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The energy resolution per bandwidth ER is a figure of merit that combines the field resolution,
bandwidth or duration of the measurement, and size of the sensed region. Several different dc
magnetometer technologies approach ER ¼ ℏ, while to date none have surpassed this level. This
suggests a technology-spanning quantum limit, a suggestion that is strengthened by model-based
calculations for nitrogen-vacancy centers in diamond, for superconducting quantum interference
device sensors, and for some optically pumped alkali-vapor magnetometers, all of which predict a
quantum limit close to ER ¼ ℏ. This Colloquium reviews what is known about energy resolution
limits, with the aim of understanding when and how ER is limited by quantum effects. A survey of
reported sensitivity versus size of the sensed region for more than 20 magnetometer technologies is
included, the known model-based quantum limits are reviewed, and possible sources for a
technology-spanning limit are critically assessed, including zero-point fluctuations, magnetic self-
interaction, and quantum speed limits. Finally, sensing approaches are described that appear to be
unconstrained by any of the known limits, thus making them candidates to surpass ER ¼ ℏ.
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I. INTRODUCTION

Low-frequency magnetic fields are ubiquitous and provide
important information in applications ranging from nano-
technology (Ariyaratne et al., 2018) to brain studies (Boto
et al., 2017) to space science (Arridge et al., 2016). A plethora
of sensing scenarios, and the availability of many physical
systems with strong magnetic response, have led to many
distinct magnetometer technologies. Grosz, Haji-Sheikh, and
Mukhopadhyay (2016) provided a recent and extensive
review. It is of both fundamental and practical interest to
know how well quantum physics allows such sensors to
perform. At a fundamental level, prior work on quantum limits
of sensing has uncovered connections to the geometry of
quantum states (Braunstein and Caves, 1994), entanglement in
many-body systems (Sørensen and Mølmer, 2001), quantum
information processing (Giovannetti, Lloyd, and Maccone,
2006; Roy and Braunstein, 2008), and quantum nonlocality
(Tura et al., 2014; Schmied et al., 2016). These results for the
most part concern quantum estimation theory (Helstrom,
1969, 1976) applied to generalized linear interferometers
(Lee, Kok, and Dowling, 2002). High-performance magne-
tometers, however, employ methods not easily mapped onto
linear interferometry (Mitchell, 2017), and one may hope that
understanding their quantum limits will yield still other
fundamental insights.
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In this Colloquium, we focus on energy resolution limits
(ERLs), which are constraints on the energy resolution per
bandwidth ER, a figure of merit that combines field resolution,
measurement duration or bandwidth, and the size of the
sensed region (Robbes, 2006). ER has units of action, with
smaller values indicating a better combination of speed, size,
and sensitivity. The best magnetometer technologies now
reach ER ≈ ℏ. ERLs near this value are predicted for important
magnetometry technologies, including superconducting quan-
tum interference devices (SQUIDs) (Koch, Van Harlingen,
and Clarke, 1980), optically pumped magnetometers (OPMs)
(Jiménez-Martínez and Knappe, 2017), and spin-precession
sensors with fixed, random spin positions, e.g., nitrogen-
vacancy centers in diamond (NVDs) (Mitchell, 2020). The
nature and scope of ERLs is thus also a practical question that
informs efforts to improve energy resolution beyond the
current state of the art.
One of the most intriguing features of ERLs is the suggestion

that there may be a single, technology-spanning ERL, one that
constrains any magnetic field measurement, regardless of how
it is performed. This suggestion emerges most immediately
from a multitechnology survey of reported sensitivities (see
Fig. 2 and Table I), all of which obey ER ≥ ℏ, even as some
come close to this level. Given that the known limits for
SQUIDs, OPMs, and NVD sensors are also near this level, it
is natural to ask whether these ERLs could be distinct
manifestations of a single ERL. Such a limit could plausibly
be imposed by general quantum limits, for example, the
Margolus-Levitin bound (Margolus and Levitin, 1998),
which relates the speed of evolution to the available energy,
or the Bremermann-Bekenstein bound (Bekenstein, 1981b;
Bremermann, 1982), which relates the entropy and thus
information content of a region to its energy content and size.
The objective of this Colloquium is to bring together, and

when possible to synthesize, the many dispersed insights that
bear on the question of when and how quantum mechanics
constrains the energy resolution of a magnetic field sensor.
The text is organized as follows: In Sec. II, we describe ERLs
as they appear in the scientific literature for different sensor
types. In Sec. III, we discuss the physical meaning of an ERL
and note its relation to independence of quantum noise
sources. In Sec. V, we present model-based ERLs for
SQUIDs, alkali-vapor OPMs, and color-center (e.g., NVD)
sensors. In Sec. VI, we assess technology-independent quan-
tum limits, e.g., quantum speed limits, and their potential to
supply a technology-spanning ERL. In Sec. VII, we describe
sensing approaches that evade the known limits and thus may
have potential to surpass current state-of-the-art energy
resolutions.

II. HISTORY AND ORIGINS

The ERL concept emerged from an analysis of dc SQUID
sensitivity by Tesche and Clark (Tesche and Clarke, 1977;
Koch, Van Harlingen, and Clarke, 1980). A SQUID is a planar
field sensor based on the Josephson effect and measures the
flux Φ through a loop of superconducting material; see Fig. 1.
A more detailed description is given in Sec. V. Tesche and
Clarke considered a lumped-circuit model of the dc SQUID
dynamics to compute the equivalent flux-noise power spectral

density SΦðνÞ of Φ, where ν is the linear frequency.
Optimization of the SQUID parameters for best dc sensitivity,
i.e., for minimum SΦð0Þ, yields the bound

Eðdc SQUIDÞ
R ≡ SΦð0Þ

2L
≥ ℏ; ð1Þ

where L is the inductance of the SQUID pickup loop.1 The
name energy resolution was applied to ER ¼ SΦð0Þ=ð2LÞ by
analogy to Φ2=ð2LÞ, the magnetostatic energy in a current
loop. As should be clear from Eq. (1), ER has units of action,
not energy, and in more recent literature ER is referred to as the
energy resolution per bandwidth.
To compare with other kinds of sensors, it is interesting

to have a purely geometric expression for this limit. To this
end, we note that Φ ¼ BA, where A is the loop area, and that
L ¼ ffiffiffiffi

A
p

μ0=α, where α is a wire geometry factor of the
order of unity. We can thus reexpress the Tesche-Clarke
(TC) limit as

EðareaÞ
R ≡ SBð0ÞA3=2

2μ0
≥ αℏ: ð2Þ

The use of energy resolution as a measure of sensitivity has
spread to other areas, including both Bose-Einstein conden-
sate (BEC) and hot-vapor OPMs (Vengalattore et al., 2007;
Dang, Maloof, and Romalis, 2010; Griffith, Knappe, and
Kitching, 2010; Jiménez-Martínez and Knappe, 2017), and
cross-technology reviews (Bending, 1999; Robbes, 2006;
Yang et al., 2017). For a planar BEC sensor, the geometrical
form of the ERL, i.e., Eq. (2), has been directly used for an
intertechnology comparison (Vengalattore et al., 2007a). For
volumetric sensors, the energy resolution has been defined
with reference to B2V=ð2μ0Þ, the magnetostatic energy in a
volume V, to give

FIG. 1. Schematic diagram of a dc SQUID in constant current
mode with resistively shunted Josephson junctions. A super-
conducting loop (thick blue) is interrupted by two Josephson
junctions (dashed red). The junctions are shunted by resistances
R. A constant current I feeds the SQUID, and the generated
voltage V is used to infer the flux Φ threading the SQUID loop.

1The 1977 TC publication assumed quantum noise arising from
electron pair shot noise in the current across the Josephson junctions
and arrived at a limit of h=2 ¼ πℏ. Later analyses assume quantum
noise from zero-point fluctuations in resistances shunting the
junctions and arrive at a limit of ℏ (Koch, Van Harlingen, and
Clarke, 1981; Robbes, 2006).
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EðvolÞ
R ≡ SBð0ÞV

2μ0
: ð3Þ

A first-principles study of a possible quantum bound on EðvolÞ
R

for OPMs and a comparison against the planar ERL for
SQUIDS appear to have been reported by Lee and Romalis
(2008); see also Romalis et al. (2014).

III. NATURE AND FORM OF ENERGY
RESOLUTION LIMITS

To understand the meaning of an ERL, rather than a con-
tinuous measurement, it is convenient to consider a sequence
of discrete field measurements, averaged to obtain the dc field
value. Consider a magnetic sensor of volume V that, after
observation time T, gives a reading Bobs ¼ Btrue þ δB, where
Btrue is the true value of the field and δB is the measurement
error. We assume that through calibration of the sensor hδBi ¼
0 such that Bobs is an unbiased estimator for Btrue. The mean
apparent magnetostatic energy in the sensor volume is

Eobs ¼
hB2

obsiV
2μ0

¼ B2
trueV
2μ0

þ hδB2iV
2μ0

ð4Þ

We now consider performing such T-duration measure-
ments as often as possible, i.e., with measurement repetition
period T, and averaging them. We assume the measurement is
subject to only quantum noise, all other noise sources having
been reduced to negligible levels. We can then use the
statistical independence of quantum noise in two ways.
First, we note that hδB2iT ¼ SBð0Þ, such that the second

term in Eq. (4) becomes EðvolÞ
R . We thus recognize EðvolÞ

R as the
bias in the magnetostatic energy estimate.
Second, we note that in total acquisition time Tacq we can

average Nrep ≡ Tacq=T measurements to yield a variance
hδB2i=Nrep ¼ hδB2iT=Tacq. Given a fixed Tacq and a choice
among measurements with different values for hδB2i and T,
the measurement with the smallest hδB2iT is thus the superior
measurement. If a quantum limit exists, it is because there is a
limit on the product hδB2iT. The same argument applies to the
volume, if we imagine filling a volume with nonoverlapping
sensors and averaging their readings. As a result, we expect a
volumetric ERL of quantum origin to take the form

EðvolÞ
R ≡ SBð0ÞV

2μ0
¼ hδB2iVT

2μ0
≥ S; ð5Þ

where S is a constant with units of action. We use the
common shorthand δB for hδB2i1=2 and refer to δB

ffiffiffiffi
T

p
as the

sensitivity.

IV. SCALING OF SENSITIVITY WITH EXTENT OF THE
SENSED REGION

High-sensitivity magnetometers have been demonstrated or
proposed with all possible dimensionalities: pointlike, linear,
planar, and volumetric. Examples of pointlike sensors are
single NVDs (Fang et al., 2013; Trusheim et al., 2014;
Lovchinsky et al., 2016; Ariyaratne et al., 2018) and single

trapped ions (Ruster et al., 2017). Linear sensors include
ferromagnetic needles (Jackson Kimball, Sushkov, and
Budker, 2016; Band, Avishai, and Shnirman, 2018) and some
cold atomic ensembles (Sewell et al., 2012; Behbood et al.,
2013). Planar sensors include superconducting sensors of
various types (Robbes, 2006; Giazotto et al., 2010; Kher et al.,
2013, 2016; Luomahaara et al., 2014; Kher, 2017), Hall-effect
sensors (Bending, 1999), and several others (Robbes, 2006;
Grosz, Haji-Sheikh, and Mukhopadhyay, 2016). Volumetric
sensors include OPMs (Kominis et al., 2003; Dang, Maloof,
and Romalis, 2010; Griffith, Knappe, and Kitching, 2010;
Gawlik and Pustelny, 2017; Jiménez-Martínez and Knappe,
2017; Savukov, 2017; Weis, Bison, and Grujić, 2017),
ensemble NVD sensors (Wolf et al., 2015; Barry et al.,
2016; Jensen, Kehayias, and Budker, 2017), and others.
Sensors employing trapped Bose-Einstein condensates
(Wildermuth et al., 2006; Vengalattore et al., 2007; Yang
et al., 2017) or cold thermal ensembles may approximate any
of these geometries, depending on the trap configuration.
Regardless of the sensor dimensionality, the field to be

detected exists in three-dimensional space and, moreover,
varies smoothly in that space, except near magnetic sources.
Because of this, a sensor’s reading is representative of the field
in a three-dimensional volume, even if the sensor is of lower
dimensionality. For example, we may consider a pointlike
sensor embedded in a support that prevents magnetic sources
to approach closer than a minimum distance lmin. By
∇ · B ¼ 0, the field experienced by the sensor is equal to
the average of the field inside a sphere of radius lmin about the
sensor position. The sensor signal is the same as it would be
were the sensor to uniformly sample this spherical volume.
We can thus assign an effective volume 4πl3min=3 to the
pointlike sensor. To enable a uniform comparison of different
sensor types, we define leff ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volume3

p
and leff ¼

ffiffiffiffiffiffiffiffi
area

p
,

respectively, for the effective linear dimensions of volumetric
and planar sensors. Noting that with these definitions
Eqs. (2) and (3) coincide, we can hypothesize the technology-
spanning ERL

ER ≡ SBð0Þl3eff
2μ0

¼ hδB2il3effT
2μ0

≥ αℏ; ð6Þ

where α is again a number of the order of unity.
In Fig. 2, we show sensitivity versus effective linear

dimension for many representative publications on high-
sensitivity magnetic field detection. Only measured sensitiv-
ities are included, and only when the dimensions of the
sensitive region could be determined. With a few exceptions
(to be discussed later), the survey is restricted to dc field
sensors, which we take to include field components below
1 kHz. While most sensors operate continuously, a number of
sensors in the survey operate in a pulsed mode. For example,
cold atom experiments take time to accumulate atoms prior to
any sensing, making their cycle time longer than the meas-
urement time. Because we are concerned here with funda-
mental limits, when computing the energy resolution per
bandwidth we include such delays only if they appear to be
unavoidable for fundamental reasons. For example, atom-trap
loading time is not included because one can imagine ways to
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deliver a new batch of atoms each time the previous batch is
consumed. In contrast, delays associated with optical pumping
or fluorescence detection (both of which require time for
spontaneous emission) would appear to be unavoidable.
For work that reports a field-equivalent noise spectral

density SBðνÞ and the dimensions of the sensitive region,
no conversion of physical quantities is required. For work that
reports sensitivity in units of magnetic moment μ, e.g., for
magnetic microscopy applications, we convert the equivalent
noise SμðνÞ to field units using the sample-sensor distance
assuming a dipole field distribution.
As seen in Fig. 2, several different technologies come close

to ER ¼ ℏ. These include micro-SQUIDs (Cromar and
Carelli, 1981; Van Harlingen, Koch, and Clarke, 1982;
Awschalom et al., 1988; Wakai and Van Harlingen, 1988;
Mück, Kycia, and Clarke, 2001), spinor Bose-Einstein con-
densates (Vengalattore et al., 2007), and spin-exchange-
relaxation-free (SERF)-regime OPMs (Dang, Maloof, and
Romalis, 2010; Griffith, Knappe, and Kitching, 2010). As rf
magnetometers, single nitrogen-vacancy (NV) centers in
diamond (Lovchinsky et al., 2016) also are close to ER ¼ ℏ.

V. KNOWN LIMITS FOR SPECIFIC TECHNOLOGIES

For three well-studied high-sensitivity magnetometer types,
model-based calculations are known to lead to an ERL. We
have already mentioned the TC limit for dc SQUID sensors,
the origin of Eq. (1). More recent calculations for spin-
precession sensors, both OPMs and NVD sensors, give rise to
a limit on the volumetric energy resolution of Eq. (3).

Although derived for different systems using different models,
these limits appear to agree.

A. dc SQUID sensors

The dc SQUID analyzed by Tesche and Clarke (1977)
consists of a loop of superconducting material interrupted by
two Josephson junctions (JJs), as illustrated in Fig. 1, with a
constant current bias I and resulting voltage V across the
SQUID. The dynamics of the dc SQUID are, in general,
complex and nonlinear, but in some regimes the SQUID
provides a direct relationship between the fluxΦ threading the
loop and V, allowing Φ to be inferred from V, which can be
measured using low-noise amplifiers. In other regimes, the
flux-current relationship is hysteretic and the flux cannot
simply be inferred from V. To avoid these hysteretic regimes,
damping is typically introduced in the form of resistances
shunting the JJs. These shunt resistances introduce both
thermal noise (Johnson-Nyquist noise) and quantum noise
(zero-point current fluctuations) into the SQUID dynamics.
The TC analysis showed that if the resistances provide enough
damping to make the flux-current relation single valued, then
they also introduce enough quantum noise to impose an
energy resolution limit, as in Eq. (1). The TC analysis has
been extended to more detailed dc SQUID models (Koch, Van
Harlingen, and Clarke, 1980; Wakai and Van Harlingen,
1988; Ryhänen et al., 1989), and was reviewed by Robbes
(2006). With careful construction, small dc SQUID devices
have reported SΦð0Þ=ð2LÞ as low as 2ℏ (Awschalom et al.,
1988; Wakai and Van Harlingen, 1988; Mück, Kycia, and
Clarke, 2001).

FIG. 2. Reported magnetic sensitivity δB
ffiffiffiffi
T

p
for different sensor technologies versus size of the sensitive region. Effective linear

dimension leff indicates
ffiffiffiffiffiffiffiffi
area

p
for planar sensors and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volume3

p
for volumetric ones. For pointlike systems such as single spins, leff

indicates
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volume3

p
for a sphere with radius equal to the minimum source-detector distance. For work reporting sensitivity in units of

magnetic dipole moment, we convert to field units using the reported sample distance. Excepting RFNVD, noise levels are the lowest
reported value at frequency ≤ 1 kHz. An arrow indicates that the value is off the scale. SQUID, superconducting quantum interference
device; SQUIPT, superconducting quantum interference proximity transistor; SKIM, superconducting kinetic impedance magnetom-
eter; OPM, optically pumped magnetometer; FCOPM, OPM with flux concentrators; CEOPM, cavity-enhanced OPM; COPM, OPM
with cold thermal atoms; BEC, Bose-Einstein condensate; RSC, Rydberg Schrödinger cat; NVD, nitrogen-vacancy center in diamond;
RFNVD, radio-frequency NVD; FCNVD, NVD with flux concentrators; YIG, yttrium-aluminum-garnet; GMR, giant magnetoresist-
ance; EMR, extraordinary magnetoresistance; MTJ, magnetic tunnel junction; MEMF, magnetoelectric multiferroic; HALL, Hall-effect
sensor; GRA, graphene; PAFG, parallel gating fluxgate; MFM, magnetic force microscope, WGM, whispering-gallery mode
magnetostrictive. Line shows ER ≡ hδB2iTl3eff=ð2μ0Þ ¼ ℏ. Numeric labels refer to Table I.

Morgan W. Mitchell and Silvana Palacios Alvarez: Colloquium: Quantum limits to the energy …

Rev. Mod. Phys., Vol. 92, No. 2, April–June 2020 021001-4



TABLE I. Dimensions and field and/or flux sensitivities for the sensing results shown in Fig. 1. Values are taken directly from the cited
publications when possible. In some cases, values are estimated from a graph or an image. Dots indicate values not found in the cited works.

l1 l2 l3 V A δΦ
ffiffiffiffi
T

p
δB

ffiffiffiffi
T

p
Label References Type (m) (m) (m) (m3) (m2) (T=

ffiffiffiffiffiffi
Hz

p
) (Wb=

ffiffiffiffiffiffi
Hz

p
) Notes

1 Schmelz et al. (2016) SQUID 3.0 × 10−2 3.4 × 10−2 � � � � � � 9.9 × 10−4 � � � 1.5 × 10−16

2 Dang, Maloof,
and Romalis (2010)

OPM 5.0 × 10−3 5.0 × 10−3 1.8 × 10−2 4.5 × 10−7 � � � � � � 1.6 × 10−16

3 Storm et al. (2017) SQUID 4.5 × 10−2 4.5 × 10−2 � � � � � � 1.6 × 10−3 � � � 2.0 × 10−16

4 Schmelz et al. (2011) SQUID 1.2 × 10−2 1.2 × 10−2 � � � � � � 1.5 × 10−4 � � � 3.3 × 10−16

5 Kominis et al. (2003) OPM 4.0 × 10−2 4.0 × 10−3 3.1 × 10−3 3.0 × 10−7 � � � � � � 5.4 × 10−16

6 Sheng et al. (2013) OPM � � � � � � � � � 6.6 × 10−7 � � � � � � 5.4 × 10−16

7 Schmelz et al. (2011) SQUID 7.0 × 10−3 7.0 × 10−3 � � � � � � 4.9 × 10−5 � � � 7.0 × 10−16

8 Drung, Knappe,
and Koch (1995)

SQUID 7.3 × 10−3 7.3 × 10−3 � � � � � � 4.4 × 10−5 � � � 9.0 × 10−16

9 Faley et al.
(2006, 2012, 2013)

SQUID 1.6 × 10−2 1.6 × 10−2 � � � � � � 2.6 × 10−4 � � � 3.5 × 10−15

10 Griffith, Knappe,
and Kitching (2010)

OPM 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 1.0 × 10−9 � � � � � � 5.0 × 10−15

11 Brandt and Mikitik (2000)
and Pannetier et al. (2004)

GMR 4.4 × 10−4 4.4 × 10−4 � � � � � � 1.9 × 10−7 � � � 3.2 × 10−14

12 Luomahaara et al. (2014) SKIM 2.0 × 10−2 2.0 × 10−2 � � � � � � 4.0 × 10−4 � � � 3.2 × 10−14

13 Krey, Barthelmess,
and Schilling (1999)

SQUID 3.0 × 10−3 3.0 × 10−3 � � � � � � 9.0 × 10−6 � � � 8.5 × 10−14

14 Fong et al. (2005) SQUID 1.0 × 10−3 1.0 × 10−3 � � � � � � 7.9 × 10−7 � � � 1.5 × 10−13

15 Fong et al. (2005) SQUID 5.0 × 10−4 5.0 × 10−4 � � � � � � 2.0 × 10−7 � � � 2.4 × 10−13

16 Awschalom et al. (1988) SQUID 2.5 × 10−5 2.5 × 10−5 � � � � � � 6.3 × 10−10 1.7 × 10−22 2.8 × 10−13

17 Fong et al. (2005) SQUID 5.0 × 10−4 5.0 × 10−4 � � � � � � 2.0 × 10−7 � � � 3.3 × 10−13

18 Vetoshko, Valeiko,
and Nikitin (2003)
and Robbes (2006)

YIG 1.0 × 10−2 1.0 × 10−2 � � � � � � 1.0 × 10−4 � � � 4.0 × 10−13

19 Fong et al. (2005) SQUID 2.5 × 10−4 2.5 × 10−4 � � � � � � 4.9 × 10−8 � � � 4.5 × 10−13

20 Vengalattore et al. (2007) BEC 1.1 × 10−5 1.1 × 10−5 � � � � � � 1.2 × 10−10 � � � 5.0 × 10−13

21 Crepaz, Ley,
and Dumke (2015)

CEOPM 2.8 × 10−2 2.8 × 10−2 2.8 × 10−2 1.1 × 10−5 � � � � � � 6.9 × 10−13

22 Fong et al. (2005) SQUID 2.5 × 10−4 2.5 × 10−4 � � � � � � 4.9 × 10−8 � � � 8.5 × 10−13

23 Wolf et al. (2015) RFNVD 9.5 × 10−5 9.5 × 10−5 9.5 × 10−5 8.5 × 10−13 � � � � � � 9.0 × 10−13 See also
Zhou et al.
(2019)

24 Fescenko et al. (2019) FCNVD 1.0 × 10−2 1.0 × 10−2 2.0 × 10−2 2.6 × 10−7 � � � � � � 9.0 × 10−13

25 Fong et al. (2005) SQUID 4.0 × 10−5 4.0 × 10−5 � � � � � � 1.6 × 10−9 � � � 1.5 × 10−12

26 Kawai et al. (2016) SQUID 2.0 × 10−4 2.0 × 10−4 � � � � � � 4.0 × 10−8 � � � 1.7 × 10−12

27 Cromar and Carelli (1981) SQUID 4.0 × 10−5 3.5 × 10−7 � � � � � � 1.4 × 10−11 3.6 × 10−23 2.6 × 10−12

28 Oda et al. (2016) SQUID 2.0 × 10−4 2.0 × 10−4 � � � � � � 4.0 × 10−8 � � � 3.0 × 10−12

29 Cromar and Carelli (1981)
and Van Harlingen, Koch,

and Clarke (1982)

SQUID 3.0 × 10−5 3.5 × 10−7 � � � � � � 1.1 × 10−11 3.9 × 10−23 3.8 × 10−12

30 Wood et al. (2015) BEC 4.7 × 10−5 2.1 × 10−5 2.1 × 10−5 2.0 × 10−14 � � � � � � 3.9 × 10−12

31 Schwindt et al. (2007) OPM 1.0 × 10−3 2.0 × 10−3 1.0 × 10−3 2.0 × 10−9 � � � � � � 5.0 × 10−12

32 Sewell et al. (2012) COPM 2.0 × 10−5 2.0 × 10−5 3.0 × 10−3 3.7 × 10−12 � � � � � � 5.4 × 10−12

33 Wang et al. (2012) MFME 3.0 × 10−2 2.0 × 10−3 2.0 × 10−4 1.2 × 10−8 � � � � � � 6.2 × 10−12

34 Schmelz et al. (2017) SQUID 5.0 × 10−6 5.0 × 10−6 � � � � � � 2.5 × 10−11 3.1 × 10−22 1.3 × 10−11

35 Schmelz et al. (2017) SQUID 3.0 × 10−6 3.0 × 10−6 � � � � � � 9.0 × 10−12 1.4 × 10−22 1.4 × 10−11

36 Jasperse et al. (2017) BEC � � � � � � � � � 2.9 × 10−14 � � � � � � 1.0 × 10−11

37 Eto et al. (2013) BEC 1.0 × 10−5 10.0 × 10−6 � � � � � � 1.0 × 10−10 � � � 1.2 × 10−11

38 Barry et al. (2016) NVD 1.3 × 10−5 2.0 × 10−4 2.0 × 10−3 5.2 × 10−12 � � � � � � 1.5 × 10−11

39 Schmelz et al. (2017) SQUID 1.0 × 10−6 1.0 × 10−6 � � � � � � 1.0 × 10−12 9.3 × 10−23 3.6 × 10−11

40 Kim and Savukov (2016) FCOPM 2.5 × 10−4 5.0 × 10−4 � � � � � � 1.3 × 10−7 � � � 2.3 × 10−11

41 Marauska et al. (2013) MFME 2.0 × 10−4 9.0 × 10−4 � � � � � � 1.8 × 10−7 � � � 2.7 × 10−11

(Table continued)
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B. Alkali-vapor optically pumped magnetometers

Hot-vapor OPMs (Budker and Romalis, 2007; Jensen,
Kehayias, and Budker, 2017; Jiménez-Martínez and
Knappe, 2017; Savukov, 2017; Weis, Bison, and Grujić,
2017) have also been shown to obey a volumetric energy
resolution limit. In these devices, quantum noise in the form of
optical shot noise, optical spin-rotation noise, and spin
projection noise all contribute to the effective magnetic noise
(Smullin et al., 2009) and scale differently with atomic
number density, volume, and optical probe power. When
optimized for sensitivity, and in the most sensitive, spin-
exchange-relaxation-free regime, the equivalent magnetic
noise is limited by

SBð0Þ ≥
1

γ2
v̄σSD
V

; ð7Þ

where γ is the gyromagnetic ratio, v̄ is the thermal velocity,
σSD is the cross section for spin-destruction collisions, and V

is the volume of the sensor (Jiménez-Martínez and Knappe,
2017). When expressed in terms of the field energy, this
quantum limit is

SBð0ÞV
2μ0

≥
v̄σSD
2μ0γ

2
: ð8Þ

Spin-destruction collisions result when spin angular
momentum is transferred to the center-of-mass degree of
freedom. In 87Rb, the limiting energy resolution is nearly ℏ
when calculated using measured spin-destruction rates
(Jiménez-Martínez and Knappe, 2017). This agreement with
the ER of dc SQUIDs appears to be a coincidence, as other
alkali species and noble gases have significantly lower values
for v̄σSDγ−2; see Sec. VII.E. Realized OPMs using 87Rb and K
have demonstrated ER as low as 44ℏ (Allred et al., 2002;
Savukov et al., 2005; Shah et al., 2007; Ledbetter et al., 2008;
Smullin et al., 2009; Dang, Maloof, and Romalis, 2010),
limited by environmental noise.

TABLE I. (Continued)

l1 l2 l3 V A δΦ
ffiffiffiffi
T

p
δB

ffiffiffiffi
T

p
Label References Type (m) (m) (m) (m3) (m2) (T=

ffiffiffiffiffiffi
Hz

p
) (Wb=

ffiffiffiffiffiffi
Hz

p
) Notes

42 Schwindt et al. (2004) OPM 1.0 × 10−3 1.0 × 10−3 1.0 × 10−3 1.0 × 10−9 � � � � � � 5.0 × 10−11

43 Dietsche et al. (2019) RSC 5.0 × 10−3 2.8 × 10−7 � � � � � � 1.4 × 10−9 � � � 5.8 × 10−11

44 Ockeloen et al. (2013) BEC 1.1 × 10−6 1.1 × 10−6 4.0 × 10−6 2.0 × 10−17 � � � � � � 7.7 × 10−11

45 Robbes (2006) EMR 5.0 × 10−5 5.0 × 10−5 � � � � � � 2.5 × 10−9 � � � 1.0 × 10−10

46 Gallop et al. (2002) SQUID 3.0 × 10−6 3.0 × 10−6 � � � � � � 9.0 × 10−12 1.0 × 10−21 1.1 × 10−10

47 Jeng, Chen, and Lu (2012) PAFG 8.0 × 10−3 1.0 × 10−3 1.5 × 10−5 1.2 × 10−10 � � � � � � 1.8 × 10−10

48 Wildermuth et al.
(2004, 2005, 2006)

BEC 3.0 × 10−6 3.0 × 10−6 3.0 × 10−6 2.7 × 10−17 � � � � � � 2.3 × 10−10

49 Clevenson et al. (2015) NVD 3.0 × 10−3 3.0 × 10−3 3.0 × 10−4 2.7 × 10−9 � � � � � � 2.9 × 10−10

50 Hankard et al. (2009) GMR 9.0 × 10−6 3.6 × 10−5 � � � � � � 3.2 × 10−10 � � � 3.0 × 10−10

51 Behbood et al. (2013) COPM 5.0 × 10−3 2.0 × 10−5 2.0 × 10−5 2.0 × 10−12 � � � � � � 3.2 × 10−10

52 Giazotto et al. (2010) SQUIPT 1.1 × 10−5 1.1 × 10−5 � � � � � � 1.2 × 10−10 4.1 × 10−20 3.4 × 10−10

53 Wakai and
Van Harlingen (1988)

SQUID 3.3 × 10−6 6.7 × 10−6 � � � � � � 2.2 × 10−11 1.1 × 10−20 5.1 × 10−10

54 Kirtley et al. (2016) SQUID 2.0 × 10−6 2.0 × 10−6 � � � � � � 3.1 × 10−12 4.1 × 10−21 1.3 × 10−9

55 Muessel et al. (2014) BEC 2.5 × 10−4 1.5 × 10−6 1.5 × 10−6 9.0 × 10−17 � � � � � � 1.9 × 10−9

56 Ahmadi et al. (2017) NVD 1.8 × 10−5 1.8 × 10−5 3.1 × 10−3 3.5 × 10−11 � � � � � � 3.0 × 10−9

57 Kirtley (2010) SQUID 6.5 × 10−7 6.5 × 10−7 � � � � � � 4.2 × 10−13 1.8 × 10−21 4.3 × 10−9

58 Vasyukov et al. (2013) SQUID 1.6 × 10−7 1.6 × 10−7 � � � � � � 2.0 × 10−14 1.0 × 10−22 5.1 × 10−9

59 Yang et al. (2017) BEC 2.0 × 10−6 2.0 × 10−6 � � � � � � 4.0 × 10−12 � � � 6.0 × 10−9

60 Fang et al. (2013) RFNVD 5.0 × 10−7 � � � � � � � � � � � � � � � 3.8 × 10−8

61 Vasyukov et al. (2013) SQUID 5.6 × 10−8 5.6 × 10−8 � � � � � � 2.5 × 10−15 1.0 × 10−22 4.2 × 10−8

62 Lovchinsky et al. (2016) RFNVD 4.0 × 10−9 � � � � � � � � � � � � � � � 5.3 × 10−8

63 Maletinsky et al. (2012) RFNVD 2.5 × 10−8 � � � � � � � � � � � � � � � 5.6 × 10−8

64 Vasyukov et al. (2013) SQUID 4.6 × 10−8 4.6 × 10−8 � � � � � � 1.7 × 10−15 1.0 × 10−22 6.2 × 10−8

65 Huang et al. (2014) GRA 1.6 × 10−4 1.6 × 10−4 � � � � � � 2.6 × 10−8 � � � 1.0 × 10−7

66 Bending (1999) HALL 2.0 × 10−7 2.0 × 10−7 � � � � � � 4.0 × 10−14 � � � 1.0 × 10−7

67 Lovchinsky et al. (2016) RFNVD 3.0 × 10−9 � � � � � � � � � � � � � � � 1.0 × 10−7

68 Lovchinsky et al. (2016) RFNVD 5.0 × 10−9 � � � � � � � � � � � � � � � 1.1 × 10−7

69 Forstner et al. (2014) WGM 4.0 × 10−5 4.0 × 10−5 4.0 × 10−5 6.5 × 10−14 � � � � � � 1.4 × 10−7

70 Lima et al. (2014) MTJ 7.0 × 10−6 7.0 × 10−6 � � � � � � 4.9 × 10−11 � � � 1.5 × 10−7

71 Zhou et al. (2019) RFNVD 1.3 × 10−7 1.5 × 10−7 1.3 × 10−7 8.1 × 10−21 � � � � � � 2.2 × 10−7

72 Trusheim et al. (2014) RFNVD 5.0 × 10−8 5.0 × 10−8 5.0 × 10−8 1.3 × 10−22 � � � � � � 2.9 × 10−7

73 Chenaud et al. (2016) HALL 1.0 × 10−6 1.0 × 10−6 � � � � � � 1.0 × 10−12 � � � 3.0 × 10−7

74 Oral et al. (2002) HALL 1.5 × 10−6 1.5 × 10−6 � � � � � � 2.3 × 10−12 � � � 6.0 × 10−7

75 Maletinsky et al. (2012) NVD 2.5 × 10−8 � � � � � � � � � � � � � � � 6.0 × 10−6

76 Kirtley (2010) MFM 1.0 × 10−8 1.0 × 10−8 � � � � � � 1.0 × 10−16 7.0 × 10−20 7.0 × 10−4
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C. Immobilized spin ensembles: Nitrogen-vacancy centers
in diamond

In contrast to OPMs, which employ mobile spins in the
vapor phase, sensors employing NV centers in diamond use
immobile spins fixed in a solid matrix (Acosta et al., 2013;
Doherty et al., 2013; Rondin et al., 2014). In this scenario, no
entropy is input into the spin system by collisions, and
decoherence due to nuclear spins (Taylor et al., 2008) can,
in principle, be fully eliminated by use of isotopically pure 12C
diamond (Balasubramanian et al., 2009). Nonetheless, the
spins necessarily interact with each other by dipole-dipole
coupling, and this interaction allows angular momentum loss
to the crystal lattice. A recent analysis of the limiting
sensitivity imposed by this effect (Mitchell, 2020) finds that
for spatially disordered spins dipolar coupling of the sensor
spins themselves is sufficient to cause depolarization and
enforce Eq. (6) with α ≈ 1=2.

VI. POSSIBLE SOURCES OF
TECHNOLOGY-INDEPENDENT LIMITS

The fact that three different sensor technologies all arrive at
the same limit again suggests that there could be a more
general reason for energy resolution to be limited to ℏ. As
examples, the magnetic field itself is subject to quantum
fluctuations, and any system measuring the field must obey
quantum speed limits. In this section, we evaluate several
general considerations that could give rise to a technology-
spanning ERL.

A. Standard quantum limit, Heisenberg limit, and amplification
quantum noise

A considerable literature has developed around the topic
of “quantum-enhanced sensing” (Giovannetti, Lloyd, and
Maccone, 2004; Braun et al., 2018; Pezzè et al., 2018),
which explores the use of nonclassical states to achieve
sensitivity between the standard quantum limit (SQL) and
the so-called Heisenberg limit (HL). These limits are defined
in terms of the number of particles employed in the sensing
procedure. For example, the SQL for measurement of a
phase angle ϕ with N noninteracting two-level systems is
hδϕ2i ¼ N−1. It is notable that the ERL makes no reference to
particle number, whereas the SQL and HL make no reference
to spatial extent or time. Any derivation of the ERL from the
SQL or HL would thus require important input from other
physical principles.
Similarly, linear, phase-insensitive amplification is known

to introduce quantum noise intrinsic to the amplification pro-
cess (Caves, 1982). This noise, when present, has a magnitude
similar to the intrinsic quantum noise of the system to be
measured, resulting in an equivalent noise comparable in
magnitude to the SQL. As such, amplification quantum noise
is not, per se, an explanation of the ERL.

B. Energy-time uncertainty relation

The energy-time uncertainty relation δEδt ≥ ℏ=2 is the
paradigmatic example of an uncertainty relation not derived
using the commutation relation of the involved quantities. The

same form of the energy-time uncertainty relation is found in a
variety of scenarios with different meanings for t, for example,
in the question of arrival-time distributions (Aharonov and
Bohm, 1961) or in the estimation of a Hamiltonian in limited
time (Aharonov, Massar, and Popescu, 2002). The latter
problem is closely related to quantum estimation methods
(Helstrom, 1969; Giovannetti, Lloyd, and Maccone, 2004), in
which δt is the measurement duration, i.e., T. Using this
definition and taking E to be the magnetostatic energy
VB2=ð2μ0Þ, we find

δðB2ÞVT
2μ0

≥
1

2
ℏ; ð9Þ

which differs from Eq. (5) in that it contains the rms deviation
of B2 rather than the variance of B. This is an important
difference: considering a small uncertainty δB on a large field
B ≫ δB, δðB2Þ ≈ 2BδB so that Eq. (9) allows for arbitrarily
small δB as B → ∞. It would appear that the energy-time
uncertainty relation places no limit on magnetic sensitivity.

C. Zero-point and thermal field fluctuations

To our knowledge, not much attention has been paid to the
possibility that the quantum fluctuations of the magnetic field
might be detectable and thus a source of noise for sensitive
magnetometry. One can imagine a scenario in which the goal
is precisely to observe the zero-point fluctuations, in which
case these fluctuations are not noise, but rather signal. Such a
measurement has indeed been reported with terahertz electric
fields (Tighineanu et al., 2014; Riek et al., 2015). For our
purposes, however, we are more interested in the effect of
zero-point fluctuations when measuring fields of material
origin, e.g., from a current. In such a measurement, the zero-
point fluctuations would be considered noise if indeed they
contribute to the recorded signal.
In Appendix A, we analyze the following model for the

effect of zero-point fluctuations. First, we define a spherical
region R of radius rS and volume V, and the R-averaged
field component B̄zðtÞ≡ V−1

R
d3rρðrÞBzðr; tÞ, where ρðrÞ

is a weighting function. At any value of the time t, B̄zðtÞ is
an Hermitian operator and thus a valid quantum mechanical
observable. An ideal measurement of this observable will
have a mean that is the true spatially averaged value of any
externally applied field in that region, and finite contribution
to the variance from zero-point fluctuations. Measurement
of this observable will also produce a random and, in
principle, unbounded measurement backaction in the con-
jugate electric field E, which through the Maxwell equa-
tions will propagate into B. Nonetheless, due to the space-
bounded nature of the measurement, and the fact that EM
fields propagate at speed c, all effects of this disturbance
will propagate out of the volume of interest after a time
Teff ¼ 2rS=c, at which point a measurement of B̄ðtþ TeffÞ
with independent noise can be made. Considering a
sequence of such measurements separated by Teff, we find
a zero-point-limited energy resolution

ER ≥ αℏ; ð10Þ
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where α ≈ 1.3 for the specific weighting considered; see
Eq. (A2). This is not far from other derived energy
resolution limits. In the same analysis, we consider thermal
fields and find a contribution to ER of ≈rSkBTB=c, where
TB is the field temperature.
However elegant such a solution to the energy resolution

question might appear, we believe that it hides a subtle and
incorrect assumption and does not represent a fundamental
limit. If we replace the “ideal measurement” of B̄ with a more
detailed model of the measurement, the problem becomes
apparent. Imagine that we fill the regionR with a rigid sphere
of zero temperature, uniformly magnetized material (e.g., a
single ferromagnetic domain). We assume that the energy of
the ferromagnet is independent of its spin direction, and that it
is “stiff” in the sense that all regions must share a single spin
orientation. The measurement consists of allowing this object
to freely rotate in response to the field it experiences, then
observing its new orientation. If the initial state of this
evolution is a product of the ground state of the magnet
and the ground state of the field (vacuum), we would indeed
observe a random rotation, a noise signal due to the zero-point
magnetic field. If, on the other hand, we take as our initial
condition the minimum-energy state of the coupled field-
ferromagnet system, we would, simply because we are
considering an energy eigenstate, observe no rotation, or
indeed change of any kind. From such an initial condition, any
rotation of the system, even if stochastic, would at least
temporarily violate angular momentum conservation. See
Appendix B for a more detailed discussion of this point.
We conclude that this in-principle-possible magnetic sensor,
embedded in vacuum and allowed to find equilibrium with it,
would not experience a noise from vacuum fluctuations.

D. Spin intrinsic-noise self-interaction

Any spin ensemble will have intrinsic uncertainty in its net
spin J as a consequence of spin uncertainty relations. If the
ensemble spins are associated with a magnetic moment, the
magnetic field produced by the ensemble will similarly have
an intrinsic uncertainty. The possibility that this uncertain field
acts back on the ensemble and introduces a self-interaction
noise has been discussed in the OPM community (Lee and
Romalis, 2008; Kitching, 2012; Lee, 2019). Here we consider
a simple model of this hypothetical noise source.
We consider a spherical region occupied by N ≫ 1 spin-

1=2 atoms with a total spin J ¼ N=2, initially polarized along
the z axis, so that hJzi ≈ N=2. We note that the Jx and Jy
components of the total spin vector obey the uncertainty
relation δJxδJy ≥ jhJzij=2 ≈ N=4. Considering precession
about the y axis for a time T as a measure of the field
component By, we can associate the uncertainty δJx with an
angular uncertainty δθ ¼ δJy=hJzi, and thus a magnetic field
uncertainty

δBSPN ¼ δJx
hJziγT

≥
2

γTδJy
; ð11Þ

where γ ¼ gJμB is the gyromagnetic ratio and SPN indicates
spin projection noise.

δJy can also be associated with a field uncertainty through
the magnetic field generated by the ensemble of spins.
Modeling the ensemble as a uniformly magnetized sphere,
we find that the self-generated field inside the sphere is
B ¼ 2μ0M=3, where M ¼ ℏγJ=V is the magnetization den-
sity of the material (Griffiths, 1999). As we are interested in
just the By component, we have

δBMSI ¼
2ℏγμ0δJy

3V
; ð12Þ

where MSI indicates magnetic self-interaction.
If we suppose that these two noise sources are independent,

the energy resolution per bandwidth is

ER ¼ hδB2iVT
2μ0

¼ hδB2
SPNi þ hδB2

MSIi
2μ0

VT

≥
C2x−1 þD2x

2μ0
≥
CD
μ0

¼ 4

3
ℏ; ð13Þ

where C≡ 2=γ, D≡ 2ℏγμ0=3, and x≡ ThδJ2yi=V. The first
inequality is saturated for minimum uncertainty states, i.e.,
those with δJxδJy ¼ jhJzij=2, and the second can be saturated
by choosing T such that C2x−1 ¼ D2x.
As was the case with zero-point fluctuations, the result is

consistent with observed values of ER. As in that case, here
also we find that the calculation is subtly misleading and does
not in fact represent a limit. For one thing, the precession
angle, and thus By, can be inferred from a measurement of a
single spin component, e.g., Jx if the precession angle is small.
The noise in Jx and the noise in Jy, if it contributes to the
rotation speed, will contribute in linear combination to the
field estimate. There will be spin-squeezed states that have
small uncertainty of this linear combination, producing a total
noise hδB2i much smaller than the hδB2

SPNi þ hδB2
MSIi that

appears in Eq. (13). In a few words, the sum in quadrature is
not appropriate if Jx and Jy are correlated.
A still more serious objection is that magnetic self-action

of the kind assumed here, like the vacuum field effects
described in Sec. VI.C, appears unphysical. The previous
model suggests that, in the absence of any external field, a spin
system could reorient itself to have a net angular momentum
different from its initial angular momentum. Indeed, given
enough time, it would sample all possible orientations. This
kind of “bootstrapping,” in which the spin system rotates itself
does not conserve angular momentum (we note that the spin
system has no neighbors with which to exchange angular
momentum). The possibility that the angular momentum is
taken up by the electromagnetic field suggests itself, but this
would seem to violate energy conservation, as the spin system
would forever radiate a fluctuating field.

E. Margolus-Levitin bound

If we consider the magnetometer and field together as a
single quantum system, the Margolus-Levitin (ML) theorem
(Margolus and Levitin, 1998) shows that this system cannot
change from an initial state jψ ii to an orthogonal final state
jψfi in a time shorter than
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Tmin ¼
πℏ
2E

; ð14Þ

where E≡ hHi − E0 is the mean available energy, H is the
Hamiltonian, and E0 is its lowest eigenvalue. If we identify E
with B2V=ð2μ0Þ, i.e., the magnetic field energy within the
sensor volume V, we can identify a minimum field strength
Bmin that produces orthogonality in time Tmin and thus can
reliably be distinguished from zero field. This gives

B2
minVTmin

2μ0
≥
πℏ
2
; ð15Þ

which resembles an ERL, with the difference that the squared
field appears rather than the mean squared error of the field
estimate.
As with the energy-time uncertainty relation discussed

previously, this difference is important: If we consider
a small perturbation δB to a large field B0, it would be
natural to divide the total energy into a fixed contribution
E0 ¼ B2

0V=ð2μ0Þ and the perturbation to the energy hHi ≈
2δBB0V=ð2μ0Þ, leading to

δBB0VTmin

μ0
≥
πℏ
2
; ð16Þ

which for large B0 allows detection of δB ≪ Bmin. Another
serious concern for use of the ML bound to derive an ERL is
the role of field-matter coupling. For example, a sensor with
magnetic moment μ would contribute −μ ·B to the total
energy. If this is included in E and μ is allowed to become
large, the minimum detectable field can vanish.

F. Bremermann-Bekenstein bound

In the context of black hole thermodynamics (Wald, 1979),
it was shown by Bremermann and Bekenstein (BB)
(Bekenstein, 1981b; Bremermann, 1982) that a spherical
region R with radius R contains a bounded information
entropy

HBB ≤
2πER
ℏc

; ð17Þ

where E is the mean energy contained in the sphere. The result
applies also to nonrelativistic scenarios (Schiffer, 1991) and
has been applied to the question of the energy cost of
communication (Bekenstein, 1981a, 1984) by considering
moving packets of material and/or radiation, echoing earlier
bounds based on Shannon information capacity and energy-
time uncertainty (Bremermann, 1982).
We may consider the readout of the sensor as communi-

cation from the sensor to some other system, which might be a
display, a recording device, or an interested scientist. As for
the ML bound, it is natural to consider the magnetostatic field
energy E ¼ hB2iV=ð2μ0Þ. The entropy we interpret as an
upper bound on the number of resolvable field states. One bit
of message, corresponding to the minimum detectable field
Bmin, is then achieved for a field energy

2πhB2
miniVR

2μ0c
≥ ℏ: ð18Þ

We note that at the maximum speed of communication c
information requires at least Teff ¼ R=c to reach a single point
from the entirety of R. Inserting this into Eq. (18) we find

hB2
miniVTeff

2μ0
≥

1

2π
ℏ; ð19Þ

which resembles an ERL, with the difference being that the
mean squared field appears rather than the mean squared error
of the field estimate. As with the ML bound, this appears to
allow resolution of small increments on large fields.
The nonlinearity implicit in Eq. (17), in which HBB is both

the logarithm of the number of possible states and propor-
tional to the mean squared field, amplifies this concern.
We take as a reference a spherical region R containing
a field B with hB2i ¼ B2

min, sufficient to encode 1 bit of
information or, equivalently, to distinguish between two
possible field states. If we now imagine the same region
containing a stronger field, with hB2i ¼ β2B2

min for some
β > 1, Eq. (17) limits the entropy toHBB ¼ β2 bits, which can
encode up to 2β

2

distinct states distributed over the ∼βBmin
range of the field distribution. The minimum resolvable field
increment δB is then

δB
Bmin

∼

ffiffiffiffiffiffiffiffiffi
hB2i
B2
min

s
exp

�
−
hB2i
B2
min

�
: ð20Þ

This describes an exponentially small minimum field incre-
ment, achieved when measuring large (or potentially large)
fields.

VII. SYSTEMS PROPOSED TO SURPASS ER =ℏ

We have described both established technology-specific
and potential technology-spanning quantum limits on the
energy resolution. No convincing technology-spanning limit
was found, however, leaving open the possibility of sensing
with unconstrained energy resolution. In this section, we
describe sensing methods, both proposed and implemented,
that appear to evade the technology-specific quantum limits
presented previously.

A. Nondissipative superconducting sensors

The TC limit arises due to the zero-point current fluctua-
tions in the shunt resistances, the only dissipative components
of the dc SQUID model analyzed by Tesche and Clarke. A
sufficiently small shunt resistance prevents hysteresis, making
the SQUID current a single-valued function of the flux to be
detected. The intrinsic noise of the dc SQUID could, within
this model, vanish if the resistance were made infinite. The
interpretation of the current signal would, however, be more
complex. Superconducting field sensors that do not include a
dissipative element include superconducting quantum inter-
ference proximity transistors (SQUIPTs) (Giazotto et al.,
2010) and superconducting kinetic inductance magnetometers
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(Kher et al., 2013, 2016; Luomahaara et al., 2014; Kher,
2017). Superconducting persistent current qubits (Bal et al.,
2012) and transmon qubits (Danilin et al., 2018) have also
been studied as nondissipative superconducting sensors.

B. Localized single quantum systems

Single quantum systems (SQSs) such as NV centers (Taylor
et al., 2008) and single trapped ions (Baumgart et al., 2016)
have been proposed as extremely-high-spatial-resolution field
sensors. Single Rydberg atoms have also been studied as
magnetic sensors (Dietsche et al., 2019). Because they are
elementary systems, internal decoherence mechanisms such as
those described in Secs. V.B and V.C can be fully evaded.
These sensors are also potentially small, with the effective
linear dimension limited by the precision with which they can
be localized and the minimum distance from possible sources.
It thus seems possible that SQSs would have no energy
resolution limit. It is, nonetheless, worth noting that SQSs in
solids experience significant noise from surface effects
(Myers, Ariyaratne, and Jayich, 2017), an effect that becomes
more important as effective linear dimension decreases.
Similarly, efforts to produce small ion traps have uncovered
important noise sources associated with closely placed elec-
trodes (Hite et al., 2013).

C. Dynamical decoupling and low-entropy reservoirs

As described in Sec. V.C, fixed, spatially disordered spin
ensembles (e.g., NVD ensembles as currently implemented)
experience a self-depolarization caused by the magnetic
dipole-dipole coupling among elements of the ensemble.
This depolarization can be understood as a transfer entropy
from the center-of-mass (c.m.) degrees of freedom into the
spin degrees of freedom by a coherent evolution that is not a
source of entropy per se.
Two classes of methods present themselves to prevent such

dipole-induced depolarization. The first, more established
method is dynamical decoupling (Viola and Lloyd, 1998),
in which strong, impulsive spin operations are applied to
prevent or reverse the buildup of coherent rotations due to the
naturally present dipolar coupling. Such decoupling of sens-
ing electrons from a surrounding bath of nuclear spins is an
established method, e.g., with NVD (Pham et al., 2012). The
application to an ensemble of sensor spins has the potential to
dynamically decouple the spins from their neighbors while
leaving them coupled to the external field to be measured
(Choi, Yao, and Lukin, 2017). The theory and design of
suitable pulse sequences is an active topic (Ben ’Attar,
Farfurnik, and Bar-Gill, 2019; Choi et al., 2019; Haas et
al., 2019), and experimental results have been reported (Zhou
et al., 2019).
The second approach is simply to remove the entropy from

the reservoir, which could, in principle, be done by ordered
positioning of the spins. Similarly, phononic disorder can be
reduced through cooling, although even at zero temperature
the phononic vacuum presents a decoherence channel (Astner
et al., 2018).
Another possible route to entropy removal in spin-precession

sensors is the use of quantum degenerate gases. In such a

system (a spinor BEC), two-body interactions, including both
short-range ferromagnetic or antiferromagnetic contact inter-
actions and long-range dipole-dipole coupling, induce coherent
spin evolutions rather than introducing entropy to the spins.
A jump in coherence lifetime at Bose-Einstein condensation
has been observed in planar geometries (Higbie et al., 2005)
and exploited for high-sensitivity BEC magnetic imagers
(Vengalattore et al., 2007) and gradiometers (Vengalattore
et al., 2007; Wood et al., 2015; Jasperse et al., 2017). A full
“freezing-out” of the c.m. degrees of freedom has been
observed in a quasi-zero-dimensional single-domain spinor
BEC (Palacios et al., 2018). These results were all obtained
with the ferromagnetic ground state of 87Rb.

D. Precessing ferromagnetic needle

A similar freezing-out of nonspin degrees of freedom is
predicted for solid-state ferromagnets in the single-domain
size regime (Jackson Kimball, Sushkov, and Budker, 2016).
As with the BEC case described previously, the ferromagnetic
interactions impose full polarization, and at low temperatures
no intrinsic fluctuations cause diffusion of the polarization
angle. Assuming that background gas pressure, which imparts
random angular momentum input, can be arbitrarily reduced,
the sensitivity limited by readout noise is predicted to scale as
hδB2iT ∝ T−2. Thus, for long measurements, ER is predicted
to have no lower limit in this system. Variants based on free
rotation (Jackson Kimball, Sushkov, and Budker, 2016) and
on normal mode oscillations (Vinante et al., 2019) have been
proposed.

E. OPMs with low spin-destruction rates

As described in Sec. V.B, the ERL arises in gas- and vapor-
phase spin-precession magnetometers due to two-body relax-
ation processes, e.g., spin-destruction collisions, with a limit
ER ≥ v̄σ=ð2μ0γ2Þ, where σ is the relevant spin-relaxation cross
section. The figure of merit v̄σγ−2 varies considerably among
alkali and noble gas species, with lower values for noble gases
and lighter atoms (Newbury et al., 1993; Kadlecek et al., 2001;
Chann et al., 2002; Berry-Pusey et al., 2006). σSD is about an
order of magnitude lower for K than for 87Rb (Allred et al.,
2002), such that the predicted ERL for a SERF-regime K vapor
magnetometer is below ℏ. Generalization about two-body
relaxation is difficult due to the coexistence of several mech-
anisms including transient dimer formation, spin-orbit coupling
in second order, and magnetic dipole-dipole coupling
(Kadlecek et al., 2001). It is nonetheless instructive to consider
the case of pure magnetic dipole-dipole relaxation, which
appears to describe at least the case of gaseous 3He at large
pressures (Gentile et al., 2017). For this mechanism, the spin-
destruction cross section scales as σdd ∝ μ4 ∝ γ4;where μ is the
atomic magnetic moment (Newbury et al., 1993). As a result,
the ERL figure of merit favors atomic species with small
magnetic moments such as 3He.

VIII. SUMMARY AND OBSERVATIONS

In this Colloquium, we have reviewed the history and status
of energy resolution limits in precise sensing of low-frequency
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magnetic fields. We now recapitulate our findings and com-
ment on their significance to ongoing efforts to improve
sensor performance. First, we have reviewed reported sensor
performance, finding that the best reported sensors obey a
limit ER ≥ ℏ, even as they span many orders of magnitude
in size and field resolution. We conclude that ER is, at a
minimum, an interesting metric for comparing different
technologies; it must in some meaningful way capture the
challenges of achieving high sensitivity, speed, and spatial
resolution. The fact that the best achieved values for ER
approach ℏ is suggestive of a fundamental quantum limit.
This suggestion is backed up by technology-specific ERLs,

which are known for dc SQUIDs, rubidium-vapor OPMs, and
fixed-position spin-precession sensors, e.g., NVD sensors.
These ERLs coincide in predicting a limit near ER ¼ ℏ. The
origins of these ERLs are quite technology specific, involving
shunt resistances, spin-destruction collisions, and random
dipole-dipole couplings, respectively, and they have not yet
been brought together under any unifying principle. We
have reviewed several general quantum limits and their
potential to supply a unifying, technology-spanning ERL.
We have in fact found several arguments that could be made to
predict a technology-spanning ERL near ℏ. In our analysis,
however, each of these arguments has some important weak-
ness, and none of them convincingly implies an ERL. Finally,
we have reviewed proposed new sensor types and modifica-
tions to existing sensor methodologies, which appear to
escape all of the known ERLs and thus may provide ER
values far below ℏ. Such sensors, if their current analyses are
correct, have the potential to surpass today’s leading magne-
tometer technologies.
The technology-specific ERLs each in some way concern

dissipation mechanisms that are closely linked to the sensor’s
response to the applied field. In the case of dc SQUIDs,
dissipation in the form of finite shunt resistance is introduced
to achieve a single-valued steady-state response, i.e., to
remove hysteresis. In alkali-vapor OPMs, the rate of alkali-
induced spin-destruction collisions is proportional to the alkali
number density, which directly impacts the projection-noise-
limited signal-to-noise ratio. In color-center sensors, the
dissipation is similarly linked to magnetic dipole-dipole
coupling, and it has a similar dependence on number density.
Viewed as a group, they can be summarized by the propo-
sition: A useful coupling of the sensor to the field of
interest necessarily also creates a dissipation strong enough
to impose an ERL. In light of this, one can imagine a limit
covering diverse technologies emerging from the theory of
many-body open quantum systems (Davies, 1976; Ingarden,
Kossakowski, and Ohya, 1997; Lindblad, 2001; Breuer and
Petruccione, 2007; Rotter and Bird, 2015). To our knowledge,
the question of ERLs has not been studied in that context.
The proposals for new, ERL-surpassing sensors aim for the

most part to alter an existing sensor methodology in such a
way that it evades the previously mentioned mechanisms that
link field response to dissipation. For example, single quan-
tum systems are predicted to retain sensitivity to external
fields while evading completely dipole-dipole coupling of
sensor components, simply because there is only one com-
ponent. More generally, the specificity of the known ERLs
makes it plausible that a sensing system could be designed to

evade them. We thus find ourselves, at the end of this
Colloquium, of two minds. On the one hand, the coincidence
of multiple technology-specific quantum limits with each
other, and with the empirical results of the most advanced
sensor systems, makes it difficult to believe that there is not
some as-yet-undiscovered general principle imposing ERLs
on field sensors. At the same time, we do not see any
fundamental impediment to sensors with arbitrarily small
ER if they are constructed to evade the existing limits. Perhaps
the resolution to this dilemma is equally bifurcated: It may be
that a broad class of sensors is subject to a yet-to-be-
discovered ERL, while a second class, operating by other
principles, escapes it. We hope that our observations in this
Colloquium will help to resolve this and other open questions
on the topic of sensor energy resolution limits, and that they
will ultimately help to advance sensor technology.
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APPENDIX A: THERMAL AND ZERO-POINT
MAGNETIC NOISE

We imagine a device that instantaneously makes an ideal
measurement of the z component of the magnetic field, within
a spherical region R of volume VS ¼ 4πr3S=3, where rS is the
radius of the region, which for convenience we take to be
centered on the origin.
We describe this via the scalar observable

B̄zðtÞ≡
Z

d3rρðrÞẑ ·Bðr; tÞ; ðA1Þ
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where Bðr; tÞ is the quantized magnetic field. The weighting
function ρðrÞ ≥ 0 should be normalized,

R
d3rρðrÞ ¼ 1, and

should vanish for r > rS, but it is otherwise arbitrary. In what
follows, we use

ρðrÞ ¼ 5

2VS

�
1 − r2=r2S; r ≤ rS;

0; r > rS;
ðA2Þ

which gives relatively simple results. The quantized magnetic
field is

Bðr; tÞ≡ BðþÞðr; tÞ þ Bð−Þðr; tÞ; ðA3Þ

where

BðþÞðr; tÞ≡ i
X
k;α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ℏωk

2L3

r
fk;αak;αeik·r−iωkt; ðA4Þ

Bð−Þðr; tÞ≡ ½BðþÞðr; tÞ�†; ðA5Þ

ωk ¼ cjkj, fk;α is a unit vector describing the polarization
of mode ðk; αÞ with annihilation operator ak;α, and L is
the side length of the quantization volume, later taken to

infinity. We similarly define B̄ðþÞ
z ðtÞ≡ R

d3rρðrÞẑ · BðþÞðr; tÞ
and B̄ð−Þ

z ðtÞ≡ ½B̄ðþÞ
z ðtÞ�†.

We can then use hðaa† þ a†aÞ=2i ¼ ha†ai þ 1=2 ¼
hni þ 1=2, which for the thermal state of the field at temper-
ature TB has a value 1=2þ ðexp½ℏω=kBTB� − 1Þ ≈ 1=2þ
kBTB=ℏω when kBTB ≫ ℏω (the Rayleigh-Jeans law), to
obtain

hB̄2
zi ¼ hB̄ð−Þ

z B̄ðþÞ
z þ B̄ðþÞ

z B̄ð−Þ
z i

×
μ0ℏc
L3

X
k;α

�
1

2
þ kBTB

ℏck

�
kjfk;α · ẑj2

����
Z

d3rρðrÞeik·r
����2.

ðA6Þ

We compute the integral over r in spherical polar coordinates
with the polar axis along k:

Z
d3rρðrÞeik·r ¼ 2π

V

Z
π

0

sin θρdθρ

Z
rS

0

r2dreikr cos θρ

×
20π½ð3 − ζ2Þ sinðζÞ − 3ζ cosðζÞ�

k3ζ2V
; ðA7Þ

where ζ ≡ krS.
Now using spherical polar coordinates in which the polar

axis is along ẑ, so that k ¼ kðsin θ cosϕ; sin θ sinϕ; cos θÞ,
and choosing polarization modes fk;α so that one is orthogonal
to ẑ, the other has fk;α · ẑ ¼ sin θ. Using the density of states
L3=ð2πÞ3, we have

X
k;α

jfk;α · ẑj2 →
L3

23π3

Z
k2dksin3θdθdϕ

¼ L3

3π2

Z
k2dk: ðA8Þ

Combining them, we find

hB̄2
zi ¼

μ0ℏc
L3

L3

3π2

Z
∞

0

dk

�
1

2
k3 þ kBTB

ℏc
k2
�

×

���� 20π½ð3 − ζ2Þ sinðζÞ − 3ζ cosðζÞ�
k3ζ2V

����2

×
25cμ0
8π2r4S

ℏþ 5μ0
7πr3S

kBTB: ðA9Þ

This gives the sensitivity of a single instantaneous meas-
urement. To avoid measurement backaction it is necessary to
wait a finite time before making the next measurement: The
measurement will introduce noise into the observable con-
jugate to B̄zðtÞ, and by Maxwell’s equations this disturbance
will propagate into B̄zðt0 > tÞ. The disturbance will propagate
fully outside of R (it will always propagate at c) in a time
Teff ¼ 2rS=c, enabling backaction-free repeated measure-
ments with repeat period Teff .
The resulting energy resolution per bandwidth is

ER ¼ hB̄2
ziVTeff

2μ0

175

42π
ℏþ 20rS

21c
kBTB: ðA10Þ

The first term describes the quantum noise contribution to the
measurement. The prefactor (here 175=42π ≈ 1.3) depends on
the precise choice of weighting function ρðrÞ.

APPENDIX B: ZERO-POINT MAGNETIC NOISE AND
SPIN-PRECESSION SENSORS

A paradigmatic field-sensing protocol with spin systems
consists of preparing a magnetic spin system in a known
direction, allowing it to interact with the field for a known
free-precession time T, and detecting the spin orientation by a
projective measurement. Here we consider the role of zero-
point fluctuations of the field in this protocol.
We first consider this scenario semiclassically. It is suffi-

cient to consider a Hilbert space H ¼ HM describing the
material system (here and afterward we use the subscripts M

and F to indicate material and field, respectively) with
dynamics governed by the Hamiltonian

HSC ¼ HM þHMF: ðB1Þ

Here the spin-field interaction is HMF ¼ −μ · B ¼ −γℏS · B,
where S is the net spin and γ is the gyromagnetic ratio. In this
semiclassical description, B is a c-number field and is
unchanged by the interaction with the material system.
For the protocol to be efficient, it should be possible to

prepare a stable, strongly polarized state of the material
system, and this state should be free to rotate. We thus assume
the following properties of HM. (1) The ground state is
continuously degenerate under rotations such that any state
of the form RSðn; θÞjψ0iM is a ground state, where RSðn; θÞ
rotates all spins about an axis n by angle θ. (2) The reference
ground state jψ0iM is polarized: Szjψ0iM ¼ Sjψ0iM. (3) The
ground states are separated from any non-spin-S states by an
energy gap. (4) For simplicity, we assume decoupling of spin
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and center-of-mass degrees of freedom. Unlike a compass
needle, here a spin rotation does not imply a rotation of the
mass of the system. These assumptions describe an isotropic
ferromagnet, but also a single electron, an atom with a non-
spin-zero ground state, or a single-domain spinor condensate.
Starting from any ground state of this system, evolution

under a small classical B field simply rotates within the space
of ground states of HM, with no addition of energy or entropy.
The intrinsic angular noise in the sensing protocol is then
independent of T, leading to a variance of the inferred field
hδB2i ∝ T−2 and ER ∝ T−1 → 0 for large T.
To consider this protocol with a quantized field, we first

expand the Hilbert space and Hamiltonian to include the field:
HMF ≡HM ⊗ HF and

H ¼ HM ⊗ IF þ IM ⊗ HF þHMF: ðB2Þ

Here HF ¼
R
d3xðϵ0E ·E=2þ B · B=2μ0Þ is the field

Hamiltonian. IM and IF indicate identity operators. E and B
are quantized fields. The ground state of HF is the vacuum
state j0iF.
For simplicity, we consider using the sensor to estimate an

externally applied field that is constant in time and uniformly
distributed, making a contribution B̄ (a c-number vector)
to the value of the field BðxÞ. Such a contribution is des-
cribed by a displacement operator DB̄, defined such that
D†

B̄
Bðx; tÞDB̄ ¼ Bðx; tÞ þ B̄. We note that the remaining

field B̃ðx; tÞ≡ BðxÞ − B̄ describes both the zero-point field
fluctuations and any field produced by the sensor itself. We
can consider the effect of this external field on the system as a
whole by displacing the H of Eq. (B2) to find

D†
B̄
HDB̄ ¼ HM ⊗ IF þ IM ⊗ HF þHMF

þ L3

2μ0
jB̄j2IM ⊗ IF − γℏB̄ · S ⊗ IF; ðB3Þ

where L3 is the volume of the calculation. The last two terms
describe the classical energy of the external field B̄ and the
interaction of the spin with the external field, respectively.
This last contribution produces a torque γS × B̄ on S, and
thereby induces a precession of S about B̄.
The dynamics of S in this fully quantized model will

depend on what one takes to be the initial state. If one takes
jψ0iM ⊗ j0iF, i.e., a product of the material ground state and
vacuum, the state will evolve, as it is not an eigenstate of H,
which contains HMF. Given the “white noise” character of
vacuum fluctuations, it is not implausible that this evolution
would produce a diffusion of S, with an angular variance ∝ T,
a variance of the field estimate hδB2i ∝ T−1, and thus
ER ∝ T0, which describes an ERL. An estimate of the limiting
value of ER is given in Sec. VI.C.
It is not clear that jψ0iM ⊗ j0iF is a realistic starting

condition, however. It describes a scenario in which the spin
S is oriented along a specific direction but the field around it
is, on average, zero. It thus describes a condition in which the
spin has not (or not yet) produced a dipolar field around itself.
This “bare spin” condition is one that we do not expect to arise

naturally in any experiment. And even if a bare spin could be
made in some way, it surely would not remain bare for long.
A more reasonable starting condition is the “dressed”

version of jψ0iM, which is to say a ground state of H with
the same symmetry under rotations as jψ0iM ⊗ j0iF. In such a
state, the field BðxÞ will presumably contain, in addition to
vacuum fluctuations, the dipole field pattern produced by the
magnetic moment μ. We note that H and its components are
all invariant under rotations of the coordinate system or,
equivalently, of S, BðxÞ, and x together. The ground state of
HF is irrotational or spin 0, and the ground state of HM is (by
assumption) of spin S. When these subsystems are perturba-
tively coupled by the irrotational HMF, jψ0iM ⊗ j0iF becomes
a dressed ground state jΨ0iMF with the same symmetry under
global rotations.2 In the same way, the other bare ground states
RSðn; θÞjψ0iM ⊗ j0iF give rise to spin-rotated and field-
rotated states RSðn; θÞ ⊗ RFðn; θÞjΨ0iMF, where RFðn; θÞ is
the field rotation operator. As ground states of the total
Hamiltonian, they do not evolve in any way for B̄ ¼ 0,
and the intrinsic spin uncertainty is independent of T.
We note that jΨ0iMF is an entangled state of the material and

field, and that the field must carry some of the angular
momentum. A projective measurement on the bare spin (if
such a measurement could be made) would then have an
additional intrinsic uncertainty, owing to the fact that the
material spin system is one component of an entangled state.
In contrast to the hypothetical diffusion of the spin orientation
described previously, this would be a one-time noise con-
tribution, in effect a contribution to the intrinsic spin noise of
the state. Such a contribution would not change the scaling of
ER with T.
For an applied field B̄ ≠ 0, the torque on S will cause

precession of the spin and a matched rotation of the field it
generates via HMF. In contrast to the semiclassical case, the
system will not remain exactly within the manifold of dressed
states. Rather, the precessing spin presents an oscillating
magnetic dipole and will radiate, whereas the dressed ground
states RSðn; θÞ ⊗ RFðn; θÞjΨ0iMF have no radiating compo-
nent. Via radiation, the spin will lose energy and eventually
align with or against B̄, depending on the sign of γ. The rate of
radiative relaxation scales as B̄3, so small fields could still be
measured with very small ER by the simple protocol consid-
ered thus far. We conclude that zero-point fluctuations do not
in fact set a limit to ER in a spin-precession measurement.
Finally, we note that an only slightly more complex

protocol achieves ER → 0 also for strong fields. There will
be some maximum degree of relaxation for which the state
remains effectively within the dressed ground state manifold
and the relaxation-free scaling hδB2i ∝ T−2 holds. This
implies a maximum free-precession time ∝ B̄−3, where

2We assume here that a perturbative treatment is appropriate. A
sufficiently strong coupling could, in principle, take the system
through a quantum phase transition, with the result that the ground
states of H have different symmetry than the ground states of
HM þHF. This does not seem to be the case in quantum electro-
dynamics, in which dressed spins have the same symmetries as bare
spins, and the coupling manifests in perturbative modifications to the
spin properties, e.g., to the magnetic moments.
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B̄ ¼ jB̄j. A measurement made with this value of T has
sensitivity hδB2i ∝ B̄6. Consider now a closed-loop measure-
ment protocol in which B̄ ¼ Bunknown þ Bcontrol, where Bcontrol
is a known control field and Bunknown is an unknown field to be
estimated. The protocol uses a sequence of measurements of B̄
and feedback to Bcontrol to set B̄ closer and closer to zero. The
unknown field is inferred from the value of the control field
that produces this condition.
Assuming the feedback procedure is limited by the intrinsic

measurement variance hδB2i ∝ B̄6, then after the nth meas-
urement, with variance hδB2in, feedback achieves hB̄i ¼ 0

and hδB̄2in ¼ hδB2in. If the free-precession time for the next

measurement is then chosen Tnþ1 ∝ hδB̄2i−3=2n to ensure small
relaxation, we find Tnþ1 ∝ T3

n and thus hδB̄2inþ1 ∝ hδB̄2i3n.
Assuming that the first measurement could be made with
sufficient precision to reduce the variance through the feeed-
back process, hδB̄2in thus decreases very rapidly with n. The
total time used in the protocol is dominated by the last
measurement, and ER → 0.
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