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A few decades ago, quantum optics stood out as a new domain of physics by exhibiting states of
light with no classical equivalent. The first investigations concerned single photons, squeezed states,
twin beams, and Einstein-Podolsky-Rosen states, which involve only one or two modes of the
electromagnetic field. The study of the properties of quantum light then evolved in the direction of
more and more complex and rich situations, involving many modes of the spatial, temporal,
frequency, or polarization type. Actually, each mode of the electromagnetic field can be considered
as an individual quantum degree of freedom. It is then possible, using the techniques of nonlinear
optics, to couple different modes and thus build in a controlled way a quantum network [H. Jeff
Kimble, Nature (London) 453, 1023 (2008)] in which the nodes are optical modes, and that is
endowed with a strong multipartite entanglement. In addition, such networks can be easily
reconfigurable and are subject only to weak decoherence. They indeed open many promising
perspectives for optical communications and computation. Because of the linearity of Maxwell
equations a linear superposition of two modes is another mode. This means that a “modal
superposition principle” exists hand in hand with the regular quantum state superposition principle.
The purpose of this review is to show the interest of considering these two aspects of multimode
quantum light in a global way. Indeed, using different sets of modes allows one to consider the same
quantum state under different perspectives: a given state can be entangled in one basis and
factorized in another. It is shown that there exist some properties that are invariant over a change in
the choice of the basis of modes. The method of finding the minimal set of modes that are needed to
describe a given multimode quantum state is also presented. It is then shown how to produce,
characterize, tailor, and use multimode quantum light while also considering the effect of loss and
amplification on such light and the modal aspects of the two-photon coincidences. Switching to
applications to quantum technologies, this review shows that it is possible to find not only quantum
states that are likely to improve parameter estimation but also the optimal modes in which these
states “live.” Finally, details on how to use such quantum modal networks for measurement-based
quantum computation are presented.
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I. INTRODUCTION

Modes of the electromagnetic field have always been an
important tool for both theory and applications, helping
physicists to describe and use subtle properties of light. For
example, optical telecommunications, in an effort to further
increase the number of degrees of freedom used to encode
information in a single beam of light, was led to the multi-
plexing of more and more optical modes, successively
temporal modes, frequency modes, and transverse modes.
Early research in quantum optics concentrated on simple

nonclassical states of light, like single photons, squeezed
states, twin beams, and Einstein-Podolsky-Rosen (EPR)
states, that involve only one or two modes of the electro-
magnetic field. Then quantum states involving more and more
quantum degrees of freedom were considered. This was
implemented either by increasing the size of the Fock state
basis in a given mode (which is not the subject of this review)
or by increasing the number of modes on which the quantum
state extends, with these modes being spatial modes for
the study the quantum properties of optical images, or

time-frequency modes to investigate the quantum properties
of light pulses.
In addition to the intrinsic interest in exploring further the

quantum aspects of light in all of its manifestations, the study
of highly multimode quantum light is of significant interest in
the perspective of applications in the domains of quantum
technologies. For example, to be competitive with present
classical computers, the future quantum computer will nec-
essarily make use of quantum states displaying entanglement
between many degrees of freedom, and multimode quantum
states of light are promising candidates to achieve this goal.
This review aims at characterizing from a general perspective

the numerous specific features and interests of multimode
quantum light. Indeed, quantum optics, as the child of optics
and quantummechanics, has inherited a double linearity: that of
Maxwell equations, for which optical modes form a basis of
solutions, and that of quantummechanics, which involves bases
of quantum states. One is naturally led to use two “intertwined”
Hilbert spaces to describe multimode quantum light: that of
modes and that of quantum states. The properties of single-
photon quantum states, for example, are intimately related to
the characteristics of the mode in which they are defined.
The specific approach of this review is to consider these two

intricate aspects of quantum light on an equal footing. Note that
in a given physical system there are many possible bases of
optical modes: one has the choice of the basis of modes used to
describe it. Using different sets of modes allows us to consider
the same quantum state under different perspectives: for
example, a given quantum state can be entangled in one basis
and factorized in another. One can also derive and use the basis
of so-called normal modes or look for “principal modes,”which
contain most information in the multimode system.
We show later that there exist some properties that

are invariant over a change in the choice of the basis of
modes, like nonclassicality, negativity of the Wigner function,
and total photon number. We also present the method of
finding the minimal set of modes that are needed to describe a
given multimode quantum state, a tool to reduce the size of the
Hilbert space of the system. We describe how to use modal
noise correlation matrices to extract principal modes that
concentrate and simplify the relevant information over com-
plicated multimode states, especially (but not only) in the case
of Gaussian noise. We show that there always exists a mode
basis on which multimode entangled Gaussian states, pure or
mixed, are separable. We detail the different detection
techniques allowing experimentalists to determine such cor-
relation matrices, as well as the ways to generate multimode
light and tailor the spatiotemporal shapes of the modes. The
effect of loss and of amplification on multimode nonclassical
light is also presented. Switching to applications to quantum
technologies, we show that it is possible to find not only
quantum states that are likely to improve parameter estimation
but also the optimal modes in which these states “live.”
Finally, we show how to use such quantum modal networks
for measurement-based quantum computation.
This review deals with both discrete variables and con-

tinuous variables, with an emphasis on the latter, i.e., on the
properties of quantum field fluctuations. In addition, we do
not treat polarization or angular momentum modes, which
have been the subject of intense research (Korolkova et al.,
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2002; Allen, Barnett, and Padgett, 2016). We do not treat the
multimodal aspects of light matter interaction either (Nunn
et al., 2008; Afzelius et al., 2009). We are more interested in
“scalable” properties, i.e., features that can be readily
extended to large numbers of modes, than in two-mode
systems. Even with these restrictions, the domain is vast
and the object of numerous theoretical and experimental
investigations, so we do not claim to present in this review
an exhaustive account of it and describe what we consider the
most striking features of the domain. There are already a
number of papers and books that cover parts of this domain
(Simon, Mukunda, and Dutta, 1994; Adesso and Illuminati,
2007a; Grynberg, Aspect, and Fabre, 2010; Braunstein and
Pati, 2012; Weedbrook et al., 2012; Adesso, Ragy, and Lee,
2014; Furusawa, 2015; Ou, 2017; Ansari et al., 2018; Bruss
and Leuchs, 2019; Korolkova and Leuchs, 2019), but, to our
knowledge, no fully comprehensive presentations of it.

II. DESCRIPTION OF CLASSICAL MULTIMODE LIGHT

In this review, we use the complex representation, or analyti-
cal signal, EðþÞðr; tÞ of a classical electric field, such as the real
field Eðr; tÞ, as a vector equal to EðþÞðr; tÞ þ (EðþÞðr; tÞ)�.

A. Mode of the electromagnetic field and mode basis: Definitions

Wewill call mode of the electromagnetic field a vector field
f 1ðr; tÞ that is a normalized solution of Maxwell equations in
vacuum. It satisfies the following three equations:�

Δ −
1

c2
∂2

∂t2
�
f 1ðr; tÞ ¼ 0; ∇ · f 1ðr; tÞ ¼ 0; ð1Þ

and, at any time t,

1

V

Z
V
d3rjf 1ðr; tÞj2 ¼ 1; ð2Þ

withV the large volume that contains the entire physical
system under consideration.
Starting from a given mode, which can have any shape in

space and time provided that it fulfills Eq. (2), one can always
build an orthonormal mode basis ffmðr; tÞg on which one can
decompose any solution of the Maxwell equations and which
has the function f 1ðr; tÞ as its first element. Another way of
generating a mode basis is to constrain the solutions of
Maxwell equations by specific boundary conditions, for
example, in a resonator.
As we have restricted ourselves to the case where the field

of interest is enclosed in a spatial box of size V, this basis is
discrete and can be labeled by a set of integers globally named
as m so that one can write any complex field EðþÞðr; tÞ as

EðþÞðr; tÞ ¼
X
m

Em fmðr; tÞ; ð3Þ

with, at any time t,

1

V

Z
V
d3rf �mðr; tÞ · fm0 ðr; tÞ ¼ δmm0 ; ð4Þ

with Em the complex amplitudes of the different modes that
completely define a given field. It is often useful to consider
the field quadratures EmX and EmP as the real and imaginary
components of Em:

Em ¼ EmX þ iEmP. ð5Þ

B. Hilbert space of modes

Equation (3) shows that a given solution of Maxwell
equations EðþÞðr; tÞ can be considered as a vector belonging
to a Hilbert space, called modal space, that we denote with an
arrow E⃗:

E⃗ ¼
X
m

Emf⃗m; ð6Þ

with the sum limited in practice to a finite number of modesN.

f⃗m is a unit vector in the modal space, i.e., a column vector of
zeros except for a 1 at the mth position. E⃗ is therefore the
column vector ðE1; E2;…ÞT, with T denoting the transposition
operation in the modal Hilbert space. Note that the modal

column vector f⃗m and the electric field fmðr; tÞ, a function of r
and t, are two representations of the same physical mode. We
thus often denote the mode as fm, a notation independent of
any representation.
The inner product is defined as

F⃗T� · G⃗ ¼
XN
m¼1

F �
mGm; ð7Þ

with F⃗T� ¼ ðF⃗TÞ� the line matrix dual of F⃗. The inner product
is also equal to the spatial overlap between the two associated
electric fields

F⃗T� · G⃗ ¼ 1

V

Z
V
d3rF�ðr; tÞ · Gðr; tÞ. ð8Þ

Note that the value of the inner product (8) does not depend
on time.
In the following, we extend the notation with an arrow to

other column vectors of dimension N, for example, ⃗Â, of

components Âm that are quantum operators. ⃗Â
T
denotes the

corresponding line vector of operators Âm, the transposition
operation T acting only in the modal space, leaving operators

unchanged. In the same spirit that ⃗Â
†
is the column vector of

components Â†
m, the operation denoted by † is used only for

the Hilbert space of quantum operators.

C. Different mode bases for the electromagnetic field

Now consider a modal unitary transformationU of complex
components Um

n , and define the modal vectors

g⃗n ¼
XN
m¼1

Um
n f⃗m. ð9Þ

It is easy to show that they form another complete set of
orthonormal modal vectors (with g⃗T�n · g⃗n0 ¼ δn;n0 ), and hence
a new basis on which any field can be expanded
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EðþÞðr; tÞ ¼
X
n

Gngnðr; tÞ; E⃗ ¼
X
n

Gng⃗n. ð10Þ

The introduction of modes here has been purely mathematical.
It leaves us complete freedom of choice of the unitary
transformation U, and therefore of the mode basis. The most
widely used is the basis of plane wave modes, which is easy to
handle mathematically but rather unphysical. There are other
mode bases that better fit the light source and the optical
system under consideration. Let us quote some of them:

• Spatial Hermite-Gauss modes are well suited for
beams produced in cavities made of spherical mirrors.
Laguerre-Gauss modes carrying orbital angular momen-
tum are used in quantum information processing, in
particular, in a quantum key distribution context
(Mirhosseini et al., 2015).

• Temporal or frequency Hermite-Gauss modes provide a
convenient orthogonal basis for light pulses of any
temporal or spectral shape (Brecht et al., 2015).

• Tilted plane waves are used to describe “images,” i.e.,
any field configuration in the transverse plane, per-
pendicular to the main propagation direction (Kolobov,
2006).

The choice of mode basis can be adapted to the detection
process:

• The pixel mode basis is useful when one considers
imaging devices such as a CCD camera or a photodiode
array. It consists of spatial modes of constant value over
the pixel area δx × δx and zero outside. Such a basis is
orthonormal but not complete.

• The time bin basis is analogous to the previous one when
one replaces space with time and is useful for analyzing
temporal sequences.

• In the same spirit, the frequency band basis consists of
frequency bins of width δν, which is useful for analyzing
broadband sources.

• The sideband mode basis, consisting of sums of mono-
chromatic frequency modes symmetrically disposed
around a carrier frequency, is useful for describing the
different Fourier components of a time-dependent signal;
see Sec. X.C.

D. Transverse and longitudinal modes

For simplicity, we now restrict our analysis to the case
where the fields of interest are the superposition of plane
waves having wave vectors close to a mean value k0 (paraxial
approximation) and frequencies close to a central frequency
ω0 ¼ cjk0j (narrow-band approximation) (Grynberg, Aspect,
and Fabre, 2010). To simplify notation, we assume that k0 is
parallel to the z axis. The electric field can be written as

EðþÞðr; tÞ ¼ eiðk0z−ω0tÞ
X
m

Fm fmðr; tÞ; ð11Þ

where eiðk0z−ω0tÞ is the carrier plane wave and fmðr; tÞ are the
envelope functions of the different modes, which are slowly
varying functions of time at the scale of the optical period and
of the position at the scale of the wavelength.

We now further simplify our approach by restricting the set
of unitary modal transformations U to the ones that are
factorized in transverse and longitudinal factors; the polari-
zation degree of freedom is unaffected. This allows us to use
factorized modes fm:

fmðr; tÞ ¼ ϵif
ðTÞ
p ðx; y; zÞfðLÞr ðt; zÞ; ð12Þ

where ϵi (i ¼ 1, 2) are two orthogonal polarization unit

vectors in the x-y plane, fðTÞp is the transverse (or spatial)

part of the mode, and fðLÞr is its longitudinal (or temporal) part,
with m being a short notation for ði; p; rÞ.
To build a spatial mode basis, one can use any orthonormal

set of functions of x, y in the transverse plane fpðx; yÞ
provided that they vary slowly on the wavelength scale so
that one can use the paraxial approximation. The mode

functions fðTÞp ðx; y; zÞ for any value of z are deduced from

their values at z ¼ 0, fðTÞp ðx; y; z ¼ 0Þ ¼ fpðx; yÞ by the
Huygens-Fresnel integral accounting for diffraction.
To build a temporal mode basis, one can use any set of

functions of time t, frðtÞ provided that they satisfy the slowly
varying envelope approximation and temporal orthonormality
relations with an integration time T longer than any other
characteristic time of the problem. The longitudinal mode

functions are then fðLÞr ðt; zÞ ¼ frðτ ¼ t − z=cÞ, describing
undistorted pulses in the reference frame propagating at the
velocity of light in the z direction.
The three factors in Eq. (12) correspond to three different

kinds of quantum multimode effects: polarization effects,
spatial effects, and temporal effects. They appear here as
decoupled because of our simplifying assumptions. We do not
detail the quantum properties linked to the polarization of
light, or, in particular, the modes carrying orbital and
polarization angular momentum. They are treated in detail
by Korolkova et al. (2002) and Allen, Barnett, and Padgett
(2016). In this review we consider a single polarization
component, drop the polarization index i, and work with
scalar modes. Such a description in terms of decoupled spatial
and temporal modes is convenient when one treats problems
in which the temporal shape of light does not modify its
transverse properties or when diffraction does not modify the
pulse shape. Self-focusing effects, in either space or time, or
objects like X waves (Gatti et al., 2009; Jedrkiewicz et al.,
2012) would clearly need a more elaborate approach.

When a single temporal mode fðLÞ1 ðt; zÞ is involved, the
electric field is written as

EðþÞðr; tÞ ¼ ϵ1eiðk0z−ω0tÞfðLÞ1 ðτÞ
X
p

Epf
ðTÞ
p ðrÞ. ð13Þ

Omitting the factor in front of the sum, one defines the
transverse electric field as

EðþÞ
T ðx; y; zÞ ¼

X
p

Epf
ðTÞ
p ðx; y; zÞ. ð14Þ

Its Fourier transform in transverse wave vector space

ẼðþÞ
T ðkx; kyÞ can also be expanded on the basis of kx and

ky dependent modes f̃ðTÞp ðkx; kyÞ:
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ẼðþÞ
T ðkx; kyÞ ¼

X
p

Ẽpf̃
ðTÞ
p ðkx; kyÞ. ð15Þ

It is independent of z, as diffraction does not modify the
distribution of transverse wave vectors. Transverse modes are
well suited to the description of quantum imaging problems
(Kolobov, 2006), i.e., the quantum properties of the transverse
distribution of light, for example, quantum correlations
between different points of the transverse plane.

In a symmetrical way, when a single spatial mode fðTÞ1 ðrÞ is
involved, the electric field is written as

EðþÞðr; tÞ ¼ ϵ1e−iω0τfðTÞ1 ðrÞ
X
r

Erf
ðLÞ
r ðτÞ. ð16Þ

This allows us to define the temporal or longitudinal field as

EðþÞ
L ðt; zÞ ¼

X
r

Erf
ðLÞ
r ðτÞ. ð17Þ

Its Fourier transform ẼðþÞ
L ðωÞ can be expanded on a basis of

frequency modes f̃ðLÞr ðωÞ:

ẼðþÞ
L ðωÞ ¼

X
r

Ẽrf̃
ðLÞ
r ðωÞ. ð18Þ

Temporal and frequency modes are well suited to the quantum
description of light pulses and of their correlations. Frequency
combs are an important case. They can be expanded on the
basis of monochromatic waves of equally spaced frequencies
or, in the time domain, as trains of identical pulses equally
spaced in time.

E. Modes and classical coherence

Note that if the classical field under study is totally defined,
i.e., perfectly coherent, in both time and space, its normalized
spatiotemporal shape can be taken as a first mode of a mode
basis, and the decomposition (3) comprises a single term: any
perfectly coherent classical field is single mode in essence.
This is the case, for example, for a mode-locked laser in which
the relative phases between the different frequency modes
are fixed.
But in most practical cases the field is not perfectly

mastered: it has some degree of randomness or “incoherence”
in the form of amplitude and phase fluctuations at any point of
space and time. In this situation, the complex coefficients Em
in Eq. (3) are stochastic quantities. This is the case, for
example, for a multimode cw laser in which the phases of each
individual frequency component are randomly fluctuating.
The classical fluctuations of the field have no reason to be
described by a single fluctuating amplitude E1, so a full
decomposition of the form of Eq. (3) is indeed needed, and the
degree of coherence of the field is characterized by the
probability distributions of the complex amplitudes Em and
by the correlations existing between different amplitudes Em
and Em0 .
Among the quantities that are used to characterize

the degree of coherence of a classical stochastic field, we

use in this review the following matrices characterizing its
fluctuations:

(1) The first-order coherency matrix Γð1Þ (Wiener, 1928),
defined by

ðΓð1ÞÞm;n ¼ E�
mEn; Γð1Þ ¼ E⃗E⃗T�; ð19Þ

with the bar indicating an ensemble average. This
allows us to determine the cross-correlation function
for the field amplitudes (Barakat, 1963):

Gð1Þðr; r0; t; t0Þ ¼ EðþÞ�ðr0; t0ÞEðþÞðr; tÞ ð20Þ

¼
X
m;n

ðΓð1ÞÞm;nf
�
mðr0; t0Þfnðr; tÞ. ð21Þ

The coherency matrix has been extensively studied in
the context of polarization modes (Réfrégier and
Goudail, 2005) and imaging (Yamazoe, 2012).

(2) The quadrature covariance matrix ΓQ.
Define

Q⃗ ¼ðE1X; E2X;…; ENX; E1P; E2P;…; ENPÞT; ð22Þ

the column vector containing all field quadratures. The
quadrature covariance matrix ΓQ, which we refer to in
short as the covariance matrix, is the real 2N × 2N

matrix defined on a given mode basis ff⃗ng as

ΓQ ¼ Q⃗Q⃗T . ð23Þ

It contains all second moments of the different modes

E2
mX and E2

mP on the diagonal, and outside the diagonal
all quadrature correlations EmXEnX, EmPEnP, and
EmXEnP.

The quadrature covariance matrix is a symmetric
real matrix of size 2N × 2N, where N is the number of
modes, whereas the coherency matrix is Hermitian of
size N × N. If all of the modes have fluctuations with
Gaussian statistics and zero mean, then the quadrature
coherence matrix contains all of the physical informa-
tion about the system, which is not the case for the
first-order coherency matrix.

The N × N coherency matrix can be deduced from
the 2N × 2N quadrature covariance matrix using the
relations

ðΓð1ÞÞm;n ¼ EmXEnX þ EmPEnP

þ iðEmXEnP − EmPEnXÞ. ð24Þ

In contrast, one cannot determine the quadrature
covariance matrix from the coherency matrix. This
matrix gives information about the distribution of
energy among the different modes, but not the way
that it is distributed between the two quadratures inside
a given mode.
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III. DESCRIPTION OF QUANTUM MULTIMODE LIGHT

Now consider quantum fields in vacuum and start with the
usual approach of quantum electrodynamics (Cohen-
Tannoudji, Dupont Roc, and Grynberg, 1987; Mandel and
Wolf, 1995; Grynberg, Aspect, and Fabre, 2010), which
consists of introducing the electric field operator in the
Heisenberg representation ÊðþÞðr; tÞ as the quantum extension
of the classical complex field EðþÞðr; tÞ, and expand it to the
basis of monochromatic plane wave modes ulðr; tÞ:

ÊðþÞðr; tÞ ¼
X
l

Eð1Þ
l âlulðr; tÞ;

ulðr; tÞ ¼ ϵleiðkl ·r−ωltÞ; Eð1Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏωl

2ε0V
;

s
ð25Þ

where ϵl is a unit polarization vector, âl is the annihilation

operator of a photon in the plane wave mode, and Eð1Þ
l is the

single-photon electric field. The set of plane wave modes
fulðr; tÞg satisfies the orthonormality condition (4) and the
equal time completeness relation in space domain, valid at any
time t:

X
l

u�lðr; tÞ · ulðr0; tÞ ¼ 2Vδð3Þðr − r0Þ; ð26Þ

where δð3Þ is the delta function in three-dimensional space.
Expansion (25) shows that the modal Hilbert space of

classical electromagnetic fields can be mapped to a modal
Hilbert space of quantum field operators so that one can write

⃗Ê ¼
X
l

Eð1Þ
l âlu⃗l. ð27Þ

⃗Ê is thus the column vector of operators Eð1Þ
l âl. Note that the

electric field quantum operator ÊðþÞðr; tÞ in the Heisenberg
representation obeys Maxwell equations (1), which form the
basis not only of classical electrodynamics but also of
quantum electrodynamics.

A. Electric field operator in any mode basis

We now perform a modal unitary transformation U on the
set of creation operators fâ†lg, yielding a new set of operators
fb̂†mg given by

b̂†m ¼
X
l

Ul
mâ

†
l;

⃗̂b† ¼ U ⃗̂a†; ð28Þ

where ⃗̂b† and ⃗̂a† are column vectors of components b̂†m and â†l.
One also has

âl ¼
X
m

Ul
mb̂m; ⃗â ¼ UT ⃗b̂. ð29Þ

Note that the mode u⃗l, in its column vector representation, is
associated with the single creation operator âl†, while the

mode basis fu⃗lg is associated with the column vector of

creation operators ⃗̂a†.
The unitarity of matrix U ensures that

½b̂m; b̂†m0 � ¼ δm;m0 or ⃗b̂ð ⃗̂b†ÞT − ⃗̂b†ð ⃗b̂ÞT ¼ 1N; ð30Þ

with 1N being the identity matrix of dimension N. The
operators b̂m are indeed bosonic operators, and the positive
electric field operator in vacuum can now be written as a linear
combination of the annihilation operators b̂m in a way similar
to the decomposition (25) or (27):

ÊðþÞðr; tÞ ¼
X
m

F ð1Þ
m b̂mfmðr; tÞ; ⃗Ê ¼

X
m

F ð1Þ
m b̂mf⃗m. ð31Þ

b̂m is the annihilation operator of one photon in the normalized
mode fmðr; tÞ (which we write more simply as fm), and the

electric field per photon F ð1Þ
m is given by

ðF ð1Þ
m Þ2 ¼

X
l

ðEð1Þ
l Þ2jUl

mj2. ð32Þ

The column vector ff⃗mg contains a new set of modes on
which the field is expanded. It is related to the plane wave
basis by

f⃗m ¼ 1

F ð1Þ
m

X
l

Eð1Þ
l Ul

mu⃗l. ð33Þ

We have therefore shown how to write in the most general

case the quantum field on any mode set ff⃗mg and how to
define the associated annihilation operators b̂m. Strictly
speaking, because of the presence of the frequency-dependent

scaling factor Eð1Þ
l in the sum (33), these new modes are not

necessarily orthogonal when their frequency spectrum is
broad. They are indeed orthogonal when the unitary modal
transformation Umixes only plane waves oscillating at nearby
frequencies ω ≃ ω0 (the narrow-band approximation studied

in Sec. II.D), in which case F ð1Þ
m ¼ Eð1Þ

l ðω0Þ so that one can
simply write

f⃗m ¼
X
l

Ul
mu⃗l. ð34Þ

We note that in this case the transformation (34) for the mode
shape and the transformation (9) for the creation operators
are identical. Using Eq. (34), one easily shows that the
completeness relation (26) also holds in this case in the
new mode basis.
In a way related to Eq. (5), one can write the field

operator (31) in terms of Hermitian dimensionless quadrature
operators X̂m and P̂m in the different modes fm such that
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b̂m ¼ ðX̂m þ iP̂mÞ=2;
⃗Ê ¼

X
m

F ð1Þ
m

X̂m þ iP̂m

2
f⃗m;

X̂m ¼ b̂†m þ b̂m; P̂m ¼ iðb̂†m − b̂mÞ; ð35Þ

with ½X̂m; P̂m� ¼ 2i. The normalization has been chosen in
such a way that the variance of vacuum fluctuations on any
quadrature X̂m or P̂m is 1. We will also use quadrature
operators in a rotated phase space X̂mϕ defined by

X̂mϕ ¼ b̂†meiϕ þ b̂me−iϕ ¼ X̂m cosϕþ P̂m sinϕ. ð36Þ

B. The two sides of quantum optics

Consider again the quantum form of the modal decom-
position of the electric field operator in vacuum

⃗Ê ¼
X
m

F ð1Þ
m b̂mf⃗m. ð37Þ

It comprises the same modal functions f⃗m as the classical
decomposition (6), while the classical complex amplitudes
have been replaced by quantum operators. Expression (37)
thus exemplifies the intricate dual nature of light: the
operatorial part b̂m relates it to the Hilbert space of quantum
states, its Fock states basis, and their interpretation in terms of

particles, while the modal part f⃗m relates it to classical optics,
to the modal Hilbert space of solutions of Maxwell equations,
and to the wave aspect of light. These two aspects are
intimately mixed (Xiao et al., 2017), as the annihilation
operator b̂m is defined in the specific mode fm, which provides
the shape in time and space of the probability of detecting the
photons.
A striking example of this intimate relation between modes

and operators is provided by the following formula, deduced
from Eq. (34), that relates the commutator of annihilation and
creation operators b̂f and b̂†g associated with any two modes f
and g, even nonorthogonal, to the overlap integral of these
modes

½b̂f; b̂†g� ¼
1

V

Z
d3rf ðr; tÞ · g�ðr; tÞ ¼ f⃗T� · g⃗. ð38Þ

These considerations allow us to point out an important and
unique feature of quantum optics, its double linearity, that of
Maxwell equations and that of quantum mechanics. This
allows us, thanks to the possibility of changing mode bases, to
consider the same quantum state from different perspectives.
This is not the case for other multimode systems like sets of
material qubits: linear combinations of modes are other
modes, whereas linear combinations of qubits carried by
different systems are not simple physical objects.
It is well known that coherence is a fundamental notion for

the physical domains involving waves: this is of course the
case for classical optics (Goodman, 2015), but also for
quantum mechanics. Coherence of matter waves, and more
generally coherence in quantum physics, has even been

considered as a basic resource for quantum technologies
(Streltsov, Adesso, and Plenio, 2017). The two coherences
must not be confounded and must indeed be taken into
consideration in a global way in the domain of quantum
optics (Glauber, 1963; Mandel and Wolf, 1995). They both
play important and intricate roles in multimode quantum
optics, as we see more extensively later.

C. Single-photon states

The bosonic operators b̂m allow us to define number
operators N̂m ¼ b̂†mb̂m and their eigenstates jnm∶fmi, where
nm is an integer, which are the number states in modes
fmðr; tÞ.
Call j0i the vacuum state in the plane wave basis fulg,

defined by âlj0i ¼ 0 ∀ l. One has also from Eq. (9) and for
all m

b̂mj0i ¼
X
l

Ul�
m âlj0i ¼ 0. ð39Þ

The same state j0i is also the vacuum for the new mode basis
ffmg. This allows us to define the quantum state j1∶fmi of a
single-photon state in any mode fm, and to express it in terms
of plane wave single photons as

j1∶fmi ¼ b̂†mj0i ¼
X
l

Ul
mj1∶uli. ð40Þ

Note that the same unitary transformation U is used for the
creation operators (9), for the mode shape (34), and for the
single-photon state (40).
It is important to stress that a single-photon state j1∶fmi

does not describe a physical object that looks exactly like a
classical particle because its properties depend on the mode in
which it is defined. Photons are not simply “very small bodies
emitted from shining substances” (Newton, 1704); they must
instead be considered as the first excitation of mode fm (Lamb,
1995). If the unitary transform U mixes modes of different
frequencies, then the single-photon state is no longer an
eigenstate of the Hamiltonian of energy ℏω: it describes a
nonstationary “single-photon wave packet” (Titulaer and
Glauber, 1966); if the unitary transform U mixes modes of
different wave vectors, the single-photon state is no longer an
eigenstate of the momentum with eigenvalue ℏk: it describes a
more complex single-photon waveform, for example, the
dipole mode in which a single photon is spontaneously
emitted by an excited atom (Cohen-Tannoudji, Dupont
Roc, and Grynberg, 1987).
It is easy to show that one also has, for any two single-

photon states associated with any two modes f⃗ and g⃗,

h1∶f j1∶gi ¼ 1

V

Z
V
d3rf �ðr; tÞ · gðr; tÞ ¼ f⃗T� · g⃗. ð41Þ

When dealing with single-photon states, the quantum inner
product is equal to the modal inner product. There is therefore
an exact mapping between a single-photon quantum state
j1∶f i and the corresponding spatiotemporal mode amplitude
f ðr; tÞ so that it is often convenient to consider f as the “wave
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function” of the single photon (Bialynicki-Birula, 1996; Smith
and Raymer, 2007).
It is also easy to derive from Eq. (38) the following useful

relation:

b̂f j1∶gi ¼ ðf⃗T� · g⃗Þj0i; ð42Þ
where b̂f is the annihilation operator in mode f .

D. Multimode quantum states

We can write the most general pure quantum state of light
jΨi in a given mode basis as

jΨi ¼
X
n1

� � �
X
nm

� � �Cn1;…;nm;…jn1∶f 1i

⊗ � � � ⊗ jnm∶fmi ⊗ � � � . ð43Þ

Knowing that jnm∶fmi ¼ ðPl U
l
mâ

†
lÞnm j0i=

ffiffiffiffiffiffiffi
nm!

p
and about

Eqs. (9) and (29) it is straightforward to write jΨi in terms of
number states in any mode basis of our choice. This implies
that to characterize a given multimode quantum state we have
a new degree of freedom to play with, namely, the choice of
mode basis, in addition to the choice of the quantum
state basis.
Take as an example a quantum state spanning two modes f 1

and f 2. Another possible mode basis consists of the symmetric
and antisymmetric combinations f� ¼ ðf 1 � f 2Þ=

ffiffiffi
2

p
. The

quantum state

jψi ¼ j1∶f 1i ⊗ j1∶f 2i ð44Þ

written in the first basis can also be written in the second basis,
using Eq. (9), as

jψi ¼ ðj2∶fþi ⊗ j0∶f−i − j0∶fþi ⊗ j2∶f−iÞ=
ffiffiffi
2

p
. ð45Þ

jψi is therefore factorized in the first mode basis and
entangled in the second. The same property holds for the
two-mode continuous variable (CV) quantum state jψ 0i,
which consists of a product of two equally squeezed vacuum
states on basis (f 1, f 2). On basis (fþ, f−) it is an “EPR
entangled state,” like the one studied by Einstein, Podolsky,
and Rosen (1935). In this context the fact that a quantum state
is entangled or not depends on the choice of the mode basis
(Thirring et al., 2011). This is due to the fact that the physical
system we are interested in does not have a unique physical
bipartition into an “Alice” part and a “Bob” part, all possible
combinations of modes being treated on an equal footing. One
can say that jψi, or jψ 0i, describes an intrinsic quantum
resource, which manifests itself as a product of nonclassical
states in one basis, and as entanglement in another. In
addition, it was shown by Sperling et al. (2019) that some
families of states remain entangled for any choice of
mode basis.

E. Quantum correlation matrices

The information about multimodal correlations (Giorgi
et al., 2011), classical as well as quantum, is contained in

different matrices. We introduce here the ones that are the
quantum extensions of the classical matrices defined in
Sec. II.E (Opatrny, Korolkova, and Leuchs, 2002; Takase
et al., 2019)

(1) The quantum coherency matrix Γð1Þ (Wiener, 1928),
defined as the extension of the classical one [Eq. (19)],
has matrix elements in a given mode basis equal to

ðΓð1ÞÞm;n ¼ hâ†mâni; ð46Þ
which can be written in a condensed way as

Γð1Þ ¼ h ⃗̂a† ⃗âTi.
Γð1Þ is an Hermitian, positive matrix of the Gram

type that can be related to the first-order coherence
properties of the field (Glauber, 1963; Mandel and
Wolf, 1995; Réfrégier and Goudail, 2005). Its trace
gives the mean total number of photons in the state.

(2) The quantum covariance matrix ΓQ.
We name, in a same way as in Eq. (22),

⃗Q̂ ¼ ðX̂1; X̂2;…; X̂N; P̂1; P̂2;…; P̂NÞT ð47Þ

as the column vector containing all quadrature oper-
ators. The quadrature covariance matrix ΓQ (Simon,
Mukunda, and Dutta, 1994) is the real 2N × 2N matrix
defined on a given mode basis (f⃗n) as

ΓQ ¼ 1
2
h ⃗̂Q ⃗̂Q

T þ ð ⃗̂Q ⃗̂Q
TÞTi. ð48Þ

Equation (48) contains all second moments of the
quadrature operators hX̂mX̂ni, hP̂mP̂ni, hX̂mP̂ni, and
ðhP̂mX̂ni þ hX̂nP̂miÞ=2. This allows us to write in a
compact way the following multimode version of the
Heisenberg inequality (Simon, Mukunda, and Dutta,
1994):

ΓQ þ iβ ¼ ΓQ þ
�

0 i1

−i1 0

�
> 0; ð49Þ

where β is the symplectic form. This relation is
invariant under any symplectic transformation and,
in particular, under any mode basis change.

Note that the vector Q⃗ is of dimension 2N, whereas
the modal vectors E⃗ and ⃗â defined in Secs. II.B
and III.A are of dimension N. We mention the
difference when necessary in the following.

The coherency matrix is related to the matrix
elements of the quadrature covariance matrix by
the following expression, a quantum extension of
Eq. (24):

ðΓð1ÞÞm;n ¼ 1
4
½hX̂mX̂ni þ hP̂mP̂ni
þ iðhX̂mP̂ni − hP̂mX̂niÞ�. ð50Þ

In particular,

ðΓð1ÞÞn;n ¼ 1
4
½hX̂2

ni þ hP̂2
ni − 2�. ð51Þ
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F. Mode basis change

The unitary transformation U that connects one mode basis
to another one can be seen in two different ways:

(1) It can be considered as a change of point of view on a
given quantum state, in the same way that one can use
rotations to see a physical object from different
perspectives. This is what we have done so far.

(2) It can also be considered as a quantum process
implemented by a real physical device and modifying
the quantum state of the system by a unitary trans-
formation, in the same way that one can rotate the
physical object under consideration and keep a fixed
point of view. U corresponds then to an evolution
induced by a Hamiltonian that is a linear combination
of operators of the form âiâ

†
j . It can be shown that this

transformation can be implemented by a generalized
interferometer that mixes all of the input modes by
appropriate beam splitters (Reck et al., 1994).

We use these two aspects of mode changes in the following.

G. Intrinsic properties of multimode light states

Note that whereas the entanglement and factorization of
state jψi [Eq. (44)] depend on the mode basis, the total mean
photon number in this state is equal to 2 in the two-mode
bases. There are therefore properties that do not depend on a
special choice of mode basis and that we call intrinsic. We
expect them to have a stronger physical meaning than the
properties that depend on this choice (Réfrégier and
Goudail, 2005).
We mention here some physical properties that are intrinsic:
• The vacuum state j0i is the same in any mode basis, as
we see in Sec. III.C.

• The operator total number of photons is defined by

N̂tot ¼
X
m

b̂†mb̂m ¼ ⃗̂b†
T
· ⃗b̂. ð52Þ

The unitarity of transformation U [Eqs. (9) and (29)]
implies that

⃗̂b†
T
· ⃗b̂ ¼ ⃗̂a†

T
UT� ·U ⃗â ¼ ⃗̂a†

T
· ⃗â. ð53Þ

Consequently, the total number of photons is an intrinsic
operator.

• Let us define a multimode coherent state as an eigenstate
of all annihilation operators b̂m in a given mode basis. It
is easy to see that this property is also true in any other
mode basis. Therefore, this property is intrinsic.

• The mode basis change is a unitary transformationU that
conserves the commutation relations: it is therefore a
special case of symplectic transformation (Arvind et al.,
1995). We exploit this feature several times in the
following. A first consequence is the invariance of the
Wigner function. More precisely, ifWuðα1;…; αl;…Þ ¼
Wuðα⃗Þ is the multimode Wigner function of a given
quantum state of light in the phase space of complex
coordinates α1;…; αl; spanning over the N modes fulg

and Wfðβ⃗Þ is the Wigner function of the same quantum
state written now in the phase space spanning over the
modes ffmg, one has (Simon, Mukunda, and Dutta,
1994)

Wfðβ⃗Þ ¼ Wuðα⃗Þ with β⃗ ¼ Uα⃗. ð54Þ

This means that the values of the Wigner function are the
same in both bases, but they occur at different values of
the coordinates in phase space. In particular, the sign of
the Wigner function is intrinsic. Another intrinsic and
additive quantity related to the volume N of the negative
part of the Wigner function is the Wigner logarithmic
negativity (Kenfack and Życzkowski, 2004; Albarelli
et al., 2018)

Lnw ¼ log

�Z
dNαjWuðα⃗Þj

�
. ð55Þ

Therefore, the quantum properties related to the fact that
the Wigner function of some quantum states have
negative parts are intrinsic.

A special case of this invariance concerns the value of
the Wigner function at the origin, which is related to the
parity of the photon number distribution (Royer, 1977).
One has Wfð0Þ ¼ Wuð0Þ, which means that the mean
value of the parity operator is an intrinsic quantity.

• The same invariance property is also true for the
Glauber-Sudarshan P function

Pfðβ⃗Þ ¼ Puðα⃗Þ. ð56Þ

The sign of the P function is often related to the
nonclassicality of the corresponding state (Vogel,
2000). Therefore, the nonclassicality of a state is also
intrinsic. Similarly, we have Pfð0Þ ¼ Puð0Þ: the prob-
ability of being in vacuum state is an intrinsic quantity.

• The purity of a quantum state P ¼ Trρ2 can be calcu-
lated from its Wigner function

P ¼ 2π

Z
dNðαÞW2

uðα⃗Þ ¼ 2π

Z
dNðβÞW2

fðβ⃗Þ ð57Þ

(as the Jacobian of the coordinate change is 1). As a
result, the purity of a multimode quantum state of light is
an intrinsic quantity.

IV. SEARCH FOR PRINCIPAL MODES

This section is concerned with the following problem,
which is not restricted to quantum physics (Comon, 1994;
Milione, Nolan, and Alfano, 2015): given a quantum multi-
mode state, pure or mixed, is it possible to find a mode basis
which simplifies the expression of the quantum state and
reduces it to forms that are more suitable to characterize it
physically? The modes of this basis will be called principal
modes. To this purpose, we will use different correlation
matrices, in close analogy with the classical case.
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More precisely, we want to find a mode basis that allows us
to describe a given pure state jψi as

jψi ¼ jϕpi ⊗ j0; 0 � � �i ð58Þ

or a mixed state ρ as

ρ ¼ ρp ⊗ j0; 0 � � �ih0; 0 � � � j; ð59Þ

where jϕpi or ρp spans a minimal number p of modes
f 1;…; fp. p is then be called the intrinsic number of modes of
the corresponding state.
In this basis, characterized by annihilation operators ân, one

has for any n > p

ânjψi ¼ 0 or ânρ ¼ 0;

â†mânjψi ¼ 0 or â†mânρ ¼ 0. ð60Þ

Equation (60) implies that the matrix elements ðΓð1ÞÞm;n of
the coherency matrix such that m > p and n > p are
zero. This property is valid for both pure and mixed states.
The coherency matrix Γð1Þ consists therefore of a square
p × p nonzero diagonal submatrix surrounded by zeros.
Reciprocally, if Γð1Þ has the form that we just described, then
∀ n > phâ†nâni ¼ 0 the mean number of photons in nth mode
is zero, which implies that the considered state is the vacuum
for all modes with n > p. The state is therefore a p-mode
state, where p is simply the rank of the coherency matrix.
Now take a mode basis that we can choose at will, called

fglg, with the associated annihilation operators ĉl. The

corresponding coherency matrix Γð1Þ ¼ h ⃗̂c† ⃗ĉTi contains
a priori many nonzero matrix elements so that the quantum
state looks highly multimode. However, Γð1Þ is Hermitian and
therefore diagonalizable. More precisely, there is a unitary
transformation V that diagonalizes the N × N matrix such
that

VΓð1ÞV† ¼ diagðn1;…; np; 0…Þ. ð61Þ

We now introduce the column vector of creation operators in

the new basis generated by mode transformation V, ⃗̂d† ¼ V ⃗̂c†.
One has

diagðn1;…; np; 0…Þ ¼ hV ⃗̂c† ⃗ĉTVT�i ¼ h ⃗̂d† ⃗d̂Ti. ð62Þ

We therefore prove that in the mode basis fh⃗g of the modal

space defined by h⃗ ¼ Vg⃗ the first-order covariance matrix is
reduced to the subset of the first p modes and find the right
mode basis and the corresponding minimum mode number.
The diagonalization of the Γð1Þ matrix directly yields the list

of the p eigenmodes, allowing us to write the quantum state,
pure or mixed, in its simplest form. We see when we discuss
quantum frequency combs later that the reduction in size of the
problem can be drastic, namely, from 105 frequencymodes to a
few principal modes. In particular, it is wise to use the set of
principal modes if one wants to make the full tomography of a

multimode quantum state, instead of a mode basis with a much
larger number of nonempty modes. Note that this procedure is
valid for Gaussian and non-Gaussian states; see Sec. VII.
The energy content of the principal modes is given by

the corresponding eigenvalue, whereas the absence of off-
diagonal terms in this basis implies that the principal modes
are mutually incoherent: it is not possible to observe inter-
ferences on a linear combination of two principal modes.
Often the eigenvalues of the coherency matrix are all nonzero
but form a series with decreasing terms. In this case, it is
possible to define an effective intrinsic mode number p̄, which
gives the approximate number of the most excited modes. It
can be obtained by the same procedure as for the effective
Schmidt number. It is defined by

p̄ ¼ hPmN̂mi2
hPmN̂

2
mi

¼ ðTrΓð1ÞÞ2
Tr½ðΓð1ÞÞ2� ; ð63Þ

with N̂m ¼ d̂†md̂m.
Note that extracting physically reliable and useful infor-

mation from the measurement of the noise amplitudes and
correlations in a complex physical system by extracting a
finite number of principal modes from noise matrices is a well-
known procedure in other parts of science and technology
(Shah et al., 2005). It would take too long to mention all of
them. If one is restricted to recent developments in optics and
electromagnetism (Fan and Kahn, 2005), one can mention the
MIMO technique (meaning multiple in multiple out) in
telecommunication technologies (Winzer and Foschini,
2011) and the control of light propagation in complex media
for optical computation purposes (Rotter and Gigan, 2017).
From a given noise matrix experimentally determined by

measurements performed on a mode basis appropriate for
detection and the computation of principal modes, it is also
possible to determine the noise of any physical parameter of
the considered system and to get fruitful physical insight into
the underlying physical mechanisms. This method has been,
in particular, applied to the analysis of mode-locked lasers
(Schmeissner et al., 2014).

V. INTRINSIC SINGLE-MODE STATES

We now focus on the important case where the state ρ
can be reduced to a single-mode state using an appropriate
choice of the mode basis fm, with associated annihilation
operators ĉm.
First assume that the state we are interested in is the pure

state jψi. Then jψi ¼ jϕ1i ⊗ j0; 0 � � �i on mode basis fm. We
know that it has a coherency matrix with a single nonzero
eigenvalue, but it can also be characterized using a simpler
mathematical property: if one takes a test mode basis gl ¼P

p U
p
lfp with associated annihilation operators b̂l, one has

for any l

b̂ljψi ¼ U1
lĉ1jϕ1i ⊗ j0i. ð64Þ

In a single-mode pure state, all vectors b̂ljψi in any test mode
basis are proportional to each other. In addition, one can show
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(Treps et al., 2005) that this property is also a sufficient
condition for being single mode.
Now assume that the state is in the mixed state ρ ¼ ρ1 ⊗

j0ih0j on the appropriate mode basis ffmg. Taking a test mode
basis fglg, one has for any l

b̂lρ ¼ U1
lĉ1ρ1 ⊗ j0ih0j. ð65Þ

In a single-mode mixed state, all operators b̂lρ are pro-
portional to each other. Here also this property can be shown
to be sufficient for being in a single-mode mixed state
(Leroyer, 2007).

A. Examples

1. Pure single-photon wave packet

Consider the following state, which is a coherent super-
position of single-photon states in different modes:

jΨ1i ¼
X
m

cmj1∶fmi; ð66Þ

with
P

m jcmj2 ¼ 1, where j1∶fmi is short notation for a state
with one photon in mode fm and zero in all other modes. This
state, often called a single-photon wave packet, is an eigen-
state of N̂tot with eigenvalue 1. It is actually an intrinsic single-
mode state, as all b̂ljΨ1i states are proportional to the vacuum
state: we have therefore shown that all single-photon states are
actually single-mode states.
To find the mode in which the single photon can be found,

we introduce the v1 mode, given by the same linear combi-
nation as Eq. (66) but for modes instead of states:

v1 ¼
X
m

cmfm. ð67Þ

It is a first element of a mode basis fvng that one completes
with orthogonal functions. It is easy to show that in this new
mode basis the state jΨ1i is written as

jΨ1i ¼ j1∶v1i ⊗ j0; 0 � � �i. ð68Þ

v1 is indeed the mode in which the single photon lives.
We noted in Eq. (41) the equality between the scalar

product of single-photon states and that of the corresponding
modes. Such a homomorphism between the mode and state
properties for single photons is perhaps the reason why
detailed consideration of the multimodal structure of quantum
states and its physical consequences has not been the object of
many studies by physicists interested in single-photon states.

2. Single-photon statistical mixture

Now consider the statistical mixture of single-photon states

ρ1 ¼
X
m

pmj1∶fmih1∶fmj; ð69Þ

with pm > 0 and
P

m pm ¼ 1. It is not single mode because
b̂m1

ρ1 ¼ pm1
j0ih1∶fmj are not proportional to each other. One

easily shows that the coherency matrix is diagonal, with
eigenvalues that are precisely the statistical coefficients pm.

3. Pure multimode coherent state

Now consider the multimode coherent state introduced in
Sec. III.E, which is an eigenstate of all annihilation operators
b̂m in a given mode basis. It can therefore be written as a tensor
product of coherent states jαm∶fmi of eigenvalue αm in
mode fm:

jΨ0
1i ¼ jα1∶f 1i ⊗ � � � ⊗ jαm∶fmi ⊗ � � � . ð70Þ

This state is single mode, as all âljΨ0
1i states are proportional

to jΨ0
1i itself.

To find the mode, we introduce the w1 mode given by

w1 ¼
1

β

X
m

αm fm; ð71Þ

with jβj2 ¼ P
m jαmj2. It is the first element of a new mode

basis wn, which one completes again. It is also easy here to
show that in this new mode basis the previous multimode
coherent state is

jΨ0
1i ¼ jβ∶w1i ⊗ j0; 0 � � �i. ð72Þ

Here the state jΨ0
1i, which looks highly multimodal in the

original basis, is also a simple single-mode coherent state in a
more adapted basis.
It is easy to show from Eq. (38) that for any coherent state,

written in the basis where it is single mode in mode g,

b̂f jβ∶gi ¼ ðf⃗T� · g⃗Þβjβ∶gi; ð73Þ

where b̂f is the annihilation operator in mode f. Note that this
relation is closely analogous to the corresponding expres-
sion (42) for single-photon states: the spatial, temporal, and
polarization properties of coherent states and single-photon
states are often similar.

4. Coherent state statistical mixture

Consider now the statistical mixture of coherent states

ρ01 ¼
X
m

pmjαm∶fmihαm∶fmj. ð74Þ

It is not intrinsically single mode because the operators b̂m1
ρ01

are not proportional to each other. The coherency matrix is
diagonal with eigenvalues pmjαmj2.
Examples (b) and (d) show that mixed states are “more

multimodal” than the corresponding pure states: the inclusion
of classical noise in addition to quantum noise increases the
number of principal modes involved in the description of the
state. Furthermore, one can describe the statistical properties
of such mixed states using the classical coherency matrix, i.e.,
within the framework of classical coherence theory. While this
is not unexpected for coherent states, which are often called
quasiclassical, it is more noteworthy for single-photon states.
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5. Two-photon pure state

Finally, we consider the Hong-Ou-Mandel two-photon pure
state jΨ}i ¼ j1∶g1ij1∶g2i. It is a not a single-mode state
because â1jΨ}i ¼ j0∶g1ij1∶g2i and â2jΨ}i ¼ j1∶g1ij0∶g2i
are orthogonal. This means, in particular, that there is no mode
basis change, or unitary transformation, which enables us to
write it as the single-mode state j2∶g1ij0∶g2i: two photons in
different modes cannot “merge” into a two-photon state in a
single output mode of a unitary transformation.

B. Relation with classical optical coherence

The notion of optical coherence (Glauber, 1963; Mandel
and Wolf, 1995; Goodman, 2015) is linked to the ability to
observe interference fringes with high visibility. It is charac-
terized by the normalized first-order complex correlation
function

gð1Þðr; r0; t; t0Þ ¼ Gð1Þðr; r0; t; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1Þðr; r; t; tÞGð1Þðr0; r0; t0; t0Þ

q ; ð75Þ

where Gð1Þðr0; r0; t0; t0Þ is as defined in Eq. (20). If jgð1Þj ¼ 1,
then interferences are of contrast 1 and the field is said to be
perfectly coherent.
The quantum counterpart of Gð1Þ, where the statistical

average represented by the overbar is replaced by a quantum
average, is related to the first-order coherency matrix intro-
duced in Eq. (23).
For a single-mode state in mode v1, one has

hÊðþÞ†
i ðr; tÞÊðþÞ

j ðr0; t0Þi ¼ E2
0ðΓð1ÞÞ1;1v�1iðr; tÞv1jðr0; t0Þ; ð76Þ

which is valid for all r, t, r0, t0, i, and j. This implies that
jgð1Þj ¼ 1 for all r, t, r0, and t0. This property does not depend
on the quantum state “living” in the mode [except for the
energy scaling factor ðΓð1ÞÞ1;1 ¼ Ntot]. Conversely, if there are
two points in space-time ðr0; t0Þ and ðr00; t00Þ such that
jgð1Þðr0; r00; t0; t00Þj < 1, then one can conclude that the state
is not intrinsically single mode.
Consequently, perfect optical coherence is not limited to the

use of coherent states: the condition of perfect coherence is
related to the modal property of the quantum state, more
precisely, to the fact that only one electromagnetic mode is not
in the vacuum state. It does not depend on the properties of the
quantum state defined in this mode. For example, one will be
able to see perfect interference fringes with coherent states,
which is not unexpected, but also with strongly “incoherent-
looking” states such as single-photon states, as noticed by
Glauber (1963), or with strongly “quantum-looking” states
such as Schrodinger cats. In contrast, this will not be possible
with the Hong-Ou-Mandel two-photon state j1; 1i, which is
not single mode.

C. Simple sufficient conditions for an intrinsic single-mode state

The single-mode criteria that were just exposed are not easy
to implement experimentally. One possibility is of course to
experimentally measure all matrix elements of the quadrature

covariance matrix, which is explained in Sec. X.C. As this is
not a simple task, it would be interesting to have at one’s
disposal a sufficient physical criterion that can be experi-
mentally checked in a simpler way.
The physical meaning of an intrinsic single-mode state

is simple: in such a state, all of the physical properties
have a spatiotemporal dependence given by v1. As a result,
the mean value hÊðþÞðx; y; z; tÞi and the standard deviation
ΔEðþÞðx; y; z; tÞ have the same spatial dependence. In con-
trast, in nonintrinsic single-mode states, these different quan-
tities may have different spatial variations. Therefore, a rather
easy experimental check of whether or not a given quantum
state is intrinsically single mode consists of measuring the
mean value and the quadrature noise in different areas, in
different time windows or in different spectral regions. If the
ratio of these two quantities is not constant when one varies
the detection area, the time bin, or the frequency band, then
one is sure that the state is not intrinsically single mode. Note
that this test gives only a sufficient condition: a constant value
of the ratio does not imply that the state is single mode. This
criterion has been successfully used by different groups in
experiments involving spectral (Marin et al., 1995; Spälter
et al., 1998) and spatial modes (Hermier et al., 1999;
Martinelli et al., 2003; Corzo et al., 2011). For example,
Marin et al. (1995) spectrally resolved the intensity noise of a
sub-Poissonian laser diode using a spectrometer of variable
width. The nonlinear variation of the intensity noise as a
function of the number of spectral modes of the diode laser is
an indication of the existence of strong anticorrelations
between the main longitudinal mode and the weak side modes.

VI. COUNTING AND DETERMINING
THE PRINCIPAL MODES

We now consider more complex quantum states than the
intrinsic single-mode ones. The minimum number p of modes
needed to completely describe them and the shape of the
corresponding principal modes are important parameters that
characterize the system under study. From a mathematical
point of view, it can be shown in the case of a pure state that p
is also the dimension of the vector space generated by all
vectors b̂mjΨi, with fb̂mg the set of annihilation operators
associated with a given test mode basis. From a more practical
point of view, the best way is to experimentally determine all
matrix elements of the coherency matrix, to diagonalize it, and
to count the number of nonzero eigenvalues (Morin, Fabre,
and Laurat, 2013). This method works for pure and mixed
states, and for Gaussian and non-Gaussian states as well.
Counting modes is of course not restricted to quantum

optics, and researchers have developed several criteria that
have allowed them to find the number of such modes in
various situations. It is therefore interesting to compare the
different ways of determining the mode number in a multi-
mode system.

A. Case of spatial modes

We first treat in this section the case of 1D spatial modes.
They can be readily extended to 2D spatial modes. In classical
optics, the number p of spatial modes in a light beam of
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transverse size D is usually taken as equal to D=dc, where dc
is the coherence length (Karny, Lavi, and Kafir, 1983). To
compare this value with the one determined in Sec. IV, we
need to find a quantum state ρ describing the same physical
situation. A possible state is the following statistical mixture:

ρ ¼
Xp
n¼1

pnjαn∶wnihαn∶wnj; ð77Þ

with
P

pn ¼ 1. The modes wnðxÞ are pixel modes for which
wnðxÞ is equal to 1=

ffiffiffiffiffi
dc

p
for ðn − 1Þdc < x < ndc and zero

outside. Their number is precisely p. jαn∶wni are coherent
states defined in each coherence area. We now apply
our quantum counting technique to this state: in such a
quantum state the first-order coherency matrix is diagonal
in the pixel mode basis because the fluctuations in the
different pixel modes are uncorrelated. Its diagonal elements
are pnjhαnjâ†nânjαnij2: the number of nonzero diagonal
elements is indeed D=dc so that the classical and quantum
approaches lead to the same value of the mode number.
We consider in Appendix A other multimode light sources,

such as lasers and parametric down-conversion devices. We
show later with a simple example that the number p of
transverse modes in a laser is equal to theM factor introduced
by Siegman (1998), and that it is equal to twice the Schmidt
number in the case of parametric down-conversion.
On the experimental side, the spatial structure of the mode

of an heralded single photon was recently experimentally
determined using a holographic technique (Chrapkiewicz
et al., 2016).

B. Case of temporal modes

The generation of pure single photons is the object of an
intense experimental research (Lvovsky et al., 2001; Eisaman
et al., 2011). We have seen that, theoretically speaking, pure
single photons are always single mode. Experimentally
speaking, more than one mode can be populated because
of experimental imperfections. It is therefore important to
evaluate the number and the exact shape of the temporal
modes that are excited. This problem was theoretically
considered, for example, by Aichele, Lvovsky, and Schiller
(2002). A convenient way to do it is to derive it from the
information contained in the temporal coherency matrix, also
called in this context the temporal autocorrelation function
(Nielsen and Mølmer, 2007), the matrix elements of which are

ðΓð1ÞÞn;n0 ¼ hâ†ðtnÞâðtn0 Þi; ð78Þ

where tn and tn0 are sampling times of the homodyne signal,
taken in large enough quantities to reach a good statistical
estimation. The diagonalization of this matrix allows us to
know the temporal shapes and the degree of excitation of the
different principal modes.
We now present the method used by Morin, Fabre, and

Laurat (2013), one of the first fully experimental determi-
nations of the temporal modes of several heralded states,
namely, single-photon, two-photon, and coherent state
superpositions: one produces by type II parametric

down-conversion weak signal and idler beams. The temporal
fluctuations of the signal beam quadrature component are
continuously recorded by homodyne detection. When a
photon is detected at time tc on the idler beam, one postselects
the homodyne signal values in N=2 time bins before tc and
N=2 time bins after tc. These data are then averaged over many
detected idler photons and used to determine the N × N
temporal autocorrelation function. If the phase of the local
oscillator is random during the accumulation time, it is easy to
show that the experimental autocorrelation matrix is directly
related to the coherency matrix in the time bin temporal mode
basis. Its diagonalization gives the number and the temporal
shape of the modes that are not in the vacuum state. If this state
is indeed single photon, the matrix has a single eigenstate with
a nonzero eigenvalue. Its temporal shape on the N time bins
gives the shape of the mode in which the conditionally
generated single photon lives. A similar approach was used
by Qin et al. (2015).
Other recently developed techniques use spectral shearing

interferometry (Davis et al., 2018) or dual homodyne measu-
rement (Takase et al., 2019). Sum-frequency generation can
also be used as a kind of fast correlator that also allows
one to determine the number of modes in parametric down-
conversion (Kopylov et al., 2019).

VII. MULTIMODE GAUSSIAN STATES

Gaussian states play an important role in continuous
variable quantum optics, as they are nonclassical states that
are deterministically generated by nonlinear optical processes
in which the quantum fluctuations are small compared to the
mean values. They also have the practical interest of being
completely characterized by the first and second moments of
the quadratures [but also of the photon numbers (Vallone,
Cariolaro, and Pierobon, 2019)]. In addition, they are prom-
ising candidates as building bricks for quantum information
and quantum metrology purposes (Weedbrook et al., 2012;
Adesso, Ragy, and Lee, 2014).

A. Symplectic transformations

We again use the compact vectorial notation ˆQ⃗ defined in
Eq. (47) containing the quadrature operators of all N modes.
The usual commutation relations can then be written as

½Q̂μ; Q̂ν� ¼ 2iβμ;ν; where β ¼
�

0 1

−1 0

�
: ð79Þ

A symplectic transformation is defined by a 2N × 2N real

matrix S acting on the quadrature operator column vector ˆQ⃗
that preserves the commutation relations (Simon, Sudarshan,
and Mukunda, 1988). The set of such transformations
is named the symplectic group (Arvind et al., 1995).
The condition that commutators are preserved leads to the
following condition for a symplectic transformation S:

SβS ¼ β. ð80Þ
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This group includes all the mode basis change transformations
that we have already considered, but it is not limited to these
transformations.

B. Wigner function of a Gaussian state

By definition, a Gaussian state is a state, pure or mixed, that
is described by a Gaussian Wigner function. It is, modulo a
displacement in phase space, completely described by its
covariance matrix ΓQ. Note that not all positive matrices can
be used as the covariance matrix of a Gaussian state, as they
need to satisfy the generalized Heisenberg inequality (49). In
addition, the covariance matrix ΓQ associated with a non-
classical (squeezed and/or entangled) quantum state has at
least its smallest eigenvalue that is smaller than 1.
The Wigner function is a real quasiprobability distribution

over multimode phase space depending on the 2N real
quadrature coordinates q⃗. In the case of a Gaussian state of
covariance matrix ΓQ, its expression is

Wðq⃗Þ ¼ 1

ð2πÞN ffiffiffiffiffiffiffiffiffiffiffiffiffi
detΓQ

p e−ðq⃗−hQ⃗iÞTΓ−1
Q ðq⃗−hQ⃗iÞ; ð81Þ

with hQ⃗i being the phase space displacement mentioned
earlier.
The purity P of a Gaussian state is simply related to the

covariance matrix by

P ¼ 1

detΓQ
. ð82Þ

The transformation of the Wigner function under a sym-
plectic transformation S can be directly calculated using the
same approach as in Eq. (54):

W0ðq⃗0Þ ¼ Wðq⃗Þ with q⃗0 ¼ Sq⃗. ð83Þ

Hence, a Gaussian state remains Gaussian under symplectic
transformation. Moreover, the values of the Wigner function
are conserved in the transformation (and, in particular, the
negative ones) but found at different points of the phase space.
The covariance matrix change under the effect of a symplectic
transformation S is expressed as

Γ0
Q ¼ SΓQST . ð84Þ

C. Gaussian state decomposition

1. Bloch-Messiah reduction

Many decompositions of symplectic transformations on
subgroups of the symplectic group do exist (Arvind et al.,
1995). Within the context of quantum optics, the most relevant
one, introduced by Braunstein (2005) is the so-called Bloch-
Messiah reduction (Bloch and Messiah, 1962). It is a direct
consequence of the singular value decomposition.
Any symplectic S matrix can be decomposed into three

matrices such as

S ¼ O1KO2; ð85Þ

where O1 and O2 correspond to mode basis changes. In
Eq. (9), a mode basis change was characterized by a unitary
modal transformation U acting on the complex creation
operators. The same mode basis change is also characterized
by the following real orthogonal matrix O acting in the real
space of quadrature operators:

O ¼
�

ReðUÞ ImðUÞ
−ImðUÞ ReðUÞ

�
; ð86Þ

where U ¼ ReðUÞ þ iImðUÞ. K is a diagonal matrix of the
form K ¼ diagðσ1; σ2;…; σN; σ−11 ; σ−12 ;…; σ−1N Þ, where σi are
real and positive numbers. It corresponds to a multimode
squeezing operation in a well-defined mode basis.

2. Williamson reduction

The evolution of the covariance matrix under symplectic
transformations as expressed in Eq. (84) is not a usual
diagonalization procedure, and thus the standard spectral
theorem does not apply. One can show (Arvind et al.,
1995) that a diagonal form of the covariance matrix can
always be found under these transformations, a process known
as the Williamson reduction, which we expose here. For any
covariance matrix ΓQ associated with a physical quantum
state, there exists a symplectic transformation S0 such that

S0ΓQS0T ¼ ΓW ¼ diagðκ1;…; κn; κ1;…; κnÞ; ð87Þ

where 1 ≤ κ1 � � � ≤ κn are called the Williamson eigenvalues.
This means that under symplectic transformation, any
Gaussian state can be reduced to a collection of independent
symmetric thermal states with hX̂2

i i ¼ hP̂2
i i ¼ κi. Further-

more, because state purity is invariant under symplectic
transformation one has P ¼ 1=Πiκi.
Combining the Williamson and Bloch-Messiah reduc-

tions (85) and (87), one finds that for any Gaussian state

ΓQ ¼ O1KO2ΓWOT
2KO

T
1 ; ð88Þ

where ΓW is of the form introduced in Eq. (87).

3. Pure Gaussian state

For a pure Gaussian state, ΓW is the identity matrix. Hence,
one can write

Γpure
Q ¼ O1K2OT

1 : ð89Þ

Any pure Gaussian state can then be seen as the result of a
mode basis change on a collection of independent pure
squeezed states, thus inducing quantum entanglement
between the modes (Braunstein, 2005). This property is used,
for instance, to construct complex multimode entangled
Gaussian states from a set of independent squeezers and a
generalized interferometer; see Sec. XII.A.
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4. Mixed Gaussian state

For general Gaussian mixed states Eq. (88) cannot be
simplified; hence, the second basis change O2 is now
physically relevant. Equation (88) has a clear physical mean-
ing: any Gaussian state can be constructed from a generalized
factorized thermal state ΓW with a first basis change O2 that
induces classical correlations between the input modes, which
are then fed into a multimode squeezing operation K and
finally mixed again by another basis change O1.
The basis changes and the multimode squeezing character-

istics can be straightforwardly deduced from the measured
covariance matrix. Such a procedure enables us to uncover the
modes carrying the quantum properties and those carrying the
classical noise. However, one should be careful with associ-
ating too much “quantumness” to the K matrix when it acts on
a thermal state. In this case, the multimode squeezing matrix
modifies in a phase-dependent way the input classical noise,
and the resulting output multimode mixed state can still be
classical.

5. Intrinsic separability

The notion of separability, which corresponds to the ability
to write a quantum state as a statistical superposition of
factorized states (Peres, 1996; Li, Fei, and Wang, 2008), is
inherently mode basis dependent and we will review its
counterpart, entanglement, in Sec. VIII. Separability condi-
tions can be derived from the covariance matrix (Gittsovich
et al., 2008). The underlying symplectic geometry of Gaussian
states renders possible the study of intrinsic separability, i.e.,
the question of the possible existence of a mode basis in which
a given multimode state is separable (Mancini and Severini,
2006). For pure Gaussian states, this is a direct consequence of
Bloch-Messiah decomposition, and the basis in which a
multimode Gaussian state is separable is given by Eq. (89).
For mixed Gaussian states Eq. (88) does not directly provide
the solution, as the symplectic transformation involved is not a
basis change. We thus follow here the approach of Walschaers
et al. (2017a) to demonstrate the intrinsic separability of any
Gaussian state.
One can simply rewrite Eq. (88) by introducing Γth ¼

O2ΓWOT
2 , which is the covariance matrix of a thermal state. A

Gaussian state can thus be decomposed as ΓG ¼ Γs þ Γc,
where Γs ¼ O1K2OT

1 is a pure multimode squeezed vacuum
and Γc ¼ O1ðΓth − 1ÞOT

1 corresponds to the added noise.
Note that Γc is a positive symmetric matrix that does not, in
general, satisfy the Heisenberg inequality (49) and therefore
cannot be associated with a quantum state: it can be seen as a
noisy channel randomly displacing the pure state. One can
show that the Wigner function of the Gaussian mixed state can
be written as the convolution product (Walschaers et al.,
2017a)

WGðq⃗Þ ¼
Z

d2NξWsðq⃗ − ξ⃗Þpcðξ⃗Þ; ð90Þ

where

pcðξ⃗Þ ¼
e−ξ⃗

TΓ−1
c ξ⃗

ð2πÞN ffiffiffiffiffiffiffiffiffiffiffiffi
detΓc

p ð91Þ

is a Gaussian positive and normalized probability distribution
and

Wsðq⃗Þ ¼
e−q⃗

TΓ−1
s q⃗

ð2πÞN ffiffiffiffiffiffiffiffiffiffiffiffi
detΓs

p ð92Þ

is the Wigner function of a factorized multimode squeezed
state. Equation (90) is simply the statistical mixture of
displaced pure squeezed vacuum states, all separable in the
same basis defined by transformation O1. Hence, for any
Gaussian state (the demonstration here can easily be extended
to displaced states) one can find a mode basis, given by Bloch-
Messiah-Williamson reduction, in which it is separable.
We stress here this important property of multimode

Gaussian states: they are all intrinsically separable, meaning
that they can always be “disentangled” in some appropriate
mode basis. Note that this basis is not unique.

VIII. MULTIPARTITE ENTANGLEMENT

Entanglement (Schrödinger, 1935) and nonseparability
(Werner, Reinhard, 1989) are basic quantum resources.
Their characterization is subtle and still the object of numer-
ous investigations. These have mostly concerned bipartite
systems, and entanglement criteria have been introduced
(Gühne and Tóth, 2009; Horodecki et al., 2009) in terms
of Schmidt number, partial transpose, variances of combina-
tions of quadratures, quadrature matrix eigenvalues, etc. The
complexity of the separability problem increases substantially
when one studies multipartite systems. In these situations, one
has a rapidly increasing number of choices in the bunching of
parties on which one searches for a possible factorization (van
Loock and Braunstein, 2000). Without going into much detail,
we now present a brief overview of the domain, restricting
ourselves mostly to results that are scalable to an arbitrary
number of partitions.
In addition to being more complex than bipartite entangle-

ment, multipartite entanglement has some specific features:
• Whereas the Schmidt decomposition is a useful tool for
pure bipartite states, there is no such simple decom-
position in the case of more than two parties in the
general case (Acín et al., 2000; Pati, 2000).

• The N multimode system can be divided into many
different bipartitions, but there are also numerous pos-
sibilities of multipartitions inK ¼ 3; 4;…; N parties. For
example, for N ¼ 10 the total number of multipartitions,
whatever K, is 115 974. A given state can be entangled
for some partitions and not for others, which gives rise to
a complex topology of quantum correlations (Menicucci
et al., 2006). An important notion is that of “genuine
entanglement”: one defines a genuinely K-entangled
state as a state that is not a statistical mixture of K-
partite factorized density matrices. Genuine entangle-
ment implies multipartite entanglement for every other
partition of the modes. However, if a state does not
exhibit this specific kind of entanglement (i.e., is two
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separable), no conclusions on other forms of multipartite
quantum correlations can be drawn.

• There are in some cases relations between the entangle-
ment measures of the different partitions, which fall
under the name of monogamy: in the case of three parties
A, B, and C, for example, it has been shown in the cases
of qubits (Coffman, Kundu, and Wootters, 2000) and
symmetric Gaussian states (Adesso and Illuminati, 2006)
that the A-BC entanglement between A and the two
other modes is stronger than the sum of the “partial”
entanglements A-B and A-C. This property is specific to
quantum entanglement, in opposition to the classical
correlations, which are not constrained and can be freely
shared. This property can be generalized to an arbitrary
number of bipartitions.

Multimode entanglement is also present in the case of a
bipartition into two parties that are themselves multimode.
This is the case, for example, in parametric down-conversion;
see Sec. IX.A. If the two-party quantum state is pure its
Schmidt decomposition gives the principal Schmidt modes of
the system, and the number of terms (the Schmidt number)
gives the dimensionality of the system (Law and Eberly, 2004;
Gatti et al., 2012). In the general case, as the Schmidt
decomposition cannot be extended to more than two parties,
a “vector” of Schmidt numbers for all bipartitions is useful for
characterizing multipartite pure states (Huber and Vicente,
2013). One can also use in this case a necessary and sufficient
entanglement criterion (Gessner, Pezzè, and Smerzi, 2016).
The case of a mixed state ρ is more difficult to deal with.

Theoreticians have introduced various entanglement wit-
nesses for multipartite entanglement, i.e., operators Ŵ such
that TrðρŴÞ < 0 implies nonseparability. There are simple
ones, easy to calculate (Hillery, Dung, and Zheng, 2010) but
missing many entangled states, and optimized ones (Hyllus
and Eisert, 2006). The method of separability eigenvalues
(Sperling and Vogel, 2013) has been used to characterize all
partitions of a multipartite-entangled quantum frequency
comb (Gerke et al., 2015). In addition to witnesses, one
can use in the multipartite case the partial transpose method
(Simon, 2000) and define a measure of entanglement in the
continuous variable regime in terms of logarithmic negativity
(Adesso, Serafini, and Illuminati, 2004). One can also derive
simple criteria to detect genuine entanglement (Toscano et al.,
2015). Some states appear not to be genuinely entangled, and
therefore two separable, and yet exhibit a rich multipartite
entanglement structure for multipartitions in more than two
parties (Gerke et al., 2016).
The particular case of Gaussian multimode states was

thoroughly investigated with the help of symplectic group
methods (Adesso and Illuminati, 2007a, 2007c; Franke-
Arnold, Gatti, and Treps, 2013) and criteria based on
symplectic invariants (Serafini, 2006). Whereas for bipartite
Gaussian states the partial transpose criterion is a necessary
and sufficient entanglement identifier (Peres, 1996), this is no
longer the case for more than two parties: there are multipartite
Gaussian states whose entanglement cannot be uncovered
by the partial transposition (Werner and Wolf, 2001;
DiGuglielmo et al., 2011). The logarithmic negativity, a
measure of entanglement, can be directly calculated from

the covariance matrix, as well as the appropriate measure E
that allows us to test the monogamy inequality for continuous
variables (Coffman, Kundu, and Wootters, 2000). In addition,
the difference EðA − BCÞ − EðA − BÞ − EðA − CÞ gives
some information about higher-order entanglement (Adesso
and Illuminati, 2007b). Multipartite steering can be also
defined, calculated and used in a monogamy inequality
(Xiang et al., 2017). The best way to study the detailed
structure of entanglement in a given multimode state is to use
criteria that are an extension of the well-known Duan criterion
(Duan et al., 2000), detailed by van Loock and Braunstein
(2000), van Loock and Furusawa (2003), Teh and Reid
(2014), and Toscano et al. (2015) in terms of combinations
of different quadrature operators, for example, X̂1 −

P
i giP̂i

and P̂1 þ
P

i giX̂i. Reconfigurable Gaussian entangled states
have been experimentally produced, characterized, and used
for quantum information purposes (van Loock and Furusawa,
2003; Menicucci, Flammia, and Pfister, 2008; Yokoyama
et al., 2013; Chen, Menicucci, and Pfister, 2014; Titchener,
Solntsev, and Sukhorukov, 2016; Cai et al., 2017).
Multipartite entanglement of non-Gaussian states has also

been studied, for example, in terms of Mandel matrices that
involve normally ordered fourth-order correlations (Ivan et al.,
2011). Sufficient conditions for genuine multipartite Gaussian
and non-Gaussian states have been derived (Shchukin and
van Loock, 2015). For photon-added or photon-subtracted
Gaussian states, which are the most studied CV non-Gaussian
states, a hierarchy of inseparability criteria can also be used to
precisely characterize the entangled state (Levi and Mintert,
2013; Valido, Levi, and Mintert, 2014) and the relations
between the negativity of the Wigner function, purity, and
entanglement (Walschaers et al., 2017a), involving higher
statistical moments of the quadrature operators. The effect of
mode-selective photon addition and subtraction on the propa-
gation of entanglement over the quantum network was
theoretically studied by Walschaers et al. (2018) and exper-
imentally investigated by Ra et al. (2020). It turns out that the
non-Gaussian character induced by photon subtraction does
not spread farther than to the next-to-nearest-neighbor node in
the cluster graph.

IX. SOURCES OF MULTIMODE NONCLASSICAL STATES

In this section, to avoid cumbersome presentation we will
essentially restrict ourselves to the continuous variable aspects
of multimode nonclassical state generation.

A. Mixture of single-mode nonclassical states

To generate any N-mode Gaussian state, a possibility is to
start from a bunch of independent single-mode squeezed states
followed by a linear N-port interferometer comprising beam
splitters and phase shifters (Braunstein, 2005). This is true, in
particular, for generating cluster states (Zhang and Braunstein,
2006). It has been shown (Reck et al., 1994) that any modal
unitary operator can be constructed using a sequence of beam
splitter transformations.
Multipartite entanglement and quantum networks can

be created by this technique using a single squeezed state
(van Loock and Braunstein, 2000) or several squeezed states
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(van Loock, Weedbrook, and Gu, 2007; Armstrong et al.,
2012; Su et al., 2014). Integrated optics and multimode fibers
have also been used (Mohanty et al., 2017) in conjunction
with spatially multiplexed detection of up to eight different
spatial modes (Armstrong et al., 2012; Su et al., 2012). In the
pulsed regime time delays can be used to mix different pulses
in the same beam (Yokoyama et al., 2013). Because single-
mode squeezers are now capable of reaching impressive
amounts of squeezing of up to 15 dB (Vahlbruch et al.,
2016), this technique is attractive from an experimental point
of view. Experimental implementations become more and
more complex as N increases and lack flexibility because they
are not simply reconfigurable.

B. Parametric down-conversion

1. Interaction Hamiltonian

The most widely employed technique to directly generate,
with a single device, multimode nonclassical states is to use
twin-photon generation by parametric down-conversion in a
nonlinear χð2Þ crystal; see Chap. 7 of Grynberg, Aspect, and
Fabre (2010). Using a discrete mode basis and assuming an
undepleted pump, this process is described by the following
effective interaction Hamiltonian, obtained by tracing out the
degrees of freedom of the nonlinear matter:

Ĥ ¼
X
l;l0

ðGl;l0 â†lâ
†
l0 þ G�

l;l0 âlâl0 Þ; ð93Þ

where â†l and â†l0 are creation operators of photons in
modes f l and f l0 (which can be either degenerate or non-
degenerate) of respective frequencies ωl and ωl0 .
Gl;l0 ¼ Gl0;l ¼ al;l0αpðωl þ ωl0 Þ, where αpðωÞ is the pump
field amplitude at frequency ω and al;l0 is a coefficient that
depends on the nonlinear medium and the geometry of the
interaction.
The Hamiltonian is a double sum of EPR entangling â†lâ

†
l0

terms, so one expects entanglement to be generated between
all pairs of twin modes for which the joint two-photon matrix
G has significant matrix elements Gl;l0 . Indeed, in the weak
pump approximation (Gl;l0 ≪ 1) and vacuum state input, the
state at the output of the crystal will be the entangled highly
multimode twin-photon state

jΨouti ¼ j0i − i
L
ℏc

X
l;l0

Gl;l0 j1∶f li ⊗ j1∶f l0 i; ð94Þ

where L is the crystal length.
(a) If the symmetrical matrix G is real, one can diagonalize

it using an orthogonal transformation O, which is a special
case of mode basis change

OGO−1 ¼ Λ; ð95Þ
where Λ is a real diagonal matrix of eigenvalues λi. Therefore,

in the eigenmode basis with annihilation operators ⃗b̂ ¼ OT ⃗â,
the Hamiltonian is written as

Ĥ ¼
X
i

ðλib̂2i þ H:c:Þ; ð96Þ

where the eigenvalues λi are real. The eigenmodes are often
called supermodes.
(b) If G is complex, using the Autonne-Takagi factorization

method (Siegel, 1943; Cariolaro and Pierobon, 2016; Arzani,
Fabre, and Treps, 2018) one can find a unitary matrix U
(hence a mode basis transformation) such that

UGUT ¼ Λ; ð97Þ

with Λ again a diagonal real non-negative matrix. Using the

mode transformation ⃗b̂ ¼ U† ⃗â, the Hamiltonian can be
written in the new basis as in Eq. (96).
In both cases Ĥ is in the new basis a sum of squeezing

Hamiltonians, which means that the propagation of an initial
vacuum state in the nonlinear crystal will lead to a final
quantum state that is a tensor product of vacuum squeezed
states, with the variance in decibels of the squeezed quadrature
X̂i in mode i proportional to the eigenvalue λi (de Valcarcel
et al., 2006; Wasilewski et al., 2006). The number of nonzero
eigenvalues (i.e., the rank of the G matrix) gives the intrinsic
number of nonvacuum modes. It turns out that this number is
roughly equal to the aspect ratio of the Gl;l0 matrix (the ratio
of its widths in the ωl þ ωl0 and ωl − ωl0 directions).
(c) In some instances, such as in type II phase matching, for

example, the 2N × 2N joint two-photon matrix G can be
written in terms of N × N block matrices of the form

G ¼
�

0 Gsi

G�
si 0

�
. ð98Þ

The interaction Hamiltonian is a sum of terms creating one
photon in one of the signal modes f si and one photon in one of
the idler modes f ij. The singular value decomposition of
matrix Gsi is written as

UsGsiUT
i ¼ Λsi; ð99Þ

where Us and Ui are unitary mode basis changes in the signal
and idler parts of the modal space and Λsi is the real diagonal
matrix diagðλ1;…; λNÞ. The singular value decomposition
thus generates two sets of N eigenmodes ff skg and ff ikg that
are EPR entangled with each other. They are the Schmidt
modes (Sharapova et al., 2018) introduced in Sec. VIII. They
form a mode basis in the signal and idler parts. One can show
(Horoshko et al., 2019) that the eigenvalues of the joint two-
photon matrix G are doubly degenerate, with eigenvectors
ðf sj � f ijÞ=

ffiffiffi
2

p
, which are therefore both equally squeezed and

mutually uncorrelated, with a squeezing factor in decibels
proportional to λj. The number of nonzero terms in the
Schmidt decomposition gives the intrinsic dimension of the
generated multimode state; see Appendix B.

2. Different possible modes for entangled states

The entanglement generated by parametric down-conver-
sion concerns different kinds of modes:

• Polarization modes, which we do not consider in this
review.
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• Spatial modes (Jedrkiewicz et al., 2004; Law and Eberly,
2004; Walborn et al., 2010), which can be the transverse
modes of cavities (Kolobov, 2006) or multimode optical
fibers (Jachura et al., 2014). This leads to nonclassical
correlations between different parts of an optical image
or between two images.

• Time-frequency modes (Jiang, Treps, and Fabre, 2012),
which lead to correlations between different spectral
components of the light source.

• Polarization, spatial, and/or temporal degrees of freedom
at the same time, for example, polarization-transverse
modes (Gabriel et al., 2011; Jedrkiewicz et al., 2012) and
spectral-temporal-transverse modes (Peřina, 2016).

Nonlinear effects in nonlinear crystals are usually weak and
generate twin-photon states of the form of Eq. (94). If one uses
a strong pulsed pump (Sharapova et al., 2018), multimode
pulsed twin beams containing more than 6 × 105 photons have
been generated and used to conditionally generate sub-
Poissonian light (Iskhakov et al., 2016). To enhance the
effect, it is possible to use resonant cavities. We detail this
configuration in Sec. IX.B.3.

3. Use of resonant optical cavities

Another possibility is to insert the crystal into a resonant
cavity. The device is then an optical parametric oscillator
(OPO), which produces above some pump threshold bright
output beams in the twin modes l and l0 that are resonant with
the cavity. As cavities are actually mode filters, there is often
only one couple of twin modes that has such a resonant
property, and the OPO generates below threshold a two-mode
EPR state, or a squeezed vacuum single-mode state if the twin
photons are generated in the same mode l. The squeezing or
the entanglement increases more and more when one
approaches the oscillation threshold from below.
To produce multimode nonclassical states of larger dimen-

sionality (Lugiato and Gatti, 1993), one can use a cavity that
simultaneously resonates on several couples of parametrically
generated modes. Below threshold, the generated quantum
state is a tensor product of squeezed vacuum states in each
“supermode” i, with a squeezed quadrature noise equal to
(Patera et al., 2010)

ΔX2
i ¼

�
λ1 − rjλij
λ1 þ rjλij

�
2

; ð100Þ

where r is the pump field amplitude normalized to the pump
amplitude at threshold. Hence, the squeezing in the first
supermode becomes very large when one approaches the
threshold from below. All other modes of smaller but nonzero
eigenvalue λi are also squeezed, but by smaller amounts and
never perfectly.
If one uses cavities with spherical mirrors, the spatial

eigenmodes that are the Hermite-Gauss modes TEMpq, cylin-
drical symmetry leads to (pþ q)-mode degeneracy, which was
exploited by Marte et al. (1998) and Lugiato and Marzoli
(1995). These modes are entangled by the parametric inter-
action (Schwob et al., 1998; Lassen et al., 2007; Chalopin
et al., 2011). Confocal cavities have a stronger degeneracy and
resonate for any spatial mode of symmetrical shape (Martinelli

et al., 2003). Self-imaging cavities are resonant for any trans-
verse shape of the electric field (Lopez et al., 2009).
Cavities are also filters in the spectral domain: they have

equally spaced resonant frequencies and enhance not only
resonant single frequency modes but also frequency combs: this
leaves room for a possibly large number (more than 105 in
realistic experimental conditions) of entangled frequencymodes.

4. Use of pump modes of different shapes

In most experiments, the parametric medium is pumped by
a monochromatic field so that the entangled signal and idler
modes have to fulfill the relation ωl þ ωl0 ¼ ωpump: one gets
a set of independently entangled couples of signal and idler
modes, but without any multipartite entanglement. The use of
a bichromatic pump (Chen, Menicucci, and Pfister, 2014)
allows physicists to greatly enhance, in a well controlled way,
the number (up to 60) and the topology of entangled couples
of modes: a whole zoology of cluster states (Pysher et al.,
2011; Shahrokhshahi and Pfister, 2011) can thus be generated,
with applications to measurement-based quantum computa-
tion (Menicucci, Flammia, and Pfister, 2008).
One may also use as a pump field an optical frequency

comb with the same frequency spacing as the OPO cavity
[synchronously pumped OPO (SPOPO)]. If, for example, the
pump spectrum has a Gaussian envelope, the spectral shapes
of the supermodes are the successive Hermite-Gauss functions
(de Valcarcel et al., 2006; Patera et al., 2010). This scheme has
been experimentally explored: principal modes have been
determined, displaying strong squeezing on several of them
(Pinel, Jian et al., 2012; Medeiros de Araújo et al., 2014;
Roslund et al., 2014) and multimode entanglement in fre-
quency (Cai et al., 2017) and time (Averchenko et al., 2011).
The effective number of modes, as defined in Eq. (63), is of
the order of 10. Thus, starting from a mode basis of single
frequency modes, the number of which is roughly 105, one
ends up with a modal Hilbert space of a few units, a strong
reduction in complexity that is useful, for example, when one
wants to make the tomography of the generated state. Shaping
the interaction in various ways, like using a spatial light
modulator (Pe’er et al., 2005; Patera et al., 2012; Arzani,
Fabre, and Treps, 2018), a nonlinear fiber (Finger et al., 2017),
a Fabry-Perot cavity (Avella et al., 2014), or optimized poling
(Dosseva, Cincio, and Brańczyk, 2016), permits one to
modify at will the spectrum of the supermodes and the
resulting multipartite entanglement characteristics.

5. Above threshold operation

Above threshold the OPO generates “bright” light (i.e., with
a nonzero mean value) in the first resonant supermode (the one
of largest gain and hence of largest eigenvalue λ1). When one
increases further the pump power above threshold, gain
clamping prevents the other modes from oscillating (Fabre
et al., 2000), and they remain at a zero mean value. It has been
shown that just above threshold the supermodes other than the
first one remain in squeezed vacuum states, like just below
threshold ones (Chalopin et al., 2010). Well above threshold,
the signal and idler modes carry significant energy. Pump
depletion cannot be neglected and leads to the onset of a
supplementary quantum coupling between the pump mode
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and the signal and idler modes. One then has a full three-wave
mixing effect (Drummond and Kinsler, 1995), leading to
three-mode entanglement between frequency modes, and six-
mode entanglement between sideband modes, which have
been predicted (Villar et al., 2006) and observed (Barbosa
et al., 2018). Note that in this regime the Hamiltonian involves
products of three annihilation and/or creation operators
and induces an evolution that is not symplectic, which implies
a direct generation of a non-Gaussian state and requires a
weak oscillation threshold of the OPO (Drummond and
Kinsler, 1995).
Above threshold and in the case of degenerate TEM01 and

TEM10 spatial modes, the SPOPO is predicted to generate
bright light in a nonclassical state (Navarrete-Benlloch, Patera,
and Valcárcel, 2017) because of a symmetry-breaking effect
between the transverse modes.

C. Four-wave mixing

A drawback of second-order nonlinear effects is that they
are weak and exist only in centrosymmetric crystals, which
can be grown only in lengths of a few centimeters. This is not
the case for media with third-order nonlinearities: nonlinear
fibers can accumulate the nonlinear effect over long lengths,
and atomic media can display large effects by taking advan-
tage of the proximity of resonances between the pump light
and atomic transitions. For such media there is usually no need
to insert them into a resonant cavity, and therefore the
multimode quantum effects are not hampered by the mode-
filtering properties of the cavity.
To produce four-wave mixing effects, one needs the

simultaneous presence of two pump beams. In the simple
case where one can neglect the change of the quantum state of
the medium in the presence of pumping light, assuming single
frequency pump beams of amplitudes αp1, αp2 and in the
undepleted pump regime, the system is described with an
interaction Hamiltonian involving only light modes

Ĥ ¼
X
l;l0

ðAl;l0αp1αp2â
†
lâ

†
l0 þ H:c:Þ. ð101Þ

Twin photons are therefore created in modes labeled by l and
l0. Phase matching and energy conservation requirements do
not usually completely constrain the couples of twin modes,
so the light generated by four-wave mixing is often multi-
mode. The Hamiltonian (101) has the same structure as the
parametric Hamiltonian (93), with the same consequences on
the generation of twin photons and entangled or squeezed
multimode states.
The Kerr effect is a particular case of the four-wave mixing

effect. It was one of the first techniques to generate bright
squeezed beams using single transverse mode silica fibers
(Levenson, Shelby, and Perlmutter, 1985). Its multimode
character in the frequency domain has been investigated in
the case of a pulsed pump (Opatrny, Korolkova, and Leuchs,
2002) and frequency combs (Chembo, 2016). It was shown
that a nonlinear variation of squeezing with respect to spectral
filtering width, which is evidence of the generation of a
multimode state, as explained in Sec. V.C. A complete
time-frequency mode analysis was performed by Guo et al.
(2015). Here the four-wave mixing characteristics can be

appropriately tailored to meet specific purposes, for example,
by adjusting the spectral profile of the twin photons by using a
specific pump shape and design of the photonic crystal fiber
(Cui, Li, and Zhao, 2012).
In the temporal soliton regime, reached by using short and

intense pulses in optical fibers, squeezing (Drummond et al.,
1993) and spectral quantum correlations between different
parts of the spectrum have been observed (Spälter et al.,
1998), whereas in the spatial soliton regime, spatial quantum
correlations between different transverse parts of the beam
have been predicted (Treps and Fabre, 2000). Such spatial
correlations may actually improve the quantum noise reduc-
tion by filtering an appropriate transverse part of the spatial
soliton (Mecozzi and Kumar, 1998).
The technique of four-wave mixing in a hot rubidium vapor

using two intense pump beams with optimized frequencies,
initiated by the NIST group (Boyer, Marino, and Lett, 2008),
provides single pass parametric gains of the order of 4
(McCormick et al., 2007). It generates strong multiple corre-
lations (Qin et al., 2014), multimode entanglement with a
record value of 9.2 dB (Glorieux et al., 2011) of intensity
difference fluctuations below the vacuum level, and localized
squeezing (Liu et al., 2011; Embrey et al., 2015). It has been
used, for example, to generate entangled images (Boyer,
Marino, and Lett, 2008; Boyer et al., 2008). Here pump
shaping, implemented simply by using several pump beams
of different directions intersecting in the Rb cell, allowed
experimentalists to generate multipartite-entangled beams of
various topologies (Qin et al., 2014; Wang, Fabre, and Jing,
2017). The effect can be enhanced up to 9 dB by modulating
the Rb energy levels using additional lasers (Zhang et al., 2017).
Other kinds of nonlinear devices give rise to different shapes

of Schmidt modes. One can use, for example, four-wave
mixing in argon-filled hollow core fibers (Finger et al., 2017).

D. Multimode lasers

Lasers generate light that can be either single mode or
multimode depending on the gain spectral profile, the proper-
ties of intermode coupling, and the insertion of intracavity
mode filters, but most often their nonclassical properties are
hidden by the large excess of classical fluctuations in the
pumping process responsible for the population inversion.
Under certain conditions, when the pump noise is greatly
reduced lasers can generate “sub-Poissonian light,” i.e., beams
of light having intensity fluctuations below the shot noise
level. This is achieved by reducing the Johnson noise of the
electrical current pumping high efficiency diode lasers. These
diode lasers usually emit on several highly anticorrelated
frequency modes (Marin et al., 1995). The same character-
istics have also been observed in vertical cavity surface
emitting lasers, with are characterized by strong correlations
between transverse modes (Hermier et al., 1999).

X. DETECTION OF MULTIMODE QUANTUM STATES

A. Direct photodetection

The observable N̂ðr; tÞ associated with photodetection
made on a small area around point r (of dimensions close
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to the wavelength) and at time t on a given beam by a
photodetector of unity quantum efficiency is proportional to
ÊðþÞðr; tÞ†ÊðþÞðr; tÞ (Glauber, 1963; Mollow, 1968). More
precisely and expressed in numbers of photon counts, using
Eq. (31) one has

N̂ðr; tÞ ¼
X
n;n0

b̂†nb̂n0f�nðr; tÞfn0 ðr; tÞ. ð102Þ

Note that this observable contains crossed terms like b̂†nb̂n0 . Its
mean value is a linear combination of matrix elements of the
coherency matrix Γ̂ð1Þ. The local photodetection signal is
therefore sensitive to the correlations between the different
modes. These correlations could be extracted by measuring
the intensity correlations at the different couples of points in
the transverse plane. It is only in the eigenmode basis of the
coherency matrix that it appears as a sum of contributions of
different modes.
The total photodetection observable N̂ is associated with

the signal given by a photodetector of unit quantum efficiency
averaged over its transverse surface S, which is supposed to be
much larger than the beam area, and over an aperture time T
that is supposed to be much longer than its duration. We call
such a device a bucket detector. It is given by

N̂ ¼
X
n

b̂†nb̂n ð103Þ

thanks to the mode orthogonality when one integrates over
transverse coordinates and longitudinal coordinate z ¼ ct.
The detector counts the total amount of photons present in the
beam, which is a quantity independent of the choice of the
mode basis, as we saw previously. It does not give us any
information about the modal properties of the quantum state.

B. Balanced homodyne detection

Some of the interest in multimode systems resides in the
fact that they are likely to carry in a parallel way much more
information than a single-mode system. It is therefore impor-
tant to find the best way to extract from the multimode system
pieces of information about any single mode of interest.
Balanced homodyne detection gives precisely this possibility.
Consider the well-known balanced homodyne detection

scheme in the context of multimode quantum optics: the beam
to measure is combined with a local oscillator (LO) on a 50%
beam splitter. The observable N̂− associated with the differ-
ence between the photodetection signals N̂A and N̂B recorded
by two bucket detectors placed on output beams A and B and
integrated over transverse space and time can be expressed,
using the well-known input-output relations of a beam
splitter, as

N̂− ¼ N̂A − N̂B

¼
X
n

ðb̂in†n;Ab̂
in
n;B þ b̂in†n;Bb̂

in
n;AÞ. ð104Þ

Equation (104) is valid in any mode basis provided that the
modes fn;Aðr; tÞ and fn;Bðr; tÞ forming the mode basis for

beams A and B impinging on the beam splitter are matched,
meaning that the mode fn;Aðr; tÞ associated with b̂inn;A is the
“mirror mode” of the mode fn;Bðr; tÞ associated with b̂inn;B,
using as a mirror the surface of the beam splitter (symmetrical
spatial shapes, identical temporal shapes). One sends on the
input beam A the multimode light state, pure or mixed, that
one wants to characterize, and on the input beam B a single-
mode state of light (a local oscillator, or LO), which is made of
vacuum in all modes except for a coherent state jjαjeiϕi in the
jth mode. We now introduce the fluctuation operators of the
form δÔ ¼ Ô − hÔi. If the local oscillator intensity jαj2 is
much larger than the vacuum fluctuations and the mean
amplitude of the multimode light beam, one can neglect all
terms except the ones proportional to jαj. The fluctuations of
the measured homodyne signal are then

δN̂− ≃ jαjðδb̂in†j;Ae
iϕ þ δb̂inj;Ae−iϕÞ

¼ jαjðδX̂j cosϕþ δP̂j sinϕÞ ¼ jαjδX̂jϕ. ð105Þ

Equation (105) shows that the balanced homodyne detection
setup allows us to access the fluctuations of the quadrature
operator δX̂jϕ even if the multimode state under study has
comparable or larger components in many other modes: the
homodyne detection using bucket detectors is actually a
projective measurement on the LO mode.
On the other hand, if the local oscillator is in a mode

gLOðr; tÞ that differs from all modes of the basis ff ng, one has
in the case of a real value of the overlap integral f⃗n

T� · g⃗LO
(Bennink and Boyd, 2002)

hδN̂2
−i ¼ jαj2

X
n

ðf⃗nT� · g⃗LOÞ2hðδX̂in
nϕÞ2i. ð106Þ

Shapiro and Shakeel (1997) investigated ways to optimize the
LO shape to get the maximum squeezing effect. Polycarpou
et al. (2012) analyzed the single temporal mode of a heralded
single photon by homodyne detection using a pulse-shaped
LO, the spectral-temporal shape of which is then algorithmi-
cally optimized to get the maximum overlap.

C. Determination of quadrature covariance and coherency
matrix elements

We show now that it is possible, using a series of homodyne
measurements with different shapes of local oscillator modes,
to determine all second-order correlation functions character-
izing the multimode state of light under study.
First, from the measurement of the homodyne signal

variance hδN̂2
−i as a function of the LO phase ϕ, one easily

extracts the quadrature variances hδX̂2
ni and hδP̂2

ni as well as
the X-P correlation hδX̂nδP̂ni in mode n. Then, to determine
the correlations between modes m and n, one makes another
homodyne measurement, now using as the LO mode a
combination of the two modes fLO ¼ ðf n þ fmÞ=

ffiffiffi
2

p
, which

gives information about the multimode state projected on this
new mode, i.e., on the variances VXmn ¼ hðδX̂n þ δX̂mÞ2i
and VPmn ¼ hðδP̂n þ δP̂mÞ2i and on the correlation CXPmn ¼
hðδX̂n þ δX̂mÞðδP̂n þ δP̂mÞ þ ðδP̂n þ δP̂mÞðδX̂n þ δX̂nÞi=2.
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The matrix elements of the quadrature covariance matrix
are then given by

hδX̂nδX̂mi ¼ ðVXmn − hδX̂2
ni − hδX̂2

miÞ=2
hδP̂nδP̂mi ¼ ðVPmn − hδP̂2

ni − hδP̂2
miÞ=2. ð107Þ

Finally, to evaluate the XnPm correlations, one uses the same
procedure as that used for the XnXm and PnPm correlations,
but now with another series of homodyne measurements with
LO modes f 0LO ¼ ðf n þ ifmÞ=

ffiffiffi
2

p
including a phase shifted

fm mode.
The matrix elements of the coherency matrix Γð1Þ can also

be determined from the series of homodyne measurements
using Eqs. (107) and (50).
It is thereby possible to get the full correlation matrices

using a series of homodyne measurements (for example, one
must use 100 choices of different LO modes for ten modes).
These measurements must be made sequentially and require
therefore that the quantum state generator is stable over the
duration of the measurements. The quantum state character-
ized by this matrix is unfortunately destroyed by the meas-
urement, which prevents this technique from being used in
experiments involving conditional measurements, and, in
particular, in measurement-based quantum computing.
Note that with the help of a beam splitter and two

homodyne detectors at its two outputs it is possible to measure
at the same time hδX2

ji and hδP2
ji, but this cannot be done

without adding excess noise coming from vacuum fluctua-
tions at the input of the beam splitter, as Xj and Pj are
noncommuting quantities that cannot be measured exactly
simultaneously. This method is useful for measuring classical
noises that are significantly larger than the vacuum fluctua-
tions. One can then extract from these measurements the
principal noise modes that govern the dynamics of a classical
light source. This has been achieved, in particular, for mode-
locked lasers (Schmeissner et al., 2014). Note that the excess
noise can be avoided by using correlated homodyne mea-
surements (Shchukin and Vogel, 2006).

D. Spectral homodyne and resonator detection

In the case of stationary light sources (continuous wave or
periodic), homodyne detection is often followed by a spectral
analysis of the fluctuating signal, which allows us to measure
the noise spectral density SðΩÞ of the homodyne signal
fluctuations. For example, when the LO phase ϕ is zero
SðΩÞ is equal to SðΩÞ ¼ hδX̂2

Ωi, where

δX̂Ω ¼ 1ffiffiffiffiffi
2π

p
Z

dt eiΩtδX̂ðtÞ. ð108Þ

It is easy to show that this measured signal depends on the
properties of sideband modes, which are quasimonochromatic
frequency modes at frequency ω0 � Ω (within the frequency
bandwidth ΔΩ of the spectrum analyzer), where ω0 is the
optical carrier frequency and Ω is the Fourier analysis
frequency, usually in the megahertz range. More precisely,
if one calls âω the annihilation operator in the frequency mode
of frequency ω, one has

δX̂Ω ¼ âω0þΩ þ âω0−Ω. ð109Þ

A noise spectrum of the homodyne signal, apparently a
technique to characterize single-mode fields, actually gives
a highly multimode information about couples of sideband
modes. For example, squeezing of noise frequency compo-
nents in a given Fourier frequency range (hδX̂2

Ωi < 1 for
Ω ∈ ½Ω1;Ω2�) can actually be seen as ðΩ2 −Ω1Þ=ΔΩ inde-
pendent couples of EPR correlated sideband modes.
However, it can be shown that spectral homodyne detection

does not give complete information about the sideband modes
(Barbosa et al., 2013). More precisely, it measures the
properties of the input quantum state partially traced over
the mode associated with âω0þΩ − âω0−Ω, which is orthogonal
to δX̂Ω. There is another detection technique, called resonator
detection, that gives access to complete information about the
frequency modes. It consists of measuring the intensity
fluctuations of the beam to analyze after it has been reflected
on a slightly off-resonant Fabry-Perot cavity, the length of
which is scanned. The off resonance unbalances the two
sidebands and reveals a possible asymmetry between them,
which is not possible with the homodyne detection. Sideband
modes, although close to each other in frequency, can be
separated and studied individually using interferometric tech-
niques (Huntington et al., 2005).

E. Multiplexed detection

1. Implementation

Homodyne detection is a destructive measurement that
prevents any further processing of the same quantum state, so
a “single shot” detection of several observables on the same
quantum system, which we call multiplexed detection, is
highly desirable, especially if one wants to take advantage of
the multimode aspect of the generated light. Multiplexed
detection can be simply implemented when the different
modes of the light can be spatially separated: one inserts
homodyne detection devices into all or some of the different
modes (Yukawa et al., 2008; Su et al., 2012, 2014). In this
configuration the different measurements do not completely
destroy the quantum state. One can also postselect a subset of
recorded data to herald a specific quantum state (Aichele,
Lvovsky, and Schiller, 2002; Laurat et al., 2003). One can
also use the information contained in the measurements
to correct by a feed-forward technique a mode that has been
left unmeasured, for example, in sub-Poissonian bright beam
generation (Mertz et al., 1990) or in teleportation (Furusawa
et al., 1998).
When the multimode state is propagating in a single spatial

beam, different kinds of multiplexed photodetectors can be
used: CCD cameras (Peřina et al., 2012) or photodiode arrays
(Beck, 2000; Dawes and Beck, 2001; Armstrong et al., 2012)
for spatial modes, and time resolved detectors for temporal
modes. They allow one to record the intensity fluctuations on
pixels of area δx2, the time bins of duration δt, and the
correlations between the fluctuations of different pixels. In
addition, if one inserts a dispersive device like a prism in front
of the array detector, one can measure the fluctuations of
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different frequency bands of spectral width δω (Ferrini
et al., 2013).

2. Multiplexed homodyne signal

The modes corresponding to the detection scheme just
described are the pixels, time bins, and frequency band modes:
they are normalized modes vjðr; tÞ that are zero outside the
detection domain (in space, time, or frequency) and constant
inside and that we call in a general way bin modes. Consider
the set (vjðr; tÞ) of such bin modes, which are not overlapping
and which cover the whole detection domain, and the
corresponding annihilation operators d̂j. Such a detection
acts as a low pass filter: the bin modes constitute a complete
and orthonormal set of modes in the subspace of electric fields
that have an upper limit 1=2δx in the case of pixels, 1=2δt in
the case of time bins, or 1=2δω in the case of frequency bands.
The intensity N̂j in terms of photon number recorded on the
bin mode labeled by j, deduced from Eq. (102), is

N̂j ¼ d̂†j d̂j ð110Þ

because the other modes vanish on the jth detector. This
relation, without summation over modes, is valid only for
operators d̂†j d̂j defined in the bin-mode basis.
We now consider the balanced homodyne detection setup

that uses a single-mode LO in quantum state jΨLOi and
multiplexed detectors instead of bucket detectors. The meas-
urement of the intensity difference between analog pixel-time-
frequency bins j on the two output beams of the beam splitter
is now given by, omitting for simplicity the superscript “in”,

δN̂−;j ≃ hΨLOjd̂j;bjΨLOiδb̂†j;a þ H:c: ð111Þ

We take as before the LO to be a coherent state jjαjeiϕi in
mode g⃗LO that is assumed to vary slowly over the extension of
a bin. We have seen that it may be also written as a tensor
product of coherent states in any other mode basis, including
the bin basis. One can show

hΨLOjd̂j;bjΨLOi ¼ ðv⃗jT� · g⃗LOÞjαjeiϕ. ð112Þ

Assuming the modal inner product to be real, one finally has

δN̂−;j ≃ jαjðv⃗jT� · g⃗LOÞδX̂jϕ. ð113Þ

The condition of validity of this expression is that jαjðv⃗jT� ·
g⃗LOÞ is large enough in relation to the vacuum fluctuations. Its
exact value is taken care of by a proper normalization of the
homodyne signal.
A computer memory then stores in parallel the instanta-

neous different detection signals δN̂−;j for all of the bin modes
and for a given LO phase ϕ, for example, ϕ ¼ 0, which give
access to the X̂j quadrature. By a time integration of the square
of the fluctuations over a time window T, one then gets in a
single shot all variances hδX2

ji; by a time integration of the
product of the recorded fluctuations δXj and δXj0 one gets the
cross-correlations hδXjδXj0 i, i.e., a quarter of the quadrature

covariance matrix. The second moments of the P quadrature
are obtained with a second single shot measurement with a LO
phase ϕ ¼ π=2. To measure the cross-correlations hδXjδPj0 i
for all j0, one needs to dephase by π=2 the part of the local
oscillator that will impinge on bin j after the beam splitter.
This can be done by using a spatial light modulator (SLM) or a
phase plate on the LO beam.
If the LO phase ϕ is varied on a timescale shorter than T,

one gets phase averaged correlations, which directly give the
value of hδXjδXj0 i þ hδPjδPj0 i, i.e., the real part of the
coherency matrix.

3. Multiplexed mode discrimination via postprocessing

We now consider more generally a multimode quantum
state jΨi, described in a given mode basis fulg, that one wants
to characterize through multiplexed homodyne detection. The
question is which set of quadrature operators, and for which
mode basis, can be accessed simultaneously for a given
measurement scenario. A multipixel homodyne detection
performs a measurement in the bin-mode basis fvjg, which
is related to the initial mode basis through a modal unitary
operator Ub. This matrix depends on the optical arrangement
between the quantum state to be characterized and the
detector. It can be adjusted by changing the experimental
setup. But for a given setup, shaping the local oscillator and
postprocessing on a computer allows for a large variety of
quadrature outcomes. In particular, one can do the following:

• Shape the local oscillator impinging on each pixel of the
multipixel detector, and thus the modal projection. This
induces a change in the bin-mode basis fvjg that is
measured. This effect can be mathematically included in
the matrix Ub.

• Add a phase shift eiψ j on each bin mode vj. This is done
phase shifting by eiψ j the local oscillator beam imping-
ing on the corresponding pixel of the multipixel detector.
We call ΔLO the associated diagonal unitary operation on
the modes.

• Digitally recombine the electronic signals coming from
each bin by multiplying them by real gains, which
amounts to applying an orthogonal matrix O to the
vector of measured quadratures of modes fvjg.

We define the mode basis as

c⃗n ¼
XNp

l¼1

ðOΔLOUbÞlnu⃗l ¼
XNp

l¼1

ðUMPHDÞlnu⃗l; ð114Þ

where Np is the number of pixel detectors. The data
processing technique just described allows us to access
simultaneously the amplitude quadrature fluctuations in the
set of modes fcng, even though such modes have not been
physically extracted from the multimode beam (Ferrini et al.,
2013). This technique is useful for gaining access to the nodes
of cluster states that are embedded in the multimode quantum
state; see Sec. XIV. It can be shown (Armstrong et al., 2012)
that many, but not all, possible modal unitary transformations
U can be emulated using this procedure, namely, those such
that UbUTUU†

b ¼ D, where D is a diagonal matrix with unit
modulus complex elements (Ferrini et al., 2013).
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Finally, we stress that data processing is not limited to linear
combinations of data. Nonlinear combinations can also be
performed to implement non-Gaussian operations using feed-
forward techniques (Miyata et al., 2016).

F. Two-photon detection

In addition to quantum fluctuation measurements, joint
two-photon detection is a privileged tool for revealing the
nonclassical properties of a quantum state of light. The
observable Ŵðr; t; r0; t0Þ associated with the double detection
at times t and t0 made by two detectors A and B at positions
ðr; tÞ and ðr0; t0Þ is given by (Glauber, 1963)

Ŵðr; t; r0; t0Þ ¼ ÊðþÞ†ðr; tÞÊðþÞ†ðr0; t0ÞÊðþÞðr0; t0ÞÊðþÞðr; tÞ.
ð115Þ

When integrated over time and transverse space, Eq. (115)
gives a “total double click” observable equal to

Ŵ ¼
X
mA;mB

b̂A†mA
b̂B†mB

b̂AmA
b̂BmB

; ð116Þ

which does not depend on the choice of the mode basis and
has a mean value that is zero for a single-photon state and
equal to the square of the mean photon number for any
multimode coherent state (as defined inSec. V.A.3).
We now consider the Hong-Ou-Mandel (HOM) configu-

ration (Hong, Ou, and Mandel, 1987): the two detectors are
measuring photon coincidences between the two outputs of a
50% beam splitter. More details concerning the derivations are
provided in Appendix C. We assume in addition that the
detectors are “slow” so that they lose the information about the
exact arrival time of each photon. We can then use Eq. (115)
for a “bucket detector” obtained by integration over times t
and t0.
(a) We first consider the case where two uncorrelated single

photons in modes gA and gB impinge on the two input ports of
the beam splitter (Bylander, Robert-Philip, and Abram, 2003;
Legero et al., 2003; Beugnon et al., 2006; Kaltenbaek et al.,
2006). The calculation, which is outlined in Appendix C,
yields the following expression for the normalized two-photon
detection rate for zero difference between the two-photon
paths gð2Þð0Þ:

gð2Þð0Þ ¼ 1
2
ð1 − jg⃗AT� · g⃗Bj2Þ

¼ 1
2
ð1 − jh1∶gAj1∶gBij2Þ. ð117Þ

The HOM destructive interference is perfect only when
jg⃗AT� · g⃗Bj2 ¼ 1, implying that g⃗A ¼ g⃗B within a phase term
(Beugnon et al., 2006; Ou, 2017): single photons “coalesce”
on the beam splitter only when they are in modes that are
strictly identical, for both their space and time dependences. If
the modes are orthogonal, one retrieves the classical value 1=2
for the normalized coincidence rate.
(b) There is a second physical situation for HOM interfer-

ence, which was actually the one of the initial experi-
ment (Hong, Ou, and Mandel, 1987), consisting of the use
of entangled two-photon states generated by parametric

down-conversion. The calculation is outlined in
Appendix C. Using the Schmidt decomposition of the input
state one finds that the coincidence rate for the zero path
length difference between the two arms vanishes not only
when the input quantum state is a product of single-mode
states, but also when it is entangled, provided that all Schmidt
modes of the parties A and B have identical space-time
dependences: ∀ ig⃗iA ¼ g⃗iB. Such a perfect two-by-two match-
ing for all Schmidt modes of the two beams is achieved when
there is total symmetry with respect to the exchange between
the signal and idler parts A and B, i.e., when the matrix Gsi
introduced in Eq. (98) is symmetric.

XI. MULTIMODE AMPLIFICATION AND ATTENUATION

A. Effect on squeezing

The quantum aspects of single-mode attenuation and
amplification have been studied and understood for a long
time (Caves, 1982, 2012): losses, as well as phase-insensitive
amplification, lead to a necessary coupling between the
considered mode and the outer world, which results in added
noise, responsible for a reduction in squeezing and a minimum
3 dB noise penalty in the noise figure of the amplifier. Only
phase-sensitive amplifiers are authorized to be noiseless by the
laws of quantum mechanics (Marino and Lett, 2012). It is
therefore important to see in which respect these properties
extend to the multimode case (Lane et al., 1983), considering
the fact that many kinds of multimode optical amplifiers have
been developed in recent years, for example, erbium-doped
fiber amplifiers (Nykolak et al., 1991), parametric amplifi-
cation in crystals (Allevi et al., 2006) or fibers (Guasoni,
2016), and image amplifiers based on four-wave mixing in
atomic vapors (Gigan et al., 2005; Boyer et al., 2008; Ferrini
et al., 2014).
In this section, we mainly follow the argument given by

Leuchs, Andersen, and Fabre (2006). We restrict ourselves to
the case of a phase-insensitive multimode attenuator or
amplifier, which is characterized by an intensity multiplicative
factor P, acting on an N-mode modal space with mode basis

f⃗m and corresponding annihilation operators b̂m. At the
classical level, the output field EðþÞout is equal to

ffiffiffiffi
P

p
EðþÞin

for any input EðþÞin. At the quantum level, the corresponding
relation for the column vector of annihilation operators in the
Heisenberg representation

⃗b̂
out ¼

ffiffiffiffi
P

p ⃗b̂
in ð118Þ

cannot be valid, except when P ¼ 1, because it is not a
commutator preserving relation. One therefore needs to
introduce a set of N0 ancilla modes characterized by a mode
basis g⃗n and corresponding annihilation operators ân, which
are coupled to the amplifier modes. The actual input-output
relation is then written as

⃗b̂
out ¼

ffiffiffiffi
P

p ⃗b̂
in þ L ⃗âin þM ⃗âin;†; ð119Þ

where L and M are N0 lines and N column matrices. The
canonical commutation relations
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½ ⃗b̂out; ⃗b̂†out� ¼ 1N ð120Þ

are ensured when

MM† − LL† ¼ ðP − 1Þ1N . ð121Þ
We now consider the amplifier case P > 1 and define a new
column vector of operators

⃗ĉin ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
P − 1

p ðL† ⃗âin;† þM† ⃗âinÞ. ð122Þ

One deduces from Eq. (121) that

½ ⃗ĉin; ⃗ĉin;†� ¼ 1N ð123Þ

so that ⃗ĉin is a column vector of bosonic annihilation operators
associated with modes that can be called noise modes. One
can finally write

⃗b̂
out ¼

ffiffiffiffi
P

p ⃗b̂
in þ

ffiffiffiffiffiffiffiffiffiffiffi
P − 1

p
⃗ĉin;†. ð124Þ

By definition, ⃗b̂
out

and ⃗b̂
in
are of dimension N, whereas ⃗ĉin is

of dimension N0, which implies that N0 ¼ N.
In the attenuator case P < 1 one has similarly

⃗b̂
out ¼

ffiffiffiffi
P

p ⃗b̂
in þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − P

p ⃗d̂
in
; ð125Þ

with the operators

⃗d̂
in ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1 − P
p ðL ⃗âin þM ⃗âin;†Þ ð126Þ

satisfying the bosonic commutation relations

½ ⃗d̂in; ⃗d̂in;†� ¼ 1N ð127Þ

and

½ ⃗d̂in; ⃗d̂in� ¼ 0. ð128Þ

We therefore find that, in the general case of N-mode linear
optical systems written in any mode basis, there are N
associated ancilla modes that independently bring excess
noise to the “useful” modes. These noise modes depend on
the physical system considered and are not necessarily
associated with optical modes.
If the noise modes are in the vacuum state, one can write a

simple relation for the evolution of the coherency matrix, as
well as for the quadrature covariance matrix valid in any mode
basis and in both the attenuator and amplifier cases:

Γð1Þ;out ¼ PΓð1Þ;in þ jP − 1j1N; ð129Þ

Γout
Q ¼ PΓin

Q þ jP − 1j12N . ð130Þ

As in the single-mode case, an energy gain P of 2 is enough to
bring above shot noise a highly squeezed input state, even a
multimode one.

Equation (129) is not valid for a phase-sensitive amplifi-
cation, for which the 3 dB penalty does not exist.
Amplification with reduced added noise has been observed
in the case of parametric amplification of optical images
(Mosset, Devaux, and Lantz, 2005).

B. Effect on entanglement

We can now determine whether or not entanglement is
preserved under such a linear processing. For bipartite
entanglement between modes 1 and 2, we may use the
Duan-Mancini criterion (Giovannetti et al., 2003)

��
X̂1 þ X̂2ffiffiffi

2
p

�
2
���

P̂1 − P̂2ffiffiffi
2

p
�

2
�

< 1. ð131Þ

For a maximally entangled EPR input state, the X quadratures
are perfectly anticorrelated, and the P quadratures are per-
fectly correlated. This implies that the lhs quantity is zero at
the input of the linear device, amplifier, or attenuator. At its
output, it is equal, according to Defienne et al. (2016), to
ðP − 1Þ2. This quantity is smaller than 1 whenever P < 1 so
that the entanglement survives for any attenuation factor, with
a decreasing violation of the inequality when the losses
increase. In the amplifier case, the Duan-Mancini criterion
is satisfied only when P < 2: similar to squeezing, entangle-
ment survives only for gains smaller than 2. For energy gain P
greater than 2 the criterion is no longer satisfied. If one
assumes that there are no X-P correlations, then the Duan
criterion is necessary and sufficient for Gaussian states, and
one is sure that entanglement “dies” for gains higher than 2.
Squeezing and entanglement are destroyed equally by ampli-
fication and attenuation. This is additional proof that they are
indeed two faces of the same physical property, which has two
different “avatars” according to the choice of mode basis.

XII. MODE SHAPE CONTROL

An important property of optical modes is their ability to be
shaped at will so as to match as well as possible the
spatiotemporal dependence needed in a given application,
such as optimized parameter estimation (Sec. XIII), coupling
with quantum memories or reconfigurable quantum informa-
tion processing (Sec. XIV).
Mode shaping can be implemented in different ways:
• As a mode converter, which transforms a given single-
mode input to another single-mode output, while keep-
ing unchanged the quantum state defined in the mode.

• As a mode extractor, which filters a mode of interest
from a multimode field, while keeping its quantum
properties and its correlations with the not-extracted
modes. Such a device would enable us to keep this mode
for further use, for example, to correct it in a feed-
forward scheme. This is easy to do of course when the
modes are spatially, spectrally, or temporally separated,
with a mutual “distance” large enough to be separable by
the current technology, but not when the modes are
overlapping.

• As a mode multiplexer or demultiplexer that converts in a
parallel way a set of input modes into an orthonormal
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basis of modes that are easy to propagate in a given
system and makes the reverse process at its output, while
keeping the intrinsic properties of the state, and, in
particular, the principal modes and their squeezing
performances. As an example in classical optics, in
wavelength division multiplexing the different input
frequency channels are merged in a single-mode fiber
(multiplexing) and are physically separated at its output
(demultiplexing) using dispersive devices. An even more
advanced concept is a programmable network in which
this whole process can be modified at will according to
the chosen application.

This domain of optics is active, especially with the recent
availability of SLMs, at both the classical and quantum levels.
We of course focus on its quantum aspects and concern
ourselves with the evolution of the modes, but also with the
induced evolution of the quantum state of the system when the
modes in which is it defined are converted or distorted by
some optical process.
For quantum applications, as losses destroy squeezing and

entanglement, the mode shaping must be lossless and con-
serve energy. If the mode conversion preserves energy and is
linear, it conserves the number of photons: an input n-photon
Fock state jn∶fini must then be transformed into the same
Fock state in the output mode jn∶gouti for any n. The
conservation of the quantum state in the mode shaping process
is therefore true for any input state, because Fock states form a
basis of the Hilbert space of quantum states.
In the following we separately describe mode shaping

effected by linear optics and nonlinear optics.

A. Linear conversion

We first consider spatial modes: it has been mathematically
proven in the general case (Morizur et al., 2010) that one can
convert any input spatial mode to any output spatial mode by
using reflections (or transmissions) on two appropriately
chosen phase plates separated by free space. One needs a
larger, but finite, amount of reflexions on successive phase
plates to convert a whole spatial mode basis into another
arbitrary mode basis. This can be implemented with low
conversion losses (Labroille et al., 2014) in a device called a
multiplane light converter (MPLC) with the help of SLMs or
phase plates, with the quantum state conserved in the con-
version (Morizur et al., 2011). There are of course other linear
optical spatial mode converters, but they are useful only for a
subset of transformations: lens and free propagation for spatial
Fourier transform, telescope for beam magnification, and
Babinet-Soleil-Bravais birefringent filter for temporal deriva-
tive (Labroille et al., 2013). Fractional Fourier transform
allows one to design Laguerre-Gauss mode sorters (Zhou et
al., 2017), which combined with an astigmatic mode converter
from Hermite-Gauss to Laguerre-Gauss modes consisting of
cylindrical lenses (Beijersbergen et al., 1993) can also sort
Hermite-Gauss modes (Zhou et al., 2018). Tapered fibers
down to nanometer scale (Tong et al., 2003) or photonic
lanterns (Fontaine et al., 2012) are also used to manipulate the
modes of the fibers. A SLM can also be used to “preform” the
mode before it interacts with a random scattering medium to

obtain at its output a well focused beam that has kept its
quantum properties (Defienne et al., 2016).
If one now considers time-frequency modes, passive unitary

conversion is not possible from a given input frequency mode
to a frequency shifted output mode because changing the
frequency of light amounts to changing the photon energy.
This cannot be done with a passive transformation, whereas in
the spatial case changing the direction of propagation of a
photon does not change its energy. Therefore, passive unitary
frequency mode conversion can involve phase changes only at
different frequencies, which are implemented using SLMs
inserted between a pair of diffraction gratings and lenses
(Weiner, 2011). Such linear devices are also used in a
nonunitary way by implementing frequency-dependent losses
to shape the light spectrum. These last devices destroy the
quantum properties of the quantum state in the CV regime, as
shown in Sec. XI, and the probability of single-photon counts
in the discrete variable regime. In addition, they will never be
able to induce a broadening of the spectrum. This type of lossy
filtering technique allows for multiplexing and demultiplexing
techniques, for example, for single photons in the multiple
spatial modes of a silicon photonic crystal fiber (Carpenter
et al., 2013) or temporal modes (Pérez et al., 2015). Long
dispersive fibers provide an efficient way to make a wave-
length to time mapping of a multimode input light pulse
(Chandrasekharan et al., 2017).
Mode extractors are also important tools for handling

modes in view of applications: it is possible to filter a given
Hermite-Gauss mode by using a Fabry-Perot cavity that
transmits one mode and reflects all of the other ones. One
also extracts Laguerre-Gauss modes using especially designed
phase holograms (Ren et al., 2017). The MPLC device also
allows one to multiplex or demultiplex a number of orthogo-
nal spatial modes of the order of 10.

B. Nonlinear conversion

To include frequency changes in the mode transformation
one must rely on nonlinear effects, either in the microwave
domain or in the optical domain. We consider as an example
sum-frequency generation (SFG) (Andreas, Brecht, and
Silberhorn, 2011), which uses a χð2Þ type II nonlinear medium
[Eq. (93)]. It is pumped here by a low frequency gate beam of
spectral amplitude αgðωÞ, treated classically. The correspond-
ing Hamiltonian is

Ĥ0 ¼
X
l1;l2

ðG0
l1;l2

âl1
â0†l2 þ H:c:Þ; ð132Þ

where âl1
is the annihilation operator of input photons in the

single frequency mode f l1
of frequency ωl1

and â0l2
is the

annihilation operator of SHG photons in the single frequency
mode f 0l2 of frequency ωl2

. G0
l1;l2

¼ a0l1;l2
αgðωl2

− ωl1
Þ is a

product of a mode coupling factor a0l1;l2
by the pump

amplitude at frequency ωl2
− ωl1

. This Hamiltonian is a
double sum of terms describing transfer processes from mode
f l1 to mode f 0l2

operating in different spectral ranges. A
singular value decomposition of matrix G0 leads to the
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following expression of the Hamiltonian, which is analog to
the one describing a beam splitter:

Ĥ0 ¼
X
i

ðμib̂ib̂0†i þ H:c:Þ. ð133Þ

b̂i and b̂
0
i are, respectively, annihilation operators of photons in

Schmidt input mode gi and “twin” Schmidt mode g0i. The
spectral shape of these Schmidt modes depends on the matrix
G0

l1;l2
and therefore on the pump, or gate, spectral shape

αgðωÞ and on the phase matching properties of the nonlinear
crystal. If the gate has a Gaussian shape HG0, the Schmidt
modes gi and g0i are both Hermite-Gauss spectral-temporal
modes of the same index HGi (Andreas, Brecht, and
Silberhorn, 2011; Ansari et al., 2018). If the group velocities
of the input and gate modes are matched, the singular value
decomposition leads to a single non-negligible coefficient in
the Schmidt sum. More precisely, if the pump is in the mode
HGj, then the single input Schmidt mode is also HGj, whereas
the SFG Schmidt mode is the Gaussian mode HG0 regardless
of the pump.
In the last configuration, if the gate is weak and when there

is only one term, of index 1, in the sum (133), the evolution
operator is written as

Û ¼ 1̂ − iμ01ðb̂1b̂0†1 þ b̂†1b̂
0
1Þ; ð134Þ

where μ01 ¼ μ1L=ℏc, with L the crystal length. If the input
state is, for example, a single-photon state g1, j1∶g1i, the
output state jΨouti is

jΨouti ¼ j0∶g01; 1∶g1i − iμ01j1∶g01; 0∶g1i; ð135Þ

where the single photon has been transferred from the Schmidt
mode g1 to the Schmidt twin mode mode at the double
frequency g01. If one increases the gate pump beam power but
keeps it in the undepleted pump approximation, the input-
output relations for the annihilation operators of the input and
SHG Schmidt modes are

b̂out1 ¼ i sin μ01b̂
0in
1 þ cos μ01b̂

in
1 ;

b̂0out1 ¼ cos μ01b̂
0in
1 þ i sin μ01b̂

in
1 . ð136Þ

When μ0i is equal to π=2, b̂0out1 ¼ ib̂in1 . We have here a perfect
mode extractor: only one input mode g1 is perfectly trans-
ferred to SHG mode g01, whereas all the other modes are left
unchanged by the nonlinear process. One easily changes the
mode that is extracted by changing the shape of the pump gate
beam. One can therefore extract selectively from a multimode
input beam a given Hermite-Gauss mode HGj by using a gate
beam precisely in the mode HGj. This device is often called a
quantum pulse gate. Note that the model presented here is a
simplified one, and that getting an efficiency close to 100% is
not straightforward (Reddy and Raymer, 2018). To get perfect
efficiency, one can extract a mode without changing the
quantum state that “dwelled” in the input mode and its
correlations with the other modes.

Sum-frequency generation through three- and four-wave
mixing is an ideal tool for changing the mode of a given
quantum state (McKinstrie et al., 2012). It has been imple-
mented mainly for single-photon states and weak coherent
states, for example, to shift them from a wavelength range to
another with good conversion efficiency (Tanzilli et al., 2005),
to select a given mode (spatial or temporal) with efficiencies of
the order of 70% (Benjamin et al., 2014; Reddy and Raymer,
2018) and good fidelity for the output state (McGuinness
et al., 2010), or to manipulate specific temporal modes
(Reddy, Raymer, and McKinstrie, 2014; Pérez et al., 2015;
Ra et al., 2017). Other nonlinear processes, such as frequency
down-conversion, can be used to transfer single-photon states
(Curtz et al., 2010; Lenhard et al., 2017) in an entanglement
preserving way. Cavity QED effects can also be used to shape
at will temporal modes of single photons (Morin et al., 2019).
Temporal focusing and imaging of a nonclassical state is an

interesting issue (Kolner and Nazarathy, 1989). It can be
implemented in a noiseless way using sum-frequency gen-
eration (Patera, Horoshko, and Kolobov, 2018) so that
squeezing can be preserved by the operation, with a change
of the Fourier spectrum of the quantum fluctuations. One can
also use electro-optic modulation as a unitary time lens able to
compress the spectral width and enhance the peak intensity of
single-photon states (Karpiński et al., 2017).

XIII. MODE OPTIMIZATION IN PARAMETER
ESTIMATION

Light is often used as a tool to perform accurate or sensitive
measurements of some parameter, such as distance, velocity,
time delay, or frequency. We name this parameter a in a
generic way. It is important to know what is the “best light,”
which will enable us to make the best estimation of a. We have
of course the choice of the quantum state of the light, but also
of the spatial and temporal shape of the mode(s) in which this
state is defined. To date most attention has been given to the
quantum state issue, and there is an extensive literature on its
choice (Wiseman and Milburn, 2009; Giovannetti, Lloyd, and
Maccone, 2011), which constitutes an important part of the
domain of quantum metrology, but much less attention has
been given to the mode issue.
To estimate a parameter a by optical means, one first needs

an optical system that generates an a-dependent beam of light.
This light is measured in one way or another, yielding data that
are then processed to derive an estimator ã of a, from which a
value of a is inferred. Generally speaking, the light used in the
measurement may be multimodal, the detection may be
multiplexed, and the data processing may involve the analog
or numerical processing of the measured quantities. We
restrict ourselves to nonbiased estimators, in which case the
quality of the measurement is evaluated by its “sensitivity,”
i.e., by the standard deviation Δa of the estimated values of a
around the “true” value of the parameter (which we take for
simplicity to be 0), which gives an upper limit to the smallest
measurable variation of a.
We concentrate here on single parameter estimation using

pure states, less “noisy” than mixed states, and call jΨðaÞi the
possibly multimode quantum state of the light that is
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submitted to measurement. The quantum Cramér-Rao limit
(Helstrom, 1967, 1968, 1969; Braunstein and Caves, 1994)
allows us to find the smallest value of the standard deviation
Δa of the estimated values optimized over all possible
processing procedures of the experimentally recorded data
and over all possible optical measurements performed on the
a-dependent beam. But there is to date no known optimization
procedure over all possible quantum states of light, and many
different researchers have proposed possible nonclassical
quantum states giving a quantum advantage in parameter
estimation. Note that the mode optimization issue in parameter
estimation is related to the problem of state discrimination
(Pirandola and Lloyd, 2008).
We restrict ourselves here to the subset of multimode

Gaussian states (Pinel, Fade et al., 2012; Pinel, Jian et al.,
2012; Pinel et al., 2013; Šafránek, Lee, and Fuentes, 2015;
Nichols et al., 2018; Šafránek et al., 2019); see Sec. VII. Such
a choice excludes highly nonclassical states like Fock, or
entangled number states like the NOON states, but it includes
squeezed and EPR entangled states. It has the advantage of
comprising the bright coherent states that can be readily
experimentally produced with mean photon numbers N as
high as 1015, which is far from the case for Fock or NOON
states. Two modes umean and udet play an important role in this
problem:

umeanðr; t; aÞ ¼
1

Eð1Þ ffiffiffiffi
N

p hΨðaÞjÊðþÞðr; tÞjΨðaÞi; ð137Þ

udetðr; tÞ ¼ a0
∂
∂a umeanðr; t; aÞja¼0; ð138Þ

where Eð1Þ is the single-photon electric field defined in
Eq. (25) and N is the mean photon number. a0 is the scaling
factor necessary to normalize the mode udet to 1. udet, called
the detection mode, characterizes the spatiotemporal distri-
bution of the sensitivity of the optical system to a variation of
the parameter. It can be used as the first mode of a new mode
basis fung.
The determination of the quantum Cramér-Rao bound

ΔaQCR in the case of a Gaussian state with high N value is
simplified, as one can show that the mean value of the field is
a dependent, while its covariance noise matrix ΓQ is a
independent, which leads to the following result (Pinel,
Fade et al., 2012):

ΔaQCR ¼ a0
2

ffiffiffiffi
N

p Δdet; ð139Þ

where Δdet is the quantum noise factor given by

Δdet ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΓ−1
Q Þudet

q ; ð140Þ

with ðΓ−1
Q Þudet the first diagonal element of the inverse

covariance matrix in the detection mode.
If the noise in this mode is not correlated with all other

modes of the basis, Δdet is simply the rms value of the
quantum noise of a given quadrature of the detection mode:
Eq. (139) shows that the quality of the a measurement is
limited only by the quantum noise in the detection mode. It is

insensitive to the noises in the other modes orthogonal to udet.
In the general Gaussian illumination case, one can show that
the optimal use of resources consists of populating the
detection mode with the best squeezing source available,
and in that case this mode is not correlated with the other
modes (Pinel, Fade et al., 2012). Δdet is equal to 1 when the a-
encoding light quantum state is a coherent state. In this case
ΔaQCR ¼ a0=2

ffiffiffiffi
N

p
: this is the so-called standard quantum

Cramér-Rao limit. Δdet is below this value if one injects a
squeezed vacuum state in the detection mode together with an
intense coherent state in mode umean (Fabre, Fouet, and
Maître, 2000). Equation (139) implies that injecting squeezed
or EPR entangled states in modes other than udet would not
further decrease the quantum Cramér-Rao bound: a single
squeezed state is enough to reach the bound provided that it is
put in the right mode, namely, the detection mode (Pinel, Fade
et al., 2012). This implies that it is not possible to accumulate
the beneficial effects of squeezed states in two different modes
for the measurement of a single parameter. Note that ΔaQCR
vanishes if one uses an infinitely squeezed vacuum state in the
detection mode. Such a state is not physical, as it has an
infinite energy. If one imposes a constraint of total finite
energy Nℏω0 equal to the sum of the mean energies of the
modes umean and udet, the limit scales as N−3=4 (Caves, 1981;
Barnett, Fabre, and Maıtre, 2003), an intermediate scaling
between the standard quantum noise and the N−1 Heisenberg
scaling.
It is not enough to find the ultimate limits in parameter

estimation. One needs of course to find a way to reach them.
Generally speaking, a balanced homodyne detection with a
local oscillator put in the detection mode allows one to attain
the limit in all configurations (Delaubert et al., 2008), but
there are in some cases more convenient ways, for example,
determine the a estimator by computing combinations of
photocurrents recorded in different parts of the illumination
beam (Treps et al., 2003) or linear combinations of its
spectral components using the multiplexed detection outlined
in Sec. X.E.
We now apply the approach that we just exposed to the well

studied issue of a phase measurement using a Mach-Zehnder
interferometer at mid fringe. It involves two input modes fin1
and fin2 incident on the first beam splitter, where we consider
the usual case of fin2 as a vacuum mode, and two output modes
fout1 and fout2 at the output of the second beam splitter. It is
straightforward to show that in this configuration umean ¼
ðfout1 þ fout2 Þ= ffiffiffi

2
p

and udet ¼ ðfout1 − fout2 Þ= ffiffiffi
2

p
. These output

modes correspond, respectively, by backpropagation through
the interferometer, precisely to the input modes fin1 and fin2 .
This implies that the optimized configuration for an inter-
ferometric measurement using Gaussian states is to feed mode
fin1 with an intense coherent state, and mode fin2 with a
squeezed vacuum state, a strategy that was found years ago by
Caves (1981) and is currently implemented in gravitational
wave antennas (Schnabel, 2017). The approach outlined in
this section therefore shows once again the optimized char-
acter of Caves’s configuration and extends it to any optical
measurement with multimode Gaussian states. It has been
applied to the estimation of various parameters: transverse

C. Fabre and N. Treps: Modes and states in quantum optics

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035005-27



displacement and tilt of a TEM00 light beam (Hsu
et al., 2004; Delaubert et al., 2006) (for which the detection
mode is the TEM01 mode), time delay (Lamine, Fabre, and
Treps, 2008; Thiel et al., 2016), propagation distance of a light
pulse immune from atmospheric perturbations (Jian et al.,
2012), mean frequency shift of broadband light, and trans-
verse width of a highly focused beam (Chille et al., 2016).
Several experiments have shown that it is indeed possible to
go beyond the standard Cramér-Rao bound by using squeezed
light in the appropriate detection mode (Treps et al., 2002;
Taylor et al., 2013; Pooser and Lawrie, 2015).
A general problem this approach can be naturally applied to

is that of the ultimate resolution in optical imaging, a problem
in which diffraction effects induce the existence of the so-
called Rayleigh limit. It was first tackled in the case of a
coherent light image (Kolobov and Fabre, 2000), and it has
been shown that in this case injecting squeezing in appropriate
modes (namely, the prolate spheroidal ones) improves the
optical resolution below the standard quantum noise
(Kolobov, 2008), and that one could further improve the
resolution by taking into account the sparsity of the image
(Wang, Han, and Kolobov, 2012). It was more recently studied
for incoherent illumination, more precisely to derive the
ultimate resolution limit on the separation between two
TEM00 incoherent sources (Tsang, Nair, and Lu, 2016). It
was shown that the Fisher information contained in the
intensity distribution in the image about this separation falls
to zero as the separation drops below the Rayleigh limit, and
that it is possible to extract more information on the separation
(Lupo and Pirandola, 2016; Tsang, Nair, and Lu, 2016), and
therefore to increase the accuracy of its estimation beyond the
Rayleigh limit, by other measurement strategies (Tsang,
2017). This is a direct extension of the coherent estimation
of a beam displacement to the incoherent case, and, in
particular, one can make a homodyne measurement with
LO in the TEM01 Hermite-Gauss mode (Yang et al., 2017),
project it onto the detection mode that is the combination of
two oppositely displaced TEM00 modes (Paúr et al., 2016), or
demultiplex the amplitude image on the basis of spatial
Hermite-Gauss modes (Tsang, 2017) by measuring the inten-
sity of each Hermite-Gauss mode in the decomposition of the
image on such a mode basis. This can be achieved, in
particular, using the MPLC device described in Sec. XII.
This scheme has been extended to the estimation of the axial
separation between two point sources (Zhou et al., 2019) and
to the time domain using higher-order Hermite-Gauss tem-
poral modes to distinguish the arrival times of two incoherent
ultrashort light pulses (Donohue et al., 2018). Furthermore,
once multimode demultiplexing is available, one can use this
information to perform a multiparameter estimation, as was
recently proposed by Yu and Prasad (2018) and Napoli
et al. (2019).

XIV. MODES AND STATES IN QUANTUM INFORMATION
PROCESSING

A. Measurement-based quantum computing

Multimode light is naturally at the heart of optical
approaches to quantum computing, and while the objective

of this review is not to address quantum information process-
ing with light in general, the purpose of this section is to show
the interest of using the tools introduced and used in this
review for quantum information processing techniques. In this
context, even though the circuit-based approach is still the
most studied one and qubits can be successfully implemented
on frequency bins (Lu et al., 2018), extending wavelength
division multiplexing to the quantum domain, we concentrate
in this section on a recent paradigm for quantum computing,
introduced by Raussendorf and Briegel (2001) as a one-way
quantum computer and more commonly called measurement-
based quantum computing (MBQC). The idea is to replace the
circuit-based approach, where quantum gates are successively
applied to the input qubits to perform a given operation, with a
scheme where a large specific entangled state is generated and
then successive measurements are performed on individual
nodes of this state. More specifically, the input state should
belong to a given class of graph states, the cluster states, and
the result of each measurement is used to correct in a feed-
forward configuration the resulting state and to choose which
observable will be measured in the next step. While first
introduced in the qubit approach, MBQC was also extended to
the continuous variable domain (Menicucci et al., 2006; Gu
et al., 2009) with the advantage that cluster states in that
regime can be deterministically generated.

B. Cluster states: Concepts and experimental implementation

We focus here on the continuous variable approach, where
the possibility of generating entanglement between modes
through mode basis change allows for efficient and versatile
generation of cluster states in which the nodes are precisely
the different modes in multimode quantum light. These cluster
states can be defined in an operational approach by applying
on N infinitely squeezed states a set of controlled-Z (Cz) gates
defined byCz ¼ eiX̂1X̂2. This graph state structure is embedded
in an adjacency matrix V, an N × N real symmetric matrix
such that the multimode CZ gate is written as

Cz½V� ¼
Y

1≤j≤k≤N
exp ðiVjkX̂j ⊗ X̂kÞ. ð141Þ

In essence, the nonzero elements of V induce a connection
between two nodes of the graph. Usually V would be a matrix
whose elements are either 0 or 1, but one can also have
weighted graphs where nonzero elements can differ from 1.
To study a cluster state that can potentially be implemented

experimentally, one first has to consider that the input states
are finite squeezed states, with the ideal cluster state obtained
in the limit of squeezing going to infinity. Then, because the
evolution equation (141) corresponds to a quadratic
Hamiltonian evolution applied to squeezed states, cluster
states remain Gaussian states and can be constructed through
symplectic transformations applied to the vacuum. As intro-

duced in Eq. (47), we call ˆQ⃗sqz the 2N element column vector
made of the quadrature operators for the initial squeezed
states. One can show that the cluster state quadrature operators
are given by (Menicucci et al., 2006)
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⃗Q̂clu ¼ ðCz½V�Þ† ⃗Q̂sqzCz½V� ¼
�
1N 0

V 1N

�
⃗Q̂sqz

¼
�
1N 0

V 1N

�
K ⃗Q̂vac; ð142Þ

where K ¼ diagðσ1; σ2;…; σN; σ−11 ; σ−12 ;…; σ−1N Þ is the multi-
mode squeezing matrix, with σi > 1 (we consider input states
squeezed on the P quadrature). One finds that

lim
σ1;σ2;…;σN→∞

h ⃗P̂clu − V ⃗X̂clui ¼ 0. ð143Þ

The N-dimensional operator ⃗P̂clu − V ⃗X̂clu defines the N
nullifiers associated with the graph and hence governs its
structure. It connects the P quadrature of a node with the X
quadratures of the nodes connected to it. The nullifiers are
experimentally measurable quantities. They are often used to
assess the quality of a generated cluster state. To show that the
experimentally generated state is indeed a cluster state, one
needs to demonstrate that the nullifier variances are below the
vacuum limit, but also that the graph shows multipartite
entanglement as defined in Sec. VIII.
The Cz gate is hard to implement experimentally, as its

symplectic representation is not a simple basis change, but
contains squeezing evolution. To bypass this difficulty, one
can consider the total evolution from the vacuum state, which
is symplectic, and calculate the corresponding Bloch-Messiah
decomposition; see Sec. VII.C.1. Being a Gaussian state, any
approximated cluster state can be implemented with a multi-
mode squeezer and a basis changeOV acting on the vacuum. It
was shown (van Loock, Weedbrook, and Gu, 2007) that the
unitary matrix U associated with the basis change OV as
defined in Eq. (86) is given by the condition ReðUÞ−
VImðUÞ ¼ 0. Several experimental groups hence adopted
the strategy to generate a set of independent squeezed states
and implement the basis change OV corresponding to the
desired cluster states (Ukai et al., 2011; Su et al., 2012),
leading to cluster states with millions of modes (Yokoyama
et al., 2013). Note that the OV matrix is not unique, and in the
case where the input squeezed states do not have the same
squeezing level, the obtained nullifier variances depend on the
actual OV that is used. Hence, optimizing this matrix is
important to reach the best cluster state for a given set of
resources (Ferrini et al., 2013, 2016).
Being Gaussian and thus the result of a quadratic

Hamiltonian, cluster states can also be directly generated
by tailoring a nonlinear quadratic interaction instead of being
produced from independent parallel squeezers and basis
change. For instance, one can use the resonant frequency
modes of an OPO as the nodes of the cluster and tailor the
entanglement by engineering the pump of the cavity. One can
use several single frequency pumps (Menicucci, Flammia, and
Pfister, 2008; Shahrokhshahi and Pfister, 2011; Chen,
Menicucci, and Pfister, 2014) or a pulse-shaped pump
(Arzani, Fabre, and Treps, 2018). It is also possible to cascade
χð3Þ interaction in atomic vapors (Liu et al., 2011; Pooser and
Jing, 2014; Qin et al., 2014).

C. Non-Gaussian cluster states

Cluster states are Gaussian and as such allow only for
Gaussian quantum information processing (Weedbrook et al.,
2012), which cannot lead to a quantum advantage (Bartlett
et al., 2002), a property which can be extended to any positive
Wigner function state (Mari and Eisert, 2012). Thus, an
ingredient acting on the positivity of the Wigner function is
required, which can take the form of a qubic gate (Gu et al.,
2009) or a non-Gaussian encoding such as the so-called
Gottesman-Kitaev-Preskill (GKP) encoding (Gottesman,
Kitaev, and Preskill, 2001), which has been proven to allow
for error corrected quantum computing protocols (Menicucci,
2014) with a requirement on squeezing now as low as 10 dB
(Fukui et al., 2018). Several proposals for GKP state prepa-
ration have also been published (Weigand and Terhal, 2018;
Eaton, Nehra, and Pfister, 2019a, 2019b).
In a spirit related to the scope of this review, another

possibility is to generate non-Gaussian cluster states that can
then be used for universal quantum computing (Sasaki and
Suzuki, 2006; Quesada, Arrazola, and Killoran, 2018;
Gagatsos and Guha, 2019; Phillips et al., 2019). The most
commonly used technique in quantum optics consists of
adding or subtracting one or several photons to or from a
Gaussian state (Wenger, Tualle-Brouri, and Grangier, 2004;
Ourjoumtsev et al., 2007; Parigi et al., 2007; Takahashi et al.,
2008). However, the challenge is to render this operation
mode selective in a multimode context, a process that we
study in the following.
We now consider the Wigner functionWΓðq⃗Þ of a Gaussian

state with covariance matrix Γ, as defined in Eq. (81). This
state can be a multimode entangled state, for instance, that one
wishes to degaussify, were it to be for quantum information or
quantum metrology purposes. We consider the coherent
addition or subtraction of a single photon in a given mode
g, which amounts to the normalized application of the
associated creation operator b̂†g or annihilation operator b̂g.
This mode g can be any mode of the modal Hilbert space and
does not have to be one of the mode bases in which the
Gaussian state is described. It can, for instance, be a non-
entangled mode but also a mode highly entangled with the rest
of the system, such as the node of a cluster state. It can be
shown that the Wigner function becomes (Walschaers et al.,
2017a)

W�ðq⃗Þ¼ 1
2
½q⃗T�Γ−1A�

g Γ−1q⃗−TrðΓ−1A�
g Þþ2�WΓðq⃗Þ; ð144Þ

where the operator A�
g is the one amounting to the extra

correlations induced by the single-photon subtraction or
addition operation that is defined as

A�
g ¼ 2

ðΓ� 1ÞPgðΓ� 1Þ
Tr½ðΓ� 1ÞPg�

; ð145Þ

where Pg is the projector on the subspace associated with
mode g. For instance, when g is one of the modes of the mode
basis, Pg reduces to a diagonal matrix with zero everywhere
except for the two diagonal elements corresponding to the two
quadratures associated with g, where it is equal to 1. Note that
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Eq. (144) is valid for both pure and mixed states, and it can be
easily applied to calculate the Wigner function of a subparty of
a global state after photon addition or subtraction (Walschaers
et al., 2017b). In particular, it can be used to study the
negativity of the Wigner function, which is particularly simple
in the case of nondisplaced states for which it can be probed in
q⃗ ¼ 0 and amounts to determining the sign of the quantity
2 − TrðΓ−1A�

g Þ.
As is well known, starting from a pure squeezed state

photon subtraction induces negativity, while whatever the
input state photon addition induces negativity. The same
property does extend to graph states. However, the amount
of negativity that is obtained depends more on the purity of the
input state than on the quantity of squeezing available. In the
multimode scenario, the complexity of this interplay can be
examined using the previous formula, in particular, how non-
Gaussianity spreads among a graph state, such as a cluster
state. It can be shown, for instance, that if one removes a
photon from a node of a cluster states, the non-Gaussianity
spreads up to two nodes away from the node on which the
photon is subtracted (Walschaers et al., 2018). This gives a
method to induce fully non-Gaussian cluster states for
quantum information purposes. Finally, this formula can also
be used to study how entanglement is induced by single-
photon operations. Starting from a pure state, one can simply
evaluate the purity of the reduced state in a subspace after the
single-photon operation. One can use this property to dem-
onstrate that, for instance, the intrinsic separability of
Gaussian states as defined in Sec. VII.C.5 does not extend
to photon-added or photon-subtracted Gaussian states. The
structure of the state after single-photon operation can be
fundamentally different from the original Gaussian one, in the
sense that for a well chosen mode of single-photon operation
the state becomes entangled regardless of the mode basis.
In most experiments heralded single-mode photon sub-

traction has been implemented using a weakly reflecting beam
splitter followed by a photon counter. When it detects a
photon, one is sure that one photon has been removed from the
transmitted beam. This process cannot be used for mode-
selective photon subtraction because the beam splitter and the
photon detector do not discriminate between photons of
different modes. As a result of this uncertainty the transmitted
beam is in a mixed state. To get mode selectivity and
significant negativity, Ra et al. (2020) used the process of
SFG, which was discussed in Sec. XII in the context of mode
conversion. They operated in the weak gate beam case, for
which the evolution operator given by Eq. (132) is the same as
the one for a weakly reflecting beam splitter, but only for a
single Hermite-Gauss input mode, the one that is identical to
the Hermite-Gauss mode HGi of the gate beam. None of the
other Hermite-Gauss modes are affected by the nonlinear
process (Ra et al., 2017). As a result, when one photon is
recorded on the g01 upconverted mode, one is sure that it has
been removed from the HGi mode of the multimode input
beam. The process is flexible and can subtract a photon from
linear superpositions of modes, from two-mode entangled
states, and from cluster states. When the device is fed at its
input by the multimode quantum frequency comb described in
Sec. IX.B.4, significant levels of negativity are measured in

the different configurations. The spreading of non-Gaussianity
just mentioned has also been observed.
Single-mode photon addition can be implemented by

parametric amplification in a χð2Þ nonlinear crystal: upon
detecting a photon on the idler mode, one is sure that one
photon as been added to the input quantum state of the signal
mode (Zavatta, Viciani, and Bellini, 2004). The process has be
extended to the photon addition to two temporal modes
leading to micro-macro entanglement (Biagi et al., 2018),
with the possibility of scalability to a larger number of modes.

XV. CONCLUSION

We hope to have convinced the reader that considering in a
comprehensive way the quantum states and the modes in
which they are defined provides interesting insight into many
quantum optics issues and efficient ways to generate highly
entangled quantum states. Increasing by a large factor the
number of modes in an optical system does not pose
intractable problems. Modes can be easily manipulated and
computer controlled using spatial light modulators so that
multimode quantum states with well mastered mode shapes
and correlations are promising scalable and reconfigurable
carriers or processors of quantum information. Another
advantage over the discrete variable approach is that highly
entangled multimode states of light such as cluster states are
generated in a deterministic, unconditional way regardless of
the size of the cluster state. But an important problem remains
to be solved concerning the unconditional preparation of
multimode non-Gaussian states.
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APPENDIX A: COUNTING SPATIAL MODES IN
LASER BEAMS

The number of spatial modes oscillating in a laser is an
important parameter to characterize imperfect, non-single-
mode laser beams (Karny, Lavi, and Kafir, 1983). The number
M, coming from the “M2 factor” introduced by Siegman
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(Siegman, 1998), is often considered as giving a direct
measure of the number of transverse modes. We want to
know whether this approach is compatible with the quantum
one introduced in this review.
Call k the wave vector in direction x. The M2 factor is

defined as

M2 ¼ ΔxΔk
ðΔxΔkÞmin

¼ 2ΔxΔk; ðA1Þ

with 1=2 the minimum value of the product ΔxΔk allowed by
the Fourier-Heisenberg inequality.
We now take as an example the case of a laser generating an

incoherent superposition of p Hermite-Gauss modes hnðxÞ,
with equal probabilities for each one and equal intensities to
simplify the discussion. From a quantum mechanical point of
view, it is described by the density matrix

ρ ¼
Xp
n¼1

1

p
jα∶hnihα∶hnj; ðA2Þ

where jαi is a Glauber coherent state. The same reasoning as
in Sec. IV, based on the coherency matrix, tells us that ρ
describes a quantum state having an intrinsic number of
modes equal to p. We want now to know the relation between
p and M: as the coherency matrix is diagonal in the Hermite-
Gauss mode basis, and using the properties of Hermite-Gauss
modes, one has

Δ2x ¼ hR dxx2N̂i
hN̂i ¼

Pp−1
n¼0ðjαj2=pÞð2nþ 1Þw2Pp−1

n¼0 jαj2=p
ðA3Þ

and

Δ2k ¼ hR dxk2N̂i
hN̂i ¼

Pp−1
n¼0ðjαj2=pÞð2nþ 1Þ
4w2

Pp−1
n¼0 jαj2=p

. ðA4Þ

Knowing that
Pp−1

n¼0ð2nþ 1Þ ¼ p2, one finally finds

Δ2x ¼ p2w2; Δ2k ¼ p2

4w2
; ΔkΔx ¼ p2

2
ðA5Þ

so that p is indeed equal toM in this specific case, and close to
this value in the general case.

APPENDIX B: COUNTING MODES IN PARAMETRIC
DOWN-CONVERTED LIGHT

The complexity of a bipartite quantum state, in particular,
its entanglement properties, is related to the Schmidt number
(Guo and Fan, 2013; Dyakonov et al., 2015; Sharapova et al.,
2015; Namiki, 2016), i.e., the number of terms in the Schmidt
decomposition. We want to know whether the Schmidt
number is indeed the mode number calculated from the
coherency matrix. We consider only a simple example,
namely, a bipartite system in which the two parties A and
B are multimode, for example, the two-photon quantum state
produced by parametric down-conversion, written in the 1D
case as

jΨi ¼
Z

dkAdkBgðkA; kBÞj1∶kAi ⊗ j1∶kBi; ðB1Þ

with gðkA; kBÞ containing the phase matching and pump
spatial properties, and j1∶kAi a single-photon state of party
A and wave vector kA. Thanks to the Mercer theorem, jΨi can
be written as a Schmidt sum

jΨi ¼
XS
i¼1

λij1∶uiAi ⊗ j1∶uiBi ðB2Þ

with uiA and u
i
B orthonormal eigenmodes in parties A and B, λi

the corresponding positive eigenvalue, and S the so-called
Schmidt number.
We call b̂iA and b̂i

0
B the annihilation operators in modes uiA

and uiB. We now use the property that the mode number is the
dimension of the space spanned by the vectors b̂iAjΨi and
b̂i

0
BjΨi. One has

b̂iAjΨi ¼ λij1∶uiBi; b̂i
0
BjΨi ¼ λi0 j1∶ui0Ai. ðB3Þ

All of these vectors are orthogonal, meaning that the dimen-
sion of the generated space is 2S. We have therefore shown
that the number of modes is twice the Schmidt number.

APPENDIX C: MODAL DEPENDENCE OF THE
COINCIDENCE RATE IN THE HONG-OU-MANDEL
EXPERIMENT

We start with Eq. (115) and chose two bases of modes,
labeled ffAmA

g for beam A and ffBmB
g for beam B, in such a

way that the modes of the same index (mA ¼ mB) are “mirror
images” of each other with respect of the beam splitter. In this
case, one can express simply the corresponding annihilation
operators in the function of the operators b̂Ain and b̂Bin acting
on the state before the beam splitter, which is the factorized
state j1∶gA; 1∶gBi:

b̂Am ¼ 1ffiffiffi
2

p ðb̂Ainm þ eiϕb̂Binm Þ; b̂Bm ¼ 1ffiffiffi
2

p ðb̂Ainm − b̂Binm Þ;

ðC1Þ

with the phase term eiϕ accounting for some delay, or some
path diffference, between the two arms of the interferometer.
Using Eq. (42) and the completeness relation for the mode
basis, one gets the following expression for the normalized
coincidence rate:

gð2Þ ¼ 1
2
ð1 − jg⃖A · g⃗Bj2 cos 2ϕÞ. ðC2Þ

There are therefore no coincidences at zero path difference
ϕ ¼ 0 when the modes of the two input photons are identical,
spatially as well as temporally.
In the second configuration of the HOM interference, the

input state generated by parametric down-conversion can be
written, as in Appendix B, as the Schmidt sum (B2):
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jΨ2i ¼ j0i þ
XS
i¼1

ffiffiffiffiffi
pi

p j1∶giAi ⊗ j1∶giBi; ðC3Þ

with
P

i pi ¼ 1. Using as previously mode bases that are
mirror images of each other, one finds for the normalized
coincidence rate at zero delay

gð2Þð0Þ ¼ 1

2

�
1 −

X
i;j

ffiffiffiffiffiffiffiffiffi
pipj

p ðg⃖iA · g⃗jBÞðg⃖jA · g⃗iBÞ�
�
. ðC4Þ

The coincidence rate vanishes when g⃗iA ¼ g⃗iB ∀ i, i.e., when
there is a perfect two-by-two matching for all the Schmidt
modes of the two beams. This is achieved when there is total
symmetry with respect to the exchange between the signal and
idler A and B parts, i.e., when the matrix Gsi introduced in
Eq. (98) is symmetric.
One can now consider the same problem but with input

coherent states of equal amplitudes and phase difference ψ ,
jαi, and jαeiψi. A calculation analog to the previous one,
based on Eq. (73), leads to the following result for
gð2Þðϕ ¼ 0Þ:

gð2Þð0Þ ¼ 1
2
ð1 − jg⃖A · g⃗Bj2 cos 2ψÞ. ðC5Þ

When the two modes are identical, the “HOM dip” is as
expected zero for identical or opposite fields and 1=2 for
incoherent fields. But one also finds a 100% dip if ψ randomly
takes one of the two values 0 or π, as was recently stressed by
Sadana et al. (2018).
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Gühne, Otfried, and Géza Tóth, 2009, “Entanglement detection,”
Phys. Rep. 474, 1–75.

Guo, Xueshi, Nannan Liu, Xiaoying Li, and Z. Y. Ou, 2015,
“Complete temporal mode analysis in pulse-pumped fiber-optical
parametric amplifier for continuous variable entanglement gener-
ation,” Opt. Express 23, 29369–29383.

Guo, Yu, and Heng Fan, 2015, “A generalization of Schmidt number
for multipartite states,” Int. J. Quantum. Inf. 13, 1550025.

Helstrom, C.W., 1967, “Minimum mean-squared error of estimates
in quantum statistics,” Phys. Lett. 25A, 101–102.

Helstrom, Carl, 1968, “The minimum variance of estimates in
quantum signal detection,” IEEE Trans. Inf. Theory 14, 234–242.

Helstrom, Carl W., 1969, “Quantum detection and estimation theory,”
J. Stat. Phys. 1, 231–252.

Hermier, J.-P., Alberto Bramati, A. Z. Khoury, Elisabeth Giacobino,
J.-Ph. Poizat, T. J. Chang, and Ph. Grangier, 1999, “Spatial
quantum noise of semiconductor lasers,” J. Opt. Soc. Am. B 16,
2140–2146.

Hillery, Mark, Ho Trung Dung, and Hongjun Zheng, 2010, “Con-
ditions for entanglement in multipartite systems,” Phys. Rev. A 81,
062322.

Hong, C. K., Z. Y. Ou, and L. Mandel, 1987, “Measurement of
Subpicosecond Intervals between Two Photons by Interference,”
Phys. Rev. Lett. 59, 2044–2046.

Horodecki, Ryszard, Paweł Horodecki, Michał Horodecki, and Karol
Horodecki, 2009, “Quantum entanglement,” Rev. Mod. Phys. 81,
865–942.

Horoshko, D. B., L. La Volpe, F. Arzani, N. Treps, C. Fabre, andM. I.
Kolobov, 2019, “Bloch-Messiah reduction for twin beams of light”
arXiv:1903.06578.

Hsu, Magnus T. L., Vincent Delaubert, Ping Koy Lam, and Warwick
P. Bowen, 2004, “Optimal optical measurement of small displace-
ments,” J. Opt. B 6, 495–501.

Huber, Marcus, and Julio de Vicente, 2013, “Structure of Multidi-
mensional Entanglement in Multipartite Systems,” Phys. Rev. Lett.
110, 030501.

Huntington, E. H., G. N. Milford, C. Robilliard, T. C. Ralph, O.
Glöckl, Ulrik L. Andersen, S. Lorenz, and Gerd Leuchs, 2005,
“Demonstration of the spatial separation of the entangled quantum
sidebands of an optical field,” Phys. Rev. A 71, 041802.

Hyllus, P., and J. Eisert, 2006, “Optimal entanglement witnesses for
continuous-variable systems,” New J. Phys. 8, 51.

Iskhakov, T. Sh., V. C. Usenko, U. L. Andersen, R. Filip, M. V.
Chekhova, and G. Leuchs, 2016, “Heralded source of bright multi-
mode mesoscopic sub-Poissonian light,” Opt. Lett. 41, 2149–2152.

Ivan, J., S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N.
Mukunda, and R. Simon, 2011, “Entanglement and nonclassicality
for multimode radiation-field states,” Phys. Rev. A 83, 032118.

Jachura, Michał, Michał Karpiński, Czesław Radzewicz, and Konrad
Banaszek, 2014, “High-visibility nonclassical interference of pho-
ton pairs generated in a multimode nonlinear waveguide,” Opt.
Express 22, 8624–8632.

Jedrkiewicz, O., A. Gatti, E. Brambilla, and P. Di. Trapani, 2012,
“Experimental Observation of a Skewed X-Type Spatiotemporal
Correlation of Ultrabroadband Twin Beams,” Phys. Rev. Lett. 109,
243901.

Jedrkiewicz, O., Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L.
Lugiato, and P. Di Trapani, 2004, “Detection of Sub-Shot-Noise
Spatial Correlation in High-Gain Parametric Down Conversion,”
Phys. Rev. Lett. 93, 243601.

Jian, Pu., Olivier Pinel, Claude Fabre, Brahim Lamine, and Nicolas
Treps, 2012, “Real-time displacement measurement immune from
atmospheric parameters using optical frequency combs,” Opt.
Express 20, 27133–27146.

Jiang, Shifeng, Nicolas Treps, and Claude Fabre, 2012, “A
time/frequency quantum analysis of the light generated by syn-
chronously pumped optical parametric oscillators,” New J. Phys.
14, 043006.

Kaltenbaek, Rainer, Bibiane Blauensteiner, Marek Żukowski,
Markus Aspelmeyer, and Anton Zeilinger, 2006, “Experimental
Interference of Independent Photons,” Phys. Rev. Lett. 96, 240502.

Karny, Z., S. Lavi, and O. Kafir, 1983, “Direct determination of
the number of transverse modes of a light beam,” Opt. Lett. 8,
409–411.

Karpiński, Michał, Michał Jachura, Laura J. Wright, and Brian J.
Smith, 2017, “Bandwidth manipulation of quantum light by an
electro-optic time lens,” Nat. Photonics 11, 53.

Kenfack, Anatole, and Karol Życzkowski, 2004, “Negativity of the
Wigner function as an indicator of non-classicality,” J. Opt. B 6,
396.

Kolner, Brian H., and Moshe Nazarathy, 1989, “Temporal imaging
with a time lens,” Opt. Lett. 14, 630–632.

Kolobov, M., 2006, Ed.,Quantum Imaging (Springer-Verlag, Berlin).
Kolobov, Mikhail, and Claude Fabre, 2000, “Quantum Limits on
Optical Resolution,” Phys. Rev. Lett. 85, 3789–3792.

Kolobov, Mikhail I., 2008, “Quantum limits of superresolution
for imaging discrete subwavelength structures,” Opt. Express 16,
58–66.

Kopylov, Denis, Kirill Spasibko, Tatiana Murzina, and Maria V.
Chekhova, 2019, “Study of broadband multimode light via non-
phase-matched sum frequency generation,” New J. Phys. 21,
033024.

Korolkova N., and G. Leuchs, 2019, “Quantum correlations in
separable multi-mode states and in classically entangled light,”
Rep. Prog. Phys. 82, 056001.

Korolkova, Natalia, Gerd Leuchs, Rodney Loudon, Timothy C.
Ralph, and Christine Silberhorn, 2002, “Polarization squeezing
and continuous-variable polarization entanglement,” Phys. Rev. A
65, 052306.

Labroille, Guillaume, BertrDenolle, Pu Jian, Philippe Genevaux,
Nicolas Treps, and Jean-Francois Morizur, 2014, “Efficient and
mode selective spatial mode multiplexer based on multi-plane light
conversion,” Opt. Express 22, 15599–15607.

Labroille, Guillaume, Olivier Pinel, Nicolas Treps, and Manuel
Joffre, 2013, “Pulse shaping with birefringent crystals: A tool
for quantum metrology,” Opt. Express 21, 21889–21896.

Lamb, Willis E., 1995, “Anti-photon,” Appl. Phys. B 60, 77–84.
Lamine, Brahim, Claude Fabre, and Nicolas Treps, 2008, “Quantum
Improvement of Time Transfer between Remote Clocks,” Phys.
Rev. Lett. 101, 123601.

Lane, A., P. Tombesi, H. J. Carmichael, and D. F. Walls, 1983,
“Quantum statistics of multimode parametric amplification,” Opt.
Commun. 48, 155–160.

Lassen, M., V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P.
K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, 2007,
“Tools for Multimode Quantum Information: Modulation, Detec-
tion, and Spatial Quantum Correlations,” Phys. Rev. Lett. 98,
083602.

C. Fabre and N. Treps: Modes and states in quantum optics

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035005-35

https://doi.org/10.1103/PhysRevA.79.062318
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1364/OE.23.029369
https://doi.org/10.1142/S0219749915500252
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1109/TIT.1968.1054108
https://doi.org/10.1007/BF01007479
https://doi.org/10.1364/JOSAB.16.002140
https://doi.org/10.1364/JOSAB.16.002140
https://doi.org/10.1103/PhysRevA.81.062322
https://doi.org/10.1103/PhysRevA.81.062322
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://arXiv.org/abs/1903.06578
https://doi.org/10.1088/1464-4266/6/12/003
https://doi.org/10.1103/PhysRevLett.110.030501
https://doi.org/10.1103/PhysRevLett.110.030501
https://doi.org/10.1103/PhysRevA.71.041802
https://doi.org/10.1088/1367-2630/8/4/051
https://doi.org/10.1364/OL.41.002149
https://doi.org/10.1103/PhysRevA.83.032118
https://doi.org/10.1364/OE.22.008624
https://doi.org/10.1364/OE.22.008624
https://doi.org/10.1103/PhysRevLett.109.243901
https://doi.org/10.1103/PhysRevLett.109.243901
https://doi.org/10.1103/PhysRevLett.93.243601
https://doi.org/10.1364/OE.20.027133
https://doi.org/10.1364/OE.20.027133
https://doi.org/10.1088/1367-2630/14/4/043006
https://doi.org/10.1088/1367-2630/14/4/043006
https://doi.org/10.1103/PhysRevLett.96.240502
https://doi.org/10.1364/OL.8.000409
https://doi.org/10.1364/OL.8.000409
https://doi.org/10.1038/nphoton.2016.228
https://doi.org/10.1088/1464-4266/6/10/003
https://doi.org/10.1088/1464-4266/6/10/003
https://doi.org/10.1364/OL.14.000630
https://doi.org/10.1103/PhysRevLett.85.3789
https://doi.org/10.1364/OE.16.000058
https://doi.org/10.1364/OE.16.000058
https://doi.org/10.1088/1367-2630/ab0a7c
https://doi.org/10.1088/1367-2630/ab0a7c
https://doi.org/10.1088/1361-6633/ab0c6b
https://doi.org/10.1103/PhysRevA.65.052306
https://doi.org/10.1103/PhysRevA.65.052306
https://doi.org/10.1364/OE.22.015599
https://doi.org/10.1364/OE.21.021889
https://doi.org/10.1007/BF01135846
https://doi.org/10.1103/PhysRevLett.101.123601
https://doi.org/10.1103/PhysRevLett.101.123601
https://doi.org/10.1016/0030-4018(83)90377-2
https://doi.org/10.1016/0030-4018(83)90377-2
https://doi.org/10.1103/PhysRevLett.98.083602
https://doi.org/10.1103/PhysRevLett.98.083602


Laurat, Julien, Thomas Coudreau, Nicolas Treps, Agnès Maître, and
Claude Fabre, 2003, “Conditional Preparation of a Quantum State
in the Continuous Variable Regime: Generation of a Sub-
Poissonian State from Twin Beams,” Phys. Rev. Lett. 91, 213601.

Law, C., and J. Eberly, 2004, “Analysis and Interpretation of High
Transverse Entanglement in Optical Parametric Down Conversion,”
Phys. Rev. Lett. 92, 127903.

Legero, Thomas, Tatjana Wilk, Axel Kuhn, and Gerhard Rempe,
2003, “Time-resolved two-photon quantum interference,” Appl.
Phys. B 77, 797–802.
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