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I. INTRODUCTION

Here are some questions about the global properties of
classical general relativity:

(1) Under what conditions can one predict the formation
of a black hole?

(2) Why can the area of a classical black hole horizon only
increase?

(3) Why, classically, is it not possible to travel through a
“wormhole” in spacetime?

These are questions of Riemannian geometry in Lorentz
signature. They involve the causal structure of spacetime:
where can one get, from a given starting point, along a
worldline that is always within the local light cone?
Everyday life gives us some intuition about Riemannian

geometry in the ordinary case of Euclidean signature. We live
in three-dimensional Euclidean space, to an excellent approxi-
mation, and we are quite familiar with two-dimensional curved
surfaces. A two-dimensional curved surface is a reasonable
prototype for Riemannian geometry in Euclidean signature,
though Riemannian geometry certainly has important features
that appear only in higher dimensions.
By contrast, everyday life does not fully prepare us for

Lorentz signature geometry. What is fundamentally different
about Lorentz signature is the constraint of causality: a signal
cannot travel outside the light cone. Because the speed of light
is so large on a human scale, the constraints of relativistic
causality are not apparent in everyday life.
These constraints are most interesting in the context of

gravity. Black holes, regions of spacetime from which no
signal can escape to the outside world, provide a dramatic
manifestation of how the constraints of relativistic causality
play out in the context of general relativity.
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The field equations of classical general relativity are
notoriously difficult, nonlinear equations from which it can
be hard to extract insight. But it turns out that by rather simple
arguments involving a fascinating interplay of causality,
positivity of energy, and the Einstein equations, it is possible
to gain a great deal of qualitative understanding of cosmology,
gravitational collapse, and spacetime singularities.
The aim of this review is to introduce this subject as readily

as possible, with a minimum of formalism. This will come at
the cost of cutting a few mathematical corners and omitting
important details, and further results, that can be found in
more complete treatments. Several classical accounts of this
material were written by the original pioneers, including
Penrose (1972) and Hawking and Ellis (1973). Some details
and further results omitted from this review can be found in
the classic textbook by Wald (Wald, 1984), especially
Chaps. 8, 9, and 12. Several helpful sets of lecture notes
were given by Chrusciel (2011), Aretakis (2013), and
Galloway (2014). A detailed mathematical reference on
Lorentz signature geometry was produced by Beem,
Ehrlich, and Easley (1996).
One can offer some good news to the inquisitive reader:

there are many interesting results, but a major role is played by
a few key ideas that date back to the 1960s. Thus, one can
become conversant with a significant body of material in a
relatively short span of time.
The review is organized as follows. Some basics about

causality are described in Secs. II and III. In Sec. IV, we
explore the properties of timelike geodesics and navigate
toward what is arguably the most easily explained singularity
theorem, namely, a result of Hawking’s about the big bang
(Hawking, 1966). In Sec. V, we analyze the somewhat subtler
problem of null geodesics and present the original and most
important modern singularity theorem, which is Penrose’s
theorem about gravitational collapse (Penrose, 1965).
Section VI describes some basic properties of black holes
that can be understood once one is familiar with the ideas
that go into Penrose’s proof. A highlight is the Hawking area
theorem (Hawking, 1972). Section VII is devoted to some
additional matters, notably topological censorship (Friedman,
Schleich, and Witt, 1993; Galloway et al., 2001), the Gao-
Wald theorem (Gao and Wald, 2000), and their extension to
the case that one assumes an averaged null energy condition
(ANEC) rather than the classical null energy condition.
Finally, in Sec. VIII we reexamine null geodesics in a more
precise way, with fuller explanations of some important points
from Sec. V plus some further results.
For the most part, this review assumes only a basic

knowledge of general relativity. At some points, it will be
helpful to be familiar with the Penrose diagrams of some
standard spacetimes. The most important example, because
of its role in motivating Penrose’s work, is simply the
Schwarzschild solution. The other examples that appear
(anti–de Sitter space, de Sitter space, and the Reissner-
Nordström solution) provide illustrations that actually
can be omitted on first reading; the review will remain
comprehensible. Much of the background relevant to the
anti–de Sitter and de Sitter examples is explained in
Appendixes A and B.

II. CAUSAL PATHS

To understand the causal structure of spacetime,1 we have to
study causal paths.Weusually describe a path inparametric form
as xμðsÞ, where xμ are local coordinates in spacetime and s is a
parameter. [We require that the tangent vector dxμ=ds is nonzero
for all s, andwe consider two paths to be equivalent if they differ
only by a reparametrization s → s̃ðsÞ.] A path xμðsÞ is causal if
its tangent vector dxμ=ds is everywhere timelike or null.
We will often ask questions along the lines of “what is the

optimal causal path?” for achieving some given objective. For
example, what is the closest one can come to escaping from
the black hole or traversing the wormhole? The answer to such
a question usually involves a geodesic with special properties.
Therefore, geodesics will play an important role. We start
simply by considering causal paths in Minkowski space from
a point q to a point p in its causal future (the points inside or
on the future light cone of q). Such a path will lie within a
subset of spacetime that we call the “causal diamond” Dp

q ;
see Fig. 1. This diamond is the intersection of the causal future
of 2 q with the causal past of p.
The first essential point is that the space of causal paths

from q to p is in a suitable sense compact. Causality is
essential here. Without it, a sequence of paths, even if
confined to a compact region of spacetime (like Dp

q ), could
oscillate more and more wildly, with no convergent sub-
sequence. For example, in two-dimensional Minkowski space
M with metric ds2 ¼ −dt2 þ dx2 [where we sometimes write
x for the pair ðt; xÞ], here is a sequence of noncausal paths3

from q ¼ ð0; 0Þ to p ¼ ð1; 0Þ:

x ¼ sinðπntÞ; 0 ≤ t ≤ 1: ð1Þ

Though restricted to a compact portion of M, these paths
oscillate more and more wildly with no limit for n → ∞.
Taking a subsequence does not help, so the space of all paths
from q to p is not compact in any reasonable sense.
Causality changes things because it gives a constraint

jdx=dtj ≤ 1. To understand why this leads to compactness,
it is convenient to flip the sign of the dt2 term in the metric
(in our chosen coordinate system) and define the Euclidean
signature metric

1In this review, a “spacetime” M is a D-dimensional manifold,
connected and with a smooth Lorentz signature metric. We assume
thatM is time oriented, which means that at each point inM, there is
a preferred notion of what represents a “future” or “past” timelike
direction. We allow arbitrary D, rather than specializing to D ¼ 4,
since this does not introduce any complications. It is interesting to
consider the generalization to arbitrary D since any significant
dependence on D might shed light on why we live in D ¼ 4, at
least macroscopically. Moreover, the generalization to arbitrary D is
important in contemporary research on quantum gravity.

2An important detail, here and later, is that we consider q itself to
be in its own causal future (or past). Thus, q (or p) is contained inDp

q .
Related to this, in the definition of a causal path, we allow the case of
a trivial path that consists of only one point. The purpose of this is to
simplify various statements about closedness or compactness.

3To put these paths in parametric form, one would simply write
tðsÞ ¼ s, xðsÞ ¼ sinðπnsÞ.
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ds2E ¼ dt2 þ dx2: ð2Þ

A straight line from q ¼ ð0; 0Þ to p ¼ ð1; 0Þ has Euclidean
length 1, and an arbitrary causal path between those points has
Euclidean length no more than

ffiffiffi
2

p
. (The reader should be able

to describe an example of a causal path of maximal Euclidean
length.)
Once we have an upper bound on the Euclidean length,

compactness follows. Parametrize a causal path of Euclidean
length λ ≤

ffiffiffi
2

p
by a parameter s that measures λ times the

arclength, so s runs from 0 to 1. Suppose that we are given a
sequence of such causal paths xnðsÞ, n ¼ 1; 2; 3;…. Since
each of these paths begins at q, ends at p, and has total
Euclidean length ≤

ffiffiffi
2

p
, there is a compact subset D of

Minkowski space that contains all of them.
The existence of a convergent subsequence of the

sequence of paths xnðsÞ follows by an argument that might
be familiar. First consider what happens at s ¼ 1=2. Since
xnð1=2Þ is contained, for each n, in the compact region D,
there is a subsequence of the paths xnðsÞ such that xnð1=2Þ
converges to some point in D. Extracting a further sub-
sequence, one ensures that xnð1=4Þ and xnð3=4Þ converge.
Continuing in this way, one ultimately extracts a sub-
sequence of the original sequence with the property that
xnðsÞ converges for any rational number s whose denom-
inator is a power of 2. The bound on the length ensures that
wild fluctuations are not possible, so actually for this
subsequence xnðsÞ converges for all s. Therefore, any
sequence of causal paths from q to p has a convergent
subsequence, and thus the space of such causal paths is
compact.4 This argument carries over without any essential
change to D-dimensional Minkowski space with metric
ds2 ¼ −dt2 þ dx⃗2. Thus, if p is to the causal future of q,
the space of causal paths from q to p is compact.

Here is a consequence that turns out to be important. The
proper time elapsed along a causal path is

τ ¼
Z

1

0

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dt
ds

�
2

−
�
dx⃗
ds

�
2

s
: ð3Þ

Assuming that p is in the causal future of q, so that causal
paths from q to p do exist, the compactness of the space of
causal paths from q to p ensures that there must be such a path
that maximizes τ. In more detail, there must be an upper bound
on τ among all causal paths from q to p, because a sequence
of causal paths xnðsÞ whose elapsed proper time τn grows
without limit for n → ∞ could not have a convergent
subsequence. If τ0 is the least upper bound of the proper
time for any causal path from q to p, then a sequence of paths
xnðsÞ of proper time τn such that τn → τ0 for n → ∞ has a
convergent subsequence, and the limit of this subsequence is a
causal path with proper time5 τ0.
A causal path that maximizes, or just extremizes, the

elapsed proper time is a geodesic. Thus, if p is in the future
of q, there must be a proper time maximizing geodesic from q

FIG. 1. For two spacetime points q and p, with p to the future
of q, the causal diamond Dp

q consists of all points that are in the
causal future of q and the causal past of p. Sometimes it is of
interest to consider a spacetime in which a point r is omitted from
the causal diamond, as sketched here.

4In this footnote and the next one, we give the reader a taste of the
sort of mathematical details that are generally elided in this review.
The topology in which the space of causal paths is compact is the one
for which the argument in the text is correct: a sequence xnðsÞ
converges to xðsÞ if it converges for each s. In addition, to properly
state the argument in the text, we have to take into account that such a
pointwise limit of smooth curves is not necessarily smooth. One
defines a continuous causal curve as the pointwise limit of a sequence
of smooth causal curves. (A simple example of a continuous causal
curve that is not smooth is a piecewise smooth causal curve.) The
argument in the text has to be restated to show that a sequence of
continuous causal curves has a subsequence that converges to a
continuous causal curve. Basically, if γ1; γ2;… is a sequence of
continuous causal curves, then after passing to a subsequence one can
assume as in the text that the γi converge to a continuous curve γ, and
we have to show that γ is a continuous causal curve. Each γj, being a
continuous causal curve, is the pointwise limit of a sequence
γj;1; γj;2;… of smooth causal curves. After possibly passing to
subsequences, we can assume that γj and γj0 are close to each other
for large j, j0 (say, within Euclidean distance 1=n if j; j0 ≥ n) and
similarly that γj;k is close to γj for k ≥ j (say, within a Euclidean
distance 1=j). Then the diagonal sequence fγj;jg is a sequence of
continuous causal curves that converges to γ, so γ is a continuous
causal curve.

5The proper time is not actually a continuous function on the space
of paths, in the topology defined in footnote 4. That is because a
sequence of causal paths γn might converge pointwise to a causal path
γ but with short-scale oscillations in lightlike (or almost lightlike)
directions; see Fig. 2. The correct statement is that if a sequence γn
converges to γ, then the proper time elapsed along γ is equal to or
greater than the limit (or, if this limit does not exist, the lim sup) of the
proper time elapsed along γn. In other words, upon taking a limit, the
proper time can jump upward but cannot jump downward. Techni-
cally this is described by saying that the proper time function is an
upper semicontinuous function on the space of causal paths. Upward
jumps do not spoil the argument given in the text (though downward
jumps would spoil it), because by the way τ0 was defined, the limit of
a subsequence of the xnðsÞ cannot have a proper time greater than τ0.
One could modify the notion of convergence to make the elapsed
proper time a continuous function on the space of causal paths, but
this is inconvenient because compactness then would fail.
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to p. In the particular case of Minkowski space, we can prove
this more trivially. There is a unique geodesic from q to p,
namely, a straight line, and it maximizes the proper time. (The
fact that a timelike geodesic in Minkowski space maximizes
the proper time between its endpoints is sometimes called the
twin paradox. A twin who travels from q to p along a
nongeodesic path, accelerating at some point along the way,
comes back younger than a twin whose trajectory from q to p
is a geodesic. In a suitable Lorentz frame, the twin whose path
is a geodesic was always at rest, but there is no such frame for
the twin whose trajectory involved acceleration.)
The only fact that we really needed about Minkowski space

to establish the compactness of the space of causal paths from
q to p was that the causal diamond Dp

q consisting of points
that such a path can visit is compact. If q and p are points in
any Lorentz signature spacetime, we can define a generalized
causal diamondDp

q that consists of points that are in the causal
future of q and the causal past of p. Whenever Dp

q is compact,
the same reasoning as before will show that the space of causal
paths from q to p is also compact, and therefore that there is a
geodesic from q to p that maximizes the elapsed proper time.
A small neighborhood U of a point q in any spacetime M

can always be well approximated by a similar small open set
in Minkowski space. A precise statement (here and whenever
we want to compare a small neighborhood of a point in some
spacetime to a small open set in Minkowski space) is that q is
contained in a convex normal neighborhood U, in which there
is a unique geodesic between any two points.6 Roughly, in
such a neighborhood, causal relations are as they are in a
similar neighborhood in Minkowski space. We call such a
neighborhood a local Minkowski neighborhood.
If p is just slightly to the future of q, one might hope that

Dp
q will be compact, just like a causal diamond in Minkowski

space. This is actually true if M satisfies a physically sensible
condition of causality. A causality condition is needed for the
following reason. To compare Dp

q to a causal diamond in
Minkowski space, we want to know that if p is close enough
to q, then Dp

q is contained in a local Minkowski neighborhood
of q. That is not true in a spacetime with closed causal curves
(if γ0 is a closed causal curve from q to itself, then a causal
path from q to p can traverse γ0 followed by any causal path
from q to p; such a path will not be contained in a local
Minkowski neighborhood of q since there are no closed causal
curves in such a neighborhood). The condition that we need is
a little stronger than absence of closed causal curves and is
called “strong causality”; see Sec. III.E for more details. In a
strongly causal spacetime, causal paths from q to p are
contained in a local Minkowski neighborhood of q if p is close
enough to q. Dp

q is then compact, as in Minkowski space.
In this review, we always assume strong causality.
As p moves further into the future, compactness of Dp

q can
break down. We give two examples here. The first example is
simple but slightly artificial. The second example is perhaps
more natural.
For the first example, start with Minkowski space M, and

make a new spacetimeM0 by omitting fromM a point r that is
in the interior of Dp

q ; see Fig. 1. M0 is a manifold, with a
smooth Lorentz signature metric tensor, so we can regard it as
a classical spacetime in its own right. But in M0, the causal
diamond Dp

q is not compact since the point r is missing.
Accordingly the space of causal paths from q to p inM0 is not
compact. A sequence of causal paths in M0 whose limit in M
would pass through r does not have a limit among paths inM0.
If inM r happens to lie on the geodesic from q to p, then inM0

there is no geodesic from q to p. Of course, in this exampleDp
q

is compact if p is to the past of r.
We canmake this example less artificial by using the fact that

the space of causal paths is invariant under a Weyl trans-
formation of the spacetimemetric, that is, under multiplying the
metric by a positive function eϕ, for any real-valued function ϕ
on spacetime. The reason for this is that two metrics ds2 and
eϕds2 that differ by a Weyl transformation have the same local
light cones and thus the same spaces of causal paths.With this in
mind, replace the usual Minkowski space metric −dt2 þ dx⃗2

with aWeyl-transformedmetric eϕð−dt2 þ dx⃗2Þ. If the function
ϕ is chosen to blowup at thepoint r, producing a singularity, this
provides a rationale for omitting that point from the spacetime.
This gives a relatively natural example of a spacetime in which
causal diamonds are not compact.
As a second example,7 we consider anti–de Sitter (AdS)

spacetime, which is the maximally homogeneous spacetime
with negative cosmological constant. For simplicity, we
consider two-dimensional anti–de Sitter spacetime AdS2.
As explained in detail in Appendix A, this spacetime can
be described by the metric

ds2 ¼ R2

sin2σ
ð−dt2þdσ2Þ; −∞< t<∞; 0< σ< π: ð4Þ

FIG. 2. This figure illustrates the fact that a smooth timelike
curve γ can be approximated by a sequence of causal curves γn
that fluctuate rapidly near γ in lightlike or almost lightlike
directions, such that the γn converge to γ but the proper time
elapsed along the γn does not converge to the proper time elapsed
along γ. Rather the proper time elapsed along the γn can be
extremely small or even zero.

6For more detail on this concept, see Hawking and Ellis (1973),
especially p. 103, or Wald (1984), p. 191.

7This example can be omitted on first reading. The background
required to understand it is largely explained in Appendix A.
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The causal structure is not affected by the factor R2= sin2 σ,
which does not affect which curves are timelike or null. Thus,
from a causal point of view, we can drop this factor and just
consider the strip 0 < σ < π in a Minkowski space with metric
ds2 ¼ −dt2 þ dσ2. This strip is depicted in the Penrose
diagram of Fig. 3. A causal curve in the Penrose diagram
is one whose tangent vector always makes an angle no greater
than π=4 with the vertical. Null geodesics are straight lines for
which the angle is precisely π=4; some of these are drawn in
the figure.
The boundaries of the Penrose diagram at σ ¼ 0; π are not

part of the AdS2 spacetime. They are infinitely far away along,

for example, a spacelike hypersurface t ¼ const. Nevertheless,
a causal curve that is null or asymptotically null can reach σ ¼ 0
or π at finite t. Accordingly, it is sometimes useful to partially
compactify AdS space by adding in boundary points at
σ ¼ 0; π. Those points make up what is called the conformal
boundary of AdS2. But importantly, the conformal boundary is
not actually part of the AdS2 spacetime. We cannot include the
boundary points because (in view of the 1= sin2 σ factor) the
metric blows up along the conformal boundary.
As in any spacetime (satisfying a reasonable causality

condition), if q is a point in AdS spacetime and p0 is a point
slightly to its future, then Dp0

q is compact. But in AdS

spacetime, Dp0
q fails to be compact if p0 is sufficiently far

to the future of q that a causal path from q to p0 can reach from
q all the way to the conformal boundary on its way to p0. In
this case, the fact that the conformal boundary points are not

actually part of the AdS spacetime means that Dp0
q is not

compact. The “missing” conformal boundary points play a
role similar to the missing point r in the previous example.
In practice, if a point p0 is contained in the quadrilateral

qsq0r in the figure, then a causal path from q to p0 cannot
reach the conformal boundary en route, and Dp0

q is compact.
But if p0 is to the future of q and not in this quadrilateral, then
a causal path from q to p0 can reach the conformal boundary

on its way, and compactness of Dp0
q fails. Concretely, a

sequence of causal curves from q within the AdS space that
go closer and closer to the conformal boundary on their way to
p0 will have no convergent subsequence.
When Dp0

q is not compact, a causal path from q to p0 of
maximal elapsed proper time may not exist. An example is the
point labeled p in Fig. 3, which is to the future of q but is not
contained in the quadrilateral. There is no upper bound on the
elapsed proper time of a causal path from q to p. A causal path
that starts at q, propagates close to the right edge of the figure,
lingers there for a while, and then continues on to p can have
an arbitrarily long elapsed proper time. This statement reflects
the factor of 1= sin2 σ in the AdS2 metric (4). Since a causal
path from q to p can linger for a positive interval of t in a
region of arbitrarily small sin σ, there is no upper bound on its
elapsed proper time.
In fact, there is no geodesic from q to p. All future-going

timelike geodesics from q actually converge at a focal point q0

to the future of q, whose importance becomes clear in Sec. IV.
From q0, these geodesics continue “upward” in the diagram, as
shown, never reaching p. Lightlike or spacelike geodesics
from q terminate on the conformal boundary in the past of p.
In view of examples such as these, one would like a useful
criterion that ensures the compactness of the generalized
causal diamonds Dp

q . Luckily, there is such a criterion.

III. GLOBALLY HYPERBOLIC SPACETIMES

A. Definition

In a traditional understanding of physics, one imagines
specifying initial data on an initial value hypersurface8 S and

FIG. 3. The Penrose diagram of AdS2 spacetime. The causal
structure is that of the strip 0 < σ < π in Minkowski spacetime
with metric ds2 ¼ −dt2 þ dσ2. Causal curves make an angle no
greater than π=4 from the vertical. A causal curve from q can
travel to the right edge of the figure, linger for a while near the
boundary, and then proceed on to p. A causal curve of this kind
can have an arbitrarily large elapsed proper time. By contrast, if p
is replaced by a point p0 inside the quadrilateral qsq0r, then a
causal curve from q to p0 cannot reach the boundary and has a
maximal possible elapsed proper time. The curved lines are the
timelike geodesics through the point q; every point p0 inside the
quadrilateral qsq0r is on such a geodesic (reflecting compactness

ofDp0
q for such p0). These timelike geodesics all focus at the point

q0, as shown. Their continuation to the future of q0 or the past of q
is indicated. No geodesic from q reaches p. There is a timelike
geodesic from q to w, but it does not maximize the proper time.
Some of these details are important in Sec. IV.B. [Compare with
Fig. 7 of Penrose (1972).]

8By definition, a hypersurface is a submanifold of codimension 1.
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then one defines equations of motion that are supposed to
determine what happens to the future (and past) of S.
To implement this idea in general relativity, we require S to

be a spacelike hypersurface.9 Saying that S is spacelike means
that the nearby points in S are spacelike separated; more
technically, the Lorentz signature metric of the full spacetime
manifold M induces on S a Euclidean signature metric. A
typical example is the hypersurface t ¼ 0 in a Minkowski
space with metric ds2 ¼ −dt2 þ dx⃗2. The induced metric on
the surface t ¼ 0 is simply the Euclidean metric dx⃗2.
We actually need a further condition, which is that S should

be achronal. In general, a subset S of a spacetime M is called
achronal if there is no timelike path in M connecting distinct
points q; p ∈ S. If there is such a path, then data at q
influences what happens at p and it is not sensible to specify
“initial conditions” on S ignoring this.
To see that a spacelike hypersurface is not necessarily

achronal, consider the two-dimensional cylindrical spacetime
with flat metric

ds2 ¼ −dt2 þ dϕ2; ð5Þ

where t is a real variable but ϕ is an angular variable,
ϕ ≅ ϕþ 2π. The hypersurface Sε defined by

t ¼ εϕ; ð6Þ

for nonzero ε, wraps infinitely many times around the
cylinder; see Fig. 4. Sε is spacelike if ε is small, but it is
not achronal; for example, the points ðt;ϕÞ ¼ ð0; 0Þ and
ðt;ϕÞ ¼ ð2πε; 0Þ in Sε can be connected by an obvious
timelike geodesic. Thus, a spacelike hypersurface is not
necessarily achronal: in a spacelike hypersurface S, suffi-
ciently near points in S are not connected by a nearby timelike
path, while in an achronal hypersurface the same statement
holds without the condition that the points and paths should be
sufficiently near. (Conversely, an achronal hypersurface may
not be spacelike as it may have null regions.)
If an achronal set S is also a spacelike hypersurface, the

statement of achronality can be sharpened. The definition of
achronal says that there is no timelike path γ ⊂ M connecting
distinct points p; p0 ∈ S, but if S is of codimension 1 in M, it
follows that there actually is no causal path from p to p0. In
other words, γ does not exist even if it is allowed to be null
rather than timelike. To see this, we think of the directions in
which a point p ∈ S can be displaced, while remaining in S, as
the “spatial” directions. For S a spacelike hypersurface, these
directions do constitute, at every point p ∈ S, a complete set
of spatial directions, in some local Lorentz frame at p. If
p; p0 ∈ S are connected by a causal path γ that is null (in
whole or in part), then after displacing p or p0 along S in the
appropriate direction γ can be deformed to a timelike path;
see Fig. 5.
Here it is important that S is of codimension 1. Otherwise

the necessary displacement may not be possible.

To complete the definition of an initial value hypersurface
in general relativity, we need the notion of an inextendible
causal curve. A causal curve is extendible if it can be extended
further. Otherwise it is inextendible. For example, in
Minkowski space, the timelike geodesic (tðsÞ; x⃗ðsÞ) ¼
ðs; 0Þ is inextendible if s is regarded as a real variable. But
if we arbitrarily restrict s to a subset of the real line, for
example, 0 < s < 1, we get an extendible causal curve. If we
remove from some spacetimeM a point r to get the spacetime
M0 of Fig. 1, then an inextendible causal path inM that passes
through r breaks up in M0 into two separate causal paths, one
to the future of r and one to the past of r; see Fig. 6. Each of
them is inextendible. A sufficient, but not necessary, condition
for a timelike path γ to be inextendible is that the proper time
elapsed along γ diverges both in the past and in the future.
Let γ be a causal curve xμðsÞ. With a suitable choice of the

parameter s, we can always assume that s ranges over the unit
interval, with or without its endpoints. Suppose that s ranges

FIG. 4. A spacelike hypersurface Sε that is closed but not
achronal.

FIG. 5. If S is a spacelike hypersurface and γ is a null curve
connecting points p; p0 ∈ S, then by moving p0 along S toward γ,
one gets a point p00 ∈ S such that there is a strictly timelike curve
γ from p to p00. This is illustrated using the hypersurface Sε
of Fig. 4.

9More generally, one can define initial data on a hypersurface that
has some null portions, as long as it is achronal (see later discussion).
We consider only the more intuitive case of a spacelike hypersurface.
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over a closed interval [0, 1] or a semiopen interval (0, 1]. Then
we define p ¼ xμð1Þ as the future endpoint10 of γ. Such a γ is
always extendible to the future beyond p; the extension can be
made by adjoining to γ any future-going causal path from p.
Even if γ is initially defined on an open or semiopen interval
(0,1) or [0, 1) without a future endpoint, if the limit p ¼
lims→1 xμðsÞ exists, we can add p to γ as a future endpoint,
then continue γ past p as before. Thus, if γ is inextendible to
the future, this means that γ has no future endpoint and it is not
possible to add one. (Informally, this might mean that γ has
already been extended infinitely to the future, or at least as far
as the spacetime goes, or that γ ends at a singularity.)
Similarly, if γ cannot be extended to the past, this means
that γ has no past endpoint and it is not possible to add one.
Finally, we can define the appropriate concept of an initial

value surface in general relativity, technically called a Cauchy
hypersurface. A Cauchy hypersurface or initial value hyper-
surface in M is an achronal spacelike hypersurface S with the
property that if p is a point in M not in S, then every
inextendible causal path γ through p intersects S. A spacetime
M with a Cauchy hypersurface S is said to be globally
hyperbolic.
This definition requires some explanation. The intuitive

idea is that any signal that one observes at p can be considered
to have arrived at p along some causal path. If p is to the
future of S and every sufficiently extended past-going causal
path through pmeets S, then what one will observe at p can be
predicted from knowledge of what there was on S together
with suitable dynamical equations. If there is a past-going
causal path γ through p that cannot be extended until it meets
S, then a knowledge of what there was on S does not suffice to
predict the physics at p; one would also need an initial
condition along γ. (Obviously, if p is to the past of S, then
similar statements hold, after exchanging past with future and
“initial condition” with “final condition.”) Thus, globally
hyperbolic spacetimes are the ones in which the traditional
idea of predicting the future from the past is applicable.

For example, the hypersurface t ¼ 0 in Minkowski space is
an initial value hypersurface, and Minkowski space is globally
hyperbolic. On the other hand, omitting a point r from a
globally hyperbolic spacetime gives a spacetime that is not
globally hyperbolic; see Fig. 7. More sophisticated examples
of spacetimes that are not globally hyperbolic arise when
certain black hole spacetimes (such as the Reissner-Nordström
or Kerr solutions) are extended beyond their horizons; see
Fig. 13 in Sec. III.D.
An inextendible causal path γ ⊂ M always intersects an

initial value hypersurface S by the definition of such a
hypersurface, but actually it always intersects S at precisely
one point. If γ intersects S at two points p and p0, then the
existence of the causal path γ connecting p and p0 contradicts
the achronal nature of S. A Cauchy hypersurface S always
divides M into a future and a past, for the following reason.
Suppose that p ∈ M is not contained in S, and let γ be any
inextendible causal path through p. As we have just seen, such
a path will intersect S at a unique point q. We say that p is to
the future (past) of S if it is to the future (past) of q along γ. (As
an exercise, one can check that this definition is consistent: if
γ; γ0 are causal curves through pmeeting S at points q; q0, then
q0 is to the past of p along γ0 if and only if q is to the past of p
along γ.)
It is not completely obvious that in general relativity only

globally hyperbolic spacetimes are relevant. Perhaps physics
will eventually transcend the idea of predictions based on
initial conditions. But this will certainly involve more exotic
considerations. The study of globally hyperbolic spacetimes is
surely well motivated.

B. Some properties of globally hyperbolic spacetimes

The following are useful facts that will also help one
become familiar with globally hyperbolic spacetimes.
A globally hyperbolic spacetime M can have no closed

causal curves. If there is a closed causal curve γ ⊂ M, then in
parametric form γ is represented by a curve xμðsÞ with, say,
xμðsþ 1Þ ¼ xμðsÞ. We could think of s as a periodic variable
sþ 1 ≅ s, but for the present argument it is better to think of

(a) (b)

FIG. 6. (a) The causal curve γ in a spacetimeM can be extended
indefinitely into the past and future. (b) A point r has been
removed from M to make a new spacetime M0. γ splits into two
causal curves γ1 and γ2. γ1 is inextendible in the future and γ2 is
inextendible in the past.

FIG. 7. S is a spacelike hypersurface in a spacetime that is not
globally hyperbolic because a point r in the future of S has been
removed. Initial data on S do not suffice to predict what will be
observed at a point p that is to the future of r. To make such a
prediction, one would need to know something about possible
signals that might emerge from the point r. Technically, S is
not a Cauchy hypersurface for this spacetime because there is
a timelike curve from p, as shown, that cannot be extended
in the past until it meets S. Rather, it gets “stuck” at the
missing point.

10We use the term endpoint in this familiar sense; however, the
same term is used in mathematical relativity with a somewhat
different and more technical meaning; see Wald (1984), p. 193.
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s as a real variable, in which case xμðsÞ is an inextendible
causal curve that repeats the same spacetime trajectory
infinitely many times. This curve will have to intersect a
Cauchy hypersurface S, and it will do so infinitely many
times. But the existence of a causal curve that intersects S
more than once contradicts the achronality of S.
Actually, if M is a globally hyperbolic spacetime with

Cauchy hypersurface S, then any other Cauchy hypersurface
S0 ⊂ M is topologically equivalent to S. The intuitive idea is
that S0 can be reached from S by flowing backward and
forward in “time.” Of course, for this idea to make sense in
general relativity, we have to make a rather arbitrary choice of
what we mean by time. Let ds2 ¼ gμνdxμdxν be the Lorentz
signature metric of M. Pick an arbitrary Euclidean signature
metric ds2E ¼ hμνdxμdxν. At any point p ∈ M, one can pick
coordinates with hμν ¼ δμν. Then by an orthogonal rotation of
that local coordinate system, one can further diagonalize gμν at
the point p, putting it in the form diagðλ1;…; λDÞ. Since gμν
has Lorentz signature, precisely one of the eigenvalues is
negative. The corresponding eigenvector Vμ is a timelike
vector at p. We can normalize this eigenvector up to sign by11

hμνVμVν ¼ 1; ð7Þ

and, sinceM is assumed to be time oriented, we can fix its sign
by requiring that it is future pointing in the Lorentz signature
metric g.
Having fixed this timelike vector field Vμ on M, we now

construct timelike curves onM by flowing in the Vμ direction.
For this, we look at the ordinary differential equation

dxμ

ds
¼ Vμ(xðsÞ); ð8Þ

whose solutions, if we take the range of s to be as large as
possible, are inextendible causal curves.12 These curves are
called the integral curves of the vector field Vμ. Every point
p ∈ M lies on a unique13 such curve, namely, the one that
starts at p at s ¼ 0. Since the integral curves are inextendible
causal curves, each such curve γ intersects S at a unique point.
If the integral curve through p ∈ M meets S at a point q, then
we define the time at p by tðpÞ ¼ sðpÞ − sðqÞ. The function
defined this way vanishes for p ∈ S, and increases toward the
future along the integral curves.
The normalization condition (7) means that the parameter t

just measures arclength in the Euclidean signature metric h.

The metric h can always be chosen so that the arclength along
an inextendible curve in M is divergent in both directions,
roughly by making a Weyl rescaling by a factor that blows up
at infinity (Nomizu and Ozeki, 1961). (See Appendix C for
more details on this statement.) Once this is done, t runs over
the full range −∞ < t < ∞ for every integral curve.
Now let S0 ⊂ M be another Cauchy hypersurface. Every

p ∈ S0 is on a unique integral curve, which intersects S at a
unique point q. We define a map φ∶S0 → S by φðpÞ ¼ q. Then
φ maps S0 onto all of S because, conversely, for any q ∈ S the
integral curve through q intersects S0 at some point p so that
φðpÞ ¼ q. Thus, φ is a one-to-one smooth mapping between
S0 and S, showing that they are equivalent topologically, as
claimed.
If S0 is achronal but not Cauchy, we can still map S0 to S by

φðpÞ ¼ q. This map is an embedding but is not necessarily
an isomorphism [as φðS0Þ may not be all of S]. Thus, we learn
that any achronal set S0 ⊂ M is equivalent topologically
to a portion of S. A special case of this is important in the
proof of Penrose’s singularity theorem for black holes (see
Sec. V.F). If S is not compact (but connected), then an
achronal codimension 1 submanifold S0 ⊂ M cannot be
compact; see Fig. 8. For a compact ðD − 1Þ manifold S0

cannot be embedded as part of a noncompact (connected)
ðD − 1Þ manifold S.
We can now also deduce that, topologically, M ¼ S ×R.

Indeed, we can continuously parametrize p ∈ M by tðpÞ and
φðpÞ. Since φðpÞ is any point in S and tðpÞ is any real number
(assuming that the metric h is chosen to be complete, as
previously discussed), this shows that M ¼ S × R.
A Cauchy hypersurface S ⊂ M is always a closed subspace

ofM. This immediately follows from the fact thatM ¼ S × R
since S × f0g (for any point 0 ∈ R) is closed in S ×R. For a
more direct proof, suppose that p ∈ M is in the closure of S
but not in S; see Fig. 9. Let γ be any inextendible timelike path

FIG. 8. If S ⊂ M is an initial value hypersurface, then every
achronal set S0 ⊂ M is equivalent topologically to a subset of S.
The equivalence is found, roughly, by “flowing” in the time
direction from S0 to S. This represents a typical impossible
situation, in which S is not compact and S0 is a compact achronal
hypersurface. The “flow” from S0 to S would map more than one
point in S0 to the same point in S.

FIG. 9. An illustration of an argument in the text showing that a
Cauchy hypersurface S ⊂ M is always closed in M.

11Here and later a summation over repeated indices is understood,
unless otherwise stated.

12If it is possible to add a past or future endpoint p to such a curve
γ, then the solution of Eq. (8) can be continued for at least a short
range of s beyond p (this is obvious in a local Minkowski
neighborhood of p), so that γ was not defined by solving the
equation in the largest possible range of s. If it is not possible to add a
past or future endpoint, then γ is inextendible.

13We consider two parametrized causal paths xμðsÞ to be equiv-
alent if they differ only by the choice of the parameter. In the present
context, this means that two solutions of Eq. (8) that differ by an
additive shift of the parameter s correspond to the same integral
curve.
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through p. γ meets S at some other point p0 since S is Cauchy.
But then, since p is in the closure of S, it is possible to slightly
modify γ only near p to get a timelike path from S to itself,
showing that S is not achronal.
Although the function tðpÞ that we have defined increases

toward the future along the integral curves, it does not
necessarily increase toward the future along an arbitrary
causal curve. For some purposes, one wants a function,
known as a time function, with this property. A simple
construction was given by Geroch (1970).

C. More on compactness

Globally hyperbolic spacetimes have the property that
spaces of causal paths with suitable conditions on the
endpoints are compact.14 For example, for S an initial value
hypersurface and q a point to the past of S, let CSq be the space
of causal paths from q to S. The space of such paths is
compact, as one can see by considering a sequence of causal
paths γn ∈ CSq.
If the point s is slightly to the future of q, then the causal

diamond Ds
q looks like a causal diamond in Minkowski

spacetime, with q at its past vertex, and, in particular, is
compact.15 If we restrict the paths γn to that diamond, we can
make the same argument as in Minkowski space, showing that
a subsequence γn;½1� of the γn (when restricted to the diamond)
converges to some causal path γ½1� from q to a point q0 on one
of the future boundaries of the diamond, as in Fig. 10. This
much does not require the assumption of global hyperbolicity.
Now we start at q0, and continue in the same way, showing that
a subsequence γn;½2� of the γn;½1� converges in a larger region to
a causal curve γ½2� that continues past q0. We keep going in this
way and eventually learn that a subsequence of the original
sequence converges to a causal curve γ̄ from q to S. For more
details on this argument, see Appendix D.
The role of global hyperbolicity in the argument is to ensure

that we never get stuck. Without global hyperbolicity, after
iterating the previous process we might arrive at a sub-
sequence of the original sequence that has a limit path γ�
that does not reach S and cannot be further extended. To give
an example of how this would actually happen, suppose that
the original sequence γn converges to a causal curve γ� ∈ CSq,
and let p be a point in γ� that is not in any of the γn. Then in the
spacetimeM0 that is obtained fromM by omitting the point p,
the sequence γn ∈ CSq has no subsequence that converges to
any causal curve from q to S.
Compactness of the space of causal curves from q to S

implies, in particular, that the set of points DS
q that can be

visited by such a curve is also compact. If p1; p2;… is a
sequence of points inDS

q with no convergent subsequence and

γ1; γ2;… ∈ CSq is a sequence of causal curves from q to Swith
pi ∈ γi, then the sequence of curves γ1; γ2;… can have no
convergent subsequence. Conversely, if one knows that DS

q is
compact, compactness of CSq follows from essentially the same
argument that we used in Sec. II for curves in Minkowski
space. Pick an auxiliary Euclidean signature metric on DS

q.
Given a sequence γ1; γ2;… ∈ DS

q, parametrize the γi by a
parameter s that is a multiple of the Euclidean arclength,
normalized to run over the interval [0, 1], with s ¼ 0

corresponding to the initial endpoint at q, and s ¼ 1 corre-
sponding to a final endpoint in S. The γi sequence already
coincides at s ¼ 0. Using the compactness of DS

q, one can
extract a subsequence of γi that converges at s ¼ 1, a further
subsequence that converges at s ¼ 1=2 and, eventually, as
in Sec. II, a subsequence that converges at a dense set
of values of s. Because γi are causal curves, wild fluctua-
tions are impossible and this subsequence converges for all
values of s.
If q is to the future of S, we write CqS for the space of causal

paths from S to q and Dq
S for the space of points that can be

visited by such a path. The reasoning just given has a mirror
image to show that CqS and Dq

S are compact.
Now let p and q be points inM with p to the future of q. Let

Cpq be the space of causal curves from q to p, and letDp
q be the

space of points that can be visited by such a curve (thus,Dp
q is

the intersection of the causal past of p with the causal future
of q). We want to show that Dp

q and Cpq are compact. Suppose,
for example, that q and p are both to the past of S. Let λ be
some fixed causal path from p to S. If γ is any causal path from
q to p, then we define γ � λ as the “composition” of the two
paths; see Fig. 11. Then γ → γ � λ gives an embedding of Cpq in
CSq. Given a sequence γ1; γ2;… in Cpq , compactness of CSq
implies that the sequence γ1 � λ, γ2 � λ;… has a convergent
subsequence, and this determines a convergent subsequence
of the original sequence γ1; γ2;…. Thus, Cpq is compact. As in
our discussion of CSq, this implies as well compactness of Dp

q .

FIG. 10. Illustration of the argument showing that CSq is
compact. At the bottom of the figure is a small causal diamond
Ds

q that can be approximated by a causal diamond in
Minkowski space.

14This was actually the original definition of a globally hyperbolic
spacetime (Leray, 1952). The definition in terms of intextendible
causal curves came later (Geroch, 1970).

15As explained in Sec. II, this statement requires strong causality.
For now we take this as a physically well-motivated assumption, but
in Appendix D we show that globally hyperbolic spacetimes are
strongly causal; see also Sec. III.E for more on strong causality.
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Nothing essential changes in this reasoning if q and p are
both to the future of S. What if q is to the past of S and p is to
the future? One way to proceed is to observe that a causal path
γ from q to p can be viewed as the composition μ � λ of a
causal path μ from q to S and a causal path λ from S to p.
Thus, a sequence γn ∈ Cpq can be viewed as a sequence
μn � λn, with μn ∈ CSq and λn ∈ CpS . Compactness of CSq and
CpS means that after restricting to a suitable subsequence we
can assume that μn and λn converge. This gives a convergent
subsequence of the original γn, showing the compactness
of Cpq . Accordingly Dp

q is also compact.
Compactness of the spaces of causal paths implies that in a

globally hyperbolic spacetimeM, just as in Minkowski space,
there is a causal path of maximal elapsed proper time from q to
any point p in its future. This path will be a geodesic, of
course. Assuming that p can be reached from q by a causal
path that is not always null, this geodesic will be timelike. (If
every causal path from q to p is null, then every such path is
actually a null geodesic. This important case is analyzed
in Sec. V.)
Similarly, if S is a Cauchy hypersurface and q is a point not

on S, then there is a causal path of maximal elapsed proper
time from q to S. Such a path will be a timelike geodesic γ that
satisfies some further conditions that we discuss in Sec. IV.B.

D. Cauchy horizons

Sometimes in a spacetime M, one encounters a spacelike
hypersurface S that is achronal but is not an initial value
hypersurface because there are inextendible causal paths inM
that never meet S. For an example, see Fig. 12.
Nevertheless, it will always be true that if p is a point just

slightly to the future of q ∈ S, then any inextendible causal
path through p meets S. This is true because a small
neighborhood of q can be approximated by a small open
set in Minkowski space, with S approximated by the spacelike
hyperplane t ¼ 0. The statement is true in that model example,
so it is true in general.
This suggests the following definition. The domain of

dependence DS of S consists of all points p ∈ M with the
property that every inextendible causal curve through p meets
S. DS is the largest region in M in which the physics can be
predicted from a knowledge of initial conditions on S.
DS can be regarded as a spacetime in its own right. (The

only nontrivial point here is that DS is open inM so that it is a

manifold.) As such,DS is globally hyperbolic, with S an initial
value surface. This is clear from the way that DS was defined;
we threw away from M any point that lies on an inextendible
causal curve that does not meet S. Therefore, all results for
globally hyperbolic spacetimes apply to DS.
In particular, S dividesDS into a future and a past, which are

known as the future and past domains of dependence of S,
denoted Dþ

S and D−
S .

The boundary of the closure of DS (or of Dþ
S or D−

S ) is
called the Cauchy horizon HS (or the future or past Cauchy
horizon Hþ

S or H−
S ). For an additional but more complicated

example of a spacetime with Cauchy horizons; see Fig. 13.
[Details of this example are not important in this review. There
is a much simpler Penrose diagram in Sec. V.E, and in that
context we give a brief introduction to the meaning of such
diagrams. To appreciate the more complicated example of
Fig. 13 requires familiarity with the analytic continuation of
the Reissner-Nordström solution of general relativity, which
was described by Wald (1984).]

E. Causality conditions

The most obvious causality condition in general relativity is
the absence of closed causal curves: there is no (nonconstant)
closed causal curve from a point q to itself.
It turns out that to get a well-behaved theory, one needs a

somewhat stronger causality condition. The causality con-
dition that we use in this review is global hyperbolicity. It is
the strongest causality condition in wide use. We have seen
that it implies the absence of closed causal curves.
A somewhat weaker condition, but still stronger than the

absence of closed causal curves, is “strong causality.” A
spacetime M is strongly causal if every point q ∈ M has an
arbitrarily small neighborhood V with the property that any
causal curve between points p; p0 ∈ V is entirely contained in
V. (Arbitrarily small means that ifU is any open set containing
q, then q is contained in a smaller open set V ⊂ U that has the

FIG. 11. Suppose that p is to the past of a hypersurface S and q
is to the past of p. A causal path γ from q to p and a causal path λ
from p to S can be conjoined or “composed” to make a causal
path γ � λ from q to S.

FIG. 12. Let S be the past hyperboloid t2 ¼ x⃗2 þ R2, t < 0, in
Minkowski spacetime. It is spacelike and achronal, but it is not a
Cauchy hypersurface because, as shown, it is possible for a causal
curve γ that is infinitely extended to both the past and future to
never intersect S. The domain of dependence of S is the interior of
the past light cone of the origin (the point labeled r). The Cauchy
horizon HS is the past light cone of the origin.
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stated property.) The absence of closed causal curves can be
regarded as the special case of this with p ¼ p0 ¼ q, since if
every closed causal curve from a point q to itself is contained
in an arbitrarily small open set around q, this means that there
is no nontrivial causal curve from q to itself. Strong causality
roughly says that there are no causal curves that are arbitrarily
close to being closed.

For an example of a spacetime that has no closed time-
like curves but is not strongly causal, consider the two-
dimensional spacetime M with metric tensor

ds2 ¼ −dvduþ v2du2; ð9Þ

where v is real valued but u is an angular variable u ≅ uþ 2π.
A short calculation shows that the only closed causal curve in
M is the curve v ¼ 0. Suppose that we remove a point p on
that curve to make a new spacetime M0. Then strong causality
is violated at any point q ∈ M0 that has v ¼ 0. There is no
closed causal curve from q to itself (since the point p was
removed), but there are closed causal curves from q that come
arbitrarily close to returning to q; these are curves that always
remain at small v. It is reasonable to consider such behavior to
be unphysical.
We met a typical application of strong causality in Sec. II: it

ensures that a causal diamond Dp
q , with p just slightly to the

future of q, is compact. To justify this statement in somewhat
more detail, let U be a local Minkowski neighborhood of q. If
strong causality holds at q, then q is contained in an open
neighborhood V ⊂ U with the property that any causal curve
between two points in V is entirely contained in V. Thus, if
p ∈ V, the causal diamond Dp

q is contained in V and therefore
in U. Because U is a local Minkowski neighborhood, Dp

q is
compact. Another typical application appears in Sec. V.A.
Minkowski space is strongly causal because if U is any

neighborhood of a point q in Minkowski space, then q is
contained in some causal diamond Ds

r (with r just to the past
of q and s just to its future) that is in turn contained in U.
Moreover, any causal curve in Minkowski space between two
points in Ds

r is entirely contained in Ds
r. Thus, we can use the

interior ofDs
r as the open set V ⊂ U in the definition of strong

causality.
More generally, globally hyperbolic spacetimes are strongly

causal. The proof is deferred to Appendix D. In reading this
review, one may assume that spacetime is globally hyperbolic
and strongly causal. It is not important on first reading to
understand that the first assumption implies the second. The
assumption of strong causality is not always stated explicitly,
as it does follow from global hyperbolicity.
It turns out there are also advantages to a causality condition

somewhat stronger than strong causality, known as “stable
causality.” For the definition and a proof showing that globally
hyperbolic spacetimes are stably causal, see Wald (1984),
p. 198.

F. Maximal extensions

To avoid artificial examples, one usually places one more
technical condition on a globally hyperbolic spacetime.
To explain what we want to avoid, let M be Minkowski

space, and let M0 be the subset of M defined by a condition
−1 < t < 1 on the time coordinate t (in some Lorentz frame).
Then M0 is a globally hyperbolic spacetime, with Cauchy
hypersurface t ¼ 0. A timelike path in M0 ends after a finite
proper time, but only because of the way we truncated the
spacetime.
In discussing a globally hyperbolic spacetime M with

Cauchy hypersurface S, to avoid such artificial examples,

(a) (b)

FIG. 13. (a) Penrose diagram of the maximal analytic extension
of the Reissner-Nordström spacetime. It describes a black hole
carrying electric and/or magnetic charge. The full spacetime M̂ is
not globally hyperbolic, but each “diamond,” if considered by
itself, is globally hyperbolic. For example, the diamond shown in
the center represents a globally hyperbolic spacetime M with
Cauchy hypersurface S. The null surfaces labeled Hþ

S and H−
S

(thick black lines) are the future and past Cauchy horizons of S;
the spacetime continues to the future of Hþ

S or to the past of H−
S ,

but the continuation is not uniquely determined by initial data on
S. Shown here is the unique continuation that is real analytic;
beyond H�

S , it has timelike singularities (represented by the
zigzag vertical lines) and repeats indefinitely into the past and
future, with multiple globally hyperbolic diamonds. (b) Closer
look at one causal diamondM. It contains two asymptotically flat
regions, labeled I and II, connected by a wormhole (see
Sec. VII.A), and separated by future and past horizons, labeled
H�. To the future of Hþ, from the standpoint of an observer in
region I or II, is a black hole region. The part of this region that is
before the future Cauchy horizon is represented by the small
shaded diamond. To the past of H− is a white hole region whose
portion in the globally hyperbolic spacetime is represented by the
small unshaded diamond. (Much of this structure is also present
in the simpler case of Schwarzschild spacetime, where it is
exhibited in Fig. 42 of Sec. VII.A.) In particular, the Cauchy
horizons (again shown as thick black lines) are, respectively, to
the future ofHþ and the past ofH−. This structure was omitted in
(a) to avoid clutter.
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one typically asks thatM be maximal under the condition that
physics in M can be predicted based on data in S. In other
words, one asks that M be maximal16 under the condition that
it is globally hyperbolic with Cauchy hypersurface S.
It can happen that M can be further extended to a larger

spacetime M̂, but that this larger spacetime is not globally
hyperbolic. If so, there is a Cauchy horizon in M̂ andM is the
domain of dependence of S in M̂.
Awell-known example is the maximal analytic extension of

the Reissner-Nordström solution, describing a spherically
symmetric charged black hole. Let M̂ be this spacetime;
the Penrose diagram is in Fig. 13. The spacelike surface S is a
Cauchy hypersurface for a spacetimeM ⊂ M̂ that includes the
region exterior to the black hole (in each of two asymptotically
flat worlds, in fact) as well as a portion of the black hole
interior. Behind the black hole horizon are past and future
Cauchy horizons, so S is not a Cauchy hypersurface for all
of M̂.

IV. GEODESICS AND FOCAL POINTS

From here, we will navigate to the easiest-to-explain
nontrivial result about singularities in general relativity.
This means not following the historical order. The easiest
result to explain is a theorem by Hawking (1966) about the big
bang singularity in traditional cosmology without inflation. It
is easier to explain because it involves only timelike geo-
desics, while more or less all our other topics involve the
slightly subtler case of null geodesics.

A. The Riemannian case

We start in ordinary Riemannian geometry, where we have
more intuition,17 and then we go over to the Lorentz signature
case. Here is a question: in Riemannian geometry, is a
geodesic the shortest distance between two points? The
answer is always “yes” for a sufficiently short geodesic,
but in general if one follows a geodesic for too far, it is no
longer length minimizing. An instructive and familiar example
is the two-sphere with its round metric. A geodesic between
two points q and p that goes less than halfway around the
sphere is the unique shortest path between those two points;
see Fig. 14(a). But any geodesic that leaves q and goes more
than halfway around the sphere is no longer length minimiz-
ing. What happens is illustrated in Fig. 14(b) for the case in
which q is the north pole N. The geodesics that emanate from
N initially separate, but after going halfway around the sphere,
they reconverge at the south pole S. The point of reconver-
gence is called a focal point or a conjugate point. A geodesic
that is continued past a focal point and thus has gone more
than halfway around the sphere is no longer length minimiz-
ing. By “slipping it around the sphere,” one can replace it with

a shorter geodesic between the same two points that goes
around the same great circle on the sphere in the opposite
direction.
This phenomenon does not depend on any details of the

sphere. Consider geodesics that originate at a point q in some
Riemannian manifold M. Let qp be such a geodesic and
suppose (see Fig. 15) that the qq0 part of this geodesic can be
deformed slightly to another nearby geodesic that also
connects the two points q and q0. This displaced geodesic
automatically has the same length as the first one since
geodesics are stationary points of the length function. Then
the displaced path qq0p has a “kink” and its length can be
reduced by rounding out the kink. Thus, the original geodesic
qp was not length minimizing.
The fact that rounding out the kink reduces the length is

basically the triangle inequality of Euclidean space, as
explained in Fig. 16. Indeed, a small neighborhood of the

(a) (b)

FIG. 14. (a) A geodesic between two points p and q in a two-
sphere that goes less than halfway around the sphere minimizes
the length between those two points. (b) Any geodesic through
the north pole N reaches the south pole S after going halfway
around the sphere; the point S is called a focal point for these
geodesics. The geodesics from N to S are lines of constant
longitude, as drawn. When continued more than halfway around
the sphere, these geodesics are no longer length minimizing.

FIG. 16. A new picture of the displaced path qq0p that was
introduced in Fig. 15. Here we emphasize that this path is made of
two geodesic segments qq0 and q0p that meet at a kink. A small
neighborhood of q0, containing the nearby points r and s, can be
approximated by a portion of flat Euclidean space. The triangle
inequality of Euclidean space says that the portion rq0s of qq0p
can be shortened by replacing it with a straight line rs, shown as a
dashed line. Thus, “rounding out the kink” of qq0p reduces its
length.

FIG. 15. If the geodesic segment qq0 can be deformed (at least to
first order) to a nearby geodesic connecting the same two points,
then q0 is called a focal point for geodesics that emanate from q.

16A theorem of Choquet-Bruhat and Geroch (1969) states that,
given initial data on a Cauchy hypersurface S, a maximally extended
globally hyperbolic spacetime M obeying the Einstein equations
always exists and is unique up to diffeomorphism.

17For more details on this material, see, for example, Jost (2011),
Chap. 4.
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point q0 can be approximated by a corresponding neighbor-
hood in Euclidean space, and in Euclidean space, the triangle
inequality says that rounding out a kink reduces the length.
Quantitatively, if the displaced path qq0p “bends” by a small
angle α at the point q, then rounding out the kink can reduce
the length by an amount of the order of α2. One can verify this
with some plane geometry, using the fact that the geometry
near the kink can be embedded in Euclidean space. Since α is
proportional to the amount by which the qq0 segment of the
original geodesic qp was displaced, this means that rounding
out the kink reduces the length by an amount that is of second
order in the displacement.
It is not important here that all geodesics from q are focused

to q0 (as happens in the case of a sphere). To ensure that the
geodesic qq0p is not length minimizing, it is sufficient that
there is some direction in which the qq0 part can be displaced
while not changing its endpoints. We do not even need to
know that the geodesic segment qq0 can be displaced exactly
as a geodesic. We need to know only that it can be displaced
while still solving the geodesic equation in first order. That
ensures that the displacement does not change the length
function in second order. Rounding off the kink in qq0p does
reduce the length in second order, so displacing the qq0
segment and rounding off the kink reduces the length if the
displacement caused no increase in second order.
We now explain this important point in a little more detail.

A geodesic is a curve that extremizes the length between its
endpoints, so any displacement of the geodesic segment qq0 to
a nearby path from q to q0 does not change the length of this
segment in first order. A displacement that obeys the geodesic
equation in first order leaves the length fixed in second order.18

But rounding out the kink reduces the length in second order,
as noted. Therefore, if a displacement obeys the geodesic
equation in first order, then making a small displacement and
rounding off the kink reduces the length. All this will have an
analog for timelike geodesics in Lorentz signature.
To summarize, if a geodesic segment qq0 can be displaced,

at least in first order, to a nearby geodesic from q to q0, we call
the point q0 a focal point (or conjugate point). A geodesic that
emanates from q is no longer length minimizing once it is
continued past its first focal point. The absence of a focal point
is, however, only a necessary condition for a geodesic to be
length minimizing, not a sufficient one. For example, on a

torus with a flat metric, geodesics have no focal points
regardless of how far they are extended. On the other hand,
any two points on the torus can be connected by infinitely
many different (and homotopically inequivalent) geodesics.
Most of those geodesics are not length minimizing.
Often, we are interested in a length minimizing path, not

from a point q to a point p, but from q to some given set W.
(This will be the situation when we are proving Hawking’s
singularity theorem.) The simple case is that W is a submani-
fold, without boundary. A path that extremizes the distance
from q to W is now a geodesic that is orthogonal to W. The
condition here of orthogonality is familiar from elementary
geometry. If γ is a geodesic from q to a point p ∈ W but γ is
not orthogonal to W at p, then the length of γ can be reduced
by slightly moving the endpoint p; see Fig. 17(a).
Assuming that γ is orthogonal to W at p, it is length

minimizing (and not simply length extremizing) if q is close
enough toW. Once again, however, if q is sufficiently far from
W, it may develop a focal point, and in that case it will no
longer be length minimizing. Now, however, the appropriate
definition of a focal point is slightly different; see Fig. 17(b).
A geodesic γ from q to W, meeting W orthogonally at some
point p ∈ W, has a focal point q0 if the q0p portion of this
geodesic can be displaced (at least to first order) to a nearby
geodesic, also connecting q0 to W and meeting W orthogo-
nally. In this situation, just as before, by displacing the q0W
portion of γ and then rounding out the resulting kink, one can
find a shorter path from q to W.

B. Lorentz signature analog

Now we go over to Lorentz signature. What we have said
has no good analog for spacelike geodesics. A spacelike
geodesic in a spacetime of Lorentz signature is never a
minimum or a maximum of the length function since
oscillations in spatial directions tend to increase the length
and oscillations in the time direction tend to reduce it. Two

(a) (b)

FIG. 17. Necessary (not sufficient) conditions for a geodesic γ to
be the shortest path from a point q to a submanifoldW. (a) γ must
be orthogonal toW at the point p at which they meet, or its length
can be reduced by moving p as shown, to make an orthogonal
geodesic γ0. (b) There must be no focal point along γ. Here a point
q0 ∈ γ is called a focal point if the segment pq0 of γ can be
displaced, at least to first order, to another geodesic from W to q0
that is also orthogonal to W. This is not possible for “outgoing”
geodesics orthogonal to a convex body in Euclidean space, but it
can occur in a more general situation, as shown.

18For orientation, let fðyÞ be a smooth function of a real variable y,
and suppose that an equation df=dy ¼ 0 is satisfied at y ¼ y0. We
expand near y ¼ y0 by y ¼ y0 þ δy. Since f0ðy0Þ ¼ 0, the general
form of the expansion is fðyÞ ¼ fðy0Þ þ ð1=2Þδy2f00ðy0Þ þOðδy3Þ.
But suppose that f0ðyÞ ¼ 0 is still satisfied at linear order in δy.
Since f0ðyÞ ¼ δyf00ðy0Þ þOðδy2Þ, this statement is equivalent to
f00ðy0Þ ¼ 0, so this implies that fðyÞ is independent of δy up to order
δy3. In our application, what plays the role of y is a path xðsÞ between
given points q and q0, and what plays the role of f is the length
function L on the space of such paths. The geodesic equation
δL=δxðsÞ ¼ 0 is the analog of f0ðyÞ ¼ 0. A first-order deformation
δxðsÞ of a geodesic that preserves the geodesic equation δL=δxðsÞ¼
0 is the analog of a deformation y ¼ y0 þ δy that satisfies f0ðyÞ ¼ 0

to first order in δy. Thus, such a deformation leaves L fixed in second
order in δxðsÞ. First-order deformations of geodesics are discussed in
detail (in the null case) in Sec. VIII.
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points at spacelike separation can be separated by an always
spacelike path that is arbitrarily short or arbitrarily long.
However, what we have said does have a close analog for

timelike geodesics. Here we should discuss the elapsed proper
time of a geodesic (not the length) and spatial fluctuations tend
to reduce it. Thus, a sufficiently short segment of any timelike
geodesic γ maximizes the elapsed proper time.19 But if we
continue a timelike geodesic past a focal point, it no longer
maximizes the proper time.
The appropriate definition of a focal point is the same as

before. Consider a future-going timelike geodesic that orig-
inates at a point q in spacetime ; see Fig. 18. Such a geodesic is
said to have a focal point at q0 if the qq0 part of the geodesic
can be slightly displaced to another timelike geodesic con-
necting q to q0. This displacement produces a kink at q0, and
rounding out the kink increases the proper time. That rounding
out the kink increases the proper time is basically the “twin
paradox” of special relativity (see Fig. 19), in the same sense
that the analogous statement in Euclidean signature is the
triangle inequality of Euclidean geometry (Fig. 16).
As in the Euclidean signature case and for the same reasons,

to ensure that the original geodesic qp does not maximize the
proper time, it is not important here that the qq0 segment of qp
can be displaced exactly as a geodesic from q to q0. It is
sufficient if this displacement can be made to first order.
Here are two examples of timelike geodesics that do not

maximize the proper time between initial and final points. The
first arises in the motion of Earth around the Sun. Continued
over many orbits, this motion is a geodesic that does not
maximize the proper time. One can do better by launching a

spaceship with almost the escape velocity from the Solar
System, with the orbit adjusted so that the spaceship falls back
to Earth after a long time, during which Earth makes many
orbits. The elapsed proper time is greater for the spaceship
than for Earth because it is less affected both by the
gravitational redshift and by the Lorentz time dilation.
A second example arises in anti–de Sitter spacetime.20 Here

we refer back to Fig. 3 in Sec. II. Future-going timelike
geodesics from q meet at the focal point q0. These geodesics
fail to be proper time maximizing when continued past q0. For
example, the timelike geodesic qw shown in the figure is not
proper time maximizing. Indeed, there is no upper bound on
the proper time of a causal path from q to w, since a timelike
path from q that travels close to the edge of the figure, lingers
there for a while, and then goes on to w can have an arbitrarily
large elapsed proper time.
The absence of a focal point is only a necessary condition

for a timelike geodesic l from q to p to maximize the proper
time, not a sufficient condition. The presence of a focal point
means that l can be slightly deformed to a timelike path with
greater elapsed proper time. But even if this is not possible,
there might be another timelike path from q to p, not a small
deformation of l, with greater proper time. Apart from our
previous examples, this point can be illustrated using the
cylindrical spacetime of Eq. (5). This spacetime is flat, and the
timelike geodesics in it do not have focal points, no matter
how far they are continued. If the point p is sufficiently far to
the future of q, then there are multiple timelike geodesics from
q to p, differing by how many times they wind around the

FIG. 18. Lorentz signature analog of Fig. 15. (Time runs
vertically here and in Fig. 19.) A timelike geodesic that originates
at a point q does not maximize the elapsed proper time along its
path if it contains a focal point q0. In that case, displacing the qq0
segment of the given geodesic and smoothing out the resulting
kink increases the elapsed proper time.

FIG. 19. The displaced path qq0p of Fig. 18 redrawn in a way
that emphasizes that the segments qq0 and q0p are timelike
geodesics. A small neighborhood of q0 containing the points r
and s can be approximated by a portion of Minkowski space. The
twin paradox of special relativity says that the proper time elapsed
along the portion rq0s of qq0p is less than the proper time elapsed
along the geodesic rs, which is shown as a dashed line. (In other
words, the twin who takes a trip on the worldline rq0s comes back
younger than the twin who stays home on the worldline rs.) Thus,
the proper time of qq0p can be increased by rounding out the
kink, replacing rq0s with rs.

19In any spacetime, this is true at least locally, meaning that if
q; p ∈ γ with p slightly to the future of q, then γ has a greater proper
time than any nearby causal path from q to p. IfM is strongly causal,
then the local statement is enough, since causal curves between
sufficiently nearby points do not make large excursions.

20This example can be omitted; alternatively, see Appendix A for
background.
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cylinder en route from q to p. These timelike geodesics
have different values of the elapsed proper time, so most of
them are not proper timemaximizing, even though they have no
focal point.
We can also consider a causal path γ from a point q to a

spacelike submanifold S in its future. To maximize the elapsed
proper time, γ must satisfy conditions that parallel what we
found in the Euclidean case; see Fig. 20. First, γ must be a
timelike geodesic from q to S. Second, γ must be orthogonal to
S at the point p at which it meets S. Third, there must be no
focal point q0 on γ. q0 is a focal point if the q0p segment of γ
can be slightly displaced to a nearby timelike geodesic, also
connecting q0 to S and orthogonal to S.

C. Raychaudhuri’s equation

To prove a singularity theorem, we need a good way to
predict the occurrence of focal points on timelike geodesics.
Such a method is provided by Raychaudhuri’s equation. [In
fact, what is relevant here is Raychaudhuri’s original timelike
equation (Raychaudhuri, 1955), not the slightly more subtle
null version that was described later by Sachs (1961) and that
we discuss in due course.] Raychaudhuri’s equation shows
that focal points are easy to come by, roughly because gravity
tends to focus nearby geodesics.
In D ¼ dþ 1 dimensions, we consider a spacetime M

with an initial value surface S with local coordinates x⃗ ¼
ðx1;…; xdÞ. By looking at timelike geodesics orthogonal to S,
we can construct a coordinate system in a neighborhood of S.
If a point p is on a timelike geodesic that meets S orthogonally
at x⃗ and the proper time from S to p (measured along the
geodesic) is t, then we assign to p the coordinates t; x⃗ if p is to
the future of S, or −t; x⃗ if it is to the past.
In this coordinate system, the line element of M is

ds2 ¼ −dt2 þ gijðt; x⃗Þdxidxj: ð10Þ

We can verify this as follows. First, in this coordinate
system gtt ¼ −1, since t was defined to measure the proper
time along any path with constant xi. Further, the geodesic
equation can be written as

0 ¼ D2xμ

Dτ2
¼ d2xμ

dτ2
þ Γμ

αβ

dxα

dτ
dxβ

dτ
: ð11Þ

In our coordinate system, Eq. (11) should have a solution with
t ¼ τ and with the xi equal to arbitrary constants. For that to be
so, we need Γμ

tt ¼ 0 for all μ. From this, it follows that
∂tgti ¼ 0. But gti vanishes at t ¼ 0 (since the coordinate
system is constructed using geodesics that are orthogonal to S
at t ¼ 0), so gti ¼ 0 for all t.
Thus, the coordinate system constructed using the orthogo-

nal geodesics could be obtained by merely asking for
coordinates in which the metric tensor satisfies gtt ¼ −1,
gti ¼ 0. The advantage of the more geometric language of
orthogonal geodesics is that this will help us understand how
the coordinate system can break down. The conclusions that
we draw are manifestly independent of the local coordinate
system on S, which was chosen for convenience.
Even if M remains nonsingular, our coordinate system

breaks down if orthogonal geodesics that originate at different
points on S meet at the same point p ∈ M. For in this case we
do not know what x⃗ value to assign to p. A related statement is
that the coordinate system breaks down at focal points. If
orthogonal geodesics from nearby starting points converge at
p (see Fig. 21), then the starting points of the orthogonal
geodesics are not part of a good coordinate system near p.
Since gijðt; x⃗Þ measures the distance between nearby

orthogonal geodesics, a sufficient criterion for a focal point is

det gijðt; x⃗Þ ¼ 0: ð12Þ

This condition is actually necessary as well as sufficient. That
is not immediately obvious, since it might appear that if one
eigenvalue of gijðt; x⃗Þ goes to 0 and one to∞, then det gijðt; x⃗Þ
could remain fixed while a focal point develops. However, as
long asM remains smooth, the point inM that a geodesic that
is orthogonal to S at a point q ∈ S reaches after a proper time t
is a smooth function of t and q. Hence, matrix elements and
eigenvalues of gijðt; x⃗Þ never diverge except at a singularity of
M, so (with M being smooth) the determinant of gijðt; x⃗Þ
vanishes if and only if one of its eigenvalues vanishes.
Raychaudhuri’s equation gives a useful criterion for pre-

dicting that det gij will go to 0 within a known time. In
general, this represents only a breakdown of the coordinate

FIG. 21. If orthogonal geodesics from a spacelike hypersurface
S are focused at a point p to the future of S, then the coordinate
system based on the orthogonal geodesics breaks down at p.

(a) (b)

FIG. 20. Lorentz signature analog of Fig. 17 showing necessary
conditions for a timelike geodesic γ from a point q to a spacelike
hypersurface S to maximize the elapsed proper time. (a) γ must be
orthogonal to S at the point p at which they meet; otherwise, the
proper time could be increased by moving p along S in the
appropriate direction, to p0 as shown. (b) And γ must contain no
focal point q0. Here q0 is a focal point if the q0p segment of γ can
be displaced (at least in first order) to a nearby timelike geodesic
q0p0, which is also orthogonal to S. In that case, by rounding out
the kink of the composite path qq0p0, one would get a timelike
path from q to S with a proper time greater than that of qp. Thus,
q0 is a focal point on the geodesic qp if q0p0 is a geodesic
orthogonal to S at p0.
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system, not a true spacetime singularity, but we later see that
the criterion provided by Raychaudhuri’s equation is a useful
starting point for predicting spacetime singularities.
Raychaudhuri’s equation is simply the Einstein equation

Rtt ¼ 8πG

�
Ttt −

1

D − 2
gttTα

α

�
ð13Þ

in the coordinate system defined by the orthogonal geodesics.
A straightforward computation in the metric (10) shows
that

Rtt ¼ −∂tΓi
ti − Γi

tjΓ
j
ti

¼ −1
2
∂tðgik∂tgikÞ − 1

4
ðgik∂tgkjÞðgjm∂tgmiÞ

¼ −1
2
∂tTrg−1 _g − 1

4
Trðg−1 _gÞ2; ð14Þ

where the dot represents a derivative with respect to t.
It is convenient to define

V ¼
ffiffiffiffiffiffiffiffiffi
det g

p
; ð15Þ

which measures the volume occupied by a little bundle of
geodesics. The quantity

θ ¼
_V
V
¼ 1

2
Trg−1 _g ð16Þ

is called the expansion.
It is convenient to also define the traceless part of g−1 _g (the

“shear”)

σij ¼
1

2

�
gik _gkj −

1

d
δijTrg

−1 _g

�
; ð17Þ

where the factor of 1=2 is conventional. Thus,

Rtt ¼ −∂t

�
_V
V

�
−
1

d

�
_V
V

�2

− Tr σ2 ¼ −_θ −
θ2

d
− Tr σ2: ð18Þ

If we define

T̂μν ¼ Tμν −
1

D − 2
gμνTα

α; ð19Þ

then the Einstein-Raychaudhuri equation Rtt ¼ 8πGT̂tt
becomes

∂t

�
_V
V

�
þ 1

d

�
_V
V

�2

¼ −Tr σ2 − 8πGT̂tt: ð20Þ

The strong energy condition is the statement that

T̂tt ≥ 0 ð21Þ

at every point and in every local Lorentz frame. It is satisfied
by the usual equations of state of ordinary radiation and
matter. It is also satisfied by a negative cosmological constant.
The outstanding example that does not satisfy the strong

energy condition is a positive cosmological constant.21 If we
assume the strong energy condition, then all the terms on the
right-hand side of the Einstein-Raychaudhuri equation are
negative and we get an inequality

∂t

�
_V
V

�
þ 1

d

�
_V
V

�2

≤ 0: ð22Þ

Equivalently,

∂t

�
1

θ

�
¼ ∂t

�
1

_V=V

�
≥
1

d
: ð23Þ

Now we can get a useful condition for the occurrence of
focal points. We go back to our initial value surface S and
assume that θ < 0 at some point on this surface, say, θ ¼ −w,
w > 0. Thus, the initial value of 1=θ is −1=w and the lower
bound on ∂tð1=θÞ implies that 1=θ ≥ −1=wþ t=d or

_V
V
≤ −

�
1

w
−

t
d

�
−1
: ð24Þ

Since _V=V ¼ d logV=dt, we can integrate this to get

logVðtÞ − logVð0Þ ≤ d½logð1=w − t=dÞ − logð1=wÞ�; ð25Þ

showing that logVðtÞ → −∞ and thus VðtÞ → 0 at a time no
later than t ¼ d=w.
For VðtÞ to vanish signifies a focal point, or possibly a

spacetime singularity. Therefore, assuming the strong energy
condition, an orthogonal geodesic that departs from S at t ¼ 0

at a point at which θ ¼ −w < 0 reaches a focal point, or
possibly a singularity, after a proper time t ≤ d=w.
In many situations the vanishing of V predicted by the

Raychaudhuri equation represents only a focal point, a
breakdown of the coordinate system, not a spacetime singu-
larity. The following example may help make this obvious.
For M, take Minkowski space, which certainly has no
singularity. For an initial value surface S ⊂ M, consider first
the flat hypersurface t ¼ 0. For this hypersurface, θ vanishes
identically and the orthogonal geodesics are simply lines of
constant x⃗; they do not meet at focal points. Now perturb S
slightly to t ¼ εfðx⃗Þ for some function fðx⃗Þ and small real ε.
One should be able to see that in this case θ is not identically
zero and the orthogonal geodesics reach focal points, as
predicted by the Raychaudhuri equation. In general, these
focal points occur to the past or future of S, depending on
which way S bends in a given region. These focal points have
nothing to do with a spacetime singularity.
Thus, to predict a spacetime singularity requires a more

precise argument, with some input beyond Raychaudhuri’s
equation.

21More generally, in a theory (such as the standard model of
particle physics) with an elementary scalar field ϕ and a potential
energy function UðϕÞ, the strong energy condition is violated unless
UðϕÞ is negative definite (this is not true in the standard model even if
we assume that the cosmological constant vanishes).
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D. Hawking’s big bang singularity theorem

In proving a singularity theorem, Hawking assumed that the
Universe is globally hyperbolic with Cauchy hypersurface S.
He also assumed the strong energy condition, in effect
assuming that the stress tensor is made of ordinary matter
and radiation. (The inflationary Universe, which provides a
way to avoid Hawking’s conclusion because a positive
cosmological constant does not satisfy the strong energy
condition, was still in the future.) If the Universe is perfectly
homogeneous and isotropic, it is described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) solution and emerged
from the big bang at a calculable time in the past.
Suppose, however, more realistically, that the Universe is

not perfectly homogeneous but that the local Hubble param-
eter is everywhere positive. Did such a Universe emerge from
a big bang? One could imagine that following the Einstein
equations back in time, the inhomogeneities become more
severe, the FLRW solution is not a good approximation, and
part or most (or maybe even all) of the Universe did not really
come from an initial singularity.
Hawking, however, proved that, assuming the strong energy

condition and assuming that the Universe is globally hyper-
bolic (and of course assuming the classical Einstein equa-
tions), this is not the case. To be more exact, he showed that if
the local Hubble parameter has a positive minimum value hmin
on an initial value surface S, then there is no point in
spacetime that is a proper time more than 1=hmin to the past
of S along any causal path.
Here we should explain precisely what is meant by the local

Hubble parameter. For a homogeneous isotropic expansion
such as the familiar FLRW cosmological model

ds2 ¼ −dt2 þ a2ðtÞdx⃗2; ð26Þ

where for simplicity we ignore the curvature of the spatial
sections, one usually defines the Hubble parameter by
h ¼ _a=a. We can view the line element (26) as a special
case of Eq. (10), and from that point of view we have h ¼
_V=dV (since V ¼ ffiffiffiffiffiffiffiffiffi

det g
p

is the same as ad in the homo-
geneous isotropic case). We use that definition here in general,
so the assumption on the Hubble parameter is that in the
coordinate system of Eq. (10) _V=V ≥ dhmin, assuming that
time is measured toward the future. But we measure time here
toward the past and thus instead write the assumption as

_V
V
≤ −dhmin: ð27Þ

Hawking’s proof is based on comparing two statements.
(1) Since the Universe is globally hyperbolic, every point p is
connected to S by a causal path of maximal proper time, as
explained in Sec. III.C. As we know from the discussion of
Fig. 20, such a path is a timelike geodesic without focal points
that is orthogonal to S. (2) But the assumption that the initial
value of _V=V on the surface S is everywhere ≤ −dhmin implies
that any past-going timelike geodesic orthogonal to S devel-
ops a focal point within a proper time of at most 1=hmin.

Combining the two statements, we see that there is no point
in spacetime that is to the past of S by a proper time more than
1=hmin along any causal path. Thus (given Hawking’s
assumptions), the minimum value of the local Hubble param-
eter gives an upper bound on how long anything in the
Universe could have existed in the past. This is Hawking’s
theorem about the big bang.
An alternative statement of Hawking’s theorem is that no

timelike geodesic γ from S can be continued into the past for a
proper time greater than 1=hmin. Otherwise, there would be a
point p ∈ γ that is to the past of S by a proper time measured
along γ that is greater than 1=hmin, contradicting what was just
proven.
In Euclidean signature, a Riemannian manifold is said to be

geodesically complete if all geodesics can be continued up to
an arbitrarily large distance in both directions. In Lorentz
signature, there are separate notions of completeness for
timelike, spacelike, or null geodesics that say that any time-
like, spacelike, or null geodesic can be continued in both
directions up to arbitrarily large values of the proper time, the
distance, or the affine parameter, respectively. Hawking’s
theorem shows that a big bang spacetime that satisfies certain
hypotheses is timelike geodesically incomplete in a strong
sense: no timelike geodesic from S can be continued into the
past for more than a bounded proper time. (Penrose’s theorem,
which we explore in Sec. V.F, gives a much weaker statement
of null geodesic incompleteness: under certain conditions, not
all null geodesics can be continued indefinitely.)
Although Hawking’s theorem is generally regarded as a

statement about the big bang singularity, singularities are not
directly involved in the statement or proof of the theorem. In
fact, to date one has only a limited understanding of the
implications of Einstein’s equations concerning singularities.
In the classic singularity theorems, going back to Penrose
(1965), only the smooth part of spacetime is studied, or to put
it differently spacetime is taken to be by definition a manifold
with a smooth metric of Lorentz signature (this is the
definition that we started with in footnote 1 of Sec. II).
Then “singularity theorems” are really statements about
geodesic incompleteness of spacetime. In the case of
Hawking’s theorem, one may surmise that the reason that
the past-going timelike geodesics from S cannot be continued
indefinitely is that they terminate on singularities, as in the
simple FLRW model, but this goes beyond what is proved.
When we come to Penrose’s theorem, we explore this point in
more detail.

V. NULL GEODESICS AND PENROSE’S THEOREM

A. Promptness

Hopefully, our study of timelike geodesics in Sec. IV was
intriguing enough that the interested reader is eager for an
analogous study of null geodesics. In this section, we explain
the properties of null geodesics that are needed for applica-
tions such as Penrose’s theorem and an understanding of black
holes. Some important points are explained only informally in
this section and are revisited more precisely in Sec. VIII. A
converse of some statements is explained in Appendix F.
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Causal paths and, in particular, null geodesics are assumed
to be future going unless otherwise specified. Of course,
similar statements apply to past-going causal paths, with the
roles of the future and the past exchanged.
Any null geodesic has zero elapsed proper time.

Nevertheless, there is a good notion that has properties
somewhat similar to “maximal elapsed proper time” for
timelike paths. We say that a causal path from q to p is
“prompt” if no causal path from q to p arrives sooner. To be
precise, the path l from q to p is prompt if there is no causal
path l0 from q to a point r near p and just to its past;
see Fig. 22.
A prompt causal path from q to p exists only if it is just

barely possible to reach p from q by a causal path. To
formalize this, we write JþðqÞ for the causal future of q,
consisting of all points that can be reached from q by a future-
going causal path, and we write ∂JþðqÞ for its boundary. If p
can be reached from q by a prompt causal path l, then p ∈
JþðqÞ (because l is causal), and p ∈ ∂JþðqÞ [because points
slightly to the past of p are not in JþðqÞ]. Thus, almost by
definition, a prompt causal path from q to p can exist only
if p ∈ ∂JþðqÞ.
For example, if q is a point in Minkowski space, then JþðqÞ

consists of points inside or on the future light cone (see
Fig. 23); ∂JþðqÞ consists of the future light cone itself. Every
point p ∈ ∂JþðqÞ is connected to q by a null geodesic, and
this null geodesic is a prompt causal path.
In a spacetime that obeys a suitable causality condition, a

short enough segment of a null geodesic is always prompt as a
path between its endpoints, just as in Minkowski space. This
statement does require a causality condition because it is
untrue in a spacetime with closed timelike curves, as one can
verify. At the end of this section, we show that strong causality
is enough. If continued far enough, a null geodesic may
become nonprompt because of gravitational lensing. For
example, when we see multiple images of the same supernova
explosion, the images do not arrive at the same time and the
ones that do not arrive first are not prompt.
The prompt part of a null geodesic is always an initial

segment since if a null geodesic is continued until it becomes
nonprompt, continuing it further does not make it prompt
again. To see this, suppose that a future-going null geodesic γ

from q to p is continued further into the future until it reaches
a point r. Suppose that γ is not prompt as a path from q to p,
meaning that there is a causal curve γ0 from q that arrives at a
point p0 just to the past of p; see Fig. 24(a). Then continuing γ0

into the future, always close to γ and slightly in its past, we get
a causal curve from q to a point r0 that is just to the past of r,
showing that γ is not prompt as a path from q to r; see
Fig. 24(b). Note that a small neighborhood of a single
geodesic, such as γ, can be embedded to good approximation
in Minkowski space, so one can visualize the relation between
γ and γ0 in the region between p and r as the relation between a
lightlike straight line in Minkowski space and a causal path
(possibly close to a parallel lightlike line) that is slightly to
its past.
Prompt causal paths have special properties that ultimately

make them good analogs of proper time maximizing timelike
paths. A causal path l from q to r whose tangent vector is
somewhere timelike (rather than null) cannot be prompt,
because by modifying l slightly to always be null we could
find a causal path from q that is slightly to the past of l.
Actually, to be prompt l has to be a null geodesic, since if it
bends anywhere one could take a shortcut by straightening out
the bend (in some small region that can be approximated by
Minkowski space) and again replace lwith a causal path from

FIG. 22. Here time runs vertically, so r is to the past of p. A
causal path γ from q to p is prompt if there does not exist any
causal path γ0 from q to a point such as r that is to the past of p. FIG. 23. If q is a point in Minkowski space, then the causal

future JþðqÞ of q consists of all points in or on the future light
cone of q. Its boundary ∂JþðqÞ consists of the points on the
future light cone. We consider q itself to be contained in JþðqÞ
and in ∂JþðqÞ.

(a) (b)

FIG. 24. (a) The null geodesic γ is not a prompt path from q to
p, since γ0 is a causal path from q that arrives at the point p0 that is
slightly to the past of p. (b) When continued on to a later point r,
γ is not prompt as a path from q to r, because γ0 can likewise be
continued past p0 to a point r0 that is just to the past of r.
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q that is slightly to its past. In Minkowski space, these
statements amount to the assertion that to get somewhere as
quickly as possible, one should travel in a straight line at the
speed of light. They are true in general because a sufficiently
small portion of any spacetime can be approximated by
Minkowski space. If l fails to be a null geodesic at a point
p ∈ l, then in a local Minkowski neighborhood of p one can
replace l with a causal path l0 that agrees with l almost up to
p and thereafter is slightly to its past. No matter what l does to
the future of p, one then continues l0 in a similar way, keeping
always slightly to the past of l. The relation between l0 and l
in the region beyond p is similar to the relation between γ0

and γ in Fig. 24(b).
We conclude this section by showing that in a strongly

causal spacetimeM every null geodesic has an initial segment
that is prompt. Let γ be a future-going null geodesic that
originates at a point q. If a point p that is to the future of q
along γ has the property that γ is the only causal path from q to
p, then the qp segment of γ is prompt. The alternative, that
points on γ arbitrarily close to q can be reached from q by
some causal path other than γ, is not possible in a strongly
causal spacetime. To see this, observe that q has a local
Minkowski neighborhood U that can be well approximated by
the interior of a causal diamond in Minkowski space. This
implies that any null geodesic qp ⊂ U is prompt among paths
in U, and in fact it is the only causal path in U from q to p.
This much does not require strong causality. If M is strongly
causal, then q has a possibly smaller neighborhood V ⊂ U
with the property that any causal path in M between two
points in V is entirely contained in V. Taking these statements
together, we see that if p ∈ V, a null geodesic segment from q
to p is entirely contained in V ⊂ U and thus is prompt.
Therefore, if l is any future-going null geodesic from q, the
initial segment of l that lies in V is prompt.
An analogous question for timelike geodesics is the

following. If γ is a timelike geodesic, does a small initial
segment of γ maximize the proper time between its endpoints?
We leave it to the reader to verify that this statement is false in
a spacetime with closed timelike curves, and that it is true in a
strongly causal spacetime.

B. Promptness and focal points

To be prompt, a null geodesic l from q to pmust contain no
focal point.22 Here q0 is a focal point if (at least in first order, as
discussed shortly) the qq0 segment of the geodesic l ¼ qp can
be displaced to a nearby null geodesic from q to q0; see
Fig. 25. If so, then by slightly displacing the qq0 segment of l,
one gets a causal path from q to p that is not a null geodesic, as
it has a kink at q0. Not being a null geodesic, this causal path is
not prompt, as we learned in Sec. V.A, and can be slightly
modified to make a causal path from q that arrives slightly to
the past of p. In Fig. 26, we zoom in on the kink q0 in the
deformed path qq0p and describe this modification concretely.
The details of Fig. 26 are somewhat different from the
analogous Fig. 16 for geodesics in Euclidean signature or

Fig. 19 for timelike geodesics in Lorentz signature; one has to
modify the deformed path qq0p not just near the kink but in a
way that continues to the future. This is a consequence of the
fact that null geodesics do not minimize or maximize an
integral such as length or proper time; promptness is a more
global notion that depends by definition on when the signal
arrives.
Just as in the analogous discussion of timelike or Euclidean

signature geodesics, it is not necessary here that the null
geodesic segment qq0 can be displaced exactly to a nearby null
geodesic connecting the same two points. It suffices if the qq0

segment can be displaced in a way that satisfies the null

FIG. 25. A null geodesic segment qp. The point q0 is called a
focal point of the null geodesics that originate at q if the qq0
segment of qp can be displaced, at least to first order, to a nearby
null geodesic from q to q0. If it contains such a focal point, then
the original geodesic qp is not prompt.

FIG. 26. Here rq0s is a neighborhood of the kink q0 in the
displaced path qq0p of Fig. 25. This is an analog of Fig. 19, which
depicts a similar situation for timelike geodesics, but in this null
case we show only a local Minkowski neighborhood of the kink.
Thus, we think of rq0 and q0s as noncollinear null geodesics in
Minkowski space (represented in the picture by straight lines at
π=4 angles to the vertical; in fact, by a Lorentz transformation,
two noncollinear null straight lines in Minkowski space can be
made “back to back,” as drawn here). By replacing the null
geodesic segment q0s with the null geodesic segment q00s0 (the
dashed line), which is parallel to q0s but to its past, one can
replace rq0s with a more prompt causal path rq00s0. Then no
matter what the path q0s does when continued into the future, one
continues q00s0 into the future to be parallel to it and just to its past,
as in Fig. 24(b). The result is to replace the original displaced path
qq0p with a causal path that is more prompt.

22For a detailed explanation of the following based on formulas
rather than pictures, see Sec. VIII.
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geodesic condition in first order. A thorough explanation of
this point can be found in Sec. VIII. The rough idea is that the
amount by which the displaced path qq0p can be made more
prompt by changing the behavior near and beyond the kink is
of second order in the displacement, while if the displacement
satisfies the geodesic equation in first order, then the fact that
it does not satisfy that equation exactly has no effect in
second order.
We can illustrate focal points of null geodesics and their

consequences by promoting to Lorentz signature an example
that we discussed in the Euclidean case in Sec. IV.A. Let
M ¼ R × S2 with the line element

ds2 ¼ −dt2 þ R2dΩ2; ð28Þ

where R is parametrized by time t and R2dΩ2 is the line
element of a sphere of radius R. A null geodesic in this
spacetime is simply a Riemannian geodesic on S2 with its
arclength parametrized by t. As discussed in Sec. IV.A, in the
Euclidean case a geodesic on S2 reaches a focal point when it
has traveled halfway around the sphere; once continued past
that point it is not length minimizing since a geodesic that goes
around the sphere in the opposite direction would be shorter.
Likewise a null geodesic onR × S2 reaches a focal point when
it has traveled halfway around the sphere; when continued
past that point, it is no longer prompt, as one could arrive at the
same destination sooner by traveling around the sphere in the
opposite direction.
A remark about timelike geodesics that we make in

Sec. IV.B has an analog here. For a null geodesic l from q
to p to be prompt, it is necessary but not sufficient for there to
be no focal point in the segment qp. Existence of a focal point
implies that l can be slightly deformed to a nearby causal path
from q to a point p0 slightly to the past of p. But even if there
is no focal point, there may still be some causal path γ from q
to p0 that is not a slight deformation of l.
If such a γ exists (implying that l is not prompt), then l is

not achronal. To see this, suppose that a causal path γ from q to
p0 exists, and let λ be a timelike path from p0 to p. Then γ � λ
is a causal path from q to p that is not always null. It can be
deformed to a strictly timelike path from q to p, showing that
l is not achronal. Conversely, if l is not achronal, then it is not
prompt. Indeed, if l is not achronal, this means by definition
that there is a timelike path γ between two points r and r0 in the
geodesic l ¼ qp; see Fig. 27. Replacing the rr0 segment of l
with γ, we get a causal path from q to p that is not a null
geodesic. As usual, this can be deformed to a causal path from
q to a point p0 slightly to the past of p, showing that l is not
prompt. To summarize this, a null geodesic l from q to p is
prompt if and only if it is achronal.
Thus far we have discussed prompt causal paths between

two points. More generally, if W is any set in spacetime, we
say that a future-going causal path from W to p is prompt if it
arrives as soon as possible, in the sense that no causal path
from W arrives to the past of p. To be prompt, a causal path l
fromW to p has to be an achronal null geodesic, just as before.
IfW is a spacelike submanifold of spacetime, then in addition
l has to be orthogonal toW at the point q at which they meet,
as depicted in Fig. 28(a). Otherwise, by changing the initial

point of l a little, one can get a causal path fromW to p that is
not always null and hence can be deformed to arrive a little
sooner.
Orthogonality between a spacelike submanifold W and

a null curve that intersects it is possible only if W has
a real codimension of at least 2. This is a basic although
elementary fact about Lorentz signature geometry. For
example, in Minkowski space with line element ds2 ¼ −dt2þP

D−1
i¼1 ðdxiÞ2, a codimension 1 spacelike hypersurface through

the origin can bemodeled locally, in a certain Lorentz frame, by
t ¼ 0. This hypersurface is orthogonal to the timelike vector
ð1; 0; 0;…; 0Þ, but not to any null vector. Since the question
really involves linear algebra only, this example is completely
representative. By contrast, consider the codimension 2 space-
like hypersurface W defined by t ¼ x1 ¼ 0. It is orthogonal to
the null vectors u� ¼ ð1;�1; 0;…; 0Þ, with either choice of
sign. These vectors are both future directed. Thus, in the
important case in which W has codimension 2, there are at
each point in W two different future-directed orthogonal null
directions. For higher codimensions, the condition of ortho-
gonality to a null vector becomes less restrictive.
As usual, there is a further condition for promptness that

involves focal points. If l is an orthogonal null geodesic from
W to p, then to be prompt l must have no focal point, where
now q0 is a focal point if the segment of l that connectsW to q0

can be displaced slightly to a nearby null geodesic that also
connects W to q0 and is orthogonal to W; see Fig. 28(b). The
reasoning is analogous to that in previous examples; after
making such a displacement and then modifying the path near
and beyond the resulting kink (as in Fig. 26), one gets a causal
path from W that arrives strictly to the past of p.
Suppose now that a codimension 2 closed spacelike

submanifold W is the boundary of a codimension 1 spacelike
submanifold Z. (For example,W might be a sphere, embedded
in Minkowski space in the obvious way by jx⃗j ¼ R, t ¼ 0, and
Z could be the closed ball jx⃗j ≤ R, t ¼ 0.) What would be a

FIG. 27. Here l is a null geodesic between two points q and p. l
is is not achronal, because its segment rr0 can be replaced by a
timelike path γ between the same two points. Accordingly, the rr0
segment of l can be replaced by a causal path from r that arrives
strictly to the past of r0, and this can be continued into the future
in a way that remains always to the past of l. Thus, when
continued past r0, l is not prompt. For later reference, l is
similarly not prompt on any interval strictly larger than rr0 if γ is
assumed to be (rather than a timelike path) a null geodesic from r
to r0 other than the rr0 segment of l.
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prompt causal path from Z to a point p ∉ Z? It has to be a null
geodesic from Z to p; if it departs from Z at an interior point of
Z, it has to be orthogonal to Z, but orthogonality between a
null geodesic and a codimension 1 spacelike manifold is not
possible. Thus, a prompt causal path from Z to p has to depart
from a boundary point of Z, that is, a point in W. It has to be
orthogonal to W just to be prompt as a path from W, let alone
from Z. Even if a causal path is prompt as a path fromW, it is
not necessarily prompt as a path from Z, but it may be. For the
case in which Z is a closed ball in Minkowski space, the reader
might want to figure out which points in Minkowski space can
be reached from Z by prompt causal paths, and what those
paths are. Are all prompt causal paths fromW prompt as paths
from Z?
In general, for any set W, we write JþðWÞ for the causal

future ofW, the set of points that can be reached from W by a
causal path. A point p ∈ JþðWÞ is in the interior of JþðWÞ if a
small neighborhood of p is in JþðWÞ, and otherwise we say
that it is in ∂JþðWÞ, the boundary of JþðWÞ. If p ∈ JþðWÞ
and a point r slightly to the past of p is also in JþðWÞ, then a
neighborhood of p is in the future of r and therefore of W.
Thus, p is in the interior of JþðWÞ. If, on the other hand, p is
in JþðWÞ but points slightly to the past of p are not in JþðWÞ,
then p does not have a neighborhood in JþðWÞ, so instead
p ∈ ∂JþðWÞ. The reader should see what these statements
mean if W is a point q in Minkowski space.
An important detail is that, as in footnote 2 of Sec. II, we

considerW itself to be in JþðWÞ; in other words, we allow the
case of a future-going causal curve that consists of only one

point. The purpose of this is to ensure that for compactW, in a
globally hyperbolic spacetime M, JþðWÞ and ∂JþðWÞ are
both closed in M. This makes the discussion of Penrose’s
theorem simpler.
To show that JþðWÞ is closed in M if W is compact and M

is globally hyperbolic, we will show that if a sequence
p1; p2;… ∈ JþðWÞ converges inM to a point p, then actually
p ∈ JþðWÞ. Indeed, the points pi ∈ JþðWÞ can be reached
fromW by future-going causal curves γi; see Fig. 29. Because
of compactness of spaces of causal curves in a globally
hyperbolic spacetime, the γi have a convergent subsequence,
and this is a future-going causal curve γ fromW to p, showing
that p ∈ JþðWÞ. [If we did not consider W to be in JþðWÞ,
then we could have p ∈ W with pi strictly to the causal future
ofW, and the argument would fail.] To also show that ∂JþðWÞ
is closed, we will show that if the pi are actually in ∂JþðWÞ,
then p must likewise be in ∂JþðWÞ, rather than in the interior
of JþðWÞ. Indeed, if p is in the interior of JþðWÞ, then a
neighborhood of p is also in the interior, so if the sequence
p1; p2;… converges to p, then the pi for sufficiently large i
are in the interior of JþðWÞ, contradicting the hypothesis that
they are in ∂JþðWÞ.
If p ∈ ∂JþðWÞ, then p can be reached from W by a future-

going causal curve γ [by the definition of JþðWÞ], and more
specifically any such γ is prompt and hence is a null geodesic
without focal points.Indeed, if γ is not prompt, then there is a
causal curve γ0 fromW to a point p0 to the past of p, and in that
case p is in the interior of JþðWÞ, not the boundary.
A similar argument shows that ∂JþðWÞ is always achronal.

If p ∈ ∂JþðWÞ and γ is a future-going timelike path from p to
p0, then the future of p contains a neighborhood of p0 (see
Fig. 30); hence, p0 is in the interior of JþðWÞ, not in its
boundary. As an example of this, the future light cone of a
point q in Minkowski space is achronal.

C. More on the boundary of the future

The boundary of the future of any compact set W ⊂ M has
an additional property that is important to understanding black
holes: ∂JþðWÞ is always a codimension 1 submanifold of M,
though it is generally not smooth; moreover, if M is globally
hyperbolic, then ∂JþðWÞ is closed in M (as we know from
Sec. V.B), so it is actually a closed submanifold of M.

(a) (b)

FIG. 28. (a) l is a null geodesic from a spacelike submanifoldW
to a point p ∈ M. For l to be prompt, it must be orthogonal toW
at the point q at which it departs W. Otherwise, by moving q
slightly toward p, one can replace l with another causal curve to
p that gets a “head start” and arrives in the past of p. (The picture
can be understood to depict a slice of Minkowski four-space at
time t ¼ 0. W is a two-sphere embedded at t ¼ 0, and the null
geodesic l is projected to the t ¼ 0 slice. Note that if l is
othogonal to W in four dimensions, then its projection to three
dimensions is also orthogonal to W, as drawn.) (b) Even if
orthogonal toW, l is nonetheless not prompt if a segment qq0 of l
can be displaced to a nearby null geodesic, meeting W orthogo-
nally at some other point r. This displacement gives a causal path
from W to p that is not a null geodesic, so it can be modified to a
causal path that is more prompt. In this situation, we say that the
point q0 is a focal point of the orthogonal null geodesics from W.
This situation does not arise in Minkowski space if W is a round
sphere supported at t ¼ 0 and the geodesic l is “outgoing,” but it
can arise for a more general choice ofW, as shown, or for a round
sphere embedded in a more general spacetime, or for “incoming”
geodesics from a round sphere in Minkowski space.

FIG. 29. If p ∈ ∂JþðWÞ, then there is a sequence of points
p1; p2;… in the interior of JþðWÞ that converge to p. Each of the
pi can be reached from W by a causal path γi. In a globally
hyperbolic spacetime, a subsequence of γi converges to a causal
path γ from W to p. γ automatically is prompt, since if there is a
causal path from W that arrives slightly to the past of p, this
implies that p is in the interior of JþðWÞ, not in its boundary.
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Consider again the example in which q is a point in
Minkowski space; see Fig. 23. ∂JþðqÞ is the future light
cone, including the vertex of the cone. It is a closed
submanifold of Minkowski space but (because of the conical
singularity at q) it is not smoothly embedded in Minkowski
space. This is the typical situation.
To show that in general ∂JþðWÞ is a manifold, pick an

arbitrary point p ∈ ∂JþðWÞ. We want to show that ∂JþðpÞ is
a manifold near p. We pick a small ball near p in whichM can
be approximated by Minkowski space and pick coordinates
t; x⃗ centered at p; see Fig. 31. Consider the timelike path γc⃗
that is parametrized by t with a fixed value x⃗ ¼ c⃗ of the spatial
coordinates. Since p ∈ ∂JþðWÞ, a point to the past of p is not
in JþðWÞ and a point to the future of p is in JþðWÞ. For
sufficiently small c⃗, the point t ¼ t0, x⃗ ¼ c⃗ is to the past of p
and thus not in JþðWÞ if t0 is sufficiently negative, and it is to
the future of p and is in JþðWÞ if t0 is sufficiently positive.
Thus, as t varies from negative to positive values, there is a
first value t ¼ t0ðc⃗Þ at which the point ðt; c⃗Þ is in JþðWÞ, and

this point is in ∂JþðWÞ. If t > t0, then the point ðt; c⃗Þ is in the
interior of JþðWÞ. Therefore, near p, ∂JþðWÞ consists of the
points (t0ðc⃗Þ; c⃗). Thus, ∂JþðWÞ can be parametrized near p
by c⃗ and, in particular, is a manifold of codimension 1 in M.
It is a good exercise to return to the example in which W

consists of a single point q, so that ∂JþðWÞ is the future light
cone of q, and to verify that the reasoning just given is valid
even if we pick p ¼ q ∈ ∂JþðWÞ. As another example, let W
be a circle or a two-sphere, embedded in Minkowski four-
space in the obvious way. Describe ∂JþðWÞ, showing that it is
a manifold, though not smoothly embedded in spacetime.
What is the topology of ∂JþðWÞ? Answer the same question
for an ellipse or an ellipsoid instead of a circle or sphere. You
should find that ∂JþðWÞ is equivalent topologically in each
case to the initial value surface t ¼ 0, where t is the time. In
particular, ∂JþðWÞ is never compact. Indeed, Minkowski
space has no compact achronal hypersurface, according to a
general argument that is sketched in Fig. 8.

D. The null Raychaudhuri equation

Just as in Sec. IV, to make progress we need a reasonable
way to predict that null geodesics will develop focal points.
This is provided by the null Raychaudhuri equation [this null
analog of Raychaudhuri’s original equation was first
described by Sachs (1961)].
Let W be a codimension 2 spacelike submanifold of a

spacetimeM. For example, ifM is Minkowski space,W might
be a sphere, embedded in Minkowski space with line element
ds2 ¼ −dt2 þ dx⃗2 in the standard fashion, as the submanifold
x⃗2 ¼ R2, t ¼ 0.
Emanating from W are two families of future-going null

geodesics orthogonal toW; see Fig. 32. In the right conditions
(for instance, if W is a sphere in Minkowski space), one can
naturally call these families outgoing and incoming. In what
follows, we focus on just one of these two families, which for
convenience we refer to as outgoing.
The outgoing orthogonal null geodesics emanating from W

sweep out a codimension 1 submanifold Y ⊂ M. To be more
precise, Y is a manifold near W. When we extend the
orthogonal null geodesics far enough that they intersect each
other or form focal points, Y may fail to be a manifold. This is
actually the phenomenon that we are interested in.

FIG. 30. An illustration of the fact that, for any subset W of
spacetime, ∂JþðWÞ is always achronal. If there is a future-going
timelike path γ from p to p0 with p, p0 ∈ ∂JþðWÞ, then a
neighborhood of p0 can be reached from p, and therefore fromW,
by a timelike path. Therefore, p0 is in the interior of JþðWÞ, not in
its boundary. Thus, in the diagram the curve γ cannot be
everywhere timelike. An extension of the reasoning shows that
if γ is a causal curve from p to p0, it must be a null geodesic
entirely contained in ∂JþðWÞ.

FIG. 31. A small neighborhood of a point p ∈ ∂JþðWÞ, with
the goal being to demonstrate that ∂JþðWÞ is a manifold near p.
The shaded region represents JþðWÞ. In a small enough neigh-
borhood of p, we pick a time coordinate t and spatial coordinates
x⃗ such that p is at t ¼ x⃗ ¼ 0. Consider now the timelike path γc⃗
defined by x⃗ ¼ c⃗ for a constant c⃗. As explained in the text, for
sufficiently small c⃗, γc⃗ intersects ∂JþðWÞ at a unique point.
Hence, we can parametrize ∂JþðWÞ near p by coordinates c⃗,
showing that ∂JþðWÞ is a manifold near p. This is so for every
p ∈ ∂JþðWÞ, so ∂JþðWÞ is a manifold.

FIG. 32. If W is a spacelike submanifold of spacetime of
codimension 2, then two families of future-going null geodesics
emanate fromW. In the diagram, the outgoing family sweeps out
a null hypersurface Y.
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It is possible to choose a fairly natural set of coordinates
on Y. First we pick any set of local coordinates xA,
A ¼ 1;…;D − 2, on W. In a somewhat similar situation in
Sec. IV.C, we choose as one additional coordinate the proper
time measured along a timelike geodesic. For a null geodesic,
there is no notion of proper time. But the affine parameter of a
null geodesic serves as a partial substitute.
For a geodesic parametrized by an affine parameter λ, the

geodesic equation reads

0 ¼ D2xμ

Dλ2
¼ d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
: ð29Þ

This affine version of the geodesic equation is invariant under
affine transformations

λ → aλþ b; a; b ∈ R; ð30Þ

and two solutions that differ only by such a transformation are
considered equivalent.
On each of the null geodesics l that make up Y, we pick an

affine coordinate u that increases toward the future and
vanishes at the point l ∩ W. This uniquely determines u
up to the possibility of multiplying it by a positive constant.
Of course, if we let xA vary, this “constant” can be a

function of the xA. Thus, following the procedure just
described for every l (and making sure to normalize u in
such a way that it varies smoothly with the xA) we get a
smooth function u on Y that is uniquely determined up to the
possibility of multiplying it by a positive function of the xA,
that is, a positive function onW. We make an arbitrary specific
choice. In addition, we can extend the xA from functions onW
to functions on Y by declaring that they are constant along
each l. Thus, at this point we have a full system of local
coordinates xA and u on the D − 1 manifold Y. To complete
this to a full coordinate system on M, or at least on a
neighborhood of Y in M, we need one more function v,
and of course we need to extend xA and u off of Y.
One way to do this (see Fig. 33) is to first embed W in a

spacelike hypersurface S that is defined at least locally nearW
(we are interested only in what happens near W). Then we
locally build S out of a family of codimension 1 submanifolds
Wε, ε ∈ R, where W0 is the original W. For this, we simply
pick a function v on S that vanishes alongW but has an always
nonzero normal derivative, and we defineWε by the condition
v ¼ ε. We extend xA to functions on S in an arbitrary fashion.
Then we consider the outgoing orthogonal null geodesics
from Wε just as we did for the original W. Letting ε vary, we

are now allowing any starting point in S, so these geodesics
together sweep out all ofM (or, more exactly, a neighborhood
of Y in M). We parametrize these geodesics by an affine
parameter u, normalized to vanish on Wε, as we did at ε ¼ 0.
As before, this u is well defined up to multiplication by a
function on S and we make a specific choice. Next we extend
v and xA to functions on all of M (or, more exactly, on the
portion of M that is near Y) by saying that they are constant
along the outgoing null geodesics. Finally, u, v, and xA

provide coordinates on a neighborhood of Y in M.
In this coordinate system, guu is identically 0, because we

have arranged so that the curves parametrized by u, with
constant v and xA, are null. In addition, we have ensured that
the geodesic equation is satisfied with u equal to an affine
parameter λ and with v and xA constant. The condition for this
is that Γα

uu ¼ 0 for all α. Given that guu ¼ 0, this implies that
∂uguβ ¼ 0 for all β. Since the construction was made using
null geodesics that are orthogonal to each Wε, guA vanishes at
u ¼ 0, and therefore it vanishes identically. As for guv, we
learn that it is independent of u. Since guu ¼ guA ¼ 0, guv
must be everywhere nonzero (or we would have det g ¼ 0).
Thus, we write guv ¼ −2eq (the minus sign is a convention
that could be reversed by changing the sign of v). The line
element therefore takes the general form

ds2¼−2eqdvduþgABdxAdxBþ2cAdvdxAþgvvdv2; ð31Þ

where in general gAB and cA depend on all coordinates u, v, xC

but q depends only on xC and v.
One immediate conclusion comes by looking at the metric

on Y. Setting v ¼ 0, we see that this is the degenerate metric
gABðxC; uÞdxAdxB, with no dxAdu or du2 term. Thus, the
signature of the hypersurface Y isþþ � � � þ 0, with one 0 and
the rest þ’s. Such a Y is called a null hypersurface. We have
learned that a hypersurface swept out by orthogonal null
geodesics from a codimension 2 spacelike manifold W is a
null hypersurface. (This statement also has a converse, which
is explained in Appendix E.)
The null Raychaudhuri equation is simply the Einstein

equation Ruu ¼ 8πGTuu on the hypersurface Y defined by
v ¼ 0. Before computing Ruu, it helps to notice that by adding
to u a function that vanishes at v ¼ 0 (and thus without
affecting the metric on Y) we can adjust gvv as we wish. In
particular, we can put the line element in the form23

ds2 ¼ −2eqdvduþ gABðdxA þ cAdvÞðdxB þ cBdvÞ; ð32Þ

in general with different functions q and cA; however, q is still
independent of u at v ¼ 0. [For a more elegant route to this
form of the metric, see Sachs (1962).] In this coordinate
system,

FIG. 33. A spacelike submanifold W of codimension 2 can
always be embedded locally in a spacelike hypersurface S.
Moreover, nearW, S can be swept out by a family of codimension
2 submanifolds Wε, ε ∈ R, such that W0 is the original W.

23Once the line element is in this form modulo terms of order vn,
by shifting u by vnþ1fnðu; xAÞ (for some function fn), we put the line
element in this form modulo terms of order vnþ1. We start the process
at n ¼ 0.
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guu ¼ gvv ¼ gvA ¼ 0 ¼ guu ¼ gua ¼ Γα
uu: ð33Þ

A straightforward calculation of Ruu similar to the compu-
tation of Rtt in Sec. IV.C gives a similar result. Discarding
terms that vanish because of Eq. (33), we have

Ruu ¼ −∂uΓA
uA − ΓA

uBΓB
uA ¼ −1

2
∂uðgAB∂ugABÞ

− 1
4
ðgAC∂ugBCÞðgBD∂ugDAÞ: ð34Þ

Here gAB is the u-dependent metric of W that appears
in Eq. (32), and gAB is its inverse. This formula is in
perfect parallel with Eq. (14); the only difference is that
the ðD − 1Þ × ðD − 1Þ metric of the hypersurface S has been
replaced by the ðD − 2Þ × ðD − 2Þ metric of the codimension
2 submanifold W. The subsequent discussion therefore can
proceed in close parallel to the timelike case.
We define the transverse area of a little bundle of orthogonal

null geodesics as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gAB

p
: ð35Þ

As in the timelike case, we look for points at which A → 0.
The interpretation of A → 0 is quite analogous to the inter-
pretation of V → 0 in the timelike case. A → 0 can represent a
spacetime singularity, or simply a focal point at which some of
the orthogonal null geodesics from W converge.24

The null expansion is defined as25

θ ¼
_A
A
¼ 1

2
Trg−1 _g: ð36Þ

The dot now represents a derivative with respect to u. One also
defines the shear, the traceless part of g−1 _g, as

σAB ¼ 1

2

�
gAC _gCB −

1

D − 2
δABTrg

−1 _g

�
: ð37Þ

Thus,

Ruu ¼ −_θ −
θ2

D − 2
− Trσ2: ð38Þ

Hence the Einstein-Raychaudhuri equation Ruu ¼ 8πGTuu
reads

_θ þ θ2

D − 2
¼ −Tr σ2 − 8πGTuu: ð39Þ

The null energy condition is the statement that at each point
and for any null vector vμ the stress tensor satisfies

vμvνTμν ≥ 0: ð40Þ

This condition is satisfied by all reasonable classical matter.26

It is satisfied by all of the usual relativistic classical fields and
is not affected by a cosmological constant. Thus, the null
energy condition is a solid foundation for the discussion of
classical properties of general relativity. This stands in contrast
to the strong energy condition, which was used in deducing
Hawking’s theorem about the big bang; it is not universal in
classical field theory. In the rest of this review, we generally
assume the null energy condition, except in Sec. VII.B when
we discuss a weaker condition with some of the same
consequences.
The null energy condition ensures that Tuu is non-negative,

and therefore that the right-hand side of Eq. (39) is non-
positive. Given this, we can reason as we did in the timelike
case and predict the occurrence of focal points within a
bounded affine distance from W.
Indeed, in the manner of Eq. (23), Eq. (39) implies that

∂u
1

θ
≥

1

D − 2
: ð41Þ

Now suppose that θ < 0 at some point on W, say, θ ¼ −w.
Then 1=θ ≥ −1=wþ u=ðD − 2Þ or

_A
A
≤ −

�
1

w
−

u
D − 2

�
−1
: ð42Þ

Integrating this formula for _A=A, we learn as in Eq. (25) that
A → 0 at a value of the affine parameter no greater
than u ¼ ðD − 2Þ=w.
Just as in the timelike case, there might be a spacetime

singularity when A → 0 (or even before), but in general A → 0

represents only a focal point at which the coordinate system
assumed in the calculation breaks down. To predict a
singularity requires additional input beyond Raychaudhuri’s
equation.

E. Trapped surfaces

A codimension 2 spacelike submanifold W of spacetime
has two families of future-going orthogonal null geodesics,
so it is possible to define two different null expansions. Each

24For the same reason as in the timelike case, the condition
det gAB ¼ 0 is necessary as well as sufficient for a focal point. Indeed,
as long as M is smooth, the point in M that is reached by an
orthogonal null geodesic that originates at a point q ∈ S and
propagates up to a value u of its affine parameter is a smooth
function of q and u. Thus, gAB remains regular as long as M is
smooth. Whenever gAB acquires a zero eigenvalue (corresponding to
a focal point), det gAB will vanish.

25It hopefully does not cause confusion to use the same symbol θ
for the expansion of a ðD − 2Þ-dimensional bundle of null geodesics
or of a ðD − 1Þ-dimensional bundle of timelike ones. Normally the
context makes the meaning clear.

26There is a subtlety here in a theory with an elementary scalar
field ϕ. In such a theory, the metric tensor g is in general not uniquely
defined, as it could be redefined by a Weyl transformation g → efðϕÞg
for an arbitrary function f. There is then a unique “Einstein frame” in
which the Ricci scalar R appears in the action with a coefficient
1=16πG, independent of ϕ. The statement made in the text is valid in
the Einstein frame. It may not hold in a more general frame.

Edward Witten: Light rays, singularities, and all that

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045004-24



of them is governed by the previously described null
Raychaudhuri equation.
If, for example, W is a sphere embedded in Minkowski

space in the standard fashion, then one family of orthogonal
null geodesics is outgoing, in an obvious sense, and one is
“incoming.” The outgoing ones have positive null expansion,
and the incoming ones have negative null expansion.
Penrose defined a “trapped surface” to be a codimension 2

spacelike submanifold W such that the expansion of each
family of orthogonal future-going null geodesics is every-
where negative. The motivating example is a spherically
symmetric surface behind the horizon of a spherically sym-
metric black hole. Such a black hole can be conveniently
represented by a two-dimensional picture, known as a Penrose
diagram, in which only the radial and time directions are
shown; see Fig. 34. In the diagram, ingoing and outgoing
radial null geodesics are represented by straight lines at a
�π=4 angle to the vertical. A point in the diagram represents a
two-sphere [or in D dimensions, a (D − 2)-sphere] with a
round metric. The radius of the sphere is a function r on the
Penrose diagram; in four dimensions, the two-sphere repre-
sented by a given point has an area 4πr2. What characterizes a
Schwarzschild black hole is that, behind the horizon, r is
decreasing along every future-directed causal curve. Now pick
a point p in the diagram behind the horizon H of the black

hole, and let W be the corresponding two-sphere. The future-
going orthogonal geodesics fromW are simply future-directed
outgoing or incoming radial geodesics, so they are represented
in the diagram by future-going rays that leave p at angles
�π=4 from the vertical, as shown. In particular, these rays
represent future-directed causal paths, so r decreases along
each of them. Therefore, both null expansions of W are
negative; W is a trapped surface.
As an exercise, one can try to visualize a sphere embedded

in Minkowski space in such a way that each of its null
expansions is negative in one region and positive in another.
There is no difficulty in finding such an example. But there is
no trapped surface in Minkowski space: there is no way to
embed a sphere so that each of the two null expansions is
everywhere negative. This statement is actually a corollary of
Penrose’s theorem, which we address next.

F. Penrose’s theorem

Penrose’s theorem (Penrose, 1965) was the first modern
singularity theorem, though in the presentation here we do not
follow the historical order.
Penrose’s goal was to prove that the formation of a

singularity is a generic phenomenon in gravitational collapse.
If spherical symmetry is assumed, one can solve Einstein’s
equations for a collapsing star rather explicitly and show that
formation of a singularity is unavoidable. But what happens if
the geometry is not quite spherically symmetric? Does
infalling matter still collapse to a singularity, or does it “miss”
and, perhaps, reemerge in an explosion? Penrose wanted a
robust criterion for formation of a singularity that would not
depend on precise spherical symmetry. This goal was the
motivation for the concept of a trapped surface.
Like the other results that came later (see the discussion at

the end of Sec. IV.D), Penrose’s “singularity theorem” is
proved without directly studying singularities. It is really a
statement about completeness. Penrose proved that a space-
time M satisfying certain conditions is null geodesically
incomplete, meaning that at least one null geodesic in M
cannot be continued in the future to an arbitrarily large value
of its affine parameter.
Penrose’s theorem concerns a globally hyperbolic space-

time M with a noncompact Cauchy hypersurface S. For
example, in any spacetime that is asymptotic at spatial infinity
to Minkowski space, a Cauchy hypersurface (if there is one) is
not compact. Thus, Penrose’s theorem applies to any space-
time that is asymptotically flat and also globally hyperbolic.
In the statement and proof of Penrose’s theorem, it is not
necessary to assume that M is maximal in the sense of
Sec. III.F, but the most interesting case is that M is maximal.
The final input to Penrose’s theorem, apart from the

classical Einstein equations, is the null energy condition.
Penrose’s theorem states that, assuming global hyperbolicity,
a noncompact Cauchy hypersurface, the null energy condi-
tion, and the classical Einstein equations, a spacetime M that
contains a compact trapped surface is not null geodesically
complete.
The condition for a spacetime to contain a compact trapped

surface W is stable against small perturbations of the geom-
etry, since if the null expansions of W are negative, they

FIG. 34. A Penrose diagram describing spherically symmetric
collapse to a black hole. The gray area represents matter and
radiation that is collapsing to form a black hole; the exterior,
unshaded region represents part of the Schwarzschild solution.
(See Fig. 42 in Sec. VII.A for the Penrose diagram of the
maximally extended Schwarzschild solution.) A point in the
diagram represents a two-sphere [or in D dimensions a ðD − 2Þ-
sphere] whose radius r is a function of the two coordinates in the
diagram. Behind the horizon (which is labeled H), r decreases
along every future-going causal curve. For example, the point
labeled p is behind the horizon and represents a sphereW of area
4πr2 (or the analog of this in D − 2 dimensions). The future-
going orthogonal null geodesics from p are represented in the
diagram by ingoing and outgoing null geodesics (the rays
emerging from p at π=4 angles to the vertical). These are
future-going causal curves beyond the horizon, so r decreases
along each of them and hence the area ofW also decreases. Thus,
W is a trapped surface. The points in the diagram labeled i0 and
iþ represent spatial infinity and the future infinity of an outside
observer, respectively.
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remain negative after a sufficiently small perturbation. Thus,
Penrose’s theorem applies to any spacetime that is sufficiently
close to Schwarzschild, that is, sufficiently close to spherically
symmetric collapse to a black hole in a spacetime that is
asymptotic to Minkowski space at spatial infinity.
Penrose’s theorem is commonly called a singularity theo-

rem because of a presumption that, generically, the reason that
a null geodesic cannot be continued is the same as in the
Schwarzschild case: it ends at a singularity. However, this
goes beyond what is proved, and the exercises that will be
presented later show that on such matters, caution is called for.
Penrose’s theorem is proved as follows. LetW be a compact

trapped surface in M. Pick affine parameters for the future-
going null geodesics that are orthogonal to W. As usual, it is
natural to normalize these affine parameters to vanish on W.
For any given point q ∈ W, one is still free to multiply the
affine parameter (for either the ingoing or outgoing null
geodesic from q) by a constant. There is no natural way to
fix the normalization; for what follows, it suffices to use any
normalization that varies smoothly with q.
The null expansions _A=A of the compact surface W, which

are everywhere negative, satisfy a bound

_A
A
< −w

for some constant w > 0. Then Penrose proved, to be precise,
that at least one of the future-going null geodesics orthogonal
to W cannot be extended to a value of its affine parameter
greater than ðD − 2Þ=w.
Suppose on the contrary that every one of the future-going

null geodesics l orthogonal toW can be extended to a value of
its affine parameter greater than ðD − 2Þ=w. This means,
according to Raychaudhuri’s equation, that every such l
can be extended beyond its first focal point.
Suppose that l leaves W at a point q ∈ W and continues

past its first focal point p. Let lqp be the segment of l
connecting q to p; it is compact. We have l ∩ ∂JþðWÞ ⊂ lqp

since l is not prompt when continued beyond p. Moreover,
l ∩ ∂JþðWÞ is closed in l since ∂JþðWÞ is closed in M.
Thus, l ∩ ∂JþðWÞ is a closed subset of lqp. A closed subset
of a compact space is compact, so l ∩ ∂JþðWÞ is compact.27

Every point p ∈ ∂JþðWÞ is connected toW by one of these
future-going orthogonal null geodesics. Thus, p is determined
by28 a triple consisting of the choice of a point q ∈ W (at
which l originates), the choice of whether l is incoming or
outgoing at q, and the affine parameter measured along l.
Moreover, from what we have just seen, the affine parameter
on each l can be restricted to a compact interval. Since W
itself is compact and the affine parameter measured along each
l ranges over a compact interval, this implies that ∂JþðWÞ is
compact.
But ∂JþðWÞ is an achronal codimension 1 submanifold of

M, as explained in Secs. V.B and V.C. In a globally hyperbolic
spacetimeM with a noncompact Cauchy hypersurface S, there
is no compact achronal submanifold of codimension 1, as we
learned in Sec. III.B. Putting this together, our hypothesis was
wrong and at least one future-going null geodesic l that is
orthogonal to W cannot be extended within M beyond an
affine distance ðD − 2Þ=w to the future of W. This completes
the proof of Penrose’s theorem.
Here are some exercises that aim to help one understand the

fine print in Penrose’s theorem. (The two forms of the de Sitter
space metric are described in Appendix B.)

(1) de Sitter space in dimension D can be described with
the line element

ds2 ¼ −dt2 þ R2cosh2ðt=RÞdΩ2; ð43Þ

where dΩ2 is the line element of a (D − 1)-sphere.
Convince yourself that this is a globally hyperbolic
spacetime with a compact initial value surface S
(because of the compactness of S, Penrose’s theorem
does not apply). Also convince yourself that de Sitter
space is geodesically complete; all geodesics can be
continued to infinite affine parameter in both direc-
tions. Find a compact trapped surface W. Can you
describe the boundary of the future of W? You should
find that ∂JþðWÞ is topologically equivalent to the
initial value surface, as the previous arguments imply.

(2) Consider the following line element, which describes
only a portion of de Sitter space:

ds̃2 ¼ −dt2 þ R2 expð−2t=RÞdx⃗2; x⃗ ∈ RD−1:

ð44Þ

[A time-reversed version of this line element provides
a model of an accelerating Universe. The t coordinate
in Eq. (44) is not simply related to the coordinate of the
same name in Eq. (43). See Appendix B for a
derivation of this form of the line element and an
explanation of how it describes only a part of de Sitter
space.] Show that this line element describes a
globally hyperbolic spacetime with noncompact initial
value surface t ¼ 0. Thus, Penrose’s theorem applies.
Find a compact trapped surface W. Do you see a
singularity? What does Penrose’s theorem mean for

27If l cannot be continued until reaching a focal point (for
instance, because it ends at a singularity or leaves the globally
hyperbolic spacetime), then it is possible for the closed subset l ∩
∂JþðWÞ of l to satisfy l ∩ ∂JþðWÞ ¼ l, and l ∩ ∂JþðWÞ can then
be noncompact. Penrose’s proof shows that ifW is a trapped surface,
this situation will arise for some l. (Promptness of l can fail without
l reaching a focal point, but the alternative failure mode, described in
Appendix F, does not give a new way for the prompt portion of l to
be noncompact.) If l can be continued past its first focal point, then
we can be more specific about l ∩ ∂JþðWÞ, though the details are
not needed in the proof of Penrose’s theorem. l ∩ ∂JþðWÞ is empty
(this is possible only if W is not achronal), consists only of the point
q ∈ l (this is possible only if there exists a causal path to q from
some other point q0 ∈ W, but any such path is a null geodesic), or
consists of a nontrivial initial segment of l. The interested reader may
want to try to justify these statements.

28Such a triple determines p, but more than one triple may lead to
the same p.
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this spacetime? What is the boundary of the future of
the trapped surface W? As a hint, look at null geo-
desics in this spacetime. You should find that every
null geodesic intersects the initial value surface at, say,
t ¼ 0, as implied by global hyperbolicity. But are null
geodesics complete in the sense of extending to
infinite affine parameter in both directions?

To understand these examples better, let M̂ be the de Sitter
space of Eq. (43), and letM be the spacetime of Eq. (44). Then
M can be embedded in M̂. Both M and M̂ are globally
hyperbolic, but a Cauchy hypersurface S for M, when
embedded in M̂, is not a Cauchy hypersurface for M̂. A
Cauchy hypersurface S forM is a plane RD−1, while a Cauchy
hypersurface Ŝ for M̂ is a sphere SD−1, obtained topologically
by adding a point at infinity to the plane. When M is
embedded in M̂, the portion of M̂ that is not in M lies
beyond a Cauchy horizon. A Penrose diagram illustrating
these statements is in Fig. 35. Null geodesics in M̂ can be
continued to infinite values of their affine parameter, but they
can exitM at a finite value of their affine parameter. A trapped
surface W can be represented by any point below the main
diagonals. For instance, we can pick the point q on the null
geodesic γ, near the lower right corner of the diagram. Applied
to this example, the phenomenon described by Penrose’s
theorem is that some null geodesics orthogonal to W, when

viewed as geodesics in M̂, leave M at a finite value of their
affine parameters and enter the part of M̂ that is beyond a
Cauchy horizon. γ itself has this behavior.
The second example illustrates why some careful authors

refer to Penrose’s theorem as an incompleteness theorem
rather than a singularity theorem. The geodesics that,
according to Penrose’s theorem, cannot be continued to
arbitrary values of their affine parameter might terminate
on a singularity, as in the case of a Schwarzschild black hole.
But the theorem allows the possibility that these geodesics
simply leave the globally hyperbolic spacetime M under
discussion, without reaching any singularity, as in our second
example. The phenomenon is a failure of predictivity: what
happens to these geodesics after they leave M cannot be
predicted based on initial data on the Cauchy hypersurface S
of M.

VI. BLACK HOLES

What Penrose’s theorem actually says about the region
inside a black hole is limited, as we learned from the examples
in Sec. V.F. It therefore comes as a surprise that the ideas
on which this theorem is based lead rather naturally to an
understanding of important properties of black holes.29

To be more exact, these ideas plus one more assumption
lead to such an understanding.

A. Cosmic censorship

It is not possible to get a good theory of black holes without
knowing, or assuming, that something “worse” than collapse
to a black hole does not occur.
Roughly speaking, “something worse” might be the for-

mation of what Penrose called a “naked singularity” (Penrose,
1969, 1973, 1999). This is a singularity not enclosed by a
horizon and visible to an outside observer.
Formation of a naked singularity might bring the predictive

power of classical general relativity to an end because the
classical theory would not uniquely determine what comes out
of the naked singularity. As an extreme case, formation of a
naked singularity might bring the spacetime itself to an end
[this possibility was part of the motivation for a refinement of
Penrose’s conjectures (Geroch and Horowitz, 1979)]. For
example, imagine that gravitational collapse creates an out-
going shock wave singularity that expands to infinity at the
speed of light. If the singularity is severe enough that the
classical Einstein equations break down and the classical
spacetime cannot be continued to the future of the shock wave
based only on information provided by Einstein’s classical
theory, then one could describe this by saying that spacetime
(or at least the ability to describe spacetime based only on the
classical theory) has come to an end.
Since this may seem fanciful, it is worth mentioning that

something somewhat similar, though without a singularity,

FIG. 35. The square is a Penrose diagram of de Sitter space M̂.
Iþ and I− represent future and past infinity of M̂ and are not part
of M̂. The shaded triangle is a contracting portion M of M̂ (M is
actually the causal past of a point in Iþ). M̂ is globally hyperbolic
with compact Cauchy hypersurface Ŝ, and M is globally hyper-
bolic with noncompact Cauchy hypersurface S (to compactify S,
we would have to include in S the lower left corner of the
diagram; this point lies in I− and is not part of M or M̂). M
contains compact trapped surfaces, represented by points near the
bottom of the diagram. In particular, the point labeled q
represents a trapped surface W. M therefore satisfies all the
conditions of Penrose’s theorems. The incompleteness implied by
Penrose’s theorem simply means that some null geodesics
orthogonal to W (such as the one labeled γ) exit M at a finite
value of their affine parameters. Thus, M is not null geodesically
complete; its completion is M̂.

29Chapter 12 of Wald (1984) is particularly useful for background
to the present section, as well as to further properties of black holes
that go beyond the scope of this review. Here we consider only issues
directly related to causality.
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can actually happen in Kaluza-Klein theory. Consider a D-
dimensional spacetime that is asymptotic at spatial infinity to
MD−1 × S1 (where MD−1 is Minkowski space of dimension
D − 1 and S1 is a circle). At distances long compared to the
asymptotic radius of the circle, such a spacetime is effectively
D − 1 dimensional. The classical equations admit initial
conditions in which, from a ðD − 1Þ-dimensional point of
view, there is a “hole” in space of zero or even negative energy
(Witten, 1982). (From a D-dimensional point of view, there is
no hole in space: the spacetime is topologically different from
MD−1 × S1 but looks likeMD−1 × S1 near spatial infinity.) The
hole expands to infinity at the speed of light. There is nothing
to the future of this cataclysm; spacetime comes to an end.
Thus, in such a situation it is not possible to make arguments
(as we do later when analyzing black holes) based on what
will be seen in the distant future by an observer who remains
at a safe distance.
Penrose (1969, 1973, 1999) introduced the hypothesis of

“cosmic censorship,” which in its simplest form, known as
“weak” cosmic censorship,30 and as elaborated later [Geroch
and Horowitz (1979)] says that in a globally hyperbolic
spacetime asymptotic at spatial infinity to Minkowski space,
no such catastrophe occurs: in gravitational collapse, and
more generally in any localized process in an asymptotically
Minkowskian spacetime, the region at a great distance and in
the distant future continues to exist, just as in Minkowski
space. Moreover, the evolution seen by an outside observer is
supposed to be predictable based on the classical Einstein
equations. Any singularity is hidden by a horizon and does not
affect the outside evolution.
If true, this is a remarkable and genuinely surprising fact,

and possibly slightly disappointing. It is genuinely surprising
because the classical Einstein equations have no stability
properties that would tend to guarantee cosmic censorship. It
is potentially disappointing because if cosmic censorship is
true, we lose our chance to get observational evidence
concerning a hypothetical better theory. After all, if cosmic
censorship is false and the classical Einstein equations break
down in a way that is visible to a distant observer, we might in
principle hope to observe what happens when this breakdown
occurs.31

For many years, the evidence for cosmic censorship
appeared to be meager, at least to this author. However, by
now reasonable evidence for cosmic censorship, at least for
D ¼ 4, has come from the fact that simulations of black hole

collisions (Pretorius, 2005) have not generated naked singu-
larities.32 If it were the case that black hole collisions produce
naked singularities rather than bigger black holes,33 then the
recent LIGO-VIRGO observations of colliding black holes,
rather than providing an interesting test of classical general
relativity, might have given us information about what
happens when classical general relativity breaks down.
Whether cosmic censorship is true (and how exactly to

formulate it, as there are many important subtleties)34 is
widely regarded as the outstanding unanswered question
about classical general relativity. For our purposes, we assume
that some version of cosmic censorship holds such that it
makes sense to study gravitational collapse from the point of
view of an observer at infinity in the distant future.

B. The black hole region

If cosmic censorship is assumed, one can provide a theory
of black holes in a globally hyperbolic and asymptotically flat
spacetime M.
First, the black hole region in M is the region B that is not

visible to an outside observer. To be more exact, let I be the
worldline of a timelike observer who remains more or less at
rest at a great distance in the asymptotically flat region
observing whatever happens. We denote as J−ðIÞ the causal
past of this observer, i.e., the set of points from which the
observer can receive a signal. J−ðIÞ is always open, because if
a causal path γ from a point q ∈ M reaches the distant
observer at a point p ∈ I , then from any point q0 that is
sufficiently near q there is a causal path γ0 that reaches I at a
point p0 that is near p. One simply defines γ0 to follow γ
wherever it goes [somewhat as γ0 tags along after γ in
Fig. 24(b), though in this context γ0 is not necessarily to
the past of γ]. Intuitively, an observer who can see the point q
at some time t can see any point that is sufficiently close to q at
a time close to t.
The black hole region B is the complement of J−ðIÞ in M

B ¼ MnJ−ðIÞ: ð45Þ

B is closed since J−ðIÞ is open.

30“Strong” cosmic censorship says that in an arbitrary spacetime
not necessarily asymptotic to Minkowski space no observer can see a
naked singularity. There is no general claim of an ability to continue
the spacetime to the future. For our purposes here, weak cosmic
censorship is the relevant statement. The terminology, though
standard, is potentially misleading since weak cosmic censorship
is not a special case of strong cosmic censorship.

31In his conclusion, Penrose (1973) expressed some ambivalence
about the cosmic censorship hypothesis, observing that there appears
to have been a big bang, which is somewhat analogous to a naked
singularity, so naked singularities might be an inescapable part of
physics.

32For D > 4, it appears that the Gregory-Laflamme instability
(Gregory and Laflamme, 1993) may violate the usual statement of
cosmic censorship (Lehner and Pretorius, 2012). However, see
footnote 34.

33On this question, Penrose (1972) wrote, “Wemight, for example,
envisage two comparable black holes spiraling into one another.
Have we any reason, other than wishful thinking, to believe that a
black hole will be formed, rather than a naked singularity? Very little,
I feel; it is really a completely open question.”

34For example, causal propagation governed by the Einstein
equations may continue to make sense in the presence of certain
limited types of singularities. Weak null singularities that propagate
outward at the speed of light are a candidate. Above D ¼ 4, a more
concrete candidate might be the singularity arising from the Gregory-
Laflamme instability. Therefore, in the statement of cosmic censor-
ship one might allow the formation of certain types of singularity that
are visible by an outside observer.
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The black hole horizon H is defined as the boundary of B:

H ¼ ∂B: ð46Þ

(As usual, a point in B is in the interior of B if it has a
neighborhood in B, and otherwise it is in the boundary of B.)
We first prove that these definitions are sensible by showing

that the existence of a black hole region is a generic property
of gravitational collapse. We will show that any compact
trapped surface W is in the black hole region B. In other
words, we show that a signal from a compact trapped surface
cannot reach the outside observer.
If a causal signal from the compact trapped surface W can

reach the worldline I of the distant observer, there is a first
point p ∈ I at which this can occur. The causal path from W
to p would be prompt, so it would be a future-going null
geodesic l from W to p, orthogonal to W, and without focal
points; see Fig. 36. Since W is a compact trapped surface,
there is a focal point on l within a known, bounded affine
distance fromW. But I , the worldline of the outside observer,
can be arbitrarily far away. This is a contradiction and hence
there can be no causal signal from W to I .
Thus, assuming cosmic censorship, a black hole forms in

any asymptotically flat spacetime that contains a trapped
surface, and so in any spacetime that is close enough to the
explicit Schwarzschild solution (or any of the explicit black
hole solutions, such as the Kerr solution for a rotating black
hole). Without cosmic censorship, the conclusion does not
apply because the worldline I that was assumed in the
discussion might not exist.
An obvious fact is that if a set W is contained in the black

hole region B, then its future JþðWÞ is also in B. If r is in the
future of W and an event at r can be seen by the distant
observer, then that observer can also receive a signal from W;
see Fig. 37.
Suppose that a trapped surface W is the boundary of a

codimension 1 spacelike submanifold Z (which might be the
“interior” of W on some Cauchy hypersurface). As explained
in Sec. V.B, a prompt causal path from Z to I would actually
be an orthogonal null geodesic from W to I . But we already
know that no such geodesic exists. Therefore, Z is in the black
hole region.

There might be several black holes in spacetime, so on a
given Cauchy hypersurface S the black hole region might have
several disconnected components; see Fig. 38(a). Black holes
can merge, but a black hole cannot split, in the sense that if Z
is a connected component of the black hole region on a given
Cauchy hypersurface S, then the future of Z intersects any
Cauchy hypersurface S0 to the future of S in a connected set.
To prove this, suppose that the black hole region intersects S0

in disconnected components Z0
i, i ¼ 1;…; r; see Fig. 38(b).

Consider first future-going causal geodesics from Z. Any such
causal geodesic (like any causal path from Z) remains in the
black hole region, so it intersects S0 at one of the Z0

i. But the
space of future-going causal geodesics starting at Z is
connected, and it cannot be continuously divided into two
or more disjoint subsets that would intersect S0 at different
components of the black hole region. Thus, all causal geo-
desics from Z arrive at S0 in the same component Z0

i of the
black hole region. Now consider any future-going causal path
from Z. If there is a causal path γ from Z to a given component
Z0
i of the black hole region, then by maximizing the elapsed

proper time of such a path we learn that there is a causal
geodesic (lightlike or timelike) from Z to Z0

i. Therefore, in

FIG. 36. If an observer with worldline I can receive a signal
from a compact setW in spacetime, then the earliest possible such
signal arrives on a prompt null geodesic γ that connects W to a
point p ∈ I . If W is a trapped region and I is sufficiently far
away, this is impossible.

FIG. 37. An observer who can receive a signal from a point r in
the causal future of a set W can also receive a signal from W.
Thus, if W is contained in the black hole set and r is in its causal
future, the curve labeled with question marks connecting r to the
worldline I of an observer at infinity must not be future-going
causal; r must be contained in the black hole set.

(a) (b)

FIG. 38. (a) In a spacetime that contains multiple black holes, the
black hole region on a given Cauchy hypersurface S might have
several connected components Zi. (b) An impossible situation, in
which a black hole splits into two or, more precisely, in which a
component Z of the black hole region on a Cauchy hypersurface S
evolves into two disconnected components Z1 and Z2 on a future
Cauchy hypersurface S0. Why this cannot happen is explained in
the text.
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fact, precisely one component Z0
i of the black hole region on S

0

is in the future of Z.

C. The horizon and its generators

Nowwewant to discuss the “horizon generators.” Let q be a
point on the black hole horizon, and let I be the timelike
worldline of an observer who is more or less stationary at
infinity. We recall that the horizon H is the boundary of the
black hole region B. A point q ∈ H is the limit of a sequence
of points q1; q2; q3;… that are outside of B. Each of the qi is
connected to the worldline I by a future-going prompt null
geodesic li. As qi → q, the li approach a future-going null
geodesic l from q. But since q ∈ H ⊂ B, it is not true that l
connects q to a point in I . Rather, what happens is that as
qi → q the point at which li reaches I goes to∞ along I ; see
Fig. 39. The limiting geodesic l does not reach I at all.
l remains everywhere in the horizon. One can see this as

follows. l can never go outside B since in general a causal
curve starting at q ∈ H ¼ ∂B can never reach outside B. On
the other hand, l can not be in the interior of B at any point,
because it is the limit of the prompt null geodesics from qi that
are strictly outside B. Thus, l is everywhere in H ¼ ∂B. l is
called a horizon generator.
In fact, we can be more precise. Any point r that is in the

past of l (meaning that some future-going timelike curve from
r reaches some point on l) is also in the past of li, for
sufficiently large i, since l is the limit of the li. Since the li
meet I , it follows that a causal (and in fact strictly timelike)
path from r can meet I . Thus, any point r that is to the past of
l is outside of the black hole region B.
l is a prompt null geodesic, in particular with no focal

point, no matter how far we continue it into the future. Indeed,

if l fails to be prompt, there is a causal path from q to some
point r that is strictly to the past of some q0 ∈ l. As just
discussed, such an r is outside the black hole region, and the
existence of a causal path from q to rwould show that q is also
outside the black hole region.
Now pick an initial value hypersurface S that contains q,

and define W ¼ S ∩ H. l must be orthogonal35 to W since a
prompt causal path from any submanifold to any destination is
always orthogonal to that submanifold. Together, the horizon
generators that pass throughW sweep out a three manifoldH0.
H0 is contained in H, and near W the two are the same
(assuming thatW is differentiable). But if we continue into the
future, H0 might not coincide with H since new black holes
may form, as a result of which the horizon (even its connected
component that contains W) may not be swept out entirely by
the horizon generators that come from W.
Since it is swept out locally by orthogonal null geodesics,H

must be a null hypersurface, that is, a hypersurface with a
degenerate metric of signature þþ � � � þ 0. This is true for a
general reason explained in Sec. V.D: any hypersurface swept
out by null geodesics orthogonal to a codimension 2 manifold,
such as W, is a null hypersurface. But in this case we can be
more direct. The tangent vector v to l at q is orthogonal to
itself (since l is null) and is orthogonal to the tangent space to
W (since l is orthogonal toW), so it is orthogonal to the entire
tangent space toH, showing that the metric ofH is degenerate
at q. But here q could have been any point onH, so the metric
of H is degenerate everywhere.
The final result that we discuss about classical black hole

horizons is possibly the most important: the Hawking area
theorem. It says that the area of the black hole horizon can
only increase, in the sense that the area measured on an initial
value hypersurface S0 that is to the future of S is equal to or
greater than the area measured on S. The theorem applies
separately to each component of the black hole region; if two
or more black holes merge, the theorem says that the merger
produces a black hole with a horizon area at least equal to the
sum of the horizon areas of the original black holes.
It suffices to show that the null expansion θ ¼ _A=A of the

horizon generators is always non-negative. This being so
along every horizon generator means that the horizon area is
always nondecreasing. (To fully determine the growth of the
horizon area, one has to take into account that new horizon
generators can come into existence in the future of S because
of the formation of new black holes. But that can only give a
further increase in the horizon area.)
If we know that the horizon generators are complete in the

sense that they can be continued to arbitrarily positive values
of their affine parameters, we would prove the non-negativity
of θ as follows. From Raychaudhuri’s equation, if θ is negative
for one of the horizon generators l, then there is a focal point
along l at some bounded value of its affine parameter. But
we have already shown that the horizon generators have no
focal points.
We might view the claim that the horizon generators are

complete (which roughly says that the horizon is nonsingular)

FIG. 39. In this Penrose diagram, the black hole region is shaded
and q is a point in its boundary. Thus, q is the limit of a sequence
of points q1; q2;… that are outside the black hole region. Being
outside the black hole region, q1; q2;… are connected by future-
going causal curves to the worldline I of an observer at a great
distance. (The part of the spacetime to the right of I is not drawn.)
Hence, there exist prompt null geodesics l1;l2;… from
q1; q2;… to I . In a globally hyperbolic spacetime, the li
converge to a null geodesic l through q. Because q is contained
in the black hole region, l does not reach the worldline I of the
outside observer. What happens is rather that as i increases, the
geodesic li arrives at I later and later; the proper time at which
the distant observer can see the point qi diverges for i → ∞. The
upper corner of this diagram, at which l and I appear to meet, is
actually at future infinity. It is not a point in the spacetime.

35We assume here that W is differentiable at least at a generic
point.
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as a slight extension of the cosmic censorship hypothesis
(which roughly says that the region outside the horizon is
nonsingular). However, it is possible to prove the area theorem
without assuming this. Imagine that in some portion of
W ¼ H ∩ S, one has θ < 0. Then we define a new surface
W0 by pushing W out a little in the region with θ < 0, leaving
W unchanged wherever θ ≥ 0. θ varies continuously as W is
moved in M, so if we do not push too far,W0 has θ < 0 in the
portion outside of B; see Fig. 40. Since it is not entirely
contained inB,W0 is connected to theworldlineI of an observer
at infinity by a causal path, which we can choose to be a prompt
null geodesicl. lmust connect I to a point inW0 that is outside
B, but we chooseW0 so that at such points θ < 0. Hence,lmust
have a focal point within a bounded affine distance ofW0. This
contradicts the fact that I can be arbitrarily far away. Therefore,
in fact, there was nowhere on W with θ < 0.
There is certainly much more to say about black holes, but

at this point we leave the reader to continue the journey
elsewhere. We conclude with a comment on the time reversal
of a black hole horizon. Black hole horizons are future
horizons; an observer at infinity can transmit a signal to
the region behind a future horizon but cannot receive a signal
from that region. Time reversing these statements, one gets the
notion of a past horizon; an observer at infinity can receive a
signal from behind a past horizon but cannot transmit a signal
to that region. The region behind a past horizon in an
asymptotically flat spacetime is called a white hole. The
time-reversed version of Penrose’s theorem says that a white
hole region contains a past singularity, or at least a failure of
past null geodesic completeness. Idealized solutions of gen-
eral relativity have white holes as well as black holes (the
Schwarzschild solution is an example; see Fig. 42 in
Sec. VII.A). In the real world, black holes form from
gravitational collapse but there is no equivalent mechanism
to create white holes, and cosmic censorship suggests that
white holes cannot form from good initial data.
There are also horizons in cosmology, but this notion is

strongly observer dependent. The boundary of the region that

an observer can see is called the future horizon of that
observer, and the boundary of the region that an observer
can influence is called the observer’s past horizon. In
cosmology, past and future horizons are both natural. For
example, the diagonal boundary of the shaded region in
Fig. 35 is the future horizon of any observer whose timelike
worldline ends at the upper right corner of the diagram, and
the past horizon of any observer whose timelike worldline
begins at the lower left corner. The shaded region is the area
that the former observer can see and that the latter observer
cannot influence.

VII. ADDITIONAL TOPICS

We turn now to several additional topics, including topo-
logical censorship, the averaged null energy condition, and the
Gao-Wald theorem.

A. Topological censorship

A wormhole36 is a geometrical connection between two
different asymptotically flat worlds [see Fig. 41(a)], or a
shortcut between two distant regions of a single asymptoti-
cally flat world; see Fig. 41(b). The two cases are closely
related. The existence of a wormhole of the second type means
that spacetime is not simply connected; by taking a cover of
spacetime, one can pass to a situation of the first type.
We recall that topologically a globally hyperbolic spacetime

M is simply M ¼ S ×R, where S is an initial value hyper-
surface and R parametrizes the time. Therefore, forM to have
a wormhole means simply that S has a wormhole.
The motivating example of topological censorship is the

analytically continued Schwarzschild solution; see Fig. 42. This
is a globally hyperbolic spacetime with two asymptotically flat
“ends,” labeled I and II in the figure. The initial value surfaceS is
actually quite similar to what is depicted in Fig. 41(a). The left
and right ends of S are, respectively, in the asymptotically flat
regions I and II; the interior part of S passes through the
wormhole. But as one can see from the Penrose diagram, a
causal signal from one asymptotically flat region cannot travel
through the wormhole to the other region. If one enters the
wormhole from the left, hoping to traverse it and to come out on
the right, one will instead end up at the black hole singularity.
Topological censorship (Friedman, Schleich, and Witt,

1993) says that in a spacetime that satisfies the null energy
condition (and the classical Einstein equations) this is the
general situation: there may be a wormhole in space, but an
observer cannot probe it, in the sense that it is not possible for
a causal signal to go through the wormhole and come out the
other side. In proving this, it suffices to consider a wormhole
that connects two distinct asymptotically flat worlds, as in
Fig. 41(a). The case of Fig. 41(b) can be reduced to this,
without affecting the classical null energy condition, by taking
a cover of spacetime.
Let M1 and M2 be two asymptotically flat ends of

spacetime. If it is possible for a causal signal to travel through

FIG. 40. W is the boundary of a component of the black hole set
(shaded) on some Cauchy hypersurface S. Such a W is a
codimension 2 spacelike submanifold of spacetime. If there is
a portion of W on which the null expansion θ of the horizon
generators is negative, then by pushingW outward slightly in that
region while remaining in S we get a new submanifold W0, still
spacelike and of codimension 2, that is partly outside of the black
hole set, and such that the part ofW0 that is outside the black hole
set still has θ < 0. The region betweenW and W0 is unshaded, as
it is not part of the black hole set.

36A similar discussion applies to a spacetime that is asymptotic to
anti–de Sitter space (Galloway et al., 2001).
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the wormhole from M1 to M2, then such a signal could
originate in the far past and at a great distance on M1, travel
through the wormhole, and propagate onM2 to an observer at
a great distance. To exploit this observation, we proceed as
follows.
The line element of M1 is asymptotic at infinity to the

Minkowski line element

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð47Þ

where dΩ2 is the line element of a ðD − 2Þ-sphere. LetW be a
sphere embedded inM1 by, say, r ¼ r0, t ¼ −r0 þ k, where k
is a constant and r0 is taken to be large. Thus,W is embedded
in M1 at a great distance from the wormhole and in the far
past, in such a way that the “advanced time” tþ r ¼ k
remains fixed. The purpose of this is to ensure that a signal
can be sent in fromW to arrive at the wormhole at a time of the
order of 1, independent of r0. By varying k, we can adjust
when the signal will arrive at the wormhole. We will see that

regardless of the choice of k, a signal from W cannot travel
through the wormhole.
In region M2, we take I to be the worldline of an observer

more or less at rest a great distance from the wormhole.37

If it is possible for a signal to propagate from M1 through
the wormhole and to emerge inM2, then it is possible for such
a signal to be emitted from W (perhaps with k chosen to be
sufficiently negative), travel into the interior of M1, pass
through the wormhole, and eventually emerge to be detected
in M2 by the observer traveling along I . If there is a causal
path that propagates in this way from W to I , then there is a
prompt causal path of this type, which arrives on I as soon as
possible. This prompt causal path is a future-going null
geodesic l, orthogonal to W and without focal points.
Given how W was defined, the future-going null geodesics

orthogonal to W propagate either “outward,” to larger r, or
“inward,” to smaller r. The outward-going null geodesics
simply propagate outward to r ¼ ∞ in the asymptotically flat
region. It is the inward-going null geodesics that might
propagate into the wormhole. However, the inward-going
null geodesics have an initially negative value of the null
expansion θ ¼ _A=A. Assuming the null energy condition,
Raychaudhuri’s equation implies that these inward-going null
geodesics reach focal points within a bounded value of their
affine parameters. As I can be arbitrarily far away in M2, it
follows that all of these inward-going null geodesics reach
focal points before reaching I . But this shows that there can
be no prompt causal path from W to I , and hence that there
can be no such causal path at all.

B. The averaged null energy condition

In our discussion of topological censorship, we have
assumed the null energy condition. This is a pointwise
condition on the stress tensor and was discussed in
Sec. V.D. The null energy condition is satisfied by reasonable
classical matter, but in quantum field theory it is not satisfied
by the expectation value of the quantum stress tensor. Thus,
the question arises of whether topological censorship is valid
in a quantum Universe.
It turns out that topological censorship is valid under a

weaker hypothesis known as the averaged null energy con-
dition, or ANEC.38 For a complete null geodesic l, with affine
parameter U that runs to infinity at both ends, the ANEC
asserts that

Z
l
dU TUU ≥ 0: ð48Þ

Here

(a) (b)

FIG. 41. Two types of wormhole: (a) a connection between two
different worlds, and (b) a shortcut between distant regions of one
world. In each case, what is depicted is a Cauchy hypersurface.

FIG. 42. Penrose diagram of the maximal analytic extension of a
Schwarzschild black hole. It contains two asymptotically flat
regions labeled I and II. They are spacelike separated and causal
communication between them is not possible. The spacetime is
globally hyperbolic, with an initial value surface S. It connects
the two asymptotically flat regions and has a wormhole topology,
similar to that of Fig. 41(a). LabeledHþ are the future horizons of
observers who remain at infinity in regions I or II; beyondHþ and
to its future is the black hole region (shaded). From the point of
view of the outside observer, there also are past horizons H−;
beyond H− and to its past is the white hole region (unshaded).
Shown is a radial null geodesic γ that originates at the point q at
past null infinity in the asymptotically flat region on the left. It
crosses S in the wormhole region, but it does not “traverse the
wormhole” and enter the asymptotically flat region on the right;
rather, it enters the black hole region and terminates on the future
singularity.

37One could introduce Penrose’s “conformal null infinity” and
take W to be a two-sphere in past null infinity on M1, while I could
be replaced by a null worldline in future null infinity on M2. That
gives a simple framework to make the following argument rigorous.
We will not enter into that degree of detail here.

38The use of integrated conditions such as the ANEC to prove
results in general relativity was introduced by Tipler (1978).
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TUU ¼ dxα

dU
dxβ

dU
Tαβ: ð49Þ

In the same notation, the null energy condition gives

TUU ≥ 0: ð50Þ

The ANEC is a strictly weaker condition.
For the applications that we give, one can think of the

ANEC as a statement about the stress tensor of a classical
spacetime: a certain integral is non-negative. However, the
ANEC is most often considered as a statement about quantum
field theory in a background spacetime. In that context, the
ANEC is taken to mean that the operator

R
l dUTUU is non-

negative, in the sense that its expectation value in any quantum
state Ψ is non-negative. With that understanding of what the
statement means, the ANEC is not true in general, even if the
null geodesic l is complete (meaning that its affine parameter
extends to infinity in both directions). For a simple counter-
example, consider the cylindrical spacetime of Eq. (5). We
earlier used this spacetime to illustrate the fact that a null
geodesic is not necessarily achronal. To get a counterexample
to the ANEC, consider a conformally invariant quantum field
theory in the cylindrical spacetime. The ground state of a
conformal field theory in this spacetime has a negative
Casimir energy. Moreover, by translation invariance, the
energy density in this state is a constant in spacetime. The
integrand in the ANEC integral (for any null geodesic l) is
therefore negative definite in this example, and the ANEC is
not satisfied.
It is believed that the ANEC may hold under two additional

conditions: the null geodesic in question should be achronal,
and the spacetime should be self-consistent, meaning roughly
that the Einstein equations are obeyed with a source given by
the expectation of the stress tensor (Wald and Yurtsever, 1991;
Penrose, Sorkin, and Woolgar, 1993; Graham and Olum,
2007). This has not been proved. One basic result is that the
ANEC holds for a geodesic in Minkowski space (Faulkner
et al., 2016; Hartman, Kundu, and Tadjini, 2017). There are
partial results for more general spacetimes (Kontou and
Olum, 2015).
For our purposes, what is interesting about the ANEC is

that it suffices for some of the applications of the classical
null energy condition, including topological censorship. In
Sec. VIII.B, we show that if l is a null geodesic that extends in
both directions to infinite values of its affine parameter, and if
the ANEC is satisfied for l as a strict inequalityZ

l
dU TUU > 0; ð51Þ

then a segment of l that is sufficiently extended in both
directions is not prompt. In the proof of topological censorship
in Sec. VII.A, the key was to consider a hypothetical prompt
null geodesic l between a sphereW that is extremely far away
in the asymptotically flat regionM1 and a timelike path I that
is extremely far away in the asymptotically flat region M2.
Such an l can be continued indefinitely in the past and future
in the two asymptotically flat regions, and its segment
connecting W to I can be extended arbitrarily in both

directions by movingW and I off to infinity in their respective
regions. Thus, if we know that the ANEC would hold with a
strict inequality, such an l cannot exist and topological
censorship holds for this spacetime.
What about the possibility that the ANEC would be

saturated for l, in the sense that
R
l dU TUU ¼ 0? Then we

can reason as follows. If M is a spacetime in which causal
communication is possible from one asymptotically flat region
to another, violating topological censorship, then after a
sufficiently small perturbation of M, causal communication
between the two regions is still possible, so topological
censorship is still violated. If the ANEC is saturated by a
complete null geodesic l ⊂ M, then after a suitable infini-
tesimal perturbation of M (for example, by adding a small
amount of positive energy nonrelativistic matter near one end
of l) we get a spacetime M0 on which the ANEC holds as a
strict inequality. Thus,M0 satisfies topological censorship, and
hence so does M.

C. The Gao-Wald theorem

For the next topic, one will need a basic familiarity with
the AdS=CFT correspondence, that is, the correspondence
between quantum gravity in an asymptotically anti–de Sitter
spacetime and conformal field theory (CFT) on the conformal
boundary of the spacetime [for an overview, see Aharony
et al. (2000)].
Let M be an asymptotically AdS spacetime, that is, a

spacetime that is asymptotic at spatial infinity to anti–de Sitter
space. By adding some points at spatial infinity, one can
construct a partial conformal compactification of M. The
points at infinity make up a Lorentz signature manifold N,
whose dimension is one fewer than the dimension of M, and
AdS=CFT duality says that a gravitational theory on M is
equivalent to some conformal field theory on N. The picture is
schematically indicated in Fig. 43(a).
The Gao-Wald theorem (Gao and Wald, 2000) says that,

assuming the null energy condition or, more generally,
assuming the ANEC, the AdS=CFT correspondence is com-
patible with causality. This means the following. In the
boundary CFT, an event q can influence an event p only if
there is a future-going causal path from q to p in N. But in the
bulk gravitational theory, q can influence p if there is a future-
going causal path between them in M. AdS=CFT duality
violates causality if it is possible to “take a shortcut through
the bulk,” that is, if a causal path from q through M can arrive
at a boundary point that could not be reached by a causal path
in the boundary. In more detail, if p can be reached from q by
a causal path in the boundary that is prompt among causal
paths in the boundary, then the duality violates causality if
there is a bulk causal path from q to a boundary point that is
strictly to the past of p; see Fig. 43(b).
In empty AdS spacetime, every null geodesic is prompt, and

a bulk null geodesic from q can arrive on the boundary
precisely at p, but no earlier. In other words, the causality
condition is precisely satisfied in empty AdS spacetime.
What happens if one perturbs away from empty AdS by

adding some matter or gravitational perturbations? The Gao-
Wald theorem says that, assuming the null energy condition
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(or, more generally, the ANEC) there is never a causality-
violating shortcut through the bulk.
If there is a causality-violating shortcut, then there is one

that is prompt in the sense that on some chosen timelike
worldline I through p, it arrives as soon as possible at some
point p0 ∈ I that is strictly to the past of p. This prompt
shortcut will be a null geodesic l without focal points.
To show that this situation cannot occur, we need to know

that the affine parameter of a null geodesic diverges as it
reaches the conformal boundary of an asymptotically AdS
spacetime. This happens even though the time, as measured on
the boundary, does not diverge. In suitable coordinates, the
line element of an asymptotically AdS spacetime looks near
the conformal boundary like

ds2 ¼ R2

z2
ð−dt2 þ dz2 þ dx⃗2Þ; ð52Þ

where R is the radius of curvature; see Appendix A. The
spacetime is the region z > 0; the conformal boundary is at
z ¼ 0. A typical null geodesic is

z ¼ −t; x⃗ ¼ 0; t ≤ 0; ð53Þ

and reaches the boundary at z ¼ 0 at a finite value of t,
namely, t ¼ 0. However, the affine parameter of this geodesic
diverges as t → 0−. To see this, one observes that the equation
D2xμ=Dλ2 ¼ 0 for a geodesic with affine parameter λ gives in
this case

d
dλ

�
1

z2
dt
dλ

�
¼ 0; ð54Þ

so

1

z2
dt
dλ

¼ w; ð55Þ

with a constant w. This constant cannot be zero since t is not
constant in the geodesic (53). Setting z ¼ −t, we get dt=t2 ¼
wdλ so that up to an additive constant λ ¼ −1=wt. Thus, λ
diverges as t → 0−.
Now we return to our hypothetical causality-violating

prompt geodesic l, a shortcut through the bulk from q to a
point p0 that is strictly to the past of p. If the ANEC is satisfied
along l with a strict inequalityZ

l
dU TUU > 0; ð56Þ

then since the affine parameter of l diverges at both ends,
the analysis in Sec. VIII will show that l cannot be prompt,
and therefore the hypothetical causality-violating shortcut l
cannot exist.
As in the discussion of topological censorship, we can deal

as follows with the possibility that the ANEC might be
saturated: Z

l
dU TUU ¼ 0: ð57Þ

We perturb the spacetime slightly, adding an infinitesimal
amount of matter or slightly changing the quantum state so
that the ANEC is satisfied with a strict inequality. For a
suitably small perturbation, l arrives on the conformal
boundary so close to p0 that it is still strictly to the past
of p. Then we get the same contradiction as before.
Of course, as a special case of this, we could have deduced

the Gao-Wald theorem from the classical null energy con-
dition TUU ≥ 0 rather than the ANEC.

VIII. ANOTHER LOOK AT PROMPTNESS

A. Overview

In Secs. IVand V, we studied a geodesic l that originates at
a specified point q or a suitable specified submanifold W, and
we investigated the behavior when l is continued into the
future. One of the main ideas was that l, when continued past
a focal point, is not proper time maximizing (in the timelike
case) or prompt (in the null case). The goals of the present
section are to justify these claims in a more precise way for the
case of null geodesics,39 to explain a claim about the ANEC
that is made in Sec. VII.B, and to discuss complete achronal
null geodesics.
We explore in Secs. VIII.B and VIII.C the causal paths that

originate at a specified point q. In Sec. VIII.D, we explore in a
similar way the causal paths that originate on a codimension 2
spacelike submanifold W. In Sec. VIII.E, we tie things
together by rederiving the Raychaudhuri equation, which is
the main tool in Sec. V, from a “Schrödinger” equation

(a) (b)

FIG. 43. (a) According to the AdS=CFT correspondence, a
quantum gravity theory in the anti–de Sitter spacetime M is
equivalent to an ordinary quantum field theory on a spacetime N
of one dimension fewer that is the conformal boundary of M.
(b) In the boundary theory, an event at a point q ∈ N can
influence an event at p ∈ N if a future-going causal curve in N
can propagate from q to p. Causality will be violated if it is
possible to take a shortcut through the bulk, in the sense that a
future-going causal curve in M can propagate from q to a point
r ∈ N that cannot be reached from q by a causal path in N. The
curve qp is a causal curve in the boundary while qr is a
hypothetical causality-violating shortcut in the bulk. The Gao-
Wald theorem asserts that such causality violation does not occur.

39We could study timelike geodesics in a similar (and somewhat
simpler) way, but the ideas we describe give more value added in the
case of null geodesics.
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(essentially the equation of geodesic deviation) that is the
main tool in this analysis. In Sec. VIII.F, we discuss complete
achronal null geodesics.

B. Causal deformations and a necessary condition for
promptness

Let l be a null geodesic. We have essentially already
described in Fig. 27 of Sec. V.A a necessary condition for a
segment qp of l to be prompt: qp will fail to be prompt if a
proper subsegment rr0 of qp can be deformed, at least to first
order, to a nearby null geodesic γ from r to r0 (in which case
we say that r and r0 are conjugate points along l). For then, by
replacing the rr0 segment of l with γ, we get a causal path
from q to p that is not a null geodesic, so as usual it can be
modified to make a causal path from q that arrives in the
past of p. The reasoning still applies if q ¼ r or p ¼ r0 (but
not both).
In this section, we justify that reasoning in a more precise

way and also deduce some further properties. It is convenient
to use the fact that along a null geodesic l it is possible to pick
coordinates U, V, XA, A ¼ 1;…;D − 2 such that l lies at
V ¼ XA ¼ 0, and along l the metric coincides with the
Minkowski space metric up to quadratic order in V and XA:

ds2 ¼ −2dUdV þ
XD−2
A¼1

ðdXAÞ2 þOðV2; VXA; XAXBÞ: ð58Þ

Such coordinates are called Fermi normal coordinates. The
reason that such coordinates exist is as follows. In Riemannian
geometry, there is no invariant information in the metric tensor
and its first derivative at a given point; all invariant local
information is contained in the Riemann tensor, which
depends on the second derivative of the metric, and covariant
derivatives of the Riemann tensor, which depend on higher
derivatives. Similarly, there is no invariant information in the
metric tensor and its first derivative along a given geodesic l
beyond whether l is timelike, spacelike, or null. Hence, the
metric can be put in standard form along l up to second order.
The procedure to do so was described for spacelike or timelike
geodesics by Manasse and Misner (1963) and extended to null
geodesics by Blau, Frank, and Weiss (2006). In Fermi normal
coordinates, the geodesic equation D2Xμ=Dλ2 ¼ 0 is satisfied
with V ¼ XA ¼ 0, U ¼ λ. In other words, for an affine
parameter for the geodesic l at V ¼ XA ¼ 0, we can simply
take λ ¼ U.
Since the first derivative of the metric vanishes along l in

Fermi normal coordinates, the Riemann tensor along l can be
expressed in a relatively simple way in terms of second
derivatives of the metric tensor. The special case of this that
we will need is that along l

RAUBU ¼ −
1

2

∂2gUU

∂XA∂XB : ð59Þ

In verifying this, one uses the fact that the first derivatives of
the metric vanish along l, and also that ∂U∂AgBU¼∂2

UgAB¼0

along l (since ∂AgBU ¼ ∂UgAB ¼ 0 along l for all U).

We aim to find a useful condition that will ensure that l is
not prompt as a path from the point q with λ ¼ λ0 to the point
p with λ ¼ λ1 for some choices of λ0 and λ1. For this aim,
we can consider deformations of l that preserve the fact that it
is a causal curve that originates at the point q but do not
necessarily satisfy the geodesic equation. (In Sec. VIII.C, we
will see that, in a sense, the optimal deformation actually does
satisfy the geodesic equation.) The condition for a curve to be
causal is simply that

−gμν
dXμ

dλ
dXν

dλ
≥ 0 ð60Þ

for all λ. In deforming l, there is no point in modifying the
relation λ ¼ U since such a modification would amount to
simply reparametrizing l. But we do want to modify the
relations V ¼ XA ¼ 0.
One idea might be to expand V ¼ εvðλÞ þOðε2Þ,

XA ¼ εxAðλÞ þOðε2Þ, with a small parameter ε, which we
may as well assume to be positive. However, if we proceed in
this way, then to first order in ε the causality condition (60)
depends only on v and simply says that

dv
dλ

≥ 0 ð61Þ

so that V is an increasing function of λ. But in this case, the
deformed curve l0, if it starts out on l at λ ¼ λ0, enters the
future of l as soon as dv=dλ > 0. The most prompt defor-
mation in order ε is simply the one for which dv=dλ ¼ 0,
which together with the initial condition vðλ0Þ ¼ 0 implies
that vðλÞ is identically 0.
We get a more interesting test of whether l is prompt if we

set V ¼ ε2vðλÞ þOðε3Þ, XA ¼ εxAðλÞ þOðε2Þ, so that XA is
perturbed in linear order, but V is perturbed only in quadratic
order. With this choice, the causality condition (60) is trivial
up to order ε2, and in that order it gives

2
dv
dλ

−
XD−2
A¼1

�
dxA

dλ

�
2

þ
XD−2
A;B¼1

xAxBRAUBU ≥ 0: ð62Þ

[In expanding the causality condition to second order, one has
to take the second derivative of gUU; evaluating this via
Eq. (59) leads to the curvature term in Eq. (62). Terms
involving the first derivative of gUU do not contribute because
this vanishes along l in Fermi normal coordinates.] For
example, consider a perturbed curve l0 defined by a pertur-
bation such that xA vanishes outside the interval I defined by
λ0 ≤ λ ≤ λ1. Moreover, suppose that vðλ0Þ ¼ 0, so l0 and l
coincide at λ ¼ λ0. Then integrating Eq. (62), we get

vðλ1Þ ≥ 1
2
JðxAÞ; ð63Þ

where

JðxAÞ ¼
Z
I
dλ

�XD−2
A¼1

�
dxA

dλ

�
2

−
XD−2
A;B¼1

xAxBRAUBU

�
: ð64Þ

Now to get a useful criterion under which l is not prompt,
let p be the point on l with U ¼ λ1, V ¼ XA ¼ 0. Suppose
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that xAðλ1Þ ¼ 0 and vðλ1Þ < 0; then at λ ¼ λ1 l0 reaches
the point p0 with coordinates U ¼ λ1, XA ¼ 0, and
V ¼ −ε2jvðλ1Þj < 0. The point p0 is on the past light cone
of p. If such a causal path l0 from q to p0 exists, then for λ
slightly less than λ1 l0 is inside the past light cone of p. Thus,
in this case l is not prompt as a path from q to p.
In short, l is not prompt if it can be deformed to a causal

curve l0 that coincides with l at λ ¼ λ0 (and therefore has
xA ¼ 0 there) and at λ ¼ λ1 satisfies xA ¼ 0, v < 0. In other
words, l is definitely not prompt if we can have xA ¼ 0
at both ends of the interval and vðλ0Þ ¼ 0, vðλ1Þ < 0. Since
the lower bound on vðλ1Þ associated with causality is
vðλ1Þ − vðλ0Þ ≥ JðxAÞ=2, we can arrange for this if and only
if it is possible for the functional JðxAÞ to be negative for a
function xA that vanishes at both endpoints of the interval.
To state this differently, for l to be prompt on a given

interval I, the functional JðxAÞ, evaluated on functions that
vanish at the endpoints of I, must be non-negative. The
condition for a functional such as JðxAÞ to be non-negative is
of a type that may be familiar from nonrelativistic quantum
mechanics. Think of xA as the components of a column vector
that represents a quantum state Ψ. Define the “Hamiltonian”

H ¼ −δAB
d2

dλ2
þ PAB ð65Þ

with the matrix-valued potential

PAB ¼ −RAUBU: ð66Þ

Then

JðxAÞ ¼ hΨjHjΨi; ð67Þ

and the condition for JðxAÞ to be non-negative is simply that
the operator H, acting on wave functions that vanish at the
endpoints of the interval I, is non-negative. The condition for
xA to vanish at each end of the interval represents what we will
call Dirichlet boundary conditions.
The ground state energy of H on a sufficiently small

interval with Dirichlet boundary conditions is strictly positive
because the “kinetic energy” −δABðd2=dλ2Þ, which is positive,
dominates over the “potential energy” PAB. The ground state
energy on an interval ½λ0; λ1� is monotonically decreasing as
the interval is enlarged because the ground state on one
interval can be used as a variational trial wave function on a
larger interval. Thus, there will be a zero mode on some
interval if and only if the ground state energy is negative on a
sufficiently large interval. A zero mode is related to a
deformation that satisfies the geodesic equation, as we will
discuss in Sec. VIII.C. Verifying this will give a more precise
demonstration of the relationship between focal points and
promptness that we presented in Sec. V.
Now we specialize to the case that l is a complete null

geodesic, one whose affine parameter is unbounded in both
directions. The ground state energy is then negative on an
interval that is extended sufficiently in both directions if and
only if it is negative on the entire real line. One way to prove
that the ground state energy is negative on the entire real line is

to find a trial wave function xAðλÞ in which the expectation
value ofH is negative. Suppose that there is a constant cA such
that for xA ¼ cA the potential energy integrated over all of l is
negative:

0 >
Z
l
dλcAPABcB ¼ −

Z
l
dλcAcBRAUBU: ð68Þ

If we naively use cA as a variational wave function on the
entire line, then the kinetic energy vanishes, and Eq. (68) says
that the potential energy is negative. This suggests that the
ground state energy is negative on the entire line and therefore
also on a sufficiently large interval.
We have to be a little more careful because the constant cA

is not square integrable and thus cannot be used as a
variational wave function. However, we can get around this
by using a variational wave function xAðλÞ ¼ cA expð−αλ2Þ
for sufficiently small positive α. The kinetic energy vanishes
(as α1=2) for α → 0, while the limit of the potential energy for
α → 0 is simply40 the original integral −

R
l dλc

AcBRAUBU.
Given this, if the inequality (68) is satisfied for some constant
cA, it follows that the ground state energy is negative on a
sufficiently large interval.
How can we find a suitable cA? If we average the inequal-

ity (68) over all possible choices of cA, we get

0 > −
Z
l
dURUU; ð69Þ

where since λ ¼ U we write the integration variable as U.
If this condition is satisfied, then certainly Eq. (68) must be
satisfied for some cA, and again the ground state energy is
negative on a sufficiently large interval.
But via Einstein’s equation RUU ¼ 8πGTUU, Eq. (69) is

equivalent to Z
l
dU TUU > 0; ð70Þ

which is the averaged null energy condition or the ANEC with
a strict inequality. Thus, if the ANEC holds for l with a strict
inequality, then the ground state energy is negative on a
sufficiently large interval and l is not achronal.

C. Interpretation in terms of geodesic deviation

In Sec. VIII.B, we found a necessary condition for l to be
prompt: the operator H cannot have a zero mode on any
interval I that is properly contained in l. On the other hand, in
Sec. VIII.A we claimed as a necessary condition for prompt-
ness that the segment I of l cannot be displaced to first order
to a nearby null geodesic segment between the same two
endpoints. The relation between the two statements is simply
that null geodesic displacements of l correspond to zero

40We assume that RAUBU vanishes sufficiently rapidly for
U → �∞ to make the integral converge and to justify this statement.
However, see Ciccone and Ehrlich (1980) and Borde (1987) for a
more careful analysis.
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modes of H. To explain this, we describe the equation that
governs a linearized perturbation of a geodesic; this is often
called the equation of geodesic deviation, and its solutions are
called Jacobi fields. We later see that perturbations of a null
geodesic on a given interval, satisfying the geodesic equation
to first order in the perturbation, are in natural correspondence
with zero modes of H.
The path XμðλÞ is a null geodesic with affine parameter λ if

0 ¼ D2Xμ

Dλ2
¼ d2Xμ

dλ2
þ Γμ

αβ

dXα

dλ
dXβ

dλ
ð71Þ

and

0 ¼ gμν
dXμ

dλ
dXν

dλ
: ð72Þ

(For the moment, we write these equations in general without
specializing to Fermi normal coordinates.) We describe a
perturbation of the null geodesic by Xμ

εðλÞ ¼ XμðλÞþ
εxμðλÞ þOðε2Þ, where ε is a small parameter. For the
perturbation to describe a null geodesic up to first order
in ε, it should satisfy the linearized equations

0 ¼ D2xμ

Dλ2
þ Rμ

ναβ
dXν

dλ
dXβ

dλ
xα ð73Þ

and

0 ¼ gμν
Dxμ

Dλ

dXν

dλ
: ð74Þ

These equations always have uninteresting solutions that
reflect the possibility of redefining the affine parameter of
the original geodesic by λ → aλþ b, with real constants a
and b. Concretely, these solutions take the form

xμ ¼ α
dXμ

dλ
þ βλ

dXμ

dλ
; α; β ∈ R: ð75Þ

Such solutions just describe a reparametrization of the original
geodesic, not a displacement of it. We are, of course,
interested in nontrivial solutions that actually describe
displacements.
To get a null geodesic displacement of the segment I, we

want a solution of the linearized equations (73) and (74) on
that segment that vanishes at the ends of the segment. If the
endpoints of the segment are at λ ¼ λ0 and λ ¼ λ1, we want to
solve the linearized equations on the interval ½λ0; λ1� with the
boundary condition

xμðλ0Þ ¼ xμðλ1Þ ¼ 0: ð76Þ

The trivial solutions (75) do not satisfy the boundary con-
dition (76), so this boundary condition implicitly includes a
fixing of the reparametrization invariance that leads to the
existence of the trivial solutions. Concretely, the reparamet-
rization invariance is fixed by specifying that after the
perturbation the values of the affine parameter at the endpoints
of the interval are unchanged.

From Eqs. (74) and (71), we immediately deduce that

0 ¼ d
dλ

�
gμνxμ

dXν

dλ

�
: ð77Þ

Therefore, gμνxμðdXν=dλÞ is a conserved quantity along l.
This conserved quantity must vanish since the boundary
condition (76) says that it vanishes at the endpoints. Thus,
we are interested in solutions of the linearized equations with

0 ¼ gμνxμ
dXν

dλ
: ð78Þ

Now we specialize to the Fermi normal coordinates U, V,
and XA, with l being the usual geodesic U ¼ λ,
and V ¼ XA ¼ 0. We perturb this to U ¼ λþ εuðλÞ,
V ¼ εvðλÞ, and XA ¼ εxAðλÞ and work to first order in ε.
(Unlike in Sec. VIII.B, we cannot set u ¼ 0. The reason is that
now we are asking for the perturbation to satisfy the geodesic
equation with affine parameter λ, while in Sec. VIII.B, there
was no such requirement.) The condition (78) simply tells us
that v ¼ 0. Moreover, in Fermi normal coordinates, since
ΓA
μν ¼ 0 at v ¼ xA ¼ 0, Eq. (73) reduces to

d2xA

dλ2
þ RA

UBUxB ¼ 0 ð79Þ

and

d2u
dλ2

þ RU
UBUxB ¼ 0: ð80Þ

Equation (79) is the familiar equation HΨ ¼ 0, with the same
Hamiltonian H as in Sec. VIII.B. On the other hand, no matter
what xA may be, there is a unique solution of Eq. (80) for u
that obeys the boundary condition uðλ0Þ ¼ uðλ1Þ ¼ 0. To find
this solution, pick any solution of Eq. (80) and then add linear
combinations of the trivial solutions (75) of the homogeneous
equation d2u=dλ2 ¼ 0 to satisfy the boundary conditions.
Thus, linearized null geodesic deformations on a segment I

are in a natural one-to-one correspondence with zero modes
of H on that segment. Hence, the criterion for promptness in
terms of linearized null geodesic deformations is equivalent to
the criterion in terms of the spectrum of H.
Since solutions of the linear equation (79) are also known as

Jacobi fields, a solution on an interval I is the same as a Jacobi
field that vanishes at the endpoints of the interval.

D. Orthogonal null geodesics

Thus far in this section we have considered a single null
geodesic l. However, in Sec. V and in subsequent applica-
tions, it was important to also consider a family of null
geodesics that are orthogonal to a codimension 2 spacelike
surface W. Here we adapt the present discussion to this case.
Without any essential loss of generality, we can work in

Fermi normal coordinates centered on l and chosen so that l
intersects W at U ¼ 0, while W is defined near l by
U ¼ V ¼ 0, modulo terms of quadratic order in the normal
coordinates XA. Thus,
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V ¼ fðXAÞ; U ¼ hðXAÞ; ð81Þ

where fðXAÞ¼ f2ðXAÞþOðX3Þ, hðXAÞ ¼ h2ðXAÞ þOðX3Þ,
and the functions f2ðXAÞ and h2ðXAÞ are homogeneous and
quadratic. Actually, we later see that h2 plays no role and only
f2 is important.
For some λ1 > 0, we let p be the point V ¼ XA ¼ 0,

U ¼ λ1. Thus, we consider l, restricted to the interval
I ¼ ½0; λ1�, a causal path from W to p. We want to know
whether this path is prompt. To find a necessary condition for
promptness, we consider a small deformation of l to a causal
path l0 from W.
We make the same expansion as before, defining l0 by

UðλÞ ¼ λ, VðλÞ ¼ ε2vðλÞ, and XAðλÞ ¼ εxAðλÞ modulo
higher-order terms. We define

λ0 ¼ ε2h2ðxAÞ ð82Þ

and require

vðλ0Þ ¼ f2(xAðλ0Þ): ð83Þ

We consider l0 to be defined on the interval ½λ0; λ1�. The
purpose of these conditions is to ensure that l0 starts on W at
the endpoint λ ¼ λ0 of the interval. (We can use f2 and h2
instead of f and h because we work only to order ε2.) We do
not put any constraints on xAðλ0Þ since we want to allow l0 to
originate at a point on W other than l. Suppose that it is
possible to arrange so that l0 is a causal curve, xAðλ1Þ ¼ 0, and
vðλ1Þ < 0. Then the λ ¼ λ1 endpoint of l0 is the point p0 given
by U ¼ λ1, V ¼ −ε2jvðλ1Þj, and XA ¼ 0. This point is on the
past light cone of p. The existence of a causal curve l0 fromW
to a point on this past light cone implies, just as in Sec. VIII.B,
that l, a causal path from W to p, is not prompt.
Though we do not constrain l0 to be orthogonal toW, it will

be useful later to know what the condition of orthogonality
would be. A vector field tangent to W has to preserve the
conditions (81), so it takes the form

∂
∂XA þ ∂fðXAÞ

∂XA

∂
∂V þ ∂hðXAÞ

∂XA

∂
∂U

¼ ∂
∂XA þ ε

∂f2ðxAÞ
∂xA

∂
∂V

þ ε
∂h2ðxAÞ
∂xA

∂
∂U þOðε2Þ: ð84Þ

The tangent vector to l0 at λ ¼ λ1 is

∂
∂U þ ε2

dvðλÞ
dλ

∂
∂V þ ε

dxA

dλ
∂

∂XA : ð85Þ

The condition of orthogonality in order ε is

�
dxA

dλ
−
∂f2ðxAÞ
∂xA

�����
λ¼λ0

¼ 0: ð86Þ

Much of the derivation in Sec. VIII.B goes through without
change. In particular, the causality condition is as before

2
dv
dλ

−
XD−2
A¼1

�
dxA

dλ

�
2

þ
XD−2
A;B¼1

xAxBRAUBU ≥ 0: ð87Þ

Integrating it with vðλ0Þ ¼ f2, we get

vðλ1Þ ≥ 1
2
J̃ðxAÞ; ð88Þ

where now

J̃ðxAÞ ¼ 2f2½xAðλ0Þ�

þ
Z

λ1

λ0

dλ

�XD−2
A¼1

�
dxA

dλ

�
2

−
XD−2
A;B¼1

xAxBRAUBU

�
: ð89Þ

Just as before, l fails to be prompt as a path fromW to p if it
is possible to have J̃ðxAÞ < 0 along with xAðλ1Þ ¼ 0. The
strategy to determine whether J̃ðxAÞ can be negative is
the same as before. A key is that if the xA are viewed as
the components of a “quantum state” Ψ, then as before (after
imposing the right boundary condition, as we explain in a
moment)

J̃ðxAÞ ¼ hΨjHjΨi; ð90Þ

where H is the Hamiltonian

H ¼ −δAB
d2

dλ2
þ PAB; PAB ¼ −RAUBU: ð91Þ

The only novelty in the derivation of this statement is that we
have to be careful with surface terms at λ ¼ λ0. There is an
explicit surface term f2(xAðλ0Þ) in Eq. (93). In addition, when
one integrates by parts to relate J̃ðxAÞ to the expectation value
of H, one picks up an additional surface term. In our previous
discussion, xA satisfied Dirichlet boundary conditions on the
interval I, that is, it vanished at both ends. This being so, there
was no problem in the integration by parts. In our present
discussion, xA still satisfies Dirichlet boundary conditions at
one endpoint λ ¼ λ1, but we do not want to constrain it in that
way at the other end. To make Eq. (90) true, we need to
impose on xA a boundary condition at λ ¼ λ0 that will make
the surface terms vanish. The condition we need is

�
2f2ðxAÞ −

X
A
xA

dxA

dλ

�����
λ¼λ0

¼ 0: ð92Þ

Since f2ðxAÞ is homogeneous and quadratic in the xA, this
condition follows from Eq. (86). In other words, we can take
the boundary condition to be that l0 is orthogonal to W at the
point λ ¼ λ0 where they meet. We can think of the boundary
condition at λ ¼ λ0 as a Neumann boundary condition, while
at λ ¼ λ1 l0 satisfies a Dirichlet boundary condition.
At this point, since λ0 is of order ε2 and this is the only place

that ε appears in the definition of J̃ðxAÞ, we can set λ0 ¼ 0 and
work on the original interval I ¼ ½0; λ1� with
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J̃ðxAÞ ¼ f2½xAð0Þ�

þ
Z
I
dλ

�XD−2
A¼1

�
dxA

dλ

�
2

−
XD−2
A;B¼1

xAxBRAUBU

�
: ð93Þ

Likewise, in Eq. (90) we consider H to be defined on that
interval. The point here is that if J̃ðxAÞ can be negative with
mixed Neumann and Dirichlet boundary conditions on the full
interval ½0; λ1�, then the same is true on the interval ½λ0; λ1� if ε
is sufficiently small.
With mixed Neumann and Dirichlet boundary conditions at

the left and right endpoints of the interval I ¼ ½0; λ1�, the
operator H is self-adjoint and the identity (90) is satisfied for
every eigenfunction ofH. If the ground state energy ofH with
mixed Neumann-Dirichlet boundary conditions is negative,
then the ground state wave function gives an example of a
perturbation xAðλÞ satisfying the appropriate boundary con-
ditions and with J̃ðxAÞ < 0, showing that l is not prompt as a
path fromW to p. Conversely, though we do not use this, if the
spectrum ofH is non-negative, then it can be shown that J̃ðxAÞ
is non-negative for perturbations satisfying Dirichlet condi-
tions at λ ¼ λ1 [and without assuming any particular boundary
condition on xAð0Þ].
Just as in Sec. VIII.B, on a sufficiently small interval, the

operator H with mixed Neumann-Dirichlet boundary con-
ditions has positive ground state energy. Moreover, the ground
state energy of H on an interval ½0; λ1� is monotonically
decreasing as a function of λ1 since the ground state on one
interval can be used as a variational wave function on a larger
interval. Therefore, the ground state energy is negative on a
sufficiently large interval if and only if there is some λ1 such
that the ground state energy on the interval ½0; λ1� vanishes. If
there is such a λ1, then for every λ2 > λ1 the ground state
energy is negative on the interval ½0; λ2� and l is not prompt on
that interval.
Finally, the argument of Sec. VIII.C carries over without

change for the case of mixed Neumann-Dirichlet boundary
conditions and shows that a zero mode of H on an interval
½0; λ1� corresponds to a first-order deformation of l as a null
geodesic fromW to p that is orthogonal toW. In other words,
the existence of such a zero mode is equivalent, in the
language of Sec. V.B, to p being a focal point of the
orthogonal null geodesics from W. In Sec. V.B, we claimed
that when continued past such a focal point, an orthogonal null
geodesic is no longer prompt. From our present standpoint,
this is so because the ground state energy of H becomes
negative.

E. The Raychaudhuri equation and geodesic deviation

In Sec. V, we used Raychaudhuri’s equation as a way to
predict the occurrence of focal points of null geodesics that are
orthogonal to a given codimension 2 spacelike surface W. In
this section, we have done the same using the equation of
geodesic deviation, which reduces to a Schrödinger-like
equation. This second treatment is more elaborate but gives
more detailed information. Here we explain how the
Raychaudhuri equation can be recovered from the more
complete treatment.

In doing this, we make a small generalization of our
previous discussion: we consider null geodesics that originate
at a given point q as well as null geodesics that are orthogonal
to a given surface W. [The two cases can be unified in the
language of “twist-free null congruences,” as explained by
Wald (1984); alternatively, the first case can be put in the
language of the second by definingW as a section of the future
light cone of q.]
As before, we use Fermi normal coordinates U, V, XA,

A ¼ 1;…;D − 2, along a geodesic l that is defined by
V ¼ XA ¼ 0. We consider null geodesics that are constrained
either to originate from the point q with U ¼ V ¼ XA ¼ 0 or
to be orthogonal to a specified codimension 2 submanifold W
defined by V ¼ fðXAÞ, U ¼ hðXAÞ (where f, h, and their first
derivatives vanish at XA ¼ 0). We use the affine parameter
λ ¼ U, which vanishes at q.
It will suffice to look at perturbations of l to first order. This

means that we can set V ¼ 0, XA ¼ εxA and set to 0 what is
called λ0 in Sec. VIII.D.
For i ¼ 1;…;D − 2, there is a unique solution of

d2

dλ2
xA þ RA

UBUxB ¼ 0 ð94Þ

on the half line λ ≥ 0 provided that we impose suitable initial
conditions. To study null geodesics that are constrained to
originate at q, we choose the initial conditions

xAð0Þ ¼ 0;
dxA

dλ

����
λ¼0

¼ δAi ; ð95Þ

for some i ∈ f1; 2;…;D − 2g. For null geodesics that are
constrained to originate on and be orthogonal toW, we choose
the initial conditions

xAð0Þ ¼ δAi ;

�
dxA

dλ
−
∂f2ðxAÞ
∂xA

�����
λ¼0

¼ 0: ð96Þ

The derivation proceeds in much the same way in the
two cases.
We denote the solution that satisfies the given initial

condition as EA
iðλÞ. Thus, EA

iðλÞ is a ðD − 2Þ × ðD − 2Þ
matrix and

EA
ið0Þ ¼ 0;

dEA
i

dλ

����
λ¼0

¼ δAi ð97Þ

in the first case or

EA
ið0Þ ¼ δAi ;

�
dEA

i

dλ
−
∂f2ðxAÞ
∂xA

����
xA¼EA

i

�����
λ¼0

¼ 0 ð98Þ

in the second case. Equation (94) implies that

d2

dλ2
EA

i þ RA
UBUEB

i ¼ 0: ð99Þ

Multiplying on the right by the inverse matrix ðE−1ÞiC, which
satisfies EB

iðE−1ÞiC ¼ δBC, we get
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�
d2

dλ2
EA

i

�
ðE−1ÞiC þ RA

UCU ¼ 0: ð100Þ

Taking the trace gives

Tr
d2E
dλ2

E−1 þ RUU ¼ 0: ð101Þ

Equivalently,

d
dλ

�
Tr

dE
dλ

E−1
�
þ Tr

��
dE
dλ

E−1
�

2
�
þ RUU ¼ 0: ð102Þ

This is actually equivalent to Raychaudhuri’s equation. To
explain this, we first note that the area element of a little
bundle of null geodesics emanating from q or of orthogonal
null geodesics emanating from W is

A ¼ det E: ð103Þ

Thus, the null expansion is

θ ¼ 1

A
dA
dλ

¼ Tr
dE
dλ

E−1: ð104Þ

The Schrödinger equation (99) implies that

0 ¼ d
dλ

�
EA

i
dEA

j

dλ
− EA

j
dEA

i

dλ

�
; ð105Þ

where EA
iðdEA

j=dλÞ − EA
jðdEA

i=dλÞ is called the
Wronskian. The initial conditions (97) or (98) imply that
the Wronskian vanishes at λ ¼ 0, and therefore this is true for
all λ. This vanishing Wronskian can be written as

EtrE0 − ðEtrÞ0E ¼ 0; ð106Þ

where Etr is the transpose of the matrix E and the prime
represents d=dλ. Multiplying by ðEtrÞ−1 on the left and E−1 on
the right, we get

E0E−1 − ðEtrÞ−1ðEtrÞ0 ¼ 0: ð107Þ

This indicates that the matrix E0E−1 is symmetric.
Because E0E−1 is symmetric and its trace is θ, we have

E0E−1 ¼ 1

D − 2
θ þ σ; ð108Þ

where σ is symmetric and traceless. Equation (102) now
becomes

dθ
dλ

þ θ2

D − 2
þ Tr σ2 þ RUU ¼ 0; ð109Þ

and this, after imposing the Einstein equation
RUU ¼ 8πGTUU, is the null Raychaudhuri equation (39).
From the traceless part of Eq. (100), one can extract an

equation that governs the evolution of σ:

dσAB
dλ

þ 2

D − 2
θσAB þ σ2AB þWAUBU ¼ 0: ð110Þ

Here W is the Weyl tensor, the traceless part of the Riemann
tensor WAUBU ¼ RAUBU − δABRUU=ðD − 2Þ. [In deriving
Eq. (110), it helps to observe that E00E−1 ¼ ðE0E−1Þ0þ
ðE0E−1Þ2.] We soon will see why this result, which can also
be obtained by directly computing RAUBU in the metric (32), is
useful.
The matrix-valued equation (99) also has solutions (with

different initial conditions) for which E0E−1 is not symmetric.
In general, the antisymmetric part of E0E−1 is called the twist,
and a solution for which E0E−1 is symmetric is said to be
twist-free. The derivation of Raychaudhuri’s equation (109)
and of the evolution equation (110) for σ is valid for any twist-
free solution, that is, any solution whose Wronskian vanishes.

F. Complete achronal null geodesics

Finally, we discuss what happens if we assume the classical
null energy condition, a pointwise condition TUU ≥ 0, and not
just its integrated version.
Unless TUU vanishes identically along l, the inequality (70)

is satisfied and implies that l is not achronal. In the presence
of classical fields that satisfy the null energy condition, it is
special for TUU to vanish identically along a null geodesic, so
it is exceptional for a complete null geodesic to be achronal.
But even in pure gravity complete achronal null geodesics

are highly nongeneric. In the language of Hawking and
Penrose, the generic condition for a null geodesic l asserts
that RAUBU is not identically zero along l. As Hawking and
Penrose (1970) originally argued, a complete null geodesic
that satisfies the generic condition is never achronal. For the
proof of this, first observe that in view of the evolution
equation (110) the generic condition implies that σ cannot
vanish identically along l. The claimed result will be obtained
by using this fact in conjunction with Raychaudhuri’s
equation.
Consider the matrix-valued solution EðλÞ of Eq. (99) of

geodesic deviation, with the initial conditions

EA
iðλ0Þ ¼ 0;

dEA
i

dλ

����
λ¼λ0

¼ δAi : ð111Þ

Here λ0 is a constant that we eventually take to be extremely
negative.
If RAUBU ¼ 0, the exact solution for EA

i ðλÞ is

EA
i ðλÞ ¼ δAi ðλ − λ0Þ: ð112Þ

This leads to

θðλÞ ¼ TrE0E−1 ¼ D − 2

λ − λ0
; ð113Þ

as well as σ ¼ 0. Thus, θðλÞ is positive for all λ > λ0, but it
becomes extremely small for large λ. More to the point, θðλÞ is
extremely small for any given λ if λ0 is taken to be extremely
negative.
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In general, the initial conditions (112) for EA
i correspond to

an initial behavior of θ:

θ ∼
D − 2

λ − λ0
; λ − λ0 → 0þ: ð114Þ

In particular,

1

θ

����
λ¼λ0

¼ 0: ð115Þ

We can write Raychaudhuri’s equation in the form

d
dλ

1

θ
¼ 1

D − 2
þ Tr σ2 þ RUU

θ2
: ð116Þ

Integrating this and assuming that RUU ≥ 0, we find in general
that 1=θ ≥ ðλ − λ0Þ=ðD − 2Þ, and therefore (as long as θ > 0)

θ ≤
D − 2

λ − λ0
: ð117Þ

We want to prove that θðλÞ becomes negative for some
λ > λ0. In the evolution equation for σ, we have the initial
condition σ ¼ 0 at λ ¼ λ0; moreover, the bound (117) means
that the θσ term in the equation is not important if λ0 is
sufficiently negative. In any region with WAUBU ≠ 0, σ is
nonzero. Suppose that, for sufficiently negative λ0, σ ≠ 0 in
some interval λ0 ≤ λ ≤ λ00. More specifically, assume that
Tr σ2 ≥ w in that interval, for some w > 0. We assume that
θ is non-negative for λ ≤ λ0, or else there is nothing to prove.
This being so, we can use the inequality (117). The inequality
shows that by taking λ0 to be sufficiently negative, we can
ensure that θðλ0Þ < wðλ00 − λ0Þ. Since the Raychaudhuri equa-
tion implies that dθ=dλ ≤ −Tr σ2, dθ=dλ is then sufficiently
negative for λ0 ≤ λ ≤ λ00 to ensure that θðλ00Þ < 0. Given this,
as usual the Raychaudhuri equation implies that θðλÞ → −∞
at some value λ1 ≤ λ00 þ ðD − 2Þ=jθðλ00Þj.
The fact that θ → −∞ for λ → λ1 means that a linear

combination of the columns of E is a Jacobi field that vanishes
at λ ¼ λ1. This Jacobi field also vanishes at λ ¼ λ0 because of
the initial condition (111). Thus, we find a Jacobi field with
two zeros, showing that l is not achronal.
Complete achronal null geodesics are scarce. The main

known examples of spacetimes with complete achronal null
geodesics are homogeneous spaces such as Minkowski space
or anti–de Sitter space (in these spacetimes, every null
geodesic is complete and achronal) and the Schwarzschild,
Kerr, and Reissner-Nordström black hole solutions (the
horizon generators are complete and achronal). Complete
achronal null geodesics actually have remarkable properties.
For example, a splitting theorem of Galloway (2000) says that
any complete achronal null geodesic in a spacetime that
satisfies the classical null energy condition is contained in a
null hypersurfaceH that has vanishing null expansion and can
be defined as the boundary of the closure41 of either the causal

future or causal past of l. H is “ruled” by achronal null
geodesics, meaning that every point p ∈ H is contained in
some achronal null geodesic l0 ⊂ H. If l is a horizon
generator of one of the usual black hole solutions, then H
is the black hole horizon and the l0 are the other generators.
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APPENDIX A: ANTI–DE SITTER SPACETIME

The purpose of this appendix is to briefly describe some
facts about AdS spacetime that may help in understanding
examples described in the text. For simplicity, except at the
end, we consider AdS spacetime of dimension 2, denoted
as AdS2. This is the case that is used for illustration in
Secs. II and IV.B.
An ordinary two-sphere of radius R is described by the

familiar equation

u2 þ v2 þ w2 ¼ R2: ðA1Þ

The line element is

ds2 ¼ du2 þ dv2 þ dw2: ðA2Þ

An SO(3) symmetry is manifest. The “antipodal point” of the
point q with coordinates X⃗ ¼ ðu; v; wÞ is the point p with
coordinates X⃗0 ¼ −X⃗ ¼ ð−u;−v;−wÞ. We also then say that
q and p are a pair of antipodal points. SO(3) maps a pair of
antipodal points to another pair of antipodal points.
A typical geodesic is the circle w ¼ 0, or in parametric form

u ¼ R cos θ; v ¼ R sin θ; w ¼ 0: ðA3Þ

The arclength along this geodesic is Rdθ. Let q be the point
ðu; v; wÞ ¼ ðR; 0; 0Þ, and let p be the antipodal point
ðu; v; wÞ ¼ ð−R; 0; 0Þ. The geodesic in Eq. (A3) passes
through q at θ ¼ 0, and after traversing a distance πR it
arrives at p at θ ¼ π. More generally, any geodesic through q
is equivalent to this one by an SO(3) rotation and similarly
arrives at p after a distance πR. By SO(3) symmetry, this
statement holds for any point q in the two-sphere: the
geodesics through q have as a focal point the antipodal point
p to q, which they reach after a distance πR.

41The causal future or past of a null geodesic is not necessarily
closed, even in a globally hyperbolic spacetime. What is proven in
Sec. V.B is that the causal future or past of a compact setW is closed
in such a spacetime.
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To describe anti–de Sitter space of dimension 2, we start by
changing a few signs in the preceding formulas. Equation (A1)
is replaced by

u2 þ v2 − w2 ¼ R2; ðA4Þ

and the line element is replaced by

ds2 ¼ −du2 − dv2 þ dw2: ðA5Þ

Because of the constraint (A4), this formula describes a two-
dimensional spacetime with Lorentz signature −þ; we call

this spacetime AdSð0Þ2 . The symmetry is now SO(2,1) rather

than SO(3). Points with coordinates X⃗ ¼ ðu; v; wÞ and X⃗0 ¼
−X⃗ ¼ ð−u;−v;−wÞ are still defined as antipodal. SO(2,1)
maps a pair of antipodal points to another pair of antipodal
points.
A typical timelike geodesic is the circle w ¼ 0, or in

parametric form

u ¼ R cos θ; v ¼ R sin θ; w ¼ 0: ðA6Þ

The elapsed proper time τ along this geodesic satisfies
dτ ¼ Rdθ. Let q be the point ðu; v; wÞ ¼ ðR; 0; 0Þ, and let
p be the antipodal point ðu; v; wÞ ¼ ð−R; 0; 0Þ. The geodesic
in Eq. (A5) passes through q at θ ¼ 0 and, after a proper time
πR, it arrives at p at θ ¼ π. Every geodesic through q is
equivalent to this one by an SO(2,1) rotation, and therefore all
timelike geodesics through q focus at the antipodal point p
after a proper time πR, just as in the case of the two-sphere.

The spacetime AdSð0Þ2 just described has closed timelike
curves and is not what is usually called AdS2. Indeed, the

geodesic (A6) in AdSð0Þ2 is a closed timelike curve; it returns to
its starting point after a proper time 2πR. A spacetime AdS2
that is locally equivalent to AdSð0Þ2 but has no closed timelike
curves can be obtained by passing to the universal cover of

AdSð0Þ2 . One may do this explicitly by solving Eq. (A4) with

u ¼ ðR2 þ w2Þ1=2 cos t; v ¼ ðR2 þ w2Þ1=2 sin t: ðA7Þ

If we view t as an angular variable with t ≅ tþ 2π, these

formulas give a possible description of AdSð0Þ2 with coordi-
nates t and w. Passing to the universal cover and eliminating
the closed timelike curves can be accomplished by simply
regarding t as a real variable. In terms of t and w, the line
element takes the form

ds2 ¼ −ðR2 þ w2Þdt2 þ R2dw2

R2 þ w2
: ðA8Þ

This is one explicit description of AdS2 spacetime.
There is a map φ∶AdS2 → AdSð0Þ2 that tells us to forget that

t is a real variable and to simply regard it as an angle. In other
words, the map φ imposes the equivalence t ≅ tþ 2π. For
q ∈ AdS2, we write q̄ for φðqÞ. (Up to this point, we have

more loosely written q or p for a point in either AdSð0Þ2 or its

universal cover.) A point q̄ ∈ AdSð0Þ2 has infinitely many
“lifts” to AdS2, differing by t → tþ 2πn, n ∈ Z.
Consider the future-going timelike geodesics through a

point q ∈ AdS2. When projected to AdSð0Þ2 , they map to

future-going timelike geodesics through q̄ ∈ AdSð0Þ2 . After a
proper time πR, the projected geodesics focus at the antipodal
point p̄ of q̄. Upon lifting the picture back to AdS2, this means
that future-going timelike geodesics through q ∈ AdS2 focus
after a proper time πR at a point p that is a lift of p̄ to AdS2.
This focusing is depicted in Fig. 3 of Sec. II. What happens
when we further continue the geodesics up to a proper time

2πR? In AdSð0Þ2 , they return to the starting point q̄, as is
evident in Eq. (A6). However, in AdS2, there are no closed
timelike curves, and the picture is instead that the future-going
timelike geodesics through q arrive, after a proper time 2πR, at
another focal point q0 with the property φðq0Þ ¼ φðqÞ ¼ q̄. In
other words, q0 and q are two different lifts to AdS2 of the

same point q̄ ∈ AdSð0Þ2 , differing by t → tþ 2π. If we con-
tinue the timelike geodesics through q into either the future or
the past, the story keeps repeating: after a proper time πRn, for
any integer n, one arrives at a focal point that is a lift to AdS2
of q̄ ∈ AdSð0Þ2 if n is even, and of p̄ ∈ AdSð0Þ2 if n is odd. This
repeating picture is depicted in Fig. 3.
For X⃗ ¼ ðu; v; wÞ, X⃗0 ¼ ðu0; v0; w0Þ, we define the SO(2,1)

invariant X⃗ · X⃗0 ¼ uu0 þ vv0 − ww0. This invariant is related as
follows to the proper time elapsed along a timelike geodesic.
Consider, for example, the timelike geodesic (A6), and
let q̄ and p̄ be two points on this geodesic, such as the two
points that correspond, respectively, to X⃗ ¼ ðR; 0; 0Þ and
X⃗0 ¼ ðR cos θ; R sin θ; 0Þ. The proper time elapsed from q̄
to p̄, assuming that one traverses this geodesic in the
direction of increasing θ, is τ ¼ Rθ. On the other hand,
X⃗ · X⃗0 ¼ R2 cos θ. Thus,

τ ¼ R arccosðX⃗ · X⃗0=R2Þ: ðA9Þ

By symmetry,42 this formula holds for the arclength of any
timelike geodesic between points in AdS2. For any choices of

lifts of q̄; p̄ ∈ AdSð0Þ2 to q; p ∈ AdS2, the proper time elapsed
on a timelike geodesic from q to p (if one exists) is given by
Eq. (A9), but the appropriate branch of the arccos function
depends on the choices of q and p.
Now we ask the following question: which points in AdS2

can be reached from a given point q by a timelike geodesic? It is

actually equivalent to askwhich points inAdSð0Þ2 can be reached
from q̄ by a timelike geodesic, since p ∈ AdS2 can be reached

from q by a timelike geodesic in AdS2 if and only if p̄ ∈ AdSð0Þ2

can be reached from q̄ in that fashion. (If there is a timelike
geodesic from q̄ to p̄, then its lift to AdS2 gives a timelike
geodesic from q that if continued far enough into the past and
future eventually reaches p.) For the example just considered,
with the geodesic (A6) and with q̄ and p̄ corresponding to
X⃗ ¼ ðR; 0; 0Þ and X⃗0 ¼ ðR cos θ; R sin θ; 0Þ, we see that

42The symmetry of AdS2 is actually not SO(2,1) but the universal

cover fSOð2; 1Þ of this group.
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R2 ≥ X⃗ · X⃗0 ≥ −R2; ðA10Þ

with equality in the upper or lower bound if and only if X⃗ ¼ X⃗0

or X⃗ ¼ −X⃗0. By SO(2,1) symmetry, this result is general: p̄ can
be reached from q̄ by a timelike geodesic if and only if
R2 ≥ X⃗ · X⃗0 ≥ −R2. What happens if we consider a spacelike
geodesic instead? An example of a spacelike geodesic is given
by u ¼ 0, or in parametric form

u ¼ 0; v ¼ R cosh θ; w ¼ R sinh θ: ðA11Þ

Typical points [up to the action of fSOð2; 1Þ] now correspond
to X⃗ ¼ ð0; R; 0Þ, X⃗0 ¼ ð0; R cosh θ; R sinh θÞ, so X⃗ · X⃗0 ¼
R2 cosh θ ≥ R2. From the symmetry, it follows that in general

twopoints inAdSð0Þ2 with coordinates X⃗ and X⃗0 are connected by
a spacelike geodesic if and only if X⃗ · X⃗0 ≥ R2. A similar

analysis shows that pairs of points in AdSð0Þ2 are connected by a

null geodesic if and only if X⃗ · X⃗0 ¼ R2. A pair of points in

AdSð0Þ2 with X⃗ · X⃗0 < −R2 are not connected by any geodesic at
all. If such a pair of points is lifted to AdS2 in a suitable fashion,
one gets a pair of points q; p ∈ AdS2 (such as the pair q, p in
Fig. 3) such that p is in the future of q but there is no geodesic
from q to p. These remarks account for some statements made
in Sec. II.
Finally, we discuss spatial infinity in AdS2. In the coor-

dinates t and w of Eq. (A8), spatial infinity corresponds to
w → �∞. Let us focus on one end, say, w → þ∞. We note
that w ¼ ∞ is infinitely far away along the spacelike hyper-
surface t ¼ 0, and similarly along any spacelike hypersurface
that is close enough to this one. However, a null geodesic can
reach w ¼ ∞ at finite t. We already demonstrated this under a
different guise in Sec. VII.C. We set z ¼ R=w so that w → ∞
becomes z → 0. From Eq. (A8), we see that near z ¼ 0 the
AdS2 line element is

ds2 ¼ R2

z2
ð−dt2 þ dz2Þ: ðA12Þ

We analyzed null geodesics in this metric in Sec. VII.C,
showing that they reach z ¼ 0 at finite t but at an infinite value
of their affine parameter.
It is convenient to make the change of variables

sin σ ¼ R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ w2

p
, where 0 < σ < π for −∞ < w < ∞.

The AdS2 line element becomes

ds2 ¼ R2

sin2σ
ð−dt2 þ dσ2Þ: ðA13Þ

The Weyl factor R2= sin2 σ does not affect the causal structure
of this spacetime, which therefore is the same as that of the
strip 0 < σ < π, −∞ < t < ∞ in a Minkowski spacetime with
line element ds2 ¼ −dt2 þ dσ2. This strip is depicted in the
Penrose diagram of Fig. 3. The boundaries of the strip are not
part of the spacetime because of the 1= sin2 σ factor in the line
element. The boundaries are at an infinite distance along a
spacelike geodesic, or at an infinite value of the affine
parameter along a null geodesic. But it is sometimes

convenient to make a partial compactification of the spacetime
by including the boundaries of the strip.
To describe in a similar fashion an anti–de Sitter spacetime

of dimension D, denoted as AdSD, we start with the spacetime

AdSð0ÞD defined by

u2 þ v2 − w⃗2 ¼ R2; ðA14Þ

where now w⃗ ¼ ðw1; w2;…; wD−1Þ is a ðD − 1Þ-vector. The
line element is

ds2 ¼ R2ð−du2 − dv2 þ dw⃗2Þ: ðA15Þ

This spacetime has closed timelike curves as before. To
eliminate them, one again passes to the universal cover by
writing

u ¼ ðR2 þ w⃗2Þ1=2 cos t; v ¼ ðR2 þ w⃗2Þ1=2 sin t; ðA16Þ

and viewing t as a real variable. This gives a spacetime known
as AdSD, parametrized by t and w⃗. Everything we say for
AdS2 has a fairly close analog for AdSD. Topologically, while
AdS2 is R × I, where R is parametrized by the time t and I is
the open interval 0 < σ < π, AdSD isR × BD−1, whereR is as
before but BD−1 is now an open ball of dimension D − 1. As in
the case D ¼ 2, it is convenient to make a partial compacti-
fication by adding boundary points to BD−1, replacing it with a
closed ball B̄D−1. The partial compactification is thus
R × B̄D−1, as schematically depicted in Fig. 43 of Sec. VII.C.
We can introduce a new variable σ by sin σ ¼

R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ jw⃗j2

p
. σ varies from 0 to π=2 as jw⃗j varies from

∞ to 0. A Penrose diagram of AdSD that depicts the
coordinates t and σ looks like half of Fig. 3, for instance,
the left half with σ ≤ π=2. A point in the diagram represents a
ðD − 1Þ-sphere parametrized by w⃗ with fixed jw⃗j. These
ðD − 1Þ-spheres sweep out all of AdSD. Alternatively, one
can define a Penrose diagram for AdSD that consists of a two-
dimensional slice of AdSD with the entire range 0 < σ < π
included. From this point of view, the Penrose diagram of
AdSD looks just like Fig. 3.

APPENDIX B: TWO COORDINATE SYSTEMS
FOR DE SITTER SPACE

Here we derive the two forms of the de Sitter space metric
that are used in Eqs. (43) and (44) in illustrating the fine print
in Penrose’s theorem.
de Sitter space of dimension D and radius of curvature R

can be described by coordinates X0; X1;…; XD satisfying

−X2
0 þ

XD
i¼1

X2
i ¼ R2; ðB1Þ

with the line element
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ds2 ¼ −dX2
0 þ

XD
i¼1

dX2
i : ðB2Þ

An SOð1;DÞ symmetry is manifest.
To get one convenient form for the metric, let Y⃗ be a unit

D-vector satisfying Y⃗ · Y⃗ ¼ 1. Then we can solve the
constraint (B1) by

X0 ¼ R sinh t=R; X⃗ ¼ RY⃗ cosh t=R: ðB3Þ
The line element is

ds2 ¼ −dt2 þ R2cosh2ðt=RÞdΩ2; dΩ2 ¼ dY⃗ · dY⃗: ðB4Þ
This accounts for the form (43) of the de Sitter metric. These
coordinates cover all of de Sitter space.
For an alternative coordinate system, define

X0 − XD ¼
ffiffiffi
2

p
V; X0 þ XD ¼

ffiffiffi
2

p
U: ðB5Þ

Let X⃗ be the ðD − 1Þ-vector X⃗ ¼ ðX1; X2;…; XD−1Þ, and set

V ¼ − expð−t=RÞ; X⃗ ¼ Vx⃗: ðB6Þ
The line element turns out to be

ds2 ¼ −dt2 þ R2e−2t=Rdx⃗2: ðB7Þ

This accounts for the second form of the metric in Eq. (44).
These coordinates describe only part of de Sitter space,
namely, the part with V < 0. This part is shaded gray in
Fig. 35 (in the figure, U increases to the upper right and V
increases to the upper left).
The condition V ¼ 0 defines a hypersurface Y that bounds

the region described by our second set of coordinates t, x⃗. This
hypersurface has interesting properties. Let W be the codi-
mension 2 submanifold U ¼ V ¼ 0. The hypersurface Y is
swept out by one of the two families of null geodesics
orthogonal to W. (The other family sweeps out the hyper-
surface U ¼ 0.) The line element of Y is of the degenerate
form dX⃗2. The null geodesics orthogonal to W and tangent to
Y are simply defined by V ¼ 0, X⃗ ¼ a⃗ (where a⃗ is a constant
of length R). These geodesics are complete and achronal; their
expansion is 0, since a cross section of Y at any value of U is a
round ðD − 2Þ-sphere of radius R, independent of U. Y is a
cosmological horizon for some observers, as we note at the
end of Sec. VI.C. The second family of null geodesics
orthogonal to W is defined by U ¼ 0, X⃗ ¼ a⃗, also with
vanishing expansion. Because its null expansions vanish, W
is called a marginally trapped surface. A point with U; V < 0
(such as the point q in Fig. 35) defines a trapped surface, with
negative expansions.

APPENDIX C: EXISTENCE OF COMPLETE METRICS OF
EUCLIDEAN SIGNATURE

In Sec. III.C, we use the fact (Nomizu and Ozeki, 1961) that
any manifold M admits a complete metric of Euclidean
signature (a metric in which every inextendible curve has
infinite arclength). Here we explain this fact in more detail.

First, the reason that every M admits some Euclidean
signature metric is that such metrics can be added. A
Euclidean metric is a symmetric tensor field hijðxÞ that is
positive definite for each x; it satisfies no other general
constraint. Any M can be covered by small open sets Uα,
each of which is isomorphic to an open ball in Rn. To define a
Euclidean signature metric tensor h on M, we simply pick for
each α a tensor field hα that is positive definite on Uα and
vanishes outside Uα, and we add them up to get a tensor field
h ¼ P

α hα on M. Such an h is always positive definite. By
picking the hα to vanish appropriately near the boundary of the
closure of Uα, one can ensure that h is smooth.
In general, this construction will not give a complete metric.

In constructing a complete metric, we may as well assume that
M is connected so that there is a path in M between any two
points p; q ∈ M. Otherwise, we make the following argument
for each connected component in M.
To find a complete metric, begin with any Euclidean

signature metric h0. If this metric is not complete, then there
is a point q ∈ M and an inextendible path γ0 from q that has
finite length in the metric h0. (The path γ0 goes to infinity inM
in finite length.) This implies that there is such a finite length
inextendible path γ from any p ∈ M: one can just define γ as
the composition γ0 � γ1, where γ1 is any path from p to q
(paths are composed by joining them end to end). Thus, we
can define on M the following function ϕ valued in the
positive real numbers Rþ: for a point p ∈ M, ϕðpÞ is the least
upper bound of the length of any inextendible curve inM that
starts at p. [ϕðpÞ is strictly positive for each p because each p
has a small neighborhood B that can be approximated by a ball
in Euclidean space; the radius of such a ball is a lower bound
for ϕðpÞ since any path from p has to begin with a path in B.]
If jp − qj is the shortest distance between points p; q ∈ M in
the metric h0, then jϕðpÞ − ϕðqÞj ≤ jp − qj, showing that the
function ϕ is continuous. Define a new metric h by
h ¼ exp½1=ϕðxÞ�h0. Since 1=ϕðxÞ > 0 everywhere, the length
of any curve in the metric h exceeds its length in the metric h0.
Thus, to show that in the metric h every inextendible curve has
infinite length, we simply have to prove that if γ is a finite
length inextendible curve starting at p in the metric h0, then it
has infinite length in the metric h. Suppose that γ has length a
in the metric h0 and parametrize it with an arclength parameter
t in that metric, so t ranges over a semiopen interval ½0; aÞ.
For any point t ¼ t0 in this interval, the segment ½t0; aÞ of γ is
an inextendible curve from the point xðt0Þ that has length
a − t0 in the metric h0. Therefore, ϕ(xðt0Þ) ≤ a − t0 and
1=ϕ(xðt0Þ) ≥ 1=ða − t0Þ. Hence, exp½1=ϕ(xðtÞ)� blows up
rapidly for t → a and γ has infinite length in the metric h.
Thus, every inextendible curve in the metric h has divergent
arclength and M with this metric is a complete Riemannian
manifold. In particular, in the metric h, inextendible geodesics
have infinite arclength in both directions and M is geodesi-
cally complete. (Conversely, geodesic completeness implies
that all inextendible curves have infinite length.)

APPENDIX D: DETAILS ABOUT COMPACTNESS

Let M be a globally hyperbolic spacetime with Cauchy
hypersurface S, and let q be a point to the past of S. Let CSq be
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the space of causal paths from q to S. An important fact is that
CSq is compact; a corollary is thatDS

q, the set of points inM that
can be visited by a causal path from q to S, is also compact. In
Sec. III.C, we describe some initial steps of a proof of
compactness of CSq, deferring details to this appendix. We
now explain two versions of the proof, adapted, respectively,
from Wald (1984) (see the proof of Lemma 8.1.5) and Beem,
Ehrlich, and Easley (1996) (see the proof of Proposition 3.31).
Let γ1; γ2;… be a sequence of causal curves from q to S. It

is convenient to extend the γi into the future as inextendible
causal curves; for example, we can continue γi to the future of
S as a timelike geodesic orthogonal to S, continued into the
future as far as it will go.
Let eγ be some future-going causal curve from q. We do not

assume that eγ is inextendible. eγ has q as a past endpoint.43 It is
convenient in the following to assume that eγ does not have a
future endpoint and thus is topologically a semiopen interval
[0, 1). (If eγ has a future endpoint, we omit this point.) We say
that eγ is a partial limit curve of the γi if, after possibly passing
to a subsequence, the γi have initial segments that converge toeγ. We call such a eγ a partial limit curve because the γi may
possibly continue to the future of eγ. Only initial segments of
the γi are assumed to converge to eγ.
The argument in Sec. III.C shows that partial limit curves

exist, and moreover that if eγ is a partial limit curve that can be
extended as a curve, then it can be extended as a partial limit
curve. To clarify this last point, suppose that eγ is a partial limit
curve that is extendible as a curve. This in particular means
that it is possible to add to eγ a future endpoint p. As the curves
γi are causal curves that converge to eγ everywhere in the past
of p, and as causality prevents γi from having wild fluctua-
tions near p, the γi also converge to eγ at p. (Essentially this
argument was the starting point in Sec. II.) If the point p is in
S, then we have found a convergent subsequence of the
original sequence fγig, showing that CSq is compact.
Otherwise, arguing as in Sec. III.C, we learn that a sub-
sequence of the γi converges to eγ also to the future of p, at
least for a limited time.
Thus, we can keep improving partial limit curves to find

better ones that reach closer to S. But to finish a proof along
these lines is still tricky.
Let L be the set of all partial limit curves of the γi. Ifeγ; eγ 0 ∈ L, we say that eγ < eγ 0 if eγ 0 is an extension of eγ. This

defines a partial order on L. It is only a partial order because in
general if eγ; eγ 0 ∈ L, neither one is an extension of the other.
A chain is a subset W of L that is totally ordered, meaning

that if eγ; eγ 0 ∈ L (and eγ ≠ eγ 0), then one of them is an extension
of the other so that either eγ < eγ 0 or eγ 0 < eγ. IfW is a chain, then
we can define a future-going causal curve γ̄ from q by simply
taking the union of all eγ ∈ W. We show in a moment that γ̄ is a
partial limit curve. In this case, since every eγ ∈ W is contained
in γ̄, any such eγ obeys eγ < γ̄ (or eγ ¼ γ̄) so that γ̄ is an “upper
bound” for the chain W.

An abstract statement of set theory known as Zorn’s
lemma44 asserts that if L is a partially ordered set in which
every chain has an upper bound, then L has a maximal
element γ�. In this context, a maximal element of L is a partial
limit curve γ� that is inextendible as a partial limit curve. But
this means that γ� is actually inextendible as a curve (since we
have seen that if a partial limit curve can be extended as a
curve, then it can be extended as a partial limit curve). Now we
invoke the assumption thatM is globally hyperbolic. As q is to
the past of M and γ� is an inextendible future-going causal
curve from q, it meets S and therefore defines a point in CSq.
Thus, any sequence γ1; γ2;… ∈ CSq has a subsequence that
converges to γ� ∈ CSq; in other words, CSq is compact.
To complete this argument, we need to justify the claim that

γ̄ is a partial limit curve. Since it has no future endpoint, γ̄ is
isomorphic topologically to the semiopen interval [0, 1); pick
a specific isomorphism. As γ̄ is the union of the curves in the
totally ordered set W, there is a sequence l1; l2;… ∈ W
whose union is γ̄. If one of the li equals γ̄, we are done.
Otherwise, after possibly passing to a subsequence, we can
assume that the closed interval ½0; 1 − 1=n� is contained in ln

for every positive integer n. Pick an arbitrary Euclidean
signature metric h on M, and for any positive integer n let
Φn be the subset of the original sequence γ1; γ2;… consisting
of curves that are always within a Euclidean distance 1=n of γ̄
over the entire interval ½0; 1 − 1=n�. Each Φn is nonempty
since each ln is a partial limit curve. Let γ01; γ

0
2;… be a

subsequence of the original sequence γ1; γ2;… such that γ0n ∈
Φn for all n. Then γ01; γ

0
2;… is a subsequence of the original

sequence that converges to γ̄ everywhere, so γ̄ is a partial
limit curve.
As Wald noted [see the footnote on p. 194 of Wald (1984)],

one would prefer not to base a concrete statement of physics
on subtleties of set theory and assumptions about the
foundations of mathematics unless this becomes unavoidable.
The following, adapted from Beem, Ehrlich, and Easley
(1996), is one way to avoid45 Zorn’s lemma. Pick again a
Riemannian metric h on M, that is, a metric of Euclidean
signature. After possibly making a conformal rescaling of h by
a factor that blows up at infinity in a suitable fashion, one can
assume that the metric h is complete (Nomizu and Ozeki,
1961). (For the proof, see Appendix C.) Let now q be any
point in M. Because the metric h on M is complete, any point
p ∈ M is connected to q by a geodesic of the shortest possible
length.46 The length of this geodesic gives a function fðpÞ.

43We use the term endpoint in this familiar sense, and not in the
more technical sense in which the term is used in mathematical
relativity. See footnote 10 of Sec. III.A and the accompanying
discussion.

44Zorn’s lemma is equivalent to the axiom of choice. To some, it is
an essential part of the foundations of mathematics. To others, it is an
unnecessary adornment.

45The fundamentals of calculus might depend on Zorn’s lemma,
depending on one’s point of view. Still it seems that the use of Zorn’s
lemma in the argument just described is the sort of thing that one
would want to avoid.

46Let b be the greatest lower bound of the lengths of paths from p
to q, and let γ1; γ2;… be a sequence of paths from p to q whose
lengths approach b. In a complete Euclidean signature metric, a
subsequence of γ1; γ2;… converges to a geodesic from p to q of the
minimum possible length b.
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The generalized sphere Sρ ⊂ M consisting of points with
fðpÞ ¼ ρ is always compact.47 Likewise, the generalized ball
Bρ ⊂ M consisting of points with fðpÞ ≤ ρ is compact.
Now let γ1; γ2;… be any sequence of inextendible curves

that originate at q ∈ M. (For the moment, there is no need to
assume that the γi are causal curves in the Lorentz signature
metric of M or that M is globally hyperbolic.) Because the
Riemannian metric of M is complete and the γi are inex-
tendible, they all have infinite length in the Riemannian
metric. We parametrize them by their Riemannian arclength
t, which runs over the full range ½0;∞Þ. If we restrict the γi to
t ≤ 1, they are contained in the compact set B1. Therefore, by
the argument explained in Sec. II, the γi have a subsequence
γi;1 that converges for t ≤ 1. Similarly, for t ≤ 2, the γi;1 are
contained in B2, so they have a subsequence γi;2 that
converges for t ≤ 2. Continuing in this way, we define for
every positive integer n a subsequence γi;n of a previously
defined sequence γi;n−1 such that γi;n converges for t ≤ n.
Then the “diagonal sequence” γ1;1; γ2;2;… is a subsequence of
the original sequence γ1; γ2;… that converges for all t ≥ 0.
Thus, we have shown, with no assumptions about causality or
Lorentz signature, that every sequence γ1; γ2;… of inextend-
ible curves from q has a subsequence that converges to a limit
curve γ̄. Moreover, γ̄ has infinite Euclidean length, like the γi,
so it is inextendible.
Now we remember the Lorentz signature metric of M. If γi

are causal curves, then as a limit of causal curves γ̄ is also
causal. If γi are future-going curves from a point q ∈ M, then
γ̄ is also a future-going curve from q. If M is globally
hyperbolic and q is to the past of a Cauchy hypersurface
S, then γ̄ intersects S somewhere. Thus, γ̄ is the desired limit of
a subsequence of γi, and we learn again that the space of
causal curves from q to S is compact.
We can also use this second argument as the starting point

to show that globally hyperbolic spacetimes are strongly
causal, as claimed in Sec. III.E. (We cannot use the first
argument for this purpose since strong causality is assumed at
the outset in Sec. III.C.) Let M be a globally hyperbolic
spacetime with Cauchy hypersurface S. Let q be a point to the
past of S. A point to the future of S can be treated similarly;
later, we consider the case q ∈ S. If strong causality is violated
at q, this means that there are sequences of points p1; p2;…
and p0

1; p
0
2;…, with both sequences converging to q, and

future-directed causal curves γi from pi to p0
i, which make

large excursions away from q even though the pi and p0
i are

near q. The precise meaning of “large excursions” is that a
sufficiently small open setU containing q does not contain the
curves γi for large i. After possibly discarding the first few
pairs of points, we can assume that the points pi and p0

i are all

to the past of S, and therefore that the curves γi are to the past
of S.
We consider the following two cases: (1) the arclengths of

the curves γi in the complete Riemannian metric introduced
earlier are bounded, and (2) those arclengths are unbounded.
In case (1), the curves γi are all contained in a generalized ball
BN for sufficiently largeN. BN is compact and γi are causal, so
reasoning as before we find that a subsequence of γi converges
to a causal curve γ̄. Since the sequences fpig and fp0

ig both
converge to q, γ̄ is a closed causal curve from q to itself. (γ̄ is a
nontrivial closed causal curve, consisting not just of the single
point q, since there is an open neighborhood U of q that does
not contain γi for large i.) In a globally hyperbolic spacetime,
this is not possible.
In case (2), after possibly passing to a subsequence we can

assume that for all k ≥ 1 the curve γk has Euclidean arclength
of at least k. We parametrize γk by the Euclidean arclength t,
with t ¼ 0 corresponding to the past endpoint pk. Arguing as
before, if we restrict γk to 0 ≤ t ≤ 1, then a subsequence fγk;1g
of the sequence fγkg converges to a limit curve γ̄1. γ̄1 is a
future-going causal curve that originates at q since the pk
converge to q. Restricting to 0 ≤ t ≤ 2, a subsequence fγk;2g
of the sequence fγk;1g converges on the interval 0 ≤ t ≤ 2 to a
limit curve γ̄2 that is an extension of γ̄1. It is again a future-
going causal curve from q. Continuing in this way, at the nth
step we define a subsequence fγk;ng of fγk;n−1g that converges
for 0 ≤ t ≤ n to a limit curve γ̄n that is an extension of γ̄n−1.
All γ̄n are future-going causal curves from q, and each one is
an extension of the previous one. Each one is in the past of S
since the original curves γk are all in the past of S. The
diagonal sequence whose nth element is γn;n converges to a
limit curve γ̄ that is the union of γ̄n. γ̄ is to the past of S since
all of the curves γ̄n are. γ̄ is inextendible since the Euclidean
arclength of the curve γ̄n diverges for n → ∞. Thus, we have
found, from a point q to the past of S, an inextendible future-
going causal curve that remains forever to the past of S. In a
globally hyperbolic spacetime, this is not possible.
One might want to consider the example (9) of a spacetime

that has no closed causal curves but violates strong causality to
see how case (2) comes about. Taking q to be a point at v ¼ 0,
describe suitable pairs pi, p0

i and corresponding causal curves
γi, and try to identify the inextendible causal curve γ̄ that arises
from this construction.
Finally, we have to consider the case in which q ∈ S. By

displacing S slightly forward in time in a local Minkowski
neighborhood of q, we can replace it with a different Cauchy
hypersurface S0 that does not contain q and thus reduce to the
previous case.

APPENDIX E: GEOMETRY OF A NULL HYPERSURFACE

In Sec. V.D, we show that a hypersurface Y that is swept out
by orthogonal null geodesics from some codimension 2
spacelike submanifold W is null, that is, its metric has the
signature þþ � � � þ 0. This statement has a rather surprising
converse, which is explained here. Let Y be any null hyper-
surface, that is, any hypersurface of signature þþ � � � þ 0, in
a spacetimeM. LetKμ be a vector field that is tangent to Y and
null. In view of the signature of Y, if Zμ is any vector field
tangent to Y, then

47A geodesic l (in the metric h) that originates at q is determined
by its initial direction, which takes values in an ordinary sphere S,
which is certainly compact. Mapping l to the point on l whose
arclength from q is ρ gives a continuous and surjective map from S to
Sρ, showing that Sρ is compact. This argument has been stated
assuming that every geodesic is length minimizing up to distance ρ. If
not, before making the argument one replaces S with its compact
subset consisting of initial directions of geodesics that are length
minimizing up to that distance.
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gμνKμZν ¼ 0: ðE1Þ

These conditions do not determine K uniquely, as we may
transform

Kμ → efKμ ðE2Þ

for any real-valued function f on Y.
The integral curves of K are the null curves found by

solving the equation dXμ=ds ¼ Kμ(XðsÞ), with some choice
of an initial point on Y. Note that if one transforms K as in
Eq. (E2), this simply leads to a reparametrization of the
integral curves. We want to show that the integral curves are
null geodesics. Every point in Y lies on a unique integral
curve, so this will give a family of null geodesics with each
point in Y contained in a unique member of the family. One
describes this by saying that Y is “ruled by null geodesics.”
To show that the integral curves are geodesics, it suffices to

show that

KμDμKν ¼ wKν ðE3Þ

for some function w. Then by a transformation Kμ → efKμ we
can reduce to the case in which

KμDμKν ¼ 0; ðE4Þ

which is equivalent to the geodesic equation for the integral
curves.
For p ∈ Y, let TMjp be the tangent space to p inM, and let

TYjp be the tangent space to p in Y. A vector in TMjp is a
multiple ofK if and only if it is orthogonal to TYjp. Therefore,
to verify Eq. (E3) at p it suffices to show that if Z is any vector
in TYjp, then

gαβðKμDμKαÞZβ ¼ 0 ðE5Þ

at p. We extend Z away from p in an arbitrary fashion,
requiring only that it is tangent to Y. Then K and Z are both
vector fields tangent to Y, so their commutator, which is

Qα ¼ KμDμZα − ZμDμKα; ðE6Þ

is also tangent to Y. Thus, Eq. (E1) holds if Z is replaced byQ:

gμνKμQν ¼ 0: ðE7Þ

Differentiating Eq. (E1), we get

0 ¼ KμDμðgαβKαZβÞ
¼ gαβðKμDμKαÞZβ þ gαβKαKμDμZβ: ðE8Þ

But the last term on the right-hand side vanishes, since

gαβKαKμDμZβ ¼ gαβKαQβ þ 1
2
ZμDμðgαβKαKβÞ ¼ 0; ðE9Þ

where we use the fact that Q satisfies Eq. (E7) and K is
everywhere null. Thus, Eq. (E8) is equivalent to the desired
result [Eq. (E5)].

If W is any spacelike surface that is of codimension 1 in Y,
then the integral curves are orthogonal toW and therefore Y is
ruled by a family of null geodesics that are orthogonal to W,
the situation considered in Sec. V.D.

APPENDIX F: HOW PROMPTNESS FAILS

Let γ be a future-going null geodesic that originates at a
point q in a globally hyperbolic spacetimeM. As explained in
Sec. V.A, in a strongly causal spacetime an initial segment of γ
is prompt. It may be that γ remains prompt no matter how far
into the future it is continued. Otherwise, the prompt portion
of γ is an initial segment. Let p be the endpoint of this
segment. We want to know what is happening at p. An
analogous question concerns the case in which γ is a null
geodesic orthogonal to a compact codimension 2 spacelike
surface W. These questions were analyzed by Beem and
Ehrlich (1979) and Akers et al. (2018), respectively. We will
sketch the arguments, starting with the case of geodesics that
originate at a specified point q.
Let p1; p2;… be a sequence of points that are to the future of

p along γ and approach p. The segment qpi of γ is nonprompt
for each i, so there exists a strictly timelike curve γi from q to
pi. In a globally hyperbolic spacetime, we can choose the γi to
maximize the elapsed proper time, and thus they are timelike
geodesics. Moreover, after possibly passing to a subsequence,
we can assume that γi converge to a causal curve γ̄ from q to p.
There are two cases: (1) γ̄ ≠ γ and (2) γ̄ ¼ γ.
In case (1), γ̄ is a null geodesic, since otherwise it could be

deformed to a causal path from q that arrives to the past of p,
implying that γ does not remain prompt up to p. Therefore,
case (1) means that at point p, γ intersects a second null
geodesic that also originates at q. This is perfectly possible.
For example, when gravitational lensing produces multiple
images of the same supernova explosion, there will be some
observers who see the first two images appear simultaneously.
Note that in case (1), the geodesic γ is always nonprompt
when continued to any point p0 that is beyond p, because by
going from q to p along γ̄ and then from p to p0 along γ, one
gets a causal path from q to p0 that is not a null geodesic. We
leave it to the reader to verify that in case (1), γ̄ is also prompt
up to p, but no farther.
We want to show that case (2) is the main failure mode that

is studied in this review: it indicates that to first order there is a
null geodesic deformation of the segment qp or, in other
words, there is a Jacobi field along γ that vanishes at q and p.
To do this, we construct a convenient set of D functions

on M, and ask if they are a good set of coordinates in a
small neighborhood of p. We make use of the Fermi normal
coordinates of Eq. (58), with γ the usual geodesic V ¼ XA ¼ 0
and q the point U ¼ 0 on this geodesic. We consider the
geodesic equation with affine parameter λ

D2Xμ

Dλ2
¼ 0: ðF1Þ

Thus, γ is the solution U ¼ λ, V ¼ XA ¼ 0. If we expand
U ¼ U þ εu, V ¼ εv, and XA ¼ εxA, then to first order in ε
the equation of geodesic deviation simply gives
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d2v
dλ2

¼ 0: ðF2Þ

There is no curvature term here because along γ
RV

UAU ¼ RUUAU ¼ 0. (In Sec. VIII.C, we did not consider
this equation because we considered only null deformations
that were constrained to have v ¼ 0.)
We consider the geodesic equation (F1) with the initial

conditions

Uð0Þ ¼ Vð0Þ ¼ XAð0Þ ¼ 0;

dU
dλ

����
λ¼0

¼ 1;

dV
dλ

����
λ¼0

¼ v;

dXA

dλ

����
λ¼0

¼ xA: ðF3Þ

The geodesic with v ¼ xA ¼ 0 is the original γ and reaches
the point p at some value λ ¼ λ1. We map a triple λ, v, xB to
the point with coordinates Vðλ; v; xBÞ, Uðλ; v; xBÞ, and
XAðλ; v; xBÞ, where those functions are determined by solving
the geodesic equation with the initial conditions (F3). We
ask whether λ; v, and xB are a good set of coordinates for
M in a neighborhood of p, that is, in a neighborhood of
ðλ; v; xBÞ ¼ ðλ1; 0; 0Þ, which corresponds to p.
In case (2), the answer to this question is “no,” because of

the following facts. For each i, γ and γi are two different
geodesics from q to pi. As the γi converge to γ for i → ∞, the
initial conditions of γi converge for large i to the initial
conditions v ¼ xB ¼ 0 of γ. Likewise, the affine parameter at
which γi reaches pi converges to the corresponding value for
γ. Thus, there are pairs of triples ðλ; v; xBÞ that are arbitrarily
close to each other and to ðλ1; 0; 0Þ and represent the same
point in M; hence, there is no neighborhood of ðλ1; 0; 0Þ in
which ðλ; v; xBÞ are good coordinates.
On the other hand, in general, suppose that Xμ; μ ¼ 1;…;D

are a good set of coordinates on a manifold M in a
neighborhood of a point p, and that we parametrize them
by variables fα; α ¼ 1;…;D, specifying Xμ ¼ XμðfαÞ as
smooth functions of fα. The condition for fα to be a good
set of coordinates on M in a neighborhood of p is that Δ ¼
det ∂Xμ=∂fα is nonzero at p. We compute this determinant for
the case in which Xμ are ðU;V; XAÞ, fα are ðλ; v; xBÞ, and p is
the point ðλ1; 0; 0Þ.
First, at p we have

∂V
∂v ≠ 0;

∂V
∂λ ¼ ∂V

∂xA ¼ 0. ðF4Þ

Equation (F4) is true because Eq. (F2) together with the initial
conditions gives simply V ¼ λv to first order in v and xB.
Thus, at p, ∂V=∂v ≠ 0 and the other derivatives of V vanish.
Therefore, the determinant Δ vanishes at p if and only if a
reduced determinant with V and v omitted vanishes at p. In
other words, we can set V ¼ v ¼ 0 and take the Xμ to be
simply U and XA and the fα to be simply λ and xB.

Similarly, at xB ¼ 0, we have

∂U
∂λ ¼ 1;

∂XA

∂λ ¼ 0; ðF5Þ

since the solution of the geodesic equation with v ¼ xB ¼ 0 is
U ¼ λ, V ¼ XA ¼ 0. This means that the original determinant
Δ vanishes if and only if a reduced determinant vanishes in
which we consider only XA and xB at v ¼ 0, λ ¼ λ1.
In other words, the condition for the vanishing of Δ is that

det
∂XAðλ1; 0; x⃗Þ

∂xB
����
x⃗¼0

¼ 0: ðF6Þ

But the vanishing of this determinant is equivalent to the
existence of a Jacobi field on the interval ½0; λ1� that vanishes
at the endpoints of the interval. Indeed, the vanishing of the
determinant of a matrix means that some linear combination of
its columns vanishes, say,

X
B

∂XAðλ1; 0; x⃗Þ
∂xB

����
x⃗¼0

cB ¼ 0 ðF7Þ

with constants cB. If we set xA ¼ εcA, v ¼ 0 in Eq. (F3), then
to first order in ε the solution of the geodesic equation is a
Jacobi field that vanishes at λ ¼ 0 because of the initial
conditions and at λ ¼ λ1 because of Eq. (F7).
One can study in a similar way a timelike, rather than null,

geodesic γ from a point q. A short initial segment of γ
maximizes the elapsed proper time. As γ is continued into the
future, it may fail to be proper time maximizing beyond some
point p. An argument similar to what was just described
shows that for this to happen either γ meets at p another
timelike geodesic from q with the same proper time or there is
a Jacobi field on γ that vanishes at q and at p so that p is a
focal point of the timelike geodesics from q.
Now we consider the case of a null geodesic γ that is

orthogonal to a compact codimension 2 spacelike surface W
(Akers et al., 2018). Again, if γ does not remain prompt
indefinitely, we define p as the future boundary of the largest
prompt segment of γ and consider a sequence of points pi ∈ γ
that approach pi from the future. pi can now be reached from
W by timelike geodesics γi that are orthogonal to W. After
possibly passing to a subsequence, we can assume that the γi
converge to an orthogonal null geodesic γ̄ from W to p. We
have the same alternatives as before: (1) γ̄ ≠ γ and (2) γ̄ ¼ γ.
Case (1) now indicates that there is some other orthogonal null
geodesic γ̄ fromW to p. This is perfectly possible, and when it
happens γ is not prompt when continued beyond p.
(Moreover, γ̄ is prompt up to p and no further.)
As before, case (2) is the main failure mode that is studied

in this review. To show this, one repeats the previous argu-
ment, now with different initial conditions on the geodesics.
As before, let γ be the geodesic U ¼ λ, let V ¼ XA ¼ 0, and
suppose that, as in Sec. VIII.D, W is described near γ by
V ¼ fðXAÞ,U ¼ hðXAÞwhere f and h vanish near XA ¼ 0 up
to second order. Thus, γ ∩ W is the point q with U ¼ 0. Now
we introduce a ðD − 1Þ-parameter family of geodesics
orthogonal to W. For initial conditions on these geodesics,
we take
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XAð0Þ ¼ xA; Vð0Þ ¼ fðxAÞ; Uð0Þ ¼ hðxAÞ; ðF8Þ

so that the geodesics originate on W at λ ¼ 0. We also set

∂U
∂λ

����
λ¼0

¼ 1;
∂V
∂λ

����
λ¼0

¼ ζ; ðF9Þ

where ζ is a free parameter, and constrain dXA=dλjλ¼0 so that
the geodesics in this family are orthogonal to W. As in
Eq. (86), except that now we have to include ζ, the condition
of orthogonality is

dXA

dλ

����
λ¼0

− ∂AfðxÞ − ζ∂AhðxÞ ¼ 0: ðF10Þ

We now ask whether we can use xA, ζ, and λ as a good set of
coordinates near p. For the same reason as before, the answer
is “no” in case (2). On the other hand, an analysis similar to the
previous one shows that a negative answer to this question
means that there is a Jacobi field along γ that obeys the
boundary condition at q and vanishes at p, or in other words
that p is a focal point for the null geodesics orthogonal to W.
An analog of this problem for timelike geodesics is to

consider a future-going timelike geodesic γ orthogonal to a
codimension 1 spacelike surface S. A short initial segment of γ
maximizes the elapsed proper time to its endpoint. If this fails
when γ is continued into the future, let p be the endpoint of the
maximal segment on which γ is proper time maximizing. Then
either there is a second timelike orthogonal geodesic γ̄ from S
to p, with the same proper time as γ, or there is a Jacobi field
along γ that preserves the orthogonality at γ ∩ S and vanishes
at p, so that p is a focal point of the orthogonal null geodesics
from S.
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