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One of the most promising suggested applications of quantum computing is solving classically
intractable chemistry problems. This may help to answer unresolved questions about phenomena such
as high temperature superconductivity, solid-state physics, transition metal catalysis, and certain
biochemical reactions. In turn, this increased understanding may help us to refine, and perhaps even
one day design, new compounds of scientific and industrial importance. However, building a
sufficiently large quantum computer will be a difficult scientific challenge. As a result, developments
that enable these problems to be tackled with fewer quantum resources should be considered
important. Driven by this potential utility, quantum computational chemistry is rapidly emerging as an
interdisciplinary field requiring knowledge of both quantum computing and computational chemistry.
This review provides a comprehensive introduction to both computational chemistry and quantum
computing, bridging the current knowledge gap. Major developments in this area are reviewed, with a
particular focus on near-term quantum computation. Illustrations of key methods are provided,
explicitly demonstrating how to map chemical problems onto a quantum computer, and how to solve
them. The review concludes with an outlook on this nascent field.
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I. INTRODUCTION

Quantum mechanics underpins all of modern chemistry.
One might therefore imagine that we could use this theory
to predict the behavior of any chemical compound. This is
not the case. As Dirac (1929) noted, “The exact application
of these laws leads to equations much too complicated
to be soluble.” The problem described by Dirac is that the
complexity of the wave function of a quantum system grows
exponentially with the number of particles. This leaves
classical computers unable to exactly simulate quantum
systems in an efficient way. Feynman (1982) proposed a
solution to this problem; using quantum hardware as the
simulation platform. He remarked, “If you want to make a
simulation of nature, you’d better make it quantum mechani-
cal, and by golly it’s a wonderful problem, because it doesn’t
look so easy.”
Although developing small quantum computers has taken

over 30 years, we may soon be in a position to test Feynman’s
proposal following recent developments in quantum hardware
including ion traps (Monz et al., 2011; Harty et al., 2014;
Ballance et al., 2016; Gaebler et al., 2016), superconducting
systems (Chow et al., 2012; Barends et al., 2014; Song et al.,
2017, 2019; Arute et al., 2019), and photonic systems (Wang
et al., 2016; Chen et al., 2017; Zhong et al., 2018). It is
believed that using quantum systems as our simulation
platform will enable us to tackle classically intractable
problems in chemistry, physics, and materials science.

Classical computational methods have become an important
investigative tool in areas like transition metal catalysis
(Vogiatzis et al., 2019) and high temperature superconduc-
tivity (Dagotto, 1994). Classical simulations enable us to
rationalize experimental results, test physical models, and
understand system properties. However, their ability to guide
design is often precluded by the computational complexity of
realistic models. As quantum computers are able to efficiently
simulate quantum systems, it is believed that they will
facilitate a more accurate understanding of the models in
use today, as well as the ability to simulate more complex (and
therefore more realistic) models. This may lead to an increased
understanding that we can leverage to make advances in areas
as diverse as chemistry (Aspuru-Guzik, Lindh, and Reiher,
2018), biology (Reiher et al., 2017), medicine (Cao, Fontalvo,
and Aspuru-Guzik, 2018), and materials science (Babbush,
Wiebe et al., 2018). It has even been speculated that as
quantum hardware develops, quantum simulation may one
day progress from being accurate enough to confirm the
results of experiments to being more accurate than the
experiments themselves. Quantum simulations of such high
precision may in turn enable the design of new, useful
compounds. However, we stress that to achieve this ultimate
goal we would need considerable further developments, both
in the technology required to build such a powerful quantum
computer and in the theory behind an appropriate algorithm
and model. This can be likened to the aerospace industry,
where computational fluid dynamics calculations on classical
computers have replaced wind tunnel testing in many stages of
wing design (Jameson, 1999). However, for the most demand-
ing parts of aerospace design, neither our largest classical
computers nor the physical models considered are yet power-
ful enough to completely replace experimental testing (Malik
and Bushnell, 2012). Instead, the two methods work together
in synergy to facilitate increased understanding with greater
efficiency.
To date, several efficient quantum algorithms have been

proposed to solve problems in chemistry. The run-time and
physical resources required by these algorithms are expected
to scale polynomially with both the size of the system
simulated and the accuracy required. Experimental develop-
ments have accompanied these theoretical milestones, with
many groups demonstrating proof of principle chemistry
calculations. However, limited by hardware capabilities, these
experiments focus only on small chemical systems that we are
already able to simulate classically. Moreover, the gate counts
currently estimated for transformative chemistry simulations
likely signal the need for quantum error correction, which
requires orders of magnitude more qubits, and lower error
rates, than are currently available (Mueck, 2015; Babbush,
Gidney et al., 2018; Kivlichan et al., 2019). Despite ongoing
experimental efforts, no group has yet demonstrated a single
fully error-corrected qubit. Even if the significant hardware
challenges to build an error-corrected quantum computer can
be overcome (Ladd et al., 2010; Monroe and Kim, 2013;
Gambetta, Chow, and Steffen, 2017), new theoretical develop-
ments may be needed to solve classically intractable chemistry
problems on a quantum computer that we could realistically
imagine building in the next few decades, such as probing
biological nitrogen fixation or investigating new metal ion
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battery designs. These breakthroughs may be achieved by
connecting researchers working in quantum computing with
those working in computational chemistry. We seek to aid this
connection with this succinct, yet comprehensive, review of
quantum computational chemistry (using quantum algo-
rithms, run on quantum computers, to solve problems in
computational chemistry) and its foundational fields.
Although quantum algorithms can solve a range of prob-

lems in chemistry, we focus predominantly on the problem of
finding the low-lying energy levels of chemical systems. This
is known as the “electronic structure problem.” There are three
reasons for this restriction of scope. Primarily, this problem is
a fundamental one in classical computational chemistry.
Knowledge of the energy eigenstates enables the prediction
of reaction rates, location of stable structures, and determi-
nation of optical properties (Helgaker et al., 2012). Secondly,
the machinery developed to solve this problem on quantum
computers is easily applied to other types of problems, such as
finding transition states and understanding the vibrational
structure of molecules. Finally, most of the prior work in
quantum computational chemistry has focused on this prob-
lem. As such, it provides an ideal context in which to explain
the most important details of quantum computational
chemistry.
This review is organized as follows. We first provide a brief

overview of quantum computing and simulation in Sec. II. We
then introduce the key methods and terminology used in
classical computational chemistry in Sec. III. The methods
developed to merge these two fields, including mapping
chemistry problems onto a quantum computer, are described
in Sec. IV. We continue our discussion of quantum computa-
tional chemistry in Sec. V by describing algorithms for finding
the ground and excited states of chemical systems. Section VI
highlights the techniques developed to mitigate the effects of
noise in non-error-corrected quantum computers, which will
be crucial for achieving accurate simulations in the near
future.
In Sec. VII, we provide several examples of how to map

chemistry problems onto a quantum computer. We discuss
techniques that can be used to reduce the simulation resources
required, and the quantum circuits that can be used.
Section VII seeks to illustrate the techniques described
throughout the rest of the review, providing worked-out
examples for the reader. We conclude this review in
Sec. VIII with a comparison between classical and quantum
techniques, and resource estimations for the different quantum
methods. Section VIII helps the reader to understand when,
and how, quantum computational chemistry may surpass its
classical counterpart.
A handful of related reviews on this topic exist in the

literature. Summaries of early theoretical and experimental
work in quantum computational chemistry were carried out by
Kassal et al. (2011) and Lu et al. (2012). More focused
discussions of quantum algorithms introduced for chemistry
simulation before 2015, and the computational complexity of
problems in chemistry, can be found in works by Veis and
Pittner (2012), Yung et al. (2012), and Kais, Rice, and Dinner
(2014). A comprehensive review was recently released by Cao
et al. (2019). Said review and our own are complementary; the
review of Cao et al. (2019) is well suited to experienced

practitioners of classical electronic structure theory, and it
provides excellent detail on the computational complexity of
quantum simulations, and how they asymptotically compare
to cutting edge methods in classical chemistry. Our review
provides a more practical guide to the field (especially for
those new to electronic structure theory), showing explicitly
how the workhorse methods of classical chemistry have been
translated to work on quantum computers, and describing
techniques to facilitate experimental demonstrations of quan-
tum chemistry algorithms, such as resource reduction and
error mitigation. Together these reviews provide a complete
overview of the progress to date in quantum computational
chemistry.
Despite being a relatively young field, quantum computa-

tional chemistry has grown extremely rapidly and has already
evolved beyond the stage that it can be fully described in a
single review. As such, there are approaches to solving
chemistry problems with a quantum computer that we are
not able to describe fully in this review. As stated previously,
we choose to prioritize the canonical topics in the field, using
either near-term or further-future digital quantum computers
to solve the electronic structure problem ab initio. We focus
on the most promising methods for solving this problem:
variational algorithms with error mitigation, and the quantum
phase estimation algorithm with quantum error correction.
Extended discussion is reserved for methods that are key to
understanding how quantum computers can be used to solve
general chemistry problems, or articles which have made
important observations on ways to make these simulations
more tractable. It is beyond the scope of this review to
summarize work in directions complementary to these, such
as quantum machine learning–based approaches to the elec-
tronic structure problem (Xia, Bian, and Kais, 2018; Xia and
Kais, 2018), using quantum computers as part of a problem
decomposition approach to simulation (Bauer et al., 2016;
Dallaire-Demers and Wilhelm, 2016a, 2016b; Kreula, Clark,
and Jaksch, 2016; Rubin, 2016; Keen et al., 2019; Rungger
et al., 2019), hybrid quantum algorithms for density functional
theory (Whitfield et al., 2014; Hatcher, Kittl, and Bowen,
2019), relativistic quantum chemistry (Veis et al., 2012;
Senjean, 2019), gate-based methods for simulating molecular
vibrations (McArdle, Mayorov et al., 2019; Sawaya and Huh,
2019; Sawaya et al., 2019), analog simulators of molecular
vibrations (Joshi et al., 2014; Huh et al., 2015; Huh and Yung,
2017; Chin and Huh, 2018; Clements et al., 2018; Hu et al.,
2018; Shen et al., 2018; Sparrow et al., 2018; Wang et al.,
2019), fermionic quantum computation for chemistry simu-
lation (O’Brien, Rożek, and Akhmerov, 2018), quantum
methods for electron-phonon systems (Wu, Byrd, and
Lidar, 2002; Macridin et al., 2018a, 2018b), protein folding
and molecular docking (Perdomo et al., 2008; Babbush et al.,
2012; Perdomo-Ortiz et al., 2012; Babej, Ing, and Fingerhuth,
2018; Fingerhuth, Babej, and Ing, 2018; Banchi et al., 2019;
Lu and Li, 2019; Robert et al., 2019), solving problems in
chemistry using a quantum annealer (Babbush, Love, and
Aspuru-Guzik, 2015; Teplukhin, Kendrick, and Babikov,
2019; Xia, Bian, and Kais, 2018; Genin, Ryabinkin, and
Izmaylov, 2019), and quantum algorithms for finding the
eigenvalues of non-Hermitian Hamiltonians (Wang et al.,
2010; Daskin, Grama, and Kais, 2014).
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II. QUANTUM COMPUTING AND SIMULATION

In this section, we introduce the basic elements of quantum
computing and quantum simulation. We refer the interested
reader to Nielsen and Chuang (2002) and Georgescu, Ashhab,
and Nori (2014) for more detailed introductions.

A. Quantum computing

In this review, we focus on the qubit-based circuit model of
quantum computation (Nielsen and Chuang, 2002). Other
paradigms that vary to a greater or lesser extent include
adiabatic quantum computing (Farhi et al., 2000; Aharonov
et al., 2008; Albash and Lidar, 2018), one-way or measure-
ment-based quantum computing (Raussendorf and Briegel,
2001; Raussendorf, Browne, and Briegel, 2003; Jozsa, 2005),
and continuous-variable quantum computing (Lloyd and
Braunstein, 1999; Braunstein and van Loock, 2005).
The canonical circuit model of quantum computation is so

named because of its resemblance to the logic circuits used in
classical computing. In the classical circuit model, logic gates
(such as AND, OR, and NOT) act on bits of information. In the
quantum case, quantum gates manipulate the basic unit of
information, the qubit. The qubit lives in a two-dimensional
Hilbert space. The basis vectors of the space are denoted as
fj0i; j1ig, which are referred to as the computational basis
states,

j0i ¼
�
1

0

�
; j1i ¼

�
0

1

�
: ð1Þ

A general single-qubit state is described by

jφi ¼ αj0i þ βj1i ¼
�
α

β

�
;

α; β ∈ C;

jαj2 þ jβj2 ¼ 1: ð2Þ

When quantum logic gates act on the qubits, they manipulate
both basis state vectors at the same time, providing (measure-
ment limited) parallelism. Although the qubit is in a quantum
superposition during the algorithm, when it is measured in the
computational basis, it will be found in state j0i or state j1i, not
in a superposition. These measurement outcomes occur with
probability jαj2 and jβj2, respectively. For now, we treat the
qubit as an abstract two-level system, before later elaborating
on how they can be physically realized.
If there are n qubits in the system, the state is described by a

vector in the 2n-dimensional Hilbert space formed by taking
the tensor product of the Hilbert spaces of the individual
qubits. States can be classified as either “product” or
“entangled.” Product states can be decomposed into tensor
products of fewer qubit wave functions, such as

1ffiffiffi
2

p ðj00i þ j01iÞ ¼ j0i ⊗ 1ffiffiffi
2

p ðj0i þ j1iÞ: ð3Þ

Entangled states cannot be decomposed into tensor products,
such as the state

1ffiffiffi
2

p ðj00i þ j11iÞ: ð4Þ

In this review, we refer to the leftmost qubit in a vector as the
ðn − 1Þth qubit, and the rightmost qubit as the zeroth qubit.
This choice enables us to write numbers in binary using
computational basis states. For example, we can write
j7i ¼ j1ij1ij1i ¼ j111i. We can then place a quantum register
of n qubits in a superposition of the 2n possible numbers that
can be represented by n bits. This is typically written
as

P
2n−1
x¼0 cxjxi.

A quantum circuit consists of a number of single- and two-
qubit gates acting on the qubits. The qubits are initialized
in a well-defined state, such as the j0̄i state (j0̄i ¼ j0i⊗n ¼
j0i ⊗ j0i ⊗ � � � ⊗ j0i). A quantum circuit generally con-
cludes with measurements to extract information. It may also
employ additional intermediate measurements, for example,
to check for errors. From a mathematical perspective, the gates
are unitary matrices. Typical gates include the Pauli gates

X¼
�
0 1

1 0

�
; Y ¼

�
0 −i
i 0

�
; Z¼

�
1 0

0 −1

�
; ð5Þ

the single-qubit rotation gates

RxðθÞ¼e−iθX=2; RyðθÞ¼e−iθY=2; RzðθÞ¼e−iθZ=2; ð6Þ

the Hadamard and T gates

Had ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; T ¼

�
1 0

0 eiπ=4

�
; ð7Þ

and multiqubit entangling gates, such as the two-qubit
controlled-NOT (CNOT) gate shown in Fig. 1. The action of
the CNOT gate can be written mathematically as

j0ih0jC ⊗ IT þ j1ih1jC ⊗ XT; ð8Þ

where T denotes the target qubit and C denotes the control
qubit. The matrix form of this operation is given by

0
BBB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCCA: ð9Þ

These gates are used to create a sample quantum circuit in
Fig. 2. This circuit generates the entangled state of two qubits
given by Eq. (4), then measures both of the qubits.
With only single-qubit operations and CNOT gates, it is

possible to approximate an arbitrary multiqubit gate to any

FIG. 1. The controlled-NOT (CNOT) gate. The filled circle
denotes the control qubit and the circled plus sign denotes the
target qubit.
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desired accuracy (DiVincenzo, 1995). As a result, the circuit
model of quantum computing typically decomposes all
algorithms into single and two-qubit gates. We denote each
gate by a unitary operator Ui;jðθ⃗Þ, where i, j are the indices of
the qubits the gates act upon (i ¼ j for single-qubit oper-

ations), and θ⃗ are gate parameters (although the gates, such as
the Pauli gates, do not have to be parametrized). We can then
mathematically describe a quantum circuit by

jφi ¼
Y
k

Uik;jk
k ðθ⃗kÞj0̄i; ð10Þ

where k denotes the kth gate in the circuit. The gates are
ordered right to left. For example, the circuit in Fig. 2 would
be written as

1ffiffiffi
2

p ðj00i þ j11iÞ ¼ CNOT0;1Had0j00i: ð11Þ

We extract information from the circuits by performing
measurements of observables O, which are represented by
Hermitian matrices. Typically, we seek the average value over
many measurements Ō given by

Ō ¼ hφjOjφi; ð12Þ

referred to as the expectation value of the operator O.
Measuring the expectation value of qubit i in the computa-
tional basis corresponds to hφjZijφi. In practice, this means
that we repeatedly prepare the state jφi and measure the state
of qubit i, labeling the outcomes þ1 (for j0i) and −1 (for j1i).
We then take the mean of these measurement outcomes. In
order to measure qubits in the X or Y basis, single-qubit
rotations are first applied to change the basis of the relevant
qubits, which are then measured in the Z basis. We can obtain
the outcomes of measuring multiqubit operators by taking the
product of the measurement outcomes of single-qubit oper-
ators measured in the same circuit iteration. For example, the
expectation value of ZiZj could be obtained by preparing state
jφi, measuring Zi on qubit i and Zj on qubit j, multiplying
these two measurement outcomes together, and averaging the
results over many repetitions of this process. These outcomes
are typically correlated for entangled states. For example, the
measurement outcome for Z1Z0 on the state in Eq. (4) is
always þ1 (þ1 ×þ1 for j00i and −1 × −1 for j11i).
The Pauli operators and identity matrix form a complete

basis for any Hermitian single or multiqubit operator.
Therefore, any multiqubit observable can be expanded into

a linear combination of strings of Pauli operators, the expect-
ation values of which we can measure efficiently with a
quantum computer.
It is important to distinguish between the number of

physical and logical qubits in a quantum computer.
Physical qubits are approximate two-level systems, which
can be created in a range of different systems, including, but
not limited to, energy levels in trapped ions (Cirac and Zoller,
1995; Leibfried et al., 2003), polarization states of photons
(Knill, Laflamme, and Milburn, 2001), spins in quantum dots
(Loss and DiVincenzo, 1998; Hanson et al., 2007) or silicon
(Kane, 1998), and energy levels of superconducting circuit
resonators (Shnirman, Schön, and Hermon, 1997; Nakamura,
Pashkin, and Tsai, 1999; Wendin, 2017). To protect qubits
from decoherence caused by coupling to the environment
(Landauer, 1995; Unruh, 1995), we can encode m logical
qubits into n > m physical qubits. These logical qubits can
simply be thought of as the abstract two-level system
described by Eq. (2). The codes used to construct logical
qubits are analogous to classical error-correcting codes but
are, in general, more complex due to the delicate nature of
quantum information and the “no-cloning theorem” of quan-
tum mechanics. Depending on the code used, we can either
detect or detect and correct the errors which occur. The
number of errors that we can detect and/or correct depends on
the code used (it is related to the distance of the code). We
must also account for the fact that the error-checking mea-
surements and correction procedure can cause additional
errors to occur (Knill, Laflamme, and Zurek, 1996). We seek
to build circuits in a “fault-tolerant” (Shor, 1996; Aharonov
and Ben-Or, 1997; Gottesman, 1998) manner, which limits the
spread of errors during logical blocks of the computation. If
this is achieved, then it is possible to scale up computations
arbitrarily. If the physical error rate in the gates is below a
certain code-dependent threshold value, the error rate in the
logical operations can be made arbitrarily low, either by
concatenation or, for certain codes, by growing the code. A
more detailed discussion of error correction was given by
Raussendorf (2012), Devitt, Munro, and Nemoto (2013),
Lidar and Brun (2013), and Terhal (2015).
One of the most widely studied error-correction codes is the

surface code (Kitaev, 1997), which is particularly suitable for
2D grids of qubits with nearest-neighbor connectivity.
Physical error rates below the surface code threshold of
around 1% (Wang, Fowler, and Hollenberg, 2011; Fowler,
Whiteside, and Hollenberg, 2012; Stephens, 2014) have been
achieved for trapped ion (Ballance et al., 2016; Gaebler et al.,
2016) and superconducting (Barends et al., 2014; Arute et al.,
2019) qubits. However, with these error rates, we would
require around 103–104 physical qubits per logical qubit to
perform interesting tasks in a fault-tolerant manner (Fowler
et al., 2012; Campbell, Terhal, and Vuillot, 2017; O’Gorman
and Campbell, 2017). For example, if we consider using a
quantum computer to factor numbers in polynomial time
(Shor, 1994), current estimates suggest that we would require
around 2 × 107 physical qubits to factor a number that is too
large to tackle using known classical algorithms (Gidney and
Ekerå, 2019). Building a machine of this size would be
extremely difficult, in terms of isolating the qubits from the

FIG. 2. A quantum circuit that generates the entangled state
ðj00i þ j11iÞ= ffiffiffi

2
p

and measures each qubit in the computational
basis. Time runs from left to right. Here “Had” is the Hadamard
gate, defined in the text. When measured, the qubits will either
both be in the state 0 (j00i) or both 1 (j11i). Each of these two
outcomes occurs with 50% probability.
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environment, developing scalable control systems, and min-
imizing qubit cross talk, as discussed by Ladd et al. (2010)
and Gambetta, Chow, and Steffen (2017). We discuss the
comparably lower resources required for error-corrected
chemistry calculations in Sec. VIII.B.
In contrast to the large error-corrected machines described

previously, current quantum computers possess only tens of
error-prone physical qubits. Nevertheless, quantum computers
with more than around 50 qubits are considered too large to
exactly simulate classically, and they may thus be capable of
solving problems that are intractable on even the largest
classical supercomputers (Arute et al., 2019). However, these
problems are typically artificially constructed examples rather
than real-world problems (Harrow and Montanaro, 2017;
Boixo et al., 2018). Preskill (2018) called these machines
“noisy intermediate-scale quantum” devices and observed that
it is currently unclear whether they will be able to outperform
classical computers on useful tasks. The dichotomy between
the resources needed for tackling problems like factoring and
the “supremacy” of a machine with more than around 50
qubits poses the following question: What, if anything, will
near-term quantum computers be useful for? The answer may
lie in Feynman’s original proposal: using quantum systems to
simulate quantum systems.

B. Quantum simulation

In this review, we focus on the digital quantum simulation
of many-body quantum systems. Digital quantum simulation
maps the target problem onto a set of gates which can be

implemented by a quantum computer. A universal quantum
computer can be programmed to perform many different
simulations. This can be contrasted with analog quantum
simulation, where the simulator emulates a specific real
system of interest. However, analog simulators are generally
considered more robust to noise, and therefore easier to
construct (Georgescu, Ashhab, and Nori, 2014). To date,
there have been several proposals for the simulation of
chemistry using analog simulators (Torrontegui et al.,
2011; Huh et al., 2015; Huh and Yung, 2017; Argüello-
Luengo et al., 2019; Chin and Huh, 2018), some of which
have been experimentally realized (Smirnov et al., 2007;
Clements et al., 2018; Hu et al., 2018; Shen et al., 2018;
Sparrow et al., 2018). Nevertheless, to perform accurate
simulations of large chemical systems, we will likely require
digital quantum simulation, as it is not yet clear how to protect
large analog simulations from errors. Digital quantum simu-
lation ismorevulnerable to noise and device imperfections than
analog simulation. While such imperfections can be addressed
via error correction, this requires additional qubits and places
stringent requirements on gate fidelities. In this review, we
focus solely on digital quantum simulation of chemistry
problems. We refer the interested reader to Aspuru-Guzik
andWalther (2012), Blatt and Roos (2012), Houck, Türeci, and
Koch (2012), Schneider, Porras, and Schaetz (2012), and
Georgescu, Ashhab, and Nori (2014) for information about
digital quantum simulations of other physical systems and
analog quantum simulation.
The numerous problems in chemistry that can be simulated

on a quantum computer can be divided into static and dynamics
problems. Here we use “dynamics” to mean evolving wave

FIG. 3. Digital quantum simulation of time evolution of a spin chain, using a canonical Trotter-type method. We first map the system
Hamiltonian Hs to a qubit Hamiltonian Hq. Then the initial system wave function jψ i

si is mapped to a qubit wave function jψ i
qi. The

time evolution of the system can be mapped to a Trotterized circuit that acts on the initial qubit wave function. Finally, well chosen
measurements are applied to extract the desired information, such as particle correlation functions. For a spin chain with an Ising
Hamiltonian, H ¼ P

hi;ji JijZiZj þ
P

i BiXi, where the first sum is over nearest-neighbor spins i and j, the unitaries Uij are given by

Uij ¼ CNOTi;jRj
zð2JijÞCNOTi;jRi

xð2BiÞ.
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functions in time and seeing how certain observables vary, as
opposed to chemical reaction dynamics, which are discussed
separately later.
Methods for solving dynamics problems were formalized

by Lloyd (1996) and further developed by Abrams and Lloyd
(1997). As illustrated in Fig. 3, we can map the system
Hamiltonian Hs to a qubit Hamiltonian Hq. We similarly map
the initial system wave function jψ i

si to a qubit representation
jψ i

qi. We can then evolve the qubit wave function in time by
mapping the system time evolution operator e−itHs to a series
of gates. This can be achieved using a Lie-Trotter-Suzuki
decomposition (Trotter, 1959), commonly referred to as
Trotterization or a Trotter circuit. This means that if the
Hamiltonian of the system, Hs, can be written as

Hs ¼
X
j

hj; ð13Þ

where hi are local terms which act on a small subset of the
particles in the system, then a small time evolution under the
Hamiltonian can be decomposed as

e−iHsδt ¼ e−i
P

j
hjδt ≈

Y
j

e−ihjδt þOðδt2Þ: ð14Þ

The number of terms in the Hamiltonian scales polynomially
with the number of particles for systems of interest in
chemistry due to the two-body nature of the Coulomb
interactions between particles (Helgaker, Jorgensen, and
Olsen, 2014). Each of the exponential terms in Eq. (14)
can be realized efficiently using a quantum computer. As the
dynamics of local Hamiltonians can be efficiently simulated
on a quantum computer but are generally thought to be
inefficient to simulate on a classical computer, this problem
belongs to the computational complexity class bounded-error
quantum polynomial time (BQP) (Lloyd, 1996; Bernstein and
Vazirani, 1997). It is important to note that, while it is widely
believed to be true, it has not yet been mathematically proven
that BPP ≠ BQP, where BPP is the complexity class con-
taining problems that are solvable in polynomial time on a
probabilistic classical computer. Further discussion of general
Hamiltonian simulation methods is given in Sec. V.A.3.
It has also been shown that the time evolution of open and

closed quantum systems can be simulated using variational
approaches (Li and Benjamin, 2017; Endo, Li et al., 2018;
Chen et al., 2019; Heya et al., 2019). A variational circuit is
one with parametrized quantum gates, whose parameters are
updated according to an algorithm specific update rule. They
are discussed in more detail in Sec. V.B. These techniques
may enable simulation of time evolution using circuits with
fewer gates than Trotterization. However, a variational circuit
with set parameters is tailored to the time evolution of one or
more specific initial states, in contrast to a Trotter circuit,
which can be used to time evolve any valid initial state.
Once the system has been time evolved for the desired

duration, we can extract useful dynamical quantities from
these simulations. Examples of such quantities include the
electronic charge density distribution, or particle correlation
functions (Abrams and Lloyd, 1997). Further information on

quantum dynamics simulation can be found in the review by
Brown, Munro, and Kendon (2010).
In chemistry, one is often concerned with determining

whether two or more subsystems will react with each other
when brought together with a certain energy. One might
assume that this could be studied by simply initializing the
reactants on the quantum computer and time evolving under
the system Hamiltonian, using the methods described pre-
viously. However, it depends on the method used to map the
chemical problem onto the quantum computer. We must
ensure that our model is able to accurately describe the
system during all parts of the reaction. This is naturally taken
care of using grid-based methods, where the electrons and
nuclei are treated on an equal footing, as discussed in
Secs. III.B.1 and IV.A.1. In contrast, if the problem is
projected onto a finite basis set of electron spin orbitals,
we must be careful to ensure that (1) the nuclear dynamics are
accurately described, either through a precise classical treat-
ment of the nuclear dynamics or by using additional orbitals to
describe the nuclear motion, and (2) the electron spin orbitals
used are able to accurately describe the positions of the
electrons at all points in the reaction. This may require the
orbitals to change in time. To the best of our knowledge, only
Berry, Childs et al. (2019) considers a chemical reaction
dynamics calculation on a quantum computer using basis set
methods.
We can obtain static properties by mapping the target wave

function (such as the ground state wave function of the system)
onto a qubit wave function. We can then use the quantum
computer to calculate the expectation value of the desired
observable, hψqjOqjψqi. In particular, Abrams and Lloyd
(1999) showed that the phase estimation algorithm (Kitaev,
1995) can be used to find the energy of a quantum system and
to collapse the quantum register into the desired energy
eigenstate. We discuss this approach in Sec. V.A. The ground
state problem can also be tackled using variational algorithms
(Peruzzo et al., 2014), which we discuss in detail in Sec. V.B.
Finding the low-lying energy levels of a quantum

Hamiltonian is, in general, an exponentially difficult problem
for classical computers. Moreover, it is important to note that
solving the ground state problem for a completely general
local Hamiltonian is quantum Merlin-Arthur complete, the
quantum analogue of nondeterministic polynomial time com-
plete (Kempe, Kitaev, and Regev, 2006; Cubitt and
Montanaro, 2016). Problems in this complexity class are
not believed to be efficiently solvable with either a classical or
quantum computer. For such systems, it would appear that
nature itself cannot efficiently find the ground state.
Despite this, the situation is not as bleak as it may initially

seem. As stated in the Introduction, we focus on finding the
low-lying energy levels of chemical systems (solving the
electronic structure problem). It is widely believed that this
problem should be efficiently solvable with a quantum
computer for physically relevant systems (Whitfield, Love,
and Aspuru-Guzik, 2013). The electronic structure problem
has received significant attention since it was first introduced
in the context of quantum computational chemistry by
Aspuru-Guzik et al. (2005), and is widely considered to be
one of the first applications of quantum computing. Solving
the electronic structure problem is often a starting point for
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more complex calculations in chemistry, including the calcu-
lation of reaction rates, the determination of molecular
geometries and thermodynamic phases, and calculations of
optical properties (Helgaker et al., 2012).
Before discussing how the electronic structure problem can

be solved using a quantum computer in Secs. IV and V, we
summarize the classical methods used to solve this problem in
Sec. III. Many of these methods have formed the basis of the
work done thus far in quantum computational chemistry.

III. CLASSICAL COMPUTATIONAL CHEMISTRY

Here we introduce a selection of the most widely used
techniques in ab initio classical computational chemistry. As
discussed in the Introduction, we focus on tools developed to
solve the electronic structure problem. The problem is for-
mulated in Sec. III.A and translated into the language of first
and second quantization in Sec. III.B. In Sec. III.C, we
describe the different approximations that can be used to
make this problem tractable for classical computers. In
Sec. III.D, we review some of the common spin-orbital basis
functions used in basis set approaches to the molecular
electronic structure problem. We discuss orbital basis changes
and their use in reducing the simulation resources in Sec. III.E.
We seek to produce a self-contained summary of the essential
knowledge required for quantum computational chemistry,
and we refer the interested reader to Szabo and Ostlund (2012)
and Helgaker, Jorgensen, and Olsen (2014) for further
information.

A. The electronic structure problem

The Hamiltonian of a molecule consisting of K nuclei and
N electrons is

H ¼ −
X
i

ℏ2

2me
∇2

i −
X
I

ℏ2

2MI
∇2

I −
X
i;I

e2

4πϵ0

ZI

jri −RIj

þ 1

2

X
i≠j

e2

4πϵ0

1

jri − rjj
þ 1

2

X
I≠J

e2

4πϵ0

ZIZJ

jRI −RJj
; ð15Þ

where MI , RI , and ZI denote the mass, position, and atomic
number of the Ith nucleus, and ri is the position of the ith
electron. The first two sums in H are the kinetic terms of the
electrons and nuclei, respectively. The final three sums
represent the Coulomb repulsion between the electrons and
nuclei, the electrons themselves, and the nuclei themselves,
respectively. For conciseness, we work in atomic units, where
the unit of length is a0 ¼ 1 bohr (0.529 × 10−10 m), the unit
of mass is the electron mass me, and the unit of energy
is 1 hartree (1 hartree ¼ e2=4πϵ0a0 ¼ 27.211 eV). Denoting
M0

I ¼ MI=me, the Hamiltonian in atomic units becomes

H ¼ −
X
i

∇2
i

2
−
X
I

∇2
I

2M0
I
−
X
i;I

ZI

jri −RIj

þ 1

2

X
i≠j

1

jri − rjj
þ 1

2

X
I≠J

ZIZJ

jRI −RJj
: ð16Þ

We are predominantly interested in the electronic structure
of the molecule. As a nucleon is over 1000 times heavier than

an electron, we apply the Born-Oppenheimer approximation,
treating the nuclei as classical point charges. As a result, for a
given nuclear configuration one needs to solve only the
electronic Hamiltonian

He ¼ −
X
i

∇2
i

2
−
X
i;I

ZI

jri −RI j
þ 1

2

X
i≠j

1

jri − rjj
: ð17Þ

Our aim is to find energy eigenstates jEii and the
corresponding energy eigenvalues Ei of the Hamiltonian
He. In the rest of this review, we drop the subscript e. In
particular, we are interested in the ground state energy and the
lowest excited state energies. We can solve this equation for a
range of nuclear configurations to map out the potential
energy surfaces of the molecule. Mapping out these potential
energy curves explicitly is exponentially costly in degrees of
freedom of the molecule, and there are a variety of methods
being developed to solve this difficult problem more effi-
ciently (Christiansen, 2012).
We want to measure the energy to an accuracy of at least

1.6 × 10−3 hartree, known as chemical accuracy. If the energy
is known to chemical accuracy, then the chemical reaction rate
at room temperature can be predicted to within an order of
magnitude using the Eyring equation (Evans and Polanyi,
1935; Eyring, 1935)

rate ∝ e−ΔE=kBT; ð18Þ

where T is the temperature of the system, andΔE is the energy
difference between the reactant and product states. In computa-
tional chemistry, we are typically more interested in the relative
energies of two points on the potential energy surface than the
absolute energy of a single point. Even if the individual energy
values cannot bemeasured towithin chemical accuracy, there is
often a fortuitous cancellation of errors that leads to the energy
difference being found to chemical accuracy. However, in this
review, we consider chemical accuracy to mean an error of less
than 1.6 × 10−3 hartree in the energy value at every point on the
potential energy surface.

1. Chemical systems of interest

While classical computational chemistry has made tremen-
dous progress in describing and predicting the properties of a
multitude of systems, there are some systems that appear to be
classically intractable to simulate with currently known
techniques. Consequently, there has been significant interest
in the possibility of using quantum computers to efficiently
solve these problems. In particular, we are interested in
solving so-called strongly correlated systems; we explain this
term more carefully in Sec. III.C.1. Here it suffices to say that
these are systems which possess wave functions with a high
degree of entanglement. Many systems of commercial and
scientific interest, such as catalysts and high temperature
superconductors, are believed to be strongly correlated. Here
we discuss two such strongly correlated systems, which have
been identified as interesting potential targets for a future
quantum computer.
Many transition metals have found use as catalysts

(Vogiatzis et al., 2019). However, many of these systems
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show strong correlation, often due to their open-shell nature
and spatially degenerate states (Lyakh et al., 2012). This
strong correlation often precludes their study in silico, forcing
us to carry out expensive, trial-and-error-based discovery,
especially for transition metal–based biological catalysts
(Podewitz, Stiebritz, and Reiher, 2011). One such system is
the biological enzyme nitrogenase, which enables micro-
organisms that contain it to convert atmospheric dinitrogen
(N2) to ammonia (NH3) under ambient conditions. This
process is known as nitrogen fixation and is one of the two
main ways of producing ammonia for fertilizer; the other is the
energy intensive Haber-Bosch process. The Haber-Bosch
process requires high temperatures and pressures and is
believed to consume up to 2% of the world’s energy output
(Reiher et al., 2017). While there has been significant
experimental progress in understanding the structure of the
nitrogenase enzyme over the last 100 years, the reaction
mechanism is not yet fully understood (Burgess and Lowe,
1996). The crux of understanding the enzyme appears to be
several transition metal compounds found within it: the P
cluster (containing iron and sulfur) and the iron molybdenum
cofactor (FeMo-co, containing iron, molybdenum, carbon,
hydrogen, and oxygen) (Hoffman et al., 2014). Computational
models of FeMo-co have been proposed that are beyond the
reach of current classical methods for solving strongly
correlated systems (see Sec. VIII.A) but would be accessible
with a small error-corrected quantum computer (Reiher et al.,
2017; Berry, Gidney et al., 2019). We discuss the resources
required for these simulations in Sec. VIII.B.
High temperature superconductors are also believed to be

strongly correlated systems. Since their discovery in the
1980s, there has been significant experimental and theoretical
work to understand these compounds, which are not well
described by the Bardeen-Cooper-Schrieffer theory of super-
conductivity. In the case of the so-called cuprate super-
conductors, it is widely believed that the mechanism of
high temperature superconductivity is closely linked to the
physics of the copper-oxygen planes that constitute them. A
complete analytic or computational understanding of these
layers is beyond the capabilities of current classical tech-
niques. Several simplified models have been proposed, which
have been found to capture some of the important behavior of
high temperature superconductors (Dagotto, 1994). In par-
ticular, models of fermions hopping on a 2D square lattice,
such as the one-band Fermi-Hubbard model (Hubbard, 1963)
and the related t-J model, appear to reproduce many exper-
imental observations (Anderson, 2002; Lee, Nagaosa, and
Wen, 2006). While more complex models are likely required
to fully understand the mechanism of cuprate superconduc-
tivity, a complete understanding of even the Fermi-Hubbard
model is still elusive. Close to half filling, at intermediate
interaction strengths, the system appears to show several
competing orders in its phase diagram, which makes it
difficult to reliably extract the ground state properties from
classical numerical calculations (Fradkin, Kivelson, and
Tranquada, 2015). This is the same regime that is believed
to be most relevant to understanding cuprate superconductors
(LeBlanc et al., 2015). Properties are typically obtained by
performing ground state calculations on the Fermi-Hubbard

model for a range of different system sizes, then extrapolating
to the thermodynamic limit (LeBlanc et al., 2015). We discuss
the system sizes that can be tackled using modern classical
techniques in Sec. VIII.A. We then examine the quantum
resources required to surpass these calculations in Sec. VIII.B.

B. First and second quantization

As a consequence of the Pauli exclusion principle, the
electronic wave function must be antisymmetric under the
exchange of any two electrons. This antisymmetrization can
be accounted for in two ways, known as first and second
quantization. These names are largely historical: first quan-
tization was the approach initially taken by the pioneers of
quantum mechanics, whereby variables like position and
momentum are promoted to operators (they are “quantized”).
Second quantization was developed afterward and quantizes
fields, rather than variables. There are key differences
between these representations, which affects how simula-
tions of physical systems are carried out using a quantum
computer.
As discussed in Sec. III.B.1, first quantized methods

explicitly retain the antisymmetry in the wave function. In
contrast, second quantization maintains the correct exchange
statistics through the properties of the operators that are
applied to the wave function, as we show in Sec. III.B.2.
These differences become more apparent in the context of
quantum computational chemistry mappings, which we dis-
cuss in Sec. IV.
It is important to note that whether a simulation is carried

out in first or second quantization is distinct from whether a
“basis set” or “grid-based” method is used. This is elaborated
on in more detail in the following. However, one key differ-
ence is that using a basis set is known as a Galerkin
discretization, which ensures that the energy converges to
the correct value from above as the number of basis functions
tends to infinity. This property does not hold for grid-based
methods. Babbush, Wiebe et al. (2018) provided a more
detailed discussion on the differences between grid-based and
basis set methods in the main text and Appendix A.

1. First quantization

Here we focus on classical first quantized simulation
methods. Discussion of first quantized chemistry simulation
on quantum computers is postponed until Sec. IV.A.

a. Grid-based methods

We consider the wave function in the position representa-
tion fjrig which must be explicitly antisymmetrized to
enforce exchange symmetry. Mathematically, we describe
the N-electron wave function as

jΨi ¼
Z
x1;…;xN

ψðx1;…;xNÞAðjx1;…;xNiÞdx1;…; dxN;

ð19Þ

where A denotes antisymmetrization, xi ¼ ðri; σiÞ ¼
ðxi; yi; zi; σiÞ gives the position and spin of the ith electron,
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and ψðx1;x2;…;xNÞ ¼ hx1;x2;…; xN jΨi. We can simulate
this system on a classical computer by evaluation of the wave
function on a discretized spatial grid. However, the cost of
storing the wave function scales exponentially with the
number of electrons N. Suppose each axis of space is
discretized into P equidistant points. The discretized wave
function is given by

jΨi ¼
X

x1;…;xN

ψðx1;…;xNÞAðjx1;…;xNiÞ; ð20Þ

where jxii¼jriijσii is a spatial and spin coordinate, jrii¼
jxiijyiijzii; ∀ i∈ f1;2;…;Ng, xi, yi, zi ∈ f0; 1;…; P − 1g,
and σi ∈ f0; 1g. In total, there are P3N × 2N complex ampli-
tudes, showing that the memory required scales exponentially
with the size of the simulated system. This makes it classically
intractable to simulate more than a few particles on a grid
using a classical computer. Consequently, we do not discuss
classical methods that are specific to the grid-based mapping
in this review.
Grid-based methods are useful when considering chemical

reaction dynamics, or when simulating systems for which the
Born-Oppenheimer approximation is not appropriate. In these
scenarios, we must include the motion of the nuclei. If we
consider the nuclear motion separately, we need to obtain the
potential energy surfaces from electronic structure calcula-
tions. As mentioned previously, mapping out these potential
energy surfaces is exponentially costly. As such, it may be
better to treat the nuclei and electrons on an equal footing,
which is best achieved with grid-based methods. This was
discussed further by Kassal et al. (2008).

b. Basis set methods

We project the Hamiltonian onto M basis wave functions,
fϕpðxiÞg, where xi is the spatial and spin coordinate of the ith
electron xi ¼ ðri; σiÞ. These basis functions approximate
electron spin orbitals. The grid-based method described pre-
viously directly stores the wave function without exploiting
any knowledge we may have about the general spatial form of
the orbitals. In contrast, basis set methods exploit this knowl-
edge to reduce the resources needed to simulate chemical
systems. We write the many-electron wave function as a Slater
determinant, which is an antisymmetrized product of the
single-electron basis functions. The wave function is given by

ψðx0;…;xN−1Þ

¼ 1ffiffiffiffiffiffi
N!

p

���������������

ϕ0ðx0Þ ϕ1ðx0Þ … ϕM−1ðx0Þ
ϕ0ðx1Þ ϕ1ðx1Þ … ϕM−1ðx1Þ

: : : :

: : : :

: : : :

ϕ0ðxN−1Þ ϕ1ðxN−1Þ … ϕM−1ðxN−1Þ

���������������

: ð21Þ

Swapping the positions of any two electrons is equivalent to
interchanging two rows of the Slater determinant, which
changes the sign of the wave function. This provides the
correct exchange symmetry for the fermionic wave function.

While the number of spin orbitals considered M is typically
larger than the number of electrons in the system N, the
electrons can only occupyN of the spin orbitals in a given Slater
determinant. As a result, the Slater determinant contains only
the N occupied spin orbitals. For example, imagine a fictitious
system with two electrons, distributed among basis functions
AðxÞ andBðxÞ. Each of these basis functions could be occupied
by an electron of either spin, so we effectively work with four
basis functions fA↑ðxÞ; A↓ðxÞ; B↑ðxÞ; B↓ðxÞg. We consider
the casewhere both electrons are in theA orbitals (and therefore
have opposite sz values, where sz is the z component of the spin
of the electron). As discussed previously, the Slater determinant
contains only the N occupied spin orbitals. We use Eq. (21) to
obtain the wave function

ψðx0; x1Þ ¼
1ffiffiffi
2

p
����A↑ðx0Þ A↓ðx0Þ
A↑ðx1Þ A↓ðx1Þ

����
¼ 1ffiffiffi

2
p ½A↑ðx0ÞA↓ðx1Þ − A↓ðx0ÞA↑ðx1Þ�: ð22Þ

This wave function is antisymmetric under the exchange of the
two electrons, as required.
As we see in Sec. III.B.2, the information encoded by a

Slater determinant can be compressed by moving to the
second quantized formalism. As a consequence, first quan-
tized basis set methods are rarely, if ever, used in classical
computational chemistry calculations. Nevertheless, it is
important to be aware of what the wave function looks like
in the first quantized basis set representation for two reasons.
First, as discussed previously, the second quantized basis set
method follows directly from the first quantized basis set
approach. Second, first quantized basis set approaches have
found use in quantum computational chemistry, as we discuss
in Sec. IV.A.2.

2. Second quantization

a. Basis set methods

The second quantized basis set approach follows naturally
from the first quantized basis set method discussed in
Sec. III.B.1. We again project the Hamiltonian onto the M
basis wave functions fϕpðxiÞg and consider many-electron
wave functions that must be antisymmetric under the
exchange of any two electrons. As we see in Sec. III.B.1,
to write down a Slater determinant we need only to indicate
which spin orbitals are occupied by electrons. This facilitates
the introduction of a convenient shorthand for Slater deter-
minants (Szabo and Ostlund, 2012)

ψðx0;…;xN−1Þ ¼ jfM−1;…; fp;…; f0i ¼ jfi; ð23Þ

where fp ¼ 1 when ϕp is occupied (and therefore present in
the Slater determinant), and where fp ¼ 0 when ϕp is empty
(and therefore not present in the determinant). The vector jfi
is known as an occupation number vector, and the space
of all such vectors is known as Fock space. The second
quantized formalism is concerned with manipulating these
occupation number vectors. As these occupation number
vectors are a convenient shorthand for Slater determinants,
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we refer to them throughout this review as Slater determinants.
This is common practice in computational chemistry (Szabo
and Ostlund, 2012).
Electrons are excited into the single-electron spin orbitals

by the fermionic creation operators a†p. They are deexcited by
the annihilation operators ap. These operators obey fermionic
anticommutation relations

fap; a†qg ¼ apa
†
q þ a†qap ¼ δpq;

fap; aqg ¼ fa†p; a†qg ¼ 0: ð24Þ

The determinants jfi form an orthonormal basis for the
Fock space of the system. The actions of the fermionic
operators on the determinants are given by

apjfM−1; fM−2;…; f0i
¼ δfp;1ð−1Þ

P
p−1
i¼0

fi jfM−1; fM−2;…; fp ⊕ 1;…; f0i;
a†pjfM−1; fM−2;…; f0i

¼ δfp;0ð−1Þ
P

p−1
i¼0

fi jfM−1; fM−2;…; fp ⊕ 1;…; f0i;
ð25Þ

where the circled plus sign denotes addition modulo 2 such

that 0 ⊕ 1 ¼ 1, 1 ⊕ 1 ¼ 0. The phase term ð−1Þ
P

p−1
i¼0

fi

enforces the exchange antisymmetry of fermions. The spin-
orbital occupation operator is given by

n̂i ¼ a†i ai;

n̂ijfM−1;…; fi;…; f0i ¼ fijfM−1;…; fi;…; f0i; ð26Þ

and it counts the number of electrons in a given spin orbital.
Observables must be independent of the representation

used. Therefore, the expectation values of second quantized
operators must be equivalent to the expectation values of the
corresponding first quantized operators. As first quantized
operators conserve the number of electrons, the second
quantized operators must contain an equal number of
creation and annihilation operators. We can use these require-
ments to obtain the second quantized form of the electronic
Hamiltonian (Szabo and Ostlund, 2012; Helgaker, Jorgensen,
and Olsen, 2014):

H ¼
X
p;q

hpqa
†
paq þ

1

2

X
p;q;r;s

hpqrsa
†
pa

†
qaras; ð27Þ

with

hpq ¼
Z

dxϕ�
pðxÞ

�
−
∇2

2
−
X
I

ZI

jr −RIj
�
ϕqðxÞ;

hpqrs ¼
Z

dx1dx2

ϕ�
pðx1Þϕ�

qðx2Þϕrðx2Þϕsðx1Þ
jr1 − r2j

: ð28Þ

The first integral represents the kinetic energy terms of the
electrons and their Coulomb interaction with the nuclei. The
second integral is due to the electron-electron Coulomb

repulsion. The Hamiltonian contains terms with up to four
creation and annihilation operators only (two creation,
two annihilation) because the Coulomb interaction between
the electrons is a two-body interaction. As a result, the
Hamiltonian contains up to M4 terms, depending on the basis
functions used. We examine the form of these basis functions
and how to select them in Sec. III.D. A special case of the
electronic structure Hamiltonian is obtained for the Fermi-
Hubbard model, introduced in Sec. III.A.1. The Fermi-
Hubbard Hamiltonian considers fermions hopping between
nearest-neighbor lattice sites with strength t. These fermions
feel a repulsive (or attractive) force U when they occupy the
same lattice site i. The Hamiltonian is given by

H ¼ −t
X
hi;ji;σ

ða†i;σaj;σ þ a†j;σai;σÞ þ U
X
i

ni;↑ni;↓; ð29Þ

where hi; ji denotes a sum over nearest-neighbor lattice sites,
and σ is a spin coordinate. This Hamiltonian has only OðMÞ
terms, where M is the number of spin sites. For convenience,
throughout the rest of this review we refer to both molecular
spin orbitals and lattice spin sites as spin orbitals.
Let us consider general and approximate solutions of the

electronic structure Hamiltonian. If the electron-electron
Coulomb interaction term in Eq. (17) is neglected, we obtain
a new Hamiltonian which describes the behavior of N
independent electrons. We can define a suitable basis for this
fictitious system as the set of molecular orbitals which
diagonalize the noninteracting Hamiltonian. These molecular
orbitals are typically linear combinations of orbitals localized
around each of the atoms. We note that, in practice, the
molecular orbitals obtained by diagonalizing the noninteract-
ing part of the Hamiltonian will likely form a poor basis for the
system. Instead, a mean-field approximation (the Hartree-
Fock procedure described in Sec. III.C.1) can be used to
obtain more suitable molecular orbitals. As these single-
particle molecular orbitals are chosen such that they diago-
nalize the noninteracting (or mean-field) Hamiltonian, energy
eigenstates can be formed by taking tensor products of each
electron in a different molecular spin orbital. In order to obey
the Pauli exclusion principle, these tensor products must be
correctly antisymmetrized. This can be achieved by creating
Slater determinants from the molecular orbitals, as described
by Eq. (21).
As they are eigenstates of a Hermitian operator, these Slater

determinants form a complete basis of the problem Hilbert
space. Consequently, the eigenstates of the true Hamiltonian
can be expressed as linear combinations of these Slater
determinants, written as

jΨi ¼
X
f

αfjfi; ð30Þ

where αf are complex coefficients that we refer to here as
determinant amplitudes. These solutions are exact, provided
that the molecular orbitals form a complete basis for the
single-particle states, and the N-electron wave function
contains all of the determinants that these molecular orbitals
can generate (Szabo and Ostlund, 2012; Helgaker, Jorgensen,
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and Olsen, 2014). If all ðMNÞ determinants are included, the
wave function is known as the full configuration interaction
(FCI) wave function. However, this wave function contains a
number of determinants which scales exponentially with the
number of electrons, making large calculations classically
intractable.
Second quantized basis set methods are the most widely

used approach in classical computational chemistry, and they
have formed the basis of most of the work done so far in
quantum computational chemistry. As a result, we discuss
some of the approximate methods used in second quantized
basis set simulations in Secs. III.C and III.D. In Sec. III.C, we
consider making ground state calculations classically tractable
by approximating the exact ground state wave function with a
restricted number of Slater determinants. In Sec. III.D, we
consider approximating the exact wave function by consid-
ering only the most important molecular orbitals. However,
first we briefly discuss for completeness the limited work that
has been done on second quantized grid-based methods.

b. Grid-based methods

To our knowledge, second quantized grid-based methods
have been discussed only by Babbush, Wiebe et al. (2018) in
their Appendix A. Nevertheless, these methods follow natu-
rally from the previous discussion of second quantized basis
sets. Our discussion of the topic closely follows the derivation
of Babbush, Wiebe et al. (2018). As a first step, we can
consider our real space grid to be described by a set of basis
functions that are δ functions δðr − riÞ each positioned at grid
point ri ¼ ðxi; yi; ziÞ. The creation operators a†i;σ then become

a†xi;yi;zi;σ; rather than creating an electron in spin orbital i, they
now create an electron with spin σ at the grid point ðxi; yi; ziÞ
in 3D space. As the basis functions do not overlap in space, the
kinetic energy operator must be defined using a finite differ-
ence formula rather than the integral in Eq. (28). We must also
define a suitable inner product between functions defined on
the grid. These steps allow us to calculate the coefficients of
each term in the Hamiltonian. As discussed previously, this
second quantized grid-based method has not yet to our
knowledge been used in any classical or quantum computa-
tional chemistry algorithms.

C. Classical computation methods

Here we review four methods for approximating the ground
state wave function with a restricted number of Slater
determinants: the Hartree-Fock (HF), multiconfigurational
self-consistent field (MCSCF), configuration interaction
(CI), and coupled-cluster (CC) methods. These methods
create parametrized trial states, which can then be optimized
to approach the ground state (to an accuracy determined by the
approximations made). In order to isolate the errors arising
from the method used, we assume that we are working in the
full molecular orbital basis for our molecule, although in
practice this would be classically intractable for large system
sizes (with the size of the system dependent upon the accuracy
of the method used). Restriction of the size of the basis set is
discussed in Sec. III.D.

The methods discussed next are considered in the context of
second quantized basis set calculations, as these translate most
easily to the methods used in quantum computational chem-
istry. These methods are among the most straightforward and
widely used in classical computational chemistry.

1. Hartree-Fock method

The HF method is a mean-field technique that aims to find
the dominant Slater determinant in the system wave function.
This is achieved by optimizing the spatial form of the spin
orbitals to minimize the energy of the wave function. We
generally consider a set of spin orbitals M that is larger than
the number of electrons in the molecule N. As we consider
only a single Slater determinant, we are essentially assuming
that N of the spin orbitals are occupied, and M − N are left
unoccupied, or virtual. In the HF method, we first neglect
the Coulomb repulsion term in the electronic structure
Hamiltonian [Eq. (17)], reducing the problem to one of N
independent electrons. We then assume that each electron
moves in the average charge distribution of all of the other
electrons, which introduces an effective potential. We can
solve the N coupled equations iteratively, first calculating the
position of each electron, then updating the potential, and
repeating this process until the orbitals converge. In the second
quantized formalism, this procedure is carried out by using the
orbitals to construct the Fock operator, and diagonalizing the
Fock operator to obtain new orbitals. This process is repeated
until the orbitals converge, and so HF is also referred to as the
self-consistent field (SCF) method. The Fock operator f̂ is
given by (Helgaker, Jorgensen, and Olsen, 2014)

f̂ ¼
X
i;j

ðhij þ VijÞa†i aj;

Vij ¼
X
k∈occ

ðhikkj − hikjkÞ; ð31Þ

where Vij describes the effective potential, and occ is the set of
occupied orbitals. We see that the Fock operator depends on
the spatial form of the orbitals through hij, hikkj, and hikjk
which are obtained by calculating the integrals in Eq. (28).
When performing a HF calculation, we typically input a set of
atomic orbitals, which are localized around each atom. These
orbitals are used to calculate the Fock operator, which is then
diagonalized to obtain new orbitals (which are linear combi-
nations of the old orbitals). This process is repeated until the
orbitals converge (Szabo and Ostlund, 2012). The new orbitals
obtained are referred to as the canonical orbitals. This
procedure generates single-particle molecular orbitals from
combinations of the single-particle atomic orbitals.
The term hikkj describes the Coulomb interaction of an

electron with the charge distribution of the other electrons,
while the term hikjk describes exchange effects (also called
Fermi correlation) arising from the required antisymmetriza-
tion. However, as a mean-field solution, the HF method
neglects the effects of dynamic and static correlation in the
wave function.
Dynamic correlation is a typically small correction (Hättig

et al., 2012), arising from the Coulomb repulsion between
electrons. Wave functions displaying dynamic correlation are
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often dominated by the Hartree-Fock determinant and have
small additional contributions from a potentially large number
of excited state determinants. Static correlation occurs when
more than one Slater determinant is equally dominant in the
wave function (Hättig et al., 2012). In this case, the Hartree-
Fock method provides a poor approximation to the ground
state wave function. The presence of strong static correlation
can be evidenced by multiple near-degenerate solutions of the
Hartree-Fock procedure. Static correlation can arise because
the wave function may require several determinants to be
coupled in a proper spin configuration, or during bond
breaking in order to account for the separation of the electrons
into the products; the latter case is often referred to as
nondynamic, or left-right, correlation (Lyakh et al., 2012).
The relative contribution of these effects depends on the
orbital basis used. Lyakh et al. (2012) note that, while it is
sometimes possible to reduce the level of static correlation by
manually enforcing correct spin symmetries and using appro-
priately localized orbitals, it is, in general, not possible to
avoid strong static correlation when considering the whole of
the potential energy surface. As a result, static correlation
often dominates in many systems of scientific interest, such as
excited states (Lischka et al., 2018) and transition metals
(Vogiatzis et al., 2019).
The Slater determinant generated from a HF calculation is

typically taken as the reference state for post-HF methods,
such as configuration interaction and coupled cluster, which
seek to capture some of the dynamic correlation energy by
including additional determinants, describing excitations
above the HF state. Although we discuss orbital basis sets
in more detail in Sec. III.D, we note here that the HF orbitals
are not suitable for describing the virtual orbitals that
electrons are excited into. This is because the HF method
optimizes only the occupied orbitals in the single Slater
determinant wave function. In order to obtain suitable virtual
orbitals, we can instead perform correlated calculations on
individual atoms. The details of how to perform these
correlated atomic calculations are beyond the scope of this
review and are not relevant for quantum computing appli-
cations. We refer the interested reader to Sec. 8.3 of the
textbook by Helgaker, Jorgensen, and Olsen (2014) for
additional details. The importance of each of the virtual
atomic orbitals is determined by their contribution to either
the electron density (atomic natural orbitals) or the atomic
correlation energy (correlation-consistent basis sets). These
two metrics are closely related, and while either can be used,
the latter produces more compact basis sets and hence is used
more frequently in practice (Helgaker, Jorgensen, and Olsen,
2014). We discuss the use of correlation-consistent basis sets
further in Sec. III.D.2.

2. Multiconfigurational self-consistent field

As discussed previously, the Hartree-Fock method performs
poorly for strongly correlated systems. Systems with strong
static correlation are defined as those where multiple Slater
determinants are equally dominant. These include excited
states (Lischka et al., 2018), transition states (Szalay et al.,
2012), systems at the dissociation limit (Lyakh et al., 2012),
and transition metals (Vogiatzis et al., 2019). In order to

account for static correlation, we need to use a wave function
which exhibits the required multireference nature. One such
approach is the MCSCF method. The MCSCF approach
considers a wave function with several Slater determinants
and variationally optimizes the molecular orbitals and the
determinant amplitudes simultaneously (Roos, Taylor, and
Sigbahn, 1980). Mathematically, we write our MCSCF wave
function as jΨi ¼ e−κ

P
f αfjfi, where again αf are deter-

minant amplitudes and jfi are Slater determinants. Here κ is
an anti-Hermitian operator given by κ ¼ P

i;j kija
†
i aj.

Exponentiating κ produces a unitary operator which rotates
the orbital basis (Helgaker, Jorgensen, and Olsen, 2014). We
then variationally minimize the energy by optimizing both the
amplitudes αf and the entries kij of κ.
MCSCF can be considered the best approximation to the

exact wave function for a given number of determinants
(Wang et al., 2008). It is not possible to perform a complete
MCSCF calculation on all possible determinants for systems
with more than a few electrons, as the number of determinants
scales exponentially with the number of electrons. We
attempt to use chemical intuition to select the most important
Slater determinants and perform a MCSCF calculation on this
restricted number of determinants. Alternatively, we can use
the complete active space self-consistent field (CASSCF)
method (Roos, Taylor, and Sigbahn, 1980). This considers
only the most important orbitals (an active space; see
Sec. III.E) and performs a MCSCF calculation on all of
the determinants that could be generated from distributing a
certain number of electrons in these orbitals. MCSCF and
CASSCF calculations are among the most effective classical
methods at treating systems with strong static correlation
(Szalay et al., 2012). Recent approaches, including replace-
ment of the CASSCF subroutine with tensor network meth-
ods, have enabled the treatment of even larger active spaces
(Knecht et al., 2016). However, while the previously
described methods are often effective at recovering the static
correlation energy, they struggle to recover the dynamic
correlation energy. This requires additional techniques, such
as multireference configuration interaction [see Sec. III.C.3
and Szalay et al. (2012)] and multireference coupled cluster
[see Sec. III.C.4 and Lyakh et al. (2012)].

3. Configuration interaction method

The CI method generates a correlated wave function by
considering excitations above a reference state, typically the
Hartree-Fock state. If all determinants are included, we
recover the FCI wave function, generated by considering
all excitations above the Hartree-Fock wave function

jΨFCIi ¼
�
I þ

X
i;α

Ciαa
†
i aα þ

X
i>j;α>β

Cijαβa
†
i a

†
jaαaβ þ � � �

�

× jΨHFi; ð32Þ

where C are parameters to be optimized according to the
Rayleigh-Ritz variational principle. The Rayleigh-Ritz varia-
tional principle states that the energy expectation value of a
parametrized wave function is greater than or equal to the
lowest energy eigenvalue of the Hamiltonian being measured.
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As considering all determinants is classically intractable, the
CI method is typically limited to including a small number of
excitations above the reference state: single excitations,
double excitations (CISD), and occasionally triple excitations
(CISDT). However, as low energy excitations dominate the
ground state wave function in many physical systems, these
truncations can still produce good approximations to the
ground state energy (Szabo and Ostlund, 2012; Helgaker,
Jorgensen, and Olsen, 2014). The CI method is effective at
recovering dynamic correlation, but less effective at recover-
ing static correlation (Helgaker, Jorgensen, and Olsen, 2014).
If the reference state is a MCSCF state, the method is known
as multireference configuration interaction, which seeks to
recover dynamic correlation on top of the static correlation
described by the MCSCF state.
The CI method suffers from two major limitations. The

method converges slowly to the full configuration interaction
wave function, as a result of its linear parametrization. In
addition, the energy obtained from a truncated CI calculation
does not scale correctly with the system size. A calculation is
said to produce “size-extensive” results for an observable if
the correct scaling behavior of that observable is obtained as
the system is scaled to the thermodynamic limit (Lyakh et al.,
2012). The energy obtained from a truncated CI calculation is
not size extensive. Truncated CI calculations also fail to satisfy
a related property, known as size consistency. Size consistency
arises from multiplicative separability of wave functions
describing two noninteracting systems; i.e., jABi ¼ jAijBi
for HAB ¼ HA ⊕ HB. One can easily verify that this does not
hold for truncated CI calculations. Size consistency is impor-
tant for obtaining the correct behavior from calculations to
determine reaction rates, as reactants at the beginning of the
process are considered noninteracting.

4. Coupled cluster method

The CC method also includes additional determinants to
recover the correlation energy but uses a product parametri-
zation. The CC wave function is given by

jΨCCi¼
Y
i;α

ðIþCiαa
†
i aαÞ

Y
i>j;α>β

ðIþCijαβa
†
i a

†
jaαaβÞ � � � jΨHFi:

ð33Þ

Equation (33) can be recast in an exponential form, written as

jΨCCi ¼ eT jΨHFi; ð34Þ

where T ¼ P
i Ti,

T1 ¼
X

i∈virt;α∈occ
tiαa

†
i aα;

T2 ¼
X

i;j∈virt;α;β∈occ
tijαβa

†
i a

†
jaαaβ;…; ð35Þ

where occ denotes orbitals that are occupied in the Hartree-
Fock state, virt denotes orbitals that are unoccupied (virtual) in
the Hartree-Fock state, and t indicates excitation amplitudes.
When all of the excitation operators Ti are included, the CC
method recovers the full configuration interaction wave

function; however, performing this calculation would be
exponentially costly. As a result, the method is normally
truncated at a lower excitation level, often single and double
excitations (CCSD). The canonical implementation of CCSD
does not store the wave function, as this would be exponen-
tially costly since the CCSD wave function has support on all
possible Slater determinants. Instead, coupled nonlinear
equations can be derived. The solution to these equations is
the CCSD approximation to the ground state (Purvis and
Bartlett, 1982; Helgaker, Jorgensen, and Olsen, 2014). The
time taken to solve these equations scales as O(ðM − NÞ4N2)
(Purvis and Bartlett, 1982), while the memory needed to store
the molecular integrals needed scales as OðM4Þ. For more
accurate results, the CCSD(T) method can be used, which
treats the triple excitations pertubatively and scales in time
approximately as OðM7Þ. There has been significant work to
reduce these high computational costs, often introducing
approximations which exploit the locality of dynamical
electron correlation in certain systems (Schutz, 2000;
Schutz and Werner, 2000). This has reduced the scaling to
be, in some cases, linear (Werner and Schutz, 2011).
Because of its product parametrization, the CC method

generates a trial wave function that includes all possible
determinants, albeit with an incorrect parametrization. It
therefore provides faster convergence than the configuration
interaction method. The product parametrization also ensures
size extensivity and size consistency. However, the CC
method is not without its own shortcomings. Most notably,
the wave function generated by the canonical CC method does
not obey the Rayleigh-Ritz variational principle (Helgaker,
Jorgensen, and Olsen, 2014). While it is possible to formulate
alternative variants of the coupled-cluster method that are
variational (Van Voorhis and Head-Gordon, 2000), these are
not as widely used by the computational chemistry commu-
nity. Moreover, the conventional CC method described pre-
viously is a single determinant reference state method.
Consequently, it does not tend to perform well when applied
to multireference states, which are required to treat systems
with strong static correlation (Lyakh et al., 2012; Lischka
et al., 2018). While there have been efforts to develop
multireference coupled-cluster approaches, these have their
own limitations and are not in widespread use, as discussed by
Lyakh et al. (2012). In Sec. V.B, we describe a modified form
of the CC method, known as unitary coupled cluster (UCC).
This method is both variational and suitable for multireference
states. While it is exponentially costly to implement with a
classical computer, this method is efficient to implement using
a quantum computer.
This section has treated the inaccuracies that result from

approximating the full configuration interaction wave function
while including all molecular orbitals. In Sec. III.D, we
discuss the converse case; we consider only a limited number
of molecular orbitals but assume that we include all possible
determinants that they can generate, unless explicitly stated.

D. Chemical basis sets

Here we describe some of the conventional orbital basis
sets used in classical computational chemistry. We refer here
to the “true” orbitals of the system. These can be obtained by
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numerically solving the Schrödinger equation using grid-
based methods with a fine grid spacing, which is possible only
for small atoms or simple molecules. The orbital functions
introduced here are approximations of these true orbitals.
Although the Schrödinger equation can be solved exactly

for one electron atoms, the orbitals obtained become diffuse
too rapidly to accurately describe many-electron atoms,
especially close to the nuclei (Helgaker, Jorgensen, and
Olsen, 2014). A better basis can be obtained by considering
parametrized functions known as Slater-type orbitals (STOs),

RSTO
n ðrÞ ∝ ðζrÞn−1e−ζr; ð36Þ

where n is the energy level and ζ is a fitting parameter.
By using different values of ζ for each orbital, we can generate
a good basis (Helgaker, Jorgensen, and Olsen, 2014). Unlike
the true atomic orbitals, these functions do not display
oscillatory behavior. Consequently, linear combinations of
STOs are required to approximate the true orbitals. It is
possible to introduce only a single basis function for each
considered orbital in the molecule and give each basis function
a different ζ value. This is known as a single-ζ representation.
Alternatively, we can introduce n basis functions (where n is
not the energy level of the orbital, but rather a number defining
the number of basis functions that we want to include), each
with a different ζ value, for each orbital. This is known as an
n-ζ representation. Introducing additional basis functions in
this way increases the radial flexibility of the wave function.
While the STO functions exhibit many desirable features, they
make evaluating the two-electron integrals in Eq. (28) com-
putationally expensive.
To simplify the two-electron integrals, we can instead use

Gaussian basis functions. The Gaussian basis functions are
obtained by considering the Schrödinger equation with a
three-dimensional Harmonic oscillator potential. The form of
a Gaussian-type orbital (GTO) is given by

RGTO
nl ðrÞ ∝ ð ffiffiffiffiffiffi

αnl
p

rÞle−αnlr2 ; ð37Þ

where αnl is a fitting parameter and l denotes the angular
momentum quantum number of the orbital. Because of the
dependence on r2 in the exponent, GTOs are more localized
than STOs. As a result, GTOs do not approximate the atomic
charge distribution as well as STOs, so more are required to
describe a given orbital. However, this limitation is compen-
sated for by the ease of integral evaluation. Furthermore, the
disadvantages of GTOs are less prominent in molecular
calculations (Helgaker, Jorgensen, and Olsen, 2014).
The most common basis sets construct approximate STOs

from linear combinations of GTOs. These approximate STOs
are used as the basis functions for our atomic orbitals. The
number and type of orbitals defines the basis set. For example,
Fig. 4 shows the orbitals included in different basis sets for H2.
There is a compromise between the accuracy obtained and the
number of basis functions used. The number of orbitals
considered determines the run-time and memory requirements
of classical chemistry algorithms. In the case of quantum
computational chemistry, the number of basis functions
determines the number of qubits and gate operations required

to solve the problem, which we discuss explicitly in Secs. IV
and V, respectively.

1. STO-nG and split-valence basis sets

Some of the most simple bases are the STO-nG basis sets
(STO-n Gaussians) (Hehre, Stewart, and Pople, 1969). In a
STO-nG basis, each atomic orbital is considered to be an
approximate STO. The STOs are approximated using nGTOs.
STO-nG basis sets are often called minimal basis sets, as they
contain only the orbitals required to write the HF state and
those orbitals of similar energy. Calculations using minimal
basis sets are of limited accuracy, giving only a qualitative
description of the system. It is important to note that when
carrying out a HF calculation in a STO-nG basis, the true
HF energy (i.e., the energy obtained by performing a HF
calculation using a grid-based method on an infinitely precise
grid) will not be obtained, as the STO-nG basis sets only
approximate the true HF orbitals. As an example of a STO-nG
basis set, we consider lithium, which has three electrons, of
which two can reside in the 1s orbital, leaving one in the
second energy level. We include in the minimal basis set
f1s; 2s; 2px; 2py; 2pzg orbitals. We include both the 2s and
2p orbitals because they are of the same energy level.
More accurate basis sets can be formed by adding increased

radial flexibility to the valence orbitals (the orbitals of the
highest occupied energy level), by considering a double-ζ
representation of the valence orbitals. This can be achieved
using split-valence (Ditchfield, Hehre, and Pople, 1971) basis
sets, such as the 6-31G basis. These basis sets can be further
improved by adding additional orbitals with higher angular
momenta, which make the angular part of the wave function
more flexible. These orbitals are called polarization functions,
as they describe the polarization of atomic charge caused by
bonding (for example, the 6-31G* basis).
The small size of these basis sets restricts their applicability

to low accuracy calculations, for which one does not require
the assistance of quantum computing. Nevertheless, it is
important to discuss the basis sets here, as they have been
used extensively in the small experimental demonstrations
possible on today’s quantum hardware.

FIG. 4. The orbitals included in different basis sets for the
dihydrogen molecule. The 1s0 orbital is often written as 2s. The
plots show the radial probability distributions for the true
hydrogenic orbitals, which the basis orbitals approximate.
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2. Correlation-consistent basis sets

Additional accuracy can be obtained by using cc-pVnZ basis
sets (correlation-consistent polarized valence nζ), introduced by
Dunning (1989). These include additional unoccupied virtual
orbitals to recover the correlation energy. The virtual orbitals are
generated from correlated calculations on atoms. The core
orbitals have a single-ζ representation, while the valence orbitals
have an n-ζ representation. The virtual orbitals considered are
polarization functions, with higher angular momenta than the
valence orbitals. The polarization functions are selected by the
size of their contribution to the correlation energy.
For atomic hydrogen in the cc-pVDZ basis (D ¼ double, so

n ¼ 2) the highest occupied energy level (the valence level) is
the first level, so we take a double-ζ representation of the 1s
state, considering f1s; 1s0g orbitals. The 1s0 orbital is often
referred to as a 2s orbital. This is because the additional
function chosen to describe the valence orbital has the same
angular momentum as the ordinary 1s orbital but is more
diffuse, so it resembles a 2s orbital. We then include polari-
zation functions, which have a higher angularmomentumvalue
than the valence functions. In total, there are five basis
functions for cc-pVDZ hydrogen: f1s; 1s0; 2px; 2py; 2pzg.
For lithium in the cc-pVDZ basis, the core orbital is f1sg.
The valence orbitals (which have a double-ζ representation) are
f2s; 2px; 2py; 2pz; 2s0; 2p0

x; 2p0
y; 2p0

zg, and the polarization
functions are f3dzz; 3dxz; 3dyz; 3dxy; 3dx2−y2g, which we write
as f5 × 3dg. This yields 14 basis functions. For lithium in the
cc-pVTZ basis (T ¼ triple, so n ¼ 3), we first include the 14
previously mentioned orbitals. As we consider a triple-ζ
representation of the valence orbitals, we need additional
f2s00; 2p00

x; 2p00
y; 2p00

zg orbitals. We then include additional
polarization functions, f5 × 3d0; 7 × 4fg. This leads to a total
of 30 orbitals.
cc-pVnZ basis sets with higher values of n contain orbitals

that better approximate the true atomic orbitals than those with
lower n values. However, even large (n ¼ 5) basis sets
struggle to exactly represent the true HF orbitals of simple
molecules such as N2 (Helgaker, Jorgensen, and Olsen, 2014).
This limitation can be overcome by measuring the ground
state energy in several different cc-pVnZ bases, then extrapo-
lating to the basis set limit.

3. Plane wave basis sets

While the aforementioned basis sets have a long history of
use in classical computational chemistry (and as a result, early
work in quantum computational chemistry), they are not
necessarily optimal basis sets for calculations performed on
quantum computers. While these basis sets result in an
accurate description of a system with relatively few basis
functions, they also lead to Hamiltonians containing up to
OðM4Þ terms. As we will see in Sec. V, the number of terms in
the Hamiltonian plays a key role in the cost of some quantum
chemistry algorithms. It is therefore worthwhile to question
whether there are basis sets that are more useful for quantum
computational chemistry. Two examples of such bases are the
plane wave and plane wave dual basis sets introduced for
quantum computing by Babbush, Wiebe et al. (2018). The
plane wave basis functions ϕνðrÞ are given by

ϕν ¼
ffiffiffiffi
1

V

r
exp

�
2πiνr
L

�
ð38Þ

for a plane wave with a wave vector corresponding to the vth
harmonic of the computational cell with length L and volume
V. The plane wave dual basis is obtained by taking the discrete
Fourier transform of the plane wave basis states, so they are
like a smooth approximation to a grid (Babbush, Wiebe et al.,
2018). These basis sets diagonalize the kinetic and potential
operators, respectively. This reduces the number of
Hamiltonian terms from OðM4Þ to OðM3Þ in the plane wave
basis, and to OðM2Þ in the plane wave dual basis. This in turn
leads to a reduction in the asymptotic scaling of quantum
chemistry algorithms to find the ground state energy of
molecules and solid-state systems (we discuss the magnitude
of this potential speedup in Sec. V). These plane wave basis
sets are well suited to periodic systems and have a long history
of use in classical density functional theory calculations.
However, to describe molecular systems, approximately 10
to 100 times as many plane wave basis functions as GTOs are
required (Babbush, Wiebe et al., 2018).
A similar reduction in the number of Hamiltonian terms can

be obtained using Gausslet basis sets (White, 2017) or
discontinuous Galerkin sets (McClean, Faulstich et al.,
2019), which both can require fewer functions to accurately
describe individual molecules than plane wave basis sets.
Creating efficient basis sets for quantum computational
chemistry remains an open and fundamental area of research.

E. Reduction of orbitals

It is sometimes the case that certain orbitals are very likely
to be either occupied or virtual in all Slater determinants in the
wave function. As calculating the ground state energy is
essentially a question of distributing electrons among orbitals,
we can simplify our calculation by using this information.
Specifically, we are able to remove spin orbitals from the
calculation if their expected occupation number is close to 0 or
1. Our calculation is reduced to including only the most
important (ambiguously occupied) orbitals. This is known as
performing the calculation in a reduced active space.
In order to determine the occupation of orbitals, we can use

the reduced density matrices (RDMs) of the system. The
expectation value of any one- or two-electron Hermitian
operator O with a state jΨi ¼ P

f αfjfi is given by
(Helgaker, Jorgensen, and Olsen, 2014)

hΨjOjΨi ¼
X
i;j

Oijρ
1
ij þ

X
i;j;k;l

Vijklρ
2
ijkl;

ρ1ij ¼ hΨja†i ajjΨi; ρ2ijkl ¼ hΨja†i a†jakaljΨi; ð39Þ

where ρ1 is the single-particle reduced density matrix
(1-RDM), ρ2 is the two-particle reduced density matrix
(2-RDM), and Oij and Vijkl are defined in a similar way as
the coefficients in Eq. (28). When eliminating orbitals in this
way, the RDMs are defined with respect to a state which is an
approximation of the ground state, which could be the results
of a classically tractable configuration interaction or coupled-
cluster calculation. These RDMs contain all of the information
required to evaluate hOiΨ. From the previous definition, we
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can see that the diagonal elements of ρ1 are the expectation
values of the number operator for the corresponding orbitals.
As ρ1 is a Hermitian operator, we can diagonalize it with a
unitary transform. This is a basis change from the canonical
orbitals to the “natural molecular orbitals.” The diagonal
elements of the basis transformed ρ1 are called the natural
orbital occupation numbers (NOONs).
Spin orbitals with a NOON close to 0 or 1 (compared to the

other NOONs) can be assumed to be empty or occupied,
respectively. Occupied orbitals are typically referred to as core
orbitals, while the empty orbitals are known as virtual orbitals.
As a result, we can reduce our problem by considering only
the ambiguously occupied orbitals. In Sec. VII, we provide an
explicit example of how this method can be used to reduce the
number of orbitals required to simulate lithium hydride in a
STO-3G basis set.
Takeshita et al. (2020) showed how to reintegrate some of

the energy contribution of the virtual orbitals into a quantum
simulation without requiring additional qubits to represent the
virtual orbitals. Their method utilized an increased number of
measurements and classical postprocessing. We describe this
method in more detail in Sec. V.C.1. Takeshita et al. (2020)
also provided a technique to improve the energy estimate from
a calculation by optimizing the active space using orbital
rotations, as is done in MCSCF calculations; see Sec. III.C.2.
We introduced here the concepts in classical computational

chemistry necessary to understand how quantum computers can
be used for chemical simulation. Next we introduce methods
developed to solve chemistry problems using quantum com-
puters. We return to classical computational chemistry methods
in Sec. VIII.A, where we assess the strengths, weaknesses, and
computational limits of the methods introduced here.

IV. QUANTUM COMPUTATIONAL CHEMISTRY
MAPPINGS

Here we describe the techniques developed to enable
quantum computers to represent problems in chemistry. In
Secs. IV.A and IV.B, we introduce methods for encoding
fermions into qubits (in both first and second quantizations).
In Sec. IV.C, we then describe methods which utilize knowl-
edge of the structure of chemistry problems to reduce the
resources required. As discussed in Sec. III.B, the distinguish-
ing feature between first and second quantized methods is
whether antisymmetry is enforced in the wave function
directly (first quantized), or in the behavior of the operators
which act on the wave function (second quantized). As in the
previous section, we consider a system with M spin orbitals

(when discussing basis set approaches) and N electrons. We
summarize the number of qubits required to store the wave
function in each of the representations in Table I.
To make the mappings more clear, we show how the wave

function would look under each mapping for a fictitious
system. When considering a basis set mapping of this system,
we consider spin orbitals jA↑i, jA↓i, jB↑i, jB↓i. We are free to
arbitrarily define the Hartree-Fock state of our fictitious
system and choose it to be both electrons in the jAi orbital.
We are interested in the wave function when the z component
of the spin is zero. When considering a grid-based approach,
for simplicity we consider spinless electrons on a 1D grid. The
two single-particle wave functions considered are approxi-
mately ‘n’ shaped [see Eq. (41)] and ‘u’ shaped [see Eq. (42)].

A. First quantized encoding methods

Here we give an overview of first quantized quantum
simulation, which can be carried out using either a discrete
single-particle basis or grid-based methods.

1. Grid-based methods

As discussed in Sec. III.B.1, the wave function of an N-
particle system can be represented in real space on a
discretized grid of P points per axis, and is given by

jΨi ¼
X

x1;…;xN

ψðx1;…;xNÞAðjx1;…;xNiÞ; ð40Þ

where jxii ¼ jriijσii is a spatial and spin coordinate, jrii¼
jxiijyiijzii; ∀ i∈ f1;2;…;Ng, xi, yi, zi ∈ f0; 1;…; P − 1g,
and σ ∈ f0; 1g. We consider the case where P ¼ 2m, where m
is an arbitrary number which determines the precision of our
simulation. While it is classically intractable to store the
required P3N × 2N ¼ 2ð3mþ1ÞN complex amplitudes for large
quantum systems, it is possible using a quantum computer. Ifwe
write the basis vector jx ¼ 2m − 1i in binary as j11 � � � 11i, we
can see that it requires onlym bits. Anm qubit register can be in
a superposition of 2m possible states. As a result, it requires only
ð3mþ 1ÞN qubits to store the N-electron wave function
described by Eq. (40). Using a grid-based method, rather than
basis sets, means that the Born-Oppenheimer approximation is
not required. As a result, we are able to treat the electrons and
nuclei on an equal footing using grid-basedmethods, which can
be important for systems undergoing reactions.
To make the first quantized grid-based mapping more

understandable, we consider three sample wave functions.
Without loss of generality, we neglect the spin coordinate of
the electrons and consider only a single spatial dimension for
each electron. The first example considers a single spinless
electron on a four point grid. The ‘n’-shaped wave function
considered is given by

jφi ¼ 1ffiffiffi
6

p j00i þ 1ffiffiffi
3

p j01i þ 1ffiffiffi
3

p j10i þ 1ffiffiffi
6

p j11i

¼ 1ffiffiffi
6

p j0i þ 1ffiffiffi
3

p j1i þ 1ffiffiffi
3

p j2i þ 1ffiffiffi
6

p j3i ð41Þ

and can be stored using two qubits. The second example
considers an antisymmetrised product state of two electrons,

TABLE I. The number of qubits required to store the wave function
using the different encoding methods. M is the number of spin
orbitals used in a basis set simulation, N is the number of simulated
particles in the problem, and m ¼ log2ðPÞ, where P is the number of
grid points per axis for a grid-based simulation. The number of qubits
can often be further reduced, as discussed in Sec. IV.C.1.

Mapping Number of qubits

First quantized, basis sets N⌈log2ðMÞ⌉
First quantized, grid-based ð3mþ 1ÞN
Second quantized, basis sets M
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where one electron is in the state jφi, and the other has a ‘u’-
shaped wave function

jϕi ¼ 1ffiffiffi
3

p j0i þ 1ffiffiffi
6

p j1i þ 1ffiffiffi
6

p j2i þ 1ffiffiffi
3

p j3i: ð42Þ

The pair wave function is then given by

jΦi ¼ 1ffiffiffi
2

p ðjφi1jϕi2 − jϕi1jφi2Þ;

¼ 1

6
ffiffiffi
2

p ðj1i1j0i2 − j0i1j1i2 þ j1i1j3i2 − j3i1j1i2
þ j2i1j0i2 − j0i1j2i2 þ j2i1j3i2 − j3i1j2i2Þ; ð43Þ

where the subscripts label the electrons. In general, an
entangled state of two spinless electrons on a P point 1D
grid can be written as

jΨi ¼
XP−1
i¼0

XP−1
j¼0

ψ ijðjii1jji2 − jji1jii2Þ; ð44Þ

where the subscripts again label the electrons.
Grid-based methods were first introduced for the quantum

simulation of general quantum systems byWiesner (1996) and
Zalka (1998). They were then adapted for simulating prob-
lems in chemistry by Lidar and Wang (1999) and Kassal et al.
(2008). Physically relevant states can be prepared using the
algorithms outlined by Ward, Kassal, and Aspuru-Guzik
(2009). Kassal et al. (2008) showed how to time evolve the
wave function under the electronic stucture Hamiltonian. As
we discuss in Sec. V.A, time evolution is a key subroutine of
algorithms that find the ground states of chemical systems.
Finally, the relevant observables can be measured (Kassal
et al., 2008; Whitfield, 2015). A thorough investigation of the
resources required to perform these simulations in a fault-
tolerant manner was carried out by Jones et al. (2012). The
time evolution algorithm of Kassal et al. (2008) was sub-
sequently made more efficient by Kivlichan et al. (2017), who
also performed a more thorough analysis of both gate counts
and errors. We discuss the method used by Kivlichan et al.
(2017) in more detail in Sec. V.A.4.
Although the spatial resolution of grid-based methods

increases exponentially with the number of qubits used, it
is not possible to use this to exponentially improve the
accuracy of the calculation. This is because all known grid-
based algorithms have gate counts that scale polynomially
with the inverse grid spacing. As a result, any attempt to
exponentially increase the simulation accuracy by exponen-
tially reducing the grid spacing causes the gate count to
increase exponentially. Kivlichan et al. (2017) also showed
that there exist systems where the grid spacing must decrease
exponentially with the number of particles in the system to
maintain constant accuracy. Consequently, these systems are
not efficient to simulate using this method. However, they
noted that such pathological cases can also exist for basis set
methods but are typically dealt with efficiently using a clever
choice of basis function.
The simulation of chemical systems using a grid-based

method can require considerably more qubits than in basis set
approaches. For example, it would require 96 logical qubits to

store the position of a single spinless particle to 32 bits of
accuracy using a grid-based approach. This can be contrasted
with basis set approaches, where interesting molecules or
Fermi-Hubbard models could be simulated with around 100
logical qubits, as we discuss in Sec. VIII.B. Consequently,
grid-based approaches are typically considered unsuitable for
near-term quantum computers, which will have relatively few
qubits.

2. Basis set methods

The original algorithm for simulating quantum systems in
the first quantization using a discrete basis was given by
Abrams and Lloyd (1997). If we consider M single-particle
basis functions (such as the molecular orbitals or lattice spin
sites described in Sec. III.B.2), we can enumerate these from 0
to M − 1. We can store these spin orbitals using ⌈log2ðMÞ⌉
qubits, denoting spin orbital 0 as j0 � � � 00i, spin orbital 1 as
j0 � � � 01i, etc., such that spin orbital M − 1 is represented as
j1 � � � 11i. We then use N registers of these ⌈log2ðMÞ⌉ qubits
(one register for each electron) to describe the states of all of
the electrons in the system. As a result, it requiresN⌈log2ðMÞ⌉
qubits to store the wave function.
If we consider a product state generated by each electron

being in a single orbital, we observe that the wave function
does not have the correct antisymmetry. As such, it must be
antisymmetrized. The original approach by Abrams and Lloyd
(1997) accomplished this using O(N2log22ðMÞ) gates and
O(Nlog2ðMÞ) ancilla qubits. This was improved by Berry
et al. (2018), who used a circuit with O(Nlogc2ðNÞlog2ðMÞ)
gates, with a depth of O(logc2ðNÞlog2log2ðMÞ), where c ≥ 1

and depends on the choice of sorting network used, and with
O(Nlog2ðNÞ) ancilla qubits.
We can apply the first quantized basis set mapping to the

fictitious system described previously. We first label each of
the orbitals: jA↑i¼j00i¼j0i, jA↓i¼j01i¼j1i, jB↑i¼j10i¼
j2i, and jB↓i ¼ j11i ¼ j3i. The Hartree-Fock state has both
electrons in the jAi orbitals. An incorrectly symmetrized
HF state would therefore be jA↑i1jA↓i2 ¼ j0i1j1i2, where the
subscripts denote which electron each orbital describes. The
correctly antisymmetrized HF wave function is

jΨHFi ¼
1ffiffiffi
2

p ðj0i1j1i2 − j1i1j0i2Þ: ð45Þ

If we now consider excitations above the HF state, then a
general wave function with sz ¼ 0 that is correctly antisym-
metrized is given by

jΨi ¼ αffiffiffi
2

p ðj0i1j1i2 − j1i1j0i2Þ þ
βffiffiffi
2

p ðj2i1j3i2 − j3i1j2i2Þ

þ γffiffiffi
2

p ðj0i1j3i2 − j3i1j0i2Þ þ
δffiffiffi
2

p ðj1i1j2i2 − j2i1j1i2Þ:

ð46Þ
As we have N ¼ 2 electrons and M ¼ 4 spin orbitals, we can
see that we require only N⌈log2ðMÞ⌉ ¼ 2 × ⌈ log2ð4Þ⌉ ¼ 4
qubits to store the wave function.
The Hamiltonian can be obtained by projecting it onto the

single-particle basis functions
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H ¼
XN
i¼1

XM−1

α;β¼0

hαβjϕαiihϕβji

þ 1

2

XN
i≠j

XM−1

α;β;γ;δ

hαβγδjϕαiijϕβijhϕγjjhϕδji; ð47Þ

where

hαβ ¼
Z

dxϕ�
αðxÞ

�
−
∇2

2
−
X
I

ZI

jr −RIj
�
ϕβðxÞ;

hαβγδ ¼
Z

dx1dx2

ϕ�
αðx1Þϕ�

βðx2Þϕγðx2Þϕδðx1Þ
jr1 − r2j

: ð48Þ

For example, if we denote terms in the first sum of Eq. (47) as
Hi

ϕαϕβ
and consider our model system with spin orbitals

ϕα ¼ fjA↑i, jA↓i, jB↑i, jB↓ig, then the term H1
A↑B↑

(which

acts on electron 1) is given by

hA↑B↑
jA↑ie1hB↑je1

¼ hA↑B↑
j00ie1h10je1

¼ hA↑B↑
ðj0iq3h1jq3Þ ⊗ ðj0iq2h0jq2Þ

¼ hA↑B↑

�
1

2
ðXq3 þ iYq3Þ

�
⊗

�
1

2
ðIq2 þ Zq2Þ

�

¼ hA↑B↑

4
ðXq3Iq2 þ iYq3Iq2 þ Xq3Zq2 þ iYq3Zq2Þ; ð49Þ

where ei denotes electron i, qi denotes the ith qubit (counting
from the right), X, Y, Z, I are the Pauli operators introduced in
Sec. II.A, and hA↑B↑

is given by the first integral in Eq. (48).

There are up to OðN2M4Þ possible two-body terms, each
leading to up to Oð22 log2ðMÞÞ Pauli terms, meaning that the
Hamiltonian can contain up to OðN2M6Þ Pauli terms, which
are up to 2 log2ðMÞ local.
Once the Hamiltonian has been obtained, we can use it to

time evolve the wave function, which maintains the correct
antisymmetry (Abrams and Lloyd, 1997). As mentioned
previously and as is shown in Sec. V.A, time evolution is a
key subroutine of algorithms to find the ground state of
chemical systems.

B. Second quantized basis set encoding methods

To simulate chemical systems in the second quantized
representation on a quantum computer, we need to map from
operators that act on indistinguishable fermions to operators
acting on distinguishable qubits. An encoding method is a
map from the fermionic Fock space to the Hilbert space of
qubits such that every fermionic state can be represented by a
qubit state. There are multiple methods of encoding, which we
describe next. In this section, we discuss only second
quantized basis set methods, as second quantized grid-based
methods have been discussed only briefly in the context of
quantum computational chemistry; see Babbush, Wiebe et al.
(2018), Appendix A.

1. Jordan-Wigner encoding

When using the Jordan-Wigner (JW) encoding (Jordan and
Wigner, 1928), we store the occupation number of a spin
orbital in the j0i or j1i state of a qubit (unoccupied and
occupied, respectively). More formally,

jfM−1; fM−2;…; f0i → jqM−1; qM−2;…; q0i;
qp ¼ fp ∈ f0; 1g: ð50Þ

The fermionic creation and annihilation operators increase or
decrease the occupation number of a spin orbital by 1, and
they also introduce a multiplicative phase factor; see Eq. (25).
The qubit mappings of the operators preserve these features
and are given by

ap ¼ Qp ⊗ Zp−1 ⊗ � � � ⊗ Z0;

a†p ¼ Q†
p ⊗ Zp−1 ⊗ � � � ⊗ Z0; ð51Þ

where Q¼j0ih1j¼ð1=2ÞðXþiYÞ and Q†¼j1ih0j¼ð1=2ÞðX−iYÞ.
The Q or Q† operator changes the occupation number of the
target spin orbital, while the string of Z operators recovers the

exchange phase factor ð−1Þ
P

p−1
i¼0

fi. We refer to the action of
the Z operators as “computing the parity of the state.” Using
the JWencoding, the second quantized fermionic Hamiltonian
is mapped to a linear combination of products of single-qubit
Pauli operators

H ¼
X
j

hjPj ¼
X
j

hj
Y
i

σji ; ð52Þ

where hj is a real scalar coefficient, σji represents one of the
operators I, X, Y or Z, i denotes which qubit the operator acts
on, and j denotes the term in the Hamiltonian. Each term Pj in
the Hamiltonian is typically referred to as a Pauli string, and
the number of nonidentity single-qubit Pauli operators in a
given string is called its Pauli weight. All of the second
quantized encoding methods discussed here produce
Hamiltonians of this form. A sample JW mapping is shown
in Table. II. In order to further clarify the second quantized JW
encoding, we apply it to the fictitious system described earlier.
As stated previously, we assume that the Hartree-Fock state
for this system has both electrons occupying the jAi orbitals.
We store the occupations of the spin orbitals jA↑i, jA↓i, jB↑i,
jB↓i, which we order as jfB↓

; fB↑
; fA↓

; fA↑
i, with fi ¼ 0, 1.

The Hartree-Fock state is then given by

jΨHFi ¼ j0011i: ð53Þ

This state corresponds to the antisymmetrized Slater deter-
minant shown in Eq. (45). The sz ¼ 0 wave function is then

jΨi ¼ αj0011i þ βj1100i þ γj1001i þ δj0110i: ð54Þ

This state can be compared with the first quantized basis set
mapping shown in Eq. (46). Working in the JW basis, it is easy
to see the advantage that quantum computers have over their
classical counterparts for chemistry problems. As discussed in
Sec. III.B.2, the full configuration interaction wave function
contains a number of determinants that scales exponentially
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with the number of electrons as roughly OðMNÞ. As such, it
requires an amount of memory that scales exponentially with
the system size. However, using a quantum computer, we can
instead store the FCI wave function using only M qubits
(Aspuru-Guzik et al., 2005). A register ofM qubits can be in a
superposition of 2M computational basis states. In the JW
basis, every Slater determinant required for the FCI wave
function can be written as one of these computational basis
states. As such, quantum computers can efficiently store the
FCI wave function. This is also true for the other second
quantized encodings.
The primary advantage of the JW encoding is its simplicity.

However, while the occupation of a spin orbital is stored
locally, the parity is stored nonlocally. The string of Z
operators means that a fermionic operator mapped to qubits
generally has a weight of OðMÞ Pauli operators, each acting
on a different qubit.
An alternative to the JW mapping that has not yet found

particular use within the field but is worth being aware of is
parity encoding. This approach stores the parity locally and
the occupation number nonlocally. We use the pth qubit to
store the parity of the first p modes,

jfM−1; fM−2;…; f0i → jqM−1; qM−2;…; q0i;

qp ¼
�Xp
i¼0

fi

�
ðmod 2Þ: ð55Þ

The transformed creation and annihilation operators were
described by Seeley, Richard, and Love (2012). An example
of the parity mapping is shown in Table. II.

2. Bravyi-Kitaev encoding

The Bravyi-Kitaev (BK) encoding (Bravyi and Kitaev,
2002) is a midway point between the JW and parity encoding
methods in that it compromises on the locality of occupation
number and parity information. The orbitals store partial sums
of occupation numbers. The occupation numbers included in
each partial sum are defined by the BK matrix βpq.

jfM−1; fM−2;…; f0i → jqM−1; qM−2;…; q0i;

qp ¼
�Xp
q¼0

βpqfq

�
ðmod 2Þ: ð56Þ

It is defined recursively (Bravyi and Kitaev, 2002; Seeley,
Richard, and Love, 2012) via

β1 ¼ ½1�;

β2xþ1 ¼
�
β2x 0

A β2x

�
; ð57Þ

where A is a ð2x × 2xÞ matrix of zeros, with the bottom row
filled with ones, and 0 is a ð2x × 2xÞ matrix of zeros. As an
example, when M ¼ 4 (x ¼ 1), the matrix βpq is

β4 ¼

0
BBB@

1 0 0 0

1 1 0 0

0 0 1 0

1 1 1 1

1
CCCA: ð58Þ

When the number of qubits is not a power of 2, the BK
encoding is carried out by creating the BK matrix for the next
largest power of 2, and by using only the first M rows. The
qubit operators for the BK encoding are considerably more
complicated than those in the JWor parity encodings. We refer
to Table II for an example. Seeley, Richard, and Love (2012)
and Tranter et al. (2015) provided a more detailed discussion of
the BK encoding. Applying the BK mapping to a fermionic
operator results in a qubit operator with a Pauli weight of
Oðlog2 MÞ. A thorough comparison of the BK and JW
mappings was performed by Tranter et al. (2018) for 86
molecular systems. They found that the BK transform was
at least as efficient, in general, as the JW transform when
finding the ground states of the molecular systems. In many
cases, using the BK transform made the calculations consid-
erably more efficient.
Another version of the BK encoding also exists in the

literature. This is referred to as the BK-tree method, as it takes
its inspiration from a classical data structure known as a
Fenwick tree (Havlíček, Troyer, and Whitfield, 2017). We
explicitly show how to use this mapping with molecules in
Sec. VII. As with the standard BK mapping, the BK-tree
encoding balances how it stores occupation and parity infor-
mation. As a result, it too requires only Oðlog2 MÞ qubit
operations, in general, to realize a fermionic operator. However,
there are subtle differences between the two mappings. It has
been noted that the BK tree mapping produces qubit operators

TABLE II. Example mappings of a fermionic Fock state and its fermionic operators onto the corresponding qubit state, and qubit operators. n̂i
is the fermionic number operator.

Fermion Jordan-Wigner Parity Bravyi-Kitaev

aj0001i þ bj0010i aj0001i þ bj0010i aj1111i þ bj1110i aj1011i þ bj1010i
þcj0100i þ dj1000i þcj0100i þ dj1000i þcj1100i þ dj1000i þcj1100i þ dj1000i
a0 Q0 X3X2X1Q0 X3X1Q0

a1 Q1Z0 X3X2ðQ1j0ih0j0 −Q†
1j1ih1j0Þ X3ðQ1j0ih0j0 −Q†

1j1ih1j0Þ
a2 Q2Z1Z0 X3ðQ2j0ih0j1 −Q†

2j1ih1j1Þ X3Q2Z1

a3 Q3Z2Z1Z0 Q3j0ih0j2 −Q†
3j1ih1j2 1=2½Q3ð1þ Z2Z1Þ −Q†

3ð1 − Z2Z1Þ�
n̂i ¼ a†i ai j1ih1ji j1ih1ji¼0,

1=2ð1 − ZiZi−1Þi¼1;2;3

j1ih1ji¼0;2, 1=2ð1 − Z1Z0Þi¼1,
1=2ð1 − Z3Z2Z1Þi¼3
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with a greater weight than the standard BK mapping (Sung,
2018). This would suggest that it is less suitable for near-term
quantum computation. However, the BK tree mapping also
possesses advantages over the standard BK encoding. The BK
tree mapping is uniquely defined even when the number of
orbitals M is not a power of 2. As a result, when using the BK
tree mapping, we are always able to use the qubit reduction by
symmetry technique, which we discuss in Sec. IV.C. We
observe that it is possible to use this technique with the
standard BK mapping only when the number of orbitals is a
power of 2. As a result, it is important to consider the benefits of
both mappings before choosing which one to use. A further
generalization of the BK tree mapping is to consider ternary
trees (Jiang et al., 2019), which leads to asymptotic reductions
in the Pauli weight of Hamiltonian terms.

3. Locality preserving mappings

Mappings that endow the qubit operators with the same
locality as the underlying fermionic Hamiltonian have been
developed. These mappings typically require more qubits than
the JW encoding. Verstraete and Cirac (2005) developed a
scheme to eliminate the strings of Z operators introduced by the
JW transform, resulting in qubit operators with the same
locality as the fermionic operators. This is achieved by doubling
the number of qubits. Similar ideas were introduced by Ball
(2005) and Farrelly and Short (2014). These ideas were later
generalized and expanded upon by Whitfield, Havlíček, and
Troyer (2016) and Steudtner and Wehner (2019).
There is also another variant of the BK transform, known as

the Bravyi-Kitaev superfast transform (BKSF) (Bravyi and
Kitaev, 2002). This mapping first represents each spin orbital
by a vertex on a graph, and each interaction term in the
Hamiltonian as an edge on the graph. Qubits are then
associated with the edges. In general, a graph will have more
edges than vertices, so this increases the number of qubits
required. However, the number of gates required to implement
a fermionic operator will scale as OðdÞ, where d is the degree
of the graph. Assuming fairly local interactions for a molecule,
the degree of the graph is less than the number of vertices. As a
result, the BKSF transform may require fewer gates than the
JW mapping. We refer the interested reader to Setia and
Whitfield (2018) and Chien et al. (2019) for a detailed
discussion of the BKSF transform and a comparison to the
JW transform. The BKSF transform has been generalized
(Setia et al., 2019) to either (1) reduce the weight of each of
the Pauli operators in the Hamiltonian to Oðlog dÞ, or (2)
provide some protection from errors. A related mapping,
known as the Majorana loop stabilizer code, was introduced
by Jiang, McClean et al. (2019). It also preserves the locality
of the underlying model and offers some protection from
errors. We discuss this error detecting or correcting property in
more detail in Sec. VI.D.

C. Resource reduction

Here we focus on general techniques that can be used to
reduce the resources required for quantum chemistry simu-
lation. In particular, we focus on methods to remove qubits
from the simulation using symmetries, and low-rank decom-
position methods for reducing the cost of quantum circuits.

1. Hamiltonian reduction

We focus on techniques to reduce the number of qubits
required for the second quantized approach using Z2 sym-
metries. More general qubit reduction schemes have also been
developed (Bravyi et al., 2017), but these have yet to be
numerically or experimentally investigated.
In the JW, parity, and BK encoding methods, the number of

qubits is equal to the number of spin orbitals considered M.
However, as the Hamiltonian possesses symmetries, the wave
function can be stored in a smaller Hilbert space. Here we
describe the method by Bravyi et al. (2017), which utilizes
two such symmetries: conservation of electron number and
spin. This method enables the systematic reduction of two
qubits when using the parity, BK (with the caveat that the
number of orbitals is a power of 2), or BK-tree encoding. For
a system with M spin orbitals, we can arrange the orbitals
such that the first M=2 spin orbitals describe spin-up states,
and the last M=2 spin orbitals describe spin-down states.
For nonrelativistic molecules, the total number of electrons
and the total sz value are conserved. Examining the BK matrix
presented in Eq. (58), we see that every element in the final
row is 1, and the first half of the elements in theM=2th row are
also 1s. Consequently, the final element of the vector encoded
by this matrix qM−1 is equal to the number of electrons (mod
2). Similarly, theM=2th element in the encoded vector qM=2−1
is equal to the number of spin-up electrons (mod 2). As the
electron number and total sz value are conserved by the
Hamiltonian, these qubits are acted on only by the identity or
Pauli Z operators. We can replace these operators with their
corresponding eigenvalues:þ1 for the identity,þ1 for ZM−1 if
the total number of electrons is even, −1 for ZM−1 if the total
number of electrons is odd, þ1 for ZM=2−1 if the number of
spin-up electrons is even, and −1 for ZM=2−1 if the number of
spin-up electrons is odd. The Hamiltonian then acts only
on M − 2 qubits, so two qubits can be removed from the
simulation. Exactly the same method can be used for the parity
and BK-tree encodings. We explicity show how this method
can be used to remove two qubits from chemical Hamiltonians
in Sec. VII. We remark that, while this transformation leaves
the ground state of the system unchanged, it does alter the
excited states that can be found. In particular, we are restricted
to finding those states with an electron number and total sz
value equal to the values determined as described previously.
These techniques have been extended by Setia et al. (2019) to
include molecular point group symmetries.

2. Low-rank decomposition techniques

As discussed in Sec. III.A, the electronic structure
Hamiltonian in the canonical molecular orbital basis contains
OðM4Þ terms, where M is the number of spin orbitals in the
molecule. This means that many quantum circuits implement-
ing time evolution under the molecular Hamiltonian naively
scale in a similar way. As we discuss in Secs. V.A and V.B,
such circuits are a key component of many quantum algo-
rithms. Motta et al. (2018) utilized a low-rank decomposition
of the Hamiltonian in a Gaussian orbital basis to reduce the
cost of time evolution. This decomposition is made possible
by the structure present in the molecular Hamiltonian, which
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arises from the pairwise nature of the electron-electron
interactions. They leveraged a doubly factorized Cholesky
decomposition of the Hamiltonian with an efficient quantum
circuit implementation. By carefully truncating the number of
terms in the decomposition, they were able to reduce the cost
of time evolution with a controllable error. Similar decom-
positions were also introduced for other quantum circuits of
interest. We discuss the impact of these cost reductions in
more detail in Secs. V.A and V.B.
This low-rank decomposition technique was also used by

Huggins, McClean et al. (2019) to reduce the number of
circuit repetitions required for variational algorithms to find
the ground state energy of chemical systems. We discuss this
technique in more detail in Sec. V.B.2.
We note that most of the work to date in quantum

computational chemistry has focused on second quantized
basis set methods. While first quantized basis set simulations
require asymptotically fewer qubits than second quantized
basis set simulations, for the smallest simulatable systems
(such as small molecules in minimal basis sets), second
quantized basis set methods require either fewer qubits or
shorter gate sequences. This has caused second quantized
basis set methods to become the de facto option for exper-
imental demonstrations of quantum computational chemistry
algorithms due to the limits of current quantum hardware.

V. QUANTUM COMPUTATIONAL CHEMISTRY
ALGORITHMS

Here we focus on methods used to solve the electronic
structure problem with a quantum computer. We describe the
quantum phase estimation algorithm and related methods in
Sec. V.A. We then discuss the variational quantum eigensolver
(VQE) in Sec. V.B. Both of these sections are concerned with
finding the ground state energies of chemical systems. We
conclude this section with a discussion of methods that can be
used to find excited states in Sec. V.C.
As mentioned in Sec. I, the techniques developed for

solving the electronic structure problem can often be gener-
alized to solve other problems in computational chemistry. For
example, O’Brien et al. (2019) showed how to calculate the
energy derivatives of molecular Hamiltonians (which can be
used for geometry optimization and transition state discovery)
by using algorithms based on phase estimation (Sec. V.A), or
based on a linear response quantum subspace expansion
(Sec. V.C.1). The same properties can also be calculated
using the method of Mitarai, Nakagawa, and Mizukami
(2019), who leveraged the variational quantum eigensolver
(Sec. V.B) with analytic gradient measurements (Sec. V.B.3),
and by Parrish, Hohenstein et al. (2019b), who used the
contraction VQE method (Sec. V.C.3).
It can be argued that the VQE and phase estimation, as

presented here, represent near-term and long-term methods,
respectively, for solving chemistry problems with a quantum
computer. However, in reality, aspects of each algorithm can
be incorporated into the other, creating new methods (Yung
et al., 2015; Wang, Higgott, and Brierley, 2019) that occupy
the intermediate region in the quantum computational chem-
istry time line. Algorithms proposed to find the ground state
using methods that differ from both phase estimation and the

VQE have included techniques based on time series estima-
tion (Somma et al., 2002; O’Brien, Tarasinski, and Terhal,
2019; Somma, 2019) and the method by Ge, Tura, and
Cirac (2017).

A. Quantum phase estimation

1. Implementation

Phase estimation (Kitaev, 1995) can be used to find the
lowest energy eigenstate jE0i and excited states jEi>0i of a
physical Hamiltonian (Abrams and Lloyd, 1999). In the case
of quantum computational chemistry, this qubit Hamiltonian
can encode a fermionic Hamiltonian, obtained using the
methods discussed in Sec. IV.
The canonical phase estimation algorithm is described as

follows (Nielsen and Chuang, 2002) and is shown in Fig. 5.
(1) We initialize the qubit register in state jΨi, which has

nonzero overlap with the true FCI target eigenstate
state of the system. We require an additional register of
ω ancilla qubits. We can expand the state jΨi in terms
of energy eigenstates of the Hamiltonian, writing that
jΨi ¼ P

i cijEii, where ci are complex coefficients.
(2) We apply a Hadamard gate to each ancilla qubit,

placing the ancilla register in the superposition
ð1= ffiffiffiffiffi

2ω
p ÞPx jxi, where x are all possible bit strings

that can be constructed from ω bits. We then apply the
controlled gates shown in Fig. 5:

1ffiffiffiffiffi
2ω

p
X
i

X
x

jxicijEii→
1ffiffiffiffiffi
2ω

p
X
i

X
x

e−2πiEixcijxijEii:

ð59Þ

(3) We apply the inverse quantum Fourier transform to the
ancilla qubits in order to learn the phase, which
encodes the information about the energy eigenvalue:

1ffiffiffiffiffi
2ω

p
X
i

X
x

e−2πiEixcijxijEii⟶
QFT−1X

i

cijbinðEiÞijEii:

ð60Þ

(4) We measure the ancilla qubits in the Z basis, which
gives an estimate of the energy eigenvalue as a binary
bit string binðEiÞwith probability jcij2. This procedure

FIG. 5. The canonical quantum phase estimation circuit with
three ancilla qubits. When the ancilla qubits are in state jxi, a
control rotation e−2πiHx is applied to the target state jΨi. QFT
denotes the quantum Fourier transform (Coppersmith, 1994;
Shor, 1994). By measuring the ancilla qubits in the computational
basis, they collapse to an eigenvalue of H, and the register qubits
collapse to an estimate of the corresponding energy eigenstate.
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collapses the main register into the corresponding
energy eigenstate jEii.

The number of ancilla qubits ω required for this method of
phase estimation is determined by the desired success prob-
ability and precision in the energy estimate. Nielsen and
Chuang (2002) showed that to obtain a binary estimate of the
energy, precise to n bits with success probability p, requires

ω ¼ nþ ⌈log2ð2þ 1=2pÞ⌉ ð61Þ

ancilla qubits. Phase estimation has been experimentally
demonstrated in a variety of quantum architectures (Du et al.,
2010; Lanyon et al., 2010; Li et al., 2011; Wang et al., 2015;
O’Malley et al., 2016; Paesani et al., 2017; Santagati
et al., 2018).
To realize the standard phase estimation algorithm described

here, we sequentially need to time evolve the main register
under the Hamiltonian H for times t0¼2π;t1¼
4π;…;tω−1¼2ωπ. The total coherent time evolution T is then
given approximately by T ¼ 2ωþ1π. Using Eq. (61), for a
success probability of p ¼ 0.5, we require ω ¼ nþ 2 ancilla
qubits. The total evolution time can be related to the binary
precision ϵPE ¼ 1=2n to show that T ¼ 8π=ϵPE. Given that our
success probability for this estimate is p ¼ 0.5, we expect to
have to repeat the procedure twice to obtain a good estimate
of the ground state. This is equivalent to a total of 16π=ϵPE calls
to the unitary e−iH (Reiher et al., 2017). In order to account for
the fact that c0 < 1, we must multiply the number of repetitions
of phase estimation by 1=jc0j2, on average, to obtain the
ground state.
The basic phase estimation algorithm described previously

can be improved in many ways. It can be modified to use only
a single ancilla qubit, which is used to measure each bit in the
energy eigenvalue sequentially (Kitaev, 1995; Aspuru-Guzik
et al., 2005). It can also be made more efficient (Svore,
Hastings, and Freedman, 2013; Kivlichan, Granade, and
Wiebe, 2019), parallelized (Knill, Ortiz, and Somma, 2007;
Reiher et al., 2017), or made more resilient to noise (O’Brien,
Tarasinski, and Terhal, 2019). We can further improve upon
the asymptotic scaling of the phase estimation algorithm by
using classically obtainable knowledge about the energy gap
between the ground and first excited state (Berry et al., 2018).
The ultimate limit for the number of calls required to e−iH is
π=ϵPE (for a completely general Hamiltonian H), which is
approximately obtained using Bayesian approaches (Higgins
et al., 2007; Berry et al., 2009; Wiebe and Granade, 2016;
Paesani et al., 2017), or entanglement-based approaches
(Babbush, Gidney et al., 2018). For the case of a molecular
Hamiltonian, Reiher et al. (2017) showed that a number of
calls scaling as π=2ϵPE suffice.
The finite precision ϵPE obtained in E0 is not the only source

of error in the algorithm. There are also errors arising from
imperfect implementation of the controlled unitary evolutions
applied to the main register, which we denote as ϵU. This error
can arise, for example, from a decomposition of e−iH into
arbitrary single- and two-qubit gates, as occurs during a
Trotter decomposition. There are also errors arising from the
construction of arbitrary gates from a discrete set of gates,

such as approximations of single-qubit rotations from multiple
T and Hadamard gates. These are typically referred to as
circuit synthesis errors ϵCS and can be quantified using
techniques such as the Solovay-Kitaev theorem (Dawson
and Nielsen, 2005). For the specific case of a Trotter
decomposition of e−iH, Reiher et al. (2017) showed that
the error in the energy eigenvalue obtained from phase
estimation is upper bounded by ϵPE þ ϵU þ ϵCS. In general,
it is difficult to optimally allocate resources between these
error budgets in order to minimize the total error (Reiher et al.,
2017; Kivlichan et al., 2019).
Regardless of which version of phase estimation is used,

there are two universal features. First, it is necessary for
the register to initially be in a state with a nonzero overlap
with the target eigenstate. Second, we must have a way to
coherently implement a unitary operator defined by an
efficiently invertible function of the Hamiltonian. This unitary
operator is often (but not always) chosen to be the time
evolution operator e−iH used previously. We discuss tech-
niques to satisfy both of these requirements in Secs. V.A.2
and V.A.3.

2. State preparation

Initializing the qubit register in a state which has a
sufficiently large overlap with the target eigenstate (typically
the ground state) is a nontrivial problem. This is important
because a randomly chosen state would have an exponentially
vanishing probability of collapsing to the desired ground state
as the system size increases. McClean et al. (2014) showed
that phase estimation can become exponentially costly by
considering the imperfect preparation of eigenstates of non-
interacting subsystems. This highlights the necessity of
developing state preparation routines which result in, at worst,
a polynomially decreasing overlap with the FCI ground state
as the system size increases. Several techniques have been
proposed for state preparation. One approach is to prepare
reference states obtained from classically tractable calcula-
tions, such as configuration interaction states (Wang, Ashhab,
and Nori, 2009; Babbush, McClean et al., 2015), open-shell
spin symmetry-adapted states (Sugisaki et al., 2016, 2018),
multireference states (Sugisaki et al., 2019), and states
produced by adaptive sampling configuration interaction
methods (Tubman et al., 2018). Alternatively, we can use
the variational methods discussed in Sec. V.B (Yung et al.,
2015), quantum algorithms for imaginary time evolution
(Motta et al., 2020), or adiabatic state preparation (Aspuru-
Guzik et al., 2005). We focus here on adiabatic state
preparation, an approach inspired by the adiabatic model of
quantum computation (Farhi et al., 2000).
For any Hamiltonian Hs, we can prepare a state jΨi that is

close to its ground state via adiabatic state preparation (Albash
and Lidar, 2018). To do so, we first start with a simple
Hamiltonian H0 and prepare its ground state. We then time
evolve the system under a Hamiltonian that changes slowly
from H0 to Hs, thus preparing a state that is close to the
ground state of Hs. The efficiency of adiabatic state pre-
paration (ASP) depends on the gap between the ground state
and the first excited state along the path between H0 and Hs.
For chemical systems, ASP may be achieved by initializing
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the system in the ground state of the Hartree-Fock
Hamiltonian (H0), and interpolating between the initial and
final Hamiltonians using an annealing schedule such as
HðtÞ ¼ ð1 − t=TÞH0 þ ðt=TÞHs, where t is the time and T
is the maximum desired simulation time (Aspuru-Guzik et al.,
2005). Alternative paths that may be more efficient for
problems of chemical interest have also been investigated
(Veis and Pittner, 2014; Wecker et al., 2015). The maximum
annealing time T is given by

T ≈ O
�

M4

mintΔðtÞ
�
; ð62Þ

where ΔðtÞ ¼ E1ðtÞ − E0ðtÞ and M is the number of spin
orbitals in the molecule. Reiher et al. (2017) noted that the true
scaling may be closer to O(M2=mintΔðtÞ). It is difficult to
know the size of the gap along the entire adiabatic path
a priori, which restricts our ability to perform ASP in the
minimum amount of time. One possible method for reducing
the annealing time required is to introduce additional “driv-
ing” Hamiltonians, as was numerically investigated by
Matsuura et al. (2018). Although Eq. (62) does not explicitly
depend on the initial state used, it is intuitively preferable to
start in a state that has good overlap with the target ground
state. We would expect the annealing path to be shorter, and
we may be more confident that the gap between the ground
and excited states does not shrink exponentially. This view is
supported by the numerical simulations of Veis and Pittner
(2014), who found that annealing times for methylene (CH2)
could be reduced by up to 4 orders of magnitude by using an
initial state with larger overlap with the true ground state. We
note, however, that if an initial state with sufficiently large
overlap with the ground state is available, we may be able to
forgo adiabatic state preparation entirely and instead carry out
phase estimation directly on that initial state. As discussed
previously, phase estimation requires only a non-negligible
overlap with the target ground state.
There are a variety of methods that can be used to evolve the

system under this time-dependent Hamiltonian, which are
discussed here.

3. Hamiltonian simulation

As discussed, both the canonical phase estimation algo-
rithm and adiabatic state preparation require implementation
of the time evolution operator e−iHt, where H may or may not
be time dependent. There are several ways to do this, each
with its own advantages and disadvantages.

a. Product formulas

The most simple method for time evolution, Trotterization,
is described in Sec. II.B. If a time-independent Hamiltonian H
can be decomposed as H ¼ P

i hi, where hi are local
Hamiltonians, then a first order Lie-Trotter-Suzuki approxi-
mation (Trotter, 1959) of the time evolution is

e−iHt ¼
�Y

i

e−ihit=S
�

S
þOðt2=SÞ: ð63Þ

This approach is also referred to as the “product formula”
method. In practice, to achieve accuracy ε, the number of
Trotter steps S ¼ Oðt2=εÞ should be large in order to suppress
the errors in the approximation. This is effectively a strobo-
scopic evolution under time evolution operators correspond-
ing to each of the terms in the Hamiltonian. It is also possible
to use higher order product formulas (Suzuki, 1976; Berry
et al., 2007; Dür, Bremner, and Briegel, 2008), which scale
better with respect to the simulation error than the first order
method. Randomization procedures (such as randomly order-
ing the terms in the Trotter sequence or stochastically
choosing which terms to include in the Hamiltonian) have
been shown to improve the accuracy obtained using product
formulas (Campbell, 2019; Childs, Ostrander, and Su, 2019;
Ouyang, White, and Campbell, 2020).
Product formulas can also be used to simulate dynamics

under a time-dependent HamiltonianHðtÞ. Wiebe et al. (2011)
showed that the accuracy of such simulations depends on the
derivatives of the Hamiltonian [although this dependence may
be alleviated by incorporating randomization procedures
(Poulin et al., 2011)].
As discussed earlier, the error in the simulation is deter-

mined by the Trotter formula used, the number of Trotter
steps, and the ordering of the terms. It is important to note that
the gate counts of all product formula-based methods scale
as O(polyð1=ϵÞ). Endo, Zhao et al. (2019) investigated
using extrapolation to suppress the error arising from using
a finite number of Trotter steps, as is often done in classical
computations.

b. Advanced Hamiltonian simulation methods

Alternative methods that may realize the time evolution
operator more efficiently than Trotterization have been intro-
duced, including quantum-walk-based methods (Childs and
Kothari, 2011; Berry, Childs, and Kothari, 2015), multi-
product formulas (Childs and Wiebe, 2012; Low,
Kliuchnikov, and Wiebe, 2019), Taylor series expansions
(Berry and Childs, 2012; Berry et al., 2015; Berry, Childs,
and Kothari, 2015) or Chebyshev polynomial approximations
(Subramanian, Brierley, and Jozsa, 2018), and qubitization
(Low, 2019; Low and Chuang, 2019) in conjunction with
quantum signal processing (Low, Yoder, and Chuang, 2016;
Low and Chuang, 2017). The cost of these methods depends
on how the Hamiltonian is accessed or “queried” during the
computation. One approach is the “linear combinations of
unitaries” (LCU) query model, which decomposes the
Hamiltonian or time evolution operator into a linear combi-
nation of unitary operators that are then applied in super-
position using oracle circuits, which must be explicitly
constructed for a given problem. As a linear combination
of unitaries is itself not necessarily unitary, these approaches
may require additional techniques such as amplitude ampli-
fication (Berry et al., 2014) to maintain a high probability of
success. Alternatively, we can use oracles to access the
nonzero entries of Hamiltonians that are d sparse; i.e., they
have at most d nonzero elements in each row and column,
where d is a polylogarithmic function of the matrix dimension.
In addition to the product formula approach, the Taylor

series and quantum signal processing with qubitization

McArdle et al.: Quantum computational chemistry

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015003-24



techniques have found the most use to date in quantum
computational chemistry algorithms. Both of the aforemen-
tioned query models can be used for the Taylor series and
quantum signal processing with qubitization approaches. The
Taylor series and quantum signal processing with qubitization
algorithms scale exponentially better with regard to the
accuracy of the simulation than product formula-based
methods.
The Taylor series method expands the time evolution

operator as a truncated Taylor series, where each term in
the expansion is unitary. We then use the aforementioned LCU
oracles to implement these unitary operators in superposition,
thus realizing time evolution under the Hamiltonian. Variants
of the Taylor series method for simulating time-dependent
Hamiltonians have also been developed (Kieferova, Scherer,
and Berry, 2019; Berry, Childs et al., 2019). Qubitization
provides another way of accessing the Hamiltonian during
quantum computation using a “block encoding” of the
Hamiltonian. Qubitization naturally implements a quantum
walk operator with eigenvalues e−i arcsinðEk=αÞ, where Ek is the
kth eigenvalue of the Hamiltonian H, and α is a normalization
factor. We can then use quantum signal processing to invert
the arcsin function, recovering time evolution with the desired
eigenvalues e−iEkt. We refer the interested reader to Childs
et al. (2018) and the review of Cao et al. (2019) for a summary
of recent progress in Hamiltonian simulation and a compari-
son of the different methods.

4. Phase estimation for chemistry simulation

Both product formulas and more advanced methods of
Hamiltonian simulation have been applied to solve problems
in quantum computational chemistry. We discuss the asymp-
totic results obtained using these different methods for four
classes of problems: molecules in Gaussian orbital basis sets,
systems treated with plane wave basis sets, the Fermi-Hubbard
model, and first quantized grid-based simulations. We discuss
the explicit gate and qubit counts required to implement some
of these methods in Sec. VIII.B. Once again, the number of
spin orbitals in the molecule or spin sites in a lattice is given
byM, and the number of electrons is given by N. We also refer
the interested reader to the tables produced by Babbush,
Gidney et al. (2018) and Babbush, Wiebe et al. (2018), which
chart developments in the asymptotic scaling of phase-
estimation-based approaches to quantum computational
chemistry.

a. Gaussian orbital basis sets

As discussed in Sec. III.D, Gaussian orbitals can be used to
compactly describe single molecules. They result in a second
quantized Hamiltonian with OðM4Þ terms. The overall cost of
phase estimation using product formulas depends on the cost
of implementing a single Trotter step (which can be influenced
by the number of terms in the Hamiltonian), the number of
Trotter steps required to achieve the desired accuracy, and the
accuracy desired (typically taken as a constant value, such as
to within chemical accuracy).
Early works on finding the ground state of molecular

systems in Gaussian basis sets used first and second order
product formalas (Aspuru-Guzik et al., 2005; Whitfield,

Biamonte, and Aspuru-Guzik, 2011; Wecker et al., 2014;
Babbush, McClean et al., 2015; Hastings et al., 2015; Poulin
et al., 2015; Reiher et al., 2017). A series of improvements
throughout these papers reduced the scaling of phase estima-
tion for molecules from OðM11Þ (Wecker et al., 2014) to,
empirically, OðM5Þ (Babbush, McClean et al., 2015). A
notable feature of these Trotter-based simulations is that
rigorous bounds on the Trotter error are believed to be loose
by several orders of magnitude, which may impact the scaling
of these approaches. We discuss this in more detail in
Sec. V.A.5.
As would be expected, the introduction of more advanced

Hamiltonian simulation algorithms led to a reduction in the
asymptotic scaling of chemistry algorithms. Using the Taylor
series method, algorithms were developed which scale as
OðM5Þ (Babbush et al., 2016) and OðN2M3Þ (Babbush et al.,
2017) for molecules in Gaussian basis sets. The first result
uses the second quantized representation of the Hamiltonian.
The second, more efficient result is obtained by constructing
oracle circuits that access the nonzero elements of the
Hamiltonian in a basis of Slater determinants, known as
the CI matrix (Toloui and Love, 2013). The Hamiltonian has a
sparsity of OðN2M2Þ in this basis. These algorithms calcu-
lated the molecular integrals on the quantum computer,
exploiting an analogy between the discretization of space
in Riemannian integration and the discretization of time in
time-dependent Hamiltonian simulation methods (Babbush
et al., 2016). Techniques to further increase the sparsity of the
problem, such as using symmetries present in the electronic
structure Hamiltonian, have also been proposed; however,
these have yet to be thoroughly investigated in the context of
Hamiltonian simulation (Whitfield, 2013; Gulania and
Whitfield, 2019).
As discussed previously, qubitization (Low, 2019; Low and

Chuang, 2019) is a technique originally introduced in con-
junction with quantum signal processing (Low, Yoder, and
Chuang, 2016, 2017) to approximate the unitary e−iHt in order
to perform time evolution of a given state. However, it was
later noted that, for certain functions fðHÞ, qubitization could
be used on its own to directly implement the unitary e−ifðHÞt

without approximation errors (Berry et al., 2018; Poulin et al.,
2018). One can then perform phase estimation on this unitary
to obtain the energy eigenvalues of the Hamiltonian provided
that fðHÞ is efficiently invertible. This technique was used by
Berry, Gidney et al. (2019), in conjunction with a low-rank
decomposition of the Hamiltonian (Motta et al., 2018), which
is described in Sec. IV.C.2. This produced an algorithm with a
scaling ofOðM1.5λÞ, where λ is the 1 norm of the Hamiltonian.
While rigorous bounds on λ in a Gaussian basis are not
known, Berry, Gidney et al. (2019) noted that it usually scales
as at least OðM1.5Þ.

b. Plane wave basis sets

As discussed in Sec. III.D.3, plane wave basis sets are
particularly suitable for periodic systems such as materials.
While they can also be used to simulate single molecules, we
require approximately 10–100 times as many plane waves as
Gaussian orbitals for accurate simulations. The plane wave
and plane wave dual basis sets reduce the number of terms in
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the Hamiltonian to OðM3Þ and OðM2Þ, respectively. As a
result, using the plane wave basis sets can reduce the
asymptotic scaling of several approaches to chemistry
simulation.
The best product formula-based approaches described

previously scale as OðM1.67N1.83Þ in a plane wave basis
(Babbush, Wiebe et al., 2018). This can be further improved
for systems where it is appropriate to target an extensive error
in the energy (Kivlichan et al., 2019). This means that the
error in the energy scales with the size of the system, and
therefore with M. As the scaling of a Trotterized simulation is
inversely proportional to the energy error desired, factors ofM
can be canceled from both the numerator and denominator of
the algorithm scaling. For 3D materials, such as diamond, the
scaling of Trotter-based approaches to phase estimation in a
plane wave dual basis is reduced to around OðM2Þ.
The plane wave basis also benefits the algorithms

described previously that utilize the Taylor series method
for Hamiltonian simulation. The scaling of the CI matrix-
based algorithm of Babbush et al. (2017) is reduced from
OðN2M3Þ in a Gaussian basis to OðM2.67Þ in a plane wave
basis (Babbush, Wiebe et al., 2018).
A time-dependent form of the Taylor series approach is

used for simulation in the “interaction picture,” which enables
more efficient time evolution in a plane wave dual basis,
scaling as OðM2Þ (Low and Wiebe, 2018), although this
algorithm uses O(Mlog2ðMÞ) qubits. A similar interaction
picture method was introduced by Babbush, Berry et al.
(2019) using plane waves and first quantization. This algo-
rithm has a gate scaling of OðN8=3M1=3Þ and requires
O(ðNlog2ðMÞ) qubits, plus ancillas (Babbush, Berry et al.,
2019). This was the first quantum computational chemistry
algorithm to achieve sublinear scaling inM, a feature that can
be used to mitigate the inability of plane waves to compactly
describe molecular systems.
Qubitization has also been used to produce highly efficient

algorithms for the plane wave and related basis sets. Babbush,
Gidney et al. (2018) used qubitization and a form of phase
estimation which saturates the Heisenberg limit to construct
algorithms for simulations of matter in a plane wave dual
basis. Their algorithm has a gate scaling of OðM3Þ for
condensed phase electronic structure problems.
Continuing the trend of exploiting different chemical

representations to improve the efficiency of qubitization,
McClean, Faulstich et al. (2019) investigated the use of
discontinuous Galerkin basis sets. As discussed in
Sec. III.D.3, these basis sets provide a more compact
description of molecular systems than plane waves, but they
also reduce the number of terms in the Hamiltonian to
OðM2Þ. McClean, Faulstich et al. (2019) estimated from
numerics on hydrogen chains that these basis sets could
reduce the scaling of qubitization to aroundOðM2.6Þ. Further
work is required to better ascertain and optimize the scaling
of this technique.
Qubitization can also be used in first quantization with the

plane wave basis to achieve a sublinear scaling with the
number of plane waves. Babbush, Berry et al. (2019) obtained
a scaling of OðN4=3M2=3 þ N8=3M1=3Þ, similar to the scaling
of their interaction picture algorithm, discussed previously.

c. Fermi-Hubbard model

As described in Sec. III.B.2, the Fermi-Hubbard
Hamiltonian contains OðMÞ terms, many of which commute
with each other. This can improve the efficiency of many of
the algorithms discussed previously.
Wecker et al. (2015) investigated using adiabatic state

preparation and a Trotter-based approach to phase estimation
to probe the phase diagram of the Fermi-Hubbard model.
Their approach to finding the ground state required OðM3Þ
gates. This was subsequently improved by Kivlichan et al.
(2019), who considered the case where an extensive error in
the energy is targeted and found that the cost of Fermi-
Hubbard model simulations was effectively betweenOð1Þ and
OðM1=2Þ using Trotterization.
The qubitization algorithm of Babbush, Gidney et al.

(2018) discussed previously was also applied to the Fermi-
Hubbard model. They obtained a gate scaling ofOðMÞ for the
Fermi-Hubbard model. When considering an intensive error in
the energy, this approach outperforms the Trotter-based
method of Kivlichan et al. (2019).
New procedures have also been developed specifically

for time evolution under lattice Hamiltonians. These
Hamiltonians have geometrically local interactions between
qubits that are laid out on a lattice, such as the Fermi-Hubbard
model under a locality preserving mapping; see Sec. IV.B.3.
Haah et al. (2018) made use of arguments about the speed of
information propagation in lattice systems to obtain a simu-
lation algorithm requiring OðMtÞ gates to simulate time
evolution for time t under lattice Hamiltonians. Similar results
were obtained by Childs and Su (2019), who proved that a kth
order product formula can simulate time evolution of an M-
qubit lattice Hamiltonian using O(ðMtÞ1þ1=k) elementary
operations. These algorithms are almost optimal in terms of
asymptotic gate complexity.

d. Grid-based methods

As discussed in Sec. III.B.1, grid-based methods are
particularly suitable for high-accuracy calculations, in par-
ticular, calculations that do not make the Born-Oppenheimer
approximation, and thus treat the electrons and nuclei on an
equal footing.
The first quantized grid-based algorithm of Kassal et al.

(2008) proceeds as follows. The qubits are used to create a
discretized grid, as described in Sec. IV.A. Physically
relevant states can then be prepared using the algorithms
outlined by Kassal et al. (2008) and Ward, Kassal, and
Aspuru-Guzik (2009). The state can be propagated in time
by repeatedly using the quantum Fourier transform to move
between the position and momentum bases so that the
potential and kinetic terms, respectively, are diagonal and,
therefore, simple to apply. Kassal et al. (2008) did not
calculate an explicit scaling for their algorithm.
Kivlichan et al. (2017) improved upon the method

described previously using the Taylor series method for
time evolution. Their method discretized the kinetic and
potential terms of the Hamiltonian, separated them into
linear combinations of unitary operators, and applied the
Taylor expansion method to simulate time evolution. They
obtained a scaling of O(ðN=h2 þ N2Þt) (excluding
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logarithmic factors), where h is the grid spacing and t is the
simulation time.

5. Outstanding problems

While the advanced Hamiltonian simulation methods
described earlier are asymptotically more efficient than
Trotterization, the Trotter error bounds appear to be loose
by several orders of magnitude (Babbush, McClean et al.,
2015; Poulin et al., 2015). A study of spin Hamiltonians
(Childs et al., 2018) found that the asymptotic scaling of
Trotter methods was much worse than the qubitization
and quantum signal processing and Taylor series methods.
However, when numerical simulations are performed, Trotter
methods require lower gate counts than the other methods.
There are three main factors that may make the Trotter error
bound loose in chemical simulations. First, it is difficult to
obtain a tight error bound for a Trotterized time evolution
under a physical Hamiltonian, as analytic proofs typically
utilize multiple triangle inequalities, each of which may be
loose. Second, these error bounds can be understood as
the worst error that could be induced in any state that the
unitary acts on. However, for chemistry simulation, we are
often interested in only a small subset of the possible states,
which again may reduce the Trotter error. Finally, we are
often interested not in the error in the state, but in the error of
some observable. This fact was exploited by Heyl, Hauke,
and Zoller (2019), who considered the error in local observ-
ables of spin chains and obtained an improved simulation
complexity.
A challenge facing the Taylor series method is that it may

require many elementary logic operations, resulting in a large
T gate count when considering fault-tolerant approaches,
although work by Sanders et al. (2019) may help to alleviate
this problem. However, while the Taylor series method is
asymptotically more expensive than qubitization and quantum
signal processing, there has not yet been a variant of the latter
technique formulated for time-dependent Hamiltonians. Time-
dependent techniques are used in the interaction picture
method that underpins the algorithms of Babbush, Berry et al.
(2019) and Low and Wiebe (2018). In addition, it was noted
by Childs et al. (2018) that implementing quantum signal
processing requires intensive classical precomputation to
obtain the parameters used in the quantum circuit. As such,
it is not yet possible to conclusively state which method will
perform best for chemical systems.
Despite this progress, all of the methods discussed pre-

viously require circuits with a large number of gates. As a
result, these methods are typically assumed to require fault
tolerance. As near-term quantum computers will not have
enough physical qubits for error correction, the long gate
sequences required by these algorithms make them unsuitable
for near-term hardware. Consequently, alternative methods are
required for near-future chemistry simulation. We discuss one
such approach here, in Sec. V.B.

B. Variational algorithms

A promising algorithm for near-term quantum hardware is
the VQE, first proposed and experimentally realized by

Peruzzo et al. (2014), and elaborated on by McClean et al.
(2016). The VQE aims to find the lowest eigenvalue of a given
Hamiltonian, such as that of a chemical system. The VQE is a
hybrid quantum-classical algorithm. This means that it uses
the quantum computer for a state preparation and measure-
ment subroutine, and it uses the classical computer to process
the measurement results and update the quantum computer
according to an update rule. This exchanges the long coher-
ence times needed for phase estimation for a polynomial
overhead due to measurement repetitions and classical
processing. To date, the VQE has been applied only to second
quantized basis set simulations, so our discussion of it will be
concerned only with that scenario.
The VQE relies upon the Rayleigh-Ritz variational princi-

ple. This states that, for a parametrized trial wave function

jΨðθ⃗Þi;

hΨðθ⃗ÞjHjΨðθ⃗Þi ≥ E0; ð64Þ

where E0 is the lowest energy eigenvalue of the Hamiltonian

H, and θ⃗ is a vector of independent parameters θ⃗ ¼
ðθ1;…; θnÞT . This implies that we can find the ground state
wave function and energy by finding the values of the
parameters which minimize the energy expectation value.
As classical computers are unable to efficiently prepare, store,
and measure the wave function, we use the quantum computer
for this subroutine. We then use the classical computer to
update the parameters using an optimization algorithm. This
sequence is shown in Fig. 6. The qubit register is initialized in
the zero state. We can optionally apply a nonparametrized set
of gates to generate a mean-field (Wecker et al., 2015; Jiang,
Sung et al., 2018; Kivlichan et al., 2018) or multireference
state (Babbush, McClean et al., 2015; Sugisaki et al., 2016,
2018, 2019; Dallaire-Demers et al., 2018; Tubman et al.,
2018) describing the chemical system of interest

jΨrefi ¼ Uprepj0̄i: ð65Þ

A series of parametrized gates Uðθ⃗Þ ¼ UNðθNÞ � � �UkðθkÞ � � �
U1ðθ1Þ are then applied to the qubits. Here UkðθkÞ is the kth
single- or two-qubit unitary gate, controlled by parameter θk.
This circuit generates the trial wave function

jΨðθ⃗Þi ¼ Uðθ⃗ÞjΨrefi: ð66Þ

We refer to jΨðθ⃗Þi as the Ansatz state, and we refer to Uðθ⃗Þ as
the Ansatz circuit. However, the interested reader will find that
in the literature the word Ansatz is typically used interchange-
ably to describe both. The set of all possible states that can be
created by the circuit U is known as the Ansatz space. We
must select an Ansatz appropriate for both the available
hardware and the chemical system being simulated. The
merits, drawbacks, and implementation of common Ansätze
are discussed in Sec. V.B.1.
Once the wave function has been generated, we need to

measure the expectation value of the Hamiltonian. Chemical
Hamiltonians in the second quantized basis set approach can
be mapped to a linear combination of products of local Pauli
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operators, using the transformations introduced in Sec. IV.B.
We write that

H ¼
X
j

hjPj ¼
X
j

hj
Y
i

σji ; ð67Þ

where hj is a real scalar coefficient, σ
j
i represents one of I, X,

Y, or Z, i denotes which qubit the operator acts on, and j
denotes the term in the Hamiltonian. We can then use the
linearity of expectation values to write that

Eðθ⃗kÞ ¼
XN
j

hjhΨðθ⃗kÞj
Y
i

σji jΨðθ⃗kÞi: ð68Þ

These state preparation and measurement steps should be
repeated many times in order to measure the expectation value
of every term in the Hamiltonian to the required precision. As
the quantum computer is reinitialized for each repetition, the
required coherence time is reduced compared to quantum
phase estimation. This is known as the Hamiltonian averaging
method of calculating the energy (McClean et al., 2014), and
it requiresOð1=ϵ2Þmeasurements to determine the energy to a
precision ϵ. We discuss the measurement aspect of the VQE in
more detail in Sec. V.B.2.
Once the energy has been measured, it is passed to a

classical optimization routine together with the current values
of θ⃗k; other observables, such as the energy gradient, could

also be supplied to the optimization routine. The optimization

routine outputs new values of the circuit parameters θ⃗kþ1.

These are used to prepare a new trial state jΨðθ⃗kþ1Þi, which is
ideally lower in energy. These steps are repeated until the
energy converges to a minimum. We summarize previous
investigations into classical optimization routines in
Sec. V.B.3.
The VQE has been experimentally demonstrated on most

leading quantum architectures, including superconducting
qubits (O’Malley et al., 2016; Kandala et al., 2017; Colless
et al., 2018), trapped ions (Shen et al., 2017; Hempel et al.,
2018; Kokail et al., 2019; Nam et al., 2019), and photonic
systems (Peruzzo et al., 2014), and it shows many desirable
features. It appears to be robust against some errors (McClean
et al., 2016; O’Malley et al., 2016), and capable of finding the
ground state energies of small chemical systems using low-
depth circuits (Kandala et al., 2017). While the VQE appears
to be promising for near-term chemistry simulation, several
considerable challenges remain. First, the VQE is a heuristic
method; it is currently unclear whether the quantum circuits
proposed will yield better approximations of the ground state
than the classical methods already available. This challenge is
exacerbated by the difficulty of optimizing the wave function,
as optimization routines could fail to find the global minimum.
Second, the number of measurements required to obtain the
energy to the desired accuracy can be large. Finally, the VQE
is typically considered in the context of near-term quantum
computers, without error correction. While techniques have
been proposed to protect these calculations from the effects of
noise (which we discuss in Sec. VI), it is still possible that
noise may prevent us from implementing sufficiently long
circuits to surpass classical methods.

1. Ansätze

The parametrized circuits, or Ansätze, for the VQE lie
between two extremes: hardware efficient and chemically
inspired. There has been relatively little work comparing the
effectiveness of different Ansätze for anything but the smallest
chemistry problems. As quantum computers with tens of
qubits become more widely available and quantum simulators
become more powerful, there will be greater scope to test
different Ansätze for larger problem sizes.

a. Hardware-efficient Ansätze

Hardware-efficient Ansätze have been in use since the first
VQE experiment by Peruzzo et al. (2014). These Ansätze are
composed of repeated, dense blocks of a limited selection of
parametrized gates that are easy to implement with the
available hardware. They seek to build a flexible trial state
using as few gates as possible. As such, they are well suited to
the quantum computers currently available, which have short
coherence times and constrained gate topologies. Hardware-
efficient Ansätze have been used to find the ground state
energies of several small molecules (Kandala et al., 2017,
2019). However they are unlikely to be suitable for larger
systems, as they take into account no details of the chemical
system being simulated. Barkoutsos et al. (2018) attempted to
tackle this issue by proposing hardware-efficient Ansätze that

FIG. 6. A schematic of the variational quantum eigensolver
(VQE). The VQE attempts to find the ground state of a given
problem Hamiltonian by classically searching for the optimal
parameters θ⃗ that minimize hΨðθ⃗ÞjHjΨðθ⃗Þi. The state preparation
and measurement subroutines (red, upper left panel, and blue,
right panel) are performed on the quantum computer. The
measured observable Oðθ⃗Þ and parameter values are fed into a
classical optimization routine (green, lower panel), which outputs
new values of the parameters. The new parameters are then fed
back into the quantum circuit. The gates acting on the qubits can
be any parametrized gates, e.g., single-qubit rotations or con-
trolled rotations. Nonparametrized gates (e.g., X, Y, Z, CNOT) are
also allowed. The circuit Uðθ⃗Þ and the trial wave function that it
produces jΨðθ⃗Þi are both known as the VQE Ansatz. The process
is repeated until the energy converges.
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conserve particle number and thus permit the use of a
chemically motivated initial state. This proposal has been
experimentally demonstrated (Ganzhorn et al., 2019) on a
superconducting system.
McClean et al. (2018) showed that using hardware-efficient

Ansätze with random initial parameters makes the energy
gradient essentially zero among most directions of Hilbert
space, making classical optimization extremely difficult. This
effect becomes exponentially more prominent as the number
of qubits and the circuit depth increases. This suggests that
randomly initialized hardware-efficient Ansätze are not a
scalable solution for problems in quantum computational
chemistry. While techniques have been proposed to combat
this problem (Grant et al., 2019), further work is needed to
determine their efficacy beyond small system sizes.

b. Chemically inspired Ansätze

Chemically inspired Ansätze result from adapting classical
computational chemistry algorithms to run efficiently on
quantum computers. Most notably, the CC method discussed
in Sec. III.C.4 can be extended to produce the unitary UCC
Ansatz (Hoffmann and Simons, 1988; Bartlett, Kucharski, and
Noga, 1989). The UCC method creates a parametrized trial
state by considering excitations above the initial reference
state and can be written as

Uðθ⃗Þ ¼ eT−T
†
; ð69Þ

where T ¼ P
i Ti, and

T1 ¼
X

i∈virt;α∈occ
tiαa

†
i aα;

T2 ¼
X

i;j∈virt;α;β∈occ
tijαβa

†
i a

†
jaαaβ;…; ð70Þ

and occ are occupied orbitals in the reference state, and virt are
orbitals that are initially unoccupied in the reference state. The
UCC method is intractable on classical computers but can be
efficiently implemented on a quantum computer. It was
originally proposed for quantum computational chemistry
by Peruzzo et al. (2014) and Yung et al. (2015). A compre-
hensive review of the UCC method for quantum computa-
tional chemistry was given by Romero et al. (2019).
The UCC method retains all of the advantages of the CC

method, with the added benefits of being fully variational and
able to converge when used with multireference initial states.
The UCC Ansatz is typically truncated at a given excitation
level, usually single and double excitations, known as
UCCSD. We show a canonical implementation of the
UCCSD Ansatz in Sec. VII.A. The canonical UCCSD
implementation requires OðM3N2Þ gates when using the
Jordan-Wigner mapping, where M is the number of spin
orbitals, and N is the number of electrons (Romero et al.,
2019). This has been improved toOðM3NÞ gates, with a depth
of OðM2NÞ using swap networks (O’Gorman et al., 2019), or
OðM3Þ–OðM4Þ gates using a low-rank decomposition of the
UCCSD tensor (Motta et al., 2018).
These gate counts assume that a single Trotter step can be

used to implement the UCC operator, which has previously

been shown to yield accurate results (Barkoutsos et al., 2018;
Romero et al., 2019). However, this approach was questioned
by Grimsley et al. (2020), who found that, depending on how
the operators in the Trotterized UCCSD Ansatz are ordered,
the optimized energies of systems displaying significant
electron correlation can vary by amounts larger than chemical
accuracy. As a result, determining a suitable (or even optimal)
ordering of the operators in the UCCSD Ansatz may be an
interesting and important area of future research.
In practice, the gate scaling is typically better than the

bounds given previously, as many excitations are forbidden by
the symmetry point groups of molecular orbitals. For example,
the LiH molecule in a STO-3G basis naively has around 200
excitation operators to consider. However, taking into account
symmetries and a reduced active space, one can achieve
accurate results while considering only around 12 excitation
operators (Hempel et al., 2018). Moreover, we can use
classically tractable methods to get initial approximations
for the remaining nonzero parameters (O’Malley et al., 2016;
Romero et al., 2019), which makes the classical optimization
step of the VQE easier.
Alternative variants of the UCC Ansatz have also been

proposed for solving problems in quantum computational
chemistry. These include the Bogoliubov-UCC Ansatz
(Dallaire-Demers et al., 2018), a quasiparticle variant of
UCC that is suitable for more general Hamiltonians than
the UCC Ansatz, potentially including the pairing terms
present in superconductivity or three-body terms present in
nuclear physics; the “low-depth circuit Ansatz” (Dallaire-
Demers et al., 2018), a heuristic that attempts to mimic the
aforementioned Bogoliubov-UCC Ansatz using a lower depth
circuit; orbital optimized UCCD (Mizukami et al., 2019;
Sokolov et al., 2019), which treats single excitations on the
classical computer, rather than on the quantum computer, to
reduce the depth and number of gates in the circuit; k-
UpCCGSD (Lee et al., 2019) and k-uCJ (Matsuzawa and
Kurashige, 2019), heuristic Ansätze composed of repeated
layers of selected UCC operators; adaptive VQE (Grimsley
et al., 2019; Tang et al., 2019), which creates an adaptive
Ansatz designed to maximize recovery of the correlation
energy; and qubit coupled cluster (Ryabinkin et al., 2018;
Ryabinkin and Genin, 2019), a heuristic method that produced
lower gate counts than the UCC Ansatz when applied to
several small molecules.

c. Hamiltonian variational Ansatz

There are also variational Ansätze that lie between the
extremes of chemically inspired Ansätze and hardware-effi-
cient Ansätze. One important example is the Hamiltonian
variational Ansatz (also commonly referred to as a Trotterized
adiabatic state preparation Ansatz), proposed by Wecker,
Hastings, and Troyer (2015). This Ansatz was inspired by
adiabatic state preparation and the quantum approximate
optimization algorithm, a similar quantum-classical hybrid
algorithm for combinatorial optimization problems (Farhi,
Goldstone, and Gutmann, 2014). The idea is to Trotterize an
adiabatic path to the ground state using a number of Trotter
steps that may be insufficient for accurate results. One can
then variationally optimize the Trotter evolution times to
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create a variational Ansatz for the ground state. The number of
parameters in this Ansatz scales linearly with the number of
Trotter steps S. Mathematically, we write that

U ¼
YS
s

Y
j

exp ðiθsjPjÞ; ð71Þ

where Pj are the Pauli strings in the Hamiltonian.
The efficiency of this Ansatz is determined by the number

of terms in the Hamiltonian. This leads to a scaling of
approximately OðM4Þ when considering a Gaussian molecu-
lar orbital basis (Wecker, Hastings, and Troyer, 2015). Motta
et al. (2018) improved this asymptotic scaling using the low-
rank decomposition method discussed in Sec. IV.C. They
reduced the number of gates required to implement a Trotter
step of the Hamiltonian to O(M2log2ðMÞ) with increasing
molecular size, and to OðM3Þ for fixed molecular size and
increasing basis size. The electronic structure Hamiltonian in a
plane wave dual basis contains only OðM2Þ terms. Kivlichan
et al. (2018) showed that for Hamiltonians of this form we can
implement Trotter steps in depth OðMÞ, using OðM2Þ two-
qubit gates.
The Hamiltonian variational Ansatz appears to be particu-

larly suitable for the Fermi-Hubbard model, which only has
OðMÞ terms in its Hamiltonian. Kivlichan et al. (2018)
showed that it is possible to implement Trotter steps of the
Fermi-Hubbard Hamiltonian withOð ffiffiffiffiffi

M
p Þ depth andOðM1.5Þ

gates on a linear array of qubits with nearest-neighbor
connectivity. Jiang, Sung et al. (2018) improved this result
for the case of a 2D array of qubits with nearest-neighbor
connectivity. They showed that it is possible to prepare initial
states of the Fermi-Hubbard model using OðM1.5Þ gates, and
to perform Trotter steps of the Hamiltonian using OðMÞ gates
for each Trotter step. It has also been noted (Kivlichan et al.,
2018) that it is possible to use locality preserving mappings
(Verstraete and Cirac, 2005; Jiang, McClean et al., 2019) to
perform Trotter steps in constant depth. However, this comes
at a cost of requiring additional qubits, and it may have a large
constant factor gate overhead.

2. Measurement

In Sec. V.B, we describe the Hamiltonian averaging
method, whereby the expectation value of each term in the
Hamiltonian is estimated through repeated state preparation
and measurement. This procedure can be used to calculate the
1-RDM and 2-RDM of the system. McClean et al. (2016) and
Romero et al. (2019) showed that the number of measure-
ments Nm required to estimate the energy to a precision ϵ is
bounded by

Nm ¼ ðPijhijÞ2
ϵ2

; ð72Þ

where hi are the coefficients of each Pauli string in the
Hamiltonian. This leads to a scaling of OðM6=ϵ2Þ in a
Gaussian orbital basis, and OðM4=ϵ2Þ in a plane wave dual
basis (McClean et al., 2014; Babbush, Wiebe et al., 2018; Cao
et al., 2019).
These scalings may be problematic for large molecular

calculations. For example, Wecker, Hastings, and Troyer

(2015) found that around 1013 samples would be required
per energy evaluation for a 112 spin-orbital molecule such as
Fe2S2. Fortunately, strategies have been proposed to reduce
the cost of measurement. Several groups have proposed using
heuristics to group together commuting terms (McClean et al.,
2016; Kandala et al., 2017; Izmaylov, Yen, and Ryabinkin,
2018; Verteletskyi, Yen, and Izmaylov, 2019), which appears
to reduce the measurement cost by a constant factor. Some
have also considered using additional unitary transforms to
enable more terms to be grouped, reducing the number of
groups of terms from OðM4Þ to OðM3Þ (Crawford et al.,
2019; Gokhale et al., 2019; Gokhale and Chong, 2019; Jena,
Genin, and Mosca, 2019; Yen, Verteletskyi, and Izmaylov,
2019; Zhao et al., 2019). By grouping terms at a fermionic
level rather than a qubit level, Bonet-Monroig, Babbush, and
O’Brien (2019) devised a method for measuring the fermionic
2-RDM using OðM2Þ circuits; an additional gate depth of
OðMÞ is required. Similar results were obtained by Jiang et al.
(2019) by combining Bell basis measurements with the
ternary-tree mapping described in Sec. IV.B.2. Another
interesting direction to explore may be to combine locality
preserving fermion-to-qubit mappings with efficient results
for qubit tomography (Bonet-Monroig, Babbush, and
O’Brien, 2019; Cotler and Wilczek, 2019; Paini and Kalev,
2019). Although we might expect that it would be optimal to
divide the Hamiltonian into the fewest possible number of
groups, this is not always the case. McClean et al. (2016)
showed that it is important to consider the covariances
between Hamiltonian terms within groups since if these
covariances are positive, then it may be better to measure
the terms separately. These covariances can be estimated using
classical approximations of the target state.
If we are interested only in measuring the energy expect-

ation value, rather than the 1- and 2-RDMs, Huggins,
McClean et al. (2019) showed that it is possible to use the
low-rank Hamiltonian decomposition technique discussed in
Sec. IV.C.2 and orbital basis rotations to divide the
Hamiltonian into OðMÞ measurement groups. When cova-
riances between commuting terms were taken into account,
the total number of measurements required for small mole-
cules was reduced by several orders of magnitude. This
measurement scheme also reduces the locality of strings in
the qubit Hamiltonian, thus reducing the impact of qubit
readout error.

3. Classical optimization

As discussed previously, classical optimization is a crucial
aspect of the VQE. However, it is often difficult to minimize
complicated functions in high-dimensional parameter spaces.
Classical optimization routines must be both fast and accurate.
They also need to be robust to noise, which will be significant
in near-term quantum computers.
Classical optimization algorithms can be broadly divided

into two classes: direct search and gradient-based methods.
Direct search algorithms are considered more robust to noise
than gradient-based methods, but they may require more
function evaluations (Kolda, Lewis, and Torczon, 2006).
We now summarize the results of previous experimental

and numerical investigations into classical optimization
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algorithms used in conjunction with the VQE. We also discuss
methods to assist the classical optimization procedure.

a. Previous optimization studies

Prior experimental VQE implementations have been limited
to small systems by the number of qubits available. As a
result, the parameter space to optimize over is relatively small,
so previous results may not be indicative of how these
optimization algorithms will perform for large problems.
However, these studies are able to demonstrate which methods
can cope with the high noise rates of current hardware. Direct
search methods such as Nelder-Mead simplex (Peruzzo et al.,
2014; Shen et al., 2017; Hempel et al., 2018), simulated
annealing (Hempel et al., 2018), particle swarm (Colless et al.,
2018; Santagati et al., 2018), covariance matrix adaptation
(Sagastizabal et al., 2019), and the dividing rectangles
algorithm (Kokail et al., 2019) were found to exhibit good
convergence to the ground state energy of small systems
despite relatively high noise rates.
The simultaneous perturbation stochastic approximation

(SPSA) algorithm has also been used to successfully find the
ground state energy of small molecules despite relatively large
uncertainties due to shot noise and physical error rates
(Kandala et al., 2017, 2019; Ganzhorn et al., 2019). The
SPSA algorithm is an approximate gradient-based method that
steps “downhill” along a randomly chosen direction in
parameter space. In contrast, canonical gradient descent–
based methods have struggled to find the ground state due
to the high levels of noise present in current quantum devices
(Peruzzo et al., 2014).
The number of numerical studies comparing a subset of

optimization algorithms for the VQE has grown rapidly;
hence, a full discussion of every study is beyond the scope
of this review. Instead, we summarize the major findings and
highlight the different approaches to optimization.
In comparisons of “out-of-the-box” optimizers (McClean

et al., 2016; Romero et al., 2019), the Nelder-Mead simplex
algorithm utilized in experimental studies was outperformed
both by other direct search approaches and by gradient-based
approaches such as the limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm with box constraints (known as L-
BFGS-B). All methods were liable to becoming trapped in
local minima, even in small systems. This problem was partly
mitigated by using a good initialization strategy, such as using
a chemically motivated (Møller-Plesset) guess for UCC
excitation amplitudes (Romero et al., 2019). Similar results
were obtained using heuristic methods of optimization and
initialization (Wecker, Hastings, and Troyer, 2015). Other
investigations have considered optimization using algorithms
related to gradient descent, such as stochastic gradient descent
(Harrow and Napp, 2019; Sweke et al., 2019), variational
imaginary time evolution (McArdle, Endo et al., 2019), and
quantum natural gradient descent (Stokes et al., 2019;
Yamamoto, 2019). A limitation of the majority of these
studies is that realistic noise has rarely been considered, so
it is still unclear exactly how effective each method may be in
practice.
An alternative approach to optimizing all of the parameters

simultaneously is to optimize them sequentially (Nakanishi,

Fujii, and Todo, 2019; Ostaszewski, Grant, and Benedetti,
2019; Parrish, Iosue et al., 2019). One can analytically
minimize the energy with respect to a single parameter,
and then sequentially optimize the cost function over all of
the parameters. Repeated sequential optimizations are
required to find a good estimate of the energy minimum.
Recent numerical work has explored the possibility of using

classical neural networks to optimize VQE circuits for small
instances of the Fermi-Hubbard model (Verdon et al., 2019;
Wilson et al., 2019). This approach (known as metalearning)
works by training the neural networks on many random
instances of the system being studied. The networks were
able to successfully “learn” to optimize the VQE Ansatz and
showed indications that they could be generalized to larger
systems than those on which they were trained (Verdon et al.,
2019). The approach also demonstrated some resilience to
noise included in the simulations (Wilson et al., 2019).

b. Related methods of optimization

Methods that aid classical optimization but that are not
optimization algorithms in their own right have also been
proposed.
Quantum circuits have been proposed to calculate the

analytic gradient of the energy with respect to one of the
parameters (Guerreschi and Smelyanskiy, 2017; Mitarai and
Fujii, 2019; Schuld et al., 2019). This avoids the use of finite
difference formulas, which restrict the accuracy of gradient
evaluation, as the finite difference considered is limited by the
noise in the energy evaluation. The quantum gradient method
makes use of the differentiability of parametrized unitary
operators. Parametrized unitaries can be written as exponen-
tials of the parameter and an anti-Hermitian operator, which
are simple to differentiate. A circuit to obtain the gradient of a
toy VQE simulation is shown in Fig. 7.
Several works have used concepts from adiabatic quantum

computing to aid the classical optimization procedure.
Wecker, Hastings, and Troyer (2015) proposed an “annealed
variational” method alongside the Hamiltonian variational
Ansatz. This technique can be generalized to any Ansatzwith a
repeating, layered structure. We assume that the Ansatz is
composed of S layers. We first decompose the Hamiltonian of
interest into Hs ¼ H0 þ sH1, where H0 is a Hamiltonian that
is efficiently solvable with a classical computer, and H1 is a
difficult Hamiltonian to solve. When s ¼ 1, the Hamiltonian
is equivalent to the problem Hamiltonian. The annealed
variational method works by considering the S layers as
separate, distinct Ansätze. The input state to the first layer of
the Ansatz is the ground state of Hs¼0. We optimize this first

FIG. 7. A quantum circuit to calculate the gradient of a toy VQE
simulation. In this toy problem, the Ansatz used is jΨi¼RxðθÞj0i,
and the Hamiltonian is H ¼ Y. The energy is given by EðθÞ ¼
hΨðθÞjHjΨðθÞi ¼ h0jR†

xðθÞYRxðθÞj0i. The energy gradient,
∂E=∂θ ¼ ði=2Þ½h0jXR†

xðθÞYRxðθÞj0i − h0jR†
xðθÞYRxðθÞXj0i�.

This is the expectation value generated by the circuit.
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layer to find the ground state of Hs¼1=S. This state is then the
input into layer 2, which is optimized to find the ground state
of Hs¼2=S. This process is repeated until the final layer, which
takes the ground state of Hs¼ðS−1Þ=S as its input and targets the
ground state of Hs¼1. All of these steps are then combined
and used as the starting point for a standard VQE optimiza-
tion. A similar technique was proposed by Garcia-Saez and
Latorre (2018).
Barkoutsos et al. (2018) introduced a transformation of the

Hamiltonian such that it measures the energy of excitations
above the Hartree-Fock state (the correlation energy) only.
Because only the correlation energy was calculated, fewer
measurements were required and classical optimization
became easier. Overall, simulated VQE calculations on small
molecules were sped up by a factor of 2–4 (Barkoutsos
et al., 2018).

C. Evaluation of excited states

Here we discuss methods used to evaluate the excited states
of chemical Hamiltonians. These are of interest for calculations
of spectral properties, such as photodissociation rates and
absorption bands. We are sometimes interested in obtaining
excited states with specific properties, such as a certain spin or
charge (Ryabinkin and Genin, 2018; Ryabinkin, Genin, and
Izmaylov, 2019; Yen, Lang, and Izmaylov, 2019). The tech-
niques used to obtain these special states are similar in nature to
the methods we discuss for finding general excited states. There
is still no clear consensus as to which method will perform best
for finding excited states. As such, we describe each of the
leading methods in turn and discuss their advantages and
limitations. We note that this area has seen rapid recent
development. Consequently, we do not discuss initial proposals
to calculate excited states, such as the folded spectrum method
(McClean et al., 2016) and the witness-assisted variational
eigenspectra solver (Santagati et al., 2018), which are com-
paratively less efficient than more recent proposals.

1. Quantum subspace expansion

The quantum subspace expansion (QSE) method was
originally introduced to find excited states (McClean,
Kimchi-Schwartz et al., 2017), but it has proved to be one
of the most useful techniques introduced to near-term quan-
tum computational chemistry, with benefits including better
ground state estimation (discussed here) and mitigation of
hardware errors (discussed in Sec. VI.C).
The original formulation of the QSE used a polynomial

number of additional measurements to find the excited states
of a quantum system (McClean, Kimchi-Schwartz et al.,
2017). The motivation for this was that the higher order RDMs
can be obtained by expanding the wave function in a subspace
around the ground state. These RDMs can then be used to find
the linear response excited eigenstates. McClean, Kimchi-
Schwartz et al. (2017) considered the single excitation linear
response subspace around the fermionic ground state. This
subspace is spanned by the states a†i ajjE0i for all possible i, j,
which corresponds to measuring the 3- and 4-RDMs. This is
designed to target the low-lying excited states, which are

assumed to differ from the ground state by a small number of
excitations.
The excited states can be found by solving a generalized

eigenvalue problem in fermionic Fock space

HQSEC ¼ SQSECE; ð73Þ

with a matrix of eigenvectors C, and a diagonal matrix of
eigenvalues E. The Hamiltonian projected into the subspace is
given by

HQSE
ij;kl ¼ hE0jaia†jHa†kaljE0i: ð74Þ

The overlap matrix, required because the subspace states are
not orthogonal to each other, is given by

SQSEij;kl ¼ hE0jaia†ja†kaljE0i: ð75Þ

The QSE was experimentally demonstrated in a two-qubit
superconducting system to find the ground and excited states
of H2 (Colless et al., 2018). Ollitrault et al. (2019) showed that
the QSE with single and double excitations can be understood
as an approximation to the equation of motion (EoM) method
for finding excited states, which was originally introduced as a
classical method in quantum chemistry by Rowe (1968).
Ollitrault et al. (2019) showed how the EoM method can be
implemented on a quantum computer. They found the EoM
method to be robust to noise when demonstrated experimen-
tally, and to be more accurate for finding excitation energies
than the QSE, in numerical tests.
As discussed earlier, the QSE has also been extended to

provide better estimates of the ground state energy. Takeshita
et al. (2020) showed how the QSE can be used to recover the
energy contribution of virtual orbitals without requiring
additional qubits to represent the virtual orbitals. This was
achieved by considering a QSE with single and double
excitations, where the double excitations take two electrons
from an active space to the virtual space. Naively, this would
require the measurement of matrix elements like Hijkl

αβγδ;ϵζηθ ¼
hE0jaαa†βaγa†δða†i a†jakalÞa†ϵaζa†ηaθjE0i, of which there are

OðM12Þ. However, because the double excitations are
restricted to exciting two electrons into the virtual space, it
is possible to use Wick’s theorem and contract over the
operators in the virtual space to express the previous matrix
element in terms of matrix elements involving only eight
creation or annihilation operators, which defines the 4-RDM.
These operators only act on the active space orbitals MA,
which reduces the number of measurements required to
OðM8

AÞ and means that no additional qubits are required.
Takeshita et al. (2020) demonstrated this method by numeri-
cally simulating a cc-pVDZ calculation on H2 (which nor-
mally requires 20 qubits), using just four qubits and the
previously described additional measurements.
The QSE was also extended by Huggins, Lee et al. (2019),

who devised a low cost method to extend the subspace from
being excitations above a reference state to being any state that
is efficiently preparable on the quantum computer. The
method thus allows for creation of flexible Ansatz states
without a dramatic increase in the circuit depth. This approach
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was further refined by Stair, Huang, and Evangelista (2019),
who provided a more efficient approach to realizing this
technique when the Ansatz circuit used is composed of
products of exponentiated Pauli operators.
The main drawback of the QSE is the large number of

measurements that may be required to obtain the 4-RDM
of the system. In general, there are OðM8Þ elements to
measure in the 4-RDM, compared to OðM4Þ elements for
the Hamiltonian. The cost can be somewhat reduced by
approximating the 4-RDM using products of lower order
RDMs and perturbative corrections. In addition, using the
linear response excitation operators described previously, we
are limited in our description of excited states. This can be
problematic for systems that need higher order excitations to
accurately describe the excited states (Watson and Chan,
2012; Lee et al., 2019).
We provide more information on the QSE method in

Sec. VI, where we discuss how it can also be used to mitigate
the effects of errors.

2. Overlap-based methods

Overlap-based methods exploit the orthogonality of energy
eigenstates. Once an eigenstate is found, we can find other
eigenstates by ensuring that they are orthogonal to the original
state (Endo, Jones et al., 2019; Higgott, Wang, and Brierley,
2019). After finding the ground state jE0i of a Hamiltonian H
with a VQE calculation, we replace the Hamiltonian with

H0 ¼ H þ αjE0ihE0j; ð76Þ

where α is chosen to be sufficiently large compared to
the energy scale of the system. The ground state of the
updated Hamiltonian H0 is no longer jE0i, but instead the
first excited state jE1i of the original Hamiltonian H. This
process can be repeated to obtain higher energy eigenstates.

The energy of the updated Hamiltonian hΨðθ⃗ÞjH0jΨðθ⃗Þi ¼
hΨðθ⃗ÞjHjΨðθ⃗Þi þ αhΨðθ⃗ÞjE0ihE0jΨðθ⃗Þi can be obtained by
measuring each term separately. We can measure the first term
using the Hamiltonian averaging procedure described in
Sec. V.B. The second term can be obtained from circuits
that calculate the overlap between the states, such as the
SWAP test. The SWAP test approach requires a circuit that has
twice as many gates as the Ansatz used (but is of the same
depth) and has twice as many qubits. We can also use a
method that requires twice as many gates and is twice as
deep as the original Ansatz, but which does not require
additional qubits (Higgott, Wang, and Brierley, 2019). The
additional resources required are the main limitation of this
approach to calculating excited states. Overlap-based tech-
niques were numerically investigated by Lee et al. (2019),
who also considered the propagation of errors resulting from
obtaining only an approximation of lower lying eigenstates,
rather than the true eigenstates.

3. Contraction VQE methods

The subspace-search variational quantum eigensolver
(SSVQE) (Nakanishi, Mitarai, and Fujii, 2019) and the multi-
state contracted variational quantum eigensolver (MCVQE)

(Parrish, Hohenstein et al., 2019a) methods are related to the
overlap-based methods described previously in that they are
driven by the orthogonality of energy eigenstates. The
differences lie in how they enforce this orthogonality, as well
as how the ordering of the eigenstates is determined. In the
overlap-based methods, orthogonality is enforced by including
the overlap between states in the cost function. In contrast, the
contraction VQE methods exploit conservation of orthogon-
ality between states under a unitary transform. To be more
specific, a set of orthonormal approximate eigenstates
fjϕiiki¼0g are chosen using an efficient classical approach.
The quantum computer must be able to be initialized in any of
these states. The orthogonality of these states is invariant under
the application of a unitaryAnsatz circuit. The aim of theAnsatz
circuit is to generate linear combinations of these initial states to
form good approximations of the low energy subspace of the
system. This is achieved by optimizing the Ansatz over an
ensemble cost function

Cðθ⃗Þ ¼
Xk
j¼0

hϕjjU†ðθ⃗ÞHUðθ⃗Þjϕji: ð77Þ

Both of the contraction VQE methods then use further
processing to find the ordering of the energy eigenstates.
The SSVQEmethod uses a quantum-classical hybrid approach
that is similar to the ordinary VQE. In contrast, the MCVQE
method uses classical diagonalization of a Hamiltonian matrix
obtained in the low energy subspace, similar to the way in
which the quantum subspace expansion works. These con-
traction VQE methods differ from the overlap-based methods
in that they obtain all of the eigenstates at the same time, rather
than sequentially. Consequently, all eigenstates should be
obtained to a similar accuracy. However, it may be difficult
to find a unitary circuit that simultaneously prepares many
eigenstates on an equal footing, which may make these
contraction methods difficult to realize in practice.

VI. ERROR MITIGATION FOR CHEMISTRY

As discussed in Sec. II.A, physical qubits accumulate errors
during computation due to their interaction with the environ-
ment and our imperfect control. While the effects of these
errors can be suppressed using quantum error correction, this
requires a considerable increase in the number of qubits used
for the computation. If these errors are not dealt with, they will
corrupt the results of our algorithms, rendering the calcula-
tions meaningless. This was confirmed for the case of
chemistry calculations by Sawaya et al. (2016), who used
numerical simulations to show the impact that noise has on
phase-estimation-based chemistry calculations. Phase-estima-
tion-based approaches (discussed in Sec. V.A) require long
circuit depths and thus implicitly assume the use of quantum
error correction. We discuss the resources required to carry out
these calculations in Sec. VIII.B; however, it suffices to say
here that they are considerably greater than our available
resources at the time of writing. We claim in Sec. V.B that the
reduced coherence time requirements of the VQE make it
more suitable for noisy quantum hardware, and they may
enable the extraction of accurate results without the use of
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quantum error correction. It has been shown both theoretically
(McClean et al., 2016) and experimentally (O’Malley et al.,
2016) that the VQE can be inherently robust to some coherent
errors, such as qubit over-rotation. However, small experi-
mental demonstrations of the VQE have shown that noise can
still prevent us from reaching the desired levels of accuracy
(Kandala et al., 2017; Hempel et al., 2018). Consequently, it
appears that additional techniques are required if we are to
perform classically intractable chemistry calculations without
error correction.
The methods described here have been developed to

mitigate errors rather than correct them. These techniques
are effective only when used with low-depth circuits such that
the total error rate in the circuit is low. However, the additional
resources required are much more modest than for full error
correction. In general, these techniques require only multi-
plicative overhead in the number of measurements required if
the error rate is sufficiently low. Many of these techniques
were introduced for use in general near-term algorithms, and
they thus can be applied to problems beyond chemistry
simulation.
As we are dealing with errors, it becomes necessary to

consider mixed states rather than just pure states. As such, we
now switch to the density matrix formalism of quantum
mechanics.
We consider a quantum circuit that consists of G unitary

gates applied to an initial reference state j0̄i. The output state
if errors do not occur is given by

ρ0 ¼ UG ∘ � � � ∘U2 ∘U1ðj0̄ih0̄jÞ; ð78Þ

where, for a density matrix ρ, UðρÞ ¼ UρU†. We extract
information from the circuit by measuring a Hermitian
observable O:

Ō0 ¼ Tr½ρ0O�: ð79Þ

If each gate is affected by a noise channel N i, the prepared
state becomes

ρ ¼
Y

i
N i ∘U iðj0̄ih0̄jÞ; ð80Þ

and the measurement result becomes Ō ¼ Tr½ρO�. In general,
we cannot recover the noiseless state ρ0 from the noisy state ρ
without error correction. However, the error mitigation meth-
ods discussed later can approximate the noiseless measure-
ment result Ō0 from the noisy measurement result Ō when the
error rate is sufficiently low. It is important to note that error
mitigation schemes are not a scalable solution to the problem
of noise in quantum hardware. In order to scale up compu-
tations to arbitrarily large sizes, fault-tolerant, error-corrected
quantum computers are required.

A. Extrapolation

The extrapolation method (Li and Benjamin, 2017; Temme,
Bravyi, and Gambetta, 2017) works by intentionally increas-
ing the dominant error rate ϵ0 by a factor λ, and inferring the
error-free result by extrapolation. We can increase the error

rate using the techniques described by Li and Benjamin (2017)
and Kandala et al. (2019). The technique is based on
Richardson extrapolation (Richardson and Gaunt, 1927),
which to first order corresponds to linear extrapolation using
two points. We could also take a linear or higher order fit with
several data points. For the former case, the estimated value of
the observable is given by

Ōest
0 ¼ λŌðϵ0Þ − Ōðλϵ0Þ

λ − 1
: ð81Þ

While this method can improve the accuracy of calculations, it
requires additional measurements in order to keep the variance
of the measured observable the same as in the nonextrapolated
case. The extrapolation method has been demonstrated for
VQE experiments in both molecular chemistry (Kandala et al.,
2019; Ollitrault et al., 2019) and nuclear physics (Shehab
et al., 2019).
Exponential extrapolation was introduced by Endo,

Benjamin, and Li (2018) as a more appropriate extrapolation
technique for large quantum circuits. A comparison between
the two extrapolation methods is shown in Fig. 8. Otten and
Gray (2019) also extended the extrapolation method to the
scenario where the error rates of different gates are increased
by different factors.

B. Probabilistic error cancellation

The probabilistic error cancellation method introduced by
Temme, Bravyi, and Gambetta (2017) works by effectively
realizing the inverse of an error channel N −1 such that
N −1½N ðρ0Þ� ¼ ρ0. Because realizing the inverse channel is,
in general, an unphysical process, we use the scheme depicted
in Fig. 9 to effectively realize the inverse channel by focusing
only on measurement results.
As an example, we consider the case of a depolarizing error

channel

ρ¼Dðρ0Þ¼
�
1−

3

4
p

�
ρ0þ

p
4
ðXρ0XþYρ0YþZρ0ZÞ: ð82Þ

FIG. 8. A comparison of linear (blue, lower) and exponential
(gray, upper) extrapolation. The horizontal axis is the error rate of
each gate and the vertical axis is the expectation value of the
measured observable Ō. Adapted from Endo, Benjamin, and
Li, 2018.
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The unphysical inverse channel is

ρ0 ¼ D−1ðρÞ ¼ γ½p1ρ − p2ðXρX þ YρY þ ZρZÞ�; ð83Þ

where the coefficient γ¼ðpþ2Þ=ð2−2pÞ≥1, p1 ¼ ð4 − pÞ=
ð2pþ 4Þ, and p2 ¼ p=ð2pþ 4Þ in this case.
We cannot directly realizeD−1 due to the minus sign before

p2. However, we can consider and correct its effect on the
expectation value Ō0,

Ō0 ¼ Tr½OD−1ðρÞ�
¼ γ½p1hOiρ − p2ðhOiXρX þ hOiYρY þ hOiZρZÞ�
¼ γ½p1hOiρ − p2ðhXOXiρ þ hYOYiρ þ hZOZiρÞ�; ð84Þ

where hOiρ ¼ Tr½Oρ�. We can therefore measure O, XOX,
YOY, and ZOZ and linearly combine the measurement results
to effectively realize the inverse channel, thus obtaining the
noiseless measurement result Ō0. The variance in our estimate
of Ō0 is increased by a factor of γG, where γ is the overhead
coefficient and G is the number of gates in the circuit.
In practice, it is not possible to exactly measure all of the

possible terms resulting from errors if there are many gates in
the circuit. Instead, we can consider only the most important
terms, which result from a small number of errors occurring. If
the error rate is low, then the other terms can be considered
negligibly small. After each single-qubit gate, we can apply X,
Y, or Z operators with probability p2, or the identity gate with
p1. We repeat that circuit variant many times to extract the
expectation value and multiply the expectation value by
ð−1ÞGp , where Gp is the number of additional X, Y, or Z

gates that were applied in that circuit iteration. We then sum up
the values for several circuit variants andmultiply by γ to obtain
the error mitigated result. This method can also be extended to
multiqubit gates. For example, for two-qubit gates in the
depolarizing noise model, after each two-qubit gate we insert
one of the pairs XI; IX; YI; IY; ZI; IZ (parity −1) with prob-
abilityp2, one of the pairsXX;YY;ZZ;XY;YX;XZ;ZX;YZ;ZY
(parity þ1) with probability p2 and II (parity þ1) with
probability p1.
The probabilistic error cancellation method described

previously has been shown to work for general Markovian
noise (Endo, Benjamin, and Li, 2018), and it has also been
extended to work with temporally correlated errors and low
frequency noise (Huo and Li, 2018). Probabilistic error
cancellation requires full knowledge of the noise model
associated with each gate. This can be obtained from either
process tomography or a combination of process and gate set
tomography. The latter approach reduces the effect of errors
due to state preparation and measurement (Endo, Benjamin,
and Li, 2018). The probabilistic error cancellation method has
been experimentally demonstrated on both superconducting
(Song et al., 2018) and trapped ion (Zhang et al., 2020)
systems.

C. Quantum subspace expansion

The quantum subspace expansion (QSE) (McClean,
Kimchi-Schwartz et al., 2017) described in Sec. V.C.1 can
mitigate errors in the VQE, in addition to calculating the
excited energy eigenstates. This method is most effective at
correcting systematic errors, but it can also suppress some
stochastic errors. Suppose that we use the VQE to find an
approximate ground state jẼ0i. Noise may cause this state to
deviate from the true ground state jE0i. For example, if
jẼ0i ¼ X1jE0i, we can simply apply an X1 gate to recover the
correct ground state.
However, as we do not know which errors have occurred,

we can instead consider an expansion in the subspace
fjPiẼ0ig, where Pi are matrices belonging to the Pauli group.
Then one can measure the matrix representation of the
Hamiltonian in the subspace,

HQSE
ij ¼ hẼ0jPiHPjjẼ0i: ð85Þ

As the subspace states are not orthogonal to each other, we
should also measure the overlap matrix

SQSEij ¼ hẼ0jPiPjjẼ0i: ð86Þ

By solving the generalized eigenvalue problem

HQSEC ¼ SQSECE; ð87Þ

with a matrix of eigenvectors C and diagonal matrix of
eigenvalues E, we can get the error mitigated spectrum of
the Hamiltonian. A small number of Pauli group operators are
typically considered in order to minimize the required number
of measurements. The QSE has been experimentally demon-
strated using a two-qubit superconducting system to measure

FIG. 9. A schematic of the probabilistic error cancellation
method for a depolarizing error resulting from a single-qubit
gate. After the gate is applied, there is a noise channel N . The
method works by effectively realizing the inverse channel N −1.
This is achieved by randomly applying one of the X, Y, or Z
operators with probability p2, or the identity gate with p1. The
expectation values resulting from the circuits are combined. If
one of the Pauli matrices was applied to realize the inverse
channel, the resulting expectation value is subtracted rather than
added (parity −1). The overhead γ determines the number of
additional measurements required to keep the variance of the
error mitigated result equal to the variance of the noisy result.
This can be generalized to multiqubit gates as described in the
text.
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the ground and excited state energies of H2 (Colless
et al., 2018).

D. Symmetry-based methods

It is also possible to mitigate some errors by using symmetry
checks on a suitably constructed Ansatz state (Bonet-Monroig
et al., 2018; McArdle, Yuan, and Benjamin, 2019). A key
concern for the VQE is preserving particle number, as states
with electron number far from the true value appear to have a
larger energy variance than those with smaller particle number
errors (Sawaya et al., 2016). Consequently, we can perform
“checks” on quantities that should be conserved (such as the
number of electrons or the sz value), discarding the results if the
measured value is not as expected.
This can be achieved in a number ofways: by using stabilizer

checks with additional ancilla qubits (Bonet-Monroig et al.,
2018; McArdle, Yuan, and Benjamin, 2019), by taking
additional measurements and performing postprocessing
(Bonet-Monroig et al., 2018) [this has been experimentally
demonstrated in superconducting qubits (Sagastizabal et al.,
2019)], by enforcing physically derived constraints on the form
of the measured 1- and 2-RDMs (known as the n-represent-
ability constraints) (Rubin, Babbush, and McClean, 2018), or
by using the low-rank and orbital rotations measurement
technique of Huggins, McClean et al. (2019), which is
discussed in Sec. V.B.2. The latter method appears to be the
most powerful of these, requiring a modest additional circuit
depth, limited connectivity, and enabling effective postselec-
tion on the electron number and sz value, rather than just the
parities of these quantities. These methods of error mitigation
can be combined with some of the other techniques discussed
previously, such as extrapolation.
A related extension of the quantum subspace expansion was

developed by McClean, Jiang et al. (2020), who effectively
engineered additional symmetries in the system using an
error-correcting code. By postprocessing measurements from
multiple iterations, they could detect some errors or effectively
realize a limited form of error correction. In order to maintain
a polynomial cost for the procedure, they introduced a
stochastic sampling scheme for the code stabilizers.
The choice of fermion-to-qubit mapping can also introduce

additional symmetries. For example, both the generalized
Bravyi-Kitaev superfast transform (Setia et al., 2019) and the
Majorana loop stabilizer code (Jiang, McClean et al., 2019),
discussed in Sec. IV.B.3, introduce additional qubits, whose
values are constrained by the mappings. By performing
suitable stabilizer checks on these qubits, single-qubit errors
can be detected and corrected.

E. Other methods of error mitigation

Other methods of error mitigation have been proposed, but
they require further research to assess how they can be best
incorporated into chemistry calculations. One such method is
the quantum variational error corrector (Johnson et al., 2017),
which uses a variational algorithm to construct noise-tailored
quantum memories. Another example is individual error
reduction (Otten and Gray, 2018). This method uses error
correction to protect a single qubit while leaving the rest of the

physical qubits subject to noise. The process is repeated
several times, with each physical qubit being protected in turn.
Postprocessing the results produces a more accurate expect-
ation value than would be obtained without the mitigation
technique.

VII. ILLUSTRATIVE EXAMPLES

Here we illustrate many of the techniques described earlier
in this review by explicitly demonstrating how to map
electronic structure problems onto a quantum computer. We
do this in second quantization for the hydrogen molecule (H2)
in the STO-3G, 6-31G, and cc-pVDZ bases, and lithium
hydride (LiH) in the STO-3G basis, as described in Sec. III.D.
In these examples, we showcase the JW, BK, and BK-tree
mappings described in Sec. IV.B, the reduction of active
orbitals using the natural molecular orbital (NMO) basis
described in Sec. III.E, the reduction of qubits using symmetry
conservation described in Sec. IV.C.1, and the unitary
coupled-cluster Ansatz described in Sec. V.B.1. These exam-
ples are designed to familiarize the reader with the key steps of
formulating a quantum computational chemistry problem.
Many of these techniques are applicable to both ground state
and general chemical problems.

A. Hydrogen

The continuous space molecular Hamiltonian for H2 is
given by Eq. (17), which we reproduce here, with two
electrons and two nuclei

HH2
¼ −

X
i

∇2
i

2
−
X
i;I

ZI

jri −RIj
þ 1

2

X
i≠j

1

jri − rjj
: ð88Þ

To convert this Hamiltonian into the second quantized
representation

H ¼
X
p;q

hpqa
†
paq þ

1

2

X
p;q;r;s

hpqrsa
†
pa

†
qaras; ð89Þ

with

hpq ¼
Z

dxϕ�
pðxÞ

�
−
∇2

2
−
X
I

ZI

jr −RIj
�
ϕqðxÞ;

hpqrs ¼
Z

dx1dx2

ϕ�
pðx1Þϕ�

qðx2Þϕrðx2Þϕsðx1Þ
jx1 − x2j

; ð90Þ

we need to select a basis set ϕpðxÞ. As discussed in Sec. III.D,
this is a discrete set of functions that are used to approximate
the spin orbitals of the molecule. By considering a larger
number of orbitals and the Slater determinants that they can
generate, we are able to recover a larger proportion of the
correlation energy in a molecule, resulting in a more accurate
estimate of the true ground state energy. Figure 10 shows the
H2 ground state dissociation curves in the STO-3G, 6-31G,
and cc-pVDZ bases. We can see that the differences in energy
between the three minima are considerably larger than
chemical accuracy (1.6 mhartree). This highlights the fact
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that working in a suitably large basis set is crucial for
obtaining accurate results.

1. STO-3G basis

The STO-3G basis for H2 includes only the f1sg orbital for
each hydrogen atom. The 1s orbital is represented by a linear
combination of three Gaussian-type orbitals. Each hydrogen
atom contributes one orbital, and there are two possible spins
for each orbital, resulting in a total of four spin orbitals for
STO-3G H2. We denote these orbitals as

j1sA↑i; j1sA↓i; j1sB↑i; j1sB↓i; ð91Þ
where the subscript A or B denotes which of the two atoms the
spin orbital is centered on, and the up or down arrow denotes
the sz value of the electron in the spin orbital. For conven-
ience, we work in the molecular orbital basis for H2, which is
simple to construct manually. These single-electron molecular
spin orbitals are given by

jσg↑i ¼
1ffiffiffiffiffiffi
Ng

p ðj1sA↑i þ j1sB↑iÞ;

jσg↓i ¼
1ffiffiffiffiffiffi
Ng

p ðj1sA↓i þ j1sB↓iÞ;

jσu↑i ¼
1ffiffiffiffiffiffi
Nu

p ðj1sA↑i − j1sB↑iÞ;

jσu↓i ¼
1ffiffiffiffiffiffi
Nu

p ðj1sA↓i − j1sB↓iÞ; ð92Þ

where Ng=u are normalization factors that depend on the
overlap between the atomic orbitals Ng ¼ 2ð1þ h1sAj1sBiÞ,
Nu ¼ 2ð1 − h1sAj1sBiÞ. We can write a Slater determinant in
the occupation number basis as

jψi ¼ jfσu↓ ; fσu↑ ; fσg↓ ; fσg↑i; ð93Þ

where fi ¼ 1 if spin orbital i is occupied, and fi ¼ 0 if spin
orbital i is unoccupied. We can now calculate the integrals

given in Eq. (90) using these molecular orbitals. These
integrals have been calculated for a large number of basis
sets, and the results can be obtained by using a computational
chemistry package (Muller, 2004; Frisch et al., 2016; Parrish
et al., 2017; Sun et al., 2017). We must then map the problem
Hamiltonian from being written in terms of creation and
annihilation operators to being written in terms of qubit
operators. Using the JW encoding, we can obtain the four-
qubit Hamiltonian for H2:

H ¼ h0I þ h1Z0 þ h2Z1 þ h3Z2 þ h4Z3

þ h5Z0Z1 þ h6Z0Z2 þ h7Z1Z2 þ h8Z0Z3 þ h9Z1Z3

þ h10Z2Z3 þ h11Y0Y1X2X3 þ h12X0Y1Y2X3

þ h13Y0X1X2Y3 þ h14X0X1Y2Y3: ð94Þ

While it is important to understand this procedure, every step
from selecting a basis to producing an encoded qubit
Hamiltonian can be carried out using a quantum computa-
tional chemistry package such as OPENFERMION (McClean
et al., 2017), QISKIT AQUA (IBM, 2018), or QDK-NWCHEM

(Low et al., 2019).
In the JWencoding, it is simple to construct the HF state for

the H2 molecule. The HF state for H2 in the occupation
number basis is given by

jΨH2

HFi ¼ j0011i: ð95Þ

This represents the Slater determinant

ΨH2

HFðr1; r2Þ ¼
1ffiffiffi
2

p ½σg↑ðr1Þσg↓ðr2Þ − σg↑ðr2Þσg↓ðr1Þ�; ð96Þ

where ri is the position of electron i. The most general state
for H2, with the same sz value and electron number as the HF
state, is given by

jΨH2i ¼ αj0011i þ βj1100i þ γj1001i þ δj0110i; ð97Þ

and the ground state of the H2 molecule at its equilibrium
bond distance is given by (Helgaker, Jorgensen, and Olsen,
2014)

jΨH2
g i ¼ 0.9939j0011i − 0.1106j1100i: ð98Þ

The first determinant in the ground state wave function is the
HF state for H2, showing that a mean-field solution is a good
approximation for this molecule at this interatomic distance.
The second determinant represents the antibonding state and
accounts for dynamical correlation between the electrons due
to their electrostatic repulsion. While the HF determinant
dominates at the equilibrium separation, at large separation
the two determinants contribute equally to the wave function.
This is because the bonding and antibonding configurations
become degenerate. We require both determinants to accu-
rately describe the state, ensuring that only one electron is
located around each atom. This is an example of static
correlation, which can also be dealt with using
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FIG. 10. Comparison of the ground state dissociation curves of
H2 for a range of basis sets.
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multiconfigurational self-consistent field methods, as
described in Sec. III.C.1.
As discussed previously, in order to find the ground state of

the H2 molecule using either the VQE or phase estimation,
we need to construct the state on the quantum computer. Here
we explicitly derive the UCCSD Ansatz for H2. As discussed in
Sec. V.B.1, the UCCSD operator we seek to realize is given by

U ¼ eðT1−T
†
1
ÞþðT2−T

†
2
Þ;

T1 ¼
X

i∈virt;α∈occ
tiαa

†
i aα;

T2 ¼
X

i;j∈virt;α;β∈occ
tijαβa

†
i a

†
jaαaβ; ð99Þ

where occ represents initially occupied orbitals in the HF state,
virt indicates initially unoccupied orbitals in the HF state, and
tiα and tijαβ are variational parameters to be optimized. For H2,
the only operators that do not change the sz value of the
molecule when acting upon the HF state are a†2a0, a

†
3a1, and

a†3a
†
2a1a0. Other valid operators are equivalent to these

operators and can be combined with them, such as
a†3a

†
0a1a0 ¼ −a†3a1. As a result, the UCCSD operator takes

the form

U ¼ et02ða
†
2
a0−a

†
0
a2Þþt13ða†3a1−a†1a3Þþt0123ða†3a†2a1a0−a†0a†1a2a3Þ: ð100Þ

We can split this operator using Trotterization with a single
Trotter step

U ¼ et02ða
†
2
a0−a

†
0
a2Þet13ða

†
3
a1−a

†
1
a3Þet0123ða

†
3
a†
2
a1a0−a

†
0
a†
1
a2a3Þ: ð101Þ

Using the JW encoding, we find that

ða†2a0 − a†0a2Þ ¼
i
2
ðX2Z1Y0 − Y2Z1X0Þ;

ða†3a1 − a†1a3Þ ¼
i
2
ðX3Z2Y1 − Y3Z2X1Þ;

ða†3a†2a1a0 − a†0a
†
1a2a3Þ ¼

i
8
ðX3Y2X1X0 þ Y3X2X1X0

þ Y3Y2Y1X0 þ Y3Y2X1Y0

− X3X2Y1X0 − X3X2X1Y0

− Y3X2Y1Y0 − X3Y2Y1Y0Þ: ð102Þ

It was shownbyRomero et al. (2019) that all Pauli terms arising
from the same excitation operators commute. As a result, each
of the exponentials in Eq. (101) can be separated into a product
of exponentials of a single Pauli string. For example,

et02ða
†
2
a0−a

†
0
a2Þ ¼ eðit02=2ÞX2Z1Y0eð−it02=2ÞY2Z1X0 : ð103Þ

Hempel et al. (2018) simplified the UCCSD operator for H2 by
implementing the single excitation terms as basis rotations and
combining terms in the double excitation operator by consid-
ering the effect of each term on the HF state. The latter
technique is possible only because there is only one double
excitation operator for thismolecule, and thus it is not a scalable
technique in general. The UCCSD operator is simplified to

U ¼ e−iθX3X2X1Y0 : ð104Þ

This can be implemented using the circuit (Whitfield,
Biamonte, and Aspuru-Guzik, 2011) shown in Fig. 11.
Applying the simplified UCCSD operator to the HF state in

Eq. (95) gives

Uj0011i ¼ ½cosðθÞI − i sinðθÞX3X2X1Y0�j0011i
¼ cosðθÞj0011i − sinðθÞj1100i; ð105Þ

which can reproduce the ground state given by Eq. (98).

2. 6-31G basis

As discussed in Sec. III.D, H2 in the 6-31G basis has a
double-ζ representation of the valence electrons. This means
we have eight spin orbitals to consider in total:
1s↑; 1s↓; 1s0↑; 1s

0
↓ from each atom. Working in the canonical

orbital basis, obtained by performing a Hartree-Fock calcu-
lation, we show how to construct Bravyi-Kitaev encoded
states of 6-31G H2. The BK transform matrix for an eight
spin-orbital system is given by

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCA

: ð106Þ

We order the spin orbitals such that the firstM=2 spin orbitals
are spin-up, and the final M=2 spin orbitals are spin-down.
When the spin orbitals are ordered in this way, the fourth entry
in the BK encoded vector is the sum (mod 2) of the spin-up
occupancies, which sums to the number of spin-up electrons.
Moreover, the eighth entry is the sum (mod 2) of all of the
orbital occupancies, which sums to the number of electrons.
As these quantities are conserved, we can remove these two
qubits from the simulation following the procedure of
Sec. IV.C. If the spin orbitals are arranged “up-down, up-
down,” then while the eighth entry is still equal to the number

FIG. 11. The circuit for implementing the UCCSD operator for
H2 in the STO-3G basis, as given by Eq. (104). The Rxðπ=2Þ and
Had gates rotate the basis such that the exponentiated operator
applied to the corresponding qubit is Y or X, respectively. Single
excitation terms are implemented with a change of basis (Hempel
et al., 2018).
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of electrons, the fourth entry is no longer necessarily equal to a
conserved quantity. The JW mapped HF state (eight qubits) is
given by j00010001i. Using the matrix given previously, the
BK mapped HF state (eight qubits) is j00111011i. When the
two conserved qubits are removed, the BK mapped HF state
(six qubits) is j011011i.

3. cc-pVDZ basis

As discussed in Sec. III.D, the cc-pVDZ basis for H2

includes a double-ζ representation of the valence shell and
additional polarization orbitals. Each atom contributes
f1s; 1s0; 2px; 2py; 2pzg orbitals, resulting in 20 spin orbitals
in total. In order to reduce our active space, we first change to
the NMO basis, using the 1-RDM as discussed in Sec. III.E.
We first obtain the 1-RDM for H2 in the cc-pVDZ basis with a
classically tractable CISD calculation.
We perform a unitary diagonalization of this matrix and

rotate the orbitals by the same unitary matrix. This constitutes
a change of basis to the NMOs of the molecule. The
diagonalized 1-RDM is given by Diag(1.96588, 0.00611,
0.02104, 0.0002, 0.00001, 0.00314, 0.00314, 0.00016,
0.00016, 0.00016). There are only ten diagonal entries in this

1-RDMbecause the spin-up and spin-down entries for the same
spatial orbitals have been combined. As discussed in Sec. III.E,
the diagonal entries are the NOONs. We can see that the fifth
orbital has a NOON that is 20 times smaller than the next
smallest NOON. As a result, we consider this spatial orbital to
always be empty and thus remove all terms involving it from the
Hamiltonian. This leaves a Hamiltonian acting onM ¼ 18 spin
orbitals. We now map these onto qubits using the BK-tree
method.
To map fermionic orbitals to qubits, we follow a similar

procedure to that shown in Fig. 12 for the LiH molecule. One
will find that the 9th and 18th orbitals store the number of
spin-up electrons and total number of electrons, respectively.
As a result, they can be removed. This reduces the problem to
one of 16 qubits.
The lowest energy computational basis state of cc-

PVDZ H2 in the Jordan-Wigner encoding (18 qubits) is
j000000001000000001i. The corresponding BK-tree
mapped state (16 qubits) is given by j0001011100010111i.
We stress that, while this procedure may seem complex, it
can in fact be easily implemented using the functions
available in the aforementioned quantum computational
chemistry packages.

FIG. 12. A pictorial representation of the fermion-to-qubit mapping procedure for LiH in the STO-3G basis. The fermionic natural
molecular orbitals (NMO) are initially arranged spin-up, spin-down, spin-up, spin-down, etc., and they have their corresponding natural
orbital occupation number (NOON) underneath. As the NOON of orbitals 6 and 7 is so small, they can be assumed to be unfilled and
removed from the Hamiltonian. As the combined NOON of orbitals 0 and 1 is close to 2, they can be assumed to be filled and removed
from the Hamiltonian. We then rearrange the remaining orbitals to be all spin-up, all spin-down and relabel them from 0 to 7. We then
perform the BK-tree mapping by constructing the Fenwick tree, Fenð0; 7Þ; as described in Fig. 13. The value xi is the value of the ith
qubit under the BK-tree mapping, while ni is the value of the ith qubit under the JW mapping. We see that qubit 3 stores the sumP

3
i¼0 ni, and qubit 7 stores the sum

P
7
i¼0 ni. As these sums are conserved quantities, these qubits do not flip throughout the simulation,

and thus they can be removed from the Hamiltonian as described in Sec. IV.C.
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B. Lithium hydride STO-3G basis

For LiH in the STO-3G basis, we consider
f1s; 2s; 2px; 2py; 2pzg functions for lithium, and a single
f1sg orbital for hydrogen. This gives a total of 12 spin

orbitals. We can reduce this problem to one of six qubits, as
illustrated in Fig. 12. The 1-RDM in the canonical orbital
basis from a CISD calculation on LiH, at an internuclear
separation of 1.45 Å, is given by

0
BBBBBBBBB@

1.9999 −0.0005 0.0006 0.0000 0.0000 −0.0010
−0.0005 1.9598 0.0668 0.0000 0.0000 0.0084

0.0006 0.0668 0.0097 0.0000 0.0000 −0.0138
0.0000 0.0000 0.0000 0.0017 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0017 0.0000

−0.0010 0.0084 −0.0138 0.0000 0.0000 0.0273

1
CCCCCCCCCA
:

There are only six rows and columns in this 1-RDM because the spin-up and spin-down entries for the same spatial orbitals
have been combined. We diagonalize this 1-RDM, moving to the NMO basis. The NMO 1-RDM is given by

0
BBBBBBBBB@

1.99992 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 1.96206 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.03454 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00005 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00171 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00171

1
CCCCCCCCCA
:

The first orbital has a NOON close to 2, so we consider it to
always be doubly occupied. We can then remove any terms
containing a†0, a0, a

†
1, a1, the spin orbitals corresponding to the

first spatial orbital in the 1-RDM, from the Hamiltonian. In
contrast, the fourth orbital has a very small NOON. As a

result, we assume that this orbital is never occupied and thus
remove the two corresponding fermion operators from the
Hamiltonian. This leaves a Hamiltonian acting on eight spin
orbitals. As the number of orbitals is now a power of 2, we can
use either the BK or BK-tree mappings to remove the two

FIG. 13. A pictorial representation of the Fenwick tree construction for LiH shown in Fig. 12. We carry out the BK-tree mapping by
constructing the Fenwick tree, Fen(0,7), as described in Algorithm 1. The algorithmic steps are shown on the left-hand side of the figure,
while the corresponding actions are shown on the right-hand side. The notation X → Y indicates that spin orbital X is connected to spin
orbital Y with an arrow. “Fin” indicates that the corresponding branch of the Fenwick tree is finished. The finished Fenwick tree
Fenð0; 7Þ is shown at the bottom of the figure.
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qubits associated with conservation symmetries. We use the
BK-tree mapping in order to provide an explicit example of
Fenwick tree construction. The Fenwick tree tells us which
qubits store which orbitals in the BK-tree mapping. We denote
the Fenwick tree for the M orbitals as Fenð0; M − 1Þ. We can
obtain this data structure using an iterative algorithm, which
we reproduce from Havlíček, Troyer, and Whitfield (2017) to
follow. The generation of the Fenwick tree for the LiH
molecule using this algorithm is shown in Fig. 13.
Our final Hamiltonian acts on six qubits but differs in

energy from the full 12-qubit Hamiltonian by only 0.2
mhartree. A similar procedure is described by Hempel et al.
(2018).

VIII. DISCUSSION AND CONCLUSIONS

We have now reviewed the key concepts in both classical
and quantum computational chemistry. In particular, we
discussed and showed how to map chemical problems onto
quantum computers, and how to solve them to obtain both the
ground and excited states. We now turn our attention to how
these techniques compare to the established classical methods
discussed in Sec. III. We first review the applicability and
limitations of the various classical methods in Sec. VIII.A.
This will highlight the problems for which quantum com-
puters may one day be useful. We discuss the resources
required for such calculations in Sec. VIII.B. We see that the
resources required are considerably greater than what we
currently have available. Consequently, in Sec. VIII.C, we
consider routes toward these calculations. This will include
both heuristic calculations on classically intractable system
sizes and exact calculations on smaller system sizes. We
conclude this review in Sec. VIII with a blueprint for future
investigations.

A. Classical limits

As discussed in Sec. III, there are many different methods
used in classical computational chemistry, all of which seek to
approximate the true ground state energy of the system of
interest, to varying degrees of accuracy. In general, the cost of
applying these methods grows with the accuracy of the results
that they produce, and the size of the system simulated. Here
we discuss the system sizes that one can typically accurately
treat using some of the commonly used classical methods.
This will help us to elucidate where, and when, quantum
computers may become useful for chemistry simulation. As in

previous sections, M denotes the number of spin orbitals
considered in basis set approaches, and N denotes the number
of electrons in the system.
At one end of the spectrum are density functional theory

(DFT) and the HF method. These calculations are often very
efficient to run and can treat large systems. As a result, they
are used widely in chemistry and materials science. However,
these techniques can struggle to achieve highly accurate
results for strongly correlated systems and are not systemati-
cally improvable. Consequently, they are often used for
obtaining qualitative results for large system sizes. We do
not expect these calculations to be replaced by those on
quantum computers, given the large system sizes that are
simulated.
At the other end of the spectrum are exact calculations, by

which we mean the exact energy that can be obtained from the
model of the system. It is important to note that these “exact”
calculations are rarely performed. Moreover, the degree of
accuracy depends on the details included in the calculation,
such as the inclusion of relativistic corrections, whether the
Born-Oppenheimer approximation is used, and whether
nuclear vibrational and rotational contributions are included.
Grid-based simulations, as described in Sec. III.B.1, provide
the most accurate results, but they can be carried out for only a
very small number of particles because of the large number of
grid points required. Exact results, albeit with a less accurate
model of the system, can also be obtained by carrying out
basis set, FCI calculations (Sec. III.B.2), which are less
computationally expensive than grid-based approaches.
However, the cost of these calculations still scales exponen-
tially with the system size, so they are applicable only to small
systems like the dinitrogen molecule (Rossi et al., 1999). In
the context of condensed matter physics, these calculations are
referred to as exact diagonalization and are possible up to
system sizes of around 20–30 lattice sites in the case of Fermi-
Hubbard models (Yamada, Imamura, and Machida, 2005;
Jiang, Sung et al., 2018).
The vast majority of calculations carried out by the

computational chemistry community do not achieve this
level of accuracy. Instead, approximate, less costly methods
are used, such as configuration interaction (Sec. III.C.3),
coupled-cluster (Sec. III.C.4), multiconfigurational self-con-
sistent field (Sec. III.C.2), tensor network methods, or
quantum Monte Carlo. An exhaustive comparison of these
methods is beyond the scope of this review, as is attempting to
catalog the ever-evolving list of the largest calculations
performed. However, we briefly highlight here some of the
system sizes where these methods have been successfully
applied.
Coupled-cluster methods (often CCSD) are some of the

most widely used high-accuracy methods. They are applicable
to large systems [hundreds of spin orbitals (Bartlett and
Musiał, 2007)] that do not display strong static correlation.
Examples include the DNA base guanine (C5H5N5O) in a cc-
pVTZ basis (Hobza and Sponer, 2002) or the hydrocarbon
octane (C8H18) also in a cc-pVTZ basis (Yamazaki et al.,
2018). While CC methods can also be applied to strongly
correlated systems (Watson and Chan, 2012; LeBlanc et al.,
2015), higher excitation degrees are often required, making
the method more costly to implement.

Algorithm 1. Fenwick tree generation.

Define FenðL; RÞ
If L ≠ R:

Connect R to FloorðRþL
2
Þ,

Fen
h
L; Floor

�
RþL
2

	i
;

Fen
h
Floor

�
RþL
2

	
þ 1; R

i
.

Else:
End the current Fenwick tree.
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QuantumMonte Carlo has many variants and has been used
to obtain results comparable to FCI in relatively small systems
[the Cr2 molecule with 24 active electrons in 30 spin orbitals
(Tubman et al., 2016) or the fluorine atom in a cc-pV5Z basis
with additional basis functions (Booth and Alavi, 2010)], as
well as state-of-the-art results in Fermi-Hubbard systems that
are accurate to around 100 sites (LeBlanc et al., 2015), and
less accurate results in other, larger systems (Austin, Zubarev,
and Lester, 2012). However, Monte Carlo methods are not
without their own shortcomings, including the infamous “sign
problem”, that affects fermionic simulations (Ortiz et al.,
2001; Austin, Zubarev, and Lester, 2012).
Tensor network methods, such as density matrix renorm-

alization group (DMRG), have proven effective for dealing
with systems displaying strong static correlation. They pro-
vide an alternative approach to CASSCF (see Sec. III.C.2)
approaches (Knecht et al., 2016), allowing the treatment of
larger active spaces, including those of metalloenzyme com-
plexes with active spaces of over 70 spin orbitals (Kurashige,
Chan, and Yanai, 2013; Sharma et al., 2014). This is larger
than the roughly 30–40 spin orbitals that can be treated with a
CASSCF approach (Lischka et al., 2018). Tensor network
methods are also useful for treating systems in condensed
matter physics, including Fermi-Hubbard models that are
accurate to around 100 sites (LeBlanc et al., 2015). While
tensor network methods are best suited to dealing with
systems with strong static correlation, recent work has
investigated post-DMRG methods to recover dynamic corre-
lation (Yanai et al., 2015; Knecht et al., 2016). For more
information on the use of DMRG in quantum chemistry, we
refer the interested reader to the reviews by Olivares-Amaya
et al. (2015) and Szalay et al. (2015).
We can see from the previous discussion that there appears

to be an untreated “sweet spot”, of systems with around 100–
200 spin orbitals that require high-accuracy calculations.
These systems are too strongly correlated to be tackled with
methods like HF, DFT, or even CCSD. They are also too large
to be reliably dealt with using DMRG or quantum Monte
Carlo, and much too large for classical FCI methods. Many
problems of scientific interest fit this description, including
transition metal catalysts (Podewitz, Stiebritz, and Reiher,
2011; Vogiatzis et al., 2019) and the Fermi-Hubbard model
(LeBlanc et al., 2015). As discussed throughout this review, a
small quantum computer, with around 100 perfect qubits,
would be able to calculate the FCI energy of a system with
around 100 spin orbitals in polynomial time. This would
imply that these problems are among the best targets for
quantum computers.
It is important to note that being able to accurately predict

the ground state energy of 100 spin-orbital systems still leaves
us far from our long-term goal of designing new medicines
and materials with simulations. For example, Yamazaki et al.
(2018) noted that over 95% of the approved drug molecules in
DrugBank 5.0 are larger than these 100–200 spin-orbital
systems that we might aim to simulate with a small, error-
corrected quantum computer. However, in practice, it is not
always necessary to perform highly accurate calculations on
the entirety of a large molecule or enzyme. Instead, problem
decomposition approaches can be utilized, whereby the most
important part of the system is accurately simulated, then

integrated with a potentially less accurate simulation of the
less challenging parts of the system. This approach was
investigated in the context of quantum computing by Bauer
et al. (2016), Kreula, Clark, and Jaksch (2016), Rubin (2016),
Reiher et al. (2017), and Yamazaki et al. (2018).

B. Quantum resources: Medium to long term

As discussed in Sec. IV.B, quantum computers can store the
FCI wave function of M spin orbitals using only M qubits in
second quantization. However, as discussed in Sec. II, we
must also take into consideration the qubit overhead of error
correction. Initial work suggested that around 1018 gates
would be necessary to perform phase estimation on a system
of around 100 spin orbitals, excluding the overhead of error
correction (Wecker et al., 2014). This estimate was sub-
sequently reduced through a series of algorithmic optimiza-
tions, as described in Sec. V.A.4.a.
These initial estimates did not focus on specific problems of

interest and neglected the overhead of quantum error correc-
tion, which is necessitated by the large number of gates
needed. Fault-tolerant resource estimations have since been
carried out for two main systems: small transition metal
molecules and condensed phase materials, including 2D
Fermi-Hubbard models, 2D and 3D electron gases, and solid
materials such as lithium and diamond. When performing
fault-tolerant resource estimates, one must specify details of
the problem, the hardware considered, and the error-correcting
code used. All resource estimates to date have focused on the
2D surface code due to its high threshold and suitability for
architectures with a 2D nearest-neighbor connectivity. In the
standard model of surface code resource estimation, Clifford
gates (such as Pauli gates and the CNOT gate) are considered to
be of negligible cost, while non-Clifford gates (such as the T
gate or the Toffoli gate) are more costly. This is because these
non-Clifford gates cannot be natively implemented in a fault-
tolerant way in the surface code but instead are typically
implemented using magic state distillation and teleportation
(Bravyi and Kitaev, 2005), which is often expensive
(Campbell, Terhal, and Vuillot, 2017). As a result, algorithm
complexities are measured in terms of the number of T and/or
Toffoli gates that they contain, as these are often the dominant
contribution to the cost of the algorithm. There has been
considerable work to reduce the cost of operations in the
surface code (including magic state distillation), which has
reduced the overhead of error correction by several orders of
magnitude (Trout and Brown, 2015; Fowler and Gidney,
2018; Gidney and Fowler, 2019; Litinski, 2019a, 2019b).
These improvements, combined with the algorithmic
advances described throughout this review, have contributed
to a significant reduction in the resources required for
chemistry calculations compared to the initial estimates. In
order to distinguish algorithmic advances from fault-tolerance
improvements, we list both the number of T and/or Toffoli
gates required for the simulation and the corresponding
number of physical qubits, obtained using the best fault-
tolerance procedures available at that work’s time of writing.
Reiher et al. (2017) carried out a fault-tolerant resource

estimation for the problem of biological dinitrogen fixation, as
described in Sec. III.A.1. They calculated the resources
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required to perform a FCI calculation on an active space of 54
electrons in 108 spin orbitals for FeMo-co, using a Trotter-
based approach to phase estimation. They found that this
would require around 1014 T gates. Assuming the best
physical error rates (10−3) at our time of writing, this would
require around 2 × 108 physical qubits, and take on the order
of weeks (10 ns to implement a T gate, including surface code
decoding) or months (100 ns per T gate) (Reiher et al., 2017).
We note that they were considering a targeted Majorana
fermion-based quantum computer, with physical error rates
103 times lower than has been demonstrated to date in trapped
ion or superconducting qubits.
A similar resource estimation, although one using the

more accurate FeMo-co active space of Li et al. (2019),
with 113 electrons in 152 spin orbitals, was carried out by
Berry, Gidney et al. (2019), who used the algorithm based on
qubitization and low-rank decompositions of the Hamiltonian
described in Sec. V.A.4. This approach reduced the resources
required to around 1011 Toffoli gates, which are currently the
bottleneck for this approach. While a complete fault-tolerant
resource analysis for this new approach has not yet been
performed, they showed that the cost of Toffoli gate distil-
lation is equivalent to around 1 × 106 physical qubits, working
for two months, assuming 10−3 error rates and surface code
cycle times of 1 μs.
Other works have conducted similar resource estimations

for equivalently sized problems (100–200 spin orbitals), but
they have focused on matter in the condensed phase. This
enables the use of the plane wave dual basis (Sec. III.D.3),
which as discussed in Sec. V.A.4.b can reduce the costs of
simulations. Babbush, Gidney et al. (2018) used the algorithm
based on qubitization in a plane wave dual basis (discussed in
Sec. V.A.4.b) to obtain resource estimates of around 2 × 108 T
gates for a 128 spin-orbital 3D homogeneous electron gas
(with similar results for other 3D materials), and around 7.1 ×
108 T gates for the 2D Fermi-Hubbard model with 100 lattice
sites (200 spin orbitals). Assuming error rates of 10−3, 1 μs to
implement a T gate (including surface code decoding) and
10 μs feed forward led to resources of around 2 × 106 − 3 ×
106 qubits, running for tens of hours using the best fault-
tolerance protocols available when that work was completed.
Subsequent improvements in fault-tolerance protocols have
further reduced these physical resources (Fowler and Gidney,
2018; Gidney and Fowler, 2019; Litinski, 2019a, 2019b).
Kivlichan et al. (2019) also performed resource estimations

for condensed matter and solid-state problems, using the
Trotter-based algorithm discussed in Sec. V.A.4.b. They
considered simulations targeting a size-extensive error in
the energy, which is appropriate when considering scaling
to the thermodynamic limit. They found that simulations of a
100 site Fermi-Hubbard model and a 128 spin-orbital homo-
geneous electron gas would both require on the order of 106

Toffoli gates and 107–108 T gates. Assuming error rates of
10−3, surface code error detection times of 1 μs, and surface
code error decoding times of 10 μs, they require around 4 ×
105 − 6 × 105 physical qubits running for a couple of hours.
As these simulations consider a loose-but-rigorous bound on
the energy error, as discussed in Sec. V.A.5, these resource
estimates may be overly pessimistic. Kivlichan et al. (2019)

found that if an intensive (e.g., absolute) error in the energy is
targeted, then their algorithm was less efficient than the
qubitization algorithm of Babbush, Gidney et al. (2018).
All of the previously mentioned resource estimation

papers focus on the cost of phase estimation and assume
that the system is prepared in an initial state that has a
sufficiently large overlap with the true ground state. As
discussed in Sec. V.A.2, there are many techniques for state
preparation, including adiabatic state preparation and varia-
tional approaches. Tubman et al. (2018) presented an algo-
rithm that can prepare a suitable initial state by leveraging a
classical adaptive configuration interaction method. This
algorithm was numerically shown to provide good estimates
for the ground states of many systems of interest in chemistry,
physics, and materials science. This stems from the fact that
the dominant Slater determinants in the wave function
typically converge much more quickly than the correlation
energy. Tubman et al. (2018) showed that the cost of this state
preparation algorithm is considerably lower than the cost for
phase estimation detailed previously, and hence it may be
neglected for many systems of interest. This technique can
also be combined with that of Berry et al. (2018), which used
classically obtained knowledge of the energy eigenvalues to
reduce the number of times that phase estimation must be
repeated. This reduced the necessity of having a large overlap
with the ground state.
One might assume that grid-based methods will require

considerably larger quantum computers than basis set
approaches given the former’s noncompact description of
the wave function. However, as described previously, the
figure of merit for fault-tolerant calculations is often the circuit
depth, in particular, the number of T or Toffoli gates. While an
initial investigation into fault-tolerant grid-based simulation
was performed (Jones et al., 2012), it did not calculate the
total number of T gates required or the number of qubits for
systems of interest. As such, it is not directly comparable to
the methods described earlier. The algorithm investigated in
that work, which was the algorithm of Kassal et al. (2008), has
since been surpassed by the algorithm of Kivlichan et al.
(2017). Moreover, there have been many improvements in
fault-tolerant circuit design and magic state distillation since
Jones et al. (2012). As classical computers are limited to small
grid-based calculations, it would be an interesting direction of
future research to establish the quantum resources required to
surpass these small, high-accuracy calculations.
These results suggest that certain calculations with around

100 spin orbitals may be better suited to early quantum
computers than others. In particular, materials in the con-
densed phase and Fermi-Hubbard simulations have thus far
required considerably fewer resources than simulations of
individual molecules. Despite these promising results and
recent, rapid improvements, we see that it still requires on the
order of 100 000 physical qubits to surpass classical tech-
niques. Current quantum computers possess only around 100
physical qubits, and we have yet to demonstrate a fully
protected logical qubit. It may be many years before we
possess a quantum computer with the resources required to
implement these algorithms, given the challenges in scaling
up hardware and performing quantum error correction
(Gambetta, Chow, and Steffen, 2017). In order to attempt
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to solve classically intractable chemistry problems before
that time, different approaches are required. We now discuss
the potential paths toward these classically intractable
simulations.

C. Quantum resources: Near to medium term

As discussed previously, existing estimates for surpassing
classical calculations require on the order of 100 000 physical
qubits in order to implement quantum error correction. The
first generations of quantum computers will be significantly
smaller than this. Nevertheless, there are many interesting
avenues to pursue with these first machines.
As discussed in Sec. V.B, the VQE has received significant

attention in recent years due to its short required circuit depth
compared to phase estimation. It has been speculated that the
VQE may enable small quantum computers with 100 to 200
physical qubits to surpass classical methods. Considerable
further work is required to demonstrate that this will be
possible. The VQE is a heuristic approach that attempts to
generate an approximation to the ground state wave function
that is better than classical methods using a short circuit. It is
difficult to prove that a given circuit will be able to obtain a
good estimate for the ground state, especially when the
difficulty of classical optimization is considered.
In general, the longer the circuit is, the better it can

approximate the ground state wave function. However, the
length of circuit that we can implement without error
correction is heavily limited by noise. A simple calculation
demonstrates the limited number of gates that we have
available. If we assume a discrete error model for our circuit
such that error events happen probabilistically and independ-
ently following each gate in the circuit, then even with an
optimistic two-qubit gate error rate of 0.01%, 10 times better
than the error rates achieved to date, we could carry out only
around 10 000 gates before we expect one or more errors to
occur in the circuit with high probability. While the error
mitigation techniques discussed in Sec. VI may enable us to
recover accurate results from a circuit deeper than 10 000
gates, it seems unlikely that these methods alone would enable
more than a small multiplicative increase in the circuit depth.
It is unclear whether we would be able to surpass

classical methods for any chemistry problems with this
number of gates. The Fermi-Hubbard model is one of the
leading candidates for such a simulation. As described in
Sec. V.B.1, the Hamiltonian variational Ansatz is particularly
efficient for this problem. We can prepare initial states of the
Fermi-Hubbard model using OðM1.5Þ gates and perform
Trotter steps of the Hamiltonian using OðMÞ gates for each
Trotter step (Jiang, Sung et al., 2018). Previous work has
shown that the Hamiltonian variational Ansatz performs well
for the Fermi-Hubbard model, although it is not yet known
how many Trotter steps may be required for accurate results.
Wecker, Hastings, and Troyer (2015) achieved good con-
vergence for a 12 site problem with 20 Trotter steps. Further
work has shown promising results for both the ground state
problem (Reiner, Wilhelm-Mauch et al., 2019) and dynamics
simulation (Reiner, Zanker et al., 2018), both in the presence
of realistic noise rates. These results were obtained using less
efficiently scaling circuits than those described previously.

Nevertheless, even if the number of Trotter steps required to
find the ground state scales only linearly with the number of
spin orbitals, the total algorithm scaling is OðM2Þ, which is
around 40 000 two-qubit gates for a 10 × 10 site Fermi-
Hubbard model (which requires 200 qubits). This rough
estimate neglects constant factors, so the number of gates
required would likely be higher. More thorough resource
estimates for the same problem on a silicon quantum archi-
tecture were performed by Cai (2019). Our estimate of 40 000
two-qubit gates is approximately equal to the number of gates
that we were limited to by noise in our previous back-of-the-
envelope calculation. There are a number of routes to try to
overcome the issue of noise in such a calculation. We may be
able to combine existing error mitigation techniques or try to
develop new ones. We could also utilize Ansätzewhich appear
to be robust to noise (Kim, 2017; Kim and Swingle, 2017;
Borregaard, Christandl, and Frana, 2019).
A less widely discussed approach is to perform error-

corrected VQE simulations. The aim would be to suppress the
error rate to a value low enough to obtain chemically accurate
energies from the simulation. For example, we could use
fermion-to-qubit mappings which enable the detection and/or
correction of single-qubit errors (Jiang, McClean et al., 2019;
Setia et al., 2019) discussed in Secs. IV.B.3 and VI.D.
Alternatively, we could explore by using small error-cor-
recting codes. An initial foray into this area was conducted by
Urbanek, Nachman, and de Jong (2019), who experimentally
implemented a VQE calculation on the H2 molecule encoded
in the [[4,2,2]] error detecting code. This calculation showed
improved accuracy over an unencoded calculation due to the
use of postselection. Nevertheless, the use of error-correcting
codes is complicated by the difficulty of producing error
protected T gates. As such, it is important to ask whether
variational algorithms can be implemented with fewer T gates
than their phase-estimation-based counterparts. As an exam-
ple, the phase-estimation-based algorithm of Kivlichan et al.
(2019) is already only a constant factor less efficient in terms
of T or Toffoli gates than just implementing time evolution
under the Fermi-Hubbard Hamiltonian directly, as is required
for a Hamiltonian variational Ansatz. Moreover, synthesizing
an arbitrary angle rotation gate can require at least 10–100 T
gates. For the hypothetical OðM2Þ scaling variational algo-
rithm described previously, we may still need around 4 × 105

to 4 × 106 T gates, neglecting constant factors. This is
comparable to the T gate counts required for phase-estima-
tion-based approaches described in Sec. VIII.B. In addition,
the long duration of such a computation could be problematic
given the potentially large number of measurements required
by the VQE.
An alternative approach to doggedly pursuing classically

intractable problems is to use chemistry calculations whose
results we know as a benchmark of our technology. This effort
arguably already began following the publication of many
VQE experiments on small molecules like H2 and LiH in a
range of different hardware systems. This proposal was
recently formalized by McCaskey et al. (2019) and Nam
et al. (2019). We cannot expect to surpass classical methods
without first reproducing classically known results. In a
similar vein, once we are able to experimentally demonstrate
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error-corrected logical qubits, the next step is to perform
small, error-corrected demonstrations of the algorithms
described throughout this review. This approach was recom-
mended by Love (2012), who charted the evolution of
classical computational chemistry milestones beginning in
the 1930s and selected target problems to emulate. Equivalent
targets would be small Fermi-Hubbard models or the G1 set of
molecules (Pople et al., 1989). This is a set of small molecules
whose energy is known to extremely high accuracy. For many
of the molecules in the G1 set, a FCI calculation on a
sufficiently accurate basis set would be classically intractable,
although it is typically not necessary due to highly accurate
approximate methods and experimental results. As a result,
this may be an excellent test case for future quantum
computers.

D. Summary and outlook

This review has sought to be accessible to both scientists
working on quantum computing and those working on
computational chemistry. We have discussed the key methods
used in classical computational chemistry and how they have
been incorporated into quantum algorithms. Emphasis has
been placed on the key differences between quantum and
classical methods of chemistry simulation, and the resulting
benefits that quantum computing is widely predicted to bring
to the field of computational chemistry.
However, we have also shown that quantum methods still

face many challenges, not the least of which being the high
error rates and low qubit counts of existing hardware.
Ultimately, the success of quantum computational chemistry
will depend on our ability to construct larger and better
controlled quantum computers. The question of how large and
how well controlled these machines must be will be deter-
mined by the quality of the procedures that we have developed
to carry out the calculations of interest. It is therefore crucial
that we continue to develop and optimize new algorithms,
mappings, error correction codes and procedures, basis sets,
and error mitigation techniques. We now highlight potential
research directions to aid in this goal.
In the realm of variational algorithms, a wide range of

Ansätze, chemistry mappings, classical optimization routines,
and error mitigation techniques have been proposed in recent
years. However, the vast majority of these proposals were
tested on small system sizes, performed a limited number of
comparisons to other techniques, and were not optimized for
maximum efficacy. We suggest that future work should begin
to collate the existing proposals and should determine which
look most promising. This review is a first step in this
direction, as is the growing availability of quantum computa-
tional chemistry packages and software libraries to emulate
quantum computers. Fast numerical simulations may enable
us to test variational algorithms on systems with up to around
30–40 qubits. This may begin to show which methods are
most suitable for near-term hardware. These calculations
should be performed both with and without noise in order
to ascertain the all-around performance of the various tech-
niques. As quantum hardware develops, this effort can be
migrated into real systems to test whether our algorithms are
as effective as we expect them to be. We expect that this more

focused research program will lead to new developments, as
well as to the optimization of existing methods.
It is more difficult to construct a road map for phase-

estimation-based approaches to solving chemistry problems
given the higher degree of sophistication of these methods and
the fact that there is less variation between the different
approaches. It is also difficult to anticipate breakthroughs that
can lead to a large reduction in required resources, such as the
introduction of the qubitization technique or tightening of
Trotter error bounds. One potential route to new developments
is to investigate areas that appear to be less well explored. One
example may be error-correction procedures that are tailored
specifically for chemistry problems. Alternatively, one could
import ideas that are well established in classical computa-
tional chemistry. This is how transformative ideas like plane
wave basis sets and low-rank Hamiltonian decomposition
entered the field.
Successful exploration of these future directions may prove

possible only through close collaboration between chemists
and quantum information scientists. We hope that this review
helps to develop a common language for these two groups,
facilitating this important collaboration.
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