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This review addresses experiments on elasticity, plasticity, and flow of solid 4He and 3He, focusing on
dislocations and other defects that are responsible for the unusual mechanical behavior of such
quantum crystals. Helium’s zero point motion prevents it from freezing unless pressure is applied and
makes the solid extremely compressible, with elastic constants orders of magnitude smaller than those
of conventional solids. Tunneling allows defects to remain mobile at low temperatures, so dislocations
have much larger effects on mechanical properties than in conventional solids. At temperatures below
400 mK, dislocations in hexagonal-close-packed (hcp) 4He are essentially undamped and, in the
absence of pinning by 3He impurities, glide freely in the basal plane. In this regime, dislocation
motion reduces the shear modulus by as much as 90%, an effect that has been referred to as “giant
plasticity” although it is reversible and so might be better described as “softening.” In this low
temperature regime, macroscopic plastic deformation occurs via sudden dislocation avalanches with a
wide range of time and length scales. At higher temperatures, dislocation motion is damped,
introducing dissipation in elastic measurements, and thermally activated defect motion makes helium
crystals extremely ductile, flowing under millibar stresses near melting. During the last decade, most
of the properties of the dislocations that are responsible for the elastic effects described in this review
have been accurately measured: their orientation, density, and length distributions, the nature of their
networks, and their binding to isotopic impurities. Despite this detailed understanding of mobile
dislocations, there remain open questions. Much less is known about defects’ roles in the elastic and
plastic behavior of hcp and bcc 3He crystals and even in hcp 4He, and almost nothing is known about
other types of dislocations that are immobile and thus do not affect elastic properties. These might be
responsible for recently observed superfluidlike mass flow in 4He at low temperatures, although it is
now clear that the apparent mass decoupling seen in torsional oscillator experiments with solid 4He
was due to the elastic effects described in this review, not to supersolidity.
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I. INTRODUCTION

Helium is a uniquely quantum material. The most dramatic
manifestation of its quantum nature is superfluidity in liquid
helium. Atoms of the common isotope 4He are bosons and
condense into a superfluid state below the lambda temperature
Tλ ¼ 2.176 K. The rare isotope 3He is a fermion and does not
become superfluid until atoms pair at much lower temper-
atures, around 2 mK, to form complex superfluid phases.
Quantum effects are usually less significant in solids. In
classical crystals, at zero temperature atoms sit at lattice sites
where the potential energy is minimized. Since they are
localized, they can be regarded as distinguishable particles
and quantum statistics are not important. In solid helium,
quantum effects change this picture in two important ways.
First, helium’s small mass and weak interatomic potential
means that atoms have large quantum zero point motion,
rather than sitting motionless at lattice sites. Second, tunneling
allows helium atoms to exchange, so their Bose or Fermi
statistics remain relevant in this quantum solid.
The zero point energy due to localizing an atom within a

lattice unit cell can be estimated by considering a point
particle in a three-dimensional box. Its ground state energy is
E0 ¼ 3h2=8ma2, where h is Planck’s constant, m is the
particle’s mass, and a is the size of the box, i.e., the lattice
parameter. A more realistic estimate for atoms with a hard core
diameter d would be to use a − d rather than a as the distance
over which atoms are confined. This quantum mechanical
energy is largest for light atoms like helium and can be
compared to the potential energy of the solid, set by the depth
ε of the interatomic potential well. The “quantumness” of a
solid can then be characterized by the de Boer parameter Λ,
whose square is essentially the ratio of the zero point energy to
the potential energy

Λ2 ¼ h2

ma2ε
: ð1Þ

Even for a weakly interacting inert gas like argon, the zero
point energy is a small correction to the classical potential
energy Λ2 ≈ 0.03. For solid 4He, with its light mass and even
weaker interactions Λ2 ≈ 7, so the quantum energy dominates.
Neutron scattering measurements (Adams et al., 2007) of
solid 4He atoms’ zero point kinetic energy give values of
around 25 K, substantially larger than the depth of the
potential well for helium atoms ε ≈ 11 K. Quantum effects
are even more important in solid 3He, which has the same
potential but a smaller mass.
The solid, liquid, and vapor phases of materials are often

displayed in pressure-temperature (P-T) phase diagrams like
those in Fig. 1. Figure 1(a) shows the phase diagram for argon,
a simple classical material with a spherically symmetric
interatomic potential and a close-packed face-centered-cubic
(fcc) crystal structure. The solid (red) coexistence line in
Fig. 1(a) is the vapor pressure curve, where the liquid and gas
phases coexist (or, below the melting point, it is the sub-
limation curve where solid and gas phases coexist). The vapor
pressure curve ends at a critical point, above which argon is
fluid but there is no distinction between liquid and gas states.

The dashed (black) line separating the solid and fluid phases is
the melting curve, which extends to high pressure with a
positive slope (the melting temperature Tm increases slightly
with pressure, the normal behavior for materials where the
solid phase is denser than the liquid). These lines meet at the
triple point, a unique point in the phase diagram where all
three phases can coexist. These phases and transitions are
familiar from other materials, e.g., water, ice, and steam. For
water, the triple point occurs at a temperature Tc of 273.16 K
(which was used as a fixed point to define the Kelvin scale
temperature) and a pressure of 612 Pa. Water is, however, a
complex material with many different solid phases. It is also
unusual in that its solid phase, ice, is less dense than liquid
water, which results in a melting curve with a negative slope.
The phase diagrams of nearly all materials share these

features: coexistence lines between solid, liquid, and gas
phases that meet at a triple point. The exception is helium, for
which quantum effects dominate in the liquid and solid
phases. Figure 1(b) shows the phase diagram of helium
(for the common isotope 4He). In contrast to argon, and to
all other materials, there is no triple point at which solid,
liquid, and gas can coexist. Helium is the only liquid that does
not freeze under its own vapor pressure, a consequence of its
large zero point energy and its weak interatomic interactions.
4He can be solidified only by applying pressures greater than
2.53 MPa, with the melting curve shown as a dashed black
line. At the lowest temperatures it crystallizes in the hcp
structure, but there is a small region at around 1.6 K where a
body-centered-cubic (bcc) phase, with a more open structure
and lower zero point energy, is stable. Even higher pressures
are required to solidify the lighter 3He isotope (3.44 MPa at
zero temperature), and its bcc phase extends to low temper-
atures. The solid and gas phases never coexist in helium, so
the vapor pressure curve (the solid red line) extends to zero
temperature. The existence of a quantum liquid at arbitrarily
low temperatures creates the possibility of superfluidity in the
Bose isotope 4He. The superfluid state appears below the
dotted blue lambda line in Fig. 1(b).
Helium’s quantum nature affects its properties in the solid

state. The density of low pressure helium crystals is less than
half the value predicted for classical crystals with the same
potential. Even at the lowest temperatures, helium atoms’ zero

(a) (b)

FIG. 1. Pressure-temperature (P-T) phase diagrams for (a) argon
and (b) 4He. Melting curves are shown as dashed black lines, and
vapor pressure curves are shown as solid red lines. 4He’s super-
fluid transition (the “lambda line”) is the dotted blue line.
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point motion extends over a significant fraction of the unit cell
(Arms, Shah, and Simmons, 2003; Blackburn et al., 2007), in
contrast to classical crystals where thermal fluctuations are the
only source of displacements away from lattice sites. Solid
helium is also extremely compressible, with a bulk modulus
less than a third of the value expected for a classical crystal and
about 5 orders ofmagnitude smaller than that of a typical metal.
In addition to expanding the lattice and softening the crystal,

helium’s zero point motion allows atoms to exchange by
tunneling. This exchange means that, in contrast to other
materials, helium atoms’ Bose or Fermi statistics remain
important in the solid phase. In solid 3He, for example, atomic
exchange leads tomagnetic ordering of spins at temperatures of
around 1mK. In both 3He and 4He, it allows isotopic impurities
to move easily through the lattice, even at zero temperature.
One intriguing possibility is that a quantum crystal could have a
finite vacancy concentration at zero temperature, creating an
“incommensurate solid” with perfect periodicity but fewer
atoms than lattice sites. Delocalized “zero point vacancies”
(ZPV) would contribute to mass flow and in 4He could even
Bose condense to form a “supersolid” with coexisting posi-
tional and superfluid order. At present there is no clear evidence
for zero point vacancies, but even in their absence exchange
could still produce a supersolid in which translational sym-
metry breaking and superfluidity coexist.
As well as revealing uniquely quantum phenomena in

solids, helium has advantages as a model system to study
material properties of solids. For example, at low temperatures
helium’s latent heat of melting disappears, so melting and
freezing become purely mechanical processes. This allows the
liquid-solid interface to be studied in detail, in contrast to
conventional crystals where the latent heat makes it difficult to
achieve equilibrium. Many of its unusual properties have been
experimentally studied, including its surface tension (Balibar,
Edwards, and Laroche, 1979; Keshishev, Parshin, and Babkin,
1979; Gallet, Wolf, and Balibar, 1984; Wolf et al., 1985;
Rolley et al., 1989; Edwards, Mukherjee, and Pettersen, 1990;
Andreeva and Keshishev, 1991; Babkin et al., 1995; Wagner
et al., 1996; Tsepelin et al., 2001), roughening transitions
(Keshishev, Parshin, and Babkin, 1979; Landau et al., 1980;
Gallet, Wolf, and Balibar, 1984; Rolley, Balibar, and Gallet,
1986; Rolley et al., 1989; Alles et al., 2001; Todoshchenko
et al., 2005), melting and freezing waves (Keshishev, Parshin,
and Babkin, 1981; Bodensohn, Nicolai, and Leiderer, 1986;
Rolley, Guthmann et al., 1995), and wetting behavior. Helium
also provides unique opportunities to study fundamental
properties of defects like impurities and dislocations, and
their roles in elastic and plastic deformation (Balibar and
Nozières, 1994; Balibar, Alles, and Parshin, 2005). Helium
crystals of extraordinary purity can be prepared since at low
temperatures all but isotopic impurities freeze out, and these
have low concentrations. 3He concentrations in commercial
4He gas are of the order of 10−7 and can be reduced to the
10−12 level using a superfluid heat flush technique, or to
essentially zero by freezing at extremely low temperatures.
High quality single crystals can be grown quickly and their
density can be varied over a substantial range with moderate
pressures. The complete temperature range is accessible, from
essentially zero up to the melting temperature.

In this review, we discuss the current state of understanding
of defects in solid helium, particularly their effects on these
quantum crystals’ elastic and plastic properties. Many of the
measurements that we describe were inspired by Kim and
Chan’s 2004 claim of the discovery of supersolidity in
torsional oscillator measurements (Kim and Chan, 2004a,
2004b). These torsional oscillator effects are now understood
as a manifestation of the unusual elastic behavior of solid 4He
(Day and Beamish, 2007b; Haziot et al., 2013a) rather than as
mass decoupling of a supersolid (Maris and Balibar, 2011;
Beamish et al., 2012; Maris, 2012; Reppy et al., 2012).
However, interest in solid helium’s quantum and mechanical
properties began much earlier, and many experiments were
spurred by predictions of supersolidity and of unusual
quantum motion of diffusion of vacancies and impurities
(Andreev and Lifshits, 1969; Chester, 1970; Leggett, 1970).
Helium was discovered spectroscopically in the Sun in

1868 and subsequently found on Earth as a product of
uranium ore in 1895. It was first liquefied in 1908, but it
was not until 1926 that 4He was frozen by applying pressures
greater than 2.5 MPa (Keesom, 1942). The crystal structure
(hcp) was determined by x-ray diffraction (Keesom and
Taconis, 1938) in the same year that the superfluid nature
of the He II phase of liquid 4He was discovered. The rare
isotope 3He is a decay product of tritium and became available
as a byproduct of thermonuclear weapons programs (Osborne,
Weinstock, and Abraham, 1949). Osborne, Abraham, and
Weinstock (1951) solidified 3He and its bcc and hcp structures
were identified by Schuch, Grilly, and Mills (1958). Phase
separation of solid 3He-4He mixtures at low temperatures was
observed in 1962 (Edwards, McWilliams, and Daunt, 1962).
Ultrasonic measurements on solid helium began with

longitudinal waves in bcc 3He (Abel, Anderson, and
Wheatley, 1961) and in 4He (Vignos and Fairbank, 1961).
The latter measurements led to the discovery of the bcc phase
of 4He, which occupies a small region of its phase diagram.
Shortly thereafter, transverse ultrasound was propagated in
hcp and bcc 4He (Lipschultz and Lee, 1965). During the first
half of the 1970s, elastic constants were measured in oriented
single crystals of hcp and bcc 4He (Greywall, 1971, 1976) and
of bcc 3He (Greywall, 1975). The temperature dependences of
sound speeds were measured soon thereafter (Wanner,
Mueller, and Fairbank, 1973; Wanner and Mueller, 1974).
In 1976, dislocations were identified as the source of low
temperature anomalies in ultrasonic velocities (Wanner,
Iwasa, and Wales, 1976). Between 1979 and 1983, more
complete measurements of the ultrasonic velocity and attenu-
ation were made in hcp 4He (Iwasa, Araki, and Suzuki, 1979;
Iwasa and Suzuki, 1980) and in bcc and hcp 3He (Beamish and
Franck, 1982, 1983; Iwasa and Suzuki, 1982). These results
provided new information about the mobility and pinning of
dislocations in solid helium. During the same period, there
were a number of plastic deformation experiments on helium,
revealing “metallurgical” phenomena like yield drops
(Suzuki, 1973, 1977) and plastic flow, at stresses much lower
than in conventional crystals (Sanders et al., 1977, 1978).
The study of defects in helium was less active during the

1980s and 1990s, but work included direct x-ray diffraction
measurements of vacancy energies and concentrations (Heald,
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Baer, and Simmons, 1984; Fraass, Granfors, and Simmons,
1989; Simmons, 1994) and x-ray topography experiments that
directly imaged dislocation arrays associated with low angle
grain boundaries (Iwasa et al., 1995). The liquid-solid surface
tension and wetting behavior of helium were thoroughly
studied (Balibar, Edwards, and Laroche, 1979; Balibar and
Castaing, 1985). The nonwetting of many substrates by solid
helium was shown to suppress freezing in porous materials,
which raised the freezing pressure in the nanoscale pores of
Vycor glass by more than 1 MPa (Beamish et al., 1983;
Adams et al., 1987; Molz and Beamish, 1995).
In 2004, interest in solid 4He was reinvigorated by the

apparent discovery of supersolid helium, based on torsional
oscillator (TO) measurements. The TO frequency increased
below 200 mK, which was interpreted as evidence of a
supersolid mass fraction decoupling from the oscillator,
in analogy to the classic Andronikashivili experiment
that measured the superfluid fraction of liquid 4He
(Andronikashivili, 1946). The frequency shifts for solid 4He
were suppressed at high oscillation amplitudes, which was
taken as evidence of a superfluidlike critical velocity. Other
features of the TO data were unexplained, but suggested
defects were important. The transition was rounded rather than
sharp and was accompanied by a dissipation peak. The
amount of decoupling varied by orders of magnitude in
different experiments and usually decreased when samples
were annealed. The transition temperature was extremely
sensitive to 3He impurities, decreasing by a factor of more
than 2 when the impurity concentration x3 was reduced from
3 × 10−7 to 10−9.
In 2007, low frequency measurements of polycrystalline

4He’s shear modulus μ showed similar behavior (Day and
Beamish, 2007b). The shear modulus increased below
200 mK, with the same dependence on temperature, 3He
concentration, and amplitude as the TO frequency change.
However, the shear modulus behavior had a natural explan-
ation in terms of mobile dislocations, which softened the
crystal at high temperature but were pinned by 3He impurities
low temperature. The amplitude dependence was explained as
stress-induced breakaway from the weak 3He pinning centers.
It was clear that the torsional oscillator and shear modulus
behaviors were closely related, but it was difficult to under-
stand how the shear modulus changes would affect different
torsional oscillators. In 2012, several papers addressed this
question and it became clear that the stiffening of torsional
oscillators, due to shear modulus changes in solid helium in
the torsion rod (Beamish et al., 2012) or in other parts of the
oscillator (Maris, 2012; Reppy et al., 2012), was sufficient to
explain the observed TO frequency shifts. Since then, a
number of the original TO experiments have been repeated
in rigid oscillators designed to minimize the effects of the
solid helium’s shear modulus. The frequency shifts were
essentially eliminated (Kim and Chan, 2012; Choi, Shin, and
Kim, 2015), confirming that they were due to elastic changes
in the helium, not signatures of mass decoupling in a
supersolid.
However, the shear modulus changes themselves were

dramatic and unexpected. Further measurements on single
crystals showed that mobile dislocations could reduce the

shear modulus of hcp 4He’s by as much as 90%, orders of
magnitude larger than dislocation effects in conventional
materials (Thompson and Holmes, 1959; Bauer and
Gordon, 1962; Alers and Zimmerman, 1965). This effect
was described as “giant plasticity.” These experiments iden-
tified the mechanism in hcp 4He as basal glide (Haziot et al.,
2013a), confirmed that thermal phonon scattering was the
source of dislocation damping (Haziot, Fefferman, Beamish,
and Balibar, 2013), identified a critical dislocation velocity
related to the propagation velocity of 3He impurities (Haziot,
Fefferman, Souris et al., 2013), and extracted the dislocation
density and length distribution in 4He crystals (Fefferman
et al., 2014). Measurements in polycrystalline hcp 3He
identified an additional dislocation damping mechanism
associated with the 3He spins (Cheng and Beamish, 2017).
The effects of dislocations on the elastic behavior of these
quantum solids are now well established.
Dislocations are also central to plasticity. Early plastic

deformation experiments (Suzuki, 1973, 1977; Sanders et al.,
1977, 1978) were done at high temperatures, where thermal
processes like vacancy diffusion control the flow behavior.
Recent measurements (Cheng and Beamish, 2018b) at much
lower temperatures showed a crossover, from thermally
activated creep above 400 mK to sudden dislocation ava-
lanches and acoustic emission at lower temperatures.
Other experiments have studied mass flow in response to

pressure gradients across solid helium. At high temperatures,
flow can occur via motion of vacancies or dislocations (Day
and Beamish, 2007a; Suhel and Beamish, 2011; Lisunov
et al., 2014, 2015). This defect motion is thermally activated,
so flow rates decrease rapidly at low temperatures. Inspired by
the search for supersolidity, a number of experiments
(Greywall, 1977b; Bonfait, Godfrin, and Castaing, 1989;
Day and Beamish, 2006) looked unsuccessfully for evidence
of superflow in hcp 4He at low temperatures. More recently,
however, a group of experiments revealed nonthermal flow
that began around 0.6 K and extended to temperatures below
100 mK (Ray and Hallock, 2008; Vekhov, Mullin, and
Hallock, 2014; Cheng and Beamish, 2016; Shin et al.,
2017; Hallock, 2019). This may be an example of superflow
associated with dislocations, but the flow channels have not
been unambiguously identified and some aspects of the
experiments are not yet understood.
Our theoretical understanding of quantum solids has also

developed in recent decades. Classical calculations, which
worked well for heavy inert gas crystals (Beamish, 2001),
greatly overestimated the values of solid helium’s density,
binding energy, and bulk modulus. In fact, the helium atoms
sit at local maxima of the interatomic potential, where
classical lattice dynamics predicts imaginary phonon frequen-
cies. Early theories of solid helium (Werthamer, 1969; Klein
and Horton, 1972; Glyde, 1976) incorporated quantum zero
point motion but also had to recognize the correlations
between atoms’ positions due to their hard core repulsion,
leading to effective potentials with renormalized force con-
stants and sound speeds. Phonon dispersion curves were
calculated and the normal, albeit slow, propagation of sound
waves in solid helium was understood. Around the same time,
it was realized that quantum exchange of atoms via tunneling
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would have dramatic effects on point defects like vacancies
and impurities, allowing them to propagate through a helium
crystal, even at low temperatures (Andreev and Lifshits, 1969;
Andreev, 1976). Exchange was also recognized as crucial to
magnetic order in solid 3He at mK temperatures.
The development of path integral Monte Carlo (PIMC)

techniques, combined with advances in computational power,
made it possible to do fully quantum mechanical, first
principles simulations for condensed helium using accurate
interatomic potentials (Ceperley, 1995). These directly con-
firmed the importance and consequences of quantum zero
point motion and exchange in liquid and solid helium. Early
PIMC work included computation of the Bose condensate and
superfluid fractions, and the transition temperature in liquid
4He (Ceperley and Pollock, 1986; Pollock and Ceperley,
1987). For solid helium, the atomic exchange constants for
bcc 3He were determined (Ceperley and Jacucci, 1987), giving
nearest neighbor exchange frequencies of the order of 10 MHz
and confirming that next nearest neighbor and multiple
exchanges are also important. The calculated exchange
frequencies for hcp 4He were much smaller (Bernu and
Ceperley, 2005), of the order of 100 kHz near the melting
density. This is still significant but, given 4He’s lack of spin,
there is no direct experimental confirmation of the values.
More recent PIMC simulations involved defects in solid
helium, including studies of vacancies and interstitials in
hcp 4He (Boninsegni et al., 2006; Clark and Ceperley, 2008).
Following the development of a new PIMC worm algorithm
(Boninsegni, Prokofev, and Svistunov, 2006), simulations
were expanded to larger particle numbers, allowing extended
defects like grain boundaries (Pollet et al., 2007) and
dislocations (Boninsegni et al., 2007) to be studied.
The properties of helium, including its solid phases, were

comprehensively reviewed in the late 1960s by Wilks (1967)
and Keller (1969). A more recent overview of 3He was given
by Dobbs (2000). Other reviews have focused on specific
aspects of solid helium. These include theoretical and
experimental aspects of exchange and the diffusion of defects
(Guyer, Richardson, and Zane, 1971; Andreev, 1982;
Grigorev, 1997), vacancies in 4He (Burns and Goodkind,
1994), the surface of helium crystals Balibar, Alles, and
Parshin (2005), and magnetic phases in 3He (Bennemann and
Ketterson, 1976; Osheroff, 1992; Adams, 2004). Two recent
papers discussed aspects of plasticity (Beamish, 2019) and
superflow (Hallock, 2019) in solid helium. This review
focuses on the mechanical properties of solid helium, which
have not been comprehensively described since the 1972
review by Trickey, Kirk, and Adams (1972), written at a time
when ultrasonic measurements were just beginning and the
effects of defects on helium’s elastic and plastic behavior had
not been explored.

II. STRUCTURE, PHASE DIAGRAMS, AND CRYSTAL
GROWTH

The phase diagrams of 4He and 3He include multiple crystal
structures at easily accessible pressures, and high quality
single crystals can be rapidly grown at low temperatures.
This provides unique opportunities to study defects and to

distinguish between quantum and structural effects on their
behavior. However, as for other materials, the quality of
helium crystals depends on their preparation.

A. Phase diagrams

Helium does not freeze under its own vapor pressure, so its
phase diagram has no triple point and the solid never coexists
with low density gas. At zero temperature, a pressure of about
2.53 MPa (25.3 bar) is required to freeze 4He. For 3He, with its
larger zero point motion, the minimum freezing pressure is
2.93 MPa (29.3 bar) at 315 mK, and an even higher pressure
3.44 MPa is needed at zero temperature. The melting
pressures increase at higher temperatures. For example, at
2 K the melting curve pressures are about 38 bar for 4He and
77 bar for 3He. Figure 2 shows the P-T phase diagrams for 4He
(Vignos and Fairbank, 1961; Grilly and Mills, 1962; Straty
and Adams, 1966a; Grilly, 1973; Hoffer et al., 1976) and 3He
(Straty and Adams, 1966b; Grilly, 1971), at temperatures up to
4.2 K and pressures up to 20 MPa (200 bar). For both isotopes,
there are stable bcc and hcp phases. The bcc region is small for
4He (inset of Fig. 2), and at zero temperature solid 4He is in the
close-packed hcp phase. The larger zero point motion of 3He
favors the more open bcc phase, which occupies a much larger
region extending down to zero temperature. Not shown in
Fig. 2 are the close-packed fcc phases found in both 4He and
3He at much higher pressures and temperatures above
100 MPa and 15 K.
Figures 3 and 4 show the low pressure regions of the phase

diagrams for 4He and 3He, respectively. The P-T diagrams
(upper panels of the figures) show the melting curves
separating liquid and solid, as well as the hcp-bcc coexistence
line and the lambda line separating the normal (He I) and
superfluid (He II) phases of 4He. The lower panels show the
corresponding molar volume versus temperature (V-T) dia-
grams, with the different phases and their coexistence regions.
The large compressibility of solid helium means that

measurements are usually made at constant volume and
density since the pressure cells in which the solid is grown
are much more rigid than the helium. It also means that helium
can be frozen at constant mole number since increasing the

FIG. 2. P-T phase diagrams for 4He (left panel) and 3He (right
panel). Inset: enlargement of the bcc region for 4He. The pressure
scales are the same for 3He and 4He but are labeled in MPa (on the
left axis) and bar (on the right axis).
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pressure by about 20 bar compresses the liquid to solid
densities. If a cell containing high density liquid is cooled
without adding or removing helium, e.g., by blocking the fill
capillary, the liquid begins to freeze when the temperature
reaches the melting curve. It then follows the melting curve

until all the helium is frozen at a lower pressure. The solid then
cools at nearly constant pressure. Examples of such “blocked
capillary” freezing paths are shown as horizontal (constant
volume) dashed red lines in the lower V-T diagrams of Figs. 3
and 4. The upper panels show the corresponding P-T paths.
Depending on the starting density, the system may pass
through several phases and coexistence regions during cool-
ing. For example, for a starting pressure of 5.1 MPa, the molar
volume of liquid 4He is 20.9 cm3. At this density, the
liquid begins to freeze into the hcp phase at around
2.35 K. Upon cooling, the liquid-hcp mixture transforms to
a hcp-bcc mixture at the upper triple point of the bcc phase
(1.772 K) and then follows the hcp-bcc coexistence curve until
the bcc phase disappears at around 1.50 K. The hcp solid then
cools at a nearly constant pressure of about 2.7 MPa. Samples
at higher densities go directly from liquid to hcp, for example,
the freezing path for a molar volume of 20.5 cm3, shown as a
dashed red curve in Fig. 3. At low densities (molar volumes
larger than 21.0 cm3, corresponding to starting pressures
below 49 bar) 4He remains partially liquid at low temper-
atures, and the solid portion transforms from hcp to bcc and
then back to hcp again.
Helium crystals can also be grown at constant pressure by

keeping the fill capillary open and adding helium as the liquid
freezes. This corresponds to vertical paths in the V-T diagrams
of Figs. 3 and 4. This method avoids hcp-bcc crystallographic
transformations and the crystals experience much smaller
stresses than during blocked capillary growth, where there are
large pressure and temperature changes.
The minimum in the 3He melting curve shown in Fig. 4

(Pmin ¼ 2.931 MPa at Tmin ¼ 315 mK) is due to 3He’s spin.
Below 315 mK, the spin entropy of the solid is larger than the
total entropy of the liquid. This unusual situation means that
the slope of the melting curve is negative below 315 mK and
low density 3He crystals partially remelt when cooled at
constant volume, as indicated by the dashed red lines in Fig. 4,
which show a blocked capillary path at a molar volume
of 24.6 cm3.

B. Crystal growth and quality

Since the discovery of solid 4He by Keesom (1942), helium
has been solidified using different methods that produce either
polycrystals or single crystals. The orientations of single
crystals can be determined using diffraction or optical tech-
niques. Keesom and Taconis (1938) were the first to apply x-
ray diffraction to helium, using Laue diffraction to determine
the crystal structure of hcp 4He. As discussed by Greywall
(1971), this technique has been used to find the orientation of
crystals in some experiments, while others have used inelastic
neutron scattering. Optical birefringence can also be used to
orient hcp helium crystals, as shown by Heybey and Lee
(1967). The facets that are visible during crystal growth
provide a more general way to orient crystals if optical access
is available.
For their study of sound propagation in hcp 4He crystals,

Crepeau et al. (1971) grew single crystals by filling a cell that
was kept at constant temperature T. They observed that below
1.45 K this led to single crystals whose crystal orientations

FIG. 3. P-T (upper panel) and V-T (lower panel) phase
diagrams for 4He. The dashed red lines and arrows indicate
the path followed during blocked capillary freezing at a molar
volume of 20.5 cm3.

FIG. 4. P-T (upper panel) and V-T (lower panel) phase
diagrams for 3He. The dashed red lines and arrows indicate
the path followed during blocked capillary freezing at a molar
volume of 24.6 cm3.
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they determined using optical birefringence. For his ultrasonic
measurements of elastic constants, Greywall (1971) used a
constant pressure growth method, which had been introduced
by Shal’nikov (1962) and improved by Mezhov-Deglin
(1966). Freezing slowly in a temperature gradient allowed
Greywall to grow single crystals at various pressures P, and
orientations were determined using Laue x-ray diffraction.
The blocked capillary method used to grow helium crystals

at constant volume was shown by Sasaki, Caupin, and Balibar
(2008) to produce polycrystals because many different crys-
tallites nucleate on favorable sites on the cell walls. Growing
crystals from the superfluid liquid at constant temperature, on
the other hand, usually produces a single crystal, or a few large
crystals, at or close to the liquid-solid equilibrium pressure.
When grown below ∼1 K, the crystals have facets with edges
that can easily be analyzed to determine the crystal orientation
(Sasaki, Caupin, and Balibar, 2008; Haziot et al., 2013a).

1. Polycrystals

For low temperature measurements, the experimental cell is
usually attached to the lowest temperature stage of a dilution
refrigerator and the solid helium has to be grown from the
liquid phase inside a closed cell. For blocked capillary growth,
the first step is to admit helium through a thin capillary until
the cell is filled with normal liquid 4He at high pressure
(greater than about 4.8 MPa). This is typically done at ∼3 K to
ensure that the helium is liquid everywhere along the fill line.
To cool down, one usually starts by pumping on the
refrigerator’s 4He pot, which rapidly cools to about 1 K.
Since the fill capillary is thermally anchored to this “1 K pot,”
a plug of solid helium quickly forms there, isolating the mass
of helium inside the cell from the external helium supply.
Assuming that this plug does not move and blocks all flow of
helium, the amount of helium in the cell is essentially constant
when the cell is cooled and the helium freezes. If the fill line
volume is negligible compared to the cell volume, freezing
occurs along an isochore that first meets the melting curve at a
temperature Ti and leaves it when the helium is completely
frozen at a lower temperature Tf.
Figure 5 shows examples of optical images of 4He crystals

obtained by Sasaki, Caupin, and Balibar (2008) for various
growth methods. The crystals were grown in an optical
cell between two transparent glass windows closing an 11 ×
11 mm hole through the body of the cell (3–10 mm thickness).
The windows were sealed with indium O rings. The crystal
shapes and the quality of the solid samples depended on the
growth method. For example,Fig. 5(a) shows the result of
rapid pressurization (over a time 140 ms in this example) of
normal liquid helium (here at 1.8 K). This produces irregular
“snowflakes” and a highly disordered solid.
Figure 6 shows blocked capillary growth paths on the P-T

diagram of 4He. The images in Figs. 5(b) and 5(c) correspond
to slow crystallization (typically over 3 h) for path B of Fig. 6,
starting with liquid at 5.1 MPa. When the cell reaches 2.36 K,
freezing begins on the walls, which are colder than the center
of the cell, producing the disordered hcp crystal visible in
Fig. 5(b). The network of lines in the center part of the image
corresponds to defects in a thin solid layer covering the front
and back windows. At 1.77 K, the upper triple point of the

bcc-hcp transition, the bcc phase appears between the hcp
solid on the walls and the liquid in the center of the cell, as
shown in Fig. 5(c). Here again the network of lines in the
central part corresponds to grain boundaries in a thin layer
covering the glass windows. Upon further cooling, the bcc
region expands and the liquid region shrinks. The last liquid
disappears at 1.66 K. The bcc region in the center then shrinks
and disappears completely by 1.59 K, leaving only hcp solid.
Note that this behavior differs slightly from that expected
based on 4He’s V-T phase diagram (the lower panel of Fig. 3).
The initial pressure (5.1 MPa) corresponds to a liquid molar
volume of 20.9 cm3. At this density, all of the liquid should
freeze at a fixed temperature of 1.772 K since the three phases
(liquid, bcc, and hcp) can coexist only at a triple point. Their
coexistence over a range of temperatures (between 1.77 and
1.66 K) indicates that there are temperature and/or pressure
gradients in the cell during blocked capillary growth.
Solidification along the A or C isochores led to similar

images. The highest pressure sample (path A) started with
liquid at 6.2 MPa and began freezing at Ti ¼ 2.58 K. Freezing
was complete at Tf ≈ 1.95 K, at a pressure of around 3.6 MPa
in the hcp phase. According to Fig. 3, there should still be
some liquid in the cell at 1.95 K, suggesting that additional
helium has entered the cell despite the solid plug in the
capillary. The lowest pressure sample (path C) starts at a
pressure of 4.63 MPa and freezing into the hcp phase begins at

FIG. 5. Images of 4He crystals, obtained in a transparent cell
when using different growth methods. Crosses visible in the
lower right corner of the images were carved on the windows to
help adjust the focusing. From Sasaki, Caupin, and Balibar, 2008.
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Ti ¼ 2.19 K. As the sample cools along the melting curve,
some hcp solid converts to bcc near the triple point, but the
three phases again appear together until the hcp phase
disappears at 1.70 K. On further cooling, the remaining liquid
freezes, leaving only bcc solid by 1.56 K. At 1.46 K, the lower
bcc-hcp triple point, the bcc solid suddenly converts to the
denser hcp phase and some liquid reappears. The liquid region
shrinks during further cooling along the melting curve, but
some remains even at 35 mK.
In all three cases, solidification begins from the normal

liquid and, in the absence of a controlled thermal gradient, it is
difficult to obtain good quality single crystals. For paths A and
B, the phase transitions between the hcp and bcc phases
introduce additional stresses and disorder. To grow high
quality single crystals such as those shown in Figs. 5(d)–5(f),
a different growth method is required.

2. Single crystals

By pressurizing liquid 4He at constant temperature in the
superfluid phase, one can obtain single crystals (Pantalei et al.,
2010). This can be done by slowly injecting helium from an
external source into a cell at a regulated temperature. The
pressure in the cell rises until it reaches the crystallization
pressure, where it remains until the cell is full of solid and the
fill line spontaneously blocks. It is surprising that this can be
done even at temperatures below 0.775 K, where there is a
shallow minimum in the 4He melting curve (Straty and
Adams, 1966a; Grilly, 1973). One would expect the helium
to crystallize in the fill line at that temperature, preventing
more liquid from reaching the cell. However, helium remains
in a metastable liquid state, crystallizing only at pressures
about 10 mbar above the liquid-solid equilibrium curve

(Grilly, 1973; Balibar, Castaing, and Laroche, 1980;
Tsymbalenko, 1992; Ruutu et al., 1996; Balibar, Mizusaki,
and Sasaki, 2000; Pantalei et al., 2010) so that crystallization
begins in the cell, not in the fill line. If the capillary is large
enough and the helium is injected sufficiently slowly, typically
over a few hours, the pressure in the fill line does not increase
enough to nucleate solid and it remains open until the helium
in the cell is frozen.
Using this method, one usually obtains a single crystal in

equilibrium with the superfluid liquid (Balibar, Alles, and
Parshin, 2005). More than one crystal may nucleate on
different favorable defects of the cell walls, but the largest
crystal grows at the expense of the smaller ones due to the
smaller curvature of its liquid-solid interface. Because the
temperature inside a superfluid is homogeneous, gravity is
relevant, and when this single crystal grows to a size larger
than the capillary length lc ≈ 1 mm, it usually falls to the
bottom of the cell. This fall may damage the crystal quality,
but it can be melted down to a much smaller size and the
crystal can then be regrown from the small seed crystal at the
bottom of the cell. By regrowing the crystal slowly, the cell
can be filled with a large high quality single crystal like those
shown in Figs. 5(e) and 5(f). This procedure is possible only if
the cell has optical access, so the crystal size can be controlled.
Furthermore, the moving liquid-solid interface has a tendency
to stick to defects on the walls, especially at points where a
facet touches the wall. In this case, crystal growth proceeds by
successive jumps, which creates defects.
Ruutu, Hakonen, and Babkin (1998) were able to grow

freestanding single crystals with no screw dislocations. Their
study showed the importance of screw dislocations in crystal
growth, with drastic differences between the growth rates of
faceted crystals with or without emerging screw dislocations.
In an attempt to grow perfect crystals, Souris et al. (2015)
grew crystals slowly in a carefully machined and polished cell
with a completely open geometry. However, even at growth
velocities as low as 270 nm=s, they found it impossible to
grow crystals with fewer than 104 dislocations per cm2. Their
crystals, as well as those studied by Haziot, Fefferman,
Beamish, and Balibar (2013) and Fefferman et al. (2014),
typically had dislocation densities of the order of 105 to 106

per cm2. However, those dislocation densities were deter-
mined from elastic measurements that are sensitive only to the
samples’mobile edge dislocations, not screw dislocations like
those measured by Ruutu, Hakonen, and Babkin (1998).
For many types of experiment it is important to realize that

liquid regions can remain, even when a cell appears to be full
of solid. A grain boundary can create a liquid channel, with a
triangular cross section where it meets a wall. These are
sometimes visible, as in Fig. 5(d) (Sasaki, Caupin, and
Balibar, 2008), and provide channels for superfluid flow.
The size of such channels decreases with increasing pressure,
but some liquid remains as long as the pressure is within about
10 bar of the liquid-solid equilibrium pressure Peq. Liquid
channels have also been seen at grain boundaries in high
pressure fcc 4He crystals growing on sapphire windows
(Franck, Kornelsen, and Manuel, 1983). The image in
Fig. 5(d) also shows that the solid phase does not wet the
cell walls. The contact angle of the liquid-solid interface,

FIG. 6. Paths followed when 4He is solidified using the blocked
capillary method. The paths shown correspond to isochores for
different starting pressures: path A (starting pressure 6.2 MPa),
path B (5.1 MPa), and path C (4.63 MPa).
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which is near 135°, depends on the wall material and shows
hysteresis, as usual for rough walls (Sasaki, Caupin, and
Balibar, 2008). A consequence of this nonwetting is that the
solid phase does not enter corners nor fill narrow cavities or
sharp grooves in the cell walls unless the pressure is
significantly higher than Peq. It can also allow a liquid layer
to form between a helium crystal and the cell wall (Dash and
Wettlaufer, 2005) at low pressures.
The previously described procedure produces nearly random

crystal orientations, but it would be useful for many experi-
ments if the orientation could be controlled. Twomethods have
been used to obtain oriented single crystals of helium. Both
work if the temperature is low enough for the crystals to be
faceted during growth (Balibar, Alles, and Parshin, 2005).
When a faceted crystal falls to the bottom of a cell, it often has a
flat shape, like a coin whose faces are perpendicular to the c
axis of the crystal structure. In that case, it often lands on a c
facet, i.e., on a hexagonal plane of the crystal. By trying this
procedure a few times, one can obtain a crystal with its sixfold-
symmetry axis (c axis) vertical, as was done by Rolley et al.
(1994) for their study of the properties of stepped surfaces of
helium crystals. To nucleate and force the first seed to fall down
freely to the bottom of the cell, they used a local electric field on
top, a method that was used by Keshishev, Parshin, and Babkin
(1979) and Tsymbalenko (1995).
One can also grow oriented helium crystals by epitaxy on a

graphite surface (Balibar, Castaing, and Laroche, 1980;
Eckstein et al., 1980; Ramesh et al., 1984; Sasaki, Caupin,
and Balibar, 2008). This can work if the graphite surface has
been sufficiently well cleaned (Sasaki, Caupin, and Balibar,
2008), but it is not always successful. Figure 5(e) shows a
faceted helium crystal that nucleates on the right side of the V-
shaped graphite piece at the bottom of the cell, and that is
consequently oriented parallel to it. Figure 5(f), however,
shows a crystal that nucleates somewhere else in the same cell
and, when it falls down, it is misoriented with respect to the
graphite.
Even if crystal orientations cannot be controlled, direct

optical observation of growth shapes allows the orientation to
be determined rather easily. For refrigerators with optical
access through sets of windows, temperatures are limited to
about 10 mK due to the absorption of light and rf radiation
from the outer world. To image crystals in the submillikelvin
range, groups in Leiden (Wagner et al., 1996) and Helsinki
(Manninen et al., 1992) used CCD cameras working at 65 K
inside the refrigerator.

3. 3He crystals

As with 4He, it is possible to freeze 3He using the blocked
capillary method. However, the deep minimum in the 3He
melting curve at Tmin ¼ 315 mK means that low density 3He
crystals partially remelt when cooled at constant volume, as
indicated by the dashed red lines in Fig. 4 for a molar volume
of 24.6 cm3. To ensure that 3He is completely frozen at low
temperatures, initial liquid pressures greater than about
4.5 MPa are required when using this technique. Growing
3He crystals directly into the high pressure hcp phase (not
shown in Fig. 4) requires starting pressures above 18 MPa.

The minimum in the melting curve also means that it is not
possible to grow single crystals of 3He by injecting mass
through a fill line since the fill line blocks near Tmin. Instead,
one has to use a cell with a deformable membrane so that the
liquid can be compressed. Using this method, Rolley, Balibar,
and Gallet (1986) grew 3He crystals at temperatures as low as
60 mK. Figure 7 shows images of these crystals coexisting
with liquid 3He. Figure 7(a) shows a crystal at the minimum of
the melting curve minimum T ¼ 0.32 K. This is above the
roughening transitions in 3He and the rounded equilibrium
shape due to gravity and surface tension was analyzed by
Rolley et al. to measure the surface tension of 3He or, more
precisely, the liquid-solid interfacial tension (Rolley et al.,
1989). During slow crystal growth at 70 mK, they also
observed (110) facets of these crystals, shown in Fig. 7(b).
At much lower temperature, additional facets were discovered
by Wagner et al. (1996), Alles et al. (2001), and Tsepelin
et al. (2002).

III. DEFECTS IN SOLID HELIUM

Some defects in solids can exist in thermal equilibrium;
others are produced during crystal growth or by subsequent
deformation. They can be classified as point defects (vacan-
cies, interstitials, and impurities), one-dimensional defects
(dislocations), or two-dimensional defects (grain boundaries
and stacking faults). As in other materials, these defects affect
many of the crystals’ properties. In particular, dislocations and
their interactions with other defects dominate the mechanical
behavior of crystals. Quantum effects in helium crystals can

FIG. 7. 3He crystal shapes obtained by Rolley, Balibar, and
Gallet (1986) and Rolley, Balibar, and Graner (1994). (a)
Equilibrium shape at T ¼ 320 mK. (b) (110) facets on a growth
shape of a bcc 3He crystal at 70 mK. (c) Dendritic growth
obtained with high growth rates (30 μm=s) at 100 mK.
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make defects highly mobile at low temperatures, which results
in unique behavior.

A. Vacancies

Creating a vacancy corresponds to moving an atom from an
interior lattice site to the crystal’s surface. This increases the
energy, entropy, and volume (or the pressure, in the case of
solid helium, where the solid is held at constant volume). The
equilibrium vacancy concentration at temperature T and
pressure P is

xvðTÞ ¼ esv=kBe−½ðEvþPvvÞ=kBT�; ð2Þ

where Ev, vv, and sv are the vacancy formation energy,
volume, and nonconfigurational entropy. The vacancy con-
centration increases with temperature and decreases under
pressure. Since a crystal lattice is not perfectly rigid, neigh-
boring atoms relax inward when an atom is removed and the
vacancy formation volume vv is smaller than the atomic
volume va in a perfect crystal, typically vv ≈ ð0.5–0.7Þva (Cai
and Nix, 2016). In classical crystals, the formation energy,
which reflects the energy of broken bonds with atoms adjacent
to a vacancy, can be roughly estimated from the solid-liquid
interfacial energy σLS (Balibar and Castaing, 1985; Andreeva,
Keshishev, and Osip’yan, 1989; Edwards, Pettersen, and
Baddar, 1991; Keshishev and Andreeva, 1991) and the surface
area of the removed atom. The formation entropy, which is
separate from the configurational entropy of the vacancy, is
associated with local changes in vibrational frequencies and is
of the order of kB.
The most direct way to determine the vacancy formation

energy is to measure the temperature dependence of xv by
comparing changes in the density of lattice sites (measured by
x-ray diffraction) to changes in the density of atoms (from
thermal expansion measurements). In the case of helium
crystals confined in a rigid cell, the number of atoms and
total volume are fixed, so the vacancy formation energy and
entropy can be determined from the temperature dependence
of the lattice parameters. The lattice parameter changes are
substantial since vacancy concentrations in solid helium are as
large as ∼0.3% near melting. Such x-ray measurements have
been made for the bcc and hcp phases of both 3He and 4He
(Heald, Baer, and Simmons, 1983, 1984; Granfors, Fraass,
and Simmons, 1987; Fraass, Granfors, and Simmons, 1989;
Simmons, 1994). Formation energies in 3He vary from 2.3 K
for the bcc phase at low density (molar volume Vm ¼
24.86 cm3, pressure P ¼ 2.98 MPa) to 21.4 K in the hcp
phase at Vm ¼ 18.8 cm3 (P ¼ 13.8 MPa). For 4He, measure-
ments have been made over a narrower density range, with
comparable formation energies, e.g., 9.6 K in the hcp phase at
Vm ¼ 20.68 cm3 (P ¼ 3.14 MPa). The bcc phase of 4He
exists only over a narrow temperature range, so the formation
energy (∼9 K) is less precise.
Vacancy formation energies can also be extracted from their

effects on properties like the pressure or heat capacity, but this
requires that the contributions of phonons or other thermal
excitations are accurately known. An analysis of heat capacity
data in bcc 3He (Greywall, 1977c) gave vacancy energies

similar to x-ray values. There is no clear evidence of a similar
vacancy contribution to the specific heat of hcp 4He, although
it should be substantial (Gardner, Hoffer, and Phillips, 1973),
perhaps reflecting a wide vacancy bandwidth with a small
density of states at low energies (Fraass, Granfors, and
Simmons, 1989).
The motion of vacancies also contributes to diffusion in

helium crystals, dominating at high temperatures. NMR can
be used to probe the motion of atoms with spin and has been
used extensively to study diffusion of 3He in helium crystals
(Allen, Richards, and Schratter, 1982; Grigorev, 1997; Kim
et al., 2013). In solid 3He, self-diffusion activation energies
have been measured with NMR. They agree quite well with
the direct x-ray values for vacancies in bcc 3He but are
significantly larger in hcp 3He (Heald, Baer, and Simmons,
1984). The activation energy for vacancy diffusion can be
larger than that for formation if vacancies have to overcome an
energy barrier in order to move. The agreement between the
two energies for bcc 3He suggests that vacancies move by
tunneling. The higher diffusion activation energy in hcp 3He
indicates that tunneling is less effective and that diffusion is
largely due to classical activation over an energy barrier of
about 12 K.
Since 4He atoms do not have spin, NMR cannot be used to

study self-diffusion in solid 4He, but it can be used to study the
diffusion of 3He impurities in 4He crystals. At high temper-
atures, the diffusion is thermally activated with activation
energies similar to vacancy formation energies from x-ray
measurements, although there is large scatter between acti-
vation energies from different NMR measurements (Fraass,
Granfors, and Simmons, 1989).
Motion of vacancies can also be studied through the

associated mass transport since moving a vacancy by one
lattice site is equivalent to moving a helium atom the same
distance in the opposite direction. Because of the pressure
dependence of xv in Eq. (2), a pressure gradient in a crystal
produces a corresponding vacancy concentration gradient.
Thermal vacancies diffuse from high to low concentration
(low to high pressure), so mass flows in the opposite direction,
reducing the pressure gradient. The deformation associated
with such vacancy diffusion flow is, for example, a limiting
factor in metals for high temperature turbine applications. For
helium, vacancy diffusion flow has been shown to explain the
frequency-dependent ultrasonic relaxation for solid 4He con-
fined in the nanoscale pores of Vycor glass, giving vacancy
activation energies similar to other techniques (Beamish et al.,
1991). Recent experiments studied the pressure-induced flow
of solid 3He (Lisunov et al., 2015, 2016) and 4He (Lisunov
et al., 2014) along 6 − 8 μm diameter channels through a
10 μm thick membrane. At high temperatures the flow is
thermally activated with the activation energies of vacancies.
Although vacancy diffusion can also relax pressure gradients
in larger samples, diffusion time constants scale with the
square of the sample dimensions. In macroscopic crystals,
vacancy diffusion is an effective annealing mechanism only at
temperatures close to melting. In addition, since vacancy
activation energies increase with density, the vacancy con-
centration at a particular temperature decreases rapidly at high
pressures and diffusion becomes much slower.
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The quantum nature of helium crystals has important
consequences for vacancies. The small energy barrier
for exchange of a vacancy and a neighboring atom means
that quantum tunneling is rapid, and vacancies can diffuse
through helium crystals even at low temperatures. In the
periodic lattice potential of 4He crystals they can propagate
as quasiparticles known as “vacancions” (Andreev and
Lifshits, 1969; Burns and Goodkind, 1994; Grigorev,
1997). Vacancies in solid 3He are also delocalized but, in
contrast to 4He, are not expected to propagate coherently. At
temperatures above a few millikelvins, 3He is in a para-
magnetic state with disordered spins. Exchange of a vacancy
and a 3He atom changes the local spin configuration, so the
lattice potential through which a vacancy moves is random,
not periodic, and the vacancy motion is diffusive (Bernier and
Hetherington, 1989).
Exchange in helium crystals gives vacancies a bandwidth

that, if sufficiently large, creates an intriguing possibility that
some vacancies in helium crystals could have negative
energies. This would lead to a finite vacancy concentration
at zero temperatures, i.e., an incommensurate solid with
perfect periodicity but fewer atoms than lattice sites. In 4He
crystals, these ZPV propagate and contribute to mass flow.
They could even Bose condense to form a “vacancy super-
solid” with coexisting positional and superfluid order. This
mechanism was initially suggested as an explanation of
apparent mass decoupling seen in torsional oscillator mea-
surements on solid 4He (Kim and Chan, 2004a, 2004b), but it
is now clear that the apparent mass decoupling was caused by
the extraordinary elastic effects described later in this review,
rather than being evidence of supersolidity (Beamish et al.,
2012; Maris, 2012; Reppy et al., 2012). At present, there is no
convincing experimental evidence for ZPVor for supersolidity
in perfect crystals of 4He. This conclusion is supported by
PIMC simulations on hcp 4He (Prokofev and Svistunov, 2005;
Boninsegni et al., 2006) that find a vacancy activation energy
of 13 K, which is consistent with experimentally measured
values. The vacancies cluster and phase separate at low
temperatures, leaving a defect-free solid with no zero point
vacancies or evidence of superfluidity. However, PIMC
simulations suggest that the vacancy activation energy in
4He may drop to zero in the presence of large strains (Pollet
et al., 2008), such as those near dislocations or grain
boundaries.

B. Impurities

Because of the low temperatures at which helium crystals
are studied, most impurities present in helium gas freeze to the
walls, leaving only isotopic impurities (3He impurities in 4He
or 4He impurities in 3He). These are chemically identical to the
atoms of the host crystal but have different effective sizes. The
lighter 3He atoms occupy larger volumes in a 4He lattice
because of their greater zero point motion, while 4He
impurities are smaller than the host atoms in a 3He crystal.
The isotopic impurities sit at lattice sites as substitutional
impurities since interstitials are high energy defects in helium
(Boninsegni et al., 2006).

Commercial helium gas has a 3He concentration x3 of about
10−7 (100 ppb). However, this varies from about 25 to
300 ppb, depending on the source of the gas (Oxburgh,
O’Nions, and Hill, 1986; Souris et al., 2014). Lower 3He
concentrations can be achieved by distillation (∼1 ppb) or by
a superfluid heat flush technique (x3 ≲ 10−12) (Hendry and
McClintock, 1987). It is, however, challenging to measure
such low concentrations. This is most commonly done using
dedicated helium mass spectrometers, which have resolution
limits for x3 of about 1 ppb (Amidon and Farley, 2010),
although this can be extended to measure 3He concentrations
in the 10−12 range. Accelerator mass spectroscopy has been
used for measurements at even lower concentrations, down to
10−14 (Mumm et al., 2016). The rarer and more expensive
isotope 3He is harder to purify since distillation is not
straightforward and the superfluid heat flush technique is
not available. Impurity concentrations as low as x4 ≈ 10−6 are
possible, although not widely available.
Much purer 4He crystals can be produced in situ if they are

in contact with liquid 4He at low temperatures since 3He
impurities are more tightly bound in the liquid. The difference
in binding energies is 1.36 K (Edwards and Balibar, 1989), so
the equilibrium 3He concentrations are significantly different
at the low temperatures of many experiments, e.g., a ratio
greater than 1020 at 20 mK (Pantalei et al., 2010). However,
defects in the solid provide sites where 3He impurities may be
preferentially bound. Shear modulus measurements
(Syshchenko, Day, and Beamish, 2010; Haziot, Fefferman,
Souris et al., 2013) on hcp 4He show that edge dislocations are
immobilized at low temperatures by 3He impurities, which
bind to them with an energy EB ≈ 0.7 K. Since this is smaller
than 3He’s binding energy in liquid 4He, 3He impurities still
migrate to the liquid at low temperatures, but the binding sites
in the solid may make it difficult to achieve equilibrium
between the 3He concentrations in the solid and liquid. There
may also be other locations in the crystal with even larger
binding energies, e.g., nodes where dislocations meet or grain
boundaries, so some 3He may remain attached to defects at
low temperatures. However, 4He crystals can be grown from
the superfluid at temperatures as low as 20 mK, where all the
3He impurities remain in the liquid. This produces 4He crystals
containing essentially no 3He (Pantalei et al., 2010), although
3He impurities do accumulate at the 4He liquid-solid interface,
with a binding energy estimated at 3 to 4 K (Wang and
Agnolet, 1992; Treiner, 1993; Rolley, Balibar et al., 1995).
At high temperatures, the motion of impurities is dominated

by thermally activated vacancies since the barrier for vacancy-
impurity exchange is small. However, direct exchange with
host atoms allows impurities to move, even in the absence of
vacancies. At low temperatures this quantum tunneling allows
3He atoms to propagate as “impuritons” in the periodic 4He
lattice. These quasiparticles have a bandwidth zJ34 and group
velocity v3 ¼ zaJ34, where z is the number of nearest
neighbors (12 for hcp crystals) and a is the atomic spacing.
NMR measurements give a 3He-4He exchange frequency
J34=2π ≈ 0.8 MHz (Kim et al., 2013), which implies that
3He atoms in solid 4He are highly mobile at low temperature,
with velocities of the order of cm/s. Their bandwidthΔ ¼ zJ34
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is ≈0.5 mK, so 3He impuritons are narrow band quasiparticles.
This bandwidth is much smaller than the potential wells or
barriers produced by elastic strains around dislocations or other
3Heatoms,which results in large elastic scattering cross sections
for such defects (Guyer, Richardson, and Zane, 1971; Andreev,
1982). The ballistic motion of 3He impurities is limited by
3He-3He scattering, giving a mean free path inversely propor-
tional to the 3He concentration (Grigorev, 1997), of the order of
100 nm at the lowest concentrations studied x3 ≈ 60 ppm.
Less is known about the motion of 4He impurities in solid

3He since, being spinless, their diffusion cannot be studied
directly with NMR techniques and, unlike vacancies, impu-
rities do not contribute significantly to mass flow. The 4He
impurities must be delocalized, with exchange rates compa-
rable to those of 3He atoms in 4He crystals, but, as for
vacancies, spin disorder in solid 3He prevents them from
propagating coherently.

C. Dislocations

Dislocations are one-dimensional structural defects (Hull
and Bacon, 2011) that can have edge or screw character, as
illustrated in Fig. 8. The edge dislocation on the left is simplest
to describe and can be thought of as the result of inserting a
vertical half plane of atoms into the lattice. The bottom
boundary of the half plane, the solid blue line in Fig. 8, is the
edge dislocation. In the core region close to the dislocation the
crystal is highly distorted, but far away the lattice deforma-
tions are small and can be described by linear elasticity. A

dislocation is characterized by its Burgers vector b⃗, the lattice
vector defined by the gap in a path that makes a circuit around
the dislocation that would close in a perfect crystal. For an
edge dislocation, the Burgers vector (shown as a short black
line above the diagram) is perpendicular to the dislocation line
and to the added half plane that created it, i.e., horizontal in
Fig. 8. A screw dislocation, illustrated on the right in Fig. 8,
can be thought of as the result of cutting a slit partway through
a crystal and shifting the atoms on one side in the direction
parallel to the border of the slit. For a screw dislocation, the
Burgers vector (the short black line below the diagram) is
parallel to the dislocation line (the edge of the slit, i.e., the
solid blue line near the center of the diagram).

If a shear stress σ is applied to a crystal containing a
dislocation, the dislocation experiences a force proportional to
the stress and can move via a process known as glide. An edge
dislocation moves in the glide plane defined by the dislocation
line and its Burgers vector. If the dislocation moves horizon-
tally through a crystal, the top half of the crystal is displaced
with respect to the bottom half over the slipped region, by an
amount equal to the Burgers vector. This is illustrated in the
left panel of Fig. 9. The dislocation shear strain ϵdis adds to the
elastic strain ϵel that the shear stress would produce in a perfect
crystal, increasing the total strain ϵ and therefore reducing the
solid’s effective shear modulus μ ¼ σ=ϵ. Since glide involves
only local rearrangements of atoms near the core of a
dislocation, plastic deformation can occur at much smaller
stresses than would be needed to displace the entire plane of
atoms in a perfect crystal.
The energy of a dislocation depends on its position, so it

moves in a “Peierls potential”with the periodicity of the lattice
(Friedel, 1964; Suzuki, Takeuchi, and Yoshinaga, 2013). The
height of the energy barrier between neighboring minima is
the Peierls energy per unit length EP, and the minimum stress
required to move a dislocation over this barrier is the Peierls
stress σP ¼ ð2π=b2ÞEP. The Peierls stress depends on the
crystal structure and the glide direction and is usually smallest
for glide in close-packed crystal directions. It also depends on
the detailed structure of the dislocation core, decreasing
exponentially with increasing dislocation width (Hull and
Bacon, 2011), and is difficult to calculate accurately, although
there are general trends. In hcp and fcc materials, the dominant
glide directions are usually in the close-packed planes. This
leads to anisotropic slip behavior in hcp crystals where the slip
occurs in the basal plane. General plastic deformations require
slip in multiple directions, so the stress at which they begin
may be controlled by the largest Peierls barrier, not by the easy
slip direction.
For dislocations that lie along crystallographic directions,

the previously described glide corresponds to moving the
entire dislocation line from its low energy configuration along
a lattice direction, over the Peierls barrier to the next lattice
row. In fact, dislocations are not usually perfectly aligned with
a lattice direction, which introduces “grown-in” or “geo-
metric” kinks, i.e., locations at which the dislocation line
crosses between neighboring minima of the Peierls potential,
as illustrated in the left diagram of Fig. 9. If such a kink moves
along the full length of the dislocation, the entire line is
displaced by one lattice constant. The one-dimensional
periodic potential seen by a kink moving along the dislocation
is generally smaller than the Peierls potential for moving an
entire dislocation line, so glide may proceed by motion of
kinks along dislocations. Even in the absence of geometric
kinks, kink-antikink pairs can be thermally excited at high
temperature, and dislocations can glide when these pairs
separate and the kinks and antikinks move in different
directions along the dislocation. In a quantum solid like
helium, it is possible that these pairs could be created by
tunneling, which would effectively eliminate the Peierls
barrier and delocalize the dislocation.
In a hcp crystal, the primitive unit cell has a basis of two

atoms. A perfect edge dislocation in the basal plane

FIG. 8. Deformations around edge (left) and screw (right)
dislocations. The dislocations are the lines near the centers of
each diagram (shown in blue). The short black lines at the top
(bottom) of the left (right) diagrams are their corresponding
Burgers vectors b.
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corresponds to inserting the vertical planes corresponding to
both sets of atoms and has a Burgers vector b equal to the
lattice spacing in the basal plane. Inserting a single plane
involves less lattice distortion, but the corresponding dis-
placement is not a lattice vector of the hcp crystal. Instead it
creates a “partial dislocation” with a Burgers vector bp ¼
b=

ffiffiffi
3

p
at an angle �30° with respect to the perfect dislocation.

The perfect dislocation could split into two such partials that,
being of the same sign, repel each other elastically. Since the
elastic energy of a dislocation is proportional to the square of
its Burgers vector, splitting into two widely separated partials
lowers the total elastic energy by a third. However, this creates
a stacking fault in the two-dimensional region between the
two partial dislocations (Hull and Bacon, 2011). The energy of
this stacking fault is proportional to its area, i.e., to the
separation D between the partials, so there is an attractive
force between them. The balance between these forces
determines the equilibrium separation D of the partials,
roughly proportional to μa2=γ, where γ is the stacking fault
energy per unit area. For the edge dislocation that glides in the
basal plane of the hcp crystals, the stacking fault corresponds
to a layer of fcc structure. The hcp and fcc structures have the
same number of nearest neighbors and similar energies, so γ is
small and this dislocation is expected to split into widely
separated partials. In hcp crystals there are no stable stacking
faults in other directions, so edge dislocations with, for
example, Burgers vectors along the c axis do not split into
partials.
In addition to glide, which does not require mass transport

within the crystal, an edge dislocation can move in a direction
perpendicular to its Burgers vector (vertically in Fig. 8) via a
process known as climb. This involves adding or removing
atoms at the edge of the inserted half plane and thus requires
mass flow to or from the dislocation. At high temperatures this
can occur via diffusion of thermal vacancies. Dislocations do
not climb as a straight line but instead form vertical jogs, as
shown in the right-hand diagram of Fig. 9. The jogs move

along the dislocation when atoms are removed, allowing the
dislocation to climb vertically. Jogs are essentially short
sections of dislocations with a perpendicular orientation. If,
as often happens, the Peierls stress in that direction is large,
jogs may pin the dislocations and prevent them from gliding.
For an edge dislocation like that shown in Fig. 8, the lattice

is compressed above the dislocation and expanded below it.
For screw dislocations, there is no compression, only shear
distortions. Within the cores of dislocations, atomic displace-
ments are large and depend on details of interatomic inter-
actions, but at distances larger than a few lattice constants the
deformations can be described as elastic strain fields. The
energy per unit dislocation length associated with this elastic
field can be computed by integrating the strain energy from
the radius r0 of the dislocation core region to a cutoff distance
R that is roughly the separation between dislocations (Hirth
and Lothe, 1982; Hull and Bacon, 2011), giving

Eedge ¼
μb2

4πð1 − νÞ ln
R
r0

; Escrew ¼ μb2

4π
ln

R
r0

ð3Þ

for edge and screw dislocations, where μ and ν are the crystal’s
shear modulus and Poisson ratio (the crystal is assumed to be
elastically isotropic). The dislocation’s total energy includes
the core energy, which is difficult to estimate but is usually
small compared to the elastic energy.
Dislocations cannot simply end within a crystal, but two

dislocations can join to form a third dislocation as long as the
total Burgers vector is preserved. Dislocations form a network
of connected dislocations, characterized by the dislocation
density Λ (total length of dislocations per unit volume) and the
average distance between nodes, known as the network length
LN . These parameters are not independent: when the dis-
location density is high, the probability of intersecting is larger
and the network length is smaller. If dislocations form a
perfect cubic network of intersecting dislocations, they are
related by ΛL2 ¼ 3. Networks in real crystals are disordered,
of course, with a distribution of network lengths. In addition,
if dislocations are somehow aligned to avoid crossing, e.g.,
parallel dislocations in a low angle grain boundary or
nonintersecting 2D networks, then ΛL2 can be much larger,
as we later see for helium.
Defects like dislocations and impurities interact elastically

through their strain fields. For example, two parallel disloca-
tions of the same sign (Burgers vectors in the same direction)
repel each other, while dislocations of opposite sign attract.
Similarly, an impurity with a radius ð1þ δÞra that is larger
than ra of the host atoms (e.g., a 3He atom in a 4He crystal) is
attracted to the expanded region on one side of an edge
dislocation. A smaller impurity (e.g., a 4He atom in a 3He
crystal) is attracted to the opposite side, where the lattice is
compressed. The binding energy can be estimated as
EB ∼ μδva, where δ is the misfit parameter and μ is the
solid’s shear modulus. The small value of μ for helium results
in small estimates of binding energies for isotopic impurities,
e.g., EB ∼ 0.6 K for hcp 4He (Iwasa and Suzuki, 1980),
similar to the binding energy inferred from elastic measure-
ments ∼0.7� 0.1 K (Syshchenko, Day, and Beamish, 2010;
Fefferman et al., 2014). Using PIMC techniques, Corboz et al.

FIG. 9. Kinks (left panel) and jogs (right panel) on edge
dislocations. An edge dislocation (the solid red line) corresponds
to the edge of a vertical half plane inserted into the lattice. Its
Burgers vector, indicated by the red arrow at the bottom of each
diagram, is perpendicular to the dislocation line. The dislocation
line and its Burgers vector define the horizontal glide plane,
outlined by the dashed blue lines. The shaded regions of the glide
plane are the portions of the crystal where slip has occurred. The
kink (left panel) is a horizontal step in the dislocation line, in the
direction of the Burgers vector. The jog (right panel) is a vertical
step in the dislocation line, perpendicular to the Burgers vector.
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(2008) computed a binding energy of 0.8 K for a 3He atom on
a screw dislocation in hcp 4He, but this has not been
experimentally confirmed. The calculations require modifica-
tions of standard PIMC techniques, and the origin of impurity
binding is not obvious since there are only shear deformations
around screw dislocations.
An impurity bound to a dislocation acts as a pinning center

since impurities normally can move through the lattice only
via diffusion. However, individual impurities are relatively
weak pinning centers and dislocations break away from them
at large stresses, leaving only the much stronger network
pinning at nodes where dislocations meet. The impurity
pinning length is inversely proportional to the concentration
of impurities bound to the dislocation xdisi ¼ xieEB=kBT , and in
contrast to conventional solids where impurity motion freezes
out during cooling, impurities in helium remain mobile at low
temperature, so the dislocation and bulk impurity concen-
trations can quickly reach equilibrium. At low temperatures,
xdisi can be much larger than the bulk impurity concentration
xi0, by a factor of more than 108 at 50 mK for EB ¼ 1 K.
When Li ¼ a=xdisi becomes comparable to the network length
LN , impurity pinning reduces the dislocations’ mobility. At
lower temperatures, impurities can saturate dislocation lines
(Li ∼ a), completely immobilizing them.
The effects of gliding dislocations on a solid’s elastic

behavior were analyzed by Granato and Lücke (1956) to
interpret measurements of ultrasonic velocities and attenua-
tion in metals. They treated dislocations as mobile strings of
length L, the distance between pinning points. The elastic
energy per unit length in Eq. (3) acts as a line tension C. When
a stress is applied to the crystal, a dislocation loop experiences
a force per unit length F ¼ σb, where σ is the component of
the shear stress in the dislocation’s glide plane, in the direction
of its Burgers vector. It moves in response to this force,
bowing out between pinning points. For a static stress, the
average displacement (Granato and Lücke, 1956) of the
dislocation is ξ0 ¼ ð16b=π5CÞσL2. Over the area swept out
by the dislocation line ξ0L, the crystal has slipped a distance b.
The strain produced by a density Λ of dislocations of length L
is ϵdis ¼ Λbξ0. The total strain is the sum of this dislocation
strain and the elastic strain ϵel that would occur in a
dislocation-free crystal. The resulting shear modulus μ ¼
σ=ðϵel þ ϵdisÞ is reduced from its intrinsic value in a perfect
crystal μ0 ¼ σ=ϵel, i.e., dislocation motion softens the crystal.
Its shear modulus is reduced by a factor proportional to ΛL2,
so a few long dislocations can have the same effect as many
short ones.
To extend this model to the high frequencies used in

ultrasonic measurements, the inertia and damping of dislo-
cations had to be considered. A dislocation gliding through a
crystal at speed vd carries with it a strain field that accelerates
nearby atoms, giving the dislocation an effective mass per unit
length πρb2. The moving dislocation is damped by the
scattering of thermal phonons or other excitations, which
gives a resistive force (per unit length) proportional to its
velocity Fd ¼ −Bvd. Phonon scattering from a dislocation’s
static strain field gives a damping B ∝ T5. However, the
absorption and reemission of phonons by mobile dislocations
is a more effective scattering mechanism at low temperatures.

The damping coefficient for this “fluttering” mechanism has
been calculated (Ninomiya, 1974) as

B ¼ 14.4k3B
π3ℏ2c3

T3; ð4Þ

where c is the Debye sound speed of the solid.
The Granato-Lücke equation of motion for the displace-

ment ξðx; tÞ at time t and position x along a dislocation line
driven by a stress σðtÞ is

Aξ̈þ B_ξ − C
∂2ξ

∂x2 ¼ bσ; ð5Þ

where A ¼ πρb2 is the effective mass and C is the line tension
from Eq. (3). In acoustic applications, the stress is periodic
σ0eiωt. For small damping, e.g., at low temperatures, a
dislocation loop of length L has a sharp resonance at an
angular frequency

ω0 ¼ 2πf0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

1 − ν

r
vt
L
; ð6Þ

where vt ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
is the shear sound speed in the solid. For a

10 μm long dislocation in solid 4He, this occurs at
f0 ∼ 10 MHz. At acoustic frequencies well below f0, the
dislocation motion and associated strain ϵdis are in phase with
the applied stress, so the shear modulus is reduced from its
purely elastic value. At frequencies above f0, the dislocation’s
inertia dominates and the dislocation strain is out of phase
with the applied stress, increasing the shear modulus. If the
crossover frequency can be measured, the loop length between
pinning points can be determined.
Of course, the Granato-Lücke model of dislocations con-

tains a number of assumptions. It assumes that the dislocations
move freely like strings, i.e., that they are not affected by the
lattice Peierls potential. This is plausible for dislocations with
easy glide directions, e.g., in the basal plane of hcp crystals. It
assumes that pinning points are static, but 3He impurities are
highly mobile in solid 4He and may not be effective pinning
centers. It also oversimplifies a number of aspects of the
dislocations’ response to stresses. Some are easily fixed, e.g.,
by including an orientation factor R to account for the
component of the applied stress in the dislocation’s glide
plane. Others are more complicated, e.g., writing the dis-
location’s properties in terms of the crystal’s elastic constants
Cij rather than using a shear modulus and Poisson ratio for an
isotropic medium. However, the effects of including elastic
anisotropy are modest compared to other approximations in
the model.
An important limitation when using this model to extract

dislocation densities from ultrasonic or acoustic data is that
dislocation loops in real crystals are not all the same length.
Although it may be reasonable to assume an exponential
distribution of lengths Li for random impurity pinning, the
dislocation network itself is disordered, with an unknown
distribution of network lengths LN . Integrating over an
assumed distribution of loop lengths affects the calculated
dislocation densities, particularly in the case of short loops
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that contribute little to elastic properties. It is important to
remember that not all dislocations are mobile, e.g., edge or
screw dislocations in glide planes with large Peierls barriers
do not respond to small shear stresses and will not be detected
in acoustic measurements.

D. Grain boundaries and stacking faults

As shown in Fig. 5, freezing can nucleate at more than one
location, producing multiple helium crystals with different
orientations. Samples grown by rapid injection or using the
blocked capillary technique have smaller crystallites and more
grain boundaries. These grain boundaries can affect a solid’s
mechanical behavior, for example, by acting as sources and
sinks for dislocations and vacancies. They may also include
disordered or liquidlike layers where superflow could occur
in solid 4He samples, as suggested by PIMC studies that
identified some grain boundaries in 4He as superfluid (Pollet
et al., 2007). Close to the melting curve, thicker superfluid
films can appear at grain boundaries and superfluid channels
appear where three grain boundaries meet, or where grain
boundaries meet a wall (Franck, Kornelsen, and Manuel,
1983; Sasaki, Caupin, and Balibar, 2007).
When crystals with similar orientations meet, the resulting

grain boundary is essentially an array of edge dislocations
with spacing inversely proportional to the angle between the
crystals. Such low angle grain boundaries can be detected via
the line broadening (“mosaic spread”) they produce in
diffraction measurements. Synchrotron x-ray measurements
on hcp 4He crystals grown at constant pressure (Burns et al.,
2008) showed single crystals of centimeter dimensions,
although faster freezing produced multiple crystals with sizes
of a few millimeters. However, the mosaic angle (typically
about 6.5 × 10−4 rad) within these large crystals indicated that
they contained low angle grain boundaries corresponding to
arrays of dislocations separated by about 1500b. At high
temperatures (above 0.7Tm), these boundaries were not fixed.
Their motion appeared to be driven by stress gradients and
increased with temperature. Earlier neutron diffraction experi-
ments (Pelleg et al., 2006) showed a similar motion of low
angle boundaries in bcc 4He, but not in the hcp phase.
Subboundaries have been directly imaged in x-ray topography
imaging studies on 4He single crystals (Iwasa et al., 1987,
1995; Iwasa, 2002), although individual dislocations could
not be resolved.
Another type of two-dimensional defect can be produced

during crystal growth or by vacancies and dislocations. A
stacking fault (Hull and Bacon, 2011) occurs where the
sequence of atomic planes of a perfect crystal is disrupted.
For example, a fcc crystal is made up of close-packed planes
arranged in an ABCABCABC order, while a hcp crystal
consists of the same close-packed atomic planes alternating in
the order ABABABAB. If the regular sequence is disrupted, for
example, a crystal with stacking sequence ABABCBCB, two
hcp regions are separated by a stacking fault that is essentially
a layer of fcc structure. The hcp and fcc structures have the
same coordination number and configuration of nearest
neighbors. They differ only in the arrangement of atoms at
larger distances, so their energies are similar.

In helium, the hcp-fcc energy difference and the corre-
sponding stacking fault energy per unit area γ are extremely
small. For 4He, γ can be roughly estimated using the measured
latent heat for the hcp-fcc transition at 113 MPa (Franck,
1980), which gives a value of about γ ≈ 10−5 J=m2. However,
γ is expected to be much smaller at pressures of around
2.5 MPa, where most measurements on solid 4He have been
made and stacking fault energies γ ∼ 2 × 10−6 J=m2 were
computed by Borda, Cai, and Koning (2016) using PIMC
methods. Stacking fault energies are much larger in conven-
tional materials, typically around 0.1 J=m2, and even for an
inert gas crystal like krypton (Keyse and Venables, 1985) they
are about 3 orders of magnitude larger than in solid helium.
Stacking faults can be created during thermal quenching,

when vacancies condense and create voids that then collapse,
leaving prismatic dislocation loops. They are also created
when a perfect dislocation separates into two partial disloca-
tions. Whether or not a particular dislocation splits, and the
spacing D between the partials, depends on the stacking fault
energy. The small value of γ leads to large splitting of edge
dislocations in the basal plane of hcp 4He. Borda, Cai, and
Koning (2016) estimated an elastic splitting of about 43 nm,
i.e., more than 100b. Their PIMC simulations confirmed that
these dislocations are split by at least 11b, a lower limit set by
the size of the simulation box.

IV. ELASTIC PROPERTIES OF SOLID 4He AND 3He

A. Sound modes and elastic constants Cij

Inert gases interact via weak, spherically symmetric van der
Waals potentials and form simple crystal structures at low
temperatures, making them an attractive testing ground for
calculations of elastic properties. Classical lattice dynamics
gives a good description of the heaviest gases, but the behavior
of helium is dominated by quantum effects. Nonetheless,
sound propagates normally in solid helium crystals and their
elastic constants are determined from ultrasonic and inelastic
neutron scattering measurements of sound speeds.
Single crystals are anisotropic and their full set of elastic

constants is needed to calculate sound speeds and polarizations
in different crystallographic directions. When appropriately
averaged, these give the shear and bulk moduli for polycrystal-
line samples (Maris and Balibar, 2010). Elastic constants have
been measured near the melting temperatures for all three
crystallographic phases of 4He (bcc, hcp, and fcc), but only for
the bcc phase of 3He. Cubic crystals (e.g., bcc and fcc) have
three independent elastic constants (C11, C12, and C44). Under
hydrostatic pressure they compress isotropically, with a bulk
modulus B ¼ ð1=3ÞðC11 þ 2C12Þ. Hexagonal crystals (e.g.,
hcp) have five independent elastic constants (C11, C12, C13,
C33, and C44). Their elastic properties are isotropic about the c
axis, but under hydrostatic pressure the strain parallel to the c
axis can differ from that in perpendicular directions, so the
expression for the bulk modulus is more complicated.
However, in hcp 4He the c=a ratio, which is close to the
1.633 value for ideal close packing, is known to be essentially
independent of pressure (Franck and Wanner, 1970).
This implies that C11 þ 2C12 ≈ C33 þ 2C13, which gives a
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simplified expression for hcp 4He’s bulk modulus
B ≈ ð1=3ÞðC33 þ 2C13Þ.
Table I gives measured values of the elastic constants of

solid helium. In 4He, the bcc phase exists only over a narrow
range around a molar volume of 21.0 cm3. This corresponds
to the pressure 2.8 MPa at which its bcc elastic constants are
listed in Table I (Greywall, 1976). The ultrasonic measure-
ments (Greywall, 1971, 1977a) for hcp 4He extend over a
molar volume range from 20.97 to 19.28 cm3=mol (pressures
from 2.6 to 5.8 MPa). Recent quantum mechanical calcu-
lations of the zero temperature elastic constants of hcp 4He
(Cazorla, Lutsyshyn, and Boronat, 2012; Pessoa, de Koning,
and Vitiello, 2012) are in good agreement with the exper-
imental values. Inelastic neutron scattering measurements
(Reese et al., 1971; Eckert, Thomlinson, and Shirane,
1977, 1978; Thomlinson, Eckert, and Shirane, 1978) also
provided some information on elastic constants of hcp 4He at
pressures of up to 370 MPa (molar volume 9.41 cm3) and of
fcc 4He at a pressure of 493 MPa (molar volume 9.03 cm3).
The bcc phase is stable over a wider range in 3He from 24.9

to 18.9 cm3=mol (pressures from 2.93 to 13.7 MPa) and
extends to zero temperature. Its elastic constants are measured
at densities between 21.66 and 24.45 cm3=mol (Greywall,
1975). The elastic constants of hcp 3He are not measured, but
Table I includes calculated values for a molar volume of
18.77 cm3=mol, computed using path integral techniques
(Schoffel and Muser, 2001). These hcp elastic constants are
expected to be quite accurate since the corresponding elastic
constants computed for the bcc phase of 3He agree well with
experimental values.

The ultrasonically determined elastic constants in Table I
were measured near the crystals’ melting points. The neutron
scattering measurements are made at temperatures between
4.2 and 10 K (for hcp 4He) and between 19 and 22 K (for fcc
4He). At pressures below 20 MPa, the variations of the elastic
constants with temperature are smaller than their experimental
uncertainties. For the highest pressure fcc 4He sample, with a
melting temperature of 38.5 K, the elastic constants decrease
by more than 10% at the melting point.
At low pressures, solid helium has extremely small elastic

constants, for example, a bulk modulus that is about 35 and
140 times smaller than those of neon and xenon, respectively
(Beamish, 2001). Although some of this difference is attrib-
utable to helium’s weak interatomic attraction, much of it is
the result of its large zero point motion. This expands solid
helium’s lattice and makes it about 25 times more compress-
ible than a classical crystal with the same interatomic
potential. Its large compressibility means that applying the
maximum pressure shown in Table I (453 MPa) changes 4He’s
density by a factor of 2.3, which increases its elastic constants
by a factor of 100. Helium’s small elastic constants also mean
that sound propagates slowly, at speeds as low as 75 m=s for
transverse waves at low pressures.
Figures 10 and 11 show the density dependences of the

elastic constants of the bcc and hcp phases of helium. The
shear elastic constants C44 of bcc 3He and 4He fall on a
common curve, in contrast to C11, C12, and the bulk modulus
B ¼ ð1=3ÞðC11 þ 2C12Þ, which are significantly lower for
4He. This is not surprising since the zero point energy is larger
for 3He, which increases its pressure and bulk modulus
compared to 4He at the same density. Zero point motion also

TABLE I. Elastic constants of solid helium in its various crystallographic phases: bcc (top panel), fcc (middle panel), and hcp (lower panel).
The first three columns give the isotope (4He or 3He), the molar volume, and the pressure. For the bcc and fcc phases, the other columns give the
three elastic constants of cubic crystals, the bulk modulus B, and the anisotropy A. For the hcp phases they give the five hexagonal crystal elastic
constants. Data are from ultrasonic velocity measurements (Crepeau et al., 1971; Greywall, 1971, 1975, 1976, 1977a) or, for pressures above
20 MPa, from inelastic neutron scattering measurements (Reese et al., 1971; Eckert, Thomlinson, and Shirane, 1978; Thomlinson, Eckert, and
Shirane, 1978). The hcp 3He elastic constants in square brackets are calculated values (Schoffel and Muser, 2001) since there have been no
experimental measurements for the hexagonal 3He phase.

Isotope (bcc) Vm (cm3) P (MPa) C11 (MPa) C12 (MPa) C44 (MPa) B (MPa) A
4He 21.00 2.8 31.1� .7 28.1� .6 21.7� .2 29.1� .6 14� 6
3He 24.45 3.3 20.16� .2 16.73� .4 9.29� .1 18.0� .3 5.3� 1
3He 21.66 6.5 38.0� .5 34.5� .8 19.8� .3 35.9� .7 11� 4

Isotope (fcc) Vm (cm3) P (MPa) C11 (GPa) C12 (GPa) C44 (GPa) B (GPa) A
4He 9.97 292 1.56� .07 1.06� .07 0.79� .02 1.23� .07 3.2� 1
4He 9.43 380 2.17� .02 1.62� .03 1.00� .02 1.80� .03 3.6� 0.4
4He 9.03 453 3.13� .23 2.24� .23 1.19� .05 2.54� .23 2.7� 1.5

Isotope (hcp) Vm (cm3) P (MPa) C11 (MPa) C33 (MPa) C12 (MPa) C13 (MPa) C44 (MPa)
4He 20.97 2.6 40.5� .4 55.4� 2 21.2� .4 10.5� 1 12.4� .2.2
4He 20.55 3.2 46.6� .2 60.4� 4 26.1� .4 � � � � � �
4He 20.32 3.6 55� 2 71� 3 29� 1 13.1� 1 14.0� 1
4He 19.5 5.3 64.1� 4 87.3� 6 34.9� .3 � � � � � �
4He 19.28 5.8 76� 3 98� 4 42� 2 19.8� 1 19.6� 1
4He 16.00 21.4 170� 30 240� 20 95� 20 � � � 50� 10
4He 11.61 160 1130� 70 1260� 40 � � � � � � 240� 10
4He 9.41 370 2820� 80 3200� 60 � � � � � � 5660� 10
3He 18.77 15.0 [135� 14] [156� 16] [43� 4] [39� 4] [36� 4]
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affects helium’s elastic constants in other ways. Compared to
crystals of the other inert gases (which have the fcc structure),
the anisotropy parameter A ¼ 2C44=ðC11 − C12Þ is unusually
large for bcc helium (Beamish, 2001). This results in
ultrasonic beam deviations as large as 60° and consequent
difficulties in observing the transverse modes in some crys-
tallographic directions (Wanner, 1971). In bcc and fcc

crystals, where atoms sit at centers of inversion symmetry,
the elastic constants should obey the Cauchy relation
C12 − P ¼ C44 þ P, where P is the pressure, provided that
thermal and quantum motion can be neglected. Despite the
importance of zero point motion in helium, this relationship
holds as well in bcc and fcc helium as in the fcc crystals of the
heavier inert gases (Beamish, 2001).
In hcp crystals, atoms do not sit at centers of inversion

symmetry, so there are no equivalent Cauchy relations. The
empirical relation C11 þ 2C12 ≈ C33 þ 2C13, which follows
from the constant c=a ratio of hcp 4He, holds within the
uncertainty of the measurements, so the bulk modulus is
accurately given by B ≈ ð1=3ÞðC33 þ 2C13Þ. This bulk modu-
lus is plotted in Fig. 11 as circles.

B. Intrinsic temperature dependence

Even in defect-free crystals, elastic constants and dissipa-
tion depend on temperature because of the anharmonicity of
the lattice. The anharmonicity is also responsible for thermal
expansion or, in the case of helium crystals that are confined in
a rigid cell at constant volume, the temperature dependence of
the pressure. This intrinsic temperature dependence is related
to uðTÞ, the crystal’s internal thermal energy per unit volume,
by a Gruneisen equation PðTÞ ¼ P0 þ γuðTÞ. The Gruneisen
constant γ is often nearly independent of temperature so that at
low temperatures the thermodynamic pressure increase in a
dielectric crystal due to thermal phonons is proportional to T4.
The elastic constants Cij have a similar temperature depend-
ence (McGreer and Franck, 1990)

CijðTÞ ¼ C0ij − ΓijuðTÞ; ð7Þ

where Γij are related to the crystal’s generalized Gruneisen
constants. Elastic constants and sound speeds are therefore
expected to decrease as the temperature increases, by amounts
proportional to u. The Debye temperatures of helium crystals
are much higher than their melting temperatures (Trickey,
Kirk, and Adams, 1972), so the decreases are expected to be
roughly proportional to T4.
Figure 12 shows the transverse mode elastic constant Ĉ0 ¼

ρv2t that McGreer and Franck (1990) calculated from ultra-
sonic measurements of the speed vt of 3 MHz shear waves in
single crystals of hcp 4He. This crystal was grown at high
pressure (15 MPa) and the measurements were made between
7 and 15 K. As expected, the decrease in this elastic constant
was linearly related to the crystal’s total thermal energy uðTÞ.
A T4 variation of sound speeds is also seen in helium

crystals at lower pressures, at temperatures near melting.
However, as described in Sec. IV.C, dislocations in helium
become mobile and make additional contributions to the
sound speeds at low temperatures. These dislocations can
be pinned by impurities, immobilizing them and restoring the
crystal’s intrinsic temperature dependence. The expected
frequency-independent T4 variation was seen in longitudinal
sound velocity measurements on hcp 4He crystals containing
1% of 3He impurities (Iwasa and Suzuki, 1980). The top panel
of Fig. 13 shows data at 10, 30, and 50MHz; the solid lines are
the expected T4 dependence. Similar behavior has been seen

FIG. 11. Elastic constants and bulk modulus of hcp 4He (solid
symbols) from ultrasonic measurements (Crepeau et al., 1971;
Greywall, 1971, 1977a), and of hcp 3He (open symbols) from
path integral simulations (Schoffel and Muser, 2001). C44,
diamonds; C12, squares; C11, triangles; C13, crosses; C33,
hexagons; bulk modulus B, circles.

FIG. 10. Elastic constants and bulk modulus of bcc helium from
ultrasonic measurements (Greywall, 1971, 1975, 1976). C44

(diamonds), C12 (squares), C11 (triangles), and bulk modulus
B (circles) for bcc 3He (open symbols) and 4He (solid symbols
at left).
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in 3He crystals (Beamish and Franck, 1983). Figure 14 shows
the variation of the longitudinal sound speed in a hcp 3He
crystal containing 0.5% 4He, with the expected dependence
due to thermal phonons.
Note that the intrinsic sound velocity changes in the hcp

crystals of Figs. 13 and 14 are small, corresponding to elastic
constant decreases of less than 1% at the melting temperature.
In low density bcc 3He crystals, the changes are even smaller
but include contributions from thermally excited vacancies as
well as phonons (Iwasa and Suzuki, 1982). The 12% changes
in the high pressure 4He crystal of Fig. 12 reflect the much
higher temperatures in those measurements. The maximum
temperature in the measurements of Fig. 12 correspond to
about 15% of the crystal’s Debye temperature Θ ≈ 100 K
(Trickey, Kirk, and Adams, 1972). This can be compared to
the maximum temperatures in Figs. 13 and 14, which are only
about 6% of the crystals’ Debye temperatures (around 30 and
40 K, respectively), with correspondingly smaller changes in
elastic constants. For comparison, the elastic constants of the
heavier inert gas crystals (Ar, Kr, Xe) decrease by more than
30% at their melting temperatures (Beamish, 2001).
The lower panel of Fig. 13 shows the ultrasonic attenuation

at 10, 30, and 50MHz. It is roughly proportional to ωT4 below
1 K, the attenuation expected from three-phonon scattering
processes in dielectric crystals (Maris, 1971). At high temper-
atures, the phonon scattering time τ decreases, giving approx-
imately constant attenuations in the regime above 1 K where
ωτ < 1. A T4 dependence was also observed at gigahertz
frequencies in Brillouin scattering measurements on hcp 4He

crystals (Berberich, Leiderer, and Hunklinger, 1976). In purer
crystals, dislocations are mobile at low temperatures and add
to the attenuation, overwhelming this intrinsic behavior.
At temperatures below 100 mK, the heat capacity of low

density 3He is dominated by spin exchange, and the internal
energy has the 1=T dependence characteristic of a paramagnet.
The corresponding low temperature decrease in sound speed
was observed by Fartash and Goodkind (1986), who made
measurements on a 24.1 cm3=mol bcc 3He crystal at temper-
atures as low as 12 mK, which is still well above bcc 3He’s
magnetic ordering temperature TN ¼ 0.93 mK. In the mag-
netically ordered state below TN, the thermal excitations are
spin waves with extremely low velocities (7.8 cm=s), so the
spin wave energy uðTÞ ¼ ðπ2ℏ=15c3ÞðkBT=ℏÞ4 and the cor-
responding sound velocity changes are large. This large T4

dependence has been measured in bcc 3He crystals at

FIG. 12. Effective elastic constant Ĉ0 for transverse ultrasound
in hcp 4He at high pressure (15 MPa) vs total internal energy u.
From McGreer and Franck, 1990.

FIG. 13. Longitudinal sound velocity (upper panel) and attenu-
ation (lower panel) in a hcp 4He single crystal containing 1% of
3He (Iwasa and Suzuki, 1980). The sound frequencies are 10
(circles), 30 (triangles), and 50 MHz (crosses). Solid lines are fits
of the velocity data to the expected thermal phonon dependence
V0 − AT4 and of the attenuation to the ωT4 dependence expected
for “zero sound” at low temperature (Maris, 1971).
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temperatures below 1 mK (Nomura et al., 2000), as shown in
Fig. 15. The velocity change below 0.93 mK is more than
0.01%, comparable to the total velocity changes below 1 K in
Figs. 13 and 14.

C. Dislocation effects

Dislocations affect the elastic properties and sound speeds
if they move in response to stresses. This occurs in helium
crystals, where mobile dislocations often dominate the tem-
perature dependence of sound velocities. This first becomes
clear when ultrasonic measurements on hcp 4He single
crystals are extended to low temperatures. Figure 16 shows
data for five different single crystals (curves A–E) grown at the
same pressure. Below about half the melting temperature

(TM ≈ 1.9 K), the longitudinal sound speeds deviate from the
intrinsic T4 dependence that described the data at higher
temperatures (Wanner, Iwasa, and Wales, 1976). The devia-
tions are smooth, with magnitudes as large as 0.3%, compa-
rable to the intrinsic velocity changes. The size and sign of the
velocity anomaly varies from crystal to crystal, consistent with
the random variations expected for dislocation networks
produced during crystal growth.
Although dislocations are usually thought of as softening

crystals, the velocity anomalies in Fig. 16 are positive in more
than half of the samples. As discussed in Sec. III.C, mobile
dislocations act as vibrating strings, pinned at nodes where
they intersect with other dislocations. If the damping is not too
large, these strings have a resonance at a frequency f0 given
by Eq. (6). For sound frequencies below f0, dislocations move
in phase with the applied sound stress and the dislocation
strain adds to the elastic strain, softening the crystal and
reducing the ultrasound velocity. However, at frequencies
above the dislocations’ resonant frequencies the dislocation
motion is out of phase with the sound stress, stiffening the
crystal and increasing the sound speed. In Fig. 16, the
longitudinal sound speeds are measured at 8 MHz for crystals
D and E, which show negative velocity deviations at low
temperatures, and at 12 MHz for the other three crystals,
which show positive deviations. This suggests that the
anomalies are due to dislocation loops with resonance
frequencies around 10 MHz, corresponding to lengths
between pinning points of about 10 μm. Wanner, Iwasa,
and Wales noted that real crystals would have a distribution
of loop lengths and showed that the velocity anomalies could
be explained by considering just two different loop lengths.
Although the Granato-Lücke model could describe the

velocity at a single frequency, the dislocation densities derived

FIG. 14. Temperature dependence of the longitudinal sound
speed in a hcp 3He single crystal containing 0.53% 4He
impurities. The solid line is a fit to the intrinsic thermal phonon
dependence. From Beamish and Franck, 1983.

FIG. 15. Sound velocity (11 MHz longitudinal ultrasound) in
magnetically ordered bcc 3He single crystals in coexistence with
liquid 3He along the melting curve (3.44 MPa). The different
symbols correspond to crystals with different orientations. From
Nomura et al., 2000.

FIG. 16. Ultrasonic velocities in hcp 4He single crystals at
3.6 MPa. The curves labeled A (top) through E (bottom)
correspond to different crystals grown under the same conditions.
Solid lines are fits to the high temperature intrinsic behavior.
From Wanner, Iwasa, and Wales, 1976.

John Beamish and Sébastien Balibar: Mechanical behavior of solid helium: Elasticity, …

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045002-19



from the fits vary from crystal to crystal, from 0.7 × 105=cm2

to 4.3 × 105=cm2, and the average loop lengths vary between
6 and 11 μm. A more stringent test of the model requires
measurements at multiple frequencies. Such measurements
were first made by Iwasa, Araki, and Suzuki (1979). Figure 17
shows longitudinal sound speeds at frequencies of 10, 30, and
50 MHz in a hcp 4He crystal grown from natural purity helium
gas (less than 1 ppm of 3He impurities). The velocity anomaly
is positive and, as expected, depends strongly on frequency,
confirming the resonant nature of the dislocation interaction.
Similar measurements were soon made on hcp and bcc single
crystals of 3He (Beamish and Franck, 1982). The velocity
anomalies, after subtracting the high temperature intrinsic

dependence, are shown in Fig. 18. By using lower frequencies,
these measurements unambiguously show the crossover from
low frequency softening at 3 MHz to high frequency stiffening
at 9 MHz, convincing evidence of a resonance between 3 and
9 MHz. This is consistent with the 4He measurements of
Fig. 17, where the positive anomaly indicates a dislocation
resonance frequency below 10 MHz.
To describe the frequency and temperature dependence of

the sound velocities and of the accompanying sound attenu-
ation (shown in the lower panels of Figs. 17 and 18), a
distribution of dislocation loop lengths is needed. In the
Granato-Lücke model, the contributions to the sound velocity
and attenuation from a unit density of loops with length l
(resonance frequency ω0Þ are

ΔvðlÞ
v0

¼ −
4v20
π3

ω2
0 − ω2

ðω2
0 − ω2Þ2 þ ðBω=AÞ2 ð8Þ

and

αðlÞ ¼ −
4v0
π3

ω2
0B=A

ðω2
0 − ω2Þ2 þ ðBω=AÞ2 : ð9Þ

For a distribution of loop lengths NðlÞ, the total velocity
change and attenuation are

Δv
v0

¼ R
Z

ΔvðlÞ
v0

lNðlÞdl ð10Þ

FIG. 17. Dislocation fit of the frequency-dependent longitudinal
sound velocity (upper panel) and attenuation (lower panel) in hcp
4He. The sound frequencies are 10 (circles), 30 (triangles), and
50 MHz (crosses). From Iwasa, Araki, and Suzuki, 1979.

FIG. 18. Dislocation fit of the frequency-dependent longitudinal
sound velocity (upper panel) and attenuation (lower panel) in hcp
3He. The sound frequencies are 3 (squares) and 9 MHz (circles).
From Beamish and Franck, 1982.
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and

α ¼ R
Z

αðlÞlNðlÞdl; ð11Þ

where R is a numerical factor of order 0.1 that depends on the
orientation of the crystal with respect to the sound polariza-
tion. Since the crystal orientations are not known in these
ultrasonic experiments, only the combination RΛ can be
determined for each crystal, not the dislocation density Λ
itself. Both Iwasa, Araki, and Suzuki (1979) and Beamish and
Franck (1982) assumed exponential distributions of loop
lengths with average length L and dislocation density Λ

NðlÞ ¼ Λ
L2

e−l=L: ð12Þ

The temperature dependence in these equations comes from
the damping parameter B. In an insulating crystal like helium,
the main damping source is thermal phonons, via the fluttering
mechanism described by Ninomiya (1974). This has a
characteristic B ¼ gT3 temperature dependence, with g given
in Eq. (4). At the megahertz frequencies of ultrasonic
measurements, the damping term Bω=A in Eqs. (8) and (9)
is large near melting. At high temperatures the dislocations’
motion is heavily damped and their contributions to the sound
velocity and attenuation are small, as seen in Figs. 17 and 18.
This means that elastic constants measured near samples’
melting points, such as those listed in Table I, are the intrinsic
values.
Dislocation parameters extracted from fits to the ultrasound

velocities and attenuations are similar in hcp 4He and 3He and
in bcc 3He. In most crystals the average loop lengths L are
between 3 and 12 μm, while the dislocation densities Λ
(assuming R ¼ 0.1) range from 2 × 103 to 106 per cm2.
Lengua and Goodkind (1990) found similar dislocation
densities in hcp 4He crystals grown at low pressures, but
with longer loops. A range of dislocation densities and lengths
in different experiments is expected, given the inevitable
variations in crystal quality. Higher dislocation densities
would be expected in polycrystals grown with the blocked
capillary technique. However, the large sound scattering and
attenuation makes ultrasonic measurements difficult in poly-
crystals, and there have been no comparable measurements of
their dislocation parameters.
Although dislocation effects are small at high temperatures,

Tsuruoka and Hiki (1979) tried to extract dislocation densities
from ultrasonic attenuation measurements in hcp 4He crystals
near their melting temperatures. Their calculated dislocation
densities were orders of magnitude larger than in other
ultrasonic measurements, up to 6 × 109=cm2. However, they
used a much different method to analyze their attenuation
data, and subsequent reanalysis by Paalanen, Bishop, and Dail
(1981) showed that their attenuation values were consistent
with the much smaller dislocation densities found in other
experiments.
Although the temperature dependence of the sound velocity

and attenuation anomalies is due to the thermal damping of
dislocation motion, the resonance and strong frequency

dependence at ultrasonic frequencies makes it impossible to
confirm the phonon fluttering prediction of Ninomiya (1974)
by directly measuring the temperature dependence of the
damping B. However, it is clear from the ultrasonic measure-
ments that the damping increases with temperature and the
temperature dependence is consistent with a temperature
dependence B ¼ gTn, with n between 2 and 4, and with a
value of g similar to that predicted by Eq. (4).
When high concentrations of isotopic impurities are added

to helium crystals, as in Figs. 13 and 14, the dislocation
anomalies are eliminated since impurities bind to edge
dislocations at low temperatures, pinning them and eliminat-
ing their contributions to the ultrasound velocity and attenu-
ation (Iwasa and Suzuki, 1980; Beamish and Franck, 1983).
As expected, the effects of impurities are strongly amplitude
dependent, since stress-induced breakaway from impurity
pinning sites allows dislocations to move at large ultrasonic
amplitudes. Analysis of the amplitude and temperature
dependence of this unpinning provided estimates (Iwasa
and Suzuki, 1980) of the impurity binding energies
(∼0.3 K) and the forces required to detach such an impurity
from a dislocation (∼10−14 N). Given their weak binding to
dislocations, isotopic impurity atoms are effective pinning
sites only at low temperatures and for small stress amplitudes.
The impurity concentrations for the crystals of Figs. 17

and 18 (< 1 ppm 3He and 1.35 ppm 4He, respectively) are not
sufficient to pin the dislocations, even at the lowest temper-
atures of these measurements. However, recent ultrasonic
measurements did observe pinning below 200 mK in hcp 4He
crystals containing 0.3 ppm of 3He mK (Iwasa and Kojima,
2017). As described later, measurements at low frequencies
show qualitatively similar behavior, but the modulus changes
are much larger and imply longer dislocation loops and
stronger 3He impurity binding. Recent low frequency mea-
surements like those on single crystals described in Sec. V.C
are much more direct and straightforward to interpret and
allow dislocation parameters to be determined more reliably
than from ultrasonic measurements.

V. LOW FREQUENCY ELASTIC MODULUS AND
DISSIPATION

The effects of dislocations on ultrasound propagation are
complicated since dislocations’ inertia, string tension, and
damping are all important at megahertz frequencies.
Measuring the resulting frequency dependence is difficult
since most ultrasonic measurements are limited to a few
frequencies, multiples of the fundamental resonance of the
transducers. In addition, crystals are anisotropic, with longi-
tudinal and transverse modes, so the directions of the stresses
acting on dislocations are often unknown. Even if a crystal’s
orientation is independently determined, ultrasonic stress
amplitudes are difficult to estimate and are seldom accurately
known.
At low frequencies, well below the resonance frequency of

Eq. (6), dislocation effects are much simpler to interpret. The
inertial term in Eq. (5) can be neglected, and the damping term
is small. The elastic changes due to dislocations can be much
larger than at ultrasonic frequencies since all the dislocations
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move in phase with the applied stress and contribute to the
softening of the crystal. In the static (zero frequency) limit, the
dislocations reduce the intrinsic shear modulus μ0 by an
amount

δμ

μ0
¼ αΛL2

1þ αΛL2
: ð13Þ

Here α is a numerical factor (∼0.05) that includes the
orientation factor R to account for the component of the
stress in the dislocations’ glide directions and the logarithmic
term in Eq. (3), which depends on the dislocations’ core size
and separation. Long dislocations have a larger effect than
short ones, but the dislocation density Λ and the pinning
length L cannot be separately determined from Eq. (13). Only
the combination ΛL2, which reflects the geometry of the
dislocation network, can be found from low frequency
modulus measurements. For example, a simple cubic network
of dislocations with ΛL2 ¼ 3 would reduce the low frequency
shear modulus by more than 10%. Additional pinning by
impurities or jogs reduces the effective dislocation loop length
and, consequently, the magnitude of shear modulus softening.
At finite frequencies, dislocation damping produces elastic

dissipation. For frequencies ω well below the dislocation
lines’ resonance, the inertial term in Eq. (5) can still be
neglected, but the damping term introduces a relaxation time
τ ¼ BL2=π2C. For ωτ ≪ 1, the shear modulus is still given by
Eq. (13), but the dissipation becomes

1

Q
¼ δμ

μ0
ωτ ¼ δμ

μ0
ω
BL2

π2C
: ð14Þ

The dissipation 1=Q depends on L more strongly than the
modulus change. If both can be measured and the damping
coefficient B is known, then L and Λ can be separately
determined.

A. Early measurements

A number of experiments used frequencies in the kilohertz
range to study the elastic modulus and dissipation in helium
crystals. Tsymbalenko (1978, 1979, 1984, 1986) used quartz
resonators embedded in solid helium to measure its shear
modulus and internal friction. Typical results, measured at
80 kHz, are shown in Fig. 19 for four different hcp 4He single
crystals grown at 3.5 MPa (dotted and dashed curves labeled
1, 3, 4, and 5). Dislocations are the only defects that can
explain the large shear modulus changes, up to 30%, which
correspond to ΛL2 ∼ 5. The solid lines in Fig. 19 are a fit of
the dislocation model described by Eqs. (8)–(11) to the data
for crystal 4. The measured modulus changes are orders of
magnitude larger than the changes observed in ultrasonic
measurements, so longer loops (L ∼ 100 μm) are needed to fit
the modulus and dissipation data. The shear modulus (left
panel) and the decrement (right panel) both decrease below
1 K, confirming that dislocations are more mobile and less
damped at low temperatures. The temperature dependence is
consistent with a damping B ¼ gTn, with an exponent n close

to 3, but to get satisfactory fits it is necessary to include the
inertial term in Eq. (5).
Paalanen, Bishop, and Dail (1981) studied helium’s elastic

properties at an even lower frequency (331 Hz) using a
torsional oscillator technique. In contrast to torsional oscil-
lators used to search for supersolidity, this oscillator’s inertial
element did not contain helium. The torsion rod, however, was
filled with solid helium, whose shear modulus and dissipation
were determined from the frequency and quality factor of the
torsional oscillator. As shown in the top panel of Fig. 20, the

FIG. 19. Shear modulus G (left panel) and decrement δHe ∝
1=Q (right panel) for hcp 4He single crystals grown at 3.5 MPa.
The dotted and dashed curves (labeled 1, 3, 4, and 5) are data for
four different crystals grown under the same conditions. The solid
curves are dislocation fits to the data of crystal 4. From
Tsymbalenko, 1984.

FIG. 20. Torsional oscillator measurements of the normalized
shear modulus (upper panel) and dissipation (lower panel) in a
hcp 4He polycrystal at 3.7 MPa. The measurement frequency is
331 Hz and the data are taken at strain amplitudes ϵ ¼ 10−7

(squares), ϵ ¼ 6 × 10−7 (triangles), and ϵ ¼ 10−5 (circles). From
Paalanen, Bishop, and Dail, 1981.
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shear modulus changes by up to 40% when the solid was
cooled, from which they inferred that ΛL2 ¼ 2. However, the
modulus increased at low temperatures, implying that dis-
locations were less mobile at low temperatures, in contrast to
the 30% decrease in the 80 kHzmeasurements of Tsymbalenko
(1984). The changes in shear modulus were accompanied by
dissipation peaks (lower panel of Fig. 20). Both the modulus
and dissipation depend strongly on the strain amplitude and the
3He concentration. The low temperature stiffening in Fig. 20 is
consistent with impurity pinning, with an amplitude depend-
ence and hysteresis due to stress-induced breakaway of dis-
locations. From the temperature dependence of the breakaway
amplitude, Paalanen, Bishop, and Dail (1981) deduced an
impurity binding energy EB ¼ 0.7 K.
There was some uncertainty in the 3He impurity concen-

tration in the sample of Fig. 20. It was described as “commercial
4He,” but its unpinning temperatures are higher than in other
samples, suggesting larger impurity concentrations. Paalanen,
Bishop, and Dail described it as having 3He concentrations
“probably less than 3 ppm,” about 10 times larger than is usually
found in commercial helium gas. In their samples with
extremely low 3He concentrations (x3 ¼ 2.4 × 10−9) the shear
modulus, shown in the upper panel of Fig. 21, was independent
of temperature, as expected if there is no impurity pinning. The
dissipation in the isotopically pure samples, shown in the lower
panel of Fig. 21, was relatively small, without the impurity
breakawaypeaks of Fig. 20. In the samplewhose data are shown
as solid symbols, the shear modulus was small, indicating that
the dislocations were mobile. The corresponding dissipation

increases roughly as T2, weaker than the T3 dependence noted
by Tsymbalenko, but the fits to the dissipation were made over
different temperature ranges. The other high purity sample,
corresponding to the open symbols, has a larger shear modulus
and negligible dissipation, indicating that dislocation effects are
much smaller in this sample, likely because of its orientation.
Paalanen, Bishop, and Dail (1981) showed that their high
temperature dissipation values at 331 Hz were consistent with
those from earlier work by Tsymbalenko (1978) at 15 kHz and
by Tsuruoka and Hiki (1979) at megahertz ultrasonics frequen-
cies, with no need for the large dislocation densities assumed in
the latter paper.
The low frequency measurements were consistent with

many features observed in ultrasonic experiments. They
confirm that dislocations can soften the shear modulus, are
thermally damped at high frequencies and temperatures, and
are pinned by 3He impurities at low temperatures and stresses.
There are, however, significant differences between the low
and high frequency results. Modulus changes are much larger
in the low frequency measurements, up to 40%, compared to
less than 1% in ultrasonic measurements. Some of this
difference is due to the inertial effects that limit dislocation
motion at megahertz frequencies. However, the values
extracted for the dislocation network parameter ΛL2 were
much smaller in the ultrasonic measurements (between
∼0.001 and 0.1) than in the low frequency measurements
of Paalanen, Bishop, and Dail (1981) and Tsymbalenko
(1984) (between ∼2 and 6). The extracted dislocation den-
sities Λ were comparable in the ultrasonic measurements and
the 80 kHz measurements of Tsymbalenko (1984) (∼104 to
105=cm2 and ∼104=cm2, respectively) but the pinning lengths
were significantly different, ∼5 μm in the ultrasonic mea-
surements versus ∼100 μm in the measurements of
Tsymbalenko (1984). Some discrepancies are expected since
the crystal qualities may be different in the various experi-
ments, but the large differences in ΛL2 and L are puzzling. In
addition, although the thermal damping in all the experiments
appears to be proportional to Tn, with n between 2 and 4, the
magnitude of the damping B was about 2 orders of magnitude
larger in the measurements of Tsymbalenko (1984). This is
surprising since B is an intrinsic property of individual
dislocations and should not depend on their density or lengths.
More direct and detailed recent measurements of damping in
single crystals, described in Sec. V.C, show similar large
modulus changes but are not consistent with the B values of
Tsymbalenko (1984), instead confirming the expected phonon
scattering damping B.
This torsional oscillator technique has also been used to

study dislocation effects in bcc 3He. Miura et al. (1998, 2000)
and Miura, Mori, and Mamiya (2000) observed a dissipation
proportional to T3 and shear modulus decreases as large as
60% at high temperature, suggesting that ΛL2 was at least as
large as in hcp 4He. However, they were not able to determine
the dislocation densities or lengths separately.

B. Shear modulus measurements in polycrystals

To resolve discrepancies between the dislocation parame-
ters determined by the high and low frequency measurements,

FIG. 21. Torsional oscillator measurements of the period shift,
proportional to the shear modulus change (upper panel) and
dissipation (lower panel) for isotopically pure (x3 ¼ 2.4 ppb) hcp
4He crytals at 4.8 MPa. Open and closed symbols correspond to
two samples with different orientations. The measurement
frequency is 331 Hz and the data are taken at strain amplitudes
ϵ ¼ 6 × 10−7 (triangles) and ϵ ¼ 10−5 (circles). From Paalanen,
Bishop, and Dail, 1981.
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unambiguous measurements of the thermal damping coeffi-
cient B were needed. As noted by Tsymbalenko (1978), this
requires measurements over a wide range of frequencies.
However, this is not practical with resonant techniques like
torsional oscillators and quartz resonators, nor with ultrasonic
methods. Nonresonant techniques allow the frequency to be
varied continuously but are usually less sensitive. However,
with modern electronics that takes advantage of the reduced
noise levels at low temperatures, extremely sensitive non-
resonant measurements can be made on solid helium.
The low frequency shear modulus of polycrystalline hcp

4He was measured by Day and Beamish (2007b) using such
techniques. Helium crystals were grown in a narrow gap
(D ¼ 180 μm) between two parallel shear piezoelectric trans-
ducers. A voltage V applied to one transducer generates a
shear displacement δx and a uniform shear strain ϵ ¼ δx=D in
the helium. This produces a shear stress σ and a corresponding
charge q on the opposite transducer, allowing the shear
modulus of the solid helium μ ¼ σ=ϵ to be calculated. To
determine absolute rather than relative values, the transducers
were calibrated at the low temperatures of the measurements
(Bukhari et al., 2014; Islam and Beamish, 2019). For ac
measurements of the shear modulus, a lock-in amplifier also
gave the dissipation in the helium, which is related to the
measured phase lag ϕ between the stress and strain
1=Q ¼ tanϕ. With this technique, the measurement frequency
could be varied continuously up to 16 kHz, limited only by
mechanical resonances of the pressure cell and acoustic
resonances of the solid helium inside it. The lower frequency
limit, of the order of 1 Hz, was set by noise in the stress
measurements. Using this technique, which has a stress
resolution of 2 × 10−6 Pa at the highest frequencies, solid
helium’s shear modulus was measured at frequencies from
0.5 Hz to 16 kHz (Syshchenko, Day, and Beamish, 2010;
Haziot, Fefferman, Souris et al., 2013), and at strains as low as
2 × 10−11 (Haziot et al., 2013a).
Figure 22(a) shows the changes in the shear modulus

of a hcp 4He samplewith a nominal 3He impurity concentration
of 300 ppb (300 × 10−9). The polycrystalline solid was grown
using the blocked capillary technique, with a final pressure of
3.33 MPa (Day and Beamish, 2007b). The shear modulus was
essentially constant between the melting temperature (1.86 K)
and 200mK, then increased at lower temperatures, reaching the
solid’s intrinsic value at the lowest temperatures (Day,
Syshchenko, and Beamish, 2009). The total change, about
8%, is somewhat smaller than the dislocation softening seen in
some earlier low frequency measurements on helium single
crystals and corresponds to a network with αΛL2 ≈ 0.09; see
Eq. (13). The temperature at which the softening occurs
depends on the measurement frequency, as shown in Fig. 22
(a) for frequencies of 20, 200, and 2000 Hz. It was also
extremely sensitive to the 3He impurity concentration, as shown
in Fig. 22(b) for 3.3MPa crystals with x3 ¼ 1, 85, and 300 ppb.
The measurements in Figs. 22(a) and 22(b) were made at
extremely small shear strains (ϵ ¼ 3 × 10−9, corresponding to
stress σ ≈ 0.05 Pa). As shown in Fig. 22(c), the low temper-
ature shear stiffening was reduced at strains above 2 × 10−8.
However, the shear modulus above 200 mK was essentially
independent of the strain amplitude.

This is the behavior expected for a network of dislocations
that are pinned by weakly bound 3He impurities at low
temperatures. For a binding energy EB, the equilibrium
concentration of 3He atoms along the dislocation is
xdis3 ¼ x3eEB=kBT . At high temperature, the 3He atoms unbind
and the impurity pinning length Li, which is inversely
proportional to xdis3 , increases. When Li becomes comparable
to the network length LN , the dislocations are able to move
and reduce the crystal’s intrinsic shear modulus. In Fig. 22(a)
this occurs at around 200 mK, but the pinning length, and
hence the softening temperature, depends on the sample’s 3He
concentration, as shown in Fig. 22(b). Assuming that the three
samples had similar network lengths, this allows the 3He
binding energy to be estimated as EB ≈ 0.7 K, which is
consistent with the value from Paalanen, Bishop, and Dail
(1981). The amplitude dependence in Fig. 22(c) reflects
dislocations breaking away from 3He pinning sites when
the force exerted by the applied stress exceeds a threshold.
In the high temperature regime, where impurity pinning can be
neglected, the shear modulus is independent of the stress
amplitude because the network pinning is much stronger.
The frequency dependence of the softening shown in

Fig. 22(a) can be well described by a thermally activated

(a)

(b)

(c)

FIG. 22. Shear modulus in a hcp 4He polycrystal at 3.33 MPa.
(a)Normalizedmodulus at low strain ϵ ¼ 3 × 10−9 for frequencies
of 20, 200, and 2000 Hz (b) Shear modulus changes at low strain
for samples with different 3He impurity concentrations, normal-
ized to the total changes from low to high temperature for each
sample. (c) Amplitude dependence of the shear modulus at
2000 Hz for strains (from top to bottom) between 2 × 10−9 (top
curve, black symbols) and 2 × 10−6 (bottom curve, cyan symbols).
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relaxation process. The activation energy 0.7 K is essentially
the same as expected if the dislocation unpinning rate is
controlled by thermally activated unbinding of the impurities.
Alternatively, bound impurities might move with dislocations
and produce a damping force proportional to their density,
giving the same activation energy.
The behavior is similar in 3He (West et al., 2009). Figure 23

shows the normalized shear modulus for a hcp 3He polycrystal
at a pressure of 11.9 MPa. The temperature at which the
modulus softens was higher than in hcp 4He, which is
expected given the larger impurity concentration in the 3He
sample (x4 ¼ 1.35 ppm). As for 4He, the stiffening shifted to
lower temperature and disappears at large strains, with a
similar threshold for breakaway. Neither the dependence on
frequency nor that on impurity concentration was measured in
these experiments, so the 4He impurity binding energy could
not be determined, but ultrasonic experiments extracted
similar isotopic impurity binding energies in hcp 3He and
4He crystals. For the bcc phase of 3He, dislocation effects were
not obvious but were seen more clearly in subsequent experi-
ments (Cheng, Souris, and Beamish, 2016).
The origin of the modulus changes in solid helium was

confirmed by the effects of annealing, which is expected to
reduce the density of defects like dislocations. Figure 24
shows the shear modulus changes for hcp 4He (upper pair of
curves) and hcp 3He (lower pair of curves). Samples were
frozen using the blocked capillary technique, which produces
samples with many grain boundaries and dislocations. The
lower (black) set of data in each pair of curves in Fig. 24 is
measured when the samples were first cooled, immediately
after freezing. The modulus changes were similar in the
3.33 MPa 4He sample and the 11.9 MPa 3He sample, about
8% in each case (Day, Syshchenko, and Beamish, 2009).
When the samples were annealed for several hours near their
melting temperatures, their shear moduli increased by 1%–
2%. However, when an annealed sample was subsequently
cooled (upper red set of data in each pair of curves), its shear
modulus returned to the preannealing value at the lowest
temperature, as expected when dislocations are completely
pinned by impurities. This confirmed that the values at the

lowest temperatures reflect the intrinsic shear moduli of
perfect crystals, unaffected by the now immobile dislocations.
The changes in the dislocation network during annealing
reduced the high temperature softening by about 20%.
However, this is not a direct measure of dislocation densities
since the modulus change is proportional to ΛL2. A decrease
in density Λ is usually accompanied by an increase in the
network length L, which reduces the modulus change due to
annealing or can even change its sign (Day, Syshchenko, and
Beamish, 2009).
Large stresses can also change the dislocation network

(Day, Syshchenko, and Beamish, 2009; Cheng and Beamish,
2018b). Figure 25 compares the shear moduli of hcp 4He
samples with 3He impurity concentrations of 300 ppb (upper
pair of curves) and 1 ppb (lower set of three curves). As for the
helium crystals of Fig. 24, the initial shear modulus of the high
purity (1 ppb 3He) sample (lowest curve, black symbols)
increases after annealing (middle of the three curves, red
symbols) but returns to the same intrinsic value at the lowest
temperature. When large acoustic strains (ϵ ∼ 10−4) are
applied to the annealed sample at low temperatures, the shear
modulus does not change. However, when the stressed sample
is then warmed (uppermost of the three curves, blue symbols)
the modulus behavior is different: it is clear that the large
stresses affect the dislocation network. The upper pair of
curves show the same effect in a sample with a higher 3He
concentration. Counterintuitively, applying the large stresses
reduces the softening due to dislocations. This suggests that
the effect of the low temperature stresses is to partially pin
existing dislocations rather than create new ones. Warming
above 0.5 K reverses the effects of the acoustic stress and
repeating the process gives reproducible hysteresis loops. The
ease with which the stress effects are annealed suggests that

FIG. 23. Amplitude dependence of the shear modulus in a hcp
3He polycrystal at 11.9 MPa measured at 2000 Hz. The modulus
is normalized to the value at the lowest temperature and strain.
Strain amplitudes for the different curves vary (from top to
bottom) from 7 × 10−9 (top curve, red symbols) to 2 × 10−6

(bottom curve, cyan symbols) with the same strain values as the
corresponding curves in Fig. 22.

FIG. 24. Effect of annealing on the shear modulus softening in
helium polycrystals. The upper pair of curves show the normal-
ized modulus at 2000 Hz for hcp 4He containing 0.3 ppm 3He
impurities at a pressure of 3.33 MPa (33.3 bar). The lower pair of
curves are for hcp 3He containing 1.35 ppm 4He impurities at
11.9 MPa (119 bar). For each sample, the lower (black) data are
before annealing; the upper (red) data are after annealing. From
Day, Syshchenko, and Beamish, 2009.
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the new pinning sites may be jogs, which can be removed by
dislocation climb when thermal vacancies are available (Hull
and Bacon, 2011).
Even at lower stresses, where new dislocations and jogs are

not created, stress-induced breakaway from impurity pinning
sites leads to hysteresis when the strain amplitude is cycled
(Granato and Lücke, 1981). Figure 26 shows a hysteresis loop
for hcp 4He at 36 mK (Day, Syshchenko, and Beamish, 2010).
The open symbols show the increase in normalized shear
modulus when the strain amplitude ϵ was reduced from
4 × 10−6 (where dislocations have broken away from 3He
impurities) to 2 × 10−8 (where they are pinned). When the
strain amplitude was then increased (solid symbols), the shear
modulus remained at its large intrinsic value up to strains of
about 10−6, then dropped rapidly. This type of hysteresis
arises because the force pulling a dislocation away from an
impurity increases with the distance between pinning points,
as well as with the applied stress (Iwasa, 2013; Kang, Yoon,
and Kim, 2015). At sufficiently high stress, dislocations are
free of bound 3He, so this loop length is that between nodes of
the dislocation network. If the stress amplitude is gradually
reduced below the critical value, 3He atoms can bind to
dislocations, beginning with the shortest loops. This reduces
the distance between pinning sites, which allows more 3He
atoms to bind and quickly immobilizes this dislocation loop.
As the strain amplitude is reduced, successively longer loops
are pinned and the distribution of network lengths can be
inferred from the amplitude dependence of the shear modulus
(the open circles in Fig. 26). The hysteresis arises because
when one begins at low strain, the bound impurities are
closely spaced and do not break away unless much larger
stresses are applied. A lower limit on the time required to pin
dislocations at low temperature can be inferred from the fact

that the impurities do not pin the dislocations during the part
of the ac cycle when the stress goes through zero. The pinning
time must be longer than this millisecond scale.
At higher temperatures, where the unpinning from impu-

rities is thermally assisted (Lücke, Granato, and Teutonico,
1968), Kang et al. (2013) showed that the hysteresis decreases
rapidly, disappearing at around 70 mK. The combination of
amplitude and temperature dependence produces complicated
elastic behavior that Kang et al. (2013) summarized in the
stress-temperature “hysteresis map” for polycrystalline hcp
4He shown in Fig. 27.
Similar behavior was seen in torsional oscillator measure-

ments (Pratt et al., 2011), where the amplitude dependence
was interpreted as a velocity dependence rather than a stress
dependence. However, it is now clear that these and other
torsional oscillator experiments were actually probing the
shear modulus of solid helium, not inertial effects that might
signal supersolidity (Beamish et al., 2012). The connection
between a torsional oscillator’s frequency and damping and
helium’s elastic properties has been directly confirmed in

FIG. 25. Effects of stressing and annealing on the shear modulus
of hcp 4He with 300 ppb 3He (2.88 MPa, upper pair of curves) and
with 1 ppb 3He (3.33 MPa, lower set of three curves). For each
sample, the modulus is normalized to the value at the lowest
temperature. The various curves are discussed in the text (Day,
Syshchenko, and Beamish, 2009).

FIG. 26. Low temperature hysteresis due to impurity pinning
and unpinning in hcp 4He at 3.8 MPa. Open symbols show the
shear modulus measured while decreasing the strain; solid
symbols are data taken while increasing the strain. From Day,
Syshchenko, and Beamish, 2010.

FIG. 27. Stress-temperature map of solid 4He from shear
modulus measurement. From Kang et al., 2013.
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experiments in which the solid helium’s shear modulus was
measured simultaneously using piezoelectric transducers
inside the torsional oscillator (Kim et al., 2011; Shin
et al., 2016).
The frequency dependence of the shear modulus seen in

Fig. 22(a) is mirrored in the corresponding dissipation 1=Q.
Figure 28 shows the low amplitude shear modulus and
dissipation for a hcp 4He polycrystal, measured at frequencies
between 2 and 2000 Hz (Syshchenko, Day, and Beamish,
2010). The open circles in Fig. 28 mark the midpoints of the
modulus change and the positions of the accompanying
dissipation peaks. The dissipation peaks coincide with the
midpoints of the modulus softening, as expected for a Debye
relaxation process. They shift to higher temperatures with
increasing frequency, suggesting that the relaxation process is
thermally activated. This is confirmed by the Arrhenius plots
of Fig. 29, where the softening midpoint and dissipation peak
positions are shown for the samples of Figs. 22(a) and 28.
The slopes, shown by solid lines, correspond to activation
energies of approximately 0.7 K, which is consistent with the
binding energy estimated from the 3He impurity concentration
dependence.
For a Debye process with relaxation time τ and a small

relaxation strength δμ=μ0 ≪ 1, the modulus and dissipation
are given by (Nowick and Berry, 1972)

μ

μ0
¼ 1 −

δμ

μ0

1

1þ ðωτÞ2 ; ð15Þ

1

Q
¼ δμ

μ0

ωτ

1þ ðωτÞ2 ; ð16Þ

where μ0 is the “unrelaxed modulus” (ωτ ≫ 1) and μ0 − δμ is
the “relaxedmodulus” (ωτ ≪ 1). For dislocations the relaxation
time could be the one associated with their damping by thermal
phonons τ ¼ BL2=π2C. Other relaxation processes could be
thermally activated, with τðEÞ ¼ τ0eE=T , where E is the
activation energy. The midpoint of the modulus crossover
and the dissipation maximum occur at the temperature where
ωτ ¼ 1. However, a Debye relaxation with a single activation
energy (0.73 K) and an attempt time τ0 (25 ns), the values
suggested by Fig. 29, gives a shear modulus crossover and
dissipation peak (dashed blue lines) much narrower than were
observed, as shown in Fig. 30 (Syshchenko, Day, and Beamish,
2010). The measured dissipation peak was also much smaller
than the expected Debye value ð1=QÞpeak ¼ ð1=2Þðδμ=μ0Þ.
However, the broadening of the shear modulus crossover and
dissipation could be explained if the relaxation process involved
a distribution of activation energies rather than a single value.
The solid red lines in Fig. 30 show a fit to the data with a
distribution of activation energies with widthW ¼ 0.45 around
an average value of 0.73K.Mukharsky, Penzev, andVaroquaux
(2009) and Mukharsky and Penzev (2012) observed similar
behavior in measurements of uniaxial compression of poly-
crystalline 4He between 10 Hz and 4 kHz. The temperature and
frequency dependences were similar to those of the shear
modulus, as were the activation parameters (E ≈ 0.62 K,
W ≈ 0.71). This is expected since uniaxial compression
involves shear deformations and thus is affected by dislocation
motion in the same way.
Kang, Yoon, and Kim (2015) showed that the complete

temperature and stress dependence, including the hysteresis
when the stress amplitude is cycled, could be quantitatively
reproduced with a Granato-Lücke dislocation model that
includes impurity pinning and a distribution of network
lengths. The lower panels of Fig. 31 show their measured
shear modulus and dissipation in hcp 4He at a frequency of
1000 Hz. The calculated values shown in the upper panels

(a)

(b)

FIG. 28. (a) Shear modulus in a hcp 4He polycrystal at 3.8 MPa
for frequencies between 2 and 2000 Hz. Circles mark the
midpoints of the modulus softening. (b) Corresponding dissipa-
tion, with circles marking the peak values. Curves are vertically
shifted for clarity. From Syshchenko, Day, and Beamish, 2010.

FIG. 29. Arrhenius plot of the crossover temperatures for the
3.8 MPa sample of Fig. 28 (lower black symbols and line) and the
3.3 MPa sample of Fig. 22(a) (upper red symbols and line). Open
symbols are the midpoints of the shear modulus softening; solid
symbols are the dissipation peak maxima. From Syshchenko,
Day, and Beamish, 2010.

John Beamish and Sébastien Balibar: Mechanical behavior of solid helium: Elasticity, …

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045002-27



(for a dislocation density RΛ ¼ 2 × 10−6 cm−2 and network
length L ¼ 5 μm) agree well with the data. The 3He binding
energy used to fit the data E ¼ 0.3 K was smaller than
inferred from the frequency dependence in Figs. 22 and 29
but is based on data at a single frequency. Their model does
not include a distribution of activation energies, which broad-
ens the modulus crossover and the dissipation peak, mimick-
ing a smaller activation energy.
As shown in Figs. 22–24, the shear modulus changes are

similar in the hcp phases of 3He and 4He. However, the
dynamics of dislocation motion were significantly different in

hcp 3He (Cheng and Beamish, 2017). In contrast to 4He, the
shear softening in hcp 3He was independent of frequency, as
shown in Fig. 32(a). This suggests that in hcp 3He, the 4He
impurities act as static pinning sites over the full frequency
range 22–5402 Hz. This is different from the dynamic
impurity behavior in hcp 4He, where 3He impurities appear
to move with dislocations, damping their motion and pro-
ducing the strong frequency dependence seen in the shear
modulus and dissipation of Fig. 32(b). However, the shear
modulus in hcp 4He single crystals is also frequency inde-
pendent at high frequencies, when dislocation speeds exceed
about 45 μm=s (Haziot, Fefferman, Souris et al., 2013) and
the 3He impurities cannot move fast enough to follow the
dislocations. The essentially static nature of impurity pinning
in hcp 3He at frequencies as low as 22 Hz is consistent with the
lower mobility of impurities in hcp 3He, where disorder in the
3He spins prevents impurities from propagating ballistically.
At sufficiently low frequencies and strains, diffusive motion of
4He impurities should allow them to move with the disloca-
tions in solid 3He, like the dragging of the Cottrell atmosphere

(a)

(b)

FIG. 30. Debye relaxation fits of (a) the normalized shear
modulus and (b) the dissipation at 200 Hz in the 3.3 MPa 4He
sample of Fig. 29. The dashed blue line is the fit for a single
activation energy EB ¼ 0.73 K. The solid red line is a fit using a
distribution of activation energies.

FIG. 31. Shear modulus (left panels) and dissipation (right
panels) for a hcp 4He polycrystal at 3.9 MPa, measured at
1000 Hz and stresses between 0.2 and 7.3 Pa. (a) Values
calculated using an impurity binding energy distribution as
described in the text. (b) Measured values. Curves are ordered
top to bottom as in the corresponding legends for each panel.
From Kang, Yoon, and Kim, 2015.

(a)

(b)

(c)

(d)

FIG. 32. Frequency dependence of the normalized shear modu-
lus μ=μ0 and dissipation 1=Q in helium polycrystals. (a),(b) hcp
3He at 11.9 MPa. The magnitude of the dissipation in hcp 3He
decreases monotonically as the frequency increases from 22 Hz
(upper orange curve) to 5402 Hz (lowest dashed black curve). (c),
(d) hcp 4He at 3.8 MPa. The shear modulus crossover and the
corresponding dissipation peak in hcp 4He shifts to higher
temperatures as the frequency increases from 20 to 2000 Hz.
From Cheng and Beamish, 2017.
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of impurities around dislocations in classical crystals
(Takeuchi and Argon, 1979). The expected frequency depend-
ence would occur in a regime below that shown in Fig. 32(a).
The dissipation in hcp 3He shown in Fig. 32(b) was also

quite different from that in hcp 4He. As expected for static
pinning, the thermally activated dissipation peak associated
with impurity unpinning in hcp 4He is absent in hcp 3He, or at
least greatly reduced. Instead, the dissipation in 3He extended
over a broad temperature region. When the frequency was
lowered, the magnitude of the dissipation increased rapidly
and its broad maximum shifted to higher temperatures, the
opposite direction to that of thermally activated relaxation
peaks like those in hcp 4He. This behavior suggests that the
dissipation in hcp 3He is not due to a damping force propor-
tional to the dislocation speed, as in the Granato-Lücke
equation (5). Instead, Cheng and Beamish (2017) proposed
that the dissipation may be due to a velocity-independent,
frictionlike energy loss associated with rearrangements of spin
configurations when a dislocation moves through 3He. How-
ever, initial measurements on bcc 3He polycrystals (Cheng,
Souris, and Beamish, 2016) show frequency-dependent shear
modulus changes and dissipation peaks that resemble those in
hcp 4He. This suggests that 4He impurities are much more
mobile in the bcc phase, despite the much larger spin
exchange energies in bcc 3He (Ceperley and Jacucci, 1987).
However, dislocation structures and mobilities in bcc struc-
tures are significantly different than those of hcp crystals, e.g.,
they are usually not split into partials and often have
significant Peierls barriers to gliding. The narrow temperature
range for the bcc phase of 4He means that there is no way to
directly compare the low temperature behavior of dislocations
in bcc 3He to that in bcc 4He.
Although many features of dislocation motion in helium are

clear from these experiments on polycrystals, more detailed
and quantitative information can be obtained from similar
measurements on single crystals.

C. Dislocations and giant plasticity in single crystals

The low frequency experiments described in Sec. V.B
involved polycrystalline samples grown using the blocked
capillary technique. There was little control of sample quality
and the measured shear moduli were averages over different
crystallite orientations. Although dislocation behavior has
been studied in ultrasonic and elastic experiments on single
crystals grown at constant pressure, the crystal quality varied
and their orientations were not known. Measurements on
oriented single crystals can provide information on individual
elastic constants. If the sample cell and refrigerator have
windows for optical access, crystal orientations can be
determined from the facets seen during growth, and there
can be more control of crystal growth and quality by melting
and regrowing from small seed crystals. Rojas et al. (2010)
used an acoustic resonance technique in such a cell to study
the elastic behavior of oriented single crystals of hcp 4He.
However, measurements were limited to the solid helium’s
acoustic resonance around 18 kHz and depended in a
complicated way on all the crystal’s elastic constants.

To measure the shear modulus of 4He single crystals, Haziot
et al. (2013a) used the transparent cell shown in Fig. 33. It was
made from a copper plate with an approximately hexagonal
hole in which the helium crystals were grown, closed by two
sapphire windows. The cell was attached to a dilution refrig-
erator whose base temperature was 15 mK, even with the
windows that provide the optical access for the external camera
used to record crystals’ growth shapes (Balibar, Alles, and
Parshin, 2005; Sasaki, Caupin, and Balibar, 2008; Haziot
et al., 2013a). The cell contains two parallel, transversely
polarized lead zirconate titanate (PZT) piezoelectric transduc-
ers, mounted with their piezoelectric shear axes vertical.
Oriented single crystals of 4He were grown in a 0.7 mm wide
vertical slit between the two transducers and their shear
modulus is measured using the same technique as described
in Sec. V.B. The sensitivity and the stability of this setup allow
measurements to be made for strains ϵ in the range 10−10 to
10−6 and for stresses as small as 10−9 bar. The transducerswere
carefully calibrated to give an absolute measurement of the
shear modulus in the crystallographic direction perpendicular
to the transducer polarization. Using a lock-in amplifier, both
the amplitude of the shear modulus and the dissipation can be
measured at frequencies between 1 Hz and 20 kHz.

1. Elastic constants and basal glide of dislocations

Figure 34 shows measurements by Haziot et al. (2013a) of
the shear modulus for a crystal oriented with its sixfold
symmetry axis (the c axis of the hcp structure) nearly vertical.
This particular crystal was grown using isotopically purified
4He with a 3He concentration of 0.4 ppb. Around 0.2 K,
dislocation motion reduces the elastic modulus by 43% from
its intrinsic value of 127 bar (calculated from the ultrasoni-
cally measured high temperature elastic constants in Table I).
The large shear modulus reductions like that seen around
0.2 K were referred to as “giant plasticity” but, despite their
dislocation origin, they had most of the features of elasticity.
The softening occurred at strains as small as ϵ ∼ 2 × 10−11

(corresponding to stress σ ∼ nbar) and the response was

FIG. 33. The experimental cell used to measure mechanical
properties of 4He crystals at ENS (Paris). Single crystals are
grown from the bottom up, inside the 0.7 mm slit between two
vertical transducers in the center of the cell. Crystal orientations
are obtained from photographs of facets when they begin growing
in the bottom part of the cell (see Fig. 35). From Haziot,
Fefferman, Beamish, and Balibar, 2013.
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essentially linear and reversible. This indicates that the Peierls
barrier for dislocation motion is extremely small, perhaps zero,
for the dislocations responsible for shear softening in hcp 4He.
The modulus increase below 0.1 K was due to 3He impurities
binding to dislocations and limiting their motion. Above 0.3 K,
dislocation motion was damped by collisions with thermal
phonons. These processes introduce frequency dependence
and dissipation into the crystal’s mechanical response, behav-
ior that is sometimes referred to as “anelasticity” (Nowick and
Berry, 1972). The macroscopic irreversibility and hysteresis
that are commonly associated with plasticity occur at much
larger strains where new dislocations are created.
This behavior can be compared to that of classical crystals,

where dislocations move only at high enough temperature and
under sufficiently large stress. This is because dislocation lines
can overcome the periodic lattice’s Peierls barriers only by
thermal activation of point defects (kinks or jogs) or at large
stresses that reduce the barrier height. Dislocation motion in
classical crystals induces only a small softening that is highly
dependent on temperature and stress amplitude, in contrast to
4He, where the softening is large and, in the absence of
impurities, independent of temperature below 0.3 K.
Figure 35 shows the measured shear modulus for a number

of crystals with different orientations. Crystal X15 was grown
from the same isotopically purified 4He (x3 ¼ 0.4 ppb) as the
crystal in Fig. 34, but the others were grown from commercial
4He gas with a 3He concentration of 25 ppb. In the isotopically
purified crystals, the remaining 0.4 ppb of 3He impurities was
not sufficient to completely pin the dislocations, even at the
lowest temperature of 15 mK. For the other crystals, there were
enough 3He impurities to immobilize all the dislocations and
recover the crystal’s intrinsic elastic modulus below 60 mK.
The intrinsic shear modulus depends strongly on the crystal
orientation since it is a function of all the elastic constants Cij,
but it could be calculated explicitly since the crystal’s

orientation with respect to the deformation direction was
known from the growth facets shown at the right of Fig. 35.
The colored ticks on the left vertical axis indicate these intrinsic
values, which agree with the low temperature values for the
crystals grown from commercial 4He gas, confirming that
25 ppb of 3He is sufficient to completely pin the dislocations.
Note that the crystal X3,whose c axis was tilted by 45° from the
vertical, had the intrinsic shear modulus value with no
measurable temperature dependence and was used by Haziot
et al. (2013a) to calibrate their transducers.
The elasticity tensor of hexagonal crystals like hcp 4He

contains five independent elastic coefficients. Among these,
the coefficient C66 is associated with deformations of
the hexagonal symmetry in these basal planes [shown in
Fig. 36(a)], while the coefficient C44 relates the shear stress
and strain associated with basal planes gliding past each other
[the deformations shown in Figs. 36(b) and 36(b′)]. For
crystals like X3 that are oriented at 45°, the measured shear
modulus is essentially independent of both C44 and C66, so the
temperature-independent modulus shown in Fig. 35 suggests
that one of these coefficients is responsible for the softening
seen in other crystals. By analyzing the shear modulus
changes for other crystal orientations, Haziot et al. (2013a)
showed that it is C44, not C66, that changes. The data for all the
single crystals was consistent with C44 softening by approx-
imately 60%, as shown in Fig. 37, and all other elastic
constants remaining constant. This behavior was attributed to

FIG. 34. In a temperature domain of around 0.2 K, this
isotopically pure crystal shows giant plasticity: its shear modulus
(measured at a frequency of 9 kHz) is highly reduced with respect
to its intrinsic value (127 bar, indicated by the red bar on the
vertical axis).

FIG. 35. Shear modulus for hcp 4He single crystals. The
photographs on the right show the orientations (from top to
bottom) of crystals X2, X3, X5, X6, X20, X15, and X21. The top
green curve that shows no softening is for crystal X3. Data from
crystal X20 lie directly below this (light blue line) and show a
small softening. The next curve below (purple line) is for a
polycrystalline sample and shows similar softening to crystal X20
and to crystal X5 immediately below it (red line). Crystal X2
(dark blue line) has the largest high temperature softening. Two
other crystals X6 (black) and X21 (green) have intermediate,
nearly identical softening. The final curve, for which softening
occurs at much lower temperature, is for crystal X15, which was
grown from 4He with a 3He concentration of 4 × 10−10. The other
crystals were all grown from natural 4He gas containing
2.5 × 10−8 of 3He impurities. From Haziot et al., 2013a.
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the fact that dislocations have preferential glide directions. A
reduction in C44 means that the dislocations responsible for
the softening must glide either parallel to the basal planes or
along the prismatic planes parallel to the c axis. In close-
packed hexagonal materials, dislocations usually glide most
easily in the basal plane (Hull and Bacon, 2011). Legrand
(1984) explained that this is due to the splitting of edge
dislocations into two partial dislocations because the stacking
fault energy is extremely small for the close-packed basal
planes. Such split dislocations are really “atomic ribbons”

rather than 1D lines, and they glide easily parallel to the ribbon
plane. This easy basal glide is observed in many hexagonal
metals (Be, Mg, Co, Zn), although in some others (Zr, Ti)
glide occurs along prismatic planes. Such conventional
crystals do show behavior associated with dislocation glide
at high temperatures, but dislocation effects are complicated
by many other phenomena. The elastic changes due to
dislocations are much clearer in 4He crystals. The softening
can be extremely large: Souris et al. (2015) observed
reductions in C44 of up to 90% in some cases.
Another unique feature of solid helium is the possibility of

removing all impurities from 4He crystals. Even isotopic
impurities (3He) can be removed using a method reminiscent
of the classical “zone melting” used to purify metals and
semiconductors. It is based on the fact that impurities are
usually more soluble in the liquid than in the solid, where the
strain field around each impurity adds elastic energy. In the
case of 4He, the difference in potential energy between the
liquid and the solid has been calculated as −1.359 K per 3He
atom (Edwards and Balibar, 1989; Pantalei et al., 2010), so in
equilibrium all the 3He impurities are trapped in the liquid
phase if the temperature is low enough. During cooling, gently
shaking the dislocations by applying an oscillating stress helps
prevent 3He impurities from binding to dislocations so that
they are free to diffuse out of the solid. Figure 38 shows that
when impurities were initially bound to dislocations at low
temperature (crystals X2, X5, and X6), applying an oscillating
strain larger than a few microbars detached the impurities,
allowing dislocations to move and reducing the shear modu-
lus. This stress threshold is larger when increasing the stress
than when decreasing it, leading to hysteresis when the stress
amplitude was cycled. For crystal X4, where the impurities
were detached before cooling, the shear modulus was reduced
by 80% from its intrinsic value and stayed at this low value
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FIG. 36. Stresses and strains for shear deformations in hexago-
nal crystals. (a) Deformation of the hexagons in the basal planes,
with stress σ given by the corresponding elastic constant C66. (b),
(b0) Cases that occur when the hexagonal basal planes slide past
each other, with stress given by the elastic constant C44. From
Balibar et al., 2016.

FIG. 37. Variation of C44 for four of the single crystals whose
shear modulus is shown in Fig. 35, calculated from the data using
the known crystal orientations and assuming that all other elastic
constants remain constant.
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when the applied stress was cycled. Figure 39 shows the linear
stress versus strain curve for this impurity-free crystal, with a
slope corresponding to the reduced shear modulus with high
mobility dislocations. This contrasts with the nonlinear plastic
behavior of classical crystals, which retain their intrinsic
defect-free elasticity at low stresses and have a reduced
modulus when the stress exceeds the Peierls stress for
dislocation motion.
The low temperature softening of crystal X4 in Figs. 38

and 39 shows that, in the absence of 3He impurity pinning,
dislocations glide freely in the basal plane down to the lowest
applied shear strains (∼3 × 10−11). This corresponds to an
extraordinarily small Peierls stress (the minimum shear stress
for dislocation glide at zero temperature) of less than
∼0.3 mPa (3 nbar). Small yield stresses are often observed
in hcp and fcc metals, where they are due to dissociated
dislocations gliding in close-packed directions (Suzuki,
Takeuchi, and Yoshinaga, 2013). However, only upper limits
could be placed on the Peierls stresses in those materials
since impurity pinning immobilized the dislocations at low
temperatures. The smallest observed yield stress (in copper
crystals) was 0.28 MPa, corresponding to σP=μ < 7 × 10−6

(Kamimura, Edagawa, and Takeuchi, 2013), although some
dislocation motion, often referred to as “preyield micro-
plasticity,” was seen at slightly lower stresses (Suzuki,
Takeuchi, and Yoshinaga, 2013). For the high purity hcp
4He crystal X4, the measurements put an upper limit on the
Peierls stress that is 9 orders of magnitude smaller than the
experimental limits for metals. Part of the difference is due to
helium’s smaller elastic constants, but even when the Peierls
stress is scaled by the shear modulus, σP=μ is still less than
2 × 10−11 for hcp 4He, more than 5 orders of magnitude
smaller than the corresponding upper limit for metals.
PIMC simulations (Borda, Cai, and Koning, 2016) confirm

that the dislocations that glide in the basal plane of hcp 4He
split into partials with rather large core widths (about four

lattice spacings for the edge dislocation partials). They found
that both the edge and screw dislocations glide easily but the
simulations involved much larger effective stresses than those
shown in Figs. 38 and 39 and thus could not confirm the
extraordinarily small Peierls stresses extracted from shear
modulus experiments. The measured Peierls stress limit of
0.3 mPa corresponds to an energy barrier (Peierls energy per
unit length) EP ¼ ðb2=2πÞσP ≈ 5 × 10−24 J=m (Hull and
Bacon, 2011). This suggests that a 100 μm long dislocation
segment would be thermally excited over the Peierls barrier
even at microkelvin temperatures. Of course, glide is expected
to occur via motion of geometric or thermally excited kinks
along the dislocation, not by moving an entire dislocation over
the Peierls barrier. The observed mobility of dislocations at
low stresses presumably corresponds to the much smaller
Peierls barrier for kink motion. Since the experimental values
of the Peierls stress in solid helium are only upper limits, it is
possible that quantum effects completely delocalize kinks and
dislocations, i.e., reduce the Peierls barrier to zero.

2. Phonon damping, dislocation lengths, and impurity motion

To better understand the dislocation motion, Haziot et al.
(2013a), Haziot, Fefferman, Souris et al. (2013), Fefferman
et al. (2014), and Souris et al. (2015) measured the dissipation
1=Q of hcp 4He crystals as functions of temperature, fre-
quency, and strain amplitude. The shear modulus increase
seen in Fig. 34 at temperatures above 0.3 K was attributed to
the damping of dislocations due to scattering of thermal
phonons, which introduces a dislocation relaxation time τ ¼
BL2=π2C in the expressions for both the modulus and the
dissipation [Eqs. (15) and (16)]. The dominant fluttering
mechanism for phonon scattering gives a damping force
B ¼ gT3, so for the elastic constant C44 the low frequency
shear modulus expression of Eq. (13) is

δC44

C0
44

¼ αΛL2

1þ αΛL2
; ð17Þ

and the corresponding dissipation of Eq. (14) becomes

1

Q
¼ αΛL2

1þ αΛL2
gL2ωT3. ð18Þ

As usual, Λ is the density of dislocation lines per unit volume
and L is a typical length between nodes in the dislocation
network, while α ¼ 0.019 and g ¼ 905 sm−2 K−3 are the
calculated values for hcp 4He at low densities (Souris
et al., 2014).
Figure 40 shows the measured dissipation in a hcp 4He

crystal at temperatures above 0.3 K and frequencies of 1.5, 3,
and 9 kHz (Haziot, Fefferman, Beamish, and Balibar, 2013).
The measurements were made at relatively large strains
(ϵ ¼ 10−7) to suppress the effects of 3He impurity pinning.
The initial slopes agreed remarkably well with the predicted
ωT3 behavior, clear confirmation of the phonon scattering
mechanism for dislocation damping in helium. Deviations
from linear behavior, like those above ωT3 ≳ 104 K4 rad=s,
reflect the breakdown of the low frequency approximation

FIG. 39. Stress-strain diagram for crystal X4 (the same data as
in Fig. 38), showing reversible linear behavior with a slope
corresponding to a shear modulus reduced by 80%. The black
line illustrates the nonlinear elastic or plastic behavior expected
for classical crystals. From Haziot et al., 2013b.
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ωτ ≪ 1. Fefferman et al. (2014) were able to fit the entire
dissipation and shear modulus curves by using the full
expressions [Eqs. (15) and (16)] and integrating over a
distribution of dislocation lengths L. However, even when
we assume a single dislocation length L, the initial linear
region gives important information about the dislocation
network. Because the modulus softening and the dissipation
have different dependences on the dislocation length (L2 and
L4, respectively) and the phonon damping is known, the
dislocation network’s density Λ and length L can be deter-
mined separately, something not possible from low frequency
modulus measurements alone. Haziot, Fefferman, Beamish,
and Balibar (2013), Haziot, Fefferman, Souris et al. (2013),
Fefferman et al. (2014), and Souris et al. (2015) found
dislocation densities Λ between 104 and 106 per cm2, rather
small values that confirm the high quality of their single
crystals. Their dislocation lengths L were extremely large,
between 63 and 230 μm. These values are nearly macroscopic
and are much larger than expected for a simple three-
dimensional network of dislocations. For example, if dis-
locations form a regular cubic lattice, Λ and L are related by
the simple relation ΛL2 ¼ 3. For any three-dimensional lattice
of dislocations, the dislocation density Λ should be of the
order of 1=L2. The experiments of Haziot, Fefferman, Souris
et al. (2013) showed that this is not the case. In their 2013
experiment the product ΛL2 ranged from 17 to 57. When
Souris et al. (2015) tried to grow even better quality crystals,
they found ΛL2 values up to 471.
These extremely large values of ΛL2 imply that the

dislocations do not form a simple 3D network. They must
avoid intersections by forming 2D arrays of parallel lines
called “sub-boundaries.” Friedel (1964) explained that the
formation of such sub-boundaries can produce a large

softening since the aligned dislocations in sub-boundaries
can glide in the basal planes in a cooperative way. For 3D
dislocation networks, on the other hand, the maximum soft-
ening is ∼10%, much smaller than the 90% changes seen by
Souris et al. (2015).
The shear softening in the direction parallel to the hcp

basal planes is analogous to that of a stack of sheets of
paper, which is easy to deform in directions where the
sheets slide past each other, but stiff in other directions in
which the individual sheets would have to deform. Of
course, in hcp crystals the entire atomic planes do not
slide, but instead the movement occurs near dislocations.
Furthermore, between paper sheets or in classical crystals,
there is friction so that the deformation in response to stress
is nonlinear but, as shown in Fig. 40, in the absence of
impurities the dissipation associated with the shear defor-
mation in 4He approaches zero at low temperature. One
possible explanation of this nonclassical behavior is that
quantum fluctuations make the kink energy vanish so that
dislocation lines can move freely despite the periodic lattice
potential. Another possibility is that kinks have a nonzero
energy but the grown-in “geometric kinks” move along
dislocations by quantum tunneling through an extremely
small Peierls barriers. It would be hard to distinguish
experimentally between the two possibilities.
We discussed the dissipation above 0.3 K, where it is a

consequence of dislocations’ interactions with thermal phonons.
Below 0.2 K, a different dissipation mechanism becomes
important when 3He impurities are present. These progressively
bind to dislocations as the temperature decreases. In single
crystals, there is a clear dissipation associatedwith 3He, as shown
in Fig. 41 (Haziot, Fefferman, Souris et al., 2013). When
impurities start binding, the dislocation motion decreases,
stiffening the crystal, and the dissipation increases. It reaches
a peak at a temperature Tp near the midpoint of the modulus
stiffening, and it vanishes at lower temperatures where the
dislocations are fully immobilized.
Knowing the density and typical length of dislocations in

their crystals, Haziot, Fefferman, Souris et al. (2013) could
determine the dislocations’ displacements and maximum
speeds at their midpoints for a given strain amplitude and
frequency. The semilog plot of Fig. 42 shows the maximum
speeds versus the inverse of the dissipation peak temperatures
Tp. There are two different regimes. At high speeds, the peak
temperature is independent of speed, behavior that is also seen
at high frequencies in the shear modulus data of Fig. 41. This
is the expected behavior if impurities act as static pinning
points: they cannot move fast enough to follow the disloca-
tions’ motion, so they anchor the dislocations, giving a
frequency-independent shear modulus softening and a
reduced dissipation peak. However, at low speeds below
45 μm=s, the constant slope on this Arrhenius plot reflects
a thermally activated regime in which the dislocation motion
decreases exponentially as impurities bind at low temper-
atures. This means that 3He atoms are dragged along with
dislocations but the motion of the dislocations dressed with
impurities is damped. Assuming that this damping force is
proportional to the density of bound 3He, the slopes of the
semilog plots of Fig. 42 give the binding energy EB of 3He

FIG. 40. Dissipation 1=Q in hcp 4He, at a strain ϵ ¼ 10−7 vs
ωT3. The frequency-independent linear region for small ωT3 is
the expected behavior for dislocation damping by scattering of
thermal phonons via the fluttering mechanism; the dashed black
line is a linear fit to the small ωT3 data. The 9 kHz data (green
line) extend over the full range of the graph; the 3 kHz (blue line)
and 1.5 kHz (red line) data extend to about 2 × 104 and
0.9 × 104 K3 rad=s, respectively.
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impurities to the dislocation lines, EB ¼ 0.67 K for this
crystal. The same binding energy was found in subsequent
measurements by Fefferman et al. (2014). In a more detailed
study, Souris et al. (2014) confirmed that the dissipation was
proportional to the 3He concentration by comparing the
behavior of crystals grown from 4He gas with three different
impurity concentrations, with x3 equal to 2.5 × 10−8,
3.8 × 10−7, and 2.32 × 10−6, respectively. Figure 43 shows
the relaxation times determined at the dissipation peak
temperatures, where ωτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αΛL2

p
(Fefferman et al.,

2014). The 3He binding energies from the slopes for different
crystals vary from 0.6 to 0.71 K, which is consistent with
previous values. The ∼0.1 K scatter in the slopes that can be
seen in Fig. 43 is within the width of the binding energy
distribution found in experiments on polycrystalline 4He
(Syshchenko, Day, and Beamish, 2010; Mukharsky and
Penzev, 2012).
Fefferman et al. (2014) determined the distribution of

network lengths in a single crystal by measuring the strain
dependence of the shear modulus at low temperature.

By applying a large oscillating strain (ϵ ¼ 10−6) while cooling
from 0.5 K, they prevented the 3He impurities from binding to
dislocations. When the strain amplitude was then reduced at
25 mK, 3He impurities began to bind, increasing the shear
modulus as shown in Fig. 44. If there were a single network
pinning length, there would be a precise value of the applied
strain at which all dislocations would get pinned and the
shear modulus would suddenly increase to the intrinsic
value. However, short dislocations move less than long ones
and their breakaway stress is larger, so 3He impurities
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progressively bind to and pin dislocations as the driving strain
is reduced, beginning with the shortest ones. The smooth
transition from soft to stiff that one sees in Fig. 44 is evidence
that there is a distribution of lengths. From the shape of the
transition Fefferman et al. (2014) found a broad distribution of
network lengths, extending at least from 20 to 300 μm in this
crystal. However, since a dislocation’s contribution to the
shear modulus is proportional to L2, elastic measurements are
not sensitive to shorter dislocations and there may be
significant numbers of dislocations shorter than 20 μm.
When Fefferman et al. (2014) tried to fit low amplitude

modulus and dissipation datasets like those shown in Fig. 41,
using their measured distribution of network lengths they
found that they also had to include a distribution of 3He
binding energies. To achieve good fits, they needed a width of
the order of 0.1 K around the average value (about 0.7 K),
which is consistent with the distribution of binding energies
from Fig. 43 (Souris et al., 2014). A distribution of binding
energies is expected because dislocations rarely have purely
edge or purely screw character. Depending on their orientation
in the lattice, they can have a mixed character and the binding
energy can vary between the value for an edge dislocation and
that for a screw dislocation, which is expected to be smaller.

VI. PLASTIC DEFORMATION AND FLOW

The previously described shear modulus behavior occurs at
extremely small stresses and strains, where conventional
solids normally deform elastically, but it involves the motion
of dislocations, which are normally associated with plastic
deformation. Although the large modulus changes were
described as giant plasticity, the dislocation strain is propor-
tional to the applied stress and returns to zero when the stress
is removed. Such linear reversible behavior is more typical of
elastic deformations. However, dislocation damping and
pinning affects the dislocations’ mobility and introduces
dissipation and frequency dependence in the response.
Such behavior is sometimes referred to as “anelastic,”

reserving the term “plastic deformation” for much larger
deformations above the solid’s yield point, where the crystal
does not return to its original configuration when the stress is
removed. This irreversible behavior involves the creation,
multiplication, and interaction of dislocations, not just the
dislocation glide used to describe the shear modulus softening
(giant plasticity) in solid helium. Zhou et al. (2013) included
these features in a model for solid helium to describe its plastic
deformation in this regime. There can also be an intermediate
region below the macroscopic yield point, often referred to as
“microplasticity” (Maass and Derlet, 2018), in which the
existing dislocations move but not reversibly because they
intersect with nearby dislocations and create jogs or other
pinning points, without creation of significant numbers of new
dislocations. In this section, we describe experiments on
plastic deformation and flow of solid helium at large strains.
Dislocation glide and plastic deformation are responses to

shear stresses. Purely hydrostatic pressure changes do not
produce shear strains and therefore do not result in plastic
deformation. The measurements on single crystals described
in Sec. V.C involved uniform simple shear, but shear defor-
mations are also generated by pressure gradients, by tensile
strains in Young’s modulus measurements, and by uniaxial
compression in longitudinal sound waves. For solid helium
confined at constant density in a rigid cell, thermal expansion
increases the pressure when a sample is heated, but if the
thermal expansion is isotropic, as in cubic crystals, the
pressure change is hydrostatic and no plastic deformation is
expected. In hexagonal crystals, the thermal expansion coef-
ficients parallel and perpendicular to the c axis are different, so
warming or cooling a confined hcp helium crystal produces
shear stresses that can plastically deform it. These stresses are
small in hcp 4He since its c=a ratio is nearly independent of
pressure, i.e., its thermal expansion is nearly isotropic (Franck
and Wanner, 1970). However, in imperfect crystals there are
microscopic regions of shear stress around defects and, even
in cubic crystals, temperature changes can create prismatic
dislocation loops if thermal vacancies precipitate into platelets
(Hull and Bacon, 2011).
The first attempt to observe macroscopic plastic flow in

solid helium involved growing a hcp 4He crystal around a
magnetically levitated metal sphere (Andreev et al., 1969),
which was then subjected to a magnetic force of up to 250
times its weight. The ball’s position was measured using an
optical technique with a resolution of 20 μm. At 0.5 K no
displacement was seen, putting an upper limit of 2 nm=s on
the ball’s velocity. Subsequent measurements using larger
forces and more sensitive displacement measurements suc-
ceeded in detecting the plastic deformation of solid helium.
Beginning in the 1970s, several groups applied metallurgists’
standard techniques (stress-strain curves, hysteresis loops,
yield stresses, and rate-dependent creep) to the study of the
plastic deformation and flow of solid helium at higher
temperatures.

A. High temperature plastic flow and creep

Suzuki (1973, 1977) made the first systematic measure-
ments of plastic deformation of solid helium. A ball or
cylinder was embedded in the helium and an attached wire

FIG. 44. Shear modulus of a hcp 4He single crystal near 25 mK,
measured while decreasing the driving strain. The distribution of
dislocation lengths between nodes of the network is determined
by analysis of the transition between the unpinned soft state at
large strain and the stiff intrinsic state at low strain. From
Fefferman et al., 2014.
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was used to pull it through the helium while measuring the
displacement and applied force. Figure 45 shows typical
force-displacement curves for hcp 4He. The corresponding
shear stresses and strains can be roughly estimated from the
geometry of the cell. The force (stress) initially increases, with
a slope corresponding to elastic deformation of the helium,
then drops by as much as 40% above the helium’s yield point.
The solid then continues to deform at lower stress. The yield
stress and the magnitude of the yield drop are smaller at higher
temperatures and for smaller strain rates _ϵ. At a shear strain
rate _ϵ ∼ 2 × 10−3=s (corresponding to a displacement of the
cylinder at 0.005 mm=s) and a temperature of 1.5 K, yield
begins at a shear stress (strain) σ ∼ 13 kPa (ϵ ∼ 0.04).
Above its yield point, the helium continues to deform, at
roughly constant flow stress (σ ∼ 10 kPa at T ¼ 1.5 K for
_ϵ ∼ 2 × 10−3=s), with no indication of work hardening even
when the helium is deformed by 100%. This suggests that the
steady flow involves dislocations being created, piling up at
grain boundaries and walls and then being annihilated via
climb. Suzuki found that the creep rate at small stresses was
thermally activated, as expected since this process, known as
Weertman creep, is controlled by the vacancy diffusion
required for dislocation climb (Weertman, 1955; Poirier,
1985). For samples at 3.2 MPa (molar volume 20.5 cm3),
Suzuki found an activation energy of 19.5 K, which is
consistent with activation energies for vacancy diffusion in
hcp 4He measured with other techniques (Fraass, Granfors,
and Simmons, 1989). The pronounced yield drops were
attributed to high Peierls stresses for dislocations with
Burgers vectors not lying in the hcp basal plane. Plastic
deformation in complex geometries, or in polycrystalline
samples, requires slip in multiple directions and is controlled
by the slip system with the largest Peierls stress.
The same technique was used to study plastic deforma-

tion in bcc 3He (Sakai, Nishioka, and Suzuki, 1979). Flow
stresses were smaller in low density crystals, e.g., σ ∼ 1 kPa
at T ¼ 0.6 K for _ϵ ∼ 2 × 10−3 in crystals at pressures
around 3.5 MPa. This is consistent with the smaller
vacancy activation energies in bcc 3He. In addition, plastic
flow around an embedded object should be easier for bcc
crystals since dislocations can move in multiple slip planes, in

contrast to hcp crystals, where slip is confined to the
basal plane.
Sanders et al. (1977) used a somewhat different technique

in which a piston driven by a pressurized bellows was used to
compress and deform single crystals of solid 4He. A thin
surface layer could be melted, largely eliminating the need for
multiple slip systems since such unconstrained crystals were
free to shear at the cell walls. Figure 46 shows stress-strain
curves for a hcp 4He crystal at a compressional strain rate
_ϵ ¼ 10−4=s. For the unconstrained crystal (solid circles), the
flow stress was too small to measure, less than 5 kPa. For the
constrained crystal (open circles), flow occurred at a uniaxial
stress of about 60 kPa. In contrast to the measurements of
Suzuki (1973, 1977), these experiments showed no evidence
of a yield drop. After the deformation ended, the stress relaxed
(open triangles) but a residual stress of about 20 kPa remained
for at least 20 min. Given the complicated deformation
geometry, which involved compression of the solid as well
as complex flow around the piston, it is difficult to convert
these uniaxial stresses to the corresponding shear stresses
relevant for plastic deformation. The experimental cell
included ultrasonic transducers, which allowed Sanders et al.
(1977) to monitor the density of dislocations via their
contribution to the sound attenuation. In both the constrained
and unconstrained crystals, the attenuation increased rapidly
when deformation began, indicating that plastic deformation
was accompanied by the expected dislocation multiplication.
Experiments on bcc 4He crystals (Sanders et al., 1978)

showed somewhat different behavior. The deformation of
constrained samples was similar to that for hcp 4He, although
the flow stresses were several times smaller. For unconstrained
samples the flow stress was again too small to measure.
However, there was essentially no increase in ultrasonic
attenuation associated with deformation of bcc crystals.
This suggests either that bcc crystals deform via mechanisms
that do not involve dislocation multiplication or that any
dislocations created do not contribute to ultrasonic attenu-
ation. The difference between hcp and bcc crystals was

FIG. 45. Stress-strain (force-displacement) curves for hcp 4He at
a pressure of 3.2 MPa. Left panel: temperature dependence at a
shear strain rate _ϵ ∼ 2 × 10−3=s. Right panel: strain rate depend-
ence at a temperature of 1.52 K. From Suzuki, 1977.

FIG. 46. Stress-strain curves for constrained (open circles) and
unconstrained (solid circles) crystals of hcp 4He at a pressure of
3.2 MPa and a temperature of 1.8 K. Open triangles show the
stress relaxation when the strain is held constant. From Sanders
et al., 1977.
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confirmed in measurements on bcc 3He (Manning, Moelter,
and Elbaum, 1986), which also deformed easily, without
significant sound attenuation changes in most of the crystal.
Plastic deformation has also been studied by electromag-

netically pulling a 80 μm diameter superconducting wire
through bcc 4He (Berent and Polturak, 1998). For stresses
below about 0.6 kPa, the wire’s velocity was linear in applied
stress and its temperature dependence was consistent with the
activation energy of thermal vacancies. This suggests that the
flow was due to vacancy diffusion (Nabarro-Herring creep).
For larger forces, the velocity depended nonlinearly on stress
and appeared to involve dislocation motion controlled by
thermally activated climb. This technique has been extended
to temperatures as low as 10 mK, but the stresses were not
large enough to generate motion below 1 K (Ahlstrom et al.,
2014). In hcp 4He above 1 K, the 55 μm diameter wire moved
in a series of apparently random jumps. These involved large
displacements (∼0.1 mm) at speeds up to ∼1 mm=s. In the
bcc phase at high temperature, the wire moved much more
slowly (∼ nm=s), but smoothly, as in the earlier experiments
of Sanders et al. (1978).
The previously described plastic deformation measure-

ments were made near samples’melting points, where thermal
processes control plastic deformation. Recent experiments
(Cheng and Beamish, 2018b) have extended the piezoelectric
techniques developed for low frequency shear modulus
measurements to much larger strains. The large strains
required for plastic deformation were achieved by using a
stack of 18 transducers and increasing the drive voltage from
millivolts to hundreds of volts. Uniform shear strains of up to
0.4% could be produced, at constant strain rates generated by
applying a linear voltage ramp to the transducer stack. The
shear stress in the helium was measured in situ with a
piezoelectric transducer, giving a sensitivity orders of magni-
tude higher than was possible with the mechanical systems
used in earlier plastic deformation experiments. The uniform
shear strains in this simple geometry allowed stress-strain
curves to be quantitatively interpreted and the method could
be used at much lower temperatures, so plastic deformation of
solid helium could be studied in the nonthermal regime.
Figure 47 shows measured stress-strain loops for poly-

crystalline hcp 4He at 3.4 MPa, at temperatures of 25 (solid
lines) and 900 mK (dashed lines). Starting at zero deforma-
tion, the strain was ramped at a constant rate _ϵ ¼ 8 × 10−6 s−1

to a maximum value ϵ ¼ 0.065%. It was then ramped in the
opposite direction at the same rate, to ϵ ¼ −0.065%, and
finally back to zero. At 25 mK (solid lines), the stress-strain
response was essentially linear and reversible and the stress
returned to zero, the behavior of an elastic solid. At 900 mK
(dashed lines), the stress deviated from the elastic value for
strains larger than 0.01% and followed a different path when
the strain was ramped down. The resulting stress-strain loop
did not close at its starting point, the irreversible and hysteretic
behavior that characterizes plastic flow.
Figure 48 gives an overview of high temperature plastic

flow (creep) in a polycrystalline hcp 4He sample. Figure 48(a)
shows the helium’s differential shear modulus μdiff ¼ dσ=dϵ
at temperatures of 0.5 and 0.9 K. Integrating μdiff gives the
corresponding stress σ shown in Fig. 48(b). Figures 48(c) and

48(d) show the corresponding behavior at 1.2 K. For small
strains, the stress is proportional to the strain, so μdiff is
constant. At 0.5 K, the elastic regime extends to ϵ ≈ 0.08%,
where the helium begins to deform plastically. At 0.9 K,
plastic flow begins at smaller strains of around 0.02%, and the
flow stresses are much smaller. The flow stresses increase with
strain ϵ and with strain rate _ϵ. At 1.2 K, the flow stresses are
essentially constant and are much smaller, less than 0.4 kPa at
the lowest strain rate _ϵ ¼ 8 × 10−6 s−1. Extrapolating to the
sample’s melting point, 1.55 K, gives flow stresses of less than
100 Pa. This is about 4 orders of magnitude smaller than the
yield stress of an extremely ductile metal like indium near its
melting point. It is also much smaller than the flow stresses in
earlier measurements on hcp 4He at similar temperatures, such
as those shown in Figs. 45 and 46 (Sanders et al., 1977;
Suzuki, 1977). The differences may be due to the larger strain
rates used in those experiments, their crystals’ higher pres-
sures (3.2 versus 2.64 MPa), and their complex flow geom-
etries requiring multiple slip systems.
The variation of flow stress with strain rate depends on the

creep mechanism but is often described by a power law
_ϵ ∝ σn. Vacancy diffusion gives a creep rate proportional to
the pressure gradient and resulting stress _ϵ ∝ σ, i.e., n ¼ 1, but
the creep rates in Fig. 48(d) depend much more strongly on
stress, with n ≈ 3.4, as shown in the inset. Previous measure-
ments gave similar exponents, with n ranging from 3 to 5 in
hcp 4He (Tsymbalenko, 1976; Suzuki, 1977), ∼3.5 in bcc 4He
(Berent and Polturak, 1998), and ∼4 in bcc 3He (Sakai,
Nishioka, and Suzuki, 1979; Manning, Moelter, and Elbaum,
1986). Exponents between 3 and 4 are characteristic of
dislocation mechanisms like Weertman creep (Weertman,
1955; Poirier, 1985), where creep rates are controlled by
depinning of dislocations via vacancy diffusion and climb.

B. Low temperature slip and dislocation avalanches

The previously described plasticity involved measurements
above about half the samples’ melting temperatures. Plastic
deformation is quite different at low temperatures where
thermally activated processes freeze out. This regime is

FIG. 47. Stress-strain loops for polycrystalline hcp 4He at
3.4 MPa and temperatures of 25 (solid lines) and 900 mK
(dashed lines). The corresponding solid and dashed arrows show
the directions of increasing or decreasing strain, starting and
ending at zero strain. From Cheng and Beamish, 2018b.
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particularly interesting in a quantum solid like helium where
zero point motion dominates, tunneling allows defects like
vacancies and impurities to propagate ballistically, and dis-
locations can move freely. To study nonthermally activated
deformation mechanisms, much lower temperatures were
required. Although there were a few early experiments below
0.5 K (Levchenko and Mezhov-Deglin, 1982, 1984), their
plastic deformation measurements were indirect. Crystals of
hcp 4He were grown in a 1 mm diameter capillary and
deformed by bending the capillary at temperatures as low
as 0.45 K. This reduced the crystals’ thermal conductivity, an
effect that was attributed to the scattering of thermal phonons
from dislocations created during deformation.
The stress-strain measurements of Fig. 48 were extended to

temperatures below 400 mK, where thermal creep is negli-
gible. Figure 49 shows μdiff (upper panel) and σ (lower
panel) for the same sample at 16 mK, for a strain rate
_ϵ ¼ 3.8 × 10−5 s−1. The linear elastic region extended to
ϵ ≈ 0.3%, much higher than the 0.08% strain at which plastic
deformation began at 0.5 K. At higher strains, plastic
deformation involved abrupt stress drops of as much as 5%.
The time over which the stress dropped appeared to be

about 2.5 s, but this is essentially the response time of the
current amplifier, so faster amplifiers and data acquistion were
used to resolve the slip events. A typical strain ramp is shown
in Fig. 50(a), with the corresponding stress current i (propor-
tional to μdiff ) shown in Fig. 50(b). A typical slip event, which
was much faster than the stress drops in Fig. 49, is shown on
expanded timescales in Figs. 49(c) and 49(d). The event
consisted of a negative current pulse, followed by a 10 kHz
oscillation that decayed over about 40 ms. The oscillation was
an acoustic resonance (Day and Beamish, 2012) of the solid
helium filling the cell, triggered by the sudden stress release in
the helium. The actual slip corresponded to the initial negative
current, with a duration of about 25 μs.
Similar behavior has been seen in metals, where the slip

events were identified as dislocation avalanches that begin
when dislocations break away from pinning sites, then move
and multiply. A dislocation’s motion is driven by the force bσ

(a)

(b)

(c)

(d)

FIG. 48. Plastic creep in a 2.64 MPa hcp 4He sample. (a)
Differential shear modulus and (b) corresponding stress measured
for different strain rates, at temperatures of 0.5 and 0.9 K. (c),
(d) Corresponding data at 1.2 K. The strain rates are given in the
inset of (b). In each panel, the lowest (blue) curve corresponds to
the lowest strain rate 8.37 × 10−6 s−1, and the higher curves
correspond to successively larger strain rates. The inset in (d)
shows the relationship between shear stress σ and strain rate _ϵ.
From Cheng and Beamish, 2018b.

FIG. 49. Differential shear modulus and stress in hcp 4He at
16 mK. Insets: large slip event at ϵ ¼ 0.32% on expanded scales.
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proportional to the shear stress and is opposed by the damping
force B proportional to its speed. This limits the dislocation’s
speed to vf ¼ bσ=B. In metals, the damping is due to
electrons and limits vf to ∼10 m=s for megapascal applied
stresses (Gorman, Wood, and Vreeland, 1969; Schaarwachter
and Ebener, 1990). Even at the extremely high strain rates in
shock experiments, typical dislocation speeds are much less
than the sound speed (Richeton, Weiss, and Louchet, 2005);
Lebyodkin et al., 2009; Shashkov, Lebyodkin, and Lebedkina,
2012). In contrast, dislocations in helium move freely at low
temperatures since the only damping is due to thermal
phonons, with B ≈ 1.5 × 10−8T3 Pa s (Haziot, Fefferman,
Beamish, and Balibar, 2013). For a shear stress of 15 kPa,
this limits dislocation speeds in 4He to about 30 m=s near the
melting temperature (Tm ¼ 1.55 K). At 16 mK, however, the
phonon damping force is negligible, even for dislocations
moving at the speed of sound (vt ≈ 200 m=s). Even though
solid helium has sound speeds an order of magnitude slower
than typical metals, its dislocations can move and avalanches
can propagate much faster, at close to the speed of sound.
Dislocation avalanches are usually detected from the sound

waves generated by the sudden slip. In the helium deformation
experiments, this acoustic emission could be captured with a
digital oscilloscope, even for events much faster than that
shown in Fig. 50(d). A typical example is shown in Fig. 51(a).
The entire event occurs in less than a microsecond and
generates a sound pulse with the spectrum shown in
Fig. 51(b), centered around 20 MHz. Since elastic deforma-
tions (including dislocations) cannot move faster than the
speed of sound, the acoustic emission frequencies provide an
upper limit on the size of the slip events. This is less than 5 μm
for the event in Fig. 51, much smaller than the dimensions of
the solid helium sample (which was grown in a 170 μm gap
between the transducers). Dislocation avalanches can occur
inside the helium, away from the walls. The event in Fig. 49 is
much larger, involving at least 5% of the gap area, so it must
have a dimension of several millimeters. The size of the slip

regions in these low temperature deformation experiments
spans many orders of magnitude.

C. Pressure gradients, yield stress, and annealing

In many applications the use of materials is determined by
their yield stress σc, the threshold at which plastic deformation
begins. In solid helium, the yield stress limits the pressure
differences that can be maintained within solid helium, for
example, during freezing of helium using the blocked capil-
lary method. Although helium’s yield stress is small, in some
geometries the pressure differences can be large. For example,
a pressure difference ΔP between the ends of a cylindrical cell
(of length L and radius R) generates a net force πR2ΔP on the
helium, which must be balanced by the force exerted by the
sidewalls 2πRLσw. If the shear stress at the wall σw exceeds
the yield stress, the helium deforms plastically and flows, as in
the extrusion process used to make wires. The pressure at
which this begins ΔPmax ¼ 2σcL=R depends on the aspect
ratio L=R of the cylinder. For solid helium with a low
temperature yield strength σc ≈ 15 kPa, a cylinder with an
L=R ratio of 250 (e.g., a 3 mm long channel with a diameter of
25 μm, or a 5 cm long capillary with inner diameter 0.4 mm)
could sustain pressure differences up to 7.5MPa (75 bar) before
slipping. This is the basis of the standard blocked capillary
technique for freezing helium. Note that large pressure
differences can occur not just in blocked capillaries but in
any cell with a large aspect ratio (Suhel and Beamish, 2011).
Examples include long cylinders (Ray andHallock, 2008), thin
disks (Tsymbalenko, 1977; Rittner and Reppy, 2009;
Degtyarev et al., 2010), and narrow annular gaps (Rittner
and Reppy, 2007).
At high temperatures, or in open cells with L=R ∼ 1,

pressure differences are much smaller but may still be signifi-
cant. For example, Suhel and Beamish (2011) used rapid
thermal quenching to generate pressure gradients in a cylin-
drical cell with length 30 mm and radius 15 mm (L=R ¼ 4). A
short current pulse was applied to a heater embedded near one
end of a solid 4He sample at 50 mK, partially melting it. The
helium refroze and cooled rapidly, reaching temperatures
below 400 mK in as little as 20 s. This produced pressure
differences as large as 35 kPa between in situ gauges at opposite

FIG. 50. Dislocation avalanches and acoustic ringing in hcp 4He
at 16 mK. (a) Strain. (b) Measured current (proportional to stress).
(c) Acoustic ringing over 20 ms following a typical slip event.
(d) First 3 ms of the slip event showing the initial negative stress
change.

(a) (c)

(b)

FIG. 51. Acoustic emission from a localized slip event in hcp
4He at 16 mK. (a) Acoustic signal. (b) Frequency spectrum of
acoustic signal. (c) Schematic showing the localized event in the
gap containing solid helium and the acoustic emission that is
detected by the piezoelectric transducer.
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ends of the cell. This corresponds to σc ≈ 4.4 kPa, smaller than
the 15 kPa yield stress from Fig. 49, which suggests that some
of the initial pressure gradients relaxed at the higher temper-
atures during the initial thermal quench. Similar pressure
differences have been observed in other helium experiments
using cells with multiple pressure gauges (Ray and Hallock,
2009; Birchenko et al., 2018).
Annealing at high temperatures can remove some defects

and reduce internal stresses in crystals, as shown in the
experiments by Suhel and Beamish (2011). For a 3.1 MPa
polycrystalline hcp 4He sample (melting temperature of
1.79 K), the initial pressure difference between opposite ends
of the cell (≈26 kPa) was stable at temperatures below
400 mK. When the temperature was raised above 500 mK,
the pressure difference decreased at a rate that increased with
temperature. The data were consistent with a thermally
activated annealing process with an activation energy of about
5 K. However, annealing above 500 mK did not completely
eliminate pressure differences. When the temperature was held
constant at 0.9 K, the pressure difference stabilized at 4.3 kPa
after 9 h. This corresponds to a static shear stress of ∼0.5 kPa,
similar to the yield stress (∼1 kPa) at which creep begins at
0.9 K in Fig. 48. When the sample was warmed above 0.9 K,
the pressure difference decreased further, to less than 1 kPa at
1.5 K. This is consistent with the decrease in yield stress at
high temperatures (e.g., to ∼300 Pa at 1.2 K in Fig. 48).
Solid helium can support significant pressure differences,

which can be eliminated only by warming the sample close to
its melting temperature.

D. Flow in solid helium

1. Vacancy diffusion flow

Vacancies enable dislocations to climb and thus play an
important role in plastic deformation by allowing dislocations
to move around obstacles or to annihilate. At high temper-
atures, vacancies can also eliminate stresses via Nabarro-
Herring vacancy creep, which transports mass directly, as
discussed in Sec. III.A. In contrast to dislocations, which move
in response to shear stresses, vacancies diffuse in pressure
gradients but do not respond directly to shear deformations.
The equilibrium vacancy concentration given by Eq. (2) is
proportional to e−½ðEvþPvvÞ=kBT�, so at temperatures high enough
to create thermal vacancies a gradient in the pressureP creates a
gradient in the vacancy concentration gradient xv. Vacancies
diffusing from low to high pressure regions produce a mass
flow that reduces the pressure gradient.
However, the timescale for diffusive processes scales with

the square of the sample dimension, so pressure relaxation via
vacancy diffusion is extremely slow over large distances. For
example, the blocked capillary technique relies on the flow of
solid helium being negligible under the pressure gradients
along the capillary. An early experiment searching for super-
solidity in hcp 4He (Greywall, 1977b) detected no flow and
established extremely low limits on pressure-induced flow at
temperatures down to 30 mK. Diffusive vacancy flow is much
more important in small samples and at high temperatures. For
helium confined in the nanoscale pores of Vycor glass,
ultrasonic measurements (Beamish et al., 1991) showed that

vacancy diffusion relaxed stresses within a pore on micro-
second timescales at temperatures above 1 K. When external
pressure was applied to a Vycor sample containing solid
helium (Day, Herman, and Beamish, 2005), mass flowed
macroscopic distances into the pores at high temperatures, but
no flow was seen below 500 mK. In a similar experiment in
which a pressure difference of about 10 kPa was applied
across solid 4He in 3 mm long, 25 μm diameter channels, mass
flow through the channels equilibrated the pressures at
temperatures near melting (Day and Beamish, 2007a).
Below 1 K there was no evidence of flow (Day and
Beamish, 2006), which is not surprising, given helium’s yield
stress and the channels’ large aspect ratio (L=R ¼ 240).
One experiment involving hcp 4He in a high aspect ratio cell

(a disk-shaped chamber of thickness 0.1 mm and radius
8.6 mm) did detect a slow pressure relaxation at temperatures
as low as 19 mK (Rittner and Reppy, 2009). The relaxation
rate was compatible with a thermal activation process but the
activation energy ∼28 mK was extremely small and the flow
mechanism was not clear.
The absence of nonactivated flow at low temperatures is

consistent with the consensus that there are no zero point
vacancies in hcp 4He. However, thermal vacancies cannot
simply vanish when a solid is cooled. To disappear, they must
diffuse to a vacancy sink, i.e., to a crystal surface or to internal
defects like dislocations and grain boundaries. Vacancies in
helium might also phase separate into clusters (Boninsegni
et al., 2006), in which case they would collapse to create
prismatic dislocation loops (Hull and Bacon, 2011). If thermal
quenching is fast enough, larger nonequilibrium vacancy
concentrations might survive. Unusual features in experiments
involving solid helium flow through a nozzle have been
interpreted in terms of flow of vacancies at large nonequili-
brium concentrations (Benedek et al., 2016).
Since the vacancy flow rate is directly proportional to the

pressure gradient, more sensitive measurements can be made
by applying pressure differences across shorter channels.
Zhuchkov et al. (2015) used a capacitative technique in which
a pressure difference was generated across 6–8 μm diameter
channels through a 10 μm thick polymer membrane
(L=R ∼ 3) embedded in solid 4He. Flow velocities through
the channels, determined from the displacement of the
membrane, are shown in the upper panel of Fig. 52. At high
temperatures they observed thermally activated flow with
activation energies between 6.5 and 13.9 K, which is con-
sistent with vacancy activation energies in 4He. Below 500 mK
the temperature dependence was much weaker, corresponding
to activation energies ∼0.5–0.7 K. They attributed the high
temperature flow to thermally activated vacancy diffusion, but
the origin of the slow creep at low temperatures was unclear,
although it might involve the motion of the dislocation kinks.
Lisunov et al. (2015, 2016) made similar measurements on

bcc 3He, shown in the lower panels of Fig. 52. Above 200 mK
they saw thermally activated flow, with activation energies
between 2.3 and 3.1 K. These energies are smaller than for hcp
4He but are similar to vacancy energies in bcc 3He [e.g., 4.25 K
at 35 bar (Heald, Baer, and Simmons, 1984)]. However, the
flow rate for 3He did not continue to drop below 200 mK,
instead approaching a constant value at the lowest temperature
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(100 mK). Lisunov et al. suggested that the high temperature
flow involved motion of dislocations via the thermally
activated creation of kink pairs. The temperature-independent
flow below 200 mK indicated a quantum mechanism of mass
transport, but the mechanism was unclear.
A recent experiment on bcc 3He confined in a much larger

channel (3 mm diameter, with L=R ≈ 6) gave similar results,
which are shown in Fig. 53 (Cheng and Beamish, 2018a). A
pressure difference applied between the ends of the channel
generated flow that was thermally activated above 100 mK but
approached a constant rate at the lowest temperature (30 mK).
However, the activation energy was smaller (∼0.85 K) and the
flow rates were much larger than in the experiments of
Lisunov et al. (2015, 2016). This suggests that both the
thermally activated and the temperature-independent flow
shown in Fig. 53 involve dislocations, which would be more
mobile in this bulk geometry than in the small channels of
Lisunov et al., where they are expected to be pinned at
the walls.

2. Low temperature superflow in solid 4He

In addition to the previously described creep and plastic
flow, recent experiments showed intriguing low temperature
mass flow through cells filled with hcp 4He (Ray and Hallock,
2008; Hallock, 2015, 2019). This flow appeared below 0.6 K,

with flow rates that were nearly independent of the pressure
difference across the solid and that increased at lower temper-
atures. These features are not associated with thermally
activated flows like those described earlier, but they are
typical of superfluids. The low temperature flow was sensitive
to 3He impurities, with concentrations x3 as small as 10−6

blocking the flow below 100 mK (Vekhov, Mullin, and
Hallock, 2014; Cheng and Beamish, 2016). This suggests
that the flow occurs along low-dimensional channels, for
example, superflow in a network of one-dimensional dislo-
cations (Vekhov and Hallock, 2012; Shin et al., 2017), a
possibility raised by PIMC simulations (Boninsegni et al.,
2007) that indicated that some types of dislocations in hcp 4He
have superfluid cores. This topic was recently reviewed by
Hallock (2019).

VII. OPEN QUESTIONS AND FUTURE DIRECTIONS

The work discussed in this review makes it clear that defects
like vacancies, impurities, and dislocations have dramatic but
well-understood effects on the mechanical behavior of quan-
tum solids like helium. However, it is important to note that
essentially all the experiments upon which this understanding
is based involve mobile dislocations, primarily those gliding
in the basal plane of hcp 4He. There is no direct experimental
evidence of the properties (or even the existence) of other
types of dislocations in helium, despite their importance in
plastic deformation and flow. This contrasts with the situation
in metals and other conventional materials, where TEM and x-
ray techniques have been used to directly confirm the proper-
ties of different types of dislocations, and to determine their
densities and network structures.
Although the high pressures required to grow helium

crystals rule out TEM imaging, it is possible that modern
synchrotron x-ray sources and techniques could provide
microscopic information about the structure of dislocations,
stacking faults, and grain boundaries. It might also be possible
to take advantage of advances in “matrix isolation” spectros-
copy of atoms embedded in solid helium to image or probe

FIG. 52. Flow velocity for solid helium in 6 to 8 μm diameter
channels through a membrane. Upper panel: data for two
polycrystalline hcp 4He samples (labeled 1 and 2) with molar
volume 21.05 cm3=mol. From Zhuchkov et al., 2015. Lower
panel: data for polycrystalline bcc 3He at samples with molar
volumes (a) 24.43 and (b) 23.98 cm3/mol. From Lisunov et al.,
2015.

FIG. 53. Flow velocity (right axis) and rate of pressure change
(left axis) for polycrystalline bcc 3He in a 3 mm diameter channel,
at a pressure of 3.6 MPa. The dashed line corresponds to a
thermally activated process with activation energy 0.85 K. From
Cheng and Beamish, 2018a.
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extended defects, in analogy to the impurity decoration
techniques that have been used to image vortices in superfluid
droplets (Gomez et al., 2014; Gessner and Vilesov, 2019).
In the absence of direct imaging of dislocations, experiments

can determine only average properties associated with net-
works having unknown distributions of orientations and loop
lengths. Recent low frequency shear modulus measurements
on optically oriented single crystals have provided detailed and
consistent information about dislocation networks in hcp 4He.
However, there are significant discrepancies with, for example,
the dislocation densities and lengths inferred less directly from
high frequency ultrasonic measurements.
One possible approach to extract information about specific

dislocations would be to probe mechanical properties on a
microscopic scale. Given the low dislocation densities
(Λ ∼ 104=cm2) and the loop lengths (L ∼ 100 μm) inferred
from shear modulus measurements in high quality 4He
crystals, it seems likely that there are dislocation-free regions
with dimensions of tens of micrometers. There have been a
few experiments involving solid helium confined on this scale,
including flow measurements across an 8 μm gap (Shin et al.,
2017) or along 25 μm cylindrical channels (Day and Beamish,
2006), and shear modulus measurements on helium in an
11 μm gap (Aoki et al., 2016). The smallest avalanches
detected in hcp 4He polycrystals (Cheng and Beamish,
2018b) at low temperatures were of comparable sizes and
may have been initiated at a single dislocation. Submicron
cavities have been used to probe superfluid helium (Souris
et al., 2017), and it may be possible to apply micromechanical
or optomechanical techniques to study solid helium samples
small enough to be free of dislocations or other defects. Such
measurements could test predictions (Borda, Cai, and Koning,
2014) of the ultimate shear strength of perfect helium crystals
or allow dislocations to be introduced into perfect crystals to
test dislocation models of superflow.
Numerical simulations have provided a great deal of

information about dislocations and their networks in conven-
tional solids. In quantum solids, PIMC simulations have made
remarkable advances, but they are still limited to relatively
small numbers of atoms and thus cannot provide the same
level of detailed information about extended defects and
dislocation networks in helium crystals.
Neither PIMC simulations nor experiments provide evi-

dence for the existence of equilibrium zero point vacancies in
solid helium, but they may exist in regions of large elastic
strain (Pollet et al., 2008). It is also possible that nonequili-
brium vacancies could be introduced into solid helium by
rapid deformation or flow (Benedek et al., 2016). Rapid
thermal quenching could also produce a finite concentration of
vacancies at low temperatures, given the large equilibrium
vacancy concentration (∼0.3%) near melting. Since these
vacancies can disappear only by migrating to a surface or a
defect like an edge dislocation or by phase separating, a finite
concentration might survive rapid cooling to low temper-
atures, particularly in 3He, where they are expected to be less
mobile than in 4He.
One of the most intriguing phenomena in solid 4He is the

low temperature flow that appears around 0.6 K in low
pressure crystals (Hallock, 2019). The flow increases upon

cooling but is blocked at around 100 mK by small concen-
trations of 3He impurities. It has characteristics of superflow
but the nature and the location of the flow channels are not yet
certain (Cheng and Beamish, 2016). However, recent experi-
ments with partially blocked channels do not appear to be
consistent with flow in 2D films (Rubanskyi and Hallock,
2019; Shin and Chan, 2019). One-dimensional flow along
superfluid dislocation cores, as predicted in PIMC simula-
tions, is an exciting possibility but experiments have not yet
provided a “smoking gun” to confirm this scenario. This is
largely because there is no direct experimental evidence for
the types of dislocations that are predicted to have superfluid
cores (screw dislocations aligned along the hcp c axis; edge
dislocations lying in the basal plane and Burgers vectors along
the hcp c axis). The superfluidity predicted for these dis-
locations appears to be due to the fact that they do not
disassociate into partials and thus have large strains near their
cores. This also results in large Peierls barriers, which
immobilizes them. The mobile dislocations that can be
detected in elastic measurements (edge or screw dislocations
gliding in the basal plane) have essentially the opposite
properties. They dissociate into widely separated partials with
small strains and have no measurable Peierls barrier to their
motion.
A number of experiments have recently been proposed to

more clearly distinguish the flow or superclimb associated
with superfluid dislocations from other possible deformation
or flow mechanisms (Kuklov, 2019). However, clear con-
firmation of superfluid dislocations would require oriented
single crystals that can be compressed or sheared in specific
crystallographic directions. Although challenging, this could
be done by using the optical orientation and crystal growth
techniques that were used so successfully in the low frequency
shear modulus experiments to provide detailed information on
the properties of mobile basal dislocations in 4He.
Measurements with optically oriented single crystals would
have similar advantages for many other measurements,
including plastic deformation experiments.
The recent plastic deformation experiments by Cheng and

Beamish (2018b) showed that at temperatures below 0.4 K
large-scale deformation in hcp 4He occurs via dislocation
avalanches. The avalanches had a wide range of sizes and their
accompanying acoustic emission provides opportunities to
study the scaling laws that have been observed in conventional
solids, but in nonthermal and quantum regimes. Similar
experiments on bcc crystals, with their differing dislocation
structures, multiple slip systems, and expected Peierls barriers,
would be valuable. Although elastic measurements on bcc 4He
and 3He have shown some signatures of mobile dislocations,
there is presently much less information about their properties
than for the hcp phases of helium.
Vacancies appear to play a more important role in the bcc

phase of 4He, where plastic deformation occurs smoothly
(Ahlstrom et al., 2014) and does not seem to involve the
creation of dislocations (Sanders et al., 1977). To better
understand the role of vacancies and dislocations in the
deformation of bcc helium, measurements should be made
over a wide range, extending to low temperatures where
vacancies freeze out. This is not possible in 4He since the bcc
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phase does not exist below 1.5 K, but it can be done in the bcc
phase of 3He, which is even more quantum mechanical than
the more thoroughly studied hcp 4He.
Solid 3He also provides a unique opportunity to study the

effects of spin on dislocation motion. Low frequency shear
modulus measurements on hcp 3He (Cheng and Beamish,
2017) were interpreted in terms of a new “spin friction”
mechanism of dislocation damping, an addition to the known
phonon and electron damping mechanisms in other materials.
Measurements at lower temperatures, particularly in the spin-
ordered magnetic phases below 1 mK, would confirm this and
might provide insight into dislocation motion in conventional
magnetic solids.
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and Sébastien Balibar, 2013b, “Haziot et al. Reply:,” Phys. Rev.
Lett. 111, 119602.

Heald, S. M., D. R. Baer, and R. O. Simmons, 1983, “X-ray dif-
fraction study of thermal vacancies in solid helium-3,” Solid State
Commun. 47, 807–810.

Heald, S. M., D. R. Baer, and R. O. Simmons, 1984, “Thermal
vacancies in solid 3He,” Phys. Rev. B 30, 2531.

Hendry, P. C., and Peter V. E. McClintock, 1987, “Continuous flow
apparatus for preparing isotopically pure 4He,” Cryogenics 27,
131–138.

Heybey, O.W., and D. M. Lee, 1967, “Optical Birefringence and
Crystal Growth of Hexagonal-Close-Packed 4He from Superfluid
Helium,” Phys. Rev. Lett. 19, 106.

Hirth, J. P., and J. Lothe, 1982, Theory of Dislocations, 2nd ed.
(Wiley, New York).

Hoffer, J. K., W. R. Gardner, C. G. Waterfield, and N. E. Phillips,
1976, “Thermodynamic properties of 4He. II. The bcc phase and the
P-T and V-T phase diagrams below 2 K,” J. Low Temp. Phys. 23,
63–102.

Hull, Derek, and David J. Bacon, 2011, Introduction to Dislocations
(Elsevier, New York).

Islam, Md Shahidul, and John Beamish, 2019, “Shear piezoelectric
and dielectric properties of LiNbO3, PMN-PT and PZT-5A at low
temperatures,” J. Low Temp. Phys. 194, 285–301.

Iwasa, I., 2013, “Dislocation-pinning mechanism for the hysteresis of
torsional-oscillator experiments on solid helium,” J. Low Temp.
Phys. 171, 287–294.

Iwasa, Izumi, 2002, “Dislocation image on x-ray topographs within
kinematical theory,” Phys. Rev. B 66, 144111.

Iwasa, Izumi, Keisuke Araki, and Hideji Suzuki, 1979, “Temperature
and frequency dependence of the sound velocity in hcp 4He
crystals,” J. Phys. Soc. Jpn. 46, 1119–1126.

Iwasa, Izumi, and Harry Kojima, 2017, “Nonlinear ultrasound
propagation in solid 4He compared with shear modulus experi-
ments,” J. Low Temp. Phys. 187, 459–467.
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John Beamish and Sébastien Balibar: Mechanical behavior of solid helium: Elasticity, …

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045002-48

https://doi.org/10.1103/PhysRevB.99.140502
https://doi.org/10.1103/PhysRevB.93.214512
https://doi.org/10.1103/PhysRevLett.118.235301
https://doi.org/10.1016/0022-3697(94)90109-0
https://doi.org/10.1007/s10909-014-1251-0
https://doi.org/10.1103/PhysRevB.90.180103
https://doi.org/10.1103/PhysRevApplied.7.044008
https://doi.org/10.1103/PhysRevLett.17.290
https://doi.org/10.1103/PhysRev.150.123
https://doi.org/10.1103/PhysRevB.84.094512
https://doi.org/10.1143/JPSJ.35.1472
https://doi.org/10.1143/JPSJ.35.1472
https://doi.org/10.1143/JPSJ.42.1865
https://doi.org/10.1143/JPSJ.42.1865
https://doi.org/10.1103/PhysRevLett.104.195301
https://doi.org/10.1080/01418617908234833
https://doi.org/10.1103/PhysRevB.18.1120
https://doi.org/10.1063/1.1702399
https://doi.org/10.1007/s10909-005-2307-y
https://doi.org/10.1007/s10909-005-2307-y
https://doi.org/10.1007/BF00681869
https://doi.org/10.1007/BF00681869
https://doi.org/10.1103/RevModPhys.44.668
https://doi.org/10.1103/RevModPhys.44.668
https://doi.org/10.1103/PhysRevLett.86.1042
https://doi.org/10.1023/A:1021416630479
https://doi.org/10.1023/A:1021416630479
https://doi.org/10.1103/PhysRevB.20.2702
https://doi.org/10.1007/BF00122558
https://doi.org/10.1007/BF00122558
https://doi.org/10.1103/PhysRevLett.109.045303
https://doi.org/10.1103/PhysRevLett.113.035302
https://doi.org/10.1103/PhysRevLett.113.035302
https://doi.org/10.1103/PhysRevLett.6.265
https://doi.org/10.1103/PhysRevLett.76.263
https://doi.org/10.1007/BF00694135
https://doi.org/10.1103/PhysRevA.3.448
https://doi.org/10.1103/PhysRevA.3.448
https://doi.org/10.1016/0038-1098(76)90222-2
https://doi.org/10.1016/0038-1098(76)90222-2
https://doi.org/10.1007/BF00654403
https://doi.org/10.1016/0375-9601(74)90853-6
https://doi.org/10.1016/0375-9601(74)90853-6
https://doi.org/10.1063/1.1721875
https://doi.org/10.1119/1.1975833
https://doi.org/10.1119/1.1975833
https://doi.org/10.1038/nphys1337
https://doi.org/10.1051/jphys:0198500460110198700
https://doi.org/10.1103/PhysRevB.88.024513
https://doi.org/10.1063/1.4915914
https://doi.org/10.1063/1.4915914

