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Parton distribution functions (PDFs) describe the structure of hadrons as composed of quarks and
gluons. They are needed to make predictions for short-distance processes in high-energy collisions
and are determined by fitting to cross-section data. Definitions of the PDFs and their relations to high-
energy cross sections are reviewed. The focus is on the PDFs in protons, but PDFs in nuclei are also
discussed. The standard statistical treatment needed to fit the PDFs to data using the Hessian method
is reviewed in some detail. Tests are discussed that critically examine whether the needed assumptions
are indeed valid. Also presented are some ideas of what one can do in case tests indicate that the
assumptions fail.
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I. INTRODUCTION

Since 2018, the Large Hadron Collider (LHC) has taken a
large data sample of proton-proton collisions and has been
using these data to precisely measure the properties of the
Higgs boson and search for physics beyond the standard
model. The ATLAS and CMS experiments took about
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150 fb−1 each at the center-of-mass energy of
ffiffiffi
s

p ¼ 13 TeV
and more than 22 fb−1 of data at

ffiffiffi
s

p ¼ 8 TeV. In addition, the
LHCb experiment has accumulated more than 9 fb−1 of data
at various energies, including data at extreme rapidities. In
addition to proton-proton collisions, all experiments at the
LHC, and, in particular, the ALICE experiment, are taking
data in proton-lead and lead-lead collisions.
All predictions at the LHC are dependent on knowledge of

the quark and gluon content of the proton. The probability
distributions of the constituents of the nucleon, collectively
called partons, need to be known to make predictions in the
theoretical framework of perturbative quantum chromody-
namics (PQCD). The concept of a parton originated in a model
by Bjorken (1969) and Feynman (1972), who referred to
quasiindependent pointlike constituents observed inside
hadrons that undergo deeply inelastic scattering. As the
formalism of PQCD developed, partons were shown to be
excitations of elementary quantum fields of spins 1=2 and 1
(quarks, antiquarks, gluons, and even photons) in a hadron
undergoing a hard scattering process.
Our understanding of the structure of the proton is being

updated continuously using the wealth of LHC and other
world data. Knowledge of the structure of the nucleon needed
for a large class of theoretical predictions in PQCD is encoded
in the collinear parton distribution functions (PDFs). The
PDFs have been determined from data going back to the early
1980s (Gluck, Hoffmann, and Reya, 1982; Duke and Owens,
1984; Eichten et al., 1984). They are now determined using
the method of the global QCD analysis (Martin, Roberts, and
Stirling, 1988, 1989; Harriman et al., 1990; Morfin and Tung,
1991; Owens, 1991) from experimental measurements at
colliders such as HERA, the Tevatron, and the LHC, and
in fixed-target experiments. The PDFs are provided in a
number of practically useful forms by several collaborations,
including ABM (Alekhin et al., 2017), HERAPDF
(Abramowicz et al., 2015), CT (Dulat et al., 2016), CTEQ-
JLab (Accardi, Brady et al., 2016), MMHT (Harland-Lang
et al., 2015), and NNPDF (Ball et al., 2017). The modern PDF
parametrizations are provided with families of “error PDF
sets” (Giele and Keller, 1998; Giele, Keller, and Kosower,
2001; Pumplin et al., 2001) that allow the user to assess the
total uncertainty on the PDFs arising from a variety of
experimental and theoretical errors. Methods for statistical
combination of PDF ensembles from various groups exist
(Gao and Nadolsky, 2014; Carrazza, Forte et al., 2015;
Carrazza, Latorre et al., 2015), and comprehensive guide-
lines on uses of PDFs at the LHC were published by the
PDF4LHC Working Group (Butterworth et al., 2016). To
date close to 700 PDF ensembles from various groups have
been distributed as numerical tables in the standard Les
Houches Accord PDF (LHAPDF) format (Giele et al., 2002;
Whalley, Bourilkov, and Group, 2005; Bourilkov, Group,
and Whalley, 2006; Buckley et al., 2015) from a public
online repository.1

The parton distributions in nuclei have been analyzed by
several collaborations: EPPS (Eskola et al., 2017), nCTEQ
(Kovařík et al., 2016), DSSZ (de Florian et al., 2012), HKN

(Hirai, Kumano, and Nagai, 2007) KA (Khanpour and
Atashbar Tehrani, 2016), and NNPDF (Abdul Khalek,
Ethier, and Rojo, 2019). They are provided either as para-
metrizations of the nuclear PDFs themselves or as the nuclear-
correction factor applied to a predefined reference proton PDF.
Increasingly precise requirements are imposed on the

determination of PDFs and their uncertainties during the
high-luminosity (HL) phase of the LHC operation to precisely
measure Higgs boson couplings and electroweak parameters
(de Florian et al., 2016), and to maximize the HL-LHC reach
in a variety of tests of the standard model and new physics
searches (ATLAS and CMS Collaborations, 2019).
The purpose of this review is to discuss select topics related

to the theoretical definition, determination, and usage of PDFs
in modern applications. We concentrate on methodological
aspects of the PDF analysis that will be of growing importance
in the near-future LHC era. We primarily focus on theoretical
and statistical aspects of the determination of PDFs in the
nucleon and nuclei, especially on proper theoretical defini-
tions, statistical inference of the PDF parametrizations from
the experimental data, and factorization for heavy nuclei. This
review supplements the discussions of phenomenological
applications of PDFs by Forte and Watt (2013) and Gao,
Harland-Lang, and Rojo (2018), as well as extensive compar-
isons of PDFs from various collaborations and QCD pre-
dictions based on these PDFs (Alekhin et al., 2011; Watt and
Thorne, 2012; Accardi et al., 2016; Butterworth et al., 2016).
Introductory texts on the fundamentals of QCD factorization,
global PDF analysis, and collider applications of PDFs
were given, e.g., by Brock et al. (1995), Collins (2013),
and Campbell, Huston, and Krauss (2017).
We begin with the parton model and its relation to QCD, the

field theory of the strong interactions.

A. The parton model

The principal aim of contemporary particle physics is to test
the current theory, the standard model, and to look for
evidence of new physics that is not included in the standard
model. The standard model is a renormalizable quantum field
theory with fields for leptons (e, μ, τ), their associated
neutrinos, quarks (d;u;s;c;b;t), vector bosons (γ, W�, Z, g),
and a scalar boson field, the Higgs field. The part of the theory
involving the photon, W�, Z, and Higgs fields involves
spontaneous symmetry breaking and is quite subtle. The part
of the theory involving the gluon g constitutes the theory of the
strong interactions, QCD. The gluon couples to quarks, but
not to leptons. We cannot offer a review of the standard model,
but we assume that the reader is familiar with it; see, for
instance, Peskin and Schroeder (1995), Srednicki (2007),
Aitchison and Hey (2012), and Schwartz (2014).
One important feature of the standard model, and quantum

field theory in general, is that the couplings that appear at the
vertices of Feynman diagrams representing the theory are best
considered to be dependent on a squared momentum scale μ2.
For instance, the QCD coupling constant g2s=ð4πÞ≡ αs
becomes αsðμ2Þ. The dependence on μ2 is derived from the
theory, even though the value of αsðμ20Þ at a scale like μ20 ¼
M2

Z is a free parameter of the theory. Which value of μ2 is1See https://lhapdf.hepforge.org.
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useful in addressing a particular physical problem depends on
the typical momentum scale of the problem.
The electroweak coupling αðμ2Þ increases with μ2, but for

physically relevant momentum scales αðμ2Þ is small. Thus,
scattering cross sections for electroweak interactions can be
usefully computed as a perturbation series in the small
parameter αðμ2Þ.
The QCD coupling constant αsðμ2Þ decreases with μ2. It is

large when μ is of the order of 1 GeVor less, and it reduces to
αsðμ2Þ ≈ 0.1 at μ ¼ 100 GeV. This scale dependence of
αsðμ2Þ tells us that perturbation theory should be useful for
describing the parts of a physical scattering process with
hadrons that involves only large momentum scales.
However, we run into a complication. How can we use

experiments involving protons to investigate the standard
model? For instance, we know from experiment that we
can make Higgs bosons in proton-proton collisions, but how
can we understand the Higgs production process quantita-
tively? The Higgs boson production cross section depends on
the internal structure of the initial-state protons. The strong
coupling αsðμ2Þ is large for μ of the order of the proton mass
mp or smaller. This means that we cannot expect perturbation
theory to be useful for calculating the structure of the proton as
a bound state of quarks, antiquarks, and gluons.
To understand the problem and its tentative solution,

consider deeply inelastic electron scattering from a proton
(DIS). The DIS process is reviewed in Sec. II.D. Suppose that
an electron scatters from a proton of momentum PA by
exchanging a photon with momentum qβ.2 We define
Q2 ≡ −q2. Since the 4-momentum qβ is spacelike, we have
Q2 > 0. We demand that Q2 be much larger than 1 GeV2.
Then there is some hope for a perturbative approach that uses
an expansion in powers of αsðQ2Þ. The lowest-order Feynman
diagram, corresponding to t-channel electromagnetic scatter-

ing eþ q
ð−Þ

→ eþ q
ð−Þ

of an electron on a quark or antiquark, is
pretty simple. But how do we relate the initial-state quark field
to the proton?
Here is an approach we can follow. We use a “brick-wall”

reference frame in which q⃗ lies entirely in the −z direction,
q0 ¼ 0, and in which P⃗A lies entirely in theþz direction. Then
jqzj ¼ Q, and we can consider the hard quark-photon inter-
action to be localized in a time interval ΔtH ¼ 1=Q. In DIS,
we also demand that PA · q be large, of the order of Q2. Then
the proton momentum is large, with Pz

A ¼ ðPA ⋅ qÞ=Q. This
means that the proton is highly boosted, with a boost factor
eω ¼ ð2PA ⋅ qÞ=ðmpQÞ. In the proton rest frame, we can
suppose that the time period between successive quark-gluon
interactions is of the order of ΔtrestS ∼ 1=mp. In the brick-wall
reference frame, the typical time for these soft internal
interactions is ΔtS ∼ eω=mp ¼ 2PA ⋅ q=ðm2

pQÞ as a conse-
quence of relativistic time dilation. The time interval ΔtS is
much longer than the hard-interaction timescale:
ΔtS=ΔtH ∼ 2PA ⋅ q=m2

p. This argument implies that the
quark-gluon interactions inside the proton are largely frozen

during the time interval ΔtH while the hard scattering
interaction with the virtual photon is taking place. The
struck quark is effectively free.
This gives us the parton model of Bjorken (1969) and

Feynman (1972). The word parton as used now refers to a
quark, antiquark, gluon, and sometimes a photon. Originally,
partons meant just the constituents of the proton, whatever
those constituents might be.
It is easy to use the parton model to describe the cross

section for DIS. We assume that, inside a fast-moving proton,
there are partons of various types a. A parton can carry a
momentum kβ that is a fraction ξ of the momentum of the
proton: kβ ¼ ξPβ

A. Denote by fa=pðξÞdξ the probability of
finding such a parton with momentum fraction between ξ and
ξþ dξ. Let dσ̂=½dQ2dðPA ⋅ qÞ� be the cross section for the
electron to scatter from a free quark with momentum k ¼ ξPA,
calculated in lowest-order perturbation theory. Then the cross
section for this scattering from a proton should be

dσ
dQ2dðPA ⋅ qÞ ¼

X
a

Z
dξ fa=pðξÞ

dσ̂
dQ2dðPA ⋅ qÞ : ð1Þ

This picture is simple and intuitive. An analogous picture
covers processes such as Higgs boson production in high-
energy proton-proton collisions.
The parton model as just described does not survive scrutiny

whenwe include gauge field interactions at higher orders of αs:
one encounters contradictions as soon as one tries to calculate
dσ̂=½dQ2dðPA ⋅ qÞ� beyond the leading order in QCD. The
basic problem is that QCD is a quantum field theory, in which
interactions among the quarks and gluons occur at all time-
scales or distance scales, including timescales much smaller
than the ΔtS scale that one would naively associate with the
interior motions inside a highly boosted proton.
Nevertheless, one can turn the parton model picture into a

theoretically consistent framework that includes higher-order
radiative contributions. One first needs to carefully define
what one means by a parton distribution function fa=pðξÞ.
With a careful definition, the parton distribution functions
become fa=pðξ; μ2Þ, with a dependence on a scale μ2. Then
cross sections for DIS and for many processes in hadron-
hadron scattering have a property known as factorization,
which means that they satisfy a formula similar to Eq. (1).

B. Cross sections and factorization

In this review, we review how the PDFs are systematically
defined in the QCD theory and determined by applying
statistical inference to experimental observations sensitive
to the PDFs. We also review the general formalism to estimate
the uncertainty on the PDFs that results from fitting the
experimental data.
It is most common to define and determine the PDFs in the

nucleon in the MS factorization scheme discussed in some
detail in Sec. II.A. Intuitively, these functions fa=Aðξ; μ2Þ
represent the probability of finding a parton of type a (a gluon
or a particular flavor of quark or antiquark) in a hadron of
type A, for example, a proton, as a function of the fraction ξ
of the momentum of the hadron that is carried by the parton.

2We denote Lorentz indices with Greek letters and use the
fþ;−;−;−g sign convention for the Minkowski metric tensor.
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The argument μ2 in f indicates the momentum scale at which
the parton distribution function applies. The μ2 dependence
is given by the Dokshitser-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations (Gribov and Lipatov, 1972;
Altarelli and Parisi, 1977; Dokshitzer, 1977), which we
describe in Sec. II.A.6. With the aid of these evolution
equations, the functions fa=Aðξ; μ2Þ can be determined from
the functions fa=Aðξ; μ20Þ at a scale μ20 that is typically chosen
to be around 1 GeV2. The functions at scale μ20 cannot be
calculated in perturbation theory.
The PDFs at the starting scale μ20 are determined from

experimental data. Consider first a cross section σ½F�, defined
by integrating the completely differential cross section for any
number of final-state particles, multiplied by functions F that
describe what is measured in the final state. For instance, if we
observe a single weakly interacting particle, the measurement
function F might be simply a product of delta functions that
specify the energy and direction of momentum of the particle.
We thus integrate over the momenta of particles that are not
measured, giving us an inclusive cross section. The observable
σ½F� must be “infrared safe,” as described later in Sec. II.B.2.
For lepton-hadron scattering, the cross section σ½F� is related
to parton distributions by

σ½F� ≈
X
a

Z
dξ fa=Aðξ; μ2Þσ̂½F�. ð2Þ

For cross sections at hadron colliders, a parton distribution
function is needed for each of two colliding hadrons:

σ½F� ≈
X
a;b

ZZ
dξadξb fa=Aðξa; μ2Þfb=Bðξb; μ2Þσ̂½F�: ð3Þ

We review this formula in more detail in Sec. II.B.3.
To determine the PDFs at the starting scale μ20, one selects

observables that are sensitive to different combinations
of parton distributions. The parton distributions at scale μ20
are parametrized by a sufficiently flexible functional form.
The observables are first calculated using the parton dis-
tributions, where the free parameters are given some initial
values and are compared to the data. The parameters are
then adjusted until the theoretical predictions describe the
data well.

C. Practical issues in the theory

Following this simple strategy requires in reality a detailed
understanding of many facets of perturbative QCD. First, as
the precision of the determination of parton distributions
needs to match the experimental precision, fitted observables
are calculated at the next-to-next-to-leading-order (NNLO) in
perturbative QCD for nucleon PDFs. The NNLO accuracy in
the global fits corresponds to computing the hard cross
sections by including perturbative radiative contributions
suppressed by up to 2 powers of αs. Such predictions at
NNLO for hard processes suitable for determination of PDFs
are increasingly available (Zijlstra and van Neerven, 1991; van
Neerven and Zijlstra, 1991; Buza and van Neerven, 1997;
Moch, Vermaseren, and Vogt, 2005; Vermaseren, Vogt, and

Moch, 2005; Catani and Grazzini, 2007; Catani et al., 2009;
Campbell and Ellis, 2010; Gavin et al., 2011, 2013; Li and
Petriello, 2012; Berger et al., 2016; Gehrmann-De Ridder
et al., 2016; Boughezal et al., 2017; Currie, Glover, and Pires,
2017; Currie et al., 2017; Gehrmann-De Ridder et al., 2018.
There are also partial results at N3LO, such as Vermaseren,
Vogt, and Moch, 2005; Moch and Rogal, 2007; Bierenbaum,
Blumlein, and Klein, 2009; Moch, Vermaseren, and Vogt,
2009; Ablinger et al., 2011, 2015). Theoretical predictions
used for nuclear PDFs are still typically at next-to-leading
order (NLO), even though first NNLO nuclear PDF analy-
ses exist.
Incorporating the theoretical calculations into the fit

requires a careful selection of observables that are theoreti-
cally well defined (infrared safe) and can be calculated up to
the required order. Because of the nature of higher-order
calculations, the numerical evaluation can be time consum-
ing. This shortcoming is usually solved either by using
precomputed tables of computationally slow point-by-point
NNLO corrections applied to fast NLO calculations, or
increasingly by using fast gridding techniques, such as the
ones implemented in the fastNLO (Wobisch et al., 2011),
APPLGRID (Carli et al., 2010), aMCFast (Bertone et al.,
2014), and NNPDF FastKernel (Forte et al., 2010) programs.
The comparably accurate and fast DGLAP evolution of
PDFs up to NNLO accuracy is implemented in a number of
public codes: PEGASUS (Vogt, 2005), HOPPET (Salam and
Rojo, 2009), QCDNUM (Botje, 2011), and APFEL (Bertone,
Carrazza, and Rojo, 2014).
Even after implementing the measured observables and

the corresponding DGLAP evolution for the PDFs at
(N)NLO, one still has to address a number of issues that
become important as the PDF analysis is pushed toward
higher precision. On the experimental side, the NNLO PDFs
are increasingly constrained by high-luminosity measure-
ments, in which the statistical experimental errors are
small, and adequate implementation of many (sometimes
hundreds) of correlated systematic uncertainties is necessary.
Commonly followed procedures for implementation of
systematic uncertainties in the PDF fits are reviewed in
Appendix A of Ball et al. (2013b). We discuss the treatment
of systematic uncertainties in some detail in Sec. III.
From the side of theory, subtle radiative contributions,

such as NLO electroweak or higher-twist contributions, are
comparable to NNLO QCD contributions in some fitted
observables. The photon constituents contribute at a frac-
tion-of-percent level to the total momentum of the proton.
The associated parton distribution for the photon can be
computed accurately using the structure functions and
nucleon form factors from lepton-hadron (in)elastic scatter-
ing as the input (Manohar et al., 2016, 2017). The resulting
LUXqed parametrization of the photon PDF was already
implemented by Bertone, Carrazza et al. (2017) and
Nathvani et al. (2018). An alternative is to fit a phenom-
enological parametrization of the photon PDF at the initial
scale of evolution together with the rest of the PDFs. Such
phenomenological parametrizations constrained just by the
global fit (Ball, Bertone et al., 2013; Schmidt et al., 2016;
Giuli et al., 2017) are less precise than the LUXqed form.
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Even at NNLO, the residual theoretical uncertainties due to
missing higher-order contributions in αs may have an impact
on PDFs. Such theory uncertainties are partly correlated in a
generally unknown way across experimental data points. In
addition to the traditional estimation of higher-order contri-
butions by the variation of factorization and renormalization
scales, recently, more elaborate methods for estimation of
higher-order uncertainties have been explored with an eye on
applications in the PDF fits, such as those given by Olness and
Soper (2010), Gao (2011), Forte, Isgrò, and Vita (2014),
Abdul Khalek et al. (2019a, 2019b), Cacciari and Houdeau
(2011), and Harland-Lang and Thorne (2019); see the dis-
cussion at Eq. (79).

D. The strong coupling

Another associated issue is the treatment of the strong
coupling αsðμ2RÞ. The strong coupling depends on a scale μ2R,
called the renormalization scale. For a review, see any text on
QCD, for example, Collins (2013). Since αsðμ2RÞ obeys a
renormalization group equation, its value at any μ2R can be
determined from its value at a fixed scale μ2R0. Normally, one
sets μR0 as the massMZ of the Z boson. All QCD observables
depend on αsðM2

ZÞ, and so do the fitted PDFs. Conventionally,
the world-average value of αsðM2

ZÞ (Tanabashi et al., 2018) is
derived from a combination of experimental measurements,
with the tightest constraints imposed by the QCD observables
that do not depend on the PDFs, notably, hadroproduction in
electron-positron collisions, hadronic τ decays, and quarkonia
masses.
Other useful constraints on αs are imposed by a variety of

hadron-scattering observables (lepton-hadron DIS, jet and tt̄
production, etc.) that are simultaneously sensitive to PDFs, but
the constraints of this class are generally weaker and more
susceptible to systematic effects. As some hadronic observ-
ables of the latter class are also included in the global fit to
constrain the PDFs, in principle, these observables can
determine both αs and the PDFs at the same time.
Consequently, several treatments of αs exist in the current
PDF analyses. Most PDF groups publish some global fits
that determine αsðM2

ZÞ and the PDFs simultaneously. They
typically find that the best-fit αsðM2

ZÞ is consistent within the
world average of αsðM2

ZÞ, but with a considerably larger
uncertainty than in the world average. ABM fits are repre-
sentative of this approach (Alekhin et al., 2017), as are
the dedicated studies performed in the global framework
(Ball, Carrazza et al., 2018; Thorne, Harland-Lang, and
Martin, 2018).
As an example, the best-fit αsðM2

ZÞ ¼ 0.1166� 0.0027 in
CT18 at NNLO (Hou et al., 2019) is consistent with the world
average αsðM2

ZÞ ¼ 0.1181� 0.0011 (Tanabashi et al., 2018),
as well as with αsðM2

ZÞ ≈ 0.1176 in Thorne, Harland-Lang,
and Martin (2018) and a somewhat higher αsðM2

ZÞ ¼
0.1185� 0.0012 in Ball, Carrazza et al. (2018). The CT18
value results as some trade-off between the DIS experiments
(notably, fixed-target DIS), which collectively prefer a some-
what lower αsðM2

ZÞ ≈ 0.115, and jetþ top and Drell-Yan
experiments, which collectively prefer a higher αsðM2

ZÞ ≈
0.119 (Hou et al., 2019). The quoted uncertainty on αsðM2

ZÞ at

68% probability level varies among the PDF-fitting groups in
2020 from about 0.001 to 0.0025 depending on the adopted
definitions for the uncertainty (with the CT18 uncertainty the
most conservative).
On the other hand, it is often advantageous to perform the

PDF fits and determine the PDF uncertainty at a fixed world-
average value of αsðM2

ZÞ, then estimate the αs uncertainty of
the fits by using a few PDF fits with alternative αs values. If
the uncertainties obey a Gaussian probability distribution, it
can be rigorously demonstrated that, to compute the total
PDFþ αs uncertainty that includes all correlations, it suffices
to add the resulting PDF and αs uncertainties in quadrature
(Lai, Huston et al., 2010). The empirical probability distri-
butions in the PDF fits are indeed sufficiently close to being
Gaussian, so this prescription for computing the PDFþ αs
uncertainty is adopted by a majority of recent fits. For
example, the PDF4LHC group recommends (Butterworth
et al., 2016) calculating the PDFþ αs uncertainty at the
68% confidence level by adding in quadrature the PDF
uncertainty computed using 30 (100) PDF4LHC15 error sets
for the world-average αsðM2

ZÞ ¼ 0.1180, and the αs uncer-
tainty computed from two best-fit PDF sets for αsðM2

ZÞ ¼
0.1165 and 0.1195.

E. Heavy-quark masses

Another issue that needs to be addressed in global fits of
PDFs is the treatment of massive charm and bottom quarks.
Mass effects play an important role in describing, for example,
subprocesses with charm (anti)quarks in DIS. There are
several approaches to treating the mass of the quark, such as
the zero-mass variable-flavor-number (ZM-VFN) scheme
(Collins, Wilczek, and Zee, 1978; Collins and Tung, 1986) or
the general-mass variable-flavor-number (GM-VFN) scheme
(Aivazis et al., 1994; Collins, 1998; Thorne and Roberts, 1998;
Krämer, Olness, and Soper, 2000; Thorne, 2006; Forte et al.,
2010). In Sec. II.C, we provide a pedagogical introduction to
the extensive topic of the treatment of masses for heavy quarks.
For a more thorough review of the heavy-quark schemes see
Accardi et al. (2016) and Butterworth et al. (2016).

F. Special kinematic regions

Some kinematic regions require special treatment if their
respective experimental data are to be included in a global fit
of PDFs. One such region is where the typical momentum
fraction ξ is large but the momentum scale of the process is not
too large. Then the nonzero mass of the proton (or, in general,
the target), normally neglected, may need to be taken into
account. These target-mass corrections were discussed in detail
by Schienbein et al. (2008). In the same region, deuterium
nuclear corrections also have to be considered when data in this
specific kinematic region are taken on deuterium rather than
proton targets (Accardi et al., 2010, 2011).
The other kinematical region in need of careful treatment is

the one where the momentum transfer Q2 is low, typically
below 4 GeV2, at moderate or large ξ. Here power corrections
can become important and can be taken into account, for
example, as in Martin et al. (2004), Alekhin, Blumlein, and
Moch (2012), and Thorne (2014).
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Another such region arises in DIS at small x andQ, roughly
satisfying Q2 < Acut=xλ with Acut ∼ 0.5–1.5 GeV2, and λ ∼
0.3 (Golec-Biernat and Wusthoff, 1999; Caola, Forte, and
Rojo, 2010). (Here x ¼ xbj. See Sec. II.D.) This is the limit
where summation of small-x logarithms becomes necessary,
and indeed, a slowdown in perturbative convergence of
inclusive DIS cross sections and resulting small-x PDFs is
observed even at NNLO in the affected HERA region
(Abramowicz et al., 2015). The DIS data in this region
provide valuable constraints on the small-x behavior of the
gluon PDF. The small-x instability in DIS can be cured to a
certain extent by inclusion of power-suppressed (higher-twist)
contributions (Harland-Lang et al., 2016) or, effectively in the
HERA region at Q2 > 4 GeV2, by using an x-dependent
factorization scale μ2 in NNLO DIS cross sections in some of
the PDF sets (CT18X and CT18Z) published by Hou et al.
(2019). Summation of small-x logarithms, matched to NNLO,
was successfully implemented in NNPDF (Ball, Bertone et al.,
2018) and xFitter analyses (Abdolmaleki et al., 2018). It
results in an even better description of the accessible small-x
region. Either NNLOþ NLLx summation, as in Ball, Bertone
et al. (2018), or the choice of a special x-dependent factori-
zation scale in the fixed-order NNLO cross section, as in Hou
et al. (2019), thus leads to a better description of the small-x
subsample of the HERA DIS data. The resulting PDFs
obtained after these changes tend to have elevated gluon
and strangeness components at x < 10−2 as a result of slower
Q dependence of the DIS cross sections at small x than would
be predicted at a fixed order with a standard scale μ ¼ Q. LHC
predictions based on such modified PDFs, such as CT18Z,
may lie outside of the nominal error bands of the PDF set with
default choices, such as CT18.

G. Fitting

After addressing all necessary features of theory predictions
such as the ones just spelled out, one compares the theory

predictions to the experimental data. The process of fitting the
theoretical predictions to data by adjusting the PDFs is the
main focus of this review. The reason is that a proper
determination of PDF uncertainties is important for an
analysis of the high-luminosity LHC data, as the PDF
uncertainty will soon dominate systematic uncertainties on
the theory side in key tests of electroweak symmetry breaking,
including the measurements of Higgs couplings and mass of
the charged weak boson (de Florian et al., 2016; ATLAS and
CMS Collaborations, 2019). The statistical framework of the
PDF fits is fundamentally more complex than the one in the
electroweak precision fits: while the parametric model of
the electroweak fits is uniquely determined by the standard
model Lagrangian, the parametric model for the parton
distribution functions may change within some limits to
optimize agreement between QCD theory and data.
Consequently, the PDF uncertainty comprises four catego-

ries of contributions:
(1) Experimental uncertainties, including statistical and

correlated and uncorrelated systematic uncertainties of
each experimental dataset.

(2) Theoretical uncertainties, including the absent higher-
order and power-suppressed radiative contributions, as
well as uncertainties in using parton showering pro-
grams to correct the data in order to compare to fixed-
order perturbative cross sections.

(3) Parametrization uncertainties associated with the
choice of the PDF functional form.

(4) Methodological uncertainties, such as those associ-
ated with the selection of experimental datasets, fitting
procedures, and goodness-of-fit criteria.

As an illustration, the left panel of Fig. 1 shows the
HERAPDF2.0 parametrizations determined exclusively from
the fits to DIS data. The PDF uncertainty corresponding to the
PDF solutions covering 68% of the cumulative probability
comprises the experimental, theoretical model, and paramet-
rization components that were estimated for a select fitting

FIG. 1. Left panel: the parton distribution functions xuv ≡ xðu − ūÞ, xdv ≡ xðd − d̄Þ, xS≡ 2xðūþ d̄þ s̄þ c̄Þ, and xg of
HERAPDF2.0 NNLO at μ2 ¼ 10 GeV2. The experimental, theoretical model, and parametrization uncertainties are shown separately.
From Abramowicz et al., 2015. Right panel: the PDF uncertainty bands for CT18 NNLO PDFs (Hou et al., 2019) at μ2 ¼ 10 GeV2.
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methodology (Abramowicz et al., 2015). Other groups may
not separate all four of the previously listed components in the
total PDF uncertainty. In the right panel of Fig. 1, the CT18
NNLO PDF uncertainty bands are evaluated for 68% cumu-
lative probability according to a two-tier goodness-of-fit
criterion (Lai, Guzzi et al., 2010) that accounts both for the
agreement with the totality of fitted data and with individual
experimental datasets. The CT18 analysis includes a variety of
datasets on DIS, vector boson, jet, and tt̄ production. While
this diversity of data allows one to resolve differences between
PDFs of various flavors and probe a broader range of PDF
parametrization forms, in practice, some incompatibilities
(tensions) between constraints on the PDFs from various
experiments are introduced and need to be either eliminated or
accounted for in the PDF uncertainty estimate. (The CT18 and
HERAPDF2.0 PDFs are fitted to 3690 and 1130 data points,
respectively. About 350 different parametrization forms have
been tried in the CT18 analysis, contributing to the spread of
the PDF uncertainty.) The width of the CT18 error bands thus
depends on a two-level tolerance convention (Lai, Guzzi
et al., 2010; Pumplin et al., 2002) that is adjusted so as to
reflect PDF variations associated with some disagreements
between experiments, parametrization, and theoretical uncer-
tainties. We notice, for example, that the CT18 error bands for
some poorly constrained flavors, notably, the strangeness PDF
xsðx; μ2Þ at small x (green band), may be broader than the
respective HERAPDF2.0 error bands at the same probability
level, despite having more experimental data included in the
CT18 analysis compared to HERAPDF. The wider error bands
reflect, for a large part, the spread in the acceptable PDFs
estimated using the CT18 flexible parametrization forms, but
also some inflation of the experimental uncertainty to reflect
the imperfect agreement among experiments. Section IV.H
shows how to examine several experiments for their
agreement.
To find most likely solutions for PDFs and establish the

respective uncertainties, one must answer a fundamental
question: how good, actually, is each PDF fit? We explore
this question and advocate using a strong set of goodness-of-
fit criteria that go beyond the weak criterion based on just the
value of the goodness-of-fit function χ2.
All PDF fitters employ some version of minimization of the

goodness-of-fit function

χ2ðaÞ ¼
X
ij

½Di − TiðaÞ�½Dj − TjðaÞ�Cij; ð4Þ

where Di are the data values, TiðaÞ are the corresponding
theory predictions, which depend on free PDF parameters a,
and Cij is the covariance matrix. The goodness-of-fit function
is used to assess the quality of the theoretical description of the
data and to estimate the uncertainty in the determination of the
fit parameters a. The statistical foundations that motivate
the use of the goodness-of-fit functions are discussed in
Sec. III. While it is most common to find the global minimum
of χ2ðaÞ numerically, many insights about the global fits can
be gleaned analytically in the so-called Hessian approach to
fitting the PDFs, first developed by Pumplin et al. (2001) and
Stump et al. (2001) and refined since. We discuss this

approach in great detail to illustrate various aspects of the
fits. It relies on the observation that the PDFs approximately
obey the multivariate Gaussian probability distribution in the
well-constrained kinematic regions, which in turn allows one
to derive the key outcomes of the PDF analysis in a closed
algebraic form. For example, the Hessian method is com-
monly used at the end of the fit to quantify the uncertainty on
the resulting PDFs. There is a powerful alternative approach
for finding the best-fit PDFs and determining their uncertain-
ties using stochastic (Monte Carlo) sampling of PDFs (Giele
and Keller, 1998; Giele, Keller, and Kosower, 2001) and PDF
parametrizations by neural networks (Forte et al., 2002).
Although our results are demonstrated in the Hessian approxi-
mation, they also elucidate the numerical outcomes of the
Monte Carlo sampling PDF analyses such as the one used by
NNPDF. They also apply to the approximate techniques
for updating the published PDF ensembles with information
from new data by statistical reweighting of PDF replicas in the
Monte Carlo (Giele and Keller, 1998; Ball et al., 2011, 2012;
Sato, Owens, and Prosper, 2014) or Hessian (Watt and
Thorne, 2012; Paukkunen and Zurita, 2014; Schmidt,
Pumplin, and Yuan, 2018) representations.
Section IV is devoted to the discussion of tests that one can

perform to determine the extent to which the fitting procedure
is consistent with the statistical hypotheses used in the
procedure. This leads to a discussion of the strong goodness-
of-fit set of criteria.

II. REVIEW OF THEORY

In this section, we provide a brief overview of the theory of
PDFs and their relation to cross sections. We start with the
definition of PDFs as matrix elements of quantum field
operators. Then we discuss the factorization property of
QCD, which allows us to relate certain kinds of cross sections
to PDFs and perturbatively calculated quantities. Finally, we
turn to the treatment of heavy quarks in these relations,
although we treat this complex subject only briefly.

A. Definition of parton distribution functions

Here we give definitions for PDFs as matrix elements in a
proton (or other hadron) of certain operators. Instead of simply
stating the definitions, we motivate them from basic field
theory, following the reasoning of Collins and Soper (1982).
For more details, see Collins (2013).3

1. Momenta

Consider a proton with momentum P along the þz
direction. We define the þ and − components of vectors
using v� ¼ ðv0 � v3Þ= ffiffiffi

2
p

. Then P has the components

ðPþ; P−;P⊥Þ ¼
�
Pþ;

m2
p

2Pþ ; 0

�
: ð5Þ

3Our conventions follow the Particle Data Group (Tanabashi et al.,
2018) and Collins (2013). In particular, we choose the sign of the
strong coupling g so that the quark-gluon vertex is −igγμta. This is
the opposite of the choice of Collins and Soper (1982).
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It is helpful to think of Pþ as large, 9.2 TeV for the LHC, but
the size of Pþ does not matter for the definition of the PDFs.
When in the following exposition we introduce a function F

of a four-vector v, we use two alternative notations, FðvÞ
and Fðvþ; v−; v⊥Þ.
We seek to define PDFs fa=pðξ; μ2Þ, which can be inter-

preted as giving the probability density for finding a parton of
flavor a (a quark, antiquark, or gluon), which carries a fraction
ξ of Pþ, in the proton with momentum P. This function
depends on the momentum squared scale μ2 at which one
imagines measuring the presence of the parton.

2. Parton distributions in canonical field theory

To get started with the definition of PDFs, consider an
operator bðξPþ; k⊥; s; c; iÞ that destroys a quark of flavor
i having helicity s, color c, þ-momentum ξPþ, and transverse
momentum k⊥. This quark then carries a fraction ξ of the
þ-momentum Pþ of the proton. The adjoint operator
b†ðξPþ; k⊥; s; c; iÞ then creates a quark with the same
quantum numbers. We normalize the creation and destruction
operators to have anticommutation relations

½bðξ0Pþ; k0⊥; s0; c0; iÞ; b†ðξPþ; k⊥; s; c; iÞ�þ
¼ ð2πÞ32ξPþδðξ0Pþ − ξPþÞδðk0⊥ − k⊥Þδs0sδc0c: ð6Þ

Additionally, we suppose that the vacuum state j0i has no
quarks in it, so

bðξPþ; k⊥; s; c; iÞj0i ¼ 0: ð7Þ

With the quark creation and destruction operator at hand,
we can construct the following operator that counts the
number of quarks in a region of ξ and k⊥:

ρðξPþ; k⊥; iÞ

¼ 1

ð2πÞ32ξ
X
s;c

b†ðξPþ; k⊥; s; c; iÞbðξPþ; k⊥; s; c; iÞ: ð8Þ

The reader can verify that if jΨi is obtained by applying quark
creation operators to the vacuum then the integral of ρ over a
momentum-space volume V3 counts the number NðV3Þ of
quarks in V3:

Z
V3

dξ dk⊥ρðξPþ; k⊥; iÞjΨi ¼ NðV3ÞjΨi: ð9Þ

We want to define a parton density, the number of partons
fi=pðξÞ of flavor i per unit dξ in a proton. We can take the
following matrix element of ρ in a proton state to define this:

fð0Þi=pðξÞhP0jPi ¼
Z

dk⊥hP0jρðξPþ; k⊥; iÞjPi: ð10Þ

Here, for simplicity, we consider the proton to be spinless, but
one can substitute a spin average ð1=2ÞPsphP0; spj � � � jP; spi.
As previously noted, we take the proton momentum P to be
along the z axis so that P⊥ ¼ 0. However, Pþ is arbitrary. We

give f a superscript (0) to indicate that this is a preliminary
version of the needed definition.
To make this definition more useful, we can relate the quark

creation and destruction operators to the quark field operator
ψ iðxÞ. For this purpose, we use the version of QCD quantized
on planes of equal xþ ¼ ðx0 þ x3Þ= ffiffiffi

2
p

instead of planes of
equal time t ¼ x0 (Kogut and Soper, 1970; Bjorken, Kogut,
and Soper, 1971). The fields obey canonical commutation
relations on planes of equal xþ. To make this work, we use the
gauge AþðxÞ ¼ 0 for the gluon field. With this way of writing
the theory, the two components of the four-component Dirac
field projected by Pdy ¼ ð1=2Þγ−γþ (such that P2

dy ¼ Pdy) are
the independent dynamical fields (dy) representing quarks.
The dynamical part of the quark field at xþ ¼ 0 is related to
quark and antiquark creation and destruction operators by

Pdyψ i;cð0; x−; x⊥Þ ¼
1

ð2πÞ3
Z

∞

0

dkþ

2kþ

Z
dk⊥

×
X
s

fPdyuðk; sÞe−ik·xbðkþ; k⊥; c; s; iÞ

þ Pdyvðk; sÞeþik·xd†ðkþ; k⊥; c; s; iÞg:
ð11Þ

Here k · x ¼ kþx− − k⊥ · x⊥, and d† is an antiquark creation
operator, analogous to the quark creation operator b†.
The field ψ carries a flavor index i. It also carries a color
index c, which we normally suppress. The spinors u and v are
the usual solutions of the free Dirac equation, normalized to
ūðk; sÞγþuðk; sÞ ¼ 2kþ and v̄ðk; sÞγþvðk; sÞ ¼ 2kþ. Then
one easily finds that Pdyuðk; sÞ and Pdyvðk; sÞ depend only
on the þ component of k.
When we combine Eqs. (10) and (11), we directly obtain

fð0Þi=pðξÞhP0jPi ¼ Pþ

2π

Z
dy−e−iξP

þy−
Z

dx−dx⊥

× hP0jψ̄ ið0; x− þ y−; x⊥Þγþψ ið0; x−; x⊥ÞjPi:
ð12Þ

We can eliminate the factor hP0jPi by using translation
invariance to write

hP0jψ̄ ið0; x− þ y−; x⊥Þγþψ ið0; x−; x⊥ÞjPi
¼ ei½ðP0−PÞ·x−−ðP0⊥−P⊥Þ·x⊥�

× hP0jψ̄ ið0; y−; 0Þγþψ ið0; 0; 0ÞjPi: ð13Þ

Then we can perform the x− and x⊥ integrations to give delta
functions that set P0 to P. We normalize our proton state
vectors to

hP0jPi ¼ ð2πÞ32PþδðP0þ − PþÞδðP0⊥ − P⊥Þ: ð14Þ

Then the delta functions from hP0jPi in Eq. (12) cancel.
We set P0 to P to get
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fð0Þi=pðξÞ ¼
1

4π

Z
dy−e−iξP

þy−hPjψ̄ ið0; y−; 0Þγþψ ið0ÞjPi: ð15Þ

We present this result in some detail to emphasize that the
PDF for quarks is simply the proton matrix element of the
number density operator for quarks as obtained in canonically
quantized field theory.

3. Gauge invariance

Next, without changing fð0Þi=pðξÞ, we can rewrite the defi-
nition in a way that makes it gauge invariant. The canonical
field theory that our derivation has relied on makes use of the
lightlike axial gauge AþðxÞ ¼ 0 for the gluon field. In an
arbitrary gauge, we merely insert a Wilson line factor

Wðy−; 0Þ ¼ P exp

�
−ig

Z
y−

0

dȳ−Aþð0; ȳ−; 0Þata
�
: ð16Þ

This is a matrix in the color indices carried by the quark fields;
ta is the SUð3Þ generator matrix in the 3 representation. The P
indicates path ordering of the operators and matrices, with
more positive y− values to the left. The revised definition is

fð0Þi=pðξÞ ¼
1

4π

Z
dy−e−iξP

þy−

× hPjψ̄ ið0; y−; 0ÞγþWðy−; 0Þψ ið0ÞjPi: ð17Þ

The factor W is just 1 if we use AþðxÞ ¼ 0 gauge. If we
change the gauge by a unitary transformation UðxÞ, we
replace

ψ ið0Þ → Uð0Þψ ið0Þ;
ψ̄ ið0; y−; 0Þ → ψ̄ ið0; y−; 0ÞUð0; y−; 0Þ−1;
Wðy−; 0Þ → Uð0; y−; 0ÞWðy−; 0ÞUð0Þ−1: ð18Þ

Thus, when we include the operator W, the right-hand side of
the equation is invariant under a change of gauge.
If we use a covariant (Bethe-Salpeter) wave function for the

proton state, we can use Eq. (17) for perturbative calculations.
The field ψ ið0Þ absorbs a quark line from the wave function.
Similarly, ψ̄ ið0; y−; 0Þ creates a quark line that goes into the
conjugate wave function. These quark lines can emit and
absorb gluons. The factor Wðy−; 0Þ is conveniently written as
Wðy−;∞Þ times Wð∞; 0Þ. The operator W contains gluon
fields that create and absorb gluons. In a simple intuitive
picture, we do not just destroy a quark at position 0, leaving its
color with nowhere to go. Instead we scatter it so that it moves
to infinity along a fixed lightlike line in the minus direction,
carrying its color with it. Then its color comes back to
ð0; y−; 0Þ to provide the color for the quark that we create.

4. Renormalization

The function fð0Þi=pðξÞ has thus far been defined using “bare”
fields, a bare coupling, bare parton masses, and a bare operator
product of fields in a canonical formulation of the field theory.
This will not do. Even the simplest one-loop calculation

reveals that the bare αs, quark masses, and fð0Þi=pðξÞ contain

ultraviolet (UV) divergences. Thus, we need to renormalize
everything. The standard way to do this is to apply MS
renormalization with scale μ2. For this, we need to choose a
number Nf of active flavors.4 The MS-renormalized entities
acquire dependence on μ2, which can be chosen so as to
improve perturbative convergence for the short-distance cross
section σ̂ in Eq. (3). Physically, quark and gluon interactions at
distance scales smaller than 1=μ2 are not resolved in these
objects.
This gives us our final definition for the quark distribution

(Collins and Soper, 1982)

fi=pðξ; μ2Þ ¼
1

4π

Z
dy−e−iξP

þy−

× hPjψ̄ ið0; y−; 0ÞγþWðy−; 0Þψ ið0ÞjPi; ð19Þ

where Wðy−; 0Þ is given by Eq. (16). We understand now that
the formulas refer to fields and couplings and field products
that are renormalized with the MS prescription for all active
quarks and gluons.
For antiquarks, the analogous definition is

fī=pðξ;μ2Þ¼
1

4π

Z
dy−e−iξP

þy−

× hPjTr½γþψ ið0;y−;0ÞWðy−;0Þψ̄ ið0Þ�jPi; ð20Þ

where the color generator matrices in Wðy−; 0Þ are in the 3̄
representation of SU(3).
Note that no approximations are made in Eq. (19). In

particular, we do not treat the quarks as massless. We cannot
calculate fi=pðξ; μ2Þ at any finite order of perturbation theory,
but we could, in principle, calculate it using lattice gauge
theory. In such a calculation, we use our best estimates for the
parameters in the QCD Lagrangian, including the strong
coupling and the quark masses.
In fact, PDFs can be calculated using lattice gauge theory

(Lin et al., 2018), but the accuracy of such calculations is still
limited. One can obtain much better accuracy by fitting the
parton distributions to the data, as described in this review.
However, the definition of the parton distributions is not
affected by the approximations that we make in the fitting
procedure. For instance, the calculated cross sections used in
the fit can be leading order (LO), next-to-leading order (NLO),
or next-to-next-to-leading order (NNLO). The resulting fits
are often referred to as LO, NLO, and NNLO. However, it is
the fits that carry these designations. The functions fi=pðξ; μ2Þ
that we are trying to estimate are nonperturbative objects
whose definitions are independent of the fitting method.

4For instance, if we are following the Nf ¼ 5 convention, then
neither αs nor the PDFs include contributions from top quarks. Then
top-quark virtual loops can still occur within the Feynman diagrams,
but they are treated using the Collins-Wilczek-Zee prescription
(Collins, Wilczek, and Zee, 1978), in which the UV divergencies
that they introduce are subtracted at zero incoming momenta and do
not affect scale dependence of αs or the PDFs. Depending on the
circumstances, one uses different numbers of active flavors, as we
discuss in Sec. II.C.
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5. Gluons

We previously defined the PDFs for quarks and antiquarks
by beginning with the number operator for quarks or anti-
quarks in unrenormalized canonical field theory using null-
plane quantization in Aþ ¼ 0 gauge. The starting definition is
then generalized to be gauge invariant and to use MS-
renormalized operators. One can follow the same sort of
logic for the gluon field. We simply state the result (Collins
and Soper, 1982)

fg=pðξ; μ2Þ ¼
1

2πξPþ

Z
dy−e−iξP

þy−

× hPjGð0; y−; 0ÞþνWðy−; 0ÞGð0Þ þ
ν jPi; ð21Þ

where Gμν is the gluon field operator,

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν; ð22Þ

and the Wilson line operator Wðy−; 0Þ is given by Eq. (16),
now using SU(3) generator matrices ðtaÞbc ¼ −ifabc in the
adjoint representation.

6. Evolution equation

We take a closer look at the renormalization of the PDFs.
The MS renormalization of the strong coupling αs ≡ g2=ð4πÞ
and the fields ψ iðxÞ and AμðxÞa in n ¼ 4 − 2ϵ dimensions
proceeds in the usual way by subtracting 1=ϵ poles and
some finite terms from two-point subgraphs, three-point
subgraphs, and four-gluon subgraphs with loops containing
gluons and the Nf active quarks. Another sort of pole arises in
matrix elements for PDFs from operator products like
ψ̄ ið0; y−; 0Þγþψ ið0Þ in Eq. (19). Consider a graph in which
a gluon is emitted from a propagator representing the quark
that is destroyed by ψ ið0Þ, then absorbed by a propagator
representing the quark created by ψ̄ ið0; y−; 0Þ. This gluon
line creates a loop subgraph that is UV divergent in four
dimensions.
We subtract the divergence using the MS prescription,

which creates dependence of fa=pðξ; μ2FÞ on the factorization
scale μ2F, possibly different from the renormalization scale μ2R.
In much of our discussion, we assume that μ2R and μ2F are the
same and denote both as μ2.
By examining the structure of the UV divergences, one

finds that the functions fa=pðξ; μ2FÞ obey the DGLAP evolu-
tion equations

d
d logμ2F

fa=pðξ;μ2FÞ¼
X
â

Z
1

ξ

dz
z
Paâ(z;αsðμ2FÞ)fâ=pðξ=z;μ2FÞ:

ð23Þ

The functions fa=pðξ; μ2FÞ are nonperturbative, but since the
dependence on μ2F arises from the UV divergences of graphs
for fa=pðξ; μ2FÞ, the evolution kernels Pab(z; αsðμ2FÞ) are
perturbatively calculable as expansions in powers of αsðμ2FÞ:

Paâ(z; αsðμ2FÞ) ¼
αsðμ2FÞ
2π

Pð1Þ
aâ ðzÞ þ

�
αsðμ2FÞ
2π

�
2

Pð2Þ
aâ ðzÞ þ � � � :

ð24Þ

The exact evolution kernels Pab have been known up to
three loops (NNLO) since 2004 (Moch, Vermaseren, and
Vogt, 2004; Vogt, Moch, and Vermaseren, 2004), with active

efforts now under way on computing the four-loop terms Pð4Þ
ab ;

see Ueda (2018). It is significant that the functions PðnÞ
aâ ðzÞ do

not depend on quark masses. In graphs for the PDFs, there
are masses in quark propagators, ð=kþmÞ=ðk2 −m2 þ iϵÞ.
However, the ultraviolet poles of these graphs are determined
by the behavior of the propagators for k → ∞. In this limit, the
masses do not contribute. This is an advantage of using the
MS scheme for renormalizing the PDFs.

B. Infrared safety and factorization

PDFs are used to compute cross sections in collisions of a
lepton with a hadron and collisions between two hadrons. We
concentrate here on hadron-hadron collisions since these are
currently the subject of investigation at the LHC. Lepton-
hadron collisions, as in deeply inelastic scattering, are simpler.
In one sense, the use of PDFs to describe proton-proton

collisions is simple. Suppose that we are interested in the cross
section d2σ=ðdpTdyÞ, to produce a jet with transverse
momentum pT and rapidity y plus anything else in the
collision of a hadron of type A and a hadron of type B. Or
suppose that we are interested in the cross section dσ=dy, to
produce an on-shell Higgs boson with rapidity y plus anything
else. We can consider many cases at once by saying that we
are interested in a cross section σ½F� to measure a general
observable F that is infrared safe in the sense that is explained
in Sec. II.B.2. Then the PDFs relate σ½F� to a calculated cross
section σ̂ab½F� for the collision of two partons. In its briefest
form, the relation is

σ½F� ≈
X
a;b

ZZ
dξadξb fa=Aðξa; μ2Þfb=Bðξb; μ2Þσ̂ab½F�: ð25Þ

Here we sum over the possible flavors a and b of partons that
we might find in the respective hadrons. We integrate over the
momentum fractions ξa and ξb of these partons. Then we
multiply by σ̂ab½F�, which plays the role of a cross section for
the collision of these partons to produce the final state that we
are looking for.
We say that Eq. (25) expresses factorization.5 Factorization

seems simple, but it is not. First, it works only when the
observable to be measured σ½F� has a certain property,
“infrared safety.” Second, factorization is approximate, and
we need to understand what is left out. Third, its validity is not
self-evident, as one finds when trying to calculate σ̂ab½F�
beyond the leading order and encountering infinities if the

5The word “factorization” is applied to many formulas in which a
physical quantity is expressed as a convolution of a product of
factors. Equation (25) is sometimes called inclusive collinear
factorization.
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calculation is not carefully formulated. Fourth, while σ̂ab½F�
plays the role of a cross section to produce a certain final state
in the collision of two partons, its calculation beyond the
leading order in perturbative QCD actually involves subtrac-
tions, as discussed in Sec. II.B.2.

1. Kinematics

Consider a hard scattering process in the collisions of two
high-energy hadrons A and B. The hadrons carry momenta PA
and PB. The hadron energies are high enough that we can
simplify the equations describing the collision kinematics by
treating the colliding hadrons as massless. Then with a
suitable choice of reference frame, the hadron momenta are

PA ¼ ðPþ
A ; 0; 0Þ;

PB ¼ ð0; P−
B; 0Þ: ð26Þ

We then imagine a parton-level process in which a parton
from hadron A with flavor a and momentum ξaPA collides
with a parton from hadron B with flavor b and momentum
ξbPB. This collision produces m partons with flavors fi and
momenta pi. Each final-state parton has rapidity yi and
transverse momentum pi;⊥ so that the components of its
momentum are

pi ¼(eyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2i;⊥þm2

i Þ=2
q

;e−yi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2i;⊥þm2

i Þ=2
q

;pi;⊥): ð27Þ

Then momentum conservation gives us

Xm
i¼2

pi;⊥ ¼ −p1;⊥;

Xm
i¼1

eyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2i;⊥ þm2

i Þ=2
q

¼ ξaP
þ
A ;

Xm
i¼1

e−yi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2i;⊥ þm2

i Þ=2
q

¼ ξbP−
B: ð28Þ

2. Infrared safety

For the factorization to work, the observable should be
infrared safe. The basic physical idea for this was introduced
by Sterman and Weinberg (1977). We will follow the develop-
ment of Kunszt and Soper (1992) and define what we mean by
measuring the cross section for an observable F and what it
means for F to be infrared safe. To keep the discussion simple,
we temporarily assume that all of the partons involved are
light quarks and gluons, which we consider to be massless,
and that the observable does not distinguish the flavors of the
partons. For this simple case, we express the parton-level cross
section for an observable F using the definition

σ̂ab½F� ¼
1

2!

Z
dy1dy2dp2;⊥

dσ̂2
dy1dy2dp2;⊥

F2ðp1;p2Þ

þ 1

3!

Z
dy1dy2dy3dp2;⊥dp3;⊥

×
dσ̂3

dy1dy2dy3dp2;⊥dp3;⊥
F3ðp1;p2;p3Þþ �� � : ð29Þ

Here we start with the cross section to producem partons with
momenta fp1;…; pmg. We multiply the cross section by a
function Fmðp1;…; pmÞ that specifies the measurement that
we want to make on the final-state partons. These functions
are taken to be symmetric under interchange of their argu-
ments. Accordingly, we divide by the number m! of permu-
tations of the parton labels. We integrate over the momenta of
the final-state partons. The transverse momentum of parton 1
and the needed momentum fractions for the incoming partons
are determined by Eq. (28). Finally, we sum over the number
m of final-state partons.
An example may be useful. If we want to evaluate the cross

section for the sum of the absolute values of the transverse
momenta of the partons to be bigger than 100 GeV, then we
choose a step function Fm ¼ θðPm

i¼1 jpi;⊥j > 100 GeVÞ.
More generally, the Fm for jet cross sections are made of
step functions and delta functions constructed according to the
jet algorithm used.
Infrared safety is a property of the functions Fm that relates

each function Fmþ1ðp1;…; pm; pmþ1Þ to the function
Fmðp1;…; pmÞ with one fewer parton. There are two require-
ments needed for F to be infrared safe.
First, consider the following limit in which partons mþ 1

and m become collinear:

pmþ1 → zp̃m;

pm → ð1 − zÞp̃m: ð30Þ

Here p̃m is a lightlike momentum and 0 ≤ z ≤ 1. Therefore,
pm þ pmþ1 → p̃m. We can concentrate only on partons with
labelsmþ 1 andm because the functions F are assumed to be
symmetric under interchange of the parton labels. For F to be
infrared safe, we demand that

Fmþ1ðp1;…;pm−1;pm;pmþ1Þ→Fmðp1;…;pm−1; p̃mÞ ð31Þ

in the collinear limit [Eq. (30)].
Second, also consider the following limit in which parton

m þ 1 becomes collinear to one of the beams:

pmþ1 → λPA ð32Þ

or

pmþ1 → λPB: ð33Þ

Here λ ≥ 0. When λ ¼ 0, parton mþ 1 is simply becoming
infinitely soft. For F to be infrared safe, we demand that

Fmþ1ðp1;…; pm; pmþ1Þ → Fmðp1;…; pmÞ ð34Þ

in either limit (32) or limit (33).
When the partonic masses are negligible, infrared safety

means that the result of the measurement is not sensitive to
whether or not one parton splits into two almost collinear
partons, and it is not sensitive to any partons that have small
momenta transverse to the beam directions.
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Sometimes an observable F with this property is referred to
as infrared and collinear safe instead of just infrared (IR) safe.
The meaning is the same.
Cross sections to produce jets are infrared safe as long

as we use a suitable algorithm, encoded in the functions
Fm, to define jets. However, the cross section to produce a jet
containing a specified number of charged particles would not
be infrared safe: a collinear splitting of a gluon to a quark plus
an antiquark increases the number of charged particles by 2.
In Eq. (29), we have cross sections to produce specified

partons. This is the formula that we use to construct σ̂ab½F� on
the right-hand side of Eq. (25). On the left-hand side of
Eq. (25), we measure the cross section σ½F� experimentally by
using the same functions Fm applied to hadrons instead of
partons. Relating a hadron cross section to a parton cross
section is evidently an approximation, so there is an error in
Eq. (25) no matter how many orders of perturbation theory we
use in the calculation. The physical idea is that the infrared-
safe measurement involves a large scale Q, which is incorpo-
rated into the functions Fm. Processes that involve scales M
with M ≪ Q do not substantially affect the measurement. In
particular, combining partons to form hadrons involves scales
M ∼ 0.3 GeV. Thus, turning partons into hadrons does not
substantially affect a measurement with a much larger scaleQ.
While we can best understand the idea of IR safety by

sticking to massless partons and flavor-independent measure-
ment functions, it is important to keep in mind that a quark
does have a mass, however small or large; QCD factorization
need not assume that the partons are massless. For quark
masses mi that are small compared to the scale Q of the
measurement that we have in mind, we amend the definition
of infrared safety of the functions Fm to include taking the
limit mi → 0. Sometimes a quark mass is comparable to the
scale Q. For instance, this typically applies to top quarks. It
also applies to, say, charm quarks when we takeQ to be only a
couple of GeV. In such cases, we need not consider limits
mi → 0 for “heavy” quarks and can operate with parton
distribution functions only for the “light” quarks; see
Sec. II.C.

3. Factorization

With the needed preparation accomplished, we can now
state how the PDFs are used to calculate the cross section for
whatever observable F we want, as long as F is infrared safe.
For this condition to apply, the observable F must be
sufficiently inclusive. The formula we use was stated in
Eq. (25), and we restate it here in a slightly more detailed
form:

σ½F� ¼
X
a;b

Z
dξa

Z
dξb fa=Aðξa; μ2FÞfb=Bðξb; μ2FÞ

× σ̂a;b;ξa;ξb;μ2F ½F� þOðM=QÞ: ð35Þ

Our convention in Eq. (35) is to use the name μF, the
“factorization scale,” for the scale parameter in the parton
distribution functions. The physical cross section cannot
depend on μF, so σ̂ must also depend on μF. Note that in
Eq. (35), we have not yet expanded in powers of αs.

The intuitive basis for Eq. (35) is simple. The factor
fa=Aðξa; μ2FÞdξa plays the role of the probability to find a
parton of flavor a in a hadron of flavor A. For the other hadron,
the corresponding probability is fb=Bðξb; μ2FÞdξb. Then σ̂½F�
plays the role of a cross section to obtain the observable F
from the scattering of these partons, as given in Eq. (29).
Naturally, this parton-level cross section depends on the
parton variables a, b, ξa, ξb, as indicated by the subscript
notation. Here the differential cross sections to produce m
final-state partons contain delta functions that relate the
momentum fractions ξa and ξb to the final-state parton
momenta, according to Eq. (28).
A similar formula applies for lepton-hadron scattering, a

process that provides important constraints on the PDF
parametrizations; see Sec. II.D. Then there is only one hadron
in the initial state, so the following formula is simpler:

σ½F� ¼
X
a

Z
dξ fa=Aðξ; μ2FÞσ̂a;ξ;μ2F ½F� þOðM=QÞ: ð36Þ

The cross section σ̂½F� in Eq. (35) [or Eq. (36)] has a
perturbative expansion in powers of αsðμ2RÞ, where the
renormalization scale μ2R can be chosen independently from
the factorization scale μ2F. That is,

σ̂a;b;ξa;ξb;μ2F ½F� ¼
�
αsðμ2RÞ
2π

�
B

σ̂ðBÞa;b;ξa;ξb;μ2F;μ
2
R
½F�

þ
�
αsðμ2RÞ
2π

�
Bþ1

σ̂ðBþ1Þ
a;b;ξa;ξb;μ2F;μ

2
R
½F� þ � � � : ð37Þ

Here B is the integer that tells us how many powers of αs
appear in the Born-level cross section: e.g., 0 for Z boson
production, and 2 for two jet production. Perturbative calcu-
lations can be at lowest order (LO), corresponding to one term
in the expansion, next-to-lowest order (NLO) with two terms,
sometimes NNLO, and, in general, NkLO.
When σ̂ is expanded in powers of αs, as in Eq. (37), our

convention is to use the name μR, the “renormalization scale,”
for the scale parameter in αs. The physical cross section
cannot depend on μR, so the functions σ̂Bþk in Eq. (37) must
also depend on μR. (Other conventions for the precise meaning
of μF and μR are possible.)
One useful property of Eqs. (36) and (37) is that the

dependence of the calculated cross section on μ2F and μ2R
diminishes as we go to higher orders. Indeed, the cross section
in nature, σ½F�, does not depend on μ2F or μ2R. Thus, if we
calculate to order αBþk

s , the derivative of the calculated cross
section with respect to μ2F and μ2R is of order αBþkþ1

s . Because
of this property, one often uses the effect of varying μF or μR
by a fixed factor (e.g., 2 or 1=2) to provide an estimate of the
error caused by calculating only to a finite perturbative order.
Note that, for terms of the order of αBþk

s in σ̂ to match the
terms of the order of αks in the evolution equation for the parton
distributions, we need to include at least the terms up to

αksP
ðkÞ
aâ ðzÞ in Eqs. (23) and (24) giving the evolution of the

PDFs. Since the lowest-order term in the evolution kernel is

Pð1Þ
aâ ðzÞ, including terms up to PðkÞ

aâ ðzÞ is referred to as Nk−1LO
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evolution, while we say that including terms up to αBþk
s in the

partonic cross section gives an NkLO calculation. Thus, for
example, if we have a NNLO cross-section calculation, we do
not obtain the proper matching for the μF scale dependence
unless we have at least NLO evolution for the PDFs.
Normally, one uses even higher-order evolution for the
PDFs because this evolution determines the accuracy with
which we know the PDFs at a high scale, given experimental
inputs at much lower scales.
The error terms OðM=QÞ in Eqs. (35) and (36) arise from

power-suppressed contributions that are beyond the accuracy
of the factorized representation (Collins, Soper, and Sterman,
1983, 1985, 1988; Bodwin, 1985; Collins, 1998, 2013). No
matter how many terms are included in σ̂, there are
contributions that are left out. These terms are suppressed
by a power of M ∼ 1 GeV divided by a large scale parameter
Q that characterizes the hard scattering process to be
measured. Here we choose 1 GeV as a nominal scale for
hadronic bound state physics. This value is somewhat
smaller than the scale μ at which αsðμ2Þ ¼ 1=2, somewhat
larger than the proton mass and about 4 times larger than the
inverse of the radius of a proton.
When data are included in a PDF fit but, for these data,

M=Q is not small enough to be completely negligible, it
may be useful to include a nonperturbative model for the
power-suppressed corrections. The model can have one or
more parameters that can be fit to the data. For instance,
one can add a contribution to the cross section that is
proportional to κ2=Q2, where κ is a parameter to be fit.
This possibility is especially relevant for deeply inelastic
scattering (see Sec. II.D), for which one can make use of a
theoretical expansion known as the operator product
expansion (Wilson, 1969) to suggest the form of the first
power-suppressed contribution; see such fits, for example,
in Alekhin, Blumlein, and Moch, 2012 and Alekhin
et al. (2017).
The power-suppressed contributions in Eq. (35) arise from

the approximations needed to obtain the result. For instance, if
a loop momentum l flows through the wave function of quarks
in a proton, we have to neglect l compared to the hard
momenta, say, the transverse momentum of an observed jet.
We can illustrate the issue of power corrections and, at the
same time, see something about the interplay of ultraviolet and
infrared singularities by looking at a simple model for an
integral that might occur in a calculation.
Consider a model integral for a correction to the Born cross

section for a process involving only one initial-state hadron. In
this model, the Born cross section is

IBorn ¼
Z

∞

0

dl2jψðl2Þj2 × 1; ð38Þ

where l2 represents the transverse momentum of a quark that
is restricted to be of the order of 1 GeV2 by a hadronic wave
function jψðl2Þj2. The Born-level PDF is

R∞
0 dl2jψðl2Þj2. The

Born hard scattering function is simply 1. At order αs, we
should have an αs correction to the Born PDF times the Born
hard scattering function, plus the Born PDF times an αs
correction to the hard scattering function.

In our model, the order αs correction to the cross section is

I ¼
Z

∞

0

dl2jψðl2Þj2αs
Z

∞

0

dk2
�
μ2F
k2

�
ϵ 1

k2 þ l2
Q2

k2 þQ2
: ð39Þ

Here Q2 is the “hard scale,” with l2 ≪ Q2. We supply a factor
½μ2F=k2�ϵ that mimics dimensional regularization in n ¼ 4 − 2ϵ
dimensions. This integral is, however, convergent in the
IR and in the UV, so we could simply set ϵ → 0 after its
computation.
For k2 ≫ l2, we could approximate 1=ðk2 þ l2Þ → 1=k2.

This would define a part of the integral I that represents the
probability distribution jψðl2Þj2 times an order α1s contribution
to the hard scattering function,

IUV ¼
Z

∞

0

dl2jψðl2Þj2αs
�Z

∞

0

dk2
�
μ2F
k2

�
ϵ 1

k2
Q2

k2þQ2
þ1

ϵ

�
:

ð40Þ

The integral is IR divergent. We have subtracted its IR pole,
which is proportional to −1=ϵ.
For k2 ≪ Q2, we could approximate Q2=ðk2 þQ2Þ → 1.

The integral then defines an αs correction to the PDF times the
Born hard scattering function,

IIR ¼
Z

∞

0

dl2jψðl2Þj2αs
�Z

∞

0

dk2
�
μ2F
k2

�
ϵ 1

k2 þ l2
−
1

ϵ

�
× 1:

ð41Þ

The PDF integral is UV divergent, so we have “renormalized”
it by subtracting its UV pole, which is proportional to þ1=ϵ.
We can also use

I0 ¼
Z

∞

0

dl2jψðl2Þj2αs
Z

∞

0

dk2
�
μ2F
k2

�
ϵ 1

k2
¼ 0: ð42Þ

The k integral equals zero because it equals 1=ϵ − 1=ϵ.
A simple calculation using the integrands of our integrals

gives

I ¼ IUV þ IIR − I0 −
Z

∞

0

dl2jψðl2Þj2

×
l2

Q2
αs

Z
∞

0

dk2
�
μ2F
k2

�
ϵ 1

k2 þ l2
Q2

k2 þQ2
: ð43Þ

Thus, our integral can be decomposed into the UV integral
(including an IR subtraction), the IR integral (including its UV
renormalization subtraction), and a remainder that is sup-
pressed by a factor of l2=Q2, where l2 is of the order of
1 GeV2. This is the power-suppressed correction.
Notice that dimensional regularization with factorization

scale μ2F followed by subtracting 1=ϵ poles serves two
functions. The integral IUV in Eq. (40) is a model for how
one calculates the hard scattering function at NLO. This
integral has an IR divergence, which is removed by sub-
tracting its pole. This subtraction matches the subtraction
necessary to renormalize UV divergence in the correction to
the model parton distribution function in Eq. (41).
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This model calculation is somewhat misleading
because it suggests that PDFs have a useful perturbative
expansion. They do not. To compute a hard cross section
in real QCD, one can replace the distribution of partons in
a proton by the distribution of partons in a parton, which is
singular but perturbatively calculable; see Collins (2013)
for details.
Not much is known about the general form of the

power corrections for hadron-hadron collisions.6 It is
important that they are there, but if Q is of the order
of hundreds of GeV, then the power corrections are
completely negligible. However, if Q is of the order of
5 GeV, then we ought not to claim 1% accuracy in the
calculation of σ½F�, no matter how many orders of
perturbation theory we use.
Equation (35), representing inclusive collinear factori-

zation, is the basis of every prediction for hard processes at
hadron colliders like the LHC, including both standard
model processes and processes that might produce new
heavy particles. As far as we know, it is a theorem for
infrared-safe QCD observables dependent on energy-
momentum variables that are of the same order of
magnitude. There are other formulas in QCD that go
under the name of factorization and typically apply either
to amplitudes rather than cross sections or to observables
dependent on several momentum variables of disparate
orders of magnitude. These include kT factorization and
soft-collinear-effective-theory factorization. These other
forms of factorization may fail, thus requiring a more
complex analysis, or are at least more subject to doubt than
Eq. (35); see, for example, Collins and Qiu, 2007; Catani,
Florian, and Rodrigo, 2012; Forshaw, Seymour, and
Siodmok, 2012; Rothstein and Stewart, 2016; Schwartz,
Yan, and Zhu, 2018).
Early attempts to establish inclusive collinear factorization

(Amati, Petronzio, and Veneziano, 1978; Ellis et al., 1979)
were instructive but incomplete. Later proofs of Eq. (35)
(Collins, Soper, and Sterman, 1983, 1985, 1988; Bodwin,
1985; Collins, 1998) are far from simple. They could perhaps
benefit from more scrutiny than they have received. One issue
is that the published proofs have considered only the Drell-
Yan process, not more complex processes like jet production.
A more serious issue is that there is no known general method
that can deal with the boundaries between integration regions
in the Feynman diagrams. On the other hand, any breakdown
in the inclusive collinear factorization in Eq. (35) could lead to
infinities in calculations of σ̂, and no problems have been
observed to date even in N3LO calculations (Anastasiou
et al., 2015).

C. Treatment of heavy quarks

To accurately describe data at energies from one to
thousands of GeV, modern global PDF fits not only change
the number Nf of active flavors depending on the scales μ2R;F
but also retain relevant quark mass dependence in the hard
scattering cross sections. The most comprehensive approach

to do this is to work in one of the GM-VFN factorization
schemes (Aivazis et al., 1994; Buza et al., 1998; Thorne and
Roberts, 1998; Chuvakin, Smith, and van Neerven, 2000;
Kramer and Spiesberger, 2004; Kniehl et al., 2005a, 2005b;
Thorne, 2006; Forte et al., 2010. The massive fixed-flavor
number schemes Gluck, Hoffmann, and Reya, 1982; Gluck,
Godbole, and Reya, 1988) are also applicable under the right
circumstances and may result in simpler predictions. Such
computations are a complex subject that we cannot cover in
any depth here. We illustrate some of the key ideas by mostly
following Krämer, Olness, and Soper (2000).
Consider the perturbative calculation of an infrared-safe

cross section σ with scaleQ2 whenQ2 ≫ m2
i , where i denotes

any of the u, d, s, c, and b quarks. We can greatly simplify this
calculation by neglecting masses of the five quarks. But what
if Q is high enough and we expect that top quarks contribute
either in the final state or in the virtual loop corrections? We
rarely can set mt ¼ 0, as mt ≈ 174 GeV is so large that we
seldom have Q2 ≫ m2

t , even at the LHC.
There is a simple answer: in the range of energies

comparable to mt, we can use the MS scheme with five
active quark flavors u, d, s, c, and b. Top quarks are
included in the relevant Feynman graphs, but in accord
with the Collins-Wilczek-Zee (CWZ) prescription (Collins,
Wilczek, and Zee, 1978) we use the zero-momentum
subtraction, instead of MS subtraction, for the UV renorm-
alization of loop subgraphs with top-quark lines. Then,
terms involving mt appear only in the hard cross section σ̂
of Eq. (35).
One consequence of this is that the evolution equation for

αsðμ2RÞ uses the five-flavor beta function. Radiative contribu-
tions to the top-quark mass also need to be renormalized, as
discussed later. The five-flavor scheme introduces nonzero
PDFs fi=pðξ; μ2FÞ for i ∈ fg; u; ū; d; d̄;…; b; b̄g. There are no
parton distributions for i ¼ t or i ¼ t̄ in this scheme. The PDFs
fi=pðξ; μ2FÞ are as previously defined and evolve using five-
flavor DGLAP kernels. Another (not obvious) result is that top-
quark contributions are negligible in the limitQ2 ≪ m2

t : that is,
top quarks decouple when the momentum scale Q of the
problem is much smaller than the top-quark mass.
In a general case, we can distinguish among several

versions of an Nf-flavor scheme. In the zero-mass (ZM)
scheme, only the Feynman graphs with massless active quarks
qi with i ≤ Nf are included in σ̂ in the factorized hadronic
cross section (35). In the fixed-flavor number (FFN) scheme,
the massless active quark contributions for i ≤ Nf are
included as in the ZM scheme, and the Feynman graphs with
massive inactive (anti)quarks qi with i > Nf are included only
in the hard cross section σ̂. Finally, the most complete GM
scheme retains non-negligible quark mass terms from both
active and inactive quarks in all parts of the hadronic cross
section.
When discussing the region Q2 ≫ m2

b, we can use the five-
flavor FFN scheme and set masses of u, d, s, c, and b quarks
to zero. Consider now the regionQ2 ∼m2

b andQ
2 ≫ m2

c. Here
we can use the four-flavor FFN scheme. There are parton
distributions for flavors u, d, s, and c, and these quarks are
considered massless, while there are no parton distributions
for b and b̄. In fact, the four-flavor scheme is also fine for the6See, however, Qiu and Sterman (1991a, 1991b).
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subregion of Q2 ≫ m2
b in which αs logðQ2=m2

bÞ ≪ 1, where
we do not need to sum logs of Q2=m2

b.
7

We now have two possible FFN schemes for calculating a
cross section at m2

b=Q
2 ≪ 1, but αs logðQ2=m2

bÞ ≪ 1: the

five-flavor scheme with αð5Þs ðμ2Þ and fð5Þi=pðξ; μ2Þ, and the four-
flavor scheme with αð4Þs ðμ2Þ and fð4Þi=pðξ; μ2Þ. (Here we set

μ2R ¼ μ2F ¼ μ2.) The physical predictions must be the same,
order by order in αs, in either scheme. This condition gives us
matching relations between αs and the PDFs in the four-flavor
and five-flavor schemes. At lowest order in αs, these relations

are simple. We should not use αð5Þs ðμ2Þ or fð5Þi=pðξ; μ2Þ for

calculating physical cross sections unless μ2 ≫ m2
b, but if we

simply use their analytic forms for μ2 ¼ m2
b, we have

αð5Þs ðm2
bÞ ¼ αð4Þs ðm2

bÞ;
fð5Þi=pðξ; m2

bÞ ¼ fð4Þi=pðξ; m2
bÞ for i ∉ fb; b̄g;

fð5Þb=pðξ; m2
bÞ ¼ fð5Þ

b̄=p
ðξ; m2

bÞ ¼ 0: ð44Þ

At higher orders of αs, f
ð5Þ
b=pðξ; m2

bÞ ≠ 0, and the matching

conditions are different and depend on whethermb is an MS or
pole mass (Buza et al., 1996; Bierenbaum, Blumlein, and
Klein, 2007; Ablinger et al., 2017). Then, to obtain the

fð5Þi=pðξ; μ2Þ for μ2 > m2
b, we solve the Nf ¼ 5 evolution

equation with a boundary condition [Eq. (44)] at μ2 ¼ m2
b.

One can also use a different scale μ2b ≠ m2
b, as well as

alternative presriptions, for the matching (Bertone et al.,
2017, 2018; Kusina et al., 2013).
We can derive analogous matching relations between the

three-flavor and four-flavor schemes at μ ¼ mc ≈ 1.3 GeV.
The full range μ2 ≥ m2

c is then described by a sequence of the
schemes with Nf ¼ 3, 4, and 5 that together compose a VFN
scheme.
The scheme described thus far is conceptually simple but

involves awkward switches between different values of Nf at
still unspecified energy values. For instance, suppose we wish
to switch between the Nf ¼ 3 FFN calculation and the
Nf ¼ 4 calculation at a switching value μ ¼ Q≡ μ4 some-
where above mc. At the corresponding value of Q ¼ μ4, the
calculated cross section is discontinuous, which is detrimental
in a PDF fit. If μ24 is too close to m2

c, the Nf ¼ 4 FFN cross
section misses important terms proportional to m2

c. If μ24 is too
far above m2

c, the missing higher-order collinear logarithms
αs logðQ2=m2

cÞmake the Nf ¼ 3 FFN cross section unreliable
in the upper range of Q.
To avoid this, many global fits use some version of a GM-

VFN scheme; see the previous references. These schemes
allow for Nf switching exactly at the corresponding quark
mass, μi ¼ mi, and they achieve a smooth interpolation

between the switching points. In such a scheme, one retains
numerically non-neglible masses for any quark type in σ̂. For
instance, the ZM-VFN and GM-VFN schemes differ only in
the treatment of the terms of the order of Oðm2

i =Q
2Þ in the

short-distance cross sections. They have the same mass
dependence of PDFs. We are simply including the essential
Oðm2

i =Q
2Þ terms in σ̂.

The logic that we just outlined is closely followed by the
simplified Aivazis-Collins-Olness-Tung (S-ACOT) scheme
(Aivazis et al., 1994; Krämer, Olness, and Soper, 2000). It
was proved to all αs orders by Collins (1998) and applied in
DIS up to NNLO (Guzzi et al., 2012) for use in fits by the
CTEQ-TEA Collaboration. In the ACOT family of schemes,
the flavor number in αs, masses, and PDFs is varied according
to the CWZ prescription. Other GM-VFN schemes are
perturbatively equivalent to the (S-)ACOT scheme.
Comparisons between the GM-VFN approaches were made
by Alekhin et al. (2010), Binoth et al. (2010), Guzzi et al.
(2012), and Gao, Harland-Lang, and Rojo (2018).
We have discussed variable-flavor-number schemes with up

to five active flavors. At a 100 TeV collider, introduction of a
top-quark PDF may also be warranted; see Sec. III.D in
Mangano et al. (2017). Groups doing global fitting often also
present PDFs determined in fixed-flavor number schemes.

1. Heavy-quark masses

All nonzero quark masses in the calculation require
renormalization. Either the heavy-quark MS masses or the
pole masses provided by Tanabashi et al. (2018) are used as
input parameters when fitting the PDFs. Their values can even
be extracted from PDF fits (Gao, Guzzi, and Nadolsky, 2013;
Ball et al., 2016; Alekhin et al., 2017; Gizhko et al., 2017).
The MSmass for a charm quark is better defined in PQCD and
more precisely constrained by the world data. On the other
hand, some PQCD calculations in the global fits use the pole
mass as the input. Perturbative relations to convert the MS
mass into the pole mass, or back, are known to a high order in
PQCD (Chetyrkin, Kuhn, and Steinhauser, 2000).

2. Fitted charm quarks

The PDF for charm quarks is of special interest. Consider
first the most standard treatment. Suppose, hypothetically,
that we have data for a cross section at a scale Q around mc,
and that in this cross section the hard interaction produces a
charm quark and an antiquark in the final state. The three-
flavor scheme is useful for predicting this cross section,

containing nonperturbative parametrizations of fð3Þi=pðξ; μ20Þ
for i ∈ fg; u; ū; d; d̄; s; s̄g. There is no PDF for charm quarks.
If we now change to a four-flavor scheme, we have PDFs

fð4Þi=pðξ; μ2Þ for i ∈ fg; u; ū; d; d̄; s; s̄; c; c̄g. These would be
obtained by matching to the three-flavor PDFs at scale
μ2 ¼ m2

c. For the charm quark, the matching gives

fð4Þc=pðξ; m2
cÞ ¼ 0 at leading order. Matching gives us what

may be called perturbative charm because the charm PDF for
μ2 > m2

c is produced solely by the perturbative matching and
DGLAP evolution.

7One can also use a three-flavor FFN scheme. For instance, this
schemewas used for fitting c-quark and b-quark production in deeply
inelastic scattering by Alekhin et al. (2017). It introduces PDFs for u,
d, and s quarks, which are treated as massless. The c and b quarks
appear, with their masses, in σ̂.
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Note that the leading-order 3 → 4 matching condition

fð4Þc=pðξ; m2
cÞ ¼ 0 can be traced to the assumption that the

power-suppressed corrections of the order of M2=m2
c to a

hypothetical cross section at Q2 ∼m2
c would be negligible. If

we think that this is perhaps not the case, we could allow

fð4Þc=pðξ; m2
cÞ to be nonzero. Then solving the DGLAP evolu-

tion equation with the boundary condition at μ2 ¼ m2
c would

result in a possibly nonzero value of fð4Þc=pðξ; m2
cÞ, which in turn

influences the prediction of experimental results at scales Q2

larger than m2
c, even Q2 ≫ m2

c. If we put these experimental

results into the PDF-fitting program, we can fit fð4Þc=pðξ; m2
cÞ.

This gives us fitted charm.
The logic of fitted charm just outlined implies that if we do

consider experiments at Q2 ∼m2
c, we should allow for fitted

nonperturbative charm quark contributions to the predictions
for these experiments. If we use a four-flavor scheme with
mc ≠ 0 as described later, these contributions can come from

fð4Þc=pðξ; μ2Þ for μ2 ∼m2
c.

Representative Feynman diagrams that contribute to the
fitted component of the charm PDF were given by Hou et al.
(2018) in their Fig. 3. These diagrams introduce contributions
of the order of OðM2=m2

cÞ to the charm PDF. The available
data can accommodate or even mildly prefer contributions

fð4Þc=pðξ; m2
cÞ carrying up to about 1% of the net proton’s

momentum (Jimenez-Delgado et al., 2015; Ball et al., 2016;
Hou et al., 2018).

D. Deeply inelastic scattering

We conclude the theory overview with a discussion of DIS
lðkÞ þ AðpAÞ → l0ðk0Þ þ X, an important class of processes
for the determination of PDFs (Devenish and Cooper-Sarkar,
2004). Here l and l0 can be electrons, neutrinos, or muons
with specified momenta k and k0. Hadron A is a proton,
nucleus, or pion with momentum pA, and X stands for
unobserved particles. The interaction between the leptons
and the hadron proceeds with an exchange of a virtual γ�, Z, or
W boson with momentum q ¼ k − k0.
Not only were the measurements in DIS historically

influential in the development of QCD, while diverse DIS
data from HERA and fixed targets still serve as the backbone
for global fits, but projections (Abdul Khalek et al., 2018;
Hobbs et al., 2019) also show that DIS data will continue
to provide essential constraints on the PDFs in the high-
luminosity LHC era.
It is conventional to define three Lorentz-invariant

variables,

Q2 ¼ −q2; xbj ¼
Q2

2PA ⋅ q
; y ¼ PA ⋅ q

PA ⋅ k
: ð45Þ

“Deeply inelastic” means that Q2 ≫ 1 GeV2 and that xbj is
not too small or too close to 1. The use of the variable xbj was
first suggested by Bjorken (1969), who proposed that the cross
section would have simple properties in the deeply inelas-
tic limit.

If only the final-state lepton is observed, one often writes
the spin-independent cross section as a linear combination of
three structure functions F1ðxbj; Q2Þ, F2ðxbj; Q2Þ, and
F3ðxbj; Q2Þ. To determine the Fi’s, one needs data from
two c.m. energies

ffiffiffi
s

p
. Otherwise, an approximate assumption

is needed to extract the Fi. The structure function F3 is
nonzero only if the current violates parity.
The structure functions can be written in terms of PDFs in

the form

Fiðxbj; Q2Þ ¼
X
a

Z
dξ fa=Aðξ; μ2ÞF̂i;a

�
xbj
ξ
;
μ2

Q2

�

þOðM=QÞ; ð46Þ

where M ∼ 1 GeV. Usually, one chooses μ2 ¼ Q2. This is
really just another form of Eq. (36). It offers one nice result. In
eA scattering with a virtual photon exchange from the
electron, at lowest order in αs, F̂2 contains a delta function
that sets ξ → xbj:

F2ðxbj; Q2Þ ≈
X
i

Q2
i xbjfiðxbj; Q2Þ; ð47Þ

whereQi is the electric charge (in units of e) of partons of type
i: Qu;c;t ¼ 2=3, and Qd;s;b ¼ −1=3. Because of the charge
factorsQ2

i , neutral-current DIS via photon exchange is about 4
times more sensitive to up-type (anti)quark PDFs than to
down-type ones. It is more difficult for DIS to constrain the d-
quark and especially s-quark PDFs, so the uncertainties on
these flavors tend to be higher than for u and c PDFs, as we
see in Fig. 1. We caution, however, that the simple result in
Eq. (47) does not hold beyond the lowest order, and that the
structure functions are not to be confused with PDFs.
Note that we have used ξ for the momentum fraction

argument of PDFs and xbj for the kinematic variable defined
in Eq. (45). In the particle physics literature, one often sees the
notation x used for the PDF momentum fraction argument ξ.
In fact, we sometimes use x with this meaning in this review.
We generally use xbj and not simply x for the kinematic
variable defined in Eq. (45).

III. STATISTICAL INFERENCE IN FITTING THE PARTON
DISTRIBUTIONS

In this section, we derive the key statistical results relevant
for the extraction of the PDFs from the experimental data. We
use the simplest possible framework, in which experimental
errors can be approximated as having a Gaussian distribution,
and the theoretical predictions are approximated as linear
functions of the parameters used to describe the parton
distribution functions. This framework is sometimes called
the Hessian method (Pumplin et al., 2001) since a certain
matrix called the Hessian matrix plays a prominent role. The
Hessian approach is motivated by the observation that many
essential features of the PDF fits are captured by assuming
an approximately Gaussian behavior of the underlying
probability distribution of the experimental data. The PDF
functional forms can be determined (inferred) from the
experimental data by applying Bayes’s theorem (Alekhin,
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1999), as is summarized in Sec. III.A. The Hessian approxi-
mation provides a simplified solution to the problem of
Bayesian inference when the PDFs are well constrained,
and the deviations from the most likely solution for PDFs
are relatively small. The only nonstandard feature that we add
is the inclusion of a set of parameters Rk that represent the
possibility that the theory, with an ideal choice of parameters
for the PDFs, is not perfect and may not fit the data exactly.

A. Bayes’s theorem

Fitting parton distributions to data involves accounting for
the statistical and systematic errors in the data. Thus, we need
a statistical analysis. For this, we use a Bayesian framework in
this review. The alternative is a frequentist framework, but we
find that the Bayesian framework is simple to understand and
makes us more aware of assumptions that otherwise remain
obscure.
We begin with Bayes’s theorem. At its base, this is a simple

matter of counting. Consider a population in which each
individual can have one or both of two characteristics T1 and
D. For a concrete example, the population might consist of
people in California. T1 might be “has a certain genetic
marker,” while D might be “tests positive for this genetic
marker.” Denote by PðT1Þ the probability that an individual
has the characteristic T1. That is, PðT1Þ is the number of
individuals with the characteristic T1 divided by the total
number of individuals. Similarly, let PðDÞ be the probability
that an individual has the characteristicD. Denote by PðT1jDÞ
the conditional probability that an individual who is known to
have the characteristic D has the characteristic T1. That is,
PðT1jDÞ is the number of individuals with both characteristics
T1 and D divided by the number of individuals with the
characteristic D. Similarly, let PðDjT1Þ be the conditional
probability that an individual who is known to have the
characteristic T1 has the characteristic D. With these defi-
nitions, we have Bayes’s theorem

PðT1jDÞPðDÞ ¼ PðDjT1ÞPðT1Þ: ð48Þ

By evaluating the likelihood PðDjT1Þ according to an explicit
prescription presented in Sec. III.B and by having estimates
for PðDÞ and PðT1Þ, we could infer the “posterior probability”
PðT1jDÞ by rearranging the factors in Eq. (48) as follows:

PðT1jDÞ ¼ PðDjT1ÞPðT1Þ
PðDÞ : ð49Þ

Now consider another characteristic T2, for instance, “does
not have the genetic marker.” Then Bayes’s theorem gives us

PðT1jDÞ
PðT2jDÞ ¼

PðDjT1Þ
PðDjT2Þ

PðT1Þ
PðT2Þ

: ð50Þ

Note that PðDÞ cancels in this equation. If we know
the quantities on the right-hand side of Eq. (50), this
tells us the relative probabilities of finding characteristics
T1 and T2 among individuals who are known to have the
characteristic D.

Equation (50) is directly applicable and useful in cases in
which there is a large number of individuals, and we know the
probabilities on the right-hand side of the equation. For
instance, a physician of a patient who tests positive for a
rare health condition will want to use Eq. (50) to help
prescribe a specific treatment to address the condition.
We do, however, use Eq. (50) in a more subtle case.

Suppose that there is only one individual. Suppose further that
you have a subjective belief, based on your prior experience,
that the probability that this individual has property Ti is
PðTiÞ for i ∈ f1; 2g. This “prior probability” could be formed
based on your past observations.
Now suppose that the individual is observed to have

property D. Assume that you know how to compute the
probability PðDjTiÞ for an individual to have property D if
the individual has property Ti. You can turn this knowledge
around with the help of Bayes’s theorem [Eq. (49)] to
calculate the probability PðTijDÞ for having property Ti on
the condition that the individual was observed to have
property D. You can also use Eq. (50) to compute the
“posterior probability ratio” PðT1jDÞ=PðT2jDÞ by multiply-
ing the prior probability ratio PðT1Þ=PðT2Þ, reflecting your
knowledge before the measurement, by the ratio PðDjT1Þ=
PðDjT2Þ of the likelihoods calculated for each property Ti.
Then you declare an updated prior probability ratio

�
PðT1Þ
PðT2Þ

�
new

≡ PðT1jDÞ
PðT2jDÞ ¼

PðDjT1Þ
PðDjT2Þ

�
PðT1Þ
PðT2Þ

�
old
: ð51Þ

In our physics application, T1 and T2 are possible theo-
retical models describing a physical system, or perhaps one
model of the system with two choices of parameters. Even
when we cannot interpret PðTiÞ by counting the number of
instances of the system in which Ti holds, we often have some
idea about which theory is more likely, and we express this
belief as the prior probabilities PðTiÞ. The prior probabilities
are often based on previous experiments but are partly
subjective. Thus, your prior probabilities may not be the
same as mine. Now we make a measurement and observe that
the system has a property D. With these new data in mind, we
update the probability ratio for the two theories according
to Eq. (51).
Your new estimate is still partly subjective and may not

agree with mine. However, as data accumulate, it frequently
happens that the subjective nature of our probabilities
ceases to really matter. Suppose, for example, that your
prior probability ratio is PðT1Þ=PðT2Þ ¼ 10 and mine is
PðT1Þ=PðT2Þ ¼ 0.1. Then we do not agree which theory is
more likely. However, suppose that, after a lot of data
become available, the likelihood ratio for the data is
PðDjT1Þ=PðDjT2Þ ¼ 106. Then your posterior probability
ratio is PðT1jDÞ=PðT2jDÞ ¼ 107, while mine is PðT1jDÞ=
PðT2jDÞ ¼ 105. Both ratios are large and strongly disfavor
theory T2 in comparison to theory T1. At this point, I agree
that you are right and we stop discussing the matter.
Notice that our subjective probability estimates

change by the same factor, equal to the likelihood ratio
PðDjT1Þ=PðDjT2Þ. We agree on this factor because we agree
on the data D as well as on the calculation. For the agreement

Kovařík, Nadolsky, and Soper: Hadronic structure in high-energy collisions

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045003-17



to be possible, the theories must be natural, in the sense that
the theory predictions T and, by extension, the probabilities
depending on them are smooth functions of theoretical
parameters. The technical reason is that estimation of corre-
lated uncertainties requires inversion of a large Hessian matrix
Hαβ constructed from derivatives ∂Tk=∂aα of model predic-
tions Tk with respect to parameters aα. This inversion is
numerically stable only if ∂Tk=∂aα are well behaved.
Naturalness is thus required for reliable estimates of the
probabilities and derived quantities, including the model-
discriminating ratios PðDjT1Þ=PðDjT2Þ and uncertainties
on the theoretical predictions.

B. Gaussian model for the distribution of data

We wish to fit parameters aα, α ∈ f1;…; NPg, to the data.
The data are given by values Dk, k ∈ f1;…; NDg. Each Dk
represents the number of counts divided by an integrated
luminosity in a certain bin of measured momenta in a certain
experiment that is included in the fit. In the Gaussian
approximation, we suppose that after accounting for exper-
imental errors the data have the form

Dk ¼ hDki þ σkΔk þ σk
X
J

βkJ λ̄J: ð52Þ

Here hDki is the value that the datum Dk would have if there
were no experimental uncertainties from either counting
statistics or systematic effects such as detector calibration.
The value σk is the statistical uncertainty (1 standard deviation
quoted in the data tables with the � sign) associated with Dk.
The variable Δk represents fluctuations in Dk from counting
statistics or other sources. In accord with our Gaussian
approximation, the Δk are normalized to be independent
Gaussian random variables with mean 0 and variance 1.
We use the notation N ð0; 1Þ for this distribution. In a typical
particle experiment, there can be experimental systematic
uncertainties, for example, associated with some imprecision
in measurements of luminosity or particle energies. In general,
the systematic uncertainties can be decomposed into two
types: random fluctuations that are fully uncorrelated point by
point and contribute to σkΔk in Eq. (52), and fully correlated
variations between the experimental data points, contributing
to the last term in Eq. (52). Then we would interpret σk as the
full uncorrelated uncertainty, composed from the uncorrelated
statistical and systematic uncertainties added in quadrature.
Let the number of sources of correlated systematic uncer-

tainties be Nλ. We represent the correlated systematic uncer-
tainties with a correlation matrix σkβkJ. This is a matrix with
indices k and J. There is no sum over k. Then in Eq. (52) there
is a sum over an index J that labels the sources of correlated
systematic uncertainties. The contribution to Dk from a
systematic source J is written as σkβkJ λ̄J, where λ̄J is an
independent random variable with an N ð0; 1Þ distribution.8

An example may be helpful. Each Dk is obtained by
dividing a number of counts by a measured value L0 of
the integrated luminosity L for the corresponding experiment.
There is some uncertainty in the luminosity measurement,
which we express by writing L ¼ L0 þ L0σLλ̄JL , where σL is
an estimated fractional uncertainty in the luminosity, JL is the
index we choose for this source of uncertainty, and λ̄JL is the
corresponding Gaussian random variable. Then in Eq. (52),

σkβkJL ¼ hDkiσL: ð53Þ

We refer to the random variables λ̄J as correlated systematic
error variables. They are analogous to the variables Δk, whose
fluctuations embody the uncorrelated errors. In one way of
analyzing the data, we do not try to determine the values of the
λ̄J. In another analysis, introduced in Sec. III.D, we introduce
nuisance parameters λJ that are intended to estimate the values
of the λ̄J.
The distribution of data D is given by noting that if f is a

function of the Δk and λ̄J, its expectation value is

hfi ¼ ð2πÞ−ðNDþNλÞ=2
Z

dNDΔ
Z

dNλ λ̄fðΔ; λ̄Þ

× exp

�
−
1

2

X
k

Δ2
k −

1

2

X
J

λ̄2J

�
: ð54Þ

Using Eq. (52) in Eq. (54) and observing that hΔki ¼ 0 and
hλ̄Ji ¼ 0, we see that the expectation value of Dk is the value
hDki that appears in Eq. (52). Then, using Eq. (52) in Eq. (54)
again and noting that hΔiΔji ¼ δij, hλ̄J λ̄Li ¼ δJL, and
hΔiλ̄Ji ¼ 0, we find that

hðDi − hDiiÞðDj − hDjiÞi ¼ C−1
ij ; ð55Þ

where

C−1
ij ¼ σiσj

�
δij þ

X
J

βiJβjJ

�
: ð56Þ

The matrix C−1 is the inverse of a matrix C that is called the
covariance matrix. When experimental systematic errors βiJ
are present, C is generally not a diagonal matrix.9 We can use
this simple result to show that if f is a function of the data Dk,
then its expectation value is

hfi ¼
ffiffiffiffiffiffiffiffiffiffi
detC

p

ð2πÞND=2

Z
dNDDfðDÞ

× exp

�
−
1

2

X
ij

ðDi − hDiiÞðDj − hDjiÞCij

�
: ð57Þ

This gives the probability density for the data Dk, with the
variables λ̄J integrated out.

8In general, both statistical and systematic uncertainties can be
asymmetric and can be quoted as such by the experimental groups. In
practice, neglecting the asymmetry has been often acceptable in the
PDF analyses.

9We note that if we start with the matrix C−1 instead of Eq. (52),
we can diagonalize C−1 to obtain a nonunique representation in the
form of Eq. (56), which is consistent with Eq. (52).
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The relation between Eqs. (55) and (57) is an important
general result that we can use whenever variables yi are
distributed in a generalized Gaussian fashion, that is, with a
probability density proportional to expð−P

yiyjMijÞ for a
matrix M. To prove it, we use Eq. (57) to compute
hðDi − hDiiÞðDj − hDjiÞi. We change variables in Eq. (57)

to xi¼ð ffiffiffiffi
C

p ÞijðDj−hDjiÞ.10 We use dNDD¼ð1= ffiffiffiffiffiffiffiffiffiffi
detC

p ÞdNDx.
Then the exponent is −1=2

P
ix

2
i . We then obtain hxkxli ¼ δkl,

which gives us the result in Eq. (55).

C. Determining theory parameters using χ 2

We now introduce the theoretical predictions TkðaÞ for
the data Dk. The prediction depends on some parameters a,
most notably the parameters of the PDFs. We define hDki
as the value of Dk if the experimental errors are negligible.
For a given choice of the parameters a, the theoretical
prediction may not be correct, but if the prediction is perfect
then TkðaÞ ¼ hDki.
If we substitute hDki → TkðaÞ into Eq. (57), we see that the

probability of obtaining the experimental results D if the
theory represented by TðaÞ is correct is

P(DjTðaÞ) ¼ dμðDÞ exp ½− 1
2
χ2ðD; aÞ�; ð58Þ

where

χ2ðD; aÞ≡X
ij

½Di − TiðaÞ�½Dj − TjðaÞ�Cij ð59Þ

and the data space measure is

dμðDÞ≡ ð2πÞ−ND=2
ffiffiffiffiffiffiffiffiffiffi
detC

p
dNDD: ð60Þ

Consider two choices a1 and a2 for the parameters. Suppose
that before seeing the experimental results D we judge the
probability that theory Tða1Þ is correct as P(Tða1Þ), and we
judge the probability that theory Tða2Þ is correct as P(Tða2Þ).
Perhaps these prior probabilities are based on previous
experiments, or perhaps they are based on some sort of
dynamical model of parton behavior. Whatever our prior
belief was, it should be modified after we know the exper-
imental results. Let the new probabilities based on the
experimental results D be P(Tða1ÞjD) and P(Tða2ÞjD),
respectively. Then Bayes’s theorem [Eq. (50)] gives us

P(Tða1ÞjD)

P(Tða2ÞjD)
¼ P(DjTða1Þ)

P(DjTða2Þ)
P(Tða1Þ)
P(Tða2Þ)

:

The information from experiment is contained in the like-
lihood ratio

P(DjTða1Þ)
P(DjTða2Þ)

¼ exp

�
−
χ2ðD; a1Þ − χ2ðD; a2Þ

2

�
: ð61Þ

Thus, χ2ðD; aÞ is the function that we need for parameter
estimation: differences in χ2 give us the likelihood ratio that

tells us how to adjust our judgments of which parameter
choices are favored using Bayes’s theorem [Eq. (50)]. The
maximum of the likelihood P(DjTðaÞ) with respect to a is
achieved at the global minimum of χ2ðD; aÞ.
We can use χ2ðD; aÞ as a measure of goodness of fit: the

theory matches the experimental results well when the
differences Di − TiðaÞ are small, meaning that χ2ðD; aÞ is
small. However, there are reasons to be critical of χ2ðD; aÞ as
the only measure of goodness of fit when the number ND of
data is large. We return to this question in Sec. IV.

D. Another definition of χ 2

Given a sample of data Dk, we can measure how well the
theory matches the data by the parameter χ2ðD; aÞ defined in
Eq. (59). We can rewrite Eq. (59) as

χ2ðD; aÞ ¼
X
ij

ðDi − hDiiÞðDj − hDjiÞCij

þ 2
X
ij

ðDi − hDiiÞ½hDji − TjðaÞ�Cij

þ
X
ij

½hDii − TiðaÞ�½hDji − TjðaÞ�Cij; ð62Þ

with the expectation value

hχ2ðD; aÞi ¼ ND þ χ2ðhDi; aÞ; ð63Þ

which we derive using Eqs. (59) and (55). This is minimized
when TiðaÞ ¼ hDii.
The function χ2ðD; aÞ is derived from the differential

probability P(DjTðaÞ) to obtain the data D if the theory
TðaÞ is correct; cf. Eq. (58). We can define another version of
χ2, based on the differential probability P(DjTðaÞ; λ) to
obtain the data D if the theory TðaÞ is correct and the random
systematic error variables λ̄ take the values λ̄J ¼ λJ. Using
Eqs. (54) and (52) with hDki replaced by TkðaÞ, this
probability is

P(DjTðaÞ;λ)¼ð2πÞ−ðNDþNλÞ=2
Z

dNDΔ
Z

dNλ λ̄

×exp

�
−
1

2

X
k

Δ2
k−

1

2

X
J

λ̄2J

�

×
Y
k

δ

�
Dk−

�
TkðaÞþσkΔkþσk

X
J

βkJ λ̄J

��

×
Y
J

δðλ̄J −λJÞ: ð64Þ

Performing the integrations, we have

P(DjTðaÞ; λ) ¼ ð2πÞ−ðNDþNλÞ=2
�Y

k

1

σk

�
exp ½− 1

2
χ2ðD; a; λÞ�;

ð65Þ

where

10We can define the matrix
ffiffiffiffi
C

p
because C is a real symmetric

matrix with all positive eigenvalues.
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χ2ðD; a; λÞ ¼
X
k

�
Dk − TkðaÞ

σk
−
X

I
βkIλI

�
2

þ
X
J

λ2J: ð66Þ

Then, as in Eq. (61), the information from experiment needed
to apply Bayes’s theorem to the determination of a and λ is
contained in the likelihood ratio

P(DjTða1Þ; λ1)
P(DjTða2Þ; λ2)

¼ exp

�
−
χ2ðD; a1; λ1Þ − χ2ðD; a2; λ2Þ

2

�
.

ð67Þ

Note that the parameters λJ are not necessarily equal to the
true systematic error variables λ̄J. Rather, the λJ are param-
eters that one can fit to the data Dk. The best-fit values of λJ
then approximate the true λ̄J. The λJ are called nuisance
parameters. We maximize the likelihood of obtaining the
observed data with parton parameters a and nuisance param-
eters λ by minimizing χ2ðD; a; λÞ with respect to a and λ.
The function χ2ðD; a; λÞ is useful if we want to use data to

estimate not only the true values of the parton parameters, ā,
but also the systematic error parameters λ̄. Since we are
normally not so interested in the λ̄ values, the function
χ2ðD; a; λÞ may seem less important than the function
χ2ðD; aÞ. However, the function χ2ðD; a; λÞ has the advantage
that it does not involve the covariance matrix Cij.
It is significant that if we fit values of λ by minimizing

χ2ðD; a; λÞ, we can obtain χ2ðD; aÞ. With the manipulations
outlined in the Appendix, we can write χ2ðD; a; λÞ in the
following instructive form:

χ2ðD; a; λÞ ¼
X
ij

½Di − TiðaÞ�½Dj − TjðaÞ�Cij þ
X
IJ

λ0Iλ0JBIJ;

ð68Þ

where C is the covariance matrix defined in Eq. (56), B is a
matrix with elements

BIJ ≡ δIJ þ
X
k

βkIβkJ; ð69Þ

and λ0 is a shifted version of λ

λ0I ¼ λI −
X
J

X
k

Dk − TkðaÞ
σk

βkJB−1
JI : ð70Þ

The minimum of χ2ðD; a; λÞ with respect to λ occurs when
λ0 ¼ 0, corresponding to λ ¼ λfit. Thus,

min
λ

χ2ðD; a; λÞ≡ χ2ðD; a; λfitÞ ¼ χ2ðD; aÞ: ð71Þ

The PDF-fitting groups use either form of χ2; see, for example,
the review of various conventions for χ2 in Appendix A of
Ball et al. (2013b).
In χ2ðD; aÞ, the experimental systematic errors are encoded

in the matrix C. This form is used, e.g., by the NNPDF
analyses. In χ2ðD; a; λÞ, we have the systematic errors
expressed explicitly using the parameters λ. This is the

convention adapted for the CTEQ analyses, starting with
CTEQ6 (Pumplin et al., 2002). There is then an extra termP

Jλ
2
J in χ2ðD; a; λÞ. We are instructed to fit the parameters λ

to the data by minimizing χ2ðD; a; λÞ. Later, we see how to fit
the theory parameters a by minimizing χ2ðD; aÞ with respect
to the parameters a. This is then equivalent to minimizing
χ2ðD; a; λÞ with respect to a and λ.
If we use χ2ðD; aÞ, then we do not need to be concerned

with the systematic error parameters λ̄. With χ2ðD; aÞ, we
have a matrix Cij. The fact that this matrix is not diagonal
indicates that the errors are correlated. The presence of Cij

makes the formulas a little complicated, but there are no real
conceptual complications: Cij acts as a metric tensor on the
space of the data, so one could think of uiCijvj as simply u ⋅ v.
The minimum of χ2ðD; a; λÞ occurs at values λfitJ of the

nuisance parameters. What is the relation between the λfitJ and
the systematic error variables λ̄J? The correlated error vari-
ables λ̄J influence the data Dk, but the uncorrelated error
variablesΔk also influence theDk data, and furthermore we do
not know the exact parton parameters aα, so one cannot expect
to recover the λ̄J exactly from the data. However, we see later
that the λfitJ approximate the λ̄J ones when there are many data
Dk and the parameters βkJ that give the influence of the λ̄J on
the data are not too small. Specifically, we will see that the λfitJ
approximate well the λ̄J ones when the matrix elements BIJ
are large. This happens when the sum over the data index k in
Eq. (69) includes many terms and the parameters βkI are not
too small.
The analysis is simple. We begin with χ2ðD; a; λÞ in

Eq. (66) and substitute in

Dk − TkðaÞ ¼ σkΔk þ σk
X
J

βkJ λ̄J − ½TkðaÞ − hDki� ð72Þ

from Eq. (52). This gives

χ2ðD; a; λÞ ¼
X
k

�
Δk þ

TkðaÞ − hDki
σk

−
X
J

βkJðλJ − λ̄JÞ
�
2

þ
X
J

λ2J: ð73Þ

The partial derivatives vanish at the best-fit λI ¼ λfitI ,

0 ¼ −
1

2

∂χ2
∂λI

				
λ¼λfit

¼
X
k

�
Δk þ

TkðaÞ − hDki
σk

�
βkI

− λ̄I −
X
J

BIJðλfitJ − λ̄JÞ; ð74Þ

so

λfitI − λ̄I ¼
X
J

B−1
IJ

�X
k

βkJ

�
Δkþ

TkðaÞ− hDki
σk

�
− λ̄J

�
: ð75Þ

On the right-hand side of Eq. (75), the λ̄J are of order 1, the
quantities TkðaÞ − hDki should be small if we use values of a
fit to the data, and, since the Δk are independent random
variables with N ð0; 1Þ distributions,

P
k βkJΔk should have
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fluctuations of the order of a typical βkJ coefficient times
the square root of the number of contributing indices k. Thus,
the quantity in brackets is not large. However, the matrix
elements B−1

IJ are small. Thus, we expect the quantity λfitI − λ̄I
to be small.
If we use χ2ðD; a; λÞ, then the treatment of the systematic

error parameters λ is similar to the treatment of the theory
parameters a. We obtain values λfit ≈ λ̄. The values λ̄ are, by
assumption, distributed according to the N ð0; 1Þ distribution.
Thus, the values λfit should be approximately distributed
with this distribution. In Sec. IV.E, we use this to test the
assumptions that we have used.
We can also consider the limit in which

P
k βkIβkJ is small

rather than large for some value of I and all values of J. Then
we have BIJ ≈ δIJ. This gives us

λfitI ≈
X
k

βkI

�
Δk þ

TkðaÞ − hDki
σk

�
: ð76Þ

Then λfitI is not approximately λ̄I but is instead quite small. The
test in Sec. IV.E suggests that this happens for some of the
nuisance parameters.

E. Dependence on the theory parameters

In Sec. III.C, we introduced theory predictions TkðaÞ for the
data Dk. The TkðaÞ depend on a number NP of parameters aα.
Now we suppose that in the neighborhood of the global χ2

minimum the functions TkðaÞ are approximately linear in the
parameters. To keep the notation as simple as possible, we
define the origin of the parameter space so that the neighbor-
hood of the global minimum is a region near a ¼ 0. That is, if
we are fitting a function xA1ð1 − xÞA2 for parameters fA1; A2g
and preliminary fits give A1 ≈ −1.3 and A2 ≈ 4.5, we define
the new parameters by A1 ¼ −1.3þ a1 and A2 ¼ 4.5þ a2.
Then we are interested in small values of fa1; a2g. We assume
for the purpose of examining the fitting procedure that the
following linear approximation is adequate:

TkðaÞ ¼ Tkð0Þ þ Tkαaα: ð77Þ

Here and to follow, we use the Einstein summation convention
for parameter indices α, β, etc.
Finding the best-fit PDFs does not typically rely on the

approximation (77) of linear dependence of TkðaÞ on the
PDF parameters a. However, the PDF error analysis using
the Hessian method does rely on this approximation. We adopt
it in this review. Using Eq. (77), we find that χ2 is a quadratic
function of the parameters a. In fact, within the range of a
important for the fit, this quadratic dependence is a reasonable
approximation, as one may note, for example, in Fig. 11 in
Sec. IV.I. One should be careful to check whether this
approximation is adequate in an actual fit; see Sec. IV.
When the statistical and systematic experimental errors that

contribute to the data in Eq. (52) vanish, the data Dk equal
their expectation values hDki. We suppose that there are ideal
values ā of the parton parameters, related to the expectation
values hDki of the data by

TkðāÞ ¼ hDki þ Rk: ð78Þ

We make the definition of the ideal parameters ā more precise
in Eq. (97). In Eq. (78), we include constants Rk that represent
imperfections in the theory, such that even when we use
parameters ā, the theory does not match hDki exactly. Of
course, one commonly assumes that the Rk are zero, but in this
review we want to at least consider the possibility that
something goes wrong. For example, the imperfections
represented by Rk could arise because we have omitted
higher-order contributions, there is beyond-the-standard-
model physics in the data but not in the theory, or the
parametrization that we use for the PDFs cannot match the
true PDFs exactly.
Another way to include imperfections in the theory is to

incorporate theory errors into the analysis. In Eq. (52), we can
set the expectation value hDki of the data in bin k to the cross
section in that bin calculated exactly in the standard model.
We call this exact cross section T̄kðāÞ so that Eq. (52) becomes

Dk ¼ T̄kðāÞ þ σkΔk þ σk
X
J∈E

βkJ λ̄J; ð79Þ

where E is the set of experimental systematic errors. Now we
do not have the exact prediction T̄kðāÞ available. All we have
is the cross section TkðāÞ calculated, say, at NNLO (but with
true PDF and related parameters ā). In the linear approxima-
tion that we use, we can parametrize our ignorance in the form

T̄kðāÞ ¼ TkðāÞ þ σk
X
J∈T

βkJ λ̄J; ð80Þ

where T is a set of sources of theory errors and the parameters
λ̄J are random variables that are chosen from a distribution
such as N ð0; 1Þ. Then the term σk

P
J∈T βkJ λ̄J is our estimate

of theory contributions to the true cross section T̄kðāÞ that are
not included in our NNLO calculation TkðāÞ. The parameters
βkJ represent our estimate of the dependence of T̄kðāÞ on the
Jth source of theoretical uncertainty. Of course, in reality only
one value λtrueJ of each λ̄J is realized in an exact calculation.
The Rk in Eq. (78) are then

Rk ¼ −σk
X
J∈T

βkJλ
true
J : ð81Þ

When we combine Eqs. (79) and (80), we obtain

Dk ¼ TkðāÞ þ σkΔk þ σk
X

J∈E∪T
βkJ λ̄J; ð82Þ

where both experimental systematic errors and our estimated
theory errors are now included. The representations of theory
errorswere discussed byOlness and Soper (2010), Cacciari and
Houdeau (2011), Gao (2011), Forte, Isgrò, and Vita (2014),
Abdul Khalek et al. (2019a), and Harland-Lang and Thorne
(2019). Until recently, PDF fits typically omitted theory errors.
In this review, we do not include theory errors and instead
represent imperfections in the theory by the Rk in Eq. (78).
There is a certain freedom in the definition of ā and Rk in

Eq. (78). We can use this freedom to simplify the later
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analysis. Suppose that we say that Eq. (78) applies for ideal

parameters āð0Þ and imperfection parameters Rð0Þ
k :

Tkðāð0ÞÞ ¼ hDki þ Rð0Þ
k : ð83Þ

Let āð0Þ ¼ āþ δa, where the δaα are small parameters that we
are free to choose. Then

TkðāÞ þ Tkαδaα ¼ hDki þ Rð0Þ
k : ð84Þ

This gives us Eq. (78) with Rk ¼ Rð0Þ
k − Tkαδaα. What should

the δaα be? In the following analysis, the vector
P

kj RkCkjTjβ

plays an important role. This vector equals

X
kj

RkCkjTjβ ¼
X
kj

Rð0Þ
k CkjTjβ −Hαβδaα; ð85Þ

where

Hαβ ≡
X
kj

TkαCkjTjβ ð86Þ

is the Hessian matrix, which will play a major role in the
subsequent analysis. We choose

δaα ¼ H−1
αβ

X
kj

Rð0Þ
k CkjTjβ ð87Þ

so that
X
kj

RkCkjTjβ ¼ 0: ð88Þ

This is a useful property, as we see later.
We define χ2ðD; aÞ by Eq. (59) so that

χ2ðD; aÞ ¼
X
ij

½Di − Tið0Þ − Tiαaα�

×½Dj − Tjð0Þ − Tjβaβ�Cij: ð89Þ

The minimum of χ2ðD; aÞ is at parameters such that

0 ¼ −
1

2

∂χ2
∂aβ ¼

X
ij

½Di − Tið0Þ − Tiαaα�CijTjβ: ð90Þ

This is

Hβαaα ¼ Dβ; ð91Þ
where

Dβ ≡
X
ij

½Di − Tið0Þ�CijTjβ: ð92Þ

Thus, the fit parameters are

afitα ¼ H−1
αβDβ: ð93Þ

What is the expectation value of afitα ? To answer this
question, we need a result for āα. Using Eq. (78), we have

Tiαāα ¼ hDii − Tið0Þ þ Ri: ð94Þ

Thus,

X
ij

CjiTjβTiαāα ¼
X
ij

CjiTjβ(hDii − Tið0Þ þ Ri): ð95Þ

Using the definition (86) of the Hessian matrix and the
property (88) of Rk, this is

Hβαāα ¼
X
ij

½hDii − Tið0Þ�CijTjβ: ð96Þ

Thus,

āα ¼ H−1
αβ

X
ij

½hDii − Tið0Þ�CijTjβ: ð97Þ

Comparing this to Eq. (93) gives us

afitα − āα ¼ H−1
αβ

X
ij

ðDi − hDiiÞCijTjβ: ð98Þ

The result is that the expectation value of afit is ā:

hafitα − āαi ¼ 0: ð99Þ

This also gives the correlations of the parameters aα with
the data Di and with each other. From Eqs. (98) and (55), we
have

hðDk − hDkiÞðafitα − āαÞi ¼
X
ij

H−1
αβC

−1
ki CijTjβ: ð100Þ

Thus,

hðDk − hDkiÞðafitα − āαÞi ¼ H−1
αβTkβ: ð101Þ

For hðafitα − āαÞðafitβ − āβÞi, Eq. (98) gives

hðafitα − āαÞðafitβ − āβÞi
¼ H−1

ασH−1
βτ

X
ijkl

CikTkσCjlTlτhðDi − hDiiÞðDj − hDjiÞi

¼ H−1
ασH−1

βτ

X
ijkl

CikTkσCjlTlτC−1
ij

¼ H−1
ασH−1

βτ

X
kl

ClkTkσTlτ

¼ H−1
ασH−1

βτ Hστ: ð102Þ

Thus,

hðafitα − āαÞðafitβ − āβÞi ¼ H−1
αβ : ð103Þ

Compare this to Eq. (55), hðDi − hDiiÞðDj − hDjiÞi ¼ C−1
ij .

Thus, we see the importance of the Hessian matrix: its inverse
is the correlation matrix for the fitted parton parameters.
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F. Distribution of the parameters

Since the data are Gaussian distributed and the fit param-
eters are linearly related to the data, the fit parameters are
Gaussian distributed. The expectation values (103) give us the
distribution of the best-fit parameters, analogously to what we
find in Eq. (57): given a function fðafit − āÞ, we have

hfi ¼
ffiffiffiffiffiffiffiffiffiffiffi
detH

p
ð2πÞ−NP=2

Z
dNPðafit − āÞfðafit − āÞ

× exp ½−1
2
Hαβðafitα − āαÞðafitβ − āβÞ�: ð104Þ

Let us be clear about where this comes from. We consider an
ensemble of repetitions of the experiments. As the data
fluctuate, the values of afit fluctuate according to the distri-
bution (104). However, we can turn this around. Given the
dataDk, we find the corresponding best-fit parameters afit. We
do not know ā. But if we repeat the experiments many times,
the values of the difference ðafit − āÞ fluctuate around zero
according to Eq. (104). Then Eq. (104) gives us a measure of
the error in estimating ā by afit.
Equation (104) applies in the NP-dimensional space of fit

parameters. It is instructive to consider how this works in a
particular coordinate system. We let feð1Þ; eð2Þ;…; eðNPÞg be a
set of basis vectors for the parameter space. We take these
basis vectors to be orthogonal and normalized using H as the
metric tensor11

eðnÞα Hαβe
ðmÞ
β ¼ δmn: ð105Þ

The corresponding completeness relation is

X
n

eðnÞα eðnÞβ ¼ H−1
αβ : ð106Þ

[To prove this, we define
P

n e
ðnÞ
α eðnÞβ ¼ Aαβ and use Eq. (105)

to show that AαβHβγe
ðnÞ
γ ¼ eðnÞα .]

It is often useful to choose the basis vectors to be the
eigenvectors of H: Hαβe

ðnÞ
β ¼ hne

ðnÞ
α . However, any choice of

basis vectors obeying Eq. (105) will do. For instance, eð1Þ

could be a vector normalized to eð1Þα Hαβe
ð1Þ
β ¼ 1, pointing in a

direction that is of particular interest. Then the other eðnÞ could
be chosen to satisfy Eq. (105). We use this construction in
Sec. III.G.
Using the basis vectors eðnÞ, we can expand a general vector

of parameters a about afit in the form

aαðtÞ ¼ afitα þ
X
n

tne
ðnÞ
α : ð107Þ

Here the argument t in aðtÞ denotes ft1;…; tNP
g. How does χ2

depend on the parameters tn? To find out, we evaluate

χ2(D; aðtÞ). Using Eqs. (86), (88), (89), (94), and (98), we
obtain for a general choice of a

χ2ðD; aÞ ¼
X
ij

½Di − hDii − Ri�½Dj − hDji − Rj�Cij

− 2Hαβðafitα − āαÞðaβ − āβÞ
þHαβðaα − āαÞðaβ − āβÞ: ð108Þ

Here afit is the parameter choice that we get from fitting the
data Dk, ā is what we get by averaging afit over an imagined
ensemble of experiments, and a represents the parameters that
we are free to vary. Then if we substitute aðtÞ given in
Eq. (107) for a, we get

χ2(D; aðtÞ) ¼
X
ij

½Di − hDii − Ri�½Dj − hDji − Rj�Cij

−Hαβðafitα − āαÞðafitβ − āβÞ þ
X
n

t2n: ð109Þ

That is, varying a from afit in any direction eðnÞα by tn ¼ 1

increases χ2 by 1.
The distribution (104) of differences of afit from ā can be

rewritten in the eðnÞ basis. We define

afitα − āα ¼ −
X
n

tne
ðnÞ
α : ð110Þ

Then in Eq. (104), we can regard f as a function of the
eigenvector coordinates tn instead of the original parameters
afitα − āα, and we can change integration variables to the tn,
giving us

hfi ¼
Z

∞

−∞

dt1ffiffiffiffiffi
2π

p � � �
Z

∞

−∞

dtNPffiffiffiffiffi
2π

p fðt1;…; tNP
Þ exp

�
−
1

2

XNP

n¼1

t2n

�
:

ð111Þ

Each coordinate tn follows an N ð0; 1Þ distribution.
In particular, if we are interested only in the component of

ā − afit in the direction eð1Þ, we can let the function f in
Eq. (111) depend only on t1. Then

hfi ¼
Z

∞

−∞

dt1ffiffiffiffiffi
2π

p fðt1Þ exp
�
−
1

2
t21

�
: ð112Þ

Comparing this to Eq. (109), we see that a “2σ” value t1, that
is, t1 ¼ 2, increases χ2 by 4 from its best-fit value.
It is of interest to understand the distribution ρðR2; NPÞ of

R2 ¼ P
n t

2
n,

ρðR2; NPÞ ¼
Z

∞

−∞

dt1ffiffiffiffiffi
2π

p � � �
Z

∞

−∞

dtNPffiffiffiffiffi
2π

p δ

�XNP

n¼1

t2n − R2

�

× exp

�
−
1

2

XNP

n¼1

t2n

�
: ð113Þ

This is the χ2 distribution with NP degrees of freedom. In
fitting parton distributions, NP is quite large, say, NP ¼ 25.

11We do not distinguish between upper and lower indices α; β;….
If we did, parton parameters would have upper indices aα and the
metric tensor H would have lower indices Hαβ. Then eðnÞ and H−1

would have upper indices eαðnÞ and ðH−1Þαβ.
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The mean value of any of the t2n is t2n ¼ 1, but the mean value
of R2 is much larger, as we see in Sec. III.H: hR2i ¼ NP.
Using the tn as coordinates, the hypersurface

PNP
n¼1 t

2
n ¼ R2 is

a sphere. In terms of the original parton parameters āα − afitα ,
it is an ellipsoid. With the values of āα − afitα distributed
according to Eq. (104), for the ellipsoid to include 95% of the
points we should choose R ≈ 6.1 for NP ¼ 25. In contrast, if
we look at just one tn, then for the interval t2n < R2

n to include
95% of the points tn, we should choose Rn ≈ 2. But with
NP ¼ 25, the fraction P of points inside an ellipsoid with
R ¼ 2 is P ≈ 5 × 10−7. This discussion illustrates that when
we discuss the uncertainties in the determination of the parton
parameters we need to carefully distinguish whether we are
discussing an uncertainty interval in one dimension or in 25
dimensions. As another consequence of the large-NP geom-
etry, when the PDF probability distribution is sampled by
randomly varying the PDF parameters, the overwhelming
majority of such Monte Carlo parameter replicas are likely to
be bad fits with P ∼ 0 (Hou et al., 2017). Thus, though
the estimates of the first and second moments of the NP-
dimensional probability distribution from the Monte Carlo
sample converge to their true values with about 100–1000
replicas, the Monte Carlo method tends to be highly inefficient
for exploring the neighborhood

P
nt

2
n ≤ R2, with R of order

unity. In contrast, the analytic minimization of χ2 by the
gradient descent, as implemented in CTEQ and MMHT fits,
directly finds the neighborhood

P
nt

2
n ≤ R2 around the global

minimum and renders the probability distribution within this
neighborhood. The analytic minimization and Monte Carlo
sampling approaches thus offer complementary strengths
when examining the multidimensional probability distribution
of PDF parameters and associated PDF uncertainties.

G. Calculation of a cross section

We can now ask another question. Suppose that σ is a cross
section that is determined by the PDFs. Then σ is a function
σðaÞ of the parton parameters a. We need data with no errors
to determine the ideal parameters ā, so we never know σðāÞ
exactly. However, we can fit the parameters and estimate σðāÞ
by σðafitÞ.
What is the expected error resulting from using the fit

parameters? To analyze this, we begin by defining the shift in
the cross section

Δσ ¼ σðāÞ − σðafitÞ: ð114Þ

Then with a linear approximation we write

Δσ ¼ ðāα − afitα Þσ0α; ð115Þ

with σ0α ≡ ∂σðaÞ=∂aα.
Now we define a special vector in the space of parameters

according to

eðσÞα ¼
H−1

αβ σ
0
βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ0γH−1
γδ σ

0
δ

q : ð116Þ

This vector is normalized to

eðσÞαHαβeðσÞβ ¼ 1: ð117Þ

It is useful to define more vectors, feðσÞð2Þ;…; eðσÞðNPÞg
such that these vectors, together with eðσÞ≡ eðσÞð1Þ, form a
basis for the parameter space and such that the basis vectors
are orthogonal and normalized using the metric tensor Hαβ as
in Eq. (105).
With the aid of these basis vectors, we can write a general

parameter vector as

aα ¼ afitα þ t1eðσÞα þ
X
n≥2

tneðσÞðnÞα : ð118Þ

The corresponding change in χ2, using Eq. (109), is

χ2
�
D; afit þ t1eðσÞ þ

X
n≥2

tneðσÞðnÞ
�

¼ χ2ðD; afitÞ þ t21 þ
X
n≥2

t2n: ð119Þ

We set a → ā in the definition Eq. (118) so that

āα − afitα ¼ t1eðσÞα þ
X
n≥2

tneðσÞðnÞα : ð120Þ

Then, according to Eq. (111), as afit varies in an ensemble
experiment set, the expansion parameters ft1;…; tNP

g fluc-
tuate following N ð0; 1Þ distributions.
We can use this result to analyze the fluctuations in the

following cross section from Eq. (115):

Δσ ¼ t1eðσÞασ0α þ
X
n≥2

tneðσÞðnÞα σ0α. ð121Þ

Using Eq. (116), this becomes

Δσ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0γH−1

γδ σ
0
δ

q �
t1eðσÞαHαβeðσÞβþ

X
n≥2

tneðσÞðnÞα HαβeðσÞβ
�
:

ð122Þ

Because of the orthonormality condition (105), only the first
term survives and we obtain

Δσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0γH−1

γδ σ
0
δ

q
t1: ð123Þ

Thus, the fluctuations in the cross section are given entirely by
the fluctuations of the parameters along the special direction
eðσÞð1Þ. There is a coefficient ½σ0γH−1

γδ σ
0
δ�1=2 that is larger when

the cross section is a fast varying function of the parton
parameters. The remaining factor t1 fluctuates following an
N ð0; 1Þ distribution as the data fluctuate. This means that if
we want Δσ to represent, say, a 2 standard deviation error on
σ, we set t1 ¼ 2. Furthermore, t1 has the property that when
the parameters vary from the best-fit parameters according to
a ¼ afit þ t1eðσÞð1Þ, the χ2 increases by t21.
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1. Formulas to compute PDF uncertainties

There is a standard practical method for calculating Δσ. We
choose basis vectors that are not specially adapted to the cross
section σðaÞ. We choose the basis vectors eðnÞ, n ¼ 1;…; NP
to obey the orthonormality condition (105). Typically, the
basis vectors eðnÞ are chosen as eigenvectors of the Hessian
matrixH. Commonly, there are 2NP error fits, afit � t̃eðnÞ, that
come with a set of published PDFs. Here t̃ is defined by the
published analysis. If we assume that linear approximations
are adequate, then we need only NP error fits, afit þ t̃eðnÞ, with
positive t̃. Error fits with two signs (Nadolsky and Sullivan,
2001) allow for a more complete treatment than we give here,
which allows for nonlinear contributions.
One can use the basis vectors eðnÞ to evaluate the uncer-

tainty in σðafitÞ. For each direction n, define

ΔσðnÞ ¼ σðafit þ teðnÞÞ − σðafitÞ: ð124Þ

Recall from Eq. (109) that if we set a ¼ afit þ teðnÞ, then
χ2ðD; aÞ increases by t2 compared to χ2ðD; afitÞ. As long as
we use a linear approximation, we have

ΔσðnÞ ¼ tσ0αe
ðnÞ
α : ð125Þ

Now sum the squares of ΔσðnÞ:

X
n

ðΔσðnÞÞ2 ¼ t2
X
n

σ0αe
ðnÞ
α eðnÞβ σ0β: ð126Þ

Using the completeness relation (106) for the basis vectors
eðnÞ, this is

X
n

ðΔσðnÞÞ2 ¼ t2σ0αH−1
αβ σ

0
β: ð127Þ

According to Eq. (123), we can estimate the error in σ by

ðΔσÞ2 ¼ t2σ0αH−1
αβ σ

0
β; ð128Þ

where, for example, we choose t ¼ 2 if we want a 2σ error
estimate. Thus, we can obtain Δσ by using variations in the
eigenvector directions eðnÞ:

ðΔσÞ2 ¼
X
n

ðΔσðnÞÞ2: ð129Þ

That is, we need to calculate NP error contributions ΔσðnÞ by
using the parton error sets according to Eq. (124). Then adding
the errors ΔσðnÞ in quadrature gives the total error Δσ.
There is a second standard practical method for calculating

Δσ. This method derives from the publications of the NNPDF
Collaboration (Ball et al., 2010, 2013a, 2015, 2017). With the
NNPDF approach, there is effectively a large number of
parameters, and the distribution of the parameters is not
strictly Gaussian. The distribution of results is represented
by giving a large sample of parton distribution sets. Within the
linear approximations that we use in this review, one would
generate a large sample of parton distributions based on

parameters aα ¼ afitα þP
n tne

ðnÞ
α as in Eq. (107), with

Gaussian random variables tn. Given this sample, one calcu-
lates σðaÞ for each example and thus obtains a corresponding
sample of σðaÞ values, from which one obtains statistical
properties of the sample such as hσi and ðΔσÞ2.
We have spoken of σðaÞ as a cross section. More broadly,

σðaÞ in this section could be any physical quantity that
depends on the parton parameters a. In particular, σðaÞ could
be a parton distribution function fa=Aðx; μ2Þ for a parton flavor
a, evaluated at a momentum fraction x and a scale μ. Then the
previously presented calculation gives us an error esti-
mate Δfa=Aðx; μ2Þ.

H. Expectation value and variance of χ 2

In this section, we investigate the value of χ2 obtained in the
fit. Start with Eq. (108) for χ2ðD; aÞ. We fit the parameters a to
minimize χ2ðD; aÞ for given data D. Using the fit parameters
gives

χ2ðD; afitÞ ¼
X
ij

½Di − hDii − Ri�½Dj − hDji − Rj�Cij

−Hαβðafitα − āαÞðafitβ − āβÞ: ð130Þ

Using Eq. (98) for afitα − āα, this is

χ2 ¼
X
ij

½Di − hDii − Ri�½Dj − hDji − Rj�Cij

−
X
ij

½Di − hDii�½Dj − hDji�Mij; ð131Þ

where the matrix M is

M ¼ CTH−1TTC: ð132Þ

Note that here we eliminate the parameters aα entirely.
We can use this to evaluate the expectation value hχ2i of χ2

and its variance

hðχ2 − hχ2iÞ2i ¼ hðχ2Þ2i − hχ2i2: ð133Þ

We use Eq. (57) for the probability distribution of the data D.
This gives

h½Di − hDii�½Dj − hDji�i ¼ C−1
ij ð134Þ

and

h½Di − hDii�½Dj − hDji�½Dk − hDki�½Dl − hDli�i
¼ C−1

ij C
−1
kl þ C−1

ik C
−1
jl þ C−1

il C
−1
jk : ð135Þ

To derive this, one can change the variables in Eq. (57) to
xi ¼

P
jð

ffiffiffiffi
C

p ÞijðDj− hDjiÞ. Then the symmetries of the
integrand imply that hxixji ∝ δij and hxixjxkxli∝δijδkl þ
δikδjlþδilδjk. The coefficients of proportionality are simple
to evaluate, giving Eqs. (134) and (135).
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Now a certain amount of algebra with the matrices leads to
results containing the factors

XND

i¼1

δii ¼ ND;
XNP

α¼1

δαα ¼ NP: ð136Þ

The results are

hχ2i ¼ ND − NP þ
X
ij

RiCijRj ð137Þ

and

hðχ2 − hχ2iÞ2i ¼ 2ðND − NPÞ þ 4
X
ij

RiCijRj: ð138Þ

These results are often used to provide an indication of
whether a good fit has been found. The parameters Ri that we
have introduced represent an imperfection in the theory: if the
parton distributions do not have enough available parameters,
we expect Ri ≠ 0. If there are enough parameters and if the
rest of the theoretical model is correct, then the Ri parameters
should vanish. In that case, hχ2i should be close to ND − NP.
For example, if ND ¼ 3000 and NP ¼ 25, then χ2 should be
around 2975. The square root of the variance of χ2 in this case
is

ffiffiffiffiffiffiffiffiffiffi
5950

p
≈ 77. Thus, we expect to find χ2 ≈ 2975� 77. The

fit is bad if χ2 is too high or too low.

IV. TESTS OF PERFORMANCE OF THE FIT

In Sec. III.C, we examined the function χ2ðD; aÞ defined in
Eq. (59) that is minimized to determine PDF parameters a
from the experimental dataD, giving values afit. However, this
fitting procedure produces correct results only if the dataD are
reliable within their errors as given by the experiments and if
the adopted theory is actually a good description of nature for
some parameter combination afit. If χ2ðD; afitÞ does not lie
within certain limits, one can conclude that something is
wrong with the fit. However, it has been known since the
inception of the global QCD analysis in the late 1980s that the
value of the global χ2ðD; afitÞ is an essential, but far from
sufficient, measure of the goodness of fit; see, e.g., Morfin and
Tung (1991).
In this section, we argue that the PDF fit should pass a

number of tests to fulfill what one might call a strong set of
goodness-of-fit criteria. Several of these tests involve looking
at quantities derived from the fitting procedure that should
follow a predicted distribution if the statistical assumptions on
which the fit is based are valid. One can then test whether the
quantities are in fact distributed as predicted. We include
the distribution of the nuisance parameters, the distribution of
the residuals for the fitted data, and the distribution of χ2

values for many subsets of the data. Another test looks at
whether individual subsets of the data are statistically con-
sistent with the global afit in individual directions in the space
of parameters. In Sec. IV.D, we discuss the closure test, which
is a powerful test of the fitting methodology and is used, in
particular, by NNPDF (Ball et al., 2015).
These tests, taken together, are more constraining and

difficult to satisfy than the standard weak goodness-of-fit

criterion based on the value of the global χ2ðD; aÞ. The point
of the strong set of goodness-of-fit criteria is to find places
where the statistical assumptions used in the fitting procedure
break down. We will find, in examples, that some of the
assumptions used in the fit do break down.When this happens,
the PDF error estimates that emerge from the fit cannot be
realistic. One possibility is that any observed problems are the
result of understated estimates of the experimental systematic
errors. We propose ways to deal with this in Secs. IV.I and IV.J.
Themethod usually used to adjust the final PDF error estimates
is to apply a tolerance criterion. This is a complicated subject,
which we address in Sec. IV.L.
One of the tests, which we investigate in Sec. IV.H, looks at

χ2 for subsets of the data. Data subsets are often examined
visually to rule out systematic discrepancies by comparing
data and theory predictions in the figures. This is a reasonable,
but slow and imprecise, test. It can be made more precise
using the procedure in Secs. IV.G and IV.H.
A standard goodness-of-fit criterion based on the value of

the overall χ2ðD; afitÞ is called the hypothesis-testing criterion
(Collins and Pumplin, 2001). We see in Eq. (137) that if the
theory is perfect so that Rj ¼ 0, the expectation value of this
quantity is hχ2ðD; afitÞi ¼ ND − NP. However, Eq. (138)
shows that χ2ðD; afitÞ is expected to fluctuate by aboutffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðND − NPÞ

p
. Thus, we surely have a bad fit at the 2σ level

if χ2ðD; afitÞ − ðND − NPÞ is bigger than 2 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðND − NPÞ

p
,

that is, about 150 for ND − NP ≈ 3000.
However, if we fit the parameters a without changing the

functional form, a small difference in χ2 values of the order of
22 ¼ 4 is already significant, while 2 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðND − NPÞ

p
≈ 150

is far too large. In this restricted situation, the parameter-fitting
criterion, which assigns the 95% (or 68%) probability level to
the increase Δχ2 ¼ 4 (or 1), adequately estimates the uncer-
tainty on parameters of this fixed model, as long as the
statistical assumptions on which the fit is based are all valid.
Multiple functional forms can give good fits to the data. To the
parameter-fitting uncertainty, one must add the uncertainty
due to the choice of the functional form of PDFs, as discussed
in Sec. IV.C.
As previously outlined, we will look at quantities derived

from the fitting procedure that should follow a predicted
distribution. Call the quantities qj. When testing for a possible
systematic deviation from the predicted distribution for the qj,
we find it useful to transform the observed quantity to a form
xj ¼ xðqjÞ such that the expected distribution of xj isN ð0; 1Þ,
the standard normal (Gaussian) distribution with the mean of 0
and variance of 1. For a quantitative estimate of the probability
that the observed distribution of the xj was sampled from
N ð0; 1Þ, we can apply the standard Anderson-Darling test
(Anderson and Darling, 1952). The test yields a “distance”
Aobs of the observed cumulative probability distribution of xj
values from that forN ð0; 1Þ. Then it calculates the probability
PA-D that the same number of randomly drawn xj values from
N ð0; 1Þ will have a distance A with A > Aobs. With this test,
(a) PA-D always lies between 0 and 1, (b) PA-D is close to 1
(or 0) if the histogram matches the N ð0; 1Þ distribution
closely (or poorly), and (c) if we repeat the sampling
procedure many times with data actually drawn from the
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N ð0; 1Þ distribution, the values of PA-D are uniformly
distributed between 0 and 1.
We begin with a preliminary question: do we have enough

fitting parameters to obtain a good fit to the data?

A. Testing with resampled data

The PDFs fa=pðξ; μ2Þ must use a sufficiently flexible
functional form to reproduce only regular, but no random,
features of the hadronic data. However, the functional form for
PDFs is known only semiqualitatively based on considera-
tions like the positivity of cross sections, asymptotic limits at
small and large x, and nucleon sum rules. One resorts to a
phenomenological form fa=pðξ; μ20Þ for the PDFs at the initial
scale μ20 and must decide how many parameters aα to use. If
the number NP of parameters is too small, the theory may not
be perfect. If there are too many, no global minimum of χ2

may exist, or we may overfit the data. In this section, we
explore the dependence on the number of free parameters for a
given parametrization form. One can also vary the PDF
functional forms, as discussed in Sec. IV.C.
To estimate the optimal number of parameters, we return to

χ2 using Eq. (98) in Eq. (108):

χ2ðD; aÞ ¼
X
ij

½Di − hDii − Ri�½Dj − hDji − Rj�Cij

− 2
X
ij

½Di − hDii�CijTjβðaβ − āβÞ

þHαβðaα − āαÞðaβ − āβÞ: ð139Þ

Suppose that we obtain a set of parameters ðaαÞ1 by
minimizing χ2ðD1; a1Þ for the fitted data sample D1 with
ND data points. Then we use the same parameters to calculate
χ2ðD2; a1Þ for a control data sample D2 that is obtained
by repeating the experiment with different random fluctua-
tions. (ND, Ri, and Cij are the same for D1 and D2.) What do
we get? From Eqs. (55), (99), and (103), the χ2 expectation
for sample D2, but using the parameters a1 fitted to D1, is
given by

hχ2ðD2; a1Þi ¼
X
ij

X
ij

C−1
ij Cij þ

X
ij

RiRJCij þHαβH−1
αβ

¼ ND þ NP þ
X
ij

RiRJCij: ð140Þ

This is bigger by þ2NP than

hχ2ðD1; a1Þi ¼ ND − NP þ
X
ij

RiRjCij; ð141Þ

obtained by using the data sample D1 to evaluate the fit a1
obtained from this data. If there are more than just a few
parameters, this is a big change.
Although having “too many” parameters makes hχ2ðD2; a1Þi

larger, we could imagine that with “too few” parameters we get a
bad fit because the fit cannot get close to the true PDFs. In our
treatment here, with too few parameters

P
ij RiRjCij is large.

We can illustrate this with a toy example, showing what
may happen in parametrization studies with real parton
distributions, such as the one given by Martin et al. (2013).
Suppose that we fit a test function hNP

ðxÞ with NP parameters
to pseudodata generated by random fluctuations around the
function

fðxÞ ¼ 3ðxþ 0.2Þ1.2ð1.2 − xÞ1.2ð1þ 2.3xÞ: ð142Þ

For the fit, we use a polynomial

hNP
ðxÞ ¼

XNP

i¼1

aixi−1: ð143Þ

If we use h3ðxÞ with just three parameters, we do not get a
good fit, as we see in Fig. 2. Here for typical choices xj of x,
the measures Rj ¼ fðxjÞ − h3ðxjÞ of how well the “theory”
matches the exact function are typically of the order of 0.1.
However, if we use four parameters to form h4ðxÞ, we can get
a good fit with Rj ∼ 0.01. If we increase NP beyond 4, the
measures Rj are even smaller. Then increasing NP when
fitting data, with its fluctuations, does not help produce a
better fit to the true function fðxÞ. However, increasing NP

does make χ2 smaller because we start better fitting the
random fluctuations.
To illustrate what happens, we generate “toy data” yi ¼

fðxiÞ þ 0.2fðxiÞri at coordinate values xi ¼ 0.01i − 0.05 for
i ¼ 1;…; ND, where ND ¼ 100. These are shown as scattered
points in Fig. 3(a). The ri’s are random numbers sampled
from N ð0; 1Þ. Then fitting the data using h4ðxÞ produces the
black dashed curve in Fig. 3(a). This is already a fairly good fit
to fðxÞ, with Rj ∼ 0.1, but we can allow ourselves even more
parameters, for example, by fitting h13ðxÞ with 13 parameters.
The 13-parameter fit is shown as the solid blue curve in
Fig. 3(a). This produces a smaller value of χ2, but not a better
fit to fðxÞ.
It appears from Fig. 3(a) that what we are doing is fitting the

fluctuations in the data. To test this, we can generate a second
set of dataD2 using the same fðxÞ and a different set of ri. We
measure χ2ðD2; a1Þ of the original fit h13ðxÞ to the new data

FIG. 2. The function fðxÞ in Eq. (142) and a three-parameter
polynomial fit h3ðxÞ [Eq. (143)] to this function. Here there are
not enough parameters to get a good fit.
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sample D2. In Fig. 3(b), for each NP, we repeat this procedure
many times and show χ2ðD2; a1Þ averaged over many such
trials as a function of NP. We see that NP ¼ 3 is not enough:
there is a substantial decrease in hχ2ðD2; a1Þi if we increase
NP to 4. However, beyond NP ¼ 4, hχ2ðD2; a1Þi increases
with NP, in agreement with Eq. (140). The rise of χ2ðD2; a1Þ
for NP > 4 is suggestive of overfitting the randomly fluctuat-
ing data: while increasing NP improves χ2ðD1; a1Þ for the
fitted sample, when NP is too large, it increases χ2ðD2; a1Þ for
the control sample, indicating that the fit adapts to random
fluctuations in D1.
Of course, the optimal number of fitted parameters

depends on the size of the fluctuations in the data. Having
20% fluctuations in the data is not representative of what
one finds in data used in PDF global fits. We can repeat this
same exercise using 2% fluctuations. Then the minimum
of χ2ðD2; a1Þ [as in Fig. 3(b)] occurs at NP ¼ 5 instead
of NP ¼ 4.

B. Dependence on the number of PDF parameters

A strategy comparing χ2 values of the fitted and control
samples is routinely employed to prevent overfitting of the
data in the approach utilizing neural-network (NN) parton
distribution functions (Ball et al., 2010, 2013a, 2015, 2017).
The PDF of each flavor is given by a NN of a certain
configuration, which behaves essentially as a flexible func-
tion, with its optimal number of parameters selected so as to
satisfy a twofold condition that the resulting PDFs render
acceptable fits to the fitted and control samples in each run, or
replica, of the global analysis. Both the fitted sample D1 and
the control sample D2 are obtained by randomly fluctuating
the central values of the data according to the Gaussian
distributions provided by the standard deviations of the data.
The fit consists in training the NN to maximize agreement
with the fitted sample. When training the NN on sample D1,
χ2ðD1; a1Þ is improved to an arbitrary accuracy by training the

neural network long enough. For the control sample D2, the
χ2ðD2; a1Þ initially decreases and then grows after some
number of training cycles. The training is stopped when
χ2ðD2; a1Þ starts growing. The NN obtained at this point most
optimally approximates both D1 and D2 samples without
overfitting D1.
In the traditional approach used by groups other than

NNPDF, the PDFs are parametrized by a set of fixed func-
tional forms; if the number of free parameters NP is too small
or too large, the fit is too poor or unstable. For example, the
recent MMHT fits approximate each PDF by a Chebyshev
polynomial of degree 6 (Martin et al., 2013; Thorne et al.,
2019). CT18 error PDFs (Hou et al., 2019) are parametrized
with functional forms containing Bernstein polynomials and
up to five free parameters.
We can illustrate this behavior with an example using real

data. The CT14HERA2 parton distributions (Hou, Sayipjamal
et al., 2017) are parametrized using a generic form

faðx;Q0Þ ¼ A0xA1ð1 − xÞA2Pðx;A3; A4;…Þ: ð144Þ

The xA1 and ð1 − xÞA2 prefactors capture the typical behavior
in the x → 0 and x → 1 limits, respectively. The function
Pðx;A3; A4;…Þ is constructed as a linear combination of
Bernstein basis polynomials

Pðx;A3; A4;…Þ ¼
X

k¼1;2;…

Akþ2bn;kðxÞ; ð145Þ

with bn;mðxÞ ¼ ðnmÞxmð1 − xÞn−m. Up to four Bernstein poly-
nomials per flavor are introduced in the CT14HERA2 para-
metrization, with a total of NP ¼ 26 parameters. However, we
can try to chooseNP ≤ 26 orNP > 26. The numberNP can be
easily varied by adding or removing Bernstein polynomials
with nonzero coefficients in the functions Pðx;A3; A4;…Þ
in faðx;Q0Þ.

(a)

(b)

FIG. 3. (a) Data fyi; xig generated from fðxÞ [Eq. (142)], shown with a four-parameter (dashed curve) and 13-parameter (solid curve)
polynomial fits to the data. (b) Average over a large number of trials of χ2ðD1; a1Þ and χ2ðD2; a1Þ as a function of the number of
parameters NP. In each trial, a polynomial with NP parameters is fit to data D1 generated from fðxÞ. Then χ2ðD2; a1Þ is measured for
that polynomial compared to an independent data sample D2 generated from fðxÞ.
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We divide the CT14HERA2 dataset into two equal parts,
assigning each datum to the half set D1 or half set D2 at
random. Then we fit the NP parameters to dataset D1, giving
parameters a1. We measure χ2ðD1; a1Þ for this fitted data
using the data D1 to which it was fitted. We also measure the
χ2ðD2; a1Þ for the fitted parameters a1 using the second
half set D2. Alternatively, we fit the NP parameters to dataset
D2, giving parameters a2. We measure χ2ðD2; a2Þ for this
fitted data using the data D2 to which it was fitted. Then
we also measure the χ2ðD1; a2Þ for this fit using the other
dataset D1.
We show the results in Fig. 4. As we increase the number of

parameters, χ2ðD1; a1Þ and χ2ðD2; a2Þ decrease. ForNP < 28,
χ2ðD2; a1Þ and χ2ðD1; a2Þ also decrease, although there is not
much decrease beyondNP ¼ 26. ForNP > 28, the behavior is
different. For the fitted samples, the χ2 values continue to
decrease, although the numerical minimization by the MINUIT

program (James and Roos, 1975) becomes less stable. On the
other hand, χ2ðD2; a1Þ and χ2ðD1; a2Þ exhibit large fluctua-
tions for NP > 28 and, additionally, their values increase
dramatically for the largest NP in the figure.
We could also examine χ2ðD; aÞ for the entire dataset

D ¼ D1 þD2. In this case, χ2ðD; aÞ also initially decreases as
NP increases, but for large enough NP the fits become
unstable: first, χ2 is no longer a well-behaved function of
PDF parameters; for even higher NP, a unique best-fit PDF set
itself may not be found. This behavior is an indication of
overfitting. The number NP beyond which overfitting happens
depends on the functional forms of PDFs and other factors.
With the resampling exercise, we detect traces of overfitting in
a half of the full dataset. The presented exercise and other
parametrization studies indicate that with the parametrization
forms adopted in the latest CT PDFs about 25–30 free
parameters is optimal for describing the fitted dataset.
A way to understand the results in Fig. 4 is to note that the

analysis in Sec. IV.A of hχ2i was based on the assumptions
(from Sec. III.E) that one needs to consider only a small region
of the parameter space and that, within this region, the theory
predictions TkðaÞ are approximately linear functions of the
parameters a. The analysis then predicts a slow change of
χ2ðD2; a1Þ [and χ2ðD1; a2Þ] according to Eq. (140) as we

increase the number of parameters NP. This is not what we see
in Fig. 4.
To help interpret this, suppose that we use the data D1 and

determine the fit parameters a1 from D1. We see in Fig. 4 a
large increase of χ2ðD2; a1Þ and large fluctuations for
NP > 28. What apparently happens is that when there are
too many parameters the data do not strongly constrain the
components of a in one or more “flat” directions in the
parameter space. The value of χ2ðD1; aÞ changes little as a
varies in these directions. One needs to move through a wide
range of a in a flat direction before χ2ðD1; aÞ increases
significantly. In this wide range, the TkðaÞ are not approxi-
mately linear functions of a, and χ2ðD1; aÞ is not approxi-
mately quadratic. Then χ2ðD1; aÞ may have multiple minima
at locations that correspond to unreasonable behavior of the
PDFs. The best-fit parameters a1 can be at an unphysical
location that strongly depends on the fluctuations in the data
D1. We can test how reasonable the fit a1 is by testing it
against the second dataset D2. With too many parameters, we
can get the large values of χ2ðD2; a1Þ that we see in Fig. 4. We
conclude that if one uses a family of functions for the PDFs
that have a variable number of parameters, then a simple test
like that shown in Fig. 4, ideally repeated for several random
partitions of the data in two halves, can estimate how many
parameters one should allow.

C. Dependence on the PDF functional form

There is another sort of test available. The PDFs are
unknown functions, but one represents them using fixed
functional forms with a finite number of unknown parame-
ters.12 PDF parametrization studies thus constitute an essential
step in global analyses. In Sec. IV.B, we examined the
dependence of the fit results on the number of parameters
within one general functional form. One can also change the
general functional form. Thus, one should examine the tests
listed previously and later in this section for a large class of
PDF functional forms.
Universal approximation theorems (Cybenko, 1989;

Hornik, Stinchcombe, and White, 1990; Hornik, 1991)
demonstrate that feed-forward neural networks with one or
multiple layers can approximate any continuous function and
its derivatives to arbitrary accuracy. This fundamental result
motivates the Neural Network PDF approach that parametr-
izes parton distribution functions by neural networks trained
on the fitted data.
Alternatively, modern parametrizations based on

Chebyshev or Bernstein polynomials also allow one to para-
metrize a variety of functional behaviors (Pumplin, 2010;
Glazov, Moch, and Radescu, 2011; Martin et al., 2013; Gao
and Nadolsky, 2014; Hou et al., 2019). Suppose that two
choices for functional forms give good fits in the sense of
reasonably meeting the array of goodness-of-fit criteria dis-
cussed in this section, but that they also give two sets of PDFs
that differ outside of their parameter-fitting error estimates.
This suggests that there is a theoretical systematic error
associated with the choice of PDF functional form that needs

FIG. 4. χ2 from the fitted and control samples of data from the
CT14HERA2 NLO resampling exercise.

12The neural net approach avoids this limitation.
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to be added to the analysis. In a global analysis such as CT18,
multiple parametrization forms are tried to estimate this source
of PDF uncertainty. For example, the green solid lines in Fig. 5
illustrate predictions for the best-fit gluon PDFs obtained with
about 100 candidate CT18 fits based on different parametri-
zation forms. Notice that the solid lines show large deviations
from each other for large x and small x, regions in which the
gluon distribution is not well constrained by the data. The
PDF uncertainty of the published CT18 NNLO set, shown as a
blue band, is computed using a prescription that is broad
enough to cover variations due to the choice of parametriza-
tion form; for details, see Hou et al. (2019).

D. Closure test

Given a PDF functional form depending on parameters a,
PDF fitting of the data determines best-fit parameters afit. The
fitting procedure is based on Eq. (58), which asserts that if the
theory represented by parameters ā is correct, then in an
ensemble of trials the data Di is distributed with a probability
P(DjTðāÞ) that involves the theory predictions TiðāÞ and the
covariance matrix and the covariance matrix Cij. Then the
parameters afit obtained from these data are distributed accord-
ing to Eq. (104). We can test this. We can generate a set of
pseudodata D0

k using Eq. (52) with the truth values hD0
ki set

equal to theory predictions TiðaÞ for some realistic parameters
a, and with σk and βkJ obtained from the experimental groups.
Then we can run the fitting procedure with the generated data
D0

k, giving a new fit a0fit. We should find that the new fit a0fit
agrees with the original parameters a within the errors
generated by the fit. If they do not agree, we should understand
why. This “closure test” is not commonly carried out by fitting
groups who use the Hessian method described in this review,
but it is a feature of fits by the NNPDF group (Ball et al., 2015).

E. Test of the nuisance parameters

We now describe a goodness-of-fit test based on the
distribution of the nuisance parameters. For this test, it is

useful to use the form of χ2 in which nuisance parameters λJ
appear explicitly, χ2ðD; a; λÞ as given in Sec. III.D and
Eq. (66). Then we can fit values λfit of λ by minimizing
χ2ðD; a; λÞ. The minimum value is χ2ðD; aÞ, expressed in
terms of the covariance matrix Cij in Eq. (59). We have
χ2ðD; afit; λfitÞ ¼ χ2ðD; afitÞ. We also argue after Eq. (75) that
λfitJ ≈ λ̄J in an accurate fit with enough data. Since the λ̄J are
independent random variables distributed according to
N ð0; 1Þ, the λfitJ are expected to follow the N ð0; 1Þ distribu-
tion, too. We can test these assumptions by making a
histogram of λfitJ .
We show in Fig. 6 a histogram of the best-fit nuisance

parameters λfitJ for the CT14 HERA2 NNLO fit along with a
dashed, red curve showing the expected Gaussian distribution.
The correlated systematic errors are implemented in the
CT14HERA2 fit using the matrices βkJ provided with the
experimental datasets. The observed distribution is substan-
tially narrower than the expected distribution. The mean for
the observed distribution is −0.06, which is close to 0, but its
standard deviation is 0.8, which is noticeably smaller than 1.
We also show a blue solid curve giving a Gaussian distribution
with this mean and standard deviation. This curve also does
not match the observed distribution well.
For a quantitative estimate of the probability that the

observed distribution was sampled from N ð0; 1Þ, we can
apply the standard Anderson-Darling test (Anderson and
Darling, 1952) described at the beginning of Sec. IV. For
the histogram in Fig. 6, we find that PA-D ∼ 10−6. This
indicates that it is unlikely that the λfitJ values were generated
from the expected N ð0; 1Þ distribution, as was self-evident
from the figure.
There are a few more jλfitJ j that are larger than 2 than would

be expected. However, the main feature that we see in Fig. 6 is
that too many jλfitJ j are small, indicating possibly that the

FIG. 6. Distribution of nuisance parameters λfitJ for the CT14
HERA2 NNLO parton distribution fit.
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CT18 NNLO PDFs. From Hou et al., 2019.
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corresponding βkJ values are overestimated. This could
indicate that the estimates are conservative in the sense that
if one suspects that the βkJ values for a source J of systematic
error should be smaller but one cannot prove it with solid
evidence, then the conservative approach is to leave these βkJ
values unchanged.
There is another reason that the values of some of the λfitJ

might be smaller than expected. The expectation from Eq. (75)
that λfitJ ≈ λ̄J was based on the assumption that for each dataset
E there are many pieces of data and few nuisance parameters.
What happens if this is not the case, as suggested near the end
of Sec. III.D? Suppose that we add a spurious nuisance
parameter λL with βkL ¼ 0 for all data indices k. Then, in
Eq. (66) for χ2ðD; a; λÞ, the spurious λL does not contribute to
the first term, which involves data, and contributes only to the
“penalty” term

P
J λ

2
J. Then minimizing χ2ðD; a; λÞ with

respect to the λJ gives λfitL ¼ 0. If a certain dataset E has
many systematic errors and thus many nuisance parameters, it
may be that some of their linear combinations are spurious in
this sense. Then the same linear combinations of the fitted
values λfitJ vanish so that the fitted values do not spread out
over the entire λJ space but only a subspace. In this case, the
absolute values of these λfitJ will be smaller than would be
given by an N ð0; 1Þ distribution. In case there are many
nuisance parameters, some of which have little effect, one can
approximate the matrix C−1 in Eq. (56) so as to leave
effectively fewer, but better behaving, nuisance parameters,
as described in Appendix B of Hou et al. (2019). We suggest
that, when performing a fit, it is useful to check the λfitJ
distribution. Values of λfitJ that are smaller than expected from
an N ð0; 1Þ distribution suggest problems with the systematic
errors used in the fit but are perhaps not of great concern. An
excessive number of large λfitJ values could indicate a more
serious difficulty that needs to be resolved.

F. Test of data residuals

Equation (66) gives χ2ðD; afit; λfitÞ as

χ2ðD; afit; λfitÞ ¼
X
k

½rkðafit; λfitÞ�2 þ
X
J

½λfitJ �2; ð146Þ

where

rkðafit; λfitÞ ¼
Dk − TkðafitÞ

σk
−
X
I

βkIλ
fit
I ð147Þ

is called the residual for datum k obtained in the fit. Using
Eqs. (52), (77), and (78) with Rk ¼ 0, this is

rkðafit; λfitÞ ¼ Δk −
Tkα

σk
ðafitα − āαÞ −

X
I

βkIðλfitI − λ̄IÞ: ð148Þ

The Δk introduced in Eq. (52) follow independent N ð0; 1Þ
distributions. The values ðafitα − āαÞ and ðλfitI − λ̄IÞ have
expectation values of zero, but they have fluctuations that
arise from the fluctuations in the data. If there are enough data,
we expect the fluctuations of ðafitα − āαÞ and ðλ̄I − λfitI Þ to be
small. Then the residuals rk should also be approximately
distributed as N ð0; 1Þ.

We can test these assumptions by making a histogram
of the values rk obtained. We show in Fig. 7 a histogram
of the residuals rk for the CT14 HERA2 NNLO fit along
with a curve showing the expected Gaussian distribution.
Comparing these using the Anderson-Darling test gives
PA-D ¼ 5.7 × 10−3. Thus, we can conclude with some con-
fidence that the observed distribution of residuals was not
drawn exactly from N ð0; 1Þ. However, we judge the differ-
ence between the two distributions not to be physically
significant. After all, we expect the observed distribution to
be only approximately an N ð0; 1Þ distribution. The mean for
the observed distribution is 0.04, which is close to 0, and its
standard deviation is 1.04, which is close to 1. We also show a
blue solid curve giving a Gaussian distribution with this mean
and standard deviation.
The distribution of residuals is another indicator that should

be checked when performing a fit. In this case, no large
discrepancies are observed.

G. Value of χ 2 from an individual experiment

In this section, we describe a goodness-of-fit test based on a
decomposition of the data into subsets. We sometimes refer to
a subset of the data as an “experiment,” although we could
divide the data into subsets in different ways.
Label the subset of the data that we wish to consider by an

index E. Let DðEÞ refer to the data in subset E, that is, all data
points Di for i ∈ E. Recall Eq. (58), giving the probability of
finding data D if the theory TðaÞ is correct. The analog of this
that gives the probability of finding data DðEÞ if the theory
TðaÞ is correct is

P(DðEÞjTðaÞ) ¼ dμðDÞ exp ½− 1
2
χ2(DðEÞ; a)�; ð149Þ

where

FIG. 7. Distribution of residuals for the CT14 HERA2 NNLO
parton distribution fit.
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χ2(DðEÞ;a)¼
X
i;j∈E

½Di−TiðaÞ�½Dj−TjðaÞ�Cij; ð150Þ

dμ(DðEÞ) is the measure

dμ(DðEÞ) ¼ ð2πÞ−NE=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detCE

p
dNED; ð151Þ

CE is the matrix Cij for i; j ∈ E, and NE is the number of data
in the subset E.
If we have a good fit, then the probability P(DðEÞjTðaÞ)

should not be too small for each subset E of the data. That is,
for each subset E, χ2(DðEÞ; a) should not be too large.
As mentioned, this is a much stronger criterion than the

hypothesis-testing criterion. An individual experiment E may
be badly fit in a large global fit [have an unacceptably high
χ2(DðEÞ; a)], even while the total χ2ðD; aÞ may look rea-
sonable. In this section we ask, how large is too large for
χ2(DðEÞ; a)? What should the distribution of this quantity be?
Consider the structure of the covariance matrix Cij defined

by Eq. (56). Suppose first that each experiment has indepen-
dent systematic errors that are not shared among the experi-
ments so that each source J of systematic error is associated
with just one experiment EJ. Then βiJ ¼ 0 unless i ∈ EJ. The
covariance matrix is then block diagonal, Cij ¼ C−1

ij ¼ 0,
unless i ∈ E and j ∈ E for the same experiment label E. Then
the total χ2ðD; aÞ is a sum of contributions χ2(DðEÞ; a) from
the separate experiments

χ2ðD; aÞ ¼
X
E

χ2(DðEÞ; a): ð152Þ

It is, however, not necessary that errors for experiment E are
uncorrelated with the errors from other experiments. If for
some of the datasets E the covariance matrix has elements Cij

that are nonzero for i ∈ E and j ∉ E, then Eq. (152) will fail.
However, if the theory TðaÞ is correct, the probability of
finding data DðEÞ is still given by Eq. (149).
We return to Eq. (150). There areNE data in the set E. Then,

with the parameters a fixed to ideal values (a ¼ ā, as in
Sec. III.E) and flawless theory (Rk ¼ 0), we find that
TkðāÞ ¼ hDki, and the distribution of χ2(DðEÞ; ā) is the
standard χ2 distribution with NE degrees of freedom.
If, however, we use the best-fit parameters afit that are

constrained by experiment E as well as the rest of the experi-
ments, we find that χ2(DðEÞ; afit) is approximately equal to the
standard χ2 distribution with NE degrees of freedom up to a
subleading term that can be determined as follows.
From Eqs. (77), (78), and (59), we find that

TkðaÞ ¼ hDki þ Rk þ Tkαðaα − āαÞ ð153Þ

and

χ2(DðEÞ; a) ¼
X
i;j∈E

½Di − hDii − Tiαðaα − āαÞ − Ri�

× ½Dj − hDji − Tjβðaβ − āβÞ − Rj�Cij: ð154Þ
What is the expectation value of this at a ¼ afit? We can refer
to Eqs. (99), (103), (55) and (101) for a ¼ afit to arrive at

hχ2(DðEÞ; afit)i ¼ NE − NPðEÞ þ
X
i;j∈E

RiRjCij; ð155Þ

where

NPðEÞ ¼
X
i;j∈E

TiαTjβCijH−1
αβ . ð156Þ

The first term in Eq. (155) is simply the number of data NE in
the dataset. The third term is small if the theory is good
(Ri ≈ 0). The second term −NPðEÞ requires some analysis.
We interpret NPðEÞ as the effective number of parameters
constrained by dataset E. To support this interpretation, we
note from Eqs. (86) and (137) that if NPðEÞ is summed over
all datasets E, it gives the number NP of parameters. Now the
number of parameters NP is much smaller than the total
number of data ND. This makes it plausible that NPðEÞ is
small compared to the number NE of data in dataset E
NE ≫ NPðEÞ. Then the first term in Eq. (155) dominates.

H. Test of χ 2 from individual experiments

What can we do with χ2(DðEÞ; afit)? Its value is given by
Eq. (154) with a ¼ afit. When the best-fit parameters are close
to the true ones (afit ≈ ā) and theory is nearly perfect (Rk ≈ 0),
the χ2(DðEÞ; afit) distribution reduces to the form

χ2(DðEÞ; afit) ¼
X
i;j∈E

ðDi − hDiiÞðDj − hDjiÞCij þ � � �

that, as we already know, obeys the χ2 distribution with NE
degrees of freedom. Now afit is not exactly ā but is influenced
by the data in dataset E. Thus, one might think that the
number of degrees of freedom is NE − NPðEÞ, where NPðEÞ
[Eq. (156)] is the effective number of fit parameters associated
with dataset E. However, the reasoning in Sec. IV.G suggests
that NPðEÞ ≪ NE so that the number of degrees of freedom is
approximately simply the number NE of data in dataset E.
This expectation can be tested by calculating NPðEÞ in the
case in which χ2(DðEÞ; afit) appears to be anomalously small.
We now check to see whether the distributions of the

observed χ2(DðEÞ; afit) values from the experiments E in
actual PDF fits are close to the ideal distributions.
When NE is large, say, NE ≳ 30, the χ2 distribution

with NE degrees of freedom approaches the Gaussian distri-
butionwithmean hχ2(DðEÞ;afit)i≈NE and standard deviation
h½χ2(DðEÞ; afit) − NE�2i ≈ 2NE, as we see in Sec. III.H. For
NE ≲ 30, the non-Gaussian features are pronounced and χ2

distributions with different NE are not easily compared.
Conveniently for our purpose, the variable

SE ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ2(DðEÞ; afit)

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NE − 1

p
ð157Þ

fluctuates with a distribution that is accurately13 an N ð0; 1Þ
distribution (Fisher, 1925; Lai, Guzzi et al., 2010), namely,

13Other definitions (Lewis, 1988) of SE are more accurate but with
the simple form of Eq. (157), the distribution function ρðSEÞmatches
the Gaussian distribution ð2πÞ−1=2 expð−S2E=2Þ to within 0.04 for
NE ¼ 5 and to within 0.01 for NE ¼ 50.
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ρðSEÞ ≈ ð2πÞ−1=2 expð−S2E=2Þ: ð158Þ

Note that the SE distribution is independent ofNE. The original
NE dependence for the distribution of χ2 is absorbed into the
definition of SE.
To test the quality of the fit, we can plot a histogram of the

SE values for all of the experiments (or datasets) E contrib-
uting to the fit. The histogram should match the Gaussian
distribution (158).
To see how this should work, we can generate SE values for

a number of randomly generated pseudoexperiments. The
number NE of data for each pseudoexperiment is chosen at
random between 0 and 3000. For each pseudoexperiment, we
generate a value of χ2E at random according to the standard χ2

distribution with NE degrees of freedom. Then we define SE
for that pseudoexperiment by SE ¼

ffiffiffiffiffiffiffiffi
2χ2E

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NE − 1

p
. In

the left-hand plot in Fig. 8, we show the resulting histogram
of SE values obtained for 35 pseudoexperiments, along with
the expected Gaussian distribution (158). In the right-hand
plot in Fig. 8, we show the analogous histogram for 500
pseudoexperiments.
The histogram in Fig. 8 for 500 pseudoexperiments is fairly

close to the expected distribution (158). For the histogram for
35 pseudoexperiments, this is not clear merely by eye. For a
quantitative estimate, we can apply the standard Anderson-
Darling test, described in Sec. IV.E, of the probability that the
observed distribution matches N ð0; 1Þ. For the left-hand
histogram in Fig. 8, we find that PA-D ¼ 0.53, and for the
right-hand histogram we find that PA-D ¼ 0.44. These values
indicate that it is plausible that the SE values were generated
from N ð0; 1Þ, which, to a good approximation, they were.
Now we turn to the distributions of SE from recent NNLO

global analyses shown in Fig. 9. The parameters SE in the

histograms are computed using Eq. (157) from χ2 and NE
values listed in Table 5 of Harland-Lang et al. (2015) for
MMHT 2014 NNLO, Tables 2.1–2.3 and 3.1 of Ball et al.
(2017) for NNPDF3.1 and NNPDF3.0, and internal tables of
χ2 for CT14HERA2 NNLO (Hou, Sayipjamal et al., 2017).
Variations in SE are broader than the standard normal
distribution expected in an ideal fit to all experiments, both
in the positive and negative directions. We can estimate the
differences by the mean and standard deviation for each
observed distribution. For CT14HERA2 and MMHT2014 fits,
the means are close to zero, indicating that while some
experiments are not fit well, the other experiments are fit
too well. On the other hand, for the NNPDF3.0 and
NNPDF3.1 analyses, the observed mean is of the order of
0.8 to 1: more experiments are not fitted well than fitted too
well. For the four fits, the probability values for matching the
expected N ð0; 1Þ distribution according to the Anderson-
Darling test are

PA-D ¼ 6.4 × 10−3; CT14HERA2NNLO;

PA-D ¼ 6.4 × 10−3; MMHT2014NNLO;

PA-D ¼ 2.6 × 10−3; NNPDF3.0NNLO;

PA-D ¼ 1.6 × 10−3; NNPDF3.1NNLO: ð159Þ

In all four cases, it is highly unlikely that the observed
distribution came from the expected Gaussian distribution.
We emphasize that none of the four PDF fits described

here are good fits according to the PA-D values obtained by
breaking the data into smaller datasets, even though each fit is
acceptable according to its total χ2 value.
The expectation that the SE distribution should match an

N ð0; 1Þ distribution is based in part on the assumption that the

FIG. 8. Probability distributions of SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ2(DðEÞ; afit)

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NE − 1

p
for 35 and 500 random pseudoexperiments, each of which

has the number NE of data chosen at random in the range 0 ≤ NE ≤ 3000. The red dashed line shows theN ð0; 1Þ Gaussian distribution,
which describes the observed probabilities well.
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parameters Rk representing imperfections in the theory are
negligible in Eq. (155). The evident failure of the distributions
in Fig. 9 to match N ð0; 1Þ may indicate that the theory is not
precise enough to match extremely precise experiments. In
fact, some elevated SE values are contributed by the most
precise experiments, such as the combined HERA 1þ 2 DIS
data (Abramowicz et al., 2015) and some LHC measurements.
These experiments test QCD at unprecedented (NNLO)
precision and thus may reveal evidence for new dynamical
mechanisms. For instance, SE ≈ 5.5 for HERA 1þ 2 DIS data
can be reduced to SE ≈ 3 by including small-x resummation
in DIS or by evaluating NNLO DIS cross sections with an

x-dependent factorization scale; see the discussion in
Sec. I.F. Similarly, the description of HERA 1þ 2 DIS and
fixed-target DIS data such as BCDMS (Benvenuti et al.,
1990) is improved in the NNPDF3.1 analysis compared to
NNPDF3.0, in part by introducing the “fitted charm,” an
independent and possibly process-dependent nonperturbative
function that is similar to power-suppressed (“higher-twist”)
terms in DIS. In Sec. II.C, we briefly review the rationale for
optionally including fitted charm in some PDF fits and its
possible interpretation.
A different class of concerns arises when too many

datasets have negative SE, indicating that the datasets are

FIG. 9. Probability distributions in the effective Gaussian variable SE for χ2 values of the fitted datasets from the NNLO fits
CT14HERA2, MMHT2014, NNPDF3.0, and NNPDF3.1.
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systematically described better than would be expected in a
good fit in which the data fluctuations around the best-fit
theory are random. When too many experiments have negative
SE, the reduced global χ2 may hide some problems, such as
overestimated experimental uncertainties or overfitting of the
statistical fluctuations because of using too flexible theory.
Sometimes, a low global χ2 ≪ ND − NP is taken as evidence
for perfect theory that justifies aggressive estimates for PDF
uncertainties based exclusively on the Δχ2 ¼ 1 criterion. In
fact, the resulting small PDF uncertainties would be wrong:
not only it is improbable that the low χ2 is caused by random
fluctuations consistent with the experimental errors, but the
parametrization uncertainty also needs to be estimated by
trying other PDF parametrization forms that render χ2 of up to
about ND − NP.

I. Test of consistency between experiments

We can carry this analysis further by asking whether
different experiments have imposed consistent constraints
on PDF parameters a. To this end, we consider an observable
σðaÞ that depends on the parton parameters, as in Sec. III.G.
The observable could be a cross section, as suggested by the
notation, or, extending the notion of an observable a bit, it
could be the value of the PDF fa=pðx; μ2Þ for a specific flavor
at a particular momentum fraction x and scale μ.
As in Sec. III.G, as long as we consider parameters a that

are not far from the best-fit parameters afit, we can apply a
linear approximation for the evaluation of σðaÞ

σðaÞ ¼ σðafitÞ þ ðaα − afitα Þσ0α; ð160Þ

with σ0α ¼ ∂σðaÞ=∂aα. Furthermore, if we define a special
vector eðσÞ according to Eq. (116),

eðσÞα ¼
H−1

αβ σ
0
βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ0γH−1
γδ σ

0
δ

q ; ð161Þ

then as we found in Sec. III.G, we can evaluate σðaÞ − σðafitÞ
by setting

a ¼ afit þ teðσÞ ð162Þ

in Eq. (160). Variations of a − afit in the orthogonal directions
feðσÞð2Þ; eðσÞð3Þ;…g do not contribute to σðaÞ. That is,

σ

�
afit þ teðσÞ þ

X
n≥2

tneðσÞðnÞ
�

¼ σðafitÞ þ teðσÞασ0α
¼ σðafitÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0γH−1

γδ σ
0
δ

q
t: ð163Þ

The result is independent of the parameters tn. That is, t
directly measures σðaÞ. We denote the corresponding cross
section by σ0ðtÞ.
The parameters afit correspond to the minimum of the

global χ2 so that, according to Eq. (119),

χ2(D; afit þ teðσÞ) ¼ χ2ðD; afitÞ þ t2: ð164Þ

Furthermore, if we evaluate Eq. (119) at a general point
afit þ teðσÞ þP

n tneðσÞðnÞ, we get

χ2
�
D;afitþ teðσÞþ

XNP

n¼2

tneðσÞðnÞ
�
¼ χ2ðD;afitÞþ t2þ

XNP

n¼2

t2n:

ð165Þ

If we regard parameter points a as distributed at
random according to a probability density proportional to
exp½−ðχ2 − χ2minÞ=2�, then, to find the probability ρ of a lying in
a plane of constant σðaÞ ¼ σ0ðtÞ, we simply integrate over the
other variables tn as follows:

ρ¼ð2πÞ−NP=2

Z
dt2 � � �dtNP

exp

�
−
�
t2þ

X
n≥2

t2n

�
=2

�

¼ð2πÞ−1=2 exp½−t2=2�
¼ ð2πÞ−1=2 expf−½χ2ðD;afitþ teÞ−χ2ðD;afitÞ�=2g: ð166Þ

That is, χ2(D; afit þ teðσÞ) gives both the probability of a lying
at position t along the line afit þ teðσÞ and the probability of a
lying in the plane σðaÞ ¼ σ0ðtÞ that intersects this line at
position t.
It may be useful to note that one can find the direction of

eðσÞ simply. Up to its normalization, eðσÞ is the vector from
afit to the point on the surface σðaÞ ¼ σ0ðtÞ that minimizes χ2

on this surface. The standard Lagrange multiplier method
(Stump et al., 2001) produces this vector.
After this introduction, we explore the role of a single

experiment E in the fit. Consider χ2ðD; aÞ for an a that varies
along the line a ¼ afit þ teðσÞ. The parameter t labels the
distance along this line. We use one of three sets of data D: all
of the data, DðallÞ or all of the data except for the data from
experiment E, Dðno EÞ or the data from experiment E alone
DðEÞ. We are interested in how the function χ2(D; afit þ
teðσÞ) depends on t when we make these different choices for
which dataset D we use in computing χ2.14

We ask two questions concerning the role of experiment E
in determining t. The first question is: does experiment E exert
a substantial pull on the value of t? To answer this question,
we ask what would happen if we omitted the data from
experiment E from the evaluation of χ2. Then the minimum
value of χ2(Dðno EÞ; afit þ teðσÞ) occurs at a value tðno EÞ
that typically differs from the value tðallÞ ¼ 0 that we get
using all of the data. The 1σ uncertainty in tðallÞ is
ΔtðallÞ ¼ 1. If the difference between tðno EÞ and tðallÞ ¼
0 is smaller than this uncertainty, then we may conclude that
experiment E does not exert a substantial pull on t. That is, for
experiment E to substantially pull t, we need

14The dependence of χ2 on the position of the parameters a along
the line afit þ teðσÞ near a ¼ afit is easily determined. The depend-
ence on a over the entire plane σðaÞ ¼ σ0 requires knowledge of χ2 in
the entire parameter space. This is not as meaningful if we use just a
small subset of the data DðEÞ.
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jtðno EÞj > f; ð167Þ

where f is a parameter we could pick, perhaps f ¼ 1.
This is illustrated in Fig. 10, which is based on the CT18

NNLO fit (Hou et al., 2019). For this illustration, we choose a
conservative value of f: f ¼ 0.5.
In Fig. 10(a), we choose the gluon distribution at x ¼ 0.01

and μ ¼ 125 GeV as our observable σ. The heavy black curve
is the difference of χ2(DðallÞ; afit þ teðσÞ) and its minimum
value as a function of the parameter t. The corresponding
values of g(0.01; ð125 GeVÞ2) are shown along the top of
the plot. We also show curves for the differences of
χ2(Dðno EÞ; afit þ teðσÞ) and their minimum values for three
choices of datasets E, labeled as experiments B1, B2, and C.
(The experiments are taken from an actual global fit.) We see
that the minima of all of these curves lie in the range
−0.5 < t < 0.5, indicating that none of these datasets exerts
a substantial pull on t in the sense of Eq. (167) with f ¼ 0.5.
In Fig. 10(b), we choose the gluon distribution at x ¼ 0.3

and μ ¼ 125 GeV as our observable σ. Again, the heavy black
curve is constructed from χ2(DðallÞ; afit þ teðσÞ). We also
show curves for χ2(Dðno EÞ; afit þ teðσÞ) for two choices of
datasets E: experiments B1 and B2. These correspond to two
datasets obtained from the same experiment B for two
different collision energies

ffiffiffi
s

p
. We see that the minima of

these curves lie outside the range −0.5 < t < 0.5, indicating
that both of these datasets exert a substantial pull on t in the
sense of Eq. (167) with f ¼ 0.5.
Now suppose that experiment E does exert a substantial pull

on t. Then we need to check whether the global fit solution
tðallÞ is consistent with what experiment E says. We define

Δχ2EðtÞ ¼ χ2(DðEÞ; afit þ teðσÞ) − χ2(DðEÞ; afit): ð168Þ

According to experiment E alone, the best-fit tðEÞ is obtained
by minimizing Δχ2EðtÞ. The 1σ uncertainty range for tðEÞ is
given by jΔχ2EðtÞ − Δχ2E(tðEÞ)j ¼ 1. Thus, the result t ¼ 0

from the full fit is consistent with the result from experiment E
alone if

jΔχ2Eð0Þ − Δχ2E(tðEÞ)j < n2; ð169Þ

where n is a parameter that we could pick, perhaps n ¼ 2 for
consistency within a 95% confidence interval.
This is illustrated in Fig. 11, again based on the CT18

NNLO fit and the observable σ ¼ g(0.3; ð125 GeVÞ2). In
Fig. 10(b), we see that two datasets B1 and B2 make at least a
marginal difference in the overall fit. Now we plot Δχ2totalðtÞ
for the overall fit as a heavy black line and also Δχ2EðtÞ for
E ¼ B1 and E ¼ B2: the datasets obtained in the same
experiment B that was repeated at two collider energiesffiffiffi
s

p
. We also exhibit the Δχ2EðtÞ curves for three other datasets.

We see that Δχ2B1ðtÞ is about 10 units higher at t ¼ 0 than it is
at its minimum. Thus, the consistency condition (169) with
n ¼ 2 is violated in experiment B1. On the other hand,
Δχ2B2ðtÞ is only about 3 units higher at t ¼ 0 than it is at its
minimum. Thus, the consistency condition (169) with n ¼ 2 is
satisfied in experiment B2.
At this level of inconsistency for experiment B1, it is not

credible that we are simply looking at statistical fluctuations.
One simple but crude way to remove the inconsistency would
be to increase the error estimates for the discrepant dataset(s).
To illustrate how this might work, in Fig. 12 we refit the PDFs
by assuming increased quoted errors for the dataset B1;
namely, we refit after multiplying the quoted errors of B1
by a constant factor

ffiffiffi
2

p
. That is, in Eq. (59) we multiply Cij

for i; j ∈ B1 by a common factor 1=2.

(a) (b)

FIG. 10. (a) Dependence of χ2 in a CT18 NNLO fit as a function of distance t in parameter space corresponding to changes in
g(0.01; ð125 GeVÞ2). The black solid curve shows the total χ2, while the remaining three curves show χ2 as a function of t with
particular experiments removed from the dataset. (b) χ2 is as before, but along a line corresponding to changes in g(0.3; ð125 GeVÞ2).
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Figure 12(a) shows differences of χ2 from their minimum
values as functions of t for the full dataset DðallÞ and then for
Dðno EÞ with E ¼ B1 (with the rescaled errors) and B2, as in
Fig. 10(b). In general, we expect that increasing the estimated
errors from certain datasets would change the position of the
best fit for the observable σ and increase the estimated error on
the prediction for σ. In this case, for g(0.3; ð125 GeVÞ2),

neither the position of the minimum nor the estimated error
changes significantly.
In Fig. 12(a), we see that the minima of the two curves

occur well within the region −f < t < f, even for f ¼ 0.5.
Since the criterion (167) no longer indicates that these two
datasets exert substantial pulls on t, we need not examine the
criterion (169) for a discrepancy between a dataset and the
overall fit.
If we do examine the criterion (169), we obtain Fig. 12(b),

where we show Δχ2EðtÞ for the full dataset DðallÞ and then for
DðEÞ with E ¼ B1 (rescaled errors) and B2. We see that
Δχ2EðtÞ is less than 4 units higher at t ¼ 0 than it is at its
minimum for both B1 and B2. These represent less than 2σ
discrepancies, which are not nearly as alarming as the
discrepancy for experiment B1 that we saw in Fig. 11.
In summary, this analysis gives us criteria for checking to

see whether there is a problem associated with the data from
experiment E in determining t. There is a problem if experi-
ment E exerts a substantial pull on the value of t [Eq. (167)],
and if the fit based only on experiment E is inconsistent with
the global fit [Eq. (169)]. There is one set of criteria for each
independent direction eðσÞ corresponding to an observable σ
and for each experiment E.
We have explored how one can make the results from a

dataset E more consistent with the rest of the data by simply
rescaling the errors for this dataset. This is a crude method. We
do not recommend using it for finding the best fit. In Sec. IV.J,
we explore a more subtle method.
A less precise alternative is to leave the disagreeing

experiment(s) and best fit based on the experiment(s)
unchanged but increase the PDF uncertainty to reflect the
incompatibility in the experimental constraints. This possibil-
ity is discussed in Sec. IV.L.

FIG. 11. Dependence of χ2 in a CT18 NNLO fit as a function of
distance t in parameter space corresponding to changes in
g(0.3; ð125 GeVÞ2). The black solid curve shows the total χ2,
while the remaining curves show χ2 as a function of t in certain
experiments E alone.

(a) (b)

FIG. 12. Same as Figs. 10(b) and 11 if the estimated errors for the experiment B1 are multiplied by
ffiffiffi
2

p
.
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J. A more conservative way to adjust the errors

Suppose that the experiment E exerts a substantial pull on
the fit value of the observable σ according to the cri-
terion (167), and χ2 for dataset E along the line a ¼ afit þ
teðσÞ is not consistent according to the criterion (169) with its
value at t ¼ 0, the best-fit value of t according to the fit to all
data. Then it may be helpful to increase the experimental
errors for experiment E. We stated that simply increasing the
total error estimate for experiment E by dividing Cij for i; j ∈
E by a common factor is a crude strategy. A more focused
strategy would be to add a systematic error of the form of
Eq. (52) such that it resolves the inconsistency of the
constraints on our observable σ but does not affect the fit
in any other way. We parametrize this systematic error as

σkβk;new ¼ ξβ̄k; ð170Þ

where ξ is a constant that we can adjust and

β̄k ¼ θðk ∈ EÞ TkβeðσÞβ
½eðσÞαHðEÞαβeðσÞβ�1=2

: ð171Þ

In the normalization factor,HðEÞαβ is the Hessian matrix, as in
Eq. (86), but includes only the data from dataset E

HðEÞαβ ¼
X
i;j∈E

TiαTjβCij: ð172Þ

With this factor, β̄k is independent of the normalization of
the vector eðσÞ. The vector eðσÞ does have a definite
normalization (161), but in Eq. (170) only the direction of
eðσÞ matters. A simple relation for the normalization factor
eðσÞαHðEÞαβeðσÞβ is given in Eq. (188).
We examine whether adding a new systematic error of this

form can repair the incompatibility between dataset E and the
rest of the data while not significantly affecting the remain-
ing fit.
From Eq. (56) with the systematic error in Fig. (170) added,

the covariance matrix becomes

Cðξ2Þ−1ij ¼ σiσjδij þ
X
J

σiβiJσjβjJ þ ξ2β̄iβ̄j: ð173Þ

Thus,

d
dξ2

Cðξ2Þ−1ij ¼ β̄iβ̄j: ð174Þ

Using dC=dξ2 ¼ −C½dC−1=dξ2�C, this is

d
dξ2

Cðξ2Þij ¼ −
X
k

Cðξ2Þikβ̄k
X
l

Cðξ2Þjlβ̄l: ð175Þ

It is straightforward to solve this differential equation to obtain

Cðξ2Þij ¼ Cij −
ξ2
P

kCikβ̄k
P

lCjlβ̄l
1þ ξ2

P
klβ̄kCklβ̄l

: ð176Þ

Here Cij ¼ Cð0Þij is the covariance matrix without the
added systematic error. With the definition in Eq. (171) of
β̄k, we have

X
kl

β̄kCklβ̄l ¼ 1; ð177Þ

so

Cðξ2Þij ¼ Cij −
ξ2

1þ ξ2
X
k

Cikβ̄k
X
l

Cjlβ̄l: ð178Þ

What is the effect on χ2 for experiment E of adding
this systematic error? Consider χ2 for experiment E, for
parameters

aα ¼ afitα þ teα; ð179Þ

where the afitα are the parameters from the global fit before
adding the extra systematic error and the vector e could be the
special vector eðσÞ for observable σ, but it could also be any
other vector in the many-dimensional space of parameters. We
have, from Eqs. (59) and (77),

χ2(DðEÞ;afitþ te;ξ)

¼
X
i;j∈E

½Di−TiðafitÞ− tTiαeα�½Dj−TjðafitÞ− tTjβeβ�CijðξÞ:

ð180Þ

We can write this as

χ2(DðEÞ; afit þ te; ξ)

¼ χ2(DðEÞ; afit; ξ) − 2tBðE; ξÞβeβ þ t2eαHðE; ξÞαβeβ;
ð181Þ

where

BðE; ξÞβ ¼
X
i;j∈E

½Di − TiðafitÞ�CijðξÞTjβ ð182Þ

gives the contribution linear in t and

HðE; ξÞαβ ¼
X
i;j∈E

TiαTjβCijðξÞ ð183Þ

is the Hessian matrix including the added systematic error, but
just for the data from experiment E. Following the notation
from Eq. (172), we define

HðEÞαβ ≡HðE; 0Þαβ; BðEÞαβ ≡ BðE; 0Þαβ: ð184Þ

Without the added systematic error, we have

χ2(DðEÞ;afitþ te;0)

¼ χ2(DðEÞ;afit;0)−2tBðEÞγeγþ t2eαHðEÞαβeβ: ð185Þ
When we add the new systematic error, the result

changes to
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χ2(DðEÞ; afit þ te; ξ)

¼ χ2(DðEÞ; afit þ te; 0) −
ξ2

1þ ξ2
½BðEÞβeðσÞβ�2

eðσÞαHðEÞαβeðσÞβ

þ 2t
ξ2

1þ ξ2
½BðEÞγeðσÞγ�½eðσÞαHðEÞαβeβ�

eðσÞαHðEÞαβeðσÞβ

− t2
ξ2

1þ ξ2
½eðσÞαHðEÞαβeβ�2
eðσÞαHðEÞαβeðσÞβ

: ð186Þ

Here we use Eq. (178) to separate from χ2(DðEÞ; a; 0) the
extra terms resulting from the new systematic error (propor-
tional to ξ2).
We now show that the new systematic error reduces

an apparent tension between dataset E and the rest of the
data along the line associated with σ (our observable of
interest). It does not modify constraints in the other directions.
In the last two terms of Eq. (186), the numerators contain
½eðσÞαHðEÞαβeβ�, the inner product between the unit vector
eðσÞ defining the direction associated with σ, and another
(possibly orthogonal) unit vector e that defines the line
afitþte along which we choose to scan χ2(DðEÞ;afit þ
te;ξ). When we scan along the direction e ¼ eðσÞ, the
χ2(DðEÞ; afit þ te; ξ) function changes as

χ2(DðEÞ;afitþ teðσÞ;ξ)

¼ χ2(DðEÞ;afit;0)−
ξ2

1þξ2
½BðEÞβeðσÞβ�2

eðσÞαHðEÞαβeðσÞβ
−2t

1

1þξ2
½BðEÞγeðσÞγ�þ t2

1

1þ ξ2
½eðσÞαHðEÞαβeðσÞβ�:

ð187Þ

If we turn off the systematic error (set ξ ¼ 0) for a moment,
from Eq. (187) we can numerically find the factor
eðσÞαHðEÞαβeðσÞβ that appears here and in the definition in
Eq. (171):

eðσÞαHðEÞαβeðσÞβ ¼
1

2

d2

dt2
χ2(DðEÞ; afit þ teðσÞ; 0): ð188Þ

If we turn the systematic error back on by choosing
ξ ≠ 0, the second term makes χ2 at t ¼ 0 smaller as ξ
increases without affecting the shape of χ2 as a function
of t. In the remaining terms, the coefficients of t and t2 are
reduced by the same factor as ξ increases. The shape of χ2

versus t simply becomes shallower as desired, reducing the
tension between dataset E and the rest of the data along the
line a ¼ afit þ teðσÞ.
On the other hand, in the directions that are orthogonal to

the direction of variation of σ, the unit vectors e obey

eðσÞαHðEÞαβeβ ¼ 0: ð189Þ

If, for example, the parameter space is 26 dimensional, then
there is a 25-dimensional vector space in which e could lie and
satisfy this condition. In this case, Eq. (186) gives

χ2(DðEÞ;afitþ te;ξ)

¼ χ2(DðEÞ;afitþ te;0)−
ξ2

1þ ξ2
½BðEÞβeðσÞβ�2

eðσÞαHðEÞαβeðσÞβ
: ð190Þ

That is, χ2 for dataset E at t ¼ 0 is smaller when ξ > 0, but the
shape of χ2 as a function of t is not changed at all. Thus, the
new systematic error is a conservative choice in that it
alleviates the incompatibility problem while having a minimal
effect on the rest of the fit.
We see how this prescription resolves the tension between

experiment B1 and other experiments that we observe in
Fig. 11. There we examine the parameter fit along a direction
eðσÞ corresponding to σ ¼ g(0.3; ð125 GeVÞ2). We see that
the curve of

Δχ2EðtÞ ¼ χ2(DðEÞ; afit þ teðσÞ) − χ2(DðEÞ; afit) ð191Þ

for a certain experiment E ¼ B1 is not consistent with the
choice of t ¼ 0 that minimizes the total χ2. To alleviate this
problem, we add the new systematic error in Eq. (170) for
experiment B1 with ξ defined by 1=ð1þ ξ2Þ ≈ 4=10. With this
error added, the new Δχ2B1ðtÞ for B1 now satisfies

Δχ2B1;newðtÞ ¼
Δχ2B1;oldðtÞ
1þ ξ2

≈
4

10
Δχ2B1;oldðtÞ: ð192Þ

The new Δχ2B1ðtÞ curve becomes flat enough that consistency
with the rest of the data along the line afit þ teðσÞ is no longer
a problem.
We can now perform the global fit again with the modified

systematic error for experiment B1. Then the best-fit param-
eters afit change. The direction vector eðσÞ corresponding to
the observable g(0.3; ð125 GeVÞ2) also changes. The new
fit gives us a new plot analogous to Fig. 11 in which all
of the χ2 curves have changed. The result is shown in Fig. 13.
In the new fit, χ2 for experiment B1 is flat, indicating
that experiment B1 is now not significantly affecting the
determination of g(0.3; ð125 GeVÞ2). The best-fit value of
g(0.3; ð125 GeVÞ2) changes from 0.309 to 0.312. The esti-
mated error on the fit value of g(0.3; ð125 GeVÞ2), deter-
mined by the second derivative of the total χ2 curve with
respect to g(0.3; ð125 GeVÞ2), is about 2% larger.

K. Summary of measures of goodness of fit

The statistical analysis that we present in Sec. III relies on
several assumptions. One assumes that experimental system-
atic errors are adequately represented by a Gaussian distri-
bution described by a covariance matrix given by the
experiments. Typically, one also assumes that theory errors
are small enough to be neglected. Additionally, one assumes
that the theoretical prediction is, to a good approximation, a
linear function of the PDF parameters in the region afit � δa
near the best-fit parameter choice. Some of these assumptions
could be wrong.
We have argued that we should not simply trust these

assumptions but should instead test them by using a strong set
of goodness-of-fit criteria. Taken together, these tests are
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much more stringent than that obtained by simply noting the
global χ2 value. If the fit passes all of these tests, we can have
some confidence in the results and the errors on the results. If
the fit does not pass all tests, then remediation is needed. We
do not offer a fixed prescription, but we have pointed out some
possibilities.
The choice that has usually been made is to leave the fit as it

is but to use larger error estimates on the final PDFs than those
found with the parameter-fitting criterion that requires Δχ2 ¼
4 at the 95% probability level. Estimation of trustworthy PDF
errors in such an imperfect situation can be difficult and
sometimes controversial. Before a new generation of PDFs is
published, it may undergo many months of multifaceted PDF
testing to establish the realistic estimates for PDF uncertain-
ties. The increase over the nominal PDF errors that results
from this procedure is often referred to as applying tolerance
to the PDF uncertainty.

L. Global and dynamic tolerance

Tolerance is relevant at the stage of determination of PDF
uncertainties after the best-fit PDF has been found. In its
simplest realization, tolerance defines an allowed range for the
variation

a ¼ afit þ te ð193Þ
of the parameters a along a direction e and at a probability
level v. Often, e is one of the eigenvectors ofH,Hαβeβ ¼ heα.
However, any direction e is a possible choice. We define the
normalization of e using the Hessian matrix, as in Eq. (117):
eαHαβeβ ¼ 1. Then the dependence of χ2 on t is given by
Eq. (119) as

χ2ðD; afit þ teÞ ¼ χ2ðD; afitÞ þ t2: ð194Þ

According to Eq. (111), if the experiments that determine afit
are repeated many times, then the component t of afit − ā in
the direction e is distributed according toN ð0; 1Þ. Thus, if we
pick a probability v and ask that

−tlimðvÞ < t < tlimðvÞ ð195Þ

with probability v, the limiting value tlimðvÞ is determined by

Z
tlimðvÞ

−tlimðvÞ
dt̄pðt̄Þ ¼ v; ð196Þ

where pðt̄Þ is the Gaussian distribution N ð0; 1Þ. Then
tlimð0Þ ≈ 0, tlimð0.68Þ ≈ 1, tlimð0.8Þ ≈ 1.3, and tlimð0.95Þ ≈ 2.
When we believe that this procedure misestimates the true

uncertainty on t, we could try to find a better probability
distribution pðt̄Þ to use in Eq. (196). For example, we could
use N ð0; TÞ with T2 > 1 as our pðt̄Þ so that

pðt̄Þ ¼ 1ffiffiffiffiffi
2π

p exp½−t̄2=ð2T2Þ�: ð197Þ

Here we use the same value T for every direction vector e
(Pumplin et al., 2001). The value T2 in this case is referred to
as the global tolerance. With v ¼ 0.68, the allowed variation
of PDF parameters is constrained to satisfy −T < t < T along
any vector direction with this prescription. With v ¼ 0.95,
the allowed variation of PDF parameters is constrained to
satisfy −4T < t < 4T.
The dynamic tolerance introduced by the Martin-Stirling-

Thorne-Watt group (Martin et al., 2009) is determined by a
similar consideration by constructing pðt̄Þ from χ2 distribu-
tions for individual experiments E. If PNðχ2Þ is the χ2

distribution with N degrees of freedom, we can define
ξðN; vÞ by

Z
ξðN;vÞ

−∞
dχ2PNðχ2Þ ¼ v ð198Þ

so that χ2 < ξðN; vÞ with probability v. Note that we choose

a one-sided limit here. Since according to Eq. (157) S ¼ffiffiffiffiffiffiffi
2χ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N − 1

p
closely obeys the N ð0; 1Þ distribution,

we can relate ξðN; vÞ to tlimðvÞ to the following good
approximation:

ξðN; vÞ ≈ 1
2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N − 1

p
þ tlimð2v − 1Þ�2: ð199Þ

With this information, the “dynamic tolerance” prescription
of Martin et al. (2009) assigns an allowed interval

Tmin < t < Tmax ð200Þ

for some eigenvector direction in the following way.
We define χ2(DðEÞ; a) as the part of χ2 coming only

from the data in dataset E, as in Sec. IV.I. We use χ2(DðEÞ;
afit þ te) to define limits TminðEÞ and TmaxðEÞ arising from
dataset E, as explained later. Then we set

FIG. 13. χ2 curves for individual experiments as in Fig. 11 but
with an extra systematic error added for experiment B1 according
to Eqs. (170) and (171). The fit is repeated with the new
systematic error for experiment B1. The new fit gives a new
best-fit choice afit. Now the observable g(0.3; ð125 GeVÞ2)
defines a new direction eðσÞ in parameter space. This plot uses
the new afit, eðσÞ, and the total χ2 values after the fit.
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Tmin ¼ max
E

TminðEÞ;
Tmax ¼ min

E
TmaxðEÞ: ð201Þ

For every E, Martin et al. (2009) defined the range TminðEÞ <
t < TmaxðEÞ by the criterion

χ2(DðEÞ; afit þ te)
χ2(DðEÞ; afit)

<
ξðNE; vÞ
ξðNE; 1=2Þ

; ð202Þ

whereNE is the number of data in dataset E. To understand the
result of applying this criterion, it is helpful to use some
approximations.
First, using Eq. (199) gives

χ2(DðEÞ; afit þ te)
χ2(DðEÞ; afit)

<

�
1þ tlimð2v − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NE − 1
p

�
2

. ð203Þ

Noting that tlimð2v − 1Þ is of the order of 1, we see that for
NE ≫ 1 this is

χ2(DðEÞ; afit þ te)
χ2(DðEÞ; afit)

< 1þ
ffiffiffi
2

p
tlimð2v − 1Þffiffiffiffiffiffiffi

NE
p . ð204Þ

Now we examine the left-hand side of Eq. (203).
χ2(DðEÞ; afit þ te) is a quadratic function of t given as

χ2(DðEÞ; afit þ te) ¼ χ2(DðEÞ; afit)þ A1ðEÞtþ A2ðEÞt2;
ð205Þ

with the coefficients A1ðEÞ and A2ðEÞ given in Eq. (185). We
note that 0 < A2ðEÞ < 1 because

A2ðEÞ ¼
X
i;j∈E

eαTiαCijTjβeβ <
X
i;j

eαTiαCijTjβeβ

¼ eαHαβeβ ¼ 1: ð206Þ

The coefficient A1ðEÞ could have either sign and could
be large.
Inserting Eq. (205) into Eq. (204) gives

1þ A1ðEÞtþ A2ðEÞt2
χ2(DðEÞ; afit)

< 1þ
ffiffiffi
2

p
tlimð2v − 1Þffiffiffiffiffiffiffi

NE
p . ð207Þ

The large terms, 1 here, cancel exactly. This gives

A1ðEÞtþ A2ðEÞt2 <
χ2(DðEÞ; afit)ffiffiffiffiffiffiffi

NE
p ffiffiffi

2
p

tlimð2v − 1Þ: ð208Þ

To understand this, we can estimate χ2(DðEÞ; afit) by its
expectation value, which according to Eq. (137) is approx-
imately NE. This gives

A1ðEÞtþ A2ðEÞt2 <
ffiffiffiffiffiffiffiffiffi
2NE

p
tlimð2v − 1Þ: ð209Þ

This gives upper and lower limits on t for each experiment
E. If, for example, we take v ¼ 0.9, then tlimð2v − 1Þ ¼
tlimð0.8Þ ≈ 1.3. For simplicity, consider the case that A1ðEÞ is

small. If A2ðEÞ is also small, then this inequality restricts t
only weakly. That is, jTminðEÞj and jTmaxðEÞj are large. We
always have A2ðEÞ < 1. If A2ðEÞ is close to 1, then this
inequality can provide a significant restriction on t. However,
the restriction is only significant if

ffiffiffiffiffiffiffiffiffi
2NE

p
is not too large. For

datasets with large NE, the restriction is always weak. Thus,
the most restrictive values of jTminðEÞj and jTmaxðEÞj, and
thus the overall values of jTminj and jTmaxj, are likely to come
from datasets in which

ffiffiffiffiffiffiffiffiffi
2NE

p
is not too large and A2ðEÞ is not

too small. For most experiments, the values of jTminðEÞj or
jTmaxðEÞj tend to be substantially greater than 1.
We do not attempt to justify the definition (202) of the

range for t or its approximate version (209). We note,
however, that the factor

ffiffiffiffiffiffiffiffiffi
2NE

p
in Eq. (209) is familiar: it

is the standard deviation for the distribution of χ2, as in
Eq. (138) for ND ≫ NP.
We have described one approach to defining a tolerance

factor. There are several other approaches. It is beyond our
scope to explore them in detail.

V. PARTON DISTRIBUTIONS FOR HEAVY IONS

The concepts discussed in this review can be applied to
nuclear parton distribution functions (nPDFs), nonperturba-
tive QCD functions that are increasingly employed to model
the structure of heavy nuclei in high-energy scattering. The
concept of collinear QCD factorization that is central to
describing scattering of free hadrons is also relevant for the
growing number of measurements in collisions of heavy
nuclei. The experimental data available for constraining the
nPDFs is still limited in their span over x and μ2. They are
anticipated to grow quickly as the Large Hadron Collider and,
especially, the envisioned Electron-Ion Collider produce new
results. We now review the key features of the nPDFs and refer
the interested reader to the original publications by nuclear
PDF analysis groups EPPS (Eskola et al., 2017), nCTEQ
(Kovařík et al., 2016), DSSZ (de Florian et al., 2012), HKN
(Hirai, Kumano, and Nagai, 2007)), KA (Khanpour and
Atashbar Tehrani, 2016), and NNPDF (Abdul Khalek,
Ethier, and Rojo, 2019) for more details.

A. Universality of nuclear PDFs

As in the standard case of protons, the structure functions
and cross sections in collisions involving one or more nuclei
are related to nPDFs via perturbative QCD factorization
(Collins, Soper, and Sterman, 1983, 1985, 1988; Bodwin,
1985). Even though inclusive collinear factorization has been
proven in only a few cases (e.g., deeply inelastic scattering
on hadrons and lepton pair production in hadron collisions),
it has formed the basis for the analysis of proton PDFs.
Equations (35) and (36) express QCD factorization for free-
nucleon QCD observables. We now show how to extend
these factorization formulas to high-energy scattering of
heavy nuclei. We denote a nucleus by N and its atomic
number by A.
We assume that, at sufficiently large

ffiffiffi
s

p
, the QCD observ-

ables of interest are dominated by independent parton scatter-
ings, in which only one parton per initial-state nucleus
contributes to the hard scattering. The interactions between
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a parton and a nucleus can be classified in three categories
(Qiu, 2003; Accardi et al., 2004), as shown in Fig. 14.
Figure 14(c) illustrates jet quenching, the changes in a jet as it
moves through a large nucleus. Figure 14(b) illustrates two
partons from the nucleus participating in the hard interaction.
These effects contribute to the power-suppressed corrections
to the factorization formulas (35) and (36) for nuclei, but they
can be important if the nucleus is large enough and the
scattering is not too hard.
The additional interactions between the nucleus and

the initial-state parton within the same nucleus [shown in
Fig. 14(a)] change the parton distributions of the nucleus and
do not affect the hard scattering, thereby leaving intact the
form of factorization given by Eqs. (35) and (36). The only
change in the prescription replaces the free-proton PDFs with
the nPDFs, which accounts for the additional initial-state
effects and can be defined as

fi=NðξN; μ2Þ ¼
1

4π

Z
dy−e−iξNP

þ
N y

−

× hNjψ̄ ið0; y−; 0ÞγþWðy−; 0Þψ ið0ÞjNi: ð210Þ

This definition is analogous to the one in Eq. (19), but the
proton matrix element of the number density operator is
replaced by the nuclear one. This nPDF is defined with respect
to the entire nucleus with þ momentum Pþ

N . Accordingly, the
parton described by this parton distribution function carries
the þ momentum pþ ¼ ξNP

þ
N . The momentum fraction ξN is

defined as

ξN ¼ pþ

Pþ
N
; with 0 ≤ ξN < 1: ð211Þ

The modified factorization prescription for a cross section
in collisions of nuclei N1 and N2 can be written using the
nPDFs (210) as

σ½F� ¼
X
a;b

Z
1

0

dξa

Z
1

0

dξb fa=N1
ðξa; μ2FÞfb=N2

ðξb; μ2FÞ

× σ̂a;b;ξa;ξb;μ2F ½F� þOðM=QÞ: ð212Þ

Even in collisions of nuclei, hard processes such as the
production of muon pairs or sufficiently high-pT jets are
dominated by the leading-power contributions in Eq. (212).
Thus, these processes can be well described using
fi=NðξN; μ2Þ, where the dependence on the scale is still
governed by DGLAP equations. However, the environment
of the nuclear collisions is much different from the free-
nucleon collisions. For example, at small values of ξN the
parton momenta, as viewed in the nucleus rest frame, are
small, so the parton wave functions spread over the entire
nucleus and beyond. Then “saturation” (Golec-Biernat and
Wusthoff, 1999; Mueller, 1999; Bartels, Golec-Biernat, and
Kowalski, 2002; Hautmann and Soper, 2007) or “shadowing”
(Armesto, 2006) can substantially modify the nPDFs. The
nPDFs can incorporate these and other initial-state nuclear
effects, such as the “EMC” effect (named for the European
Muon Collaboration) (Aubert et al., 1983; Geesaman, Saito,
and Thomas, 1995; Malace et al., 2014), and still be universal.
On the other hand, jets produced in a partonic scattering can

be altered by their passage through nuclear matter, as in
Fig. 14(c), unless the jet’s transverse momentum is exceed-
ingly large. This “jet quenching” can affect jet cross sections
beyond what is predicted by Eq. (212) (Aad et al., 2010;
Chatrchyan et al., 2011; Adam et al., 2015). Jet-quenched
contributions do not factorize in the same way.
The nPDFs depend on the number of protons Z and number

of neutrons A − Z. Highly nontrivial A dependence arises from
strong interactions of partons inside the nucleus. There is also
trivial A dependence that is present even if the nucleons are
free. Consider a simple model in which a nucleus with
þmomentum Pþ

N is just a collection of comoving independent
protons and neutrons in which each nucleon carries the same
fraction ξp;n ¼ 1=A of the total momentum Pþ

N .
In this model, one could write the nPDF of the entire

nucleus as

fa=NðξN; μ2ÞdξN
¼ ½Zfa=pðξA; μ2Þ þ ðA − ZÞfa=nðξA; μ2Þ�dξA; ð213Þ

where fa=p and fa=n are the parton distributions in the free
proton and neutron, and ξA is the momentum fraction of the
þ momentum of the parton with respect to the þ momentum
of the nucleon. The þ momentum pþ of parton a is

pþ ¼ ξNP
þ
N ¼ ξAξp;nP

þ
N ð214Þ

so that the momentum fractions ξA and ξN are related via

ξA ¼ ξN
ξp;n

; or ξA ¼ AξN if ξp;n ¼
1

A
: ð215Þ

We can use this relation to rewrite Eq. (213) in terms of
momentum fraction ξN as

(a)

(b)

(c)

FIG. 14. Interactions of the nucleus with the initial- and final-
state partons. From Qiu, 2003.
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fa=NðξN;μ2ÞdξN
¼ ½Zfa=pðAξN;μ2ÞþðA−ZÞfa=nðAξN;μ2Þ�dðAξNÞ: ð216Þ

In this model, ξN is constrained to be in the range
0 ≤ ξN ≤ 1=A, since free-nucleon PDFs vanish for ξA > 1,
and each nucleon carries exactly the fraction 1=A of the
þ momentum of the nucleus.
In reality, one nucleon can carry any fraction of the nucleus’

þ momentum since the nucleons participate in Fermi motion
relative to each other (Bodek and Ritchie, 1981; Saito and
Uchiyama, 1985). We still find it helpful to use the momentum
fraction ξA ≡ AξN. We now define it as the fraction of the
averageþmomentum Pþ

N =A of a bound nucleon. The variable
ξA now takes values in the interval 0 ≤ ξA ≤ A, with con-
tributions at 1 < ξA < A arising from in-nucleus motion.
The PDFs of bound nucleons in the nucleus do not coincide

with the free-nucleon PDFs. However, if nuclear modifica-
tions are moderate, we can start from Eq. (213) to get a
reasonable ansatz for the parametrizations of nuclear PDFs.
We define a nuclear PDF of an average nucleon in a nucleus

with atomic number A, denoted by fAaðξA; μ2Þ. This nPDF has
the form

fAaðξA; μ2Þ ¼
Z
A
fAa=pðξA; μ2Þ þ

ðA − ZÞ
A

fAa=nðξA; μ2Þ: ð217Þ

In Eq. (217), fAa=pðξA; μ2Þ and fAa=nðξA; μ2Þ are the PDFs in the
bound proton and bound neutron. They are different from the
free-nucleon PDFs fa=p;nðξA; μ2Þ. They depend on the pre-
viously defined momentum fraction ξA. We can relate the two
types of nPDFs that we just discussed as

fa=NðξN; μ2ÞdξN ¼ AfAaðξA; μ2ÞdξA: ð218Þ

Both the nPDFs fa=NðξN; μ2Þ in the nucleus and the nPDFs
fAaðξA; μ2Þ for an average nucleon are acceptable for use in
QCD calculations. But “trivial”A dependencemakes it difficult
to compare the nPDFs of the first kind fa=NðξN; μ2Þ for two
different nuclei.
For example, consider the prominent feature of proton

PDFs: the peaks of the up- and down-quark distributions at
ξ ≈ 1=3. Similar peaks are found in the respective nPDFs
fu=NðξNÞ and fd=NðξNÞ at ξN ∼ 1=ð3AÞ; i.e., the position of the
peaks in these nPDFs depends on the nucleus. In addition,
the respective valence-quark distributions are normalized by
the sum rules in the following nucleus-dependent way:

Z
1

0

½fu=NðξN; μ2Þ − fū=NðξN; μ2Þ�dξN ¼ Aþ Z;
Z

1

0

½fd=NðξN; μ2Þ − fd̄=NðξN; μ2Þ�dξN ¼ 2A − Z: ð219Þ

In contrast, not only do the nPDFs for an average nucleon
take into account the trivial A dependence, they also correctly
incorporate the specific ratio of protons to neutrons. The
nPDFs fAa=pðξA; μ2Þ of a bound proton satisfy the sum rules

Z
A

0

½fAu=pðξA; μ2Þ − fAū=pðξA; μ2Þ�dξA ¼ 2;
Z

A

0

½fAd=pðξA; μ2Þ − fA
d̄=p

ðξA; μ2Þ�dξA ¼ 1; ð220Þ

which are much like the sum rules for the free proton.
Experimental analyses of nuclear DIS account for the trivial

A dependence by presenting the cross sections or DIS
structure functions not for the entire nucleus but rather per
nucleon. Similarly, for collisions between two nuclei with
atomic numbers A1 and A2, cross sections σ̃½F�≡ σ½F�=ðA1A2Þ
per nucleon are usually quoted. The cross section σ̃½F� can be
expressed using either type of nPDF:

σ̃½F� ¼ 1

A1

1

A2

X
a;b

Z
1

0

dξadξb fa=N1
ðξa; μ2FÞfb=N2

ðξb; μ2FÞ

× σ̂a;b;ξa;ξb;μ2F ½F� þOðM=QÞ

¼
X
a;b

Z
A1

0

dξ0a

Z
A2

0

dξ0b f
A1
a ðξ0a; μ2FÞfA2

b ðξ0b; μ2FÞ

× σ̂a;b;ξ0a;ξ0b;μ2F ½F� þOðM=QÞ: ð221Þ

One should note that even in the case of noninteracting
nucleons the cross section per nucleon σ̃½F� differs from the
cross section in proton-proton collisions due to the differing
flavor decomposition.
To summarize, the trivial A dependence reflecting the

sheer number of nucleons can be captured by using the
ansatz (217) for the nPDF fAaðξA; μ2Þ per average bound
nucleon. On the right-hand side of Eq. (217), we introduce
the PDFs fAa=p and fAa=n for bound protons and neutrons that
acquire nontrivial A dependence from a combination of
nuclear effects. Their parametrization at the input scale μ0
is discussed in Sec. V.B.

B. Parametrizing the A dependence

In principle, one can extract the nPDFs fAa=pðξA; μ2Þ of a
bound proton from experimental data for each nucleus
separately, without constructing a comprehensive model for
initial-state nuclear effects. The current nuclear scattering
data, however, are insufficient to determine the complete set of
nPDFs for any single nucleus. The dependence of nuclear
effects on ξ (also denoted as x), A, and Z is assumed to be
unknown from first principles. Thus, it must be determined in
a global fit to experimental data. To assemble all scattering
data taken on various nuclei within a common global analysis,
a number of simplifying assumptions need to be made.
First, given that the nuclear modifications in the bound-

proton PDFs fAa=p are expected to be small, it makes sense to
use the free-proton PDFs fa=p as the baseline for the para-
metrization of fAa=p.
Second, to use the available data, one makes an assumption

that the bulk of the nuclear corrections depends only on A, the
total number of nucleons of either isospin.
Third, the current data are not sufficient to constrain the

nPDFs for momentum fractions ξA > 1, so all nPDF analyses
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assume that 0 < ξA < 1.However, future fits may be able to
include the region 1 < ξA.

15

Fourth, we need to decide how to introduce the A depend-
ence in fAa=p. In practice, one of two approaches is taken.
The first approach introduces nuclear-correction factors

Raðx;AÞ at the input scale μ20 as follows:

fAa=pðx;A; μ20Þ ¼ Raðx;AÞfa=pðx; μ20Þ;
for a ¼ uv; dv; g; ūþ d̄; s; s̄; d̄=ū: ð222Þ

In Eq. (222) fa=pðx; μ20Þ, the corresponding PDF for a free
proton, is held fixed during any nPDF analysis. The PDF
fAa=nðx; μ20Þ of a bound neutron is related to fAa=pðx; μ20Þ by
charge symmetry. All free parameters associated with the
nuclear modification are contained in Ra. For example, the
EPPS16 analysis (Eskola et al., 2017) used the following
piecewise expression:

Raðx;AÞ ¼

8>><
>>:

a0 þ a1ðx − xaÞ2; 0 ≤ x ≤ xa;

b0 þ b1xα þ b2x2α þ b3x3α; xa ≤ x ≤ xe
c0 þ ðc1 − c2xÞð1 − xÞ−β; xe ≤ x ≤ 1;

;

ð223Þ
where α ¼ 10xa and all parameters ak, bk and ck implicitly
depend on the atomic number A and the PDF flavor a. A
similar approach that employed a nuclear-correction factor
was followed by HKN07 (Hirai, Kumano, and Nagai, 2007)
and DSSZ (de Florian et al., 2012). Each analysis used a
different proton baseline; cf. Hirai, Kumano, and Nagai
(2007), de Florian et al. (2012), and Eskola et al. (2017).
The second approach presented by Kovařík et al. (2016) did

not operate with the nuclear-correction factors Ra. It instead
parametrized the entire nPDF fAa=pðx; μ20Þ with a flexible

functional form used for the free-proton PDF fa=pðx; μ20Þ,
but with A-dependent free parameters. As an example, in the
nCTEQ15 analysis the explicit parametrization at the input
scale was

xfAa=pðx;A; μ20Þ ¼ c0xc1ð1 − xÞc2ec3xð1þ ec4xÞc5 ;
for a ¼ uv; dv; g; ūþ d̄; s; s̄. ð224Þ

As in the underlying CTEQ6 parametrization (Pumplin et al.,
2002), the parton combination d̄=ū was given by a different
form

fA
d̄=p

ðx;A; μ20Þ=fAū=pðx;A; μ20Þ
¼ c0xc1ð1 − xÞc2 þ ð1þ c3xÞð1 − xÞc4 : ð225Þ

All free parameters ck depend on the atomic number

ckðAÞ ¼ ck;0 þ ck;1ð1 − A−ck;2Þ; k ¼ 1;…; 5: ð226Þ

The coefficient ck;0 ¼ ckðA ¼ 1Þ is the underlying proton
coefficient. It was held constant during the nCTEQ analysis.
In the case of the nCTEQ15 analysis, the underlying proton
coefficients ck;0 were set to the coefficients from the proton
analysis performed by Owens et al. (2007).
Over the years, there have been other approaches to

including nuclear effects in analyses of parton distribution
functions. For example, the first next-to-leading-order analy-
sis of nuclear parton distribution functions performed by
de Florian and Sassot (2004) used a convolution approach to
relate the nuclear PDF of an average nucleon to the one of a
free nucleon as

fAa=pðx; μ20Þ ¼
Z

A

x

dy
y
Wiðy; A; ZÞfa=p

�
x
y
; μ20

�
: ð227Þ

The analysis of proton PDFs using the neural networks was
also extended to the analysis of nuclear PDFs (Abdul Khalek,
Ethier, and Rojo, 2019). In that case the dependence on the
number of nucleons was introduced as an additional parameter
to the neural network. We do not go into detail for any of these
approaches, as they have not yet been used in a global analysis
of all nuclear scattering data.

C. Comparisons of nuclear PDFs

The nPDFs fAa=pðx;A; μ20Þ of the bound proton are deter-
mined from experimental datasets taken on many different
nuclei. Most of the data are still coming from deeply inelastic
scattering and are provided in the form of nuclear-correction
factors

RDISðx; μ2Þ ¼
FA1

2 ðx; μ2Þ
FA2

2 ðx; μ2Þ : ð228Þ

The more recent data from neutrino DIS are provided as
double-differential cross sections d2σ=ðdxdQ2Þ. The collider
data from Fermilab, RHIC, and the LHC are also provided as
differential cross sections (per nucleon). The coverage of the
relevant nuclear world data is nowhere close to that of the
data available for free-nucleon PDFs. Many features of nPDFs
are still poorly known, especially outside of the interval
0.01≲ x≲ 0.5. Most notably, no data constrain the nuclear
gluon PDF at low momentum fractions.
The comparison of different nuclear PDF ensembles is a

little trickier than comparing free-proton PDFs. The deficit of
precise data introduces strong sensitivity to the prior and
methodological assumptions, such as the kinematic cuts,
nPDF parametrization form, and the choice of the baseline
free-proton PDFs.
The methods introduced in Sec. IV can illustrate the

differences between the various nPDF analyses. First, in
Fig. 15 we show the distributions of SE, defined in Sec. IV.H,
from four recent NLO global nPDF analyses. As in the case of
the proton analyses shown in Fig. 9, the distributions of SE for
the nPDF analyses are broader than the standard normal
distribution N ð0; 1Þ expected from an ideal fit. Looking at
the means and standard deviations of the distributions of SE
shown in Fig. 15, we see that all means are negative except for
the HKN07 analysis, indicating that more experiments were
fitted too well. This indicates possibly overestimated

15In the following text we denote the momentum fraction ξA
restricted to the interval ξA ∈ ð0; 1Þ for simplicity by x.
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uncertainties in multiple nuclear experiments. The prior
assumptions made in the HKN07 analysis did not allow for
a good description of many Drell-Yan total cross-section
measurements by E772 and E866 experiments at Fermilab.
Consequently, the SE distribution for HKN07 had its mean
shifted to the right, and it was wider. Some caution is needed
when comparing the SE distributions between the analyses in
detail. For example, one entry with high SE in the EPPS16
analysis is the double-differential neutrino DIS cross section
from the CHORUS Collaboration. This experiment is not
included in the nCTEQ15 and HKN07 analyses. In the DSSZ,
it is included only in the form of the structure functions F2.

We can quantify the observation that the SE distributions are
far from the ideal N ð0; 1Þ distribution using the Anderson-
Darling test. The probability values that the distributions for
the four nPDF analyses were drawn from N ð0; 1Þ are

PA-D ¼ 6.8 × 10−4; EPPS16;

PA-D ¼ 1.3 × 10−5; nCTEQ15;

PA-D ¼ 1.4 × 10−2; DSSZ;

PA-D ¼ 2.1 × 10−5; HKN07: ð229Þ

FIG. 15. Probability distributions in the effective Gaussian variable SE for χ2 values of the fitted datasets from the NLO nuclear PDF
fits EPPS16, nCTEQ15, DSSZ, and HKN07.
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With the possible exception of the DSSZ distribution, the
Anderson-Darling test confirms that it is highly unlikely that
the distributions in question come from the expected Gaussian

distribution. This is reminiscent of what we find in the proton
case in Eq. (159); however, in three cases out of four, the
nuclear data are fitted too well rather than too poorly.

FIG. 16. Nuclear-correction factor Riðx;AÞ ¼ fAi=pðx;A; Q2Þ=fi=pðx;Q2Þ for lead (A ¼ 208) and the partons i ¼ g; s; uv; dv; ū; d̄ and at
the momentum transfer Q ¼ 10 GeV.
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The momentum fraction dependence of nPDFs is often
examined by plotting scale-dependent nuclear-correction
factors,

Riðx; μ2;AÞ ¼
fAi=pðx;A; μ2Þ
fi=pðx; μ2Þ

; ð230Þ

where fi=pðx; μ2Þ is the baseline free-proton PDF. In Fig. 16,
we turn to a comparison of the EPPS16, nCTEQ15, and DSSZ
nuclear PDFs presented as these nuclear-correction factors.
We show Riðx;Q2;AÞ at Q ¼ 10 GeV for lead (A ¼ 208), for
which the nuclear effects are the largest. Broadly speaking, we
can conclude that all three nPDF families are consistent with
each other within the indicated uncertainties. Upon closer
inspection, we see that the central values of Ri differ substan-
tially among the three nPDF sets, in large part due to the strong
dependence on the previously mentioned methodological
assumptions, and most prominently due to the choice of
the parametrization form. Furthermore, even though it is
conventional to compare the ratios Ri rather than the nPDFs
themselves, this quantity artificially introduces a dependence
on the proton baseline.Much of the dependence on the baseline
is absent when one compares the bound-proton PDFs
fAa=pðx;A; μ2Þ directly.
The other notable difference among the results in Fig. 16 is

their strikingly different uncertainties. One source of the
differences is the various definitions of the uncertainties. All
nPDF analyses employ some version of the global tolerance
criterion that is based solely on the global χ2; cf. Sec. IV.L. The
DSSZ analysis uses the simplest version of the tolerance:
their uncertainties correspond to varying the underlying
parameters along the eigenvector directions [see Eq. (193)]
by t ¼ T ¼ ffiffiffiffiffi

30
p

. Both the nCTEQ15 and EPPS16 analyses
first examine a version of the dynamical tolerance, as described
in Sec. IV.L, to estimate proper global tolerances for their final
nPDF uncertainties. They determine the limits Ti

min and Ti
max

according to Eq. (201) using the probability v ¼ 0.90 for each
eigenvector direction ei. Then, a global tolerance is constructed
by averaging the changes in χ2 over all eigenvector directions as

T2 ¼
XNP

i¼1

χ2ðafit þ Ti
maxeiÞ þ χ2ðafit þ Ti

mineiÞ − 2χ20
2n

¼
XNP

i¼1

ðTi
maxÞ2 þ ðTi

minÞ2
2n

: ð231Þ

The nCTEQ15 analysis has 16 free parameters (NP ¼ 16) and
generates the error PDFs in a standard manner for the global
tolerance of T2 ¼ 35.
The EPPS16 analysis was the first to include the LHC

data from proton-lead collisions. It uses 20 free parameters,
and their prescription given by Eq. (231) yields the global
tolerance of T2 ¼ 52.
If all nuclear PDF analyses were to use the same nuclear

data in a specific range of momentum fractions and all
analyses had a flexible parametrization form, the uncertainties
would be similar. At present, the compared nPDF analyses do
not fit the same data. Furthermore, as the four nPDF analyses

rely on the traditional minimization of global χ2, introducing
more free nPDF parameters that can be constrained by the
nuclear data would lead to unstable global fits. In Secs. IV.A
and IV.B, we show how one can find the optimal number NP
of free parameters needed to obtain a stable fit to a given set of
hadronic data. For the current nPDF analyses, the optimal
number of free parameters appears to be no more than 15–20.
Adding new data, for example, the LHC data that are included
in the EPPS16 analysis, allows one to expand the constraints
to a wider range of momentum fractions or new parton flavor
combinations. With more LHC data expected in the near
future, it will be possible to open up additional free parameters
in the initial nPDF parametrizations, leading to a more realistic
estimate of uncertainties on nuclear PDFs.

VI. CONCLUSIONS

We have reviewed certain aspects of the fitting of collinear
parton distribution functions (PDFs) to data. This is a large
field. We have concentrated on just a few areas that could be of
interest to the readers who use the PDFs or are interested in the
rich subject of the global QCD analysis.
First, we have described the basic definition of what parton

distribution functions are, and how they relate to the descrip-
tion of data. We have also provided definitions and a brief
description for parton distributions in nuclei instead of just
protons and neutrons.
Second, we have described the basic statistical treatment

needed to fit the PDFs using what is often called the Hessian
method. Our description is simplified compared to what is
actually used in current PDF fits. We have assumed that, in a
small enough neighborhood of the best fit, the theory
predictions TkðaÞ are approximately linear functions of the
parameters a. This is not exactly the case, but this approxi-
mation is reasonably good when the PDF uncertainties are
small and allows us to derive results in a closed form. Working
within this framework, we have explored the statistical
reasoning behind the fitting procedure and have derived
analytic expressions for the key results of a PDF fit, such
as expectation values and uncertainties.
We have then provided a battery of tests to critically

examine whether the statistical assumptions are consistent
with certain statistical measures that result from the fit. With
these tests, one can identify specific features or data subsets in
the multidimensional QCD fits that may indicate discrepan-
cies between experimental measurements and theoretical
predictions. Without insisting on a concrete recipe, we have
presented some idea of what one can do in the case of
inconsistency.
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APPENDIX: TRANSFORMATION FOR χ 2ðD;a;λÞ

In this appendix, we relate the form of Eq. (66) for
χ2ðD; a; λÞ to the form of Eq. (68), in which it is apparent
that the minimum of χ2ðD; a; λÞ with respect to the variables λ
is χ2ðD; aÞ. We begin with χ2ðD; a; λÞ, as given in Eq. (66),

χ2ðD; a; λÞ ¼
X
k

�
Dk − TkðaÞ

σk
−
X

I
βkIλI

�
2

þ
X
J

λ2J

¼
X
k

½Dk − TkðaÞ�2
σ2k

− 2
X
J

ρJλJ þ
X
IJ

λIλJBIJ;

ðA1Þ
where BIJ was defined in Eq. (69) as

BIJ ¼ δIJ þ
X
k

βkIβkJ ðA2Þ

and

ρJ ≡
X
k

Dk − TkðaÞ
σk

βkJ: ðA3Þ

Completing the square in the variables λ gives

χ2ðD;a;λÞ¼
X
k

½Dk−TkðaÞ�2
σ2k

−
X
IJ

ρIρJB−1
IJ

þ
X
IJ

�
λI −

X
K

ρKB−1
KI

�
BIJ

�
λJ −

X
L

B−1
JLρL

�
:

ðA4Þ

Define the shifted variables λ as

λ0I ¼ λI −
X
K

B−1
IKρK ðA5Þ

and the matrix C̃ij as

C̃ij ¼
1

σiσj

�
δij −

X
IJ

βiIB−1
IJ βjJ

�
: ðA6Þ

This gives

χ2ðD; a; λÞ ¼
X
ij

½Di − TkðaÞ�½Dj − TkðaÞ�C̃ij

þ
X
IJ

λ0Iλ
0
JBIJ: ðA7Þ

The matrix C̃ij is in fact the covariance matrix Cij. To
prove this, use the definition from Eq. (56) of C−1

ij ,

calculate
P

j C̃ijC−1
jk , and simplify the product usingP

j βjJβjL ¼ BJL − δJL. The calculation gives

X
j

C̃ijC−1
jk ¼ δik ðA8Þ

so that C̃ij ¼ Cij.
We arrive at the following form of χ2ðD; a; λÞ given in

Eq. (68):

χ2ðD; a; λÞ ¼
X
ij

½Di − TkðaÞ�½Dj − TkðaÞ�Cij þ
X
IJ

λ0Iλ
0
JBIJ:

ðA9Þ

It is clear that minimizing χ2ðD; a; λÞ with respect to λ, which
is equivalent to setting λ0I;J ¼ 0, leaves only the first term in
Eq. (A9), which is χ2ðD; aÞ according to Eq. (59).
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Alekhin, S., J. Blümlein, S. Moch, and R. Placakyte, 2017, “Parton
distribution functions, αs, and heavy-quark masses for LHC Run
II,” Phys. Rev. D 96, 014011.

Alekhin, Sergei, 1999, “Extraction of parton distributions and αs
from DIS data within the Bayesian treatment of systematic errors,”
Eur. Phys. J. C 10, 395.

Alekhin, Sergey, et al., 2011, “The PDF4LHC Working Group
interim report,” arXiv:1101.0536.

Altarelli, Guido, and G. Parisi, 1977, “Asymptotic freedom in parton
language,” Nucl. Phys. B126, 298–318.

Amati, D., R. Petronzio, and G. Veneziano, 1978, “Relating hard
QCD processes through universality of mass singularities. II,”
Nucl. Phys. B146, 29–49.

Anastasiou, Charalampos, Claude Duhr, Falko Dulat, Elisabetta
Furlan, Franz Herzog, and Bernhard Mistlberger, 2015, “Soft
expansion of double-real-virtual corrections to Higgs production
at N3LO,” J. High Energy Phys. 08, 051.

Anderson, T. W., and D. A. Darling, 1952, “Asymptotic theory of
certain goodness of fit criteria based on stochastic processes,” Ann.
Math. Stat. 23, 193–212.

Armesto, Nestor, 2006, “Nuclear shadowing,” J. Phys. G 32, R367–
R394.

ATLAS and CMS Collaborations, 2019, “Report on the physics at the
HL-LHC and perspectives for the HE-LHC,” arXiv:1902.10229.

Aubert, J. J., et al. (European Muon Collaboration), 1983, “The ratio
of the nucleon structure functions F2n for iron and deuterium,”
Phys. Lett. 123B, 275–278.

Ball, Richard D., Valerio Bertone, Marco Bonvini, Stefano Carrazza,
Stefano Forte, Alberto Guffanti, Nathan P. Hartland, Juan Rojo, and
Luca Rottoli (NNPDF Collaboration), 2016, “A determination of
the charm content of the proton,” Eur. Phys. J. C 76, 647.

Ball, Richard D., Valerio Bertone, Marco Bonvini, Simone Marzani,
Juan Rojo, and Luca Rottoli, 2018, “Parton distributions with
small-x resummation: Evidence for BFKL dynamics in HERA
data,” Eur. Phys. J. C 78, 321.

Ball, Richard D., Valerio Bertone, Stefano Carrazza, Luigi Del
Debbio, Stefano Forte, Alberto Guffanti, Nathan P. Hartland,

and Juan Rojo (NNPDF Collaboration), 2013, “Parton distributions
with QED corrections,” Nucl. Phys. B877, 290–320.

Ball, Richard D., Valerio Bertone, Francesco Cerutti, Luigi Del
Debbio, Stefano Forte, Alberto Guffanti, Nathan P. Hartland,
Jose I. Latorre, Juan Rojo, and Maria Ubiali, 2012, “Reweighting
and unweighting of parton distributions and the LHC W lepton
asymmetry data,” Nucl. Phys. B855, 608–638.

Ball, Richard D., Valerio Bertone, Francesco Cerutti, Luigi
Del Debbio, Stefano Forte, Alberto Guffanti, Jose I. Latorre, Juan
Rojo, and Maria Ubiali (NNPDF Collaboration), 2011, “Reweight-
ing NNPDFs: The W lepton asymmetry,” Nucl. Phys. B849,
112–143.

Ball, Richard D., Stefano Carrazza, Luigi Del Debbio, Stefano Forte,
Zahari Kassabov, Juan Rojo, Emma Slade, and Maria Ubiali
(NNPDF Collaboration), 2018, “Precision determination of the
strong coupling constant within a global PDF analysis,” Eur. Phys.
J. C 78, 408.

Ball, Richard D., Luigi Del Debbio, Stefano Forte, Alberto Guffanti,
Jose I. Latorre, Juan Rojo, and Maria Ubiali, 2010, “A first
unbiased global NLO determination of parton distributions and
their uncertainties,” Nucl. Phys. B838, 136–206.

Ball, Richard D., et al., 2013a, “Parton distributions with LHC data,”
Nucl. Phys. B867, 244–289.

Ball, Richard D., et al., 2013b, “Parton distribution benchmarking
with LHC data,” J. High Energy Phys. 04, 125.

Ball, Richard D., et al. (NNPDF Collaboration), 2017, “Parton
distributions from high-precision collider data,” Eur. Phys. J. C 77,
663.

Ball, Richard D., et al. (NNPDF Collaboration), 2015, “Parton
distributions for the LHC Run II,” J. High Energy Phys. 04, 040.

Bartels, J., Krzysztof J. Golec-Biernat, and H. Kowalski, 2002, “A
modification of the saturation model: Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution,” Phys. Rev. D 66, 014001.

Benvenuti, A. C., et al. (BCDMS Collaboration), 1990, “A high
statistics measurement of the deuteron structure functions
F2ðx;Q2Þ and R from deep inelastic muon scattering at high
Q2,” Phys. Lett. B 237, 592–598.

Berger, Edmond L., Jun Gao, Chong Sheng Li, Ze Long Liu, and Hua
Xing Zhu, 2016, “Charm-Quark Production in Deep-Inelastic
Neutrino Scattering at Next-to-Next-to-Leading Order in QCD,”
Phys. Rev. Lett. 116, 212002.

Bertone, V., et al. (xFitter Developers’ Team), 2017, “Impact of the
heavy quark matching scales in PDF fits,” Eur. Phys. J. C 77, 837.

Bertone, Valerio, Stefano Carrazza, Nathan P. Hartland, and Juan
Rojo (NNPDF Collaboration), 2017, “Illuminating the photon
content of the proton within a global PDF analysis,” arXiv:1712
.07053.

Bertone, Valerio, Stefano Carrazza, and Juan Rojo, 2014, “APFEL: A
PDF evolution library with QED corrections,” Comput. Phys.
Commun. 185, 1647–1668.

Bertone, Valerio, Rikkert Frederix, Stefano Frixione, Juan Rojo, and
Mark Sutton, 2014, “aMCfast: Automation of fast NLO compu-
tations for PDF fits,” J. High Energy Phys. 08, 166.

Bertone, Valerio, Alexandre Glazov, Alexander Mitov, Andrew
Papanastasiou, and Maria Ubiali, 2018, “Heavy-flavor parton
distributions without heavy-flavor matching prescriptions,” J. High
Energy Phys. 04, 046.

Bierenbaum, Isabella, Johannes Blumlein, and Sebastian Klein,
2007, “Two-loop massive operator matrix elements and unpolar-
ized heavy flavor production at asymptotic valuesQ2 ≫ m2,”Nucl.
Phys. B780, 40–75.

Bierenbaum, Isabella, Johannes Blumlein, and Sebastian Klein,
2009, “Mellin moments of the Oðα3sÞ heavy flavor contributions
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