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I. INTRODUCTION

The challenge of obtaining the properties of atomic nuclei
from the interactions among the constituent nucleons has been
central to nuclear physics since its inception. Attempts to
derive nuclear forces and currents from the exchange of
mesons—in particular the lightest meson, the pion—were
derailed in the 1950s by a lack of renormalizability, that is, by
an uncontrolled sensitivity to physics at short distances.1 The

rise in the 1970s of a renormalizable theory of strong
interactions, quantum chromodynamics (QCD), did not
immediately offer a path forward: because QCD, formulated
in terms of quarks and gluons, is nonperturbative for processes
characterized by external momenta Q≲MQCD∼1GeV, it is
difficult to calculate the properties of hadrons and nuclei, a
problem that becomes more severe as the number A of
nucleons increases. Yet a precise and accurate description
of nuclei is crucial for the transition from the perturbative
regime of the standard model to the atomic domain and
beyond, governed by QED and its small fine-structure con-
stant. Examples relying on input from nuclear physics include
tests of fundamental symmetries (such as neutrinoless double-
beta decay to probe lepton-number violation) and reactions in
astrophysical environments.
About a quarter of a century ago, effective field theories

(EFTs) entered nuclear physics (Weinberg, 1990, 1991, 1992;
Rho, 1991; Ordóñez and van Kolck, 1992; van Kolck, 1993).
EFTs had been developed in particle and condensed-matter
physics to deal with systems containing multiple momentum
scales. An EFT captures the most general dynamics among
low-energy degrees of freedom that is consistent with some
assumed symmetries. In nuclear physics, where the sym-
metries of QCD are known, an EFT provides a realization of
QCD in terms of hadrons instead of quarks and gluons. All
details of the QCD dynamics at short distances are encoded in
the EFT interaction strengths (Wilson coefficients or low-
energy constants). Scattering amplitudes and their poles
representing bound states and resonances are calculated as
expansions in Q=Mhi and Mlo=Mhi, with Mhi the momentum
scale where the EFT breaks down and Mlo the low-energy
scales of physics we want to capture. An EFT is renormaliz-
able in the sense that at each order in the expansion the
sensitivity to unaccounted short-distance physics is small, that
is, of relativeOðQ=Mhi;Mlo=MhiÞ. EFTs opened the door to a
description of nuclear phenomena with systematic error
estimates.
EFTs have, in fact, revolutionized nuclear physics. Most of

the ab initio studies of nuclear structure, based on the explicit
solution of the Schrödinger equation or its equivalents, are
now carried out with potentials inspired by EFT. A host of
nuclear properties have been predicted or postdicted from
two- and three-nucleon forces and one- and two-body cur-
rents, with low-energy constants determined from A ≤ 3

experimental data. In parallel, starting with Beane et al.
(2006), fully dynamical simulations of QCD on a discretized
and boxed spacetime have been able to access some A ≤ 4

properties. Matching an EFT to results from lattice QCD
(LQCD) allows for a determination of the low-energy con-
stants without direct input from experiment. EFTs thus build a
bridge between QCD and nuclear structure and reactions.
Historically, the first nuclear EFT was chiral (or pionful)

EFT (Weinberg, 1990, 1991, 1992; Rho, 1991; Ordóñez and
van Kolck, 1992; van Kolck, 1993), which is designed for
momenta of the order of the pion mass. In addition to
nucleons, it includes explicit pions, whose interactions are
constrained by an approximate global symmetry of QCD, the
chiral symmetry of independent flavor rotations of left- and
right-handed quarks. Chiral EFT generalizes a popular

1Not long after the successful renormalization of QED, it was
understood that the only relativistic pion-nucleon coupling that is
renormalizable in the same sense is pseudoscalar (Matthews and
Salam, 1951). However, pseudoscalar coupling differs from pseudo-
vector coupling by a large nucleon-pair term, which was found to be in
conflict with pion phenomenology (Marshak, 1952). The favored
pseudovector coupling required the introduction of short-distance
cutoffs, on which the description of two-nucleon data depended
sensitively; see, for example, Gartenhaus (1955). Subsequent work
increasingly emphasized the phenomenology of short-range inter-
actions. A brief history of nuclear potential models was given by
Machleidt and Entem (2011) and Machleidt (2017).
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hadronic EFT, chiral perturbation theory (ChPT) (Weinberg,
1979; Gasser and Leutwyler, 1984, 1985), to A ≥ 2. Despite
its phenomenological successes, chiral EFT has proven to be
extremely challenging to renormalize due to the singularity of
the dominant interactions, which have to be treated non-
perturbatively to produce bound states and resonances, i.e.,
nuclei. Originally conceived as a renormalization playground,
a simpler EFT, pionless (or contact) EFT, focuses on momenta
below the pion mass (van Kolck, 1997, 1999b; Bedaque,
Hammer, and van Kolck, 1998, 1998; Kaplan, Savage, and
Wise, 1998a, 1998b; Birse, McGovern, and Richardson,
1999). This EFT, whose renormalization is relatively well
understood, is constrained only by QCD spacetime sym-
metries. It exhibits a high degree of universality, and except
for the degrees of freedom it is formally identical to other
EFTs where all interactions are of short range. Light nuclei are
well described within the same framework that has been
successful for atomic systems with large scattering lengths
(for example, near a Feshbach resonance) (Braaten and
Hammer, 2006). A variant of this EFT (halo/cluster EFT)
has been applied (Bertulani, Hammer, and van Kolck, 2002,
2003) to bound states and reactions involving halo and cluster
nuclei, characterized by such low energies that one or more
tight clusters of nucleons can be treated as elementary degrees
of freedom.
No doubt there are “more effective” EFTs to be discovered

for larger nuclei. In fact, a description of rotational and
vibrational bands in heavy nuclei was initiated by
Papenbrock (2011), with successful applications to different
nuclei and processes (Papenbrock and Weidenmueller, 2014;
Coello Pérez and Papenbrock, 2015, 2016; Chen et al., 2018;
Coello Pérez, Menéndez, and Schwenk, 2018a, 2018b; Chen
et al., 2019). These recent developments extend the EFT
paradigm to generalized degrees of freedom that capture the
low-energy physics of deformed nuclei.
Here we present a summary of the main ideas, achieve-

ments, and prospects for nuclear EFTs formulated in terms of
nucleons and clusters thereof. These theories can be thought
of as a tower of EFTs at successively lower Mhi, starting at
MQCD. Our emphasis is not on phenomenology, but on the
conceptual similarities and differences among chiral, pionless,
and halo/cluster EFTs. Our hope is that a focused approach
will stimulate a reformulation of our understanding of heavy
nuclei, just as these EFTs have shed new light on the structure
and reactions of light nuclei.
In the remainder of this section, some common aspects of

nuclear EFTs are presented. Sections II–IV deal with one
nuclear EFT each. In Sec. V, we address the connection
between these EFTs and QCD, as well as broader applications.
We conclude in Sec. VI. We use throughout units such that
ℏ ¼ 1 and c ¼ 1.

A. Nuclei from the perspective of QCD

As an SUð3Þc gauge theory of colored quarks and gluons,
QCD is characterized by a coupling constant gs that becomes
strong at low momenta. The fact that most hadron masses are
about 1 GeV or higher, for example, the nucleon mass
mN ≃ 940 MeV, reveals that nonperturbative QCD pheno-
mena are associated with a mass scale MQCD ∼ 1 GeV. The

EFT at the scale of a few GeV includes not only strong
interactions but also electroweak and even weaker inter-
actions. In contrast to most textbooks, for convenience we
refer to this EFT, which is our starting point, simply as QCD.
Focusing on the two lightest (up and down) quarks most
relevant to nuclear physics, the QCD Lagrangian is written in
terms of quark q ¼ ðu dÞT , gluon Gμ, and photon Aμ fields as

LQCD ¼ q̄½iγμð∂μ þ igsGμ þ ieQAμÞ þ m̄ð1 − ετ3Þ�q
− 1

2
TrGμνGμν − 1

4
FμνFμν þ � � � ; ð1Þ

where γμ and τi are the Dirac and Pauli matrices and Gμν and
Fμν are the gauge and photon field strengths. Neglecting the
ellipsis, which includes, for example, weak interactions, the
only parameters in QCD are the quark masses and electro-
magnetic charges. We can express quark masses in terms of
the common mass m̄ ¼ ðmu þmdÞ=2 ∼ 5 MeV and of the
relative mass splitting ε ¼ ðmd −muÞ=ðmu þmdÞ ∼ 1=3.
The quark charges are fractions Q ¼ diagð2=3;−1=3Þ of
the proton charge e ¼ ffiffiffiffiffiffiffiffi

4πα
p

∼ 1=3.
Below MQCD, QCD is best represented as a theory of

colorless hadrons, where SUð3Þc is realized trivially. An
important role is played by pions, which arise as pseudo
Goldstone bosons from the spontaneous breaking of approxi-
mate SUð2ÞL × SUð2ÞR chiral symmetry down to its vector
subgroup SUð2ÞV of isospin. In the chiral limit m̄ ¼ 0, ε ¼ 0,
and e ¼ 0, chiral symmetry is exact. Pions in this limit are
massless and interact purely derivatively. Away from the chiral
limit, the common quark mass breaks chiral symmetry
explicitly and leads to a nonzero common pion mass mπ ≃
140 MeV and nonderivative pion interactions. The QCD
interactions associated with ε and e further break isospin
and appear in relatively small quantities such as the pion mass
splitting δm2

π ¼ m2
π� −m2

π0
≃ ð36 MeVÞ2 and the neutron-

proton mass difference δmN ¼ mn −mp ≃ 1.3 MeV.
A more complete understanding of the low-energy conse-

quences of QCD can be achieved if we consider alternative
realities where m̄, ε, and e are varied from their real-world
values. To date, LQCD simulations of nuclear quantities have
been carried out in the isospin-symmetry limit, where ε ¼ 0

and e ¼ 0. The only remaining QCD parameter m̄ can be
traded for the pion mass mπ . Because the signal-to-noise ratio
for A-nucleon correlation functions at large time t scales as
exp ½−AðmN − 3mπ=2Þt� (Lepage, 1989a; Beane et al., 2011),
current simulations are limited to unphysically largemπ and to
small A. Although one can expect future simulations at
smaller pion masses and more nucleons, it is more efficient
to switch to an EFT description suited to the large distances
involved in nuclear physics.
Years of experience suggest that nuclei can be seen as

bound states or resonances made out of nucleons, or perhaps
clusters of nucleons. The choice of degrees of freedom
determines the range of validity Mhi of the respective EFT.
Because isospin violation is a relatively small effect for most
nuclear dynamics (more so for light nuclei), we can classify
nuclear EFTs by their regions of applicability according to
typical momentum and pion mass; see Fig. 1. A possible
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estimate of the typical binding momentum, where each
nucleon contributes equally to the binding energy BA, is
QA ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNBA=A

p
. Nuclear saturation for large A leads, at

physical pion mass, to a constant BA=A ∼ 10 MeV and
nuclear radii RA ∼ R0A1=3, where R0 ∼ 1.2 fm. Numerically,
QA ∼ R−1

0 is not that different from mπ , and it has been
assumed that chiral EFT is best suited to typical nuclei. (In
fact, we see in Sec. IV how BA=A ∼ 10 MeV arises naturally
within chiral EFT.) At sufficiently small Q andmπ [i.e., below
a scale MNN ∼ 270 MeV at the physical pion mass; see
Eq. (76) for a precise definition], one expects pions to be
perturbative. As Q increases at fixed mπ , chiral-symmetric
pion interactions become nonperturbative for A ≥ 2, and as Q
increases further the EFT eventually ceases to converge. As
mπ increases at fixed Q, chiral-symmetry breaking becomes
more important and the chiral EFT expansion eventually fails
again. We expect that Mhi ∼MQCD, but the exact breakdown
values of Q and mπ are not well known. It seems that for
A ¼ 0, for example, chiral EFT (in the form of ChPT) has
Mhi ≤ 500 MeV (Dürr, 2015).
Light nuclei are weakly bound, and radii scale differently

than in the saturation regime. Pions can be treated as short-
range interactions, and in pionless EFTwe expectMhi ∼mπ at
all mπ , including values beyond the breakdown of chiral EFT
such as in LQCD simulations to date. For Q smaller than the
inverse radius of a nucleus, the nucleus itself can be treated as
an elementary particle in more complex systems where it
appears as a subunit. In the halo/cluster EFT relevant for
clusterized nuclei, Mhi ∼ R−1

c , the inverse cluster radius.
Pionless and halo/cluster EFTs carry the information of
QCD to the large distances of nuclear dynamics near the
driplines.

B. The way of EFT

How does one ensure that a nuclear EFT reproduces QCD
in the appropriate energy domain? Once degrees of freedom
have been selected according to the energies of interest, one
constructs the most general Lagrangian L involving the
corresponding set of fields fψg, which is constrained only
by the QCD symmetries,

L ¼
X
i

ciðMlo; Mhi;ΛÞOiðfψgÞ; ð2Þ

where the OiðfψgÞ are operators that involve fields at the
same spacetime point but contain an arbitrary number of
derivatives and ciðMlo;Mhi;ΛÞ are the low-energy constants
(LECs). Here Λ denotes an arbitrary regulator parameter with
dimension of mass. With L or the corresponding Hamiltonian,
the propagation and interaction of the low-energy degrees of
freedom can be calculated. The procedure might be entirely
perturbative, as represented by Feynman diagrams with a
finite number of loops, or partially nonperturbative, as
obtained by an infinite sum of Feynman diagrams or the
solution of an equivalent integral or differential equation such
as, respectively, the Lippmann-Schwinger or the Schrödinger
equation. In either case, the interactions are singular, which
requires regularization. When the calculation can be reduced
to a finite number of loops, dimensional regularization can be
employed, which introduces a renormalization scale μ.
However, in nuclear physics we are most often faced with
summing an infinite number of loops with overlapping
momenta that, with present techniques, can be made finite
only by the introduction, at either interaction vertices or
propagators, of a momentum-regulator function fðp=ΛÞ such
that fð0Þ ¼ 1 and fðx → ∞Þ ¼ 0. Here p refers to the
momentum of a nucleon, in which case the regulator is
separable, or the transferred momentum, when the regulator
is nonseparable. We can alternatively look at position space,
where the nonseparable regulator is local (i.e., a function of
position only) and the separable regulator is nonlocal.
The goal is to construct the T matrix for a low-energy

process as an expansion in Q=Mhi < 1. Schematically,

TðQÞ¼N
X∞
ν¼0

�
Q
Mhi

�
ν

FðνÞp( Q
Mlo

;
Q
Λ
;γðνÞ

�
Mlo

Mhi
;
Λ
Mhi

�p); ð3Þ

whereN is a normalization factor, FðνÞ is a function generated
by the dynamics of the fψg, γðνÞ ¼ Oð1Þ is a dimensionless
combination of the ci, and ν is a counting index. “Power
counting” is the relation between ν and the interaction label i
in Eq. (2). While the form of the Oi in the Lagrangian (2)
depends on the choice of fields, the expansion (3) must not
(Chisholm, 1961; Kamefuchi, O’Raifeartaigh, and Salam,
1961). Likewise, observables obtained from Eq. (3) must
not depend on the arbitrary regularization procedure—
renormalization-group (RG) invariance.
Once the expansion (3) has been achieved, one can truncate

the sum at a given ν ¼ V with a small error,

TðQ ∼MloÞ ¼ TðVÞðQ;ΛÞ
�
1þO

�
QVþ1

MVþ1
hi

��
: ð4Þ

Before renormalization, non-negative powers of Λ can appear
that originate in the short-distance part of the loops. The
uncertainty principle ensures that such contributions cannot be
separated from that of LECs. Renormalization is the procedure
that fixes the cutoff dependence of the LECs so that the

FIG. 1. Landscape of nuclear EFTs in the plane of typical
momentum Q and pion mass mπ .
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truncated amplitude TðVÞðQ;ΛÞ satisfies approximate RG
invariance,

Λ
TðVÞðQ;ΛÞ

dTðVÞðQ;ΛÞ
dΛ

¼ O
�
QVþ1

MV
hiΛ

�
: ð5Þ

This condition ensures the error introduced by the arbitrary
regularization procedure is no larger than the Q=Mhi error
stemming from the neglect of higher-order terms in Eq. (4), as
long as Λ ≳Mhi. In this “modern view” of renormalization,
there is no need to take the Λ → ∞ limit (Lepage, 1989b).
However, while in analytical calculations Eq. (5) can be
verified explicitly, in numerical calculations varying the
regulator parameter widely above the breakdown scale is
usually the only tool available to check RG invariance. In
contrast, Λ < Mhi generates relatively large errors from the
regularization procedure. Failure to satisfy Eq. (5) altogether
means uncontrolled sensitivity to short-distance physics:
results depend on the value of Λ and on the choice of the
regulator function fðxÞ, which acquires the status of a physical,
model-dependent form factor.
After renormalization, when the contribution from

momenta of the order of the large cutoff have been removed,
the dominant terms in loop integrals come from momenta of
OðQÞ. Counting powers of Q in individual contributions to
Eq. (3) is similar to determining the superficial degree of
divergence of diagrams. There is, in general, also residual Λ
dependence [Eq. (5)] that can be absorbed in the LECs of
higher-derivative interactions. Since shuffling short-range
physics between loops and LECs does not change the
observables, the finite part of an LEC is expected to be set
by the replacement Λ → Mhi [see, for example, Veltman
(1981)],2 which then places an upper bound on the order at
which these interactions appear. The exception is when a
symmetry suppresses the corresponding interaction (’t Hooft,
1980). “Naturalness” assumes that all terms in the effective
Lagrangian (respecting the relevant symmetries) have dimen-
sionless coefficients of Oð1Þ when the appropriate powers of
Mlo and Mhi are factored out. Renormalization is thus a
powerful tool to estimate the sizes of the LECs.
This framework is a generalization of the ancient require-

ment of renormalizability by a finite set of parameters. If all
interactions needed for Eq. (5) are present at each order, the
resulting S matrix incorporates the relations among QCD S-
matrix elements demanded by symmetries, with no other
assumption than an expansion in Q=Mhi < 1. Every low-
energy observable depends on a finite number of LECs at
leading order (LO), where V ¼ 0, a few more at next-to-
leading order (NLO), where V ¼ 1, etc. Once the LECs are
determined from a finite number of data, all other observables
can be predicted or postdicted with a controlled error.
Traditionally, the input data have been experimental, but
LQCD results can now be used instead (Barnea et al.,
2015; Beane et al., 2015; Kirscher et al., 2015).
One of the virtues of the model independence encoded in

Eq. (5) is that it provides an a priori estimate of theoretical

errors. At the simplest level, errors can be estimated from the
higher-order terms in Eq. (4) with a guess for Mhi. A lower
bound on the theoretical error is provided by cutoff variation
from Mhi to much higher values. The breakdown scale Mhi
itself can be inferred by comparing the energy dependence at
various orders with the data (Lepage, 1997). Reliance on data
can be minimized by using instead EFT results at different
cutoffs (Grießhammer, 2016). Up to now both data fitting and
propagation of errors have employed standard statistical
analyses previously used for models. However, these methods
can lead to biases because they are not particularly well suited
to the a priori EFT error estimates, which typically increase
with Q, while experimental data are sometimes more precise
at higher Q. A comprehensive theory of EFT error analysis
based on Bayesian methods is currently being developed
(Schindler and Phillips, 2009; Furnstahl, Klco et al., 2015;
Furnstahl, Phillips, and Wesolowski, 2015; Wesolowski et al.,
2016), with the promise of becoming the standard in the field.

C. Nuclear EFTs

The implementation of these ideas in nuclear physics has
posed some unexpected challenges. They can be traced to the
fact that at LO some interactions need to be fully iterated, or,
equivalently, a dynamical equation should be solved exactly,
to produce the bound states and resonances that we refer to as
nuclei.
Nuclear EFTs typically include fields for the nucleon or

clusters of nucleons. These particles have masses of
OðMQCDÞ, and the expansion (3) includes a Q=mN expansion
around the nonrelativistic limit. Creation of virtual heavy
particle-antiparticle pairs takes place at small distances
r≲ 1=ð2mNÞ, and its effects can be absorbed in the LECs.
As a consequence, a process involving A heavy particles is not
affected by interactions in Eq. (2) involving more than 2A
fields associated with these heavy particles. The simplest way
to incorporate the fact that the large particle rest energy does
not play a role is to employ a heavy field from which the trivial
evolution factor due to the rest energy is removed (Jenkins and
Manohar, 1991a). Lorentz invariance for these fields is
encoded in reparametrization invariance (Luke and
Manohar, 1992). Kinetic terms reduce to the standard non-
relativistic form that respects Galilean invariance, with rela-
tivistic corrections suppressed by inverse powers of mN
appearing at higher orders.
There is a crucial difference between A ¼ 1 and A ≥ 2

processes. The former also involve light particles (e.g.,
photons) in initial and final states with momenta Q ∼Mlo.
They deposit on the nucleon an energy of OðQÞ that is larger
than the recoil of OðQ2=ð2mNÞÞ, so the nucleon is essentially
static and the deviation from the static limit can be treated as a
perturbation. Intermediate states differ in energy from the
initial state by an amount of OðQÞ. In contrast, there are
Feynman diagrams for the T matrix of an A ≥ 2 process,
whether it involves external probes or not, that include
intermediate states that differ in energy from the initial state
by only a small difference in nucleon kinetic energies of
OðQ2=ð2mNÞÞ. In these reducible diagrams nucleons are not
static, and there is an infrared (IR) enhancement relative to
intermediate states for A ¼ 1 processes (Weinberg, 1991).

2Burgess (2015) offers a clear discussion in the specific context of
the cosmological constant.
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Nucleon recoil cannot be treated perturbatively, although
relativistic corrections remain small.
The “full” nuclear potential V is defined as the sum of

irreducible diagrams for a process involving A nucleons in
initial and final states. The T matrix (3) is obtained by sewing
potential subdiagrams with nucleon lines representing the free
A-body Green’s function G. This gives rise to the Lippmann-
Schwinger equation, schematically

T ¼ V þ
Z

VGT ¼ V þ
Z

VGV þ � � � ; ð6Þ

or alternatively to the Schrödinger equation and its many-body
relatives. The full potential so defined involves all A bodies
but includes components with 1 ≤ C ≤ A − 1 separately
connected pieces. Frequently, the potential is thought of as
one of these connected pieces. One thus defines the A-nucleon
(AN) potential as the sum of diagrams with C ¼ 1 in the A-
nucleon system. For A ¼ 2, all diagrams in the nuclear
potential are connected (C ¼ 1), but starting at A ¼ 3multiply
connected diagrams appear, i.e., the full potential is made up

of a sum of fewer-body potentials. Diagrams with C ¼ A − 1

are made out of the 2N potential and A − 2 disconnected
nucleon lines. Diagrams in the full potential that have 1 <
C < A − 1 are made of combinations of lower-A potentials
and disconnected nucleon lines.
In contrast to phenomenological models, all mesons with

masses ≳MQCD and nucleon excitations heavier than the
nucleon by the same amount can be integrated out because
their effects can be captured by the LECs. As we see in Sec. II,
in pionless EFT the potential consists purely of contact
interactions, while in chiral EFT pion exchanges are present
as well; see Sec. IV. In either case, the potential involves
small transfers of energy OðQ2=ð2mNÞÞ, and the total
exchanged four-momentum is close to the total transferred
three-momentum. Dependence on the latter translates into a
function of the position in coordinate space: the potential is
local. Meanwhile, dependence on other nucleon momenta
leads to derivatives with respect to position, i.e., the momen-
tum operator in quantum mechanics, and the potential
becomes nonlocal. We expect to be able to expand the
potential in momentum space analogously to Eq. (3),

VðQ;ΛÞ ¼
X∞
μ¼0

VðμÞðQ;ΛÞ ¼ Ñ
X∞
μ¼0

�
Q
Mhi

�
μ

F̃ðμÞp( Q
Mlo

;
Q
Λ
; γ̃ðμÞ

�
Mlo

Mhi
;
Λ
Mhi

�p) ; ð7Þ

where Ñ is a normalization factor,3 F̃ðμÞ are functions
obtained from irreducible diagrams, γ̃ðμÞ ¼ Oð1Þ are di-
mensionless combinations of ci, and μ is a counting index
for the potential.
When the nucleus is struck by low-momentum external

probes (photons, leptons, and perhaps pions), similar consid-
erations apply. One can define nuclear currents, or reaction
kernels, as the sum of irreducible diagrams to which the
probes are attached. Currents again involve all A nucleons but
include disconnected diagrams. A subtlety is that a probe can
deposit an energy OðQÞ on a nucleon line, and thus there can
be purely nucleonic intermediate states in irreducible dia-
grams. Observables come from the sandwich of currents
between wave functions of the initial and final states.
Currents have an expansion similar to Eq. (7).
The nuclear potential and associated currents can always be

defined as such intermediate quantities between L and T. We
have reduced the EFT to a quantum-mechanical problem, but
one in which the form of the potential and currents is
determined. This is a distinct improvement over a purely
phenomenological approach, particularly in what concerns the
bewildering variety of many-body potentials and currents one
can construct. This feature is one of the major reasons for the

dominant role nuclear EFTs now play in the nuclear theory
community.
However, one should keep in mind that the potential and

currents are not directly observable. There are important
differences between Eqs. (7) and (3):

• The potential does not need to obey an equation such as
Eq. (5). EFT potentials involve terms that are singular
and often attractive, in the sense that they diverge faster
than −1=ð4mNr2Þ as the relative position r → 0. The
potential would generate strong regulator dependence in
Eq. (6) integrals if it did not itself depend strongly on Λ;
see, e.g., the pedagogical discussion by Lepage (1997).

• Since after renormalization Λ disappears from T (apart
from arbitrarily small terms),

Z
VGV ∼

Q3

4π

mN

Q2
V2 ∼

mNQV
4π

V ; ð8Þ

and the expansion (6) is in the dimensionless ratio
mNQV=ð4πÞ (Bedaque and van Kolck, 2002). For
Q≳ 4π=mNVð0Þ, Fð0Þ in Eq. (3) stems from an infinite
iteration of the LO potential Vð0Þ. This is good because
nuclear bound states and resonances, as poles of T
matrices, can be obtained only from a nonperturba-
tive LO.

• Equations (7) and (6) do not imply that all terms in V
should be treated on the same footing. One cannot
immediately identify μ with ν because a term in V
contributes to various orders in the T matrix. Higher-order

3Note that in the units we use the momentum-space potential, like
the T matrix, has mass dimension −2. Its Fourier transform, which
involves three powers of momentum, has mass dimension þ1, as it
should.
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Fðν>0Þ can be obtained from Vðμ>0Þ in a distorted-wave
Born expansion: Fð1Þ from a single insertion of Vð1Þ, Fð2Þ

from a single insertion ofVð2Þ or two insertions ofVð1Þ, etc.
Treating the potential truncated at a subleading order
exactly, i.e., treating it as a phenomenological potential,
is in general not correct from a renormalization point of
view. In an expansion in Q, the potential gets more and
more singular with increasing order. Resumming a partial
subset of higher-order terms will in general not include all
LECs needed for proper renormalization.4

The agelong challenge in nuclear physics has been to
achieve RG invariance when some interactions are nonper-
turbative and some others can be treated as small. In an EFT
that translates into the nontrivial task of developing a power
counting that guarantees Eqs. (4) and (5). In a purely
perturbative context the cutoff dependence of loops can be
obtained analytically. Assuming naturalness and looking at
individual loop diagrams, a simple rule has been devised for
the size of the LECs needed for perturbative renormalization
(Manohar and Georgi, 1984; Georgi and Randall, 1986). This
naive dimensional analysis (NDA) states that, for an operator
Oi in Eq. (2) with canonical dimension Di involving Ni
fields ψ ,

ci ¼ O
�ð4πÞNi−2

MDi−4
QCD

ci red

�
; ð9Þ

where the dimensionless reduced LEC ci red is of the order of
the combination of reduced QCD parameters that give rise to
it. Examples for chiral perturbation theory are given in Sec. IV.
It is, however, not immediately obvious that NDA applies to
LECs of operators involving four or more nucleon fields
subject to nonperturbative renormalization, i.e., which are
renormalized once LO interactions are resummed. In fact, as
we see later, cutoff variations in the Lippmann-Schwinger
equation (6) require significant departures from NDA for
contact interactions among nucleons. These departures were
first understood within pionless EFT. Its simplicity makes
pionless EFT the poster child for nuclear EFT, and we
therefore make it the start of this review.

II. PIONLESS EFT

A. Motivation

At very low energies, i.e., for momenta Q ≪ mπ , few-
nucleon systems are not sensitive to the details associated with

pion or other meson exchange. This fact makes it possible to
describe such systems with short-range interactions alone (i.e.,
interactions of finite range or falling off at least as an
exponential in the interparticle distance), an approach dating
back to Bethe and his effective-range expansion (ERE) for
nucleon-nucleon (NN) scattering (Bethe, 1949); see also
related work by Bethe and Peierls (1935a, 1935b), Fermi
(1936), Schwinger (1947), and Jackson and Blatt (1950).
Casting this basic idea into a modern systematic framework
leads directly to what has become known as pionless EFT.
Historically, pionless EFT emerged out of an effort to

understand the renormalization of EFTs where a certain class
of interactions need to be treated nonperturbatively. It had
been shown by Kaplan, Savage, and Wise (1996), Phillips,
Beane, and Cohen (1998), and Beane, Cohen, and Phillips
(1998) that the original prescription (Weinberg, 1990, 1991) to
extend chiral perturbation theory to few-nucleon systems
(discussed in Sec. IV) could not be implemented while
satisfying RG invariance. It turned out that there is a
surprisingly rich structure of phenomena in the low-energy
regime where explicit pion exchange cannot be resolved.
Formally, the pion can be regarded as “integrated out” if all

other dynamical scales are much smaller than the pion mass.
Consider, for example, the Yukawa potential corresponding to
the one-pion exchange:

hk0jV2N;πjki ∝
1

q2 þm2
π
; q ¼ k0 − k; ð10Þ

where k and k0 are incoming and outgoing momenta of two
scattered nucleons (in their center-of-mass frame). If these are
both small compared to mπ , Eq. (10) can be expanded in q2,
with the leading term being just a constant and the following
terms involving ever higher powers of q2. This shrinking of
the original interaction to a point is illustrated in Fig. 2.
Fourier transforming into configuration space one obtains a
series of delta functions with a growing number of derivatives.
In chiral EFT, which includes pions, analogous contact
interactions represent the exchange of heavier mesons.
Integrating out pions to arrive at pionless EFT means merging
unresolved pion exchange with these operators. It should be
noted, however, that chiral EFT is based on an expansion
around a vanishing pion mass, whereas pionless EFT treatsmπ

as a large scale. As such, these two EFTs are significantly
different—in particular, the respective LECs cannot in general
be related by perturbative matching—but they are both well-
defined low-energy limits of QCD.
In practice, one does not have to derive pionless EFT from a

more fundamental EFT by integrating out explicit pions.
Instead, one can just follow the EFT paradigm and write down

FIG. 2. Reduction of pion exchange (dashed line) to a series of
contact interactions between nucleons (solid lines) for q2 ≪ m2

π.

4An example of resummation of higher-order interactions is found
in lattice implementations of nonrelativistic QCD (NRQCD)
(Thacker and Lepage, 1991). In heavy quark effective theory, all
Q=mQ corrections in the heavy quark mass mQ are treated perturba-
tively, and lattice simulations have a continuum limit (Sommer,
2010). For NRQCD, lattice practice is to treat exactly not only heavy
quark recoil but also the associated, subleading gluon interactions.
Thus, only for relatively large values of the lattice spacing a do
observables look like they might converge, before 1=a-type effects
take over. There are also situations where one can resum higher-order
interactions without introducing essential regulator dependence. An
example is given by Lepage (1997).
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an effective Lagrangian, Eq. (2), with all contact interactions
between nucleons that are allowed by symmetry. This restric-
tion means that one requires invariance under “small” Lorentz
boosts (Galilean boosts plus systematic relativistic correc-
tions), rotations, isospin, and discrete symmetries like parity
and time reversal, the systematic breaking of which can also
be accounted for. The same EFT with other particles sub-
stituted for nucleons can describe different systems where the
important dynamics takes place at distances beyond the range
of the force. Some of these systems are discussed in Secs. III
and V. In particular, pionless EFT captures the universal
aspects of Efimov physics (Braaten and Hammer, 2006).
In this section, we discuss the basic features and formalism

of pionless EFT, first in the context of two-body systems
(Sec. II.B) and later for a larger number of particles (Sec. II.C).
Some of the outstanding issues are raised in Sec. II.D.

B. Weakly bound S-wave systems

Two very-low-energy particles, represented by a field ψ ,
can be described by an effective Lagrangian

L ¼ ψ†
�
i∂0 þ

∇2

2mN

�
ψ −

C0

2
ðψ†ψÞ2

þ C2

16
½ðψψÞ†ðψ∇↔2

ψÞ þ H.c.� þ � � � ; ð11Þ

where ∇
↔

¼ ∇⃖ − ∇⃗ is the Galilei-invariant derivative and H.c.
denotes the Hermitian conjugate. The ellipsis represents local
operators with other combinations of derivatives, including
relativistic corrections. Here we adopt the notation of Hammer
and Furnstahl (2000), but various forms for the Lagrangian—
differing by prefactors absorbed in the low-energy constants
(C0, C2, etc.) or choice of equivalent operators—exist in the
literature. One can treat the two NN S-wave channels (3S1 or
1S0, in the spectroscopic notation 2sþ1lj, where l, s, and j
denote, respectively, orbital angular momentum, spin, and
total angular momentum) simultaneously using a nucleon
field N that is a doublet in spin and isospin space. We come
back to this after discussing the general features of the two-
body sector on the basis of Eq. (11).

1. Two-body scattering amplitude

To fill the theory described by the effective Lagrangian (11)
with physical meaning, we need to equip it with a power
counting. We seek an expansion taking the form of Eq. (3)
whereMhi is expected to be set by the pion massmπ since pion
exchange has been integrated out. In particular, we want to
reproduce the ERE (Bethe, 1949) for the on-shell NN
scattering amplitude:

Tðk; cos θÞ ¼ −
4π

mN

X
l

ð2lþ 1ÞPlðcos θÞ
k cot δlðkÞ − ik

; ð12aÞ

k2lþ1 cot δlðkÞ ¼ −
1

al
þ rl

2
k2 þOðk4Þ; ð12bÞ

with a Legendre polynomial Pl, the scattering angle θ, and
energy E ¼ k2=mN in the center-of-mass frame, and where
δlðkÞ is the scattering phase shift in the lth partial wave, while

al and rl denote the corresponding scattering length and
effective range, respectively. Here we focus on S waves with
l ¼ 0. Higher partial waves are discussed later.
In a “natural” scenario, the LECs C2n in Eq. (11) scale with

inverse powers of their mass dimension, e.g., C0 ∝ M−1
hi .

(Note that an overall scaling with 1=mN from the non-
relativistic framework is shared by all terms in the effective
Lagrangian.) In this case, to lowest order T is simply given by
the tree-level C0 vertex, and we can identify C0 ¼ 4πa0=mN.
However, the low-energy NN system is not natural. From the
relation for C0, it is immediately clear what this means here:
the actual NN scattering lengths a1S0 ≃ −23.7 fm and a3S1 ≃
5.4 fm are large compared to the pion Compton wavelength
m−1

π ≃ 1.4 fm, so C0 ¼ 4πa0=mN is incompatible with C0 ∝
M−1

hi if one assumes Mhi ∼mπ . Turning the argument around,
the perturbative expansion in C0 has a breakdown scale set by
1=a0 ≪ mπ , rendering it useful only for the description of
extremely low-energy NN scattering.
The physical reason for the rapid breakdown of the

perturbative expansion is that the large NN S-wave scattering
lengths correspond to low-energy (“shallow”) bound states
(virtual, in the case of the 1S0 channel). For example, it is well
known that the deuteron binding momentum γd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mNBd

p
≃

45.7 MeV is given at about 30% accuracy by 1=a3S1. These
states directly correspond to poles of the amplitude T (located
on the imaginary axis of the complex k plane, or on the
negative energy axis in the first or second Riemann sheet). It is
clear that a Taylor expansion of T in k2 converges only up to
the nearest pole in any direction in the complex plane. Thus,
the presence of the shallow NN bound states limits the range
for a perturbative description of NN scattering.
A nonperturbative treatment is necessary to generate poles

in T since a finite sum of polynomials can never have a pole.
As pointed out by Weinberg (1991), this can be achieved by
“resumming” the C0 interaction, i.e., by writing the LO
amplitude as the tree-level C0 diagram plus any number of
C0 vertices with intermediate propagation, as shown in Fig. 3;
see also the related analysis by Luke and Manohar (1997). The
result for a single generic NN channel is

Tð0Þ ¼ C0 þ C0I0ðkÞC0 þ C0I0ðkÞC0I0ðkÞC0 þ � � �
¼ ½C−1

0 − I0ðkÞ�−1; ð13Þ

where I0 is the two-body “bubble integral,” discussed in more
detail later. Having C0 now in the denominator means that it
can be adjusted to give a pole at the desired position.

2. Power counting

The power counting of the theory should be such that it
actually mandates this procedure. The small inverse NN
scattering lengths introduce a genuine new low-momentum

FIG. 3. Bubble chain for a generic S-wave NN scattering
amplitude at LO from the C0 interaction (solid circle).

H.-W. Hammer, Sebastian König, and U. van Kolck: Nuclear effective field theory: Status and …

Rev. Mod. Phys., Vol. 92, No. 2, April–June 2020 025004-8



scale Mlo or large length M−1
lo . Typically, this is referred to as

fine-tuning because the existence of this scale, at odds with the
perfectly natural assumption that pion exchange should set the
lowest energy scale, implies that different contributions from
quarks and gluons have to combine in just the right way to
produce this scenario; see Sec. V.A.
Equation (13) is simply Eq. (6) for a two-body potential C0,

which from the previous discussion is enhanced by a factor
M−1

lo . The loops connecting two insertions of the potential
contain nucleon propagators, which from Eq. (11) we read off
to be

iDNðp0;pÞ ¼ i

�
p0 −

p2

2mN
þ � � � þ iε

�−1
: ð14Þ

Here p0 and p are the energy and momentum associated with a
nucleon line in Fig. 3. If a total momentum k ∼Q runs through
the diagram, we see that after regularization effects are
removed by renormalization the dominant contribution in a
loop integral dq0d3q comes from the region where q ∼Q.
Hence, keeping in mind that q0 is a nonrelativistic kinetic
energy ∼q2=mN, we count

nucleon propagator ∼mNQ−2; ð15aÞ

ðreducibleÞ loop integral ∼ ð4πmNÞ−1Q5: ð15bÞ

Equations (15a) and (15b) lead directly to the estimate (8) and
imply that the one-loop contribution in Fig. 3 scales like the
tree-level one times a factor Q=Mlo. In fact, each additional
dressing by one loop with a C0 vertex contributes such a
factor. Hence, in the regime where Q ∼Mlo ≪ Mhi each such
diagram is equally important, and they all have to be summed
up to get the LO amplitude nonperturbatively. On the other
hand, for Q ≪ Mlo one can still use a perturbative approach,
so the counting here is able to capture both scenarios.
Operators with derivatives in the effective Lagrangian must

contain inverse powers of Mhi in order not to introduce
additional low-energy poles in the LO T matrix. They provide
corrections to the 2N potential,

V2Nðp0;pÞ ¼ C0 þ C2ðp02 þ p2Þ þ � � � : ð16Þ

Being suppressed, higher orders can be calculated in pertur-
bation theory and matched to an expansion of Eq. (12a),

T ¼ 4π

mN

1

1=a0 þ ik

�
1þ r0k2=2

1=a0 þ ik
þ � � �

�
: ð17Þ

The specific scaling with Mhi can be inferred from this and
from regulator effects considered later.
For example, the NLO amplitude Tð1Þ is the result of

inserting a single C2 vertex into each combination that can be
formed with the LO amplitude (van Kolck, 1997, 1999b;
Bedaque, Hammer, and van Kolck, 1998; Bedaque and van
Kolck, 1998; Kaplan, Savage, and Wise, 1998a, 1998b), as
shown in Fig. 4. Matching to the k2 coefficient in Eq. (17)
shows that the C2 contributions are related to the effective
ranges. Since the values of the NN S waves are r3S1 ≃ 1.75 fm

and r1S0 ≃ 2.7 fm, and thus of the order m−1
π ∼M−1

hi , we
conclude that C2 is indeed an NLO effect,

C2Q2

C0

∼
Q2

MloMhi
: ð18Þ

For comparison, given that the C0 term is a dimension-6
operator, whereas the one with C2 is dimension 8, the naive
natural scaling is C2Q2=C0 ∼ ðQ=MhiÞ2. The additional low-
energy enhancement Mlo also occurs in the scaling of the C2

parameters.
This procedure can be generalized to higher orders and

other operators. At N2LO we must consider two insertions of
C2 and one insertion of C4; the latter is determined entirely in
terms of r20, the shape parameter emerging at N3LO (Kaplan,
Savage, and Wise, 1998a, 1998b; van Kolck, 1999b).
Generally, enhancements depend on the partial waves
involved. The interactions contributing to such waves are
operators in the ellipsis of Eq. (11) that make T dependent on
the scattering angle. There is no enhancement for operators
that contribute only to higher waves as long as there are no
other low-energy poles, as is the case in NN scattering. Thus,
for example, a P-wave operator leading to a term ∝ k0 · k
appears first at N3LO. The enhancement is partial only for
operators that connect an S wave to other waves. The short-
range tensor force that connects S and D waves is present at
N2LO because it is enhanced by one power of M−1

lo (Chen,
Rupak, and Savage, 1999a). The lowest orders in the potential
are shown schematically in Fig. 5.
Summarizing, the 2N potential (16) is a particularly simple

form of Eq. (7) where there are no nonanalytic functions and

μ ¼ d=2 ðs2 ¼ 2Þ; μ ¼ dþ 1 − s2 ðs2 ¼ 0; 1Þ; ð19Þ

Ñ ¼ Oðð4πÞA−1m−1
N M5−3A

lo Þ; ð20Þ

with A ¼ 2, d the number of derivatives, and s2 ¼ 0, 1, 2 the
number of S waves connected by the operator (van Kolck,
1997, 1999b; Bedaque, Hammer, and van Kolck, 1998;
Bedaque and van Kolck, 1998; Kaplan, Savage, and Wise,
1998a, 1998b). Using the standard graph equalities to elimi-
nate the number of internal lines I and loops L, I ¼ P

i Vi þ
L − 1 and I ¼ −AþP

i fiVi=2, where Vi is the number of
vertices with fi nucleon lines, we obtain Eq. (3) for the
amplitude with

FIG. 4. NLO correction to the NN scattering amplitude from the
C2 interaction (circled circle).
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ν ¼
X
i

Viμi; N ¼ Oðð4πÞA−1m−1
N M5−3A

lo Þ: ð21Þ

Assuming Mlo ∼ γd, a rough estimate of the expansion
parameter is Mlo=Mhi ∼ γd=mπ ∼ 1=3.

3. Regularization and renormalization

Loops in quantum field theory often do not converge, and
the same is true in pionless EFT. Observables are rendered
finite by renormalization. For example, if we introduce a
separable regulator function fðxÞ at the vertices, the nucleon
bubble integral becomes

I0ðkÞ ¼ mN

Z
d3q
ð2πÞ3

½fðq2=Λ2Þ�2
k2 − q2 þ iε

¼ −
mN

4π
½θ1Λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2 − iε

p
þOðk2=ΛÞ�; ð22Þ

where θ1 is a dimensionless number that depends on the form
of fðxÞ (for example, θ1 ¼ 2=π for a step function). With
Eq. (12b) truncated at the scattering length as a renormaliza-
tion condition, the choice

C0ðΛÞ ¼
4π

mN

1

1=a0 − θ1Λ
ð23Þ

ensures to this order that the physical amplitude is indepen-
dent of Λ up to corrections that vanish as Λ → ∞. The latter
can be removed by higher-order LECs such as C2ðΛÞ. It is the
nonanalytic dependence on the energy, which is regulator
independent, that characterizes a loop. The corresponding
term in Eq. (22) is an explicit example of the estimates (15a)
and (15b).

a. Schemes and power counting

In the early stages there was much confusion about whether
or not the choice of regularization should be understood as

affecting the power-counting scheme. The difference between
the artificial regulator parameter Λ and the breakdown scale
Mhi of the theory has not always been appreciated. For
example, Kaplan, Savage, and Wise (1998a) argued that C0 ∝
Λ−1 would again give a theory with a very limited range of
applicability. The need to choose Λ ≳Mhi to suppress
regulator artifacts of Oð1=ΛÞ does seem to invalidate the
scaling C0 ∝ M−1

lo , but there are correlations among the
diagrams that are captured by determining C0ðΛÞ after
resummation, reflecting the original Mlo counting.
If one uses dimensional regularization to render integrals

finite, the I0 bubble does not have a pole in four spacetime
dimensions, so in the minimal subtraction scheme there is no
divergence at all. Instead, Kaplan, Savage, and Wise (1998a)
advocated explicitly subtracting the pole in three dimensions
(corresponding to the linear divergence in the cutoff scheme),
thereby introducing a renormalization scale μ that can be
chosen freely and giving Eq. (23) with θ1Λ → μ. This
procedure, called power-divergence subtraction (PDS),
makes the need for resummation of the bubble diagrams
more transparent. Picking μ ∼Q, the running coupling C0

scales like Q−1, implying again that each diagram in Fig. 3 is
of the same order. With this scheme, power counting is
“manifest” in the sense that it is reflected by the scaling of
coupling constants even after renormalization has been carried
out. Phillips, Beane, and Birse (1999) showed that if all poles
of a divergent loop integral are subtracted—like the original
PDS, one particular choice of infinitely many possibly
schemes—one recovers exactly the same result as with a
simple momentum cutoff.
Under an appropriate power counting, changing the low-

energy points used as renormalization conditions affects the
running of the LECs by 1=Λ terms and leads to the same T
matrix up to higher-order terms. Taking, for example, the
pole position iγ instead of zero energy generates the LO
amplitude with 1=a0 → γ; the relative difference is an NLO
correction ∼r0=a0 ¼ OðMlo=MhiÞ. While the a priori EFT
error estimate is always determined by neglected higher
orders, the freedom to choose what input parameters are used
at a given order can improve agreement of the central values
with experimental data. Gegelia (1999a) discussed the
relation of subtractive renormalization to the previously
mentioned approaches.
It was eventually realized (Lepage, 1997) that cutoff

variation can be used (and is particularly useful in numerical
calculations) as a diagnostic for missing interactions at a given
order, an example of which is given in Sec. II.C.2. Long and
Yang (2012b) pointed out that the leading residual cutoff
dependence can be used to infer the existence of next-order
operators. Equation (22), for example, indicates that C2 ∝
M−1

hi for the residual dependence on Λ≳Mhi to be no larger
than NLO. Thus, renormalization provides guidance for the
power counting.

b. Subleading resummation

Experience with nonsingular potentials makes it almost
automatic to solve the Schrödinger equation exactly with a
truncation of the potential (16). At LO this is equivalent to the
resummation (13). Renormalization of the truncation at the

FIG. 5. Diagrams representing the AN nuclear potential in
pionless EFT. The order of the contributions is indicated as
OðQμ=Mμ

hiÞ, μ ≥ 0, where Q ∼Mlo and Mhi ∼mπ , so that the
circles around the central solid circle denote inverse powers
of Mhi.
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level of C2, however, leads to r0 ≲ Λ−1 (Cohen, 1997; Phillips
and Cohen, 1997; Scaldeferri et al., 1997), a version of the so-
called Wigner bound (Wigner, 1955). This is problematic for
NN scattering where r0 > 0. At first interpreted as a failure of
EFT, this observation instead reveals the danger of resumming
subleading singular potentials (van Kolck, 1999b). Such a
resummation includes a subset of arbitrarily high-order con-
tributions without all of the LECs needed for perturbative
renormalization, such as C4 when C2 is inserted twice at
N2LO. It is still possible to work with a fixed cutoff that
reproduces r0, at the cost of losing the ability to use cutoff
variation Λ ≳Mhi as a diagnostic for missing interactions.
Moreover, there is no guarantee that results for other observ-
ables would be any better than those obtained from a
perturbative treatment of subleading corrections. An example
was given by Stetcu et al. (2010a).

4. Renormalization group

a. Running coupling

Imposing renormalizability of physical amplitudes leads to
solutions of RG equations. Their detailed form depends on the
regularization scheme. For example, for the dimensionless
coupling constant Ĉ0 ≡mNμC0=ð4πÞ one finds in PDS
(Kaplan, Savage, and Wise, 1998a)

μ
d
dμ

Ĉ0 ¼ Ĉ0ð1þ Ĉ0Þ; ð24Þ

where the right-hand side is given by the beta function. It is
convenient to consider the flow of Ĉ0 instead of C0 to separate
the behavior of the operator from the behavior of the coupling
constant. The RG equation (24) has two fixed points: the free
fixed point Ĉ0 ¼ 0 and a nontrivial fixed point Ĉ0 ¼ −1
(Weinberg, 1991), which correspond to a0 ¼ 0 and to the
unitary limit 1=a0 ¼ 0, respectively. Similar equations can be
derived for all coupling constants in the effective Lagrangian,
and the beta function, in general, changes as one goes to
higher orders. Thus, the expansion in pionless EFT can be
thought of as an expansion around the unitary limit of infinite
scattering length, similar to the expansion in chiral EFT
around the chiral limit of vanishing quark masses. An equation
similar to Eq. (24) holds for a simple momentum cutoff Λ,
leading then to Eq. (23). In dimensional regularization with
minimal subtraction, on the other hand, the coupling C0 is
independent of μ (Kaplan, Savage, and Wise, 1996). In this
scheme, the unitary limit cannot be reached for any finite
value of the coupling.

b. Wilsonian renormalization group

The RG is generally useful for studying the behavior of the
EFT. Extending previous work (Weinberg, 1990, 1991;
Adhikari and Frederico, 1995; Adhikari and Ghosh, 1997;
Beane, Cohen, and Phillips, 1998; Kaplan, Savage, and Wise,
1998a, 1998b, 1999; Phillips, Beane, and Cohen, 1998),
Birse, McGovern, and Richardson (1999) studied the RG
flow of an effective potential of the form

V2Nðp0;p; kÞ ¼ V2Nðp0;pÞ þ C02k2 þ � � � ; ð25Þ

where the additional energy-dependent terms compared to
Eq. (16) come from a different choice of operators in the
effective Lagrangian (11). It is possible to trade energy
dependence for momentum dependence, and vice versa, by
field redefinitions or, alternatively, by using the equation of
motion. Within a Wilsonian formulation of the RG (Wilson,
1983), demanding that the off-shell amplitude stays invariant
under a decrease in the momentum cutoff Λ in the Lippmann-
Schwinger equation defines a running potential Vðp; p0; k;ΛÞ
that satisfies

∂V
∂Λ ¼ mN

2π2
Vðp0;Λ; k;ΛÞ Λ2

Λ2 − k2
VðΛ; p; k;ΛÞ: ð26Þ

Defining further a rescaled potential V̂ by multiplying all
quantities by appropriate powers of Λ, Birse, McGovern, and
Richardson (1999) showed that in the limit where Λ → 0 there
exist two IR fixed points satisfying ∂V̂=∂Λ ¼ 0. One of these,
V̂ ¼ 0, is trivial, whereas the second, nontrivial one corre-
sponds to the unitary limit. Additional fixed points are
accessible with further fine-tuning (Birse, Epelbaum, and
Gegelia, 2016). An extensive study also including higher
waves was carried out by Harada and Kubo (2006) and
Harada, Kubo, and Ninomiya (2009). The RG analysis
captures the results obtained from Feynman diagrams, which
yield directly the solutions of the RG equations.5 It unifies
both the natural and fine-tuned cases discussed in Sec. II.B.2,
and it is possible to derive the power counting for either case
by studying perturbations of the potential around the fixed
points.

5. Dibaryon fields

It is possible to efficiently capture the physics associated
with the shallow S-wave two-body states by introducing in the
effective Lagrangian dimeron (molecular or, here, dibaryon)
fields with their quantum numbers, an idea first introduced in
EFT by Kaplan (1997). For any single channel we can write,
instead of Eq. (11),

L ¼ ψ†
�
i∂0 þ

∇2

2mN

�
ψ þ g½d†ðψψÞ þ H.c.�

þ d†
�
η

�
i∂0 þ

∇2

4mN

�
− Δ

�
dþ � � � ; ð27Þ

where η ¼ �1 is a parameter that determines the sign of the
effective range. It will be fixed to η ¼ −1 in the remainder of
this section to ensure that r0 > 0. Instead of C0 and C2, we
have the new parameters Δ (the residual mass) and g. With
this choice, nucleons no longer couple directly, but only
through the s-channel exchange of the dibaryon d. If one
neglects the kinetic term for this field, it is possible to recover
the leading terms in Eq. (11) by using the equation of motion
for d,

5Weinberg (2005) gave a general discussion of the connection
between the Wilsonian RG and the conventional renormalization
program.
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d ¼ g
Δ
ψψ ; ð28Þ

and identifying C0 ¼ −g2=Δ. Because of this redundancy,
without loss of generality one may fix g at LO; a convenient
choice is g2 ≡ 4π=mN (Grießhammer, 2004) so that Δ ¼
−1=a0 represents the low-energy scaleMlo. The d kinetic term
leads to both energy- and momentum-dependent four-
nucleon-field interactions, corresponding to a choice of
operators that differs from Eq. (11) but can be shown to be
equivalent up to higher orders and field redefinitions (Bedaque
and Grießhammer, 2000).
The original bubble series with C0 vertices turns into a self-

energy correction for the dibaryon field. Whereas the tree-
level bare propagator is just iDðp0;pÞ ¼ −i=Δ, summing up
all bubble insertions as shown in Fig. 6 gives the full LO
propagator as

iDð0Þðp0;pÞ ¼ −i
�
Δþ g2I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNp0 − p2=4

q ��
−1
: ð29Þ

The center-of-mass NN scattering amplitude is recovered by
attaching nucleon-dibaryon vertices on both ends: Tð0Þ ¼
−g2Dð0Þðp0 ¼ k2=mN;p ¼ 0Þ.
Not only is the dibaryon formalism useful to study

processes with deuterons in the initial and/or final state
(see the following), where it can conveniently be used as
an interpolating field, but it also makes higher-order correc-
tions particularly simple. For example, where before we had to
insert C2 vertices in different places (see Fig. 4), we now need
only insert the dibaryon kinetic-energy operator into the LO
propagator, giving

iDð1Þðp0;pÞ ¼ i

�
p0 −

p2

4mN

�
½Dð0Þðp0;pÞ�2 ð30Þ

at NLO. As in the case without dibaryons, renormalization
is carried out by relating Dð1Þ to the NLO amplitude
correction Tð1ÞðkÞ and matching it to the effective-range
term in Eq. (12b). A difference, however, is that now this
is carried out with an energy-dependent operator—note the
dependence of Eq. (30) on the Galilei-invariant energy
p̃0 ¼ p0 − p2=4mN—whereas our choice of C2 terms in
Eq. (11) includes only momentum-dependent operators.
The NLO component of g can be adjusted to reproduce r0,
and g and Δ are now independent. This means that these
parameters have RG runnings that differ from those for C0 and
C2 (Birse, McGovern, and Richardson, 1999).
With a dibaryon, range effects can be resummed using the

propagator

iDresumðp0;pÞ ¼
−i

Δþ g2I0ð
ffiffiffiffiffiffiffiffiffiffiffiffi
mNp̃0

p Þ − p̃0

: ð31Þ

The Wigner bound is automatically avoided by allowing
the dibaryon to be a ghost field. In fact, Beane and Savage
(2001) proposed that the relatively large sizes of the NN
effective ranges (about 2m−1

π ) justify their resummation as an
LO effect. This procedure leads to two S-matrix poles per
channel and is thus more likely to be interpreted as a
resummation of NLO interactions, which includes additional
higher-order effects.

6. Spin-isospin projection and parametrizations

For a fixed NN channel it is convenient to use the effective
Lagrangian (11), with ψ a nucleon field for which the
combination ψ†ψ has definite spin and isospin ðS; IÞ. The
Pauli principle dictates that only the isospin triplet t≡ ð0; 1Þ
and the isospin singlet s≡ ð1; 0Þ are allowed combinations.
We use subscripts s and t here in reference to isospin, with a
warning that the same subscripts are sometimes used in
reference to spin. To go beyond the description of an isolated
two-nucleon system, it is desirable to treat both combinations
on the same footing. To this end, it is convenient to introduce a
nucleon field N that is a doublet in both spin and isospin
space, along with projection operators

ðPsÞi ¼ σ2σiτ2=
ffiffiffi
8

p
; ðPtÞA ¼ σ2τ2τA=

ffiffiffi
8

p
; ð32Þ

where σi (τA) denotes the three Pauli matrices in spin (isospin)
space, and we use lowercase (uppercase) indices to further
distinguish between the two spaces. The Lagrangian for the
NN system can then be written as

L ¼ N†
�
i∂0 þ

∇2

2mN

�
N −

C0s

2
ðNTPsNÞ†ðNTPsNÞ

−
C0t

2
ðNTPtNÞ†ðNTPtNÞ þ � � � ; ð33Þ

where the ellipsis represents analogous terms with C2s=t as
well as higher-order operators. Fierz rearrangements can be
used to generate equivalent interactions. Analogously,
Eq. (27) is generalized to the nuclear case by introducing
two dibaryon fields, one for each NN S-wave channel, using
the same projection operators Ps;t (Bedaque and van Kolck,
1998).
The two channels are somewhat different concerning both

sign and magnitude of the scattering lengths. It has been
customary to treat both a−1s and jatj−1 as Mlo, although we
return to this issue in Sec. II.B.7. The ERE Eq. (12b) has a
certain radius of convergence, set by the nearest singularity to
the expansion point k2 ¼ 0. The pion-exchange cut on the
imaginary k axis starting at mπ=2 leaves the deuteron pole
within the radius of convergence of the ERE, and indeed
it is well known that the properties of this pole can be
expressed in terms of the ERE parameters (Goldberger and
Watson, 1967), cf. Sec. II.B.1. For example, the deuteron
binding momentum is

γd ¼
1

as

�
1þ rs

2as
þ � � �

�
: ð34Þ

FIG. 6. Bubble sum for the dressed dibaryon propagator
obtained from the bare propagator (double dashed line).
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Alternatively, and this is in fact what was done first histor-
ically (Bethe, 1949), one can perform the ERE directly about
this pole (i.e., about the point iγd in the complex momentum
plane),

k cot δdðkÞ ¼ −γd þ
ρd
2
ðk2 þ γ2dÞ þ � � � ; ð35Þ

where ρd ≃ 1.765 fm (de Swart, Terheggen, and Stoks, 1995)
is the deuteron effective range. The motivation for using
Eq. (35) instead of the ERE about zero momentum is that it
captures the exact location of the pole already at LO.
Grießhammer (2004) extended the procedure to the 1S0
channel, where it is possible to define the ERE about the
virtual-state pole.
The first detailed comparison of the 3S1 phase shift obtained

in pionless EFT with empirical values was carried out up to
N2LO by Chen, Rupak, and Savage (1999a), with LECs fitted
to Eq. (35). In Fig. 7 we show results fitted to Eq. (12b)
instead, which are qualitatively similar: convergence is seen at
low energies, and already at NLO a good description is
achieved. The corresponding results for 1S0 up to N2LO were
presented by Beane, Bedaque, Haxton et al. (2001).

7. Coulomb effects and other isospin breaking

Since almost all nuclear systems involve more than one
proton, the inclusion of electromagnetic effects is generally
important. In the low-energy regime, the dominant effect is
given by “Coulomb photons,” i.e., the familiar, static potential
(∼α=r) between charged particles. It originates from the
replacement of derivatives in the effective Lagrangian with
covariant ones,

Dμ ¼ ∂μ þ ieAμQ̂; ð36Þ

where Q̂ is an appropriate charge operator, e.g., Q̂ ¼
ð1þ τ3Þ=2 for nucleons. The Coulomb photon-nucleon cou-
pling ie comes from the gauging of the nucleon time
derivative in Eq. (33), while the Coulomb-photon propagator
is i=ðq2 þ λ2Þ, where λ is an IR-regulating photon mass that is
eventually taken to zero. Finer electromagnetic effects enter
through operators with more covariant derivatives and also
directly through the field strength, or alternatively the electric
(Ei ¼ ∂0Ai − ∂iA0) and magnetic (Bi ¼ ϵijm∂jAm) fields.
Kong and Ravndal (1999b, 2000) were the first to study

proton-proton (pp) scattering in pionless EFT. The challenge
here lies in the fact that the Coulomb interaction is important
at very low energies: we see from Eq. (8) for the Coulomb
potential V ∼ e2=Q2 that the Coulomb interaction is non-
perturbative for Q ≲ αmN=2≡ kC, which is in the low-energy
region of pionless EFT. Subtracting the pure-Coulomb ampli-
tude TC from the full amplitude T, one can write

TSC ¼ T − TC ¼ −
4π

mN

e2iσC

k cot δppðkÞ − ik
ð37Þ

in terms of the “subtracted” pp phase shift δppðkÞ and the
pure-Coulomb phase shift σC ¼ argΓð1þ iηÞ. Renormali-
zation can be carried out by matching to the “Coulomb-
modified” ERE (Bethe, 1949)

C2
η½k cot δppðkÞ − ik� þ αmNHðηÞ

¼ −
1

app
þ rpp

2
k2 þ � � � ; ð38Þ

where app ≃ −7.8 fm and rpp ≃ 2.8 fm (Bergervoet et al.,
1988) are the ERE parameters, C2

η ¼ 2πη½expð2πηÞ − 1�−1 is
the Sommerfeld factor in terms of η ¼ kC=k, and HðηÞ ¼
ℜ½ψð1þ iηÞ� − ln ηþ iC2

η=ð2ηÞ in terms of the digamma
function ψ . It should be emphasized that the pp scattering
amplitude, and thus also the effective-range parameters, are
always defined in the presence of the Coulomb interaction and
cannot be divided into strong and electromagnetic parts in a
model-independent way (Kong and Ravndal, 1999b; Gegelia,
2004). For particles with nonunit charges, the definition of the
Coulombmomentum kC is generalized in Sec. III; see Eq. (69).
In pionless EFT, TSC is obtained by replacing all empty

bubbles in Fig. 3 with the dressed one shown in Fig. 8. The
initial- and final-state Coulomb interactions are accounted for
by the construction in Eq. (37). Dressing here refers to
resumming the Coulomb interaction to all orders between
each pair of C0 vertices, which Kong and Ravndal (1999b,
2000) were able to do using a known analytic expression for
the pure-Coulomb Green’s function. With dimensional regu-
larization,

4π

mNC
pp
0 ðμÞ ¼

1

app
− μþ αmN

�
1

ε
þ ln

μ

αmN
þ const

�
: ð39Þ

The term linear in the renormalization scale μ comes from the
PDS prescription, but Coulomb exchange now introduces an

FIG. 7. The NN scattering phase shift δ as a function of the
nucleon laboratory energy Elab in the 3S1 partial wave for pionless
EFT and chiral EFT at various orders (Long and Yang, 2012a)
(from C.-J. Yang), and the chiral potential “EM500” (Entem and
Machleidt, 2003). For comparison, we show the partial-wave
analysis (PWA) of Navarro Pérez, Amaro, and Ruiz Arriola
(2013), with error bars smaller than the symbols.
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additional logarithmic divergence, reflected in the pole in
ε ¼ d − 3, where d is the number of spatial dimensions.
Range corrections were considered at NLO by Kong and
Ravndal (2000) and at N2LO by Ando et al. (2007). An
equivalent formulation in terms of a pp dibaryon exists (Ando
and Birse, 2010). The RG analysis of Birse, McGovern, and
Richardson (1999) discussed in Sec. II.B.4 has also been
extended to the charged-particle sector (Barford and Birse,
2003; Ando and Birse, 2008).
The LEC Cpp

0 ¼ C0t þ ΔC0ðþÞ in Eq. (39) contains an
isospin-dependent contributionΔC0ðþÞ, which is a short-range
(or indirect) electromagnetic effect. The EFT includes also
isospin breaking from the quark masses (van Kolck, 1993,
1995). While electromagnetic interactions break isospin more
generally (charge dependence), effects that are linear in the
quark masses break charge symmetry (a rotation of π around
the second axis in isospin space) specifically. Introducing the
projectors Pð�Þ ¼ ðP1

t ∓ iP2
t Þ=

ffiffiffi
2

p
to the pp and nn channel,

the isospin-breaking Lagrangian takes the form

Lib ¼ δmNN†τ3N −
ΔC0ðþÞ

2
ðNTPðþÞNÞ†ðNTPðþÞNÞ

−
ΔC0ð−Þ

2
ðNTPð−ÞNÞ†ðNTPð−ÞNÞ þ � � � : ð40Þ

NDA [see Eq. (9)] indicates that the neutron-proton mass
splitting δmN ¼ Oðεm̄; αmN=ð4πÞÞ. It is well known that the
two types of contributions are comparable in magnitude,
εm̄ ∼ αmN=4π, valid up to a scale-dependent factor of a few,
but have opposite signs, the quark masses tilting the balance in
favor of the neutron. The mass-splitting term can be removed
by a redefinition of the nucleon field (Friar et al., 2004) and
reappears as an OðδmN=mNÞ effect in the nucleon kinetic
term. The most important quark-mass effects in the NN
system lie in the short-range LECs ΔC0ð�Þ. The reduced
quark mass is ðεm̄Þred ¼ εm̄=Mhi and together with the
S-to-S-wave enhancement discussed in Sec. II.B.2 leads to
ðann − atÞ=at ∼ ΔC0ð−Þ=C0t ¼ Oðεm̄atÞ ≃ 0.2, cf. König
et al. (2016). A similar contribution exists for ΔC0ðþÞ, which
is, however, dominated by the electromagnetic contribution
ΔC0ðþÞ=C0t ¼ OðαmNatÞ, consistent with Eq. (39).
For most of the region of validity of pionless EFT, Q≳

αmN and all electromagnetic interactions are expected to be
perturbative. In this region, Q≳ 1=at as well. König et al.
(2016) developed an expansion in powers of αmN=Q and
1=Qat in addition to the standard Q=Mhi expansion. For
simplicity, they paired the expansions by taking αmN ∼ a−1t ¼
OðM2

lo=MhiÞ and εm̄ ¼ OðM3
lo=M

2
hiÞ. In this case, LO in the

1S0 channel consists of the isospin-symmetric unitary ampli-
tude, that is, Eq. (12a) with k cot δt ¼ 0. The first short-range
and electromagnetic corrections break isospin symmetry at
NLO, reproducing app and leading to equal scattering lengths
in the other two 1S0 isospin channels. In addition, at NLO

there is the standard, isospin-symmetric C2t interaction, while
quark-mass effects (and the nn splitting from np) first enter at
N2LO. This is consistent with the observed relation rpp ≃ rt.

8. External currents

One of the great advantages of the EFT approach is that it is
straightforward to include external currents in addition to
interactions between nucleons. Power counting leads to a
systematic expansion of current operators, which had pre-
viously been classified only as one-body and many-body
pieces (also known as meson-exchange currents).
Photons are introduced in the effective Lagrangian as

described earlier. In addition, weak interactions are accounted
for by current-current interactions, where the currents have the
well-known vector-axial (V − A) form. Power counting is
similar to that described in Sec. II.B.2, with current operators
subject to the same enhancement by powers of M−1

lo when S
waves are involved (Chen, Rupak, and Savage, 1999a).
Electromagnetic couplings were analyzed with the
Wilsonian RG by Kvinikhidze and Birse (2018).
The earliest example in the context of pionless EFT

involved calculations of static deuteron properties by Chen,
Rupak, and Savage (1999a), paralleling previous work by
Kaplan, Savage, and Wise (1999) and Savage, Scaldeferri, and
Wise (1999) in chiral EFT with perturbative pions. Chen,
Rupak, and Savage (1999a) calculated several deuteron
properties (charge, magnetic dipole, and electric quadrupole
form factors, as well as electric polarizabilities) beyond LO,
including relativistic corrections. Results were found to be in
good agreement both with experimental data and, at low
orders, with those obtained from effective-range theory (Lucas
and Rustgi, 1968; Friar and Fallieros, 1984; Wong, 1994). At
higher orders, the EFT goes beyond the effective-range
approach (which is based on input from elastic NN scattering
only) because new operators appear with undetermined
coefficients. For example, there are magnetic four-nucleon-
one-photon couplings at NLO,

Lð1Þ
mag ¼ eL1ðNTPi

sNÞ†ðNTP3
t NÞBi

− ieL2ϵijkðNTPi
sNÞ†ðNTPj

sNÞBk þ H.c. ð41Þ

This is the two-nucleon analog of the single-particle “Pauli
term” that describes the direct S⃗ · B⃗ coupling of the nucleon
spin to a magnetic field, which accounts for the nucleon
anomalous magnetic moment. Here L1 and L2 are LECs that
contribute to the deuteron dipole magnetic moment as well as
to the capture process np → dγ.
Motivated by the original work of Bethe (1949) and Bethe

and Longmire (1950), Phillips, Rupak, and Savage (2000)
proposed a new scheme to incorporate NLO and higher orders
in processes involving the deuteron. Up to the higher-order
corrections contained in the ellipsis, we can read off the
residue of the deuteron pole from Eq. (35),

Zd ¼ ð1 − γdρdÞ−1 ¼ 1þ γdρd þ ðγdρdÞ2 þ � � � : ð42Þ

This residue is directly related to the long-range tail of the
deuteron wave function in configuration space. Phillips,

FIG. 8. Bubble diagram dressed with Coulomb exchange
(wavy line).
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Rupak, and Savage (2000) argued that the convergence of
deuteron observables (at least those sensitive to the long-range
tail of the wave function) can be dramatically improved by
fitting to Zd exactly right at NLO—rather than building it up
perturbatively as given in Eq. (42)—while not spoiling
convergence for the 3S1 phase shifts.
A deuteron dibaryon field (see Sec. II.B.5) is particularly

convenient for processes with external deuterons. The dressed
dibaryon can be used directly as an interpolating field to
define the S matrix provided that its wave-function renorm-
alization is properly taken into account. With a dibaryon, the
effects of a resummation of the effective range can be assessed
(Beane and Savage, 2001; Ando and Hyun, 2005).
A number of processes have been carefully addressed with

these tools. A precise and controlled theoretical prediction of
the np → dγ cross section is important because it enters as an
input parameter into big-bang nucleosynthesis calculations.
The low-energy values required are difficult to access exper-
imentally but are ideally suited for an application of pionless
EFT. The pionless analysis of this process started by Chen,
Rupak, and Savage (1999a) was refined in subsequent papers
(Chen and Savage, 1999; Chen, Rupak, and Savage, 1999b).
Rupak (2000) carried the analysis out to N4LO, giving a
prediction that is accurate to a theoretical uncertainty below
1%. This reaction was revisited with dibaryon fields at NLO
and a resummation of effective-range effects by Ando et al.
(2006).
The related processes of deuteron electrodisintegration and

photodisintegration are experimentally accessible, and dis-
crepancies between phenomenological potential models and
data have been reported. Dibaryon fields implementing a
resummation of range effects have been used to N2LO for
ed → e0pn (Christlmeier and Grießhammer, 2008) and dγ →
np (Ando et al., 2011; Song, Ando, and Hyun, 2017), with
results generally supporting phenomenological models. For
example, Christlmeier and Grießhammer (2008) concluded
that no consistent theoretical calculation could describe the
data because the EFT calculation, unlike the potential-model
approach, comes with a rigorous uncertainty estimate.
Subsequently, the resolution of a problem with the data
analysis gave agreement between experiment and the EFT
calculation (Ryezayeva et al., 2008); see Fig. 9.
The proton-proton fusion process pp → deþνe is of similar

importance for an understanding of the Sun. Obviously,
Coulomb effects play an important role for this reaction at
extremely low energies. Kong and Ravndal (1999a, 1999c,
2001), building upon their previous work on pp scattering
(see Sec. II.B.7), presented the first calculation in pionless
EFT at NLO. This calculation was later extended to N4LO by
Butler and Chen (2001). An NLO calculation using a dibaryon
field to resum effective-range corrections was presented by
Ando et al. (2008). Chen, Liu, and Yu (2013) extended the
calculation of the astrophysical pp S factor to also include its
energy derivatives.
The inverse process, neutrino-deuteron breakup scattering,

was considered by Butler, Chen, and Kong (2001) to N2LO,
along the lines of an earlier NLO perturbative-pion calculation
(Butler and Chen, 2000). At NLO, the axial-vector counter-
parts of Eq. (41) appear, with two analogous LECs usually

denoted as L1;A and L2;A. However, because of the quantum
numbers of the initial and final states, only the isovector L1;A,
which contributes to pp → deþνe as well, is significant.
Various constraints on L1;A have been discussed by Butler,
Chen, and Vogel (2002), Balantekin and Yuksel (2003), Chen,
Heeger, and Robertson (2003), and Chen et al. (2005),
confirming SNO’s conclusions about neutrino oscillations.
Additionally, single-nucleon properties can be inferred

from nuclear data. Compton scattering is influenced by the
nucleon polarizabilities, which are response functions that
carry much information about hadron dynamics and thus
QCD. While proton polarizabilities can be extracted directly,
neutron polarizabilities can be probed only in nuclear
Compton scattering. Compton scattering on the deuteron
was studied to N2LO by Grießhammer and Rupak (2002),
who resummed the effective ranges and fitted Zd. Values for
the isoscalar, scalar electric and magnetic polarizabilities were
extracted by Grießhammer and Rupak (2002). Additional
features of the cross section were considered by Chen, Ji,
and Li (2005a, 2005b). Sum rules for vector and tensor
polarizabilities were given by Ji and Li (2004), while a low-
energy theorem for the spin-dependent Compton amplitude
was obtained by Chen, Ji, and Li (2004).
All in all, these calculations support the convergence of

pionless EFT for momenta below the pion mass, with the
power counting discussed in Sec. II.B.2. They provide
theoretically controlled cross sections that impact astrophysics
and particle physics. Heavier probes, such as pions (Beane and
Savage, 2003a), can be considered as well through a heavy-
field treatment. Most interesting for nuclear physics are
processes with additional nucleons, which we consider next.

C. Light nuclei: Bound and scattered

Pionless EFT extends effective-range theory into the
nuclear realm, where it leads to a striking emergence of
structure related to the Efimov phenomenon (Efimov, 1970,
1981), which we discuss in more detail in the context of halo/
cluster EFT in Sec. III.C.

FIG. 9. Total cross section σ for deuteron electrodisintegration
as function of the photon energy Eγ. Good agreement is seen
between measured data points and theoretical calculation (lines),
which was achieved after the pionless calculation of Christlmeier
and Grießhammer (2008) helped resolve a problem with the
experimental analysis. Adapted from Ryezayeva et al., 2008.
Courtesy of H.W. Grießhammer.
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1. Extension to three particles

The simplest three-body system that can be studied in
pionless EFT is neutron-deuteron (nd) scattering in the quartet
S-wave channel (total spin 3=2 and zero orbital angular
momentum). The Pauli principle dictates that only the same
configuration can appear in the intermediate state. Bedaque and
vanKolck (1998) calculated the nd quartet scattering length in a
framework using a deuteron dibaryon field; see Sec. II.B.5. The
driving mechanism is the exchange of a nucleon (neutron)
between ingoing and outgoing deuterons. The EFT power
counting says that all diagrams with an arbitrary number of
such exchanges are of the same order. Analogous to the two-
body bubble chain, they can be conveniently resummed into an
integral equation for the scattering amplitude, shown diagram-
matically in Fig. 10. The loop integrals converge, but for a
numerical treatment it is still convenient to introduce a
momentum cutoff. Resumming effective-range corrections to
all orders in the deuteron sector, Bedaque and vanKolck (1998)
calculated the scattering length to be 6.33 fm, in excellent
agreement with the experimental value 6.35(2) fm (Dilg,
Koester, and Nistler, 1971). A perturbative treatment of
effective-range corrections according to Eq. (35) gives ð5.09þ
0.98þ 0.21Þ fm ¼ 6.28 fm to N2LO, with an estimated 3%
uncertainty. The LO result of 5.09 fm agrees with the much
older result of Skorniakov and Ter Martirosian (1957), who
used a zero-range model that is equivalent to pionless EFT at
LO. Bedaque, Hammer, and van Kolck (1998) and Bedaque
and Grießhammer (2000) extended the EFT calculation to nd
scattering at finite energy.

2. The triton as a near-Efimov state

Three nucleons can also couple to an S-wave state with total
spin 1=2, which is the channel of the trinucleon bound states:
triton (3H) and helion (3He). The formalism used to calculate
quartet-channel scattering can be extended directly to the
doublet channel, where now 1S0 intermediate states are also
allowed. The result can be written as an integral equation for
the nd T matrix with the same structure as in Fig. 10, but for
the two coupled channels nþ npð3S1Þ and nþ npð1S0Þ
(Skorniakov and Ter Martirosian, 1957). The triton should
show up as a pole in this amplitude at a negative energy
E ¼ −Bð3HÞ ¼ −8.4818 MeV. Since its relevant momentum
scale is given by γT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNBð3HÞ=3

p
∼ 80 MeV, it is within

the expected range of validity of the EFT.
However, it has been known for a long time that the three-

nucleon system is unstable when described solely with
nonderivative two-body, short-range interactions: as the range
of such a potential is sent to zero, one encounters the “Thomas
collapse,” i.e., the binding energy diverges (Thomas, 1935).
Bedaque, Hammer, and van Kolck (2000), generalizing their

previous work on the three-boson system (Bedaque, Hammer,
and van Kolck, 1999a, 1999b), showed that the same happens
in pionless EFT: as the cutoff Λ ≫ Mlo is increased, the
ground-state energy grows as Λ2=mN , and excited states
appear repeatedly. Since the NN scattering lengths are large,
one encounters an approximate realization of the Efimov
effect (Efimov, 1970, 1981), i.e., a tower of three-body states
with the ratio of neighboring binding energies approaching a
universal constant.

a. The three-body force

The scattering amplitude in the doublet channel, obtained
from the integral equations analogous to Fig. 10, does not
approach a stable limit as the cutoff is increased. This lack of
renormalization is a genuine nonperturbative effect since
every diagram generated by iterations is finite by itself.
Bedaque, Hammer, and van Kolck (2000) showed that the
system can be stabilized by adding a nonderivative three-body
contact interaction. Fierz rearrangements show that there is
only one such interaction, which can be written in any one of
various equivalents forms, for example,

L3b ¼ −4h0C2
0tðNTPt

kNÞ†ðN†σkσlNÞðNTPt
lNÞ ð43Þ

where h0 is a new LEC to be determined. In the formalism
with dibaryon fields, every nucleon-exchange diagram has to
be accompanied by a dibaryon-nucleon interaction with
strength h0, as shown in Fig. 11. Attaching the two-
nucleon-dibaryon vertex g from Eq. (27) on both dibaryon
ends recovers the six-nucleon operator (43) in the theory
without a dibaryon field.
The 3N force is symmetric (Bedaque, Hammer, and van

Kolck, 2000) under the group of combined spin and isospin
transformations, Wigner’s SUð4Þ (Wigner, 1937a, 1937b).
Because the two-body amplitude is also SUð4Þ symmetric for
momenta a−1s < Q < Mhi (Mehen, Stewart, and Wise, 1999),
the coupled integral equation illustrated in Fig. 10 is sym-
metric in the limit where all momenta are large compared to
the inverse scattering lengths. This allowed Bedaque,
Hammer, and van Kolck (2000) to study the UV behavior
of the amplitude based on decoupling the two integral
equations, with one of the rotated amplitudes behaving exactly
like the amplitude for the three-boson system with two-body
scattering length a2. This in turn leads to the analytical result
(Bedaque, Hammer, and van Kolck, 1999a, 1999b)

Λ2h0ðΛÞ
mN

≡HðΛÞ ≈ −
sin ½s0 logðΛ=Λ�Þ − arctanðs−10 Þ�
sin ½s0 logðΛ=Λ�Þ þ arctanðs−10 Þ� ;

ð44Þ

conveniently written as a dimensionless function. Here s0 ≃
1.0064 is a universal constant (Danilov, 1961) and Λ� is a

FIG. 10. Integral equation for nd scattering in the spin-quartet
channel. A pair of similar but coupled equations describes the
doublet channel.

FIG. 11. Modification of the driving mechanism in Fig. 10, with
the LO three-body force (solid circled) in the nd doublet channel.
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parameter that has to be fixed to a three-body datum. The
striking log-periodic dependence on the cutoff is shown in
Fig. 12, where the overall prefactor in Eq. (44) depends on the
details of the regularization scheme employed in a given
calculation (Platter, Hammer, and Meißner, 2004; Braaten,
Kang, and Platter, 2011). Hammer and Mehen (2001b) studied
this “ultraviolet limit cycle” and derived the RG equation
of which Eq. (44) is a solution. They realized that the
explicit three-body force can be set to zero by working at a
set of log-periodically spaced cutoffs Λn ¼ Λ� exp½s−10 ðnπþ
arctan s−10 Þ�, where n is an integer. Braaten and Hammer
(2003) argued that the UV limit cycle observed in pionless
EFT hints at an underlying infrared cycle in QCD.
Such a 3N force would be of higher order according to

naive dimensional analysis. The fact that it has to be included
already at LO to renormalize the three-body system is another
consequence of the fine-tuning encountered in the two-body
sector. After renormalization the Efimov tower of states is
cutoff independent, its position determined by Λ�. If the NN
scattering lengths were in fact infinite, one would have a tower
of shallow three-body states accumulating at zero energy. The
large but finite physical scattering lengths cut off this spectrum
in the IR, whereas the breakdown scale Mhi of the EFT sets a
limit for the deepest state. In nuclear physics at physical quark
masses, as and mπ are not large enough for the appearance of
an excited 3N state. However, Rupak et al. (2019) showed in
agreement with earlier model calculations (Adhikari and
Tomio, 1982) that a shallow virtual state in nd scattering,
known to exist for a long time (van Oers and Seagrave, 1967;
Girard and Fuda, 1979), becomes the first excited bound state
as as increases. Other situations were discussed by Braaten
and Hammer (2003).

b. The Phillips line

Pionless EFT at LO offers a striking but simple explanation
of the well-known “Phillips line,” i.e., the fact that different
model potentials for the nuclear interaction tuned to the same
NN scattering data give different but highly correlated results
for the triton binding energy and the doublet nd scattering
length (Phillips, 1968). Pionless EFTallows one to understand
this and other correlations among three-body observables as a

consequence of the RG, i.e., as a correlation originating in the
variation of Λ� (Bedaque, Hammer, and van Kolck, 2000).
This is shown in Fig. 13. The proximity of the LO EFT line to
the experimental point means that, whichever observable is
used as input, the other comes out correct.

3. More neutron-deuteron scattering

a. Range corrections, partial resummation, and two-body
parametrizations

At NLO one needs to account for the two-body ranges. In
the dibaryon framework that means one insertion of each
dibaryon kinetic-energy operator between LO amplitudes, as
shown in Fig. 14. At N2LO the procedure of perturbative
range insertions becomes tedious, and a direct calculation of
the corrections requires fully off-shell LO amplitudes. To
avoid this, range corrections can be resummed with Eq. (31).
Bedaque and van Kolck (1998) already noted that this
resummation introduces an artificial deep pole in the deuteron
propagator. Located at a momentum scale of roughly
200 MeV, it is outside the range of validity of the EFT and
thus, in principle, an irrelevant UV artifact, although it limits
the range of cutoffs that can be used in the numerical solution
of the scattering equations. This is especially true in
the doublet S channel unless measures are taken to remove
the pole. In the quartet channel, due to the Pauli principle, the
solution is not sensitive to this deep pole and the cutoff can be
made arbitrarily large. Considering effective ranges as LO as
proposed by Beane and Savage (2001) effectively cuts off the
integral of the three-body equation at ∼r−10 , eliminating the

FIG. 12. RG running of the three-body coupling h0 at LO and
NLO. Numerical data points are fitted using Eq. (44) at LO and
an analogous expression (Ji, Phillips, and Platter, 2012) at NLO.

FIG. 13. Correlation between the triton binding energy Bð3HÞ
and the doublet nd scattering length 2and (Phillips line) at LO and
NLO, compared to results from various potential models and
experiment. Bands indicate estimates of higher-order corrections:
the larger band around the dotted line is LO, the smaller band
around the dashed line is NLO.

FIG. 14. Dibaryon kinetic-energy corrections for the nd quartet-
channel scattering amplitude at NLO. In the doublet channel,
there are analogous diagrams with 1S0 dibaryons.
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UV limit cycle and leaving only the IR limit cycle manifest in
the Efimov effect. However, in general, there is no guarantee
that the Efimov tower is at the correct location without a three-
body force. Similar results are expected from any selective
resummation of higher-order effects, such as relativistic
corrections (Epelbaum et al., 2017).
Bedaque et al. (2003) proposed a middle ground that

partially reexpands the resummed propagators and uses terms
up to order n for a calculation at NnLO. Using these “partially
resummed” propagators generates all desired terms at a given
order, but still retains some higher-order corrections, which
have to be assumed to be negligible. We note that for such an
approach to be valid it is important to keep the cutoff at or
below the breakdown scale of the theory. 3S1-3D1 mixing as
well as relativistic corrections formally enter at N2LO but
were not included by Bedaque et al. (2003). Grießhammer
(2004) implemented the two-body parametrization (42) and
found a substantially better description of data, particularly in
the doublet S wave.
The first strictly perturbative NLO calculation of nd

scattering in the doublet S channel was carried out by
Hammer and Mehen (2001a), who implemented the procedure
suggested by Bedaque, Hammer, and van Kolck (2000).
Vanasse (2013) developed a scheme that avoids the numeri-
cally expensive determination of fully off-shell amplitudes
made in earlier perturbative calculations (Ji, Phillips, and
Platter, 2012; Ji and Phillips, 2013), requiring slightly less
effort than the partial resummation of Bedaque et al. (2003).
Beyond the practical benefit, the N2LO calculation of Vanasse
(2013) also showed that an anomalous unitarity-violating
behavior of the quartet S-wave nd phase shift above the
deuteron breakup threshold, known to practitioners as a
consequence of the partial-resummation scheme, does not
occur with a fully perturbative treatment of range corrections.
The lesson is that even if terms are individually small,
undesirable effects can be generated by their infinite resum-
mation. Overall, Vanasse (2013) obtained nd phase shifts at
N2LO that were in good agreement with the empirical
behavior up to laboratory energies of ≃ 24 MeV.

b. Higher partial waves

Even with only S-wave interactions in the two-body sector,
the nucleon-exchange diagram driving the nd scattering
equations (Fig. 10) generates contributions in all partial
waves. Gabbiani, Bedaque, and Grießhammer (2000) calcu-
lated the scattering phase shifts up to G waves (l ¼ 4) to
N2LO using the full resummation (31) but omitting 3S1-3D1

mixing. They found good agreement with both potential-
model calculations and available experimental data up to
about 140 MeV center-of-mass momentum, indicating that the
breakdown scale of pionless EFT is indeed close to being set
by the pion mass, at least for these observables. Even better
results are obtained with the two-body parametrization (42)
(Grießhammer, 2004). The fully perturbative N2LO calcula-
tion by Vanasse (2013) did include 3S1-3D1 mixing and found
reasonable agreement with potential-model results.
The vector analyzing power Ay has defied explanation with

potential models even at energies as low as a few MeV, the Ay

puzzle. Margaryan, Springer, and Vanasse (2016) employed

the fully perturbative approach to calculate nd polarization
observables at N3LO. They found that varying the 3PJ LECs
(first entering at N3LO) with the expected error (a 15% band
around their central values) covers a range for Ay that is
consistent with the experimental data.

c. Ordering of three-body forces

Bedaque, Hammer, and van Kolck (2000) argued that at
NLO range corrections force a shift in the LEC of the 3N
force (43), which was confirmed by Hammer and Mehen
(2001a) in an explicit NLO calculation. Thus,

hðΛÞ ¼ hð0Þ0 ðΛÞ þ hð1Þ0 ðΛÞ þ � � � ; ð45Þ

where hð0Þ0 ðΛÞ is given in Eq. (44) and hð1Þ0 ðΛÞ, determined in a
fully perturbative calculation with physical NN effective-
range parameters, is shown in Fig. 12. At NLO, the numerical
data are fit with the analytical result found by Ji, Phillips, and

Platter (2012). The existence of the correction hð1Þ0 does not
mean that there is a new three-body force at NLO, it is merely
an adjustment of the LO coefficient carried out by demanding

that the observable used to fixed hð0Þ0 ðΛÞ stays invariant after
the inclusion of range corrections. Because there is no new
three-body parameter at NLO, simple correlations through Λ⋆
survive with small shifts, as can be seen in the NLO line in

Fig. 13. Since hð1Þ0 ðΛÞ depends on the two-body scattering
lengths, if the latter are changed, further experimental input is
needed to determine the NLO LEC (Ji, Phillips, and Platter,
2010).
The conclusion that despite having canonical dimension 9

the nonderivative three-body force appears at LO together
with the nonderivative two-body force of dimension 6 raises
the following questions: Do other three-body interactions have
to be promoted? More generally, what is the ordering of three-
body forces in the pionless power counting? Since according
to Bedaque, Hammer, and van Kolck (2000) a new 3N force
enters at N2LO, Bedaque et al. (2003) used a Lepage-plot
analysis (Lepage, 1997) to show that its inclusion reduces the
errors in the calculation. A general and comprehensive
analysis of pionless three-body forces using the asymptotic
techniques of Bedaque, Hammer, and van Kolck (1999a,
1999b, 2000) was carried out by Grießhammer (2005), who
identified a logarithmic divergence at N2LO that mandates the
inclusion of a new three-body force at this order.
Grießhammer (2005) also cataloged the minimal orders at
which 3N forces must first appear in various channels for
proper renormalization. Using a subtractive renormalization
scheme, Platter and Phillips (2006) argued that the LO three-
body force is sufficient to achieve cutoff independence up to
N2LO, contradicting the findings of Bedaque et al. (2003). Ji,
Phillips, and Platter (2012) and Ji and Phillips (2013),
studying the three-boson system, later explained this discrep-
ancy by noting that the conclusion of Platter and Phillips
(2006) holds only in the limit where the three-body UV
cutoff is taken to infinity, with the partial resummation of
range corrections affecting the perturbative expansion at
smaller cutoffs. Using a fully perturbative inclusion of range
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corrections, Ji and Phillips (2013) concluded that a new three-
body force indeed enters at N2LO. This term can be
implemented using the same SUð4Þ-symmetric spin-isospin
structure as the LO three-body force, with appropriate time
derivatives included to give a linear dependence on the energy
(Ji and Phillips, 2013; Vanasse, 2013).
Generalizing these results, the 3N potential takes the form

of Eq. (7) with [cf. Grießhammer (2005)] μ ¼ dþ 2 − s3,
where s3 ¼ 0, 1, 2 is the number of nucleon-deuteron (Nd)
Wigner-symmetric S waves connected by the operator. The
lowest-order forces are represented in Fig. 5. Amplitudes have
the form of Eq. (3) with the normalization of Eq. (20)
for A ¼ 3.

4. Proton-deuteron scattering and helion

a. Nonperturbative Coulomb effects

As discussed in Sec. II.B.7, at the low energies potentially
reached in scattering, Coulomb-photon exchange needs to be
treated nonperturbatively, which poses additional technical
challenges. The first attempt to study Coulomb effects was
made in the simpler quartet S-wave pd scattering by Rupak
and Kong (2003). They developed a power counting that
with some approximations amounts to iterating a Coulomb
potential between proton and deuteron to all orders, along
with the one-nucleon-exchange diagram that also enters
into nd scattering. Rupak and Kong (2003) calculated the
Coulomb-subtracted S-wave phase shift in the quartet chan-
nel, but they could not reach convergence below a pd center-
of-mass momenta of 20 MeV (the regime where Coulomb
effects really are nonperturbative). Convergence down to
3 MeV was later achieved by König and Hammer (2011)
owing to an improved numerical procedure. König and
Hammer (2011) also extended the analysis to the doublet
S-wave channel (including the helion) and applied the partial-
resummation approach of Bedaque et al. (2003) to calculate
higher orders.
Ando and Birse (2010) carried out a direct momentum-

space calculation of helion based on a generalization of the nd
integral equation discussed in Sec. II.C.2. Recasting methods
developed by Kok, Struik, and van Haeringen (1979) and
Kok et al. (1981) into EFT, Ando and Birse (2010) included
Coulomb effects via a fully off-shell Coulomb T matrix and
obtained at a single momentum cutoff Λ0 ¼ 380.689 MeV
[the first cutoff value where the experimental triton binding
energy is reproduced without a 3N force, HðΛ0Þ ¼ 0] a 3He
binding energy Bð3HeÞ ≃ 7.66 MeV, close to the experimental
value of about 7.72 MeV. Ando and Birse (2010) treated all
Coulomb effects nonperturbatively but considered the strong
sector only at LO. Kirscher et al. (2010) obtained similar
numerical results in a calculation that included NLO and
selected higher-order interactions as part of an effective
potential that was treated exactly.
The pionless calculation of pd scattering and helion was

revisited and extended by König (2013) and König,
Grießhammer, and Hammer (2015), who argued that the
NLO pd system, within the partial-resummation approach,
is not properly renormalized by the isospin-symmetric 3N
force alone. The same conclusion was reached in a parallel
analysis by Vanasse et al. (2014), who calculated pd

scattering and 3He at NLO in strict perturbation theory.
Using an asymptotic analysis, they showed that Coulomb
effects at LO require a nonderivative 3N interaction at NLO
(but not LO) to properly renormalize the pd system. At this
level, one can no longer predict low-energy pd scattering from
nd scattering without further input. Fixing the corresponding
LEC to the 3He binding energy gives good agreement with an
analytically derived expression, and it also provides cutoff-
stable results for the phase shift. In contrast, Kirscher and
Gazit (2016) argued that 3He is renormalized at NLO without
an additional counterterm (pd scattering was not investi-
gated). While both calculations use pionless EFT, they differ
in the numerical implementation and regularization scheme.
A comparison of the different schemes for the counting of

Coulomb effects in pd scattering up to NLO was provided by
König and Hammer (2014). They argued that for the scattering
of composite charged particles there is a certain arbitrariness
in the definition of Coulomb-subtracted quantities (phase
shifts and modified ERE parameters), namely, whether or
not information about the deuteron substructure is included in
the definition of the pure-Coulomb phase shift.

b. Perturbative Coulomb effects

Renewed interest and developments in the strict application
of perturbation theory have also motivated a new look into the
counting of Coulomb effects. The characteristic trinucleon
momentum scale γT ∼ 80 MeV ≫ αmN suggests that
Coulomb effects should be a perturbative correction to the
3He binding energy (compared to the triton as its isospin mirror
state). König, Grießhammer, and Hammer (2015) already
showed that the calculation of Ando and Birse (2010) can
be reproduced essentially unchanged when the fully off-shell
Coulomb T matrix is replaced by one-photon-exchange dia-
grams. However, the calculation of König, Grießhammer, and
Hammer (2015) is still nonperturbative because Bð3HeÞ is
extracted from the pole in the off-shell pd amplitude obtained
from an integral equation that resums both one-nucleon
exchange and OðαÞ Coulomb diagrams. König et al. (2016)
instead calculated the binding-energy difference Bð3HÞ −
Bð3HeÞ as a perturbation around an isospin-symmetric LO
including a contribution missed in the earlier calculation of
König, Grießhammer, and Hammer (2015). Once the loga-
rithmic divergence generated byppCoulomb effects is isolated
and properly renormalized, the NLO 3He binding energy
converges as the cutoff increases without an isospin-breaking
3N force. König et al. (2016) found Bð3HeÞ ¼ ð7.62�
0.17Þ MeV, supporting the perturbative nature of Coulomb
in this bound state. The same conclusion was reached inde-
pendently by Kirscher and Gazit (2016). These results suggest
that for nuclear ground states Coulomb is an NLO effect and
isospin-breaking 3N forces do not enter up to this order. The
same holds for pd scattering for center-of-mass momenta
k≳ 20 MeV,whichKönig (2017) showed to be predicted from
nd scattering up to NLO.

c. Dineutron constraints

Kirscher and Phillips (2011) used pionless EFT to constrain
the neutron-neutron (nn) scattering length, for which there
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exist conflicting experimental determinations of ð−16.1�
0.4Þ fm (Huhn et al., 2000a, 2000b) and ð−18.7� 0.7Þ fm
(Gonzalez Trotter et al., 1999, 2006). Using a model-
independent correlation between the difference of the nn
and Coulomb-modified pp scattering lengths, on the one
hand, and the 3H-3He binding-energy difference on the other
hand, Kirscher and Phillips (2011) extracted ann ¼ ð−22.9�
4.1Þ fm from an LO calculation where isospin-breaking,
nonderivative NN contact interactions were included.
Kirscher and Phillips (2011) considered only negative

values for ann, thus excluding the possibility of a bound
shallow state, the existence of which would correspond to ann
large and positive. Motivated by renewed experimental
interest in the existence of such a state, Hammer and
König (2014) revisited the calculation and argued that the
relevant parameter that enters the pionless calculation is not
ann directly, but rather its inverse, such that going from large
negative to large positive ann is only a small change.
Extending the calculation of Kirscher and Phillips (2011)
to NLO and taking into account the new pd counterterm
identified by Vanasse et al. (2014), Hammer and König (2014)
concluded that pionless EFT currently does not exclude a
bound dineutron state.

5. Infrared regulators

Solving the EFT beyond the three-nucleon system poses
significant technical challenges. All calculations so far have
relied on the transition to the Hamiltonian and a solution of the
Schrödinger equation or one of its many-body variants. One
way to mitigate difficulties is to introduce an IR regulator in
the form of a confining potential that produces discrete energy
levels and, together with the UV regulator, reduces the
solution of the Schrödinger equation to matrix inversion.
A simple choice is to confine the system to a periodic cubic

box, first considered for EFT by Müller et al. (2000) and Abe,
Seki, and Kocharian (2004). The case of NN in pionless EFT
was dealt with by Beane et al. (2004), where a relation
between phase shifts and energy levels within the box,
originally obtained by Lüscher (1986, 1991), was rederived.
The relations between NN LECs and ERE parameters for a
large lattice were found by Seki and van Kolck (2006). Several
papers have studied the limit cycle of the three-body system
and the finite-volume corrections to three-body binding
energies in periodic cubic boxes numerically (Kreuzer and
Hammer, 2009, 2010, 2011; Kreuzer and Grießhammer,
2012). An analytical expression for the volume dependence
of the three-body binding energy in the unitary limit was
obtained by Meißner, Ríos, and Rusetsky (2015) and Hansen
and Sharpe (2017). König and Lee (2018) studied the volume
dependence of arbitrary N-body bound states, providing a
more general perspective that reproduces the leading expo-
nential dependence of the explicit three-body results just
mentioned. The formulation of the three-particle quantization
condition in a finite volume using the dibaryon formalism,
which is required for the extraction of scattering phase shifts
from lattice calculations, was considered by Briceno and
Davoudi (2013) and Hammer, Pang, and Rusetsky (2017a,
2017b). Alternative approaches (Hansen and Sharpe, 2014;
Mai et al., 2017) were reviewed by Hansen and Sharpe (2019).

Nd scattering in the quartet S- and P-wave channels was
calculated on a lattice by Elhatisari, Lee et al. (2016) and
found to be in good agreement with the continuum results.
Other reactions, such as np → dγ (Rupak and Lee, 2013) and
pp fusion (Rupak and Ravi, 2015), are also accessible with
this method.
Another widely employed confining potential is the har-

monic oscillator, which can also be deployed to EFT (Stetcu et
al., 2010b). The analog of the Lüscher formula, due to Busch
et al. (1998), also follows from pionless EFT (Luu et al., 2010;
Stetcu et al., 2010a). Using this relation to determine the two-
and three-nucleon LECs from, respectively, NN and nd phase
shifts, Rotureau et al. (2012) generalized an earlier calculation
for spin-1=2 fermions (Rotureau et al., 2010) and reproduced
previous NLO results for two and three nucleons in the limit of
a wide harmonic oscillator. Tölle, Hammer, and Metsch
(2011, 2013) investigated the related problem of up to six
spinless bosons in a harmonic trap and provided explicit
expressions for the running coupling constants. Using
smeared contact interactions, they improved the convergence
of the energy levels considerably. A recent refinement of the
Busch formula was worked out by Zhang (2019).

6. Four nucleons

One of the virtues of encoding the Efimov effect in the
three-body force is that its consequences for systems with
more nucleons can be assessed in a model-independent way. A
potential obstacle is the relatively strong binding of the A ¼ 4

ground state, the alpha particle (4He), whose binding energy
Bð4HeÞ ¼ 28.296 MeV can be associated with a momentum
scale γα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNBð4HeÞ=2

p
∼ 110 MeV that is not necessarily

within the realm of pionless EFT.
The application of pionless EFT to the four-nucleon system

was initiated by Platter, Hammer, and Meißner (2005),
extending their previous work on the four-boson system with
large two-body scattering length (Platter, Hammer, and
Meißner, 2004). It was found that no 4N force is required
for renormalization at LO, i.e., the alpha-particle binding
energy converges as a function of increasing UV cutoff. Low-
energy four-nucleon observables are then determined at LO
only by two- and three-body input parameters. This means
that, as for the Phillips line (Fig. 13), pionless EFT provides a
natural explanation also for the phenomenological Tjon line
(Tjon, 1975), an empirical correlation between Bð4HeÞ and
Bð3HÞ. The surprising success of this LO calculation (Platter,
Hammer, and Meißner, 2005) is apparent in Fig. 15. The
renormalizability and good description of the alpha-particle
binding at LO found by Platter, Hammer, and Meißner (2005)
have been confirmed in other calculations, for example, those
using the resonating-group (Kirscher et al., 2010, 2015) and
auxiliary-field diffusion Monte Carlo (Contessi et al., 2017)
methods.
Hammer and Platter (2007) later studied a four-body

generalization of the Efimov effect in the four-boson system,
demonstrating that the three-body ground state is associated
with two four-body states, one very near the particle-trimer
threshold, another deeper by a factor ≃ 4. The alpha-particle
ground state is 3.7 times more bound than helion, and it has an
excited, 0þ state just below the neutron-helion threshold. The
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0þ excited state was obtained at LO by Stetcu, Barrett, and van
Kolck (2007), who solved the Schrödinger equation in a
harmonic-oscillator basis, as done in the no-core shell-model
approach. The three LECs were fitted to the deuteron, triton,
and alpha ground-state energies, and the binding energy of the
excited state, extrapolated in both UV and IR regulators, was
found to be within 10% of the experimental value.
These calculations did not include the Coulomb interaction,

which is consistent with the power counting developed later
by König, Grießhammer, and Hammer (2015). Coulomb
interactions have thus far been included only in calculations
based on effective potentials solved nonperturbatively, as
suggested originally by Weinberg (1991) in the context of
chiral EFT. A variety of methods was used to solve the
Schrödinger equation: resonating group (Kirscher et al.,
2010), stochastic variational (Lensky, Birse, and Walet,
2016), and no-core shell model (Bansal et al., 2018).
While results improve within a range of cutoff values, the
resummation of subleading interactions (Sec. II.B.3) limits
this range to small values and prevents conclusions about the
RG beyond LO. In the first study of perturbative range
corrections in A ≥ 4 systems, Bazak et al. (2019) found that
a four-body force is required to renormalize the universal four-
boson system at NLO. This result directly carries over to
pionless EFT and implies that an additional observable (most
conveniently taken to be the 4He binding energy) is required as
input at NLO to set the scale of the four-body force.
Kirscher et al. (2010, 2013) pioneered the calculation of

nucleon-trinucleon scattering in pionless EFT. New correla-
tions between the neutron-helion and neutron-triton scattering
lengths and the triton binding energy were identified. Proton-
helion scattering was found in good agreement with an
existing phase-shift analysis. These successes were tempered
by an LO calculation (Deltuva, Lazauskas, and Platter, 2011)
of the lowest, 0− resonance in neutron-helion scattering,
without Coulomb effects and an explicit 3N force, but with
specific cutoff values for which the helion energy is correct.
However, it is difficult to check the absence of regularization
artifacts due to the absence of an explicit 3N interaction.

Except for this one calculation, all evidence thus far points to
an unexpected triumph of the theory for A ¼ 4.

7. Beyond four nucleons

Nuclear binding momenta generally increase with the
number of nucleons, but it is not clear which scale (e.g.,
total binding energy or binding energy per nucleon) is most
relevant for the EFT power counting. Consequently, it is an
open question up to which number of nucleons pionless EFT
should work. Successful applications to 4He, which is already
significantly more deeply bound than 3He and 3H, indicate that
the binding energy per nucleon might be the relevant scale to
estimate the binding momentum, but this remains to be firmly
tested.
The first pionless EFT calculation beyond four nucleons

was carried out by Stetcu, Barrett, and van Kolck (2007) with
the no-core shell model. With the same parameters that led to
an excellent postdiction of the 4He excited state, the ground-
state energy of 6Li came out at 70% of the experimental value,
which is consistent with the a priori LO uncertainty estimate
from the pionless power counting. With the resonating-group
method, Kirscher (2010) found that pionless EFT does not
predict a bound five-nucleon state and carried out an explor-
atory study for the 6He system. It was concluded that pionless
EFT appears to support a shallow 6He bound state, but a lack
of numerical convergence prevented a strong assertion.
More recently, Contessi et al. (2017) used the auxiliary-field

diffusion Monte Carlo method to study 4He and 16O at LO. No
evidence was found for a 16O that is stable with respect to
breakup into four alpha particles. LO pionless EFT does not fail
to provide sufficient saturation, but a small effect such as the
16O energy relative to four alphas (∼15% of the 16O binding
energy) requires a higher-order calculation. Bansal et al. (2018)
used the coupled-cluster method to study the same systems and
also 40Ca, with qualitatively similar results at LO. With NLO
interactions treated exactly, they found that 16O and 40Ca were
stable, and in reasonable agreement with experiment.
Leading-order calculations all show convergence with

increasing cutoff in the absence of 4N and higher-body forces,
as is the case for bosons (Bazak, Eliyahu, and van Kolck,
2016). Bazak et al. (2019) showed that the five- and six-boson
systems are renormalized by the four-body force at NLO and
conjectured that yet-higher-body forces enter at subsequent
orders. For nucleons, the Pauli principle is expected to
suppress these forces relative to the bosonic case because
at least two derivatives are required. Together, NLO results
suggest that pionless EFT might work over a much wider
range of A than originally anticipated.
There have been ambitious attempts to consider even larger

systems. Kirscher (2017) investigated the possibility that a
sufficiently large number of neutrons might bind. The proper-
ties of dilute, low-temperature neutron matter on a spacetime
lattice (Lee and Schäfer, 2005, 2006a, 2006b; Abe and Seki,
2009a, 2009b) were found to be in qualitative agreement with
potential-model calculations and expectations from other
fermionic systems. While pionless EFT reproduces the
long-standing results for the low-density expansion in a
uniform Fermi system (Hammer and Furnstahl, 2000), various

FIG. 15. Correlation between the alpha-particle binding energy
Bð4HeÞ and the triton binding energy Bð3HÞ (Tjon line) at LO in
pionless EFT, compared to results from various chiral and
phenomenological potentials, and experiment. The band indicates
an estimate of higher-order corrections.
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resummations relevant for nuclear matter were discussed by
Schäfer, Kao, and Cotanch (2005) and Kaiser (2011, 2012).
Convergence of pionless EFT at saturation density is, how-
ever, not obvious.

8. External currents and reactions

The coupling to external currents works exactly as in the
two-body sector (see Sec. II.B.8). Given the increased
technical challenges, there are fewer calculations, and they
mostly tackle triton and helion properties. Within this limited
scope, they confirm the convergence of pionless EFT at low
energies.
The simplest observable is the triton charge form factor—in

particular, the charge radius—which determines the leading
momentum dependence. Platter and Hammer (2006) used an
effective quantum-mechanical framework to obtain the form
factor in the impulse approximation, i.e., considering the
electric charge operator between triton wave functions
obtained by solving a Faddeev equation for the effective
potential derived from the pionless Lagrangian at LO. Similar
to the Phillips line (see Sec. II.C.2), the existence of a single
LO three-body parameter in pionless EFT explains a corre-
lation between the triton binding energy and charge radius that
had previously been observed with different potential models
(Friar et al., 1985). An N2LO calculation was reported by
Sadeghi (2010), but few details were given. Recently, the fully
perturbative treatment of higher-order corrections was
extended to the triton and helion charge radii at N2LO
(Vanasse, 2017b, 2018), and magnetic moments and radii
at NLO (Vanasse, 2018). Even though Coulomb interactions
were neglected for 3He, good agreement with experiment was
found. Analogous results were obtained with a resummation
of higher-order effects by Lensky, Birse, and Walet (2016),
who also showed the correlation between the 4He charge
radius and other three- and four-nucleon observables.
Sadeghi and Bayegan (2005), Sadeghi, Bayegan, and

Grießhammer (2006), and Sadeghi (2007) calculated the
nd → 3H γ capture cross section, finding good agreement
with the available experimental data at N2LO. Sadeghi and
Bayegan (2010) calculated the inverse process of triton
photodisintegration, which features the same amplitudes
due to time-reversal symmetry. Several significant flaws in
the calculation of Sadeghi, Bayegan, and Grießhammer
(2006) were identified by Arani et al. (2014), who presented
an updated calculation. At N2LO, they still find reasonable
agreement of the thermal nd capture cross section with
experiment. The total cross section for the related reaction
pd → 3He γ was calculated to NLO in a range of energies
amenable to perturbative Coulomb interactions by
Nematollahi et al. (2016). The 3N force was fixed by the
helion binding energy and data were reasonably described
considering the uncertainty of the calculation. The even more
challenging process of deuteron-deuteron radiative capture
(dd → 4He γ) was calculated at LO by Sadeghi and Khalili
(2014), with the 3N force fitted to the alpha-particle energy.
While the available data for the astrophysical S factor are
apparently well described, a lack of technical details makes it
difficult to assess the validity of the calculation.

New ground was broken with the extension to electroweak
processes made by De-Leon, Platter, and Gazit (2016), who
studied triton β decay to NLO. This work establishes a new
way of fixing the LEC L1;A of the axial-vector counterpart of
Eq. (41), which is relevant for other electroweak processes
(pp fusion, in particular) as well. Calculations like this reveal
the potential of pionless EFT to tackle interesting reactions
involving more than two nucleons based, for example, on the
general framework developed by De-Leon, Platter, and
Gazit (2019).

D. Outstanding issues and current trends

Pionless EFT has fulfilled the long-standing goal of a
renormalizable quantum field theory for nuclear physics.
Although it has a narrow regime of strict validity, it seems
to at least apply to A ≤ 3 bound states and possibly to extend
to A ¼ 4 and beyond. RG invariance, combined with the fine-
tuning that places two-body bound states near zero energy,
has led to a power counting that flies in the face of NDA,
as summarized for the potential in Fig. 5. Yet, unresolved
questions remain:

• How far in A can we describe nuclei within this
framework? To date, all LO calculations (A ≤ 40) have
given binding energies in agreement with experiment
within the expected theoretical uncertainty, but finer
details such as relative energies and thresholds have not
been reproduced. Calculations for A ¼ 4, 16, 40 where
subleading interactions are resummed reinforce the
surprising success of LO. However, at the moment no
calculation exists for more than four nucleons where
NLO and higher orders are treated perturbatively. There
also remain issues about the power counting of Coulomb
and other isospin-breaking interactions. Higher-order
calculations for A > 4 are sorely needed.

• Wigner (1937a, 1937b) proposed an SUð4Þ spin-isospin
symmetry to explain the strong binding of nuclei con-
taining integer numbers of alpha particles. Since the 3N
force in Eq. (43) is SUð4Þ symmetric (Bedaque,
Hammer, and van Kolck, 2000), one cannot but wonder
whether there are signs of SUð4Þ symmetry also in light
nuclei. It was shown by Chen, Lee, and Schafer (2004)
that binding energies of A ≤ 4 nuclei satisfy inequalities
obtained from SUð4Þ symmetry. Accordingly, Vanasse
and Phillips (2017) developed an expansion around an
SUð4Þ-symmetric LO based on average 1S0 and 3S1
scattering lengths. They showed that this expansion is
promising also for observables other than binding
energies since it converges well for the triton charge
radius up to NLO in the symmetry-breaking parameter
(and including range corrections as well).

• In the same spirit, how far can we push the expansion
around the nontrivial fixed point of the NN amplitude,
i.e., the unitary limit where both the deuteron and the 1S0
virtual state have zero energy? In this limit, the LO EFT
has not only exact SUð4Þ symmetry but also discrete
scale invariance. While the two-body amplitude is
invariant under continuous scale transformations
(Mehen, Stewart, and Wise, 2000), the three-body force
in Eq. (44) is symmetric only under discrete scale
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changes (Bedaque, Hammer, and van Kolck, 1999a,
1999b). This remaining symmetry leads to Efimov states
in the three-body system and its descendants in the four-
(Hammer and Platter, 2007) and higher-body systems.
König (2017) and König et al. (2017), generalizing an
earlier approach to the 1S0 channel (König et al., 2016),
proposed an expansion around the unitary (or unitarity)
limit also in the 3S1 channel: expansions in both 1=Qat
and 1=Qas are added to the standard pionless EFT
expansion. A single LO parameter Λ� provides the
nonperturbative scaffolding, on top of which more
quantitative results are built by perturbation theory. This
radical expansion appears to converge remarkably well
for three- and four-nucleon binding energies (König,
2017; König et al., 2017). At LO, all binding energies are
functions of Λ�, and for bosons (Carlson et al., 2017)
they saturate according to the liquid-drop formula. The
correlation between nuclear-matter saturation energy and
density expressed in the Coester line (Coester et al.,
1970) would emerge from the variation of Λ� (van
Kolck, 2017) just as the Tjon line—if, that is, pionless
EFT holds all the way to heavy nuclei. Related work that
aims to simplify nuclear physics based on the closeness
of the real world to the unitarity limit and/or Wigner
SUð4Þ limit was carried out by Kievsky and Gattobigio
(2016), Kievsky et al. (2018), Lu et al. (2018), and
Gattobigio, Kievsky, and Viviani (2019).

III. HALO/CLUSTER EFT

A. Motivation

In this section we discuss efforts to go one step further in the
application of low-energy universality by including tightly
bound clusters of nucleons as explicit fields in the effective
Lagrangian. This halo/cluster EFT framework is appropriate
for halo nuclei and nuclei with a cluster structure. In both
cases, the energy required to remove clusters or halo nucleons,
characterized by a momentum scaleMlo, is much smaller than
the energy required to break clusters apart associated with a
momentum scale Mhi. The classic example is 6He, where the
energy to separate two neutrons from an alpha-particle core is
S2n ≃ 0.975 MeV ≪ Bð4HeÞ. This class of systems can be
thought of as nucleons orbiting one or more clusters, all
separated by distances much larger than the cluster sizes. They
typically lie at the limits of nuclear stability represented in the
nuclear chart by the so-called driplines, and they are target of a
vigorous experimental program at rare-isotope facilities
worldwide. As we discuss later, they can display more than
one low-momentum scale, e.g., when Coulomb interactions
are present or when a cluster has an isolated low-energy
excited state.
As in Eq. (3), observables are expanded in powers of

Mlo=Mhi and Q=Mhi, where Q is a typical momentum. While
halo/cluster EFT is mathematically similar to the pionless EFT
for nucleons discussed in Sec. II—and in fact is a theory
without explicit pions by itself, becoming pionless EFT for
light nuclei when the cores are nucleons—there are a number
of new aspects. First, higher partial waves between clusters, or
between clusters and nucleons, are often enhanced, as for the

nα scattering relevant for 6He. This causes a richer structure
already in the two-body sector and requires modified power-
counting schemes. Second, the antisymmetrization between
nucleons in a cluster (which are not active degrees of freedom)
and halo nucleons is not explicit.
One might ask what kind of error is introduced by using

explicit fields for tightly bound clusters. The effect on
observables of exchanging nucleons in the core with halo
nucleons is governed by the overlap of the wave functions of
the halo nucleons with the wave functions of the core
nucleons. Since the range of the former is M−1

lo while the
range of the latter is M−1

hi , this overlap is suppressed by
Mlo=Mhi compared to the overlap of two halo nucleons.
Therefore, these effects are controlled by the EFTexpansion in
Mlo=Mhi and are encoded in the LECs of halo/cluster EFT.
The same argument applies for nucleons in different, widely
separated clusters. For momenta Q of the order of the
breakdown scale Mhi or above, when distances compared
to the core size are probed, full antisymmetrization and other
short-range physics have to be included explicitly.
Halo/cluster EFT exploits the scale separation between Mlo

and Mhi independently of the mechanism creating it. Thus, it
complements ab initio approaches to halo nuclei by zooming
out to large distances and providing universal relations
between different few-body observables. These relations
can be combined with input from an underlying EFT or
experiment to predict halo properties. Moreover, they allow us
to test the consistency of different approaches and/or experi-
ments. A particular strength lies in the possibility to describe
the electroweak structure and reactions of halo nuclei in a
model-independent way with controlled error estimates.
Halo/cluster EFT can be viewed as a generalization of

nuclear cluster models and is usually referred to simply as halo
EFT (Bertulani, Hammer, and van Kolck, 2002; Bedaque,
Hammer, and van Kolck, 2003). We give a brief overview
here, starting with S-wave neutron halos and Efimov states in
Secs. III.B and III.C, respectively. The complementarity with
ab initio methods, useful for exploring heavy halos, is
discussed in Sec. III.D, and higher partial waves are tackled
in Sec. III.E. We show how halo EFT connects with
electromagnetic processes in Sec. III.F before sketching the
changes needed for proton halos (Sec. III.G) and multicluster
systems (Sec. III.H), and ending with an outlook (Sec. III.I).
Our emphasis is complementary to Sec. II. A more in-depth
discussion can be found in the review of halo EFT by
Hammer, Ji, and Phillips (2017).

B. S-wave neutron halos

We start with the case of S-wave halo nuclei or cluster states
without Coulomb interactions. For definitiveness, we consider
one- and two-neutron halo nuclei using the formalism of
Hagen, Hammer, and Platter (2013). The extension to other
cases is straightforward. We also restrict our analysis to LO in
Mlo=Mhi. Higher-order effects can be included as discussed in
Sec. II for pionless EFT.
The effective Lagrangian for neutrons (n) and a spinless

core (c) can be written as the sum of one-, two-, and three-
body contributions L ¼ L1b þ L2b þ L3b þ � � �, where the
the ellipsis denotes higher-order terms and
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L1b ¼ ψ†
0

�
i∂0 þ

∇2

2m0

�
ψ0 þ ψ†

1

�
i∂0 þ

∇2

2m1

�
ψ1;

L2b ¼ Δ1d
†
1d1 − g1½d†1ðψ1ψ0Þ þ H.c.�

þ Δ0d
†
0d0 −

g0
2
½d†0ðψT

1Pψ1Þ þ H.c.�;
L3b ¼ Ω t†t − h½t†ðψ0d0Þ þ ðψ0d0Þ†t�: ð46Þ

The notation is slightly changed compared to Sec. II
[cf. Eq. (27)] to efficiently account for neutron and core
fields, the Pauli spinor ψ1, and the scalar ψ0, respectively. The
two-body part L2b includes two dimerons, the scalar d0
corresponding to an 1S0 nn pair and the Pauli spinor d1 for
a cn pair. P ¼ iσ2=

ffiffiffi
2

p
projects the two neutrons on the spin

singlet. Finally, L3b represents the three-body interaction
written in terms of a trimeron auxiliary field (Bedaque
et al., 2003), which is particularly useful for form-factor
calculations (Hagen, Hammer, and Platter, 2013; Vanasse,
2017b). It includes the bare trimeron residual mass Ω and the
bare coupling h of the trimeron t to the d0 dimeron (nn) and the
c field ψ0. Only the parameter combination h2=Ω contributes
to observables at LO. As in pionless EFT, there exists a whole
class of equivalent theories with three-body forces acting in
different channels. Integrating out the auxiliary fields, different
choices of L2b and L3b can be transformed into the same
theory without dimeron and trimeron fields up to four- and
higher-body interactions.
In the following, we focus on the properties of the cn, nn,

and cnn systems. For compact notation, we define the mass
parameters

Mtot ¼ m0 þ 2m1; Mi ¼ Mtot −mi; mij ¼ Mi −mj;

μi ¼
m0m2

1

miMi
; μ̃i ¼

miMi

Mtot
: ð47Þ

The diagrams for the dressed dimeron propagator, Fig. 6,
are completely analogous to that for the dibaryon field
discussed in Sec. II.B.5. At LO, the full dimeron propagator
for the dimeron di is

iDiðp0;pÞ ¼
2πi

sig2i μi

h
1=ai −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μip̃0 − iε

p i
−1
; ð48Þ

where p̃0 ¼ p0 − p2=ð2MiÞ and si ¼ δi0=2þ δi1 is a sym-
metry factor. As before, ai stands for the scattering length. For
positive ai, the propagator has a bound-state pole on the first
Riemann sheet with residue Zi ¼ 2π=sig2i μ

2
i ai. For negative

ai, there is a pole on the second sheet corresponding to a
virtual state.
The leading correction to the propagator in Eq. (48) is due

to the effective range. It can be included by making the
dimeron fields dynamical, as discussed in Sec. II.B.5. Here we
stay at LO in the EFT expansion and neglect effective-
range corrections. The pole momentum γi is then given by
γi ¼ 1=ai.
Observables in the cnn system can be obtained from the T

matrix for the scattering process of a dimeron and a particle.
The universal properties and structure of two-neutron halos
were also explored in an effective quantum-mechanical

framework (Canham and Hammer, 2008, 2010; Acharya,
Ji, and Phillips, 2013) by solving the Faddeev equations for an
effective potential reflecting the expansion inMlo=Mhi and for
the renormalized zero-range model (Amorim, Frederico, and
Tomio, 1997; Delfino et al., 2006). For a review of the latter
work, see Frederico et al. (2012).
We consider the center-of-mass frame, in which the on-shell

T matrix depends only on the total energy E and the relative
momenta in the ingoing and outgoing channels p and k,
respectively. External dimeron legs are renormalized with the
wave-function renormalization factors

ffiffiffiffiffiffiffijZij
p

. The absolute
value is required only for i ¼ 0 because Z0 < 0, correspond-
ing to the unbound nn pair. Here the factor provides a
convenient redefinition of the amplitude but has no physical
significance.
There are two possibilities for the initial or final state,

depending on the identity of the particle and dimeron. Here we
label the T-matrix element Tij by the index i (j) of the
dimeron and particle in the incoming (outgoing) channel.
Keeping the matrix structure of Tij implicit, the integral
equation for the T matrix is given by Fig. 10 with the
substitution in Fig. 11, where the contact three-body coupling
is h2=Ω. The T matrix can be decomposed into partial-wave
contributions Tlm;l0m0 ¼ δll0δmm0Tl. The resulting (2 × 2)-
matrix integral equation for angular momentum l is a
generalization of the Skorniakov–Ter Martirosian equation
(Skorniakov and Ter Martirosian, 1957) and reads

TlðE; p; kÞ ¼
Z

Λ

0

dqRlðE; p; qÞD̄ðE; qÞTlðE; q; kÞ

þ RlðE; p; kÞ ð49Þ

when a sharp momentum-space cutoff Λ is imposed on the
loop momentum in the three-body sector. For simplicity, we
focus on the S wave, l ¼ 0, and drop the subscript l on R and
T. The components of the interaction matrix R are given by

RijðE; p; kÞ ¼
2πχijmij

jaiajsisjj1=2μiμj
1

pk
Q0ðcijÞ − δi0δj0H;

cij ¼
mij

pk

�
p2

2μj
þ k2

2μi
− E − iε

�
; ð50Þ

where χij ¼ 1 − δi0δj0 and Q0 is a Legendre function of the
second kind. Moreover, H ¼ jZ0jh2=Ω is the dimensionless
three-body coupling defined in Eq. (44) that depends log-
periodically on the cutoff Λ. It contributes only for angular
momentum l ¼ 0. The dimeron matrix is diagonal in the
channel indices: D̄ ¼ diagðD̄0; D̄1Þ with

D̄iðE; qÞ ¼
μijaijq2
2π2

�
−1=ai þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μiẼ − iε

q �
−1
; ð51Þ

and Ẽ ¼ E − q2=ð2μ̃iÞ.
The transition amplitude near the energy of an S-wave

three-body bound state can be decomposed into a regular and
an irregular part. This yields the homogeneous bound-state
equation
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BðpÞ ¼
Z

Λ

0

dqRðE; p; qÞD̄ðE; qÞBðqÞ; ð52Þ

which has nontrivial solutions only at the bound-state
energy E ¼ −Bcnn.
For a given cutoff Λ, we can fix the unknown three-body

parameter H such that Eq. (52) has a solution at the desired
value E ¼ −Bcnn. However, any other three-body observable
can be used as well. In this way, the three-body coupling is
renormalized and other three-body observables (including
other three-body bound states) can be predicted. In particular,
Eq. (49) can be solved numerically to determine the T matrix
for three-body scattering observables. Since the two-neutron
system is not bound, only the element T11 describes a particle-
dimeron scattering process, namely, the scattering of a neutron
from a cn bound state at energy E ¼ p2=ð2μ̃1Þ − 1=ð2μ1a21Þ:

T11ðE; p; pÞ ¼
2π

μ̃1

1

p cot δcn−nðpÞ − ip
: ð53Þ

The other elements contribute to three-body scattering and
breakup.
A fully perturbative extension of this formalism to NLO

was recently presented by Vanasse (2017a). NLO equations
with resummed range corrections were previously given by
Canham and Hammer (2010).

C. Excited Efimov states in halo nuclei

The bound-state solutions of Eq. (52) are a specific variant
of Efimov states (Efimov, 1970, 1973). Thus, the Efimov
effect provides a natural binding mechanism for two-neutron
halos with dominantly S-wave interactions. However, the
contributions of higher partial waves and partial-wave mixing
complicate the situation. While halo EFT naturally accom-
modates resonant interactions in higher partial waves, as
discussed in Sec. III.E, there is no Efimov effect in this case;
see, e.g., Jona-Lasinio, Pricoupenko, and Castin (2008),
Braaten et al. (2012), and Nishida (2012). A general overview
of Efimov states in nuclear and particle physics was given by
Hammer and Platter (2010). Here we review the possibility of
identifying Efimov states in halo nuclei.
Since the strength of the interaction between the neutrons

and the core is fixed, the identification of Efimov physics is
more delicate than for ultracold atoms, where the effective
scattering length can be dialed through an external magnetic
field. In particular, the log-periodic dependence of observables
on the scattering length cannot be used to identify Efimov
physics. Instead, one may look for excited states that approx-
imately satisfy the universal scaling relation for Efimov states
(Efimov, 1970, 1973). Note that there are two relevant
scattering lengths for a cnn system, a0 ≡ ann and a1 ≡ acn.
Since ann is the same for all halo nuclei and negative, we focus
only on the dependence on acn. We define the three-body
momentum as

K ¼ sgnðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ̃1jEj

p
; ð54Þ

where the sign of the square root is taken as the sign of the
energy E. The schematic dependence of the Efimov spectrum

on K and the inverse neutron-core scattering length a−1cn is
illustrated in Fig. 16. The breakdown scale Mhi defines a
region outside of which details of short-range physics matter
and the bound states cease to be universal. Two typical
situations are shown, with two universal states (at acn > 0)
and one universal state (at acn < 0).
In the hypothetical unitary limit a−1cn ¼ a−1nn ¼ 0, the Efimov

spectrum becomes geometric,

KðnÞ ¼ −λ−n0 κ�; ð55Þ

where λ0 ¼ eπ=s0 is the discrete scaling factor and κ� is the
binding momentum of the state with label n ¼ 0. In general,
s0 and λ0 depend on the number of interacting pairs and the
masses and symmetry properties of the particles, and λ0 ≈
22.7 for the equal-mass nucleons discussed in Sec. II. The
value of κ� is related by a regulator-dependent constant factor
to the three-body parameter Λ⋆ that determines the three-body
force H in Eq. (44). An explicit value for the case of identical
bosons was given by Braaten and Hammer (2006). The
spectrum shown in Fig. 16 is invariant under discrete scaling
transformations with λ0:

κ� → κ�; acn → λm0 acn; K → λ−m0 K; ð56Þ

wherem is any integer. This discrete scale invariance holds for
all few-body observables and is a clear signature of an RG
limit cycle in the three-body system (Bedaque, Hammer, and
van Kolck, 1999a).
If more particles are added, no new parameters are needed

for renormalization at LO (Platter, Hammer, and Meißner,
2004, 2005). As a consequence, all four-body observables in
the universal regime are governed by the same limit cycle and
can be characterized by a and κ�. This leads to the universal
correlations between three- and four-body observables already
discussed in Secs. II.C.2 and II.C.6. Similar behavior is
expected for higher-body observables.
Halo nuclei have been discussed as possible candidates for

Efimov states for more than 30 years (Fedorov, Jensen, and

FIG. 16. Illustration of the Efimov spectrum as a function of the
three-body momentum K [cf. Eq. (54)] and the inverse neutron-
core scattering length a−1cn . The diagonal line in the fourth
quadrant represents the neutron-core threshold. The solid lines
indicate the Efimov states. The window of universality for bound
states is represented by the shaded half circle, while the dashed
and dot-dashed lines indicate a typical system with acn > 0 and
acn < 0, respectively.
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Riisager, 1994). As the full Efimov plot for cnn systems is
three dimensional and depends on the two scattering lengths
ann and acn, it is more instructive to plot candidate nuclei in a
two-dimensional plane characterized by the neutron-core
energy Enc and the neutron-neutron energy Enn, in units of
the three-body ground-state energy Egs, as introduced by
Amorim, Frederico, and Tomio (1997). If a given nucleus lies
within a certain boundary curve that weakly depends on the
mass number A of the core, it should display an excited
Efimov state. The candidate nuclei 11Li, 12Be, 14Be, 18C, and
20C were investigated in LO halo EFT assuming only resonant
S-wave interactions by Canham and Hammer (2008). An
update of this analysis with current halo candidates and
established halo nuclei is shown in Fig. 17. The triton has
also been added since it can be interpreted as a two-neutron
halo with a proton core.
In 2010, 22C was established as the then heaviest halo

nucleus. In particular, 22C was found to display a large matter
radius (Tanaka et al., 2010) and a large S-wave component in
its n-20C subsystem (Horiuchi and Suzuki, 2006). Since the
information on the neutron-core energy Enc was ambiguous,
Acharya, Ji, and Phillips (2013) used halo EFT to explore the
correlation between the n-20C energy and the two-neutron
separation energy of 22C. Combining this correlation with the
matter-radius measurement, they demonstrated that an excited
Efimov state in 22C is unlikely. A recent update of this analysis
by Hammer, Ji, and Phillips (2017), using the more precise
matter radius from Togano et al. (2016) as input, reached the
same conclusion.
Whether heavier neutron halos than 22C exist is still an open

question, although there is some experimental evidence that
the ground states of 31Ne and 37Mg have a low one-neutron
separation energy and can be considered deformed P-wave
halo nuclei (Kobayashi et al., 2014; Nakamura et al., 2014).

This makes it worthwhile to investigate the possibility for
Efimov states in heavier nuclei.

D. Ab initio methods and Efimov states in heavier nuclei

Halo EFT can be used in conjunction with ab initio
calculations to extend the reach of the latter or to test the
consistency of different approaches. Here we discuss an
example of the former in the context of Efimov physics.
Further examples regarding electromagnetic reactions are
given later.
Coupled-cluster calculations by Hagen et al. (2012b) of

neutron-rich calcium isotopes, which used a chiral potential
with schematic 3N forces and included coupling to the
scattering continuum, suggested that a large S-wave scattering
length might occur in the 61Ca system, with interesting
implications for 62Ca. Subsequently, Hagen et al. (2013)
computed the elastic scattering of neutrons on 60Ca while
obtaining quantitative estimates for the scattering length and
the effective range, and confirming that a large scattering
length can be expected. These results were then used as input
for halo EFT in the study of the 60Ca-n-n system.
Specifically, the focus was on signals of Efimov physics

that are a consequence of the large scattering lengths in the
60Ca-n and n-n systems. This is illustrated in Fig. 18, where
the universal correlation between the 61Ca-n scattering length
and the two-neutron separation energy of 62Ca is shown. For
62Ca with m0 ¼ 60m1, the discrete scaling factor governing
the energy spectrum is approximately 162 ¼ 256 (Braaten and
Hammer, 2006), which is slightly more favorable than in the
case of equal-mass particles. The asymptotic scaling ratio
applies only for deep states or in the unitary limit of infinite
scattering length. Away from the unitary limit, however, the
ratio of energies near threshold can be significantly smaller;
see Fig. 16 and the corresponding discussion by Braaten and
Hammer (2006). In the case of 62Ca, the whole energy region
between S2n ≈ 5–8 keV and the breakdown scale Shi ≈
500 keV is available for Efimov states. At S2n ≈ 230 keV,
the 60Ca-n scattering length jumps from þ∞ to −∞ and an
excited Efimov state appears. It is thus conceivable that 62Ca

FIG. 17. Boundary curves for the existence of excited
Efimov states in two-neutron halo nuclei with different core
masses A as a function of the square roots of the neutron-core
energy Enc and neutron-neutron energy Enn in units of the three-
body ground-state energy Egs. The sign of the square root is taken
as positive (negative) if the corresponding two-body system nc or
nn has a bound state (virtual state). Established halo nuclei are
shown by the data points, while the shaded area gives the
parameter range for the predicted halo nucleus 62Ca. From
Hammer, 2018.

FIG. 18. Correlation between the 61Ca-n scattering length and
the two-neutron separation energy S2n of 62Ca. The emergence of
an excited Efimov state around S2n ¼ 230 keV is indicated by the
vertical dashed line. The shaded area indicates the region where
halo EFT breaks down. From Hammer, 2016.
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would display an excited Efimov state and unlikely that it
would not display any Efimov states at all. The matter radius
of 61Ca relative to the 60Ca core was found to be 4.9(4) fm,
while the matter radius of 62Ca could be even larger, depend-
ing on the precise value of S2n.
One can summarize the situation on excited Efimov states

in halo nuclei as follows. While the ground states of many S-
wave halo nuclei are close to the Efimov limit, there is
currently no observed halo nucleus that displays an excited
Efimov state or is likely to display such a state. There is some
theoretical evidence that the situation could be different for
62Ca. The corresponding parameter range is indicated by the
shaded square in Fig. 17. The results of Hagen et al. (2013)
imply that 62Ca is possibly the largest and heaviest halo
nucleus in the chart of nuclei and demonstrated that a large
number of observables would display characteristic features of
Efimov physics. Measurement of these observables clearly
poses a significant challenge for experiment. For example,
58Ca is the heaviest calcium isotope that has been observed
experimentally (Tarasov et al., 2009). However, future radio-
active-beam facilities might provide access to calcium iso-
topes as heavy as 68Ca.

E. Higher partial waves and resonances

Next we discuss systems with resonant interactions in
higher partial waves. Such interactions are ubiquitous in halo
and cluster nuclei and lead to a richer power-counting
structure.
Consider two-body scattering with reduced mass μ and

energy E ¼ k2=2μ in the center-of-mass frame. Resonance
behavior arises when the Smatrix has a pair of poles in the two
lower quadrants of the complex k plane. The projection of S
into the resonant partial wave l can be written as

Sl
slðkÞ

¼ kþ kþ
k − kþ

kþ k−
k − k−

¼ E − E0 − iΓðEÞ=2
E − E0 þ iΓðEÞ=2 : ð57Þ

Here k� ¼ �kR − ikI with kR;I > 0 are the pole positions,
slðkÞ is a smooth function in the energy region under
consideration, E0 ¼ ðk2R þ k2I Þ=2μ is the position of the
resonance (where the corresponding phase shift crosses
π=2), and ΓðEÞ=2 ¼ kkI=μ is referred to as the half-width
of the resonance. A narrow resonance is one for which
ΓðE0Þ=ð2E0Þ ≪ 1, that is, for which the poles are near the
real axis, kI=kR ≪ 1. We call the resonance shallow if
jk�j≡Mlo ≪ Mhi. An example of a shallow, narrow reso-
nance is given by the 2P3=2 resonance in nα scattering (the
ground state of 5He), which has (Bertulani, Hammer, and van
Kolck, 2002) ΓðE0Þ=2 ≃ 0.3 MeV ≪ E0 ≃ 0.8 MeV ≪ Eα ≃
20 MeV or kI≃6MeV≪kR≃34MeV≪

ffiffiffiffiffiffiffiffiffiffiffiffi
mNEα

p
≃140MeV,

where Eα is the excitation energy of the α core and mN is the
nucleon mass.
Shallow resonances can be described in halo EFT just as

bound states. For notational simplicity, we take the two
scattering particles to be identical, with mass m ¼ 2μ and
no spin. Generalization to other situations is straightforward.
As with bound states, it is convenient to introduce a dimeron
field with the quantum numbers of the resonance. Note that

the formulation with dimeron fields is equivalent to a
formulation with particle contact interactions. [For details,
see the discussion by Bertulani, Hammer, and van Kolck
(2002) and, for S-wave states, Sec. II.] In the following, we
focus on the case where the resonance is in the l ¼ 1 state, in
which case the dimeron field d has three components
corresponding to spin 1. In a notation similar to Eq. (27),

L ¼ ψ†
�
i∂0 þ

∇2

2m

�
ψ þ d†l

�
η1

�
i∂0 þ

∇2

4m

�
− Δ1

�
dl

þ g1
4
½d†l ðψ∇

↔

lψÞ þ H.c.� þ � � � ; ð58Þ

where the Galilean combination ∇
↔

¼ ∇⃖ − ∇⃗ places the two
particles in a P wave.
The full dimeron propagator, depicted in Fig. 6, is the bare

propagator given by the inverse of the dimeron kinetic term
and dressed by the bubbles generated by the dψψ interactions
in Eq. (58). The two-particle T matrix is obtained by attaching
external particle legs. The result reproduces the ERE for P
waves, Eq. (12), with

1

a1
¼ θ3Λ3 −

12πΔ1

mg21
; −

r1
2
¼ θ1Λþ η1

12π

m2g21
; ð59Þ

where, as in Eq. (22), θ1;3 are numbers that depend on the
chosen regularization. We see that both the scattering length
and the effective range need to be included at LO to absorb all
divergences (Bertulani, Hammer, and van Kolck, 2002). This
requirement has to be reflected by the power counting for P
waves. We note that the need to include additional interactions
for renormalization at LO will become more severe in higher
partial waves.
For the scaling of the parameters a1; r1;…, different

scenarios can be envisioned.
(i) Naive dimensional analysis suggests that the typical

size for the ERE parameters a1; r1;… is given by the
appropriate power of the momentum scale Mhi
where the EFT breaks down.

For instance, if the interaction between the particles is
described by a potential of depth ∼Mhi and range ∼1=Mhi,
one would expect a1 ∼ 1=M3

hi and r1 ∼Mhi. In particular, a
resonance or bound state, if present, generally occurs at the
momentum scale Mhi.
Scenario (i) is clearly not appropriate for halo nuclei with

shallow resonances or bound states. In such systems, the
interactions are finely tuned in such a way as to produce a
resonance or bound state close to threshold, at a scale Mlo
much smaller than Mhi, violating the NDA estimate. This
situation can occur when one or more of the ERE parameters
have unnatural sizes related to Mlo.
(ii) Bertulani, Hammer, and van Kolck (2002) proposed

a different power counting assuming a1 ∼ 1=M3
lo and

r1 ∼Mlo, while all higher ERE parameters scale
with Mhi.

With this scaling, all three terms of the ERE shown explicitly
in Eqs. (12a) and (12b) are of the same order for momenta
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k ∼Mlo and must be retained at LO. Higher ERE parameters
are suppressed by powers ofMlo=Mhi and thus are subleading.
Scenario (ii) requires that two combinations of constants,

Δ1=g21 and 1=g21, be fine-tuned against the large values Λ ≳
Mhi in Eq. (59) to produce a result containing powers of the
small scale Mlo. From a naturalness perspective, this makes it
less likely to occur in nature than a scenario with one fine-
tuning like the one for an S-wave bound state.
(iii) An alternative scaling was suggested by

Bedaque, Hammer, and van Kolck (2003), where
a1 ∼ 1=M2

loMhi, r1 ∼Mhi, and all other ERE param-
eters again scale with appropriate powers of Mhi.

6

This scenario requires only one combination of constants,
namely, Δ1=g21, to be fine-tuned.
With option (iii), the terms proportional to 1=a1 and r1k2 in

the dimeron propagator are of the same order for momenta
k ∼Mlo. The term stemming from the unitarity cut ik3 is
suppressed by one power of Mlo=Mhi and is, therefore,
subleading. The remaining terms in the ERE are even more
suppressed. Thus, LO corresponds to taking the bare dimeron
propagator while the effects of loops and higher-derivative
interactions enter as higher-order corrections.
At LO the difference between the scalings (ii) and (iii) is the

presence of the unitarity-cut term ∼ik3. This difference
disappears if instead of considering generic momenta k of
order Mlo we focus onto a narrow region around the position
of the resonance at k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=a1r1
p

. Owing to the near can-
cellation within a window of size Δk ¼ 2=a1r21 around the
pole between the two terms that are leading in scenario (iii),
the unitarity-cut term has to be resummed to all orders and
provides a width to the resonance. In this kinematic range,
there are two fine tunings: one implicit in the short-distance
physics leading to the unnatural value of a1, and another one
explicitly caused by the choice of kinematics close to the pole.
Power counting for resonances has been discussed further by
Gelman (2009), Alhakami (2017), and Schmidt, Jansen, and
Hammer (2018).
If the underlying theory cannot be solved, the appropriate

scaling for a specific physical system can be inferred from the
data, i.e., from the numerical values of the ERE parameters.
However, such a determination is not always unique and/or
different scalings might apply in different kinematic regions.
In the first papers on halo EFT, Bertulani, Hammer, and van
Kolck (2002) and Bedaque, Hammer, and van Kolck (2003)
applied scalings (ii) and (iii), respectively, to the lowest
resonance in nα scattering. The experimental ERE parameters
can be accommodated in both scalings such that both appear
viable. Although the unitarization implicitly carried out in (iii)
is not necessary except near the resonance, it improves the
description throughout the low-energy region. In either case,
scattering data determine the nα interaction parameters.
The two-neutron halo nucleus 6He offers a further testing

ground for halo EFT with resonant P waves. The nα
interaction in that nucleus is dominated by the 2P3=2

resonance. The structure and renormalization of 6He were
investigated by Rotureau and van Kolck (2013) and Ji, Elster,
and Phillips (2014). Rotureau and van Kolck (2013) calcu-
lated 6He at LO in the Gamow shell model using scenario (ii)
and found that a three-body force, the analog of L3b in
Eq. (46), is required to stabilize the system. Ji, Elster, and
Phillips (2014) solved the Faddeev equations in scenario (iii)
but demoted the 2S1=2 nα interaction to NLO. They also found
that a three-body force is required for renormalization at LO
and determined its running over a wide range of cutoffs. The
observed behavior is not log periodic, although some perio-
dicity is observed. Alternative formulations at LO were
investigated by Ryberg, Forssén, and Platter (2017) and
shown to be equivalent, while momentum-space probability
densities of 6He were calculated by Göbel et al. (2019).
The power counting for resonant partial waves with l ≥ 2

was also discussed by Bertulani, Hammer, and van Kolck
(2002) and Bedaque, Hammer, and van Kolck (2003). Their
analysis of the power divergences of the one-loop self-energy
showed that the first lþ 1 ERE parameters are required to
absorb all divergences. This was confirmed by the Wilsonian
RG analysis of Harada, Kubo, and Ninomiya (2009), which
considered the cases l ¼ 1, 2 explicitly. An alternative power
counting for bound states with l ¼ 2 was proposed by Braun
et al. (2018) and applied to the description ofD-wave states in
15C and 17C (Braun, Hammer, and Platter, 2018).

F. Electromagnetic properties and reactions

For one-neutron halo nuclei, halo EFT essentially repro-
duces the ERE, but their electromagnetic structure and
reactions can be predicted. The formalism is similar to that
of pionless EFT (Sec. II.C.8) and serves to illustrate it.
Moreover, the accuracy limits of cluster models can be
estimated from the order at which gauge-invariant couplings
to currents appear.
In the following, we exemplify the power of halo EFT in the

electromagnetic sector using the example of 11Be (Hammer
and Phillips, 2011) and give a brief overview of results in
other systems. The first excitation of 10Be is 3.4 MeV above
the ground state, which has JP ¼ 0þ. Meanwhile, 11Be has a
1=2þ state with neutron separation energy B0 ¼ 500 keV, and
a 1=2− state with 2n separation energy B1 ¼ 180 keV
(Ajzenberg-Selove, 1990), which we denote as 11Be�. The
shallowness of these two states of 11Be compared to the bound
states of 10Be suggests that they have significant components
in which a loosely bound neutron orbits a 10Be core. In halo
EFT, the 1=2þ state is described as an S-wave bound state of
the neutron and the core, while 1=2− is a P-wave bound state
governed by scenario (iii) in Sec. III.E.
The effective Lagrangian for the system can be obtained by

combining Eq. (46) for the 1=2þ ground state and Eq. (58)
(generalized to unequal masses) for the 1=2− excited state.
Photons are included via the minimal substitution, Eq. (36),
and through the field strength; see Hammer and Phillips
(2011) for explicit expressions.
Here our focus is on electric properties, and the dominant

pieces of the electric response follow from the minimal
substitution in Eq. (36). But at higher orders in the

6A similar scheme was applied to the Δð1232Þ resonance in chiral
EFT by Pascalutsa and Phillips (2003) and Long and van Kolck
(2010).
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computation of these properties, gauge-invariant operators
(counterterms) appear involving the electric field E and the
fields c for the 10Be core, n for the halo neutron, d for the 11Be
ground-state dimeron, and d� for the 11Be� excited-state
dimeron. Possible one- and two-derivative operators with
one power of the photon field are

LEM ¼ LC0d†ð∇ · EÞdþ Lð�Þ
C0d

�†ð∇ ·EÞd�

þ iLð1=2Þ
E1 ð½dd�†�lEl þ H.c.Þ þ � � � ; ð60Þ

where ½� � ��l indicates the projection on l ¼ 1. If magnetic
properties are to be considered, we have to include operators
involving the magnetic field B as well.
The electric interactions in Eq. (60) are gauge invariant by

themselves, and we must determine the order at which they
occur. Rescaling the fields to absorb all powers ofMlo as done
by Beane and Savage (2001), the scaling of the coupling
constants with Mlo can be obtained from NDA (Hammer and
Phillips, 2011). As a consequence, the leading effects in the
charge radius squared of the 1=2− state in 11Be are
∼ðr1MloÞ−1 ∼ ðMloMhiÞ−1. The operator proportional to

Lð�Þ
C0 produces effects of the order of ðr1MhiÞ−1 ∼ ðMhiÞ−2

and thus affects the prediction for the charge radius at NLO.
Similarly, the E1ð1=2þ → 1=2−Þ matrix element has para-
metric dependence M−1

lo ðMloMhiÞ−1=2. Including the proper
wave-function renormalization factors, the operator with LEC

L1=2
E1 yields an effect ∼M−1

hi ðMloMhiÞ−1=2 and thus already
occurs at NLO. Thus, for electric quantities involving the
shallow 1=2− excited state of 11Be, there are two parameters in
the halo EFT description at NLO that cannot be fixed with
10Be-n scattering information alone. There are none at LO and
presumably more at N2LO.

1. Form factors

The form factor of the 11Be ground state is computed by
calculating the contribution to the irreducible vertex for A0dd
interactions shown in Fig. 19. There is no diagram coupling
the photon to the neutron at this order since Qn ¼ 0. In the
Breit frame, where the four-momentum of the virtual photon is
q ¼ ð0;qÞ, the irreducible vertex for the A0 photon coupling
to the d field is −ieQcGEðjqjÞ, where Qc is the charge of the
core. A straightforward calculation yields

GEðjqjÞ ¼
2γ0
fjqj arctan

�
fjqj
2γ0

�
; ð61Þ

with γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2μ1B0

p
and f ¼ ð1þm0=m1Þ−1, in the notation of

Eq. (47). For the deuteron m0 ¼ mN and f ¼ 1=2, Eq. (61)
thus reduces to the LO pionless EFT result of Chen, Rupak,
and Savage (1999a).
The form factor is a function of q2 only, and the charge

radius is defined as hr2Ei ¼ −6ðd=dq2ÞGEjq2¼0. Applying this
expression to Eq. (61) yields

hr2Ei ¼
f2

2γ20
; ð62Þ

which gives the charge radius of the 11Be ground state relative
to the charge radius of 10Be. Thus, we have hr2Ei11Be−hr2Ei10Be¼
f2=2γ20. This relation can be understood by writing the charge
distribution of 11Be as a convolution of the charge distribution
of 10Be with that of the 10Be-n halo system. Using the
convolution theorem for the Fourier transform, one finds that
the total mean-square radius is the sum of the squared radii for
10Be and the 10Be-n halo system.
The latter effect can be calculated in halo EFT. We note that

the finite size of the core will also appear in halo EFTat higher
orders (Chen, Rupak, and Savage, 1999a). An extended
power-counting scheme that explicitly takes into account
the scaling of the mass ratio f to move these contributions
to lower orders was given by Ryberg et al. (2019).
Inserting γ0 ¼ 0.15 fm−1, the relative radius becomes

hr2Ei11Be − hr2Ei10Be ¼ 0.19 fm2. This is consistent with the
experimental result 0.51ð17Þ fm2 (Nörtershauser et al.,
2009) within the 40% uncertainty from NLO effects in this
system. Using the experimental result for the 10Be charge

radius as further input, we find hr2Ei1=211Be
¼ 2.40 fm at LO. This

is 2% to 3% smaller than the atomic-physics measurement,

which yields hr2Ei1=211Be
¼ 2.463ð16Þ fm (Nörtershauser et al.,

2009).
At NLO, a new operator associated with gauging the term

∼d†∂0d in the effective Lagrangian contributes. The calcu-
lation produces an increased charge radius as long as the S-
wave n-10Be effective range r0 is positive [cf. Beane and
Savage (2001)],

hr2Ei11Be − hr2Ei10Be ¼
f2

2ð1 − r0γ0Þγ20
: ð63Þ

Using the value r0 ¼ 2.7 fm determined from Coulomb
dissociation of 11Be (discussed later), the relative radius
becomes hr2Ei11Be − hr2Ei10Be ¼ 0.31ð5Þ fm2 at NLO, which
improves the agreement with the atomic-physics measure-
ment. The change is of the order of 40%, which is in
agreement with the a priori expectation. As a consequence,
the result for the full charge radius of the 11Be ground state

increases to hr2Ei1=211Be ¼ 2.42 fm. In contrast to observables

involving the 1=2− state, the radius of the 11Be ground state
does not receive any corrections from short-distance physics
until N3LO (Chen, Rupak, and Savage, 1999a). The remaining
difference between the NLO and experimental values is

FIG. 19. The LO contribution to the irreducible vertex for an A0

photon coupling to the 10Be-neutron S-wave bound state. The
thick solid line indicates the 11Be ground state, while the solid,
dashed, and curly lines represent the neutron, 10Be core, and
photon, respectively.
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consistent with the presence of the short-distance operator
∼LC0 from Eq. (60) at N3LO in the expansion of the radius.
For the charge form factor of the 1=2− excited state, NLO

corrections might be expected to be smaller since its typical
momentum is lower. However, a counterterm already enters at
NLO for this observable. The form factor is given by the
contribution to the irreducible vertex for A0d�d� interactions.
There are two diagrams at LO, the first of which is analogous
to that for the 1=2þ state shown in Fig. 19, while the second
represents a direct coupling of the photon from gauging the
d�†∂0d� term in the effective Lagrangian. The latter contrib-
utes at LO because the effective range r1 corresponds to an LO
operator for the 1=2− state. The charge form factor of the 1=2−

state at LO is obtained as (Hammer and Phillips, 2011)

Gð�Þ
E ðjqjÞ ¼ 1 −

γ1
r1

þ f2q2 þ 2γ21
jqjfr1

arctan

�
fjqj
2γ1

�
; ð64Þ

where γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2μ1B1

p
and r1 is the P-wave effective range for

n-10Be scattering. Note thatGð�Þ
E ð0Þ ¼ 1, as required by charge

conservation, while the charge radius of the 1=2þ state relative
to the 10Be ground state is

hr2Eið�Þ ¼ −
5f2

2γ1r1
: ð65Þ

This scales as 1=MloMhi as expected. It seems counterintuitive
that there is already a short-distance contribution to hr2Eið�Þ at
NLO, especially when the corresponding effect does not occur
in hr2Ei until N3LO (Chen, Rupak, and Savage, 1999a). The
reason for this enhanced sensitivity is that the probability
distribution of P-wave states is drawn into shorter distances
than the one of S-wave states, as it gets caught between the
attractive potential that produces the P-wave state and the
centrifugal barrier. Observables associated with a shallow P-
wave bound state will, therefore, generically exhibit counter-
terms at lower order than those of their S-wave counterparts.
Numerical evaluation of the LO expression (65) leads to the

prediction hr2Ei11Be� − hr2Ei10Be ¼ 0.36 fm2, where we use the
value r1 ¼ −0.66 fm from the BðE1Þ value as input (dis-
cussed later). The NLO radius includes contributions from the

counterterm Lð�Þ
C0 in Eq. (60), the coefficient of which is

unknown. Hammer and Phillips (2011) estimated the NLO
contributions to be of the order of 20%, assuming that

the short-distance effects in hr2Ei1=211Be� scale with f. This

assumption is in agreement with the expectation from the
power counting. Again using the experimental result for
the 10Be charge radius (Nörtershauser et al., 2009), the

prediction for the charge radius of 11Be� at LO is hr2Ei1=211Be� ¼
ð2.43� 0.1Þ fm. To date, there has been no experimental
determination of this charge radius.
Halo EFT calculations for the charge and magnetic form

factors of 11Be and 19C were performed to NLO by Fernando,
Vaghani, and Rupak (2015). They considered 15C as well and
suggested the inclusion of the effective range as an LO effect
in this case.

2. E1 transition and photodisintegration

Next we discuss the E1 transition from the 1=2þ state to
the 1=2− state. The irreducible vertex for this transition is
depicted in Fig. 20. We compute the transition for a photon
of arbitrary four-momentum k ¼ ðω;kÞ, and the sum of
diagrams yields −iΓjμ, where j is the angular momentum
index of the d� field and μ is the polarization index of the
photon. The diagrams depicted in Fig. 20 are divergent, but
their divergences cancel, providing a nontrivial check on the
calculation. As long as both diagrams are considered, current
conservation is also satisfied (Hammer and Phillips, 2011),
kμΓjμ ¼ 0. Note that if only the long-distance E1 mechanism
on the left-hand side of Fig. 20 is considered, as was done,
for example, by Typel and Baur (2008), then current
conservation is not satisfied and it appears that some input
from short-distance physics is needed to define the prediction
for this observable.
Evaluating the diagrams in Fig. 20, we obtain the LO halo

EFT result for BðE1Þ,

BðE1Þ ¼ −
Z2
effe

2

3π

γ0
r1

�
2γ1 þ γ0
ðγ0 þ γ1Þ2

�
2

; ð66Þ

with Zeff ¼ fQc ≈ 0.366 the effective charge. No regulariza-
tion is needed to get a finite result. We note that the resulting
equation (66) is “universal” in the sense that it applies to any
E1 S-to-P-wave transition in a one-neutron halo nucleus.
Once r1, γ1, and γ0 are known for a given one-neutron halo,
the prediction embodied in Eq. (66) is accurate up to
corrections of OðMlo=MhiÞ.
Since there is no experimental value for the P-wave effective

range r1, Hammer and Phillips (2011) extracted it from the
experimental number BðE1Þð1=2þ→1=2−Þ¼0.105ð12Þe2 fm2

(Summers et al., 2007), yielding rLO1 ¼ −0.66 fm−1. Short-
distance effects enter BðE1Þ through a counterterm in the NLO
corrections. The BðE1Þ (1=2þ → 1=2−) transition therefore
cannot be predicted at NLO, which can be seen from the

presence of the operator with LEC Lð1=2Þ
E1 in Eq. (60).

Comparing this calculation with a shell-model treatment of
11Be, it is clear that one effect that is subsumed into the NLO

counterterm Lð1=2Þ
E1 is the transition of a neutron from a d5=2 to

a p3=2 orbital, with that neutron coupled to the 2þ state of
10Be. This 2þ state is 3.4 MeVabove the 10Be ground state, so
the dynamics associated with it takes place at distances ∼M−1

hi .
Hence, in halo EFT it can only appear in short-distance

operators such as that multiplying Lð1=2Þ
E1 . The computation of

Millener et al. (1983) suggests that such a contribution
reduces the E1 matrix element by ∼ 30%, which is the

FIG. 20. The two diagrams contributing to the irreducible vertex
for the S-to-P-state transition Γjμ at LO. The double line indicates
the 11Be excited state; the other lines are as in Fig. 19.
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anticipated size of an NLO effect when the Mlo=Mhi expan-
sion is employed in the 11Be system. There are other effects of
a similar size that will affect BðE1Þ at NLO. Specifically, there
are NLO corrections from the wave-function renormalization
factors associated with the S- and P-wave fields. Both tend to
increase BðE1Þ over the LO prediction.
We move on to the photodisintegration of 11Be into 10Be

plus a neutron. In practice, this process is measured using
Coulomb excitation of the 11Be nucleus, with the two
reactions connected within the equivalent-photon approxima-
tion. There are three contributions to this process, as depicted
in Fig. 21. The first diagram, denoted as “LO” in the figure,
corresponds to the contribution from the plane-wave impulse
approximation. The second and third diagrams, denoted as
“NLO,” include the final-state interactions between the
neutron and the core in the J ¼ 1=2 channel. As we show
later, the first diagram is dominant over diagrams involving P-
wave final-state interactions. From these diagrams, we obtain
the differential BðE1Þ strength distribution at NLO (Hammer
and Phillips, 2011),

dBðE1Þ
dE

¼ e2Z2
eff

4π

12μ1γ0jp0j3
π2ðp02 þ γ20Þ4

×

�
1þ r0γ0 þ

2γ0
3r1

3p02 þ γ20
p02 þ γ21

�
; ð67Þ

where p0 is the relative momentum of the outgoing 10Be-n pair
and E ¼ p02=ð2μ1Þ is the kinetic energy of the 10Be-n pair in
the center-of-mass frame.
The LO result corresponds to taking only the 1 in the

parenthesis of Eq. (67). The NLO correction comes from two
sources. The first is the shift of the wave-function renorm-
alization to larger values due to r0 > 0, which tends to
increase the BðE1Þ strength. Second, final-state interactions
between the neutron and the core in the J ¼ 1=2 channel enter
at this order. Accurate measurements of the Coulomb dis-
sociation spectrum therefore provide information on the S-
wave n-10Be effective range if the P-wave effective range is
already fixed from another observable.
Up to LO accuracy for the bound-to-bound-state transition

and NLO for the bound-to-continuum one, there are four
LECs: γ0 and γ1 (which are known from separation energies)
and the S- and P-wave effective ranges r0 and r1. At the next

order, the counterterm Lð1=2Þ
E1 from Eq. (60) enters as well.

Folding the halo EFT result in Eq. (67) with the neutron
detector resolution and the spectrum of E1 photons, the
experimental data of Palit et al. (2003) are well described,
as shown in Fig. 22. At NLO, if we take the value of r1 fixed as
mentioned, we have one free parameter, the value of the

S-wave effective range r0. A reasonable fit is found for
r0 ¼ 2.7 fm, close to the effective-range result of Typel and
Baur (2005) with all integrals cut off at R ¼ 2.78 fm. This
choice of cutoff corresponds to specific assumptions about the
counterterms. Another experiment by Fukuda et al. (2004) can
be described equally well but suggests a 3% to 4% larger value
for r0.
The Coulomb dissociation of the one-neutron halo nucleus

19C was studied by Acharya and Phillips (2013) using the 18C
core and the neutron as effective degrees of freedom. In this
case, there is no excited state present. Acharya and Phillips
demonstrated the power of halo EFT by calculating various
observables and extracted the ERE parameters and the
separation energy of the halo neutron from the Coulomb
dissociation data of Nakamura et al. (1999). In particular, they
obtained the values ð575� 55� 20Þ keV for the one-neutron
separation energy of 19C, and ð7.75� 0.35� 0.3Þ fm for the
18C-neutron scattering length, where the first error is statistical
and the second error is an estimate of the EFT uncertainty.
Their prediction for the longitudinal-momentum distribution
is in good agreement with the data of Bazin et al. (1995) and
confirms the S-wave dominance for 19C.
The charge form factor and the Coulomb breakup of two-

neutron halo nuclei were first calculated by Hagen, Hammer,
and Platter (2013), Hagen (2014), and Acharya (2015) at LO.
The calculation of the charge form factor was recently
extended to NLO by Vanasse (2017a). [Vanasse also corrected
an error in the prefactor of one term in the form-factor
calculation of Hagen, Hammer, and Platter (2013).] Since
the value of the neutron-core effective range is unknown and
can merely be estimated, we quote in Table I only the LO
charge radii for 11Li, 12Be, and 22C from Vanasse (2017a),
together with the input value for the two-neutron separation
energy. The charge radius for 11Li has been measured by

FIG. 21. Diagrams contributing to photodissociation of the 11Be
ground (S-wave) state. The notation is as in Fig. 20.
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FIG. 22. Differential BðE1Þ strength for Coulomb dissociation
of 11Be into 10Beþ n as a function of excess energy of the neutron
E�. The dashed (solid) lines show the halo EFT result of Hammer
and Phillips (2011) at LO (NLO) folded with the detector
resolution. The experimental data are from Palit et al. (2003),
while the dotted line (almost on top of the solid line) gives the
effective range model of Typel and Baur (2005). From Hammer
and Phillips, 2011.
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Puchalski, Moro, and Pachucki (2006) and Sanchez et al.
(2006). The result hr2Ei ¼ 1.104ð85Þ fm2 is consistent with
the LO result within the estimated 40% uncertainty due to
range effects. The charge radii of 14Be and 22C have not yet
been measured.
Halo EFT has also been used to calculate the matter radii of

the two-neutron halo nuclei listed in Table I up to NLO
(i) using dimeron propagators with resummed range effects
(Canham and Hammer, 2008, 2010) and (ii) with a fully
perturbative treatment of range corrections (Vanasse, 2017a).
Both methods lead to consistent results.

3. Correlations

EFTs in general, and halo EFT in particular, provide model-
independent correlations between different observables. In
pionless EFT, the most prominent universal correlations were
discussed in Secs. II.C.2 and II.C.6. Such correlations have
also proven useful in the analysis of universal properties of
ultracold atoms (Braaten and Hammer, 2006).
Previously, we expressed the electromagnetic properties of

the 11Be system through the ERE parameters for n-10Be
scattering: γ0, γ1, r0, and r1. These expressions can be
interpreted as correlations between scattering observables
and electromagnetic properties. Analogously, there are corre-
lations between different electromagnetic observables.
As a specific example, we consider the correlation between

the BðE1Þ strength and the radius of the 1=2þ state in 11Be at
LO. Using Eqs. (65) and (66), we obtain

BðE1Þ ¼ 2e2Q2
c

15π
ðhr2Ei11Be� − hr2Ei10BeÞx

�
1þ 2x
ð1þ xÞ2

�
2

; ð68Þ

where Qc is the charge of the core and x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
B1=B0

p
is the

square root of the ratio of the neutron separation energies for
the 1=2− and 1=2þ states. The BðE1Þ strength is thus
proportional to the mean-square radius of the 1=2− state. In
the limit of vanishing neutron separation energy for the 1=2−

state, the BðE1Þ strength vanishes linearly with x.
Equation (68) can also be used to obtain the charge radius
of the 1=2− state hr2Ei11Be� directly from the measured value of
BðE1Þ and the neutron separation energies B1 and B0. This
gives hr2Ei11Be� − hr2Ei10Be ¼ 0.35–0.39 fm2, depending on
which experimental value of BðE1Þ is used. Similar correla-
tions can be derived for other observables.
These correlations make halo EFT a powerful tool for

testing the consistency of experimental data and/or ab initio
calculations based on general assumptions about the scaling of
observables with Mlo and Mhi. They can be combined with
ab initio results to obtain predictions for low-energy

observables as discussed in Sec. III.D and afterward. In this
spirit, Braun et al. (2018) used a correlation between the
BðE2Þ value for the transition 5=2þ → 1=2þ and the quadru-
pole moment of the 5=2þ state in 15C to predict the quadrupole
moment from ab initio calculations of the BðE2Þ value. Lei
et al. (2018) used a correlation between the dα S-wave
scattering length and the amount by which 6Li is bound with
respect to the npα threshold to argue that 6Li is a two-nucleon
halo nucleus.

4. Neutron capture

The inverse reaction of the photodissociation of one-
neutron halo nuclei is radiative neutron capture on the core
nucleus, which can be relevant for a variety of astrophysical
processes. The corresponding efforts in halo EFT have been
reviewed by Higa (2015) and Rupak (2016).
One example is the radiative neutron capture on 7Li. This

reaction was investigated in halo EFT by Rupak and Higa
(2011). They expressed the cross section in terms of n-7Li
scattering parameters and showed that the LO uncertainty
comes from the poorly known P-wave effective range r1. The
low-energy data for this reaction can be described well by a
one-parameter fit yielding r1 ¼ −1.47 fm−1. In subsequent
work, Fernando, Higa, and Rupak (2012) extended this
calculation to higher energies, where the 3þ resonance
becomes important. Their results suggest a resonance width
about 3 times larger than the experimental value. They also
presented power-counting arguments that establish a hierarchy
for electromagnetic one- and two-body currents.
The radiative neutron capture on 7Li was refined by Zhang,

Nollett, and Phillips (2014b) in an approach combining halo
EFT and ab initio calculations. They presented a halo EFT
calculation that describes neutron capture to both the ground
and first excited states of 8Li. Each of the possible final states
were treated as halo bound-state configurations of 7Li plus a
neutron, including low-lying excited states of the 7Li core. The
asymptotic normalization coefficients of these bound states
were taken from an ab initio calculation using a pheno-
menological potential. In contrast to Rupak and Higa (2011),
they found good agreement with the ratio of partial cross
sections for different initial spin states. Moreover, they
obtained excellent agreement with the measured branching
ratios between the two final states.
Rupak, Fernando, and Vaghani (2012) applied halo EFT to

the dominant E1 contribution to radiative neutron capture on
14C, including contributions from both resonant and nonreso-
nant interactions. They found that significant interference
between these two mechanisms leads to a capture contribution
that deviates from simple Breit-Wigner resonance form.

G. Proton halos

Proton halos are less common due to the delicate interplay
between attraction from the strong interaction and the
Coulomb repulsion. The presence of the Coulomb barrier
introduces the Coulomb momentum

kC ¼ Z1Z2αμ12; ð69Þ

TABLE I. Two-neutron separation energies and LO charge radii
squared for four different two-neutron halos. Adapted from Vanasse,
2017a.

Nucleus S2n (MeV) hr2Ei (fm2)
11Li 0.3693(6) 0.744
14Be 1.27(13) 0.126
22C 0.11(6) 0.519þ∞

−0.274
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with Z1;2 the particle charges and μ12 their reduced mass, as a
new scale corresponding to the inverse of the Bohr radius of
the system. This scale is independent of the hadronic scales
and complicates the power counting (cf. the discussion for
protons in Sec. II). In general, the correct scaling of the
Coulomb momentum with respect to strong-interaction scales
strongly depends on the system considered. One focus of
recent studies in halo EFT has been, therefore, on the
underlying scaling relations in systems and reactions with
Coulomb forces.
An EFT for S-wave proton-halo nuclei was developed by

Ryberg et al. (2014b). They analyzed the universal features of
proton halos bound due to a large S-wave scattering length
and derived LO expressions for the charge form factor and the
radiative proton-capture cross section. In subsequent work
Ryberg et al. (2016) extended the calculation to higher orders
and analyzed the effect of finite-range corrections. They
calculated the charge radius to NLO and the astrophysical
S factor for low-energy proton capture to fifth order in the low-
energy expansion. Higher-order ERE parameters cannot
contribute to the E1 capture reaction, and thus the accuracy
is only limited by gauge-invariant counterterms. As an
application, Ryberg et al. (2016) considered the S factor
for proton capture on 16O into the excited 1=2þ state of 17F and
quantified an energy-dependent model error to be utilized in
data fitting. They also provided a general discussion of the
suppression of proton halos compared to neutron halos by the
need for two fine-tunings in the underlying theory.
Schmickler, Hammer, and Hiyama (2019) and Schmickler,
Hammer, and Volosniev (2019) investigated universal binding
in few-body systems of up to four charged particles. They
showed that range corrections are generically enhanced in the
strong Coulomb case relevant for most nuclei.
The inclusion of Coulomb effects in P-wave halo nuclei

was pioneered by Higa (2010), who looked at low-energy pα
scattering. More extensive calculations were carried out later
by Zhang, Nollett, and Phillips (2014a), extending their
previous work for neutron capture to the proton halo in
7Beðp; γÞ8B. This reaction is important for analyzing solar
neutrino experiments (Adelberger et al., 2011; Haxton,
Hamish Robertson, and Serenelli, 2013). However, owing
to the Coulomb barrier, it cannot be measured at the extremely
low energies required for this purpose, and the data must be
extrapolated. Zhang, Nollett, and Phillips (2014a) demon-
strated that halo EFT together with input from ab initio
calculations constitutes a powerful tool to carry out this
extrapolation. They treated 8B as a shallow P-wave bound
state of a proton and a 7Be core and included the first core
excitation explicitly. The couplings were fixed using measured
binding energies and p-7Be S-wave scattering lengths,
together with 8B asymptotic normalization coefficients from
ab initio calculations. They emphasized the important role of
p-7Be scattering parameters in determining the energy
dependence of SðEÞ and demonstrated that their present
uncertainties significantly limit attempts to extrapolate the
data to stellar energies. Zhang, Nollett, and Phillips (2015)
extended this calculation to NLO and used Bayesian methods
to determine the EFT parameters and the low-energy S factor,
using measured cross sections and scattering lengths as inputs.

The results of their analysis, which reduced the uncertainty of
Sð0Þ by a factor of 2, are shown in Fig. 23. Further details
were given by Zhang, Nollett, and Phillips (2018a).
In related work, Ryberg et al. (2014a) pointed out that the

charge radius of 8B and the S factor for 7Beðp; γÞ8B are
correlated at LO in halo EFT. This correlation thus provides
indirect access to the S factor at low energies and serves as a
consistency check.

H. Cluster systems

Many nuclear states are close to a threshold for breakup into
smaller clusters and are therefore amenable to an EFT
approach where these smaller clusters are the relevant degrees
of freedom. For example, several states of nuclei with
A ¼ 4ðnþ 1Þ, n ≥ 1 an integer, and equal numbers of proton
and neutrons are thought to be made of alpha-particle clusters
(Ikeda, Takigawa, and Horiuchi, 1968). The most famous
example is the Hoyle state, the first 0þ excited state of 12C,
which owing to its position near the 3α threshold plays an
important role in the creation of 12C and 16O, and thus our type
of life, in the Universe. Traditionally, these states have been
investigated with a variety of phenomenological approaches
(Freer et al., 2018).
The first step to study these systems in halo EFT is αα

scattering. Higa, Hammer, and van Kolck (2008) developed a
power counting for this system, which is highly fine-tuned.
Because of the subtle interplay of strong and electromagnetic
forces, there is a narrow resonance at an energy of about
0.1 MeV, the 8Be ground state. The scenario explored by Higa,
Hammer, and van Kolck (2008) can be viewed as an
expansion around the limit where, when electromagnetic
interactions are turned off, the 8Be ground state is at threshold
and exhibits conformal invariance. This implies treating the
Coulomb momentum kC ¼ 2αmα ≃ 60 MeV, where mα is the
alpha-particle mass, as a high-momentum scale and expanding
observables in powers of Q=ð3kCÞ, where Q is a typical
external momentum, in addition to the standard expansion in
the strong interactions. The Coulomb-modified scattering

FIG. 23. (Right panel) NLO S factor as function of energy (solid
blue curve). Shading indicates a 68% interval. The dashed line
gives the LO result. (Left panel) One-dimensional probability
distribution functions for Sð0Þ (blue line and histogram) and
Sð20 keVÞ (red dashed line). From Zhang, Nollett, and Phillips,
2015.
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length is very large, and the corresponding effective range
almost saturates the Wigner bound for charged systems
(König, Lee, and Hammer, 2013). The corresponding phase
shifts are shown in Fig. 24 together with the experimental data
from Afzal, Ahmad, and Ali (1969) and an ab initio lattice
EFT calculation from Elhatisari et al. (2015). Agreement with
the data seems to extend somewhat beyond the laboratory
energy Elab ¼ 2 MeV corresponding to kC. The sharp rise in
the phase shift at low energies is a fine-tuned effect that is
difficult to describe in the ab initio calculation, which displays
a bound state instead. In contrast, the ab initio calculation
extends to much higher energies than halo EFT.
An RG analysis of the coupled channels pþ 7Li and

nþ 7Be, which couple to a 2− state of 8Be close to the
nþ 7Be threshold, was carried out by Lensky and Birse
(2011). A more recent study involving 8Be concerned a
reported anomaly in the eþe− production from the decay
of one of the 1þ resonances to the ground state. A careful
analysis inspired by halo EFT was carried by Zhang and
Miller (2017), who concluded that nuclear physics is unlikely
to explain the experimental result.
C and O production in stars also depends on the radiative

capture of alpha particles by 12C, 12Cðα; γÞ16O, at low energies.
As in Sec. III.F, parameters from elastic α-12C scattering enter
in a halo EFT approach to the capture process. Ando (2016,
2018) developed a description of the elastic reaction taking the
12C ground state as pointlike, and they obtained asymptotic
normalization coefficients for some of the 16O states from a fit
to phase shifts.
Little has been done using halo EFT for other cluster

systems. An early application of halo EFT for l ¼ 2 to the
reaction dþ t → nþ α was carried out by Brown and Hale
(2014). However, they used dimensional regularization with
minimal subtraction and thusmissed relevant parameters. Higa,
Rupak, and Vaghani (2018) recently investigated another
important process in the Sun, namely, the radiative capture
of an α particle on 3He. They extracted an S factor slightly
above the average in the literature, but consistent within error
bars. Zhang, Nollett, and Phillips (2018b) recently performed a

Bayesian analysis of this reaction without relying on existing
phase-shift analyses as a constraint.

I. Outlook

In this section, we reviewed the progress in halo/cluster
EFT, a short-range EFT with explicit fields for nucleon and
cluster degrees of freedom, designed for the description of
halos and cluster nuclei. Such systems have a rich structure
due to the emergence of new scales from the Coulomb
interaction between the clusters. The Efimov effect plays
an important role for neutron-halo nuclei and their application
in the presence of Coulomb interactions presents an exciting
opportunity for the discovery of new phenomena.
Halo EFT is conceptually similar to the pionless EFT

discussed in Sec. II. As a description of nuclei not limited to
the few-nucleon sector, it complements ab initio approaches by
parametrizing universal relations between low-energy observ-
ables in systems dominated by shallow bound states and low-
lying resonances, and it quantifies the corrections to these
relations. While such ab initio calculations can be based on
interactions from chiral EFT (which is reviewed in Sec. IV), for
systemswithin its reach of applicability halo EFT sets up amore
effective and efficient expansion. Halo EFT promises a quanti-
tative description on the same footing of both nuclear structure
and reactions of clusterized systems and exotic isotopes,which is
a major challenge of contemporary nuclear theory. Nuclear
reactions have been investigated both in strict halo EFT
(Schmidt, Platter, and Hammer, 2019) and in accurate phenom-
enological models of reactions with a halo EFT motivated
description of the projectile (Capel, Phillips, andHammer, 2018;
Yang and Capel, 2018). Many of these reactions have an impact
on astrophysical processes and even on the quantification of
nuclear uncertainties in experimental anomalies.
Future challenges include a better integration of ab initio

methods and halo EFT to maximally benefit from the
strengths of both approaches. The use of Bayesian statistics
for the estimation of higher-order corrections provides a
method to account for the different sources of theory errors
beyond simple scaling arguments. Finally, hypernuclei are a
new and almost unexplored arena for halo EFT and univer-
sality. As we discuss in Sec. V.C, experimental data are not
abundant and a combination of halo EFT and ab initio
methods therefore appears to be especially promising.

IV. CHIRAL EFT

A. Motivation

As the typical momentum in a nuclear process increases
beyond the pion mass, pion effects can no longer be
approximated by an expansion around the zero-range limit.
As a response to the failure of early attempts to achieve RG
invariance in pion theories, an approach gradually emerged in
the 1950s where the nuclear potential and currents took purely
phenomenological forms or, at best, came from the single
(and, occasionally, double) exchange of an arbitrary selection
of mesons. The potential was almost always constructed so as
to be regular [i.e., not a singular potential (Frank, Land, and
Spector, 1971)], which in the case of meson exchange was
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FIG. 24. Halo EFT results for the αα S-wave phase shift by
Higa, Hammer, and van Kolck (2008) as a function of the
laboratory energy Elab. LO and NLO phase shifts are given by the
blue dashed and red solid lines, respectively. The experimental
data are from Afzal, Ahmad, and Ali (1969), while the lattice EFT
results are from Elhatisari et al. (2015).
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ensured by including physical form factors. The relative ease
of solving the two-nucleon Schrödinger equation numerically
made it possible to produce exquisite fits to a large amount of
two-nucleon data, frequently of the same quality even with
different physical input into the potential. In contrast, a
comparable description of A > 2 systems seems to require
three-nucleon forces and two-nucleon currents, but the large
variety of possible structures posed a significant obstacle to
this purely phenomenological approach. Moreover, the con-
nection to QCD and the assignment of systematic errors are
not addressed.
Chiral EFT attempts to overcome these shortcomings by

solving the RG problems of earlier pion theories. In hindsight,
the latter were both too restrictive, in the sense of not
including all interactions consistent with symmetries, and
not restrictive enough, in the sense of not incorporating the
constraints of chiral symmetry. Early forms of mesonic ChPT
date back to the 1960s and were extremely important in the
development of the EFT paradigm. The mature version of
mesonic ChPT took shape in the 1980s (Weinberg, 1979;
Gasser and Leutwyler, 1984, 1985), and processes for A ¼ 1
(Gasser, Sainio, and Svarc, 1988; Bernard et al., 1991;
Bernard, Kaiser, and Meißner, 1991; Jenkins and Manohar,
1991a, 1991b) and A ≥ 2 (Weinberg, 1990, 1991, 1992; Rho,
1991; Ordóñez and van Kolck, 1992; van Kolck, 1993) started
receiving significant attention in the late 1980s and early
1990s. As this section reviews, substantial progress has been
made in understanding the structure of the nuclear potential
and currents, but chiral EFT has not yet produced a complete
solution to the RG problems that plagued earlier pion theories.
Extensive reviews exist of chiral EFT applications to

nuclear phenomenology by, for example, van Kolck
(1999a), Beane, Bedaque, Haxton et al. (2001), Bedaque
and van Kolck (2002), Epelbaum, Hammer, and Meißner
(2009), Machleidt and Entem (2011), and Epelbaum and
Meißner (2012). We focus here on some of the conceptual
issues, which parallel those of pionless EFT (Sec. II) and halo/
cluster EFT (Sec. III). Chiral EFT extends pionless EFT to
processes with characteristic momentum Q ∼Mlo, where
Mlo ∼mπ ≪ MQCD. As discussed in Sec. IV.B, the breakdown
scale Mhi ≲MQCD depends in part on the degrees of freedom
being kept explicit. Section IV.B also discusses the pertinent
symmetries and Lagrangian. The nuclear potential and cur-
rents, defined in Sec. I.C, are free of the IR enhancement that
leads to nuclear bound states and resonances. As a conse-
quence, contributions to the potential can be treated similarly
to contributions to amplitudes in ChPT, as discussed in
Sec. IV.C. The relation to experiment via amplitudes and
the more complex issue of their renormalization are reviewed
in Sec. IV.D. Analogous considerations afflict reactions with
external light probes such as photons and pions, which are
sketched in Sec. IV.E. Section IV.F lists some of the out-
standing issues facing chiral EFT.

B. Basic elements

1. Degrees of freedom and symmetries

By extending the pionless EFT of Sec. II to include an
isovector field π⃗ that collects the three charged pion states, one

develops a representation of QCD for Q ∼mπ, with mπ now
among the low-energy scales collectively denoted by Mlo. In
this EFT, pion exchange among nucleons generates ampli-
tudes that are no longer given by the ERE or a simple
generalization thereof. Instead, there appear nonanalytic
functions of Q=mπ in all amplitudes.
The lightness of the pions relative to other hadrons can be

explained naturally if they are identified with the pseudo
Goldstone bosons of the spontaneous breaking of approximate
chiral symmetry, SUð2ÞL × SUð2ÞR for two flavors. In the
chiral limit (m̄ ¼ 0, ε ¼ 0, e ¼ 0), the QCD Lagrangian (1)
has an exact chiral symmetry. In contrast, the spectrum shows
only an approximate isospin symmetry SUð2ÞV. Close to the
chiral limit, SUð2ÞL × SUð2ÞR is an approximate symmetry of
Eq. (1). Pions, which have vanishing mass in the chiral limit,
acquire a relatively small but nonzero common squared mass
m2

π ¼ OðMQCDm̄Þ and a square-mass splitting δm2
π ¼

OðαM2
QCD=4π; ε

2m4
π=M2

QCDÞ between charged and neutral
states.
Pions should play a special role as long as m̄ ≪ MQCD. In

this section we consider this regime, where we integrate out all
other mesons because they are expected to have masses
OðMQCDÞ. The lightest of these is the σ with spin S ¼ 0

and isospin I ¼ 0, and a mass (half-width) mσ ¼ 441 MeV
(Γσ=2 ¼ 271 MeV) (Caprini, Colangelo, and Leutwyler,
2006). This suggests that the EFT radius of convergence is

no larger thanMhi ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

σ þ Γ2
σ=4

p
≃ 500 MeV. The hadronic

EFT of QCD beyond this scale is not known. The problem is
power counting: by NDA, interactions with derivatives will
produce powers of Q=MQCD in amplitudes; thus, as Q
approaches MQCD, all interactions are equally important. To
incorporate mesons in an EFT we need an argument that, at
least at a formal level, justifies treating their masses and
interactions as small with respect to MQCD. Typically this is
accomplished by assuming QCD to have further approxi-
mate symmetries. For example, scale symmetry has been
invoked in the context of three flavors to justify the inclusion
of a scalar-isoscalar meson (Crewther and Tunstall, 2015) and
a dynamical “vector” symmetry (Georgi, 1989) postulated for
the ρmeson. Although interesting, such schemes have thus far
met with limited success, if any, away from the mesonic
sector.
One must, however, consider the effects of nucleon excita-

tions. As mentioned in Sec. I, for Q ≪ mN ∼MQCD the
nucleon mass is inert. For baryon-number-conserving proc-
esses, the relevant mass scale for other baryons is their mass
splitting from the nucleon. The Delta isobar with S ¼ 3=2 and
I ¼ 3=2 lies at mΔ −mN − iΓΔ=2 ≃ ð270 − 50iÞ MeV (Arndt
et al., 2006). Although the mass difference mΔ −mN does not
vanish in the chiral limit, it is relatively small, in line with
arguments based on a large number of colorsNc: when QCD is
generalized to an SUðNcÞ gauge theory mΔ −mN ¼
OðMQCD=NcÞ. A Deltaless version of chiral EFT exists where
the Delta isobar is integrated out, but it fails before one reaches
the Delta region in A ¼ 1 processes, which leads to relatively
large errors in A ≥ 2 systems (Pandharipande, Phillips, and
van Kolck, 2005). To increase the radius of convergence
beyond ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmΔ −mNÞ2 þ Γ2

Δ=4
p

≃ 275 MeV, one introduces
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(Jenkins and Manohar, 1991b; Hemmert, Holstein, and
Kambor, 1998) a heavy field Δ, a four-component object in
spin and isospin space with the nucleon massmN removed from
its rest energy. As a consequence, the Delta kinetic energy and
interactions are also expanded around the nonrelativistic limit.
Apart from the spin/isospin structure, the main difference with
respect to the nucleon is that a term linear in the mass difference
mΔ −mN (included inMlo) remains in the Lagrangian. Explicit
Delta propagation improves the description of data beyond
threshold (Fettes and Meißner, 2001) and enlarges the realm of
chiral EFT beyond the Delta region once the power counting is
properly reformulated (Pascalutsa and Phillips, 2003; Long and
van Kolck, 2010).
Whether other nucleon excitations should be introduced in

chiral EFT is less clear. The Roper resonance (Roper, 1964) is
special for several reasons (Long and van Kolck, 2011). First,
its pole appears at an energy not much above the Delta, mR −
mN − iΓR=2 ≃ ð420 − 80iÞ MeV (Arndt et al., 2006). Other
resonances lie at least Mhi ≃ 500 MeV above threshold [the
next resonance S11 has a mass mS11 −mN ≃ 500 MeV (Arndt
et al., 2006)], and it is difficult to see why they should be
incorporated into the EFTwithout the concomitant inclusion of
meson resonances. Second, the Roper width is, numerically,
ΓR ∼ ΓΔðmR −mNÞ3=½2ðmΔ −mNÞ3�, as expected from ChPT
widths scaling as Q3=M2

QCD. This is not true for higher
resonances, which typically have relatively smaller widths.
As a consequence, the Delta and the Roper nearly saturate the
Adler-Weisberger sum rule, a result that suggests that, together
with the nucleon, they fall into a simple reducible representa-
tion of the chiral group (Weinberg, 1969; Beane and vanKolck,
2005). Inclusion of an explicit Roper field (Banerjee and
Milana, 1996; Gegelia, Meißner, and Yao, 2016) improves
the convergence of chiral EFT around the Delta resonance
(Long and van Kolck, 2011), but this has not been systemati-
cally investigated. In the following, we consider chiral EFT
with nucleon and Delta fields only.

2. Chiral Lagrangian

The construction of the most general chiral Lagrangian is
based on the theory of the nonlinear realization of a
symmetry (Weinberg, 1968; Callan, et al., 1969; Coleman,
Wess, and Zumino, 1969). Different parametrizations of
the three-dimensional sphere SUð2ÞL × SUð2ÞR=SUð2ÞV ∼
SOð4Þ=SOð3Þ ∼ S3 correspond to different choices of pion
fields. Observables are, of course, independent of this choice.
Pions appear in the chiral Lagrangian always as π⃗=fπ , where
the pion decay constant fπ ≃ 92 MeV is determined by the
radius of S3. Because the three pions cannot provide a linear
realization of SOð4Þ, they transform nonlinearly under chiral
symmetry, so each term in the chiral Lagrangian is associated
with an infinite tower of interactions in powers of ðπ⃗=fπÞ2.
Nucleon N ¼ ðpnÞT and Delta Δ ¼ ðΔþþ Δþ Δ0 Δ−ÞT fields
can be chosen to transform under chiral symmetry
just as under an isospin rotation, but with an angle linear
in the pion field. Covariant derivatives of the pion and baryon
fields can be defined so that they transform in the same
way. They are Dμ ¼ ð1 − π⃗2=4f2π þ � � �Þ∂μ and Dμ ¼
∂μ þ iτ⃗ · ðπ⃗ × ∂μπ⃗Þ=4f2π þ � � � for the pion and nucleon,

respectively, where τ⃗ are the Pauli matrices in isospin space.
For the Delta, the form is the same as for the nucleon, with τ⃗
replaced by the I ¼ 3=2 representation of SOð3Þ. Delta-
nucleon transition operators involve a set of 2 × 4 isospin
matrices T⃗. Details were given by Ordóñez, Ray, and
van Kolck (1996).
The chiral Lagrangian is automatically chiral invariant if it

is built from isospin-symmetric operators involving the
baryon fields, their covariant derivatives, and the pion covar-
iant derivative. Chiral-symmetric interactions of the pions are
thus proportional to the momentum. Away from the chiral
limit, quark masses and electromagnetic interactions break
chiral symmetry and even the isospin subgroup. The sym-
metry-breaking pattern is known from Eq. (1), and inter-
actions in the EFT are constructed to behave the same way.
Thus, although chiral symmetry is not exact, information
about QCD is contained also in the chiral-symmetry-breaking
interactions. These interactions do not necessarily involve
derivatives but must be proportional to powers of the small
parameters m̄=MQCD, ε, and e, as well as the coefficients of
higher-dimensional operators (including violations of parity,
time-reversal, and possibly baryon-number and Lorentz
invariance). The parameter m̄=MQCD can be traded for
m2

π=M2
QCD, while ε and e govern isospin-breaking quantities.

Electromagnetic interactions are constrained byUð1Þem gauge
invariance and appear in two ways: (i) between low-energy
photons and other fields via chiral-covariant derivatives
enlarged to be gauge covariant as well, and via the electro-
magnetic field strength, and (ii) among hadronic fields that
originate in integrating out energetic photons.
Overall, chiral symmetry and its known breaking pattern

lead to a low-energy expansion because all interactions of
pions among themselves or with nucleons involve derivatives
(which bring powers of Q ∼Mlo to amplitudes), powers of
m2

π ∼M2
lo, or powers of smaller parameters. Choices of fields

with different chiral-transformation properties do not change
this feature but do, in general, require delicate cancellations
among different interactions.
As in pionless EFT, it is most convenient to choose a

heavy nucleon for which the Dirac matrices reduce to the
Pauli spin matrices σ. Analogously, one can employ a
heavy Delta field using the corresponding S ¼ 3=2 matrices.
Nucleon-Delta bilinears can be constructed with 2 × 4

spin transition matrices S analogous to the isospin transi-

tion matrices T⃗. Incorporating Lorentz invariance in an
expansion in Q=mN is thus no more difficult in chiral
EFT than in pionless EFT. In recent years it has become
popular to use “covariant” baryon fields from which the
nucleon mass is not subtracted. As any field redefinition,
such choices cannot affect observables in an essential way:
amplitudes obtained from different fields but the same power
counting can only differ by higher-order terms. Although
these differences are sometimes interpreted as an indication
of the “best” field choice, they merely reflect the error of the
truncation.
The baryon-number-conserving chiral Lagrangian can be

split into pieces with even numbers of fermion fields,
L ¼ Lf¼0 þ Lf¼2 þ Lf≥4, where
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Lf¼0 ¼
1

2

�
ðD0π⃗Þ2 − ðDπ⃗Þ2 −m2

ππ⃗
2

�
1 −

π⃗2

4f2π
þ � � �

��
þ � � � ; ð70aÞ

Lf¼2 ¼ N†
�
iD0 þ

D2

2mN

�
N þ gA

2fπ
N†τ⃗σN · Dπ⃗ þ Δ†ðiD0 þmN −mΔÞΔþ hA

2fπ
ðN†T⃗SΔþ H.c.Þ · Dπ⃗ þ � � � ; ð70bÞ

Lf≥4 ¼ −
C0t

2
ðNTPtNÞ†ðNTPtNÞ− 1

2

�
C0s þD2sm2

π

�
1−

π⃗2

2f2π
þ � � �

��
ðNTPsNÞ†ðNTPsNÞ

−
C2s

8
fðNTPsNÞ†½NTPsD

2Nþ ðD2NÞTPsN� þH:c:g−C0
2t

4
½ðNTPtDNÞ† · ðNTPtDNÞ þ ððDNÞTPtNÞ† · ððDNÞTPtNÞ�

þ GA

2fπ
N†NN†στ⃗N ·Dπ⃗ −H0N†NN†NN†Nþ � � � ; ð70cÞ

with LECs gA, hA, C0s;t, D2s, C2s, C0
2t, GA, and H0, and

where we used a notation similar to Eq. (33). Only a few
representative interactions are shown explicitly here, with
others (more fields, derivatives, powers of m2

π , isospin
breaking, etc.) being relegated to the ellipsis. Note that
many terms can be written in different forms with Fierz
reordering and/or field redefinitions. One can also introduce
dibaryon fields as described in Sec. II.B.5 and as done, for
example, by Soto and Tarrus (2012) and Long (2013).
Particularly convenient for nuclear processes, where

nucleon energies and momenta are of significantly different
magnitudes, is to use field redefinitions to eliminate time
derivatives of the nucleon field in favor of spatial derivatives.
When interaction terms that depend on time derivatives appear
in the classical Lagrangian, the effective Lagrangian obtained
via the path integral of the Hamiltonian contains additional
terms (Charap, 1970, 1971; Salam and Strathdee, 1970;
Gerstein et al., 1971; Honerkamp and Meetz, 1971). These
do not vanish, in general, if a momentum cutoff is used.
Generally, the easiest way to respect symmetries is to imple-
ment regulators as operators in the chiral Lagrangian con-
structed from chiral-covariant objects (Slavnov, 1971;
Djukanovic et al., 2005; Long and Mei, 2016).
If mΔ −mN is considered a large scale, the Delta is

integrated out and appears only through LECs starting at 1
order higher than in the Deltaful EFT. If mπ is also considered
a large scale, pions are integrated out as well. Although the
chiral Lagrangian formally reduces to the pionless form in
Eq. (33) when terms with pions and Deltas are omitted from
Eq. (70), one should keep in mind that the remaining LECs
depend on which degrees of freedom appear in the EFT.

C. Chiral perturbation theory and the nuclear potential

A great advantage of EFT over earlier attempts to describe
nuclear physics from field theory is its explicit focus on the
regime of momenta well below the nucleon mass, where the
theory splits into sectors of fixed nucleon number A. As
pointed out in Sec. I, there are significant differences between
A ≤ 1 and A ≥ 2 processes.

1. Power counting

To express amplitudes in an expansion in powers of
Q=MQCD, as in Eq. (3), one needs to count powers of both

Q ∼Mlo and MQCD. For Q, one first relates nucleon energies
and momenta, and this relation, in general, depends on the
sector of the theory. For A ≤ 1, typically (but not always)
E ¼ OðQÞ, while A ≥ 2 processes with only nucleons in
external legs involve energies E ¼ OðQ2=mNÞ. For pions,
since we countmπ asMlo, E ¼ OðQÞ. The crucial assumption
in counting powers of MQCD is naturalness, namely, that an
LEC needed to eliminate cutoff dependence of a loop at a
certain order has finite pieces of the same order.
For an A ≤ 1 Feynman diagram, the various elements scale

after renormalization as

derivative ∼Q; ð71aÞ

baryon; pion propagator ∼ Q−1; Q−2; ð71bÞ

pion loop integral ∼ ð4πÞ−2Q4; ð71cÞ

where the factor of ð4πÞ−2 is typical of relativistic loops. The
sizes of LECs can be estimated via NDA; see Eq. (9). Chiral-
symmetric operators depend on arbitrary powers of the
reduced strong-coupling constant gred ¼ g=ð4πÞ, which for
consistency should be taken as 1. NDA applied to Eq. (70a)
gives fπ ¼ OðMQCD=4πÞ, and for a generic LEC (Manohar
and Georgi, 1984; Georgi and Randall, 1986)

ci ¼ O
�

ci;red
ffiþpi−2
π MΔi

QCD

�
; Δi ≡ di þ fi=2 − 2; ð72Þ

where di, fi, and pi, respectively, represent the number of
derivatives, baryon fields, and pion fields of the corresponding
operator. The reduced LEC ci;red ¼ Oð1Þ for a chiral-sym-
metric operator. NDA is consistent with the nonrelativistic
expansion since applied to Eq. (70b) it givesmN ¼ OðMQCDÞ.
Keeping explicit Deltas means, however, that we are taking
ðmΔ −mNÞred ¼ OðMlo=MQCDÞ ≪ 1, as suggested by large-
Nc arguments. A chiral-symmetry-breaking operator stem-
ming from the quark masses will have a reduced LEC
proportional to powers of m̄red¼m̄=MQCD¼Oðm2

π=M2
QCDÞ¼

OðM2
lo=M

2
QCDÞ and ε≲Oð1Þ, using that m2

π ¼ OðMQCDm̄Þ
when NDA is again applied to Eq. (70a). The effect of
integrating out hard photons is given by powers of
e2red ¼ ½e=ð4πÞ�2 ≲OðM3

lo=M
3
QCDÞ (van Kolck, 1993, 1995)
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in the corresponding reduced LEC.7 If we take ε ¼ Oð1Þ, then
ci;red ¼ OðMni

lo=M
ni
hiÞ where ni counts the powers of the low-

energy scales mπ , mΔ −mN , and ½e=ð4πÞ�2=3mN . It is con-
venient to enlarge the definition of di to include ni. The
interactions displayed in Eqs. (70a) and (70b) then have
Δi ¼ 0, except for the nucleon recoil term D2=2mN with
Δi ¼ 1. Chiral symmetry guarantees that Δi ≥ 0 for all
interactions stemming from the terms shown explicitly
in Eq. (1).8

Using standard identities for connected graphs, a diagram
with L loops and Vi vertices with chiral index Δi contributes
to the amplitude in Eq. (3) a term with (Weinberg, 1979)9

ν ¼ 2Lþ
X
i

ViΔi; N ¼ f4−3A−Eb
π ; ð73Þ

where Eb is the number of external bosons. The factor 2L
implies that ChPTamplitudes are, in general, perturbative; i.e.,
the nonanalytic functions FðνÞ in Eq. (3) can be obtained from
a finite number of Feynman diagrams. Because of the way
NDA was inferred, these loop diagrams are accompanied by
higher-index interactions that provide the necessary counter-
terms for RG invariance in the sense of Eq. (5). Because of
chiral symmetry, ν ≥ 0.10 LO [OðN Þ] and NLO [relative
OðQ=MQCDÞ] consist of tree-level (L ¼ 0) diagrams made out
of interactions with chiral indexΔ ¼ 0 and, respectively, no or
one interaction with Δ ¼ 1. They are equivalent to ancient
current algebra. Baryons are not only nonrelativistic but also
approximately static. Quantum-mechanical corrections
(L ≥ 1) start at N2LO [relativeOðQ2=M2

QCDÞ]. As ν increases,
progressively more short-range physics is included, which
accounts for details of hadron structure. Many good reviews of
ChPT exist; see, for example, Bernard, Kaiser, and Meißner
(1995) and Bernard (2008).
That is not to say that within certain regions of phase space

perturbation theory does not break down. The power counting
in Eq. (73) is meant as a general rule only and is bound to fail
in specific situations. For example, within a momentum
window of size OðQ3=M2

QCDÞ around the Delta pole, where

E ≃mΔ −mN , the one-loop diagrams that make for most of
the Delta width become important and a resummation is
necessary at LO (Pascalutsa and Phillips, 2003; Long and
van Kolck, 2010). Similarly, around certain points below
threshold where energies are OðQ2=MQCDÞ, nucleon recoil
needs to be resummed and elevated to LO (Lv and Long,
2016). The latter resummation is naturally incorporated by the
use of nonheavy baryon fields (Becher and Leutwyler, 1999;
Fuchs et al., 2003), but in the literature it is often wrongly
implied that such a choice is necessary. In general, the choice
of fields is unimportant, but one should always ensure that the
power counting in Eq. (73) applies to the kinematic region of
interest. Any resummation needs to be done carefully so as not
to break RG invariance.
Nucleon-only A ≥ 2 processes have E ¼ OðQ2=mNÞ and

require a resummation as well (Weinberg, 1991). We return to
this in Sec. IV.D, focusing for now on the sum of “irreducible”
diagrams involving A ≥ 2 nucleons (and Eb ¼ 0), which is
defined (see Sec. I.C) as the full nuclear potential.11 The
analogous currents are briefly discussed in Sec. IV.E.
By construction, the potential is free of IR enhancement,

and we expect a power counting similar to ChPT’s to apply as
long as interactions with f ≥ 4 also obey NDA. A compli-
cation is that the full potential introduced in Sec. I.C includes
disconnected diagrams. Each disconnected piece scales as
ð4πÞnQ−4, where n is an integer, coming from the fact that the
extra four-dimensional delta function, which enforces
momentum conservation, also eliminates a loop integral.
Weinberg (1991, 1992), Ordóñez and van Kolck (1992),
and van Kolck (1993) assumed n ¼ 2 on the basis of
Eq. (71c), while Friar (1997) took n ¼ 1, which is consistent
with the nonrelativistic nature of reducible loops discussed in
Sec. IV.D.3. As a consequence, a diagram with 1 ≤ C ≤ A − 1

separately connected pieces contributes to the potential in
Eq. (7) with (Weinberg, 1991; Friar, 1997)

μ ¼ nðA − 1 − CÞ þ 2Lþ
X
i

ViΔi;

Ñ ¼ ð4πÞð2−nÞAf4−3Aπ : ð74Þ

This power counting (with n ¼ 2) has been used in most
studies of chiral potentials to date.

2. Nuclear potential

In chiral EFT, Fig. 2 is undone: pion exchange appears
explicitly in the potential, with the remaining contact inter-
actions accounting for higher-momentum physics. In contrast
to pionless EFT, the potential itself involves (irreducible)
loops, where energies are comparable to momenta and
nucleons are approximately static. The long-range pion-
exchange contributions appear in all partial waves and yield
many-body forces consistent with 2N forces and the hadronic
physics described by ChPT. They are not known to violate the
estimate in Eq. (74).

7How one accounts for ered relative to other parameters is
somewhat ambiguous, and to some extent a matter of convenience.
Sometimes the choice e2red ¼ OðM2

lo=M
2
QCDÞ is made in the literature.

This choice leads a pion mass splitting δm2
π ¼ OðαM2

QCD=4πÞ ¼
Oðm2

πÞ and to a Coulomb potential comparable to OPE for momenta
Q ∼mπ . That means electromagnetic effects at LO, an overestimate.
A similar ambiguity affects ε ≃ 1=3, which can be counted asOð1Þ or
as OðMlo=MQCDÞ.

8The choice of heavy baryon fields makes this evident by
removing positive powers of the large nucleon mass from the
Lagrangian.

9Note that ν can be written in various ways that differ by an
additive factor and by the overall normalization. In writing Eq. (73),
as well as Eq. (74), we choose a form where LO corresponds to
ν ¼ 0.

10If interactions in the ellipsis in Eq. (1) are considered, Δ and ν
can be negative. However, these interactions are small due to
strengths that are much smaller than our expansion parameter
Q=MQCD. Such interactions can still be included perturbatively.

11For a recent attempt to treat pions dynamically instead through
quantum Monte Carlo methods, see Madeira et al. (2018).
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Pion loops also generate short-range contributions that
cannot be separated from contact interactions in the potential.
The piece of an LEC that removes the cutoff dependence in
irreducible loops, or more generally the piece that obeys NDA,
is sometimes referred to as a primordial counterterm (Long
and Yang, 2012a, 2012b). This is to distinguish it from
another piece that renormalizes the reducible loops of the
full amplitude. This additional piece may violate NDA and be
present at a lower order than the primordial piece, as discussed
in Sec. IV.D. As in pionless EFT, the potential is not cutoff
independent.

a. Leading order

The full LO potential has maximum C (Cmax ¼ A − 1, from
A − 2 disconnected lines): it consists of the sum over pairs of
the 2N potential at tree level (L ¼ 0) constructed entirely from
Δ ¼ 0 interactions. The long-range 2N potential consists of
static one-pion exchange (OPE) and the primordial counter-
terms are the two LECs of the nonderivative chiral-symmetric
contact interactions in Eq. (70c):

Vð0Þ ¼ −
4π

mNMNN

τ⃗1 · τ⃗2
q2 þm2

π

�
S12ðqÞ −

m2
π

3
σ1 · σ2

�

þ C0sPs þ C0tPt; ð75Þ

where the indices 1 and 2 label the two nucleons, q is the
transferred momentum, and S12ðqÞ ¼ ðσ1 · qÞðσ2 · qÞ −
q2ðσ1 · σ2Þ=3 is the tensor operator. OPE is static because
the transferred energy, related to nucleon recoil, is small
[relative OðQ=MQCDÞ] compared to jqj. The scale that
controls the OPE strength, in a form we can compare with
short-range interactions in pionless EFT, was introduced by
Kaplan, Savage, and Wise (1998a, 1998b) as

MNN ¼ 16πf2π
g2AmN

¼ OðfπÞ; ð76Þ

using NDA. OPE gives rise in coordinate space to (i) a tensor
potential that is as singular ∼1=r3 as r → 0, and (ii) the regular
Yukawa potential. The tensor potential is nonvanishing only
for total spin s ¼ 1 and can mix waves with l ¼ j� 1. It is
attractive in some uncoupled waves like 3P0 and 3D2, and in
one of the eigenchannels of each coupled wave. The Yukawa
potential is attractive in isovector (isoscalar) channels for s ¼
0 (s ¼ 1). The other two terms in Eq. (75) are contact
interactions, which for large cutoffs contribute only to the
3S1 and 1S0 channels. A contact interaction from OPE has been
eliminated through the redefinition

C0s þ
4π

mNMNN
→ C0s ¼ O

�
4π

mNMNN

�
: ð77Þ

b. Subleading orders

The order increases as the chiral index Δ, the number of
loops L, and the number of nucleons in connected pieces
increase. In much of the literature the potential at relative
OðQμ=Mμ

QCDÞ is referred to as Nμ−1LO, but this notation is not

flexible enough to accommodate changes in the power
counting described in Sec. IV.D, which suggest n ¼ 1 in
Eq. (74) and also departures from NDA. For clarity, we denote
the order of contributions using their explicit scaling through-
out the rest of this section. The structure of the long-range
nuclear potential is shown schematically in Fig. 25.
The first few-body forces arise (van Kolck, 1993, 1994) at

OðQn=Mn
QCDÞ compared to LO, from Δ ¼ 0 and L ¼ 0

with C ¼ A − 2:
• A 3N two-pion exchange (TPE) force via an intermedi-
ate Delta, the Fujita-Miyazawa force (Fujita and Miya-
zawa, 1957) shown in Fig. 25.

• Nucleon-only 3N and “double-pair” forces (for A ≥ 4)
when, in a time-ordered diagram, a 2N interaction occurs
while a pion is flying between two nucleons.

Forces of the second type exactly cancel against nucleon recoil
in the 2N OPE once the latter is inserted into the Lippmann-
Schwinger equation (Weinberg, 1991; Ordóñez and
van Kolck, 1992; van Kolck, 1993, 1994). But recoil is an
OðQ=mNÞ effect compared to LO: the cancellation implies
that ð4πÞ2−nQ2=M2

QCD ∼Q=mN . For n ¼ 2, one obtains
Q=mN ∼Q2=M2

QCD at variance with the NDA that underlies
the power counting. In contrast, if one takes NDA seriously,
mN ¼ OðMQCDÞ ¼ Oð4πfπÞ, then n ¼ 1 and Q ∼ fπ ¼
OðMNNÞ. As we discuss in Sec. IV.D, this is consistent with
the counting of factors of 4π suggested by pionless EFT. Not
all practitioners countmN , and thus implicitly choose n, in the
same way. However, regardless of how mN is counted, chiral
EFT, just as pionless EFT, implements the constraints of
Lorentz invariance in a Q=mN expansion.

FIG. 25. Sample of diagrams representing the pion-range
components of the AN nuclear potential in chiral EFT according
to Eq. (74) with n ¼ 2. The order of the contributions is indicated
as OðQμ=Mμ

hiÞ, μ ≥ 0, where Q ∼mπ and Mhi ∼MQCD. Arrows
in the 3N and 4N columns indicate the changes for n ¼ 1. A solid
(double) line stands for a nucleon (nucleon excitation), while a
dashed line stands for a pion. A circle around the central solid
circle denotes an inverse power of Mhi.
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After this cancellation, the 2N potential vanishes at relative
OðQ=MQCDÞ if we neglect parity violation (Weinberg, 1991;
Ordóñez and van Kolck, 1992; van Kolck, 1993, 1994). For
n ¼ 1, the Fujita-Miyazawa 3N force survives at this order. It
is demoted to relative OðQ2=M2

QCDÞ if n ¼ 2, in which case
the full potential vanishes atOðQ=MQCDÞ. More generally, the
first aN force (L ¼ 0, all interactions with Δ ¼ 0) is expected

to appear at relative OðQnða−2Þ=Mnða−2Þ
QCD Þ. The relative sup-

pression of few-body forces (Weinberg, 1991; Ordóñez and
van Kolck, 1992; van Kolck, 1993, 1994) is in agreement with
the experience drawn from phenomenological potentials
containing explicit pion exchange, for which 3N forces are
usually found to be necessary at the 10% level, for example, to
provide ∼1 MeV to the triton binding energy ≃8.5 MeV. The
explanation for the smallness, but non-negligibility, of phe-
nomenological few-body forces was an early success of
chiral EFT.

c. 2N potential

At relative OðQ2=M2
QCDÞ, corrections to OPE merely shift

existing couplings: for example, gA in Eq. (76) receives a
contribution proportional to m2

π , the so-called Goldberger-
Treiman discrepancy. The long-range 2N potential consists of
TPE, the so-called box, crossed-box (shown in Fig. 25),
triangle, and football diagrams built out of πN†N and 2πN†N
interactions with chiral index Δ ¼ 0. For the last three types,
all combinations of nucleons and Deltas need to be considered
in intermediate states. For the box diagram with nucleons
only, once-iterated OPE needs to be subtracted. The primor-
dial counterterms consist of all possible two-derivative chiral-
symmetric contact interactions (Ordóñez and van Kolck,
1992; van Kolck, 1993; Ordóñez, Ray, and van Kolck,
1996), including the C2s and C0

2t terms in Eq. (70c), and
no-derivative chiral-symmetry-breaking terms that are linear
in the quark masses, such as D2s. The constraints imposed by
relativity on these primordial counterterms were discussed by
Girlanda et al. (2010).
At relative OðQ3=M3

QCDÞ, apart from further contributions
to OPE parameters, the 2N potential is made up of TPE with
one Δ ¼ 1 vertex, such as the triangle diagram shown in
Fig. 25. For n ¼ 1, Galilean corrections (∝ m−1

N ) should be
kept, while for n ¼ 2 they contribute only at next order. There
are no new contact interactions at this order.
The isospin-symmetric 2N potential up to OðQ3=M3

QCDÞ
was derived early on (Ordóñez and van Kolck, 1992; van
Kolck, 1993; Ordóñez, Ray, and van Kolck, 1996; Kaiser,
Brockmann, and Weise, 1997; Kaiser, Gerstendorfer, and
Weise, 1998) and has been rederived many times since.
Epelbaum, Glöckle, and Meißner (1998) introduced the
unitary transformation method, which allows for the separa-
tion of the iterated OPE with a consistent set of 1=mN
corrections. Friar (1999) discussed the various forms, includ-
ing pre-EFT results, and the issues involved in the separation
of iterated OPE. The potential at this order resembles
phenomenological potentials where pion exchange is supple-
mented by a short-range structure. The TPE part, which carries
information about the chiral symmetry of QCD, involves
LECs that can be determined from pion-nucleon scattering.

[For recent work in this direction, see Hoferichter et al. (2015)
and Siemens et al. (2017).] It is a chiral analog of the van der
Waals potential and behaves at short distances as 1=r5, 1=r6,
or 1=r7 depending on the order and the number of inter-
mediate Deltas, and has the qualitative features of heavier-
meson-exchange potentials (Kaiser, Brockmann, and Weise,
1997; Kaiser, Gerstendorfer, and Weise, 1998). The TPE from
chiral EFT without explicit Deltas successfully replaces
heavier-meson exchange in the Nijmegen partial-wave analy-
sis of 2N data (Rentmeester et al., 1999; Rentmeester,
Timmermans, and de Swart, 2003); for a modern version,
see Navarro Pérez, Amaro, and Ruiz Arriola (2014, 2015).
The 2N potential has now been extended to higher orders.

One- and two-loop TPE and two-loop three-pion exchange (see
Fig. 25) diagrams at OðQ4=M4

QCDÞ were calculated by Kaiser
(1999, 2000, 2001b, 2001c, 2015). More recently, the long-
range Deltaless potential was constructed at OðQ5=M5

QCDÞ
(Kaiser, 2001a; Entem et al., 2015a; Epelbaum, Krebs, and
Meißner, 2015b), and even OðQ6=M6

QCDÞ (Entem et al.,
2015a). By parity conservation, primordial counterterms
appear only at even orders.

d. 3N potential

Beyond the Fujita-Miyazawa term, 3N forces have a similar
hierarchy. At OðQnþ1=Mnþ1

QCDÞ, the 3N potential contains TPE
diagrams where one interaction hasΔ ¼ 1; see Fig. 25. Again,
the form of TPE is constrained by chiral symmetry and
provides a chiral-corrected version of the earlier Tucson-
Melbourne (TM) potential (Coon et al., 1979), sometimes
called the TM0 potential (Friar, Huber, and van Kolck, 1999;
Coon and Han, 2001; Huber et al., 2001), and close in form to
the Brazil potential (Coelho, Das, and Robilotta, 1983). There
are no additional isospin-symmetric contributions from Deltas
(Epelbaum, Krebs, and Meißner, 2008a), but there are mixed
one-pion–short-range and purely short-range components
originating in the interactions with LECs GA and H0,
respectively, in Eq. (70c) (van Kolck, 1994; Epelbaum
et al., 2002). Again, parity conservation implies primordial
counterterms only at every second order.
The primordial counterterms atOðQnþ3=Mnþ3

QCDÞwere listed
by Girlanda, Kievsky, and Viviani (2011). Relativistic cor-
rections, which appear at this order for n ¼ 1, were calculated
by Bernard et al. (2011). At OðQnþ2=Mnþ2

QCDÞ the first loops in
the 3N force appear as indicated in Fig. 25, and they were
derived without Deltas by Ishikawa and Robilotta (2007) and
Bernard et al. (2008, 2011). The long-range Deltaless and
Deltaful potentials at 1 order higher [OðQnþ3=Mnþ3

QCDÞ] have
been given by Krebs, Gasparyan, and Epelbaum (2012,
2013, 2018).
One must also look into higher-order double-pair or other

disconnected diagrams where more than two clusters of
nucleons interact at the same time. Epelbaum (2006b,
2007) found that double-pair diagrams with a recoil correction
[OðQ2n=M2n

QCDÞ], with one insertion of a Δ ¼ 2 interaction

[OðQnþ2=Mnþ2
QCDÞ], or with L ¼ 1 [OðQnþ2=Mnþ2

QCDÞ] all add
up to nothing without Deltas.
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e. 4N potential

Four-body forces first appear at relative OðQ2n=M2n
QCDÞ,

among them the one from the four-pion interaction displayed
in Fig. 25. They are all of long range and contain no free
parameters. The components without Deltas were given by
Epelbaum (2006b, 2007). A first estimate (Rozpedzik et al.,
2006) of the effect of these components in 4He gives an
additional binding of a few hundred keV. The first contact 4N

force is ofOðQ2ðnþ1Þ=M2ðnþ1Þ
QCD Þ; since it has no derivatives, the

exclusion principle allows only one such interaction, as was
verified explicitly by Girlanda, Kievsky, and Viviani (2011).

f. Isospin violation

As discussed in Sec. II, Coulomb exchange is nonpertur-
bative only at small energies; in the region that chiral EFT
power counting is designed for, the Coulomb potential can be
treated in perturbation theory. The way ered was counted
earlier ensures that the Coulomb potential appears at
OðMlo=MQCDÞ, not LO. Other purely electromagnetic com-
ponents are even smaller and can be incorporated as in ChPT.
More interesting is the isospin breaking coming from the
interactions in Eq. (70), where hard photons are integrated out
and/or the quark-mass difference m̄ε [see Eq. (1)] appears.
These interactions lead to the charge-neutral pion mass
splitting δm2

π ¼ OðM3
lo=MQCDÞ > 0 and the neutron-proton

mass difference δmN ¼ OðM2
lo=MQCDÞ > 0. Likewise, other

isospin-violating effects are suppressed by at least 1 power of
M−1

QCD (van Kolck, 1993, 1995), which means that isospin is
an accidental symmetry: although broken in QCD, it is a
symmetry of the LO EFT.
In contrast to many models, chiral EFT produces relatively

simple isospin-violating forces that are invariant under both
gauge transformations and pion-field redefinitions. The iso-
spin-violating 2N potential was calculated up to relative
OðQ3=M3

QCDÞ by van Kolck (1993, 1995), van Kolck, Friar,
and Goldman (1996), van Kolck et al. (1998), Friar and van
Kolck (1999), Niskanen (2002), Friar et al. (2003, 2004),
Epelbaum and Meißner (2005), and Epelbaum, Krebs, and
Meißner (2008a, 2008b), including the pion mass splitting
in OPE and TPE, the most important isospin-breaking
pion-nucleon coupling in OPE, simultaneous photon-pion
exchange, the nucleon mass difference in TPE, and primordial
counterterms. In standard terminology (Miller, Nefkens, and
Slaus, 1990), class I forces refer to isospin symmetry, class II
refers to forces that break charge independence but not charge
symmetry, defined as a rotation of π around the 2-axis in isospin
space, class III refers to forces that break charge symmetry but
vanish in the np system, and class IV refers to those that break
charge symmetry but cause isospin mixing in the np system.
Class M forces are first found at OðQM−1=MM−1

QCDÞ, which
provides a justification for the pre-EFT phenomenology, where
this hierarchywas observed (Miller,Nefkens, and Slaus, 1990).
Isospin violation first appears in the 3N potential at relative

OðQnþ1=Mnþ1
QCDÞ, where it breaks charge symmetry through

the nucleon mass difference in TPE (Friar et al., 2004;
Epelbaum, Meißner, and Palomar, 2005; Friar, Payne, and
van Kolck, 2005). However, since δmN is the result of a partial

cancellation between quark-mass and electromagnetic effects,
isospin breaking in the 3N potential is relatively small.

g. Summary

The nuclear potential—its long-range form and its primor-
dial counterterms—has been derived in chiral EFT to a
considerably high order. Although some of its elements had
been anticipated using phenomenological methods, new
forces have also been found, particularly those carrying the
hallmark of QCD via chiral symmetry. Small differences of
implementation remain regarding the related assignments of
order to few-body forces and to the inverse nucleon mass. A
more detailed exposition of the chiral potential was given by
Epelbaum (2006a) and Machleidt and Entem (2011). We turn
now to some of the important issues that arise when con-
necting these forces to data.

D. Nuclear amplitudes and observables

Observables are determined by the T matrix, which in turn is
obtained by using the potential with the appropriate dynamical
framework: the Lippmann-Schwinger or Schrödinger equation
or one of its many-body variants. This process involves
reducible diagrams for which the power counting of
Sec. IV.C.1 does not apply. The original prescription of
Weinberg (1990, 1991) was to truncate the potential and solve
the corresponding equation exactly. The hope, based on
experience with regular potentials, was that if corrections
are small in the potential, they generate only small corrections
at the amplitude level even if they are treated nonperturbatively.
However, chiral potentials are regular only due to the regu-
larization procedure, which means that reducible diagrams
generate further regulator dependence. As in pionless EFT
(Sec. II), non-negative powers ofΛ are generated this way that,
if not compensated for by the LECs, lead not only to potentially
large corrections from subleading orders but also to model
dependence through the regulator choice. The relevant question
is, to what extent does Eq. (5) affect the ordering of the short-
range interactions in the potential?

1. Weinberg’s prescription

The first numerical study of chiral potentials with
Weinberg’s prescription by Ordóñez, Ray, and van Kolck
(1994, 1996) yielded a reasonable description of 2N data at
OðQ3=M3

QCDÞ with explicit Deltas for a Gaussian regulator on
the transferred momentum with cutoff values Λ ¼ 500;
800; 1000 MeV, but it used an overcomplete set of inter-
actions. A drawback of such a local but nonseparable regulator
is that it allows a contact interaction to contribute to all partial
waves in a manner consistent with the exclusion principle. In
the large-Λ limit the contribution of a contact interaction to all
but one wave disappears, but at any finite cutoff data fitting is
highly coupled and complicated. Epelbaum, Glöckle, and
Meißner (2000) carried out the first fit with the minimum
number of seven LECs atOðQ2=M2

QCDÞ. That work as well as
subsequent fits employed different regulators for the potential
and the dynamical equation, with a separable, nonlocal
regulator for the latter. Fits of higher quality were achieved,
and it eventually emerged that they do depend on the choice of
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regulator; only for a limited range of cutoff values Λ≲MQCD

have good fits been obtained (Epelbaum and Meißner, 2013;
Marji et al., 2013). A milestone was a fit (Entem and
Machleidt, 2003) to 2N data at OðQ4=M4

QCDÞ without explicit
Deltas for a nonlocal, super-Gaussian exponential regulator
with Λ ¼ 500 MeV. This achieved accuracy comparable to
that of phenomenological potentials (for the 3S1 phase shifts,
see the curve labeled “EM500” in Fig. 7). Since then other
high-quality fits have been achieved at this or even lower or
incomplete orders (Epelbaum, Glöckle, and Meißner, 2004b,
2005; Ekström et al., 2013, 2014; Epelbaum, Krebs, and
Meißner, 2015a; Piarulli et al., 2015). State of the art are the
OðQ5=M5

QCDÞ fits of Entem, Machleidt, and Nosyk (2017)
and Reinert, Krebs, and Epelbaum (2018).12 We might expect
increasingly accurate results as newly developed fitting-
optimization procedures are applied to higher-order potentials.
To the orders where good fits to 2N data have been achieved,

the chiral potential is expected, as discussed in Sec. IV.C.2, to
include 3N forces, whichever value one takes for n. In most
calculations, where n ¼ 2 is assumed and theDelta is integrated
out, the leading 3N forces appear atOðQ3=M3

QCDÞ, and its two
parametersGA andH0 [Eq. (70c)] are fitted to few-nucleondata.
An obvious observable to fit with H0 is the triton binding
energy, as is frequently done in pionless EFT. Possible ways to
determine GA include a 2N process such as NN → NNπ
(Hanhart, van Kolck, and Miller, 2000; Baru et al., 2009),
another 3N quantity, such as the doublet neutron-deuteron (nd)
scattering length (Epelbaum et al., 2002) or the triton half-life
(Gardestig and Phillips, 2006; Nakamura, 2008; Gazit,
Quaglioni, and Navratil, 2009; Ekström et al., 2014; Baroni
et al., 2016), and a 4N quantity, such as the 4He binding energy
(Nogga et al., 2006; Ekström et al., 2013). Kalantar-
Nayestanaki et al. (2012) reviewed chiral 3N forces in light
nuclei. Recently, a simultaneous fit to A ≤ 4 properties
(Carlsson et al., 2016) was performed up to OðQ3=M3

QCDÞ
without explicit Deltas. Overall, a good description of A ≤ 4

systems, including scattering, can be achieved at this order and
higher, as long as a “good” regulator with a cutoff parameter
Λ≲MQCD is employed.
Owing to their symmetry connection with QCD, chiral

potentials have become increasingly popular within the
nuclear-structure/reaction community, particularly after the
milestone fit of Entem and Machleidt (2003). Remarkable
progress has been achieved in the development of ab initio
many-body methods for the solution of the Schrödinger
equation starting from a given potential. Typically, additional
UVand IR regulators (see Sec. II.C.5) are introduced, and EFT
suggests extrapolations for mitigating their effects (Coon et al.,
2012; Furnstahl, Hagen, and Papenbrock, 2012; Kruse et al.,
2013; More et al., 2013; Tölle, Hammer, and Metsch, 2013;
Furnstahl, Papenbrock, and More, 2014; König et al., 2014;
Furnstahl, Hagen et al., 2015; Wendt et al., 2015; Coon and

Kruse, 2016). Extensive benchmarking—for examples, see
Kamada et al. (2001), Hagen et al. (2007), and Abe et al.
(2012)—has ensured that, while not entirely controlled, results
are found to be in satisfactory agreement with each other.
Ab initiomethods are now at a stage where they can contribute
substantially to the understanding of the input interactions by
relating parameters of these interactions to A > 4 data. The
majority of today’s ab initio calculations use chiral potentials as
input, for many of the new methods are flexible enough to
accommodate the nonlocalities of both the interactions them-
selves and the chosen regulators.
Weinberg’s prescription is simple to implement because it is

the same as that used for a phenomenological potential: the
various components are treated equally in the solution of the
Schrödinger equation. The availability of many-body calcu-
lations has led to an increased use of A > 4 data to constrain
the potential parameters, particularly those of the 3N force,
which proves important in describing some nuclear quantities
such as the ground-state spin of 10Be (Navratil et al., 2007),
the dripline in oxygen isotopes (Otsuka et al., 2010; Hagen
et al., 2012a), and the evolution of shell structure in calcium
isopes (Hagen et al., 2012b; Holt et al., 2012). These
achievements were reviewed by Hammer, Nogga, and
Schwenk (2013), and more recently in a compilation of
articles (Dudek, 2016) celebrating the 40-year anniversary
of the 1975 Nobel Prize. While much of the nuclear data has
been well described—for example, a reproduction of A ≤ 12

spectra (Piarulli et al., 2018)—there are also challenges in
reproducing bulk properties of both nuclei (Somà et al., 2014;
Binder et al., 2018) and nuclear matter (Hagen et al., 2014;
Drischler, Hebeler, and Schwenk, 2019), as well as some A ¼
3 scattering observables, including the recalcitrant Ay puzzle
(Binder et al., 2018; Piarulli et al., 2018).
The issue of the optimal set of data to fit has come to the

fore. In a controlled EFT, a change in input data at a given
order is not ordinarily a systematic improvement because it
represents a change that can be compensated at higher orders.
However, this is not necessarily true when correlated data are
employed (Lupu, Barnea, and Gazit, 2015). If only data at
Q ∼Mlo are used as input, we expect no particular correla-
tions. Guaranteeing that this is the case is made difficult by the
relative closeness between Mlo and Mhi in chiral EFT,
aggravated by the use of cutoff parameters Λ≲Mhi. If one
employs data characterized by Q < Mlo, which are better
described by a lower-energy EFT, correlations might appear.
Examples of correlations among few-nucleon observables
were given in Secs. II and III. If one attempts to use, say,
the triton binding energy and the doublet nd scattering length
to fix two parameters of the 3N force, one might expect one
parameter combination to be relatively poorly determined.
These are low-energy data within the realm of pionless EFT,
which reorganizes interactions into the appropriate low-energy
combinations. Since one expects larger systems to be increas-
ingly within the regime of chiral EFT, it is possible that using
properties of heavier nuclei provides real improvement. A
concrete example is the so-called NNLOsat potential (Ekström
et al., 2015), a Deltaless chiral potential at OðQ3=M3

QCDÞ
where the LECs are simultaneously adjusted not only for A ≤
4 but also to binding energies and radii of carbon and oxygen

12The relatively large size of TPE for the cutoff values employed
by Reinert, Krebs, and Epelbaum (2018) might call into question the
expansion of the potential shown in Fig. 25. However, the potential is
not directly observable and its expansion must be judged according to
its effects on renormalized amplitudes.
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isotopes. Examples of the corresponding predictions for other
nuclei are shown in Fig. 26. In a similar spirit, Elhatisari et al.
(2015, 2016), implementing chiral EFT in a lattice framework,
showed that the alpha-alpha interaction can be used as a
sensitive handle to determine internucleon interactions.
The role of the regulator has also been under increasing

scrutiny in ab initio calculations. A powerful tool for many-
body calculations is the quantum Monte Carlo method, which
pioneered the modern solution of many-nucleon systems but is
best suited for local potentials. In chiral EFT, it favors local
interactions and regulators. Antisymmetrization among nucle-
ons can be used to eliminate some nonlocal contact interactions
(Gezerlis et al., 2013, 2014; Lynn et al., 2014; Logoteta,
Bombaci, and Kievsky, 2016; Piarulli et al., 2016), enabling
various new calculations. For example, the effects of the
OðQ2=M2

QCDÞ potential in neutron matter have been studied
(Gezerlis et al., 2013, 2014; Lynn et al., 2016; Tews et al.,
2016). Because of antisymmetrization, different spin-isospin
forms of the 3N contact interaction can be written; they are all
equivalent and consistent with zero within the EFT truncation
error for Λ ≳MQCD. In contrast, the limitation to Λ≲MQCD

leads to relatively large regulator artifacts above saturation
density (Lynn et al., 2016). This indicates that a lack of RG
invariance, besides destroying model independence, also has
undesirable phenomenological consequences.

2. Renormalization of singular potentials

The regulator dependence of Weinberg’s prescription has
been understood for a long time. Historically, the first
observation was that the potential (75) can be solved semi-
analytically in the 1S0 channel: if p (p0) denotes the relative
incoming (outgoing) momentum in the center-of-mass frame
and k2=mN denotes the energy, the LO amplitude can be
written as (Kaplan, Savage, and Wise, 1996; Gegelia, 1999b;
Eiras and Soto, 2003; Long and Yang, 2012b)

Tð0Þðp0; p; kÞ ¼ TYðp0; p; kÞ þ
χðp0; kÞχðp; kÞ

C−1
0s ðΛÞ − IðΛ; kÞ ; ð78Þ

where TY is the amplitude for a pure Yukawa potential and

χðp; kÞ ¼ 1þmN

Z
d3l
ð2πÞ3

TYðl; p; kÞ
k2 − l2 þ iϵ

; ð79Þ

IðΛ; kÞ ¼ mN

Z
d3l
ð2πÞ3

χ2ðl; kÞ
k2 − l2 þ iϵ

; ð80Þ

where we keep the regularization implicit. When TY ¼ 0,
IðΛ; kÞ reduces to the I0ðΛ; kÞ of Eq. (22), and Eq. (78)
reduces to Eq. (13). While TY and χ have no non-negative
power dependence onΛ, IðΛ; kÞ has two types of inadmissible
cutoff dependence: ∝ Λ and ∝ ðm2

π=MNNÞ lnðΛ=MNNÞ. The
former is the same cutoff dependence that one sees in pionless
EFT (Sec. II), and it can be absorbed in C0s. The latter cutoff
dependence, which appears despite the fact that the Yukawa
interaction is regular by itself and is formally the same as the
logarithmic divergence generated by the Coulomb interaction
(see Sec. II.B.7), comes from the interference between contact
interaction and OPE. It does not appear in other singlet
channels (Eiras and Soto, 2003; Nogga, Timmermans, and van
Kolck, 2005), but it cannot be absorbed in C0s, which is the
LEC of a chiral-invariant interaction and thus is not linear in
m2

π . Instead, one has to modify the LO potential in Eq. (75) to
(Kaplan, Savage, and Wise, 1996)

C0s → C0s þm2
πD2s ¼ O

�
4π

mNMNN

�
: ð81Þ

Even though NDA estimates that D2s ¼ OðC0s=M2
QCDÞ,

renormalization requires D2s ¼ OðC0s=M2
loÞ. Because of

the different transformation properties under chiral symmetry,
the two operators with LECs C0s and D2s differ in their pion
interactions; see Eq. (70c). Of course, one cannot see this
problem numerically in the 2N system unless one varies mπ ,
which is not done in most nuclear work, and even then the
divergence is only logarithmic. The additional pion inter-
actions from D2s should have effects on other processes, such
as pion-nucleus scattering, but only when there is a significant
contribution from the 1S0 2N partial wave. Regardless of its
phenomenological relevance, this is the simplest example
where the renormalization of observables in chiral EFT is not
guaranteed by NDA. This result has been confirmed in many
other studies (Beane et al., 2002; Pavón Valderrama and Ruiz
Arriola, 2004, 2006a).
A similar but more dramatic renormalization effect con-

cerns the momentum dependence of OPE. The tensor potential
is singular, behaving at short distances as −α=rn with n ¼ 3

and, in some channels, α > 0. It is well known (Frank, Land,
and Spector, 1971) that such potentials need to be treated
carefully because both solutions of the radial Schrödinger
equation are irregular at r ¼ 0. For two particles of reduced
mass μ, the zero-energy S-wave radial wave function behaves
at short distances as13

FIG. 26. (Top panel) Ground-state energy (negative of the
binding energy) per nucleon, and (bottom panel) residuals
(differences between computed and experimental values) of
charge radii for selected nuclei computed with a variety of chiral
potentials (labeled a–i and NNLOsat). From Ekström et al., 2015.

13Particularly interesting is n ¼ 2, which is equivalent (Efimov,
1971) to the three-boson system at unitarity; see Sec. II. In this case,ffiffiffiffiffiffiffiffi
2μα

p
r1−n=2=ðn=2 − 1Þ → ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μα − 1=4
p

lnðr=r0Þ, with r0 an arbi-
trary dimensionful parameter, and ϕ2 ¼ ϕ2ðr0Þ. This is an example
of an anomaly (Camblong and Ordóñez, 2003, 2005) where the scale
invariance of the classical system is broken by renormalization to
discrete scale invariance.
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ψðrÞ ¼ rn=4−1 cos

� ffiffiffiffiffiffiffiffi
2μα

p
r1−n=2

n=2 − 1
þ ϕn

�
þ � � � ; ð82Þ

where ϕn is a phase related to the scattering length and, more
generally, the phase shifts. In EFT, the phase is determined by
a contact interaction, the LEC of which displays an oscillatory
dependence on the cutoff (Beane, Bedaque, Childress et al.,
2001; Bawin and Coon, 2003; Braaten and Phillips, 2004;
Alberg, Bawin, and Brau, 2005; Hammer and Swingle, 2006;
Bouaziz and Bawin, 2014; Odell et al., 2019), characteristic
of a limit cycle or more complicated attractor. For RG
analyses and reviews of limit cycles, see Barford and
Birse (2003, 2005) and Pavón Valderrama and Ruiz Arriola
(2008), and Hammer and Platter (2011) and Bulycheva and
Gorsky (2014), respectively. Without the contact interaction,
the increasing attraction of the singular potential leads to the
repeated appearance of low-energy bound states as the
momentum cutoff increases. With the contact interaction,
not only the two-body system but also the three-body system
is renormalized properly (Odell et al., 2019), at least
for n ¼ 3.
The argument can be generalized to the tensor force (Beane

et al., 2002; Birse, 2006), which is attractive in some
uncoupled channels and has one attractive eigenvalue in
coupled channels. In 3S1-3D1 mixing, the C0t interaction in
Eq. (75) is sufficient to absorb the cutoff dependence and fix
the low-energy phase shifts (Frederico, Timoteo, and Tomio,
1999; Beane et al., 2002; Pavón Valderrama and Ruiz Arriola,
2005, 2006a; Yang, Elster, and Phillips, 2008), as suggested
by NDA. However, in higher partial waves the effects of C0t
are cutoff artifacts that disappear at large cutoffs. As the cutoff
increases, bound states accrue in the higher partial waves
where the tensor OPE is attractive (3P0, 3P2-3F2, 3D2, 3D3-3G3,
etc.), leading to wild variation in the corresponding low-
energy phase shifts (Nogga, Timmermans, and van Kolck,
2005; Pavón Valderrama and Ruiz Arriola, 2006b). This
problem can be cured (Nogga, Timmermans, and van
Kolck, 2005) by a short-range interaction in each such
wave, e.g., including a term C0

2tðp0 · pÞPt in Eq. (75). As
primordial counterterm, C0

2t ¼ OðC0s=M2
QCDÞ appears only at

OðQ2=M2
QCDÞ, and similarly for the counterterms in other

attractive, singular waves. The absence in Weinberg’s pre-
scription of the appropriate counterterms explains the need for
a “physical cutoff” Λphys ≲ 1 GeV, where 3P0 would develop
a bound state (Nogga, Timmermans, and van Kolck, 2005). In
other waves, bound states cross threshold at higher cutoffs.
In triplet waves where OPE is repulsive, there is no need for
such counterterms at LO (Eiras and Soto, 2003; Nogga,
Timmermans, and van Kolck, 2005).
Renormalization problems have been reported (Pavón

Valderrama and Ruiz Arriola, 2006a, 2006b; Entem et al.,
2008; Yang, Elster, and Phillips, 2009a, 2009b; Zeoli,
Machleidt, and Entem, 2013) within Weinberg’s prescription
also for higher-order potentials, which are increasingly sin-
gular and attractive in other waves as well. In contrast, a
perturbative treatment of more-singular corrections to singular
potentials can be properly renormalized (Long and van Kolck,
2008) with counterterms containing more derivatives, as
expected from NDA. Renormalization of chiral potentials

seems to demand that at least some parts of the potential be
treated in perturbation theory, just as in pionless EFT.14

3. Connection with pionless EFT

Experience with pionless EFT (van Kolck, 1997, 1999b;
Bedaque, Hammer, and van Kolck, 1998; Bedaque and
van Kolck, 1998; Kaplan, Savage, and Wise, 1998a, 1998b)
shows that the factors associated with reducible loops are

potential ∼ 4πm−1
N M−1

lo ðQM−1
QCDÞμ; ð83aÞ

nucleon propagator ∼mNQ−2; ð83bÞ

reducible loop integral ∼ ð4πmNÞ−1Q5; ð83cÞ

where the factor of ð4πÞ−1 is typical of integrals involving
Schrödinger propagators. One iteration of the order-μ
potential adds a reducible loop and two nucleon propagators,
or ðQ=MloÞðQ=MQCDÞμ. This is an IR enhancement of
mN=ð4πQÞ over the factor that arises from Eqs. (71b)
and (71c). As a consequence, the perturbative series in the
LO potential (μ ¼ 0) fails to converge for Q ∼Mlo, while
subleading potentials (μ ≥ 1) should be amenable to pertur-
bation theory.
The LO chiral potential (75) has the form of Eq. (83a) if

MNN ¼ OðMloÞ. Since bound states indicate a breakdown of
perturbation theory, one expects binding energies per nucleon

BA

A
∼

M2
NN

MQCD
∼
fπ
4π

∼ 10 MeV; ð84Þ

which is in the right ballpark for heavy nuclei. Thus, chiral
symmetry together with this IR enhancement provides a
natural explanation (Bedaque and van Kolck, 2002) for the
shallowness of nuclei compared to MQCD, BA=A ≪ MQCD,
long considered a mystery.
The factor of 4π in the IR enhancement was not recognized

before pionless EFTwas developed, but it has implications for
the natural size of few-body forces. Connecting an aN
potential to another nucleon to make it an ðaþ 1ÞN potential
without changing L or Δ involves an additional factor
4πm−1

N M−2
lo from the extra 2N interaction and the extra

nucleon propagator inside the aN potential. At the same
time, it adds a reducible loop and one nucleon propagator at
the amplitude level, resulting in an overall suppression by
Q=mN . For mN ¼ OðMQCDÞ, as dictated by NDA for A ¼ 1,
where it works well, this is the n ¼ 1 suppression of Friar
(1997). In contrast, missing the 4π in the IR enhancement
would requireQ=mN ∼Q2=M2

QCD, as found in Sec. IV.C.2 for
n ¼ 2 (Weinberg, 1991, 1992; Ordóñez and van Kolck, 1992;
van Kolck, 1993). Thus, counting factors of 4π in reducible

14The simple toy model of a regular long-range potential plus a
short-range interaction that yields a natural two-body scattering
length illustrates how treating the subleading EFT contact interaction
nonperturbatively, similar to the “peratization” of Fermi theory
(Feinberg and Pais, 1963, 1964), prevents a large cutoff (Epelbaum
and Gegelia, 2009).
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loops leads to Friar’s power counting, which, however, has not
been widely tested so far.

4. Perturbative pions

A radical solution to the renormalization problems of
Weinberg’s prescription was proposed by Kaplan, Savage,
and Wise (1998a, 1998b): assume that the contact interactions
carry a low-energy scale characteristic of the binding
momenta of light nuclei, Mlo ≪ MNN , and treat MNN as a
high-energy scale. Pion exchange in nuclear amplitudes
appears in two expansions:

(1) The expansion in Q=ð4πfπÞ of the nuclear potential,
which, as discussed in Sec. IV.C.2, is similar to the
ChPT expansion for A ≤ 1.

(2) An expansion in Q=MNN in the solution of the
dynamical equation, which is similar to the pionless
EFT expansion for A ≥ 2.

Thus, if Q ∼mπ ≪ MNN ≲MQCD, one can treat all pion
exchanges in perturbation theory. Numerically, MNN could
be larger than the NDA estimate MNN ∼ fπ .
This version of chiral EFT closely resembles pionless EFT

(Sec. II), with similar Mlo scaling of the LECs but different
values, and additional pion exchanges. The range of validity
of the EFT is enlarged, at least near the chiral limit where
integrating out pions becomes a restrictive condition. At LO
the two EFTs are formally the same, so the corresponding
results from pionless EFT carry over (there are two nonde-
rivative 2N contact interactions and one nonderivative three-
nucleon force), butmπ is now counted asMlo together with the
2N binding momenta.
At relative OðQ=MNNÞ, however, there are not only two-

derivative two-nucleon contact terms (∝ Q2) but also OPE,
which provides a shape function that goes beyond the first two
terms in the effective-range expansion. In perturbation theory,
them2

π lnΛ cutoff dependence in the 1S0 channel (Sec. IV.D.2)
comes from a diagram where OPE appears between two LO
interactions. The corresponding chiral-symmetry-breaking
counterterm (∝ m2

π) must be NLO as well. Both Q2 and
m2

π corrections appear at the same order, as in ChPT, but they
are suppressed by only 1 power of Q=MNN . The two-nucleon
amplitude is well reproduced (Kaplan, Savage, and Wise,
1998a, 1998b; Soto and Tarrus, 2008). [For the renormaliza-
tion issues associated with a resummation of effective-range
effects with and without dibaryon fields, see Ando and Hyun
(2012) and Nieves (2003), respectively.] There is only one
calculation of the effects of perturbative OPE in the three-
nucleon system, quartet nd scattering below and above
breakup (Bedaque and Grießhammer, 2000), and it gives
similar results to those from pionless EFT (Sec. II.C.3).
N2LO (Cohen and Hansen, 1999b; Fleming, Mehen,

and Stewart, 2000a, 2000b; Soto and Tarrus, 2010), i.e.,
relative OðQ2=M2

NNÞ, is a crucial test of this expansion
since it is the first manifestation of iterated OPE. It was
demonstrated (Cohen and Hansen, 1999b; Fleming, Mehen,
and Stewart, 2000b) that, while the expansion works well
at small momenta, in the low, spin-triplet partial waves
where the OPE tensor force is attractive, it fails for momenta
Q ∼ 100 MeV. Fleming, Mehen, and Stewart (2000b)
employed dimensional regularization with a subtraction

(PDS) (Kaplan, Savage, and Wise, 1998a, 1998b) designed
to facilitate power counting, but of course other regulariza-
tion and subtraction schemes give equivalent results (Cohen
and Hansen, 1998; Mehen and Stewart, 1999a, 1999b). [For
an RG discussion, see Harada, Kubo, and Yamamoto
(2011).] A calculation employing a procedure similar to
Pauli-Villars regularization gave better results (Beane,
Kaplan, and Vuorinen, 2009) in channels with LECs, but
not in the spin-triplet channels lacking LECs at that order.
These signs of the breakdown of perturbative pions are
consistent with an expansion in Q=MNN where MNN ∼ fπ , as
indicated by NDA.
There has also been criticism of the perturbative-pion

expansion based on the poor convergence of threshold
observables (Cohen and Hansen, 1999a, 1999c). This suggests
that the expansion in mπ=MNN is not great for the real world,
again pointing to the low value of MNN . However, it is the
reorganization of interactions in pionless EFT that is opti-
mized for momenta Q ≪ mπ , where the ERE holds. The
effectiveness of a power counting in chiral EFT should be
judged from the convergence of observables at Q ∼mπ . At
such momenta, for example, the scattering length contribution
is small, and one might start from the unitary limit instead
(Soto and Tarrus, 2008, 2010), as discussed in Sec. II.D. In the
1S0 channel, the perturbative-pion expansion does converge
(Beane et al., 2002), despite claims to the contrary based on an
NLO calculation (Gegelia, 1998a). The slow convergence can
be attributed to the short-range interactions. For analyses of
perturbative pions in the better-controlled context of toy
models, see Kaplan and Steele (1999), Rupak and Shoresh
(1999), and Steele and Furnstahl (1999).
In the real world, this version of chiral EFT does not seem

to work much beyond the regime of validity of pionless EFT.
Because the latter is simpler and holds for larger pion masses,
it has been preferred in most low-energy applications.
However, chiral EFT retains the constraints of chiral sym-
metry that are lost in pionless EFT; when such constraints are
useful, chiral EFT with perturbative pions can be deployed.
Moreover, at smaller pion masses chiral EFTwith perturbative
pions is expected to have a considerably larger range of
applicability than pionless EFT.

5. Partly perturbative pions

For a couple of years the choice facing the field was
between a power counting that lacks counterterms in the sense
discussed in Sec. IV.D.2 (which ensure that all divergences at
a given order can be absorbed) but works well phenomeno-
logically (Sec. IV.D.1), and another one that has all of the
counterterms but fails to converge even at relatively small
energies (Sec. IV.D.4). A way out was suggested by Nogga,
Timmermans, and van Kolck (2005) and carried out by Long
and Yang (2011, 2012a, 2012b) and Pavón Valderrama
(2011a, 2011b). Perhaps not surprisingly in hindsight this
solution is a middle ground between Weinberg’s prescription
and fully perturbative pions. It is based on two observations:

(1) Pions are perturbative in sufficiently high two-nucleon
partial waves. For an orbital angular momentum
l > lcr, where lcrðlcr þ 1Þ ∼Mhi=MNN , the centrifugal
barrier dominates over OPE at all distances r≳ 1=Mhi
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that are relevant when Q≲Mhi. In these waves, OPE
should be perturbative for the external momenta where
chiral EFT holds (Nogga, Timmermans, and van
Kolck, 2005). In other words, OPE in the radial

Schrödinger equation is an expansion in Q=MðlÞ
NN ,

where Mð0Þ
NN ¼ MNN but MðlÞ

NN increases with l. For
l ≤ lcr, OPE is nonperturbative. In these waves, and
these waves only, OPE needs to be iterated at LO, as
observed by Fleming, Mehen, and Stewart (2000b).
The LECs needed for renormalization (Sec. IV.D.2)
should, of course, be iterated as well. All subleading
interactions are to be treated in distorted-wave per-
turbation theory for l ≤ lcr, and in ordinary perturba-
tion theory for l > lcr.

(2) Multiple-pion exchange, being suppressed by powers
of Q=ð4πfπÞ, should be small after renormalization
and thus amenable to perturbation theory in all waves.
It is more singular than OPE but can be renormalized
perturbatively with a finite number of LECs (Long and
van Kolck, 2008).

Since the OPE tensor force survives in the chiral limit, for
mπ ≲MNN one can perform an additional expansion around
the chiral limit (Beane et al., 2002), but, as discussed in
Sec. IV.D.4, this expansion is not likely to be useful much
beyond the physical pion mass.
For Mhi > MNN, i.e., MNN counted as a low-energy scale,

one expects lcr ≥ 1. Of course, other dimensionless factors
stemming from spin and isospin make the transition from
nonperturbative to perturbative OPE somewhat fuzzy, which,
however, does not mean that such a transition does not exist.
Early studies of perturbative pions with and without Deltas
(Kaiser, Brockmann, and Weise, 1997; Ballot, Robilotta, and
da Rocha, 1998; Kaiser, Gerstendorfer, and Weise, 1998),
which did not discriminate between iterated pion exchange
and multiple-pion exchange in the potential, indicated that
pion exchange might be perturbative for l≳ 3. This inter-
pretation is also consistent with subsequent investigations of
peripheral waves with chiral potentials up to OðQ6=M6

QCDÞ
(Entem and Machleidt, 2002; Epelbaum, Glöckle, and
Meißner, 2004a; Krebs, Epelbaum, and Meißner, 2007;
Entem et al., 2015a, 2015b). Qualitatively, this result has
been confirmed for OPE (Nogga, Timmermans, and
van Kolck, 2005). A semianalytical estimate (Birse, 2006)
of the momenta where the tensor part of OPE needs to be
treated nonperturbatively in the lower triplet waves is given in
Table II. Some evidence thus points to lcr ≈ 3. More detailed,
recent analyses suggest, however, that pions are perturbative
up to a relatively high scale in all waves other than 3S1-3D1 and
3P0 (Kaplan, 2019; Wu and Long, 2019).

In the low 2N waves where l ≤ lcr and MðlÞ
NN ≈MNN , the

situation at LO is similar to Weinberg’s prescription, except
that more short-range interactions are needed for renormal-
ization (Nogga, Timmermans, and van Kolck, 2005) than
implied by NDA. For example, in the 1S0 channel OPE at LO
solves the problem of the slow convergence of perturbative
pions (Beane et al., 2002) at the cost of the additional D2s
LEC in Eq. (81). The residual 1=Λ dependence then means
(Long and Yang, 2012b) that a correction appears at

OðQ=MQCDÞ from the two-derivative contact interaction
responsible for the short-range contribution to the effective
range, similar to pionless EFT (Sec. II.B.3). At higher orders
in the lower partial waves, multiple-pion exchanges appear
and require at OðQμ=Mμ

QCDÞ LECs with up to μ derivatives
more than the LECs appearing at LO (Long and
van Kolck, 2008).
This approachwas confrontedwith empirical phase shifts for

the lower 2N partial waves by Nogga, Timmermans, and van
Kolck (2005), Long and Yang (2011, 2012a, 2012b), Pavón
Valderrama (2011a, 2011b), Epelbaum and Meißner (2013),
and Yang (2016). The results of Long and Yang (2012a) are
included in Fig. 7, whereas Fig. 27 shows the 3P0 results of
Pavón Valderrama (2011b) as a further example. While in both
casesOðQ2=M2

QCDÞ improves onOð1Þ,OðQ3=M3
QCDÞ goes in

the wrong direction, perhaps an indication that a better
description of the pion-nucleon subamplitude with an explicit
Delta isobar is needed.
Little is known quantitatively about partly perturbative

pions beyond the two-nucleon system. The three-nucleon
system is renormalized properly without a three-nucleon force
at LO (Nogga, Timmermans, and van Kolck, 2005; Song,
Lazauskas, and van Kolck, 2017) and, without explicit Deltas,

TABLE II. Estimate of the critical values pcr of the relative
momentum in the lowest two-nucleon triplet channels above which
the OPE tensor force cannot be treated perturbatively (Birse, 2006).

Channel pcr (MeV) Channel pcr (MeV) Channel pcr (MeV)
3S1-3D1 66 3P0 182 3P1 365
3P2-3F2 470 3D2 403 3D3-3G3 382
3F3 2860 3F4-3H4 2330 3G4 1870
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FIG. 27. The NN 3P0 phase shift δ as a function of the center-of-
mass momentum kc:m: at different chiral orders: Oð1Þ (green),
OðQ2=M2

QCDÞ (red), and OðQ3=M3
QCDÞ (blue). Bands represent

the variation of a coordinate-space cutoff in the range 0.6–0.9 fm,
with the dashed line showing the OðQ3=M3

QCDÞ results with a
0.3 fm cutoff. The cyan band shows the OðQ3=M3

QCDÞ potential
in Weinberg’s prescription with the regularization procedure of
Epelbaum, Glöckle, and Meißner (2004b), where the momentum-
space cutoff in pion loops (the Lippmann-Schwinger equation) is
varied between 500 and 700 (450 and 650) MeV. The solid black
line is the Nijmegen phase-shift analysis (Stoks et al., 1993).
From Pavón Valderrama, 2011b.
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also at NLO (Song, Lazauskas, and van Kolck, 2017). The
truncation in l needed at LO is reminiscent of the truncation in
total two-nucleon angular momentum typically invoked in
solutions of the Faddeev and Faddeev-Yakubovsky equations
for three- and four-nucleon systems with phenomenological
potentials. However, to go to higher orders the l dependence

of MðlÞ
NN must be quantified. Thus far, this has been done only

in singlet waves (Pavón Valderrama et al., 2017).
At LO symmetric nuclear matter was found to saturate,

but with significant underbinding, in a cutoff-converged
Brueckner pair approximation (Machleidt et al., 2010).
This is in contrast to Weinberg’s prescription, where
Deltaless (Sammarruca et al., 2018) or Deltaful (Ekström
et al., 2018) potentials of Oð1Þ and OðQ2=M2

QCDÞ do not
saturate within the EFT domain. The fact that higher-order
potentials with this prescription do saturate (Ekström et al.,
2018; Sammarruca et al., 2018; Drischler, Hebeler, and
Schwenk, 2019) suggests that, if nuclear matter is within
the regime of chiral EFT, the LO potential requires more
interactions than prescribed by NDA.
Although they differ in detail from the field-theoretical

renormalization outlined previously, RG analyses of
the Schrödinger equation (Birse, 2006, 2011; Pavón
Valderrama, 2016) support the conclusion that counterterms
in two-nucleon attractive singular waves appear at lower order
than expected on the basis of NDA. The case is further
strengthened by removing the effect of OPE and (perturbative)
TPE from empirical two-nucleon phase shifts (Birse, 2007;
Ipson, Helmke, and Birse, 2011). The Schrödinger RG
analysis also predicts the enhancement of some three-body
forces (Birse, 2011).

6. Other approaches

The renormalization of chiral EFT described in
Secs. IV.D.2–IV.D.5 was criticized by Epelbaum et al.
(2018), who provided examples where the nonperturbatively
renormalized amplitude exhibits positive powers of the cutoff
Λ when expanded in Planck’s constant ℏ. Since no observable
considered in that work is affected, however, the significance
of this claim for an EFT is unclear. Moreover, Pavón
Valderrama (2019a) argued that these powers of Λ can be
eliminated by changing the Λ−1 running of the LECs (Pavón
Valderrama, 2016); see also Epelbaum et al. (2019).
An alternative approach to the renormalization woes of

Weinberg’s prescription was articulated by Epelbaum et al.
(2018), building on earlier work (Gegelia, 1998a, 1998b,
1999a, 1999b; Gegelia and Japaridze, 2001; Gegelia and
Scherer, 2006; Epelbaum and Gegelia, 2009). It consists of
renormalizing the perturbative series and subsequently resum-
ming the renormalized contributions; that is, it includes at
each order the infinite number of LECs needed to eliminate
the cutoff dependence of all diagrams to be resummed. These
LECs exist because an EFT contains all interactions allowed
by symmetry, but even without pions they are difficult or
impossible to write down explicitly. In a stark departure from
naturalness, only the LECs prescribed by NDA are assumed to
contribute finite parameters, which amounts to an infinite
number of fine-tunings. The resummation of an infinite
number of derivative interactions introduces an intrinsic

nonlocality in all channels at every order, not only LO in,
say, the NN 1S0 (Beane and Savage, 2001; Sánchez, Sánchez
et al., 2018) or the Nα 2P3=2 (Bertulani, Hammer, and
van Kolck, 2002) channels, where there are shallow poles.
In this approach, there are no constraints on the EFT from

renormalization, for example, there is no Wigner bound on the
effective range [(Wigner, 1955); see Sec. II.B.3] when C2 or
higher-order interactions are resummed (Gegelia, 1998b) and
no explanation (Epelbaum et al., 2017, 2019) for the emer-
gence of a single, independent three-body scale in the three-
body system at LO, which determines the position of the
Efimov tower of states [(Efimov, 1970); see Sec. II.C.2]. Thus,
the justification for power counting from the combination of
renormalization and naturalness, which in the perturbative
context gives NDA (Manohar and Georgi, 1984; Georgi and
Randall, 1986), is absent. NDA becomes an ad hoc rule. It
does not, for example, reproduce the established scaling of
range corrections in amplitudes resulting from short-range
potentials, which is represented in pionless EFT through
Eq. (18).
To date, this approach has been implemented only in the 1S0

channel, where significant dependence on the choice of (low-
energy) subtraction points is seen (Gegelia, 1998a, 1999a,
1999b; Gegelia and Japaridze, 2001). On the basis of a toy
model, Epelbaum, Gegelia, and Meißner (2017) concluded
that Weinberg’s prescription is satisfactory as long as the
renormalization scale μ ¼ OðMhiÞ. Chiral EFT’s overlapping
integrals in other channels prevent the explicit resummation of
“renormalized diagrams,” and it is not known whether this
procedure, if it can be carried out at all, reproduces the
nonperturbative solution of the Lippmann-Schwinger equa-
tion. Further discussion of renormalization from the perspec-
tive of subtraction schemes was given by Timoteo et al.
(2011), Szpigel and Timoteo (2012), Batista, Szpigel, and
Timóteo (2017).
Gegelia and Japaridze (2001) offer the solution that the

cutoff should not be varied significantly around the break-
down scale in chiral EFT. In the absence of renormalization,
non-negative powers of the cutoff should appear in the
truncated amplitude given by Eq. (4) as corrections of
OðQVþ1−iΛi=MVþ1−j

hi Mj
loÞ with non-negative integers i and

j. If j ¼ 0, the corrections should be small for Λ ≪ Mhi
(Gegelia and Scherer, 2006), but j > 0 arises when the LO
potential, which does not involve Mhi, is singular.
An attempt to mitigate cutoff artifacts was made by

Djukanovic et al. (2007), Epelbaum and Gegelia (2012),
Epelbaum et al. (2014) and Epelbaum, Gasparyan, Gegelia,
and Krebs (2015), with the most recent formulations devel-
oped by Behrendt et al. (2016) and Baru, Epelbaum, Gegelia,
and Ren (2019). A nucleon propagator with faster large-
momentum falloff is constructed by demanding that states
satisfy a relativistic, Lorentz-invariant normalization condi-
tion, while the treatment is still nonrelativistic overall. This
softer UV behavior helps to obtain LO amplitudes with well-
defined large-cutoff limits. While Behrendt et al. (2016) state
that higher orders should be treated in perturbation theory if
this feature is to be maintained beyond LO, from a practical
point of view they still advocate a nonperturbative treatment
(where the cutoff is then limited again to a finite range, argued
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to be larger than what is typically used with standard
Weinberg counting). Moreover, Behrendt et al. (2016) found
that with their approach a 3P0 LEC has to be promoted
compared to NDA, as in the purely nonrelativistic context
(Nogga, Timmermans, and van Kolck, 2005). There is,
nevertheless, growing interest in the development of a
covariant version of chiral EFT, which could perhaps be used
as input to relativistic formulations of nuclear physics
(Petschauer and Kaiser, 2013; Ren et al., 2017, 2018).

E. Pion and electroweak reactions

One of the advantages of a quantum-field-theoretical
foundation of nuclear physics is not only that many-body
forces can be constructed consistently with two-body forces
but also that many-body currents can be derived consistently
with internucleon interactions. This virtue was realized early
on (Rho, 1991; Weinberg, 1991), and some of the pioneering
papers on reactions have been dedicated to electroweak
currents (Park, Min, and Rho, 1993, 1996; Phillips and
Cohen, 2000), neutron radiative capture on the proton
(Park, Min, and Rho, 1995; Park et al., 1998a), proton-proton
fusion (Park et al., 1998b), Compton scattering on the
deuteron (Beane et al., 1999), pion photoproduction
(Beane, Lee, and van Kolck, 1995; Beane et al., 1997) and
electroproduction (Bernard, Krebs, and Meißner, 2000) off the
deuteron, pion photoproduction off the trinucleon (Lenkewitz
et al., 2011, 2013), and pion scattering on the deuteron (Beane
et al., 1998) and helion (Liebig et al., 2011), as well as pion
production in 2N collisions (Cohen et al., 1996; Park et al.,
1996; van Kolck, Miller, and Riska, 1996; Sato et al., 1997).
The goal is not only to supply information to other areas of
physics where these reactions play a role, but also to extract
nucleon properties (especially for the neutron, for which good
targets do not exist) to infer properties of the QCD dynamics.
The early work, reviewed by van Kolck (1999a) and

Bedaque and van Kolck (2002), was based on Weinberg’s
prescription, where, in addition to the potential, also the kernel
of the reaction process is expanded according to NDA. For
probes with energies E ∼Q ∼mπ , the kernel is defined as the
subdiagrams to which the external probes are attached,
energies are comparable to momenta, and nucleons are
approximately static. Like the potential, kernels can be
multiply connected, and power counting is similar to
Eqs. (73) and (74). For any kernel, a figure like Fig. 25
can be drawn. However, some subtleties need to be taken into
account when probes have other typical energy or momentum:

• E ∼M2
NN=MQCD (e.g., Compton scattering): a resum-

mation is needed between kernels because infrared
enhancements appear in intermediate states, where
nucleons are not static (Beane et al., 1999).

• Q ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mπmN

p
(e.g., pion production):15 intermediate

states containing only nucleons can be part of the kernel,
but these nucleons are not static (Cohen et al., 1996).

The full amplitude is given by the matrix element of the
kernel with wave functions obtained from the potential. In
Weinberg’s prescription, these wave functions are exact
solutions of a truncated potential. Much of the work predating
phenomenologically successful chiral potentials employed a
“hybrid” approach where the kernel was calculated in chiral
EFT but wave functions from “realistic” phenomenological
potentials were used. Emphasis has since been shifting toward
increased consistency between wave functions and kernels.
Reactions are an area of renewed interest in chiral EFT, in
consonance with the revival of development in the broader
area of nuclear reactions, including ab initio approaches. Of
particular recent interest have been electroweak currents,
where earlier work was revisited and significantly improved
upon; see the reviews by Phillips (2016) and Riska and
Schiavilla (2017). There has also been substantial work on
reactions involving pions, particularly pion production in two-
nucleon collisions, which has now been calculated up to 3
orders in the chiral expansion (Baru, Hanhart, and
Myhrer, 2014).
The process that has been most thoroughly examined in

chiral EFT is Compton scattering (CS). It gives access to
nucleon polarizabilities, response functions that carry much
information about hadron dynamics. While proton polariz-
abilities can be extracted directly, neutron polarizabilities can
be probed only in nuclear CS. Chiral EFT allows for a
consistent treatment of both of these cases and, at the same
time, enables a connection with lattice QCD through variation
in the pion mass. Recent work has capitalized on all advances
in EFT and provides an analysis of CS that is a model for
future work on nuclear reactions. At the one-nucleon level, CS
was calculated in ChPT with an explicit Delta isobar
(McGovern, Phillips, and Grießhammer, 2013), including
the resummation (Pascalutsa and Phillips, 2003) needed to
go through the Delta peak. At the nuclear level, the kernel
was calculated according to Weinberg’s prescription
(Grießhammer et al., 2012). Proton (McGovern, Phillips,
and Grießhammer, 2013) and deuteron (Myers et al., 2014,
2015) data were fitted and polarizabilities were extracted; see
Fig. 28. The average quark mass was then varied to produce
predictions, with uncertainties determined via Bayesian tech-
niques (Furnstahl, Klco et al., 2015; Furnstahl, Phillips,
and Wesolowski, 2015; Wesolowski et al., 2016), for the
polarizabilities at unphysical pion masses (Grießhammer,
McGovern, and Phillips, 2016b), to which lattice QCD results
can be compared. Analyses of this type for other processes
should increasingly become standard in this field, allowing
one to bridge from QCD to nuclear reactions just as to nuclear
structure.
The renormalization problems of Weinberg’s prescription

demand scrutiny in the treatment of reactions as well. The
emergence of a perturbative-pion formulation of chiral EFT
has led to a reexamination of many of the reactions that had
been studied earlier with Weinberg’s prescription. With
perturbative pions, not only the kernel but also the wave
function is expanded in perturbation theory. For the deuteron,
the target of most, if not all, perturbative-pion studies, the
analytical nature of the calculations makes it easier to establish
proper renormalization. In most cases, the LO calculation is
the same as in pionless EFT (Secs. II.B.8 and II.C.8), and pion

15Although parametrically
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mπmN

p ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mπMQCD

p Þ < MQCD,
one should keep in mind that the breakdown scale MQCD of chiral
EFT is not known precisely.
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effects enter explicitly at subleading orders. For example, the
charge, magnetic dipole, and electric quadrupole form factors
of the deuteron were calculated to NLO by Kaplan, Savage,
and Wise (1999). Other reactions include neutron radiative
capture on the proton (Savage, Scaldeferri, and Wise, 1999),
deuteron Compton scattering and polarizability (Chen et al.,
1998a, 1998b; Chen, 1999), and neutrino-deuteron scattering
(Butler and Chen, 2000). Generally, this approach has been
successful for the low-energy properties of the deuteron, in
comparison both with data and with nonperturbative-pion
calculations.

F. Outstanding issues and current trends

Within Weinberg’s prescription, work continues in pushing
potential and kernels to higher orders, as well as developing
better fitting strategies. Meanwhile, an RG-invariant formu-
lation of chiral EFT has not yet achieved the level of
phenomenological impact of Weinberg’s prescription. Some
of the outstanding questions are as follows:

• What is the role of fine-tuning in chiral EFT? The
scattering length is particularly large in the 1S0 two-
nucleon channel, where short-range interactions show
strong energy dependence (Birse, 2010). In particular,
short-range contributions to the effective range are
anomalously large, which has led to the suggestion that
the two-derivative contact interaction [C2s in Eq. (70c)]
should be treated as LO (Beane et al., 2002; Long,
2013), following a similar proposal in pionless EFT
(Beane and Savage, 2001) (Sec. II.B.5) and chiral EFT
with perturbative pions (Ando and Hyun, 2012)

(Sec. IV.D.4). Although an improved description is
achieved, convergence deteriorates quickly with momen-
tum, at least in a calculation without Deltas (Long,
2013). The role of the relatively low-energy zero of the
amplitude remains to be fully investigated (Lutz, 2000;
Sánchez, Sánchez et al., 2018).

• What is the pion-mass variation of nuclear amplitudes?
To determine this variation, we need lattice data within
the region of validity of chiral EFT. While lattice QCD
data exist at relatively large mπ , not all competing
collaborations are in agreement. Moreover, differences
exist within chiral EFT depending on the approach used.
Among the issues for extrapolations is the role of
“radiation” pions, which are present only at relatively
high order. Real pions can be produced in 2N collisions
for momenta Q≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mπmN
p

; at lower Q the effects of the
corresponding virtual pions are indistinguishable from
the LECs (Ordóñez, Ray, and van Kolck, 1996;
Epelbaum, Glöckle, and Meißner, 1998). These contri-
butions have been investigated in the perturbative-pion
context (Mehen and Stewart, 2000; Mondejar and Soto,
2007; Soto and Tarrus, 2012) where they give rise to

powers of m1=2
π .

• The NDA-based organization of pion-exchange contri-
butions to the potential is not affected by the renorm-
alization issues that plague Weinberg’s prescription,
except for the possible enhancement factors of 4π in
few-nucleon forces (Sec. IV.C.2). Once the 2N system
has been properly renormalized, one must ask whether
short-range many-body forces are immune to the en-
hancements seen in pionless EFT (Sec. II.C.2). Most
work on many-body forces in chiral EFT takes Wein-
berg’s power counting for granted. Nogga, Timmermans,
and van Kolck (2005) and Song, Lazauskas, and
van Kolck (2017) found no renormalization evidence
for a 3N force in LO orOðQ=MQCDÞ, but they obtained a
triton binding energy that is only about half of the
experimental value, perhaps because this is a very low-
energy observable in the sense of being within the
regime of pionless EFT. Kievsky et al. (2017) argued
from continuity with pionless EFT that the H0 three-
body force in Eq. (70c) should be included at LO.

• The most important problem facing reaction theory in
chiral EFT echoes the renormalization woes of Wein-
berg’s prescription for nuclear structure. To maintain
model independence, one must ensure that the average of
the reaction kernel has a well-defined limit as the cutoff
is increased. Only for electroweak reactions on the
deuteron has this been investigated (Pavón Valderrama
and Phillips, 2015; Phillips, 2016), with the conclusion
that enhancements over NDA appear there as well. The
impact of this observation on previously studied reac-
tions and future reaction theory remains to be inves-
tigated.

• Towhich extent can anRG-invariant formulation of chiral
EFT be incorporated in calculations of larger nuclei?
Distorted-wave perturbation theory usually becomes
demanding in second order where the fully off-shell A-
body propagation is needed in intermediate states.
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FIG. 28. Nucleon electric (αE1) and magnetic (βM1) polariz-
abilities extracted with chiral EFT. Ellipses show the 1σ-error fits
of McGovern, Phillips, and Grießhammer (2013) for proton
(blue, on lower band) and neutron (red, on upper band), where
statistic, systematic, and theory errors are added in quadrature.
For comparison, Particle Data Group averages before (large green
ellipses) and after (small black ellipses) these fits are also given.
The bands are the constraints from the Baldin sum rule. From
Grießhammer, McGovern, and Phillips, 2016a.
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In pionless EFT, this problem has been sidestepped by a
reformulation in terms of the solution of further integral
equations (Vanasse, 2013, 2017b). It is an open issue
whether this or another method can be applied to the
A-nucleon problem in chiral EFT.

• Although not RG invariant, Weinberg’s prescription has
several practical advantages because it is most closely
related to previous phenomenological approaches. For
example, it provides fits to data of comparable quality to
“realistic” phenomenological potentials (Sec. IV.D.1), it
explains some of the qualitative features of these
potentials (Sec. IV.C.2), and it can be employed in
already existing ab initio codes. Its successes beg the
question, is it possible that a particular choice of
regulator allows for a small-cutoff formulation of chiral
EFT that is equivalent to its RG-invariant form? It is
conceivable that one can iterate subleading terms of the
latter, as is done in the former, within a limited range of
cutoffs, just as iterating momentum-dependent contact
interactions in pionless EFT requires cutoff values Λ ≲
1=r0 (Wigner bound); see Sec. II.B.3. If achieved, such
an understanding of Weinberg’s prescription might
justify current uses of chiral EFT without requiring
further development of ab initio methods. Furthermore,
it will likely make it desirable to choose a regulator that
optimizes convergence for the problem at hand, for
example, neutron matter (Lynn et al., 2016). First steps
in this direction were made recently by Tews, Huth, and
Schwenk (2018) and Pavón Valderrama (2019b).

• Irrespective of other issues discussed earlier and
throughout this section, it is a highly nontrivial task to
determine the LECs of chiral EFT, which are quite
substantial in number at higher orders, from fitting
calculated observables to data. One wants to do this
in such a way that the EFT can fulfill its promises of
providing systematic model independence and fully
quantified uncertainties. For that, one should account
for the truncation error of the EFT expansion directly as
part of the fitting procedure and propagate forward all
this information to the final result of a calculation.
Following the initial suggestion of Schindler and Phillips
(2009), Bayesian methods have emerged in recent years
(Furnstahl, Klco et al., 2015; Furnstahl, Phillips, and
Wesolowski, 2015; Wesolowski et al., 2016, 2019;
Melendez, Wesolowski, and Furnstahl, 2017) as an
important tool to address the issue in a robust and
comprehensive way.

V. BROADER APPLICATIONS

Many of the ideas originating in nuclear EFTs have found
applications to other systems. Pionless EFT, while clearly
being connected to QCD as a low-energy limit, is driven
largely by the universal features that arise from the large NN
scattering lengths and the associated large sizes of light nuclei.
As a consequence, the EFT for nuclear halo states discussed in
Sec. III can be constructed as a generalization of pionless EFT.
But universality goes beyond nuclear physics: it is relevant to
any system dominated by short-range interactions, when one

is interested in distance scales much larger than the range of
the interactions.
As one probes distances comparable to the interaction

range, issues similar to the ones discussed in chiral EFT
emerge. For example, can the long-range part of the inter-
action be treated in perturbation theory? In other hadronic
systems, the long-range interaction might still be one-pion
exchange, and chiral EFT then applies except that other heavy
particles are substituted for nucleons.
In this section, we briefly describe some of the systems

where versions of pionless and chiral EFTs have found
applications. We start by discussing how these EFTs arise
from QCD.

A. Connection with QCD

The inclusion of all possible interactions consistent with
QCD symmetries ensures that nuclear EFTs capture the low-
energy limit of QCD. This means that in principle one can
follow a top-down approach and determine low-energy con-
stants that appear in an EFT from a direct solution of the more
general theory. While such solutions of QCD (in the highly
nonperturbative low-energy regime) are elusive analytically,
lattice calculations have made significant progress toward
nuclear systems. Matching EFT to LQCD serves to extend the
predictions of QCD in essentially two directions.

(1) Larger distances: a solution by ab initio methods of an
EFT with parameters fixed by LQCD allows for
predictions of properties of larger nuclei and their
reactions, which are difficult to simulate directly
from QCD.

(2) Smaller pion masses: with the relative importance of
chiral-symmetry-breaking interactions understood,
chiral EFT can be used as an extrapolation tool from
larger quark, and thus pion, masses to the physical
point.

Moreover, remnants of QCD’s color gauge symmetry can
be traced down to nuclear EFTs. In particular, it is possible to
consider the inverse number of colors 1=Nc as an expansion
parameter to constrain nuclear forces. This has been studied,
for example, by Kaplan and Manohar (1997), Phillips and
Schat (2013), Phillips, Samart, and Schat (2015), Samart et al.
(2016), and Schindler, Singh, and Springer (2018).

1. Nuclear physics at large quark masses

The pion mass is a tunable parameter in LQCD. With
calculations getting more expensive for lower pion masses,
results are typically extracted for values of mπ well above the
physical point. Observables like hadron spectra can by now be
described with amazing accuracy (Kronfeld, 2012), and
results for hadronic properties have become available even
at or below the physical pion masses. Direct QCD calculations
of few-nucleon systems, however, still use relatively large
pion masses [Beane et al. (2011) reviewed the framework],
and even then significant discrepancies exist among the
outcomes from various groups. EFT calculations have used
a subset of these results and tested their consistency with
increasing nucleon number A.
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Barnea et al. (2015) showed how LQCD input for few-
nucleon systems at a fixed pion mass can be used in
conjunction with ab initio solutions of EFT to predict the
properties of larger nuclei. Using the LQCD results of Beane
et al. (2013) atmπ ¼ 805 MeV for A ¼ 2, 3 to fix the pionless
LECs at LO, Barnea et al. (2015) predicted binding energies
for A ¼ 4, 5, 6. The A ¼ 4 result was consistent with the direct
LQCD prediction, lending credibility to both approaches.
Within the large uncertainties of the LQCD input and of LO
pionless EFT, the pattern of binding energies resembles that of
the physical world, but with larger binding momenta
that nevertheless remain below the pion mass. These results
were extended to A ¼ 16 and to lattice input from Yamazaki et
al. (2012) at mπ ¼ 510 MeV by Contessi et al. (2017), and
further to resummed NLO and A ¼ 40 by Bansal et al. (2018).
Simple reactions can be calculated directly in LQCD.

Beane et al. (2015) extracted the pionless LEC L1 that
appears in Eq. (41), thus allowing for a parameter-free
calculation of the np → dγ capture process (as well as the
inverse photodisintegration process) that is in good agree-
ment with the experimental capture cross section. The
nuclear matrix element determining the pp → deþνe
fusion cross section and the Gamow-Teller matrix element
contributing to tritium β decay were calculated in LQCD
by Savage et al. (2017), allowing for a direct extrac-
tion of the leading two-nucleon axial counterterm L1;A ¼
3.9ð0.1Þð1.0Þð0.3Þð0.9Þ fm3 in pionless EFT. For larger
nuclei, one can use pionless EFT to turn LQCD bound-state
input into predictions for reactions, as shown by Kirscher et al.
(2015). They calculated nd scattering observables at LO and
obtained the Phillips and Tjon line correlations at unphysical
pion masses. Other observables such as magnetic moments
and polarizabilities of light nuclei (Chang et al., 2015;
Kirscher et al., 2017) have been studied as well. Mapping
the patterns of nuclear properties at unphysical pion masses
could shed light into the nature of the fine-tuning that pervades
nuclear physics.

2. Fine-tuning in chiral EFT and infrared limit cycle

Chiral EFT, constituting the many-nucleon generalization
of ChPT, yields the pion-mass dependence of nuclear observ-
ables. If LQCD data are within the limit of validity of the
theory, the latter can be used to extrapolate toward smaller
values of the quark (and thus pion) masses.
If MNN is considered a low-energy scale, the pion-mass

dependence arises at LO from the explicit pion mass in OPE
and from the chiral-symmetry-breaking D2s interaction in the
1S0 channel, Eq. (81). At subleading orders, it enters not only
through the explicit pion mass in multiple-pion exchange but
also through the quark-mass dependence of other LECs. There
have been various calculations of the pion-mass dependence
of two-nucleon (Beane et al., 2002; Epelbaum, Meißner, and
Glöckle, 2002, 2003; Beane and Savage, 2003b, 2003c; Chen
et al., 2012; Soto and Tarrus, 2012; Berengut et al., 2013) and
three-nucleon (Hammer, Phillips, and Platter, 2007) observ-
ables, which differ in the power counting used and related
issues (order, range of cutoffs, etc.), and assumptions about
presently unknown LECs. Qualitatively, the observation
of Beane et al. (2002) has been confirmed: the deuteron

(1S0 virtual state) becomes unbound (bound) at a pion mass
close (very close) to physical.
Although we do not know why these critical values of mπ

are close to physical, the pion-mass dependence offers a
plausible mechanism for the fine-tuning observed in the real
world, where the NN binding energies are small compared to
the scale set by Eq. (84), and scattering lengths large with
respect to M−1

NN . Except in the vicinity of an mπ critical value,
these quantities attain values more in line with expectation. To
produce shallow poles, short-range physics does not need to
be particularly strong but must be fine-tuned to negatively
interfere with OPE, or vice versa. [For example, in the 1S0
channel with nonperturbative OPE the finite, energy-indepen-
dent terms of IðΛ; kÞ in Eq. (78) must partially cancel the
short-range term.]
A variation of the pion mass has an effect similar to the

variation of an external magnetic field near a Feshbach
resonance. Braaten and Hammer (2003), using the pion-mass
dependence of the NN S-wave scattering lengths calculated
within chiral EFT by Epelbaum, Meißner, and Glöckle (2003),
studied the consequences for the three-body spectrum as a
function of the pion mass. They found that an excited state of
the triton appears at mπ ≈ 175 MeV, indicating that slightly
changing the parameters to increase the pion mass brings
QCD closer yet to an infrared limit cycle. Based on this, it is
conjectured that it should be possible to tune QCD exactly to
the limit cycle by changing the up and down quark masses
separately. In this case, the triton would have infinitely many
excited states. Epelbaum et al. (2006) showed that parameters
sets exist that make both NN S waves diverge for critical pion
masses between 179 and about 200 MeV. Hammer, Phillips,
and Platter (2007) extended this analysis to higher orders and
also calculated three-nucleon scattering observables as a
function of the pion mass. The triton spectrum in the vicinity
of a limit cycle found in that work is shown in Fig. 29. Some
of the implications to primordial nucleosynthesis were pointed
out by Bedaque, Luu, and Platter (2011) and Berengut
et al. (2013).
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FIG. 29. Triton spectrum in the vicinity of a limit cycle as
function of the pion mass. The circles, squares, and diamonds
give the chiral-potential result of Epelbaum et al. (2006), while
the solid lines are N2LO calculations in pionless EFT (Hammer,
Phillips, and Platter, 2007). The vertical dotted line indicates the
critical pion mass. The thresholds for stable three-nucleon states
are given by the dashed lines. From Hammer, Phillips, and
Platter, 2007.
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B. Antinucleon systems

While nucleon-antinucleon pairs can be integrated out at
low energies, nuclear EFTs apply as well to systems where
antinucleons, a consequence of the Lorentz invariance of
QCD, appear in initial states. The simplest such system is
antinucleon-nucleon (N̄N) scattering. While the details of
annihilation involve short distances, low-energy antinucleon-
nucleus scattering can be described in ways similar to
nucleon-nucleus scattering provided that the loss of flux to
annihilation is accounted for with complex LECs. Other
ingredients are similar and are related by charge conjugation
C to the nuclear potential summarized in Fig. 25.
The use of chiral EFT for p̄p was pioneered by Chen,

Dong, and Ma (2010) and Chen and Ma (2011), along the
lines of Kaplan, Savage, and Wise (1996) for the spin-singlet
NN channel. The N̄N potential was derived to OðQ4=M4

QCDÞ
by Kang, Haidenbauer, and Meißner (2014) and Dai,
Haidenbauer, and Meißner (2017), who also obtained a
successful description of p̄p observables using Weinberg’s
prescription together with the promotion of some interactions
and the demotion of others. The final-state interactions
generated by these potentials (Chen, Dong, and Ma, 2010;
Kang, Haidenbauer, and Meißner, 2015) explain the near-
threshold enhancement in the p̄p invariant-mass spectrum
seen in charmonium decays and eþe− annihilation. Chiral
two-pion exchange had already been incorporated in the
partial-wave analysis of elastic and charge-exchange scatter-
ing p̄p data by Zhou and Timmermans (2012), following the
earlier Nijmegen approach to NN (Rentmeester et al., 1999;
Rentmeester, Timmermans, and de Swart, 2003).

C. Hypernuclei

In the ellipsis in Eq. (1) we find the kinetic, mass, and
strong and electromagnetic interaction terms of the strange
quarks. Chiral EFT can be extended to SUð3ÞL × SUð3ÞR in
an attempt to incorporate kaon and eta exchange to describe
hypernuclei. The difficulty is the intermediate value of the
strange quark mass: it prevents one from integrating the
strange quark out at a perturbative scale, as is done for
heavier quarks, but leads to poor convergence of the ChPT
expansion (Donoghue, Holstein, and Borasoy, 1999) because
of the relatively large kaon and eta masses mK and mη.
Nevertheless, by counting mK and mη as low-energy scales,

one can formally apply the power counting of Sec. IV.C.1 to
organize the interbaryon potential along the lines of
Sec. IV.C.2. The two-baryon potential was derived up to
OðQ2=M2

QCDÞ by Polinder, Haidenbauer, and Meißner (2006),
Haidenbauer and Meißner (2010), Haidenbauer et al. (2013),
and Haidenbauer, Meißner, and Petschauer (2016). With
Weinberg’s prescription, a description of hyperon-nucleon
data is obtained of quality comparable to the most advanced
phenomenological models. The leading three-baryon forces,
which appear at OðQnþ1=Mnþ1

QCDÞ, have also been written
down (Petschauer et al., 2016). A large-Nc analysis of
hyperon-nucleon interactions was carried out by Liu et al.
(2019), while a covariant formulation was presented by Li
et al. (2016, 2018). If mK or mη are considered large scales,

the onset of η-nuclear binding can be considered in a pionless
EFTapproach to derive constraints on the ηN scattering length
(Barnea et al., 2017; Barnea, Friedman, and Gal, 2017).
Certain hypernuclei are also amenable to pionless and halo

EFT. The process of Λd scattering and the properties of the
hypertriton 3

ΛH in the SUð3Þ limit were first studied in pionless
EFT by Hammer (2002). Since the hypertriton is extremely
shallow, the low-energy observables in this channel are
insensitive to the exact values of the ΛN low-energy para-
meters, as any shift can be absorbed by changing the three-
body force. By constructing a system of coupled integral
equations in the spin-isospin basis, Ando, Raha, and Oh
(2015) investigated the viability of the nnΛ bound state
suggested by the recent experiment of the HypHI
Collaboration at GSI (Rappold et al., 2013). The three-body
force present at LO prevented any definitive conclusions about
the existence of the nnΛ bound state. More recently,
Hildenbrand and Hammer (2019) calculated the structure of
nnΛ and 3

ΛH and clarified the value of the corresponding
scaling factors. For physical hyperon and nucleon masses,
they obtained the Λd scattering length aΛd ¼ 13.8þ3.8

−2.0 fm,
where the error is dominated by the uncertainty in the
hypertriton binding energy. Implications of three-body uni-
versality to systems with two neutrons and a flavored meson
(such as K− and D0) were considered by Raha et al. (2018).
Pionless EFT for states with strangeness −1 was extended

up to 5
ΛHe by Contessi, Barnea, and Gal (2018), presenting a

solution to the “overbinding problem” observed with previous
approaches based on nucleon-hyperon model interactions.
Light nuclear states with strangeness −2 were also examined
by Contessi et al. (2019). With the ΛΛ contact interaction
estimated from correlations observed in relativistic heavy ion
collisions and the ΛΛN three-body force constrained by the
binding energy of 6

ΛΛHe, the conditions for 3;4
ΛΛn,

4;5
ΛΛHe, and

5
ΛΛH binding were discussed.
In parallel, 4ΛΛH and 6

ΛΛHe have been described in halo EFT
as three-body systems where the two hyperons orbit around,
respectively, deuteron (Ando, Yang, and Oh, 2014) and alpha-
particle (Ando and Oh, 2014) cores. In the spin-singlet
channel of S-wave 3

ΛH-Λ scattering, there is no bound state
and no three-body force at LO. In this case, the 3

ΛH-Λ
scattering length was found to be a0 ¼ ð16.0� 3.0Þ fm. In
the spin-triplet channel, a ΛΛd contact interaction is required
at LO to obtain a cutoff-independent 4

ΛΛH binding energy.
Similarly, a ΛΛα three-body force is needed for 6

ΛΛHe
renormalization already at LO, but the correlation between
the double-Λ separation energy of 6

ΛΛHe and the S-wave ΛΛ
scattering length could be investigated.
The paucity of experimental information on hypernuclei

represents an important opportunity for lattice QCD to impact
nuclear physics through EFT; see Sec. V.A.1.

D. Hadronic molecules

Universality also bridges the gap between the seemingly
unrelated domains of atomic and hadronic physics. In recent
years, a large number of new “quarkonium” states in the
charmonium and bottomonium region have been identified in
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various experiments (Patrignani et al., 2016). Many of these
states are close to the thresholds for decays into charm and
bottom mesons, which strongly influences their properties; see
the reviews by Swanson (2006) and Brambilla et al. (2011). A
new “flavored nuclear physics” has emerged in which
nucleons are replaced by hadrons containing heavy quarks,
which is amenable to EFTs that parallel those deployed in
conventional nuclear physics.
A prominent member of this family of so-called XYZ states

is the Xð3872Þ, where the number in parentheses refers to the
center-of-mass energy (in MeV) at which the state was first
observed. The closeness of the Xð3872Þ to the D̄0D�0

threshold as well as its quantum numbers JPC ¼ 1þþ (Aaij
et al., 2013) quickly led to the conjecture that it can be
interpreted, at least in part, as a shallow bound or virtual state
of these two mesons. Braaten and Kusunoki (2004a) first used
an EFT assuming a large D̄0D�0 scattering length to describe
the Xð3872Þ, with a number of further papers building upon
this, for example, Braaten, Kusunoki, and Nussinov (2004),
Braaten and Kusunoki (2004b, 2005a, 2005b), and Braaten
and Lu (2007, 2008). An extension of this EFT to the three-
body sector was given by Canham, Hammer, and Springer
(2009), who studiedD andD� scattering off the Xð3872Þ. The
consequences of this pionless EFT for other states, including
the effects of heavy quark symmetry, were discussed by
AlFiky, Gabbiani, and Petrov (2006), Mehen and Powell
(2011), Nieves and Pavón Valderrama (2012), Guo et al.
(2013a, 2013b), Wilbring, Hammer, and Meißner (2013),
Albaladejo et al. (2015), Liu et al. (2018), and Pavón
Valderrama (2018).
The corrections to universality can be calculated system-

atically using an EFT for the X with explicit pions, called
XEFT, which was developed by Fleming et al. (2007). The
analog of the scale in Eq. (76) is

MDD� ¼ 8πf2π
g2μD0D�0

; ð85Þ

where μD0D�0 ≃ 967 MeV is the reduced mass and g ≃ 0.5–0.7
is the transition coupling of the pion to D̄0 −D�0. MDD� is
larger than MNN , while the mass associated with OPE is
smaller, ½ðmD�0 −mD0Þ2 −m2

π�−1=2 ≃ 45 MeV instead of mπ .
As a consequence, one expects pions to be perturbative
(Fleming et al., 2007; Baru et al., 2011; Pavón Valderrama,
2012; Alhakami and Birse, 2015; Braaten, 2015) in the region
of energies where the bound state might lie. XEFT is analogous
to the version of chiral EFT discussed in Sec. IV.D.4.
A number of aspects of exotic mesons were investigated in

this approach, such as light-quark-mass (Jansen, Hammer, and
Jia, 2014) and finite-volume (Jansen, Hammer, and Jia, 2015)
effects on the Xð3872Þ binding energy, various decays of the
Xð3872Þ (Fleming et al., 2007; Fleming and Mehen, 2008;
Baru et al., 2011; Mehen and Springer, 2011; Fleming and
Mehen, 2012; Mehen, 2015), the decay ψð4160Þ → Xð3872Þγ
as a probe the Xð3872Þ’s molecular content (Margaryan and
Springer, 2013), the triangle singularity in eþe− → Xð3872Þγ
(Braaten, He, and Ingles, 2019b), scattering of low-energy
pions on the Xð3872Þ (Braaten, Hammer, and Mehen, 2010),
the role of exact Galilei invariance for the Xð3872Þ and its line

shape (Braaten, 2015; Schmidt, Jansen, and Hammer, 2018),
Xð3872Þ production in colliders (Braaten, He, and Ingles,
2018, 2019a), and heavy- and light-quark symmetries
(Hidalgo-Duque, Nieves, and Valderrama, 2013).
The role of pion exchange has been further discussed for the

Xð3872Þ at physical (Nieves and Pavón Valderrama, 2011;
Kalashnikova and Nefediev, 2013; Wang and Wang, 2013;
Baru, Epelbaum, Filin, Guo et al., 2015) and unphysical (Baru
et al., 2013; Baru, Epelbaum, Filin, Gegelia, and Nefediev,
2015) quark masses, as well as in the context of other states
and the implications of heavy quark symmetry (Baru et al.,
2017, 2016; Liu, Li, and Zhu, 2014; Cleven et al., 2015; Geng,
Lu, and Valderrama, 2018; Geng et al., 2018; Wang et al.,
2018; Baru, Epelbaum, Filin et al., 2019; Lu, Geng, and
Pavón Valderrama, 2019; Wang, Liu, and Liu, 2019; Xu
et al., 2019).

E. Fundamental symmetries

According to QCD, nuclei ultimately emerge from the
interaction between quarks and gluons. The quarks and
gluons, however, are subject not only to the strong and
electromagnetic interactions displayed explicitly in Eq. (1)
but also to weak and possibly other interactions found in the
ellipsis. Allowing for violation of symmetries such as parity P
and time reversal T from higher-dimensional interactions in
Eq. (1) introduces other components to the nuclear potential
and currents. Nuclear EFTenables us to incorporate the effects
of weak and beyond-the-standard-model interactions in the
description of low-energy hadronic and nuclear processes.
Input from lattice QCD is particularly desirable in this context
(Cirigliano et al., 2019).

1. Parity violation

Besides being responsible for beta decay, weak interactions
also imply that there should be small P-violating operators in
the nuclear force and currents. Since they stem mostly
from four-quark interactions proportional to the Fermi con-
stant GF ≃ 1.17 × 10−5 GeV−2, NDA [Eq. (9)] suggests that
for T-conserving P violation the suppression factor is
GFf2π ∼ 10−7. The framework for the incorporation of
P-violating effects in nuclear EFTs was developed by Zhu
et al. (2005). A major motivation for this program is to
understand the tension that exists among different experiments
(Holstein, 2010) when they are analyzed with quark and
meson-exchange models (Desplanques, Donoghue, and
Holstein, 1980).
In the pionless theory, P violation in the nuclear force is

manifest as S-to-P-wave contact interactions, five of which are
independent at LO (Zhu et al., 2005; Girlanda, 2008). Phillips,
Schindler, and Springer (2009) pointed out that pionless EFT
is well suited to describing a number of existing and planned
NN scattering experiments and calculated the relevant rela-
tionships between observables (typically spin-polarization
asymmetries) at LO in the P-violating sector. Schindler,
Springer, and Vanasse (2016) argued that large-Nc arguments
can be used to reduce the number of LO P-violating operators
from five to two. Grießhammer and Schindler (2010) showed
that no P-violating 3N force occurs up to and including NLO,
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enabling predictions for P-violating elastic neutron-deuteron
scattering (Grießhammer, Schindler, and Springer, 2012;
Vanasse, 2012) based on the two-nucleon LECs. However,
Vanasse (2019) concluded that a P-violating 3N force is
required at NLO after all.
The first pionless calculations of the deuteron anapole (or

toroidal dipole) moment and P-violating effects in the np →
dγ capture process were presented by Savage (2001), building
upon previous work in the theory with explicit, perturbative
pions (Savage and Springer, 1998, 2001; Kaplan et al., 1999).
Schindler and Springer (2010), Vanasse and Schindler (2014),
and Shin, Ando, and Hyun (2010) looked at P-violating
asymmetries in the np → dγ process. Spin polarization in the
inverse process was studied by Ando et al. (2011). Moeini
Arani and Bayegan (2013) and Arani and Bayegan (2014)
studied P violation in the nd → 3H γ radiative-capture reac-
tion, and Mahboubi et al. (2016) included electromagnetic
effects to calculate polarized pd scattering.
Some of these processes have also been considered in chiral

EFT. As far as strong interactions are concerned, the power μ
of a contribution to the potential[see Eq. (74)] can now be
negative, but of course the corresponding terms are suppressed
by small factors. The lowest orders of the T-conserving, P-
violating potential and electromagnetic currents were obtained
by Zhu et al. (2005), Kaiser (2007), Liu and Zhu (2008),
Girlanda (2008), Viviani et al. (2014), and de Vries et al.
(2014). They display new elements, such as TPE, compared to
the one-meson-exchange potentials usually employed to study
P violation (Desplanques, Donoghue, and Holstein, 1980).
Calculations of P violation in few-nucleon systems have thus
far been based on Weinberg’s prescription, as reviewed by
de Vries and Meißner (2016).

2. Time-reversal violation

In the case of T, there is potential violation from the QCD
vacuum angle θ̄ and from higher-dimensional operators, all
contained in the ellipsis in Eq. (1). While the former is
anomalously small [θ̄ ≲ 10−10 (Tanabashi et al., 2018)], the
latter are suppressed by at least 2 powers of a large scale. All
violation from operators of dimension up to six is accom-
panied by P violation. These interactions induce T-violating
nuclear form factors, such as electric dipole and magnetic
quadrupole, which could be probed in the proposed storage-
ring experiments (Pretz, 2013). In nuclear EFT, they are
calculated within the same framework used for nucleon
electric dipole moments.
The lowest-order P- and T-violating potential calculated in

chiral EFT byMaekawa et al. (2011) and de Vries et al. (2013)
showed, as its P-conserving counterpart, new ingredients
compared to one-meson-exchange potentials (Liu and
Timmermans, 2004). The implications of an additional
large-Nc expansion were discussed by Samart et al. (2016).
Together with P- and T-violating currents, form factors were
calculated for the deuteron in chiral EFT with perturbative
pions by deVries,Mereghetti et al. (2011) andwithWeinberg’s
prescription by de Vries, Higa et al. (2011), Liu et al. (2012),
and Bsaisou et al. (2013, 2015); good accord was found
among these calculations. de Vries, Higa et al. (2011) and
Bsaisou et al. (2015) also calculated the electric dipole

moments of triton and helion with Weinberg’s prescription.
The deuteron also possesses a P-conserving, T-violating form
factor, the toroidal quadrupole. The contribution to this
moment from the same P- and T-violating operators in
conjunction with weak interactions was obtained with pertur-
bative pions by Mereghetti et al. (2013). T violation in few-
nucleon systems was reviewed by Mereghetti and van Kolck
(2015), where it was shown how measurements of the electric
dipole moments of nuclei, together with further theoretical
advances, could at least partially disentangle the various
possible sources of T violation.

3. Other symmetries

Higher-dimensional operators in the standard model break
also other symmetries like lepton (L) and baryon (B) number,
but less work exists in the context of nuclear EFTs. Of
particular contemporary interest is L violation, especially
through the only dimension-5 operator, which leads to
Majorana neutrino masses. The most sensitive laboratory
probe of L violation (by two units) is neutrinoless double-
beta decay (0νββ), which is, however, afflicted by severe
nuclear-physics uncertainties. Traditionally, 0νββ has been
calculated from the exchange of an explicit Majorana neutrino
together with phenomenological nuclear models, but more
recently nuclear EFTs have been deployed (Cirigliano et al.,
2018a). It has been uncovered that a short-range LEC must
enter at LO for proper renormalization in both pionless
(Cirigliano, Dekens, Mereghetti, and Walker-Loud, 2018)
and chiral (Cirigliano et al., 2018b) EFTs. The first ab initio
calculations of these contributions in light nuclei are becom-
ing available (Cirigliano et al., 2018b; Pastore et al., 2018).
Operators of higher dimensions have been considered as well
(Prezeau, Ramsey-Musolf, and Vogel, 2003; Cirigliano et al.,
2017). Implementation of these operators in the shell model
are starting to appear (Horoi and Neacsu, 2017, 2018).
Analogous to L violation is B violation by two units. The

process of neutron-antineutron oscillation in a nucleus leads to
decay after the antineutron annihilates with a nucleon. An
NLO calculation of this process in the deuteron (Oosterhof
et al., 2019) gives a lifetime in pionless EFT that is
comparable to earlier zero-range models, while in chiral
EFT (with perturbative pions) it is a factor of ≃ 2.5 smaller
than existing potential-model calculations.
Extensions of the standard model can be constructed that

account for possible violation of Lorentz and (then unpro-
tected) CPT symmetries at high energies, allowing for
operators with low dimensions. Most tests of these symmetries
take place at low energies where QCD is nonperturbative,
impeding direct bounds on operators involving strongly
interacting particles. Among the lowest-dimensional operators
of this type is a Lorentz-violating but CPT-conserving purely
gluonic operator. The nuclear potential induced by this
operator and its possible effects on atomic-clock comparisons
and on the spin precession of the deuteron and other light
nuclei in storage-ring experiments were discussed by
Noordmans (2017). Dimension-5 operators were similarly
discussed by Noordmans, de Vries, and Timmermans (2016).
A more detailed analysis of the nuclear implications of these
interactions is needed.
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F. Dark-matter detection

Nuclear EFTs have also been used to describe dark-matter
scattering off heavy nuclei in direct-detection experiments.
The dark-matter particles must be nonrelativistic to be bound
in the dark-matter halo by gravitation, with typical velocities
of order 0.001 times the speed of light. Since the recoil
momentum is comparable to the typical momentum of a
nucleon in the nucleus, it is crucial for the interpretation of
current experimental limits [cf. Liu, Chen, and Ji (2017)] that
nuclear-structure factors be properly addressed.
The calculation of nuclear-structure factors in nuclear EFT

has been organized in two different ways. First, a pionless
EFT for nucleon and dark-matter fields (Fan, Reece, and
Wang, 2010; Fitzpatrick et al., 2012, 2013; Anand,
Fitzpatrick, and Haxton, 2014) allows for a study of nuclear
response functions in terms of effective couplings, and the
extraction of limits on the coefficients of the operators. This
approach reaches its limit at the largest momentum transfers
for scattering off heavy nuclei, where the details of pion
exchange are resolved. Second, chiral EFT has been used to
predict the nuclear-structure factors for spin-independent
and spin-dependent scattering. The analysis within chiral
EFT establishes relations between different operators in the
pionless framework, and it provides a counting scheme
that indicates at which order two-nucleon operators contrib-
ute. Recent work in this direction includes chiral EFT-based
structure factors for the spin-dependent response (Menéndez,
Gazit, and Schwenk, 2012; Klos et al., 2013), aspects of spin-
independent scattering (Cirigliano, Graesser, and Ovanesyan,
2012; Cirigliano et al., 2014; Vietze et al., 2015), scattering
off light nuclei (Körber, Nogga, and de Vries, 2017), inelastic
scattering (Baudis et al., 2013), and a general chiral EFT
analysis of one- and two-body currents (Hoferichter, Klos, and
Schwenk, 2015; Hoferichter et al., 2016, 2019) and improved
limits for dark-matter models from experimental searches
(Hoferichter et al., 2017; Aprile et al., 2019).

G. Bosons with large scattering length

Up to technical details that arise from spin and isospin
degrees of freedom, pionless EFT is virtually identical to a
theory that describes a system of bosons with a large two-body
scattering length. Throughout the history of pionless EFT, this
fact has been used repeatedly, the few-boson system serving to
guide analogous analyses in the few-nucleon sector.
But such bosonic systems are relevant far beyond serving

as a toy problem. Experimentally, they are realized in cold
atomic gases, where the two-body interaction can in fact be
tuned arbitrarily by varying an external magnetic field, the
Feshbach-resonance mechanism. In particular, the Efimov
effect has been established experimentally by exploiting the
fact that the occurrence of three-body states close to points
where the two-body scattering length is tuned to infinity
(Kraemer et al., 2006), with many more experiments since
the first observation. A comprehensive discussion of the
theoretical treatment of universal few-body systems was
given by Braaten and Hammer (2006). The current status
of the field was recently reviewed by Naidon and
Endo (2017).

VI. CONCLUSION

As shown in Fig. 1, a significant portion of low-energy
nuclear physics is amenable to an EFT description, with
different theories tailored specifically to different regions.
With increasing energy, a tower of EFTs starts from the simple
pionless case, an expansion around the unitary limit of large
NN scattering lengths. Its range of applicability can be
extended by the inclusion of pions—first perturbatively and
then nonperturbatively—in chiral EFT, constructed as an
expansion around the eponymous chiral limit of vanishing
quark masses. Although there is a fundamental difference
regarding how pions are treated (a heavy degree of freedom in
pionless EFT, but a light one in chiral EFT), these theories are
low-energy limits of QCD. They are both formulated as
theories of pointlike nucleons with interactions that give rise
to low-energy poles of the S matrix.
The fact that nucleons, being composite hadrons, in reality

have substructure is encoded in the EFT expansion, namely, in
local operators with an increasing number of derivatives.
Establishing the ordering of such interactions is the crucial
element that enables a systematic description of observables.
The usefulness of EFT does not stop at this point because

new scale separations arise in nuclei. A particular case, halo/
cluster EFT, has been discussed in this review as a promising
way to describe clusterlike nuclei. On yet another level, efforts
are under way to construct EFTs for rotational and vibrational
modes in heavy nuclei (Papenbrock, 2011). Moreover, appli-
cations to other composite systems, from dark matter to cold
atoms, show how nonperturbative EFTs are a driving force
behind many important developments in modern theoretical
physics.
EFTs are ideally suited to root nuclear physics in the

standard model EFT, elegantly exploiting its emergence from
QCD as the underlying theory of the strong interaction,
particularly through lattice simulations. EFTs have become
the initio of ab initio methods for the solution of few- and
many-nucleon dynamics and have engendered such an explo-
sion of activity that it is difficult to draw a line to conclude this
review. We have already reached the point where calculated
nuclear properties are being used to identify deficiencies in the
nuclear interactions used as input.
Ab initio calculations now almost unanimously follow

(mostly in chiral EFT, but increasingly in pionless EFT)
Weinberg’s original prescription; i.e., they do not expand on
the subleading components of the potential. Our emphasis in
this review was on approaches that pursue the long-standing
goal of RG invariance through the perturbative expansion of
the Smatrix on the subleading interactions. This approach has
led to a new and unified description of few-body “Efimov
physics” under the umbrella of pionless EFT. It remains to
establish, however, to which extent this framework can share
the efficiency of Weinberg’s approach without dependence on
the form of the regulator, or perhaps to explain its phenom-
enological success for larger nuclei within narrow cutoff
windows.
It is thus our hope that this review will not only provide a

unified overview of what has been done but will also
inspire future research toward a comprehensive and solid
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understanding of nuclear structure and reactions from an EFT,
and ultimately a QCD, perspective.
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Lee, D., and T. Schäfer, 2006b, Phys. Rev. C 73, 015202.
Lei, J., L. Hlophe, C. Elster, A. Nogga, F. M. Nunes, and D. R.
Phillips, 2018, Phys. Rev. C 98, 051001.

Lenkewitz, M., E. Epelbaum, H.-W. Hammer, and U.-G. Meißner,
2011, Phys. Lett. B 700, 365.

Lenkewitz, M., E. Epelbaum, H.-W. Hammer, and U.-G. Meißner,
2013, Eur. Phys. J. A 49, 20.

Lensky, V., and M. C. Birse, 2011, Eur. Phys. J. A 47, 142.
Lensky, V., M. C. Birse, and N. R. Walet, 2016, Phys. Rev. C 94,
034003.

Lepage, G. P., 1989a, in From Actions to Answers: Proceedings of
the 1989 Theoretical Advanced Study Institute in Elementary
Particle Physics, edited by T. A. DeGrand and D. Touissaint
(World Scientific, Singapore), pp. 97–120.

Lepage, G. P., 1989b, in From Actions to Answers: Proceedings of
the 1989 Theoretical Advanced Study Institute in Elementary
Particle Physics, edited by T. A. DeGrand and D. Touissaint
(World Scientific, Singapore), pp. 483–508.

Lepage, G. P., 1997, arXiv:nucl-th/9706029.
Li, K.-W., X.-L. Ren, L.-S. Geng, and B. Long, 2016, Phys. Rev. D
94, 014029.

Li, K.-W., X.-L. Ren, L.-S. Geng, and B.-W. Long, 2018, Chin. Phys.
C 42, 014105.

Liebig, S., V. Baru, F. Ballout, C. Hanhart, and A. Nogga, 2011, Eur.
Phys. J. A 47, 69.

Liu, C. P., J. de Vries, E. Mereghetti, R. G. E. Timmermans, and U.
van Kolck, 2012, Phys. Lett. B 713, 447.

Liu, C. P., and R. G. E. Timmermans, 2004, Phys. Rev. C 70, 055501.
Liu, J., X. Chen, and X. Ji, 2017, Nat. Phys. 13, 212.
Liu, M.-Z., F.-Z. Peng, M. Sánchez Sánchez, and M. Pavón
Valderrama, 2018, Phys. Rev. D 98, 114030.

Liu, X., V. Limkaisang, D. Samart, and Y. Yan, 2019, Phys. Lett. B
789, 530.

Liu, Y.-R., and S.-L. Zhu, 2008, Chin. Phys. C 32, 700.
Liu, Z.-W., N. Li, and S.-L. Zhu, 2014, Phys. Rev. D 89,
074015.

Logoteta, D., I. Bombaci, and A. Kievsky, 2016, Phys. Rev. C 94,
064001.

Long, B., 2013, Phys. Rev. C 88, 014002.
Long, B., and Y. Mei, 2016, Phys. Rev. C 93, 044003.
Long, B., and U. van Kolck, 2008, Ann. Phys. (Amsterdam) 323,
1304.

Long, B., and U. van Kolck, 2010, Nucl. Phys. A840, 39.
Long, B., and U. van Kolck, 2011, Nucl. Phys. A870-871, 72.
Long, B., and C. J. Yang, 2011, Phys. Rev. C 84, 057001.
Long, B., and C. J. Yang, 2012a, Phys. Rev. C 85, 034002.
Long, B., and C. J. Yang, 2012b, Phys. Rev. C 86, 024001.
Lu, B.-N., N. Li, S. Elhatisari, D. Lee, E. Epelbaum, and U.-G.
Meißner, 2018, arXiv:1812.10928.

Lu, J.-X., L.-S. Geng, and M. Pavón Valderrama, 2019, Phys. Rev. D
99, 074026.

Lucas, J., and M. Rustgi, 1968, Nucl. Phys. A112, 503.
Luke, M. E., and A. V. Manohar, 1992, Phys. Lett. B 286, 348.
Luke, M. E., and A. V. Manohar, 1997, Phys. Rev. D 55, 4129.
Lupu, S., N. Barnea, and D. Gazit, 2015, arXiv:1508.05654.
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