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The Sun is our nearest star; it is also the most important star that determines life on Earth. A large
variety of phenomena observed on the Sun’s surface, with potential impact on Earth, is thought to
arise from turbulent convection in Sun’s interior, this being the dominant mode of heat transport
within the outer envelope at r≳ 0.715R⊙. However, convection in the Sun differs in most of its
aspects from convection processes known on Earth, certainly those under controlled laboratory
conditions, thus seriously challenging existing physical models of convective turbulence and
boundary conditions in the Sun. Solar convection is a multiscale-multiphysics phenomenon including
the transport of mass, momentum, and heat in the presence of rotation, dynamo action, radiation
fluxes, and partial changes in chemical composition. Standard variables of state such as pressure,
mass density, and temperature vary over several orders of magnitude within the convection
region, thus introducing immense stratification. Although the Sun has been explored intensely,
observational evidence on the structure and intensity of turbulent convection processes remains
indirect and essentially limited to observations of the granular convection patterns at the surface and
helioseismologic data that probe the propagation of sound waves in the interior. In this Colloquium
characteristic scales and dimensionless parameters are discussed, particularly from the perspective of
laboratory convection, a research field that has progressed significantly in the last few decades. The
estimates and calculations of solar conditions given here are based mostly on the standard solar model
S of Christensen-Dalsgaard et al., which is a mean field model of solar convection. Light is shed on
existing results to gain a deeper understanding of dynamical aspects of solar convection.
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I. INTRODUCTION

A central paradigm of solar physics today, which we
comment upon toward the end of the Colloquium, is that
all solar activity is driven by the internal dynamics alone

*joerg.schumacher@tu-ilmenau.de
†katepalli.sreenivasan@nyu.edu

REVIEWS OF MODERN PHYSICS, VOLUME 92, OCTOBER–DECEMBER 2020

0034-6861=2020=92(4)=041001(25) 041001-1 © 2020 American Physical Society

https://orcid.org/0000-0002-1359-4536
https://orcid.org/0000-0002-3943-6827
https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.92.041001&domain=pdf&date_stamp=2020-10-07
https://doi.org/10.1103/RevModPhys.92.041001
https://doi.org/10.1103/RevModPhys.92.041001
https://doi.org/10.1103/RevModPhys.92.041001
https://doi.org/10.1103/RevModPhys.92.041001


(Christensen-Dalsgaard et al., 1996; Miesch, 2005; Nordlund,
Stein, and Asplund, 2009). In particular, internal convection is
thought to affect the structure of the Sun and determine its
appearance, especially with respect to the details occurring at
the surface, such as granules and supergranules, the magnetic
field generated by dynamo action, and its explosive events that
impact weather and communication in space and on Earth.
This puts a large onus on the need to better understand
convection in the Sun. One challenge is to explain how the sea
of stochastic activities characteristic of high-Reynolds-num-
ber turbulence due to convection coexists with recurrent
phenomena such as sunspots, the regular alternation of their
polarities with each cycle, the decrease in latitude of the
activity as the cycle progresses, its approximate symmetry
about the equator, etc. This challenge is compounded by the
limitations of the tools available to study solar convection:
Controlled laboratory measurements are not directly relevant
to conditions in the Sun, direct observations are possible only
on the surface, and we cannot solve the equations completely,
either theoretically or computationally. Fortunately, helio-
seismology informs us, albeit indirectly, about some aspects
of the interior structure (Christensen-Dalsgaard, 2002;
Hanasoge, Gizon, and Sreenivasan, 2016); we know the basic
equations from which to create models for both analytical and
computational studies; and laboratory experiments provide
various useful metaphors of physical understanding; see, e.g.,
Siggia (1994), Kadanoff (2001), Ahlers, Grossmann, and
Lohse (2009), and Chillà and Schumacher (2012).
Convection in the Sun is known to start outward of

r� ≈ 0.715R⊙, where R⊙ ¼ 6.96 × 108 m is the radius of
the Sun (Kippenhahn, Weigert, and Weiss, 2012), under
combinations of extreme conditions: (1) the fluid medium
is a complex and highly stratified plasma; (2) Rayleigh and
Reynolds numbers (both hydrodynamical and magnetic) are
extremely large, indeed, much larger than those encountered
terrestrially, thus leading to the expectation of a strongly

turbulent convective flow; (3) radiative transport; (4) extremely
small molecular Prandtl numbers, discussed already by
Ledoux, Schwarzschild, and Spiegel (1961), particularly for
the temperature, create new conceptual and computational
challenges; and (5) rotation effects are important directly at the
largest scales and indirectly on smaller ones. As examples,
the temperature across the convection zone (CZ) drops from
T ≈ 2 × 106 K at the bottom (Christensen-Dalsgaard et al.,
1996) to T ≈ 5779 K at the surface (Böhm-Vitense, 1954); the
mass density varies over more than 6 orders of magnitude
and the flow speeds reach from subsonic in most of the CZ to
locally supersonic on the surface; the pressure of the plasma
at the bottom of the convection zone, corresponding to a value
of p ≈ 6 × 1012 Pa, is roughly equivalent to a mass of 107 tons
acting on a square meter with an acceleration due to gravity g
of about 600 m=s2. The scale heights of density, pressure,
and temperature vary over several orders of magnitude
within the CZ and become, toward the surface, by a factor
of 1000 smaller than the total height of the CZ, which
is H ≈ 2 × 108 m.
For a solar physicist with an interest in computing and

understanding the turbulent dynamics in the Sun, it is still
difficult to ascertain with confidence some of the appropriate
conditions and parameters. These estimates are particularly
essential for inquiring how convection in the Sun can support
a wide range of loosely organized scales illustrated in
Fig. 1. One purpose of this Colloquium is to provide the
best information possible at the level of our current under-
standing; we know of no place where this information can be
found readily. Further, we might inquire into the extent to
which recent work on turbulent convection can teach us
about solar convection beyond the mixing length theory and
related developments. In particular, we shed light on the
radial variations of the Rayleigh and Prandtl numbers (both
thermal and magnetic) and their connection to typical scales,
velocities, and times. Emphasis is given to the case of

FIG. 1. Solar convection patterns at different scales. (a) Granulation. The characteristic length, time, and velocity scales of the granules
are, respectively, lG ≈ 1000 km, τG ≈ 10 min, and vG ≈ 3 km=s. More details on granulation can be found, for example, in Abramenko
et al. (2012) and Riethmüller et al. (2014). (b) Supergranulation indicated by horizontal surface flow divergences. The characteristic
length, time, and velocity scales are, respectively, lSG ≈ 3 × 104 km, τSG ≈ 24 h, and vSG ≈ 500 m=s; see also Rincon and Rieutord
(2018). Langfellner, Gizon, and Birch (2015a) shared similar images. (c) Giant cells. The characteristic length, time, and velocity scales
are estimated to be lGC ∼H ∼ 2 × 108 m, τGC ≈ 1 month, and vGC ∼ 10 m=s, respectively (Hathaway, Upton, and Colegrove, 2013).
Their interpretation is still in question.
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extremely small Prandtl numbers and its likely implications
for existing solar convection models. We also discuss some
implications of our findings on the dynamical effects,
including rotation and magnetic fields. Given space restric-
tions, parts of this discussion is limited to basic aspects.
From the fluid mechanics perspective, the most general set

of equations considers compressible magnetoconvection with
radiation and rotation (which is moderate and differential in
character). It is useful to present them here even though all
existing numerical or analytical models solve only simplified
versions of these complete forms. The equations comprise
the balance equations of the mass density ρ given by Eq. (1),
the momentum density ρu given by Eq. (2) with velocity field
u, the energy density ρe ¼ ρh − p (with enthalpy density ρh
and pressure p) given by Eq. (3), and the magnetic induction
B given by Eq. (4) (Tritton, 1988; Ossendrijver, 2003;
Brandenburg and Nordlund, 2011; Weiss and Proctor, 2014):

Dρ

Dt
¼ −ρð∇ · uÞ; ð1Þ

ρ
Du
Dt

þ 2ρðΩ × uÞ ¼ −∇pþ j × Bþ ∇ · σ̂ þ ρg; ð2Þ

cpρ
DT
Dt

−
Dp
Dt

¼ ∇ · ðk∇TÞ þ 2ηΣ̂∶Σ̂þ j2

σ
þQrad; ð3Þ

D
Dt

�
B
ρ

�
¼ B

ρ
· ∇u −

1

ρ
∇ ×

�
j
σ

�
; ð4Þ

∇ · B ¼ 0; ð5Þ

j ¼ 1

μ0
∇ × B: ð6Þ

The equations are closed with an equation of state for a
mixture of Ns different species given by

p ¼ ðne þ naÞkBT ¼
�XNs

k¼1

xkψk þ 1

�
RρT; ð7Þ

whereR ¼ kB=muμ̄ is the specific gas constant with the mean
molecular weight μ̄, ne is the electron number density, xk ¼
ni;k=nk is the first ionization degree of element k, nk is the
number density of neutral atoms of element k, and ψk ¼
nk=

P
k nk ¼ nk=na is the relative abundance (Vögler et al.,

2005). Here kB is the Boltzmann constant, μ0 is the per-
meability of free space, and mu is the atomic mass unit. The
quantity Ω is the angular frequency, g is the acceleration due
to gravity, and σ̂ is the compressible viscous stress tensor field

σ̂ ¼ 2ηŜþ
�
ζ −

2

3
η

�
ð∇ · uÞÎ; ð8Þ

with the dynamic (shear) viscosity η, the rate-of-strain tensor
Ŝ ¼ ð∇uþ ∇uTÞ=2, and the Kronecker tensor Î. For the bulk
viscosity ζ ¼ 0 Eq. (8) can be written as σ̂ ¼ 2ηΣ̂; this term
enters viscous dissipation in the energy balance (3).
Equations (5) and (6) comprise, respectively, the divergence

constraint of the magnetic induction field B and the
Ampère law for the current density j. Besides η, further
(space-dependent) material parameters in Eqs. (1)–(6) are the
electrical conductivity σ, the thermal conductivity k, and the
specific heat at constant pressure cp. Kinematic viscosity is
given by ν ¼ η=ρ and temperature diffusivity is given by
κ ¼ k=ρcp. See the Supplemental Material (245) for other
physical constants such as kB or mu.
The energy balance (3) contains a source field due to local

radiative cooling and heating QradðxÞ, which is given as an
integral over the electromagnetic spectrum in combination
with an average over the solid angle Ω:

Qrad ¼ 4πρ

Z
λ
Kλ

�
1

4π

Z
Ω
½IλðnÞ − SλðnÞ�dΩ

�
dλ: ð9Þ

Here KλðxÞ is the monochromatic opacity field of the plasma
at wavelength λ, Iλðx; nÞ is the monochromatic intensity, and
Sλðx; nÞ is the monchromatic source field. The monochro-
matic intensity Iλ is determined by the static radiative trans-
port equation (n is the beam direction)

n · ∇Iλðx; nÞ ¼ ρðxÞKλðxÞ½Sλðx; nÞ − Iλðx; nÞ�: ð10Þ

The opacity is determined by the local plasma conditions
and thus by the equation of state. This feature implies the
assumption of a local thermodynamic equilibrium as discussed
by Chandrasekhar (1960). With increasing depth the two
terms on the right-hand side of Eq. (10) approach each
other, and radiation can be treated by diffusion approximation
for an optically thick medium, as QradðrÞ ≈ ∂r½kradðrÞ∂rT�
(Nordlund, Stein, and Asplund, 2009). Typically shorter
intervals of the spectrum are collected into bins and
Eq. (10) is solved by ray-tracing methods; see the
Supplemental Material (245) for more details.
Five essential dimensionless parameters can be extracted

from the set of equations: the Rayleigh number Ra, thermal
and magnetic Prandtl numbers Pr and Pm, the Rossby number
Ro, and the Chandrasekhar number Q. These parameters are
given by

Ra ¼ grεrH3
r

νrκr
; ð11Þ

Pr ¼ νr
κr
; ð12Þ

Pm ¼ μ0σrνr; ð13Þ

Ro ¼ Ur

2HrΩr
; ð14Þ

Q ¼ σrB2
rH2

r

ρrνr
: ð15Þ

Of these, Pr and Pm are characteristic of the fluid and the rest
are combinations of fluid and flow properties; all are strongly
dependent on the radial position in the CZ. The subscript
r here indicates a reference value such that local (or
scale-resolved) definitions of the parameters are also possible.
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The Rayleigh number Ra contains the dimensionless super-
adiabaticity εr, which in standard Rayleigh-Bénard convection
(RBC) is substituted by εr → αΔT with the isobaric expansion
coefficient α and the imposed temperature difference ΔT. This
modification, which is discussed in more detail in Secs. IV.A
and IV.B, stands for the temperature excess over the adiabatic
equilibrium value and not the actual temperature excess (of
about 2 × 106 K). The characteristic velocity Uf, which
corresponds to a free-fall velocity in RBC, is given by

Uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grεrHr

p
; ð16Þ

from which the fluid and magnetic Reynolds (Rm) numbers
follow as

Ref ¼ UfHr

νr
¼

ffiffiffiffiffiffi
Ra
Pr

r
¼

ffiffiffiffiffiffi
Gr

p
; ð17Þ

Rmf ¼ μ0σrUfHr ¼
Ref
Pm

; ð18Þ

with Gr a Grashof number.
A representative estimate of the Rayleigh number, computed

at the geometric mean radius rg ¼
ffiffiffiffiffiffiffiffiffiffi
r�R⊙

p ¼ 0.845R⊙ and
ΔT ≈ 6000 K, which is the approximate superadiabatic excess
temperature (see Sec. IV.A for details), yields Ra ∼ 1023, which
is at least 6 orders of magnitude larger than the largest result
obtained to date in laboratory experiments of helium at
Ra ≤ 1017 and Pr≳1 (Niemela et al., 2000), and 8 orders of
magnitude larger than the sulfur hexafluoride experiments with
Ra ≤ 2 × 1015 and Pr ¼ 0.8 (Ahlers et al., 2012), both in
cylindrical cells of aspect ratio (diameter to height) of 1=2. The
largest Rayleigh number attained computationally is 1015 for
an aspect ratio of 0.1 and Pr ¼ 1; see Iyer et al. (2020). It
has also been well known since the time of the pioneering
work of Spiegel (1962) that turbulent convection in stellar

interiors occurs at extremely low Prandtl numbers, which are
smaller by at least 3 orders of magnitude than anything that
can be obtained in laboratory experiments on Earth. The
lowest Pr value reported in experiments for cells with aspect
ratios Γ ≳ 1 is for liquid sodium with Pr ¼ 0.005 to 0.006
(Cioni et al., 1997; Horanyi, Krebs, and Müller, 1999) at
Rayleigh numbers Ra ∼ 106; for thermal convection in mer-
cury at Pr ¼ 0.021, Rayleigh numbers Ra≲ 1011 were
reported by Glazier et al. (1999). Direct numerical simula-
tions of the convection equations, carried out via pseudo-
spectral and spectral element techniques, have reached
Pr ¼ 0.01 at Ra ¼ 5 × 106 (Petschel et al., 2013) and Pr ¼
0.005 at Ra ¼ 107 (Schumacher et al., 2016; Scheel and
Schumacher, 2017). Thus, solar convection lies in
parameter ranges outside our terrestrial experience (including
laboratory experiments and numerical simulations). Table I
compares some characteristic scales and dimensionless
parameters in solar convection with those of terrestrial
studies.
Part of our present understanding of the velocity of the

fluid in the solar convection zone is based on standard
algebraic turbulence models such as the mixing length model
by Vitense (1953), Böhm-Vitense (1958), and Spruit (1974);
unfortunately, it is not clear that mixing length models are
applicable to the Sun (or to any multiscale turbulent flow). We
have also learned from large-scale simulations of the equa-
tions of motion, e.g., Miesch et al. (2012) and Hindman,
Featherstone, and Julien (2020), that the Rayleigh numbers
attained in the simulations are much smaller than that
characteristic of the Sun. Observational data from helio-
seismology, which are based on acoustic modes that are
excited by near-surface convective turbulence with character-
istic velocities at the speed of sound (Spruit, Nordlund, and
Title, 1990; Christensen-Dalsgaard, 2002; Gizon, Duvall, and
Schou, 2003; Hanasoge, Gizon, and Sreenivasan, 2016), have
also provided valuable information. The amplitudes of these

TABLE I. Characteristic scales and dimensionless parameters of the Sun in comparison to selected terrestrial experiments in Rayleigh-Bénard
convection (RBC) and rotating Rayleigh-Bénard convection (rRBC). Here r�, R⊙, and rg are the radius at the bottom of the convection zone, the
solar radius, and the geometric mean of the two, respectively. Scale estimates for the Sun are based on model S. The estimates for the
experiments have been collected from Niemela et al. (2000) for RBC in He, from Glazier et al. (1999) for RBC in Hg, and from Ecke and
Niemela (2014) for rRBC in He; they were selected because they reached the highest Ra in each category. The same high Rayleigh number as in
rRBC was obtained in RBC by Weiss, Wei, and Ahlers (2016) in a cylindrical cell of aspect ratio 1 with a height of H ¼ 24.8 cm using the
fluorocarbon 3M Fluorinert FC72 at Pr ¼ 12.3 and Ro ≥ 0.1. The pressure scale height in Boussinesq and near-Boussinesq experiments is
extremely large compared to the height of the cell. Ra, Ro, Q, and Re for the Sun are based on the free-fall velocity Uf and the pressure scale

height Hp. We used ηK ¼ HpRe
−3=4
f , ηOC ¼ ηK Pr−3=4, and ηJ ¼ ηKPm−3=4.

Solar CZ RBC in He RBC in Hg rRBC in He
r ¼ r� r ¼ rg r ¼ R⊙

Layer height H 1.98 × 108 m 1 m 0.6 m 1 m
Kolmogorov scale ηK 60 mm 5.3 mm 3.2 mm 6 mm–1 μm 2 mm–11 μm 0.3 mm–50 μm
Obuhkov-Corrsin scale ηOC 1.9 km 0.17 km 18000 km 8 mm–0.08 μm 32 mm–170 μm 0.4 mm–65 μm
Joule dissipation scale ηJ 1.9 m 0.9 m 18 m � � � � � � � � �
Pressure scale height Hp 6 × 107 m 3 × 107 m 105 m ∞ ∞ ∞
Rayleigh number Ra 1018 1020 1012 106–1017 105–1011 4 × 109–4 × 1011

Thermal Prandtl number Pr 10−6 10−6 10−13 0.7–30 0.025 0.7
Magnetic Prandtl number Pm 10−2 10−3 10−5 � � � � � � � � �
Rossby number Ro 1 10 105 � � � � � � 0.05–7
Chandrasekhar number Q 3 × 1020 2 × 1020 1018 � � � � � � � � �
Reynolds number Re 1012 1013 1010 103–108 2 × 103–2 × 106 6 × 104–6 × 105
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modes (sorted by their angular wave number) reflect the
dynamics and energy conversions in the uppermost part of the
solar convection zone. An inference of the characteristic
velocities deeper in the bulk of the CZ is obtained by complex
inversion tools, local helioseismology, and mode coupling
analysis that reach roughly to a depth of 0.92R⊙. In the region
where data are available from multiple sources (Hanasoge,
Gizon, and Sreenivasan, 2016; Nagashima et al., 2020), the
turbulent amplitudes are found to be much smaller than those
predicted by convection models or alternative analysis meth-
ods (Greer et al., 2015; Woodward, 2016); this conundrum has
not yet been resolved satisfactorily, though steady progress is
being made (Birch et al., 2018).

II. STANDARD SOLAR MODEL

A. State variables and chemical composition

The reference state for the Sun (as for other stars) makes the
following assumptions (Kippenhahn, Weigert, and Weiss,
2012): (i) spherical symmetry for all physical quantities
due to self-gravity, (ii) a hydrostatic and isentropic equilib-
rium, and (iii) convection as a slight departure from equilib-
rium, described, at least to a working approximation, by the
mixing length theory (Prandtl, 1925; Vitense, 1953; Böhm-
Vitense, 1958; Spiegel, 1963). The slight overshoot layer at
the bottom of the CZ, the tachocline, right above the stable
radiation zone, is neglected. (iv) Local thermodynamic equi-
librium exists for processes on scales hλi ≪ l ≪ R⊙, where

hλi is the mean free path of electrons, ions, or photons; for this
range of scales, material properties are homogeneous, the
plasma is well mixed, and its state can be described by a set of
macroscopic state variables that are functions of the radial
coordinate r, the pressure pðrÞ, the temperature TðrÞ, and the
mass density ρðrÞ; see Sec. I. (v) Coupling to the magnetic
fields can be neglected as far as dynamical behavior is
concerned.
We specifically make use of the solar model S developed

by Christensen-Dalsgaard et al. (1996). This model predicts
self-consistently the radial profiles of all relevant physical
quantities. They are summarized in Figs. 2(a)–2(c), which
show that the state variables T, ρ, and p vary by several orders
of magnitude across the CZ. This behavior implies that all
typical scale heights, i.e., the heights over which the relevant
quantity varies by an order of magnitude, are smaller than H,
which is the largest scale in the problem (setting aside the
solar radius itself). The scale heights of p, ρ, and T are
defined as Hp ¼ −dr=d logp, Hρ ¼ −dr=d log ρ, and
HT ¼ −dr=d logT, respectively. For an ideal gas one gets
H−1

p ¼ H−1
ρ þH−1

T . Figure 2(e) shows their radial variations.
Close to the surface, the pressure and density scale heights
drop to values as small as Hp ∼Hρ ∼ 102 km, while the
temperature scale height becomes HT ∼ 103 km. This trend
reflects the extremely strong stratification of all state varia-
bles close to the solar surface. Figure 2(d) provides the
element abundances. Hydrogen (X) and helium (Y) dominate
the plasma composition and appear at a fixed ratio across the
entire CZ. Z denotes the remaining 2% of all heavier

FIG. 2. Radial dependence of (a) temperature T, (b) mass density ρ, and (c) pressure p across the CZ from model S. The temperature
drops down to 5779 K at the solar surface. The vertical dashed lines indicate the depth to which helioseismology can access fluctuations
in velocity. (d) Generally accepted abundances of hydrogen (X), helium (Y), and all heavier elements (Z). The thin solid lines indicate
the typical values of X ¼ 0.74 and Y ¼ 0.24 in the CZ. (e) Scale heights of temperature, pressure, and densityHT,Hp, andHρ. (f) Plot
of the acceleration due to gravity. We indicate the extent of the CZ in all six panels by a shaded background, which starts at
r� ≈ 0.715R⊙.
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elements. These abundances, in particular, those of metals,
are the subject of ongoing updates as discussed, for example,
by Asplund et al. (2009); see also Sec. III.A. For the rest
of this Colloquium, we keep the abundances as shown in
Fig. 2(d); suitable changes will need to be made if these
abundances get revised in the future.
The solar plasma is fully ionized for most of the CZ

with respect to the lightest elements H and He since the
temperatures are high enough that they correspond with zero
number density of neutral atoms, with na ¼ 0 in Eq. (7).
Heavier elements retain some electrons only. Toward the solar
surface, hydrogen and helium are only partly ionized. Thus,
H, H2, Hþ as well as He, Heþ, and He2þ appear in a mixture
that affects the thermodynamic properties such as the pressure
or the specific heat at constant pressure and volume, cpðrÞ
and cvðrÞ. Helium is fully doubly ionized for r≲ 0.92R⊙.
Hydrogen is fully ionized for r≲ 0.98R⊙, which corresponds
to a plasma temperature T ≳ 105 K (Kippenhahn, Weigert,
and Weiss, 2012).
Figure 2(f) plots the profile of the acceleration due to

gravity, given by gðrÞ ¼ GmðrÞ=r2, where mðrÞ, the solar
mass up to a shell of radius r, and is defined as mðrÞ ¼
4π

R
r
0 ρðr0Þr02dr0. All of these profiles suggest that transport

quantities such as viscosity and thermal diffusivity are likely
to vary with position along the radius; nor can one simply use
the total height H or a fixed value of g in the definition of the
Rayleigh number. It is thus clear that our discussion of flow
parameters has to be refined.

B. The convection zone

Energy is generated by nuclear fusion converting about
6 × 108 tons of hydrogen to helium each second in the core of
the Sun r≲ 0.25R⊙. The material in this region is hot
(≈1.57 × 107 K) and dense (≈1.5 × 105 kg=m3). Practically
no fusion takes place beyond about 0.3R⊙ and the energy in
the region between the fusion region and 0.7R⊙ is transported
outward solely by radiation. The radiative flux is given by
FrðrÞ ¼ −kγdT=dr ¼ LðrÞ=ð4πr2Þ, where LðrÞ is the solar
luminosity at distance r from the center and kγ is the thermal
conductivity associated with photon transport; see Sec. III for
more details. The radial temperature gradient that can trans-
port the luminosity by outward radiation, thus sustaining the
star in radiative equilibrium, is given by

dT
dr

¼ −
LðrÞ

4πkγðrÞr2
: ð19Þ

The radial pressure profile is given by the hydrostatic
equilibrium condition

dp
dr

¼ −G
mðrÞρðrÞ

r2
; ð20Þ

where G is the universal gravitational constant. As already
stated, we assume an ideal gas such that density, pressure, and
temperature are related to each other by the equation of state;
see Eq. (7). We define ∇ ≔ ∂ lnT=∂ lnp and the combination
of Eq. (19) and (20) results in

∇ ¼ LR
4πkγGm

≕∇γ ð21Þ

in the radiation zone. Figure 3(a) confirms ∇ðrÞ ¼ ∇γðrÞ for
radii r < r� ≈ 0.715R⊙ using data of the standard solar model
S. At a radius of r ¼ r� the radiative transfer alone can no
longer carry the fusion energy outward in a stable fashion. A
second mechanism has to take over the transport, and it should
be efficient even under a more gradual temperature gradient,
and this is the thermal convection that generates the physical
motion of the plasma, which transports the temperature
effectively. A thin region of the solar interior just below
the CZ, the so-called tachocline (Spiegel and Zahn, 1992), is
somewhat unstable but we shall not discuss its dynamics in
any detail. According to the Schwarzschild criterion [see
Schwarzschild (1906) and Kippenhahn, Weigert, and Weiss
(2012)], a layer becomes unstable to convective motion, or is
superadiabatic, if

dT
dr

<
dT
dr

����
s
¼ −

gðrÞ
cpðrÞ

or ∇sðrÞ < ∇ðrÞ; ð22Þ

where both radial temperature derivatives are negative.
Adiabaticity is always indicated in the following by subscript
s, which stands for constant specific entropy per unit mass.
Quantities ∇s, ∇γ , and ∇, used in Eqs. (21) and (22), are the
dimensionless adiabatic, radiative, and actual radial temper-
ature derivatives, respectively. We recall that ∇s¼γad=
ðγad−1Þ¼2=5, and γad ¼ cp=cv ¼ 5=3 for a fully ionized
ideal gas. Figure 3(a) shows that ∇s ¼ 2=5 in the deep CZ
and that ∇ exceeds the adiabatic exponent only slightly; ∇
almost coincides with ∇s. The superadiabaticity ε ¼ ∇ −∇s

FIG. 3. Radial variation of the different dimensionless temper-
ature derivatives ∇m. Data are calculated from model S. (a) ∇γ ,
∇s, and ∇ are shown across the entire convection zone (CZ),
indicated as a shaded background. (b) Enlargement close to the
solar surface. Depth z from the surface is given in km. The range
where∇s > ∇ is darker shaded. Line styles are the same as in (a).
(Inset) Superadiabaticity ε ¼ ∇ −∇s across the CZ.
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[see also Eq. (31) in Sec. IV.B] is plotted in the inset of
Fig. 3(b). The difference of two gradients was approximated
by the available data of model S to avoid the direct evaluation
of ∇ by central finite differences with round-off errors. The
superadiabaticity remains below 10−6 for the deep CZ and
grows substantially only toward the outer solar surface, a
region that is shown in detail in Fig. 3(b). This implies that
the solar convection in most of the CZ is in a state that is
extremely close to the marginal stability threshold with ∇s ≲
∇ ≪ ∇γ almost across the entire layer. Only for shallow
depths smaller than 100 km from the average surface does
one find ∇s > ∇ [see the darker shaded region in Fig. 3(b)];
this is also true in the inner radiation zone for r < r�.
Convection near the surface is driven by the strong radiative
outward cooling and ∇γ < ∇ < ∇s. It was discussed by
Nordlund, Stein, and Asplund (2009) and Cossette and Rast
(2016) that this extreme surface cooling due to radiation
might be the major driver of turbulent convection in the
entire CZ; the radiative flux that is released there is well
known to be L⊙=ð4πR2

⊙Þ ≈ 63 MW=m2.

C. The two layers of convection

The existence of a density scale height Hρ that is far less
than the convection layer thicknessH suggests that the heavier
material rising from the inside cannot be supported beyond a
certain distance and has to reverse its direction; likewise,
lighter and cooler material descending from the top layers of
the Sun cannot penetrate completely below a certain radial
distance. For this reason, it may be conceptually meaningful to
think of convection in loosely connected multiple layers;
indeed, the concept that turbulent thermal convection can be
described as a sequence of ever thicker marginally unstable
layers goes back to Malkus (1954). Nevertheless, it is both
conventional and probably adequate for most purposes to
think of only two layers of convection. The outer shallow
layer, roughly 1% in radial thickness of the CZ, where the
gradients are extreme and the temperatures are low enough for
ionization to be only partial, sets itself apart from the rest of
the CZ, where the gradients are smaller and the ionization is
essentially complete. The power released by the Sun, which is
of the order of 63 MW per square meter, results in extremely
strong radiative cooling, which, as mentioned already, has
been speculated to be the main driver of the turbulent
convection processes in the Sun.
However, it is not obvious that this radiative cooling

process drives the convection phenomena deep in the interior
of the CZ (“deep” convection, which is all of the CZ except
the outer layer). The horizontal scales of the surface granules
are of the same order as the depth of the outer shallow layer
convection l ∼ 103 km; as this is a characteristic of con-
vection in general, there is a suggestion here for the existence
of a conceptually independent convection layer whose depth is
of the same order of magnitude as the granular scales. While
radiative cooling indeed drives convection in the outer shallow
layer, the extreme gradients of density, temperature, and
pressure near the surface could change the characteristics
of the descending heavy fluid so strongly that one may
imagine that the top shallow layer of convection does not

have much to do directly with the rest of the CZ (except for
providing the proper boundary condition). It might thus
appear that one can study the surface layer and the bulk
convection mechanisms as essentially distinct: for instance,
Hotta, Iijima, and Kusano (2019) compare the results of
massive simulations of the CZ, albeit without rotation and
magnetic fields, performed with and without the solar surface
layer, and find essentially no difference. However, descending
dense vortex-ring-type thermals resulting from radiative cool-
ing, known as entropy rain, may penetrate into the deep
convection layer all the way to its bottom (Brandenburg, 2016;
Anders, Lecoanet, and Brown, 2019). We discuss this point in
Secs. IV and VI in more detail. Thus, while it is convenient to
discuss the two zones somewhat separately, as we do in
Sec. VI and in the Supplemental Material (245) when
reviewing simulations, it must be stated that their coupling
is a central problem of solar convection.

III. MOLECULAR TRANSPORT PARAMETERS

A. Radial dependence of transport coefficients

We calculate in this section the radial profiles of the three
molecular diffusion coefficients and the resulting dimension-
less parameters. Their extreme magnitudes are expected to
generate a highly intermittent small-scale fluid turbulence,
which in turn is affected by much coarser temperature and
magnetic fields. This feature affects the modeling of unre-
solved scales. Most of the CZ comprises a collisional plasma
that can be treated as an ideal, nonrelativistic, nondegenerate,
and fully ionized gas that follows the rules of classical
Maxwell-Boltzmann statistics (Reif, 2009). All three transport
coefficients vary only in the radial direction as stipulated in the
standard solar model S; the three transport coefficients are the
dynamic viscosity η, thermal conductivity k, and electrical
conductivity σ, which connect the linear response relations,
respectively, of the viscous stress to the rate of strain in a
Newtonian fluid σ̂ ¼ 2ηΣ̂, of the heat flux to the temperature
gradient, known as Fick’s law F ¼ −k∇T, and of electrical
current density to the electrical field, which is known as
Ohm’s law j ¼ σE. For simplicity, we assume isotropy of all
transport processes and ignore the tensorial character of the
three transport coefficients. In the Supplemental Material
(245), we provide the detailed derivation of the temperature
dependence of all transport coefficients. From there, one
obtains the following transport coefficients (with temperature
T in kelvin):

σeðrÞ ≈ 8.2 × 10−3
T3=2ðrÞ

Z̄2þ lnΛeðrÞ
1

Ωm
; ð23Þ

ηiðrÞ ≈ 5.1 × 10−16
T5=2ðrÞ

Z̄4þ lnΛiðrÞ
kg
m s

; ð24Þ

where the inverse of Eq. (23) is the well-known Spitzer
resistivity (Spitzer, 1962). Here Z̄þ is the atomic number and
the constants Λe and Λi are corrections due to the Debye
shielding. The thermal conductivity is based on heat transfer
by photons and given by

Jörg Schumacher and Katepalli R. Sreenivasan: Colloquium: Unusual dynamics of convection in the …

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 041001-7



kγðrÞ ¼
16

3

σBT3ðrÞ
KγðrÞρðrÞ

: ð25Þ

This equation contains the coefficient Kγ , the radiative cross
section per unitmass, averaged over frequency,which is termed
stellar opacity. The mean free path is now hλγi ¼ ðKγρÞ−1.
Several processes can contribute to the scattering of photons
and thus affect the stellar opacity (Kippenhahn, Weigert, and
Weiss, 2012), for example, Thomson scattering, free-free
absorption or inverse bremsstrahlung, bound-free absorption
or photoionization, and bound-bound absorptions. These
processes enter complex models for numerical opacity calcu-
lations at solar conditions, such as those of the Opacity Library
project (Rogers and Iglesias, 1992, Iglesias and Rogers, 1996).
Recent high-energy experiments that measure the opacity of
heavier elements such as iron, chromium, and nickel (which are
summarized as the solar metallicity) reveal discrepancies from
former high-energy density plasma simulations (Nagayama
et al., 2019). As discussed by Basu (2019), different abun-
dances of heavier elements could affect the number densities ne
at a given T and thus the position of the bottom of the CZ.
Figure 4(a) displays the opacity Kγ, which follows from the
standard solar model S (Christensen-Dalsgaard et al., 1996).

B. Thermal and magnetic Prandtl numbers

Figures 4(b) and 4(c) summarize the profiles of the trans-
port coefficients and the resulting thermal and magnetic
Prandtl numbers, which are given by

Pr⊙ðrÞ ¼
νi
κγ
; Pm⊙ðrÞ ¼ μ0σeνi: ð26Þ

The profiles for both Prandtl numbers are shown in
Fig. 4(c). Both Prandtl numbers are extremely small, with
a typical magnitude of Pr⊙ ∼10−6 for the thermal case [see
also Freytag et al. (2012)] and Pm⊙ ≲ 10−2 in the magnetic
case. Toward the surface of the Sun, the magnetic Prandtl
number drops to about 10−5, which is typical for liquid metal
flow in laboratory; the thermal Prandtl number drops to
extremely low values near the surface; and Pr⊙ ≲10−13 in
this calculation, but this will need to be revised as explained
next. We mention here that Ledoux, Schwarzschild, and
Spiegel (1961) had already estimated extremely small
Prandtl numbers of the order of 10−9 within the framework
of the Rayleigh-Bénard convection, which is discussed
in Sec. VI.
The thermal Prandtl number Pr⊙ in the outer shell has

to be corrected because the full ionization of the solar
plasma cannot be maintained there. The permanent charge
exchange and recombination processes (Bates, Kingston, and
McWhirter, 1962; Fussen and Kubach, 1986) can be sum-
marized by an effective recombination time τr that varies with
depth. On the basis of a discussion by Landau and Lifshitz
(1987), Cowley (1990) suggested that the bulk viscosity ζ can
exceed the standard dynamic viscosity ηi ¼ η by orders of
magnitude in the surface region; see Eq. (8). Landau and
Lifshitz (1987) derived an expression for ζ for the case of
quasiadiabatic time-periodic variations of a fluid property,
such as the degree of ionization in the plasma denoted by xk;
see Eq. (7). These variations are driven by sound waves and
result in ζ ¼ τrρðc2s;∞ − c2sÞ=ð1 − iωτÞ, where τr is the effec-
tive relaxation (here recombination) time and ω is the typical
angular frequency of the density variations; cs is the speed of
sound in the adiabatic case and cs;∞ is the speed of sound for
frozen degrees of ionization. Since ωτr ≪ 1, one gets

ζ ≃ ρτrðc2s;∞ − c2sÞ ¼ ρτr

�∂p
∂ρ

����
s;x

−
∂p
∂ρ

����
s

�
: ð27Þ

Cowley (1990) presented calculations to a depth of 2000 km.
The viscosity ratio ζ=η varied from ζ=η ¼ 107 at r ¼ R⊙ to
ζ=η ¼ 102 at z ¼ 0.997R⊙ (which corresponds with z ¼
2000 km). This causes an increase of the thermal Prandtl
number to the same order of magnitude as that in the bulk of
the convection zone. A more precise statement cannot be
made at this point.

IV. DYNAMICAL ASPECTS OF THE CONVECTION ZONE

A. Mixing length theory

A successful model of convection requires a plausible
energy transport mechanism. A dynamically acceptable
description of convection has been elusive, but the mixing
length theory (MLT) has been used to describe a variety of
stellar observations, though it is regarded as conceptually
implausible. The model was initiated by Prandtl in the
aerodynamic context (Prandtl, 1925) and applied to the Sun

FIG. 4. (a) Opacity profile KγðrÞ in the solar convection zone.
(b) Transport coefficients across the solar convection zone. The
temperature diffusivity κγðrÞ in m2=s, the dynamic viscosity ηiðrÞ
in kg=ðmsÞ, and the magnetic diffusivity λeðrÞ ¼ ½μ0σeðrÞ�−1 in
m2=s are shown. (c) Variation of the thermal and magnetic
Prandtl numbers across the solar convection zone. The shaded
area to the right stands for ri ≳ 0.98R⊙, where the hydrogen of
the solar plasma is partially ionized. The vertical dotted lines in
all panels mark r ¼ r�.
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by Vitense (1953) and Böhm-Vitense (1958); see also Chan
and Sofia (1987), Spruit, Nordlund, and Title (1990), Barker,
Dempsey, and Lithwick (2014), and Kupka and Muthsam
(2017). According to this model, any transportable quantity is
advected for a certain vertical distance, called the mixing
length Λ, which is unknown a priori, without participating in
any mixing; once the mixing length is traversed, however, the
transportable quantity gives up its property to the new
environment, and a perfect and instantaneous mixing takes
place at this new position. All effects of turbulence enter the
picture through a single scale, the mixing length Λ and the
velocity V with which the transportable quantity is advected.
The MLT picture is symmetric with respect to upward and
downward motion, and one typically assumes that Λ ∝ Hp.
Refinements of MLT exist, such as the inclusion of the full

energy spectrum of eddies by Canuto and Mazzitelli (1991) as
well as the addition of a nonlocal entropy rain term to the
convective flux, as in Brandenburg (2016). The latter captures
the numerous thin and intense cold downdrafts due to the
strong surface cooling and effectively renders the lower CZ
into a stably stratified layer, thus establishing a counter-
gradient heat flux (Deardorff, 1966) that underlies the highly
asymmetric character of solar convection. However, MLT
still suffers from the complexity of characterizing compress-
ible convective turbulence; see also Anders, Lecoanet, and
Brown (2019).
The primary goal of MLT is to determine how the nearly

adiabatic convection zone accomplishes the transport effi-
ciently. Large-scale simulations of the Sun have attempted
to determine ΛðrÞ ¼ αMLTHpðrÞ backward and obtain a
factor αMLT, which is otherwise a free parameter in the theory.
We describe the simplest version to illustrate its basic
performance.
A striking observation in solar convection is that the

temperature gradient in the deep convection region departs
little from the adiabatic gradient caused by stratification; see
again ∇ −∇s in the inset of Fig. 3(b). The system thus
operates close to the marginally turbulent state that is not
conducive to generating highly inertial turbulence, except at
low Prandtl numbers (Spiegel, 1962). The observation
could also imply that turbulence is so well mixed that it
homogenizes the gradients subject to the only condition that
they be adequate to effect the transport by some kind of
gradient transport. MLT can explain this result by starting
with the local convective energy flux [which is measured
in J=ðm2 sÞ] across any radius r, which is given by
Fconv ¼ ρðrÞVðrÞcpðrÞδTðrÞ, where V is the characteristic
velocity magnitude across r and δT is a mean or characteristic
temperature deviation from the adiabatic profile at this shell.
Over a short distance Λ, one can write

δT ¼
�
dT
dr

����
s
−
dT
dr

�
Λ≕ΔsΛ: ð28Þ

Now, MLT assumes that this temperature deviation, originat-
ing from one shell r in the CZ, is transported to another shell at
height r� Λ without any change and with fixed velocity V,
and deposited fully and mixed instantaneously at the new
height. One can estimate the deviation from the adiabatic

temperature derivative Δs that is required to carry the whole
radiative flux L⊙=ð4πR2

⊙Þ by convection. Taking V as the free-
fall velocity (see Sec. IV.B for the definition) and setting
Λ ∼Hp, we have

Δ3=2
s ¼ L⊙

ffiffiffiffi
T

p

4πR2
⊙ρcp

ffiffiffiffiffiffiffiffiffi
gH4

p

q : ð29Þ

When inserting the values at the geometric mean radius
rg ¼

ffiffiffiffiffiffiffiffiffiffi
r�R⊙

p
, we get ΔsðrgÞ ≈ 10−10 K=m. Since the adia-

batic temperature gradient ðdT=drÞs¼−g=cp∼Oð10−2K=mÞ
across the entire CZ, we get −Δs=ðdT=drÞs ≃Oð10−8Þ at a
radius r ¼ rg. The conclusion is that dT=dr ≈ ðdT=drÞs. The
precise numerical difference is not important and should not
in any case be expected to be constant radially in the CZ, but
its smallness indicates that convection in the Sun is
extremely delicate; but the small difference between the
two gradients is crucial for convection. It is indeed possible
to construct an effective temperature difference by

ΘðrÞ ¼
Z

r

r�
Δsðr̃Þdr̃: ð30Þ

The plot of this profile is displayed in Fig. 5. Such a profile
has a gentle variation across the convection region, and the
temperature difference that participates in convection is not
the difference of nearly 2 × 106 K between the bottom and
top of the CZ but about 6000 K. This is the effective
temperature difference that enters the definition of the
Rayleigh number.
Despite its naivety, MLT has been remarkably successful as

an integral component of stellar structure models. Because all
scale heights increase with depth, it follows that the mixing
length Λ increases into the interior, suggesting with some
caveats the existence of large convective cells, the so-called
giant cells, in the deeper layers of the CZ with a diameter of
lGC ∼H ∼ 2 × 105 km and a lifetime τGC ∼ 1 month; see,
e.g., Hathaway et al. (2000), Miesch et al. (2008), and
Hathaway, Upton, and Colegrove (2013). Three-dimensional
simulations of global convection, performed more and more
imaginatively over the past few years by Miesch, Brun, and
Toomre (2006), Käpylä et al. (2010), Mitra et al. (2014), and
Hotta, Rempel, and Yokoyama (2015, 2016), describe low
Mach number and non-Boussinesq convection in a stratified
medium; see also Sec. V. These simulations predict aspects
that are not included in MLT (for example, the giant cells), but
their identification is not without ambiguity; this ambiguity
suggests that the amplitudes of giant cells (if they exist) may
be small, posing a challenge to our understanding of deep
solar convection.

B. Superadiabatic free-fall velocity

The calculation of the Prandtl numbers in Sec. III.B is
relatively straightforward, though it requires technical exper-
tise relating to dissipation mechanisms at the molecular level;
see the Supplemental Material (245). The estimate of the
Rayleigh and Reynolds numbers across the convection zone is
less so because characteristic scales and velocities that enter
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the estimates are the hardest to obtain accurately. A direct
application of the definition of the velocity in Eq. (16) with
Hr ¼ H is not as useful as those containing characteristic
local scales and velocities, which themselves are associated
with local scale heights HkðrÞ of pressure, temperature, or
density, k ¼ fp; T; ρg. We use here the pressure height scale
Hp because it also enters the superadiabaticity parameter; see
the following discussion. In the spirit of MLT, the character-
istic velocity is estimated using only the deviations from the
adiabatic conditions. The gain in kinetic energy of a fluid
parcel is the result of the deviation from the adiabatic profile,
i.e., U2

f ∼ ε, with ε the small parameter that quantifies the
deviation from adiabaticity; see, e.g., Lantz and Fan (1999).
This specifies the definition of the characteristic free-fall
velocity in Eq. (16) and is given by

Uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εgrHp

q
with ε ¼ −

Hp

cp

ds
dz

¼ Hp
Δs

T
> 0: ð31Þ

This relation is a consequence of the first law of thermody-
namics ρTds ¼ ρcpdT − dp and of ds=dzjs ¼ 0. A similar
form for the free-fall velocity can be found in Spiegel (1963),
where Λ2=4 enters the expression for the free-fall velocity
instead ofH2

p; see Eq. (31). The free-fall velocity profile in the
inset of Fig. 6(a) displays growth from Ufðr�Þ ∼ 30 ms−1 to
UfðR⊙Þ ∼ 3 km s−1 at the surface. The latter velocity magni-
tude is of the same order as that of a minimum vertical velocity
that is necessary to compensate for the radiative losses in the
granules at the solar surface (Nordlund, Stein, and Asplund,

2009). We note that only at the surface does the free-fall
velocity reach magnitudes of the order of the sound speed; the
Mach number M ¼ Uf=cs ≲ 10−3 for most of the CZ, which
suggests that the flow is practically incompressible on
scales l ≪ Hp.

C. Rayleigh number

Figure 6(a) shows the variation of the Rayleigh number
across the convection layer based on

Ra⊙ðrÞ ¼
ρ2U2

fH
2
p

η2i
Pr⊙ ¼ εgρH3

p

ηiκγ
: ð32Þ

Even though we take the local pressure scale height in the
estimate, the Rayleigh number remains extremely large and
does not fall below 1018 except close to the surface. Taken
together with the fact that low-Prandtl-number convection is
known to generate vigorous fluid turbulence [as demonstrated
in direct numerical simulations of nonrotating convection by
Breuer et al. (2004), Mishra and Verma (2010), and
Schumacher, Götzfried, and Scheel (2015) as well as rotating
convection by Calkins et al. (2012)], the conventional wisdom
appears to be correct that turbulence levels in the bulk of the
CZ are high, thus making it hard to maintain well-organized
structures over long periods of time. The Rayleigh numbers
are not as large as the preliminary estimates in Sec. I, but there
are still some unresolved issues in this estimate.
Toward the surface, the numerical estimates of Fig. 6(a) are

not reliable because the transport properties cannot be
obtained accurately. Even so, it is clear that the Rayleigh
number falls precipitously toward the surface, making it
possible for several types of well-organized structures to be
maintained in the surface layer, characteristic of convection at
low to moderate Rayleigh number. We mention here (before
revisiting in Sec. IV.E) that strong rotation provides an
alternative reason for large surface structures. For example,
Featherstone and Hindman (2016) suggested that supergra-
nules may be surface imprints of interior columnar structures
that are influenced by rotation.

D. Fluid and magnetic Reynolds numbers

The variations of the fluid and magnetic Reynolds numbers
are summarized in Fig. 6(b), which displays the profiles on the
basis of the pressure scale height. The definitions RefðrÞ ¼
UfHp=νi and RmfðrÞ ¼ μ0σeUfHp are used here; see
Eqs. (17), (18), and (26). High-Reynolds-number turbulence
usually displays approximate similarity in which a character-
istic fluctuation velocity, such as the root-mean-square value,
scales with the characteristic mean velocity: here the velocity
Uf from Eq. (31). One should thus expect rms velocity
fluctuations of the order of tens of meters per second in the
interior, increasing to a few hundred meters on the surface.
The Reynolds stresses, which in kinematic units would
typically be of the order of the square of this velocity, have
some bearing on determining the organization and long-term
survival of structures in the bulk of the CZ. Figure 6(b) shows
that Rmf in the Sun is of the order of 1010 in the CZ. Even

FIG. 5. Effective temperature difference ΘðrÞ in kelvin that
drives convective motion in the solar CZ. The quantity is
calculated by Eq. (30). (a) Full profile across the entire CZ.
(b) Enlargement of the bottom of the CZ. (c) Enlargement of the
surface layer. Both magnifications are indicated as dotted boxes
in (a). The shaded area to the right in (a) stands again for
r≳ 0.98R⊙, where the hydrogen of the solar plasma is only
partially ionized. The vertical dashed black lines in (a) and (b)
mark r ¼ r�. The intersection point of the two dashed lines in (c)
is an estimate for a thermal boundary layer thickness by means of
the slope method; see Sec. VII.A.
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though Rmf decreases toward the outer parts of the CZ, it is
still of the order of 106 in the outer shallow convection layer.
Such magnetic Reynolds numbers are completely outside our
capacity to simulate or replicate in a laboratory experiment.
The magnetic fields at such high Rm are likely to be frozen
into the flow and move with it; thus, magnetic fields can
persist for an extremely long time as they rise from the
tachocline; see Sec. IV.E. Only the large local gradients on the
edge tend to smooth out. However, Rmf < Ref, so a rising or
descending plume will maintain its integrity for longer
distances than its magnetic content.

E. Rossby and Chandrasekhar numbers

Rotation and dynamo action are the physical processes that
are connected to the next two dimensionless parameters, the
Rossby and Chandrasekhar numbers. Figure 6(c) shows the
solar Rossby number profile Ro⊙ðrÞ ¼ Uf=ð2HpΩÞ if we
take the characteristic rotation time to be that of the equator

with Ω−1 ∼ 27 days, the characteristic length with Hp from
Fig. 2(c), and the corresponding free-fall velocity Uf from the
inset of Fig. 6(a). We get local Rossby numbers Ro⊙ that vary
from Oð1Þ at the bottom to Oð103Þ near the surface, which
indicates that the Sun is to a first approximation a slowly
rotating star. They are larger than those inferred via helio-
seismically measured surface flows that start at the surface
with Ro⊙ ≈ 5 and decrease to 0.2 at a depth of z ≈ 3 × 104 km
(Greer, Hindman, and Toomre, 2016). One may be tempted
to conclude that rotation plays only a modest role for the
solar dynamics, except perhaps close to the bottom of the CZ.
This statement needs to be parsed further because rotation
affects phenomena at different scales differently: granules are
essentially unaffected by rotation with RoG ¼ vG=ð2lGΩÞ≳
Oð103Þ and supergranules perhaps only modestly with
RoSG ¼ vSG=ð2lSGΩÞ≳Oð10Þ, although their capacity to
support prograde waves suggests that rotation has an impact
(Gizon, Duvall, and Schou, 2003). Giant cells (which are
thought to circulate deep into the CZ) strongly vary with
RoGC ¼ vGC=ð2R⊙ΩÞ ∼Oð10−1Þ. These magnitudes are
taken from Hathaway, Upton, and Colegrove (2013) and
are listed in the caption of Fig. 1.
The Sun, presumably a faster rotating star once, has lost

some of its angular momentum via the solar wind at the
surface; some of this loss may be attributed to the perennial
radiation [by the so-called Poynting-Robertson effect, which
is the process by which solar radiation drags the dust particles
through the shear in the thin region of the Sun’s photosphere,
as discussed by Cunnyngham et al. (2017)]. This scenario
suggests a fast-rotating core and a slowly rotating envelope, as
is true of the solid core. The evidence from helioseismology is
that the radiative interior is rotating nearly uniformly at a rate
between the polar rate of ∼1=34 days and the equatorial one
of ∼1=27 days. The differential rotation between the equator
and the poles, sustained by the extraction of angular momen-
tum from the radiative interior and subsequent redistribution
by turbulent stresses and latitudinal thermal gradients, plays
an important role for the solar magnetic dynamo.
Large amplitude magnetic flux emerges prominently in the

form of coherent loops (Török and Kliem, 2005) into the
photosphere and solar corona, thus forming bipolar pairs of
sunspots at the solar surface close to the equator. Their
variation in number and magnetic field strength in a nearly
22-yr cycle suggests a global flux transport-based dynamo that
converts toroidal magnetic flux into poloidal magnetic flux
and vice versa in a quasiregular fashion; see also Ossendrijver
(2003), Solanki, Inhester, and Schüssler (2006), Dikpati and
Gilman (2007), Charbonneau (2010), Karak et al. (2014),
Brun and Browning (2017), and Moffat and Dormy (2019)
and our discussion in Sec. V. Estimates of the maximum
magnitude of the magnetic induction field, which rises in
the form of coherent flux tubes through the CZ, give
B≲ 10 T; see also Choudhuri and Karak (2009). Although
it is still unclear how such strong fields can be generated
within the Sun, the property of spatiotemporal intermittency
(Sreenivasan and Antonia, 1997) makes such large amplitudes
plausible locally. Figure 6(c) plots the Chandrasekhar number
Q⊙ðrÞ ¼ σeB2

0H
2
p=ηi, with a typical amplitude of B0 ∼ 0.1 T,

FIG. 6. Variation of Rayleigh, Reynolds, Rossby, and Chan-
drasehkar numbers across the solar convection zone based on
model S. (a) The profile of the Rayleigh number Ra⊙ðrÞ. Free-fall
velocity and Rayleigh numbers are calculated with respect to the
pressure scale height. (Inset) Variation of the free-fall velocity Uf

[see Eq. (31)] and the adiabatic speed of sound cs [see Eq. (27)].
(b) Variation of flow and magnetic Reynolds numbers across the
CZ. Also shown is the pressure scale height in meters. (c) Varia-
tion of Rossby and Chandrasekhar numbers across the CZ. The
shaded area to the right in both figures corresponds to ri ≳
0.98R⊙ where the hydrogen of the solar plasma is only partially
ionized. In (c), we add the Chandrasekhar limit Qc;⊙ ¼ Ra⊙=π2;
see Sec. V.B.

Jörg Schumacher and Katepalli R. Sreenivasan: Colloquium: Unusual dynamics of convection in the …

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 041001-11



in correspondence with a magnetic network pattern that is tied
to supergranulation shown by Ossendrijver (2003).
The existence of a “fossil”magnetic field as a remnant from

the early evolution stage of the Sun cannot be excluded, but
there is no direct and convincing evidence of this, as discussed
by Ossendrijver (2003) and Solanki, Inhester, and Schüssler
(2006). The existence of the thin tachocline layer indicates
that such a magnetic field would be enclosed in the uniformly
rotating radiation zone.
At present, the detailed interplay between convection,

rotation, and magnetic fields is not fully understood. Some
simulations [see, e.g., Brun and Toomre (2002) and Balbus
et al. (2009)] indeed show a strong and sustained differential
rotation, not unlike helioseismic observations. Other simu-
lations do not seem to produce similarly consistent results; see
Hanasoge, Hotta, and Sreenivasan (2020).

F. Flux-based Nusselt number estimate at the solar surface

The radiation released with a surface luminosity L⊙ ¼
Lðr ¼ R⊙Þ ¼ 3.828 × 1026 W causes an extremely strong
radiative cooling, thought to be a major driver of solar
convection. The known value of L⊙ allows us to estimate a
Nusselt number at the top of the CZ. The dimensionless
Nusselt number Nu is defined as the ratio of the total heat flux
to the diffusive one and is given on average by

Nu ¼ qtotal
qdiff

¼ L⊙=4πR2
0

−kγðR0ÞΓsðR0Þ
≈ 1.31 × 106; ð33Þ

with R0 ¼ 0.99R⊙ and the adiabatic lapse rate Γs ¼ dT=drjs.
One might ask how this estimate for the Nusselt number is
related to the local Rayleigh numbers obtained in Sec. IV.C.
The local value at r ¼ R0 is Ra ≈ 1022 according to Fig. 6(a).
With no knowledge of a possible existence of an ultimate
regime in stellar convection and lacking completely reliable
Rayleigh number estimates, we cannot make extrapolations of
scalings Nu (Ra); see, e.g., Chillà and Schumacher (2012) for
more details.

V. SIMULATIONS OF SOLAR CONVECTION

The variation of thermodynamic properties and the gas
composition between the top and bottom of the CZ renders
solar convection highly non-Boussinesq. Even though only
small departures from the large adiabatic gradients of temper-
ature and density participate in solar convection, these small
departures occur in the background of large stratification. This
combined problem has been addressed only in numerical
simulations, which we now summarize. Simulations have
been an important tool for building intuition about the highly
complex convection dynamics in the Sun.
Yet, as stated in Sec. I, none of the numerical approaches

are currently able to simulate the full set of equations (1)–(6).
None of them can approach the range of parameters discussed
in Secs. III and IV, nor can they resolve all scales of motion
and include the impact of the highly intermittent small-scale
turbulence on eddy viscosity and diffusivity. As a rule,
simulations of deep and surface convection rely mostly on
implicit or prescribed numerical diffusion, with the physical

subgrid scale (SGS) models the exception to this rule (Nelson
et al., 2014; Kitiashvili et al., 2015). Even with the finest
vertical grid resolutions, such as hz ¼ 48 km at the solar
surface in Hotta, Iijima, and Kusano (2019) or hz ≳ 6 km in
Kitiashvili et al. (2012), one might be 6 orders of magnitude
away from the Kolmogorov scale; see the estimates in Table I.
Figure 7 groups the simulations into (i) penetrative convection
into the tachocline, (ii) deep convection in the bulk, and
(iii) compressible convection in the surface shear layer. Some
simulations bridge these three regions, just as the physical
mechanisms themselves bridge across them; examples are
shown in Fig. 8. Simulations of penetrative convection at
the bottom of the CZ were typically conducted in a local
Cartesian geometry applying the fully compressible equa-
tions; see Tobias et al. (1998), Brummell, Cline, and Cattaneo
(2002), Kitiashvili et al. (2016), and Käpylä et al. (2017), and
see also Fig. 8(d) for a vertical cut snapshot by Hotta (2017).
The Supplemental Material (245) contains a summary of
important families of approximate equations solved numeri-
cally; it also contains a description of numerical methods and
the approximations implied at that stage.
Global simulations of deep solar convection in spherical

shell geometry apply either the anelastic approximation to
Eqs. (1)–(6), such as in the anelastic spherical harmonics code
by Clune et al. (1999) and the Eulerian–semi-Lagrangian fluid
solver by Prusa, Smolarkiewicz, and Wyszogrodski (2008), or
the reduced sound speed technique that rescales the continuity
equation, such as in a higher-order finite difference solver by
Hotta, Rempel, and Yokoyama (2016); see the Supplemental
Material (245) for details on these global simulations and the
anelastic limit. The top boundary in these studies is at
r ≈ 0.98R⊙; see Fig. 7. Applications aim toward (1) a better
understanding of the global solar dynamo in combination with
the 22-yr sunspot cycle (Nelson et al., 2014; Hotta, Rempel,
and Yokoyama, 2016); (2) the reproduction of the complex
differential rotation profiles that vary in radius and latitude in
the Sun (Brun and Toomre, 2002); (3) the interaction of the

FIG. 7. Interaction and coexistence of physical processes with
turbulent convection regimes in the solar convection zone. A
depth of z ¼ 2 × 103 km corresponds to r ≈ 0.997R⊙, and z ¼
1.4 × 104 km corresponds to r ≈ 0.98R⊙. At the top and bottom
differential rotation is large in magnitude compared to that in
the bulk.
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CZ with the tachocline via the modification of the thermal
boundary conditions at the bottom, as in Miesch, Brun, and
Toomre (2006) and Guerrero et al. (2016); and (4) the
numerical search for giant convection cells, as reported by
Miesch et al. (2008) and Bessolaz and Brun (2011). As seen in
Fig. 8(c), solar convection is in line with a global network of
highly asymmetric and strongly height-dependent upflows
and downflows: radiative top cooling generates thin downw-
elling thermal plumes that sink into a highly stratified bulk.
Effective Prandtl and Rayleigh numbers on the basis of
subgrid scale eddy dissipation lead, for example, to Prt ¼
0.25 and Rat ¼ 3 × 104 in Miesch et al. (2008). (5) Other
numerical simulations, such as those by Passos, Charbonneau,
and Miesch (2015), focus on the weak meridional circulation
(Rüdiger, 1989; Gough and McIntyre, 1998), the conveyor-
belt-type circulation that seems essential for bringing poloidal
magnetic flux from the tachocline to the poles.
At this point, it might be instructive to give a brief sketch

of current global solar dynamo models. (i) Babcock-
Leighton flux transport dynamos (Babcock, 1961; Leighton,
1964; Miesch and Toomre, 2009) assume that toroidal
magnetic flux is generated by strong differential rotation
(the so-called Ω effect) in the tachocline, the high-shear layer
that separates the CZ from the stably stratified and rigidly
rotating radiation zone; see also Fig. 7. Therefore, poloidal
magnetic flux is brought by plume overshoots and a weak
meriodional circulation from the CZ into the tachocline, a
process denoted as magnetic pumping (van Ballegooijen,
1982). Tachocline dynamo action might also proceed in
combination with magnetorotational and shear instabilities
(Balbus and Hawley, 1991; Kagan and Wheeler, 2014;
Rincon, 2019). Once strong enough, toroidal magnetic flux

tubes become susceptible to magnetic buoyancy, leave the
tachocline into the CZ, and are now additionally subject to
twisting by rotation and shredding by rising turbulence due to
convection (Zwaan, 1978). Toward the near-surface layer
(which again displays strong differential rotation) the most
coherent and strongest toroidal flux is thus reconverted into
poloidal flux; the latter leaves the solar interior either as a
highly intermittent smaller-scale magnetic field between
granules and supergranules or in the form of bigger coronal
loops from sunspot pairs. (ii) Interface dynamos work some-
what differently (Parker, 1955, 1993). The toroidal magnetic
flux generated from the tachocline is converted into poloidal
magnetic flux by turbulent electromotive forces in the CZ, the
so-called α effect (Steenbeck, Krause, and Rädler, 1966;
Rüdiger, 1989). The dynamo might then take on the character
of a surface wave that eventually manifests as a magnetic
wreath, as in the simulations of Nelson et al. (2014). It is
thought that in combination with this global magnetic cycle a
small-scale dynamo is at work in connection with the stronger
turbulence in the upper CZ, as investigated by Kitiashvili et al.
(2015). Augustson, Brun, and Toomre (2019) classified a
record of recent full-convection-zone dynamo simulations
[among them Strugarek et al. (2018) and Viviani et al.
(2018)] with respect to their ratio of magnetic to kinetic
energy as a function of Pm and Ro by

hB2i
hρu2iPm ≈ aþ b

Ro
; ð34Þ

with the fit parameters a¼0.053�0.007 and b ¼ 0.062�
0.010. The relation describes a crossover from a Ro-indepen-
dent ratio for slowly rotating stars to a ratio that grows linearly

FIG. 8. Numerical simulations of solar convection. (a) Schematic of the solar convection zone with highlighted surface layer (outer
thick line) and tachocline (inner thick line). (b) Simulations of surface convection from Riethmüller et al. (2014). Left panel: vertical
(line of sight) velocity component vLOS. Right panel: mean circular polarization hpcirci of the Fe I line at 5250.2 Å as a measure of the
magnetic field strength. One arc second corresponds to 727 km. (c) Radial velocity at (top panel) r ¼ 0.98R⊙ and (bottom panel)
r ¼ 0.92R⊙ showing upflows and downflows by Miesch et al. (2008). (d) Penetrative convection into the tachocline by Hotta (2017).
The figure shows contours of the vertical velocity component in a vertical cross section. The white line marks the border between the
convection and radiation zones.
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with Ro−1 for rapidly rotating stars. The range of accessible
Pm is, however, rather small and differs strongly from the
value in the Sun.
Deep convection simulations on the small-scale dynamo

were also carried out in a local Cartesian geometry such as
in Hotta, Rempel, and Yokoyama (2015) for a horizontal
domain R⊙ × R⊙ and a significantly higher grid resolution,
as small as 350 km horizontally and similar depth ranges
to those discussed earlier. The joint action of magnetic
buoyancy, Coriolis forces, and tube curvature converts the
toroidal magnetic field into a poloidal magnetic field; see, e.g.,
Caligari, Moreno-Insertis, and Schüssler (1995). Flux tubes
are eventually released inside the upwelling regions between
granules and supergranules (Solanki, Inhester, and Schüssler,
2006; Langfellner, Gizon, and Birch, 2015b).
Simulations of surface convection have to include three

physical aspects that can be neglected or simplified for deep or
penetrative convection. These are compressibility, radiative
transport beyond the gray approximation (for which absorp-
tion and emission do not depend on wavelength λ), and partial
ionization of chemical species. Code packages by Vögler et al.
(2005), Gudiksen et al. (2011), Freytag et al. (2012), Magic
et al. (2013), and Wray et al. (2015) include these physical
processes and reach to depths of a few thousand kilometers;
see Fig. 7. The Supplemental Material (245) provides details
of simulation models and methods. These studies partly
include the photospheric dynamics and use tabulated state
variables for the most abundant elements (Rogers and Iglesias,
1992) to provide precise opacities; see Sec. III.A. Thus, the
complexity and research focus here shifts from global turbu-
lent convection processes to impacts of radiation transport and
changes in the state of ionization, and it centers on the local
dynamics of (1) granules [see Fig. 8(b)] and supergranules
(Jacoutot et al., 2008; Riethmüller et al., 2014), (2) sunspot
formation (Rempel, 2012), (3) the small-scale dynamo near
the surface (Hotta, Rempel, and Yokoyama, 2015), (4) the
emergence of magnetic flux in the photosphere, resulting in
coronal heating (Gudiksen et al., 2011), (5) the excitation of
strong density perturbations and acoustic waves by vortex
pairs of opposite signs (Kitiashvili et al., 2011), and (6) the
direct comparison of spectral lines from observations of
the quiet Sun by Hathaway et al. (2015) to those obtained
in radiative magnetohydrodynamic simulations by Kitiashvili,
Couvidat, and Lagg (2015). These simulations are typically
conducted in local Cartesian geometries and have the
advantage of being directly compared to optical observations
(Nordlund, Stein, and Asplund, 2009; Roudier et al., 2016), in
strong contrast to deeper convection results.
Besides acoustic waves, internal waves appear in

the zone of strongest stratification close to the surface.
Helioseismology has now been able to detect low-frequency
g modes in the interior (Appourchaux et al., 2010), as well as
surface Rossby waves (Löptien et al., 2018). Internal gravity
waves are also thought to have some effect on the structure of
the Sun’s chromosphere (Vigeesh, Jackiewicz, and Steiner,
2017). However, the connection between these modes and
deep convection is at best imperfectly understood.
Finally, simpler models are used when more emphasis is

given to certain aspects of turbulent convection processes.

These are, for example, the compressible nonmagnetic
convection runs in large domains with Γ ¼ 42 to analyze
mesoscale surface convection, in particular, granule dynamics
(Rincon, Lignièeres, and Rieutord, 2005), the surface-cooling-
driven convectionwithout theB field (Cossette andRast, 2016),
small-scale dynamos in magnetohydrodynamic turbulence in
cubes with periodic boundary conditions (Schekochihin et al.,
2007; Singh, Rogachevskii, and Brandenburg, 2017), and
the RBC models with temperature-dependent diffusivity
(Shcheritsa, Getling, and Mazhorova, 2018).

VI. LESSONS FROM EXPERIMENTS AND NUMERICAL
SIMULATIONS OF RAYLEIGH-BÉNARD CONVECTION

A. Limited analogy to RBC

In spite of the superficial resemblance, in both structure and
dynamics, between solar convection and the RBC in the
laboratory and simulations, the two cases differ in important
respects. For example, the boundary conditions for the CZ in
the Sun correspond to constant heat flux with no solid
surfaces, unlike the case of constant temperature in RBC;
convective parameters in the Sun are extreme; large scales are
affected by rotation, which presumably sustains various
structures (e.g., stretched out giant cells and the so-called
banana cells); interesting phenomena such as differential
rotation (which we have already encountered); and meridional
circulation, which consists of a weak poleward motion of the
high-momentum fluid from the equator near the surface and a
corresponding return from the poles near the base of the CZ
(Rüdiger and Kitchatinov, 1996; Gough and McIntyre, 1998;
Miesch et al., 2012), have no analogs in RBC. While the fluid
is fully ionized over the bulk of the CZ, it is only partially
ionized in the outer layer of the CZ, which makes the fluid in
that layer highly complex. Laboratory experiments make
special efforts to respect the so-called Boussinesq approxi-
mation (according to which the effect of temperature varia-
tions are felt only through gravitational effects), and numerical
RBC simulations almost always assume that this approxima-
tion will hold. Thus, no laboratory experiment or numerical
RBC simulation has (or will) come close to replicating all the
conditions in the Sun, so the insights that can be carried over
from the laboratory to the Sun are necessarily qualitative. Yet,
it is useful to describe laboratory flows and simulations here, if
only to provide a useful contrast while also setting a plausible
framework for further discussion. The Supplemental Material
(245) includes the derivation of the appropriate equations from
the full compressible equations of Sec. I.

B. Heat transport

Laboratory experiments on RBC have pushed toward
increasingly high Rayleigh numbers, keeping in mind geo-
physical and astrophysical contexts. Even though the ques-
tions that they address have distinct characters, their one goal
has been to arrive at definitive results under controlled
conditions, with the expectation that they may have general
qualitative relevance in more general circumstances.
RBC experiments have been carried out using a fluid held

in a container with nonconducting sidewalls and perfectly
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conducting bottom and top walls that are heated from below
and cooled from above so that all of the heat from the bottom
wall is transferred through the fluid to the top wall. The
Boussinesq approximation (Verma, 2018) assumes a linear
temperature dependence of the mass density ρðp; TÞg ≃
−grρr½1 − ðT − TrÞ=Tr�ez and simplifies Eqs. (1)–(3) for
B ¼ 0, constant material parameters, and gr ¼ g to

∇ · u ¼ 0; ð35Þ

ρ
Du
Dt

þ 2ρðΩ × uÞ ¼ −∇pþ η∇2uþ ρg
T − Tr

Tr
ez; ð36Þ

DT
Dt

¼ κ∇2T: ð37Þ

An important question concerns the amount of heat and
momentum that is transported across the fluid for a given
temperature difference maintained between the bottom and
top walls. Heat is transported purely by molecular conduction
if the temperature difference is small, but the fluid begins to
move and enhance the heat transport for higher temperature
differences. The buoyancy caused by the temperature differ-
ence is balanced by the smearing effects of diffusion and
viscosity, with the ratio of the former to the latter being the
Rayleigh number Ra (see Sec. I); the larger the Rayleigh
number, the larger the effective temperature difference. The
Nusselt number Nu measures the enhancement of heat trans-
port, and the flow Reynolds number Re [see Eq. (18)]
measures the momentum transport. One goal of convection
studies is to discover how Nusselt and Reynolds numbers
scale with the Rayleigh number for RBC with smooth walls in
a particular working fluid, i.e.,

Nu ¼ qtot=qdiff ¼ fðRa; Pr;ΓÞ; ð38Þ

Re ¼ urmsRef=Uf ¼ gðRa; Pr;ΓÞ: ð39Þ

The quantity urms is the root-mean-square velocity and
Γ ¼ L=H is the aspect ratio of the container with side length
(or diameter) L. Much is known about this flow configuration
[see, e.g., Castaing et al. (1989), Goldstein, Chiang, and See
(1990), Grossmann and Lohse (2000), Niemela et al. (2000),
Niemela and Sreenivasan (2006), Ahlers, Grossmann, and
Lohse (2009), Grossmann and Lohse (2011), Chillà and
Schumacher (2012), and Urban et al. (2014)], though most
of the information at high Rayleigh number has been gathered
for convection layers that are not shallow, i.e., Γ ≲ 1.
The question of interest in solar convection is just the

opposite of Eqs. (38) and (39): we know the amount of
thermal energy transported across the convection layer and
want to understand the turbulence structure that enables the
prescribed heat transport to occur. It is in this context that one
needs to possess the knowledge of the flow parameters, the
transport coefficients, the boundary layers, etc. There have
been only a small number of studies that prescribe the heat
flux (instead of wall temperatures), see the direct numerical
simulation (DNS) studies of Verzicco and Sreenivasan (2008)
and Johnston and Doering (2009), but the general conclusion
from those studies is that the flow structure in the bulk is

extremely similar to the constant temperature case modulo a
transformation of the Rayleigh number.

C. Role of boundary layers

Rayleigh numbers in these laboratory studies for Pr≃1 are
high by nominal instability criteria, but the only studies that
have a modest overlap with Fig. 6(a) are those of Niemela
et al. (2000) and Niemela and Sreenivasan (2003a), which
suggests that the Nusselt number varies essentially as the 1=3
power of the Rayleigh number up to Ra ¼ 1017. While it
would be highly desirable to get independent confirmation (or
unambiguous refutation) of these results, the general inference
from these data is that the boundary layers, no matter how
thin, continue to play an important role in heat transport.
There are proposals by Kraichnan (1962), Chavanne et al.
(1997), and Grossmann and Lohse (2011) that the power-law
exponent approaches 1=2 (modulo Prandtl number effects)
toward the so-called ultimate regime when the boundary layer
effects vanish, but there is no unequivocal verification that this
occurs in smooth-wall flows (Siggia, 1994; Niemela and
Sreenivasan, 2003a; Niemela, Babuin, and Sreenivasan, 2010;
Ahlers et al., 2012; He et al., 2012; Urban et al., 2014, 2019;
Zhu et al., 2018; Doering, Toppaladoddi, and Wettlaufer,
2019; Zhu, Mathai et al., 2019). Three-dimensional DNS has
advanced in recent years, and we may mention DNS of RBC
at a unity Prandtl number at Γ ¼ 1=10 up to Ra ¼ 1015 by Iyer
et al. (2020), in air at Pr ¼ 0.7 by Stevens, Lohse, and
Verzicco (2011) at Γ ¼ 0.23, which currently accesses
Ra ¼ 1014, and in Γ ¼ 1=2 for Ra ≤ 2 × 1012, and by Shi,
Emran, and Schumacher (2012) for Γ ¼ 1, Pr ¼ 0.7, and
Ra ≤ 3 × 1010. The cumulative conclusion seems to favor the
continued importance of thin boundary layers.
On the other hand, the power law of Nu ∼ Ra1=2 does seem

to occur when the boundary layers are absent in the experi-
ments either because of a chimneylike configuration by
Gibert et al. (2006) and Cholemari and Arakeri (2009) or
because the heating is accomplished purely by body forces,
such as radiative forces given by Lepot, Aumaitre, and Gallet
(2018) and Bouillaut et al. (2019), so that boundary layers do
not form. And there are indications that the half-power law is
also approached when the walls are rough, as in the two-
dimensional DNSs by Toppaladoddi, Succi, and Wettlaufer
(2017) and Zhu, Stevens et al. (2019). The structure of these
flows seems to differ in detail from the case of smooth wall-
bounded convection.

D. Boundary conditions for the Sun

As just discussed, RBC studies show that the existence of
solid boundaries makes a difference to the heat transport law
and the turbulence structure. The convection boundaries in the
Sun are evidently not solid to either side of the CZ, but steep
changes in the adiabatic temperature gradient at the base of the
CZ significantly restrict free movement of plasma across this
layer, though there can be small-scale penetrative convection
at the tachocline, which is thought to play a critical role in
stellar rotation spin-down. In fact, measuring the depth of
penetration is an active area of research in helioseismology
and asteroseismology; see, e.g., Christensen-Dalsgaard (2002)
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and Christensen-Dalsgaard, Gough, and Knudstrup (2018).
Nevertheless, all large-scale motions are restricted at the base,
resulting in a plausible analogy with an impermeable surface
when convective overshoots into the tachocline are neglected.
Such overshoots cause a deviation from the Boussinesq
approximation of RBC, alter the dynamics, and induce
different thicknesses of the top and bottom boundary layers
(Couston et al., 2017; Toppaladoddi and Wettlaufer, 2018).
Similarly, at the top of the convection region, steep gradients
in temperature and density within the near-surface convection
region endow it with impermeable boundary-like properties.

E. Low-Prandtl-number effects

We have seen that the Prandtl number of the fluid is
extremely small everywhere in the CZ. Even excellent thermal
conductors such as liquid mercury, gallium, and sodium
possess Prandtl numbers that are several orders of magnitude
larger than that of the solar plasma. Glazier et al. (1999)
obtained Ra ≤ 1011 in liquid mercury for Pr ¼ 0.021 in a cell
with Γ ¼ 1=2. Khalilov et al. (2018) reached in liquid sodium
Ra ¼ 1.4 × 107 at Pr ¼ 0.0094 and Γ ¼ 1. Both works give
the highest Grashof numbers Gr in small-Prandtl-number
studies with liquid metals. The DNS reported by Scheel
and Schumacher (2017) reached Ra ¼ 4 × 108 for mercury at
Pr ¼ 0.021 and Ra ¼ 107 for liquid sodium at Pr ¼ 0.005 in
closed cylindrical cells of aspect ratio 1 (currently advancing
to Ra¼5×107). The global heat transport follows Nu¼ARaβ,
where β is slightly larger than 1=4 [as expected for low-Ra
flows; see, e.g., Busse and Clever (1981)]. Taken together,

we may conclude that no direct experience exists with
high-Rayleigh-number RBC with exceedingly low Prandtl
numbers.
Even so, we can make some qualitative remarks on the

effect that extremely low Prandtl numbers might have on the
velocity fluctuations at high Ra. In Fig. 9, we display results
for a DNS of RBC in an extended domain of Γ ¼ 25 for an
extremely small value of Pr ¼ 10−3, compared to the structure
of the vertical velocity components in RBC flows at the same
Ra, but in air Pr ¼ 0.7 and water Pr ¼ 7. A decrease from
Pr ¼ 0.7 to 10−3 causes an increase of the bulk Reynolds
number by a factor of 50, thus making the flow more inertial in
effect; also shown in Fig. 9 are the nontrivial structural
changes in the flow. On the other hand, the Nusselt number
is not significantly enhanced beyond unity for Pr ¼ 10−3,
confirming an increasingly inefficient turbulent heat transport
when Pr drops, as shown by the mean temperature profiles in
Fig. 9(g). For Pr ¼ 10−3, the profile is nearly linear and thus
Nu ≈ 1. These studies confirm previous DNS analyses by
Breuer et al. (2004) and Schumacher, Götzfried, and Scheel
(2015) that reported an extension of the turbulent cascade and
thus of more vigorous fluid turbulence for decreasing Pr.
Recent simulations in the solar context with flux boundary
conditions by Orvedahl et al. (2018) also suggest that free-fall
velocity is quickly attained and fluid inertia becomes increas-
ingly important when the Prandtl number decreases. These
studies also confirm that, despite the increase of turbulent
inertia and of the range of eddy scales, the effective turbulent
thermal diffusivity κe at these extremely low molecular
Prandtl numbers might be decreased significantly as Pr

FIG. 9. Snapshots of the vertical velocity component uz=Uf from direct numerical simulations of Rayleigh-Bénard convection (RBC)
at Ra ¼ 105 in a large-aspect-ratio closed cell with L=H ¼ 25. Length L is the extension of the square cross section. (a) Prandtl number
Pr ¼ 0.001, which results in a bulk Reynolds number Re ¼ urms

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra= Pr

p
=Uf ¼ 4810. The color scale from blue to red covers

uz=Uf ∈ ½−0.8; 0.8�. The three-dimensional computations in (a) and (d) were conducted with a grid resolution of 96002 × 640 points,
applying a code by Krasnov, Zikanov, and Boeck (2011). (b) Convection in air with Pr ¼ 0.7 results to Re ¼ 92. Here
uz=Uf ∈ ½−0.4; 0.4�. (c) Convection in water at Pr ¼ 7. This RBC flow results in Re ¼ 11. Here uz=Uf ∈ ½−0.2; 0.2�. (d)–(f)
Magnifications of (a)–(c). Data of the two larger Prandtl numbers are from Pandey, Scheel, and Schumacher (2018). (g) Corresponding
mean temperature profiles at Ra ¼ 105 as a function of Pr becoming nearly linear for Pr ¼ 0.001. (h) Eddy diffusivity profiles κeðzÞ for
the three lowest corresponding Prandtl numbers.
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decreases. Here κe is obtained by a simple Boussinesq ansatz
hu0zT 0iA;t ¼ −κeðzÞ∂hTðzÞiA;t=∂z. In Fig. 9(h), the profiles
κeðzÞ=κ are therefore displayed for the three lowest Prandtl
numbers in the simulation series.
Finally, Fig. 10 summarizes the dependence of the

Reynolds number Re [see Eq. (39)] on Ra for different values
of Pr for RBC in closed cylindrical cells. The inset collects
data that are measured at, or extrapolated to, Ra ¼ 1010. They
follow Re≈1.7×104Pr−0.6, which results, after using
Eq. (39), in a scaling of the bulk rms velocity urms=Uf ¼
0.17 × Pr−1=10. Thus, urms ≈ 0.17Uf at Pr∼1, 0.34Uf at
Pr∼10−3, and 0.68Uf at a solar value of Pr∼10−6. This
estimate again underlines the increasingly vigorous fluid
turbulence with decreasing Prandtl number at fixed Ra.

F. Effect of rotation

Rotation of the convection layer about the vertical
axis suppresses the onset of convection and constrains
turbulence for sufficiently large angular rotation Ω (Rossby,
1969; Plumley and Julien, 2019). The DNSs by Oresta,
Stringano, and Verzicco (2007), Stevens, Clercx, and Lohse
(2010), Weiss et al. (2010), and Horn and Shishkina (2015) of
rotating turbulent Rayleigh-Bénard convection show, how-
ever, no significant enhancement of the heat transport in
comparison to the nonrotating case, an effect that becomes
even weaker as Ra grows and/or Pr decreases. This was
confirmed in low-Rossby-number experiments by Kunnen et
al. (2011) and Ecke and Niemela (2014); see also Ahlers,
Grossmann, and Lohse, 2009. Further, in flows with Pr ≪ 1,
Ekman pumping becomes unimportant compared to those at
Pr∼1 (Stevens, Clercx, and Lohse, 2010; Horn and Shishkina,
2015). Depending on Pr, Horn and Shishkina (2015) identified
different regimes of rotating RBC by comparing the poloidal

and toroidal energies of the flow field. The identification did
not depend on the aspect ratio and geometry of the container.
Steady and slow rotation of the RBC flow does not seem to
have important dynamical effects for small rotation rates that
correspond to Ro≳Oð1Þ (Niemela, Babuin, and Sreenivasan,
2010). However, experiments suggest that unsteady rotation
rates (i.e., the rotation speeds are modulated) can cause major
changes even at modest rotation; see Niemela, Babuin, and
Sreenivasan (2010) at Ra ¼ 1010 or Zhong, Sterl, and Li
(2015) at lower Ra.
This situation changes for rapidly rotating convection.

Recent investigations on the basis of reduced asymptotic
models, such as the nonhydrostatic balanced equation model
by Julien et al. (2012), and DNSs by Stellmach et al. (2014)
and Favier, Silvers, and Proctor (2014) of the Boussinesq
equations (35)–(37) demonstrate the spontaneous formation of
large-scale vortices that are also identified as a condensate in
Fourier space (Rubio et al., 2014), with this the result of an
inverse cascade, similar to two-dimensional box turbulence
(Smith and Yakhot, 1993). Scaling laws for the turbulent heat
transport in rapidly rotating RBC were discussed by King,
Stellmach, and Aurnou (2012) and Cheng et al. (2015).
Although the Sun does not rotate rapidly enough to reach
the geostrophic regime, computational studies in solar con-
vection at larger rotation rates such as those by Miesch, Brun,
and Toomre (2006) and Miesch et al. (2012) indicate that
similar effects are prominent at large scales, leaving smaller
convection scales unaffected. A detailed morphological clas-
sification of the turbulent convection regimes in rapidly and
moderately rotating stars is found in Hindman, Featherstone,
and Julien (2020).
Simple estimates and experience from laboratory studies

together suggest that rotation has no effect on granular scales;
the effect is weak even on the supergranular scale. This
conclusion has an important bearing on how one thinks about
descending cold plumes (which presumably are on the scale of
granules at most supergranules). The largest effect of rotation
could be strong on the scale of giant cells, but their existence is
not well established, as mentioned in Sec. I. It is thus
conceivable that the largest effect of rotation in the Sun is
felt through differential rotation only.
It is worth stressing that the flow structure in rotating

convection is tightly coupled to the Prandtl number (Rossby,
1969), and the previous statements, based on studies at
moderate Prandtl numbers, may need qualification when Pr
is extremely small as in the Sun. Horn and Schmid (2017) and
Aurnou et al. (2018) showed that rotating convection at low Pr
does not form columnar structures along the rotation axis, as
observed at Pr > 1 [see, e.g., experiments by Aujogue et al.
(2018)], but oscillatory convective motions do. We refer to
Cheng et al. (2018) for a recent summary of the parameter
ranges that are accessible in laboratory experiments. The
absence of columnar structures is consistent with the nature of
differential rotation observed in the Sun.

G. Effect of vertical magnetic fields

Experimental RBC studies in the presence of strong vertical
magnetic fields are mostly conducted in liquid metals and for
simple field configurations (Cioni, Chaumat, and Sommeria,

106 108 1010101

102

103

104

105

106

0.001   1   1000
 

103
104
105

 

FIG. 10. Reynolds number vs Rayleigh number at Pr ¼ 0.005
(squares), Pr ¼ 0.021 (circles), and Pr ¼ 0.7 (triangles) with
corresponding scaling laws. Open symbols are extrapolations to
Ra ¼ 1010. Data and fits are from Scheel and Schumacher
(2017). Inset: extrapolated and measured data at Ra ¼ 1010 vs
Pr. The solid line stands for Re ¼ 1.7 × 104 Pr−0.6. Asterisks are
from Niemela and Sreenivasan (2003a).
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2000; Burr and Müller, 2001; King and Aurnou, 2015; Zürner
et al., 2020). Since the magnetic Prandtl number in laboratory
flows is also low as in the Sun, typically Pm ≲ 10−5, the
magnetic Reynolds numbers Rm ¼ PmRe ≪ 1 in these stud-
ies, with this as the quasistatic regime of magnetoconvection
(Zürner et al., 2016). DNSs in this regime, for Chandrasekhar
numbers up to Q ¼ 4 × 106, Ra ¼ 107, and Pr ¼ 0.025, have
demonstrated how the magnetic field reduces the granule
size and eventually suppresses them away from sidewalls
once Q≳Qc ¼ Ra=π2 and Nu → 1 (Liu, Krasnov, and
Schumacher, 2018). Figure 6(c) plots Q⊙ðrÞ as a function
of the radial distance. Although several simplifications enter
this estimate (and caution is thus necessary), it is seen that
Q⊙ðrÞ becomes extremely large toward the surface, thus
suggesting a possible damping influence on convection of
the strong poloidal magnetic flux tubes that are generated.

H. Large-scale circulations

Any number of pictures of solar convection depict it in
terms of large-scale circulations across the entire depth of the
CZ, so it would be useful to know if such motions exist in the
Sun. Weak, periodic large-scale flows are set up in turbulent
RBC, even at extremely high Ra; see Krishnamurti and
Howard (1981), who conducted experiments for aspect ratios
of 10 to 100, Ra ≤ 2 × 106, and Pr ≥ 7, and Niemela and
Sreenivasan (2008) for aspect ratios 4 and up to Ra ¼ 1013.
This large-scale motion is particularly ubiquitous for aspect
ratios unity and below (Niemela and Sreenivasan, 2003b). The
organization of turbulent convection into large-scale patterns
is also known from the DNS of RBC in domains with large
aspect ratios of Γ ≥ 10 (Hartlep, Tilgner, and Busse, 2003;
von Hardenberg et al., 2008; Stevens et al., 2018; Green et al.,
2020; Krug, Lohse, and Stevens, 2020), which are particularly
pronounced in the velocity field when the turbulent flow is
averaged over a finite time window (Bailon-Cuba, Emran, and
Schumacher, 2010; Emran and Schumacher, 2015). Averaging
over a characteristic time window τ removes fast small-scale
fluctuations and reveals patterns that are reminiscent of the
weakly nonlinear regime of RBC (Busse, 1978); see Fig. 11.
These patterns have been termed superstructures; they evolve

slowly for times t > τ (Fonda et al., 2019) and obey character-
istic scales that depend on Pr (Pandey, Scheel, and
Schumacher, 2018) at a fixed Rayleigh number.
While the large-scale circulation is thus ubiquitous in

RBC, it is notoriously unsteady for large Ra. The large-scale
motions reverse directions stochastically beyond Rayleigh
numbers of the order of 109 (Ciliberto, Cioni, and Laroche,
1996; Sreenivasan, Bershadskii, and Niemela, 2002; Brown
and Ahlers, 2006; Mishra et al., 2011). Glatzmaier and
Roberts (1995) linked the reversal of the large-scale circu-
lation to the erratic reversals of Earth’s magnetic field. Since
the reversal of magnetic field in the Sun is much more
organized, a weak large-scale circulation that stochastically
changes direction, even if one were to exist, is likely to be a
secondary consequence of the Sun’s magnetic field. In any
case, the reversal rate of the large-scale flow in convection
increases in frequency, so its identity and strength diminish
with increasing Rayleigh number, and their very existence
becomes dubious for Ra≳ 1013; see Sreenivasan, Bershadskii,
and Niemela (2002).
To summarize, our understanding of RBC, the paradigm

for convection flows, has improved significantly in recent
decades and many questions on its statistical properties, large-
scale pattern formation, and turbulent transport are now
answered via joint efforts that combine theoretical models,
controlled laboratory experiments, and comprehensive DNS.
Some of these results can guide the understanding of the more
complex situation of solar convection. We attempted to draw
parallels where possible but stress that analogies are at best
imperfect for a full understanding.

VII. IMPLICATIONS OF A LOW THERMAL PRANDTL
NUMBER

Among several lessons learned from RBC studies in
Sec. VI, the one conclusion that stands out is the importance
of a low Prandtl number. Massaguer and Zahn (1980) as well
as Rüdiger (1989) point out that even a turbulent Prandtl
number in the Sun may be small, Prt ¼ νe=κe ∼ 0.01 to 0.4.
We thus provide some comments on this aspect.

A. Plume formation in surface convection

In Fig. 5(c) we show the temperature profile ΘðrÞ in the
vicinity of the solar surface. The profile suggests a “thermal
boundary layer” thickness δT of approximately 200–250 km
that can be inferred, for specificity, as the intersection point of
the two nearly linear slopes, corresponding to the local Hp;
see Fig. 2(e). This thermal boundary layer, which is less than
0.4% of H, may be regarded as setting the thickness of the
stems of the thermal plumes that descend into the interior of
the CZ. The scale is supported by closer inspection of the
visible solar surface observations, for example, in Riethmüller
et al. (2014). The strong density stratification causes a
decrease of the stem width with increasing depth, a process
that might compensate for turbulent dispersion and cross
diffusion.
The thermal diffusivity is calculated by κγ ¼ kγ=cpρ. At

r≲ R⊙ this quantity passes through a minimum [see Fig. 4(b)]
before becoming as large as κγ ∼ 109 m2=s. Thus, a cross

FIG. 11. Streamlines of (a) instantaneous and (b) time-averaged
velocity fields viewed from the top. The averaging time in (b) is
about 60H=Uf . DNS data for Ra ¼ 105, Pr ¼ 0.005, and aspect
ratio Γ ¼ 25 are from Pandey, Scheel, and Schumacher (2018),
who applied a spectral element method (Scheel, Emran, and
Schumacher, 2013).
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plume diffusion time tdiff≈δ2T=κγ≈4×1010m2=ð107m2s−1Þ≈
4000s is of the order of ∼10τG or τSG=24. It thus requires
a downward velocity in the plume of Uz ≈ δT=tconv ≳
0.05 km s−1 to compensate for this strong molecular diffusion.
In this estimate, we set tdiff ∼ tconv. This implies that a certain
minimum velocity is necessary to overcome the dispersion of
the plumes by molecular diffusion and to reach deeper layers
in which molecular diffusion of the temperature field is
significantly reduced.
There are two caveats to this conclusion. First, the turbulent

thermal diffusivity will smear out the thermal plumes much
faster than molecular diffusivity; here the role of the smallness
of the molecular Prandtl number is that it probably influences
turbulent diffusivity. As Fig. 9(g) shows in the RBC study
−∂zhTðzÞiA;t ≃ ΔT=H, and thus κe is comparable to κ for
Pr ¼ 0.001. Second, if too many plumes survive the depths of
the CZ, it means that too much radial momentum is trans-
mitted into the bulk of the CZ, thus making it harder for
differential rotation to survive. It thus appears likely that only
those plumes or thermals can fall down into an ever denser
plasma and survive for substantial depths or even all the way
to the bottom of the CZ, and they are connected with an
intense vortex structure (Anders, Lecoanet, and Brown, 2019).
This challenges the magnetic pumping scenario for dynamos
at the tachocline.
The compressibility at the surface impacts the mean kinetic

energy dissipation rate, which is given by

hρϵi ¼ hρϵsi þ hρϵdi ¼ hηω2i þ 4
3
hηð∇ · uÞ2i; ð40Þ

which is composed of solenoidal and dilatational parts with
ω ¼ ∇ × u. DNSs of compressible turbulence by Sarkar et al.
(1989) suggest a closure given by hρϵdi ≃ hρϵsiM2

t , where
Mt ¼ urms=cs is the turbulent Mach number (although
the situation is likely to be more complex). Furthermore,
hρϵsi ≃ ηu2rms=λ2T , where the Taylor microscale is given by

λT ≃HpRe
−1=2
f , giving a dissipation profile

hρϵiðrÞ ≃ ρν
α2U2

f

H2
p

Refð1þ α2M2Þ; ð41Þ

where urmsðrÞ ¼ αUfðrÞ and the Mach number MðrÞ ¼
Uf=cs. From Sec. VI.E, we conclude that urmsðrÞ ≃UfðrÞ
at low Prandtl number and from Sec. IV.B that M ≪ 1

inside much of the CZ. Thus, one gets an estimate
hρϵiðrgÞ ≃ ρνU2

fRef=H
2
p ≈ 2000 kg=ms3 and hρϵiðR⊙Þ ≃

2ρνc2sRef=H2
p ¼ 1011 kg=ms3. Even though these estimates

have to be taken with caution, they indicate the extreme
turbulence level at the surface. This enhanced mean energy
dissipation rate hϵi suggests a turbulent cascade between the
integral scale and the Kolmogorov length. In spite of this
elevated dissipation level, it is interesting that the granular
structure is visibly preserved in the outer layer; see Fig. 1(a).
This observation is presumably related to the fact that high
turbulence levels do not yield a commensurate increase in the
effective thermal diffusivity mentioned in Sec. VI.E.

B. Convection in the limit of zero Prandtl number

The importance of small Pr has already been mentioned.
The main point is not that it matters everywhere in turbulence,
but in deciding whether the descending thermal plumes
remain stable and coherent in the stratified CZ. These are
thus sufficient reasons for studying thermal convection in the
limit of zero Prandtl number (Spiegel, 1962; Thual, 1992), and
this was done in the Boussinesq framework. The correspond-
ing equations in the limit Pr → 0 (which here implies taking
κ → ∞) for nonmagnetic RBC are given in dimensionless
form by

∇ · u ¼ 0; ð42Þ

Du
Dt

þ 1

Ro
ðez × uÞ ¼ −∇pþ 1ffiffiffiffiffiffi

Gr
p ∇2uþ θez; ð43Þ

1ffiffiffiffiffiffi
Gr

p ∇2θ ¼ −uz: ð44Þ

Temperatures are rescaled by PrΔT, and the free-fall
velocity definition in Eq. (16) is consequently modified
to Uf ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gr PrΔTH=Tr

p
. The equation for temperature

becomes a Poisson equation. Physically, this implies that
the departure from the diffusive equilibrium profile, the field
θðx; tÞ ¼ Tðx; tÞ − ð1 − zÞ, is enslaved by the advecting
vertical velocity component. This in turn provides a non-
linear amplification mechanism for the velocity field in the
momentum balance since θ ¼ −

ffiffiffiffiffiffi
Gr

p
∇−2uz enters via the

buoyancy term. The highly nonlinear driving is why the fluid
turbulence in this extremely low-Prandtl-number limit
becomes so highly inertial; see also Breuer et al. (2004)
and Schumacher, Götzfried, and Scheel (2015).
For deep convection, Boussinesq equations are no longer

adequate. Unfortunately, for anelastic conditions, and even
less so for general convection conditions, the right equations
do not yet exist. In simulations such as that of Orvedahl et al.
(2018), whose main goal is to study the Prandtl number
effects, the standard anelastic equations were used without
deriving the right approximations for the limit of an extremely
small Prandtl number. This remains work for the future.

VIII. POSSIBLE PLANETARY INFLUENCES

Convection, in conjunction with rotation and the magnetic
field, is traditionally regarded as the sole generator of
dynamics manifested on the Sun’s surface (also in all of
the CZ, but we focus on the surface here because we can
observe it directly). Some of the magnetic events that occur on
the Sun’s surface, including some major storms, are consistent
with the broadly stochastic nature of the convective field, but it
is less clear whether the latter can also drive the nearly
periodic phenomena related to sunspots: their appearance
every 22 yr or so, the orderly migration of the new spots
toward the equator, and their symmetry with respect to the
equator (McIntosh et al., 2014; Choudhuri, 2015). Rapidly
rotating convection flows seem to support oscillatory large-
scale dynamos (Käpylä, Mantere, and Brandenburg, 2013).
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It is conceivable that such large-scale motion can develop in
spherical geometry and that, in the case of the Sun, they are
related to the presumed giant cells with weak amplitudes
(Hathaway, Upton, and Colegrove, 2013; Bogart, Baldner, and
Basu, 2015), but neither these giant cells nor any nearby
subharmonics have the right regularity or temporal frequency
to explain the periodicity of sunspots. Further, we have seen
that the large-scale circulation in laboratory flows is erratic at
higher Rayleigh numbers, becoming weak beyond a certain
point. If these features carry over to the Sun, it is hard to
understand how the combination of convection, rotation, and
magnetic buoyancy can generate the observed recurrent nature
of sunspots.
RBC develops an oscillatory component when a periodic

element is superposed on the steady heating at the bottom
wall, as seen in Niemela and Sreenivasan (2008). They
observed that the entire convection region in the bulk of
the apparatus responded to it with a similar periodic compo-
nent, essentially without attenuation through the convection
layer height. All attenuation occurred in the layer close to the
bottom wall. Perhaps some such forcing occurs in the Sun as
well. Dicke (1978) suggested a clocked process inside the Sun
on the basis of available data ruling out a random walk. Abreu
et al. (2012) discussed possible planetary influences on the
Sun as the reason for this clockwork, a viewpoint that is still
controversial; see, e.g., Poluianov and Usoskin (2014). It is
mostly motivated by the close coincidence of the periodicity
of Jupiter’s orbit around the Sun with that of the sunspots.
Jupiter is the most massive planet but still carries only about
0.1% of the mass of the Solar System; however, it carries
about 2=3 of the entire angular momentum of the Solar
System. Detailed calculations suggest that the tidally impor-
tant Jupiter-Venus-Earth system gives good agreement with
sunspot characteristics. The resulting tidal height would,
however, be extremely small, h ≈ 1 mm, but corresponds
by virial theorem to a velocity v ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðr�Þh

p
∼ 1 m=s in the

tachocline (Stefani, Giesecke, and Weier, 2019). This might
affect the superadiabaticity and consequently the local mag-
netic storage capacity in the tachocline (Abreu et al., 2012). It
also puts further constraints on existing dynamo models;
for detailed discussions see Bonanno et al. (2012) and Stefani
et al. (2018).
In spite of their attractiveness, such studies are presented

with a sense of apology that is prompted by the fact that
there are no models that elevate quantitative agreement to the
level of a dynamical connection. As already stated the tidal
modifications of the Sun’s surface by the planets are trivially
small, as are the fluctuations caused on the magnetic and
temperature fields [with the caveat that all such calculations
have been made on the basis of mean values and do not allow
for the fact that there could be intense fluctuations about the
mean (Sreenivasan and Antonia, 1997), which causes such
calculations to be unreliable]. One can presumably find local
features on which such effects could be large: for example, the
magnetic field at the tachocline could be influenced by the
magnetic fields of Jupiter. Given that we know so little about
the Sun’s dynamics with certainty, our view is that one should
not simply discard this possibility, even if it is not strong
enough at present to provide a causal connection.

IX. SUMMARY AND CONCLUSIONS

We have discussed thermal convection in the Sun on the
basis of the standard solar model S (Christensen-Dalsgaard
et al., 1996), and provided radial profiles of important trans-
port coefficients with respect to radial depth. Our emphasis
has also been to calculate typical dimensionless parameters,
such as Rayleigh and Prandtl numbers. Any effort to under-
stand the unusual dynamics of solar convection needs such
information. We have attempted to bridge studies of the
simplest case of turbulent convection, the Rayleigh-Bénard
convection, in the laboratory and simulations, with convection
in the Sun. The broad perspective of this Colloquium can be
summarized as follows:

(i) Solar convection operates extremely close to
the adiabatic thermodynamic equilibrium. Though
likely to be highly turbulent, it remains close to the
marginal stability boundary. This is quantified by the
extremely small superadiabaticity ΔsðrÞ. The state
variables that determine the isentropic equilibrium
case vary over several orders of magnitude, with
scale heights much smaller than the total height of
the layer H. We recall that a RBC convection flow
that is close to the marginal stability limit on several
scales would obey a heat transfer scaling of Nu ∼
Ra1=3 following Malkus (1954). We recall also that,
at least for the case with open boundaries, the scaling
law has a 1=2 power. In the absence, on the one
hand, of reliable prefactors in these scaling laws,
especially given the extremely low Prandtl numbers,
and, on the other hand, the uncertainty associated
with the proper boundary conditions, we cannot say
which of the two, if either, applies to the Sun.

(ii) Convection in the outer layer is driven by the
radiative cooling at the top prescribed by the
luminosity flux L⊙ (Nordlund, Stein, and Asplund,
2009). This allows us to estimate the dimensionless
Nusselt number of the turbulent heat transfer to
Nu⊙ ∼ 106. This cooling generates a strong neg-
ative buoyancy close to the surface, while the bulk
and lower part of the convection layer remains
neutrally buoyant to a good approximation. Such a
regime suggests a highly asymmetric convection
with strongly localized, coherent downwelling cold
plumes that have to be compensated for by mod-
erate upward flows over a larger area if one
assumes that the convective motion covers the
layer as a whole. O’Mara et al. (2016) suggested
that this picture emphasizes a turbulent Prandtl
number Prt > 1. An open question is how such a
turbulent Prandtl number can be established in a
highly turbulent fluid turbulence that is driven by
an extremely diffusive temperature field. Indeed,
Rüdiger (1989) calculated Prt < 1 in the Sun.

A study related to this surface-driven convec-
tion was made recently by Cossette and Rast
(2016). Coherent thermal plumes can be expected
to be subject to strong turbulent diffusion and
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entrainment on their decline. Vertical magnetic
fields and the differential rotation can enlarge this
dispersion when the flow is close to Chandrase-
khar’s magnetoconvection limit. We cannot be
certain of any such models until we understand
the relative importance of opposing phenomena but
point out the analogy to conditionally unstable
moist convection (Bjerknes, 1938; Pauluis and
Schumacher, 2011). Here this picture of narrow
cloudy air upflows and broad dry air subsidences
becomes increasingly inefficient as Ra increases
and thus requires additional mechanisms such as
radiative cooling (Pauluis and Schumacher, 2013)
that destabilize the dry air regions.

(iii) Convection in the Sun is characterized by an
extremely small Prandtl number Pr∼10−6, dropping
to even smaller values near the surface, which will
forever be impossible to reproduce in the laboratory.
This inhibits turbulent transport and implies that we
should focus more on anelastic simplification of the
equations in the limit of zero Prandtl number.
(Compressibility does not seem to be a major factor
except in the outermost region.) This was done in the
RBC setting by Spiegel (1962). RBC studies dem-
onstrate a highly intermittent fluid turbulence at
extremely low Pr with significantly enhanced fluc-
tuations of kinetic energy dissipation. Systematic
studies of small-scale intermittency in low-Prandtl
RBC, e.g., by moments of the kinetic energy
dissipation rate, have started only recently (Schu-
macher et al., 2018) and can provide further guid-
ance for deriving SGS models beyond MLT and its
refinements; see also Lohse and Xia (2010).

(iv) Solar convection is characterized by an extremely
large Rayleigh number. We provided plausible
estimates on the basis of pressure scale height; if
the outer scale is H, which is more than 2 orders of
magnitude larger than Hp [see Fig. 2(e)], Ra
increases by 6 orders of magnitude, thus bringing
us back to the estimates given in the Introduction.
The characteristic velocity profile UfðrÞ grows
steadily to extremely large velocities that are sig-
nificantly larger than recent analyses of helioseis-
mology data (Hanasoge, Duvall, and Sreenivasan,
2012). The two estimates come closer in a more
recent work (Birch et al., 2018), though their radial
distributions distinct. Finally, we note that Uf ≪ cs
through the bulk of the CZ, which suggests that
small-scale turbulence for scales l ≪ Hp can be
described and parametrized similarly to the incom-
pressible RBC case; see also the preceding comment
in (iii).

Our review of the convection in the Sun covers a large
territory and the description points out, at appropriate places,
the unsatisfactory state of our understanding of its dynamical
features. We want to highlight three particular problems that
would benefit from immediate attention. (1) Convection in
highly stratified media. We think that some attention to this

problem in simulations or the laboratory is much more
rewarding than another study of classical RBC. (2) The
analytical exploration of the fact that the temperature gradient
in most of the CZ departs only by a minute amount from the
adiabatic profile. It is astonishing that this marginal state of
thermal transport has not been exploited successfully thus far.
(3) The extremely small magnitude of thermal Prandtl number
appears to endow solar convection with two special properties:
high turbulence levels combined, at the same time, with an
effective thermal diffusivity that approaches the molecular
values from above. All three areas will benefit from more
detailed studies.
Our ignorance of the dynamics of the Sun is vast, but it

should not diminish the enormous strides made in the field.
There are excellent reasons to think that our knowledge will
become better consolidated with time, and this consolidation
will come from observations of the full Sun via new space
missions, helioseismic inferences, modeling and simulations
(of both the Sun itself and the laboratory flows), and theory, all
of which are becoming increasingly sophisticated. Further,
new observations of Sun-like stars have been growing with
time, and any knowledge of their dynamics (e.g., differential
rotation) can shed light on the dynamics of the Sun itself.
Finally, it is our belief that this effort will help us to understand
other Sun-like stars and their own planetary systems, some of
which could be habitable for life as we know it.
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