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In this Colloquium, the wave-function-based multiconfigurational time-dependent Hartree ap-
proaches to the dynamics of indistinguishable particles (MCTDH-F for fermions and MCTDH-B
for bosons) are reviewed. MCTDH-B and MCTDH-F or, together, MCTDH-X are methods for
describing correlated quantum systems of identical particles by solving the time-dependent
Schrödinger equation from first principles. MCTDH-X is used to accurately model the dynamics
of real-world quantum many-body systems in atomic, molecular, and optical physics. The key feature
of these approaches is the time dependence and optimization of the single-particle states employed for
the construction of a many-body basis set, which yields nonlinear working equations. The historical
developments that have led to the formulation of the MCTDH-X method and motivate the necessity
for wave-function-based approaches are briefly described. The derivation of the unified MCTDH-F
and MCTDH-B equations of motion for complete and also specific restricted configuration spaces are
sketched. The strengths and limitations of the MCTDH-X approach are assessed via benchmarks
against an exactly solvable model and via convergence checks. Applications to some instructive and
experimentally realized quantummany-body systems are highlighted: the dynamics of atoms in Bose-
Einstein condensates in magneto-optical and optical traps and of electrons in atoms and molecules.
The current development and frontiers in the field of MCTDH-X are discussed: theories and
numerical methods for indistinguishable particles, for mixtures of multiple species of indistinguish-
able particles, the inclusion of nuclear motion for the nonadiabatic dynamics of atomic and molecular
systems, as well as the multilayer and second-quantized-representation approaches, and the orbital-
adaptive time-dependent coupled-cluster theory.
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I. INTRODUCTION

This Colloquium introduces and discusses the deve-
lopment and capabilities of the multiconfigurational time-
dependent Hartree (MCTDH) approaches (Meyer, Manthe,
and Cederbaum, 1990; Manthe, Meyer, and Cederbaum,
1992; Beck et al., 2000) for solving the time-dependent
many-body Schrödinger equation of indistinguishable par-
ticles with a focus on MCTDH-F for fermions (Zanghellini
et al., 2003; Kato and Kono, 2004; Caillat et al., 2005) and
MCTDH-B for bosons (Streltsov, Alon, and Cederbaum,
2007; Alon, Streltsov, and Cederbaum, 2008) or, together,
MCTDH-X (Alon, Streltsov, and Cederbaum, 2007c).
The time-dependent many-body Schrödinger equation for

interacting, indistinguishable particles is a cornerstone of
many areas of physics. Exactly solvable models are very
scarce for both the time-dependent (Lode, Sakmann et al.,
2012; Lode, 2015; Fasshauer and Lode, 2016) and the time-
independent Schrödinger equations (Girardeau, 1960; Lieb,
1963; Lieb and Liniger, 1963; Luttinger, 1963; Mcguire,
1964; Mattis and Lieb, 1965; Calogero, 1969; Sutherland,
1971; Haldane, 1981; Dukelsky and Schuck, 2001; Yukalov
and Girardeau, 2005) and could so far not be generalized
to real-world problems. A numerical approach to tackle the
Schrödinger equation is therefore widely needed. The direct
numerical solution of the Schrödinger equation, however,
quickly becomes impracticable. The Hilbert space in which
the generally high-dimensional solution of the Schrödinger

equation lives grows exponentially with the number of
particles considered. As a consequence of this so-called curse
of dimensionality, solutions even for very few particles are out
of reach with the direct approach, especially in the case of
inhomogeneous systems.
To numerically solve the Schrödinger equation never-

theless, one has to overcome the curse of dimensionality with
the help of a clever approximate representation of the solution.
Here “clever” means that the problem has to be represented
accurately enough to cover the physical properties of the
many-body state while, at the same time, the chosen repre-
sentation has to be sufficiently compact to be manageable
computationally. Since the time-dependent many-body
Schrödinger equation is so fundamental, there exist many
approximations to its solution. Each new methodology is a
step in the quest for an ever more accurate description.
Examples for obtaining a numerically tractable repre-

sentation for the state include the multiorbital mean-field
(Gross, 1961; Pitaevskii, 1961; McLachlan and Ball, 1964;
Alon, Streltsov, and Cederbaum, 2007b) and the configuration
interaction (Szabo and Ostlund, 1996; Sherrill and Schaefer,
1999; Rook, 2006; Bassaganya-Riera and Hontecillas, 2015)
approaches. Mean-field approaches, however, drop all of the
correlations from the description of the many-body state by
representing the wave function as a single symmetrized or
antisymmetrized product of one or more time-dependent
single-particle states. Configuration interaction or exact
diagonalization includes correlations, but is restricted to
situations where the initially chosen, time-independent basis
remains suitable for all times (Lode, Sakmann et al., 2012;
Lode, 2015).
For Hubbard models there exist, for instance, the time-

dependent density matrix renormalization group [see the
review by Schollwöck (2005) and references therein], matrix
product states [see the review by Schollwöck (2011) and
references therein], and time-evolved block decimation meth-
ods (Zwolak and Vidal, 2004). These latter methods describe
correlated many-body dynamics for Hubbard lattices, but are
not directly applicable in other cases.
The MCTDH-X (Zanghellini et al., 2003; Kato and Kono,

2004; Caillat et al., 2005; Alon, Streltsov, and Cederbaum,
2007c, 2008; Streltsov, Alon, and Cederbaum, 2007) methods
can describe correlations in the dynamics of many-body
systems that are not necessarily described by model
Hamiltonians. Two basic ingredients were needed to obtain
MCTDH-X: (i) a unification of the time-independent basis of
configuration interaction with the time-adaptive Ansatz of the
(multiorbital) mean field [also referred to as time-dependent
Hartree-Fock (TDHF) or self-consistent field methods]
for indistinguishable particles and (ii) an appropriate time-
dependent variational principle (Dirac, 1927; Frenkel, 1934;
McLachlan, 1964; Kramer and Saraceno, 2007).
MCTDH-X is a general method for the solution of the

time-dependent many-body Schrödinger equation (TDSE)
for interacting indistinguishable particles that yields a well-
controlled error (Lode, Sakmann et al., 2012; Lode, 2015;
Fasshauer and Lode, 2016) and constitutes the main subject of
this Colloquium. To introduce and motivate MCTDH-X, we
give an account of the theoretical development that led to its
formulation. We illustrate the insight into many-body physics
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gained thus far from applications of MCTDH-X in the areas of
atomic, molecular, and optical physics with applications to
real-world, experimentally realized examples of the dynamics
of atoms in trapped Bose-Einstein condensates (BECs)
and electrons in atoms and molecules. Finally, theoretical
and numerical developments, in particular, the species- or
coordinate-multilayer MCTDH-X (Cao et al., 2013, 2017;
Krönke et al., 2013) and the multilayer (ML) MCTDH in
second-quantized representation (SQR) (Wang and Thoss,
2009), as well as prospects and possible future avenues of
the MCTDH-X approaches are outlined. We note that the
ML-MCTDH-SQR theory uses a multiconfigurational Ansatz
directly formulated in Fock space and is thus distinct from
MCTDH-X; see details later. For reference and orientation, we
collected some important acronyms in the List of Symbols and
Abbreviations at the end of the main text.
In Sec. II, we provide a unified formulation of the equations

of motion (EOMs) of MCTDH-X for complete as well as
restricted configuration spaces, i.e., for situations where all or
only part of the possible Slater determinants or permanents are
included in the wave function, respectively. For simplicity and
instructiveness, we restrict our discussion to the so-called
restricted active space approach. In Sec. II.C, we conclude
our exhibition of the MCTDH-X approaches with benchmarks
using an exactly solvable model problem, the harmonic
interaction model, which show that the method is in principle
exact (Lode, Sakmann et al., 2012; Lode, 2015; Fasshauer and
Lode, 2016).
In Sec. III, we focus on MCTDH-B applications to the

physics of quantum correlations and fluctuations and the
variance of operators in BECs. We summarize an illustrative
application of MCTDH-B to the dynamics of a BEC subject to
time-dependent interparticle interactions where computations
were directly compared to experiment (Nguyen et al., 2019).
Moreover, we highlight some insight into the intriguing
physics of the variances of observables in the so-called
infinite-particle-number limit (Klaiman and Alon, 2015;
Alon and Cederbaum, 2018) that were obtained with the help
of MCTDH-B.
In Sec. IV, we discuss some insights that MCTDH-F has

delivered for the correlated dynamics of electrons in atoms
and molecules. We give an account of work using MCTDH-F
with a focus on studies of photoionization cross sections
and time delays that were experimentally verified (Haxton,
Lawler, and McCurdy, 2012; Omiste and Madsen, 2018).
In Sec. V we provide an overview of current theoretical

progress with MCTDH-X and related multiconfigurational
methods as well as possible future avenues of method develop-
ment. We discuss the key ideas of the ML approach (Wang
and Thoss, 2003; Manthe, 2008) and its application
to multiconfigurational methods to obtain the dynamics of
indistinguishable particles, i.e., theML-MCTDH in (optimized)
second-quantized representation, ML-MCTDH-(o)SQR
(Wang and Thoss, 2009; Manthe and Weike, 2017; Weike
and Manthe, 2020) and the ML-MCTDH-X (Cao et al., 2013,
2017; Krönke et al., 2013). Moreover, we discuss generaliza-
tions of MCTDH-B (Grond et al., 2013; Alon, Streltsov, and
Cederbaum, 2014) and MCTDH-F (Sato and Ishikawa, 2015;
Sawada, Sato, and Ishikawa, 2016; Lötstedt, Kato, and
Yamanouchi, 2019b) as well as orbital-adaptive time-dependent

coupled-cluster theories (Kvaal, 2012, 2013; Sato et al., 2018a,
2018b; Pedersen and Kvaal, 2019).
This Colloquium thus gives an overview of the activities in

the community that develops and applies multiconfigurational
methods for indistinguishable particles with a focus on
MCTDH-X. Achievements made using the method on ultra-
cold atoms in BECs and the correlated dynamics of electrons
in atoms and molecules are illustrated and the state-of-the-art
developments on the theory in the field of multiconfigura-
tional methods for the dynamics of indistinguishable particles
[MCTDH-X, ML-MCTDH-X, ML-MCTDH-(o)SQR] are
introduced.

II. MCTDH-X THEORY

To obtain the MCTDH-X equations, one applies a varia-
tional principle to the TDSE with a parametrized Ansatz. As
Kramer and Saraceno (2007) aptly assessed:

“As is well-known, a variational principle is a blind
and dumb procedure that always provides an answer,
but its accuracy depends crucially on the choice of
the trial function.”

Different types of Ansätze thus lead to approximations
with different qualitative behavior. Generally, the MCTDH-X
type of Ansatz is a time-dependent linear combination of
a set of fully symmetrized or antisymmetrized products of
time-dependent single-particle states or orbitals, the so-called
configurations. We ask the following: Why is the MCTDH-X
Ansatz for the wave function a good Ansatz? One, the time-
dependent configurations in the MCTDH-X Ansatz are an
in-principle complete basis of N-particle Hilbert space and,
two, they are constructed such that they are strictly ortho-
normalized at any time. These two properties, in combination
with the time-dependent variational principle, allow one to
infer the convergence of the method: if a sufficiently large
set of configurations has been included in a computation, i.e.,
the result remains identical when more configurations are
included, one can conclude that the employed Ansatz spans a
sufficiently large portion of N-particle Hilbert space.
Here we discuss the archetypical MCTDH-X theory with an

Ansatz (Caillat et al., 2005; Alon, Streltsov, and Cederbaum,
2007c, 2008) including all possible configurations of N
particles in M orbitals. We also cover the formulation of
MCTDH-X with an Ansatz obtained with a further truncation
of Hilbert space via the restricted active space (RAS) approach
(Olsen et al., 1988) as introduced by Miyagi and Madsen
(2013) and Lévêque and Madsen (2017). We note that the
RAS approach originates from quantum chemistry, but,
although physical insight into the emergent quantum dynam-
ics may help to choose a sensible RAS scheme, it may not be
the best choice for the emergent dynamics of many-body
systems. The EOMs of MCTDH-X for completely general
configuration spaces, of which the RAS is a special case, have
been mentioned for a single kind of indistinguishable particles
by Haxton and McCurdy (2015) and even for multiple species
of indistinguishable particles by Anzaki, Sato, and Ishikawa
(2017). We chose to present the specialized RAS truncation
scheme for MCTDH-X in this Colloquium, because
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applications of it exist for both fermions and bosons.
Moreover, as a truncation scheme we found the construction
of the RAS instructive, illustrative, and simple, while the
obtained EOMs hint at some of the changes triggered by the
truncation of the Hilbert space in comparison to the standard
MCTDH-X with a complete configuration space.
Moreover, as common for ultracold atoms and electron and

nuclear dynamics, we focus on Hamiltonians of the form

Ĥ ¼
XN
i¼1

ĥðri; tÞ þ
XN
i<j

Wðri; rj; tÞ: ð1Þ

Here the position and spin of the kth particle are denoted by rk,
ĥðr; tÞ is a general, possibly time-dependent, single-particle
operator and Ŵðr; r0; tÞ is a general, possibly time-dependent,
two-particle operator.

A. Unified equations of motion

We now discuss the EOMs of MCTDH-X and their
derivation for the case where all possible configurations of
N particles in M time-dependent orbitals are included in the
Ansatz,

jΨFCIi ¼
X
n⃗

Cn⃗ðtÞjn⃗; ti; n⃗ ¼ ðn1;…; nMÞT;

jn⃗; ti ¼ N
YM
i¼1

½b̂†i ðtÞ�ni jvaci. ð2Þ

See Fig. 1 for an illustration of the MCTDH-X configuration
space and the ansatz in Eq. (2). Here the normalization N is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
M
i¼1 ni!

p

for bosons and 1=
ffiffiffiffiffiffiffiffiffiðN!Þp

fermions. The number of particles N
is considered constant, N ¼ P

i ni, and b̂
†
jðtÞ creates a particle

in the single-particle state Φjðr; tÞ,

Φjðr; tÞ ¼ hrjb̂†jðtÞjvaci: ð3Þ
Here, and in the following, we use the symbol r to summarize
the degrees of freedom (spin and space) of the orbitals. The
coefficients

Cn⃗ðtÞ ¼ hn⃗jΨFCIi ð4Þ

are the complex time-dependent weights of each configura-
tion’s contribution to the many-body state jΨFCIi. Here, and in
the following, we drop the dependence on time for notational
convenience. For bosons, there are

�
N þM − 1

N

�

coefficients and for fermions, there are

�
M

N

�

coefficients. To obtain the EOMs, one can apply the time-
dependent variational principle (Kramer and Saraceno, 2007)
for the TDSE,

ĤjΨi ¼ i∂tjΨi; ð5Þ

and use jΨFCIi as an Ansatz. The action reads

S ¼
Z

dt

�
hΨFCIjĤ − i∂tjΨFCIi

−
X
kj

μkjðtÞ½hΦkjΦji − δkj�
�
: ð6Þ

The Lagrange multipliers μkjðtÞ ensure the orthonormalization
of the single-particle states, hΦkjΦji ¼ δkj, at any time. We
demand, independently, the stationarity of S with respect
to variations of the orbitals fΦiðr; tÞg and the coefficients
fCn⃗ðtÞg,

δS½fΦiðr; tÞg; fCn⃗ðtÞg�
δΦ�

i ðr; tÞ
¼! 0;

δS½fΦiðr; tÞg; fCn⃗ðtÞg�
δC�

n⃗ðtÞ
¼! 0: ð7Þ

After a straightforward derivation (Caillat et al., 2005; Alon,
Streltsov, and Cederbaum, 2007c, 2008) we arrive at a coupled
set of nonlinear coupled integrodifferential EOMs for the
orbitals,

i∂tjΦji ¼ Q̂

�
ĥjΦji þ

XM
k;s;q;l¼1

fρg−1jk ρkslqŴslðr; tÞjΦqi
�
;

Q̂ ¼ 1 −
X
i

jΦiihΦij. ð8Þ

In our derivation of this EOM we have, for convenience,
set the gauge that removes the ambiguity in the choice of
the orbitals (Meyer, Manthe, and Cederbaum, 1990; Manthe,

(a) (b)

FIG. 1. Illustration of the configuration space of (a) MCTDH-B
and (b) MCTDH-F. The space spanned by the time-dependent
single-particle basis for which all configurations are considered
is denoted by P and its complement is denoted by Q. (a) For
bosonic particles, the occupation numbers nj are unrestricted,
cf. the given five-orbital configuration vectors jn1;…; n5i. (b) For
spin-1=2 fermions, the Pauli exclusion limits the occupations to
be at most two electrons per spin orbital nj ≤ 2; see the given
configurations (1̄ [1] indicates a spin-down [-up] fermion).
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Meyer, and Cederbaum, 1992; Alon, Streltsov, and
Cederbaum, 2007c, 2008) to be

ηij ¼ hΦij∂tΦji ¼ 0; ∀ i; j ∈ 1;…; M: ð9Þ
Other choices for ηij are possible (Manthe, 1994, 2015; Beck
et al., 2000; Caillat et al., 2005). In particular, note here the
choice for ηij that forces the equations of motion to evolve
natural orbitals (Manthe, 1994) as well as the choice for ηij
that entails optimal unoccupied orbitals (Manthe, 2015). The
choice of the gauge affects the form of the MCTDH-X
equations of motion and may thus provide some flexibility
in designing the numerical approaches for the time integration
of the EOMs, like splitting and regularization methods (Koch,
Neuhauser, and Thalhammer, 2013; Lubich and Oseledets,
2014; Kloss, Burghardt, and Lubich, 2017; Lubich,
Vandereycken, and Walach, 2018; Meyer and Wang, 2018).
In Eq. (8) we used the matrix elements of the reduced one-

body and two-body density matrices,

ρkq ¼ hΨjb̂†kb̂qjΨi; ð10Þ

ρkslq ¼ hΨjb̂†kb̂†s b̂lb̂qjΨi; ð11Þ
respectively. Since these matrix elements, ρkq and ρkslq, are
functions of the coefficients in the Ansatz, Eq. (2), the orbitals’
time evolution is explicitly dependent on the coefficients’ time
evolution. The projector Q̂ in the EOMs emerges as a result of
the elimination of the Lagrange multipliers μkj in the action S
[Eq. (6)]; it is therefore a direct consequence of the orthonorm-
alization of the orbitals Φjðr; tÞ at any time. In writing down
Eq. (8), we further defined the local interaction potentials

Ŵslðr; tÞ ¼
Z

Φ�
sðr0; tÞŴðr; r0; tÞΦlðr0; tÞdr0: ð12Þ

The EOMs for the coefficients [Eq. (4)] form a linear set of
equations,

i∂tCn⃗ðtÞ ¼
X

n⃗0

hn⃗; tjĤjn⃗0; tiCn⃗0 ; ð13Þ

which is coupled to the orbital’s EOMs [Eq. (8)] as the
expectation value hn⃗; tjĤjn⃗0; ti is a function of the orbitals.
This dependence on the orbitals can easily be understood by
expressing the Hamiltonian in second-quantized notation:

Ĥ ¼
XM
k;q¼1

hkqb̂
†
kb̂q þ

XM
k;s;q;l¼1

Wksqlb̂
†
kb̂

†
s b̂lb̂q: ð14Þ

Here the matrix elements of the one- and two-body
Hamiltonian are, respectively,

hkq ¼ hΦkjĥðri; tÞjΦqi; ð15Þ

Wksql ¼
Z

dr
Z

dr0½Φkðr; tÞΦsðr0; tÞ

×Wðr; r0; tÞΦqðr; tÞΦlðr0; tÞ�. ð16Þ

The Hamiltonian, Eq. (14), is a function of hkq;Wksql that
are, in turn, functions of the orbitals Φkðr; tÞ. Therefore, the

coefficients’ time evolution, governed by the EOMs (8), also
directly depends on the orbitals. The EOMs of the MCTDH-X
method, Eqs. (8) and (13), are thus coupled.

B. Restricted spaces

Configurations can be removed from the full set employed
in the Ansatz jΨFCIi [Eq. (2)] for the wave function that
was used in the derivation of the MCTDH-X EOMs, Eqs. (8)
and (13). This restriction of the configuration space reduces
the numerical effort and may thus enable computations for
cases where the number of terms in the Ansatz jΨFCIi is
intractably large. Moreover, the changes in the emergent
dynamics triggered by the restriction of the configuration
space may lead to a physical insight into what parts of the
Hilbert space are explored by the many-body state.
General restrictions to the configuration space are possible

and lead to general MCTDH-X EOMs that have been
discussed, for instance, by Haxton and McCurdy (2015)
and Anzaki, Sato, and Ishikawa (2017). It is important to
stress here that the MacLachlan (McLachlan, 1964) and
Lagrangian (Kramer and Saraceno, 2007) variational princi-
ples, as well as their union, the Dirac-Frenkel variational
principle (Swann, 1929; Dirac, 1930), lead to the same
unified MCTDH-X EOMs only in the case in which the
Ansatz for the wave function contains all possible configu-
rations, i.e., as given in Eq. (2). For general Ansätze with a
restricted set of configurations, however, the McLachlan and
Lagrangian variational principles can be inequivalent (Haxton
and McCurdy, 2015).
Here we focus on the RAS approach for the restriction of

the configuration space (Olsen et al., 1988) of MCTDH-X,
because we find its strategy for the construction of many-
body Hilbert space instructive and suitable to illustrate the
changes that arise when one deals with a truncated configu-
ration space. Moreover, there are applications of the RAS
approach in combination with MCTDH-X for both bosons
and fermions. In the literature, these methods are referred to
as time-dependent RAS self-consistent-field (TD-RASSCF)
for fermions (TD-RASSCF-F) (Miyagi and Madsen, 2013,
2014a, 2014b) and TD-RASSCF-B for bosons (Lévêque and
Madsen, 2017, 2018). For clarity and coherence of presen-
tation in this Colloquium, we refer to TD-RASSCF-F and
TD-RASSCF-B as RAS-MCTDH-B and RAS-MCTDH-F,
respectively, and RAS-MCTDH-X together.
We note here the conceptual similarities of RAS-MCTDH-X

and the time-dependent occupation-restricted multiple-active-
space theory mentioned by Sato and Ishikawa (2015).
In the original formulation of the RAS-MCTDH-F (Miyagi

and Madsen, 2013, 2014b), three subspaces of adaptive
orbitals were considered: P0, P1, and P2 with M0 frozen,
M1 unrestricted, and M2 restricted orbital occupations,
respectively. The P0 space with orbitals with frozen occupa-
tions is hard to define for bosons. For simplicity we limit
ourselves here to the case of RAS-MCTDH-X with two active
subspaces, P1 and P2, to restrict the number of configurations
with a total number M ¼ M1 þM2 orbitals. The number of
orbitals in the P1 subspace must be large enough to accom-
modate all the particles, i.e., one configuration, at least, has no
particles in the P2 subspace. For bosons, the P1 subspace
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includes at least one orbital and for fermions M1 ≥ N holds.
The restriction on the configuration space follows from
specifying a maximum number of particles Nmax that can
occupy the P2 subspace. The Ansatz for the RAS-MCTDH-X
method reads

jΨRASi ¼
X
n⃗∈V

Cn⃗ðtÞjn⃗; ti; ð17Þ

where the configurations span the space V that is obtained by
restricting the total configurational space of Eq. (2) using the
RAS determined through the parameters M1, M2, and Nmax.
See Fig. 2 for an illustration of the RAS-MCTDH-X con-
figuration space and the ansatz in Eq. (17).
The RAS-MCTDH-X wave function can be seen as a bridge

between the mean-field approaches, TD Hartree-Fock for
fermions and TD Gross-Pitaevskii for bosons on one end, and
the MCTDH-X approach on the other end: all are limiting
cases of the RAS-MCTDH-X Ansatz. The EOMs for the set of
time-dependent coefficients fCn⃗ðtÞg and orbitals fjΦiðtÞigMi¼1

are derived following the recipes of the MCTDH-X frame-
work, see Sec. II.A, albeit here with a real (Lagrangian) action
functional (Miyagi and Madsen, 2013, 2014b; Lévêque and
Madsen, 2017). A set of equations for the coefficients and the
orbitals is obtained,

i∂tCn⃗ ¼
X
ij

ðhij − iηijÞhΦn⃗jb̂†i b̂jjΨi

þ 1

2

X
ijkl

WikjlhΦn⃗jb̂†i b̂†kb̂lb̂jjΨi; ð18Þ

and

iQ̂½∂tjΦji� ¼ Q̂

�
ĥjΦji þ

XM
k;s;q;l¼1

fρg−1jk ρkslqŴslðr; tÞjΦqi
�
;

ð19Þ

respectively. The set of equations for the orbitals is similar to
the one obtained for MCTDH-X, see Eq. (8), except that the
projector Q̂ appears on both sides of Eq. (19) and the set of
equations for the coefficients includes an additional term,
namely, ηij ¼ hΦij _Φji. This gauge freedom, typically set to
zero in the MCTDH-X equations, cannot be chosen arbitrarily
to simplify the equations of RAS-MCTDH-X any more,
because the P1 and P2 orbitals are not equivalent and the
transformation of the orbitals from one subspace to another
has to be taken into account explicitly. Thus, for each pair of
orbitals fΦi0 ;Φj00 g, with Φi0 ∈ P1 and Φj00 ∈ P2, the matrix
element ηi0j00 is evaluated via an additional set of equations.
The choice of the excitation scheme to promote particles
from the P1 to the P2 subspace plays an important role to
simplify the evaluation of ηi0j00 . Here we present the case of the
so-called general excitation scheme (Miyagi and Madsen,
2014b), where all successive occupation numbers 0;…; Nmax
of the P2 subspace are considered. The matrix elements ηi0j00
are evaluated from

X
k00l0

ðiηk00l0 − hk00l0 Þζl
0j00
k00i0 ¼

1

2

X
klmn

Wkmlnζ
lnj00
kmi0 ; ð20Þ

where the fourth- and sixth-order tensors are defined by

ζl
0j00
k00i0 ¼ hΨjb̂†i0 b̂j00 ð1̂ − Π̂Þb̂†k00 b̂l0 jΨi; ð21Þ

ζlnj
00

kmi0 ¼ hΨjb̂†i0 b̂j00 ð1̂ − Π̂Þb̂†kb̂†mb̂nb̂ljΨi; ð22Þ

with

Π̂ ¼
X
n⃗∈V

jn⃗; tihn⃗; tj

being the projector onto the RAS configurations. The time
derivative of the orbitals can be expressed as

∂tjΦji ¼
X
i

ηijjΦii þ Q̂½∂tjΦji�:

The ηijjΦii term describes the transformation of the P1 and

P2 orbitals into each other, and the Q̂½∂tjΦji� term describes
the extension of the time-evolved orbitals into the space not
spanned by the orbitals at time t. From Eqs. (20) and (19) the
time derivative of the orbitals can be evaluated, and from
Eq. (18) the time derivatives of the coefficients are available
after solving Eq. (20) for the matrix elements ηi0j00 ðtÞ. The
restriction of the configuration space thus leads to more
complicated EOMs, but the drastic reduction of the number
of configurations enables faster or in some situations more
accurate descriptions of many-body systems than plain

(a)

(b)

B
os

on
s 

Fe
rm

io
ns

FIG. 2. Illustration of restricted active space schemes for the
restriction of configuration spaces for (a) bosons and (b) fermions.
The space of active orbitals is partitioned into two sets P1;2 and
the space of virtual orbitals is denoted by Q. All possible
configurations of N particles in the M1 orbitals of the P1 space
are considered in the Ansatz of RAS-MCTDH-X. For the P2

space, a maximal occupation of allM2 orbitals together is fixed to
beNmax. Thus, in RAS-MCTDH-X, of all possible configurations
of N particles in P1 ⊕ P2, those configurations where there are
more than Nmax particles in P2 are dropped. The total Hilbert
space V spanned by the Ansatz of RAS-MCTDH-X (17) is a
direct sum of the subspaces that contain 0;…; Nmax particles
(blue boxes labeled V1;V2;…).
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MCTDH-X. Note that the EOMs for other RAS-excitation
schemes can be found in Miyagi and Madsen (2013, 2014b)
and Lévêque and Madsen (2017). For the so-called complete
active space approach with an additional space hosting
orbitals with occupations that are fixed, see Sato and
Ishikawa (2015).

C. Benchmarks with an exactly solvable model

Since the introduction of MCTDH-B and MCTDH-F, many
benchmarks of the predictions of these approaches have
been performed. Most of these benchmarks consist in a
comparison of the predictions of the MCTDH-X approaches
to other theoretical approaches like, for instance, exact
diagonalization with a time-independent one-particle basis
set. Such example benchmarks against other approaches
include the ionization of helium-4 (Hochstuhl and Bonitz,
2011) or the photoionization of beryllium-9 (Haxton, Lawler,
and McCurdy, 2011) in the case of MCTDH-F or a compari-
son with the Bose-Hubbard model (Streltsov, Alon, and
Cederbaum, 2006; Sakmann et al., 2009) in the case of
MCTDH-B. We note that the interesting MCTDH-X appli-
cations are those cases where diagonalization is no longer
affordable numerically. We note also the benchmark of
MCTDH-B for the exactly solvable problem of two bosons
with contact interactions in a harmonic trap (Gwak,
Marchukov, and Fischer, 2018). Here, we focus on available
benchmarks of MCTDH-X with exactly solvable models,
specifically, on the harmonic interaction model (HIM)
(Cohen and Lee, 1985; Załuska-Kotur et al., 2000; Yan,
2003; Gajda, 2006; Armstrong et al., 2011) that describes N
indistinguishable harmonically trapped particles interacting
via a harmonic interaction potential that is proportional to
the square of their distance. The HIM has the unique feature
that it straightforwardly can be generalized to include time
dependence in the harmonic trapping of and the harmonic
interactions between particles while remaining exactly solv-
able (Lode, Sakmann et al., 2012; Lode, 2015; Fasshauer and
Lode, 2016). This time-dependent HIM (TD-HIM) is a well-
suited test case for MCTDH-X, because it represents one
of the rare cases where a numerically exact solution to the
TDSE for a correlated problem with a time-dependent
Hamiltonian can be obtained. The solution is achieved
via a mapping to a time-dependent one-body Schrödinger
equation that can be integrated numerically at any desired
level of accuracy with little effort.
The Hamiltonian of the TD-HIM reads

ĤTDHIMðtÞ¼
XN
i¼1

�
−
1

2
∂2
rþ

1

2
ωTDðtÞ2r2

�
þKTDðtÞ

XN
i<j

ðri−rjÞ2;

ð23Þ

where the time-dependent trap frequency ωTD and the time-
dependent interaction strength KTD are given by

ωTDðtÞ ¼ ω½1þ fðtÞ�; KTDðtÞ ¼ K

�
1 −

ω2
0

2NK
fðtÞ

�
: ð24Þ

We compare solutions of the TDSE with this Hamiltonian
to (RAS-)MCTDH-B ones in Fig. 3.
The convergence of (RAS-)MCTDH-B toward the exact

result for an increasing number of variational parameters in
the wave function is demonstrated by the results in Fig. 3
for N ¼ 10 bosons; for a demonstration with fermions and
MCTDH-F see Fasshauer and Lode (2016).

III. MCTDH-B AND BOSE-EINSTEIN CONDENSATES

For brevity, we restrict our discussion here to the quantum
dynamics obtained with MCTDH-B modeling an experi-
ment with a quasi-one-dimensional BEC subject to a time-
dependent interparticle interaction in Sec. III.B as well as to
the appealing many-body physics in the variance of observ-
ables in Sec. III.C. Before turning to these applications of
MCTDH-B, we introduce the relevant quantities of interest.

A. Analyzing many-body states of bosons

The key insight that MCTDH-B has to offer is due to the
fact that it is a wave-function-based approach: from the
approximate solution jΨðtÞi to the TDSE, correlations and
coherence can be quantified, for instance, using reduced
density matrices and their eigenvalues (Sakmann et al., 2008):
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max

= 4

GP
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FIG. 3. Benchmark of (RAS-)MCTDH-B against exact
TD-HIM results for N ¼ 10 bosons. Here we use fðtÞ ¼
sinðtÞ cosð2tÞ sinð0.5tÞ sinð0.4tÞ (upper panel) and K ¼ 0.5 in
Eqs. (23) and (24). The time-dependent center-of-mass energy
εðtÞ (solid and dashed lines for MCTDH-B and RAS-MCTDH-B
results, respectively) is plotted in comparison to the exact values
(circles) in the lower panel for different particle and orbital
numbers [see Lode, Sakmann et al. (2012) for details on εðtÞ].
A convergence with an increasing number of orbitals, i.e., amount
of variational parameters in the (RAS-)MCTDH-B wave func-
tion, is observed.
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ρðpÞðr1;…; rp; r01;…; r0p; tÞ
¼ Trpþ1;…;N ½jΨðtÞihΨðtÞj�

¼ N!

ðN − pÞ!
Z

drpþ1 � � � drNΨ�ðr01;…; r0p; rpþ1;…; rN ; tÞ

×Ψðr1;…; rp; rpþ1;…; rN ; tÞ: ð25Þ

The diagonal of the pth-order density matrix, i.e.,
ρðpÞðr1;…; rp; r1;…; rp; tÞ≡ ρðpÞðr1;…; rp; tÞ, is the proba-
bility to find particles 1;…; p at positions r1;…; rp, respec-
tively, and is referred to as the p-body density. In the case of
p ¼ 1, by convention, one drops the (1) superscript and
speaks of just the density ρðr; tÞ, i.e., ρðr; tÞ≡ ρð1Þðr; tÞ≡
ρð1Þðr; r0 ¼ r; tÞ is implied. In this section, we present observ-
ables like ρðpÞ derived using the wave function jΨðtÞi in
position space; the equations are, however, also valid for
momentum space analogons of the observables when the wave
function in momentum space is used and r is replaced by k.
The off-diagonal part of the pth-order reduced density matrix
ρðpÞðr01 ≠ r1;…; r0p ≠ rp; r1;…; rp; tÞ determines the pth-
order coherence. To further quantify the pth-order coherence,
the pth-order Glauber correlation function

gðpÞðr1;…; rp; r01;…; r0p; tÞ ¼
ρðpÞðr1;…; rp; r01;…; r0p; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQp

k¼1 ½ρð1Þðrk; tÞρð1Þðr0k; tÞ�
q

ð26Þ

is a good measure. Essentially, gðpÞ gives a spatially resolved
picture of the representability of the pth-order density matrix
by a product of one-body densities: gðpÞ ≠ 1 implies that the
p-body density cannot be represented by a product of one-
body densities. In this gðpÞ ≠ 1 case, therefore, the many-body
state contains quantum correlations (of pth order). Such
quantum correlations entail fluctuations of observables and
can be probed (experimentally) with single-shot images or via
the variance of operators (see later).
One important correlation effect that has been discussed in

many works applying MCTDH-B is fragmentation (Nozieres
and St. James, 1982; Spekkens and Sipe, 1999; Mueller et al.,
2006), i.e., the situation when the reduced one-body density
matrix ρð1Þðr; r0; tÞ of interacting bosons acquires several
macroscopic eigenvalues (Streltsov, Alon, and Cederbaum,
2008, 2009, 2011; Sakmann et al., 2009, 2010; Sakmann,
2011; Lode, Streltsov et al., 2012; Lode, 2015, 2016; Lode
and Bruder, 2017). If ρð1Þðr; r0; tÞ has only one single
significant eigenvalue, then the state is referred to as con-
densed (Penrose and Onsager, 1956).
To discuss fragmentation and condensation, we thus write

ρð1Þðr; r0; tÞ using its eigenvalues nð1Þi ðtÞ and its eigenfunctions
ΦðNOÞ

i ðr; tÞ:

ρð1Þðr; r0; tÞ ¼
X
i

nð1Þi ðtÞΦðNOÞ;�
i ðr0; tÞΦðNOÞ

i ðr; tÞ: ð27Þ

We note that the nð1Þi ðtÞ are nothing but the eigenvalues of the

matrix elements ρkqðtÞ in Eq. (10). In practice, the nð1Þi ðtÞ are

therefore computed by straightforwardly diagonalizing the

M ×M matrix ρkqðtÞ. Analogously, the eigenvalues nð2Þi ðtÞ of
the two-body density ρð2Þ are available via the diagonalization
of ρkslqðtÞ.
In cold-atom experiments, the standard measurement is

absorption images. Such single-shot images correspond
to a projective measurement of the many-body state jΨi
(Javanainen and Yoo, 1996; Castin and Dalibard, 1997;
Dziarmaga, Karkuszewski, and Sacha, 2003; Sakmann and
Kasevich, 2016). In the ideal case, each image contains
information about the position or momentum of every particle.
Each measurement thus corresponds to a random sample sk of
positions that is distributed according to the N-body proba-
bility distribution

Pðr1;…; rN ; tÞ ¼ ρðNÞðr1;…; rN ; tÞ ¼ jΨðr1;…; rN ; tÞj2

sk ¼ fsk1;…; skNg ∼ jΨðr1;…; rN ; tÞj2. ð28Þ

To directly model these images with a wave function
computed by MCTDH-X, one has to draw random samples
from the N-body density, i.e., compute a set of so-called
single-shot simulations sk, k ¼ 1;…; Nshots. The numerical
difficulty in sampling high-dimensional probability distribu-
tions can be overcome by factorizing the N-particle proba-
bility into a set of conditional probabilities,

Pðr1;…; rN ; tÞ ¼ Pðr1; tÞPðr2jr1; tÞ × � � �
× PðrN jr1;…; rN−1; tÞ: ð29Þ

To obtain a simulation s ¼ ðs1;…; sNÞ of a single shot, the
first particle’s position s1 is drawn from the one-body density

s1 ∼ Pðr; tÞ ¼ ρðr; tÞ ¼ hΨjΨ̂†ðr; tÞΨ̂ðr; tÞjΨi: ð30Þ

Here,

Ψ̂ðrÞ ¼
XM
j¼1

b̂jΦjðr; tÞ

is the field annihilation and

Ψ̂†ðrÞ ¼
XM
j¼1

b̂†jΦ�
jðr; tÞ

the field creation operator. The second particle’s position s2 is
then sampled from the conditional probability that is com-
puted from a reduced many-body state Ψð1Þ, where a particle
has been detected at s1,

s2 ∼ Pðr2js1; tÞ ¼ hΨð1ÞjΨ̂†ðr; tÞΨ̂ðr; tÞjΨð1Þi;
jΨð1Þi ¼ N ð1ÞΨ̂ðs1ÞjΨi. ð31Þ

Here, N ð1Þ represents some normalization constant. This
procedure is continued until all particles have been detected
at positions s1;…; sN and the single-shot image, i.e., the
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vector of positions s ¼ ðs1;…; sNÞ, is obtained. In principle,
all information about the N-body density ρðNÞðr1;…; rN ; tÞ
can be extracted from single-shot images.
We now discuss the variances of observables that are sums

of one-body operators Â ¼ P
N
i¼1 âðriÞ:

1

N
Δ2

Â
¼ 1

N
ðhÂ2i − hÂi2Þ. ð32Þ

Formally, two-particle operators contribute to the value of this
variance, because of the Â2 term in Eq. (32),

Â2 ¼
XN
j¼1

â2ðrjÞ þ
XN
k>j¼1

2âðrjÞâðrkÞ: ð33Þ

Using the one-body and two-body reduced density matrices
[Eq. (25)] to evaluate Eq. (32), we obtain

1

N
Δ2

Â
¼

Z
dr

ρðrÞ
N

aðrÞ2 − N

�Z
dr

ρðrÞ
N

aðrÞ
�
2

þ
Z

dr1dr2
ρð2Þðr1; r2; r1; r2Þ

N
aðr1Þaðr2Þ: ð34Þ

Evidently, the operator Â2 [Eq. (33)] and the variance Δ2
Â
thus

depend on the coordinates of two particles and are, thereby,
two-body operators that can be used to probe many-body
physics. In Eq. (34), one-body operators that are local in
position space [âðrÞ] are considered; a generalized form
of Eq. (34) has been found, for instance, by Alon (2019a).
Typical choices for Â, which we discuss in Sec. III.C,
include the many-body position and momentum operators,
X̂ ¼ P

N
i¼1 x̂i and P̂ ¼ P

N
i¼1 p̂i.

B. Quantum fluctuations and correlations in systems
of ultracold bosons

Faraday waves and “granulation” of a BEC driven with a
modulated interparticle interaction strength have been
observed in a recent experiment in a quasi-one-dimensional
setup at Rice University (Nguyen et al., 2019).
Faraday waves result for modulation frequencies on or

close to resonance with the transversal trapping (Faraday,
1830) even at rather small-amplitude modulations: Faraday
waves are regular, standing, periodic patterns, seen for
instance in liquids in a vessel that is shaken. In experimental
realizations, the single-shot images of Faraday waves are
repeatable (Engels, Atherton, and Hoefer, 2007; Nguyen et al.,
2019).
Granulation (Yukalov, Novikov, and Bagnato, 2014, 2015;

Nguyen et al., 2019) results for larger-amplitude modulations
with frequencies much lower than the radial confinement: the
BEC breaks into “grains” of varying size. The sizes of these
grains are broadly distributed, and the grains persist for up
to four seconds, i.e., much longer than the modulation time. In
the experimental realization, the single-shot images of the
granular state, as a direct consequence of quantum correlations
and fluctuations, were different, even if all parameters in the
experiment were kept fixed (Nguyen et al., 2019).

We stress that the presence of quantum fluctuations and
correlations in a many-body state cannot be inferred from
the density alone. Models like the time-dependent Gross-
Pitaevskii mean-field or the time-dependent density functional
theory that—a priori—by the construction of their Ansatz, are
aimed at the density may therefore not be able to describe
quantum fluctuations and correlations accurately.
A statistical analysis of many observations of the quantum

state, i.e., of many (simulated) absorption images in the case
of ultracold atoms, is needed in order to study and precisely
quantify effects like quantum correlations and fluctuations.
Here, we focus on the case where granulation emerges in

the BEC, since the quantum correlations and fluctuations
that arise in sync with granulation make this a good example
where the application of a wave-function-based theory like
MCTDH-B is crucial, because MCTDH-B (and also
MCTDH-F) does incorporate quantum correlations in its
Ansatz [cf. Eq. (2)]. Moreover, the experimental observations
in single-shot images can also directly be obtained from the
MCTDH-B simulations.
Such a direct comparison of single-shot images simulated

from MCTDH-B-computed wave functions with the exper-
imental observations on granulation was performed by
Nguyen et al. (2019). The one-body Hamiltonian used to
model the granulation experiment was

ĥðxÞ ¼ −
1

2

∂2

∂x2 þ
1

2
Ω2x2;

i.e., a kinetic energy term and a parabolic trap in dimension-
less units—the total Hamiltonian was divided by ℏ2=mL2,
where m is the mass of 7Li and a length scale L such that
Ω ≈ 0.1; see Nguyen et al. (2019) for details. The time-
dependent interaction potential was modeled as

Wðx; x0; tÞ ¼ λðtÞδðx − x0Þ; ð35Þ

where

λðtÞ ¼ λ0

�
−β1 þ

β1
β2 − β3 sin ðωtÞ

�

is the time-dependent interaction strength. Here β2 ¼
jðB̄ − B∞Þ=Δj, β1¼−β2=ðβ2−1Þ¼3.10, and β3 ¼ jΔB=Δj
are the parameters of the applied time-dependent magnetic field
BðtÞ ¼ B̄þ ΔB sin ðωtÞ, where B∞¼736.8G, B̄ ¼ 590.9 G,
and Δ ¼ 192.3 G. Importantly, the sinusoidal modulation of
the magnetic field creates a periodic but nonsinusoidal modu-
lation of the interparticle interaction strength λðtÞ.
The MCTDH-B-simulated and the experimental single-shot

images do qualitatively agree; see Figs. 4(a) and 4(b).
In our present example of the granulation of a BEC, a

contrast parameter D that measures discrepancies by more
than 20% of experimental and simulated single-shot images
from a Thomas-Fermi profile was defined to quantify the
amount of fluctuations in the many-body system; see Fig. 4(c).
Since there is no evidence for thermal effects in the

experimental realization of granulation, the observed fluctua-
tions are necessarily attributed to quantum correlations.
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From the contrast parameter [Fig. 4(c)], we understand that
granulation emerges beyond modulation frequencies of
ωc ≈ ð2πÞ30 Hz and appears side by side with quantum
correlations, as seen from a significant growth of multiple
eigenvalues of the one-body and two-body density matrices;
see Fig. 4(d).
The agreement between the contrast parameter obtained

from experimental and simulated single-shot simulations
[Fig. 4(c)] heralds the reliability of the MCTDH-B prediction
for the many-body wave function and the quantum correla-
tions and fluctuations embedded in it.

C. Many-body physics and variances

The interconnection between mean-field and many-body
descriptions of a BEC has attracted considerable attention
(Calogero and Degasperis, 1975; Nozieres and St. James,
1982). Whereas the Gross-Pitaevskii theory has widely been
employed in earlier investigations (Edwards and Burnett,
1995; Burger et al., 1999), there is nowadays a growing
consensus of the need for models that go beyond mean field,
as highlighted in Sec. III.B.
Exact and appealing relations between many-body and

mean-field descriptions of ultracold bosons are obtained in
the so-called infinite-particle-number limit (IPNL), i.e., in the
limit where the product of the interaction strength and the
number of particles N is kept fixed while the number of
particles tends to infinity (Castin and Dum, 1998; Lieb,

Seiringer, and Yngvason, 2000; Lieb and Seiringer, 2002;
Erdős, Schlein, and Yau, 2007a, 2007b; Cederbaum, 2017). In
this IPNL, the energy and density per particle E=N and
ρðrÞ=N, respectively, of the BEC computed at the many-body
and mean-field levels of theory for N → ∞ are equal; the BEC
is 100% condensed.
The Gross-Pitaevskii mean-field theory is obtained as the

limiting case when only a single orbital is used withMCTDH-B
and computations for a large number of bosons can be donewith
(RAS-)MCTDH-B, in particular, when the considered state is
almost 100% condensed. MCTDH-B is thus well suited to
investigate the interconnection between mean-field and many-
body descriptions in the IPNL;we focus on someof the pertinent
applications of MCTDH-B in the following discussion.
Even in the IPNL, however, correlations are embedded

within a BEC and show in the variance of operators. For the
position operator X̂ ¼ P

N
j¼1 x̂j, where x̂j is the position of

the jth particle, the effect of correlations can be clearly seen
in its variance

1

N
Δ2

X̂
¼ 1

N
ðhX̂2i − hX̂i2Þ;

see Eq. (33) and Klaiman and Alon (2015) and Klaiman,
Streltsov, and Alon (2016). The reason is that an excitation of
as little as a fraction of a particle outside the condensed mode
may interact with a macroscopic number of particles in the
condensed mode. Formally, two-particle operators contribute

FIG. 4. Experimental and theoretical single-shot line density profiles. (a) Experimental data and (b) many-body simulations for
different modulation frequencies. (a) The rows show data for three independent experimental images (single shots) for the indicated ω,
where ω ¼ 0 Hz corresponds to no modulation. The interaction between particles was modulated for tm ¼ 250 ms around an average
value of 8a0 with a maximum of 20a0 and a minimum of 0.7a0; subsequently, the interactions are held constant for another
th ¼ tm ¼ 250 ms. (b) The first column shows the density ρðz; tÞ [Eq. (25) for p ¼ 1, r1 ¼ r01 ¼ z] as calculated from the one-
dimensional MCTDH-B computations, while the second and third columns display two simulated single-shot images [Eq. (28)]. We
observe that granulation is present in single-shot images, but absent in the average ρðz; tÞ. Quantum fluctuations characterize the
emergence of granulation: (c) Comparison of the deviations from a Thomas-Fermi distribution as quantified by the contrast parameter
D ¼ DðωÞ [see Nguyen et al. (2019) for details about D] for single shots simulated from wave functions computed with MCTDH-B
(line with smaller error bars) and single shots taken in experiment (EXP, line with larger error bars). MCTDH-B predicts the threshold
value ωc ≈ ð2πÞ30 Hz, where deviations become large and grains form. Each symbol and its error bar are the mean and standard error of
the mean of at least four experimental measurements of D, while 100 single shots at each ω have been simulated from the MCTDH-B

wave functions. (d) Eigenvalues of the first- and second-order reduced density matrices. A growth of nð1Þ2 , nð2Þ2 , and nð2Þ3 (upper, middle,
and lower lines at ω=2π ¼ 50 Hz, respectively) is observed to occur for ω > ωc, indicating the emergence of correlations and

fragmentation. The growths of both nð1Þ2 and nð2Þ2 occur as ω ≈ ωc, with the drop in nð2Þ2 near 60 Hz corresponding to the subsequent

growth in nð2Þ3 . Adapted from Figs. 7 and 9 of Nguyen et al., 2019.
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to the evaluation of the variance of one-particle operators;
cf. Eq. (33). This is an intriguing result, in particular, because
the state is 100% condensed at the IPNL, i.e., the reduced one-
particle and two-particle density matrices per particle, ρð1Þ=N
and ρð2Þ=½NðN − 1Þ� [Eq. (25) for p ¼ 1, 2], respectively, do
have only a single macroscopic eigenvalue. In practice, one
thus finds a difference when the variance is computed at the
many-body and mean-field levels; see Figs. 5(a)–5(c) for an
example with ð1=NÞΔ2

X̂
for bosons in a double well. This

difference can be seen as an aspect of the finding that the
overlap of the many-body and mean-field wave functions can
become much smaller than unity in the IPNL (Klaiman and
Cederbaum, 2016). The variance of operators can thus be used
to investigate the correlations in BECs that are ignored in
mean-field models.
In turn, even at the IPNL the many-body wave function is

extremely complex and very different from the mean-field
one. This difference is caused by only a small amount of
bosons outside the condensed mode (Cederbaum, 2017).
Since the mean-field and many-body wave functions are
different, the properties derived from them may also be
different. This is particularly true starting from two-body
properties, such as the many-particle position variance. When
the variance is computed from a mean-field wave function it
directly relates to the one-body density, because the wave
function is built as a product of one single-particle state. When
the variance, however, is computed from a many-body wave
function it directly relates to the one-body and two-body

densities, i.e., it contains information about correlations in the
wave function that is not necessarily built as a product of one
single-particle state. The relation between the density of a
BEC and the correlations within a BEC can therefore be
probed via the variance of operators. The variance can be used
as a sensitive diagnostic tool for the excitations of BECs
(Theisen and Streltsov, 2016; Beinke, Cederbaum, and Alon,
2018), for analyzing the impact of the range of interactions
(Haldar and Alon, 2018, 2019), and for assessing convergence
of numerical approaches like MCTDH-B (Cosme, Weiss, and
Brand, 2016; Alon and Cederbaum, 2018), see Figs. 5(d)–5(f)
for an example convergence test with the position and
momentum space variance,

1

N
Δ2

X̂
ðtÞ

and

1

N
Δ2

p̂ðtÞ;

respectively, in quench dynamics of attractively interacting
anharmonically trapped bosons.
The many-body features of the variance of operators in a

BEC depend on the strength and sign of the interaction, the
geometry of the trap, and the observable under investi-
gation, e.g., the position, momentum, or angular momentum
(Klaiman and Alon, 2015; Klaiman, Streltsov, and Alon,

FIG. 5. The position space variance (a) ofN ¼ 1000, 10 000, and 100 000 bosons with contact interactions such thatΛ ¼ λðtÞðN − 1Þ ¼
0.1 in a double well as a function of the barrier height on the many-body level (three colored or gray lines atop of each other) drastically
differs from the mean-field description (black-dashed line), although the energy per particle in (b) and depletion in (c) suggest that a mean-
field description is applicable (solid lines from top to bottom for N ¼ 1000, 10 000, and 100 000, respectively); see also Fig. 1 of Klaiman
and Alon (2015). The position variance per particle in (d), momentum variance per particle in (e), and number of depleted particles in (f) for
the dynamics of N ¼ 10 attractive bosons in an anharmonic trap VðxÞ ¼ 0.05x4. The dynamics follow a quench of the strength of the
interactions [attractive Gaussian interaction potential λðtÞe0.5ðx−x0Þ2 with λðtÞ ¼ −0.02 for t < 0 and λðtÞ ¼ −0.04 for t ≥ 0]. (d)–(f)
Replotted with data from Fig. 6 in Alon and Cederbaum (2018). A smaller distance from the exact result (M ¼ 10, crosses) of the lines in
(d)–(f) for different orbital number M indicates larger M (values of M in the legend): convergence with M is found.
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2016; Sakmann and Schmiedmayer, 2018; Alon, 2019a).
For bosonic systems in two-dimensional traps, additional
possibilities open up for the variance. Explicitly, when
computed at the many-body and mean-field levels of theory,
the respective variances can exhibit different anisotropies
(Klaiman et al., 2018) or reflect the different effective
dimensionality (Alon, 2019b) of the bosonic system under
investigation.

IV. MCTDH-F AND ELECTRONS IN ATOMS AND
MOLECULES

Here we discuss selected applications of MCTDH-F, in
some cases with the incorporation of a complete active space
or RAS scheme, to electron dynamics in atoms and molecules.
Before discussing applications of MCTDH-F that contain a
comparison with experiment in Sec. IV.B, we introduce the
used observables in the following section.

A. Extraction of observables

Using (RAS-)MCTDH-F, photoionization cross sections
have been calculated using the flux method (Jäckle and
Meyer, 1996). The procedure, involving exterior complex
scaling, was described in detail (Haxton, Lawler, and
McCurdy, 2011) and applications were presented for beryl-
lium and molecular hydrogen fluoride (Haxton, Lawler, and
McCurdy, 2012).
The direct method is based on expressing the observables of

interest in terms of the reduced one-body density [Eq. (25) for
p ¼ 1] (Omiste, Li, and Madsen, 2017; Madsen et al., 2018).
To obtain an expression for the photoelectron momentum
distribution, the starting point can be the density in coordinate
space. The photoelectron distribution can then be obtained
by a suitable integral transformation. The density in coor-
dinate space at position r is obtained as the expectation value
ρðr; tÞ ¼ hΨjΨ̂†ðrÞΨ̂ðrÞjΨi; cf. Eq. (30). In second quantiza-
tion, using the orbitals [Eq. (3)] and matrix elements of the
one-body density [Eq. (10)], we obtain the density [see also
Eqs. (25) and (27)]:

ρðr; tÞ ¼
X
kq

ρkqΦ�
kðr; tÞΦqðr; tÞ: ð36Þ

To obtain the photoelectron distribution, a projection on an
exact scattering state ψkðrÞ with momentum k should be
performed. If this projection is restricted to a region of the
simulationvolume, beyond an ionization radius,where the effect
of the potential from the remaining ion is small, the projection
can be performed to plane waves; if the long-range Coulomb
interaction is still important in that region, the projection may
be done to Coulomb scattering waves (Madsen et al., 2007;
Omiste, Li, and Madsen, 2017). The photoelectron momentum
distribution P is then [cf. Eq. (36)] given by

dP
dk

¼
X
kq

ρkqΦ̃�
kðk; tÞΦ̃qðk; tÞ; ð37Þ

where

Φ̃jðk; tÞ ¼
Z 0

drψ�
kðrÞΦjðr; tÞ; ð38Þ

and the prime on the integral sign denotes that the integral is
only to be evaluated in the outer part of the simulation volume.
From themomentumdistribution, the energy distribution and the
angular distribution can be obtained by integration. Recently, the
time-dependent surface fluxmethod (Tao andScrinzi, 2012)was
applied to argon and neon within a multiconfigurational frame-
work (Orimo, Sato, and Ishikawa, 2019). This method is also
based on Eqs. (37) and (38), but requires smaller simulation
volumes. The cross section can be obtained from the time-
dependent calculation once the ionization probability P1 is
known (Madsen, Nikolopoulos, and Lambropoulos, 2000;
Foumouo et al., 2006). For example, the photoionization cross
section can be extracted by (Foumouo et al., 2006)

σ1ðMbÞ ¼ 1.032 × 1014ω2P1=npI0; ð39Þ
where ω is the angular frequency of the laser, I0 is the peak
intensity of the laser pulse inW=cm2,np is the number of cycles,
and P1 is the ionization probability.
Another quantity which we use later and which has received

significant interest in strong-field and attosecond physics in
recent years is time delay in photoemission. This field was
recently reviewed (Pazourek, Nagele, and Burgdörfer, 2015).
The time delay τ can be extracted in a three-step procedure
that we now discuss. (i) From the computed wave function,
one extracts the expectation value of the radial distance hrξ⃗ðtÞi
in a given direction ξ⃗ as a function of time and the linear
momentum of the photoelectron, kξ⃗ in that direction; it can be
evaluated in different ways. For instance hkξ⃗i can be evaluated
via integrating only in the outer part of the simulation volume
(Omiste, Li, and Madsen, 2017; Omiste and Madsen, 2018).
(ii) Using hrξ⃗ðtÞi and hkξ⃗i the effective ionization time

tCoul ¼ t −
hrξ⃗ðtÞi
kξ⃗

¼ τEWS þ ΔtCoul ð40Þ

can be evaluated. Here τEWS is the Eisenbud-Wigner-Smith
(EWS) time delay, i.e., the time delay without the interaction
with the Coulomb tail of the ion and

ΔtCoul ¼
Z
k3
ξ⃗

½1 − lnð2k2
ξ⃗
tÞ�

is the distortion caused by the long-ranged Coulomb potential,
where Z is the charge of the ion. (iii) Finally, the time delay is
evaluated using

τ ¼ τEWS þ τCLC: ð41Þ
Here τEWS can be evaluated from Eq. (40) and the Coulomb-
laser coupling

τCLC ¼ Z
k3
ξ⃗

�
2 − ln

�πk2
ξ⃗

ωIR

��

which is known, because Z, kξ⃗, and the frequency of the
infrared pulse ωIR are known. Thus the time delay τ can readily
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be extracted from the solution of the (RAS-)MCTDH-F EOMs
(Omiste and Madsen, 2018).

B. Examples involving comparison with experimental results

The processes we focus on here are in the research area of
laser-matter interactions. They are characterized by linear or
perturbative interactions, where relatively few photons are
exchanged with the external electromagnetic field. This reflects
the current challenges with making the MCTDH-F computa-
tionally efficient in full dimension and for nonperturbative
dynamics where many photons are exchanged. For validation of
the MCTDH-F methodology, comparisons with experiments
have focused on calculating photoabsorption cross sections
(Haxton, Lawler, and McCurdy, 2012; Omiste and Madsen,
2018, 2019), where accurate experimental data are available.
In addition, extreme ultraviolet (XUV) transient absorption
spectra (Liao et al., 2017) and time delays in photoionization
dynamics (Omiste, Li, and Madsen, 2017; Omiste and Madsen,
2018) have been considered. Here we consider cross section
and time-delay studies as illustrative examples.

1. Photoionization cross sections

In the case of photoionization, Fig. 6(a) shows a compari-
son for atomic neon between the predictions of theory at

different levels of approximation and experimental cross
section data.
The values of the theoretical cross sections in Fig. 6(a) are

obtained by the procedure described in Sec. IV.A. From the
agreement between theory and experiment in Fig. 6(a), it can
be concluded that it is possible to obtain a precise prediction
of the photoionization cross section using an explicitly time-
dependent method, the RAS-MCTDH-F, using the procedure
discussed in relation to Eq. (39). A second key point to be
noticed from Fig. 6(a) is related to the choice of the P1 and
P2 subspaces and the number of orbitals in them. We
consider here the RAS-MCTDH-F-D method; cf. Fig. 2
for an illustration of the P1 and P2 spaces. The “D” in the
acronym of the method denotes “doubles”: only double
excitations from the P1 to the P2 spaces are allowed. In this
example there is no space P0 with always occupied orbitals
like the one used to construct “complete active space”
methods (Sato and Ishikawa, 2013). Such a choice of active
space and excitation scheme reduces the number of con-
figurations compared with the MCTDH-F method with no
restrictions, and as seen from Fig. 6(a), can still yield
accurate results: convergence is obtained by increasing the
number of orbitals in P2 from M2 ¼ 0 to 9. In this manner
the accuracy of different approximations from the mean-field
TDHF method to approaches including more correlations is
systematically explored.

FIG. 6. (a) Theoretical total photoionization cross section extracted from a calculation with a 10-cycle linearly polarized pulse with
peak intensity 1014 W=cm2 as a function of the central angular frequency ω of the laser for several RAS schemes compared to the
experimental data by Marr and West (1976) and Samson and Stolte (2002). (b) Relative time delay of ionization in Ne, τ2p−2s, as a
function of the central frequency of the XUV pulse for a 780 nm IR pulse for ðM1;M2Þ ¼ ð5; 0Þ and (5,4) together with calculations
(Moore et al., 2011; Dahlström, Carette, and Lindroth, 2012; Feist et al., 2014) and the measurement (Schultze et al., 2010). (c) Total
photoionization cross section and its partitions in the (e) 1π−1, (d) 3σ−1, and (f) 2σ−1 final states. The MCTDH-F computations here used
nine orbitals while the complex Kohn ones used eight. The cross sections were computed via the flux into an exterior complex scaling
region (Moiseyev, 1998); see Haxton, Lawler, and McCurdy (2012) for details. The overall agreement between MCTDH-F and
experimental results (Brion and Thomson, 1984) is good: for all four depicted cases the salient features are reproduced for the total,
1π−1, and 3σ−1 cross sections. From Omiste and Madsen, 2018, and Haxton, Lawler, and McCurdy, 2012.
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Comparisons between theory and experiment for photo-
ionization cross sections have also been performed for atomic
beryllium and the hydrogen fluoride molecule (Haxton,
Lawler, and McCurdy, 2012). In these latter cases, full
MCTDH-F is considered. Similar to the RAS-MCTDH-F
example, convergence of the MCTDH-F results for the cross
sections were obtained with an increasing number of active
orbitals. We highlight here the good agreement of the
photoionization cross sections obtained for hydrogen fluoride
molecules with the experimental (Brion and Thomson, 1984)
and complex Kohn theoretical (Schneider and Rescigno,
1988; Rescigno and Orel, 1991) results; see Figs. 6(c)–6(f).

2. Time delay in photoionization

RAS-MCTDH-F was applied to the time delay in photo-
ionization in neon (Omiste and Madsen, 2018), where
experimental data are available (Schultze et al., 2010;
Isinger et al., 2017). It is the advent of new light sources
for ultrashort light pulses with durations down to the atto-
second timescale that has allowed addressing questions like
time delay in photoionization in experiments. In Fig. 6(b),
the time delay in photoionization between the 2s and
the 2p electrons in neon is shown in units of attoseconds
(1 as ¼ 10−18 s). A collection of theoretical results and a
measurement point (Schultze et al., 2010) are presented in
Fig. 6(b) as a function of photon energy ω (in atomic units,
ℏ ¼ 1, and for convenience the values in atomic units have
been converted to eV, 1 a:u: ¼ 27.21 eV).
The positive value of the time delay can be interpreted as if

it takes a longer time for the 2p than for the 2s orbital to
ionize. Such an interpretation in terms of orbitals, however,
assumes a mean-field picture. Theory and experiment have
addressed the question about relative time delay between
ionization into the two channels

Ne½ð1s22s22p6Þ1Se� → Neþ½ð1s22s22p5Þ2Po� þ e−ðs; dÞ;

Ne½ð1s22s22p6Þ1Se� → Neþ½ð1s22s2p6Þ2Se� þ e−ðpÞ; ð42Þ

where the dominant configurations have been used to denote
the ground state in the neutral as well as the ground and
excited states in the ion. Note that dipole selection rules dictate
the possible values of the angular momenta in the final
channels. From Fig. 6(b), it is seen that all the theories
predict a decreasing time delay as a function of the photon
energy in the considered energy range. All theoretical values
are also smaller than the experimental result. Recently,
measurements with an interferometric technique (Isinger et al.,
2017) reported a lower value of the time delay in better
agreement with the theory results. In the following, we focus
on the RAS-MCTDH-F results with ðM1;M2Þ at (5,0) and
(5,4); see Fig. 6(b). For neon, the (5,0) results correspond to
the TDHF case, i.e., one active orbital for each pair of
electrons. The (5,4) case includes more correlation and has
five orbitals in P1 and four orbitals in P2. The transitions
between P1 and P2 occur by double excitation only. As seen
from Fig. 6(b), part of the overall trend of the time delay can
be described at the TDHF level of theory.

Note that there are other cases of interest, where the
ionization step cannot be captured by TDHF. For example,
in beryllium, photoionization of the ground state into
the channel Beþ½ð1s22pÞ2Po� þ e−ðs or dÞ changes two orbi-
tals in the dominant configurations by the action of the
one-body photoionization operator. Therefore, that process
cannot be described by TDHF (Omiste, Li, and Madsen,
2017).

V. APPLICATIONS, THEORETICAL, AND NUMERICAL
DEVELOPMENT

We now discuss theoretical and numerical developments
within and beyond (RAS-)MCTDH-X.

A. MCTDH-X-based development

1. Numerical methods

Since the introduction of MCTDH-F (Zanghellini et al.,
2003; Kato and Kono, 2004; Caillat et al., 2005) and
MCTDH-B (Alon, Streltsov, and Cederbaum, 2007c, 2008;
Streltsov, Alon, and Cederbaum, 2007b) many numerical
techniques and theory extensions were developed that extend
the applicability of MCTDH-X.
For long-ranged interparticle interactions where the inter-

action potential is a function of the distance of the particles
Wðri; rj; tÞ ¼ Wðri − rj; tÞ, the so-called interaction matrix
evaluation via successive transforms (IMEST) has been
developed (Sakmann, 2011). IMEST rewrites the local
interaction potentials as a collocation using fast Fourier
transforms. IMEST has been applied for solving the TDSE
with MCTDH-X, for time-dependent harmonic interparticle
interactions (Lode, Sakmann et al., 2012; Lode, 2015;
Fasshauer and Lode, 2016), dipolar interactions (Chatterjee
and Lode, 2018; Chatterjee et al., 2019; Chatterjee, Tsatsos,
and Lode, 2019), and general long-range interaction potentials
(Streltsov, 2013; Streltsova et al., 2014; Fischer, Lode, and
Chatterjee, 2015; Haldar and Alon, 2018) and screened
Coulomb interactions (Fasshauer and Lode, 2016).
The development of an implementation of MCTDH-F using

a multiresolution Cartesian grid (Sawada, Sato, and Ishikawa,
2016) holds promise to provide improved adaptive represen-
tations for the dynamics of the wave function of electrons in
atoms and molecules. Moreover, we note the implementation
of the infinite-range exterior complex scaling method (Orimo
et al., 2018) and the introduction of a space partitioning
concept (Miyagi and Madsen, 2017) in combination with
RAS-MCTDH-F. We mention that it has been shown that the
inclusion of complex absorbing potentials to describe sit-
uations like ionization where particles are leaving the region
of interest requires one to use a master equation of Lindblad
form for the time evolution of the density matrix (Selstø and
Kvaal, 2010). To solve this master equation, ρ-MCTDH-F was
formulated by Kvaal (2011).
The efficient evaluation of the Coulomb interaction inte-

grals [Eq. (16) with Ŵ being the Coulomb interaction] is
instrumental to study real-world dynamics of electrons in
atoms and molecules in three spatial dimensions. We mention
here a discrete variable representation using sinc functions

Axel U. J. Lode et al.: Colloquium: Multiconfigurational time-dependent …

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 011001-14



that enables an efficient collocation, i.e., fast-Fourier-
transform-based evaluation of the Coulomb interactions by
exploiting the triple-Toeplitz structure of the kinetic energy
operator (Jones et al., 2016).
We note the recent successful implementation and appli-

cation of the adaptive removal and addition of configurations,
the so-called dynamical pruning (Larsson and Tannor, 2017;
Wodraszka and Carrington, 2017) for dynamics computed
with MCTDH-B (Köhler et al., 2019).

2. Theoretical progress

The MCTDH-X methodology has also been used to
obtain descriptions of the dynamics generated by Hubbard
Hamiltonians. Lode and Bruder (2016) expressed the operators
that create or annihilate particles in the time-independent first-
band Wannier basis functions of the Hubbard lattice as
effective, creation or annihilation operators that create particles
in a time-dependent superposition of all lattice sites. The
resulting EOMs are identical to the MCTDH-X EOMs
[Eqs. (8) and (13)], albeit with a special representation of
the kinetic and potential energy. Sakmann et al. (2011)
proposed generalized time-dependentWannier functions which
are a superposition of many bands to increase the accuracy
of the representation of the many-boson wave function
beyond the single-band Hubbard model. Grond et al. (2013)
and Alon, Streltsov, and Cederbaum (2014) derived a linear-
response framework for the EOMs ofMCTDH-X, the so-called
LR-MCTDH-X, that allows one to obtain highly accurate
information about the excitation spectrum of the considered
many-body Hamiltonian as benchmarked by Beinke et al.
(2017) and Beinke, Cederbaum, and Alon (2018). Recently, the
Fourier transform of the autocorrelation function was used
to also obtain the spectrum for a bosonic many-body system
(Lévêque and Madsen, 2019; Roy et al., 2019).
For the dynamics of electrons in molecules, an approach

termed the “multiconfiguration electron-nuclear dynamics
method” (MCEND) was developed (Nest, 2009) and
applied to lithium hydride (Ulusoy and Nest, 2012). This
MCEND method represents the total molecular wave func-
tion as a direct (tensor) product of an MCTDH-type wave
function for the nuclei with an MCTDH-F-type wave
function of the electrons. Other approaches to deal with
coupled electronic and nuclear dynamics have been devel-
oped and applied for diatomics (Kato and Yamanouchi,
2009; Haxton, Lawler, and McCurdy, 2011, 2015; Lötstedt,
Kato, and Yamanouchi, 2019b).
Developments of the so-called extended-MCTDH-F by

Kato and Yamanouchi (2009) considered coupled electron-
nuclear dynamics and molecular wave functions and include
extensive investigations on molecular hydrogen (Ide, Kato,
and Yamanouchi, 2014; Kato, Ide, and Yamanouchi, 2015)
and cationic molecular hydrogen in intense laser fields
(Lötstedt, Kato, and Yamanouchi, 2019a, 2019b) as well as
a strategy to efficiently partition the configuration space of
MCTDH-F (Lötstedt, Kato, and Yamanouchi, 2016).
The multiple active space model put forward by Sato and

Ishikawa (2015) introduced a flexible and possibly adaptive
approach to construct representations for the N-body Hilbert
space with multiconfigurational methods.

We mention here the development, application, and suc-
cessful benchmark against MCTDH-F predictions for high-
harmonic generation of a method that time evolves the
two-body density matrix [cf. Eq. (25) for p ¼ 2] without
resorting to a wave function at all (Lackner et al., 2015, 2017).
These methods for the two-body density matrix offer a similar
accuracy to MCTDH-F approaches while being much less
computationally demanding.
The unfavorable scaling of the number of coefficients in the

MCTDH-X Ansatz with the number of orbitals impedes the
application of MCTDH-X to systems with many electrons
or many bosons with more than a few orbitals. Truncation
strategies for the coefficient vector include the RAS approach
from quantum chemistry (Olsen et al., 1988) that results in
RAS-MCTDH-F (Miyagi and Madsen, 2013, 2014b) and
RAS-MCTDH-B (Lévêque and Madsen, 2017, 2018) theories
including a special consideration of single-particle excitations
(Miyagi and Madsen, 2014a). The “complete active space”
truncation approach to limit the number of coefficients was
also investigated (Sato and Ishikawa, 2013), including a
generalization to several active spaces (Sato and Ishikawa,
2015). For an MCTDH-F formulation for completely general
configuration spaces where different variational principles
become inequivalent, see Haxton and McCurdy (2015).
For a review of time-dependent multiconfigurational

theories for electronic and nuclear motion in molecules in
intense fields, see Kato, Yamanouchi, and Kono (2018).
For an overview of RAS-MCTDH-X theory, see Madsen
et al. (2018).

B. MCTDH-B applications

The archetypical example for the emergence of fragmenta-
tion in systems of interacting bosons is the double-well
potential (Spekkens and Sipe, 1999). Using MCTDH-B for
bosons in double-well traps, the reduced density matrices
and Glauber correlation functions (Sakmann et al., 2008),
the dynamical emergence (Streltsov, Alon, and Cederbaum,
2007b; Sakmann et al., 2009, 2010; Sakmann, 2011), and the
universality (Sakmann et al., 2014) of fragmentation have
been investigated. It is worthwhile to highlight that the works
(Sakmann et al., 2009, 2010) report converged solutions of the
TDSE and demonstrate that the commonly applied Bose-
Hubbard model may fail to describe the many-body states
for parameter regimes where it was deemed to yield a good
approximation to the many-body state. We note that the
excitation spectra of interacting bosons in double wells
(Grond et al., 2013; Theisen and Streltsov, 2016), in lattices
(Beinke et al., 2017), and under rotation (Beinke, Cederbaum,
and Alon, 2018) have been investigated with LR-MCTDH-B.
Recent work with MCTDH-B explores the connection
between quantum fluctuations, correlations, and fragmenta-
tion (Marchukov and Fischer, 2019; Nguyen et al., 2019).
Solitons in BECs are thought to be coherent and condensed;

several investigations with MCTDH-B (Streltsov, Alon, and
Cederbaum, 2008, 2011; Cosme, Weiss, and Brand, 2016),
however, have shown that fragmentation and correlations do
emerge in their dynamics.
Vortices in ultracold bosonic atoms are conventionally

modeled by mean-field approaches (Gross, 1961; Pitaevskii,
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1961). Applications of MCTDH-B to interacting bosonic atoms
have, however, demonstrated that correlations and fragmenta-
tion may emerge as soon as the many-body state contains
significant angular momentum (Beinke et al., 2015; Tsatsos
and Lode, 2015; Weiner et al., 2017). This emergence of
correlations and fragmentation marks the breakdown of the
mean-field description and is anticipated from pronounced
many-body effects in the excitation spectra of bosonic systems
with angular momentum as obtained from LR-MCTDH-B
(Beinke, Cederbaum, and Alon, 2018).
BECs in high-finesse optical cavities have been used as a

quantum simulator for the Dicke model (Brennecke et al.,
2007; Baumann et al., 2010). Using MCTDH-B it was shown
that the phase diagram of the cold-atom system in the cavity is
richer than the phase diagram of the Dicke model and thus the
mapping to the Dicke model may break down (Lode and
Bruder, 2017; Lode et al., 2018; Lin et al., 2019).

C. MCTDH-F applications

The MCTDH-F was first applied to strong-field ionization
of one-dimensional (1D) model molecules with up to eight
electrons (Zanghellini et al., 2003), harmonic quantum dots, a
1D model of helium (Zanghellini et al., 2004), and a 1D
jellium model (Nest, Padmanaban, and Saalfrank, 2007). Total
ionization spectra in strong laser fields were reported for 1D
systems with up to six active electrons, and strong correlation
effects were reported in the shape of photoelectron peaks and
the dependence of ionization on molecule size (Caillat et al.,
2005). Later, the effect of the reduction in dimensionality from
three to one dimension was discussed (Jordan et al., 2006). In
the strong-field regime, multielectron and polarization effects
have been considered in connection with applications to high-
order harmonic generation at a fixed internuclear distance in
model systems (Jordan and Scrinzi, 2008; Sukiasyan et al.,
2009, 2010; Miyagi and Madsen, 2013, 2014b), in carbon
monoxide (Ohmura et al., 2018), as well as in helium,
beryllium, and neon (Sawada, Sato, and Ishikawa, 2016).
In molecules, MCTDH-F was applied to molecular hydro-

gen at fixed internuclear distance (Kato and Kono, 2004,
2008). The MCTDH-F results reported for molecules include
calculations of vertical excitation energies, transition dipole
moments, and oscillator strengths for lithium hydride and
methane (Nest, Padmanaban, and Saalfrank, 2007), as well
as considerations of the response of lithium hydride to few-
cycle intense pump fields followed by a probe pulse (Nest,
Remacle, and Levine, 2008). Work on characterizing multi-
electron dynamics by considering energies and amplitudes
was reported (Ohmura et al., 2014). The inclusion of nuclear
motion was also considered (Kato and Yamanouchi, 2009;
Nest, 2009; Haxton, Lawler, and McCurdy, 2011; Anzaki,
Sato, and Ishikawa, 2017).
Concerning few-photon processes, MCTDH-F was applied

to the simulation of the two-photon ionization of helium
including a comparison with the time-dependent configuration
interaction method (Hochstuhl and Bonitz, 2011). The pop-
ulation transfer between two valence states of the lithium atom
with a Raman process via intermediate autoionizing states
well above the ionization threshold was investigated (Li,
McCurdy, and Haxton, 2014). A two-color core-hole

stimulated Raman process was studied in nitric oxide
(Haxton and McCurdy, 2014) and Raman excitations of
atoms through continuum levels were considered for neon
(Greenman et al., 2017). Moreover, a procedure was sug-
gested for using transient absorption spectroscopy above the
ionization threshold to measure the polarization of the
continuum induced by an intense optical pulse (Li et al.,
2016). Recently, a comparison of MCTDH-F and experimen-
tal results was reported in a study using XUV transient
absorption spectroscopy to study autoionizing Rydberg states
of oxygen (Liao et al., 2017). RAS-MCTDH-F was applied
to study electron correlation and time delay in beryllium
(Omiste, Li, and Madsen, 2017), neon (Omiste and Madsen,
2018), and effects of performing calculations with or without a
filled core space (Omiste and Madsen, 2019).

D. Multilayer and second-quantized-representation approaches

Multilayer approaches (Wang and Thoss, 2003; Manthe,
2008) provide a powerful and promising generalization of
the standard MCTDH. In the ML strategy, the MCTDH was
applied recursively (Manthe, 2008; Vendrell and Meyer,
2011): first, the wave function is represented as a sum of
products of “single-particle” functions (first layer); second,
the single-particle functions of the first layer are again
represented by an MCTDH-type wave function, i.e., a sum
of products of second-layer single-particle functions, and so
on. Here we used quotation marks on the term single particle,
because several degrees of freedom may be combined into
multimode single-particle functions using a mode combina-
tion (Worth, Meyer, and Cederbaum, 1998, 1999; Raab and
Meyer, 2000), i.e., a single-particle function may still be a
high-dimensional function. In the bottom or last layer, the
single-particle functions are then expanded on a primitive
time-independent basis.
We mention here a fundamental relation between the

density matrix renormalization group and matrix-product-
state methods reviewed by Schollwöck (2005, 2011) and
ML-MCTDH: mathematically, both methods fall into the class
of so-called hierarchical low-rank tensor approximations,
a concept which has, for instance, enabled progress in
devising new efficient time-integration schemes (Lubich,
Vandereycken, and Walach, 2018; Falcó, Hackbusch, and
Nouy, 2019) that are also applicable for (RAS-)MCTDH-X.
The multilayer approach requires a configuration space of

distinguishable degrees of freedom as in MCTDH; the multi-
layer approach can thus not be directly combined with the
MCTDH-X, since the latter restricts the configuration space to
include only configurations of a fixed number of strictly
indistinguishable particles that have the correct fermionic or
bosonic symmetry.
In the following, we introduce two distinct multi-

layer approaches for indistinguishable particles, namely,
the ML-MCTDH in second-quantized representation
(ML-MCTDH-SQR) and the ML-MCTDH-X. ML-MCTDH-X
and ML-MCTDH-SQR are not affected by the previous incom-
patibility of the MCTDH-X approach and multilayering. The
ML-MCTDH-X approach uses a multilayer formalism for
Cartesian coordinates or different species of indistinguishable
particles and ML-MCTDH-SQR uses the occupation numbers
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of the orbitals as distinguishable degrees of freedom for an
MCTDH-typewave functionwheremultilayering canbe applied.

1. ML-MCTDH in second-quantized representation

We begin by noting that the SQR approach is actually
independent of the ML approach. However, historically,
SQR was introduced on top of ML-MCTDH; the resulting
ML-MCTDH-SQR was derived by Wang and Thoss (2009)
and reviewed by Wang (2015) and Manthe (2017). Next we
discuss the two ingredients together.
The SQR approach is based on the fact that all the second-

quantized configurations jn⃗i ¼ jn1; :::; nMi used in Eq. (2) can
formally be written as a Hartree product (Röpke, 1999):

jn1; n2;…; nMi≡ jn1ijn2i � � � jnMi: ð43Þ

Thus, the occupation numbers n1; n2;…; nM of the time-
independent orbitals are used as the degrees of freedom in an
ML-MCTDH-type wave function to obtain the Ansatz of the
ML-MCTDH-SQR approach.
Just like ML-MCTDH, the ML-MCTDH-SQR representa-

tion features a configurational expansion of distinguishable
degrees of freedom; however, these degrees of freedom are,
unlike for standard ML-MCTDH, represented in a second-
quantized notation tied to a time-independent basis. As
Eq. (43) demonstrates, the ML-MCTDH-SQR breaks apart
the configurations jn1;…; nMi, whereas the (ML-)MCTDH-X
approach deals with them as unbreakable entities.
ML-MCTDH-SQR therefore, via employing a different
approach to the representation of Fock space, uses multi-
layering in the very same way as the original ML-MCTDH,
but now for indistinguishable particles. In other words,
ML-MCTDH-SQR thus enables the use of deeply multilay-
ered wave-function representations which is incompatible
with the particle-number-based configuration selection of
the MCTDH-X approaches. We note that the reformulation
of a configuration as a Hartree product in Eq. (43) requires
that, for the case of indistinguishable fermions, the initially
chosen order of the terms in the product has to be tracked and
maintained at all times (Wang and Thoss, 2009; Wang, 2015).
The ML-MCTDH-SQR theory has, for instance, been

successfully applied to the dynamics of vibrationally coupled
electron transport in a model molecular junction (Wang and
Thoss, 2009, 2016) and transport in the Anderson impurity
model (Wang and Thoss, 2018). Recently, ML-MCTDH-SQR
was generalized to allow for variationally time-dependent
optimized second-quantized (oSQR) degrees of freedom
yielding the ML-MCTDH-oSQR approach (Manthe and
Weike, 2017). Most recently, strategies to incorporate particle
conservation in ML-MCTDH-oSQR were discussed byWeike
and Manthe (2020).

2. ML-MCTDH-X

The ML-MCTDH-X approach uses an MCTDH-type rep-
resentation for the distinguishable degrees of freedom in
systems of identical particles. These distinguishable degrees
of freedom can be the species in amixture of identical particles,
the differernt Cartesian coordinates of an orbital in more than

one spatial dimension, and/or its spin. The indistinguishable
parts of the wave function in ML-MCTDH-X are, themselves,
represented by MCTDH-X-type expansions (Cao et al., 2013,
2017; Krönke et al., 2013). In other words, in ML-MCTDH-X
the statistics of indistinguishable particles is maintained via an
MCTDH-X-type wave function. We note that an MCTDH-X
formulation for mixtures of identical particles without multi-
layering exists (Alon, Streltsov, and Cederbaum, 2007a). The
ML-MCTDH-X approach was applied successfully to mix-
tures of ultracold bosons and fermions (Erdmann, Mistakidis,
and Schmelcher, 2018; Mistakidis et al., 2018; Siegl,
Mistakidis, and Schmelcher, 2018) and bosons in more than
one spatial dimension (Bolsinger, Krönke, and Schmelcher,
2017a, 2017b).

E. Orbital-adaptive time-dependent coupled cluster

To reduce the numerical effort in solving the TDSE to
become polynomial, the so-called coupled-cluster method
(CC) (Coester and Kümmel, 1960; Čížek, 1966, 2007;
Čižek and Paldus, 1971) can be employed. Although CC
uses a different type of Ansatz than MCTDH-X, we mention it
here because recent developments include approaches with a
time-dependent, variationally optimized basis and are thus
related to MCTDH-X and RAS-MCTDH-X.
The conventional (time-dependent) CC uses time-

dependent excitation amplitudes, but does not use a set of
time-dependent orbitals in the representation of the wave
function. The standard CC’s Ansatz can be generalized to
include time-dependent amplitudes and orbitals. This gener-
alization of the Ansatz in combination with a generalized, so-
called bivariational principle leads to the equations of motion
of the orbital-adapted time-dependent coupled-cluster theory
(Kvaal, 2012, 2013; Pedersen and Kvaal, 2019). We identify
the application of the bivariational principle for the derivation
of the MCTDH-X EOMs for Ansätze with restricted configu-
ration spaces [as in Eq. (17)] as an open question.
When a real-valued variational principle is used, the fully

time-dependent coupled-cluster Ansatz yields the EOMs of
the time-dependent optimized CC (Sato et al., 2018a, 2018b).
The latter theory allows the self-consistent computation of
eigenstates via imaginary time propagation and has been
applied to single and double ionization as well as high-
harmonic generation in argon (Sato et al., 2018a).

VI. CONCLUSIONS AND FRONTIERS

In this Colloquium, we introduced the MCTDH-B and
MCTDH-F methods for full and restricted configuration
spaces. We highlighted the use and versatility of MCTDH-X
with benchmarks against exactly solvable models as well as
direct comparisons with experimental applications.
The development of methods for the time-dependent many-

body Schrödinger equation in the field of MCTDH-X and
beyond, that we portrayed in this Colloquium, has yielded
highly efficient and flexible numerical approaches. This
flexibility, however, comes with an increasing number of
parameters to tune the performance and accuracy of the
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given approach; examples include the tree structure in multi-
layering approaches (Wang and Thoss, 2009; Manthe, 2015;
Wang, 2015; Manthe and Weike, 2017), and the partitioning
of Hilbert space into multiple occupation-restricted active
spaces (Sato and Ishikawa, 2015) or P1 and P2 (Fig. 2) in the
RAS-MCTDH-X approach (Miyagi and Madsen, 2013,
2014b; Lévêque and Madsen, 2017, 2018). We thus observe
that the recent methodological developments demand an ever
larger and more complicated set of parameters to be con-
figured by their users.
Such a development toward higher complexity in the

application of methods is not desirable, because it makes
applications ever more tedious. The trend toward more
complexity could possibly be overcome by introducing addi-
tional adaptivity. We mention here the recent developments
with adaptive tensor representations (Grasedyck, Kressner,
and Tobler, 2013; Ballani and Grasedyck, 2014), an adaptive
number of configurations (Miyagi and Madsen, 2013, 2014b;
Haxton and McCurdy, 2015; Larsson and Tannor, 2017;
Lévêque and Madsen, 2017; Wodraszka and Carrington,
2017; Köhler et al., 2019), an adaptive number of single-
particle functions (Lee and Fischer, 2014; Mendive-Tapia
et al., 2017), optimally chosen unoccupied orbitals (Manthe,
2015), adaptive grids (Sawada, Sato, and Ishikawa, 2016), and
an adaptive construction of the many-particle Hilbert space
(Sato and Ishikawa, 2015). We thus envision a flexible theory
and implementation that combines multiple of these multi-
configurational methods in an adaptive framework to solve the
many-particle Schrödinger equation: according to a simple or
single input, for instance an error threshold, the Hilbert space
is automatically and adaptively partitioned while for each of
its partitions the most suitable multiconfigurational method
(or an adaptive version of which) is to be used.
Interestingly, the extended-MCTDH-F and MCEND

Ansätze, proposed by Kato and Yamanouchi (2009) and
Nest (2009), respectively, represent the total wave function
as a tensor product of wave functions of different species
of particles. In the case of extended-MCTDH-F, the wave
function is a product of two MCTDH-F-type wave functions
and in the case of MCEND, the wave function is a product
of an MCTDH-F-type wave function with an MCTDH-type
wave function for distinguishable particles. Such a multi-
species wave function, as well as bulk of the multicon-
figurational methods developed for restricted, multiple, and
general active spaces, is amenable to multilayer approaches.
The combination of truncation methods for the configuration
space, including the dynamical pruning approaches (Larsson
and Tannor, 2017; Wodraszka and Carrington, 2017; Köhler
et al., 2019), with ML-MCTDH-X or ML-MCTDH-(o)SQR is
one of the frontiers that we see in the further development with
multiconfigurational approaches.

LIST OF SYMBOLS AND ABBREVIATIONS

BEC Bose-Einstein condensate
EOMs equations of motion
IPNL infinite particle number limit
MCTDH multiconfigurational time-dependent Har-

tree (approach)

MCTDH-B MCTDH for bosons
MCTDH-F MCTDH for fermions
MCTDH-X MCTDH for indistinguishable particles X
ML multilayer
RAS restricted active space
RDM reduced density matrix
(o)SQR (optimized) second-quantized representa-

tion
TDHF time-dependent Hartree-Fock (method)
(TD-)HIM (time-dependent) harmonic interaction

model
TDSE time-dependent many-body Schrödinger

equation
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Lackner, F., I. Březinová, T. Sato, K. L. Ishikawa, and J. Burgdörfer,
2017, Phys. Rev. A 95, 033414.

Larsson, H. R., and D. J. Tannor, 2017, J. Chem. Phys. 147, 044103.
Lee, K. S., and U. R. Fischer, 2014, Int. J. Mod. Phys. B 28, 1550021.
Lévêque, C., and L. B. Madsen, 2017, New J. Phys. 19, 043007.
Lévêque, C., and L. B. Madsen, 2018, J. Phys. B 51, 155302.
Lévêque, C., and L. B. Madsen, 2019, J. Chem. Phys. 150, 194105.
Li, X., D. J. Haxton, M. B. Gaarde, K. J. Schafer, and C.W.
McCurdy, 2016, Phys. Rev. A 93, 023401.

Li, X., C. W. McCurdy, and D. J. Haxton, 2014, Phys. Rev. A 89,
031404.

Liao, C. T., X. Li, D. J. Haxton, T. N. Rescigno, R. R. Lucchese,
C. W. McCurdy, and A. Sandhu, 2017, Phys. Rev. A 95, 043427.

Lieb, E. H., 1963, Phys. Rev. 130, 1616.
Lieb, E. H., and W. Liniger, 1963, Phys. Rev. 130, 1605.
Lieb, E. H., and R. Seiringer, 2002, Phys. Rev. Lett. 88, 170409.
Lieb, E. H., R. Seiringer, and J. Yngvason, 2000, Phys. Rev. A 61,
043602.

Lin, R., L. Papariello, P. Molignini, R. Chitra, and A. U. J. Lode,
2019, Phys. Rev. A 100, 013611.

Lode, A. U. J., 2016, Phys. Rev. A 93, 063601.
Lode, A. U. J., and C. Bruder, 2016, Phys. Rev. A 94, 013616.
Lode, A. U. J., and C. Bruder, 2017, Phys. Rev. Lett. 118, 013603.
Lode, A. U. J., K. Sakmann, O. E. Alon, L. S. Cederbaum, and A. I.
Streltsov, 2012, Phys. Rev. A 86, 063606.

Lode, A. U. J., A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S.
Cederbaum, 2012, Proc. Natl. Acad. Sci. U.S.A. 109, 13521.

Lode, A. U. J., et al., 2018, New J. Phys. 20, 055006.
Lode, A. U. J., 2015, Tunneling Dynamics in Open Ultracold
Bosonic Systems, Springer Theses (Springer, New York), https://
doi.org/10.1007/978-3-319-07085-8.

Lötstedt, E., T. Kato, and K. Yamanouchi, 2016, J. Chem. Phys. 144,
154111.

Lötstedt, E., T. Kato, and K. Yamanouchi, 2019a, in Springer Ser.
Chem. Phys. (Springer, Cham), Vol. 119, pp. 197–220.

Lötstedt, E., T. Kato, and K. Yamanouchi, 2019b, Phys. Rev. A 99,
013404.

Lubich, C., and I. V. Oseledets, 2014, BIT 54, 171.
Lubich, C., B. Vandereycken, and H. Walach, 2018, SIAM J. Numer.
Anal. 56, 1273.

Luttinger, J. M., 1963, J. Math. Phys. (N.Y.) 4, 1154.
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