (2016)] that do not survive the
addition of extra bands. Such phases are not captured by the
K-theory approach of the previously described classification
schemes, but they can be described within a homotopy-theory-
based classification (Kennedy, 2016; Kennedy and Zirnbauer,
2016). In the NH context, new fragile topological phases have
recently been uncovered by analyzing NH band structures
from the vantage point of homotopy (Li and Mong, 2019;
Wojcik et al., 2020). It is worth noting that such fragile phases
relying on a low number of bands even exist in the absence of
additional symmetries.

III. ANOMALOUS BULK-BOUNDARY CORRESPONDENCE

In this section, we review recent findings on a phenom-
enology unique to NH systems, namely, qualitative changes in
the so-called bulk-boundary correspondence (BBC), a funda-
mental principle for topological phases (Hasan and Kane,
2010). In conventional Hermitian systems, the BBC estab-
lishes a one-to-one relation between topological invariants
defined for infinite periodic systems and protected gapless
boundary states occurring in systems with open boundaries.
By contrast, in NH topological systems the BBC in its familiar
form is found to generically break down (see Sec. III.A), and
qualitative amendments to reestablish a modified NH BBC
have been proposed; see Sec. III.B. For clarity, the conven-
tional BBC known from Hermitian systems is in the following
referred to as cBBC. We note that even in cases where cBBC
holds, the transitions between different topological phases
may be different from Hermitian systems, as they happen via
exceptional degeneracies rather than Hermitian band-touching
points (Kunst et al., 2018; Comaron et al., 2020). While the
following discussion focuses mostly on the conceptually
simple example of one-dimensional systems, we stress that
surface states in NH topological systems are by no means
limited to spectrally isolated bound states, but instead may
also appear in higher-dimensional systems, e.g., in the form of
chiral modes in NH Chern insulator models (Kunst et al.,
2018; Yao, Song, and Wang, 2018).
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A. Breakdown of the conventional bulk-boundary
correspondence

In this section, we review the mechanisms that lead to the
breakdown of cBBC, i.e., the failure of topological invariants
computed from the Bloch Hamiltonian to correctly predict the
existence of boundary states. Furthermore, we discuss the NH
skin effect as well as the spectral instability of NH matrices,
which accompanies the breakdown of cBBC. There is,
however, no strict one-to-one relation with these phenomena
since the skin effect can also occur in systems where the cBBC
does not have a clear meaning, as in systems with only
point gaps.

1. Canonical models and their interrelation

The breakdownof cBBC inNHmodelswas first observed by
Lee (2016), where a Creutz ladder with complex hopping terms
and on-site dissipation [see the bottom panel of Fig. 6(a)] was
studied. This phenomenon may be attributed to the anomalous
behavior of the bulk states that, in the case of open boundary
conditions (OBCs), pile up at the boundaries (Kunst et al.,
2018; Xiong, 2018; see also Sec. III.A.2 for a more detailed
discussion. The easiest and most intuitive way of breaking
cBBC is by including hopping terms in the tight-binding
Hamiltonian, whose tunneling strengths are direction depen-
dent (anisotropic); see the upper panel of Fig. 6(a). As a
consequence, the bulk states can propagate around the system
in the preferred direction for periodic boundary conditions
(PBCs), while they are found to pile up at the boundaries in the
case of OBCs; see Fig. 6(b). This extreme difference in the
behavior of the bulk states under different boundary conditions
intuitively invalidates the authority of bulk topological invar-
iants computed for PBCs in determining the existence of
boundary states. To explicate and exemplify this exotic
behavior, we start by studying a one-dimensional, conceptually
simple example, which displays features similar to those
reported by Lee (2016). We consider a NH version (Lieu,
2018a) of the Su-Schrieffer-Heeger (SSH) chain (Su,
Schrieffer, and Heeger, 1980), as described by the Hamiltonian

HSSH ¼
XN
n¼1

½ðt1 þ γÞc†A;ncB;n þ ðt1 − γÞc†B;ncA;n

þ t2ðc†A;nþ1cB;n þ c†B;ncA;nþ1Þ�; t1; t2; γ ∈ R;

ð22Þ

where c†α;n (cα;n) creates (annihilates) a state on sublattice site
α ∈ fA; Bg in unit cell n, N is the total number of unit cells, t1
and γ are the nearest-neighbor (NN) hopping parameters inside
the unit cell, and t2 is the NN hopping parameter between unit
cells; see the top panel of Fig. 6(a) (Kunst et al., 2018; Yao and
Wang, 2018; Yin et al., 2018). Hermiticity is broken when
γ ≠ 0, which results in a different modulus of the hopping
amplitude between hopping to the left with respect to hopping
to the right inside the unit cell. The Bloch Hamiltonian is of the
general form given in Eq. (10), herewith dðkÞ ¼ ðt1 þ t2 cos k;
t2 sin kþ iγ; 0Þ,d0ðkÞ ¼ 0, where the presence of an imaginary
anti-Hermitian term iγσy formally signals the breaking of
Hermiticity. In the inset in Fig. 6(b), we plot the absolute
value of the band spectrum for OBCs (in blue) and PBCs (in
gray), observing a clear discrepancy. In this sense, the direc-
tion-dependent hopping is accompanied by a spectral insta-
bility; see Sec. III.A.3 for a more general discussion.
As with the Hermitian SSH chain, this model has a chiral

symmetry, i.e., fH; σzg ¼ 0, and it is thus possible to define a
winding number, where in the Hermitian case this winding
number determines the number of states localized to the ends
(Ryu and Hatsugai, 2002; Schnyder et al., 2008). The nonzero
values of the NH counterpart of the winding number (Gong
et al., 2018; Kawabata, Shiozaki et al., 2019), i.e., the spectral
winding number [cf. Eq. (6) with Ek replaced by detHðkÞ],
are indicated explicitly in the spectrum in the inset in Fig. 6(b)

(a)

(b)

FIG. 6. (a) Schematic depiction of the NH-SSH model (top
panel) [see Eq. (22)] and the Lee model (bottom panel) (Lee,
2016) and their unitary equivalence. (b) Sum of absolute
squares of amplitudes per site of all right eigenstates for the
Hamiltonian in Eq. (22) with OBCs for t1 ¼ 2.2, t2 ¼ 1,
γ ¼ 1.5, and 30 unit cells. For this choice of parameters the
magnitude of hopping to the left (t1 þ γ ¼ 3.7) is larger than
hopping to the right (t1 − γ ¼ 0.7), and we observe a piling up
of states at the left end. Inset: absolute value of the eigenvalues
as a function of t1 for the same parameter choice with OBCs
and PBCs in blue (dark gray) and light gray, respectively, and
with the in-gap end states in the OBC case in red (dashed
lines). The nonzero value of the winding number is explicitly
indicated by green shaded areas and the black line corresponds
to the value of t1 for which the wave-function localization is
plotted. We note that because the PBC and OBC Hamiltonians
for the NH-SSH model and Lee’s model are related via a
unitary transform UN , the PBC and OBC spectra, respectively,
are identical for Lee’s model.
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by the green shaded areas. Here, unlike the conventional case,
the winding number fails to predict the existence of the end
states in the OBC case, which are shown in red in the OBC
spectrum. In fact, the winding number changes value when a
gap closing appears in the PBC spectrum, which is at
strikingly different parameter values than when the OBC
system features phase transitions. To further elucidate what is
going on we plot the sum of the amplitude per site for all wave
functions in the case of OBCs in Fig. 6(b), confirming that the
wave functions indeed pile up at the boundary. In summary,
the simple model defined by Eq. (22) indeed breaks cBBC and
exhibits NH-skin-effect behavior, which was recently con-
firmed in several experiments (Ghatak et al., 2020; Helbig
et al., 2020; Hofmann et al., 2020; Weidemann et al., 2020;
Xiao et al., 2020).
We note that models in which the modulus of the hopping

amplitudes is explicitly direction dependent, such as in
Eq. (22), are sometimes referred to as “nonreciprocal hopping
models” in the literature (Hofmann et al., 2020), and the
accumulation of bulk states at a boundary is often attributed to
this property (Lee, Li, and Gong, 2019). While this is
analogous to nonreciprocal optical models, where the sym-
metry of wave transmission is broken [see Sounas and Alù
(2017) for a review], the straightforward translation of this
definition to the language of tight-binding models with
internal degrees of freedom may not be unambiguous.
When interpreting the sublattice degree of freedom of the
NH-SSH model in Eq. (22) as a spin rather than a spatial
degree of freedom, the model would no longer be nonrecip-
rocal in the aforementioned sense: While the internal coupling
strengths between the two spins have a different magnitude,
the hopping magnitude between lattice sites is no longer
direction dependent. Nevertheless, in this differing interpre-
tation, the model still exhibits all the aforementioned proper-
ties. We now demonstrate that the ambiguity of this notion of
reciprocity goes much further.
In particular, a simple unitary transformation relates the

Bloch Hamiltonians of the NH-SSH model and the Lee model

HSSHðkÞ → U†HSSHðkÞU ¼ HLeeðkÞ; U ¼ 1ffiffiffi
2

p
�
1 i

i 1

�
:

ð23Þ

Here we can directly identify dLeeðkÞ ¼ ðt1 þ t2 cos k; 0;
t2 sin kþ iγÞ, d0;LeeðkÞ ¼ 0 for HLeeðkÞ (Lee, 2016). In this
model it is natural to interpret γ as on-site gain (þiγ) and loss
(−iγ), while t1 and t2 remain standard Hermitian NN hopping
parameters inside and between unit cells, respectively; see the
lower panel in Fig. 6(a). Moreover, also with OBCs it is easy
to show that one may write UN ¼ 1N ⊗ U, where 1N is the
identity matrix of dimension N, such that U†

NH
OBC
SSH UN ¼

HOBC
Lee with UN again being unitary. Thus, the spectra of Lee’s

model (Lee, 2016) with either PBCs or OBCs are identical to
those of the NH-SSH model, as shown in the inset of Fig. 6(b).
It follows that the Lee model also exhibits a similar accu-
mulation of bulk states at the boundary, since the unitary
transformation UN acts only locally and hence does not
drastically alter the localization of the eigenstates.

In summary, while Lee’s model [see the bottom panel of
Fig. 6(a)] contains only diagonal on-site gain and loss terms, it
is related to a model with explicitly anisotropic hoppings
through a local unitary transformation. This observation
further blurs the difference between “reciprocal” and “non-
reciprocal” tight-binding models, as inferred from the sym-
metries of their hoppings, and we thus refrain from such a
distinction in this review. Instead, we emphasize that the
breakdown of the cBBC is a generic NH phenomenon not tied
to a specific microscopic provenance of the non-Hermiticity.

2. Non-Hermitian skin effect

The concept of a BBC relies on the doctrine that introduc-
ing boundaries into a model does not have significant effects
on the bulk states, meaning that the model does not undergo a
topological phase transition when going from PBCs to OBCs.
In stark contrast, the behavior of the bulk states associated
with the family of cBBC-breaking NH models studied in this
section is altered in an extreme way upon considering OBCs:
These models feature the NH skin effect [see Fig. 6(b)], a term
coined by Yao and Wang (2018).
Intuitively, the appearance of the localized bulk states,

which are also called skin states, can be understood from the
presence of or proximity to one or more high-order EPs
(cf. Sec. II.B.3), through which the states need to pass when
tuning from PBCs to OBCs (Xiong, 2018). The appearance of
these EPs, which scale with system size (infinite order EPs
occur in the thermodynamic limit), similar to what we saw for
the Hatano-Nelson model in Sec. II.A.1, results in a topo-
logical distinction between the model with PBCs and OBCs
thus leading to a natural breaking of cBBC (Xiong, 2018). The
connection between higher-order EPs, say, nth-order EPs at
which n eigenstates coalesce (cf. Sec. II.B), and the piling up
of bulk states can then be understood as follows: Close to such
an EP, a macroscopic number n of eigenstates necessarily have
large spatial overlap, which is achieved through their accu-
mulation at the same boundary.
This NH skin effect always appears when cBBC is broken

and can thus be seen as a telltale signature thereof. The
anomalous localization behavior of the bulk states does not
find a counterpart in Hermitian physics and is thus an
inherently NH phenomenon.
It is natural to ask which minimal ingredients are needed for

a NH hopping model to possess skin states, and thereby to
break cBBC. While not a sufficient criterion, a necessary
requirement is that the Hermitian (HH ¼ H†

H) and anti-
Hermitian [iHA ¼ −ðiHAÞ†] parts of the NH Hamiltonian
H ¼ HH þ iHA do not commute, i.e., ½HH;HA� ≠ 0.2 If they
do commute, then HH and HA share a common eigenbasis,
which means that the eigenstates of H are the eigenstates of a
Hermitian matrix, namely, of HH (and HA), and as a
consequence, the corresponding eigenstates form a standard
orthonormal basis and can as such not be skin states.
Longhi (2019c) showed that the existence of the NH skin

effect in one-dimensional NH models can be detected by

2An equivalent way of stating the necessary condition for skin
states is that H cannot be normal.
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making use of a bulk probe: If the maximum value of the
Lyapunov exponent in the long-time limit is at a drift velocity
other than zero, this is a sufficient condition for the NH model
to display the NH skin effect as well as symmetry-breaking
phase transitions in the OBC spectrum.
A recent suggestion is that the presence of a topologically

nontrivial point gap in the complex-energy spectrum of the
Bloch Hamiltonian is equivalent to the eigenstates in the OBC
system being skin states (Okuma et al., 2020; Zhang, Yang,
and Fang, 2020), which was also observed by Wanjura,
Brunelli, and Nunnenkamp (2020).
One may ask whether the piling up of states is forbidden by

certain symmetries. Indeed, Kunst and Dwivedi (2019)
showed that PT-symmetric models (cf. Sec. II.D) in the
PT-unbroken phase (Bender and Boettcher, 1998) cannot
possess skin states, which was corroborated by Kawabata,
Shiozaki et al. (2019), who also showed that models in the
presence of a parity inversion symmetry TRS†, which is
defined as the relation in Eq. (14) with H� → HT , or pseudo-
Hermiticity in the unbroken phase (cf. Sec. II.B.2) are also
excluded from exhibiting a breakdown of cBBC. It can be
intuitively understood why these symmetries prevent the
existence of skin states: For example, PT symmetry maps
one boundary to the opposite boundary, such that any state
localized at only one of the boundaries automatically breaks
PT (Hu and Hughes, 2011).
It is worthwhile to point out that skin states do not

necessarily have to accumulate on one boundary alone
(Song, Yao, and Wang, 2019b; Hofmann et al., 2020). For
example, taking two time-reversed copies of a cBBC-breaking
model immediately results in the appearance of skin states on
both boundaries, which was referred to as theZ2 skin effect by
Okuma et al. (2020). Additionally, skin states may also appear
on boundaries with a codimension higher than 1, such as at
corners and hinges (Edvardsson, Kunst, and Bergholtz, 2019;
Ezawa, 2019d; Liu et al., 2019; Luo and Zhang, 2019).

3. Spectral instability

As with the eigenstates, the eigenvalues of cBBC-breaking
NH Hamiltonians are extremely sensitive to perturbations that
connect boundaries; see the inset in Fig. 6(b). This sensitivity
to boundary conditions can even result in drastically different
qualitative features of the two spectra: Indeed, the OBC
spectrum may, for instance, be gapped and topologically
nontrivial, while the PBC spectrum of the same model is
gapless (Kunst et al., 2018). This spectral instability can be
systematically understood as a discontinuous behavior in the
eigenvalue spectra of NH matrices under small random
perturbations. More specifically, while adding a small per-
turbation with largest absolute eigenvalue ϵ to a Hermitian
system at most leads to a change of the order of ϵ in the
spectrum, in NH matrices changes of the order of ϵ1=N may
occur (Krause, 1994), where N is the number of sites. In the
thermodynamic limit (N → ∞), this amounts to a change of
the order of 1 for an arbitrarily small ϵ > 0 representing the
analytical reason for the observed fragility of eigenvalue
spectra in NH systems. The tuning between boundary con-
ditions may be interpreted as such a perturbation; see Herviou,
Bardarson, and Regnault (2019) for a detailed discussion.

This spectral instability is related to the previously dis-
cussed NH skin effect: A study of the spectral instability in a
cBBC-breaking model revealed that when tuning between
OBCs and PBCs, one or more higher-order EPs are encoun-
tered (Xiong, 2018). Indeed, when the boundaries of a NH
model with OBC are connected via an exponentially small
perturbation proportional to the system size N, i.e., ∼e−αN for
some model-dependent constant α (Kunst et al., 2018; Koch
and Budich, 2020), the spectrum shows crossover behavior,
which can be understood from the behavior of the skin states:
For a large enough coupling, which is found to be exponen-
tially small inN, the skin states can tunnel through and behave
like ordinary bulk states in the sense that they are evenly
distributed throughout the lattice, in which case the spectrum
qualitatively resembles that of the PBC case (Kunst et al.,
2018). Additionally, the presence of perturbations connecting
the boundaries was shown to result in unconventional behav-
ior for the fidelity and Loschmidt echo near the higher-order
EPs (Longhi, 2019a).
Because of the extreme sensitivity of cBBC-breaking NH

models to boundary conditions, it seems natural to wonder
about the physical relevance of studying the eigenvalue
spectra of such NH models with OBCs (Gong et al., 2018;
Herviou, Bardarson, and Regnault, 2019). However, when
requiring physically motivated locality conditions on the
considered perturbations, the physical properties specific to
the eigenspectra of NH systems with OBCs have been shown
to be robust (Koch and Budich, 2020). This renders the
anomalous BBC observed in the eigenvalue spectra of NH
systems a topologically stable and generically observable
phenomenon.

4. Domain-wall geometries

Thus far we have focused on the physics of cBBC-breaking
NH models in the case of PBCs and OBCs and noticed that
both the quantitative and qualitative behavior of these NH
models can be extremely different in these two cases. Another
interesting geometry to consider is that of domain walls,
which can lead to drastic alterations of the physics of NH
models (Schomerus, 2013; Malzard, Poli, and Schomerus,
2015; Malzard and Schomerus, 2018; Deng and Yi, 2019). For
example, Xiong (2018) pointed out that if a cBBC NH model
is coupled to another model that resides in a different
topological phase, high-order EPs disappear rapidly from
the spectrum. It has been conjectured (Leykam et al., 2017;
Xiong, 2018) that cBBC is generically restored in such
domain-wall geometries. However, Kunst et al. (2018) explic-
itly exemplified that upon coupling the NH-SSH model
[cf. Eq. (22)] to its Hermitian, topologically trivial counter-
part, cBBC may remain broken in the sense that the skin effect
prevails. Indeed, the proximity to EPs persists and bulk states
still locally accumulate, albeit now at the domain wall, as long
as the energy gap in the Hermitian system is large enough
(Kunst et al., 2018); see Fig. 7. For a sufficiently small gap
(or short Hermitian domain), the skin states can tunnel
through, and behavior similar to the NH model with PBC
is retrieved (Kunst et al., 2018; Herviou, Bardarson, and
Regnault, 2019). Changing the size of the band gap in the
attached Hamiltonian in such a setup may thus be seen as an
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alternative way of tuning between OBCs and PBCs, while at
the same time introducing new effects that cannot be observed
in simple OBC geometries.
Domain-wall effects have also been studied for models that

preserve cBBC. For example, by coupling two PT-symmetric
SSH chains that are in distinct topological phases, a defect
state appears at the domain wall with positive imaginary
energy, thus representing a solution with a growing amplitude,
while the bulk states all have zero imaginary energy
(Schomerus, 2013). A similar setup considered by Yuce
(2018) confirmed that PT symmetry is indeed spontaneously
broken on the interface. As a consequence, the defect state
dominates in the long-time limit. These predictions were
experimentally confirmed in a resonator chain (Poli et al.,
2015), paving the way to the experimental realization of
topological lasers (St-Jean et al., 2017; Parto et al.,
2018; Zhao et al., 2018). Additionally, it was shown that
models that are topologically trivial in the Hermitian limit
can host topologically protected defect states in the NH
case (Malzard, Poli, and Schomerus, 2015; Malzard and
Schomerus, 2018). Considering domain walls in the form
of defects can thus lead to new genuinely NH physical
phenomena.

B. Approaches to reestablishing the bulk-boundary
correspondence in NH systems

While the concept of a BBC in NH models with a point gap
in their complex spectra has largely remained elusive, sig-
nificant progress has been made on reestablishing a NH BBC
in models with line gaps (Kunst et al., 2018; Xiong, 2018;
Yao, Song, and Wang, 2018; Yao and Wang, 2018), which is
the focus of our subsequent discussion. We review two main
approaches in detail: (i) a construction combining information
about both open and translation-invariant systems that leads to
modified topological invariants akin to those in the Hermitian
realm (Yao, Song, and Wang, 2018; Yao and Wang, 2018),
and (ii) the biorthogonal BBC approach, which makes direct
use of the properties of the OBC spectrum and relates phase
transitions to delocalization transitions of biorthogonal boun-
dary states (Kunst et al., 2018). While they are seemingly

distinct, we elucidate the equivalence of these two approaches,
which from a different angle provide accurate predictions for
generic NH systems. We also give an overview of comple-
mentary works relating to NH BBC (Esaki et al., 2011; Lieu,
2018a; Brzezicki and Hyart, 2019; Edvardsson, Kunst, and
Bergholtz, 2019; Herviou, Bardarson, and Regnault, 2019;
Imura and Takane, 2019; Kunst and Dwivedi, 2019; Lee and
Thomale, 2019; Song, Yao, and Wang, 2019b; Yao, Song, and
Wang, 2018; Yokomizo and Murakami, 2019; Zirnstein,
Refael, and Rosenow, 2019; Borgnia, Kruchkov, and
Slager, 2020; Yang, Zhang et al., 2020).

1. Non-Bloch bulk-boundary correspondence

A strategy for finding a generalized BBC was presented by
Yao, Song, and Wang (2018) and Yao and Wang (2018) and
further expanded upon by Deng and Yi (2019), Yokomizo and
Murakami (2019), Kawabata, Okuma, and Sato (2020), and
Yang, Zhang et al. (2020). There a generalized BZ is
constructed to include information, which in the case of
cBBC is not contained in the standard Bloch bands, pertinent
for the accurate definition of bulk topological invariants. The
key idea in this approach is that a state with degree of freedom
j in unit cell n of a model with OBC ψn;j can be written as
ψn;j ¼ βnjψ j, where βj ≡ rjeik and ψ j is the eigenvector of the
Bloch Hamiltonian. Solutions for βj in terms of the hopping
parameters and energy eigenvalues are then found by solving
the eigenequations using this ansatz (Yao and Wang, 2018).
From these solutions, it is possible to derive the generalized
BZ Cβ and to find expressions for the boundary states, as we
review in the following.
The generalized BZ is found by looking at the condition for

obtaining the continuum bands (Yokomizo and Murakami,
2019). Ordering the solutions βj according to jβ1j ≤ jβ2j ≤
� � � ≤ jβ2S−1j ≤ jβ2Sj, where S ¼ αL with α degrees of free-
dom and L is the range of hopping, Yokomizo and Murakami
(2019) proposed that the continuum states are retrieved by
demanding that

jβSj ¼ jβSþ1j ¼ r: ð24Þ

FIG. 7. (a) Domain-wall geometry between a NH-SSH domain [cf. Eq. (22)] [top half circle with lattice sites in red and blue (gray and
black)] and a Hermitian region [bottom half circle with sites in green and purple (light and dark gray)]. The NN hopping parameters for
the NH-SSH chain are t1, t2, and γ, while in the Hermitian part they are t01 and t02. The two chains are coupled to each other via the
hopping parameter t02. (b)–(d) Absolute value of the eigenvalues as a function of t1 for t2 ¼ 1, γ ¼ 1.5, t02 ¼ 0.5, and N ¼ 18 unit cells in
both chains, and (b) t01 ¼ 3, (c) t01 ¼ 1, and (d) t01 ¼ 1=2. The spectrum in the Hermitian SSH chain is (b) gapped, (c) gapped with a
smaller gap, and (d) gapless. The black, dashed grid lines correspond to the gap closings in the PBC spectrum of the NH-SSH chain,
showing that even though the NH model is coupled to a Hermitian chain via a domain wall, the anomalous physics persists when the gap
in the Hermitian chain is large enough.
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This condition is derived by assuming that the system sizeN is
large and the energy states are densely distributed. The
complex-valued trajectories of βS and βSþ1 then form the
generalized BZ Cβ, which in the case of Hermitian or cBBC-
preserving NH Hamiltonians simply reduces to the unit circle,
i.e., to the conventional one-dimensional BZ.
When jβj ≠ 1, where we have dropped the label to simplify

notation, the continuum states exhibit the NH skin effect:
They localize to the left boundary for jβj < 1 and to the right
boundary for jβj > 1. As mentioned, it is also possible to find
models with skin states that are localized to opposite boun-
daries (cf. Sec. III.A.2), in which case part of the generalized
BZ Cβ lies inside the unit circle, and part of it outside (Song,
Yao, and Wang, 2019b).
If the energy Etop of possible topological boundary modes

is known, it is possible to find a solution for these states by
plugging Etop into the solutions βj (Yao and Wang, 2018). The
bulk-band gap then has to close when jβðEtopÞj ¼ r, i.e., when
the topological boundary state merges with the bulk bands.
As the energy of the boundary states is not usually known,

however, an alternative way to find the band-gap closing is to
make use of what Yao and Wang (2018) called non-Bloch
topological invariants: Replacing eik with β or, equivalently,
applying a shift in the wave vector k → k − i ln r in the Bloch
Hamiltonian HðkÞ leads to the so-called non-Bloch
Hamiltonian HðβÞ defined on the generalized BZ and allows
for the computation of non-Bloch topological invariants, which
correctly predict the existence of topological boundary states.
Indeed, it was exemplified that a winding number derived for
HðβÞ on the generalized BZ correctly predicts the existence of
the zero-energy end states for the model in Eq. (22) by Yao and
Wang (2018), and a variation of the model was given by
Yokomizo and Murakami (2019). Furthermore, Yang, Zhang
et al. (2020) elaborated on the geometrical interpretation of the
generalized BZ, Lee et al. (2020) derived physical responses
based on this picture, and Yao, Song, and Wang (2018)
introduced a non-Bloch Chern number that accurately predicts
the existence of chiral edge states.
We note that the ansatz ψn ¼ βnψ for the wave function,

which is the basis of the generalized BZ construction, can be
seen as a generalization of the usual ansatz ψn ¼ eiknψ in
Hermitian systems, obtained by shifting the wave vector k
according to k → k − i ln r. Indeed, for Hermitian and cBBC-
preserving systems, r ¼ 1, such that β ¼ eik and Bloch’s
theorem is retrieved. In this case, the condition in Eq. (24) is
trivially satisfied for all βi, showing that this approach
connects to the well-established Hermitian limit in the
expected way.

2. Biorthogonal bulk-boundary correspondence

Biorthogonal quantum mechanics.—An alternative
approach for finding a generalized BBC was presented by
Kunst et al. (2018) in the form of a biorthogonal BBC, and
further generalized by Edvardsson, Kunst, and Bergholtz
(2019) and Edvardsson et al. (2020). To discuss the bio-
rthogonal BBC in a self-contained manner, we recall basic
elements of biorthogonal quantum mechanics (QM); see
Brody (2014) for a pedagogical review. Biorthogonal QM
can be seen as a generalization of ordinary QM by allowing

for the treatment of NH observables, and it reduces to ordinary
QM upon restoring Hermiticity. As mentioned in Sec. I, a NH
Hamiltonian in general has inequivalent right and left eigen-
vectors jψRi and hψLj, respectively, such that its eigenvalue
equations read

HjψR;ii ¼ EijψR;ii; hψL;ijH ¼ EihψL;ij;

where the latter expression is alternatively written as
H†jψL;ii ¼ E�

i jψL;ii. As shown in our minimal example in
Sec. I, the left and right eigenvectors generally do not form an
orthonormal set with the standard inner product; see Eq. (3).
However, the essence of biorthogonal QM is that, away from
exceptional degeneracies, the sets fjψRig and fjψLig form a
useful biorthogonal basis by demanding that

hψL;ijψR;ji ¼ δi;j: ð25Þ

As we see later this change in normalization condition
has profound implications since the left and right eigen-
states can be strikingly different and may even localize at
opposite boundaries of the system. An immediate and impor-
tant consequence is that the energy eigenvalues of a NH
Hamiltonian are given by its expectation value with respect to
the right and left wave functions, i.e.,

hψL;ijHjψR;ii ¼ Ei ∈ C: ð26Þ

Expectation values of the form of Eq. (26) are known as
biorthogonal expectation values, and play a central role in
understanding the dynamics of NH models.
Biorthogonal BBC.—In the following, we discuss how the

biorthogonal formalism can be used to construct a variant of
the BBC that remains intact for NH systems with a line gap
and reduces to cBBC in the Hermitian limit. This approach,
coined biorthogonal BBC, was introduced by Kunst et al.
(2018), who showed that one way to qualitatively and
quantitatively understand the physics of NH models with
OBCs is by making use of biorthogonal QM.
To illustrate this method, we make explicit use of the

example in Eq. (22). Kunst et al. (2018) showed for the
Hamiltonian in Eq. (22) with OBCs that it is possible to write
the following ansatz for the zero-energy state, which is
exponentially localized and has nonzero weight on the A
sublattices only:

jψR=L;0i ¼ N R=L

XN
n¼1

rnR=Lc
†
A;nj0i; ð27Þ

where N R (N L) is the normalization factor of the right (left)
wave function, n labels the unit cell with a total ofN unit cells,
and c†A;n creates a state in the vacuum j0i on sublattice A in
unit cell n. The localization factors rR and rL are different

rR ¼ −ðt1 − γÞ=t2 ≠ rL ¼ −ðt1 þ γÞ=t2; ð28Þ

and hence, depending on the parameter values, the left and
right states can be localized on either the same or at opposite
boundaries. It is worth noting that the possibility of having the
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left and right states localized at opposite boundaries implies
that the biorthogonal normalization condition [Eq. (25)]
becomes radically different from the standard normalization
condition familiar from the Hermitian realm.
To study the localization of the zero-energy states in the

lattice, the biorthogonal expectation value of the projection
operator Πn ¼ jeA;niheA;nj þ jeB;niheB;nj with jeα;ni≡ c†α;nj0i
projected onto each unit cell n is computed and leads to
hψL;0jΠnjψR;0i ¼ N �

LN Rðr�LrRÞn for the wave functions in
Eq. (27). According to this expression, the zero-energy state is
thus a bulk state when jr�LrRj ¼ 1, i.e., when it is equally
localized to all unit cells, while it is exponentially localized to
n ¼ 1 when jr�LrRj < 1 and disappears into the bulk for
jr�LrRj > 1. This indeed corresponds to what we see in the
band spectrum in the inset of Fig. 6(b) up to finite-size
corrections: The bulk gap closes when jðt21 − γ2Þ=t22j ¼ 1,
while the in-gap zero-energy states exist for jðt21 − γ2Þ=t22j < 1.
Note that identical results are found when considering the
biorthogonal expectation value of the projection operator with
respect to the zero-energy state localized on the B sublattices
at the end n ¼ N. Thus, jr�LrRj determines whether boundary
states exist, defining the notion of a biorthogonal BBC. By
contrast, the ordinary expectation values (based on the left and
right eigenstates, respectively) yield hψR;0jΠnjψR;0i ∼ jrRj2n
and hψL;0jΠnjψL;0i ∼ jrLj2n, respectively, for the wave func-
tion in Eq. (27). Both of these expectation values coinciden-
tally predict gap closings in the PBC spectrum and thus fail to
correctly predict the formation of zero-energy edge modes
when cBBC is broken.
Biorthogonal polarization.—Generalizing the insights

gained from the aforementioned quantity jr�LrRj, Kunst
et al. (2018) introduced the biorthogonal polarization

P ¼ 1 − lim
N→∞

P
nhψL;0jnΠnjψR;0i

N
: ð29Þ

From this expression, it is straightforward to see that P equals
1 in the presence of end states, i.e., when jr�LrRj < 1 in the
previous discussion, and 0 when no such states exist, i.e.,
when jr�LrRj > 1. P jumps when the gap closes corresponding
to jr�LrRj ¼ 1. As such, the value of the biorthogonal polari-
zation accurately predicts the presence of boundary states
inside the bulk gap and can thus be interpreted as a real-space
invariant.
We note that the condition jr�LrRj ¼ 1 is equivalent to the

merging condition [jβðEtopÞj ¼ r] found within the non-Bloch
framework (Yao and Wang, 2018): Indeed, the anistropic SSH
model in Eq. (22) was also studied by Yao and Wang (2018),
leading to equivalent results for the topological boundary
states as well as their attachment to the bulk bands.
We note that the biorthogonal polarization P is equal for

models that are related to each other via unitary transforma-
tions acting locally, e.g., PSSH for the nonreciprocal SSH
model equals PLee for Lee’s model [discussed in Sec. III.A.1
(Edvardsson et al., 2020)].
Generalizations.—As pointed out by Kunst et al. (2018),

the wave-function solution in Eq. (27) can straightforwardly
be generalized to a large family of lattice models with any
dimension such as NH Chern insulators in two dimensions.

Further generalizations to higher-order boundary states of NH
models work analogously (Edvardsson, Kunst, and Bergholtz,
2019): In each case jr�LrRj determines the existence of
boundary states and accurately predicts the occurrence of
phase transitions. It has also been verified that the definition
of the biorthogonal polarization can be naturally extended to
models with multiple boundary states on one boundary
(Edvardsson et al., 2020).
We emphasize that the biorthogonal polarization defined in

Eq. (29) is not limited to solutions of the form given in
Eq. (27) but can be computed for any boundary state in
generic NH models that do not afford an exact analytical
solution (Kunst et al., 2018). This makes the biorthogonal
BBC a general principle for NH topological models, which
recovers the cBBC where applicable.
Last, we note that while right wave functions are most

naturally accessible in experiment, Schomerus (2020) pro-
posed in a recent theoretical work that it is also possible to
probe left wave functions as well as the biorthogonal con-
tribution of both right and left wave functions beyond the
spectral properties when measuring the response functions to
external perturbations in robotic metamaterials such as the
ones studied by Brandenbourger et al. (2019) and Ghatak
et al. (2020); see Sec. IV.A.2 for a more detailed discussion.
Exploiting these possibilities it was suggested that NH
topological sensors with a robust sensitivity scaling exponen-
tially with the size of the system may be realized (Budich and
Bergholtz, 2020).

3. Complementary approaches

We now give an overview of complementary perspectives
and approaches to BBC in NH systems reported in the recent
literature.
Refinements.—The NH BBC developed by Kunst et al.

(2018) and Yao and Wang (2018) has been refined and
corroborated by a number of recent studies. As discussed
in Sec. III.B.2 for the biorthogonal approach, it is beneficial to
have access to exact solutions to understand the properties of
NH models. As a complementary approach to obtaining such
exact solutions, transfer-matrix methods were introduced in
the context of NH models by Kunst and Dwivedi (2019).
There one of the central results is that the determinant of the
transfer matrix T associated with a given NH hopping model
plays a crucial role in determining whether cBBC is broken:
Namely, when the transfer matrix is unimodular, i.e.,
j detTj ¼ 1, the PBC and OBC spectra are equivalent, and
bulk states in the OBC case behave in the ordinary fashion.
When j detTj ≠ 1, on the other hand, more interesting proper-
ties arise: The bulk spectra for PBCs and OBCs are different,
while the norm of the bulk states in the OBC case is
proportional to j detTjn=2, with n labeling the supercell, thus
signaling the NH skin effect. It is possible to tune between the
bulk spectra by applying a shift to the crystal momentum, i.e.,
EPBCðkÞ → EOBCðkÞ when k → k − ði=2Þ logðdetTÞ, where
this shift in the Bloch momentum is equivalent to the one
found by Yao and Wang (2018), thus corroborating the
generalized BZ approach. The transfer-matrix method also
corroborates the findings from the biorthogonal approach: The
eigenvalues of the transfer matrix for the boundary states,
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which correspond to the decay coefficients of their boundary
states, naturally lead to the definition of a merging condition
equivalent to the one found by Kunst et al. (2018)
(jr�LrRj ¼ 1). Additionally, transfer matrices can be used to
determine the appearance of EPs in the OBC spectrum.
Indeed, when j detTj → 0;∞ it is possible to hop in only
one direction and EPs with an order scaling with system size
naturally show up in the OBC spectrum; see also the
discussion in Sec. III.A.2.
The biorthogonal and non-Bloch frameworks were further

expanded by Lee and Thomale (2019), where a complex flux
effectively interpolating between PBCs and OBCs was used
(Hatano and Nelson, 1996), which is equivalent to tuning the
value of the complex part (− ln r) of the complex momentum
(k − i ln r) as introduced by Yao and Wang (2018). The
insertion of the complex flux allows for the derivation of a
condition for the existence of bulk and, more particularly, skin
states akin to the one in Eq. (24).
The BBC of NH models was also studied by making use of

Green’s functions or, more specifically, boundary Green’s
functions by Zirnstein, Refael, and Rosenow (2019) and
Borgnia, Kruchkov, and Slager (2020) to find topological
phase diagrams. In particular, Zirnstein, Refael, and Rosenow
(2019) used this machinery to study NH Dirac fermions in one
dimension, and a nonzero winding number [cf. Eq. (6), with
Ek replaced by detHðkÞ] is found to lead to a spatial growth of
the bulk Green’s function signaling a breakdown of cBBC and
the occurrence of the NH skin effect. This relation between a
nontrivial winding number and the appearance of skin states
has indeed been elaborated upon at the level of dynamic
matrices (Wanjura, Brunelli, and Nunnenkamp, 2020) as well
as at the Hamiltonian level in recent works (Okuma et al.,
2020; Zhang, Yang, and Fang, 2020); cf. Sec. III.A.2.
Borgnia, Kruchkov, and Slager (2020) found edge modes
by computing the in-gap zeros of the doubled boundary
Green’s function, where the input Hamiltonian is of the form
of Eq. (20). There, by studying the Green’s function in this
framework, a classification of NH models in terms of their
gaps is found, thus extending the results given by Zirnstein,
Refael, and Rosenow (2019).
As a complementary approach, Imura and Takane (2019)

proposed modified periodic boundary conditions (mPBCs) to
restore BBC in NH systems. The key idea is that the mPBCs
incorporate the NH skin states directly into a modified
periodic model from which it is then possible to compute
topological invariants that accurately predict the existence of
boundary states in the case of OBCs. The mPBCs by Imura
and Takane (2019) bear some similarity to the argument of
imaginary flux threading by Lee and Thomale (2019): The
mPBCs are implemented through the inclusion of prefactors
rL and r−L in the Hamiltonian that connects the two ends
n ¼ 1 and n ¼ N, while the flux threading essentially
introduces a similar prefactor to the Hamiltonian. While this
mPBC method seems to be similar to the non-Bloch BBC
introduced by Yao and Wang (2018), there is nevertheless a
subtle difference: To establish the non-Bloch BBC reference is
made to a system with OBC to find the relevant β needed to
compute the non-Bloch topological invariants. In the context

of mPBC, by contrast, no reference to OBC is required to find
the topological invariants.
Alternative perspective: Singular value spectrum.—Herviou,

Bardarson, and Regnault (2019), Herviou, Regnault, and
Bardarson (2019), and Porras and Fernández-Lorenzo (2019)
proposed to infer the topological phase diagram and the
existence of boundary modes by a singular value decomposition
(SVD). There the role of the eigenvalues of a NH matrix is
replaced by its singular values that do not exhibit the afore-
mentioned spectral instability, and the counterpart of the
eigenvectors may be directly inferred from the transformation
matrices of the SVD. This allows not only for the stable
computation of topological invariants, which are constructed
by making use of a generalized flattened singular decomposi-
tion, but also for a generalization of the concept of the
entanglement spectrum to the realm of NH models (Herviou,
Bardarson, and Regnault, 2019). However, the SVD approach
leads to a restoration of cBBC, even in models where cBBC is
found to be broken when studying the eigenvalue spectrum.
Thus, the exotic features displayed by cBBC-breaking models
are not fully captured within the SVD perspective.
Symmetries.—The influence of symmetries on BBC in NH

has been widely studied (Esaki et al., 2011; Lieu, 2018a;
Brzezicki and Hyart, 2019; Kawabata, Shiozaki et al., 2019;
Kunst and Dwivedi, 2019) (see also Sect. III.A.2), and cBBC
has been shown to be preserved in a number of symmetric NH
models. For example, Esaki et al. (2011) showed that even
though the spectrum ofNH systems generically is complex, it is
possible to find topological invariants from the Bloch
Hamiltonian that accurately predict the existence of boundary
states in the real part of the spectrum for specific lattice models,
which either feature pseudo-Hermiticity [cf. Eq. (17) withQ−]
or time-reversal symmetric with the time-reversal operator Tþ
[cf. Eq. (14)]. In some NH systems even the TRS of type Tþ
leads to a generalized Kramers theorem (Sato et al., 2012). A
related form of the pseudo-Hermitian symmetry Q− was
investigated by Brzezicki and Hyart (2019), who studied a
special form of NH chirality, i.e., SHðkÞS ¼ −H†ðkÞ. By
considering one-dimensional models in the presence of
this symmetry, a hidden Chern number can be defined
that determines the number of end states whose real part of
the energy is zero. There the imaginary part of the energy is
used as a second dimension, which offers a new perspective
on the definition of topological invariants in NH models.
Lee (2016) and Leykam et al. (2017) also studied chiral
symmetry and found half-integer winding numbers character-
izing the EPs in the spectum. Lieu (2018a) studied both chiral
symmetry and PT symmetry in the context of NH variations to
the SSH model, and topological invariants derived from the
Bloch Hamiltonian have been found in both cases. More
specifically, a global invariant can be defined in the PT-
symmetric case, while a quantized complex Berry phase exists
in the case with chiral symmetry. With the more recent studies
of the NH model in Eq. (22), which is also chirally symmetric,
however, we know that such a complex Berry phase cannot
always be found, or at least needs to be modified by using the
techniques developed in the non-Bloch setting (Yao, Song,
and Wang, 2018; Yao and Wang, 2018; Yokomizo and
Murakami, 2019).
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4. Summary: A unified picture

Having reviewed various complementary approaches to
reestablishing the BBC in NH systems, we now summarize
the different methods by drawing a unified picture. Whereas
the main approaches introduced by Kunst et al. (2018) and by
Yao, Song, and Wang (2018) and Yao and Wang (2018),
respectively, have different vantage points, we stress that they
lead to identical predictions in full agreement with a wide
range of explicit model calculations.
While Kunst et al. (2018) took a direct cue from the

properties of systems with OBCs and examined the (de)
localization transitions of the biorthogonal wave functions,
Yao, Song, and Wang (2018) and Yao and Wang (2018)
instead augmented the Bloch Hamiltonian with information
from the OBCs leading to a generalized Brillouin zone (often
called non-Bloch) description that relates more directly to the
familiar picture of the cBBC in terms of topological invariants.
The biorthogonal approach, on the other hand, offers addi-
tional physical insights in terms of a quantized polarization
and reveals the key role played by the interplay between left
and right wave functions, a distinction that is inherently NH.
Taken together they thus offer a comprehensive framework
and physical intuition for cBBC-breaking NH models.
Moreover, despite their differences in appearance, these
approaches do share the emphasis on a wave-function ansatz,
which were also utilized and expanded on by Imura and
Takane (2019), Kunst and Dwivedi (2019), and Lee and
Thomale (2019).
Several recent works have corroborated and elucidated the

non-Bloch approach either by making the Bloch momentum
complex (Kunst and Dwivedi, 2019; Yokomizo and
Murakami, 2019), or by applying mPBCs (Imura and
Takane, 2019). Complementing this perspective Zirnstein,
Refael, and Rosenow (2019) and Borgnia, Kruchkov, and
Slager (2020) made a direct connection to OBCs thus being
conceptually more in line with biorthogonal approach, while
work by Kunst and Dwivedi (2019) and Lee and Thomale
(2019) interpolated between PBC and OBC cases, and may as
such be seen as a bridge between the approaches using Bloch
Hamiltonians and those using OBC descriptions.

IV. PHYSICAL PLATFORMS

We now give an overview of experimental platforms for the
observation of NH topology, reflecting the range of physical
incarnations of the genuinely NH phenomena.

A. Non-Hermitian wave equations: From classical mechanics to
quantum walks

Intense research in recent years has unraveled classical
analogs of topological phases in a variety of settings ranging
from photonics (Haldane and Raghu, 2008; Raghu and
Haldane, 2008; Ozawa et al., 2019) to electric circuits
(Albert, Glazman, and Jiang, 2015; Ningyuan et al., 2015;
Lee, Imhof et al., 2018) and mechanical systems (Kane and
Lubensky, 2014; Huber, 2016). Guided by the intuition from
ideal dissipation-free scenarios, such analogs were initially
established for nearly Hermitian systems. However, in all of
these settings non-Hermiticity actually occurs naturally,

reflecting the ubiquitous role of dissipation. Indeed, the
profound conceptual advances in understanding NH topo-
logical phenomena as discussed in this review have been
closely accompanied by corresponding experiments in all of
the aforementioned platforms. In these classical systems, the
analogy with Hamiltonian QM may manifest in a number of
different ways: Some settings, including optical waveguides,
directly mimic the time-dependent Schrödinger equation,
while in photonic crystals and acoustic systems the eigenmode
problem is tantamount to the Bloch problem familiar from
quantum systems with a periodic potential. Similarly, in
robotic mechanical metamaterials the analog of a QM
Hamiltonian is directly given by an asymmetric dynamical
matrix, while in electrical circuits the analogy is on the level of
response functions. While we refer to the original work for
details, we outline here some of the basic ideas behind the
various experimental applications to make this overview more
self-contained.

1. Photonics

Photonics is arguably the area in which NH topology has
thus far found most applications. For an in-depth account on
mostly Hermitian topological photonics see the recent review
given by Ozawa et al. (2019). We highlight here a few systems
with particular relevance to the genuinely NH phenomena.
We begin with photonic crystals, in which the basic idea is

to create metamaterials with spatially varying but periodic
dielectric permittivity ϵijðxÞ and magnetic permeability μijðxÞ
(Joannopoulos et al., 2008). In this setting the electrodynamic
eigenmodes of Maxwell’s equations are subject to Bloch’s
theorem in a manner similar to how it applies to electrons in
crystalline solids. Inspired by the seminal theoretical proposal
for photonic analogs of quantum Hall states due to Haldane
and Raghu (2008) and Raghu and Haldane (2008) and
subsequent refinements by Wang et al. (2008), classical
analogs of topological states have been realized in gyromag-
netic photonic crystals, which explicitly break time-reversal
symmetry (Wang et al., 2008; Lu et al., 2013). In these
systems gain and loss is ubiquitous and NH topological
phenomena have been experimentally realized, including a
spectacular observation of Fermi arcs connecting EPs (Zhou et
al., 2018), as theoretically described in Sec. II.B, as well as a
demonstration of one-sided invisibility in PT-symmetric
metamaterials (Feng et al., 2013) predicted to occur in PT-
symmetric materials operating at an EP (Kulishov et al., 2005;
Lin et al., 2011; Longhi, 2011; Jones, 2012), which had also
been shown in a scattering experiment (Regensburger et al.,
2012); cf. Sec. IV.B. Recent theoretical work has suggested
that the Maxwell waves existing on the interfaces separating
lossless media with different signs in the permittivity and
permeability have topological properties that are related to the
properties of a NH helicity operator (Bliokh et al., 2019), thus
further highlighting the NH character of photonic crystals.
Photonic crystals belong to the larger experimental platform

of optical microresonators, also known as microcavities
(Vahala, 2003). The performance of such resonators is
captured by the Q factor, which is proportional to the lifetime
of a photon inside the cavity and is strongly dependent on the
properties of the interface between the cavity volume and the
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outside. A coupled-microresonator setup with auxiliary res-
onators with gain and loss has been proposed to realize the
Hatano-Nelson model (Longhi, Gatti, and Valle, 2015),
whereas active steering of topological light has been demon-
strated in two-dimensional lattices of microresonators with
reconfigurable gain and loss domains (Zhao et al., 2019). One
prominent example of optical microcavities with high Q
factors is that of whispering-gallery-mode resonators
(WGMRs) (Knight et al., 1995; Gorodetsky, Savchenkov,
and Ilchenko, 1996; Lefèvre-Seguin and Haroche, 1997;
Vernooy, Furusawa et al., 1998; Vernooy, Ilchenko et al.,
1998), which derive their name from their acoustical counter-
part: Electromagnetic waves are captured in the cavity because
of total internal reflection.
Recently NH experimental setups of such WGMRs were

proposed and observed to exhibit unidirectional lasing (Peng
et al., 2014, 2016), single-mode lasing in PT-symmetric
setups (Feng et al., 2014; Hodaei et al., 2014), and enhanced
sensitivity against perturbations in cavities operating at
second-order EPs (Chen et al., 2017) due to the nonanalytic
behavior of their dispersion (Wiersig, 2014). Similar behavior
has also been demonstrated in higher-order EPs realized in an
arrangement of coupled microring resonators (Hodaei
et al., 2017).
Optical resonators operating at microwave frequencies are

known as microwave cavities, and recently the dynamical
encircling of second-order EPs was studied in such a setup,
revealing experimental signatures of mode switching (Doppler
et al., 2016) (as we saw in the minimal example in Sec. I).
Additionally, open microwave disks form an ideal platform to
study the quantum-classical correspondence in open systems,
and experiments on such models demonstrate that classical
quantities can describe their quantum properties and vice versa
(Lu et al., 1999; Pance, Lu, and Sridhar, 2000; Potzuweit
et al., 2012; Barkhofen et al., 2013).
Coupled waveguides provide another versatile setting that,

instead of simulating static properties, directly emulates the
time evolution of tailor-made lattice models (Davis et al.,
1996; Christodoulides, Lederer, and Silberberg, 2003; Longhi,
2009). The waveguides are routinely inscribed in silica glass
using femtosecond lasers and have the additional appealing
feature that they operate well at optical frequencies visible to
the human eye (Szameit and Nolte, 2010). Here Maxwell’s
equations describing the propagation of light in the z direction
amount to the paraxial equation

i∂zE ¼
�
−

1

2k0
ð∂2

x þ ∂2
yÞ −

k0Δnðx; yÞ
n0

�
E;

which is formally identical to the two-dimensional
Schrödinger equation, with the propagation direction z play-
ing the role of time t, and the wave function E is the envelope
of the electric field polarized along e such that Eðx; y; zÞ ¼
Eðx; y; zÞeiðk0z−ωtÞe is assumed to be slowly varying in the
sense that j∇Ej ≪ jk0Ej, with k0 ≈ kz ≫ kx;y. The effective
potential Vðx; yÞ ∝ Δnðx; yÞ can be tailor-made by carving
waveguides using accurate femtosecond lasers, which create a
strong spatial dependence of the local refractive index
Δnðx; yÞ. In the limit of spatially sharp carving and weak

evanescent coupling between the waveguides, this system is
accurately modeled by a tight-binding Hamiltonian whose
hopping parameters depend on the setup and the wavelength λ
of the light. This setup has been harnessed to emulate a large
number of Hermitian topological phases (Rechtsman et al.,
2013; Noh et al., 2015, 2018; El Hassan et al., 2019) and,
including staggered patterns of gain and loss in the wires, the
time evolution of effectively NH models has also been
successfully simulated. This includes the experimental reali-
zation of exceptional rings (Cerjan et al., 2019) (cf. Sec. II.B),
defect states in NH-SSH chains (Weimann et al., 2017)
(cf. Sec. III.A.4), topological phase transitions (Zeuner
et al., 2015), and PT-symmetric flatbands (Biesenthal
et al., 2019), whereas a study of the stability of corner states
against gain and loss has also been proposed (Özdemir and El-
Ganainy, 2019). Here it is worth noting that passive systems
with only staggered loss, such as that from waveguides of
alternating quality, is sufficient to generate such phases:
Although the energies are confined to the lower complex
half plane, a global shift can make the system effectively PT
symmetric in a description, where the less lossy waveguides
thus effectively experience gain (Guo et al., 2009; Feng et al.,
2013; Ornigotti and Szameit, 2014; Weimann et al., 2017;
Kremer et al., 2019). Furthermore, a truly PT-symmetric
system has been realized by making use of optical fibers by
Regensburger et al. (2012), where the use of optical amplifiers
and modulators allows for the realization of a PT-symmetric
structure in the temporal domain.

2. Mechanical systems

Mechanical systems represent another experimental
medium with which NH phases can be realized. One such
system is provided by mechanical metamaterials [see Huber
(2016) and Bertoldi et al. (2017) for recent reviews], which
can be described as networks consisting of masses that are
connected via springs of rigid beams and are governed by
Newton’s equations. Newton's equations of motion for a
system of coupled oscillators ẍ ¼ −Dijxj þ Aij _x, with xi
the oscillators, A describing the nondissipative coupling
between position and velocity, and D the dynamical matrix
capturing the forces between oscillators, can be recast into the
following Hermitian eigenvalue problem:

i∂t

� ffiffiffiffi
D

p
Tx

i_x

�
¼

�
0

ffiffiffiffi
D

p
Tffiffiffiffi

D
p

iA
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D

p
Tx

i_x

�
;

as detailed by Kane and Lubensky (2014), Süsstrunk and
Huber (2015), and Huber (2016). Drawing from a formal
correspondence between Newton’s second law and the
Schrödinger equation, it is possible to realize topological
phases featuring phononic boundary states in these setups.
Indeed, topological phononic modes, which were classified by
Süsstrunk and Huber (2016), have been reported to appear at
the boundaries of isostatic lattices build with springs (Kane
and Lubensky, 2014), at the boundaries in models consisting
of rotors and rigid beams (Chen, Upadhyaya, and Vitelli,
2014), at dislocations in kagome lattices consisting of rigid
plates (Paulose, Chen, and Vitelli, 2015), and as helical
boundary states in a setup consisting of pendula (Süsstrunk
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and Huber, 2015). When the masses are replaced by gyro-
scopes, one obtains a so-called gyroscopic metamaterial,
which has been shown to host acoustic boundary waves
analogous to the edge states of the quantum Hall effect (Nash
et al., 2015; Wang, Lu, and Bertoldi, 2015).
Inspired by these results and the connection between the

dynamical matrix and the Hamiltonian description in these
setups, one can conceive of NH phononic phases: Starting
from a generic NH Hamiltonian matrix with off-diagonal
elements Q and Q̃, the dynamical matrix is defined as D ¼
QQ̃ (Ghatak et al., 2020). This way of writing the dynamical
matrix is in close analogy to the method presented by Kane
and Lubensky (2014), who study isostatic lattices, which are
mechanically critical in the sense that they are near collapse:
The dynamical matrix associated with the lattice is written as
D ¼ QQT , such that by taking the “square root” one obtains
the associated Hamiltonian matrix, which has Q and QT as its
off-diagonal elements. Such a dynamical matrix for NH
Hamiltonians (D ¼ QQ̃), which is asymmetric (D ≠ DT),
has been experimentally realized in robotic metamaterials
(Brandenbourger et al., 2019), which combine robotics and
active materials through building lattices consisting of
mechanical rotors, control systems, and springs. In such
setups, the NH skin effect has been observed in a nonrecip-
rocal realization (Brandenbourger et al., 2019) as well as in a
model similar to the anisotropic SSH chain described in
Sec. III.A.1 (Ghatak et al., 2020). Both experiments thus
probe the right eigenstates of the model that they investigate.
In a recent work, Schomerus (2020) showed by making use of
response theory that it is also possible to probe the left
eigenstates in these setups: Whereas right wave functions
specify the spatial distribution of the response of the setup to
an external excitation, the information on the strength of this
response with respect to where the perturbation is located is
captured by the left wave functions. When considering the
overall response, which includes contributions from both the
right and left wave functions, Schomerus (2020) showed that
the NH skin effect of the zero mode is related to a phase
transition at which the sensitivity to perturbations becomes
critical in the sense that it diverges. The inherent biorthogon-
ality of these systems thus leaves experimental signatures
beyond the characteristic energy spectra. These two experi-
ments by Brandenbourger et al. (2019) and Ghatak et al.
(2020) also prompted the study of the NH skin effect in elastic
lattices with nonlocal feedback interactions. Rosa and
Ruzzene (2020) found that nonlocal control allows for bulk
waves to localize at different boundaries, such that a judicious
choice of interactions can result in corner localization, as
illustrated in two-dimensional models. Scheibner et al.
(2020b) showed that an antisymmetric dynamical matrix D ¼
−DT can be realized in mechanical metamaterials with odd
elasticity, which occurs due to non-energy-conserving micro-
scopic interactions in active media. The odd elasticity is
predicted to facilitate the onset of exceptional points for an
overdamped lattice as well as to sustain an elastic engine cycle
for an overdamped wave (Scheibner et al., 2020), to allow for
the appearance of bulk elastic waves at the boundaries of one-
and two-dimensional metamaterials (Zhou and Zhang, 2020),
and to host a topological phase transition mediated by the

annihilation of exceptional rings in active as well as gyro-
scopic metamaterials with gain and loss (Scheibner, Irvine,
and Vitelli, 2020). In addition, a recent realization of a NH
phase in mechanical metamaterials was reported on by
Yoshida and Hatsugai (2019), who proposed that exceptional
rings appear in mechanical metamaterials with friction.
A notion of phononic or acoustic materials (Kushwaha

et al., 1993) and metamaterials beyond the previously out-
lined dynamical matrix formalism also exists and may come in
many forms. Such systems have been shown to host phononic
edge states in microtubules (Prodan and Prodan, 2009),
quantum-spin-Hall edge states in the form of elastic waves
(Mousavi, Khanikaev, and Wang, 2015), and surface acoustic
waves with negative refraction index on the surfaces of a
phononic version of a Weyl semimetal (He et al., 2018).
Acoustic waves may also propagate through fluids, and a
setup consisting of rotating fluids arranged in a crystal was
predicted to realize the chiral edge states of the quantum Hall
effect (Yang et al., 2015). This experimental platform can be
used to realize NH phases through the judicious implementa-
tion of gain and loss. Indeed, Shi et al. (2016) realized a PT-
symmetric model where gain is implemented via coherent
acoustic sources in which they acquire full control of the EP
and the accompanying unidirectional transparancy. A PT-
symmetric acoustic metamaterial was also realized by
Aurégan and Pagneux (2017) in an airflow duct with gain
and loss implemented through the scattering of acoustic waves
of diaphragms. Similarly, Rivet et al. (2018) showed that
acoustic waves with constant pressure can exist in acoustic
waveguides with gain and loss, while Zhu et al. (2018)
realized an EP in a lossy acoustic system and demonstrated
unidirectional propagation. Additional theoretical proposals
have been made for the realization of PT-symmetric second-
order topological phases in acoustic metamaterials with gain
and loss (Rosendo López et al., 2019; Zhang, Rosendo López
et al., 2019), and invisible acoustic sensors with PT symmetry
(Fleury, Sounas, and Alù, 2015).

3. Electric circuits

Electric circuits provide another classical platform for the
realization of NH topology (Albert, Glazman, and Jiang,
2015; Ningyuan et al., 2015). There, instead of properties of a
Hamiltonian, one directly studies response functions, where
capacitors and inductors act as Hermitian elements and
resistors as well as amplifiers are anti-Hermitian. As a specific
example, a current depending on frequency ω flowing through
a node i is governed by

IiðωÞ ¼
X
j

YijðωÞVjðωÞ;

where IiðωÞ and ViðωÞ are the input current and potential at
node i, respectively, and YijðωÞ is the admittance matrix or,
equivalently, the inverse impedance matrix ½Z−1ðωÞ�ij.
Specifically, YijðωÞ, with i ≠ j, is the admittance between
nodes i and j, and YiiðωÞ is the admittance between node i and
the ground (Ningyuan et al., 2015). This relation can be
derived by making use of current conservation, i.e., the total
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input current needs to equal the total output current, which
amounts to Kirchhoff’s circuit laws.
The periodicity of the electric circuit structures allows for

the use of Bloch’s theorem to find wave functions, while the
band structure of the circuits corresponds to the eigenvalues of
the admittance YijðωÞ up to a prefactor. As such, one can
interpret the admittance matrix YijðωÞ as a Hamiltonian
matrix. Through the arrangement of capacitors, inductors,
and other electronic building blocks available in this toolbox,
it is thus possible to design circuits that mimic the physics of
topologically nontrivial models. This idea was introduced by
Ningyuan et al. (2015) and has been used to build topological
circuits whose band structures, i.e., admittance eigenvalues,
also realize the band topology of the Hofstadter model (Albert,
Glazman, and Jiang, 2015; Ningyuan et al., 2015) in the
Möbius strip configuration (Ningyuan et al., 2015). More
recently the SSH chain and a two-dimensional extension
thereof as well as a Weyl semimetal spectrum were reported
on by Lee, Imhof et al. (2018), whereas corner states were
realized in two-dimensional setups by Imhof et al. (2018).
These realizations of Hermitian topological phases in

electric circuits have paved the way to the fabrication of
NH versions thereof. Indeed, by making use of resistors and
amplifiers, the NH-SSH model in Eq. (22) was realized
recently by Helbig et al. (2020), who corroborated the
theoretical predictions. The NH skin effect was subsequently
also measured by Hofmann et al. (2020). Additional proposals
have been put forward for the realization of NH honeycomb
lattices with PBCs (Luo et al., 2018), NH Chern insulators
(Ezawa, 2019b; Hofmann et al., 2019), higher-order topo-
logical models with NH skin states localized to lower-
dimensional boundaries (Ezawa, 2019c; Ezawa, 2019d),
and a quantum-walk simulation (Ezawa, 2019a) (see
Sec. IV.A.4), the realization of three-dimensional Seifert
surfaces in four-dimensional circuit setups (Li, Lee, and
Gong, 2019), as well as the implementation of a pseudomag-
netic field to probe exceptional Landau levels in NH Dirac and
Weyl systems (Zhang and Franz, 2020).

4. Quantum walks

Quantum walks, which represent a conceptual framework
rather than being limited to an experimental platform, provide
another means to simulate and probe NH topological phases.
Quantum walks can be seen as the quantum version of
classical random walks, where the “coin flip,” which intro-
duces the classical randomness by determining the trajectory
of a particle, is replaced by a coin operator acting on the
internal degrees of freedom of a particle, also known as the
“walker.” The concept of the quantum walk was introduced by
Aharonov, Davidovich, and Zagury (1993), and quantum
walks have been realized in several experimental platforms,
such as trapped atoms (Karski et al., 2009), trapped ions
(Schmitz et al., 2009; Zähringer et al., 2010), optical fiber
networks (Broome et al., 2010; Schreiber et al., 2010), and
nuclear-magnetic resonances (Ryan et al., 2005).
The dynamics of a quantum walk is captured by a Floquet

operator U, which depends on the coin operator and is related
to a time-independent effective Hamiltonian Heff via
U ¼ expð−iHeffÞ. Through a suitable choice of U, the

effective Hamiltonian Heff can be made topologically non-
trivial, resulting in the appearance of topological phases in
quantum walks as predicted in theory (Kitagawa et al., 2010;
Asbóth, 2012) and as shown experimentally in discrete-time
quantum walks (Kitagawa et al., 2012; Cardano et al., 2016;
Barkhofen et al., 2017; Flurin et al., 2017; Ramasesh et al.,
2017) [see Wu, Zhang, and Sanders (2019) for a recent
review], where the Floquet operator U is applied to the walker
at discrete time steps.
By instead considering a nonunitary Floquet operator U,

the effective Hamiltonian Heff of the model is NH, and it is
thus possible to study NH phases. This idea was introduced by
Rudner and Levitov (2009) for a NH-SSH model with loss on
every other site, thus realizing a passive version of a PT-
symmetric SSH chain, where it is shown that the average
displacement of the particle is quantized and associated with a
topological invariant. Experiments on such nonunitary quan-
tum walks reveal the existence of topological edge states at
domain walls in a PT-symmetric SSH chain in an optical
setup with balanced gain and loss (Xiao et al., 2017), as
predicted in theory (Mochizuki, Kim, and Obuse, 2016). Zhan
et al. (2017) detected topological invariants, Wang et al.
(2019b) studied dynamic quantum phase transitions in a PT-
symmetric system, Wang et al. (2019a) observed skyrmions in
a PT-symmetric nonunitary quantum walk, and Longhi
(2019b) predicted the appearance of the NH skin effect and
a symmetry-breaking phase transition in a PT-symmetric
discrete-time nonunitary quantum walk. Models with aniso-
tropic hoppings have also been realized in a discrete-time
nonunitary quantum-walk setup, where the NH skin effect
has been explicitly detected (Weidemann et al., 2020; Xiao
et al., 2020).

B. Quantum many-body systems

While most early applications of NH topology were based
on classical physics and single-particle quantum mechanics,
non-Hermiticity also plays an important role in genuinely
quantum mechanical many-particle systems. Indeed, the study
of NH Hamiltonians in this context has a long history of
applications, such as in nuclear and atomic physics (Majorana,
1931a, 1931b; Breit and Wigner, 1936; Feshbach, Porter, and
Weisskopf, 1954; Feshbach, 1958; Fano, 1961; Rotter, 2009).
More recently the relevance of these Hamiltonians to topo-
logical phases has been investigated in several quantum many-
body platforms, as outlined next.

1. Open systems

Quantum master equations.—The most natural source of
non-Hermiticity in quantum many-body systems is the quan-
tum dissipation induced by coupling the system to its
environment. A realm of direct relevance involves quantum
optical setups and ultracold atomic gases, where experiments
are often carried out in the regime of a weak coupling to a
Markovian reservoir represented by the continuum of sur-
rounding electromagnetic field modes. In such situations, the
relevant equation of motion for the reduced density matrix ρ of
the open system is the Lindblad master equation (Lindblad,
1976)
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∂tρ ¼ i½ρ; H� þ
X
n

�
LnρL

†
n −

1

2
fL†

nLn; ρg
�
; ð30Þ

where the jump operators Ln account for the coupling to the
environment. Focusing mostly on the case of pure dissipation
(H ¼ 0), the dissipative preparation of topological states
within the full Lindblad setting has been investigated
(Diehl et al., 2011; Bardyn et al., 2013; Budich, Zoller,
and Diehl, 2015; Goldstein, 2019; Tonielli et al., 2020).
However, owing to the complexity of the Lindblad master
equation, a different approach is desirable for obtaining an
intuitive understanding of the interplay between coherent
quantum dynamics, dissipation, and topology in complex
quantum many-body systems. To this end, one useful
approach is to note that the Lindblad equation can conven-
iently be written as ∂tρ ¼ iðρH†

eff −HeffρÞ þ
P

n LnρL
†
n,

where the effective NH Hamiltonian

Heff ¼ H −
i
2

X
n

L†
nLn ð31Þ

describes the dynamics at short times (Carmichael, 2014). At
longer times the so-called jump (or recycling) term

P
n LnρL

†
n

accounting for the actual occurrence of quantum jumps can
typically no longer be neglected. In the general situation this
thus leads to decoherence (and hence mixed states), while the
effective non-Hermitian description is by construction in
terms of less general pure states. Nevertheless, the relevance
of NH Hamiltonians for Lindblad systems reaches far beyond
the obvious realm at short lifetimes: It is easy to construct
intriguing examples where the steady state of the Lindblad
equation is identical to the t → ∞ state resulting from the
nonunitary time evolution of an effective NH Hamiltonian. A
simple and constructive way of achieving this is to reverse
engineer models using the condition Lnjψi ¼ 0 (Diehl et al.,
2011), which in effect can target, for example, the ground state
jψi of a model Hamiltonian with a suitable choice of the
Lindblad jump operators. This approach is particularly well
suited for preparing topological phases that quite generically
have parent Hamiltonians composed of noncommuting terms
that can nevertheless be simultaneously minimized. This may
serve as an efficient way of harnessing dissipation and the
intuition from NH Hamiltonians to realize essentially
Hermitian topological phases. It is also worth noting that
the effective Hamiltonian (31) has eigenvalues in the lower
complex half plane Im½E� ≤ 0. This highlights the fact that
the Lindblad equation, even in the regime accurately cap-
tured by Eq. (31), imposes a fundamental constraint on
eligible NH Hamiltonians relative to the fully generic case;
see Sec. II.D.
For Gaussian systems described by a Lindblad equation that

is quadratic in the field operators, there is another way of
systematically deriving an effective NH description in terms of
a damping matrixHD (Eisert and Prosen, 2010; Prosen, 2010).
Complementary with the previously mentioned Heff , the NH
matrix HD governs how deviations from the steady state are
damped out, thus describing the long-time limit of the
Lindblad equation. These two effective NH matrices have
been shown to generally differ in their topological properties

(Song, Yao, and Wang, 2019a). In the context of Gaussian
Lindbladians, genuinely NH phenomena have recently been
discovered (Hatano, 2019; Song, Yao, andWang, 2019a; Lieu,
McGinley, and Cooper, 2020). A salient example along these
lines is that the phenomenology of the non-Hermitian skin
effect carries over, mutatis mutandis, to the more fundamental
Lindblad setting (Song, Yao, and Wang, 2019a), where it had
previously been overlooked. Moreover, exceptional points
also appear naturally within the Lindblad master equation
framework (Hatano, 2019), and certain classes of quadratic
Lindblad operators admit a classification analogous to that of
NH Hamiltonians (Lieu, McGinley, and Cooper, 2020).
Material junctions in quantum transport setups provide

another generic and conceptually clear electronic setting for
realizing NH topological phases; see Bergholtz and Budich
(2019) for a detailed discussion. In fact, the well-established
theory of quantum transport that has been used and exper-
imentally tested over decades of intense research is entirely
based on NH physics; see Datta (2005). A more recent
development is essentially the perspective that these problems
can be recast in the systematic context of NH topology, which
has already inspired suggestions for novel phenomena in
experimentally accessible solid-state setups. We now consider
such a setup, where one side of the junction is considered to be
a thermal reservoir (lead), which induces a self-energy on the
surface of the system, thus leading to the effective NH system
Hamiltonian

HNH ¼ H þ Σr
LðωÞ; ð32Þ

where H is the Hermitian Hamiltonian of the isolated system
and Σr

LðωÞ denotes the retarded self-energy at energies ω close
to the chemical potential reflecting the coupling to the lead.
Owing to causality all eigenvalues of Σr

LðωÞ reside in the
lower half plane Im½E� ≤ 0. Since Σr

LðωÞ is generically non-
Hermitian and matrix valued, it can have drastic implications
for the topology of the interface states. This has been
investigated in the context of superconducting junctions
featuring EPs (Pikulin and Nazarov, 2012, 2013; San-Jose
et al., 2016; Avila et al., 2019) as well as in interfaces between
topological insulators coupled to ferromagnetic leads (Chen
and Zhai, 2018; Philip, Hirsbrunner, and Gilbert, 2018;
Bergholtz and Budich, 2019). In the latter case, the Hall
conductance in the gapped phase loses its quantization (Chen
and Zhai, 2018; Philip, Hirsbrunner, and Gilbert, 2018) thus
signaling a breakdown of the topological nature of the system
that is well known from the Hermitian limit. However, the
non-Hermiticity of this setup can also promote the topological
properties: While the ferromagnet breaks time-reversal sym-
metry, one would expect it to generally open a gap in the
surface theory. As shown by Bergholtz and Budich (2019),
there is a critical angle of the magnetization beyond which the
dissipation overcomes the gap, thus promoting the symmetry-
protected surface topology to a nodal NH topological phase
with EPs and NH Fermi arcs that does not rely on any
symmetry.
Photonic and hybrid systems also feature NH topology in

the quantum regime. An example of this is the concept of
topological lasers (Bahari et al., 2017; St-Jean et al., 2017;
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Bandres et al., 2018; Harari et al., 2018; Longhi, 2018;
Longhi and Feng, 2018; Parto et al., 2018; Zhao et al., 2018).
Lasers fundamentally depend on gain, and the basic idea of
topological lasers thus includes ingredients of topology,
quantum mechanics, and non-Hermiticity.
NH topology may also appear in less obvious ways,

as exemplified in the bosonic Bogoliubov–de Gennes
(BdG) problem, which occurs naturally in various settings
ranging from photons under parametric driving (McDonald,
Pereg-Barnea, and Clerk, 2018) to exciton polariton systems
(Bardyn et al., 2016) and cold atomic gases (Barnett, 2013).
Although superficially identical to the fermionic BdG problem
well known from the theory of superconductivity, the trans-
formation needed to diagonalize the BdG Hamiltonian for
bosons is paraunitary rather than unitary and the correspond-
ing spectra are not generally real. Indeed, parametric insta-
bilities corresponding to complex eigenvalues are known to
occur in several experimentally relevant settings (Barnett,
2013; Galilo, Lee, and Barnett, 2015; Peano, Houde, Brendel
et al., 2016; Peano, Houde, Marquardt, and Clerk, 2016; Shi,
Kimble, and Cirac, 2017). As such, these provide a distinct
raison d’être for NH classification schemes, as observed by
Lieu (2018b). We note that a generic mapping between
parametrically driven Hermitian bosonic models and non-
Hermitian Hamiltonians beyond the BdG formalism also
exists and can be used to realize NH topologically nontrivial
models in Hermitian bosonic setups (Wang and Clerk, 2019).
Shaken cold atoms in optical lattices provide yet another

platform for topological physics (Eckardt, 2017), and atomic
losses can in principle trigger the NH skin effect (Li, Lee, and
Gong, 2020).

2. Emergent dissipation in closed systems

At a global level, a closed quantum mechanical system
undergoing unitary time evolution does not feature dissipa-
tion. However, local observables in interacting quantum
many-body systems obey nonlinear equations of motion, thus
effectively leading to dissipative dynamics. In this context, it
has been proposed that dissipation in the form of emergent
non-Hermiticity can have a profound impact on the low-
energy description of interacting and disordered quantum
matter (Kozii and Fu, 2017; Yoshida, Peters, and Kawakami,
2018; Zyuzin and Zyuzin, 2018; Michishita and Peters, 2020).
Phenomenologically, this scenario is reminiscent of the
concept of eigenstate thermalization (Deutsch, 1991;
Srednicki, 1994), a generic feature of nonintegrable quantum
systems with a large number of degrees of freedom, where the
system acts as its own thermal bath for local observables. In
the present context, quasiparticles with a given momentum
scatter off each other or at impurities and thereby acquire a
finite lifetime. The corresponding self-energy is non-
Hermitian and, when sufficiently generic, one may thus, for
example, expect it to feature exceptional degeneracies and
their concomitant phenomenology, as discussed in Sec. II.A.2.
Along these lines, suggestions about emergent topological

NH phenomena have been put forward in heavy fermion
systems, which are natural due to the extreme renormalization
of the bare electron properties (Yoshida, Peters, and
Kawakami, 2018), in nodal semimetals, which, according

to the general discussion in Sec. II.B.1, provide an ideal
setting for NH nodal phases (Zyuzin and Zyuzin, 2018;
Kimura, Yoshida, and Kawakami, 2019; Moors et al.,
2019; Yoshida et al., 2019; Zyuzin and Simon, 2019), in
strongly correlated Kondo materials (Michishita, Yoshida, and
Peters, 2020), and for magnons (the spin-wave excitations of
quantum magnets), which provide another natural platform for
NH topology, as explored by McClarty and Rau (2019).
Bosonic BdG Hamiltonians also occur in the context of
magnons, which provides an alternative way of arriving at
NH phenomenology, such as in ferromagnetic materials
(Shindou et al., 2013), along the lines previously discussed
in the context of open systems.
Related ideas of emergent EPs were also put forward early

on in the context of nodal-line semimetals in the presence of
an external magnetic field (Molina and González, 2018) and
radiated by circularly polarized light (González and Molina,
2017). Furthermore, the interplay between non-Hermiticity
and superconductivity at the level of toy models has been
investigated (Ghatak and Das, 2018). Finally, we note that
even when starting from entirely Hermitian systems, physical
insights can be gained by formally extending a given model
into the NH realm, as has been shown for Majorana wires
(Mandal, 2015) and interacting spin systems (Luitz and
Piazza, 2019).

V. CONCLUDING REMARKS

To summarize, bringing together insights from recent
literature, in this review we have discussed how relinquishing
the assumption of Hermiticity qualitatively modifies and
enriches the notion of topological band structures. Both novel
NH topological phases and fundamental changes to the bulk-
boundary correspondence have been shown to be intimately
related to the occurrence of exceptional degeneracies, a
property unique to the complex spectra of NH matrices.
These insights demonstrate that effective NH Hamiltonian
approaches can, despite their appealing conceptual simplicity,
describe intriguing topological phenomena relating to the
presence of dissipation in both classical and quantum systems.
This is in line with earlier findings in the fully microscopic
context of quantum master equations that dissipation may be
harnessed for the formation of ordered states of matter (Diehl
et al., 2008, 2011; Verstraete, Wolf, and Cirac, 2009) and is
thus better than its destructive reputation suggests. Despite the
impressive recent progress, many open questions remain in the
rapidly evolving field of NH topological matter. We close our
discussion by pointing out a few possible future perspectives.
Owing to the broad variety of experimental platforms for

NH topological systems (see Sec. IV), a natural quest is to
identify and experimentally implement potential technological
applications of topological robustness and quantization in
dissipative systems. As a promising step in this direction, the
analytical properties of exceptional degeneracies have been
reported to enhance the sensitivity of a particle detector (Chen
et al., 2017; Hodaei et al., 2017). Even though a direct gain in
sensing precision from the square-root dispersion around an
EP has been challenged (Langbein, 2018; Wang et al., 2020),
the general possibility of parametrically enhanced sensing due
to the vicinity of EPs was reported by Zhang, Sweeney et al.
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(2019). Recently, circumventing these issues as well as the
necessity of fine-tuning to an EP, the aforementioned sensi-
tivity to boundary conditions of NH topological systems has
been harnessed for proposing a novel class of sensing devices
dubbed non-Hermitian topological sensors (Budich and
Bergholtz, 2020). Providing another path toward new tech-
nology, topological lasers based on robust NH boundary and
interface states have been discovered (Bahari et al., 2017;
St-Jean et al., 2017; Bandres et al., 2018; Harari et al., 2018;
Parto et al., 2018; Zhao et al., 2018).
The robust quantization of response properties, most

prominently exemplified by the celebrated quantum Hall
effect, is a salient feature of topological phases (Hasan and
Kane, 2010). In contrast, the immediate NH generalization of
a quantum Hall setting may lead to the loss of a quantized
conductance (Chen and Zhai, 2018; Philip, Hirsbrunner, and
Gilbert, 2018). However, numerous examples of topological
invariants entailing quantized observables in dissipative sys-
tems have been found (Rudner and Levitov, 2009;
Höckendorf, Alvermann, and Fehske, 2019, 2020;
Silberstein et al., 2020; Tonielli et al., 2020), starting with
the pioneering work by Rudner and Levitov (2009), who
connected the quantized expected displacement of a quantum
walker subjected to loss to a NH winding number. Despite this
progress, a general answer to the question as to what extent
NH topological invariants lead to robustly quantized observ-
ables largely remains elusive, and thus represents an interest-
ing subject of future research.
While the NH description of classical systems is satisfac-

torily understood within a single-particle or wave picture, the
conceptually more complex case of open quantum many-body
systems effectively described by a NH Hamiltonian is still far
from a conclusive description. A few natural open questions in
this context include the following: (i) The precise relation
between different levels of description, ranging from exact
Liouvillian quantum dynamics to effective NH Hamiltonians,
particularly in the context of topological properties. (ii) The
presence of new topological phases beyond the independent
particle picture: While intriguing NH effects in interacting
systems have been reported (Roncaglia, Rizzi, and Cirac,
2010; Luitz and Piazza, 2019; Yoshida, Kudo, and Hatsugai,
2019; Carlström, 2020; Hanai and Littlewood, 2020; Lee, Lee,
and Yang, 2020; Liu et al., 2020; Matsumoto et al., 2020; Mu
et al., 2020; Shackleton and Scheurer, 2020; Yang,
Morampudi, and Bergholtz, 2020), the exploration of quali-
tatively new fractional topological phases that may be seen as
genuinely NH counterparts to fractional quantum Hall states
or spin liquids familiar from strongly correlated Hermitian
systems is still largely uncharted territory.
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Yin, C., H. Jiang, L. Li, R. Lü, and S. Chen, 2018, “Geometrical
meaning of winding number and its characterization of topological
phases in one-dimensional chiral non-Hermitian systems,” Phys.
Rev. A 97, 052115.

Yokomizo, K., and S. Murakami, 2019, “Non-Bloch Band Theory of
Non-Hermitian Systems,” Phys. Rev. Lett. 123, 066404.

Yoshida, T., and Y. Hatsugai, 2019, “Exceptional rings protected by
emergent symmetry for mechanical systems,” Phys. Rev. B 100,
054109.

Yoshida, T., K. Kudo, and Y. Hatsugai, 2019, “Non-Hermitian
fractional quantum Hall states,” Sci. Rep. 9, 16895.

Yoshida, T., R. Peters, and N. Kawakami, 2018, “Non-Hermitian
perspective of the band structure in heavy-fermion systems,” Phys.
Rev. B 98, 035141.

Yoshida, T., R. Peters, N. Kawakami, and Y. Hatsugai, 2019,
“Symmetry-protected exceptional rings in two-dimensional corre-
lated systems with chiral symmetry,” Phys. Rev. B 99, 121101.

Yuce, C., 2015, “Topological phase in a non-Hermitian PT sym-
metric system,” Phys. Lett. A 379, 1213.

Yuce, C., 2018, “Edge states at the interface of non-Hermitian
systems,” Phys. Rev. A 97, 042118.

Zähringer, F., G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C.
F. Roos, 2010, “Realization of a Quantum Walk with One and Two
Trapped Ions,” Phys. Rev. Lett. 104, 100503.

Zeuner, J. M., M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S.
Rudner, M. Segev, and A. Szameit, 2015, “Observation of a
Topological Transition in the Bulk of a Non-Hermitian System,”
Phys. Rev. Lett. 115, 040402.

Zhan, X., L. Xiao, Z. Bian, K. Wang, X. Qiu, B. C. Sanders, W. Yi,
and P. Xue, 2017, “Detecting Topological Invariants in Nonunitary
Discrete-Time Quantum Walks,” Phys. Rev. Lett. 119, 130501.

Zhang, K., Z. Yang, and C. Fang, 2020, “Correspondence between
Winding Numbers and Skin Modes in Non-Hermitian Systems,”
Phys. Rev. Lett. 125, 126402.

Zhang, M., W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L.
Jiang, 2019, “Quantum Noise Theory of Exceptional Point
Amplifying Sensors,” Phys. Rev. Lett. 123, 180501.

Zhang, X.-X., and M. Franz, 2020, “Non-Hermitian Exceptional
Landau Quantization in Electric Circuits,” Phys. Rev. Lett. 124,
046401.

Zhang, Z., M. Rosendo López, Y. Cheng, X. Liu, and J. Christensen,
2019, “Non-Hermitian Sonic Second-Order Topological Insulator,”
Phys. Rev. Lett. 122, 195501.

Zhao, H., P. Miao, M. H. Teimourpour, S. Malzard, R. El-Ganainy, H.
Schomerus, and L. Feng, 2018, “Topological hybrid silicon micro-
lasers,” Nat. Commun. 9, 981.

Zhao, H., X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng,
2019, “Non-Hermitian topological light steering,” Science 365,
1163–1166.

Zhou, D., and J. Zhang, 2020, “Non-Hermitian topological meta-
materials with odd elasticity,” Phys. Rev. Research 2, 023173.

Zhou, H., and J. Y. Lee, 2019, “Periodic table for topological bands
with non-Hermitian symmetries,” Phys. Rev. B 99, 235112.

Zhou, H., C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D.
Joannopoulos, S. Marin, and B. Zhen, 2018, “Observation of bulk
Fermi arc and polarization half charge from paired exceptional
points,” Science 359, 1009–1012.

Zhu, W., X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, 2018,
“Simultaneous Observation of a Topological Edge State and
Exceptional Point in an Open and Non-Hermitian Acoustic
System,” Phys. Rev. Lett. 121, 124501.

Zirnstein, H.-G., G. Refael, and B. Rosenow, 2019, “Bulk-boundary
correspondence for non-Hermitian Hamiltonians via Green func-
tions,” arXiv:1901.11241.

Zyablovsky, A. A., A. P. Vinogradov, A. A. Pukhov, A. V.
Dorofeenko, and A. A. Lisyansk, 2014, “PT-symmetry in optics,”
Phys. Usp. 57, 1063.

Zyuzin, A. A., and P. Simon, 2019, “Disorder-induced exceptional
points and nodal lines in Dirac superconductors,” Phys. Rev. B 99,
165145.

Zyuzin, A. A., and A. Y. Zyuzin, 2018, “Flat band in disorder-driven
non-Hermitian Weyl semimetals,” Phys. Rev. B 97, 041203.

Bergholtz, Budich, and Kunst: Exceptional topology of non-Hermitian systems

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015005-31

https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevLett.118.045701
https://arXiv.org/abs/2007.04329
https://doi.org/10.1103/PhysRevLett.124.186402
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1103/PhysRevB.99.081102
https://arXiv.org/abs/1912.02788
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevB.100.054109
https://doi.org/10.1103/PhysRevB.100.054109
https://doi.org/10.1038/s41598-019-53253-8
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1016/j.physleta.2015.02.011
https://doi.org/10.1103/PhysRevA.97.042118
https://doi.org/10.1103/PhysRevLett.104.100503
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.123.180501
https://doi.org/10.1103/PhysRevLett.124.046401
https://doi.org/10.1103/PhysRevLett.124.046401
https://doi.org/10.1103/PhysRevLett.122.195501
https://doi.org/10.1038/s41467-018-03434-2
https://doi.org/10.1126/science.aay1064
https://doi.org/10.1126/science.aay1064
https://doi.org/10.1103/PhysRevResearch.2.023173
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1103/PhysRevLett.121.124501
https://arXiv.org/abs/1901.11241
https://doi.org/10.3367/UFNe.0184.201411b.1177
https://doi.org/10.1103/PhysRevB.99.165145
https://doi.org/10.1103/PhysRevB.99.165145
https://doi.org/10.1103/PhysRevB.97.041203

