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I. INTRODUCTION

This article is based on a talk I gave at the 2019 March
Meeting of the American Physical Society, consequent to my
receipt of the APS Medal for Exceptional Achievement in
Research. As I understood it, the medal was a kind of lifetime
achievement award, and I was selected to receive it because of
an accumulation of work, on a variety of subjects, over a
period of some 50 years, not for any one contribution.
However, the citation did particularly mention contributions
to the role of topology in both classical and quantum systems.
So I decided that what I should do in my talk, and what I will
do in this article, is to describe a few of the projects related to
topology that I have worked on, which the committee may
have had in mind when they decided to give me this award.
Topology has played a key role in our understanding of many

physical systems, both in the classical regime and in the regime
where quantum mechanics plays a dominant role. My own
work, on some occasions, has made direct use of topological
concepts, while in other examples, topological interpretations

only became evident afterward. In all cases, topological
concepts were most useful in combination with other theoretical
methods and physical ideas and methods. As a result, I like to
refer to topology as one tool, to be used with others in
condensed matter physics. (My attitude here may reflect the
fact that many aspects of my own work, not discussed in this
article, have had no obvious connection with topology at all.)
Perhaps the earliest appearance of topological concepts in

condensed matter physics concerned the role of dislocations in
crystalline solids, and the way in which the existence of
dislocations affects the strength and malleability of a metal
under stress. A more recent, but familiar, concept in con-
densed matter physics is that of a vortex line in the order-
parameter field of a superfluid or superconductor. The motion
of vortex lines is well known as the mechanism for residual
resistance or the gradual relaxation of a supercurrent in a
superconducting circuit. Although the superfluid order param-
eter is obviously a quantum-mechanical concept at its roots, as
it has the form of a quantum-mechanical wave function for the
condensate of a macroscopic number of identical bosons, its
time evolution can nevertheless be described in the language
of classical mechanics. More recently, however, topological
concepts have been employed to characterize quantum ground
states of fermionic systems, which generally do not have a
classical counterpart.
In the following sections, I will discuss some of my work on

the quantum Hall effects, as well as on effects of vortex
motion in a superfluid or superconductor and on the theory of
defect-mediated melting of a two-dimensional crystal.

II. VORTICES IN A SUPERFLUID

A superfluid or superconducting state is characterized by an
order parameter ψðr; tÞ, which is a complex-valued function of
space and time. Although ψ has an overall phase that is an
arbitrary quantity, the value of ψðr; tÞmay be uniquely defined
throughout the medium, if one fixes the electromagnetic gauge
and one fixes the phase of ψ at a single point in space and time.
It is generally required that ψðr; tÞ should be a continuous
differentiable function of r and t inside the medium.
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At any point where ψ ≠ 0, we may define a phase ϕðr; tÞ,
such that ψðr; tÞ ¼ jψðr; tÞjeiϕðr;tÞ, but, in general, ϕðr; tÞ will
be determined only modulo 2π. Within any small simply
connected region of space-time that includes no points where
ψ ¼ 0, one can require ϕ to vary continuously, so derivatives
of ϕ with respect to r or t can therefore be uniquely defined.
More generally, if one integrates the gradient of ϕ around a
closed contour C such that ψ does not vanish at any point on
the contour, the requirement that ψðr; tÞ must return to its
original value at the end of the contour means that the
accumulated change in ϕ must be a multiple of 2π. If C is
a contour in space at a fixed time t, this may be written

I
∇ϕ · dr ¼ 2πn; ð1Þ

where n is an integer. Moreover, if the contour C is deformed
continuously in such a manner that it never passes through a
point where ψ ¼ 0 (where ∇ϕ would be undefined), the
integer n cannot change. This follows from the fact that the
value of the integral could at most change continuously as the
contour is deformed, assuming that ψðr; tÞ can only vary
continuously, while an integer such as n can only change
discontinuously. The fact that the value of n must be constant
under the imposed restrictions is one of the simplest examples
of the results of topology.
A consequence of the above reasoning is that if n is nonzero

for some contour C, it means that on any surface spanning the
contour, there must be at least one point in space, inside the
contour, such that ψ ¼ 0. Otherwise, the contour could be
continuously shrunk to a single point without changing n,
which would be a contradiction. The condition ψ ¼ 0 is
actually two conditions as it requires that both the real and
imaginary parts of ψ must vanish, and this will normally occur
only on a space of codimension two inside a superfluid. Thus,
in two dimensions, we would expect that ψ will vanish at most
at a set of isolated points, denoted vortex points. In three
dimensions, the locus of zeros of ψ will define a set of vortex
lines or loops.
In two dimensions, we can define a charge nv for a vortex

according to the number of times the phase will change by 2π
as one moves in a counterclockwise direction around a small
circle enclosing the vortex. In three dimensions, we can assign
an integer charge nv to a vortex line according to to the
number of times the phase changes by 2π as one moves
around a small circle enclosing the vortex. The magnitude of
nv will be the same at all points on the vortex. The sign of nv
depends on the orientation one assigns to the vortex, but if this
is chosen in a continuous manner, the sign will also be the
same at all points on the vortex. A vortex line cannot end
inside a superconductor or superfluid, so it must either form a
closed loop embedded in the material or trace an open curve
with ends at a surface. The lowest energy vortices will
have nv ¼ �1.

A. Persistent current in a ring

Consider a solid ring of superconducting material, and
consider a closed contour C embedded in the superconductor,
which circles once around the ring. The winding number n can

be nonzero for the contour, even if there are no vortices in the
superconducting material, because ψ ¼ 0 in the hole through
the center of the ring. Moreover, if throughout some period of
time, ψ ≠ 0 at all points within the superconductor, the value
of nmust be the same for any contour around the ring, and this
value must be constant in time. (Note: The arguments in this
section apply equally well for a superfluid contained in a
closed loop of pipe.)
It is a general property of a superconducting ring, in the

absence of an external applied magnetic field, that the
equilibrium state at any given temperature T will have n ¼
0 and will carry no electrical current. States with n ≠ 0 will
necessarily have a higher free energy, but if n is not too large,
there will exist a metastable ground state, given by the
thermodynamic state with lowest free energy for the given
value of n, which will generally be separated from states of
smaller n by a free-energy barrier. For small n, the difference
in free energy between the metastable state with winding
number n and the ground state with winding number zero will
be proportional to n2, and the state will carry a persistent
electrical current I proportional to n.
A persistent current can only decay if there are large

fluctuations in ψðr; tÞ, such that for every contour around
the ring there is a moment in time where ψ ¼ 0 at some point
on the contour, in such a way as to decrease the magnitude of
the overall winding number n. One way for this to happen is
for a short bent vortex line, with nv ¼ �1, to first form at
some place near the surface of the superconductor, with the
two ends of the vortex terminating at the surface. The vortex
line can then move across a cross section of the ring, if it
expands enough in size so that its two ends can move along the
surface of the ring on opposite sides of the cross section.
Alternatively, a small vortex loop could nucleate at some point
in the interior of the superconductor and expand across a cross
section of the ring. In any case, the length of the vortex must
become equal to or larger than the thickness of the ring. Since
the energy to produce a vortex increases with the length of the
vortex, the minimum free-energy cost ΔF for producing a
vortex that can move across the ring will increase with the
thickness of the ring.
If ΔF is large compared to the temperature T, the

probability for finding such a fluctuation at any instant of
time will fall off as e−ΔF=T , with temperature measured in
units of energy. Thus, ifΔF is sufficiently large, the decay rate
will be unmeasurably small. However, if the temperature is
sufficiently close to the superconducting critical temperature
Tc, and if the ring is sufficiently thin, ΔF may be small
enough for the decay rate to be significant. Also, in the
presence of a sufficiently strong magnetic field, there may be
vortex lines present even in equilibrium, whose positions will
typically be pinned by impurities or inhomogeneities. In this
case, the decay rate for persistent current will be controlled by
the free-energy barrier for a vortex line to become unpinned
from local inhomogeneities, which will generally be much
smaller than the barrier to create a vortex line in the absence of
a magnetic field.
In principle, thermal fluctuations can produce vortices that

cross the ring in the direction that increases the current as well
as in the direction which decreases it. However, the
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free-energy barrier will be smaller for fluctuations which
decrease the current than for those which increase it. As a
consequence of the principle of detailed balance, it can be
shown that for a superfluid of bosons, the ratio between the
rates rþ and r− for transitions that change the value of n by
�1, respectively, must be given by

rþ=r− ¼ e−2πĨℏ=T; ð2Þ

where Ĩ is the particle current. (For electrons in a super-
conductor, where the order parameter describes a condensate
of Cooper pairs, one should equate Ĩ to I=2e, where I is the
electric current.) If the current Ĩ is large compared to (T=ℏ),
the uphill rate will be negligible compared to the downhill
rate, but for smaller currents, both processes must be con-
sidered. In the limit of small currents, the net decay rate dĨ=dt,
which depends on the difference ðr− − rþÞ, will become
proportional to Ĩ.
The motion of vortex lines can also lead to a nonzero

resistance for current in a segment of superconducting wire
that carries a current provided by contacts at the two ends. For
a superconductor that is locally close to equilibrium, the rate
of change of the phase ϕ at any point should be related to the
voltage V at that point by the Josephson relation

∂ϕ
∂t ¼ 2eV

ℏ
: ð3Þ

Thus, in a steady state, there will be a voltage difference ΔV
between two points on the wire if and only if there is a
difference in the value of ∂ϕ=∂t at the two points, which in
turn will be given by 2π times the net rate dn=dt at which
vortices move across the wire between the two points in
question. This gives the relation

ΔV ¼ πℏ
e
dn
dt

: ð4Þ

As for the persistent current, the rate dn=dt will be propor-
tional to I for sufficiently small values of I, meaning that the
resistance R ¼ ΔV=I will approach a constant.
In order to estimate the decay rate of a persistent current, or

the resistance of a superconducting wire, the first step is to
estimate the free-energy barrier ΔF for producing a vortex and
moving it across the sample. The decay rate or the electrical
resistance should be at least roughly proportional to e−ΔF=T .
For a more accurate calculation, however, an estimate of the
preexponential factor is also necessary.
In summary, while topology tells us that the supercurrent in

a ring cannot decay if one imposes the condition that the order
parameter ψðr; tÞ cannot pass through zero inside the material,
this prohibition is never absolute. In the most interesting
situations, zeros of the order parameter do occur at a small but
finite rate, and the real challenge, not answered by topology
alone, is to understand what the value of this rate is in any
given situation.

B. Resistance in a thin superconducting wire

My first published work related directly to topological
concepts in condensed matter systems was a 1970 paper with
Dean McCumber, “Time-scale for resistance fluctuations in a
thin superconducting wire” (McCumber and Halperin, 1970).
Here we considered the case of a wire sufficiently thin that one
could neglect variations in ψ across the thickness of the wire
and could treat it as a function of a single spatial variable, x,
and the time t. Thus, for a phase slip of 2π to occur, there
should be an isolated point in space-time where ψðx; tÞ ¼ 0.
We assumed a time evolution for ψ given by a time-dependent
Ginzburg-Landau equation,

� ∂
∂tþ

2ieV
ℏ

�
ψ ¼ −Γ

δF
δψ� þ ηðx; tÞ; ð5Þ

where F is the Ginzburg-Landau free-energy functional,

F ¼
Z

dxð−ajψ j2 þ bjψ j4 þ γjdψ=dxj2Þ; ð6Þ

and η is a Gaussian white noise source, chosen to give the
correct distribution, P½ψ � ∝ e−F=T , in thermal equilibrium.
The parameters b, γ, and Γ are assumed to be independent of
temperature close to the bulk transition temperature TC, while
a varies ∝ ðTC − TÞ. The free-energy barrier ΔF for produc-
ing a phase slip was previously known for the Ginzburg-
Landau model, but we were able to calculate also the
preexponential factor, as a function of the current in the wire,
up to the classical critical current, where ΔF → 0.
Employing these formulas, we obtained a result for the

resistance of a thin superconducting wire, which in the limit of
small currents could be written as

R ¼ 4
ffiffiffi
3

p

π1=2
ℏ
e2

L
ξðTÞ

Tc − T
T

�
ΔF
T

�
1=2

e−ΔF=T; ð7Þ

ΔF ¼
ffiffiffi
2

p

3π
σH2

cðTÞξðTÞ; ð8Þ

where L is the length of the wire, σ is the cross-sectional area,
ξðTÞ ∝ ðTc − TÞ−1=2 is the Ginzburg-Landau coherence
length, and HCðTÞ ∝ ðTC − TÞ is the critical magnetic field
for the bulk material.

C. Resistance in a two-dimensional superconductor or a
superfluid film

In order to relax a supercurrent in a two-dimensional film, it
is necessary to move a vortex point across the film. However,
an isolated vortex will have a logarithmically infinite energy in
an isolated film, so one would expect to find no free vortices at
low temperatures. On the other hand, a pair of vortices of
opposite sign separated by a distance s has a finite energy,
proportional to log s, so we would expect to find a finite
density of bound pairs of various separations at any finite
temperature. As noted by Kosterlitz and Thouless, this back-
ground of thermally excited pairs will lead to a downward
renormalization of the stiffness constant for fluctuations in the
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phase of the order parameter with increasing temperature, and
a consequent reduction in the logarithmic energy cost of
adding an additional pair with a large separation s (Kosterlitz
and Thouless, 1973; Kosterlitz, 1974). Above a certain
temperature, commonly denoted as TKT, the logarithmic
interaction will be reduced to the point where it is no longer
strong enough to prevent the formation of free vortices. Using
a novel renormalization-group technique, Kosterlitz argued
that slightly above TKT, there would be a small density nf of
free vortices, given by

nf ∼ e−b=ðT−TKTÞ1=2 ; ð9Þ

where b is a constant (Kosterlitz, 1974).
Since the motion of a bound vortex-antivortex pair cannot

cause a phase slip, dissipation above TKT should be propor-
tional to nf. Below TKT, there should be no dissipation in the
limit of infinitesimal current densities, but there can still be
dissipation for finite currents. This is because in the presence
of a current density j, a vortex pair can become unstable if its
separation s is larger than a critical value inversely propor-
tional to j, and even below TKT, the density of pairs with
separation larger than any specified value will be nonzero in
thermal equilibrium.
In a series of papers with Vinay Ambegaokar, David

Nelson, and Eric Siggia, published in 1978–1980, we
explored, in some detail, how vortex motion should affect
the transport properties of a thin superconductor or superfluid
film close to TKT (Ambegaokar et al., 1978, 1980; Halperin
and Nelson, 1979). Among other results we found that for a
superconducting film below TKT, the voltage drop generated
by a small current density j should vary as jjjα, where the
exponent α has the value 3, just below TKT, and increases with
decreasing temperature, approaching infinity for T → 0. We
also were able to provide estimates of quantities such as αðTÞ
and the constant b, and the overall prefactor determining the
resistivity above TKT, in terms of other measurable parame-
ters. Among the questions we explored in the case of super-
fluid He films were effects of vortex motion on dissipation in
an oscillating film.

III. DEFECT-MEDIATED MELTING IN TWO DIMENSIONS

As was noted by Kosterlitz and Thouless, there are strong
analogies between the melting of a crystal in two dimensions
and the superfluid transition, which they studied in detail. For
example, one may define an order parameter for translational
order for a two-dimensional crystal by

ψGðrÞ ¼ eiG·r̃; ð10Þ

where r̃ is the location of the atom closest to r. As in the case
of the order parameter of a two-dimensional superfluid, the
correlation function for this order parameter is expected to fall
off as a power law at large separations s, due to the effects of
thermally excited phonons. That is,

CGðsÞ≡ hψ�
GðrÞψGðrþ sÞi ∼ s−ηG ; ð11Þ

where the exponent ηG goes to zero for T → 0 and approaches
a finite maximum value at the melting temperature.
Furthermore, there can be topological defects in the crystal,
known as dislocations, whose presence could destroy this
quasi-long-range order, but which have an energy that
diverges logarithmically, if they are far from the system
boundary and from neutralizing dislocations of opposite sign,
similar to vortices in the superfluid.
More precisely, a dislocation is characterized by a discrete

Burgers vector b, which is a vector on the Bravais lattice of the
perfect crystal, and which measures the number of extra steps
one needs to take in order to return to one’s original position if
one moves around the dislocation in a counterclockwise
direction by steps on the lattice. (See Fig. 1.) The energy
of an isolated pair of dislocations with opposite Burgers
vectors has the form

E ¼ Kb2 ln js=aj þ Cðb; sÞ; ð12Þ

where s is the separation between dislocations, K depends on
the elastic constants of the crystal, and C remains finite in the
limit of large s. Unlike the case for vortices in a superfluid,
however, the value of C depends on the direction of s (relative
to the orientation of b).
My attention was directed to the problem of melting in two

dimensions by my Harvard colleague David Nelson, in 1978.
This led to a series of papers on the topic, in collaboration with
Nelson, and later with others. One early observation we made,
which was found independently by Peter Young at U. C. Santa
Cruz,was that the angle-dependent terms in the interactionwould
lead to quantitative differences in the behavior of quantities such
as the elastic constants of the crystal as it approaches the melting
point, compared to the behavior of the corresponding stiffness
constant in the superfluid case (Young, 1979).
More significantly, however, we argued that if the renorm-

alization group holds, melting in two dimensions should
actually occur in two stages, with separate transition temper-
atures TC1 and TC2 (Nelson and Halperin, 1979). For temper-
atures T in the range TC1 < T < TC2, one should find a new
liquid-crystal phase, which we termed the hexatic phase,
having short-range translational order, but quasi-long-range
orientational order. (We assume, here, that the low-temper-
ature crystal phase has the sixfold orientational symmetry of a
simple triangular lattice.) Specifically, we defined an orienta-
tional order parameter as

FIG. 1. Dislocation in a two-dimensional crystal. A square
lattice is illustrated for ease of visualization. The Burgers vector
b, which characterizes the dislocation, is the missing lattice
vector when one follows a path around the defect consisting of,
say, n steps in the x direction, n steps in the y direction, n steps in
the −x direction, and n steps in the −y direction.
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ΨðrÞ ¼ e6iθðrÞ; ð13Þ

where θðrÞ is the orientation, relative to some fixed axis, of the
bond between the two atoms nearest to point r. In the hexatic
phase, the translational correlation functions CG fall off
exponentially with separation, but the correlation function
for Ψ falls off only as a power law:

CΨðsÞ≡ hΨ�ðrÞΨðrþ sÞi ∼ s−ηΨ : ð14Þ

The hexatic phase is made possible because unbound
dislocations are much less effective at destroying orientational
order than they are at destroying translational order. A small
density of dislocations, as one expects to find just above TC1,
is enough to cause exponential decay of CG, with a decay
length proportional to the typical distance between unbound
vortices. However, the stiffness constant for gradients in the
orientational order parameter of the hexatic will be large when
the distance between free dislocations is large, which leads to
a result that the exponent ηΨ for falloff of CΨ will go to zero,
when T → TC1 from above.
In order to destroy quasi-long-range orientational order, we

need to have a proliferation of defects such as disclinations or
grain boundaries, which can cause large angular rotations
from one part of the sample to another. (See Fig. 2 for an
illustration of a disclination.) In the crystal phase, disclina-
tions have a very large free energy, so the possibility of free
disclinations can be completely neglected. In the hexatic
phase, however, the energy of an isolated disclination diverges
only logarithmically in the size of the system, while the energy
of a pair with opposite sign is finite and proportional to the
logarithm of the separation s. In the hexatic phase, away from
TC1, the presence of a finite density of bound disclination pairs
in thermal equilibrium leads to a renormalization of the
stiffness constant, completely analogous to the renormaliza-
tion of the phase-stiffness constant by vortex pairs in a
superfluid. Thus, one finds that the maximum allowable value
for ηΨ is 1=4, and the renormalization-group analysis predicts
that TC2 is the temperature at which this maximum value is
attained. Moreover, the nature of the singularities as one
approaches TC2 should be identical to corresponding singu-
larities at the Kosterlitz-Thouless superfluid transition. Above
TC2 we have an isotropic phase, where the orientational
correlation function CΨ decays exponentially with s, with

decay length that diverges strongly for T → Tþ
C2. We remark

that a dislocation in a crystal may be regarded as a tightly
bound pair of disclinations of opposite sign.
Of course, the two-stage melting scenario with a hexatic

intermediate phase, predicted by the renormalization-group
analysis, could be preempted by a direct first-order transition
between the crystal and isotropic liquid phases. Numerical
simulations and experiments with colloids suggest that both
possibilities can occur, depending on microscopic details, but
the hexatic phase does exist, in suitable cases, in a narrow
range of density or temperature between the solid and liquid
phases (Gasser et al., 2010; Kapfer and Krauth, 2015). [See
also Li and Ciamarra (2020), which explores the effects of
replacing hard disks by polygonal shapes, and of an attractive
van der Waals interaction.] Also, as noted by Robert
Birgeneau and David Litster, a hexatic phase, with true
long-range orientational order, can occur in three-dimensional
smectic liquid crystals (Birgeneau and Litster, 1978; Pindak
et al., 1981).

IV. THE QUANTUM HALL EFFECTS

The questions of melting of a crystal or the behavior of a
superfluid in two dimensions, referring to the static or
dynamical behavior of a system at or near thermal equilibrium
at a finite temperature T, are essentially problems of classical
statistical physics. There is another set of problems, however,
in which the focus is on features of the quantum ground state
at T ¼ 0, where topology may also play a role. Some of these
problems resemble classical problems in that the objects under
consideration are required to be a continuous function of
space-time in an imaginary-time path integral formulation,
and such problems are often closely related to a classical
problem in one higher space dimension. Applications of
topology to such problems are likely to be focused on the
behavior of variables that are functions of position in some
region of space-time, and are required to vary continuously
throughout the region, subject to certain constraints, similar to
the examples discussed above.
In other cases, however, the quantum problem may have no

classical analog, and key topological properties refer to the
behavior in a more abstract space, such as the momentum
variable in the Brillouin zone of a crystal, or the behavior
while varying magnetic flux quanta through the holes in a
torus. Such is the case in problems concerning the quantum
Hall effects. Yet even there, some topological features in real
space may be useful for understanding what is going on.
The label “quantum Hall effects” refers to a wide range of

peculiar phenomena found in two-dimensional electron sys-
tems in strong magnetic fields at low temperatures. The
phenomena reflect the existence of a series of peculiar states
of matter that are strictly defined only at T ¼ 0, but the
phenomena can still be observed in laboratory experiments at
finite temperature, in many cases with extremely high
precision.

A. Early work

The first quantum Hall effect to be studied was the integer
quantized Hall effect, observed experimentally by von

FIG. 2. Disclination in a square lattice. Following a closed path
counterclockwise around the defect, the crystal axes are rotated
by an angle of π=2. The disclination may also be characterized as
having an extra quadrant of material. A disclination of the
opposite sign (not shown), would have a missing quadrant of
material and a rotation angle of −π=2.
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Klitzing, Dorda, and Pepper (1980). What they found was that
in two-dimensional electron systems of sufficiently high
quality, at low-enough temperatures, the electrical transport
properties could be characterized by a conductivity tensor
with

σxx ¼ σxx ¼ 0; σyx ¼ −σxy ¼ νe2=h; ð15Þ

where ν was precisely an integer, over a finite interval of
magnetic field strengths. The fractional quantized Hall effect
was discovered by Tsui, Stormer, and Gossard (1982), when
they observed additional Hall plateaus, in samples of very
high quality, in even stronger magnetic fields and lower
temperatures, where the value of ν was a simple rational
fraction rather than an integer.
Theoretical predictions that came close to predicting the

integer quantized Hall effect had been published already by
Ando, Matsumoto, and Uemura (1975). However, the first
truly elegant explanation of the exactness of the integer
quantized Hall effect was supplied by Robert Laughlin, in
a paper published in 1981 (Laughlin, 1981). There was an
element of topology in this, as he considered the response of
an electron system in a geometry equivalent to an annulus.
My attention was directed to the integer quantized Hall

effect, and to Laughlin’s explanation, by a phone call that I
received from Gloria Lubkin, an editor at Physics Today,
in 1981. I became fascinated by Laughlin’s explanation,
but it raised some vexing questions in my own mind.
There were several features that seemed counterintuitive.
For example, Laughlin’s argument implied the existence of
two-dimensional electron states, and even one-dimensional
states, that did not get localized by disorder, which was
contrary to the folklore at the time.
The integer quantized Hall effect, for a weakly interacting

system, occurs when the Fermi level sits in the energy gap
between two Landau levels. In the presence of disorder, there
may be electron states in the gap, but as long as the states are
localized they do not contribute to transport. That states could
be easily localized by disorder in the presence of a large
magnetic field seemed natural. I realized, however, that
Laughlin’s argument required that there be at least one
extended state below the Fermi level, if the quantized Hall
conductance was not zero (Halperin, 1982). More importantly,
it required that there be states at the Fermi level at the sample
boundaries that are extended in the direction parallel to the
boundary. These one-dimensional states move in only one
direction around the edge, and they could be understood as the
quantum analog of skipping orbits that have been discussed
previously in the context of three-dimensional metals, where
their importance was not as great. Because they move in only
one direction, electrons in these one-dimensional states cannot
be backscattered or localized by impurities, assuming that the
sample is wide enough so that there is negligible overlap
between wave functions at opposite edges.
Because tunneling from one edge to another is negligible in

a wide sample, the system can reach a state of local
equilibrium, where the two edges have a different electro-
chemical potential. Note that the electrochemical potential
includes the electron chemical potential as well as the

electrostatic potential, and the electrochemical potential differ-
ence between the two edges is precisely what is measured by
an ideal voltmeter connected to the edges. Laughlin showed
by an argument using gauge invariance that the net electric
current I transported around the annulus in these circum-
stances is given by I ¼ GV, where at least for weakly
interacting electrons, the dimensionless quantity ν ¼ Gh=e2

must be precisely an integer.
A physical argument for the exactness of a quantized Hall

effect can be put in a somewhat different form, which applies
equally to the fractional case as to the integer. Consider the
split annular geometry illustrated in Fig. 3. The material in the
left half of the annulus is an ideal system without disorder. It is
supposed to have a clean energy gap separating the many-
body ground state from all excited states. Moreover, in the
absence of impurities, the Hall conductance should be
precisely related to the electron density n by the classical
relation GH ¼ ne=B, which means that ν is the Landau-level
filling factor. On the right side of the annulus, we suppose
there may be localized states at the Fermi energy due to
disorder. However, we require that there are no extended states
at the Fermi energy crossing between the two edges of the
annulus anywhere in the sample, including at the interface line
separating the left and right halves.
Now, imagine that we initiate a state with a charge

imbalance between the inner and outer edge of the annulus.
Since there is no leakage of charge between the edges, each
edge will reach a state of local equilibrium, where there may
be different voltages on the two edges, but the voltage on a
given edge will be precisely the same in the two halves of the
annulus. By charge conservation, I must also be the same in
the left and right halves of the annulus. Hence the Hall
conductance must be exactly the same in the disordered region
as in the disorder-free region (Halperin, 1982).
Of course, if the disorder is strong enough, or the electron

density is very different in the two regions, the Hall conduct-
ance can be different in the two halves. In that case, however,
there will inevitably be extended states joining the inner and
outer edges of the sample at the junction between the two
regions. Then, one cannot set up a steady state with different

FIG. 3. Split annular geometry filled with a quantized Hall state.
The left half of the annulus is occupied by ideal material in a
quantized Hall state with filling factor ν. The right half contains a
disordered sample. If there are no extended states at the Fermi
level in the bulk of the dirty material or at the interface between
the two halves, then, at T ¼ 0 one can reach a steady state in
which there are different voltages, V1 and V2, on the inner and
outer edges of the annulus, but the voltage on a given edge is
constant around the annulus. By conservation of charge, the
current I must also be constant around the annulus, so it must be
given by I ¼ νe2ðV1 − V2Þ=ℏ in both regions.
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electrochemical potentials on the inner and outer edges, as was
assumed above.
A more sophisticated use of topology for quantized Hall

systems came with the work of Thouless and collaborators,
who considered the Bloch wave functions for electrons in a
magnetic field and a periodic lattice (Thouless et al., 1982).
They showed that if one tries to impose the requirement that
the wave functions in the occupied bands vary continuously
with the Bloch wave vector throughout the Brillouin zone, one
may encounter a matching problem at the zone boundary,
characterized by an integer topological invariant known as the
first Chern number. They showed that if the occupied bands
are separated from the empty bands by an energy gap, the total
Chern number of the occupied bands will coincide with the
quantized Hall number ν for the system. In another applica-
tion, Niu, Thouless, and Wu (1985) showed how the argument
could be extended to fractional quantized Hall states, even in
the presence of disorder, by considering the Chern number for
the many-body wave function on a torus, as one alternately
adds and subtracts an integer number of flux quanta through
the two holes in the torus. For a fractional quantized Hall state
of the form ν ¼ p=q, one must take into account the q-fold
degeneracy of the ground state on a torus, so one has to add q
flux quanta to come back to the same physical state.
I did not personally make use of the Chern number concept

in most of my own work on quantized Hall systems. However,
I did use a generalization of the argument of Thouless et al.
(1982) in 1987, when I analyzed the possible behaviors of a
system of noninteracting electrons in a three-dimensional
periodic lattice. The key result was that if there is an energy
gap separating the filled energy bands from the empty ones,
the symmetric part of the conductivity tensor must vanish, and
the antisymmetric part must be of the form

σij ¼ ϵijkGke2=ℏ; ð16Þ

where G is a reciprocal lattice vector of the crystal and ϵijk is
the unit antisymmetric tensor. This is just the conductivity
tensor that would result if there were an integer quantized Hall
state in each crystal layer perpendicular to G, and no
conduction between the planes. [This work was further
developed in Kohmoto, Halperin, and Wu (1992).]
As indicated above, a sufficient condition for the existence

of a quantized Hall state with fractional value of ν is that an
interacting electron system without impurities would form a
stable ground state, with an energy gap, at the corresponding
Landau-level filling fraction. The most important questions,
then, are why should there be stable states at all in a partially
full Landau level, and if there are, what fractions are allowed,
and what should be the relative sizes of their energy gaps? The
first question was answered by Laughlin, who introduced an
explicit wave function for the states at ν ¼ 1=3; 1=5;…,
which he argued would be excellent approximations to the
true ground state, and which would be separated by an energy
gap, which he could estimate, from any excited states
(Laughlin, 1983). Extensions of these arguments, using
particle-hole symmetry within a Landau level, could explain
states at ν ¼ 2=3; 4=5;…, and including the second spin state,

at ν ¼ 6=5; 4=3; 5=3; 9=5;…. But quantized Hall states were
soon seen at many other odd-denominator fractions, as well.
In 1983, I wrote a paper for the conference proceedings of a

meeting of the European Physical Society, published in
Helvetica Physica Acta, which proposed various generaliza-
tions of Laughlin’s wave functions that I argued might be
good approximations to the ground states at certain other
filling fractions with odd denominator (Halperin, 1983). I also
considered generalizations to states with two distinguishable
electron species, such as the two spin states in a Landau level
that is not completely spin polarized. I argued that at certain
filling fractions, such as ν ¼ 2=5, such a state would have a
lower Coulomb energy than the ground state of a fully spin-
polarized system. Furthermore, I argued that given the very
small Zeeman energies for electrons in GaAs, one should
consider the possibility of unpolarized quantized Hall states.
Indeed, unpolarized states have been seen in GaAs, along with
transitions to fully polarized states with increasing magnetic
fields at the same filling fraction (Clark et al., 1989; Eisenstein
et al., 1989).
In the 1983 paper, I also argued strongly that even-

denominator fractional quantized Hall states should be pos-
sible, in principle, for a properly designed Hamiltonian,
though I could not propose a realistic model where this
would be the case. In 1987, a fractional quantized Hall plateau
was observed at ν ¼ 5=2 in GaAs (Willett et al., 1987). The
precise nature of the ground state in this case is still a matter of
debate, but it is clearly not of the type that I considered in my
1983 paper. However, some even-denominator states seen in
two-component systems may be described by trial wave
functions from that paper (Liu et al., 2019).
Laughlin showed that a fractional quantized Hall state with

ν ¼ p=q will necessarily have quasiparticle excitations with
electric charge �e=q. (In principle, it could also have addi-
tional quasiparticles whose charges are submultiples of these.)
In 1984, I argued that Laughlin’s quasiparticles should also
display fractional statistics (Halperin, 1984). The concept of
particles with fractional statistics, termed anyons, had been
introduced earlier, but this was the first example to be found in
an actual physical system. [The idea that charged excitations
in the ν ¼ 1=3 state obey fractional statistics was independ-
ently developed by Arovas, Schrieffer, and Wilczek (1984).]
One definition of fractional statistics is that if a pair of

identical quasiparticles is interchanged adiabatically, the
many-body wave function will be multiplied by a phase
factor other than �1, which depends on the direction of
interchange and the number of other quasiparticles enclosed
by the trajectories. I used a different definition, however,
which effectively compared the number of quantum states
available to a collection of quasiparticles in a given area with
what would have been available if the quasiparticles were
fermions, with the same fractional charge, in the lowest
Landau level. One could see, using trial wave functions,
how, e.g., the ν ¼ 2=5 state could be constructed by adding
e=3 quasiparticles to the ν ¼ 1=3 state in a Laughlin-type
effective wave function, provided one took the fractional
statistics into account. I showed that by iterating this con-
struction one could generate arbitrary fractions with odd
denominator, and that if one treated the quasiparticles as
point anyons interacting via a Coulomb repulsion, one could
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estimate the energy gaps and plateau widths at various
fractions. It turned out, however, that these estimates were
not very useful, because the quasiparticles are actually far
from being point charges. Much better estimates were
obtained by Jain (1989) using the “composite fermion”
approach he developed.
It was shown later that some quantum Hall states could have

quasiparticles with non-Abelian statistics (Moore and Read,
1991). [See also Wen (1991).] This means that for a
configuration with N quasiparticles, localized at points suffi-
ciently far from each other, there will be an essentially
degenerate Hilbert space of ground states, whose dimension
grows exponentially with N. If various quasiparticles are
moved around each other and/or exchanged, so that the final
set of locations is the same as the original one, then the result
will be a unitary transformation in the degenerate Hilbert
space, with a final state that depends on the order of
interchanges. Moreover, the transformation is a topologically
robust quantity, determined by the sequence of braiding
operations. It is believed that the state at ν ¼ 5=2 in GaAs
has non-Abelian quasiparticles with non-Abelian quasipar-
ticles of the Moore-Read type, though the precise form of the
ground state is still under debate (Morf, 1998; Banerjee et al.,
2018; Willett et al., 2019; Halperin and Jain, 2020).
Non-Abelian statistics may also be realized in other

systems, such as hybrid structures of superconductors and
semiconductors. There has been great interest in creating such
systems and in verifying their properties, since, in principle,
such systems, if perfected, could be used for topologically
protected quantum computing (Nayak et al., 2008).
In order to completely characterize the topological class of a

fractional quantized Hall state, one needs to know more than
the charges of the elementary excitations and their fractional
or non-Abelian statistics. Another topological quantum num-
ber is the shift number, which characterizes a finite mismatch
between the particle number and ν times the number of flux
quanta in the state on a large sphere or surface of higher genus
(Wen and Zee, 1992). The full topological classification
for Abelian fractional quantized Hall states is known
(Wen, 1995).

B. Later work

Since the early 1990s, much of my work on quantum Hall
systems was not so much focused on the integer or fractional
quantized Hall effects, but rather on what I like to call the
unquantized quantum Hall effect. This refers to fractions such
as ν ¼ 1=2 and their vicinities, where no plateau is seen in the
Hall conductance. Rather, the Hall conductance is found to
vary smoothly with magnetic field or electron density, as in a
classical Hall conductor, and the longitudinal conductance
appears to remain finite, for T → 0, with a value dependent on
residual disorder and other details of the sample. Nonetheless,
there are anomalies around these filling factors, which are not
trivial. The first to be observed was an anomaly in propagation
of surface acoustic waves (Willett et al., 1990).
In 1993, Patrick Lee, Nicholas Read, and I published a paper

which proposed an explanation based on a unitary trans-
formation of the electrons to a system of composite fermions
interacting with a Chern-Simons gauge field (Halperin, Lee,

and Read, 1993). In the mean-field approximation, composite
fermions in the ground state at ν ¼ 1=2 behave like free
fermions, and they fill a Fermi sea, with the Fermi radius
determined by the electron density. The anomalous behavior of
surface-acoustic-wave propagation is a reflection of the fact
that in a clean system, excited composite fermions can travel in
straight lines over distances greater than the acoustic wave-
length. Slightly away from ν ¼ 1=2, composite fermions move
in large effective cyclotron orbits, with a radius inversely
proportional to the deviation of the magnetic field from the
value at ν ¼ 1=2. As the magnetic field is varied, this leads to
several observable oscillatory effects, approximately reflecting
commensurability conditions between the effective cyclotron
radius and thewavelength of an acoustic wave or of an imposed
potential modulation. (Note that these distances are all much
larger than the cyclotron radius for a bare electron in the applied
magnetic field.)
Although the Halperin-Lee-Read theory has provided

explanations for many observed phenomena, there remain
some subtle unanswered questions. These are particularly
related to the compatibility of the theory with the requirements
of particle-hole symmetry, when the bare electron mass is
taken to zero, while the electron interaction is held constant, so
there is no mixing between Landau levels (Son, 2015, 2018;
Wang et al., 2017). Thus, the theory of a half-filled Landau
level has been a topic of active research in recent years. The
extent to which topological concepts may be helpful in sorting
out the remaining issues is not clear.
Other problems in quantum Hall systems that have attracted

my attention in recent years have included several related to
interferometry experiments, where charged particles are
allowed to tunnel between opposite edges of a quantized
Hall system at two or more constrictions (Stern and Halperin,
2006; Halperin et al., 2011; Wei et al., 2017). I have also been
interested in various phenomena observed in systems with two
closely spaced parallel layers, where the Coulomb interaction
between electrons in different layers can be comparable to the
interaction between neighboring electrons in the same layer
(Eisenstein, 2014; Liu et al., 2017, 2019).

V. OUTLOOK

Topological ideas, inspired, in part, by the examples in
quantum Hall systems, have played a major role in the science
of condensed matter systems in recent times. Applications
have included the classification of distinct quantum states of
matter at T ¼ 0, in three as well as one and two dimensions
(Bernevig and Hughes, 2013; Senthil, 2015; Wen, 2017). The
first Chern number is only one of the many topological
invariants that have been employed in the characterization of
quantum materials. As a whole, the field of topological
quantum materials is certainly one of the most active areas
of theoretical and experimental physics today (Vergniory
et al., 2019).
Topological ideas, related to the ones developed for

quantum Hall systems, have also been applied to light waves
in photonic structures (Lu, Joannopoulos, and Soljačić, 2014),
to vibrational modes in constrained systems (Kane and
Lubensky, 2014; Stenull, Kane, and Lubensky, 2016), to
trapped ultracold atoms (Fetter, 2009; Cooper, Dalibard, and
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Spielman, 2019), and to systems subject to a periodic time-
dependent perturbation (Nathan and Rudner, 2015; Martin,
Refael, and Halperin, 2017).
The area of quantum Hall systems itself continues to be

quite exciting. One productive direction of research has been
the search for new systems in which to study quantized Hall
effects. Over the last decade, fractional quantized Hall states,
including even-denominator states, have been observed in a
number of new materials, including ZnO, monolayer and
bilayer graphene, and Coulomb-coupled graphene double
layers (Halperin and Jain, 2020). The quantized anomalous
Hall effect, in which an integer quantized Hall conductance
can be observed in zero magnetic field, has been observed in
thin samples of the three-dimensional topological insulator
ðBixSb1−xÞ2Te3, doped with Cr or V (Bestwick et al., 2015;
Chang et al., 2015). Here, a combination of ferromagnetism,
which produces the necessary broken time-reversal invari-
ance, and spin-orbit coupling leads to a two-dimensional band
structure with an energy gap and a nonzero Chern number.
New experimental techniques, and improved accuracy,

along with better samples, have allowed more precise tests
of our theoretical understanding. Results have confirmed
theoretical expectations in many cases, but have also raised
questions in others. As one important example, new thermal
techniques have confirmed predictions for the quantized
thermal conductance for many fractional quantized Hall states,
but results at ν ¼ 5=2 have confounded expectations, and so
far are lacking in a convincing explanation. See, e.g., Banerjee
et al. (2018), Ma and Feldman (2019), and Steven et al. (2020)
and references therein.
Many of these developments are discussed in detail in

various chapters of a book that I have edited, together with
Jainendra Jain, entitled Fractional Quantum Hall Effects: New
Developments, published in June, 2020 by World Scientific
Press (Halperin and Jain, 2020).
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