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Quantum correlations between two parties are essential for the argument of Einstein, Podolsky, and
Rosen in favor of the incompleteness of quantum mechanics. Schrödinger noted that an essential
point is the fact that one party can influence the wave function of the other party by performing
suitable measurements. He called this phenomenon quantum steering and studied its properties, but
only in recent years has this kind of quantum correlation attracted significant interest in quantum
information theory. In this paper, the theory of quantum steering is reviewed. First, the basic concepts
of steering and local hidden state models are presented and their relation to entanglement and Bell
nonlocality is explained. Then various criteria for characterizing steerability and structural results on
the phenomenon are described. A detailed discussion is given on the connections between steering
and incompatibility of quantum measurements. Finally, applications of steering in quantum
information processing and further related topics are reviewed.
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I. INTRODUCTION

A. Overview

In 1935, Einstein, Podolsky, and Rosen (EPR) presented
their famous argument against the completeness of quantum
mechanics (Einstein, Podolsky, and Rosen, 1935). In this
argument, a two-particle state is considered, where one party
can measure the position or momentum, and the correlations
of the state allow one to predict the results of these measure-
ments on the other party if the same measurement is per-
formed there. The EPR argument led to long-lasting discus-
sions, but already directly after its publication Schrödinger
noted this phenomenon in the argument: The first party can,
by choosing the measurement, steer the state on the other side
into an eigenstate of position or momentum. This cannot be
used to transmit information, but Schrödinger still considered
it to be magic.
The early works of Schrödinger (1935, 1936) did not

receive much attention; see also Sec. V.M. This changed in
2007, when a formulation in the language of quantum
information processing was given and systematic criteria
were developed (Wiseman, Jones, and Doherty, 2007). In
the modern view, steering denotes the impossibility to
describe the conditional states at one party by a local hidden
state model. As such, steering denotes a quantum correlation
situated between entanglement and Bell nonlocality. In the
following years, the theory of steering developed rapidly. It
was noted that steering provides a natural formulation for
discussing quantum information processing, if for some of the
parties the measurement devices are not well characterized.
Also, the concept of steering helped scientists to understand
and answer open questions in quantum information theory. An
important example here is the construction of counterexam-
ples to the Peres conjecture, which states that certain weakly
entangled states do not violate any Bell inequality. Finally,
steering turned out to be closely related to the concept of joint
measurability of generalized measurements in quantum
mechanics. More precisely, measurements that are not jointly
measurable are exactly the measurements that are useful to
reveal the steering phenomenon. This has sparked interest in
the question in which sense measurements in quantum
mechanics can be considered a resource.
This review aims to give an introduction to the concept and

applications of quantum steering. Starting from the basic

definitions, we explain steering criteria and structural results
on quantum steering. We also discuss in some detail related
concepts, such as quantum entanglement and the joint
measurability of observables. We focus on the conceptual
and theoretical issues and on the finite-dimensional case and
mention experiments only briefly. For discussing quantum
steering, the tool of semidefinite programming has turned out
to be useful. Concerning this, we discuss only the main
formulations; concrete examples and algorithms can be found
in a different review (Cavalcanti and Skrzypczyk, 2017).
As mentioned, quantum steering is related to several other

central concepts in quantum theory, so it may be useful to the
reader tomention related relevant literature here. First, a review
on the quantitative aspects of the EPR argument was given by
Reid et al. (2009). The phenomenon of entanglement was
extensively discussed by Horodecki et al. (2009), and Gühne
and Tóth (2009) addressed methods to characterize it. Brunner
et al. (2014) gave a detailed overview on Bell inequalities and
their applications. Finally, Busch et al. (2016) developed the
theory of quantum measurements in depth.
The structure of this article is as follows: In the remainder of

this introduction, we explain the idea of quantum steering and
the main definitions. We also provide a short comparison with
quantum entanglement and Bell nonlocality, as this is central
to the further discussion.
Section II presents different methods for the detection of

quantum steering. We discuss in detail how steerability can be
inferred if some correlations or the complete quantum state is
known. These methods are then used in Sec. III, where we
describe key conceptual aspects of steering. This includes the
discussion of one-way steering, the superactivation of steer-
ing, the steerability of bound entangled states, and the
construction of steering maps. In addition, we then present
the relation to other types of quantum correlations in detail.
Section IV deals with the connections between steering and

the joint measurability of observables. We explain the concept
of joint measurability and its various connections to steering.
These connections allow one to transfer results from one topic
to the other. Section V describes different applications of
steering as well as further topics. This includes applications in
quantum key distribution and randomness certification, but
also topics like multiparticle steering, steering of Gaussian
states, the steering ellipsoid, and historical aspects of steering.
Finally, Sec. VI presents the conclusion and poses some open
questions.

B. Steering as a formalization of the EPR argument

Let us start by recalling the EPR argument. Originally, EPR
used the position and momentum of two particles to explain
their line of reasoning (Einstein, Podolsky, and Rosen, 1935),
but in the simplest setting the argument can be explained with
two spin-1=2 particles or qubits (Bohm, 1951). Consider two
particles that are in different locations and that are controlled
by Alice and Bob; see Fig. 1. They are in the so-called singlet
state

jψiAB ¼ 1ffiffiffi
2

p ðj01i − j10iÞ; ð1Þ
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where j0i ¼ jzþi and j1i ¼ jz−i denote the two possible spin
orientations in the z direction. If Alice measures the spin of her
particle in the z direction and obtains the result þ1 (or −1),
then, due to the perfect anticorrelations of the singlet state,
Bob’s state will be in either the state j1i or the state j0i.
Similarly, if Alice measures the spin in the x direction, Bob’s
conditional states are given by jxþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

if
Alice’s result is −1 and jx−i ¼ ðj0i − j1iÞ= ffiffiffi

2
p

for the
result þ1.
By choosing her measurement setting, Alice can predict

with certainty the values of a z or x measurement on Bob’s
side. According to EPR, this means that both observables must
correspond to “elements of reality,” as each of them can be
predicted in principle with certainty and without disturbing the
system. This raises problems if one assumes that the wave
function is a complete description of the physical situation,
since the corresponding observables do not commute and the
quantum mechanical formalism does not allow one to assign
simultaneously definite values to both of them. Consequently,
EPR concluded that quantum mechanics is incomplete.
Alice cannot transfer any information to Bob by choosing

her measurement directions since Bob’s reduced state is
independent of this choice. But, as Schrödinger noted, she
can determine whether the wave function on his side is in an
eigenstate of the Pauli matrix σx or σz. This steering of the
wave function is, in Schrödinger’s own words, “magic” as it
forces Bob to believe that Alice can influence his particle from
a distance; see also Sec. V.M for details.
The situation for general quantum states other than the

singlet state can be formalized as follows (Wiseman, Jones,
and Doherty, 2007): Alice and Bob share a bipartite quantum
state ϱAB, and Alice performs different measurements, which
do not need to be projective. For each of Alice’s measurements
setting x and result a, Bob remains with an unnormalized
conditional state ϱajx. The set of these states is called the
steering assemblage, and the conditional states obey the
condition

P
a ϱajx ¼ ϱB, meaning that the reduced state ϱB ¼

TrAðϱABÞ on Bob’s side is independent of Alice’s choice of
measurements.
After characterizing the states ϱajx, Bob may try to explain

their appearance as follows: He assumes that initially his
particle was in some hidden state σλ with probability pðλÞ,
parametrized by some parameter (or hidden variable) λ. Then
Alice’s measurement and result just gave him additional

information on the probability of the states. This leads to
states of the form (Wiseman, Jones, and Doherty, 2007)

ϱajx ¼ pðajxÞ
Z

dλpðλja; xÞσλ

¼
Z

dλpðλÞpðajx; λÞσλ: ð2Þ

The equivalence between these two expressions is easy to
verify if the setting x can be chosen freely and does not depend
on the parameter λ, i.e., pðx; λÞ ¼ pðxÞpðλÞ. The two repre-
sentations, however, point at different interpretations.
The first representation can be interpreted as if the prob-

ability distribution pðλÞ is updated just to pðλja; xÞ, depend-
ing on the classical information about the result a and setting
x. Here Bob does not need to believe that Alice has control
over his state—her measurements and results just gave him
additional information about the distribution of the states σλ.
The second representation can be interpreted as a simu-

lation task. Here Alice can simulate the state ϱajx by drawing
the states σλ according to the distribution pðλÞ and, at the same
time, announcing the result a depending on the known setting
x and the parameter λ. Consequently, Bob does not need to
believe that the initial state shared by him with Alice was
entangled.
Generally, if a representation as in Eq. (2) exists, Bob does

not need to assume any kind of action at a distance to explain
the postmeasurement states ϱajx. Consequently, he does not
need to believe that Alice can steer his state by her measure-
ments, and one also says that the state ϱAB is unsteerable or
has a local hidden state (LHS) model. If such a model does not
exist, Bob is required to believe that Alice can steer the state in
his laboratory by some “action at a distance.” In this case, the
state is said to be steerable. Note that steerability is an
inherently asymmetric correlation, and there are states where
Alice can steer Bob but not the other way round; see also
Sec. III.D.
For the wave function in Eq. (1), the corresponding

assemblage is formed by the states j0ih0j=2, j1ih1j=2,
jxþihxþj=2, and jx−ihx−j=2 and one can directly see that
no LHS model exists: The four conditional states are, up to
normalization, pure and thus cannot be mixtures of other
states. Thus, the occurring normalized σλ have to be propor-
tional to the four conditional states. Equation (2) implies that

FIG. 1. Schematic description of the steering phenomenon: A state ϱAB is distributed between two parties. Alice performs a
measurement (labeled as x ∈ f1; 2g) on her particle and obtains the result a ¼ �. Bob receives the corresponding unnormalized
conditional states ϱajx. If Bob cannot explain this assemblage of states by assuming preexisting states at his location, he has to believe
that Alice can influence his state from a distance.
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jηihηj=2 ¼ R
dλpðλÞpðajx; λÞσλ for all four jηihηj and σλ

coming from the set fj0ih0j; j1ih1j; jxþihxþj; jx−ihx−jg. As
mixtures are excluded, one must have pðajx; λÞ ¼ 1 if σλ
corresponds to ϱajx and therefore pðλÞ ¼ 1=2 for all λ. But
then the probability distribution pðλÞ cannot be normalized.
For general states and measurements, however, the exist-

ence of a LHS model is not straightforward to decide. This
leads us to the question of how one can decide for a given state
ϱAB or a given assemblage fϱajxgwhether it is steerable or not,
and this is one of the central questions of this review.

C. Steering, Bell nonlocality, and entanglement

There is another way to motivate the definition of steering
and steerable correlations as in Eq. (2). For that, we briefly
explain the notions of local hidden variable (LHV) models and
entanglement.
In a general Bell experiment, Alice and Bob perform

measurements on their particles, denoted by Ax and By and
labeled by x and y. For the obtained results a, b, one asks
whether their probabilities can be written as

pða; bjx; yÞ ¼
Z

dλpðλÞpðajx; λÞpðbjy; λÞ: ð3Þ

Such a description is known as a LHV model: The hidden
variable λ occurs with probability pðλÞ, and Alice and Bob can
compute the occurring joint probabilities with local response
functions pðajx; λÞ and pðbjy; λÞ. For a given finite number of
settings x, y and outcomes a, b, the probabilities that can be
written as in Eq. (3) form a high-dimensional polytope. The
facets of the polytope are described by linear inequalities, the
so-called Bell inequalities. Quantum states can result in
probabilities that violate the Bell inequalities, but deciding
whether a given state violates a Bell inequality or not is not
straightforward and is the subject of an entire field of research
(Brunner et al., 2014).
Let us now describe the notion of entanglement. In general,

a state on a two-particle system is called separable if it can be
written as a convex combination of product states,

ϱAB ¼
X
k

pkϱ
A
k ⊗ ϱBk . ð4Þ

Otherwise, it is called entangled. The separability of a
quantum state is not easy to decide, except for systems
consisting of two qubits or one qubit and one qutrit, where
the method of the partial transposition gives a necessary and
sufficient criterion; see also Sec. III.E.
For our discussion, it is important that the measurements on

separable states clearly can be explained by a LHV model. A
general measurement Mx is given by a positive-operator-
valued measure (POVM). This means that one considers a set
of effects Eajx that are positive operators, Eajx ≥ 0, summing
up to the identity

P
a Eajx ¼ 1. The probability of the result a

in a state ϱ is computed according to pðaÞ ¼ TrðϱEajxÞ.
Applying this to a separable state, one directly sees that the
probabilities of distributed measurements can be written as

pða; bjx; yÞ ¼
X
k

pkTrðEajxϱAk ÞTrðEbjyϱBk Þ: ð5Þ

This is clearly a LHV model as in Eq. (3), with the
extra condition that the response functions pðajx; λÞ and
pðbjy; λÞ result from the quantum mechanical description
of measurements.
Considering Eqs. (3) and (5), one may ask whether the

probabilities can also be described by a hybrid model, where
Alice has a general response function, while Bob’s function is
derived from the quantum mechanical measurement rule. That
is, one considers probabilities of the form

pða; bjx; yÞ ¼
Z

dλpðλÞpðajx; λÞTrðEbjyσBλ Þ: ð6Þ

The point is that such probabilities are exactly the ones that
occur in the steering scenario. By linearity, we can rewrite
Eq. (6) as

pða; bjx; yÞ ¼ TrðEbjyϱajxÞ; ð7Þ

where ϱajx ¼
R
dλpðλÞpðajx; λÞσBλ are the conditional states,

allowing for a LHS model as in Eq. (2).
We can conclude that the steering phenomenon relies on

quantum correlations which are between entanglement and
violation of a Bell inequality. In fact, any state that violates a
Bell inequality can be used for steering, and any steerable state
is entangled; see also Fig. 2. These inclusions are strict in the
sense that there are entangled states that cannot be used for
steering, and there are steerable states that do not violate any
Bell inequality. In Sec. III.A, we discuss in detail the relation
and the known examples of states in the various subsets.
It is important to note that the indicated hierarchy also

represents different levels of trust in the measurement devices
in entanglement verification. In general, in quantum informa-
tion processing tasks, such as cryptography, it makes a
difference whether or not one assumes that the measurement
devices are well characterized. Completely uncharacterized
devices can be seen as a black box, giving just some
measurement results without any knowledge about the

FIG. 2. Inclusion relation between entanglement, steering, and
Bell inequality violations. The set of all states is convex. The
states which have a LHV model and therefore do not violate any
Bell inequality form a convex subset. The states with a LHS
model are unsteerable and form a convex subset of the LHV
states. Finally, the separable states are a convex subset of the LHS
states.
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quantum description. There can also be situations where the
devices are partly characterized, e.g., if the dimension of the
quantum system is known, but not the precise form of the
measurement operators.
Entanglement, steering, and Bell nonlocality correspond to

different levels of trust in the following sense. The usual
schemes of entanglement verification, such as quantum state
tomography and entanglement witnesses, require well-
characterized measurement devices. The violation of a Bell
inequality, however, certifies the presence of entanglement
without any assumptions about the measurements or dimen-
sion of the system. Steering is between the two scenarios: If a
state is steerable, its entanglement can be verified in a one-
sided device-independent scenario, where Bob’s measure-
ments are characterized, but Alice’s are not. In some cases, the
assumptions about Bob’s system can even be relaxed; see
Sec. III.F for an example.

II. DETECTION OF STEERING

Here we discuss how steering can be verified in different
scenarios. Mainly three cases can be distinguished. First,
given some expectation values of the form hAi ⊗ Bji, one can
ask whether these correlations can prove steerability. Second,
one can consider the case where Bob’s assemblage fϱajxg is
given and ask whether or not it can be explained by a LHS
model. Finally, one can take a complete state ϱAB and ask
whether this state allows one to see the phenomenon of
steering if Alice makes appropriate measurements.

A. Steering detection from correlations

The simplest way to detect steering is to formulate criteria
for the correlations between Alice’s and Bob’s measurement
statistics. These can then be directly evaluated in experiments
without the need of reconstructing the whole assemblage.
This approach of detecting steerability has a natural con-

nection to the task of entanglement verification (Gühne and
Tóth, 2009), and many concepts are similar to the case of
entanglement detection. This includes linear criteria that are
similar to entanglement witnesses, criteria based on variances
or entropic uncertainty relations, and criteria similar to Bell
inequalities.

1. Linear and nonlinear steering criteria

Some of the typical ideas for deriving steering criteria are
best explained with an example. Consider two qubits and the
operator

Q ¼ σx ⊗ σx þ σy ⊗ σy þ σz ⊗ σz: ð8Þ

The question is, which values can hQi have for separable
states? If one tries to maximize or minimize hQi over
separable states, it suffices to consider product states of the
form ϱA ⊗ ϱB, as these are the extreme points of the separable
states. But for product states, the single expectation values
factorize and one has (Tóth, 2005)

jhQij ¼ jhσxiAhσxiB þ hσyiAhσyiB þ hσziAhσziBj
≤ ka⃗kkb⃗k ≤ 1; ð9Þ

with a⃗ ¼ ðhσxiA; hσyiA; hσziAÞ and b⃗ defined analogously.
Here the Cauchy-Schwarz inequality was used first, and then
the fact that, for single-qubit states, hσxi2 þ hσyi2 þ hσzi2 ≤ 1

holds. For the singlet state, however, hQi ¼ −3. As a result
the operator W ¼ 1þQ is an entanglement witness, as it has
a positive mean value on all separable states but has a negative
mean value on some entangled states.
If one wants to estimate hQi for unsteerable states, then in

view of Eq. (6) it suffices to consider product distributions
again. This time, however, only Bob’s results are described by

quantum mechanics, so only the norm kb⃗k ≤ 1 is bounded,
while ka⃗k ¼ ffiffiffi

3
p

is possible. Thus jhQij ≤ ffiffiffi
3

p
is a valid

steering inequality that allows for detecting the steerability of
the singlet state (Cavalcanti et al., 2009).
A possible modification and generalization is the following:

Consider N measurements Ak on Alice’s side which can take
the two values �1 and arbitrary observables Bk on Bob’s side.
Then, for unsteerable states (Saunders et al., 2010),

XN
k¼1

jhAk ⊗ Bkij ≤ max
fakg

�
λmax

�XN
k¼1

akBk

��
; ð10Þ

where λmaxðXÞ denotes the largest eigenvalue of X and
ak ¼ �1. To prove this bound, it suffices to consider a
product distribution as above; then each Ak can just change
the signs of the Bk, and the mean value of the resulting sum is
bounded by the maximal eigenvalue.
A different kind of generalization uses expectation values

on Bob’s side that are conditioned on Alice’s outcome. If
Alice makes a measurement Ak with possible results labeled
by a, one can denote by hBija the mean value of a
measurement on Bob’s side, conditioned on the outcome a.
Then one can consider the nonlinear expression

TðkÞ
x ¼

X
a

pðajkÞðhσxijaÞ2; ð11Þ

and summing this up for three Pauli measurements gives the
bound for unsteerable states (Wittmann et al., 2012),

Tð1Þ
x þ Tð2Þ

y þ Tð3Þ
z ≤ 1: ð12Þ

This follows by considering product distributions and
hσxi2 þ hσyi2 þ hσzi2 ≤ 1. Note that similar bounds on sums
of squared mean values are known for many cases of
anticommuting observables or mutually unbiased bases
(Tóth and Gühne, 2005; Wu, Yu, and Mølmer, 2009;
Wehner and Winter, 2010), so one can directly generalize
the previous criteria to broader classes of observables on
Bob’s side (Evans, Cavalcanti, and Wiseman, 2013). With
mutually unbiased bases as a generalization of the Pauli
matrices, one can even find steering inequalities with an
unbounded violation (Marciniak et al., 2015; Rutkowski
et al., 2017).
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From these criteria, the following question arises: Which
are the best measurement directions for a given state in order
to detect steering? For the criterion in Eq. (10), this was
studied by Evans andWiseman (2014). For criteria using Pauli
matrices, one can still ask for the best orientation of the
coordinate system. McCloskey, Ferraro, and Paternostro
(2017) observed that often, but not always, the measurements
that correspond to the semiaxes of the so-called steering
ellipsoid (i.e., the ellipsoid of the potential conditional states
in Bob’s Bloch sphere considering all possible measurements
for Alice; see Sec. V.B) give strong criteria. For higher-
dimensional systems, a systematic study of optimal measure-
ments in restrictive scenarios, i.e., in the context of N
measurements of k outcomes, was performed by Bavaresco
et al. (2017).
So far we have considered criteria that were motivated by

concepts in entanglement theory. A different method to design
steering inequalities for a given special scenario comes from
the theory of semidefinite programs (SDPs). As we see in
Sec. II.B, the question of whether a given assemblage fϱajxg is
steerable can be decided via a SDP. The corresponding dual
problem can then be considered as a linear steering inequality.
Further details are given in Sec. II.B.2.
The discussed criteria or small variations thereof have been

used in several experiments (Saunders et al., 2010; Bennet
et al., 2012; Smith et al., 2012; Wittmann et al., 2012; Weston
et al., 2018). In the experimental works, it is also important to
close loopholes, such as the one arising from inefficient
detectors. Theoretical aspects of this issue were discussed
in detail by Evans, Cavalcanti, and Wiseman (2013), Vallone
(2013), and Jeon and Jeong (2019) and was experimentally
studied by Bennet et al. (2012), Smith et al. (2012), Wittmann
et al. (2012), and Weston et al. (2018).

2. Steering criteria from uncertainty relations

Steering inequalities based on uncertainty relations were
proposed long before the formal definition of steerability in
the context of the EPR argument (Reid, 1989; Reid et al.,
2009). Also, the criterion in Eqs. (11) and (12) can be seen as a
criterion in terms of conditional variances.
A systematic approach using entropic uncertainty relations

(EURs) was proposed by Walborn et al. (2011) for continuous
variable systems and tailored to discrete systems by
Schneeloch et al. (2013). Here we focus on the discrete
version. In general, a measurement M results in a probability
distribution P ¼ ðp1;…; pnÞ of the outcomes, for which one
can consider the Shannon entropy SðPÞ ¼ −

P
i pi logðpiÞ as

the entropy of the measurement SðMÞ. For two projective
measurements given by the corresponding Hermitian oper-
ators B1 ¼

P
i λijviihvij and B2 ¼

P
i μijwiihwij on Bob’s

side, one has the general EUR (Maassen and Uffink, 1988)

SðB1Þ þ SðB2Þ ≥ − lnðΩBÞ; ð13Þ

where ΩB ¼ maxi;jðjhvijwjij2Þ is the maximal overlap
between the eigenstates. This and similar EURs are central
to quantum information theory and quantum cryptography
(Coles et al., 2017).

For product measurements A ⊗ B on two particles, one can
consider the joint distribution and the conditional Shannon
entropy SðBjAÞ ¼ SðA; BÞ − SðAÞ. Then, for unsteerable
states,

SðB1jA1Þ þ SðB2jA2Þ ≥ − lnðΩBÞ ð14Þ

holds. The intuition behind this criterion is that if Alice can
predict from her measurement data Bob’s measurement results
better than the EUR allows, then there cannot be local
quantum states for Bob that reproduce such measurement
results.
A generalization of this criterion to other entropies has been

developed (Costa, Uola, and Gühne, 2018a, 2018b). The
general approach works for any entropy with the following
properties: (i) the entropy is (pseudo)additive for independent
distributions, (ii) one has a state-independent EUR, and
(iii) the corresponding relative entropy is jointly convex.
The resulting criteria based on Tsallis entropy are typically
stronger than the ones from Shannon entropy. In addition,
Kriváchy, Fröwis, and Brunner (2018) obtained tight steering
inequalities in terms of the Rényi entropy for scenarios with
two measurements per party, and Jia, Wu, and Guo (2017)
developed methods of detecting entanglement and steering
based on universal uncertainty relations and fine-grained
uncertainty relations using majorization.
In the case of continuous variable systems, the entropic

criteria proposed by Walborn et al. (2011) are connected to
one of the first criteria already mentioned. Reid (1989)
addressed the following question: To what extent can Alice
infer the value of Bob’s position XB or momentum PB by
measuring her own canonical variables? The best estimator of
XB has as uncertainty the minimal variance δ2minðXBÞ ¼R
dxApðxAÞδ2ðxBjxAÞ, where δ2ðxBjxAÞ is the variance of

the conditional probability distribution. Then, for quantum
states that do not give rise to an EPR argument, the condition

δ2minðXBÞδ2minðPBÞ ≥ 1
4

ð15Þ

holds. Later Walborn et al. (2011) showed the criterion
SðXBjXAÞ þ SðPBjPAÞ ≥ lnðπeÞ and demonstrated that this
implies Eq. (15). In addition, Walborn et al. (2011) reported
the experimental observation of states, which can be detected
by the entropic criterion, but not by Eq. (15).
Other experiments involving steering criteria from uncer-

tainty relations have been reported in the case of continuous
variable systems by Bowen et al. (2003), and recently in the
case of discrete systems (Wollmann, Uola, and Costa, 2019;
Yang et al., 2019).

3. Steering and the CHSH inequality

Given a certain set of measurements, one can ask for the
optimal inequalities for detecting quantum correlations. For
Bell nonlocality and the case of two measurements with two
outcomes each, it is known that the probabilities allow a LHV
description if and only if the Clauser-Horne-Shimony-Holt
(CHSH) inequality

hA1B1i þ hA1B2i þ hA2B1i − hA2B2i ≤ 2 ð16Þ
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holds (Fine, 1982), where permutations of the measurements
and outcomes also have to be taken into account. More
precisely, the inequality implies that the probabilities of all
outcomes for the measurements AiBj can be explained by a
LHV model. Note that these probabilities include more
information than the full correlations hAiBji only, as the
marginals hAii and hBji are independent of the full correla-
tions. In other words, if the CHSH inequality is fulfilled, there
is also no two-setting Bell inequality with marginal terms that
is violated.
Similar statements are known from entanglement theory.

For instance, one can consider the situation of two qubits,
where Alice and Bob perform each the two measurements σx
and σz only, and not full tomography. For this scenario, all
relevant entanglement witnesses have been characterized
(Curty, Lewenstein, and Lütkenhaus, 2004).
For quantum steering, one can also consider two measure-

ments with two outcomes per party, where only the measure-
ments of Bob may be characterized. First, one can consider the
case in which Bob has a qubit and performs two mutually
unbiased measurements (e.g., two Pauli measurements). For
this scenario, it was shown by E. G. Cavalcanti et al. (2015)
that the full correlations hAiBji admit a LHS model, if and
only if the inequality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðA1 þ A2ÞB1i2 þ hðA1 þ A2ÞB2i2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðA1 − A2ÞB1i2 þ hðA1 − A2ÞB2i2

q
≤ 2 ð17Þ

holds. Note that the resulting inequality and the underlying
problem has some similarities to Bell inequalities for orthogo-
nal measurement directions for one or both parties (Uffink and
Seevinck, 2008).
For the more general scenario, one has to distinguish

carefully whether the LHS model should explain the full
correlations hAiBji only or in addition the marginal distribu-
tions hAii and hBji.
Concerning full correlations, Girdhar and Cavalcanti (2016)

considered the case of uncharacterized projective measure-
ments on Bob’s qubit. First, two projective measurements B1

and B2 on a qubit define a plane on the Bloch sphere, and in
this plane one can always find a third measurement B3 such
that B1 and B3 are mutually unbiased; moreover, the mean
values of B1 and B2 can be obtained from the mean values of
B1 and B3, and vice versa. Then it was shown that B1 and B2

allow a LHS model if and only if Eq. (17) holds for B1 and B3.
In addition, it was shown that if Eq. (17) is violated, then the
state violates also the original CHSH inequality and is thus
nonlocal, but possibly for a different set of measurements [see
also Quan et al. (2017) for an independent proof]. Finally, a
characterization of POVMs with two outcomes was also given
by Girdhar and Cavalcanti (2016).
At the same time, Quan et al. (2017) considered the

question of whether full correlations and marginals of two
dichotomic measurements can be explained via a LHS model.
For this case, the equivalence is not true anymore: There are
two-qubit states that do not violate any CHSH inequalities;
nevertheless, no LHS model can explain the full correlations
and marginals of certain A1, A2, B1, B2. One can also find

two-qubit states for which steerability from Alice to Bob can
be proved by two measurements on each side, but for which
steering from Bob to Alice is not possible; see also Sec. III.D.
Finally, the interplay between steering and Bell inequality
violation for specific families of states was discussed by Costa
and Angelo (2016) and Quan et al. (2016).

4. Moment matrix approach

Another method that can be used for the characterization of
quantum correlations consists of moment matrices or expect-
ation value matrices. In general, one considers a set of
operators of the formMk ¼ fAik ⊗ Bjkg and builds the matrix
of expectation values

Γkl ¼ hM†
kMli: ð18Þ

The remaining task is to characterize the possible matrices Γ
that originate from unsteerable or separable states. Clearly,
Γ ≥ 0; i.e., it has no negative eigenvalues.
This approach of moment matrices is a well-known tool in

entanglement theory (Shchukin and Vogel, 2005; Häseler,
Moroder, and Lütkenhaus, 2008; Moroder, Keyl, and
Lütkenhaus, 2008; Miranowicz et al., 2009). There one can
argue that, for separable states, the matrix Γ inherits a
separable structure so that approaches using the partial
transposition can be applied. This also allows characterization
of entanglement if some of the entries Γkl are not known or if
the measurement devices are not trusted (Moroder et
al., 2013).
Concerning steering, it follows from Eqs. (5) and (6) that

the correlations of unsteerable states can be explained by an
underlying separable state, where the measurements of Alice
commute (Kogias, Skrzypczyk et al., 2015; Moroder et al.,
2016). The commutativity of Alice’s measurements together
with possible exploitation of the structure of Bob’s charac-
terized measurements (e.g., an algebraic structure such as that
of the Pauli spin operators) results in constraints on the
moment matrix. In the end, for a given set of product operators
fMkg, one needs to check whether there exist complex
parameters for the unknown entries of the moment matrix
(such as squares of Alice’s measurements) that make the
matrix positive. As any moment matrix is positive, proving
that such an assignment of parameters is not possible implies
that the underlying state is steerable. The main result of
Kogias, Skrzypczyk et al. (2015) can then be formulated as
follows. For any unsteerable correlation experiment

ΓR ≥ 0 for some R; ð19Þ
where ΓR is the moment matrix Γ for a set of parameters R
(fulfilling the requirements inherited from commutativity on
Alice’s side and possible further structure on Bob’s side) as the
unknown entries. Kogias, Skrzypczyk et al. (2015) further
pointed out that checking the existence of such parameters
forms a semidefinite program and provided various examples.
Note that this approach can still be augmented by using the
separable structure of Γ.
Chen, Budroni et al. (2016) used the concept of a moment

matrix to characterize steerability in a more refined way.
Namely, one can also consider the moment matrices Γajx for
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each state in the assemblage fϱajxg. Using the methods of
Moroder et al. (2013) then allows one to characterize and
quantify steerability in a device-independent way.

5. Steering criteria based on local uncertainty relations

Local uncertainty relations (LURs) are a common tool for
entanglement detection, and the underlying idea can be
directly generalized to steering detection. For the case of
entanglement, the idea is as follows: Consider observables Ak

on Alice’s side, obeying an uncertainty relation
P

k δ
2ðAkÞ ≥

CA, where δ2ðXÞ ¼ hX2i þ hXi2 denotes the variance. An
example of such a relation is

P
i¼x;y;z δ

2ðσiÞ ≥ 2. For general
observables, such bounds can be computed systematically
(Huang, 2012; Maccone and Pati, 2014; Schwonnek,
Dammeier, and Werner, 2017). Similarly, one can consider
observables Bk for Bob, fulfilling

P
k δ

2ðBkÞ ≥ CB, and the
global observables Mk ¼ Ak ⊗ 1þ 1 ⊗ Bk. Then, for sepa-
rable states, the bound

P
k δ

2ðMkÞ ≥ CA þ CB holds
(Hofmann and Takeuchi, 2003). This is a very strong
entanglement criterion, and its properties have been studied
in detail (Gühne et al., 2006; Gittsovich et al., 2008; Zhang
et al., 2008).
For steering detection, we can use the same construction.

The only difference is that Alice’s measurements are not
characterized, so no uncertainty relation for them is available
(Ji et al., 2015; Zhen et al., 2016). Consequently, unsteerable
states obey

X
k

δ2ðMkÞ ≥ CB: ð20Þ

The criterion of the LURs can be formulated in terms of
covariance matrices (Gühne et al., 2007), and this also works
for steering (Ji et al., 2015). For a given quantum state ϱ and
observables fXkg, the symmetric covariance matrix γ is
defined by their elements γij ¼ ðhXiXji þ hXjXiiÞ=2−
hXiihXji. If one considers in a composite system the set of
observables fXkg ¼ fAik ⊗ 1; 1 ⊗ Bjkg, then the covariance
matrix has a block structure

γAB ¼
�
A C

CT B

�
; ð21Þ

where A ¼ γðϱA; fAigÞ and B ¼ γðϱB; fBjgÞ are covariance
matrices for the reduced states, and C is the correlation matrix
with elements Cij ¼ hAi ⊗ Bji − hAiihBji.
Given this type of covariance matrices for unsteerable

states, it holds that

γAB ≥ 0A ⊕ κB; ð22Þ
with κB ¼ P

k pkγðjbkihbkjÞ being a convex combination of
covariance matrices of pure states on Bob’s system. Here 0A is
an m ×m null matrix, where m is the number of observables
on Alice’s side. The characterization of the possible κB has
been discussed for typical cases, such as qubit states and local
orthogonal observables (Gittsovich et al., 2008).
Finally, it should be noted that the criterion in Eq. (22) is the

discrete analog to a criterion for the continuous variable case;
see also Sec. V.C.

B. Steering detection from state assemblages

When full knowledge of the unnormalized conditional
ensembles ϱajx on Bob’s side is available, steerability can be
detected more efficiently. As already mentioned, a set of
conditional ensembles on Bob’s side corresponding to certain
measurement settings from Alice is called a steering assem-
blage. As Alice’s choice of measurement cannot be detected on
Bob’s side, such assemblages are nonsignaling in thatP

a ϱajx ¼
P

a ϱajx0 for different settings x, x0. Note that, for
the bipartite case, any nonsignaling assemblage can be pre-
pared with some shared state and some measurements on
Alice’s side (Schrödinger, 1936); see also Secs. V.L and V.M.
Also, any unsteerable assemblage can be prepared using a
separable state and commuting measurements on Alice’s side
(Kogias, Skrzypczyk et al., 2015; Moroder et al., 2016).
The main point for steering detection is that for finite

steering assemblages, the question of whether there exists a
LHS model described by Eq. (2) can be decided via the so-
called SDP technique (Pusey, 2013). The SDP approach also
allows one to derive steering inequalities and to quantify the
steerability of finite assemblages.

1. Formulation of the semidefinite program

The crucial idea is that, for a finite steering assemblage
fϱajxga;x, it is sufficient to consider a finite LHS ensemble σλ
(Ali et al., 2009; Pusey, 2013). Moreover, the response
functions in Eq. (2) can also be chosen to be fixed. The
remaining problem is to construct a finite number of positive
operators σλ. We focus on the conceptual aspects of the SDP
formulation; a detailed review on computational aspects was
given by Cavalcanti and Skrzypczyk (2017).
Consider a set of m measurement settings on Alice’s side,

x ∈ f1; 2;…; mg. Each has q outcomes a ∈ f1; 2;…; qg.
Given the shared state ϱ, this gives rise to an assemblage
fϱajxga;x of m ensembles, each consisting of q conditional
states. The space of the hidden variables λ can be constructed
as follows. The variable λ can take qm values, each of which
can be thought of as a string of outcomes ordered according to
the measurements ðax¼1; ax¼2;…; ax¼mÞ. For such a string λ,
we denote by λðxÞ the value of the outcome at position x. Then
Dðajx; λÞ denotes the deterministic response function defined
by Dðajx; λÞ ¼ δa;λðxÞ. This means that Dðajx; λÞ equals 1 for
strings λ that predict the outcome a for the measurement x, and
zero otherwise.
The crucial statement is the following: A finite steering

assemblage admits a LHS model described by Eq. (2) if and
only if it also admits a LHS model with the constructed set of
strings λ as the LHV, and the fixed deterministic functions
Dðajx; λÞ as the response functions. The latter means that
there exists a set of unnormalized operators σλ satisfying

ϱajx ¼
X
λ

Dðajx; λÞσλ; for all a; x;

s.t. σλ ≥ 0; for all λ: ð23Þ

Writing with the explicit definitions of the hidden variable λ
and the deterministic response functionDðajx; λÞ, the equality
in Eq. (23) is simply
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ϱajx ¼
X
faig

δa;axσa1;a2;…;am : ð24Þ

Intuitively, one can think of the hidden states σa1;a2;…;am as
being indexed by m variables. The conditional state ϱajx is
obtained by summing the function over the values of all
variables except for the xth one, which is fixed at ax ¼ a.
To give an example, if one considers the case where Alice

performs two measurements x ∈ f1; 2g with two possible
outcomes a ∈ f�g, the steering assemblage fϱajxg is unsteer-
able if and only if it is possible to find four positive semi-
definite operators ωij, with i; j ¼ � such that

ϱþj1 ¼ ωþþ þ ωþ−; ϱþj2 ¼ ωþþ þ ω−þ;

ϱ−j1 ¼ ω−þ þ ω−−; ϱ−j2 ¼ ωþ− þ ω−−: ð25Þ
In passing from Eq. (2) to Eq. (23), we pass from an

arbitrary hidden variable to a finite discrete hidden variable
and, at the same time, fix the response functions. One notices
that the finiteness of the set of measurements plays a crucial
role in this approach.
Given an assemblage fϱajxga;x, determining the existence of

σλ satisfying Eq. (23) is in fact a well-known problem in
convex optimization. More precisely, it is known as a
feasibility problem in SDP (Boyd and Vandenberghe,
2004), which can be solved straightforwardly by an appro-
priate ready-to-use software. Furthermore, it was shown that
using the so-called order-monotonic functions, the SDPs can
be approximated by simpler ones (Zhu, Hayashi, and
Chen, 2016).

2. Steering inequalities from the SDP

The feasibility SDP (23) can be used to construct steering
inequalities. First, one can convert such a feasibility problem
to an explicit convex maximization,

max μ

w.r.t. μ; fσλg
s.t. ϱajx ¼

X
λ

Dðajx; λÞσλ; for all a; x;

σλ ≥ μ1; for all λ: ð26Þ
If the optimal value of μ turns out to be negative, then the
problem in Eq. (23) is infeasible, indicating that the assem-
blage is steerable.
To analyze this maximization, there is a powerful tool in

convex optimization known as duality theory. In a nutshell, the
maximization problem in Eq. (26) is coupled to a so-called
dual minimization problem,

min Tr
X
a;x

Fajxϱajx

w.r.t. fFajxg
s.t.

X
a;x

FajxDðajx; λÞ ≥ 0; for all λ;

Tr
X
a;x;λ

FajxDðajx; λÞ ¼ 1: ð27Þ

The two problems are dual in the sense that the optimal value of
the minimization in Eq. (27) is an upper bound for the
maximization in Eq. (26). This is known as weak duality.
Under weak additional conditions, strong duality also holds:
The two optimal values are equal (Boyd and Vandenberghe,
2004).
The duality theory implies that if there exists a collection of

observables fFajxg satisfying the constraints in Eq. (27), and
if Tr

P
a;x Fajxϱajx ≤ 0, then the assemblage is steerable and

the dual problem naturally defines a steering inequality. The
minimizer of Eq. (27) thus yields optimal steering inequalities
for a steerable assemblage. Such steering inequalities find
applications in several scenarios; see also Secs. III.E and V.F.

3. Quantification of steerability with SDPs

The SDP approach also allows one to quantify the steer-
ability of an assemblage fϱajxg. There are several different
quantification schemes. We selectively discuss some of those;
for an extensive discussion, see the work of Cavalcanti and
Skrzypczyk (2017).
An idea for quantifying the steerability of an assemblage is

as follows. Let us fix the number of measurements m and the
number of outcomes q per measurement at Alice’s side. Then
the space of all assemblages, i.e., all different m decom-
positions of Bob’s reduced states to q-component ensembles,
admits a natural convex structure. To be more precise, let
fϱajxg and fϱ̃ajxg be two assemblages. Then for 0 ≤ p ≤ 1,
the set fpϱajx þ ð1 − pÞϱ̃ajxg is also an assemblage. Within
the set of all assemblages, the unsteerable assemblages form a
subset that is clearly convex. Now, how steerable an assem-
blage is can be measured by some kind of relative distance to
the set of unsteerable assemblages. More precisely, as long as
only the linear structure of the state assemblages is concerned,
the absolute distance is not meaningful, and one can consider
relative ratios of distances only on a line. In practice, one
therefore compares the distances between the considered
assemblage, the boundary of unsteerable assemblages, and
the boundary of all assemblages through a certain line.
Different ratios constructed from these distances give rise
to different steerability quantifiers.
The first quantification of steerability of an assemblage was

proposed by Skrzypczyk, Navascués, and Cavalcanti (2014),
known as the steering weight. An assemblage fϱajxg is first
written as a convex combination of an unsteerable assemblage
fϱLHSajx g and a general assemblage fγajxg,

ϱajx ¼ pγajx þ ð1 − pÞϱLHSajx for all a; x: ð28Þ

The steering weight of fϱajxg, denoted by SWðfϱajxgÞ, is the
minimal weight p in such a decomposition with respect to all
possible choices of the general assemblage fγajxg and the
unsteerable assemblage fϱLHSajx g. A geometrical illustration of

the steering weight is given in Fig. 3 (left panel). As the set of
all assemblages and unsteerable assemblages can be charac-
terized via SDPs, the steering weight can also be determined
by a SDP. More precisely, SWðfϱajxgÞ is given by
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min 1 − Tr
X
λ

σλ

w:r:t: fσλg
s:t: ϱajx −

X
λ

Dðajx; λÞσλ ≥ 0; for all a; x

σλ ≥ 0; for all λ: ð29Þ

A similar quantification of steerability is steering robustness,
first defined in the context of subchannel discrimination (Piani
and Watrous, 2015); see also Sec. V.G. Here the steering
robustness SRðfϱajxgÞ is given by the minimal weight on a
general assemblage fγajxg considered as noise one needs to
mix into the assemblage fϱajxg so that it becomes unsteerable.
The geometrical illustration is given in Fig. 3 (right panel).
Like the steering weight, the steering robustness SRðfϱajxgÞ
can be computed via a simple SDP (Piani and Watrous, 2015;
Cavalcanti and Skrzypczyk, 2016),

min Tr
X
λ

σλ − 1

w:r:t: fσλg
s:t:

X
λ

Dðajx; λÞσλ − ϱajx ≥ 0; for all a; x

σλ ≥ 0; for all λ: ð30Þ

To compare the two quantifiers, we note that whereas the
steering weight measures the unsteerable fraction in a given
assemblage, the generalized robustness measures the noise
tolerance of an assemblage in terms of mixing. It can be shown
that whereas robustness relates to the task of subchannel
discrimination (Sec. V.G), steering weight relates to the task of
subchannel exclusion (Uola, Bullock et al., 2019). It turns out
that the steering weight as well as the steering robustness can
be related to the maximal violation of all possible steering
inequalities with an appropriate normalization (Hsieh, Liang,
and Lee, 2016). Moreover, one can make a general comment
on the relation between the quantifiers that applies to general
resource theories: Any extremal point has maximal weight,
but the robustnesses can vary among different extremal points.
Beyond the steering weight and steering robustness, Ku,

Chen, Budroni et al. (2018) defined a geometric quantifier
based on the trace distance between a given assemblage and its

corresponding closest assemblage admitting a LHS model. A
device-independent quantification of steerability was also
proposed by Chen, Budroni et al. (2016). This method is
based on assemblage moment matrices, a collection of
matrices of expectation values, each associated with a condi-
tional quantum state; see Sec. II.A.4. Finally, a different
quantifier is given by the critical radius, as explained in
Sec. II.C.1.

4. From finite to infinite number of measurements

While the SDP approach was originally designed to
construct LHS models when Alice is limited to a finite set
of measurements, one can also draw certain conclusions for
the case where Alice has an infinite number of measurements
(Cavalcanti et al., 2016; Hirsch, Quintino, Vértesi et al.,
2016). The idea is as follows. One starts with a finite set of
measurements on Alice’s side and constructs a LHS model as
previously described. In fact, one obtains a bit more. The
outcome is a LHS model not only for the original finite set of
measurements but for all measurements in its convex hull.
Then one considers the set of all measurements, typically

limited to projective ones. One can add certain noise to the set
of measurements, e.g., by sending them through a depolariz-
ing channel, and obtains a new set of noisy measurements. For
a certain level of noise added, the set of noisy measurements
will shrink to fit inside the convex hull of the original finite set
of measurements, for which we have a LHS model. One thus
has a LHS model for the set of noisy measurements.
Alternatively, the noise in the measurements can also be
put onto the state instead of the measurement set (Cavalcanti
et al., 2016; Hirsch, Quintino, Vértesi et al., 2016). Thus, one
can conclude with a LHS model for the set of all measure-
ments, but for a noisier version of the considered state. This
construction works similarly for Bell nonlocality (Cavalcanti
et al., 2016; Hirsch, Quintino, Vértesi et al., 2016).
While the SDP approach has proven to be useful in

algorithmically constructing certain LHS and LHV models
(Cavalcanti et al., 2016; Hirsch, Quintino, Vértesi et al., 2016;
Cavalcanti and Skrzypczyk, 2017; Fillettaz et al., 2018), it has
a significant computational drawback. To reduce the noise
needed to add to the state, the original finite set of measure-
ments needs to be sufficiently large. However, the size of the
SDP, as one observes, increases exponentially with respect to
the number of measurement settings. As illustrated in a

FIG. 3. Geometrical illustrations of (left panel) the steering weight and (right panel) the steering robustness. Here P denotes the
assemblage fϱajxg under consideration, Q denotes a general realizable assemblage fγajxg, and O denotes an unsteerable assemblage
fϱLHSajx g. The steering weight (left panel) seeks to minimize p ¼ PO=OQ for varying Q and O. The steering robustness (right panel)

seeks to minimize t=ð1þ tÞ ¼ PO=PQ for varying Q and O.
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systematic study (Fillettaz et al., 2018), this often imposes a
significant computational difficulty on the problem of decid-
ing the steerability with high accuracy even for two-qubit
states.

C. Steering detection from full information

When the complete density matrix ϱAB is exploited, one
might expect to have a more complete characterization, i.e., a
necessary and sufficient condition for steerability. Like
entanglement detection or Bell nonlocality detection, this is
a difficult question. There have been exact results only for
entanglement detection of low-dimensional or special states. It
is thus encouraging that some exact results can also be derived
for quantum steering. It was recognized already by Wiseman,
Jones, and Doherty (2007) that, for certain highly symmetric
states, the problem of determining steerability with projective
measurements can be solved completely; see Sec. III.B.
Recently, a complete characterization of quantum steering
has also been achieved for two-qubit states and projective
measurements (Jevtic et al., 2015; Nguyen and Vu, 2016b;
Nguyen, Nguyen, and Gühne, 2019).

1. Two-qubit states and projective measurements

From Eq. (2), one sees that, in order to determine the
steerability of a given state, one has to consider all possible
LHS ensembles fpðλÞ; σλg, and for each measurement, one
has to solve for the response functions pðajx; λÞ. The source of
difficulty is that the possible choice of the indexing hidden
variable λ seems to be arbitrary: It can be a discrete variable, a
real-valued variable, a multidimensional variable, etc. It is
now worth reexamining how the SDP approach discussed in
Sec. II.B works: One assumes that Alice can make only a
finite number of measurements, which implies the finiteness
of a necessary LHS ensemble—a unique choice of the hidden
variable is thus singled out. When Alice’s set of measurements
is not finite, this approach breaks down. Fortunately, one can
show (Nguyen et al., 2018; Nguyen, Nguyen, and Gühne,
2019) that for quantum steering there is a canonical choice of
the indexing hidden variable, namely, Bob’s pure states. This
is also true for higher-dimensional systems. In fact, a LHS
ensemble can be identified with a probability distribution (or,
to be more precise, a probability measure) μ over Bob’s pure
states SB.
The previous discussion implies that the LHS model Eq. (2)

can be written as

ϱajx ¼
Z
SB

dμðσÞp̃ðajx; σÞσ ð31Þ

for a certain choice of p̃ðajx; σÞ (Nguyen et al., 2018). Note
that the response function p̃ðajx; σÞ may have no simple
relation to pðajx; λÞ in Eq. (2) if the association λwith σλ is not
injective; see the work of Nguyen et al. (2018) for a detailed
discussion.
Consider now a system of two qubits. To proceed, let us for

now fix a LHS ensemble μ. Given a LHS ensemble μ, one still
faces with the problem of solving Eq. (31) for p̃ðajx; σÞ for all
possible measurements x. The next step is to abandon this

constructive approach; instead, one only determines a con-
dition for this equation to have a solution. To this end, for a
given LHS ensemble μ, one defines (Nguyen and Vu, 2016a,
2016b; Nguyen, Nguyen, and Gühne, 2019)

rðϱAB; μÞ ¼ min
C

R
SB

dμðσÞjTrBðCσÞjffiffiffi
2

p kTrB½ϱ̄ABð1A ⊗ CÞ�k ; ð32Þ

where ϱ̄AB ¼ ϱAB − ð1A ⊗ ϱBÞ=2, the norm is given by
kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðX†XÞ

p
, and the minimization runs over all sin-

gle-qubit observables C on Bob’s space. In fact, the quantity
rðϱAB; μÞ characterizes the geometry of the set of conditional
states Alice can simulate from the LHS ensemble μ, and it is
called the principal radius of μ (Nguyen and Vu, 2016a). It can
then be shown (Nguyen and Vu, 2016a; Nguyen, Nguyen, and
Gühne, 2019) that Eq. (31) has a solution p̃ðajx; σÞ for x
running over all possible projective measurements if and only
if rðϱAB; μÞ ≥ 1.
So far a fixed choice of LHS ensemble μ is made. One now

defines the critical radius as the maximum of the principal
radius (32) over all LHS ensembles,

RðϱABÞ ¼ max
μ

rðϱAB; μÞ: ð33Þ

Then a two-qubit state is unsteerable if and only
if RðϱABÞ ≥ 1.

Let ϱðαÞAB ¼ αϱAB þ ð1 − αÞð1A ⊗ ϱBÞ=2, then RðϱðαÞABÞ ¼
α−1RðϱABÞ. This relation also gives an operational meaning
to the critical radius. Namely, 1 − RðϱABÞ measures the
distance from the given state to the surface that separates
steerable states from unsteerable states; see Fig. 4. As a
consequence, one can in fact equivalently define the critical
radius as

RðϱABÞ ¼ maxfα ≥ 0∶ϱðαÞAB is unsteerableg; ð34Þ
where unsteerability is considered with respect to projective
measurements. We will see that this definition can be naturally
generalized to generalized measurements and higher-dimen-
sional systems.

FIG. 4. The operational meaning of the critical radius. 1 −
RðϱABÞ measures the distance from ϱ to the surface of the
unsteerable or steerable state relative to ð1A ⊗ ϱBÞ=2. From
Nguyen, Nguyen, and Gühne, 2019.
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The definition of the critical radius by Eq. (33) also allows
for its evaluation. Nguyen et al. (2018) showed that, by
replacing Bob’s Bloch sphere by polytopes from inside and
outside, one obtains rigorous upper and lower bounds for the
critical radius. The computations of the upper and lower
bounds are both linear programs, of which the sizes scale
cubically with respect to the numbers of vertices of the
polytopes. Upon increasing the numbers of vertices, the
two bounds quickly converge to the actual value of the critical
radius. This approach has been used to access the geometry of
the set of unsteerable states via its two-dimensional random
cross sections (Nguyen, Nguyen, and Gühne, 2019);
see Fig. 5.
Notably, for the so-called Bell-diagonal states, or T states,

an explicit formula for the critical radius was obtained,

RðϱTÞ ¼ 2πNT jdetðTÞj; ð35Þ
where T is the correlation matrix of the T state, Tij ¼
TrðϱTσi ⊗ σjÞ for i, j ¼ 1, 2, 3, and the normalization factor
NT is given by an integration over the Bloch sphere N−1

T ¼R
dSðn⃗Þ½n⃗TT−2n⃗�−2 (Jevtic et al., 2015; Nguyen and Vu,

2016b). Based on this solution for T states, analytical bounds
for the critical radius of a general state can also be derived
(Nguyen, Nguyen, and Gühne, 2019).
For further discussions on LHS models for two-qubit states

in special cases, see Miller, Colbeck, and Shi (2018), Yu et al.
(2018a, 2018b), and Zhang and Zhang (2019).

2. Steering of higher-dimensional systems and with generalized
measurements

Characterizing quantum steering of higher-dimensional
systems and with generalized measurements (POVMs) is
difficult. Most of the results on quantum steering, in this

case, rely on the idea of adding sufficient noise to the state
such that a LHS for simpler measurements (e.g., projective
measurements) can be turned into a LHS model for POVMs
(Hirsch et al., 2013; Quintino et al., 2015; Tischler et al.,
2018). More specifically, if a state ϱAB of dimension dA × dB
is unsteerable with respect to two-outcome POVMs, then the
state

ϱ̃AB ¼ 1

dA
ϱAB þ dA − 1

dA
σA ⊗ ϱB; ð36Þ

with an arbitrary choice of state σA and ϱB ¼ TrAðϱABÞ, is
unsteerable for arbitrary POVMs. One observes that, in
Eq. (36), the weight ðdA − 1Þ=dA of the separable noise σA ⊗
ϱB is close to 1 if the dimension is high. Yet, this technique has
played an important role in demonstrating the hierarchy of
nonlocality under generalized measurements (see Sec. III.A),
superactivation of nonlocality by local filtering (see Sec. III.G),
and one-way steering with POVMs (see Sec. III.D).
The critical radius approach explained in the previous

subsection gives a promising framework to generally analyze
quantum steering with POVMs and higher-dimensional sys-
tems. In fact, in any dimension, one can define the critical
radius with respect to a certain class of measurements in the
same way as in Eq. (34). In particular, considering the set of
generalized measurements of n outcomes (POVMs of n
outcomes), one can define the critical radius for a bipartite
state ρAB of dimension dA × dB by

RnðϱABÞ ¼ maxfα ≥ 0∶ϱðαÞAB is unsteerableg; ð37Þ

with ϱðαÞAB ¼ αϱAB þ ð1 − αÞð1A ⊗ ϱBÞ=dA, ϱB ¼ TrAðϱABÞ,
and unsteerability being considered with respect to POVMs
of n outcomes on Alice’s side. Defined in this way, 1 −
RnðϱABÞ can still be interpreted as measuring the distance
from ϱAB to the surface separating unsteerable and steerable
states, here defined with respect to POVMs of n outcomes on
Alice’s side; see again Fig. 4. However, direct evaluation of
the critical radius from the definition Eq. (37) is clearly not
possible.
An alternative formula for the critical radius similar to

Eqs. (32) and (33) (Nguyen et al., 2018; Nguyen, Nguyen, and
Gühne, 2019) can also be found for high-dimensional sys-
tems. To this end, for a finite-dimensional bipartite state ϱAB,
one can define the principal radius for a given LHS ensemble
μ by

r−1n ðϱAB; μÞ ¼ sup
Z;E

F−1ðϱAB; μ; Z; EÞ; ð38Þ

with F−1ðϱAB; μ; Z; EÞ defined to be

P
n
i¼1 Tr½ϱABðEi ⊗ ZiÞ� − ð1=dAÞ

P
n
i¼1 TrðEiÞTrðϱBZiÞR

dμðσÞmaxifhZi; σig − ð1=dAÞ
P

n
i¼1 TrðEiÞTrðϱBZiÞ

;

ð39Þ

where the supremum is taken over all possible POVMs of n
outcomes E ¼ ðE1; E2;…; EnÞ on Alice’s side, and all pos-
sible n observables Z ¼ ðZ1; Z2;…; ZnÞ on Bob’s side. The
critical radius as defined by Eq. (37) can be computed as

FIG. 5. Two two-dimensional random cross sections of the set
of all two-qubit states. From the innermost to the outermost,
different areas with different colors denote the set of separable
states characterized by the partial transposition (Horodecki,
Horodecki, and Horodecki, 1996; Peres, 1996b), entangled states
that are unsteerable, one-way steerable states (Alice to Bob, or
vice versa), and two-way steerable states (Alice to Bob, and vice
versa). The very thin gray lines at the two boundaries of the area
corresponding to the one-way steerable states denote those states
where the numerical precision used was not sufficient to make an
unambiguous decision. From Nguyen, Nguyen, and Gühne,
2019.
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(Nguyen, Nguyen, and Gühne, 2019; Nguyen and Gühne,
2020)

R−1
n ðϱABÞ ¼ min

μ
r−1n ðϱAB; μÞ: ð40Þ

In this way, the problem of computing the critical radius and
the princpal radius is in principle an optimization problem.
Unfortunately, even in this form, a deterministic algorithm to
compute the principal radius and the critical radius with n ≥ 3

is still unknown, and one has to invoke heuristic techniques in
practice (Nguyen et al., 2018; Nguyen, Nguyen, and
Gühne, 2019).
One observes that, to study quantum steering, the set of

generalized measurements was stratified according to their
number of outcomes. This calls for an investigation of the
relation between them. Since POVMs of n outcomes form a
natural subset of POVMs of nþ 1 outcomes, one has a
decreasing chain R2ðϱABÞ ≥ R3ðϱABÞ ≥ R4ðϱABÞ ≥ � � �. As
extreme POVMs have at most d2A outcomes with dA being
Alice’s dimension, this chain turns to equality at n ¼ d2A.
Using the evidence from a heuristic computation for the
principal radius, it has been conjectured (Nguyen, Nguyen,
and Gühne, 2019) that for two-qubit states (d2A ¼ 4) the chain
in fact consists of a single number—namely, R2ðϱABÞ ¼
R3ðϱABÞ ¼ R4ðϱABÞ. In other words, this conjecture implies
that measurements of two outcomes (dichotomic measure-
ments) are sufficient to fully demonstrate the quantum steer-
ability of a two-qubit system; measurements of more
outcomes are not necessary. Unfortunately, extrapolating this
conjecture to higher-dimensional systems fails; it was later
shown (Nguyen and Gühne, 2020) that this equality breaks
down already for a system of two qutrits; see also Sec. III.B.

3. Full information steering inequality

As discussed, for high-dimensional systems, even when full
information about a state is available, a computable necessary
and sufficient condition for quantum steerability is not
available. In this case, the detection of steerability still relies
on steering inequalities. An example of steering inequalities
based on full information of the state was given by Zhen et al.
(2016) in terms of the so-called local orthogonal observables.
Embedding in a higher-dimensional space if necessary, we can
assume that Alice and Bob have the same local dimension d.
One can choose a set of d2 orthogonal operators fGkg, which
serves as a basis for the local observable space; i.e.,
TrðGiGjÞ ¼ δij and fGkg spans the space of operators (Yu
and Liu, 2005). The Pauli matrices are a familiar example of
such orthogonal operators for a qubit system. By means of the
Schmidt decomposition in the operator space, one can choose
the orthonormal observables for the local spaces at Alice and
Bob, fGA

k g and fGB
k g, such that the joint state ϱAB can be

written as

ϱAB ¼
Xd2
k¼1

λkGA
k ⊗ GB

k ; ð41Þ

where λk ≥ 0. Then, using the local uncertainty relations (see
Sec. II.A), Zhen et al. (2016) showed that the state ϱAB is
steerable from A to B if

Xd2
k¼1

δ2ðgkGA
k þ GB

k Þ < d − 1 ð42Þ

for some choice of gk, where δ2ðXÞ denotes the variance of
operator X. By a particular choice of gk, one can easily show
that if

X
k

λk >
ffiffiffi
d

p
; ð43Þ

the state is steerable (Zhen et al., 2016). This elegant
inequality resembles the familiar computable cross norm or
realignment (CCNR) entanglement criterion (Chen and Wu,
2003; Rudolph, 2005), where

P
k λk > 1 implies that the state

is entangled.
Note that the steering inequalities (42) and (43) are different

from the various inequalities discussed in Sec. II.A in the
sense that they exploit the full information about the state.

III. CONCEPTUAL ASPECTS OF STEERING

In this section, we review results on the general properties
and structures of quantum steering. We start with a detailed
discussion on the connection between steering, entanglement,
and Bell nonlocality. We also present in some detail LHS
models for different families of states. Then we explain
properties like one-way steering, steering of bound entangled
states, steering maps, and the superactivation of steering.

A. Hierarchy of correlations

We explained in Sec. I.C that there is a hierarchy between
Bell nonlocality, steering, and entanglement in the sense that
one implies the other, but not the other way around. In this
section, we first discuss in some detail the known examples of
states where the notions differ. Then we explain how the
relations between the three concepts can be exploited to
characterize one via another. Detailed LHS models are
discussed in Sec. III.B.
When discussing the existence of a LHVor LHS model for

a given quantum state, one has to distinguish whether the
model should explain the results for all projective measure-
ments, or, more generally, for all POVMs. Let us start our
discussion with projective measurements. The inequivalence
between the notion of entanglement and Bell nonlocality was,
in fact, one of the starting points of entanglement theory
(Werner, 1989). For that, one may consider the so-called two-
qubit Werner state

ϱðpÞ ¼ pjψ−ihψ−j þ ð1 − pÞ1
4
; ð44Þ

where jψ−i ¼ ðj01i − j10iÞ= ffiffiffi
2

p
is the singlet state. Using the

positivity of partial transpose (PPT) criterion (see Sec. III.E),
one can directly verify that this state is entangled if and only if
p > 1=3. Werner (1989), however, constructed a LHS model
for projective measurements for all values p ≤ 1=2. Moreover,
Acín, Gisin, and Toner (2006) and Hirsch et al. (2017) showed
that a LHV model exists up to p ≤ 1=KGð3Þ ≈ 0.6829, where
KGð3Þ is the Grothendieck constant of the order of 3, so up to
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this value, no Bell inequality can be violated. These results
demonstrate that there are entangled states which do not show
Bell nonlocality. Using the fact that the Werner states is
steerable for p > 1=2 (Wiseman, Jones, and Doherty, 2007),
this also proves that steering and Bell nonlocality are
inequivalent for projective measurements. States of this type
have been prepared experimentally, and their steerability has
been demonstrated by Saunders et al. (2010).
It remains to discuss the more general case of POVMs.

First, Barrett (2002) constructed a LHV model for Werner
states with p ≤ 5=12 that explains all of the measurement
probabilities for arbitrary POVMs. In fact, this model can be
directly converted into a LHS model (Quintino et al., 2015).
Consequently, there are entangled states for which all corre-
lations for POVMs can be explained by a LHV model. In
addition, Quintino et al. (2015) presented examples of states
in a 3 × 3 system that are steerable in both directions, but
nevertheless a LHV model for all POVMs can be found. This
proves the inequivalence of Bell nonlocality and steering
for POVMs.
As mentioned, a local model that explains the results of all

projective measurements does not necessarily explain all of
the correlations for POVMs. It is not clear, however, that
POVMs provide an advantage in the detection of steering or
Bell nonlocality. As discussed in Sec. II.C.2, there is numeri-
cal evidence that two-qubit states that are unsteerable for
projective measurements are also unsteerable for POVMs
(Nguyen, Nguyen, and Gühne, 2019). Concerning Bell non-
locality, Vértesi and Bene (2010) and Gómez et al. (2016)
presented Bell inequalities for which the maximal violation
requires POVMs, but this does not imply that the states
leading to this violation do not also violate some Bell
inequality for projective measurements.
Given the similarity in the definitions of Bell nonlocality,

quantum steerability, and nonseparability, one may expect that
some methods of characterizing the different notions can be
related to each other. Specifically, given a state that admits a
LHV model as in Eq. (3), one may expect that, by adding
suitable separable noise to the state, one can obtain a state that
admits a LHS model (2). This was shown to be the case (C.
Chen et al., 2018). They showed that if a bipartite qudit-qubit
state ϱAB admits a LHV model, then the state

ϱ̃AB ¼ μϱAB þ ð1 − μÞϱA ⊗
1B
2
; ð45Þ

with μ ¼ 1=
ffiffiffi
3

p
; is unsteerable from Alice to Bob. Turning the

logic around, if ϱ̃AB is steerable, then ϱAB must be Bell
nonlocal. A similar statement between steerability and non-
separability has also been obtained (C. Chen et al., 2018; Das,
Sasmal, and Roy, 2019). Namely, if a bipartite qubit-qudit
state ϱAB is unsteerable from Alice to Bob, then the state

ϱ̃AB ¼ μϱAB þ ð1 − μÞ 1A
2

⊗ ϱB; ð46Þ

with μ ¼ 1=
ffiffiffi
3

p
; is separable. Or, if the latter is entangled, the

former is steerable. Detailed applications of this approach to
detecting different nonlocality notions than the others were
provided by J.-L. Chen et al. (2016), C. Chen et al. (2018),
and Das, Sasmal, and Roy (2019).

B. Special states and their local hidden state models

As highlighted in Sec. II.C, the fact that for quantum
steering there is a canonical choice for the hidden variable—
namely, Bob’s pure states—turns out to have far-reaching
consequences. The point is that, having simplified the LHS
model from Eq. (2) to the form of Eq. (31), the symmetry of
the state has stronger implications on the choice of the LHS
ensemble (Nguyen et al., 2018). For certain highly symmetric
states such as Werner states and isotropic states, the symmetry
is then enough to uniquely single out an optimal choice of the
LHS ensemble, rendering their exact characterizations of
quantum steering with projective measurements possible
(Jones, Wiseman, and Doherty, 2007; Wiseman, Jones, and
Doherty, 2007). This is in contrast to Bell nonlocality: in
Eq. (3), no canonical choice of the LHV is possible. Thus,
even for highly symmetric states such as isotropic states and
Werner states, no exact characterization of Bell nonlocality
is known.

1. Werner states

Suppose that Alice and Bob share the Werner state of
dimension d × d (Werner, 1989), defined by

Wη
d ¼

d − 1þ η

d − 1

1
d2

−
η

d − 1

V
d
; ð47Þ

where 1 is the bipartite identity operator and V is the flip
operator given by Vjϕ;ψi ¼ jψ ;ϕi. Here we follow the
parametrization by Wiseman, Jones, and Doherty (2007) so
thatWη

d is a product state if the mixing parameter η ¼ 0 and is
a state at all only if η ≤ 1. The Werner state is entangled if and
only if η > 1=ðdþ 1Þ (Werner, 1989).
In fact, the Werner state was constructed in a way such that

it is invariant under the same local unitary transformation at
Alice’s and Bob’s side (Werner, 1989); that is, for any unitary
operator U acting in dimension d, Wη

d ¼ ðU ⊗ UÞWη
dðU† ⊗

U†Þ. This implies that the optimal LHS ensemble on Bob’s
Bloch sphere can be chosen to be symmetric under the unitary
group UðdÞ, i.e., the Haar measure (Wiseman, Jones, and
Doherty, 2007; Nguyen et al., 2018).
Identifying the hidden variable λ indexing the LHS with

Bob’s pure states jλi, it remains to construct the response
function pðajx; λÞ for a projective measurement fEajxg ¼
fPajxg to complete a LHS model. Note that, for a projection
outcome Pajx ¼ jaihaj at Alice’s side, Bob’s conditional state
is

ϱajx ¼
d − 1þ η

dðd − 1Þ
1
d
−

η

dðd − 1Þ jaihaj: ð48Þ

The minus sign in front of the last term indicates that the two
parties in the Werner state are anticorrelated. To construct the
response function, it is natural then to associate a pure state jλi
with the outcome that has the least overlap with Pajx. The
resulting response function is

pðajx; λÞ ¼
�
1 if jhλjaij < jhλja0ij; ∀ a0 ≠ a;

0 otherwise.
ð49Þ
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With the LHS ensemble and this choice of the response
function, it is straightforward (Wiseman, Jones, and Doherty,
2007) to show that the Werner state is unsteerable for

η ≤ 1 −
1

d
: ð50Þ

It can also be shown that, for the mixing parameter
η > 1 − 1=d, no construction of response function is possible
(Wiseman, Jones, and Doherty, 2007). This threshold together
with the threshold for the Werner state to be separable is
presented in Fig. 6 (left). Thus, whereas the exact threshold of
η for which the Werner state is Bell nonlocal is still unknown
even in dimension d ¼ 2, the threshold for steerability has an
analytical expression in all dimensions. Wiseman, Jones, and
Doherty (2007) also noted that the previous construction was
actually the original construction by Werner (1989) to show
that Bell nonlocality and entanglement are distinct notions.
Projective measurements are not, however, the only case

where the quantum steerability of the Werner states can be
characterized exactly. Specifically, it was shown (Nguyen and
Gühne, 2020) that when Alice is limited to making dichotomic
measurements, the threshold up to which the Werner state is
unsteerable can also be derived in practically closed form,

η ≤ ðd − 1Þ2½1 − ð1 − 1=dÞ1=ðd−1Þ�; ð51Þ

for d ≤ 105; see Fig. 6 (left panel). The threshold is also
conjectured to hold for all dimensions (Nguyen and Gühne,
2020). For dimension d ≥ 3, the threshold of Eq. (50) is
strictly stronger than that of Eq. (51). These are thus concrete
examples illustrating the fact that quantum steering with
dichotomic measurements is strictly weaker than that of
measurements with more outcomes for higher-dimensional
systems, contrasting with the conjecture on their equivalence
for two-qubit systems; see Sec. II.C.

2. Isotropic states

Another important family of states that allows for exact
characterization of quantum steering is that of isotropic states
(Wiseman, Jones, and Doherty, 2007). The isotropic state of
dimension d × d at mixing parameter η, 0 ≤ η ≤ 1, is
defined by

Sηd ¼ ð1 − ηÞ 1
d2

þ ηjψþihψþj; ð52Þ

where jψþi ¼ ð1= ffiffiffi
d

p ÞPd
i¼1 ji; ii. From the definition, one

notes that the isotropic state is defined with respect to a
particular choice of basis. The isotropic state is entangled if
and only if η > 1=ðdþ 1Þ (Horodecki and Horodecki, 1999).
Similar to the Werner state, the isotropic state also has a
unitary symmetry, namely, Sηd ¼ ðŪ ⊗ UÞSηqðŪ† ⊗ U†Þ, for
any d × d unitary matrix U, with Ū being its complex
conjugate. This again implies that the optimal choice of
LHS ensemble is the uniform Haar measure over Bob’s
Bloch sphere.
For a projection outcome Pajx ¼ jaihaj on her side, with an

isotropic state, Alice steers Bob’s system to the conditional
state

ϱajx ¼
1 − η

d
1
d
þ η

d
jāihāj; ð53Þ

where jāi is the complex conjugate of state jai. In contrast to
Eq. (48), the plus sign in front of the last term in Eq. (53)
indicates that parties sharing an isotropic state are correlated
up to a complex conjugation. This motivates the following
choice of response function:

pðajx; λÞ ¼
�
1 if jhλjāij > jhλjā0ij; ∀ a0 ≠ a;

0 otherwise;
ð54Þ

where we also again identified the hidden variable λ indexing
the LHS ensemble with Bob’s pure states jλi. This construc-
tion leads to a LHS model for the isotropic state with

η ≤
Hd − 1

d − 1
; ð55Þ

where Hd ¼ 1þ 1=2þ 1=3þ � � � þ 1=d. It can again be
shown that this threshold is optimal; for η > ðHd − 1Þ=
ðd − 1Þ, no construction for the response function is possible
(Wiseman, Jones, and Doherty, 2007). Almeida et al. (2007)
also obtained this threshold in an attempt to construct a LHV
model for the isotropic states before learning of the definition

FIG. 6. The exact noise thresholds for (left panel) the Werner states and (right panel) the isotropic states to be steerable with dichotomic
measurements (squares, violet, upper) and projective measurements (squares, green, middle), and to be separable (square, orange,
lower). The lower bounds for the noise thresholds for them to be unsteerable with all generalized measurements obtained from Eqs. (58)
and (60) are also presented (triangles, red). Adapted from Nguyen and Gühne, 2020.
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of quantum steering. This threshold is presented in Fig. 6
(right panel) together with that for separability.
Like the Werner state, the quantum steerability of the

isotropic states with dichotomic measurements can also be
exactly characterized. Nguyen and Gühne (2020) showed that,
for d ≤ 105, if

η ≤ 1 − d−1=ðd−1Þ; ð56Þ

the isotropic state is unsteerable when Alice’s measurements
are limited to dichotomic ones; otherwise, it is steerable [see
Fig. 6 (right panel)]. The threshold is also conjectured to hold
for all dimensions (Nguyen and Gühne, 2020).

3. LHS models for generalized measurements

As quantum steering with projective and dichotomic
measurements is well understood for the Werner states and
the isotropic states, one may hope that certain LHS models
with general POVMs for them can also be constructed. This is
indeed the case. By an explicit construction, Barrett (2002)
demonstrated that sufficiently weakly entangled Werner states
do admit a LHV model for all POVMs. Under the light of the
formal definition of quantum steering (Wiseman, Jones, and
Doherty, 2007), the LHV model turns out to be a LHS model
(Quintino et al., 2015). The model was revised recently
(Nguyen and Gühne, 2020), and it can be shown that
Barrett’s original construction works best for the isotropic
states; for the Werner states, a better model can be constructed.
Further, for two-qubit systems, the construction can also be
extended to Bell-diagonal states (Nguyen and Gühne, 2019b).
To construct the model, it is sufficient to consider only

POVMs with rank-1 effects, fEajxg ¼ fαajxjaihajg, where
jaihaj are rank-1 projections and 0 ≤ αajx ≤ 1 (Barrett, 2002).
This is because other POVMs can be postprocessed from these
(see also Sec. IV). The optimal choice for the LHS ensemble is
again the uniform distribution over Bob’s Bloch sphere
(Wiseman, Jones, and Doherty, 2007; Nguyen et al., 2018).
It is then left to construct the response functions pðajx; λÞ for
the measurements mentioned.
For the isotropic state, the response function can be given as

(Barrett, 2002; Almeida et al., 2007)

pðajx; λÞ ¼ αajxjhλjāij2Θðjhλjāij2 − 1=dÞ

þ αajx
d

�
1 −

X
a

αajxjhλjāij2Θðjhλjāij2 − 1=dÞ
�
:

ð57Þ

With this choice of response function, direct computation
shows that the isotropic state is unsteerable for arbitrary
POVMs on Alice’s side (Barrett, 2002; Almeida et al.,
2007) if

η ≤
3d − 1

dþ 1
ðd − 1Þd−1d−d: ð58Þ

As mentioned, this construction was originally suggested as a
LHS model for Werner states, and the same threshold for
Eq. (58) was found (Barrett, 2002; Quintino et al., 2015).

However, it was shown (Nguyen and Gühne, 2020) that for the
Werner state, a better choice of the response functions is
possible, namely,

pðajx; λÞ ¼ αajx
d − 1

ð1 − jhλjaij2ÞΘð1=d − jhλjaij2Þ

þ αajx
d

�
1 −

X
a

αajx
d − 1

ð1 − jhλjaij2Þ

Θð1=d − jhλjaij2Þ
�
: ð59Þ

The Werner state was then shown to be unsteerable for
arbitrary POVMs on Alice’s side (Nguyen and Gühne,
2020) if

η ≤
1þ ðd − 1Þdþ1d−d

dþ 1
: ð60Þ

The two bounds, Eqs. (58) and (60), are also presented in
Fig. 6. For the Werner states, the bound Eq. (60) is strictly
better than the bound given by Eq. (58) for d ≥ 3. However,
both bounds, Eqs. (58) and (60), are strictly within the
respective thresholds for the isotropic states and the Werner
states to be unsteerable with projective measurements,
Eqs. (55) and (50). On the other hand, the constructions of
Eqs. (57) and (59) are by no means optimal; in fact, they are
not expected to be optimal (Nguyen and Gühne, 2019b). Thus,
it is still unclear whether steering with projective measure-
ments is equivalent to steering with generalized measurements
even for these highly symmetric states.
The case of two-qubit Werner states (d ¼ 2) is slightly

better understood. In this case, the bounds of Eqs. (58)
and (60) both show that, for η ≤ 5=12, the Werner state is
unsteerable for arbitrary POVMs on Alice’s side (Barrett,
2002; Quintino et al., 2015). In the range 5=12 ≤ p ≤ 1=2, the
state is also known to be unsteerable if the POVMs are limited
to those with three outcomes (Werner, 2014). For most general
POVMs, numerical evidence based on the critical radius
approach is available, which indicates that the state is also
unsteerable in this range (Nguyen et al., 2018; Nguyen,
Nguyen, and Gühne, 2019).
To conclude this section, we refer the interested readers to

the work of Augusiak, Demianowicz, and Acín (2014) for
further constructions of LHV and LHS models.

C. Steering and local filtering

For characterizing steerability and other correlations in
quantum states, it is relevant to study their behavior under
local operations. Given a general quantum state ϱAB, one can
consider states of the type

ϱ̃AB ¼ 1

N
ðTA ⊗ TBÞϱABðT†

A ⊗ T†
BÞ; ð61Þ

where TA=B are some transformation matrices andN denotes a
potential renormalization.
Then one can ask whether the correlations in the state ϱAB

are related to those of the state ϱ̃AB. Clearly, this depends on
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the properties of the matrices TA=B. For them, there are mainly
two possible choices: Either one restricts them to be unitary,
TA=B ¼ UA=B, and therefore one considers local unitary
transformations, or one considers general invertible matrices
TA=B ¼ FA=B, which are the so-called local filtering opera-
tions and are more general than local unitaries.
For the case of entanglement, one can directly see from the

definition in Eq. (4) that local filtering operations keep the
property of a state of being separable or entangled. Filtering
operations can, nevertheless, change the amount of entangle-
ment. Any full-rank state can be brought into a normal form
under filtering operations, where the reduced states ϱ̃A and ϱ̃B
are maximally mixed (Verstraete, Dehaene, and De Moor,
2003; Leinaas, Myrheim, and Ovrum, 2006). In this form,
certain entanglement measures are maximized (Verstraete,
Dehaene, and De Moor, 2003), and bringing a state in this
normal form can improve many entanglement criteria
(Gittsovich et al., 2008). For Bell nonlocality, it can be seen
that local unitary transformations keep the property of a state
having a LHVmodel. But local filtering operations are already
too general; there are two-qubit states that do not violate the
CHSH inequality, but after local filtering, they do (Popescu,
1995; Gisin, 1996).
Steering is a notion between entanglement and nonlocality,

so a mixed behavior under local transformations can be
expected. In fact, it was noted by Uola, Moroder, and
Gühne (2014), Gallego and Aolita (2015), and Quintino et
al. (2015) that local unitaries on Alice’s side and local filtering
on Bob’s side,

ϱ̃AB ¼ 1

N
ðUA ⊗ FBÞϱABðU†

A ⊗ F†
BÞ; ð62Þ

do not change the steerability of a state. The critical radius as a
steering parameter (see Sec. II.C.1) is also not affected. With
these transformations, one can achieve the result that ϱ̃B is
maximally mixed on its support. If a state is in this form, this
can simplify calculations, and therefore it is good starting
point to study the steerability of a state (Nguyen, Nguyen, and
Gühne, 2019).

D. One-way steerable states

The asymmetry between the two parties in the definition of
quantum steering immediately strikes one with the question as
to whether there is a state where Alice can steer Bob, but not
the other way around (Wiseman, Jones, and Doherty, 2007).
Such one-way steerable states were first constructed for
continuous variable systems (Midgley, Ferris, and Olsen,
2010; Olsen, 2013). One-way steerable states for discrete
systems were studied later by Bowles et al. (2014), Evans and
Wiseman (2014), and Skrzypczyk, Navascués, and Cavalcanti
(2014). More recently, a simple family of one-way steerable
two-qubit states was identified by Bowles et al. (2016). This
family of states is given by

ϱABðα; θÞ ¼ αjψθihψθj þ ð1 − αÞ1
2
⊗ ϱB; ð63Þ

where jψθi ¼ cos ðθÞj00i þ sin ðθÞj11i and ϱB ¼
TrAjψθihψθj, with 0 ≤ α ≤ 1 and 0 < θ ≤ π=4. The states

can be brought into the two-qubit Werner states with the same
mixing probability α by a local filtering on Bob’s side and a
local unitary on Alice’s side. Therefore, it is steerable from
Alice to Bob if and only if α > 1=2; see Sec. III.C. Using the
uniform distribution as an ansatz for the LHS ensemble,
Bowles et al. showed that the state is unsteerable from Bob to
Alice for

cos2ð2θÞ ≥ 2α − 1

ð2 − αÞα3 .

With the complete characterization of steerability for two-
qubit states described in Sec. II.C.1, the boundary of the set of
unsteerable states from Bob to Alice has been obtained with
high accuracy (Nguyen, Nguyen, and Gühne, 2019); see
Fig. 7. It is clearly visible from the figure that ϱABðα; θÞ is
one-way steerable for a large range of parameters.
The one-way steering phenomenon can also be shown to

persist when the measurements are extended to POVMs
(Quintino et al., 2015). An idea for constructing an example
is as follows. One first embeds a state which is unsteerable
from Alice to Bob with respect to projective measurements,
but steerable for the other direction, into a higher dimension
on Alice’s side. One then constructs a state that admits a LHS
model for all POVMs performed on Alice’s side using
Eq. (36), with the state σA chosen to be supported only in
the extended dimension on Alice’s side. With this choice of
σA, it is easy to show that the state is still steerable from Bob to
Alice (Quintino et al., 2015). The constructed state is thus also
one-way steerable when one considers all POVMs.
The one-way steering phenomenon also attracts attention

from the experimental side. Early experiments demonstrating
one-way steering were carried out for continuous variable
systems and Gaussian measurements (Händchen et al., 2012).
The effects of various types of noise on the direction of
steering were later analyzed and probed experimentally by
Qin et al. (2017). Experiments demonstrating one-way steer-
ing for discrete systems were performed by Sun et al. (2016),
Wollmann et al. (2016), and Xiao et al. (2017). Sun et al.,
(2016) and Xiao et al. (2017) concentrated on demonstrating

FIG. 7. The border of the one-way steerable area for the family
of states given by Eq. (63). The thickness of the border for
steering from B to A indicates the uncertain area. The inner bound
for the border of steering from B to A with the uniform LHS
ensemble as an ansatz is also included (dotted line).
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one-way steering when measurements are limited to two and
three settings. Wollmann et al. (2016) also demonstrated the
persistence of the phenomena for POVMs. Most recently, it
was realized (Baker et al., 2018) that existing experiments
demonstrating one-way steering committed certain assump-
tions on the states or the measurements and were therefore
inconclusive. A conclusive experiment (Tischler et al., 2018)
was then performed shortly thereafter.

E. Steering with bound entangled states

Now we discuss the steerability of so-called bound
entangled states. This provides a relevant example for the
fact that the characterization of steering gives new insights
into old problems in entanglement theory.
Before presenting the result, we recall some facts about the

entanglement criterion of the positivity of the partial transpose
(the PPT criterion) and entanglement distillation. Let us
start with the PPT criterion (Horodecki, Horodecki, and
Horodecki, 1996; Peres, 1996b). Generally, for a two-particle
state ϱ ¼ P

ij;kl ϱij;kljiihjj ⊗ jkihlj, the partial transposition
with respect to Bob is defined as

ϱTB ¼
X
ij;kl

ϱij;lkjiihjj ⊗ jkihlj: ð64Þ

Similarly, one can define a partial transposition with respect to
Alice which obeys ϱTA ¼ ðϱTBÞT . Note that the partial trans-
position may change the eigenvalues of a matrix, contrary to
the full transposition.
The PPT criterion states that, for separable states, the partial

transposition has no negative eigenvalues, ϱTB ≥ 0; such states
are also called PPT states. It was further proven that, for
systems consisting of two qubits (2 × 2 systems) or one qubit
and one qutrit (2 × 3 systems), this criterion is sufficient for
separability and all PPT states are separable. For all other
dimensions, PPT entangled states exist, these states are, in
some sense, weakly entangled, as they cannot be used for
certain quantum information tasks.
The main quantum information task where PPT entangled

states are useless is the task of entanglement distillation.
Entanglement distillation is the process where many copies of
some noisy entangled state are distilled to few highly
entangled pure states via local operations and classical
communication (Horodecki, Horodecki, and Horodecki,
1998). Not all entangled states can be used for distillation,
and these undistillable states are called bound entangled. It
was shown that PPT entangled states are bound entangled, but
there are some states with a nonpositive partial transpose, for
which it has been conjectured that they are also bound
entangled (Pankowski et al., 2010).
Peres (1999) formulated the conjecture that bound

entangled states do not violate any Bell inequality. This
conjecture was based on an analogy between a general
distillation protocol and Bell inequalities for many observers,
but for a long time no proof could be found. In 2013, the
conjecture was made that bound entangled states are also
useless for steering (Pusey, 2013; Skrzypczyk, Navascués, and
Cavalcanti, 2014). This so-called stronger Peres conjecture

could potentially open a way to prove the original Peres
conjecture, especially as the PPT criterion and the question of
steerability are closely related to SDPs.
Moroder et al. (2014), however, showed that some bound

entangled states can be used for steering, and an explicit
example for two qutrits was given. The idea for finding the
counterexample is the following. For a given state of two
qutrits and two measurements with three outcomes each, one
can determine the steerability of the assemblage fϱajxg with a
SDP; see also Sec. II.B.1. Considering the dual formulation of
the SDP, one finds that the operator

W ¼ A1j1 ⊗ Z13 þ A2j1 ⊗ Z23 þ A1j2 ⊗ Z31 þ A2j2 ⊗ Z32

þ ðA3j1 þ A3j1 − 1Þ ⊗ Z33 ð65Þ

defines a steering inequality, that is, TrðϱWÞ ≥ 0 for unsteer-
able states. Here the Aajx are arbitrary measurement operators
for Alice, and the set fZ13; Z23; Z31; Z32; Z33g consists of five
positive operators obeying the four semidefinite constraints
Zi3 þ Z3j − Z33 ≥ 0 for i; j ∈ f1; 2g.
Given this steering inequality, one can look for steerable

PPT states by an iteration of SDPs: One starts with a random
initial steerable state ϱ and fixes Alice’s measurements Aajx to
be measurements in two mutually unbiased bases. Then, by
optimizing the Zij via a SDP, one can minimize the mean
value TrðϱWÞ and find the optimal steering inequality W.
Given thisW, one can ask for the minimal expectation value of
it with respect to PPT states; this is again a SDP. Having found
the PPT state with the smallest TrðϱWÞ, one can optimize over
the Zij again and then iterate. In practice, this procedure
converges quickly toward PPT states which are steerable,
delivering the desired counterexamples to the stronger Peres
conjecture.
Having found the counterexamples, it is a natural question

as to whether these states also violate a Bell inequality. Indeed,
as has been shown by Vértesi and Brunner (2014), these states
are also counterexamples to the original Peres conjecture.
Finally, Yu and Oh (2017) presented an analytical approach,
giving explicit families of PPT entangled states in any
dimension d ≥ 3 that, for appropriate parameters, violate
Bell inequalities or can be used for steering; see Fig. 8.

FIG. 8. Inclusion relation between the PPT states and entangle-
ment, steering, and Bell inequality violations. Separable states are
PPT, but some entangled states are PPT as well. PPT entangled
states are bound entangled, as no pure state entanglement can be
distilled from them. There exist, however, PPT states that can be
used for steering and also PPT states that violate Bell inequalities.
These states are counterexamples to the Peres conjecture.
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F. Steering maps and dimension-bounded steering

In this section, we describe how the steering problem can be
viewed as a certain kind of separability problem (Moroder et
al., 2016). This allows one to apply the powerful techniques of
entanglement theory (Gühne and Tóth, 2009; Horodecki et al.,
2009), and to study problems such as the detection of steering,
if Bob’s system is not well characterized and only its
dimension is known.
To formulate the main idea, it suffices to consider the case

of two measurements (x ∈ f1; 2g) with two outcomes (�) on
Alice’s side. As discussed in Sec. II.B.1, steerability of the
assemblage fϱajxg can be decided by a SDP. More precisely,
Eq. (25) states that the assemblage is unsteerable if one finds
four positive semidefinite operators ωij with i; j ¼ � such that
ϱþj1 ¼ ωþþ þ ωþ−, ϱþj2 ¼ ωþþ þ ω−þ, ϱ−j1 ¼ ω−þ þ ω−−,
and ϱ−j2 ¼ ωþ− þ ω−−. These equations are not independent.
If one takes ωþþ as a free variable, one has the relations
ωþ− ¼ ϱþj1 − ωþþ, ω−þ ¼ ϱþj2 − ωþþ, and ω−− ¼
ϱB − ϱþj1 − ϱþj2 þ ωþþ. Of course, this is a valid solution
only if all ωij are positive semidefinite.
Then one takes four positive definite operators Zij with

i; j ¼ � that obey the relation Zþþ ¼ Zþ− þ Z−þ − Z−−, and
one considers the bipartite operator

ΣAB ¼
X
ij

Zij ⊗ ωij: ð66Þ

This is, after appropriate normalization, a separable state as in
Eq. (4). The point is that with the given relations on the ωij

and Zij, this state can be written as

ΣAB¼Zþ−⊗ϱþj1þZ−þ⊗ϱþj2þZ−−⊗ ðϱB−ϱþj1−ϱþj2Þ;
ð67Þ

as can be verified by direct inspection. Here all of the
dependencies on the ωij drop out, so ΣAB is uniquely
determined by the assemblage and the Zij only. Also, the
required normalization follows directly from Eq. (67).
From this, the desired connection to the separability

problem follows: Given an unsteerable assemblage and
operators Zij obeying these conditions, the state ΣAB in
Eq. (67) is separable. Moreover, one can show the opposite
direction: If the assemblage is steerable, then there exist a set
of operators Zij such that the state ΣAB is entangled. In this
case, the entanglement of ΣAB can even be detected by a
special entanglement witness, namely, the flip operator.
The statement can be generalized to an arbitrary number of

measurements and outcomes (Moroder et al., 2016). In fact, it
is related to the dual of the original SDP.
This reformulation of the steerability problem can give

insights in the detection of steering if the measurements on
Bob’s side are not fully characterized, but only the dimension
of the space that the measurements act on is known. The core
idea is the following: For any bipartite state ϱAB and sets of
local orthonormal observables GA

k and GB
l [that is,

TrðGX
i G

X
j Þ ¼ δij for X ∈ fA; Bg], one can build the matrix

Λkl ¼ TrðϱABGA
k ⊗ GB

l Þ. Then the CCNR criterion states that

if ϱAB is separable, then the trace norm is bounded by 1,
kΛk1 ≤ 1 (Chen and Wu, 2003; Rudolph, 2005); see also
Sec. II.C.3. This criterion was already used to detect entan-
glement with uncharacterized devices if the dimension
was known: If Alice and Bob make uncharacterized mea-
surements Ak and Bl, they can build the expectation value
matrix Δkl ¼ TrðϱABAk ⊗ BlÞ and, using the dimension
assumption, estimate the trace norm kΛk1 (Moroder and
Gittsovich, 2012).
A similar approach can be used for steering (Moroder et al.,

2016). For a choice of Zij, one considers the state ΣAB. Then
on Alice’s side, one takes a set of local orthogonal observables
GA

k and, for Bob’s side, uncharacterized measurements Bl and
builds an expectation value matrix, which can be used to
estimate whether ΣAB violates the CCNR criterion. If this is
the case, then the original assemblage was steerable. The
resulting criteria are strong: For two-qubit Werner states
ϱðpÞ ¼ pjψ−ihψ−j þ ð1 − pÞ1=4 and Pauli measurements
σx, σy, and σz, one can evaluate from the data the steering

inequality in Eq. (12). It detects steerability for p > 1=
ffiffiffi
3

p
,

which is the same threshold as the steering inequality. So for
this case, the approach allows one to draw the same con-
clusion from the resulting data, but without assuming that the
measurements were correct Pauli measurements. The only
assumption that is made is that Bob’s space is a qubit.

G. Superactivation of steering

Let us return to the formulation of quantum steering as a
simulation task where Alice tries to convince Bob that she can
steer his system from a distance as discussed in Sec. I. Note
that, in this protocol, Alice has to prepare a large number of
pairs of particles in a certain state. One of the particles in each
pair is then sent to Bob. Note that it is crucial for Alice to
prepare many copies of the state so that later on Bob can do
tomography to verify the steered states on his side. Alice then
declares the set of measurements she can make, or equiv-
alently the assemblage she can steer Bob’s system to. To
maximize her steering ability, Alice clearly should choose the
largest set of measurements. Most often, Alice’s measure-
ments are assumed to be projective measurements (or
POVMs) on separated particles on her side. This, however,
is not yet the maximal set of measurements she can do. As
Alice has prepared a large number of bipartite states, she can
actually make collective measurements on several particles on
her side. We will see that when such collective measurements
are considered, the steerability of a state may change. More
precisely, for an unsteerable (but entangled) state ϱAB, one
asks whether there exists a finite number n such that ϱ⊗n

AB is
steerable. In this case, we say that the quantum steerability of
ϱAB can be superactivated.
For nonseparability, a similar question is answered trivially

negative for any states, but for Bell nonlocality, it has been
extensively investigated since the work of Peres (1996a). For
Bell nonlocality, the confirmative answer was first obtained by
Palazuelos (2012) and later refined by Cavalcanti et al. (2013).
They showed that, indeed, for a certain state ϱAB that admits a
LHV model, for sufficiently large n, ϱ⊗n

AB can violate a Bell
inequality. Note that this is distinct from the notion of
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superactivation of bound entanglement (Shor, Smolin, and
Thapliyal, 2003). While the superactivation of Bell non-
locality that they investigated also implies the ability to
superactivate quantum steering, exact characterizations of
quantum steering also significantly simplify the understanding
of the phenomenon. In fact, Quintino, Brunner, and Huber
(2016) and Hsieh, Liang, and Lee (2016) extended the results
of Cavalcanti et al. (2013) to show that the steerability of all
unsteerable states ϱAB that satisfy the so-called reduction
criterion for entanglement (Horodecki and Horodecki, 1999)
can be superactivated. The reduction criterion states that if
1A ⊗ ϱB − ϱAB is not positive, then the state ϱAB is non-
separable. As satisfying the reduction criterion is a necessary
and sufficient condition for a two-qubit or a qubit-qutrit state
to be nonseparable (Horodecki and Horodecki, 1999), the
steerability of all entangled states of dimension 2 × 2 or 2 × 3
can be superactivated.
Their idea is based on the exact threshold for quantum

steering of the isotropic state in Eq. (55). For convenience,
here the isotropic state is reparametrized as

Sfd ¼ fjϕþihϕþj þ ð1 − fÞ 1 − jϕþihϕþj
d2 − 1

; ð68Þ

with the same notation as defined in Eq. (53) and
f ¼ 1 − ð1 − 1=d2Þð1 − ηÞ. According to Eq. (55), the iso-
tropic state in Eq. (68) is unsteerable if and only if
f ≤ ½ð1þ dÞHd − d�=d2. It is known (Horodecki and
Horodecki, 1999) that a state that violates the reduction
criterion can be brought into an entangled isotropic state with
f > 1=d by local filtering on Bob’s side and the so-called
isotropic twirling operation. As mentioned in Sec. III.C, local
filtering on Bob’s side does not change the steerability of the
state. The isotropic twirling operation consists of averaging
the state under certain random local unitary transformations
and thus does not increase the steerability. It is sufficient to
show that the steerability of the isotropic state Sfd with f >
1=d can be superactivated. This again can be shown by
observing that the isotropic twirling on ðSfdÞ⊗n yields the

isotropic state Sf
n

dn of dimension dn × dn. Thus, ðSfdÞ⊗n is
steerable if

f >
½ð1þ dnÞHdn − dn�1=n

d2
: ð69Þ

At large n, the right-hand side asymptotically approaches 1=d.
Therefore, whenever f > 1=d, there exists an n such that the
inequality is satisfied, or, equivalently, the steerability of Sfd
can be superactivated.
Beyond states that violate the reduction criterion, one may

ask whether quantum steerability, or, more generally, Bell
nonlocality, can always be superactivated for arbitrary
entangled states. This question remains a challenge for future
research. If this were the case, the hierarchy of quantum
nonlocality would be unified into a single concept (Cavalcanti
et al., 2013).
Besides the notion of superactivation of quantum non-

locality via collective measurements on multiple copies of the
previously described state, there is also the notion of

superactivation of quantum nonlocality via local filtering
(on both sides). The phenomenon dates back to the work
of Popescu (1995), who showed that the Werner states in
dimension d ≥ 5 that admit LHS models for projective
measurements can violate a Bell inequality after appropriate
local filtering. Recently, Hirsch et al. (2013) showed that there
are states that admit a LHS model for POVMs but become Bell
nonlocal after appropriate local filtering. However, Hirsch,
Quintino, Bowles et al. (2016) later showed that there are also
entangled states whose quantum nonlocality cannot be super-
activated by local filtering.

IV. JOINT MEASURABILITY AND STEERING

In this section, we discuss the problem of joint measur-
ability, to which steering is related in a many-to-one manner
(Quintino, Vértesi, and Brunner, 2014; Uola, Moroder, and
Gühne, 2014; Uola et al., 2015; Kiukas et al., 2017). Joint
measurability is a natural extension of commutativity for
general measurements. Operationally, it corresponds to the
possibility of deducing the statistics of several measurements
from the statistics of a single one. The connection between the
concepts of joint measurability and steering unlocks the
technical machinery developed within the framework of
quantum measurement theory to be used in the context of
quantum correlations. It is worth noting that joint measur-
ability was studied extensively for a few decades before
steering was formulated in its modern form. We review the
connection on three levels: joint measurability on Alice’s side
(pure states), on Bob’s side (mixed states), and on the level of
the incompatibility breaking quantum channels (Choi isomor-
phism). Moreover, we discuss in detail how known results on
one field can be mapped to new ones on the other.

A. Measurement incompatibility

Measurement incompatibility manifests itself in various
operationally motivated forms in quantum theory. Maybe the
best-known notion is that of noncommutativity. Here by
noncommutativity we mean the mutual noncommutativity
of the POVM elements of two POVMs; i.e., for POVMs
fAaga and fBbgb, we ask whether or not ½Aa; Bb� ¼ 0 for all
a, b. From textbooks on quantum mechanics, we know that
the noncommutativity of observables places certain restric-
tions on the variances of the measured observables. Such
restrictions do not, however, give any further operational
insight into the involved measurements—they just follow
from simple mathematics.
One possible operationally motivated extension of commu-

tativity is that of joint measurability. Namely, one can ask
whether two measurements can be performed simultaneously
(or jointly), i.e., whether there exists a third measurement
whose statistics can be classically processed to match those of
the original pair. Further fine-tunings of measurement incom-
patibility have been presented in the literature, e.g., coexist-
ence, broadcastability, and nondisturbance (Heinosaari and
Wolf, 2010; Busch et al., 2016; Heinosaari, 2016), see also
Sec. IV.E. Typically, all of the incompatibility related exten-
sions of noncommutativity (on a single system) coincide with
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noncommutativity for projective measurements, but for the
case of POVMs, they form a strict hierarchy (Heinosaari and
Wolf, 2010). It is worth mentioning that, in the process matrix
formulation of POVMs, even commuting process POVMs can
be incompatible (Sedlák et al., 2016).
For investigating steering from the measurement perspec-

tive, the notion of joint measurability appears to be most
fitting. A set fAajxga;x of POVMs (i.e., positive operators
summing up to the identity for every x) is said to be jointly
measurable if there exists a POVM fGλgλ together with
classical postprocessings fpðajx; λÞga;x;λ such that

Aajx ¼
X
λ

pðajx; λÞGλ: ð70Þ

The POVM fGλgλ is called a joint observable or a joint
measurement of the set fAajxga;x.
To give an example of a set of jointly measurable POVMs,

one could use a mutually commuting pair of POVMs, in which
case a joint measurement is given by a POVMwhose elements
are products of the original ones. For a more insightful
example, we take a pair of noisy Pauli measurements defined
as

Sμ�jx ≔
1
2
ð1� μσxÞ; ð71Þ

Sμ�jz ≔
1
2
ð1� μσzÞ; ð72Þ

where 0 < μ ≤ 1. The question now is how to find candidates
for a joint measurement. For this pair, an educated guess [i.e.,
a candidate with similar symmetry to the pair ðSμ�jx; S

μ
�jzÞ]

gives

Gμ
i;j ≔ 1

4
ð1þ iμσx þ jμσzÞ; ð73Þ

where i; j ∈ f−;þg. One notices straightaway that

Sμ�jx ¼ Gμ
�;þ þ Gμ

�;−; ð74Þ

Sμ�jz ¼ Gμ
þ;� þ Gμ

−;�. ð75Þ

In other words, there exist deterministic postprocessings that
give the original measurements. The last thing to check is that
fGμ

i;jgi;j forms a POVM. As the normalization follows from
the definition, one is left with checking the positivity of the
elements, which is equivalent to μ ≤ 1=

ffiffiffi
2

p
. It can be shown

that this is indeed the optimal threshold for joint measurability
in our example; i.e., beyond this threshold, the POVMs fSμ�jxg
and fSμ�jzg do not admit a joint measurement (Busch, 1986).

This example shows that joint measurability is indeed a
proper generalization of commutativity. In the literature, many
such examples have been discussed in finite and continuous
variable quantum systems (Busch et al., 2016). A typical
question is as follows: How much noise can be added until
measurements become jointly measurable? For small numbers
of measurements and outcomes, this can be efficiently
checked with SDP (Wolf, Perez-Garcia, and Fernandez,
2009; Uola et al., 2015). For more complicated scenarios,

various optimal and semioptimal analytical and numerical
techniques have been developed (Kunjwal, Heunen, and Fritz,
2014; Heinosaari, Miyadera, and Ziman, 2016; Uola et al.,
2016; Bavaresco et al., 2017; Designolle et al., 2019).

B. Joint measurability on Alice’s side

Comparing the definition of joint measurability with that of
unsteerability, one recognizes similarities. Indeed, joint meas-
urability is a question about the existence of suitable post-
processings and a common POVM, whereas unsteerability
regards the existence of suitable response functions and a
common state ensemble. To make the connection exact, we
recall the main result of Quintino, Vértesi, and Brunner (2014)
and Uola, Moroder, and Gühne (2014):
A set of measurements fAajxga;x is not jointly measurable if

and only if it can be used to demonstrate steering with some
shared state.
To be more precise, using a jointly measurable set of

observables on Alice’s side, i.e., Aajx ¼
P

λ pðajx; λÞGλ, and a
shared state ϱAB results in a state assemblage

ϱajx ¼
X
λ

pðajx; λÞtrA½ðGλ ⊗ 1ÞϱAB� ð76Þ

¼
X
λ

pðajx; λÞσλ; ð77Þ

where σλ ¼ trA½ðGλ ⊗ 1ÞϱAB�. Hence, the existence of a joint
observable for Alice’s measurements implies the existence of
a local hidden state model. For the other direction, using a full
(finite) Schmidt rank state jψi ¼ P

i λijiii, one has

ϱajx ≔ trA½ðAajx ⊗ 1Þjψihψ j� ¼ CAT
ajxC; ð78Þ

where C ¼ P
j λjjjihjj and XT is the transpose of the operator

X in the basis fjiigi. Assuming that the assemblage fϱajxga;x
has a local hidden state model, one gets

Aajx ¼
X
λ

pðajx; λÞC−1σTλC
−1; ð79Þ

from which it is clear that fC−1σTλC
−1gλ forms the desired

joint measurement of fAajxga;x.
To demonstrate a possible use of this result, one can

consider a steering scenario where Alice performs measure-
ments on a noisy isotropic state. This noise in the state can be
translated to Alice’s measurements by writing

tr½ðAajx ⊗ 1ÞϱμAB� ¼ tr½ðAμ
ajx ⊗ 1ÞϱAB�; ð80Þ

where

ϱμAB ¼ μjψþihψþj þ ð1 − μÞ
d2

1

and
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Aμ
ajx ¼ μAajx þ

ð1 − μÞ
d

tr½Aajx�1

with μ ∈ ½0; 1�. For different sets of measurements on Alice’s
side, one can either solve the steerability by using known
incompatibility results or vice versa. To give an example,
consider the known (Wiseman, Jones, and Doherty, 2007)
steerability threshold for the noisy isotropic state (with
projective measurements)

μ� ¼
�Xd

n¼1

1

n
− 1

�
=ðd − 1Þ.

Using Eq. (80), one sees that for any μ > μ� there exists a set
of projective measurements that remains incompatible with
the amount μ of white noise. On the contrary, any set of
projective measurements with an amount μ ≤ μ� of white
noise results in an unsteerable state assemblage (with the
isotropic state), and hence such a set is jointly measurable.
It is worth noting that the connection between the incom-

patibility of Alice’s measurements and the steerability of the
resulting assemblage is strongly motivated by a similar work
on nonlocality. Wolf, Perez-Garcia, and Fernandez (2009)
proved the incompatibility of Alice’s measurements to be
equivalent to the ability of violating the CHSH inequality
(when optimizing over Bob’s measurements and the shared
state). This connection, however, is known not to be true in
general. Bene and Vértesi (2018) and Hirsch, Quintino, and
Brunner (2018) presented counterexamples for the nonlocality
connection in scenarios with more measurement settings; i.e.,
there exist sets of measurements that are not jointly measur-
able but always lead to local correlations. In contrast, joint
measurability and steering can both be described in terms of
operational contextuality (Tavakoli and Uola, 2019). The
CHSH inequality is a criterion for this type of contextuality.
It is an open question as to whether there are other con-
textuality inequalities that fully characterize incompatibility.
Tavakoli and Uola (2019) provided numerical evidence that a
specific family of contextuality criteria generalizing the
CHSH inequality characterizes the incompatibility of sets
of binary qubit measurements. Such a characterization, among
others, is directly applicable to the steerability of state
assemblages by the use of the techniques presented in the
following subsection.

C. Joint measurability on Bob’s side

The connection between steering and joint measure-
ments presented in the previous section is based on the use
of full Schmidt rank states (on finite-dimensional systems).
To loosen the assumption on purity of the state, we recall the
main result of Uola et al. (2015):
The question of steerability (of a state assemblage) is a non-

normalized version of the joint measurement problem.
More precisely, by normalizing a state assemblage

fϱajxga;x, one gets abstract POVMs B̃ajx ≔ ϱ−1=2B ϱajxϱ
−1=2
B ,

where ϱB ¼ P
a ϱajx, and a pseudoinverse is used when

necessary. Note that we use a tilde to distinguish between
Bob’s actual measurements and the normalized state

assemblage (which consists of abstract POVMs on a possibly
smaller dimensional system than the one Bob’s measurements
act on).
It is straightforward to show (Uola et al., 2015) that the state

assemblage fϱajxga;x is steerable if and only if the abstract
POVMs fB̃ajxga;x are not jointly measurable. Namely, as the
normalization keeps the postprocessing functions fixed, the
local hidden states map to joint measurements of the normal-
ized assemblage, and joint measurements map to local hidden
states.
Such a connection broadens the set of techniques that are

translatable between the fields of joint measurability and
steering. In general, joint measurability criteria map to steer-
ing criteria, and vice versa. To give an example, we take a
well-known joint measurability characterization of two qubit
POVMs (Busch, 1986). Namely, take two-qubit POVMs of
the form

A�jx ≔ 1
2
ð1� a⃗x · σ⃗Þ; ð81Þ

where x ¼ 1, 2. This pair is jointly measurable if and only if

ka⃗1 þ a⃗2k þ ka⃗1 − a⃗2k ≤ 2: ð82Þ

Note that this criterion is necessary for joint measurability in
the more general case, i.e., for pairs of POVMs given as

Aþjx ≔ 1
2
½ð1þ αxÞ1� a⃗x · σ⃗�; A−jx ¼ 1 − Aþjx; ð83Þ

where αx ∈ ½−1; 1� and ka⃗xk ≤ 1þ αx. Stano, Reitzner, and
Heinosaari (2008), Busch and Schmidt (2010), and Yu et al.
(2010) gave a necessary and sufficient criterion for joint
measurability of such pairs as

ð1 − F2
1 − F2

2Þ
�
1 −

α21
F2
1

−
α22
F2
2

�
≤ ða⃗1 · a⃗2 − α1α2Þ2; ð84Þ

with

Fi ¼ 1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αiÞ2 − ka⃗ik2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − αiÞ2 − ka⃗ik2

q �
;

for i ¼ 1, 2.
The criteria in Eqs. (82) and (84) are both steering

inequalities. The latter characterizes all pairs of binary
unsteerable assemblages in the qubit case. Labeling members
of such assemblages by ϱ�j1 ¼ ð1=4Þð1� λσzÞ and
ϱ�j2 ¼ β�1� r�σz, we present a comparison of these criteria
in Fig. 9 (Uola et al., 2015).
As another example, we demonstrate how the steering

robustness defined in Eq. (30) translates to an incompatibility
robustness (Uola et al., 2015). Recall that the steering
robustness SRðϱajxÞ of an assemblage fϱajxga;x can be
written as

min t ≥ 0

s.t.
ϱajx þ tγajx

1þ t
is unsteerable for all a; x: ð85Þ
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Here the optimization is over assemblages fγajxga;x and
positive numbers t; see also Fig. 3. Mapping a state assem-
blage to a set of POVMs, one can define an incompatibility
robustness IRðB̃ajxÞ for a set fB̃ajxga;x as (Uola et al., 2015)

min t ≥ 0

s:t:
B̃ajx þ tTajx

1þ t
is jointly measurable for all a; x: ð86Þ

Here the optimization is performed over POVMs fTajxga;x and
positive numbers t. Note that this definition works also for a
generic set of POVMs; i.e., the POVMs do not need to
originate explicitly from a steering problem. To give the
incompatibility robustness IRðAajxÞ of a finite set of POVMs
fAajxga;x in the standard SDP form, one writes (Uola et al.,
2015)

min tr

�P
λG

0
λ

d

�

s:t:
X
λ

Dðajx; λÞG0
λ ≥ Aajx; for all a; x;

G0
λ ≥ 0 ; for all λ;

X
λ

G0
λ ¼ 1 tr

�X
λ

G0
λ

�
=d; ð87Þ

where fDðajx; λÞga;x;λ are deterministic postprocessings.

To finish this section, we stress that even though the
normalized state assemblages appear as abstract POVMs that
do not have a direct connection to the POVMs actually
measured in the correlation experiment, the normalized state
assemblages can be interpreted as the POVMs Alice should
measure on the canonical purification of

P
a ϱajx in order to

prepare fϱajxga;x. Hence, we see that the results on steering
and joint measurements stated in Sec. IV.B (i.e., nonjointly
measurable POVMs allow steering with some shared state) are
closely related to the connection presented here.

D. Incompatibility breaking quantum channels

The extension of the connection between steering and joint
measurements to infinite-dimensional systems and measure-
ments with possibly continuous outcome sets was done by
Kiukas et al. (2017). The point is to generalize the Choi-
Jamiołkowski isomorphism to arbitrary shared states (i.e., not
only ones with maximally mixed marginals). The generali-
zation gives a one-to-one connection between states ϱ with a
fixed full-rank marginal ϱB (on Bob’s side) and channels Λ
from Bob to Alice through

ϱ ¼ ðΛ ⊗ 1ÞðjψϱBihψϱB jÞ; ð88Þ

where jψϱBi ¼
P

d
i¼1

ffiffiffiffi
si

p jiii is a purification of ϱB ¼P
d
i¼1 sijiihij. To see a connection to incompatibility, one

writes the channel corresponding to a given state (in the
Heisenberg picture) as

ϱ1=2B Λ†ðAÞϱ1=2B ¼ trA½ðA ⊗ 1Þϱ�T; ð89Þ

where T is a transpose in the eigenbasis of ϱB. Inputting sets of
POVMs fAajxga;x on the left-hand side of Eq. (89) results in
transposed state assemblages on the right-hand side. From
this, it is clear (at least in the finite-dimensional case in which
ϱB can be inverted) that the Heisenberg channel Λ† sends
Alice’s POVMs to normalized state assemblages (i.e.,
POVMs) on Bob’s side. Joint measurability of these
POVMs is equivalent to the unsteerability of fϱajxga;x. It
turns out that this correspondence can be extended to infinite-
dimensional systems (Kiukas et al., 2017), resulting in a fully
general connection between steering and joint measurements:
A state assemblage fϱajxga;x given by Alice’s measure-

ments fAajxga;x and a state ϱ is steerable if and only if the
POVMs fΛ†ðAajxÞga;x are not jointly measurable.
Note that although the notation here is adapted to the case

of discrete POVMs (to avoid technicalities), the connection
also works for POVMs with continuous outcome sets.
To demonstrate the power of this result, we list some of its

implications (Kiukas et al., 2017). First, the connection is
quantitative in the sense that the incompatibility robustness of
fΛ†ðAajxÞga;x coincides with the so-called consistent steering
robustness (i.e., a special case of steering robustness; one
allows mixing only with assemblages that have the same total
state as the original assemblage) of fϱajxga;x. Second, for pure
states, the corresponding channel Λ† is unitary, hence extend-
ing the main results of Quintino, Vértesi, and Brunner (2014)

FIG. 9. Regions of the parameters λ, r, θ allowing for steering,
detected by the inequality (82) (inner region) and the inequality
(84) (outer region), with r ¼ kr⃗þk and θ being the angle between
r⃗þ and the z axis, and βþ ¼ 0.45 (fixed). (Inset) Representation
in the Bloch sphere of the reduced states ϱ�j1 (green points one
upon the other) and ϱþj2 (red point on the right). The normaliza-
tion factor βþ ¼ Tr½ϱþj2� is not represented. From Uola et al.,
2015.
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and Uola, Moroder, and Gühne (2014) presented in Sec. IV.B
to the infinite-dimensional case. Third, the result characterizes
unsteerable states as those whose corresponding Choi-
Jamiołkowski channel is incompatibility breaking (i.e., out-
puts only jointly measurable observables). Finally, seemingly
different steering problems (such as certain bipartite states
subjected to photon loss and systems with amplitude damping
dynamics) can have the same channel Λ, hence making it
possible to solve many steering problems in one attempt.

E. Further topics on incompatibility

As mentioned at the beginning of this section, measurement
incompatibility manifests itself in various ways in quantum
theory. In this section, we review briefly two well-known fine-
tunings of commutativity and discuss their relation to quantum
correlations.
First, in the case of joint measurability, one asks for the

existence of a common POVM and a set of postprocessings.
One can relax this concept by dropping the assumption on
postprocessings. Namely, we say that a set of POVMs
fAajxga;x is coexistent if there exists a POVM fCλgλ such that

AXjx ¼
X
λ∈τXjx

Cλ; ð90Þ

where τXjx is a subset of outcomes of fCλgλ for every pair
ðX; xÞ. Here we used the notation X to emphasize that the
definition is required to hold not only for all POVM elements
of fAajxga;x but also for sums of outcomes; e.g., for
X ¼ fa1; a2g, one has AXjx ¼ Aa1jx þ Aa2jx. To give the
concept a physical interpretation, Heinosaari, Miyadera,
and Ziman (2016) noted that the definition is equivalent to
the joint measurability of the set of all binarizations (i.e.,
coarse grainings to two-valued ones) of the involved mea-
surements. Whereas it is clear that joint measurability implies
coexistence (by the use of deterministic postprocessings), the
other direction does not hold in general (Reeb, Reitzner, and
Wolf, 2013; Pellonpää, 2014).
As coexistence is closely related to joint measurability, one

can ask whether anything can be learned from using this
concept in the realm of steering. As Uola, Moroder, and
Gühne (2014) pointed out, one can reach steering with
coexistent measurements on the uncharacterized side (pro-
vided that the measurements are not jointly measurable). What
has not appeared in the literature so far, but we wish to point
out here, is that when using this concept on the characterized
side, one can find examples of steerable assemblages that
nevertheless form one ensemble. Consider the example of
coexistent but not jointly measurable POVMs given by Reeb,
Reitzner, and Wolf (2013) by defining a vector

jφi ¼ 1ffiffiffi
3

p ðj1i þ j2i þ j3iÞ

and the POVMs

Aij1 ≔ 1
2
ð1 − jiihijÞ; i ¼ 1; 2; 3; ð91Þ

Aþj2 ≔ 1
2
jφihφj; A−j2 ≔ 1 − Aþj2: ð92Þ

To see that these POVMs are coexistent, one can define a
POVM fCλgλ through the elements

�
1
2
j1ih1j; 1

2
j2ih2j; 1

2
j3ih3j; 1

2
jφihφj; 1

2
ð1 − jφihφjÞ

	
: ð93Þ

For proof that these POVMs are not jointly measurable, see
the work of Reeb, Reitzner, and Wolf (2013). Applying the
mapping between measurement assemblages and state
assemblages (with a full-rank state ϱB; see also Sec. IV.C)
to the previous (or any similar) example, one ends up with a
steerable state assemblage that nevertheless fits into a single
ensemble.
As another example, we consider the concept of measure-

ment disturbance. A POVM fAaga is called nondisturbing
with respect to a POVM fBbgb if there exists an instrument,
i.e., a collection of completely positive maps summing to a
quantum channel, fIaga implementing fAaga, i.e.,
tr½IaðϱÞ� ¼ tr½Aaϱ� for all states ϱ such that

X
a

tr½IaðϱÞBb� ¼ tr½ϱBb� ð94Þ

holds for all states ϱ and all outcomes b.
Nondisturbance is located between commutativity and joint

measurability. Clearly, commutativity implies nondisturbance
by the use of the Lüders rule, and nondisturbance implies joint
measurability by defining for a nondisturbing scenario
Ga;b ¼ I†

aðBbÞ, where the dagger refers to the Heisenberg
picture. For proof that the implications cannot be reversed in
general, and for a more detailed analysis on when the
implications are reversible, see the work of Heinosaari and
Wolf (2010).
As some disturbing measurements can be jointly measur-

able, measurement disturbance is necessary but not sufficient
for steering. One could, however, ask whether there exist other
types of quantum correlations or tasks for which disturbance is
necessary and sufficient. It turns out that the question can be
answered positively, and one answer is given by violations of
typical (i.e., choose between measuring or not measuring)
models of macrorealism (Uola, Vitagliano, and Budroni,
2019). More precisely, Uola, Vitagliano, and Budroni
(2019) showed that when all classical disturbance (i.e., clumsy
measurement implementation) is isolated from a quantum
system, the system can violate macrorealism with some initial
state if and only if the involved measurements do not fulfill the
definition of nondisturbance.
Motivated by the strong connections between quantum

measurement theory and quantum correlations presented in
this section (see also Secs. V.D and. V.H), it will be a
challenge for future research to isolate the measurement
resources behind other quantum tasks. Conversely, it will
be of interest to see whether other concepts of incompatibility
such as broadcastability (Heinosaari, 2016), incompatibility
on many copies (Carmeli et al., 2016), and measurement
simulability (Oszmaniec et al., 2017) will find counterparts in
the realm of quantum correlations. To conclude, we note that,
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whereas further connections between measurement theory and
correlations remain unknown, jointly measurable sets
(Carmeli, Heinosaari, and Toigo, 2019; Skrzypczyk, Šupić,
and Cavalcanti, 2019), or more generally all convex subsets of
measurements (Uola, Kraft et al., 2019), can be characterized
through state discrimination tasks.

V. FURTHER TOPICS AND APPLICATIONS OF STEERING

In this section, we discuss further aspects and applications
of steering. We start with multipartite steering, steering of
Gaussian states, and temporal steering. Then we discuss
applications of steering such as quantum key distribution,
randomness certification, and channel discrimination. Finally,
we review the resource theory of steering and the phenomenon
of postquantum steering.

A. Multipartite steering

The extension of steering to multipartite systems is an
emerging field of research, and different approaches for
defining multipartite steering exist. Before explaining them,
we point out some peculiarities of the multipartite scenario, if
one considers steering across a bipartition.

1. Steering across a bipartition

In order to discuss the different effects that play a role for
steering in the multipartite scenario, consider a tripartite state
ϱABC, and investigate steering across a given bipartition, say,
ABjC for definiteness. Then there are different scenarios that
have to be distinguished, where in all of them Alice and Bob
want to steer Charlie.

• Global steering: In the simplest case, Alice and Bob
make global measurements on their two particles and
steer Charlie. This reduces to a bipartite steering problem
for ϱABjC, and all of the usual methods can be applied.

• Reduced steering: Another simple case arises if Alice (or
Bob) tries to steer Charlie, without needing the help of
the other. If the action of one of them is not required, this
reduces to the bipartite steerability of the reduced state
ϱAjC or ϱBjC. Again, the entire bipartite steering theory
can be applied.

• Local steering: An interesting case arises if Alice and
Bob try to steer Charlie by local measurements on their
respective parties. In this case, one has to consider the
assemblage ϱabjxy and ask whether its elements can be
written as

ϱabjxy ¼
Z

dλpðλÞpða; bjx; y; λÞσCλ : ð95Þ

Here we can distinguish among several cases, depending
on the properties of pða; bjA; B; λÞ. It may be a general
probability distribution, it may obey the nonsignaling
constraint, or it may factorize,

pða; bjx; y; λÞ ¼ pðajx; λÞpðbjy; λÞ: ð96Þ

As pða; bjx; y; λÞ has the interpretation of a simulation
strategy [see Eq. (2)], the latter indicates that Alice and
Bob play an independent strategy.

A simple example of the difference between global and
local steering can be constructed from the phenomenon of
superactivation of steering (Quintino, Brunner, and Huber,
2016); see also Sec. III.G. For certain states, one copy of the
state is unsteerable, but many copies of the same state may
become steerable. One can consider a state ϱABCC0 ¼
ϱAC ⊗ ϱBC0 , where ϱBC0 is a copy of ϱAC, and ϱAC is
unsteerable, but its steerability can be superactivated [where
two copies are already enough (Quintino, Brunner, and Huber,
2016)]. For this state, local measurements give an unsteerable
state assemblage as

ϱCC
0

abjxy ¼ TrAB½ðAajx ⊗ Bbjy ⊗ 1CC0 ÞϱABCC0 �
¼ TrAB½ðAajx ⊗ 1CÞϱAC ⊗ ðBbjy ⊗ 1C0 ÞϱBC0 �

¼
Z

dλdμpðλÞpðμÞpðajx; λÞpðbjy; μÞσCλ ⊗ σ̃C
0

μ

¼
Z

dνpðνÞpða; bjx; y; νÞσ̂CC0
ν ; ð97Þ

and the state is locally unsteerable even with the restriction to
factorizing pða; bjx; y; λÞ. However, because of the super-
activation phenomenon, this state is steerable with global
measurements.
Another possibility is to consider the bipartition AjBC,

where Alice wants to steer Bob and Charlie. Here one has to
consider the ensemble ϱBCajx and ask whether it can be written as
ϱajx ¼

R
dλpðλÞpðajx; λÞσBCλ . In this case, two possible sce-

narios emerge, one where the state of Bob and Charlie is a
single system, reducing to a bipartite steering problem, and
another where the local hidden state of Bob and Charlie
factorizes, i.e., σBCλ ¼ σ̃Bλ ⊗ σ̂Cλ .
From this picture, one can see that the extension of steering

to multipartite systems leads to different scenarios, making its
characterization even more difficult than the ones for entan-
glement and nonlocality.

2. Different approaches toward multipartite steering

The existing works on multipartite steering can be divided
into two different approaches. The first approach sees steering
as a one-sided device-independent entanglement verification
and translates this to the multipartite scenario. The second
approach asks for a multipartite system whether or not steering
is possible for a given bipartition.
To discuss the first approach, we need to recall the basic

definitions of the different entanglement classes for multipar-
tite systems (Gühne and Tóth, 2009). For a three-partite
system ϱABC, one calls the state fully separable if it can be
written as

ϱfsABC ¼
X
k

pkϱ
A
k ⊗ ϱBk ⊗ ϱCk ; ð98Þ

where the pk form a probability distribution. If a state is not
of this form, it is entangled, but not all particles are necessarily
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entangled. For instance, a state of the form ϱbsAjBC ¼P
k pkϱ

A
k ⊗ ϱBCk may contain entanglement between B and

C, but it is separable for the bipartition AjBC and therefore
called biseparable. More generally, mixtures of biseparable
states for the different partitions are also biseparable,

ϱbsABC ¼ p1ϱ
bs
AjBC þ p2ϱ

bs
BjAC þ p3ϱ

bs
CjAB; ð99Þ

and states which are not biseparable are genuine multipartite
entangled. These definitions can straightforwardly be
extended to more than three particles.
One-sided device-independent entanglement detection in

the multipartite scenario was first discussed by Cavalcanti
et al. (2011). There criteria for full separability in the form of
Mermin-type inequalities were given, which hold for k trusted
sites and N − k untrusted sites. These criteria can be violated
in quantum mechanics, and the possible violation increases
exponentially with the number of parties. Inequalities for
higher-dimensional systems were derived by He, Drummond,
and Reid (2011).
In general, if one has a quantum network of N parties where

some of the parties perform untrusted measurements, the
parties which trust their measurement apparatus can perform
quantum state tomography and reconstruct the conditional
state after the untrusted parties announce their measurement
choices and outcomes. For three parties, there are two one-
sided device-independent scenarios: when only one party’s
device is untrusted, with state assemblage

ϱBCajx ¼ TrAðAajx ⊗ 1B ⊗ 1CϱABCÞ; ð100Þ

and when two of them are untrusted,

ϱCabjxy ¼ TrABðAajx ⊗ Bbjy ⊗ 1CϱABCÞ: ð101Þ

If ϱABC is biseparable, this condition imposes constraints on
the assemblages. Then, for a given state, to test whether or not
the assemblages of the form (100) or (101) obey the
conditions, one can use SDPs (D. Cavalcanti et al., 2015).
Also, entropic conditions for this scenario have been studied
(Costa, Uola, and Gühne, 2018a; Riccardi, Macchiavello, and
Maccone, 2018).
The second approach uses steering between the bipartitions

to define genuine multipartite steering (He and Reid, 2013).
First, for two parties, one can say that they share steering if the
first one can steer the other or vice versa. Then, for three
parties, one can define genuine multipartite steerability as the
impossibility of describing a state with a model where steering
is shared between two parties only. This means that the state
cannot be described by mixtures of bipartitions as in Eq. (99),
where for each partition (e.g., AjBC) the two-party state (e.g.,
BC) is allowed to be steerable.
One can then directly see that, for checking this criterion, it

is sufficient to consider the bipartitions ABjC, ACjB, and
BCjA, where the two-party sites are uncharacterized and the
single-party site obeys quantum mechanics. In addition, on
the two-party site, only local measurements are allowed, but
the results only have to obey the nonsignaling condition. For
proving genuine multipartite steering in this sense, several

methods are possible. If the state is pure, it suffices to check
the steerability for the bipartitions mentioned, as pure state
convex combinations into different bipartitions are not pos-
sible (He and Reid, 2013). Otherwise, one may derive a linear
(or convex) inequality that holds for unsteerable states of all
relevant bipartitions. Because of linearity, it also holds for
convex combinations, and violation rules out the previously
mentioned model. This approach was experimentally used by
Armstrong et al. (2015) and Li et al. (2015).

B. The steering ellipsoid

Note that the definition of quantum steering, Eq. (2),
requires one to consider the ensembles of unnormalized
conditional states at Bob’s side. However, one can expect
important insight to be gained by simply studying the
normalized version of these conditional states. Note that in
doing so, two things are lost: the steering ensemble to which a
conditional state belongs, and the probability with which the
conditional state is steered.
For two-qubit states, the normalized conditional states

Alice can steer Bob’s system to form an ellipsoid inside
Bob’s Bloch sphere, referred to as the steering ellipsoid
(Verstraete, 2002; Shi et al., 2011, 2012; Jevtic et al.,
2014). Detailed analysis of their geometry led to the proposal
to use them as a tool to represent two-qubit quantum states, in
a way similar to the Bloch representation of states of a single
qubit. In particular, given the reduced states of both parties, a
steering ellipsoid on one side allows recovering of the density
operator up to a certain local unitary or antiunitary operation
on the other side (Jevtic et al., 2014). Special attention later
was given to the volumes of the steering ellipsoids (Jevtic
et al., 2014; Milne et al., 2014; Cheng et al., 2016;
McCloskey, Ferraro, and Paternostro, 2017; Zhang et al.,
2019). In particular, Milne et al. (2014, 2015) showed that the
volumes of the steering ellipsoids give upper bounds for the
entanglement of the state in terms of its concurrence. It is also
shown that the volumes of the steering ellipsoids obey certain
monogamy relations (Milne et al., 2014, 2015; Cheng
et al., 2016), which is discussed in the following.
Consider a system of three qubits ABC. Denote the volume

of the steering ellipsoids for steering from A to B and A to C
by VBjA and VCjA, respectively. Milne et al.(2014, 2015)
showed that, for all pure states of the system of three qubits
ABC, one has

ffiffiffiffiffiffiffiffiffi
VBjA

q
þ

ffiffiffiffiffiffiffiffiffi
VCjA

q
≤

ffiffiffiffiffiffiffiffiffiffi
4π=3

p
: ð102Þ

They also showed that the famous Coffman-Kundu-Wootters
monogamous inequality for entanglement (Coffman, Kundu,
and Wootters, 2000) can be derived from this inequality.
However, Cheng et al. (2016) showed that the monogamy
relation (102) is violated when the three qubits are in certain
mixed states. Instead, Cheng et al. showed that a weaker
monogamy relation can be derived for all possible states over
the three qubits,

VBjA2=3 þ VCjA2=3 ≤ ð4π=3Þ2=3: ð103Þ
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Recently, both the monogamy relation (103) and the violation
of Eq. (102) were illustrated experimentally (Zhang
et al., 2019).
It is in fact the analysis of the geometry of the steering

ellipsoids for Bell-diagonal states that leads to the exact
characterization of quantum steering for this family of states
(Jevtic et al., 2015; Nguyen and Vu, 2016a); see also Sec. II.C.
Beyond the Bell-diagonal states, little is known about the
extent to which the steering ellipsoids, or their volumes, can
characterize the quantum steerability of the state. In particular,
a question for future research might be whether the
monogamy relations (102) and (103) can induce certain
monogamy relations between some measures of steering such
as the critical radii defined in Sec. II.C.

C. Gaussian steering

1. A criterion for steering of Gaussian states

Before discussing Gaussian steering, some preliminary
notions are needed. First, Gaussian systems refer to a special
class of continuous variable scenarios. Hence, one deals with
infinite-dimensional Hilbert spaces ⊗N

j¼1 L
2ðRÞ, where the

index N refers to the number of modes. Every Gaussian state
is described by a real symmetric matrix, the so-called
covariance matrix V satisfying

V þ iΩ ≥ 0; ð104Þ

where Ω ¼⊕N
j¼1 ð 0

−1
1
0
Þ. More precisely, the covariance matrix

of a quantum state ϱ is given as ðVÞij ¼ Tr½ϱfRi−
ri; Rj − rjg�, where R ¼ ðQ1; P1;…; Qn; PnÞT with quadra-
ture operators Qi and Pj satisfying ½Qi; Pj� ¼ iδij1 and
½Qi;Qj� ¼ ½Pi; Pj� ¼ 0, and rj ¼ tr½ϱRj�. Moreover, every
real symmetric matrix satisfying Eq. (104) defines a
Gaussian state. The use of the word “Gaussian” in this context
originates from the fact that the previously described
states correspond to the ones whose characteristic function
ϱ̂ðxÞ ≔ tr½WðxÞϱ� is Gaussian. Here WðxÞ ¼ e−ix

TR, with
x ¼ ðq1; p1;…; qn; pnÞT , and

ϱ̂ðxÞ ¼ e−ð1=4ÞxTVx−irTx: ð105Þ

Second, a Gaussian measurement is a POVM Ma (with
values in a ∈ Rd), whose outcome distribution for any
Gaussian state is Gaussian. Such POVMs correspond to
triples ðK;L;mÞ satisfying

L − iKTΩK ≥ 0; ð106Þ

where K is an N × d matrix, L is a d × d matrix, and m is a
displacement vector. The correspondence between the POVM
Ma and the triple ðK; L;mÞ is given through the operator-
valued characteristic function as

M̂ðpÞ ≔
Z

daeip
TaMa

¼ WðKpÞe−ð1=4ÞpTLp−imTp: ð107Þ

With these definitions, we are ready to state the charac-
terization of steerable states in Gaussian systems originally
given by Wiseman, Jones, and Doherty (2007).
A bipartite Gaussian state with covariance matrix VAB and

displacement rAB is unsteerable with Gaussian measurements
if and only if

VAB þ ið0A ⊕ ΩBÞ ≥ 0: ð108Þ

Here 0A is a zero matrix on Alice’s side, and ΩB is the matrix
⊕N

j¼1 ð 0
−1

1
0
Þ on Bob’s side.

In contrast to other steering scenarios, the Gaussian case
appears to be special in that the steerability of a state can be
characterized through an easy to evaluate inequality. This is,
however, not the only special feature for Gaussian steering.
Namely, within the Gaussian regime, one can also prove
monogamy relations for steering with more than two parties
(Reid, 2013; Ji, Kim, and Nha, 2015; Adesso and Simon,
2016; Lami et al., 2016). One should note that the monogamy
can break when one is allowed to perform non-Gaussian
measurements (Ji et al., 2016).

2. Refining Gaussian steering with EPR-type observables

As a special case of interest in the Gaussian regime, we
discuss steering with canonical quadratures. Kiukas et al.
(2017) showed that steerability of a given state in the Gaussian
scenario can be readily detected by a pair of quadrature
observables.
To be more concrete, we sketch the construction of the

quadratures from Kiukas et al. (2017). First, a channel is
called Gaussian if it maps Gaussian states to Gaussian states.
Gaussian channels between systems of n and m degrees of
freedom correspond to triples ðM;N; cÞ, with M being a real
2n × 2m matrix, N being a real 2m × 2m matrix, and c being
the displacement, that satisfy

N − iMTΩM þ iΩ ≥ 0: ð109Þ

The transformation of Gaussian states on the level of covari-
ance matrices is given as

V ↦ MTVM þ N; r ↦ MTrþ c: ð110Þ

Given that a bipartite Gaussian state has a corresponding
Choi-Jamiołkowski channel with parameters ðM;N; cÞ,
one first notes that the state is unsteerable with Gaussian
measurements if and only if the channel parameters also
define a Gaussian measurement (Kiukas et al., 2017). Hence,
for a steerable state, there exist two vectors x and y such
that ðyT − ixTÞðN − iMTΩMÞðyþ ixÞ < 0. As the triple
ðM;N; cÞ also fulfills Eq. (109), we have r ≔ xTΩy > 0 and

ðMx̃ÞTΩMỹ > 1
2
ðx̃TNx̃þ ỹTNỹÞ; ð111Þ
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where x̃ ¼ r−1=2x and ỹ ¼ r−1=2y. From here, one can con-
struct two canonical quadratures as Qx̃ ¼ x̃TR and Pỹ ¼ ỹTR.
These are canonical as, by definition, x̃TΩỹ ¼ 1. To see that
the state is indeed steerable with these measurements, we refer
the interested reader to the work of Kiukas et al. (2017)). To
summarize, we state the following refined characterization of
Gaussian steering (Kiukas et al., 2017).
For a bipartite Gaussian state ϱAB with a covariance matrix

VAB and displacement rAB, the following are equivalent:
(i) ϱAB is steerable with Gaussian measurements.
(ii) ϱAB is steerable with some pair of canonical quad-

ratures.
(iii) VAB þ ið0A ⊕ ΩBÞ is not positive semidefinite.

D. Temporal and channel steering

So far we have concentrated on steering in spatial scenarios,
i.e., scenarios where Alice and Bob are spacelike separated.
Some efforts to define similar concepts in temporal scenarios,
i.e., scenarios where Alice and Bob form a prepare-and-
measure-type scenario, and on the level of quantum channels
have also been pursued in the literature (Chen et al., 2014,
2017; Piani, 2015; Chen, Lambert et al., 2016). In a temporal
scenario (consisting of two measurement times), one can ask
whether a state assemblage resulting from measurements at
the first time step allows a local hidden state model on the
second time step. Of course, in temporal scenarios, signaling
is possible, and hence such models are sometimes trivially
violated. Despite signaling, temporal steering has found
applications in non-Markovianity (Chen, Lambert et al.,
2016) and in quantum key distribution (QKD) (Bartkiewicz
et al., 2016), and some criteria (Chen et al., 2014) and
quantifiers (Bartkiewicz et al., 2016) have been developed. As
the criteria and quantifiers strongly resemble those of spatial
steering presented in Secs. II.A and II.B, we do not go through
them in detail.
In channel steering (Piani, 2015), one is interested in

instrument assemblages instead of state assemblages.
Namely, given a quantum channel ΛC→B from Charlie to
Bob and its extension ΛC→A⊗B, one asks if an assemblage
defined as

Iajxð·Þ ≔ trA½ðAajx ⊗ 1ÞΛC→A⊗Bð·Þ�; ð112Þ

where fAajxga;x is a set of POVMs, can be written as

Iajxð·Þ ¼
X
λ

pðajx; λÞI λð·Þ ð113Þ

for some instrument fI λgλ (i.e., a collection of CP maps
summing up to a quantum channel) and classical postprocess-
ings fpðajx; λÞga;x;λ. Whenever this is the case, the instrument
assemblage fIajxga;x is called unsteerable.
The concept of channel steering relates to the coherence of

the channel extension. Namely, a channel extension ΛC→A⊗B

is coherent if it cannot be written as

ΛC→A⊗Bð·Þ ¼
X
λ

I λð·Þ ⊗ σλ ð114Þ

for some instrument fI λgλ and states fσλgλ. Any extension
that is of this form is called incoherent. One can show that
incoherent extensions always lead to unsteerable instrument
assemblages and any unsteerable instrument assemblage can
be prepared through some incoherent extension (Piani, 2015).
Note that in spatial steering any separable state leads to an
unsteerable assemblage, and any unsteerable assemblage can
be prepared with a separable state (Moroder et al., 2016).
In the original paper defining channel steering (Piani,

2015), the concept is mainly probed through channel exten-
sions as mentioned. This leads to some connections with state-
based correlations. For example, an extension can lead to a
steerable instrument assemblage if and only if its Choi state
allows Alice to steer Bob, and an extension is incoherent if and
only if the Choi state is separable in the cut AjBC0, where C0 is
the extra input system from the isomorphism.
One can investigate the channel protocol by replacing the

extension with a (minimal) dilation. For completeness, we
note that a minimal dilation of a channel Λ∶LðHÞ ↦ LðHÞ
can be written as Λð·Þ ¼ trA½Vð·ÞV†�, where Vjψi ¼P

n
k¼1 jφki ⊗ ðKkjψiÞ for all jψi ∈ H, fKkgnk¼1 forms a

linearly independent Kraus decomposition of Λ, and where
fjφkigk is an orthonormal basis of the ancillary system. In this
case, the correspondence between instruments and POVMs on
the dilation is one to one and is given through

Iajxð·Þ ¼ trA½ðAajx ⊗ 1ÞVð·ÞV†�: ð115Þ

This directly generalizes the connection between joint mea-
surements and spatial steering to the level of channel steering
(Uola et al., 2018). Namely, a measurement assemblage
fAajxga;x on the minimal dilation is jointly measurable if
and only if the corresponding instrument assemblage is
unsteerable. By noticing, furthermore, that channel steering
with trivial inputs (i.e., a one-dimensional input system)
corresponds to spatial steering, and that in this case a dilation
corresponds to a purification of the total state of the assem-
blage, one recovers the connection between joint measure-
ments and spatial steering.
The dilation technique can also be used to prove that any

nonsignaling state assemblage originates from a set of non-
signaling instruments (Uola et al., 2018), hence showing that
channel steering captures nontrivial (i.e., nonsignaling)
instances of temporal steering (with two time steps), and that
in this case a connection between temporal steering and joint
measurements follows directly from the one between channel
steering and incompatibility. Moreover, using the channel
framework, one can translate concepts from spatial to tem-
poral scenarios. One example of this is given by Uola et al.
(2018) showing that temporal steering and violations of
macrorealism respect a similar strict hierarchy as spatial
steering and nonlocality. Note that Ku, Chen, Lambert
et al. (2018) proved the hierarchy independently.

E. Quantum key distribution

In QKD, two main types of protocols can be distinguished
(Scarani et al., 2009). In prepare-and-measure (PM) schemes,
such as the BB84 protocol, Alice prepares some quantum
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states and sends them to Bob, who performs measurements on
them. Using classical communication, Alice and Bob can then
try to generate a secret key from the measurement data. In
entanglement-based (EB) schemes, such as the E91 protocol,
an entangled quantum state is distributed to Alice and Bob,
and both make measurements on their part of the state. The
source of the state might be under the control of an eaves-
dropper, Eve. Again, the measurement data are then used to
generate a secret key.
A central result concerns the role of entanglement for

security. Curty, Lewenstein, and Lütkenhaus (2004) proved
that entanglement is a necessary precondition for security. For
EB schemes, this means that if the measurement data can be
explained by a separable state, then no secret key can be
distilled. For PM schemes, one can consider an equivalent EB
scheme; then the same statement holds. It should be noted,
however, that the provable presence of entanglement was not
shown to be sufficient for secret key generation. The question
as to whether entanglement can be verified depends on the
measurement data taken and the assumptions made on the
measurements. In a device-independent scheme where no
assumptions about the measurements are made, only Bell
inequalities can be used to test the presence of entanglement.
Still, device-independent QKD can be proved to be secure
against certain attacks (Acín et al., 2007).
One can also consider an asymmetric situation where one

party trusts its devices and the other one does not. This can be
realistic if Alice corresponds to a client of a bank having only
a cheap device, while Bob represents the bank itself. Clearly,
in such a situation, QKD can work only if the underlying state
is steerable. Branciard et al. (2012) considered this problem
for the BBM92 protocol (Bennett, Brassard, and Mermin,
1992). In this protocol, Alice and Bob share a two-qubit Bell
state and measure either A1 ¼ B1 ¼ σz or A2 ¼ B2 ¼ σx. The
correlations for the measurement A1 ⊗ B1 are used for the key
generation, while the correlations in the A2 ⊗ B2 measure-
ment are used to estimate Eve’s information.
Branciard et al. (2012) studied the security of one-sided

device-independent QKD using this protocol against attacks
where Eve has no quantum memory; see also Fig. 10. It has
been shown that only the detector efficiency of the untrusted
party matters and that, for detector efficiencies η ≥ 0.659, a
secret key can already be distilled, and a nonzero key rate
proves that the underlying states are steerable. The obtainable
key rates are higher and the required detector efficiencies
lower than in the fully device-independent case.
In addition, results on steering and PM schemes for QKD

were obtained by Branciard et al. (2012) and Ma and
Lütkenhaus (2012). Wang et al. (2013) and Zhou et al.
(2017) conducted analyses of finite key length, and upper
bounds on the key rate in one-sided device-independent QKD
were obtained by Kaur, Wilde, and Winter (2018). Finally, it
should be noted that similar ideas have also been studied and
implemented for QKD with continuous variables (Gehring et
al., 2015; Walk et al., 2016).

F. Randomness certification

The task of randomness certification can be defined as
follows (Acín, Massar, and Pironio, 2012; Law et al., 2014).

On a quantum system ϱ, a measurement labeled by z is made,
and the result c is obtained. Depending on the situation, the
measurement may be a joint measurement on two parties of an
entangled state; then the labels for the measurement and result
can be written as z ¼ ðx; yÞ and c ¼ ða; bÞ, as in the Bell
scenario in Eq. (3). The task is to quantify the extent to which
an external adversary Eve can predict the outcome c of the
probability distribution pðcjzÞ. Clearly, this depends on the
assumptions made about Eve: For instance, one can distin-
guish the case where the state ϱ is fixed and known to Eve only
from the case where Eve indeed provides the state. In the
former case, one can furthermore distinguish the knowledge
Eve has. She may have only classical information about the
state or she may hold a purification of it; see the work of Law
et al. (2014) for a detailed discussion.
In the simplest case, the state ϱ ¼ jψihψ j is pure and the

measurement z is characterized. Then the best strategy for Eve
is to guess the c with the maximal probability, and the
probability of guessing correctly is given by

Gðz;ψÞ ¼ max
c

pðcjz;ψÞ: ð116Þ

If the state ϱ is mixed, then Eve may hold a purification of it
and she may know the exact decomposition ϱ ¼P

k pkjϕkihϕkj into pure states. Consequently, the maximal
guessing probability is

Gðz; ϱÞ ¼ max
pk;ϕk

X
k

pkGðz;ϕkÞ; ð117Þ

where the maximization runs over all decompositions of ϱ. If
the measurements z are not characterized, one has to optimize
over all possible quantum realizations of the classical prob-
ability distribution pðcjzÞ. The maximal guessing probability
is
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FIG. 10. Key rates for the QKD based on steering. For different
visibilities of the initial state (V ∈ f1; 0.99; 0.98; 0.95gÞ, lower
bounds on the key rate are shown. For perfect visibility (solid
blue line), a key can be extracted for detector efficiencies of η ≥
0.659 for Alice. The dashed line shows a bound (obtained with
the same methods) for the fully device-independent scenario for
the case of perfect visibility. From Branciard et al., 2012.
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G(z; pðcjzÞ) ¼ max
ϱ;Mcjz

Gðz; ϱÞ; ð118Þ

where the maximization runs over all quantum realizations,
described by a state ϱ and measurement operators Mcjz with
pðcjzÞ ¼ TrðMcjzϱÞ. Optimizations over this set can be
carried out by hierarchies of SDPs (Navascués, Pironio,
and Acín, 2007, 2008). In all cases, the number of random
bits that one can extract from pðcjzÞ is given by the minimum
entropy, HminðGÞ ¼ − log2ðGÞ.
Initially, the task of randomness certification was studied

mainly in the Bell scenario, where z ¼ ðx; yÞ and c ¼ ða; bÞ
describe measurements on an entangled state (Acín, Massar,
and Pironio, 2012). Here the devices are not characterized,
and, as soon as a Bell inequality is violated, one can prove that
the results of a fixed setting cannot be predicted, so the
randomness is certified. Law et al. (2014) studied randomness
certification for the steering scenario: Again, one makes local
measurements on an entangled state, but this time the devices
on Bob’s side are characterized. This leads to additional
constraints in the SDP hierarchy (Navascués, Pironio, and
Acín, 2007), and, consequently, more randomness can be
extracted. For states that are not steerable, the randomness can
also be certified; so the violation of a steering inequality is not
necessary for randomness certification in the one-sided
device-independent scenario.
Passaro et al. (2015) studied the task of randomness

certification in the distributed one-sided device-independent
scenario between two parties. But mainly there, the random-
ness for a single measurement setting of Alice was considered.
It has been shown that this can be directly computed with a
SDP, without the need for a convergent hierarchy of SDPs.
This is then shown to hold also for the scenario considered by
Law et al. (2014). Skrzypczyk and Cavalcanti (2018) con-
sidered the problem for two d-dimensional systems. A steer-
ing inequality was derived such that the maximal violation
guarantees logðdÞ random bits for Alice’s outcomes in the
one-sided device-independent scenario. Furthermore, any
pure entangled state with full Schmidt rank can be used to
generate this amount of randomness.
Finally, Curchod et al. (2017) showed that if one considers

the Bell scenario, then sequential measurements on one party
can lead to an unbounded generation of randomness. The
extension of this to the steering scenario was discussed by
Coyle, Hoban, and Kashefi (2018).

G. Subchannel discrimination

Piani and Watrous (2015) provided an operational charac-
terization of steerable quantum states. The characterization is
in similar spirit as in Piani and Watrous (2009), where the
authors show that every entangled state provides an advantage
over separable ones in some channel discrimination task. In
the case of steering, the related task turns out to be that of
subchannel discrimination, i.e., discriminating different
branches of a quantum evolution. Namely, take an instrument
I ¼ fIaga (i.e., a collection of completely positive maps
summing up to a quantum channel), a POVM B ¼ fBbgb, and
an input state ϱ, and define the probability of correctly
identifying the subchannel (i.e., instrument element) as

pcorðI ; B; ϱÞ ≔
X
a

tr½IaðϱÞBa�: ð119Þ

To find the best strategy for the task, one maximizes over input
states and POVMs on the output.
As mentioned previously, entanglement provides an advan-

tage in channel discrimination tasks, i.e., tasks of discriminat-
ing between subchannels of the form Ia ¼ pðaÞΛa, where
fΛaga are quantum channels. To prove a similar result for
general subchannels, Piani and Watrous (2015) limited the set
of allowed measurements between the system (i.e., the outputs
of the instruments) and the ancilla to local measurements
supported by forward communication from output to ancilla
[i.e. one-way local operations assisted by classical communi-
cation (LOCC) measurements]. Such measurements have
POVM elements of the form Cout→anc

a ¼ P
x Aajx ⊗ Bx, where

fBxgx is a POVMon the output system and fAajxga is a POVM
on the ancilla for every x. The probability of correctly
identifying the branch of the evolutionwith suchmeasurements
and a shared state ϱAB is given as pcorðI ; 1-LOCC; ϱABÞ ¼P

a;x trout½I†
aðBxÞϱajx�. Note that any unsteerable state can

perform, at most, as well as some single system state. One
sees this by using a LHS model for the assemblage in the
previous equation and by choosing the best performing hidden
state as the single system state.
To prove the main result of the paper, Piani and Watrous

defined a quantity called steering robustness of a bipartite state
ϱAB by maximizing the steering robustness of all possible
assemblages that the state allows. More formally,

RA→B
steer ðϱABÞ ¼ supfRðAÞjfAajxga;xg; ð120Þ

where RðAÞ is the steering robustness of the assemblage
ϱajx ¼ trA½ðAajx ⊗ 1ÞϱAB�. Clearly, the quantity RA→B

steer ðϱABÞ is
zero if and only if the state ϱAB is unsteerable. The main result
now reads as follows:
For any steerable state, there exists a subchannel discrimi-

nation task (with forward communication from the output to
the ancilla) in which the state performs better than any
unsteerable one, i.e.,

sup
pcorðI ; 1-LOCC; ϱABÞ

pNE
cor ðIÞ

¼ 1þ RA→B
steer ðϱABÞ: ð121Þ

Here the supremum is taken over all instruments and one-way
LOCC measurements from the output to the ancilla. The
denominator represents the best performance provided by
unsteerable states in the corresponding task. Note that this
result gives the set of steerable states an operational charac-
terization. Experimental demonstration of this result was
presented by Sun et al. (2018).
We note that the result on steering robustness can be

generalized. One can define a robustness measure for any
convex and closed subset of assemblages and can reach a
conclusion similar to the previous one using conic program-
ming (Uola, Kraft et al., 2019). Moreover, one can show that a
related measure called a convex weight or free fraction has a
similar interpretation: Whereas robustness measures
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discrimination power, the free fraction is a measure of
exclusivity (Uola, Bullock et al., 2019).

H. Device-independent quantification of measurement
incompatibility and steering

As steering is closely related to joint measurability and
nonlocality, some works (Cavalcanti and Skrzypczyk, 2016;
Chen, Budroni et al., 2016) have pursued ways of deriving
one-sided device-independent and device-independent bounds
on measurement incompatibility. The idea is to show that
quantifiers of incompatibility (e.g., incompatibility robust-
ness) are lower bounded by quantifiers of steering (e.g.,
steering robustness), which in turn are lower bounded by
nonlocality quantifiers (e.g., nonlocality robustness). Hence,
on top of the one-sided device-independent and fully device-
independent lower bounds on incompatibility, one gets also a
device-independent lower bound on a quantifier of steering.
We follow the work of Cavalcanti and Skrzypczyk (2016) to

make the aforementioned hierarchy more concrete. It is worth
mentioning that the hierarchy presented here corresponds to
one choice of quantifiers. Analogous results are possible for
various fine-tuned quantifiers.
To write down the result, recall the definitions of incom-

patibility, steering, and nonlocality robustness. Steering
robustness is defined in Eq. (30), and analogously to that,
one defines the incompatibility robustness IRðAajxÞ of a set
fAajxga;x of POVMs as in Eq. (86)

min t

s:t:
Aajx þ tNajx

1þ t
¼

X
λ

Dðajx; λÞGλ; for all a; x;

t ≥ 0;

Najx ≥ 0; for all a; x;
X
a

Najx ¼ 1; for all x;

Gλ ≥ 0; for all λ;
X
λ

Gλ ¼ 1: ð122Þ

Note that here Dð·jx; λÞ ∈ f0; 1g is a deterministic assignment
for every x and λ. The interpretation of this robustness is that
one mixes the POVMs fMajxga;x with fNajxga;x until they
become jointly measurable.
Now if Alice’s measurements fAajxga;x in a steering

scenario with a state ϱAB have incompatibility robustness t,
then replacing Alice’s measurements with the jointly meas-
urable POVMs ðAajx þ tNajxÞ=ð1þ tÞ shows that t is an upper
bound for the steering robustness of σajx≔ trA½ðAajx⊗1ÞϱAB�.
In other words, steering robustness of a given assemblage
lower bounds the incompatibility robustness of the measure-
ments on the steering party. This bound, moreover, is one-
sided device independent. Notice that with a fine-tuned
steering quantifier called consistent steering robustness, the
aforementioned inequality is tight for full Schmidt rank states
(Cavalcanti and Skrzypczyk, 2016); see also Kiukas et al.
(2017).
For the device-independent quantification of steering and

incompatibility, one can use the nonlocality robustness

NR½pða; bjx; yÞ� of a probability table fpða; bjx; yÞga;b;x;y,
given as (Cavalcanti and Skrzypczyk, 2016)

min r

s:t:
pða; bjx; yÞ þ rqða; bjx; yÞ

1þ r

¼
X
λ;μ

pðλ; μÞDðajx; λÞDðbjy; μÞ; for all a; b; x; y;

r ≥ 0; pðλ; μÞ ≥ 0;

qða; bjx; yÞ ∈ Q; ð123Þ

whereQ is the set of all possible quantum correlations defined
as

Q ¼ ftr½ðAajx ⊗ BbjyÞϱAB�j
× fAajxga;x; fBbjygb;y POVMs; ϱAB a stateg: ð124Þ

As in the one-sided device-independent quantification of
incompatibility mentioned previously, one sees that, for a
given state assemblage fσajxga;x, the nonlocality robustness of
any probability table originating from this assemblage, i.e.,
pða; bjx; yÞ ¼ tr½σajxBbjy�, with fBbjygb;y being POVMs on
Bob’s side, gives a lower bound for the steering robustness of
the assemblage. In other words

IRðAajxÞ ≥ SRðσajxÞ ≥ NR½pða; bjx; yÞ�: ð125Þ

Hence, using the machinery of Cavalcanti and Skrzypczyk
(2016) and Chen, Budroni et al. (2016), one finds one-sided
device-independent and fully device-independent lower
bounds for quantifiers of measurement incompatibility and
device-independent lower bounds for quantifiers of steering.

I. Secret sharing

Secret sharing is a cryptography protocol that allows a
dealer (Alice) to send a message to players (Bob and Charlie)
in a way such that the message can be decoded only if the
players work together, neither of them can decode it by
himself. If Alice shared a secret key (see Sec. V.E) with Bob
and another with Charlie, she can simply encode the message
twice with the two keys to ensure that only Bob and Charlie
together can decode the message. Thus, normal quantum key
distribution protocols already provide one with protocols for
quantum secret sharing. But one can do it more straightfor-
wardly with multipartite entanglement (Hillery, Bužek, and
Berthiaume, 1999); see also Żukowski et al. (1998) for a
related protocol. Take the case where Alice prepares a large
number of Greenberger-Horne-Zeilinger (GHZ) states
(Hillery, Bužek, and Berthiaume, 1999),

jGHZi ¼ 1ffiffiffi
2

p ðj000i þ j111iÞ: ð126Þ

Alice keeps one particle and sends the other two to Bob and
Charlie. Each then measures their particles in random direc-
tions, x or y. After communicating via a classical public
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channel, they can identify the triplets that were measured in
one of the following directions: xxx, xyy, yxy, or yyx; the
other triplets are discarded. As one can check, the GHZ state is
an eigenstate of the retained measurement operators. In these
triplets, Bob and Charlie can use their outcomes to predict
Alice’s outcomes. However, the outcomes at Bob’s or
Charlie’s side separately are not enough to infer her outcomes.
Thus, Alice can use the series of outcomes of her measure-
ments to encode the message in her secret sharing protocol.
The fact that Bob and Charlie have to collaborate to infer

the measurement outcomes at Alice’s side resembles the
distinction between the concepts of local and global steering
in the multipartite steering scenarios (He and Reid, 2013;
Xiang et al., 2017); see also Sec. V.A. This similarity has been
made precise in analyzing the security of secret sharing (He
and Reid, 2013; Kogias et al., 2017; Xiang et al., 2017).
Specifically, Xiang et al. (2017) computed the secrete key-rate
bound that guarantees unconditional security of the protocol
against eavesdroppers and dishonest players (Kogias et al.,
2017) for three-mode Gaussian states and found it to be
essentially the quantification of the difference between col-
lective steering and local steering from Bob and Charlie to
Alice (Kogias, Lee et al., 2015). To our knowledge, whether
this quantitative relation between quantum steering and
quantum secret sharing extends beyond Gaussian states is,
at the moment, unknown.

J. Quantum teleportation

Steering shares a close conceptual similarity with state
teleportation (Bennett et al., 1993). We follow the work of
Cavalcanti, Skrzypczyk, and Šupić (2017) and consider the
following abstract teleportation protocol. Alice and Bob share
a bipartite quantum state ϱAB. Charlie, perceived as the
verifier, draws a pure state ωx from a certain set of jxj states
indexed by x, gives it to Alice and asks her to teleport it to
Bob. Without knowing the state ωx, Alice makes a measure-
ment with POVM elements fECA

a ga jointly on the received
state and her particle that is entangled with Bob’s system.
Depending on Alice’s outcome a, Bob’s system is then
“steered” to a conditional state,

ϱBa ðωxÞ ¼
TrCA½ðECA

a ⊗ 1BÞðωx ⊗ ϱABÞ�
pðajωxÞ

; ð127Þ

where the normalization pðajωxÞ ¼ Tr½ðECA
a ⊗ 1BÞðωx ⊗

ϱABÞ� is the probability for Alice to get outcome a in her
protocol given that she received state ωx from Charlie. Alice
communicates her measurement outcome a to Bob, who then
makes some appropriate local unitary operation; by the end of
the procedure, the state of his system is Uaϱ

B
ajωx

U†
a. The

design of Alice’s measurement and Bob’s local unitary
operations is such that the final state at Bob’s side resembles
Charlie’s original state ωx as much as possible. The quality of
the teleportation protocol can be assessed by the so-called
average fidelity,

F̄tel ¼
1

jxj
X
a;x

pðajωxÞTr½ωxUaϱ
B
a ðωxÞU†

a�: ð128Þ

If the teleportation is perfect, the average fidelity is 1 for pure
states ωx.
One can easily observe the similarity of the teleportation

protocol to that of quantum steering: Instead of receiving a
classical input x, Alice receives a quantum state from Charlie
ωx as an input; see Fig. 11. The idea of receiving quantum
inputs from a verifier (Charlie) instead of a classical input was
previously considered for entanglement (Buscemi, 2012;
Branciard et al., 2013), and later for quantum steering both
theoretically and experimentally (Cavalcanti, Hall, and
Wiseman, 2013; Kocsis et al., 2015). The benefit of allowing
for the quantum inputs is that the verifier can now verify that
Alice and Bob share a quantum correlation (entanglement,
quantum steering) without trusting their measurement devices
or their actual measurements (Hall, 2018); see also Sec. I and
Hall and Rivas (2019) for further discussions. Utilizing the
similarity, Cavalcanti, Skrzypczyk, and Šupić (2017) showed
that all entangled states can demonstrate nonclassical tele-
portation in a certain sense. One should, however, note that the
introduced notion of nonclassical teleportation does not imply
high teleportation average fidelity, which has been a standard
figure of merit.
There is another line of work which attempts to relate

quantum steering with the security of quantum teleportation.
In teleporting a state to Bob, Alice does not want an
eavesdropper to also obtain some version of the state.
Certain security is guaranteed when the average fidelity of
teleportation in Eq. (128) is high enough (Pirandola et al.,
2015). It is then shown that, for a certain family of bipartite
states, to obtain the required fidelity, the state is not only
entangled but necessarily two-way steerable (He et al., 2015).
Another way to investigate the security of teleportation is to

study its sister protocol known as entanglement swapping. In
this protocol, the state given to Alice by Charlie is entangled
beforehand with another particle which Charlie keeps. By the
end of the teleportation protocol performed by Alice and Bob,
the entanglement between Charlie and Alice is transferred to
that between Charlie and Bob. In this case, the teleportation

FIG. 11. Quantum steering and quantum teleportation. (Top
panel) In quantum steering, Alice receives a classical input x,
performs a measurement, and communicates the output a to Bob;
Bob’s system is steered to ϱajx. (Bottom panel) In teleportation,
Alice receives a quantum state ωx as input, performs a meas-
urement, and communicates the output to Bob; Bob’s system is
steered to ϱajx. Bob further makes a local unitary evolution on his
system depending on the outcome he received to obtain the final
state.
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can be secured by the monogamy of entanglement: If Charlie
is sufficiently entangled with Bob, an eavesdropper cannot be
entangled with Charlie. Instead of monogamy of entangle-
ment, Reid (2013) then used the monogamy of a certain
steering inequality to demonstrate the security of quantum
teleportation.

K. Resource theory of steering

A resource theory is typically seen as consisting of two
basic components: free states and free operations. Free states
constitute a set that remains unchanged under the actions of
free operations. In this sense, one could define a resource
theory merely from the free operations. Consequently, any
state that is not free has some resource in it, as it cannot be
created from the set of free states with free operations. As an
example, in the case of entanglement, free states are given by
the set of separable states, and free operations are LOCC.
Another important aspect of a resource theory are resource
measures or monotones. A proper measure should not increase
under free operations; i.e., free operations cannot create the
resource, should be faithful, i.e., equal to zero only for free
states, and should be convex, i.e., randomization should not
create a resource either.
In the case of steering, a resource theory has been proposed

(Gallego and Aolita, 2015). The free states in this theory are
the unsteerable assemblages, and free operations can be any
operations on the assemblages that do not map unsteerable
assemblages to steerable ones. Gallego and Aolita (2015)
showed one-way stochastic LOCC operations to be free
operations. In order to introduce one-way stochastic LOCC
operations, we adapt the notation of Gallego and Aolita (2015)
for state assemblages. Namely, any state ensemble fϱaga can
be embedded in larger space via the correspondence
fϱ̂aga ≔

P
a jaihaj ⊗ ϱa. To make a similar correspondence

for state assemblages, one can define a map ϱ̂AjXðxÞ ≔P
a jaihaj ⊗ ϱajx, where X and A label the sets of Alice’s

inputs and outputs, respectively. Now a one-way stochastic
LOCC operation M is defined on the assemblage ϱ̂AjX as

Mðϱ̂AjXÞ ≔
X
ω

ð1 ⊗ KωÞWωðϱ̂AjXÞð1 ⊗ K†
ωÞ; ð129Þ

where fKωgω are Kraus operators and fWωgω are wiring
maps defined pointwise as

Wωðϱ̂AjXÞðxfÞ ≔
X
x

pðxjxf;ωÞ
X
af;a

pðafja; x; xf;ωÞ

× ðjafihaj ⊗ 1Þϱ̂AjXðxÞjaihafj ⊗ 1: ð130Þ

Here af and xf refer to the inputs and outputs of the final
assemblage. Physically, such transformations correspond to
performing an operation on the characterized party, commu-
nicating the information about which operation (i.e., ω) was
performed, and the uncharacterized party applying the corre-
sponding classical preprocessings and postprocessings [i.e.,
pð·jxf;ωÞ and pð·ja; x; xf;ωÞ] on their side. Note that the use
of one-way stochastic LOCC operations as free operations
also has a physical motivation: They can be seen as safe

operations in a one-sided device-independent quantum key
distribution (Gallego and Aolita, 2015).
A typical resource theory aims at quantifying the resource

at hand. For this purpose, one wants to find a mapping (or
monotone) f from the set of states of the resource theory to the
set of non-negative real numbers that fulfill certain require-
ments. In the case of steering, the following requirements are
considered (Gallego and Aolita, 2015):

• fðϱ̂AjXÞ ¼ 0 if and only if ϱ̂AjX is unsteerable.
• f is nonincreasing on average under deterministic one-
way LOCC.

If in addition the mapping f is convex, it is called a convex
steering monotone. Gallego and Aolita (2015) showed the
typical steering quantifiers, i.e., steerable weight and robust-
ness of steering (see Sec. II.B), to be convex steering
monotones. Furthermore, they introduced a novel convex
steering monotone called relative entropy of steering; see also
Kaur, Wang, and Wilde (2017) and Kaur and Wilde (2017) for
further monotones and alternative definitions of relative
entropy of steering.

L. Postquantum steering

Postquantum steering is the phenomenon that certain
assemblages fϱajxg may not be realizable by quantum
mechanics, although no signaling between the parties is
possible. For the case of Bell inequalities, it is known that
there are probability distributions which are nonsignaling but
cannot come from a quantum state. The most prominent
example is the Popescu-Rohrlich (PR) box (Popescu and
Rohrlich, 1994), which is a nonsignaling distribution for two
parties with two measurements having two outcomes, which
leads to a violation of the CHSH inequality with a value
hSCHSHi ¼ 4, while in quantum mechanics only values
hSCHSHi ≤ 2

ffiffiffi
2

p
can occur. The analogous question for steer-

ing highlights the difference between steering in the bipartite
and the multipartite case.
For the bipartite case, one may consider an assemblage

fϱajxg, obeying the no-signaling constraint
P

a ϱajx ¼P
a ϱajx0 ¼ ϱB for all x, x0. As mentioned in Secs. II.B

and V.M, any such assemblage can be realized by quantum
mechanics. This means that there is a state ϱAB and measure-
ments Eajx such that ϱajx ¼ TrAðEajxϱABÞ.
This is not the case for the tripartite scenario (Sainz et al.,

2015). Here one considers the scenario where Alice and Bob
make local measurements in order to steer Charlie’s state.
Charlie has an assemblage fϱabjxyg, where x and a (y and b)
denote the measurement setting and outcome of Alice (Bob).
Besides being positive and the normalization constraint
TrðPab ϱabjxyÞ ¼ TrðϱCÞ ¼ 1, this assemblage should fulfill
the requirement that neither Alice nor Bob can signal to the
other parties, that is,

X
a

ϱabjxy ¼
X
a

ϱabjx0y ; for all x; x0;

X
b

ϱabjxy ¼
X
b

ϱabjxy0 ; for all y; y0: ð131Þ
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One can directly check that these conditions also imply that
Alice and Bob jointly cannot signal to Charlie by the choice of
their measurements.
Contrary to the bipartite case, an assemblage obeying these

constraints does not need to have a quantum realization.
A simple counterexample can be derived from the PR box
mentioned previously: If the conditional states are of the form
ϱabjxy ¼ pðabjxyÞj0ih0jC, where pðabjxyÞ is the probability
table of the PR box, the assemblage is clearly nonsignaling but
cannot be realized within quantum mechanics. Sainz et al.
(2015) provided other examples of this behavior. Using
iterations of SDPs, they found an example of a qutrit assem-
blage ϱabjxy with the properties that, for any possible meas-
urement Ecjz of Charlie, the resulting probability distribution
can be explained by a fully local hidden variable model, which
is an even stronger requirement than being nonsignaling. Still,
the assemblage has no quantum realization, so there is no state
ϱABC such that ϱabjxy ¼ TrABðEajx ⊗ EbjyϱABCÞ.
In further works, the theory of postquantum steering was

extended. Sainz et al. (2018) provided general methods to
construct examples of postquantum steering and defined a
quantifier of this phenomenon, Hoban and Sainz (2018)
established a connection to the theory of quantum channels,
and S.-L. Chen et al. (2018) used moment matrices to
characterize the phenomenon.

M. Historical aspects of steering

1. Discussions between Schrödinger and Einstein

As mentioned in the Introduction, the first observation of
the steering phenomenon dates back to Schrödinger’s dis-
cussions of the EPR argument with Einstein. Schrödinger
corresponded with several physicists on this problem; the
letters were edited by von Meyenn (2011).
To understand the origin of Schrödinger’s idea, it is

important to note that Einstein did not like the way the
EPR paper was written and how the argument was formulated;
for detailed discussions, see Kiefer (2015). Instead, Einstein
preferred a somehow simpler version. He published this
version much later (Einstein, 1948), but he also explained
the basic idea in a letter to Schrödinger on 19 June 1935.
The argument [in the formulation of Einstein (1948)] goes

as follows. First, one considers position X and momentum P
as noncommuting observables. Then there are, according to
Einstein, two possibilities:

(i) One can assume that the position and momentum
have definite values before a measurement of them is
carried out. Then one has to admit that the wave
function jψi is not a complete description.

(ii) One can assume that the values of the position or
momentum are created during a measurement. This
is compatible with the assumption that the wave
function jψi is a complete description. If jψi is a
complete description, it follows, according to
Einstein, that two different wave functions describe
two different physical situations.

These two ways of thinking cannot be distinguished with-
out additional assumptions. Here Einstein introduces a locality

principle, stating that if one considers a bipartite system, the
real physical situation at one side is independent of what
happens on the other side.
In order to conclude the incompleteness of the quantum

mechanical description, one can consider a pure entangled
wave function, as in the usual EPR argument. Then the
conditional wave function jϕiB on Bob’s side depends on the
choice of the measurement on Alice’s side. According to the
locality principle, however, the physical reality on Bob’s side
cannot change. One arrives at a contradiction to (ii), and the
incompleteness follows. Note that for this argument the
perfect correlations between measurements on both sides
are not relevant. As Einstein formulated it, “I couldn’t care
less whether or not jϕiB and jϕ̄iB are eigenstates of some
observables.”
In the direct reply to this letter (on 13 July 1935),

Schrödinger spelled out that the dependence of the conditional
state jϕiB includes some steering from a distance. Although
this phenomenon does not allow signaling between the
parties, he considers it to be magic. Recalling discussions
with Einstein and colleagues in Berlin during the 1920s, he
writes:
“All the others told me that there is no incredible magic in

the sense that the system in America gives X ¼ 6 if I perform
in the European system nothing or a certain action (you see,
we put emphasis on spatial separation), while it gives X ¼ 5 if
I perform another action; but I only repeated myself: It does
not have to be so bad in order to be silly. I can, by maltreating
the European system, steer the American system deliberately
into a state where either X is sharp, or into a state which is
certainly not of this class, for example, where P is sharp. This
is also magic!”
It must be added, of course, that the view of the steering

phenomenenon as “nonlocal” is based on a certain interpre-
tation of the wave function, which is not shared by everyone;
see Griffiths (2019) for a discussion. In any case, the question
remains as to which states this phenomenon can be observed
for and which states on Bob’s system can be reached by
performing measurements on Alice’s side. This was also part
of the discussion between Schrödinger and other physicists
(such as von Laue), and Schrödinger presented his results in
two subsequent papers.

2. The two papers by Schrödinger

The first paper, entitled “Discussion of probability relations
between separated systems” (Schrödinger, 1935), was sub-
mitted in August 1935. Schrödinger states that he finds it
“rather discomforting” that quantum mechanics allows a
system to be steered by performing measurements in a
different location. He then presents several results on this
phenomenon.
First, he shows that every bipartite pure state can be

written as

jψi ¼
X
k

skjakijbki; ð132Þ

where the vectors jaki and jbki form orthogonal sets. This is
presently called the Schmidt decomposition. He proves that
this is unique if the coefficients sk are different. He also
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recognizes that this implies that, for generic states, there is one
measurement for Alice (defined by the eigenvectors jaki) that
is perfectly correlated with a measurement on Bob’s side
(defined by the jbki).
Then he discusses in more detail the EPR state from the

1935 argument (Einstein, Podolsky, and Rosen, 1935), which
is not a generic state, as all of the Schmidt coefficients
coincide. He proves that, for any observable FðX2; P2Þ on
Bob’s side, the value can be predicted by making a suitable
measurement F̂ðX1; P1Þ on Alice’s side. This fact had
appeared already in a letter from Schrödinger to von Laue,
and it demonstrates the surprising effect that one system seems
to know the answers to all possible questions on the other
system.
The second paper, entitled “Probability relations between

separated systems,” was submitted in April 1936
(Schrödinger, 1936). Schrödinger first states that the essence
of the previous work was the observation that in quantum
mechanics one cannot only determine the wave function at
one party by making measurement on the other, but one can
also control the state at one side by choosing the measure-
ments on the other side. The question arises, to which extent
can the wave function be controlled?
In order to answer this, he first proves a statement on

density matrices. A given density matrix may have different
decompositions into pure states

ϱ ¼
X
k

pkjψkihψkj ¼
X
i

qijϕiihϕij; ð133Þ

and the question arises, which conditions the jϕii and jψki
have to fulfill? Schrödinger proves that two ensembles give
the same density matrix if and only if there is a unitary matrix
U such that

ffiffiffiffiffi
pk

p jψki ¼
X
i

Uki
ffiffiffiffi
qi

p jϕii: ð134Þ

This implies that any jϕii in the range of the space spanned by
the jψki can be an element of a suitable ensemble.
Then Schrödinger applies this to the bipartite state in

Eq. (132). Here the reduced state

ϱB ¼
X
k

s2kjbkihbkj ¼
X
i

qijβiihβij ð135Þ

has different decompositions. As mentioned, the ensemble
fs2k; jbkig can be reached by making the measurement defined
by the orthogonal states jaki on Alice’s side, and the question
arises as to whether any other ensemble fqi; jβiig can be
reached. Schrödinger proves that this is the case. Specifically,
if the state has a full Schmidt rank and jbki span the whole
space, any state jβii on Bob’s side can be prepared by making
a suitable measurement on Alice’s side.
Finally, Schrödinger stresses again that he finds the phe-

nomenon of controlling a distant state repugnant and suggests
that quantum mechanics may be modified to avoid it. As a
potential modification, he suggests that, for a state as in
Eq. (132), the phase relations between the sk may be lost. This
means that instead of taking the pure state ϱ ¼ jψihψ j, the

two-particle system should be described by a diagonal mixed
state

ϱ ¼
X
k

s2kjakbkihakbkj; ð136Þ

which he considers to be a possible modification, not
contradicting the experimental evidence at the time.

3. Impact of these papers

In the following years, Schrödinger’s ideas on steering were
not further considered in the literature. His mathematical
results from the second paper, however, were rederived
several times without any reference to him. In the following,
we give a short overview; a detailed discussion was given by
Kirkpatrick (2006).
A first rediscovery was presented by Jaynes (1957). He

derived the first statement in Eq. (134) while studying general
properties of density matrices. Based on Jaynes’s paper,
Hadjisavvas (1981) later presented a simplified proof and
an extension to infinite-dimensional systems.
The second mathematical statement [after Eq. (135)] was

derived by Gisin in the context of modifications of the
Schrödinger dynamics (Gisin, 1989). Here the question arises
as to whether the modified dynamics for pure states extends
uniquely to mixed states. If it were different for two decom-
positions such as the ones in Eq. (133), then ensembles will
become distinguishable at some point. Given the fact that both
ensembles can be prepared by measurements on a distant
system, this would lead to a violation of the nonsignaling
condition, enforced by special relativity. Finally, both math-
ematical statements from Schrödinger were also rederived
independently by Hughston, Jozsa, and Wootters (1993).
Besides these mathematical results, the notion of steering as

a kind of quantum correlation was not discussed for a long
time. The situation changed in 1980s. Then Bell inequalities
started to attract more attention (Clauser and Shimony, 1978),
and the mathematical notions of entangled and separable
states were studied (Primas, 1983; Werner, 1984, 1989).
Vujičić and Herbut (1988) were the first to give a clear

summary of Schrödinger’s ideas and an extension of his
results for continuous variable systems. Vujičić and Herbut
also argued that steering differs from Bell nonlocality, as
it is based on the formalism of quantum mechanics.
Independently, Reid (1989) presented quantitative conditions
for continuous variable systems to lead to an EPR-type
argument. Verstraete (2002) noted in his dissertation the
connection of Schrödinger’s ideas to quantum teleportation
and entanglement transformations, as in both cases, one aims
at preparing a quantum state on one side by making mea-
surements on the other. The notion of the steering ellipsoid
was also introduced there. Shortly thereafter, steering was
recognized to be relevant for foundational questions of
quantum mechanics (Clifton, Bub, and Halvorson, 2003;
Spekkens, 2007). Finally, Wiseman, Jones, and Doherty
(2007) introduced the notion of local hidden state models,
laying the foundation for the modern notion of quantum
steering.
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VI. CONCLUSION

The notion of quantum steering was motivated by the
Einstein-Podolsky-Rosen argument, and it took seven decades
until a precise formulation was given. Since then, quantum
steering has initiated a new surge of results in quantum
information and the foundations of quantum mechanics: Old
concepts were put in a new light; long-standing problems
gained progress, and some were resolved; connections
between areas were established; and novel problems were
formulated. In this review, we sketched the dynamic develop-
ment of the field over the last ten years. Yet future research is
facing many challenges. To close the review, we summarize
some of the open problems:

• As a complete characterization of quantum steerability
has been obtained for two-qubit systems and projective
measurements, it is desirable to extend such a charac-
terization to higher-dimensional systems. Although there
is an indication that such an extension is possible, much
remains to be worked out.

• The question, whether there are states that are unsteer-
able with projective measurements but are steerable with
POVMs, is also relevant. The analogous question in the
context of Bell nonlocality has been a long-standing
problem without any evidence whether such a state
exists. With quantum steering, one now has evidence
indicating that there might be no such state for a two-
qubit system. Yet, to date, there is no rigorous proof of
their nonexistence. In particular, one might still expect
such a state to exist in high dimensions.

• We discussed in Sec. III.G the fact that the operational
definition of steerability requires multiple copies of the
considered state, which implies the possibility of making
collective measurements on Alice’s side. Thus, apart
from being fundamental, the question as to whether all
entangled states become steerable upon making collec-
tive measurements on Alice’s side is also important to the
intrinsic consistency of the concept.

• The connection between quantum steering and incom-
patibility has initiated further questions: Are there
other connections between the different notions of
incompatibility and different forms of quantum corre-
lations?

• A further open question concerns whether there are other
physically motivated properties of state assemblages
than that of having a local hidden state model. For
instance, one may want to deduce something more than
entanglement and incompatibility from such properties.
Examples are the preparability from states with a given
Schmidt number or properties motivated by incompat-
ibility, such as compatibility on many copies, coexist-
ence, or simulability.

• The study of multipartite steering is in its infancy. A
systematic investigation and comparison between differ-
ent definitions is necessary in the future.

• A closely related research direction is to study the
steering of parties who are connected in networks.
For a given directed network, one may ask whether
there is a quantum state allowing steering along the
directed edges.

• For applications, it would be worthwhile to identify tasks
in quantum information processing, where the assump-
tions that can be made are highly asymmetric. Then the
methods developed in steering theory may be useful to
study the role of correlations therein.

• In experiments, quantum steering is verified by a finite
number of measurement settings. There are only a few
works on optimizing the measurement settings (when
having a fixed number of inputs or outputs), and more
research is needed to serve as input for experiments.

This is only a small list of problems, and further challenges
remain. Given the current interest in the steering phenomenon,
we expect the old observations from Schrödinger to still
influence current and future discussions on the foundations of
quantum mechanics.
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2016, New J. Phys. 18, 113019.

Hirsch, F., M. T. Quintino, and N. Brunner, 2018, Phys. Rev. A 97,
012129.
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