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The Novel Probes Project, an initiative to advance the field of astrophysical tests of the dark sector by
creating a forum that connects observers and theorists, is introduced. This review focuses on tests of
gravity and is intended to be of use primarily to observers, as well as theorists with an interest in the
development of experimental tests. It is twinned with a separate upcoming review on dark matter self-
interactions. The review focuses on astrophysical tests of gravity in the weak-field regime, ranging
from stars to quasilinear cosmological scales. This regime is complementary to both strong-field tests
of gravity and background and linear probes in cosmology. In particular, the nonlinear screening
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mechanisms that are an integral part of viable modified-gravity models lead to characteristic
signatures, specifically on astrophysical scales. The potential of these probes is not limited by cosmic
variance but comes with the challenge of building robust theoretical models of the nonlinear dynamics
of stars, galaxies, and large-scale structure. The groundwork is laid for a thorough exploration of the
weak-field, nonlinear regime, with an eye to using the current and next generation of observations for
tests of gravity. The scene is set by showing how gravitational theories beyond general relativity are
expected to behave, focusing primarily on screening mechanisms. Analytic and numerical techniques
for exploring the relevant astrophysical regime are described, as are the pertinent observational
signals. With these in hand a range of astrophysical tests of gravity are presented, and prospects for
future measurements and theoretical developments are discussed.
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I. THE NOVEL PROBES PROJECT

The Novel Probes Project aims to bring together theorists
and experimentalists to address questions about the dark
sector of the Universe by means of astrophysical observables.
It has two arms, one on tests of gravity as described here and
another on dark matter self-interactions (Adhikari et al.,
2020). At the heart of the project are Slack-hosted discussion
forums intended to foster collaboration between groups with
differing expertise and provide platforms on which to ask
questions to experts.1 This review outlines the topics that we
intend the forum to cover, and it will be “living” in the sense
that it will be regularly updated as theories develop and
observational constraints improve.
The forum will be partitioned into the following eight

channels, each monitored by four to five experts in the field:
(i) Theory, including cosmic acceleration and screening

mechanisms (Secs. III and IV).
(ii) The use of galaxy surveys (Sec. V).

1The gravity forum may be accessed through the project website,
https://www.novelprobes.org, and we welcome the participation of
interested researchers, regardless of their expertise in the field of
astrophysical tests of gravity.
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(iii) Analytic methods for the nonlinear regime, includ-
ing degeneracies with other types of physics (e.g.,
baryons; see Sec. VI).

(iv) The use of simulations (Sec. VII).
(v) Cosmological probes (Sec. VIII).
(vi) General astrophysical tests of modified gravity and

screening mechanisms (Secs. IX.A–IX.D).
(vii) Specific tests of thin-shell screening (e.g., chame-

leons and symmetrons; see Sec. IX.E).
(viii) Specific tests of Vainshtein screening (Secs. IX.F

and IX.G).

II. INTRODUCTION

Modern instruments and methods for probing gravity have
inaugurated a second golden age of general relativity (GR).
The first results from the Laser Interferometer Gravitational
Wave Observatory (LIGO) not only have allowed us to
confirm some of the most fundamental predictions of GR
(gravitational waves and black holes) but also have led to the
first constraints on gravity in the strong-field regime. The
exact timing of millisecond pulsars is allowing us to dramati-
cally increase the precision with which we can measure a
number of fundamental parameters that characterize devia-
tions from GR in the transition from the weak-field to strong-
field regime. And, for the first time, we have obtained images
of the event horizon of the black hole at the center of M87
using radio interferometric measurements from the consor-
tium of telescopes known as the Event Horizon Telescope.
Sagittarius A*, the black hole at the center of our Galaxy, will
be similarly imaged in the future, and these images will be
backed up by detailed measurements of stellar orbits using the
gravity program run by the European Southern Observatory.
With these new observations we expect our understanding of
gravity to drastically improve.
Observations of the large-scale structure of the Universe,

from maps of the cosmic microwave background (CMB) to
surveys of galaxies and measurements of weak gravitational
lensing, have revolutionized cosmology. It is now possible to
find accurate constraints on fundamental parameters such as
the curvature of space, the fractional density of dark matter
and dark energy, and the mass of the neutrino. Such has been
the success of these observational programs that many new
observatories and satellites have been planned and are under
construction, which will substantially improve the amount and
quality of data available to map out the structure of spacetime
on the largest scales.
A key goal of this research is to test the fundamental

assumptions that underpin our current model of cosmology.
Given that GR plays such a crucial role, there have been a
number of proposals for testing deviations from its predictions
on these previously unexplored scales. The resultant con-
straints would be complementary to those obtained on smaller
scales (for example, in the Solar System or with millisecond
pulsars) and in strong-field regimes. These test different
aspects of GR in different gravitational environments and
involve almost orthogonal measurement techniques and
systematics.

The success of GR [and the cosmological Λ cold dark
matter (ΛCDM) model that it supports] begs the question:
why should we devote significant effort to testing it? There are
many reasons. GR is resistant to incorporation into a quantum
theory of gravity, so small- and large-scale phenomena are
currently described by qualitatively different frameworks.
There is some hope that a modified theory of gravity
could be more commensurate with quantum mechanics.
Phenomenologically, GR requires the addition of dark matter
and dark energy to explain astrophysical and cosmological
observations, neither of which have nongravitational support.
This raises the possibility that these phenomena may be
artifacts arising from the application of an incorrect theory
of gravity, and many of the theories that we discuss in this
review were motivated explicitly by the hope of cosmic self-
acceleration. Finally, from an effective theory point of view
there is no reason to expect a rank-2 tensor to be the only
gravitational degree of freedom operative at large scales, and
ultraviolet (UV-) complete theories such as string theory
naturally produce additional scalars, vectors, and tensors.
The program of testing GR may therefore be viewed as the
search for more general low-energy degrees of freedom in the
Universe, which may in turn provide clues to quantum gravity
at the Planck scale.
While much of the success of modern cosmology in testing

GR and ΛCDM has relied on the accuracy and ease with
which one can calculate predictions in linear theory, there are
limitations to this approach. In particular, relying on large-
scale modes of both the gravitational and matter fields
introduces a cosmic variance limit: there is a finite amount
of information that one can access, limited by our cosmic
horizon, which translates into clear limits on the potential
strength of constraints. It makes sense, therefore, to start
exploring smaller scales where nonlinear gravitational col-
lapse plays a major role. By looking at “astrophysical”
structures (from clusters of galaxies all the way down to
stars) it should be possible to probe the weak-field regime of
gravity in a range of environments far more varied than those
accessed on either extremely large or extremely small scales.
Figures 1 and 2 show a two-dimensional representation of

this range of environments, quantified according to two
“yardsticks”: the typical Newtonian gravitational potential
of a system (in units where c≡ 1), and a measure of its
spacetime curvature; see Baker, Psaltis, and Skordis (2015) for
details. Figure 1 indicates that cosmological observables such
as the matter power spectrum [denoted PðkÞ] and angular
power spectrum of the CMB anisotropies probe low-curvature
regimes, while the Solar System probes a curvature regime
intermediate between that of cosmology and compact objects.
Note that there is a discernible “desert” in our observations
shown in Fig. 2, spanning curvatures ∼10−52–10−38 cm−2.
Figure 1 shows that this region is inhabited only by galaxies,
for which we have few reliable probes in gravitational physics.
This raises the possibility that some kind of transition scale
resides in this desert, and the question as to whether we can
identify astrophysical tests that could reveal its presence.
Programs for testing gravity using astrophysical objects in

the cosmological, weak-field regime are poorly developed.
The large sample sizes they afford can be exploited only if the

Tessa Baker et al.: Novel Probes Project: Tests of gravity on …

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015003-3



complexity of the relevant physical processes can be modeled
or controlled for. The fact that such objects necessarily involve
mildly to strongly nonlinear gravitational collapse (albeit in
the weak-field regime) is problematic, as the numerical and
semianalytic methods that have been developed to study this
collapse tend to have poorer control over systematics than
models for both large (linear) or small (Solar System and
laboratory) scales. Only recently have these methods begun to
be applied to tests of gravity and fundamental physics, besides
“galaxy formation” physics in ΛCDM. Furthermore, non-
gravitational physics can play a significant role in the
formation and resulting morphology of astrophysical struc-
tures. The interaction of gas, plasma, and radiation leads to a
slew of baryonic effects capable of either suppressing or
enhancing the gravitational collapse that one would expect
from N-body dynamics alone. If one adds to this the effect of
feedback from energetic astrophysical phenomena such as
supernovae or active galactic nuclei (AGN), it becomes
difficult to extract purely gravitational information from
observations of collapsed objects.
Gravitational theory in the nonlinear regime is typically

intricately connected with the phenomenon of “screening.” In
a number of extensions of GR with typically scalar extra

degrees of freedom, nonlinear corrections will suppress
modifications close to sources or in high-density environ-
ments. Thus, deviations from GR are masked (and may
become negligible) in regions where gravity is stronger.
There are a few different types of screening mechanisms,
and while there are attempts to create a unified framework, no
approach has proved satisfactory in all respects. This com-
plicates the program of extracting information from this
regime in a controlled manner but at the same time offers
the prospect of testing a great range of modified-gravity
theories by means of just a few screening mechanisms.
Given the complications that arise when testing gravity in

the nonlinear regime, it is not surprising that it has yet to be
targeted systematically. This makes this regime ripe for
exploration, both theoretically and observationally. Given
the abundance of present and upcoming measurements, it
behooves us to create and fully develop frameworks for
extracting the gravitational information. On the one hand,
this might involve adapting some of the tried and tested
statistical methods that are used to study the large-scale
structure of the Universe: correlation functions of various
orders in both configuration and Fourier space contain some
of the primary information. But one ought also to consider
statistical methods that could tease out information beyond the
moments of the correlation function, or deviations from GR,
in particular, environments such as clusters, dwarf galaxies,

FIG. 1. Landscape of gravitational environments probed by
known systems. The x axis indicates the characteristic gravita-
tional potential of the system, and the y axis approximately
quantifies the typical spacetime curvature probed by that system
(note that the y-axis quantity is not exactly the Ricci curvature, as
this vanishes for vacuum systems). For details on this figure and
its implications, see Baker, Psaltis, and Skordis (2015).

FIG. 2. Similar to Fig. 1, but with experimental or observational
tests corresponding to each region.
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and voids. The morphology and dynamics of these objects
may be acutely sensitive to gravitational features below the
resolution limit of (or washed out in) conventional statistical
methods.
In this review we will lay the groundwork for a thorough

exploration of the weak-field, nonlinear regime of gravita-
tional collapse (with an emphasis on cosmological scales),
with an eye toward exploiting the current and next generation
of cosmological surveys. Our review should be seen as
complementary to current reviews on constraining gravity
with gravitational waves, compact objects, and black holes,
and more focused on the strong-field regime. We begin with a
summary of the impact of the recent LIGO detection of a
neutron star merger and gamma-ray counterpart [GW170817
and gamma-ray burst (GRB) 170817A], which restricts, but
does not eliminate, the viable parameter space of modified
gravity, and comment on the prospect of a dynamical origin to
the acceleration of the Universe’s expansion in light of this
(Sec. III). We then introduce and explain the screening
mechanisms used to hide novel effects within the Solar
System (Sec. IV). We describe the current and planned
surveys providing useful information on gravity in the non-
linear regime (Sec. V) before discussing the features of this
regime more generally (Sec. VI), including the degeneracy
between gravitational and galaxy formation physics and the
estimators that have been devised to overcome it. In Sec. VII
we present simulations with modified gravity on both cos-
mological and smaller scales, and in Sec. VIII we discuss
observational tests on cosmological scales. The bulk of the
review is contained in Sec. IX, where we present a suite of
astrophysical tests that target screening. We split these
according to the type of screening mechanism covered and
include probes from the scale of stars to galaxy clusters.
Finally, in Sec. X we discuss future theoretical and observa-
tional prospects.
This review primarily targets observers seeking novel

applications of their data to tests of fundamental physics
(although it is also intended to be useful to theorists). We
therefore keep theoretical complexity to a minimum and
exclude aspects of the models that are of purely formal or
theoretical interest. We shall update the review regularly as
new ideas are developed and proposed tests carried out and
couple it with a discussion forum hosted by Slack,2 where we
shall answer questions from, and collaborate with, interested
parties.
A note on scope.—We consider astrophysical probes to be

those pertaining to scales in the Universe that are not currently
linear, i.e., r≲Oð102Þ Mpc. We include galaxy surveys
within this class, as well as galaxy clusters and voids. We
restrict ourselves to the weak-field regime to focus on physics
that is relevant cosmologically; we therefore discuss the
physics of compact objects only insofar as they are relevant
for cosmological modified-gravity theories. We further
exclude tests of gravity within the Solar System and on
Earth, which involve significantly different techniques and
observables than those on larger scales and probe objects that
most viable modified-gravity objects would consider

screened. We consider a probe “novel” if it is not well
established as a principal science target of current surveys
or experiments. Finally, we exclude modified-gravity theories
such as modified Newtonian dynamics (MOND) that do not fit
comfortably into modern field-theoretic frameworks and have
limited domains of validity; MOND itself was extensively
reviewed by Famaey and McGaugh (2012).

III. MODIFIED GRAVITY AFTER GW170817

A. Bounds on the speed of gravitational waves

The first direct detection of gravitational waves (GWs) from
a binary neutron star (BNS) merger was made by the LIGO-
Virgo Collaboration on August 17, 2017, and announced
publicly on October 16, 2017 (Abbott et al., 2017a). A
multiwavelength electromagnetic follow-up campaign cap-
tured the electromagnetic counterpart of the merger, as the
kilonova emission rapidly brightened and faded over the next
weeks (Abbott et al., 2017b).
GW170817 presented an opportunity to place bounds on

the speed of gravitational waves. In general relativity gravi-
tational waves travel at the speed of light but, as detailed later,
many modified-gravity theories alter this prediction. A
common model-independent parametrization used to describe
the speed of GWs is (Bellini and Sawicki, 2014)

c2T ¼ c2½1þ αTðtÞ�; ð1Þ

where cT is the propagation speed of the tensor modes and t
is the physical time. The function αTðtÞ can adopt both
positive and negative values in principle, although negative
values were bounded even prior to GW170817 by the lack of
observed gravi-Čerenkov radiation from ultra-high-energy
cosmic rays (∼1010 GeV) (Caves, 1980; Moore and Nelson,
2001). Note that the energy scale of these bounds is much
higher than that relevant to this discussion.
For our purposes, the crucial feature of GW170817 was

that the first electromagnetic signals of the merger, gamma
rays, arrived at Earth 1.74 s after the arrival time of GWs
corresponding to the merger. Because the source was com-
paratively local in cosmological terms, located at a physical
distance d ¼ 40 Mpc (z ∼ 0.01), a simple Euclidean treatment
of distances is sufficient. Then we can write the difference in
the arrival times of the photons and gravitational waves as
(Nishizawa and Nakamura, 2014; Lombriser and Taylor,
2016; Baker et al., 2017; Creminelli and Vernizzi, 2017;
Ezquiaga and Zumalacárregui, 2017; Sakstein and Jain, 2017)

Δt ¼ tint þ δt ¼ tint þ tγ − tGW

¼ tint þ
d
c
−

d
cT

¼ tint þ
d
c

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT

p
�

≃ tint þ
d
c
αT
2
. ð2Þ

Here tγ and tGW are the times taken for the photons and GWs
to travel distance d, respectively. tint is an intrinsic time delay2See https://www.novelprobes.org.
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between the emission of the two signals, i.e., a delay occurring
at the source. According to current modeling of BNS mergers,
this intrinsic delay could be up to ∼10 s in duration for
short GRB (sGRB) associations, and potentially up to hour
timescales for long GRB associations (Finn, Mohanty, and
Romano, 1999; Abadie et al., 2012; Zhang, 2019). In
principle, it could be of either sign; i.e., it is possible that
the photons could be emitted before the GWs. Of the
previously mentioned time intervals, the only one that we
can measure is Δt ¼ 1.74 s, indicating that these events are
consistent with a BNS-sGRB association.
Rearranging the previous expression, we finally obtain

αT ≃
2c
d
ðΔt − tintÞ. ð3Þ

If we assume the GW and photon emission to be exactly
simultaneous, setting tint ¼ 0, this results in a bound of
αT ≲ 10−15. If we allow for 100 s of intrinsic delay in either
direction, this weakens the bound to jαT j≲ 10−13. Note that
really we are bounding the value of the αTðtÞ function only at
t ≃ 0, which in principle does not rule out nontrivial evolution
in the past. Prior to GW170817, the most stringent LIGO-
Virgo bounds on the propagation speed of GWs was
0.55 < cT < 1.42, which was found by Cornish, Blas, and
Nardini (2017) using Bayesian methods applied to the first
three binary black-hole merger detections. GW170817
improved these by several orders of magnitude.
Even when adopting the most conservative of the previ-

ously mentioned bounds, this result remains an impressively
stringent constraint on a key deviation from GR. A straight-
forward interpretation of this result is that any viable theory of
gravity must possess tensor modes that propagate at the speed
of light exactly (and that tint ≃ 1.74 s for this event); this has
general implications for the structure of gravity theories, as we
detail in Sec. III.B. However, a loophole remains: it is
theoretically possible for a gravity theory to be structured
such that 0 < αT < 10−13. Without some physical principle or
symmetry to enforce such a near cancellation, this would seem
to require a significant degree of fine-tuning of the theory.
It was pointed out by de Rham and Melville (2018) that, by

coincidence, the frequency of the binary neutron star merger
lies close to a generic strong coupling frequency of low-
energy effective field theories (EFTs) of modified gravity
(Gleyzes et al., 2013, 2015b, 2016; Gubitosi, Piazza, and
Vernizzi, 2013). Recall that an EFT utilizes an expansion in
low-energy scales to keep only the most relevant Lagrangian
operators of a theory. However, the coefficients of these
operators can run with the energy scale; when they are of the
order of unity, the theory is said to be strongly coupled. It is
then no longer safe to assume that operators originally
neglected in the low-energy theory are irrelevant. They must
be accounted for, which is frequently not possible (since the
UV completion of a theory is often unknown). As a result, the
low-energy EFT has broken down and can no longer be used.
de Rham and Melville (2018) argued that, when a dark

energy EFT has typical parameter values needed to give it
interesting dynamics on cosmological scales, the energy
scale of GW170817 potentially lies within its strongly
coupled regime. This calls into question the validity of

straightforwardly applying the previous time delay results
to Horndeski gravity (introduced later) or the associated low-
energy effective theories. Furthermore, de Rham and Melville
argued that if a low-energy effective theory is to admit a
Lorentz-invariant completion, one would expect the action of
operators above the strong coupling scale to return the speed
of tensor modes to c. This argument ultimately depends on the
specifics of a particular gravity model. Hence in what follows
we present the results of a straightforward application of the
binary neutron star constraints to modified-gravity theories,
assuming no strong coupling scales come into play. However,
one should carefully check whether future theoretical models
are subject to this caveat.

B. Consequences for existing theories

1. Scalar-tensor theories

To understand the implications of the previous bounds, it is
helpful to study the deviations cT ≠ c in some sample models.
One of the most useful to pursue is Horndeski gravity, which
is the most general theory of a gravitational metric and a
scalar field ϕ that propagates 3 (one scalar and two tensor)
degrees of freedom (Horndeski, 1974; Deffayet et al., 2011;
Kobayashi, Yamaguchi, and Yokoyama, 2011). The
Horndeski Lagrangian is equivalent to that obtained when
applying the previously referenced EFT approach to a theory
of a metric and a scalar field.3 The original formulation of
Horndeski gravity is constructed as a sum of four Lagrangian
terms

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li½ϕ; gμν�
�
; ð4Þ

where

L2 ¼ Kðϕ; XÞ; ð5Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð6Þ

L4 ¼ G4ðϕ; XÞRþ G4;Xfð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕg; ð7Þ

L5¼G5ðϕ;XÞGμν∇μ∇νϕ−1
6
G5;Xfð∇ϕÞ3−3∇μ∇νϕ∇μ∇νϕ□ϕ

þ2∇ν∇μϕ∇α∇νϕ∇μ∇αϕg; ð8Þ

and X ≡ −∇νϕ∇νϕ=2. Here K and Gi are four functions that
control the contribution from each sub-Lagrangian. Note that
the derivatives of G4 and G5 are also relevant; we have
suppressed the arguments of these differentiated functions
(G4;X and G5;X) for clarity. A linearized calculation shows that
the function αT introduced in Eq. (1) is related toG4 andG5 by
(Kobayashi, Yamaguchi, and Yokoyama, 2011; Bellini and
Sawicki, 2014; Baker et al., 2017; Creminelli and Vernizzi,

3Though the EFT approach also permits extension to include
higher-derivative “beyond Horndeski” operators, whose higher
derivatives cancel in the field equations. These operators are not
present in the original formulation of the Honrndeski Lagrangian
shown in Eqs. (4)–(8).
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2017; Ezquiaga and Zumalacárregui, 2017; Sakstein and Jain,
2017)

αT ≡ 2X
M2�

½2G4;X − 2G5;ϕ − ðϕ̈ − _ϕHÞG5;X�; ð9Þ

where M2� ≡ 2ðG4 − 2XG4;X þ XG5;ϕ − _ϕHXG5;XÞ. When
combined with the bound αT jz¼0 ≲ 10−13 derived in
Sec. III.A, Eq. (9) has strong implications for theories within
the broad Horndeski family. As previously mentioned, there
are two broad routes to interpret Eq. (9). In Sec. III.C we
enumerate methods to render αT jz¼0 small but nonzero. In this
section we discuss the implications of requiring αT ¼ 0

identically.
The simplest way to ensure that Eq. (9) vanishes is to set

each of the function derivatives G4;X, G5;X, and G5;ϕ to zero
individually. Feeding this information back into Eq. (4)
reduces L4 to a conformal coupling [i.e., a simple function
G4ðϕÞ] to the Ricci scalar (Kimura and Yamamoto, 2012;
McManus, Lombriser, and Peñarrubia, 2016). The remaining
piece of the L5 Lagrangian can be eliminated entirely by
integrating by parts and using the Bianchi identity ∇μGμν ¼ 0.
After this exercise we are left with the following template

for scalar-tensor theories:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fG4ðϕÞRþ Kðϕ; XÞ − G3ðϕ; XÞ□ϕg þ SM;

ð10Þ

where SM is the matter Lagrangian. Some examples of
theories that fit into this template (and hence produce
cT ¼ c) are fðRÞ gravity, the cubic Galileon, kinetic gravity
braiding (KGB), and the scalar-tensor limit of the non-self-
accelerating branch of the Dvali-Gabadadze-Porrati brane-
world model (nDGP) (Nicolis and Rattazzi, 2004; Nicolis,
Rattazzi, and Trincherini, 2009; Deffayet et al., 2010; Sotiriou
and Faraoni, 2010). For example, fðRÞ gravity corresponds to
the choices G4 ¼ ϕ≡ dfðRÞ=dR ¼ fR, K ¼ fðRÞ − RfR,
and G3 ¼ 0; fðRÞ models are strongly constrained (but not
eliminated) by electromagnetic datasets (de la Cruz-Dombriz
et al., 2016). The cubic Galileon is recovered from the
Horndeski action by setting G4 ¼ 1, K ¼ −c2X, and
G3 ¼ c3X=M3, where c3 and M are free parameters of the
Galileon model4; the cubic Galileon was powerfully con-
strained by Renk et al. (2017) using Galaxy–integrated Sachs-
Wolfe (ISW) cross-correlation. KGB and nDGP remain viable
(Lombriser et al., 2009; Kimura, Kobayashi, and Yamamoto,
2012a; Barreira, Sánchez, and Schmidt, 2016), although the
latter requires some form of dark energy to produce accel-
erated expansion. In contrast, other models such as the quartic
and quintic Galileons, which invoke the full complexity of L4

and L5, are now ruled out, at least in this straightforward
interpretation of the results.

There are other ways to make Eq. (9) vanish identically.
One would be to posit that all three of its component terms are
finely balanced such as to cancel one another out. However, it
would seem difficult to enforce such a cancellation for all
redshifts, given the appearance of the background-dependent
quantities H and _ϕ. Hence observations of a second, similar
binary neutron star merger at higher redshift should be able to
easily confirm or refute this hypothesis. It is also highly likely
that inhomogeneities will spoil these tunings.
Several other ways of evading the bound on jαT j within

Horndeski theory have been explored. Through careful
analysis, Copeland et al. (2019) found a subtle loophole in
the derivation of the GW propagation speed that allows for
special choices of the quartic and quintic Horndeski
Lagrangians to persist. With these special forms, the deviation
of the GW speed from unity vanishes dynamically on
cosmological backgrounds when the scalar equation of motion
is used. This trick of rescuing a particular class of theories
works only on a homogeneous cosmological background; the
anomalous GW speed contribution appears to be unviable
when cosmological perturbations are taken into account.
Another possibility would be to require G5;X ¼ 0, but

G4;X ¼ G5;ϕ, i.e., to insist upon a specific connection between
the functional forms appearing in L4 and L5. Further relations
of this kind are possible in extensions of Horndeski gravity,
namely, beyond Horndeski gravity and degenerate higher-
order scalar-tensor (DHOST) theories; see Zumalacárregui
and García-Bellido (2014), Gleyzes et al. (2015a, 2015b),
Koyama and Sakstein (2015), Langlois and Noui (2016),
Langlois (2017), Chagoya and Tasinato (2018), Crisostomi
and Koyama (2018a, 2018b), Kase and Tsujikawa (2018),
Kobayashi and Hiramatsu (2018), and Langlois et al. (2018)
for further details. However, the beyond Horndeski extension
itself is now effectively ruled out by analyses revealing that it
permits GWs to decay into fluctuations of the dark energy
scalar field (Creminelli et al., 2018, 2019b). Such a process
would likely occur rapidly and prevent any detectable GWs
from reaching Earth, rendering the theory nonviable. Weaker
bounds on the remaining parameter space of Horndeski
gravity from related considerations were recently presented
by Creminelli et al. (2019a).

2. Vector-tensor and tensor-tensor theories

A calculation analogous to the previously mentioned one
can be repeated for general vector-tensor theories. The most
general Lorentz-invariant, second-order vector-tensor theory
currently known is the beyond generalized Proca theory
(Heisenberg, 2014; Tasinato, 2014), which has a structure
of derivative interactions similar to Horndeski gravity (note
that the vector field must be massive for this to be possible).
However, unlike Horndeski theory, it has not yet been shown
that beyond generalized Proca theory contains all possible
terms resulting in second-order equations of motion. The final
result of the generalized Proca calculation has the same
structure as Eq. (10), except that the equivalent of G4 is
fixed to be a constant, and the equivalent K and G3 are
functions of X ¼ −1=2AμAμ only. Further details were given
by Lagos et al. (2018).

4All parameters in the Galileon field equations appear as ratios
with c2. It is common practice to fix c2 ¼ −1 and constrain the
remaining free parameters under this choice.
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Analogous to the previously described DHOST extensions
of Horndeski, there exists a DHOST-like extension of gen-
eralized Proca theory (Kimura, Naruko, and Yoshida, 2017).
This family of models contains members that are consistent
with the bounds from GW170817 (Kase et al., 2018).
A related but distinct branch of work pursues Lorentz-

violating vector-tensor theories, in which the vector defines a
preferred direction in the cosmological background. One
example is Einstein-Aether gravity, in which the preferred
direction (which must be timelike to preserve spatial isotropy)
is enforced via a Lagrange multiplier. Of the four ci param-
eters defining the Einstein-Aether action, the GW speed is
controlled by two of them as c2T ¼ c2=ð1 − c1 − c3Þ (note that
these are not the same ci defining Galileon theories; the use of
repeated notation is unfortunate). The results from event
GW170817 imply the bound jc1 þ c3j < 10−15; see Oost,
Mukohyama, and Wang (2018) for further details.
Another example is Hořava-Lifschitz gravity (a small

family containing a few subcases) (Hořava, 2009; Blas,
Pujolàs, and Sibiryakov, 2010; Clifton et al., 2012): here
local Lorentz invariance is recovered as an approximate
symmetry at low energies but broken at extremely high
energies. The impact of GW170817 on Hořava-Liftschitz
theories was detailed by Emir Gümrükçüoğlu, Saravani, and
Sotiriou (2018); in short, the constraint on jαT j maps directly
onto a tight constraint on the parameter β that appears in the
low-energy limit of the Hořava-Lifschitz action.
The logical continuation of these results is to ask what the

implications are for tensor-tensor theories, i.e., bigravity. Here
the GW timings can be more physically interpreted as
bounding the massive graviton mode. The constraint from
GW170817 results in a boundmg ≲ 10−22 eV, wheremg is the
graviton mass. Although this may initially seem restrictive, the
bound is already surpassed by existing tests of gravity in the
Solar System, which imply that mg ≲ 10−30 eV (de Rham,
Deskins et al., 2017). In essence, the status of massive
graviton theories has been unaffected by the results of
GW170817.
Finally, we note that the multifield tensor-vector-scalar

theory (TeVeS) was closely scrutinized in light of the
measurements of GW speed. While the original formulation
of TeVeS is ruled out by the GW170817 results (Boran et al.,
2018; Gong et al., 2018; Hou and Gong, 2018), Skordis and
Złośnik (2019) found a class of extended TeVeS-like theories
that yield cT ¼ c and hence are consistent with the GW
bounds.

C. Other survivors

As we have detailed, a straightforward interpretation of the
GW170817 observations puts firm restrictions on the form of
viable, cosmologically relevant scalar-tensor and vector-ten-
sor theories of gravity. However, there remain some more
subtle ways to maintain consistency with the GW results. We
will enumerate here the ones that we are aware of at present:

• Tuned cancellations.—As explained in Sec. III.B, if the
Lagrangian functions appearing in either the beyond
Horndeski or generalized Proca models are related in
specific ways, a suppression of the value of αT jz¼0 can be

arranged. The most finely tuned models of this kind can
be ruled out by a second set of BNS merger observations
at a higher redshift than GW170817. From a theoretical
perspective, such models are highly fine-tuned and are
radiatively unstable unless there is some symmetry
enforcing an infinite set of tunings. We are aware of
no such symmetries.

• DHOST-like extensions of both scalar-tensor and
vector-tensor theories.—These are higher-derivative ex-
tensions of Horndeski and generalized Proca models,
which include the beyond Horndeski and beyond gen-
eralized Proca models as subcases. In the original
DHOST family (extensions of the Horndeski model),
all three terms in Eq. (7) have independent amplitudes,
and new terms containing more than three copies of the
field are present. This enhanced flexibility allows the
constraint αT ¼ 0 to be satisfied by “using up” fewer
functions; hence more of the full Lagrangian survives.
The disadvantage is that the theory is defined by more
functions and hence is more challenging to constrain
observationally. This extended class of theories has
received much attention since the GW results (Crisos-
tomi and Koyama, 2018a; Kobayashi and Hiramatsu,
2018; Langlois et al., 2018). The equivalent results for
DHOST-like extensions of generalized Proca models
were given by Kase et al. (2018).

Creminelli et al. (2018, 2019b) studied the decay of
GWs into fluctuations of a dark energy field. Decay of
GWs is usually forbidden in GR by Lorentz invariance,
but the presence of a dark energy field effectively acts as
a “medium” through which the GWs propagate, sponta-
neously breaking Lorentz variance. Decays of the form
γ → ππ and γ → γπ are then possible in some theories,
where γ is a graviton and π is a fluctuation of the scalar
dark energy field. Such decays have been found to occur
in beyond Horndeski and DHOST theories. They can
also occur in the original Horndeski theory, but are
controlled by the G4;X operator and derivatives of the G5

operator that are already constrained by GW170817;
hence the surviving sector of Horndeski shown in
Eq. (10) does not suffer from graviton decay effects.

The fact that GWs have been observed to reach Earth,
without having decayed entirely into the dark energy
field, imposes further constraints on DHOSTand beyond
Horndeski theories.

• Mass scales.—Note that the numerator of Eq. (9) con-
tains only derivatives of functions, while the denomi-
nator also contains an undifferentiated instance of G4.
Consider a toy model where G4 has the form5

G4ðϕ; XÞ ¼ M2 þ X
m2

ð11Þ

Herem is a mass scale. Note that G4 and XG4;X ¼ X=m2

now differ by a constant factor of M2. Depending on the
hierarchy of M, m, and the mass of the scalar field, it is

5Note that this example is for demonstrative purposes only; it is
not intended to represent a viable gravity theory.
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possible that G4 ≫ XG4;X (for example, if M is the
Planck mass and m ≫ H). In this case, the denominator
of Eq. (9) dominates the numerator, leading to a
suppression of αT . Depending on the precise mass
scales involved, this kind of gravity theory may lead
to fifth-force signatures on sub-Hubble scales, of the
kind constrained by Ip, Sakstein, and Schmidt (2015),
Sakstein (2014b, 2015c), Sakstein and Verner (2015),
and Burrage and Sakstein (2016, 2018).

• Scale suppression.—In a similar vein to the previous
point, Battye, Pace, and Trinh (2018) highlighted that the
modes associated with GW170817 and the modes
typically associated with cosmic acceleration are sepa-
rated by some 19 orders of magnitude. In the “equation
of state” dark sector parametrization (Battye and
Pearson, 2013, 2014) (a title not to be confused with
general usage of the term “equation of state”) this factor
of 1019 can act to suppress corrections to GR in the
observables probed by GW170817 (such as the gravi-
tational wave group velocity), even though the model
possesses significant effects on cosmological scales.

• Frozen background fields.—Note that the numerator of
Eq. (9) is multiplied by the kinetic term of the scalar
field X ¼ _ϕ2=2 [on a Friedmann-Robertson-Walker
(FRW) background]. Therefore, if the scalar field sits
at the minimum of its potential, say, X ≪ 1, and the
entire rhs of Eq. (9) is suppressed. A quintessence or
k-essence model with an appropriately tuned potential
could display this behavior (Copeland, Sami, and
Tsujikawa, 2006).

• Nonuniversal couplings.—The near-simultaneous arrival
of GWs and photons indicates that the standard model
matter sector is coupled to the same metric that con-
stitutes the Einstein-Hilbert part of the gravitational
action. However, it is still possible that dark matter
could be nonminimally coupled to this particular metric
(effectively, it couples to a different metric conformally
or disformally related to one featuring the Ricci scalar
R). Hence, dark energy models with nonminimal cou-
pling to dark matter could still have significant effects on
large-scale structure while maintaining consistency with
the GW results, provided that cT ¼ c in the Einstein
frame. Examples of these kinds of models (which violate
the weak equivalence principle) were given by Amen-
dola et al. (2018), van de Bruck and Mifsud (2018), and
Dalang and Lombriser (2019).

D. Producing cosmic acceleration through gravity

The constraints on the gravitational wave propagation speed
narrow down the landscape of modified-gravity models but
leave untouched a subset that can be targeted with future
cosmological experiments. The majority of the models that we
discuss in this review were originally motivated as possible
explanations of cosmic acceleration. The hope was that either
new fundamental fields or infrared corrections to GR on
cosmological scales could naturally drive the expansion of the
Universe at late times, thereby removing the need for a finely
tuned small cosmological constant.
This hope has not been realized for most models in the

current literature. Often this is due to the competing demands of

fitting observations probing both the “background” and “per-
turbative”Universe. The region of parameter space that allows
a model to yield viable acceleration will often not overlap with
the parameter region allowed by measures of large-scale
structure or the CMB. For instance, the minimal modification
of gravity required in Horndeski scalar-tensor theories to
provide a cosmic acceleration that is genuinely different from
that of a potential or kinetic dark energy contribution and
satisfies cT ¼ 1 has been shown to provide a 3σ worse fit to
cosmological data than a cosmological constant (Lombriser
and Lima, 2017).
Because of this incompatibility, some modified-gravity

models still require a cosmological constant identical to that
of ΛCDM to fit observations. In other families of theories, the
cosmological constant may find an alternative, more subtle
presentation, e.g., considering an fðRÞ model where fðRÞ →
const for small R; see Hu and Sawicki (2007a). Ultimately, the
theory still contains a constant that must be fine-tuned to the
observed value. Another example is that of bigravity theories
(Schmidt-May and von Strauss, 2016), where the structure of
the interaction potential for the two tensor fields contains two
constants.6 One of these acts like a cosmological constant for
the regular spacetime metric (to which matter couples), while
the second is effectively a cosmological constant for the
second dynamical metric (which does not couple explicitly to
matter).
At times there has been an even grander hope: that

corrections to GR might (as well as explaining cosmic
acceleration) additionally alleviate the need for dark matter
to explain observations. Such an idea originally gained footing
with the success of MOND in explaining galactic rotation
curves without dark matter. A significant step forward was the
construction of a fully covariant gravity theory, TeVeS, that
contains a MOND limit (Bekenstein, 2004) [see Skordis
(2009) for a review]. However, MOND was found to struggle
to reproduce this success for larger systems such as galaxy
clusters (Sanders, 2003), while TeVeS is constrained by
Planck measurements of the CMB (Xu, Wang, and Zhang,
2015) and the EG statistic7 (Reyes et al., 2010). Both MOND8

and some variants of TeVeS are in significant tension with
recent gravitational wave detections (Boran et al., 2018; Gong
et al., 2018; Hou and Gong, 2018), though surviving models
remain, e.g., the special TeVeS theory given by Skordis
and Złośnik (2019), and the bimetric and nonlocal formula-
tions of MOND (Milgrom, 2009; Deffayet, Esposito-
Farèse, and Woodard, 2011). A related vector-tensor model,

6This arises because the potential is constructed from a set of
symmetric polynomials, the lowest order of which is a constant.

7The EG statistic is a ratio constructed from galaxy clustering
observables, galaxy-galaxy lensing, and galaxy velocities extracted
from redshift-space distortions. The combination of observables is
designed such that EG is, in principle, insensitive to galaxy bias [see
Leonard, Ferreira, and Heymans (2015) for a reality check on this]. In
ΛCDM EG ≃ 0.4 on all scales; in most modified-gravity models this
prediction is altered by nonequality of the two metric potentials in
Eq. (12) and scale-dependent growth of the structure.

8While MOND is not a relativistic framework, Boran et al. (2018)
tested itwithin a class of “darkmatter emulator”models that predict that
GWs and photons or neutrinos will move on different geodesics.
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Einstein-Aether gravity, likewise produces unacceptably large
modifications to the matter power spectrum when required to
act as a dark matter candidate; it has more success (though still
constrained) when acting purely as a dark energy candidate
(Zuntz et al., 2010; Oost, Mukohyama, and Wang, 2018).
Other ideas for a unified dark sector, such as entropic gravity
and Chaplygin gases (Gorini et al., 2006; Padmanabhan,
2008; Hossenfelder, 2017; Verlinde, 2017), likewise seem to
generally fare worse, not better, than models requiring a
standard cold dark matter component [however, see Ferreira
et al. (2018) for an interesting new development].
Although the original goal of cosmological modified

gravity has not yet been met, this does not remove the need
to test alternatives to GR. Cosmology operates on distance
scales 16 orders of magnitude larger than those on which GR
has been stringently tested using Solar System experiments
and binary pulsars. To test this extreme extrapolation of GR to
large scales, we need sensible and consistent mathematical
alternatives to compare against. The theories we discuss here
provide a description of perturbation dynamics that modify the
standard GR relations between our four main cosmological
probes (background expansion rate, the growth of structure,
the deflection of light, and the propagation speed of gravi-
tational waves) in a testable way.
The construction of such models has also greatly deepened

our understanding of the theoretical underpinnings of gravity.
For example, we have learned how to build a full, nonlinear
theory of two coupled tensors, something previously thought
impossible (de Rham, 2014). Likewise, we have found theories
whose effects are strongly enhanced or suppressed by their
environments (screening, detailed in Sec. IV); again, it was not
known beforehand that such theories existed. Finally, some of
the techniques and theories developed have found fruitful
applications to other areas of cosmology (Sakstein and
Solomon, 2017; Sakstein and Trodden, 2017, 2018).
In cosmology, there is a fundamental degeneracy in

describing physics beyond GR with a cosmological constant,
since any modification of the Einstein equation (“modified
gravity”) could be moved to the right-hand side and be called a
novel form of stress energy (“dark energy”). In this review, we
focus on theories that qualify as modified gravity under the
classification proposed by Joyce, Lombriser, and Schmidt
(2016): that is, they violate the strong equivalence principle. In
the vast majority of cases, the phenomenology of these
theories is characterized by a universally coupled, scalar-
field-mediated fifth force (and because black holes do not
have scalar hair, this force violates the strong equivalence
principle). We are not considering theories that violate the
weak equivalence principle (WEP) at the level of the
Lagrangian, such as theories involving a light scalar field
that couples only to dark matter.
Thus, the main focus of this review is on tests for the

presence of fifth forces, in cosmology and on cluster, galactic,
and stellar scales; an attempt to visually compare these
experiments was given by Baker, Psaltis, and Skordis
(2015) and Burrage and Sakstein (2016, 2018).

IV. SCREENING MECHANISMS

Most current theories for cosmic acceleration are theories of
modified gravity, and hence a ubiquitous prediction is the

presence of fifth forces on astrophysical scales. Existing Solar
System and laboratory constraints on these theories (Burrage
and Sakstein, 2018) require one to tune the new parameters to
small values, essentially ruling them out as dark energy
models. The idea behind screening mechanisms is to find
theories that include a dynamical suppression of fifth forces;
i.e., they are naturally small on astrophysical scales as a
consequence of their equation of motion rather than parameter
tuning. With few exceptions (Heckman et al., 2019), the
majority of viable dark energy models either are highly fine-
tuned or include screening mechanisms. This is why the study
of such mechanisms is so important.
After the bounds imposed by GW170817, a general theory

that is viable is given in Eq. (10). Additionally, some sectors of
DHOST theories [see Crisostomi and Koyama (2018b), Dima
and Vernizzi (2018), and Langlois et al. (2018)] and beyond
Horndeski theories [see Ezquiaga and Zumalacárregui (2017,
2018)] remain viable. The screening mechanisms discussed in
this theory all fall into one or more of these theories. In
particular, chameleon, K-mouflage, and Vainshtein screening
all fit into Eq. (10) and Vainshtein breaking is exhibited by
beyond Horndeski and DHOST theories.

A. Principles of screening

To provide motivation for screening, we begin by consid-
ering what happens when we have a theory of gravity that does
not screen. In the Newtonian, subhorizon limit of GR, the
dynamics of any system are described by

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞδijdxidxj; ð12Þ

where Φ is the Newtonian potential and ΨþΦ governs the
motion of light. In GR, Φ ¼ Ψ and the fields sourced by
nonrelativisticmatter obey the Poisson equation∇2Φ ¼ 4πGρ.
The solution for a single source object of mass M is
Φ ¼ Ψ ¼ −GM=r. The equations of motion give the gravita-
tional acceleration of a body

a⃗grav ¼ −∇⃗Φ ¼ −
GM
r2

r̂: ð13Þ

Now we modify GR by considering a scalar ϕ coupled to
matter such that it mediates an additional or fifth force. If the
field is massless, then one generically expects the Poisson
equation9 ∇2ϕ ¼ 8παGρ, which we have parametrized
using a dimensionless Oð1Þ parameter α. This is solved
by ϕ ¼ −2αGM=r, i.e., a factor of 2α larger than the GR
solution. The scalar generates an additional acceleration

a⃗5 ¼ −α∇⃗ϕ ¼ −2α2
GM
r2

r̂: ð14Þ

9A massless scalar field has the Lagrangian −∂μϕ∂μϕ=2, which
gives rise to the Laplacian operator in static situations. The α
parametrization is based on the commonly studied Weyl coupling
to matter via the metric A2ðϕÞgμν. One has αðϕÞ ¼ d lnA=dϕ, which
is not necessarily constant, although we take it to be so here for
illustrative purposes.
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Thus the scalar mediates a force that is a factor of 2α2 larger
than the force of gravity. This causes problems observationally.
Since the field mediates a 1=r2 force between two bodies, the
metric can be put into the parametrized post-Newtonian (PPN)
form [note that the signs differ from the conventional signs
(Will, 2014; Sakstein, 2018b) due to our conventions in
Eq. (12)]

ds2 ¼
�
1 − 2

GM
r

�
dt2 þ

�
1 − 2γ

GM
r

�
δijdxidxj; ð15Þ

with Eddington light-bending parameter γ ¼ ð1 − 2α2Þ=
ð1þ 2α2Þ. This has been constrained to the 10−5 level by
the Cassini satellite by means of the frequency shift of radio
waves to and from the satellite as they passed near the Sun
(Bertotti, Iess, and Tortora, 2003). This requires 2α2 < 10−5.
To see that this forces the scalar into a cosmologically
uninteresting region of parameter space, consider the Klein-
Gordon equation ϕ̈þ 3H _ϕþ αGρ ¼ 0, whereH is theHubble
parameter. The contribution from modified gravity is the final
term, which must then be subdominant to the GR contribution
by a factor of Oð10−3Þ, and therefore any cosmic evolution of
the scalar cannot be driven by modifications of gravity. Any
cosmic acceleration is therefore due to the scalar field’s
potential and not modified gravity. One could add a cosmo-
logical constant (or quintessence) to drive the cosmic accel-
eration and look for deviations from GR on smaller scales,
although in this case the acceleration would not be driven by
modified gravity. At the level of linear cosmological perturba-
tions the growth of dark matter is governed by

δ̈DM þ 2δ̈DM − 3
2
ΩDMðaÞð1þ 2α2Þ ¼ 0; ð16Þ

where δDM is the dark matter overdensity, ΩDM is the cosmic
DM density relative to ρcrit, and a is the cosmic scale factor.
Hence, even in this case the modifications are negligible once
the Cassini bound is imposed.
Besides tuning α to small values, one could attempt to

avoid this conclusion by introducing a mass for the scalar so
that it satisfies ∇2ϕþm2ϕ ¼ 8παGρ, with solution ϕ ¼
−2αðGM=rÞe−mr. This implies that ϕ mediates a Yukawa
force with range m−1. If this range is ≲9 AU (the Sun-Saturn
distance), then the Cassini bound can be satisfied. Such forces
are, however, heavily constrained by other means. For Oð1Þ
matter couplings, which are needed for cosmological rel-
evance, lunar laser ranging (LLR) constrains the inverse mass
to be less than the Earth-Moon distance (Merkowitz, 2010;
Murphy et al., 2012), and Earth-based torsion balance experi-
ments, in particular, the Eöt-Wash experiment, constrains the
range of the force to be submicron (Adelberger, Heckel, and
Nelson, 2003; Adelberger, Heckel, and Hoyle, 2005; Kapner
et al., 2007). Cosmologically, however, the force range should
be at least inverse Hubble to play a role in the background
evolution of the field. Indeed, the Klein-Gordon equation is
now ϕ̈þ 3H _ϕþm2ϕþ αGρ ¼ 0, and one thus requires
m ∼H for the field not to be overdamped at the present
time. At the level of perturbations, the modifications of gravity
are relevant only on scales smaller than m−1 ¼ λC (i.e., inside
the Compton wavelength) (Brax, Davis, and Sakstein, 2013),
and they are therefore irrelevant for structure formation too.

The previous argument assumes that the dark energy scalar
is coupled universally to all matter species. It is possible to
couple only to dark matter and leave the visible sector
untouched. Such models are often called coupled quintessence
or coupled dark energy in general (Amendola, 2000;
Copeland, Sami, and Tsujikawa, 2006). In these cases, there
are no fifth forces in the visible sector but there is between
dark matter particles. Many of the tests described in this
review do not apply to these models, with the exception of
tests of the equivalence principle between dark matter and
visible matter. These models are less theoretically well
motivated because there is no symmetry that prevents the
scalar coupling to visible matter, and thus the absence of any
coupling is tantamount to fine-tuning. As mentioned, we do
not consider them here.
Tuning either α or m fails to simultaneously produce

interesting cosmology and satisfy Solar System tests precisely
because those parameters are universal. Screening mecha-
nisms solve this problem by dynamically suppressing the
modifications of GR in the Solar System without the need to
tune any parameter to small values. This leaves them free to
assume values with significance for cosmology. In particular,
the issue with the previously mentioned approaches stems
from the fact that the equations of motion for the scalar are
both linear and Poisson-like. Thus they are superfluous copies
of the Poisson equation for the metric potentials of GR, which
is sufficient by itself to explain Solar System observations.
The essence of screening is to alter the structure of the Poisson
equation, either by introducing a nonlinear generalization of
the Laplacian operator or by adding a nonlinear potential for
the field. One can write a generalized Poisson equation

Zijðϕ0Þ∂iϕ∂jϕþm2
effðϕ0Þϕ ¼ 8παðϕ0ÞGρ; ð17Þ

where we include a nonlinear kinetic term for ϕ and allow this,
the effective massmeff , and the coupling to matter α to depend
on the background field value ϕ0; i.e., we have expanded the
total field as ϕ → ϕ0 þ ϕ, with ϕ0 the field sourced by the
surrounding environment, e.g., the cosmological or galactic
scalar (precisely which depends on the situation considered).
The schematic solution is

ϕ ∼ αðϕ0Þ
GM

jZðϕ0Þjr
e−meff ðϕ0Þr: ð18Þ

Screening works by adjusting ϕ0 so that one of the following
three conditions is satisfied in the Solar System:

(1) The effective mass for the field mR ≪ 1 so that the
field is short range.

(2) The coupling to matter αðϕ0Þ ≪ 1 so that the fifth
force is weak.

(3) The kinetic factor Zij ≫ 1 so that the fifth force is
suppressed.

Since the background field may depend on the environment, it
is possible to satisfy any of these conditions without tuning
any model parameter to small values. The density on Earth
differs from that in the cosmological background by 29 orders
of magnitude, and this makes it easy to construct screened
theories that are relevant cosmologically but naturally sup-
pressed in the Solar System. In the previously described cases
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described, the screening mechanism is called chameleon
screening (Khoury and Weltman, 2004a, 2004b), symmetron
(Hinterbichler and Khoury, 2010) and dilaton screening (Brax
et al., 2010), and kinetic screening (Vainshtein, 1972; Nicolis,
Rattazzi, and Trincherini, 2009). Chameleon, symmetron, and
dilaton screening are qualitatively similar,10 so in this review
we refer to them collectively as thin-shell screening. Similarly,
kinetic screening can be subdivided into Vainshtein and
K-mouflage theories. We now describe each screening mecha-
nism in turn.

B. Thin-shell screening

1. Chameleon screening

The equation of motion for the chameleon is (Khoury and
Weltman, 2004a, 2004b)

∇2ϕ ¼ −
nΛ4þn

ϕnþ1
þ 8παGρ; ð19Þ

for constant n, which describes a scalar coupled to matter
with constant coupling α and a nonlinear scalar potential
VðϕÞ ¼ Λ4þnϕ−n. The dynamics of the scalar can be thought
of as arising from a density-dependent effective potential

VeffðϕÞ ¼
Λ4þn

ϕn þ 8παϕρ; ð20Þ

which is illustrated schematically for low and high densities in
Fig. 3 for positive n. One can see that there is a density-
dependent minimum given by

ϕmin ¼
�
nΛ4þn

αMn
plρ

�
1=ðnþ1Þ

; ð21Þ

and the effective mass for fluctuations about this minimum is

meff ¼ V 00
effðϕÞ ¼ nðnþ 1ÞΛnþ4

�
α

ρ

nMplΛnþ4

�ðnþ2Þ=ðnþ1Þ
:

ð22Þ

The density-dependent minimum and mass both make cha-
meleon screening possible. One can see from Eq. (22) or
Fig. 3 that the mass is an increasing function of the density,
so the force can be made dynamically short range within
the Galaxy (high density) but long range cosmologically
(low density).
The screening mechanism is illustrated qualitatively in

Fig. 4. Consider a spherical object of high density (a star
or dark matter halo, for example) immersed in a larger
medium of lower ambient density (a galaxy or the cosmic
background, for example). If the object is big enough
(parameters to be quantified shortly), the scalar will minimize
its effective potential within the object and the equation of
motion (19) is ∇2ϕ ¼ 0; i.e., the field is unsourced. Since the
mass at the minimum is high, we expect this to remain the case
as we move out from the center until the density falls to a point
where the field can begin to roll to its asymptotic value ϕ0,
which is the minimum of the effective potential in the
background. We refer to the radius where the field begins
to roll as the screening radius rs. Outside this, the mass of the
field is small (meffR ≪ 1, where R is the radius of the star), so
the scalar field’s motion is set by the density ∇2ϕ ¼ 8παGρ.
Integrating from rs to R then yields a fifth-force acceleration

FIG. 3. The chameleon effective potential for both low-density (left panel) and high-density (right panel) environments. The bare
potential VðϕÞ is shown by the dotted black line, and the contribution from the matter coupling is indicated by the black dashed line. The
effective potential is the sum of these contributions and is shown in solid black.

FIG. 4. Thin-shell screening. The field minimizes its effective
potential inside the screening radius but begins to roll to the
minimum in the low-density background outside. Only the mass
outside the screening radius contributes to the fifth force.

10Astrophysical tests are not particularly sensitive to the specific
mechanism (Sakstein, 2014a). Laboratory tests are more model
dependent (Burrage and Sakstein, 2018).
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a5 ¼ 2α2
GMðrÞ

r2

�
1 −

MðrsÞ
MðrÞ

�
rs < r < R: ð23Þ

Outside the object, one has ∇2ϕþm2
effðϕ0Þϕ ¼ 8παGρ, a

massive Klein-Gordon equation with the boundary condition
at the object’s surface altered by the screening radius. This
gives

a5 ¼ 2α2
GM
r2

�
1 −

MðrsÞ
M

�
e−meff ðϕ0Þrr > R: ð24Þ

One can see that the force is suppressed by a factor of 1 −
MðrsÞ=M without the need to tune α to small values. The size
of the screening radius determines whether or not the fifth
force is screened. If rs ≪ R, then this factor is ofOð1Þ and the
force is unscreened, whereas if rs ≈ R, the field profile is
sourced only by the mass inside a thin shell and the force is
screened. The essence of chameleon screening, therefore, is
that nonlinearities in the field conspire to remove the scalar
charge of the source over much of the object’s volume (this is
often referred to as the thin-shell effect). For a spherical object,
one can find rs by solving (Davis, Lim et al., 2012; Sakstein,
2013; Burrage and Sakstein, 2016)

χ ≡ ϕ0

2αMpl
¼ 4πG

Z
R

rs

r0ρðr0Þ: ð25Þ

If this equation has no solutions, then rs ¼ 0 and the object is
fully unscreened. This is the case when

χ >
GM
R

¼ jΦjðunscreenedÞ: ð26Þ

Hence, the Newtonian potential determines whether or not an
isolated object is screened. For this reason, χ is often called the
self-screening parameter.
One popular model that exhibits the chameleon mechanism

is Hu-Sawicki fðRÞ gravity (Hu and Sawicki, 2007a), where
one replaces the Ricci scalar in the Einstein-Hilbert action
with

fðRÞ ¼ R − a
m2

1þ ðR=m2Þ−b : ð27Þ

This function is chosen such that in low-curvature regimes
such as the Solar System (R ≪ m) one has fðRÞ ≈ Rþ
OðRb=m2bÞ so that deviations from GR are suppressed,
whereas in cosmological regimes fðRÞ ≈ R − am2½1−
ðR=m2Þ−b� so that the theory looks like a cosmological
constant and small perturbations. Typically, one tunes a
and m to match the ΛCDM background evolution, and the
additional terms are seen as causing deviations from ΛCDM at
the linear and nonlinear levels. In terms of chameleons, one
has n ¼ −b=ð1þ bÞ (Burrage and Sakstein, 2016) so that
−1 < n < −1=2 and α ¼ 1=

ffiffiffi
6

p
. The only free parameter is

the present-day cosmological background field value
fR0 ¼ df=dRjz¼0. This controls the level of screening and
sets χ via fR0 ¼ 2χ=3.

2. Symmetron screening

The symmetron (Hinterbichler and Khoury, 2010) screens
in a manner similar to chameleons. Its equation of motion is
also the derivative of an effective potential

∇2ϕ ¼ dVeff

dϕ
; with Veff ¼ −

μ2

2

�
1 −

ρ

M2
sμ

2

�
ϕ2 þ λ

4
ϕ4;

ð28Þ

and the coupling to matter is αðϕÞ ¼ Mplϕ=M2
s . There are

then three free parameters, a quartic self-coupling λ and two
new mass scales μ, the field’s bare mass and Ms, which
parametrizes the coupling to matter. This effective potential
can have one of two different shapes depending on the density,
as shown in Fig. 5. When ρ < μ2M2

s there are two degenerate
minima located at

ϕ� ≈
μffiffiffi
λ

p ð29Þ

so that the coupling to matter is jαðϕ�Þj ¼ μMpl=λM2
s , which

can be Oð1Þ. Conversely, when ρ > μ2M2
s there is a single

minimum at ϕ ¼ 0 so that α ¼ 0 and the field does not couple
to matter. Inside rs one has ϕ ¼ 0 (provided that the object is
dense enough, ρ > μ2M2

s ) so that the field is unsourced.
Outside rs, the field begins to roll to ϕ�, where there is a
nonzero matter coupling αðϕ�Þ. As in the chameleon case, the
fifth force is then sourced by the mass inside the shell only. In
particular, Eqs. (23) and (24) hold with meffðϕ0Þ → μ and
α → αðϕ0Þ. The main difference between the two mechanisms
is that chameleons suppress the fifth force by having a large
mass in dense environments and α ∼Oð1Þ on all scales, while
symmetrons have a low mass on all scales and a small
coupling to matter in dense environments. Another novel
feature of the symmetron is the possibility of having domain
wall solutions where the boundary conditions are such that the
asymptotic field on different sides of a dense object can
reside in different minima (Llinares and Pogosian, 2014;
Pearson, 2014).
There are several variants of the symmetron, including

generalized symmetrons (Brax, Davis, and Li, 2012;
Brax, Davis, Li, and Winther, 2012) and radiatively stable

FIG. 5. The symmetron effective potential. The red line is for
ρ < μ2M2

s and the blue line is for ρ > μ2M2
s.
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symmetrons (Burrage, Copeland, and Millington, 2016;
Blinov, Ellis, and Hook, 2018). Another variant, which is
less well studied, is the environment-dependent dilaton (Brax
et al., 2010). These theories screen in a similar manner to
symmetrons, except that the suppression of the coupling to
matter in the dense environment is not due to a symmetry
breaking transition.

C. Kinetic screening

1. Vainshtein screening

Vainshtein screening (Vainshtein, 1972) works in a quali-
tatively different way than thin-shell screening: instead of
adding a scalar potential it changes the Laplacian structure
of the Poisson equation. The Vainshtein mechanism is generic
in modified-gravity theories (Kimura, Kobayashi, and
Yamamoto, 2012b; Koyama, Niz, and Tasinato, 2013;
Kobayashi, Watanabe, and Yamauchi, 2015; Sakstein and
Koyama, 2015) and arises in DGP models, generic Horndeski
(and extensions) theories, and massive gravity (and extensions
to multimetric gravity). The quintessential example is the
scalar field theory known as the Galileon because they are
invariant under the Galilean transformation ϕ → ϕþ cþ
bμxμ (Nicolis, Rattazzi, and Trincherini, 2009). The two most
common examples of Galileon theories are the cubic Galileon
with equation of motion

∇2ϕþ r2c
3
½ð∇2ϕÞ2 −∇i∇jϕ∇i∇jϕ� ¼ 8παGρ; ð30Þ

and the quartic Galileon with equation of motion

∇2ϕþ r4c
4
½ð∇2ϕÞ3 −∇2ϕ∇i∇jϕ∇i∇jϕ

þ 2∇i∇jϕ∇j∇kϕ∇k∇iϕ� ¼ 8παGρ: ð31Þ

These contain familiar terms from the Poisson equation, the
Laplacian, and the matter sourcing, and also a new kinetic
term parametrized by the crossover scale rc.

11 The screening
is illustrated in Fig. 6. There are two regimes of interest. When
the new kinetic terms are negligible, one is left with the
Poisson equation and hence a fifth force that is a factor of 2α2

larger than the Newtonian force. The difference arises when
the Laplacian is negligible, in which case one finds that the
fifth force is given by

a5 ¼ 2α2
GM
r2

�
r
rV

�
q
; ð32Þ

where q ¼ 3=2 for the cubic Galileon and 2 for the quartic.
The new scale

r3V ¼
� 4

3
αGMr2c; cubic Galileon;ffiffiffi
2

p
αGMr2c; quartic Galileon;

ð33Þ

is the Vainshtein radius, which determines which of the two
kinetic terms are dominant. If r < rV, then the Galileon terms
dominate and the fifth force is therefore suppressed by a factor
of ðr=rVÞq. The Vainshtein radius of the Sun (for theoretically
interesting values of rc) isOð100 pcÞ, showing that the region
outside massive bodies is screened to a large distance. Far
beyond rV, the fifth force is again a factor of 2α2 larger than
the Newtonian force and the theory can have cosmological
consequences.
The Vainshtein mechanism is not as efficient inside

extended mass distributions. This is because Eqs. (30) and (31)
are total derivatives for spherically symmetric mass distribu-
tions, so one has a nonlinear generalization of Gauss’s law.
This means that only the mass inside the radius r contributes
to the field profile, so one has a radially varying Vainshtein
radius that is smaller than the Vainshtein radius found using
the total mass (Schmidt, 2010). For extended distributions,
the Galileon force profile is given by a5 ¼ 2α2GMðrÞ=
r2g½r=r�ðrÞ�, where r�ðrÞ3 ¼ Cαr2cGM with C ¼ 16=3,ffiffiffiffiffiffiffiffi
3=2

p
for the cubic and quartic Galileon models, respectively.

The function g is given by

gðξÞ ¼
8<
:

2ξ3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ−3

p
− 1Þ; cubic Galileon;

ξ3 sinh
h
1
3
arc sinh

	
3
ξ3


i
; quartic Galileon;

ð34Þ

and is chosen so that the fifth force approaches the asymptotic
solution a5 ¼ −2α2GM=r2 at large distances.

2. Vainshtein breaking: Beyond Horndeski and DHOST

Theories in the beyond Horndeski and DHOST classes
exhibit a breaking of the Vainshtein mechanism: it operates
perfectly outside of extended objects, but inside the
Newtonian and lensing potentials are determined by modified
equations of the form (Kobayashi, Watanabe, and Yamauchi,
2015; Koyama and Sakstein, 2015; Crisostomi and Koyama,
2018b; Dima and Vernizzi, 2018; Langlois et al., 2018)

dΨ
dr

¼ −
GM
r2

−
ϒ1G
4

d2MðrÞ
dr2

; ð35Þ

dΦ
dr

¼ −
GM
r2

þ 5ϒ2G
4r

dMðrÞ
dr

−ϒ3G
d2MðrÞ
dr2

; ð36Þ

FIG. 6. Vainshtein screening due to a point mass located at
r ¼ 0. The red curve shows the ratio of the fifth force to
Newtonian force outside the object.

11Galileons have their roots in higher-dimensional brane world
models where rc parametrizes the scale at which higher-dimensional
effects are important (hence its name).
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where MðrÞ is the mass enclosed within radius r. The
dimensionless parameters ϒi characterize the strength of
the modifications and are important from a cosmological
point of view because they are related to the αi parameters
appearing in the effective description of dark energy (Bellini
and Sawicki, 2014; Gleyzes et al., 2015b; Langlois et al.,
2017). In particular, one has

ϒ1 ¼ 4
½αH þ ð1þ αTÞβ1�2

ð1þ αTÞð1þ αV − 4β1Þ − αH − 1
; ð37Þ

ϒ2¼−
4

5

αH½αH−αVþ2β1ð2þαTÞ�þβ1αT ½1þð1þαTÞβ1�
ð1þαTÞð1þαV −4β1Þ−αH−1

;

ð38Þ

ϒ3 ¼ −
β1½αH þ ð1þ αTÞβ1�

ð1þ αTÞð1þ αV − 4β1Þ − αH − 1
; ð39Þ

so constraints on ϒi directly constrain the cosmology of these
theories.12 Since beyond Horndeski theories and DHOST
theories, in particular, can survive the GW170817 bounds on
αT (depending on the choices of free functions), there has been
recent interest in constraining these parameters. Equation (35)
implies that constraints could be placed using nonrelativistic
objects (stars, galaxies, clusters), and Eq. (36) implies that
lensing can also be used. One can effectively set αT ¼ 0 in
Eqs. (37)–(39) to apply astrophysical bounds to constrain the
remaining parameters (Sakstein and Jain, 2017) or impose
more relations between the parameters by demanding that
αT ¼ 0 identically at the level of the functions appearing in the
action (Crisostomi and Koyama, 2018b; Dima and Vernizzi,
2018; Langlois et al., 2018).
It is possible to impose further restrictions on the class of

DHOST theories to ensure both that gravitational waves travel
luminally over cosmological distances and that gravitons do
not decay into dark energy (this requirement is highly
constraining) (Creminelli et al., 2018, 2019b). In these cases,
and further restricting to theories that are stable and allow for
the existence of Newtonian stars, one finds a different
kind of Vainshtein breaking than that described previously
(Crisostomi, Lewandowski, and Vernizzi, 2019; Hirano,
Kobayashi, and Yamauchi, 2019). Indeed, inside matter
one has

dΨ
dr

¼ −
Gin

ΨMðrÞ
r2

;
dΦ
dr

¼ −
Gin

ΦMðrÞ
r2

; ð40Þ

while outside matter they become

dΨ
dr

¼ −
Gout

Ψ MðrÞ
r2

;
dΦ
dr

¼ −
Gout

Φ MðrÞ
r2

; ð41Þ

where Gin=out
Ψ=Φ are again related to G and the parameters

appearing in the effective description of dark energy. In these
theories, the Vainshtein mechanism is broken both inside and
outside of matter. Presently, the strongest bounds on the new
parameters do not come from the astrophysical probes con-
sidered in this work; instead they come from either Solar
System tests of post-Newtonian gravity and the rate of the
orbital decay of the Hulse-Taylor pulsar. For this reason, we do
not discuss them in this review. Devising novel astrophysical
probes of these theories that could competewith other probes is
certainly worthwhile, especially since, by design, they are able
to evade the stringent bounds on DHOST theories.

3. K-mouflage models

One variant on the Vainshtein mechanism that has attracted
attention recently is K-mouflage models (Babichev, Deffayet,
and Ziour, 2009; Brax, Burrage, and Davis, 2013). These are
distinct from Vainshtein screening in that their equation of
motion is a nonlinear analog of Gauss’s law. The simplest
example is

∇ið∇iϕþ rc∇jϕ∇jϕ∇iϕÞ ¼ 8παGρ; ð42Þ

where rc is the analog of the crossover scale for Vainshtein
screening. For a spherically symmetric source, the screening is
similar to Vainshtein screening (Fig. 6) in that there is a
K-mouflage radius rK inside of which the fifth force is
suppressed and outside of which the fifth force is unscreened
and one has a5 ¼ −2α2GM=r2. For example, inside the K-
mouflage radius the model in Eq. (42) gives (Brax, Burrage,
and Davis, 2013)

a5 ¼ 2α2
GM
r2

�
r
rK

�
4=3

; r2K ¼ 2αrcGM: ð43Þ

One particularly interesting model that falls into the
K-mouflage class is the Dirac-Born-Infeld (DBI) one
(Burrage and Khoury, 2014).
K-mouflage screening models are less well explored than

thin-shell and Vainshtein screening, although there has been
some recent work studying their viability (Barreira, Brax
et al., 2015) and their cosmology (Brax and Valageas, 2014b,
2018), as well as some steps toward identifying cosmological
probes and placing constraints. These include linear probes
(Benevento et al., 2019), galaxy clusters (Brax, Rizzo, and
Valageas, 2015), large-scale structure (Brax and Valageas,
2014a), and effects on nonlinear scales (Brax and Valageas,
2014c). We will not review novel probes of these models here,
but we anticipate that future revisions will include such
discussions as the study of K-mouflage screening develops
to the same stage as thin-shell and Vainshtein screening.

D. Observational signatures

1. Equivalence principle violations

Perhaps the most important difference between Vainshtein
and thin-shell screening is that they violate different equiv-
alence principles. In particular, chameleons and symmetrons

12Note that this assumes that the effects of the local environment
on the field profile are negligible. This is typically a good approxi-
mation because the radius of these objects is much smaller than the
wavelength of the large-scale Galileon field sourced by the local dark
matter, e.g., halos and filaments, implying that the Galileon’s field
gradient is approximately linear. The Galileon symmetry
(ϕ → ϕþ bμxμ þ c) ensures that adding a linear gradient to the
solution leaves the physics unaltered, and thus the field due to the
local environment does not diminish the sensitivity to the cosmo-
logical parameters.
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violate both the weak and strong equivalence principle, for
macroscopic objects, whereas Vainshtein-screened theories
violate only the strong equivalence principle (Hui, Nicolis,
and Stubbs, 2009; Hui and Nicolis, 2012, 2013).
The WEP is the statement that all weakly gravitating bodies

(whose mass does not receive significant contribution from
gravitational binding energy) fall at the same rate in an
externally applied field regardless of their internal structure
and composition. Formally, one can consider a nonrelativistic
object at position x⃗ placed in an external gravitational field
Φext and scalar field ϕext. Its equation of motion is

MI
̈x⃗ ¼ −MG∇⃗Φext −QMG∇⃗ϕext, where MI is the object’s

inertial mass and MG is its gravitational mass, which can be
thought of as a “gravitational charge” that describes how it
responds to an external gravitational field. Similarly, we have
defined a scalar charge-to-mass ratio Q that parametrizes the
response of the object to an external scalar field. In GR Q ¼ 0

since the scalar is absent, andMI ¼ MG ¼ M. In scalar-tensor
theories one still has MI ¼ MG, but now Q ≠ 0. For the
previous screening mechanisms, one has, in the limit in which
the object is a test mass,

Q ¼
8<
:

α
h
1 − MðrsÞ

M

i
; thin-shell screening;

α; Galileons;K-mouflage:
ð44Þ

Galileons and K-mouflage models therefore satisfy the WEP13

whereas chameleons and symmetrons violate it since the
scalar charge depends on the screening radius, which in turn
depends on the structure and composition of the object. It is
worth emphasizing that all theories considered here preserve
the WEP at the level of the action. The WEP violation in
chameleon and symmetron theories arises because macro-
scopic screened objects lead to a strong distortion of the scalar
field profile, despite being in the weak-gravity regime.
The strong equivalence principle (SEP) is the statement that

any two objects will fall at the same rate in an externally
applied gravitational field even if their self-gravity is consid-
erable. There are few theories apart from GR that satisfy the
SEP, and scalar-tensor theories are no exception. The violation
of the SEP has its origin in the fact that the scalar couples to
the trace of the energy-momentum tensor (rather than the
energy-momentum pseudotensor) so that only nonrelativistic
matter contributes to the coupling and not the gravitational
binding energy. Another way of seeing this is that there is a
powerful no-hair theorem (Hui and Nicolis, 2013) [see
Sotiriou and Zhou (2014a, 2014b) and Babichev,
Charmousis, and Lehébel (2016) for exceptions] for black

holes in generic scalar-tensor theories. The lack of scalar hair
implies that the scalar charge is zero.

2. Searching for screening

Having elucidated the properties of and differences between
the screening mechanisms, we now explain how to identify
astrophysical objects in which to search for them. We begin
with chameleon and symmetron screening and then move on
to Vainshtein screening.
As the level of thin-shell self-screening is set by an object’s

Newtonian potential jΦj ¼ GM=R (the object is unscreened
for self-screening parameter χ > GM=R), identifying
unscreened objects subject to fifth forces is tantamount to
seeking those with low Newtonian potentials. Some com-
monly used object are listed in Table I along with their
characteristic Newtonian potentials. On the face of it, the Earth
and Moon should remain unscreened for low background field
values, making them excellent probes of modified gravity. It is
important to note, however, that Φ receives an additional
contribution from surrounding mass, and hence objects may
be environmentally screened as well as self-screened. The
Milky Way has a characteristic potential of Oð10−6Þ, and
hence environmentally screens the Earth and Moon for typical
field values.
Some of the most useful objects for testing thin-shell

screening are post-main-sequence stars and dwarf galaxies.
Post-main-sequence stars have masses of the order of their
progenitor star’s mass but radii 10–100 times larger, lowering
their potential to 10−7 or less. In the case of galaxies, the virial
theorem relates circular velocity to Newtonian potential:

v2c ∼
GM
R

: ð45Þ

Spiral galaxies have vc ∼ 200 km=s, giving GM=R ∼ 10−6,
but dwarf galaxies have vc ∼ 50 km=s so that GM=R ∼ 10−8.
The strategy for searching for thin-shell screening effects is
therefore to seek dwarf galaxies that are not environmentally
screened, i.e., that reside in voids. These galaxies or their
constituent post-main-sequence stars then serve as probes of
screening. (We discuss the observational determination of
environmental screening in Sec. IX.D.) No astrophysical
objects have Φ ≲ 10−8 (we are ignoring planets and smaller
objects, which are typically screened by their environment and
not useful for constraining these theories), and hence only

TABLE I. Objects commonly considered probes of thin-shell
screening. The second column shows surface Newtonian potential
jΦj ¼ GM=R.

Object Newtonian potential Φ

Earth 10−9

Moon 10−11

Main-sequence star (Sun-like) 10−6

Post-main-sequence star
[M ¼ ð1–10ÞM⊙, R ¼ ð10–100ÞR⊙]

10−7–10−8

Spiral galaxy
(Milky Way-like, vc ∼ 200 km=s)

10−6

Dwarf galaxy (vc ∼ 50 km=s) 10−8

13Note that this is only the case for a single isolated test mass
interacting with a Galileon field whose wavelength is larger than the
body’s extent. Two-body systems can violate the WEP due to the
highly nonlinear nature of the equation of motion (Andrews, Chu,
and Trodden, 2013; Hiramatsu et al., 2013; Kuntz, 2019). Hiramatsu
et al. (2013) also found a 4% enhancement of the Galileon force
compared to the one-body case. The WEP is also broken in more
general Vainshtein-screened theories. Further investigation of these
effects may yield new probes.
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laboratory tests can probe smaller values of χ (Burrage and
Sakstein, 2016). Current bounds on χ imply that the these
theories cannot act as dark energy (Wang, Hui, and Khoury,
2012), but they may have effects on smaller scales. Indeed, the
effective mass in the cosmological background is (Brax,
Davis, Li, and Winther, 2012)

m2
eff ≈

H2
0

χ
; ð46Þ

so taking χ ≲ 10−7 (commensurate with current bounds;
see Sec. IX) corresponds to a Compton wave number
k ≃ ð0.1 MpcÞ−1: the fifth force would be operative only on
smaller scales, i.e., scales smaller than 0.1 Mpc.
Galileons are harder to test on astrophysical scales due to

their highly efficient screening and nonlinear equations
of motion. These make computing observables difficult.
Indeed, the strongest bounds until recently came from
LLR, which restricts fractional deviations in the inverse-
square law to 10−11 at the Earth-Moon distance (Nordtvedt,
2003; Merkowitz, 2010; Murphy et al., 2012; Murphy, 2013),
allowing deviations of the form of Eq. (32) to be constrained
directly (Dvali, Gruzinov, and Zaldarriaga, 2003).
One promising test utilizes the violations of the previously

discussed strong equivalence principle, which lead to interest-
ing novel effects detailed in Sec. IX.F.2. Any system composed
of both nonrelativistic and strongly gravitating objects (for
example, a galaxy comprising a central supermassive black
hole as well as nonrelativistic stars and gas) has the potential to
exhibit violations of the SEP. In some theories, in particular,
beyond Horndeski and DHOSTones (Sec. IV.C.2), it is possible
that the Vainshtein mechanism is broken inside objects
(Kobayashi, Watanabe, and Yamauchi, 2015; Koyama and
Sakstein, 2015; Saito et al., 2015), which allows for additional
tests (Sakstein and Koyama, 2015; Jain, Kouvaris, and Nielsen,
2016; Sakstein et al., 2016; Sakstein, 2015a, 2015b) that we
discuss in Sec. IX.G.

V. SURVEYS

In this section we describe the types of survey useful for
constraining modified gravity and list future surveys that will
be particularly important in this regard. The surveys are
summarized in Table II, while the timeline for upcoming
surveys is shown in Fig. 7.

A. Types of surveys and available datasets

Several types of cosmological surveys are currently being
carried out, which can roughly be divided into the following
categories:

• Spectroscopic galaxy redshift surveys.—Spectroscopic
galaxy redshift surveys probe the three-dimensional
matter density field by measuring angular galaxy
positions and redshifts using spectroscopic methods.
These redshifts are measured to high precision
[Δz=z≲Oð10−3Þ], as spectroscopy allows the identifi-
cation of specific atomic transition lines in galaxy
spectra. Assuming a cosmological model to relate red-
shifts to distances, these surveys can be used to measure
the statistical properties of the galaxy density field. The

main applications include inference of the distance-
redshift relation through measurements of the baryonic
acoustic oscillations (BAOs) peak and measurement of
the growth rate of structure through the anisotropy
imprinted on the two-point function by redshift-space
distortions (RSDs). BAOs are fluctuations in the matter
density caused by acoustic waves in the pre-recombi-

nation plasma, which show up as an enhancement in galaxy
clustering at a scale ∼150 Mpc today and allow constraints to
be placed on the components of the Universe’s density budget
that determine its expansion history; see Beutler et al. (2017).
RSDs are discussed further in Sec. IX.A. Other applications of
spectroscopic surveys include the study of cosmic voids or
peculiar galaxy velocities. Current examples of these types
of surveys include the Baryonic Oscillation Spectroscopic
Survey (BOSS) (Alam et al., 2015)14 and its extension
(eBOSS) (Abolfathi et al., 2018)15 and WiggleZ (Parkinson
et al., 2012).16 As measuring galaxy spectra is time consum-
ing, spectroscopic samples typically consist of on the order of
millions of objects.

• Photometric galaxy redshift surveys.—Photometric sur-
veys infer galaxy redshifts from measurements of their
fluxes in several wave bands, resulting in samples of
hundreds of millions of objects or more. Photometric
redshift fitting codes usually rely on representative
spectroscopic training samples, which allow the mea-
sured redshifts to reach accuracies of Δz=z≳Oð10−2Þ.
Photometric galaxy redshift surveys can be used for
galaxy clustering, weak lensing, and clustering measure-
ments, among others. Owing to increased redshift un-
certainties, these analyses are usually performed in two
dimensions, but some 3D information can be retrieved
through tomographic techniques. Examples for current
and completed photometric surveys include the Dark
Energy Survey (DES) (Abbott et al., 2018),17 the Kilo
Degree Survey (KiDS; Kuijken et al., 2015),18 the
Canada-France-Hawaii Telescope Legacy Survey,19

and surveys with the Hyper Suprime-Cam (HSC)
(Aihara et al., 2018; Mandelbaum et al., 2018)20 on
the Subaru Telescope.

• Cosmic microwave background surveys.—CMB experi-
ments measure the fluctuations in the temperature and
polarization of the CMB. The ratio of CMB to fore-
ground emission peaks at frequencies between 40 and
100 GHz, but measurements are typically conducted in
frequencies ranging from 10 to 300 GHz (or higher, in
some cases) to separate the CMB from Galactic and
extragalactic foregrounds. The primary CMB anisotro-
pies probe the matter distribution at the last-scattering
surface, but the observed anisotropies also receive
contributions from the ISW effect, gravitational lensing,

14See http://www.sdss3.org/surveys/boss.php.
15See http://www.sdss.org/surveys/eboss/.
16See http://wigglez.swin.edu.au/site/.
17See http://www.darkenergysurvey.org.
18See http://kids.strw.leidenuniv.nl.
19See https://www.cfht.hawaii.edu/Science/CFHTLS/ and http://

www.cfhtlens.org/astronomers/content-suitable-astronomers.
20See http://hsc.mtk.nao.ac.jp/ssp/.
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and the Sunyaev-Zel’dovich (SZ) effect, which probe the
low-redshift Universe. Examples of current and com-
pleted CMB experiments include the Wilkinson Micro-
wave Anisotropy Probe (WMAP) (Bennett et al.,
2013),21 Planck (Adam et al., 2016),22 the Atacama
Cosmology Telescope (ACT) (De Bernardis et al., 2016;
Louis et al., 2017),23 the South Pole Telescope (SPT)
(Benson et al., 2014; Henning et al., 2018),24 POLAR-
BEAR25 and BICEP/Keck.26

• Intensity mapping surveys.—Intensity mapping
experiments forego identifying individual objects and
instead measure the intensity of radiation of a particular

frequency as a function of angular position, typically
with an emphasis on a particular atomic line. These
surveys are therefore sensitive to all sources of emission
in some frequency range (galaxies, IGM, etc.) and by
using the redshift of the line as a proxy for distance it is
possible to trace the three-dimensional structure of the
Universe to great distance. Current efforts focus mainly
on mapping the hydrogen 21 cm line (HI) but other
possibilities like CO or CII are also considered. For

2018 2020 2022 2024 2026 2028 2030 2032 2034

DESI
PFS

Euclid

LSST
WFIRST

SKA

HIRAX

spectroscopic
HI
CMB
photometric

Simons Observatory
CMB S-4

FIG. 7. Timeline for future surveys.

TABLE II. Properties of a selection of past and current (through the SPT/SPT3G row) and planned surveys (beginning with the DESI row).

Survey Duration Area (sq. deg.) z range Survey properties Main probes

BOSS 2008–2014 10 000 0–0.7 nobj ∼ 1.5 × 106 GC,a QSOsb

eBOSS 2014–2020 7500 0.6–3.5 nobj ∼ 1 × 106 GC, QSOs, Ly-α
WiggleZ 2006–2011 1000 < 1.0 nobj ∼ 2 × 105 GC
DES 2013–2019 5000 0–1.4 mlim;r ¼ 24 WL,c GC, clusters,

nobj ∼ 3 × 108 SNe Ia
KiDS 2013–2019 1500 z̄ ∼ 0.7 mlim;r ¼ 24.9 WL

nobj ∼ 3 × 107

HSC 2014–2020 1400 z̄ ∼ 1 mlim;r ¼ 26.1 WL, GC, clusters,
nobj ∼ 1 × 108 SNe Ia,

WMAP 2001–2010 Full sky 1100 Resolution < 0.3° T,d Pd

Sensitivity ∼60 μK arcmin
Planck 2009–2013 Full sky 1100 Resolution < 10 arcmin T, P

Sensitivity ∼45 μK arcmin
ACT=AdvACT 2013–2019 1000=18 000 1100 Resolution ∼1 arcmin T, P

Sensitivity ∼30 μK arcmin
SPT=SPT3G 2013–2023 500=2500 1100 Resolution ∼1 arcmin T, P

Sensitivity ∼17 μK arcmin
DESI 2019–2024 14 000 0–3.5 nobj ∼ 3 × 107 GC, QSOs, Ly-α
PFS Early 2020s 2000 0.8–2.4 nobj ∼ 1 × 107 near-field cosmology,

GC, Ly-α
LSST 2023–2033 20 000 z̄ ∼ 1.2 mlim;r ∼ 27 WL, GC, SL,e

nobj ∼ 2 × 1010 clusters, SNe Ia
WFIRST mid-2020s 2000 1–3 mlim;j ∼ 26.9 WL, GC, SNe Ia

nobj ∼ 5 × 108=2 × 107

Euclid 2022–2028 15 000 0.7–2.1 nobj ∼ 5 × 107=1 × 109 GC, WL
Simons Observatory 2021–2026 15 000 1100 Resolution ∼1.5 arcmin T, P

Sensitivity ∼5 μK
CMB S-4 mid-2020s 8000 1100 Resolution ∼3 arcminf T, P

Sensitivity ∼1 μK arcminf

SKA mid-2020’s 15 000 < 2 nobj ∼ 1 × 109 HI IM,g HI GC
HIRAX 2020–2024 15 000 0.8–2.5 Resolution ∼5–10 arcmin HI IM
CHIME 2017–2023 25 000 1–3 Resolution ∼15–30 arcmin HI IM

aGC, galaxy clustering.
bQSOs, quasars.
cWL, weak lensing.
dT, temperature; P, polarization (CMB).
eSL, strong lensing.
fAccording to Science Book specifications.
gIM, intensity mapping.

21See https://wmap.gsfc.nasa.gov.
22See https://www.cosmos.esa.int/web/planck.
23See https://act.princeton.edu.
24See https://pole.uchicago.edu.
25See http://bolo.berkeley.edu/polarbear/.
26See http://bicepkeck.org/.
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instance, the Canadian Hydrogen Intensity Mapping
Experiment (CHIME),27 based at the Dominion Radio
Astrophysical Observatory in British Columbia, Canada,
is undertaking a HI intensity mapping survey in the
frequency range 400–800 MHz, corresponding to
1 ≤ z ≤ 3, covering approximately 25 000 deg2. The
field of line-intensity mapping is in its infancy, but
recently HI, CO, CII, and Lyman-α line emission have
been detected in cross-correlation using, among others,
data from the Green Bank Telescope.28

B. Upcoming surveys

We are living in a golden age of survey science. An
abundance of observational programs have been proposed
that will substantially increase the amount and quality of data
with which we can explore the various aspects of gravity
discussed in this review. In what follows we will briefly
summarize the key surveys that, hopefully, will be rolled out
in the next decade or so.

• DESI.—The Dark Energy Spectroscopic Instrument
(Aghamousa et al., 2016),29 based at Kitt Peak in Arizona,
will be used to perform a spectroscopic survey of over
3 × 107 objects (luminous red galaxies, OII emitting
galaxies, quasars, and “bright” galaxies) out to a redshift
of z ∼ 3.5. The survey will cover about 14 000 deg2.

• PFS.—The Subaru Prime Focus Spectrograph (Takada
et al., 2014) will construct a spectroscopic redshift
survey of emission line (OII) galaxies in the redshift
range 0.8 ≤ z ≤ 2.4 covering approximately 2000 deg2

down to apparent magnitude r ∼ 26.30

• LSST.—The Vera Rubin Observatory (Abell et al., 2009;
Ivezic et al., 2019),31 based in Chile, will undertake the
Legacy Survey of Space and Time (LSST), a deep
(reaching a magnitude limit of r ∼ 27) and wide
(20 000 deg2) imaging survey of the southern sky over
10 yr. It will use photo-z for radial information and will
provide information on tomographic galaxy clustering
and cosmic shear, strong lensing, galaxy cluster counts
and type Ia supernovae.

• The Nancy Grace Roman Space Telescope.—The Ro-
man Space Telescope (Spergel et al., 2013)32 is a planned
satellite mission that will carry out an imaging and a
spectroscopic survey of 2000 deg2 (reaching a J-band
magnitude limit of J ∼ 27). This will result in an imaging
catalog of 5 × 108 galaxies and spectra of 2 × 107

galaxies in the redshift range 1 ≤ z ≤ 3.
• Euclid.—Euclid (Laureijs et al., 2012)33 is a satellite
mission to be launched in the early 2020s that is going to
cover 15 000 deg2 on the sky. It will determine the
redshifts of 5 × 107 galaxies in the range 0.7 < z < 1.8

using an infrared spectrograph. It will further conduct a
photometric survey of 109 galaxies in the redshift range
0 < z < 2. The spectroscopic data will be used mostly
for galaxy clustering, baryon acoustic oscillation, and
redshift-space distortion measurements, while the imag-
ing data will be used to measure cosmic shear.

• SKA.—The Square Kilometre Array (Maartens et al.,
2015)34 is a partially funded radio facility which will be
based at two sites, the Karoo region in South Africa and
the Murchinson region in Western Australia, and will
consist of three instruments: SKA1-MID, consisting of
254 single pixel dishes covering 350–1760 MHz; SKA1-
SUR, an array of 96 dishes with 36 beam-phased
aperture arrays covering a similar frequency range;
and SKA1-LOW, a set of 911 aperture array stations
covering 50–350 MHz. The SKA can be used for HI
intensity mapping and for measuring spectroscopic red-
shifts and the galaxy continuum.

• HIRAX.—The Hydrogen Intensity and Real-time Analy-
sis eXperiment (Newburgh et al., 2016),35 based in South
Africa, is a HI intensity mapping survey covering a
redshift range 0.8 ≤ z ≤ 2.5 with a sky coverage
of 15 000 deg2.

• Simons Observatory.—The Simons Observatory (Ade
et al., 2019)36 is a CMB experiment covering
15 000 deg2, at a resolution of 1 to 2 arcmin with a
sensitivity of approximately 5 μK. It will cover the
multipole range 50 < l < 3000 in temperature.

• Stage 4 CMB observatory (S4).—Current ground-based
CMB facilities will be superseded by a coordinated,
multisite experiment (Abazajian et al., 2016). The aim is
for the combined instruments to map 40% of the sky
with a rms noise sensitivity of ∼1 μKarcmin in temper-
ature and beams with a ∼3 arcmin FWHM. This means
that the S4 will effectively cover the multipole range
30 < l < 3000 in temperature and 30 < l < 5000 in
polarization.37

VI. NONLINEAR STRUCTURE FORMATION:
SEMIANALYTIC AND ANALYTIC APPROACHES

A. Nonlinear structure in GR versus modified gravity

As structures in the Universe grow, the density fluctuations
become larger than unity on small scales and the structure
formation enters into the nonlinear regime. At large scales,
density perturbations remain small and linear perturbation
theory is applicable. However, these scales are prone to cosmic
variance and the bulk of information will be available on
nonlinear scales in future surveys. Thus, it is important to
describe nonlinear structure formation accurately to distinguish
modified-gravity models from GR. Although cosmic variance
becomes small on small scales, there are increasing uncertain-
ties from baryonic physics. Understanding baryonic effects is27See https://chime-experiment.ca.

28See https://greenbankobservatory.org/.
29See http://desi.lbl.gov.
30See http://pfs.ipmu.jp.
31See http://www.lsst.org.
32See https://roman.gsfc.nasa.gov.
33See http://sci.esa.int/euclid/.

34See https://www.skatelescope.org.
35See https://www.acru.ukzn.ac.za/~hirax/.
36See https://simonsobservatory.org/index.php.
37See https://cmb-s4.org.
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even more important in modified-gravity models, as they can be
degenerate with the effects of modified gravity. Screening
mechanisms also play a role at small scales and make it harder
to distinguish modified-gravity models from GR.
In this section we summarize analytic and semianalytic

methods for describing the nonlinear regime of structure in
GR, and their extensions to modified gravity, discuss the
impact of baryonic physics on small-scale structure and its
degeneracy with the behavior of gravity, and describe estima-
tors that have recently been developed for maximizing
sensitivity to deviations from GR.

1. Semianalytic and analytic approaches in GR

A key ingredient for predicting several important cosmo-
logical observables is the nonlinear matter power spectrum. On
quasilinear scales, Eulerian standard perturbation theory pro-
vides a way to predict the onset of nonlinearity; see Bernardeau
et al. (2002) and references therein for details. The dark matter
particle number density in phase space obeys the Vlasov
equation, which describes phase-space conservation of the
number density. In Eulerian perturbation theory, the Vlasov
equation is first approximated by the continuity and Euler
equations by taking the first two moments of the phase-space
density of dark matter particles and neglecting the stress tensor.
These equations describe the evolution of the density pertur-
bation and velocity divergence. In standard perturbation theory,
these nonlinear equations are solved perturbatively while
assuming the smallness of these quantities. To obtain the
leading-order correction to the linear power spectrum, the
one-loop power spectrum, solutions for these quantities need
to be obtained up to the third order in perturbations. The
maximum wave number kmax below which the standard
perturbation theory prediction for the matter power spectrum
at one-loop order agrees with N-body simulation results is
empirically determined using the following formula
(Nishimichi et al., 2009):

k2max

6π2

Z
kmax

0

PLðq; zÞdq < C; ð47Þ

where PLðq; zÞ is the linear power spectrum at redshift z. The
constant value C was calibrated from N-body simulations in a
ΛCDM model as C ¼ 0.18 by imposing the requirement that
the one-loop standard perturbation theory prediction agree with
N-body results within 1% at k < kmax (Nishimichi et al., 2009)
(note that this value depends on cosmological parameters, in
particular, on the amplitude of the linear power spectrum).
Although this condition was calibrated in GR simulations, it
gives a useful indication of the validity of perturbation theory
even in modified-gravity models such as fðRÞ and DGPmodels
(Koyama, Taruya, and Hiramatsu, 2009).
Standard perturbation theory is known to suffer from

several problems, which can be traced back to the fact that
it does not consistently capture the effect of small-scale
nonlinear perturbations on large-scale perturbations. To over-
come these problems, various improvements have been
proposed. The one-loop power spectrum has the form

PðkÞ ¼ Gðk; zÞ2PiðkÞ þ PMCðk; zÞ; ð48Þ

where Pi is the initial power spectrum, Gðk; zÞ is the
propagator, which reduces to the growth function DðzÞ at
linear order, and the second term describes the mode coupling
between different k modes. The higher-order loop corrections
to the propagator can be resummed and the propagator is
modified as

Gðz; kÞ ¼ exp

�
−
k2D2σ2v

2

�
DðzÞ; ð49Þ

where σv is the linear velocity dispersion. Renormalised
perturbation theory approaches are based on this resummation
of the propagator (Crocce and Scoccimarro, 2006). Recently
there has been a debate on the validity of this resummation. It
was pointed out that this exponential damping disappears if a
similar resummation is performed for the mode coupling term
(Tassev and Zaldarriaga, 2012; Sugiyama and Spergel, 2014).
In addition, the resummation of the propagator breaks the
Galilean symmetry of the original equations (Peloso and
Pietroni, 2017). The EFT of large-scale structure takes a
different approach (Baumann et al., 2012; Carrasco,
Hertzberg, and Senatore, 2012). In this approach, only the
effect of large-scale modes on the BAO feature is resummed.
This leads to the damping of the BAO feature, leaving the
smooth part of the power spectrum untouched. The effect of
UV modes is included in the form of the counterterm, and this
counterterm needs to be calibrated using simulations or
observations.
On fully nonlinear scales, the halo model (Cooray and

Sheth, 2002) gives an intuitive understanding of how the
nonlinear power spectrum should look. It assumes all matter in
the Universe to be located in virialized structures, or halos.
This allows one to compute the statistics of the matter density
field such as the power spectrum from the spatial distribution
and density profiles of halos. To fit simulations, however, the
halo model approach needs to be tweaked by introducing
several free parameters. The most widely used approach is the
one proposed byMead et al. (2015). In this approach, there are
seven parameters that need to be calibrated by simulation. The
key input in this approach is the variance of the linear density
perturbations smoothed on a comoving scale R. Another
approach is to provide a mapping between the linear power
spectrum PLðkÞ and the nonlinear power spectrum. The halofit
model provides fitting formulas for this mapping calibrated
from a suite of N-body simulations (Smith et al., 2003). The
fitting formula was revised by Takahashi et al. (2012), and this
is now widely used to predict the nonlinear power spectrum
for a given linear power spectrum computed with a linear
Einstein-Boltzmann code such as CAMB or CLASS. Finally,
there have been attempts to create emulators for nonlinear
power spectra using a carefully chosen sample set of cosmo-
logical simulations and provide accurate predictions over the
wide parameter space (Lawrence et al., 2017; Knabenhans
et al., 2019).

2. Semianalytic and analytic approaches in modified gravity

The approaches developed for GR can be extended to
compute nonlinear power spectra in modified gravity. The
main complication comes from the screening mechanism.
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Screening modifies the Poisson equation so that the relation
between the Newton potential and density becomes nonlinear.
In the perturbation-theory approach, this nonlinear Poisson
equation can be expanded in terms of the density field and the
one-loop power spectrum can be computed (Koyama, Taruya,
and Hiramatsu, 2009; Cusin, Lewandowski, and Vernizzi,
2018a). Another complication arises in chameleon screening.
In this case, due to the mass of the scalar field, the linear growth
function becomes scale dependent and the higher-order sol-
utions in standard perturbation theory need to be computed
numerically (Taruya, Nishimichi et al., 2014; Bose and
Koyama, 2016). The regime of validity of perturbation theory
is then expected to be a function of the field mass. An EFT
approach was applied to DGP models by Bose et al. (2018).
The halo, or halofit, model predicts the nonlinear power

spectrum for a given linear power spectrum. Since these
models were developed in GR, screening mechanisms are not
taken into account. As a consequence, a naive use of these
approaches by simply replacing the linear power spectrum
with the one in modified gravity overpredicts deviations from
GR because it does not account for the suppression of the fifth
force due to screening (Oyaizu, 2008; Zhao, Li, and Koyama,
2011). Thus these approaches need to be modified in the
presence of screening. For an fðRÞ gravity model, an
extension of halofit was developed by Zhao (2014). The halo
model has also been extended to include the effect of
screening through the modification of spherical collapse
model parameters (Schmidt et al., 2009; Schmidt, Hu, and
Lima, 2010; Lombriser, Koyama, and Li, 2014). Figure 8
shows a comparison of these approaches for the ratios of

power spectra for fðRÞ and ΛCDM models (Mead et al.,
2016). Cataneo et al. (2019) proposed a method to use the
reaction of a ΛCDM matter power spectrum to the physics of
an extended cosmological parameter space by adopting the
halo model and nonlinear perturbation theory. Emulators of
the deviation from the ΛCDM matter power spectrum
in Hu-Sawicki fðRÞ models were presented by Winther
et al. (2019).
On linear scales, there is a well-defined connection between

the statistics of galaxies and that of matter [see Desjacques,
Jeong, and Schmidt (2018) for a review], known as bias. It is
important to take into account that, if the growth in the model
is scale dependent, then the bias relation also becomes scale
dependent (Parfrey, Hui, and Sheth, 2011). A particularly
interesting target is the cross-correlation of two galaxy
populations differing in bias or screening properties, which
leads to parity breaking in the relativistic correlation function
that enhances sensitivity to fifth forces (Bonvin, Hui, and
Gaztanaga, 2014). Note, however, that in many viable models
these effects appear only on scales that are already moderately
nonlinear (see Fig. 8), so nonlinear effects (including non-
linear galaxy bias and velocity bias) present in GR need to be
taken into account carefully. The modification to the Euler
equation leads to the appearance of new terms in the spherical
harmonic expansion of the correlation function, which may be
observable with present and upcoming spectroscopic surveys
such as DESI (Gaztanaga, Bonvin, and Hui, 2017; Bonvin and
Fleury, 2018). The octopole, in particular, may provide a
relatively clean probe of screening per se (especially at
higher z), as opposed simply to the modified growth rate in
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FIG. 8. A comparison of the ratios of power spectra for fðRÞ models and an equivalent ΛCDM model for jfR0j ¼ 10−4 (top panels),
10−5 (middle panels), and 10−6 (bottom panels) at z ¼ 0 (left-hand column) and 1 (right-hand column). We show the power spectrum
from the simulations of Li, Hellwing et al. (2013) (blue points) together with that from two versions of the halo model, that of Mead
et al. (2015) (short-dashed black lines) and Mead et al. (2016) (solid black lines). The former does not take into account chameleon
screening and thus overestimates the deviation from GR. We also show the MG-HALOFIT model (Zhao, 2014) (long-dashed red lines)
that was fitted to the same simulation data as shown (among others) and provides a better fit. From Mead et al., 2016.
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the cosmological background that shows up predominantly in
the dipole (Kodwani and Desmond, 2019).
Finally, it is worth noting that statistics beyond the power

spectrum may be useful for breaking degeneracies between
the parameters of ΛCDM and modified gravity. For example,
the convergence power spectrum is degenerate between fR0
and σ8 andΩm. This degeneracy can be broken, however, with
information from the bispectrum and/or clustering statistics
based on peak counts (Shirasaki et al., 2017).

B. Baryonic effects and small-scale structure

Any effect that impacts nonlinear scales is a potential
systematic for tests of modified gravity. A notable example is
the effect of baryons, which is able to appreciably alter the
distribution of total matter on small scales and consequently
lead to biased cosmological constraints if not properly
accounted for (Hearin and Zentner, 2009; Semboloni et al.,
2011). We begin this section with a general discussion of the
effects of baryons on the clustering of matter before going on
to discuss methods to incorporate them in modified-gravity
predictions, and some degeneracies that arise.
The fact that baryons are subject to pressure forces that

become relevant below their Jeans scale immediately implies
modifications to the distribution of total matter, compared
with a case in which structure formation takes place only
under the influence of gravity. For example, gas loses energy
via radiative cooling as it falls into gravitational potential
wells, which makes it easier to trigger the formation of high-
density structures such as gas and stellar disks. As baryons fall
toward the center of potential wells they drag dark matter
gravitationally, via a process known as adiabatic contraction
(Blumenthal et al., 1986; Gnedin et al., 2004, 2011).
Both effects enhance the clustering power on scales

k > a few × h=Mpc (l≳ 3000–5000 in weak-lensing spec-
tra) (White, 2004; Guillet, Teyssier, and Colombi, 2010).
There are, however, also baryonic processes that work to

suppress the amplitude of the matter power spectrum. First,
beyond galactic scales, the hot gas found in the intracluster
medium is more diffuse than dark matter in clusters, which
reduces power relative to N-body predictions on scales below
a few megaparsecs (Zhan and Knox, 2004). Second, and
perhaps most importantly for weak-lensing applications, the
violent ejections of matter from both supernova (SNe) and
AGN can redistribute matter out to scales of the halo virial
radius. SNe are the primary cause of mass loss below the knee
in the galaxy stellar mass function (M� ≈ 1011M⊙), and AGN
is the primary cause above the knee. For example, the OWLS
simulation suite (Schaye et al., 2010) includes nine baryonic
physics models, differing in the description of AGN, SNe, gas
cooling, and stellar initial mass function. These models were
intended to span a range of a priori plausible possibilities for
baryonic physics, making them a useful reference point for the
impact of baryons as well as a test bench for empirical and
semianalytic parametrizations. Current state-of-the-art cosmo-
logical hydrodynamical simulations, such as EAGLE (Crain
et al., 2015; Schaye et al., 2015), Illustris and IllustrisTNG
(Vogelsberger et al., 2014; Pillepich et al., 2018; Springel
et al., 2018), MassiveBlack (Khandai et al., 2015), and
Horizon (Dubois et al., 2014; Kaviraj et al., 2017), all include
prescriptions for AGN feedback, which is thought to be a
crucial ingredient to bring the results of these simulations
closer to observations. The baryonic impact on the power
spectrum measured from these simulations is shown in
Fig. 9(a). Current simulations agree qualitatively on the main
changes to the power spectrum, namely, a suppression of
power on scales k ≳ 1 h=Mpc due to AGN feedback and a
turnaround on scales k ≈ 10 h=Mpc due to adiabatic cooling.

FIG. 9. (a) Change in power spectrum due to baryonic effects as a function of scale, with a comparison among the Horizon, OWLS,
Illustris, and EAGLE simulations. From Chisari et al., 2018. (b) Competition between baryonic and modified-gravity effects: on scales
k≳ 2 h=Mpc, baryonic effects can noticeably suppress (solid green and blue lines) the enhancement in clustering power due to the fifth
force (dashed green and blue lines) in fðRÞ models. From Arnold, Leo, and Li, 2019.
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A point to stress is that these simulations disagree on the exact
magnitude of the effects, which can be traced back to
differences in the physical implementation of baryonic physi-
cal processes on scales below the resolution scale of these
simulations (the so-called subgrid physics). This uncertainty is
a considerable hurdle for constraining additional parameters
beyond ΛCDM, e.g., those of modified gravity.
Arnold, Leo, and Li (2019), Arnold and Li (2019), and Leo,

Arnold, and Li (2019) recently made progress on under-
standing the interplay between modified gravity and baryonic
effects by presenting the results of a first set of full modified-
gravity (fðRÞ) galaxy formation simulations; see Sec. VII for a
discussion on N-body methods in modified gravity. These are
shown to produce a number of baryonic observables that are in
broad agreement with observations, including the formation of
disk galaxies similar to the Milky Way. One of the key
findings is that for weaker modified gravity (e.g., Hu-Sawicki
jfR0j ¼ 10−6), the effects of baryons and modified gravity are
separable and additive, while for stronger models such as
jfR0j ¼ 10−5 the two effects are coupled and require full
simulations to reproduce. Figure 9(b) shows the impact on the
total matter power spectrum; the competing effects between
the fifth force and AGN feedback are apparent, but the scale
dependence is different, so the degeneracy is not perfect.
Arnold, Leo, and Li (2019), Arnold and Li (2019), and Leo,
Arnold, and Li (2019) also showed that the properties of
baryonic matter, such as stars, gas, neutral hydrogen, and
black holes, can be significantly affected by modified gravity
in a way that is not captured in detail by simple analytic
models. While simulations are required to track the full impact
of baryons on matter clustering, they are computationally
expensive to run. This makes it infeasible to marginalize over
baryonic effects to constrain physics such as modified gravity
by simulating the full range of possible baryonic and gravi-
tational models. Effort is therefore being devoted to the
development of empirical or semianalytic models that capture
the effects of baryons with some free parameters that can be
marginalized over in real data analyses. A convenient frame-
work for this is the halo model, in which the impact of baryons
can be captured by modifications to the assumed density
profile of dark matter halos (Rudd, Zentner, and Kravtsov,
2008; Zentner, Rudd, and Hu, 2008; Hearin and Zentner,
2009; Zentner et al., 2013; Mead et al., 2015). For example,
Mead et al. (2015) proposed an augmented halo model that
includes two parameters that govern the inner halo structure
and that is able to describe the power spectrum in each of the
OWLS simulation variants at the ≲5% level. Mead et al.
(2016) further extended this halo model to account for the
effects of chameleon and Vainshtein screening, enabling the
degeneracies between modified gravity and baryonic effects to
be investigated. They found that while baryons mostly affect
internal halo structure, modified-gravity effects also impact
the halo distribution, thereby making their effects potentially
distinguishable [this is in line with Fig. 9(b) from modified-
gravity simulations of galaxy formation].
Other methods besides halo model modifications have been

developed for the purpose of determining and accounting for
the effect of baryons on the power spectrum. One is based on
principal component analyses (PCAs), where one possible

goal is to identify and discard the PCA components of the data
vectors that are most contaminated by baryonic effects, which
yields fewer degraded parameter constraints than simply
discarding the small-scale elements of the data vectors
(Eifler et al., 2015; Mohammed and Gnedin, 2018; Huang
et al., 2019). Other approaches are built on perturbation theory
(Lewandowski, Perko, and Senatore, 2015), or more straight-
forwardly on fitting empirical functions to hydrodynamical
simulation results (Harnois-Déraps, van Waerbeke et al.,
2015). Absent precise knowledge of baryonic effects, a
combination of approaches will likely be necessary to maxi-
mize the scientific return of future surveys aimed at extending
lensing power spectra to quasilinear and nonlinear scales. This
is especially important for the case of tests of gravity given the
degeneracies that may arise.

C. Novel estimators for the nonlinear regime

The screening effects of modified-gravity models suppress
deviations from general relativity in high-density regions.
These regions, however, contribute most to the matter power
spectrum in the nonlinear regime on small scales, which
renders a detection of a potential modification of gravity more
difficult. Lombriser, Simpson, and Mead (2015), White
(2016); Llinares and McCullagh (2017), Armijo et al.
(2018), Hernández-Aguayo, Baugh, and Li (2018), and
Valogiannis and Bean (2018) therefore proposed that the
up-weighting of low-density, unscreened regions in the
calculation of two-point statistics would enhance the detect-
ability of a modification. Moreover, by considering different
weights, one could more readily discriminate gravitational
modifications from baryonic effects or new fundamental
physics that can yield degenerate contributions in the power
spectrum. Density weighting has been studied for marked
correlation functions (White, 2016), density transformations
(Neyrinck, Szapudi, and Szalay, 2009), and clipping (Simpson
et al., 2011; Simpson, Heavens, and Heymans, 2013).
The truncated density field in clipping (Simpson et al.,

2011; Simpson, Heavens, and Heymans, 2013) is given by

δ̃ ¼ δcðx⃗Þ ¼
�
δ0; δðx⃗Þ > δ0;

δðx⃗Þ; δðx⃗Þ ≤ δ0;
ð50Þ

for an overdensity δðx⃗Þ at position x⃗. The transformation was
applied by Lombriser, Simpson, and Mead (2015) and
Valogiannis and Bean (2018) to fðRÞ and more general
chameleon models, as well as nDGP gravity. A percent-level
measurement of the clipped power spectrum at k <
0.3 h=Mpc would improve constraints on fðRÞ gravity to
jfR0j≲ 2 × 10−7 (Lombriser, Simpson, and Mead, 2015).
Motivated by the observation that the nonlinearly evolved

density field is well described by a log-normal distribution
even though the initial density field is nearly Gaussian,
Neyrinck, Szapudi, and Szalay (2009) proposed the logarith-
mic transformation of the density field

δ̃ ¼ lnðδþ 1Þ: ð51Þ
The transformation in Eq. (51) also reduces the relative
weights of high-density regions in the calculation of two-
point statistics. The transformation was applied to fðRÞ
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gravity by Lombriser, Simpson, and Mead (2015), Llinares
and McCullagh (2017), and Valogiannis and Bean (2018) and
symmetron models by Llinares and McCullagh (2017) and
Valogiannis and Bean (2018). A generalization and optimi-
zation for testing modifications of gravity with Eq. (51) was
proposed by Llinares and McCullagh (2017). Finally, White
(2016) proposed marked correlation functions (White and
Padmanabhan, 2009) to reweight the density field. An analytic
function of this transformation was given by Valogiannis and
Bean (2018) as

δ̃ ¼
�

ρ� þ 1

ρ� þ ρ̄ðδþ 1Þ
�

p
; ð52Þ

with free parameters ρ� and p.
Valogiannis and Bean (2018) compared the performance of

the density transformations, Eqs. (50)–(52), in enhancing the
signal-to-noise ratio, finding that the marked transformation
performs best for scales k < 2 h=Mpc, whereas clipping
performs better when one includes smaller scales
k < 2 h=Mpc.
The previously mentioned studies considered the ideal

cases of up-weighting certain regions of the dark matter
density field, which is not directly observable. In observations,
weak-lensing tomography can be used to reconstruct the 3D
large-scale distribution of matter, but the current data quality is
still not sufficient for applying the previously mentioned
density-weighting schemes to test gravity. An alternative
approach is to apply similar weighting schemes but to the
2D cosmic shear or weak-lensing peak fields instead of the 3D
matter density field. Finally, the density-weighting schemes
can be applied to 3D tracer fields of the large-scale structures,
such as galaxies, galaxy clusters, and quasars, of which the
most interesting one is the galaxy field, for which one can
have high tracer number density and probe low-redshift
(where modified-gravity effects are stronger). The practical
challenge, however, is the lack of a reliable model to predict
how galaxies populate the dark matter field from first
principles, in particular, in modified-gravity models. In
particular, the unknown physics of galaxy formation could
have degenerate effects on the two-point statistics with those
of density weighting; see Sec. VI.B. No matter which gravity
model is correct, it must produce a galaxy distribution that is
in agreement with real observations. Following this logic,
Armijo et al. (2018) and Hernández-Aguayo, Baugh, and Li
(2018) produced mock galaxy catalogs for different fðRÞ
scenarios, by tuning an empirical galaxy populating model in
each of them individually, which have the same projected two-
point correlation function. They found that this greatly
reduces the difference in the marked correlation functions
of these models for various marks, including the one described
in Eq. (52). This is not surprising given that the marks are
defined using the galaxy field itself, which has been fixed
against observations for the different gravity models. Armijo
et al. (2018) and Hernández-Aguayo, Baugh, and Li (2018)
proposed to include additional information in the marks, e.g.,
the masses or gravitational potentials of the host halos of the
galaxies, and found that this increases the differences in the
marked correlation functions. The challenge then becomes

how to find such additional information that can be reliably
measured from observations; see also Sec. IX.D.

VII. COSMOLOGICAL SIMULATIONS

N-body simulation codes are currently the most reliable
tool to predict the distribution and evolution of matter in the
nonlinear regime of structure formation. This is true for any
theory of gravity, but for the case of theories with screening
the importance of N-body simulations is even stronger. This is
because they are currently the only means of accurately
investigating the types of signatures that the screening
mechanisms (which are themselves nonlinear phenomena)
leave on large-scale structure. Being numerically expensive,
these simulations cannot yet be used in thorough explorations
of theory space, nor for running Monte Carlo constraints on
the parameter space of specific theories. However, by focusing
on a small number of representative models, N-body simu-
lations of modified gravity have taught us a great deal about
the types of signatures predicted for the nonlinear regime of
structure formation and what observational tests can be
designed to detect those signatures.
The first simulations of the Hu-Sawicki fðRÞ model were

performed by Oyaizu (2008) on a fixed-resolution grid (i.e.,
no mesh refinement) using the Newton-Gauss-Seidel relaxa-
tion method. This code was subsequently adapted for simu-
lations of the DGP model by Schmidt (2009a, 2009b). The
latter model was also simulated using a fixed grid, but with a
different algorithm (the so-called FFT-relaxation algorithm)
(Chan and Scoccimarro, 2009). Shortly afterward, adaptive
mesh refinement (AMR) simulations for a range of modified-
gravity models (Li and Zhao, 2009, 2010; Brax et al., 2011; Li
and Barrow, 2011; Li, Mota, and Barrow, 2011; Zhao, Li, and
Koyama, 2011; Davis, Li et al., 2012) were developed by
modifying the N-body code MLAPM (Knebe, Green, and
Binney, 2001); these were, however, serial simulations with
limited efficiency.
The field of modified-gravity simulations took a significant

step forward with the development of parallel AMR codes,
which allow for computationally affordable investigations of
matter clustering on scales that would be difficult to resolve
with fixed grid or serial AMR codes. These include the
ECOSMOG code (Li et al., 2012), which is built on RAMSES

(Teyssier, 2002); the MG-GADGET code (Puchwein, Baldi, and
Springel, 2013), which is a modified version of GADGET3
(Springel, 2005); the ISIS code (Llinares, Mota, and Winther,
2014), which is also a modified version of RAMSES; and a
modified version (Arnold, Leo, and Li, 2019) of the moving
mesh N-body and hydro code AREPO (Springel, 2010). Some
of these codes [together with the DGP code by Schmidt
(2009a, 2009b)] were compared with each other (Winther
et al., 2015). Currently, these codes are not all able to simulate
the same classes of models.38

In this section, we briefly review the main features of
modified-gravity N-body algorithms and recent developments

38In addition, none of these codes are currently publicly available.
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in the validation and optimization of these methods.39 The
code comparison paper (Winther et al., 2015) is a useful
introduction to these simulations; a more thorough discussion
of simulation techniques in modified-gravity models was
given by Li (2018b).

A. The algorithm: Relaxations with multigrid acceleration

In gravity-onlyN-body simulations, the nonlinear evolution
of the total matter density in the Universe is followed by
sampling it with N-body tracer particles, with positions and
velocities determined by the total force they experience at a
given time step. In modified-gravity simulations, under the so-
called weak-field (WFA) and quasistatic (QSA) approxima-
tions (see Sec. VII.B), this force is given by −∇Φ, with the
gravitational potential Φ obeying a modified Poisson equation
of the form

∇2Φ ¼ 4πGδρþ fðϕ;∇ϕ;∇2ϕ;…Þ; ð53Þ

where the density perturbation δρ is determined by the particle
distribution in a given time step and f is some model-specific
function of a scalar field and/or its usually spatial derivatives.
The first term on the rhs of Eq. (53) is given by the standard
Poisson equation in Newtonian gravity. The scalar field ϕ
obeys a nonlinear Klein-Gordon equation, which in the weak-
field and quasistatic approximations can be cast in the
following generic form:

L½ϕ; δρ� ¼ SðδρÞ; ð54Þ

in which L is a model-specific nonlinear derivative operator
acting on ϕ (which can depend on the density perturbation δρ)
and S is a function of δρ that sources the scalar field. The
simulation particles are evolved according to

ẍþ 2H _x ¼ −∇⃗Φ; ð55Þ

which is as in standard Newtonian simulations,40 just with a
modified dynamical potential Φ. The main objective of the
modified-gravity algorithms is to solve Eq. (54) to then be
able to construct the extra term fð� � �Þ in the modified Poisson
equation (53). Once this correction is found, the N-body

calculation proceeds as in standard Newtonian simula-
tion codes.
Since the scalar field ϕ obeys a nonlinear field equation, it is

in general not possible to solve for the modified forces using
pairwise force summation, as done in the tree algorithm for
Newtonian N-body simulations. Instead, Eq. (54) is solved
using the finite-difference method on a grid. The current state-
of-the-art modified-gravity N-body codes solve Eq. (54) with
AMR, which makes use of a suite of grids that refine in high
matter density. This ensures sufficiently high force resolution
where it is needed, while saving computational time in regions
of fewer particles, where the force resolution can be lower.
The algorithm consists of taking a discretized version of
Eq. (54) defined on the AMR grid and updating the values of
ϕ in grid cells using some relaxation arrangement until
convergence is reached. Effectively, the algorithm solves
the equation

T l
ijk ≡ L½ϕl

ijk� − Slijk ¼ 0; ð56Þ

where fijkg is the cell index and l is the refinement level. The
iterations can be carried out with the Newton-Gauss-Seidel
(NGS) method, in which the value of the scalar field is
updated as

ϕnew;l
ijk ¼ ϕold;l

ijk −
T l

ijk

∂T l
ijk=∂ϕold;l

ijk

; ð57Þ

in which the evaluation of T l
ijk often involves the values of ϕ

in neighboring cells. The iterations proceed until a sufficiently
good solution to Eq. (56) is obtained that, in practice, is
achieved by checking whether certain statistics of T l

ijk over
the entire AMR structure sðT Þ (e.g., the root-mean-square, the
mean of the modules, or the maximum of the modules of T ijk

in all cells) drops below some prespecified threshold or
whether the estimated error in the solution is already much
smaller than the truncation error from discretizating the
continuous equations on a grid.
During the first few Gauss-Seidel iterations, the value of

sðT Þ usually decays quickly, showing that the numerical
solution is converging toward the true solution. But the
convergence becomes slower afterward because the Fourier
modes of the error with wavelengths larger than the grid size
are slow to reduce. To circumvent this problem, and hence
improve the performance of the algorithm, most codes make
use of multigrid acceleration [see Briggs, Henson, and
McCormick (2000) for an introduction], in which a hierarchy
of coarser grids is used to help reduce the long-wavelength
Fourier models of the error and speed up the convergence. In
practice, the operation goes as follows. Once the convergence
becomes too slow on a level l, the equation is interpolated to a
coarser grid labeled as l − 1, where the larger grid cell size
helps to reduce longer-wavelength modes of the error. This
process can continue for several coarser levels l − 2, l − 3,
etc. The coarser-level solutions are subsequently interpolated
back to level l, where the solutions to ϕl

ijk are corrected. If
convergence has still not been reached [i.e., sðT Þ is still not
small enough], then the process (called a multigrid cycle) is

39To remain within the scope of this review, in this section we
focus on cosmological simulations that probe phenomena on scales
that are relevant to cosmological and astrophysical tests and therefore
do not review the numerical simulation methods for strong-field
applications such as stellar collapse and black-hole mergers; see
Choptuik, Lehner, and Pretorius (2015) for a review. Furthermore, we
remark that all modified-gravity simulation codes mentioned here
work for the Newtonian limit; indeed, there has been recent progress
toward simulating modified gravity in the general relativistic regime,
e.g., with the advent of the fRevolution code (Reverberi and
Daverio, 2019).

40Throughout this section, we use the terminology “Newtonian
simulations” rather than “GR simulations” for usual simulations of
the ΛCDM model to avoid potential confusion with “general
relativistic simulations,” which aim to solve Einstein equations
beyond the Newtonian-type Poisson equation.
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repeated. There are different ways to arrange the multigrid
cycle, such as V cycles and W cycles.
Equation (57) is analogous to using the Newton-Raphson

method to solving a nonlinear algebraic equation. The
“Newton” part is an approximation to the nonlinear algebraic
equation that causes an additional error in the solution ϕl

ijk;
this additional error actually accounts for a substantial fraction
of the time spent on NGS relaxations because the highly
nonlinear nature of the equation makes it hard to reduce.
However, in certain cases it is possible to make a field
redefinition ϕijk → uijk so that uijk satisfies a different non-
linear algebraic equation, usually up to cubic or quartic order,
that can be solved analytically. This enables one to solve
Eq. (57) directly without having to resort to the Newton
approximation, therefore greatly improving the performance
of the algorithm. An application of this trick to the Hu-
Sawicki fðRÞ model was given by Bose, Li et al. (2017) and
Arnold, Leo, and Li (2019), but it should be noted that,
although this method can be applied to a wide variety of
modified-gravity models of interest, it does not work in
general cases. Still, a lesson from this is that if a field
redefinition can make the equation less nonlinear, then the
performance can be greatly improved.
Another way to improve the performance of these simu-

lations is to first manipulate the target equations (in particular,
those involving nonlinear terms of the partial derivatives of ϕ)
analytically and try to recast them into a more numerically
stable form. For instance, the first simulations of DGP gravity
(Schmidt, 2009a, 2009b) iterate an equation that, due to ϕijk

appearing not only in the operator L but also in the source
term S in Eq. (54), was numerically unstable and suffered
from slow convergence. Li, Zhao, and Koyama (2013)
subsequently demonstrated that, after using an operator-
splitting trick (Chan and Scoccimarro, 2009) to rewrite
Eq. (54) and get rid of ϕijk from S, it was possible to make
the relaxation iterations stable and fast to converge. The
operator-splitting method was generalized and implemented
in simulations of more complicated Vainshtein screening
models, like quartic Galileon, by Li, Barreira et al. (2013).
The previously outlined general algorithm applies to

virtually all simulations of modified-gravity models with
screening. The details of the discretization and implementa-
tion of the field equations, however, differ in models with
different screening mechanisms.

B. The validity of the quasistatic approximation

To date, the majority of simulations of modified-gravity
models have been performed in weak-field and quasistatic
approximations. The WFA essentially states that the ampli-
tudes of the scalar field perturbations (δϕ=MPl) and gravita-
tional potentials are much smaller than the speed of light
squared, so that we are far away from relativistic strong-field
regimes, which is true on cosmological scales. On the other
hand, the QSA amounts to a special treatment of terms
involving time derivatives of the scalar field perturbation

( _δϕ ¼ _ϕ − _̄ϕ) by assuming that it can be neglected when
compared to terms that involve spatial gradients of ϕ, i.e.,

δ̈ϕ ∼Hð _δϕÞ ∼H2ϕ ≪ ∇2ϕ ¼ ∇2ðδϕÞ: ð58Þ

A number of studies exist that address the validity of the
QSA. For example, focusing on fðRÞ models and working in
linear perturbation theory, Noller, von Braun-Bates, and
Ferreira (2014) confirmed that the use of the quasistatic
approximation on subhorizon scales is not a concern if certain
observational viability conditions are met (which is the case
for the models that would be simulated anyway). Bose,
Hellwing, and Li (2015) included time derivatives in N-body
simulations of the Hu-Sawicki fðRÞ model using an implicit
method (i.e., the time derivative of the scalar is evaluated with
a backward finite difference using the value at the previous
time step), and they found virtually the same probability
distribution function of the density field and power spectrum
of density and velocity fields as simulations run under the
quasistatic approximation. For Vainshtein screening models,
the linear small-scale limit was found to be independent of the
time derivatives in the Galileon models (Barreira et al., 2012)
and for Horndeski theories in general (Lombriser and Taylor,
2015). Schmidt (2009b) demonstrated the validity of the
quasistatic approximation in simulations of DGP gravity with
self-consistency tests, and Winther and Ferreira (2015b)
demonstrated explicitly that the quasistatic approximation
works well by studying the evolution of spherically symmetric
structures in the DGP and cubic Galileon models; see also
Brito et al. (2014). To our knowledge, there has been no
explicit check to date of the validity of the QSA in simulations
of more complicated theories such as quartic and quintic
Galileon and beyond Horndeski models. These can be
particularly interesting since their field equations can contain
terms such as ∇2 _ϕ ¼ ∇2 _δϕ ∼H∇2δϕ that are not necessarily
negligible compared with other terms, and which must
therefore be treated carefully.
There are, on the other hand, models for which we do know

that the QSA is not a good approximation. One example is the
symmetron model (Hinterbichler and Khoury, 2010), in which
the scalar field ϕ stays at its true vacuum with ϕ ¼ 0 in high-
density regions and early times but develops two possible
vacuua with �jϕ�j (where ϕ� depends on the model param-
eters) in low-density regions and late times. Disconnected
spatial regions can relax to either of the vacuua, and a domain
wall forms at their boundaries. Consider, for example, a
bubble where ϕ ¼ −jϕ�j that is surrounded by much larger
regions where ϕ ¼ jϕ�j: as structure formation proceeds, it
may be energetically more favorable for the bubble to take
ϕ ¼ jϕ�j as well, and there can be a fast transition of
ϕ ¼ −jϕ�j → jϕ�j, which means that the time derivative of
δϕ can be non-negligible. A non-quasi-static code that
explicitly evolves the scalar field in time with a leapfrog
method was developed by Llinares and Mota (2013) and
Llinares, Mota, and Winther (2014). Using this code, Llinares
and Mota (2014) ran N-body simulations of the symmetron
model in and without the QSA to conclude that the impact on
standard matter statistics is negligible, despite the formation of
interesting domain wall effects in the distribution of the scalar
field in the non-quasi-static cases. Furthermore, Hagala,
Llinares, and Mota (2017) and Ip and Schmidt (2018) studied
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the impact that propagating scalar waves in the symmetron
model (which arise from the full non-QSA equations) have on
the screening efficiency in the Solar System. The conclusion
was that for realistic directions of propagation of the incident
scalar waves, the effects of scalar waves are negligible, i.e., the
QSA remains a valid approximation.
In general, the QSA approximation is expected to fail on

scales comparable or larger than the scalar field horizon,
which is set by the propagation speed of its fluctuations
(Sawicki and Bellini, 2015). However, most N-body simu-
lations of modified gravity to date probe scales that are well
within the corresponding scalar field horizons, which is the
justification behind the adoption of the QSA. Various recent
works have thus concluded that the QSA for the evolution of ϕ
is not a source of concern in N-body simulations of modified
gravity. We note, however, that the tests have thus far been
focused on existing classes of screened modified-gravity
theories [such as fðRÞ, Vainshtein, and symmetron models],
and that similar tests will need to be performed as new theories
are developed.

C. Approximate speedup methods

The simulations of modified gravity are notoriously slow
compared to their standard gravity counterparts even with
parallelization. This is because of the numerically demanding
relaxation iterations that take place when solving Eq. (54). On
the other hand, the exploitation of the data from future surveys
would benefit greatly if analysis pipelines could be validated
and calibrated using mock catalogs constructed from simu-
lations of different theories of gravity. The construction of
these mocks with the resolution and volumes required for
these surveys therefore have inspired efforts to improve the
performance of modified-gravity simulation algorithms. We
mentioned previously that field redefinition to make the
equations less nonlinear is one way to achieve this, but there
are various other possibilities, mostly involving some approx-
imations; see Li (2018a) for a recent review. Being approxi-
mate methods, these are less accurate than full simulations;
nevertheless, the idea is that they can still be tremendously
helpful in certain applications and/or regimes, provided that
we understand their limitations and possible implications.
An example of such efforts is that undertaken by Winther

and Ferreira (2015a) [inspired by Khoury and Wyman
(2009)], in which instead of solving Eq. (54) numerically,
one solves a linearized version of it with an analytic screening
factor derived by assuming spherical symmetry. Concretely,
Eq. (54) becomes ∇2ϕ ¼ SscreenðδρÞ, with Sscreen some non-
linear function of the density that takes screening into account
and that recovers the linear theory result if δρ ≪ ρ̄. This way,
the scalar field equation can be solved with the same fast
methods used for the standard Poisson equation, effectively
only doubling the computational cost of the gravity calcu-
lation in the N-body code. In their simulations, Winther and
Ferreira demonstrated that they can recover the power
spectrum of the full simulations to better than 3% accuracy
up to k ≲ 1 h=Mpc (the agreement improves with decreasing
k). The predicted mass functions also agreed relatively well
with the results from full simulations, but it would be
interesting to extend the comparison to other statistics,

namely, those associated with the lowest-density regions, like
void counts and void profiles.
In the standard algorithm, the iterations of Eq. (54) need to

be performed for (i) every simulation time step, (ii) all cells on
a given AMR level, and (iii) every AMR level. Every time the
code enters a new refinement level, the time step is halved and
the number of time steps doubled to ensure numerical
accuracy. Therefore, while a simulation generally consists
of a few hundred coarse time steps on the non-AMR level,
there can be tens of thousands of fine time steps and the scalar
field needs to be solved at each of them. For the case of
Vainshtein screening models, there is a way to speed up the
algorithm significantly by relaxing condition (iii) for a
negligible sacrifice in accuracy. As explained by Barreira,
Bose, and Li (2015), the speedup trick is implemented by not
iterating the scalar field explicitly above a given refinement
level liter, and instead just taking its value by interpolation
from some lower refinement level where the iterations took
place. Skipping the iterations of Eq. (54) on levels l > liter
speeds up the code, but at the cost of a large error on the
calculation of the fifth force. The key point to note here,
however, is that in highly refined regions, the fifth force is a
small fraction of the total force, and hence an error on its
evaluation constitutes only a small and affordable error on the
much larger (GR dominated) total force. With simulations of
the nDGP model, Barreira, Bose, and Li (2015) demonstrated
that it is possible to speed up the performance of the algorithm
by a factor of 10, with little loss in accuracy in the matter
power spectrum for k ≲ 5 h=Mpc; halo properties such as
their abundance, mass, density profiles, and peculiar velocity
were also virtually unaffected by the speedup trick. Note that
this method relies on the correlation between highly refined
regions and screening efficiency, which exists in Vainshtein
screening models but not in chameleon models. This hinders
the applicability of the same idea to simulations of chameleon
models, as demonstrated in the Appendix of Bose, Li et al.
(2017). One can also relax condition (i), as done by Arnold,
Springel, and Puchwein (2016), by choosing not to solve the
scalar field on every fine time step, with the expectation that
the field values do not change substantially between neigh-
boring fine time steps; a more detailed test of how this affects
the accuracy is yet to be carried out for general setups.
It is also worth noting the recent generalizations of

the comoving Lagrangian acceleration method (Tassev,
Zaldarriaga, and Eisenstein, 2013) to theories of modified
gravity with screening and scale-dependent growth
(Valogiannis and Bean, 2017; Winther et al., 2017). This
approximate method could prove to be useful in the fast
generation of a large number of halo and galaxy catalogs for
various theories of modified gravity, even if the detailed mass
distribution on extremely small scales is less accurate due to
the approximations made in the method.
To summarize, in recent years a variety of developments

took place that brought the performance of N-body simu-
lations of modified gravity to a level nearly comparable to
standard simulations of ΛCDM. The simulation codes devel-
oped are finally able to reach the resolution and volume
specifications required for the planning of future large-scale
structure surveys.
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VIII. COSMOLOGICAL TESTS

This section provides an overview on modified-gravity
constraints that come from probes of the expansion history of
the Universe and observations of the structure on extremely
large scales. There is a smooth transition of the latter probes to
the astrophysical tests described in Sec. IX. Our goal here is
not to provide a precise division, but instead to work from the
largest scales toward successively smaller scales.

A. Parametrized versus model-by-model approaches

Cosmological constraints studies on modified gravity can
be broadly divided into constraints on parametrized frame-
works and constraints on concrete theories. The parametrized
approach (Hu and Sawicki, 2007b; Baker et al., 2011; Baker,
Ferreira, and Skordis, 2013) introduces a few parameters or
functions that describe departures from the fiducial GR case
and that can be constrained with large-scale structure obser-
vations. For example, on subhorizon scales, the potentials Φ
and Ψ appearing in the line element (where τ is conformal
time)

ds2 ¼ a2½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞdx2� ð59Þ

can be parametrized by introducing the following two inde-
pendent free functions of time and wave number:

−k2Φ≡ 4πGa2Qða; kÞρ;
−k2Ψ≡ 4πGa2μða; kÞρ;

−k2ðΦþ ΨÞ≡ 8πGa2Σða; kÞρ;
ηða; kÞ≡Φ=Ψ: ð60Þ

For example, the function Q describes an effective gravita-
tional constant that nonrelativistic particles are sensitive to.
Relativistic particles such as photons in lensing observations
would instead be sensitive to the function Σ ¼ ðQþ μÞ=2;
note that only two of the four functions Q, μ, Σ, and η are
strictly needed or independent. In GR, they are all equal to

unity, and hence if the data prefer a departure from this result
(either in time or in space), then this would signal a need to go
beyond GR. The current constraints from Planckþ BAOþ
RSDþ SNeþWL on μ and η (at z ¼ 0 and assumed to be
scale independent) are shown in Fig. 10(a).
Another popular way to parametrize modified-gravity

effects is via the so-called effective field theory of dark
energy (EFTofDE) (Bloomfield et al., 2013; Gleyzes et al.,
2013; Gubitosi, Piazza, and Vernizzi, 2013; Gleyzes, 2017;
Linder, 2017), in which the parametrization is done at the level
of the linearized action of Horndeski and beyond Horndeski
models. In the EFTofDE approach, the evolution of linear
perturbations is completely encoded by five functions of time,
plus a specification of the Hubble rate HðaÞ.
An appealing aspect of parametrized frameworks is that

they allow for systematic and fairly model-independent
constraints on modified gravity (Bellini et al., 2016;
Bellomo et al., 2017). A main disadvantage lies in its limited
regime of applicability, which encompasses only linear scales.
The EFTofDE cannot be used to study nonlinear structure
formation because the formalism builds on a linearized
Lagrangian; see Cusin, Lewandowski, and Vernizzi (2018a,
2018b) for recent work on how to go beyond this limitation. In
other parametrized frameworks, the corresponding free func-
tions would become too general to be satisfactorily con-
strained by the data; see Brax, Davis, and Li (2012), Brax,
Davis, Li, and Winther (2012), Brax, Davis, Li, Winther, and
Zhao (2012), and Brax et al. (2013) for a few attempts to
parametrize chameleon-symmetron-dilaton theories and
screening mechanisms more generally (Lombriser, 2016) in
the nonlinear regime. One can also translate model-indepen-
dent parameter constraints into any theory that falls within the
parametrized framework, though the results are generally
weaker than if one had directly analyzed the model of interest.
In the model-by-model approach, by focusing on one model

at a time, one can conduct detailed investigations in the
nonlinear regime of structure formation, typically based on
N-body simulations. A disadvantage of this approach is that it
is harder to generalize the conclusions obtained from one
model onto the rest of the theory space. To make progress

(a) (b)

FIG. 10. (a) Constraints on parameters μ and η [Eq. (60)] describing deviations of the gravitational potentials from their expected
values in GR. The ΛCDM prediction is at the intersection of the dashed lines. From Aghanim et al., 2020. (b) Constraints on EG
[Eq. (69)] from CMB and galaxy-galaxy lensing compared to ΛCDM expectations of varying Ωm. From Singh et al., 2019.
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nonetheless, the philosophy adopted by the community has
been that of “electing” a model that is representative of some
type of phenomenology [e.g., fðRÞ for chameleon or DGP
gravity or Galileons for Vainshtein screening], which is then
used to place benchmark constraints on the size of the
deviations from GR that are supported by a given dataset.
The body of work developed for models such as fðRÞ, DGP,
and Galileon gravity has already taught the community a great
deal about the most promising ways to test gravity in
cosmology. The analysis pipelines that have been developed
for such models should in principle be adaptable to other
theories such that, as new models are developed, work on
constraining them can take place straightaway.

B. Main cosmological datasets and observational signatures

We now summarize the main cosmological observables that
can be used to test modified gravity. The line that separates
astrophysical from cosmological datasets is not always clear;
in what follows, we limit ourselves to probes that are sensitive
to the expansion rate of the Universe or to structure formation
on linear to quasilinear scales (with the exception perhaps of
weak-lensing cosmological analyses that extend into the
nonlinear regime). It is also worth noting that the following
datasets are most powerful when used in combination, rather
than on their own.

• Expansion history from CMB, BAO, and SNIa.—Data
from CMB, BAO, and SNIa are among the most robust
datasets in cosmology to probe the expansion rate HðzÞ
of the Universe. The agreement between GR-based
ΛCDM and these data is sometimes misinterpreted as
a requirement for modified-gravity models to possess a
ΛCDM background limit, i.e., some choice of param-
eters that closely reproduces a cosmological constant.
This is an area of confusion that is worth clarifying: a
model in which HðzÞ differs from ΛCDM can still stand
a chance at being compatible with CMB, BAO, and SNIa
data. Such compatibility, if it exists, would occur for
cosmological parameter values (H0, Ωm, ΩK , neutrino
masses, etc.) that are different from those obtained in
constraint analyses that assume ΛCDM. The assessment
of observational viability rests, however, on whether or
not the full model yields acceptable fits. The adoption of
ΛCDM-inspired cosmological parameters in analyses of
self-accelerating models without a ΛCDM limit may
thus result in biased conclusions. An illustrative case is
that of the Galileon model, which displays nearly the
same goodness of fit to CMB data as ΛCDM, albeit with
significantly different H0 and Σmν values (Barreira, Li,
Baugh, and Pascoli, 2014; Neveu et al., 2017). Note,
however, that the Galileon is ruled out when ISW
data (see the forthcoming ISW discussion) and con-
straints on the propagation speed of gravitational waves
(Section III) are considered.

In addition to the sensitivity to the expansion history,
the CMB temperature power spectrum is also sensitive to
late-time structure formation via the ISW effect, which
affects the low-l part of the spectrum. Despite being
limited by cosmic variance, this probe is nonetheless
stringent enough to rule out drastic scenarios such as the

self-accelerating branch of the DGP model (Fang et al.,
2008) and a large portion of the Galileon model
parameter space (Barreira et al., 2012; Barreira, Li,
Sanchez et al., 2013; Barreira, Li, Baugh, and Pascoli,
2014). The power spectrum of the reconstructed CMB
lensing potential is sensitive to late-time structure for-
mation over a wider range of scales. CMB lensing
measurements from Planck and other surveys have
become a useful dataset for tests of modified gravity
as well (Ade et al., 2016a). See Bellini et al. (2018) for a
Boltzmann-Einstein code comparison project in various
modified-gravity cosmologies, with comparisons made
at the level of the CMB temperature, polarization, and
lensing power spectra, as well as the linear matter power
spectrum.

• ISW-galaxy cross-correlation.—The cross spectrum of
CMB temperature maps and foreground galaxy distri-
butions can be written as

CTgðlÞ ¼ 4π

Z
dk
k
ΔISWðl; kÞΔgðl; kÞPRðkÞ; ð61Þ

where PRðkÞ is the power spectrum of curvature fluc-
tuations and Δgðl; kÞ is a galaxy distribution kernel that
depends on the bias and redshift distribution of the
galaxy sample at hand. The ISW kernel is given by

ΔISWðl; kÞ ¼
Z

τ0

τrec

dτ
d½Φðk; τÞ þ Ψðk; τÞ�

dτ
jl½kðτ − τ0Þ�;

ð62Þ

which shows that these data (Giannantonio et al., 2008;
Ferraro, Sherwin, and Spergel, 2015; Ade et al., 2016b)
can be used to constrain Σ in Eq. (60). The fact that
CTgðlÞ is sensitive to whether the potentials become
deeper or shallower with time [i.e., the sign of
dðΦþ ΨÞ=dτ, where τ is the conformal time] plays a
crucial role in cosmological constraints of Galileon
gravity. For instance, the best-fitting cubic Galileon
model to the CMB data displays only a modest increase
in the amplitude of the low-l part of the CMB temper-
ature power spectrum, but its predicted cross-correlation
with galaxies from the WISE survey (z ≈ 0.3) is negative
[dashed red line in Fig. 11(a)], indicating that the
potentials are getting deeper (more negative) with time.
Data from the ISW effect [from both CMB temperature
(Barreira et al., 2012; Barreira, Li, Sanchez et al., 2013;
Barreira, Li, Baugh, and Pascoli, 2014) and its cross-
correlation with galaxies (Renk et al., 2017)] are in fact
what set some of the tightest constraints on the covariant
Galileon model because of its modifications to Σða; kÞ;
the few corners of the parameter space that survive the
ISW tests end up being ruled out by the anomalous speed
of their gravitational waves.

Examples of other models that have been constrained
with ISW-galaxy cross-correlations include the DGP
model (Lombriser et al., 2009), fðRÞ (Song, Peiris,
and Hu, 2007; Lombriser, Slosar et al., 2012), massive
gravity (Enander et al., 2015), and a kinetic gravity
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braiding toy model that interpolates between ΛCDM
and cubic Galileon limits (Kimura, Kobayashi, and
Yamamoto, 2012a). Analyses of the ISW effect are
typically restricted to the largest observable scales where
linear theory is valid, and hence screening mechanisms
are not a source of complication. A complication that
arises is that the bias of the foreground galaxies is
degenerate with the amplitude of the signal. The bias can
be estimated by cross-correlating CMB lensing maps
with the galaxy sample (Ferraro, Sherwin, and Spergel,
2015); the resulting values are different in general in
different models by virtue of different dark matter
clustering (Renk et al., 2017).

• Redshift-space distortions and growth rate.—The rate at
which structure grows in the Universe offers a natural
and powerful way to test gravity in cosmology (see also
Sec. IX.A on RSD). This growth rate is usually quoted in
terms of the parameter fσ8, where f is the logarithmic
derivative of the growth factor with respect to the
scale factor: f ¼ d lnD=d ln a and σ8 is the root mean
square of the linear density field at redshift z ¼ 0 on
scales of 8 Mpc=h. The parameter σ8 is a measure
of the amplitude of the linear matter power spectrum,
and the combination fσ8 is what can be constrained
with RSD data (Song and Percival, 2009). The
growth factor is governed by (dots are physical time
derivatives)

D̈þ 2H _D − 3
2
Qða; kÞΩmH2

0a
−3D ¼ 0; ð63Þ

where Qða; kÞ is defined in Eq. (60). In GR, the growth
rate is given by fðaÞ ¼ ΩmðaÞγ to a good approximation,
with γ ≈ 0.55 [γ is called the growth index (Linder, 2005;
Linder and Cahn, 2007)]. This has made it popular to use
fσ8 data to place constraints on γ to look for eventual
deviations from its GR value.

Observationally, fσ8 can be inferred from the aniso-
tropic clustering of galaxies on large scales in redshift
space [Sec. IX.A; see also Alam et al. (2017) for the
latest analysis of the BOSS survey]. Specifically, fσ8
enters as one of the parameters of theoretical models of
the galaxy power spectrum in redshift space that are
fitted to the data. The ingredients of these models include
modeling of RSD and galaxy bias (Desjacques, Jeong,
and Schmidt, 2018), as well as a prescription for the
nonlinear clustering of matter (galaxy clustering studies
are restricted to large enough scales on which baryonic
feedback effects on the power spectrum are not a
concern). Carrying out such analyses for galaxy samples
at different redshifts leads to constraints on fσ8 as a
function of time. Different theories of gravity make
different predictions in general for the time dependence
of fσ8, thereby allowing one to distinguish between
competing models; see the right panel of Fig. 11.

The validity of the galaxy clustering models must be
checked first using mock galaxy samples constructed
using N-body simulations. These validation steps have
been carried out almost entirely for mock samples in
ΛCDM cosmologies (Sánchez et al., 2013; Alam et al.,
2017); only a few such validation analyses exist in
modified gravity. For example, Barreira, Sánchez, and
Schmidt (2016) validated the use of the BOSS clustering
wedge analysis pipelines (Sánchez et al., 2013) using
nDGP mocks [see Bose, Koyama et al. (2017) for a
similar study], and Hernández-Aguayo et al. (2019)
conducted a comparative study of the nDGP and fðRÞ
models. For chameleon screening models with scale-
dependent linear growth (Jennings et al., 2012), Taruya,
Koyama et al. (2014) found that GR-based models of
galaxy clustering can fail to recover the correct value
of fσ8 when applied to Hu-Sawicki fðRÞ simulations.
For future data with higher statistical precision, this

(a) (b)

FIG. 11. (a) ISW-galaxy cross-correlation from the WISE survey (Ferraro, Sherwin, and Spergel, 2015) together with predictions from
a number of parameter choices in the covariant Galileon model. The dashed red curve is the best-fitting cubic Galileon model to the data,
which illustrates the high degree of tension plaguing this model. From Renk et al., 2017. (b) Time evolution of fσ8 for ΛCDM, nDGP,
and two values of growth index γ. From left to right, the data points shown correspond to the analyses of the 6DFGS survey (Beutler
et al., 2012), luminous red galaxy sample from SDSS-DR7 (Oka et al., 2014), BOSS DR12 (Alam et al., 2017), and Vipers surveys (de
la Torre et al., 2013), as labeled.
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modeling systematic must be addressed with detailed
simulations.

The tightest cosmological constraints on the nDGP
model (with a ΛCDM background) to date come from
the fσ8 determinations of the BOSS DR12 release
[performed with appropriate validation steps (Barreira,
Sánchez, and Schmidt, 2016)], which demonstrates the
central role these data can play in tests of gravity.
Mueller et al. (2018) used a compilation of fσ8 data
to constrain the growth index γ, as well as the free
functions in Eq. (60). See Taddei, Martinelli, and
Amendola (2016) for a forecast study of the constraining
power of fσ8 data from SKA and Euclid.

The EG statistic described in Sec. IX.A has also been
estimated using RSD and lensing data (Zhang et al.,
2007; Pullen et al., 2016; Amon et al., 2018; Singh et al.,
2019); Fig. 10(b) displays a recent compilation. None of
the data published to date have revealed any need for
modifications of GR, but the current level of precision of
this statistic is poor compared to other probes of gravity.

• Weak lensing.—Weak gravitational lensing [see Bartel-
mann and Schneider (2001) and Hoekstra and Jain
(2008) for reviews] provides a direct probe of the
distribution of matter in the late-time Universe. That
is, it is not subject to galaxy bias or RSD, although
intrinsic alignments are a systematic contaminant that
needs to be carefully controlled for. Lensing thus offers
complementary information to test gravity in cosmology
(Schmidt, 2008; Simpson et al., 2013; Leonard, Baker,
and Ferreira, 2015; Ferté et al., 2019). The angular
power spectrum of the lensing convergence κ (adopting
the Limber approximation and a single lensing source
redshift at comoving distance χS) can be written as

CκðlÞ ¼
Z

χS

0

�
gðχÞ
χ

�
2
�
Σ
�
zðχÞ;l

χ

��
2

Pm

�
l
χ
; zðχÞ

�
;

ð64Þ

where gðχÞ ¼ ½3H2
0Ωm=ð2=cÞ�ð1þ zÞðχS − χÞχ=χS is

called the lensing kernel. If modified gravity enhances
structure formation [Q > 1 in Eq. (60)], then this boosts
the amplitude of the three-dimensional matter power
spectrum Pm and, consequently, CκðlÞ. Modified-grav-
ity models that have Σ ≠ 1 display additional effects.

Weak-lensing analyses can be carried out on smaller
length scales than galaxy clustering analysis, for which
modeling uncertainties associated with galaxy bias
preclude the use of data on scales k≳ 0.2 h=Mpc. On
these smaller scales, however, baryonic feedback effects
can appreciably alter the amplitude of the total clustering
of matter (Hellwing et al., 2016; Springel et al., 2018).
These effects are relatively poorly understood and
remain a source of theoretical systematics in real con-
straint analyses; see Sec. VI.B. Similarly, massive
neutrinos can also have a non-negligible impact on
the small-scale matter power spectrum, and with degen-
erate effects with modified gravity. These are all com-
plications that are present in standard GR analyses but
that gain further importance in modified gravity because

of the degeneracies that can be at play between these
effects and the effects of fifth forces (Baldi et al., 2014;
Harnois-Déraps, Munshi et al., 2015; Hagstotz et al.,
2019). Finally, on such small scales it becomes imper-
ative to appropriately take into account screening effects.
The difficulty of parametrizing the impact of screening
on the small-scale matter power spectrum is currently
hindering the use of small-scale weak-lensing shear data
in tests of gravity. For instance, Joudaki et al. (2017,
2018) placed constraints on modified-gravity paramet-
rizations using lensing data from KiDS, but with small-
scale data removed [see Fig. 13 by Joudaki et al. (2017)
to gain an appreciation of the loss in constraining power].
In constraints of the Galileon model, Peirone et al.
(2018) also considered only sufficiently large scales in
their lensing dataset. The development of tools to
accurately predict small-scale clustering in modified-
gravity cosmologies (Sec. VI.A.2) will therefore prove
extremely valuable to the analyses of future weak-
lensing surveys; see Spurio Mancini et al. (2018) for
cosmic shear forecasts for Euclid in the context of
modified gravity. We note also that the adequacy of
current models of intrinsic alignment should also be
reevaluated in the context of modified-gravity models.

To conclude this discussion, we comment on which types of
theories are susceptible to be most tightly constrained by
cosmological probes compared to astrophysical ones. For self-
accelerating models with non-ΛCDM expansion histories,
cosmological constraints using CMB, BAO, and SNIa data
should represent the first line of testing to determine which
cosmological parameters (if any) yield acceptable fits to these
data and which are therefore worthy of more dedicated and
lengthier studies (e.g., involving N-body simulations). The
usefulness of cosmological data in tests of gravity is also
dependent on the screening mechanism. For instance, we see
in Sec. IX that astrophysical tests have a stronger potential to
constrain chameleonlike theories due to the environmental
dependence of the screening efficiency than cosmological
ones. On the other hand, Vainshtein screening models tend to
have stronger signatures on cosmological observables: the
tight constraints on the nDGP model using fσ8 data (Barreira,
Sánchez, and Schmidt, 2016) and on Galileons using
ISW-galaxy cross-correlations (Renk, Zumalacarregui, and
Montanari, 2016) illustrate this point.

IX. ASTROPHYSICAL TESTS

We now turn to the main focus of the review: astrophysical
probes of modified gravity. We begin by discussing tests that
are applicable to modified gravity in general without depend-
ence on the screening mechanism [associated with galaxy
velocities (Sec. IX.A), dark matter halos (Sec. IX.B), and
voids (Sec. IX.C)], then we present probes of thin-shell and
Vainshtein screening specifically. We preface this with a
discussion of the “screening maps” that are necessary to
identify regions of the Universe, and hence galaxies, that are
unscreened. Where such results exist, we provide quantitative
detail on the constraints achieved, and those achievable using
future data with the characteristics we describe. See Sakstein

Tessa Baker et al.: Novel Probes Project: Tests of gravity on …

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015003-31



(2018a) for in-depth discussions and technical derivations
related to some of the topics presented here.

A. Galaxy velocities and redshift-space distortions

The matter velocity field is particularly sensitive to mod-
ifications of gravity. This is because velocities are determined
by a single time integral over the acceleration, and hence they
typically display stronger signatures of modified gravitational
forces than the matter density field (which is determined by
two time integrals). A way to probe these statistics directly is
via galaxy velocities, which are an unbiased tracer of the
matter velocity field on large scales, by way of the equivalence
principle.
On quasilinear scales, the matter velocity field is governed

by the Euler equation

∂
∂τ v⃗þ ðv⃗ · ∇⃗Þv⃗þHv⃗ ¼ −∇⃗Φ −Q∇⃗ϕ: ð65Þ

The quantity Q is the cosmological analog of the scalar
charge-to-mass ratioQ introduced in Sec. IV.D.1 (with factors
of α suitably scaled) and represents the strength of the
coupling of a given test object to the scalar field. Any
modifications to gravity that affect the time-time component
of the metric will contribute directly to changes in the velocity
field. In GR, the equivalence principle guarantees that any
difference between the velocity field v⃗g of galaxies and matter
has to be due to nongravitational forces such as baryonic
pressure. On scales much larger than the Jeans length of the
gas, this pressure is negligible, and hence there is no velocity
bias. Note, however, that in frameworks such as the effective
field theory of large-scale structure the Euler equation is
expected to be only a first-order approximation to the behavior
of dark matter. Higher-order corrections may be partially
degenerate with with modified-gravity effects if the gradient

of the scalar field ∇⃗ϕ is suppressed on large scales, for
example, due to a finite mass of the field.
In modified-gravity theories, however, there can be viola-

tions of the equivalence principle, which can be used in
observational tests (Sec. IV.D.1). For example, in thin-shell
screening models the scalar charge of a screened object, say,
some sufficiently massive galaxy, is strongly reduced:Q ≪ 1.
The velocity of this galaxy will effectively be sourced only by

∇⃗Φ and would thus fall at a slower rate than a less massive,
unscreened galaxy with Q ¼ 1 (Hui, Nicolis, and Stubbs,
2009). Similar lines of reasoning hold for black holes in
Vainshtein screening theories, which carry no scalar charge
Q ¼ 0 and thus fall at different rates than the gas and stars in
the same galaxy (Hui and Nicolis, 2012) (Sec. IX.F.2).
On large scales, in a frame comoving with the galaxy

velocities, the clustering pattern of galaxies would be iso-
tropic. In reality, however, peculiar velocities of galaxies
perturb the measured redshift via the Doppler effect (and
consequently the inferred line-of-sight distance), which indu-
ces an anisotropy in the galaxy distribution that is proportional
to the galaxy velocities. This effect is referred to as RSD.
Specifically, the inferred three-dimensional position of a

galaxy x⃗obs differs from the true unobserved one x⃗ by
(Kaiser, 1987)

x⃗obs ¼ x⃗þH−1ðn̂ · v⃗gÞn̂; ð66Þ

where n̂ is the angular position of the galaxy on the sky. The
observed redshift-space fractional galaxy density perturbation
δsg is related to the rest-frame one δg through

δsgðx⃗obsÞ ¼
δgðx⃗Þ

1þH−1n̂in̂j∂ivg;jðx⃗Þ
����
x⃗¼x⃗obs−H−1ðn̂·v⃗gÞn̂

: ð67Þ

Working to linear order in δg and v⃗g, we find that the power
spectrum of galaxies on large scales becomes (Kaiser, 1987)

Ps
gðk⃗Þ ¼ ðb1 þ fμ2Þ2PmðkÞ; where μ ¼ k⃗ · n̂

k
; ð68Þ

which is anisotropic, as it depends explicitly on the angle
between the Fourier modes and the line-of-sight direction n̂.
The degree of anisotropy is proportional to the linear growth
rate f ¼ d lnD=d ln a, which can therefore be extracted from
galaxy surveys (Beutler et al., 2012; de la Torre et al., 2013;
Oka et al., 2014; Alam et al., 2017) [Fig. 11(b)]. Different
theories of gravity make different predictions for the growth
rate, which makes redshift-space distortions a powerful tool
for testing gravity (Sec. VIII.B).
Another interesting probe of gravity is the so-called EG

statistic (Reyes et al., 2010). This is obtained by combining
the quadrupole moment of the anisotropic galaxy power

spectrum Ps
gðk⃗Þ (which is proportional to the cross-correlation

between galaxies and the velocity divergence field θ ¼ ∇v⃗,
Pgθ) with the cross-correlation between lensing maps (either
CMB lensing or cosmic shear) and galaxy positions, Pg∇2Φlens

[where we write Φlens ¼ ðΦþ ΨÞ=2 for short] as follows:

EG ≡ Pgð∇2ΦlensÞ
Pgθ

¼in GRΩm0

fðzÞ ¼
Ωm0

ΩmðzÞ0.55
; ð69Þ

where the last two equalities assume large linear scales and
GR. The numerator of the EG statistic is sensitive to
modifications to the lensing potential [Σ in Eq. (60)], whereas
the denominator to changes to the dynamical potential [Q in
Eq. (60)]. The ratio between these two potentials is 1 in GR, so
this statistic directly targets modifications to gravity (Zhang
et al., 2007; Pullen et al., 2016; Amon et al., 2018; Singh
et al., 2019). Note that this statistic is constructed to cancel the
effects of galaxy bias at linear order.
The kinematic Sunyaev-Zel’dovich (kSZ) effect, which

describes the shifts in the temperature of CMB photons
caused by the bulk momentum of hot ionized gas inside
clusters, offers another probe of the cosmic velocity field.
Observationally (Hand et al., 2012; Soergel et al., 2016; De
Bernardis et al., 2017), what has been detected is the so-called
pairwise kSZ signal, whose amplitude can be written as

TpkSZðrÞ
TCMB

¼ τe
v12ðrÞ
c

; ð70Þ
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where v12ðrÞ is the mean pairwise velocity of clusters
separated by r and τe is their mean optical depth, which is
given as a line-of-sight integral of the free electron number
density ne inside the clusters τe ¼ σT

R
dχne. Modified

gravity can leave signatures on the pairwise kSZ effect via
the modifications to the pairwise velocity of clusters v12ðrÞ
(Keisler and Schmidt, 2013; Hellwing et al., 2014), which
quantifies the mean velocity at which galaxy clusters approach
one another due to the influence of gravity. In linear theory
and assuming linear cluster bias b and unbiased cluster
velocities, the pairwise velocity is given by [see Sheth et
al. (2001) and Mueller et al. (2015)]

v12ðrÞ ¼ −
2

3
arHf

bξ̄ðrÞ
1þ b2ξðrÞ ; ð71Þ

where ξðrÞ is the matter correlation function and
ξ̄ðrÞ ¼ ð3=r3Þ R dr0r02=ξðr0Þ. Different modified-gravity mod-
els can thus display distinct TpkSZðrÞ predictions via mod-
ifications to the growth rate f. A main complication in using
current kSZ data to constrain modified gravity [see Mueller et
al. (2015) for a forecast study] lies in the uncertain value of τe,
which is degenerate with the amplitude of v12ðrÞ and could
well vary from one modified-gravity model to another. In fact,
other sectors of the cosmological and astrophysical commun-
ities have an interest in the kSZ effect as a probe of τe, not the
theory of gravity. One way to make progress is to use the
shape of v12ðrÞ (Keisler and Schmidt, 2013), and another is to
calibrate τe using hydrodynamical simulations of modified
gravity.
Beyond the linear regime described by Eq. (68), there is

also strong motivation to use galaxy statistics on smaller
scales. Disentangling galaxy velocities from their nontrivial
clustering in real space becomes complicated on small scales.
A compromise was proposed by Lam et al. (2012), who
considered the cross-correlation between massive galaxy
clusters and field galaxies. This essentially corresponds to a
specific projection of the galaxy phasespace. Owing to the
presence of the massive halo hosting the galaxy cluster, the
velocities of galaxies within a separation of ∼5–20 h−1 Mpc
are dominated by coherent infall motion on the massive
cluster. This considerably simplifies the modeling of this
observable (Lam et al., 2013; Zu and Weinberg, 2013).

B. Galaxy clusters

The enhanced growth of structure in the presence of a fifth
force leaves an imprint on the abundance (Schmidt et al.,
2009) (Sec. IX.B.1) and profiles (Lombriser, Schmidt et al.,
2012) (Sec. IX.B.2) of galaxy clusters. For chameleon models,
one of the most prominent effects is an increase of the
abundance of massive clusters for large scalar field values.
In the case of small-field values, this enhancement is counter-
acted by the screening effect as well as the Yukawa suppres-
sion (Hui and Parfrey, 2008; Martino, Stabenau, and Sheth,
2009; Parfrey, Hui, and Sheth, 2011) beyond the Compton
wavelength of the background field. Both contribute to a
recovery of Newtonian gravity and of cluster abundance in
agreement with ΛCDM at high masses, restricting observable

effects to smaller masses. In addition to the mass dependence,
chameleon screening introduces a dependence on the envi-
ronment of the clusters. The overall shape of the matter
density profiles within the cluster is strongly affected not by
the scalar field but by an increase in the halo concentration
(Lombriser, Koyama et al., 2012; Lombriser, Koyama, and Li,
2014; Shi et al., 2015; Mitchell et al., 2019), and effects on
splashback in the outer regions of clusters provide observable
signature (Sec. IX.B.2). An additional test of gravity can be
performed by comparing the distribution, temperature, and
pressure of gas with the dark matter profile in the interior of
the cluster (Sec. IX.B.2).

1. Cluster abundance

The statistics of virialized clusters is well described by
excursion set theory, where the collapsed structures are
associated with regions where the smoothed initial matter
densities exceed the linear collapse density threshold δc. The
variance of the density field σ2 characterizes the size of such a
region. Variation of the variance (or the smoothing window
size) causes incremental changes in the smoothed initial
overdensity field that are independent of previous values
for uncorrelated wave numbers. This describes a Brownian
motion of the smoothed matter density field, where the
increment is a Gaussian field with zero mean. The distribution
f of the Brownian motion trajectories that first cross a flat
barrier δc at a given variance was described by Press and
Schechter (1974) and Bond et al. (1991). Relaxing the
assumption of sphericity of the halo, the barrier, however,
is no longer flat. The first-crossing distribution based on
excursion set results for ellipsoidal collapse was described by
Sheth and Tormen (1999, 2002) and Sheth, Mo, and Tormen
(2001),

νfðνÞ ¼ N

ffiffiffiffiffiffiffiffiffiffiffi
2

π
qν2

r
½1þ ðqν2Þ−p�e−qν2=2; ð72Þ

with peak threshold ν≡ δc=σ and normalization N such thatR
dν fðνÞ ¼ 1, as well as p ¼ 0.3 and q ¼ 0.707. Hereby, q

was set to match the halo mass function

nlnMvir
≡ dn

d lnMvir
¼ ρ̄

Mvir
fðνÞ dν

d lnMvir
ð73Þ

measured with ΛCDM N-body simulations.
Most tests of modified gravity with clusters have been

performed within the chameleon-screened fðRÞ paradigm.
The halo mass function defined by Eqs. (72) and (73) with the
ΛCDM value of δc has been shown to provide a good
description of N-body simulations of fðRÞ gravity for large
field values, while a modified collapse threshold δc derived
from a collapse calculation with enhanced forces provides a
conservative lower limit on the effects for small-field values
(Schmidt et al., 2009). The latter case was used to infer
constraints on the Hu-Sawicki and designer models from the
cluster abundance measured with Chandra X-ray (Schmidt,
Vikhlinin, and Hu, 2009; Ferraro, Schmidt, and Hu, 2011),
SDSS MaxBCG (Lombriser, Slosar et al., 2012), ROSAT
BCS, REFLEX, and Bright MACS data (Cataneo et al., 2015)
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on the level of jfR0j≲ 10−5 − 10−4. Cataneo et al. (2016)
argued that future cluster surveys will improve this bound to a
level comparable with Solar System constraints at
jfR0j≲ 10−6. Note that fðRÞ designer models are constructed
to exactly reproduce a ΛCDM expansion history, whereas for
Hu-Sawicki models the Hubble functions differ at OðfR0Þ.
Since it is extremely small, this correction is usually neglected
under the Hu-Sawicki model, but as a consequence the fðRÞ
functions differ between the two models. Another useful
proxy for halo abundance is the high signal-to-noise-ratio
peaks of the weak-lensing convergence field, which are
believed to correspond to the largest dark matter halos; Liu
et al. (2016) used the peak counts from CFHTLenS data to
derive a constraint at jfR0j≲ 10−5.2, and this bound is
expected to become much stronger with future larger lensing
surveys. These, however, require a more accurate modeling of
the halo mass function that accounts for the chameleon
screening effect. An improved description of the halo mass
function in the small-field regime is obtained by adopting the
spherical collapse critical density δc determined by the mass-
and environment-dependent spherical collapse model for
chameleon and fðRÞ gravity (Li and Efstathiou, 2012;
Lombriser et al., 2013; Lombriser, Koyama, and Li, 2014)
in Eq. (72). A fitting function for the halo mass function of the
Hu-Sawicki fðRÞ model was developed from these compu-
tations by Cataneo et al. (2016), yielding 5% accuracy in the
relative enhancement of the modified cluster abundance.
As an alternative to adopting the Sheth-Tormen halo mass

function, excursion set theory approaches to computing the
first-crossing distribution with the moving barrier defined by
the linear chameleon collapse density were pursued by Lam
and Li (2012) and Li and Lam (2012) based on Lagrangian
and Eulerian definitions of the environment while performing
numerical integrations and Monte Carlo simulations. The
simpler Sheth-Tormen prescription combined with the mass-
and environment-dependent spherical collapse model and a
subsequent averaging over the probability distribution of the
Eulerian environment, however, was found to show better
agreement with fðRÞ N-body simulations (Lombriser et al.,
2013). As an alternative to the top-hat approximation imple-
mented in the chameleon spherical collapse computations
given by Li and Efstathiou (2012), Lombriser et al. (2013),
and Lombriser, Koyama, and Li (2014), the fðRÞ evolution of
an initial density profile was considered by Borisov, Jain, and
Zhang (2012) and applied by Kopp et al. (2013) to develop an
analytic halo mass function function based on excursion set
theory with a drifting and diffusing barrier. Li and Hu (2011)
incorporated the chameleon screening effect into the Sheth-
Tormen halo mass function with a phenomenological tran-
sition in the variance that interpolates between the linearized
and suppressed regimes that is calibrated (Li and Hu, 2011;
Lombriser et al., 2013) to N-body simulations of the
Hu-Sawicki fðRÞ model. A comparison of these different
approaches was given by Lombriser (2014).
The enhancement of the halo mass function in Vainsthein-

type modified-gravity models shows qualitatively different
features from those observed in chameleon-type models (in
the small-field regime) (Schmidt, 2009a; Barreira, Li, Baugh,
and Pascoli, 2013; Barreira, Li, Hellwing et al., 2014). The

Vainshtein screening that is efficient near or inside massive
objects does not prevent more massive halos from forming in
these models, possibly because the long-range fifth force has
managed to accrete more matter toward the surroundings of
these halos, creating a larger reservoir of raw material for their
growth. Analytic results based on excursion set theory agree
qualitatively with predictions of the simulation (Schmidt, Hu,
and Lima, 2010), although a recalibrated Sheth-Tormen
formula was found to work much better for the cubic and
quartic Galileon models (Barreira, Li, Hellwing et al., 2014).
Hence, cluster abundance is also expected to be useful to
constrain this type of model. Davies, Cautun, and Li (2019)
used weak-lensing peaks as a proxy of massive dark matter
halos and found a strong constraining potential on the nDGP
model. Quantitative constraints do not yet exist for other
screening models such as symmetron and K-mouflage,
although modifications to spherical collapse and hence the
halo mass function have been explored (Davis, Li et al., 2012;
Taddei, 2013; Brax and Valageas, 2014a; Taddei, Catena, and
Pietroni, 2014; Brax, Rizzo, and Valageas, 2015).

2. Cluster profiles and splashback

Apart from their abundance, the internal structure of dark
matter halos can also be used as a probe. Well within the virial
radius of halos, the spherically averaged dark matter distri-
bution formed in fðRÞ N-body simulations is well described
(Lombriser, Koyama et al., 2012; Shi et al., 2015; Mitchell
et al., 2019) by the Navarro-Frenk-White (NFW) (Navarro,
Frenk, and White, 1996) profile

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð74Þ

which were originally proposed to fit halos formed in ΛCDM
and other models. The characteristic density ρs and scale rs
can also be written as functions of the virial halo mass Mvir,
defined by the virial overdensity Δvir, and virial halo con-
centration cvir ≡ rvir=rs. The halo concentration for clusters
formed in chameleon fðRÞ gravity was measured in N-body
simulations by Lombriser, Koyama et al. (2012) and Shi et al.
(2015) and found to be enhanced with respect to the concen-
tration of ΛCDM halos. This also causes an enhancement in ρs
and a decrease of rs relative to their ΛCDM counterparts.
However, for small-field values, chameleon screening sup-
presses the enhancement in the concentration, recovering
ΛCDM values for high-mass clusters. A mass- and environ-
ment-dependent modeling of the chameleon halo concentra-
tion based on the spherical collapse calculations that captures
these effects was introduced by Lombriser, Koyama, and Li
(2014). Mitchell et al. (2019) conducted a detailed analysis
based on a large suite of simulations with varying box sizes
and resolutions and found that the effect of fðRÞ gravity on
halo concentration can be well described by a universal fitting
formula that depends only on the combination f̄RðzÞ=ð1þ zÞ,
where f̄RðzÞ is the background scalar field at redshift z, which
works for a wide range of model parameters, halo masses, and
redshifts. Observationally, miscentering and other issues can
complicate the determination of halo concentration.
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At a few virial radii, in the infall region of the cluster, the
halo density profile, or halo-matter correlation function,
exhibits an enhancement in chameleon models relative to
GR caused by the late-time gravitational forces (Schmidt
et al., 2009; Lombriser, Schmidt et al., 2012; Zu et al., 2014).
The signature can be well described by the halo model.
Through stacking of galaxy clusters it has been used to derive
a constraint of jfR0j≲ 10−3 (Lombriser, Schmidt et al., 2012).
The splashback feature in galaxy clusters was recently

introduced as a dynamical boundary of cluster halos (Diemer
and Kravtsov, 2014). More specifically, after its initial infall
stage, material accreted by dark matter halos experiences a
turnaround. The location at which it does so defines the
boundary of the multistreaming region of the halo (Adhikari,
Dalal, and Chamberlain, 2014; Shi, 2016) and corresponds to
the outermost caustic. The definition of a turn-around radius,
however, may be complicated by the surroundings of the halo
being a collection of filaments, sheets, and voids (Hansen
et al., 2020). At this point, the logarithmic slope of the density
profile is predicted to drop significantly below the NFW value
(between −2 and −3), before rising again to the two-halo term
value. Hence this splashback radius provides a clear obser-
vational signature in both the galaxy number density [which
has been measured in redMaPPer-selected clusters (Rykoff
et al., 2014) from SDSS and DES Y1 (More et al., 2016;
Baxter et al., 2017)] and weak lensing (Chang et al., 2018).
A theoretical study dedicated to the splashback feature for

both chameleon and Vainshtein screening was conducted by
Adhikari et al. (2018). The reasons for its sensitivity to
modified gravity are twofold. First, for model parameters
where the fifth forces are important on galactic scales, the
splashback radius is located around the transition from the
screened to the unscreened regime. Second, accreted material
began its life well outside the screening and Vainshtein radius,
and its subsequent dynamics therefore has some memory of
the unscreened fifth force. Using a combination of analytic

approximations for the dynamics of accreted shells and
N-body simulations, Adhikari et al. (2018) found that the
splashback radius for dark matter particles in Vainshtein-
screened theories with rc ∼Oð500Þ Mpc (corresponding to
theories that are relevant on galaxy scales and not excluded by
GW170817) is significantly larger than GR. For chameleon
theories the signature is on galaxy-scale subhalos within
clusters. Subhalos experience dynamical friction as they pass
through their host, which results in their splashback radius
being smaller than for particles. The effect is mass dependent,
with subhalos having mass ratio Msub=Mhost > 0.01 exhibit-
ing significantly smaller splashback radii. For the chameleon
theories studied, the reduced dynamical friction resulted in
smaller subhalo splashback radius than in GR. Some examples
of these effects are shown in Fig. 12. Recently a semianalytic
study revealed that for certain parameters the symmetron can
produce deviations of Oð10%Þ (Contigiani, Vardanyan, and
Silvestri, 2019).

3. Dynamical versus lensing masses

The mass distribution of galaxies and clusters determines
the gravitational potential that lenses the photon trajectories
and governs the kinematic properties of the cluster. A generic
feature of modified-gravity theories is an inequality between
the two metric potentials. Photons respond to the sum of the
metric potentials, while nonrelativistic tracers such as stars
and galaxies, which typically move with speeds of
100–1000 km=s, respond to the time-time potential. Thus
inferences made about the gravitational potential or the mass
distribution using photons (i.e., lensing or the ISW effect) can
be discrepant with dynamical masses inferred from stars and
galaxy motion. This is often cast in terms of the PPN
parameter γ and provides a powerful test of gravity on a
variety of scales:

• On the smallest scales Oð1 kpcÞ strong lensing and
stellar dynamical mass estimates within lens galaxies can

FIG. 12. Left panel: comparison of the splashback radius (defined as the minimum of each curve) for GR and chameleon theories.
F5 models correspond to χ ¼ 10−5. The red lines correspond to particles, and the blue and black lines correspond to subhalos with
masses indicated in the figure. Right panel: density slope for dark matter particles in GR (black line) and a Vainshtein-screened theory
with rc ¼ 600 Mpc (red line). The splashback radius is the minimum of each curve. From Adhikari et al., 2018.
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be compared (Schwab, Bolton, and Rappaport, 2010;
Collett et al., 2018).

• A similar comparison of strong lensing by galaxy
clusters with galaxy velocity dispersions or x-ray masses
can be made [length scales Oð100Þ] (Schmidt, 2010;
Pizzuti et al., 2016)

• Weak-lensing mass profiles of galaxies and clusters
provide mass estimates out to the virial radii of their
halos and beyond. For clusters, these can be compared
with SZ masses (calibrated using GR-based simulations)
that extend to the virial radius. On slightly larger scales
the lensing masses can be compared with dynamical
estimates of infall motions from redshift-space surveys
(Lam et al., 2012; Terukina et al., 2014; Zu et al., 2014;
Wilcox et al., 2015; Sakstein et al., 2016). On similar
scales ∼0.1–10 Mpc=h, Leauthaud et al. (2017) reported
an interesting discrepancy between the measured galaxy-
galaxy lensing signal of BOSS CMASS galaxies in
CFHTLenS and CS82 fields and the prediction from a
number of mock catalogs with CMASS-like clustering
and stellar mass functions.

• On even larger scales ∼10–100 Mpc, assuming linear
bias for the galaxies, weak-lensing and redshift-space
power spectra have been used to estimate the EG
parameter (Zhang et al., 2007; Blake et al., 2016; Pullen
et al., 2016; Singh et al., 2019), which is reliably known
for GR.

Further information to be compared with lensing comes
from cluster gas temperature, density, and pressure profiles
measured with x-ray and SZ data. The gas density ρgas and
pressure P relate to the dynamical mass profile MdynðrÞ as

1

ρgasðrÞ
dPðrÞ
dr

¼ −
GMdynðrÞ

r2
: ð75Þ

The dynamical mass Mdyn differs from the lensing mass
due to the fifth force that can be interpreted as arising
from the gradient of the scalar field profile. This can be
modeled following Schmidt (2010), Pourhasan et al. (2011),
Lombriser, Koyama et al. (2012), and Lombriser and
Peñarrubia (2015).
A simple approximation for chameleon gravity is given by

(Lombriser, 2014)

MdynðrÞ ≃
�
1þ Θðr − rcÞ

3þ 2ω

�
1 −

MðrcÞ
MðrÞ

��
MðrÞlens; ð76Þ

where Θ is the Heaviside step function,MðrÞlens is the lensing
mass, and the chameleon screening scale is

rc ≃
8πGρsr3s
3þ 2ω

1

1 − ϕenv
− rs ð77Þ

with the scalar field value ϕenv in the environment
[ϕ ¼ 1þ fR for fðRÞ gravity]. A fitting function for the
relation between the dynamical and true masses for fðRÞ
gravity, calibrated using a large suite of N-body simulations
with varying resolutions and box sizes, was given by Mitchell
et al. (2018) as

Mdyn

Mlens
¼ 7

6
−
1

6
tanh fp1½log10ðMlens=M⊙Þ − p2�g; ð78Þ

where p1 and p2 are given by

p2 ¼ 1.503log10

�jfRðzÞj
1þ z

�
þ 21.64; ð79Þ

p1 ¼ 2.21; ð80Þ

works well for all models with jfR0j ∈ ½10−6.5; 10−4� in a wide
range of redshifts z ∈ ½0; 1�. In particular, the constancy of p1

and the slope of p2 (1.503) are close to the predictions of thin-
shell modeling (which gives a slope of 1.5 for p2).
Assuming no nonthermal pressure, the gas pressure, den-

sity, and temperature are related by P ¼ Pthermal ∝ ρgasTgas.
Hence, in hydrostatic equilibrium, the lensing, x-ray surface
brightness, x-ray temperature, and SZ observations are
uniquely determined from any combination of two profiles
adopted for Pthermal, ρgas, Tgas, orM. A combination of the four
measurements therefore breaks degeneracies among the pro-
files and yields a powerful test of gravity (Terukina et al.,
2014). Combining weak-lensing measurements with gas
observations from the x-ray surface brightness and temper-
ature as well as the Sunyaev-Zel’dovich effect from the Coma
cluster, Terukina et al. (2014) inferred constraints on chame-
leon models that correspond to jfR0j≲ 6 × 10−5 when cast in
terms of Hu-Sawicki fðRÞ. The same constraint was obtained
byWilcox et al. (2015) from the stacked profiles of 58 clusters
with combined XMM Cluster Survey x-ray and CFHTLenS
weak-lensing measurements but with no SZ data. This test has
also been conducted for Galileon gravity (Terukina et al.,
2015) and beyond Horndeski theories (Sakstein et al., 2016).
The method of comparing the hydrostatic and lensing

masses of galaxy clusters has also been applied to
Vainshtein breaking theories; see Sec. IX.G. Unlike thin-
shell screening theories where the Newtonian potential is
altered but not the lensing potential, Vainshtein breaking
alters both potentials; see Eqs. (35) and (36). For a NFW
halo, the masses are

MðrÞdyn ¼ MNFW þ πϒ1r3sρs

�
1 −

rs
r

��
1þ rs

r

�
−3
; ð81Þ

MðrÞlens ¼ MNFW þ πr3sρs
2

�
ðϒ1 þ 5ϒ2 þ 4ϒ3Þ

− ðϒ1 þ 5ϒ2 þ 4ϒ3Þ
rs
r

�
: ð82Þ

Assuming that ϒ3 ¼ 0 (corresponding to beyond Horndeski
theories with no DHOST terms), Sakstein et al. (2016)
constrained ϒ1 and ϒ2 by comparing Mhydrostatic and Mlens

for a sample of 58 x-ray selected clusters for which lensing
data from CFHTLenS and x-ray data from XMM-Newton
were available. The hydrostatic mass was found using the
x-ray surface-brightness temperature and the lensing mass
was found by stacking the profiles. The 2σ bounds ϒ1 ¼
−0.110.93−0.67 and ϒ2 ¼ −0.221.22−1.19 were obtained.
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This method requires lensing data to be available for x-ray-
or SZ-selected clusters. An alternative way to constrain
chameleon-type models that uses the fact that the dynamical
and true masses of clusters can be different, without needing
lensing data, is to consider the gas fractions of clusters. The
largest galaxy clusters form from regions whose initial sizes
are over 10 Mpc, and we expect the mass ratio between
baryonic (dominated by hot gas) and dark matter components
inside them to be close to the cosmic average Ωb=Ωm (White
et al., 1993), making clusters “standard buckets.” The cluster
gas fraction profile fgasðrÞ≡Mgasð< rÞ=Mtotð< rÞ can be
estimated by measuring the mass profile [Mtotð< rÞ] and hot
gas [Mgasð< rÞ] profile. These can be obtained, respectively,
by observing the x-ray temperature and luminosity profiles. In
chameleon models, the measured Mtotð< rÞ value is the
cluster dynamical mass, which implies that for unscreened
halos the observationally inferred value of fgasðrÞ, fobsgasðrÞ is
related to the true value ftruegas ðrÞ by

fobsgasðrÞ ¼
Mgasð< rÞ

Mtot;dynð< rÞ

¼ Mtot;lensð< rÞ
Mtot;dynð< rÞ

Mgasð< rÞ
Mtot;lensð< rÞ≡ ηðrÞftruegas ðrÞ; ð83Þ

where ηðrÞ ∈ ½3=4; 1� encodes the screening effect. Because it
is ftruegas ðrÞ that is directly related to Ωb=Ωm, this suggests that
in chameleon models, depending on the screening, the
observed gas fraction can have a systematic difference from
the expected value from constraints on Ωb, Ωm by other
observations such as the CMB. Since the screening depends
on the background scalar field value and redshift, ηðrÞ can
evolve with redshift, which can also be a signature of
departures from ΛCDM. Li, He, and Gao (2016) estimated
that the Hu-Sawicki n ¼ 1 fðRÞ model with jfR0j ¼ 3 ∼ 5 ×
10−5 is in tension with the gas fraction data of the 42 clusters
analyzed by Allen et al. (2008).
The distinction between dynamical and lensing masses in

cluster observations is also important for the modeling of
cluster scaling relations, the relations that are often used to
infer a cluster’s mass from some observational proxy.
For example, in fðRÞ gravity an interesting observation is
that the gas density profile of a halo with dynamical mass

MfðRÞ
dyn ¼ M� from a simulation with baryon density param-

eter Ωb is similar to that of ΛCDM halos whose lensing (or
true) mass is given by MΛCDM

lens ¼ M�, but from a simulation

with a baryon density parameter ΩbM
fðRÞ
lens =M

fðRÞ
dyn , where

MfðRÞ
lens is the true mass of the fðRÞ halo whose dynamical

mass is equal to M�. This is easy to understand: dynamically
the fðRÞ halo whose dynamical mass is M� and the ΛCDM
halo whose true mass is M� are indistinguishable, but
assuming that all halos have the same ratio of baryon-to-
true-halo mass, the fðRÞ halo, which has a smaller true
mass, would have a smaller baryon mass. He and Li (2016)
showed this using the following nonradiative hydrodynam-
ical simulations:

ρfðRÞgas ðrÞ ¼ MfðRÞ
lens ð< rÞ

MfðRÞ
dyn ð< rÞ

ρΛCDMgas ðrÞ; ð84Þ

where ρfðRÞgas , ρΛCDMgas are, respectively, the hot gas density
profiles of the fðRÞ halo whose dynamical mass is M� and
the ΛCDM halo whose true mass is M�. Cluster observables,
such as the SZ Compton-y parameter YSZ, its x-ray counter-
part YX, and the x-ray luminosity LX, are usually integrated
quantities that can be schematically written as

Y ¼
Z

r

0

dr04πr02½ρgasðr0Þ�a½Tgasðr0Þ�b; ð85Þ

where a, b are power indices. Therefore, from Eq. (85) YfðRÞ

and YΛCDM satisfy

YfðRÞ ¼
Z

r

0

dr04πr02½ρfðRÞgas ðr0Þ�a½TfðRÞ
gas ðr0Þ�b

¼
�
MfðRÞ

lens

MfðRÞ
dyn

�
a
Z

r

0

dr04πr02½ρΛCDMgas ðr0Þ�a½TΛCDM
gas ðr0Þ�b

¼
�
MfðRÞ

true

MfðRÞ
dyn

�a
YΛCDM; ð86Þ

where we use the fact that for a fðRÞ halo with a dynamical
mass equal to M� and a ΛCDM halo with true mass equal to
M� the temperature profiles TgasðrÞ should be identical.
Equation (86) is useful because it helps one directly obtain

the fðRÞ cluster scaling relation YfðRÞðMfðRÞ
dyn Þ from the

corresponding ΛCDM scaling relation YΛCDMðM ¼ MfðRÞ
dyn Þ

(which are usually better known or easier to obtain), without
having to run large suites of hydro simulations in fðRÞ
gravity (He and Li, 2016). Mitchell et al. (2018) proposed a
framework to use these “rescaled” fðRÞ cluster scaling
relations to relate cluster observables from x-ray and SZ
surveys to cluster masses and put constraints using the
abundance of clusters.

C. Voids in galaxy surveys

The term “cosmic void” is broadly used to refer to large
(typically from 5 to 100 Mpc) underdense regions of the
Universe, characterized by mass outflow from their centers
onto the higher-density mass-accreting filaments and walls
that define their boundaries (Sheth and van de Weygaert,
2004; Sutter et al., 2012; Clampitt, Jain, and Sánchez, 2016;
Sánchez et al., 2017). Being the parts of the cosmic web with
the lowest density, they are regions where the screening
mechanisms are expected to be the least efficient; this gives
void-related observations a promising potential to test gravity
on astrophysical and cosmological scales.
Despite the existence of a few simpler analytic attempts to

describe voids in modified gravity (Martino and Sheth, 2009;
Clampitt, Cai, and Li, 2013; Lam et al., 2015; Voivodic et al.,
2017), N-body simulations are still the best available tool to
extract void properties such as their profile, abundance,
dynamics, and screening efficiency [Fig. 13(a)] (Li, 2011;
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Li, Zhao, and Koyama, 2012; Falck et al., 2014, 2018;
Hamaus, Sutter, and Wandelt, 2014; Cai, Padilla, and Li,
2015; Falck, Koyama, and Zhao, 2015); see also Cai (2018)
for a recent review.
In practice, a first challenge facing the utility of voids as a

cosmological probe lies in how to identify them from the
complicated cosmic web. This has opened many possibilities,
as a result of which there is no unique or widely agreed way to
define them. For example, voids can be defined according to
the type and number density of the tracer field (whether they
are identified from a matter field, galaxies, clusters, etc.) and
their dimensionality (whether they are identified from a 3D or
2D projected tracer field). In addition, because of their
generally nonregular shapes, there exists a variety of void-
finding algorithms to identify them from a given tracer field.
These complexities can be portrayed as a source of confusion
in void-related works, but one should also appreciate the
enrichment of the types of analyses that can be done as a
consequence. For example, different void definitions can be
more or less sensitive to specific modified-gravity signatures,
as investigated recently by Cautun et al. (2018) and Paillas
et al. (2019).
In the following, we briefly review some of the main recent

developments on tests of gravity with cosmic voids:
• Weak lensing by 3D voids.—The lensing signal from
individual voids is too weak to be systematically
detected with the currently available precision (Amen-
dola, Frieman, and Waga, 1999), so virtually all studies
performed to date focus on the signal obtained from
stacking many such void lensing profiles, which

increases the signal-to-noise ratio (Higuchi, Oguri, and
Hamana, 2013; Krause et al., 2013; Melchior et al.,
2014; Clampitt and Jain, 2015). Modified-gravity theo-
ries can impact the observed lensing profiles in two main
ways. First, if the growth of structure is boosted, then
voids become emptier as the mass outflows toward their
surrounding walls and filaments become more efficient
(Cai, Padilla, and Li, 2015; Zivick et al., 2015). Second,
if the relation between mass and the lensing potential is
also modified (Barreira, Cautun et al., 2015; Baker et al.,
2018), then the lensing signal is affected since photons
follow a modified geodesic equation. Figure 13(b) shows
how in the cubic Galileon model the screening is
inefficient and a strong signature of the fifth force is
imprinted on the void lensing predictions.

• Weak lensing by 2D voids.—A way to increase the
signal-to-noise ratio in lensing observations by under-
dense regions is to focus the analysis on 2D voids, or
equivalently lines of sight that are predominantly devoid
of structure. This type of analysis was pioneered by the
DES Collaboration [who use galaxy troughs (Gruen et
al., 2016) or density-split statistics (Friedrich et al.,
2018; Gruen et al., 2018)], who discriminated among
lines of- sight using their projected photometric galaxy
count. The first few studies of this lensing signal in
modified-gravity were carried out by Higuchi and
Shirasaki (2016) and Cautun et al. (2018) for fðRÞ
and Barreira et al. (2017) for DGP gravity. Recently,
Cautun et al. (2018) proposed two more 2D void
definitions: 2D spherical underdensity voids (similar

FIG. 13. (a) Comparison of the fifth-force (y-axis) and normal GR (x-axis) contributions to the total force felt at particle locations in N-
body simulations of the nDGP model. The four panels split the particles by the type of cosmic web structure [halos, filaments, walls, and
voids, as identified by the ORIGAMI algorithm (Falck, Neyrinck, and Szalay, 2012)] where each particle lies. The solid line marks the
unscreened linear expectation, which is followed in filaments, walls, and voids; in the higher-density haloes, the fifth force is suppressed.
From Falck et al., 2014. (b) Differential surface mass density (which is related to the lensing shear) of spherically symmetric stacks of
voids in the cubic Galileon model. Relative to the GR scenario (red lines; named QCDM because the background is not ΛCDM), the full
model result (blue lines) displays roughly the same enhancement as a linearized unscreened version of it (green lines). This indicates that
the screening mechanism is not at play and thus that the fifth force can have prominent observational signatures. From Barreira, Cautun
et al., 2015.
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to 3D spherical voids but in two dimensions) and tunnels
(circumcircles of triangular 2D Delaunay tessellation
cells). These void finders are found to produce stronger
signals than troughs and 3D voids and are also better
discriminators of GR, fðRÞ, and DGP gravity (Cautun et
al., 2018; Paillas et al., 2019). The lensing signal
produced by 2D voids found directly in lensing maps
(using peaks as tracers) allows for even stronger signals
and tests of gravity (Davies, Cautun, and Li, 2018;
Davies, Cautun, and Li, 2019) because the lensing map is
a more direct tracer field of the underlying matter field.

• The ISW effect and voids.—The time evolution of the
lensing potential in and around voids can be probed via
the ISW effect and this is also generically affected by
modified gravity. The stacking of CMB maps on top of
voids found in foreground galaxy distributions results in
cold spots that indicate that the potential has been getting
shallower with cosmic time (Granett, Neyrinck, and
Szapudi, 2008; Ade et al., 2016b). The modified signal
arises from a combination of the same two effects
discussed previously for void lensing: both modified
dynamics [e.g., as in the fðRÞmodel studied by Cai et al.
(2014)] and modified lensing potentials can contribute to
different time evolutions of the gravitational potential
inside voids. For instance, a stronger gravity can work to
slow down the decay of the gravitational potential (or
even make it grow), thereby leading to a weaker
amplitude of the cold spots (or turning them into
hot spots).

• Growth rate measurements with RSD.—The average
radial tracer number density profiles for a large enough
number of voids is expected to be spherically symmetric
in real space. In redshift space, however, for galaxies used
as tracers, peculiar velocities work to distort these profiles
in the line-of-sight direction. The degree of anisotropy
allows us to put bounds on the growth rate of the structure,
and consequently test gravity. Hamaus et al. (2015, 2016,
2017), Hawken et al. (2017), Nadathur et al. (2019), and
Nadathur and Percival (2019) developed and applied
methods to measure the cross-correlation between gal-
axies and voids in galaxy catalogs to infer the growth rate
of the structure; see also Cai et al. (2016). In the context of
testing modified-gravity theories with screening, there is
interest in focusing on void-galaxy cross-correlations
(compared to galaxy autocorrelations) that comes from
targeting galaxies that lie in the lowest-density, less
screened regions of the Universe.

• Void abundances.—While void abundance is in princi-
ple a sensitive probe of modified gravity (Li, 2011; Cai,
Padilla, and Li, 2015), its use in cosmological tests is far
less popular. A major reason for this is that, in obser-
vations, 3D voids are found mostly from a biased tracer
field that also needs to be fully understood to make
accurate predictions of void abundance. Indeed, void
abundance is effectively fixed by the number density and
clustering of the tracers (Cautun et al., 2018; Paillas
et al., 2019). One interesting work concerning this
difficulty was proposed by Davies, Cautun, and Li
(2018), namely, to use lensing peaks directly as 2D void
tracers. Davies, Cautun, and Li (2018) showed that,

when identified in this way, voids are self-similar in their
abundances at various lensing peak signal-to-noise-ratio
values. More recently Davies, Cautun, and Li (2019)
verified that 2D voids identified using lensing peaks can
indeed be a powerful discriminator of GR and DGP
gravity.

• In and out of void comparisons.—Another powerful test
of gravity involves comparing the dynamics and evolu-
tion of low-mass objects inside voids (where they would
be unscreened in chameleon and symmetron theories)
with similar but screened objects in higher-density
regions (Li, Zhao, and Koyama, 2012b; Shi, Li, and
Han, 2017). Unexpected strong differences in properties
of objects from these different environments can be a
signature of departures from GR. The study of velocity
profiles or rotation curves of screened and unscreened
galaxies inside and outside voids is an example of one
such test (Arnold, Springel, and Puchwein, 2016).
Another way to search for the unscreened nature of
objects in voids is using the marked two-point correla-
tion function, which is similar to the usual correlation
function but gives selected objects (e.g., those in voids) a
higher weight; see Lombriser, Simpson, and Mead
(2015), Armijo et al. (2018), Hernández-Aguayo,
Baugh, and Li (2018), and Valogiannis and Bean (2018).

Finally, we mention in passing Minkowski functionals.
Although not direct probes of cosmic voids, these are useful
descriptions of the complex morphology of the cosmic web
(of which voids occupy most of the volume) that can be used
to find interesting signatures from modified-gravity effects;
see Fang, Li, and Zhao (2017), who found using N-body
simulations that Minkowski functionals measured in the three-
dimensional matter distribution can discriminate with high
significance models such as GR, fðRÞ, and nDGP.

D. Observational screening maps

Testing modified gravity by means of astrophysical objects
requires one to identify a difference between screened and
unscreened subsamples, which in turn requires an observa-
tional proxy for the degree of screening. As described in
Sec. IV.D.2, in thin-shell screening models the background
value of the scalar field sets a threshold in Newtonian potential
jΦj that marks the onset of screening, as measured by a
difference between lensing and dynamical masses. This has
been verified in modified-gravity simulations, where alter-
native proxies such as the distance to massive nearby
neighbors have also been shown to be effective (Cabre
et al., 2012; Haas, Schaye, and Jeeson-Daniel, 2012; Shi,
Li, and Han, 2017). In particular, Cabre et al. (2012) showed
that the Newtonian potential generated by mass within one
Compton wavelength of the scalar field is a good proxy for the
degree of screening in thin-shell theories. The degree of other
types of screening is also expected to be correlated with
simple gravitational variables (e.g., acceleration a for kinetic
and curvature K for Vainshtein) (Khoury, 2013; Joyce et al.,
2015), although in these cases the lack of knowledge of two-
body solutions makes exact predictions difficult. The envi-
ronmental contribution to non-thin-shell screening may be
much lower, especially if the test object is much smaller than
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the screening radius. Nevertheless, to first order the task of
determining the degree of screening in a given theory is
approximately solved by mapping out the Newtonian potential
and its derivatives.
For a given object Φ, a and K receive both an internal

contribution, from the object itself, and an external contribu-
tion, from the surrounding mass. Calculating the former
requires the mass distribution of the object but to first order
is given simply by jΦj ¼ GM=R, a ¼ GM=R2, and
K ≃ GM=R3, where M is the mass of the object and R is
its size. The environmental components are more difficult to
calculate as they require knowledge of the object’s environ-
ment. A first estimate may be obtained by summing the
contributions from mass associated with observed light within
a Compton wavelength of the scalar field from the test point.
This may be achieved from a given galaxy catalog by either
estimating group masses from the velocity dispersions of their
constituent galaxies (Cabre et al., 2012) or assigning N-body
halos to individual galaxies by means of their luminosity in a
manner consistent with galaxy-galaxy clustering (Desmond
et al., 2018c). However, a significant fraction of the Universe’s
mass is not associated with currently observable light, either in
halos hosting galaxies too faint to see or in diffuse mass not
associated with halos at all. The former contribution can be
estimated using the halo distribution in N-body simulations,
and the latter can be estimated using a reconstruction of the
smooth density field from galaxy number densities and
redshifts (given a bias model and fiducial cosmology) using
an algorithm such as BORG (Jasche et al., 2010; Jasche and
Wandelt, 2012, 2013; Lavaux and Jasche, 2016), or a con-
strained simulation such as ELUCID (Wang et al., 2014, 2016)
or CLUES (Sorce et al., 2016). A full pipeline was constructed
by Desmond et al. (2018c), allowing the degree of environ-
mental screening to be calculated for any object within
∼200 h−1 Mpc (Fig. 14); the associated code is publicly
available on the project website.41 Alternatively, one can also
predict the environmental and self-screening of halos by
running a modified-gravity solver directly on the recon-
structed density field to calculate the fifth force (Shao
et al., 2019). This is a model-dependent approach, but the
cost is low because for each model and parameter choice one
needs to do the calculation only once rather than hundreds of
times as in N-body simulations.

The power of any test relying on the distinction between
screened and unscreened galaxies is limited by the uncertainty
in the degree of environmental screening. This has four main
contributions, listed here in approximately decreasing order of
importance (Desmond et al., 2018c):

(1) Uncertainties in the distribution and masses of halos
unassociated with an observable galaxy. This is a
factor of a few forΦ but may be an order of magnitude
or more for a and K, which depend more sensitively
on mass close to the test point. This depends on the
magnitude limit of the initial galaxy catalog as well as
the algorithm used to account for unseen mass (this
may not be problematic for non-thin-shell models if
environmental screening is suppressed).

(2) Uncertainties in the mass distribution of the smooth
density field, which accounts for mass outside of halos
that are well resolved in an N-body simulation. The
posterior probability distribution for this mass distri-
bution was calculated by Lavaux and Jasche (2016),
allowing this uncertainty to be straightforwardly
propagated into screening maps. This contribution is
relatively more significant in low-density regions with
few nearby halos, where other contributions to the
gravitational field are small.

(3) Uncertainties in the masses and concentrations of
halos hosting galaxies included in the basic galaxy
catalog. Desmond et al. (2018c) calculated these using
inverse abundance matching, which specifies a range
of possible halo properties for a galaxy of given
luminosity, even for fixed values of the model param-
eters, which are themselves uncertain.

(4) Uncertainties in the magnitude and position of the
source galaxies. This purely statistical error is sub-
dominant to the foregoing systematic issues.

The lowest background field value that is testable is set by
the minimum degree of environmental screening at which a
statistically significant sample of objects can be compiled. The
most unscreened galaxies are located in the lowest-density
regions of the Universe, where not only is the number of halos
within the Compton wavelength λC minimized but also the
galaxy distribution indicates little mass situated outside halos
in the smooth density field. Analyses by both Cabre et al.
(2012) and Desmond et al. (2018c) indicated that objects exist
in potentials at least as low as jΦj ¼ 10−7 for a window radius
λC ≃ 1 Mpc, allowing the self-screening parameter χ to be

(a) Newtonian potential (b) Acceleration (c) Curvature

FIG. 14. Maps of environmental Newtonian potential jΦj, acceleration a, and curvature K across a 300 × 300 Mpc2 slice of the local
Universe. The Milky Way is located at x ¼ y ¼ 0. From Desmond et al., 2018c.

41See https://www.novelprobes.org/codes.
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probed below this level. This gives astrophysical tests the
potential for significantly greater constraining power than
cosmological tests.

E. Tests of thin-shell screening

1. Stellar evolution

Stars are important probes of chameleon and symmetron
theories precisely because they have Newtonian potentials that
range from 10−6 (main sequence) to 10−7–10−8 (post main
sequence). Here we discuss the novel effects that can be
exhibited in stars under modified gravity. Stars in dense
galaxies are subject to environmental screening so the effects
described in this section must be tested using unscreened
galaxies. As discussed in Sec. IV.D.2, these are typically
dwarf galaxies in voids. These can be found in observational
datasets using the maps described in Sec. IX.D. We begin by
showing how hydrostatic equilibrium is altered and then
present observable effects of this on stellar luminosity, life-
time, and pulsations.
A star is a complex system where many different areas of

physics play an important role, including nuclear physics,
atomic physics, thermodynamics, and convection. Despite
this, there is only one stellar structure equation where
gravitational physics is important, the hydrostatic equilibrium
equation, which in GR is given by

dP
dr

¼ −
GMðrÞρðrÞ

r2
: ð87Þ

This equation tells us the pressure profile that a star must
assume if the star is to remain in equilibrium, i.e., if the inward
gravitational force is to be balanced by the outward pressure,
from nuclear burning, for example. In the case of chameleons
and symmetrons, this is modified to include the fifth force so
that one has

dP
dr

¼ −
GMðrÞρðrÞ

r2

�
1þ 2α2

�
1 −

MðrsÞ
MðrÞ

�
Θðr − rsÞ

�
; ð88Þ

whereΘðxÞ is the Heaviside step function; this ensures that the
fifth force is operative only in the region exterior to the
screening radius; see Eq. (23). Calculating the new properties
of stars in chameleon gravity is tantamount to solving this
equation simultaneously with the equations describing stellar
structure and energy production.
The new term in the hydrostatic equilibrium equation (88)

essentially increases the gravitational force in the region
outside the screening radius, which has several important
consequences. Consider two stars of equal mass M, one
screened and one unscreened. The unscreened star feels a
stronger inward gravitational force and must therefore burn
more nuclear fuel per unit time to prevent gravitational
collapse. This suggests that the unscreened star will deplete
its fuel reserves faster than the screened star and will therefore
have a shorter lifetime. Furthermore, the increased rate of
nuclear burning results in the star being more luminous. To
make this more quantitative, consider the extreme case where
the star is fully unscreened so that rs ¼ 0 and one therefore

hasG → ð1þ 2α2ÞG. Simple dimensional analysis arguments
show that the luminosity of low-mass stars scales as L ∝ G4 at
fixed mass for low-mass main-sequence stars and that L ∝ G
for high-mass stars (Davis, Lim et al., 2012). In the former
case, this scaling law arises because low-mass stars are
supported by thermodynamic pressure (i.e., the ideal gas
law) so that P ∝ ρT, and in the latter because high-mass stars
are supported by radiation pressure P ∝ T4. The ratio of the
luminosity of the unscreened to the screened star is then

Lunscreened

Lscreened
¼
�ð1þ2α2Þ4; low-massmain sequence;

ð1þ2α2Þ; high-massmain sequence.
ð89Þ

Low-mass stars are more susceptible to the effects of modified
gravity than high-mass stars. One explanation for this is that
high-mass stars need to absorb more of the extra radiation
produced by the enhanced gravitational force to support
themselves. More thorough and technical analytic treatments
of stellar structure in chameleon gravity were given by Davis,
Lim et al. (2012) and Sakstein (2014a).
In practice, the complex nature of stars means that a

numerical treatment is necessary to produce realistic stellar
models that can make realistic observational predictions. For
this reason, the publicly available stellar structure code MESA

(Paxton et al., 2011, 2013) was modified by Chang and Hui
(2011) and Davis, Lim et al. (2012) so that the hydrostatic
equilibrium equation to be solved for is Eq. (88) rather than
Eq. (87). This is achieved using an iterative procedure: given
an initial stellar model, the screening radius is found by
solving Eq. (25). MESA then uses this to solve the modified
hydrostatic equilibrium equation in conjunction with all of the
other stellar structure equations to find the stellar model
resulting from this degree of screening. This is then used to
calculate a new screening radius, and the procedure is repeated
until convergence is reached. Chang and Hui (2011) inves-
tigated the validity of this approximation by numerically
solving for the scalar profile using a Gauss-Seidel algorithm
in conjunction with the other stellar structure equations and
found excellent agreement between the exact and approximate
solutions. For this reason, modern implementations have used
the approximation. As an example of the effects of modified
gravity, a color-magnitude diagram (or Hertzprung-Russell
track) for a solar mass and metallicity (Z ¼ 0.02) star in
Hu-Sawicki fðRÞ gravity (2α2 ¼ 1=3) with fR0 ¼ 10−6 is
compared to the GR case in Fig. 15. One can see that the
previous simple qualitative predictions hold true upon full
numerical simulation: the fðRÞ star is indeed hotter and more
luminous than the GR star. If one looks at the age of the stars
when they exit the main sequence, one also finds that the fðRÞ
star is younger. Note that using fR0 ¼ 10−6 implies that the
galaxy hosting the star is unscreened. Chameleon (and
similar) searches typically focus on unscreened galaxies;
see Sec. IV.D.2). If one is interested in screened galaxies,
then one should adjust the value of fR0 appropriately to
account for environmental screening.
Given that stars are generally brighter in modified gravity,

one would expect dwarf galaxies of fixed stellar mass in voids
to be brighter than their screened cluster counterparts (Davis,
Lim et al., 2012). Further, low-mass stars are more affected
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and the naive expectation is that void galaxies should also be
redder in color. To date no numerical simulations of galactic
properties including the effect of modified gravity on stars
have been performed. There are many competing effects that
could alter this expectation; for example, one would expect a
larger population of post-main-sequence stars (which are
brighter than main-sequence stars and more affected by
modified gravity) since low-mass stars would exit the main
sequence sooner. The precise effects of modified gravity on
the initial mass function and star formation rate are unknown
due to a lack of investigation.
Going beyond hydrostatic equilibrium, the dynamics of

small perturbations δ⃗r are governed by the momentum
equation

̈
δ⃗r ¼ −

1

ρ

dP
dr

þ a⃗; ð90Þ

where a⃗ is the force per unit mass. In GR this is a⃗ ¼ −∇⃗Φ, but

in chameleon and symmetron gravity one instead has a⃗ ¼
−∇⃗Φ − α∇⃗ϕ so that modified gravity also affects the dynam-
ics of stellar oscillations. Stellar oscillations have proven to be
valuable tools for testing chameleon gravity (Jain, Vikram,
and Sakstein, 2013; Sakstein, 2013, Sakstein, 2014a;
Sakstein, Kenna-Allison, and Koyama, 2017). Indeed, the
Sun oscillates in over 107 different modes and pulsating stars
where the oscillations are driven by some dynamical forcing42

such as Cepheids and RR Lyrae stars can be used as distance
indicators (Freedman and Madore, 2010). Perturbing Eq. (90)
and the other stellar structure equations, one finds that the
frequency of linear radial adiabatic oscillations

ω2 ∼
GM
R3

: ð91Þ

Changing the value of G then causes the pulsation period Π
changes by a fractional amount

ΔΠ
Π

¼ −αQ; ð92Þ

where Q is the scalar charge defined in Eq. (44). This is Oð1Þ
for unscreened stars.

2. Distance indicators

Distance indicators are objects that have some known
intrinsic property that allows us to calculate their absolute
distance. For example, the luminosity distance of an object at
noncosmological distance is given by d2L ¼ L=4πF for mea-
sured flux F. Since we cannot measure L, only objects for
which it is known by some other means (from either
theoretical calculations or empirical measurements and cali-
brations in the local neighborhood) can be used to find the
distances to their host galaxies. Distance indicators are
invaluable for testing chameleon theories since they are both
sensitive to gravity and can be observed in void dwarf galaxies
that are least likely to be screened.
The principle behind distance indicator tests of chameleons

is the following: suppose that one attempts to measure the
distance to an unscreened void dwarf galaxy using two different
distance indicators, one screened (or insensitive to the theory of
gravity) and the other unscreened. If the theory of gravity is
correct, the two estimates will agree; if not, the estimates will
disagree. This is because the formula used to calculate the
distance to the unscreened object is incorrect: it either has
assumed GR or has been calibrated empirically in the local
(screened) neighborhood. As an example, suppose that in GR
the luminosity of some object is known to be constant, i.e., it is
a standard candle. If unscreened objects are more luminous,
then, given a measured flux, the application of the luminosity
distance formula to this object will underestimate the distance
since one would have used too low a luminosity.
Three different distance indicators that have been used to

constrain chameleon theories are as follows:
• Cepheid variable stars.—Cepheid variable stars are
post-main-sequence stars with progenitors of mass 3 ≲
M=M⊙ ≲ 10 that have evolved off the main sequence.
Semiconvective processes (convection driven by gra-
dients in the chemical composition) cause them to
execute what are referred to as blue loops in the
color-magnitude diagram where their temperature in-
creases at fixed luminosity. During this looping phase,
they enter a narrow vertical strip where they are unstable
to pulsations driven by the κ mechanism (Cox, 1980). [A
helium ionization layer dams up energy because small
compressions (density increases) result in the helium
becoming doubly ionized rather than increasing the
outward pressure gradient.] During this phase, the star
pulsates with a period-luminosity relation

MV ¼ a logΠþ b logðB − VÞ þ c; ð93Þ

where a ≈ −3 (Freedman and Madore, 2010) and Π is
the pulsation period. Using Eq. (92), one finds that

FIG. 15. Tracks in the color-magnitude diagram for a solar mass
and metallicity star in GR (black line) and Hu-Sawicki fðRÞ
gravity (red line) with fR0 ¼ 10−6. Here L is normalized to the
solar luminosity and Teff is measured in kelvins.

42The driving is due to nongravitational effects and hence are not
sensitive to the theory of gravity.
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applying this to unscreened Cepheids underestimates the
distance by (Jain, Vikram, and Sakstein, 2013)

Δd
d

¼ −0.6αQ: ð94Þ

One can make quantitative predictions for individual
Cepheids by calculating the average value of 2αQ using
MESA profiles; see Jain, Vikram, and Sakstein (2013)
for the technical details.

• Tip of the red giant branch stars.—Stars of mass 1 ≲
M=M⊙ ≲ 2 do not execute blue loops. Instead, they
ascend the red giant branch (RGB) where their cores
become hotter, denser, and more luminous until the
central conditions are such that the triple-α process can
begin, at which point helium ignition begins explosively
and the star moves rapidly onto the horizontal branch.
This leaves a visible discontinuity in the I-band magni-
tude I ¼ 4.0� 0.1 when the star reaches the tip of the
red giant branch (TRGB) (Freedman and Madore, 2010).
The discontinuity is almost independent of mass, with a
small spread due to variations in the core masses of RGB
stars and metallicity effects. For this reason, the TRGB is
a standard candle. During its ascent of the RGB, the
star’s luminosity is due entirely to a thin hydrogen
burning shell around the core, so whether or not the
TRGB is sensitive to modified gravity depends on
whether the core is unscreened. One finds this to be
the case if χ ≳ 10−6. When this happens, the core
temperature increases more rapidly than in GR and
the helium flash begins earlier, i.e., at a lower luminosity;
see Appendix B of Jain, Vikram, and Sakstein (2013) for
technical details. For this reason, unscreened TRGB
indicators overestimate the luminosity distance. When
the core is screened (χ ≲ 10−6) their calculated distances
give the GR result. The complex structure of RGB stars
means that it is best to compute the decrease in the
TRGB luminosity using MESA.

• Water masers.—A third distance indicator that has found
some use in testing chameleon theories is based on the
distances to water masers (Lo, 2005). These are clouds of
H2O gas in Keplerian orbits in the accretion disks of
black holes. Active galactic nuclei cause a population
inversion in the clouds resulting in stimulated emission
of microwave-frequency radiation. Using this, a simul-
taneous measurement of the radial velocity, centripetal
acceleration, angle on the sky, and inclination of the
orbital plane is possible, enabling a geometric
distance estimate. As the central regions of galaxies
are highly screened, water masers are screened distance
indicators.

TRGB versus water masers.—Since TRGB distances are
unscreened when χ ≳ 10−6, one can compare their distance
estimates with maser estimates to constrain this parameter
range. This was done by Jain, Vikram, and Sakstein (2013) for
the one galaxy (NGC 4258, a spiral galaxy unscreened when
χ > 10−6), where there are simultaneous measurements of
both TRGB and water maser distances. These both give
7.2 Mpc within errors, which rules out χ ≳ 10−6 with high

significance. A later measurement revised the maser distance
to 7.6 Mpc (Humphreys et al., 2013), but this is still consistent
with the TRGB distance within errors.
Cepheids versus TRGB.—When χ < 10−6 TRGB distances

are screened, one can obtain new constraints by comparing
TRGB with Cepheid distances. This is achieved using Δd ¼
dCepheid − dTRGB and d ¼ dTRGB in Eq. (94). This analysis was
performed by Jain, Vikram, and Sakstein (2013) for a sample
of 22 unscreened dwarf galaxies in voids [selected using the
screening map of Cabre et al. (2012)], producing the con-
straints shown in Fig. 16. In particular, fR0 > 3 × 10−7 is
ruled out at the 68% confidence level. An updated version of
this test using additional data, and generalized to screening
mechanisms beyond chameleon, was presented by Desmond,
Jain, and Sakstein (2019) (Fig. 5). It is also shown there that
the modification to the distance ladder caused by screened
fifth forces is able to reduce the Hubble tension.
Further discussion of the effect of fifth forces on stars was

given by Sakstein, Desmond, and Jain (2019).

3. Dynamical and structural galaxy properties

Besides its effect on individual stars, screening can influ-
ence the overall structure and dynamics of galaxies’ stellar and
gas mass components. This is because the surface Newtonian
potential of main-sequence stars is greater than the total
potential of dwarf galaxies in low-density regions; hence
for a range of χ values the stars will be screened while the gas
and dark matter will not. This can give these separate mass
components measurably different kinematics. The particular
observational signals for thin-shell screening models, along
with their expected magnitudes, are as follows (Desmond
et al., 2018a, 2018b; Jain and VanderPlas, 2011):

(1) If the gas disk feels the fifth force and hence follows
the motion of the halo center while the stellar disk does
not, the stars lag behind the gas when the system falls
in an external field. This would manifest observatio-
nally as an offset between the centroids of optical and
H I light, which trace the stars and gas, respectively.
The magnitude of this offset can be calculated by
requiring in the equilibrium state that the stars and gas

FIG. 16. Excluded region in the χ-α plane derived by comparing
Cepheid and TRGB distance estimates to 22 unscreened galaxies.
The black dashed line corresponds to fðRÞ theories. Recall that
fR0 ¼ 2χ=3. From Jain, Vikram, and Sakstein (2013).
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have the same overall acceleration in an external field
so that they remain together. This implies that the
acceleration of the stellar disk due to its offset from the
halo center equals the additional acceleration of the
gas disk due to the fifth force. Let a⃗ be the total
Newtonian acceleration at the position of the galaxy,43

and let a⃗5 be the Newtonian acceleration due to
unscreened matter within the Compton wavelength
λC of the scalar field, which sources the fifth force. As
unscreened mass couples to this with strength Gð1þ
2α2Þ rather than G (see Sec. IV.A), the total accel-
eration of the gas and dark matter is a⃗g ¼ a⃗þ 2α2a⃗5.
The acceleration of the stellar disk is

a⃗� ¼ a⃗þ GMð< r�Þ
r2�

r̂�; ð95Þ

where r⃗� is the offset between the center of mass of the
stars and gas andMð< rÞ is the total mass enclosed by
a sphere of radius r around the halo center. Requiring
a⃗g ¼ a⃗�, we find that the offset r⃗� satisfies

GMð< r�Þ
r2�

r̂� ¼ 2α2a⃗5 ð96Þ

(for a screened galaxy r� ¼ 0). This allows r⃗� to be
calculated as a function of the scalar field coupling α,
total Newtonian potential Φ (which determines
whether the galaxy is screened), external fifth-force
field a⃗5,

44 and the density profile, which may be
estimated from the dynamics of the galaxy, empirical
relations between baryonic and total mass, or N-body
simulations by means of a technique such as halo
abundance matching.45 For dwarf galaxies, where even
the central regions are dominated by dark matter M ¼
Mh to good approximation.

(2) The amplitude of the gas rotation curve is enhanced
relative to the stellar rotation curve (RC), since the
former receives a contribution from the fifth force in
the same direction as Newtonian gravity, while the
latter does not:

v2g
r
¼Gð1þ2α2ÞMð<rÞ

r2
;

v2�
r
¼GMð<rÞ

r2
; ð97Þ

so that

vg
v�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α2

p
: ð98Þ

An increase of vg over the ΛCDM expectation
(from mass modeling of galaxies and halos) is also
observable but has a strong degeneracy with the dark
matter distribution in galaxies.

(3) The lagging of the stellar disk behind the halo center
induces a potential gradient that causes the disk to
warp into a cup shape. This effect will be greatest
when the disk normal is parallel to the external field, in
which case the shape may be estimated as follows.
First, define a cylindrical coordinate system with z axis
along the external fifth-force field and origin coinci-
dent with the halo center, and consider a star moving in
a circular orbit around the z axis at a distance z0 along
it and a height x0 above it (Fig. 17). As before, the
enclosed halo mass must provide the additional
acceleration in the z direction:

2α2a5 ¼ ah;z ¼ ah
z0
r0

; ð99Þ

where a5 is as previously defined, ah is the magnitude
of the acceleration due to the halo, and ah;z is its
projection along z. Substituting ah ¼ GMð< r0Þ=r20
yields

z0 ¼
2α2a5r30

GMð< r0Þ
; ð100Þ

which forMh ≫ Mg and x0 ≫ z0 (i.e., disk sizes much
larger than offsets due to modified gravity, again to be
justified ex post facto) simplifies to

z0 ¼
2α2a5x30

GMhð< x0Þ
: ð101Þ

The amplitude of this effect therefore depends on
the same function of the external fifth-force field,
scalar coupling, and total density profile as the offset
r� described previously, viz., a5α2=Mð< rÞ. For real-
istic halo density profiles that fall with increasing r, z0
is an increasing function of x0, so the disk acquires a
convex shape around the halo center (as shown in
Fig. 17). Heuristically, as the total halo acceleration is

FIG. 17. Schematic illustration of disk warping in an unscreened
galaxy in thin-shell-screened modified gravity. From Desmond
et al., 2018a.

43We assume that the acceleration field varies insignificantly
between the star and gas centroids, which will be justified ex post
facto.

44In practice, r⃗� must be measured in the plane of the sky, making
only the tangential component of a⃗5 relevant.

45Note that in principle halo density profiles (as well as estimators
for them that utilize the halo mass function, like abundance matching)
are different between ΛCDM and chameleon or symmetron cosmol-
ogy. However, the present cosmological constraints on these theories
require that any such modifications be small.
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lower at larger x0 it must point at a smaller angle to the
z axis to compensate for the fixed acceleration differ-
ence between screened and unscreened mass. Face-on
infall as described here gives maximum warping, and
none would be expected in the edge-on case.

(4) When the infall is near edge on the stellar and gas
disks and rotation curves develop asymmetries: the
side of the disk facing the external field becomes more
compact than the far side, and the RCs become
asymmetric around the galaxy’s center of mass.
Deducing the magnitude of these effects requires
simulating disk infall under modified gravity (Jain
and VanderPlas, 2011).

Similar signals would also be expected from other screen-
ing mechanisms such as symmetron- and environment-de-
pendent dilatons (Brax, Davis, Li, Winther, and Zhao, 2012;
Brax et al., 2010), while Vainshtein screening requires
qualitatively different tests (Sec. IX.F).
While tracing the location of stellar and gas mass through

optical and H I photometry is straightforward, care must be
taken in identifying appropriate kinematic tracers under
modified gravity. In particular, Hα emission is unlikely to
faithfully trace the stellar component in this case. Hα is
emitted in the n ¼ 3 → 2 transition of hydrogen in an ionized
sphere around a star (the Strömgren sphere). Depending on the
star’s ionizing energy output and mass, the majority of the
Strömgren sphere may be unscreened, giving it the kinematics
of the gas rather than the stars. Vikram et al. (2013) estimated
this to be the case for typical stars and interesting values of χ
(∼10−6–10−7). In this case, measuring stellar kinematics
requires the use of molecular absorption lines originating
closer to the surface of the star, such as MgIb or Ca II. As these
are typically faint, tests 2 and 4 will benefit from long-
exposure observations of these lines with large telescopes.
The present state of the art in searching for these four effects

was presented by Desmond et al. (2018b, 2019) (effect 1),
Vikram et al. (2018) and Naik et al. (2019) (effect 2),

Desmond et al. (2018a) (effect 3), and Vikram et al.
(2013) (effect 4); Vikram et al. (2013, 2018) used the
gravitational field reconstruction given by Cabre et al.
(2012) to determine galaxies’ degrees of screening, and the
others used that of Desmond et al. (2018c) (see Sec. IX.D). By
reconstructing the acceleration as well as potential field, the
maps by Desmond et al. (2018c) enabled the signals to be
forward modeled as a function of fifth-force coupling α, range
λC, and screening threshold χ. This was supplemented by
Desmond et al. (2018b) by structural modeling of galaxies’
baryon and dark matter mass profiles to estimate Mð< rÞ and
hence check for conformity between the observed and
predicted signals in terms of their dependence on both the
internal properties of galaxies and their gravitational environ-
ments. To illustrate the present state of these four tests (as well
as the types of future data needed to advance them) we list
here the samples employed in these studies and the factors
limiting their constraining power.

(1) Desmond et al. (2018b, 2019) used ∼11 000 H I

detections within 100 Mpc from the ALFALFA survey
cross-correlated with optical data to search for a
systematic displacement between stellar and gas cent-
roids correlated with gravitational environment. With a
highly conservative assumption for the measurement
uncertainty in the H I centroid they set constraints on
2α2 (written there as fifth-force strength relative to
gravity, ΔG=G) from ∼a few × 10−4 for λC ¼ 50 Mpc
to ∼0.1 for λC ¼ 500 kpc; see Fig. 18. This corre-
sponds to fR0 < a few × 10−8. This test is limited by
the sample size and H I resolution. It is estimated that
future data from a radio survey such as SKA should
increase the sensitivity to α2 by around 6 orders of
magnitude, rendering this test comparable in strength
to Solar System fifth-force probes (Sakstein, 2018b).
With less conservative uncertainties, Desmond et al.
(2018b) found evidence at the ∼6σ level for a screened
fifth force with range λC ≃ 2 Mpc and strength

FIG. 18. Left panel: displacement between H I and optical centroids for ∼11 000 ALFALFA galaxies predicted by a fifth-force model
with λC ¼ 5 Mpc, 2α2 ¼ 1, both with and without thin-shell screening. Right panel: 1σ constraints in the 2α2 (ΔG=G) vs λC plane
obtained by comparing the previous prediction with the measured displacements using highly conservative measurement uncertainties.
From Desmond et al., 2019.
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2α2 ≃ 0.02, although further investigation of possible
systematics (e.g., baryonic effects) is necessary to
validate this result.

Two further related tests were carried out by Vikram
et al. (2013), one using 967 galaxies with Hα RCs and
optical imaging to search for displacement between
the optical and Hα kinematical centers, and the other
using 28 galaxies within 4 Mpc with measured
positions for ∼103–105 red giant branch and main-
sequence stars to search for a displacement between
these populations. (Red giants are expected to remain
partially unscreened due to their diffuse outer shells,
which have lower Newtonian potentials; see Table I.)
These tests were limited by the small sample size and
lack of knowledge of the external field.

(2) Desmond et al. (2018a) reduced images of ∼4200
galaxies from the NASA-Sloan Atlas to constrain
screened fifth forces by means of the warping of
stellar disks. This uses a similar inference methodol-
ogy to Desmond et al. (2018b), but an almost fully
orthogonal signal and largely independent data. A
similar sensitivity to that given by Desmond et al.
(2018b) is demonstrated, and further evidence is
presented for a screened fifth-force model with
λC ≃ 2 Mpc, 2α2 ≃ 0.02. These are the most sensitive
tests to date of screened fifth forces beyond the Solar
System.

(3) Vikram et al. (2018) compared the stellar and gas
rotation curves of six low surface-brightness galaxies,
finding fR0 < 10−6. This inference is limited by the
small sample size. Naik et al. (2019) analyzed the
rotation curves of 85 galaxies from the SPARC sample
under an fðRÞ model, finding evidence for fR0 ≃ 10−7

if halos are assumed to have a NFW profile, but no
evidence for modified gravity if halos are instead
assumed to have a cored profile as predicted by some
hydrodynamical simulations. This test is limited
mainly by uncertainty in the dark matter distributions.

(4) Vikram et al. (2013) investigated asymmetries in the
Hα rotation curves of 200 disk galaxies from the
Gassendi Hα survey of spirals (known as GHASP) but
were unable to place significant constraints. The
limiting factor here is again the paucity of kinematical
information with which to calculate the degree of self-
screening.

These tests will benefit greatly from the improved radio
resolution offered by interferometric surveys such as SKA
(and its pathfinders ASKAP and APERTIF), an increase in the
number of known dwarfs in low-density environments from
surveys such as DES and LSST, spatially resolved kinematics
of various mass components from IFU surveys such as
MaNGA (Bundy et al., 2015),46 observations of stellar RCs
using stellar absorption lines, and/or increased sample size for
any of the previously mentioned datasets. Uncertainties in the
determination of environmental screening proxies (see
Sec. IX.D) also affect the sensitivity of these tests, which
may best be reduced by using a base screening catalog from a

deeper survey. We discuss future observational prospects
further in Sec. X.
In the presence of thin-shell screening, the fifth force in the

galactic outskirts can make a cuspy matter distribution appear
more corelike when reconstructed using Newtonian dynamics
because one infers more mass in the outer regions (Lombriser
and Peñarrubia, 2015; Naik et al., 2019). This could make an
underlying NFW profile consistent with observations of the
central regions of dwarf galaxies that suggest cores, thereby
ameliorating the long-standing “cusp-core problem” (de Blok,
2010). For sufficiently strong screening, the inferred density
profile may even decrease toward the galaxy center, which
would provide a “smoking gun” for modified gravity. The jury
is still out, however, on whether NFW is an appropriate profile
for halos in the presence of hydrodynamics and stellar
feedback in ΛCDM (Gnedin et al., 2011; Macciò et al.,
2012; Pontzen and Governato, 2012; Di Cintio et al., 2014).
Screening may also give rise to unusual correlations

between dynamical galaxy variables; Burrage, Copeland,
and Millington (2017) used a symmetron model to reproduce
the arguably unexpected mass discrepancy–acceleration rela-
tion of spiral galaxies (McGaugh, 1999; Lelli et al., 2017).
Testing these effects in detail will require improved theoretical
understanding of their origin, magnitude, and scope in
modified gravity, a systematic investigation of the degener-
acies with baryonic physics, and larger and more precise
observational datasets.
All of the tests mentioned are subject to potential systematic

errors associated with galaxy formation physics, which may
induce similar signals even under standard gravity. For
example, ram pressure can separate stellar and gas mass
and alter their relative kinematics; interactions, mergers, and
tidal interactions can warp disks; and baryonic feedback can
alter the shape of halo density profiles and rotation curves.
Minimizing these effects therefore requires locating galaxies
with quiet merger histories that are unaffected by neighbors, in
addition to examining the precise dependence of the signal on
the relevant galaxy parameters. Modified-gravity and baryonic
signals may also be distinguished by their dependence on the
environment: while screening is expected to kick in at a
relatively sharp threshold value of Newtonian potential,
acceleration, or curvature, effects from galaxy formation
physics would be expected to have a much more gradual
dependence on the surrounding density. These degeneracies
are similar in origin to those for the power spectrum described
in Sec. VI.B and may be investigated further by means of high
resolution hydrodynamical simulations.
For dynamical observables within galaxies there is a further

degeneracy with dark matter properties, particularly its tem-
perature and possible interactions. Self-interacting dark matter
(SIDM), where dark matter particles interact either elastically
or inelastically through a new mediator, reduces the density in
the central regions of halos through kinetic heating. For
appropriate values of the cross section per unit mass
(∼1 cm2=g for a velocity-independent contact interaction)
this can turn the cusps predicted at the centers of halos in cold
dark matter cosmology into cores (Spergel and Steinhardt,
2000). Similar effects can be produced by warm dark matter
(Bode, Ostriker, and Turok, 2001), axions and fuzzy dark
matter (Hu, Barkana, and Gruzinov, 2000; Bernal et al., 2016),46See https://www.sdss.org/surveys/manga/.
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and baryon–dark matter interactions (Berezhiani, Famaey, and
Khoury, 2018; Famaey, Khoury, and Penco, 2018). Other
observables of SIDM include spatial offsets between dynami-
cal and galaxy masses in merging clusters, warping and
thickening of stellar disks, and evaporation of the dark matter
substructure. Other types of modified-gravity theory, which
we do not focus on in this review, provide novel explanations
of and predictions for galaxy kinematics, e.g., MOND
(Milgrom, 1983).

F. Tests of Vainshtein screening

1. Vainshtein screening on small scales

As mentioned, the efficiency of the Vainshtein mechanism
makes small-scale tests difficult. Theories can self-accelerate
cosmologically if rc ∼ 6000 Mpc (Fang et al., 2008), which
typically gives highly suppressed fifth forces on smaller
scales. Smaller values of rc represent theories that are less
screened but not important cosmologically, meaning one still
needs a cosmological constant to self-accelerate. Lunar laser
ranging sets a lower bound (for α ¼ 1) of rc ≳ 150 Mpc
(Khoury, 2013) and most astrophysical tests, including those
described later, are sensitive to larger values.

2. Strong equivalence principle violations: Offset supermassive
black holes

One system where the predicted SEP violations could
manifest is a galaxy falling in an external Galileon field. If
the galaxy itself is unscreened, the stars and gas (which have
scalar charge-to-mass ratio Q ¼ α) will feel the Galileon
force, while the supermassive black hole (SMBH) at the
galaxy’s center, which has no scalar charge (Q ¼ 0), will not.
BHs have no scalar charge in Galileon theories because the
scalar field couples to the trace of the stress-energy tensor,
which excludes gravitational binding energy, while the mass
of a BH is purely gravitational. As the Galileon fifth force acts
in the same direction as gravity, the black hole will lag behind
the galactic center (defined as the central density cusp or the
potential minimum for cored halos) as the galaxy falls in the

external field. At the equilibrium position, the missing
Galileon force on the SMBH is counterbalanced by the
Newtonian force due to its offset from the halo center.
(This is analogous to the case of thin-shell screening
in Sec. IX.E.3, except that there the offsets are a result of
WEP violations.) The situation is sketched qualitatively
in Fig. 19.
The behavior of the SMBH depends on the relative strength

of the Galileon and restoring forces, as shown in Fig. 20.
Typically, halos are either cored or cusped (NFW profile) and
the behavior of the SMBH is different in each case. In the case
of cored profiles, shown in the left panel of Fig. 20, the
restoring force rises outward from the center due to the
constant density core. It then reaches some maximum value
and falls as the density begins to fall off. Either the Galileon
force is larger than the maximum restoring force, in which
case the black hole will continue unimpeded and will escape
the galaxy eventually, or the Galileon force is smaller than the
maximum, in which case it reaches a fixed offset at the radius

FIG. 19. A galaxy falling into an external Galileon field ϕext. In
the rest frame of the galaxy, the SMBH feels two forces: the
outward Galileon force and the restoring force of the baryons left
at the center.

FIG. 20. Left panel: restoring force profile for a cored galaxy (red solid line). The blue dashed, upper line shows the case where the
Galileon force exceeds the maximum restoring force and the black dotted, lower line shows the case where the Galileon force is smaller
than this. In the latter case, there are two equilibrium positions labeled 1 and 2. The former point represents a stable offset; the latter is
unstable. Right panel: restoring force for a cusped (NFW) profile (red solid line). The blue dashed, upper line shows the case where the
Galileon force is larger than the maximum restoring force (the force at the center) and the black dashed, lower line shows the case where
it is smaller than this.

Tessa Baker et al.: Novel Probes Project: Tests of gravity on …

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015003-47



where the two forces balance.47 In the case of cusped profiles,
which we exemplify using the NFW profile in the right panel
of Fig. 20, the maximum restoring force is at the center of the
halo. In this case, either the Galileon force is larger than the
restoring force, in which case the SMBH will leave the galaxy
unimpeded, or the Galileon force is less than the force at the
center and the BH will remain there.48

To utilize this SMBH phenomenon it is necessary to look
for situations where the motion of galaxies receives a con-
tribution from a partially unscreened Galileon field. In what
follows, we describe two scenarios that have been proposed to
test the SEP violation: cosmological field galaxies and satellite
galaxies falling toward the center of clusters.
Numerical simulations have shown that there is an

unscreened Galileon field on linear cosmological scales (at
distances ≳10 Mpc) (Cardoso et al., 2008; Chan and
Scoccimarro, 2009; Khoury and Wyman, 2009; Schmidt,
2009b), so, as first suggested by Hui and Nicolis (2012),
field galaxies that have peculiar velocities due to the large-
scale structure of the Universe should show offset SMBHs.
One can estimate the size of the offset by noting that typical
galaxies were accelerated to a peculiar velocity of 300 km=s
over a Hubble time so that the Newtonian acceleration is
j∇Φextj ∼ 20 ðkm=sÞ2=kpc. This value is estimated by assum-
ing a typical peculiar velocity of 300 km=s, which is close to
the rms value found by averaging the observed matter power
spectrum (Hui and Greene, 2006). One should bear in mind,

however, that this is a statistical variable and precision tests
may require screening maps similar to those discussed in
Sec. IX.D. A fully unscreened Galileon field has j∇ϕextj ∼
2αj∇Φextj and, assuming that the density in the center of the
halo ρ0 is constant,49 one finds an offset

R ¼ 0.1 kpc

�
2α2

1

�� j∇Φextj
20 ðkm=sÞ2=kpc

��
0.01M⊙=pc3

ρ0

�
;

ð102Þ

where the fiducial values have been chosen to represent a low
surface-brightness galaxy. In principle, the position of the
black hole could be determined with μarc s precision using
microwave interferometry (Broderick, Loeb, and Reid, 2011),
whereas the optical centroid could be found using the galaxy’s
isophotes (Asvathaman, Heyl, and Hui, 2017). In practice,
central densities derived from generalized NFW fits produce
typical offsets≲0.1 kpc. Such a small offset is hard to observe
with small sample sizes and would be degenerate with other
astrophysical effects such as asymmetric AGN jets and black-
hole kicks. For these reasons, no constraints on Galileon
modifications of gravity have yet been placed using this
scenario.
Another situation where the Galileon field is

partially unscreened is massive galaxy clusters [M∼
ð1014–1015ÞM⊙]. As discussed in Sec. IV.C, an extended
mass distribution does not suppress the Galileon force as
efficiently in its interior (Schmidt, 2010). A massive galaxy
cluster therefore has a large partially screened Galileon field
that contributes to the motion of infalling satellite galaxies. As
an example, consider a model for the Virgo cluster shown in
the left panel of Fig. 21. Outside the virial radius (R200) one
can see that the Galileon force (for rc ¼ 500 Mpc) is a factor

FIG. 21. Left panel: Newtonian and cubic Galileon force profile for a Virgo-like galaxy cluster. We use a NFW profile (with two-halo
term corrections) (Diemer and Kravtsov, 2014) with concentration c ¼ 5 and parameters that give a total mass M ¼ 1015M⊙ (Fouque
et al., 2001; Peirani and de Freitas Pacheco, 2006), which is consistent with observations. The blue line shows the Newtonian force and
the red and black solid lines show the cubic Galileon force for α ¼ 1 and rc ¼ 500 and 6000 Mpc (cosmological Galileons),
respectively. The black dashed line shows the rms cosmological Galileon force for the fiducial values shown in Eq. (102) and is shown
for comparative purposes only. Right panel: SMBH offset for typical infalling satellite galaxies for cluster masses and satellite central
densities indicated in the caption. The x axis shows the distance between the satellite galaxy and the cluster’s center. From Sakstein, Jain
et al., 2017.

47The general expectation is that the black hole should oscillate
about the equilibrium point but, in the situations of interest, the
timescale for these oscillations is smaller than the timescale over
which the Galileon force turns on, so the black hole is expected to
adiabatically track the equilibrium point.

48One interesting possibility is that the black hole could be initially
displaced to some larger radius where the restoring force is smaller
than the Galileon, in which case the SMBH would begin to exit the
galaxy. There are several scenarios for this such as asymmetric AGN
jets and gravitational recoil (kick) from binary black-hole mergers
(Merritt and Milosavljevic, 2005).

49This breaks down at some point, but Hui and Nicolis (2012) had
low surface-brightness Seyfert galaxies in mind, for which this is a
good approximation. Furthermore, given the small offset predicted it
is sensible to work in the constant density regime.
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of 2α2 times the Newtonian force, but even inside this it is
significant and a factor of only ∼5 smaller than the Newtonian
force. Furthermore, it is constant over a large range of radii,
which helps to mitigate astrophysical uncertainties on the
distances of galaxies from the cluster center. An infalling
satellite galaxy will feel a force given by the sum of the red
and blue curves, whereas the SMBH will feel only the force
shown by the blue curve. We plot the resultant offset for
typical cored satellite galaxies falling into massive clusters in
the right panel of Fig. 21. Since the Galileon (and Newtonian)
force from the cluster is radially dependent, the offset is a
function of how far the satellite galaxy is from the cluster’s
center. One can see that, owing to the larger Galileon force
(the previously discussed cosmological force is shown in the
left panel of Fig. 21), this offset can be of OðkpcÞ, which is
easier to observe using spectroscopic or x-ray observations (if
the black hole powers an AGN) and is likely far larger than the
black hole can be offset by asymmetric AGN jets or other
astrophysical mechanisms. It is also significantly larger than
the offsets between star and gas centroids produced by thin-
shell screening mechanisms (Sec. IX.E.3) for realistically
small values of α and self-screening parameter χ.
Previously, Asvathaman, Heyl, and Hui (2017) looked at

the Virgo cluster to perform general tests of the SEP without a
direct focus on Galileon theories.50 Building on Asvathaman,
Heyl, and Hui’s work, Sakstein , Jain et al. (2017) used the
model for the Virgo cluster in Fig. 21 to place new constraints
on the cubic Galileon shown in Fig. 22. In particular, the

SMBH in the galaxy M87 is offset by less than 0.03 arc s,
implying that the Galileon force must be less than
1000 ðkm=sÞ2=kpc; the constraints in Fig. 22 are found by
scanning the parameter space to look for regions that satisfy
this bound. One can see that the bounds are stronger than
those coming from LLR, but cosmological Galileons
(rc ∼ 6000 Mpc) are a long way from being probed.
Sakstein, Jain et al. (2017) checked that the bounds are
robust to changing some of the model assumptions (halo
concentration, central density, functional form of the profile)
but the exact bound is sensitive to the precise model details.
The effects of departures from spherical symmetry were not
investigated. One could improve upon this technique by either
performing a detailed modeling of the Virgo cluster or looking
at a large number of clusters and performing a statistical
analysis to reduce the effects of modeling uncertainties.

G. Vainshtein breaking

In beyond Horndeski and DHOST theories, the Vainshtein
mechanism can be broken in the sense that fifth forces are
efficiently screened outside astrophysical bodies, but devia-
tions from GR may appear inside. See Sec. IV.C.2 for a
description of this. Since Vainshtein breaking is universal and
not subject to environmental screening it can be tested using
objects in any galaxy including the Sun.

1. Existence of stars

A necessary condition to form stable stars is that the
pressure gradient decreases toward larger radii P00ðrÞ < 0.
This implies a theoretical condition ϒ1 > −2=3 [Eq. (37)] for
DHOST theories (Saito et al., 2015; Babichev et al., 2016;
Sakstein, Babichev et al., 2017).
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FIG. 22. Constraints on the coupling α and crossover scale rc for cubic (left panel) and quartic (right panel) Galileon models. The pink
region is excluded because it would predict a larger offset than is observed in M87, which is falling toward the center of the Virgo cluster.
The red dashed line in the left panel indicates the previous constraints from lunar laser ranging (Dvali, Gruzinov, and Zaldarriaga, 2003).
LLR constraints on the quartic Galileon are not competitive with SMBH constraints, and hence they are omitted from the
right-hand panel.

50The SEP violation is not unique to Galileon theories. Indeed, all
scalar-tensor theories of gravity have this property. What is new is the
Vainshtein mechanism, which makes Solar System tests of these
theories more difficult, and therefore SMBH tests more appealing.
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2. Tests with dwarf stars

Dwarf stars make particularly strong tests of Vainshtein
breaking compared with main-sequence or post-main-
sequence star theories due to their homogeneous structure,
small variability, and lack of astrophysical degeneracies. Here
we describe how red, brown, and white dwarf stars can probe
theories with Vainshtein breaking.
Red dwarf stars are low-mass 0.08M⊙ ≤ M ≤ 0.6M⊙ stars

that are heavy enough to fuse hydrogen to 3He but not all the
way to 4He on the proton-proton (PP) chains. They are
supported by a mixture of degeneracy pressure and ideal
gas pressure, so their physics is easily calculable using
polytropic models (Burrows and Liebert, 1993). The upper
bound in mass corresponds to the onset of the PPI chain and
the lower to the minimum mass for hydrogen burning
(MMHB). The latter is the minimum mass for which the star
can burn hydrogen continuously and stably; i.e., the energy
from hydrogen burning in the core is balanced by losses at the
surface. Stars with masses lighter than the MMHB do not fuse
hydrogen and are brown dwarfs. The MMHB is a strong probe
of Vainshtein breaking theories because when ϒ1 > 0 the
star’s core is cooler and less dense, so one needs larger masses
to achieve the requisite conditions for hydrogen burning.
Sakstein (2015a, 2015b) used a simple analytic model of red
dwarfs in Vainshtein breaking theories to show that the
MMHB exceeds the mass of the lightest observed red dwarf
GL886C when ϒ1 > 1.6. Future observations of lighter mass
red dwarfs with surveys such as Gaia (Prusti et al., 2016)51

could improve upon this. As with the MMHB, there is also a
minimum mass for lithium and deuterium burning, although
these have yet to be calculated due to the more complex
reaction chains involved. (There is only one relevant reaction
for hydrogen burning.)
Brown dwarf stars are inert stars that do not burn nuclear

material (they may burn primordial fuel in short bursts but
there is no sustained burning). They are primarily supported
by the pressure from Coulomb scattering so that they have the
simple equation of state P ¼ Kρ2. Equations of state such as
these predict a “radius plateau” such that the sizes of brown
dwarfs are independent of their mass and given by (Sakstein,
2015b)

R ¼ 0.1R⊙fðϒ1Þ; ð103Þ

where fð0Þ ¼ 1, corresponding to the GR prediction
R ¼ 0.1R⊙. The change due to Vainshtein breaking can be
Oð20%Þ or more. At present, no bounds have been placed due
to sparse measurements of the mass-radius relation for brown
dwarfs; future data from Gaia and similar surveys could
measure this relation empirically and hence allow strong
constraints on ϒ1, depending on the scatter.
White dwarf stars can probe Vainshtein breaking in two

different ways. First, the Chandrasekhar mass decreases when
ϒ1 < 0 (this mimics the effects of increasing the strength
of gravity) and, second, the mass-radius relation is altered.
Jain, Kouvaris, and Nielsen (2016) investigated both of
these effects using a simple fermionic equation of state to

describe carbon white dwarfs. They found that the mass of the
heaviest presently observed white dwarf [ð1.37� 0.01ÞM⊙]
exceeds the Chandrasekhar mass when ϒ1 < −0.22. Fitting
to the mass-radius relation for a sample of 12 white
dwarfs they found the bounds −0.48 ≤ ϒ1 ≤ 0.54 at 5σ
(−0.18 ≤ ϒ1 ≤ 0.27 at 1σ).

X. FUTURE DIRECTIONS

To conclude this review, we summarize the current state of
cosmological gravity theories and enumerate some potential
future directions. On the theory side, these are theories that are
either underdeveloped or have not received much attention.
On the experimental side, these are directions that may not
have been fully exploited, or for which the theoretical
modeling is lacking.

A. Current status of modified-gravity theories

The present status of the modified-gravity models featured
prominently in this review can be summarized as follows:

• Chameleon and similar theories including fðRÞ.—These
are well constrained and cannot drive cosmic acceler-
ation without a cosmological constant but may be
relevant on small scales. They were not affected by
GW170817. Applying the tests described in Sec. IX.E to
upcoming datasets should constrain fR0 to the 10−8

level. Beyond fðRÞ models, smaller strengths of the
coupling of the scalar field to matter can be tested.

• Galileons and Vainshtein-screened theories.—The cubic
Galileon is in severe tension with cosmological probes
(Renk et al., 2017), while the quartic and quintic
Galileon theories are ruled out as dark energy candidates
by the recent bounds imposed by GW170817. Massive
gravity theories that screen using the Vainshtein mecha-
nism manifest as a mass in the gravitational wave
dispersion relation, and are most tightly constrained
by lunar laser ranging (de Rham, Deskins et al.,
2017; Abbott et al., 2019). On smaller scales, Vain-
shtein-screened theories such as Galileons (that do not
self-accelerate) may be active. For these theories, small-
scale probes can be explored further, with supermassive
black-hole offsets being one example. In the specific
case of the nDGP model with the cosmic acceleration
driven by a cosmological constant (which is described by
a cubic Galileon in the decoupling limit) a strong bound
rc > 3090 Mpc (2σ) was obtained using observations of
the growth rate of the structure compared to modified-
gravity simulations (Barreira, Sánchez, and Schmidt,
2016). It would be interesting to repeat this analysis
for more general models, including quartic Galileons.
Tests of Vainshtein screening are discussed further in
Sec. IX.F.

• General scalar-tensor theories including beyond Horn-
deski and DHOST.—The space of viable theories that
can drive the cosmic expansion has been dramatically
restricted since GW170817 (Sec. III). A notable excep-
tion is cubic terms but these are strongly constrained by
cosmological measurements. Recently Creminelli et al.
(2018) indicated that beyond Horndeski terms are51See http://sci.esa.int/gaia/.
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completely ruled out because they would cause gravi-
tational waves to decay to dark energy scalars.

• Gravity parameters for large-scale tests.—As detailed in
Sec. VIII, large-scale measurements of lensing, redshift-
space distortions, and other observables have been used
to constrain parameters for the deviations of gravity in
the linear regime. Figures 10 and 11 summarize some of
the current constraints.

B. Future directions for theory

As summarized, at present there appears to be no viable
modified-gravity model that also provides an alternative to
dark energy for cosmic acceleration. Here we summarize
potentially interesting directions for future theoretical work,
one or more of which may lead to renewed connections
between theory and cosmological observations.

• Gravitational wave speed.—The tight bounds on the
speed of gravitational waves described in Sec. III
must be respected by future developments of gravity
theories, providing useful restrictions. However,
care must be taken if the strong coupling energy
scale of a theory is close to that of the gravitational
wave observations, in which case the concerns
expressed by de Rham and Melville (2018) apply.

• New screening mechanisms.—To date only a hand-
ful of screening mechanisms are known: the cha-
meleon, symmetron, and dilaton mechanisms,
K-mouflage, and the Vainshtein mechanism
(Sec. IV.A). Furthermore, the first three of these
share some similarity in their implementation at the
theoretical level. New methods through which
screening could occur would stimulate new tests;
however, at present it seems that potentially all
screening mechanisms possible from standard field
couplings have been exploited. Perhaps new mech-
anisms could be linked to a transition scale in
spacetime curvature (see Fig. 1) or acceleration,
for example. Recently Sakstein, Desmond, and Jain
(2019) identified a new screening mechanism that
screens fifth forces mediated by interactions be-
tween dark matter and baryons. They suggest several
astrophysical tests that merit further investigation.

• Looking beyond standard field theory.—Over the
past decade much progress has been achieved in
developing extremely general field theories for
gravity. For example, the beyond Horndeski para-
digm covers the general second-order theory of a
scalar field and a metric, and generalized Proca
theory acts similarly for theories of a vector and a
metric (though is not yet proven to be the most
general construction possible). If these general
“parent theories” are ruled out by observations (as
is beginning to happen for the Horndeski family),
then we shall have effectively exhausted the appli-
cation of regular field theory techniques to the
coupling of scalar, vector, and tensor fields. This
will likely prompt us to look further afield toward
more nonstandard ideas, such as nonlocal Lagran-
gians, or thermodynamic or emergent viewpoints on

gravity (Jacobson, 1995; Padmanabhan, 2015;
Belgacem et al., 2018).

• Multifield theories.—Current theories typically
focus on one new field (the exception is massive
gravity where bigravity has been extensively
studied), and there is relatively little work on multi-
scalar-tensor, multi-vector-tensor, or scalar-vector-
tensor theories even though such theories exist and
are known to be free of the Ostrogradsky instability;
see Padilla and Sivanesan (2013), Sivanesan (2014),
and Heisenberg (2019). It would be interesting to
study the cosmology of these theories and determine
whether they are subject to the same stringent
bounds from GW170817 and graviton decay into
dark energy (discussed in Sec. III) that are highly
constraining for single field extensions of GR.

• The cosmological constant problem.—With a vast
number of alternatives toΛCDM ruled out, now may
be a good time to reexamine the cosmological
constant problem. After all, as ΛCDM is still the
model that fits the data best, the problem is entirely
theoretical: the small cosmological constant that we
observe is fine-tuned (Weinberg, 1989; Burgess,
2015; Padilla, 2015) because theory predicts a value
that is larger by many orders of magnitude. A
compelling mechanism that explains this would
place ΛCDM on a more solid theoretical footing.
In the past decade, significant theoretical progress
has been made toward understanding the cosmo-
logical constant problem and new models such as
supersymmetric large extra dimensions (Aghababaie
et al., 2004), vacuum energy sequestering (Kaloper
and Padilla, 2014a, 2014b; Kaloper et al., 2016),
degravitating superfluids (Khoury, Sakstein, and
Solomon, 2018), and tempering the cosmological
constant (Appleby and Linder, 2018; Emond et al.,
2019) have emerged as potential resolutions. An
effort aimed toward finding novel small-scale tests
of these theories akin to the program aimed at testing
screened modified-gravity theories could help to
confirm or refute these models.

• Novel probes of quintessence or K-essence theo-
ries.—While the landscape of possible modified-
gravity models has been reduced by the observation
of GW170817, models of dark energy where new
degrees of freedom do not couple to matter (i.e., their
scalar potential drives the cosmological accelera-
tion) have survived unscathed. For example, quintes-
sence models where the acceleration is driven by a
scalar field rolling down a shallow potential are
phenomenologically viable, as are K-essence theo-
ries where the acceleration is driven by kinetic self-
interactions52 (Copeland, Sami, and Tsujikawa,

52With the exception of theoretically well-motivated models such
as the DBI one, these models are on shakier theoretical footing since
they rely on higher-order terms that are outside the range of validity
of effective field theory and thus may operate in a regime where the
theory is not predictive.
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2006). Cosmologically, these models can be tested
by measuring the dark energy equation of state and
other probes of the background expansion as well as
the growth of the cosmic structure (Copeland, Sami,
and Tsujikawa, 2006). It would be interesting to see
if small-scale tests could be devised along the lines
of those used to test modified gravity. One such
example is the effect of a dynamically changing
cosmological constant on black holes (Gregory,
Kastor, and Traschen, 2017).

• Massive gravity.—Massive gravity and massive
bigravity models are theoretically well motivated
because they are both natural alternatives to general
relativity and screen using the Vainshtein mecha-
nism and thus are phenomenologically viable. Mas-
sive gravity itself does not admit flat FRW
cosmological solutions (D’Amico et al., 2011),
and those with spatial curvature are unstable (De
Felice et al., 2013). Massive bigravity does admit
flat FRW solutions but they are unstable (Comelli,
Crisostomi, and Pilo, 2012). It has been speculated
that the Vainshtein mechanism can cure this linear
instability and some preliminary exploratory work
has been performed (Högås, Torsello, and Mörtsell,
2019), but further work is needed to assess whether
this is indeed the case. Similarly, extensions of
massive bigravity were studied by Kenna-Allison,
Gümrükçüoglu, and Koyama (2019), who found that
there are regions of parameter space that admit a
stable cosmology. This theory certainly merits fur-
ther investigation. Given that scalar-tensor and
vector-tensor models are largely excluded, now
may be the time to search for stable massive
trigravity models (and possibly even more interact-
ing metrics) that could be benchmark candidates for
upcoming observations and simulations.

• Baryon–dark matter couplings.—Traditionally, the-
ories that explain the cosmic acceleration fall into
two classes: dark energy, where the acceleration is
driven by a new fluid with an equation of state w <
−1=3 that does not result in fifth forces or equiv-
alence principle violations, e.g., quintessence and
modified gravity, where the acceleration is driven by
modifications of general relativity (the theories
discussed in this review). Recently a third class
has been proposed where dark matter is postulated to
be a superfluid whose excitations couple to baryons.
This coupling could lead to cosmic acceleration at
late times (Berezhiani, Khoury, and Wang, 2017;
Ferreira et al., 2018). Sakstein, Desmond, and Jain
(2019) investigated this model and showed that it
contains a novel screening mechanism where the
value of Newton’s constant can vary depending on
the local dark matter density. They also list further
potential astrophysical tests that could prove fruitful
once the theory is developed; see also Desmond,
Jain, and Sakstein (2019) and Desmond and Sak-
stein (2020).

• Massive Galileons.—The Galileons studied in this
review are massless, but recently it was noted that
one can add a mass without spoiling the theoretical
properties such as nonrenormalization that make
these appealing effective field theories (Goon et al.,
2016). For some parameters, massive Galileons can
be derived from a Lorentz-invariant UV completion
(de Rham, Melville et al., 2017), something which is
presently unclear for their massless counterparts. To
date there has been little investigation of the proper-
ties of massive Galileons [with the exception of
Sakstein and Trodden (2018)]. Further theoretical
investigation of their screening (if it persists) and
cosmology could reveal them to be a strong com-
petitor to ΛCDM.

• Degeneracies with baryonic physics.—As men-
tioned in Sec. VI.B and throughout, many modi-
fied-gravity predictions are degenerate with the
hydronamical effects of baryons in the process of
galaxy formation. Overcoming these degeneracies
will require improvements in the resolution, accu-
racy, and predictive power of cosmological hydro-
dynamical simulations, as well as inference
frameworks that incorporate more sophisticated
models for baryonic effects. Performing such sim-
ulations in modified gravity will reduce uncertainty
concerning the interplay between baryons and
modified gravity and enable fully self-consistent
modified-gravity analyses. For current attempts at
such simulations see Arnold, Leo, and Li (2019) and
Arnold and Li (2019).

C. Future directions for observations

• Dynamical versus lensing tests.—A powerful, generic
way to test for the existence of deviations from GR is to
compare observables that depend on the motion of
massive particles versus massless ones. This is because
massive particles respond to the Newtonian potential Φ,
while massless ones respond to the Weyl potential
Φþ Ψ. In GR this is equivalent to 2Φ; a generic feature
of modified-gravity theories is that they break this
relationship such that Φþ Ψ ≠ 2Φ. Observationally,
the test involves the comparison of dynamical and
lensing masses on galaxy and cluster scales
(Sec. IX.B.3), and of larger scale cross-correlations of
galaxy clustering and weak lensing (Sec. IX.A). In an era
in which the landscape of modified-gravity theories is
constantly evolving, this robust test is valuable indepen-
dent of particular models.

• Voids.—Cosmological voids (underdense regions of
large-scale structure) provide new ways to test gravity
(Sec. IX.C). In particular, the low-density nature of
voids means that screening mechanisms should be
largely ineffective there, allowing deviations from GR
to manifest unmitigated. Both lensing and redshift-space
signatures are promising. However, a detailed under-
standing of void tracers and void-finding algorithms is
required and still in progress. Planned analyses from
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surveys with spectroscopy (to enable 3D void finding) or
well-calibrated void finders that work with high quality
photometric redshifts are expected to yield qualitative
advances.

• Galaxy-scale tests of screening.—Signals in the mor-
phology and kinematics of galaxies have emerged as a
powerful way to probe screened modified gravity
(Sec. IX.E.3). These tests typically require one or more
of the following: (i) galaxies with a wide range of masses
and environments and hence degrees of screening
(especially low-mass galaxies in underdense regions),
(ii) multiwavelength observations to locate the various
mass components of galaxies at high precision,
(iii) knowledge of the geometry of the system relative
to the external field direction, and (iv) kinematic in-
formation to determine halo mass profiles and degrees of
self-screening in addition to the relative dynamics of
stars and gas. Larger galaxy samples may greatly
improve constraints, as could smaller surveys specifi-
cally targeting unscreened regions. These tests also
require knowledge of the environmental screening field,
which will be improved by deeper and wider photo-
metric surveys.

• Future gravitational wave tests.—We discussed the
constraints provided by the LIGO detection of a neutron
star merger in Sec. III. There will be more major results
to come that use gravitational waves to constrain devia-
tions from GR. Strong-field modifications to gravity can

be constrained from the waveform provided that param-
eters of the binary can be measured sufficiently well and
that adequate predictions can be made using numerical
or semianalytic relativity calculations. Given more
events with electromagnetic counterparts, constraints
on the gravitational wave luminosity distance and
standard sirens can be brought into play (Belgacem
et al., 2019). Alternatively, it may be possible constrain
cosmological parameters using “dark sirens” (mergers
without detected electromagnetic counterparts) by mar-
ginalizing over likely host galaxies within the localiza-
tion volume of an event (Del Pozzo, 2012; Del Pozzo,
Sesana, and Klein, 2018; Gray et al., 2019).

• Testing more general parametrizations.—The back-
ground expansion rate of the Universe has been found
to be consistent with the predictions of ΛCDM to a high
degree (although there is intriguing tension between the
value of H0 measured locally and that inferred from the
CMB and other probes). Much of the phenomenology of
modified gravity has therefore been geared toward
modified perturbation dynamics while leaving the back-
ground expansion rate largely unchanged. As such,
modern tests of gravity need to do more than simply
constrain the background expansion history. In cosmol-
ogy, parameters such as μ and Σ (Sec. VIII.A) are easier
to relate directly to gravity than general measurements
of the growth rate f. All such parametrizations are
motivated, however, by large-scale tests and generally

TABLE III. Summary of tests of modified-gravity enabled by current and future surveys.

Survey
Clusters

Ia

CMB
(including
ISW)

Clusters
IIb

Strong
lensing RSDs

Rotation
curves

Cepheids
(distribution
indicated) Voids

Stellar
evolution

Galaxy
dynamics
or structure

DES ✓ ✓ ✓ ✓ ✓ ✓ ✓
HSC
CMB ✓ ✓ ✓ ✓
DESI ✓ ✓ ✓ ✓
PFS
LSST ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
WFIRST ✓ ✓ ✓ ✓ ✓ ✓ ✓
Euclid
Simons Observatory ✓ ✓ ✓ ✓
CMB S-4
HIRAX ? ✓ ? ? ?
CHIME
SKA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SPHERExc ✓ ✓ ✓ ✓
MaNGA ✓ ✓
SDSS-V

(Kollmeier et al., 2017)d
✓ ? ?

4MOST
(de Jong et al., 2012)e

✓ ✓ ✓ ✓ ✓ ? ?

Gaia ✓ ✓ ✓ ✓
MUSE

(Bacon et al., 2010)f
✓ ? ✓

aCluster density profiles.
bCluster abundances.
cSee http://spherex.caltech.edu.
dSee https://www.sdss.org/future/.
eSee https://www.4most.eu/cms/.
fSee https://www.eso.org/sci/facilities/develop/instruments/muse.html.
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involve a redshift and scale dependence that is more
challenging to constrain. For smaller scale tests, ideally
functions or parameters of the action (or of a represen-
tative action in the case of a broader class of theories)
may be constrained, as has been done recently for
chameleon theories.

• Laboratory and strong-field tests of gravity.—It was
realized a few years ago (Burrage, Copeland, and Hinds,
2015; Burrage et al., 2016; Burrage and Copeland, 2016)
that sufficiently low-density environments in vacuum
chambers should allow tests of the chameleon screening
mechanism in the laboratory. Likewise, tests of axion
physics in the laboratory have been proposed. Any new
ways to constrain screening or other modified-gravity
effects in the laboratory could be powerful, considering
the repeatable nature and sensitivity achievable with
modern apparatus. Greater integration with the results of
strong-field tests of gravity may also be achievable.

Many of these tests rely to some degree on an assumption of
a background cosmology. This means that taking into account
the effect of modifications of gravity on the inference of
cosmological parameters becomes crucial. A notable example
(Lagos et al., 2019) is the interplay between the effects of a
running Planck mass and H0. Thus, comprehensive analyses
of astrophysical tests of gravity must incorporate a consistent
inference of constraints on the parameters describing the
background cosmology.

D. Outlook

In this review, we have described the motivations for
constructing and testing theories of gravity that may be active
on weak-field astrophysical and cosmological scales and have
reviewed the theoretical, computational, and observational
work that has been undertaken to date. We have focused, in
particular, on astrophysical probes. With several cosmological
and galaxy surveys already under way and others on the
horizon (summarized qualitatively in Table III), the next
decade of research in this field will be driven by ever richer
datasets. The widening gap between the theoretical and
observational communities makes enhancement of our inter-
action of paramount importance to fully utilize the potential of
these data. The Novel Probes Project is a step toward this goal,
and we hope the reader is inspired to participate.53
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