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Recent progress in taking the large dimension limit of Einstein’s equations is reviewed. Most of the
analysis is classical and concerns situations where there is a black hole horizon, although various
extensions that include quantum gravitational effects are discussed. The review consists of two main
parts: the first is a discussion of general aspects of black holes and effective membrane theories in this
large dimension limit, and the second is a series of applications of this limit to interesting physical
problems. The first part includes a discussion of quasinormal modes that leads naturally into a
description of effective hydrodynamiclike equations that describe the near-horizon geometry. There
are two main approaches to these effective theories, a fully covariant approach and a partially gauge-
fixed one, which are discussed in relation to each other. In the second part the applications are divided
up into three main categories: the Gregory-Laflamme instability, black hole collisions and mergers,
and the anti–de Sitter/conformal field theory correspondence (AdS=CFT). AdS=CFT posits an
equivalence between a gravitational theory and a strongly interacting field theory, allowing the
spectrum of applications to be extended to problems in hydrodynamics, condensed matter physics,
and nuclear physics. The final, shorter part of the review describes further promising directions where
there have been, as yet, few published research articles.
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I. LARGE N AND LARGE D EXPANSIONS

Our theories of physics frequently have parameters (con-
tinuous ones such as coupling constants and masses, but also
discrete ones such as numbers of fields and internal degrees of
freedom) that can be varied from their actual values in nature
while still maintaining consistency. An often fruitful strategy
is to explore the theories when these parameters approach the
boundaries of their allowed range, since in some of these
limits the equations become significantly simpler. If a solution
can be found, then, by perturbatively correcting it in an
expansion around these limits, one hopes to obtain an
approximation to the theoretical predictions for real-world
parameter values.
A prime example is the theory of quantum electrodynamics.

Much of what we know about it begins with the limit where
the electron charge is zero and the theory is free, which then
provides a convenient starting point for the perturbative
analysis. For other theories, such as QCD at low energies,
and more generally for theories of strongly coupled nonlinear
systems, this strategy is inappropriate, and one should try to
identify less obvious but still useful parameters. This search
becomes harder the simpler and more elegant the formulation
of the theory is. As a case in point, consider non-Abelian
Yang-Mills (YM) theory and general relativity (GR) in the
absence of any quarks or matter content. The Lagrangians that
define them

LYM ¼ −1
4
TrF2; LGR ¼ ffiffiffiffiffiffi

−g
p

R ð1:1Þ

are notorious for the lack of any apparent adjustable knobs.
However, it has been known for many years that, retaining the
same form (1.1) of the Yang-Mills Lagrangian, we can
introduce a parameter as the rank of the gauge group
SUðNÞ, with N taking any value ≥ 2. The limit N → ∞
results not only in a simpler description of gluon dynamics but
also in a reorganization of the degrees of freedom in terms of
world sheets (’t Hooft, 1974), eventually leading to a
reformulation as a holographic theory of strings and quantum
gravity (Maldacena, 1999).
The theory of general relativity in Eq. (1.1) contains a

somewhat similar variable parameter, namely, the number of
spacetime dimensions D. The classical theory is well defined
in any D ≥ 4, and moreover it retains its most remarkable
features: black hole solutions and propagating degrees of
freedom (i.e., gravitational waves). One may then hope that
the limit D → ∞ results in a convenient simplification of the
equations and possibly also a novel reformulation of the
dynamics, at least for some phenomena.

In this review we discuss the progress made in recent years
in realizing these hopes, especially in the study of classical
black hole physics and in applications to a variety of
problems. We also describe prospects for further extensions,
possibly beyond the realm of black holes and into the quantum
regime.

A. The nature of the large D limit

What does it mean to take the large D limit of Einstein’s
gravitational theory (1.1)? The comparison with the large N
limit of gauge theories is illustrative for both its similarities
and its differences. The SUðN → ∞Þ Yang-Mills theory is an
instance of a limit of a quantum theory where the number of
degrees of freedom at each point in space grows extremely
large. These limits are widespread in theoretical physics,
including OðN → ∞Þ vector models, Potts models, matrix
models, Sachdev-Ye-Kitaev (SYK) and tensor models, and
large central charge limits of conformal field theories, among
others. The simplifications that these afford can vary consid-
erably; for instance, the SYK model hits the right balance
between the overkill simplicity of vector theories and the
difficulty of solving matrix quantum mechanics.
A different type of limit is obtained when what grows large

is the number of connections to nearby points, or directions
out of each point in space. This is familiar in statistical
mechanics: when the coordination number of a lattice
diverges, one recovers a mean-field theory. The intuition here
is that spatial quantum fluctuations average themselves out,
leading to a semiclassical collective theory, either the conven-
tional mean field or a richer dynamical mean-field theory
(Georges et al., 1996). However, such a limit is seldom
considered for continuum quantum field theories, the reason
being that although the effects of long-distance quantum
fluctuations are suppressed the short distance, ultraviolet
divergences get uncontrollably strong.1 Nevertheless, the idea
can be fruitfully applied as long as one appropriately focuses
on infrared physics and, more specifically, on the classical
limit.2

The large D limit in gravity contains aspects of these two
types of limit. On the one hand, the number of graviton
polarizations (i.e., the number of gravitational degrees of
freedom at each point) grows as ∼D2 at large D, similar to the
growth ∼N2 of gluon polarizations in SUðNÞ gauge theories.
One may then hope that the simplifications that occur in the
latter have a counterpart in the semiclassical expansion of
Einstein’s theory around flat space. Do the Feynman diagrams
of perturbative quantum general relativity (itself a gauge
theory) arrange themselves into something similar to the
topological expansion of SUðNÞ Yang-Mills theory? The

1Conformal blocks of conformal field theories are free from UV
divergences and can be solved in an expansion in 1=D (Fitzpatrick,
Kaplan, and Poland, 2013). Other properties of conformal field
theories (CFTs) in the limit of large D were investigated by Gadde
and Sharma (2020).

2In mathematics, geometry in the limit of infinite dimensions has
often been studied, for instance, in Perelman’s work on Ricci flow;
see Sec. 6 of Perelman (2006).
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answers found so far have not been encouraging. The classes
of diagrams enhanced at large D by the combinatorics of
polarization indices in gravity do not bring in anything as
suggestive as the world sheets of large N gauge theory
(Strominger, 1981; Bjerrum-Bohr, 2004).3 Other approaches
that, with varying degrees of success, also utilized the large
number of graviton degrees of freedom include Hamber and
Williams (2006), Canfora, Giacomini, and Zerwekh (2009),
and Sloan and Ferreira (2017).
On the other hand, D also appears in general relativity in its

basic role as the “directions out of a point,” into which the
gravitational lines of force get more and more diluted as D
grows large. This effect is manifested in the radial decay of the
potential

Φ ∼
1

rD−3 ð1:2Þ

that solves the Laplace equation in D − 1 spatial dimensions.
The larger that D is, the faster the interaction potential decays
at long distance, and the more steeply it increases at small
scales. That is, as D grows the gravitational field is increas-
ingly strongly localized near its source, while at larger
distances it is suppressed in a manner that is nonperturbative
in 1=D. This suggests that this “mean-field-like” aspect of
large D gravity (and not its “large N-like” quality) may be
fruitfully exploited for the study of gravitating massive
objects, particularly black holes.
Kol and Sorkin (2004) and Asnin et al. (2007) first made

successful use of this idea and performed a 1=D expansion to
analytically solve the Euclidean negative mode of the
Schwarzschild solution or, equivalently, the zero mode at
the threshold of the Gregory-Laflamme (GL) instability of
black strings (Gregory and Laflamme, 1993).4 Although the
study was not taken beyond this problem, Asnin et al. (2007)
correctly identified and exploited two important generic
features of the large D limit of black holes: the parametric
separation between a near-horizon region and a far region and
the localization near the horizon of the dynamics of interest.
Despite this initial success and besides the incidental

discussion of features of black holes as D is made large
(Caldarelli et al., 2009; Hod, 2011), a systematic study did not
begin until the work of Emparan, Suzuki, and Tanabe (2013),
which prompted the development of the subject in earnest. To
date much has been understood that can be coherently
reviewed. A new perspective with novel insights on black
hole dynamics has emerged that has also been applied to
current topical problems. For instance, efficient analytical
calculations of black hole quasinormal modes and simplified
numerical simulations of black hole collisions may eventually
be relevant to gravitational wave astronomy (within limita-
tions that we discuss later). Another natural niche for
applications is the AdS=CFT correspondence, with studies

of dual superconductors, the dynamics of quark-gluon plas-
mas, the structure of entanglement, and others. In addition, the
large D methods can, and already have, shed light on thorny
problems in black hole theory for which conventional numeri-
cal methods are unwieldy, or at least can benefit from
guidance from simpler, more intuitive techniques. These
problems include basic issues about instabilities of black
holes and their evolution, cosmic censorship, and perhaps
critical collapse.

B. Organization of this review

Sections I–IV follow the path that led from the initial
explorations of black holes at large D to the development of
nonlinear effective theories, with some benefit of hindsight
and discussion of issues not often found in the literature.
Sections V–VII focus on applications, mostly (but not only) of
the effective theories. Sections V–VII can be read independ-
ently of each other, although they require background devel-
oped in Secs. I–IV. In Secs. VIII and IX we discuss open ends
and a sample of ideas that may admit development.

1. Outline

We begin in Sec. II with an explanation of how the large D
limit concentrates the gravitational effects of a black hole
close to the horizon and makes the near-horizon geometry
universal. Section III shows that the effect can be regarded as a
“decoupling limit” that separates the gravitational perturba-
tions of the black hole into two distinct sectors. Section IV
introduces the nonlinear effective theories of black holes. Of
these, we select two versions: Sec. IV.D is devoted to the
theory of Bhattacharyya, Mandlik et al. (2016), the one with
broadest generality, and Sec. IV.E explains the effective theory
for black branes (Emparan, Suzuki, and Tanabe, 2015a),
which is the basis of many applications.
In Secs. V–VII, we discuss various applications of the large

D limit. In Sec. V, we explore how the Gregory-Laflamme
instability of black strings depends on D. Then in Sec. VI we
review how black hole collisions and mergers behave as D
becomes large, revealing a novel violation of cosmic censor-
ship, and we examine the prospects for shedding light on
black hole mergers in four dimensions. Section VII explores
how large D techniques have been applied to the AdS=CFT
correspondence. By taking a large D limit of AdS=CFT, one
may gain further leverage from Einstein’s equations in
explaining various phenomena in strongly interacting field
theories. In this AdS=CFT context, we look at applications to
hydrodynamics, condensed matter physics, and nuclear
physics.
Sections VIII and IX survey other directions of the large D

program, combining subjects that are already being inves-
tigated and other, more speculative lines that may hold
promise for the future. Section VIII examines the prospects
of a large D approach to quantum and stringy physics.
Section IX is a brief overview of work done in the context
of higher-derivative theories of gravity. Section X explores
open-ended opportunities to study phenomena in large D
gravity beyond the scope of the effective theories. Section XI

3Deser (2004) gave an interesting historical perspective before the
developments that we review here, concluding at that time that
“perhaps we don’t yet know how to extract the right questions [about
the limit D → ∞].”; see also Deser (2020).

4Asnin et al. (2007) also introduced an expansion around D ¼ 3,
but this idea has not been followed up on.
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ends the review on a speculative note about gravitational
radiation.
Note.—We often use, instead of D, a number n defined as

the power of the radial decay of the gravitational potential.
Generally,

n ¼ D − p − 3; ð1:3Þ

where p, which remains finite as D → ∞, stands for the
spatial dimensionality of a p-brane world volume (so p ¼ 0
for the Schwarzschild-Tangherlini black holes). Throughout
this review, D and n are interchangeably used as large
expansion parameters.

II. THE LARGE D GEOMETRY OF STATIONARY
BLACK HOLES

A. Near and far zones

We begin with the most elementary black hole inD dimensi-
ons: the Schwarzschild-Tangherlini solution (Schwarzschild,
1916; Tangherlini, 1963)

ds2 ¼−fðrÞdt2þ dr2

fðrÞþ r2dΩD−2; fðrÞ ¼ 1−
�
r0
r

�
D−3

:

ð2:1Þ

The main difference with respect to the four-dimensional
Schwarzschild solution, besides the addition of angles to the
sphere SD−2, is the replacement of the Newtonian potential
∼1=r with its D-dimensional counterpart (1.2). Here we
normalize it with a scale set by the horizon radius r0

Φ ∼
�
r0
r

�
D−3

: ð2:2Þ

When D is considered a fixed number, r0 is the only length
that sets the scale for all phenomena in this geometry.
However, when D is regarded as a variable parameter that
we take to be large, we find a different scale that characterizes
the gravitational force near the horizon as

∇Φjr0 ∼
D
r0

: ð2:3Þ

That is, the large D limit introduces a new, parametrically
separated length scale in the system, namely,

r0
D

≪ r0: ð2:4Þ

Other scales may appear, too; we later see that for black branes
r0=

ffiffiffiffi
D

p
plays an important role.

The length r0=D characterizes not only the slope of Φ but
also the radial distance over which the gravitational field is
appreciably nonzero. That is, as D → ∞ we have

r > r0 ⇒ ΦðrÞ → 0; ð2:5Þ

but also

r − r0 ≲ r0
D

⇒ ΦðrÞ ¼ Oð1Þ: ð2:6Þ

These behaviors define two regions in the geometry: the “far
zone” (2.5) and the “near(-horizon) zone” (2.6).5 In the far
zone, the Schwarzschild-Tangherlini geometry (2.1) becomes
flat Minkowski space. The near-horizon geometry is more
interesting. As explained in Eq. (1.3) it is convenient to use

n ¼ D − 3 ð2:7Þ

instead of D as the perturbation parameter and introduce

R ¼
�
r
r0

�
n

ð2:8Þ

as the finite radial variable appropriate for the near-horizon
region, which is defined by lnR ≪ n. We also introduce a
near-horizon time

t̄ ¼ n
2r0

t: ð2:9Þ

Then for large n one finds (Soda, 1993; Emparan, Grumiller,
and Tanabe, 2013)

ds2nh →
4r20
n2

�
−
�
1 −

1

R

�
dt̄2 þ dR2

RðR − 1Þ
�
þ r20R

2=ndΩnþ1:

ð2:10Þ

Note that in the sphere radius r0R1=n ≃ r0½1þ ðlnRÞ=n� we
are retaining an apparently subleading-order term since it is
promoted to leading order whenever the area element rn0R

2 is
involved.
We now focus on the ðt̄;RÞ part of the metric. Its prefactor

reflects that the short-scale r0=n is a measure of the small
proper radial extent of this zone, and of the short proper time
required to cross it, measured in units of the distances and
times of the far zone. The two-dimensional metric in
Eq. (2.10) is actually well known. Defining the proper radius
ρ by

cosh2 ρ ¼ R; ð2:11Þ

this part of the geometry takes the form

ds22 ¼
4r20
n2

ð−tanh2ρdt̄2 þ dρ2Þ; ð2:12Þ

which is the black hole solution of the dilaton-gravity theory
that appears in the low-energy limit of two-dimensional string
theory (Elitzur, Forge, and Rabinovici, 1991; Mandal,
Sengupta, and Wadia, 1991; Witten, 1991), with dilaton
profile

ϕ ¼ − ln cosh ρ: ð2:13Þ

5We do not discuss the black hole interior in the review, but similar
considerations apply there (Emparan, Suzuki, and Tanabe, 2013).
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This follows from an observation by Soda (1993) and
Grumiller, Kummer, and Vassilevich (2002) about the spheri-
cal reduction of Einstein gravity in the limit D → ∞. For a
metric of the form

ds2 ¼ gμνdxμdxν þ r20e
−4ϕ=ðnþ1ÞdΩ2

nþ1; ð2:14Þ

where gμνðxλÞ is a 2D metric and ϕðxλÞ is a 2D scalar field, the
Einstein-Hilbert action reduces to6

I ¼ Ωnþ1r
nþ1
0

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4n

nþ 1
ð∇ϕÞ2

þ nðnþ 1Þ
r20

e4ϕ=ðnþ1Þ
�
; ð2:15Þ

which in the limit n → ∞ becomes the 2D string effective
action

I ¼ 1

16πG2

Z
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 4ð∇ϕÞ2 þ 4Λ2

2� ð2:16Þ

with

G2 ¼ lim
n→∞

G

Ωnþ1r
nþ1
0

; Λ2 ¼
n
2r0

: ð2:17Þ

Notice that keeping r0=n finite amounts to keeping finite the
Hawking temperature

TH ¼ Λ2

2π
ð2:18Þ

of the largeD Schwarzschild-Tangherlini black hole, while for
the 2D string black hole the temperature conjugate to the time
t̄ is 1=2π, i.e., ∼1=n times smaller. In this identification,
Minkowski space at D → ∞ corresponds to the linear dilaton
vacuum, which appears as the asymptotic geometry at ρ → ∞
of the black hole; see Eqs. (2.12) and (2.13). The string length
is ∼r0=D.

B. Universality

The appearance of the 2D string black hole (2.12) in the
context of a pure gravity theory is intriguing, but perhaps more
surprising is that it appears universally as the large D near-
horizon geometry of all neutral, nonextremal black holes of
Einstein’s theory, including solutions with rotation and a
cosmological constant (Emparan, Grumiller, and Tanabe,
2013). This universality, together with the fact that this
geometry has enhanced symmetry [it is the quotient space
SLð2;RÞ=Uð1Þ], entails significant simplifications in the
study of large D black hole physics.
In the case of static (anti–)de Sitter [(A)dS] black holes, it is

easy to verify that when the limit n → ∞ is taken keeping
finite R and

λ ¼ 2r20
n2

Λ; ð2:19Þ

which parametrizes the cosmological constant Λ in units of r0,
then to leading order the geometry in the ðt;RÞ directions is
the same as in Eq. (2.10), only up to a rescaling of the
coordinates that changes the overall size of the near-horizon
region relative to the far zone scales: a negative cosmological
constant shrinks it, a positive one enlarges it.
The effect of rotation is more interesting. Considering, for

instance, the Myers-Perry solutions with a single angular
momentum turned on (Myers and Perry, 1986), and focusing
on the region around a given polar angle θ ¼ θ0, the near-
horizon geometry takes the form of the 2D string black hole,
with an extra dimension (for the rotation direction) added to it,
and then boosted along this direction with a velocity equal to
the local velocity of the horizon at latitude θ0. Therefore, the
rotation is accounted for by a local boost in a spatial direction
parallel to the horizon. This feature is of great importance
when one develops a general effective theory of large D black
hole dynamics.
By considering the addition of charge and possibly dila-

tonic scalar fields to the black hole one obtains different
universality classes of near-horizon geometries (Emparan,
Grumiller, and Tanabe, 2013; Guo, Li, and Sun, 2016).
These geometries can all be regarded as solutions of theories
where matter is added to Eq. (2.16). Just as in the asymp-
totically flat case, the gravitational effects of this matter
around the black hole decay at large values of R and are
relevant only close to the horizon. Thus, the asymptotic
geometry of the near-horizon zone in all cases has a 2D sector

ds22 →
r20
n2

�
−dt̄2 þ dR2

R2

�
ð2:20Þ

(up to an overall n-independent constant) and a dilaton
ϕ → − ln

ffiffiffiffi
R

p
. That is, the linear dilaton vacuum plays the

same role near the horizon at large D as Minkowski space
plays in asymptotically flat spacetimes, but more universally
since it is also the asymptotics of near-horizon zones when
there is a D-dimensional cosmological constant.
The same 2D black hole and physics similar to the large D

limit appears in a holographic plasma with a five-dimensional
dilaton-gravity bulk dual, whose conformal critical point of
the plasma is in correspondence with D → ∞ (Betzios
et al., 2018).

C. Strings near the horizon?

This “stringy nature” of the black hole in the limit D → ∞
is also manifested in its entropy. For the Schwarzschild-
Tangherlini black hole, it behaves as

SðMÞ ∼M1þ1=ðD−3Þ: ð2:21Þ

The fact that the exponent is > 1 means that the specific heat
of the black hole is negative and that the merger of two black
holes is highly irreversible. However, when D → ∞ we find
that

6The apparently wrong sign of the kinetic term for ϕ is not a
problem since this theory does not have any local dynamics. From the
higher-dimensional point of view, this statement is Birkhoff’s
theorem, or the absence of any s-wave dynamics in vacuum gravity.
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SðMÞ → M; ð2:22Þ

which is the same behavior as that of a gas of strings with a
Hagedorn spectrum whose thermodynamic stability depends
on the details of logarithmic corrections to the leading-order
result (2.22). To leading order at large D, there is no entropy
production in a merger, a feature that we encounter again in
Sec. IV.D.3. Although this effect might be attributed to the
vanishingly short interaction range in a large number of
dimensions, one should bear in mind that it does not hold
for charged black holes.
The behavior (2.22) is a consequence of the properties of

the two-dimensional dilaton black hole (2.12), but it is
possibile that it also indicates that large D black holes may
be described in terms of effective strings.7 The entropy of a
conformal gas with energy E in D dimensions

SðEÞ ∼ E1−1=D ð2:23Þ

also approaches the Hagedorn behavior S ∼ E when D → ∞,
now from the side of positive specific heat. The meaning, if
any, of this coincidence in the large D limit of the degeneracy
of the high-energy spectra of quantum field theories, string
theories, and black holes is unclear.

III. DECOUPLED AND NONDECOUPLED DYNAMICS OF
LARGE D BLACK HOLES

The previous discussion referred to stationary black hole
states. To obtain an idea of their dynamical behavior at large
D, it is convenient to start with small fluctuations.

A. Quasinormal spectrum

Slightly perturbed black holes oscillate with a set of
characteristic frequencies known as the quasinormal mode
spectrum. In many respects, these are analogous to normal
modes, but they have a dissipative part (imaginary frequency)
due to the absorptive nature of the horizon. These modes
dominate the late-time ringdown phase of a black hole formed
in a merger, and also the return to equilibrium when a black
hole has been perturbed, for example, by a particle falling into
it. An instability of a black hole is often manifested in the
presence of a quasinormal mode with a positive imaginary part
of the frequency whose amplitude grows exponentially
in time.
Like normal mode spectra, the quasinormal frequencies

depend on the specific features of the system, such as shape
and composition or field content. Since the quasinormal
oscillations of a black hole propagate away as gravitational
radiation, they are a primary source of information in
gravitational wave astronomy (Berti, Cardoso, and
Starinets, 2009). Quasinormal modes also play an important
role in the AdS=CFT correspondence: the longest lived, least
damped modes of a black brane characterize the late-time

approach to equilibrium of the dual thermal state (Horowitz
and Hubeny, 2000).
The study of quasinormal modes of largeD black holes has

revealed one of their most basic properties: the existence of
two different dynamical regimes, distinguished by frequencies
parametrically separated in 1=D. These are as follows:

• Fast, nondecoupled modes, with frequencies ω ∼D=r0.
These modes straddle the near-horizon zone and the far
zone. Most quasinormal modes are in this category, and
their spectrum falls into large universality classes with no
information (to leading order at large D) about the black
hole other than its horizon radius or shape.

• Slow, decoupled modes, with frequencies ω ∼ 1=r0.
These oscillations are localized within the near-horizon
zone, and they vanish in the far zone to all perturbative
orders in 1=D. There are only a few of them, and they are
specific to each black hole. Hydrodynamic behavior and
horizon instabilities appear in this sector of the dy-
namics.

The existence of the first set of modes is expected: generically,
the characteristic oscillation frequency of the black hole is set
by the surface gravity κ ∼D=r0, which is also the inverse of
the light-crossing time for the near-horizon region.
More surprising is the presence of the second set of much

slower modes, indeed static ones relative to the characteristic
time of the near zone. They were first found numerically by
Dias, Hartnett, and Santos (2014), and the further under-
standing of their nature detailed by Emparan, Suzuki, and
Tanabe (2014) prompted the development of nonlinear effec-
tive theories for the slow dynamics of black hole fluctuations.

B. Qualitative features from the radial potential

The main qualitative features of the quasinormal spectrum
at large D can be understood from the form of the effective
radial potential for the perturbations of the Schwarzschild-
Tangherlini black hole (Kodama and Ishibashi, 2003). In the
large D limit we later find a universality of quasinormal
spectra that is larger than that implied by the universality

1 0 1 2 3 4 5
r*

5

5

10

15

20

V

FIG. 1. Radial potentials Vsðr�Þ for perturbations of the
Schwarzschild black hole for n ¼ 8 and l ¼ 2. The horizon
is at r� → −∞. We use the coding dotted black for tensor,
dashed red for vector, and solid blue for scalar in this and the
next two figures. Units are r0 ¼ 1.

7This would be similar to the evidence for “little strings” in the
throat of NS5-branes (Aharony et al., 1998).
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classes of near-horizon geometries. Namely, the potential that
nondecoupled modes perceive is insensitive to anything but
the shape of the horizon, not to its charges or couplings to
scalars. On the other hand, the universality of near-horizon
geometries implies that a given universality class shares the
same set of decoupled modes (e.g., one vector and two scalars
for all neutral black holes) even though their actual frequen-
cies are different since they depend on the near-horizon
geometry at the next order.
We then consider linearized gravitational perturbations

δgμν ¼ e−iωthμνðr;ΩÞ around the Schwarzschild-Tangherlini
black hole solution (2.1). The angular dependence can be
separated and the perturbations classified according to their
algebraic transformation properties under the SOðnþ 2Þ
symmetry of the sphere Snþ1: scalar type (S), vector type
(V), and tensor type (T). Tensor perturbations exist only in five
or more spacetime dimensions (n ≥ 2).
Kodama and Ishibashi (2003) obtained decoupled master

variables Ψsðr�Þ, with r� ¼
R
dr=f, for each of these pertur-

bations, which satisfy equations of the form

�
d2

dr2�
þ ω2 − Vs

�
Ψs ¼ 0; s ¼ S; V; T: ð3:1Þ

Explicit expressions for Vs can be found in Kodama and
Ishibashi (2003) [and, in the present context, in Emparan,
Suzuki, and Tanabe (2014)]. Figure 1 illustrates Vsðr�Þ for
moderate values of n and l. There is a barrier, which grows
with l, corresponding to radial gradients and centrifugal
energy. For small enough l=n, the scalar and vector potentials
possess additional minima and maxima closer to the horizon
that are absent for the tensor perturbations. When n is
extremely large these features of the potential become more
marked, as illustrated in Fig. 2. The left and right panels
represent, respectively, the view of the far zone and an
enlargement of the near-horizon zone. The former is domi-
nated by the centrifugal barrier ∼1=r2, which reaches a
maximum at the photon sphere near r� ≃ 1, approaching

Vmax
s → n2ω2

c; ð3:2Þ

where

ωc ¼
1

2r0

�
1þ 2l

n

�
: ð3:3Þ

As a consequence, waves with frequency ω ¼ Oð1=r0Þ ≪
nωc cannot penetrate the potential: they stay either outside or
inside the barrier since their tunneling probability is infinitely
suppressed as n → ∞. Thus, large D induces a decoupling
of low-frequency dynamics, and quasinormal modes are
discussed separately according to whether their frequency
is ω ∼ n=r0 or ω ∼ 1=r0.
Quasinormal modes are solutions of Eq. (3.1) characterized

by the absence of any amplitudes coming in from infinity or
coming out of the horizon; see Fig. 3. Using the coordinate in
Eq. (2.8), the ingoing boundary condition at the future horizon
at R ¼ 1 is

ΨsðRÞ ∝ ðR − 1Þ−iωr0=n: ð3:4Þ

We can now expect to find quasinormal modes as solutions
that connect outgoing and ingoing waves by joining them
below the peak of the potential as in Fig. 3. The potentials that
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FIG. 2. Radial potentials Vsðr�Þ for n ¼ 997 and l ¼ 2. On the right is an enlargement of the potential near the peak at r� ≃ 1.

FIG. 3. Quasinormal modes at D ≫ 1: nondecoupled modes
near the peak of the potential have high frequencies and straddle
between the near and far zones. Decoupled modes have low
frequencies and are trapped in the near-horizon geometry.
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these modes “see” are the ones in the left panel of Fig. 2. The
frequencies of these modes are of the order of the height of the
potential (3.2),8

ω ≃ nωc ∼
D
r0

; ð3:5Þ

i.e., in the range of the fast timescale r0=D. These oscillations
travel ballistically between the near and far zones and are
insensitive to any structure of the potential other than its peak.
This is almost featureless as it depends only on the black hole
radius r0, making this nondecoupled spectrum a universal
feature of static black holes.
But the potential for scalar and vector modes also possesses

structure to the left of the peak, deeper in the near-horizon
zone, as seen in the right panel of Fig. 2. We can expect
quasinormal oscillations that are ingoing at the horizon and
are trapped inside the barrier, with wave functions that vanish
like ∼e−1=n outside the barrier, and hence without any
incoming component at any perturbation order.9 Their fre-
quency is slow

ω ∼
1

r0
ð3:6Þ

and depends on the specific properties of the potential wells.
These modes constitute the decoupled spectrum, and they
dominate the late-time decay of black hole perturbations.

C. Nondecoupled modes

Following the previous discussion, we first focus on waves
with high frequency (3.5) near the peak of the potential.
The tensor potential for all l and the vector and scalar

potentials for l ¼ OðnÞ all approach the form in the left panel
of Fig. 2, that is,

Vs →
n2ω2

cr20
r2�

Θðr� − r0Þ: ð3:7Þ

Therefore, the three kinds of perturbations are isospectral. For
each l there is a sequence of modes, called “overtones,”
whose wave functions have k − 1 nodes, k ¼ 1; 2;…. The
least damped overtones, with k ≪ n, are sensitive only to the
structure near the tip of the potential, which approaches a
triangular shape that makes it easy to obtain their frequencies
by employing a WKB approximation (Emparan, Suzuki, and
Tanabe, 2014; Emparan and Tanabe, 2014a). The result is

ωr0 ¼
n
2
þ l − ak

�
eiπ

2

�
n
2
þ l

��
1=3

; ð3:8Þ

where ak are the zeros of the Airy function (k ¼ 1; 2;…),
accurately approximated by

ak ≃
�
3π

8
ð4k − 1Þ

�
2=3

: ð3:9Þ

The damping ratio of these modes

Imω

Reω
∼ n−2=3 ð3:10Þ

vanishes as n → ∞, so they are long lived in their character-
istic timescale. They limit to undamped normal modes.
The comparison of Eq. (3.8) with a numerical calculation of

the frequencies for a large number of values of n (Dias,
Hartnett, and Santos, 2014) gives agreement of the real part
with an accuracy well matched by ≈1=ð2nÞ, which is slightly
better than the naive expectation of errors ≈1=n. The
imaginary part shows poorer agreement even at D ¼ 100,
but this can be explained from features of the potential peak
(Emparan, Suzuki, and Tanabe, 2014).
This calculation applies to all static, spherically symmetric

black holes of the same radius in the limit D → ∞, possibly
with charge, dilatonic couplings, and cosmological constant
(Emparan and Tanabe, 2014a). Nondecoupled modes are the
oscillations of a field in a flat spacetime with a hole of radius
r0 in it.

D. Decoupled modes

Quasinormal modes with frequency ω=n → 0 correspond
to static zero-energy states, which can exist only if the
potential has a negative minimum, as is the case for vectors
and scalars with l ¼ Oð1Þ. These states are unique for a given
l, with no other overtones close to them.
The analysis of these modes starts with the wave equation

ðLþ UsÞΨsðRÞ ¼ −
R − 1

R1=n

d
dR

�
R − 1

R1=n

d
dR

Ψs

�

þ 1

n2
½VsðRÞ − ω2�Ψs

¼ 0 ð3:11Þ

in the near-horizon zone. At the boundary of this zone R ≫ 1

we require that the divergent behavior Ψ ∼
ffiffiffiffi
R

p
is absent and

allow only wave functions that are normalizable within this
region

ΨðR → ∞Þ → 1ffiffiffiffi
R

p : ð3:12Þ

At the future horizon we impose Eq. (3.4).
The procedure to solve the equation in a perturbative

expansion in 1=n is straightforward (Emparan, Suzuki, and
Tanabe, 2014). Here we show only that decoupled modes,
with the previous boundary conditions, exist as solutions that
to leading order are static. Their nonzero frequencies arise at
the next order. (For the remainder of this section we
fix r0 ¼ 1.)
It is easy to see that there are no decoupled tensor modes. To

leading order in 1=n the potential is

8We refer to the real part of the quasinormal frequency as ω. The
imaginary part also turns out to be large, but, as we later see, less so.

9We elaborate on this in Sec. III.F.
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Uð0Þ
T ¼ R2 − 1

4R2
; ð3:13Þ

and there is no combination of the two independent solutions

u0 ¼
ffiffiffiffi
R

p
; v0 ¼

ffiffiffiffi
R

p
ln ð1 − R−1Þ ð3:14Þ

that satisfies the two boundary conditions (3.4) and (3.12).
The vector potential is

UV ¼ R − 1

4R1þ2=n

��
1þ 2l

n

�
2

−
1

n2
−

3

R

�
1þ 1

n

�
2
�
−
ω2

n2
;

ð3:15Þ

and now there is a leading-order solution with the required
behavior at the boundaries, namely,

Ψð0Þ
V ¼ 1ffiffiffiffi

R
p : ð3:16Þ

Thus, there does exist a vector quasinormal mode. To
determine its frequency we need to go to the next order.
The solution is

Ψð1Þ
V ¼ −

ðl − 1Þ lnðR − 1Þ þ ln
ffiffiffiffi
R

p
ffiffiffiffi
R

p ; ð3:17Þ

and now the boundary condition at the horizon (3.4) fixes

ω ¼ −iðl − 1Þ: ð3:18Þ

These mode frequencies are purely imaginary.
For the scalar modes the calculation is more involved, but

one can again show the existence at leading order of a static
solution. The next-order solution yields two frequencies,
related by ω− ¼ −ω�þ,

ω� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
l − 1

p
− iðl − 1Þ: ð3:19Þ

These modes have both a real and an imaginary part. There are
no other overtones near these vector and scalar modes in the
complex ω plane.
It is straightforward to continue the expansion to higher

orders and obtain corrections to the frequencies (Emparan,
Suzuki, and Tanabe, 2014, 2015b). The accuracy of the large
D expansion can then be tested by comparing with direct
numerical calculations at finite D (Dias, Hartnett, and Santos,
2014). Vector mode frequencies are accurately captured by the
large D expansion, with agreement of up to eight digits at
n ¼ 100. Even down to D ¼ 4 (i.e., n ¼ 1) the frequency of
the “algebraically special mode” is reproduced with 6%
accuracy from a calculation including up to terms 1=n3.
This level of agreement suggests again that the expansion
parameter is better thought to be 1=ð2nÞ rather than 1=n.

E. Cosmological constant and rotation

The universality of the near-horizon geometry becomes
extremely useful for the study of perturbations of black holes

with rotation and a cosmological constant. The presence of
decoupled quasinormal modes is automatic since it follows
from the existence of static solutions in the universal near-
horizon geometry, which is proven in Sec. III.D. The values of
their frequencies ω ∼ 1=r0 depend on the 1=D corrections to
the metrics, and these are different for each black hole.
Nevertheless, including a cosmological constant is straight-
forward (Emparan, Suzuki, and Tanabe, 2015b). In AdS,
when the black hole becomes much larger than the cosmo-
logical radius and approaches a black brane, the scalar and
vector modes become hydrodynamic sound and shear modes.
We encounter them again in Secs. IV.E and VII.A.
Adding rotation makes the calculation less simple but still

feasible analytically. The latter is particularly interesting since
higher-dimensional rotating black holes possess complex
patterns of behavior (Emparan and Myers, 2003; Myers
and Perry, 1986). For now we mention only a highlight of
the analysis given by Suzuki and Tanabe (2015b).
Unlike the Kerr black hole, the spin of singly rotating

Myers-Perry black holes in dimension D ≥ 6 is not limited by
an extremality bound (Myers and Perry, 1986). It was noted by
Emparan and Myers (2003) that as the spin increases the
horizon spreads along the plane of rotation. Since black
membranes are known to be unstable, it was proposed that
Myers-Perry black holes with large enough angular momenta
should also become unstable. The onset of these instabilities
would be marked by the appearance of zero-mode perturba-
tions of the black holes as their spin is increased. This was
confirmed by numerical solution of the perturbation equations
by Dias et al. (2009, 2010) in D ¼ 6;…; 11. For instance, in
D ¼ 8 the zero modes appear when the rotation parameter a,
in units of the mass radius rm, is

a
rm

¼ 1.77; 2.27; 2.72… . ð3:20Þ

Suzuki and Tanabe (2015b) solved the problem analytically in
the large D limit and found zero modes for10

a
rm

¼
ffiffiffi
3

p
;

ffiffiffi
5

p
;

ffiffiffi
7

p
… . ð3:21Þ

The two results agree with an error smaller than 2.7%.

F. Asymptotic nonconvergence of the expansion

The high accuracy of the calculations of decoupled qua-
sinormal frequencies prompts the question of whether suc-
cessive expansion orders will continue to improve the results
for finite values of D. In other words, is the 1=D expansion in
the decoupled sector convergent, or is it instead only
asymptotic?
A first hint comes from the fact that the potential ðr0=rÞD−3

is nonanalytic in 1=D. One then expects nonperturbative
effects from the far zone to be present in the near-horizon zone
that spoil the convergence of the expansion.
We can see this by solving the scalar field equation in the far

zone of the Schwarzschild black hole (or indeed any spherical

10We describe a simpler approach to this in Sec. IV.E.3.
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black hole) and studying its behavior in the “overlap” region
r0=n ≪ r − r0 ≪ r0, i.e., 1 ≪ R ≪ en, where it must match
the field in the near zone (Emparan, Suzuki, and Tanabe,
2015b). Outgoing quasinormal waves are Hankel functions

Ψ ¼ ffiffiffi
r

p
Hð1Þ

nωcr0ðωrÞ: ð3:22Þ

In the overlap zone and for frequencies ω ∼Oð1Þ, these
behave schematically as

ΨðrÞ ∼ 1ffiffiffiffi
R

p
X
i≥0

�
l
n

�
i
Ri=n: ð3:23Þ

Matching to a decoupled wave in this region is possible if
Eq. (3.12) is satisfied, which requires that l ≪ n. However,
large orders in the expansion in Eq. (3.23), with i ¼ nþOð1Þ,
give a behavior Ψ ∼

ffiffiffiffi
R

p
that violates the decoupling con-

dition (3.12). The breakdown is nonperturbative in 1=n, and
for waves with l ¼ Oð1Þ one obtains

nonperturbative corrections ¼ Oðn−nÞ; ð3:24Þ

confirming the general expectation.
The nondecoupled quasinormal modes can be thought of as

nonperturbative, or transseries, corrections to the decoupled
sector (Casalderrey-Solana, Herzog, and Meiring, 2019).
While the decoupled modes have Oð1Þ imaginary part in
the large D expansion, they are still relatively long lived
compared to the nondecoupled modes, which damp out and
oscillate on timescales ∼n−1=3 and ∼n−1, respectively. The
long time behavior of the black holes is thus governed by the
decoupled modes as a sort of attractor to which the non-
decoupled modes serve as highly damped nonperturbative
corrections.

IV. EFFECTIVE THEORIES OF
BLACK HOLES AT LARGE D

Can the previous study of black hole fluctuations be taken
beyond the linearized approximation into a fully nonlinear
theory of large D black hole dynamics? To understand how
this is possible and what it implies, it is convenient to broadly
set the framework for the discussion.

A. Aspects of effective theories of black hole dynamics

The efficient study of a physical system often relies on the
ability to parametrically separate dynamical regimes at differ-
ent scales: high energy versus low energy, short distance
versus long distance, early time versus late time. Effective
theories encode in a few parameters the long-distance effects
of short-distance physics.
From this perspective, the main reason that the dynamics of

a black hole is generally hard to solve is that there is only one
scale in the system: the horizon radius or, equivalently, the
black hole mass. Nevertheless, there are many situations with
another length scale that permits successful effective descrip-
tions. The point-particle limit, in which a black hole moves in
gravitational fields of curvature radii much larger than its

horizon size, is a well-known example. But if we are interested
in the dynamics of the horizon (the range of its possible shapes
and fluctuations), we must keep the horizon size finite and
nonzero. New length scales can be introduced with the
addition of rotation and charge: close to the extremality
bounds, a throat in the radial direction appears that is much
longer than the horizon radius. This is the basis of the
decoupling between the dynamics in the throat and outside
it that pervades correspondences of the AdS=CFT type. In
other instances, the horizon along some directions is much
longer than the scale of variation in directions transverse to it
(which is typically set by the surface gravity or horizon
temperature). This happens for black branes in asymptotically
flat and AdS spacetimes, and in ultraspinning black holes in
higher dimensions. It is then possible to isolate the horizon
fluctuations of wavelength much longer than the radial scale,
and to formulate effective theories organized in an expansion
in horizon gradients. These are the fluid-gravity correspon-
dence (Bhattacharyya, Hubeny et al., 2008) and the blackfold
approach (Emparan et al., 2010; Camps and Emparan, 2012).
The large D limit is useful since it provides another generic

length scale without recourse to any large charge, rotation, or
long directions along the horizon, i.e., a scale that is present
even for neutral, slowly rotating black holes. As we saw
earlier, in this limit the horizon radius r0 and its surface gravity
κ define two separate scales such that κ−1=r0 ∼ 1=D.
Moreover, we have found that quasinormal oscillations of
frequency ω ≪ κ are decoupled from the physics far from the
horizon. Then it seems possible to develop a fully nonlinear
effective theory of the slow fluctuations of black holes.

B. Hydrodynamics review

In view of the close connections between, on the one hand,
the large D limit of Einstein’s equations, the fluid-gravity
correspondence, and the AdS=CFT correspondence and, on
the other hand, hydrodynamics, we want to begin with a
review of hydrodynamics as an effective description of
physical systems. More details can be found in Kovtun (2012).
There is lore that most interacting many-body systems (at

nonzero temperature, close to equilibrium, and at long enough
timescales and length scales) are well described by hydro-
dynamics. Hydrodynamics is intended here in a generalized
sense that encompasses the Navier-Stokes equations as a
particular example. One identifies the conserved or quasi-
conserved currents that follow from the symmetries of the
theory. In the Lorentzian setting, there is at least a stress-
energy tensor Tμν, and possibly additional conserved currents
JμI as well I ¼ 1; 2;…. The conservation rules for these
currents ∂μTμν ¼ 0 ¼ ∂μJ

μ
I govern the behavior of the slowest

modes in the system and thus determine the physics at the
longest timescales and length scales.
For each of these conservation equations ∂μTμν ¼ 0 and

∂μJ
μ
I ¼ 0, we can introduce one functional quantity to

describe the behavior of the fluid. For the stress tensor, one
conventionally chooses local temperature T and the fluid four
velocity uμ, u2 ¼ −1. When JμI exist, we can introduce
associated charge densities ρI as well. From the near equi-
librium assumption, Tμν must have an expansion in gradients
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of T and uμ that can then be further constrained by symmetry.
This expansion is often called the stress tensor constitutive
relation.
We now focus on the particular example of a Lorentz

invariant system that has a stress tensor Tμν but no other
conserved currents. We can write the following constitutive
relation for the stress tensor generally as a gradient expansion
in the fluid four velocity uμ and the temperature T:

Tμν ¼ εðTÞuμuν þ PðTÞΠμν − 2ησμν − ζΠμν∂λuλ þOð∂2Þ;
ð4:1Þ

where

Πμν ¼ ημν þ uμuν; ð4:2Þ

σμν ¼
1

2
Πμ

λΠν
σð∂λuσ þ ∂σuλÞ −

1

d − 1
Πμν∂λuλ: ð4:3Þ

Here PðTÞ is the pressure and εðTÞ is the energy density, both
of which depend on T through equations of state. The
coefficients η and ζ are conventionally called the shear and
bulk viscosities, respectively.
One may be confused at this point by the claim that

Eq. (4.1) is the general result, given that it lacks several
possible first-order gradient corrections. For example, no
terms involving gradients of T have been included. A
confusing aspect of hydrodynamic descriptions is that T
and uμ are only well-defined concepts when they do not vary
from point to point. We can redefine T and u by gradients, for
instance, replacing T → T þ uμ∂μT, and get a new constit-
utive relation for Tμν with a correspondingly altered set of
hydrodynamic equations ∂μTμν ¼ 0. We use this freedom to
eliminate several possible gradient corrections from Eq. (4.1).
The particular choice (4.1) is called the Landau frame, which
defines u as the unit-normalized timelike eigenvector of the
stress tensor, i.e., Tμνuν ¼ εuμ.
The second law of thermodynamics puts constraints on the

hydrodynamic expansion. We expect that the entropy will
increase during hydrodynamic flows. This increase is encoded
in a positive divergence of the entropy current. If we introduce
an entropy density s that satisfies the thermodynamic relation

εþ P ¼ Ts; ð4:4Þ

the entropy current at leading order in the gradient expan-
sion is

JμS ¼ suμ þOð∂2Þ: ð4:5Þ

From conservation of the stress tensor, it then follows that

∂μJ
μ
S ¼

2η

T
σμνσ

μν þ ζ

T
ð∂μuμÞ2 þ � � � ; ð4:6Þ

which means that the viscosities η and ζ must be non-negative
for the fluid to satisfy the second law of thermodynamics.
The generality of this discussion, which did not specify the

nature of the system being considered, suggests that the

hydrodynamic description should also apply to the long
wavelength fluctuations of extended black hole horizons.
As previously mentioned, for black branes in AdS spacetimes
this idea was developed into the subject of the fluid-gravity
correspondence (Bhattacharyya, Hubeny et al., 2008; Hubeny,
Minwalla, and Rangamani, 2012). Motivated by this context,
we are often interested here in conformal fluids. For these
fluids, the stress tensor is traceless, which puts many addi-
tional constraints on the behavior of the system. In particular,
one finds that ε ¼ ðd − 1ÞP and that the bulk viscosity
vanishes (ζ ¼ 0). Scale invariance further implies that the
energy density and pressure dependence on the temperature is
power law

ε ¼ ðd − 1ÞP ∼ Td: ð4:7Þ

Other applications are concerned with the fluids dual to
asymptotically flat black branes, which are not conformal
(Camps, Emparan, and Haddad, 2010; Emparan et al., 2010).
Nevertheless, they can be linked to the conformal fluids for
AdS black branes, inheriting from them contraints on the
constitutive relation (Kanitscheider and Skenderis, 2009;
Caldarelli et al., 2013). Specifically, they imply that for
an asymptotically flat black p-brane in D ¼ nþ pþ 3 the
fluid has

ε ¼ −ðnþ 1ÞP; ζ ¼ 2η

�
1

p
þ 1

nþ 1

�
: ð4:8Þ

C. Large D versus AdS=CFT decoupling and fluid-gravity
correspondence

The large D approach shares features with the decoupling
limit of AdS=CFT and with the fluid-gravity correspondence,
but with important differences between them. In contrast to the
long AdS throats of near-extremal black holes, where highly
redshifted modes are trapped, the near-horizon zone of a large
D black hole is extremely short. Still, it contains dynamics of
its own: the small set of almost static gravitational modes that
are decoupled from the far zone, which are described in
Sec. III.D.
The connections are even closer between large D effective

theories and the fluid-gravity correspondences. In both cases
one integrates the radial dependence orthogonal to the
horizon, leaving an effective theory for the fluctuations
parallel to the horizon, with frequencies and wave numbers
ω; k ≪ κ; TH. The two methods differ in how the expansion
parameter k=TH is made small. In the fluid-gravity corre-
spondence, TH remains finite while k is taken to be infini-
tesimal, so the theory is organized in powers of k, i.e., it is a
gradient expansion of the hydrodynamic type. In the large D
effective theory, k instead remains finite while TH diverges
like D. The smallness of k=TH does not require a gradient
expansion, so the large D effective theory can consistently
consider fluctuations with finite (noninfinitesimal) wave
numbers k (at the price of introducing large dimensionality).
For the same reason, it also applies to black holes of finite
extent, including the Schwarzschild-Tangherlini solution,
and not only to black branes or ultraspinning black holes.
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In general, the expansions in 1=D and in gradients (powers of
k) have overlapping but noncoincident ranges of applicability;
see Bhattacharyya et al. (2019), Bhattacharyya, Biswas, and
Patra (2019), and Patra (2019) for detailed comparisons.

D. The large D effective membrane theory

The large D effective theory may be conceived of in a
pictorial way. Recall that the effect of taking D ≫ 1 is to
concentrate the gravitational dynamics of the black hole
within a thin sliver outside the horizon, leaving a hole in
an otherwise undistorted background geometry (e.g.,
Minkowski or AdS spacetime). We can then envisage the
surface of the hole as a membrane in that background, with
properties obtained by integrating the Einstein equations near
the horizon of the black hole. We describe this next.
Currently there exist several formulations of effective

theories of large D black holes, roughly divided into the
Japan-Barcelona variety (Emparan et al., 2015, 2016;
Emparan, Suzuki, and Tanabe, 2015a; Suzuki and Tanabe,
2015b) and the India (Mumbai-Kanpur-Pune) variety
(Bhattacharyya, De et al., 2016; Bhattacharyya, Mandlik
et al., 2016; Dandekar, Mazumdar et al., 2016;
Bhattacharyya et al., 2017, 2018).11 They employ different
Ansätze, gauges, and variables and result in equations whose
complete equivalence has not been established in general.
Nevertheless, they all share the same basic concepts, and
whenever precise comparisons have been made, e.g., in
computations of quasinormal frequencies, they agree per-
fectly. Each formulation has its advantages, but it seems fair to
say that the Indian formulation, which is fully covariant, is
more elegant and encompasses in a single, compact set of
equations what the Japan-Barcelona methods achieve with
several partially gauge-fixed theories. Thus, in the following
we explain the Indian “hardcover edition” of the effective
theory—the so-called large D membrane paradigm.
Afterward, in Sec. IV.E we devote attention to an interesting
subcase, a usable “pocket edition” of the equations, initially
found in Emparan, Suzuki, and Tanabe (2015a).

1. The membrane equations

We start again from the Schwarzschild-Tangherlini black
hole, now written in Kerr-Schild coordinates,

ds2 ¼ −dt2 þ dr2 þ r2dΩnþ1 þ
�
r0
r

�
n
ðdt − drÞ2: ð4:9Þ

This is convenient since the deviations from flat space appear
in a linear-looking form, and when n is large the separation is
neat between the flat space at r > r0 and the thin, membrane-
like, near-horizon region r ≈ r0. Observe that the one-form
dt − dr is null both in the complete geometry and in the flat
spacetime metric.
A covariant, boosted version is obtained if we replace dt

with a timelike one-form u with unit norm (a velocity vector)
in the Minkowski spacetime, so the metric is

gMN ¼ ηMN þ
�
r0
r

�
n
ð∂Mr − uMÞð∂Nr − uNÞ; ð4:10Þ

with the radius function

r2ðxÞ ¼ xMxNðηMN þ uMuNÞ: ð4:11Þ

Written like this, the solution contains a constant parameter,
the horizon radius at r ¼ r0 with normal dr ¼ ∂MrdxM, and a
constant one-form, the velocity u. We turn them into collective
fields by letting them vary over the horizon much more slowly
than the scale ∼D=r0 of the radial gradients. The horizon can
then have nonuniform, varying shapes and move with varying
velocity in tangential directions. We see in Sec. II.B that when
D is large the rotation of the black hole acts like a local boost
along the horizon. Then with this formalism we expect to be
able to describe large D rotating black holes and their
fluctuations.
When the constant parameters are allowed to vary along the

horizon, the metric no longer solves the Einstein equations
RMN ¼ 0. To remedy this, one introduces small corrections to
the metric, of the order of 1=D of the ratio between horizon
gradients and radial gradients, such that the Einstein equations
can be satisfied consistently in an expansion in 1=D. In the
spirit of a “radial Arnowitt-Deser-Misner decomposition,” one
separates the radial evolution equations from the constraint
equations on surfaces at constant radius. The hierarchy
between radial gradients and gradients along the horizon allows
one to explicitly solve the radial dependence of the evolution
equations. Then the constraint equations, with dependence
only along horizon directions, become effective equations for
the collective fields. This philosophy, which is common to all
the large D effective theories, was first employed in the fluid-
gravity correspondence (Bhattacharyya, Hubeny et al., 2008)
and later used to derive the blackfold equations (Camps,
Emparan, and Haddad, 2010; Camps and Emparan, 2012).
According to this, we consider a metric of the form

gMN ¼ gð0ÞMN þ gð1ÞMN

n
þ � � � ; ð4:12Þ

with

gð0ÞMN ¼ ηMN þ ρ−nðnM − uMÞðnN − uNÞ: ð4:13Þ

Here ρðxÞ is now a function of the coordinates in flat space,
nM is a one-form field normal to surfaces of constant ρ,

nM ¼ ∂Mρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηNP∂Nρ∂Pρ

p ð4:14Þ

(not to be confused with the number of dimensions n), and uM
is a one-form velocity field tangent to these surfaces

ηMNuMuN ¼ −1; ηMNuMnN ¼ 0: ð4:15Þ

These one-forms are unit normalized with the Minkowski
metric. In the full spacetime we have11Contributions from Beijing and other places are mentioned later.
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gMN
ð0Þ nMnN ¼ 1 − ρ−n; ð4:16Þ

which implies that ρ ¼ 1 is a null hypersurface generated by u.
This is the event horizon. As a submanifold of flat space,
ρ ¼ 1 is a timelike codimension-1 surface that is regarded as
the membrane world volume, and u is a velocity vector in its
tangent space.
One can see that this geometry is a good approximation to

the metric of a boosted Schwarzschild black hole, within a
region of the horizon of the size ∼1=D, if ∇2ðρ−nÞ ¼ 0 and

∇AuA ¼ 0: ð4:17Þ

Here and henceforth all indices A; B… and derivatives refer to
the metric on the membrane.
The Einstein radial evolution equations for gð1ÞMN are now

decomposed into scalars, vectors, and tensors according to
their tensorial character under the group SOðnþ 1Þ of
rotations orthogonal to uM and nM, as we did in the study

of linear perturbations.12 The radial dependence in gð1ÞMN can
then be integrated, and the remaining constraint equations
involve only the collective fields. They take the form

PA
C

�
uBð∇BuA − KBAÞ þ

∇AK −∇2uA
K

�
¼ 0: ð4:18Þ

Here

PA
B ¼ δAB þ uBuA ð4:19Þ

is the spatial projector orthogonal to the velocity on the
membrane world volume, KAB is the extrinsic curvature of the
membrane in Minkowski space, and K is its trace.
Together Eqs. (4.17) and (4.18) constitute a set of nþ 2

equations for nþ 2 variables: the (nþ 1)-independent com-
ponents of the unit velocity field along the membrane, plus the
function that specifies the shape of the membrane. The
derivation ensures that solving these equations provides a
solution to the vacuum Einstein equations to first order in
1=D. As a check, it was verified that the decoupled vector and
scalar quasinormal frequencies of the Schwarzschild black
hole that we study in Sec. III.D are correctly reproduced from
the linearized fluctuations of a spherical membrane
(Bhattacharyya, De et al., 2016; Bhattacharyya, Mandlik
et al., 2016).

2. Playing with soap bubbles

The elastic aspects of the membrane are more manifest for
stationary configurations where the velocity is proportional to
a Killing vector on the membrane

uA ¼ γkA; ð4:20Þ

with γ ¼ jkj−1 the Lorentz redshift factor relative to Killing
time. Then the equations simplify and admit a first integral,
reducing to (Dandekar et al., 2018; Mandlik and Thakur,
2018)

γ−1K ¼ 2κ: ð4:21Þ
The integration constant κ corresponds to the surface gravity
of the black hole, normalized relative to Killing time.
Equation (4.21) was initially derived following a different

approach by Emparan et al. (2015) and Suzuki and Tanabe
(2015b), who referred to it as the “soap-bubble equation.”
When the membrane is static (γ ¼ 1), we recover the Laplace-
Young equation that governs the shape of fluid interfaces
(such as soap films) as surfaces of constant mean curvature.
Equation (4.21) is a relativistic version of the Laplace-Young
equation. It can be extended to soap films in curved back-
grounds by including the gravitational time dilation on the
same footing as the Lorentz dilation factor γ (Emparan et al.,
2015; Suzuki and Tanabe, 2015b). One can solve this equation
to find bubbles for rotating Myers-Perry black holes (Suzuki
and Tanabe, 2015b; Mandlik and Thakur, 2018) and for “black
droplets” in AdS (Emparan et al., 2015).
We are thus led to a satisfyingly suggestive picture: large D

black holes are spherical and ellipsoidal soap bubbles in flat
spacetime, and their tension is given by the surface gravity.
Black strings and black branes are also soap films at large D,
but if you ask any child, he or she will tell you that these
bubbles must be unstable. And of course the child is correct.

3. Fluid stress energy, entropy, action, and coupling to radiation

Since Eq. (4.18) arises as momentum-type constraint
equations on the surface of the membrane, one naturally
expects that they can be interpreted as the conservation
equations of a quasilocal stress-energy tensor for the mem-
brane

∇ATAB ¼ 0: ð4:22Þ
This stress-energy tensor was found by Bhattacharyya et al.
(2017) to be

16πTAB ¼ KuAuB þ KAB − 2σAB; ð4:23Þ
where σAB is the shear tensor of the velocity field u. Moreover,
an entropy current associated with the horizon area was
identified as

JS ¼
u
4
: ð4:24Þ

We can now attempt to interpret Eqs. (4.22) and (4.24) as
describing an effective fluid on a dynamical, curved
membrane.13 Following Dandekar et al. (2018) we first
subtract an automatically conserved Brown-York (BY) term,
16πTBY

AB ¼ KAB − KgAB, which leaves

12Actually, in the derivation one separates a finite number p of
directions where there is nontrivial dependence and preserves a large
SOðn − pþ 1Þ symmetry. The final equations can be covariantized
without distinguishing world-volume directions.

13These are similar in many respects to the equations of the
blackfold approach (Emparan et al., 2010), but, being obtained in
different expansions, the effective fluids are not the same except in
common regimes of validity. The blackfold fluid of Emparan et al.
(2010) has nonzero energy density and is compressible.
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16πTfluid
AB ¼ KPAB − 2σAB: ð4:25Þ

Comparing Eqs. (4.25) and (4.24) with the general expres-
sions of first-order hydrodynamics (4.1), (4.5), and (4.4)
yields the effective energy density, pressure, shear viscosity,
entropy density, and temperature as

ε ¼ 0; P ¼ K
16π

; η ¼ 1

16π
; s ¼ 1

4
; T ¼ K

4π
:

ð4:26Þ

Observe that Eq. (4.17) implies that the fluid is incompress-
ible, so ζ ¼ 0. It is nevertheless a peculiar fluid since its
energy density vanishes. We see in Sec. IV.E that a more
conventional fluid is found when the velocity is nonrelativistic
and the membrane geometry is flat.
Additionally, Eq. (4.17) means that entropy is conserved to

leading order at large D. At the next order this equation is
modified to (Dandekar, De et al., 2016)

∇AuA ¼ 1

8K
σABσ

AB; ð4:27Þ

which, when we plug in Eq. (4.26), reproduces precisely
the standard hydrodynamic result for viscous entropy
production (4.6).
Within this same context, Dandekar et al. (2018) made

an interesting observation. The stress-energy tensor (4.23)
satisfies

KABTAB ¼ 0 ð4:28Þ

to leading order at large D. Equation (4.28) is known to
generically govern the elastic dynamics of relativistic branes
(Carter, 2001; Emparan et al., 2010; Camps and Emparan,
2012) (it generalizes the geodesic equation for particles). Here
it is satisfied as an identity, although only in the first nontrivial
order in the 1=D expansion. Dandekar et al. (2018) then noted
that it is possible to improve the membrane stress-energy
tensor such that Eq. (4.28) is an exact algebraic identity at
finite values of D. The improved tensor is

16πT̃AB ¼ K̃PAB − 2σAB þ KAB − KgAB; ð4:29Þ

where gAB is the metric induced on the membrane, and the
improvement term is

K̃ ¼ K2 − KABKAB þ 2KABσAB
K þ KABuAuB

: ð4:30Þ

Using the appropriate rules for counting powers of D, one can
verify that K̃ → K whenD → ∞, so T̃AB → TAB is recovered.
Since Eq. (4.28) is satisfied, it defines consistent membrane
dynamics at finite D. Moreover, the improved stress tensor
also reproduces the equation for entropy production (4.6).
For stationary membranes the conservation of T̃AB leads to

the improved soap-bubble equation γ−1K̃ ¼ 2κ. Dandekar
et al. (2018) proved that this equation follows from the
extremization of the world-volume action

I ¼ 1

16π

Z
M

ffiffiffiffiffiffi
−g

p ðK − 2γκÞ: ð4:31Þ

Using this action one defines thermodynamic quantities for
stationary membranes: energy, entropy, and temperature. For
static spherical membranes these reproduce the properties of
Schwarzschild black holes exactly at finite values of D. This
agreement also holds if one includes a background cosmo-
logical constant, but it does not when applied to rotating
black holes.
Finally, since we are viewing the black hole as a physical

membrane moving in a background geometry, we can envis-
age computing the gravitational radiation that this motion
creates. In the same spirit as the quadrupole coupling of a
source to the radiation field, we can couple the membrane
stress tensor to linearized gravitational perturbations of the
background. It is clear from our earlier discussion that such a
coupling between near and far zones is nonperturbative in
1=D: the emission of radiation from the slowly oscillating
black hole is suppressed exponentially (∼e−D) or even
factorially (D−D) (Emparan, Suzuki, and Tanabe, 2013;
Bhattacharyya et al., 2017; Andrade, Emparan et al., 2019a).
The theory of the radiation emission from the coupling to

the membrane was worked out in detail by Bhattacharyya
et al. (2017). It would be interesting to put it to use to calculate
the gravitational waves emitted from a nonlinearly relaxing
black hole or, much more ambitiously, the collision and
merger of two black holes. As we see in Sec. VI, these
phenomena have already been studied in a large D membrane
approach, but thus far gravitational wave emission has been
estimated only heuristically (Andrade, Emparan et al., 2019a).

4. Extensions

The membrane equations (4.18) have been extended in
many ways:

• The membrane can carry charge as a conserved current in
its world volume, and much of the previous discussion
extends to this case (Bhattacharyya, Mandlik et al.,
2016; Bhattacharyya et al., 2017; Kundu and Nandi,
2018; Mandlik and Thakur, 2018).

• Subleading corrections in 1=D, as well as the inclusion
of a cosmological constant, have been successfully
incorporated into the equations (Dandekar, De et al.,
2016; Bhattacharyya et al., 2018; Bhattacharyya, Bis-
was, and Dandekar, 2018; Kundu and Nandi, 2018;
Biswas, 2019).

• Membrane equations have been derived for gravitational
theories with higher-curvature terms in the action,
namely, Einstein-Gauss-Bonnet gravity (Saha, 2019)
and a general fourth-derivative gravity theory (Kar,
Mandal, and Saha, 2019), and their properties were
further studied by Bhattacharya et al. (2020) and
Dandekar and Saha (2020). The analysis is possible
perturbatively only in the couplings to the higher-
derivative terms, a point that we return to lin Sec. IX.

In all these extensions, one finds agreement whenever there
is a previous calculation of quasinormal mode frequencies at
large D.

Roberto Emparan and Christopher P. Herzog: Large D limit of Einstein’s equations

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045005-14



5. Limitations

It is clear from the derivation of the effective theory that the
equations are not valid when temporal gradients or spatial
gradients along the horizon are OðD=r0Þ (where r0 is a
characteristic length of the horizon). Since the effective
equations of Sec. IV.D.1, and also those of Suzuki and
Tanabe (2015b) and Tanabe (2016c), correctly capture the
properties of Myers-Perry black holes and black rings,14 it is
possible to use these theories for stationary configurations
where the horizon modifies its shape away from sphericity by
amounts of the order of Oðr0Þ. The effective theories can also
deal with nonuniform black strings with inhomogeneity of the
size Oðr0=

ffiffiffiffi
D

p Þ (see Sec. V), but not on much shorter
scales Oðr0=DÞ.15
However, when time evolution is involved, the effective

theories in the Japan-Barcelona framework (Emparan et al.,
2015, 2020; Emparan, Suzuki, and Tanabe, 2015a; Suzuki and
Tanabe, 2015b; Tanabe, 2016a, 2016c) encounter a limitation.
In these formulations, one has to first specify a stationary
membrane shape by solving the soap-bubble equation (4.21);
then one lets this shape fluctuate dynamically with an
amplitude that is Oðr0=DÞ, so it remains within the near-
horizon region of the stationary solution. Attempting to make
this amplitude larger, of the sizeOðr0Þ, renders the fluctuation
non-normalizable in the near zone, thus entering the regime of
nondecoupled dynamics. As a consequence, these theories can
deal only with time-dependent variations of the radius of the
horizon that are small, with amplitude not more thanOðr0=DÞ
away from the stationary shape.16

This limitation is not apparent in the Indian formulation, so
in principle Eqs. (4.17) and (4.18) could describe large Oðr0Þ
time-dependent fluctuations of an amplitude comparable to
the horizon size. However, these equations have not been
applied yet to investigate nonlinear time-dependent processes.
To date all such studies have employed the effective theory of
black branes that we see in Sec. IV.E, for which, as Eq. (4.36)
shows, the fluctuations in r0 are of the size Oð1=DÞ. In the
derivation of these equations by Dandekar, Mazumdar et al.
(2016), this condition follows necessarily from Eq. (4.17).
A complete understanding of the scope of the large D

effective theories would require one to verify explicitly
whether Eqs. (4.17) and (4.18) can overcome this limitation.17

As a concrete and interesting test, one may try to derive from
them a set of two nonlinear 1þ 1 partial differential equations
(PDEs) for black strings with large dynamical fluctuations,
with an amplitude that is an Oð1Þ fraction of the black string
thickness, and which reduce to Eqs. (4.37) and (4.38) when
the amplitudes are Oðr0=DÞ.
Another interesting phenomenon where this question is

relevant is the evolution of the merger of two black holes. The
method employed by Andrade, Emparan et al. (2019a, 2019b)
to investigate these collisions, which we review in Sec. VI.B,
requires the horizon to be within an amplitudeOðr0=DÞ of the
stationary shape. If the large D techniques could go beyond
this regime, a more complete description of the merger would
be possible.

6. Membrane paradigms

We now comment on the relation between the large D
effective theories of any variety and the older membrane
paradigm of Damour (1982) and Price and Thorne (1986). In
spite of broad similarities, the large D theories differ from the
membrane paradigm in crucial ways. Like the large D
equations for the collective coordinates, the membrane para-
digm consists of constraint equations on a surface on, or just
outside, a horizon. However, unlike the large D approach,
these constraints are not imposed after having integrated the
dynamics near the horizon. In fact, they apply generally to any
null hypersurface in Einstein’s theory in any dimension,
without requiring any separation of scales. They employ
arbitrarily large boosts close to a Rindler horizon.
The membrane paradigm is a suggestive way of writing the

boundary conditions on a null hypersurface, but no more than
that. The radial dependence is not integrated, so it is not an
effective theory in the sense that we discussed previously, with
dynamical information about the possible shapes and fluctua-
tions of the horizon. As a consequence, the membrane
paradigm is more general, but it is also more limited than
the large D equations for solving the physics of black holes.

E. Effective theory for black branes

1. Black brane equations

We now focus on the fluctuations of a black brane extended
along a finite number p of spatial directions. It is known from
the work of Kol and Sorkin (2004), Asnin et al. (2007),
Camps, Emparan, and Haddad (2010), and Emparan, Suzuki,
and Tanabe (2013) that the most interesting dynamics of a
black brane, the Gregory-Laflamme instability, occurs over
length scales of the order of ∼1=

ffiffiffiffi
D

p
along the horizon.

Therefore, we appropriately rescale the spatial directions
σi → σi=

ffiffiffi
n

p
so that the background metric where the mem-

brane moves is

ds2 ¼ −dt2 þ 1

n
δijdσidσj þ dρ2 þ ρ2dΩnþ1: ð4:32Þ

Here i ¼ 1;…; p, so now

n ¼ D − p − 3: ð4:33Þ

14For black rings, see also Armas and Parisini (2019) and Mandlik
(2020).

15Nonuniformity on black strings on scales Oðr0=DÞ can be
described at large D if one leaves the remit of these effective theories
(Emparan and Suzuki, 2019).

16One might envisage a membrane that changes slowly away from
the stationary shape, with time gradients of Oð1=r0Þ, building up
over time to a large Oðr0Þ deformation in shape. The Japan-
Barcelona framework cannot accommodate this, and it is not clear
either whether it is compatible with the constraint in the Indian
theories that the velocity must be tangential to the horizon.

17The Indian framework could not be extended to cases of large
temporal gradients if such fluctuations would always belong to
nondecoupled dynamics and proceed on fast timescales of the order
of 1=D. Heuristically, recall that nondecoupled frequencies are
ω ∼D=r0, and they may be excited when the black hole fluctuates.
A deformation away from a stationary solution of the same order (in
D) as r0 might be expected to excite frequencies OðD=r0Þ, so the
evolution will happen on fast timescales Oðr0=DÞ.
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Time is not rescaled since the frequency of Gregory-
Laflamme modes is of order 1. Then we will consider small
velocities

uM ¼
�
−1þOðn−1Þ; viðt; σÞffiffiffi

n
p

�
: ð4:34Þ

If the fluctuating radius of the membrane surface is at

ρn ¼ mðt; σÞ; ð4:35Þ

then when n is large

ρ ¼ 1þ lnmðt; σÞ
n

: ð4:36Þ

Plugging all of this into the membrane equations (4.17)
and (4.18), they become (Dandekar, Mazumdar et al., 2016)

∂tmþ∇iðmviÞ ¼ 0 ð4:37Þ

and

∂tðmviÞ þ∇jðmvivj þ τijÞ ¼ 0; ð4:38Þ

with

τij ¼ −ϵmδij − 2m∇ðivjÞ −m∇j∇i ln m: ð4:39Þ

We introduce here a sign parameter ϵ to accommodate the fact
that the same effective equations apply for a black brane in
AdS, changing only18

ϵ ¼
�þ1 for asymptotically flat ðAFÞ;
−1 for AdS:

ð4:40Þ

The easiest way to derive this connection uses the AdS-Ricci
flat correspondence (Caldarelli et al., 2013, 2014), which
implies a close relationship between brane solutions in AdS
and asymptotically flat space. In the limitD → ∞, it yields the
previous result.
The equations are invariant under constant Galilean boosts

σi → σi − wit; vi → vi þ wi; ð4:41Þ

which is expected since we have taken small velocities.
There is a definite hydrodynamic flavor to these equations:

Eq. (4.37) is the continuity equation for a fluid with mass
density m and velocity field vi, and Eq. (4.38) is the
conservation equation for the momentum density mvi with
stress tensor τij. This is a nonrelativistic limit of the fluid of
Section IV.B, now moving in the flat geometry (4.32). This
fluid is compressible, with pressure

P ¼ −ϵm ð4:42Þ

and shear and bulk viscosities [the latter is nonzero for an AF
black p-brane; see Eq. (4.8)]

η ¼ m; ζ ¼ 1þ ϵ

p
η: ð4:43Þ

The entropy density is s ¼ 4πm, and since the mass is
conserved, so is the entropy. Again, viscous entropy produc-
tion enters only at the next order in 1=n (Herzog, Spillane, and
Yarom, 2016; Andrade et al., 2020). However, entropy can be
generated at leading order in charged fluids when there is
charge diffusion, i.e., via Joule heating (Emparan et al., 2016;
Andrade et al., 2020).
These properties agree with the largeD limit of the effective

fluids for AF and AdS black branes in the hydrodynamic
theories of Bhattacharyya, Loganayagam et al. (2008) and
Camps, Emparan, and Haddad (2010). But the differences in
the theories are instructive: the constitutive relation for the
stress-energy tensor (4.39) contains terms with one and two
derivatives, and, unlike in hydrodynamics, here these are
leading-order terms in 1=D and hence are allowed to become
as large as the zero-derivative, perfect fluid pressure term. The
reason why the derivative expansion terminates in Eq. (4.39)
is not that higher gradients are assumed to be small and
neglected, but that an infinite number of higher-order transport
coefficients of the black brane vanish when D → ∞. We
return to this point in Sec. VII.A, but for now we mention that
the elastic interpretation of the equations (where m plays the
role of the membrane radius) makes this feature less mys-
terious, as these two-derivative terms are needed to complete
the expression for the extrinsic curvature of the membrane to
leading order at large D (Emparan et al., 2016).
A conveniently simple form of the equations is obtained by

introducing

pi ¼ mvi þ∇im: ð4:44Þ

Then Eqs. (4.37) and (4.38) become

∂tm −∇2m ¼ −ϵ∇ipi; ð4:45Þ

∂tpi −∇2pi ¼ ∇im −∇j

�
pipj

m

�
: ð4:46Þ

These equations were first derived by Emparan, Suzuki, and
Tanabe (2015a) using the metric Ansätze

ds2 ¼ 2dt dρ − Adt2 −
2

n
Cidσidtþ

1

n
Gijdσidσj þ ρ2dΩnþ1

ð4:47Þ

in the AF case, and

ds2 ¼ 2dtdρþ ρ2
�
−Adt2 −

2

n
Cidσidtþ

1

n
Gijdσidσj

�

ð4:48Þ

in AdS. Requiring that these metrics solve the Einstein
equations in an expansion in 1=n yields

18In AdS the world volume is infinite dimensional, but we
consider that there is nontrivial dependence in only a finite number
p of directions.
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A ¼ 1 −
mðt; σÞ
ρn

; Ci ¼
piðt; σÞ

ρn
; ð4:49Þ

Gij ¼ δij þ
1

n

piðt; σÞpjðt; σÞ
mðt; σÞρn ; ð4:50Þ

withm and pi constrained to satisfy Eqs. (4.45) and (4.46). To
transform the Eddington-Finkelstein metric (4.47) into the
Kerr-Schild form (4.13), change tþ ρ → t and identify
mðt; σÞ=ρn → ρ−nðt; σÞ.
In this form, Eqs. (4.45) and (4.46) resemble inhomo-

geneous heat equations, whose dissipative properties make
them well behaved and suited for numerical evolution. All the
nonlinearity of the gravitational Einstein equations has been
reduced to the last term in Eq. (4.46).
The sign difference ϵ between AdS and AF black branes is

not innocuous. Consider small fluctuations and long wave-
lengths, such that we can neglect the nonlinear term and the
two-derivative terms in Eqs. (4.45) and (4.46). Then m and pi
satisfy wave equations

ð∂2
t − ϵ∇2Þðm; piÞ ≈ 0: ð4:51Þ

For AdS this describes sound waves with speed 1, which in
physical length units is the correct sound velocity cs ¼ 1=

ffiffiffi
n

p
of a conformally invariant fluid at large n. For asymptotically
flat black branes, the sound speed is instead imaginary:
density fluctuations are unstable and tend to clump. This is
the Gregory-Laflamme instability of the black brane. We
return to it at length in Sec. V.

2. Extensions

The black brane effective equations are taken further in
several different directions19:

• Branes with electric charge and p-brane charge and
external electric field (Emparan et al., 2016).

• Higher orders in 1=D (Herzog, Spillane, and Yarom,
2016; Rozali and Vincart-Emard, 2016; Emparan
et al., 2018).

• Curved background geometries (deformed boundary
metrics) (Andrade, Pantelidou, and Withers, 2018).

• Higher-curvature theories (Chen, Li, and Zhang, 2017,
2018; Chen et al., 2019).

• Other classes of deformations of AdS black branes
(Iizuka, Ishibashi, and Maeda, 2018).

• Similar effective theories for finite black holes (Herzog
and Kim, 2018; Tanabe, 2016a, 2016b, 2016c; Chen, Li,
and Wang, 2017; Chen, Li, and Zhang, 2018).

The simplicity that these equations bring to the nonlinear
dynamics of black branes has made them a successful tool for
applications of the large D expansion. Some of these follow
from an unexpected feature of the equations that we
explain next.

3. Black holes as blobs on a brane

Although the effective equations (4.45) and (4.46) have
been derived for fluctuating black branes with an infinite
extent, they turn out to also capture an unexpected amount of
the basic physics of localized black holes, affording a simpler
approach to them than the general membrane equations.
Andrade, Emparan, and Licht (2018) observed that

Eqs. (4.45) and (4.46) support a class of time-independent
solutions localized with Gaussian profiles. Restricting to
2þ 1 dimensions with δijdσidσj ¼ dr2 þ r2dϕ2, the simplest
of these solutions is

mðrÞ ¼ m0e−r
2=2; prðrÞ ¼ ∂rm ð4:52Þ

(so vi ¼ 0), with constant m0. Then Andrade, Emparan, and
Licht (2018) [following Suzuki and Tanabe (2015a)] claimed
that this Gaussian blob on a membrane (whose density does
not asymptote to a constant but vanishes exponentially)
approximates the geometry and properties of the large D
Schwarzschild black hole well.
To see how this can be so and to make contact with the

Ansatz (4.47) for a 2-brane, we go once again to the black hole
metric (2.1) and write it in D ¼ nþ 2þ 3 dimensions as

ds2 ¼ −ð1 − r̂−ðnþ2ÞÞdt̂2 þ dr̂2

1 − r̂−ðnþ2Þ

þ r̂2ðdθ2 þ sin2θdϕ2 þ cos2θdΩnþ1Þ ð4:53Þ

(we set r0 ¼ 1 for simplicity). Define the new coordinates R
and r as

R1=n ¼ r̂ cos θ;
rffiffiffi
n

p ¼ r̂ sin θ ð4:54Þ

(such that r̂n ¼ Rer
2=2 as n → ∞) and also an Eddington-

Finkelstein time coordinate

t ¼ t̂ −
1

n
ln ðR − e−r

2=2Þ: ð4:55Þ

Now take the large n limit of Eq. (4.53), keeping t, r, and R
finite; the metric takes the form of a black membrane (4.47)
with the Gaussian profile of Eq. (4.52), normalized tom0 ¼ 1.
Observe that Eq. (4.54) implies that the blob extends over a
region of small angular size Δθ ∼ 1=

ffiffiffi
n

p
around θ ¼ 0.

Indeed, most of the area of the sphere Snþ3 comes from this
region, and for the same reason the total mass and horizon area
of the black hole are obtained with exponential accuracy by
integrating the mass and area densities of the membrane.
Heuristically, these blobs can be regarded as end points of the
instability of a black brane (Emparan, Suzuki, and Tanabe,
2015a).20

19These have been obtained independently of the extensions
mentioned in Sec. IV.D.4 of the “parent equations” (4.17) and (4.18).

20To properly regularize it, put the unstable membrane in a finite
box and take the limit where the box becomes infinite keeping the
total energy fixed. Bear in mind that when D → ∞ the black brane
instability forms the blobs and ends without singular pinches to zero
thickness (Emparan, Suzuki, and Tanabe, 2015a; Emparan et al.,
2018).
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This analysis can be extended to Myers-Perry rotating
black holes. For a single spin, the profiles are

m ¼ m0 exp

�
−

r2

2ð1þ a2Þ
�
; pr ¼ ∂rm;

pϕ ¼ mr2
a

1þ a2
; ð4:56Þ

so the effect of the rotation is to spread the blob along the
rotation plane; see Fig. 4(a). Note that the ratio pϕ=m ¼
a=ð1þ a2Þ ¼ Ω is the angular velocity. Integrating the
relevant stress-energy components over the Gaussian profile
produces a total mass M and angular momentum J for the
spinning disks, from which one finds J=M ¼ 2a. The angular
velocity is restricted to the range Ω ∈ ½0; 1=2�, reaching a
maximum at a ¼ 1. For velocities Ω < 1=2, a can take one of
two values; the angular velocity vanishes both in the static
a → 0 and “ultraspinning” a → ∞ limit.
Andrade, Emparan, and Licht (2018) also found spinning

black bar solutions that obey

mðt; r;ϕÞ ¼ exp

�
1 −

r2

4
f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Ω2

p
cos½2ðϕ − ΩtÞ�g

�
:

ð4:57Þ

These are oblong Gaussians rotating with angular velocity Ω;
see Fig. 4(b). For these profiles, J=M ¼ 1=Ω. The reality
constraint on m restricts the angular velocity to the range
Ω ∈ ½0; 1=2�. At Ω ¼ 1=2, the spinning black bars become
axisymmetric and join the spinning disk solutions, as shown
in Fig. 5.
These rotating bars break the axial symmetry in the ϕ

direction. Generically, such an object should emit gravita-
tional waves and could not exist in a stationary configuration.
However, when D → ∞ the emission of gravitational radia-
tion is strongly suppressed as D−D. Black bars are then
expected to exist as long-lived configurations when D is finite
but large, as we discuss in greater detail in Sec. VI.
With these stationary solutions in hand, one can then

perturb them slightly. Requiring that the perturbations are
regular and that they decay at infinity, they reproduce the
quasinormal modes of the large D Schwarzschild and Myers-
Perry black holes. For the latter, when the rotation parameter is
a ¼ ffiffiffi

3
p

;
ffiffiffi
5

p
;

ffiffiffi
7

p
… there are zero modes that mark the onset

of ultraspinning instabilities; recall Eq. (3.21). The “phase

space” of the spinning disk and bar solutions is shown in
Fig. 5, along with zero modes that indicate such instabilities.
The qualitative picture that emerges is that for small J=M the
spinning disks are stable. However, once J=M exceeds 2, the
spinning bar becomes a preferred solution, at least for a little
while, before new zero modes appear. The first (parity odd)
mode appears at J=M ¼ 3=

ffiffiffi
2

p
, followed by a parity even

mode at J=M ¼ 4=
ffiffiffi
3

p
. Licht, Luna, and Suzuki (2020)

suggested that the parity odd modes of the bar may not lead
to instabilities,21 but after the first parity even mode appears,
spinning bars decay in instabilities that are analogs of the GL
instability that we consider in Sec. V for the black string.
Besides Myers-Perry black holes and black bars,

Eqs. (4.45) and (4.46) reveal the existence and properties
of many other new large D black holes as blobs with a variety
of deformation patterns (Andrade, Emparan et al., 2019a;
Andrade et al., 2020; Licht, Luna, and Suzuki, 2020). We

FIG. 4. The profile mðrÞ for (a) the spinning black disk and (b) the spinning black bar. From Andrade, Emparan, and Licht, 2018.

1 2 3 4 5
J/M0.0

0.1

0.2

0.3

0.4
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FIG. 5. Phases of spinning disk large D, i.e., Myers-Perry
black holes (dashed blue line) and spinning black bars (black
line) in the plane ðJ=M;ΩÞ. The dots indicate the presence of
nonaxisymmetric corotating zero modes for the spinning disks
and bars. The dots in the disk branch encircled in black indicate
axisymmetric zero modes. New families of solutions branch
from all of these zero modes, as explored in greater detail by
Licht, Luna, and Suzuki (2020). From Andrade, Emparan, and
Licht, 2018.

21The parity odd zero modes are associated with solutions that
have larger angular frequency than the spinning black bar. As the size
of the deformation increases, these solution branches quickly become
singular and terminate (Licht, Luna, and Suzuki, 2020). In the case of
axisymmetric perturbations of the spinning disk, the parity odd and
parity even modes lead to black Saturns and black rings, respectively.
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comment on some aspects and consequences of the resulting
enriched phase diagram in Sec. VI.
Furthermore, using Eq. (4.41) a blob can be boosted to

move with constant velocity. Andrade, Emparan et al. (2019b)
took the further step of throwing two such solutions at each
other and observing the time evolution. The results of this
experiment are also discussed in Sec. VI.

V. THE GREGORY-LAFLAMME INSTABILITY AT
LARGE D

About 25 years ago, Gregory and Laflamme (1993, 1994)
found that a uniform black string extended along a periodic
direction develops a dynamical instability when the length of
that direction grows too large. The end point of this instability
has been a topic of lengthy and fruitful discussion ever since.
One possibility, advocated by Gregory and Laflamme, is that
the end point should be a localized black hole. However, such
a transition requires that the horizon pinch-off, creating
arbitrarily large curvature outside it and violating cosmic
censorship. Horowitz and Maeda (2001) argued instead that
the end point may simply be a nonuniform black string
(NUBS). In seeming support of their argument, using the
Raychaudhuri equation they were in fact able to prove that
horizon pinch-off could only occur at infinite affine parameter,
measured with respect to null generators of the horizon.
However, as pointed out a few years later (Garfinkle, Lehner,
and Pretorius, 2005; Marolf, 2005), affine time is not the same
thing as time measured by an observer far from the black
string, and with reasonable assumptions (for example, that the
spacetime is similar to that of a static Schwarzschild black
hole) infinite affine time may correspond to finite time for the
observer. Independently, several researchers constructed
NUBS solutions in perturbation theory, close to the point
of dynamical instability. Gubser (2002) in five dimensions and
Wiseman (2003) and Kudoh and Wiseman (2005) in six
dimensions found that these NUBS solutions had larger
entropy and were thermodynamically disfavored, seeming
to support the original localized black hole scenario of
Gregory and Laflamme.
The situation in a low dimension was later clarified by a

time-dependent numerical simulation in D ¼ 5 by Lehner and
Pretorius (2010). The black string horizon evolves in a self-
similar fractal cascade. At any given time, the solution
consists of spherical black holes connected by thin black
strings. The thin black strings between the black holes then
evolve further into smaller black holes connected by yet
thinner strings. The behavior is a gravitational analog of the
Rayleigh-Plateau instability exhibited by thin streams of water
(Cardoso and Dias, 2006). The numerical simulation crashes
when the curvature in the thinner segments becomes
extremely large, but extrapolating the evolution indicates that
a singularity will be reached in a finite asymptotic time
(Lehner and Pretorius, 2010, 2012)22

Thus, cosmic censorship is violated.23 The further evolution
requires new laws of physics beyond Einstein’s classical
theory, involving arguably a quantum theory of gravity.
Nevertheless, a plausible evolution across the singularity
was proposed by Andrade, Emparan et al. (2019a, 2019b)
such that the input and consequences from quantum gravity
are minimal. The neck that forms in the horizon has extremely
high curvature and may be regarded as a small “Planck-size
black hole,” with high effective temperature. Such an object,
without any conserved charges that could stabilize it, is
expected to decay quantum mechanically by emitting a few
Planck-energy quanta in a few Planck times. Then the neck
evaporates in much the same manner as the neck in an
unstable fluid jet evaporates (literally) and breaks the jet into a
number of droplets. In the fluid jet, classical hydrodynamics
quickly resumes control of droplet evolution after the brief
episode of evaporation. If this picture also applies to black
strings, the horizon pinch quickly evaporates through quan-
tum-gravity effects, splitting the horizon into separate black
holes, and classical evolution takes over again. Predictivity of
the entire evolution using general relativity is maintained to
great accuracy, with uncertainties proportional to at most a
power of MPlanck=M, where M is the total mass of the
system.24 This picture assumes the evolution observed in
numerical simulations, where the horizon shrinks without
stopping until a singularity forms.
Importantly for our large D perspective, Sorkin (2004)

made a key observation that the end point of the instability
should in fact depend sensitively on the spacetime dimension.
Generalizing Gubser’s perturbative method to an arbitrary
dimension, he was able to establish that for D > 13 there is a
second-order transition to a NUBS, while for D ≤ 13 the
transition can only be first order, i.e., the perturbative NUBS
solutions have higher entropy than their uniform cousins of
equal mass.25 It is this D dependence that makes the Gregory-
Laflamme instability a preeminent application, perhaps the
best application, for a large D approach to Einstein’s
equations.
We begin by reviewing a heuristic argument made by

Sorkin (2004) comparing the entropy of a black string and a
black hole of the same mass in D dimensions. For simplicity,
we work in the microcanonical ensemble at fixed entropy S
and energy E. To this end, we review the thermodynamic

22See also Figueras et al. (2017) for a related numerical simulation
of spinning black holes.

23There is active debate in the literature about these issues; see,
e.g., Iizuka, Ishibashi, and Maeda (2018) for a large D analysis of
“mushroom” solutions in AdS that comes to the conclusion that in
that instance cosmic censorship is not violated. They studied black
branes “polarized” under an electromagnetic field sourced at the
boundary, for which violations of cosmic censorship were argued in
low dimensions by Horowitz, Santos, and Way (2016). However, the
physics of these violations appears to be different than in the case of
the GL instability.

24The loss of predictivity may even be exponentially small: the
evolution of a fluid jet, both right before and right after breaking into
droplets, is controlled by attractor solutions of the hydrodynamic
equations (Eggers, 1997).

25In this problem D can actually be regarded as a continuous
parameter, so one can more accurately determine that the critical
dimension is D ≈ 13.6 (Sorkin, 2004; Emparan et al., 2018).
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properties of black p-branes in D dimensions, where p is the
number of spatial dimensions of the membrane. We start with
the asymptotically flat, black brane metric in a D-dimensional
spacetime. This metric satisfies Einstein’s equations in
vacuum. The line element in Eddington-Finkelstein coordi-
nates is26

ds2 ¼ 2dtdr −
�
1 −

rn0
rn

�
dt2 þ δijdxidxj þ r2dΩ2

nþ1; ð5:1Þ

with i; j ¼ 1;…; p and dΩ2
nþ1 the line element on a sphere

with unit radius.
From the Bekenstein-Hawking formula for the entropy of a

black hole S ¼ A=4GN , where A is the area of the event
horizon, we can read off an entropy density

s ¼ rnþ1
0 Ωnþ1

4GN
ð5:2Þ

per unit volume of the black brane.27 The Hawking temper-
ature can be determined as follows from the usual trick of
analytically continuing to Euclidean time and insisting that
there is no conical singularity at the horizon or, equivalently,
from the surface gravity:

T ¼ n
4πr0

: ð5:3Þ

The first law of black hole thermodynamics tells us that
δε ¼ Tδs, where ε is an energy density, from which we can
deduce that

ε ¼ ðnþ 1Þrn0Ωnþ1

16πGN
: ð5:4Þ

We now want to compare the black hole p ¼ 0 result with
the black string p ¼ 1 result in D dimensions. To render
thermodynamic quantities finite, we compactify the x direc-
tion with periodicity L. For the string, our previously
mentioned general thermodynamic formulas reduce to the
special case

Ss ¼ sL ¼ LrD−3
s ΩD−3

4GN
; Es ¼ εL ¼ ðD − 3ÞLrD−4

s ΩD−3

16πGN
;

ð5:5Þ

where the horizon of the string is at r ¼ rs. We compare the
corresponding values for a black hole in D dimensions to this
result. Our black hole solution is no longer a solution if one of
the spatial directions is compactified. Nevertheless, for small

black holes we expect the corrections to s and ε to be small.
Indeed, in the large D limit, where the gravitational effects of
the black hole die off as r−n, we expect this approximation to
become better and better. We find then that

Sh ¼
rD−2
h ΩD−2

4GN
; Eh ¼

ðD − 2ÞrD−3
h ΩD−2

16πGN
; ð5:6Þ

where the horizon of the black hole is at r ¼ rh.
In the stringy case the entropy grows with energy as

log Ss ∼ ½ðD − 3Þ=ðD − 4Þ� logE, while in the black hole case
we instead find that log Sh ∼ ½ðD − 2Þ=ðD − 3Þ� logE. As
ðD − 3Þ=ðD − 4Þ > ðD − 2Þ=ðD − 3Þ for the cases of interest
where D > 4, in the microcanonical ensemble we expect a
low-energy phase where the black hole is stable (Sh > Ss), and
a high-energy phase where the black string is stable (Ss > Sh).
The transition point, where the two entropies are equal, occurs
when the horizon radii are

r�s ¼
D − 2

D − 3
r�h

¼ L

�
D − 3

D − 2

�
D−2 Γ½ðD − 1Þ=2�ffiffiffi

π
p

Γ½ðD=2Þ − 1�

¼ L
ffiffiffiffi
D

p

e
ffiffiffiffiffi
2π

p þOðD−1=2Þ: ð5:7Þ

For this phase transition to be self-consistent, the black hole
should have a diameter that is less than or equal to L, i.e., it
should fit in the box. This constraint leads to a critical value of
the dimension D ¼ 13.06. In other words, for D≳ 13 we do
not expect to find a stable localized black hole phase near the
point in the phase diagram where the entropies would
otherwise be equal.28 Instead, for sufficiently large D, the
uniform black string evolves into a nonuniform black string
for thicknesses slightly below the critical thickness, as we
see later.
In Sec. IV.E.1, we gave the first steps for identifying the GL

instability in a largeD limit and for constructing the NUBS. A
solution for a large D black string with varying profile along
its length is given by inserting into Eqs. (4.47) and (4.49) any
functions mðt; zÞ and pðt; zÞ that solve

∂tm ¼ −∂zðp − ∂zmÞ; ð5:8Þ

∂tðp − ∂zmÞ ¼ −∂z

�
p2

m
þ ∂2

zm − 2∂zp −m

�
: ð5:9Þ

Wewrite the pair of partial differential equations in such a way
that they can be interpreted as conservation of a stress tensor
∂μTμν ¼ 0 with energy density T00 ∼m and momentum
Ttz ∼ p − ∂zm. Equation (4.46) gives an equivalent purely
second-order presentation of the differential equations that is
usually used, where we replace the second equation with a
linear combination

26This is the uniform black brane case of Eqs. (4.47) and (4.49)
with constant m ¼ rn0 and pi ¼ 0 (and ρ → r; σi=

ffiffiffi
n

p
→ xi).

27The volume of a (D − 1)-dimensional unit sphere

ΩD−1 ¼
2πD=2

ΓðD=2Þ ∼
�
2π

D

�
D=2

eD=2

� ffiffiffiffi
D
π

r
þOðD−1=2Þ

�

gets exponentially small as D increases.

28We could start with an extremely thin string, well below the
critical thickness and also much smaller than L. In this case, there is
no constraint from the size of the box. The isolated black holes of the
same energy have a radius rh ∼ rs ≪ L in the large D limit.
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∂tp − ∂2
zp ¼ ∂z

�
m −

p2

m

�
: ð5:10Þ

The uniform black string solution fixes the constant of
proportionality that relates Ttt tom. From Eq. (5.4) we see that

Ttt ¼ ðnþ 1ÞΩnþ1

16πGN
½mþOðn−1Þ�: ð5:11Þ

The conservation equations (5.8) and (5.10) then suggest

Ttz ¼ ðnþ 1ÞΩnþ1

16πGN
½p − ∂zmþOðn−1Þ�; ð5:12Þ

Tzz ¼ ðnþ 1ÞΩnþ1

16πGN

�
p2

m
þ ∂2

zm − 2∂zp −mþOðn−1Þ
�
:

ð5:13Þ

Emparan et al. (2015) obtained the same result for a quasilocal
stress tensor defined on a constant large R slice of the
geometry.
The conservation equations (5.8) and (5.10) can be solved

to find static NUBS solutions. These static solutions satisfy
Ttz ¼ 0 or, equivalently, at leading order in the 1=n expansion
p ¼ ∂zm, leading to the following nonlinear ordinary differ-
ential equation for mðzÞ:

ðm0Þ2
m

−m00 −m ¼ −τ; ð5:14Þ

where τ is a constant proportional to the tension of the black
string. This ordinary differential equation (ODE) becomes
simpler with the substitution mðzÞ ¼ e−ρðzÞ:

ρ00ðzÞ ¼ 1 − τeρðzÞ: ð5:15Þ

Equation (5.15) describes periodic motion of a particle in a
Toda-like potential VðρÞ ¼ τeρ − ρ provided that τ > 0 (Toda,
1975; Oppo and Politi, 1985; Emparan et al., 2015). As such,
it has a “conserved energy” and can be reduced to first-order
form

1
2
ρ0ðzÞ2 þ τeρðzÞ − ρðzÞ ¼ c; ð5:16Þ

where c is a second integration constant. This periodic motion
in a bounded potential is reinterpreted here as a periodic
profile of the NUBS that can be adapted to a choice of periodic
boundary condition.
A particularly simple solution comes from Eq. (5.15) in

the limit of vanishing tension τ ¼ 0, in which case the
potential is not bounded. In this case, the solution is a
Gaussian m ¼ e−z

2=2. Such a solution will not obey periodic
boundary conditions consistent with a compactified z direc-
tion. Yet if the box is large enough, m will be exponen-
tially close to zero at the edges of the box, and the solution is
a good approximation (Suzuki and Tanabe, 2015a). Arguing
as in Sec. IV.E.3, one sees that this Gaussian solution is a
one-dimensional version of the blobs that approximate

exponentially well the properties of a spherical
Schwarzschild black hole.
Time-dependent solutions are more difficult to analyze in

general. However, in Sec. IV.E.1 we straightforwardly iden-
tified the largeD version of the GL instability, and here we can
make it more precise. Linearizing the conservation equa-
tions (5.8) and (5.10) about the uniform black string solution
using the Ansatz

m ¼ m0 þ δmeΩtþikz; p ¼ δpeΩtþikz; ð5:17Þ

one finds the dispersion relation

Ω ¼ �kð1 ∓ kÞ: ð5:18Þ

For 0 ≤ jkj < 1, there is a growing mode and the uniform
black string is unstable. The wave number kGL ¼ 1 is at the
threshold of instability and corresponds to Ω ¼ 0. With some
work (Asnin et al., 2007; Emparan, Suzuki, and Tanabe,
2015b), the analysis can be carried to higher order in the 1=n
expansion as follows:

kGL ¼ 1 −
1

2n
þ 7

8n2
þ −25=16þ 2ζð3Þ

n3

þ 363=128 − 5ζð3Þ
n4

þOðn−5Þ: ð5:19Þ

This analytic result reproduces numerical calculations of kGL
down to D ¼ 6 with better than 2.4% accuracy.
To analyze stability, we now follow two distinct

approaches: thermodynamic and dynamical. For thermody-
namic stability, we analyze static NUBS solutions. We extend
the linear analysis at Ω ¼ 0 and k ¼ kGL to higher, nonlinear
order in the amplitude of the perturbation. Decomposing the
NUBS in a Fourier series, one finds for the static string

mðzÞ ¼ 1þ δmcoskzþ δm2

6
cos2kzþ δm3

96
cos3kzþOðδm4Þ;

ð5:20Þ

pðzÞ ¼ ∂zmðzÞ; k ¼ 1 −
δm2

24
þOðδm4Þ: ð5:21Þ

We set m0 ¼ 1 and let k depend on δm to reduce the
complexity of the expansion. These expressions can straight-
forwardly be extended to higher order in δm and 1=n
(Emparan et al., 2018).
To see whether this solution is thermodynamically stable,

we compare the energy and entropy of the NUBS with its
uniform cousin. We define the following rescaled energy and
entropy densities that absorb some of the n dependence:

MðzÞ≡ −
16πGN

ðnþ 1ÞΩnþ1

Tt
t ¼ mðzÞ þOðn−1Þ; ð5:22Þ

SðzÞ≡
ffiffiffi
n

p
Ωnþ1

areaðz;RhÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11ðz;RhÞ

p
Rðnþ1Þ=n

h ðzÞ ¼ mðzÞ þOðn−1Þ; ð5:23Þ
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where G11 is as defined in Eq. (4.50). Note that the entropy
and energy are the same at leading order in the large D
expansion. Thus, a thermodynamic stability analysis requires
going to higher order in the 1=n expansion. We average these
local densities over the z coordinate to define thermodynamic
quantities

M≡
�

2π

kGLL

�
n
Z

L=2

−L=2

dz
L
MðzÞ;

S≡
�

2π

kGLL

�
nþ1

Z
L=2

−L=2

dz
L
SðzÞ: ð5:24Þ

While the conservation equations (5.8) and (5.10) give us
only the leading-order term in the 1=n expansion, one can
continue the calculation to the next few orders to obtain
(Emparan et al., 2018)

M ¼ 1þ nδm2

�
−

1

24
þ 1

3n
þ 7

12n2
þOðn−3Þ

�
þOðδm4Þ;

ð5:25Þ

S ¼ 1þ nδm2

�
−

1

24
þ 11

12n
þ 7

24n2
þOðn−3Þ

�
þOðδm4Þ:

ð5:26Þ

The Oðnδm2Þ correction to the mass changes sign at
n� ¼ 9.48, which corresponds to

D� ¼ 13.48. ð5:27Þ

This critical value ofD� is weakly sensitive to the order in 1=n
at which one truncates the expansion. If we were to use only
the first-order correction, then D� ¼ 12 while keeping further
orders yields D� ¼ 13.65 and 13.93 (Emparan et al., 2018).
As we discussed in Sec. III.F, the 1=n expansion is expected to
be asymptotic (Emparan, Suzuki, and Tanabe, 2015b), so
there should be an optimal order at which to truncate the

expansion. Given the estimate of Sorkin (2004) of the critical
value D� ¼ 13.5, that order is perhaps n−2 or n−3.29

Indeed, the fact that the correction to MðzÞ changes sign
means that for D < D� there is no available weakly nonuni-
form black string for a dynamically unstable uniform black
string to decay into; see Fig. 6. The uniform black string must
decay before it reaches the GL instability, at some larger
M� > MGL, by a first-order phase transition instead. In
contrast, for D > D� there are weakly nonuniform black
strings that can be accessed; the uniform black string is
expected to decay via a second-order phase transition into
these candidate solutions.
To double check this scenario, one should also compare the

entropy density of the weakly nonuniform strings with their
uniform cousins. The picture that emerges is shown in Fig. 6;
the entropy of the weak NUBS is larger than the UBS for
D > D� and less than the UBS for D < D�, as expected on
thermodynamic grounds. The condition on the entropy differ-
ence between the uniform and nonuniform black strings leads
to similar estimates for the critical dimension D� ≈ 13.5 in a
1=n expansion.30 One can further investigate dynamical
stability of the weakly nonuniform black strings, repeating
the linear fluctuation analysis (5.17) but about the nonuniform
background. One finds that above the critical dimension the
weakly nonuniform black strings are dynamically stable
(Emparan et al., 2018).
For D < D�, even though the transition is first order the

stable phase can still be a NUBS, just with a finite deformation
parameter. In D ¼ 12 and 13 but not D ¼ 11, both 1=n
thermodynamic analysis and a direct numerical approach
suggest that the first-order phase transition is indeed of such

FIG. 6. For D < D�, there are no weakly nonuniform black strings in the region where the uniform black strings are dynamically
unstable. Therefore, the latter cannot evolve into the former. The phase transition must happen at someM� > MGL and be first order. For
D > D�, there do exist weakly nonuniform black strings for the dynamically unstable black strings to decay into, which is consistent
with a second-order phase transition at M ¼ MGL. From Emparan et al., 2018.

29The next-order term inside the brackets in Eq. (5.25) is ≃14=n3,
and its large coefficient probably reveals that the expansion does not
converge.

30This analysis can be repeated in the canonical ensemble, at fixed
temperature instead of fixed energy. The critical value of the
dimension is then slightly less D� ≈ 12.5 (Emparan et al., 2018).
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a nature (Figueras, Murata, and Reall, 2012; Emparan et al.,
2018). The 1=n dynamical fluctuation analysis about the
nonuniform black string can be extended beyond linear order
to give some support for this scenario as well.
While we have provided evidence for a phase diagram of

the black string, what would really tie everything together is a
dynamical closed form solution that evolves a UBS to a
NUBS for k < kGL or a NUBS to a UBS for k > kGL. Such a
solution has not yet been presented in the literature to our
knowledge, but it is straightforward to work out by modifying
Eq. (5.20) to allow δm in Eq. (5.20) to have the right t and n
dependence δm → δmðt=nÞ= ffiffiffi

n
p

:

m¼ 1þ δmffiffiffi
n

p coskzþ δm2

6n
cos2kzþ δm3

96n3=2
cos3kzþOðn−2Þ;

ð5:28Þ

p ¼ −
ðδmþ δ _mÞkffiffiffi

n
p sin kz −

δm2k
3n

sin 2kz

−
δm3

32n3=2
sin 3kzþOðn−2Þ: ð5:29Þ

We allow the wave number to be freely tunable
(k ¼ 1 − k1=n) by anOðn−1Þ amount. One finds the following
differential equation for δm:

24δ _mðtÞ þ δmðtÞ3 þ 12ð1 − 2k1ÞδmðtÞ ¼ 0; ð5:30Þ

which has a solution

δmðt=nÞ ¼
ffiffiffiffiffiffiffiffiffiffi
24δk

p
ð1þ Ce−2tδk=nÞ−1=2; ð5:31Þ

where C is an integration constant and k1 ¼ 1=2þ δk.
Comparing this with Eq. (5.19), we see that δk ¼ 0 corre-
sponds to the Oðn−1Þ correction to the critical wave number
kGL. For δk > 0 or, correspondingly, k < kGL, the solution
evolves from a UBS in the distant past (t → −∞) to a NUBS
in the distant future (t → ∞), assuming that C > 0. For δk < 0

and, correspondingly, k > kGL, we need to take C < 0 to find
a real solution. It is a solution that evolves to a UBS from
something like a NUBS but that has nonzero time derivatives;
it is a solution that does not exist arbitrarily far in the past.
There is a singularity at e2t�δk=n ¼ −C, before which the
solution ceases to be real. This dependence on the sign of δk is
consonant with the fact that for δk < 0 the NUBS is a complex
saddle point: it is not a real solution of the equations of
motion.
In conclusion, one can ask what happens if one starts with a

uniform thin string in a box of length L in a high number of
dimensions, well below the onset of the GL instability
L ≫ LGL ∼ n−1=2r0. Is the end point still a NUBS?
Emparan et al. (2018) indicated that the end point of the
instability (wavy string or beads on a wire) depends on both n
and the thickness r0=L of the initial black string. At any given
finite n, thin enough strings always evolve to beads on a wire;

but as n grows larger this end point requires thinner strings. To
gain some insight, we analyze Oð1=nÞ corrections to the
Gaussian solution of Eq. (5.16), which are the largeD analogs
of isolated Schwarzschild black holes. Suzuki and Tanabe
(2015a) found that31

mðzÞ ¼ e−z
2=2

�
1 −

z4

4n
þ z6ð−16þ 3z2Þ

96n2
þOðn−3Þ

�
: ð5:32Þ

There is a breakdown in the 1=n approximation once z ∼ n1=4.
In the original unscaled spatial coordinate system, this spatial
distance is proportional n−1=4r0. Inverting the logic, this limit
suggests that already narrow boxes with a length L ∼ n−1=4r0
can support effectively tensionless black hole solutions, at
least to leading order in the 1=n approximation, that can be
interpreted as isolated Schwarzschild black holes.
There is something counterintuitive about this result, that

isolated black holes become the favored end point in the
regime where the box is still extremely narrow (L≳ n−1=4r0).
From the crude estimate that led to Eq. (5.7), one sees that
isolated spherical black holes and black strings with the same
energy satisfy rh ¼ rs to leading order in the 1=n approxi-
mation, which might suggest that isolated black holes become
the favored end point of the evolution only once L≳ 2r0.
Indeed, a more careful study (Emparan and Suzuki, 2019) of
the neck formation as the black string pinches off suggested
that the isolated black holes fit in the box only once
[r0 ¼ L=2 −Oð1=nÞ]. The gradients involved, however, are
beyond what the effective equations (5.8) and (5.10) can
handle. Thus, in the regime n−1=4 ≲ L=r0 ≲ 2 we expect the
end point to actually be a highly nonuniform black string that
looks tensionless, and hence like an isolated black hole within
the approximations of the effective theory. These nonuniform
black strings have a neck that is thinner than Oðr0Þ, but
shifting to an analysis like that by Emparan and Suzuki (2019)
it is possible to resolve the neck when its thickness is as small
as ∼Oðr0=

ffiffiffi
n

p Þ.

A. Further extensions

Generalizations of the black string and black brane effective
equations were mentioned in Sec. IV.E.2. We comment here
on their application to the GL problem.
Emparan et al. (2016) and Rozali and Vincart-Emard

(2016) considered charged black branes in a large D limit,
while Emparan et al. (2016)) went on to consider polarized
branes (electric field parallel to the brane) and black branes
charged with respect to an Abelian (pþ 2)-form. In all cases,
there is a Gregory-Laflamme-type instability. The charge
dependence of the solution modifies the dispersion relation
for the fluctuations in various ways. In the charged black
brane case, while kGL ¼ 1 remains the same, for modes with
k < kGL the growth rate Ω is reduced by the presence of the
charge. In the (pþ 2)-form case, in contrast, the onset of the

instability kGL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2p=m2

q
is reduced by the presence of

31We corrected some typographical errors in Eq. (6.22) of Suzuki
and Tanabe (2015a) and Eq. (5.1) of Emparan et al. (2018).
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the charge. Perhaps not surprisingly, in the p ¼ 2 case at large
D the end point of the instability appears to be a nonuniform
black brane with a triangular closest packed lattice symmetry
(Rozali and Vincart-Emard, 2016).
Extensions of the large D analysis of black string insta-

bilities to black rings (Tanabe, 2016a, 2016c; Armas and
Parisini, 2019; Mandlik, 2020), higher-curvature corrections
to black rings (Chen, Li, and Zhang, 2018), charged black
rings (Chen, Li, and Wang, 2017), and higher-curvature
corrections to black strings (Chen, Li, and Zhang, 2017)
exist. Note that the black rings rotate at an angular velocity
∼D−1=2 to maintain their shape, somewhat complicating the
analysis. The behavior has qualitative similarities to that of the
black strings that we have already discussed at length, but
there are also differences when they are fat. Thin black rings
exhibit a GL instability, which disappears for fat ones, but
these are afflicted by other instabilities (Santos and Way,
2015; Figueras, Kunesch, and Tunyasuvunakool, 2016;
Tanabe, 2016a, 2016c; Armas and Parisini, 2019; Mandlik,
2020). At small D, the rings and strings tend to break up into
isolated black holes. At large D, the end point is a NUBS.
There are also similarities between the GL instability and the
instability of small black holes in AdSD × SD (Herzog and
Kim, 2018) that we explore in more depth later in the context
of holography.

VI. BLACK HOLE COLLISIONS AND MERGERS

A. General aspects

The collision and merger of two black holes is the
quintessential phenomenon of general relativity: it involves
its main players (black holes and gravitational waves, hori-
zons, and curvature oscillations) in a fully dynamical situation
with strong gravitational fields, i.e., spacetime geometry
distorted to the extreme. One of the most exciting aspects
of black hole research in recent years is the observation of
gravitational waves from black hole collisions and mergers at
the LIGO detectors. Beyond this astrophysical context, black
hole collisions are also of great interest as situations where we
can hope to learn more about gravitational dynamics. Do the
Einstein equations govern the entire collision process and its
outcome, or does the classical theory break down under
certain circumstances? In other words, does cosmic censor-
ship hold throughout the evolution of all collisions? The
lessons we have learned from the GL instability suggest that
the answer can depend sensitively on the dimensionality of
spacetime. Besides the fundamental interest of these ques-
tions, the study of black hole collisions in dimensions other
than the fourth is pertinent for AdS=CFT applications. The
collision of two five-dimensional black holes describes (in a
dual setup) the collision of two balls of plasma in four-
dimensional spacetime.
In light of the applications, there is great interest in

accurately and efficiently simulating these collision events.
Paper and pencil approaches are typically useful only in the
limit where one of the black holes is much more massive than
the other so that the smaller black hole may be treated as a
perturbation to the metric created by the larger one. Full and
accurate computer simulations of astrophysical black hole

collisions have recently become possible but still require
hours of computing time per event (Lehner and Pretorius,
2014). A key question for us then is whether a large D limit
can shed light on black hole dynamics.
To answer that question, we begin with some rough

estimates for radiation processes in a large D limit.
Gravitational radiation is sourced by time-dependent quad-
rupolar or higher multipolar mass distributions; the amplitude
of metric fluctuations sourced by the quadrupole is linear in
both GN and the quadrupole moment Q ∼ML2, whereM and
L are characteristic mass and length scales of the source. The
power produced goes as the square of the amplitude. However,
a power of GN gets absorbed in computing an energy from the
metric fluctuations. The overall expression is then completed
by including an oscillation frequency ω to give a dimension-
ally correct result P ∼GNω

6Q2 ∼ GNω
6M2L4 in four dimen-

sions. In D dimensions, the dependence onQ and GN remains
the same. However, the dimensionality of GN changes,
requiring the power of ω to be correspondingly adjusted
(Cardoso, Dias, and Lemos, 2003)

dE
dt

∼GNω
Dþ2Q2ΩD−2 ∼ GNω

Dþ2M2L4ΩD−2: ð6:1Þ

To capture the D dependence of the result, we also include a
sphere volume from integrating the power produced per unit
angle over the quadrupole radiation pattern.
We can further refine this estimate (Emparan, Suzuki, and

Tanabe, 2013) by calculating the energy produced per unit
mass per period of oscillation as

1

Mω

dE
dt

∼ ΩD−2GNω
Dþ1ML4 ∼D2

�
ω

T

�
D
; ð6:2Þ

where in the last similarity relation we extract the leading D
dependence of the result, employing Eq. (5.3). The temper-
ature of the black hole sets a threshold for radiation effects to
kick in. For a Schwarzschild black hole or brane in the largeD
limit, the temperature (5.3) scales with D. For frequencies
larger than T ∼D=rh, radiation effects can be quite large,
while for frequencies smaller than T radiation effects are
essentially negligible.
This scale set by the temperature appears also in quasi-

normal modes; see Sec. III. The typical quasinormal mode has
an imaginary part that produces damping and that scales with
the temperature T. Most quasinormal modes damp out
exponentially quickly in a large D limit on a timescale set
by 1=T ∼ rh=D. Thus, in black hole collisions we expect any
energy that is released from these modes to come out rapidly,
almost as a shock wave or Dirac delta function shell. This
increase in the speed at which gravitational radiation is
released has been observed in numerical simulations of
head-on collisions of black holes as a function of the
spacetime dimension (Cook et al., 2017).
Another important radiation process for black holes is

Hawking radiation. While we expect Hawking radiation to
have a small effect during black hole collisions, as we are
discussing radiation processes here, we now make some
remarks. Estimating black holes as black bodies, we can
derive the large D scaling for power emitted by Hawking
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radiation from the Stefan-Boltzmann law, namely, that the
power P scales as T4 times the surface area in four dimen-
sions. In D dimensions, the T4 scaling is replaced by TD. For
Schwarzschild black holes, from Eqs. (5.2) and (5.3) we find
that

P ∼ r−2h ΩD−2DD: ð6:3Þ

To keep this effect finite in a large D limit, we must consider
extremely large black holes, with rh ∼DD=4 in units of the
Planck length. More careful discussions of Hawking radiation
were provided by Hod (2011), Emparan, Suzuki, and Tanabe
(2013), and Holdt-Sørensen, McGady, and Wintergerst
(2019). We return to these discussions in Sec. VIII.A.
A final rough estimate uses the second law of black hole

thermodynamics to constrain the energy radiated. If we take
two black holes of energyE1 andE2 that merge to form a black
hole of energy Ef, then the entropy of the final state should
exceed the entropy of the initial state. Moreover, as black holes
are highly entropic objects, we neglect the entropy carried by
the radiated energy E1 þ E2 − Ef in this estimate. Using the
entropy and energy results (5.6) for a D-dimensional
Schwarzschild black hole, we deduce the inequality

EðD−2Þ=ðD−3Þ
f ≤ EðD−2Þ=ðD−3Þ

1 þ EðD−2Þ=ðD−3Þ
2 : ð6:4Þ

Fixing Ei ¼ E1 þ E2, the energy lost is maximized for equal
mass black holes (E1 ¼ E2) and scales withD as (Witek et al.,
2010)

Ei − Ef ≤ 21=ðD−2ÞEi: ð6:5Þ

This bound may be violated weakly because of the entropy
carried by the emitted radiation but nevertheless indicates that
the radiation is highly suppressed as D increases.
Numerical calculations of head-on collisions (Berti,

Cardoso, and Kipapa, 2011; Cook et al., 2017) produce a
more nuanced picture of how gravitational radiation varies
with spacetime dimension. The amount of radiation produced
depends not only on D but also on the ratioM1=M2 as well as
the initial kinetic energy associated with the collision. In the
limit M1=M2 → 0, the smaller mass black hole can be treated
as a small perturbation on the metric sourced by the heavier
object (Davis et al., 1971; Berti, Cavaglia, and Gualtieri,
2004; Berti, Cardoso, and Kipapa, 2011). By solving the wave
equation in this fixed background and numerically summing
over modes, the radiated momentum and energy are obtained.
Berti, Cardoso, and Kipapa (2011) found that there is a critical
value of the spacetime dimension where the radiation is
minimized. This critical value depends on the initial kinetic
energy of the system. For black holes that start at rest, the
minimum completely disappears and the radiation is a strictly
increasing function of D. This monotonically increasing
behavior for D > D� is problematic, as Berti, Cardoso, and
Kipapa observed; at some point the radiated energy exceeds
the mass of the point particle and suggests a breakdown in the
approximation in which the background metric is fixed.
Cook et al. (2017) later reevaluated the M1=M2 → 0 limit

computations by exactly solving Einstein’s equations. In these
later numerical simulations, where the initial kinetic energy is

taken to vanish, the monotonically increasing behavior is
absent, replaced by a maximum at a relatively small number of
dimensions (D ¼ 5 or 6). The fact that the radiation decreases
in the strict large D limit seems much more plausible,
especially given the estimate (6.5).
These simulations of head-on collisions in D > 4, while

interesting, are not promising from the point of view of
understanding black hole merger events in four dimensions.
The presence of maxima and minima in the energy radiated
as a function of dimension seems to exclude any sort of simple
extrapolation from a large D limit down to D ¼ 4.
Additionally, these are head-on collisions with no angular
momentum. They lack the inspiral phase that produced the
characteristic chirp in the gravitational waves observed
at LIGO.
It would be helpful to look at black hole collisions that

involve angular momentum effects in higher D. Numerically,
there are obvious challenges in working with higher-dimen-
sional spacetime grids to allow for the reduction in symmetry.
Our underlying purpose in taking a large D limit, however, is
to obviate the need for numerical simulations, most optimis-
tically to be able to produce simple analytical estimates that
can be extrapolated down to D ¼ 4. In this context, a less
obvious challenge is Bertrand’s theorem, which states that
closed orbits for central force problems in classical mechanics
are possible only for r2 and 1=r potentials. While the potential
experienced by two orbiting black holes in four dimensions is
not strictly speaking 1=r, when the black holes are far from
each other it is close to 1=r, allowing for a long period of
quasistable inspiraling behavior. In higher dimensions, with a
1=rD−3 potential, the behavior promises to be more chaotic,
and it is not entirely clear what universal lessons applicable
to the D ¼ 4 case can be gleaned from working in the
D → ∞ limit.
To sum up this discussion, collisions performed for large

values ofD can be expected to resemble four-dimensional ones
only when the impact parameters and the total angular
momenta are small. For this study, the full scope of the large
D techniques, in particular, the membrane theory of Sec. IV.D,
is still to be elucidated (see the discussion in Sec. IV.D.5), but at
a minimum one can expect to describe the nonlinear relaxation
toward the final stationary state using largeD effective theories.
Beyond this regime, the value of exploring large D

collisions lies in what we can learn about generic gravitational
dynamics, and in applications to dual collisions in AdS=CFT.
While the latter have received little attention so far, there are
detailed analyses of the evolution of black hole collisions in
asymptotically flat space that reveal qualitatively new behav-
iors, in particular, violations of cosmic censorship, which we
discuss next.

B. Cosmic censorsip violation in black hole collisions

Andrade, Emparan et al. (2019a, 2019b) built on the idea,
discussed in Sec. IV.E.3, of treating localized black holes as
blobs on a thin black brane, a picture that can be regarded as
borne out of the GL instability. The advantage of this approach
is that one can employ the effective brane equations (4.45)
and (4.46) to model the entire collision process, starting from
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two Gaussian blobs thrown at each other and following their
evolution with numerical simulations. These run stably and,
since a collision can be simulated in just a few minutes in a
conventional computer, it is easy to explore wide ranges of
initial conditions.
Because the gravitational potential dies off so quickly with

distance, the impact parameter needs to be small for the two
black holes to have any effect on each other. Another crucial
property of these collisions is that no gravitational radiation is
emitted since, as we have seen, it is strongly suppressed as D
grows. As a consequence, the total mass and angular
momentum of the black hole system are conserved. This is
of enormous help in obtaining a qualitative picture of the
possible outcomes of the merger by examining the available
stable configurations with the same mass and spin as the initial
state. More precisely, we fix the total mass and add up the
orbital angular momentum as well as the intrinsic spin of
the black holes to obtain a value of J=M that characterizes the
system.
The basic idea is that, when two blobs merge, if a stable

blob with the value of J=M of the initial configuration
exists, then the evolution will end on it. If instead no single-
blob configuration is stable for that J=M, then the system
fragments into separate blobs that fly apart. For values of
J=M just beyond a stability threshold, a long-lived but
eventually unstable state (typically a bar or a dumbbell-
shaped blob) can form. These play a role similar to
resonances in scattering, and they help us to understand
the physics involved in the fragmentation. Long black bars
with large enough values of J=M exhibit a GL-type
instability, which grows a pinch in their middle and
eventually become singular. The violation of cosmic censor-
ship that occurs in the GL instability and its proposed
resolution by fragmenting the horizon also appear here. This
evolution is borne out by the numerical collision experi-
ments of Andrade, Emparan et al. (2019a), employing
Eqs. (4.45) and (4.46), as depicted in Fig. 7.
We now examine this proposed picture in more detail. In

Fig. 5, we present some of the phases of blob solutions,
namely, Myers-Perry black holes and black bars and their
zero modes. Figure 8 contains additional details, including
other phases found by Licht, Luna, and Suzuki (2020). In
line with the stability argument, collisions with a given initial
value of J=M < 2.66 always end in the stable blobs indicated
in Fig. 8: Myers-Perry black holes for 0 ≤ J=M < 2, black
bars for 2 ≤ J=M < 4=

ffiffiffi
3

p
and dumbbell-shaped blobs

(Licht, Luna, and Suzuki, 2020) for 4=
ffiffiffi
3

p
≤ J=M < 2.66.

For larger values of J=M, there are no stable stationary blobs,
so any black hole merger with J=M > 2.66 evolves to a
horizon-pinching violation of cosmic censorship (Andrade
et al., 2020).32

In the context of the simulations here, that pinch-off never
really happens. Recall that we represent black holes as blobs
on a continuous brane. The neck joining the two blobs just
becomes thinner and thinner. Subleading effects in the 1=D
expansion, which we have neglected, become more and more
important, invalidating our approximation. However, since
cosmic censorship does appear to be violated in the analogous
evolution of black strings, it is also expected to be violated in
these black hole collisions.
To conclude this section, we discuss how these collision

experiments may or may not extrapolate to lower, finite values
ofD. A big issue in this context is the competition between the
dynamical instability associated with large enough J=M and
the classical radiation sourced by the nonaxisymmetric spin-
ning black objects. Andrade, Emparan et al. (2019a) per-
formed a detailed estimate in which they argued that, likely
down to at leastD≳ 8, radiation has a negligible effect and the
dynamical instability breaks the bar up into two disks. Their
estimates are not precise enough to conclude whether or not
the effect would persist for lower D, but dedicated numerical
simulations indicate that it would, even in D ¼ 6 (Andrade,
Figueras, and Sperhake, 2020). The arguments by Andrade,

FIG. 7. Two spinning black holes collide and form a rotating
black bar, which then breaks up into two outgoing black holes
unlike the initial ones. From Andrade, Emparan et al., 2019a.

FIG. 8. Stable blobs as the end points of merger evolution
[cf. Fig. 5 and Licht, Luna, and Suzuki (2020), Fig. 1]. Solid
(dashed) lines are stable (unstable) stationary blobs. Myers-Perry
black holes, stable up to J=M ¼ 2; black bars, stable up to
J=M ¼ 4=

ffiffiffi
3

p
≈ 2.31; black dumbbells, stable up to J=M ≈ 2.66

(dumbbells along the dashed line are more like unstable binaries
of blobs). No stable stationary blobs exist for J=M ≳ 2.66, so if a
merger occurs in this region, it can evolve only to a horizon pinch,
violating cosmic censorship. From Andrade et al., 2020.

32As discussed in footnote 21, odd-parity modes of bars lead to the
formation of singular cusps at their end points. These may have
interesting implications for the amount of gravitational radiation
produced, especially in extrapolating to smaller D, where these
radiation effects are anticipated to become more important.
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Emparan et al. (2019a, 2019b) and Andrade et al. (2020) were
based on the similarity between the instabilities of black bars
and of black strings, and the latter exist down to D ¼ 5.
However, it seems possible that in this dimension the system
would lose angular momentum rapidly enough to fall beneath
the dynamical instability threshold and would relax back to a
spinning black hole. In D ¼ 4 there are no black strings and
all the mergers result in plump horizons, without any reason
for why they should destabilize and pinch. Therefore, cosmic
censorship seems likely to hold in black hole collisions
in D ¼ 4.

VII. HOLOGRAPHIC APPLICATIONS

One of the grand challenges of theoretical physics is to
describe strongly interacting systems. In the context of
understanding how strong interactions between quarks and
gluons lead to the formation of hadrons in quantum chromo-
dynamics, one of the Clay Mathematics Prizes33 is offered for
proving that the simpler Yang-Mills theory has a mass gap.
A better understanding of strange metals (or non-Fermi
liquids) may unlock the secrets of high temperature super-
conductivity and yet seems to necessitate accurately modeling
strong interactions between electrons. Turbulence and shocks
in hydrodynamics, which are associated with another Clay
Mathematics Prize, involve both the strong interactions
between the liquid molecules and strong time dependence.
Indeed, a second important challenge for theoretical physics
involves nonequilibrium phenomena.
There are few tools at our disposal to address these types of

questions. Perturbation theory is obviously limited to weakly
coupled regimes. Numerical simulations play an important
role in examining turbulence but tend to be expensive and time
intensive. They also, in a time-dependent and nonzero density
world, are largely limited to classical phenomena. In the
quantum realm, computer simulations in lattice QCD work
well when the Monte Carlo simulations do not run into
issues with oscillatory path integrals: the “sign problem.”
While these lattice computations can tell us the energy
spectrum of QCD and the critical temperature above which
QCD deconfines, they cannot in most cases address the
physics needed to describe fermions, nonzero densities, and
time dependence.
In this context, AdS=CFT correspondence (or holography)

presents an additional tool to examine time dependence and
strong interactions in quantum field theory. The tool works by
conjecturing a relationship between a strongly interacting field
theory and a classical theory of gravity in one extra dimension.
The field theories in question have not thus far been directly
related to the field theories that we believe describe the world
we live in, e.g., QCD or QED. AdS=CFT examples are thus a
bit like integrable models—systems that while not directly
related to the physical systems of interest, can be exactly
solved and thus may shed light on the original targets.
One uses AdS=CFT to examine QFT by solving the

equations of motion of the dual gravity theory, effectively
performing a saddle point approximation of the field theory in

a strongly interacting limit, thereby reducing the computation
of a path integral to solving Einstein’s equations. One of the
points of this review, however, is that solving Einstein’s
equations is still a difficult task. A large D limit may make
this task simpler. Thus, it becomes natural to ask what
additional insight a large D limit may shed on strongly
interacting quantum field theories and nonequilibrium
phenomena via AdS=CFT.
Many partial answers to this question have already been

provided. We divide our discussion into three parts: (1) hydro-
dynamics; (2) applications of AdS=CFT to condensed matter
physics, sometimes called AdS=CMT, where CMT stands for
condensed matter theory; (3) applications of AdS=CFT to
problems in nuclear physics, sometimes called AdS/QCD.

A. Holographic hydrodynamics

We review here some applications of the large D formalism
to the hydrodynamic limit of strongly interacting field theories
with a dual gravity description.
As AdS=CFT deals with conformal field theories, we must

have a traceless stress tensor Tμ
μ ¼ 0, which greatly con-

strains the form of the constitutive relations, as mentioned at
the end of Sec. IV.B. There is no bulk viscosity, only shear
viscosity. For a field theory in d spacetime dimensions, the
energy density, pressure, and temperature are related in a
simple way: ε ¼ ðd − 1ÞP ∼ Td. Furthermore, the speed of
sound c2s ¼ ∂ε=∂P ¼ 1=ðd − 1Þ is suppressed in the large d
limit. As we did in the discussion of the Gregory-Laflamme
instability, we need to rescale the spatial coordinates by a
factor of

ffiffiffi
d

p
to keep sound modes in the leading-order

equations of a large d limit.
As previously discussed, black branes in the large D ¼

dþ 1 limit of anti–de Sitter space are described by a hydro-
dynamiclike set of equations (4.45) and (4.46) with ϵ ¼ −1. In
the context of the discussion of hydrodynamics in Sec. IV.B,
these equations have a notable property. They involve only
first- and second-order derivatives. Viewed as ∂μTμν ¼ 0 in an
appropriately chosen hydrodynamic frame, the gradient
expansion is truncated at this leading order in the 1=D
expansion (Emparan et al., 2016; Herzog, Spillane, and
Yarom, 2016).34 Provided that gradients are small compared
to D, even if the gradients are otherwise large, e.g.,
1 ≪ ð∂zmÞ=m ≪ D, hydrodynamics is exact.
The statement that the gradient expansion is truncated is

not, however, independent of frame choice. By an appropriate
frame redefinition, one can put Eqs. (4.45) and (4.46) in
Landau frame, with Tμν given by Eq. (4.1) to first order
in gradients. Indeed, one can find the map to second order in
gradients given by Emparan et al. (2016), Herzog, Spillane,
and Yarom (2016), and Rozali, Sabag, and Yarom (2018).
Such a frame redefinition will introduce an infinite series of
higher-order gradient corrections. The frame chosen by the
large D limit is thus special.
Equations (4.45) and (4.46) constitute a nonrelativistic,

compressible version of the Navier-Stokes equations. The

33See https://www.claymath.org/millennium-problems.

34See also Camps, Emparan, and Haddad (2010) for the earlier
black string analog of this statement.
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equations must be compressible to allow for sound waves. The
equations are nonrelativistic because of the rescaling that has
kept the sound modes in the spectrum of the theory. By
zooming in on modes with a speed of the order of 1=

ffiffiffiffi
D

p
, we

see that the speed of light is effectively pushed off to infinity.
Indeed, the equations are invariant under the Galilean
boost (4.41). If mðt; xÞ and piðt; xÞ are a solution, then so
are mðt; x − vtÞ and piðt; x − vtÞ − vimðt; x − vtÞ.
To see the sound modes, as we did in the Gregory-

Laflamme case we can perform a fluctuation analysis m ¼
m0 þ δme−iωtþikx and p ¼ δpe−iωtþikx. We quickly arive at a
dispersion relation

ω ¼ �k − ik2: ð7:1Þ

Unlike the Gregory-Laflamme case where an instability
appears below a threshold kGL, these modes are always stable.
They are sound modes that have a speed equal to 1, given our
rescaling of the spatial coordinates. They also have a damping
term, indicative of the presence of viscosity. Indeed, we can
understand the relation between damping and viscosity by
running a similar analysis with the constitutive relation (4.1)
for Tμν in Landau frame. In that case, we start with the Ansatz
T ¼ T0 þ δTe−iωtþik̃x and ux ¼ δue−iωtþik̃x, with ut ¼ −1.
The position coordinate is not rescaled in Eq. (4.1), so in
relating the wave vectors, we must make the identification
k̃ ¼ ffiffiffi

n
p

k. We find the following dispersion relation, accurate
only to terms of Oðk̃2Þ:

ω ¼ � k̃ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p −
ið2d − 3Þ
2dðd − 1Þ

η

P
k̃2 þOðk̃3Þ: ð7:2Þ

Taking the large d limit, we identify the shear viscosity with
the pressure η ¼ P. In this large d limit, black hole thermo-
dynamics tells us that the entropy density s ¼ 4πP, allowing
us to recover the well-known holographic result η=s ¼ 1=4π
(Kovtun, Son, and Starinets, 2005).

While equations similar to Eqs. (4.45) and (4.46) (with
ϵ ¼ −1) have been explored in a hydrodynamic context in
depth over the years, the connection to black hole physics is
relatively new. It is also surprising that in this context the
description is exact at leading order in a 1=D expansion, even
when the gradients are large. We now mention two explora-
tions of these equations in more detail.
The first (Herzog, Spillane, and Yarom, 2016) explores the

physics of shock formation in a (1þ 1)-dimensional setting,
keeping only a single pi. The second (Rozali, Sabag, and
Yarom, 2018; Andrade, Pantelidou et al., 2019) explores
turbulence in 2þ 1 and 3þ 1 dimensions, keeping two or
three of the pi. Through the AdS=CFT correspondence, these
explorations correspond to particular fluidlike behaviors of the
dual field theories. In the context of gravity, they have an
intriguing interpretation as dynamical motion of black hole
horizons.
Herzog, Spillane, and Yarom (2016) considered the case of

a Riemann problem where at time zero there is a planar
interface in the system. To the right, the energy and current are
ðmR; pRÞ, while to the left they are ðmL; pLÞ. In fact, by
Galilean invariance, we can boost to a frame where pL ¼ 0
without loss of generality. In a typical time evolution, a pair of
rarefaction and/or shock waves form and move away from
each other, creating in their wake a region with almost
constant m and p. In the recent literature, this intermediate
region has been called a nonequilibrium steady state (Bernard
and Doyon, 2016). Starting with Eqs. (4.45) and (4.46),
Herzog, Spillane, and Yarom (2016) determined a “phase
diagram” (see Fig. 9) that describes which pair of waves is
formed: rarefaction shock (RS), shock shock (SS), shock
rarefaction (SR), or rarefaction rarefaction (RR). Entropy
production plays a key role in deciding which types of waves
are preferred; in cases where the nearly adiabatic rarefaction
wave is preferred, the corresponding shock solution leads to a
decrease in the entropy of the fluid. The rules for the phase
diagram can be derived in a limit where, away from the shock

(a) (b)

FIG. 9. (a) Phase diagram for the solution to the Riemann problem in a large D limit. Given a pair ðmL; 0Þ and ðmR; pRÞ, the selection
of shock and rarefaction waves is determined by the value ofmR=mL and pR=mL. The dashed and solid lines are critical: The dashed line
indicates the values of ðmR; pRÞ connected to ðmL; 0Þ by a single rarefaction wave, while the solid line indicates the value of ðmR; pRÞ
connected to ðmL; 0Þ by a single shock wave. (b) Snapshot of the time evolution of the energy density for a RS case. x is the rescaled
position coordinate, while δm ¼ ðmL −mRÞ=ðmL þmRÞ and hmi ¼ ðmL þmRÞ=2. From Herzog, Spillane, and Yarom, 2016.
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interface, the second-order derivative contributions to
Eqs. (4.45) and (4.46), i.e., the viscous terms, are dropped
and the fluid is treated as ideal. Nevertheless, the numerical
simulations indicate that the viscous effects are small and
become less important as time increases.
Rozali, Sabag, and Yarom (2018) explored decaying

turbulence described by Eqs. (4.45) and (4.46) in 2þ 1

and 3þ 1 dimensions.35 They looked at counterflow initial
conditions, where a sinosoidally varying initial current dis-
tribution was allowed to relax. These initial conditions
allowed for the initial Mach and Reynolds numbers to be
independently varied; low Mach number corresponds to the
incompressible limit, and high Reynolds number corresponds
to a situation that should quickly become turbulent. Their
results were largely insensitive to Mach number, and the
turbulence that they observed is largely similar in character to
that of incompressible fluids. In three spatial dimensions, they
saw an energy cascade where the energy of the initial
counterflow was carried to smaller and smaller scales and
eventually dissipated in small eddies. They found the standard
Kolmogorov scaling law EðkÞ ∼ r2=3k−5=3, where EðkÞ is the
energy carried by wave numbers k in a shell between jkj and
jkj þ dk and r is the energy loss rate.
In two spatial dimensions, they saw instead an inverse

cascade where the vortices became larger as time proceeded.
The scaling law that they saw [EðkÞ ∼ k−4] was not as
expected. In studies of steady-state turbulence in two
dimensions, one typically pumps in energy at some scale
kin. There is then an inverse energy cascade with scaling

EðkÞ ∼ r2=3IR k−5=3 to larger and larger length scales where
eventually one must put in some damping term rIR in the
simulation to remove energy from the largest vortices. But
there is also a direct enstrophy cascade, with scaling

EðkÞ ∼ r2=3UVk
−3, where rUV is the rate at which enstrophy

is removed at small scales. Enstrophy, roughly speaking, is
the square of the vorticity density of the system. That
Rozali, Sabag, and Yarom (2018)) did not see the standard
scaling results k−5=3 or k−3 in two spatial dimensions may
have been largely due to the fact that they were looking at
decaying turbulence and did not carry out a large enough
simulation to see robust scaling results. Chen et al. (2019)
later generalized this analysis to include a Gauss-Bonnet
term in the Einstein equations. They found the same
qualitative behavior as Rozali, Sabag, and Yarom (2018),
including the k−4 scaling in two-dimensional turbulent flows
at large Reynolds number and low Mach number. However,
Andrade, Pantelidou et al. (2019) considered forced turbu-
lence in the large D limit in an effective (2þ 1)-dimensional
system. They did observe the k−5=3 scaling in the inverse
cascade as well as standard Kolmogorov scaling results for
the longitudinal structure functions. However, they did not

discuss the direct enstrophy cascade or the dependence of
their results on Mach and/or Reynolds number.

B. AdS=CMT

Our survey of the large D AdS=CMT literature proceeds in
reverse chronological order. The previous hydrodynamic
discussion transitions naturally into a discussion of translation
symmetry breaking (Andrade, Pantelidou, andWithers, 2018),
achieved by fixing a nontrivial metric on the boundary of the
asymptotically AdS spacetime. A drawback of using holog-
raphy to compute transport coefficients such as charge and
heat conductivities is that most of the simplest models
preserve translation invariance. In a condensed matter context,
this invariance is broken by a lattice and impurities, leading to
qualitative differences in the behavior of transport. For
example, in a system at nonzero charge density, charge
currents also carry momentum. With nothing to dissipate
momentum, the dc charge conductivity would be infinite.
Having disposed of the conceptually simplest method of

breaking translation invariance, we move on to an earlier work
by Andrade, Gentle, and Withers (2016), where translation
symmetry breaking was achieved by adding additional scalar
fields to the Einstein-Hilbert action. Indeed, in the context of
AdS=CMT applications, Einstein’s equations are often solved
in the presence of additional fields. The holographic dic-
tionary maps the boundary values of bulk scalar fields to
scalar operators in the field theory. The dictionary also posits
an equivalence between the boundary values of bulk gauge
fields and conserved currents in the dual field theory. If one
wants to study conductivity, which could be extracted from
applying a Kubo formula to a two point current-current
correlation function, it is natural to include a bulk gauge
field in the gravity system. Similarly, if one wants to model a
phase transition with a scalar order parameter, it becomes
natural to include a bulk scalar field. The idea of adding
additional fields to the Einstein-Hilbert action leads us to the
last topic, the large D holographic superconductor (Emparan
and Tanabe, 2014b; García-García and Romero-Bermúdez,
2015), which historically preceded the works on translation
symmetry breaking.

1. Breaking translation symmetry

While a variety of techniques to break translation invariance
in AdS=CMT models exist, the reduction in symmetry
involved typically greatly increases the difficulty of solving
the equations of motion. The most obvious method is also
technically quite challenging. Beginning with the Einstein-
Hilbert action in a background with negative cosmological
constant, one lets the boundary of this spacetime be an
arbitrary metric

hABdxAdxB ¼ −
�
1 −

γttðt; xÞ
n

�
dt2 −

2

n
ζiðt; xÞdtdxi

þ 1

n
γijðt; xÞdxidxj: ð7:3Þ

In analogy with the Newtonian limit of general relativity, γtt is
a physical potential for the system, ζi has some similarities to
an external gauge field, and γij in a condensed matter context

35See Adams, Chesler, and Liu (2014) for earlier numerical
AdS=CFT simulations of decaying turbulence in 2þ 1 dimensions,
not in the large D limit.

Roberto Emparan and Christopher P. Herzog: Large D limit of Einstein’s equations

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045005-29



can be thought of as strain disorder. The reduction in
symmetry makes Einstein’s equations an enterprise to solve.
The case of γtt was described with relatively heavy duty
numerical techniques by Balasubramanian and Herzog (2014)
for the special case of AdS4. If one restricts to boundaries with
small temporal and spatial gradients, a fluid-gravity approach
(Hubeny, Minwalla, and Rangamani, 2012) can be employed.
Scopelliti, Schalm, and Lucas (2017) looked at a nonzero γij
through this lens.
Here we review a large D approach (Andrade, Pantelidou,

and Withers, 2018). One follows the same path that led to the
hydrodynamiclike equations (4.45) and (4.46). In the same
way, the gradient expansion truncates at leading order in the
1=D expansion. The covariantized version of Eqs. (4.45)
and (4.46) is then

ð∂t þ K −∇i∇iÞm ¼ −∇ip̃i; ð7:4Þ

ð∂tþK−∇j∇jÞp̃i ¼−∇im−∇j

�
p̃ip̃j

m

�
þ p̃i

2
R

−
∇iðm2RÞ

2m
−m∂iKþ2∇jðmKj

iÞ

þm∂tζiþ2ðp̃j−∇jmÞ∇½jζi� þ
m
2
∇iγtt;

ð7:5Þ

where p̃i ¼ pi þmζi. The covariant derivatives are computed
with respect to the spatial metric γij, R is the Ricci scalar of
γij, and Kij ¼ 1

2
∂tγij, with K ¼ γijKij.

Equations (7.4) and (7.5) are not the simplest to work with,
but they yield some interesting results. Keeping only two
spatial directions dynamical and introducing translation
breaking in the form

γij ¼ ½1þ A0 cosðkLxÞ sinðkLyÞ�δij; ð7:6Þ

Andrade, Pantelidou, and Withers (2018) computed the heat
conductivity tensor κij. They looked at nonzero frequency and
wave number e−iωtþiqx in a perturbative expansion in A0, in
the regime where ω ∼ q ∼ ðA0Þ2. They found that

κxx ¼ iω
ωðωþ iΓþ 2iq2Þ − q2

þOðA0Þ; ð7:7Þ

κyy ¼ i
ωþ iΓþ iq2

þOðA0Þ. ð7:8Þ

The mixed components κxy vanish to OðA0Þ. The damping
coefficient has the form

Γ ¼ k2Lð1þ 2k2L þ 2k4LÞ
4ð1þ 2k2LÞ2

A2
0 þOðA0Þ4 ð7:9Þ

and prevents the conductivities from diverging in a ω → 0 and
q → 0 limit, as they otherwise would without the explicit
translation symmetry breaking introduced through γij.
In attempts to find technically simpler if conceptually less

straightforward methods of breaking translation invariance,

researchers fell upon introducing a set of scalar fields with a
linear spatial profile ΨI ¼ αxaδIa (Andrade and Withers,
2014; Donos and Gauntlett, 2014a), with α a real number
parametrizing the strength of the translation symmetry break-
ing. One is able to keep an Ansatz for the metric and fields that
requires solving only ODEs and not PDEs. Consider the
action

I ¼
Z

dnþ3x
ffiffiffiffiffiffi
−g

p �
Rþ 2Λ −

1

4
F2 −

1

2

Xnþ1

I¼1

ð∂ψ IÞ2
�
; ð7:10Þ

with negative cosmological constant Λ ¼ −ðnþ 1Þðnþ
2Þ=2L2 (one can typically set L ¼ 1 without loss of general-
ity) and field strength F ¼ dA. Adding a field strength Fμν

allows one to look at charge conductivities in addition to heat
conductivities.
A slight generalization of a charged black hole in AdS

solves the equations of motion

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ r
2δabdxadxb; A ¼ AtðrÞdt;

ð7:11Þ

where

fðrÞ ¼ r2 −
α2

2n
−
m0

rn
þ nμ2

2ðnþ 1Þ
r2n0
r2n

; ð7:12Þ

AtðrÞ ¼ μ

�
1 −

rn0
rn

�
: ð7:13Þ

From the form of fðrÞ, it is clear that for it to remain a
significant effect in the large D limit, one should keep α of
Oð ffiffiffi

n
p Þ, defining α̂≡ α=

ffiffiffi
n

p
. The Hawking temperature of the

black hole, which is also the temperature of the field theory,
depends on both the chemical potential μ and the inhomo-
geneity parameter α:

T ¼ f0ðr0Þ
4π

¼ 1

4π

�
ðnþ 2Þr0 −

α2

2r0
−

n2μ2

2ðnþ 1Þr0

�
: ð7:14Þ

We introduce the frequency-dependent transport coeffi-
cients: charge conductivity σðωÞ, thermoelectric coefficient
βðωÞ, and heat conductivity κðωÞ. As expected, the dc
conductivities are all finite (Andrade and Withers, 2014;
Donos and Gauntlett, 2014b)

σð0Þ ¼ rn−10

�
1þ n2

μ2

α2

�
; ð7:15Þ

κð0Þ ¼ rnþ1
0

ð4πÞ2T
α2

; βð0Þ ¼ rn0
4πμ

α2
. ð7:16Þ

It is also possible to compute as follows κðωÞ exactly when
μ ¼ 0, α ¼ ffiffiffiffiffiffi

2n
p

, and n is odd (Andrade, Gentle, and Withers,
2016):
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κðωÞ ¼ 2π cosh ðπω=2ÞΓ(ð1=2Þðn − iωÞ)Γ(ð1=2Þðnþ iωÞ)
Γðn=2þ 1ÞΓðn=2Þ :

ð7:17Þ

While appearing formidable, the expression is merely an
[ðn − 1Þ=2]-order real polynomial in ω2.
Given this plethora of results and the initial careful choice

of translation breaking to simplify the equations of motion,
one may legitimately ask why we then take a large D limit.
The answer is that it gives one some extra power in looking at
the nonzero frequency behavior of these transport coefficients
(Andrade, Gentle, and Withers, 2016). Poles in σ, β, and κ,
generically at complex values of ω, are given by quasinormal
modes of the black hole, which can be analyzed more
thoroughly in a large D limit. It is also possible to compute
κðωÞ to the first few orders in 1=n, at least when μ ¼ 0. The
leading-order result is

κðωÞ ¼ 2π
2 − α̂2

α̂2 − iω
þ � � � ; ð7:18Þ

and the somewhat lengthy expressions for the next two orders
can be found in Andrade, Gentle, and Withers (2016).
Equation (7.18) summarizes another key observation of

Andrade, Gentle, andWithers (2016) concerning the transition
between coherent and incoherent transport. Coherent transport
is governed by a single pole in the transport coefficient, in this
a case a purely dissipative mode at ω ¼ −iα̂2. Incoherent
transport, on the other hand, involves a sum over many
incommensurate modes. Andrade, Gentle, and Withers (2016)
noticed that as α̂2 grows toward 2 − μ2 the transport becomes
more incoherent in a large D limit. In Eq. (7.18), this
changeover is represented by a decrease in the strength of
the residue.

2. Holographic superconductor

The holographic superconductor (Gubser, 2008; Hartnoll,
Herzog, and Horowitz, 2008a, 2008b) is a system that
includes both an Abelian gauge Aμ field and a charged
scalar Ψ:

I¼−
Z

dnþ1x
ffiffiffiffiffiffi
−g

p ðR−2Λþ 1
4
F2þj∇ψ − iAΨj2þm2jΨj2Þ;

ð7:19Þ

where in the absence of the additional fields the negative
cosmological constant Λ ¼ −nðn − 1Þ=2L2 would give rise to
AdS with radius of curvature L. The interest in this system
stems largely from the fact that it provides a proof of principle
that the physics of a superconducting phase transition can be
added to the strongly interacting, scale invariant field theory
described by this action in the absence of Ψ. In other words,
there is hope that this system may shed light on the puzzle of
high temperature superconductivity.
The puzzle of high temperature superconductivity is not so

much about the superconducting region of the phase diagram,
but instead about the normal phase. At optimal doping but
above the critical temperature, the system behaves like a

strange metal or non-Fermi liquid, where the interactions
between the electrons are large and a quasiparticle picture
does not seem to be valid. One hypothesis is that this region of
the phase diagram is controlled by a scale invariant quantum
critical point, i.e., by a field theory that may bear some
resemblance to conformal field theories dual to gravity
systems via AdS=CFT correspondence. While such
AdS=CFT systems do not ordinarily have a superconducting
phase, Gubser (2008) and Hartnoll, Herzog, and Horowitz
(2008a, 2008b) demonstrated that it is relatively trivial to add
such a feature to the model by simply adding a charged
scalar.36

An issue with the holographic superconductor is that the
equations of motion that follow from Eq. (7.19) must be
solved numerically in most cases. The large D limit provides
the possibility of a paper and pencil approach (Emparan and
Tanabe, 2014b; García-García and Romero-Bermúdez, 2015).
We now review some of the analysis of Emparan and Tanabe
(2014b) and provide a summary of the results in García-García
and Romero-Bermúdez (2015).
To further simplify the analysis, Hartnoll, Herzog, and

Horowitz (2008a) proposed a probe limit, where the back-
ground metric is fixed and one looks only at the ðAμ;ΨÞ
system. While Hartnoll, Herzog, and Horowitz (2008a)
worked in n ¼ 3, it is straightforward to generalize
(Emparan and Tanabe, 2014b). The Schwarzschild metric
takes the form

ds2 ¼ −r2hðrÞdt2 þ dr2

r2hðrÞ þ r2dx2; ð7:20Þ

where hðrÞ ¼ 1 − ðr0=rÞn and the temperature is
OðnÞ; T ¼ nr0=4π. To model the phase transition that pre-
serves translational symmetry on the boundary, it is sufficient
to assume that Ψ ¼ ψðrÞ and A ¼ ϕðrÞ. Then

ψ 00 þ
�
h0

h
þ nþ 1

r

�
ψ 0 þ

�
ϕ2

r4h2
−

m2

r2h

�
ψ ¼ 0; ð7:21Þ

ϕ00 þ n − 1

r
ϕ0 −

2ψ2

r2h
ϕ ¼ 0: ð7:22Þ

The system is solved with the large r boundary conditions

ψ ¼ ψþ
rΔþ

þ � � � ; ð7:23Þ

ϕ ¼ μ −
ρ

rn−2
þ � � � ; ð7:24Þ

where

Δ� ¼ n
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m̂2

p
Þ; m̂ ¼ m

n
: ð7:25Þ

36To be more precise, these systems do not describe super-
conductivity, where the symmetry is gauged, but instead super-
fluidity, where the broken symmetry is global. Depending on the
questions asked, the difference in many cases can be ignored.
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One can work in the grand canonical ensemble where the
chemical potential μ is a tunable parameter. Regularity of the
solution at the black hole horizon then fixes the charge density
ρ as a function of μ. One also tunes the source for the scalar
field to zero, where otherwise there would be an additional
solution near the boundary that scales as ψ ∼ ψ−=rΔ− . The
order parameter for the phase transition or, equivalently, the
expectation value for the scalar, is proportional to ψþ.
Emparan and Tanabe (2014b) were able to analyze this

system analytically near criticality using a WKB style
approach. As in the finite D analysis, the phase transition
is caused by the scalar becoming tachyonic close to the
horizon because of a large value of μ. They find an estimate for
the critical chemical potential above which the system
becomes superconducting

μ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ m̂2

r
þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4þ m̂2
p

2n2

�1=3

a1 þ oðn−2=3Þ; ð7:26Þ

where a1 ¼ 2.338 11 is a zero of the Airy function AiðxÞ and
μ ¼ nμ̂r0. In this scale invariant setting, the physical quantity
should be a dimensionless ratio of the temperature to the
charge density (or chemical potential)

T

ρ1=ðn−1Þ

����
crit

¼ n2

4π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ m̂2

r

þ a1n−2=3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4þ m̂2
p

2

�1=3

þ � � �
�
−1=ðn−1Þ

:

ð7:27Þ

This estimate has about a 15% error for n ¼ 4 and a 35% error
for n ¼ 3.
In addition to this probe analysis, Emparan and Tanabe

(2014b) included a discussion of how to move beyond the
probe limit and look at the backreaction of the ðAμ;ΨÞ sector
on the metric. While largely numerical, some additional paper
and pencil results were given by García-García and Romero-
Bermúdez (2015). They provided analytic estimates for the
optical conductivity at zero temperature in both the high-
frequency and low-frequency limits. They also compute the
entanglement entropy in a large D expansion.

C. AdS-QCD program

We now describe two applications of the largeD limit to the
AdS-QCD program. The first (Casalderrey-Solana, Herzog,
and Meiring, 2019) is part of a larger effort to shed light on the
physics of heavy-ion collisions by looking at the hydro-
dynamics of a strongly interacting field theory with a gravity
dual. The second (Herzog and Kim, 2018) attempts to gain
insight into the confinement phase transition (or crossover) in
QCD by looking at a similar phase transition in a field theory
with a gravity dual.

1. Bjorken flow

Boost invariant hydrodynamic solutions are important for
modeling heavy-ion collisions studied at RHIC and the LHC.
Close to the central region of the collision, the particles

produced are modeled well by an approximately boost
invariant fluid. In addition to its phenomenological interest,
this boost invariant flow, or Bjorken flow, is an interesting
laboratory to explore far from equilibrium dynamics. A
holographic dual of this flow was first studied by Janik
and Peschanski (2006). Here we review how to take a large D
limit of this holographic dual (Casalderrey-Solana, Herzog,
and Meiring, 2019).
Bjorken flow is a solution of relativistic hydrodynamic

equations that is invariant under Lorentz boosts along one of
the spatial directions xk of the system. If we use Milne-type
coordinates

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2k

q
; y ¼ arctanh

�
xk
t

�
; ð7:28Þ

with τ the proper time and y the rapidity, Bjorken flow
depends only on τ. The flow does not depend on the rapidity y
or any of the transverse spatial coordinates. In the context of
the gravity dual, one important difference from what has come
before is that no rescaling of the spatial coordinate has been
performed. Indeed, the flow is relativistic and there is no
spatial coordinate, only τ.
Given the symmetry restriction, the hydrodynamic con-

servation equations ∇μTμν ¼ 0 reduce to a single equation

τ_εðτÞ þ εðτÞ þ PL ¼ 0; ð7:29Þ

where εðτÞ≡ Tττ is the energy density and PL ≡ Ty
y is the

longitudinal pressure. For a conformal fluid at equilibrium, we
have εðτÞ ¼ ðn − 1ÞPL. We can thus isolate the deviation from
equilibrium

ΔPL ¼ PL −
1

n − 1
εðτÞ ð7:30Þ

as coming from gradient corrections in the hydrodynamic
expansion. Given the dependence on a single variable τ,
gradients become equivalent to inverse powers of τ.
To express the hydrodynamic equation at arbitrary order in

the gradient expansion in a large n ¼ D − 1 limit,
Casalderrey-Solana, Herzog, and Meiring (2019) found it
convenient to introduce two auxiliary quantities ε̃ ¼
ð4πT=nÞn and wε ¼ τε̃1=n. With these definitions, the con-
servation equation takes the form

τ
_̃ε

ε̃
þ n
n − 1

þ
X∞
i¼1

θðiÞ

wj
ε

¼ 0; θðiÞ ¼
X
j

θðiÞj
1

nj
; ð7:31Þ

where θðiÞj are numerical coefficients. Starting from Einstein’s
equations, Casalderrey-Solana, Herzog, and Meiring (2019)
provided these coefficients up to and including order n−3.
Consistent with earlier observations that the gradient expan-
sion truncates in the large D limit, the sum appears to start
with j ¼ bðiþ 1Þ=2c. In other words, working to a given
order in 1=n only a finite number of inverse powers of τ are
required. At late times, all the gradient corrections vanish and
the flow is controlled by ideal Bjorken expansion

Roberto Emparan and Christopher P. Herzog: Large D limit of Einstein’s equations

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045005-32



ε̃ ∼
Λn

ðΛτÞn=ðn−1Þ : ð7:32Þ

The information necessary to set up the initial conditions is
mostly lost at late times, reduced to a single constant Λ. The
data describing the initial conditions can be recovered by
looking at nonperturbative corrections to the flow. These
corrections are governed by nonhydrodynamic (or nonde-
coupled) black hole quasinormal modes and have a time
dependence of the form e−iΛnτþOðn1=3Þ (Casalderrey-Solana,
Herzog, and Meiring, 2019). The corrections indicate that the
large D expansion is only asymptotic, as discussed in
Sec. III.F. In addition to being asymptotic in 1=D, a similar
analysis of the gradient expansion for Bjorken flow shows that
the gradient series is only an asymptotic series as well (Heller,
Janik, and Witaszczyk, 2013). This story has close connec-
tions with the recent interest in resurgence and transseries; see
Aniceto, Basar, and Schiappa (2019) for a review. In particu-
lar, the nonperturbative corrections in both the gradient
expansion (Heller and Spalinski, 2015) and the large D
expansion (Casalderrey-Solana, Herzog, and Meiring, 2019)
can be cast as transseries.

2. Small black holes

The deconfinement transition in QCD remains mysterious,
and there has been a long-standing hope that AdS=CFT might
shed some light on its nature. While we do not have a
holographic dual to QCD, one can study an analog deconfine-
ment phase transition in maximally supersymmetric SUðNÞ
Yang-Mills theory in four dimensions (MSYM). MSYM does
have a gravity dual, a sector of which is well described by
Einstein’s equations in five dimensions with a negative
cosmological constant. While MSYM is conformal in flat
space, Witten (1998) realized that this theory does undergo a
sort of deconfinement phase transition when placed on S3. The
sphere introduces a mass gap for the scalars and fermions of
MSYM, of the order of the inverse radius of the sphere. When
the temperature is small compared to the inverse radius, the
theory confines. When the temperature is large, the theory
deconfines. On the gravity side, this first-order phase tran-
sition is the Hawking-Page phase transition (Hawking and
Page, 1983) for black holes in AdS.
While this picture works well in the canonical ensemble,

with a heat reservoir and a well-defined temperature, it is less
clear what should happen in the microcanonical ensemble, at
fixed energy and entropy. Black holes in AdS have two
branches: a small black hole branch with negative specific
heat, similar to black holes in Minkowski space, and a large
black hole branch with positive specific heat. In the canonical
ensemble, one starts on the large black hole branch at high
temperature and cools the system down. At some point, there
is a first-order phase transition to empty AdS; see Fig. 10. In
the microcanonical ensemble, one wants to know what
happens to smaller black holes beyond the Hawking-Page
point. There is an old conjecture that it is insufficient to look
just at the AdS5 sector of the geometry, that one should
consider the full ten-dimensional supergravity AdS5 × S5 dual
to MSYM, that the end point of the instability should be a
small black hole in ten-dimensional space with S8 topology

(Banks et al., 1998; Peet and Ross, 1998), associated with
breaking the SOð6Þ symmetry of S5. [In MSYM, this SO(6)
symmetry is the Rsymmetry of the superconformal field
theory.] Later numerical studies pinned down the onset of
this Gregory-Laflamme-like instability (; Hubeny and
Rangamani, 2002; Buchel and Lehner, 2015; Dias, Santos,
and Way, 2015). The end point was then studied with heavy
duty numerics (Dias, Santos, and Way, 2015, 2016). Here we
review a largeD approach (Herzog and Kim, 2018) that can in
principle be carried out with pen and paper, although
realistically some computer assisted algebra is required.
There are strong similarities to the discussion of the
Gregory-Laflamme instability for the previously discussed
black strings.
As the AdS5 × S5 type IIB supergravity solution involves

both the metric and the five-form, we begin with the large D
action

S ¼
Z

dpxdqx
ffiffiffiffiffiffi
−g

p �
R −

1

2q!
jFqj2

�
ð7:33Þ

and focus on the case of interest p ¼ q ¼ d, where the
equations of motion are supplemented by a self-duality
constraint on Fd. Herzog and Kim (2018) took the Ansatz
for the metric and field strength

ds2 ¼ gttdt2 þ 2dtdrþ 2gtθdtdθ þ gθθdθ2

þ gAdΩ2
d−2 þ gBdΩ2

d−1; ð7:34Þ

Fd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gd−2A detðSd−2Þ

q
ðftrdt ∧ drþ ftθdt ∧ dθ

þ frθdr ∧ dθÞ ∧ dΩd−2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gd−1B detðSd−1Þ

q
ðftdtþ frdrþ fθdθÞ ∧ dΩd−1;

ð7:35Þ
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FIG. 10. Black hole temperature as a function of radius for
D ¼ 5. Approaching from the large black hole branch, the circle
indicates the Hawking-Page phase transition to thermal or empty
AdS in the canonical ensemble, the square is the point at which
the heat capacity becomes negative, and the triangle is the
Gregory-Laflamme-type instability (Hubeny and Rangamani,
2002). As D gets larger, the three special points approach each
other. From Herzog and Kim, 2018.
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where n ¼ d − 3. In the 1=n expansion, one finds the leading-
order solution

gtt ¼ −
�
1þ r2cR2=n −

mðt; θÞ
R

½1þ r2cmðt; θÞ2=n�
�
þOðn−1Þ;

ð7:36Þ

gtθ¼
1

n
pðt;θÞ
R

þOðn−2Þ; gθθ¼1þOðn−2Þ;
gA¼ r2cR2=nþOðn−3Þ; gB¼ sin2θþOðn−3Þ;
ft¼Oðn−2Þ; fr¼Oðn−2Þ; fθ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ2Þ

p
þOðn−3=2Þ;

ð7:37Þ

where as usual R ¼ ðr=rcÞn. The functions mðt; θÞ and pðt; θÞ
are governed by the hydrodynamiclike equations

∂tm − cot θðrc∂θmþ pÞ ¼ 0; ð7:38Þ

∂tp−cotθ

�
rc∂θpþ

p2

m

�
þð1þr2cÞ∂θmþrcð2þcsc2θÞp¼0:

ð7:39Þ

In contrast to what is done in the black string case, here no
rescaling of the spatial θ coordinate is performed. It is possible
to rescale θ (Herzog and Kim, 2018) by zooming in on the
equatorial region of the sphere. The penalty one pays is that it
becomes less clear how to deal with the boundary conditions
at the poles θ ¼ 0 and θ ¼ π. These boundary conditions are
important given that we are looking for global solutions on the
entire sphere. Note that cot θ in Eqs. (7.38) and (4.46) comes
from a connection term in the covariant derivative ∇θ. The
portion ∂θ is suppressed relative to the connection term in the
large n limit, although it could be restored by rescaling θ.
These hydrodynamic equations can be solved generally

despite their apparent nonlinearity as

pðt; θÞ ¼ ð−rc∂θ þ tan θ∂tÞmðt; θÞ; ð7:40Þ

mðt; θÞ ¼ c exp

�X∞
l¼1

ðalþe
−iωlþ t þ al−

e−iωl− tÞcoslθ
�
;

ð7:41Þ

where c and al� are normalization constants and the allowed
frequencies are

ωl� ¼ i½−rcðlþ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ r2cðlþ 1Þ

q
�; ð7:42Þ

with l ¼ 1; 2;… a non-negative integer. The Gregory-
Laflamme-like instability identified by Hubeny and
Rangamani (2002) occurs where exactly one of these ωl�
develops a positive imaginary part, namely, ω1þ . The zero

mode first appears when rc ¼ 1=
ffiffiffi
2

p
. There is in fact an entire

series of such instabilities for each choice of integer l,
corresponding to ever higher spherical harmonics on the

Sd. These instabilities kick in as the radius of the black hole
gets ever smaller at rc ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p
.

The time-dependent solution (7.40) lends some support to
the early conjecture (Banks et al., 1998; Peet and Ross, 1998)
that the end point of the instability involves breaking the
symmetry of Sd. Depending on the initial conditions, the time-
dependent solutions lead to black holes that look like spots or
belts on Sd. Similar lumpy black holes were observed by Dias,
Santos, and Way (2015), for d ¼ 5, as well.
It would be beneficial to find static lumpy solutions with

topology Sd−2 × Sd, or even isolated static solutions where the
topology of the black hole changes to S2d−2, as were found by
Dias, Santos, and Way (2015, 2016) in the d ¼ 5 case. Indeed,
a more careful consideration of 1=n corrections reveals
candidate lumpy static solutions and also cousins of the
interpolating solution (5.31) that takes one from the uniform
black hole in the far past to a lumpy black hole in the far future
(Herzog and Meiring, 2020). Finding solutions where the
topology changes to S2d−2 appears to be beyond the scope of
this large d expansion. There will always be a horizon
everywhere on the Sd, even though the horizon radius varies.
In the study of the black string, we found there was a critical

dimension above which the Gregory-Laflamme transition
became second order and below which it was first order.
One may ask whether a similar situation holds here. It seems
likely, although the jury is still out. Dias, Santos, and Way
(2015, 2016) found that for AdS5 × S5 the transition is likely
to be first order, while the analysis of Herzog and Kim (2018)
and Herzog and Meiring (2020) indicated that in the large d
limit the transition is smooth and of second order.
An important issue is the degree to which the Ansatz (7.34)

restricts the form of the answer. The Ansatz allows the
SOðdþ 1Þ symmetry of the Sd to break only to SOðdÞ, while
the actual end point could conceivably break more symmetry.
Furthermore, there are many fields in type IIB supergravity, in
addition to the metric and five-form; it may be that the end
point involves these other fields as well, in which case it is also
less clear how to extend type IIB appropriately to higher
dimensions. One hopes that the situation is as simple as was
conjectured by Banks et al. (1998) and Peet and Ross (1998),
and the existence of the appropriate solutions by Dias, Santos,
and Way (2015, 2016) and Herzog and Kim (2018) lends
support to this hope.

VIII. QUANTUM BLACK HOLES,
QUANTUM GRAVITY AND STRINGS

There are several subjects in gravitational theory where a
1=D expansion is potentially fruitful, but which nevertheless
have received relatively little attention. In the following we
discuss a sample of them without attempting to be exhaustive.
The study of quantum effects in black holes seems to be a

natural field where the large D limit may be useful. Even
though interacting quantum field theories in D ≥ 4 have
terrible ultraviolet behavior, many effects of quantum fields
in curved spacetime arise in free theories and constitute
essentially infrared physics, so they might be amenable to
study in the 1=D expansion. A good example is the study by
Keeler and Priya (2019) of one-loop determinants in the large
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D limit. It exploited the decoupling of low-frequency fluctua-
tions to obtain analytical results, which give indications of the
membranelike nature of black holes in this regime.
The most famous and important black hole quantum effect

is Hawking radiation, so it behooves us to discuss its main
features when D ≫ 1.

A. Large D limit of Hawking radiation

We begin with some elementary remarks. When ℏ is
present, gravitational theory (retaining G but setting c ¼ 1)
acquires a length scale of its own, the Planck scale

LPlanck ¼ ðGℏÞ1=ðD−2Þ: ð8:1Þ

Quantum effects on black holes of radius r0 are then governed
by the dimensionless ratio r0=LPlanck. We may keep it fixed as
D grows, or instead change it with D at a specified rate.37 The
choice sets the size in Planck units of the black holes we are
considering, and selects which quantum properties remain
nonzero and finite in the large D limit. For instance, it turns
out to be impossible to take D → ∞ in such a way that both
the entropy and the temperature of the black hole are finite.
These are38

SBH ∼
�

r0ffiffiffiffi
D

p
LPlanck

�
D

ð8:2Þ

and

TH

EPlanck
∼ LPlanck

D
r0

; ð8:3Þ

where

EPlanck ¼
ℏ

LPlanck
¼ LD−3

Planck

G
: ð8:4Þ

We see that the entropy stays finite when D → ∞ if the black
hole radius is r0 ∼

ffiffiffiffi
D

p
LPlanckð1þ α=DÞ (with constant α),

while finite temperature requires much larger sizes
r0 ∼DLPlanck. The latter is the condition that the size of
the near-horizon region is Planckian parametrically in D, i.e.,
it could still be much larger than LPlanck but in a D-
independent manner.
Keeping TH finite does not imply finite emission rates, as

noted in the first study of Hawking radiation in the large D
limit by Hod (2011). One might have expected that the typical
energy ℏω of Hawking quanta is of the order of TH. However,
the actual energies are much larger due to the huge increase in
the phase space available to high-frequency quanta at large D,
which grows like ωD. This shifts the radiation spectrum
toward energies much larger than TH, with a peak at around

ℏωH ≃DTH ∼ ℏ
D2

r0
: ð8:5Þ

Thus, we find a new, ultrashort length scale

λH ∼
r0
D2

ð8:6Þ

for the wavelength of typical Hawking quanta. It means that
black holes at large D, unlike four-dimensional black holes
(but like, say, stars), are large quantum radiators whose radius
∼r0 and typical classical vibrational wavelengths ∼r0=D are
much longer than the wavelengths that they radiate quantum
mechanically. One consequence is that radiated Hawking
quanta follow null geodesics in the black hole background,
and the geometric optics approximation for gray body factors
applies accurately (Hod, 2011).39

Moreover, since the energy per quantum is extremely large
and the time to emit each of them is extremely short, the black
hole evaporates extremely quickly, within a timescale (Holdt-
Sørensen, McGady, and Wintergerst, 2019)

tevap ∼ tPlanck

�
4π

D

�
Dþ1=2

SðD−1Þ=ðD−2Þ
BH : ð8:7Þ

The factorial rate D−D makes this time potentially much
shorter than the scrambling time

tscr ∼
tPlanckffiffiffiffi

D
p S1=ðD−2Þ

BH ln SBH; ð8:8Þ

and when this happens the assumption of semiclassicality of
the evaporation becomes questionable. Conversely, this result
puts constraints on the size of black holes that in a given
dimension admit a semiclassical description (Holdt-Sørensen,
McGady, and Wintergerst, 2019).
More elucidation of the import of all these observations is

desirable, which should be relevant for the further use of the
large D expansion in this context, as a conceptual guide and
also as a calculational method.

B. Large D matrix models

In Sec. II.C we saw hints of a relation between string theory
and the 2D black hole that appears near the horizon of largeD
Schwarzschild. It is not clear, though, how to better ground
these observations, since the microscopic description of that
black hole in string theory is not well understood.
Nevertheless, there are other classes of near-horizon limits
of largeD black holes, e.g., if one includes charge, which arise
as solutions of different 2D dilatonic gravities. Some of these
hold better promise for associating large D black holes with a
class of microscopic quantum theories.
To motivate this connection, we begin by recalling that our

best quantum theories of gravity so far (those based on
holographic dualities) take the form of theories of large N
matrices. Four-dimensional large N gauge theories dual to37Equivalently, we can redefine the Planck length with suitable

D-dependent factors.
38This discussion refers to Schwarzschild and possibly Myers-

Perry black holes. In AdS the analysis can be substantially different.

39See Wei and Wen (2014) for other considerations on Hawking
radiation at large D.
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AdS5 gravity are a well-known example with full-fledged
gravitational dynamics, but they are extremely difficult to
solve. Matrix models in zero spacetime dimensions are much
more tractable, and in the limit N → ∞ they reproduce
features of strings, gravity, and black holes, but the absence
of temporal dynamics limits their usefulness. Models of
quantum mechanical matrices should provide a more realistic
setup, but it is in general difficult to do explicit calculations
with them. For this reason, the advent of the SYK model, a
quantum mechanical model of matrices where a “melonic”
(Bonzom et al., 2011) subclass of the planar diagrams
dominates at large N (Kitaev, 2015), triggered great advances
in the microscopic understanding of black holes (Maldacena
and Stanford, 2016). The main properties that make it
tractable have also been found in certain models of tensors
(Klebanov and Tarnopolsky, 2017; Klebanov, Popov, and
Tarnopolsky, 2018; Witten, 2019). Of interest to us here is a
class of mixed matrix-vector models (Ferrari, 2017) that, as
we see later, has reasonable hope of connecting to large D
black holes.
Matrix quantum mechanics can be motivated by the study

of D0-branes in string theory: these are pointlike objects (i.e.,
not extended in space like p-branes) that are described using
bosonic and fermionic SUðNÞ matrices Xij

μ ðtÞ;ψ ij
μ ðtÞ, where

the matrix indices i; j stand for open string degrees of
freedom, and the index μ indicates directions in the target
space where the 0-brane lives, so we can regard it as an
OðD − 2Þ vector index. String theory determines uniquely the
Hamiltonian for these matrices, providing a quantum theory of
gravity in which the regime of classical gravity emerges when
N → ∞ (Banks et al., 1997).
We may consider other models of this kind with different

Hamiltonians, e.g., with interactions not restricted by super-
symmetry, in the expectation that the large N limit also leads
to a dual gravitational theory. Such models are in general as
hard to solve as any matrix quantum mechanics, but Ferrari
(2017) made a remarkable observation: there exist models
such that if one expands them in 1=N and then takes the limit
D → ∞ in a specific way, the same melonic class of diagrams
as in SYK becomes dominant.40 The idea is highly suggestive:
taking the limit N → ∞ results in a regime of classical gravity
that is difficult to solve, but if we then send D → ∞,
substantial simplifications occur that make the theory much
more manageable. The similarity to the large D limit of
classical black holes is tantalizing.
Since SYK models at low energies are dual to the dynamics

of the near-AdS2 throats that appear in Reissner-Nordström
black holes close to extremality [not solutions of the dilaton-
gravity theory of Eq. (2.16) but of Jackiw-Teitelboim gravity
(Almheiri and Polchinski, 2015)], the natural expectation is
that a model of the type of Ferrari (2017) gives a quantum
mechanical description of the large D limit of near-extremal
charged black holes. There seem to be the right ingredients,
but more work is needed to support this connection.

C. Large D entanglement

Quantum entanglement in a many-body system or a
quantum field theory naturally presents a marked dependence
on the dimensionality of space. The larger the number of
dimensions, the more neighboring degrees of freedom are
available to be entangled with. As in our introductory remarks
on D → ∞ as a mean-field theory limit, one would expect
entanglement to become strongly localized as the number of
dimensions grows large, eventually resulting in the decou-
pling in average of correlations between points in the system.
The correlations between two subsystems A and B sepa-

rated by a common spatial boundary can be quantified in
terms of the entanglement entropies SðAÞ and SðBÞ of the
density matrices ρA and ρB obtained by tracing out the degrees
of freedom of the complementary subsystems B and A,
respectively. Of special interest to us is that for strongly
coupled conformal field theories there exists a prescription to
compute these entropies by means of a dual gravitational bulk
spacetime. This is the celebrated Ryu-Takayanagi (RT)
entanglement entropy formula (Ryu and Takayanagi, 2006),
covariantly extended by Hubeny, Rangamani, and Takayanagi
(2007). The entanglement entropy associated with a region A
is given by the area (divided by 4Gℏ) of an extremal surface in
an AdS bulk that is homologous to A, minimized over all such
possible surfaces.
Within this circle of ideas, Colin-Ellerin et al. (2020) chose

to study the mutual information IðA∶BÞ as an appropriate
measure of the correlations between two distant regions. This
is defined as the amount by which the entropies of the separate
regions differ from the entropy of their union, i.e.,

IðA∶BÞ ¼ SðAÞ þ SðBÞ − SðA ∪ BÞ: ð8:9Þ

It vanishes if the systems are uncorrelated, and it reaches a
maximum IðA∶BÞ ¼ 2SðAÞ ¼ 2SðBÞ when the joined system
is pure [SðA ∪ BÞ ¼ 0].
Two convenient regions for the holographic study of their

mutual information are two “caps” centered around opposite
poles of SD−2 at the boundary of AdSD. A simple argument
suggests that the behavior of IðA∶BÞ must change discontin-
uously as the caps grow in size: when they are small, the RT
surface for SðA ∪ BÞ consists of two disjoint surfaces anch-
ored at the boundaries of A and B, so IðA∶BÞ ¼ 0 (in
holography, this vanishes to leading order in 1=N, or in
Gℏ). As the caps become larger and get closer to each other,
the RT minimal surface for SðA ∪ BÞ jumps to a cylinder
stretched between the boundaries of A and B, thus mak-
ing IðA∶BÞ > 0.
The calculations that explicitly show this behavior cannot

be done analytically in any finite D except when D ¼ 3.
Colin-Ellerin et al. (2020) took a large D limit of these
equations and found enough simplification to analytically
compute the separation at which the phase transition occurs.
Their result shows that, when D is extremely large, the
averaged correlations between distant regions are small (zero,
at leading large N order) unless the two regions become
infinitesimally close and occupy the entire volume of the
boundary theory. This is naturally interpreted as a manifes-
tation of the spatial localization of correlations when D → ∞.

40For more work on these models, see Azeyanagi et al. (2018),
Azeyanagi, Ferrari, and Massolo (2018), Ferrari and Massolo (2019),
Ferrari, Rivasseau, and Valette (2019), and Carrozza et al. (2020).
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Given this confirmation that the structure of holographic
entanglement simplifies in the large D limit, there is hope that
the emergence of spacetime from quantum entanglement may
be more easily understood in a 1=D expansion.

D. Large D strings

The study of strings in the limit of large D is an old subject,
in particular, in the context of the effective string model for
confinement in QCD. Alvarez (1981) exploited the mean-field
character of the large D limit to study the corrections from
quantum fluctuations to the linear potential between two
quarks joined by a Nambu-Goto string.
With the advent of AdS=CFT, where the effective string is a

fundamental string in AdS5, Vyas (2013) investigated a
holographic bulk dual of that approach in a manner that
may relate to the large D limit in gravity. As a simple
illustration of the expected effects, consider the holographic
representation of a quark as a string hanging from the
boundary into the bulk. The gluonic cloud around the quark
at the boundary corresponds to the gravitational field that the
string in the bulk creates around itself. WhenD gets large, this
field becomes more and more strongly localized near the
string and vanishes a short distance away from it. On the
boundary, this means that the quantum gluonic cloud is
becoming averaged out beyond distances Oð1=DÞ, an effect
related to the spatial decoupling of correlations that we
discussed in Sec. VIII.C. Thus, the large D localization of
classical gravity is indeed dual to a mean-field limit in a
quantum theory.41

Although strings in theories at large D might appear to
necessarily be effective strings valid only at low energies, an
intriguing construction by Friess and Gubser (2006) suggests
that critical strings might exist as conformally invariant 2D
sigma models in AdSD when D is large. The uses of these
theories and their possible connections to largeD gravity need
to be better understood.

IX. HIGHER-DERIVATIVE GRAVITY

In dimensionsD ≥ 4, Einstein’s theory can be extended to a
class of theories with higher-derivative terms in the action,
whose field equations nevertheless are of second derivative
order. These are the Lovelock theories, the simplest of which
consists of the addition of a Gauss-Bonnet term in D ≥ 5, but
as D grows higher an increasing number of terms are allowed
in the action (Lovelock, 1971). Even though their consistency
as classical theories has not been completely established [see,
e.g., Reall, Tanahashi, and Way (2014), Papallo and Reall
(2017), and Kovacs and Reall (2020)], they are a natural field
of study for the large D program.
The same elementary remark can be made about these

theories as was made in Sec. VIII.A. Since each additional
Lovelock term comes with a length scale of its own, in the
form of an undetermined coefficient (coupling) in the action,
there is a choice to be made about how these lengths change

withD. That is, there is not a correct way of taking the largeD
limit for these theories, but rather there are different trajecto-
ries in the space of D-dependent couplings, leading to
different limits as D → ∞. Which limit one chooses may
be dictated by the kind of physics that one intends to select or,
more pragmatically, by the simplifications that result from a
specific choice.42

There are exact solutions for static black holes with
arbitrary numbers of Lovelock couplings (Boulware and
Deser, 1985; Wheeler, 1986a, 1986b; Cai and Soh, 1999).
A first study of the large D limit in these theories analyzed
elementary properties of these black holes (Giribet, 2013). In a
similar context but with additional terms in the action
motivated by string theory, Dominis Prester (2013) took a
large D limit to explicitly solve the equations for a class of
“small black holes” of string-scale size.
A more comprehensive study was begun by Chen et al.

(2016) with the investigation of the quasinormal spectrum of
large D black holes in Gauss-Bonnet theory. An important
feature of the Lovelock black holes is that if the large D limit
is taken in such a way that the effects of the higher couplings
remain finite near the horizon, then the geometry loses most of
the simplifying properties of the pure Einstein theory. In
particular, it is not possible in general to solve for the
quasinormal modes in closed analytic form. One may, how-
ever, find solutions in a perturbative expansion for small
values of those couplings, as was done by Chen et al. (2016).
This same limitation extends to all subsequent studies of
higher-derivative black holes at largeD. Even though this may
appear to be a serious restriction, one must bear in mind that
when gravitational theory is regarded as an effective field
theory the higher-derivative operators must consistently be
treated as perturbatively small corrections.
Within this framework of ideas, the different effective

theories of black holes that we discussed in Sec. IV, as well
as many of their applications, were extended to higher-
derivative theories (mostly Gauss-Bonnet) in the Beijing
variety of the Japan-Barcelona style by Chen and Li (2016,
2017), Chen, Li, and Wang (2017), Chen, Li, and Zhang
(2017, 2018), Chen et al. (2019), Li, Zhang, and Chen (2019),
and Guo, Li, and Chen (2020), and in the Indian style by Kar,
Mandal, and Saha (2019), Saha (2019), Bhattacharya et al.
(2020), and Dandekar and Saha (2020).

X. BEYOND DECOUPLING

A. Nondecoupled waves and hair

Much interesting black hole physics takes place outside the
regime of decoupled dynamics that is so elegantly captured by
the large D membrane theories. We lack a general conceptual
framework for nondecoupled black hole dynamics of the
kind that underlies the physics of the decoupled sector.
Nevertheless, there are several examples of phenomena out-
side the remit of decoupled physics for which the large D

41The study of large D strings by Ambjørn and Makeenko (2016)
may also contain other lessons for gravity.

42In principle, string theory determines the values of these
couplings in D ¼ 10 or lower.
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expansion has proved efficient. Perhaps they contain clues for
more systematic approaches.
An early instance was the study of the scattering of scalar

waves off of a black hole, which was fully solved analytically
by Emparan, Suzuki, and Tanabe (2013). The result was cast
into the form of effective boundary conditions at the “hole” for
waves that propagate in the far zone.
We also discussed in Sec. III.C how the calculation of the

universal spectrum of nondecoupled quasinormal modes
easily yields the real part of frequencies with an accuracy
that compares well with other analytical methods. The broad
universality of the spectrum, consisting of almost normal,
nondissipative modes, may allow for further analysis, possibly
including the quantization of black hole oscillations.
A problem that is technically similar to the nondecoupled

quasinormal oscillations (solved using a WKB approximation
near a peak of a radial potential) is the study of scalar field
condensation in a holographic superconductor, which we
reviewed in Sec. VII.B. This is among a class of phenomena
that have attracted considerable attention in recent years: the
formation of hair as a scalar condensate around black holes.
Hair loss can be prevented, in AdS and in other situations,
when the black hole is inside some sort of “box” that does not
allow the scalar to disperse. When D is large, in known
models the hair condenses just outside the near-horizon zone.
With the hair in this region, the gains from considering largeD
are meager: the complete description of the condensate
generally cannot be reduced to a fully analytical solution
and must be solved numerically as when D is finite.43 We do
not know of any argument contending that the scalar field
could not condense within the near-horizon zone, so it would
be interesting if a well-motivated and workable model of it
could be constructed.
Finally, a related topical problem that is hard to solve with

numerical approaches (since it involves widely separate
scales) is the evolution of “black hole bomb” superradiant
instabilities of rotating black holes, in AdS and in other “box”
spacetimes.44 Studying it in a large D approach requires
handling the nonperturbative in 1=D coupling of the near and
far zones in a dynamical situation, which is not yet sufficiently
understood.

B. Short-scale structure, singularities, and topology change

There are many situations where the structure on short
distances appears in a gravitational system, often involving the
presence of singularities. While there are many types of
singularities and our understanding of them is incomplete,
it seems likely that the strength of a singularity often will
depend on the number of dimensions.45 Given the increased
localization of gravity, we expect that as D grows, the
divergences will become stronger near a curvature singularity.

This suggests looking for an appropriate scaling with D that
magnifies the singular region and, by isolating it, possibly
simplifies its investigation.
Opportunities of this kind arise in the deep nonlinear

regime of the GL instability, which we discussed in Sec. V.
Singularities play a role both in the phase space of static
solutions and in the time evolution of the instability. The
former were successfully addressed by Emparan and Suzuki
(2019), who studied the topology-changing merger transition
in solution space between black strings and black holes
localized in a Kaluza-Klein circle. A new kind of large D
scaling of the black string was found that blows up the merger
region and reduces the problem not only to a tractable form
but also to a mathematically appealing one: the near-horizon
geometry varies along the Kaluza-Klein circle direction
following the equations of Ricci flow.46 A singular pinch
on the black string horizon corresponds to the end point of a
certain Ricci flow. Emparan and Suzuki (2019) then were able
to obtain a complete understanding of the singularity and its
deformation and resolution across the topology-changing
horizon.
In the time-dependent setting, a naked singularity forms

dynamically in the evolution of the GL instability, as we
mentioned in Sec. V. This has been observed only numerically
(Lehner and Pretorius, 2010). An analytic understanding of it
using the large D limit is a challenging problem that is still
unsolved.

C. Critical collapse and Choptuik scaling

Another important instance where the dynamics of gravity
leads to short-distance physics, indeed naked singularities, is
the phenomenon of critical collapse, discovered in a numerical
study by Choptuik (1993); see Gundlach and Martín-García
(2007) for a review.
Consider a one-parameter family of initial data for a

spherical scalar field cloud. For definiteness we take the
parameter (call it a) to be the amplitude of the cloud, but it
could also be its radial velocity or its width. Left to evolve
under the action of gravity, the cloud collapses, and the
outcome depends on its initial amplitude. For small ampli-
tudes, the field contracts and then bounces back and disperses
away to infinity. For large amplitudes, the collapse instead
forms a black hole (with part of the scalar field dispersing to
infinity): a larger black hole for a larger initial amplitude. By
decreasing the parameter p, we can tune to a regime where the
mass of the black hole scales as

M ∝ ða − a�Þγ; ð10:1Þ

where a� is the critical parameter that separates the two
outcomes and the critical exponent is numerically determined
to be γ ≈ 0.374. This value is universal for all one-parameter
families of scalar field initial data. Moreover, all near-critical
data approach the same geometry in a finite region of space for
a finite time, from either side of the threshold. The critical

43There are analytic holographic superconductors (Herzog, 2010).
44Among many references to this subject, Press and Teukolsky

(1972), Cardoso et al. (2004), and Cardoso, Dias, and Yoshida (2006)
authored the relevant early ones.

45Even the nature of the singularity may change with D, as is
known to occur for Belinski-Khalatnikov-Lifshitz singularities
(Damour, Henneaux, and Nicolai, 2003).

46Unknown to Emparan and Suzuki (2019) at the time, the same
large D limit had been studied earlier by Perelman (2006).
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solution ϕ�ðt; rÞ repeats itself with discrete self-similarity, or
scale echoing, such that

ϕ�ðt; rÞ ¼ ϕ�ðeΔt; eΔrÞ; ð10:2Þ

where the logarithmic period is found to be Δ ≈ 3.44.
This phenomenon is as intriguing as it is exciting. By fine-

tuning the initial data, we can use the gravitational attraction to
create regions of increasingly large curvature, eventually
reaching a naked singularity, or more physically, a region
of Planck-scale curvature where quantum-gravity effects are
made visible to observers from afar.47

What is the meaning of the exponents γ and Δ? In statistical
mechanics, when critical exponents are irrational, it is because
of large quantum fluctuations near criticality. In gravitational
physics, critical phenomena typically arise associated with
physics on a preexisting horizon, and the exponents take
simple, rational values of mean-field theory type. Choptuik’s
criticality is remarkable in this respect since γ seems to be
irrational coming out of a fully naked singularity. Its mystery
might start to unravel if we could find a way of computing it
analytically, possibly in a perturbative expansion where the
leading-order value is rational, from some sort of limiting
solvable mean-field theory which we could then correct order
by order.
The large D limit appears to have the right ingredients for

this problem. Numerical investigations of scalar field critical
collapse at increasing values of D reveal an interesting pattern
(Bland et al., 2005; Sorkin and Oren, 2005): asD grows large,
γ approaches the value 1=2. In fact, the data are well
approximated by

γ ≈
1

2

�
1 −

1

D

�
ð10:3Þ

(for D ¼ 4 this yields γ ¼ 0.375, although a better fit to the
data at larger D is γ ≈ ð1=2Þ½1 − 1=ðDþ 1Þ�; more accurate
fits were given by Rozali and Way (2018)). The behavior with
D of the echoing period is less clear since this quantity is in
general hard to extract numerically, even more so as the
number of dimensions increases. But in any case these
observations provide good motivation to attack the problem
of critical collapse using a largeD approach, going beyond the
scope of the effective membrane theory.
The first task is to identify the appropriate scalings with D

of field variables and coordinates. To approach this problem,
Rozali and Way (2018) first examined the wave equation for a
spherically symmetric scalar field in flat spacetime48

∂2
tφ ¼ ∂2

rφþD − 2

r
∂rφ: ð10:4Þ

In the study of nondecoupled waves in a black hole back-
ground (both quasinormal modes and scattering), the appro-
priate scalings were t ¼ t̄=D and r → 1þ ðlnRÞ=D, i.e., ∂t,∂r ∼D, which focused on the region near the horizon while
preserving the hyperbolic (wavelike) character of the equa-
tion. Instead, Rozali and Way (2018) noticed that if ∂t ∼

ffiffiffiffi
D

p
and ∂r ∼Oð1Þ, that is, by scaling

t ¼ τffiffiffiffi
D

p ð10:5Þ

and then taking D → ∞, the wave equation (10.4) turns into a
parabolic equation

∂2
τφ ¼ 1

r
∂rφ: ð10:6Þ

This does not give us what we are after, but there are not that
many nontrivial large D scalings of the equation, and more-
over it is the same scaling (with t and r swapped) as was taken
by Emparan and Suzuki (2019) for the study of the black
hole–black string transition, a problem linked by double
analytic continuation to that of critical collapse (Kol,
2006). Equation (10.6) admits simple exact solutions, which
as Rozali and Way (2018) found can be extended with a
similar scaling in D to the case in which the field φ is coupled
to gravity. These gravitating solutions describe not a collaps-
ing field but instead a class of oscillating “soliton stars,”which
have an intriguing feature: when the amplitude of the
oscillations reaches a critical value, a divergence appears. If
the divergence is regarded as a signal of the formation of the
horizon of a black hole, one finds a critical exponent γ ¼ 1=2.
Thus, even if the gravitating scalar solution given by Rozali

and Way (2018) is not the critical collapse that we seek (it is
not self-similar and it is not a collapse), these findings suggest
that the scaling (10.5) may zoom in on the right regime of
physics.
If a large D expansion manages to yield a simple enough

solution to collapse near criticality, then one may consider
embedding it in AdS with the aim of improving the under-
standing of the nonlinear instability of AdS (Bizon and
Rostworowski, 2011).

XI. GRAVITATIONAL RADIATION

A. Shock wave collisions

The collision of gravitational shock waves in D dimensions
was studied by Herdeiro, Sampaio, and Rebelo (2011) and
Coelho et al. (2013). It was found that when D is extremely
large the result for the radiated energy admits a simple fit
(Coelho, Herdeiro, and Sampaio, 2012). This suggests that
rather than first solving the problem for arbitrary D and then
taking D ≫ 1 it may be fruitful to set up the problem from the
start in terms of a 1=D expansion, hoping that the equations
become simple enough to allow a more complete study.

47Because of the fine-tuning required, critical collapse is often
dismissed as an unphysical violation of cosmic censorship. We
disagree with this view: the distinction is that of experimental physics
versus observational physics. Although hard to observe in the skies
by astronomers, critical gravitational collapse to form a Planck-size
“black hole” may well be engineered by the experimentalists of a
sufficiently advanced civilization. Observe that the fine-tuning is a
moderate power law (not an exponential) in the initial data.

48A mass term may be added, but one expects it would become
irrelevant at the short scales near criticality.

Roberto Emparan and Christopher P. Herzog: Large D limit of Einstein’s equations

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045005-39



B. An effective theory of gravitational waves?

Before concluding, we now speculate on whether, in
addition to effective theories of black holes, a largeD effective
theory of gravitational waves might be possible. Since the
vacuum theory Rμν ¼ 0 is essentially a theory of black holes
and of the gravitational waves that interact with them, we
would achieve a complete reformulation of general relativity
around the limit D → ∞. As we have seen, the coupling
between the effective membrane and the gravitational waves is
nonperturbative in 1=D. Therefore, the two sectors of the
theory (black holes and gravitational waves) can be studied
independently before we couple them.
The studies of perturbative quantum general relativity by

Strominger (1981) and Bjerrum-Bohr (2004) may be regarded
as attempts to exploit the large number ∼D2 of graviton
polarizations to tame the gravitational fluctuations of the
geometry away from the black holes. However, as mentioned
in the Introduction this route does not appear to lead far, so
other ideas must be considered.
To formulate an effective theory of gravitational waves, it

seems necessary to have a separation of length scales. There
are two natural ones: their amplitude and their wavelength.
Perhaps an effective theory is possible in regimes where these
lengths are parametrically separated in D. It is not clear
whether or how this may employ either of the two aspects of
the large D limit that we discussed in the Introduction (the
large number of graviton polarizations or the localization of
the gravitational interaction) or whether other new concepts
will be required instead.
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