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Fluid flows hosting electrical phenomena are the subject of a fascinating and highly
interdisciplinary scientific field. In recent years, the extraordinary success of electrospinning
and solution-blowing technologies for the generation of polymer nanofibers has motivated
vibrant research aiming at rationalizing the behavior of viscoelastic jets under applied electric
fields or other stretching fields including gas streams. Theoretical models unveiled many original
aspects in the underpinning physics of polymer solutions in jets and provided useful information
to improve experimental platforms. This review examines advances in the theoretical description
and numerical simulation of polymer solution jets in electrospinning and solution blowing.
Instability phenomena of electrical and hydrodynamic origin, which play a crucial role in the
relevant flow physics, are highlighted. Specifications leading to accurate and computationally
viable models are formulated. Electrohydrodynamic modeling, theories on jet bending instability,
recent advances in Lagrangian approaches to describe the jet flow, including strategies for
dynamic refinement of simulations, and effects of strong elongational flow on polymer networks
are reviewed. Finally, the current challenges and future perspectives in the field are outlined
and discussed, including the task of correlating the physics of the jet flows with the properties
of relevant materials, as well as the development of multiscale techniques for modeling
viscoelastic jets.
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I. INTRODUCTION

Coupling electrical phenomena and fluids leads to an
interdisciplinary scientific field that has been fascinating
physicists for centuries. Pioneers in this field were, among
others, William Gilbert, Lord Rayleigh, and Sir Geoffrey
Taylor (Taylor, 1964, 1966). For instance, Gilbert (1600)
noted that a sessile droplet of water lying on a dry surface is
deformed near the apex into a cone when it is approached by
a rubbed amber. Indeed, when rubbed with fur or wool the
amber acquires a net negative electric charge, through a kind
of contact electrification that is known as the triboelectric
effect. A few simple experimental consequences of the
triboelectric effect, such as the capability of rubbed amber
to attract small wires or feathers, have been known for many
centuries (since ancient Greece). The deformation of sessile
droplets observed by Gilbert was also due to electrostatic
attraction, namely, to the interaction of the rubbed amber and
droplets warped from their resting shape by an electric field.
In Gilbert’s experiment, a water droplet is placed onto a glass
surface and the water-amber attraction is sustained by
positive electric charges at the liquid surface, thus determin-
ing a conical shape as sketched in Fig. 1(a). A photograph of
a conical surface made of canola oil, stretched by an electric
field and captured with a high-speed camera (Collins et al.,
2008), is shown in Fig. 1(b). The fact that conical liquid-air
interfaces can be generated in this way is, at first sight,
surprising. This stands in contrast with our everyday expe-
rience that a droplet of water tends to be pulled into a
spherical shape, namely, to reach a minimum surface area A
that is due to the imbalance of cohesive forces (i.e., the
attraction of the liquid molecules to each other) at the surface
layer. The surface tension α of the liquid is the physical
quantity that is defined by such an imbalance of cohesive
forces and it is expressed by the Gibbs free energy WG per
unit area at constant temperature and pressure,

α ¼ ∂WG=∂A, while the cohesive imbalance is expressed
by the Laplace pressure, which is αðr−1T1 þ r−1T2Þ, where rT1
and rT2 are the principal radii of curvature of the liquid-air
interface. As a consequence, another force needs to be
applied to the fluid to have the latter strained out of its
unperturbed shape in which the surface area is minimum and
the curvature is constant. The accumulation of an excess
charge on the surface of a droplet, due to an electric field
generated in the region of space surrounding the liquid-air
interface, can provide such extra force (the Maxwell stresses)
in an extremely effective way (Reznik et al., 2004, 2006;
Collins et al., 2008), thus leading to the formation of an apex
as displayed in Fig. 1. As is clear in this review, producing
conical shapes in liquid-air interfaces this way is important
from a technological viewpoint since it is fundamental for
the possibility of focusing and stretching polymer molecules
dissolved in fluids into submicrometer features.
In the 20th century, patents describing methods for

dispersing fluids with the aid of electric fields were issued
to Cooley (1902) and Morton (1902). These early studies
were followed by others from Zeleny (1914, 1917), and
finally by some patents of Formhals (1934, 1939, 1940,
1943, 1944), who focused on the formation of fibers by
means of electrified jets of solutions of cellulose acetate.
Later fibers with diameter smaller than 1 μm were realized
from electrified jets of acrylic solutions in dimethylforma-
mide (DMF) by DuPont researchers (Baumgarten, 1971).
However, it was with two works from Reneker’s group
(Doshi and Reneker, 1995; Reneker and Chun, 1996) that the
interest for the process named electrostatic spinning, i.e.,
electrospinning, started at our times. Such technology was
largely developed during the years around 2000, concomi-
tantly with a significant growth in global interest in nano-
technology that opened new routes for the headway of a
variety of applications.
Depending on the process parameters, which involve the

electric field applied to a polymer solution, the solution

FIG. 1. (a) Sketch of Gilbert’s observation of the electrostatic
deformation of sessile water droplets. A piece of negatively
charged amber is placed in proximity to a sessile droplet lying
on a surface. The electric field E generated by the rubbed amber
deforms the droplet, from the resting shape (dashed line) into a
conical one (continuous line). (b) Conical liquid-air interface
photographed in a region affected by an electric field. The
liquid is canola oil. Adapted from Collins et al., 2008.
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concentration, and various aspects of the experimental setup
used (details are presented in Sec. III.B), the polymeric,
carbon (carbonized), or ceramic (calcinated) fibers produced
by electrospinning exhibit cross-sectional diameters ranging
from a few nanometers (Huang et al., 2006) to a few microns.
This property directly affects the surface area to material mass
ratio. Indeed, polymer filaments with a cross-sectional radius
about 100 nm and material density about 1.5 g=cm3 have a
surface area to mass ratio well above 105 cm2=g, which offers
intriguing prospects for several practical applications. In
addition, the electrospinning process has been found to be
chemically versatile, i.e., fibers could be formed from a wide
variety of compounds, such as thermoplastic materials, con-
ductive and light-emitting polymers, piezoelectric polymers,
biomolecules, and blends. Many aspects of this technology
could be engineered at an advanced level. This has been aimed
at fabricating nanofibers with desired shape, morphology, and
composition (Sun et al., 2003; Li and Xia, 2004a; Loscertales
et al., 2004; Ji et al., 2006; Zussman et al., 2006; Yarin,
Pourdeyhimi, and Ramakrishna, 2014), assembled in specific
architectures and networks (Theron, Zussman, and Yarin,
2001; Li, Wang, and Xia, 2003; Zussman, Theron, and Yarin,
2003; Sun et al., 2006; Xie et al., 2010), or performing given
functions. Finally, electrospinning technologies are operation-
ally simple, they need a relatively low investment for equip-
ment, and their throughput is generally much higher than
those of other methods for producing nanostructures, such as
high-resolution lithographies, nanoimprinting, molecular self-
assembly, and colloidal synthesis (Xia et al., 2003; Li and Xia,
2004a; Luo et al., 2012). For these reasons, the applications of
electrospun fibers today span the entire field of nanotechnol-
ogy and microtechnology, including filtration, catalysis,
energy harvesting and storage, photonics and optoelectronics,
nanoelectronics, development of surface coatings with con-
trolled wettability and thermal properties, new textile materi-
als, chemical and biochemical sensors, systems for drug
delivery, and tissue engineering and regenerative medicine,
as well as cancer research, as summarized in Fig. 2.
Electrospinning and related methods, as well as the appli-

cations of nanofibers and microfibers produced by them, have
been the subject of several books (Ramakrishna et al., 2005;
Reneker and Fong, 2006; Filatov, Budika, and Kirichenko,
2007; Wendorff, Agarwal, and Greiner, 2012; Pisignano,
2013; Yarin, Pourdeyhimi, and Ramakrishna, 2014; Yarin,
Roisman, and Tropea, 2017) and reviews (Dzenis, 2004; Li
and Xia, 2004b; Greiner et al., 2006; Greiner and Wendorff,
2007; Reneker et al., 2007; Yarin et al., 2007; Reneker and
Yarin, 2008; Yarin, 2011; Choi et al., 2017). Not equally
covered is the major effort done to develop theoretical models
of these processes, which is the subject of this review.
Modeling approaches might offer a critical tool to inves-

tigate the underpinning physics of electrified polymer solu-
tions and provide valuable information for rationalizing
observed phenomena, and then for substantially improving
experiments. Here we report on the main modeling strategies
pursued in recent decades, introducing relevant physical
characteristic lengths and highlighting instability phenomena
of an electrical and hydrodynamic nature, which play a
crucial role in the physics of flow. The review is organized

as follows. The processes, their working principles, and
relevant dimensionless parameters describing the physics
underneath are presented in Sec. II. Section III provides an
introductory yet comprehensive overview of the experimental
methods and of the physical rationale behind them.
Section IV presents the specifications that make modeling
reliable in describing the dynamics of these fluids, namely,
what one needs to elaborate on accurate and computationally
viable models. These aspects include, for instance, required
parameters from experiments and phenomenology, as well as
specific computational platforms and resources. Section V.A
discusses the modeling methods of the physical processes that
affect electrified fluids and that are based on a so-called
electrohydrodynamic (EHD) description. Then the physical
reasons of the instabilities affecting electrospun fluids are
reviewed. A general and detailed model of the electrospin-
ning process was formulated in the past two decades by
Reneker et al. (2000, 2007) and Yarin, Pourdeyhimi, and
Ramakrishna (2014). The basic building blocks on which
these and other, more recent models were formulated are
reported in Secs. V.B and V.C. The main approaches
developed for modeling the flow of electrified fluids under
high strain rates, namely, under fast deformation, and its
effects on polymer networks are described in Sec. V.D.
Section VI reviews modeling methods for solution blowing,
that is, an air-jet spinning method and among the most recent
and promising technologies to generate nanofibers (Yarin,
Pourdeyhimi, and Ramakrishna, 2014; Sinha-Ray et al.,
2015). In this process, polymer solutions are delivered into
a coflowing subsonic or supersonic gas jet that stretches them
directly (i.e., without the application of an electric field).
Exploiting the aerodynamic drag force results in a 100-fold
increase in the production rate of nanofibers, and in higher
compatibility with industrial equipment already designed for
other uses such as meltblowing (Kolbasov et al., 2016).
Finally, an outlook is provided in Sec. VII regarding currently
open challenges, as well as possible future developments of
theory and modeling methods for this class of technologies.
A few details on notation and units used in this paper

deserve mention. Throughout the review, boldfaced charac-
ters denote vectors. For equations containing terms depend-
ing on the electric field, we use Gaussian (centimeter-gram-
second, cgs) units unless otherwise stated since these are
highly convenient where the highlighted physics encom-
passes both electrostatics and fluid mechanics. An advantage
of the cgs system is in the compact-dimensional description
of physical quantities, which involves only three base
quantities (length, mass, and time). In particular, while in
SI units the electric charge q needs to be defined as an
independent quantity (in Coulomb units), in the cgs system
setting the vacuum permittivity ε0 ¼ 1 and the Coulomb
constant kC ¼ 1 (Sommerfeld, 1952), the Coulomb’s law for
the force F ¼ q2=l2 between two charges at distance l easily

defines the charge as q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dyn cm2

p
¼ cm3=2 g1=2 sec−1 ¼

statC. Hence, the electric field, i.e., the electrostatic force
divided by the test charge, E ¼ F=q, in cgs units is mea-
sured in dyn=statC ¼ cm−1=2 g1=2 sec−1 ¼ statV=cm, and
the electric potential, Φ ¼ El, is measured in statV ¼
cm1=2 g1=2 sec−1. All physical quantities used in this review,

Lauricella et al.: Models of polymer solutions in electrified jets …

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 035004-3



and their units, are given in the List of Symbols and
Abbreviations.

II. PROBLEM FORMULATION AND DIMENSIONLESS
PARAMETERS IN ELECTROSPINNING

The electrospinning process (scheme in Fig. 3) generates
nanofibers starting from a polymer solution at a high enough
concentration (for instance, 5%–30% in polymer weight with
respect to solvent) and applying an electric voltage bias

(ΔΦ0 ≈ 3–300 statV, namely, 1–100 kV) between the solu-
tion and a metal surface onto which fibers are to deposited.
The motivation for having a high concentration of molecules
in the polymer solution is that such molecules have to be
entangled to provide the fluid with remarkable viscoelastic
properties, as better described later. In a typical process, the
solution and the metal surface of the target (a counterelec-
trode) are initially at a typical distance h ranging from a few
centimeters to a few tens of centimeters, thus leading to
electric fields E from a few statV=cm to a few tens of

FIG. 2. Applications of nanofibers realized through electrified jets or solution blowing from polymer solutions. (a)–(c) Filtration
performance of a window screen coated by polyacrylonitrile nanofibers used to remove PM2.5 particles (particles with a diameter smaller
than 2.5 μm). The wiping of nanofibers from the window screen, performed by tissue paper, is also shown in (b). Adapted from Khalid
et al., 2017. (d) Large-area mat of piezoelectric nanofibers. Scale bar, 5 cm. From Fang et al., 2013. (e) Process for the realization of an
array of top-gate field-effect transistors, involving the deposition of electrospun poly(3-hexylthiophene) nanofibers across gaps between
source and drain electrodes. The process includes a transfer procedure of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) layer. From Lee et al., 2010. (f) Light-emitting polymer fibers for photonics, showing emission polarized along their
longitudinal axis. The arrow displays the direction of the polarizer used to analyze the emitted light. Scale bar, 5 μm. From Pagliara
et al., 2011. (g)–(i) Chemoresistive sensors. Example of Pt-loaded SnO2 nanotubes made through electrospinning, corresponding
elemental distribution (Pt, Sn, and O), and response to acetone for SnO2 nanotubes, SnO2 nanofibers, and Pt-loaded SnO2 nanotubes.
Concentration range, 1–5 ppm at 350 °C. Adapted from Jang et al., 2015. (j),(k) Application in biomedical devices for wound closure or
tissue engineering. Radially aligned nanofibers deposited on a ring collector, and image of dura fibroblasts seeded on fibronectin-coated
scaffolds made of the radially aligned nanofibers. From Xie et al., 2010. (l) Scheme of the fabrication of an implantable active-targeting
micelle-in-nanofiber device (FM-Nanofiber) and of the delivery process of doxorubicin-loaded micelles (FM) from nanofibers to tumor
tissues and cells. From Yang et al., 2015.
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statV=cm (i.e., ∼2–10 kV=cm). The accumulation of an
excess charge on the solution surface (i.e., a droplet, or a
free liquid surface) then leads to the formation of an apex with
a well-defined shape and local radius rT at the same surface.
The determination of the exact shape of this apex has been the
subject of intense research that is reported in Sec. V.A.1. Upon
increasing the applied voltage, electric forces overcome the
elastic forces characteristic to viscoelastic polymer solutions
and surface tension (α) and destabilize the pristine fluid body.
Limiting ourselves for simplicity to the contributions from
electric forces and surface tension, this effect can be conven-
iently expressed by a dimensionless parameter, which is the
electric Bond number,Bo ¼ rTE2=α, where E is the electric
field at the solution apex. The Bond number directly compares
the electrostatic pressure at the liquid surface (ε0E2=2 for a
liquid acting as a perfect electric conductor in the vacuum with
ε0 ¼ 1 in cgs units) with the Laplace pressure (2α=rT), which
is related to surface energy. Hence, when Bo approaches unity
(Reznik et al., 2004), a significant deformation of the solution
surface can be achieved. Considering typical values of α ¼
50 g=s2 and E ¼ 10 statV cm−1, which corresponds to

3 kV cm−1, one would have a Bo value up to 0.2 for an apex
radius ≤0.1 cm. As a result, strain occurs in the fluid body,
and an electrically charged solution jet is issued in
electrospinning.
Viscoelasticity plays a crucial role in the jet onset. Since the

used solution concentration is quite high, a significant amount
of polymer entanglements are formed in the fluid. Overly low
values of the polymer concentration in the solution might
instead lead to electrospraying (or the so-called dripping
regime), thus forming monodisperse or polydisperse, charged
sprayed droplets instead of a jet and nanofibers (Collins,
Harris, and Basaran, 2007; Gañán-Calvo and Montanero,
2009; Herrada et al., 2012; Collins et al., 2013; Gañán-
Calvo et al., 2018). The dimensionless quantity allowing one
to distinguish between the two cases of jetting (electrospin-
ning) and dripping (jet breaking) is the capillary number,
Ca ¼ μeυ=α, where υ is the jet velocity and the characteristic
dynamic viscosity involved is the elongational viscosity, μe ¼
σ=_ε (σ, longitudinal stress and _ε, strain rate). The capillary
number is the ratio between the (elongational) viscous forces
and capillary forces (Anna and McKinley, 2001; Montessori
et al., 2019), and it also allows high-viscosity and low-
viscosity fluids to be distinguished in electrospinning experi-
ments, depending on the obtained Ca values. In the jetting
regime, the electric field is strong enough to imprint a suited
velocity, or the solution viscosity is high enough that the
viscous forces overcome the surface tension (Ca > 1). For
instance, in aqueous solutions of poly(ethylene oxide) (PEO)
at different concentrations, with elongational viscosity span-
ning from 500 to 5000 g cm−1 s−1 (Xu, Yarin, and Reneker,
2003; Reneker et al., 2007), and typical values υ ¼ 10 cm s−1
and α ¼ 50 g=s2, the corresponding capillary number is in the
range 102–103. On the other hand, if the capillary force is
dominant ðCa < 1Þ, the jet rapidly necks down pinching off
into droplets due to the Rayleigh-Tomotika instability
(Tomotika, 1935), and small droplets can be easily emitted
from the solution surface (dripping regime). In other words, in
this regime the polymer jets cannot be stabilized against the
capillary instability (Entov and Yarin, 1984a; Yarin, 1993).
During the fast (≤0.1 s) path to the counterelectrode, the

electrospun jet is dramatically stretched, initially as a short
almost straight section and then, in the course of various
other instabilities that bend the trajectory of the fluid,
generating spiraling loops as shown in Fig. 4 (Reneker
and Fong, 2006; Reneker and Yarin, 2008). The term
bending instability in electrospinning (Reneker et al.,
2000) is motivated by a similar term applied to the kindred
aerodynamically driven bending instability (Weber, 1931),
and a basic similarity was also recognized between bending
jets and the elastic bar bending in the classical Euler-
Bernoulli theory (Landau and Lifshitz, 1970). Bending
instabilities occur because small perturbations rapidly trigger
their growth, which is driven by the fact that lateral electric
forces, namely, electrostatic repulsion of charges along the
fluid filament, appear at any curved section of the jet. These
instabilities influence the electrospinning outcome in many
ways, increasing the overall length of the jet trajectory to a
practically fractal-like one and thus leaving longer time for
fluid stretching and diameter reduction, and also leading to a

FIG. 3. Scheme of electrospinning. The various process param-
eters are indicated, nozzle-collector distance (h), nozzle-collector
voltage bias (ΔΦ0), polymer solution flow rate (Q), together with
main experimental equipment (syringe, metal needle, collecting
surface).
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highly disordered configuration of nanofibers (nonwoven
mat, central panel of Fig. 2) deposited on flat counter-
electrodes. Owing to instabilities, an electrospun jet is a
highly complex system, namely, a continuous fluid object
whose cross-sectional radius r and curvature k (defined as
the inverse of the curvature radius and measured in cm−1)
both are strongly dependent on the position along the fluid
filament. In addition, the solvent simultaneously evaporates
while the jet is moving, which allows solid polymer nano-
fibers to be deposited.
Fortunately, some physical estimates allow the description

of electrospun solutions to be simplified in the different
regions of the jet. Indeed, much of the jet dynamics depends
on the magnitude of the characteristic hydrodynamic time θH
versus the relaxation time θC of ionic charges present in the
fluid. θH can be estimated as μr=α (Reznik et al., 2004). With
μ of the order of 10 g cm−1 s−1 (1 g cm−1 s−1 ¼ 1 P ¼
0.1 Pa s), which is reasonable for electrospun solutions, and
α ¼ 50 g=s2, one would obtain a θH value of the order of
10 ms for r ¼ 0.1 cm and well below the milliseconds for
r ≤ 10 μm, respectively. The characteristic charge relaxation
time θC can be estimated as ε=σe, where ε is the dielectric
permittivity and σe is the electric conductivity (expressed in
s−1 in cgs units). With plausible values of ε ¼ 40 and σe in a
range 103–104 s−1 (corresponding to 10−7–10−6 Sm−1 in SI
units), θC is up to a few milliseconds (∼4–45 ms) for polymer
solutions used in electrospinning (Reneker et al., 2007; Yarin,
Pourdeyhimi, and Ramakrishna, 2014). These solutions are in
fact leaky dielectrics, i.e., poor ionic conductors (Melcher and
Taylor, 1969; Saville, 1997). However, whenever θH is
significantly higher than θC, the electric behavior of an ionic

conductor reduces to that of a perfect conductor, even though
it is actually a poor conductor compared to such truly good
conductors as metals. On the contrary, when θH ≪ θC, the
fluid body can be considered a perfect dielectric, with
“frozen” charges (Reneker et al., 2000). This means that
while the electrospun jet continuously reduces its diameter
when moving from the initial fluid apex to the counter-
electrode, its physical description might actually change from
that typical of a conductor to that typical of a dielectric system.
We see later in this review how this feature is exploited in
models of the electrospinning dynamics.
The strong elongational flow in the jet also causes a

substantial stretching of involved macromolecular coils and
polymer networks. Indeed, strain rates exerted by fluid bodies
during elongational processes that are comparable to or higher
than the reciprocal relaxation time θ−1 of the involved
polymer molecules favor the transition of random coils
into stretched and relatively aligned molecular assemblies
(de Gennes, 1974). This can be expressed in terms of the
dimensionless Deborah number De ¼ _εθ that quickly reaches
a value above unity along the jet path (Bellan, Craighead, and
Hinestroza, 2007). Such an effect can be observed exper-
imentally by various methods, including Raman, lumines-
cence, birefringence, infrared spectroscopy, mechanical
measurements, and x-ray inspection (Fong and Reneker,
1999; Arinstein et al., 2007; Kakade et al., 2007; Reneker
et al., 2007; Pagliara et al., 2011; Pai, Boyce, and Rutledge,
2011; Camposeo et al., 2013; Richard-Lacroix and Pellerin,
2013, Yarin, Pourdeyhimi, and Ramakrishna, 2014; Richard-
Lacroix and Pellerin, 2015), and it was also discussed
theoretically (Greenfeld and Zussman, 2013; Deng,
Arinstein, and Zussman, 2017). For instance, below a certain
crossover diameter of electrospun nanofibers that is dependent
on the polymer molar mass the elastic moduli of the fibers
begin to rise sharply (Arinstein et al., 2007; Burman,
Arinstein, and Zussman, 2008; Ji et al., 2008; Burman,
Arinstein, and Zussman, 2011; Liu et al., 2011). Similarly,
in optically active polymers, the effective conjugation length
of chromophores might increase as a result of electrospinning,
and the optical absorption and emission become polarized
along the fiber axis (Camposeo et al., 2013, 2014). These
findings are highly important for applications of polymer
nanofibers. They also further make clear that rationalizing the
dynamics of electrospun jets by means of proper models is
essential to understand how the jet properties affect, or are
inherited by, the obtained nanofibers. The main phenomena to
be caught by models are described in Sec. III.

III. PHENOMENOLOGY OF ELECTRIFIED JETS

A. Formation and characteristics of electrified jets

In electrospinning, polymer solutions are usually delivered
in a continuous way through a syringe (Fig. 3), terminated by
a metallic needle with a diameter of a few hundred microm-
eters. This leads to the formation of a pendant droplet at the tip
of the needle. However, most of the mechanisms producing
electrified jets are general, and they hold not only for pendant
droplets but also for any other free surface (Yarin and
Zussman, 2004; Lukas, Sarkar, and Pokorny, 2008). For

FIG. 4. (a) Schematics of an electrified polymer solution jet.
The various regimes of jet flow are highlighted, with a straight
region (A) followed by various bending instability stages featur-
ing spiraling loops with different characteristic frequency. D
indicates the projection of the straight region along the vertical
direction. AB and AC indicate the jet envelope cone. E and F
indicate points of onset of the second and third bending
instabilities, respectively. From Reneker and Fong, 2006.
(b) Photographs of a jet of polyisobutylene in a viscous mixture
of acetone and paraffin oil, highlighting bending instability. The
frames are captured by a video camera at a rate of 30 frames/s.
The diameter of the largest coils is about 20 cm. From Reneker
and Yarin, 2008.
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instance, upon inserting an electrode into a charged sessile or
pendant droplet of polymer solution and applying an electric
voltage bias with respect to a counterelectrode, the droplet can
acquire a stable shape whenever the potential difference is not
too high (Reznik et al., 2004). As introduced in Sec. II, this
can be achieved by connecting electrodes to a high-voltage
generator, and the counterelectrode functions as a collecting
surface onto which polymer nanofibers are to be deposited.
The corresponding electric field imposes the electric Maxwell
stresses pulling and stretching the droplet toward the counter-
electrode. The surface tension of the fluid would tend to
minimize the droplet surface and shape it as a spherical
volume (thus minimizing the surface energy) through the
Laplace pressure. The elastic effect in the viscoelastic
polymer fluid, which might be much higher than the surface
tension, also plays a restraining role. A steady-state droplet
shape then arises as a result of the interplay between the
Maxwell stresses and the restoring forces. The shape at the
apex of the droplet was originally described by the so-called
Taylor cone (Taylor, 1964, 1966). This shape at the transition
region between the stressed droplet and the formed jet is
important. Indeed, correlations were recently found between
observable features of the droplet-jet shape and the dia-
meter of the obtained electrospun nanofibers (Liu and
Reneker, 2019).
The condition on the threshold electric field for jet

activation corresponds to a condition in terms of the minimum
surface charge density accumulated at the fluid-air interface
near the apex (the so-called Rayleigh condition). In addition,
because of the high solution concentration, in electrospinning
significant elastic stresses should also be overcome by the
electric Maxwell stresses.
Once formed, the jet proceeds quickly toward the counter-

electrode. The jet velocity ranges from the order of 10 to a few
hundred cm=s, which can be measured by various experi-
mental techniques such as particle image velocimetry (Bellan,
Craighead, and Hinestroza, 2007; Reneker et al., 2007) and
direct high-speed imaging (Yarin, Koombhongse, and
Reneker, 2001a; Han, Yarin, and Reneker, 2008; Montinaro
et al., 2015). Corresponding accelerations reach the order of
104 cm=s2. The high strain rate _ε thus reached, exceeding the
reciprocal relaxation time θ−1 of the solution (de Gennes,
1974; Thompson et al., 2007), might stretch the polymer
matrix into a nonequilibrium conformational state (Greenfeld
et al., 2011). This effect is at the origin of the significant
orientational anisotropy inherited by the produced nanofibers.
In this way, polymer chains might become prevalently
oriented along the longitudinal axis of electrospun fibers,
which in turn affects several optical, electronic, and mechani-
cal properties, although some relaxation of the anisotropic
structure can still occur after formation.
The jet continuously delivers an electric charge from the

spinneret to the counterelectrode, which results in a current
I ¼ Qρq, where Q is the jet flow rate and ρq is the volumetric
charge density. The overall charge carried by the jet rapidly
transforms into surface charges, leading to bulk and surface
advection components that contribute to the current (Fridrikh
et al., 2003; Reznik et al., 2006). During the jet flight and the
development of the bending instability, the electric charges are

basically at rest with respect to the jet because the character-
istic charge relaxation time θC is larger than the characteristic
hydrodynamic time θH; see Sec. II. In other words, in this
regime transport processes associated with viscoelastic relax-
ation and hydrodynamics are faster than electric transport
phenomena (Saville, 1997), leading to the conclusion that
during its path toward the counterelectrode (collector) the jet
may be assumed as a perfect dielectric (Yarin, Pourdeyhimi,
and Ramakrishna, 2014). Some of these aspects are further
detailed in Sec. V.A. Overall, a quantity denoted by ρq can still
be used to indicate carried charge density, meaning an
effective charge density that would account for both bulk
and surface advection components contributing to the current.
The current delivered by electrospun jets was investigated in
dedicated experiments (Theron, Zussman, and Yarin, 2004;
Bhattacharjee et al., 2010). Depending on the used polymer
solution and other process parameters, values ranging from the
order of nanoamperes to hundreds of microamperes (∼3 to
3 × 105 statC=s) have been measured (Reneker and Chun,
1996; Deitzel, Kleinmeyer, Harris, and Beck Tan et al., 2001;
Hohman et al., 2001b; Theron, Zussman, and Yarin, 2004;
Kalayci et al., 2005; Bhattacharjee et al., 2010).
The evaporation of the solvent from the jet is another

phenomenon that is important to the process outcome,
contributing to diameter reduction and determining whether
still wet or fully dried nanofibers are deposited on the collector
(Yarin, Koombhongse, and Reneker, 2001a). In addition, if the
evaporation rate is sufficiently high, the solvent evaporation
being faster from the external layers of the jet might lead
to the formation of a polymer skin along the fluid body
(Koombhongse, Liu, and Reneker, 2001; Guenthner et al.,
2006). Such skin can then collapse and cause the formation of
electrospun fibers with different cross-sectional shapes,
including belts, ribbons, hollow filaments, fibers with an
elliptical cross section, etc.; see Fig. 5. Solvent evaporation
effects were modeled by nonlinear mass diffusion transfer to
estimate the transient solvent concentration profiles in the jets
(Wu, Salkovskiy, and Dzenis, 2011). Furthermore, solvent
evaporation strongly affects the morphology and porosity of
the surface of electrospun nanofibers (Srikar et al., 2008). It
was shown that the characteristic times of (i) polymer-solvent
mutual diffusion, (ii) solvent evaporation, and (iii) phase
separation of immiscible components influence the ultimately
achieved nanofibers, which can be smooth, exhibit corruga-
tions as displayed in Fig. 5(b) (Pai, Boyce, and Rutledge,
2009) or pores as displayed in Figs. 5(c) and 5(d) (Bognitzki
et al., 2001).
Since early studies in the late 1990s, it was found that

during its path from the spinneret to the collector the
electrified jet does not follow a straight trajectory but is
instead affected by a variety of bending instabilities (Reneker
et al., 2000). An analogous effect is rapid whipping, which is
also nonaxisymmetric and involves a deformation of the
centerline of the electrified jet (Hohman et al., 2001a,
2001b; Shin et al., 2001). Other mechanisms observed are
jet branching, consisting of secondary filaments separating
from the main jet and possibly leading to fibers with complex
shape (Yarin, Kataphinan, and Reneker, 2005), and buckling
at the collector, which produces many different coiled
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geometries, as displayed in Fig. 6 (Han, Reneker, and Yarin,
2007). Buckling effects are superimposed on those from
bending instabilities and resemble those previously observed
with larger nonelectrified jets (Chiu-Webster and Lister,
2006). The buckled coils found in electrospinning experi-
ments show typical diameters in the range of a micrometer up
to tens of micrometers, and patterns built at megahertz
characteristic frequencies, depending on the jet velocity and
viscoelastic properties. While the origin of bending instability
is in the existence of lateral forces of electric origin, which
appear at any curved section of a jet and lead to further
bending, buckling arises from compressive forces acting along
the jet from an obstacle. In this sense, buckling is a close
counterpart of the classical elastic buckling of compressed
columns discovered and explained by Euler (Landau and
Lifshitz, 1970). Interested readers are referred to works
dedicated to the theory of buckling of free liquid jets
(Tchavdarov, Yarin, and Radev, 1993; Yarin, 1993).

B. Experimental parameters

The electrospinning is a process dependent on a number of
governing parameters (Theron, Zussman, and Yarin, 2004).
Ideally, by optimizing the set of these variables, an exper-
imentalist can obtain nanofibers with desired composition and
morphology. For this reason, theory and models of electrified
jets also carefully consider these parameters and generally
start from them to properly describe the process (Reneker
et al., 2000; Fridrikh et al., 2003). The values of many of these
parameters (so-called primary parameters) can be directly
controlled by experimentalists (such as chemicals, solution
concentration, and the setup parameters). However, other
quantities are not chosen directly but depend in turn on the
values of the primary parameters. These aspects make
optimizing the overall process quite complex and also

highlight how important modeling can be to better rationalize
observed phenomena, to identify most relevant variables that
affect the formation of nanofibers, and to provide suitable
ranges or starting values of relevant parameters to guide the
experiments. In pioneering papers (Doshi and Reneker, 1995),
the electrospinning parameters were grouped into three main
classes:

(i) Variables related to solution properties.—These
parameters depend on the used polymer species
and their molecular weight, concentration, and elastic
relaxation time, as well as on the solvent used; they
include the solution density, viscosity, electrical
conductivity, dielectric constant, and surface tension.
In addition, the solvent properties include its volatil-
ity, determining the evaporation rate.

(ii) Variables related to the used setup.—These param-
eters include the applied electric potential difference
ΔΦ0, the solution flow rate Q, the distance between
the spinneret and the collector h, and the internal
diameter of the spinning needle.

(iii) Variables related to the ambient.—These parameters
include relative humidity, temperature, and pressure.

The various classes of parameters are summarized in
Table I.
The influence of the solution and setup parameters or of

combinations of them on the dynamics of electrified jets and
on the morphology of electrospun nanofibers was investigated

FIG. 6. Buckled patterns with various geometries formed by
electrified jets of PEO in water (upper panel in each pair),
collected on glass slides, and similar patterns produced by the
buckling of uncharged, gravity-driven syrup jets (corresponding
bottom panels). The fall of viscous threads leads to buckling
patterns ∼103 times larger than those from electrified jets. The
obtained patterns include (a) sinusoidal features, (b) compressed
meanders, (c) double meanders, (d) irregular features, (e) elon-
gated figures of eight, and (f) coils. (Top panels) From Han,
Reneker, and Yarin, 2007. (Bottom panels) Adapted from
Chiu-Webster and Lister, 2006.

FIG. 5. (a) Electrospun ribbons made of poly(ether imide).
Scale bar, 10 μm. From Koombhongse, Liu, and Reneker, 2001.
(b) Corrugated fibers electrospun from a 30 wt % polystyrene-
DMF solution under 22% relative humidity. Scale bar, 5 μm.
Adapted from Pai, Boyce, and Rutledge, 2009. (c),(d) Porous
fibers made of poly(L-lactide). Scale bar (c) 1 μm, (d) 500 nm.
From Bognitzki et al., 2001.
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in several studies (Deitzel, Kleinmeyer, Harris, and Beck Tan,
2001; Megelski et al., 2002; Theron, Zussman, and Yarin,
2004; Jarusuwannapoom et al., 2005; Shenoy et al., 2005;
Thompson et al., 2007; Montinaro et al., 2015). Other works
focused on the effects of the ambient variables, particularly on
humidity that is relevant for controlling the surface morphol-
ogy and porosity of nanofibers (Casper et al., 2004). Recent
experiments showed that performing electrospinning in a
controlled nitrogen atmosphere [Fig. 7(a)] might be useful
for reducing the surface roughness of nanofibers, as well as for
improving light emission properties of fibers made of con-
jugated polymers, because of the reduced incorporation of
oxygen in the jets (Fasano et al., 2015).
Finally, it should be mentioned that the polymer solution

can be doped in various ways, particularly by adding nano-
particles with the aim of realizing nanocomposite fibers.
Classes of quantum dots and of other nanoparticles used in
electrified jets include those made of metals (Au, Ag),
semiconductors (CdS, CdSe, ZnSe, ZnS), oxides (ZnO,
Fe3O4, silica, titania), minerals such as hydroxyapatite and
tricalcium phosphate, two-dimensional (2D) materials, carbon
nanotubes, etc. (Dror et al., 2003; Salalha et al., 2004;
Schlecht et al., 2005; Sui, Shao, and Liu, 2005; Liu et al.,
2006; Lu, Wang, and Wei, 2009; Zhang et al., 2016; Resta
et al., 2017). Because nanoparticles are dispersed in the
solution, the polymer component works as a three-dimen-
sional (3D) topological network, with the particles constitut-
ing distributed solid domains. These can significantly affect
the jet rheology and dynamics, as highlighted by dedicated
models (Lauricella, Pisignano, and Succi, 2017).

C. Electrified jet engineering

Using a planar collecting surface, electrified jets produce a
random distribution of nanofibers on the plane connected to
the counterelectrode, as shown in the central panel of Fig. 2,
with a layer-by-layer stacked deposition along the direction

perpendicular to that surface. This is fine for some applica-
tions, such as for building filters or nonwoven mats for
catalysis or textiles, but for other applications parallel nano-
fibers or nanofibers arranged in different architectures are
much more convenient. To this aim, collector geometries were
engineered in various ways to achieve contraction of the
pattern of the electric field lines on sharp edges and,
consequently, desired assemblies of nanofibers (Theron,
Zussman, and Yarin, 2001; Zussman, Theron, and Yarin,
2003; Sundaray et al., 2004; Teo and Ramakrishna, 2006). For
instance, it was found that nanofibers can be obtained in
almost uniaxially oriented arrays [Figs. 7(b)–7(e)] between
electrodes with parallel conductive regions separated by a gap
(Li, Wang, and Xia, 2003, 2004; Xie et al., 2010). Upon
approaching such regions, the electrified jet experiences two
electrostatic forces. One is due to the electrospinning electric
field, while the other is the attractive interaction between
advection charges in the jet and the corresponding image
charges in the collector electrodes. The combination of the
two forces makes fibers stretch across the gap between the
conductive regions. The effects of residual charges and of the
gap size on fiber alignment were studied by numerical
simulations, and the alignment of fibers was found to improve
upon increasing the gap distance from 3 to 8 mm (Liu and
Dzenis, 2008). Another successful method consists of collect-
ing nanofibers on rotating cylinders (Sundaray et al., 2004) or
sharp disks (Theron, Zussman, and Yarin, 2001). This
approach might also lead to extra pulling and stretching of
the electrified jets and possibly to an enhanced order of
polymer macromolecules in nanofibers. Magnetic-field-
assisted electrospinning has also gained importance as a
method to align nanofibers that incorporate magnetic particles
(Rahmani, Rafizadeh, and Afshar Taromi, 2014; Mei, Song,
and Liu, 2015; Huang et al., 2016; Guarino et al., 2019).
Pioneering experiments showed that magnetic fields might be
more efficient than electric fields in aligning fibers into
parallel arrays (Yang et al., 2007). A conceptually different

TABLE I. Different classes of process parameters in electrospinning. Quantities used in models are reported with their symbol and Gaussian
(cgs) units. Relevant references are also highlighted for each class of parameters.

Primary parameters
(directly chosen)

Secondary parameters
(dependent on the primary ones)

Solution properties Polymer species
Solvent species
Solution concentration

(Cp, mol cm−3)
Polymer molecular weight

Solution density (ρ, g cm−3)
Dynamic viscosity (μ, g cm−1 s−1)
Conductivity (σe, s−1)
Surface tension (α, g=s2)
Relaxation time (θ, s)
Dielectric constant (ε)

Deitzel, Kleinmeyer, Harris, and Beck
Tan (2001), Megelski et al. (2002),
Theron, Zussman, and Yarin (2004),
Jarusuwannapoom et al. (2005),
Shenoy et al. (2005), Thompson et al.
(2007), and Montinaro et al. (2015)

Setup settings Applied voltage bias
(ΔΦ0, statV)

Solution flow rate (Q, cm3=s)
Interelectrode distance (h, cm)
Needle internal diameter

E, Electric field (statV cm−1) Deitzel, Kleinmeyer, Harris, and Beck
Tan (2001), Megelski et al. (2002),
Theron, Zussman, and Yarin (2004),
Thompson et al. (2007), and
Montinaro et al. (2015)

Ambient properties Atmosphere composition
Atmosphere pressure
Relative humidity
Temperature (T, K)

Megelski et al. (2002), Casper et al.
(2004), Thompson et al. (2007),
Wang et al. (2007), Pai, Boyce, and
Rutledge (2009), and Fasano et al.
(2015)
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approach for controlling fiber positions [Fig. 7(f)] consists of
reducing the distance between the spinneret and the collect-
ing surface to the subcentimeter or even submillimeter scale,
thus exploiting the initial, straight part of the jet (i.e., before
the onset of bending instabilities), in so-called near-field
electrospinning (Sun et al., 2006; Chang, Limkrailassiri, and
Lin, 2008).
Electrified jets were also engineered to deliver more than

one polymer compound in coflows to obtain nanofibers with
core-shell or even multicomponent architecture or hollow
nanofibers (following the removal of an internal sacrificial
material). Core-shell structures in fibers are important for a
wide range of technologies, including waveguides with layers
showing refractive index contrast, electrical nanowires with
insulating sheath, polymer structures for drug delivery, nano-
fluidics, and biological scaffolds. Coaxial electrospinning was
implemented by means of concentric needles delivering
different polymer solutions (Loscertales et al., 2002; Sun

et al., 2003; Li and Xia, 2004a; Loscertales et al., 2004; Yu,
Fridrikh, and Rutledge, 2004; Zhang et al., 2004; Zussman
et al., 2006; Gañán-Calvo et al., 2007). A bicomponent Taylor
cone can be obtained in this way [Fig. 7(g)]. In coaxial jets
with two immiscible solutions, instabilities might be reduced
and the flow of the internal solution is supported by the
external one, thus making it possible to use as core fluid a
solution that does not on its own have a sufficiently visco-
elastic behavior to form electrospun fibers. This is the case of
many solutions of light-emitting or conductive polymers, low-
molar-mass molecules, biomolecules, and drugs to be encap-
sulated for controlled and sustained delivery. The method can
be scaled up to more fluids, and nanofibers with several either
concentric or parallel layers or cavities [Figs. 7(h)–7(k)]
formed by means of spinnerets featuring three or more fluidic
channels (Zhao, Cao, and Jiang, 2007; Chen et al., 2010). An
application of multifluid jets was shown in confining block
copolymers within the small volumes of individual nanofibers

FIG. 7. Examples of process engineering. (a) Setup for producing electrified polymer solution jets in a nitrogen atmosphere. From
Fasano et al., 2015. (b)–(e) Images of uniaxially aligned arrays of electrospun polymer nanofibers produced with a gap collector: (b)
dark-field optical micrograph, and (c),(d) scanning electron microscopy (SEM) images comparing (c) aligned and (d) random fibers
deposited onto a flat surface. (e) A SEM micrograph of the gap edge is also shown, displaying a transition from aligned to random
nanofibers. From Li, Wang, and Xia, 2003. (f) Scheme of the near-field electrospinning process. Here h is from a few hundred
micrometers to a few millimeters. From Sun et al., 2006. (g) Compound droplet and bicomponent Taylor cone encompassing two
different polymer solutions in coaxial electrospinning. Polymers used are poly(methyl methacrylate) (PMMA) for the core and
polyacrylonitrile (PAN) for the shell. Adapted from Zussman et al., 2006. (h)–(k) SEM micrographs of multichannel tubes with
variable diameter and channel number obtained by a multichannel spinneret. Scale bars, 100 nm. From Zhao, Cao, and Jiang,
2007. (l) Transmission electron micrographs of cross sections of annealed block-copolymer fibers. Scale bars, 100 nm. From Kalra
et al., 2009.
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to study the resulting microphase configuration (Kalra et al.,
2006, 2009; Ma et al., 2006). For instance, nanofibers with a
block-copolymer core and a shell made of silica or of a
polymer with high glass transition temperature can be
annealed to induce ordered domains in the internal region
[Fig. 7(l)]. Core-shell nanofibers can also be electrospun from
a single nozzle by using emulsions of two polymers in a single
solvent as a working fluid (Bazilevsky, Yarin, and Megaridis,
2008; Yarin, Pourdeyhimi, and Ramakrishna, 2014). In the
case of emulsion spinning, the dispersed phase forms the core,
whereas the continuous phase forms the shell. Recently
emulsion spinning of core-shell nanofibers found an appli-
cation in generating self-healing vascular nanotextured
composite materials (Yarin et al., 2019).

D. From electrospinning to solution blowing

Methods to enhance the throughput in producing nanofibers
could make use of forces other than electrostatic ones. For
instance, a gas stream delivered by a nearby distributer would
support polymer solution jets through additional shearing and
stretching. Such gas-assisted electrospinning or electroblow-
ing methods (Um et al., 2004; Wang et al., 2005; Hsiao et al.,
2012) might be implemented through gas distributers surro-
unding the spinneret and allow thinner nanofibers to be
obtained. In fact, coflowing subsonic gas jets have been used

for a long time to assist the formation of microscopic
fibers in meltblowing (Pinchuk et al., 2002; Fedorova and
Pourdeyhimi, 2007; Yarin, Pourdeyhimi, and Ramakrishna,
2014). These technologies start from polymer melts, and at
variance with electrospinning, the bending instability in this
case arises purely aerodynamically due to a distributed lateral
force acting on curved sections of polymer jets, driving the
instability process. To obtain nanofibers, air-jet spinning, i.e.,
solution blowing (Sinha-Ray, Yarin, and Pourdeyhimi, 2010a)
rather then meltblowing is used. This process is schematized
in Fig. 8. The needle is concentric with the nozzle issuing the
air jet at a given delivery pressure. Solution blowing has
attracted increasing interest due to its superior throughput and
capability to generate thin (20–50 nm) nanofibers (Sinha-Ray
et al., 2013, 2015; Yarin, Pourdeyhimi, and Ramakrishna,
2014; Daristotle et al., 2016; Polat et al., 2016). The method
has already been scaled up to industrial equipment (Kolbasov
et al., 2016). As shown in Fig. 9(a), in this technique polymer
solutions are employed similarly to electrospinning; however,
the jet is issued into a coflowing subsonic or supersonic gas jet
without the application of an external electric field, similarly
to meltblowing. Solution blowing shares many of its process
parameters with electrospinning, including solution properties
(polymer and solvent species, concentration, zero-shear visco-
sity, and elastic relaxation time). Also of importance are
several variables related to the used setup (particularly
solution flow rate, and needle gauge), and such ambient
parameters as humidity and temperature. Here aerodynami-
cally driven bending perturbations can be triggered by
turbulence of the surrounding gas flow, whereas polymer
viscoelasticity, similar to electrospinning, plays a restraining
role. In some cases, two streams of polymer solution and
pressurized gas can also be generated by means of a
commercially available airbrush such as that displayed in
Fig. 9(b) (Tutak et al., 2013). Solution-blown nanofibers have
been used to obtain carbon nanotubes (Sinha-Ray, Yarin, and
Pourdeyhimi, 2010b), for filter media (Zhuang et al., 2013;
Liu et al., 2019), for biomedical engineering (Khansari et al.,
2013; Tutak et al., 2013; Behrens et al., 2014; Behrens et al.,

FIG. 8. Scheme of a solution-blowing setup and process.
Adapted from Polat et al., 2016.

FIG. 9. Scheme of a solution-blowing bench setup. From Sinha-Ray, Yarin, and Pourdeyhimi, 2010b. (b) A commercially available
airbrush for portable solution blowing of nanofibers. From Tutak et al., 2013.
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2015; Magaz et al., 2018), and for the formation of self-
healing vascular nanocomposites (Yarin et al., 2019).
Another fundamental feature of liquid jets concentric with

gas flows is the resulting hydrodynamic flow-focusing effect
driven by the external fluid. For example, this can be
implemented in a configuration with the external gas stream
surrounding a manifold jet in turn composed by two immis-
cible solutions, and with the internal capillary delivering the
core fluid protruding by about one diameter length from the
outer capillary, delivering the sheath fluid. Such arrangement
was analyzed in terms of working conditions (solution
viscosities, capillary diameters, gas pressure, etc.) and found
to overcome surface tension effectively and to lead to the
generation of continuous, steady capillary jets down to the
submicrometer cross-sectional size (Gañán-Calvo, 2007).

IV. REQUIREMENTS OF THEORETICAL METHODS FOR
MODELING ELECTRIFIED AND BLOWING LIQUIDS

Modeling of electrified and solution-blown fluids is a
practical tool to achieve reliable predictions of the geom-
etries and sizes of nanofibers, assembly, or internal molecu-
lar structure, guiding the choice of specific process
parameters. For instance, this could aim at providing a likely
starting point for the fabrication process of fibers with
desirable geometry or architecture, thus significantly saving
experimental resources and time. Modeling would be even
more important to rationalize the fundamental properties of
polymer solutions, in particular, their spinnability in fiber-
forming processes, which are predominantly uniaxial elon-
gation processes. The description is based on a system of
highly nonlinear partial differential equations (PDEs) for the
electrified or blowing jet dynamics. In principle, this could
be tackled by standard grid methods, such as finite
differences or finite volumes. However, the large material
stretching in space and the characteristic times of the
competing physical phenomena in electrospinning and solu-
tion blowing are such that they make a standard grid
approach (the Eulerian approach) extremely challenging
on computational grounds. The main problem is the major
stretching of polymer jets accompanied by reduction in their
cross-sectional size from, say, ∼100 μm at the exit of the
nozzle down to 1 μm or less at the collector. Even when
modeling the shrinkage of the polymer jet via a constitutive
law, the jet representation would require at least ten grid
points; hence, to correctly describe a jet diameter of about
1 μm at the collector the length scale would be 0.1 μm. With
a static Eulerian grid, covering a 3D cubic domain of about
10 cm would then require 1018 grid points. The simple
storage of a corresponding array of a scalar variable in
double floating numbers would require 8 × 106 Tbytes,
which will be out of reach for any computer in the foresee-
able future.
Of course, this naive estimate can be considerably softened

by resorting to moving-grid Lagrangian techniques (Sec. V.B),
whereby high resolution would also be put in place where
needed, i.e., in the vicinity of the jet, by meshing adaptively
“on the fly” in the course of the simulation (Sec. V.C.4). The
corresponding procedure is computationally less demanding.
For instance, the discretization of a jet length equal to 300 cm

with a typical length step of 0.02 cm would be stored in only
15 000 grid points (120 kbytes in double floating numbers to
store an array of a scalar variable). The Lagrangian approach
is one of the two options traditionally used in fluid mechanics,
and it implies that the grid follows the individual fluid
particles, i.e., the grid is frozen in the fluid rather than in
an arbitrary surrounding space as in the case of the Eulerian
grid (Lamb, 1959; Loitsyanskii, 1996; Batchelor, 2002).
Moreover, this strategy provides low data traffic, low input
or output operations, and lean communication between
threads on parallel machines. The last point is of extreme
importance, since it is increasingly apparent that as perfor-
mance ramps up, accessing data could become more expen-
sive than to perform floating-point operations (Succi
et al., 2019).
The discrete-particle representation is an approximation of

the fluid in a quasi-one-dimensional (1D) object, but in
problems related to electrospinning, meltblowing and solution
blowing, and hydroentanglement (Reneker et al., 2000; Yarin,
Koombhongse, and Reneker, 2001a; Yarin, Sinha-Ray, and
Pourdeyhimi, 2011; Yarin, Pourdeyhimi, and Ramakrishna,
2014; Sinha-Ray et al., 2015; Li et al., 2019a, 2019b), it has a
substantial advantage in that particles naturally flow in the
spatial regions where the relevant physics of the jet
takes place.
In fact, denoting with r the jet cross-sectional radius and

with z the longitudinal coordinate along which the jet is
delivered, jets can frequently be considered slender bodies
with slow changes of r along z, i.e., with jdr=dzj ≪ 1. This is
also referred to as the slenderness assumption (Eggers, 1997).
These long and thin fluid threads, whose velocity fields are
directed mostly along one axis, can be well described by
quasi-1D fluid flows. In this framework, the velocity field in
the radial direction is usually expanded to the lowest-order
terms, which should be sufficient to describe the radial motion
(Lee, 1974; Pimbley, 1976; Entov and Yarin, 1984b; Yarin,
1993; Eggers and Dupont, 1994). Hence, equations of motion
(EOM) are written only for the expansion coefficients depend-
ing on the axial variable z. Nonetheless, observables related to
the remaining dimensions such as radial velocity, curvature
radius, and jet cross section survive, but they are now
dependent on the 1D expansion coefficients. This is the core
of the quasi-1D description, which can be implemented in jets,
waves, drop dynamics, and thin-film flows (Middleman,
1995). In the jet context, several other assumptions are usually
included in the quasi-1D description (Yarin, 1993; Eggers,
1997; Eggers and Villermaux, 2008), such as incompressible
velocity field, fluid volume preservation, locally axisymmetric
flow, isotropic expansion or contraction in the jet cross
section, and absence of shearing forces on the lateral jet
surface. However, some experimentally relevant cases may go
beyond one or more of these assumptions (e.g., considering an
elliptical cross section for the thread) so that a critical
evaluation of all approximations adopted in each specific
model should always be addressed. Quasi-1D equations for
electrified jets are presented in Sec. V.A.3 in their EHD form
[see Eqs. (5)–(8)], and in Sec. V.A.4 in their fundamental
Lagrangian descriptions; see Eq. (11). The limitations of this
approach, leading to the need for a fully 3D representation for
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comprehensively catching bending jets, are discussed in
Sec. V.B.3.
In fact, in Lagrangian descriptions of a jet as n individual

particles (Secs. V.B and V.C), schematized in Fig. 10, the
computational complexity of solving the associated system of
equations scales like n2, mostly on account of unscreened
electrostatic interactions (all-to-all, long-range coupling). This
is the so-called direct summation technique, where each
particle interacts nonhierarchically with all other particles.
With the simpler paradigm of direct summation, on a standard
personal computer the number of viable particles is limited to

about 1000, which based on the existing literature appears to
be largely sufficient to deliver informative insights into the jet
behavior. Nonetheless, more sophisticated approaches imply a
hierarchical organization of the long-range Coulomb inter-
actions, whose complexity scales like n logðnÞ. In this
framework, the charge elements of the discretized jet are
recursively clustered and the monopole coefficients of the
clusters are computed (Kowalewski, Barral, and Kowalczyk,
2009). The scheme can be augmented by including higher
orders of the multipole expansion, usually referred to as the
fast multipole method.
These considerations are also valid within the framework of

parallel computing. Two main paradigms are usually pursued
for exploiting the parallelism. The first is the replicated data
(RD) strategy, where fundamental data of the simulated
system are reproduced on all processing nodes. The second
paradigm is based on the domain decomposition (DD)
strategy, which exploits the decomposition of the space in
subdomains distributed over several processors so that each
process deals only with its subset of particles. The RD strategy
provides satisfactory results of parallel efficiency in simu-
lations on up to 100 processors, involving up to 30 000
particles (Smith and Forester, 1996). Given the small number
of particles used to represent the jet, practical cases
(Lauricella, Pontrelli, Coluzza et al., 2015a; Lauricella et al.,
2016) have shown that such volume of data is by no means
prohibitive on current parallel codes exploiting the RD
strategy. However, all floating-point operations should be
distributed in equal portions (as much as possible) for each
processor to balance the load over participated processors. The
load balancing is crucial since it guarantees that the computa-
tional work is performed cooperatively and simultaneously on
all processing nodes.
In the parallel framework, all of the n-body force terms,

such as Coulomb intrajet forces, must be obtained as a global
sum of the contributing terms calculated over all nodes. As a
consequence, a communication overhead is paid whenever
the forces should be updated. Both DD and RD strategies pay
a time lag, which depends on the information size to be
communicated. Nonetheless, the exchanged information
could be collected in smaller pieces to mitigate the latency
time in data communication. For instance, the aforemen-
tioned fast multipole method may be used to pass cluster
information of the repulsive Coulomb interaction, thus
decreasing the communication data size. Although this is
just a sample of the types of problems encountered in parallel
coding, an efficient numerical implementation should always
consider a fair trade between the largest distribution of
computational work and the smallest data communication
between processors.
To describe electrified and solution-blown jets, a number of

parameters from experiments are generally needed. In addi-
tion, different models might have specific regions of validity.
For instance, the validity of polymer network modeling
(Sec. V.D) is restricted to the initial part of the jet, near the
Taylor cone, where elastic elongation is still possible.
Assuming mass conservation in this region of the jet, details
are required relating to jet radius, velocity, and strain rate. In
addition, data on the polymer solution are required such as the
shear viscosity, concentration, and type of solvent (e.g., θ

FIG. 10. Sketch of the Lagrangian representation for electro-
spun jets. Each discrete element representing a jet segment is
drawn by a bead, with a plus sign denoting the positive charge
of the segment. The scheme shows the viscoelastic force Fυe,
the surface tension force Fα pointing to the center of curvature
to restore a rectilinear shape, and the Coulomb repulsive term
FC, which is in the opposite direction with respect to the local
center of curvature, thus laterally destabilizing the filament.
The cone at the top of the figure represents the nozzle,
whereas the external electric potential bias ΔΦ0 provides a
field indicated by the red arrow, and the electric force term FΦ
on the jet beads.
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solvent). The voltage applied in electrospinning, needle-
collector distance, needle internal diameter, and bulk velocity
of the polymeric fluid in the needle, as well as the mass and
charge density, zero-shear viscosity, elastic modulus, and
surface tension of the used polymer solutions, are generally
the parameters needed as input of simulation tools based on
Lagrangian models of electrospinning (Lauricella, Pontrelli,
Coluzza et al., 2015a). Nonetheless, simulating advanced
electrospinning experiments may require further input param-
eters. As an example, magnetic and gas-assisted electro-
spinning simulations (Sec. V.C) need the magnetic-field
and gas velocity flow field as an extra parameter, respectively.
Whenever the case, additional input parameters are intro-
duced later.

V. MODELING METHODS FOR ELECTROSPINNING

In the following we present the current status of modeling
methods developed for electrified polymer solution jets, not
just as a list of sequential findings but with a logical flow in
which the historical background will be accompanied by a
critical review of research progress.

A. Electrohydrodynamic models

1. Taylor cone

As explained in Sec. II, the liquid in a static drop attached to
an electrode located at some distance from a counterelectrode
can be considered a perfect ionic conductor, even though its
conductivity might be low (Taylor, 1964; Ramos and
Castellanos, 1994a). As a result the excess anions or cations
have enough time to escape to the droplet surface, on which
they are distributed nonuniformly to maintain zero electric
field inside the liquid. This means that droplet surface is
equipotential. The shape evolution of small droplets attached
to a conducting surface and subjected to electric fields has
been studied both experimentally and numerically (Reznik
et al., 2004; Collins et al., 2008). The following scenarios can
be distinguished for either perfectly conducting (Reznik et al.,
2004) or moderately conducting (Collins et al., 2008) drops:

(i) In sufficiently weak electric fields, droplets are
stretched by the electric Maxwell stresses in air
and acquire steady-state shapes, where equilibrium
is achieved by means of surface tension.

(ii) In stronger electric fields, the Maxwell stresses
overcome surface tension and jetting can be initiated.

Conditions corresponding to (i) and (ii) can be called
subcritical and supercritical, respectively. The ultimate
equilibrium droplet shape (i.e., the “critical” condition)
resulting from the competition of electric and surface forces
reveals the Taylor cone configuration (Saville, 1997; Yarin,
Koombhongse, and Reneker, 2001b; Yarin, Pourdeyhimi, and
Ramakrishna, 2014). This corresponds to a solution in power-
law form of the Laplace equation for the electric potentialΦ in
the surrounding air. Such a solution is scaling invariant over
different length scales of its variables, a property consisting of
reproducing itself at different timescales and space scales
(Barenblatt, 1994), which is also called self-similarity.

An axisymmetric liquid body kept at a potential φ0 þ const
with its tip at a distance d0 from an equipotential plane that
might be the counterelectrode in electrospinning experiments
is considered in Fig. 11(a), where the distribution of the
electric potential Φ ¼ φþ constant is described in terms of
the spherical coordinates R and θ (Yarin, Koombhongse, and
Reneker, 2001b). The potential φ0 can always be expressed in
terms of the surface tension coefficient α and of d0, i.e.,
φ0 ¼ Cðd0αÞ1=2, where C is a dimensionless factor, which
follows from the dimensional analysis. In addition, also
because of the dimensional arguments, the general represen-
tation of the electric potential φ is φ ¼ φ0F1ðR=d0; θÞ, where
F1 is a dimensionless function of the R=d0 ratio and of the θ
angular coordinate (Yarin, 2012). Hence, the value of the
potential Φ throughout the space that surrounds the liquid
droplet is given by

FIG. 11. (a) Axisymmetric, “infinite” fluid body kept at
potential, Φ0 ¼ φ0 þ const at a distance d0 from an equipo-
tential plane sustained atΦ ¼ const. (b) Critical shape observed
for a pendant droplet in this configuration. The half angle
associated with the self-similar solution for the Taylor cone is
indicated by the dashed lines. The tangent to the experimentally
observed droplet of the polymer solution has half angle 31°
(shown by solid line). Adapted from Yarin, Koombhongse, and
Reneker, 2001b.
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Φ ¼ ðd0αÞ1=2FðR=d0; θÞ þ const; ð1Þ

where F ¼ CF1 is a dimensionless function. At distances
R ≫ d0, equivalent to the mathematical assumption R → ∞,
one can assume that the influence of the gap d0 is small. Under
this condition, the function F should approach a power-law
scaling form (Yarin, 2007):

FðR=d0; θÞ ≈ ðR=d0Þ1=2ΨðθÞ; ð2Þ

where ΨðθÞ is a dimensionless function. Finally, Eq. (1) takes
the asymptotic self-similar form, independent of d0:

Φ ¼ ðαRÞ1=2ΨðθÞ þ const. ð3Þ

The solution in Eq. (3) should also satisfy the Laplace
equation (Landau, Lifshitz, and Pitaevskii, 1984; Smythe,
1989; Feynman, Leighton, and Sands, 2006). Thus, one finds
the function Ψ (Taylor, 1964):

ΨðθÞ ¼ P1=2ðcos θÞ; ð4Þ

where P1=2 is the Legendre function of the order of 1=2, which
takes value P1=2ðcos θÞ ¼ 0 whenever θ ¼ θ0, with θ0 the
angle value matching the equipotential condition Φ ¼ const.
In other words, the free surface becomes equipotential only
when θ corresponds to the single zero of P1=2ðcos θÞ in the
range 0 ≤ θ ≤ π, which Taylor found to be equal to θ0 ¼
130.7° (Taylor, 1964) using the tabulated values (Gray, 1953)
of the function P1=2ðcos θÞ. According to the self-similar
equilibrium solution, the fluid body should so be enveloped by
a cone with the half angle at its tip, βT ¼ π − θ ¼ 49.3°, i.e.,
the half-angle value associated with the Taylor cone [Fig. 11
(b)]. Other studies on self-similar solutions analyzed dielectric
liquids with varied permittivity (Ramos and Castellanos,
1994a, 1994b), finding that stationary cones can be formed
only for ε > 17.6 (in cgs). By including the effect of the
deviation of the surface shape from the conic one, such an
inferior limit for the permittivity was later increased to 22.2,
corresponding to a half-angle value 39.25° (Zubarev, 2002).
The local behavior of various physical quantities (e.g., fluid
velocity, surface curvature, electric current) could be deter-
mined, analyzing the nonlinear dynamics of the liquid cone
for inviscid incompressible fluids (Zubarev, 2002, 2006;
Belyaev, Zubarev, and Zubareva, 2019).
Power-law scalings resulting in self-similar solutions like

that shown in Eq. (3) are common in the boundary-layer
theory (Zel’dovich, 1937; Schlichting, 1979; Zel’dovich,
1992; Yarin, 2007). In particular, such self-similar solutions
for jets and plumes, considered to be issuing from a pointwise
origin, in reality correspond to the non-self-similar solutions
of the boundary-layer equations (the Prandtl equations) for
jets and plumes that are issued from finite-size needles, at
distances much larger than the needle size (i.e., such solutions
constitute remote asymptotics). For instance, the self-similar
solution for capillary waves generated by a weak impact of a
droplet onto a thin liquid layer emerges at distances from the
center of impact much greater than the droplet diameter (Yarin
and Weiss, 1995; Yarin, Roisman, and Tropea, 2017). The

self-similar solution in Eq. (3), motivated by the same idea,
was expected by Taylor to correspond to the limiting behavior
of all non-self-similar solutions at R ≫ d0. In fluid dynamics,
there are several contexts where self-similar asymptotics can
be experimentally realized. For example, fluid flows involving
boundary layers near a solid wall or free flows reveal the self-
similar asymptotics, even though the experimental setup
contains some details that are noncompliant with the assump-
tions of self-similarity (Yarin, 2007). In this situation, one can
say that the flow pattern evolves to the self-similar solution,
i.e., that a dynamic system evolves toward its attractor. Then,
the non-self-similar solutions (e.g., the initial flow pattern) are
“attracted” by the self-similar solutions. Indeed, the fact that
the self-similar behavior can be experimentally realized
directly evidences that it attracts the initially non-self-similar
fluid flows, a behavior that is usually consistent with physical
phenomena governed by parabolic PDEs for submerged jets
(Schlichting, 1979; Yarin, 2007) and plumes (Zel’dovich,
1992). On the other hand, the self-similar Taylor cone
solution, stemming from the elliptic Laplace equation, sig-
nificantly disagrees with the experimental data (Yarin,
Koombhongse, and Reneker, 2001b; Yarin, Pourdeyhimi,
and Ramakrishna, 2014) for electrified polymer fluids, leading
to the conclusion that realizing the self-similar solution could
be experimentally impracticable. It was also shown, by means
of numerical simulations, that it does not attract the transient
evolution at the tip of the fluid cone (Reznik et al., 2004). An
analogous observation on a self-similar solution that does not
attract the corresponding non-self-similar one was found in
the problem described by the biharmonic (elliptic operator
squared) equation, namely, in the case of a wedge subjected to
a concentrated couple of forces at its tip. This is known as the
Sternberg-Koiter paradox (Sternberg and Koiter, 1958;
Barenblatt, 1996) in the theory of elasticity. In electro-
spinning, an approximate non-self-similar solution was
found instead in the form of a prolate hyperboloid of
revolution (Yarin, Koombhongse, and Reneker, 2001b;
Yarin, Pourdeyhimi, and Ramakrishna, 2014), which has
finite curvature at the tip; see Yarin, Koombhongse, and
Reneker (2001b) for a detailed explanation of the procedure
used to find this solution. Here we recall that the half-angle at
the tip of the cone to which the hyperboloid leans is 33.5°,
which is significantly smaller than the angle originally
obtained for the Taylor cone (49.3°), and quite close to
experimental data [Fig. 11(b)].
In experiments with water (Taylor, 1964), it would be

difficult to approach the critical drop shape because perturba-
tions disrupt the equilibrium much earlier, thus making it
impossible to measure the critical half angle at the tip
accurately. On the other hand, in experiments with polymer
solutions perturbations are suppressed by the viscoelastic
behavior of the fluid jet (Yu, Fridrikh, and Rutledge, 2006),
and equilibrium can be approached closely [Fig. 11(b)].
Figure 12 shows the predicted and measured shapes of a
polycaprolactone (PCL) droplet at different moments. The
numerical predictions slightly underestimate the stretching rate,
but the overall agreement is fairly good. The early supercritical
regime leads to jets generated from the cones with half angles of
25° to 30°, which supports the assumption that the critical
droplet shapes are close to those predicted with a half angle of
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33.5° rather than to 49.3° in this specific regime (Reznik et al.,
2004). However, this statement should be made with caution
because in early supercritical dynamical cases half angles can
be smaller because of the presence of the jet protrusion.
This dynamics strongly depends on the viscoelastic proper-

ties of the used fluid. For instance, experiments on drop
evolution in a high-voltage electric field have also been
reported with water (Zhang and Basaran, 1996), showing a
behavior quite different from that of highly viscous and elastic
fluids used in electrospinning. For low-viscosity liquids,with
Ca in the range 10−5–10−3 (Zhang and Basaran, 1996),
electrospraying can occur; i.e., the dripping regime is easily
reached, as described in Sec. II. Sometimes small droplet
emission from the cone tip begins at half angles close to 45°
(Michelson, 1990), and sometimes close to 49° (Fernandez de
la Mora, 1992, 2007). The dynamical evolution of the fluid
cone in presence of an electric field was theoretically inves-
tigated in the context of liquid-metal ion sources and found to
reach an angle equal to the Taylor value (Zubarev, 2001;
Suvorov and Zubarev, 2004; Boltachev, Zubarev, and
Zubareva, 2008). The cone dynamics was also studied for a
perfectly conducting liquid to describe the mode of drop
formation changing from simple dripping to so-called micro-
dripping (Notz and Basaran, 1999). Furthermore, the critical
droplet shapes and the dripping regime from a liquid film of
finite conductivity were carefully studied and numerically
simulated in the framework of electrospray ionization, show-
ing that EHD tip streaming phenomena do not occur if the
liquid is perfectly conducting or perfectly insulating and

highlighting a universal scaling law for the size and for the
charge carried by the droplets that are emitted (Collins, Harris,
and Basaran, 2007; Collins et al., 2013). Recent works aimed
at also including the effects of charge relaxation to catch the
transient EHD response in low-conductivity fluids (Gañán-
Calvo et al., 2016; Pillai et al., 2016).
In general, dripping from low-viscosity liquids can lead to

significant space charge from these small droplets. The
backward electric effect of the charged droplets on the tip
of the cone was shown to lead to the half-angle in the 32°–46°
range (Fernandez de la Mora, 1992). On the contrary, since
breakup of small threads and filaments is generally prevented
by viscoelastic effects in electrospinning (Yarin, 1993;
Reneker et al., 2000; Yarin, Koombhongse, and Reneker,
2001a; Yarin, Pourdeyhimi, and Ramakrishna, 2014), it is
highly unlikely that the half-angle values found in the
experiments with electrospun polymeric liquids can be attrib-
uted to space charge effects.

2. Onset of electrified jets

Electrospun jets are straight in their initial path
(Fig. 13), where the growing bending perturbations are
still small (Reneker et al., 2000; Yarin, Pourdeyhimi, and
Ramakrishna, 2014). Indeed, the longitudinal stress σ due to
the external electric field (acting on the charge carried by the
jet) stabilizes the fluid filament for some distance from the
nozzle (Reneker et al., 2007). A similar trend was also noted
in uncharged fluid threads of cylindrical shape, where the time
of growth of the hydrodynamic instability was reported to
scale logarithmically with the strain rate in hyperbolic exten-
sional flow (Khakhar and Ottino, 1987). Furthermore, as long
as the jet is sufficiently thick, it has a high bending stiffness
since this stiffness scales with the jet cross-section radius

FIG. 12. Measured and predicted shapes (vertical coordinate z
vs radial coordinate r) of a PCL droplet at different times during
deformation under an applied electric field: (i) t ¼ 0, (ii) 101.5,
(iii) 201.5, (iv) 351.5, (v) 501.5, (vi) 601.5, (vii) 651.5,
(viii) 701.5, (ix) 731.5, and (x) 756.5 ms. Both r and z are
rescaled by the initial base radius r0 of the droplet. Results from
calculations are shown by solid lines on the right side of the drop
(numerals are located at their tip points). The experimental shapes
are plotted as dotted lines. On the left side of the drop, the values
of the radial coordinate (here r) are made negative. Adapted from
Reznik et al., 2004.

FIG. 13. Modified Taylor cone, with the transition zone,
and the beginning of a thin, electrified polymer solution jet.
Here the cross-sectional radii at the beginning and the end of the
transition zone are denoted ab and ae, respectively. These
quantities are measured by analyzing a 6 wt % aqueous solution
of PEO (solution density ≅1 g=cm3, zero-shear viscosity
50 g cm−1 s−1, surface tension ¼ 61 g=s2). Adapted from Han,
Yarin, and Reneker, 2008.
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as ∼r4 (Reneker et al., 2000; Yarin, Pourdeyhimi, and
Ramakrishna, 2014). The combined effects of the bending
stiffness and of the longitudinal stress thus lead to the initial
straight path of the jet. A detailed investigation, including
measurements of longitudinal stresses and thinning rates on a
6 wt % aqueous solution of PEO, found that longitudinal
stress rescaled to the capillary pressure σr=2α span approxi-
mately from 10 up to 100 in the straight path zone (Han,
Yarin, and Reneker, 2008).
This straight region is relatively easy to investigate exper-

imentally compared to that of the droplet-jet transition.
Therefore, the theoretical description of the straight jet
profile attracted significant attention. For describing the
flow near the origin of the electrified jet, it is natural to
use quasi-1D equations (Yarin, 1993; Yarin, Pourdeyhimi, and
Ramakrishna, 2014) and to consider jets as slender bodies
with slow changes of the cross-sectional radius r in the
longitudinal direction, as illustrated in Sec. IV. This approach
was adopted in a number of works for Newtonian fluids
(Taylor, 1966; Melcher and Warren, 1971; Kirichenko et al.,
1986; Li, Halsey, and Lobkovsky, 1994; Gañán-Calvo, 1997a,
Gañán-Calvo, 1997b; Cherney, 1999a, 1999b; Stone, Lister,
and Brenner, 1999; Hohman et al., 2001a; Feng, 2002, 2003;
Fridrikh et al., 2003; Barrero and Loscertales, 2007). The
regime of steady, straight stretching, and particularly the
asymptotic behavior at a sufficiently long distance from
the spinneret, was also studied for non-Newtonian fluids with
rheology described by the Oswald–de Waele power law
(Spivak and Dzenis, 1998; Spivak, Dzenis, and Reneker,
2000). Other approaches, incorporating empirical models for
the elongational viscosity (Feng, 2002) or the Giesekus
constitutive equation (Feng, 2003) in the slender body theory,
have also been developed.
In solving the quasi-1D equations, solutions for the jet flow

should also be matched with the droplet or meniscus region.
For example, this could be achieved by the standard method of
matched asymptotic expansions (van Dyke, 1964). In this
way, one could match the jet flow with a conical semi-infinite
meniscus (Cherney, 1999a, 1999b). A drop shape with a
Taylor cone of 49.3° was chosen, which could be rather
questionable, as described in Sec. V.A.1. Moreover, complete
asymptotic matching was not achieved, as the solutions for the
velocity, the potential and the field strength, and the free-
surface configuration are all discontinuous (Cherney, 1999a,
1999b). A formal inconsistency of Cherney’s analysis was
pointed out in a later study (Higuera, 2003). Approximate
approaches were largely tested to tackle these difficulties,
particularly by extending the quasi-1D jet equations through
the entire droplet up to its attachment to the needle (Gañán-
Calvo, 1997a, 1997b, 1999; Hohman et al., 2001a; Feng,
2002, 2003). This is quite reasonable as a first approximation;
one should keep in mind that the flow in the drop region might
have 2D character. Another complication arises from the
electric part of the problem, where the image effects (Hohman
et al., 2001a) at the solid wall should be taken into account. In
fact, the electrical prehistory effects, namely, the image effects
responsible for a detailed electrode shape, etc., were found to
be important only for a thin boundary layer (Feng, 2002),
adjacent to the cross section where the initial conditions are

imposed (i.e., at the needle exit). Accordingly, the quasi-1D
equations (Feng, 2002) could be applied when moving the jet
origin to a cross section in the droplet (to the distance of the
order of the apparent height of the droplet tip). Based on this
idea, the flow in the jet region was matched to the one in the
droplet (Reznik et al., 2004). The electric current-voltage
characteristic I ¼ IðΔΦ0Þwas predicted in this way, as well as
the flow rate Q in electrospun viscous jets. The predicted
IðΔΦ0Þ dependence is nonlinear due to the convective
mechanism of charge redistribution superimposed on the
conductive (Ohmic) one. Several other 2D calculations of
the transition zone between a droplet and the electrically
pulled Newtonian jet have been published (Hayati, 1992;
Reneker et al., 2000; Higuera, 2003; Yan, Farouk, and Ko,
2003; Han, Yarin, and Reneker, 2008; Yarin, Pourdeyhimi,
and Ramakrishna, 2014), studying the straight part of elec-
trified, viscoelastic jets, and highlighting large elastic stresses
and thus elongational viscosity, which is an additional
stabilizing factor disfavoring the early onset of bending
instabilities, as well as suppressing the capillary instability.

3. Electrohydrodynamic behavior

Models highlighting EHD effects in jets benefited from
studies in the fundamental physics of uncharged, fluid
cylindrical threads moving in air or other fluids (Tomotika,
1936; Kase and Matsuo, 1965; Matovich and Pearson, 1969;
Khakhar and Ottino, 1987). Results obtained in these contexts
were supplemented by elements of electrohydrodynamics to
analyze charged fluids stressed by electric fields (Saville,
1970, 1971a, 1971b). Both axisymmetric (Bassett, 1894) and
nonaxisymmetric (Saville, 1971b) modes were predicted for
charged viscous cylindrical threads, and viscous effects were
found to damp axisymmetric deformations (responsible for
the capillary instability) more than nonaxisymmetric ones
(Saville, 1971b). In particular, following experimental insights
(Magarvey and Outhouse, 1962; Huebner, 1969, 1970),
Saville theoretically observed that an increasing amount of
electrical charge carried by a liquid jet causes the amplifica-
tion of nonaxisymmetric disturbances, today commonly
known as bending and whipping instabilities, which imprint
a sinusoidal shape on the cylindrical thread (Saville, 1971b).
Later several groups investigated the stability of nonaxisym-
metric modes in electrified cylindrical jets under an external
electric field (Reneker et al., 2000; Hohman et al., 2001a,
2001b; Shin et al., 2001; Yarin, Koombhongse, and Reneker,
2001a; Fridrikh et al., 2003; Li et al., 2013). Extending the
overview to the dripping regime, Collins, Harris, and Basaran
(2007) numerically probed the breakup of electrified jets in the
range of slightly viscous and moderate viscous jets, corre-
sponding to capillary number values ∼10−3 and 10−1. Further,
López-Herrera, Gañán-Calvo, and Perez-Saborid (1999) and
López-Herrera and Gañán-Calvo (1999) investigated the
capillary jet breakup of conducting liquids with different
viscosities under external electrostatic fields. In the framework
of electrospinning, starting from a previous 1D approximation
of the Navier-Stokes equation (Entov and Yarin, 1984b;
Eggers and Dupont, 1994; Eggers, 1997), Hohman et al.
(2001a, 2001b) extended the Saville model to account for the
presence of surface charge on the jet with a finite conductivity
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between two plane metallic electrodes, leading to an Ez axial
component of the electric field. The jet was schematized as
shown in Fig. 14, namely, as a continuous slender body with
surface charge density σq and the fluid assumed to have
permittivity ε, density ρ, and kinematic viscosity ν. The
dynamics was described in a gravitation field with acceler-
ation g directed along the jet axis, and in a surrounding
medium with dielectric constant εair (free space outside the
jet). The following quasi-1D equations account for the mass
conservation (the continuity equation), the charge conserva-
tion, the momentum balance (following from the Navier-
Stokes equation) of a fluid element along a cylindrical jet of
radius r and electrostatic potential Φ between the parallel
electrodes, respectively (Hohman et al., 2001a):

∂
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∂z ðπr

2υÞ ¼ 0; ð5Þ

∂
∂t ð2πrσqÞ þ

∂
∂z ðπr

2σeEz þ 2πrσqυÞ ¼ 0; ð6Þ

∂υ
∂tþ

∂
∂z

�
υ2

2

�
¼−1

ρ

∂p
∂zþgþ2σeEz

ρr
þ3ν

r2
∂
∂z

�
r2
∂υ
∂z

�
; ð7Þ

Φðz; r0Þ ¼ Φ∞ −
�
1

ε
σq r − ε − εair

2εair

dðEzr2Þ
dz

�
ln
r0

L
. ð8Þ

Here p is the internal pressure in the fluid, estimated by
Hohman and co-workers as p ¼ kα − E2½ðε − εairÞ=2�−
σ2q½1=ð2εairÞ�, with k the local curvature and α the surface
tension since the pressure term also includes the Laplace
contribution due to the surface tension. υ is the axial velocity
of the jet to the leading-order constant in the jet cross section.
In Eq. (8), L indicates the characteristic axial length scale
(determined by the shape of a jet as it thins away from the
nozzle), whereas Φ∞ indicates the electrostatic potential at a
large radial distance r0. Asymptotic descriptions of the EHD
equations were developed for a quantitative comparison with
experiments (Hohman et al., 2001a). It was also noted that the
Laplace contribution is itself depending on the jet radius,
which could be explicitly taken into account, i.e.,

kα¼α=½1þð∂r=∂zÞ2�1=2fð1=rÞ−ð∂2r=∂z2Þ=½1þð∂r=∂zÞ2�g,
where rðz; tÞ is the radius at the jet position z at time t (Lee,
1974). The electric current I carried by the jet is given by the
sum of a bulk Ohmic component and a surface advection
component associated with the surface charge density
I ¼ πr2σeEz þ 2πrσqυ. Finally, the solvent evaporation and
the jet viscoelasticity are neglected.
Using the linear stability analysis, three modes of the

instability can be identified (Reneker et al., 2000; Hohman
et al., 2001a, 2001b; Shin et al., 2001; Yarin, Koombhongse,
and Reneker, 2001a; Yarin, Kataphinan, and Reneker, 2005):
(i) an axisymmetric instability that extends the classical
phenomenon of the Rayleigh capillary instability (Rayleigh,
1878) to the case of electrified jets; (ii) another instability
mode that is also axisymmetric, named conducting since it is
found only for fluids with finite, nonzero conductivity; (iii) a
nonaxisymmetric, bending or whipping instability, that is, also
electrically driven, in which the jet axis bends but the cross
section stays circular. Branching instability is also found,
which is the electrically driven instability developing on the
background of the bending instability, but with the jet cross
section acquiring multilobe shapes rather than staying circular.
In other works, the boundary conditions at the nozzle were

analyzed in detail and non-Newtonian rheology was consid-
ered (Feng, 2002, 2003), which is important for polymer
solutions. Furthermore, the effects of the electrical conduc-
tivity and viscoelasticity on the jet profile during the initial
stage of electrospinning have been examined in depth (Carroll
and Joo, 2006). Viscoelasticity could be incorporated in the
EHD equations by modeling the fluid rheology with the
Oldroyd-B constitutive equation (Prilutski et al., 1983;
Mackay and Boger, 1987), or the upper-convected Maxwell
(UCM) model (Reneker et al., 2000; Yarin, Koombhongse,
and Reneker, 2001a; Yarin, Pourdeyhimi, and Ramakrishna,
2014). Increasing the conductivity (which can be attempted,
for instance, by adding a salt to the solution) or the fluid
viscoelasticity resulted in delayed and more rapid jet thinning.
Indeed, how fast the jet thins is complex and depends on other
parameters, such as the applied potential difference, namely,
the electric field in the region of space where electrospinning
takes place (Carroll and Joo, 2006). Axisymmetric instabil-
ities, and particularly axisymmetric conducting modes, were
reanalyzed for viscoelastic polymer solutions (Carroll and
Joo, 2008, 2009). The EHD equations for viscoelastic fluids
were also studied by using the PDE module in the COMSOL

MULTIPHYSICS software, which has also been applied to
analyze the electric field in a multijet configuration
(Angammana and Jayaram, 2011a, 2011c).

4. Electrically driven bending instability

Significant stretching and thinning of electrically driven
polymer jets diminishes bending stiffness (which, as antici-
pated in Sec. V.A.2, is proportional to r4, where r is the local
cross-sectional radius of the jet). Then, at some distance from
the needle, nonaxisymmetric perturbations begin to grow and
the electrically driven bending instability sets in (Reneker
et al., 2000). A typical bending path is shown in Fig. 4(b).
As explained in Sec. II, in this regime the characteristic
hydrodynamic time is significantly shorter than the charge

FIG. 14. Scheme of the continuous slender body representing
the jet in Eqs. (5)–(8). The coordinates ðz; r0Þ used in Eqs. (5)–(8)
are reported alongside the main parameters employed in
the model.
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relaxation time. Under such conditions the same liquid, which
behaved as a perfect conductor in the Taylor cone, behaves as
a perfect dielectric in the jet. Then the conduction component
of the electric current along the jet can be neglected, and the
charge transport is attributed entirely to the jet flow; i.e., the
charge is frozen in the liquid, leading to a purely advection
current.
The reason for the bending instability observed in experi-

ments may be understood as follows (Reneker et al., 2000). In
the frame of reference moving with a rectilinear electrified jet,
the electrical charges can be regarded as static and mutually
interacting according to Coulomb’s law (without the external
field). Such systems are known to be unstable according to
Earnshaw’s theorem (Jeans, 1958). Indeed, an off-axis mis-
alignment rapidly triggers bending instability driven by
electrostatics, with an exponentially increasing amplitude.
To illustrate this mechanism, one can consider three pointlike
charges, each with a value of q and originally located on a
straight line at A, B, and C, along the longitudinal axis of the
jet, as shown in Fig. 15. Two Coulomb forces with magnitudes
F ¼ q2=l2

1 push against charge B from opposite directions.
Here l1 indicates the distance between two charges and the
Coulomb constant is left out because kC ¼ 1 in cgs units
(Sommerfeld, 1952). If a perturbation causes the charge B to
move off the line by a distance δ to point B0, a net force
F1 ¼ 2F cos θ ¼ ð2q2=d3CÞδ acts on that charge, where θ is
the angle between the perturbed AB0 and CB0 directions and
the perpendicular to the jet axis. This net force is acting in the
direction perpendicular to the original jet line and leads the
charge initially at point B to move farther in the direction of
the perturbation, namely, away from the line between the two
fixed charges A and C. The growth of the small bending
perturbation in the linear approximation is then given by

m
d2δ
dt2

¼ 2q2

l3
1

δ; ð9Þ

where m is the mass of the particle and l1 is shown in Fig. 15.
The growing solution of Eq. (9), δ ¼ δ0 exp½ð2q2=ml3

1Þ1=2t�,

highlights that small bending perturbations increase exponen-
tially, sustained by the corresponding decrease of the electro-
static potential energy. If the charges A, B, and C are attached
to a liquid jet, other forces that are associated with the liquid
tend to counteract the electrically driven instability. For thin
liquid jets, the influence of the shearing force related to
bending stiffness ∼r4 can be neglected compared with the
stabilizing effect of the longitudinal forces fl, which are of
the order of r2 (Yarin, 1993). In fact, the longitudinal force at
the cross section at the onset of the bending instability is
determined by the end of the straight section of the jet. The
forces fl are directed along B0C or B0A according to the
scheme in Fig. 15 and are the opposite of the local Coulomb
force. If such Coulomb force F is larger than the viscoelastic
resistance, the bending perturbation continues to increase, but
at a rate diminished by fl. To describe the viscoelastic
response, the Maxwell model (Maxwell, 1867; Ferry, 1980;
Morozov and Spagnolie, 2015) assumes that the dumbbell
defined by each pair of particles supports a stress σ that
changes as that of system with a spring (Hooke’s law) and a
damper having a relaxation time θ ¼ μ=G, where G is the
elastic modulus and μ is the viscosity. In addition, the surface
tension also counteracts the bending instability because
bending always leads to an increase in the jet surface area.
Hence, surface tension resisting the reaching of significant
curvature tends to limit the smallest possible perturbation
wavelengths, although surface tension effects might be neg-
ligibly small compared to the electric and viscoelastic forces
in electrospinning.
The linear stability theory of bending in an electrified

polymer solution jets yielded the following characteristic
equation for the growth rate γ of such perturbations (Yarin,
Koombhongse, and Reneker, 2001a):

γ2 þ 3

4

μχ4

ρr20
γ þ

�
α

ρr30
− e20 lnðL=r0Þ

πρr40

�
χ2 ¼ 0; ð10Þ

where χ ¼ 2πr0=lP is the dimensionless wave number (lP is
the wavelength of the perturbation), μ is the dynamic
viscosity, r0 and e0 are the unperturbed values of the cross-
sectional jet radius and of the electric charge per unit
jet length, respectively, and L is the cutoff jet length.
Equation (10) accounts for the shearing force and moment
of forces in the jet cross section, namely, for the bending
stiffness. It also shows that the destabilizing electric force
overcomes the stabilizing effect of the surface tension (the
only stabilizing effect here) if e20 lnðL=r0Þ > απr0. If this
condition is not fulfilled, the capillary and bending instabil-
ities are concurrent, as indeed observed in experiments with
viscous organic oils (Malkawi, Yarin, and Mashayek, 2010)
and shown in Fig. 16. More details about these aspects are
reviewed in Sec. V.B.2.
The nonlinear theory of the bending instability of visco-

elastic polymeric jets in electrospinning was developed by
Reneker et al. (2000), Yarin, Koombhongse, and Reneker
(2001a), and Yarin, Pourdeyhimi, and Ramakrishna (2014).
As previously explained, for thin jets the effect of the shearing
force, as well as the bending stiffness, can be neglected (Yarin,
1993). Then, in this momentless approximation, a curvilinear

FIG. 15. Sketch of the Earnshaw instability, leading to bending
of the electrified jets. Adapted from Reneker et al., 2000.
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parameter s can be introduced. It might be considered a
Lagrangian coordinate reckoned along the jet, and it takes the
values s ¼ 0 and l0 at the nozzle and at the free jet
termination, respectively. Here l0 is the initial arc length of
the jet, and any value of s ∈ ð0; l0Þ represents a jet element in
an univocal way (the s value is frozen in the jet elements).
Thus, the quasi-1D continuity equation and the momentum
balance equation take the form

λf ¼ λ0f0; ð11aÞ

ρλ0f0
∂υ
∂t ¼ τ

∂P
∂sþλjkjPn−ρgλ0f0k

þλjkj
�
απr−e2L ln

�
L
r

��
n−λeL

ΔΦ
h

k. ð11bÞ

Equation (11a) is the continuity equation, where λ is the
geometrical stretching ratio, i.e., λ ¼ j∂ξ=∂sj, with ξðs; tÞ ∈
½0;l� the arc length reckoned along the bent jet axis and
fðs; tÞ ¼ πr2 the cross-sectional area. The cross section can be
assumed to stay circular even in bending jets, which is a
plausible approximation (Yarin, 1993). The fluid is incom-
pressible (fluid volume preserved). The subscript 0 denotes
the parameter values at time t ¼ 0, namely, the unperturbed
values. Equation (11b) expresses the momentum balance, with
υðs; tÞ the liquid velocity, Pðs; tÞ ¼ ðλ0f0=λÞσðs; tÞ the longi-
tudinal force in the jet cross section (of viscoelastic origin in
the case of electrospun polymeric jets, or solution-blown jets),
gk the gravity acceleration (the unperturbed jet is, in general,
implied to be in the vertical direction), t the time, eL the
electric charge per unit length, and n the local principal
normal unit vector of the jet axis. ΔΦ0=h is the external
electric field intensity (the external field is assumed to be
parallel to the unit vector k, with ΔΦ0 and h the values of the
electrical potential bias and the distance between the jet origin
and a collector, respectively). The overall configuration is
displayed in Fig. 17. On the right-hand side of the momentum
equation (11b), the following forces are accounted for: the

longitudinal internal force of rheological origin acting on the
jet (the first two terms), gravity (the third term), the bending
electric force versus the stabilizing effect of the surface tension
(the fourth term), and the force due to the external electric field
(the fifth term).

B. Lagrangian models

This section reviews the general features of the Lagrangian
formulation for modeling of the electrospinning process. The
advantages of the Lagrangian formulation are summarized at
first, contextualizing some aspects anticipated in Secs. IV
and V.A through some electrospinning models based on it.
Then several application scenarios are reviewed, with specific
attention paid to physical insight obtained in the theoretical
framework.

1. Why the Lagrangian formulation?

It is possible to write the momentum balance, quasi 1D in
Eq. (11b), in the 3D framework, allowing for the simulation of
the full electrospinning process by numerical solvers. At a first
inspection of the force terms, it is easy to realize that although
the external electric field provides a global force the other force
terms driving the jet dynamics are mostly local [Eq. (11b)].
The locality would seem to suggest numerically solving the
momentum balance equation at specific positions in space as a
function of time, i.e., with an Eulerian frame of reference.
Nonetheless, the presence of constitutive relations between
stress and strain, describing the deformation of the jet, makes
the Eulerian description less than optimal for the numerical
solution of actual models. Indeed, jets flowing at high speed
undergo stress-induced deformations that depend on rheology.
As a consequence, a memory of such deformations is locally
stored on the traveling jet as a “fingerprint.” If viscous forces
do not dissipate the local signatures, they are transported by the
flow field. The electrospinning process presents exactly these
features, with a deformable interface moving rapidly over the
space toward the collector counterelectrode.
The strength of the Lagrangian formulation is the retention

of fluid element identity that is stored in memory with a set of

FIG. 16. Breakup of electrified corn oil jets, generated with a
fixed flow rate of 30 ml=min (corresponding to a velocity of
10 m=s at the injection orifice) and applied voltages (a) −8 kV
and (b) −10 kV applied between the needle orifice and the
nozzle of an atomizer. Adapted from Malkawi, Yarin, and
Mashayek, 2010.

FIG. 17. Sketch of an element of a curved jet of length Δξ
and the associated internal frame of reference, with normal n,
binormal b, and tangent vector τ, used in Eq. (11b).
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observables (e.g., position, velocity, etc.) describing its state at
a given instant. Instead, the Eulerian description of the jet over
a grid of fixed points would suffer memory loss because the jet
elements are not tracked over the fluid dynamics.
Summarizing, the choice of the optimal description is

usually dependent on how far a piece of local information
is transported by the dynamics. As a consequence, it is not
surprising that the Lagrangian formulation has mostly been
adopted in simulations of turbulent flows, where the ratio of
inertial forces to viscous forces (the Reynolds number) is of
the order of several thousand (Meneveau, Lund, and Cabot,
1996; Bennett, 2006). Moreover, a number of Lagrangian
methods have been introduced to treat several problems of
fluid dynamics where a local state of a system is moved over
the space. Among them, we recall molecular dynamics,
dissipative particle dynamics, and smoothed particle hydro-
dynamics (Gui-rong, 2003; Liu and Liu, 2016), to name a few.
In 1994, the first notable example of a Lagrangian particle

method for the simulation of electrically driven fluid
dynamics was presented in the context of electrospray
modeling (Gañán-Calvo et al., 1994). This effort high-
lighted the efficiency of the Lagrangian formulation in
modeling highly dispersed charged droplets emitted from
an electrified conical meniscus toward a collector. In this
description, each particle represented a charged droplet with
appropriate mass and charge.
An electrospun jet is a more complex system that, however,

lies in a 1D space over its arc length ljet, namely, the length of
the curve drawn by the axis of the jet. As mentioned in Sec. IV,
in 2000, the Reneker and Yarin groups introduced the first
Lagrangian model for electrospinning (Reneker et al., 2000),
where the jet was treated as a 1D chain of particles, connected
pair by pair through viscoelastic springs extending over the jet
curve. In this framework, each particle represents a volumetric
portion of the jet with given mass and charge. Each pair of two
consecutive connected particles along the chain acts as a
viscoelastic dumbbell, with the distance between the two
extreme points modeling the stretch ratio of the jet (as well as
the surface to volume ratio).

2. Quasi-one-dimensional Lagrangian models

An electrospun fluid undergoes an increase in the tensile
stress as it passes from the Taylor cone to the straight jetting
region through a transient zone. The experimental data show
that the rate of strain _ε is of the order of 100–1000 s−1 in this
region, which provides an extremely high longitudinal vis-
coelastic stress (Han, Yarin, and Reneker, 2008). This widely
affects both the shape and the charge distribution of the jet
already at the initial stage of the dynamics; hence, developing
a reliable modeling for this zone is critically important. The
charge distribution formed here has a substantial effect on the
further evolution of the jet, considering that the bending
instabilities are related mainly to the intrajet repulsive
Coulomb force. Thus, the Lagrangian discretization of the
quasi-1D set of Eqs. (11a) and (11b) reported in Sec. V.A.4
has been employed in multiple theoretical investigations
(Reneker et al., 2000; Kowalewski, Błoński, and Barral,
2005; Carroll and Joo, 2011; Rafiei et al., 2013; Lauricella,
Pontrelli, Coluzza et al., 2015a). In a 1D framework, given the

z axis and approximating the stretching ratio λ ¼
j∂ξ=∂sj ≈ ljetðtÞ=l0, the position of a jet element under
stretching is traced by the relation zðtÞ ¼ λðtÞ s in an univocal
way. Thus, a discrete set of position values fzigi¼1;…;n with
zi ¼ λ si can be inserted into Eq. (11b), obtaining a
Lagrangian discretization of the continuous object.
The simplest model exploits the jet discretization in two

particlelike beads u and d with the same mass m and charge q
describing a charged drop (Fig. 18). The upper bead u is held
fixed to the nozzle at zu ¼ 0, while the lower one d is free to
move and initially placed at distance zd ¼ l0. Neglecting the
gravitational force, the quasi-1D momentum balance equation
along the unit tangent jet vector τ for the free d bead reads

m
∂υ
∂t ¼ −πr2σ þ q

ΔΦ0

h
þ q2

l2
; ð12Þ

where l ¼ zd − zu is the mutual distance between the two
beads equal to the entire jet length, l ¼ ljet, by construction, r
is the cross-sectional radius, and ΔΦ0 is, as usual, the
difference in electric potential between the nozzle and the

FIG. 18. Schematic drawing of the electrospinning process
(not in scale), highlighting the two particle-like beads used in
the quasi-1D model. The two beads are connected by a linear,
viscoelastic dumbbell. h, distance between the collector plate
and the nozzle; ΔΦ0, applied voltage difference between the
two elements; z, reference axis coordinate, whose origin is
fixed at the injection point. Adapted from Lauricella, Pontrelli,
Coluzza et al., 2015b.
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collector placed at distance h. Here the internal viscoelastic
force πr2σ is modeled by a constitutive equation. The UCM
model is a plausible rheological representation for semidilute
and concentrated polymeric liquids under uniaxial, strong
elongational flows (Chang and Lodge, 1972; Stelter et al.,
2000; Yarin, Pourdeyhimi, and Ramakrishna, 2014). Denoting
G as the elastic modulus and μ as the viscosity of the fluid, the
simplest UCM in its linear version, namely, the Maxwell
model (Maxwell, 1867; Ferry, 1980; Morozov and Spagnolie,
2015), reads

∂σ
∂t ¼ G_ε − G

μ
σ; ð13Þ

where _ε ¼ ∂l=l∂t is the strain rate. Applying the condition of
volume conservation πr20l0 ¼ πr2l and the kinematic relation

∂z
∂t ¼

∂l
∂t ¼ υ; ð14Þ

this simple model allows one to probe the initial dynamics of
the electrified jet. To adopt a dimensionless form of the EOM,
the dimensionless quantities reported in Table II can be
conveniently used so that, for instance, the dimensionless
form of Eq. (12) reads

∂ῡ
∂ t̄ ¼ Fυe

σ̄

l̄
þ V þQ2

e

l̄2
: ð15Þ

Using Eq. (15), Reneker et al. (2000) inspected the time
evolution of the viscoelastic force term for the typical values
of experimental relevance,Qe ¼ 12, V ¼ 2, and Fυe ¼ 12. As
shown in Fig. 19, the external electric field acts along all of the
dynamics, stretching the initial jet with magnitude propor-
tional to the distributed charge (Lauricella, Pontrelli, Coluzza
et al., 2015b). While the dynamics proceeds, the viscoelastic
force increases up to a peak value within the dimensionless
time t̄ ≤ 1, remaining the dominant force term up to t̄ ∼ 2. As
the stress reaches its peak value [Fig. 19(a)], lasting about up
to t̄ ∼ 1, the velocity comes to nearly constant value, then
reaching a linear regime in the jet length evolution in time,
l̄ ∝ t̄ [Fig. 19(b)]. After this point, the viscoelastic force starts

to decay due to viscoelastic relaxation with relaxation time θ
and is no longer able of sustain the expanding “pressure” of
the electrostatic interactions (repulsive Coulomb and external
potential forces). Thus, the linear regime cannot last long and
the jet expansion is described by a regime with a jet length
evolving in time as l̄ ∝ t̄2. In this portrait of regimes, the
quasistraight path is experimentally observed as the initial
dynamics of the process (the linear regime). Here the
viscoelastic force not only provides stiffness necessary to
maintain the jet straight but also plays the dominant role in
stabilization. Given the importance of the viscoelastic term,
the model was extended to account for different types of non-
Newtonian behavior in the initial jet dynamics (Pontrelli et al.,
2014), particularly by adding a Herschel-Bulkley stress term
in Eq. (13) and including the yield stress for the description of
Bingham fluids (Bird, Armstrong, and Hassager, 1987). In this
way, Eq. (13) takes the form _σ ¼ ðG=μÞ½σ − σY þ Kð _l=lÞn�
so that the effective viscosity is μ ¼ Kj _l=ljn−1, with K a
prefactor having units of g sn−2 cm−1 and n a power-law

TABLE II. Definitions of the characteristic scales, dimensionless
derived variables, and groups employed in Sec. V.B.2.

Characteristic scales

L0 ¼ lstep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πa20ρ

2
V=G

p
t0 ¼ μ=G

σ0 ¼ G

Dimensionless derived variables

l̄i ¼ li=L0 R̄ij ¼ Rij=L0

k̄ ¼ kL0

Dimensionless groups

Vi ¼ qiV0μ
2=mihL0G2 Qe;ij ¼ qiqjμ2=L3

0miG2

Fve;i ¼ πa20μ
2=miL0G Ai ¼ απa20μ

2=miL2
0G

2

Fg ¼ gμ2=L0G2 Ks ¼ ωðμ=GÞ
H ¼ h=L0 Lstep ¼ lstep=L0

FIG. 19. (a) The longitudinal force Fυeσ̄=l̄ (solid line) and the
longitudinal stress σ̄ (dashed line) in the rectilinear part of the jet
for the case Qe ¼ 12, V ¼ 2, Fυe ¼ 12. (b) Time evolution of the
velocity ῡ (solid line) and the length l̄ (dashed line), here rescaled
by a factor of 1=5 (dotted line) to have both quantities conven-
iently plotted along the same vertical axis. Two stages of the
elongation process are observed. The first stage comes to a
quasistationary point (asterisk in both panels). At the second
stage, the velocity comes to a near linearly increasing regime.
Adapted from Lauricella, Pontrelli, Coluzza et al., 2015b.
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exponent. In particular, whenever the ratio σY=G is set equal to
0.8, a halved value was found in the jet linear extension during
the initial stage of electrospinning, due to an increase by
nearly 2 times in the value of the longitudinal viscoelastic
stress σ (Pontrelli et al., 2014). As a consequence, the jet
would soon start to show bending oscillations.
To simulate the electrospinning process in its entire

dynamics, one also needs to properly model the fluid injection
at the nozzle. Several algorithms addressed this issue (Reneker
et al., 2000; Kowalewski, Barral, and Kowalczyk, 2009;
Carroll and Joo, 2011; Lauricella, Pontrelli, Coluzza et al.,
2015a). Let us consider a simulation starting again with
two beads: a single massless point labeled i ¼ 0 and fixed
at z0 ¼ 0 representing the spinneret nozzle, and a second bead
(labeled i ¼ 1) modeling a pendant element of fluid of mass
m1 and charge q1. The second bead is placed at the initial
distance z1 ¼ l0 ¼ lstep from the nozzle along the z axis,
with initial velocity υs equal to the bulk fluid velocity in the
syringe needle. lstep represents the length step used to
discretize the jet in a sequence of beads. Once the traveling
jet bead reaches the distance z1 ¼ 2lstep away from the
nozzle, a new jet bead (i ¼ 2) is placed at a distance
z2 ¼ lstep from the nozzle with the initial velocity
υ2 ¼ υs þ υd, where υd denotes the dragging velocity compu-
ted as υd ¼ ðυ1 − υsÞ=2. The dragging velocity acts as an
additional term accounting for the drag effect of the electro-
spun jet on the last inserted segment, which preserves the
strain rate value at the jet point z2 before and after the bead
insertion. Hence, the procedure is repeated until a chain of n
beads representing the jet is obtained (Fig. 20). Note that the
injection bead does not alter the curvilinear parameter s,
which preserves its domain, s ∈ ½0;l0�, but adds an extra
element only in the set of values used to discretize the jet path.
On the other hand, the added bead represents a new jet parcel
of volume lstepπr20, mass mi, and charge qi so that the
extensive properties of the jet (total volume, mass, and
charge) increase after the insertion.
Adding the injection algorithm to Eq. (12), the momentum

balance equation along the unit tangent jet vector τ for the ith
bead reads

mi
∂υi
∂t ¼ −πr2uiσui þ πr2diσdi þ qi

ΔΦ0

h

þ qi
X
j¼1;n
j≠i

qj
jzi − zjj3

ðzi − zjÞ; ð16Þ

where the Coulomb repulsive force takes into account all
interactions with the other n − 1 jet segments and the tensile
force is computed as the stress difference between the upper
and lower dumbbell elements with extremes ðiþ 1; iÞ for the
ui dumbbell and ði; i − 1Þ for the di dumbbell, respectively,
along the bead chain (Fig. 20). In fact, the finite difference
ð − πr2uiσui þ πr2diσdiÞ approximates the derivative of the
longitudinal force along the fiber, that is, the term ∂P=∂s
in the continuum description of Eq. (11b).
Results from this quasi-1D model were compared to

experimental data (Carroll and Joo, 2011), with some dis-
crepancies found in stable jet profiles, which were

subsequently recovered by an amended version of the model.
First, the polymer fluid was described as an Oldroyd-B fluid,
whose rheology is described using two distinct contributions.
These include both a σp stress term, from the viscoelastic
dumbbell term (using the Maxwell model) due to the
polymeric component, and σs ¼ μs _γ, from a Newtonian
solvent in which the viscoelastic elements are immersed.
Consequently, the total tensile stress σ ¼ σp þ σs is computed
for each ith bead and inserted into Eq. (16). Second, the liquid
jet was considered a leaky dielectric rather than a perfect
conductor, thereby including the effect of finite conductivity
in the fluid. Thus, the charge qi in Eq. (16) is replaced by an

FIG. 20. Diagram of the jet modeled as a chain of 1D discrete
elements. Each element representing a jet segment is drawn as a
circle with a plus sign denoting its positive charge. The ith
element is along the chain between the upper and lower dumbbell
elements with extremes ðiþ 1; iÞ for the ui dumbbell and
ði; i − 1Þ for the di dumbbell, respectively, and it is stretched
under the external electric potential difference ΔΦ0. The cone at
the top of the figure represents the nozzle.
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effective charge qeff;i ¼ ceff;i qi, where ceff;i ¼ 1 −
ðIconduction=ItotalÞ is the charge fraction on the jet surface that
actually interacts with the electric field and the other charges.
In particular, ceff;i is computed by setting the total current
Itotal ¼ Iconvection þ Iconduction as an input parameter and evalu-
ating step by step at each ith bead the quantity
Ii;conduction ¼ πr2i σeΔΦ0=h, with σe the electrical conductivity.
With these amendments, the jet cross-section profiles rðxÞ
obtained by the Lagrangian model were found to be much
closer to the experimental data (Carroll and Joo, 2011). This is
illustrated in Fig. 21, which compares the jet profiles of
polyisobutylene Boger solutions at concentration of 4000 ppm
in low molecular weight polybutene solvent. Moreover, a
trend of the tensile stress was provided (Carroll and Joo,
2011), consisting of a rapid increase during the initial jet
stretching and subsequent decrease due to the stress relaxa-
tion, which is in agreement with theoretical findings (Reneker
et al., 2000). Thus, the comparison shows that the simplest
two-body version of the Lagrangian model was already able to
qualitatively catch the stretching process of the quasistraight
path in the jet. In a recent variant, the convection current term
Ii;convection ¼ 2πr2i υiσq was included in an extra ordinary
differential equation of the charge, which was solved to
compute the conduction charge fraction along the time
evolution (Divvela and Joo, 2017).
The fluid representation as a 1D chain of beads is valid only

if the dynamics lies entirely in the jetting regime. In this
respect, the magnitude of the tensile force plays a crucial role.
In fact, thin rectilinear jets may endure varicose perturbations
under the action of capillary forces, whose magnitude is
affected by the surface tension α (Khakhar and Ottino, 1987).
In addition to the dimensionless capillary number described in
Sec. II, another way to measure the competition between the
instability growth and the viscoelastic response is to compare

their respective timescales. The viscoelastic response takes
place within the relaxation time θ ¼ μe=G, while the timescale
of the capillary instability growth is the inverse of the
dimensionless instability growth rate ωc. The fastest-growing
capillary instability occurs with dimensionless frequency
ωmax
c ¼ 1=

ffiffiffi
2

p ð1þ 3S
ffiffiffiffiffiffiffiffiffiffiffi
Ca=2

p Þ1=2, where S¼1=ð1þGθ=μsÞ
accounts for non-Newtonian behavior of the jet, with μs the
zero-shear viscosity of the solvent (Chang, Demekhin,
and Kalaidin, 1999). The ratio of the viscoelastic relaxation
time and instability growth time leads to another convenient
expression of the Deborah number (Sec. II) De ¼ θωmax

c =t�,
given the characteristic time t� ¼ r20Sρ=μe (Jian, Fridrikh, and
Rutledge, 2006). For the typical case of the polyisobutylene
Boger fluid at a concentration of 4000 ppm in polybutene
(Carroll and Joo, 2011) taking a jet radius r0 ¼ 0.05 cm, jet
velocity υ ¼ 200 cm s−1 (Montinaro et al., 2015), surface
tension α ¼ 14.6 g s−2, relaxation time θ ¼ 3.11 × 10−3 s,
zero-shear viscosity μ0 ¼ 1.02 g cm−1 s−1 with μs=μ0 ¼
0.471 (Carroll and Joo, 2006), and extensional viscosity μe ∼
20μ0 (Ng et al., 1996), one would estimate the dimensionless
numbers Ca ∼ 280 and De ∼ 680, indicating that the capillary
instability is arrested by viscoelastic forces at an early stage of
perturbation growth. In this framework, the dimensionless
critical stress σ̄� in the jet, necessary for a complete sup-
pression of the Rayleigh-Tomotika instability, is also assessed
and found to be equal to σ̄� ¼ rðz�Þ=ð2r0CaÞ, where rðz�Þ is
the cross-sectional radius measured at a distance z� from
the needle, at which the instability is observed to begin
(Jian, Fridrikh, and Rutledge, 2006). Taking the ratio
rðz�Þ=r0 ¼ 0.1, the critical value of the tensile stress is
thousands of times smaller than values obtained in simulations
(Lauricella, Pontrelli, Coluzza et al., 2015a; Lauricella,
Pisignano, and Succi, 2016) σðz�Þ ∼ 4000σ�. Hence, one
can conclude that the quasi-1D representation of the poly-
meric fluid as a chain of beads is fully justified given the
stability of the early jetting regime.

3. Three-dimensional Lagrangian models

At a certain point during stretching of the electrified
polymeric jets, the destabilizing electric force prevails. As a
consequence, the bending instability starts to grow along the
jet. Although the slenderness assumption is still valid, a
complete description of the spiraling and looping path requires
a 3D model of the electrospun jet. Thus, the quasi-1D model
can be extended to describe the jet evolution in the 3D
framework, keeping, however, the fundamental original
assumptions (e.g., isotropic expansion or reduction of the
jet cross section, absence of shearing forces at the lateral
surface, and dependence of the jet cross section on the
longitudinal expansion). To this purpose, one can exploit
the usual curvilinear parameter s ∈ ½0; l0� (see Sec. V.A) to
describe the jet in the 3D framework (Reneker et al., 2000) by
introducing the vector RðsÞ of coordinates xðsÞ; yðsÞ; zðsÞ in
Eq. (16) for a discrete set of values fsigi¼1;…;n. Exploiting
the approximated form of the stretching ratio λðtÞ introduced
in Sec. V.B.2, the total arc length of the jet path at time t
is ljetðtÞ ¼ λðtÞl0. The momentum balance for the ith
bead provides

FIG. 21. Radius profile obtained from bead-spring simulations
and from experiments for the electrospinning of 4000 ppm
polyisobutylene Boger fluid. The parameters used in the simu-
lation are estimated from experiments (Carroll and Joo, 2006): jet
initial radius, r0 ¼ 0.05 cm; surface tension, α ¼ 14.6 g s−2;
elastic modulus, G ¼ 328 g cm−1 s−2; electrical conductivity,
σe ¼ 270 s−1; zero-shear viscosity, μ0 ¼ 1.02 g cm−1 s−1; solve-
nt viscosity ratio, μs=μ ¼ 0.471; and total current carried by the
jet, Itotal ¼ 5.4 StatC s−1. Adapted from Carroll and Joo, 2011.
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mi
∂υi
∂t ¼ −πr2uiσuiτui þ πr2diσdiτdi þþkπ

�
rui þ rdi

2

�
2

αni

þ qi
ΔΦ0

h
kþ qi

X
j¼1;n
j≠i

qj
jRi −Rjj2

uij þmigk; ð17Þ

where the subscripts ui and di denote, as in Sec. V.B.2, the
upper and lower dumbbell elements in the bead chain, τui ¼
ðRi −Riþ1Þ=jRi −Riþ1j and τdi¼ðRi−1−RiÞ=jRi−1−Rij
are the unit tangent vector of the upper and lower dumbbells,
respectively, uij is the unit vector pointing the ith bead from
the jth bead, and ni is the principal unit normal vector
pointing to the center of the local curvature from the ith bead.
Here ni is multiplying the force term associated with surface
tension, i.e., kαπ½ðrui þ rdiÞ=2�2, which acts to restore the
rectilinear shape of the bent portion of the jet with curvature k.
For each ith bead, the set of EOM is completed with three
kinematic relations (in vector notation ∂Ri=∂t ¼ υi) and two
constitutive equations of the type reported, for instance, in
Eq. (13) for the independent variables σui and σdi and
schematized in Fig. 20, obtaining a total of eight ordinary
differential equations. Finally, the model exploits the injection
bead strategy (Sec. V.B.2), with the discretization step length
lstep as an input parameter, and it is accompanied by a specific
set of two EOMs of the nozzle coordinates describing possible
mechanical perturbations at the spinneret. In particular, the
spinneret nozzle is represented by a single massless point
(labeled 0) of charge q0 fixed at z0 ¼ 0. The charge q0 is
taken equal to the mean charge value of the jet beads and can
be interpreted as a small portion of jet, which is glued
at the nozzle. The set of EOMs describing the evolution
in time of the nozzle reads ∂x0ðtÞ=∂t ¼ ωy0ðtÞ and
∂y0ðtÞ=∂t ¼ −ωx0ðtÞ, where the initial position at time
t ¼ 0 is defined by an input phase φ so that x0 ¼ A sinðφÞ
and y0 ¼ A cosðφÞ, with ω and A the frequency and amplitude
of the perturbation, respectively. Alternatively, the nozzle
perturbation can be modeled by adding a simple random
displacement in the position of the inserted bead (labeled 1)
in the injection step so that x1 ¼ x1 þ Arand sinφrand and
y1 ¼ y1 þ Arand cosφrand, with Arand and φrand the random
amplitude and phase, respectively (Kowalewski, Błoński, and
Barral, 2005).
The dimensionless form of the EOM, using the quantities

reported in Table II, is

∂ῡi
∂ t̄ ¼ Lstep

�
−Fυe;ui

σ̄ui
l̄ui

τui þ Fυe;ui
σ̄di
l̄di

τdi

�

þ Lstep
k̄
4
Ai

�
1ffiffiffiffiffiffi
l̄ui

p þ 1ffiffiffiffiffiffi
l̄di

p
�

2

ni þ Vik

þ
Xn
j¼1;n
j≠i

Qe;ij

l̄2
ij

uij þ Fgk; ð18Þ

where l̄ui ¼ jRi −Riþ1j=L0 and l̄di ¼ jRi−1 −Rij=L0

denote the dimensionless distance between the upper and
lower beads with respect to the ith bead, respectively,
while l̄ij ¼ jRi −Rjj=L0.

To compare the 3D model of the electrospun jet with the
quasi-1D representation [Eqs. (12)–(15)], one can consider the
time evolution of the jet termination lz and its velocity υz
along the z axis, which is shown in Fig. 22 (Lauricella,
Pontrelli, Coluzza et al., 2015a). Here the same typical input
values are used for the dimensionless parameters, Qe ¼ 12,
V ¼ 2, and Fυe ¼ 12, as those employed in the quasi-1D case
analyzed in Fig. 19 (Reneker et al., 2000). In the 3D case, two
sequential stages can be identified in the elongation process:
the first stage is mainly biased by the sum of the viscoelastic
and Coulomb forces, and the second one is dominated by the
external electric field. Hence, a quadratic regime is observed
in the second part of the dynamics, with the jet length evolving
in time as lz ∝ t2 and the velocity increasing nearly linearly in
time. While all these results are consistent with findings for
the quasi-1D case, the 3D model provides higher values of the
achieved velocity (Fig. 22). In fact, this is related to the
injection algorithm used to add new particles at the nozzle,
which leads to extra charge, i.e., to further repulsive Coulomb
force (∼1.7 times the corresponding force value obtained in
the 1D simulation).
A comparison between 3D simulations and experimental

data was performed considering an electrospun solution of
polyvinylpyrrolidone (PVP) prepared by a mixture of ethanol
and water (17∶3 v:v), at a concentration about 2.5 wt %
(Lauricella, Pontrelli, Coluzza et al., 2015a). The applied
voltage is around 30 statV (∼10 kV), and the collector is
placed 16 cm from the nozzle. Other parameters of the test case
are the jet radius r0 ¼ 0.05 cm, jet velocity υ ¼ 200 cm s−1
(Montinaro et al., 2015), surface tension α ¼ 21.1 g s−2
(Yuya et al., 2010), elastic modulus G ¼ 5 × 104 g cm−1 s−2
(Morozov and Mikheev, 2012), charge density ρq ¼
44 000 statC cm−3, zero-shear viscosity μ0 ¼ 0.2 g cm−1 s−1
(Bühler, 2005; Yuya et al., 2010), and extensional viscosity

FIG. 22. Time evolution of the velocity ῡz (continuous line) and
the position l̄z (here rescaled by a factor of 5, dashed line) of the
jet termination, along the z axis and in dimensionless units (see
Table II), from a 3D model [Eqs. (17) and (18)]. Input parameters
are Qe ¼ 12, V ¼ 2, and Fυe ¼ 12. The corresponding velocity
from quasi-1D simulations [Eqs. (12)–(15)], conducted with
identical input parameters, is also shown for comparison (dotted
line). A quasistationary point is found during the initial elonga-
tion (star).
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μe ∼ 100μ0 (Jian, Fridrikh, and Rutledge, 2006). The simu-
lations showed that the model is able to reproduce the slight
perturbation from the linear path to bending instability, along
with fully 3D, out-of-axismotion. This is seen in Fig. 23, which
compares the bending oscillations between two snapshots of
the simulated jet [Figs. 23(a) and 23(b)] and high-frame-rate
experimental micrographs [Figs. 23(c) and 23(d)] (Montinaro
et al., 2015) collected at an early stage and later regime of
instability. Further, the bending instability can be described in
terms of angular apertureΘ of the instability cone. TheΘ value
measured in the simulation is in the 30°–36° range, which is
consistent with the experimental 29°–37° range (Montinaro
et al., 2015).
Lagrangian methods have been used extensively to span the

space of parameters to probe the effects of different quantities
on the electrospinning process (Thompson et al., 2007;
Kowalewski, Barral, and Kowalczyk, 2009; Sun, Zeng, and
Wang, 2011; Coluzza et al., 2014; Lauricella, Pontrelli,

Coluzza et al., 2015a; Lauricella, Pisignano, and Succi,
2016; Yousefi et al., 2018). For instance, 13 different
parameters were studied, changed one at a time in the model
to determine their effect on the final jet cross-sectional radius
(Thompson et al., 2007). The growth rate of the bending
instability was also investigated by the stability analysis on a
similar 3D Lagrangian model (Divvela and Joo, 2017). The jet
was perturbed with an initial normal mode disturbance at an
amplitude δ and frequency ωp applied on several parameters
(position, velocity, jet radius, viscosity, tensile stress, and
external electric field). For instance, the perturbed ith bead
charge qp;i reads qp;i ¼ qi þ δqϵ expðωptÞ. At higher voltage
and lower viscosity, the nonaxisymmetric bending instabilities
were found to become dominant.
The versatility of this model allows extra force terms to be

incorporated, as well as further algorithmic expedients to
probe innovative experimental setups. In Sec. V.C, we review
a few of these extensions, together with scenarios for their
practical applications.

C. Advanced Lagrangian models

This section is focused on more recent advancement in the
Lagrangian models for electrified polymer jets. The main
improvements aim to address essentially two key points: First,
refining the model by including force terms that were
neglected as a first approximation. Physical mechanisms
considered in the past decade include aerodynamics, focusing
electric fields, and nanoparticles in the jet. Second, but no less
important, is the attempt to improve the jet representation
via different descriptive techniques and algorithms. Both
improvements are reviewed here.

1. Aerodynamic effects

All Lagrangian models involve a set of EOM that can be
modified flexibly to account for new force terms and extend
applicability. For instance, aerodynamics and air-drag effects
were not initially considered (Reneker et al., 2000) because
their contribution to stretching is much smaller than that from
electrical forces under the typical conditions of electrospin-
ning experiments. Nonetheless, not only may higher accuracy
of the models be desirable, but there also exist variants of the
experimental setup that involve a gas stream surrounding the
nozzle, as in electroblowing (Um et al., 2004; Wang et al.,
2005; Hsiao et al., 2012). In these processes, the effects of air
drag and lift cannot be neglected. Hence, these terms should
be added in the momentum balance, Eq. (17). The dissipative
air-drag term is a braking force oriented along the tangent to
the axis of the jet, with its magnitude depending on the
geometry of the jet, which evolves in time. Based on
experimental results (Yarin, 1993), the air-drag force acting
on the ith bead can be assessed by the empirical relation
(Ziabicki, 1961; Ziabicki and Kawai, 1991)

fdrag;i ¼ −ξπriluiρair

�
2ri
νair

�−ζ
ðυki Þ1þητui; ð19Þ

where νair and ρair are the air kinematic viscosity and density,
respectively, lui ¼ jRi −Ri−1j is the distance between the ith

FIG. 23. Snapshots of the (a),(b) simulated and (b),(d)
experimental jets, taken close to the nozzle (a),(c) at an early
stage and (b),(d) in the bending regime of their dynamics. The
experiment was performed with a solution of PVP prepared using
a mixture of ethanol and water (17∶3 v:v) (Montinaro et al.,
2015). The simulation is performed with the same conditions as
in the experimental setup: applied voltage 30 statV (∼10 kV),
and the collector placed 16 cm from the nozzle. The para-
meters of the PVP solution are taken from the literature: jet
initial radius r0 ¼ 0.05 cm (Montinaro et al., 2015), surface
tension α ¼ 21.1 g s−2 (Yuya et al., 2010), elastic modulus
G ¼ 5 × 104 g cm−1 s−2 (Morozov and Mikheev, 2012), charge
density ρq ¼ 44 000 statC cm−3, zero-shear viscosity μ0 ¼
0.2 g cm−1 s−1 (Bühler, 2005; Yuya et al., 2010), and extensional
viscosity μe ∼ 100μ0 (Jian, Fridrikh, and Rutledge, 2006). From
Lauricella, Pontrelli, Coluzza et al., 2015a.
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bead and its upper bead, and the term υki ¼ ðυi − υairÞ · τui
denotes the tangent component of the relative jet velocity with
respect to the airflow velocity υair. In Eq. (19), the symbols ξ,
ζ, and η denote three coefficients to empirically assess. As
plausible values of these coefficients, Ziabicki and Kawai
(1991) empirically determined them as ξ ¼ 13=20, ζ ¼ 4=5,
and η ¼ 1=5. These coefficients can be fitted to the drag force
data measured in polymeric freely moving filaments using an
experimental apparatus equipped with an electronic tensiom-
eter (Ziabicki, 1961). Overall, the air drag plays the role of a
dissipative term absorbing the air perturbations in a nonlinear

way with respect to υki . Using Eq. (19) and assuming the
volume conservation so that ri ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lstep=lui

p
, it is possible

to write the dissipative friction coefficient γi as (Lauricella,
Pisignano, and Succi, 2016)

γi ¼ ξπ
ρair
mi

�
2

νair

�−ζ
lð1=2Þð1−ζÞ
step r1−ζ0 : ð20Þ

Inserting Eq. (20) into Eq. (19), the drag force reads

fdrag;i ¼ −miγil
ð1=2Þð1−ζÞ
ui ðυki Þ1þητui; ð21Þ

which dissipates the air fluctuations. The perturbations are in
turn due to local interactions of random high-frequency
collisions of the gas molecules with the jet, providing a
Brownian motion component that contributes to the overall
dynamics. The macroscopic force resulting from such fluc-
tuations is taken as a stochastic process with zero mean and
diffusion coefficient Dυ in the velocity space, modeling the
total displacement of the jet due to the sum of particle impacts
over a time window much longer than the inverse of the
particle collision frequency. Hence, the random force reads
(Lauricella, Pisignano, and Succi, 2016)

frand;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

i Dυ

q
ηiðtÞ; ð22Þ

whereDυ is assumed constant and equal for all beads, and ηi is
a three-dimensional vector of independent stochastic proc-
esses, where each component along one of the three unit
vectors (i, j, k) is taken as ηi ¼ dξiðtÞ=dt. Here ξiðtÞ denotes
a Wiener process, namely, a stochastic process with stationary
independent increments (Durrett, 2019). It is worth observing
that the insertion of the last term in Eq. (17) yields a nonlinear
Langevin-like stochastic differential equation in the set of
EOMs (Lauricella, Pontrelli, Pisignano, and Succi, 2015). As
a consequence, the simulation requires a time marching
scheme able to integrate the random processes preserving a
reasonable order of convergence (Tuckerman, 2010; Kloeden
and Platen, 2013). An example of a strong convergence
scheme was reported (Lauricella, Pontrelli, Pisignano, and
Succi, 2015) for the numerical integration of the stochastic
term in Eq. (22). A smaller time step Δt ∼ 10−8 s in the
integration scheme improves the numerical accuracy, although
it increases the computational cost. As an alternative, the
energy spectrum (provided as an input parameter) of the
random process can be exploited to simulate the random
velocity displacement as a sum of m harmonic functions

(Battocchio, Sutcliffe, and Teschner, 2017). These functions
would have frequencies ωj with j ∈ ½1;…; m�, and amplitude
derived from the energy spectrum, assumed constant up to a
cutoff frequency and 0 at higher frequencies. This approach
may be numerically integrated with a larger time step Δt by
setting a low-frequency cutoff, thus saving significant com-
putational time.
In a 3D framework, the lift force is also acting on the jet

dynamics along the normal (curvature) vector. The aero-
dynamic lift force related to the flow speed can be written
for the ith bead in the linear approximation (for small bending
perturbations) as (Yarin, 1993; Lauricella, Pisignano, and
Succi, 2016)

flift;i ¼ −luikiρairðυki Þ2π
�
riþ1 þ ri

2

�
2

ni; ð23Þ

where the factor lui denotes the length of the jet segment. The

lift term scales quadratically with υki , thus playing a significant
role for high enough relative velocity of the airflow.
The effects of the three terms given by Eqs. (21)–(23) on the

extended EOM were investigated in the electrospinning
simulations of a PVP solution under three different condi-
tions of airflow velocity, υair ∈ ½0;−1000;−2000� cm s−1,
oriented along the unit vector k (Lauricella, Pisignano, and
Succi, 2016). The air kinematic viscosity was set to
νair ¼ 0.151 cm2 s−1, while Dυ;i was taken equal to γi for
all beads for simplicity. In the case υair ¼ −2000 cm s−1, the
larger lift force contributes to the bending instabilities
(Fig. 24). In particular, the synergic action of the lift and
Coulomb repulsive forces boosts bending instabilities at an
earlier stage and increases the chaotic behavior of the jet in the
subsequent dynamics. This is seen in Fig. 24 by the larger
statistical dispersion of the shadowed cone (the thickness of
the instability envelope cone wall) computed as the isosurface
with constant value 0.001 of the normalized numerical density
field ρbeadðx; y; zÞ, namely, the probability to find a jet bead in

FIG. 24. Simulation snapshots of the three different cases of an
electrospun polymer solution jet with air counterflow. From left
to right, the airflow velocity along the unit vector k (collinear
with the z direction) is υair ¼ 0 , −1000, and −2000 cm=s,
respectively. The jet is shaded in the cones, and the nanofibers
deposited on the collector are in black at the termination of the
cones. The shaded isosurfaces represent the normalized numeri-
cal density field ρbeadðx; y; zÞ of constant value equal to 0.001.
Adapted from Lauricella, Pisignano, and Succi, 2016.
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a control volume near the coordinates ðx; y; zÞ. As a conse-
quence, the high-speed gas flow significantly affects the
distribution of the deposited nanofibers, providing a broader
deposition pattern and a decreased fiber radius due to the
larger bending instabilities. In these simulations, the jet was
assumed to interact with a uniform airflow field. Nonetheless,
computational fluid dynamics software can be used to
simulate an arbitrary airflow field. As an example, the velocity
flow field υairðx; y; zÞ could be computed by solving the
corresponding Navier-Stokes equation (Sun, Zeng, and Wang,
2011). Hence, υair was coupled with the Lagrangian model to
investigate the effect of airflow in the spinning process (Sun,
Zeng, and Wang, 2011).

2. Electric and magnetic focusing fields

Thus far the external electric field E0 ¼ ðΔΦ0=hÞk in
Eq. (17) had been assumed to be oriented along the k axis over
the entire space. Nonetheless, in a real electrospinning setup,
the electric field distribution E0ðx; y; zÞ depends on both the
collector and needle electrode shapes, and this might alter the
direction of the jet stretching. Several works investigated the
effects of auxiliary electrodes used for the generation
of extra electric fields (also named focusing electric fields)
that drive the electrospun jet and affect the bending insta-
bility (Deitzel, Kleinmeyer, Hirvonen, and Beck Tan, 2001;
Bellan and Craighead, 2006; Neubert et al., 2012). Such
effects can be accounted for by resolving the electric field
distribution E0ðx; y; zÞ over the space. Despite being compu-
tationally expensive, finite difference or finite element
methods are usually exploited to solve the Poisson
equation ∇2Φ0ðx; y; zÞ ¼ ρqðx; y; zÞ=ε and obtain the field
E0ðx; y; zÞ ¼ −∇Φ0ðx; y; zÞ. For instance, the Lagrangian
model was extended to investigate the effect of a conical
needle electrode on the radius of electrospun nanofibers
(Hamed, Shehata, and Elosairy, 2018). The Poisson equation
could be solved only once at the beginning of the simulation
and the result inserted into Eq. (17) as an input parameter.
However, a correct computation of the electric field should
also account, in the Poisson equation, for the time-dependent
charge distribution on the jet path, paying high computational
costs for the solution of the Poisson problem at each time step.
Within this context, since the electric potential difference ΔΦ0

should be constant at the nozzle tip, another strategy, shown in
Fig. 25, exploited the method of images, where fictitious
mirror charges are placed symmetrically to the collector plane
to always match the condition Φ0 ¼ 0 at the collector
(Kowalewski, Barral, and Kowalczyk, 2009). Thus, the total
electric field is the superposition of the external static field and
a time-dependent intrajet field generated by the jet charges,
with the latter computed as in Eq. (17) but now with the direct
summation over both real and mirror jet charges.
Furthermore, it is possible to drive both the stretching

direction and preferential orientations of the jet at the collector
by a time-dependent manipulation of the external electric
field, acting as a dynamic focusing field. It was experimentally
observed that a time-varying square wave potential is able to
periodically deflect the jet between two symmetric, rotatable
platelike electrodes, coaxially placed near the needle at a
distance of 8.5 cm (Grasl et al., 2013). Rotating electric fields

can also be generated by a series of fixed capacitor
plates appropriately arranged in space and connected to an
alternating power source (Kyselica and Enikov, 2016;
Kyselica et al., 2018). For instance, assuming the hexagonal
arrangement of the plates and a three-phase power source
connected to them (Fig. 26), as a first approximation the
external electric field can be assumed to be uniformly

distributed in space so that the total electric field E0 ¼ Ek
0 þ

E⊥
0 is the superposition of a stretching electric field Ek

0 ¼
ðEx; 0; 0Þ parallel to the k axis and an orthogonal rotating term
E⊥

0 ¼ ð0; Ey; EzÞ. In equations,

EyðA;ω; tÞ ¼ A cosðω⊥tÞ; ð24aÞ

EzðA;ω; tÞ ¼ A sinðω⊥tÞ; ð24bÞ

where Aðg1=2 cm−1=2 s−1Þ is the magnitude of E⊥
0 and ωðs−1Þ

is the angular (switching) frequency of the field. By inserting
the term qiE⊥

0 ðA;ω; tÞ into Eq. (17), the morphology of
electrospun materials could be studied for several pairs of A
and ω values (Lauricella et al., 2017). In agreement with both
experimental observations (Grasl et al., 2013; Kyselica and
Enikov, 2016; Kyselica et al., 2018) and further numerical
simulations (Kyselica, Enikov, and Anton, 2019), the jet was
found to support rather regular oscillatory patterns, which are

FIG. 25. Idealized electrostatic setup with fictitious charges
of the image jet, which are used to maintain the electric
potential condition Φ0 ¼ 0 at the grounded plane during process
modeling.
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controlled by tuning A and ω. This offers an opportunity to
deposit oriented nanofibers even on a static collector, which is
interesting for the design of new porous materials.
In the context of magnetic-field-assisted electrospinning,

Lagrangian models can be easily modified to simulate the
effect of a stationary, space-distributed magnetic field. In
particular, the Lorentz force fL for an ith bead with velocity υi
and charge qi is given by

fL;i ¼ qiυi ×B0ðx; y; zÞ; ð25Þ

where B0ðx; y; zÞ is the magnetic field at the coordinates
ðx; y; zÞ of the ith bead. Hence, the term is added to the
momentum equation (17) to simulate the coupling effects of
electric forces and the magnetic field. Theoretical works
agree well with the experimental data, showing that B0

could significantly alter the nonaxisymmetric bending or
whipping instabilities of the jet (Xu, Wu, and Nawaz, 2011;
Badieyan and Janmaleki, 2015). The jet can be focused to
obtain nanofibers with preferential orientation in given
regions of the collector.

3. Multiple jets in electrospinning

Multiple jets were introduced in electrospinning to increase
the fiber production rate. In addition, the rational design of
nozzle patterns, issuing many jets simultaneously, might be
important to obtain areas uniformly covered with nanofibers.
Thus, numerical investigations were performed to explore the
physics of the jet-jet interactions. For instance, the Lagrangian
model (Sec. V.B.3) was generalized for the case of multiple
bending jets with mutual Coulombic interactions (Theron
et al., 2005). A simple way to compute the Coulomb force
acting on the ith bead of the kth jet is to extend the direct
summation of the Coulomb term in Eq. (17) as follows:

fc;ik ¼ qik
X
l¼1;m

X
j¼1;nðlÞ
jl≠ik

qjl
jRik −Rjlj3

ðRik −RjlÞ; ð26Þ

where j is now running over the nðlÞ beads of the lth jet
among the m jets. In this way, the bending instabilities of a jet
in a multinozzle setup were predicted to be driven not only by
self-induced Coulomb forces but also by mutual interjet
Coulombic repulsive interactions (Fig. 27). Further numerical
studies (Angammana and Jayaram, 2011b; Li et al., 2015)
showed that the stretching ratio in a multijet setup is larger
than that observed in single-jet electrospinning. In particular,
the stretching ratio of a jet increases by decreasing the mutual
distance between neighboring jets.

4. Dynamic refinement in Lagrangian models

All Lagrangian models reviewed thus far exploit the
injection algorithm mentioned in Sec. V.B.2: all beads are
uniformly inserted at the nozzle, with the mutual distance
lstep. Nonetheless, the distances lui and ldi between any
couple of consecutive elements in the bead chain increase
along the dynamics because of the stretching induced by the
intense electric forces. Assuming volume conservation, a
typical value r=r0 ¼ 10−2 in the jet cross section measured
at the collector provides the increase, lui ¼ 104lstep, in the
discretization length of the jet. Thus, the discretization close to
the collector becomes rather coarse (both lui and ldi ≫ lstep)
to effectively model the filament, and the information (posi-
tion, velocity, radius, stress, etc.) describing the jet is scattered
downstream. To tackle this issue, an adaptive dynamic refine-
ment procedure was developed, maintaining the lengths lui
and ldi for any ith element below a prescribed characteristic
threshold length lmax (Lauricella et al., 2016). Whenever a
bead length lui or ldi is larger than lmax, the jet description is
refined by discretizing it uniformly at the length step value
lstep, given as an input. The discretization was performed by
cubic spline interpolations (De Boor, 1978) of the main
quantities describing the jet beads (positions, jet radius,
velocities, stress). To perform the interpolation, the total arc
length at time t is assessed as

ljetðtÞ ¼
Xn
i¼1

luiðtÞ; ð27Þ

where the sum is over the n beads so that all distances between
the element pairs ðiþ 1; iÞ are accounted for. Note that the

FIG. 26. Simulation snapshot of the electrospinning process in
the presence of an orthogonal rotating electric field at high
frequency (∼104 Hz). The jet is stretched by a longitudinal

electric field Ek
0. The orthogonal electric field (E⊥

0 ) can be
generated by a series of capacitor plates, hexagonally arranged
and connected to a three-phase power source, as represented in
the bottom part of the figure. Here the three-phase voltage
differences ΔΦ0 correspond to the different pairs of capacitor
plates. Adapted from Lauricella et al., 2017.
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stretching ratio λðtÞ at time t is assessed as λðtÞ ¼ ljetðtÞ=l0
jet.

Hence, the usual curvilinear parameter s is introduced
(Secs. V.A.4 and V.B.3) and used to define the discretization
mesh of the jet. In particular, the discrete set of values
fskgk¼1;…;n of the curvilinear parameter s ∈ ½0;l0

jet� is esti-
mated for each kth bead by using

skðtÞ ¼
1

λðtÞ
Xk
i¼1

luiðtÞ: ð28Þ

Despite the s values still being frozen in the jet element, the
set fskðtÞgk¼1;…;n is now time dependent since the jet
discretization is adapted to always satisfy the condition lui <
lmax during the jet evolution. Hence, the set of fskðtÞgk¼1;…;n

values represents the mesh used to build the cubic spline.
Given a generic quantity y, the data yk are tabulated over the
set of values skλ, where skðtÞλðtÞ denotes the arc length from
the nozzle to the kth bead of the jet at time t. Thus, yk ¼
yðsk λÞ were used to compute the coefficients of the cubic
spline, following a well-established algorithm (Press et al.,
1996). Then a uniform parametrization was enforced by
imposing all lengths of the elements equal to lstep. The
new mesh s�i is defined as

s�i ¼ l0
jet

i
n�

; i ¼ 1; 2;…; n�; ð29Þ

where n� ¼ λðtÞl0
jet=lstep is the number of jet beads in the new

representation. Another possible criterion for building the new
mesh is to keep all the old beads at their positions and to add
only new beads where the bead distance in the pair ðiþ 1; 1Þ
is lui > lmax. Indeed, since all the old beads are maintained as
knots of the mesh along the dynamic refinement, the errors
introduced by the interpolation procedure are mitigated
because they affect only the new inserted bead.
Finally, the new values yðs�i λÞ are computed for any ith

bead by the spline interpolation. The procedure is repeated for

positions, jet radius, stress, and velocities of the jet beads to
provide the quantities in the new mesh fs�i gi¼1;…;n� (Lauricella
et al., 2016). As a practical application of the mesh refinement
procedure, the algorithm was applied to simulate the electro-
spinning of a polymeric solution containing heavy nano-
particles, which trigger varicosity along the jet modifying the
path from the nozzle toward the collector (Fig. 28) (Lauricella,
Pisignano, and Succi, 2017). Here the mesh refinement
showed the capability of representing the fluctuation of the
cross section along the jet, also preserving a fine jet

FIG. 27. The paths of nine jets in a 3 × 3matrix arrangement of the nozzles shown from two different points of view. (a) Top view of all
jets of the 3 × 3 matrix. (b) Side view of all jets. Adapted from Theron et al., 2005.

FIG. 28. Simulation snapshot illustrating an electrified
polymer solution jet embedding nanoparticles. h, distance be-
tween the collector plate and the nozzle; ΔΦ0, applied
voltage difference. Adapted from Lauricella, Pisignano, and
Succi, 2017.
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representation close to the collector. Small values of the
threshold length lmax increase the number of beads in the
simulation and the associated computational costs; see also
Sec. IV and strategies reviewed there for saving computa-
tional time.

5. Limits of Lagrangian models

All Lagrangian models reviewed here assume the polymer
solution as fully spinnable. In particular, relevant dimension-
less numbers (e.g., the capillary and Deborah numbers) should
be preliminarily considered to justify the assumption of the
solution spinnability as described in Secs. II and V.B.2. In
other words, one should note that a Lagrangian model is not to
be used to foresee the spinnability of a polymer solution
numerically because this is already assumed in the model. As
a second limit, since the jet is represented as a continuous
chain of particles connected pair by pair through viscoelastic
springs, Lagrangian models are ineffective for investigating
failure modes, such as jet breaking and splitting, in fluid
polymeric filaments. These deformations could be analyzed
for the case of conducting liquids in terms of a critical value of
the linear electric charge density carried by the jets (Zubarev
and Zubareva, 2004, 2005). Similarly, Lagrangian models
cannot display varicose instabilities in the jet, such as those
due to capillary pressure.
Further, we point out that the rheological behavior is highly

sensitive to the phenomenological, constitutive law embedded
in the viscoelastic springs connecting neighbor particles. This
fact is not unlike what is generally remarked upon in Eulerian
descriptions (e.g., numerical solvers of the Navier-Stokes
equations), where a constitutive law is also needed.
Finally, any Lagrangian model exploits proper algorithms

to treat the fluid injection at the nozzle; see Sec. V.B.2. As a
consequence, the modeling of the Taylor cone is missed.
However, this specific limit could be tackled by coupling
Lagrangian models with Eulerian solvers of the EHD equa-
tions governing the fluid cone used, for instance, to model the
tip streaming of charged droplets (Reznik et al., 2004; Collins
et al., 2008, 2013).

D. Polymer network dynamics in electrified jets

This section reviews efforts describing the polymer network
dynamics for highly elongated, electrified polymer solution
jets. With strain rate _ε ≥ 103 s−1 (Reneker et al., 2000, 2007;
Bellan, Craighead, and Hinestroza, 2007), stretching in these
jets can potentially increase the structural order within spun
nanofibers, enhance their mechanical properties (such as the
elastic modulus and strength) (Rein et al., 2007; Burman,
Arinstein, and Zussman, 2008; Greenfeld et al., 2011;
Zussman and Arinstein, 2011), and shift the phase transition
temperature, e.g., the melting temperature (Arinstein et al.,
2011; Liu et al., 2011). At the same time, rapid solvent
evaporation during electrospinning can lead to an increased
polymer concentration at the jet boundary (Koombhongse,
Liu, and Reneker, 2001; Guenthner et al., 2006; Dayal and
Kyu, 2007), forming a solid skin or a heterogeneous and
porous structure (Casper et al., 2004; Dayal and Kyu, 2007;
Dayal et al., 2007; Greenfeld et al., 2011), which may lead to

buckling of the fibers (Arinstein, Avrahami, and Zussman,
2009). The simultaneous effects of stretching and evaporation
(Arinstein and Zussman, 2011) are illustrated in Fig. 29. In
this respect, the study of electrified polymer solution jets, and
specifically of the evolution of the polymer entangled network
during electrospinning, which is typically followed by stress
relaxation (Vasilyev et al., 2017), was aimed at clarifying the
microstructure of spun nanofibers, and at improving their
mechanical, electrical, and optical properties. Modeling of the
dynamic evolution of the entangled polymer network in
electrospun jets predicted substantial longitudinal stretching
and radial contraction of the network, i.e., a transformation
from an equilibrium state to an almost fully stretched state
(Arinstein and Zussman, 2011; Greenfeld et al., 2011). This
prediction was verified by x-ray phase-contrast imaging of
electrospun jets, which revealed a noticeable increase in
polymer concentration at the jet center, as well as a concen-
tration crossover within a short distance of the jet initiation
point (Greenfeld et al., 2011, 2012).

1. Polymer dynamics during electrospinning

The flow of a solution jet consists of both axial and radial
velocity components (Fig. 30). The analysis of electrically
driven fluid jets revealed that the axial velocity of the jet υ

FIG. 29. Stretching and evaporation involving electrified poly-
mer solution jets. SEM images of nanofibers with 10 wt % PCL
with molar mass 80 kDa, dissolved in dichloromethane and DMF
(75∶25 wt%), electrospun by an electric field of 0.63 kV=cm.
(a) High flow rate (20 ml=hr) resulting in heterogeneous fibers.
(b) Low flow rate (3 ml=hr) resulting in homogeneous fibers.
From Arinstein and Zussman, 2011.
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reaches an asymptotic regime sufficiently far from the needle,
which can be described by a power law of the distance along
the jet z:

υ

υ0
≈ k2V

�
z
r0

�
2β

; ð30Þ

where the exponent β varies between 1=4 and 1 (Kirichenko
et al., 1986; Spivak and Dzenis, 1998; Hohman et al., 2001b;
Higuera, 2006; Reznik and Zussman, 2010), kV is a dimen-
sionless parameter, r0 is the jet initial radius, and υ0 is the
initial velocity, υ0 ¼ Q=πr20. Assuming volume conservation,
the jet local radius rJ ¼ r0ðυ=υ0Þ−1=2 (see Fig. 31) and the
radial velocity υr can be derived. A rough approximation of kV
in Eq. (30) can be obtained by using a simple scaling
approach: the velocity gradient scales as ∇υ ≈ υ0k2V=r

2
0; the

upper bound for σq (the surface charge density on the jet),
assuming static conditions, scales as σq=σeE, where σe is the
solution electric conductivity and E is the electric field.
The electric shear stress is therefore τt ≈ σqE ≈ σeE2, pro-

ducing a velocity gradient ∇υ ≈ τt=μ ∼ σeE2μ−1. Hence, kV ∼
∇υ1=2υ−1=20 r0 or kV ∼ r10σ

1=2
e μ−1=2υ−1=20 E1. A more accurate

calculation yielded kV ≅ r2=30 υ−2=30 σ1=4e μ−5=12E5=6 ∼ 1 (Reznik
and Zussman, 2010).
Polymer chains dissolved in a sufficiently concentrated

solution create an entangled network [Fig. 30(b)], a prerequi-
site for spinnability. A chain section between two subsequent
entanglements is a strand, or a subchain, consisting of Ns rigid
segments (Kuhn monomers), each of size b ≅ 1 nm. Given the
solution concentration ϕ (in terms of the polymer volume
fraction), the network mesh size (i.e., the average subchain

length) is given by ξ0 ≈ bϕ−1 ≈ bN1=2
s for ideal chains,

allowing one to model the network as a 3D beads-and-springs
lattice, where each bead represents the mass m and size ξeff of
a subchain (ξeff ∝ ξ0) and the springs represent the linear
entropic elasticity T=ξ20 (here T is the temperature in units of
the Boltzmann constant kB) of the subchains connected to
each bead.
The hydrodynamic force acting on a subchain can be

defined, and the dynamics of the network can then be
described using the following difference-differential equations
(Greenfeld et al., 2011):

m
d2zn
dt2

¼ ξeffμ

�
υðznÞ − dzn

dt

�
þ T
ξ20

f½znþ1 − zn − ξ0�

− ½zn − zn−1 − ξ0�g; ð31aÞ

ξeffμυrðrnÞ þ
T
ξ20

f½rnþ1 − rn − ξ⊥� − ½rn − rn−1 − ξ⊥�g ¼ 0:

ð31bÞ

The corresponding solution, depicted in Fig. 31, predicts an
affine stretching of the network:

ξkðzÞ
ξ0

≈
υ=υ0

1 − ð1=αvÞdðυ=υ0Þ=dðz=r0Þ
≈
υðzÞ
υ0

; ð32Þ

where αv is a dimensionless parameter (αv ≫ 1).
The dynamic conformation of subchains can be described

using a random walk simulation, where each step represents a
single monomer. The probability of stepping in a specific
direction is determined by an effective potential, which arises
from the external forces acting at the subchain ends, which
propagate along the subchain, and the local hydrodynamic
force acting directly on monomers (Fig. 32). For a given force

FIG. 30. (a) Illustration of the flow of an electrified polymer
solution jet. Definition of an effective 1D beads-and-springs
system (b) in the axial direction and (c) in the radial direction
(Greenfeld et al., 2011).

FIG. 31. Universal plot of the polymer network conformation.
Relative axial stretching ξII=bNs, radial contraction ξ⊥=ξ0, and
molecular orientation O vs the normalized axial position kz=r0.
bNs is the length of a fully extended subchain. The point S at the
top of the plot indicates the criterion for “full” network extension.
The results were obtained by random walk simulations and
theoretical modeling (Greenfeld et al., 2011).
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vector F acting on a monomer (normalized as f ¼ Fb=kBT),
the probabilities for a random walk step are

P�
x ¼ expð�fxÞ

2Σx coshðfxÞ
ð33Þ

in each of the Cartesian directions (Greenfeld et al., 2011).
The monomer forces in the radial and axial directions are
given by

fz ≅ f0 þ
Xn
i¼1

fhydi ≅ f0 þ τ0ðυz − υ0Þ=b; ð34aÞ

fr ≅ f0 ≈ 3b=ξ0 ≈ 3ϕ; ð34bÞ

where f0 is caused by an effective stretching force acting on
subchains in a network at rest and τ0 ≈ μsb3=kBT is the
monomer relaxation time related to the solvent viscosity μs.
The hydrodynamic force in the radial direction is small
compared to the force in the axial direction since frfz ≅
υr=υ ≅ r=z ≪ 1 and was therefore neglected. Since the
dominant force acts at the subchain ends, the stepping
probabilities are assumed to remain uniform along the sub-
chain, and the axial stretching and radial contraction can be
written using Eqs. (33) and (35) (Greenfeld et al., 2011):

ξk
ξmax

≅
sinhðfzÞ

Q
; ð35aÞ

ξ⊥
ξmax

≅
sinhðfrÞ

Q
; ð35bÞ

Q ¼ coshðfzÞ þ 2 coshðf0Þ. ð35cÞ
Shortly after the jet start but before the network approaches

full stretching (f < 1), the relative longitudinal elongation of a
subchain can be approximated by

ξk
ξ0

≈
ξ0υ0τ0
3b2

�
υ

υ0

�
≈

υ

υ0
; ð36Þ

as obtained using the dynamic model, Eq. (32). The condi-
tion for the affine stretching is satisfied with a prefactor
ξ0υ0τ0=ð3b2Þ ¼ 1. The simulation allows the analysis to be
expanded to large chain elongations with nonlinear elasticity,
showing that subchains approach full extension not far from
the jet start (<1 mm) (Fig. 31). The criterion established for
such a full extension (marked by point S in Fig. 31) using
Eq. (32) or (36) is when the jet velocity rises above its initial
value by a factor equal to the inverse of the polymer volume
fraction:

υS
υ0

≈
ξk;S
ξ0

≈
bNs

bN1=2
s

≈ N1=2
s ≈ ϕ−1; ð37Þ

which occurs at a jet radius reduction ratio of r0=rS ≈
N1=4

s ≈ ϕ1=2 ∼ 2 − 10. Note that the relative velocity and
radius at the stretching crossover point are found to depend
only on the solution concentration and to be completely
independent of the electrospinning materials and conditions
(e.g., molar mass and electric field). The transformation of
subchains from a coil-like equilibrium state into a stretched
state was found to occur as a continuous crossover and no
phase transition was observed, in contrast to the well-known
coil stretch transition in unentangled chains (de Gennes, 1974,
1979). The dominant local force acting on a subchain is the
elastic force arising from the action of the linked subchains,
whereas the local hydrodynamic forces, whose accumulation
along the network gives rise to global elastic stretching, are
negligible. Theoretically, since a vertical sequence of sub-
chains in a network is analogous to a long chain, a network
stretch transition is possible if the jet strain rate is low;
however, under such conditions the flow will be dominated by
viscosity and network relaxation rather than elasticity. The
strong increase in the longitudinal mesh size ξjj results in a
decrease in the radial mesh size ξ⊥ due to redistribution of the
random walk stepping probabilities (Fig. 31). This results in a
lateral contraction of the network toward the jet center, which
is proportional to the decrease in the subchains radial mesh
size. An approximation for the decrease of the polymer
network radius with respect to the jet radius is given by

rPðzÞ ≅
ξ⊥ðzÞ
ξ0

rðzÞ: ð38Þ

As depicted in Fig. 33, this shows the dominant effect of
axial stretching on the radial contraction. This result allows a
significant increase of the polymer concentration at the jet
center to be predicted. The concentration (in terms of the
polymer volume fraction) can be calculated using ϕP ¼
b3Ns=ξkξ2⊥ or by using Eqs. (36) and (38) and the relationship
ϕ ≈ b=ξ0, where ϕ is the solution initial concentration:

ϕp ¼ ϕ

�
r
rP

�
2

¼ ϕ

�
ξ0
ξ⊥

�
2

≅
ϕ

9

�
cosh

�
3ϕ

υ

υ0

�
þ 2

�
2

: ð39Þ

Here the right term assumes affine stretching by means of the
vertical force fz ≅ 3ϕυ=υ0. When full stretching occurs, the
polymer at the jet core is fully compacted (ϕP ≅ 1) and the
corresponding jet radius can be approximated by rj=r0 ≈ ϕ1=2,

FIG. 32. Forces acting on a subchain. External forces ðfn; fn−1Þ
act at the chain ends, and a hydrodynamic force fhydn acts on each
monomer.
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the same result as in Eq. (37). These predictions were
validated by x-ray absorption measurements on electrospun
jets (Greenfeld et al., 2011, 2012), as better explained later.
The validity of the network modeling is restricted to the initial
stage of the jet (the first few millimeters), where elastic
elongation is still possible, and therefore the model does not
describe the final state of the polymer matrix in electrospun
nanofibers. In fact, additional processes, such as rapid solvent
evaporation and polymer entanglement loss (Greenfeld and
Zussman, 2013), which can result in chain relaxation, are not
accounted for in this model. Nevertheless, the results strongly
indicate nonequilibrium, ordered nanostructures that could
remain in the nanofibers after solidification, set a new internal
scale, and affect the nanofiber elasticity through confinement
(Arinstein et al., 2007).

2. Experiments: X-ray imaging of electrospun jets

The theoretically predicted longitudinal stretching and
lateral contraction of the polymer network, as well as the
additional effects of rapid evaporation, were investigated
experimentally by fast x-ray, phase-contrast, high-resolution
imaging of the first 10 mm of electrospun jets (Greenfeld
et al., 2011, 2012), using solutions of PEO (Fig. 34). The
power law assumed in Eq. (30) is validated by detailed
measurements of the jet profile under a wide range of
electrospinning conditions, demonstrating that the jet diameter
narrows faster under higher electric fields, lower flow rates,
and lower polymer concentrations (Fig. 35).
The polymer concentration mapping along and across the

jet makes use of the different x-ray mass absorption coef-
ficients of the polymer and solvent ςp and ςs, respectively. The
absorption coefficient of the polymer solution is given by
Absðr; zÞ ¼ ςpmpðr; zÞ þ ςsmsðr; zÞ (Roe, 2000), where mp

and ms denote the mass concentrations of the polymer
and solvent, respectively, the ðr; zÞ coordinates are the
radial and axial positions in the jet, respectively, and
ms=ρs þmp=ρp ¼ 1, where ρs and ρp indicate the densities
of the solvent and the polymer. Thus, the change in the local

polymer concentration Δϕpðr; zÞ with respect to the initial
concentration ϕ is linearly dependent on the change in the
local absorption coefficient ΔAbs:

Δϕpðr; zÞ ¼ ϕpðr; zÞ − ϕp ¼ ΔAbsðr; zÞρp=ðςpρp − ςsρsÞ:
ð40Þ

ΔAbsðr; zÞ is calculated by comparing the measured x-ray
transmission Trexp to a simulated transmission for a “still” jet
(Trsim), at a given beam travel distance dðr; zÞ, through the jet:

ΔAbsðr; zÞ ≅ − 1

dðr; zÞ In
�
Trexpðr; zÞ
Trsimðr; zÞ

��
Abs0

Abssimðr; zÞ
�
; ð41Þ

where the correction factor Abs0=Abssim filters out the effects
of scattering in a homogeneous jet and is used as an
approximation for the heterogeneous electrified polymer

FIG. 33. Universal plot of the simulated polymer network radius
rP=r0 vs the normalized axial position kz=r0 compared to the jet
radius rJ=r0. Adapted from Greenfeld et al., 2011.

FIG. 34. (a) Schematics of electrospinning with in situ x-ray
imaging. The imaged region is circled. Electric field gap, 6.5 cm.
(b) Straight jet region (5 mm length) consisting of a sequence of
ten images. Solution, 5 wt % PEO (600 kDa) in water; electric
field, 0.6 kV=cm; flow rate, 3.2 ml=hr. (c) Solution, 3 wt % PEO
in water; electric field, 1.6 kV=cm; flow rate, 2 ml=hr. The lines
at z1 and z2 (0.02 and 0.5 mm, respectively) highlight the cross
sections of regions used for absorption measurements across the
electrospun jet. From Greenfeld et al., 2011.
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solution jet. Concentrations are found to rapidly increase
below a critical jet radius of ∼25 μm (equivalent to a radius
reduction ratio of 0.2; Fig. 36), possible evidence for a full
network extension and for rapid evaporation that occurs much
earlier than theoretical predictions found in the literature.
When depicted versus the jet radius, the concentration curves
collapse into groups of common initial solution concentration.
The concentration crossover occurs at a lower radius for
the lower solution concentration, as predicted in Eq. (37).

The theoretical prediction [Eq. (39)], depicted in the inset of
Fig. 36, is found to conform well to the experimental results,
hence favoring the stretching premise over evaporation. These
results confirm that the stretching crossover position depends
predominantly on the solution initial concentration. Note that
in Fig. 36 the concentration increase is slightly slower in the
experiment than with the theoretical curve, possibly account-
ing for the stretching and stress relaxation.
The variation of concentrations across the jet also reveals

high concentrations at the jet boundary due to evaporation, as
well as a concentration rise at the jet center within ∼1 mm
from the jet origin (Fig. 37), in agreement with the model and
simulation. Evaporation becomes dominant when stretching is
weaker, e.g., at lower electric field and/or higher flow rate,
inhibiting the concentration peaks measured at the jet center.
Such a tuning of parameters evidences the balance between
the effects of evaporation and stretching, which determines the
nonequilibrium conformation of the polymer network during
electrospinning and explains the diversity of macrostructures
and properties found in solid nanofibers.

VI. MODELING OF POLYMER SOLUTION BLOWING

This section reviews the works dealing with detailed
modeling of solution blowing, which allows one to predict
the evolution of polymer jets toward nanofibers, as well as
such laydown properties as thickness, porosity, and per-
meability, i.e., the 3D microstructure, fiber-size distribution,
and polymer mass distribution resulting from the process.
Two monographs (Yarin, 1993; Yarin, Pourdeyhimi, and
Ramakrishna, 2014) triggered a group of interrelated works
devoted to modeling of meltblowing (Sinha-Ray, Yarin,
and Pourdeyhimi, 2010a, 2011, 2013; Yarin, Sinha-Ray,
and Pourdeyhimi, 2010; Ghosal, Sinha-Ray, Yarin, and
Pourdeyhimi, 2016) and solution blowing (Sinha-Ray et al.,
2015; Ghosal, Sinha-Ray, Sinha-Ray et al., 2016). The effects
of the governing process parameters on variation of laydown
properties were predicted, primarily the influence of the

FIG. 35. Normalized jet radius krJ=r0 at position z=r0 along a
jet, for combined data from various electrospinning tests, where
each experimental set is multiplied by the constant k pertaining
to that test. (Dotted line) Power fit with the expression
rJ=r0 ¼ ðz=r0Þ−0.47, where the exponent is that measured in
the inset. (Dashed line) Hyperbolic fit with the expression
rJ=r0 ¼ ðz=r0 þ pÞ−1, with p ¼ 23.1. (Inset) Data shown in
bilog scale, highlighting the power fit exponent. The measured
dimensionless parameter k compares well with the theoretical
prediction. Adapted from Greenfeld et al., 2012.

FIG. 36. Polymer concentration vs relative jet radius rJ=r0,
derived from x-ray absorption measurements at the jet center,
for experiments with solution jets of PEO 3 wt % (black lines)
and PEO 5 wt % (red lines). The predicted crossover radius
from Eq. (37) is highlighted for both solution concentrations.
(Inset) Corresponding theoretical prediction. Adapted from
Greenfeld et al., 2012.

FIG. 37. Relative polymer concentration change across the jet
vs relative radial distance from the jet center r=r0 for several axial
positions z along the jet. Data are from x-ray absorption
measurements of PEO 5 wt %, electric field, 2.8 kV=cm; flow
rate, 1.9 ml=h. Adapted from Greenfeld et al., 2012.
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velocity of moving collectors. For instance, it was shown and
explained how an increase in the velocity of the collector
screen leads to an increase in the porosity and permeability of
the nonwoven laydown. The modeling was based on the
system of quasi-1D equations of the dynamics of polymer
solution jets moving, evaporating, and solidifying when
driven by a surrounding air jet, as discussed later. The
governing equations were solved numerically.
Multiple polymer jets are considered simultaneously when

they are deposited on a moving screen and forming a non-
woven laydown of nanofibers. A scheme that visualizes the
process in the context of the model reported in this section is
shown in Fig. 38(a), where two nozzles at which the polymer
solution and compressed air are delivered are supported by a
nosepiece. The polymer jet–air-jet interaction and the various
forces acting on the jet, together with the solvent evaporation,
are illustrated in Fig. 38(b). Similarly to electrified jets, the
initial part (∼1 mm long) of the solution-blown jets is too
thick to bend since its bending stiffness is high. Here the
straight parts of polymer jets are stretched by the surrounding
high-speed air jets, leading to a strong elongational flow and
corresponding cross-sectional reduction. Similarly to electro-
spinning, when the jet becomes thin its bending stiffness ∼r4
is strongly reduced and a vigorous bending, which in the case
of solution blowing is driven by aerodynamic forces, begins.
Both the straight and the bending regimes are described in the
framework of quasi-1D equations with the following con-
tinuity and momentum balance equations (Yarin, 1993; Yarin,
Pourdeyhimi, and Ramakrishna, 2014; Sinha-Ray et al., 2015;
Ghosal, Sinha-Ray, Sinha-Ray et al., 2016):

∂λf
∂t þ ∂fW

∂s ¼ −Dabπλ; ð42aÞ

∂λfυ
∂t þ ∂fWυ

∂s ¼ 1

ρ

∂Pτ
∂s þ λfgþ λ

ρ
qTOT. ð42bÞ

In Eq. (42), most of the symbols have the same meaning as in
Eq. (11). In particular, λ is the stretching factor, f ¼ πr2 is the
cross-sectional area of the jet, s is an arbitrary coordinate
reckoned along the jet axis that might be understood, as usual,
as a Lagrangian coordinate marking material elements along
the jet axis, Da is the vapor diffusion coefficient in air, υ is the
absolute velocity of the polymer solution in the jet, W is the
liquid velocity along the jet relative to a cross section with a
certain value of s. P denotes the magnitude of the longitudinal
internal viscoelastic force in the jet cross section, τ denotes the
unit tangent vector of the jet axis, g is the gravity acceleration,
and qTOT is the overall force acting on a jet element. In this
case, the force is the aerodynamic force applied by the
surrounding gas on a unit jet length rather than the electric
force (Sinha-Ray, Yarin, and Pourdeyhimi, 2010a, 2011,
2013; Yarin, Sinha-Ray, and Pourdeyhimi, 2010; Sinha-Ray
et al., 2015; Ghosal, Sinha-Ray, Sinha-Ray et al., 2016;
Ghosal, Sinha-Ray, Yarin, and Pourdeyhimi, 2016). The term
on the right-hand side in the continuity equation (42a)
describes the solvent evaporation. The factor b in this term
reads (Yarin, Pourdeyhimi, and Ramakrishna, 2014)

b ¼ 0.495Re1=3a Sc1=2½Cs;eqðTÞ − Cs;∞�; ð43Þ

where Rea is the local Reynolds number of a jet element based
on its velocity relative to the surrounding air, Sc is the Schmidt
number (Sc ¼ νair=Da, where νair is the kinematic viscosity of
air), and Cs is the solvent concentration. The subscript “eq”
corresponds to the equilibrium vapor pressure over the
polymer solution surface determined by temperature T,
whereas the subscript ∞ corresponds to the vapor content
far from the jet surface in the surrounding air. Therefore, the
solvent evaporation rate is dependent on T through the
equilibrium solvent concentration Cs;eqðTÞ. This dependence
can be derived from the Antoine equation (Reid, Prausnitz,
and Poling, 1987) or similar equations (Seaver, Galloway, and
Manuccia, 1989; Alduchov and Eskridge, 1996).
The projections of the momentum balance equation onto

the accompanying trihedron of the jet axis, namely, the unit
tangent vector τ, the unit principal normal vector n, and the
unit binormal vector b, are akin to a hyperbolic wave
equation. Accordingly, they can be solved numerically using
the implicit numerical scheme of the generalized Crank-
Nicolson type, with the central difference spatial discretization
at three time levels (Sinha-Ray, Yarin, and Pourdeyhimi,
2010a, 2011, 2013; Yarin, Sinha-Ray, and Pourdeyhimi,
2010; Sinha-Ray et al., 2015; Ghosal, Sinha-Ray, Sinha-
Ray et al., 2016; Ghosal, Sinha-Ray, Yarin, and Pourdeyhimi,
2016). The implementation of the initial and boundary
conditions and the postprocessing procedure that allows
one to reconstruct the 3D architecture of the laydown of
nanofibers have been discussed in detail (Sinha-Ray et al.,
2015; Ghosal, Sinha-Ray, Sinha-Ray et al., 2016) using the
touchdown times of the individual jet elements, their locations
on the collecting screen, and the cross-sectional radii of as-
deposited filaments (Ghosal, Sinha-Ray, Sinha-Ray et al.,
2016; Ghosal, Sinha-Ray, Yarin, and Pourdeyhimi, 2016).
Solution blowing is an isothermal process, with the temper-

ature T in Eq. (43) being room temperature. This temperature
is typically above the θ temperature at which solvent-polymer
and polymer-polymer interactions equal each other, and thus
the solvents are initially good, which means that polymer
molecules preferentially possess extended, elongated configu-
rations. However, during solution blowing the solvent con-
centration in the polymer jet decreases due to evaporation and,
accordingly, the polymer concentration Cp increases. In
addition, the local polymer concentration varies due to
stretching as Cp ¼ Cp;0λ0f0=λf, where as usual the subscript
0 denotes the values at the initial cross section of the jet
bending part. The rheological parameters of the viscoelastic
polymer solution, namely, its viscosity and relaxation time,
also vary along the jet as (Yarin, Pourdeyhimi, and
Ramakrishna, 2014)

μ ¼ μ0 × 10JðC
m
p−Cm

p;0Þ; ð44aÞ

θ ¼ θ0Cp;0=Cp; ð44bÞ

where μ0 and θ0 are the initial values of the viscosity and the
elastic relaxation time (namely, again, those at the initial
cross section of the jet bending part) and J and m are
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material-dependent constants. This strongly nonlinear
dependence of the zero-shear viscosity and of the relaxation
time Cp practically arrests the deformation of the polymer
solution at some moment, which corresponds to polymer
precipitation at a high enough concentration where polymer-
polymer self-interactions prevail. The longitudinal force P
[Eq. (42b)] is a function of τττ − τnn, where τττ and τnn are the
longitudinal and normal deviatoric stresses in the jet cross

section, respectively. Since τττ ≫ τnn, P is practically a
function of τττ only. The deviatoric stresses could be calcu-
lated using an appropriate rheological constitutive equation,
for example, the UCM model (Yarin, 1993; Yarin,
Pourdeyhimi, and Ramakrishna, 2014). Hence, the rheologi-
cal behavior of polymer solutions can be described using
phenomenological constitutive equations that do not directly
utilize any physical information related to macromolecular

FIG. 38. (a) Scheme of polymer solution blowing, with multiple jets located along a nosepiece and a rotating collector. (b) Different
forces acting on polymer solution jet. (c) Snapshot of 60 numerically simulated polymer solution jets. (d) Section of a deposited
solution-blown laydown. (e) A drum used in the experiments. (f) Schematics of the drum cross section with the corresponding
coordinate system. Adapted from Ghosal, Sinha-Ray, Sinha-Ray et al., 2016.
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chains and their conformations. However, a link between
UCM and micromechanical models of polymer solutions and
jets was established (Yarin, 1993), showing that in strongly
stretched polymer jets the higher values of the longitudinal
deviatoric stress τττ correspond to the macromolecular chain
stretching and orientation in the axial stretching direction.
Jet stretching in flight has also been studied in detail in
the framework of meltblowing (Yarin, Pourdeyhimi, and
Ramakrishna, 2014).
In both experiments and numerical simulations of solution

blowing (Ghosal, Sinha-Ray, Sinha-Ray et al., 2016), solidi-
fied polymer jets (i.e., nanofibers) have been collected on a
rotating drum [Figs. 38(a) and 38(c)–38(f)]. Here the direction
of the blowing is defined as z. In particular, Fig. 38(c) shows
this geometry along with a snapshot of 60 numerically
simulated polymer solution jets in flight, which are wound
on the collecting drum. Figure 38(d) shows a cut portion of the
numerically simulated laydown on the drum. To model the
process, the drum is assumed to rotate with the angular
velocity ω ¼ dβ=dt, where β is the angular coordinate around
the drum axis, which is parallel to the nosepiece [Fig. 38(f)].
The drum has a cross-sectional radius RD. The angular
coordinate of a material element after its touchdown at the
drum (or at the preceding fiber laydown on the drum) is found
to be β ¼ βtouch þ ωðt − ttouchÞ, where the touchdown hap-
pens at the angle βtouch and at time ttouch < t. We emphasize
that this expression allows the angle β to grow beyond
βtouch þ 2π, which means that the deposited fibers have made
a full rotation with the drum and are being covered by a newly
deposited fiber layer. The corresponding circumferential
coordinate of a material element of a polymer filament on
the drum is denoted as ψC and is found to be

ψC ¼ ψC;touch þ ωðt − ttouchÞRD; ð45Þ

where ψC;touch ¼ βtouchRD. Therefore, the coordinate of a
material element of a polymer filament on the drum along
a direction normal to z and aligned parallel with the nosepiece
[Fig. 38(a)] does not change after the touchdown. On the
other hand, its z coordinate varies as [Fig. 38(f)]
z ¼ ztouch þ RD cosðπ − βÞ ¼ ztouch − RD cos β, where ztouch
corresponds to the touchdown position. This leads to

z ¼ ztouch − RD cos½βtouch þ ωðt − ttouchÞ�: ð46Þ

The previously deposited and new layer of fibers (generated
after a full rotation of the drum) could have the same value of
the coordinate z as per Eq. (46), albeit they are distinguished
by their coordinates ψC as per Eq. (45). In other words, ψC
corresponds to a longitudinal coordinate along an unrolled
laydown. These equations allow one to pose the boundary
conditions at the end of a free polymer jet already deposited on
the rotating cylindrical collector (the drum), similar to the
boundary conditions used on planar collector screens (Sinha-
Ray, Yarin, and Pourdeyhimi, 2010a, 2011, 2013; Yarin,
Sinha-Ray, and Pourdeyhimi, 2010; Sinha-Ray et al., 2015;
Ghosal, Sinha-Ray, Sinha-Ray et al., 2016; Ghosal, Sinha-
Ray, Yarin, and Pourdeyhimi, 2016). These boundary con-
ditions affect backwardly the oncoming part of the polymer jet

or filament through the corresponding viscoelastic force
acting along the jet or filament, as predicted by the model
(Ghosal, Sinha-Ray, Sinha-Ray et al., 2016).
Results from simulations compare favorably with the

experimental data. For instance, the predicted mean turbulent
velocity field in the axisymmetric air jet surrounding polymer
solution jets has been calculated (Sinha-Ray et al., 2015). The
simulated bending jet domain for a single solution-blown jet
was found to occupy a cylinder of about 0.38 cm in diameter,
whereas the experimentally observed jet was located inside a
cylinder of 0.33 cm in diameter, as highlighted by the vertical
lines in Fig. 39 (Sinha-Ray et al., 2015). The predicted cross-
sectional fiber diameter distribution is shown in Fig. 40.
Two additional properties of solution-blown nonwovens are

the volumetric porosity and permeability. In modeling works,
the volumetric porosity pvol was defined following its basic
definition, namely, based on the predicted volume VE of
the laydown envelope and the volume VF of the polymer
fibers encompassed by this envelope. Accordingly, pvol ¼
ð1 − VF=VEÞ × 100%. Volumetric porosity values under dif-
ferent conditions were found by postprocessing the simulated
nonwoven laydowns formed by 60 polymer solution jets for
1 min, and the calculated volumetric porosity was found to
grow upon increasing the angular speed of the rotating drum
collector (Ghosal, Sinha-Ray, Sinha-Ray et al., 2016), which
is reminiscent of the case of meltblowing onto a moving
surface. A similar behavior was found for permeability
(Ghosal, Sinha-Ray, Sinha-Ray et al., 2016). Finally, the
comparison of experimentally measured and numerically
simulated laydown landscapes was also favorable, with
similar morphological profiles and height variations (Fig. 41).

VII. PERSPECTIVE AND CONCLUSIONS

Here we provide a summary of currently open challenges,
as well as of possible future developments in the field of

FIG. 39. Snapshot of jet configuration at the beginning of the
bending part for blown polymer solutions. The bending jet
domain that is found experimentally is highlighted by two
vertical straight lines. The predicted snapshot of the jet axis at
the beginning of the bending part wiggles between these lines,
showing good agreement between model and experiment. The
experimental data were acquired with a Phantom V210 fast
camera. Adapted from Sinha-Ray et al., 2015.
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modeling of electrified polymer jets and solution blowing, and
of materials obtained by these processes.
From fluid dynamics to material properties.—Modeling of

electrospinning and solution blowing is still to be generalized,
for instance, to be able to predict the degree of crystallinity in
the as-spun nanofibers. This would be a step toward the
solution of a formidable problem, namely, the prediction of
the ultimate mechanical properties of both individual

nanofibers and materials assembled with them. In fact,
fiber-forming methods and laydown postprocessing encom-
pass such processes as spunbonding and hydroentanglement,
respectively. Modeling of these processes has already begun to
develop along the same lines as those of electrospinning and
solution blowing, i.e., based on the quasi-1D equation (11) (Li
et al., 2019a, 2019b). Only the first steps in this direction have
been made, however, and significant efforts would be required

FIG. 40. Predicted diameter distributions of solution-blown laydowns from 60 jets [parameters shown in Fig. 38(f)] for various angular
velocities ω of the rotating drum. (a)–(c) Diameter distributions for β ¼ 0°, 60°, and 135°, respectively, for ω ¼ 10 rpm. (d)–(f) Same
angles, with ω ¼ 50 rpm. (g)–(i) Same angles, with ω ¼ 100 rpm. (j)–(l) Same angles, with ω ¼ 200 rpm. Adapted from Ghosal,
Sinha-Ray, Sinha-Ray et al., 2016.
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in the future to predict the mechanical properties of the
obtained materials. Electrospinning and solution blowing of
core-shell nanofibers, such as those used in self-healing
vascular, nanotextured composite materials (Yarin et al.,
2019), also pose multiple modeling questions. Novel electro-
mechanical devices based on electrospun and solution-blown
nanofibers (An, Kang, and Yarin, 2018; An, Sankaran, and
Yarin, 2018; Kang et al., 2019) involved multiple issues that
require detailed modeling of material properties, and of how
they descend from the jet properties and dynamics. That
would enable development of software capable of controlling
such nanotextured devices.
Other challenges are given by our capability to understand

the internal structure of obtained nanofibers, which is also
strictly related to the jet behavior. The variation of polymer
concentration across the jet was found to go through high

concentrations at the jet boundary due to evaporation as well
as a concentration rise at the jet center (Greenfeld et al., 2011,
2012). The last phenomenon is attributed to polymer stretch-
ing that causes lateral contraction of the polymer network
toward the jet center, and it is in good agreement with
theoretical models. Moreover, it was shown that evaporation
is dominant when stretching is weaker (e.g., at lower electric
field and/or higher flow rate), canceling the concentration
peaks measured at the jet center. The balance between the
effects of evaporation and stretching determines the polymer
network nonequilibrium conformation during electrospinning,
and it can help clarify the reasons for the diverse structures and
properties found in solid nanofibers. In particular, the size-
dependent mechanical, thermomechanical, and thermody-
namic properties of as-spun nanofibers, such as the rise of
the elastic modulus at small diameters and the shift of the glass

FIG. 41. Laydown produced by solution blowing of polymer nanofibers. (a)–(e) Height profiles of the laydown measured by optical
profilometry at different sample points and (f) simulated average profile for a deposition region x,y of comparable size (of the order of
104 μm2). Polymer solution concentration, 15 wt %; angular drum speed, 240 rpm. (f) z-numerical data are obtained starting from a large
simulated laydown area (20 × 10 cm2), which is then subdivided into several smaller areas of 250 × 250 μm2, and the simulated mean
elevation is averaged over those smaller areas. Adapted from Ghosal, Sinha-Ray, Sinha-Ray et al., 2016.
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transition temperature, are attributed to the internal molecular
and supramolecular structure of the polymer matrix in nano-
fibers. The current implementation of the method is, however,
limited to the initial section of the jet. Further investigation
could provide evidence for disentanglement of the polymer
chains and reveal a nonuniform flow regime due to rapid
evaporation, possibly with streamlines toward the jet boun-
dary. Such studies may be important for several applications
of electrospinning, such as drug delivery, nanocomposites,
and aerogels based on short fibers.
Beyond Lagrangian models for a multiscale description.—

The last advances in both mesoscopic and atomistic simu-
lations led to a new multiscale paradigm. New high-tech
experimental setups of electrospinning processes prompt a
quantitative understanding of different complex phenomena
that span a broad range of scales in both space and time.
Several physical quantities may be described using different
representations that are already at the same length scale. For
instance, as pointed out in Sec. V.C.3, the simulation of
electrospinning in the presence of a space-distributed electric
field Eðx; y; zÞ can be performed by coupling the Eulerian
representation of the vector field to the Lagrangian jet beads.
Moreover, the electrospinning process is a nonequilibrium
transport problem, driven by strong force terms that span
many length scales and timescales. A typical example is the
repulsive Coulomb force. For each ith bead, the Coulomb
term fc;i is assessed as the summation of bead pairs ði; jÞ as
the inverse of the distance jRj −Rij [see the Coulomb term in
Eq. (17)], distributed over several orders of magnitude in
length (jRj −Rij in the range 0.01–10 cm). With rpcut
denoting a primary cutoff for the Coulomb pair interactions,
the Coulomb force can be split into two terms of different
timescales: a contribution from all neighboring beads with
jRj −Rij ≤ rpcut, which changes quickly in time, and a
second, slower contribution due to the remaining far-field
beads. Hence, it is possible to assess the force fc;i using the so-
called multistep method (Allen and Tildesley, 2017), where
the contribution of the neighbor beads is computed at every
time step (usually Δt ∼ 10−8 s), while that from the remaining
beads is updated at a larger timescale (typically every 100Δt).
On the other hand, other force terms cannot be easily

described using a multiscale approach. For instance, the
tensile stress force is related to the behavior of the polymeric
matrix evolving toward nonequilibrium states when subject to
the external, intense electric field. Hence, the mechanical
response and fracture phenomena would require an atomistic
description to be fully resolved (without using a rheological
constitutive law). In the past decade, several works have
investigated the mechanical response of stretched polymeric
matrices at the atomistic level by Lagrangian methods (usually
by molecular dynamics simulations), where particlelike points
represent the atomic positions (Buell, Van Vliet, and Rutledge,
2009; Park and Joo, 2014; Miao et al., 2015, 2017; Lolla et al.,
2016). However, the largest available system size in molecular
dynamics simulations is about 10−6 cm, while the typical time
step for the integration of the EOM is Δt ∼ 10−15 s. On the
other hand, the typical length scales and timescales in the
Lagrangian models (Sec. V.B) are about 10 cm and
Δt ∼ 10−8 s, respectively. This range of several orders of

magnitude in both space and time is challenging to cover with
a multiscale approach, which is, therefore, not a viable route in
this context. Nonetheless, it is possible to exploit alternative
strategies based on mesoscale physics to represent other
phenomena that are not described in the Lagrangian models.
As an example, in the bead models the fluid is assumed to be
spinnable (ec. V.B.2), and the capillary breakup phenomena
close to the nozzle are entirely missed in the description.
Nonetheless, it is possible to bridge the gap using a mesoscale
solver of the Navier-Stokes equation of the fluid close to the
nozzle. Then, for instance, the information could be trans-
ferred to the Lagrangian bead representation within a multi-
scale scheme.
The mesoscale approaches are grounded in the intermediate

level of the description of matter, namely, kinetic theory: the
main versions are Boltzmann’s kinetic theory and Langevin
stochastic particle dynamics. A versatile simulation technique
for solving Navier-Stokes equation is the lattice Boltzmann
method (LBM), which exploits the Boltzmann kinetic theory
(Benzi, Succi, and Vergassola, 1992; Krüger et al., 2016;
Succi, 2018). Here the fluid is represented as pseudoparticles
propagating and colliding over a discrete lattice domain in
space. Each pseudoparticle represents a statistical probability
fðx; yÞ of observing a fluid parcel in a lattice point moving
over a discrete set of allowed directions so that the degrees of
freedom of the system decrease enormously if compared to the
corresponding atomistic representation. Although the LBM
suffers the typical problems of grid-based methods (Secs. IV

FIG. 42. (a) The quasistraight section of a jet in an electro-
spinning experiment with a solution of 5 wt % PEO in water.
Adapted from Greenfeld et al., 2011). (b) A snapshot of the fluid
density ρðz; yÞ in the stationary regime after the jet has touched
the right side of the simulation box. (c) The corresponding
velocity field magnitude jυðz; yÞj, and the line integral convolu-
tion representation (Forssell and Cohen, 1995) of the velocity
field. From Lauricella et al., 2018.
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and V.B.1), it can be implemented with high computational
efficiency, especially on parallel computers (Feichtinger et al.,
2015; Succi et al., 2019). In the context of electrospinning
modeling, the quasistraight jet path (Sec. V.B.2) can be
effectively described by the LBM (Lauricella et al., 2018).
Figure 42 displays a comparison between hyperbolic profiles
of a stretched jet observed in simulation and experiment. In
particular, the profile in the simulation appears to be in
qualitative agreement with the characteristic shape of the
jet experimentally observed close to the injecting nozzle by
the Rafailovich and Zussman groups (Greenfeld et al., 2011)
and is consistent with previous theoretical results on the jet
conical shape (Feng, 2002, 2003). By its highly mesoscopic
nature, the LBM is conceptually at a vantage point for
multiscale or multilevel coupling, both upward, toward
Lagrangian bead representations and downward, toward
atomistic models. In perspective, a possible route is to devise
new algorithms that allow for reproducing electrospinning
setups of increasing complexity by coupling different descrip-
tions from the bottom-up or, conversely, top-down overview.

LIST OF SYMBOLS AND ABBREVIATIONS

A surface area cm2

Abs linear attenuation coefficient cm−1
b unit binormal vector of jet

axis
1

Bo Bond number 1
c unit vector pointing to the jet

curvature center
1

Ca capillary number 1
Cs solvent concentration mol cm−3
Cp polymer concentration mol cm−3
D diffusion coefficient cm2 s−1
De Deborah number 1
e0 electric charge per unit jet

length (unperturbed)
statC cm−1

E electric field strength statV cm−1
eL electric charge per unit jet

length
statC cm−1

g gravitational acceleration cm=s2

G elastic modulus g cm−1 s−2
h nozzle-collector distance cm
I current statC s−1
k jet curvature cm−1
ljet jet arc length cm
m mass g
n principal unit normal vector

of jet axis
1

Ns number of monomers
p pressure g cm−1 s−2
q charge statC
Q flow rate cm3=s
r cross-sectional radius cm
r0 cross-sectional radius (initial) cm
rT droplet radius cm

R position vector cm
t time s
T temperature K
Tr radiation transmission 1
α surface tension g=s2

ε dielectric constant 1
_ε strain rate s−1
Φ, φ, φ0 electric potential statV
ϕ volume fraction 1
_γ shear rate s−1
λ stretching ratio 1
θ relaxation time (viscoelastic) s
θC relaxation time (charge) s
θH relaxation time

(hydrodynamic)
s

σ stress g cm−1 s−2
σe electrical conductivity s−1
σq surface charge density statC cm−2
ρ mass density g cm−3
ρq volumetric charge density statC cm−3
μ dynamic viscosity g cm−1 s−1
μe elongational viscosity g cm−1 s−1
ν kinematic viscosity cm2 s−1
τ unit tangent vector of jet axis 1
υ velocity cm=s
WG Gibbs free energy g cm2 s−2
ω angular velocity rad=s
ξ mesh size of polymer

network
cm

Σ mass attenuation coefficient cm2 g−1
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