
 

Colloquium: Statistical mechanics and thermodynamics
at strong coupling: Quantum and classical

Peter Talkner *

Institute of Physics, University of Augsburg,
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The statistical mechanical description of small systems staying in thermal equilibrium with an
environment can be achieved by means of the Hamiltonian of mean force. In contrast to the reduced
density matrix of an open quantum system, or the reduced phase-space probability density function of
a classical open system, the Hamiltonian of mean force not only characterizes the reduced state but
also contains full information about the thermodynamics of the considered open system. The resulting
thermodynamic potentials all assume the form as the difference of the potentials for the total system
and the bare environment in the absence of the system. In contrast to work as a mechanical notion, one
faces several problems with the definition of heat, which turns out to be largely ambiguous in the case
of strong coupling between system and environment. The general theory of the thermodynamics of
open systems, in particular, in view of strong coupling, is reviewed and illustrated it with several
examples. The vagueness of heat is discussed in the context of the ambiguities in the definitions of a
fluctuating internal energy and other fluctuating thermodynamic potentials.
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I. INTRODUCTION

Thermodynamics was mainly developed in the 19th century
(von Laue, 1950) as a phenomenological theory characterizing
equilibrium states of macroscopic bodies and their trans-
formations. In spite of the tremendously large number of
microscopic degrees of freedom of a macroscopic system, the
number of variables characterizing a thermodynamic equilib-
rium state is extremely small. For a homogeneous system
consisting of a single chemical species, the energy, the mole
number, and the volume taken by the system uniquely specify
the equilibrium state (Callen, 1985). These variables deter-
mine the entropy of the system, which is an extensive
function, i.e., a homogeneous function of degree 1, of the
variables provided that gravitation, if present at all, can be
treated as an external field but does not play a role as an
internal interaction. Self-gravitating and other systems with
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long-range interactions1 deviate strongly in their behavior
from “normal” systems (Kubo, 1965). For example, the
entropy of a self-gravitating system is no longer a concave
function of the energy everywhere (Thirring, Narnhofer, and
Posch, 2003).
Statistical mechanics, on the other hand, provides a quan-

tum-mechanical2 foundation of thermodynamics and yields
methods to determine the thermodynamic potentials, such as
the entropy, internal, and free energy for specific systems. In
principle, these potentials depend on the kind of contact
between the considered system and its environment, whether
the respective system is thermally isolated or allows an
exchange of heat or particles. Technically speaking, ensemble
equivalence is tantamount to the concavity of the entropy as a
function of the energy. In particular, this property leads to a
positive specific heat. Moreover, the transition between differ-
ent ensembles, say, from the microcanonical to the canonical
ensemble, is one to one, given by a Laplace transformation of
the density of states. In the thermodynamic limit, this Laplace
transformation can be calculated using a steepest descent
approximation (Fowler, 1936; Ellis, 1985; Touchette, 2009,
2011) relating the internal energy to the free energy in terms of
a Legendre transformation.
For isolated, finite systems the familiar relations valid in the

thermodynamic limit of systems with short-range interactions
no longer need to be satisfied. Prevailing finite size correc-
tions, depending on the form of the system, such as on the
presence of corners, surfaces, and their curvatures, enter the
density of states and give rise to deviations from the
extensivity of the thermodynamical potentials (Baltes and
Hilf, 1976). For a discussion of the proper thermodynamic
description of isolated, i.e., microcanonical, systems with a
finite and possibly small number of degrees of freedom, we
refer to the literature (Schlüter, 1948; Lustig, 1994; Dunkel
and Hilbert, 2006; Hilbert, Hänggi, and Dunkel, 2014;
Campisi, 2015; Hänggi, Hilbert, and Dunkel, 2016).
A small, weakly interacting part of a large system in a

microcanonical state approaches a Maxwell-Boltzmann dis-
tribution in the thermodynamic limit of the total system
(Khinchin, 1949). Any weakly interacting part of a finite
normal system staying in a canonical equilibrium state at some
temperature is described by a Maxwell-Boltzmann distribu-
tion at the temperature of the total system. It is important to
note that under these conditions the only consequence of the
presence of the environment is to maintain the equilibrium of
the considered small system at a specified temperature.
Accordingly, the phase-space distribution of the small system
is independent of any properties of the environment other than

the temperature and gives rise to the standard thermodynamics
of a canonical system independently of its size or form.3 This
universality is lost as soon as one considers the total system as
a finite microcanonical system at a specific energy even if the
interaction between the proper system and its environment is
arbitrarily weak (Campisi, 2007).
In this Colloquium we restrict ourselves to open systems

that are possibly strongly interacting parts of larger systems
with which they stay in canonical equilibrium at a given
temperature. Based on the ergodic hypothesis (Lebowitz and
Penrose, 1973), this state of the total system can be realized in
different ways, either as an ensemble of microcanonical
systems at different energies with an exponential distribution
or as a single open system weakly coupling to a superbath at
the prescribed temperature. Even though these two scenarios
yield identical phase-space distributions of the open system,
they are not completely equivalent to each other because a
cyclic change of a system parameter within a finite time leads
to a change of the ensemble representing the total system at
large times while, in the second case, the total system then
returns to its initial state due to the presence of the superbath
(Talkner and Hänggi, 2016b).
For total systems, which are prepared in either way in a

canonical state, the reduced state of the open system may still
be written in the form of a Boltzmann distribution at the
temperature of the total system with a Hamiltonian of mean
force (Onsager, 1933; Kirkwood, 1935; Hänggi, Talkner, and
Borkovec, 1990; Jarzynski, 2004; Campisi, Talkner, and
Hänggi, 2009b) replacing the bare Hamiltonian of the system
in the limit of weak coupling. In contrast to the bare system
Hamiltonian, the Hamiltonian of mean force depends on
temperature and also other parameters determining the micro-
scopic behavior of the environment and its interaction with the
open system. While the Hamiltonian of mean force com-
pletely specifies the reduced state of the open system, the
knowledge of this reduced state in the form of a phase-space
probability density function is not sufficient to specify the
Hamiltonian of mean force. Therefore, the Hamiltonian of
mean force cannot be obtained from a purely system-intrinsic
point of view, as discussed in more detail in Sec. III.A. It was
argued (Aurell, 2018) that with the embedding techniques of
nonlinear dynamics (Badii et al., 1994; Kantz and Schreiber,
1997) the Hamiltonian of the total system can be inferred from
observed trajectories of the open system. Given the enormous
number of environmental degrees of freedom together with the
large amount of data that are required to estimate an unknown
Hamiltonian of a system with a few degrees of freedom
finding the Hamiltonian of the total system in this way
presents, in practice, an impossible task. For quantum systems
even a formal procedure corresponding to the embedding
technique of classical dynamical systems is missing.
The statistical mechanics of an open system in equilibrium

can be specified in the standard way by the Gibbs distribution
with the Hamiltonian of mean force, thereby replacing the
bare system Hamiltonian. The according partition function of

1Even though the bare Coulomb potential of an electrical charge
decays in the same way as the gravitational potential, the presence of
opposite charges leads to screening such that the thermodynamics of
(on the whole neutral) systems consisting of charged constituents
does not differ from systems with short-range interactions (Lieb and
Lebowitz, 1972).

2For simplicity, in the Introduction we refer mostly to classical
systems. Mutatis mutandis, all statements made here also apply to
quantum systems. A distinction between classical and quantum
systems is made in later sections, where it becomes necessary to
do so.

3When particles can be exchanged with the environment, a
chemical potential is also needed for each particle sort to characterize
the environment.
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the open system is given by the ratio of the partition functions
of the total system and the bare environment (Hänggi and
Ingold, 2006). Consequently, all thermodynamic functions of
an open system and their derivatives are specified as
differences of the respective quantities of the total system
and the bare environment. Further, the resulting thermody-
namic potentials are thermodynamically consistent (Seifert,
2016; Talkner and Hänggi, 2016b) in a sense that is defined
later. However, a possible temperature dependence of the
Hamiltonian of mean force leads to additional contributions to
the statistical mechanical expressions of the internal energy
and the thermodynamic entropy, which, in general, does not
assume the form of a Shannon or von Neumann entropy (von
Neumann, 1955; Wehrl, 1978). As a consequence the thermo-
dynamic entropy of an open system need not be a functional of
the reduced state of the open system (Seifert, 2016; Talkner
and Hänggi, 2016b); see Eq. (40).
While fluctuations of macroscopic quantities are generally

extremely small in macroscopic systems at thermal equilib-
rium,4 one may expect that they cannot be neglected in
microscopic or mesoscopic systems and hence become an
important issue in this context. Because of their time depend-
ence they convey dynamic information about systems in
equilibrium. In classical systems one may often identify a
set of variables that undergo a Markovian time evolution
(Stratonovich, 1963; Hänggi and Thomas, 1982; Gardiner,
1985; Risken, 1989; van Kampen, 2007). For the description
of the energetics of such systems, fluctuating heat, work, and
internal energy were introduced as “stochastic energetics”
(Sekimoto, 2010). With the definition of stochastic entropy
(Seifert, 2012) and of further fluctuating thermodynamic
potentials (Seifert, 2016; Jarzynski, 2017), a “stochastic
thermodynamics” was established recently. Stochastic ener-
getics already suffers from the existence of many random
functions, for which the thermal equilibrium averages agree
with the correct internal energy of the considered open system.
The same flaw also adheres to stochastic thermodynamics
because thermodynamic consistency is not sufficient to
remove this nonuniqueness. Other restrictions on the hypo-
thetical fluctuating thermodynamic potentials are not known
(Talkner and Hänggi, 2016b) for systems other than those
weakly coupling to their environments (Talkner, Campisi, and
Hänggi, 2009). For quantum systems the work performed on
an open system in an individual run of a force protocol can, in
principal, be obtained as a fluctuating quantity by means of
two projective energy measurements. But even if the exper-
imental techniques to perform projective measurements, such
as nondemolition measurements (Braginsky, Vorontsov, and
Thorne, 1980; Yang et al., 2020), can be substantially
improved, the fact that the work is given by the difference
of two often extremely large numbers is seriously limiting the
practical accessibility of fluctuating work by means of the two
point projective energy measurement scheme (TPPEMS).
For classical systems, the energy difference may be

expressed as an integral of the power supplied to the system,
and the power can be determined from an observation of the

proper system alone (Liphardt et al., 2001). But even if the
work supplied to a classical open system is known, an
unambiguous identification of heat, i.e., of the energy that
is exchanged within the same process between the system and
its environment, is possible only in the weak coupling limit, in
which the system-environment interaction is all but neglected.
This ambiguity of fluctuating heat is also inherent in the
notion of fluctuating energy as the sum of fluctuating work
and heat, according to a corresponding formulation of the
first law.
The characterization of heat in quantum systems may in

principle be based on a TPPEMS of a conveniently defined
energy operator of the heat bath, which, once added to the
open system internal energy operator, yields the total system
Hamiltonian. In processes with a finite interaction time
between system and environment, the total transferred heat
can be determined by measurements of the bath Hamiltonian
before the interaction with the system sets in and after it has
ended (Goold, Poschinger, and Modi, 2014). In the case of
weak coupling, this environmental energy operator coincides
with the bare bath Hamiltonian up to a negligibly small
contribution of the system-bath interaction. In all other cases
the nonuniqueness of the open system internal energy operator
also renders the heat-bath energy operator ambiguous. But
also with an arbitrary specification of the bath energy operator,
a joint measurement of this operator and the total Hamiltonian
cannot be achieved because of their noncommutativity. Hence,
it is not possible to simultaneously specify for a quantum
process work and heat, not even their averages (Hänggi and
Talkner, 2015; Castelvecchi, 2017).

II. THERMODYNAMICS OF LARGE NORMAL SYSTEMS

We first summarize the thermodynamics and statistical
mechanics of normal systems (Kubo, 1965), with the goals
of recollecting the notions relevant for our main discussion
and introducing the notation.
To start with, we refer to a system consisting of a

macroscopically large number of microscopic objects like
atoms or molecules as normal if in the quantum case the
logarithm of the number of states, and in the classical case the
logarithm of phase-space volume below a given energy, are
homogeneous convex functions of the extensive variables
(Kubo, 1965). To satisfy this requirement for a system of
classical particles experiencing pairwise interactions in d
spatial dimensions, the interaction potential must be repulsive
at short distances and decay with the distance r faster than r−d

(Ruelle, 1969; Lieb and Lebowitz, 1972). Further, we assume
that the dynamics of an autonomous, isolated normal system
approaches, after a sufficiently long time, a unique equilib-
rium state that is independent of the initial state of the
system other than its energy. For classical systems this is
guaranteed by ergodicity (Khinchin, 1949), for quantum
systems the problem of thermalization as such has long been
recognized (von Neumann, 1929) but is still under active
scrutiny (Deutsch, 1991; Srednicki, 1994; Polkovnikov
et al., 2011; Rigol and Srednicki, 2012; Goold et al.,
2016; Merali, 2017). In this Colloquium we do not extend
this discussion.

4Order-parameter fluctuations at second order phase transitions
provide a known exception to this rule.
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A. Isolated systems

The dynamics of an isolated system is governed by a
Hamiltonian which is the Hamilton function in the case of a
classical system and the Hamilton operator for quantum
systems. We assume that the gauge of the Hamiltonian is
chosen in a way such that it yields the energy of the system
even if the parameters λ specifying the Hamiltonian depend on
time (Goldstein, 2002). At any fixed set of parameter values
the system is supposed to approach an equilibrium state that is
completely specified by the energy of the system and hence
given by (Bopp, 1953; Münster, 1954)

ρ ¼ ω−1ðE; λÞδ(E −HðλÞ): ð1Þ

For a quantum system ρ presents a density matrix, i.e., a
positive operator on the system’s Hilbert space with unite
trace, and δ denotes the Dirac delta function. The normali-
zation of the density matrix is guaranteed by the inverse of the
density of states, which is given by

ωðE; λÞ ¼ Trδ(E −HðλÞ)
¼

X
n

dnδ(E − EnðλÞ); ð2Þ

where EnðλÞ are the eigenvalues of the Hamiltonian HðλÞ
and dn are the corresponding degrees of degeneracy.

5 Because
of the discreteness of the energy spectrum a regularized
form of the delta function entering the density matrix must
be considered, such as a narrow Gaussian function δϵðxÞ ¼
ð2πÞ−1=2ϵ exp½−x2=ð2ϵÞ� (Talkner, Hänggi, andMorillo, 2008).
For a classical system ρðxÞ presents the probability density

function (pdf). It takes the same form as Eq. (1), with HðλÞ ¼
Hðx; λÞ denoting the Hamilton function; the density of states
then becomes

ωðE; λÞ ¼
Z

dxδ(E −Hðx; λÞ); ð3Þ

with a conveniently defined dimensionless infinitesimal
phase-space volume dx, which allows for indistinguishable
particles if necessary, such as dx ¼ d3Npd3Nq=N!h3N with
the Planck constant h in the case of N particles in three
dimensions, exhibiting no further symmetries. The thermo-
dynamics of a system in a microcanonical state [Eq. (1)] is
determined by the microcanonical entropy SðE; λÞ, which is
given by (Gibbs, 1902; Hertz, 1910a, 1910b; Hilbert, Hänggi,
and Dunkel, 2014)

SðE; λÞ ¼ kB lnΩðE; λÞ; ð4Þ

where kB is the Boltzmann constant and ΩðE; λÞ specifies the
number of states of a quantum system or the phase-space
volume of a classical system below the energy E and hence
reads

ΩðE; λÞ ¼
Z

E

0

dE0ωðE0; λÞ

¼ TrΘ(E −HðλÞ) quantum

¼
Z

dxΘ(E −Hðx; λÞ) classical: ð5Þ

Here ΘðxÞ denotes the Heaviside function that vanishes for
negative arguments x and yields unity for positive ones. The
total differential of the entropy is given by

dS ¼ 1

T
dEþ

X
n

an
T
dλn; ð6Þ

where T ¼ ð∂S=∂EÞ−1λ designates the microcanonical temper-
ature and ai ¼ Tð∂S=∂λiÞE;λj≠i specifies the response coef-

ficient for a variation of the parameter λi. Most notably, the
thermodynamic expression for ai coincides with its statistical
mechanical definition given by the microcanonical average
ai ¼ h∂HðλÞ=∂λii (Dunkel and Hilbert, 2014; Hilbert,
Hänggi, and Dunkel, 2014). This consistency of statistical
mechanics and thermodynamics is guaranteed only for an
entropy that depends on the total phase-space volume, as in
Eqs. (4) and (5).6 It agrees7 for normal systems with the more
familiar entropy definition in terms of the density of states,
reading

SBðE; λÞ ¼ kB ln½ωðE; λÞϵB�; ð7Þ

where ϵB is an energy scale that must not depend on the values
of E and λ. We note that for quantum systems the phase-space
volume entropy [Eq. (4)] is a piecewise constant function of
the energy and hence must be smoothed to yield a well-defined
temperature and, more generally, to serve as a thermodynamic
quantity. The necessary interpolation of the entropy for
energies that are different from the eigenvalues of the system
Hamiltonian, though, introduces a certain ambiguity.

B. Small subsystem of a large closed system

The energy of a subsystem fluctuates even if the total
system has a fixed energy. The energy fluctuations of an open
system follow a Boltzmann distribution provided that the
interaction between the considered part and the total system is
weak in the sense that the interaction energy is much smaller
than the average energy of the subsystem. Additionally, the

5The density of states is not defined for energies from the
continuous part of the spectrum. Using the spectral representation
of the Hamiltonian one formally obtains with δ(E −HðλÞ) ¼R
δðE − E0ÞdPðE0Þ the expression ωðE; λÞ ¼ R

δðE − E0ÞTrdPðE0Þ,
yielding for an energy belonging to the point spectrum with
TrdPðEnÞ ¼ dn the result given in Eq. (2). Here PðEÞ denotes the
projection operator onto the subspace spanned by all eigenfunctions
of H with energies up to E. For an energy from the continuous
spectrum the trace expression is given by the squared norm of the
corresponding eigenfunction, which diverges.

6The logarithmic dependence of the entropy on the phase-space
volume is a consequence of the additivity of the entropy for
noninteracting systems.

7Up to corrections of the order of oðNÞ, with N denoting the
number of microscopic degrees of freedom.
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total system must be much larger than the subsystem.8 The
temperature of the Boltzmann distribution of a small system is
determined by the microcanonical Boltzmann temperature9

calculated at the average value of the energy of the large part
that provides the environment of the considered open system
(Hänggi, Hilbert, and Dunkel, 2016). In the thermodynamic
limit, this temperature agrees with the microcanonical temper-
ature of the total system provided that the latter is normal;
i.e., T ¼ TB.
Under these conditions, the state of an open system is

given by

ρðβ; λÞ ¼ Z−1ðβ; λÞe−βHSðλÞ; ð8Þ

where β ¼ ðkBTÞ−1 is the inverse temperature andHSðλÞ is the
Hamiltonian operator or function of the isolated quantum or
classical subsystem, respectively. For a quantum system
ρðβ; λÞ denotes the density matrix and for a classical system
the function ρðx; β; λÞ specifies the phase-space probability
density function at the phase-space point x. The dimension-
less partition function Zðβ; λÞ serves for normalization and
hence reads10

Zðβ; λÞ ¼ Tre−βHSðλÞ quantum ð9Þ

¼
Z

dxe−βHSðx;λÞ classical: ð10Þ

With the knowledge of the partition function the connection
between statistical mechanics and thermodynamics is
established by

Fðβ; λÞ ¼ −β−1 lnZðβ; λÞ; ð11Þ

which defines the free energy Fðβ; λÞ. From this point on,
other thermodynamic potentials such as the internal energy
Uðβ; λÞ and the entropy Sðβ; λÞ can be obtained in terms of the
textbook relations (Callen, 1985)

Uðβ; λÞ ¼ ∂(βFðβ; λÞ)
∂β

����
λ

; ð12Þ

Sðβ; λÞ ¼ kBβ2
∂Fðβ; λÞ

∂β
����
λ

; ð13Þ

which are connected by

F ¼ U − ST: ð14Þ

The joint validity of the three equations (12)–(14) constitutes
the thermodynamic consistency of the thermodynamic poten-
tials Fðβ; λÞ, Uðβ; λÞ, and Sðβ; λÞ (Seifert, 2016; Talkner and
Hänggi, 2016b). Any two of the three relations imply the
remaining one.
In the case of a weakly coupled open system in thermal

equilibrium, the internal energy and the entropy agree with the
standard statistical mechanical expressions for systems in
canonical equilibrium, i.e.,

Uðβ; λÞ ¼ TrHSðλÞρSðβ; λÞ; ð15Þ

Sðβ; λÞ ¼ −kBTrρðβ; λÞ ln ρðβ; λÞ; ð16Þ

expressing the internal energy Uðβ; λÞ as the average value of
the bare system Hamiltonian HS with respect to the canonical
equilibrium state ρðβ; λÞ specified in Eq. (8) and the entropy
Sðβ; λÞ as the von Neumann entropy for quantum systems or
the Gibbs-Shannon entropy for classical systems. For classical
systems, in Eqs. (15) and (16) the trace is to be replaced by the
phase-space integral (Tr →

R
dx) and the density matrix by

the according phase-space pdf.
For a discussion of a small system weakly coupling to a

finite bath see Campisi, Talkner, and Hänggi (2009a).

III. SUBSYSTEM OF A TOTAL SYSTEM AT EQUILIBRIUM
IN A CANONICAL STATE

Any canonical equilibrium state can, in principle, be
realized in two physically different ways. As described in
Sec. II.B, the canonical state may result from the weak contact
with another, much larger, system. The time average of the
ever changing state of the open system is then given by the
canonical state. The other, more formal, way to consider a
canonical state is to interpret it as an ensemble of micro-
canonical states, the energies of which follow a Boltzmann
distribution at the given inverse Boltzmann temperature β.
While in the first interpretation one considers a single open
system, the second scenario consists of many closed systems.

A. Hamiltonian of mean force

The Hamiltonian of mean force (Campisi, Talkner, and
Hänggi, 2009b) is a fundamental concept in the study of an
open system that stays together with its environment in a
canonical equilibrium state. It generalizes the notion of the
potential of mean force (Onsager, 1933; Kirkwood, 1935;
Hänggi, Talkner, and Borkovec, 1990; Roux, 1995) and, in
contrast to the latter, it is not restricted to classical situations
and can also be assigned to an open quantum system. We first
present its definition for quantum systems and later specialize
to classical ones.
The starting point is the Hamiltonian Htot of the total

system, which is composed of contributions describing the
bare system and the bare environment HSðλÞ and HB,
respectively, and an interaction term HSB. As before, the
system Hamiltonian is assumed to depend on a set λ of
controllable parameters that must have no influence on the

8When a large system is subdivided into two equally large parts,
the energy of each part is approximately Gaussian distributed
(Khinchin, 1949).

9The Boltzmann temperature TBðEÞ follows from the Boltzmann
entropy [Eq. (7)] as TBðEÞ ¼ ½∂SBðE; λÞ=∂E�−1λ .

10For the partition function to exist, the Gibbsian operator e−βHSðλÞ

must be an element of the trace class (Schatten, 1950), which is
tantamount to the requirement that the Gibbsian operator and
consequently also the Hamiltonian have a pure point spectrum but
does not contain an absolute or singular continuous part. Moreover,
the Hamiltonian must be bounded from below. For classical systems
the potential energy must be sufficiently confining to prevent the
system from escaping to infinity and also bounded from below.
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bare environmental Hamiltonian or the interaction.11 The total
Hamiltonian is therefore given by

HtotðλÞ ¼ HSðλÞ þHB þHSB: ð17Þ

While the canonical thermal equilibrium state of the total
system follows with Eq. (8) as

ρtotðβ; λÞ ¼ Z−1
tot ðβ; λÞe−βHtotðλÞ; ð18Þ

the state of the open system is determined by the reduced
density matrix ρSðβ; λÞ and hence becomes

ρSðβ; λÞ ¼ Z−1
tot ðβ; λÞTrBe−βHtotðλÞ; ð19Þ

where TrB denotes the partial trace over the environmental
Hilbert space. The reduced density matrix is proportional to
the “renormalized Boltzmann factor” e−βH

�ðβ;λÞ with the
Hamiltonian of mean force H�ðβ; λÞ. This renormalized
system’s Boltzmann factor results from the Boltzmann factor
of the total system by a properly normalized partial trace
generating an average over all environmental configurations
according to their occurrence in thermal equilibrium, given by

e−βH
�ðβ;λÞ ¼ Z−1

B ðβÞTrBe−βHtotðλÞ: ð20Þ

The normalization with the partition function of the bare
environment, given by

ZBðβÞ ¼ TrBe−βHB; ð21Þ

is uniquely determined by the requirement that for a vanishing
system-environment interaction the renormalization yields the
result

e−βH
�ðβ;λÞ ¼ e−βHSðλÞ for HSB ¼ 0 ð22Þ

or, equivalently, H�ðβ; λÞ ¼ HSðλÞ for the vanishing interac-
tion HSB. Finally, the reduced state of the open system can be
expressed in terms of the Hamiltonian of mean force, yielding

ρSðβ; λÞ ¼ Z−1
S ðβ; λÞe−βH�ðβ;λÞ; ð23Þ

with

H�ðβ; λÞ ¼ −β−1 ln
TrBe−βHtotðλÞ

TrBe−βHB
: ð24Þ

Comparing Eqs. (19) and (23) one finds that the partition
function of the open system is given by the ratio of the
partition functions of the total system and the bare environ-
ment, i.e.,

ZSðβ; λÞ ¼ TrSe−βH
�ðβ;λÞ ¼ Ztotðβ; λÞ

ZBðβÞ
; ð25Þ

where TrS denotes the trace over the Hilbert space of the
system. The requirement that the renormalization procedure
reproduces the bare system Boltzmann factor for a vanishing
system-bath interaction was missing in Gelin and Thoss
(2009), leading to the erroneous conclusion that the particular
form of the partition function as a ratio is arbitrary.
Before we discuss the consequences of this particular

structure of the partition function ZS for the thermodynamics
of an open system, we emphasize the following facts:

(i) As indicated by the notation and made explicit in
specific examples discussed later, the Hamiltonian
of mean force depends not only on the parameters λ
entering the bare system Hamiltonian but, in general,
also on the temperature of the total system, and on
all other global parameters as well.

(ii) Moreover, the structure of the Hamiltonian of mean
force depends on the type of environment and its
interaction with the open system. Beyond the case
of weak coupling, which is considered later, one
cannot assume the existence of a generic “thermal
environment” the details of which were irrelevant.
In general, instead, different environments lead to
different Hamiltonians of mean force for the same
bare system.

(iii) Further, we emphasize that the Hamiltonian of mean
force does not follow from the reduced state of the
open system. From a known reduced density matrix
ρSðβ; λÞ with the help of Eqs. (23) and (25) one can
determine the sum of the Hamiltonian of mean force
and the Helmholtz free energy of the open system as

H�ðβ;λÞþFtotðβ;λÞ−FBðβÞ¼−β−1 lnρSðβ;λÞ; ð26Þ

where we express the logarithms of the partition
functions in terms of the respective free energies; see
Eq. (11). If there is no additional knowledge about
these free energies, the Hamiltonian of mean force
remains undetermined.

(iv) Finally, we note that the partition function ZSðβ; λÞ
defined by Eq. (25) remains finite in the thermody-
namic limit of the environment, whereby the number
of system degrees of freedom is kept fixed. In this
limit the partition functions of the total system as
well as that of the environment either diverge or
vanish with an increasing number of environmental
degrees of freedom,12 yet their ratio remains finite.
In the theory of stochastic energetics (Sekimoto,
2010) and also in a recent review on stochastic
thermodynamics (Seifert, 2019) coarse-grained, still
fluctuating, free energies are introduced without
subtraction of the bath contribution. This does not
impact free energy differences in an isothermal

11This restriction is not necessary here but becomes essential for
the definition of work done on an open system by a variation of the
parameter λ; see Sec. IV.B. Other globally acting parameters
specifying the Hamiltonian of the total system are generally sup-
pressed so as not to overburden the notation.

12We assume here that the total system is normal in the sense of
Kubo (1965), as previously explained.
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process, but for nonisothermal processes or proc-
esses with globally changing parameters it leads to
extra contributions to the internal energy and the
entropy, as discussed later in more detail.

Equation (24), which specifies the Hamiltonian operator of
mean force for a quantum system, can immediately be adapted
to classical systems by replacing the Hamiltonian operators
with the respective Hamiltonian functions, and the partial
trace over the environment with an integral over the environ-
ment’s phase space, yielding

e−βH
�ðx;β;λÞ ¼ e−βHSðx;λÞ

Z
dye−βHSBðx;yÞρBðy; βÞ; ð27Þ

where x and y denote points in the system and the environ-
mental phase space, respectively, dy denotes the dimension-
less phase-space volume element, and

ρBðy; βÞ ¼ Z−1
B ðβÞe−βHBðyÞ ð28Þ

denotes the canonical phase-space pdf of the bare environ-
ment, i.e., in the absence of the system. Hence, the classical
Hamiltonian of mean force can be expressed as

H�ðx; β; λÞ ¼ HSðλÞ − β−1 lnhe−βHSBðx;yÞiB; ð29Þ

with h•iB ¼ R
dy • ρBðy; βÞ standing for the average over the

canonical state of the bare environment. Note that in the
classical case the renormalization is determined by the second
term on the right-hand side of Eq. (29), which is independent
of the system parameters λ. For the typical case of a system
that solely couples the positions of the system Q and the
environment q via the potential VSBðQ;qÞ only the scalar
potential of the system is renormalized. The resulting
total potential V�ðQÞ is then known as the potential of mean
force (Onsager, 1933; Kirkwood, 1935; Hänggi, Talkner, and
Borkovec, 1990). It is given by

V�ðQÞ ¼ VðQÞ − β−1 lnhe−βVSBðQ;qÞiB; ð30Þ

where VðQÞ denotes the potential of the bare system.
For later use we note the identity

∂
∂β ½βH

�ðx; β; λÞ� ¼ hHtotjxi − hHBiB ð31Þ

relating the Hamiltonian of mean force and its inverse temper-
ature derivative to the deviation of the average of the total
Hamiltonian conditioned on the state of the system x from
the average of the bare environmental Hamiltonian (Talkner
and Hänggi, 2016b). The average h•jxi ¼ R

dy • wðyjxÞ is
performed with respect to the conditional pdf wðyjxÞ of
finding the environment at the phase-space point y once the
system is at x. As such it is given by

wðyjxÞ ¼ ρtotðx; y; β; λÞ
ρSðx; β; λÞ

¼ Z−1
B e−β(Htotðx;y;λÞ−H�ðx;β;λÞ): ð32Þ

This conditional pdf characterizes the equilibrium preparation
class of open classical systems (Grabert, Talkner, and Hänggi,
1977). It plays a key role in the projection operator formu-
lation of the open system’s dynamics (Zwanzig, 1961;
Grabert, Hänggi, and Talkner, 1980; Grabert, 1982).
In the case ofweak coupling (VanHove, 1957;Davies, 1976)

the equilibration of the considered systemwith its environment
is achieved by a vanishingly small interaction strength κ → 0 at
correspondingly late times t → ∞with κ2t finite. Accordingly,
this weak interaction does not cause a renormalization of the
system Hamiltonian, and hence the Hamiltonian of mean force
coincideswith theHamiltonian of the bare system. For a further
discussion of the weak coupling limit see Sec. V.D.

B. Thermodynamics

The thermodynamics of an open system being part of a
canonical total system follows from its partition function
[Eq. (25)] in the standard way starting with the Helmholtz free
energy given by

FSðβ; λÞ ¼ −β−1 lnZSðβ; λÞ: ð33Þ

Likewise, one obtains the internal energy and the entropy of
the open system by means of the thermodynamic relations (12)
and (13). As a consequence of the open system partition
function being the ratio of the total system’s and the bare
bath’s functions according to Eq. (25), all thermodynamic
potentials and also all response functions result as differences
of the respective quantities of the total system and the bare
bath. Therefore, they are of the form

ΞS ¼ Ξtot − ΞB; ð34Þ
where Ξ stands for any of the thermodynamic potentials.
Moreover, Ξ may stand for the specific heat C ¼ ∂U=∂T, and
the response to variations of local or global parameters such as
the isothermal magnetization MT ¼ ∂F=∂hjT given by the
derivative of the free energy with respect to an external
magnetic field h, isobaric thermal expansion coefficients, as
well as for all susceptibilities specified by the second
derivatives of the thermodynamic potentials with respect
to the relevant local or global parameters of the total
system, such as the isothermal magnetic susceptibility
χ ¼ ∂2F=∂h2jT . Here the indices S, tot, and B stand for open
system, total system, and bare bath, respectively. This particu-
lar form also ensures the validity of the third law of thermo-
dynamics provided that the individual entropies of the total
system and the environment vanish when the temperature
approaches the absolute zero point (Hänggi and Ingold, 2006).
As a difference of two quantities, at finite coupling strength the
entropy as well as the specific heat and, at finite coupling, the
susceptibilities need not comply with their standard positivity
properties: The entropy and the specific heat may become
negative in certain parameter regions and the susceptibility
matrix may also violate positivity. Examples are given later.
Finally, we note that the construction of the thermo-

dynamic potentials of an open system is not restricted to
canonical states of the total system but rather can be extended
to pressure or grand canonical ensembles with fluctuating
volume or particle number, respectively. For example, with the
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replacement of the Boltzmann factor e−βHtotðVÞ of the total
system at fixed volume V with

R
dVe−β½HtotðVÞþpV�, allowing

for volume fluctuations controlled by the external pressure p
one obtains in an analogous way for the Hamiltonian of
mean force

H�ðβ; pÞ ¼ −β−1 ln
R
dVTrBe−β½HtotðVÞþpV�R
dVTrBe−β½HBðVÞþpV� ; ð35Þ

and accordingly for the pressure-dependent partition function
of the open system one obtains ZSðβ;pÞ¼Ztotðβ;pÞ=ZBðβ;pÞ,
where ZXðβ; pÞ ¼

R
dVTrXe−β(HXðVÞþpV) for X ¼ tot; B. A

possible dependence on further parameters λ has been sup-
pressed so as not to overburden the notation. All thermody-
namic potentials, such as the enthalpy and entropy as well as
their derivatives, are obtained from the system Gibbs free
energy given by GSðβ; pÞ ¼ −β−1 lnZSðβ; pÞ. Consequently,
they are again determined as the differences of the respective
functions of the total system and the bare bath, guaranteeing
thermodynamic consistency.13

C. Statistical mechanical expressions of the thermodynamic
potentials

The statistical mechanical expression for the free energy of
an open system with strong coupling is of the same formal
structure as weak coupling, with the Hamiltonian of mean
force replacing the bare Hamiltonian. Hence, for the free
energy FSðβ; λÞ one obtains from Eqs. (25) and (33) that

FSðβ; λÞ ¼ −β−1 ln Tre−βH�ðβ;λÞ: ð36Þ

When going from the free energy to the internal energy by
means of Eqs. (12), (33), and (36) one finds

USðβ; λÞ ¼ hH�ðβ; λÞiS þ β

�∂H�ðβ; λÞ
∂β

�
S
; ð37Þ

where h•iS ¼ TrS • ρSðβ; λÞ denotes the average with
respect to the equilibrium system density matrix ρSðβ; λÞ ¼
Z−1
S e−βH

�ðβ;λÞ in the quantum case. In the classical case, the
trace must be replaced by the respective phase-space integral
and the density matrix by the respective phase-space pdf. The
first term on the right-hand side corresponds to the standard
expression of the internal energy in terms of the equilibrium
average of the system Hamiltonian. The second term, which is
specific for open systems interacting with their environments
at a nonvanishing strength, is a direct consequence of the
temperature dependence of the Hamiltonian of mean force.
Expressing the internal system energy with Eqs. (17) and (34)
as the difference of the internal energies of the total system
and the bare bath, one obtains an alternative expression of the

form (Hänggi and Ingold, 2006; Hänggi, Ingold, and Talkner,
2008)

USðβ; λÞ ¼ hHSðλÞiS þ hHSBitot þ hHBitot − hHBiB: ð38Þ
Here h•itot ¼ TrSB • ρtotðβ; λÞ with the trace over the product
Hilbert space of the system and the environment TrSB ¼
TrSTrB indicates an average over the canonical state of the
total system, and, as previously defined, h•iB ¼ TrB • ρBðβÞ is
the average over the canonical state of the bare environment
ρBðβÞ ¼ Z−1

B ðβÞe−βHB . The last three terms on the right-hand
side of Eq. (38) describe the deviation of the internal energy
from the average Hamiltonian of the bare system due to the
interaction induced system-environment correlations. They
become negligible in the aforementioned weak coupling
limit and also in exceptional cases such as for classical
open systems with a single degree of freedom in contact
with a Caldeira-Leggett-type heat bath (Bogolyubov, 1945;
Magalinskii, 1959; Ford, Kac, and Mazur, 1965; Zwanzig,
1973; Caldeira and Leggett, 1983; Hänggi, Talkner, and
Borkovec, 1990). Note that in spite of the λ independence
of the HamiltoniansHSB andHB their averages with respect to
the total equilibrium density matrix ρtot do, in general, depend
on λ. Neither these terms nor the internal energy of the bare
bath must be neglected, or are only partly taken into account,
as one may find in the literature (Sekimoto, 1998; Seifert,
2012; Jarzynski, 2017; Strasberg et al., 2017; Dou et al., 2018;
Hsiang et al., 2018).14

For the entropy of an open system one finds from Eq. (13)
in combination with Eqs. (25) and (33) the expression

SSðβ; λÞ ¼ kB
∂T lnZSðβ; λÞ

∂T
¼ kB lnZS − kBβ

∂
∂β lnZS

¼ S(ρSðβ; λÞ)þ kBβ2
�∂H�ðβ; λÞ

∂β
�

S
: ð39Þ

Here SðρÞ denotes the von Neumann entropy of the density
matrix ρ, SðρÞ ¼ −kBTrρ ln ρ for quantum systems (von
Neumann, 1955), and for classical systems the continuous
Shannon entropy SðρÞ ¼ −kB

R
dxρðxÞ ln ρðxÞ of the phase-

space pdf with respect to a properly defined dimensionless
infinitesimal phase-space volume dx (Wehrl, 1978).15 As for

13In the so-called bare representation suggested by Jarzynski
(2017), the entropy is given by the Shannon entropy of the reduced
open system phase-space pdf, and hence the bare representation
violates thermodynamic consistency in general beyond the weak
coupling regime.

14The argument stated by Seifert (2019) and Strasberg and
Esposito (2020), that only differences of the same thermodynamic
quantities at the beginning and the end of a thermodynamic process
are of relevance, restricts the applicability of the corresponding
approach to isothermal processes at constant external parameters. See
also the discussion by Talkner and Hänggi (2020).

15While the von Neumann entropy remains unchanged under
unitary transformations, and likewise the Shannon entropy is
invariant under canonical transformations of phase-space variables,
the latter is not invariant under general transformations (Marsh,
2013). This is so because ρðxÞ transforms under any transformation
x → y ¼ fðxÞ as a density, i.e., ρ̄ðyÞ ¼ ρ(f−1ðyÞ)=jdy=dxj and, due
to the presence of the Jacobian jdy=dxj, not as a scalar function. This
renders the Shannon entropy of a marginal pdf, as for the configu-
ration space or a part of it, an ill defined expression.
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the internal energy of open systems outside the weak coupling
regime, an additional contribution to the standard von
Neumann–Shannon form of entropy exists, in general, due
to the temperature dependence of the Hamiltonian of mean
force. This guaranties thermodynamic consistency, which
means that the free and internal energy and the entropy are
related to each other in the standard way expressed in Eq. (14).
The presence of the extra term though leads to the fact that the
thermodynamic entropy of an open system deviates from the
information entropy according to Shannon. Because the
Hamiltonian of mean force H�ðβ; λÞ is not uniquely deter-
mined by the reduced density matrix ρSðβ; λÞ, the thermody-
namic entropy cannot be expressed as a functional of the
reduced state of the open system alone.
The entropy of an open system can likewise be

expressed in terms of the Kullback-Leibler divergence
S(ρtotðβ; λÞkρSðβ; λÞ ⊗ ρBðβ; λÞ) also known as the relative
entropy (Wehrl, 1978) between the total state ρtotðβ; λÞ and the
product state ρSðβ; λÞ ⊗ ρBðβ; λÞ and von Neumann entropies
of the system and the environment, given by

SSðβ; λÞ ¼ −S(ρtotðβ; λÞkρSðβ; λÞ ⊗ ρBðβ; λÞ)
þS(ρSðβ; λÞ)
þS(ρBðβ; λÞ) −S(ρBðβÞ): ð40Þ

Here the relative entropy of the density matrices (phase-space
pdf’s) ρ and τ is defined as SðρkτÞ ¼ Trρðln ρ − ln τÞ, and the
reduced environmental state ρBðβ; λÞ is given by

ρBðβ; λÞ ¼ TrSρtotðβ; λÞ: ð41Þ

Hence, the contribution to the system entropy on the last line
of Eq. (40) comes from the difference of the von Neumann
entropies of the reduced and the bare environmental state
ρBðβ; λÞ and ρBðβÞ, respectively; this difference vanishes in
the weak coupling limit. In addition, in the latter limit the
relative entropy vanishes and, as expected, the entropy of the
open system agrees with the von Neumann entropy.
The open system entropy can also be expressed in terms of

the conditional entropy of the system, given the state of the
environment, SðSjBÞ ¼ S(ρtotðβ; λÞ) −S(ρBðβ; λÞ) to read

SSðβ; λÞ ¼ SðSjBÞ þS(ρBðβ; λÞ) −S(ρBðβÞ): ð42Þ

Similarly, one may also express the open system entropy
SSðβ; λÞ in terms of the Bayesian sibling SðBjSÞ ¼
S(ρtotðβ; λÞ) −S(ρSðβ; λÞ) as

SSðβ; λÞ ¼ SðBjSÞ þS(ρSðβ; λÞ) −S(ρBðβÞ): ð43Þ

In passing, we note that for classical systems the conditional
entropy of the bath can be written in terms of the conditional
pdf wðyjxÞ characterizing the environmental phase-space
distribution once the system state x of the open system is
specified,

SðBjSÞ ¼ −kB
Z

dxdyρtotðx; y; β; λÞ lnwðyjxÞ; ð44Þ

where the conditional pdf wðyjxÞ is given by Eq. (32).
While the von Neumann entropy is always positive, none of

the equations (34), (39), or (42) guarantee that the entropy of
an open system may not take negative values.
Similarly, in view of Eq. (34), the specific heat CS and the

susceptibilities χS may assume negative values without
indicating any instability of the considered open system
(Campisi, Talkner, and Hänggi, 2009c; Ingold, Hänggi, and
Talkner, 2009; Campisi, Zueco, and Talkner, 2010). The
specific heat can be equally expressed in terms of the partition
function as

CS ¼ kBβ2
∂2 lnZS

∂β2 : ð45Þ

Consequently, in view of the possibility of a negative specific
heat, the internal system energy US ¼ ∂ lnZS=∂β may
decrease with increasing temperature.

D. Examples

Before we consider specific examples, we classify those
situations in which an open system couples to its environment
with a strength beyond the weak coupling limit. As indicated
in Fig. 1, we may distinguish among roughly three scenarios.
In the first one, sketched in the left panel, a single microscopic
object with a few degrees of freedom interacts with its
environment; the immediate interaction may be restricted to
the close vicinity of this object but may also extend out into
more distant parts of the environment. In any case, the weak
coupling limit is reached only if, in thermal equilibrium, the
interaction energy is negligible compared to the energy of the
system degrees of freedom. The second class, sketched in
the middle panel of Fig. 1, comprises open systems of
mesoscopic, or even macroscopic, size that can be distin-
guished by their shape and physical properties from the
surrounding environment. Here the weak coupling regime
sets in when the interaction potential is short range with a
characteristic length that is much shorter than the typical linear
dimension of the system. Deviations from weak coupling
appear in cases of strong short-range interactions and also in
relatively weak long-range interactions. The third scenario,
pictured in the right panel of Fig. 1, is essential for the theory
of solutions (Roux and Simonson, 1999) and can be exem-
plified by a grain of salt dissolved in a glass of water. As in the
second scenario the amount of substance constituting the open
system may vary from mesoscopic, say, the size of a cluster of
a few hundred atoms, to macroscopic. However, in contrast to
the previous case, many of the physical properties including
the spatial extension may change fundamentally. In this
scenario the weak coupling limit is hardly ever reached.
The solution scenario evidently illustrates the influence of the
specific properties of the environment on those of the open
system: The same solute may behave quite differently in
different solvents.
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1. Damped harmonic oscillator

A damped harmonic oscillator in contact with a heat bath at
the inverse temperature β can be described in terms of the
Zwanzig-Caldeira-Leggett model (Zwanzig, 1973; Caldeira
and Leggett, 1983), where an oscillator of massM, positionQ,
and momentum P couples to a bath of many other harmonic
oscillators mimicking the environment. The Hamiltonian of
the total system is given by

Htot ¼
P2

2M
þ 1

2
MΩ2Q2

þ
X
n

�
p2
n

2mn
þ 1

2
mnω

2
n

�
qn −

Cn

mnω
2
n
Q

�
2
�
; ð46Þ

where Ω is the frequency of the uncoupled oscillator, while
mn, ωn, qn, and pn are the mass, frequency, position, and
momentum of the nth bath oscillator. The parameters Cn
determine the coupling strength between the system oscillator
and the nth bath oscillator. For the behavior of the central
oscillator, with respect to both its dynamical and equilibrium
properties, it is sufficient to specify the so-called memory
kernel (Grabert, Schramm, and Ingold, 1988; Weiss, 2008)

γðtÞ ¼ 1

M

X
n

C2
n

mnω
2
n
cosωnt: ð47Þ

The partition function ZSðβ;ΩÞ can be expressed in terms
of the Laplace transform of the memory kernel γ̂ðsÞ ¼R
∞
0 e−stγðtÞ as an infinite product of the form (Weiss, 2008)

ZSðβ;ΩÞ ¼
1

βℏΩ

Y∞
n¼1

ν2n
Ω2 þ ν2n þ νnγ̂ðνnÞ

; ð48Þ

where νn ¼ 2πn=ℏβ and n ¼ 1; 2;… denote the Matsubara
frequencies. The free energy resulting from Eqs. (33) and (48)
agrees with Ford, Lewis, and O’Connell’s “remarkable for-
mula” (Ford, Lewis, and O’Connell, 1985) expressing
FSðβ;ΩÞ as

FSðβ;ΩÞ ¼
1

π

Z
∞

0

dωfðβ;ωÞIm
�
d ln χðωÞ

dω

�
: ð49Þ

Here fðβ;ωÞ ¼ β−1 lnð2 sinh βℏω=2Þ is the free energy of an
isolated harmonic oscillator with frequency ω and χðωÞ ¼
1=½MðΩ2 − ω2Þ − iωγ̂ðiωÞ� denotes the susceptibility of the
damped oscillator.
For the Drude model, which is specified by γðtÞ ¼

γωDe−ωDt with the Drude frequency ωD and the static damp-
ing constant γ, the partition function of the oscillator can be
expressed in closed form (Grabert, Weiss, and Talkner,
1984) as

ZSðβ;ΩÞ ¼
βℏΩ
4π2

Γðλ1=νÞΓðλ2=νÞΓðλ3=νÞ
ΓðωD=νÞ

; ð50Þ

where ΓðzÞ denotes the gamma function (Abramowitz and
Stegun, 1964), λi; i ¼ 1; 2; 3 denotes the solutions of the cubic
equation λ3 − ωDλ

2 þ ðΩ2 þ γωDÞλ − ωDΩ2 ¼ 0, and ν ¼ ν1
denotes the fundamental Matsubara frequency. The first
moments hQi and hPi of position and momentum, respec-
tively, vanish; the second moments can be expressed in
terms of logarithmic derivatives of the partition function
yielding

hQ2i ¼ −
1

M
βΩ

∂ lnZS

∂Ω ; ð51Þ

hPQi ¼ ℏ
2i
; ð52Þ

hP2i ¼ M2Ω2hQ2i − 2Mγ

β

∂ lnZS

∂γ : ð53Þ

Note that the symmetrized position-momentum correlation
function hPQþQPi vanishes because of the time-reversal
invariance of the thermal equilibrium state. Because the state
of the total system is Gaussian, the reduced density matrix is
of Gaussian form and hence is completely determined by its
first two moments (Talkner, 1981). The reduced density
matrix of the damped oscillator then becomes

ρS ¼ Z−1
effe

−βHeff ; ð54Þ

FIG. 1. Different realizations of system-environment coupling. Left panel: a single microscopic entity interacting with the
neighborhood of its environment. Middle panel: all parts of a mesoscopic system interacting with at least a part of the environment.
This strong coupling situation persists for a macroscopic system if the interaction forces are long-range. Right panel: solute in a solvent
such as salt in water. Typically, the dipolar water molecules orient themselves in the vicinity of an ion as a way to shield its charge, as
sketched in the magnifications.
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where Zeff ¼ 2 sinhðβℏΩeff=2Þ and the effective Hamiltonian
is quadratic in position and momentum, given by

Heff ¼
1

2Meff
P2 þ 1

2
MeffΩ2

effQ
2: ð55Þ

The renormalized frequency and mass can be expressed as
(Grabert, Weiss, and Talkner, 1984)

Ωeff ¼
1

ℏβ
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hP2ihQ2i

p
þ ℏ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hP2ihQ2i
p

− ℏ=2
; ð56Þ

Meff ¼
1

Ωeff

ffiffiffiffiffiffiffiffiffiffi
hP2i
hQ2i

s
: ð57Þ

Note that the Hamiltonian of mean force does not coincide
with Heff , despite other claims (Philbin and Anders, 2016;
Miller, 2018), because the resulting normalizing effective
partition function Zeff ¼ TrSe−βHeff ¼ ½2 sinhðβℏΩeff=2Þ�−1
does not agree with the open system partition function ZS
that is given by Eq. (50). The Hamiltonian of mean force is
instead given by

H� ¼ Heff þ β−1 lnðZeff=ZSÞ: ð58Þ

For small temperatures, βℏΩeff approaches a finite value,
depending on γ=Ω and ωD=Ω, with the consequence that the
von Neumann entropySðρSÞ=kB ¼ βℏΩeff=2 cothβℏΩeff=2−
2 ln½2 sinhðβℏΩeff=2Þ� of the oscillator converges in this limit
to a value other than zero, indicating an entanglement between
the oscillator and its environment (Hörhammer and Büttner,
2008) in the ground-state wave function of the total system. In
contrast to the von Neumann entropy SðρSÞ the thermody-
namic entropy SSðβÞ vanishes at low temperatures, in agree-
ment with the third law of thermodynamics (Hänggi and
Ingold, 2006; Hänggi, Ingold, and Talkner, 2008; Ingold,
Hänggi, and Talkner, 2009).
The classical limit for the damped harmonic oscillator can

be performed by letting the dimensionless parameter βℏΩ
approach zero, yielding for the partition function ZS the
classical value Zcl

S ¼ 1=βℏΩ of a bare harmonic oscillator in a
canonical state at the inverse temperature β. Likewise, the
Hamiltonian of the mean force approaches in the classical
limit the Hamiltonian of the bare oscillator independent of the
interaction strength. This must not be seen as specifically
classical behavior but instead as a peculiarity of the Zwanzig-
Caldeira-Leggett model and related models for systems with a
single degree of freedom.16 The modeling of the environment
according to Ullersma (1966) differs from the Zwanzig-
Caldeira-Leggett model in the absence of the counterterm

P
k C

2
k=ð2mkω

2
kÞQ2 in the total Hamiltonian. This term then

appears with the opposite sign in the classical Hamiltonian of
mean force.17

Another example displaying a nontrivial Hamiltonian of
mean force is given by two particles coupling to the same
Zwanzig-Caldeira-Leggett-type environment (Duarte and
Caldeira, 2006; Valente and Caldeira, 2010). To be specific,
we consider a classical system described by the total
Hamiltonian

Htot¼HSþ
XN
n¼1



p2
n

2mn
þ1

4
mnω

2
n

X
k¼1;2

�
qn−

2Cn;k

mnω
2
n
Qk

�
2
�
; ð59Þ

where HS is the Hamiltonian of the isolated system with
2 degrees of freedom specified by the coordinates Q1 and Q2,
which both couple to the coordinates qn of N harmonic
oscillators with coupling strength Cn;k, with k ¼ 1; 2 labeling
the system’s degrees of freedom. The Hamiltonian of mean
force can be calculated by performing Gaussian integrals over
the environment degrees of freedom yielding

H� ¼ HS þ δV�; ð60Þ

where the potential renormalization is given by

δV� ¼
X
n

ðCn;1Q1 þ Cn;2Q2Þ2
2mnω

2
n

: ð61Þ

This potential causes, in general, environment induced forces,
both on the center of mass Q¼ðM1Q1þM2Q2Þ=ðM1þM2Þ
and on the relative coordinate x ¼ Q1 −Q2. The force on the
center of mass vanishes if the total interaction constants are
equal, i.e., for

P
n Cn;1=ð2mnω

2
nÞ ¼

P
n Cn;2=ð2mnω

2
nÞ. The

force acting on the relative coordinate can be either attractive
or repulsive depending on the parameter values. Because of
the temperature independence of the potential of mean force,
the thermodynamic entropy of the open system SS, as
specified in Eq. (39), coincides with the Gibbs-Shannon
entropy SðρSÞ of the reduced system pdf ρS ¼ Z−1

S e−βH
�
.

The partition function ZS of the open system coincides with
the ratio of the total system and the bare environment, in
accordance with Eq. (25).

2. Damped free particle

In a manner similar to the case of a damped harmonic
oscillator, a damped free particle of mass M can be modeled
by means of the Zwanzig-Caldeira-Leggett Hamiltonian (46)
by disregarding the parabolic system potential, that is, by
setting Ω ¼ 0 (Grabert, Schramm, and Ingold, 1988). To
prevent the particle from escaping to infinity and guarantee the
existence of a normalizable thermodynamic equilibrium state,
a confining box of large length L is introduced. In spite of its16For any total Hamiltonian with a potential functionUðfqg; QÞ ¼

VðQÞ þ Fðfqn − gnQgÞ jointly describing the potential energy of the
system and of the environmental degrees of freedom as well as the
interaction between system and environment, the integral in Eq. (27)
representing the renormalized Boltzmann factor can be performed
with the help of the coordinate transformation qn − gnQ → q̄n for all
n, yielding unity such that Eq. (30) results in V�ðQÞ ¼ VðQÞ.

17For a harmonic oscillator this frequency renormalization may
render the system unstable, restricting the choice of the possible
environmental parameters. No restrictions of this kind exist for
systems with potentials that are more strongly repulsive at infinity
than harmonic ones.
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seeming simplicity, an exact expression for the partition
function of the total system and consequently also for the
free damped free particle is not known. Only for sufficiently
high temperatures, for which the Gauss sum representing the
partition function Z0

S ¼
P

n e
−βEgn2 of the bare system con-

verges to the respective Gaussian integral,18 can the partition
function ZS of the damped particle be approximated by the
following expression (Hänggi, Ingold, and Talkner, 2008):

ZS ¼
L
ℏ

�
2πM
β

�
1=2 Γð1þ x1ÞΓð1þ x2Þ

Γ(1þ ℏβωD=ð2πÞ)
; ð62Þ

where

x1;2 ¼
ℏβωD

4π
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γ=ωD

p
Þ: ð63Þ

Here Eg ¼ π2ℏ2=ð2ML2Þ denotes the ground-state energy
of the free particle in a box of length L. Based on the
approximate expression (62) of the partition function the
specific heat of a damped free particle may be expressed as
(Hänggi, Ingold, and Talkner, 2008)

CS=kB ¼ x21ψ
0ðx1Þ þ x22ψ

0ðx2Þ

−
�
ℏβωD

2π

�
2

ψ 0
�
ℏβωD

2π

�
−
1

2
; ð64Þ

where ψ 0ðzÞ is the trigamma function (Abramowitz and
Stegun, 1964). This expression for the specific heat inter-
polates between the classical value 1=2 (which is reached in
the limit of an undamped particle γ → 0 and in the high
temperature limit T → ∞) and the value C ¼ 0 for T → 0 in
accordance with the third law of thermodynamics. For strong
damping γ=ωD > 1, the slope of the specific heat as a function
of temperature at T ¼ 0 becomes negative with the conse-
quence that a region of temperatures exists in which the
specific heat is negative. This does not indicate any instability
of the system but instead the circumstance that, with raising
temperature, more energy may be stored in the interaction
with the environment than flows into the particle’s kinetic
energy.
Using Eq. (62) for the partition function in combination

with Eq. (13) one finds an entropy that does not vanish for
T → 0. This seeming violation of the third law is due to the
factorization of the partition function ZS in the classical free
particle partition function and an environmental term. This
approximation disregards the discreteness of the free particle
spectrum, thereby leading to a violation of the third law.
An even more complicated behavior of the specific heat was

reported by Spreng, Ingold, and Weiss (2013) for other
spectral densities than those leading to the Drude model.
Coming from positive values at higher temperatures, the
specific heat becomes negative for lower temperatures, then
positive again for even lower temperatures, but formally fails

to vanish at T ¼ 0. This apparent violation of the third law is
again a consequence of a factorization of partition function
analogous to Eq. (62).

3. Jaynes-Cummings-type model

As another exactly solvable model we consider a two-level
system interacting with an environment made up by a single
harmonic oscillator. The Hamiltonian of the total system is

Htot ¼
ϵ

2
σz þ ℏω

�
a†aþ 1

2

�
þ κσz

�
a†aþ 1

2

�
: ð65Þ

Here σz is the Pauli spin matrix and a and a† are annihilation
and creation operators of the oscillator, respectively. The
parameters ϵ, ω, and κ specify the energy difference of the
bare two-level atom, the frequency of the oscillator, and
the interaction strength between the two-level atom and the
oscillator, respectively. Note that in the Hamiltonian (65)
the coupling term commutes with the first two terms
describing the free evolution of the oscillator and spin,
respectively. Hence, in contrast to the common Jaynes-
Cummings model (Jaynes and Cummings, 1963), the inter-
action is purely dephasing without causing transitions
between the eigenstates of the isolated subsystems. For the
spectrum of the total Hamiltonian, which is given by En;s ¼
ϵs=2þ ðℏωþ κsÞðnþ 1=2Þ, s ¼ �1, n ¼ 0; 1; 2;…, to be
bounded from below, the inequality ℏω > jκj must hold. The
equality sign is excluded because otherwise the spectrum
contains a point with infinite degeneracy, and therefore the
system may not assume a canonical equilibrium.
The partition function of the total system is determined to

yield (Campisi, Talkner, and Hänggi, 2009c)

Ztot ¼ qþ þ q− ð66Þ

with the abbreviations

q� ¼ e−βℏω=2e∓βðϵþκÞ

1 − e−βðℏω�κÞ : ð67Þ

In combination with the partition function of the bare
harmonic oscillator ZB ¼ 1=ð2 sinh βℏω=2Þ, the partition
function of the open two-level system becomes

ZS ¼ ðqþ þ q−Þ2 sinhðβℏω=2Þ; ð68Þ

differing from the partition function of the bare two-level
system Z0

S ¼ 2 coshðβϵ=2Þ.
The Hamiltonian of mean force results in

H� ¼ ϵ�

2
σz þ γ; ð69Þ

with the renormalized level distance given by

ϵ� ¼ ϵþ κ þ 2

β
artanh

�
e−βℏω sinh βκ

1 − e−βℏω cosh βκ

�
; ð70Þ

and the energy shift γ given by

18A convergence of the Gauss sum to the classical free
particle partition function better than 1% is achieved for βEg ¼
βπ2ℏ2=ð2ML2Þ ⪅ 10−4.
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γ ¼ 1

2β
ln

�
1 − 2e−βℏω cosh βκ þ e−2βℏω

ð1 − e−βℏωÞ2
�
: ð71Þ

The change of the level spacing Δ ¼ ϵ� − ϵ and the energy
shift γ vanishes for κ ¼ 0 and diverges when the absolute
value of κ approaches ℏω, whereby Δ is an odd function and γ
is an even function of κ.
The entropy SS ¼ kB lnZS − kBβ∂ lnZS=∂β given by

Eq. (39) and the specific heat CS ¼ kBβ2∂2 lnZs=∂β2 vanish
in the limit β → ∞, in agreement with the third law of
thermodynamics. If the level distance of the harmonic oscillator
is less than that of the two-level atom, i.e., if ℏω < ϵ, both the
entropy and the specific heat become negative at low temper-
atures for negative coupling constants κ < 0; see Fig. 2.

4. Isotropic XY spin chain

We consider a linear chain of N ¼ NS þ NB spins 1=2, of
which the first NS spins constitute the system and the
remaining NB spins constitute the environment sketched in
Fig. 3. The chain has free ends and each spin experiences the
same magnetic field h and nearest neighbor interaction of
strength J. It is characterized by the Hamiltonian

HN ¼ h
2

XN
j¼1

σzj þ
J
2

XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ: ð72Þ

This model is exactly solvable by a Jordan-Wigner trans-
formation (Mikeska and Pesch, 1977) yielding for the parti-
tion function

ZN ¼ Tre−βHN ¼ e−βNh=2
YN
k¼1

ð1þ e−βλ
ðNÞ
k Þ; ð73Þ

where

λðNÞ
k ¼ h − 2J cos

πk
N þ 1

: ð74Þ

With the first NS spins of this chain as the system and the
remaining NB ¼ N − Ns spins as the bath, one can recast the
total Hamiltonian in the form Htot ≡HN ¼ HS þHB þHSB
with

HS ¼
h
2

XNS

j¼1

σzj −
J
2

XNS−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ; ð75Þ

HB ¼ h
2

XN
j¼NSþ1

σzj −
J
2

XN−1

j¼NSþ1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ; ð76Þ

HSB ¼ −
J
2
ðσxNS

σxNSþ1 þ σyNS
σyNSþ1Þ: ð77Þ

The partition function of the system part follows as

ZS ¼
ZN

ZN−NS

¼ e−βNSh=2

Q
N
k¼1 ð1þ e−βλ

ðNÞ
k ÞQ

N
k¼NSþ1 ð1þ e−βλ

ðN−NSÞ
k Þ

: ð78Þ

Figure 4 depicts the specific heat and entropy of open chains of
different lengths for two different on-site magnetic fields h as
functions of the temperature. Depending on the strength of the
on-site magnetic field and on the length of the open chain, the
entropy and the specific heat display regions with negative
values. As in the case of negative specific heat observed for a
damped free particle at low temperatures, this does not indicate
any instability of the system but instead the capacity of the
interaction with the environment to effectively store energy
when the temperature is rising. For T → 0, both the entropy and
the specific heat vanish in accordance with the third law of
thermodynamics. The magnetization M ¼ ∂FS=∂hjβ and the
susceptibility χ ¼ ∂M=∂hjβ following with FS ¼ −β−1 lnZS
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FIG. 2. Role of interaction strength for entropy and specific heat
of a two-level system with purely dephasing coupling to an
oscillator [Eq. (65)]. The left panels display the entropy and the
right panels the specific heat of a two-level atom in contact with a
single harmonic oscillator as functions of the dimensionless
temperature kBT=ϵ varying on the horizontal axes and of the ratio
of the coupling constant and the two-level atom splitting κ=ϵ
within the allowed region jκj < Ω≡ ℏω. The ratio of the
oscillator and the atom level splitting is Ω=ϵ ¼ 3 in the upper
two panels and Ω=ϵ ¼ 1=3 in the lower two panels. From
Campisi, Talkner, and Hänggi, 2009c.

FIG. 3. XY spin chain setup at inverse temperature β. The left
NS spins depicted as squares constitute the system, while the
remaining NB spins (circles) compose the environment. From
Campisi, Zueco, and Talkner, 2010.
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from ZS according to Eq. (78) are illustrated for different on-site
magnetic fields and chain lengths in Fig. 5.19 For chains with
large interaction J > h, the susceptibility assumes negative
values at low temperatures.

IV. GOING INTO NONEQUILIBRIUM

There is a wide variety of circumstances that may drive a
system out of thermal equilibrium, either temporarily or
permanently (Keizer, 1987; Zwanzig, 2001). Here we restrict
ourselves to time-dependent changes of one or several of the
system’s parameters λ. The energy change involved in such a
process is identified with the work done on the system. To
properly introduce this notion we first restrict ourselves to

isolated systems, then consider open systems in the absence of
particle exchange. The pertinent Jarzynski equalities
(Jarzynski, 1997a) and Crooks relations (Crooks, 1999) are
reviewed in both situations.

A. Work in thermally isolated systems

1. Classical systems

The work performed on an isolated system by a time-
dependent variation of a system parameter is defined as the
resulting change of the systems energy. For a classical system
this prescription leads for the work w performed by the
variation of a system parameter λðtÞ between t¼0 and t ¼ τ to

w ¼ H(Xðx; τÞ; λðτÞ) −H(x; λð0Þ); ð79Þ

where x denotes a point in the phase space of the system and
H(x; λðtÞ) denotes the system’s Hamiltonian. It is assumed
here that this time-dependent Hamiltonian is gauged such that
its value coincides with the energy of the system.20 With
Xðx; tÞ denoting the solution of Hamilton’s equations of
motion starting at Xðx; 0Þ ¼ x the difference of the
Hamiltonians at the final point and at the initial point specifies
the difference in energy and hence the work. Here we assume,
following Jarzynski (1997a), that the work is determined by
the difference of energies resulting from the full Hamiltonians.
This work is known as inclusive, or Gibbsian, work. Bochkov
and Kuzovlev (1981a, 1981b) used a different definition
of work. They assigned as final energy the value of the
Hamiltonian at the initial parameter value at the propagated
phase-space point, yielding

wBK ¼ H(Xðx; τÞ; λð0Þ) −H(x; λð0Þ): ð80Þ
This work definition is also referred to as exclusive work
(Jarzynski, 2007). Here we restrict the discussion to the
inclusive work defined in Eq. (79). More details on the
exclusive work were given by Jarzynski (2007), Campisi,
Hänggi, and Talkner (2011), and Campisi, Talkner, and
Hänggi (2011). Note that the value of the work depends on
both the initial phase-space point x and the protocol
Λ ¼ fλðtÞj0 ≤ t ≤ τg, according to which the parameter
λðtÞ changes in time. If the initial point x is randomly chosen,
say, from the canonical equilibrium pdf, the work becomes a
random quantity that itself can be characterized by a pdf.
An equivalent formulation of the work defined in Eq. (79) is

obtained by rewriting the difference of the Hamiltonians as an
integral of the time derivative over the duration of the
protocol. Taking into account that the total time derivative
of a Hamiltonian as it evolves along a trajectory coincides
with its partial derivative, one is led to the following
expression for the classical work:

w ¼
Z

τ

0

dt
∂H(Xðx; tÞ; λðtÞ)

∂λðtÞ _λðtÞ; ð81Þ

FIG. 4. XY spin chain: specific heat and entropy. The specific
heat and the entropy per spin of spin chains are displayed in the
left and right panels, respectively, for different magnetic fields
h ¼ 3J=2 (upper panels) and h ¼ J=2 (lower panels) and for
different combinations of system and bath chain lengths as
indicated by different lines as functions of the reduced temper-
ature kBT=J. From Campisi, Zueco, and Talkner, 2010.

FIG. 5. XY spin chain: magnetization and susceptibility.The
magnetization M=NS and the susceptibility χ=NS per spin are
displayed as functions of the reduced temperature for different
chain lengths in the left and right panels, respectively. The upper
and lower panels refer to different on-site magnetic fields. From
Campisi, Zueco, and Talkner, 2010.

19Note that for the magnetization and the susceptibility the
subtraction of the bare bath contribution is mandatory because the
magnetic field represents a global parameter.

20For a more exhaustive discussion of the gauge dependence of
time-dependent Hamiltonians see Campisi, Hänggi, and Talkner
(2011); cf. Sec. III.A therein.
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where _λðtÞ denotes the time derivative of λðtÞ.21 The value of
the integrand at the time t gives the power that is supplied to
the system by the parameter variation at this instant.
For an initial phase-space pdf ρ0ðxÞ the resulting pdf pΛðwÞ

of the work is given by (Campisi, Hänggi, and Talkner, 2011)

pΛðwÞ ¼
Z

dxδ½w −H(Xðx; τÞ; λðτÞ)þH(x; λð0Þ)�ρ0ðxÞ

¼
Z

dxδ

�
w −

Z
τ

0

dt
∂H(Xðx; tÞ; λðtÞ)

∂λðtÞ _λðtÞ
�
ρ0ðxÞ:

ð82Þ

Focusing on a canonical initial state at inverse temperature
β, one obtains for the average of the exponentiated negative
work per thermal energy βw the Jarzynski equality (Jarzynski,
1997a)

he−βwiΛ ¼ e−βΔF; ð83Þ

where h·iΛ ¼ R
dwpΛðwÞ denotes the average with respect to

the work pdf [Eq. (82)], and ΔF ¼ F(β; λðτÞ) − F(β; λð0Þ) is
the free energy difference of the canonical equilibrium states
at the final and initial parameter values, both at the same
temperature. For such isothermal processesΔF corresponds to
the maximal work that can be done reversibly by the system.
The direct use of the Jarzynski equality, in both numerical and
real experiments, as a means of estimating the change of the
free energy caused by a variation of a system’s parameter is
known to often be severely hampered by statistical problems
(Lechner and Dellago, 2007; Pohorille, Jarzynski, and Chipot,
2010; Kim et al., 2012; Deng, Jaramillo et al., 2017; Deng,
Tan et al., 2017). For classical open systems in contact with a
heat bath that are described by a Langevin equation (see
Sec. IV.B), the work distribution in the presence of slow
forcing can often be well approximated by a Gaussian
distribution with a vanishing variance in the quasistatic limit
(Hoppenau and Engel, 2013). A similar result holds for open
quantum Markovian processes described by a master equation
of the Lindblad type (Miller et al., 2019). As a consequence of
the Jarzynski equation the irreversible work then vanishes as it
does for a quasistatic isothermal macroscopic process. For
more general system setups, both the absence and the presence
of finite work fluctuations in the quasistatic limit have been
reported in the literature (Deng, Tan et al., 2017).
The most remarkable aspect of the Jarzynski equality is that

it applies to an arbitrary protocol that is not restricted to be
slow. In general, the finally reached state differs from the
thermal equilibrium state corresponding to the final parameter
value λðτÞ. Note that for thermally isolated forcing an
equilibrium state that might be reached at large times will
generally have a temperature differing from the initial one.
Only if the system stays in weak contact with a thermal

reservoir having the initial temperature, then the equilibrium
state with the system free energy F(β; λðτÞ) is approached for
an infinitely slow protocol. For fast protocols an equilibration
takes place only after a sufficiently long time subsequent to
the terminal protocol time τ. During the equilibration the so-
called irreversible work wirr ¼ w − ΔF is taken by the
reservoir. With Jensen’s inequality one obtains from the
Jarzynski equality that the average of the irreversible work
cannot become negative, in agreement with the second law of
thermodynamics, i.e.,

hwiΛ ≥ ΔF; ð84Þ

and consequently hwirriΛ ≥ 0. The average irreversible work is
proportional to the Kullback-Leibler divergence of the
actually reached final phase-space pdf ρðτÞ and the Gibbs
state [Eq. (8)]; hence, hwirriΛ ¼ TS½ρðτÞkρ(β; λðτÞ)� (Kawai,
Parrondo, and Van den Broeck, 2007).
To any forced process running according to a protocol

Λ ¼ fλðtÞj0 ≤ t ≤ τg a reverse force protocol Λ̄ðtÞ ¼
fϵλλðτ − tÞj0 ≤ t ≤ τg can be assigned, where it is assumed
that the instant Hamiltonians of the forward and backward
processes are related by the time-reversal operation
Hðq;p; λÞ → H̄ðq;p; λÞ≡Hðq;−p; ϵλλÞ, where λ comprises
all parameters on which the Hamiltonian depends, including
those that remain fixed during the force protocol. Here ϵλ
denotes the parity of the parameter λ under time reversal. For
the pair of so-called forward and backward processes, both
starting in a canonical equilibrium state at the same inverse
temperature β and at the respective parameter values λð0Þ and
ϵλλðτÞ, the work pdfs pΛðwÞ and pΛ̄ðwÞ are connected by the
Crooks relation (Crooks, 1999)

pΛðwÞ ¼ e−βðΔF−wÞpΛ̄ð−wÞ: ð85Þ

This implies that the occurrence of work smaller than the free
energy change ΔF is exponentially small (Jarzynski, 2011),
i.e.,

P½w < ΔF − ζ�≡
Z

ΔF−ζ

−∞
dwpΛðwÞ ≤ e−βζ. ð86Þ

This can be understood as a further specification of the second
law of thermodynamics (Jarzynski, 2007, 2011).
Multiplying both sides of the Crooks relation [Eq. (85)] by

the factor e−βw and integrating over the work one recovers the
Jarzynski equality [Eq. (83)].

2. Quantum systems: The two point projective energy
measurement scheme (TPPEMS)

At first glance the translation of a classical work expression
to quantum mechanics might seem obvious by simply
replacing the Hamiltonian functions in the equivalent classical
work definitions [Eqs. (79) and (81)] with the corresponding
operators. This naive approach fails to lead to a proper
work operator for various reasons. While in the classical
expression [Eq. (79)] the Hamiltonians are evaluated at
specific phase-space points that are connected by a trajectory
of the Hamiltonian dynamics, the corresponding Hamiltonian

21For a forced parameter λðtÞ that couples to the system via
a generalized coordinate QðxÞ according to H(x; λðtÞ) ¼
H0ðxÞ −QðxÞλðtÞ, the work expression simplifies to w ¼
−
R
τ
0 dtQ(Xðx; tÞ)_λðtÞ. Hence, from an experimentally observed

trajectory Q(Xðx; tÞ), t ∈ ½0; τ� the work can be determined.
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operators are independent of the initial and time-evolved states
of the system. For the equivalent classical work expression
[Eq. (81)] the phase-space trajectory connecting these states
has to be known. Owing to the lack of a classical trajectory in
the quantum case, however, this expression cannot be directly
converted to a work expression for the quantum world.22

Further, in classical systems the specification of the energy
can, in principle, be performed without any perturbation of the
system. For a quantum system, gaining information about the
system, from which its energy can be inferred, necessitates
the interaction with an auxiliary system such as a measure-
ment apparatus, which, in turn, causes a backaction on the
considered system. Hence, the specific tools employed to
identify energies of a system from which the work is
determined constitute a relevant part of any operational
definition of quantum work.
For definiteness, we consider the TPPEMS. In this

measurement scheme a projective energy measurement is
performed on the system in the state ρ0 immediately before
the force protocol Λ starts, i.e., according to our previous
convention, at t ¼ 0, and the second one at t ¼ τ immediately
after the protocol is finished (Kurchan, 2000; Tasaki, 2000;
Talkner, Lutz, and Hänggi, 2007). The joint probability to
observe the energies Enð0Þ and EmðτÞ is then given by

pΛðm; nÞ ¼ TrPmðτÞUΛPnð0Þρ0Pnð0ÞU†
Λ: ð87Þ

Here PkðtÞ denotes the operator projecting onto the eigen-
space of the Hamiltonian H(λðtÞ) ¼ P

k EkðtÞPkðtÞ with
eigenenergy EkðtÞ.23 Because of the first measurement the
initial density matrix ρ0 is projected onto the subspace with
Enð0Þ and subsequently propagated by the unitary time-
evolution operator

UΛ ¼ T e−i
R

τ

0
dtH(λðtÞ)=ℏ; ð88Þ

where T denotes the chronological time-ordering operator.
The work pdf pΛðwÞ follows from Eq. (87) as

pΛðwÞ ¼
X
m;n

δ(w − EmðτÞ þ Enð0Þ)pΛðm; nÞ: ð89Þ

Equivalently, the work statistics can be described by the
characteristic function GΛðuÞ ¼

R
dweiuwpΛðwÞ, which

assumes the form (Talkner, Lutz, and Hänggi, 2007)

GΛðuÞ ¼ TrðeiuHH(λðτÞ)e−iuH(λð0Þ)ρ̄0Þ ð90Þ

with the Hamiltonian HH(λðτÞ) ¼ U†
ΛH(λðτÞ)UΛ in the

Heisenberg picture; further, ρ̄0 ¼
P

n Pnð0Þρ0Pnð0Þ is the
initial density matrix projected onto the energy basis (Talkner,
Hänggi, and Morillo, 2008). Here it is worth noting that
the projection of the initial state due to the first energy
measurement has an impact on the average work hwiΛ ¼
Tr½HH(λðτÞ) −H(λð0Þ)�ρ̄0, which differs from the difference
of the average energies at the end and the beginning of the
force protocol. This average energy difference is given by
ΔhEi ¼ Tr½HH(λðτÞ) −H(λð0Þ)�ρ0 and is also known
as the untouched work (Talkner and Hänggi, 2016a). The
difference between hwiΛ and ΔhEi vanishes only if the
initial density matrix is diagonal with respect to the energy
basis of the initial Hamiltonian. In general, ΔhEi − hwiΛ may
be either positive or negative, and hence energy may seem-
ingly be gained or lost in the TPPEMS if compared to the
change of the average energies.24 Attempts to interpret
the energy mismatch in the spirit of Landauer’s principle
(Landauer, 1961) as equivalent to the gain of informa-
tion proposed by Deffner, Paz, and Zurek (2016) and
Kammerlander and Anders (2016), however, do not explain
why the first energy measurement is energetically relevant but
not the second one. Moreover, to translate information that can
be quantified as negative Shannon entropy one needs to
make contact with a thermal bath, even though the system
is isolated during the entire force protocol. In particular,
when the mismatch has a finite value because of a nonthermal
initial state there is no natural choice to assign a temperature
value and the information gain has no obvious energy
equivalent.
Note that the characteristic function of work differs in

form from one that specifies the statistics of an observable O.
In the latter case it had to take the form GðuÞ ¼ TreiuOρ.
Hence, one cannot characterize work by an observable
(Talkner, Lutz, and Hänggi, 2007). Yet the characteristic
function of work [Eq. (90)] satisfies the formal sufficient
and necessary conditions of being the Fourier transform of a
probability density. These are (i) GΛð0Þ ¼ 1, (ii) jGΛðuÞj ≤ 1,
and (iii)

R
dudvf�ðuÞGΛðu − vÞfðvÞ ≥ 0 for all integrable

complex valued functions fðuÞ (Lukacs, 1970).25

22The work calculated along Bohmian trajectories turns out to
depend on the particular representation of the initial state in terms of
pure states (Sampaio et al., 2018) and hence cannot be considered a
measurable quantity.

23In this general setting Hamiltonians with spectra containing
accumulation points and continuous parts can also be considered.
Because of the finite resolution of any measurement apparatus the
probability pΛðm; nÞ must then be replaced by the probability
pΛðA; BÞ ¼ TrPAðτÞUΛPBð0Þρ0PBð0ÞU†

Λ, where PCðtÞ projects on
all eigenstates with energies EðtÞ ∈ C, C ¼ A;B being subsets of the
spectrum captured by the two measurements at t ¼ 0; τ.

24As a simple example, one may consider a two-level atom whose
initial density matrix has diagonal elements p and 1 − p and non-
diagonal element q and q� (the asterisk indicates complex conjuga-
tion) with pð1 − pÞ ≥ jqj2 when specified in the energy eigenbasis of
the initial Hamiltonian H0. The force protocol consists of a sudden
quench of the Hamiltonian with diagonal elements h1 and h2 and
nondiagonal elements c and c�, again with respect to the eigenbasis of
H0. The energymismatch then becomesΔhEi − hwi ¼ cq� þ c�q, an
expression that can take either sign.

25Condition (i) follows immediately with Trρo ¼ 1, condition (ii)
is a consequence of jTrAρj ≤ kAjjBkρ0jjTC, where kAjjB ¼ 1 is the
operator norm of the unitary operator A ¼ eiuH

H(λðτÞ)e−iuH(λð0Þ) and
kρ0jjTC ¼ 1 is the trace-class norm of the initial density matrix; for
the definitions of the different operator norms see Schatten (1950).
Finally, with C ¼ R

dufðuÞe−iuHH(λðτÞ)eiuH(λð0Þ) condition (iii) fol-
lows according to

R
dudvf�ðuÞGΛðu − vÞfðvÞ ¼ TrC†Cρ̄o ≥ 0.
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Perarnau-Llobet et al. (2017) demonstrated that no meas-
urement scheme26 of work exists that is linear in the initial
state of the system and for which the following two conditions
are simultaneously satisfied: (1) The average work agrees with
the difference of the average final and initial energies for any
initial state, and (2) the resulting work statistics agrees for
diagonal initial states (i.e., ρ̄0 ¼ ρ0) with the TPPEMS result
[Eq. (89)]. A series of alternative attempts to define work in
quantum systems other than by the TPPEMS were analyzed in
view of this no-go theorem by Bäumer et al. (2018). We note
that there exist two point measurement schemes using
generalized energy measurements (Watanabe, Venkatesh,
and Talkner, 2014) as well as generalized work measurements
(Talkner and Hänggi, 2016a) for which it is possible to
reconstruct the work distribution of the TPPEMS.
For systems initially in a Gibbs state ρ0 ¼ ρ(β; λð0Þ) ¼

Z−1(β; λð0Þ)e−βH(λð0Þ), the TPPEMS leads to the quantum
Jarzynski equality [Eq. (83)]. Likewise, the average of the
irreversible work can be written as the Kullback-Leibler
divergence between the actual final state and the Gibbs state
at the initial temperature and final parameter values (Deffner
and Lutz, 2010). Further, the average irreversible work hwirriΛ
can be subdivided into a part that is due to coherences with
respect to the final energy eigenbasis and another part that is
caused by deviations of the finally reached populations of
the final energy states from those of a canonical distribution
with the final Hamiltonian at the initial temperature
(Francica, Goold, and Plastina, 2019). Moreover, for
Hamiltonians transforming under time reversal as H̄ðλÞ≡
θHðλÞθ† ¼ HðϵλλÞ, the Crooks relation [Eq. (85)] is obeyed in
exactly the same way as in classical systems (Tasaki, 2000;
Talkner and Hänggi, 2007). Here θ denotes the antiunitary
time-reversal operator (Messiah, 1962) and ϵλ is the parity of
the parameter λ under time reversal. In general, for initial
states differing from Gibbs states no fluctuation relations exist.
Exceptions are microcanonical initial states for which a
Crooks-type relation holds yet a Jarzynski equality is not
known (Talkner, Hänggi, and Morillo, 2008; Talkner et al.,
2013). For grand canonical initial states both types of
fluctuation relations hold. These relations involve both
work and exchanged particle numbers together with the
difference of the respective grand potentials (Yi, Kim, and
Talkner, 2012).
We note that it is not possible to mutate the classical

expression (81) into a quantum-mechanical form that is
compatible with the fluctuation relations of Crooks and
Jarzynski. A projective measurement of the work operator
W ¼ R

τ
0 dtPðtÞ defined in terms of a power operator PðtÞ ¼

_λðtÞ∂HH(λðtÞ)=∂λðtÞ yields on average the difference of the
energy averages at the final and the initial times and, therefore,
according to the findings of Perarnau-Llobet et al. (2017),
cannot yield the work statistics of the TPPEMS for an initial
state that is diagonal in the energy basis. Even the weaker
requirement of satisfying the Jarzynski equality is not fulfilled

(Engel and Nolte, 2007). In addition, a continuous weak
measurement of the power operator PðtÞ turns out to be
incompatible with the fluctuation theorems (Venkatesh,
Watanabe, and Talkner, 2015).
Finally, we remark that for a two point generalized energy

measurement scheme the requirement that the Crooks relation
is satisfied already restricts the allowed types of measurements
to projective ones for systems with an infinite-dimensional
Hilbert space. For systems with finite-dimensional Hilbert
spaces slightly more general measurements are possible; the
measurements still need to be error free, meaning that if the
state in which the system is measured is an eigenstate
belonging to a particular energy value, this energy value
must be detected with certainty. For further details and the
restrictions imposed by the Jarzynski equality we refer to the
literature (Watanabe et al., 2014; Ito et al., 2019).

B. Work in open systems

The work applied to an open system, which is part of a large
closed system described by a Hamiltonian, as specified in
Eq. (17), agrees with the work done on the total system only if
system parameters are changed that influence neither the
interaction nor the bath Hamiltonian. If the latter condition is
not fulfilled, the work done on the total system can be
identified with the change of the total system but the work
done on the open system cannot be defined.27

We start with a discussion of work in open quantum
systems and later specialize to the respective classical case.

1. Work in open quantum systems

The statistics of work performed on an open system upon
changing a system parameter λðtÞ according to a specified
protocol Λ is formally determined by the same expression
[Eq. (89)] as in the case of a closed system where all quantities
refer to the total system (Campisi, Talkner, and Hänggi,
2009b). Specifically, in Eq. (89), EmðtÞ indicates the
eigenvalue of the total system Hamiltonian Htot(λðtÞ) ¼
HS(λðtÞ)þHB þHSB. Likewise, the time-evolution operator

UΛ ¼ T ei
R

τ

0
dtHtot(λðtÞ)=ℏ ð91Þ

in Eq. (90) is governed by the total Hamiltonian,
and the density matrix ρ0 specifies the total initial
state. For a canonical initial state of the total system
e−βHtot(λð0Þ)=Tre−βHtot(λð0Þ) the fluctuation relations of Crooks
and Jarzynski follow, with the free energy difference ΔF ¼
ΔFS holding because of FSðβ; λÞ ¼ Ftotðβ; λÞ − FBðβÞ [see
Eq. (34)] and the fact that the bare bath free energy is
independent of the system parameter λ.28 Hence, one has

26We refer to a measurement scheme as a family of completely
positive maps specifying the states after a selective measurement
together with the probabilities of finding all possible results; for more
details see, e.g., Chap. 2.4 of Breuer and Petruccione (2002).

27If, for example, both the system and the environment are
electrically polarizable, the change of an externally controlled
electromagnetic field directly affects both constituents.

28We note that the backward protocol also requires the reversal of
all parameters transforming oddly under time reversal like magnetic
fields, even if they are kept constant during the protocol or affect only
the bath dynamics.
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pΛðwÞ ¼ e−βðΔFS−wÞpΛ̄ð−wÞ; ð92Þ

he−βwiΛ ¼ e−βΔFS ; ð93Þ

i.e., the fluctuation relations continue to hold for open
quantum systems that start in a total canonical equilibrium
state independently of the coupling strength between system
and bath and also irrespective of the nature of the open
system’s dynamics, with work and free energy differences
both relating to the open system (Campisi, Talkner, and
Hänggi, 2009b). This fact has raised doubts as to whether
a work statistics within the TPPEMS contains any quantum
aspects at all. These doubts have been removed by several case
studies (Deffner and Lutz, 2008; Talkner, Burada, and Hänggi,
2008; Yi, Talkner, and Campisi, 2011; Yi, Kim, and Talkner,
2012) and also by the identification of quantum coherences
generated during a force protocol (Blattmann and Mølmer,
2017; Miller and Anders, 2018; Francica, Goold, and Plastina,
2019) and by the investigation of quantum mechanically
generated deviations of the work statistics from their classical
Gaussian form for almost quasistatic isothermal processes
(Bäumer et al., 2019).
Yet in an experiment projective measurements of the total

system Hamiltonian are to be imposed. Not only that they are
difficult to perform, but the generally small difference between
the much larger energies of the final and the initial state of the
total system must be considered a severe practical limitation of
the TPPEMS.

2. Work in open classical systems

The arguments leading to the quantum fluctuation relations
for open systems can be repeated almost literally for classical
open systems (Jarzynski, 2004). The dynamics of the classical
total system is governed by a Hamiltonian of the form

Htot(z; λðtÞ) ¼ HSðx; λÞ þHBðyÞ þHSBðzÞ; ð94Þ

where z ¼ ðx; yÞ indicates a point in the phase space of the
total system with components x and y specifying phase-space
points of the system and its environment, respectively. Again,
only the system Hamiltonian Hðx; λÞ depends on the para-
meters λ that are subject to the protocol Λ. In analogy to
Eqs. (79) and (81) the work can be expressed either as the
energy difference of the total system or as an integral of the
power to yield

w ¼ Htot(Zðz; τÞ; λðτÞ) −Htot(z; λð0Þ) ð95Þ

¼
Z

τ

0

dt
∂Hs(Xðz; tÞ; λðtÞ)

λðtÞ
_λðtÞ; ð96Þ

where Zðz; tÞ denotes the trajectory in the full phase space
starting at z and Xðz; tÞ is the projection of Zðz; tÞ onto the
phase space of the open system. Therefore, for classical open
systems measuring the total energy can be circumvented.
Instead, the system trajectories during the protocol have to be
monitored and used to calculate the supplied power. Hence, as
for closed systems, based on the power supplied during the

protocol, the work done on an open system can be determined
from the sole observation of the system trajectories.
In correspondence with Eq. (82), the work pdf becomes

pΛðwÞ ¼
Z

dzδ

�
w −

Z
τ

0

dt
∂HS(Xðz; tÞ; λðtÞ)

∂λðtÞ _λðtÞ
�

× ρ0ðzÞ; ð97Þ

with the total phase-space pdf ρ0ðzÞ characterizing the initial
state. For total systems initially staying in a canonical state, the
Jarzynski and Crooks relations follow (Jarzynski, 2004). As in
the quantum case, the fluctuation relations hold for open
classical systems irrespective of the kind of stochastic dynam-
ics of the open system. For Markovian processes the fluc-
tuation relations are derived directly from Fokker-Planck
equations (Kurchan, 1998; Hatano and Sasa, 2001; Hummer
and Szabo, 2001) and master equations (Jarzynski, 1997b;
Gaspard, 2004; Harris and Schütz, 2007; Esposito, Harbola,
and Mukamel, 2009).

V. FLUCTUATING THERMODYNAMIC POTENTIALS

In this section we first restrict ourselves to a discussion of
fluctuating thermodynamic potentials in thermal equilibrium
for classical systems and only later comment on quantum
mechanics. Inspired by the fact that the work performed on a
system is a fluctuating quantity, one may ask whether it would
not also be possible and even meaningful to consider
fluctuating heat. Assuming the validity of an instantaneous
first law one may construct from the fluctuating work and heat
a likewise fluctuating internal energy as proposed in stochastic
energetics (Sekimoto, 1998, 2010). Additional fluctuating
thermodynamic potentials, in particular, fluctuating entropy,
are considered in stochastic thermodynamics (Seifert, 2005,
2012; Van den Broeck and Esposito, 2015).

A. Fluctuating internal energy

For a classical system in contact with its environment a
fluctuating internal energy, as it is postulated using stochastic
energetics (Sekimoto, 2010) and stochastic thermodynamics
(Seifert, 2012), is supposed to assign to each momentary state
x of the open system a uniquely defined energy value. In
general, one might expect such an assignment to also require
some information about the actual state of the environment.29

In the sequel we therefore consider the more general hypoth-
esis that a fluctuating internal energy can be characterized by a
function eðz; β; λÞ, where, as introduced in Sec. IV.B.2, points

29The dependence of the energy of an open system on the
instantaneous state of the environment can be illustrated by the
example of a dipolar molecule in a polar fluid. The magnitude and
orientation of the molecule’s electrical dipole moment relative to the
local electric field determine a contribution to the energy of the
molecule. Because the state of the fluid is not static in thermal
equilibrium, and hence the orientation and magnitude of the local
electrical field produced by the fluid surrounding the molecule
fluctuate, an environmentally state-dependent, and therefore random,
contribution to the molecule’s energy results.
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in the phase space of the open system are denoted by z ¼
ðy;xÞwith an environmental component y and an open system
component x. Because the microstate y of the environment is
not monitored, the hypothetical fluctuating internal energy
eðz; β; λÞ has to be considered a random field, where the
random variable y is distributed according to the conditional
pdf wðyjxÞ defined in Eq. (32). A basic requirement for a
fluctuating internal energy is that its average with respect to
the canonical equilibrium state of the total system must
coincide with the internal energy US of the total system so
that with ρtotðz; β; λÞ in Eq. (18)

USðβ; λÞ ¼
Z

dzeðz; β; λÞρtotðz; β; λÞ: ð98Þ

Combined with Eq. (37) for the internal energy one finds that
any fluctuating internal energy must be of the form

eðz; β; λÞ ¼ ∂
∂β ½βH

�ðx; β; λÞ� þ huðz; β; λÞ

¼ hHtotjxi − hHBiB þ huðz; β; λÞ; ð99Þ

where huðz; β; λÞ ∈ N β;λ is a random field with vanishing
mean value in thermal equilibrium. Accordingly, the set
N β;λ ¼ fhðzÞj R dz hðzÞρtotðz; β; λÞ ¼ 0g consists of all ran-
dom fields with vanishing equilibrium average for fixed
ρtotðz; β; λÞ. The second line, in which the fluctuating
internal energy is expressed as the surplus of the conditional
total energy relative to the bare environmental energy
superimposed by a fluctuating contribution huðz; β:λÞ, is
obtained with the help of Eq. (31).30 It is worth noting that
with the subtraction of the average bare environment energy
one may assign a finite energy to the open system even for
large environments in the thermodynamic limit. Without this
term, the fluctuating internal energy would depend in a
sensitive way on irrelevant details of the environment.
Moreover, without it, the average fluctuating energy of
the open system would be given by the internal energy of
the total system rather than by the internal energy difference
of the total system and the bare environment as required by
Eq. (34).31

Once a fluctuating internal energy is assigned to the state of
the total system, the momentary energy content gðz; β; λÞ of

the reservoir can be identified as the difference of the total
energy and the fluctuating internal energy, yielding

gðz; β; λÞ ¼ Htotðz; λÞ − eðz; β; λÞ: ð100Þ

With this assignment one may define the heat q exchanged
with the environment in the course of a process in which a
system-parameter change from λ to λ0 leads the total system to
move in phase space from the initial point z to the final point
z0 as

q ¼ gðz; β; λÞ − gðz0; β; λ0Þ: ð101Þ

With this definition, a positive heat corresponds to an energy
taken from the environment. The work w, which is performed
on the open system in the same realization of the process, is,
according to Eq. (95), given by the difference of the total
Hamiltonians and hence written as

w ¼ Htotðz0; λ0Þ −Htotðz; λÞ: ð102Þ

The fluctuating work, heat, and internal energy then satisfy the
first-law-like relation

Δe ¼ qþ w; ð103Þ

which, however, is of little predictive power because both the
fluctuating internal energy change and the heat depend on the
difference of huðz; β; λÞ and huðz0; β; λ0Þ. These are values of
almost arbitrary functions, which are restricted only by having
vanishing equilibrium averages. Therefore, only if both the
initial and final states of a system under the influence of
forcing are equilibrium states, according to Eq. (99), the
dependence of the average internal energies on the functions
hu(z; β; λðtÞ), t ¼ 0; τ disappears and consequently the aver-
age of heat can be determined from the difference of the final
and initial internal energies and the average work done by the
force. More can be done only in the weak coupling limit;
see Sec. V.D.
Even though, as mentioned at the start of Sec. III, the

properties of the open system, including its dynamics, are
identical for a canonical ensemble of large closed systems and,
for a single large system that weakly couples to a superbath at
the required temperature, the present definition of heat is
restricted to the former situation because otherwise after a
sufficiently large time the heat produced in a cyclic process is
finally absorbed by the superbath; see Talkner and Hänggi
(2016b), particularly footnote 8 therein.

B. Fluctuating entropy and free energy

Once a particular fluctuating internal energy is chosen,
fluctuating free energies fðz; β; λÞ and entropies sðz; β; λÞmay
be assigned under the constraint that their equilibrium
averages coincide with the respective potentials FSðβ; λÞ
and SSðβ; λÞ of the open system such that

FSðβ; λÞ ¼
Z

dzfðz; β; λÞρtotðz; β; λÞ; ð104Þ

30One possible choice of a random field satisfying huðz; β; λÞ ∈
N β;λ is given by huðz; β; λÞ ¼ αðxÞδHSBðzÞ, assigning an arbitrary
fraction αðxÞ of the fluctuation of the interaction energy δHSBðzÞ ¼
HSBðzÞ − hHSBðzÞjxi as an internal energy fluctuation (Talkner and
Hänggi, 2016b).

31At variance with the previous definition of the fluctuating
internal energy by Seifert (2016) that corresponds to the choice
with a vanishing random field huðz; β; λÞ ¼ 0 in Eq. (99), in a
recent review of stochastic thermodynamics (Seifert, 2019) the
fluctuating internal energy is proposed to agree with the condi-
tional total system energy hHtotjxi, i.e., without the subtraction
of the bare bath energy. Hence, small systems also acquire
the typically large, possibly even diverging energy of the
environment.
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SSðβ; λÞ ¼
Z

dzsðz; β; λÞρtotðz; β; λÞ; ð105Þ

where the pdf ρtotðz; β; λÞ is given by Eq. (18). To obtain a
thermodynamically consistent description of the open system
we require the validity of Eqs. (12) and (13) between the open
system’s thermodynamic potentials US and SS, respectively,
and the corresponding free energy FS, yieldingZ

dzρtotðz; β; λÞ
�
eðz; β; λÞ − ∂

∂β βfðz; β; λÞ:

− βfðz; β; λÞ ∂
∂β ln ρtotðz; β; λÞ

�
¼ 0; ð106Þ

Z
dzρtotðz; β; λÞ



sðz; β; λÞ − kBβ2

� ∂
∂β fðz; β; λÞ

þ fðz; β; λÞ ∂
∂β ln ρtotðz; β; λÞ

��
¼ 0: ð107Þ

Accordingly, one obtains for the fluctuating thermodynamic
potentials the consistency relations

eðz; β; λÞ ¼ ∂
∂β βfðz; β; λÞ
− βfðz; β; λÞ(Htotðz; λÞ − Utotðβ; λÞ)
þ heðz; β; λÞ; ð108Þ

sðz; β; λÞ ¼ kBβ2
� ∂
∂β fðz; β; λÞ

− fðz; β; λÞ(Htotðz; λÞ − Utotðβ; λÞ)
�

þ hsðz; β; λÞ; ð109Þ

where the right-hand sides of Eqs. (108) and (109) contain
arbitrary functions he=sðz; β; λÞ ∈ N β;λ. Apparently, the
requirement of thermodynamic consistency is not sufficient
to assess these functions other than by mere definitions.
Making the assumption that the fluctuating thermodynamic

potentials do not explicitly depend on the environmental
variables y one is left with consistency conditions of the
same type as Eqs. (108) and (109) in which the full phase-
space variable z is replaced by x. Moreover, in both equations
the expression in parentheses has to be modified according to
(Htotðz; λÞ − Utotðβ; λÞ) → ∂(β½H�ðx; β; λÞ − FSðβ; λÞ�)=∂β
(Talkner and Hänggi, 2016b). The unknown functions
hu=e=sðz; β; λÞ ∈ N β;λ of the total phase space must then
be replaced by functions hu=e=sðx; β; λÞ that have vanishing
average with respect to the reduced equilibrium pdf
ρSðx; β; λÞ ¼

R
dyρtotðz; β; λÞ.

It might be tempting to choose the functions heðx; β; λÞ
and hsðx; β; λÞ in such a way that the fluctuating potentials
satisfy the same relations as the respective average quantities
do and therefore should be related by (i) eðx; β; λÞ ¼
∂(βfðx; β; λÞ)=∂β and (ii) sðx; β; λÞ ¼ kBβ2∂(fðx; β; λÞ)=∂β
(Seifert, 2019). To see whether this assumption is compatible
with the required relations for the averages, both sides are

averaged with respect to the open system equilibrium pdf
ρSðx; β; λÞ. From the first equation one obtains USðβ; λÞ ¼R
dxρSðx; β; λÞ∂(βfðx; β; λÞ)=∂β. Therefrom, together with

the thermodynamic consistency equation (12) the conditionR
dxfðx; β; λÞ∂ρðx; β; λÞ=∂β ¼ 0 follows, which, in general,

does not hold. The second equation yields the same condition
on the fluctuating free energy. This implies that the thermo-
dynamic consistency is violated, in general, by both relations
(i) and (ii).32 Strasberg and Esposito (2017) obtained the same
inconsistent relations (i) and (ii) using an approximate coarse
graining procedure of a master equation.

C. Fluctuating work and heat in open quantum systems

According to the detailed discussion in Sec. IV.B, work can
be understood as the difference of the results of two energy
measurements of the total system. To obtain an analogous
definition of quantum heat, one needs to know a convenient
operator g representing the energy content of the environment.
Then the difference of the outcomes of two projective
measurements of this operator yields the heat, i.e., the energy
lost by the environment.
For processes during which the system is alternately

coupled to and decoupled from environments,33 the environ-
mental energy is determined by the Hamiltonian HB of the
bare environment. In other situations with a permanent
contact of system and environment one may follow the
strategy for classical systems based on a fluctuating internal
energy, as outlined in Sec. V.A. The quantum analog of a
fluctuating internal energy is an internal energy operator
eðβ; λÞ with the property to yield the internal energy US
on average in thermal equilibrium, i.e., USðβ; λÞ ¼
Trtot½eðβ; λÞρtotðβ; λÞ� ¼ Trtot½∂βH�ðβ; λÞ=∂βρtotðβ; λÞ�. As in
the classical case, this requirement leaves considerable ambi-
guity as to the choice of an internal energy operator, which can
be represented as

eðβ; λÞ ¼ ∂
∂β βH

�ðβ; λÞ þ heðβ; λÞ; ð110Þ

where heðβ; λÞ is a Hermitian operator with vanishing equi-
librium average Trtotheðβ; λÞρtotðβ; λÞ ¼ 0. To any internal
energy operator there belongs a corresponding operator
gðβ; λÞ specifying the energy content of the environment with

gðβ; λÞ ¼ Htot − eðβ; λÞ: ð111Þ

The heat characterizing a particular process can then be
operationally defined in terms of two measurements of this

32The thermodynamically consistent fluctuating internal energy
and entropy postulated by Seifert (2016) imply a deterministic free
energy fðz; β; λÞ ¼ FSðβ; λÞ (Talkner and Hänggi, 2016b).

33Such situations are realized in heat and particle exchange
between reservoirs (Andrieux et al., 2009; Campisi, Talkner, and
Hänggi, 2010; Campisi, Hänggi, and Talkner, 2011; Jeon et al., 2017)
and also in cyclically performing engines (Zheng, Hänggi, and
Poletti, 2016; Kosloff and Rezek, 2017; Ding et al., 2018). Possible
changes of the energy of the total system due to the time dependence
of the coupling and decoupling are typically neglected.
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environmental energy operator at the beginning and the end of
the respective processes. As in the classical case the environ-
mental energy gðβ; λÞ and, consequently, the heat inherit the
ambiguity of the internal energy operator.
If one is interested in the amount of work and heat that is

concurrently supplied to the system and exchanged with the
environment in the same process, one faces the problem of
having to simultaneously measure the Hamiltonian of the total
system and environmental energy operator gðβ; λÞ. These
operators do not, in general, commute with each other in
the presence of an interaction between system and environ-
ment. Hence, for systems continuously in contact with their
environment a process cannot be characterized by a simulta-
neous specification of work and heat for the same reason that
position and momentum cannot be assigned to a quantum
particle at the same time. The only exception to this rule is
realized for a system weakly coupling with its environment,
as discussed in more detail later. The formulation of a first
law for systems other than weakly interacting quantum
ones therefore seems doubtful to us, contrary to a widespread
opposing opinion (Alicki, 1979; Nieuwenhuizen and
Allahverdyan, 2002; Seifert, 2016).

D. Weak coupling

As mentioned in Sec. III.A, in the weak coupling limit (Van
Hove, 1957; Davies, 1976) one considers an interaction of
vanishingly small strength κ between system and environment
acting on an increasingly long timescale such that energy may
still flow between system and environment and eventually the
small system equilibrates without a noticeable renormalization
of the system’s Hamiltonian. Technically speaking, the internal
energy operator of the system then agrees with the bare system
Hamiltonian eðβ; λÞ ¼ HSðλÞ and the environmental energy
operator with its bare Hamiltonian gðβ; λÞ ¼ HB (Talkner,
Campisi, and Hänggi, 2009). Additional small contributions
resulting from the interaction can be neglected in any respect
other than for the long time dynamics. This results in the
exceptional situation inwhich quantumwork and quantumheat
can be determined for the same process by simultaneously
measuring HtotðλÞ ¼ HsðλÞ þHB and gðβ; λÞ, yielding

w ¼ Em0 ðτÞ þ ϵα0 − ½Emð0Þ þ ϵα�; ð112Þ
q ¼ ϵα − ϵα0 ; ð113Þ

where EmðtÞ denotes an eigenvalue of the system Hamiltonian
HS(λðtÞ), ϵα denotes the eigenvalue ofHB emerging in the first
measurement, and ϵα0 denotes the corresponding result of the
secondmeasurement. The sum of heat and work is given by the
difference of eigenvalues of the systemHamiltonianHS, which
is consistent with eðβ; λÞ ¼ HSðλÞ.
For a force protocol Λ extending over the time span ð0; τÞ

the joint work and heat pdf pΛðw; qÞ becomes (Talkner,
Campisi, and Hänggi, 2009)

pΛðw; qÞ ¼
X
α;α0
m;m0

δðw − Em0 − ϵα0 þ Em þ ϵαÞ

× δðq − ϵα þ ϵα0 ÞpΛðm0; α0;m; αÞ: ð114Þ

Here pΛðm0; α0;m; αÞ specifies the joint probability of finding
the total system at the energy Emð0Þ and the environment at eα
immediately before the force protocol starts and at Em0 ðτÞ and
ϵα0 at the end. It can be written as pΛðm0; α0;m; αÞ ¼
pΛðm0; α0jm; αÞpðm; αÞ in terms of the initial probability
distribution of the total system pðm; αÞ ¼ TrΠmð0ÞQαρtot
and the transition probability pΛðm0; α0jm; αÞ ¼
TrtotΠm0 ðτÞQα0UΛΠmð0ÞQαU

†
Λ=TrtotΠnð0Þ. The projection

operators onto the eigenspaces of the Hamiltonians
HS(λðtÞ) and HB are denoted by ΠnðtÞ and Qα, respectively.
The time-evolution operator

UΛ ¼ T e−i
R

τ

0
dtHtot=ℏ ð115Þ

is governed by the full Hamiltonian of the total system,
including the interaction. For short processes of duration τ
with κ2τ ≪ 1 the environmental dynamics is unaffected
by the interaction and hence, with ϵl ¼ ϵk, the heat typically
vanishes. Bath transitions and, accordingly, the heat transfer
become important for long-lasting processes with κ2τ ≳ 1.
The joint work and heat pdf, Eq. (114), describing a process

controlled by the force protocol Λ and starting from a
canonical equilibrium state of the total system at the inverse
temperature β is linked to the according pdf for the reversed
protocol Λ̄ by a Crooks-type relation (Talkner, Campisi, and
Hänggi, 2009) given as

pΛðw; qÞ ¼ e−βðΔFS−wÞpΛ̄ð−w;−qÞ: ð116Þ

As an immediate consequence one recovers for the
marginal work pdf pΛðwÞ ¼

R
dqpΛðw; qÞ the Crooks relation

[Eq. (92)] and the Jarzynski equality [Eq. (93)] for
open systems. In contrast, the marginal heat pdf pq

ΛðqÞ ¼R
dwpΛðw; qÞ does not obey a fluctuation relation. We further

note that the two fluctuation theorems hold only for the work
defined as the energy difference of the total system. In contrast,
the joint pdf pΔe;q

Λ ðΔe; qÞ ¼ R
dwδðΔe − w − qÞpΛðw; qÞ of

the difference of the according internal energy Δe ¼ Em0 ðτÞ −
Emð0Þ and of the heat satisfies a Crooks-type relation of the
form (Talkner, Campisi, and Hänggi, 2009)

pΔe;q
Λ ðΔe; qÞ ¼ e−βðΔF−ΔeþqÞpΔe;q

Λ̄ ð−Δe;−qÞ: ð117Þ

But because of the presence of the heat in the exponent on the
right-hand side, one does not obtain a Jarzynski equality inΔe,
other than for sufficiently short protocols for which the heat
vanishes but decoherence may already take place (Smith
et al., 2018).
Independent of how strong the interaction between a system

and its environment is, the time rate of change of the average
bare energy ESðtÞ¼TrSBHSðtÞρtot¼TrSHSðtÞρSðtÞ can always
be split into two contributions according to

_ESðtÞ ¼ TrS
∂HSðtÞ
∂t ρSðtÞ þ TrSHSðtÞ_ρSðtÞ. ð118Þ
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Equation (118) can be considered only as a proper formulation
of the first law in the weak coupling limit. Only then does the
internal energy of the open system coincide with the thermal
average of the bare system Hamiltonian. Independent of the
coupling strength the integral of the first term on the right-
hand side, extended over the time span of the force protocol,
yields the average work done on the system according to the
TPPEMS provided that the initial state ρtot0 and the initial total
Hamiltonian Htot(λð0Þ) commute with each other. In general,
the integrated second term, however, has no definite physical
meaning.
Beyond the weak coupling limit the lack of a uniquely

defined fluctuating internal energy makes it impossible even
to assign an average internal energy to anything other than the
according thermal equilibrium state. Because, in general,
at the end of a force protocol the system is not in an
equilibrium state, it is therefore not possible to assign the
change of the average internal energy in the respective
process. Consequently, an average heat also cannot be
specified.

VI. OUTLOOK AND CONCLUSIONS

The central notion in the thermodynamics of open
systems staying in strong contact with the environment is
given by the Hamiltonian of mean force, which is defined in
terms of an average of the Boltzmann factor over the
thermally distributed environmental degrees of freedom. It
provides at the same time the reduced density matrix of the
open system and its thermodynamic equilibrium properties,
which, in general, are influenced by the environment in a
way that they cannot be inferred from the sole knowledge of
the reduced density matrix. Owing to the fact that the
resulting partition function ZS of the open system is given
by the ratio of the partition functions of the total system and
the bare environment, the existence of ZS and its independ-
ence of irrelevant details of the environment is guaranteed. In
particular, remote parts of the environment coupling only
weekly to the system do not affect ZS. A further important
consequence of this particular structure is the finding that the
thermodynamic potentials as well as all of their derivatives
relating to the open system are determined by differences of
the respective quantities referring to the total system and the
environment. This guarantees the thermodynamic consis-
tency of the thermodynamic potentials and the validity of the
third law. It also may exhibit unusual properties like negative
entropy and negative specific heat without, however, indi-
cating any instabilities of the respective systems. In the case
of negative entropy it indicates that the interaction between
system and environment enforces a state with a higher order
than in its absence.
The attempt to represent the thermodynamic internal

energy of an open system as an equilibrium average of a
fluctuating internal energy in the case of classical systems,
or, for quantum systems, as an internal energy operator,
leads to a tremendous ambiguity in the choice of these
fluctuating or operator-valued internal energy expressions.
Other fluctuating potentials like fluctuating entropy and
fluctuating free energy, as well as the corresponding
quantum-mechanical operator-valued expressions, are also

affected by these ambiguities. The interpretation of this
inconclusiveness as a kind of gauge freedom (Jarzynski,
2017) seems rather far-fetched. Other than in proper gauge
theories there is no obvious advantage to considering
gauge-dependent quantities in the present context. The
fact that a fluctuating thermodynamic potential, on the one
hand, plays the role of an observable but, on the other
hand, depends on the Gibbs state of the total system
appears to be a strange mixture of the two fundamentally
distinct categories of states and observables.
Because the specification of heat relies on the division

of the internal energy in work and heat, the notion of heat
inherits the ambiguity of the fluctuating internal energy.
While the work as a fluctuating quantity can be expressed
in an experimentally accessible way for classical systems
(Collin et al., 2005), in quantum systems the TPPEMS of
the total energy presents a major experimental challenge
(An et al., 2015).34 For quantum systems the concurrent
determination of heat and work is additionally hampered
by the fact that it relies on simultaneous measurements of
two energy expressions that do not commute, except for
systems weakly coupling to an environment. In the latter
case, for systems that couple weakly to their environment
the internal energy can be characterized by the bare system
Hamiltonian, and the environmental energy is characterized
by its bare bath Hamiltonian.
Before closing we note that in this Colloquium we

do not consider further relations between thermodynamics
and information theory (Vinjanampathy and Anders, 2016;
Strasberg et al., 2017) other than those between the
thermodynamic entropy of an open system and several
information-theoretic notions in Sec. III.C, nor did we
discuss the related recent resource theory approach
(Chitambar and Gour, 2019). In this context we stress that
the frequently made identification of information entropy,
typically given by a Shannon or von Neumann entropy, with
the thermodynamic entropy must be considered with utmost
care as it is by no means guaranteed to be correct (Norton,
2013; Hänggi and Talkner, 2015; Hänggi, Hilbert, and
Dunkel, 2016; Alicki and Horodecki, 2019). A few further
aspects of classical systems outside of equilibrium were
considered by Talkner and Hänggi (2016b).
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