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This article reviews odd-frequency (odd-ω) pairing with a focus on superconducting systems. Since
Berezinskii introduced the concept of odd-frequency order in 1974 it has been viewed as exotic and
rarely occurring in nature. A view is presented in which the Berezinskii state is in fact a ubiquitous
superconducting order that is both nonlocal and odd in time. This state appears under quite general
circumstances in many physical settings including bulk materials, heterostructures, and dynamically
driven superconducting states, and it is therefore important to understand the nature of odd-ω pairing.
Presented are the properties of odd-ω pairing in bulk materials, including possible microscopic
mechanisms, and definitions of the odd-ω superconducting order parameter and the unusual Meissner
response of odd-frequency superconductors are discussed. Also presented is how odd-ω pairing is
generated in hybrid structures of nearly any sort and its relation to Andreev bound states, spin-
polarized Cooper pairs, and Majorana states is focused on. How odd-ω pairing can be applied to
nonsuperconducting systems such as ultracold Fermi gases, Bose-Einstein condensates, and chiral
spin nematics is overviewed. Because of the growing importance of dynamic orders in quantum
systems also discussed is the emergent view that the odd-ω state is an example of phase coherent
dynamic order. The recent progress made in understanding the emergence of odd-ω states in driven
superconducting systems is summarized. A more general view of odd-ω superconductivity suggests
an interesting approach to this state as a realization of the hidden order with inherently dynamic
correlations that have no counterpart in conventional orders discussed earlier. The progress made in
this rapidly evolving field is reviewed and an illustration of the ubiquity of the odd-ω states and the
potential for future discoveries of these states in a variety of settings are given. The general rules or
design principles, to induce odd-ω components in various settings, using the SP�OT� rule, are
summed up. Since the pioneering prediction of odd-ω superconductivity by Berezinskii, this state has
become a part of every-day conversations on superconductivity. To acknowledge this, the odd-ω state
is called a Berezinskii pairing as well in this article.
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I. INTRODUCTION

A. Berezinskii symmetry relation

The phenomenon of superconductivity, discovered more
than 100 years ago, has stood the test of time. It remains today
one of the most important and flourishing research areas of
quantum condensed matter physics due to its allure both from
a fundamental physics viewpoint and from a technological
perspective. Perhaps a key reason for the sustained interest in
this field is the phenomena of diverse macroscopic quantum
condensates exhibited by superconductors. Superconductors
discovered to date come in a variety of exotic forms.
Conventional low-Tc superconductors such as Al and Nb
are well described by the seminal theory of Bardeen, Cooper,
and Schrieffer (BCS) (Bardeen, Cooper, and Schrieffer, 1957)
which is widely regarded as one of the major accomplish-
ments in theoretical condensed matter physics.
As so often is the case in physics, symmetry is a cornerstone

in the theory of superconductivity and in fact dictates the
properties of the basic constituents of superconductors, the
Cooper pairs. We return in Sec. II to the issue of symmetry in
superconductors and why it is important. For now, we note
that the function which mathematically describes how the two
electrons making up the Cooper pair correlate to each other
depends on the position, spin, and time coordinate of these
electrons. The time coordinate is usually disregarded, as in
BCS theory. However, the symmetry property of a paired state
allows for the possibility that the two electrons are not
correlated at equal times and that they are instead correlated
as the time separation grows. This is indeed accomplished if
the correlation function is odd in time. For historic reasons this
novel type of superconducting correlations that are odd in
relative time or frequency is known as odd-frequency (odd-ω)
pairing.
To illustrate the richness of superconducting states we

start with the Berezinskii classification (Berezinskii, 1974;
Balatsky and Abrahams, 1992). A key object in the
discussion of superconductivity is the two-fermion correlation
function Δαβ;abðr; tÞ ¼ hT tcα;aðr; tÞcβ;bð0; 0Þi that describes
the pairing correlations in superconductors. Here T is the

time-ordering operator, r and t are the relative spatial and time
coordinates of the electrons comprising the Cooper pair,
fa; bg denote any orbital or band degree of freedom, while
fα; βg are spin indices of the two fermions in the correlator,
respectively. This anomalous two-fermion pairing amplitude
is occasionally referred to as a “Cooper pair amplitude” for
simplicity.
Berezinskii (1974) was the first, to our knowledge, to point

out that due to the Fermi statistics of the operators that enter
into a fermionic pairing state amplitude, there are symmetry
constraints on the permutation properties of the two operators
in the pairing state. More technical details are given in the next
section. Here we introduce the parity of the Cooper pair with
respect to relative coordinate permutation P�:

P�Δαβ;abðr; tÞP�−1 ¼ Δαβ;abð−r; tÞ ð1Þ

with respect to time coordinate permutation T�, resulting in a
sign change of the relative time t:

T�Δαβ;abðr; tÞT�−1 ¼ Δαβ;abðr;−tÞ ð2Þ

with respect to spin permutation S:

SΔαβ;abðr; tÞS−1 ¼ Δβα;abðr; tÞ ð3Þ

and finally with respect to orbital index permutation O:

OΔαβ;abðr; tÞO−1 ¼ Δαβ;baðr; tÞ: ð4Þ

Using the permutation operations acting on spatial, time,
spin, and if present, orbital indices of the pair correlation
(Cooper pairs), following Berezinskii (1974) one can
show that the combined action of spin permutation, orbital
index permutation, orbital parity, and time permutation
on the pairing amplitude Δ leads to a change in sign:
SP�OT�Δαβ;abðr; tÞ ¼ −Δαβ;abðr; tÞ. We write this condition
symbolically as

SP�OT� ¼ −1. ð5Þ

We note that P� and T� are not the full space and time
inversions. These operations merely permute the relative
coordinates and times of the pairing correlator. The fact that
the operation of permuting t → −t is not equivalent to time
reversal can be seen from the fact that if we apply true time
reversal T to Δ in the previous equations, we would convert Δ
to Δ†. This is not the case for the Berezinskii constraint.
Instead, T� is merely permuting the times of two particles in
the pair. By the same logic P� is not the full space inversion
but the permutation of two coordinates of particles as is the
case in braiding two particles.
With the binary possibilities for each of the symmetries

P�2 ¼ T�2 ¼ S2 ¼ 1 (here we deal with integer spin systems)
we find for a single-band model that there are 22 ¼ 4 possible
superconducting states. For completeness we also give a table
for the interorbit odd states O ¼ −1. With the inclusion of
multiorbital pairing one finds that there are 23 ¼ 8 overall
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pairing states possible. All possible superconducting states are
enumerated in this eightfold classification. Odd-ω states have
T� ¼ −1 and form a class that is distinct from the even-ω class
where T� ¼ þ1. For example, odd-ω superconductors include
singlet p-wave and triplet s-wave pairing states.
The importance of the Berezinskii observation was to point

out the existence of novel classes of superconducting orders,
missed earlier. The nontrivial time dependence of the pairing
correlations in the Berezinskii state is an important part of this
review, yet it is not the primary issue consideration. In any
quantum system one can use the equations of motion to arrive
at functions of different parities with respect to time. For
instance, one can start with an amplitude that is even in time
and, by taking a time derivative, arrive at an odd in time
correlation and vice versa. It is the prediction of novel
condensates that have parities and spin that are opposite to
the conventional pairing channel that makes the Berezinskii
state unusual.
To illustrate the symmetry relations between odd-ω and

even-ω pairing for now we consider the case of a single band
as a single orbital. The resulting possible pairing states are
shown in Table I. The odd-orbital case, which is possible for
multiorbital systems, is shown in Table II. An immediate
consequence of this table is that, within the same spin pairing
state, one can use an external field, interface scattering, or
external time-dependent drive to convert the pairing symmetry
from odd-ω into even-ω and from odd-ω state to even-ω
states. The basic rule of conversion is to change the parity of
two binary indices in the table at the same time so as to
preserve the overall product SP�OT� ¼ −1 that is fixed by
Fermi statistics (the Berezinskii rule).1 This simple rule points
to a variety of ways to create Berezinskii states and to the
ubiquity of the states that result. As will be discussed, one
efficient way to generate odd-ω states is to induce odd-ω
amplitudes as a result of scattering of conventional Cooper
pairs. There are also scenarios that allow an odd-ω state as the
global minimum of the free energy. Considering, for instance,
a spin-triplet state S ¼ þ1, one can convert an even-ω odd-
parity state into an odd-ω even-parity state. A complete and
interactive table demonstrating possible conversions including
the orbital index is available as Supplemental Material to this
review [Supplemental Material (229)].
Such a nonlocal pairing in time seems rather unusual at first

glance. It essentially implies that the electrons must avoid each
other in time so that no correlation exists between them when
their time coordinates are equal. It is interesting to note that
such a retardation effect in time is in fact also present in the
microscopic mechanism underlying superconductivity in BCS
theory, namely, electron-phonon scattering. It is responsible
for two electrons ultimately attracting each other by interact-
ing with the lattice and avoiding each other in time. However,
it turns out that one can somewhat miraculously get most of

the properties of BCS superconductors by disregarding this
retardation effect in BCS theory. In many cases, one obtains
very good agreement with experimental data ignoring the time
dependence of the pair correlations in BCS. By contrast, the
retardation effect is inherent to the nature of odd-ω pairing so
that one simply cannot ignore it for such a state. These strong
retardation correlations need to be captured to reveal the odd-
ω state. It is arguably this aspect that makes it challenging
to see odd-ω states using conventional computational and
experimental tools.
With the premise that odd-ω pairing is theoretically

possible, a number of questions arise. In particular: What is
the underlying microscopic mechanism that can provide a
pairing between electrons that is odd and nonlocal in time?
In which materials could this be realized? Are the properties
of odd-ω superconductivity the same as for conventional
superconductors? We will address these questions and discuss
other possible odd-ω states beyond superconductivity in this
review. We structure our discussion by presenting related yet
qualitatively different cases of spontaneous and induced odd-
ω pairing and their respective prerequisites.

B. Historical perspective

Before proceeding to a detailed exposition of each of the
topics related to odd-ω pairing, we now provide a time line
from the very conception of odd-ω pairing as a theoretical idea
in 1974 to present-day state-of-the-art experiments. Numerous
experiments will be discussed later in the review.
It has been a privilege to follow the evolution of this field

from a stage where odd-ω Berezinskii pairing was considered
rare and exotic to the present understanding where it has
been realized that odd-ω pairing is generated under many
circumstances: nearly any type of hybrid structure involving a
superconductor, in multiband superconductors, in driven
superconductors with time-dependent pairing states—in fact,
as will be explained in this review, it seems harder to avoid it
than to generate it. The abundant occurrence of odd-ω states is

TABLE I. Symmetry properties of the anomalous two-fermion
correlator also known as a superconducting Gorkov function Δαβ
under the operators SP�OT�, where we have fixed O ¼ þ1. The
odd-ω states are those where T�Δ ¼ −Δ. Adapted from Triola and
Balatsky, 2016.

S P� O T� Total

þ1 þ1 þ1 −1 −1
þ1 −1 þ1 þ1 −1
−1 þ1 þ1 þ1 −1
−1 −1 þ1 −1 −1

TABLE II. Symmetry properties of the superconductor with
O ¼ −1.

S P� O T� Total

þ1 −1 −1 −1 −1
þ1 þ1 −1 þ1 −1
−1 −1 −1 þ1 −1
−1 þ1 −1 −1 −1

1It is often said that the odd-ω or Berezinskii pairing is a
consequence of the Pauli principle. Here we point out that there
are no simple commutation or anticommutation rules for operators
taken at different times. Hence, the odd-ω state is possible due to a
constraint on the time (or contour) ordered propagator and not due to
the Pauli principle.

Jacob Linder and Alexander V. Balatsky: Odd-frequency superconductivity

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045005-3



an important reason for why a solid understanding has become
increasingly relevant. Our understanding of this concept has
reached the point where we can make predictions and suggest
new designs to create Berezinskii states.
Berezinskii (1974) was the first to realize that a two-

electron pairing correlation, with temporal coordinates t1
and t2, could be odd in t1 − t2 or, as he introduced it, odd
in frequency (the Fourier transform of the relative coordi-
nate t1 − t2). This suggestion was motivated by the dis-
covery of superfluidity 3He, for which he hypothesized
that for sufficiently large spin-density fluctuations a pairing
state with spin S ¼ 1 and even orbital angular momentum L
could arise. An example of an even orbital angular momen-
tum pairing is the isotropic s-wave phase where L ¼ 0.
Although it later transpired that this odd-ω state was not
realized in superfluid 3He, the seeds of the idea had been
planted.
Further explorations of odd-ω pairing began in the begin-

ning of the 1990s when Kirkpatrick and Belitz (1991) (Belitz
and Kirkpatrick, 1992) and Balatsky and Abrahams (1992)
rekindled the interest in this type of superconductivity. A
purely electronic mechanism that could generate spin-triplet
odd-ω pairing (S ¼ þ1, P� ¼ −1, T� ¼ −1) of the same kind
as Berezinskii suggested for 3He in two-dimensional and
disordered systems with strong quasiparticle interactions
was suggested by Kirkpatrick and Belitz (1991). A new class
of spin-singlet odd-ω superconductors (S ¼ −1, P� ¼ −1,
T� ¼ −1) was introduced by Balatsky and Abrahams (1992)
and their corresponding physical properties were enumerated.
This included features which were diametrically opposite to
the behavior of BCS superconductors, such as a finite zero-
energy density of states that is enhanced beyond the value of
the normal state instead of a gapped and fully suppressed
density of states. They proposed that the electron-phonon
interaction might be sufficient to, in principle, provide the
pairing glue required for odd-ω pairing, but later showed that
renormalization effects would prevent this unless a spin
dependence, such as antiferromagnetic fluctuations, was taken
into account (Abrahams et al., 1993).
Other works soon appeared, where the existence of odd-ω

pairing was discussed in the context of a two-channel Kondo
system (Emery and Kivelson, 1992), the one-dimensional
t − J − h model (Balatsky and Bonca, 1993), the two-band
Hubbard model in infinite dimensions (Georges, Kotliar,
and Krauth, 1993), and the two-dimensional Hubbard model
(Bulut, Scalapino, and White, 1993). However, a severe
problem with odd-ω superconductors was brought into
evidence by Abrahams et al. (1995) who pointed out that
there was a sign problem with the superfluid phase stiffness,
which appeared to be negative, indicating an instability of the
entire homogeneous odd-ω pairing state.
An exception to the phase stiffness problem was the works

by Coleman, Miranda, and Tsvelik (1993b, 1994, 1995) who
studied odd-ω pairing in a Kondo lattice and heavy fermion
compounds. Their idea was built on the interesting proposal
that odd-ω superconductivity is driven by an anomalous three-
body scattering amplitude which turned out to provide a stable
superconducting phase with a diamagnetic Meissner response.
A similar resolution was also proposed by Abrahams et al.

(1995), who suggested that a stable Meissner state could
be achieved by introducing a composite condensate (see
Sec. IV.C), where there existed a joint condensation of
Cooper pairs and density fluctuations. Their work also
addressed the subtle issue of how to define an appropriate
order parameter for a condensate whose correlation function
vanishes at equal times, as will be discussed in more detail
later. On general grounds, for any quantum mechanical system
where a broken symmetry exists, it should be possible to
describe it by a many-body Schrödinger equation that is a first
order in time. Thus, for the stationary broken symmetry state
there should exist some equal-time order encoded in the
corresponding wave function. Odd-ω pairing in the context
of composite order was also discussed by Bonca and
Balatsky (1993).
During the end of the 1990s, there was less activity in the

field of odd-ω superconductivity with only a few works
emerging (Hashimoto, 2000, 2001), including studies of 1D
models with odd-ω pairing (Coleman, Georges, and Tsvelik,
1997; Zachar and Tsvelik, 2001). Interestingly, Belitz and
Kirkpatrick (1999) solved a crucial problem that had haunted
the stability of the odd-ω superconducting state. They showed
that the sign problem with the superconducting phase stiffness
in a bulk odd-ω state could be resolved by carefully consid-
ering the reality properties of the gap function (its real and
imaginary parts), beyond what was possible to manipulate
via global gauge transformations. In doing so, they identified
the origin of an extra minus sign which would restore the
thermodynamic stability of the odd-ω superconducting state
and provide the usual Meissner response. This stability
was confirmed in a later work by Solenov, Martin, and
Mozyrsky (2009).

C. Design principles for the Berezinskii state

The field changed drastically in 2001 after a pioneering
work by Bergeret, Volkov, and Efetov (2001b), where they
showed that odd-ω pairing would arise by placing a conven-
tional BCS superconductor in contact with a ferromagnet. The
approach by Bergeret et al. was different from previous
literature in that Bergeret et al. focused on the possibility
of odd-ω pairing as a proximity effect rather than arising as an
intrinsic bulk effect. It also had the desirable consequence that
it demonstrated how it is possible to design odd-ω spin-triplet
pairing systems by combining conventional superconductors
and ferromagnets in an appropriate fashion (Volkov, Bergeret,
and Efetov, 2003). This work had an important impact on the
field, providing a new route for the realization of odd-ω
pairing through the scattering of conventional Cooper
pairs into odd-ω correlations. Other groups soon followed
and the number of publications on odd-ω pairing arising in
hybrid structures underwent a sharp rise. We mention, in
particular, that early key theoretical advances regarding the
consequences of spin-triplet pairing with an odd-ω symmetry
in superconductor (S) or ferromagnet (F) structures were
provided by Belzig, Buzdin, Eschrig, Nazarov, Volkov,
and co-workers with respect to, for instance, the density of
states (Buzdin, 2000; Zareyan, Belzig, and Nazarov, 2001),
superconducting spin-valve effects (Huertas-Hernando,
Nazarov, and Belzig, 2002; Bergeret, Volkov, and Efetov,
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2003), and supercurrents (Eschrig et al., 2003). The interested
reader is referred to Buzdin (2005) for additional references.
Another key insight was provided in 2005 when Tanaka,

Golubov, and co-workers showed that odd-ω pairing could
develop in proximity structures without magnetism. This was
accomplished by utilizing p-wave superconductors instead
of conventional BCS ones (Tanaka et al., 2005; Tanaka,
Kashiwaya, and Yokoyama, 2005). Such superconductors are
more scarce than the garden variety superconductors like Al
and Nb, and their pairing symmetry is often the subject of
debate. However, the principle was clear: one did not
necessarily have to break spin-rotational symmetry by an
exchange field in a proximity structure to generate odd-ω
pairing as suggested by Bergeret, Volkov, and Efetov (2001b).
It would be sufficient to break translational symmetry simply
by means of an interface in a heterostructure.
This insight had profound consequences as it also meant

that phenomena such as Andreev bound states occurring
for certain crystallographic orientations of high-Tc super-
conductors, widely regarded as clear evidence of the d-wave
symmetry of these compounds, could be interpreted
as a direct manifestation of odd-ω pairing. It also meant
that odd-ω Berezinskii pairing would in fact appear in
arguably the simplest conceivable superconducting hybrid
structure: a ballistic normal metal coupled to a supercon-
ductor (Eschrig et al., 2007; Tanaka, Tanuma, and Golubov,
2007; Tanaka et al., 2007) due to broken translational
symmetry.
A decade after the prediction of odd-ω pairing in S=F

structures, several proposals for the external control of odd-ω
pairing were advanced, involving spin-active interfaces
(Linder et al., 2009) or multilayered magnetic structures
(Houzet and Buzdin, 2007). One of the key aspects fueling
this increased interest in odd-ω pairing was the fact that its
combined robustness toward impurity scattering and spin-
polarized nature opened an intriguing possibility of utilizing it
as a resilient way to achieve spintronics with superconductors
(Eschrig, 2011; Linder and Robinson, 2015b).
Activity regarding the realization of odd-ω pairing in the

bulk of a material was also revitalized, with authors inves-
tigating quasi-1D systems (Shigeta et al., 2011; Ebisu et al.,
2015), strong-coupling superconductivity (Kusunose, Fuseya,
and Miyake, 2011b), and systems with broken time-reversal
symmetry (Matsumoto, Koga, and Kusunose, 2012).
It has been realized that odd-ω pairing can also generally

appear in superconductors where the fermions are character-
ized by an additional index, such as which band or orbital they
belong to. This quantum number must consequentially be
accounted for in the Pauli principle on equal footing as
the spin index. A series of works investigated this effect
(Black-Schaffer and Balatsky, 2013a; Aperis, Maldonado,
and Oppeneer, 2015; Asano and Sasaki, 2015; Balatsky,
Pershoguba, and Triola, 2018), highlighting, in particular,
the role played by hybridization between different bands,
orbitals, or even leads of heterostructures.
Another important research direction recently formed that

focuses on superconducting heterostructures with topological
materials where odd-ω states are also predicted (Black-
Schaffer and Balatsky, 2012). These structures were also
shown to host odd-ω superconductivity due to an interplay

of the proximity effect, spatial inhomogeneity, and spin-
dependent interfaces (Triola, Rossi, and Balatsky, 2014;
Triola et al., 2016).
This discussion clearly points to the design principles for

the odd-ω Berezinskii state. In all of these examples conven-
tional Cooper pairs are “converted” into Berezinskii pairs. We
thus would expect that any heterostructure in the presence of
conventional Cooper pairs will, with a certain probability,
convert them into odd-ω pairs. For example, ferromagnetic
(FM)/superconducting (SC) heterostructures convert conven-
tional s-wave singlet pairs (S ¼ −1; P� ¼ þ1; T� ¼ þ1;
O ¼ þ1; F−þþþ) into spin-triplet s-wave Berezinkii pairs
(S ¼ þ1; P� ¼ þ1; T� ¼ −1; O ¼ þ1; Fþþþ−). Here we
introduce the notation FSP�OT�

for anomalous propagators
using binary indices for the eigenstates of S; P�; O; T�. The
same notation can also be used for the anomalous gap function
ΔSP�OT�

. For example, a conventional BCS singlet single-band
superconductor is described as F−þþþ or simply as −þþþ
pairing. All even-ω correlators have the form F���þ. The odd-
ω superconductors in contrast have F���− with the time parity
as the last index and should thus be easy to spot. This notation
also illustrates the SP�OT� constraint as the signature of the F
indices would remain −1.
If we are looking for conversion of even-frequency

pairs to odd-ω pairs we would need to (a) start with conven-
tional pairs, (b) design the scattering process that changes
one of the quantum numbers of the pairs, and finally (c) allow
for retarded pairing in the analysis in order for the
Berezinskii state to be probed. The only constraint on this
“design approach” is the requirement ðSP�OT�Þinitial ¼
ðSP�OT�Þfinal ¼ −1 as demanded by the Berezinski con-
straint. To keep the SP�OT� product the same one would
need to change at least two parities simultaneously. The only
requirement is for the macrostructure to induce matrix
elements in the scattering to mix up states with different
quantum numbers, e.g., of different parity or spin or orbital
index. One thus requires a change not only in T� parity, but
also in other quantum numbers like P� (e.g., for a SC
heterostructure with a metal) or S (e.g., for magnetically
active interfaces). Any known examples of heterostructures
and bulk odd-ω Berezinskii state inductions given here obey
these design rules. The wealth of possibilities is indeed
larger than what was considered to date. As we review
specific examples, we will comment on the fact that quantum
numbers of the SP�OT� are changed on a case-by-case basis.
To illustrate this point, we can apply this principle to
Josephson junctions (JJ). In that case, we can convert
Cooper pairs (S ¼ −1; P� ¼ þ1; T� ¼ þ1; O ¼ þ1; F−þþþ)
into Berezinskii spin-singlet pairs (S ¼ −1; P� ¼ þ1;
T� ¼ −1; O ¼ −1; F−þ−−) by considering the left and right
leads as effective orbital indices. Hence it is possible
to introduce the odd-ω pairs in conventional Josephson
junctions, as explained in more detail in Sec. IV.H.

D. Berezinskii pairing as a dynamic quantum order

Aside from heterostructures as a way to induce odd-ω
states, a new direction for the design of odd-ω states is clear:
one should use time domain probes. The proposal is to induce
odd-ω Berezinskii states by driving the quantum systems
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dynamically with external fields. Driven quantum matter
provides an interesting new possibility to create on-demand
new quantum states. It is known that quantum states can
develop nontrivial orders in time, as was shown to be the case
for time crystals (tX) (Wilczek, 2012; Choi et al., 2017; Zhang
et al., 2017). We also know that the Berezinskii state, due to its
intrinsic time dependence, is a state where dynamics can be
essential. Hence it is natural to expect a formation of the
Berezinskii state in driven quantum systems.
Time dynamics is crucial for both odd-ω Berezinski pairing

and tX. Yet how it enters into a description of the respective
orders differ. In case of the odd-ω state, one considers a two-
particle condensate hT cðt1Þcðt2Þi, where correlations are odd
in relative time t ¼ t1 − t2. In the tX state, order in time occurs
in the mass or spin density. These quantities can be expressed
as a two-fermion correlation representing local spin or density.
As a result, the tX state exhibits dynamic order in the “center-
of-mass” time Tc:m: ¼ t1 þ t2. The tX and Berezinskii states
thus correspond to dynamic quantum order forming in the
center versus relative time. It is important to emphasize that a
tX state breaks time translational symmetry, whereas an odd-ω
Berezinskii state does not necessarily do so. A more detailed
discussion concerning the possible connections between tX
and odd-ω Berezinskii pairing is given in the section on the
Josephson effect, where one can demonstrate the generation of
an odd-ω cross junction pair amplitude that exhibits periodic
Rabi-like oscillations (Balatsky, Pershoguba, and Triola,
2018). The Berezinskii pairing state can also be induced in
any conventional superconductor by applying time-dependent
drives (Triola and Balatsky, 2016, 2017).
Another means to induce dynamics in the superconducting

state is to make the system non-Hermitian by inducing a decay
of states. Indeed, one finds odd-ω states in non-Hermitian
quantum systems with superconducting correlations. The
simplest example of this kind would be a BCS superconductor
with a spin-dependent decay rate (Bandyopadhyay et al.,
2019).

E. Berezinskii pairing and relation to other quantum order

There is a priori no reason to expect that the odd-ω states
are confined only to superconducting states. Hence the
exploration of other odd-ω pairing states is only natural.
We briefly mention here some possible connections of the
odd-ω Berezinskii state to other unusual states of matter. One
natural connection is to hidden order states. The prototypical
example includes the hidden order state in heavy fermion
compounds like URu2Si2 (Mydosh and Oppeneer, 2011).
Another example of the possible hidden order is the so-called
pseudogap states of high-Tc oxide superconductors (Norman,
Pines, and Kallin, 2005). In both of these cases, we see well-
defined spectroscopic and thermodynamic features while
lacking an understanding of what the possible order parameter
is in the (pre)ordered phase. We know “conventional” orders
described by equal spin-spin or charge-charge correlations
functions that have equal-time correlations can be easily
measured. On the other hand, a state where conventional
probes of equal-time spin and charge correlations fail to detect
any order could possess an unconventional order. One
possible explanation of hidden orders is to assume that these

orders exhibit composite order or odd-ω order just like odd-ω
superconductors. Thus one might take a broader view that any
odd-ω state represents a class of hidden order states in that
there are no equal-time correlations. Such a viewpoint has
indeed been explored and led to the prediction that odd-ω
pairing may occur in Bose-Einstein condensates (Balatsky,
2014), density waves (Kedem and Balatsky, 2015), Kondo
systems (Coleman, Miranda, and Tsvelik, 1993a; Flint and
Coleman, 2010; Flint, Nevidomskyy, and Coleman, 2011;
Erten et al., 2017), and spin nematics (Balatsky and
Abrahams, 1995) and is summarized in Sec. VI.C. We also
note in this context the recent discussion on odd-ω density
wave correlations in the context of the anomalous normal state
in superconducting oxides by Tsvelik (2016, 2019). Another
intriguing observation, again demonstrating the fundamental
relevance of odd-ω pairing in a variety of contexts, was that
Majorana bound states in superconducting structures
inevitably would have to be accompanied by the presence
of odd-ω correlations, indicating a strong relationship bet-
ween them (Asano and Tanaka, 2013; Huang, Wölfle, and
Balatsky, 2015).

F. Observables related to odd-ω pairing

There are multiple features in odd-ω superconductivity that
can help us identify the odd-ω Berezinskii phase experimen-
tally. Some earlier observations carried out at a time where
their relation to odd-ω pairing was not known theoretically
can today be taken as evidence of odd-ω superconductivity.
An example of this, already previously alluded to, is the
observation of zero-bias conductance peaks in [110]-oriented
yttrium barium copper oxide (Covington et al., 1997;
Fogelström, Rainer, and Sauls, 1997; Wei et al., 1998). At
the time it was taken as direct evidence of Andreev surface
states of d-wave superconductors, but today we know that it is
also to be taken as evidence of odd-ω pairing due to the
realization that Andreev surface states are a manifestation of
odd-ω superconductivity. In this sense, one could argue that
odd-ω pairing was experimentally observed as early as 1966
by Rowell and McMillan (Rowell and McMillan, 1966;
Rowell, 1973) who observed sharp resonances in the density
of states in ballistic S=N bilayers. Forty years later these
resonances were shown (Tanaka, Tanuma, and Golubov,
2007) to be a direct manifestation of odd-ω pairing. In other
words, Andreev bound states can be described as odd-ω
superconducting correlations.
More indirect evidence has also been put forth in terms of

long-ranged supercurrents (Keizer et al., 2006; Khaire et al.,
2010; Robinson, Witt, and Blamire, 2010) through strongly
polarized and diffusive materials, which can exist only if
carried by odd-ω Cooper pairs since these are immune
precisely toward both impurity scattering and pair breaking
due to the Zeeman field of a ferromagnet. However, two recent
advances have been made in the experimental arena regarding
the direct observation of odd-ω pairing. The spectroscopic
signatures of odd-ω Cooper pairs induced in a superconductor
as seen in the density of states via scanning tunneling
microscope (STM) measurements were reported by Di
Bernardo et al. (2015a), while the much debated paramagnetic
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Meissner response characteristic of odd-ω superconductivity
was reported by Di Bernardo et al. (2015b).
The development of the understanding, and not the least

relevance, of odd-ω pairing since the proposition of
Berezinskii has been adventurous. Not only do odd-ω states
continue to intrigue us due to their unusual temporal proper-
ties, being nonlocal and odd in time, but also due to their
fundamental influence on both the electromagnetic response
and spin properties of superconductors.
The field of unconventional and odd-ω supercoductivity is

growing. There are previous reviews of the field which have
dealt with various aspects of odd-ω pairing, such as its
existence in S=F structures (Bergeret, Volkov, and Efetov,
2005), more general superconducting proximity systems
(Golubov et al., 2009), and its relation to topology
(Tanaka, Sato, and Nagaosa, 2012). In this review, we aim
to provide a comprehensive treatment of all known aspects of
odd-ω pairing, be it bulk or proximity systems, and also cover
the most recent activity in the field, not the least in the
experimental arena. At the same time, we are aware that the
field of odd-ω Berezinskii pairing is a rapidly developing one
and there are new examples and aspects of this unusual state
that are continuously being discovered. We acknowledge this
while attempting to provide a comprehensive review based on
the accumulated knowledge and material available to date.

II. SYMMETRIES OF SUPERCONDUCTING STATES

A. Why does the superconducting symmetry matter?

Symmetry is a profound tool in physics which allows us to
summarize the information about how a system behaves,
down to the microscopic level. Superconductivity is no
exception and the symmetry characterizing the superconduct-
ing state of a material or composite system is of crucial
importance. The main reason for this is that the so-called order
parameter Δ characterizing the state must be a reflection of its
environment, in terms of both the crystal lattice in which the
electrons reside and the pairing interaction which allows them
to form Cooper pairs. The order parameter symmetry thus
provides constraints, but not necessarily direct information
about the physical origin of superconductivity.
An example of this is Cooper pairs where the electrons have

a relative angular momentum L to each other, such as p-wave
(L ¼ 1) pairing which allows the electrons to avoid each other
more effectively in space. In this way, the Coulomb repulsion
between the electrons can be partially mitigated and p-wave
pairing is thus a relevant candidate for strongly interacting
systems. When the electrons are correlated via odd-ω pairing,
it means that they avoid each other in time instead of in space.
This is also a viable way to reduce the Coulomb repulsion and
strongly interacting systems have thus indeed over the years
been investigated as potential hosts for odd-ω superconduc-
tivity (Balatsky and Bonca, 1993; Coleman, Miranda, and
Tsvelik, 1993b). For instance, the on-site Coulomb interaction
influences the s-wave component of the order parameter
unless the corresponding Gor’kov function is zero at equal
times. This is precisely the case for odd-ω pairing.
Since Δ also determines the gap of the quasiparticle

excitations in a superconducting system, its symmetry

properties can also be probed by how the quasiparticles
behave. An example of this is the manner in which the
excitations transport charge or how they magnetically respond
to external fields. Odd-ω superconductivity is unusual in this
regard as it not only can be gapless, but it can even increase the
Fermi level density of states of the superconducting state
above its normal-state value. Determining the symmetry of
the order parameter Δ is thus one of if not the most important
task that should be undertaken to understand the physics of a
superconducting state.

B. Berezinskii classification scheme

A superconducting two-fermion condensate is in general
characterized by the time-ordered expectation value

fαβ;abðr1; r2; t1; t2Þ ¼ hT ψα;aðr1; t1Þψβ;bðr2; t2Þi ð6Þ

known as the anomalous Green’s function which may be taken
as a superconducting order parameter. Here fα; βg denote the
spin indices of the fermion annihilation field operators ψα and
ψβ, whereas fðri; tiÞg denotes the position and time coordinate
of field i ¼ 1, 2. We have incorporated the indices fa; bg
which refer to any other degrees of freedom characterizing the
fermions, such as their band index in multiband systems, and
we take fa; bg to be precisely this band index in what follows
for concreteness. At equal times, T is to be understood as a
normal ordering operator.
Superconducting order that spontaneously breaks only

the U(1) gauge symmetry below the critical temperature is
known as conventional superconductivity. Any other type of
superconducting order may be referred to as unconventional
(Matsuda, Izawa, and Vekhter, 2006). A common example is
superconducting order parameters that transform according to
a nontrivial representation of the point-group symmetry of the
crystal for a given material. An s-wave order parameter is fully
isotropic in k space and thus is invariant under any symmetry
operations of the crystal, causing the order parameter to
transform according to the trivial representation (identity
transformation) of the point group. A d-wave order parameter,
on the other hand, transforms according to a nontrivial
representation. If the crystal structure lacks an inversion
center, it is no longer possible to characterize the super-
conducting states in terms of their parity symmetry and the
allowed order parameter symmetries in general become
mixtures of even- and odd-parity components.
Now the Pauli exclusion principle places restrictions on

the symmetry properties of the anomalous Green’s function
fαβ;abðr1; r2; t1; t2Þ at equal times t1 ¼ t2. It states that two
half-integer spin fermions that are identical cannot simulta-
neously reside in the same quantum state and that the
function characterizing the state of the fermions must be
odd under an exchange of the particles at equal times. This
means that the anomalous Green’s function must always
satisfy the following relation:

fαβ;abðr1; r2; t1; t1Þ ¼ −fβα;baðr2; r1; t1; t1Þ: ð7Þ

The symmetry of a superconducting state may thus be
classified according to whether f remains invariant or
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acquires a sign change upon exchanging the electron spins
fα; βg, spatial coordinates fr1; r2g, or the band indices
fa; bg at equal times t1 ¼ t2. For instance, a conventional
BCS superconductor is invariant under an exchange of the
electron spatial coordinates:

fαβ;abðr1; r2; t1; t1Þ ¼ fαβ;abðr2; r1; t1; t1Þ; ð8Þ

but acquires a sign change under an exchange of the spin
coordinates:

fαβ;abðr1; r2; t1; t1Þ ¼ −fβα;abðr1; r2; t1; t1Þ: ð9Þ

The complete set of possible symmetry combinations
that are consistent with Eq. (7) are listed in Table III. The
odd-ω class of superconducting states is defined as those
that have an anomalous Green’s function acquiring a sign
change upon interchanging the time coordinates of the Cooper
pair, i.e., fαβ;abðr1; r2; t1; t2Þ ¼ −fαβ;abðr1; r2; t2; t1Þ. This
means that the pairing correlation in fact vanishes at equal
times t1 ¼ t2 since f ¼ −f is solved by f ¼ 0.
Rather than expressing the anomalous Green’s function in

terms of the individual space and time coordinates, it is
common in the literature to introduce a mixed representation
with new center of mass and relative coordinates:

fαβ;abðr1; r2; t1; t2Þ ¼ fαβ;abðr;R; t; TÞ; ð10Þ

where we introduced

r ¼ r1 − r2; R ¼ ðr1 þ r2Þ=2;
t ¼ t1 − t2; T ¼ ðt1 þ t2Þ=2: ð11Þ

For brevity of notation, assume in what follows that there is no
dependence on the center-of-mass coordinate R or T in the

problem. The following argumentation is valid even if this
simplification is not made, and the equations then hold true for
each set of points ðR; TÞ. By Fourier transforming the relative
coordinates, one acquires a momentum-dependent anomalous
Green’s function via

fαβ;abðp; tÞ ¼
Z

dre−ip·rfαβ;abðr; tÞ: ð12Þ

In this mixed representation, the Pauli principle is expressed as

fαβ;abðp; 0Þ ¼ −fβα;bað−p; 0Þ ð13Þ

since equal times t1 ¼ t2 give t ¼ 0. At first glance, this seems
to indicate that the Green’s function must be odd under
inversion of momentum or exchange of spin coordinates.
However, another possibility exists, as may be seen by Fourier
transforming the relative time coordinate and thus obtain an
energy-dependent Green’s function

fαβ;abðp;EÞ ¼
Z

dteiEtfαβ;abðp; tÞ: ð14Þ

Equation (13) then reads

Z
dEfαβ;abðp;EÞ ¼ −

Z
dEfβα;bað−p; EÞ: ð15Þ

Note that in all integrals the limits are ½−∞;∞�. This provides
two ways to satisfy Eq. (15). Either

fαβ;abðp;EÞ ¼ −fβα;bað−p;EÞ ð16Þ

or

fαβ;abðp;EÞ ¼ −fβα;bað−p;−EÞ: ð17Þ

TABLE III. Superconducting symmetries and their realization in materials and hybrid structures. S denotes a conventional BCS s-wave singlet
superconductor, N denotes a normal metal, while F denotes a ferromagnetic metal. In the hybrid structure case, the table lists the symmetry of
the superconducting correlations induced in the part of the structure that is not superconducting on its own, e.g., in the N part of an S=N bilayer,
as unconventional superconducting pairing can be generated by proximity to a fully conventional superconductor. The examples for the odd
spin symmetry are singlet, whereas the examples for the even spin symmetry are triplets. Similarly, the examples for the even-parity symmetry
are s-wave while the odd-parity symmetry examples are p-wave. TMDC stands for transition metal dichalcogenide.

Spin (S) Parity (P�) Band (O) Frequency (T�) Example: bulk Example: hybrid

Odd Even Even Even-ω Al, Nb (Bardeen, Cooper, and
Schrieffer, 1957)

S=N (Tanaka et al., 2007)

Odd Even Odd Odd-ω … Multiband S (Komendová, Balatsky, and
Black-Schaffer, 2015)

Josephson junction (Balatsky,
Pershoguba, and Triola, 2018)

Odd Odd Even Odd-ω … S=N (Tanaka, Tanuma, and Golubov,
2007)

Odd Odd Odd Even-ω … …

Even Even Odd Even-ω … F=TMDC=S (Rahimi et al., 2017)
Even Even Even Odd-ω MgB2 (Aperis, Maldonado, and

Oppeneer, 2015)
S=F (Bergeret, Volkov, and Efetov,

2001b)
Even Odd Odd Odd-ω Sr2RuO4 (Komendová and

Black-Schaffer, 2017)
…

Even Odd Even Even-ω Sr2RuO4 (Maeno et al., 1994) S=F (Yokoyama, Tanaka, and Golubov,
2007)
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This equation includes the possibility of odd-frequency
pairing or Berezinskii pairing, where the sign change of
the anomalous Green’s function is caused by inversion of
energy: E → ð−EÞ. It is seen from these equations that if the
anomalous Green’s function is odd under exchange of time
coordinates [t → ð−tÞ], it is also odd under a sign change of E.
The majority of the literature works with either Matsubara

Green’s functions or retarded or advanced Green’s functions
when dealing with odd-ω pairing, so here we briefly explain
the relation between these two approaches. To simplify the
notation, we omit the band indices. In the Matsubara formal-
ism, one defines

fMαβðr1; r2; τ1; τ2Þ ¼ fhT ψαðr1; τ1Þψβðr2; τ2Þig; ð18Þ

and after a Fourier transformation to the mixed representation
one has

fMαβðp; iωnÞ ¼
Z

β

0

dτeiωnτfMαβðp; τÞ;

fMαβðp; τÞ ¼
1

β

X
n

e−iωnτfMαβðp; iωnÞ; ð19Þ

where τ is used to describe imaginary time, β is the inverse
temperature, and frequencies ωn ¼ ð2nþ 1Þπ=β. In this
technique, one may apply the same procedure as for the
real-time Green’s functions and arrive at

X
n

½fMαβðp; iωnÞ þ fMβαð−p; iωnÞ� ¼ 0; ð20Þ

which also leads to the requirement that

fMαβðp; iωnÞ ¼ −fMβαð−p;−iωnÞ: ð21Þ

The real-time retarded and advanced Green’s functions may
be obtained from the Matsubara Green’s function by analytical
continuation as follows (δ → 0):

lim
iωn→E�iδ

fMαβðp; iωnÞ ¼ fRðAÞαβ ðp;EÞ: ð22Þ

The Pauli principle can also be expressed by the retarded
and advanced anomalous Green’s functions by using Eq. (21).
To see this, we perform an analytical continuation on the right-
hand side of Eq. (21), yielding

lim
iωn→Eþiδ

fMαβðp; iωnÞ ¼ fMαβðp;Eþ iδÞ

¼ fRαβðp;EÞ; ð23Þ

while the same operation on the left-hand side produces

lim
iωn→Eþiδ

½−fMβαð−p;−iωnÞ� ¼ −fMβαðp;−E − iδÞ

¼ −fAβαð−p;−EÞ: ð24Þ

Equating the two sides, we finally arrive at

fRαβðp;EÞ ¼ −fAβαð−p;−EÞ: ð25Þ

Actually, this information is embedded already in the defi-
nitions of the retarded and advanced Green’s functions, and
Eq. (25) may be verified by direct Fourier transformation
without going via Eq. (21). It is also worth underscoring that
the Matsubara technique is useful for equilibrium situations,
while the Keldysh formalism and the corresponding Green’s
functions are viable also in nonequilibrium situations. The
distinction between odd- and even-frequency correlations for
the retarded and advanced Green’s functions is now as
follows:

odd frequency∶ fRαβðp;EÞ ¼ −fAαβðp;−EÞ;
even frequency : fRαβðp;EÞ ¼ fAαβðp;−EÞ: ð26Þ

III. SYMMETRY CLASSIFICATION OF THE ODD-ω
STATES

A. Symmetry properties of the linearized gap equation

The symmetry classification of superconducting even-ω
states can be extended to odd-ω Berezinskii states (Geilhufe
and Balatsky, 2018). Such a symmetry classification is usually
done for the linearized gap equation, which holds close to the
superconducting transition temperature. To incorporate retar-
dation effects and with that an integration in ω space the
Bethe-Salpeter equation or linearized Eliashberg equation is
considered, which can be written in a most general form
(Riseborough, Schmiedeshoff, and Smith, 2004) as

vΔαβðk; iωnÞ ¼ −
X
γ;δ

X
k0

X
m

Γαβγδðk; k0; iωm; iωnÞ

× Gγðk0; iωmÞGδð−k0;−iωmÞΔγδðk0; iωmÞ:
ð27Þ

Equation (27) represents a linear eigenvalue equation of the
form vΔ ¼ V̂Δ, where V̂ denotes integration including the
kernel

Vαβγδðk; k0; iωm; iωnÞ ¼ Γαβγδðk; k0; iωm; iωnÞ
×Gγðk0; iωmÞGδð−k0;−iωmÞ: ð28Þ

Gγ is a normal Green’s function for an electron with spin γ and
Γ is the interaction vertex that depends on momenta, frequen-
cies, spin, and orbital indices. It is assumed that the symmetry
of the crystal is reflected in the kernel V and described by the
symmetry group G. Each eigenvector of Eq. (27) transforms as
a basis function of an irreducible representation Γp of G and
the degeneracy of the corresponding eigenvalue is determined
by the dimension of Γp, which is denoted by dp. Hence, the
linearized gap equation can be reformulated as

vp;νΔ̂p;ν
m ¼ V̂Δ̃p;ν

m ; ð29Þ
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where m ¼ 1;…; dp and ν ¼ 1; 2;… counts over the multiple
nonequivalent subspaces transforming as the same irreducible
representation. The superconducting instability occurs when
the largest eigenvalue vp;ν is equal to unity. Even though the
pairing potential is invariant under every symmetry trans-
formation of the group G, the dominating gap function itself is
only invariant under a subgroup, represented by one of the
irreducible representations of G. It is assumed that the gap
function transforms similarly to a pairing wave function.
Considering spin-orbit coupling, each rotation in space
(proper or improper) is connected to a specific rotation in
spin space. Applying the transformation operator associated
with a specific symmetry transformation g ∈ G gives

gΔ̂ðkÞ ¼ ûTðgÞΔ̂(R̂−1ðgÞk)ûðgÞ: ð30Þ

Here R̂ðgÞ ∈ Oð3Þ denotes the three-dimensional rotation
matrix and ûðgÞ ∈ SUð2Þ the corresponding rotation matrix
in spin space for the transformation g ∈ G.
To capture the symmetry of odd-frequency states, we make

use of the operator T̂� which corresponds to a permutation of
the two times present in a particle-particle correlation function
(here we use …̂ to underline that it is an operator, see Fig. 1).
We discuss the transformation behavior under T̂� for the
anomalous Green’s function F, given by

Fσσ0 ðk; t1; t2Þ ¼ hT cσðk; t1Þcσ0 ð−k; t2Þi: ð31Þ

Here the operator T denotes the time-ordering operator, i.e.,

Fσσ0 ðk; t1; t2Þ ¼ hθðt1 − t2Þcσðk; t1Þcσ0 ð−k; t2Þ
− θðt2 − t1Þcσ0 ð−k; t2Þcσðk; t1Þi. ð32Þ

Reversing t1 and t2 leads to

Fσσ0 ðk; t2; t1Þ ¼ hθðt2 − t1Þcσðk; t2Þcσ0 ð−k; t1Þ
− θðt1 − t2Þcσ0 ð−k; t1Þcσðk; t2Þi: ð33Þ

Hence, by comparing Eqs. (32) and (33), one obtains

Fσσ0 ðk; t2; t1Þ ¼ −Fσ0σð−k; t1; t2Þ: ð34Þ

Since the gap Δ̂ is related to F̂, a similar transformation
behavior is present,

Δσσ0 ðk; t2; t1Þ ¼ −Δσ0σð−k; t1; t2Þ: ð35Þ

It follows that the T̂� parity eigenvalue solutions T̂� ¼ þ1 and
T̂� ¼ −1 can be discussed independently.
With respect to the interchange of the spin indices within

the gap function, mediated by the operator Ŝ, the gap function
can be considered to be odd (singlet) or even (triplet). The
resulting form of the gap in these cases is given by the
antisymmetric matrix

Δ̂ðkÞ ¼ iΨðkÞσ̂y; ð36Þ

for the spin singlet and by the symmetric matrix

Δ̂ðkÞ ¼ i½dðkÞ · σ�σ̂y; ð37Þ

for the spin triplet. Following Eqs. (30) and (35), the trans-
formation under group elements g and under time permutation
T̂� can be expressed in terms of transformations ofΨ and d via

ĝΨðkÞ ¼ Ψ(R̂−1ðgÞk); ð38Þ

T̂�ΨðkÞ ¼ Ψð−kÞ; ð39Þ

and

ĝdðkÞ ¼ det ½R̂ðgÞ�R̂ðgÞd(R̂−1ðgÞk); ð40Þ

T̂�dðkÞ ¼ −dð−kÞ: ð41Þ

The gap function has to be odd under the application of a
combination of parity operator (P̂), spin interchange (Ŝ), and
time permutation (T̂�),

P̂ Ŝ T̂� ¼ −1: ð42Þ

Therefore, by considering an even behavior under time
permutation T̂�Δ̂ ¼ Δ̂, a spin-singlet gap (odd under spin
interchange) restricts the gap function to be even under
parity, whereas a spin-triplet gap (even under spin inter-
change) has to come with an odd parity. However, allowing
for an odd-time (or odd-frequency) dependence of the gap
function T̂�Δ̂ ¼ −Δ̂ brings the options of constructing an odd-
parity spin-singlet and an even-parity spin-triplet gap.
In three dimensions it is possible to define 7 crystal systems

and 32 crystal classes. The latter are connected to the 32 point
groups. According to Eq. (35), time permutation T̂� is a
symmetry element of the order of 2, i.e., ðT̂�Þ2 ¼ 1. Hence,
incorporating T̂�, the symmetry group of the interaction kernel
G can be extended as follows:

GII ¼ G ⊕ T̂�G; ð43Þ

where ⊕ denotes the set sum or unification of the two sets G
and T̂�G (T̂�G is the element wise product of T̂� and g ∈ G).

(a) (b)

FIG. 1. (a) Time reversal T̂ and (b) time permutation T̂� for two
times. An odd-frequency superconductor has an order parameter
that changes sign under time permutation T̂�.
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If the pairing potential in Eq. (27) is invariant under T̂�, it is
also invariant under every transformation contained in GII.
For the group order we obtain ordGII ¼ 2 ordG.

Furthermore, T̂� commutes with every element g ∈ G and
fE; Tg is an Abelian invariant subgroup of GII. GII can be
written as a semidirect product of G and fE; T̂�g. It follows by
induction (Hergert and Geilhufe, 2018) that twice as many
irreducible representations occur for GII as they occur for G. If
Γi is an irreducible representation of G, then Γþ

i and Γ−
i are

irreducible representations of GII, where the characters are
given by

χþi ðT̂�gÞ ¼ χiðgÞ; ð44Þ

χ−i ðT̂�gÞ ¼ −χiðgÞ; ð45Þ

for all g ∈ GII.

B. An example for the square lattice

As an example, we discuss a square lattice with point group
D4h. The group is generated by the elements fC4z; C2y; Ig,
where C4z denotes a fourfold rotation about the z axis, C2y is a
twofold rotation about the y axis, and I is the inversion. In
total, D4h has 16 elements. Consequently, the corresponding
Shubnikov group of the second kind DII

4h has 32 elements and
is constructed according to Eq. (43). The character table of
DII

4h is shown in Table IV. For the irreducible representations
the Mulliken notation is used (Mulliken, 1956). Additionally,
they are labeled with a superscript indicating an even (þ)

or odd (−) behavior with respect to time permutation T̂�

according to Eqs. (44) and (45).
For spin-singlet gaps, the allowed irreducible representa-

tions occurring for a certain angular momentum l can be
determined by decomposing the representations of the orbital
part only. In the following Dl denote the irreducible repre-
sentations of SOð3Þ, Dl

x (x ¼ g, u) the irreducible represen-
tations of Oð3Þ ¼ fE; Ig × SOð3Þ and Dl

x;� (x ¼ g, u) the

irreducible representations of fE; T̂�g ×Oð3Þ. One obtains

s wave∶ D0
g;þ ≃ Aþ

1g; ð46Þ

p wave∶ D1
u;− ≃ A−

2u ⊕ E−
u ; ð47Þ

d wave∶ D2
g;þ ≃ Aþ

1g ⊕ Bþ
1g ⊕ Bþ

2g ⊕ Eþ
g : ð48Þ

Analogously, for the spin-triplet gaps the allowed irreducible
representations are found by decomposing the direct product
belonging to the orbital part with D1

g;−, representing the
transformation properties of the spin-triplet state,

s wave∶ D0
g;þ ⊗ D1

g;− ≃ A−
2g ⊕ E−

g ; ð49Þ

p wave∶ D1
u;− ⊗ D1

g;− ≃ Aþ
2u ⊕ Bþ

2u ⊕ Bþ
1u ⊕ 2Aþ

1u ⊕ 2Eþ
u ;

ð50Þ

d wave∶ D2
g;þ ⊗ D1

g;− ≃ A−
1g ⊕ 2A−

2g ⊕ 2B−
1g ⊕ 2B−

2g ⊕ 4E−
g :

ð51Þ

TABLE IV. Character table of the Shubnikov group DII
4h.
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The obtained terms in Eqs. (46)–(51) are in agreement with
P̂ Ŝ T̂� ¼ −1 from Eq. (42). They reflect the following cases:

• spin singlet, even parity, even time: Eqs. (46) and
Eq. (48);

• spin singlet, odd parity, odd time: Eq. (47);
• spin triplet, odd parity, even time: Eq. (50);
• spin triplet, even parity, odd time: Eqs. (49) and (51).

Character tables for gap symmetries are given in Table IV and
discussed subsequently (see also Table V).

1. s-wave spin triplet

As the first example, we consider the s-wave supercon-
ductivity. Whereas the conventional BCS theory describes a
s-wave spin-singlet pairing, even under T̂�, it is possible to
construct a s-wave spin triplet that is odd under T̂� Eq. (49).

Under full rotational symmetry, a spin triplet transforms as
the three-dimensional representation D1

g;−. However, for the
square lattice, the triplet state splits into A−

2g and E−
g as

illustrated in Fig. 2. Since the z axis is chosen as the principal
axis, two linearly independent solutions belonging to E−

g are
transforming as k2ex and k2ey. Solutions belonging to A−

2g

transform as k2ez. The resulting gap functions are given by

Δ̂E−
g

1 ðkÞ ¼ −k2σ̂z; ð52Þ

Δ̂E−
g

2 ðkÞ ¼ ik2σ̂0; ð53Þ

and

Δ̂
A−
2g

1 ðkÞ ¼ k2σ̂x: ð54Þ

As expected, all three matrices are symmetric and thus even
under spin interchange. They are even under parity since they
contain k2. But, they are odd with respect to the time
permutation introduced in Eq. (35).

2. p-wave spin singlet

Another unconventional odd-frequency pairing is given
by the p-wave spin singlet. Here the three-dimensional odd-
parity representation D1

u;− splits into the irreducible repre-
sentations A−

2u and E−
u . The gap transforms as kx and ky for

E−
u and as kz for A−

2u. The resulting superconducting gaps
behave as

Δ̂E−
u

1 ðkÞ ¼ ikxσ̂y; ð55Þ

Δ̂E−
u

2 ðkÞ ¼ ikyσ̂y; ð56Þ

and

(a)

(b)

FIG. 2. Splitting of pairing states for a pairing potential with
DII

4h symmetry. (a) p-wave spin singlet and (b) s-wave spin
triplet. Adapted from Geilhufe and Balatsky, 2018.

TABLE V. Even- and odd-frequency gap symmetries for the square
lattice (DII

4h), considering s-, p-, and d-wave superconductivity.

Even frequency

s wave: Aþ
1g Ψ ≃ const; k2x þ k2y þ k2z

p wave: Aþ
1u d ≃ kxex þ kyey þ kzez

Aþ
1u d ≃ 2kzez − kxex − kyey

Aþ
2u d ≃ kyex − kxey

Bþ
1u d ≃ kxex − kyey

Bþ
2u d ≃ kyex þ kxey

Eþ
u d ≃ kxez

d ≃ kyez
Eþ
u d ≃ kzex

d ≃ kzey
d wave: Aþ

1g Ψ ≃ 2k2z − k2x − k2y
Bþ
1g Ψ ≃ ðk2x − k2yÞ

Bþ
2g Ψ ≃ kxky

Eþ
g Ψ ≃ kxkz

Ψ ≃ kykz

Odd frequency
s wave: A−

2g d ≃ ðk2x þ k2y þ k2zÞez
E−
g d ≃ ðk2x þ k2y þ k2zÞex

d ≃ ðk2x þ k2y þ k2zÞey
p wave: A−

2u Ψ ≃ kz
E−
u Ψ ≃ kx

Ψ ≃ ky
d wave: A−

1g d ≃ kykzex − kxkzey
A−
2g d ≃ kxkzex þ kykzey

A−
2g d ≃ ð2k2z − k2x − k2yÞez

B−
1g d ≃ kykzex þ kxkzey

B−
1g d ≃ kxkyez

B−
2g d ≃ kxkzex − kykzey

B−
2g d ≃ ðk2x − k2yÞez

E−
g d ≃ kxkyex

d ≃ kxkyey
E−
g d ≃ kzkyez

d ≃ kzkxez
E−
g d ≃ ð2k2z − k2x − k2yÞex

d ≃ ðk2x − k2yÞex
E−
g d ≃ ð2k2z − k2x − k2yÞey

d ≃ ðk2x − k2yÞey
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Δ̂A−
2u

1 ðkÞ ¼ ikzσ̂y: ð57Þ

Clearly, the three matrices are antisymmetric and odd under
spin, odd under parity, and also odd under time permutation
T̂� according to Eq. (35).

IV. SPONTANEOUS ODD-ω PAIRING:
MECHANISMS AND PROPERTIES

The approach to induction of the odd-ω pairing generically
falls into one of two categories. One category is a bulk odd-ω
component appearing due to some interaction. The other
category is to use the conversion of even-ω pairs to odd-ω
pairs in heterostructures and junctions where one uses the
preestablished even-ω state as a source of pairs that later are
converted into odd-ω pairs. The latter approach, pioneered by
Bergeret and collaborators, is discussed in the subsequent
section. Here we focus on the possible intrinsic instabilities
that drive odd-ω states.

A. Microscopic mechanism for spontaneous generation
of odd-ω pairing

The general framework for the symmetries of the odd-ω
states was already covered in Sec. III.A. We now discuss
possible specific mechanisms that might generate odd-ω
states. In conventional superconductors, it is electron-phonon
coupling that provides the glue that binds electrons together in
Cooper pairs. As the first attempt at identifying a microscopic
mechanism for bulk odd-ω superconductivity, it is natural to
consider the same type of interaction. Balatsky and Abrahams
(1992) showed early on that an electron-electron interaction
mediated by phonons could in principle lead to an odd-ω
superconducting gap if the k dependence of the phonon-
mediated effective interaction Vkk0 was strong enough. To be
more specific, the microscopic Eliashberg equations produce a
matrix Green’s function of the form

Ĝðk;ωnÞ ¼
iωnZkðωnÞτ0 þWðk;ωnÞτ1

ω2
nZ2

kðωnÞ þ jWðk;ωnÞj2 þ ε2k
: ð58Þ

Here τi are Pauli matrices in Nambu space, ωn is the
Matsubara frequency, k is the momentum, εk is the normal-
state dispersion, and the one-loop self-energies in the super-
conducting and normal channels are as follows:

Wðk;ωnÞ ¼ −T temp

X
n0;k0

Vkk0 ðωn − ωn0 ÞWðk0;ωn0 Þ
ω2
n0Z

2
k0 ðωn0 Þ þ ε2k0 þ jWðk0;ωn0 Þj2

;

1 − ZkðωnÞ
ðiωnÞ−1

¼ T temp

X
n0;k0

Vkk0 ðωn − ωn0 Þiωn0Zk0 ðωn0 Þ
ω2
n0Z

2
k0 ðωn0 Þ þ ε2k0 þ jWðk0;ωn0 Þj2

.

ð59Þ

Here T temp is the temperature. The gap Δ determined in
tunneling spectra is related to Wðk;ωnÞ and ZkðωnÞ through
Δ ¼ W=Z. The effective interaction is written Vkk0 ðωn − ωn0 Þ.
Impurities have been neglected in the Eqs. (58) and (59) for

simplicity. Defining Ω ¼ ωn − ωn0 as a bosonic Matsubara
frequency, an interaction mediated by phonons of the type

Vkk0 ðΩÞ ¼
2α2

π

Z
dω

Akk0 ðωÞω
ω2 þ Ω2

ð60Þ

was shown by Balatsky and Abrahams (1992) to produce an
odd-ω gap under the assumption that the interaction has
sufficiently strong k dependence. Here α is a measure of the
coupling strength while A is the spectral density. In fact, the
phonons do not contribute to the odd-ω pairing kernel of
the expression forWðk;ωnÞ in Eq. (59) if they are described in
the Einstein approximation with a k-independent spectral
density AðωÞ.
A crucial assumption by Balatsky and Abrahams (1992) is

that the renormalization of Zk in Eq. (59) caused by the
interaction with phonons can be neglected, allowing Z to be
set to unity. The resulting odd-pairing kernel (odd in the
quantities k; k0;ωn;ω0

n) is then derived from the odd part of an
interaction mediated by acoustic phonons with

Vkk0 ðΩÞ ¼ α2
c2ðk − k0Þ2

c2ðk − k0Þ2 þ Ω2
: ð61Þ

This leads to a linearized gap equation

Δðk;ωnÞ ¼ ð4α2T temp=c2Þ
X
n0;k0

k · k0ωnω
0
n

ðk2 þ k02Þ2 − 4ðk · k0Þ2

×
Δðk0;ωn0 Þ
ω2
n0 þ ε2k

: ð62Þ

However, the effect of disregarding the renormalization
turns out to be crucial. A subsequent paper by Abrahams et al.
(1993) showed that a stable odd-ω singlet pairing state was
unlikely to occur for a spin-independent effective potential
coming from a phonon interaction. The reason for this is
precisely renormalization effects which reduce the dressed
coupling below a threshold value required to produce odd-ω
superconductivity, irrespective of how strong the bare cou-
pling was (this was originally pointed out by J. R. Schrieffer).
Instead Abrahams et al. (1993) argued that if spin-dependent
terms are added to the interaction, coming for instance from
antiferromagnetic fluctuations that are present in high-Tc
superconductors or other strongly correlated systems, this
difficulty could be overcome. Specifically, they considered
a general spin- and frequency-dependent electron-electron
coupling

gðαk; βk0; γp; δp0Þ ¼ gcðk − pÞδαβδγδ þ gsðk − pÞσiαβσiγδ;
ð63Þ

where α; β;… are spin indices while k; p;… are four-vectors
and σi are the Pauli matrices. Equation (63) is written for the
pairing channel with p ¼ −p0 and k ¼ −k0. Moreover, gc is
the density coupling while gs is the spin-dependent coupling.
In such a scenario, the Eliashberg equations in the spin-singlet
l-wave channel become (T temp is temperature)
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ΔlðωnÞ ¼ −πT temp

X
n0
½glcðωn − ωn0 Þ − 3glsðωn − ωn0 Þ�

×
Δlðωn0 Þ

jZðωnÞjjωn0 j
;

ZðωnÞ ¼ 1 − πT temp

X
n0
½g0cðωn − ωn0 Þ þ 3g0sðωn − ωn0 Þ�

×
ωn0

ωnjωn0 j
: ð64Þ

The key observation here is the different sign with which
the spin-dependent coupling gs enters in Eqs. (64). The sign
difference provides the possibility of density and spin cou-
plings adding in the pairing channel simultaneously as they
oppose each other in the normal self-energy channel, so that
Z ∼ 1 or even Z < 1 could be satisfied. We assumed above
Z > 0.
Precisely one such interaction mediated by spin fluctuations

was later considered by Fuseya, Kohno, and Miyake (2003) as
a possible scenario for realizing odd-ω p-wave singlet pairing
near the quantum critical point (T temp → 0 boundary between
antiferromagnetic and superconducting phases) in CeCu2Si2.
The effective interaction considered mediated by spin fluc-
tuations was taken to have the form

Vðq; iωmÞ ¼ g2χðq;ωmÞ ¼
g2NF

ηþ Ar2 þ Cjωmj
; ð65Þ

where g is the coupling constant, NF is the density of states
(DOS) at the Fermi level, η is a measure of an inverse
correlation length in the presence of magnetic correlations, C
is a constant, and r2 ¼ 4þ 2ðcos qx þ cos qyÞ in two dimen-
sions. Such a pairing interaction had been used previously by
Monthoux and Lonzarich (1999) to discuss strong-coupling
effects on superconducting order induced by critical antifer-
romagnetic fluctuations. The linearized gap equation in the
weak-coupling approximation serves as the starting point for
determining the favored superconducting state:

Δðk; iωnÞ ¼ −T temp

X
k0;ωn0

Vðk − k0; iωn − iωn0 Þ
ξ2k0 þ jωn0 j2

Δðk0; iωnÞ;

ð66Þ

where ξk is the quasiparticle energy measured from the
chemical potential. Following Fuseya, Kohno, and Miyake
(2003), the pairing interaction can be further decomposed as

Vðk − k0; iωnÞ ¼
X
l

VlðiωnÞϕ�
l ðkÞϕlðk0Þ; ð67Þ

where ϕlðkÞ are basis functions of irreducible representations
of the point group of the system and we defined

VlðiωnÞ ¼
X
k;k0

ϕlðkÞVðk − k0; iωnÞϕ�
l ðk0Þ: ð68Þ

The linearized gap equation may also be written out for each
partial-wave component as

λðTÞΔlðiωnÞ ¼ −T temp

X
k0;ωn0

Vlðiωn − iωn0 Þ
ξ2k0 þ jωn0 j2

Δlðiωn0 Þ; ð69Þ

where Δðk; iωnÞ ¼
P

l ΔlðiωnÞϕlðkÞ. For spin-singlet pair-
ing, the gap function has to satisfy

ΔdðkiωnÞ ¼ Δdð−k; iωnÞ ¼ Δdðk;−iωnÞ ð70Þ

for the d-wave orbital symmetry and

Δpðk; iωnÞ ¼ −Δpð−k; iωnÞ ¼ −Δpðk;−iωnÞ ð71Þ

for the p-wave case. Here the eigenvalue λðT tempÞ determines
the transition temperature via the condition λðTcÞ ¼ 1. By
solving the linearized gap equation in the weak-coupling
approximation numerically with 512 Matsubara frequencies,
the transition temperature Tc could be determined for various
pairing states. The transition temperature for the p-wave
singlet and d-wave singlet state as a function of η is shown
in Fig. 3 and demonstrates that the odd-ω superconducting
bulk state is indeed favorable for η ≃ 0.02 and smaller.
Kusunose, Fuseya, and Miyake (2011b) considered further

aspects of bulk odd-ω superconductivity in strong-coupling
electron-phonon systems within the context of the Holstein-
Hubbard model. They found numerical evidence for the
realization of an odd-ω state being realized, but cautioned
that self-energy and vertex corrections were not included in
their treatment, which could affect the conclusion. Shigeta
et al. (2009) also considered a possible bulk odd-ω pairing
state on a triangular lattice, which we cover in more detail in
Sec. IV.I. Shigeta et al. also theoretically examined a possible
bulk odd-ω superconducting state appearing in the presence
of a staggered field (Shigeta, Onari, and Tanaka, 2012),
where the latter suppresses the in-plane spin susceptibility
and enhances the charge susceptibility, in addition to lattice
models relevant for quasi-1D organic superconductors
(Shigeta, Onari, and Tanaka, 2013). A microscopic mecha-
nism leading to odd-ω pairing was also discussed by Tsvelik
(2016) in the context of a fractionalized Fermi liquid in a
Kondo-Heisenberg model.

FIG. 3. Transition temperature Tc for p- and d-wave spin-
singlet pairing as a function of η. Adapted from Fuseya, Kohno,
and Miyake, 2003.
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By now it is a well-accepted fact that odd-ω channel naturally
appears in strongly interacting systems. However, not all
strongly retarded interactions permit the odd-ω state. The
challengewas always to find a system that is strongly interacting
on one side yet where the quasiparticle renormalizations in the
normal self-energy channel are not identical to the renormaliza-
tions in the superconducting channel. In other words, in the case
of an Eliashberg approach, one has to make sure that the self-
energies in the anomalous channel that enter the gap equation are
different than normalizations that enter the Z factor equation.
This poses significant constraints on the interactions that allow
Berezinskii pairing. It turns out that for a phonon-mediated
interaction, renormalizations of the quasiparticleZ factor exactly
compensate the growth of the odd-ω component in the self-
consistency equation, thus prohibiting the odd-ω channel
(Abrahams et al., 1993). For the case of spin-independent boson
mediated interactions, one can now prove a mathematical
theorem that Berezinskii pairing is forbidden, resulting in a
“no-go” theorem. This no-go theorem, posited by Hainzl et al.
(2019), explains the failures in the past to generate odd-ω pairing
due to phonon coupling. It will also direct our search for odd-ω
solutions in the case of spin-boson mediated interactions.

B. The order parameter

The question concerning the very existence of the order
parameter for the odd-ω pairing deserves a special discussion.
If a bulk odd-ω state develops, there has to be a set of attributes
associated with the phase: an order parameter, a wave function
of the ground state, a phase stiffness ρ, a free energy difference
between normal and ordered state Fs − Fn, and a Josephson
energy associated with the phase difference across a Josephson
junction. Moreover, if a quantum mechanical system with a
broken symmetry satisfies a many-body Schrödinger equation
(which is first order in the time-derivative operator), there
should exist some form of equal-time order encoded in the
corresponding wave function solving that equation.
On the other hand, one can take the view of the odd-ω state

as a dynamic order. Thus one might ask why the inherently
dynamic order would have any of the previous attributes
developed in a stationary state or equilibrium ground state.
In practice, much literature on odd-ω pairing, particularly in
the context of hybrid structures, uses the Green’s function
approach and hence deals with time-dependent functions that
can vanish at equal times. In this way, the question regarding
the nature of the order parameter and the wave function of the
odd-ω state is tacitly avoided. Technically one can proceed
with odd-ω states without even asking the question concern-
ing the existence of a steady equal-time order parameter.
Nevertheless, if the Berezinskii state is a quantum phase of
matter, there should exist a proper wave function, order
parameter, and other ingredients that one expects when
discussing such a phase. For completeness, we lay out what
has been discussed to date regarding this matter.
One approach to address the question about the order

parameter in the odd-ω state is to ask what the equal-time
correlations are that control the pairing state. In other words we
are looking for the time-independent operators whose expect-
ation value would represent the condensate that exists in the
odd-ω state.

Emery and Kivelson (1992) clearly identified the odd
derivatives of the Gor’kov function as having enhanced
pair susceptibility and also wrote down a composite pair
operator which they noted was connected with odd-ω pairing.
Abrahams et al. (1995) and Dahal et al. (2009) proposed to
treat the odd-ω pairing anomalous correlator FðtÞ at small
times and use the time derivative as a definition for the equal-
time order parameter. Indeed, if FðtÞ ¼ hT tcðtÞcð0Þi ∼ Kt,
where K is a constant, is an odd function of time one can
assume that at small time expansions (real time at temperature
T temp ¼ 0 or Matsubara time for finite T temp)

∂tFðtÞ ¼ K: ð72Þ
For the purpose of qualitative discussion we use simplified
notation and do not write all the other indices that are implied.
To define the order parameter for the odd-ω state one has to
use equations of motion for the fermion operator under the
assumption of some Hamiltonian. On general grounds, using
the equations of motion for i∂tcðtÞ ¼ ½H; cðtÞ� one obtains a
contribution in the commutator that arises from the kinetic
energy terms. This contribution is irrelevant; instead, the
interesting terms that yield a nontrivial result come from the
interaction terms in the full Hamiltonian. For example, for
the spin-fermion model, the interaction term

Hint ¼ J
X
rn

SiðrnÞc†αðrnÞσiαβcβðrnÞ; ð73Þ

where J sets the energy scale of the spin-fermion coupling and
SiðrÞ are spin operators, yields (Abrahams et al., 1995)

K ∼ hSiðrnÞcαðrnÞσiαβcβðrnÞi: ð74Þ
The composite condensate K represents the equal-time con-
densate that has all the quantum numbers of the initial odd-ω
state (the initial F correlator). Taking a commutator with the
Hamiltonian of any operator does not change the quantum
numbers like spin S and net charge 2e. Hence the operator K
will have the same spin and charge 2e expectation values as
the initial correlator F of the odd-ω pair. However, by taking
the time derivative we got rid of the time dependence and
hence can talk about equal-time correlations. We thus see that
in order to discuss the equal-time order parameter of the odd-ω
state one has to invoke composite pairs represented by K.
In the next section, we discuss this point in more detail.

C. Composite pairing and relation to hidden orders

We now illustrate the order parameter of the odd-ω
Berezinskii state as a composite pair boson in Fig. 4.
Namely, if one has control of the interactions to the degree
where one can suppress the BCS pairing, i.e., the Cooper pairs
alone do not condense, one can have a higher order con-
densate forming where composite Cooper boson pairs are
formed. This is what the order parameter of the Berezinskii
state seems to be telling us.
We illustrate the nature of the composite order for singlet

and triplet states. To be clear, we are giving here the symmetry
analysis and list of possible composite states. At the moment,
there are few microscopic models that can prove the existence
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of these composite orders, although attempts to bring in higher
order condensates were considered (Coleman, Miranda,
and Tsvelik, 1993b, 1994, 1995; Abrahams et al., 1995;
Dahal et al., 2009).
Spin-singlet composite.—A composite spin-singlet odd-ω

state could form as a result of binding a S ¼ 1 Cooper pair
with a S ¼ 1 neutral boson: 1Boson spin ⊗ 1Cooper pair spin ¼
0þ 1þ 2. In the direct sum of terms on the right-hand side
of the equation, there is a S ¼ 0 term that denotes the
irreducible representation corresponding to a singlet state.
The fused combined boson operator will have a charge 2e:

Ksinglet ∼ hcαðrÞiðσyσiÞαβcβðr0Þ½SiðrÞ þ Siðr0Þ�fðr; r0Þi. ð75Þ

Here SiðrÞ is the ith component of the boson spin. Ksinglet is a
spin S ¼ 0 and charge 2e object. The fact that S ¼ 0 follows
from the fact that Ksinglet is a scalar quantity obtained from the
inner product of two spin vectors, which does not depend on
the choice of coordinate system. Aside from the spin-singlet
constraint, K has to have P� ¼ −1 which follows from the
Berezinskii constraint. Thus, K has to be odd under a r, r0

permutation. The weight function f in this particular channel
will therefore be even in r, r0. For example, for a one-
dimensional model (Balatsky and Bonca, 1993) with lattice
sites labeled as r ¼ i; r0 ¼ j, we find fðr; r0Þ ¼ fði; jÞ ¼
δj−i−1 þ δj−iþ1. In the microscopic derivation of the equations

of motion for K these symmetry constraints like overall
P� ¼ −1 would naturally come out using commutators with
the specific Hamiltonian (Balatsky and Bonca, 1993; Bonca
and Balatsky, 1993; Coleman, Miranda, and Tsvelik, 1995).
Therefore, the defined order parameter K will have all the

correct SP�OT� quantum numbers: spin (singlet S ¼ 0),
permutation (P� ¼ −1), just like the odd-ω spin-singlet pair
except there is now no time dependence on the order
parameter. This is why the time independent K would be a
natural order parameter for such a odd-ω state.
Spin-triplet composite.—Similar logic applies to a spin-

triplet odd-ω Berezinskii state. One way to create a S ¼ 1

composite is to fuse a S ¼ 1 Cooper pair with the S ¼ 0

boson. This process would create a composite spin triplet
0Boson spin ⊗ 1Cooper pair spin ¼ 1:

Ki
triplet ∼ hcαðrÞðiσyσiÞαβcβðr0Þ½ϕðrÞ − ϕðr0Þ�fðr; r0Þi: ð76Þ

Here the superscript i in Ki
triplet denotes one of the three

triplet states for spin S ¼ 1. It has been assumed that in
the superconductor there is a neutral boson field ϕ, for
example, phonon displacement field, that couples to elec-
trons. If the weight function f is even under P�, then K is
also even under P�. The precise form of f would depend on
the microscopic model. Then the composite pair field will
have even parity P� ¼ þ1 and have net spin S ¼ 1. The
examples given illustrate the approach to create a net 2e
condensate that has an opposite P� parity compared to the
even-ω case. These composite condensates are the order
parameters that describe the condensate of Berezinskii
states. It is precisely the presence of the neutral boson field
in the composite condensate that allows for reversal of parity
versus spin relation that is ingrained in the conventional
even-ω pairing.
While we illustrate how the composite condensates follow

from the odd-ω pairing correlations, the inverse does not
follow. We are not aware of any proof that composite
condensate states imply the existence of an odd-ω state.
Hence one is entirely justified in taking a view that in nature
there are two qualitatively different non-even-ω superconduct-
ing states with same spin and relative parity of the pair
amplitude: one with the unusual composite condensate K and
one with the noncomposite odd-ω superconducting state. In
this section, we take the view that composite condensates are
equivalent to the odd-ω Berezinskii state.
A classification of the superconducting states thus emerges

where odd-ω states represent an extension of the conventional
pairing to include composite pair condensates. Let us start
with fermionic particles. The lowest order condensate that is
allowed to form is a two-fermion condensate. These are well-
established Cooper pairs and are the key to the pairing
occurring in BCS states. Higher order charge condensates
should also be allowed, like 4e and 6e condensates, but these
are expected to be more fragile.
The present discussion points to a qualitatively distinct way

to extend the hierarchy of pairing states. Under the right
circumstances the ground state might admit condensates of
composite pairs. In the case where neither Cooper pairs
condense nor boson degrees of freedom condense, composite

FIG. 4. Illustration of the composite Cooper pairs as a
condensate that is occurring in the odd-ω state. The upper
panel illustrates the nature of a composite fermion = fermion +
boson (flux tubes as was shown to exist in the quantum Hall
effect). Adapted from Eisenstein and Stormer, 1990. The lower
panel illustrates composite Cooper pairs = Cooper pair + boson
(spin or lattice) that condenses in the odd-ω state. Composite
pairs are a natural extension of the concept of composite
particles to Cooper pairs.
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bosons can condense in the ground state. The form of these
composite condensates is captured in Eqs. (75) and (76).
Symbolically,

composite pair ¼ Cooper pair ⊗ neutral boson. ð77Þ
We sum up the proposed hierarchy of “higher order pairing”

in Fig. 5.
The composite pairing discussed here can be viewed as an

example of hidden order where neither conventional Cooper
pairs nor a conventional Bose field condenses separately, yet the
composite form develops a long-range order. The two field
composite order contains two fields α and β that represent
distinct orders. In this context we have α being the Cooper pair
field and β being the spin or lattice boson field. The composite
hidden order implies hαi ¼ hβi ¼ 0 while hαβi ≠ 0. It is
intuitively clear that spectroscopy of these composite hidden
orders would be more complicated. Therefore, we expect these
composite orders will offer explanation to at least some of the
hidden and resonating orders that are ubiquitously observed in
correlated quantummaterials. The extension of the pairing states
to the realm of composite orders needs to be explored further.

D. Dynamic induction of odd-ω state in superconductors

In this section, we discuss the current understanding of
dynamically induced odd-ω pairing. One view is that odd-ω
pairing is a state of dynamic order. An odd-ω state indeed
realizes strongly retarded order where there are no equal-time
pairing correlations. This view is supported by the fact that a

possible order parameter for the odd-ω state is a time derivative
of the pair correlation function F. An interesting question that
arises is how is it possible to induce the odd-ω state in the time
domain by driving the system with external fields?
We start with pair amplitudes that are purely even in relative

time. Upon turning on a time-dependent drive, the pair
amplitudes are modified by the drive field. What used to be
a perfectly symmetric function upon reversal of relative time
t → −t, now is no longer a function of a single time, but rather a
function of two times. Symbolically and to lowest order in the
drive potential UðtÞ, the parity properties of the function

Fðt1; t2Þ ¼ F0ðt1 − t2Þ þ
Z

dt0G0ðt1 − t0ÞUðt0ÞF0ðt0 − t2Þ

ð78Þ
now depend on the drive field. Here G0 and F0 are the
unperturbed normal and anomalous Green’s functions.
Hence, there are even-ω and odd-ω components generated
immediately in a driven superconductor. For this to happen,
according to the SP�OT� constraint, we also need to break at
least one more index. In the case of a one band material, one
could break translational symmetry at the interface. In the case
of a multiband superconductor, one would induce odd-inter-
band index pairing that would also be odd in T�. Both cases
have been addressed for a driven superconducting state (Triola
and Balatsky, 2016, 2017). We thus can expect the induction of
the even-ω and odd-ω components and cross coupling of the
even and odd channels in the case of the driven system. As
mentioned in the Introduction, one can take a view that once we
have even-ω pairs that are available in equilibrium, a time-
dependent drive will convert a fraction of even-ω pairs into
odd-ω pairs and vice versa.
We now lay out mathematical arguments in support of this

claim. One can induce the new components of the pair
amplitude just like one induces new odd-ω components via
scattering at interfaces in hybrid structures. We start with the
general structure of any multiband superconducting state
subject to the external electrostatic potential drive UðtÞ. We
follow the previously mentioned references where one can
find a detailed description of the effect. A schematic overview
of the possible driven system is shown in Fig. 6.
Following Triola et al., we start with a multiband SC

Hamiltonian allowing for both interband and intraband pairing:

HSC ¼
X
k;σ

ðξa;kψ†
σ;a;kψσ;a;k þ ξb;kψ

†
σ;b;kψσ;b;kÞ

þ
X
α;β;k

Δαβψ
†
↑;α;−kψ

†
↓;β;k þ H:c:

þ
X
k;σ

Γψ†
σ;a;kψσ;b;k þ H:c:; ð79Þ

where

ξα;k ¼ k2

2mα
− μα

is the quasiparticle dispersion in band α with effective massmα

measured from the chemical potential μα, ψ
†
σ;α;k (ψσ;α;k) creates

(annihilates) a quasiparticle with spin σ in band α with
momentum k,

FIG. 5. A nonexhaustive hierarchy of composite superconduct-
ing condensates is shown. We start with the conventional paired
states as an even-ω state where the pairing correlator taken at
equal time is proportional to the order parameter one can use in
the Ginzburg-Landau description. One can extend the notion of
superconducting states to the 2eþ 1 composite boson conden-
sate. This would correspond to the order parameter as a first
derivative of the odd-ω amplitude. This line describes Berezinskii
composite pairs as discussed in the text. One can continue with
the process by taking higher order derivatives. The next step
would be a paired state with a 2e pair and two bosons that would
correspond to a second-in-time derivative and therefore to even-ω
pairing. The third line corresponds again to the odd-ω state with
three bosons attached to a pair, and so forth. The higher the order
of the correlators, the more fragile the condensate will be. The
situation is thus similar to the case of the fractional quantum Hall
effect: the higher the fraction, the more fragile the fractional
quantum Hall effect state is. We used the general labels even-ω
and odd-ω and the specific labels based on SP�OT� classification
to underscore the fact that change in the time parity index leads to
a new class of superconductors.
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Δαβ ≡ λ

Z
ddk
ð2πÞd hψ↑;α;−kψ↓;β;ki

is the superconducting gap, where d is the dimensionality of the
system, and we allow for the possibility of interband scattering
with amplitude Γ.
With these conventions we write the time-dependent

drive as

Ht ¼
X

k;σ;α;β

UαβðtÞψ†
σ;α;kψσ;β;k: ð80Þ

The bath and mixing terms take the form

Hbath ¼
X

n;σ;α;k

ðεn − μbathÞc†n;σαkcn;σαk;

Hmix ¼
X

k;n;σ;α

ηnc
†
n;σαkψσ;α;k þ H:c:; ð81Þ

where εn describes the energy levels of the fermionic bath, μbath
is the chemical potential of the bath, c†n;σαk (cn;σαk) creates
(annihilates) a fermionic modewith degrees of freedom indexed
by n, σ, α, and k, and ηn specifies the amplitude of the coupling
between the superconductor and the bath. The Dyson equation
for the Keldysh Green’s functions is found to be

Ĝðk; t1; t2Þ ¼ Ĝ0ðk; t1 − t2Þ þ
Z

∞

−∞
dtĜ0ðk; t1 − tÞ

×

�
ÛðtÞ 0

0 −ÛðtÞ�
�

⊗ ρ̂0Ĝðk; t; t2Þ; ð82Þ

where ρ̂0 is the 2 × 2 identity in Keldysh space, and
Ĝ0ðk; t1 − t2Þ is theGreen’s function describing the unperturbed
system in a Keldysh basis:

Ĝ0ðk; t1 − t2Þ ¼
�
ĜR
0 ðk; t1 − t2Þ ĜK

0 ðk; t1 − t2Þ
0 ĜA

0 ðk; t1 − t2Þ

�
; ð83Þ

where ĜR
0 ðk; t1 − t2Þ, ĜA

0 ðk; t1 − t2Þ, and ĜK
0 ðk; t1 − t2Þ are the

retarded, advanced, andKeldyshGreen’s functions, respectively.
Iterating in powers of the drive via Eq. (82), one finds the

Green’s function to linear order in the drive. Fourier trans-
forming with respect to the relative (t1 − t2) and average
[ðt1 þ t2Þ=2] times Triola et al. obtained the linear order
corrections in frequency space:

Ĝðk;ω;ΩÞ ¼ 2πδðΩÞĜ0ðk;ωÞ þ Ĝ0

�
k;ωþ Ω

2

��
ÛðΩÞ 0

0 −Ûð−ΩÞ�
�

⊗ ρ̂0Ĝ0

�
k;ω −

Ω
2

�
: ð84Þ

The terms to linear order in the drive are given by

δF̂Rðk;ω;ΩÞ ¼ ĜR
0

�
k;ωþ Ω

2

�
ÛðΩÞF̂R

0

�
k;ω −

Ω
2

�
− F̂R

0

�
k;ωþ Ω

2

�
Û�ð−ΩÞ ˆ̄GR

0

�
k;ω −

Ω
2

�
;

δF̂Aðk;ω;ΩÞ ¼ ĜA
0

�
k;ωþ Ω

2

�
ÛðΩÞF̂A

0

�
k;ω −

Ω
2

�
− F̂A

0

�
k;ωþ Ω

2

�
Û�ð−ΩÞ ˆ̄GA

0

�
k;ω −

Ω
2

�
;

δF̂Kðk;ω;ΩÞ ¼ ĜR
0

�
k;ωþ Ω

2

�
ÛðΩÞF̂K

0

�
k;ω −

Ω
2

�
− F̂R

0

�
k;ωþ Ω

2

�
Û�ð−ΩÞ ˆ̄GK

0

�
k;ω −

Ω
2

�

þ ĜK
0

�
k;ωþ Ω

2

�
ÛðΩÞF̂A

0

�
k;ω −

Ω
2

�
− F̂K

0

�
k;ωþ Ω

2

�
Û�ð−ΩÞ ˆ̄GA

0

�
k;ω −

Ω
2

�
: ð85Þ

To demonstrate the emergence of the even-ω and odd-ω terms one can focus on the retarded components of the anomalous
Green’s functions in Eq. (85). In general, the corrections δF̂Rðk;ω;ΩÞ can possess terms that are even in ω and terms that are odd
in ω. After explicitly separating even- and odd-frequency parts one can find generically even to even, even to odd, odd to even,
and odd to odd contributions of the pair amplitude upon turning on the drive. The most relevant for our discussion are the terms
that convert even-ω pairs to odd-ω pairs:

δFe→oðk;ω;ΩÞ ¼
�
ĜR

0

�
k;ωþ Ω

2

�
ÛðΩÞ; F̂ðeÞ

�
k;ω −

Ω
2

��
−
−
�
ĜR

0

�
k;−ωþ Ω

2

�
ÛðΩÞ; F̂ðeÞ

�
k;ωþ Ω

2

��
−
;

δFo→eðk;ω;ΩÞ ¼
�
ĜR

0

�
k;ωþ Ω

2

�
ÛðΩÞ; F̂ðoÞ

�
k;ω −

Ω
2

��
−
−
�
ĜR

0

�
k;−ωþ Ω

2

�
ÛðΩÞ; F̂ðoÞ

�
k;ωþ Ω

2

��
−
; ð86Þ

where, for convenience, we defined the bracket

FIG. 6. Schematic of a driven superconducting system with a
2D superconducting region lying between two insulating slabs
each capped by a conducting electrode configured in such a
way as to generate an electric field. The ac voltage acts as a
time-dependent drive. Such a device could be realized by
sandwiching a thin-film superconductor, like Pb and other
superconductors, between two insulating wafers. Adapted from
Triola and Balatsky, 2016.
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½ĝðω1Þûðω2Þ; f̂ðω3Þ�� ≡ 1
2
½ĝðω1Þûðω2Þf̂ðω3Þ ð87Þ

� f̂ðω3Þûð−ω2Þ�ĝðω1Þ��: ð88Þ

The induced odd-ω components are plotted in Fig. 7.
The effect of the dynamically induced components can be
observed in the density of states as satellite features induced by
Stokes satellites due to external potential pumping; see Fig. 8.

FIG. 7. In the left (right) column, we plot the even-ω (odd-ω)
terms of the real part of the Wigner transform of the anomalous
part of the Green’s function, hF̂Rðω; T ¼ π=2Ω0Þi, in black
(solid), where we have taken the average value of F̂Rðk;ω; T ¼
π=2Ω0Þ at jkj ¼ kðaÞF and jkj ¼ kðbÞF . In each case we also plotted
the parity-preserving terms (green dashed) and parity-reversing
terms (red dash-dotted). (a) The diagonal component for band a,
(b) the diagonal component for band b, and (c) the interband
component. (d) The components of the drive, plotted in the time
domain over a full period, the green vertical line denotes the time
Tc.m. ≡ T ¼ π=2Ω0 at which all plots in this figure are evaluated.
The parameters used to describe the driven multiband super-
conductor in this case are the effective masses ma ¼ 0.5 Å−2=eV
and mb ¼ 1 Å−2=eV; chemical potentials μa ¼ μb ¼ 2 eV; s-
wave gaps Δaa ¼ 2 meV, Δbb ¼ 7 meV, Δab ¼ Δba ¼ 0, con-
sistent with MgB2 (Choi et al., 2002); interband scattering
Γ ¼ 10 meV; dissipation described by η ¼ 1 meV; and a drive
UðtÞ ¼ U0 cosðΩ0tÞ with U0 ¼ 10 meV and Ω0 ¼ 1 meV
(242 GHz). Adapted from Triola and Balatsky, 2017.

FIG. 8. (a), (b) The 2D DOS computed using effective masses
ma ¼ 0.5 Å−2=eV and mb ¼ 1 Å−2=eV; chemical potentials
μa ¼ μb ¼ 2 eV; s-wave gaps Δaa ¼ 2 meV, Δbb ¼ 7 meV,
Δab ¼ Δba ¼ 0, consistent with MgB2 (Choi et al., 2002); inter-
band scattering, Γ ¼ 10 meV; dissipation described by η ¼
0.1 meV; and a drive with U0 ¼ 10 meV, and Ω0 ¼ 1 meV
(242 GHz). In both panels we show the case for no
drive in black (solid), and the cases with the drive at times Tc.m. ≡
T ¼ 0 and T ¼ π=2Ω0 in green (dashed) and red (dash-dotted),
respectively. (a) We focus on the states near the Fermi surface, in
(b) we focus on the range of energies near the crossing of the two
bands at which we find the driven DOS at T ¼ 0 possesses two
peaks shifted from the avoided crossingatE0 by�Ω0=2. (c), (d)The
3D DOS plotted for the same parameters as in (a) and (b). Note
that the main difference is that in 3D the driven DOS at T ¼ 0 is
slightly suppressed relative to the undriven DOS (see inset). (e) We
plot the spectrum of the two band superconductor given by ε�ðkÞ.
The horizontal gray line denotes the avoided crossing (see inset)
at E0, due to the finite interband scattering Γ. (f) We show the drive
plotted in the time domain over a full period, the green vertical line
at T ¼ 0 denotes the beginning of the period where the drive
has maximum amplitude, while the red line denotes T ¼ π=2Ω0

where the drive amplitude is zero. The horizontal line (dashed)
shows U0 ¼ 0. Adapted from Triola and Balatsky, 2017.
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We stress the general nature of the proposed phenomena. The
induction of the odd-ω component in time driven systems is a
quite general phenomenon and will not depend on the specifics
of the mechanism and experimental setup. The general rule to
anticipate the induction of the new components is guided only
by the Berezinskii classification and rule that SP�OT� ¼ −1.
Conventional pairs with S ¼ −1; P� ¼ þ1; O ¼ þ1;
T� ¼ þ1ð−þþþÞ can be converted into odd-in-time pairs
with S ¼ −1; P� ¼ þ1; O ¼ −1; T� ¼ −1ð−þ −−Þ while
SP�OT� ¼ −1 remains intact. As we go forward, we see that
this is a general rule that applies to other cases, e.g., the
induction of odd-ω and even-ω pairing correlations in
Majorana systems.
A new perspective in the dynamic induction of the odd-ω

state emerged recently (Bandyopadhyay et al., 2019), where
the Berezinskii correlations are induced as a result of non-
Hermitian terms in the superconducting Hamiltonian. The
SP�OT� classification for the non-Hermitian systems needs
to be expanded to account for damping induced by non-
Hermiticity. These ideas again underscore the importance of
the dynamics in generating the Berezinskii states.

E. Meissner effect and sign of the phase stiffness

The Meissner effect is the most fundamental property of the
superconducting state as it incorporates both the zero resis-
tance property of a superconductor and the flux expulsion due
to screening currents. The diamagnetic currents blocking
external magnetic fields remain constant with time and hence
do not decay. A superconductor is thus not primarily defined
by the existence of charge currents flowing without resistance,
a property which is shared by many other physical systems
such as the edge states of the quantum Hall state or field-
induced persistent currents in resistive conductors. The
Meissner effect is a direct consequence of the Higgs mecha-
nism that takes place in a superconductor which spontane-
ously breaks Uð1Þ gauge symmetry: the superconducting
ground state is independent on the phase φ of the order
parameter Δ ¼ jΔjeiφ, but a particular ground state is char-
acterized by a certain value of φ. When this symmetry is
spontaneously broken, the Higgs mechanism renders the
gauge field (photon) in the superconductor massive and causes
it to have a finite range, leading to the Meissner effect.
The Meissner effect in conventional BCS superconductors
causes diamagnetic supercurrents which attempt to screen any
external flux.
Taking into account the fundamental role played by the

Meissner effect in superconductivity, there was clearly reason
for concern when Abrahams et al. (1995) pointed out that
odd-ω Berezinskii bulk superconductors appeared to have a
sign problem with the superconducting phase stiffness. This
issue had also previously been remarked on by A. Garg
(Abrahams, 2017). The Meissner effect calculated to lowest
order provided an opposite sign to the BCS case, providing a
superfluid density which was negative. This result seemed to
suggest that a bulk odd-ω superconducting state had to be
thermodynamically unstable.
The work by Coleman, Miranda, and Tsvelik (1993b, 1994,

1995) who studied odd-ω pairing in a Kondo lattice and heavy
fermion compounds, however, did not have any problem with

a negative superfluid phase stiffness. Their idea was built on
the proposal that odd-ω superconductivity is driven by an
anomalous composite, staggered three-body scattering ampli-
tude which turned out to provide a stable superconducting
phase with a positive phase stiffness. A similar resolution was
indeed proposed by Abrahams et al. (1995), who suggested
that a stable Meissner state could be achieved by involving a
joint condensation of Cooper pairs and density fluctuations.
The problem nevertheless remained that within the standard

framework with a two-body interaction where only Cooper
pairs would condense, the odd-ω bulk state appeared to be
thermodynamically unstable. Heid (1995) summarized the
stability analysis problem related to odd-ω superconductivity
in the following manner. Consider first the case of weak-
coupling superconductivity with a continuous (second-order)
phase transition, in which case the change δΩpot in the
thermodynamical potential Ωpot due to a two-body interaction
reads (Abrikosov, Gorkov, and Dzyaloshinskii, 1975)

δΩpot ∝ −
1

β

X
ωn;q

Δðωn; qÞΔþðωn; qÞ
ω2
n þ ξ2q

; ð89Þ

where we used the notation of Solenov, Martin, and Mozyrsky
(2009). In Eq. (89), ξq is the quasiparticle normal-state
dispersion, ωn is the Matsubara frequency, whereas the gap
functions Δðωn; qÞ are connected to the anomalous Green’s
functions Fðωn; qÞ in terms of the self-consistency equation:

Δðωn; qÞ ¼
X
ω0
n;q0

Dðωn − ω0
n; q − q0ÞFðω0

n; q0Þ: ð90Þ

Here β is the inverse temperature, and D is the irreducible
interaction between quasiparticles, i.e., the pairing glue of the
Cooper pairs, the latter assumed to be real and even in both ωn
and q. There is no contradiction between choosing a pairing
interaction that is even in ωn and an odd-ω superconducting
state: the self-consistency equation allows for both even- and
odd-frequency solutions of Δðωn; qÞ even if D is even with
respect to ωn, as can be verified by direct inspection. The
anomalous Green’s functions are here defined as

Fðωn; qÞ ¼
Z

β

0

dτeiωnτhT τfcqðτÞc−qð0Þgi;

Fþðωn; qÞ ¼
Z

β

0

dτeiωnτhT τfc†−qðτÞc†qð0Þgi: ð91Þ

The relation between Fþ and Δþ is identical to Eq. (90). The
sign of δΩ, which determines whether or not the bulk odd-ω
state is thermodynamically stable, is determined by establish-
ing the relation between Δðωn; qÞ and Δþðωn; qÞ, since it is
this combination that determines δΩpot in Eq. (89). To do so,
one needs to compute the averages hT τfcqðτÞc−qð0Þgi and

hT τfc†−qðτÞc†qð0Þgi which are nonzero if taken with respect to
a state with broken Uð1Þ symmetry (the absence of particle
number conservation for single-particle excitations). Assume
that there exists an appropriate symmetry-breaking mean-field
Hamiltonian HMF for this purpose. In this case, one obtains

Jacob Linder and Alexander V. Balatsky: Odd-frequency superconductivity

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045005-20



Fðτ; qÞ ¼ 1

Z
Trfe−βHMFT τeτHMFcqe−τHMFc−qg;

Fþðτ; qÞ ¼ 1

Z
Trfe−βHMFT τeτHMFc†−qe−τHMFc†qg; ð92Þ

where Z ¼ Trfe−βHMFg is the partition function. Inspecting
Eq. (92) shows that the two Green’s functions are related via

Fþðτ; qÞ ¼ ½Fðτ; qÞ��. ð93Þ

Because of this property, one can verify from Eq. (90) that
the product Δðωn; qÞΔþðωn; qÞ is negative definite and thus
producing δΩpot > 0. Since the free energy is larger in the
odd-ω superconducting state than the disordered state, one
concludes that the odd-ω superconducting phase is thermo-
dynamically unstable. Accompanying this conclusion is the
property of a negative superfluid phase stiffness or Meissner
kernel K that relates the supercurrent j and vector potential A
via j ¼ −KðkÞA.
The problem with this reasoning was discussed in detail by

Belitz and Kirkpatrick (1999) who explained that the reality
properties of the gap function (its real and imaginary parts),
beyond what is possible to manipulate via global gauge
transformations, were crucial in order to obtain a thermody-
namically stable odd-ω state. Later, Solenov, Martin, and
Mozyrsky (2009) argued that the reality properties of the gap
function that caused the sign problem in the Meissner effect
relied on the existence of a mean-field Hamiltonian HMF
describing odd-ω superconductivity. They further conjectured
that an effective Hamiltonian formulation cannot capture the
strong retardation effects which are inherent to odd-ω pairing
correlations. Instead, one can describe these by an effective
action S which is nonlocal in time. The latter approach was
utilized by Solenov, Martin, and Mozyrsky (2009) with the
outcome that Eq. (93) for an odd-ω superconductor is
modified to

Fþðτ; qÞ ¼ −½Fðτ; qÞ��; ð94Þ

i.e., with an extra minus sign compared to the even-ω case
described by Eq. (93). This is a different, but physically
equivalent, way of arriving at the same conclusion as Belitz
and Kirkpatrick (1999). The additional sign restores the
thermodynamic stability of the odd-ω superconducting state,
since the product Δðωn; qÞΔþðωn; qÞ now becomes positive
definite so that δΩpot < 0. Moreover, one can explicitly verify
that the Meissner kernel now yields a diamagnetic response
corresponding to a positive superfluid density. The kernelK is
defined as (Abrikosov, Gorkov, and Dzyaloshinskii, 1975)

KðkÞ ¼ Ne2

m
þ 2e2

m2β

X
ωn

Z
dp

ð2πÞ3 p
2

× ½Gðωn; pþÞGðωn; p−Þ þ Fðωn; pþÞFþðωn; p−Þ�:
ð95Þ

We defined p� ¼ p� k=2 and the Green’s functions for an
odd-ω superconductor are, making sure to utilize the correct
equation (94) instead of (93),

Gðωn; qÞ ¼
iωn þ ξq

ω2
n þ ξ2q þ 2jΔðωn; qÞj2

;

Fðωn; qÞ ¼
2Δðωn; qÞ

ω2
n þ ξ2q þ 2jΔðωn; qÞj2

;

Fþðωn; qÞ ¼
2½Δðωn; qÞ��

ω2
n þ ξ2q þ 2jΔðωn; qÞj2

: ð96Þ

The factor of 2 appearing in front of jΔðωn; qÞj2 has no special
meaning: it can readily be absorbed into the definition of the
order parameter by incorporating a factor 1=2 into the pairing
interaction, as is often done. The Meissner kernel diverges and
is regularized by subtracting its value for Δ ¼ 0, so that the
new KðkÞ equals zero in the normal phase as it should. In the
long wavelength limit k → 0 and assuming a q- independent
gap (s-wave pairing), one obtains

Kðk → 0Þ ¼ πNe2

mβ

X
ωn

2jΔðωnÞj2
½ω2

n þ 2jΔðωnÞj2�3=2
. ð97Þ

This equation is clearly positive definite, whereas an incorrect
result (negative definite K) would have been obtained if we
had used Eq. (93) to obtain the Green’s functions for the
odd-ω superconducting case. Consequently, a second-order
transition to a spatially homogeneous, odd-frequency super-
conducting state is in principle allowed, in contrast to the
conclusion of Heid (1995).
The technical derivation of this result provided by Solenov,

Martin, and Mozyrsky (2009) was further refined and
expanded upon by Kusunose, Fuseya, and Miyake (2011a)
where the importance of choosing the appropriate mean-field
solution that minimizes the effective free energy was pointed
out. Note that in this treatment of the thermodynamic potential
and Meissner kernel, spinless fermions were assumed for
simplicity the entire way so that in the even-ω case the gap
function would have an odd-parity symmetry (such as pwave)
whereas in the odd-ω case the gap function would have an
even-parity symmetry (such as s wave).
Fominov et al. (2015) studied the possible coexistence of

odd-ω states with both a diamagnetic and a paramagnetic
response. As shown, a bulk odd-ω superconducting state with
a conventional diamagnetic Meissner response is possible
under the assumption that there exists a microscopic mecha-
nism (pairing interaction D) that creates this type of super-
conductivity. In contrast, the odd-ω superconducting state
induced in diffusive S=F structures can provide a para-
magnetic Meissner response (Yokoyama, Tanaka, and
Nagaosa, 2011; Mironov, Mel’nikov, and Buzdin, 2012; Di
Bernardo et al., 2015b). An interesting issue is thus to
consider if these two types of superconducting correlations
can coexist. Fominov et al. (2015) demonstrated that such a
coexistence would lead to unphysical properties such as
complex superfluid densities and Josephson couplings. A
paramagnetic Meissner response due to odd-frequency super-
conducting correlations would in principle provide super-
conducting antilevitation as shown Fig. 9.
We emphasize that by introducing a composite order

parameter Abrahams et al. (1995) showed that it is possible
to write down a mean-field Hamiltonian describing a
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thermodynamically stable odd-ω Berezinskii state. This find-
ing is not necessarily inconsistent with the arguments put
forward by Solenov, Martin, and Mozyrsky (2009) and
Fominov et al. (2015), because in those papers the condensate
(and corresponding anomalous Green’s function) consists of
two fermions whereas the condensate described by a mean-
field Hamiltonian in Abrahams et al. (1995) is composed of
two fermions and a bosonic fluctuation.
Paramagnetic Meissner effects have been discussed in

previous literature in the context of high-Tc superconductors
(Kostić et al., 1996; Higashitani, 1997; Shan et al., 2005;
Zhuravel et al., 2013). In this case, the presence of Andreev
surface-bound states can also provide a paramagnetic con-
tribution to the shielding supercurrent. However, this contri-
bution is unable to render the total Meissner response
paramagnetic in large superconducting samples (Suzuki and
Asano, 2014). Moreover, it was shown (Fauchère, Belzig,
and Blatter, 1999) that repulsive interactions in the normal
metal of an S=N bilayer could induce a midgap bound state
(residing at the Fermi level) at the interface. In turn, this led
to a paramagnetic Meissner response. The common aspect
of both these scenarios is thus the appearance of surface
states, which strongly suggests an intimate link between
these and the paramagnetic Meissner response. In Sec. V.D,
we indeed show that midgap-surface states in superconduc-
tors are always accompanied by odd-ω pairing which
explains the unconventional shielding response whenever
such states are present.
We finally mention that metastable paramagnetic Meissner

effects have been shown to originate from effects which
are not related to unconventional superconductivity, but rather
to flux capturing at the surface of small superconductors
(Geim et al., 1998). Care must thus be exerted when
interpreting the physical origin of paramagnetic Meissner
measurements.

F. Vortex cores

When translational symmetry is absent, one expects addi-
tional superconducting correlation components with different
symmetry properties than the leading instability channel to be
generated. For instance, as discussed in detail in Sec. V,
interfaces between superconductors and nonsuperconducting
materials break translational symmetry and thus serve as a
source for odd-ω pairing. However, there are other ways to
break translational symmetry apart from creating hybrid
structures. A conventional BCS s-wave superconductor will
also break translational symmetry in its bulk when vortices
appear. Applying a magnetic field H that exceeds the lower
critical field Hc1 of a type II superconductor leads to the
formation of vortices, which have a normal core of size ξS and
a flux core of size λ where λ > ξS. In the clean limit where
the impurity scattering time is long, low-energy bound states
E < Δ are generated inside the normal core of the vortex
(Caroli, De Gennes, and Matricon, 1964), assisted by the pair
potential Δ vanishing in the center of the vortex. This leads to
an enhancement of the zero-energy density of states locally in
the vortex core, an effect which has been observed via STM
measurements (Hess et al., 1989; Gygi and Schlüter, 1991;
Fischer et al., 2007).
These so-called Caroli–de Gennes–Matricon states are in

fact a manifestion of odd-ω superconductivity, as shown by
Yokoyama, Tanaka, and Golubov (2008). More specifically,
they showed that for a vortex with vorticity m in a super-
conductor, the pairing function of the Cooper pair at the vortex
center has the opposite symmetry with respect to frequency
compared to that of the bulk if m is an odd integer. For a
conventional vortex with m ¼ 1, corresponding to a phase
winding of 2π around the vortex core, the zero-energy local
DOS would thus be enhanced at the center of the vortex core
in an even-ω superconductor due to the generation of odd-ω
Cooper pairs. At the center of a vortex core in a conventional
ballistic s-wave superconductor, odd-ω p-wave pairing would
thus arise. Conversely, if the vorticity m is an even integer, the
Cooper pairs at the vortex core would have the same pairing
symmetry with respect to frequency as the leading instability
of the bulk.
These conclusions were obtained based on a quasiclass-

ical approach which allows one to distinguish between the
even-ω and odd-ω superconducting correlations. This is a
powerful theory to use as long as one is interested in
physical quantities that change slowly compared to the
Fermi wavelength, for instance on the scale of the super-
conducting coherence length ξ. The essence of the method
(Serene and Rainer, 1983; Rammer and Smith, 1986; Belzig
et al., 1999) is to integrate out the high-energy degrees
of freedom corresponding to the rapid, small-scale oscil-
lations in the Green’s function describing particle and hole
propagators. One is left with the low-energy behavior near
the Fermi level, which is suitable for describing systems
where the Fermi energy EF is much larger than any other
energy scale.
To describe the electronic structure of the vortex core in a

single Abrikosov vortex in a ballistic superconductor, the
Ricatti-parametrized Eilenberger equation was used by
Yokoyama, Tanaka, and Golubov (2008). Considering the

FIG. 9. (a) Diamagnetic Meissner response for a ring with
conventional superconducting correlations, and (b) paramag-
netic Meissner response that can occur for a ring with odd-ω
superconducting correlations. In the event of a paramagnetic
supercurrent response, the odd-ω superconductor experiences
an attractive force to the underlying magnet, causing super-
conducting antilevitation. Adapted from Lee, Lutchyn, and
Maciejko, 2016.
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Eilenberger equation along a quasiparticle trajectory rðxÞ ¼
r0 þ xv̂F where v̂F is the Fermi velocity unit vector reduces the
problem to solving two decoupled differential equations for
the quantities aðxÞ and bðxÞ:

ℏvF∂xaðxÞ þ ½2ωn þ Δ†aðxÞ�aðxÞ − Δ ¼ 0;

ℏvF∂xbðxÞ − ½2ωn þ ΔbðxÞ�bðxÞ þ Δ† ¼ 0: ð98Þ

Here ωn is the Matsubara frequency whereas Δ† is defined as
Δ† ¼ Δ� for an even-ω superconductor and Δ† ¼ −Δ� for an
odd-ω superconductor. With the solutions for a and b,
one then obtains both the anomalous Green’s function
describing the symmetry of the Cooper pair correlations f ¼
−2a=ð1þ abÞ and the local DOS at position r0 and energy E
normalized to its value in the normal state:

Nðr0; EÞ ¼
Z

2π

0

dθ
2π

Re

�
1 − ab
1þ ab

�
iωn→Eþiδ

; ð99Þ

where δ represents inelastic scattering usually taken as
δ ≪ Δ0 and θ denotes the quasiparticle trajectory according
to vF ¼ vFðcos θx̂þ sin θx̂Þ. Focusing on the experimentally
most relevant case of a bulk even-ω BCS superconductor, one
can choose the following form of the pair potential in order to
incorporate the effect of a vortex:

Δðr; θÞ ¼ Δ0FðrÞeimϕ; ð100Þ

where FðrÞ ¼ tanhðr=ξSÞ describes the spatial profile of
the gap while the phase winding associated with a vortex
core of vorticitym is described by eimϕ where eiϕ ≡ ðxþ iyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Solving these equations gives the normalized

local DOS at E ¼ 0 shown in Fig. 10(a) and the spatial
dependences of the even-ω superconducting correlations at
E ¼ 0 in Fig. 10(b) and the odd-ω correlations in Fig. 10(c)
(Yokoyama, Tanaka, and Golubov, 2008).
The DOS near the vortex core features a characteristic zero-

energy peak, which is well known, but Figs. 10(c) show a
more surprising result: only odd-ω Cooper pairs (the f1
component to be specific) exist at the vortex core. Moving
away from the core, all components are suppressed except the
one corresponding to the bulk order parameter, namely, the
s-wave even-ω function f0. The zero-energy state in a
superconducting vortex is thus a direct signature of odd-ω
correlations. Moreover, the fact that it is the odd-parity
component f1 that exists at the vortex core is consistent with
the experimental fact that the zero-energy peak is highly
sensitive to disorder (Renner et al., 1991), which inevitably
would suppress p-wave pairing and thus f1. To connect this
observation with the claim that all known examples obey
simple design principles, we note that this setup converts
even-ω S ¼ −1; P� ¼ þ1; O ¼ þ1; T� ¼ þ1 pairs into odd-
ω pairs with S ¼ −1; P� ¼ −1; T� ¼ −1; O ¼ þ1, where P�

is now the parity of the amplitude inside the vortex core.
Yokoyama, Tanaka, and Golubov (2008) further showed that
if one instead considered a bulk odd-ω superconductor with
a conventional vortex of vorticity m ¼ 1, only even-ω

pairing existed at the core, causing a suppression of the
DOS at E ¼ 0.
The relation between odd-ω pairing and vortex core states

in more exotic chiral p-wave superconductors was studied
by Daino et al. (2012). In contrast to most previous works
regarding odd-ω pairing at the time, they went beyond the
quasiclassical regime Δ ≪ EF and considered the quantum
limit where Δ ∼ EF. Zero-energy states (ZES) appearing in
half-quantum vortex cores of chiral p-wave superconduc-
tors are Majorana bound states (Read and Green, 2000;
Ivanov, 2001) and Daino et al. (2012) showed how these
states are related to emergent odd-ω superconductivity in
the vortex core. The two were found to be strongly
correlated: when zero-energy Majorana states were
present, the odd-ω triplet anomalous Green’s function
had precisely the same spatial structure as the local
density of states revealing the Majorana modes.
However, for finite energy bound states in the vortex
core of a chiral p-wave superconductor, the correspon-
dence between odd-ω pairing and the density of states
depends on the vortex winding relative to the chirality of
the order parameter (Daino et al., 2012). Further aspects
of odd-ω Cooper pairs near vortices in chiral p-wave
superconductors were studied by Tanuma et al. (2009) and

FIG. 10. Results for the DOS and Cooper pair symmetry near
the vortex core of a conventional s-wave BCS superconductor.
(a) Normalized local DOS around the vortex at E ¼ 0. The center
of the vortex is situated at x ¼ y ¼ 0. Spatial dependences of
(b) even-ω singlet (ESE) and (c) odd-ω singlet (OSO) correla-
tions at E ¼ 0. fj corresponds to the different angular momentum
components of the anomalous Green’s function f ¼ P

n fne
inθ,

and all have a spin-singlet symmetry. Adapted from Yokoyama,
Tanaka, and Golubov, 2008.
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Tanaka, Ichioka, and Onari (2016). Yokoyama, Ichioka,
and Tanaka (2010) determined how odd-ω pairing arises in
the vortex lattice that is present in the Fulde-Ferrell-
Larkin-Ovchinnikov vortex state. Finally, Björnson and
Black-Schaffer (2015) studied the relation between odd-ω
pairing and Majorana states bound to vortex cores in
semiconductor/superconductor heterostructures.

G. Multiband systems

In the single-band case, an order parameter with an
s wave and spin-singlet symmetry must necessarily be an
even-ω superconductor, and so forth (see Table III). In the
multiband case, this is no longer the case. The reason for
this is that the transformation of the Cooper pair wave
function under an exchange of band indices O also comes
into play as part of the SP�OT� ¼ −1 constraint. In this
section, we also treat multichannel and multiorbital models
since they, similarly to the multiband case, are also
characterized by the fermion operators acquiring an extra
quantum number index which becomes part of the Pauli
principle requirement. In these cases, odd-ω pairing can be
induced.
Following Black-Schaffer and Balatsky (2013a) and as

discussed previously in this review, it is convenient to
introduce the generalized parity operators below which have
the following effect on the two electrons that make up the
Cooper pair:

• Spin parity S exchanges the spin coordinates.
• Spatial parity P� exchanges the positions.
• Orbital parity O exchanges the band indices.
• Time parity T� exchanges the time coordinates.

In the single-band case, the Pauli principle dictates P�ST� ¼
−1. In the multiband case, one instead has SP�OT� ¼ −1. In
this way, it is possible to generate for instance even-ω s-wave
triplet superconducting correlations, which is not permitted in
the single-band case. Formally, the operators act as follows on
the general superconducting anomalous Green’s function
defined in Eq. (6):

Sfαβ;abðr; tÞS−1 ¼ fβα;abðr; tÞ;
P�fαβ;abðr; tÞP−1 ¼ fαβ;abð−r; tÞ;
Ofαβ;abðr; tÞO−1 ¼ fαβ;baðr; tÞ;
T�fαβ;abðr; tÞT−1 ¼ fαβ;abðr;−tÞ: ð101Þ

Here r ¼ r1 − r2 and t ¼ t1 − t2 are the relative space and
time coordinates.
Black-Schaffer and Balatsky (2013a) showed that odd-ω

pairing should appear ubiquitously in the multiband case.
They started with a generic two-band superconductor model
as an example of the simplest case:

H ¼
X
kσ

εa;ka
†
kσakσ þ εb;kb

†
kσbkσ

þ
X
kσ

ðΓka
†
kσbkσ þ H:c:Þ þ

X
k

ðΔa;ka
†
k↑a

†
−k↓

þ Δb;kb
†
k↑b

†
−k↓ þ H:c:Þ: ð102Þ

Here a†kσ is the creation operator for an electron in band a with
momentum k and spin σ, and equivalently for band b, Γk is
the hybridization between the bands, and εaðbÞ;k is the band
dispersion. The hybridization Γk will in general have a finite
value in realistic systems, for instance if the superconducting
pairing occurs in a basis of atomic or molecular orbitals
where the kinetic energy is not fully diagonal, as proposed
for the iron-pnicitide superconductors (Moreo et al., 2009). It
will also occur in the presence of disorder-induced interband
scattering (Komendová, Balatsky, and Black-Schaffer, 2015).
By diagonalizing the kinetic energy into two new bands c and
d, a set of intraband (Δc and Δd) and interband (Δcd)
superconducting order parameters appear. Focusing on the
s-wave singlet pairing amplitude denoted F�ðtÞ, one finds a
contribution which is even (þ) in the band indices and one
that is odd (−):

F�ðtÞ≡ 1

2Nk

X
k

T thc−k↓ðtÞdk↑ð0Þ � d−k↓ðtÞck↑ð0Þi; ð103Þ

where ckσ and dkσ are fermion operators for the previously
defined bands c and d while Nk is the number of points in the
first Brillouin zone. Moreover, F�ðtÞ can be even or odd in the
relative time coordinate t. Since the odd-ω amplitude must
vanish at t ¼ 0, it is natural to define the singlet s-wave
amplitude with O ¼ þ1 as Feven-ω ≡ Fþðt → 0Þ, but it is not
immediately clear how the odd-ω amplitude should be defined
as it vanishes at equal times. However, it is in fact still possible
to define an equal-time order parameter for the odd-ω
amplitude in the same way as Eq. (72) by considering the
time derivative at equal times:

Fodd-ω ≡ ∂F−ðtÞ
∂t

����
t→0

ð104Þ

as the odd-ω pairing amplitude is necessarily accompanied by
the P� ¼ −1 symmetry for a singlet s-wave order parameter.
Black-Schaffer and Balatsky (2013a) found that the odd-ω
amplitude would in general be finite, whether intraband
pairing is present or not. In the special case of exclusive
interband pairing in the diagonal kinetic energy basis
ðΔc ¼ Δd ¼ 0Þ, one finds the analytical expression

Fow ¼ i
2Nk

X
k

×
Δfη sinh½ðεc − εdÞ=2kBT� þ ðεc − εdÞ sinhðη=2kBTÞg

ηfcosh½ðεc− εdÞ=2kBT� þ coshðη=2kBTÞg
;

ð105Þ

where η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεc þ εdÞ2 þ 4jΔj2

p
and Δ≡ Δcd. This shows

that odd-ω odd-interband pairing (meaning O ¼ −1) is
always present in a superconductor that has an even-interband
interaction between the electrons as long as the bands are
nonidentical, εc ≠ εd, which is ensured when Γk ≠ 0. More
generally, odd-ω pairing exists if there is finite intraband
pairing Δc and Δd so long as an interband pairing of the even-
ω type is present.
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The induction of odd-ω superconductivity hybridization
(single-quasiparticle scattering) between two superconducting
bands in a multiband superconductor was also studied by
Komendová, Balatsky, and Black-Schaffer (2015), where an
interesting signature in the density of states was identified.
The odd-ω correlations were shown to cause hybridization
gaps located at higher energies than the superconducting gaps
which could constitute an experimentally measurable signa-
tures of odd-frequency pairing in multiband superconductors.
The multiband case was further explored by Asano and

Sasaki (2015), including also the case of spin-orbit inter-
actions. They showed that band hybridization not only
generates odd-ω correlations, but in general also gives rise
to even-ω Cooper pairs whose symmetry is distinct from that
of the original order parameter itself. This result also extends
to the multilayer case (Parhizgar and Black-Schaffer, 2014),
where the layer index plays the role of the band. Odd-ω
pairing arising in the bulk of the two-band superconductor
MgB2 was also discussed (Aperis, Maldonado, and Oppeneer,
2015), but we cover this scenario in more detail in the next
section. Recently, Komendová and Black-Schaffer (2017)
predicted the existence of bulk odd-frequency superconduc-
tivity in a multiorbital model of Sr2RuO4 as a result of
hybridization between different orbitals in the normal state,
suggesting an intrinsic Kerr effect as the experimental probe.
The possibility of bulk odd-ω superconductivity realized in

multichannel Kondo systems (Cox and Zawadowski, 1998)
was also studied in several works ever since the pioneering
work of Emery and Kivelson (1992) showed that an exact
solution of the anisotropic two-channel Kondo problem in the
continuum limit was permissible under specific conditions.
Emery and Kivelson identified a divergent composite pair
susceptibility, which they noted could be connected with
odd-ω pairing. In turn, this implied that an odd-ω pairing
instability might also appear in the lattice case. A large
number of works have since then investigated the two-channel
Kondo and Anderson lattice models, the latter taking into
account the f-electron charge degrees of freedom. Jarrell,
Pang, and Cox (1997) examined the two-channel Kondo
lattice model with quantum Monte Carlo simulations in the
limit of infinite dimensions and found a superconducting
transition to an odd-frequency channel. Anders (2002) studied
composite triplet pairing in the two-channel Anderson lattice
model and found that an odd-ω superconducting phase
developed out of a non-Fermi liquid phase. The order
parameter in this case was comprised of a local spin or orbital
degree of freedom bound to triplet Cooper pairs with an
isotropic and a nearest-neighbor form factor. The scenario of
odd-ω composite pairing in the context of heavy fermion
superconductors was further examined by Flint and Coleman
(2010) (Flint, Nevidomskyy, and Coleman, 2011). Using
dynamical mean-field theory combined with continuous-time
quantum Monte Carlo simulations, Hoshino and Kuramoto
(2014) found an odd-ω-superconducting pairing instability
which was equivalent to a staggered composite pair amplitude
with even frequencies. A mean-field description of odd-ω
superconductivity with a staggered ordering vector and its
implication for the Meissner effect was provided by Hoshino,
Yada, and Tanaka (2016).

Interestingly, order parameters with an odd-ω symmetry
have recently been studied beyond superconductivity in multi-
orbital systems. In particular, a new type of composite-ordered
state in multiorbital Hubbard systems, the so-called sponta-
neous orbital selective Mott state, which may be regarded as a
state with a nonzero odd-frequency orbital moment, was
studied by Hoshino and Werner (2017).

H. Josephson and tunneling effects

Here we discuss a number of effects one should expect
when investigating the Josephson effect in the context of odd-
ω pairing. When two superconductors are coupled in a
tunneling junction, a Josephson effect is permitted: a super-
current flow driven by the Uð1Þ phase difference φ between
the superconducting order parameters. The precise nature of
such a Josephson coupling depends on the symmetries of
the order parameters in the two superconductors. The lowest
order term in the hopping matrix element gives rise to a sinφ
dependence when there is no orthogonality between the
symmetries of the order parameters in the spin, parity,
frequency, or band channels. For instance, considering an
s-wave singlet superconductor such as Al and a p-wave triplet
superconductor such as UGe2, the lowest order Josephson
coupling would vanish due to the orthogonality in both spin
and parity channel between the superconductors. It should
be noted that such a strict orthogonality is only relevant
when spin-orbit interactions can be neglected, since the latter
generates a mixture of parity components. Next we first
describe the Josephson effect when at least one bulk odd-ω
superconductor is present and then give an exposition of how
Josephson-induced intralead odd-ω correlations appear even
for conventional even-ω superconductors.

1. Josephson effect between odd-ω and even-ω frequency states

Consider the case of a Josephson effect in a junction where
one of the components is odd ω. According to the previous
argument, one might expect that the Josephson effect
between an odd-ω and an even-ω superconductor should
vanish to lowest order, so that the first nontrivial contribu-
tion to the supercurrent would be sin 2φ, corresponding to
tunneling of “pairs of Cooper pairs” with charge 4e
(Abrahams et al., 1995). However, it was realized more
than a decade later (Tanaka et al., 2007) that, contrary to
what has previously been believed, a first harmonic coupling
was in fact possible between even-ω and odd-ω super-
conductors in the form of cosφ rather than sinφ. The
physics behind this phenomenon can be understood by
considering the role of the interface separating the super-
conductors, which breaks translational symmetry (Eschrig
et al., 2007; Tanaka et al., 2007). As a result, additional
parity components in the superconducting order parameter
are generated near the interface region where the super-
conducting correlations vary spatially. This means that in
the even-ω superconductor, an odd-ω component with
opposite parity symmetry of the even-ω component is
generated near the interface region. Similarly, in the odd-
ω superconductor, an even-ω component is generated
close to the interface, and a Josephson coupling now
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becomes possible. Its peculiar π=2 shift, manifested as a
cosφ current-phase relation, means that the Josephson
coupling breaks time-reversal symmetry as a consequence
of the frequency symmetries of the superconductors being
different.
The lowest order Josephson coupling was also found to

be restored in a diffusive junction, where only s-wave
pairing can survive due to impurity scattering so that no
parity mixing exists, consisting of odd-ω and even-ω super-
conductors separated by a ferromagnet (F). Because of the
magnetic exchange field in F, odd-ω and even-ω components
mix due to their differing spin symmetries (Linder, Yokoyama,
and Sudbø, 2008) and restore the Josephson coupling.
The Josephson couplings between different types of super-
conductors with various symmetries in spin and frequency
space were also studied by Fominov et al. (2015) and
Hoshino, Yada, and Tanaka (2016).
We briefly mention here that dissipative transport in the

form of quasiparticle tunneling and Andreev reflection is also
different for odd-ω superconductors compared to the usual
BCS case. Fominov (2008) studied the conductance of a
diffusive junction consisting of a normal metal in contact with
an s-wave triplet odd-ω superconductor, with the motivation
to suggest a simple experimental setup that would still be
sensitive to the odd-ω dependence of the superconducting
state. The fundamental process of Andreev reflection in N=S
bilayers was indeed found to be sensitive to the odd-ω
symmetry of the order parameter. An effective low-energy
behavior fR ¼ ΔðEÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔðEÞ�2 − E2

p
with constant a and

ΔðEÞ ¼ E=ð1þ a−2Þ was chosen as a model for an odd-ω
superconductor by Fominov (2008), where it was established
that the conductance of the junction could exceed the normal-
state value even in the tunneling limit, in stark contrast to
conventional even-ω superconductors, in spite of the vanish-
ing Andreev reflection amplitude at E → 0 in the odd-ω case.
The conductance of ballistic N=S junctions with odd-ω
superconductors having different parity symmetries was
studied by Linder et al. (2008), where an enhanced conduct-
ance at low bias voltages compared to the conventional spin-
singlet even-ω case was also found.
Most of the works giving predictions for experimentally

verifiable properties of the odd-ω state so far have focused on
an indirect property, such as the spin polarization of the odd-ω
triplet state imposed by the Pauli principle in dirty systems.
However, such a spin polarization is not unique for the odd-ω
state and a true smoking gun signature should arguably instead
be related to the time dependence of the order parameter. The
lowest order Josephson coupling between an even- and an
odd-frequency superconductor in an superconductor-insula-
tor-superconductor tunneling junction vanishes (Abrahams
et al., 1995) [although an inverse proximity effect can restore
it (Tanaka et al., 2007)] for symmetry reasons, for both the dc
and ac effects. However, one could envision that by applying
either an ac voltage or alternatively causing the tunneling
matrix elements to be time dependent by using capacitors, the
ac Josephson effect between an even- and an odd-frequency
superconductor should be restored.
Coupling to the odd-ω order parameter with an explicitly

time-dependent perturbation and in this way inducing an

otherwise absent Josephson effect would help to reveal the
existence of this superconducting state.

2. Josephson effect induced odd-ω Berezinskii components

As discussed, Berezinskii pairing components are gener-
ated and modified in the presence of interfaces. We now
illustrate how an odd-ω component is generated by the
Josephson effect between two conventional superconductors,
as shown in Fig. 11 (Balatsky, Pershoguba, and Triola, 2018).
We start by considering pointlike tunneling between the leads
of BCS superconductors. Tunneling between the left (L) and
right (R) leads is given by tunneling matrix element T tun.
There are native pairing correlations which are diagonal in
the junction index (intralead pairing), FLL, FRR. Josephson
pointed out the coherent pair tunneling between supercon-
ducting leads. Yet in the discussion of the effect all the
attention is devoted to the tunneling of the pairs. At no point in
time is the real, nonvirtual pair breakup allowed. The new
observation is that there are also interlead correlations FLR
present in the conventional Josephson effect. It is these LR
correlations that are found to be odd-ω on the very general
grounds: it naturally follows from the SP�OT� classification.
The L and R leads of a Josephson junction represent
effectively a new discrete index that can be viewed as a band
index: band L is the left lead and band R is the right lead.
Using the junction index L, R as an effective orbital index,
pairing correlations can be even and odd in this index.
Consider for simplicity only the spin-singlet component of

the pairing correlations S ¼ −1. For any allowed pairing due
to Berezinskii classification, the remaining product
P�OT� ¼ 1, where again P� interchanges the spatial coor-
dinates in the pair, O is the lead (band) permutation operator,
and T� interchanges the time coordinates. Two possible
pairing states may be generated due to tunneling in the
conventional Josephson effect: intralead singlet even-ω

FIG. 11. Schematic of the conventional Josephson junction is
shown. Interlead tunneling induces diagonal pairing amplitudes
FLL; FRR ∼ T2

tun, T tun being the tunneling matrix element. We
also indicate the presence of odd-ω interlead pairing amplitude
FLR ∼ T tunðΔL − ΔRÞω that is odd-ω, odd under L → R permu-
tation, while preserving the product SP�OT� ¼ −1. In addition to
the conventional Cooper pairs present in each of the leads
tunneling induces the interlead superconducting correlations.
Traditional textbook analysis predicts the corrections to the
intralead pairing and explains the Josephson effect as an
induction of the T2

tunRefΔ�
RΔLg term in free energy. The interlead

pairing amplitude is much larger at small tunneling amplitudes
T tun. From Balatsky, Pershoguba, and Triola, 2018.
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FLL; FRR; ðS ¼ −1; P� ¼ T� ¼ O ¼ þ1Þ ð106Þ

and interlead, odd-ω singlet correlations

FLR ¼ −FRL; ðS ¼ −1; P� ¼ þ1; T� ¼ O ¼ −1Þ. ð107Þ

While keeping P�OT� ¼ 1, one thus immediately realizes
that the odd-ω, odd junction (orbital index) pairing Fþ−− with
the S index omitted, is allowed. Previous literature focused
on the intralead (LL; RR) corrections due to tunneling.
These corrections are of the order T2

tun. The odd-ω interlead
correction is linear in T tun and hence is largest in the case of
weak tunneling. The intralead corrections due to tunneling are
well studied. The Josephson phase coupling between the
superconductors emerges as a result of Cooper pair tunneling
and the effect is even order in the tunneling matrix element
T tun. To lowest order they are quadratic ∼T2

tun for a low-
transparency barrier. An odd-ω interlead amplitude instead
emerges to odd order, to keep the pair amplitude odd under
L ↔ R permutation, and thus is linear in T tun. This separation
of the even and odd in T tun components is general
and will hold for a barrier of any transparency. In this sense,
the odd-ω component is more robust than the even-ω
component in the Josephson junction as it emerges even in
lower order in T tun. We now outline the proof, following
Balatsky, Pershoguba, and Triola (2018).
Consider the JJ Hamiltonian with

H ¼ HL
BCS þHR

BCS þ T tunc
†L
s ðr ¼ 0ÞcRs ðr ¼ 0Þ þ H:c:;

ð108Þ

where HLR
BCS is the BCS-like Hamiltonian for L, R leads

taken independently, s being the spin index. Each lead will
have respective dispersions of quasiparticles εL;RðkÞ and the
respective gaps ΔL;R. We assume that tunneling is spin
independent, is occurring at one point r ¼ 0, and we consider
effects to lowest order in T tun. Higher order terms have also
been calculated and checked: as is intuitively reasonable, they
will modify the scale of the effect but not the symmetry.
Hence, for the easiest illustration we keep the analysis
confined to lowest order in T tun.
One can introduce a normal and an anomalous correlation

function G and F. Each of these correlators will have the lead
index and one can expect Green’s functions of the following
type: GLL;GRR;GLR; FLL; FRR; FLR (leaving aside obvious
indices). Let us define

Gij;ss0 ðk; τÞ ¼ −hT τc
†
isðk; τÞcjs0 ð−k; 0Þi ð109Þ

and

Fij;ss0 ðk; τÞ ¼ −hT τcisðk; τÞcjs0 ð−k; 0Þεss0 i; ð110Þ

where i; j ¼ L, R and εss0 is the projector to spin-singlet
pairs one considers here. Using standard methods it can be
shown that

FLR;ss0 ðr ¼ 0; iωnÞ ¼ T tun

X
k;k0

½G0
LLðk; iωnÞF0

RR;ss0 ðk0; iωnÞ

þ F0
LL;ss0 ðk; iωnÞG0

RRðk0;−iωnÞ�:
ð111Þ

The summation over k;k0 in Eq. (111) is carried out
independently and hence one deals with the quasiclassical
Eilenberger functions. Simple algebra yields

FLR;ss0 ðr ¼ 0; iωnÞ ¼ ðπN0Þ2T tunεss0
iωnðΔL − ΔRÞ

DLDR
ð112Þ

with

DL;R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ jΔL;Rj2.

q

We indeed see that the induced interlead component is
singlet, odd ω, odd in the lead index, and is linear in the
tunneling matrix element T tun.
Several observations are in order here. First, the induction

of the odd-ω interlead SC amplitude occurs even in the case of
a conventional Josephson effect between conventional super-
conductors. This unexpected finding supports our claim about
the ubiquity of the odd-ω states in the presence of the
underlying even-ω states. An odd-ω interlead component is
in fact expected to emerge immediately in any JJ. The physical
picture is similar to the induction of the odd-ω component in
the multiband superconductors due to conversion of conven-
tional pairs into odd-ω pairs. In this particular case, the odd-ω
component is induced as a result of the intralead pairing
correlations that leak into to the opposite lead and generate
odd-ω interlead correlations. A possible reason for why these
pairing correlations have not been discussed previously is due
to the dynamic nature of the interlead pairing.
Second, FLR represents the tunneling induced entanglement

between two leads. As the leads are coupled, we can view them
as a degenerate two level system. Hence, it is natural to expect
that Rabi-like oscillations are induced by a phase difference
between the leads. Indeed, from Eq. (112) we can estimate the
real-time behavior of the FLR. For the case of identical leads
withΔL;R ¼ Δ expðiϕLRÞ one can easily find the time depend-
ence of FLR. In the zero-temperature limit, one obtains

FLR;ss0 ðr ¼ 0; tÞ ¼ iεss04π3N2
FT tunΔ expðiΘÞ sinφ sinðΔtÞ

ð113Þ

with Θ ¼ ðφL þ φRÞ=2, φ ¼ ðφL − φRÞ=2, and NF being the
DOS at the Fermi level. The coherent Rabi-like oscillation
of the interlead pair amplitude with the frequency Ω ¼ Δ
reinforces the notion of a connection of odd-ω states to tX.
Indeed, some would argue that even the dc Josephson effect
with the oscillating Josephson current can be viewed as tX;
the system spontaneously violates translational symmetry in
time as only a dc voltage is applied. In the case of odd-ω
oscillations, we see that the interlead correlations develop a
time-dependent correlation without any voltage. Therefore, the
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system spontaneously violates time translation due to oscil-
lations in the off-diagonal pairing amplitude. Oscillations are
present only as long as the phase difference is maintained,
FLR ¼ 0 for ϕL ¼ ϕR. For any finite phase difference, the
junction is in a nonequilibrium steady state. As such one
concludes that the Berezinskii state can exist only for finite
phase differences across the junction. The connection of the
odd-ω state and any other dynamical order including tX is a
fascinating idea that will likely be explored more in the future.
Finally, the standard results for the free energy as a function

of the phase difference and Josephson current are not modified
to linear order in T tun and the presence of the odd-ω interlead
component does not change the established results. Hence,
one would need to have a nonlocal observable to reveal the
interlead odd-ω component. A physical observable that could
reveal the presence of the odd-frequency interlead pairing is
the nonlocal spin susceptibility, which is predicted to be finite
at low temperatures for a fully gapped s-wave superconductor
and proportional to the second power of the Josephson current
(Balatsky, Pershoguba, and Triola, 2018). Both predictions are
quite striking: a nonexponential susceptibility for a fully
gapped system would clearly point to a non-BCS states.
The current dependence is a consequence of Eq. (113).
We also mention that the ac Josephson effect for odd-

frequency superconductors has not been considered so far in
the literature. The ac Josephson effect could potentially probe
the dynamic nature of odd-ω correlations and offer a direct
signature of the odd-ω Berezinskii superconductivity.

I. Candidate materials

Even in the absence of a bulk odd-ω pairing state, odd-ω
superconductivity arises at the interface to other materials or
vacuum under quite general circumstances. This is discussed
in detail in the next section, and odd-ω pairing also arises at
the surface of superfluids such as 3He (Higashitani et al.,

2012; Mizushima, 2014). However, can spontaneous odd-ω
pairing develop in a material? This question has historically
been a controversial one, as suggested by our previous
discussion regarding the stability of the odd-ω pairing state
and the sign of the Meissner effect. While several works have
shown that a diamagnetic bulk odd-ω pairing state is in
principle possible (Belitz and Kirkpatrick, 1999; Solenov,
Martin, and Mozyrsky, 2009; Kusunose, Fuseya, and Miyake,
2011a), it should be noted that Fominov et al. (2015)
concluded oppositely. As of today, there is no clear consensus
on the microscopic mechanism that would underlie this
phenomenon. Nevertheless, several works have in recent
years attempted to establish a model that would yield an
odd-ω pairing instability, both primary and subdominant, with
direct relevance to existing materials.
To investigate this issue, an appropriate framework to use is

the one due to Eliashberg where the frequency dependence of
the pairing interaction and gap function is fully taken into
account. Aperis, Maldonado, and Oppeneer (2015) used the
anisotropic Eliashberg framework to study pairing in the two-
band superconductor MgB2 which is known to have two
Fermi surfaces of π and σ character, respectively. On its own,
MgB2 does not show any signs of odd-ω pairing. Using
ab initio calculations Aperis, Maldonado, and Oppeneer
(2015) showed that an applied magnetic field would generate
a considerable odd-ω order parameter in the bulk of MgB2.
Confirming the highly anisotropic s-wave two-gap structure
of MgB2 withΔπ ¼ 2.8 meV andΔσ ¼ 7 meV in the absence
of a magnetic field, Aperis, Maldonado, and Oppeneer (2015)
showed that an odd-ω triplet state appeared and coexisted with
a conventional even-ω pairing state in the H-T temp phase
diagram, where H is an external magnetic field (see Fig. 12)
when neglecting orbital effects. As an experimental signature
of the emergence odd-ω bulk pairing state Δodd-ωðk;ωÞ, they
computed the spin-resolved electronic density of states

FIG. 12. (a) The H-T temp phase diagram for the even-ω superconducting order parameter in MgB2. Dashed (solid) lines indicate a
second (first) order phase transition. (b) H-T temp phase diagram for the odd-ω superconducting order parameter. The insets in both (a)
and (b) show the Matsubara frequency dependences of the order parameters for different magnetic field values. The color bar max and
min values are 7 and 0 meV for the even-ω amplitude and 0.3 and 0.0 meV for the odd-ω amplitude. (c) The band-resolved field
dependence of the even-ω and odd-ω order parameters at low temperature. The lines correspond to the maximum values in Matsubara
space of the momentum averaged superconducting order parameters on each band, which is equivalent to the peaks in the insets of (a)
and (b). The two upper lines, as measured from H ¼ 0, show Δe, whereas the two lines starting from zero amplitude show 10 × Δ0.
Adapted from Aperis, Maldonado, and Oppeneer, 2015.
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NσðωÞ
NF

¼ 1

2
Re

�	 jωþ σH̃ðk;ωÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ωþ σH̃ðk;ωÞ�2 − ½Δσðk;ωÞ�2

p



k

�
;

ð114Þ

where we defined the total order parameter

Δσðk;ωÞ≡ Δeven-ωðk;ωÞ þ σΔodd-ωðk;ωÞ: ð115Þ

Moreover, h� � �ik denotes Fermi surface averaging, H̃ is a
renormalized magnetic field including self-energy effects,
and nF is the density of states at the Fermi level in the
nonsuperconducting state. Using self-consistent ab initio
calculations, the magnetic field evolution of the tunneling
spectra showed clear subgap features. Because of the
imaginary part of the odd-ω order parameter being finite,
ImfΔodd-ωðk;ωÞg ≠ 0, a finite density of states arises at ω ¼ 0

which would be absent if Δodd-ωðk;ωÞ ¼ 0. The physical
origin of the imaginary part is damping processes of quasi-
particle excitations caused by the magnetic field, which
broadens the quasiparticle lifetime (Aperis, Maldonado, and
Oppeneer, 2015). These results reinforce the broader pos-
sibilities of inducing odd-ω pairing states in multiband
superconductors (Triola and Balatsky, 2017). As mentioned
previously, bulk odd-ω superconductivity has also recently
been predicted (Komendová and Black-Schaffer, 2017) in a
multiorbital model of Sr2RuO4 when taking into account
orbital hybridization.
A bulk odd-ω superconducting state had also been pro-

posed earlier (Fuseya, Kohno, and Miyake, 2003) for
CeCu2Si2 in order to explain unusual experimental features,
such as gapless superconductivity coexisting with antiferro-
magnetism (Kawasaki et al., 2003) even in very clean
samples. The existence of odd-ω pairing in heavy fermion
superconductors in fact dated back to the early work by
Coleman, Miranda, and Tsvelik (1993b). The key idea of
Fuseya, Kohno, and Miyake (2003) was that an odd-ω p-wave
singlet superconducting pairing state could be realized close
to the quantum critical point and/or in the coexistent super-
conducting and antiferromagnetic state. This state was shown
to arise to critical spin fluctuations, granted that two con-
ditions were fulfilled. First, the pair scattering interaction was
required to host a sharp peak as a function of frequency with a
width smaller than the thermal energy. Second, the dominant
process for pair scattering with the antiferromagnetic ordering
vector Q would have to be weakened by the nodes in a
competing even-ω d-wave singlet state. They argued that it
could be reasonable to assume that these criteria were fulfilled
in CuCu2Si2. Spin fluctuations and nesting also played a key
part in the work by Johannes et al. (2004), who proposed
that the most compatible superconducting pairing state with
the nesting structure of NaxCoO2 · yH2O featured an odd-ω
s-wave triplet symmetry.
A possible bulk odd-ω pairing state on a quasi-one-

dimensional triangular lattice was proposed by Shigeta et al.
(2009). Starting with the single-band Hubbard model on an
anisotropic triangular lattice

H ¼
X
hi;ji;σ

ðtijc†iσcjσ þ H:c:Þ þ
X
i

Uni↑ni↓ ðniσ ¼ c†iσciσÞ;

ð116Þ

they computed the Green’s function in the case of half filling
in both the random-phase approximation and the fluctuation
exchange approximation. By linearizing the Eliashberg equa-
tion in the singlet (triplet channel):

λΔðωn; kÞ ¼ −
T temp

N

X
m;k0

VsðtÞðωn − ωm0 ; k − k0Þ

× Gðωm; k0ÞGð−ωm;−k0ÞΔðωm; k0Þ ð117Þ

and inserting the effective pairing interactions

Vsðωm; qÞ ¼ U þ 3
2
U2χsðωn; qÞ − 1

2
U2χcðωm; qÞ;

Vtðωn; qÞ ¼ −1
2
U2χxðωm; qÞ − 1

2
U2χcðωm; qÞ; ð118Þ

the pairing state providing the highest critical temperature
could be computed. Here T temp is the temperature, N ¼
Nx × Ny is the number of k-point meshes on the lattice, χs
and χc are the spin and charge susceptibility, while Gðωm; kÞ
is the Green’s function determined by the Dyson equation

G−1ðωn; kÞ ¼ G−1
0 ðωn; kÞ − Σðωn; kÞ: ð119Þ

G0 is the bare Green’s function while Σ is the self-energy. In
the regime where the hopping along one direction, say tx, of
the lattice dominated the other hopping terms, they found that
the odd-ω singlet state provided the largest Tc using an on-site
interaction U=tx ¼ 1.6.
A further step toward identifying a clear mechanism for

generating odd-ω superconductivity in a bulk material was
taken by Shigeta et al. (2011). They noted that in the context
of quasi-one-dimensional systems, such as the organic super-
conductor ðTMTSFÞ2X, spin-triplet f-wave pairing could
become favorable compared to singlet d-wave pairing when
the charge fluctuations strongly exceeded the spin fluctua-
tions. At the same time, a quasi-one-dimensional geometry
should favor on-site pairing (s wave) of electrons to form
Cooper pairs. Taking these two facts into account, it would
thus appear that the geometrical constraint resulting from a
quasi-one-dimensional setup combined with strong charge
fluctuations should provide the ideal scenario for realizing
s-wave triplet pairing, which due to the Pauli principle must
have an odd-ω symmetry. This is precisely the same type of
pairing as in the original proposal by Berezinskii. Shigeta
et al. (2011) investigated this via the linearized Eliashberg
framework previously described using the extended Hubbard
model on a quasi-one-dimensional lattice, the latter in the
sense that the hopping parameter ty in the y direction was
much smaller than tx in the x direction. Their main result
was that the odd-ω triplet state provided the highest Tc
when the charge fluctuations exceeded the spin fluctuations.
The favored superconducting state is schematically shown
in Fig. 13.
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V. ODD-ω PAIRING IN HETEROSTRUCTURES

Having reviewed the properties of odd-ω pairing in bulk
superconductors, where this type of superconductivity is the
leading instability, we now turn our attention to a different
type of situation. In hybrid structures with conventional BCS
superconductors, where s-wave spin-singlet pairing is the
leading instability, it turns out to be possible to induce
odd-ω pairing under quite general circumstances, where the
Berezinskii component is induced as a result of scattering,
consistent with the SP�OT� constraint and design rules. The
odd-ω pairing in this way can either exist in the nonsuper-
conducting part of the heterostructure itself, by means of the
proximity effect, or even be created as a subdominant pairing
amplitude in the superconductor itself.

A. Normal superconductor

It is interesting to note that the prediction of odd-ω pairing
in the conceptually most simple heterostructure, a super-
conductor/normal metal bilayer, came later than its prediction
in more complex heterostructures involving magnetic materi-
als (Bergeret, Volkov, and Efetov, 2001b). Tanaka, Tanuma,
and Golubov (2007), Tanaka et al. (2007), and Eschrig et al.
(2007) established that magnetic ordering was in fact not
required to generate odd-ω pairing in a hybrid structure: any
type of inhomogeneous superconducting state, such as a
spatially inhomogeneous one due to the presence of an
interface, must host odd-ω pairing. This means that even a
ballistic S=N bilayer would allow for the existence of odd-ω
pairing due to the broken translational symmetry. An s-wave
even-ω spin-singlet state would transform into a p-wave
odd-ω spin-singlet state near the interface region, preserving
its spin symmetry; see Fig. 14.
Following Eschrig et al. (2007), a solution of the

Eilenberger equation in a balllistic S=N bilayer provides
the following anomalous Green’s function fs in the N region,
the subscript s denoting that it is a spin-singlet correlation:

fðlÞs ¼ T int
πΔ
jωnj

½sgnðωnÞ�lQlð2jωnjx=vFÞ; ð120Þ

where Ql is a purely real function whose details are not
important for the present purpose, while l denotes the angular

momentum quantum number of the Cooper pair: l ¼ 0 for the
s wave, l ¼ 1 for the p wave, and so on. Moreover, T int is the
transparency of the interface while vF is the Fermi velocity.
All the odd components in l are clearly seen to have an odd-ω
symmetry due to the factor ½sgnðωnÞ�l.
The possibility to induce odd-ω pairing in a normal metal

without the requirement of magnetic ordering had in fact been
noted a few years earlier (Tanaka et al., 2005; Asano, Tanaka,
and Golubov, 2007; Tanaka and Golubov, 2007), but in these
works they proposed to use a spin-triplet superconductor as
the host. This meant that odd-ω triplet pairing was generated
at the interface, which could survive even in diffusive normal
metals where frequent impurity scattering would suppress any
non-s-wave amplitude (higher order angular momentum) due
to the Fermi surface averaging.
An interesting consequence of the fact that odd-ω pairing

can appear in a normal metal is that it is intimately linked to a
phenomenon discovered in the 1960s, namely, McMillan-
Rowell oscillations (Rowell and McMillan, 1966; Rowell,
1973). This effect consists of the density of states in a normal
metal connected to a superconductor displaying a series of
sharp subgap peaks, indicating the presence of resonant
energy levels in the system. Tanaka, Tanuma, and Golubov
(2007) showed that the energies εwhere the McMillan-Rowell
peaks occurred coincided precisely with the points where
odd-ω pairing amplitude fodd-ωðεÞ would strongly dominate
over the even-ω pairing amplitude feven-ωðεÞ, their ratio
fodd-ω=feven-ω in fact formally diverging. The conclusion is
that the McMillan-Rowell oscillations can be taken as direct
evidence of odd-ω pairing.
To show this (Tanaka, Tanuma, and Golubov, 2007), one

may consider the case of a long N region L ¼ 5L0, where
L0 ¼ vF=2πTc is a measure of the superconducting coherence
length (Tc is the bulk superconducting critical temperature).
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FIG. 13. Qualitative dependence of the most stable super-
conducting pairing symmetries on the degree of one dimen-
sionality and spin or charge fluctuations. Adapted from
Shigeta et al., 2011.

FIG. 14. Spatial dependence of the pair potential normalized
against its bulk (solid line) and the even-ω spin-singlet pair
amplitudes EsðxÞ (s-wave channel, dash-dotted line) and Epx

ðxÞ
(p-wave channel, dash-dotted line) for an S=N ballistic bilayer.
The x axis extends into the superconducting layer. The odd-ω pair
amplitudes in the corresponding angular momentum channels are
denoted OsðxÞ and Opx

ðxÞ and are shown as dashed lines. The
parameter Z quantifies the junction transparency, with Z ¼ 0
corresponding to a perfect interface and Z ≫ 1 corresponding to
the tunneling limit. (a) The superconductor is of the conventional
s-wave BCS type whereas in (b) the superconductor is of the px
type. The ballistic superconducting coherence length is ξ¼vF=Δ.
Adapted from Tanaka et al., 2007.
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Focusing for simplicity on the case of a fully transparent
interface, the local DOS acquires a series of peaks arising due
to electron-hole interference effects in the N region (precisely
the McMillan-Rowell peaks). The amplitudes of the corre-
sponding even-ω and odd-ω components can be computed via
quasiclassical theory by solving the Eilenberger equation
which in the notation of Tanaka, Tanuma, and Golubov
(2007) takes the form

ivF;xĝ� ¼∓ ½Ĥ�; ĝ��; ð121Þ

where

Ĥ� ¼ iωnτ̂3 þ iΔ�ðxÞτ̂2; ð122Þ

and their ratio is found to depend on both energy and position
in the N region. Here vF;x is the component of the Fermi
velocity in the direction normal to the S=N interface, ωn ¼
2πT tempðnþ 1=2Þ is the Matsubara frequency, and Δ�ðxÞ is
the pair potential for left- or right-going quasiparticles.
Solving this equation for the Green’s function matrix ĝ�
and applying suitable boundary conditions (we do not go into
details on this matter, as these are technically too compre-
hensive to fully account for here), one is able to identify an
odd-frequency component fodd-ω and even-frequency compo-
nent few. Their ratio is

jfodd-ωj
jfeven-ωj

¼
���� tan

�
2E
vF;x

ðLþ xÞ
�����: ð123Þ

At the edge of the normal region ðx ¼ −LÞ, the odd-ω
component vanishes for all energies. In contrast, at the
S=N interface (x ¼ 0) it does not in general and Eq. (123)
then establishes a direct relation between the energy of the
bound states forming the resonances in the system and the
ratio fow=feven-ω. To see this, consider the bound-state energy
derived (Rowell and McMillan, 1966; Rowell, 1973) in the
limit L ≫ L0 for a perfect interface transparency:

En ¼
πvF;x
2L

�
nþ 1

2

�
; n ¼ 0; 1; 2;… . ð124Þ

Inserting Eq. (124) into Eq. (123) one obtains

jfodd-ωj
jfeven-ωj

¼ j tanðπ=2þ πnÞj → ∞: ð125Þ

In effect, the ratio between odd-ω and even-ω correlations
diverges precisely at the subgap peak energies where the
McMillan-Rowell resonances exist.
Odd-ω pairing in S=N hybrid structures has also been

investigated for the case of unconventional (non-s-wave)
superconductors (Tanaka and Golubov, 2007; Asano et al.,
2011; Matsumoto, Koga, and Kusunose, 2013; Lu et al.,
2016). The general rule is that unless some spin-dependent
interactions are present, either in the form of a magnetic
exchange field in the normal region or due to spin-active
scattering at the interface, the induced odd-ω pairing in S=N
structures will have the same symmetry in the spin part of the

Cooper pair correlation function as the host superconductor.
Thus, for a normal metal=p-wave triplet superconductor (such
as SrRu2O4) bilayer, the induced odd-ω correlations would
have a spin-triplet symmetry and can thus survive even in a
diffusive normal metal (Tanaka et al., 2004) due to the orbital
part being even. However, they are not necessarily restricted to
one particular angular momentum channel: in general, higher
order angular momentum pairing is also generated, such as
d wave, but with decreasing magnitude.
The first study of odd-ω pairing and its relation to zero-

energy surface states in normal metal junctions involving
unconventional superconductors such as p-wave (presumably
relevant for SrRu2O4 and ferromagnetic superconductors
such as UGe and UCoGe) were reported on by Tanaka and
co-workers (Tanaka et al., 2005; Tanaka, Kashiwaya, and
Yokoyama, 2005). Before discussing these findings, it is
instructive to establish a more general understanding of the
interplay between zero-energy states and how the proximity
effect is manifested in normal metal or unconventional
superconductor systems, including the d-wave case relevant
for the high-Tc cuprates (Yokoyama et al., 2005).
Consider a diffusive normal metal, as is often the case

experimentally, in contact with a p- or d-wave superconductor
as shown in Fig. 15. Because of the frequent impurity
scattering in the normal part, the effective pair potential felt
by quasiparticles near the interface is obtained by averaging
over the backscattered half of the Fermi surface. Only when a
finite average pair potential exists in this way can there be a
net proximity effect. This is seen to be the case for px-wave
and dx2−y2 -wave pairing, whereas no proximity effect is
present in a diffusive normal metal for the crystallographic

FIG. 15. The arrows illustrate the trajectories of scattered
quasiparticles at the interface between a diffusive normal metal
and an unconventional superconductor with a (a), (b) d-wave
symmetry and (c), (d) a p-wave symmetry. The angle α denotes
the angle between the normal to the interface and the crystal axis
in the d-wave case and the lobe direction in the p-wave case. The
angle ϕ denotes the injection angle of quasiparticles as measured
from the x axis. Adapted from Yokoyama et al., 2005.
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orientations corresponding to py-wave and dxy-wave pairing.
On the other hand, the existence of zero-energy states
[denoted MARS (midgap Andreev resonant state) in the
figure] is based solely on the orientation of the k-dependent
gap in the superconductor relative to the interface. This can
lead to interesting situations such as the absence of a
proximity effect in spite of the presence of zero-energy states
in the d-wave case, in contrast to the coexistence of a
proximity effect and zero-energy states in the p-wave case.
With these considerations in mind, we can understand why,

for certain crystallographic orientations of the interface, odd-ω
pairing does not arise in diffusive normal metals in contact
with d-wave superconductors despite the presence of zero-
energy surface states. The reason is that the proximity effect
(leakage of superconducting Cooper pairs) into the normal
region is absent due to the net pair potential experienced upon
scattering at the interface averages to zero. On the other hand,
this problem is not present for px-wave pairing and in such a
scenario it was shown (Tanaka et al., 2005) that odd-ω
superconductivity is induced in the diffusive normal region
despite the absence of any magnetism. We also note that more
recent work has investigated the appearance of odd-ω pairing
in normal-superconductor systems when Rashba spin-orbit
interactions are present (Reeg and Maslov, 2015; Ebisu et al.,
2016; Cayao and Black-Schaffer, 2018), including an exten-
sion to bilayer-superconductor systems (Parhizgar and Black-
Schaffer, 2014). Finally, it was shown (Higashitani, 2014) that
translational symmetry breaking in nonuniform even-ω super-
conductors also produces odd-ω pairing by a similar physical
mechanism as in S=N heterostructures.

B. Ferromagnet superconductor

Hybrid structures consisting of ferromagnetic materials in
contact with conventional s-wave superconductors have
historically played the most important role with regard to
proximity-induced odd-ω pairing, both theoretically and
experimentally. The key breakthrough theoretically was
obtained by Bergeret, Volkov, and Efetov (2001b) demon-
strating that when a diffusive ferromagnetic material with an
inhomogeneous magnetic texture, such as a domain wall, was
placed in contact with an s-wave superconductor, this would
induce an odd-ω triplet component in the ferromagnet. This
component would moreover be able to penetrate far into the
magnetic region, beyond the range of the conventional even-ω
singlet component for strong exchange fields h ≫ Δ. This
phenomenon became known as the long-ranged proximity
effect. This result was also obtained virtually simultaneously
by Kadigrobov, Shekhter, and Jonson (2001). The odd-ω
dependence of the triplet component that arises in hybrid
structures consisting of conventional BCS superconductors
and ferromagnets is formally equivalent to the odd-ω corre-
lations proposed by Berezinskii (1974). However, an impor-
tant difference is that no unusual pairing mechanism is
required to obtain the odd-ω component in hybrid structures,
presumably in contrast to the originally proposed odd-ω
pairing by Berezinskii. The physics of odd-ω pairing in SF
structures was reviewed 12 years ago (Bergeret, Volkov, and
Efetov, 2005), but since then experimental progress in this
field has been substantial. We therefore here focus on the most

recent developments regarding odd-ω pairing in SF hybrid
systems which in recent years have emerged as a promising
building block for superconducting spintronics (Eschrig,
2015; Linder and Robinson, 2015b).

1. Broken spin-rotational symmetry

The broken spin-rotational symmetry lies at the heart of the
appearance of odd-ω pairing in a S=F bilayer. As mentioned
in the Introduction, the principle is to trade off change in T�

parity for a change in parity of spin S while keeping the
SP�OT� parity intact. In the same way as translational
symmetry breaking produced higher-angular momentum pair-
ing in the N=S case due to the interface region (see Sec. V.A),
i.e., causing a mixing of different parity components of the
superconducting anomalous Green’s function, the broken
spin-rotational symmetry caused by the exchange field in a
ferromagnet causes a mixing of different spin components of
the Cooper pairs, i.e., producing both singlets and triplets. In
the diffusive limit, only s-wave correlations can survive due to
the frequent impurity scattering causing an isotropization of
all correlations in momentum space. According to the Pauli
principle, an s-wave triplet component must thus have a
frequency symmetry which is odd under ω → −ω. It is
important to point out that magnetic inhomogeneities are
not a prerequisite for odd-ω pairing, but only for the long-
ranged components of these pairing correlations. Odd-ω
pairing indeed arises in an S=F bilayer even if the ferromagnet
has a homogeneous exchange field, although in this case the
odd-ω amplitude decays equally fast as the singlet even-ω
amplitude. To see this, one may compute the proximity-
induced correlations in a simple S=F bilayer conveniently
using the quasiclassical theory of superconductivity. We
perform this calculation explicitly here as it also allows us
to recover the S=N result treated in Sec. V.A. In the diffusive
limit, the Usadel equation (Usadel, 1970) governs the behav-
ior of the 4 × 4 Green’s function matrix ĝ which contains both
a normal ð2 × 2Þ part g and an anomalous ð2 × 2Þ part f:

ĝ ¼
� gðE; rÞ fðE; rÞ
−f�ð−E; rÞ −gð−E; rÞ

�
: ð126Þ

The normal part describes the propagation of electrons and
holes in addition to spin-flip processes. The anomalous part
describes the presence of superconducting correlations in the
system and is decomposed into the singlet ðfsÞ and triplet
ðf↑↑; f↓↓; ftÞ components as follows:

fðE; rÞ ¼
�
f↑↑ðE; rÞ f↑↓ðE; rÞ
f↓↑ðE; rÞ f↓↓ðE; rÞ

�
; ð127Þ

where f↑↓ðE; rÞ ¼ ftðE; rÞ þ fsðE; rÞ and f↓↑ðE; rÞ ¼
ftðE; rÞ − fsðE; rÞ. We underline the fact that the singlet
component is even ω whereas the triplet components are
odd ω. In order to obtain analytically transparent results, we
assume here that the superconducting proximity effect is
weak. Such a scenario is valid either in the case of a
temperature close to Tc or if there is a high interface resistance
between the superconducting and the magnetic materials,
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causing in both cases the induced superconducting correla-
tions in the ferromagnet to be quantitatively weak.
The Green’s function matrix ĝ satisfies in the diffusive limit

the Usadel equation

D∇ðĝ∇ĝÞ þ i½Eρ̂3 þ M̂ þ Δ̂; ĝ� ¼ 0: ð128Þ

Here D is the diffusion coefficient, E is the quasiparticle
energy, whereas the exchange field h of the ferromagnet and
the order parameter Δ of the superconductor are described
by the matrices

M̂ ¼
�
h · σ 0

0 h · σ�

�
; Δ̂ ¼

�
0 Δiσy

Δ�iσy 0

�
: ð129Þ

In the weak proximity regime, one assumes that ĝ has only a
small deviation from its normal-state value ĝ ¼ ρ̂3, where
ρ̂3 ¼ diagð1; 1;−1;−1Þ. This means that ĝ ¼ ρ̂3 þ f̂, where f̂
is given by Eq. (126) with g ¼ 0. Inserting this form of ĝ into

Eq. (128) and linearizing the equation in f̂, one obtains the
following set of coupled equations:

D∇2fs þ 2iEfs þ 2ih · f ¼ 0;

D∇2f þ 2iEf þ 2ihfs ¼ 0; ð130Þ

where we defined the triplet anomalous Green’s function
vector

f ¼ ½f↓↓ − f↑↑;−iðf↓↓ þ f↑↑Þ; 2ft�=2: ð131Þ

The quantity f is mathematically equivalent to the d vector
commonly used to analyze p-wave triplet superconductivity
in the context of SrRu2O4 (Mackenzie and Maeno, 2003).
The functions fs and f describe the singlet and triplet

superconducting correlations induced in the ferromagnet,
respectively. The penetration depth into the magnetic region
for the different types of Cooper pairs can be illustrated most
simply by considering a magnetic region with an homo-
geneous exchange field, taking along the ẑ direction for
concreteness. Defining f� ¼ ft � fs, the general solution
of Eq. (130) reads

f� ¼ A�eik�x þ B�e−ik�x; k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iðE� hÞ

D

r
;

fσσ ¼ Cσσeikx þDσσe−ikx; k ¼
ffiffiffiffiffiffiffiffi
2iE
D

r
: ð132Þ

The value of the unknown coefficients fA�; B�; Cσσ; Dσσg are
determined by the boundary conditions of the system
(Kupriyanov and Lukichev, 1988; Nazarov, 1999; Cottet et al.,
2009, 2011; Eschrig et al., 2015). As there by now are a
number of these available in the literature, it is instructive to
briefly consider their regime of validity. Continuity of the
Green’s function and its derivative corresponds to a perfectly
transparent interface, which substantially simplifies analytical
calculations but corresponds to an idealized situation. The
Kupriyanov-Lukichev boundary conditions (Kupriyanov and
Lukichev, 1988) are commonly used and are valid for

nonmagnetic, low-transparency interfaces where the proba-
bility τn of tunneling for a given interface channel n is low
(τn ≪ 1). Nazarov (1999) derived a boundary condition valid
for arbitrary transparency τn for a nonmagnetic interface. In
the presence of a tunneling ðτn ≪ 1Þ magnetic interface,
realized via either an explicit magnetic barrier separating a
superconductor from a normal metal or simply a super-
conductor/ferromagnet bilayer, the boundary conditions due
to Cottet et al. (2009, 2011) are valid under the assumption of
a weak magnetic polarization. Recently, Eschrig et al. (2015)
presented the most general boundary conditions for magnetic
interfaces to date, valid for arbitrary polarization magnitude
and thus applicable to half-metallic compounds as well.
As we are usually interested in energies close to the

superconducting gap E ∼ Δ0 in order to see the signature
of the correlations in the density of states, and magnetic
exchange fields in ferromagnets typically satisfy h ≫ Δ0, it is
clear from the expression for f� that both fs and ft decay on a
length scale ξf ¼

ffiffiffiffiffiffiffiffiffi
D=h

p
. These Cooper pairs are then said to

be short ranged in the ferromagnet. Values of ξf typically take
values from a few nm to at mosta few tens of nm. On the other
hand, the equal spin-pairing Cooper pairs fσσ as seen relative
to the quantization axis ẑ decay on a length scale

ffiffiffiffiffiffiffiffiffiffi
D=E

p
. As

E → 0, this length diverges (in practice, the correlations are
limited by the temperature-dependent coherence lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=T temp

p
). Therefore, it is clear that such pairs can, once

created, penetrate a very long distance into a ferromagnet. The
existence of such long-ranged pairs carrying a supercurrent is
the commonly accepted explanation for the experiment of
Keizer et al. (2006), where a supercurrent flowing between
two superconducting electrodes through ∼1 μm of half-
metallic CrO2 was observed; see Fig. 16. Such long-ranged
supercurrents were later also observed by Anwar et al. (2010).
We emphasize again that the short-ranged component ft is
odd ω and present even in the absence of magnetic

FIG. 16. (a) Critical supercurrent as a function of temperature
for different separation distances between the superconducting
electrodes. (b) Schematic setup of the studied devices, consisting
of a lateral Josephson junction with two superconducting electro-
des deposited on the half-metal CrO2. (c) Scanning electron
micrograph of a typical final device. (d) Illustration of the
alignment of the current direction with respect to the magneti-
zation axes: I is the current, H is the applied magnetic field, and
M is the magnetization. Adapted from Keizer et al., 2006.
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inhomogeneities or spin-orbit interactions. We note in passing
that a proximity structure consisting of a ferromagnet and the
spin-triplet superconductor Sr2RuO4 was recently considered
experimentally (Anwar et al., 2016), but no clear signs of
odd-ω pairing were observed.
The discovery that the previously hypothesized odd-ω

pairing amplitude (Berezinskii, 1974) could now actually
be experimentally realized in a relatively simple way triggered
interest among several research groups. Various geometries
and structures proposed to date to host Berezinskii odd-ω
states represent different pathways to accomplish conversion
of conventional pairs into odd-ω Berezinskii pairs consistent
with the design rules summarized in the Introduction. A key
ingredient in most of the proposals was to use magnetic
inhomogeneities (see Fig. 17) of some sort, in the form of
either magnetic layers with misaligned magnetizations or
magnetic layers featuring an intrinsic texture such as a domain
wall (Bergeret, Volkov, and Efetov, 2003). The reason for this
is that if the degree of magnetic inhomogeneity could be
controlled, it would provide a mean to turn on and off the
long-ranged odd-ω correlations.
Volkov, Bergeret, and Efetov (2003) studied a Josephson

setup with misaligned magnetic layers and showed that one
could control not only the long-ranged proximity effect, but
also trigger a transition between 0 and π states via the relative
magnetization orientation.
Eschrig et al. (2003) studied an extreme case of a half-

metallic Josephson geometry, where a fully polarized
ferromagnet was sandwiched between two s-wave super-
conductors. As only one spin band existed in the half-metallic
region, it would be impossible for singlet Cooper pairs to exist
there and any supercurrent carried between the superconduc-
tors would have to be carried by triplet pairs. In the diffusive
limit where the mean free path lmfp of the half metal is much

shorter than the superconducting coherence length ξS and the
length L of the sample, lmfp ≪ fξS; Lg, an observation of a
finite supercurrent could thus be taken as evidence of odd-ω
pairing. Eschrig et al. proposed that when spin-flip processes
existed at the interface between the superconductor and the
half metal, this would create the long-ranged pairs described
by f↑↑ (assuming the half-metal magnetization mkẑ), thus
allowing for a finite supercurrent flow. The original proposal
considered a ballistic half-metallic junction, where the triplets
had an even-ω p-wave amplitude, but this was later expanded
on by Eschrig and Löfwander (2008) to account for the
presence of impurity scattering and where the role of odd-ω
pairing was explicitly discussed. The half-metallic case with
spin-active interfaces was also studied by Asano et al. (2007),
Asano, Tanaka, and Golubov (2007), and Braude and Nazarov
(2007), who also pointed out that so-called φ0 junction
behavior [where the supercurrent-phase relation takes the
form I ¼ Ic sinðφþ φ0Þ] could arise for suitably oriented
magnetic moments at the interface regions.

2. Relation between odd-ω pairing and zero-energy states

As mentioned, odd-ω pairing arises in diffusive structures
as soon as the conduction electrons experience a magnetic
exchange field, and thus would give rise to observable
consequences even in the absence of inhomogeneities. A
particular feature that traditionally has been taken as a hall-
mark property of odd-ω pairing is that it produces a zero-
energy enhancement of the density of states, even exceeding
the normal-state value, which is completely opposite to the
conventional fully gapped density of states predicted by BCS
theory in s-wave superconductors such as Nb and Al, where
no electronic states are available for subgap energies E < Δ0.
To understand the enhancement of the zero-energy density of
states, consider the normal Green’s function Gðp;ωnÞ of a
superconductor which according to Eq. (96) has the form (we
absorb the factor of 2 in front of jΔj into the order parameter
itself for convenience):

Gðp;ωnÞ ¼
iωn þ ξp

ω2
n þ ξ2p þ jΔðp;ωnÞj2

; ð133Þ

where ξp is the kinetic energy, ωn is the Matsubara frequency,
and Δðp; iωnÞ is the superconducting order parameter.
Consider first the case of a BCS even-ω superconductor.
In this case, Δðp;ωnÞ ¼ Δ, i.e., it is independent of both
momentum (since it is an s wave) and frequency. The poles of
G (the values of ωn which causes the denominator of G to
become zero) correspond to the allowed quasiparticle energies
and take the form

iωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2p þ jΔj2

q
. ð134Þ

This is the usual quasiparticle energy for a superconductor, as
can be seen after performing an analytical continuation
iωn → Eþ i0þ. Now consider instead the case of an odd-ω
superconductor (as realized in an S=F structure). In this case,
we cannot neglect the frequency dependence of Δ, so we set
Δðp;ωnÞ ¼ ΔðωnÞ, where now ΔðωnÞ ¼ −Δð−ωnÞ reflects

FIG. 17. Starting out with a conventional s-wave even-ω
superconductor described by a wave function ψ0, a proximity
coupling to a homogeneous diffusive ferromagnet creates
short-ranged odd-ω Cooper pairs with a wave function
ψ short. These rapidly decay in an oscillatory manner inside
the magnetic region. In the presence of a magnetic inhomo-
geneity at the interface, long-ranged odd-ω Cooper pairs ψ long
which are spin polarized (triplet) emerge which penetrate a
much longer distance compared to ψ short. Adapted from Linder
and Robinson, 2015b.
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the odd symmetry while it remains s wave (independent on
momentum). For illustrating the DOS enhancement effect in
the simplest way possible, consider an order parameter of the
form ΔðωnÞ ¼ αωn, where α is a constant, which is odd in
frequency. This should be a reasonable choice for small
frequencies ωn, since only the lowest order in frequency
needs to be retained as ωn → 0. The Green’s function now
becomes

Gðp;ωnÞ¼
iωnþξp

ω2
nþξ2pþjΔðωnÞj2

¼ iωnþξp
ω2
nð1þjαj2Þþξ2p

: ð135Þ

In other words, the Green’s function now looks like that of a
nonsuperconducting state (Δ ¼ 0), but with a renormalized
mass. To see this, observe that the poles of the Green’s
function G now occur at

iωn ¼
ξpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jαj2
p : ð136Þ

In a free electron model where ξp ¼ p2=2m, we see that this

corresponds to a mass renormalization m� ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαj2

p
.

One consequence of this is precisely to enhance the DOS
above its normal-state value, since the DOS scales asm3=2 in a
free electron model. This explains why odd-frequency super-
conductivity allows for gapless excitations and also increases
the DOS above its normal-state value. The mass renormaliza-
tion effect was first noted by Balatsky and Abrahams (1992).
A detailed discussion on the restrictions on the exchange field
h which would allow clear observation of the zero-energy
enhancement of the DOS in S=F structures was given by
Yokoyama, Tanaka, and Golubov (2007).

3. Further proposals for odd-ω effects in S=F

Nearly a decade after the prediction of odd-ω pairing in
S=F structures, the field was enjoying much attention and
several proposals were put forth in terms of how one would be
able to apply external control over odd-ω pairing, dictating
when it would appear or not, by utilizing for instance spin-
active interfaces (Linder et al., 2009), multilayered magnetic
structures (Houzet and Buzdin, 2007), or spin pumping
(Yokoyama and Tserkovnyak, 2009). Several studies focused
on the diffusive limit of transport, investigating the signatures
of odd-ω pairing in the experimentally accessible DOS
(Cottet, 2007, 2011; Yokoyama, Tanaka, and Golubov,
2007; Linder et al., 2009, 2010), where Halterman et al.
studied the manifestation of odd-ω pairing in the ballistic
limit (Halterman, Barsic, and Valls, 2007; Halterman, Valls,
and Barsic, 2008). Whereas odd-ω and even-ω superconduc-
tivity in general coexists in S=F structures, it is possible to find
ways to separate them spatially. One way would be to use very
strong ferromagnets, such that any superconducting correla-
tions existing deep inside such a magnetic region would
necessarily have a spin-triplet symmetry in order to survive
despite the strong local exchange field. This would addition-
ally require some form of magnetic inhomogeneity, as dis-
cussed previously. Another way to isolate pure odd-ω
superconductivity without requiring strong ferromagnets or

magnetic inhomogeneities is to make use of magnetic insula-
tors as interfaces (Linder et al., 2009, 2010). We now show
this in more detail as a practical example of how to use the
quasiclassical theory for superconducting proximity struc-
tures. Consider a normal metal/superconductor bilayer where
the two materials are separated by a magnetic interface, e.g.,
EuO or GdN (the latter particularly compatible crystallo-
graphically with the normal metal TiN and the superconductor
NbN). Let us start by using the linearized Usadel equations
presented earlier in this section, supplemented by the relevant
boundary conditions. For this system, the latter should
describe a tunneling interface with spin-dependent scattering,
meaning that the Kupriyanov-Lukichev boundary conditions
expanded to include spin-dependent phase shifts can be used
at x ¼ 0 (the superconducting interface):

2L
RB

RN
ĝ∂xĝ ¼ ½ĝS; ĝN � þ i

Gϕ

GT
½τ̂3; ĝN �: ð137Þ

Here ĝNðSÞ is the Green’s function matrix in theN (S) region, L
is the length of the N region, RB (RN) is the resistance of the
barrier (normal region), GT is the barrier conductance,
τ̂3 ¼ diagð1;−1; 1;−1Þ, and ĝS is the Green’s function in
the superconducting region. The latter is taken as its bulk
value for now, and we later show that the results do not change
upon solving the problem self-consistently (accounting for the
inverse proximity effect in the superconductor which alters
ĝS). At the vacuum N interface, the boundary condition is
simply ∂xĝ ¼ 0. The key term here is the Gϕ which describes
the spin-dependent phase shifts of quasiparticles being
reflected at the interface. Microscopically, Gϕ is determined
from (Cottet et al., 2009) Gϕ ∝ Gq

P
n dϕn, where Gq ¼

e2=h is the conductance quantum and dϕn is the spin-
dependent phase shift occurring from the reflection in the
interface transport channel n. It is defined from the reflection
coefficient for spin σ via

rσ ¼ jrσjeiϕnþσdϕn ;

where ϕn is the spin-independent part of the scattering phase.
The term Gϕ will in general be present at any magnetic
interface (whether one inserts an explicit magnetic insulator or
considers an F=S interface). Both its sign and its magnitude
will vary with the magnitude of the interface spin polarization
and the precise shape of the spin-dependent scattering
potential (Grein, Löfwander, and Eschrig, 2013), and thus
it is usually treated as a phenomenological parameter. We note
that Gϕ is closely related to the so-called spin mixing
conductance which is often used in spintronics (Cottet et al.,
2009).
Solving the linearized Usadel equations (130) with the

previous boundary conditions provides the solution (Linder
et al., 2010)

f� ¼ �s½eikðx−2LÞ þ e−ikx�
ikðRB=RNÞLð1− e−2ikLÞþ ½c� iðGϕ=GTÞ�ð1þ e−2ikLÞ :

ð138Þ
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We defined k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iE=D

p
and s ¼ sinhðΘÞ, c ¼ coshðΘÞ

with Θ ¼ atanhðΔ=ðEþ iδÞ and δ describing the inelastic
scattering energy scale (δ=Δ ≪ 1). Recall that f� ¼ ft � fs,
where ft ¼ fodd-ω is the odd-ω anomalous Green’s function
while fs ¼ feven-ω is the even-ω anomalous Green’s function.
In the limiting case of a nonmagnetic insulator Gϕ → 0, it is
seen that fþ ¼ −f−, meaning that ft ¼ 0. There is no odd-ω
pairing in the system, as expected for a diffusive SN system.
However, ft ≠ 0 when Gϕ ≠ 0. The remarkable aspect of
this result is that precisely at the Fermi level E ¼ 0, where
k ¼ c ¼ 0 and s ¼ −i, one finds

f� ¼ −GT=Gϕ ð139Þ

so long as Gϕ ≠ 0. In other words, the conventional spin-
singlet amplitude has been completely erased and pure odd-ω
pairing exists: f� ¼ fodd-ω. In fact, even the nonlinearized
(full proximity effect) Usadel equation can be solved ana-
lytically at E ¼ 0, and one obtains the following result. For
jGϕj > GT :

feven-ω ¼ 0; fodd-ω ∝ GT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

ϕ − G2
T

q
; ð140Þ

whereas for jGϕj < GT :

feven-ω ∝ GT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

T − G2
ϕ

q
; fodd-ω ¼ 0: ð141Þ

This conversion from pure even-ω to pure odd-ω pairing
taking place at jGϕj ¼ GT is a robust effect, as these results are
independent of the interface resistance RB and the length L of
the normal metal, so long as it remains below the inelastic
scattering length. Moreover, the pure odd-ω correlations do
not exist solely at the superconducting interface, but extend
throughout the entire N region so that they can be probed even
at the vacuum interface. The experimental signature of this
effect can be obtained via STM measurements of the DOS,
which acquires the form

NðE ¼ 0Þ
N0

¼ Re

8<
:

jGϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

ϕ − G2
T

q
9=
;: ð142Þ

At zero energy, the DOS has a usual minigap when
jGϕj < GT , whereas it has a peak that strongly exceeds the
normal-state value of the DOS N0 when jGϕj > GT . This
conversion also takes place in the ballistic limit (Linder
et al., 2010).
Regarding experimental studies, early work by Kontos et al.

(2001) demonstrated signs of a very weak zero-energy peak in
S=F bilayers (0.5% of the normal-state value) which was
inverted into a suppression at E ¼ 0 upon altering the F
thickness. This was consistent with the predicted oscillatory
behavior of the zero-energy DOS (Buzdin, 2000), but was not
understood as a signature of odd-ω pairing at the time. More
recently, clear evidence of odd-ω pairing at S=F interfaces
was reported (Di Bernardo et al., 2015a) via STM measure-
ments of Nb superconducting films proximity coupled to

epitaxial Ho. By driving Ho through a metamagnetic tran-
sition where the magnetization pattern changes from a helical
antiferromagnetic pattern to a homogeneous magnetic state,
signatures of odd-ω pairing in the form of substantial subgap
peaks (up to 30% of the normal-state value) were observed;
see Fig. 18.
Finally, we note that it was recently shown (Fyhn and

Linder, 2019) that vortices appear in the purely odd-ω
superconducting condensate that can exist in a half metal.
By proximity coupling a half metal, where only one spin
species is conducting, to a conventional BCS superconductor
through spin-active interfaces, pure odd-ω correlations appear
in the half metal. It was shown that the vortices generated in
such a condensate by applying an external field are accom-
panied by circulating spin-polarized supercurrents.

4. Anomalous Meissner effect and spin magnetization

Other works discussed the anomalous paramagnetic
Meissner effect occurring in proximity-coupled superconduc-
tor and ferromagnet layers precisely due to the presence of
odd-ω pairing (Yokoyama, Tanaka, and Nagaosa, 2011), a fact
noted in earlier work (Bergeret, Volkov, and Efetov, 2001a).
It was recently shown that the paramagnetic Meissner effect
becomes highly anisotropic as a function of the field ori-
entation angle θ in the presence of spin-orbit interactions
(Espedal, Yokoyama, and Linder, 2016) as a result of the
dependence of the odd-ω triplet depairing energies on θ.
The effect of a paramagnetic screening current on the
induced magnetization in a hybrid structure can be illustrated
with a simple quantitative analysis (Yokoyama, Tanaka, and

FIG. 18. (a) The sample structure on which the STM measure-
ments were performed: an Au/Nb/Ho/Nb multilayer. (b) The
magnetization of Ho at zero field (remanent magnetization Mr,
red line) and with the set field H switched on (blue line).
The vertical (black) lines separate different magnetic phases of
Ho: a bulk helix (region 1), coexisting helix and F component
(region 2), and F state (region 3). (c), (d) Typical subgap features
obtained in the normalized conductance. Adapted from Di
Bernardo et al., 2015a.
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Nagaosa, 2011). Consider an S=N bilayer with a magnetic
interface so that both odd-ω and even-ω correlations can be
generated inside the proximitized normal region, as previously
discussed. Assuming normalized units for brevity of notation,
the Maxwell equation determining the magnetic response
from a supercurrent can be written as

d2A
dx2

¼ −J ¼ −J0ðxÞA; ð143Þ

where J is the screening supercurrent density which here is
computed via its linear response to the applied field and
resulting presence of a vector potential A. Moreover, x is
the coordinate perpendicular to the S=N interface. The
induced magnetization normalized against the externally
applied field B reads

M ¼ dA
dx

− 1: ð144Þ

This set of equations can be solved by supplying boundary
conditions. A crude, but physically reasonable approximation
would be to assume that the superconductor completely
shields the external magnetic field whereas the proximity
effect is sufficiently weak at the vacuum edge of the normal
region so that no screening-induced magnetization exists
there. If the SN interface exists at x ¼ 0 while the vacuum
edge resides at x ¼ 1 (the position coordinate has been
normalized to the length of the N region), the boundary
conditions take the form

Aðx ¼ 0Þ ¼ 0;
dA
dx

����
x¼1

¼ 1: ð145Þ

For a conventional Meissner response due to even-ω pairing,
the induced supercurrent is negative: J0ðxÞ < 0. Neglecting
for simplicity the spatial dependence of the current magnitude
J0ðxÞ, we can write J0ðxÞ ¼ −k2 where k is a real number,
which gives the following solution for the amplitude of the
magnetization M:

MðxÞ ¼ coshðkxÞ
coshðkÞ − 1: ð146Þ

Since x ∈ ½0; 1�, MðxÞ is always negative and decays mono-
tonically away from the vacuum edge as expected for a
conventional Meissner response. In contrast, if a positive
supercurrent (antiscreening) is generated due to the presence
of odd-ω Cooper pairs [J0ðxÞ ¼ k2 > 0], one obtains instead

MðxÞ ¼ cosðkxÞ
cosðkÞ − k: ð147Þ

The proximity-induced magnetization now displays an oscil-
latory behavior and can assume both positive and negative
values. This means that the induction of a odd-ω pairing
supercurrent does not necessarily have to give an inverse
(paramagnetic) Meissner response, in the framework of the
approximations made in this treatment.

An interesting experimental result was achieved when Di
Bernardo et al. (2015b) measured a paramagnetic Meissner
response in an Au/Ho/Nb trilayer. The Ho layer consisted of a
conical magnetization pattern which created odd-ω triplet
Cooper pairs from singlet pairs leaking in from the super-
conducting Nb. In turn, these triplet pairs further penetrated
into the normal Au region where the local magnetization was
measured via low-energy muon spectroscopy; see Fig. 19.
Whereas samples without the Ho layer previously had been
shown to give a conventional Meissner effect, with a local
magnetization induced oppositely to the external B field, the
Au/Ho/Nb trilayer showed increased magnetization below
the superconducting critical temperature. The enhancement of
the local magnetization above the external field value was
shown to be consistent with the presence of odd-ω pairing.
The final aspect worth mentioning is how to detect odd-ω

superconductivity indirectly via spin measurements. Because
of the symmetry requirements dictated by the Pauli principle
with respect to the Cooper pair correlation function at equal
times, odd-ω pairing in the diffusive limit must have a spin-
triplet symmetry. In principle, this means that measuring an

FIG. 19. (a) Setup used for observation of the paramagnetic
Meissner effect due to odd-ω triplets: an Au/Ho/Nb trilayer
exposed to an external field B. Low-energy muons injected in Au
provided information about the local magnetization profile.
(b) Experimental measurement and theoretical fit to the local
magnetization signal Bloc as well as the theoretically computed
spatial distribution of the shielding current density Jx throughout
the system. From Di Bernardo et al., 2015b.
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induced magnetization due to a superconducting proximity
effect could be taken as a signature of odd-ω Cooper pairs.
This idea was explored by Bergeret, Volkov, and Efetov
(2004), where an SF bilayer was considered and the mag-
netization induced in the superconducting part was computed.
It was found that the magnetic moment carried by free
electrons (nonlocalized) in the superconductor was oppositely
directed to the magnetization in the F region and penetrated a
distance of ∼ξ, indicating a spin screening effect. The physical
origin was proposed to be that Sz ¼ 0 Cooper pairs which
were spatially “shared” between the magnetic and super-
conducting layers, with one residing in each part (made
possible due to the finite spatial extent ∼ξ of the pairs). In
this case, the electron with magnetic moment parallel to the
magnetization in the F region would energetically be favored
to stay there, leading to the electron with opposite spin to
reside in the superconductor and thus induce an opposite
magnetic moment compared to F. Experimental measure-
ments (Xia et al., 2009) of the polar Kerr effect using a
magnetometer on Pb/Ni and Al/(Co-Pd) bilayers provided
supporting experimental evidence of such a scenario; see
Fig. 20. Later work examined the proximity-induced mag-
netization in both superconducting and nonsuperconducting
regions of magnetically textured systems, demonstrating that
the sign and magnitude of δM would change depending on
parameters such as the spin-dependent phase shifts occurring

at the SF interface (Linder, Yokoyama, and Sudbø, 2009) and
the superconducting phase difference in a Josephson junction
geometry (Hikino and Yunoki, 2015; Hikino, 2017). It is then
clear that odd-ω triplets can provide a magnetic signal via both
their spins and their anomalous Meissner effect.

C. Topological insulator and quantum dot superconductor

Odd-ω superconductivity has also been predicted to appear
in superconductor-topoplogical insulator heterostructures.
Yokoyama (2012) showed that attaching an s-wave super-
conductor to the surface of a 3D topological insulator (TI)
would induce odd-ω triplet pairing in the presence of an
exchange field. The various types of superconducting corre-
lations induced among the Dirac electrons on the topological
surface can be described via an anomalous Green’s function
2 × 2 matrix f

TI
, which in the absence of impurity scattering

and in the low-doping limit μ → 0 takes the form (Yokoyama,
2012)

f
TI
∝ ½−ω2

n − ðℏvFkÞ2 þm2�1þ 2iωnm · σ

þ 2iℏvFðk⊥ ×mÞ · σ: ð148Þ

The singlet amplitude is proportional to the unit matrix
whereas the triplet amplitudes are proportional to σ̂. As seen,
the triplet component has both an odd-ω part ∝ ωn, appearing
when m ≠ 0, and an even-ω part. Moving away from the
Dirac point μ ¼ 0, one finds an additional triplet component
∝ 2μℏvFk⊥ · σ that exists even in the absence of an exchange
field. This observation is consistent with the SP�OT� con-
straint and design rules discussed in the Introduction. In this
case the S ¼ −1; P� ¼ þ1; T� ¼ þ1; O ¼ þ1 pair is con-
verted into (i) S ¼ þ1; P� ¼ þ1; T� ¼ −1; O ¼ þ1
Berezinskii pairs (term proportional to magnetization) and
into (ii) S ¼ þ1; P� ¼ −1; T� ¼ þ1; O ¼ þ1 triplet pairs.
Black-Schaffer and Balatsky (2012) further developed

the model of a superconductor-TI interface by taking into
account the spatial dependence of the superconducting order
parameter Δ near the interface region. In doing so, they
identified an additional contribution to f

TI
which existed

without any magnetic field, namely, an odd-ω triplet ampli-
tude ∝ ∂xΔσ=ωn. Odd-ω pairing will in fact be induced even
without an interface so long as a gradient exists in the order
parameter by applying a supercurrent. This result showed that
the effective spin-orbit coupling k · σ on the TI surface induces
odd-ω triplet pairing without requiring any magnetism. The
1=ωn dependence had also previously been reported theoreti-
cally for odd-ω pairing heavy fermion compounds (Coleman,
Miranda, and Tsvelik, 1993b). Interestingly, this particular
frequency dependence of the odd-ω superconducting corre-
lations did not produce any low-energy states in these systems
which, as discussed previously, usually have been considered
one of the smoking gun signatures of odd-ω pairing. We return
to this issue at the end of this section.
A full symmetry classification of the induced supercon-

ducting pairing amplitudes for a superconductor-TI bilayer
was reported by Black-Schaffer and Balatsky (2013b). This
was accomplished using Bi2Se3 as a model TI, in which case
the full Hamiltonian of the system takes the form

FIG. 20. (a) Schematic measurement setup used by Xia et al.
(2009): two perpendicularly linearly polarized lights emerging
from the fiber become circularly polarized and focus on the
sample using a lens. The electric field E penetrates a short
distance ≪ dS into the superconductor. (b) Kerr effect measure-
ment of an Al/(Co-Pd) bilayer system with a 50 nm Al sample.
Adapted from Xia et al., 2009.
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H ¼ HSC þHTI þHt; ð149Þ

where HSC describes the superconducting part of the system

HSC ¼
X
kσ

εkc
†
kσckσ þ

1

2

X
kαβ

½Δk;αβc
†
kαc

†
−kβ − Δ�

−k;αβckσckβ�:

ð150Þ

The TI was modeled using its two Bi orbitals with a cubic
lattice (lattice constant a):

HTI ¼ γ0 − 2
X
kj

γj cosðkjaÞ þ
X
kμ

dμΓμ; ð151Þ

where d0 ¼ ε − 2
P

j tj cosðkjaÞ, dj ¼ −2λj sinðkjaÞ, Γ0 ¼
τx ⊗ σ0, Γx ¼ −τz ⊗ σy, Γy ¼ τz ⊗ σx, and Γz ¼ τy ⊗ σ0.
The Pauli matrices in orbital and spin space are denoted τj
and σj, respectively. The parameter values for γj fitted to
the Bi2Se3 dispersion are given by Zhang et al. (2009) and
Rosenberg and Franz (2012).
Finally, the local tunneling Hamiltonian Ht couples the

superconductor with the TI through electron hopping:

Ht ¼ −
X
kσ

ðt1c†kσb1kσ þ t2c
†
kσb2kσ þ H:c:Þ; ð152Þ

where b†akσ creates an electron in the orbital a ¼ 1, 2 in the TI
surface layer.
By performing an exact numerical diagonalization of the

total Hamiltonian H, a comprehensive overview of different
time-ordered pairing amplitudes fabαβðτÞ arising in the TI
surface layer was then obtained by Black-Schaffer and
Balatsky (2013b) (see their Table I) and classified based on
their symmetries in orbital and frequency space:

fabαβðτÞ ¼
1

2Nk

X
k

SkαβT τhba;−k;βðτÞbbkαð0Þ

� bb;−k;βðτÞbakαð0Þi: ð153Þ

Here � refers to even or odd pairing in the orbital index, Nk is
the number of k points in the Brillouin zone, and T is the time-
ordering operator. This also includes the case when the host
superconductor was unconventional in itself, i.e., p or d wave.
Moreover, we defined a symmetry factor Skαβ ¼ Δ�

kαβ=Δ0.
Later works studied further aspects of odd-ω pairing

induced in TI structures via proximity to a host s-wave
superconductor. Proximity-induced odd-ω pairing in the
helical edge states of a TI was studied in relation to crossed
Andreev reflection by Crépin, Burset, and Trauzettel (2015),
whereas the issue of odd-ω pairing in a quasiclassical
framework using Eilenberger and Usadel equations was
treated by Hugdal, Linder, and Jacobsen (2017). Multiple
odd-ω superconducting states were predicted in buckled
quantum spin Hall insulators with time-reversal symmetry
(Kuzmanovski and Black-Schaffer, 2017). Finally, a micro-
scopic calculation of the proximity effect between a super-
conductor and a TI was conducted by Lababidi and Zhao

(2011), but without considering the frequency symmetry of
the superconducting correlations.
When odd-ω superconductivity appears in quantum dots, it

has the potential advantage that electric control of the odd-ω
Cooper pairs is more feasible than in conventional metallic
systems, such as those traditionally studied in superconductor-
ferromagnet experiments. Sothmann et al. (2014) proposed
that the odd-ω pairing triplet, as well as other types of
unconventional superconductivity including higher order
angular momentum pairing, would be controllable in a
double-quantum dot device hosting inhomogeneous magnetic
fields. Burset et al. (2016) realized that by utilizing a three-
terminal device connected to a double-quantum dot, it was
possible to control the odd-ω amplitude purely electrically
without any need for magnetic fields. They showed that by
tuning the quantum dot levels to resonance (see Fig. 21),
Cooper pairs split into separate terminals via crossed Andreev
reflections would be correlated exclusively with an odd-ω
pairing symmetry. This result is related to the discussed odd-ω
component present in the Josephson junction where the orbital
index role is played by the lead or quantum dot index. Indeed
from SP�OT� ¼ −1 and keeping all pairing channels singlet,
one can see that the LR-odd pairing channel will automatically
be odd ω. From the design principles discussed earlier we
have a conversion of conventional even-ω pairing −þþþ
into the Berezinskii −þ −− channel.
We return now to the issue of the spectral signatures of

odd-ω pairing previously mentioned in relation to the 1=ωn
dependence which did not produce any subgap states. This is
in contrast to the numerous examples discussed so far in this
review where odd-ω pairing seems to be generally accom-
panied by an enhancement of the electronic density of states

FIG. 21. Suggested expermiental setup for electrically con-
trolled odd-ω pairing in a double-dot three-terminal device.
(a) The quantum dots have level positions εL;R and are contacted
by a superconducting lead S and two normal leads L and R.
(b) Illustration of a local Andreev reflection process where the
Cooper pair electrons tunnel into a normal lead through one dot.
(c) Nonlocal Andreev reflection (AR) where the two electrons
making up the Cooper pair tunnel into different leads. The blue
lines refer to the pair amplitudes FLL and FRR in the case of local
AR whereas the red lines illustrate the nonlocal amplitude FLR
which is odd ω on the resonance point εL ¼ εR. Adapted from
Burset et al., 2016.
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at subgap energies. This is the case for S=N structures (Rowell
and McMillan, 1966; Eschrig et al., 2007; Tanaka and
Golubov, 2007), S=F structures (Kontos et al., 2001;
Yokoyama, Tanaka, and Golubov, 2007; Dahal et al., 2009;
Linder et al., 2009; Di Bernardo et al., 2015a), and vortex
cores (Yokoyama, Tanaka, and Golubov, 2008). However, as
noted by Black-Schaffer and Balatsky (2012), odd-ω pairing
does not necessarily enhance the low-energy density of states.
At the same time, it was recently shown that there exists a
connection between the local density of states and odd-ω
triplet pairing in 2D topological insulators proximitized by a
superconductor (Cayao and Black-Schaffer, 2017).
One could then ask the question: is it possible to have a

system with a fully gapped density of states that still has
strong odd-ω superconducting correlations present? This issue
was studied by Linder and Robinson (2015a) where an
analytical criterion was derived for when odd-ω pairing can
be present in a fully gapped system. This finding is of
relevance for the experimental identification of odd-ω pairing,
since STM measurements of the density of states is a
commonly used method for this purpose. For a single-band
model, the proof of the criterion goes as follows (Linder and
Robinson, 2015a). Consider a system where both even-ω and
odd-ω correlations may exist. In the diffusive limit, it is
convenient to use the quasiclassical Green’s function matrix ĝ
introduced in Sec. V.B. It satisfies the normalization condition
ĝ2 ¼ 1̂ and may be written in the form

ĝ ¼

0
BBBBB@

c↑ 0 0 s↑
0 c↓ s↓ 0

0 −s↓ −c↑ 0

−s↑ 0 0 −c↑

1
CCCCCA
; ð154Þ

where cσ ¼ cosh θσ and sσ ¼ sinh θσ , and θσ is a parameter
that describes the spin dependence of the superconducting
correlations. In a BCS bulk superconductor, it is given by
θσ ¼ atanh½σΔ=ðEþ iηÞ�, where η is the inelastic scattering
rate. In that case, we see that θ↑ ¼ −θ↓, so that no odd-ω
correlations ft ¼ ðs↑ þ s↓Þ=2 ¼ 0 exist. In the presence of an
exchange field h, θ↑ ≠ θ↓ so that ft ≠ 0. Using the fact
that the normalized density of states is NðEÞ=NF ¼
ð1=2ÞPσ Refcσg and that ĝ2 ¼ 1̂, one finds

NðEÞ
NF

¼ 2Re

�
ftfs

c↑ − c↓

�
: ð155Þ

Assume now that the system is gapped so that NðEÞ=N0 is
zero for a range of energies E. This means that cσ must be a
purely imaginary number. So long as c↑ ≠ c↓ (the system is
not spin degenerate), it follows that

NðEÞ
NF

¼ 2
Imfftfsg

Imfc↑ − c↓g
¼ 0: ð156Þ

Equation (156) expresses a crucial fact: when the even-ω pair
amplitude fs and the odd-ω pair amplitude ft are both real or
both imaginary, hereafter referred to as in phase, we see that

NðEÞ ¼ 0 regardless of the magnitude of ft. In order for the
presence of odd-ω pairing ft to produce an enhancement of
the density of states, it thus needs to be out of phase with the
singlet component fs: otherwise, there are no subgap states
available in spite of ft ≠ 0.
It should be noted that this result does not mean that even-ω

singlet pairing fs must be present in general for odd-ω
superconductivity ft to enhance the low-energy density of
states. As discussed in Sec. V.B, a system with pure odd-ω
pairing (Linder et al., 2009) can produce a strong zero-energy
peak [in that system, c↑ ¼ c↓ in which case Eq. (156) cannot
be used]. Nevertheless, this derivation shows that the existence
of odd-ω correlations is not equivalent to a nongapped density
of states: a large odd-ω amplitude ft can be present even if the
system is fully gapped. A practical example of such a system
where this occurs is a thin-film superconductor with an in-
plane magnetic field (Linder and Robinson, 2015a).
Closing this section, we note that odd-ω Berezinskii pairing

was recently discussed in the context of another class of
insulating materials besides topological insulators, namely,
so-called Skyrme insulators (Erten et al., 2017) existing on
the brink of a superconducting phase, which could be an
interesting topic to explore further.

D. Andreev bound states and odd-ω pairing

The equivalency between McMillan-Rowell resonances
with energy E < Δ in ballistic NS junctions and the presence
of odd-frequency correlations was described in Sec. V.A.
However, there is a fundamental equivalence not only between
odd-ω pairing and such spatially extended bound states,
existing throughout the N region, but also between odd-ω
pairing and the so-called zero-energy states bound to a
superconducting interface. Such states play an important role
in the identification of unconventional types of superconduc-
tivity, where zero-energy states appear at certain crystallo-
graphic orientations of superconducting interfaces when the
material has a non-s-wave order parameter. These ZES are
also known as Andreev-bound states throughout the literature,
even though Andreev bound states need not in general reside
at the Fermi level (zero energy).
An example of ZES appearing in unconventional super-

conducting systems (Tanaka and Kashiwaya, 1995) is the
high-Tc cuprates which have a d-wave order parameter
symmetry. In the ab plane of materials such as YBCO,
experiments have shown that a d-wave superconducting order
parameter emerges (Tsuei and Kirtley, 2000). Let a surface
terminate the superconducting material so that kx is the
component of the quasiparticle momentum perpendicular to
the surface whereas ky is the component parallel to it. If the
orientation of the surface is such that the order parameter
satisfies the property

Δðkx; kyÞ ¼ −Δð−kx; kyÞ; ð157Þ

a ZES appears at the surface for that particular value of ky. In
the dxy-wave case Δ ¼ Δ0ðkxkyÞ=k2F, this condition is met for
all modes ky, leading to a large zero-bias conductance peak as
observed in STM measurements (Alff et al., 1997; Wei et al.,
1998). Other types of unconventional pairing, such as chiral
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p-waveΔ ¼ Δ0ðkx þ ikyÞ=kF, satisfies this condition only for
specific values of ky (ky ¼ 0 in the chiral p-wave case) which
leads to a much less pronounced enhancement of the con-
ductance at zero bias. The relation between zero-energy
Andreev bound states and topology was examined by
Sato et al. (2011).
Coming back to the relation to odd-ω pairing, Tanaka et al.

(2007) showed that when the criterion for the formation
of ZES was satisfied, it was invariably accompanied by a
strong enhancement of the odd-ω correlations at the interface,
even exceeding the even-ω correlations. To see this analyti-
cally, one may derive an expression for the anomalous
Green’s function induced at the interface separating a normal
metal from an unconventional superconductor in the low-
transparency limit. Neglecting the spatial dependence of the
pair potential near the interface, one obtains for a singlet dxy
wave superconductor

f ¼ iΔ0

ωn
j sinð2θÞjsgnðsin θÞ; ð158Þ

whereas for a triplet px-wave superconductor the result is

f ¼ iΔ0

ωn
j cos θj: ð159Þ

In both cases, the anomalous Green’s function is proportional
to the inverse of ωn, reflecting precisely the odd-ω symmetry.
Importantly, there is a difference in parity with regard to
the quasiparticle momentum direction θ in the two cases: the
p-wave case results in an even-parity f whereas the d-wave
case results in an odd-parity f. This causes the proximity
effect to differ strongly between the two cases in the case
where the normal metal is diffusive, i.e., when impurity
scattering is frequent, causing an isotropization of quasipar-

ticle trajectories equivalent to averaging
R π=2
−π=2 dθ � � �. The odd-

ω Green’s function induced from the p-wave superconductor
survives due to its even parity, whereas it does not in the
d-wave case. Hence, as noted by Tanaka et al. (2004), the
proximity effect and presence of ZES are antagonists in
diffusive metals coupled to d-wave superconductors whereas
they can coexist in the p-wave case.
The presence of ZES, which we have argued is accom-

panied by the presence of strong odd-ω correlations and may
thus be interpreted as a manifestation of odd-ω superconduc-
tivity, does not necessarily require unconventional super-
conducting order such as a p or a d wave. As discussed in
Sec. V.B, separating a conventional s-wave superconductor
from a normal metal by a magnetic barrier (e.g., a ferromag-
netic insulator such as GdN or EuO), ZES would arise at the
interface and manifest as a zero-energy peak in both the
superconducting and normal metal regions (Linder et al.,
2009, 2010). Just as in the case previously described with
unconventional superconductors, the ZES was again accom-
panied by odd-ω pairing and even completely suppressed
even-ω correlations at zero energy.
The first clear experimental observation of Andreev bound

states close to zero energy due to a spin-active interface was
reported by Hübler et al. (2012). They reported on high-
resolution differential conductance measurements on a

nanoscale superconductor/ferromagnet tunnel junction with
an oxide tunnel barrier, and saw evidence of a subgap surface
state stemming from the spin-active interface; see Figs. 22(b).
A much stronger signature of an Andreev bound state at the
Fermi level, manifested by a zero-energy peak several times
larger than the normal-state value of the density of states, was
recently experimentally observed in an S=FI=N system
comprised of NbN/GdN/TiN (Pal et al., 2017); see Fig. 22(c).
The physical mechanism which allows for the appearance

of ZES and odd-ω pairing via a magnetic interface is spin-
dependent scattering phase shifts θσ , σ ¼ ↑;↓ defined from
the reflection coefficients rσ ¼ jrσjeiθσ . When electrons scat-
ter on a magnetic interface, transmitting or reflecting, both
the magnitude of the scattering coefficients and their phase
depend on the electron spin. The difference between the spin-
up and spin-down phases is thus in general finite, but it is
particularly instructive to consider the case where it is equal
to π. The reason for this is that in this case one can establish a
perfect analogy to the ZES appearing due to higher-angular
momentum pairing such as p wave or d wave. The phase
shifts then give rise to a sign change for each Andreev
reflection process in the same way as the pairing potential
itself provides this sign change in the p- or d-wave cases, as
illustrated in Fig. 23. As a result, a bound state at zero energy

FIG. 22. (a) Scanning electron microscopy image of the
Al=AlOx=Fe sample used by Hübler et al. (2012) along with
the measurement scheme. (b) Differential conductance spec-
trum for the structure at zero magnetic field (B ¼ 0), together
with a theoretical fit (red line). (a), (b) Adapted from Hübler
et al., 2012. (c) Differential conductance (dI=dV) measure-
ments normalized to the normal-state value of a 100 nm
NbN/3 nm GdN/30 nm TiN tunnel junction demonstrating
the evolution of a zero-energy peak with decreasing temper-
ature.) Adapted from Pal et al., 2017.
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arises even for a conventional s-wave superconductor in
contact with a ferromagnetic insulator (FI). For an arbitrary
value of the phase shifts Δθ≡ θ↑ − θ↓, the bound-state
energy in a ballistic S=FI=N junction occurs at

E ¼ Δ0 cosðΔθ=2Þ: ð160Þ

The theoretical fit to the experimental results thus suggested
Δθ ¼ 0.94π in Hübler et al. (2012) whereas Δθ ¼ 0.98π in
Pal et al. (2017).
It is worth emphasizing that there are other physical

mechanisms that can provide zero-bias conductance peaks
in fully conventional N=S junctions without any occurrence
of odd-ω pairing. One example of this is reflectionless
tunneling (Volkov, Zaitsev, and Klapwijk, 1993) which occurs
for low-transparency junctions with a small Thouless energy

ETh ¼ D=L2 ≪ Δ, which in essence consists of repeated
attempts of electron transmission through the barrier in the
form of Andreev reflection due to backscattering from
impurities. This phenomenon takes place in diffusive junc-
tions even for s-wave superconductors and thus leads to a
zero-energy enhancement of the conductance without any
presence of odd-ω correlations. This shows that it is important
to distinguish between the conductance of a junction and the
local density of states: the two do not necessarily coincide. An
enhancement of the local density of states in superconducting
hybrid structures, in the form of ZES at an interface, will be
accompanied by odd-ω correlations, whereas a zero-bias
conductance enhancement in a voltage-biased N=S junction
can occur due to Andreev reflection without any accompany-
ing odd-ω Cooper pairs.

VI. BEREZINSKII PAIRING FOR MAJORANA FERMIONS
AND IN NONSUPERCONDUCTING SYSTEMS

A. General definition of the pairing states
and relation to odd-ω pairing

It is useful to place odd-ω states in a broader context of the
pairing states beyond superconductivity. To be general we
define a “pairing state” as a state where the thermodynamic
ground state is represented by a behavior of the matter field
operator Ô such that the expectation value hÔi ¼ 0, yet the pair
field operator hÔð1ÞÔð2Þi, has a long-range order where 1,2
label states (be it space, time, spin, orbital, or other indices).
The inclusion of time seems to be a natural extension needed to
consider dynamic orders. This is a natural generalization of the
definition given by Yang (1962) for off-diagonal long-range
order. We call this state a pairing state in the sense that pairing
correlations develop. In principle, any field, be it bosonic or
fermionic, can develop pairing correlations. Specific examples
of a pairing state include the following cases:

• Fermions, where Ô ¼ ψ and ψ is a fermion operator. In
this case, the pairing state can be (but does not have to
be) a superconducting state. Certainly, any supercon-
ducting order is an example of the pairing state. In the
case of fermions we get hψi ¼ 0, yet hψð1Þψð2Þi has
long-range order in the superconducting state.

• Bosons, with Ô ¼ b and b is a boson operator. In
this case one can envision the states such as Bose
nematic (Balatsky, 2014) or spin nematic (Balatsky
and Abrahams, 1995). For spin bosons Ô ¼ S, we
obtain a paramagnetic state with no single-spin expect-
ation value yet with finite nematic order (Andreev and
Grishchuk, 1984; Balatsky and Abrahams, 1995).

• Majorana fermions Ô ¼ γ. One can easily extend the
Berezinski symmetry classification to Majorana states
and one arrives at

Mabð1; 2Þ ¼ −Mbað2; 1Þ;
Mabð1; 2Þ ¼ −hT γað1Þγbð2Þi. ð161Þ

The proof goes essentially along the same lines as in the
case of the Dirac fermions and is discussed next and in
detail by Huang, Wölfle, and Balatsky (2015).

(a)

(b)

FIG. 23. (a) Andreev bound state (ABS) formed at the interface
between a normal metal and an s-wave superconductor separated
by a magnetic barrier, e.g., a ferromagnetic insulator. The spin-
dependent phase shifts arising due to the magnetic barrier give
rise to an interface state which appears at zero energy for strong
enough phase shifts. (b) ABS formed at the interface between a
normal metal and a d-wave superconductor separated by a
nonmagnetic barrier, e.g., an insulator. The electronlike and
holelike excitations experience different signs of the pair poten-
tial ΔðkÞ upon scattering, leading to the formation of a zero-
energy state. In both (a) and (b), the bound state at the interface is
accompanied by a strong increase in the magnitude of the odd-ω
correlations, quantified via the anomalous Green’s function f.
The dashed line indicates how quasiparticles are Andreev
reflected back toward the interface by the pair potential ΔðkÞ
after penetrating a distance ∼ξS into the superconductor.

Jacob Linder and Alexander V. Balatsky: Odd-frequency superconductivity

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045005-42



One has to distinguish a pairing state from a true super-
conducting state for they are in general different. In the
superconducting case one has a whole set of attributes such as
the Meissner effect, phase stiffness, superflow, flux quantiza-
tion, and so forth. A pairing state, while looking similar to the
superconducting state at first glance, does not have to possess
any of these features. In this sense, a pairing state is a simpler
phenomenon than superconductivity. The second reason is
that a pairing state can occur for states that are localized, like
the case of localized Majorana modes or for neutral bosons
like the case of spin nematic. Neither of these states will be
able to carry any charge current.
This general introduction to pairing states now prepares us

to, later in this section, go beyond traditional superconducting
states and discuss pairing states in novel settings.

B. Majorana fermions as a platform for odd-ω pairing
and the Sachdev-Ye-Kitaev model

The possibility to create and manipulate Majorana fermions
in condensed matter systems is currently subject to intense
research (Alicea, 2012). Noted to exist at the edge of spinless
p-wave superconductors (Kitaev, 2001), the interest in solid-
state Majorana excitations took off on a spectacular level
in 2008 when it was predicted that they would appear in
heterostructures comprised of topological insulators and
superconductors (Fu and Kane, 2008). Soon after, it was also
predicted that Majorana fermions (more accurately referred to
as a Majorana bound state as it is typically bound to interfaces
or vortex cores) should exist in heterostructures comprised
of semiconducting and superconducting structures (Lutchyn,
Sau, and Das Sarma, 2010; Oreg, Refael, and Oppen, 2010) as
well as in superfluids with Rashba spin-orbit coupling and a
Zeeman field (Sato, Takahashi, and Fujimoto, 2009). Recent
experiments (Mourik et al., 2012; Nadj-Perge et al., 2014;
Albrecht et al., 2016) reported measurements which are
largely consistent with the theoretical predictions.
We start with the question about the pairing state of

Majorana fermions when they are considered to be free
particles. In other words, first we assume that there are
Majorana fermionic excitations and that they can exist as
independent particles. The question we are asking is what are
the symmetries of possible pairing states that emerge? We
point out that Majorana fermions basically realize the odd-ω
pairing from the outset.
A Majorana fermion is its own antiparticle, a property

expressed through c ¼ c† in a second quantized language.
The general symmetry of any pairing state of Majorana
fermions was given by Eq. (161). We see from this classi-
fication there is an important relationship between Majorana
fermions and odd-ω pairing. Majorana fermion operators are
real and they represent particle creation and annihilation
operators at the same time. Hence, any particle-hole propa-
gator G ¼ −hT τγ

†ðτÞγð0Þi is at the same time a particle-
particle propagator FðτÞ ¼ −hT τγðτÞγð0Þi. For the single
zero-energy mode we thus obtain

GðωnÞ ¼ FðωnÞ ¼
1

iωn
. ð162Þ

This observation is at the core of the growing list of examples
of the odd-ω state in Majorana fermions (Asano and Tanaka,
2013; Huang, Wölfle, and Balatsky, 2015). It is appropriate
to mention here the early works by Coleman, Miranda,
and Tsvelik (1993b, 1994, 1995) who discussed odd-ω
Berezinskii pairing in a model with Majorana fermions.
Since the Majorana phase is topological, the structure of
the propagators may change but the basic property in which
the pairing correlator F is an odd function of frequency or time
will remain. To illustrate the utility of Majorana states as a
platform for odd-ω pairing states we consider the case of
(i) free Majorana fermions and (ii) the case of zero-energy
Majorana modes at the ends of a wire, in effect bound states.
Case (i): The free Majorana theory has a Lagrangian

L ¼
X
k

ðiγ†k∂τγk − Ekγ
†
kγkÞ ð163Þ

with the condition that Majorana fermions obey the reality
conditions for the fermion operator: γk ¼ γ†−k and γ†ðrÞ ¼
γðrÞ. Here EðkÞ is the dispersion of the Majorana mode
whose detailed shape is not important for this discussion.
The Green’s function (particle-hole Majorana fermion propa-
gator) Gðr; τÞ ¼ −hT τγ

†ðr; τÞγð0; 0Þi is then identical to the
anomalous Green’s function (particle-particle) Fðr; τÞ ¼
−hT τγðr; τÞγð0; 0Þi. Thus, the free Majorana fermion propa-
gator has the form

Gðk; iωnÞ ¼ Fðk; iωnÞ ¼ 1=ðiωn − EkÞ: ð164Þ

Interestingly, Majorana fermions realize a mixed pairing
state. From Eq. (164) we deduce that F describes a pairing
state that has both even-frequency and odd-ω components:

Feven ∼
Ek

ðiωnÞ2 þ E2
k
; Fodd ∼

iωn

ðiωnÞ2 þ E2
k
. ð165Þ

This conclusion could have been drawn in 1937 when
Majorana fermions were proposed for the first time
(Majorana, 1937; Wilczek, 2009). Unfortunately, this con-
nection to pairing was not possible at the time as the notion
of the anomalous propagators (Gor’kov F function) as a key
element for microscopics of superconductivity was not
invented yet. With all its simplicity this relation between F
and G in the case of Majorana fermions projects an important
general message: Majorana fermions as a many-body system
is conducive to form odd-ω pairing states. This conclusion is
universal. We give a few specific examples later.
Case (ii): We next proceed with the case of two Majorana

zero-energy modes. The scheme to realize zero-energy modes
located at the ends of a superconducting wire is shown in
Fig. 24. For the case of two modes at the ends of the wire (μ, ν)
with no hybridization between them the two energy modes
correspond to Ek ¼ 0 in Eq. (165) and one has two odd-ω
pairing correlations for μ, ν fermions. Upon turning on the
hybridization Γhyb between the ends of the wire, the
Lagrangian of the system becomes

L ¼ iμ∂τμþ iν∂τν − iΓhybμν. ð166Þ
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In matrix form, one has for a Majorana spinorΨ ¼ ðμ; νÞT that
L ¼ Ψi∂τΨ − iΓhybΨσyΨ which leads to

ĜðiωnÞ ¼
iωn þ Γhybσy
ðiωnÞ2 þ Γ2

hyb

. ð167Þ

Again we see that the hybridized Majorana wire contains both
even-ω and odd-ω components:

Godd
μμ ¼ iωnδμν

ðiωnÞ2 þ Γ2
hyb

; ð168Þ

Geven
μν ¼ Γhybσy;μν

ðiωnÞ2 þ Γ2
hyb

. ð169Þ

The Berezinskii component will be odd under μ − ν
permutations and the odd-ω component is explicitly even
under orbital index permutation, consistent with the general
SP�OT� constraint, required for the pairing matrix M in
Eq. (161) (Huang, Wölfle, and Balatsky, 2015).
Both the examples illustrate unique utility of Majorana

states as a platform to realize odd-ω pairing. The field of
pairing states of Majorana fermions is in its infancy and it is
poised to generate new results, hopefully with surprises along
the way. So far, we have been addressing the issue of the
pairing states of Majorana fermions that hold regardless of
their precise origin.
With the experimental realization of the Majorana fermions

in the wires, we now can address the pairing states of
Majorana fermions in the case where we have a large number
of them. Going beyond single Majorana fermions, Huang,
Wölfle, and Balatsky (2015) studied the interaction between
different Majorana fermions located at the opposite ends of a
topological wire. From such interactions, pairing between
Majorana fermions can be envisioned to occur which prompts
the question: what type of instability occurs when pairs of
Majorana fermions condense? When studying pairing insta-
bilities within an effective Hamiltonian framework, one
usually considers a time-independent scenario whereby the
instabilities are implicitly assumed to be dominated by their
equal-time behavior. This must necessarily be described by
the even-ω component of the pairing amplitude. However,
since Majorana fermions are their own antiparticles, one
should be careful with regard to any time (or frequency)
dependence. This can be seen by considering a pairing
correlator of the type fτ ¼ T τhγðτÞγð0Þi, where γ is a
Majorana operator and τ is the Matsubara time. Such a

correlator must be odd in τ by the mathematical properties
of γ, thus forcing fτ to vanish at equal times.
Huang, Wölfle, and Balatsky (2015), consider the model in

Fig. 25, where different Majorana modes can pair up due to an
interaction induced via coupling to an external boson. Unlike
same-mode pairing, which must be odd ω due to fermionic
statistics, there is no such requirement on the frequency
dependence for cross-mode Majorana pairing. At the same
time, the odd-ω solution has a lower free energy than the
even-ω solution for such pairing and indicates that the former
is the most stable. When considering a pairing amplitude of
the type fτ previously described, one usually associates it with
some form of long-range order such as superconductivity or
superfluidity. However, it should be noted that the existence of
fτ ≠ 0 does not automatically guarantee for instance Uð1Þ
gauge symmetry breaking related to phase coherence. It is
still of interest to discuss such a pairing correlator such as fτ
as they may be important indicators of the existence of
superstates.
Let a ¼ 1, 2 denote the two edges for each wire in Fig. 25

and let i denote the wire index, so that γia ¼ ðγiaÞ† represents a
Majorana operator at edge a of wire i. The pair amplitude
satisfies

fijabðτÞ ¼ T hγiaðτÞγibð0Þi ¼ −fjibað−τÞ ð170Þ

which follows simply from the definition of the time-ordering
operator as long as there is only a dependence on the relative
time coordinate τ (as assumed here). This is the same type
of antisymmetry under an exchange of particle indices as
encountered in the standard Pauli principle for Dirac, rather
than Majorana, fermions. Majorana fermion pairing can in fact
be viewed as an analog to equal-spin Dirac fermion pairing.
If one initially considers same-wire pairing (i ¼ j) in the

absence of any interactions, it follows that

fiiabðτÞ ¼ fiiabðτÞδab; ð171Þ

where the δab dependence arises due to the absence of any
interactions between the edges. To satisfy Eq. (170), it is clear
that fiiabðτÞ ¼ −fiiabð−τÞ which means that the only pairing
channel available for a single Majorana fermion is the odd-ω

FIG. 24. Two Majorana modes localized at the end of a wire
with a finite hybridization Γhyb. From Huang, Wölfle, and
Balatsky, 2015.

FIG. 25. Schematic setup of multiple superconducting wires
hosting Majorana fermions on their edges. The fermions are
represented by operators μia (denoted γia in the main text) where
i is the wire index and a ¼ 1, 2 label the two edges of each wire.
The dashed line illustrates possible couplings between Majorana
fermions on neighboring wires. Adapted from Huang, Wölfle,
and Balatsky, 2015.
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one. In fact, this analysis shows that a Majorana state at zero
energy is simply a realization of an odd-ω pairing state. This
makes sense physically, since the Majorana fermion is both a
particle and a hole, so that its single-particle propagators is
simultaneously a pair propagator. The case of interacting
Majorana fermions on a single wire is more complicated and
has been covered in detail by Huang, Wölfle, and Balatsky
(2015). The key result in this case is that a Berezinskii state is
stabilized when the coupling strength g between the Majorana
modes exceeds a critical value, as shown in Fig. 26.
One can also see the relation between Berezinskii pairing of

Majorana states and phases of interacting Majorana fermions
in the Sachdev-Ye-Kitaev (SYK) model describing a large
number of Majorana femions interacting with each other
(Sachdev and Ye, 1993; Polchinski and Rosenhaus, 2016;
Maldacena and Stanford, 2016; Kitaev and Suh, 2018). The
SYK Hamiltonian is given by “all with all” quartic inter-
actions H ¼ ð1=4ÞPN

ijkl Jijklγiγjγkγl with zero kinetic energy
for Majorana fermions γi. In the large N limit in 0þ 1
dimensions, one finds for the Majorana propagators

Gijðt; t0Þ ¼ Fijðt; t0Þ ¼ −ihT γiðtÞ; γjðt0Þi

∝
δijffiffiffiffiffiffiffiffiffiffiffiffiffijt − t0jp sgnðt − t0Þ. ð172Þ

Interactions induce an anomalous fermion dimension of 1=4,
as seen from the Majorana propagator. It was shown that this
model describes a phase with no well-defined quasiparticles.
The main point relevant in our context is that the interacting
Majorana zero-energy modes have odd-ω Berezinskii corre-
lations, as was the case for free Majorana states. Hence, the
interacting SYK model specifically, and possibly other inter-
acting Majorana mode models, produces Berezinskii paired
states as a ground state in the thermodynamic limit. This
observation could potentially open up a new route to create
odd-ω states in interacting models.
A complementary approach taken in the literature is to

connect the properties of the original fermion superconducting
states with zero-energy states and with a Majorana fermion

description. Asano and Tanaka (2013) investigated this issue
by considering topologically nontrivial NS and SNS junc-
tions. Here N is a nanowire with strong spin-orbit coupling
subject to either an external magnetic field or with a
proximity-induced exchange field from a magnetic insulator.
Their main finding was that the odd-ω correlation function
amplitude abruptly increased upon transitioning from the
topologically trivial and nontrivial states, and that odd-ω
superconductivity arose at the precise locations of the
Majorana fermions. For a quantitative analysis, it is useful
to note that the physics in the topologically nontrivial state of
the nanowire is essentially the same as that of a spinless 1D
px-wave superconductor (Kitaev, 2001). It is in this frame-
work that the relationship between Majorana fermions and
odd-ω Cooper pairs can be brought out most clearly. Asano
and Tanaka (2013) considered a semi-infinite px supercon-
ducting wire occupying the region x > 0 which is known to
host a Majorana fermion at its edge. The Majorana fermion
resides at the Fermi level E ¼ 0. By solving the Bogolioubov–
de Gennes equation, the wave function ϕ0ðxÞ for the Majorana
surface states is obtained as

ϕ0ðxÞ ¼ CðxÞ
�

χ

χ�

�
; ð173Þ

where we define the quantities

CðxÞ ¼
ffiffiffiffiffiffiffi
2=ξ

p
e−x=2ξ0 sinðkxÞ; χ ¼ eiπ=4eiϕ=2; ð174Þ

and ξ is the coherence length. We also introduce the retarded
Green’s functions in the standard way:

Gðx; t; x0; t0Þ ¼ −iΘðt − t0Þhfψðx; tÞ;ψ†ðx0; t0Þgi;
Fðx; t; x0; t0Þ ¼ −iΘðt − t0Þhfψðx; tÞ;ψðx0; t0Þgi; ð175Þ

where ψðxÞ is the annihilation operator of a spinless electron.
In the low-energy regime jEj ≪ Δ, the electron operator
representing the surface state reads

ψðxÞ ¼ ψ0ðxÞ ¼ CðxÞχðγ0 þ γ†0Þ; ð176Þ

where γ0 is a fermion annihilation operator. Inserting
Eq. (176) into Eq. (175) after converting the Green’s functions
to a spectral representation, one obtains for jEj ≪ Δ

Gðx; x0; EÞ ¼ 2CðxÞCðx0Þ
Eþ iδ

;

Fðx; x0; EÞ ¼ 2CðxÞCðx0Þ
Eþ iδ

ieiφ; ð177Þ

so that the relationGðx; x0; EÞ ¼ −ie−iφFðx; x0; EÞ is satisfied.
To extract the s-wave pairing amplitude described by this
anomalous Green’s function F, we set x ¼ x0 to consider local
pairing. Doing so, it follows from Eq. (177) that the real part
of −ie−iφF is an odd function of energy E, whereas the
imaginary part is an even function of E. As shown by Asano
and Tanaka (2013), this is the defining mathematical property
of odd-ω superconductivity. This work established the fact that

FIG. 26. Phase diagram of the normal and pairing states of
collection of Majorana states is shown. For the large coupling
between the ends of the wire, the system will have strong pairing
fluctuations in the odd-ω channel. The phase diagram is drawn
for the mean-field solution of the pairing state. As explained,
Majorana states have a strong propensity to form the odd-ω state.
The solid green line shows the critical temperature Tc ∝ g2. From
Huang, Wölfle, and Balatsky, 2015.
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p-wave superconducting pairing in the case of a topologically
nontrivial case producesMajorana fermions and relates them to
the appearance of the odd-ω pairing of the original pairing
states (Ψ). Going back to the original nanowire-superconductor
heterostructure, a numerical computation of the Green’s
functions using a tight-binding Hamiltonian confirmed the
sharp increase in the odd-ω amplitude at the topological
transition point, as shown in Fig. 27.
Another intimate link between odd-ω superconductivity

and Majorana fermions was recently further explored
(Kashuba et al., 2016; Lee, Lutchyn, and Maciejko, 2016).
Lee et al. showed that by coupling s-wave superconductors to
spin-orbit coupled semiconducting wires, odd-ω supercon-
ductivity was induced in the wires and provided a para-
magnetic Meissner effect (Lee, Lutchyn, andMaciejko, 2016),
similar to the system considered by Espedal, Yokoyama, and
Linder (2016). Kashuba et al. proposed to use an STM tip with
a Majorana bound state at the tip as a probe for odd-ω
superconductivity in materials. The reasoning behind this idea
is that, as noted by Huang, Wölfle, and Balatsky (2015), the
Majorana bound state is the smallest unit that by itself shows
odd-ω pairing due its particle-antiparticle equality. Therefore,
a supercurrent can flow only between the Majorana STM tip
and the material being probed if odd-ω superconductivity is
present in the material itself. They applied this idea to the
tunneling problem between a Majorana STM and a quantum
dot coupled to a conventional superconductor as shown in
Fig. 28. By applying an external field, the effective super-
conducting pairing in the quantum dot can be tuned between
even-ω and odd-ω pairing with a resulting clear signature
provided in the STM-tunneling spectra.

C. Berezinskii pairing in nonsuperconducting systems

There is a priori no reason to expect that the Berezinskii
states are confined to only superconducting states. Hence the
exploration of other odd-ω Berezinskii states is only natural.

In this section we review the work that takes a broader view
on the odd-ω state and goes beyond superconductivity. There
is good motivation to work on nonsuperconducting odd-ω
states. This effort, while small in scale, has the potential to
open connections to hidden orders, namely, the orders where
conventional equal-time correlations vanish and one has to
expand the search to allow for composite or strongly time-
dependent correlations.

1. Ultracold Fermi gases

Whereas electrons comprise the Cooper pairs in super-
conductors, the superfluid state in fermionic cold atom
systems exhibits conceptually the same type of pairing
between atoms. This means that all previously discussed
symmetry classifications of the pairing correlation functions
in this review carry over to the cold atom case. A particularly
interesting scenario occurs if not only fermions are present,
but if instead a binary mixture of bosonic and fermionic cold
atoms coexist. In such a case, one might expect the standard
fermion pairing mediated by the phonon field of the boson gas
to take place and send the system into a superfluid phase.
However, it turns out that Berezinskii pairing shows up in this
context as well, underscoring the ubiquity of this type of order
in a wide variety of systems.
The possibility of realizing odd-ω superfluidity in a boson-

fermion mixture of cold atoms, experimentally possible to
achieve in atomic traps, was discussed by Kalas, Balatsky, and
Mozyrsky (2008). Because of interactions with the phonon
excitations in the bosonic subsystem, the fermionic atoms
were shown to exhibit odd-ω pairing at low temperatures if the
coupling γ between the fermions and phonons exceeded a
threshold value γc. Starting out with a Hamiltonian density
describing the fermion-boson mixture:

H ¼ H0
B þH0

F þ λBB
2

jψ†
BψBj2 þ λBFψ

†
BψBψ

†
FψF; ð178Þ

where H0
B;F are the Hamiltonians for noninteracting bosons

and fermions whereas λBB and λBF are the boson-boson and
boson-fermion coupling constants. Direct fermion coupling

FIG. 27. The normal (g↑↑) and anomalous ðf↑↑Þ Green’s
functions plotted at the superconducting interface (lattice position
j ¼ 10 in this model) for E ¼ 0 as a function of the exchange
field strength Vex normalized to the hopping amplitude t. At the
topological phase transition Vex ¼ Vc, where the Majorana
fermion emerges, the odd-ω amplitude has a sharp increase.
Adapted from Asano and Tanaka, 2013.

FIG. 28. Schematic usage of the Majorana STM. The tip
contains a Majorana bound state γ which probes odd-ω super-
conductivity in the quantum dot (QD) via a tunnel coupling.
Superconductivity exists in the QD via proximity to a host s-wave
superconducting material, and the pairing can be tuned between
even-ω and odd-ω via an external magnetic field. Adapted
from Kashuba et al., 2016.
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was neglected by Kalas, Balatsky, and Mozyrsky (2008) by
assuming a magnetic trap with fully spin-polarized fermions.
As usual, the onset of a pairing instability is accompanied

by a nonzero anomalous correlation function fðωn; qÞ which
is related to the normal Green’s function gðωn; qÞ via a
linearized self-consistency equation derived within the
Eliashberg formalism:

g−1ðωn; qÞg−1ð−ωn; qÞfðωn; qÞ
¼ T temp

X
ωn0 ;q

0
fðωn0 ; q0Þ

×
λ2BF
2

½Dðωn − ωn0 ; q − q0Þ −Dðωn þ ωn0 ; qþ q0Þ�;
ð179Þ

where ωn ¼ πT tempð2nþ 1Þ is the Matsubara frequency and
D is the renormalized phonon propagator. A key observation
is that Eq. (179) does not permit standard s-wave equal-time
pairing, due to the effective spinless nature of the fermions in
the system under consideration. The renormalized propagators
g and D can be obtained via the Dyson equation and the
resulting critical temperatures Tc for the s-wave odd-ω and p-
wave superfluid states, respectively, as a function of the scaled
fermion-phonon coupling parameter γ ≡ λ2BFq

2
F=ð2π2λBBvFÞ

is shown in Fig. 29, where qF and vF are the Fermi momentum
and Fermi velocity, respectively. As seen, the odd-ω super-
fluid transition is possible above a critical strength γc for the

scaled fermion-phonon coupling, which turns out to be close
to the coupling strength at which the mixture phase separates
(Kalas, Balatsky, and Mozyrsky, 2008).

2. Bose-Einstein condensates

Up to now, we have treated odd-ω pairing between fermions
in the context of superconductors and superfluids. Such states
are characterized by a finite expectation for two-fermion
correlation functions of the type hcci ≠ 0, where c describes
the annihilation of a fermion. In contrast, the superfluid
ground state in Bose-Einstein condensates is characterized
by a finite expectation value for a single-particle boson field b,
so that hbi ≠ 0. In the steady state, no time dependence needs
to be invoked.
However, there are other scenarios where the single-particle

expectation value is zero at the same time as there exists a
nontrivial ordering in the system. Spin nematics, to be treated
in more detail in the next section, is an example of this, where

hSðrÞi ¼ 0 ð180Þ

while the two-spin correlator

hSiðrÞSjðr0Þi ¼ Qijðr; r0Þ ¼ Qðninj − δij=3Þ ð181Þ

is finite and describes a nontrivial spin texture via the nematic
vector n. If we now generalize Eq. (181) to include the time
coordinate as well, it is possible to obtain even- and odd-
time magnetic correlations in the spin system, analogously to
odd-ω pairing.
Based on this reasoning, it should in principle be possible

to introduce an odd-ω two-particle Bose-Einstein condensate
as proposed by Balatsky (2014). Consider the correlation
function

Dabðr − r0; τ − τ0Þ ¼ T τhbaðr; τÞbbðr0; τ0Þi ð182Þ

as relevant for a translationally invariant, equilibrium state
with no center-of-mass space or time dependence. We
attached an index a to the boson operators to characterize
their quantum state, encompassing spin, orbital index, or
band. If the system is such that

hbaðr; τ ¼ 0Þi ¼ 0; ð183Þ

while at the same time

Dabðr − r0; τ − τ0Þ ≠ 0; ð184Þ

we established a situation where there is no single-particle
condensate, whereas there still exists a nontrivial boson
condensate (Dab ≠ 0). This condensate consists of pairs of
bosons which have an odd-ω symmetry if Dab is an odd
function of time, meaning Dabðτ − τ0Þ ¼ −Dabðτ0 − τÞ.
A symmetry classification for the possible two-boson

condensates described by the correlator Dab differs from
the fermionic case treated earlier in this review, since Bose
statistics dictates that

FIG. 29. Critical temperature Tc vs the scaled fermion-phonon
coupling γ. Solid lines: critical temperature for s-wave odd-ω
pairing. Dashed lines: critical temperature for p-wave pairing.
We have defined cS as the phonon speed of sound and ξ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ20 þ γ=12q2F
p

, where ξ0 is the boson coherence length. Adapted
from Kalas, Balatsky, and Mozyrsky, 2008.
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Dabðr; τÞ ¼ Dbað−r;−τÞ: ð185Þ

It is useful to draw upon the operators P�, T�, and O
introduced previously in this review. Let a denote the orbital
index for concreteness and define the orbital permutation as
ODab ¼ Dba. The difference between bosons and fermions is
reflected in a new SP�OT� ¼ þ1 rule for bosons. The
complete list of possible nontrivial condensates with Dab≠0

is summarized in Table VI.
If the condensate has an odd-ω symmetry, it follows that the

equal-time correlator must vanish so that Dabðr; 0Þ ¼ 0. In
that case, there is no finite expectation value for either single-
or two-particle correlation functions. In order to define an
order parameter for the odd-ω two-particle Bose-Einstein
condensate which exists at equal times, one possibility is to
use the time derivative of Dab. For small enough τ, we can
write Dabðr; τÞ ¼ dabðrÞτ so that

dabðrÞ ¼ ∂τDabðr; τÞjτ¼0 ð186Þ

serves as a bona fide order parameter for the condensate.
The question is nevertheless if it is possible to realize

experimentally such an odd-ω two-boson Bose-Einstein con-
densate. The main challenge is the composite nature of such a
condensed state and the fact that a single-particle condensate
should not simultaneously exist. One possibility could never-
theless be to use a Bose-Einstein condensate proximity effect,
where the presence of a medium with additional low-energy
excitations could dress the bosons in the conventional Bose-
Einstein condensate via tunneling and possibly develop an
odd-ω component. A fully microscopic model supporting a
two-boson Bose-Einstein condensate as its ground state
remains an open problem.

3. Chiral spin nematic

It is also possible to introduce a magnetic analog of odd-ω
superconducting order (Balatsky and Abrahams, 1995). The
generalization of odd-ω ordering to a spin system requires
consideration of the symmetry equation describing the
dynamic correlation function for the spin density Siðr; tÞ
(i ¼ 1, 2, 3). The spin-spin correlation function may be
written as

Λijðr; r0; tÞ ¼ T thSiðr; tÞSjðr0; 0Þi; ð187Þ

where t as before is the relative time coordinate between the
spin operators. Because of the properties of the time-ordering
operator T t alone, it follows that

Λijðr; r0; tÞ ¼ Λjiðr0; r;−tÞ; ð188Þ

which is valid for any rank spin S. At a mathematical level,
this establishes the possibility to have odd-ω magnetic
states characterized by a spin-spin correlation function that
is an odd function of the relative time t. Interestingly, not
only is the chiral spin-liquid state recovered as one
classifies magnetic states that have odd-ω magnetic corre-
lations, but a new state is predicted as well which is the
odd-in-time analog of a spin-nematic state. Similar to the
spin-nematic state, first considered by Andreev and
Grishchuk (1984), the new state has nematic ordering in
spin space but additionally breaks time inversion and parity
symmetry. This state was named a chiral spin nematic by
Balatsky and Abrahams (1995).
A spin-nematic state displays spontaneous breaking of the

Oð3Þ spin rotation group without any average microscopic
expectation value of a single-spin operator, i.e., hSiðr; tÞi ¼ 0.
As in the Bose-Einstein case considered in Sec. VI.C.2 and
also in the case of odd-ω charge- and spin-density waves
discussed by Pivovarov and Nayak (2001), a possible choice
for odd-ω order parameter is the time derivative evaluated at
the relative time t ¼ 0:

∂tΛijðr; r0; tÞjt¼0 ¼ T th∂tSiðr; tÞSjðr0; 0Þit¼0: ð189Þ

The equation of motion for the spin operator Si takes the form

∂tSiðr; tÞ ¼ i½H; Siðr; tÞ� ¼ εijkSjðr; tÞMkðr; tÞ; ð190Þ

where the quantityMkðr; tÞ can be thought of as the molecular
field for the Hamiltonian H of the system. In the event that H
is bilinear in the spin operators, the general form of Mk is

MkðrÞ ¼
Z

dr0Kknðr; r0ÞSnðr0Þ; ð191Þ

where the kernel Kkn explicitly depends on the two coor-
dinates r and r0. In particular, assuming that the Hamiltonian
can be generally written as

H ¼ −
X
mn

Z
drdr0SmðrÞLmnðr; r0ÞSnðr0Þ; ð192Þ

the kernel takes the form Kknðr; r0Þ ¼ 2Lknðr; r0Þ. A key
observation at this stage is that a contribution from the
kernel to the time derivative of the odd-ω correlator [via
Eqs. (189)–(191)] occurs only if Kðr; r0Þ contains a spatially
odd component, i.e., antisymmetric under exchange of r
and r0. This places severe constraints on the type of possible
spin exchange models that can support an odd-ω spin-nematic
state. An example of such a H is nevertheless

H ¼ −
α

2

X
hi;ji

½S1 × S2 · S3�Pi
½S4 × S5 · S6�Pj

; ð193Þ

where α > 0. The sum is taken over nearest-neighbor pla-
quettes Pi (containing spins 1,2,3) and Pj (containing spins

TABLE VI. Symmetry properties of the two-boson correlator Dab
under the operators P�T�O. The odd-ω states are those where
T�Dab ¼ −Dab. Adapted from Balatsky, 2014.

P� T� O Total

þ1 þ1 þ1 þ1
þ1 −1 −1 þ1
−1 þ1 −1 þ1
−1 −1 þ1 þ1
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4,5,6) on a triangular lattice. This particular Hamiltonian has a
chiral spin-liquid ground state.
The new chiral spin-nematic state that arises when account-

ing for an odd-ω spin-spin correlation function Λij that is also
odd under a parity transformation r ↔ r0. One possible way
to generate this state could be to consider the quadrupolar
interaction in the chiral spin-liquid state (Balatsky and
Abrahams, 1995). The relation between a spin-nematic order
parameter and an odd-ω spin-density wave state was discussed
by Pivovarov and Nayak (2001).

VII. CONCLUSIONS AND OUTLOOK

We close this review by offering a perspective on directions
that in our opinion will be important for further progress in the
field of odd-ω Berezinskii superconductivity. As discussed,
odd-ω states can be spontaneously generated in the bulk or can
be induced in the heterostructures as a result of scattering of
conventional Cooper pairs. The guiding principle here is the
SP�OT� constraint that, together with Tables I and II, predicts
the possible pathways to induce odd-ω states. Most of the
literature on how to generate odd-ω states falls into these two
broad categories. We expect interesting future developments
in the field of odd-ω states both in the case of bulk states and
in heterostructures.
On the fundamental physics side, perhaps the most inter-

esting question is if a bulk odd-ω superconducting Berezinskii
state can be realized experimentally and, if so, what the
underlying microscopic mechanism for such a state is. The
debate regarding the thermodynamical stability of a bulk
odd-ω superconducting state has, as has been disseminated in
this review, been intense. At present, there is no consensus on
the Meissner stiffness of odd-ω Berezinskii superconductors.
On the one hand, early works (Coleman, Miranda, and
Tsvelik, 1993b; Abrahams et al., 1995) concluded that
stability requires a staggered composite order while later
works (Belitz and Kirkpatrick, 1999; Solenov, Martin, and
Mozyrsky, 2009; Kusunose, Fuseya, and Miyake, 2011a)
concluded that a thermodynamically stable odd-ω super-
conducting bulk state featuring a diamagnetic Meissner effect
is in principle possible even without a staggered order
parameter. On the other hand, Fominov et al. (2015) claimed
that a realization of a diamagnetic odd-ω Berezinskii state
implies the absence of a mean-field Hamiltonian description
of such a system. These two viewpoints have yet to be
reconciled.
Although it is too early to claim that a general consensus

has been reached, particularly in view of Fominov et al.
(2015), several works on the topic do conclude that a
thermodynamically stable odd-ω superconducting bulk state
featuring a diamagnetic Meissner effect is possible. However,
it is unclear what microscopic Hamiltonian would support this
state. In this context we also point to the recent results on the
optical properties of odd-ω superconductors (Sukhachov and
Balatsky, 2019).
We also reviewed a rapidly growing list of the odd-ω

Berezinskii components induced in a bulk superconductor
either due to multiband effects (Black-Schaffer and Balatsky,
2013a), e.g., in Sr2RuO4 (Komendová and Black-Schaffer,
2017) or MgB2 (Aperis, Maldonado, and Oppeneer, 2015),

due to interfacial coupling with the topological states (Black-
Schaffer and Balatsky, 2012) and due to the conventional dc
Josephson effect between two conventional superconductors.
The work on the induction of odd-ω components in the bulk of
superconductors only recently started and this direction of
research is likely to continue to grow.
A qualitatively new approach to generate Berezinskii states

dynamically has emerged recently. The inherent dynamic
nature of the odd-ω Berezinskii state, where the internal time
dependence of the pair correlation should be kept explicitly,
in hindsight, was always pointing to its origin as a dynamic
order (Triola and Balatsky, 2016, 2017). The view that the
Berezinskii state is a dynamic order offers a possible con-
nection to the ongoing discussion on time crystals (Wilczek,
2012; Choi et al., 2017; Zhang et al., 2017). We hope that this
intriguing connection will be further explored. In that regard,
the dynamic Rabi-like oscillations revealed in the odd-ω
channel in the conventional Josephson junction are sugges-
tive, as discussed in Sec. IV.H. We also pointed out that
the results for the non-Hermitian superconducting models
that induce odd-ω Berezinskii states are encouraging
(Bandyopadhyay et al., 2019).
It is clear that the concept of odd-ω pairing has implications

that reach well beyond superconductivity. As discussed, odd-
ω pairing may well lie at the root of different types of order
that do require considering nonlocal correlations in time,
whether these are correlations in the spin, charge, or another
type of channel. One example is the extension of the
Berezinskii pairing to the case of Majorana fermions
(Huang, Wölfle, and Balatsky, 2015; Gnezdilov, 2019). We
discussed the early stages of an understanding of how an
odd-ω state in a Majorana system is realized in a collection of
Majorana fermions. In principle, the question about the proof
of principle that an odd-ω state can be realized in the bulk is
thus answered. The setup required to produce this state in
collection of Majorana fermions is a complicated one, but
once we attain the many-body Majorana state we can see
that odd-ω correlations are expected in the ground state.
We mentioned that the SYK model explicitly realizes the
Berezinskii pairing state.
We believe the heterostructures and applications of odd-ω

states to spintronics will remain an active area. Existence of
odd-ω pairing is by now well established both theoretically
and experimentally in hybrid structures. Therefore, it is
possible to turn the gaze toward possible applicational aspects
of this type of superconductivity. In other words, can odd-ω
superconductivity offer a new type of functionality which
conventional BCS superconductivity cannot, for instance in
superconducting electronics? In this regard, the prospect of
utilizing odd-ω spin-polarized Cooper pairs in diffusive
heterostructures has garnered the most attention so far
(Linder and Robinson, 2015b). In fact, such Cooper pairs
demonstrate a resilience toward both the Pauli limiting field
and impurity scattering simultaneously, in contrast to conven-
tional Cooper pairs which only are robust toward impurity
scattering according to Anderson’s theorem. The fact that odd-
ω triplet superconductivity is so robust makes it an attractive
candidate for possible applications involving the merging of
magnetic and superconducting elements. Therefore, this
direction will continue to stimulate further experiments toward
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practical utilization of spin-polarized odd-ω Berezinskii
Cooper pairs in spintronics devices.
A unique feature of odd-ω pairing aside from being a novel

pairing state is in creating previously unattainable synergy
between magnetic and superconducting materials which
pertains specifically to the frequency symmetry and not the
spin polarization of the Cooper pairs. This is the paramagnetic
Meissner response that odd-ω Cooper pairs can feature. The
recent experimental demonstration (Di Bernardo et al., 2015b)
of an inverted electromagnetic response in a Au/Ho/Nb
trilayer opens interesting perspectives for new paths in the
utilization of hybrid systems comprising magnets and super-
conductors. These devices defy the conventional paradigm
where a magnetic field is viewed as exclusively harmful for
superconducting order.
If the study of odd-ω superconductivity over the last

decades has demonstrated anything, it is that it occurs
ubiquitously. At the same time, an intrinsic odd-frequency
superconducting condensate has yet to be realized and its
discovery remains to this date as one of the main aspirations
in this field. More often than not, any system with a super-
conducting component will feature some form of odd-ω
pairing. This fact points toward the importance of considering
other symmetry-allowed temporal correlations, albeit uncon-
ventional, guided by the SP�OT� constraint, in different
settings beyond superconductivity. Allowing for nontrivial
dynamic correlations will lead to outcomes that could be
surprising and lead to novel dynamic orders including
Berezinskii pairing. We have strived to give a sense of future
directions of development in the field that we foresee. At the
same time we hope there are new and unexpected ideas and
experiments that will propel the field of odd-ω states further.
We believe that the outlook for research on odd-ω pairing, in
superconducting systems and otherwise, is brimming with
exciting possibilities and new physics to be discovered.

LIST OF SYMBOLS AND ABBREVIATIONS

S spin permutation operator
P spatial parity operator
P� spatial permutation operator
O orbital index permutation

operator
T time-reversal operator
T� time-permutation operator
ω;ωn fermionic Matsubara frequency
Ω;Ωn bosonic Matsubara frequency
Γhyb; Γk hybridization parameter
T temp temperature
Tc critical temperature
T int tunneling interface transparency
T tun tunneling matrix element
a; b;… (subscript) orbital and band indices
α; β;… (subscript) spin indices
ψ , c fermion operators
k, p, q momenta
SðrÞ spin operators

G normal Green’s function
(propagator)

f, F anomalous Green’s function
(propagator)

ĝ; g; f quasiclassical Green’s functions
Tc.m. center-of-mass time
R center-of-mass coordinate
t time coordinate
r spatial coordinate
L angular momentum
T time-ordering operator
E quasiparticle energy
β inverse temperature
Δ superconducting order parameter
σ vector of Pauli matrices
σ̂j; σ̂j Pauli matrix j
dðkÞ triplet d vector
g coupling constant
NF Fermi level density of states
χ susceptibility
Sspin spin quantum number
Pparity parity eigenvalue
Γ interband scattering
j electric current
A magnetic vector potential
φ superconducting phase
εk; εðkÞ; ξk normal-state electron dispersion
Vk;k0 ; Vðk; k0Þ pairing interaction
EF Fermi energy
Σ self-energy
Z dimensionless barrier strength
ξ; ξS superconducting coherence length
D diffusion coefficient
ETh Thouless energy
h exchange energy (magnetic)
m, M magnetization vector
lmfp mean free path
μ chemical potential
τ Matsubara time
ΘðtÞ Heaviside step function
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Hübler, F., M. J. Wolf, T. Scherer, D. Wang, D. Beckmann, and H. v.
Löhneysen, 2012, “Observation of Andreev bound states at spin-
active interfaces,” Phys. Rev. Lett. 109, 087004.

Huertas-Hernando, Daniel, Yu. V. Nazarov, and W. Belzig, 2002,
“Absolute spin-valve effect with superconducting proximity struc-
tures,” Phys. Rev. Lett. 88, 047003.

Hugdal, Henning G., Jacob Linder, and Sol H. Jacobsen, 2017,
“Quasiclassical theory for the superconducting proximity effect in
dirac materials,” Phys. Rev. B 95, 235403.

Ivanov, D. A., 2001, “Non-Abelian statistics of half-quantum vortices
in p-wave superconductors,” Phys. Rev. Lett. 86, 268–271.

Jarrell, Mark, Hanbin Pang, and D. L. Cox, 1997, “Phase diagram of
the two-channel kondo lattice,” Phys. Rev. Lett. 78, 1996–1999.

Johannes, M. D., I. I. Mazin, D. J. Singh, and D. A. Papaconstanto-
poulos, 2004, “Nesting, spin fluctuations, and odd-gap super-
conductivity,” Phys. Rev. Lett. 93, 097005.

Kadigrobov, A., R. I. Shekhter, and M. Jonson, 2001, “Quantum
spin fluctuations as a source of long-range proximity effects in
diffusive ferromagnet-superconductor structures,” Europhys. Lett.
54, 394.

Kalas, Ryan M., Alexander V. Balatsky, and Dmitry Mozyrsky, 2008,
“Odd-frequency pairing in a binary mixture of bosonic and
fermionic cold atoms,” Phys. Rev. B 78, 184513.

Kashuba, O., B. Sothmann, P. Burset, and B. Trauzettel, 2016, “The
Majorana STM as a perfect detector of odd-frequency super-
conductivity,” arXiv:1612.03356.

Kawasaki, S., T. Mito, Y. Kawasaki, G.-q. Zheng, Y. Kitaoka, D.
Aoki, Y. Haga, and Y.Ōnuki, 2003, “Gapless magnetic and

Jacob Linder and Alexander V. Balatsky: Odd-frequency superconductivity

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045005-53

https://doi.org/10.1103/PhysRevLett.105.246404
https://doi.org/10.1103/PhysRevB.84.064514
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1134/S0021364007230117
https://doi.org/10.1103/PhysRevB.91.144514
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1143/JPSJ.72.2914
https://doi.org/10.1143/JPSJ.72.2914
https://arXiv.org/abs/1904.04846
https://doi.org/10.1103/PhysRevB.97.024507
https://doi.org/10.1103/PhysRevB.97.024507
https://doi.org/10.1038/24110
https://doi.org/10.1007/BF01308748
https://doi.org/10.1103/PhysRevB.99.024506
https://doi.org/10.1103/PhysRevB.99.024506
https://doi.org/10.1088/0953-8984/21/16/164208
https://doi.org/10.1088/0953-8984/21/16/164208
https://doi.org/10.1103/PhysRevB.88.054502
https://doi.org/10.1103/PhysRevB.88.054502
https://doi.org/10.1103/PhysRevB.43.7609
https://doi.org/10.1103/PhysRevB.43.7609
https://doi.org/10.1103/PhysRevLett.99.127002
https://doi.org/10.1103/PhysRevB.77.174511
https://doi.org/10.1143/JPSJ.69.2229
https://doi.org/10.1143/JPSJ.69.2229
https://doi.org/10.1103/PhysRevB.64.132507
https://doi.org/10.1007/s002570050003
https://doi.org/10.1103/PhysRevLett.62.214
https://doi.org/10.1103/PhysRevB.89.184505
https://doi.org/10.1103/PhysRevB.89.184505
https://doi.org/10.1103/PhysRevB.85.024524
https://doi.org/10.1103/PhysRevB.85.024524
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1103/PhysRevB.92.024512
https://doi.org/10.7566/JPSJ.86.094702
https://doi.org/10.1103/PhysRevLett.112.167204
https://doi.org/10.1103/PhysRevLett.112.167204
https://doi.org/10.1103/PhysRevLett.118.177002
https://doi.org/10.1103/PhysRevLett.118.177002
https://doi.org/10.1103/PhysRevB.93.224511
https://doi.org/10.1103/PhysRevB.76.060504
https://doi.org/10.1103/PhysRevB.92.121404
https://doi.org/10.1103/PhysRevB.92.121404
https://doi.org/10.1103/PhysRevLett.109.087004
https://doi.org/10.1103/PhysRevLett.88.047003
https://doi.org/10.1103/PhysRevB.95.235403
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.78.1996
https://doi.org/10.1103/PhysRevLett.93.097005
https://doi.org/10.1209/epl/i2001-00107-2
https://doi.org/10.1209/epl/i2001-00107-2
https://doi.org/10.1103/PhysRevB.78.184513
https://arXiv.org/abs/1612.03356


quasiparticle excitations due to the coexistence of antiferromag-
netism and superconductivity in CeRhIn5: A study of 115In NQR
under pressure,” Phys. Rev. Lett. 91, 137001.

Kedem, Y., and A. V. Balatsky, 2015, “Odd Frequency Density
Waves,” arXiv:1501.07049.

Keizer, R. S., S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G.
Xiao, and A. Gupta, 2006, “A spin triplet supercurrent through the
half-metallic ferromagnet CrO2,” Nature (London) 439, 825–827.

Khaire, Trupti S., Mazin A. Khasawneh, W. P. Pratt, and Norman
O. Birge, 2010, “Observation of spin-triplet superconductivity in
co-based josephson junctions,” Phys. Rev. Lett. 104, 137002.

Kirkpatrick, T. R., and D. Belitz, 1991, “Disorder-induced triplet
superconductivity,” Phys. Rev. Lett. 66, 1533–1536.

Kitaev, A., 2001, “Unpaired Majorana fermions in quantum wires,”
Phys. Usp. 44, 131.

Kitaev, A., and S. J. Suh, 2018, “The soft mode in the sachdev-ye-
kitaev model and its gravity dual,” J. High Energy Phys. 05, 183.

Komendová, L., A. V. Balatsky, and A. M. Black-Schaffer, 2015,
“Experimentally observable signatures of odd-frequency pairing in
multiband superconductors,” Phys. Rev. B 92, 094517.

Komendová, L., and A. M. Black-Schaffer, 2017, “Odd-frequency
superconductivity in Sr2RuO4 measured by Kerr rotation,” Phys.
Rev. Lett. 119, 087001.

Kontos, T., M. Aprili, J. Lesueur, and X. Grison, 2001, “Inhomo-
geneous superconductivity induced in a ferromagnet by proximity
effect,” Phys. Rev. Lett. 86, 304–307.

Kostić, P., B. Veal, A. P. Paulikas, U. Welp, V. R. Todt, C. Gu, U.
Geiser, J. M. Williams, K. D. Carlson, and R. A. Klemm, 1996,
“Paramagnetic meissner effect in Nb,” Phys. Rev. B 53, 791–801.

Kupriyanov, M. Yu., and V. F. Lukichev, 1988, “Influence of boun-
dary transparency on the critical current of “dirty” S’SS structures,”
Sov. Phys. JETP 67, 1163–1168.

Kusunose, H., Y. Fuseya, and K. Miyake, 2011a, “On the Puzzle
of Odd-Frequency Superconductivity,” J. Phys. Soc. Jpn. 80,
054702–054702.

Kusunose, H., Y. Fuseya, and K. Miyake, 2011b, “Possible Odd-
Frequency Superconductivity in Strong-Coupling Electron–
Phonon Systems,” J. Phys. Soc. Jpn. 80, 044711–044711.

Kuzmanovski, Dushko, and Annica M. Black-Schaffer, 2017,
“Multiple odd-frequency superconducting states in buckled quan-
tum spin hall insulators with time-reversal symmetry,” Phys. Rev. B
96, 174509.

Lababidi, Mahmoud, and Erhai Zhao, 2011, “Microscopic simulation
of superconductor/topological insulator proximity structures,”
Phys. Rev. B 83, 184511.

Lee, S.-P., R. M. Lutchyn, and J. Maciejko, 2016, “Odd-frequency
superconductivity in a nanowire coupled to Majorana zero modes,”
arXiv:1605.04454.

Linder, J., and J. W. A. Robinson, 2015a, “Strong odd-frequency
correlations in fully gapped Zeeman-split superconductors,” Sci.
Rep. 5, 15483.

Linder, J., and J. W. A. Robinson, 2015b, “Superconducting spin-
tronics,” Nat. Phys. 11, 307–315.

Linder, Jacob, Asle Sudbø, Takehito Yokoyama, Roland Grein, and
Matthias Eschrig, 2010, “Signature of odd-frequency pairing
correlations induced by a magnetic interface,” Phys. Rev. B 81,
214504.

Linder, Jacob, Takehito Yokoyama, and Asle Sudbø, 2008, “Iden-
tifying the odd-frequency pairing state of superconductors by a
field-induced Josephson effect,” Phys. Rev. B 77, 174507.

Linder, Jacob, Takehito Yokoyama, and Asle Sudbø, 2009, “Theory
of superconducting and magnetic proximity effect in S/F structures

with inhomogeneous magnetization textures and spin-active inter-
faces,” Phys. Rev. B 79, 054523.

Linder, Jacob, Takehito Yokoyama, Asle Sudbø, and Matthias
Eschrig, 2009, “Pairing symmetry conversion by spin-active
interfaces in magnetic normal-metal superconductor junctions,”
Phys. Rev. Lett. 102, 107008.

Linder, Jacob, Takehito Yokoyama, Yukio Tanaka, Yasuhiro Asano,
and Asle Sudbø, 2008, “Quantum transport in a normal metal/
odd-frequency superconductor junction,” Phys. Rev. B 77,
174505.

Lu, Bo, Pablo Burset, Yasunari Tanuma, Alexander A. Golubov,
Yasuhiro Asano, and Yukio Tanaka, 2016, “Influence of the
impurity scattering on charge transport in unconventional super-
conductor junctions,” Phys. Rev. B 94, 014504.

Lutchyn, Roman M., Jay D. Sau, and S. Das Sarma, 2010,
“Majorana fermions and a topological phase transition in
semiconductor-superconductor heterostructures,” Phys. Rev. Lett.
105, 077001.

Mackenzie, Andrew Peter, and Yoshiteru Maeno, 2003, “The super-
conductivity of Sr2RuO4 and the physics of spin-triplet pairing,”
Rev. Mod. Phys. 75, 657–712.

Maeno, Y., H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G.
Bednorz, and F. Lichtenberg, 1994, “Superconductivity in a layered
perovskite without copper,” Nature (London) 372, 532.

Majorana, E., 1937, “Teoria simmetrica dellelettrone e del positrone,”
Nuovo Cimento 14, 171–184.

Maldacena, Juan, and Douglas Stanford, 2016, “Remarks on the
sachdev-ye-kitaev model,” Phys. Rev. D 94, 106002.

Matsuda, Y., K. Izawa, and I. Vekhter, 2006, “Nodal structure of
unconventional superconductors probed by the angle resolved
thermal transport measurements,” J. Phys. Condens. Matter 18,
R705–R752.

Matsumoto, M., M. Koga, and H. Kusunose, 2012, “Coexistence of
Even- and Odd-Frequency Superconductivities Under Broken
Time-Reversal Symmetry,” J. Phys. Soc. Jpn. 81, 033702–033702.

Matsumoto, M., M. Koga, and H. Kusunose, 2013, “Emergent
Odd-Frequency Superconducting Order Parameter near Boundaries
in Unconventional Superconductors,” J. Phys. Soc. Jpn. 82,
034708–034708.

Mironov, S., A. Mel’nikov, and A. Buzdin, 2012, “Vanishing
Meissner effect as a hallmark of in plane Fulde-Ferrell-Larkin-
Ovchinnikov instability in superconductor ferromagnet layered
systems,” Phys. Rev. Lett. 109, 237002.

Mizushima, Takeshi, 2014, “Odd-frequency pairing and Ising spin
susceptibility in time-reversal-invariant superfluids and supercon-
ductors,” Phys. Rev. B 90, 184506.

Monthoux, P., and G. G. Lonzarich, 1999, “p-wave and d-wave
superconductivity in quasi-two-dimensional metals,” Phys. Rev. B
59, 14598–14605.

Moreo, A., M. Daghofer, J. A. Riera, and E. Dagotto, 2009, “Proper-
ties of a two-orbital model for oxypnictide superconductors:
Magnetic order, B2g spin-singlet pairing channel, and its nodal
structure,” Phys. Rev. B 79, 134502.

Mourik, V., K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,
and L. P. Kouwenhoven, 2012, “Signatures of Majorana fermions
in hybrid superconductor-semiconductor nanowire devices,”
Science 336, 1003–1007.

Mulliken, Robert S., 1956, “Erratum: Report on notation for the
spectra of polyatomic molecules,” J. Chem. Phys. 24, 1118.

Mydosh, J. A., and P. M. Oppeneer, 2011, “Colloquium: Hidden
order, superconductivity, and magnetism: The unsolved case of
URu2Si2,” Rev. Mod. Phys. 83, 1301–1322.

Jacob Linder and Alexander V. Balatsky: Odd-frequency superconductivity

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045005-54

https://doi.org/10.1103/PhysRevLett.91.137001
https://arXiv.org/abs/1501.07049
https://doi.org/10.1038/nature04499
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevLett.66.1533
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1007/JHEP05(2018)183
https://doi.org/10.1103/PhysRevB.92.094517
https://doi.org/10.1103/PhysRevLett.119.087001
https://doi.org/10.1103/PhysRevLett.119.087001
https://doi.org/10.1103/PhysRevLett.86.304
https://doi.org/10.1103/PhysRevB.53.791
https://doi.org/10.1143/JPSJ.80.054702
https://doi.org/10.1143/JPSJ.80.054702
https://doi.org/10.1143/JPSJ.80.044711
https://doi.org/10.1103/PhysRevB.96.174509
https://doi.org/10.1103/PhysRevB.96.174509
https://doi.org/10.1103/PhysRevB.83.184511
https://arXiv.org/abs/1605.04454
https://doi.org/10.1038/srep15483
https://doi.org/10.1038/srep15483
https://doi.org/10.1038/nphys3242
https://doi.org/10.1103/PhysRevB.81.214504
https://doi.org/10.1103/PhysRevB.81.214504
https://doi.org/10.1103/PhysRevB.77.174507
https://doi.org/10.1103/PhysRevB.79.054523
https://doi.org/10.1103/PhysRevLett.102.107008
https://doi.org/10.1103/PhysRevB.77.174505
https://doi.org/10.1103/PhysRevB.77.174505
https://doi.org/10.1103/PhysRevB.94.014504
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1038/372532a0
https://doi.org/10.1007/BF02961314
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1088/0953-8984/18/44/R01
https://doi.org/10.1088/0953-8984/18/44/R01
https://doi.org/10.1143/JPSJ.81.033702
https://doi.org/10.7566/JPSJ.82.034708
https://doi.org/10.7566/JPSJ.82.034708
https://doi.org/10.1103/PhysRevLett.109.237002
https://doi.org/10.1103/PhysRevB.90.184506
https://doi.org/10.1103/PhysRevB.59.14598
https://doi.org/10.1103/PhysRevB.59.14598
https://doi.org/10.1103/PhysRevB.79.134502
https://doi.org/10.1126/science.1222360
https://doi.org/10.1063/1.1742716
https://doi.org/10.1103/RevModPhys.83.1301


Nadj-Perge, Stevan, Ilya K. Drozdov, Jian Li, Hua Chen, Sangjun
Jeon, Jungpil Seo, Allan H. MacDonald, B. Andrei Bernevig,
and Ali Yazdani, 2014, “Observation of Majorana fermions in
ferromagnetic atomic chains on a superconductor,” Science 346,
602–607.

Nazarov, Y. V., 1999, “Novel circuit theory of Andreev reflection,”
Superlattices Microstruct. 25, 1221.

Norman, M. R., D. Pines, and C. Kallin, 2005, “The pseudogap:
friend or foe of high tc?,” Adv. Phys. 54, 715–733.

Oreg, Yuval, Gil Refael, and Felix von Oppen, 2010, “Helical liquids
and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105,
177002.

Pal, A., J. A. Ouassou, M. Eschrig, J. Linder, and M. Blamire, 2017,
“Spectroscopic evidence of odd frequency superconducting order,”
Sci. Rep. 7, 40604.

Parhizgar, Fariborz, and Annica M. Black-Schaffer, 2014, “Uncon-
ventional proximity-induced superconductivity in bilayer systems,”
Phys. Rev. B 90, 184517.

Pivovarov, Eugene, and Chetan Nayak, 2001, “Odd-frequency
density waves: Non-fermi-liquid metals with an order parameter,”
Phys. Rev. B 64, 035107.

Polchinski, J., and V. Rosenhaus, 2016, “The spectrum in the
sachdev-ye-kitaev model,” J. High Energy Phys. 04, 001.

Rahimi, M. A., A. G. Moghaddam, C. Dykstra, M. Governale, and U.
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