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Immediately after the discovery of high temperature superconductivity in the cuprates in 1987,
properties in the metallic state above Tc were discovered that violated the reigning paradigm in
condensed matter physics: the quasiparticle concept due to Landau. The most discussed of such
properties is the linear in temperature resistivity down to asymptotically low temperatures, sometimes
called Planckian resistivity, above the region of the highest Tc. Similar anomalies have since also been
discovered in the heavy-fermion compounds and in the Fe-based superconducting metals, and most
recently in twisted bilayer graphene. Innumerable papers in the past three decades have pointed out
that the linear in T resistivity and associated properties are a mystery and the most important unsolved
problem in condensed matter physics; superconductivity itself is a corollary to the normal state
properties. Even in this prolifically investigated field, quantitative experimental results on crucial
normal state and superconducting state properties have only recently become available. It is now
possible to compare some of the detailed predictions of a theory for the normal and superconductive
state in cuprates and in heavy fermions with the experiments. The theory gives the frequency and
temperature dependence of various normal state properties and also their measured magnitudes in
terms of the same values of two parameters. It also resolves the paradox of d-wave symmetry of
superconductivity in the cuprates given that the scattering rate of fermions in the normal state is nearly
momentum independent. The same parameters that govern the normal state anomalies are also
deduced from the quantitative analysis of data in the superconducting state in cuprates. The simplicity
of the results depends on the discovery of a new class of quantum-critical fluctuation in which
orthogonal topological excitations in space and time determine the spectra, such that the correlations
of the critical spectra are a product of a function of space and a function of time with the spatial
correlation length proportional to the logarithm of the temporal correlation length. The fermions
scattering with such fluctuations form a marginal Fermi liquid.
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I. INTRODUCTION

Figure 1 presents a schematic universal diagram for the
thermodynamically significant phases in the hole-doped
cuprates and for the Fe-based superconductors. The phase
diagram for several heavy-fermion compounds (von Löhneysen
et al., 2007) is similar to the Fe-based superconductors with
the structural transition missing. In the cuprates, the Mott-
insulating antiferromagnetic phase near half filling of the only
band that crosses the Fermi- surface in one-electron calculations
(Mattheiss, 1987) gives way with doping to the superconduct-
ing phase of d-wave symmetry at low temperatures. Besides the
superconducting phase, we focus on the region that begets it:
the region marked as I, which is often called the strange metal.
This region is bounded on one side by a wide crossover to a
region that has properties of a Landau Fermi liquid, and no
profound problems are raised by it. On the other side is a region
marked by an unusual phase transition ending at a quantum-
critical point in the superconducting dome. It was realized early
on that fundamental new principles must be involved in
understanding the strange metal region whose properties are
due to the breakdown of the quasiparticle concept, and tentative
directions of future research were laid out (Anderson, 1987;
Varma et al., 1989). Some prominent reviews along different
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lines than this Colloquium were given by Anderson (1997),
Lee, Nagaosa, and Wen (2006), and Scalapino (2012). Not
surprisingly, given the significant attention devoted to this
problem by physicists from a variety of different backgrounds,
other novel points of view have also been developed. These
include a branch of string theory, physics of black holes, and
applications of the theory of quantum chaos; see, for example,
Zaanen et al. (2015), in which these points of view are
summarized.
The aim of this Colloquium is to compare detailed

quantitative predictions of a theory with a variety of different
experiments. The theory is quite subtle and relies on quantum
criticality governed by topological excitations. The answers
are unusual but, typical of most subtle problems, extraordi-
narily simple. The model solved is the dissipative 2D quantum
XY model and the coupling to fermions of its fluctuations. The
model has been solved using renormalization group methods
(Hou and Varma, 2016) as accurately as the Kosterlitz solution
of the classical XY model (Kosterlitz, 1974), and checked in
detail by quantum Monte Carlo calculations with some
additional results (Zhu, Chen, and Varma, 2015; Zhu, Hou,
and Varma, 2016). The applicability of the model to the
quantum criticality of the cuprates and to anisotropic anti-
ferromagnets has also been discussed (Varma, 2015; Varma,
Zhu, and Schröder, 2015). A review of the theory was given
by Varma (2016). Details of the theory are not given here; only
the motivation for the direction of pursuit of the theory and its
principal results are summarized. The emphasis in this
Colloquium is on a quantitative comparison of the predictions
with four different experiments in region I of cuprates in
Fig. 1, which was not possible earlier because, even for this
prolifically examined problem, some crucial experimental
results have become available only in recent years. The most
important question in superconductivity, its symmetry and the

deduced parameters determining the high Tc, are also given by
the theory.
The four different experimental results emphasized are (i) the

recent measurement of the T lnT specific heat on a vertical
line above the quantum-critical point marked in Fig. 1,
(ii) the measurement of the single-particle scattering rates,
(iii) the recently measured density fluctuation spectrum, and
(iv) the long-standing results on the linear temperature depend-
ence of the resistivity. It is shown that a new class of theory in
quantum criticality gives the temperature and frequency
dependence of each of them, and the magnitudes of all four
with one dimensionless coupling parameter. These low fre-
quency or temperature dependences persist to an upper cutoff
that is measured to be about the same as the singularity in the
specific heat or the saturation of the single-particle self-energy.
The same two parameters are deduced in the analysis of results
of photoemission experiments to give d-wave superconductiv-
ity and its transition temperature. The coupling parameter and
the cutoff has been estimated in the microscopic theory to
within a factor of 2 (Aji, Shekhter, and Varma, 2010).
Some essential aspects of the fluctuation spectra based on a

close reading of a variety of experiments were suggested much
earlier (Varma et al., 1989), before the microscopic basis was
understood and an appropriate theoretical framework for
deriving the results was formulated. Now that the foundations
of the unusual criticality have been found, many important
aspects have changed. But one of the central results, that the
fermions form a marginal Fermi liquid, which followed from
the assumed quantum-critical spectra, remains unchanged.
Related to the physics of the normal state anomalies is the

aspect of the theory giving a quantitative theory of the d-wave
superconductivity in these compounds (Aji, Shekhter, and
Varma, 2010). As we discuss later, given the angle dependence
of the single-particle scattering rate, which is quite
unlike the hot-spot dominated scattering of conventional

FIG. 1. Schematic universal phase diagrams (left panel) of hole-doped cuprates and (right panel) of the Fe-based compound, based on
the data on BaðFe1−xCoxÞ2As2 from Chu et al. (2009). The quantum-critical point discussed in the text for both is indicated. The wide
crossover to Fermi liquid is indicated only roughly for each. In the cuprates, depending on the compound a variety of other
thermodynamically small transitions are seen in the pseudogap state below the phase boundary marked T� as well as a spin-glass state at
low temperatures from the antiferromagnetic region to near the quantum-critical point. These are not shown. It has not been clear from
experiments where the line marked Tx ends at low doping. In theory, it persists to zero doping.
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antiferromagnetic fluctuations, d-wave superconductivity can
occur only if the coupling of the critical fluctuations to fermions
has a unique signature given by the theory. Moreover, the same
two parameters with which various normal state properties are
fitted are deduced from an analysis of angle-resolved photo-
emission data in a cuprate (Bok et al., 2016).
It is obvious, upon looking at the phase diagrams for

Fe-based compounds and heavy fermions in Fig. 1, that the
breakdown of the quasiparticle concepts and the superconduc-
tivity in them are related to the quantum-critical fluctuations of
antiferromagnetism. For the cuprates, the problem is more
subtle. Not only is the antiferromagnetic phase often well
separated from the region of criticality, the antiferromagnetic
correlation length in the region of the highest Tc is measured in
some compounds (Balatsky and Bourges, 1999) to be no more
than a lattice constant. For the cuprates, the theory of criticality
rests on an elusive proposed order breaking time reversal and
inversion in the underdoped phase that abuts the quantum-
critical region in the phase diagram. The phase transition to
such a broken symmetry has been observed in a variety of
experiments that are summarized in Sec. III. The model for
quantum-critical fluctuations of such an order, discussed in
Sec. III.B, is the dissipative quantum XY model. This model
can essentially be solved exactly, and the results for scattering
from the fluctuations of this model form the backbone of much
of the comparison of the experimental results with the theory
reviewed in this Colloquium. For the Fe compounds and the
heavy fermions, the well developed theory of quantum-critical
fluctuations for antiferromagnetic order (Hertz, 1976; Moriya,
1985), which are extensions of classical critical fluctuations to
dynamics (Hohenberg and Halperin, 1977), fail to give the
observed quantum-critical properties that are essentially iden-
tical to those of the cuprates. It has been argued that because of
anisotropy, the statistical mechanical model for criticality in
these compounds also maps to the quantum XY model. This
raises an important unresolved issue that we later describe.
For the cuprates, some important properties, such as the

“Fermi arcs” and magneto-oscillations with a small Fermi
surface in region II of the phase diagram remain unexplained by
the proposed phase. An extension of the broken symmetry to a
large period phase was suggested recently (Varma, 2019) to
explain these, but it has not yet been tested in proposed
experiments. Only when this extension is verified and such
properties explained can one claim to have a complete theory of
the cuprates.
This Colloquium is organized as follows. In Sec. II, the four

classes of normal state experiments mentioned and the
deduction of the crucial two parameters determining their
magnitude and of d-wave superconductivity are summarized.
In Sec. III, the results of the theory are summarized to show
how the frequency and temperature dependence in each of the
experiments is obtained and why two parameters describe all
of them quantitatively. In Sec. IV, important unresolved
problems are mentioned.

II. EXPERIMENTAL RESULTS

A. Specific heat near quantum criticality

An antiferromagnetic quantum-critical point for the heavy
fermions and the Fe-based compounds is evident, and there is

no question that the anomalous properties that occur are
associated with it. In the hole-doped cuprates, the antiferro-
magnetic correlation length in the region of the linear in T
resistivity and other anomalous properties is only of the order
of a lattice constant (Balatsky and Bourges, 1999). A phase
diagram with a quantum-critical point in this region (asso-
ciated with a much different phase transition) was proposed
for the cuprates (Varma, 1997), with a line of transitions at the
onset of the so-called pseudogap phase. Such a line is now
widely accepted. However, the clearest thermodynamic evi-
dence for quantum criticality was discovered only recently
through the measurement of the specific singularity in the
measured specific heat (Michon et al., 2019) of the algebraic
form predicted in 1989 (Varma et al., 1989). Figure 2) from
Michon et al. (2019), presents the singularity in the specific
heat close to the critical point in a measurement down to 0.5 K
together with the crossover in the singularity on either side of
the quantum-critical point. This measurement was possible
because in the compounds measured La2−pApCuO4, with A ¼
Nd or Eu, Tc is low enough to be completely suppressed with
fields of about 15 T.
Close to quantum criticality, the electronic specific heat fits

Cel

kBT
ðpcÞ ¼ γ

�
1þ ḡ ln

�
T̄x

T

��
: ð1Þ

The logarithmic enhancement of the specific heat is
equivalent to the basic postulates of a marginal Fermi liquid
(Varma et al., 1989), that the quasiparticle residue goes to zero
at the critical point as

zp̂ðω; TÞ ¼
1

1þ gp̂ lnðπTxp̂=xÞ
; x ¼ maxðπT;ωÞ: ð2Þ

Following the summary of the theory in Sec. III, I assume that
both the coupling constant g and the cutoff Tx may have weak
dependence on the direction of the momentum p at the Fermi
surface. The experimental ḡ and T̄x in the specific heat may be
taken as the averages of the parameters in zp̂.
What is plotted in Fig. 2 is not the total specific heat divided

by T but Cel=T obtained by subtracting from the total specific
heat at a given p all but an observed constant electronic or
Fermi-liquid contribution to the total specific heat Cv=T at
p ¼ 0.16. Both are measured at a magnetic field of 8 T to
eliminate superconductivity. This serves to eliminate the
nuclear Schottky contribution and the phonon contribution.
Using γ ≈ 5 mJ=moleK2 at p ¼ 0.24, we may read ḡ and the
cutoff T̄x from the slope and the intercept by extending the
dashed line to 0 in the right panel of Fig. 2 to be

ḡ ≈ 0.4� 0.1; T̄x ≈ 1200� 300 K: ð3Þ

The error bars come from the large region over which an
extrapolation is necessary to deduce Tx and the smaller
uncertainty in γ.
From Fig. 2, one can also deduce the crossover temperature

ξ−1T ðp − pcÞ to a Fermi liquid
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Cel

T
ðpÞ ¼ γ
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1þ ḡ ln

�
Tx

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ξ−2T ðpÞ

q ��
; ð4Þ

ðξTÞ−1
Tx

∝
�
p − pc

pc

�
ζ

. ð5Þ

Given the error bars, ζ cannot be determined accurately.
Assuming that the background specific heat coefficient γ is
independent of T for p ranging between 0.24 and 0.35, ζ ≈ 0.5
is estimated. The calculations summarized in Sec. III do give
this value.
The T lnT contribution to the specific heat in one heavy-

fermion compound in the region of its linear in T resistivity is
quantitatively discussed later. It is helpful if specific heat is
measured in the quantum-critical region in other cuprates with
low Tc such as Bi2201. In the compounds measured as well as
in others, there is a need to measure several dopings close to
the critical point to evaluate the crossover regime quantita-
tively. The effect of the magnetic field on the criticality also
needs to be studied carefully.

B. Single-particle relaxation rate

Inelastic single-particle relaxation rates began to be reliably
measured in 2000 (Valla et al., 2000) and showed a relaxation
rate proportional to T for T much larger than ω and propor-
tional to ω in the opposite limit and with evidence that it is
nearly independent of momentum both perpendicular to the
Fermi surface and along the Fermi surface. The most complete
such measurements arrived in 2005 (Kaminski et al., 2005). I
show the relaxation rate in different directions on the Fermi
surface for ω ≫ T in Fig. 3. Later measurements showed a
relaxation rate about 20% smaller (Bok et al., 2010). Similar
results have been obtained by other investigators; for a review,
see Damascelli, Hussain, and Shen (2003). The deduction of

the single-particle relaxation rate as a function of frequency,
in other words, the imaginary part of the single-particle
self-energy ImΣðp;ωÞ reproduced in Fig. 3, is from the energy
dependence of the momentum distribution curves, which are
also shown in the figure for various energies. Fits to the energy
distribution curves for fixed momenta, also given by Kaminski
et al. (2005), provide results consistent with the parameters
deduced. The momentum distribution function fits a Lorentzian
well. The Lorentzian form is evidence that the relaxation rate is
independent of momentum perpendicular to the Fermi surface
(Abrahams and Varma, 2000). To convert to the scattering rate
as a function of energy, one must multiply by the band-structure
velocity at the measured ω. The low frequency departure from
linearity as a function of ω is due to impurity scattering and
finite temperature. The data also allow one to deduce a
frequency- and temperature-independent relaxation rate that
is angle dependent. It is not possible in this experiment to
disentangle the small angle impurity scattering contribution
(Abrahams and Varma, 2000) and the angle-dependent width
due to bilayer splitting in this quantity.
The parameter b ¼ 0.7� 0.1 shown in Fig. 3 is indepen-

dent within this error bar of the momentum along the Fermi
surface. It is defined through ImΣ ¼ aþ bω in the legend in
the figure. Given the definition of the parameter gp̂ in Eq. (2),
b ¼ ðπ=2Þgp̂. This experiment therefore determines that
ḡ ¼ 0.4� 0.1. This should be compared with ḡ deduced from
the specific heat in Eq. (3). We must remember that the
specific heat is measured in a different compound than the
scattering rates. However, when a variety of compounds are
measured, as in the resistivity results (Legros et al., 2019)
quoted later, the variation of this parameter appears to be no
more than 50%. The measurements of the single-particle line
shapes in La2−xSrxCuO4 (Chang et al., 2007; Zhu et al., 2008)
show angle dependence in the scattering rate increasing by
about 50% from the ðπ; πÞ to the ðπ; 0Þ directions with a value
in the former about the same as that shown in Fig. 3.

FIG. 2. The electronic specific heat in La2−pApCuO4. (Left panel) Data at 0.5 K, the lowest temperature measured (in a magnetic field
to remove superconductivity). (Right panel) Temperature dependence of the specific heat nearest the critical composition p ≈ pc. From
Michon et al., 2019.
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Figure 4 shows a compilation of data of the linewidth in the
momentum distribution for a fixed frequency up to frequen-
cies of about 0.5 eV in three different compounds that are
measurable by ARPES. The low frequency departure from
linearity as a function of ω is due to impurity scattering and
finite temperature. The upper cutoff in the relaxation rate
given by the theory, when it must change to being frequency
independent, is within 50% of the πTx in the specific heat
data shown in Fig. 2. Later measurements in Bi2212 showed
(Bok et al., 2010) that this upper cutoff is angle dependent:
about 0.5 eV near the diagonal and decreasing to about 0.2 eV
in the ðπ; 0Þ directions. Below about 0.4 eV, the cutoff is the
same as the bottom of the band measured from the chemical
potential (Kaminski et al., 2005).

C. Resistivity

Figure 5 presents the region of temperature as a function of
doping p in La2−pSrpCuO4, in which the resistivity is linear in
T (Hussey et al., 2011). The dashed lines give the temperature
below which resistivity begins to deviate from linear in T.
The dashed line on the right marks the temperature cut-
off ξ−1T ðp − pcÞ.

FIG. 4. The full width of the Lorentizian momentum distribu-
tion curves as a function of energy up to high energy for the three
compounds that were measured by ARPES. The open black
circles are data for optimally doped Bi2201 [nodal cut, from
Meevasana et al. (2008)]. The red crosses are for “optimally
doped” Bi2212 [nodal cut, from Graf et al. (2007)]. The solid
green circles are for La2−pSrpCuO4 for p ¼ 0.17 at about 20°
from the nodal direction, and the blue squares are for the same
compound at p ¼ 0.145 from the nodal direction. The last two set
of points are from Chang et al. (2007).

FIG. 3. Single-particle scattering rate measured by ARPES. (Top panels) Momentum distribution curves at various energies with a fit
from which the parameters of the self-energy are extracted. The data are fit by red curves that are Lorentzians, proving that the scattering
rate is independent of momentum perpendicular to the Fermi surface. (Bottom left panel) The points on the Fermi surface and the
directions in which the data were taken. (Bottom right panel) The extracted parameters for the self-energy. From Kaminski et al., 2005
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The data are consistent with linear in T resistivity to
arbitrary low temperatures near the critical doping and in
many compounds remain the same up to temperatures at
which they begin to melt or decompose, about 1000 K.
Recently data from several compounds have been collected
(Legros et al., 2019) and summarized after a careful estimate
of parameters such as electron density and velocity in terms of
a transport relaxation rate

τ−1tr ¼ αkBT=h for p ≈ pc. ð6Þ

I identify

α≡ ðπ=2Þgtr; ð7Þ

where gtr ∝ g; their relation is discussed in Sec. III. There is
one fault in the deduction of the dimensionless parameter α
given by Legros et al. (2019). The effective mass in the
formula for conductivity should be the band-structure mass
and not the renormalized many body mass, which occurs, for
example, in the specific heat. This follows from the Ward
identity (Noziéres, 1960; Prange and Kadanoff, 1964; Varma,
1985; Miyake, Matsuura, and Varma, 1989) that is a conse-
quence of the continuity equation. This is a subtle point that is
dealt with in Sec. III. Here I simply note that if a renormalized
mass were to be used that is logarithmically divergent at
criticality at low temperatures, the resistivity would not be
linear in temperature but proportional to T lnT in the
quantum-critical region, which can be excluded. Moreover,
even if only a constant mass enhancement factor is put in
as done by Legros et al. (2019), the momentum transport
scattering rate would be significantly larger than the single-
particle scattering rate. The general theorem is that the
transport scattering rates must always be smaller than or
equal to the single-particle scattering rates, as discussed in

Sec. III. As explained later, the Kadowaki-Woods relation
(Kadowaki and Woods, 1986) between the resistivity and
specific heat of heavy fermions and others ρðTÞ ∝ T2 would
not be followed. Instead it would be ρðTÞ ∝ T3. The correct
estimate of α is about a factor of 3 [the effective many body
enhancement estimated by Legros et al. (2019)] lower than
that given by Legros et al. Legros et al. (2019) found α
varying in different cuprate compounds to be 0.7� 0.2 to
1.2� 0.3. The corrected value then varies from about 0.25�
0.1 to about 0.4� 0.1. gtr is then about 2=3 of these numbers.
gtr is in fact calculated to be about ð2=3Þḡ in Sec. III, which is
quite consistent with the single-particle scattering rates and the
specific heat. The resistivity phase diagram in Fig. 5 should be
compared with Fig. 2 for specific heat near criticality. More
data near the critical point would be helpful. Given what we
have, one may deduce a similar value of the crossover
exponent ζ ≈ 0.5 from this plot as well.

1. Minimum scattering length

As mentioned, the single-particle scattering rate gives an
upper limit to the transport scattering rate or the inverse width
of the momentum distribution function gives a minimum limit
to the transport scattering length ltr. The maximum in the
width of the momentum distribution may be read from Fig. 4.
It is about 0.4 (π=a) at an energy of about 0.4 eV (corre-
sponding to a temperature ωcx=π of about 1600 K). The
single-particle mean free path l is the half-width and kF is
about 0.8π=a near critical doping. The concerns that the
transport mean free path obtained from resistivity ltr is
such that kFltr or ltr=a is smaller than 1, the so-called
Mott-Ioffe-Regel limit are therefore unfounded. [If the resis-
tivity per 2D conducting layer in the cuprates is written as
ðh=2e2Þð1=kFltrÞ, the estimated ltr (Legros et al., 2019) is
nearly the same as l for the same compound.] We appear to be
a factor of about 5 on the safe side. The basis of the Ioffe-
Regel limit is the uncertainty principle used in deriving it at
low temperatures; its use at high temperatures needs study.

D. Density correlations

Significant technical developments have led to a laboratory
instrument (Mitrano et al., 2018) to measure the density
correlations accurately over a wide range of frequencies and
over the entire Brillouin zone. These are shown in Fig. 6.
Quite generally, the Einstein relation gives the conductivity

σðω; TÞ ¼ e2κðTÞDðω; TÞ: ð8Þ
κ is the compressibility, which is equal to the density of states
at the Fermi surface for noninteracting fermions for T ≪ EF.
Dðω; TÞ is the diffusion function. A continuity equation gives
the imaginary part of the screened density correlation function
Π00ðq;ωÞ for vFq ≪ ω:

Π00ðq;ωÞ ¼ κq2DðωÞ
ω

: ð9Þ

The possible quantum-critical aspects arise in the possible
renormalization of κ and the frequency dependence of the
diffusion function DðωÞ. One can write

400

350

300

250

200

150

100

50

0
0.10 0.15 0.20 0.25 0.30

Sr concentration (x)

Tc

TTO

T
 (
K

)

T*

Tcoh

FIG. 5. The resistivity “phase diagram” for La2−xSrxCuO4. The
temperature dependence of the resistivity begins to show depar-
ture from linearity below the lines marked T�ðxÞ and Tcoh. In this
Colloquium, we are concerned with the latter. This line may be
fitted with ðx − xcÞ0.5, just as the crossover line in the previously
mentioned specific heat data. From Hussey et al., 2011.
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DðωÞ ¼ v2F
2
τtrðωÞ; ð10Þ

again with no renormalization in vF from its band-structure
value, where τtr is the transport relaxation rate. Equation (9) is
appropriate when the velocity is isotropic. When it is
anisotropic, an appropriate average is called for which takes
into account the direction of measurement of the density
correlations.
Given τtrðωÞ ∝ ω−1, Π00ðq;ωÞ ∝ q2=ω2 follows. This is

consistent with the optical conductivity if the conductivity
is ∝ 1=ω in the range of the data. (Actually, both the
logarithmic dependence of the mass and the upper cutoff
begin to play a visible role in the optical conductivity above a
frequency of about 0.1 eV, but within the accuracy of the
density correlation function data they are unimportant.)
To compare quantitatively, the experimental results shown

in Fig. 6 are fitted to find

Π00ðq;ωÞ ¼ ð3� 0.5Þ × 10−3 eV−1 Å−3
�
vFq
ω

�
2

: ð11Þ

A bare Fermi velocity of about 2 eVÅ obtained from
ARPES measurements is used to get this result. The
numerical coefficient then is equal to κðπ=2Þgtr=2. The
theory of the density correlations in the limit vFq=ω ≪ 1

(Shekhter and Varma, 2009) summarized later allows no
singular corrections to the compressibility, but Fermi-
liquid corrections are allowed. With the dimensionless gtr
from the resistivity measurements of about 0.3, we get

κ ≈ 10−2=ðeVÅ3Þ. An unrenormalized κ is the density of
states near the chemical potential. Such a density of states is
about 2 states=½2 eVð16×12Þ Å3�≈ ð1=2Þ×10−2=ðeVÅ3Þ.
Actually, Eq. (9) is obeyed up to nearly vFq ¼ ω, below

which it is nearly a constant (Mitrano et al., 2018). The
constant part is indeed even more noteworthy than the part
discussed previously. Varma (2017) provided a theory on that.

E. Symmetry of superconductivity in cuprates
and parameters determining Tc

Superconductivity of d-wave symmetry is observed in the
cuprates. d-wave pairing requires scattering of fermions on the
Fermi surface to be predominantly through �π=2 (Miyake,
Schmitt-Rink, and Varma, 1986). It is axiomatic that the same
fluctuations that dominantly scatter fermions in the normal
state are responsible for pairing the fermions. This poses a
paradox in cuprates because, as we see in Fig. 3, the single-
particle scattering rate is nearly isotropic. The solution to this
paradox has been provided (Aji, Shekhter, and Varma, 2010)
and is summarized in Sec. III. Its experimental verification
comes through analysis of ARPES experiments in the super-
conducting state (Bok et al., 2016), where the spectral
function of the fluctuations in both the superconductivity
and the normal state scattering rates were both determined, as
well as the symmetry of the coupling functions in the normal
and pairing channels and the parameters for the spectral
functions and the coupling functions. The experiments were
done on a sample of Bi2212 with a Tc of 90 K. It was
explained by Bok et al. (2016) that the flat frequency
dependence of the theoretical and experimentally deduced
quantum-critical fluctuation spectra, which is further
described in Sec. III, leads to an enhancement for the effective
dimensionless parameters λs;d for pairing by a factor of ≈3
over g. This comes about because the parameters λs;d, the s
wave and d wave for interactions in the s-wave and d-wave
pairing channels [given by Eq. 1 in Bok et al. (2016)] are g
multiplied by an integral over all ω of the appropriate angular
averages, respectively, of the spectral weight of fluctuations
divided by ω. The spectrum is deduced to be essentially ω
independent up to the upper cutoff ωc ≈ 0.25 eV. Thus,
λs;d ≈ g lnðωc=TcÞ. Therefore, the deduced λs;d ≈ 1.2 corre-
sponds to g ≈ 0.4 for Tc ≈ 90 K.
The large value of the cutoff and the logarithmic enhance-

ment of the coupling constant for the pairing are crucial for the
high Tc in the quantum-critical region.

F. Resistivity and specific heat in heavy fermions
and Fe-based compounds

The temperature-dependent resistivity proportional to T has
been measured from 30 mK to about 0.6 K in the antiferro-
magnetic (AFM) quantum-critical region of the compound
CeCu6−xAux at x ¼ 0.1 with crossover on both sides (von
Löhneysen et al., 2007). Correspondingly, the specific heat
follows Eq. (1) with crossover on either side; see Fig. 7. From
the specific heat, one deduces that g ≈ 0.8 and Tx ≈ 10 K.
Using an effective Fermi energy of about 20 K corresponding
to the background specific heat in the nearby Fermi-liquid
compositions, a slope in resistivity of about 0.5 is obtained.

FIG. 6. The imaginary part of the “neutral” density-density
correlation function for the region vFq=ω≲ 1 showing the fit to
the square of this quantity whose coefficient is related to the
compressibility and the scattering rate using the Einstein relation.
From Mitrano et al., 2018.
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The cutoff Tx is similar to what is directly deduced from the
measurements of the fluctuation spectra (Schröder et al.,
1998; Varma, Zhu, and Schröder, 2015). The energy scales in
this compound are too small to be measured in single-particle
spectra by ARPES.
In Fe-based compounds, evidence for the existence

of a quantum-critical point (Shibauchi, Carrington, and
Matsuda, 2014) has been noted through linear in T depend-
ence of the resistivity. Resistivity for one of the compounds
showing one of the clearest linear in T dependences is
shown in Fig. 8 together with the thermopower of another
that also shows such a resistivity. There is no single-particle
spectra to compare with, and neither are the basic band
parameters, an average Fermi velocity, etc., known nor a
background Fermi-liquid specific heat estimated to get
enough parameters to determine g from a scattering rate.
Thermopower, which is the entropy per thermally excited
particle, does vary as T lnT, which is consistent with the
theoretical point of view in this Colloquium. But a

quantitative estimate of the parameter g from its magnitude
is not possible since there is no estimate of γ. These and the
single-particle scattering rates will hopefully be available in
the future.

III. FOUNDATION OF THE RESULTS PRESENTED IN
A MICROSCOPIC THEORY

The microscopic theory was briefly summarized (Varma,
2016) and detailed references given. Only the motivations for
deciding which relevant model to solve, and the principal
results from its solution with direct applications to the
experiments discussed previously, are discussed now.

A. Order parameter

By the mid 1990s large and universal changes in thermo-
dynamic and transport properties below a line T�ðpÞ in the
phase diagram of the cuprates were observed. The fact that the

FIG. 7. Resistivity of CeCu5.9Au0.1 and specific heat at various pressures and dopings of CeCu6 across the antiferromagnetic quantum-
critical point. From von Löhneysen, 1996.

FIG. 8. (Left panel) Phase diagram of BaFe2ðAs1−xPxÞ2 and resistivity at criticality (x ≈ 0.3). From Chu et al., 2009. (Right panel)
Thermopower S divided by T across AFM quantum criticality in KxSr1−xFe2As2, effectively showing the T lnT dependence of the
specific heat at quantum criticality. Lv et al. gave resistivity showing ∝ T behavior in a similar range in temperature and composition.
From Lv et al., 2009.
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region of the quantum fluctuations proposed phenomenologi-
cally (Varma et al., 1989) abuts T�ðpÞ suggests that it was a
line of phase transitions to a broken symmetry, which
terminates at the quantum-critical point when p → pc. The
order parameter, though it is required to have a condensation
energy typically larger than the maximum superconducting
condensation energy, has to be unusual so that it was
hidden in the experiments carried out. An order parameter
was suggested based on mean-field calculations on the
three-orbital model for the cuprates (Emery, 1987; Varma,
Schmitt-Rink, and Abrahams, 1987) that appeared to
satisfy these requirements. The order parameter is
depicted on the left in Fig. 9. It preserves translation symmetry
and is time reversal and inversion odd but preserves their
product. In addition, it is odd in three of the four reflection
symmetries of the square lattice. It can be algebraically
represented by the magnetoelectric or anapole vector shown
in Fig. 9:

Ω ¼
Z
cell

d2r½MðrÞ × r̂�: ð12Þ

The magnetization MðrÞ is due to a pair of current loops in
each unit cell as shown in the figure. The symmetries broken
along the line T�ðpÞ ending at the quantum-critical point are
best observed by polarized neutron scattering (Bourges and
Sidis, 2011), although at least five different techniques have
led to the observation of at least some of the broken
symmetries predicted at the transition (Kaminski et al.,
2002; Xia et al., 2008; Leridon et al., 2009; Shekhter
et al., 2013; Lubashevsky et al., 2014; Sato et al., 2017;

Zhao et al., 2017; Murayama et al., 2018; Zhang et al., 2018;
Mukherjee et al., 2019). Neutron scattering experiments
(Bourges and Sidis, 2011) have observed changes consistent
with the symmetries in Fig. 9 for four different families of
cuprates at various p. Figure 9 (right panel) shows the onset
temperature of the symmetry changes observed in various
experiments in the cuprate most extensively investigated
YBa2Cu3O6þx. The magnitude of the order parameter is
typically 0.1μB per unit cell. The free-energy reduction due
to such an order parameter setting in at 100 K (Varma and
Zhu, 2015) is about 3 times that of the maximum super-
conducting condensation energy near pc, fulfilling one of the
requirements that it be a transition competing with super-
conductivity and overcoming it at smaller doping.

B. Model and correlation function for quantum fluctuations

The order parameter Ω shown in Fig. 9 has four possible
orientations in a unit cell. The interactions between cells is
among these four possible orientations. The model for the
order parameter is therefore the two-dimensional XY model
with fourfold anisotropy if one ignores the amplitude
fluctuations that are irrelevant in two dimensions. In the
classical XY model, the four-fold anisotropy is marginally
relevant. But it has been shown to be irrelevant for a
quantum phase transition (Aji and Varma, 2007). The
classical model has no divergence of the specific heat,
consistent with the lack of any sharp signature in the
experimental specific heat at T�ðpÞ. The model to be solved
then is the quantum XY model in two dimensions, whose
fluctuations are coupled to the fermions in the model. An
essential aspect of a quantum phase transition in a metal is
the dissipation due to decay of the order parameter to

+

-

OCu

FIG. 9. (Left panel) The order parameter depicted by the vector Ω representing the magnetoelectric order parameter of Eq. (12). Ω is
odd in both time-reversal and inversion and preserves their product. These symmetries come from a pair of spontaneously generated
current loops in a Cu-O2 unit cell. (Right panel) Various experiments showing the onset temperature of symmetries consistent with that
mentioned in the compound YBaCu3O6þx. The neutron scattering experiments are from Fauqué et al. (2006), the polarimetry
experiments from Lubashevsky et al. (2014), the second harmonic generation from Zhao et al. (2017), the μSR from Zhang et al. (2018),
and the ultrasound measurements from Shekhter et al. (2013).
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incoherent degrees of freedom of the same symmetry in the
fermions. Thus, the model has the action

S ¼ −K0

X
hx;x0i

Z
β

0

dτ cosðθx;τ − θx0;τÞ

þ 1

2E0

X
x

Z
β

0

dτ

�
dθx
dτ

�
2

þ Sdiss: ð13Þ

θx;τ is the angle of the vector Ω in the unit cell at location x
and at imaginary time τ, which is periodic in the interval
ð0; β ¼ 1=kBTÞ. The first term is the potential energy of the
2D XY model, and the second term is the kinetic energy
written in terms of the angular momentum Lz ¼ dθx=dτ. The
third term is the dissipation due to coupling to the fermions.
The dissipation is of the Caldeira-Leggett symmetry (Caldeira
and Leggett, 1983), which was introduced for the dissipation
of current fluctuations proportional to the gradient of the
superconducting phase in a bath of current carrying fermions.
In this case, its origin is the decay of the collective current
proportional to ∇θðr; τÞ or that of the collective angular
momentum variable Lzðr; τÞ into local angular momentum
fluctuations of the fermions; for further details, see Varma
(2016). Each of the terms of this model has been derived from
the three-orbital model (Aji, Shekhter, and Varma, 2010).
The classical XY model was solved analytically by the

renormalization group method (Kosterlitz, 1974) after trans-
forming it essentially exactly in to a model for vortices
interacting logarithmically in space. The quantum XY model
with the action (13) can also be transformed essentially
exactly (Aji and Varma, 2007) into a model for vortices
interacting logarithmically in space but locally in time even for
the quantum model and another set of topological excitations,
the warps, which interact dominantly through a logarithmic
interaction in imaginary time τ but locally in space. This
model can also be solved by the renormalization group
method (Hou and Varma, 2016). The vortices and warps
are orthogonal topological excitations, which is what makes
the model soluble. The answers are checked using detailed
Monte Carlo calculations (Zhu, Chen, and Varma, 2015; Zhu,
Hou, and Varma, 2016) on the original model (13), where
evidence for the vortices and the warps and their correlations
is directly exhibited.
The correlation function of the operator eiθðr;τÞ is calculated

in the quantum-fluctuation regime of the model. The most
important result is that the correlation functions are products
of a function of space and of imaginary time τ and that the
spatial correlation length is proportional to the logarithm of
the temporal correlation. This leads effectively to relative
freedom of the temporal and spatial metric near criticality and
to unusual but simple results for physical properties in terms
of just two parameters:

Gðr; r0; τ; τ0Þ ¼ heiθðr;τÞe−iθðr0;τ0Þi ð14Þ

¼ G0

�
τc

τ − τ0

�
½ln jðr − r0Þ=aj�e−jτ−τ0 j=ξτe−jr−r0 j=ξr ;

ð15Þ
ξr
a
¼ ln

ξτ
τc
: ð16Þ

τ−1c is the high energy cutoff in the theory (ωcx ¼ πTcx in the
analysis of the experiments). The 1=ðτ − τ0Þ dependence can
be transformed to Matsubara frequencies that can be analyti-
cally transformed to real frequencies to give the function
tanhðω=2TÞ. The asymptotic low energy and high energy
forms of this were the phenomenological assumption made in
1989 (Varma et al., 1989) for the fluctuation spectra. It is
also shown that the spectral fluctuations of the correlation
hLzðr; τÞLzðr0; τ0Þi are identical to those in Eq. (14) (Aji and
Varma, 2009).
The variation of the correlation length ξτ as a function of

p − pc or, equivalently, to the parameters of the XY model
has been obtained using quantum Monte Carlo calculations
(Zhu, Hou, and Varma, 2016). When the variation is due to
the variation in the ratio of the kinetic energy parameter to
the interaction energy parameter for a fixed dissipation, the
exponent ζ previously defined through the experiments on
specific heat and resistivity is approximately 1=2, which is
consistent with the data.
Just like for the classical XY model, quantum-critical

fluctuations of the model are unlike the extensions of classical
dynamical critical phenomena of models of the Ginzburg-
Landau-Wilson class to the quantum regime. This appears to
be essential as the conventional critical dynamics of such a
class cannot give the observed properties. In such models, the
space and time correlations are connected through finite
dynamical critical exponents and the scale of both fluctuations
diminishes to zero near the critical point. By contrast the
temporal fluctuations in Eq. (14) remain on the scale of the
cutoff over the entire fluctuation regime and the low energy
form has a ω=T scaling. These were essential in the calcu-
lations of the observed experimental properties summarized
previously as well as for high temperature superconductivity.

C. Coupling function of fermions to the fluctuations

The coupling function of fermions to the quantum-critical
fluctuations should be used to calculate both the normal self-
energy and the pairing self-energy. It should also be the same
function that is used to calculate the dissipation of the quantum-
critical fluctuations due to decay into particle-hole pairs. The
important coupling of fermions to the fluctuations is deduced as
follows. As discussed previously, the critical fluctuations are

FIG. 10. The Kubo formula for the current-current correlation in
terms of the bare current operator, the renormalized current
operator and the exact single-particle Green’s functions. The dc
conductivity is ð1=ϵÞ times the imaginary part of the current-
current correlation at q → 0.
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also the fluctuations of the collective angular momentum
operator Lzðr; τÞ. This can couple to fermions only through
their local angular momentum operator, with symmetry
that of lz ≡ ð1=2Þiðr × ∇ − ∇ × rÞ. Thus, a Hamiltonian for
the scattering of fermion creation and annihilation operators
ψþðp; σÞ;ψðp; σÞ to the fluctuations is derived (Aji, Shekhter,
and Varma, 2010) to be

Hcoupling ¼
X
p;p0;σ

γðp;p0Þψþ
p;σψp0;σLzðp − p0Þ þ H:c:; ð17Þ

where the coupling function

γðp;p0Þ ¼ iγ0ðp × p0Þ ð18Þ
is the Fourier transform of the fermion angular momentum lz.
[Aji, Shekhter, and Varma (2010) derived the equivalent of
Eq. (17) microscopically for lattice fermions.] The physics of
how Eq. (17) leads to d-wave superconductivity and nearly
angle-independent normal self-energy is shown in Sec. III.D.3.

D. Calculations of some measurable properties

1. Single-particle self-energy and specific heat

The fluctuations (14) serve as the irreducible vertex
(Noziéres, 1960) in a calculation of the properties of fermions.
Because of the product form of Eq. (14), the calculations for
the properties of fermions can be done easily and precisely
(Varma, 2016). Of relevance to this Colloquium is the retarded
self-energy of the fermions, which has the full symmetry of
the lattice. Since the fluctuations are momentum independent,
only the projection of jγðp;p0Þj2 to the full symmetry of the
lattice appears in the calculation (Aji, Shekhter, and Varma,
2010; Bok et al., 2016), as explained later. For a circular Fermi
surface, that is just identity. Then

Σðp;ωÞ ¼ gp̂

�
i
π

2
maxðjωj; πTÞ þ ω ln

�
ωcx

x

��

for maxðω; πTÞ≲ ωcx

¼ i
π

2
gp̂ωc for maxðjωj; TÞ ≫ ωcx: ð19Þ

gp̂ (Aji, Shekhter, and Varma, 2010) is the product of the
amplitude of the fluctuations G0, the density of states of the
fermions Nð0Þ, and the coupling γ20. It also depends on
the anisotropy of the band structure. It is independent of p
for a circular Fermi surface. For the band structure of Bi2212
near optimum doping, it is estimated to increase by less than
about 2 in going from the ðπ; πÞ directions to the ðπ; 0Þ
directions. For a square lattice, the correction to isotropy
varies as cos 4θðp̂Þ.
The electronic specific heat can be written directly in

terms of integrals over the imaginary part of the self-energy
(Abrikosov, Gorkov, and Dzyaloshinski, 1963). The result is
particularly simple when the self-energy is nearly momentum
independent. Then the specific heat singularity is simply given
by the inverse of the renormalization given in Eq. (2), which
follows from Eq. (19). There is no renormalization of the

compressibility if the self-energy is momentum independent
(Varma, 1985).

2. Resistivity

The conductivity may be calculated in three different ways.
(1) From the Boltzmann equation, which simplifies enor-

mously when the self-energy is independent of mo-
mentum (Varma et al., 1989). Then the momentum
transport scattering rate is equal to the imaginary part
of the single-particle self-energy. Thus, the dc resis-
tivity is proportional to T in the quantum-critical
region with the same slope as the self-energy for a
circular Fermi surface. One may calculate the vertex
correction due to the small angular dependence in the
self-energy using the Boltzmann equation, for exam-
ple, as given by Varma and Abrahams (2001) and
Abrahams and Varma (2003). The transport scattering
rate is then necessarily smaller than the single-particle
scattering rate. A straightforward calculation shows
that with a factor of 2 variation in the self-energy,
increasing in the direction where the velocity is least,
the coefficient of the linear in T resistivity is about 2=3
that of the maximum self-energy.

(2) The density-density correlation has also been calcu-
lated directly (Shekhter and Varma, 2009; Varma,
2017), giving the form shown in Fig. 6 with the
inverse diffusion coefficient related to the resistivity
as noted.

(3) The conductivity may be calculated using the Kubo
formula. The Kubo formula for conductivity is equiv-
alent to the evaluation of Fig. 10 for the current-current
correlations. The vertex on the left is the bare band-
structure velocity operator v, the vertex on the right
is the renormalized velocity operator vrenorm, and the
lines are the exact Green’s functions. In the appro-
priate limit for the calculation of the dc conductivity,
the matrix elements of the operator vrenorm are given
by the Ward identity (Noziéres, 1960) that follows
from the equation for continuity:

vrenorm ¼ Λv ð20Þ

limϵ→0q→0Λðp;ω; q; ϵÞ ¼ 1 −
1

v
∂Σðp;ω; TÞ

∂p : ð21Þ

If Σðp;ω; TÞ is independent of p, the relevant limit
vrenorm ¼ v. The sum over frequencies and integration
over momentum over the Green’s functions in Fig. 10
can be easily carried out for the same conditions. The
conductivity in the α direction is then

σαðTÞ ¼
e2hv2αiNð0Þ

2ImΣðpF; 0; TÞ
: ð22Þ

The dc resistivity is proportional to T due to the
self-energy in the denominator. To get the coefficient
of the resistivity, note thatNð0Þ in Eq. (22) is the bare
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(given by one-electron theory band-structure) den-
sity of states and hv2αi is the bare mean square Fermi
velocity in the α direction because of Eq. (20).
Nð0Þhv2αi is proportional to the inverse mass. It is
for this quantity that often, as shown by Legros et al.
(2019), a renormalized mass, such as that occurring
in specific heat, is used. As shown here, for the
conditions of quantum criticality in cuprates, this
mass is the bare or band-structure mass. One can
show (Varma, 2017) that the lack of any renormal-
ization of the effective mass in the conductivity is
true only for frequencies much smaller than the
temperature.

This issue also arises in Fermi liquids if the condition that
the self-energy is weakly momentum dependent compared to
its frequency dependence (Varma, 1985) is satisfied. An
application in that case to the resistivity in heavy fermions
is given in Eq. (3) of Miyake, Matsuura, and Varma (1989),
where the Kadowaki-Woods observation (Kadowaki and
Woods, 1986) was derived. For applications to the problems
of interest in this Colloquium, the T2 on the left side of that
equation should be replaced by T, and the ImΣ on the right
side should be replaced by the relevant part of Eq. (19) to get
Eq. (22). If one uses a renormalized value for Nð0Þhv2αi,
resistivity is not proportional to the square of the specific heat
(the Kadawoki-Woods observation) but is proportional to the
cube of the specific heat.
For all the properties considered in this Colloquium, there

are only two parameters, g and ωc, in terms of which every
property considered is given. These two parameters were
estimated by Aji, Shekhter, and Varma (2010) from the kinetic
and interaction energies of a copper oxide three-orbital model.
This gave g ≈ 1 and ωc ≈ 0.5 eV, i.e., within about a factor of
2 of the experimentally deduced numbers.

3. Coupling function for d-wave superconductivity

Note that with p;p0 on the nearly circular Fermi surface

− jγðp;p0Þj2
¼ −γ20jiðp × p0Þj2

∝
γ20
2
½1 − cosð2θpÞ cosð2θp0 Þ − sinð2θpÞ sinð2θp0 Þ�: ð23Þ

Since in a calculation of the normal state self-energy the
intermediate state has the full symmetry of the lattice (see
Fig. 11) and the fluctuation spectra is momentum indepen-
dent, the only angle dependence comes from the projection of
the pair of vertices to the full symmetry of the lattice, i.e., of
Eq. (23). This yields just −jγ0j2 and is repulsive in the s-wave
pairing channel. (The minus sign comes from the loop integral
in the diagram for the self-energies.) On the other hand, in the
pairing channel of the d-wave symmetry the intermediate state
has d-wave symmetry. Thus, a projection of Eq. (23) to the d
wave can contribute from the second or third term in it. This is
attractive and on a circular Fermi surface would be degenerate
between the dðx2 − y2Þ state and dðxyÞ. In the cuprates, the
density of states is the least in the diagonal direction of the
Brillouin zone, favoring thereby the former.
Equation (23) and Fig. 11 explains the principal paradox in

superconductivity of the cuprates: while the measured anoma-
lous single-particle self-energy is nearly angle independent,
superconductivity of d-wave symmetry occurs.

IV. RELATED MATTERS

It is worth emphasizing the three general features required
in the results of a theory for the quantum-critical fluctuations
to be relevant to the normal state properties and super-
conductivity in the materials discussed. (1) The frequency
dependence of the absorptive part of the form tanhðω=2TÞ or,
equivalently, the time dependence of the form 1=τ as given in
Eq. (14). (2) The fluctuation spectra of a product form of
momentum and the previously mentioned frequency depend-
ence as given in Eq. (14). For relevance to superconductivity,
it is further necessary (3) that the coupling of fermions be such
that the normal state properties are nearly angle dependent but
the pairing is in the d-wave channel.
Some prominent reviews of theory with a point of view

differing from that presented here were given by Anderson
(1997), Lee, Nagaosa, and Wen (2006), and Scalapino (2012).
None of them or any other theoretical ideas and calculations
on any physical model have explained the temperature and
frequency dependence of the properties discussed here in
cuprates or heavy fermions or the Fe-based compounds, let
alone given the parameters or resolved the paradox of the
symmetry of superconductivity discussed previously.
Calculations that are extensions of the dynamical classical
critical phenomena to quantum criticality (Hertz, 1976;

FIG. 11. The skeletal diagrams for the normal self-energy and the pairing self-energy for scattering fermions from fluctuations whose
propagator is depicted as a wavy line. The former has the ordinary part of the Gorkov Green’s function in the intermediate state and the
latter the pairing part. The vertices in the two diagrams are closely related.

Chandra M. Varma: Colloquium: Linear in temperature resistivity and …

Rev. Mod. Phys., Vol. 92, No. 3, July–September 2020 031001-12



Moriya, 1985), and that have been extensively worked on
since, are known not to give any of the experimental properties
noted. The one that comes the closest is a (0þ 1)-dimensional
disordered model of SUðNÞ spins in the limit N → ∞
(Sachdev and Ye, 1993), which leads to the fluctuation spectra
in frequency that was suggested by Varma et al. (1989).
Besides the difficulty of how such a model could be an
effective physical model, it has the problem that an extensive
ground state entropy is inevitably tied to its results.
Modification of the model to remove this entropy
(Chowdhury et al., 2018) also alters its properties to that
of a Fermi liquid. Self-consistent single impurity models
(Si et al., 2001) have been introduced for heavy-fermion
quantum criticality. They do not yield the correct frequency
dependence to give the linear in T resistivity.
The prominent shortcomings in the present theory are as

follows.
(1) The application of the dissipative quantum XY model

to the cuprates is clear given the symmetries changed
at T�ðxÞ. The application of the same model is not a
surprise close to the AFM critical point in the heavy
fermions and the Fe compounds. The anisotropic
AFM maps to such a model [see Varma (2015) and
the erratum], and the point of view is supported by the
fit to the measured fluctuation spectra by the calcu-
lated fluctuations (Varma, Zhu, and Schröder, 2015).
The unanswered question is why the theory works
over such a wide temperature range when the XY
anisotropy is so small that the classical transition
would crossover to that of the XY model only close
to the transition. The answer may lie in the possibility
that with criticality of the kind discovered in the
model, which for some purposes may be regarded
as having a dynamical critical exponent z → ∞, the
crossover to the anisotropic model occurs over essen-
tially the entire range below the ultraviolet cutoff. The
reason for the speculation is that the crossover temper-
ature in classical critical phenomena is given in terms
of the product νz, where ν is the classical correlation
length exponent.

(2) A principal problem in cuprates, the understanding
of some remarkable properties in the pseudogap state,
remains unexplained in the theory described previ-
ously (and indeed in any other theory). While a
thermodynamically significant phase transition of
the predicted symmetry has been discovered at
T�ðpÞ, it cannot give the peculiar observed Fermi
arcs (Damascelli, Hussain, and Shen, 2003) or the
magneto-oscillations of a small Fermi surface
(Sebastian and Proust, 2015) because it does not
change the translation symmetry of the lattice. Since
the only phase transition discovered at T�ðpÞ is to a
phase of the symmetry shown in Fig. 9 and since its
fluctuations explain so well both the quantum-critical
region and the superconductivity in the cuprates, a
modification of the observed order in which a long
period wave of the four distinct symmetries shown in
Fig. 9 has been suggested (Varma, 2019). This retains
the calculated and observed properties discussed in
this Colloquium and also is calculated to lead to the

unexplained properties (Varma, 2019). The modified
phase can, in principle, be discovered by high reso-
lution resonant x-ray scattering. Only after such an
observation can one claim that the cuprate problem
is solved.

Recently experiments in twisted bilayer graphene
revealed a linear in T resistivity (Cao et al., 2019; Lu
et al., 2019; Polshyn et al., 2019) in the phase diagram in a
region that has the quantum-critical shape in the phase
diagram at the boundary between the insulator and the
superconductor, extending to asymptotic low temperatures
when a magnetic field is applied to suppress superconduc-
tivity. One may speculate that the relevant model for critical
fluctuations is again of the XY variety, with the Uð1Þ
symmetry being that of valley space, which may be broken
in the correlated insulator.
I speculate that quantum-critical fluctuations of a variety of

soft vertex models coupled to fermions [many of which for 2D
classical problems were treated by Baxter (1982)], which
classically are not in the Ginzburg-Landau or Wilson-Fisher
class, are generically related to the 2D dissipative XY model in
the quantum version of the problems. They may all be
governed by topological excitations with relative freedom
of temporal and spatial fluctuations. The scaling of the metric
of space and time that differs from the flat world is the
fundamental aspect of any quantum-critical problem. That the
spatial and temporal metrics become free relative to each other
is a unique property that has led to the simple results that
explain the observed quantum criticality in the problems
discussed. The model itself is richer than the application
noted here. For example, there is a critical region to a phase in
it (Zhu, Chen, and Varma, 2015; Hou and Varma, 2016; Zhu,
Hou, and Varma, 2016) in which the correlation functions are
of product form in space and time but with a temporal
correlation length proportional logarithmically to the spatial
correlation length. One may speculate, of course at great peril,
that this is the appropriate description of another quantum-
critical problem: inflation in the early Universe.
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