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Life is characterized by a myriad of complex dynamic processes allowing organisms to grow,
reproduce, and evolve. Physical approaches for describing systems out of thermodynamic equilibrium
have been increasingly applied to living systems, which often exhibit phenomena not found in those
traditionally studied in physics. Spectacular advances in experimentation during the last decade or
two, for example, in microscopy, single-cell dynamics, in the reconstruction of subcellular and
multicellular systems outside of living organisms, and in high throughput data acquisition, have
yielded an unprecedented wealth of data on cell dynamics, genetic regulation, and organismal
development. These data have motivated the development and refinement of concepts and tools to
dissect the physical mechanisms underlying biological processes. Notably, landscape and flux theory
as well as active hydrodynamic gel theory have proven useful in this endeavor. Together with
concepts and tools developed in other areas of nonequilibrium physics, significant progress has been
made in unraveling the principles underlying efficient energy transport in photosynthesis, cellular
regulatory networks, cellular movements and organization, embryonic development and cancer,
neural network dynamics, population dynamics and ecology, as well as aging, immune responses, and
evolution. Here recent advances in nonequilibrium physics are reviewd and their application to
biological systems is surveyed. Many of these results are expected to be important cornerstones as the
field continues to build our understanding of life.

DOI: 10.1103/RevModPhys.91.045004

CONTENTS

I. Introduction 2
II. Physical Concepts for Describing Nonequilibrium Systems 4

A. Landscape and flux theory for nonequilibrium
dynamics 4
1. Dynamical systems 4
2. Nonequilibrium potentials and rotational curl

fluxes as the driving forces for dynamics 4
3. Thermodynamic origin of the rotational flux 5
4. Global stability and Lyapunov function for

nonequilibrium systems 5
B. Discrete nonequilibrium dynamics 6

1. The master equation 6

2. Decomposition of the transition matrix 6
C. Nonequilibrium paths 6
D. Nonequilibrium transition state theory 7
E. Nonequilibrium thermodynamics 7

1. Crooks’ theorem and the Jarzynski relation 8
2. Fluctuation-dissipation theorem for intrinsic

nonequilibrium systems 9
F. Nonequilibrium information dynamics 9

1. Nonequilibrium information landscape and flux,
mutual information, and entropy production 9

2. Fluctuations in information thermodynamics 10
G. Gauge fields, time-reversal symmetry breaking, and

underlying geometry for nonequilibrium systems 10
H. Multiple landscapes, adiabaticity, nonadiabaticity,

and curl flux 11
I. Organization principle of hierarchy and complexity
of the dynamical systems at different scales 11*jin.wang.1@stonybrook.edu

REVIEWS OF MODERN PHYSICS, VOLUME 91, OCTOBER–DECEMBER 2019

0034-6861=2019=91(4)=045004(72) 045004-1 © 2019 American Physical Society

https://orcid.org/0000-0002-2841-4913
https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.91.045004&domain=pdf&date_stamp=2019-12-20
https://doi.org/10.1103/RevModPhys.91.045004
https://doi.org/10.1103/RevModPhys.91.045004
https://doi.org/10.1103/RevModPhys.91.045004
https://doi.org/10.1103/RevModPhys.91.045004


J. Spatial nonequilibrium systems 12
1. Landscape and flux decomposition 12
2. Generalized hydrodynamics 13
3. A strong nonequilibrium spatial dynamical system:

Turbulence 13
K. Nonequilibrium quantum landscape and flux 14

1. Nonequilibrium quantum dynamics 14
2. Theory of nonequilibrium quantum dynamics

in terms of flux, coherence, and population
landscape 14

III. Biomolecular Systems and Experimental
Quantification of Flux 15
A. Non-Michaelis-Menten enzyme kinetics 15
B. Bacterial circadian rhythm 17
C. Nonequilibrium quantum transports in biomolecules 17

1. An analytical model for nonequilibrium quantum
energy or charge transfers in biomolecules 18
a. Curl quantum flux versus nonequilibriumness

and tunneling at steady state 19
b. Enhancement of steady-state coherence and

entanglement from nonequilibriumness 19
c. Quantum energy transfer efficiency at

steady state 20
d. Dissipation and quantum thermodynamics at

steady state 20
2. Long time quantum coherence and efficient

energy transport of the light-harvesting complex 20
IV. Gene Regulatory Circuit Motifs and Experimental

Quantification of Landscapes 21
A. Naturally existing circuit motifs: Lambda phage and

bacteria competence 21
1. Landscape quantification of cell fates and their

decision making of lambda phage 21
2. Bacterial competence 22

B. Synthetic regulatory circuit motifs: Genetic switch
and oscillation, self-regulator 23
1. Genetic switches 23
2. Self-repressor and experimental quantification

of landscape 24
3. Genetic oscillators 24

V. Gene Regulatory Network: Cell Cycle 24
A. Embryonic cell cycle in frogs 25
B. Origins of single-cell life through replication

by energy pump 26
C. Cell cycle in fission yeast 26

VI. Cellular Structure and Dynamics 26
A. Nonequilibrium phase separation 26
B. The cytoskeleton—An active material 29

1. Filaments 30
a. Filament length dynamics and treadmilling 30
b. Nucleation promoting factors 30

2. Motors 30
a. Single molecular motors 30
b. Many motors on a single filament 31
c. Length regulation involving molecular

motors 31
d. Bidirectional motion 31
e. Spontaneous motor oscillations 32

3. Filament networks 33
a. Reconstituted filament networks 33
b. Kinetic descriptions of filament networks 33
c. Mechanisms of stress generation 34

4. Hydrodynamics of motor-filament networks 35

a. Hydrodynamics of active polar gels 35
b. Spontaneous flows 35
c. Topological defects 36
d. Spontaneous actin waves 36
e. Cell migration 36
f. Cortex instabilities 37

VII. Neural Networks and Brain Function 37
A. Learning and memory 38
B. Cycling of sleep phases 38
C. Brain decision making 39

VIII. The Genetic Basis of Organismal Progression 40
A. Stem-cell differentiation 40
B. Aging 42

IX. Cancer 43
A. Quantifying the landscape of cancer 43
B. Cancer and development 44
C. Cancer heterogeneity 45
D. Homeostatic pressure 45
E. Cancer and immunity 45

X. Population Dynamics and Ecology 46
A. Populations of microorganisms 47
B. Ecology 48
C. Landscape and flux analysis of ecosystems 48

XI. Evolution 49
A. Single-locus multiallele evolution 50
B. Multilocus multiallele evolution 51
C. Evolution adaptive landscape and flux under

different evolution scenarios 51
D. Evolutionary game theory 53

XII. Nonequilibrium Economy 53
XIII. Outlook 55
Acknowledgments 56
References 56

I. INTRODUCTION

Life is never at equilibrium. Here, equilibrium refers
to thermodynamic equilibrium such that detailed balance
holds: transitions between two states occur on average at
equal rates in either direction. Biological systems break this
condition because they continuously exchange matter, infor-
mation, or energywith the environment, for example, by taking
up food or by absorbing energy in the form of light or heat.
As a consequence, it is typically inappropriate to describe
them as physical systems relaxing to equilibrium. But then,
what concepts and frameworks are suitable to study living
systems?
On molecular scales, life seems to be governed exclusively

by physical laws (Schrodinger, 1944); explicitly, no natural law
unique to biology has been identified as being necessary to
explain the dynamics of biomolecules. Energy acquired from
the environment drives enzymatic reactions which favor
specificmolecular changes over others. However, it is currently
unclear how this specificity is achieved. Furthermore, large-
scale features of living systems such as cell migration and
division, consciousness, population organization, or evolution
are poorly understood in terms of the molecular components
that make up these systems. This stands in stark contrast to the
behavior of equilibrium statistical systems, which can be
understood in terms of their microscopic components. In this
review, we aim to present recent developments in the field of
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nonequilibrium dynamics and thermodynamics that provide
routes toward answering fundamental questions about living
systems. They will likely prove instrumental to identify
features common to a large variety of biological systems
and elucidate how mechanics and chemistry act in concert
to shape life.
Because living systems regularly showcase phenomena that

defy purely molecular explanations, physical analysis is
required. Simultaneously, living systems provide a frontier
of physical research that is as rewarding as the study of the
very small or the very large, with philosophical implications of
similar depth. Even if topics such as consciousness are not
discussed, living systems provide a plethora of phenomena
that are alien to systems of inanimate matter such as sponta-
neous oscillations or flows. Beyond the detailed description of
isolated phenomena, the physics of active matter (Marchetti
et al., 2013; Wang, 2015) aims to develop a framework of
concepts and tools that is universally applicable to living
systems. Here, “active” means that, instead of being driven by
an external field or gradient, the constituents themselves are
out of thermodynamic equilibrium. For example, a molecule
might undergo conformational changes as a bound molecule
of adenosine triphosphate (ATP) loses a phosphate group
through hydrolysis, and the replacement of adenosine diphos-
phate (ADP) by ATP restores the original conformation. In the
presence of an excess of ATP, this will lead to a cycling of the
molecule between the two conformations.
To reach a universal framework, results from various dis-

ciplines are exploited, notably nonlinear dynamics and non-
equilibrium kinetics (Schnakenberg, 1976; Nicolis and
Prigogine, 1977; Gardiner, 1983; Haken, 1987; Graham,
1989; Jackson, 1989; Hu, 1995; Jiang and Qian, 2003; Sasai
and Wolynes, 2003; Van Kampen, 2007; Ao, 2008; Wang,
Xu, and Wang, 2008; Qian, 2009; Marchetti et al., 2013;
Wang, 2015), as well as nonequilibrium thermodynamics
(Schnakenberg, 1976; Nicolis and Prigogine, 1977, 1989;
Gardiner, 1983; Freidlin and Wentzell, 1984; Haken, 1987;
Maier and Stein, 1997; Gaspard, 1998; Hatano and Sasa, 2001;
Aurell and Sneppen, 2002; Jiang and Qian, 2003; Roma et al.,
2005; Walczak, Onuchic, and Wolynes, 2005; Wang, Huang
et al., 2006; Van Kampen, 2007; Ao, 2008; Seifert, 2008; Qian,
2009; Feng, Han, andWang, 2010; Ge and Qian, 2010; Schuss,
2010; Van and Esposito, 2010; Wang, Zhang, andWang, 2010;
Assaf, Roberts, and Luthey-Schulten, 2011; Feng and Wang,
2011; Zhang et al., 2012; Feng, Zhang, and Wang, 2014; Lv
et al., 2014; Zhang and Wang, 2014; Wang, 2015). In this
endeavor it has proven particularly useful to start with concepts
from equilibriumphysics. A central concept is that of a potential
or free energy landscape that describes the evolution of a
physical system toward equilibrium in terms of gradient descent
toward the landscape’s minima. This powerful picture has
found its way into many other disciplines, notably, into biology
(Fisher, 1930; Wright, 1942; Waddington, 1957; Frauenfelder
and Wolynes, 1994). There, for example, “Waddington’s land-
scape” is used to illustrate the process of cell differentiation,
when a stem cell specializes to become a liver cell, a brain cell,
or some other kind of cell with a specific function (Waddington,
1957). Similarly, “fitness landscapes” are used to picture the
course of evolution toward more adapted species in response to
some environmental constraints (Fisher, 1930; Wright, 1942).

However, the concept of energy landscapes needs to be
generalized for nonequilibrium systems to explain phenomena
such as limit cycles. One way to generalize the energy
landscape of a system is to first consider its stochastic form.
Under very general conditions, the probability distribution
asymptotically reaches a steady state even for systems out of
equilibrium. Gradients in the steady-state probability land-
scape drive the deterministic “mean field” dynamics onto one
of the possible attractors, for example, a limit-cycle orbit.
Typically, a second force results from a rotational flux (Xu
et al., 2012), which drives the dynamics within an attractor,
for example, the oscillation orbits within a limit cycle attractor
(Wang, Xu, and Wang, 2008). These rotational fluxes are a
consequence of energy or material being pumped into the
system and thus tightly linked to entropy production and time-
reversal symmetry breaking.
A different generalization of energy landscapes arises in

the context of nonequilibrium thermodynamics that is based
on the rate of energy dissipation (de Groot and Mazur,
1985). In this framework, one assumes spatially extended
systems to be locally at thermodynamic equilibrium, but
these equilibria may differ at different locations. In this way,
a “free energy landscape” of “spatially heterogeneous
equilibria” can be defined. Together with conservation laws
and broken continuous symmetries, this assumption allows
for a systematic framework to analyze deviations from
thermodynamic equilibrium. For example, this approach
yields the Navier-Stokes equation for an isotropic system
of a single, conserved molecular species. Generalized hydro-
dynamics have notably been developed for active matter and
applied to various biological systems (Marchetti et al.,
2013). Both the stochastic system and the energy dissipation
approaches allow for the distinction between driving forces
resulting from thermodynamic equilibrium relaxation and
from environmental coupling (Marchetti et al., 2013;
Wang, 2015).
In addition to their applications to biological systems,

these approaches raise immediate physics questions. How
do other equilibrium concepts such as thermodynamic fluc-
tuations, optimal paths, kinetic rates, and the fluctuation-
dissipation theorem (FDT) generalize (Wang, Zhang, and
Wang, 2010; Feng and Wang, 2011; Zhang et al., 2012; Feng,
Zhang, and Wang, 2014)? Also, concepts that classically are
not considered to be physical need to be linked to these
approaches. The work of Shannon (Sloane and Wyner, 1993)
already reveals a deep formal connection between concepts
from equilibrium physics and information theory, but it is
currently still not very clear how this connection extends to
nonequilibrium systems. Furthermore, biological systems are
often characterized by their function, for example, their ability
to “make decisions” in response to stimuli. What is the
physical basis of decision making and, more generally, how
can function be conceptualized?
Although physics has been applied to study biological

processes for a long time, its popularity for this application
is currently surging. Thanks to spectacular advances in genome
sequencing, the molecular inventory of many biological
organisms is now well known. Many proteins can be isolated
and studied in reconstituted systems outside a cell, which
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allows tests of physical hypotheses in controlled environments.
At the same time, proteins can be modified in a variety
of ways in living cells to tune biological processes. The
addition of fluorescent protein tags to functional proteins
allows for researchers to probe their in vivo behavior.
Continuously progressing fluorescence imaging and electron
microscope technology allows for the observation of cellular
activities and organization in unprecedented detail. These
developments together have led to enormous amounts of data
that wait to be analyzed, and new data are continuously added.
These experimental advances have a profound impact on
expanding the concepts and tools used for describing active
matter.
In this review, we describe recent progress in the develop-

ment of concepts in nonequilibrium physics and their appli-
cation to biological systems. Since the topic is too vast to be
covered fully in the present text, we selected topics that are the
focus of current research and have proven to be relevant for
understanding vital processes and are the ones we are familiar
with. We present a brief overview of the current status of
concepts from nonequilibrium physics, in which we highlight
the nonequilibrium potential and flux approach for dynamics
and thermodynamics and the hydrodynamics approach for
active matter. We then show how these concepts have been
applied to a broad range of biological systems. After discus-
sing molecular processes such as enzyme reactions and energy
transport, we then cover cellular processes. Moving farther up
in spatial scales we will consider the behavior of cell
ensembles and finally treat species and populations of
organisms. Specifically, on the level of single cells, we cover
cell fate decision making, cell cycle, differentiation, and
aging. Cell ensemble behavior is explored via neural net-
works, tumors, and immunity. Finally, the species and
population levels are discussed in terms of ecology, game
theory and economy, and evolution. We close with a brief
summary and outlook of some current and future directions of
the nonequilibrium physics in biology.

II. PHYSICAL CONCEPTS FOR DESCRIBING
NONEQUILIBRIUM SYSTEMS

In this section, we review some recently developed
physical concepts for describing nonequilibrium dynamics.
Special attention is paid to the landscape and flux theory,
which generalizes the notion of potentials to systems out
of equilibrium. A more detailed review was given by
Wang (2015).

A. Landscape and flux theory for nonequilibrium dynamics

1. Dynamical systems

Consider a dynamical system where a vector C denotes
its variables such as concentrations, momentum, or polar
order. When the trajectory of C evolves deterministically
and depends only on its current state, the dynamical equation
reads

_C ¼ FðCÞ; ð1Þ

where FðCÞ is a generalized driving force (Jackson, 1989).
This equation describes the evolution of a wide class of
systems, for example, a series of damped Newtonian
oscillators.
Exploration of these equations generally begins by iden-

tifying the existence and local stability of fixed points
(Jackson, 1989). Global stability needs to be addressed
separately, since connections among the steady states are
not always known from local analyses; see Sec. II.A.4. For
potential systems, the driving force can be expressed as the
gradient of a potential (or energy) U, F ¼ −∇U, so their
dynamic behaviors can be deduced directly from the potential.

2. Nonequilibrium potentials and rotational curl fluxes as the
driving forces for dynamics

In general, the driving force cannot be expressed as the
gradient of a potential. In this case, it is helpful to explore a
stochastic version of the deterministic equation given in
Eq. (1). The noise term can account for all factors not
explicitly described by F and, if desired, one can eventually
take the zero-noise limit (Swain, Elowitz, and Siggia, 2002).
Stochastic trajectories are determined by the Langevin
equation

_C ¼ FðCÞ þ ηðC; tÞ; ð2Þ

where ηðC; tÞ represents a time-dependent stochastic force.
The fluctuation magnitude is measured by the autocorrela-
tion function hηðC;tÞ·ηðC;t0Þi¼2DDδðt−t0Þ, where D rep-
resents the fluctuation magnitude and D is the diffusion
matrix that describes fluctuation anisotropies (Van Kampen,
2007). Rather than being described by individual trajectories
which are now stochastic and unpredictable, the system
evolution is described by a probability distribution P that
evolves according to a linear deterministic equation, the
Fokker-Planck equation (Van Kampen, 2007)

∂tPðC; tÞ þ ∇ · JðC; tÞ ¼ 0; ð3Þ

where ∇· denotes the divergence in state space and
probability conservation is guaranteed. The change of local
probability is from the net input. The probability flux J is
given by

JðC; tÞ ¼ FðCÞPðC; tÞ −∇ · ½DDPðC; tÞ�; ð4Þ

where the first term describes an advective flux from the
driving force and the next term captures the effects of
fluctuations.
Eventually, most systems reach a steady state Pss, where

∂tPss ¼ 0. Consequently, the divergence of the steady-state
flux vanishes. Potential systems at steady state are in thermo-
dynamic equilibrium; that is, the probability flux vanishes
such that a detailed balance is obeyed and the probability is
given by the Boltzmann distribution. However, the steady-
state flux generally does not vanish, although it must be purely
rotational. The existence of a nonvanishing probability flux at
steady state indicates that the detailed balance is broken and its
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magnitude can be used to measure the system’s distance from
thermodynamic equilibrium.
The driving force can be decomposed into a part that is the

negative gradient of a nonequilibrium potential U (or land-
scape) and a part involving a rotational curl flux (Wang, Xu,
and Wang, 2008). Explicitly,

F ¼ −DD · ∇U þ∇DDþ Jss=Pss. ð5Þ

Here U is the negative logarithm of the steady-state proba-
bility U ¼ − lnPss. Like its equilibrium analog, the non-
equilibrium potential landscape is linked to a steady-state
probability and provides a global quantification of system
behavior.1 However, the nonequilibrium dynamics on the
landscape also depends on the rotational curl flux. If one
visualizes equilibrium dynamics as charged particles moving
in an electric field, nonequilibrium dynamics correspond to
charged particles moving in an electric and magnetic field.
Note that in contrast to the equilibrium landscape which is
given a priori, the nonequilibrium potential landscape is
associated with the steady-state probability that emerges from
stochastic dynamics. In turn, the rotational curl flux Jss is
associated with the steady-state probability flux from envi-
ronmental coupling that allows for an exchange of matter,
energy, or information (Xu et al., 2012; Zhang and Wang,
2014; Zeng and Wang, 2017). As it does not vanish, it breaks
time-reversal symmetry and thus creates a time arrow (Wang,
Zhang, andWang, 2010; Feng andWang, 2011; Li, Wang, and
Wang, 2011a). Furthermore, the rotational curl flux current
extends through state space. Hence, unlike in equilibrium
systems, the steady state is typically not fully described by
local properties.
There is some freedom in decomposing the driving force

into a potential gradient and a rotational curl flux, as one can
always add the curl of a vector field to the nonequilibrium
potential U. The choice made is somewhat natural as it leads
to the equilibrium case when the flux is zero and is the closest
analog when one wants to describe the relaxation into a steady
state. It also allows for a generalization of thermodynamics
(Seifert, 2005; Ge and Qian, 2010; Van and Esposito, 2010;
Feng and Wang, 2011) and of the fluctuation-dissipation
relation (Hatano and Sasa, 2001; Seifert, 2008; Feng and
Wang, 2011).
There are several other ways of decomposing stochastic

dynamics. Some studies focus on finding nonequilibrium
potentials (Freidlin and Wentzell, 1984; Graham, 1989; Ao,
2004; Xing, 2010; Zhou et al., 2012) and their associated
analytical properties. Others emphasize the role of nonequili-
brium curl flux and the nonequilibrium landscape in deter-
mining system dynamics (Wang, Xu, and Wang, 2008; Wang,
Zhang, and Wang, 2010; Feng and Wang, 2011; Zhang and
Wang, 2014). One approach aimed to find a new type of
stochastic dynamics (Ao, 2004), although it may be chal-
lenging to obtain numerical solutions. Furthermore, the
generality and uniqueness of this approach are still under

discussion (Qian, 2014; Zhou and Li, 2016). Another
approach, suggested by Xing (2010), used a projection
operator to decompose the driving force. A recently proposed
decomposition approach assumed orthogonality between the
driving forces, which works only in the deterministic limit
(Zhou et al., 2012), reaching similar conclusions to those
discussed earlier (Wang, Xu, and Wang, 2008; Wang, Zhang,
and Wang, 2010; Feng and Wang, 2011) in the zero fluc-
tuation limit. The force decomposition has been generalized
from overdamped to underdamped dynamics (Risken, 1989;
Ge, 2014; Qian, 2014; Wu, Zhang, and Wang, 2018). Another
method decomposed discrete Markov chains into two parts:
one that preserved and another that broke detailed balance
(Schnakenberg, 1976; Qian and Hou, 1979; Zia and
Schmittmann, 2007; Zhang and Wang, 2014; Luo
et al., 2017).

3. Thermodynamic origin of the rotational flux

The landscape and flux can be obtained as mentioned once
specific dynamics are given, although this statement is rather
formal. To gain physical intuition, one can search for the
origin of rotational curl flux. For an open system, the flux
originates from environmental energy input, which breaks the
detailed balance. In biology, the energy that drives the system
away from equilibrium can be obtained from ATP hydrolysis.
For example, the phosphorylation and dephosphorylation of
ATP can provide an energy source for cellular functions, such
as cell growth and division. One can couple ATP hydrolysis to
specific protein reactions in molecular networks and other cell
systems to explicitly quantify the energy input by the chemical
potential (voltage) from the ATP/ADP concentration ratio for
driving the associated nonequilibrium dynamics (Qian, 2007;
Xu et al., 2012). This voltage gives rise to the rotational curl
flux. Alternatively, one can phenomenologically couple the
ATP chemical potential to thermodynamic forces as in the
theory of active matter (Kruse et al., 2004; Marchetti et al.,
2013). The quantitative connections from ATP that pump
voltage to the flux driving nonequilibrium dynamics and
entropy production or free energy cost have been studied in a
few examples (Xu et al., 2012).

4. Global stability and Lyapunov function for
nonequilibrium systems

The asymptotic dynamics and global stability of a system
can be quantified if it admits a Lyapunov function ϕ that is
monotonically decreasing along the trajectories except in
steady state (Jackson, 1989). For a deterministic system, a
candidate Lyapunov function can be obtained by calculating
the nonequilibrium potential and then taking the zero-noise
limit. To see this, consider the Wentzel-Kramers-Brillouin
ansatz up to leading order in D which solves the Fokker-
Planck equation (3), that is, P ∼ exp½−ϕ0=D�, where ϕ0 is the
leading-order term of the nonequilibrium potential. We thus
arrive at the Hamilton-Jacobian equation (Hu, 1995; Zhang
et al., 2012; Xu et al., 2013, 2014)

F · ∇ϕ0 þ∇ϕ0 · D · ∇ϕ0 ¼ 0: ð6Þ

This equation implies

1Typically, the diffusion coefficient tensor DD is constant and
does not contribute to the driving force, although in general it
contributes to the potential landscape.
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dϕ0

dt
¼ F · ∇ϕ0 ¼ −∇ϕ0 · D ·∇ϕ0 ≤ 0; ð7Þ

showing that the nonequilibrium potential is a candidate
Lyapunov function.

B. Discrete nonequilibrium dynamics

In a biological context, many systems are characterized by
discrete rather than continuous states. For example, gene
promoter sites are either occupied or not by transcription
factors, molecular motors have discrete binding sites on a
cytoskeletal filament, and populations comprise a discrete
number of individuals. We now describe how the approaches
previously described for continuous systems can be adapted to
the discrete case.

1. The master equation

For a Markovian process in discrete state space, the analog
of the Fokker-Planck equation determining the dynamics of
the probability distribution P is the master equation (Gardiner,
1983; Van Kampen, 2007):

dPi

dt
¼ −

X
j

TijPi þ
X
j

TjiPj; ð8Þ

where Pi is the probability of being in state i and Tij is the
transition rate from state i to state j. The master equation
reflects the fact that the probability of being in state i
decreases through transitions from state i into any other state
j and increases through transitions from the other states j into
state i. Because a transition to state j from state i is always
balanced by a reduction in state i probability, the master
equation implies conservation of probability d

P
i Pi=dt ¼ 0.

Alternatively, we can write Eq. (8) as

dP=dt ¼ MTP ð9Þ

with the transition rate matrix M given by Mij ¼ Tij for i ≠ j
and Mii ¼ ð−1ÞPj Tij. One can solve the master equation
either directly or by simulating the stochastic evolution of the
system dynamics at long times to gain information about
steady-state probability Pss

i (Gillespie, 1976; Krauth, 2006;
Cao, Lu, and Liang, 2010).
In steady state, the flux between two states i and j is

Fss
ij ¼ TjiP

ðssÞ
j − TijP

ðssÞ
i . The detailed balance is satisfied if

Fss
ij ¼ 0. In that case, the system is in equilibrium and there is

a potential Vi such that Pss
i ∝ exp f−Vig (Schnakenberg,

1976; Qian and Hou, 1979; Zia and Schmittmann, 2007).
However, dPi=dt ¼ 0 only states that the sum of all fluxes
into and out of state i is zero; that is,

P
j F

ss
ij ¼ 0, but Fss

ij is
not necessarily zero.

2. Decomposition of the transition matrix

Similar to the flux component in continuous systems, the
transition rate matrix can be separated into one part that
preserves the detailed balance D and one that does not C. The

part that preserves the detailed balance is defined by Dij ¼
minfTijPss

i ; TjiPss
j g=Pss

i for i ≠ j and Dii ¼ ð−1ÞPj Dij

(Schnakenberg, 1976; Qian and Hou, 1979). The part that
breaks the detailed balance is defined by Cij ¼ maxfTijPss

i −
TjiPss

j ; 0g=Pss
i for i ≠ j and Cii ¼ ð−1ÞPj Cij, and Dij ¼

minfTijPss
i ; TjiPss

j g=Pss
i for i ≠ j (Schnakenberg, 1976; Qian

and Hou, 1979). One can see thatM ¼ Cþ D and DTPss ¼ 0.
Because MTP ¼ ðCþ DÞTPss ¼ 0, it follows that CTPss ¼ 0
as well. Whereas D preserves the detailed balance
DijPi

ss ¼ DjiPj
ss, C captures the flux breaking detailed

balance and describes irreversible transitions, because
CijPi

ss > 0 implies CjiPj
ss ¼ 0 and vice versa.

The steady-state fluxes Fss
ij resulting from the detailed-

balance breaking part of the driving force C can be expressed
in terms of fluxes along loops that connect a state with itself,
i → j → k � � � → n → i (Schnakenberg, 1976; Qian and Hou,
1979; Zia and Schmittmann, 2007; Zhang and Wang, 2014;
Luo et al., 2017). In equilibrium, the flux along any loop is the
same as for the corresponding reversed loop so that the net
flux is zero. The flux loops provide additional information on
the probability distribution for describing the nonequilibrium
dynamics of a discrete system.

C. Nonequilibrium paths

An alternative formulation for the stochastic dynamic
equation (2) describes the dynamical process in terms of a
path integral summing over all possible paths DCðtÞ from
initial state Cinitial at t ¼ 0 to final state Cfinal at time t
(Onsager and Machlup, 1953; Wiener, 1964; Feynman and
Hibbs, 1965; Hunt and Ross, 1981; Maier and Stein, 1997;
Aurell and Sneppen, 2002; Roma et al., 2005; Wang et al.,
2005, 2006a, 2006b, 2011; Feng, Han, and Wang, 2010;
Wang, Zhang, and Wang, 2010; Li and Wang, 2013, 2014b;
Zhang, Sasai, andWang, 2013; Feng, Zhang, andWang, 2014;
Zhang and Wolynes, 2014). That is,

PðCfinal; t;Cinitial; 0Þ ¼
Z

DCðtÞ exp f−S½CðtÞ�g ð10Þ

integrates over all possible paths between the initial state
Cinitial and final state Cfinal over time t. The action S is the
integral of the Langrangian along the path CðtÞ; that is,
S½CðtÞ� ¼ R

t
0 dt

0L(Cðt0Þ). The Lagrangian L is given by

L ¼ 1

2
∇ · Fþ 1

4D
ð _C − FÞ · D−1ð _C − FÞ; ð11Þ

where the first term arises from the deterministic driving force
and the second is a consequence of Gaussian fluctuations η.
For a potential system with F ¼ −DD ·∇U, the cross

product terms in the action

−1=2
Z

1

D
· F · _Cdt ¼ −1=2

Z
1

D
· F · dC

are independent of the path and thus constant, such that they
do not contribute to the optimal path equation. However, for
nonpotential systems they do contribute. In particular, the
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integral along a loop does not vanish in this case, which is akin
to the Aharonov-Bohm effect in quantum mechanics and can
be used to classify the underlying topologies of nonequili-
brium systems (Wang, Zhang, and Wang, 2010; Feng and
Wang, 2011).
Often, the integral in Eq. (10) is well approximated by

considering only the contribution of the path that minimizes
the action, called the optimal path (Feng, Han, and Wang,
2010; Wang, Zhang, and Wang, 2010; Wang et al., 2011; Li
andWang, 2013, 2014b; Zhang, Sasai, andWang, 2013; Feng,
Zhang, and Wang, 2014). The optimal path of a system is
determined by the Euler-Lagrange equation

d
dt

∂L
∂ _C

−
∂L
∂C ¼ 0. ð12Þ

Since the probabilities (10) can be used to determine the
nonequilibrium potential, optimal paths offer a possibility to
reduce the computational effort for calculating the landscape
from exponential to polynomial (Wang, Zhang, and Wang,
2010).
An example of optimal paths connecting two steady states

is illustrated in Fig. 1. Because of the curl flux force, optimal
paths in general do not follow the landscape gradient and do
not pass the saddle point Ĉ between the two states’ basins of
attraction. The example illustrates furthermore that optimal
paths in nonpotential systems are irreversible.
It is often very challenging to explicitly solve the Euler-

Lagrange equation (12). In practice, the action of each path
can be calculated by Monte Carlo methods and the optimal
path with minimum action can be obtained through the
Hamilton-Jacobi approach. This can reduce the complexity
of calculating the action from a multidimensional integral to a
one-dimensional line integral (Olender and Elber, 1996; Elber,
Meller, and Olender, 1999; Faccioli et al., 2006; Feng, Han,
and Wang, 2010; Wang, Zhang, and Wang, 2010; Wang et al.,

2011; Li and Wang, 2013, 2014b; Zhang, Sasai, and Wang,
2013; Feng, Zhang, and Wang, 2014).

D. Nonequilibrium transition state theory

In a stochastic equilibrium system, transitions occur
between states associated with landscape minima. The state
transfer between the minima follows an optimal path and
passes through a “transition state” that is associated with a
saddle point of the potential. In the limit of small fluctuations,
Kramers (1940) calculated the rate to be

r ¼ D
2πkbT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00

minjU00
maxj

q
exp

�
−
ΔU
kBT

�
: ð13Þ

ΔU is the potential difference between the initial and the
transition state, kBT is the thermal energy, and U00

min and U00
max

are the potential curvatures in the initial and the transition
state, respectively. The latter are associated with the fluctua-
tions around these states.
For nonequilibrium systems, the optimal paths do not

necessarily pass a saddle point unless the fluctuations
approach zero. Therefore, the transition state or Kramer’s
rate theory needs to be modified (Freidlin and Wentzell, 1984;
Maier and Stein, 1997; Schuss, 2010; Feng, Zhang, andWang,
2014). For small but finite fluctuations (Feng, Zhang, and
Wang, 2014), the rate is written as

r ¼ λuðĈÞ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMfluctðCÞ
j detMfluctðĈ0Þj

s
e−SHJ ; ð14Þ

where r is the transition rate from C to C0, SHJ is the action
along the optimal path, Mfluct is the Hessian of the action, and
λu is its unstable eigenvalue. Furthermore, Ĉ0 denotes the
point where the optimal path between C and C0 crosses the
line separating the two corresponding basins of attraction,
determined by D−1 · F ¼ 0 along the optimal path. Similar to
the Kramers’ rate, the prefactor

λuðĈÞ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMfluctðCÞ
j detMfluctðĈ0Þj

s

is associated with fluctuations around C and Ĉ0. Note that Ĉ0

is different for transitions from C to C0 and back, such that
these rates do not obey the detailed balance.

E. Nonequilibrium thermodynamics

To develop nonequilibrium thermodynamics, one can start
with the Shannon entropy of the system (Schnakenberg, 1976;
Nicolis and Prigogine, 1977; Wang, Huang et al., 2006; Ao,
2008; Ge and Qian, 2010; Van and Esposito, 2010; Feng and
Wang, 2011; Zhang et al., 2012)

S ¼ −
Z

PðC; tÞ lnPðC; tÞdC. ð15Þ

The temporal evolution of the entropy can be decomposed into
two parts:

FIG. 1. 3D illustration of a nonequilibrium landscape and
nonequilibrium paths. The states C and C0 are attractors of the
system. The black lines indicate the optimal irreversible paths
between them, with Ĉ0 denoting the maxima along them. The
white line shows the steepest descent gradient path going through
the saddle point Ĉ. From Feng, Zhang, and Wang, 2014.
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_S ¼ _St − _Se; ð16Þ

where

_St ¼
Z

½J · ðDDÞ−1 · J� 1
P
dC ð17Þ

represents the entropy production rate or the rate at which the
total entropy of the system and the environment change, and

_Se ¼
Z

½J · ðDDÞ−1 · F0�dC ð18Þ

is the entropy flow into or out of the system from the
environment. The entropy production rate _St is directly related
to the nonequilibrium flux J and is always larger than or equal
to zero. In the expression of entropy flux _Se, the effective
force F0 is given by F0 ¼ F −D∇ · D. The entropy flux can be
positive (reduction of system entropy), which allows for the
creation of order in the system as can be observed for living
systems. At steady state, the entropy production rate is directly
related to the rotational curl steady-state probability flux and is
equal to the entropy flux or heat dissipation.
Analogs of equilibrium thermodynamic quantities can be

defined. If U denotes again the nonequilibrium potential
U ¼ − lnPss, then the nonequilibrium potential energy is
given by U ¼ D

R
UðCÞPðC; tÞdC and the free energy F by

F ¼ D
R
PðC; tÞ ln ½PðC; tÞ=PssðCÞ�dC. These quantities are

related through F ¼ U −DS. The negative total entropy −St
and the nonequilibrium free energy F are Lyapunov functions
for the evolution of the probability P. Note that the non-
equilibrium potential energy and the nonequilibirum free
energy, sometimes called relative entropy, are defined in an
analogous way to the energy and free energy in equilibrium
statistical physics. The amplitude of fluctuations represented
by the scale factor D effectively plays the role of temperature;
in fact, the physical thermal energy could be involved in D.
Another form of nonequilibrium thermodynamics relates

the underlying landscape and flux dynamics from the non-
equilibrium fluctuation-dissipation relation by evaluating the
equal time correlation functions of the flux velocity (Feng and
Wang, 2011). The time derivative of the free energy can be
written as

_F ¼ Dhv · ∇ ln ½P=Pss�i; ð19Þ

where h� � �i denotes the average with respect to P and v ¼
J=P is the flux velocity. From this,

_F ¼ hvss · D−1 · vssi − hv · D−1 · vi ð20Þ

≡ _Q −D _St; ð21Þ

where _Q is the heat flowing out of the system. It follows that
the rate of entropy production results from relaxation to the
steady state along gradients of the relative potential _F , and
from a constant exchange of heat that keeps the system out of
equilibrium in steady state _Q (Seifert, 2005; Ge and Qian,

2010; Van and Esposito, 2010; Feng and Wang, 2011). Thus
the nonequilibrium thermodynamics in this form states
that total entropy production is from both nonstationary
relaxation to the steady state and housekeeping for maintain-
ing the steady state (Ge and Qian, 2010; Feng and Wang,
2011). At steady state, the entropy production rate is equal to
the housekeeping heat for maintaining the steady state.
Therefore, it is important to quantify entropy production as
the nonequilibrium thermodynamic (or dissipation) cost for
maintaining the steady state.
After defining the generalized thermodynamic force as

X ¼ ðDDÞ−1 · F=P; ð22Þ

one obtains the entropy dissipation

_Se ¼
Z

J ·XdC ð23Þ

in terms of the nonequilibrium flux J and X. Considering the
individual components of the scalar product in the integral,
one can thus identify pairs of conjugated thermodynamic
forces and fluxes. They form the basis of phenomenological,
hydrodynamic descriptions of nonequlibrium systems, where
the thermodynamic fluxes can be expressed up to linear order
in terms of the forces

J ¼ LX: ð24Þ
The matrix L respects the system symmetries by the Curie
principle and contains the phenomenological coupling coef-
ficients, which fulfill the Onsager reciprocal relations
(Onsager, 1931).
These considerations can also be applied to discrete systems.

With the transition rate between state i and j again given by Tij,
the flux between them is Fij ¼ TjiPj − TijPi. We can also
introduce the generalized thermodynamic potential

Aij ≡ ln

�
TijPi

TjiPj

�
.

For the entropy S ¼ −
P

i Pi lnPi one then finds
(Schnakenberg, 1976)

_S ¼
X
i;j

FijAij ¼
X
i;j

TijPi ln

�
TijPi

TjiPj

�
: ð25Þ

Similar to Eq. (23) the change in entropy is thus expressed as a
sum of products of conjugated fluxes (Fij) and forces (Aij).
Since changes of entropy are intimately related to the

existence of fluxes, the rate of entropy production or change
can be used as a measure for how far a system is from
equilibrium.

1. Crooks’ theorem and the Jarzynski relation

When applying thermodynamics to “small” systems where
the number of molecules is on the order of 1010 or less, for
example, on the scale of individual cells (104), fluctuations
become significant. Consequently, it does not suffice to
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consider mean field thermodynamic quantities; distributions
must be considered. A number of fluctuation theorems have
been derived to relate these distributions to entropy production
in case some time-dependent work process is applied to a
system (Seifert, 2012). In particular, consider the change of
the microstate C of a system coupled to a heat bath at
temperature T. The change occurs along a path CðtÞ from
Cð0Þ ¼ Cinitial to CðτÞ ¼ Cfinal. Furthermore, let λ denote a
time-dependent system parameter. Then the distribution
P½CðtÞjλðtÞ� of the path and the corresponding distribution
for its reverse path C̄ fulfill (Crooks, 1998, 1999)

P½CðtÞjλðtÞ�
P½C̄ðτ − tÞjλ̄ðτ − tÞ� ¼ exp½ΔS� ¼ exp½βðW − ΔFÞ�: ð26Þ

Here ΔS and ΔF denote the differences in entropy and free
energy between the initial and the final equilibrium state,
whereas W is the work applied to the system and β is inverse
temperature. This was verified experimentally; see, for exam-
ple, Collin et al. (2005) and Schuler et al. (2005).
The fluctuation theorem implies the Jarzynski relation,

namely, that the average exponential of the work performed
equals the exponential of the free energy change (Jarzynski,
1997aand 1997b). Explicitly,

hexp½−βW�i ¼ exp½−βΔF�: ð27Þ

This relation implies bounds on the possible paths along
which work is extracted from the system by reducing its
entropy. From a practical point of view it shows how to
measure free energy differences by driving the system in
arbitrary ways between two equilibrium states. This was
applied experimentally to conformations of single RNA
molecules (Liphardt et al., 2002).

2. Fluctuation-dissipation theorem for intrinsic
nonequilibrium systems

The conventional FDT is important in linking the response
of the system upon perturbation to equilibrium fluctuations
(Kubo, 1966). This is useful for experimental efforts in
extracting the equilibrium fluctuations of a system from its
response, or vice versa. For nonequilibrium systems with a
broken detailed balance, a generalization of the FDT is
necessary (Cugliandolo, Dean, and Kurchan, 1997; Seifert,
2005; Prost, Joanny, and Parrondo, 2009; Seifert and Speck,
2010; Feng and Wang, 2011). In the landscape and flux
representation, it takes the form (Feng and Wang, 2011)

RΩ
i ðt − t0Þ ¼ −hΩðtÞ∂i ln½PssðxÞ�i ð28Þ

¼−½hΩðtÞF̃kðt0ÞD−1
ik ðt0ÞiþhΩðtÞvssk ðt0ÞD−1

ik ðt0Þi�;
ð29Þ

where Ω is an observable and R the response to a perturbation.
Furthermore F̃i ¼ Fi − ∂jDij is again the generalized force
and vss ¼ Jss=Pss is the flux velocity.
This expression reveals that there are two contributions to

the system’s response. The first term on the right-hand side of

Eq. (29) is analogous to the expression for equilibrium
systems and results from correlations between observable
Ω and their driving force. The second term involves a
correlation between the steady-state flux velocity and observ-
able Ω, which breaks the detailed balance. Thus, this term is
absent in equilibrium systems. The general response therefore
depends on both steady-state fluctuations and curl flux.
Equation (29) can be used to experimentally quantify the
rotational curl flux by measuring the difference between the
response function and the fluctuations around steady state.

F. Nonequilibrium information dynamics

1. Nonequilibrium information landscape and flux, mutual
information, and entropy production

The physical states of systems and environments can be
encoded into bits of information. Information flow is impor-
tant for cellular signal transduction, development, and brain
information processing (Bialek, 2012; Barato, Hartich, and
Seifert, 2013; Barato and Seifert, 2014; Levchenko and
Nemenman, 2014). Speed and accuracy are crucial for
biological information transfer and processing. However,
finding phenomena that facilitate fast, efficient, and accurate
biological information transfer and processing is challenging.
Information dynamics are often stochastic; this can be
characterized by probabilistic evolution (Barato, Hartich,
and Seifert, 2013; Barato and Seifert, 2014; Hartich,
Barato, and Seifert, 2014; Horowitz and Esposito, 2014).
Information dynamics can be captured by communications

among different subsystems enabling information transfer
(Sloane and Wyner, 1993). Stochastic information dynamics
can be quantified by the probabilistic master equation includ-
ing, for example, both the whole system Z and its subsystems
X and S (Barato, Hartich, and Seifert, 2013; Barato and
Seifert, 2014; Hartich, Barato, and Seifert, 2014; Horowitz
and Esposito, 2014; Zeng and Wang, 2017). The nonequili-
brium information system can be globally quantified by its
steady-state distribution and flux. Weights are assigned to
each information state based on the landscape. Both landscape
and flux which quantifies the system’s distance form equi-
librium determine the information dynamics (Zeng and Wang,
2017). Shannon’s information theory (Sloane and Wyner,
1993) gives a mutual information measure for the capacity of
the communications. Explicitly, for a system Z, this is based
on the mutual information rate (MIR) between its subsystems
X and S in steady state. The MIR is defined on the
probabilities of all possible time sequences. That is, it depends
on the probability of the whole system PðZTÞ and the
probabilities of the subsystems X and S given by PðXTÞ
and PðSTÞ. The MIR between X and S is explicitly

IðX; SÞ ¼ lim
T→∞

1

n

X
ZT

PðZTÞ log PðZTÞ
PðXTÞPðSTÞ ; ð30Þ

which measures the efficient bits of information that X and S
exchange with each other in unit time. When IðX; SÞ ¼ 0, no
information is exchanged between X and S and therefore the
subsystems are independent of each other. The general form
of mutual information IðX; SÞ can be decomposed into a
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time-reversible equilibrium part IDðX; SÞ and time-irreversible
nonequilibrium part IBðX; SÞ directly related to the informa-
tion flux. This links communication capacity to the driving
force of the system’s information dynamics (Zeng and Wang,
2017). While the time-reversible part IDðX; SÞ operates in
both directions without additional energy, the directional flow
of information exchange requires energy input and is related to
the information flux Jz, one of the two driving forces of the
information dynamics. Furthermore, the information commu-
nication capacity is associated with the dissipation cost in
maintaining it. The detailed-balance breaking part of mutual
information can be further decomposed into the difference
between the entropy production rate of the whole system and
the individual subsystems (Diana and Esposito, 2014; Zeng
and Wang, 2017). Namely,

IBðX; SÞ ¼ 1
2
ðEPRz − EPRx − EPRsÞ; ð31Þ

where EPRz, EPRx, and EPRs represent the entropy pro-
duction rate of the whole system Z, and each subsystem X and
S, respectively. Physically, a system’s capacity for irreversible
mutual information exchange between its subsystems is
related to the difference between entropy production in the
whole system and its subsystems. Efficient mutual informa-
tion exchange requires an energy input or dissipation cost,
which can have direct impacts on the Jarzynski relation and
Crooks fluctuation theorem when including information.

2. Fluctuations in information thermodynamics

Thermodynamic fluctuations can significantly alter sto-
chastic information systems. The generalized fluctuation
theorem involving information exchange characterized by
mutual information I is given as (Sagawa, 2013)

P½CðtÞjλðtÞ�
P½C̄ðτ − tÞjλ̄ðτ − tÞ� ¼ exp½βðW − ΔFÞ þ I�. ð32Þ

This states that the difference in statistical fluctuations forward
and backward in time leads to the entropy production given by
the difference between the work and the free energy reduction
from the mutual information. The generalized Jarzinsky
relation (Sagawa, 2013) reads

hexp ½−βW − I�i ¼ exp½−βΔF�: ð33Þ

These relations imply that the effect of information exchange
acts as extra work or an effective free energy reduction.
Several studies were carried out on the information and

nonequilibrium optimization of biological systems (Bialek,
2012; Barato, Hartich, and Seifert, 2013; Press et al., 2013;
Barato and Seifert, 2014; Levchenko and Nemenman, 2014).
Topics examined include maximizing information entropy or
max caliber (Press et al., 2013); maximizing mutual infor-
mation (Bialek, 2012; Levchenko and Nemenman, 2014) for
signal transduction and development; uncertainty; sensing;
and efficiency of information processing (Ziv, Nemenman,
and Wiggins, 2007; Lan et al., 2012; Barato, Hartich, and
Seifert, 2013; Barato and Seifert, 2014; Becker, Mugler, and
ten Wolde, 2015). We expect more applications of the

theoretical framework here to the biological information
processing.

G. Gauge fields, time-reversal symmetry breaking, and
underlying geometry for nonequilibrium systems

Symmetry is at the heart of many physical laws. Continuous
symmetries can be quantitatively described through their
associated gauge fields (Peskin and Schroeder, 1995).
However, gauge theory can also be applied to nonequilibrium
probabilistic dynamics (Feng and Wang, 2011; Polettini,
2012). Indeed, the Fokker-Plank equation describing prob-
abilistic evolution can be rewritten as

∇tPðC; tÞ ¼ ∇iDijðCÞ∇jPðC; tÞ; ð34Þ

where the covariant derivatives with respect to the system
observables and time are defined as

∇i ¼ ∂i þ Ai; ð35Þ

∇t ¼ ∂t þ At; ð36Þ

where Ai ¼ − 1
2
D−1

ij F̃j and At ¼ DijAiAj − ∂iðDijAjÞ form
the components of an Abelian gauge field.
The components Ai introduce a curvature of the gauge field

internal space

Rij ¼ 2ð∂iAj − ∂jAiÞ ¼ ∂iðD−1
jk vkÞ − ∂jðD−1

ik vkÞ; ð37Þ

where vssðCÞ ¼ JssðCÞ=PssðCÞ is the steady-state flux veloc-
ity. In equilibrium, the steady-state flux is zero and the
curvature vanishes, which corresponds to Rij ¼ 0 and thus
a flat internal space. Outside of thermodynamic equilibrium,
the rotational flux typically does not vanish, therefore Rij ≠ 0,
which yields a curved internal space (Feng and Wang, 2011).
Curvature of this internal space is a source of a global
topological phase analogous to the quantum Berry phase
(Wang, Xu, and Wang, 2008; Wang, Zhang, and Wang, 2010).
The heat dissipated along a closed loop is given by (Feng and
Wang, 2011)

TΔsCm ¼ −
I
C
AiðxÞdxi ¼ −

1

2

Z
Σ
dσijRij; ð38Þ

where Σ is the surface spanned by the closed loop C and dσij
is an area element of this surface.
The dissipated heat Δsm in Eq. (38) is equal to the entropy

production at steady state. Through the fluctuation theorem
(Crooks, 1998, 1999), time irreversibility emerges when
entropy production is nonzero, caused by a flux that breaks
the detailed balance (Wang, Zhang, and Wang, 2010; Feng
and Wang, 2011) Thus, systems with nonzero curvature
geometry break the detailed balance, showcase the emergence
of the flux that explicitly breaks time-reversal symmetry, and
generate dissipation.
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H. Multiple landscapes, adiabaticity, nonadiabaticity,
and curl flux

We have examined nonequilibrium processes with just one
underlying landscape. Often systems have multiple degrees of
freedom coupled to each other. In these cases, dividing
systems into subsystems and examining their intrasubsystem
and intersubsystem dynamics allows for probing the overall
system dynamics. In equilibrium systems, each subsystem can
be described by a landscape and the whole system is thus
considered as multiple coupled landscapes. For example, both
the intraenergy nuclear landscape and interenergy electronic
landscape motion determine the dynamics of electron transfer
(Marcus, 1964; Morgan and Wolynes, 1987). In equilibrium
systems, the coupled landscape approach can be carried out
because interaction potential landscapes are known a priori.
These interaction landscapes are not a priori known for
nonequilibrium systems, so the conventional equilibrium
approach must be extended.
For nonequilibrium systems, both strongly coupled, adia-

batic dynamics and weakly coupled, nonadiabatic dynamics
are important for overall system dynamics. Adiabatic motion
is characterized by significantly faster interlandscape motion
while the opposite is true of nonadiabatic motion. Multiple
coupled landscapes can be technically challenging to study
and visualize because intralandscape dynamics are often
described by continuous variables, whereas interlandscape
dynamics and coupling are often described by discrete
variables. One possible solution is to write all discrete
variables in a continuous representation. While the states
themselves are discrete, their associated occupation proba-
bilities are continuous. By introducing those additional
variables, one can treat systems with coupled discrete and
continuous variables as coupled continuous variable systems
with extra degrees of freedom using path integrals. Through
mathematical transformation, the coupled landscape dynamics
can be treated as the dynamics under a single landscape with
extended dimensions (Zhang, Sasai, andWang, 2013; C. Chen
et al., 2015). Using this strategy, a unified, global quantifi-
cation of nonequilibrium multilandscape dynamics, as deter-
mined by landscape gradient and curl flux, can be represented
on a single higher-dimensional landscape; details can be found
in Zhang, Sasai, and Wang (2013) and C. Chen et al. (2015)
Examples of possible applications for this strategy include the
study of molecular motors and gene regulation (Jülicher,
Ajdari, and Prost, 1997; Zhang, Sasai, and Wang, 2013; C.
Chen et al., 2015).

I. Organization principle of hierarchy and complexity of the
dynamical systems at different scales

Complex systems often involve spatial and time scales
characterized by different emergent phenomena and dynam-
ics. For example, when we heat up the water for coffee, in
principle we can explore the microscopic molecular dynamics
and see how the water changes to vapor. However, it is not
practical to follow the dynamics of all the molecules involved.
In addition, our observation of interest is on a larger scale than
individual molecules; we want to know if the water is boiling
or not. The water’s state is not determined by any single

individual molecule, so it is impossible to determine if the
water is boiling or not by examining a single molecule. The
boiling behavior is an emergent collective phenomena from
the interactions of many individual molecules at microscopic
scales.
Large-scale behavior emerging from microscopic scales can

be very different from small-scale behavior. A physical picture
and a unified quantitative theory are crucial for understanding
this organization hierarchy and emergent system complexity
(Anderson, 1972; Prigogine and Stengers, 1984; Frauenfelder
and Wolynes, 1994; Hopfield, 1994; Wolynes, 1996; Haken,
2000; Laughlin et al., 2000). Emergent behavior is explored
using several central concepts, namely, symmetry breaking,
bifurcation, phase transition, and emergent rare events. These
concepts were integrated to suggest a nonequilibrium land-
scape framework for mesocopic dynamics derived from the
fast, microscopic dynamics at a small scale; intrabasin
motions within each state at an intermediate scale; and the
slow interbasin switching with the kinetic rates exponentially
dependent on the system size at a larger scale (Qian et al.,
2016). This nonequilibirum landscape framework represents
microscopic, fast dynamics as a stochastic process and
intermediate scale movements using nonlinear dynamics.
Multiple attractors from larger scales representing the behav-
ior and function emerge from the interactions of smaller scale
systems.
Each interbasin transition can be described as a dynamic

symmetry break which exhibits catastrophe and a phase
transition, breaking ergodicity (Qian et al., 2016), as shown
in Fig. 2. The dynamics of a nonlinear mesoscopic system at
the intermediate scale is stochastic. Therefore, the location and
switching between basins of attraction are both emergent
phenomena. Stochastic interbasin dynamics provide the ran-
dom element for nonlinear dynamics at higher spatial and
temporal scales. In fact, the mesoscale landscape and flux
emerges from underlying microscale dynamics of the system.

FIG. 2. Illustration of organizational hierarchy and complexity
at different scales. (a) A schematic showing how rapid solvent-
macromolecule collisions, as a source of stochasticity and
together with a multi-energy-well landscape, give rise to a kinetic
jump process for an individual macromolecule with multiple
states (shown within the circle). (b) A level higher, many
interacting chemical individuals, each with multiple discrete
states, form mesoscopic nonlinear reaction systems. From Qian
et al., 2016.
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At the mesoscopic scale, understanding emergent states in
their basins of attraction and how they switch is critical. For
example, the water liquid and vapor phase basin dynamics are
critical for understanding the boiling system behavior,
although individual molecule motion is not as important.
The hierarchical structures of protein dynamics at different
scales in terms of their associated energy landscapes have
been experimentally demonstrated (Frauenfelder and
Wolynes, 1994). The nonequilibrium landscape framework
discussed here can help to capture the hierarchical structure
and emergent complexity of the nonequilibrium biological
system organization.

J. Spatial nonequilibrium systems

So far we have discussed spatially homogeneous systems.
However, spatially heterogeneous systems more accurately
represent biological phenomena such as organism develop-
ment, motility, and cell structure. Another example lies in the
spatial organization of the neurons in the brain, where the
relevant dynamic quantities depend on space (Getling, 1998;
Bray, 2001; Dayan and Abbott, 2001; Jaeger et al., 2004;
Marchetti et al., 2013). The dynamics and local stability of
such systems have often been studied using deterministic or
stochastic partial differential equations. The potential land-
scape and rotational curl flux approach can be generalized to
spatiotemporal nonequilibrium dynamics of such systems
(Wu and Wang, 2013a, 2013b, 2014).

1. Landscape and flux decomposition

To identify and quantify the driving force for spatially
inhomogeneous nonequilibrium dynamical systems, we first
define the system’s dynamic variables. These quantities are
given by fields that depend on space and time, denoted by

ϕ⃗ðx⃗; tÞ with components ϕaðx⃗; tÞ representing the different
state variables and x⃗ denoting a point in space. The Langevin
equation for these fields then reads

∂tϕaðx⃗; tÞ ¼ Fa½x⃗;ϕ� þ ξa½x⃗; t; ϕ⃗�; ð39Þ

where F⃗ is the deterministic driving force and ξ⃗ is the
stochastic force, defined by

ξa½x⃗; t; ϕ⃗� ¼
X
b

Z
d3x0Gab½x⃗; x⃗0; ϕ⃗�ζbðx⃗0; tÞ; ð40Þ

where the random fields ζa obey

hζaðx⃗; tÞi ¼ 0; ð41Þ

hζaðx⃗; tÞζbðx⃗0; t0Þi ¼ δabδ
ð3Þðx⃗ − x⃗0Þδðt − t0Þ. ð42Þ

In the previous equation, G½x⃗; x⃗0; ϕ⃗� quantifies how the
stochastic force field varies in space and by system variable.
The stochastic fluctuation strength is characterized by the
diffusion tensor D with

Dabðx; x0; ½ϕ�Þ ¼
1

2

X
s

Z
d3yGas½x⃗; y⃗; ϕ⃗�Gsb½x⃗0; y⃗; ϕ⃗�. ð43Þ

Consequently,

hξ½x⃗; t; ϕ⃗�i ¼ 0

and

hξ½x⃗; t; ϕ⃗�ξ½x⃗0; t0; ϕ⃗�i ¼ 2Dðx; x0; ½ϕ�Þδðt − t0Þ.

The state of the system is given by a probability functional

P½ϕ⃗�, which evolves in time according to a functional Fokker-
Planck equation. The rate of change of the probability
function can be derived from the principle of probability
conservation by noting that the functional divergence of net
probability flux is equal to the rate of change of probability.
Explicitly,

∂P½ϕ⃗�
∂t ¼ −

X
a

Z
d3x

δ

δϕaðx⃗Þ
Ja½x⃗; ϕ⃗�; ð44Þ

where the flux field Ja½x⃗; ϕ⃗� in turn can be split into two
contributions (Wu and Wang, 2013a, 2013b, 2014)

Ja½x⃗; ϕ⃗� ¼ Fa½x⃗; ϕ⃗�P½ϕ⃗�

−
X
b

Z
d3x0

δ

δϕbðx⃗0Þ
ðDab½x⃗; x⃗0; ϕ⃗�P½ϕ⃗�Þ. ð45Þ

In analogy with the spatially homogenous case, the driving
force can be expressed in terms of the functional gradient of a
nonequilibrium potential field landscape and a rotational curl
flux field (Wu and Wang, 2013a, 2013b, 2014)

F̃a½x⃗; ϕ⃗� ¼−
X
b

Z
d3x0Dab½x⃗; x⃗0; ϕ⃗�

δU½ϕ⃗�
δϕbðx⃗0Þ

þJssa ½x⃗; ϕ⃗�
Pss½ϕ⃗�

; ð46Þ

where

F̃a½x⃗; ϕ⃗� ¼ Fa½x⃗; ϕ⃗� −
X
b

Z
d3x0

δ

δϕbðx⃗0Þ
Dab½x⃗; x⃗0; ϕ⃗�.

The nonequilibrium potential landscape U is linked to the

steady-state probabilityU½ϕ⃗�¼−lnPss½ϕ⃗�, whereas the steady-
state probability flux field satisfies the divergent free condition

X
a

Z
d3x

δ

δϕaðx⃗Þ
Jssa ½x⃗; ϕ⃗� ¼ 0: ð47Þ

The Lyapunov functional can be used to quantify the global
stability of spatially dependent nonequilibrium dynamical
systems. The functional is determined by the intrinsic poten-
tial field in systems without fluctuations and by the free
energy landscape for systems with finite fluctuations (Wu and
Wang, 2013a, 2013b, 2014). The free energy functional
decreases monotonically for spatially dependent stochastic
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systems because of the second law of thermodynamics.
Therefore, nonequilibrium thermodynamics can be general-
ized from spatially homogeneous to heterogeneous systems
(Wu and Wang, 2013a, 2013b, 2014).

2. Generalized hydrodynamics

Entropy dissipation and entropy production can be
expressed for spatially heterogeneous systems in a manner
similar to that used for homogenous systems. The entropy
production rate can be used to derive a phenomenological
description of the system’s dynamics by assuming the system
is close to thermodynamic equilibrium (de Groot and Mazur,
1985). This condition states that each of the volume elements
that the system comprises is always in thermodynamic
equilibrium. The equilibria may differ between different
spatial elements such that the exchange of energy and matter
between adjacent volume elements leads to quasistatic
changes of their states. This approach is then limited to so-
called hydrodynamic modes, which are characterized by a
relaxation time τ that increases with decreasing wave number
q as τ ∝ q−2 and principally arises from conservation laws or
broken continuous symmetries.
Because the system is in local thermodynamic equilibrium,

the free energy F is defined by summing each volume
element’s free energy. For constant temperature T, one can
then express the entropy production rate as

_St ¼ −
1

T
_F ¼

Z
d3x

X
i

JiXi; ð48Þ

where the sum extends over all conjugated pairs of fluxes and
forces. Expressions for the fluxes can be obtained by
expanding them up to first order in the forces, similar to
Eq. (24), where the now phenomenological coupling coef-
ficients respect the Curie principle and the Onsager relations.
For simple fluids, this approach leads to the Navier-Stokes
equation, where the viscosities are the phenomenological
coupling coefficients. This approach is therefore often called
generalized hydrodynamics and has been applied successfully
to cellular processes; see Sec. VI. For strongly nonequilibrium
systems, the local equilibrium assumption breaks down. A
more general approach such as landscape and flux field is
required to accurately describe the underlying nonequilibrium
processes.

3. A strong nonequilibrium spatial dynamical system:
Turbulence

As a specific example of a spatially heterogeneous system,
consider the fluid dynamics of turbulent systems. Typically, the
magnitude of the Reynolds number can inform if the inertial
force dominates their viscous counterpart. For biological
fluids, the Reynolds number is often low; however, they can
still sometimes exhibit turbulent behavior, e.g., in bacterial
suspensions (Dombrowski et al., 2004; Wensink et al., 2012).
The nonequilibrium behavior of turbulence (Goldenfeld and
Shih, 2017) can be characterized through energy cascade (Rose
and Sulem, 1978; Falkovich and Sreenivasan, 2006). The
notion of a cascade intuitively captures the energy flow from
large to intermediate, then finally to small length scales where

energy is dissipated (Richardson, 1922), quantified by
Kolmogorov’s scaling laws (Kolmogoroff, 1941a, 1941b,
1962; Landau and Lifshits, 1987). A quantification of turbu-
lence with an explicit detailed-balance breaking description
(Wu, Zhang, and Wang, 2018) can help reveal more insight
into the nonequilibrium nature.
The potential landscape and flux field has been quantified

through the stochastically forced Navier-Stokes equations that
govern fully developed turbulence (Wu, Zhang, and Wang,
2018)

∂tu ¼ Πsð∇Þ · ð−u · ∇uÞ þ νΔuþ fs; ð49Þ

where u denotes the flow velocity field and Πsð∇Þ ·
ð−u ·∇uÞ ¼ −u · ∇u −∇p represents hydrostatic pressure
and convection. They constitute the deterministic driving
force together with the viscous force νΔu. Finally, fs denotes
the stochastic stirring force.
The probability functional evolves according to

∂tP½u� ¼ −
Z

d3x
δ

uðx⃗Þ · J½x⃗;u� ð50Þ

by probability conservation. At steady state, the flux field Jss

satisfies the divergence-free condition and is therefore a
rotational curl flux. The flux field is determined by a
reversible, pressure-convective force, an irreversible viscous
force with diffusion in state space, as well as the stochastic
stirring force as (Wu, Zhang, and Wang, 2018)

JssðxÞ½u� ¼ Jssrev½x⃗;u� þ Jssirr½x⃗;u�. ð51Þ

The viscous force decomposition then becomes (Wu and
Wang, 2013b, 2014; Wu, Zhang, and Wang, 2018)

νΔu ¼ −
Z

dx0Dssðx − x0Þ · δ

δuðx0ÞΦ½u� þ Jssirr½x⃗;u�
Pss½x⃗;u� ; ð52Þ

where Φ½u� ¼ − lnPss½u� is the nonequilibrium potential
landscape related to the steady-state probability (Wu,
Zhang, and Wang, 2018). This landscape and flux field
perspective of nonequilibrium dynamics applies to stochastic
fluid systems with both low and high Reynolds numbers, such
as biological fluids and turbulent systems, respectively.
The energy transfer T associated with the energy cascade is

tightly related to the irreversible flux that breaks the detailed
balance by (Wu, Zhang, and Wang, 2018)

T ðkÞ ¼ −R
�Z

u�ðkÞ · JssirrðkÞ½u�δu
�
; ð53Þ

where R denotes the real part of the function. This relation
leads to the 4=5 scaling law for the third order structure
function in turbulence (Frisch, 1995; Wu, Zhang, and Wang,
2018). It also leads to Komogorov’s 5=3 scaling law for the
second order structure function in turbulence under the
hypothesis of self-similarity (Wu, Zhang, and Wang, 2018).
The driving force for stochastic fluid systems arises from the
underlying potential landscape field gradient and the curl
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probability flux field for either physical or biological fluids or
turbulence. A nonzero irreversible probability flux field
indicates detailed-balance breaking, which drives the energy
cascade flow.

K. Nonequilibrium quantum landscape and flux

1. Nonequilibrium quantum dynamics

Nonequilibrium quantum phenomena are important in
many branches of science, for example, quantum transport
(Gelbart, Rice, and Freed, 1972; Laughlin, 1983; Kuznetsov
and Ulstrup, 1999; Majumder et al., 2005; Zhang et al., 2005;
Bernevig and Zhang, 2006; Lee, Cheng, and Fleming, 2007).
Electron and energy transport within and between molecules,
e.g., in photosynthesis, has been explored intensively through
both experiment (Ohtani et al., 1988; Reed et al., 1997; Park
et al., 2000; Ho, 2002; Wu et al., 2004; Avinun-Kalish et al.,
2005) and theory (Harbola, Esposito, and Mukamel, 2006;
Tanimura, 2006; Esposito and Galperin, 2009). Unidirectional
flow in nonequilibrium ultrafast electron transfer (Kao et al.,
2012) was seen in recent experiments of oxidized photolyase
photoreduction dynamics (Liu et al., 2013). Furthermore,
quantum effects in transports provide a test ground for
nonequilibrium thermodynamics, recently made possible in
single molecule junctions (Ward et al., 2008). The coherence,
representing pure quantum nature, contributes to the transport
(Tanimura and Wolynes, 1992) in addition to the populations.
This was seen for quantum coherent excitation (charge)
transport in light-harvesting complexes and photosynthetic
reaction centers (Xu and Schulten, 1992; Lee, Cheng, and
Fleming, 2007). Nonequilibrium dynamics is also important
for the development of quantum devices (Nielsen and
Chuang, 2000).
There are several theoretical approaches for quantum

transport, including momentum balance and fluctuations in
mesoscopic systems (Soree, Magnus, and Schoenmaker,
2002), the fluctuation-dissipation theorem (Kubo, 1957;
Baeriswyl and Degiorgi, 2005), and nonequilibrium
Green’s function method (Caroli et al., 1971; Combesco,
1971; Koentopp et al., 2008). However, these formalisms can
be applied successfully only to systems near equilibrium. The
quantum master equation provides a possible alternative for
studying irreversible dynamics of quantum systems coupled to
environments (Haake, 1973; Spohn, 1980; Breuer and
Petruccione, 2002) beyond the near equilibrium regime.
This approach has been applied to decoherence dynamics
in quantum optics (Scully and Zubairy, 1997; Carmichael,
2010), chemical reactions (Mukamel, 1999), and condensed
matter systems (Weiss, 2012).
In this section, we illustrate an approach to nonequilibrium

quantum dynamics in terms of population landscape, curl flux,
and coherence (Zhang and Wang, 2014) by exploring energy
transfer (Gruebele and Wolynes, 2004; Leitner, 2010) and
charge transport (Ohmine and Saito, 1999; Zhu and Marcus,
2008; Chen and Tao, 2009; Shishir et al., 2009) in biomo-
lecules. Energy transport is often coupled to two heat
environments, or bosonic baths, with different temperatures.
For example, the light-harvesting complex is coupled to both
light, photonic baths and phononic baths induced by protein

dynamics. Charge transport is often coupled to two chemical
environments, or fermionic baths, with different chemical
potentials. An example of this phenomenon is found in
electron transfer between two metals.
Starting from the original Hamiltonian coupled with two

environments, the corresponding quantum master equation
can be derived. From there, the population landscape and
curl flux can be uncovered to characterize nonequilibrium
quantum systems. The curl flux provides a measure of
detailed-balance breaking and time irreversibility, important
in quantum transport. Nonequilibrium behavior from system-
environment coupling can significantly enhance steady-state
coherence (Zhang and Wang, 2014; Li, Cai, and Sun, 2015),
contrary to conventional wisdom that suggests the opposite is
true (Breuer, 2002; Manzano et al., 2012). The relationships
among the degree of nonequilibrium, curl flux, coherence,
quantum transport, and the energy or charge transfer effi-
ciency are discussed in later sections.

2. Theory of nonequilibrium quantum dynamics in terms of flux,
coherence, and population landscape

In this section, a landscape and flux theory is developed
(Wang, Xu, and Wang, 2008; Wang et al., 2011) for the
nonequilibrium quantum system (Zhang and Wang, 2014).
The general Hamiltonian of a quantum system interacting with
M environments can be written in the form

HS ¼
X
n;m

Hnmjψnihψmj þ
XM
i¼1

X
k;σ

ℏωkσa
ðiÞ†
kσ aðiÞkσ;

Hint ¼
X
i;hn;mi

X
k;σ

gnmðiÞ
kσ ðjψnihψmjaðiÞ†kσ þ jψmihψnjaðiÞkσÞ; ð54Þ

where hn;mi denotes that only the pairs of states n, m with
energies En < Em are considered. The first term of H0 is the
Hamiltonian of the system, the second term describes the
environmental Hamiltonian, and the term Hint describes
system-environmental coupling. Environments are often much
larger in size than the system, so one can assume there are no
reactions from the system back into the environment. Using
this assumption, the system dynamics are uncovered by
averaging over environments. This leads to the master
equation for reduced density matrix (Scully and Zubairy,
1997; Breuer and Petruccione, 2002; Zhang and Wang, 2014)
given by

∂ρS
∂t ¼ −1

ℏ2
TrR

Z
∞

0

ds½H̃intðtÞ; ½H̃intðt − sÞ; ρSðtÞ ⊗ ρRð0Þ��

þOðg2Þ. ð55Þ

The density matrix can be expanded in terms of coupling
strength between system and environments, explicitly
ρðtÞ ¼ ρSðtÞ ⊗ ρRð0Þ þ ρcðtÞ. Under weak coupling, the
quantum master equation can be truncated to second order,
which gives the Redfield equation without secular approxi-
mation rather than the Lindblad equation. Written in Liouville
space, this is
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_ρS ¼
i

h̄
½ρS; HS� −

1

2h̄2
DðρSÞ;

where HS is the system Hamiltonian and DðρSÞ is the
dissipation operator from system-bath coupling. The density
matrix then forms the super vector j_ρSi ¼ M̂jρSi. By sepa-
rating the ρc matrix on-diagonal population elements from the
off-diagonal coherence elements, the matrix M is written as

�
_ρp

_ρc

�
¼

� Mp Mpc

Mcp Mc

��
ρp

ρc

�
; ð56Þ

where Mp denotes the transition matrix in population space
andMc is the transition matrix in coherence space (Zhang and
Wang, 2014). The matrices Mpc and Mcp denote coupling
transition matrices between population and coherence space.
At steady state, the coherence ρc can be substituted as a

function of population ρp into the master equation (Zhang and
Wang, 2014) to give a reduced population quantum master
equation for ρp

ðMp −MpcM−1
c McpÞρssp ¼ 0. ð57Þ

The transfer matrix, which determines the temporal evolu-
tion of the density matrix, can now be defined as Tmn ¼
Ap

nn;mmρ
p
mm for m ≠ n, where Ap ≡Mp −MpcM−1

c Mcp.
For m ¼ n, Tmn ¼ 0. Because of its role in determining the
dynamics of the density matrix, the transfer matrix is the
driving force for stochastic probability evolution. The transfer
matrix can be further decomposed into symmetric and anti-
symmetric parts, given by

Tmn ¼
Tmn þ Tnm

2
þ Tmn − Tnm

2
;

respectively. One can see that the symmetric part of the
transfer matrix

Ap;S
nn;mm ¼ Tmn þ Tnm

2

	
ρpmm

satisfies the detailed-balance condition

�
Tmn þ Tnm

2

	
ρpmm

�
ρpmm −

�
Tnm þ Tmn

2

	
ρpnn

�
ρpnn ¼ 0.

Using similar methods, one can also check to see that the
antisymmetric part of the transfer matrix

Ap;A
nn;mm ¼ Tmn − Tnm

2

	
ρpmm

does not preserve the detailed balance;

�
Tmn − Tnm

2

	
ρpmm

�
ρpmm −

�
Tnm − Tmn

2

	
ρpnn

�
ρpnn ≠ 0;

which leads to a nonzero steady-state flux. Therefore, the
population quantum dynamics are determined by two driving
forces. The first part is a symmetric force

Ap;S
nn;mm ¼ Tmn þ Tnm

2

	
ρpmm

that is determined by the steady-state population landscape
and preserves the detailed balance. The second part is the
antisymmetric part of the driving force

Ap;A
nn;mm ¼ Tmn − Tnm

2

	
ρpmm;

which breaks the detailed balance (Zhang and Wang, 2014).
Quantum flux can further be decomposed into a sum of fluxes
through various loops in state space (Zhang and Wang, 2014,
2015a). The quantum flux is thus a rotational curl. The
relationships among quantum coherence, transport, thermo-
dynamics, fluctuation-dissipation relations, and even under-
lying geometry or topology will be explored in later sections
(Zhang and Wang, 2014, 2015a, 2015b, 2016; Mehboudi,
Sanpera, and Parrondo, 2016).
Next we describe how the concepts developed in Sec. II

have been applied to specific biological systems out of
thermodynamic equilibrium on various length and time scales.

III. BIOMOLECULAR SYSTEMS AND EXPERIMENTAL
QUANTIFICATION OF FLUX

As the fundamental building blocks of living organisms,
biomolecules interact with each other to form complex
molecular structures and dynamics. Because many biomolec-
ular processes consume energy and exchange matter, they are
considered far from equilibrium. This holds notably for
elementary biochemical reactions such as non-Michaelis-
Menten kinetics (English et al., 2006; Min et al., 2006),
molecular dynamics in space and time such as Min-protein
oscillations for cell-division site selection (Raskin and de
Boer, 1999a), the organization of cytoskeletal structures like
the assembly of actin filaments and microtubules (Mitchison
and Kirschner, 1984; Kuhn and Pollard, 2005; Fujiwara,
Vavylonis, and Pollard, 2007; Stewman and Ma, 2018),
and complicated molecular machines such as the bacterial
flagellar rotation motor (Silverman and Simon, 1974). We use
rhodamine oxidation, cyanobacterial circadian rhythm, and
energy transport in the light-harvesting complex as three
examples to illustrate nonequilibrium behavior occurring in
molecular systems.

A. Non-Michaelis-Menten enzyme kinetics

In living cells, almost all biochemical reactions are cata-
lyzed by enzymes that accelerate the conversion from sub-
strates to products. Typically, the kinetic rate is assumed to
obey Michaelis-Mentin kinetics, and the substrate and sub-
strate-enzyme complex are in equilibrium (Michaelis and
Menten, 1913; English et al., 2006; Xie, 2013). However,
when energy enters or exits the system, the enzyme kinetics
can deviate fromMichaelis-Menten behavior (Qian and Elson,
2002; Min et al., 2006; Cao, 2011) because of a rotational curl
flux that breaks the detailed balance (Liu and Wang, 2019).
The landscape and fluxes are determined theoretically as the
driving forces for nonequilibrium dynamics. Experimentally,
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the nonequilibrium landscape can be acquired by measuring
the steady-state distribution of the observables (Jiang et al.,
2017; Fang et al., 2018). Experimental quantification of flux is
more challenging but may be realized by measuring the
deviation from the Michaelis-Menten kinetics (Liu and
Wang, 2019).
The deviation from Michaelis-Menten kinetics can be

illustrated experimentally by the catalysis of dihydrorhod-
amine 123 oxidation into fluorescent rhodamine 123 by the
enzyme horseradish peroxidase in the presence of hydrogen
peroxide (H2O2). It is possible to study this reaction exper-
imentally at the single molecule level because both the
substrate and enzyme do not fluoresce, whereas the pro-
duct does (Edman et al., 1999; Edman and Rigler, 2000;
Hassler et al., 2007). Horseradish peroxidase has two
different conformations, both of which can bind the substrate.
The master equation corresponding to the kinetic scheme,
Fig. 3(a), is given by (Liu and Wang, 2019)

_P¼

0
B@
−sk1 − β α k1þ k3

β −sk2 −α k−2þ k4
k1s k2s −k−1 − k−2 − k3 − k4

1
CAP; ð58Þ

where P is the vector ðP1; P2; PESÞ of the probabilities P1, P2,
and PES for the enzyme to be in conformational state 1, 2, or
binding the substrate, respectively.
The steady-state probability flux is given by

J ¼ βPss
1 − αPss

2 , where Pss
i is the steady-state probability

for being in state i. The flux is zero and the detailed balance
holds if

α

β
¼ k−1k2 þ k2k3

k−2k1 þ k1k4
ð59Þ

in which case Michaelis-Menten kinetics emerges and

1

v
¼ C0 þ

C1

½S� ; ð60Þ

where v is the reaction rate and [S] the substrate concentration.
C0 and C1 are constants that depend on the molecular rates.

The inverse of the Michaelis-Menten rate is a linear function
of the inverse of the substrate concentration. If the detailed
balance is broken, the steady-state probability flux is nonzero
and the enzyme reaction rate is

1

v
¼ C0 þ

C1

½S� þ
C2

½S� þ λ
ð61Þ

which has an additional dependence on the substrate concen-
tration containing the constants λ and C2. In this case, the
inverse reaction rate is no longer a linear function of the
inverse substrate concentration and thus deviates from
Michaelis-Menten kinetics. This behavior is observed exper-
imentally for rhodamine oxidation by the horseradish peroxi-
dase, shown in Fig. 3(b). Note that the extra term C2=ð½S� þ λÞ
results from the presence of a flux loop, but not directly from
having more than one conformational state of the enzyme. The
deviation from Michaelis-Menten kinetics is thus a conse-
quence of breaking the detailed balance, which in this case
originates from heat absorption by the reaction (Liu and
Wang, 2019). In more complex systems, each additional flux
loop i contributes an additional term Ci=ð½S� þ λiÞ.
Exploiting the correlation function of the experimental

fluorescence signals, the kinetic rate parameters are obtained.
Doing so quantifies the enzymatic rate and the probability flux
as a function of the substrate concentration (Liu and Wang,
2019) shown in Figs. 3(b) and 3(c). Clearly, the experimen-
tally observed inverse enzyme rate versus the inverse substrate
deviates significantly from the conventional Michaelis-
Menten rate, which predicts a straight line. The nonzero
fluxes are quantified for different substrate concentrations
(Liu and Wang, 2019).
As discussed, a non-Michaelis-Menten rate can be used to

quantify the degree of the detailed balance breaking through
the corresponding rotational curl flux. The flux breaking
detailed balance can lead to non-Michaelis-Menten enzyme
kinetics, which is now quantified experimentally as a major
driving force for nonequilibrium dynamics (Liu and Wang,
2019) and landscape shape (Jiang et al., 2017; Fang et al.,
2018). It is important to note that the breaking down of the
detailed balance originates from energy imbalance of the

FIG. 3. Schematic of an enzyme reaction, non-Michales-Menten kinetics and quantification of flux. (a) The simplest kinetic scheme
with two unbound enzyme states. E1 and E2 denote the conformational states of enzymes, ES denotes the intermediate state of the
enzyme reaction, and P denotes product. α and β denote the conformation conversion rate. (b) Non-Michaelis-Menten (curved lines) vs
Michaelis-Menten enzyme kinetics (straight lines) with respect to rhodamine 123 concentrations at different substrate concentrations.
(c) Flux values with respect to rhodamine 123 concentrations at different substrate concentrations. From Liu and Wang, 2019.
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enzyme reaction because of heat absorption (Liu and
Wang, 2019).

B. Bacterial circadian rhythm

Circadian rhythms are biological processes that display
sustainable oscillation of about 24 hours and allow organisms
to anticipate predictable environmental changes that occur
daily. Typically, these processes are generated through neg-
ative feedback regulation of so-called clock genes at the level
of transcription or translation (King et al., 1997; Gonze,
Halloy, and Goldbeter, 2002; van Zon et al., 2007; Novák and
Tyson, 2008; Zwicker, Lubensky, and ten Wolde, 2010;
Paijmans, Lubensky, and TenWolde, 2016, 2017). A circadian
rhythm of the cyanobacterium Synechococcus elongatus
(Ishiura et al., 1998; Wang, Xu, and Wang, 2009) can emerge
from the relatively simple interaction of the proteins KaiA,
KaiB, and KaiC. Remarkably, after the addition of ATP, a
mixture of these proteins in vitro generates circadian oscil-
lations with only a weak dependence on temperature
(Nakajima et al., 2005; Tomita et al., 2005; Rust et al.,
2007). Of the three proteins, KaiC is a hexameric enzyme that
can be phosphorylated at two of its amino acids: serine 431
(S431) and threonine 432 (T432). The enzyme can be in four
different states: fully unphosphorylated (U-KaiC), partially
phosphorylated either at S431 (S-KaiC) or at T432 (T-KaiC),
or fully phosphorylated at both S431 and T432 (ST-KaiC).
Furthermore, KaiA promotes KaiC phosphorylation, whereas
KaiB antagonizes the activity of KaiA; see Fig. 4(a).
The phosphorylation state of KaiC changes cyclically;

KaiA promotes the transition from U-KaiC to T-KaiC and
then into ST-KaiC. Afterward, KaiC transforms into S-KaiC
and finally into U-KaiC. The state ST-KaiC is effectively long
lived because KaiA promotes changes from S-KaiC back to
ST-KaiC. Only when S-KaiC has reached a threshold value
does the rate of transition from ST-KaiC to S-KaiC increase
rapidly, because S-KaiC inhibits KaiA through KaiB. After S-
KaiC has turned into U-KaiC, KaiA is reactivated and a new
cycle begins; see Fig. 4(b). Note, however, that the specific
activation of KaiB by S-KaiC and the role of KaiA in
rephosphorylating S-KaiC and thus generating ST-KaiC
remain to be confirmed.

The nonequilibrium landscape of the KaiABC system has
the form of a Mexican hat; the nonequilibrium flux drives the
system along the hat’s valley, explaining the stability of the
oscillations. The entropy flow associated with the nonequili-
brium flux and force, which is ultimately caused by ATP
hydrolysis involved in the phosphorylation kinetics, provides
the thermodynamic cost for maintaining robust and coherent
circadian oscillation.

C. Nonequilibrium quantum transports in biomolecules

Representative examples of quantum mechanical biological
processes include photosynthetic energy absorption, olfaction,
bird magnetoreception, and electron or proton transports in
enzymes (Brookes, 2017). As these processes involve the
conversion of energy into forms usable for chemical trans-
formations, they are out of equilibrium by nature.
To illustrate the nonequilibrium quantum dynamical nature

of these processes, we explore the landscape and flux in two-
site and two-level model systems (Zhang and Wang, 2014)
coupled with two temperature or two chemical potential
environments where analytical solutions can be obtained.
Two-site and two-level systems have been widely investigated
in condensed matter physics, chemistry, quantum optics, and
quantum information (Landauer, 1961; Bennett, 1973;
Benjacob and Gefen, 1985; Deutsch, 1985; Leggett et al.,
1987; Onuchic and Wolynes, 1988; Unruh, 1995; Palma,
Suominen, and Ekert, 1996; Scully and Zubairy, 1997;
Preskill, 1998; Nielsen and Chuang, 2000; Weiss, 2012) to
explore quantum dissipations and coherence. The system
dynamics are often assumed to be coupled with a single
environment. The steady state often becomes an equilibrium
state with a detailed balance and significantly reduced or zero
coherence. There are examples of systems coupled to multiple
environments, such as energy and charge transfer in photo-
synthesis (Garab, 1999; Lee, Cheng, and Fleming, 2007) and
nanoquantum transport (Ferry and Goodnick, 1997). For these
systems, the final steady state is often not an equilibrium state
and quantum coherence is not necessarily zero at steady state
(Zhang and Wang, 2014, 2015a, 2015b, 2016; Li, Cai, and
Sun, 2015). How the distance of a system from equilibrium
influences quantum coherence and transport is a major

(a) (b)

FIG. 4. The KaiABC circadian system of the cyanobacterium Synechococcus elongatus. (a) Reaction network.
The two-headed arrows indicate transitions between phosphorylation states of KaiC, the arrows emanating from KaiA indicate
promotion and inhibition of transitions, the arrow from S-KaiC to KaiA, suppression of KaiA activity by KaiB in the presence of S-
KaiC. (b) Concentrations of phosphorylated KaiC as a function of time. From Rust et al., 2007.
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challenge for photosynthesis; see, in particular, Garab (1999)
and Lee, Cheng, and Fleming (2007)).

1. An analytical model for nonequilibrium quantum energy or
charge transfers in biomolecules

To address these issues, let us consider a two-site
system coupled with two environments. Each environment
is in equilibrium with a different temperature or chemical
potential environment and obeys either Bose or Fermi
statistics. The two-site system connected by tunneling can
be used to describe quantum transport, while the temper-
ature or chemical potential difference measures the sys-
tem’s distance from equilibrium as they set up a
nonequilibrium thermal or chemical battery or pump.
The transition matrix asymmetry, probability flux, coher-
ence, and quantum transport efficiency can be quantified
by this same measure. The origin of the nonzero flux can
then be identified as the temperature or chemical potential
difference.
The two sites describe the transfer, while each level

describes the ground state and the excitation shown in
Fig. 5(a), where the same ground state is shared between
two sites. After being excited from the ground state, the
molecular energy transfer is often from donor to acceptor sites.
For simplicity, one can assume the difference in excitation
energies of the two sites are small in the near-resonance
regime ε2 − ε1 ≪ minðε1; ε2Þ.

The energy transport in biomolecules can be described by
the system interacting with two thermal environments in
different temperatures. The free and interaction parts of the
Hamiltonian are

HS ¼ EgjΩihΩj þ ε1η
†
1η1 þ ε2η

†
2η2 þ Δðη†1η2 þ η†2η1Þ;

HR ¼
X
k;p

ℏωkpa
†
kpakp þ

X
q;s

ℏωqsb
†
qsbqs; ð62Þ

Hint ¼
X
k;p

λkpðη†2akp þ η2a
†
kpÞ þ

X
q;s

λqsðη†1bqs þ η1b
†
qsÞ;

ð63Þ

where jΩi represents the ground state, while η and η† represent
the exciton annihilation and creation operators occupying the
specific excited site (two sites) for the system. Excitons are
bosons that obey an anticommuting relationship within the
site when constrained to only two energy levels and a
commuting relationship between sites (Abramavicius et al.,
2009). Both environmental annihilation or creation operators
a and a†, respectively, and reservoir annihilation or creation
operators b and b† satisfy the Bose-Einstein commutation
relations. That is, the environmental operators a and a† follow
½akp; a†k0p0 � ¼ δkk0δpp0 , ½akp; ak0p0 � ¼ 0 and the reservoir oper-

ators b and b† follow ½bkp; b†k0p0 � ¼ δkk0δpp0, ½bkp; bk0p0 � ¼ 0.
The operators a and b represent two environmental baths in

FIG. 5. Model for nonequilibrium transport, polarons, and quantum transport efficiency. (a) Two-site, two-level quantum transport
coupled with the two environmental baths (b). Polarons formed from strong interactions of excitons and vibrons lead to weak
interactions with the environments and long time coherence. (c) Quantum transport efficiency represented by the steady-state population
on pigment B (energy transfer is from pigment A to pigment B) with respect to the temperature of low-frequency fluctuations (low
temperature here corresponding to high temperature difference between radiation bath and protein bath). (d) Steady-state quantum
coherence varies as a function of the temperature of low-frequency fluctuations. In (d) the purple and the blue lines denote the electronic
(localized) coherence and excitonic (delocalized) coherence, respectively. From Zhang and Wang, 2014, 2016.
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equilibrium at different temperatures, obeying Bose statistics.
Through coupling with the system, environments with differ-
ent temperatures push the system away from equilibrium. The
variable Δ represents electronic coupling, or tunneling
strength, between the two sites. Once the Hamiltonian is
specified and the rotating wave approximation is used, the
procedures outlined in the previous section can be followed to
trace out the environments and derive the reduced system
master equation. That is, the Redfield equation without secular
approximation under Markovian approximation (Zhang and
Wang, 2014) is derived. The analytical expressions for the
elements in M are given in Zhang and Wang (2014). For a
system coupled to a fermionic environment, one can follow a
similar procedure and obtain another reduced master equation
(Zhang and Wang, 2014).

a. Curl quantum flux versus nonequilibriumness
and tunneling at steady state

Following the procedure outlined in the previous section,
one can decompose the driving force for the population
evolution quantified by the kinetic transfer T matrix into
the following form (Zhang and Wang, 2014, 2015a):

T ¼

0
BB@

0 A11
ggρgg Agg

22ρ22

A11
ggρgg 0 A22

11ρ11

Agg
22ρ22 A22

11ρ11 0

1
CCAþ

0
B@

0 0 J q

J q 0 0

0 J q 0

1
CA;

ð64Þ

where the flux is J q ¼ A11
22ρ22 −A22

11ρ11. In Eq. (64) the first
part of the transfer matrix describes the equilibrium under the
detailed balance and the second part represents the circular
flow called the “curl nonequilibrium quantum flux,” which is
crucial for quantum transport. The analytical expressions for
quantum flux can be derived for energy transport in bosonic
and fermionic environments (Zhang and Wang, 2014)

J b
q ¼

2Γ
ℏ2

vbΔ2=ℏ2ω2

1þ 4ubΔ2=ℏ2ω2
; J f

q ¼ 2Γ
ℏ2

vfΔ2=ℏ2ω2

1þ 4ufΔ2=ℏ2ω2
;

ð65Þ

where the forms of functions of u and v are given as

vb ¼ ðnT2
ε − nT1

ε Þðn̄ε þ 2Þ
ð1þ 2n̄ε þ 3nT1

ε nT2
ε Þ½1þ Γ2=ℏ4ω2ðn̄ε þ 2Þ2� ;

ub ¼ ðn̄ε þ 2Þð3n̄ε þ 2Þ
4ð1þ 2n̄ε þ 3nT1

ε nT2
ε Þ½1þ Γ2=ℏ4ω2ðn̄ε þ 2Þ2� ;

vf ¼ ðnμ2ε − nμ1ε Þð2 − n̄εÞ
½1þ Γ2=ℏ4ω2ð2 − n̄εÞ2�ð1 − nμ1ε nμ2ε Þ ;

uf ¼ 1 − n̄2ε=4
½1þ Γ2=ℏ4ω2ð2 − n̄εÞ2�ð1 − nμ1ε nμ2ε Þ ; ð66Þ

where n̄ε ≡ nT1
ε þ nT2

ε or nμ1ε þ nμ2ε and the f and b super-
scripts represent fermionic and bosonic versions of the
functions, respectively. The variable

nTε ¼ 1

eε=kT − 1

is the particle occupation for bosons with energy ε at
temperature T, while

nμε ¼ 1

eðε−μÞ=kT − 1

is the particle occupation for fermions with energy ε at
chemical potential μ and temperature T.
The function v as the occupation difference provides a

measure for the effective voltage and the detailed balance
breaking induced from environments. Therefore, the effective
potential v is directly related to the temperature difference of
the bosonic baths or the chemical potential difference of the
fermionic baths. The function u is a modulation factor for the
flux and transport efficiency. As seen when the temperature
difference or chemical potential difference is zero for the two
baths, the effective voltage is zero, the flux is zero, and the
detailed balance is preserved. Therefore, v quantifies the
degree of nonequilibriumness away from the equilibrium.
The definitions of others are given by Zhang and Wang
(2014). One sees that the nonequilibrium quantum flux is
governed by two ingredients: the nonequilibriumness and the
tunneling for driving transport.

b. Enhancement of steady-state coherence and entanglement from
nonequilibriumness

From the reduced quantum master equation, one can
quantify the steady-state quantum flux and the coherence to
uncover their relationship (Zhang and Wang, 2014):

J bðfÞ
q ¼ 2Δ

ℏ
jImρ12j.

From this, one can conclude that, at fixed tunneling strength,
the increase in nonequilibrium flux will lead to a linear
increase in steady-state coherence. One can also find

jImρ12j ¼
Γv
ℏ2ω

Δ=ℏω
1þ 4uΔ2=ℏ2ω2

. ð67Þ

Steady-state quantum coherence is promoted by the non-
equilibrium effective voltage from the difference in two
temperatures or chemical potentials of the environments at
fixed tunneling, in contrast to the system coupled to a single
environment, often with decoherence at equilibrium state.
These two environments can create nonequilibriumness for
maintaining nonzero quantum coherence, suggesting a pos-
sible application to quantum information devices for keeping
coherence through nonequilibrium driving (Zhang and Wang,
2014). On the other hand, to describe quantum entanglement,
a quantum state must be described for the entire system. In
other words, the quantum state of each system component
such as a particle or qubit cannot be described independently
from the rest of the system. Entanglement can be quantified by
concurrence for low-dimensional systems and negativity for
high-dimensional systems (Wootters, 1998; Zyczkowski et al.,
1998). It was recently shown that steady-state entanglement

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-19



can be enhanced by nonequilibriumness, characterized by a
temperature difference or a chemical potential difference
between environments (Eisler and Zimboras, 2005;
Lambert, Aguardo, and Brandes, 2007; Quiroga et al.,
2007; Sinaysky, Petruccione, and Burgarth, 2008; Wu and
Segal, 2011; Wang, Wu, and Wang, 2018). It is worth
mentioning that the off-diagonal element of the steady-state
density matrix in the localized basis is zero when nonequili-
brium voltage, and therefore flux, is zero. This is even true
when we change to the eigenstate delocalized basis, although
not necessarily general for other systems because the coherence
is basis dependent. In either case, the steady-state coherence
and entanglement can be enhanced by pushing the system
farther from equilibrium. For the example of spin chains,
nonequilibriumness also enhances dynamical coherence,
entanglement, and fidelity (Zhang, Fu, and Wang, 2017).
One way of understanding this is by considering the global
nature of the nonequilibrium flux spanning the state space,
leading to enhancement of the quantum global nature charac-
terized by coherence.

c. Quantum energy transfer efficiency at steady state

Energy transfer efficiency can be introduced in terms of the
steady-state quantum flux (Zhang and Wang, 2014) so that
η ¼ J q=ðJ q þAgg

22ρ22Þ. Then

ηb ¼ ðnT2
ε − nT1

ε ÞΔ2=ℏ2ω2

nT2
ε ½BðT1; T2;ωÞ þ ðn̄ε þ 2ÞΔ2=ℏ2ω2� ;

ηf ¼ ðnμ2ε − nμ1ε Þ Δ2

ℏ2ω2

nμ2ε ½Fðμ1; μ2; T;ωÞ þ ð2 − n̄εÞΔ2=ℏ2ω2� ; ð68Þ

where the definition of two functions B and F are given by
Zhang and Wang (2014). At fixed tunneling, the environments
characterized by temperature or chemical potential difference
enhance the transfer efficiency. Tunneling also increases the
efficiency. The transfer efficiency is significantly higher for
fermionic environments due to the Pauli exclusion principle
(Zhang and Wang, 2014)

d. Dissipation and quantum thermodynamics at steady state

Heat dissipation through the heat current and the entropy
production rate measures the thermodynamic cost of transport.
From the first and second laws of thermodynamics with
energy conservation and the positivity of total entropy
production in the nonequilibrium process, one sees _Q1 −
_Q2 ¼ _E and _Senv þ _S ¼ _Stot. _Q1 ¼ Tr½HSD1ðρsÞ� and _Q2 ¼
Tr½HSD2ðρsÞ� are the energies flowing into the system from
high-temperature and low-temperature environments, respec-
tively, and D1 and D2 are the dissipation operators from
system-environment (1 and 2) coupling (Werlang et al., 2014;
Zhang and Wang, 2015a). _S and _Stot are the rate of system
entropy and total entropy production, respectively. Increasing
nonequilibrium voltage enhances heat current _Q and thermo-
dynamic cost via entropy production

_Stot ¼ −
_Q1

T1

þ
_Q2

T2

;

(Zhang and Wang, 2014, 2015a), closely related to the
presence of quantum curl flux for driving nonequilibrium
quantum dynamics.

2. Long time quantum coherence and efficient energy transport
of the light-harvesting complex

The light-harvesting complex is a protein complex that
increases the number of absorbed photons by the photosystem
of photosynthetic organisms through transferring energy and
electric charges efficiently to the photosynthetic reaction
center. Experiments suggest that this process involves long
time quantum coherence at ambient temperatures (Garab,
1999; Lee, Cheng, and Fleming, 2007). Great effort has been
taken toward understanding the mechanism underlying effi-
cient energy transfer by the light-harvesting complex (Jang,
2011; Chen, Cao, and Silbey, 2013; Chin et al., 2013;
Dorfman et al., 2013; Novelli et al., 2015).
In energy transfer, electronic excitons are coupled with

molecular vibrational phonon environments. The two-site
model mentioned earlier can be generalized to the N-site
excitonic system (with Hssyext ) connected by tunneling
coupled (with Hint) to the phonon (with Henvphonon ) and the
environment at room temperature and radiation environment
at a higher temperature (with Henvrad ) by the energy function
H ¼ Hssyext þHenvrad þHenvphonon þHint (Zhang and Wang,
2016). Previous investigations often assumed that the
phonon environments fluctuate much faster than the exci-
tation system where the effect of phonons can be averaged.
However, recent studies showed that some discrete intra-
molecular vibrations have a lifetime similar to that of
excitons (Kolli, Nazir, and Olaya-Castro, 2011; Womick
and Moran, 2011; Christensson et al., 2012; Tiwari, Peters,
and Jonas, 2013). Therefore, phonon dynamics can have a
crucial effect on energy transport when the energy quanta of
vibrational modes are in resonance with energy splitting of
excitons (Chin et al., 2013; Plenio, Almeida, and Huelga,
2013; O’Reilly and Olaya-Castro, 2014; Romero et al.,
2014). The persistence of quantum coherence originating
from exciton-phonon coupling has been observed in experi-
ments (Novelli et al., 2015).
The effects of quasiresonant coupling between excitons and

phonons for the lifetime of quantum coherence have been
studied in an effective analytical theory (Zhang and Wang,
2016). There a general scenario was investigated in which bare
electrons and excitons are surrounded by discrete and con-
tinuous vibrational phonon modes and radiation environ-
ments. That is,

Henvphonon ¼ Henvphonondiscrete
þHenvphononcontinuous

.

The near resonant coupling between the electron and exciton
system and discrete phonon modes can lead to strong
interactions and the formation of polarons. In this case, the
discrete vibrational modes originally from the phonon envi-
ronments no longer weakly interact with the exciton system.
Instead, due to strong interactions with the excitons they
become part of the system in the form of composite as
polarons, while the remaining phonon modes effectively
become the new environments, along with the radiation baths.
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In more detail this leads to the effective Hamiltonian ˜Heff ¼
HS þHph þHenvrad þHint (Zhang and Wang, 2016). HS

involves the renormalized exciton on-site energy, phonon
mediated exciton-exciton interactions, and the electronic
coupling renormalized by the discrete exciton-vibrational
interactions. Hph denotes the energy of the remaining phonon
environments. The discrete phonon modes strongly interact
with excitons and form polarons characterized in the last term
in HS. Hint describes the coupling of the new composite
polarons to the remaining phonon modes.
Because of the off resonances between the residual vibra-

tional modes and the energy splitting of excitons, the resulting
polarons are only weakly coupled to the remaining phonon
environments (Grover and Silbey, 1970; Jang, 2011; Chen,
Cao, and Silbey, 2013; Chin et al., 2013; Dorfman et al.,
2013; Plenio, Almeida, and Huelga, 2013; O’Reilly and
Olaya-Castro, 2014; Romero et al., 2014; Zhang and
Wang, 2016). The weak coupling of polarons to the remaining
phonon environment leads to less dissipation and can thus
sustain quantum coherence significantly longer than the bare
excitons alone, shown in Fig. 5(b). However, coherence alone
cannot guarantee efficient energy transfer. For this the detailed
balance must be broken from the coupling of the light-
harvesting complex to the nonequilibrium environments;
for example, a coupling of high-temperature photons and
low-temperature vibrational modes to the protein can funnel
the path and subsequently facilitate the coherent and unidi-
rectional energy flow of excitations to the photosynthetic
reaction center; see Figs. 5(c) and 5(d) (Zhang and Wang,
2016). While the long time survival of dynamical coherence is
dominated by the suppression of exciton-environment inter-
action, the degree of nonequilibrium is crucial for efficient
energy transfer [Fig. 5(c)] and the steady-state coherence
[Fig. 5(d)] (Harbola, Esposito, and Mukamel, 2006; Zhang
and Wang, 2014, 2015c, 2016).

IV. GENE REGULATORY CIRCUIT MOTIFS AND
EXPERIMENTAL QUANTIFICATION OF LANDSCAPES

Genes encode for proteins, which provide the fundamental
infrastructure for a functional cell. A certain class of proteins
called transcription factors feed back on the expression of
genes by binding to specific sites on the DNA called
promoters, thus altering the rate of transcription.

Specifically, “activators” increase the rate, whereas “repress-
ors” inhibit expression. Together, genes and transcription
factors form complex regulatory networks that have profound
functional roles, for example, in decision making, differ-
entiation, and development. In addition to naturally existing
networks, synthetic counterparts are now routinely implanted
into living cells.

A. Naturally existing circuit motifs: Lambda phage and
bacteria competence

We use bacterial phage infection and natural competence as
representative examples to highlight nonequilibrium behav-
iors of endogenous gene networks.

1. Landscape quantification of cell fates and their decision
making of lambda phage

Lamda phage is a bacterial virus that infects the bacterium
Escherichia coli (Ptashne, 2004b; Balázsi, van Oudenaarden,
and Collins, 2011). The infection process involves three steps,
including phage attachment to the bacterial cell wall, injection
of its DNA into the host, and execution of its transcriptional
circuitry, which then determines the next step the system will
undertake. Specifically, the phage can integrate its own DNA
into the host chromosome in a process referred to as the
lysogenic phase. Alternatively, the phage triggers the lytic
cycle of self-replication and assembly, eventually causing
lysis of the host.
The decision of the lambda phage to enter the lysogenic or

lytic cycle is enabled through an underlying switch controlled
by the two genes cI and cro. The two genes encode the
transcriptional repressor proteins CI and Cro [Fig. 6(a)]
(Ptashne, 2004b). In lysogeny, cI is expressed, while in lysis,
cro is expressed.
Together mutual repression of the two genes through

transcriptional factor binding at a shared promoter constitutes
the core of this two-state switch, although there are additional
processes involved in viral decision making (Ptashne, 2004b;
Oppenheim et al., 2005).
The nonequilibrium landscape provides a profound physi-

cal understanding of the lambda phage switch. The landscape
can be inferred from the steady-state protein distribution,
which can be obtained by simultaneous fluorescent labeling of
several gene products and tracing the expression of individual

(a) (b)

FIG. 6. Examples of natural gene regulatory networks. (a) The genetic switch between the lytic and the lysogenic life cycles of the
bacterial phage λ (Ptashne, 2004b). CI is expressed in the lysogenic cycle and Cro is expressed in the lytic cycle. (b) The gene network
underlying competence in Bacillus subtilis (Süel et al., 2006). ComK is a master regulator of competence; ComS inhibits ComK
degradation by the ClpP-ClpC-MecA complex.

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-21



genes over time (Elowitz et al., 2002; Yu et al., 2006). Note
that due to the distinct maturation times of different fluorescent
labels, care has to be taken to interpret these data. A coloc-
alization method was suggested to resolve the issue (Pogliano
et al., 2001; Fang et al., 2018),which is based on using the same
fluorescent labels for different genes, but in different cellular
locations. From the real-time traces of the two gene expression
levels, one can obtain joint histograms and therefore quantify
the landscape directly from these experiments. The possible
cell fates can then be identified with the attractors of the
landscape and the cell-fate decision-making process can be
quantified by investigating the transitions between the corre-
sponding basins of attraction (Wang et al., 2010, 2011; Balázsi,
van Oudenaarden, and Collins, 2011; Li and Wang, 2013,
2015; Xu, Zhang, and Wang, 2014; Fang et al., 2018).
For the lambda phage switch, the underlying nonequili-

brium landscape of CI and Cro shows four distinct states of
(CI, Cro) with (high, low), (low, high), (high, high), and (low,
low) expression levels (Fang et al., 2018), shown in Fig. 7(a).
The lysogenic and lytic cycles are associated with the (high,
low) and the (low, high) states, respectively. In a system when
the effective binding and unbinding rates of the transcription
factors to the genes are large compared to their synthesis and
degradation rates, in the so-called adiabatic limit, one expects
either high levels of CI with low levels of Cro or vice versa.
The existence of two additional states is thus surprising
(Ptashne, 2004a; Little and Michalowski, 2010). In a system
where the effective binding and unbinding rates of the
transcription factors to the genes are slower than or compa-
rable to their synthesis and degradation rates, the system is in
the nonadiabatic limit and thus all four states of (high, low),
(low, high), (high, high), and (low, low) are expected from the
effective weaker gene regulations (Hornos et al., 2005;
Schultz, Onuchic, and Wolynes, 2007; Feng, Han, and
Wang, 2011; Feng and Wang, 2012; Zhang, Sasai, and
Wang, 2013; Li and Wang, 2014b; Chen and Wang, 2016).
The landscape obtained from the joint histogram of the real-

time trace of CI and Cro contains additional information that
can be extracted by considering the basins of attraction of the
four states. Each basin has a different depth and width, and the
barriers between each basin also differ from each other,

which implies distinct transition rates between the various
states; see Fig. 7(b). The residence times of individual
states and switching times between states can be obtained from
the experimental real-time traces of the CI and Cro expression
levels by means of a hidden Markov model (Schliep,
Schonhuth, and Steinhoff, 2003). Perhaps less obviously, one
can also infer the processes underlying switching. For example,
switching from the (low, high) to the (high, low) state occurs
preferentially via the (high, high) state rather than directly
(Schultz, Onuchic, and Wolynes, 2007; Fang et al., 2018).
The new method of colocalization enables experimental

monitoring of the real-time traces of the CI and Cro genes
simultaneously. This leads to quantification of cell-fate
decision-making processes in terms of the underlying non-
equilibrium landscape and nontrivial cell-fate states as well as
associated switches in response to environmental and genetic
influences on gene regulation.

2. Bacterial competence

The transition of Bacillus subtilis from a vegetative state in
which it reproduces asexually to a competent state inwhich it can
take upDNA from the extracellular milieu is another example of
a bacterium switching between two states (Grossman, 1995;
Schultz et al., 2007).When facing nutrient limitation, B. subtilis
cells often develop into spores, whereas a small fraction of the
population is competent to use exogenousDNA as a food source
or as a genetic material for an enhanced mutation rate and
evolvability. In this case, however, making a decision between
different fates does not rely on a genetic switch, but rather on an
excitable network. The underlying competence regulatory
circuit is centered around ComK, a master regulator that
activates the expression of a set of competence genes; see
Fig. 6(b) (Süel et al., 2006). ComK activates its own production,
whereas its degradation is subject to the multicomponent
molecular complexMecA.At the same time,ComKdegradation
is suppressed by ComS, a peptide that competes with ComK for
the MecA complex. Additionally, there is an indirect negative
feedback between ComK and ComS.
Together, ComK, ComS, and the MecA complex form an

entangled regulatory network that involves both negative and
positive feedback. That network can generate excitable
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FIG. 7. Nonequilibrium landscape and switching times of the lambda phage: (a) 2D histogram as the landscape of CI and Cro
production per 5 min. (b) Switching times between states of (Cro, CI) as (L,H), (L,L), (H,L), and (H,H). From Fang et al., 2018.
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dynamics involving pulses of ComK production and hence
bacterial competence (Süel et al., 2006, 2007). Starting from a
stochastic increase, the ComK level is amplified by autoregu-
lation and then quickly increases to a maximal ComK expres-
sion, which leads to the transition to competence. At the same
time, a high level of ComK causes the suppression of ComS
production, which, in turn, causes rapid ComK degradation by
the MecA complex and eventually termination of the ComK
pulse. Because of molecular noise in the system, ComK
excitation occurs continuously. A theoretical model was
suggested to account for the noise controlled nonequilibrium
transitions into and out of competence, with nonadiabaticity of
a comparable time scale of binding or unbinding relative to the
synthesis or degradation. Taking nonadiabaticity into account
allows the model to better align with experiments (Grossman,
1995; Schultz et al., 2007), which suggests again that non-
adiabatic fluctuations can be crucial for biological functions.

B. Synthetic regulatory circuit motifs: Genetic switch and
oscillation, self-regulator

With the advent of synthetic biology, a vast array of
engineered gene networks have been successfully created

since the year 2000. Examples include switches, oscillators,
communication modules, patterning devices, and others
which are often out of equilibrium (Cameron, Bashor, and
Collins, 2014).

1. Genetic switches

The toggle switch constructed by Collins and colleagues
(Gardner, Cantor, and Collins, 2000) is a simplified version of
the lambda phage switch previously discussed. It consists of
two genes that encode transcriptional repressors and two
corresponding (or “cognate”) promoters. The genes and
promoters are arranged to allow the repressor encoded from
one gene to inhibit the expression of the other and vice versa,
thus creating a circuit of mutual inhibition; see Fig. 8(a).
The mutual suppression topology of the network can, in

principle, generate bistability, a dynamic property that enables
the existence of two stable states of a system. Indeed, the
circuit remains stable in both a state of high expression of one
gene and low expression of the other and a state with the
inverse expression profile; see Fig. 8(a). At the population
level, the cells exhibit a bimodal distribution characteristic of a
bistable system.

(a) (c)

(e)

(b)

(d)

FIG. 8. Examples of synthetic nonequilibrium gene networks. (a) Genetic toggle switch. From Gardner, Cantor, and Collins, 2000.
(b) Autoactivation gene switch. From Isaacs et al., 2003. (c) Repressive oscillator. From Elowitz and Leibler, 2000. (d) A metabolic
oscillator. From Fung et al., 2005. (e) A fast and robust gene oscillator. From Stricker et al., 2008.
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Two coupled negative feedback loops are topologically
equivalent to a single positive feedback loop (Qi, Blanchard,
and Lu, 2013). Thus, the bistability demonstrated by the
toggle switch should be possible in a network involving a
single, self-activating gene. This idea was tested by creating
an autoregulatory circuit using the right operator site of
lambda phage and the cI gene; see Fig. 8(b) (Isaacs et al.,
2003).

2. Self-repressor and experimental quantification of landscape

In extant gene regulatory networks, self-repression is much
more common than self-activation (Alon, 2007). This motif
can accelerate responses and increase the robustness of the
steady-state expression level. In the adiabatic case, when
binding and unbinding of the repressor are fast compared to its
synthesis and degradation (Ackers, Johnson, and Shea, 1982),
the dynamic effect of regulatory binding to and unbinding
from the promoter averages out and a landscape with a single
basin of attraction emerges. In contrast, if binding and
unbinding are of the same order or slower than synthesis
and degradation, the gene has some chance of being expressed
despite the presence of repressor proteins. In this case, states
of high expression, in addition to the repressed low expression
state, can appear (Hornos et al., 2005; Feng, Han, and Wang,
2011). For a bimodal distribution of the expression levels,
one obtains a nonequilibrium landscape with two basins of
attraction (Jiang et al., 2017).
Experimentally, a self-repressing gene circuit based on the

Ptet promoter and its repressor TetR was designed and
implemented in E. coli (Ramos et al., 2005; Nevozhay et al.,
2009). Repressor binding can be controlled by a so-called
inducer, a molecule that binds to the repressor to reduce its
binding affinity. As a result, the distributions of the TetR
expression change with the inducer concentration; see Fig. 9.
With increasing inducer concentrations, the mean repressor
concentration increases as binding of the inducer effectively
reduces the affinity of the repressor for the promoter and the
system eventually becomes nonadiabatic. For inducer con-
centrations above a critical level, the experimental expression

distribution becomes bimodal. The landscape can thus be
quantified as previously described. The residence times in
each state and associated switching rates can be obtained
through a real-time trace analysis using a hidden Markov
chain model (Jiang et al., 2017).
The two typical TetR concentrations in the bimodal case

correspond to different cell fates. Through the real-time traces
of TetR concentrations, one can quantify the landscape of cell
fates and the associated decision-making (switching) speed
between the fates (Jiang et al., 2017) related to the lifetime of
each state.

3. Genetic oscillators

Adding one more repressor to the toggle switch previously
discussed, such that cyclic chain of repressors Ri represses
Riþ1, alters the behavior significantly. Explicitly, when R1

represses R2, R2 represses R3, and R3 represses R1, a network
called the repressilator is formed that can generate sponta-
neous oscillations (Elowitz and Leibler, 2000); see Fig. 8(c).
Quantitative analysis of the system suggests that in addition to
sustained limit-cycle oscillation shown in the previously
described experiment, the circuit exhibits different dynamic
modes, including damped oscillations and bistability depend-
ing on parameter values. Indeed, the latter two types of
dynamics were observed in another synthetic circuit imple-
mented in E. coli (Atkinson et al., 2003). Oscillations can be
generated not only by synthetic gene networks but also by
metabolic networks. In a study by Fung et al. (2005), an
oscillatory circuit called the metabolator was created by
integrating cellular metabolism with transcriptional regula-
tion; see Fig. 8(d).
These examples demonstrated that oscillation can be

generated using rationally designed circuits. However, they
all are subject to a common challenge—each lacks circuit
performance robustness. This difficulty was addressed by
Stricker et al. (2008) by creating a persistent genetic oscillator
[Fig. 8(e)] that involves an activator gene araC and a repressor
gene lacI that are coregulated by a hybrid promoter Plac=ara−1.
The resulting intertwined positive and negative feedback
loops confer the circuit robust oscillations (Feng, Han, and
Wang, 2012). In experiment, the circuit was found to oscillate
over a wide range of experimental conditions (Stricker et al.,
2008). Thus, it will be interesting to explore the relationship
between the circuit structure and the landscape or flux
topography underlying robust oscillations.

V. GENE REGULATORY NETWORK: CELL CYCLE

The cell cycle encompasses key processes of life, from
growth and DNA replication to division (Morgan, 2007).
Many diseases involve cell cycle dysfunction; for example,
cancer cells grow faster and divide more frequently than
healthy cells (Weinberg, 2007). The eukaryotic cell cycle
consists of two coordinated phases of growth, interphase, and
division (Morgan, 2007). The interphase is distinguished
further into a first gap phase G1, during which the cell
accumulates mass; a synthesis phase S, during which the
DNA is replicated; and a second gap phase G2, during which
the cell continues to grow. During the subsequent division or

FIG. 9. Experimental expression distributions of the self-
repressing gene circuit (MG::PR-8T) at different aTc concen-
trations observed under a microscope. The negative logarithm of
the distribution quantifies the landscape. From Jiang et al., 2017.
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mitosis phase M, the cell typically divides into two daughter
cells. Progression through the cell cycle is tightly controlled
by genetic networks (Chen et al., 2004; Sveiczer, Tyson, and
Novak, 2004; Wang, Li, and Wang, 2010; Li and Wang,
2014a). From a physics perspective, genetic control of the cell
cycle is naturally considered as a limit cycle. This is indeed the
case for the cell cycle of embryonic frog cells (Ferrell, Tsai,
and Yang, 2011). For yeast and mammalian cells, several
scenarios have been proposed, including treating the cell cycle
as a discrete attractor (Li et al., 2004), using bifurcations
(Chen et al., 2004; Sveiczer, Tyson, and Novak, 2004), and
using the limit cycle approach (Gérard and Goldbeter, 2009;
Wang, Li, and Wang, 2010; Li and Wang, 2014a; Lv
et al., 2015).

A. Embryonic cell cycle in frogs

As mentioned in Sec. III.B, limit-cycle oscillations typi-
cally rely on a negative feedback loop. For the cell cycle in
embryonic cells of the African clawed frog Xenopus laevis,
the core negative feedback involves two genes. One of them
encodes for a cyclin, while the other codes for the cyclin-
dependent kinase Cdk1. Although the complete network is
rather involved, the essence of the network can be captured by
a two-component model (Yang and Ferrell, 2013; Tsai,
Theriot, and Ferrell, 2014), which can be cast into two
ordinary differential equations for the cyclin concentration
Cyc and the Cdk1 concentration Cdk1, given by

d
dt

Cyc ¼ ks − kdCyc; ð69Þ

d
dt
Cdk1¼ ksþkcdcðCyc−Cdk1Þ− ðkWee1þkdÞCdk1: ð70Þ

The first equation describes the synthesis and degradation of
cyclin with respective rates ks and kd. Whereas ks is constant,
kd increases with increasing Cdk1 concentration. The depend-
ence is captured by a Hill function

kd ¼ ad þ bd
Cdk1n

Kn þ Cdk1n
; ð71Þ

where K is the value at which the Cdk1-dependent part has
reached half of its maximal value. The Hill exponent n has a
high value, which makes the dependence on Cdk1 ultra-
sensitive. Equation (70) describes activation and inactivation
of Cdk1. The rates kcdc and kWee1 depend on Cdk1 in a
sigmoidal fashion described by a Hill function with proper
values of K and n. These dependences effectively account for
the influence of other components in the cell cycle network.
The ultrasensitive dependence of the rates on Cdk1 leads to

a time delay in the effect of Cdk1 on degradation. Cyclin first
accumulates, accompanied by a moderate increase of Cdk1.
After Cdk1 has passed a threshold, its activation is dramati-
cally increased, which leads to a dramatic decrease in the
amount of cyclin and simultaneously a dramatic deactivation
of Cdk1, upon which cyclin accumulates again.
As explained in Sec. II.A.2, one can characterize the

dynamics of Eqs. (69) and (70) in terms of a nonequilibrium
potential landscape and a rotational curl flux (Zhang and
Wang, 2018); see Fig. 10. The landscape presents two attractor
basin valleys and two saddle points with a narrow, stretched
bottom basin valley. The G0=G1 phase and the S=G2 phase are
quantified on each side of the basin valley and the top basin
valley quantifies the M phase. The state s1 corresponds to a
transition from M to G0=G1 when a cell matures and division
occurs. The s2 transition state corresponds to the transition
from S=G2 toM, which can guarantee that DNA replication is
achieved before reaching the next phase M. These transition
phases are associated with so-called “check points” that assure
the cell is ready to enter the next phase of the cycle. The
system is periodically driven by rotational curl flux from one
basin of attraction to the other via s1 and s2. While the
landscape guarantees stability of the cell cycle path, the
rotational curl flux guarantees the stable flow. This gives a
global, physical picture of the cell cycle seen in several species
(Wang, Li, and Wang, 2010; Li and Wang, 2014a; Luo et al.,
2017; Zhang and Wang, 2018).
Note that the speed at which the cycle is traversed depends

on both the rotational curl flux and the transition states; this
speed, and thus the cell cycle itself, is greatly accelerated for
cancerous cells. The energy pump is the origin of the flux and
energy dissipation in terms of the nutrition supply. To slow

FIG. 10. Nonequilibrium landscape U and flux (arrows) for the cell cycle dynamics (69) and (70) in (a) 2D and (b) 3D. The different
phases of the cell cycle are indicated. From Zhang and Wang, 2018.
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down the cell cycle speed for treatment, one can thus either
decrease the flux by limiting the supply of nutrients or
increase the barrier of check points by adjusting the associated
key regulators.

B. Origins of single-cell life through replication by energy pump

The cell cycle speed correlates quantitatively with energy
dissipation (Wang, Xu, and Wang, 2008; Li and Wang, 2014a;
Zhang and Wang, 2018) which, as mentioned earlier, is
directly related to the degree that the detailed balance is
broken. A faster progression through the cell cycle requires
more energy consumption, plus there is an energy threshold to
overcome in forming a stable cell cycle. Replication is a
signature feature of living systems. As seen here replication
cannot proceed without an energy pump. Therefore, a neces-
sary condition for life to begin is that an energy pump into the
system must exist. The degree of nonequilibrium in thermo-
dynamics and associated dynamics in terms of flux are thus
required and can be quantified for the origin of single cell life
(Wang, Xu, and Wang, 2008; Englander, 2013; Li and Wang,
2014a; Zhang and Wang, 2018). Life may begin from cycles.
The complexity of life may be built from multiplicative cycles
and their associations.

C. Cell cycle in fission yeast

The gene regulatory network controlling the fission yeast
cell cycle is complex and involves hundreds of genes
(Sveiczer, Tyson, and Novak, 2004). Even a simplified net-
work based on experimental studies still involves ten key
genes (Davidich and Bornholdt, 2008); see Fig. 11(a). This
network can be further simplified by reducing the states of
individual genes to two: on or off. Boolean networks are
particularly well suited to explore the global dynamics and
wiring topology of networks (Kauffman, 1969; Li et al., 2004;
Han and Wang, 2007, 2008). The corresponding boolean
network for yeast cell cycle determination is a discrete,
dynamic system with 210 states.
In the presence of fluctuations, one can follow the master

equation for the stochastic evolutionary dynamics of the
fission yeast cell cycle. One can map out the landscape
through the steady-state solution of the corresponding master
equation (8), where the transition rates Tij are eventually
determined by the original gene regulatory network. The
resulting landscape has the form of a Mexican hat and the
cell cycle path corresponds to the valley of the hat; see
Fig. 11(c). The cell cycle path is stable when states on the
path have much lower potentials than those outside the path
relative to the spectrum’s standard deviation. This gap
between the potential minimum and the average of other
states not on the cell cycle, relative to variance, leads to a
funneled potential landscape toward the cell cycle path and
guarantees the stability, since states on the oscillation path
have much higher weights than other states. However, this
analysis cannot guarantee directional flow for oscillations;
see Fig. 11(c).
The steady-state nonequilibrium probability flux provides

a driving force in addition to the landscape gradient for
nonequilibrium networks. Flux can be obtained from the

steady state solution of the master equation based on the
underlying gene regulatory networks (Han and Wang, 2007,
2008; Luo et al., 2017). As mentioned previously, the flux
originates from the energy pump through the nutrition
supply. The nonequilibrium flux can be further decomposed
into flux loops (Luo et al., 2017); doing so forms a
nonequilibrium flux landscape; see Fig. 11(b). When there
is a distinct separation between the nonequilibrium flux from
the native biological cycle, Fig. 11(b) and the rest relative to
variance, the cell cycle becomes the dominant loop compared
to the other possible loops, as in Fig. 11(d). Therefore,
a funneled nonequilibrium flux landscape provides a physical
mechanism to guarantee stable cell cycle flow (Luo et al.,
2017).
By performing a global sensitivity analysis on the topog-

raphy of the potential landscape and the flux loop landscape
upon changes of genes and their mutual regulations, the
identities of key genes and regulatory motifs for the network
are revealed. This provides a possible way to control the cell
cycle speed in the prevention or treatment of cancer.
It is worthwhile to note that the described gene network

regulating the cell cycle of Xenopus consists of two genes,
although the described fission yeast network is much more
complex and contains many more genes. This difference in the
literature can be attributed to the fact that yeast has been
studied as a model organism for decades, compared to
Xenopus. Remarkably, similar cell cycle mechanisms are
found in both organisms.

VI. CELLULAR STRUCTURE AND DYNAMICS

In this section, we turn to processes of intracellular
organization. After discussing nonequilibrium aggregation
and phase-separation phenomena, we focus on the cytoske-
leton, the paradigmatic active gel that determines cell
mechanical properties and drives vital cellular processes.
Finally, we briefly address nonequilibrium aspects of cell
signaling. Due to technical challenges, the landscape and flux
theory has not yet been applied to cellular structures and
dynamics. Instead other approaches such as hydrodynamics
and active particle dynamics (Wang and Wolynes, 2011;
Marchetti et al., 2013) have been successfully employed.

A. Nonequilibrium phase separation

In animal and plant cells, important functional subunits are
segregated into compartments surrounded by lipid bilayers. A
plethora of proteins attach to and are embedded in these fluid
membranes and can arrange into functional assemblies. In
addition, there are important functional three-dimensional
cellular subunits that lack a delimiting membrane. These
structures can result from phase separation, with continuous
exchange of matter and energy determining their size dis-
tributions and dynamics.
Lipid rafts.—There are two main equilibrium states of

multicomponent lipid bilayers: well mixed or one in which the
different kinds of lipids phase segregate into macroscopic
domains of an extension that scales with the system size. For
membranes of living cells, however, there is ample evidence
for lipid microdomains of either a different composition or a
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different liquid phase compared to the environment. These
microdomains are often called “rafts.” Rafts have a compa-
ratively small size of 10–200 nm and a lifetime of several
milliseconds (Pike, 2006). At equilibrium, domains of this
size should exist only in the presence of long-distance
interactions (Seul and Andelman, 1995). A possible origin
of such long-range interactions relevant for cells is a coupling
between membrane curvature and lipid composition
(Baumgart, Hess, and Webb, 2003). Indeed, mixtures of
lipids with different intrinsic curvatures have been observed
to segregate into small budding domains (Baumgart, Hess, and
Webb, 2003). In mixtures of cholesterol and lipids with high

and low melting temperatures, long-lived microdomains form,
although these domains are probably caused by kinetic arrest
in the coarsening process and are absent in the equilibrium
state (Veatch and Keller, 2003).
Lipid nanodomains can robustly form via nonequilibrium

processes, for example, in the presence of lipid exchange
between the cytosol and the membrane (Gheber and Edidin,
1999; Foret, 2005; Turner, Sens, and Socci, 2005; Fan,
Sammalkorpi, and Haataja, 2008) or of chemical reactions
(Huberman, 1976; Glotzer, Di Marzio, and Muthukumar,
1995). Let ϕ be the volume fraction of a lipid in a binary
mixture with constant total density n0. Then (Huberman,

(a) (b)

(c) (d)

FIG. 11. (a) Simplified gene regulatory network of the fission yeast cell cycle. Arrows indicate activation, repressive interactions are
indicated by −j. (b) Potential and flux landscapes. Each state is represented by a dot of a size representing their steady-state probability,
together forming the potential landscape. The flux landscape is represented by the different flux loops. The blue flux loop is the
dominant one representing the biological oscillation path. (c) Potential landscape spectrum. The value of the potential landscape of each
state is represented by a horizontal line. (d) Flux spectrum for all flux loops. The flux along each loop is represented by a horizontal line.
In (c) and (d) the green lines correspond to the states and the flux loop of the “native” biological oscillation cycle path. From
Luo et al., 2017.
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1976; Glotzer, Di Marzio, and Muthukumar, 1995; Foret,
2005)

∂tϕ ¼ μ∇2
δF
δϕ

−
1

τ
ðϕ − ϕ̄Þ: ð72Þ

Here μ is an effective mobility and F the corresponding free
energy

F½ϕ� ¼ n0kBT
Z

d2r

�
ξ20
2
ð∇ϕÞ2 þ fðϕÞ

�
: ð73Þ

For

fðϕÞ ¼ ϕ lnϕþ ð1 − ϕÞ ln ð1 − ϕÞ þ χϕð1 − ϕÞ ð74Þ

the first term in Eq. (72) is the familiar Cahn-Hilliard current.
The parameter χ determines the strength of lipid-lipid inter-
actions and demixing occurs for χ > 2. The second term
describes relaxation to the stationary density ϕ̄ with a
characteristic time τ that is determined by the rates of lipid
integration into the membrane and dissolution into the cytosol.
For biologically relevant parameters, raftlike domains of sizes
between 20 and 200 nm are formed for exchange times τ
between 10−4 and 1 s. Importantly, the mobility of cytosolic
lipids is many orders of magnitude larger than for lipids in
membranes, such that the spatial distribution of cytosolic
lipids is essentially homogenous. In this way, dissociation
leads to efficient mixing, which prevents the formation of
macroscopic domains.
Clusters of membrane-associated proteins.—Through the

preferential localization of proteins to specific lipids, the
existence of lipid rafts implies the existence of protein clusters,
for example, protein coats during early phases of endocytosis
(Faini et al., 2013), receptors (Maddock and Shapiro, 1993;
Uhles et al., 2003), SNARE proteins (for mediating vesicle
fusion) (Low et al., 2006), and proteins involved in signaling
(Douglass and Vale, 2005; Tian et al., 2007; Goswami et al.,
2008; Fairn et al., 2011; Bonny et al., 2016). Mechanisms
similar to those evoked to explain the formation of lipid rafts
have been considered in this context (Sieber et al., 2007;
Destainville, 2008); see Figs. 12(a) and 12(b).
Some of these clusters form at specific positions. For

example, receptor clusters in the rod-shaped bacterium
Escherichia coli form at the cell ends (Maddock and
Shapiro, 1993). Similarly, Spo0J/Soj in the likewise rod-
shaped bacterium Bacillus subtillus localizes to the cell ends,
although these proteins bind to DNA and not to membranes
(Marston and Errington, 1999; Quisel, Lin, and Grossman,
1999). Cell polarity in budding yeast Saccharomyces cerevi-
siae is established by localization of Cdc42 (Fairn et al.,
2011). Cues like membrane curvature or membrane compo-
sition and specific DNA sequences might be involved in
positioning these aggregates. However, in the presence of
cooperative effects during attachment, proteins can self-
organize in clusters at specific locations by a Turing-like
mechanism (Turing, 1952). A simple example is when
membrane binding is facilitated by molecules that are already
bound there, while detachment is spontaneous. The processes

can be captured by the following toy model (Wettmann,
Bonny, and Kruse, 2014), where the distributions of cytosolic
and membrane-bound molecules c and m along an interval of
length L evolve according to

∂tc ¼ ∂2
xc − ð1þm2Þcþ km; ð75Þ

∂tm ¼ D∂2
xmþ ð1þm2Þc − km; ð76Þ

with k being the detachment rate. For sufficiently small values
of the ratio D of membrane-bound and cytosolic diffusion, the
homogenous state can become unstable, leading to a maxi-
mum of m at one end of the interval. In a rod-shaped
bacterium, this instability corresponds to an accumulation
of proteins at one cell end. An analysis of the corresponding
stochastic dynamics that accounts for the randomness inherent
in molecular reactions shows that the lifetime of such clusters
increases with molecule number and thus cell size (Wettmann,
Bonny, and Kruse, 2014). Similar observations had been
made in detailed descriptions of the Spo0J/Soj proteins
(Doubrovinski and Howard, 2005).
Surface waves.—The total number of particles

R
dxðcþmÞ

is conserved by the previously discussed dynamics, which
presents an interesting twist to the original Turing mechanism.
Generally, one can expect the spontaneous emergence of
traveling waves in such systems (Kessler and Levine, 2016).
This phenomenon is exemplified by the proteins MinD and
MinE in the rod-shaped bacterium Escherichia coli (Loose,

FIG. 12. Examples of protein clusters on cell membranes.
(a) Electron microscopy image illustrating K-ras nanoclusters.
The scale bar is 50 nm. From Prior et al., 2003. (b) Electron
micrograph (top) and fluorescence image (bottom) of E. coli
illustrating clustering of chemoreceptor Tsr. From Maddock and
Shapiro, 1993. (c) Min-protein oscillations in E. coli. Numbers
indicate time in seconds. From Raskin and de Boer, 1999b.
(d) Spiral of MinD (green) and MinE (red) on a supported lipid
bilayer. The scale bar is 50 μm. From Loose et al., 2008.
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Kruse, and Schwille, 2011). MinD andMinE direct the protein
MinC, which inhibits assembly of the cell division machinery,
to the vicinity of the cell poles, thus localizing division in the
cell center. However, the Min proteins are not statically
distributed at the two cell ends, but rather shuttle periodically
between them with a period of about a minute (Raskin and de
Boer, 1999b); see Fig. 12(c).
MinD is an ATPase that clusters on the membrane after

binding MinC by a mechanism that is still poorly understood
(Hu, Gogol, and Lutkenhaus, 2002). At the membrane, it
recruits MinE which catalyzes ATP hydrolysis and drives
MinD off the membrane. In the presence of suitable co-
operative effects during the formation of MinD clusters on the
membrane, the oscillatory behavior observed in vivo can
emerge spontaneously (Huang, Meir, and Wingreen, 2003).
Although MinD binding to the membrane was experimentally
found to be cooperative, the molecular details are unknown.
Currently, in most theoretical descriptions of the Min-protein
dynamics, a process similar to the cooperative binding present
in Eqs. (75) and (76) is assumed (Huang, Meir, and Wingreen,
2003; Bonny et al., 2013), but alternative mechanisms have
been proposed, where MinD forms complexes only after
binding to the membrane (Kruse, 2002; Petrášek and
Schwille, 2015; Walsh et al., 2015).
Physical studies of the mechanism generating the oscil-

latory patterns in vivo notably involved observing the Min-
protein dynamics in different geometries. Varying the cell
length revealed transitions from a bistable regime in short
bacteria to standing and then to traveling waves (Bonny
et al., 2013). The wave dynamics could be reconstituted in an
open geometry in vitro on supported lipid bilayers (Loose
et al., 2008); see Fig. 12(d). This allowed for further
molecular characterization of the Min-protein dynamics
(Loose et al., 2011; Schweizer et al., 2012). The in vitro
approach has been extended to study waves in confined
geometries (Zieske and Schwille, 2013; Caspi and Dekker,
2016). The patterns found in living cells could be reproduced
in this situation, further supporting a common mechanism
underlying the patterns in bacteria and in reconstituted
systems.
Adhesion domains.—Cells adhere to other cells, a substrate,

or the extracellular matrix via transmembrane proteins like
integrins and cadherins (Schwarz and Safran, 2013). These
form initially submicrometer sized circular domains, which
then mature into larger complexes of up to 10 μm that also
involve cytoplasmic proteins, notably components of the
cytoskeleton. Through cytoskeletal coupling, adhesion
domains are subject to mechanical forces that are necessary
for maturation (Balaban et al., 2001). The molecular mecha-
nism involved in force sensing could notably depend on a
force-dependent lifetime of individual adhesion bonds. In
addition, there is a feedback from the adhesion domains to the
organization of the actin cytoskeleton (Drees et al., 2005).
Currently, there is no general theory of force-dependent
formation of adhesion domains.
Membraneless organelles.—In addition to membrane

domains, cells contain three-dimensional membraneless func-
tional units, originally suggested for so-called P granules in
the developing nematode Caenorhabditis elegans. Such
functional units can be described as liquid droplets that

form through nucleation (Brangwynne et al., 2009). P
granules are asymmetrically distributed in C. elegans
embryos at the one-cell stage. After the first cell division,
the daughter cell, rich in P granules, will eventually form a
line of germ cells, whereas the other daughter cell will give
rise to a somatic cell line. This asymmetric distribution is
induced by a gradient in the distribution of the protein Mex-5
that promotes P-granule disassembly and thus effectively
increases the concentration at which P-granule components
saturate. The asymmetric state is out of equilbrium as
droplets continuously form in regions of low Mex-5 con-
centrations and dissolve in regions of high Mex-5 concen-
trations (Lee et al., 2013). Diffusion then leads to a
permanent net droplet flux between the two regions and
an oppositely directed flux of P-granule components.
P granules are liquidlike droplets with a viscosity of 1 Pa s,

that is, 3 orders of magnitude higher than the viscosity
of water. These droplets have a surface tension on the
order of 1 μN=m, that is, 5 orders of magnitude smaller
than the air-water surface tension. These values of viscosity
and surface tension allow rapid droplet formation. Other
compartments have been found to similarly form liquidlike
droplets (Brangwynne, 2011). Prominent examples are cen-
trosomes (Zwicker et al., 2014) that serve as microtubule
organizing centers and metaphase spindles that arrange the
chromosomes during division, which can be described as
liquid crystalline droplets (Reber et al., 2013). In the
nucleolus, a large subcompartment of the nucleus in which
ribosomes are created, subdomain structure has been ascribed
to droplets of immiscible liquidlike phases (Feric et al.,
2016).
Above the saturation threshold, P granules continue to grow

and fuse, which leads to Oswald ripening (Brangwynne et al.,
2009). In contrast, the two centrosomes present in cell division
do not fuse, which indeed would be detrimental to the
segregation of the chromosomes. The mechanism suppressing
Oswald ripening in that case is similar to that proposed for
limiting the size of lipid rafts: Constituents of the droplet
continuously change between two different states with differ-
ent physical properties such that in one state, the protein
prefers the condensed phase, whereas the other form is
soluble in the cytoplasm. In the case of centrosomes, this
could be the case for spindle defect protein-5 that assumes
different conformations depending on its phosphorylation
state (Zwicker et al., 2014). Several such “active droplets”
can stably coexist, in which case they assume equal sizes
(Zwicker et al., 2014). This is important as centrosome size
seems to directly control spindle length in C. elegans
(Greenan et al., 2010).

B. The cytoskeleton—An active material

The cytoskeleton is a network of filamentous protein
assemblies that interact with a plethora of proteins, regulating
filament length, cross-linking filaments, and generating active
stresses. This structure is involved in vital processes like cell
division and migration and also determines cellular mechani-
cal properties. From a physical point of view, the cytoskeleton
is an active material, as its constituents are kept out of
thermodynamic equilibrium by the hydrolysis of nucleoside
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triphosphates (NTP). We first present generic physical proper-
ties of cytoskeletal systems and then turn to two biological
applications that are of current interest, cell migration and the
actin cortex.

1. Filaments

Cytoskeletal filaments fall into two classes, actin and
tubulin, which, respectively, form actin filaments and micro-
tubules. These structures can bind nucleotides and assume
different states with different binding affinities depending on
the nucleotide bound. In addition, actin filaments and micro-
tubules are structurally polar assemblies. The structural polar-
ity is expressed in different exchange kinetics at the two ends,
which are commonly referred to as the plus and minus ends,
respectively, with exchange being more rapid at the plus end
(Kuhn and Pollard, 2005; Fujiwara, Vavylonis, and Pollard,
2007). In contrast, proteins like vimentin or keratin form
intermediate filaments that seem to play a structural role and
are assembled in a one-state, nonpolar fashion.

a. Filament length dynamics and treadmilling

The coupling to NTP hydrolysis, in combination with
structural polarity, leads to assembly kinetics of actin fila-
ments and microtubules that are alien to other commonly
studied polymers. In particular, during assembly there can be
an overshoot in the average filament length (Brooks and
Carlsson, 2008) or even oscillations in length (Carlier et al.,
1987). Most spectacularly, polarity can also lead to treadmil-
ling, when filaments show net growth at the plus and net
shortening at the minus end (Wegner, 1976; Margolis and
Wilson, 1978). Observations of filament treadmilling have
been reported in vivo (Waterman-Storer and Salmon, 1997;
Rzadzinska et al., 2004) and in vitro (Carlier et al., 1997;
Panda, Miller, and Wilson, 1999). Treadmilling relies on the
establishment of an NTP gradient along the assembling
filament (Erlenkämper and Kruse, 2013); specifically, fila-
ment subunits with NTP bounds have a higher affinity to bind
to other subunits than nucleoside-diphosphates (NDP)-bound
subunits. In cells, hydrolysis of NTP bound to a filament
subunit is essentially irreversible, such that the fraction of
NDP-bound subunits increases toward the minus end. In this
way, assembly occurs preferentially at the plus end in the form
of a NTP-subunit attachment, whereas detachment occurs
preferentially at the minus end, where NDP subunits leave the
filament. This gradient also implies an effective length
dependence of the depolymerization rate, which can lead to
a finite typical filament length (Erlenkämper and Kruse,
2013; Mohapatra et al., 2016). Other mechanisms of length-
dependent assembly and disassembly rates exist that involve
proteins influencing the growth or shrinkage of cytoskeletal
filaments (Mohapatra et al., 2016).

b. Nucleation promoting factors

Filament assembly is directly utilized by cells for migration
and to form protrusions. The polymerization of filaments
anchored in a network or to a substrate can generate forces
onto an object either directly (Dogterom, 1997; Footer et al.,
2007) or by generating stresses in nonflat networks (Prost,

2002). To see how stresses can arise from polymerization, note
first that filaments do not appear spontaneously for the
conditions present in cells. Instead, the emergence of filaments
requires factors that promote the formation of filament nuclei,
which can then grow either spontaneously or with the help of
elongation factors. Important factors promoting the nucleation
of actin filaments are complexes of actin related proteins 2 and
3 (Arp2/3) and members of the formin family. These are
typically active only in the vicinity of a membrane. As a
consequence, actin gels grow by adding material at the
interface with a surface which leads to mechanical stresses
if the surface is curved. These stresses are exploited, for
example, by the bacterium Listeria monocytogenes for pro-
pulsion in the cytoplasm of a host cell (Prost, 2002).
The mechanisms underlying nucleation by the Arp2/3

complex and formins are different. The Arp2/3 complex
branches new filaments from existing filaments. This process
is used, in particular, to extend the leading edge of cells
crawling on a substrate as it provides new free plus ends that
can grow, whereas elongation of older plus ends is dampened
by capping proteins. The interplay of Arp2/3 and capping
proteins can lead to a variety of force-velocity curves for the
advancing leading edge (Carlsson, 2003; Schreiber, Stewart,
and Duke, 2010; Weichsel and Schwarz, 2010).
Animal cells typically assemble a thin actin sheet below

their plasma membrane. Filaments in this actin cortex
nucleated by the Arp2/3 complex and formins form two
subpopulations that can be distinguished through their differ-
ent turnover rates (Fritzsche et al., 2013). Furthermore, formin
nucleated filaments are typically 10 times longer than Arp2/3-
nucleated filaments (Fritzsche et al., 2016), which in turn
affects the gel’s mechanical properties (Bai et al., 2011;
Fritzsche et al., 2016). The mechanical properties of actin
gels in the presence of filament turnover are only beginning to
be explored (Hiraiwa and Salbreux, 2016).

2. Motors

a. Single molecular motors

Cytoskeletal motor proteins assure directed long-range
transport in cells and generate mechanical stresses in the
cytoskeletal network. Members of the myosin super family
interact with actin filaments, whereas kinesins and dyneins
interact with microtubules. These interacting proteins are
ATPases that have various conformational states depending
on the nucleotide bound. Thermodynamics shows that for
motor proteins to move directionally, isotropy and detailed
balance must be broken (Jülicher, Ajdari, and Prost, 1997).
Molecular motors are characterized by their force-velocity
relation and their persistence. In many cases, the force-
velocity relation is well approximated by

v ¼ v0

�
1 −

f
fs

�
; ð77Þ

where v0 is the motor velocity in the absence of a load, fs is
the stall force at which the motor stops advancing, and f is the
magnitude of the force opposing motor movement. Although
forces larger than the stall force should lead to backward
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motion of the motor, in practice, this is rarely observed;
instead, the motor readily detaches.
The persistence is given by the average length a motor

walks along the filament before detachment, equal to the ratio
of the stepping to the detachment rates multiplied by the size
of a single step. The detachment rate depends on the applied
force and Kramers rate theory suggests

koffðfÞ ¼ koff;0 exp

�
−
jfja
kBT

�
; ð78Þ

where kBT is thermal energy and a a molecular length scale.
Note, however, that some myosin motors show catch-bond
behavior, such that the detachment rate initially decreases with
increasing applied force (Guo and Guilford, 2006).

b. Many motors on a single filament

Collective transport phenomena are commonly studied
using models in which the filament is represented by a
one-dimensional lattice with N sites and motors by particles
that occupy the sites. In this representation, bound particles
hop at specific rates to neighboring sites. Often steric
interactions between the motors are accounted for by an
exclusion principle such that each lattice site can be occupied
by one particle at most. If particles enter the lattice at one end
and leave it at the opposite end and if hops occur only in one
direction, one obtains the totally asymmetric exclusion proc-
ess (Derrida et al., 1993; Schütz and Domany, 1993).
Depending on the rates of particle entry and exit at the
boundaries, the process displays a low density, a high density,
and a maximal current phase (Krug, 1991); see Fig. 13(a).
Adding attachment and detachment of particles in the bulk
(Langmuir kinetics), stable walls between high and low
density domains can be formed (Parmeggiani, Franosch,
and Frey, 2003); see Fig. 13(b). If diffusing particles that
cannot hop off the lattice at the ends are added, the two species
can segregate (Johann, Goswami, and Kruse, 2014;
Pinkoviezky and Gov, 2017); see Fig. 13(c). Similar segre-
gation phenomena have been observed in mixtures of active
and passive swimmers (McCandlish, Baskaran, and Hagan,
2012) and might also be relevant for the segregation of
transcribed and not transcribed DNA in the cell nucleus
(Grosberg and Joanny, 2015).

c. Length regulation involving molecular motors

Some molecular motors are capable of removing subunits at
filament ends (Desai et al., 1999; Hunter et al., 2003; Varga
et al., 2006). For example, Kinesin 8 attaches anywhere along
a microtubule and then moves toward its plus end. In this way,
a concentration gradient of motors along the microtubule is
established that leads to an effective length-dependent depo-
lymerization rate at the plus end (Varga et al., 2006, 2009;
Reese, Melbinger, and Frey, 2011), which can be exploited to
regulate the length of microtubules (Johann, Erlenkaemper,
and Kruse, 2012; Melbinger, Reese, and Frey, 2012; Stewman
and Ma, 2018). For actin cables, a similar mechanism was
proposed that, in contrast, depended on a length-dependent
assembly rate induced by molecular motors (Mohapatra,
Goode, and Kondev, 2015). In this way, molecular motors

provide specific realizations of a general strategy to regulate
the length of cytoskeletal filaments (Mohapatra et al., 2016).
Molecular motors are also involved in axonal length

sensing and regulation (Rishal et al., 2012). However, the
mechanism does not rely on gradients. Instead, it was
proposed that motors moving toward the axon tip transport
a promoter of axon extension that at the same time elicits the
transport, in the opposite direction, of a factor that inhibits
further transport of the extension promoter. This process can
be captured by a system of coupled delayed differential
equations for the concentration uE of the extension promoter
at the axon tip and uI of the inhibitor (Karamched and
Bressloff, 2015):

d
dt

uEðtÞ ¼ I0 − γEuEðtÞ −WIf(uIðt − τÞ); ð79Þ

d
dt

uIðtÞ ¼ −γIuIðtÞ þWEf(uEðt − τÞ); ð80Þ

where f is a sigmoidal function and τ is the time motors of
velocity v need to traverse the axon of length L, τ ¼ L=v. This
system can generate an oscillation in uE with a length-
dependent period. This oscillating concentration of uE can
be transformed into a signal with a period and thus length-
dependent mean concentration allowing a nerve cell to sense
and regulate its axon’s length via a threshold mechanism
(Bressloff and Karamched, 2015).

d. Bidirectional motion

For directional transport in cells, vesicles are typically
bound to several motors. In this case, the motors are
mechanically coupled to each other because pulling of one
motor exerts a force on the other motors and thereby changes
their velocities as well as their persistences. If a vesicle is
bound to motors of opposite directionality, bidirectional
transport can occur (Grill, Kruse, and Jülicher, 2005;
Mueller, Klumpp, and Lipowsky, 2008). Indeed, in a situation
where a vesicle is stalled due to motors acting antagonistically,
a fluctuation that causes one motor to detach leaves the other
motors of the same directionality carrying a higher load. This
increases their detachment rates and thus starts an avalanche
of detachment events of motors of one species. The vesicle
will thus move into one direction until again another stalled
situation occurs. At the end of the stall period, the vesicle can
move in either direction. Whether this “tug-of-war” mecha-
nism underlies cellular bidirectional transport is still debated
(Klein, Appert-Rolland, and Santen, 2014).
Bidirectional transport can also be observed for a single

motor type and in the absence of load-dependent detachment
rates (Jülicher and Prost, 1995; Badoual, Jülicher, and Prost,
2002). Experimentally, such bidirectional motion has been
observed in gliding assays, where filaments move on a
substrate covered with motors (Riveline et al., 1998), for
nondirectional motors (Endow and Higuchi, 2000), and for
nonpolar bundles of actin filaments moving on a carpet of
myosin motors (Gilboa et al., 2009). The rate of switching
between the two directions of motion was calculated along the
lines presented in Sec. II.D (Guérin, Prost, and Joanny, 2011).
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e. Spontaneous motor oscillations

In addition to the chemical and genetic oscillators previ-
ously discussed, cells can also present mechanical oscillations
that are not the result of an underlying chemical pulse
generator. Many cells possess filamentous protrusions called
cilia or flagella that periodically change their shape or produce
traveling waves. These include spermatozoa and algae that
have one or two flagella, in addition to Paramecia that are
covered by a dense carpet of cilia (Bray, 2001). The periodic
deformations of cilia propel these cells in fluid environments.
Strikingly, the main constituents of the appendages,

microtubules and associated molecular motors, have been
found in reconstitution experiments to spontaneously produce
very similar patterns (Sanchez et al., 2011).
Jülicher and Prost (1997) found early that ensembles of

molecular motors coupled to an elastic element can sponta-
neously develop oscillations. They studied the case in which
motors are rigidly bound to a common backbone and switch
between two internal states. An alternative possibility is that
the motors detach from the filament in a force-dependent
manner (Grill, Kruse, and Jülicher, 2005). The oscillatory
regimes are distinct, as was shown in a model for “soft”
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FIG. 13. Collective behavior of motors on a single filament. (a) Totally asymmetric exclusion process. Top: illustration of processes.
Bottom: phase diagram. (b) Totally asymmetric exclusion process with Langmuir kinetics. Top: illustration of processes. In addition to
(a), empty sites anywhere along the lattice are occupied at rate ωa and particles can detach at rate ωD anywhere from the lattice. Bottom:
steady-state density profiles revealing a domain boundary between low and high density phases. From Parmeggiani, Franosch, and Frey,
2003. (c) Exclusion process of two particles species. Top: illustration of processes. The dynamics of circular particles as in (b), but
without additional entry rate α and exit rate β at the ends. In addition, square particles hop at the same rate to free neighboring sites, but
cannot hop off at the lattice ends. For clarity, processes have been distributed on two lattices. Bottom left: Spacetime plot of the densities
of square (red) and circle (white) particles. Bottom right (d): Steady-state density profiles of square and circle particles. From Johann,
Goswami, and Kruse, 2014.

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-32



motors that comprises both cases (Guérin, Prost, and Joanny,
2010). Spontaneous motor oscillations have been found in
muscle sarcomeres (Yasuda, Shindo, and Ishiwata, 1996;
Günther and Kruse, 2007; Sato et al., 2013) and could be
essential for the beating of eukaryotic flagella (Camalet and
Jülicher, 2000).

3. Filament networks

a. Reconstituted filament networks

Contraction of muscle sarcomeres relies on a crystal
arrangement of the actin filaments that interdigitate with
myosin filaments. Upon activation of the motors, the actin
filaments are drawn inward, which results in contraction.
Disordered cytoskeletal networks can also generate net con-
tractile stresses (Szent-Györgyi, 1951). The dynamics of this
process has been studied in reconstituted systems of filaments
and motors (Backouche et al., 2006; Smith et al., 2007;
Bendix et al., 2008; Foster et al., 2015; Linsmeier et al., 2016;
Schuppler et al., 2016; Ideses et al., 2018). In a disordered
network, contraction starts at the boundaries of a gel slab and
then propagates into the gel’s interior.
Reconstituted networks have also been shown to self-

organize into asters and vortices (Nedelec et al., 1997) and
spindlelike assemblies (Surrey et al., 2001). Minimal net-
works of two microtubules, molecular motors, and passive
cross-linkers showed that such molecules provide a minimal
module for generating stable overlaps between antiparallel
filaments as observed in spindle midzones (Bieling, Telley,
and Surrey, 2010; Lansky et al., 2015). Mircotubule-
organizing centers have been found to position themselves
in microfluidic chambers either through polymerization-
depolymerization (Holy et al., 1997; Faivre-Moskalenko
and Dogterom, 2002) or through molecular motors at the
chamber walls pulling on the filaments (Laan et al., 2012).
A somewhat different approach is followed in gliding

assays, where filaments at high density move on substrates
covered with motors (Butt et al., 2010; Schaller et al., 2010)
and which are more akin to self-propelled particles.
For investigating motor-filament systems, different theo-

retical approaches have been developed. Stochastic simula-
tions aim to account for the various constituents individually
(Nedelec and Foethke, 2007; Dasanayake and Carlsson,
2013). Kinetic descriptions take a mean field approach and
describe the system state in terms of densities of the various
components (Kruse and Jülicher, 2000, 2003; Liverpool and
Marchetti, 2003). Finally, phenomenological descriptions
mostly neglect molecular properties and focus on symmetries
and conservation laws (Kruse et al., 2004, 2005).

b. Kinetic descriptions of filament networks

In the kinetic approach and in the limit of a purely viscous
system, filaments are typically assumed to be rigid rods. The
state of the filament network can be captured by the density c
of filament plus ends. This density depends on the position r
of the plus end, the orientation û of the filament with û
pointing from the plus to the minus end and û2 ¼ 1, and the
filament length l. For motors, it is often appropriate to
distinguish between the densities mb of motors bound to

filaments and mu of unbound motors. The time evolution of
the density is then given by a continuity equation

∂tcþ ∇ · jtrans þ û × ∇û · jrot þ ∂ljl ¼ S; ð81Þ

∂tmb þ∇ · jmot ¼ R; ð82Þ

∂tmu −DΔmu ¼ −R; ð83Þ

where jtrans is a translational current caused by the activity of
molecular motors and filament assembly at the plus end, jrot is
a rotational current that accounts for changes in filament
orientation, and jl is a current describing the net effect of
filament assembly on the filament length. The source term S
accounts for filament degradation, whereas filament nuclea-
tion is captured by a boundary condition on jl at l ¼ 0. The
current jmot describes the flux of bound motors, D is the
diffusion constant of unbound motors, and the source term R
describes the binding and unbinding dynamics.
It can be useful to distinguish between different filament

populations, for example, to account for microtubules with
shrinking and growing plus ends or for kinetic differences
between filaments with capping proteins bound or not
(Stewman and Ma, 2018). In the simplest case, filaments
form a bundle and have a fixed length. If the bundle is aligned
with the x axis, Eq. (81) can be written as

∂tcðx;�exÞ ¼ −∂xj�. ð84Þ

In the viscous limit, attention is typically restricted to
motor-mediated interactions between filament pairs. In the
case of a bundle, the current takes the form (Kruse and
Jülicher, 2003)

j�ðxÞ ¼
Z

l

−l
dξ½v��ðξÞc�ðxþ ξÞ þ v�∓ðξÞc∓ðxþ ξÞ�c�ðxÞ;

ð85Þ

where the motor-induced sliding velocities obey v��ðξÞ ¼
−v��ð−ξÞ and vþ−ðξÞ ¼ −v−þð−ξÞ to respect momentum
conservation. In this case, the motor density is assumed to be
homogenous. A similar form of the interaction kernel can be
obtained from analogies with collision terms used for granular
materials (Aranson and Tsimring, 2005). Kinetic approaches
have also been used to describe (viso)elastic motor-filament
systems (Günther and Kruse, 2007; Peter et al., 2008; Lenz,
Gardel, and Dinner, 2012).
The kinetic approach has been used to study motor-induced

contraction of filament bundles (Kruse and Jülicher, 2000) and
the stability of isotropic filament solutions (Liverpool and
Marchetti, 2003). Instabilities rely in both cases on inter-
actions between filaments with orientations û1 and û2 such
that

û1 · û2 > 0: ð86Þ

On a molecular level, such interactions rely on end effects, for
example, on motors getting stuck at a filament end (Nedelec
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et al., 1997) and also lead to the generation of net mechanical
stresses in isotropic networks.

c. Mechanisms of stress generation

In the kinematic framework, mechanical stresses can be
calculated by analyzing the momentum flux (Kruse and
Jülicher, 2003). In a homogenous filament bundle, antiparallel
filaments do not generate a net contractile stress as there are as
many contractions as extension events; see Fig. 14(a). In a
skeletal muscle, this problem is solved by the sarcomeric
arrangement of the actin filaments; see Fig. 14(b). If motors
stall at the filament ends, then interactions between parallel
filaments generate a net stress; see Fig. 14(c). Another
mechanism depends on nonlinear filament elasticity: as
filaments buckle more easily than they are stretched, con-
traction is favored over extension, generating a net contractile
stress (Lenz et al., 2012), Fig. 14(d), and filament buckling

has indeed been observed in reconstituted actomyosin bundles
(Thoresen, Lenz, and Gardel, 2011). Other mechanisms can
be envisioned (Lenz, 2014): myosin motors are not pointlike,
but form themselves into minifilaments. If they prefer to be
aligned with the filaments they will generate net contractile
stresses, as has been found in stochastic simulations
(Dasanayake, Michalski, and Carlsson, 2011; Dasanayake
and Carlsson, 2013). In similar simulations, it was found that
motors can also generate net extensile stresses, because
motors are more likely to link two filaments that have a
finite overlap and are so persistent as to stay bound until they
fully extend a filament pair (Gao et al., 2015). Finally,
filament treadmilling can contribute to the generation of
filament overlaps that favor contraction (Oelz, Rubinstein,
and Mogilner, 2015), Fig. 14(e), even in the absence of active
cross-linkers (Zumdieck et al., 2007).
These mechanisms rely essentially on accounting for local

differences in motor distributions. In addition, the local

(a) (b)

(c) (d)

(e) (f)

FIG. 14. Possible mechanism of net stress generation for rigid filament pairs. (a) Antiparallel filaments first contract then expand
implying no net stress. (b) Arrangements of actin filaments and motors in a muscle sarcomere leading to contractions only. (c) If motors
stall at the filament ends, net stresses are generated in parallel filament pairs. (d) The buckling of filaments can break the symmetry
between contraction and extension of antiparallel filaments. (e) Filament treadmilling leads to extended times of contractile overlaps. If
these times exceed the time a motor is bound, net stresses are generated. (f) Biopolar structures generate a structure that is reminiscent of
the filament arrangement in a sarcomere.
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organization of the filament network has a significant impact
on contractility (Ennomani et al., 2016). In bundles, filaments
could form bipolar structures, Fig. 14(f), for example, through
motors linking filament plus ends, which would lead to
contraction as was proposed for contractile rings (Wollrab
et al., 2016). In higher dimensions these structures correspond
to asters.

4. Hydrodynamics of motor-filament networks

a. Hydrodynamics of active polar gels

Many interesting features of motor-filament networks can
be discussed without referring to a specific molecular mecha-
nism of stress generation by using the formalism of gener-
alized hydrodynamics outlined in Sec. II.J.2 (de Groot and
Mazur, 1985). Within this approach, the cytoskeleton is one
instance of an active polar gel (Kruse et al., 2004, 2005). In
this context, “active” refers to the coupling of mechanical
stresses to a chemical reaction (ATP hydrolysis), although the
class of active matter is somewhat broader (Marchetti et al.,
2013). Active polar gels are defined, on the one hand, by
conserved quantities: the gel components, momentum, and
angular momentum. One typically assumes the system to be at
constant temperature such that energy is not conserved. On the
other hand, polar filaments can locally align to generate
macroscopic polar order, such that polarity provides an order
parameter of a broken continuous symmetry.
The fluxes appearing in the conservation laws could be

obtained from microscopic descriptions, as in the kinetic
theories previously presented. In the framework of nonequili-
brium thermodynamics, however, one uses phenomenological
expressions. To this end, one first identifies the pairs of
conjugated generalized (thermodynamic) currents and gener-
alized (thermodynamic) forces. An expression for the currents
is then obtained by expanding them in terms of the forces up to
linear order.
In the simplest version, an active gel can be described as an

effective one-component fluid that is coupled to the hydrolysis
of ATP. If the densities nT , nD, and nP of ATP and its
hydrolysis products ADP and Pi, respectively, are spatially
homogenous, then the conservation laws are (Kruse et al.,
2004, 2005)

∂tρþ ∂αρvα ¼ 0; ð87Þ

∂tgα þ ∂βσ
tot
αβ ¼ fextα ; ð88Þ

_nT ¼ − _nD ¼ − _nP ¼ r; ð89Þ

where g ¼ ρv denotes the momentum density and σtot is the
corresponding momentum flux density, equal to the mechani-
cal stress tensor. Externally applied forces fext provide
possible momentum sources. Angular momentum has not
been listed explicitly, which is appropriate in the absence of
torques not resultant from external forces. In addition, there is
a dynamic equation for the evolution of the polarization field
p. The part of the free energy associated with distortions in the
polar field Fd is commonly taken to be

Fd ¼
1

2

Z
d3rfK1ð∇ · pÞ2 þ K2½p · ð∇ × pÞ�2

þ K3½p × ð∇ × pÞ�2g; ð90Þ

where K1,K2, and K3 are the Frank elastic constants for splay,
twist, and bend, respectively.
The conjugated pairs of forces and fluxes are then vαβ ↔

σdαβ, Dpα=Dt ↔ hα, and r ↔ Δμ, where vαβ ¼ ð∂αvβþ
∂βvαÞ=2 are the components of the rate of strain tensor.
Furthermore, σd is the deviatoric stress, Dpα=Dt the con-
vective corotational derivative, h ¼ −δFd=δp the molecular
field conjugate to the polarization, and Δμ the difference
between the chemical potentials of ATP and its hydrolysis
products.
The total stress has two parts, a hydrostatic part σe,

called the Erickson stress, and a deviatoric part. The first
part is the generalization of the hydrostatic pressure to the case
of a polar fluid (Ericksen, 1962). The second, deviatoric
part, fulfills σtotαβ ¼ σdαβ − ð1=2Þðpαhβ − pβhαÞ þ σeαβ, where

σd is the symmetric part of the deviatoric stress and
−ð1=2Þðpαhβ − pβhαÞ its antisymmetric part. The constitutive
equation for the symmetric part of the deviatory stress can be
divided in three components as

σdαβ ¼ σvisc þ σdist þ σact; ð91Þ

where the viscous stress σvisc is that of a Stokesian fluid with
σviscαβ ¼ 2ηvαβ if the fluid is incompressible and σdist is the
stress resulting from distortions in the polar field,

σdistαβ ¼ ν

2
ðpαhβ þ pβhαÞ þ ν̄1pγpγδαβ. ð92Þ

The expression for σdist is the same as for a nematic liquid
crystal, but with the polarization replaced by the director field.
Finally, the stress component σact resulting from activity is

−σactαβ ¼ pαpβζΔμþ ζ̄Δμδαβ þ pγpγ ζ̃Δμδαβ: ð93Þ
The equation for the evolution of the polarization vector is

D
Dt

pα ¼
1

γ
hα þ λ1pαΔμ − ν1pβvαβ − ν̄1vββ; ð94Þ

which contains the active term λ1pαΔμ. Here the coefficients
ν1 and ν̄1 are imposed by the Onsager reciprocity relations.
This hydrodynamic approach to active gels has been gener-
alized to elastic (Banerjee and Marchetti, 2011) and multi-
component viscoelastic active polar gels (Günther and Kruse,
2007; Joanny et al., 2007; Callan-Jones and Jülicher, 2011).

b. Spontaneous flows

One of the most spectacular properties of polar active gels
is their ability to spontaneously generate flows. Beyond a
critical activity, a stationary state with homogenous polar
order will be unstable against small perturbations (Voituriez,
Joanny, and Prost, 2005). In this case, gradients in the polar
order parameter will develop, which in turn lead to a
spontaneous flow. In a Taylor-Couette geometry where
the active gel is confined in the interstitial space between
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two coaxial cylinders, this flow can set the two cylinders
into relative rotational motion (Fürthauer et al., 2012). The
resulting torque-rotational velocity relation can display
regions with multiple unstable branches and the coexistence
of states with rotations in the opposite direction. For higher
activities, secondary instabilities have been reported that
lead to the emergence of topological point defects and
possibly chaotic behavior (Neef and Kruse, 2014), Fig. 15
(b), which has been observed in extensile active nematics
(Sanchez et al., 2012); see Fig. 15(c). These phenomena are
reminiscent of the dynamics of bacterial suspensions con-
fined in circular domains (Wioland et al., 2013; Lushi,
Wioland, and Goldstein, 2014). Gradients in the polar order
parameter also generate flows around spiral defects (Kruse
et al., 2004); see Fig. 15(a).

c. Topological defects

Topological defects in the polarization field readily develop
in reconstituted filament-motor systems (Sanchez et al., 2012;
Keber et al., 2014). Beyond a certain activity threshold, asters
and vortices that are stable defects in equilibrium give way to
spirals and spontaneously start to rotate (Kruse et al., 2004,
2005). Defects of topological charge �1=2 in active nematics

form spontaneously; see Fig. 15(d). Furthermore, these
defects can annihilate (Sanchez et al., 2012) and can show
oscillatory behavior when confined to a spherical surface
(Keber et al., 2014). The dynamics of toplogical defects in
active nematics has been studied numerically (Giomi et al.,
2013; Thampi, Golestanian, and Yeomans, 2013) and ana-
lytically (Pismen, 2013).

d. Spontaneous actin waves

In a number of diverse adhering cells, the actin cytoskeleton
has been found to spontaneously represent waves. Actin
polymerization waves, first observed in Dictyostelium dis-
coideum (Vicker, 2000), have now been seen in various cell
types (Gerisch et al., 2004; Weiner et al., 2007) and are often
linked to cell motility (Allard and Mogilner, 2013). Circular
dorsal ruffles, which are protrusions on the upper side of an
adhering cell and for which no function is currently known,
result from polymerization waves (Bernitt et al., 2015). The
basic underlying mechanism seems to be a negative feedback
between actin filaments and the activity of a nucleation
promoting factor (Weiner et al., 2007; Doubrovinski and
Kruse, 2008; Carlsson, 2010), which leads to a dynamic that is
reminiscent of excitable systems (Whitelam, Bretschneider,
and Burroughs, 2009; Ryan et al., 2012; Bernitt and
Döbereiner, 2017).
There are also spontaneous actin waves that depend in an

essential way on stresses generated by molecular motors
(Giannone et al., 2004; Doebereiner et al., 2006; Barnhart
et al., 2011). A generic mechanism for such waves that results
from the coupling of a regulator to an active gel was studied by
Bois, Jülicher, and Grill (2011) and Kumar et al. (2014).
Similarly, they are generic properties of active elastic materials
with stress-dependent motor regulation (Günther and Kruse,
2007; Radszuweit et al., 2013) or in the presence of a turnover
(Dierkes et al., 2014). In combination with filament treadmil-
ling, motors can also generate waves in actomyosin bundles
(Torres, Doubrovinski, and Kruse, 2010; Oelz and Mogilner,
2016; Wollrab et al., 2016) as were observed in cytokinetic
rings in fission yeast (Wollrab et al., 2016). Lateral waves,
observed during the spreading of fibroblasts (Giannone et al.,
2004; Doebereiner et al., 2006), have been proposed to result
from cytoskeleton-membrane interactions (Shlomovitz and
Gov, 2007; Zimmermann, Enculescu, and Falcke, 2010;
Gholami, Enculescu, and Falcke, 2012).

e. Cell migration

Simply put, the motion of cells crawling on solid substrates
comprises the extension of a flat, veil-like protrusion called
lamella, its anchoring to the substrate, the release of surface
attachments in the cell’s rear, and the forward locomotion of
the cell body containing the nucleus. Physical analysis has
focused on specific aspects of this integrated process. Notably,
the extension of lamellae by actin polymerization was
described in terms of a “Brownian ratchet” (Mogilner and
Oster, 1996) or through blebbing, a process that leads to the
detachment of the cell membrane from the actin network and
its bulging out due to cytosolic pressure (Charras and Paluch,
2008). On this basis, the force-velocity relation of cell
crawling has been analyzed (Carlsson, 2003; Schreiber,

FIG. 15. Spontaneous flows in active polar gels. (a) Illustration
of the spontaneous circular flow around a spiral point defect.
From Kruse et al., 2004. (b) Flows around vortices in a ring.
Arrows indicate the flow, colors the orientation angle ψ of the
polarization field with respect to the radial direction. From Neef
and Kruse, 2014. (c) Spontaneous flow field (arrows) in a
reconstituted system of microtubules and motor complexes. Scale
bar: 80 μm. (d) Generation and separation of two topological
point defects of charges�1=2 in the system (c). Scale bar: 20 μm.
(c), (d) From Sanchez et al., 2012.

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-36



Stewart, and Duke, 2010; Weichsel and Schwarz, 2010). In the
frame of the substrate, actin flows from the leading edge
toward the cell body in a process called retrograde flow.
Hydrodynamic analysis of this phenomenon suggests that it
results from contractile activity of myosin motors (Kruse
et al., 2006). The combined effect of polymerization and
contraction on the force-velocity relation was studied by
Recho and Truskinovsky (2013).
On the other hand, the experimental observation of crawling

cell fragments (Euteneuer and Schliwa, 1984; Malawista and
Van Blaricom, 1987) suggested that the actin cytoskeleton can
autonomously generate cell migration. As a consequence,
droplets of active gels were analyzed. In this context, one has
to deal with a dynamic boundary. Studies with sharp boun-
daries therefore focused on cytoskeletal dynamics in regions
of fixed shape (Whitfield et al., 2014) or on the stability of
circular shapes (Callan-Jones, Joanny, and Prost, 2008),
although full crawling was also considered (Doubrovinski
and Kruse, 2011; Blanch-Mercader and Casademunt, 2013).
Alternatively, phase-field models have been used (Shao,
Rappel, and Levine, 2010; Ziebert, Swaminathan, and
Aranson, 2012).
A phase field is an auxiliary field that equals one in the cell

interior and zero outside. The dynamics of the phase field ψ
was given by (Shao, Rappel, and Levine, 2010; Ziebert,
Swaminathan, and Aranson, 2012)

∂tψ ¼ DψΔψ þ δF
δψ

þ coupling terms. ð95Þ

Notably the diffusion terms set the surface tension associated
with the phase-field boundary. The free energy F is commonly
taken to be quartic in the phase field such that the derivative
δF=δψ ¼ κψð1 − ψÞðψ − δÞ is cubic in ψ . Here δ can be
dynamically adjusted to maintain a constant cell volume
δ ¼ 1=2þ ϵ½d3rψðrÞ − V0�, where v0 is the target volume
size (Ziebert, Swaminathan, and Aranson, 2012). The cou-
pling terms describe the interaction of the phase field with the
actin cytoskeleton. This interaction is commonly described by
−βp · ∇ψ , which confines the interaction to the “cell”
boundary.
The phase-field approach has been used to study sponta-

neous cell polarization (Shao, Rappel, and Levine, 2010;
Ziebert, Swaminathan, and Aranson, 2012), the effects of
adhesion (Shao, Levine, and Rappel, 2012; Ziebert and
Aranson, 2013), the migration of cells on micropatterns
(Camley et al., 2013), and the effects of substrate stiffness
on migration (Ziebert and Aranson, 2013; Löber, Ziebert, and
Aranson, 2014). In these studies, the contractile stresses
generated by the actin network play an essential role.
Spontaneous polymerization waves can also orchestrate the
cytoskeleton to generate cell crawling (Weiner et al., 2007;
Doubrovinski and Kruse, 2011). These waves can generate
erratic motion through a deterministic mechanism (Dreher,
Aranson, and Kruse, 2014).
As an alternative to adhesion-based motility, cells can also

move by “flowing and squeezing” (Laemmermann et al.,
2008). In this case, the cell does not establish adhesion sites
with a substrate; rather, the necessary environmental coupling
can be obtained from pushing on the environment (Hawkins

et al., 2009). Furthermore, spontaneous actin flows either in
the bulk (Tjhung, Marenduzzo, and Cates, 2012; Recho,
Putelat, and Truskinovsky, 2013; Whitfield et al., 2014) or
below the cell membrane (Hawkins et al., 2011) can generate
migration. Similarly, asymmetric contraction of the cytoske-
letal network can push the cytosol to extend the leading edge
(Callan-Jones and Voituriez, 2013), which is a behavior
similar to blebbing.

f. Cortex instabilities

In animal cells, the actin cytoskeleton forms a thin layer below
the cell membrane known as the actin cortex. This mesh
determines cellular shape and mechanical properties (Chalut
and Paluch, 2016). The actin cortex hosts vital structures like
contractile rings that, for example, cleave the cell during
division, play an important part in endocytosis, and contribute
to the formation of cellular protrusions. Its physical properties
have been probed via atomic force microscopy (Matzke,
Jacobson, and Radmacher, 2001; Pesen and Hoh, 2005) and
laser ablation (Saha et al., 2016). The cortex thickness has been
measured at about 200 nm (Clark, Dierkes, and Paluch, 2013),
which is much smaller than the length of many cortical actin
filaments (Fritzsche et al., 2016). By making an analogy with
prewetting, itwas suggested thatmyosinmotors are ultimately at
the origin of the well-defined actin cortex (Joanny et al., 2013).
Gradients and anisotropies in tension generate flows of

cortical actin (Mayer et al., 2010). These flows can lead to the
formation of contractile rings (Salbreux, Prost, and Joanny,
2009; Turlier et al., 2014) as well as an alignment of the
filaments in the ring (Reymann et al., 2016). Asymmetries in
cortical tension make the contractile ring position unstable and
can lead to ring oscillations (Sedzinski et al., 2011).
Oscillations have also been observed for actomyosin rings
(Paluch et al., 2005) and cellular shapes (Salbreux et al.,
2007) in nondividing cells. A framework for analyzing cortex-
driven shape changes has been formulated for active, elastic,
thin shells (Berthoumieux et al., 2014). In general, however,
the motion of actomyosin rings depends on ring contractility
in addition to cortical flows (Behrndt et al., 2012).
Furthermore, cortical flows help to establish cell polarity
by transporting certain proteins from one cell end to the other
(Goehring et al., 2011). Remarkably, the actomyosin cortex in
Caenorhabditis elegans embryos generates chiral torques,
which generates counterrotating cortical flows that are used to
establish the left-right symmetry of the developing organism
(Naganathan et al., 2014). Finally, note that the contractility of
thin active gel layers, be it the actin cortex or a cell monolayer,
can generate instabilities that lead to three-dimensional shape
changes (Hannezo, Prost, and Joanny, 2011; Shyer et al.,
2017; Ideses et al., 2018).

VII. NEURAL NETWORKS AND BRAIN FUNCTION

Understanding brain function is a grand goal for biology.
The brain consists of a tightly connected network of billions of
nerve cells called neurons (Dayan and Abbott, 2001). From a
physical point of view, a nerve cell or an individual neuron is
an electrically excitable unit. For a strong enough excitation
above a threshold, the cell sends out an electrochemical pulse
referred to as an action potential. This signal travels along the
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axon, which is a linear extension of the nerve cell. The
transport of an action potential along an axon is quantitatively
described by the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952), the essence of which is captured by the
FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo,
Arimoto, and Yoshizawa, 1962). At the end of the axon,
the action potential can be transmitted to other nerve cells that
receive the signal in extensions called dendrites. The coupling
between an axon and dendrites occurs through synapses that
chemically excite or deexcite the postsynaptic nerve cell by
releasing biomolecules called neurotransmitters.
The activity of the brain is represented by the electrical

activity of the whole neural network rather than that of
individual neurons. The brain function closely associated
with the activity is then determined by the underlying neural
networks (Hopfield, 1982; Abbott, 2008). Therefore, one
needs to explore the underlying neural network dynamics
for specific functions. The physical and quantitative under-
standing of global brain functions such as learning and
memory, decision making, and attention, as well as associated
nonequilibrium neural network dynamics, are still challenging
at present (Dayan and Abbott, 2001). We will quantify the
nonequilibrium landscape and flux and associated nonequili-
brium thermodynamics to explore these brain functions. For
reviews of other aspects of dynamics of neural networks, see
Amit (1989) and Dayan and Abbott (2001).

A. Learning and memory

To theoretically study cerebral processes, certain neural
networks have been introduced where in neuron dynamics can
be simplified. The state of neuron i is given by the continuous
variable ui representing its electrical potential and connects to
another neuron j with strength Tij. The state of neuron i
changes due to the input from other neurons, a leak of ions that
will bring an unstimulated neuron back to its resting potential
ui ¼ 0 and a possible external input current Ii, such that

Ci
dui
dt

¼
X
j≠i

TijfjðujÞ −
1

Ri
þ Ii; ð96Þ

where Ci and Ri, respectively, denote the capacity and
resistance of neuron i and where fj is a monotonically
increasing sigmoidal function such that neuron i receives
input from neuron j only if the “activity” of the latter is above
a certain threshold. An important subclass of such networks
is Hopfield networks, for which the weights are symmetric
Tij ¼ Tji (Hopfield, 1982).
The attractors of such a network are often interpreted as

patterns stored within it. Given a certain distribution of input
currents Ii, the network should settle into an attractor that
associates this input with a previously learned pattern, where
“learning” refers to adjusting the connection strengths Tij

such that certain inputs yield distinct activation patterns of the
network. There are several different learning algorithms, that
is, dynamics for the Tij that yield the desired network
properties. In the case of a symmetric network with
Tij ¼ Tji, the underlying dynamics are determined by the
gradient of a potential energy (Hopfield, 1982) defined as

E ¼ −
1

2

X
i;j

TijfiðuiÞfjðujÞ þ
X
i

1

Ri

Z
ui

0

ξf0iðξÞdξ

þ
X
i

IifiðuiÞ ð97Þ

with dE=dt ≤ 0. Consequently,E is a Lyapunov function of the
system and will always settle in one of the steady-state
attractors (Hopfield, 1982). Symmetric connections imply an
underlying neural network with behavior determined by purely
potential energy. Memory is stored in the neural connection
patterns forming the basins of attractions on the landscape.
Learning can then be understood as a way of retrieving
information from the initial queue near specificmemory basins.
In the realistic neural networks of the brain, neural con-

nections are not symmetric, that is, Tij ≠ Tji so the energy E,
Eq. (97), is no longer a Lyapunov function. Still, Eq. (96)
describes the neural network dynamics, which now also
depends on the nonequilibrium potential landscape related
to the steady-state probability distribution and steady-state
rotational curl probability flux breaking the detailed balance.
The rotational curl flux of neural networks emerges when
neural connections are asymmetric (Yan et al., 2013). As a
consequence, continuous line attractors can emerge (Yan
et al., 2013). These attractors could provide a physical origin
of associations between memories by flux.

B. Cycling of sleep phases

Movement between neural network states can be shown in
an example connecting different phases during sleep, where
periods of rapid eye movement (REM) alternate with non-
REM periods (Mccarley and Massaquoi, 1986). The two
phases are regulated by the interaction of two neural pop-
ulations. The main contribution for the underlying circuit of
REM sleep is an activation-repression loop inferred from
experimental studies (Mccarley and Massaquoi, 1986). The
dynamics follow the equation of motion

dx
dt

¼ aAðxÞxS1ðxÞ − bBðxÞxy

and

dy
dt

¼ −cyþ dxyS2ðyÞ;

where x and y represent the activities of REM-on and REM-
off neural populations, respectively. The constants a, b, c, d
and the sigmoidal functions A, B, S1, and S2, respectively,
specify the interaction strengths between the populations (Yan
et al., 2013). From a stochastic version of the equation of
motion for x and y, one can obtain the Mexican hat-shaped
landscape as a continuous close line attractor from the steady-
state solution of the corresponding Fokker-Planck equation.
The rotational curl flux driving the REM sleep flow can be
directly derived from the force decomposition as in
Sec. II.A.2. In addition, the limit-cycle stability can be
assessed in terms of the landscape topography, that is, the
height of the Mexican hat potential’s center, and the frequency
of the REM or non-REM cycle as a function of the release of
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the neurotransmitters acetylcholine and norepinephrine (Yan
et al., 2013). It is shown that the nonequilibrium rotational
curl flux from asymmetrical neural connections is crucial for
generating the REM sleep rhythm, while for symmetrical
neural connections, limit-cycle oscillations cannot appear
(Yan et al., 2013).

C. Brain decision making

One key aspect of cognition is decision making. Studies in
monkeys have linked the process of decision making to the
neural activity of a specific area of the cerebral cortex
(Shadlen and Newsome, 1996, 2001; Roitman and Shadlen,
2002; Huk and Shadlen, 2005). In these experiments, trained
monkeys were presented for a few seconds with a pattern of
randomly arranged dots that moved coherently in one direc-
tion against a background of randomly appearing and dis-
appearing stationary dots. Some time after the patterns were
switched off, the monkeys were asked to make a decision
about the average direction of motion of the dots.
The physics of decision making.—The neural network

underlying decision making in this motion discrimination
task consists of two populations of nerve cells competing with
each other for selecting the leftward or rightward direction
(Shadlen and Newsome, 2001; Roitman and Shadlen, 2002;
Wong and Wang, 2006; Wong et al., 2007). The two
populations self-activate and at the same time mutually inhibit
each other. The sensory input current Imotion;i into population
i ¼ 1, 2 depends on the fraction of coherently moving dots or
“coherence” c as Imotion;i ¼ Îð1� cÞ, where Î is the input in
the absence of coherent motion and the plus and minus signs
are, respectively, used when the motion is in the preferred
direction of the population or opposite to it. The total input
currents are then given by

Itot;1 ¼ J11S1 − J12S2 þ I0 þ Imotion;1; ð98Þ

Itot;2 ¼ −J21S1 þ J22S2 þ I0 þ Imotion;2: ð99Þ

Here I0 is the average background synaptic input, Jij the
synaptic coupling constants, and Si the average gating
variables. Their value is determined dynamically through

_Si ¼ −
1

τS
Si þ γð1 − SiÞri ð100Þ

with characteristic times τS and γ, and where ri is the firing
rate of the neural population i. The firing rate is essentially
zero below a threshold value and then increases almost
linearly as a function of the total input current (Shadlen
and Newsome, 2001; Roitman and Shadlen, 2002; Wong and
Wang, 2006; Wong et al., 2007).
Stochastic dynamics in the nonequilibrium landscape

unveil the physical mechanism behind decision making
(Yan, Zhang, and Wang, 2016); see Fig. 16(a). In the absence
of a stimulus Î ¼ 0, there are three stable attractors corre-
sponding to the undecided state and the two decided states. In
the decided states, the population has a high activity; other-
wise all activities are low. With increasing stimulus, the
stability of the undecided state decreases until it eventually
becomes unstable, such that only the two decided states
remain and the animal has to make a decision; see Fig. 16(b).
For noncoherent patterns c ¼ 0, the decision is random,
whereas for c ≠ 0 it is biased toward the correct decision
because the basin of attraction of the correct decided state
grows while that of the incorrect decided state shrinks.
Furthermore, as the stimulus is reduced, the barriers around
the decided states still remain for some time, which endows

FIG. 16. Nonequilibrium potential landscapes for brain decision making and mind changes. (a), (b) Potential landscapes at the zero
coherence level for different stimulus inputs for decision making, μ0 ¼ 0 and 30 Hz, respectively. (c) denotes an undecided state, and (a)
and (b) denote decided states. (c), (d) Potential landscapes at the nonzero coherence level, where μ ¼ 30 Hz and the coherence c ¼ 0.2
and 0.65, respectively. (e), (f) Potential landscapes with different large inputs for mind changes at a zero coherence level. The strength of
stimulus μ0 ¼ 50 and 65 Hz, respectively. (g), (h) The potential landscapes with different large inputs for mind changes at different
coherence levels. (μ0 ¼ 55) when coherence c0 ¼ 0.02 and 0.12, respectively. In all subgraphs, parameters a ¼ 269.5, b ¼ 108, and
D ¼ 3.6 × 10−7. From Yan, Zhang, and Wang, 2016.
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the systems with some memory for the decision made. Once
an incorrect decision is made, it takes a much longer time to go
over the barrier to reach the incorrect basin. This explains why
there is a longer decision time for incorrect decisions than for
correct ones. These findings are in agreement with the results
from monkey experiments (Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Mazurek et al., 2003; Wong and
Wang, 2006; Wong et al., 2007).
Speed, accuracy, and dissipation trade-off in decision

making.—The process of decision making can be optimized
for several quantities, notably, accuracy, speed, and dissipa-
tion. One can quantify the decision time by the corresponding
mean first passage time from an undecided state to a decided
state. One can also quantify the performance or accuracy of
the neural network through a path integral method (Wang,
Zhang, and Wang, 2010) by defining the accuracy of the
decision-making task as the ratio in probabilities between the
optimal correct path and the error path. The dissipation in
terms of entropy production is directly related to the rotational
curl flux. As stated previously, this measures the system’s
distance from equilibrium and can therefore be quantified for
decision making (Yan, Zhang, and Wang, 2016).
Let us now focus on the speed-accuracy-dissipation trade-

off mechanism by varying input threshold. If speed is the main
focus of decision making, there is an optimal decision speed
with almost minimum dissipation cost and reasonable accu-
racy. However, higher accuracy requires longer decision time,
and thus a slower decision speed. If accuracy is the major
concern of the decision making, both the dissipation cost and
decision time are higher than optimum at the best accuracy,
but there is a suboptimal accuracy with optimal speed and
dissipation cost. When dissipation cost is the main concern for
decision making, the decision accuracy may not be the best
nor will the speed be the greatest with the smallest dissipation
cost. One sees that reasonable accuracy performance can be
reached with minimum dissipation cost and fast decision time,
though (Yan, Zhang, and Wang, 2016).
Mechanisms of mind changes.—Changes of mind occur

often in making decisions. In this scenario, the initial choice
can be altered. Decisions can be changed in two cases. For an
incoherent stimulus c ¼ 0, the system will settle in one of the
two decided states as the strength of the stimulus is increased;
see Fig. 16(e). Upon further increase of the stimulus, a new
attractor appears with high activity in both populations and the
system will eventually settle in this state; see Fig. 16(f). As the
stimulus is again reduced, the high activity state disappears
and the system will eventually settle in one of the decided
states. However, this state will not necessarily match the
original one; the decision can be changed. The emergence of a
new attractor with increasing input strength has been observed
experimentally (Resulaj et al., 2009). Studies suggested that
the changes of mind might be due to the unprocessed
information before the first decision (Resulaj et al., 2009).
For coherent inputs with c > 0, the correct choice state is

more attractive and changes from an initial correct choice are
unlikely to occur. However, when the network makes a wrong
decision at the beginning, changes can occur relatively easily.
This is because although there is a second chance (new center
basin state) to make a decision due to large stimulus input, a
network is still more likely to be attracted to the stronger basin

of attraction for the correct choice, as shown in Figs. 16(g) and
16(h). This observation is supported by experimental data
showing that the probability of changes to the wrong choice
from the correct one decreases monotonically with increasing
coherence (Resulaj et al., 2009; Albantakis and Deco, 2011;
Albantakis et al., 2012). Therefore, the process of changes of
mind can be described in three steps: making the initial
decision, attraction to the new basin state, and at last making a
different decision. As previously seen, a change of mind can
be understood through landscape topography.

VIII. THE GENETIC BASIS OF ORGANISMAL
PROGRESSION

Two major processes transform the appearance and capa-
bilities of organisms during their lifetime: development and
aging. Development is often accompanied by morphogenesis,
and D’Arcy Thompson’s seminal book On Growth and Form
(Thompson, 1941) emphasized the need for physics in under-
standing morphogenesis early on. We refer the interested
reader to recent reviews on the physics of morphogenesis for a
description of the current state of this field (Lecuit and Lenne,
2007; Mirabet et al., 2011; Sun and Jiang, 2011). We instead
focus on genetic aspects of development and aging that so far
receive less attention among physicists and present examples
of how nonequilibrium landscapes can help to deepen our
understanding of these processes.

A. Stem-cell differentiation

Stem cells are undifferentiated cells capable of giving rise to
specialized cells. Although a fertilized egg has the potential to
develop into all the cell types of a body, differentiation
typically occurs in a sequence of several steps, such that
cells emerging at various stages of this process become more
and more specialized. Waddington (1957) suggested a picto-
rial way to visualize the developmental process in terms of a
ball rolling down an increasingly fragmenting valley.
Although intuitive, this picture lacks a physical foundation
and has no quantification. The Waddington landscape has
received recent attention among physicists and other scientists
for global quantification of development and reprogramming
(Chickarmane and Peterson, 2008; Jiang et al., 2008; Huang,
Ernberg, and Kauffman, 2009; Wang et al., 2010, 2011; Feng
and Wang, 2012; Li and Wang, 2013, 2014b, 2015; Sasai
et al., 2013; Xu, Zhang, and Wang, 2014; Ashwin and
Sasai, 2015).
Biologists have long thought that differentiation was

irrevocable. This view was shattered after the identification
of the core genetic network underlying differentiation. A
typical core motif for these networks involves two self-
activating genes mutually repressing each other
(Chickarmane and Peterson, 2008; Jiang et al., 2008;
Huang, Ernberg, and Kauffman, 2009; Wang et al., 2010,
2011; Feng and Wang, 2012; Li and Wang, 2013, 2014b,
2015; Sasai et al., 2013; Xu, Zhang, and Wang, 2014; Ashwin
and Sasai, 2015). Some examples include the PU.1-GATA1
gene pair, which directs the differentiation of a common
myeloid progenitor into either a myeloid cell or an erythroid
cell in blood cell formation; Oct4 and Cdx2 gene pair for the
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inner cell mass/trophectoderm lineage decision; and Nanog
and Gata6 gene pair for segregation of primitive endoderm
and epiblast within the inner cell mass; see Fig. 17(a). Another
example involves the mutual regulations of the transcription
factors Oct-4 and NANOG (Takahashi and Yamanaka, 2006;
Chambers et al., 2007; Kalmar et al., 2009). Both activate
themselves; NANOG also activates Oct-4, whereas Oct-4
activates NANOG at low and suppresses it at high levels. This
network topology generates a bimodal distribution of
NANOG expression (Kalmar et al., 2009). Although the
possibility of noise-induced transitions between the two
principle states cannot be excluded, the existence of two
subpopulations is rather thought to result from excitable
dynamics of the regulatory network (Kalmar et al., 2009).
Remarkably, controlled upregulation of NANOG leads to the
reversal of a differentiated cell into a pluripotent stem cell
(e.g., embryonic stem cells are pluripotent) (Takahashi and
Yamanaka, 2006), thus revoking the previous paradigm that

differentiated cells cannot return to the pluripotent state.
Waddington’s picture is unsuitable for describing this process;
instead, nonequilibrium landscapes and fluxes provide an
appropriate framework for in-depth analysis.
The dynamics of gene regulatory networks can be

captured by

dXi

dt
¼ −KiXi þ

X
j

aijXn
j

Sn þ Xn
j
þ
X
j

bijSn

Sn þ Xn
j
; ð101Þ

where Xi denotes the expression level of gene i, Ki represents
the rate of degradation, and the next two terms are for
activation and repression, respectively. The activation strength
of gene j on gene i is given by aij, whereas bij quantifies the
repression strength. If the expression of i is independent of j,
aij ¼ bij ¼ 0. The parameter S represents the “activation

FIG. 17. Stem-cell differentiation and cancer development. (a) The wiring diagram of a core gene regulatory motif of differentiation
and development. (b) The quantified Waddington developmental landscape and dominant transition paths for differentiation,
reprogramming, and transdifferentiation paths. Sc denotes the stem-cell state while Sa and Sb denote differentiated cell states.
(c) The wiring diagram of the core gene regulatory motif of cancer and development. (d) The landscape and the dominant transition
paths between different cell states for cancer and development. From Xu et al., 2014, and Li and Wang, 2015.
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threshold” and n quantifies the cooperativity of regulation (Li
and Wang, 2013).
The dynamics underlying differentiation were studied by

analyzing Eq. (101) for a gene regulatory network motif of
two self-activating and mutually repressing genes
(Chickarmane and Peterson, 2008; Jiang et al., 2008;
Huang, Ernberg, and Kauffman, 2009; Wang et al., 2010,
2011; Feng and Wang, 2012; Li and Wang, 2013, 2014b,
2015; Sasai et al., 2013; Xu, Zhang, and Wang, 2014; Ashwin
and Sasai, 2015). As discussed previously, this gene motif
appears often in stem-cell differentiation and reprogramming
(Xu et al., 2014). The cell starts from the stem-cell state basin
and eventually transforms to differentiated state basins during
the developmental process. Here the developmental direction
is dictated by the change of the effective self-regulations,
which was unspecified in the original Waddington picture
(Waddington, 1957; Wang et al., 2011). The differentiation
process can be viewed as the evolution of the landscapes along
development (Wang et al., 2011).
The effects of development and of external interventions for

dedifferentiation or reprogramming were captured by chang-
ing the interaction strengths aij and bij. In this way bifurca-
tions were generated that correspond to the dedifferentiation
process. The analysis showed that the differentiation and
reprogramming pathways are typically irreversible, which is
in contrast to Waddington’s picture; see Fig. 17. A detailed
understanding of these pathways can guide the design of
reprogramming pathways.
To this end, a more complete gene regulatory network

underlying a human stem-cell differentiation has been
explored that has resulted in optimal reprogramming paths
that are consistent with experiments (Li and Wang, 2013).
Furthermore, two attractors corresponding to two different cell
types can coexist, and the rate of noise or input-induced
switches between them can be quantified (Xu et al., 2014).
The paths between two differentiated states may, but need
not, pass through a stem-cell-like state (Wang et al.,
2011; Xu, Zhang, and Wang, 2014), making the direct

transdifferentiation possible. This is quite important because
reprogramming often encounters a cancer state (Takahashi and
Yamanaka, 2006). These findings are particularly relevant in
the context of the heterogeneity of stem-cell differentiation
due to environmental and epigenetic influences (Feng and
Wang, 2012; Sasai et al., 2013; Li and Wang, 2014b; Ashwin
and Sasai, 2015).

B. Aging

Aging has been thought of as an inevitable process of
continuous decay of physiological functions that eventually
leads to death, but experiments on model organisms show that
aging can be significantly delayed by suitable genetic manip-
ulations and in appropriate environments (Kirkwood, 2005;
Kenyon, 2010; Gems and Partridge, 2013). This suggests that
the aging process is regulated and programmed. Therefore,
finding out the underlying genetic regulations and environ-
mental influences is vital, although currently challenging. One
can study aging using C. elegans as a model organism.
Based on experimental studies of pathways with an impact

on aging a network of 11 genes and miRNAs involving DAF-
2, DAF-16, SKN-1, AAK-2, AAKG-4 genes, TORC1, RSKS-
1, PHA-4, HIF-1, miR-71, and miR-228 was established
(Zhao and Wang, 2016); see Fig. 18(a). Its dynamics are given
by Eq. (101) with appropriate connection strengths aij and bij.
The nonequilibrium landscape displays two attractors. In the
“aging” state, expressions of genes with lifespan-limiting
effects predominate, whereas in the “rejuvenating” state,
genes that enhance the lifespan prevail; see Fig. 18(b).
Since the aging state is more stable than the rejuvenating
state, most worms are expected to age “normally”; only a
small fraction has an extended lifespan. The network, though,
can switch between aging and rejuvenation following genetic
or environmental interventions. On a molecular level, further
analysis suggested that self-degradation of lifespan-limiting
and longevity-promoting genes leads to an increased stability
of the aging and rejuvenation states, respectively. This finding

FIG. 18. Gene network and nonequilibrium landscape of aging and rejuvenation. (a) The wiring diagram of the core gene regulatory
network of aging of C. elegans. (b) Dynamical landscape of the C. elegans aging process. The horizontal coordinates denote the gene
expression levels of DAF-16 and TORC1, the vertical coordinate denotes the regulation strength at which DAF-16 inhibits TORC1.
Rejuvenation and aging attractors are labeled as rejuvenation and ageing, and black lines denote the optimal paths between the
rejuvenation and aging attractors upon changes in regulation strengths. From Zhao and Wang, 2016.
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is consistent with experiments (Kenyon et al., 1993; Kimura
et al., 1997; Lee et al., 2003; Apfeld et al., 2004; Samuelson,
Carr, and Ruvkun, 2007) that also suggest why the aging state
becomes more probable with increasing lifetime. DAF-16
negatively regulates the target of rapamycin complex 1
(TORC1), which plays an important function in monitoring
the metabolic state of a cell and in regulating protein
synthesis. This negative regulation by DAF-16 has a dramatic
effect on the lifespan of C. elegans (Kenyon et al., 1993; Wolff
and Dillin, 2006), possibly because of damage accumulation.
Along with a weakening of this connection, the dominant state
can switch from rejuvenation to aging. When increasing this
negative regulation strength, the process reverts. Moreover,
aging and rejuvenation switching paths can be quantified,
although they do not overlap much due to the presence of
nonequilibrium rotational curl flux. This indicates, at least in
principle, there is a possibility for reverting the aging process
through interventions (such as increasing the DAF-16 neg-
ative regulation to TORC1) (Zhao and Wang, 2016). The first
hint of such success is from the stem-cell reprogramming
discussed earlier where the differentiated cells can be turned
back to iPS progenitor cells (Takahashi and Yamanaka, 2006;
Wang et al., 2011).
Further analysis of the aging and rejuvenation attractors

suggests that self-degradation of lifespan-limiting and lon-
gevity-promoting genes leads to an increased stability of the
aging and rejuvenation states, respectively, which is consistent
with experiments (Kenyon et al., 1993; Kimura et al., 1997;
Lee et al., 2003; Apfeld et al., 2004; Samuelson, Carr, and
Ruvkun, 2007).
Whereas the “rejuvenation” state in C. elegans rather slows

down or arrests aging instead of reverting it, there are a few
organisms that can revert to earlier developmental stages.
Notably the jellyfish Turritopsis dohrnii has a normal aging
process which proceeds from young to old, although they can
also change from the sexually mature medusa stage, in which
they live as individuals, back to the sexually immature and
colonial polyp stage (Bavestrello, Sommer, and Sar, 1992;
Piraino et al., 1996). This process can be repeated as the old to
the young and the young to the old oscillation continues. By
performing this oscillation, a jellyfish can live forever unless
an accident, a predator, or a disease interrupts these cycles.
The regulatory network in Fig. 18(a) is capable of producing
sustained limit-cycle oscillations, where it switches periodi-
cally between aging and rejuvenating phases (Zhao andWang,
2016). Stability of the limit-cycle path is guaranteed by the
Mexican hat-shaped landscape, while the nonequilibrium
rotational curl flux guarantees the stability of the oscillation
flow and therefore the possibility of immortality through the
forever oscillations. If these oscillation dynamics can emerge
in more complex biological systems such as animals or
human, this will provide new perspectives to understand
and control the aging process for ourselves.

IX. CANCER

Cancer is a leading cause of death in human populations
worldwide. In spite of decades of effort to understand the
mechanisms leading to cancer, many open questions remain
(Weinberg, 2007). Through these decades of work, several

hallmarks of cancer have been identified (Hanahan and
Weinberg, 2000, 2011) and are the aim of anticancer strat-
egies. The processes of tumor growth, vasculation, and
spreading during metastasis strongly depend on physical
properties. It is thus of no surprise that physicists are
heavily involved in understanding cancer (Ramis-Conde
et al., 2009; Welter, Bartha, and Rieger, 2009; Wirtz,
Konstantopoulos, and Searson, 2011). Physical cancer
treatments are still routinely employed. Beyond this obvious
connection between cancer and physics, nonequilibrium
concepts can be used to unravel the genetic and epigenetic
conditions for the development of tumors and to explore
new strategies for curing the disease (Welter and Rieger,
2013). Although cancer is still mostly viewed as a disease
caused by mutations, there is growing evidence from a
physical perspective that the focus on genetics is too
restrictive and that environmental aspects have to be taken
into account (Kauffman, 1971; Gatenby and Vincent, 2003;
Wang, Lenferink, and Connor-McCourt, 2007; Ao et al.,
2008; Bar-Yam, Harmon, and de Bivort, 2009; Basan et al.,
2009; Huang, Ernberg, and Kauffman, 2009; Creixell et al.,
2012; Lu et al., 2013; Tian, Zhang, and Xing, 2013; Li and
Wang, 2014a, 2014b, 2015; Lu, Jolly et al., 2014; Chen and
Wang, 2016; Yu and Wang, 2016). Cancer can more usefully
be thought of as a disease state of the whole gene network.
Environmental changes can lead to changes or imbalances in
the regulation of genes in the network, some of which favor
the cancer state. This suggests that cancer treatment needs to
target a collection of key genes and regulations. Several
questions related to this strategy remain unanswered. How
do we quantify the cancer state? Can cells or tissues revert
from a cancerous to a healthy state? How can we identify
key genes and regulators? In this section, it is not our aim to
give a comprehensive review of the physics of cancer.
Rather we highlight how nonequilibrium concepts, notably,
nonequilibrium landscapes and rotational curl fluxes as well
as the homeostatic pressure, have advanced our under-
standing of this devastating disease.

A. Quantifying the landscape of cancer

To illustrate the application of nonequilibrium landscapes to
cancer, consider breast cancer for which a core gene regula-
tory network consisting of 15 genes was constructed (Yu and
Wang, 2016). This core network consists of oncogenes
BRCA1, MDM2, RAS, and HER2; tumor suppressor genes
TP53, P21, and RB; kinases CHEK1, CHEK2, AKT1, CDK2,
and RAF, for cell cycle regulation; the transcription factor
E2F1; and ATM and ATR, important for early signal trans-
duction through cell cycle checkpoints. The wiring diagram of
the network was described by Yu and Wang (2016), shown in
Fig. 19(a).
The dynamics of the gene regulatory network are captured

by a type of equation similar to Eq. (101).
The landscape projected on the expression levels of the

oncogene BRCA1 and the transcription factor E2F1, which is
a marker for breast cancer, exhibits three attractors, Fig. 19(b),
corresponding to the normal, the cancer, and a premalignant
state. The respective gene expression levels associated
with the attractors are consistent with experimental findings
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(Lu et al., 2013; Tian, Zhang, and Xing, 2013; Yu and Wang,
2016). In comparison to the premalignant state, the attractors
of the normal and the cancer state are much more stable,
indicating the importance of detecting the disease in early
stages; whereas appropriate treatment might be able to revert
cells from the premalignant to the normal state, the transition
to the cancer state is practically irreversible. The dominant
pathways of switching can be identified and used to quantify
the process of how the normal state changes to the cancer state
and vice versa.
Beyond these general statements, landscape analysis can

providemore specific information. For example, changes in the
expression of the central tumor suppressor gene TP53 change
the depths of and the barriers between attractors. Notably an
increased repression of TP53 facilitates the transition first to the
premalignant and then to the cancer state, which eventually has
the dominant basin of attraction (Yu and Wang, 2016). Global
sensitivity analysis based on the barrier heights allows one to
identify key genes and regulations for breast cancer formation
and dysfunction. Four key regulations (HER2⊣TP53,
TP53 → ATM, ATM → MDM2, and CDK2⊣BRCA1) and
six key genes (HER2, TP53, ATM, MDM2, BRCA1, and
CDK2) are identified. These regulatory links could serve as the
targets for network-based drug discovery.

B. Cancer and development

A hallmark of cancer is the abnormal growth of cells
(Hanahan and Weinberg, 2000, 2011). Development at the
cellular level often refers to the differentiation process from
primary stem cells (Waddington, 1957; Wang et al., 2011). A
hint of the possible connection between cancer and differ-
entiation lies in the fact that cancer often regrows after the
radiation and chemo treatments (Marotta and Polyak, 2009).
The possibility of the existence of the seeds for cancer in the
form of cancer stem cells was explored recently (Lobo et al.,
2007). To understand the underlying mechanism of the cancer
stem cell and the relationship between cancer and develop-
ment, one needs to explore the underlying regulatory inter-
actions among genes.
There are intimate connections between gene regulatory

networks for healthy tissue growth and tumor development.
For example, the tumor suppressor TP53 and its suppressor
MDM2, as well as ZEB and OCT4, play a role in differ-
entiation. ZEB is known to be a major player in the epithelial-
to-mesenchymal transition, often linked to cancer metastasis
and formation of CSCs. The miRNA regulates both cancer and
development and therefore mediates the interactions between
cancer and developmental genes. The core gene regulatory

FIG. 19. Gene network and nonequilibrium landscapes of cancer. (a) Underlying gene regulatory network for breast cancer. − >
represents activation regulations while −j represents repression regulations. (b) The tristable landscape of the breast cancer gene
regulatory network. (c)–(e) Landscapes from fast to slow epigenetic regulations. From Chen and Wang, 2016, and Yu and Wang, 2016.
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motif for cancer and development was illustrated by Li and
Wang (2015); see Fig. 17(c).
The dynamics of this core regulatory motif can be described

by Eq. (101). An analysis of the corresponding nonequlibrium
landscape reveals four attractors corresponding to the stem
cell, the cancer stem cell, healthy differentiated, and differ-
entiated cancer states (Li and Wang, 2015); see Fig. 17(d). A
normal differentiated state emerges with high TP53 and low
ZEB expressions, while the differentiated cancer state
emerges with low TP53 and low ZEB expressions. The
stem-cell state emerges with high TP53 and high ZEB
expressions, while the cancer stem-cell state emerges with
low TP53 and high ZEB expressions. Based on the landscape
topography, the stem cell is most likely to transit into the
normal differentiated state from which it can move to the
cancer cell state. However, the stem cell can also change into a
cancer stem cell, which then provides another route into the
cancer state. From the landscape analysis it was also found
that, consistent with experiment (Lobo et al., 2007; Marotta
and Polyak, 2009; Li and Wang, 2015), the cancer cell state
reemerges after eliminating all cancer cells. Furthermore, it
helped to identify in this network motif the key elements
responsible for generating new cancer seeds. These findings
suggest potential strategies for regulating cancer stem cells as
a novel and robust anticancer therapy.

C. Cancer heterogeneity

Cancers are often heterogeneous. This is a critical issue for
radiation and chemotherapy, because a radiation dose or single
drug might not be able to kill all cancer related cells in a
heterogeneous population (Marusyk, Almendro, and Polyak,
2012). Heterogeneity might be due to genetic differences
between the cells that result from mutations accumulating
during cancer progression. Alternatively, and maybe more
importantly, intracellular heterogeneity might be primarily
caused by epigenetic modifications (Shackleton et al., 2009).
These are chemical modifications such as methylation,
applied to DNA and to accessory proteins like histones.
These modifications do not change genome sequence but
affect, for example, DNA organization and transcription.
Notably they can lead to regulatory delays. As a consequence,
a larger variety of states can emerge (Chen and Wang, 2016).
The idea of heterogeneity was illustrated by a core gene

motif of cancer with mutual repressions and self-activations.
The genes produce proteins and proteins regulate genes and
determine whether the genes are turned on or switched off.
When the speed of genetic regulation by proteins is fast
compared to their production or degradation rate, then the
proteins and genes are inseparable and can be treated with the
same identity. Alternatively, when the genetic regulation speed
is slow compared with the protein production or degradation
rate, proteins and genes must be treated distinctly. It was found
(Chen and Wang, 2016) in Figs. 19(c)–19(e) that when
regulatory binding or unbinding is fast compared to synthesis
or degradation, that is, in the adiabatic limit, three states
quantified by the basins of attractions emerge: the normal
state, the cancer state, and an intermediate premalignant state.
When regulatory binding or unbinding is comparable to or
even slower than the synthesis or degradation corresponding

to the epigenetic case, that is, the nonadiabatic limit, hetero-
geniety emerges with extra time scales involving histone
remodification and DNA methylation. Both premalignant and
cancer state basins are surrounded by a significant number of
shallower and less stable state basins (Chen and Wang, 2016).
The interactions among genes are made effectively weaker by
epigenetics, illustrated in this context by longer regulation
time compared with protein synthesis or degradation. This
weakening can lead to fewer constraints and more freedom for
each gene, which in turn can lead to the emergence of more
metastable states in the regulatory landscape. By targeting
epigenetics and environments, an understanding and control
over cancer heterogeniety may be possible.

D. Homeostatic pressure

Primary tumors are rarely lethal, but cells can leave a tumor
and invade other parts of the organism. When these cells leave
the tumor and subsequently metastasize they produce secon-
dary tumors that can be much more dangerous. Cancer cells
that cause secondary tumors are mainly transported by the
blood stream. However, the distribution of metastases is not
fully determined by the blood flow pattern, as the receiving
tissue must in some sense be compatible with the metastatic
cell. This phenomenon has been captured by the seed-and-soil
hypothesis (Weinberg, 2007).
This hypothesis can be conceptualized by homeostatic

pressure, which is a tissue-inherent quantity that describes
the pressure exerted by an expanding tissue of proliferating,
growing, and dying cells (Basan et al., 2009). A planar
interface between two tissues of different homeostatic pres-
sures will move into the direction of the tissue with the lower
homeostatic pressure. For a spherical clump of cells, inter-
facial stresses are also considered.
If cell growth is independent of the size of the tissue, then

cell spheroids will expand in a surrounding tissue only if they
exceed a certain size (Basan et al., 2009). Taking into account
the stochastic nature of cell growth, division, and death, the
homeostatic pressure provides a quantitative conceptualiza-
tion of the seed-and-soil hypothesis. To be useful for therapy,
biochemical or immunological means of affecting the homeo-
static pressure need to be uncovered.

E. Cancer and immunity

Tumor cells express antigens and are thus prone to be
eliminated by the immune system (Hanahan and Weinberg,
2011). This avenue is exploited by cancer immunotherapy,
which has achieved spectacular results for specific types of
cancer. (Sabado and Bhardwaj, 2015). However, cancer can
manipulate the immune system. This leads to two hallmarks of
cancer immunity, avoiding immune destruction and tumor
promotion inflammation (Hanahan and Weinberg, 2011). A
profound understanding of the relation between cancer and the
immune system remains elusive.
Theoretical studies of the complex interaction between

cancer and the immune system that take spatial aspects into
account are commonly based on active particles (Bellomo and
Delitala, 2008). Such descriptions can be fairly comprehen-
sive, but the large number of details that are accounted for
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make a thorough analysis rather difficult and often prohibit an
understanding of the fundamental principles. In contrast,
nonspatial ordinary differential equation models that describe
tumor-host interactions are generally simple enough to be
comprehensively analyzed (Eftimie, Bramson, and Earn,
2011; Wilkie and Hahnfeldt, 2013; Pappalardo et al., 2014).
Cancer and immune cells can communicate and influence

each other either through direct contact or via cytokines,
which are small signaling molecules secreted by cells, notably
during an immune response. The dynamics of the respective
cell and cytokine concentrations can be formulated in equa-
tions similar to Eq. (101) (Li and Wang, 2017), with several
essential modifications. The degradation rate of a cell type
depends on the concentration of other cell types and of
cytokines. While the net regulation of cells by others takes
the additive form, the net regulation of cytokine concentra-
tions by others takes the multiplicative form. Similarly to gene
regulation networks, the proliferation of cells and the secretion
of cytokines can be either enhanced or diminished by the
presence of other cell types and cytokines. The concentration
dependencies of the various rates is given in terms of Hill
functions and the coupling coefficients encode for the network
structure.
The nonequilibrium landscape for a network consisting of

one cancer cell type, 12 immune cell types, and 13 types of
cytokines has three attractors corresponding to a healthy state
and states of, respectively, low and high tumor cell concen-
tration (Li and Wang, 2017). In the healthy state, both cancer
and immunity cell concentrations are low. Both low and high
cancer states, the innate immune response leads to an
increased presence of natural killer cells, a type of white
blood cell with the task to destroy infected cells. On the other
hand, in both low and high cancer states, the adaptive immune
response leads to an increase in the concentration of a kind of
white blood cells, namely, CD8þ cells. However, their
concentration is higher for the state with lower concentration
of tumor cells, and lower for the state with higher tumor cell
concentration (Lu, Huang et al., 2014; Li and Wang, 2017).

This finding suggests that the adaptive immune system is
suppressed by cancer cells.
The interaction between cancer and the immune system

depends on the state of progression as the interactions between
different cells or cells and cytokines are modified in the
environment of a developing tumor. The various effects of the
immune system in different stages of developing tumors are
known as cancer immunoediting (Dunn et al., 2002).
Correspondingly, the nonequilibirum landscape attractors of
the immune system-cancer network change with changing
interaction strengths and several stages can be distinguished
(Li and Wang, 2017); see Fig. 20(b). In stage 1 only the
healthy state attractor exists. It is controlled by the immune
system and nascent tumors are repressed, corresponding to the
elimination phase of cancer immunoediting. In stage 2 a low
cancer expression state begins to emerge, and in stages 3 and 4
low and high cancer expression states emerge in addition to
the normal state. These three stages correspond to the
equilibrium phase of cancer immunoediting, which is the
phase persisting the longest. In stages 5 and 6 only the low and
high cancer expression states remain, corresponding to the
escape phase of cancer immunoediting, when the cancer has
escaped the organism’s immune response. Important immuno-
therapy targets are predicted from the landscape approach
through global sensitivity analysis, including three types of
immune cells (mature dendritic, natural killer, and CD8þ
T cells) and two types of cytokines (IL-10 and IL-12) (Li and
Wang, 2017). The oscillation behavior of immune-cancer
network dynamics was also expected in some cases (Li and
Wang, 2017).

X. POPULATION DYNAMICS AND ECOLOGY

Living organisms are highly social by nature and often
coordinate with each other to generate collective behaviors in
space and time. Studying the dynamics of population and
ecology provided some early examples of nonequilibrium
dynamics. In the following, we highlight some recent develop-
ments on microbial population and ecology.

FIG. 20. Gene network and nonequilibrium landscape of a cancer-immune system. (a) A core cancer-immune cell-cell interaction
network. (b) Cancer-immune landscapes at various stages of tumor development. From Li and Wang, 2017.
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A. Populations of microorganisms

Population dynamics is typically studied through field
research; however, it often requires significant effort and
suffers from a lack of control over environmental conditions.
By contrast, microbial populations are much more amenable
to manipulation and quantification while still possessing
intricate dynamics. Thus, synthetic microbial populations
have been recently exploited as model systems to study
population dynamics (Lu et al., 2007; Shou, Ram, and
Vilar, 2007; Brenner, You, and Arnold, 2008; Chuang,
Rivoire, and Leibler, 2009; Gore, Youk, and van
Oudenaarden, 2009; Xavier, 2011; De Roy et al., 2014;
Großkopf and Soyer, 2014; Kong et al., 2018; Ozgen et al.,
2018). Microorganisms can establish coordination and create
collective behaviors among populations by secreting and
detecting chemicals. One common way to generate population
behaviors is using quorum sensing, a mechanism that enables
cells to sense the density of their peers and respond accord-
ingly (Miller and Bassler, 2001; Kong et al., 2014).
A gene network based on quorum sensing was designed

and implemented in E. coli to generate synchronous
population oscillations (Danino et al., 2010). In this network
[Fig. 21(a)], the expression of the genes luxI and aiiA is
controlled by the Plux promoter. The enzyme luxI synthesizes
the quorum sensing molecule N-Acyl homoserine lactone

(AHL), which activates the Plux promoter after binding to luxR
and, hence, promotes its own expression. In contrast, AiiA
degrades AHL, which provides a negative feedback on luxI
production. In each cell, such a topology leads to the
oscillation of Plux promoter activity. Because AHL can diffuse
from cells to their neighbors, it couples individual cells and
generates synchronous oscillation of thousands of cells in a
square region with area 104 μm2 (Danino et al., 2010). The
distance over which the population synchronizes depends on
the diffusion constant of the quorum sensing molecule. Using
a similar approach in which H2O2 was used as a signaling
mechanism to overcome the slow diffusion obstacle for long-
range coupling, synchronized oscillations were observed for
several millions of bacteria across a distance of 5 mm (Prindle
et al., 2012); see Fig. 21(b). The same oscillation mechanism
that involves activation and repression can also be realized
through multiple strains (Y. Chen et al., 2015); see Fig. 21(c).
In addition to synthetic populations, natural organisms

exhibit remarkable collective behaviors that are far from
equilibrium. The formation of multicellular life forms from
unicellular microorganisms is a representative class of such
processes (Claessen et al., 2014; Lyons and Kolter, 2015).
Multicellularity can arise from simple cellular aggregation as a
consequence of incomplete separation after cell division.
Another way collective behavior arises is through dynamic
aggregation of previously individual cells, which involves

(a)
(c)

(b)

FIG. 21. Microbial oscillations at the population and multistrain levels. (a) A gene circuit that enables synchronized oscillation of
individual bacterial colonies. From Danino et al., 2010. (b) A gene circuit that synchronizes the oscillation of thousands of bacterial
colonies. From Prindle et al., 2012. (c) A gene circuit that allows stable oscillations of two bacterial strains. From Y. Chen et al., 2015.
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cellular communication and differentiation, partitioning of
tasks, and spatial organization. Well-studied examples of the
latter route are fruiting body formation of myxobacteria and of
the slime mold Dictyostelium disoideum (Zusman et al., 2007;
Muñoz-Dorado et al., 2016). In nutrient-limited conditions,
cells communicate through multiple modes of interactions and
self-organize into complex, three-dimensional structures.
Within the fruiting bodies, a subset of the cells differentiates
into nonreproductive cells, while the remaining cells become
reproductive spores.

B. Ecology

Populations are typically not isolated; instead, they often
compete and cooperate with populations of other species in
nature. This is a topic of ecology (Levin, 1981; Levin and
Segel, 1985; Murray, 1998; Vandermeer and Goldberg, 2003;
Touboul, Staver, and Levin, 2018). Predator-prey systems
have been of particular interest in this field since the work of
Lotka (1925) and Volterra (1927). Their model showed that
the systems can generate various dynamics including sus-
tained oscillations. Observed in animal populations in nature
(Murray, 1998), such dynamics have been recently observed
in populations of engineered bacteria that utilize quorum
sensing machineries; see Fig. 22(a) (Balagaddé et al., 2008).
Experiments in microchemostats confirmed distinct types of
population dynamics, namely, coexistence, extinction, and
oscillation. The underlying landscape for a global description
of the dynamics was also quantified (Li, Wang, and Wang,
2011b; Xu et al., 2014).
Beyond well-mixed cultures, microbial populations have

also been used to study spatial ecology. An example is
provided by a system of three E. coli strains that populate
a petri dish (Kerr et al., 2002). The ecosystem consists of a
strain producing the toxin colicin (C), a strain sensitive to
colicin (S), and a strain resistant to it (R); see Fig. 22(b). In this
setting, strain C kills strain S by releasing colicin, strain S in
turn outgrows strain R because it does not synthesize
resistance proteins, and strain R has a higher fitness than

strain C as it does not produce toxins. Together these strains
form a fitness advantage loop, resembling an ecological
version of the rock-paper-scissors game. The corresponding
experiments showed that a single species rapidly dominates in
the well-mixed case while, on plates, the ecosystem exhibited
coexistence (Kerr et al., 2002).

C. Landscape and flux analysis of ecosystems

One of the central questions of ecology concerns the
coexistence of species. Under which conditions is this
possible? How many species can coexist in a given environ-
ment? This translates into the question of whether or not an
ecosystem is stable. The analysis of stability against small
perturbations is standard, and in some cases Lyapunov
functions have been found (Lotka, 1925; Volterra, 1931;
Holling, 1965; Murdoch and Oaten, 1975; Goh, 1976,
1977; Levin and Segel, 1976; Hastings, 1978; Hsu, 1978;
Harrison, 1979; Levin, 1979, 1987; Touboul, Staver, and
Levin, 2018). Both well-mixed and spatial deterministic and
stochastic ecological dynamics have been intensively inves-
tigated (Levin and Segel, 1976; Levin, 1979, 1987;
Reichenbach, Mobilia, and Frey, 2007; Reichenbach and
Frey, 2008; Butler and Goldenfeld, 2009; Black and
McKane, 2012; Biancalani, DeVille, and Goldenfeld, 2015;
Shih, Hsieh, and Goldenfeld, 2016; Touboul, Staver, and
Levin, 2018; Bassler, Frey, and Zia, 2019). A general way to
assess the global stability of states, however, is in demand.
The theory of nonequilibrium landscapes and fluxes is useful
in this context (Wang, Huang et al., 2006; Han and Wang,
2007; Lapidus, Han, and Wang, 2008; Wang, Xu, and Wang,
2008; Zhang et al., 2012; Xu et al., 2013, 2014). Intrinsic
nonequilibrium landscapes provide Lyapunov functions for
quantifying global stability of the ecosystems (Xu et al.,
2014); we illustrate with a few examples. In the following, C1

and C2 denote the sizes of two populations.
Predator and prey.—Consider the following model for a

population of predators C1 and of prey C2 (Murray, 1998)
[Fig. 23(a)]:

(a) (b)

FIG. 22. Microbial ecosystems. (a) A synthetic predator-prey system. From Balagaddé et al., 2008. (b) A three-strain ecosystem
resembling a rock-paper-scissors game. From Kerr et al., 2002.

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-48



dC1

dt
¼ C1ð1 − C1Þ −

aC1C2

C1 þ d
; ð102Þ

dC2

dt
¼ bC2

�
1 −

C2

C1

�
: ð103Þ

In the absence of predators, the prey population evolves
according to the logistic growth model. The rate at which
predators feed on the prey is quantified by the parameter a,
and d denotes the prey population size at which prey are
consumed by the predators at their maximum rate. The
population of the predators also grows according to the
logistic growth model. The ratio of the birth rates of both
populations is b and the capacity of the system for prey is C1.
When the number of predators increases, more prey will be
eaten. The shortage of food will lead to a population reduction
for the predators. The prey population will then increase,
which subsequently promotes an increase of the predator
population. This is the origin of the limit cycle found in
predator-prey dynamics. The nonequilibrium landscape has
the shape of a Mexican hat, Fig. 23(d), revealing an oscillatory
state that is globally stable, while the rotational curl flux
enables the stability of the oscillation flow (Xu et al., 2014).
Cooperation and competition.—Cooperation and competi-

tion between two species can be described by (Bazykin, 1985)
[Figs. 23(b) and 23(c))

dC1

dt
¼ C1ðC1 − L1Þð1 − C1Þ þ a1C1C2;

1

α

dC2

dt
¼ C2ðC2 − L2Þð1 − C2Þ þ a2C1C2. ð104Þ

The factors ðCi − LiÞ, i ¼ 1, 2, modifying the logistic growth
model assure that the population size does not drop below Li
when the other species are absent. The terms proportional to
C1C2 describe the interaction between the two species, which
is cooperative if a1, a2 > 0 and competitive if a1, a2 < 0. The
parameter α quantifies differences in the growth rates of two
species. Four different steady states are possible: extinction
(C1 ¼ C2 ¼ 0), mutual exclusion (either C1 ¼ 0 or C2 ¼ 0),
or coexistence (C1 and C2 are nonzero), or Mutual exclusion

has two states (either C1 ¼ 0 state or C2 ¼ 0 state). Through
the corresponding basins of attraction, the potential land-
scapes determine which of these states is stable for a given set
of parameters; see Fig. 23(e) (Xu et al., 2014).

XI. EVOLUTION

Evolution is the essence of biology. After Darwin laid out
the principles of evolution by variation and natural selection
(Darwin, 1873), a significant fraction of subsequent research
has focused on quantifying evolutionary processes. Concerned
with the process of adaptation, Sewall Wright introduced the
concept of an adaptive landscape for evolution (Fisher, 1930;
Wright, 1942; Svirezhev and Passekov, 1990; Ewens, 2004;
Rice, 2004). Adaptation, or “shifting balance” in Wright’s
terms, then refers to reaching summits in this landscape by
random genetic drift from mutations and selection pressure.
Through these sources of adaptation, evolutionary dynamics
will follow a gradient until an optimum is reached. The parallels
to energy minimization in physics are obvious. The virtues and
shortcomings of the adaptive landscape metaphor are still
debated (Rice, 2004; Pigliucci, 2008).
The central results of quantitative genetics is “Fisher’s

fundamental theorem,” which states that the rate of evolution,
quantified by the rate of change of average fitness, is equal to
the statistical variance of the population’s fitness. Still, some
critical issues remain. How general is Wright and Fisher’s
evolution theory? Can it explain how evolution can continue
indefinitely?
A key assumption in Wright and Fisher’s theory is that

selection force is independent of the relative proportion that a
gene variant, an “allele,” appears in a population at a specific
site or “locus” on the chromosome. In other words, the
assumption is that the selection driving force is independent
of the interactions among gene species, referred to as the allele
frequency-independent selection, or linkage equilibrium (LE)
(Neher and Shraiman, 2011). However, in general, trait
selection can have allele frequency dependence. This is
apparent in coevolution, where two or more species mutually
affect their evolution. In these situations, Wright and Fisher’s

FIG. 23. A schematic diagram for the ecological models and associated landscapes. (a) Predation model. (b) Competition model.
(c) Mutualism model. (d) Limit-cycle attractor landscape for predation model. (e) Multiple attractors for competition and cooperation
models. From Xu et al., 2014.
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theory breaks down. Furthermore, LE cannot explain open-
ended evolution that is clearly observed in bacterial colonies
that have been evolving under constant physical and chemical
conditions for tens of thousands of generations (Elena and
Lenski, 2003). The theory also fails to describe molecular
evolution experiments, wherein a molecular species consti-
tutes the building blocks for a new species, which in turn can
form another molecular species and so on (Worst et al., 2016).
The key to resolve these issues lies in the fact that the

adaptive landscape is not the only driving force for the general
evolutionary dynamics as Wright and Fisher’s theory stated. In
the following section we discuss how a generalization of the
adaptive landscape to include nonequilibrium fluxes as an
additional driving force for general evolutionary dynamics
overcomes the restrictions of Wright and Fisher’s assumptions
(Zhang et al., 2012; Xu and Wang, 2017b).

A. Single-locus multiallele evolution

Consider a single gene at a fixed position or locus on a
chromosome of a diploid organism such that each chromo-
some is present in two (nonidentical) copies. For each locus
there are several different DNA sequences present in a
population. The dynamics of the fractions xi of allele Ai,
i ¼ 1;…; n in the population is determined by its fitness wi. In
an individual, the genotype AiAj has the fitness wij, which
depends on both alleles such that wi ¼

P
n
j¼1 wijxj. The

population’s mean fitness is then w̄≡P
n
i;j¼1 wijxixj. The

probability P of having the relative allele frequencies
fxigi¼1;…;n evolves according to

∂tP ¼ −∇ · ½ðFS þ FMÞP −D∇ · ðGPÞ�; ð105Þ

where

FS
i ¼

xiðxi − w̄Þ
w̄

ð106Þ

describes the effects of natural selection and

FM
i ¼

Xn
j¼1

xjmji − xi
Xn
j¼1

mij ð107Þ

captures the effects of mutations with mij being the rate of
mutation from allele Aj to Ai. The diffusion term accounts for
genetic drift resultant from stochasticity of the reproduction
process (Svirezhev and Passekov, 1990; Kimura et al., 1997;
Rice, 2004). Here Gij ¼ xiðδij − xjÞ and D ¼ 1=ð4NeÞ with
Ne being the effective population size.
In the limit of small fluctuations, which occurs for a large

population size, D ≪ 1 or Ne ≫ 1, the landscape satisfies to
lowest order

ðFS þ FMÞ ·∇ϕ0 þ∇ϕ0 ·G · ∇ϕ0 ¼ 0; ð108Þ

where ϕ0 is the leading-order term in an expansion of U in
terms of D. This equation is the Hamilton-Jacobi equation (6)
and ϕ0 is thus a Lyapunov function for the dynamic system
Eqs. (105)–(107).

In the case where the fitness of each genotype is indepen-
dent of the allele frequencies and in the absence of mutations,
the steady-state flux vanishes, Jss ¼ 0, and the intrinsic
landscape ϕ0 is

ϕ0 ¼ −1
2
ln w̄ ð109Þ

(Zhang et al., 2012). Furthermore, one can show that

dw̄=dt ¼ F ·∇w̄ ¼ −2w̄F · ∇ϕ0 ¼ 2w̄∇ϕ0 ·G · ∇ϕ0 ≥ 0

(Zhang et al., 2012). Consequently, the mean fitness is a
Lyapunov function of the dynamics and hence puts Wright’s
metaphor on solid ground.
In the general case, where the fitness can depend on the

allele frequencies, one finds FSþFM¼−D∇·ðGUÞþJss=Pss,
where U ¼ − lnPss is the nonequilibrium landscape (Zhang
et al., 2012) while Gij ¼ Ciðδij − CjÞ is from the sampling
feature of the genetic drift and D gives the scale of the
fluctuations. The driving force of evolution can thus be
decomposed into the gradient of the landscape associated
with the steady-state probability and the steady-state proba-
bility flux, which is typically different from zero due to
interactions between individuals and hence an allele-fre-
quency dependent selection. Note that for Jss ≠ 0, the non-
equilibrium landscape is no longer directly related to the
fitness landscape. This decouples the link between the fitness
and evolutionary probability. Consequently, states with lower
mean fitness may have a higher probability.
We now turn to Fisher’s fundamental theorem of natural

selection (Fisher, 1930). Consider the adaptive rate for evolu-
tionary dynamics under selection and random mating:

dϕ0=dt ¼ −∇ϕ0 ·D ·∇ϕ0

¼ −F ·D−1 · Fþ V ·D−1 · V; ð110Þ

where V is the steady-state probability flux velocity defined as
V ¼ Jss=Pss. The diffusion matrix D describes the sampling
nature of the random mating. In fact, dϕ0ðGÞ=dt is related to
the genetic variance VAðwðiÞÞ=ðw̄ðiÞÞ2 ¼ 2FðiÞ · ðG−1ÞðiÞ · FðiÞ,
where VAðwðiÞÞ ¼ 2

Pni
k¼1 C

ðiÞ
k ðwðiÞ

k − w̄ðiÞÞ2 is the genetic
variance (Zhang et al., 2012). One can see that

dϕ0ðGÞ
dt

¼ −
1

2

VAðwÞ
w̄2

þ VðGÞ ·G−1 · VðGÞ. ð111Þ

Under a frequency-independent selection, the intrinsic
flux velocity is zero VðDÞ ¼ 0. In this case, the detailed
balance is preserved (equilibrium) and the intrinsic potential
ϕ0 ¼ −ð1=2Þ ln w̄. This reduces to Fisher’s fundamental theo-
rem of natural selection that the adaptation rate is monotonic
and depends only on genetic variance dw̄=dt ¼ VAðwÞ=w̄. As
seen previously, Eq. (111) works for the general evolution
beyond equilibrium case, with nonzero flux breaking the
detailed balance. Thus, Eq. (111) generalizes Fisher’s funda-
mental theorem of natural selection. The adaptive rate for
general evolution depends on both the genetic variance
proposed by Fisher and the intrinsic flux velocity V resulting
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from the complex biotic interactions which break the detailed
balance, missing in Fisher’s theorem (Zhang et al., 2012).
The new landscape and flux theory for evolution provides a

natural explanation of coevolution with direct implications for
the red queen hypothesis of nonstop evolution, even when
reaching the optimum of an adaptive landscape (such as the
limit cycle) (Van Valen, 1973; Zhang et al., 2012). When
reaching the evolutionary optima once attracted to the
oscillation path, evolution still proceeds due to the rotational
curl flux driving force originated from the biotic interactions.
This gives the origin of nonzero genetic variance

1

2

VAðwÞ
w̄2

¼ VðGÞ ·G−1 · VðGÞ

even at the evolution optima

dϕ0ðGÞ
dt

¼ 0.

Therefore, natural selection can influence certain species to
change their allele frequencies and thus lead to genetic
variance even if the overall population reaches its optima
(Zhang et al., 2012).
Another generalized form of Fisher’s theorem was pro-

posed by Price (1970, 1972a, 1972b) considering various
effects including mutations on the adaptation rate dynamics
beyond genetic variance. Replicator mutator dynamics have
also been suggested to study evolutionary dynamics, includ-
ing mutations (Nowak, 2004; Bladon, Galla, and McKane,
2010; Allen and Rosenbloom, 2012).

B. Multilocus multiallele evolution

The interactions among genes are critical in understanding
evolution. Loci representing the locations of genes are not
independent. In particular, recombination provides an addi-
tional way of changing alleles on a chromosome, and the
fitness of an allele might depend on the genetic background, a
phenomenon called epistasis. These interactions can lead to
linkage disequilibrium. They need to be considered in addition
to the well-known selection, mutation, migration, and random
mating for multilocus multiallele evolution.
Some models of multilocus evolution were suggested with

certain limitations (Svirezhev and Passekov, 1990; Ewens,
2004; Rice, 2004). For example, the adaptive landscape is not
quantified in the most general evolution scenarios (Svirezhev
and Passekov, 1990; Ewens, 2004; Rice, 2004; Neher and
Shraiman, 2011); only time-dependent adaptation was con-
sidered (Mustonen and Lassig, 2009, 2010). Certain adaptive
landscape approaches have not been directly applied to
multilocus evolution (Ao, 2005). In fact, Wright, Fisher,
and quasilinkage equilibrium (QLE) theories can be applied
only to special evolutionary scenarios.
For multilocus–multiallele evolution, allele frequencies

alone do not have enough information for quantifying
genotype frequencies. Gamete frequencies can be used instead
at different loci in multilocus–multiallele evolution (Svirezhev
and Passekov, 1990; Ewens, 2004; Rice, 2004), where
“gamete” refers to the set of alleles at the L loci under

consideration, such that gamete i≡ ði1; i2;…; iLÞ has allele
Aj
ij

at locus j. One can derive the driving forces of the

evolution.
The gamete frequency xi evolves according to

dCi

dt
¼ FS

i þ FM
i þ FR

i : ð112Þ

Here the first two terms describe the effects of natural
selection and of mutations similar to the single-locus
case. The effect of recombination is captured by the last
term, which reads

FR
i ¼ −

X
Q
0rQDi;Q; ð113Þ

where the sum extends over all subsets of loci other than the
empty set or the full set of all L loci. Furthermore, rQ is the
rate of recombination for set Q and Di;Q ¼ Ci − CiQCiQ̄ is
the linkage disequilibrium coefficient for locus group Q.
Here CiQ denotes the total frequency of all gametes that are
identical to i at the loci in Q and CiQ̄ that of all gametes that
are identical to i at all loci not in Q (Svirezhev and Passekov,
1990; Ewens, 2004; Rice, 2004).
The evolution of gamete frequency under selection was

given as cclin (Svirezhev and Passekov, 1990; Ewens, 2004;
Rice, 2004): FS

i ¼ Ciðwi − w̄Þ, where wi denotes the marginal
fitness of the gamete i and the w̄ denotes the total fitness of all
gametes in the L loci system. Evolution of gamete frequencies
under mutation was also studied (Neher and Shraiman, 2011).
One can take all these driving forces together to study the
evolution of gamete frequencies.
The genetic variance of gamete fitness under selection and

recombination can be shown as (Svirezhev and Passekov,
1990; Ewens, 2004; Rice, 2004)

dw̄
∂t ¼VAþVR. ð114Þ

VA ¼ 2
P

i Ciðwi − w̄Þ2 represents the total gametic variance
from the natural selection and VR¼−2

P
i

P
Q;Q≠∅;LwirQDi;Q

represents the epistatic gametic variance from the linkage
disequilibrium of the loci (Svirezhev and Passekov, 1990;
Ewens, 2004; Rice, 2004; Neher and Shraiman, 2011). One
can see that the mean fitness increases as recombination
decreases. The generalized form of Fisher’s fundamental
theorem presented here considers the additional contribution
from linkage disequilibrium due to recombination (Svirezhev
and Passekov, 1990; Ewens, 2004; Rice, 2004; Neher and
Shraiman, 2011; Xu and Wang, 2017b).

C. Evolution adaptive landscape and flux under different
evolution scenarios

The nonequilibrium landscape and flux theory can be
applied to the general case of multilocus–multiallele evolution
after a suitable generalization of Eq. (105), which also
includes recombination force FR

i and others such as epistasis.
We discuss the results in various evolutionary scenarios
listed next.
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Absence of recombination ðrQ ¼ 0Þ and mutations
ðm ¼ 0Þ.—Under nonepistatic selection and genetic drift
from random mating in the population of a multilocus–
multiallele system, the Hardy-Weinberg principle and
linkage equilibrium is achieved (Svirezhev and
Passekov, 1990; Ewens, 2004; Rice, 2004; Xu and
Wang, 2017b): all gamete frequencies are the products
of the frequencies of the constituting alleles. This reduces
effectively to one locus multiallele evolutionary dynamics
(Zhang et al., 2012). For the allele frequency-independent
selection, the Wright and Fisher theory works. For the
allele frequency-dependent selection, the Wright and
Fisher theory breaks down. The evolutionary dynamics
are no longer determined by the adaptive landscape alone,
but also by the curl flux due to the biotic interactions. The
red queen hypothesis can be explained by the presence of
curl flux driving the evolution and giving the genetic
variations at optimal adaptation (Zhang et al., 2012).
Presence of recombination ðrQ > 0Þ, absence of epistasis

ðϵij ¼ 0Þ, and mutations ðm ¼ 0Þ.—When the fitness matrix
is additive without epistasis, Wright’s fitness landscape con-
cept and the generalized Fisher’s fundamental theorem can
still be applied (Svirezhev and Passekov, 1990; Ewens, 2004;
Rice, 2004; Neher and Shraiman, 2011). The mean fitness
never decreases because the additive form of fitness leads to
VR ¼ 0. However, this does not necessarily mean that the
rotational curl flux vanishes. In fact, the curl of the recombi-
nation force from gamete frequency evolution ∇ × ðG−1 · FRÞ
can be nonzero. Therefore, for recombination rQ > 0 and
epistatic selection ϵij ¼ 0, evolutionary adaptive dynamics are
determined by the gradient potential or the mean fitness, as
well as the nonzero flux (Xu and Wang, 2017b).
Presence of recombination ðrQ > 0Þ and epistatic selection

ðϵij ≠ 0Þ, absence of mutations ðm ¼ 0Þ.—When both recom-
bination and nonzero epistasis effects (nonadditive fitness
matrix) are present for evolution, the dynamics becomes
intrinsically nonequilibrium (Hastings, 1981; Akin, 1982).
Even under a gamete or allele frequency-independent selec-
tion, with recombination rQ > 0 and epistasis ϵij ≠ 0, the
dynamics are determined by the gradient of the evolution
landscape and nonzero flux, which breaks the detailed balance
(Xu and Wang, 2017b). Recombination and epistasis can
contribute to the breakdown of the detailed balance which
leads to the breakdown of the Wright and Fisher theory for
evolution.
Presence of mutations ðm ≠ 0Þ.—In multilocus–multiallele

evolution, mutations are often frequency dependent.
Therefore, the mutation can also lead to nonequilibrium
behavior, giving another source for breaking the detailed
balance (Xu and Wang, 2017b).
Quasilinkage equilibrium (rQ ≫ 0, m ¼ 0, ϵij ¼ 0).—If

selection is weak such that adaptation is much smaller than
recombination, the linkage disequilibrium exponentially
decreases due to recombination. A state called quasilinkage
equilibrium emerges (Rice, 2004). QLE is a good approxi-
mation for multilocus evolution at high recombination rates
and in the absence of epistasis. When the system relaxes to
QLE (Rice, 2004; Neher and Shraiman, 2011), a generalized
Fisher’s law holds approximately. The dynamics can then be

simplified as depending on allele frequency rather than
gamete frequency (Nagylaki, 1993; Nagylaki, Brunovsky,
and Hofbauer, 1999). The landscape and flux theory works
beyond these restrictions of weak selections and the QLE (Xu
andWang, 2017b). It is important to note that in general, mean
fitness and optimal probability of the state do not coincide. As
a result, adaptive fitness should be quantified by the potential
landscape rather than mean fitness, since the landscape
directly reflects the probability of the state. Furthermore,
evolutionary dynamics are determined by both the landscape
gradient and rotational curl flux breaking the detailed balance
originated from the recombination, mutation, epistasis, or
gamete or allele frequency-dependent selection (Xu and
Wang, 2017b).
Red queen hypothesis.—Fisher and Wright’s analysis

implied that evolution will eventually come to a halt when
the maximum fitness is reached. This does not need to be the
case as can be illustrated by the coevolution of a predator and a
prey species (Vermeij, 1994; Dieckmann, Marrow, and Law,
1995). Assume that the predator captures prey by running
faster and by being able to spot them against the background.
Improving the speed and the ability to spot the prey increases
the predator’s fitness. As a result, the prey species will evolve
its speed and camouflage to survive. Inversely, if the prey
improves these traits, the predator will evolve in response to
run faster and to spot the prey better. Such a competition
causes an “arms race” between the two species, which can
lead to sustained oscillations of the species’ genotype
frequencies.
This evolutionary process represents a case of the red queen

hypothesis (Van Valen, 1973), which explains the persistence
of sexual reproduction and recombination. Namely, it pro-
vides an accelerated evolution rate of a species and hence
allows it to outcompete its predators and parasites. In fact, the
hypothesis has been experimentally supported by a number of
coevolution examples such as plant-pathogen systems (Clay
and Kover, 1996) and parasite-fish ecosystems (Lively,
Craddock, and Vrijenhoek, 1990).
While the red queen hypothesis challenges Wright and

Fisher’s adaptive landscape theory of evolution (Fisher, 1930;
Wright, 1942), the associated coevolution scenario fits nat-
urally into the picture of nonequilibrium landscape and flux
theory. It allows for evolution to continue even if the physical
environment is invariant or the landscape reaches the optimum
(Zhang et al., 2012; Xu and Wang, 2017b). The origin of such
continuing evolution was suggested to be the rotational curl
flux breaking the detailed balance as a result of a gamete or
allele frequency-dependent selection, mutation, recombina-
tion, or epistasis (Zhang et al., 2012; Xu and Wang, 2017b).
Another possible cause of open-ended evolution was sug-
gested by molecular evolution experiments (Worst et al.,
2016), which can be interpreted as the evolution of a species
suddenly opens the possibility of evolving new traits and thus
occupation of a new ecological niche. The time-dependent
landscape was also suggested for explaining the red queen
hypothesis for part of the system, such as predator or prey
(Van Valen, 1973; Zliobaite, Fortelius, and Stenseth, 2017).
For the whole predator-prey system, the evolutionary land-
scape can still be time independent.
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D. Evolutionary game theory

Evolutionary game theory provides a framework for
exploring the origin of a large variety of human and animal
behaviors (Maynard and Price, 1973; Nowak, 2004;
Sandholm, 2009). Originally, game theory focused on the
study of cooperative and competitive strategies adopted from
rational decision makers. Evolution game theory was born by
applying game theory to evolutionary biology and population
dynamics for exploring the strategic interactions among large
populations of agents (Sandholm, 2009; Hofbauer, 2011).
Using game theory can assist in understanding a variety of
human and animal behaviors (Maynard and Price, 1973;
Nowak, 2004; Sandholm, 2009). In evolutionary biology,
one important question is how cooperators can survive when
they can be taken advantage of by “cheaters.” Experimental
efforts in yeast (Gore, Youk, and van Oudenaarden, 2009)
showed that cooperators can survive even in the presence of
cheaters, and their interactions are through a feedback loop.
The evolutionary consequences of the cooperative inactivation
of antibiotics by bacteria were recently explored experimen-
tally (Yurtsev et al., 2013; Artemova et al., 2015). In a game
designed to model cooperative trade-offs, each player receives
a particular payoff depending on the actions chosen by their
peers. Repeated games wherein players have several sub-
sequent encounters can reach steady states or limit cycles
(Cason and Friedman, 2003; Sandholm, 2009; Hofbauer,
2011). For example, in the classic prisoner’s dilemma, two
players can choose either to cooperate or not. They both
receive a reward R as payoff if they cooperate, and a
punishment P if both do not cooperate. However, in the case
where just one player chooses to cooperate, she receives a
temptation payoff T while the other player gets a “sucker”
payoff S. The various payoffs satisfy T > R > P > S to
reflect the intuitive notions associated with the game.
In repeated games, where players have several subsequent

encounters, different strategies can be defined. In the example
of the prisoner’s dilemma, one could choose either to always
cooperate or not. A player can also play “tit for tat,” where the
player cooperates on the first encounter, then chooses to
cooperate or defect on any other encounter based on the action
of the other player in the previous encounter. This strategy
requires a memory and thus has some cost. The payoff matrix
conveniently summarizes the results of encounters of players
with various strategies. Let Ci denote the fraction of players
with strategy i and Aij the payoff for a player employing
strategy i upon an encounter with a player using strategy j.
Then AC gives the average payoff for each strategy. In the
example,

A ¼

0
B@

P P T

P − c R − c R − c

S R R

1
CA: ð115Þ

Stationary distributions of strategies for noncooperative
games like the prisoner’s dilemma, in which nobody can gain
by changing only her strategy, are called Nash equilibria
(Nowak, 2004). Characterizing such “optimal” solutions is an
important task of game theory. The local stability of Nash

equilibria has been studied and for very simple models
Lyapunov functions have been found to characterize global
stability (Sandholm, 2009). In general, though, it remains at
present a challenging task.
Evolutionary games are repeated games where the average

payoffs determine the fitness of a strategy. Explicitly, the time
evolution of the fractions Ci follows the rule that population
Ci grows if their average payoff is above the mean and shrinks
in the opposite case. Mutations are implemented through rates
of switching from one to an alternative strategy. The dynamics
can be written as

dCi

dt
¼

X
j

CifiðCÞQij − Cif̄; ð116Þ

where fi ¼
P

j AijCj is the average payoff (or fitness) of
population i and f̄ ¼ C · AC is the mean population payoff
(or fitness) (Nowak, 2004; Bladon, Galla, and McKane, 2010;
Allen and Rosenbloom, 2012). For a uniform mutation rate μ,
Qii ¼ 1–2μ and Qij ¼ μ if i ≠ j.
For the prisoner’s dilemma and starting with a random

initial distribution of strategies, at first the defectors will
typically win. Then, however, a small population of tit-for-tat
players will invade the game and replace the defectors. In
certain regions of parameter space, subsequently, cooperators
will take over, which in turn will be replaced by defectors and
so on. This cycle has been interpreted to mimic oscillations
between war and peace in animal or even human species
(Nowak, 2004).
The nonequilibrium landscape for this game reveals that,

for a small cost c of the tit-for-tat strategy, the cooperator
strategy is the most stable one and has the largest basin of
attraction (Xu and Wang, 2017a); see Fig. 24. As the cost c
increases, the basin of the noncooperator state increases and a
mixed strategy state appears. In this case, the payoff for
defectors increases, the defector state gains stability, and,
eventually, becomes the most stable state. Similarly, increas-
ing the reward R or the punishment P favors the cooperative
state. A Lyapunov function can be found quantifying the
global stability of the system dynamics (Xu and Wang,
2017a). In this way, cooperative behavior can emerge in
populations of selfish individuals. Similarly, competing traits
can coevolve in species.

XII. NONEQUILIBRIUM ECONOMY

Although typically not considered to be a biological
field, economics reflects biological activities at human
scales. An important aspect of economics is the balance
between supply and demand (Walras, 1874; Marshall, 1890).
Traditionally, the focus has been on economic equilibrium,
when supply and demand are balanced, but this approach
cannot explain economic cycles of growth and stagnation or
decline, let alone economic crises (Marx, 1887; Fisher, 1933;
Schumpeter, 1934; Keynes, 1936; Goodwin, 1967; Minsky,
1977; Keen, 1994, 2001). Thus, nonequilibrium economic
theory is necessary. Furthermore, the driving forces of
economy need to be identified and quantified (Zhang and
Wang, 2017).
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In conventional economics, supply and demand are often
assumed to be monotonic with respect to price under a
complete competition market or close to equilibrium condition
economy (Marshall, 1890). As a result, only one equilibrium
emerges. The economic dynamics are then described by the
shift of this equilibrium point. However, nonequilibrium
economic behaviors such as inflation, underemployment,
and overproduction are present (Keynes, 1936; Keen, 1994,
2001). This will often lead to a nonmonotonic relationship of
demand and supply with respect to the price (Marshall, 1890;
Beckmann and Ryder, 1969; Mascolell, 1986). As a result,
multiple stable states and even limit cycles can emerge. The
competition andmonopoly or oligopolymodel provides a good
example to illustrate this (Zhang and Wang, 2017).
Experience tells us that the price of a good increases if the

demand exceeds the available supply and that the production
of a good increases with the price of the good, but decreases
with the available supply (Marshall, 1890; Beckmann and
Ryder, 1969; Mascolell, 1986). This leads to the following
dynamic system for the price P and the quantity Q of a good:

dP
dt

¼ FðPÞ −Q; ð117Þ

dQ
dt

¼ P − CðQÞ: ð118Þ

Here FðPÞ describes the demand of the good as a function of
its current price and CðQÞ is the marginal cost of producing
the good, that is, the cost of producing one additional unit. For
convenience, P and Q can take on any real value. Positive
values are obtained after an appropriate shift of the origin.
Specific choices of the demand and cost functions are F ¼

ð−1þ aÞPþ c and CðQÞ ¼ ðdþ bQ2ÞQ, where a < 1 and
b ≥ 0 (Zhang and Wang, 2017). The demand is monotonically
decreasing with increasing price, but the cost function presents
a nonlinear dependence on the quantity of the good, which can
be nonmonotonic. Typically, the cost for producing another
unit decreases with the amount of units produced. The case
that production cost increases with the supply is encountered,
for example, when income effect becomes significant (storage
costs are often encountered in industries and agricultural
productions). Because of the nonlinearity of the cost function,
two stable steady states can appear if a < 0. One of them
corresponds to the case when customers buy the commodity at
a low price due to a rich supply of products. The other
corresponds to a monopoly or oligopoly, where customers will
still purchase it even at a higher price. When 0 < a < 1, limit
cycles can emerge with coherent oscillations between com-
petition and monopoly. As the demand slope changes, the
market can switch from monopoly to competition or
vice versa. The resulting underlying bistable landscape topo-
graphy through barrier height between monopoly and

FIG. 24. The nonequilibrium landscapes for game theory of repeated prisoner’s dilemma for different cost c. (a) Monostable peace
state where tit-for-tat strategy dominates at small cost c ¼ 0.1. (b)–(e) Limit-cycle oscillations between peace state with tit-for-tat
strategy and war state with all-defect strategy at c ¼ 0.2, c ¼ 0.22, c ¼ 0.24, and c ¼ 0.25. (f). As cost increases and monostable war
state with all-defect strategy at large cost (c ¼ 0.35) emerges. From Xu and Wang, 2017a.
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competition basins can be used to quantify the stability and
switching of these states. For limit-cycle dynamics, the
resulting Mexican hat-shaped landscapes guarantee the sta-
bility of the oscillation path, while the rotational curl flux
drives the oscillation flow between the monopoly and com-
petition (Zhang and Wang, 2017).
The stability of these states can be determined by the

nonequilibrium landscape (Zhang and Wang, 2017), as shown
in Fig. 25. It changes as the demand curve is shifted. When the
demand curve shifts to the right over a certain value, the basin
of attraction of the competition state becomes deeper and more
prominent relative to the monopoly state. Eventually, only a
competition state survives, as shown in Fig. 25(a). The model
then returns to the conventional supply and demand model
where only one equilibrium state typically appears. When
demand increases, more sellers join the production for goods,
and more competitors form a more competitive environment
leading to bistability shown in Fig. 25(b). When demand
decreases, more sellers leave the commodity market. This
leads to a less competitive environment with monopoly or
oligopoly shown in Fig. 25(c).
The driving force of nonequilibrium economy is deter-

mined by both landscape and curl flux (Zhang and Wang,
2017). While the landscape topography provides the quanti-
fications and stability of economic states, the flux representing
the nonequilibriumness can help to shape the dynamics.
Furthermore, the flux leads to certain unstable states, but
helps to maintain the stable flow among states. The global
sensitivity analysis based on landscape and flux can be used to
identify elements key to economic stability (Zhang and Wang,
2017). Furthermore, due to the presence of flux, new states
can emerge in the nonequilibrium economy beyond the single
equilibrium state assumed in the conventional equilibrium
economic theory. For example, a monopoly or oligopoly state
or limit cycle can emerge from the competition state or
vice versa. This discussion is quite general and can be applied
to other nonequilibrium economical studies.

XIII. OUTLOOK

As we have seen, the landscape and flux theory as well as
generalized hydrodynamics provide frameworks for studying
large classes of systems that are out of thermodynamic

equilibrium. Notably these concepts provide insight into
the physical foundations of biological processes, ranging
from efficient electron transport in biomolecules to cellular
dynamics and tissue development. Beyond these scales, they
apply to the dynamics of populations and whole ecosystems,
including the behavior of human societies as well as biological
evolution. Although not limited to such cases, the landscape
and flux theory is particularly suited for describing systems
with a finite number of degrees of freedom, whereas gener-
alized hydrodynamics provides a particularly powerful
approach to collective phenomena in spatially extended
systems. Our review gives only a glimpse of successful
applications to biological processes and we expect many
more fundamental insights into the phenomenon of life.
In particular, further physical analysis should shed light on

the question of what separates living systems from other
physical (or chemical) systems out of thermodynamic equi-
librium. Beyond physical aspects, living beings and their
assemblies are often associated with qualities such as function,
information processing, or consciousness. How can currently
extant as well as future physical concepts be linked to these
functions? For example, how do organizational principles of
nonequilibrium systems constrain and guide the evolution of
functions that provide ever better fits of a species to its
environment? How does the unfolding of genetic information
during the development of organisms depend on general laws
governing dynamics out of thermodynamic equilibrium?
There is an already fruitful connection between the theory
of information and that of statistical physics. It seems safe to
speculate that the links between these two fields will further
tighten and lead to new insight into the efficiency, speed, and
energy cost of information processing. We expect that the
study of cell signal transduction, neural networks in the brain,
and organisms will play a leading role in this endeavor
(Bialek, 2012; Press et al., 2013; Levchenko and
Nemenman, 2014; Yan, Zhang, and Wang, 2016; Zeng and
Wang, 2017) that has only just begun.
Molecular biology, which owes a large deal to physics,

provides us with a rather detailed picture of the molecular
inventory. This inventory contains a daunting set of a large
variety of highly complex molecular machines, some of which
have been characterized individually in awesome detail. On
the other hand, although there is already much known about

FIG. 25. Nonequilibrium landscapes and shifted demand curves (purple lines) in a bistable economic model for the quantityQ and the
price P of a commodity. (a) The left shifted (decreased) demand curve and monopoly state dominant landscape. (b) The middle located
demand curve and monopoly or competition bistable state coexisting landscape. (c) The right shifted (increased) demand curve and
competition state dominant landscape. From Zhang and Wang, 2017.
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biological processes on larger scales, much of it remains to be
described. Recent years have seen striking progress in
experimental techniques, which allow us now to follow the
embryonic development of organisms or the dynamics of bird
flocks in great detail, and further advances can be expected.
The situation is thus somewhat opposite to that in the 19th
century, when the molecular properties of materials were
essentially unknown, whereas their macroscopic properties
could be measured. In spite of this difference, the question of
how to bridge the gap between the microscopic dynamics and
the macroscopic thermodynamics or function across spatial
and temporal scales attracts researchers of biological systems
now as much as condensed matter physicists were to these
problems in the 20th century. Some progress has been made in
understanding the macromolecular organization such as
genome folding, transcription and translation machines, and
molecular motors (Tokuda, Terada, and Sasai, 2012; Zhang
and Wolynes, 2015). Also, efficient methods for large-scale
simulations of cellular networks and the whole cell at various
temporal and spatial scales are being developed (Roberts
et al., 2011). Time will tell whether computer simulations will
be the golden path toward an understanding of the relation
between the microscopic and the macroscopic behaviors of a
biological system. In any case, new ideas and concepts are
probably needed to reach this goal.
On the other hand, new experimental methods and tech-

niques need to be developed to investigate the mechanism and
function of biological objects. For example, to study the
dynamics of cells and cellular networks, in vivomeasurements
of the kinetic rates are crucial and necessary. Experimental
explorations are not only important to quantify the deviation
from equilibrium and the role of nonequilibriumness for the
function of a biological system. They are also crucial for
probing and verifying fundamental laws of nonequilibrium
physics such as landscape and flux, as well as thermodynamic
cost and dissipation in the context of single molecule enzyme
dynamics, single molecular motors, the regulation dynamics
of gene motifs, cell cycle, and spatial organization of the cells,
and of brain function. Furthermore, low throughput and high
throughput data from experiments can help us to pin down the
underlying mechanisms and nonequilibrium physics for the
subjects of interest, for example, single-cell data for under-
standing function and diseases and connectome (a compre-
hensive map of neural connections in the brain) from
understanding the brain function. From these studies, new
biological functional phases or new forms of active matter as a
result of the nonequilibriumness and environmental changes
can be uncovered. This may provide opportunities to design
functions even beyond the living world.
Nonequilibrium physics will be important for biological

applications such as enzyme dynamics, metabolism, gene
regulations, structure, function and dynamics of cells, physi-
ology, cancer, differentiation and development, immune,
aging and other human diseases, evolution or ecology,
sociology, human networks, economics, even perhaps psy-
chology and politics, to name but a few.
With the ever increasing possibilities to manipulate and

interrogate biological systems, a vast playground lies at our
feet. It has the potential to produce gargantuan amounts of
data that will dwarf the already enormous sets currently

produced every day. Without a conceptual framework guiding
experiments, the sheer quantity of the data risks to severely
obstruct our advances in understanding life. The physics of
nonequilibrium systems will play a crucial role in this quest,
aiding design of future experiments and providing a guide for
data analysis. The concepts presented in this review are just
the beginning.
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Bois, J., F. Jülicher, and S. Grill, 2011, “Pattern Formation in Active
Fluids,” Phys. Rev. Lett. 106, 028103.

Bonny, M., F. E. Fischer, M. Loose, P. Schwille, and K. Kruse, 2013,
“Membrane Binding of MinE Allows for a Comprehensive
Description of Min-Protein Pattern Formation,” PLoS Comput.
Biol. 9, e1003347.

Bonny, M., X. Hui, J. Schweizer, L. Kaestner, A. Zeug, K. Kruse, and
P. Lipp, 2016, “C2-domain mediated nano-cluster formation
increases calcium signaling efficiency,” Sci. Rep. 6, 36028.

Brangwynne, C., 2011, “Soft active aggregates: mechanics, dynam-
ics and self-assembly of liquid-like intracellular protein bodies,”
Soft Matter 7, 3052–3059.

Brangwynne, C., C. Eckmann, D. S. Courson, A. Rybarska, C.
Hoege, J. Gharakhani, F. Juelicher, and A. A. Hyman, 2009,
“Germline P Granules Are Liquid Droplets That Localize by
Controlled Dissolution/Condensation,” Science 324, 1729–1732.

Bray, D., 2001, Cell Movements (Garland Pub., New York).
Brenner, K., L. You, and F. Arnold, 2008, “Engineering microbial
consortia: a new frontier in synthetic biology,” Trends Biotechnol.
26, 483–489.

Bressloff, P. C., and B. R. Karamched, 2015, “A frequency-
dependent decoding mechanism for axonal length sensing,” Front.
Cell. Neurosci. 9, 281.

Breuer, H., 2002, The Theory of Open Quantum Systems (Oxford
University Press, Oxford).

Breuer, H. P., and F. Petruccione, 2002, The Theory of Open
Quantum Systems (Oxford University Press, Oxford).

Brookes, J. C., 2017, “Quantum effects in biology: golden rule in
enzymes, olfaction, photosynthesis and magnetodetection,” Proc.
R. Soc. A 473, 20160822.

Brooks, F. J., and A. E. Carlsson, 2008, “Actin polymerization
overshoots and ATP hydrolysis as assayed by pyrene fluorescence,”
Biophys. J. 95, 1050–1062.

Butler, T., and N. Goldenfeld, 2009, “Robust ecological pattern
formation induced by demographic noise,” Phys. Rev. E 80,
030902.

Butt, T., T. Mufti, A. Humayun, P. B. Rosenthal, S. Khan, S. Khan,
and J. E. Molloy, 2010, “Myosin Motors Drive Long Range
Alignment of Actin Filaments,” J. Biol. Chem. 285, 4964–4974.

Callan-Jones, A. C., J. F. Joanny, and J. Prost, 2008, “Viscous-
fingering-like instability of cell fragments,” Phys. Rev. Lett. 100,
258106.
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Grill, 2014, “Active torque generation by the actomyosin cell cortex
drives left-right symmetry breaking,” eLife 3, e04165.

Nagumo, J., S. Arimoto, and S. Yoshizawa, 1962, “An active pulse
transmission line simulating nerve axon,” Proc. IRE 50, 2061–
2070.

Nagylaki, T., 1993, “The evolution of multilocus systems under weak
selection,” Genetics 134, 627–647.

Nagylaki, T., P. Brunovsky, and J. Hofbauer, 1999, “Convergence of
multilocus systems under weak epistasis or weak selection,” J.
Math. Biol. 38, 103.

Nakajima, M., K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H.
Iwasaki, T. Oyama, and T. Kondo, 2005, “Reconstitution of
circadian oscillation of cyanobacterial kaic phosphorylation in
vitro,” Science 308, 414–415.

Nedelec, F., and D. Foethke, 2007, “Collective Langevin dynamics of
flexible cytoskeletal fibers,” New J. Phys. 9, 427.

Nedelec, F. J., T. Surrey, A. C. Maggs, and S. Leibler, 1997, “Self-
organization of microtubules and motors,” Nature (London) 389,
305–308.

Neef, M., and K. Kruse, 2014, “Generation of stationary and moving
vortices in active polar fluids in the planar Taylor-Couette geom-
etry,” Phys. Rev. E 90, 052703.

Neher, R., and B. Shraiman, 2011, “Statistical genetics and evolution
of quantitative traits,” Rev. Mod. Phys. 83, 1283.

Nevozhay, D., R. Adams, K. Murphy, K. Josic, and G. Balazsi, 2009,
“Negative autoregulation linearizes the dose-response and sup-
presses the heterogeneity of gene expression,” Proc. Natl. Acad.
Sci. U.S.A. 106, 5123–5128.

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-65

https://doi.org/10.1038/438044a
https://doi.org/10.1073/pnas.84.2.454
https://doi.org/10.1103/PhysRevE.86.061118
https://doi.org/10.1103/PhysRevE.86.061118
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1146/annurev.pc.15.100164.001103
https://doi.org/10.1016/0092-8674(78)90132-0
https://doi.org/10.1016/j.gde.2008.12.003
https://doi.org/10.1016/S1097-2765(00)80378-0
https://doi.org/10.1038/nrc3261
https://doi.org/10.1038/nrc3261
https://doi.org/10.2307/1912321
https://doi.org/10.1038/35078583
https://doi.org/10.1038/nature09376
https://doi.org/10.1038/246015a0
https://doi.org/10.1093/cercor/bhg097
https://doi.org/10.1093/cercor/bhg097
https://doi.org/10.1039/c2sm06960a
https://doi.org/10.1152/ajpregu.1986.251.6.R1011
https://doi.org/10.1152/ajpregu.1986.251.6.R1011
https://doi.org/10.1209/0295-5075/115/20004
https://doi.org/10.1103/PhysRevLett.108.258104
http://www.plantphys.info/plant_physiology/copyright/MichaelisMentenTranslation2.pdf
http://www.plantphys.info/plant_physiology/copyright/MichaelisMentenTranslation2.pdf
http://www.plantphys.info/plant_physiology/copyright/MichaelisMentenTranslation2.pdf
http://www.plantphys.info/plant_physiology/copyright/MichaelisMentenTranslation2.pdf
http://www.plantphys.info/plant_physiology/copyright/MichaelisMentenTranslation2.pdf
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.1021/jp065187g
https://doi.org/10.1080/05775132.1977.11470296
https://doi.org/10.1146/annurev-arplant-042110-103852
https://doi.org/10.1146/annurev-arplant-042110-103852
https://doi.org/10.1038/312237a0
https://doi.org/10.1016/S0006-3495(96)79496-1
https://doi.org/10.1146/annurev-biophys-070915-094206
https://doi.org/10.1371/journal.pcbi.1004160
https://doi.org/10.1371/journal.pcbi.1004160
https://doi.org/10.1021/j100288a023
https://doi.org/10.1073/pnas.0706825105
https://doi.org/10.3389/fmicb.2016.00781
https://doi.org/10.1016/S0065-2504(08)60288-3
https://doi.org/10.1016/j.tig.2009.01.002
https://doi.org/10.1073/pnas.0907953107
https://doi.org/10.1073/pnas.0907953107
https://doi.org/10.7554/eLife.04165
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1007/s002850050143
https://doi.org/10.1007/s002850050143
https://doi.org/10.1126/science.1108451
https://doi.org/10.1088/1367-2630/9/11/427
https://doi.org/10.1038/38532
https://doi.org/10.1038/38532
https://doi.org/10.1103/PhysRevE.90.052703
https://doi.org/10.1103/RevModPhys.83.1283
https://doi.org/10.1073/pnas.0809901106
https://doi.org/10.1073/pnas.0809901106


Nicolis, G., and I. Prigogine, 1989, Exploring Complexity: An
Introduction (Freeman and Co., New York).

Nicolis, G., and I. Prigogine, 1977, Self-organization in nonequili-
brium systems : from dissipative structures to order through
fluctuations (Wiley, New York).

Nielsen, M. A., and I. L. Chuang, 2000, Quantum Computation and
Quantum Information (Cambridge University Press, New York).

Novák, B., and J. J. Tyson, 2008, “Design principles of biochemical
oscillators,” Nat. Rev. Mol. Cell Biol. 9, 981–991.

Novelli, F., A. Nazir, G. Richards, A. Roozbeh, K. Wilk, P. Curmi,
and J. Davis, 2015, “Vibronic resonances facilitate excited-state
coherence in light-harvesting proteins at room temperature,” J.
Phys. Chem. Lett. 6, 4573–4580.

Nowak, M., 2004, Evolutionary Dynamics (Harvard University
Press, Cambridge, MA).

Oelz, D., and A. Mogilner, 2016, “Actomyosin contraction, aggre-
gation and traveling waves in a treadmilling actin array,” Physica D
(Amsterdam) 318–319, 70–83.

Oelz, D., B. Rubinstein, and A. Mogilner, 2015, “A Combination of
Actin Treadmilling and Cross-Linking Drives Contraction of
Random Actomyosin Arrays,” Biophys. J. 109, 1818–1829.

Ohmine, I., and S. Saito, 1999, “Water dynamics: Fluctuation,
relaxation, and chemical reactions in hydrogen bond network
rearrangement,” Acc. Chem. Res. 32, 741–749.

Ohtani, H., R. Wilson, S. Chiang, and C. Mate, 1988, “Scanning
tunneling microscopy observations of benzene molecules
on the rh(111)-(3x3)(c6h6+2co)surface,” Phys. Rev. Lett. 60,
2398–2401.

Olender, R., and R. Elber, 1996, “Calculation of classical trajectories
with a very large time step: Formalism and numerical examples,”
J. Chem. Phys. 105, 9299–9315.

Onsager, L., 1931, “Reciprocal relations in irreversible processes. i,”
Phys. Rev. 37, 405–426.

Onsager, L., and S. Machlup, 1953, “Fluctuations and irreversible
processes,” Phys. Rev. 91, 1505–1512.

Onuchic, J., and P. Wolynes, 1988, “Classical and quantum pictures
of reaction dynamics in condensed matter—resonances, dephasing,
and all that,” J. Phys. Chem. 92, 6495–6503.

Oppenheim, A., O. Kobiler, J. Stavans, D. Court, and S. Adhya,
2005, “Switches in bacteriophage lambda development,” Annu.
Rev. Genet. 39, 409–429.

O’Reilly, E., and A. Olaya-Castro, 2014, “Non-classicality of the
molecular vibrations assisting exciton energy transfer at room
temperature,” Nat. Commun. 5, 3012–3021.

Ozgen, V. C., W. Kong, A. E. Blanchard, F. Liu, and T. Lu, 2018,
“Spatial interference scale as a determinant of microbial range
expansion,” Sci. Adv. 4, eaau0695.

Paijmans, J., D. K. Lubensky, and P. R. Ten Wolde, 2016, “A
thermodynamically consistent model of the post-translational kai
circadian clock,” PLoS Comput. Biol. 13, e1005415.

Paijmans, J., D. K. Lubensky, and P. R. Ten Wolde, 2017, “Period
robustness and entrainability of the kai system to changing
nucleotide concentrations,” Biophys. J. 113, 157–173.

Palma, G., K. Suominen, and A. Ekert, 1996, “Quantum computers
and dissipation,” Proc. R. Soc. A 452, 567–584.

Paluch, E., M. Piel, J. Prost, M. Bornens, and C. Sykes, 2005,
“Cortical Actomyosin Breakage Triggers Shape Oscillations in
Cells and Cell Fragments,” Biophys. J. 89, 724–733.

Panda, D., H. P. Miller, and L. Wilson, 1999, “Rapid treadmilling of
brain microtubules free of microtubule-associated proteins in vitro
and its suppression by tau,” Proc. Natl. Acad. Sci. U.S.A. 96,
12459–12464.

Pappalardo, F., M. Pennisi, A. Ricupito, F. Topputo, and M. Bellone,
2014, “Induction of t-cell memory by a dendritic cell vaccine: a
computational model,” Bioinformatics 30, 1884–1891.

Park, H., J. Park, A. Lim, E. Anderson, A. Alivisatos, and P. McEuen,
2000, “Nanomechanical oscillations in a single-c-60 transistor,”
Nature (London) 407, 57–60.

Parmeggiani, A., T. Franosch, and E. Frey, 2003, “Phase coexistence
in driven one-dimensional transport,” Phys. Rev. Lett. 90, 086601.

Pesen, D., and J. Hoh, 2005, “Micromechanical Architecture of the
Endothelial Cell Cortex,” Biophys. J. 88, 670–679.

Peskin, M. E., and D. V. Schroeder, 1995, An Introduction to
Quantum Field Theory (Addison-Wesley, Reading, MA).

Peter, R., V. Schaller, F. Ziebert, andW. Zimmermann, 2008, “Pattern
formation in active cytoskeletal networks,” New J. Phys. 10,
035002.

Petrášek, Z., and P. Schwille, 2015, “Simple membrane-based model
of the Min oscillator,” New J. Phys. 17, 043023.

Pigliucci, M., 2008, “Sewall Wright’s adaptive landscapes: 1932 vs
1988,” Biol. Philos. 23, 591–603.

Pike, L., 2006, “Rafts defined: a report on the Keystone Symposium
on Lipid Rafts and Cell Function,” J. Lipid Res. 47, 1597–1598.

Pinkoviezky, I., and N. Gov, 2017, “Exclusion and Hierarchy of Time
Scales Lead to Spatial Segregation of Molecular Motors in Cellular
Protrusions,” Phys. Rev. Lett. 118, 018102.

Piraino, S., F. Boero, B. Aeschbach, and V. Schmid, 1996, “Revers-
ing the life cycle: Medusae transforming into polyps and cell
transdifferentiation in turritopsis nutricula (cnidaria, hydrozoa),”
Biol. Bull. 190, 302–312.

Pismen, L. M., 2013, “Dynamics of defects in an active nematic
layer,” Phys. Rev. E 88, 050502.

Plenio, M., J. Almeida, and S. Huelga, 2013, “Origin of long-lived
oscillations in 2d-spectra of a quantum vibronic model: Electronic
versus vibrational coherence,” J. Chem. Phys. 139, 235102–
235111.

Pogliano, J., T. Ho, Z. Zhong, and D. Helinski, 2001, “Multicopy
plasmids are clustered and localized in escherichia coli,” Proc. Natl.
Acad. Sci. U.S.A. 98, 4486–4491.

Polettini, M., 2012, “Nonequilibrium thermodynamics as a gauge
theory,” Europhys. Lett. 97, 30003.

Preskill, J., 1998, Quantum Information and Quantum Computation
(California Institute of Technology Press, Pasadena).

Press, S., K. Ghosh, J. Lee, and K. Dill, 2013, “Principles of
maximum entropy and maximum caliber in statitistical physics,”
Rev. Mod. Phys. 85, 1115–1141.

Price, G. R., 1970, “Selection and covariance,” Nature (London) 227,
520–521.

Price, G. R., 1972a, “Fisher’s “fundamental theorem” made clear,”
Annals of Human Genetics 36, 129–140.

Price, G. R., 1972b, “Extension of covariance selection mathemat-
ics,” Annals of Human Genetics 35, 485–490.

Prigogine, I., and I. Stengers, 1984, Order Out of Chaos (New Sci.
Lib. Shambhala Pub., Boulder, CO).

Prindle, A., P. Samayoa, I. Razinkov, T. Danino, L. Tsimring, and
J. Hasty, 2012, “A sensing array of radically coupled genetic
‘biopixels’,” Nature (London) 481, 39–44.

Prior, I., C. Muncke, R. Parton, and J. Hancock, 2003, “Direct
visualization of Ras proteins in spatially distinct cell surface
microdomains,” J. Cell Biol. 160, 165–170.

Prost, J., 2002, “The Physics of Listeria Propulsion,” in Physics of
Bio-molecules and Cells, Les Houches Session LXXV, edited by
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2014, “Centrosomes are autocatalytic droplets of pericentriolar
material organized by centrioles,” Proc. Natl. Acad. Sci. U.S.A.
111, E2636–E2645.

Zwicker, D., D. K. Lubensky, and P. R. ten Wolde, 2010, “Robust
circadian clocks from coupled protein-modification and transcrip-
tion-translation cycles,” Proc. Natl. Acad. Sci. U.S.A. 107, 22540–
22545.

Zyczkowski, K., P. Horodecki, A. Sanpera, and M. Lewenstein,
1998, “Volume of the set of separable states,” Phys. Rev. A 58,
883–892.

Fang et al.: Nonequilibrium physics in biology

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045004-72

https://doi.org/10.1371/journal.pone.0001077
https://doi.org/10.1038/nature24656
https://doi.org/10.1038/nature24656
https://doi.org/10.1371/journal.pone.0000696
https://doi.org/10.1038/nrmicro1770
https://doi.org/10.1073/pnas.1404855111
https://doi.org/10.1073/pnas.1404855111
https://doi.org/10.1073/pnas.1007613107
https://doi.org/10.1073/pnas.1007613107
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883

