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The particle that makes up the dark matter of the Universe could be an axion or axionlike particle.
A collection of axions can condense into a bound Bose-Einstein condensate called an axion star.
It is possible that a significant fraction of the axion dark matter is in the form of axion stars.
This would make some efforts to identify the axion as the dark matter particle more challenging,
but it would also open up new possibilities. The basic properties of axion stars, which can be
gravitationally bound or bound by self-interactions, are summarized. Axions are naturally
described by a relativistic field theory with a real scalar field, but low-energy axions can be
described more simply by a classical nonrelativistic effective field theory with a complex scalar
field.
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I. INTRODUCTION

The QCD axion is one of the best motivated candidates for
the particle that makes up the dark matter of the Universe,
because its existence would reveal the solution to the strong
CP problem of QCD. [For a recent review, see Kim and Carosi
(2010).] The QCD axion is a spin-0 particle with very small
mass and extremely weak self-interactions as well as
extremely weak interactions with standard model particles.
One might therefore expect the physics of axion dark matter to
be relatively simple.
The reason axion dark matter is not so simple is that axions

are identical bosons, and the axion states in dark matter may
have extremely high occupation numbers. The axions can
therefore form a Bose-Einstein condensate (BEC), whose
collective behavior can be quite different from an ideal gas of
bosons. The axion BEC can form gravitationally bound
configurations called axion stars, and it can also form self-
bound configurations called axitons. If a significant fraction of
the axion dark matter is in such bound configurations, it could
dramatically affect experimental searches for axion dark
matter.
We present a review of bound configurations of the axion

BEC. Axion stars and axitons could be observed through their
encounters with other astrophysical objects, such as neutron
stars. However we focus in this review primarily on the
simpler problem of isolated axion stars. Understanding their
properties is a prerequisite for understanding some aspects of
their encounters with other astrophysical objects.
There are strong constraints on the most important param-

eters that describe the QCD axion (Kim and Carosi, 2010).
The window for the axion mass has been reduced to within
1 or 2 orders of magnitude of 10−4 eV. It should therefore be
possible to understand the behavior of QCD axion dark matter
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in enough detail to definitively confirm its existence or rule it
out. Understanding bound configurations of the axion BEC
may be essential for this effort.
Axion can refer more generally to any light spin-0 particle

with a periodic self-interaction potential. There are motiva-
tions from string theory for a large number of axions with
masses ranging over tens of orders of magnitude, a possibility
referred to as the axiverse (Arvanitaki et al., 2010). There are
also astrophysical motivations for a dark matter particle that
is an extremely light boson with mass of roughly 10−22 eV
(Hu, Barkana, and Gruzinov, 2000; Hui et al., 2017). An
interesting issue is whether an axion with such a small mass
can really arise in the axiverse. We focus in this review on the
QCD axion, but we present our results whenever possible in a
form that can be applied to other axionlike particles.
We begin the review in Sec. II by describing the relativistic

quantum field theory for the real scalar field of the axion. In
Sec. III, we summarize some basic features of the evolution of
axion dark matter in the early Universe. In Sec. IV, we describe
a nonrelativistic effective field theory with a complex scalar
field that provides a simpler description of the nonrelativistic
axions that make up dark matter. We then discuss bound
configurations of the axionBEC, first axitons in Sec.Vand then
axion stars in Sec. VI. We conclude the review by discussing
some theoretical issues involving axion stars in Sec. VII.

II. AXION FIELD THEORY

At momentum scales below the axion decay constant fa,
the axion can be described by a real Lorentz-scalar field in a
relativistic quantum field theory.

A. Fundamental theory

The most compelling solution of the strong CP problem
of QCD is the Peccei-Quinn mechanism, which involves
an anomalous Uð1Þ symmetry of a quantum field theory
for physics beyond the standard model (Peccei and Quinn,
1977b). The spontaneous breaking of the Peccei-Quinn Uð1Þ
symmetry implies the existence of a spin-0 particle called the
axion (Weinberg, 1978; Wilczek, 1978). The explicit breaking
of the Uð1Þ symmetry from the chiral anomaly of QCD
implies that the axion is a pseudo-Goldstone boson with
nonzero mass ma.
The fundamental quantum field theory for the axion is a

renormalizable extension of the standard model in which the
Peccei-Quinn symmetry is spontaneously broken by the
ground state of a complex Lorentz-scalar field. The minima
of its potential form a circle whose radius fa is called the axion
decay constant. At momentum scales of order fa, the axion
field can be identified with the Goldstone mode corresponding
to excitations of the scalar field along that circle.
At momentum scales much smaller than fa, the axion can

be described by an elementary real Lorentz-scalar field ϕðxÞ
with a shift symmetry: the fields ϕðxÞ and ϕðxÞ þ 2πfa
represent the same physical configuration. The axion field
has couplings to gauge fields that are determined by the
anomaly, and it has derivative couplings to the other fields of
the standard model. At momentum scales below the weak
scale, which is about 100 GeV, the terms in the effective

Lagrangian that couple the axion to the standard model fields
reduce to

αs
8πfa

ϕGa
μνG̃

aμν þ cγ0α

8πfa
ϕFμνF̃μν þ 1

2fa
Jμ∂μϕ; ð1Þ

where Ga
μν and Fμν are the field strengths for QCD and QED,

G̃a
μν ¼ ð1=2ÞϵμνλσGaλσ and F̃μν are the corresponding dual

field strengths, and Jμ is a linear combination of axial-vector
quark currents that depends on the axion model. The coef-
ficient cγ0 in the FμνF̃μν term in Eq. (1) is also model
dependent. The QCD field-strength term in Eq. (1) is propor-
tional to the topological charge density αsGa

μνG̃
aμν=8π. The

quantization of the QCD topological charge in the Euclidean
field theory guarantees consistency with the shift symmetry
of ϕ.
In the original axion model of Peccei and Quinn, the axion

decay constant fa was chosen comparable to the vacuum
expectation value of the Higgs field, which is about 250 GeV.
This model was quickly ruled out by the nonobservation of the
axion particle in high-energy physics experiments. Models
with an “invisible axion” that are not easily ruled out by high-
energy physics experiments were subsequently constructed,
including the KSVZ model (Kim, 1979; Shifman, Vainshtein,
and Zakharov, 1980) and the DFSZ model (Zhitnitsky, 1980;
Dine, Fischler, and Srednicki, 1981). Astrophysical constraints
from the cooling of stars by the emission of axions provide a
lower bound on the axion decay constant: fa ≳ 3 × 109 GeV.
If the Peccei-Quinn symmetry breaking occurs after the
inflation of the early Universe, the cosmological constraint
that the production of axions does not overclose the Universe
provides a loose upper bound: fa ≲ 1012 GeV.

B. Real scalar field theory

At momentum scales below the confinement scale of QCD,
which is about 1 GeV, the self-interactions of axions from
their couplings to the gluon field in Eq. (1) can be described by
a potential VðϕÞ. The Lagrangian for the axion field has the
form

L ¼ 1
2
∂μϕ∂μϕ − VðϕÞ: ð2Þ

The invariance of the Lagrangian under the shift symmetry
ϕðxÞ → ϕðxÞ þ 2πfa requires the axion potential VðϕÞ to be a
periodic function of ϕ:

VðϕÞ ¼ Vðϕþ 2πfaÞ: ð3Þ

The Lagrangian is also invariant under the Z2 symmetry
ϕðxÞ → −ϕðxÞ, which requires VðϕÞ to be an even function of
ϕ. The energy density is given by the Hamiltonian

H ¼ 1
2
_ϕ2 þ 1

2
∇ϕ · ∇ϕþ VðϕÞ; ð4Þ

where _ϕ ¼ ∂ϕ=∂t and ∇iϕ ¼ ∂ϕ=∂xi.
Since the axion potential VðϕÞ is an even function of ϕ, it

can be expanded in powers of ϕ2. We choose VðϕÞ to have a
minimum of 0 at ϕ ¼ 0: Vð0Þ ¼ 0. The quadratic term in the
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expansion determines the axion mass: V 00ðϕ ¼ 0Þ ¼ m2
a. The

expansion of VðϕÞ to higher orders in ϕ determines the
coupling constants for axion self-interactions. We define
dimensionless coupling constants λ2n by using the mass ma
and the decay constant fa to set the scales:

VðϕÞ ¼ 1

2
m2

aϕ
2 þ ðmafaÞ2

X∞
n¼2

λ2n
ð2nÞ!

�
ϕ

fa

�
2n
: ð5Þ

In reasonable axion models, the dimensionless coupling
constants λ2n have natural values of the order of 1. The
parametrization of VðϕÞ in Eq. (5) then implies thatm2

a=f2a is a
quantum-loop factor. If this factor is small, every additional
quantum loop is suppressed by an additional factor of m2

a=f2a.
The cross section for the elastic scattering of two axions in

the low-energy limit can be expressed as σ ¼ 8πa2, where a is
the S-wave scattering length:

a ¼ ðλ4=32πÞma=f2a: ð6Þ

The Z2 symmetry of VðϕÞ implies that the number of axions in
a scattering reaction is conserved modulo 2. The total number
of axions is not conserved.
The equation of motion following from the Lagrangian in

Eq. (2) is

ϕ̈ ¼ ∇2ϕ − V 0ðϕÞ: ð7Þ

The simplest periodic spherically symmetric solutions ϕðr; tÞ
can be expanded as an odd cosine series in time t:

ϕðr; tÞ ¼
X∞
n¼0

ϕ2nþ1ðrÞ cosðð2nþ 1ÞωtÞ: ð8Þ

Equation (7) reduces to an infinite set of coupled equations for
the harmonics ϕ2nþ1ðrÞ. If the field ϕðr; tÞ always remains
sufficiently small compared to fa, it can be approximated by
the first term in the cosine expansion:

ϕðr; tÞ ≈ ϕ1ðrÞ cosðωtÞ: ð9Þ

The harmonic approximation is obtained by inserting this
expression into Eq. (7) and then dropping all the higher
harmonics in V 0ðϕÞ.

C. Axion potential

The potential VðϕÞ for the axion field is determined by
nonperturbative effects in QCD. A systematically improvable
approximation for VðϕÞ can be derived from a chiral effective
field theory for the light pseudoscalar mesons of QCD and the
axion (Grilli di Cortona et al., 2016). The leading order
analysis of the chiral effective field theory for pions and the
axion gives the chiral potential (Di Vecchia and Veneziano,
1980):

VðϕÞ ¼ ðmπfπÞ2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cosðϕ=faÞ

p
1þ z

�
; ð10Þ

where z ¼ mu=md is the ratio of the up and down quark
masses. The prefactor is determined by the mass mπ ¼
135.0 MeV and the decay constant fπ ¼ 92.2 MeV of the
pion, which are related to ma and fa by (Bardeen and Tye,
1978)

mπfπ ¼
1þ zffiffiffi

z
p mafa: ð11Þ

The numerical value of the quark mass ratio determined by a
next-to-leading order analysis in the chiral effective field
theory is z ¼ 0.48ð3Þ (Grilli di Cortona et al., 2016). The
chiral potential is illustrated in Fig. 1.
The power series in Eq. (5) for the chiral potential defines

dimensionless coupling constants λ2n. The dimensionless
coupling constant for the 4-axion vertex is

λ4 ¼ −
1 − zþ z2

ð1þ zÞ2 : ð12Þ

For z ¼ 0.48ð3Þ, its value is λ4 ¼ −0.343ð15Þ. The resulting
negative scattering length a in Eq. (6) implies that axion pair
interactions are attractive.
The product of ma and fa determined by a next-to-leading

order analysis in the chiral effective field theory is (Grilli di
Cortona et al., 2016)

mafa ¼ ½75.5ð5Þ MeV�2: ð13Þ

Given the upper and lower bounds on fa from cosmology and
astrophysics, the allowed mass range for the QCD axion is
between 6 × 10−6 and 2 × 10−3 eV. When giving the numeri-
cal value of a quantity that depends on ma, we often express
the mass in the form

ma ¼ 10−4�1 eV: ð14Þ

The central value −4 of the exponent gives a mass near the
middle of the allowed region of ma on a log scale. The �1 in
the exponent should not be interpreted as an error bar, but
simply as a device for specifying the dependence of a quantity

FIG. 1. Axion potential V as a function of ϕ: chiral potential for
z ¼ 0.48 (thick solid curve) and for z ¼ 0.45 and 0.51 (higher
and lower thin solid curves) and instanton potential (dotted
curve).
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on ma. For example, the quantum-loop suppression factor for
the QCD axion is

m2
a=f2a ¼ 3 × 10−48�4: ð15Þ

Its small value indicates that axions are well described by
classical field theory.
The model for the axion potential that has been used in most

phenomenological studies of the axion is the instanton
potential:

VðϕÞ ¼ ðmafaÞ2½1 − cosðϕ=faÞ�: ð16Þ

It has been derived using a dilute instanton gas approximation
(Peccei and Quinn, 1977a), which is not systematically
improvable. The field theory defined by the Lagrangian in
Eq. (2) with the instanton potential is called the sine-Gordon
model. The instanton potential can be obtained from the chiral
potential in Eq. (10) by taking the limit z → 0 with ma fixed.
Its dimensionless coupling constants are λ2n ¼ ð−1Þnþ1. The
prediction λ4 ¼ −1 is about a factor of 3 larger than the value
in Eq. (12) from the chiral potential. The instanton potential is
compared to the chiral potential in Fig. 1. The potentials have
the same curvature at the minima, but the amplitude of the
oscillation for the instanton potential is about 2=3 that for the
chiral potential with z ¼ 0.48. Thus the instanton potential is
only a good approximation for ϕ near the minimum.

D. Coupling to photons

At momentum scales below the confinement scale of QCD,
the term in the Lagrangian for the coupling of the axion to the
electromagnetic field is

Lem ¼ cγα

8πfa
ϕFμνF̃μν: ð17Þ

The coefficient cγ differs from the model-dependent coeffi-
cient cγ0 in Eq. (1) by a term that comes from a chiral
transformation of the light quark fields. Its magnitude is
roughly 1 in simple models (Kim, 1998). For example, cγ ¼
−1.92 for the simplest KSVZ model (Kim, 1979; Shifman,
Vainshtein, and Zakharov, 1980). The decay rate of the axion
into two photons is

Γa ¼
c2γα2m3

a

256π3f2a
: ð18Þ

In the simplest KSVZ model with ma ¼ 10−4�1 eV, the axion
decay rate is Γa ¼ 8 × 10−60�5 eV. The axion lifetime is
3 × 1036∓5 yr. This is tens of orders of magnitude larger than
the age of the Universe, which is about 1010 yr.

E. General relativity

General relativity provides a fundamental description of the
gravitational interactions of axions. If the Lagrangian for ϕ in
the absence of gravity is given in Eq. (2), the action for ϕ and
the spacetime metric tensor gμν is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ − 1

16πG
R

�
; ð19Þ

where gμν is the inverse of the metric tensor, g is its
determinant, R is the Ricci scalar, and G is Newton’s
gravitational constant. Note that the first derivative of a scalar
field is equal to its covariant derivative: ∂μϕ ¼ Dμϕ.
The classical field equations from varying the action in

Eq. (19) with respect to the field ϕ and the metric tensor gμν
can be expressed as

gμνDμ∂νϕþ V 0ðϕÞ ¼ 0; ð20aÞ

Tμν ¼ 1

8πG

�
Rμν −

1

2
Rgμν

�
; ð20bÞ

where Tμν is the stress tensor for the scalar field and Rμν is the
Ricci tensor. If the scalar field has no self-interactions,
the derivative of the potential is V 0 ¼ m2

aϕ and Eqs. (20)
are the Einstein-Klein-Gordon equations.
The physics of the QCD axion involves the small quantum-

loop factor in Eq. (15). If gravity is relevant, there is another
small number that involves Newton’s constant:

Gf2a ¼ 2 × 10−17∓2: ð21Þ

The corresponding number determined by the axion mass is
even smaller: Gm2

a ¼ 7 × 10−65�2. For gravity to be impor-
tant, this small number must be compensated by a large
number, such as the number of axions.
The small number Gf2a may justify the linearized gravity

approximation in which Eqs. (20) are linearized in fluctua-
tions of the metric tensor around the Minkowski metric
ημν ¼ diagðþ1;−1;−1;−1Þ. We set gμν ¼ ημν þ hμν in
Eq. (20a) and on the right-hand side of Eq. (20b), we set
gμν ¼ ημν on the left-hand side of Eq. (20b), and we keep only
terms up to first order in hμν. The linearized gravity approxi-
mation should remain valid provided the system is sufficiently
far from forming a black hole. The Schwarzchild radius for a
black hole of mass M is 2GM. If MðrÞ is the mass contained
inside the radius r, the condition for the validity of the
linearized approximation is r ≫ 2GMðrÞ for all r. In practice,
it may be sufficient for r to be larger than 2GMðrÞ by a factor
of a few.
For spherically symmetric configurations, the fluctuation in

the metric tensor can be expressed as

hμν ¼ 2

�Φþ 3χ 0

0 ðΦ − χÞ1

�
; ð22Þ

where Φðr; tÞ is the conventional gravitational potential and
χðr; tÞ is another gravity potential. The form of Eqs. (20) with
linearized gravity and spherical symmetry is such that ϕðr; tÞ
can be expanded as an odd cosine series in the time t, as in
Eq. (8), while Φðr; tÞ and χðr; tÞ can be expanded as even
cosine series.
If the second gravity potential χ is ignored and if time

derivatives of Φ are negligible compared to its gradients, the
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equations of motion in Eqs. (20) reduce to (Visinelli et al.,
2018)

ϕ̈ − 4 _Φ _ϕ ¼ ð1þ 4ΦÞ∇2ϕ − ð1þ 2ΦÞV 0ðϕÞ; ð23aÞ

∇2Φ ¼ 4πGH: ð23bÞ

The Hamiltonian H in Eq. (4) acts as the source of the
gravitational potential Φ.

III. AXION DARK MATTER

Axions can be produced in the early Universe with an
abundance that is compatible with the observed dark matter
density. A thorough review of axion cosmology was presented
by Marsh (2016). We summarize the aspects that are most
relevant to bound configurations of an axion BEC.

A. Production in the early Universe

The two most important mechanisms for producing axions
in the early Universe are the vacuum misalignment mechanism
(Abbott and Sikivie, 1983; Dine and Fischler, 1983; Preskill,
Wise, and Wilczek, 1983) and the cosmic string mechanism
(Davis, 1986; Harari and Sikivie, 1987). The cosmic string
mechanism is relevant only if the spontaneous breaking of the
Peccei-Quinn symmetry occurs after inflation.
In the early Universe, the quantum fields are in thermal

equilibrium at a temperature T that decreases as the Universe
expands. The metric tensor of the expanding flat Universe can
be expressed as gμν ¼ diagð1;−R2;−R2;−R2Þ, where RðTÞ is
the temperature-dependent scale factor that is equal to 1 at the
present temperature of the cosmic microwave background.
AfterT decreases to below the scale of the axion decay constant
fa, the axion can be described by the real scalar fieldϕðxÞ. The
time evolution of the classical axion field is described by

ϕ̈þ 3
_RðTÞ
RðTÞ

_ϕ ¼ 1

R2ðTÞ∇
2ϕ − V 0ðϕ; TÞ; ð24Þ

where V 0 is the derivative with respect to ϕ of the temperature-
dependent axion potential.
The axion potential Vðϕ; TÞ rises from the explicit breaking

of the Peccei-Quinn symmetry by the chiral anomaly of QCD.
The square of the temperature-dependent axion massmaðTÞ is
the QCD topological susceptibility χðTÞ. The precise deter-
mination of the temperature dependence of the axion mass is
important for accurate predictions of axion cosmology (Grilli
di Cortona et al., 2016). In the high temperature limit, Vðϕ; TÞ
can be approximated by the instanton potential in Eq. (16)
with a temperature-dependent mass maðTÞ that increases
roughly as T−4 as T decreases (Gross, Pisarski, and Yaffe,
1981). At temperatures well below the QCD scale, Vðϕ; TÞ
can be determined from a chiral effective field theory of pions
and the axion (Grilli di Cortona et al., 2016). For T below
about 100 MeV, Vðϕ; TÞ reduces to the chiral potential in
Eq. (10). At intermediate temperatures comparable to 1 GeV,
Vðϕ; TÞ can be calculated nonperturbatively using lattice
gauge theory. The topological susceptibility χðTÞ was recently
calculated using lattice QCD with dynamical quark fields

(Bonati et al., 2016; Borsanyi et al., 2016; Petreczky,
Schadler, and Sharma, 2016; Trunin et al., 2016). The
behavior of Vðϕ; TÞ near its maxima has received much less
attention.
When T is orders of magnitude above the QCD scale

of about 1 GeV, the V 0 term in Eq. (24) is negligible. The
Hubble friction term proportional to _ϕ causes ϕðxÞ to relax to
a time-independent value ϕ̄. There is no energetically pre-
ferred value of ϕ, so ϕ̄ varies slowly across the Universe
almost everywhere. Inside any circle around which ϕ̄ changes
continuously from 0 to 2πfa, there must be a topological
defect called a cosmic string. The cosmic string is a narrow
tube with a width of the order of 1=fa inside which the Peccei-
Quinn symmetry remains unbroken. As the Universe con-
tinues to expand and cool, the network of cosmic strings
evolves, with small closed loops shrinking and disappearing,
long cosmic strings becoming straighter, and cosmic strings
crossing and reconnecting. In all these processes, axions are
radiated. When T decreases to below the QCD scale, the
remaining cosmic strings decay into axions. Most of the
axions from this cosmic string mechanism are relativistic and
incoherent when they are produced. The subsequent Hubble
expansion makes them highly nonrelativistic and gives them
large occupation numbers.
As the temperature T decreases toward the QCD scale,

the V 0 term in Eq. (24) becomes increasingly important. The
energetically preferred values of the axion field ϕ are the
minima of Vðϕ; TÞ at nð2πfaÞ, where n is an integer. In a
region where the axion field has relaxed to a value ϕ̄ between
−πfa and þπfa, the field begins to oscillate around 0 with
amplitude jϕ̄j. As the temperature decreases, the Hubble
expansion rate _R=R decreases roughly as T2. The oscillations
are at first damped by the Hubble friction term in Eq. (24), but
when its effects become negligible, the field continues to
oscillate with a smaller amplitude ϕ̄ that varies slowly in
space. Such an oscillation can be interpreted as a BEC of
axions with number density maϕ̄

2. The vacuum misalignment
mechanism is the production of axions in the form of these
oscillations of the axion field. These axions are coherent,
highly nonrelativistic, and have large occupation numbers.
The vacuum misalignment mechanism and the cosmic

string mechanism have traditionally been considered as two
independent mechanisms whose contributions to axion pro-
duction must be added. Updated calculations of the vacuum
misalignment mechanism have been given by Bae, Huh, and
Kim (2008) and Kim and Kim (2018). A recent calculation of
the cosmic string mechanism was presented by Hiramatsu et
al. (2011). The string tension of the cosmic strings depends
logarithmically on the large ratio of fa to the Hubble
expansion rate. Most previous numerical simulations required
extrapolations in the string tension by about an order of
magnitude. Klaer and Moore (2017) recently pointed out that
in numerical simulations that take into account the large string
tension, the vacuum misalignment mechanism must be con-
sidered simultaneously. Further progress on numerical simu-
lations of axion production should allow definitive predictions
for the production of the QCD axion in the early Universe
(Gorghetto, Hardy, and Villadoro, 2018; Kawasaki et al.,
2018).
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B. Axion miniclusters

When the temperature of the early Universe is comparable
to the QCD scale of about 1 GeV, regions in which ϕ̄ is
farther from the minima of Vðϕ; TÞ have larger axion
energy density. Hogan and Rees (1988) pointed out that
the overdense regions can become gravitationally bound,
and they can decouple from the Hubble expansion of the
Universe. They referred to these gravitationally bound sys-
tems of axions as axion miniclusters. When the axion dark
matter evolves into the halos of galaxies, the axion mini-
clusters may become localized regions in which the mass
density is many orders of magnitude larger than the local dark
matter mass density.
The distribution of the mass M for axion miniclusters has

been calculated using various simplifying assumptions
(Enander, Pargner, and Schwetz, 2017; Fairbairn et al.,
2018). The temperature-dependent mass of the axion was
taken into account, but the periodicity of Vðϕ; TÞ as a function
of ϕ was ignored. For the QCD axion with mass 10−4 eV, the
peak in the distribution at the time of matter-radiation equality
is near 10−14M⊙, where M⊙ is the mass of the Sun (Enander,
Pargner, and Schwetz, 2017). As the Universe evolves further,
the distribution for M broadens. The value of M at the peak
decreases, while the distribution expands to higherM from the
merger of miniclusters into more massive miniclusters
(Fairbairn et al., 2018).
There do not seem to be any quantitative theoretical

predictions of the fraction fmc of the axion dark matter in
the form of axion miniclusters. Gravitational microlensing has
been used to place an upper bound on fmc (Fairbairn, Marsh,
and Quevillon, 2017). For the QCD axion with mass
ma ¼ 10−4�1 eV, the bound is fmc < 0.08 × 10�0.12.
Kolb and Tkachev (1993, 1994) studied the time evolution

of axion miniclusters as the temperature decreases to below
the QCD scale by solving Eq. (24) for the axion field in the
expanding flat Universe. For the potential Vðϕ; TÞ, they used
the instanton potential in Eq. (16) with a temperature-
dependent axion mass maðTÞ. Their initial configurations
had many local peaks in the axion energy density. As time
evolves, the lower peaks remain almost unchanged, con-
sistent with being frozen by Hubble friction. However the
higher peaks, which can be identified as axion miniclusters,
become smaller in size and roughly spherically symmetric.
The axion field ϕðr; tÞ oscillates rapidly with angular
frequency near ma. The amplitude ϕ0 at the center is a
substantial fraction of πfa, which is the value of ϕ where the
axion potential is maximum. Kolb and Tkachev studied the
subsequent time evolution of individual peaks by solving
Eq. (24) with spherical symmetry. The time evolution has
three stages in which the amplitude ϕ0 at the center
has different behavior: (1) ϕ0 is a substantial fraction of
πfa, (2) there are multiple cycles in which ϕ0 grows to
near πfa for a while and then suddenly collapses, and (3) ϕ0

is much smaller than πfa. Kolb and Tkachev referred to
these three-stage localized axion field configurations as
axitons. The possibility of producing axitons has not been
taken into account in most subsequent studies of axion
miniclusters.

C. Thermalization

The vacuum misalignment mechanism produces axions that
are already in a BEC. The cosmic string mechanism produces
incoherent axions with very large occupation numbers. If there
is a thermalization mechanism that can bring these axions into
coherence, they can also become a BEC. When the temper-
ature is comparable to the QCD scale, the thermalization rate
due to 2 → 2 axion scattering is comparable to the Hubble
expansion rate (Sikivie, 2011). The time scale required for the
formation of a condensate is much shorter than that for
reaching thermodynamic equilibrium (Berges and Jaeckel,
2015). Thus, as the temperature of the expanding Universe
decreases below the QCD scale, the nonrelativistic axions
from both mechanisms should form a locally homogeneous
BEC.
As the temperature T of the Universe continues to decrease,

the axion BEC will evolve in accord with classical field
equations. A sufficiently effective thermalization mechanism
would drive the BEC toward the lowest-energy states that are
accessible. When T is well below the QCD scale, 2 → 2 axion
scattering is no longer effective. However Sikivie and Yang
(2009) pointed out that the gravitational scattering of axions
provides a thermalization mechanism for the axion BEC
at temperatures below about 100 eV × ðfa=1012 GeVÞ1=2.
Other investigators obtained similar results (Saikawa and
Yamaguchi, 2013; Noumi et al., 2014). Those results have
also been questioned (Davidson and Elmer, 2013; Davidson,
2015). Sikivie and collaborators showed that rethermalization
of the axion BEC can have observable effects on the dark
matter halos of galaxies (Sikivie, 2011; Erken et al., 2012a,
2012b).
Guth, Hertzberg, and Prescod-Weinstein (2015) argued that

the attractive interactions from gravity and from axion self-
interactions will prevent the thermalization of an axion BEC
with coherence length the size of a galaxy. They pointed out
that a locally homogeneous BEC of axions is unstable to the
formation of localized denser clumps of axions. The clumps
could be axitons bound by axion self-interactions (see Sec. V)
or axion stars bound by gravity (see Sec. VI). In the case of
axion stars, gravitational cooling provides an efficient mecha-
nism for relaxation to a stable configuration (Seidel and Suen,
1994; Guzman and Urena-Lopez, 2006).

IV. NONRELATIVISTIC EFFECTIVE FIELD THEORY

At momentum scales below the axion mass ma, the axion
can be described most simply by a complex scalar field in a
nonrelativistic effective field theory.

A. Complex field

Given the relativistic quantum field theory for the real
Lorentz-scalar field ϕðxÞ with the Lagrangian in Eq. (2), a
nonrelativistic effective field theory (NREFT) can be obtained
by integrating out the scale of the mass ma. The effective field
theory describes particles with momenta small compared to
ma. It should also describe field configurations with gradients
small compared to ma and with angular frequencies suffi-
ciently close to ma.
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Perhaps somewhat surprisingly, the most convenient field
for NREFT is a complex scalar field ψðr; tÞ. The complex field
can be identified naively with the positive-frequency compo-
nent of the real scalar field with a phase factor expð−imatÞ
removed:

ϕðr; tÞ ≈ 1ffiffiffiffiffiffiffiffiffi
2ma

p ½ψðr; tÞe−imat þ ψ�ðr; tÞeþimat�: ð25Þ

A naive effective Lagrangian for ψ can be obtained
by inserting this expression for ϕ into the Lagrangian in
Eq. (2) and then dropping terms with rapidly changing phase
factors of the form expðinmatÞ with nonzero integer n. The
resulting Lagrangian is

Lnaive ¼
i
2
ðψ� _ψ − _ψ�ψÞ − 1

2ma
∇ψ� ·∇ψ

− Vð0Þ
eff ðψ�ψÞ þ 1

2ma
_ψ� _ψ ; ð26Þ

where the naive effective potential Vð0Þ
eff is a function of ψ�ψ .

The terms ð1=2Þ _ϕ2 and −V in Eq. (2) give canceling mass
terms �ð1=2Þmaψ

�ψ . If the axion potential VðϕÞ has the
power series in Eq. (5), the power series for the naive effective
potential is (Eby et al., 2015)

Vð0Þ
eff ðψ�ψÞ ¼ m2

af2a
X∞
n¼2

λ2n
ðn!Þ2

�
ψ�ψ
2maf2a

�
n
: ð27Þ

NREFT can be derived rigorously by starting from an exact
connection between the real field ϕðr; tÞ and a complex field
ψðr; tÞ (Namjoo, Guth, and Kaiser, 2018). The real field and
its time derivative _ϕ, which is the momentum conjugate to ϕ,
can be expressed as

ϕðr; tÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ma

p D½ψðr; tÞe−imat þ ψ�ðr; tÞeþimat�;

_ϕðr; tÞ ¼ −imaffiffiffiffiffiffiffiffiffi
2ma

p D−1½ψðr; tÞe−imat − ψ�ðr; tÞeþimat�; ð28Þ

where D ¼ ð1 − ∇2=m2
aÞ−1=4. These expressions are local in

time, but the operators D and D−1 make them nonlocal in
space. This transformation between the complex fields ψ and
ψ� and the real fields ϕ and _ϕ is a canonical transformation
(Namjoo, Guth, and Kaiser, 2018). The quantum field ϕ
satisfies canonical local equal-time commutation relations,
including ½ϕðr; tÞ; _ϕðr0; tÞ� ¼ iδ3ðr − r0Þ. Remarkably, despite
the nonlocality of Eqs. (28), they imply that ψ satisfies the
canonical local equal-time commutation relations for a non-
relativistic field, including ½ψðr; tÞ;ψ�ðr0; tÞ� ¼ δ3ðr − r0Þ.
Once the transformations in Eqs. (28) have been used to
eliminate the real field ϕðr; tÞ in favor of the complex field
ψðr; tÞ, NREFT can in principle be derived simply by
integrating out the momentum scale ma from the complex
field.

B. Effective Lagrangian

Having identified the field that describes the low-energy
degrees of freedom, the Lagrangian for NREFT can be
constructed more efficiently by using the matching methods
of effective field theory. The effective Lagrangian is assumed
to include all possible local terms consistent with the
symmetries of the original theory at low energy. The coef-
ficients of these terms are determined by matching quantities
calculated in both the original theory and the effective theory.
The principles of effective field theory guarantee that low-
energy observables can be reproduced in the effective theory
with a systematically improvable accuracy. More specifically,
if an observable involves only low energies E satisfying
jEj ≪ ma, its expansion in powers of E=ma can be repro-
duced. An important caveat is that NREFT may not reproduce
terms with an essential singularity in E=ma.
The NREFT for a real Lorentz-scalar field was first

constructed by Braaten, Mohapatra, and Zhang (2016a).
It was called axion EFT, although it can be applied to any
field theory with a real Lorentz-scalar field. The effective
Lagrangian Leff for NREFT can be chosen to have simple
linear dependence on the time derivative _ψ :

Leff ¼ 1
2
iðψ� _ψ − _ψ�ψÞ −Heff : ð29Þ

The effective Hamiltonian density depends on the field ψ and
its gradients, but not on its time derivatives. It can be
expressed as

Heff ¼ T eff þ Veff þWeff ; ð30Þ

where T eff is the kinetic energy density, Veff is the effective
potential, which is a function of ψ�ψ only, andWeff consists of
all interaction terms that depend also on gradients of ψ . An
n-body term inHeff has n factors of ψ and n factors of ψ�. The
kinetic energy density includes all the one-body terms:

T eff ¼
1

2ma
∇ψ� ·∇ψ −

1

8m3
a
∇2ψ�∇2ψ þ � � � : ð31Þ

These terms reproduce the energy-momentum relation E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
−m. The effective potential Veff can be expanded

in powers of ψ�ψ beginning at order ðψ�ψÞ2:

Veffðψ�ψÞ ¼ m2
af2a

X∞
n¼2

vn
ðn!Þ2

�
ψ�ψ
2maf2a

�
n
: ð32Þ

In Braaten, Mohapatra, and Zhang (2016b), Veff included the
one-body term maψ

�ψ . It is more natural to omit this term,
since the effective field theory is obtained by integrating out
the momentum scale ma. The terms in Weff in Eq. (30) are
n-body interaction terms with n ≥ 2 that depend on gradients
of ψ .
An alternative formulation of NREFTwith a complex scalar

field ψ was proposed by Mukaida, Takimoto, and Yamada
(2017). Their effective Lagrangian includes the _ψ� _ψ term in
the naive effective Lagrangian in Eq. (26), which is quadratic
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in the time derivative. The effective potential also differs from
Veff in Eq. (32) beginning with the ðψ�ψÞ3 term. The
equivalence of the two effective field theories was demon-
strated by Braaten, Mohapatra, and Zhang (2016b) and
Namjoo, Guth, and Kaiser (2018) by showing that they give
the same T-matrix elements for low-energy scattering and by
showing that the two effective Lagrangians differ by a
redefinition of the complex field ψðr; tÞ. The equivalence
requires that the effective Lagrangian for the NREFT in
Mukaida, Takimoto, and Yamada (2017) include interaction
terms that depend on _ψ , such as ðψ�ψÞ2ðψ� _ψ − _ψ�ψÞ
(Braaten, Mohapatra, and Zhang, 2016b).
The equation of motion for ψðr; tÞ in NREFT with the

Lagrangian in Eq. (29) has infinitely many terms. A simpler
equation can be obtained by omitting terms in the effective
Hamiltonian that are suppressed. If we consider a configura-
tion in which all gradients are small compared to ma, we can
omit all but the first term in the kinetic energy density in
Eq. (31) and we can omit the term Weff , which consists of
interaction terms with gradients. The equation of motion
reduces to

i _ψ ¼ −
1

2ma
∇2ψ þ V 0

effðψ�ψÞψ ; ð33Þ

where V 0
eff is the derivative with respect to the argument ψ�ψ .

If the effective potential is Veff ¼ ð2πa=maÞðψ�ψÞ2, where a
is the S-wave scattering length, this is the Gross-Pitaevskii
equation. The simplest spherically symmetric solutions of
Eq. (33) have harmonic time dependence:

ψðr; tÞ ¼ ψ0ðrÞeþiεbt: ð34Þ
If εb > 0, it can be interpreted as the binding energy of a

boson. Equation (33) with the naive effective potential Vð0Þ
eff in

Eq. (27) is equivalent to the harmonic approximation for the
real scalar field obtained by inserting Eq. (9) into Eq. (7)
(Visinelli et al., 2018). The field ψ0ðrÞ in Eq. (34) can be
identified with the first harmonic ϕ1ðrÞ in Eq. (9) multiplied
by

ffiffiffiffiffiffiffiffiffiffiffi
ma=2

p
.

NREFT is especially useful when quantum loops are
strongly suppressed by a small quantum-loop factor, such
as m2

a=f2a in Eq. (15). In Braaten, Mohapatra, and Zhang
(2018), the approximation to NREFT in which all quantum
loops are omitted was called the classical nonrelativistic
effective field theory (CNREFT). However there are also
purely classical effects that are suppressed by m2

a=f2a. It may
be more convenient to define CNREFT to be the approxima-
tion to NREFT in which all effects suppressed by m2

a=f2a are
omitted.

C. Effective potential

The dimensionless coupling constants vn for the n → n
axion vertices are coefficients in the power series for the
effective potential Veff in Eq. (32). They can be determined to
leading order in m2

a=f2a by matching tree-level scattering
amplitudes in the relativistic theory and in NREFT in the limit
where all the external three-momenta go to 0 (Braaten,
Mohapatra, and Zhang, 2016b). The coupling constant

v2 ¼ λ4 is obtained simply by matching the 2 → 2 scattering
amplitude, which is given by the 2 → 2 vertex in both the
relativistic theory and NREFT. The coupling constant v3 can
then be obtained by matching the 3 → 3 scattering amplitude,
which is given in the relativistic theory by the sum of the three
diagrams in Fig. 2 and in NREFT by the sum of the first two
diagrams in Fig. 2. The coupling constant v4 can be obtained
by matching the 4 → 4 scattering amplitude. The results for
these first three coefficients are

v2 ¼ λ4; v3 ¼ λ6 − ð17=8Þλ24; ð35aÞ

v4 ¼ λ8 − 11λ4λ6 þ ð125=8Þλ34: ð35bÞ

The result for v3 was first obtained by Braaten, Mohapatra,
and Zhang (2016b). The result for v4 was first calculated
correctly by Braaten, Mohapatra, and Zhang (2018).
Successive truncations of the power series for the effective

potential Veff in Eq. (32) define increasingly accurate approx-
imations only if ψ�ψ is very small compared tomaf2a. For ψ�ψ
of the order of maf2a, an approximation to Veff must include
terms with arbitrarily high powers of ψ�ψ . An example is the

naive effective potential Vð0Þ
eff in Eq. (27), which was first

introduced by Eby et al. (2015). The naive effective potential
for the chiral potential in Eq. (10) has a convenient integral
representation (Eby, Leembruggen, Suranyi, andWijewardhana,
2017):

Vð0Þ
eff ðψ�ψÞ ¼ ðmπfπÞ2

�
1 −

z
4ð1þ zÞ2 n̂

−
1

1þ z

Z
1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cos½n̂1=2 sinðπtÞ�

q �
;

ð36Þ
where the dimensionless number density n̂ is

n̂ ¼ 2ψ�ψ=maf2a: ð37Þ
The naive effective potential for the instanton potential in
Eq. (16) can be expressed analytically in terms of a Bessel
function (Eby et al., 2015):

Vð0Þ
eff ðψ�ψÞ ¼ ðmafaÞ2½1 − 1

4
n̂ − J0ðn̂1=2Þ�: ð38Þ

At large ψ�ψ , the naive effective potentials in Eqs. (36) and (38)
approach −ð1=2Þmaψ

�ψ plus a constant that is different for the
chiral potential and the instanton potential. As shown in Fig. 3,
the approach to the constant is through oscillations in n̂1=2 with
decreasing amplitude.

FIG. 2. The tree-level diagrams for low-energy 3 → 3 scattering
in the relativistic axion theory. The first two diagrams are also
diagrams in NREFT. In the third diagram, the thicker line
indicates a virtual axion whose invariant mass is approximately
3m.
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A sequence of improved effective potentials VðkÞ
eff , each of

which includes additional terms with all powers of ψ�ψ , was
proposed by Braaten, Mohapatra, and Zhang (2016b). The

effective potential VðkÞ
eff is defined by matching tree-level

scattering amplitudes in the low-momentum limit in the
relativistic theory and in NREFT from diagrams with at most
k virtual particles. For k ¼ 0, this gives the naive effective

potential Vð0Þ
eff defined by the power series in Eq. (27). The

coefficients in the power series for the first improved effective

potential Vð1Þ
eff were determined by Braaten, Mohapatra, and

Zhang (2016b).

D. Axion loss terms

The decay of an axion into two photons produces photons
with energies ð1=2Þma in the axion rest frame. States that
include these high-energy photons cannot be described
explicitly in NREFT, but the effects of axion decay on
nonrelativistic axions can be described by adding the anti-
Hermitian term −iðΓa=2Þψ�ψ to the effective Hamiltonian
density, where Γa is the axion decay rate in Eq. (18).
There are reactions that produce relativistic axions from

initial states that include only nonrelativistic axions. The
simplest such reaction is 4 → 2 scattering, which produces
two relativistic axions each with energy close to 2ma. States
that include relativistic axions cannot be described explicitly
in NREFT. However the effects on nonrelativistic axions from
the reactions that produce relativistic axions can be taken into
account systematically through anti-Hermitian terms in the
effective Hamiltonian densityHeff. The highly inelastic nature
of the reactions that produce relativistic axions ensures that
their effects can be described by local terms in Heff (Braaten,
Hammer, and Lepage, 2016).
The imaginary part of the effective potential for NREFT can

be expanded in powers of ðψ�ψÞ2 beginning at order ðψ�ψÞ4:

ImVeffðψ�ψÞ ¼ −m4
a

X∞
n¼2

x2n
½ð2nÞ!�2

�
ψ�ψ
2maf2a

�
2n
: ð39Þ

The dimensionless coupling constants x4 and x6 were calcu-
lated to leading order in m2

a=f2a by Braaten, Mohapatra, and
Zhang (2017) by matching the square of the tree-level 2n → 2

amplitude with vanishing incoming three-momenta in the
relativistic theory with the imaginary part of the tree-level
amplitude in NREFT. The results are

x4 ¼
ffiffiffi
3

p

64π
½λ6 − λ24�2; x6 ¼

ffiffiffi
2

p

48π
½λ8 − λ4λ6�2: ð40Þ

[These coefficients are both zero for the instanton potential
whose dimensionless coupling constants are λ2n ¼ ð−1Þnþ1.]
The coefficient of ðψ�ψÞ2n in ImVeff is suppressed by a factor
of m2

a=f2a compared to the coefficient of ðψ�ψÞ2n in ReVeff in
Eq. (32). This suppression follows from the optical theorem,
which implies that the square of the tree-level 2n → 2

amplitude is proportional to the imaginary part of a sum of
one-loop diagrams and must therefore be suppressed by the
same factor as a quantum loop.
The Lagrangian for NREFT in Eq. (29) has a Uð1Þ

symmetry in which the field ψðr; tÞ is multiplied by a phase
eiα. If the Hamiltonian density was Hermitian, the Uð1Þ
symmetry would imply conservation of a particle number:

N ¼
Z

d3rψ�ψ : ð41Þ

This number N should be interpreted as the total number of
nonrelativistic axions. However the Hamiltonian density for
NREFT includes anti-Hermitian terms. Its equations of motion
therefore predict that N decreases continually with time. The
rate of decrease in N is predicted to be

−
d
dt

N ¼ ΓaN þm4
a

Z
d3r

�
x4
72

�
ψ�ψ
2maf2a

�
4

þ � � �
�
; ð42Þ

where Γa is the decay rate of the axion into two photons in
Eq. (18). In the second term, we showed explicitly only the
ðψ�ψÞ4 term from 4 → 2 reactions. The corresponding term in
the energy loss rate dE=dt was derived by Hertzberg (2010)
using the real scalar field theory. He referred to the loss
process as “quantum radiation.” This name is misleading,
because this is a classical loss process whose rate can be
derived from tree diagrams. We see in Sec. VII.A that the
4 → 2 reaction does not give the leading contribution to the
loss rate of nonrelativistic axions. There are additional
mechanisms for the emission of relativistic axions whose
effects on nonrelativistic axions do not seem to be reproduced
by the low-energy effective field theory NREFT.

E. Newtonian gravity

A fundamental description of axions with gravity is
provided by the action from general relativity in Eq. (19)
for the real scalar field ϕðxÞ and the metric tensor gμνðxÞ. A
low-energy effective field theory for axions with gravity could
be obtained by integrating out fluctuations with momenta of
order ma and larger for both ϕðxÞ and the metric tensor. The
fields that describe the low-energy degrees of freedom are a

FIG. 3. Naive effective potential Vð0Þ
eff with ð1=2Þmaψ

�ψ added
as a function of jψ j: chiral potentials for z ¼ 0.48 (thicker solid
curve) and for z ¼ 0.45 and 0.51 (thinner solid curves) and
instanton potential (dotted curve). The thin horizontal lines are
the asymptotic values at large jψ j.
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complex scalar field ψðr; tÞ and additional fields that arise
from the metric tensor. If the additional fields are identified,
the effective Lagrangian could be constructed by using the
matching methods of effective field theory. It would be
necessary to match scattering amplitudes not only for scalars
but also for gravitons.
An alternative approach would be to start from the low-

energy effective field theory NREFT in the absence of gravity,
whose Lagrangian is given in Eq. (29), and then introduce
gravity by requiring consistency with general coordinate
invariance. There is a truncation of the effective Lagrangian
for NREFT that retains the most important terms in the
nonrelativistic limit and has Galilean symmetry. For example,
the kinetic energy density in Eq. (31) must be truncated after
the ∇ψ� ·∇ψ term. A general coordinate invariance for
nonrelativistic field theories with Galilean symmetry was
introduced by Son and Wingate (2006). It might be possible
to use this nonrelativistic general coordinate invariance to
deduce terms in the Lagrangian for NREFT with gravity.
General relativity applied to matter systems reduces in

the nonrelativistic limit to Newtonian gravity plus post-
Newtonian corrections. A simple guess for the low-energy
effective field theory for axions with gravity is that it reduces
to NREFT for the complex field ψ with Newtonian gravity. In
Newtonian gravity, the space-time-dependent metric tensor
reduces to a single real function: the gravitational potential
Φðr; tÞ. If we keep only the leading term in the kinetic energy
density in Eq. (31) and omit the gradient interaction termWeff ,
the effective action reduces to

S ¼
Z

dt
Z

d3r

�
i
2
ðψ� _ψ − _ψ�ψÞ − 1

2ma
∇ψ� · ∇ψ

−
1

8πG
∇Φ · ∇Φ − Veffðψ�ψÞ −maψ

�ψΦ
�
: ð43Þ

Since the Lagrangian does not depend on time derivatives of
Φ, the gravitational potential is not dynamical. Its source is the
mass density maψ

�ψ. The variational equations are

i _ψ ¼ −
1

2ma
∇2ψ þ ½V 0

effðψ�ψÞ þmaΦ�ψ ; ð44aÞ

∇2Φ ¼ 4πGmaψ
�ψ : ð44bÞ

If Veff ¼ 0, these are the Schrödinger-Poisson equations. If
Veff ¼ ð2πa=maÞðψ�ψÞ2, where a is the S-wave scattering
length, Eqs. (44) are the Gross-Pitaevskii-Poisson (GPP)
equations. The energy is the sum of kinetic, self-interaction,
and gravitational terms:

E¼
Z

d3r

�
1

2ma
∇ψ� ·∇ψþVeffðψ�ψÞþmaψ

�ψΦ
�
: ð45Þ

The total energy in the relativistic theory can be approximated
by the mass energy Nma, where N is the number of non-
relativistic axions in Eq. (41), or, more accurately, by
Nma þ E. In the simplest spherically symmetric solutions,
ΦðrÞ is time independent and ψðr; tÞ has the harmonic time
dependence in Eq. (34). The asymptotic solution to Eq. (44b)

for the gravitational potential as r → ∞ is ΦðrÞ →
−GNma=r, where N is the axion number in Eq. (41).
The periodic spherically symmetric solutions of Eqs. (44)

are uniquely determined by the central number density n0,
which can have any positive value. In some ranges of n0, the
solutions are unstable to small perturbations. Insight into
stability under spherically symmetric perturbations can be
obtained from Poincare’s theory of linear series of equilibria
(Katz, 1978). The number of unstable modes can change only
at a critical point where dεb=dn0 is infinite. At such a critical
point, the number of unstable modes changes by either þ1
or −1.

V. SELF-BOUND SYSTEMS

After a brief discussion of self-bound fluids, we discuss
oscillons, which are self-bound configurations in a real scalar
field theory, and axitons, which are oscillons in a field theory
for axions.

A. Self-bound fluids

Many-body systems of particles that are self-bound fluids
arise in various areas of physics. Atomic nuclei are quantum
systems consisting of protons and neutrons bound by the
nuclear force of QCD. They range from few-body clusters to
liquid drops of nuclear matter consisting of hundreds of
nucleons. The free expansion into the vacuum of a gas of
helium-4 atoms produces bound systems ranging from few-
atom helium molecules (Schollkopf and Toennies, 1996) to
droplets of superfluid helium (Gomez et al., 2011). Self-
bound droplets of atoms bound by dipolar interactions have
recently been produced in experiments with ultracold potas-
sium-39 atoms (Schmitt et al., 2016; Semeghini et al., 2018).
A self-bound fluid can be described in a field theory by a

classical solution that remains localized in space as time
evolves. Since free field theories have no such classical
solutions, the localized solutions are bound by the self-
interactions of the fields. A soliton is a localized classical
solution of a field theory that has particlelike properties. The
strict definition of a soliton requires that (1) it propagates
unchanged except in its position, and (2) it emerges from
collisions unchanged except perhaps for a time delay. A more
flexible definition might require only the first condition.
The classic example of a field theory with solitons is

the sine-Gordon model in 1þ 1 spacetime dimensions (1D).
The soliton in its rest frame has a unique time-independent
solution ϕðxÞ whose total energy is 8f2ama. The sine-
Gordon model also has localized solutions ϕðx; tÞ with larger
energies called breathers, which in their rest frames are
periodic functions of time with any angular frequency smaller
than ma.
Derrick’s theorem guarantees that in any spacetime dimen-

sion d higher than 2, a field theory with a Lagrangian of the
form in Eq. (2) or its generalizations with a multicomponent
field cannot have a soliton solution that is time independent in
its rest frame (Derrick, 1964). It follows from a simple scaling
argument that shows that the energy of any time-independent
solution ϕðrÞ can be lowered by decreasing its size. In
particular, the rescaled solution ϕðλrÞ has gradient energy
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that scales like λ2−d and potential energy that scales like λ−d. If
d > 2, the total energy can therefore be made arbitrarily small
by increasing λ.
There are ways to evade Derrick’s theorem. The Skyrme

model is a field theory in 3þ 1 spacetime dimensions (3D)
whose field UðxÞ takes its values in the three-dimensional Lie
group SUð2Þ (Skyrme, 1962). Its quanta can be interpreted as
the pions of QCD. The Skyrme model has a topological
quantum number whose integer values can be interpreted as a
baryon number. Its solitons with baryon number 1 are called
skyrmions, and they can be identified with nucleons. It also
has soliton solutions with larger and larger baryon numbers
that can be identified with nuclei (Braaten, Townsend, and
Carson, 1990). The Skyrme model evades Derrick’s theorem
by having a field UðxÞ with values on a curved manifold.

B. Oscillons

Bogolyubsky and Makhankov (1976) discovered that if the
potential VðϕÞ in the Lagrangian in Eq. (2) has a suitable
form, there are classical solutions that remain approximately
localized and approximately periodic in time for a very large
number of oscillation periods. They referred to such a solution
as a pulson. Pulsons were subsequently studied by Gleiser
(1994), who proposed the name oscillon. They have also
been called quasibreathers (Fodor et al., 2006). Oscillons
evade Derrick’s theorem through their time dependence.
Oscillons were discovered in the real scalar field theory
with a symmetric double-well potential (Bogolyubsky and
Makhankov, 1976). Oscillons were subsequently discovered
in field theories with other potentials VðϕÞ, including the sine-
Gordon model (Piette and Zakrzewski, 1998). A necessary
condition for oscillons is that the potential satisfy V 00ðϕÞ < 0

for some region of ϕ.
Oscillons have often been studied by starting from a

spherically symmetric initial configuration ϕðr; 0Þ. The
classical field equations are then solved numerically until
the solution ϕðr; tÞ can be approximated by a localized
periodic configuration. The time evolution of the solution
has three stages: (1) the relaxation stage, in which it relaxes to
an oscillon configuration by radiating away a significant
fraction of its initial energy into outgoing waves; (2) the
oscillon stage, in which it remains stable for a very large
number of oscillations, while slowly emitting outgoing waves;
and (3) the decay stage, in which it suddenly becomes
unstable and disappears into outgoing waves. In the oscillon
stage, the classical solution has properties that change slowly
in time. The basic instantaneous properties of the oscillon
include the following:

• the angular oscillation frequency ω,
• the central energy density ρ0,
• the total energy or mass M ¼ R

d3rH, where H is the
Hamiltonian density in Eq. (4), and

• the radius R99 that encloses 99% of the energy.
As time proceeds, the frequency ω steadily increases toward
ma and M steadily decreases.
Approximate solutions for oscillons can be obtained by

using an asymptotic expansion. The periodic solution
for a spherically symmetric oscillon with angular frequency

ω ¼ ma

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
has an asymptotic expansion of the form

(Fodor et al., 2008)

ϕðr; tÞ ¼
X∞
n¼1

ϵnϕnðϵmar;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
matÞ; ð46Þ

where each of the functions ϕn is localized. If the potential
VðϕÞ is an even function of ϕ, the sum is over odd powers n
only. The first function ϕ1 has the separable form of the
harmonic approximation in Eq. (9). The basic properties of the
oscillon have asymptotic expansions in ϵ (Fodor et al., 2008).
If VðϕÞ has the even power series in Eq. (5), the leading terms
in the expansions of the basic properties of the oscillon are

ρ0 ¼ ð75.3ϵ2=jλ4jÞðmafaÞ2; ð47aÞ

M ¼ ð75.6=jλ4jϵÞf2a=ma; ð47bÞ

R99 ¼ ð2.75=ϵÞ=ma: ð47cÞ

An important issue is the lifetime of the oscillon before it
disappears into outgoing waves. The oscillon lifetime has
been studied in the field theory with a symmetric double-well
potential using an initial Gaussian configuration ϕðr; 0Þ with
an adjustable radius r0. Copeland, Gleiser, and Muller (1995)
found that oscillons with lifetimes of over 1000 oscillations
could be produced using any value of r0 in a range that
extended by about a factor of 2. Honda and Choptuik (2002)
showed that there are critical values of r0 in this range near
which the oscillon lifetime increases dramatically. Near a
critical radius r0�, the lifetime appears to be linear in
logð1=jr0 − r0�jÞ, which diverges as r0 approaches r0�.
The spectrum of scalar waves emitted by the oscillon was

studied by Salmi and Hindmarsh (2012) in the model with a
symmetric double-well potential. They found that the power
spectrum of radiation with angular frequency ω from an
oscillon with frequency ω0 just belowma has sharp peaks near
integer harmonics of ω0. The largest peak is near 2ω0. The
power in each successive higher harmonic is smaller by orders
of magnitude. The second strongest peak in ω is nearma. They
explained this peak by the oscillation frequency of the oscillon
having a distribution that can be modeled by a Breit-Wigner
resonance centered at ω0 with a tail that extends above ma. If
VðϕÞ is an even function of ϕ with respect to its minimum, as
in the sine-Gordon model, the peaks are at odd-integer
harmonics of ω0 (Salmi and Hindmarsh, 2012). Peaks in
the radiation spectrum at odd-integer harmonics of ω0 have
also been observed in a model whose potential VðϕÞ has an
attractive ϕ4 term and a repulsive ϕ6 term (Mukaida,
Takimoto, and Yamada, 2017).
If the oscillon configuration has only long wavelengths

much larger than 2π=ma and if the frequency difference
ma − ω is small compared toma, the oscillon can be described
more simply by the complex field ψðr; tÞ of NREFT. If we
omit terms in the Hamiltonian that are suppressed by addi-
tional gradients of ψ , the classical field equation reduces to
Eq. (33). This equation has time-periodic solutions with the
form in Eq. (34). The basic properties of the oscillon in
NREFT include the following:

Eric Braaten and Hong Zhang: Colloquium: The physics of axion stars

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 041002-11



• the binding energy εb of a boson, which corresponds to
the oscillation frequency ω ¼ ma − εb,

• the central number density n0,
• the particle number N in Eq. (41),
• the total binding energy Eb ¼ −

R
d3rHeff, and

• the radius R99 that encloses 99% of the particle number.
The total central energy density ρ0 of the oscillon can be
approximated by the central mass density man0. The mass M
of the oscillon can be approximated by Nma or, more
accurately, by Nma − Eb.

C. Axitons

The axion field theory with the instanton potential in
Eq. (16) is just the sine-Gordon model in 3D. Since the chiral
potential in Eq. (10) has the same qualitative behavior as the
instanton potential, the axion field theory with the chiral
potential also has oscillon solutions. An oscillon in an axion
field theory can also be called an axiton. Naive approxima-
tions to the spherically symmetric oscillon solutions ϕðr; tÞ
have been obtained using the harmonic approximation in
Eq. (9) (Visinelli et al., 2018). Accurate solutions could be
obtained by solving the infinite set of coupled equations for
the harmonics ϕ2nþ1ðrÞ in Eq. (8) (Piette and Zakrzewski,
1998) or by solving Eq. (7) for the time-dependent field ϕðr; tÞ
directly.
An oscillon configuration in which gradients are always

small compared toma can be described more simply using the
complex field ψðr; tÞ of NREFT. The simple equation of
motion in Eq. (33) has spherically symmetric solutions ψðr; tÞ
with the harmonic time dependence in Eq. (34). This equation
for ψðr; tÞ with the naive effective potential Veff in Eq. (27) is
equivalent to the harmonic approximation for ϕðr; tÞ. The
numerical results for oscillons presented below are calculated
by solving this equation using the naive chiral effective
potential in Eq. (36) with z ¼ 0.48 or using the naive instanton
effective potential in Eq. (38).
In Fig. 4, we show the radius R99 versus the mass M as the

central number density n0 is increased. There are two branches
of solutions that meet at a critical point indicated by the solid
dot. As n0 increases, the solutions approach the critical point
along the upper unstable branch and then move away from the
critical point along the locally stable lower branch. In the
region well before the critical point where R99 versus M is a
straight line on a log-log plot, the basic properties of the
unstable oscillon are given by the leading terms in the
asymptotic expansions in Eqs. (47). For the chiral potential
with z ¼ 0.48, the basic properties of the oscillon at the
critical point are

εb� ¼ 0.050ma; n0� ¼ 13.9maf2a; ð48aÞ

Eb� ¼ −26.8f2a=ma; N� ¼ 488f2a=m2
a; ð48bÞ

R99� ¼ 8.6=ma: ð48cÞ

(For the instanton potential, the five numerical coefficients are
0.052, 6.5, −8.9, 402, and 9.0.) For the chiral potential with
z ¼ 0.48 and ma ¼ 10−4�1 eV, the critical number of axions

is N� ¼ 2 × 1050∓4. The critical mass N�ma is 3 × 1010∓3 kg,
and the critical radius R99� is 2 × 10−2∓1 m.
The total binding energy Eb of the oscillon is negative at the

critical point. The negative sign indicates that the oscillon is
unstable to sufficiently large fluctuations: there are configu-
rations of outgoing waves with the same number N of bosons
and lower total energy. The total binding energy changes
sign to positive at a point indicated in Fig. 4 by the open
dot. Beyond the open dot, the oscillon is stable even to
large fluctuations. For the chiral potential with z ¼ 0.48,
the basic properties of the oscillon with zero binding energy
are εb ¼ 0.144ma, n0 ¼ 22.1maf2a, N ¼ 729f2a=m2

a, and
R99 ¼ 5.7=ma. (For the instanton potential, the four numerical
coefficients are 0.116, 13.0, 494, and 6.4.)
If the massM of the oscillon is much larger than the critical

valueM�, there is a scaling region in which its basic properties
scale as powers of M. For the chiral potential with z ¼ 0.48,
the basic properties of the oscillon in the scaling region are

εb ¼ 0.5ma; ð49aÞ

n0 ¼ 25ðM=M�Þ1.5maf2a; ð49bÞ

Eb ¼ 240ðM=M�Þ2.7f2a=ma; ð49cÞ

R99 ¼ 2.8ðM=M�Þ1.2=ma: ð49dÞ

(For the instanton potential, the four numerical coefficients
are 0.5, 18, 200, and 2.8.) The central density n0 has
much larger fluctuations around the scaling behavior than
the other properties. The size of the boson binding energy εb
in Eq. (49a) makes the accuracy of the nonrelativistic
approximation questionable.
NREFT provides a simple explanation for a puzzling

feature of oscillons: their rather sudden decay into outgoing

FIG. 4. Radius R99 vs the massM ¼ Nma for the oscillon of the
axion field. The axion mass is ma ¼ 10−4 eV. The axion
potential is either the chiral potential with z ¼ 0.48 (black lines)
or the instanton potential (gray lines). The solid dot is the critical
point that separates the unstable branch (dashed line) from the
locally stable branch (solid line). The open dot marks the point to
the left of which the lower branch is unstable to large fluctuations.
The arrow indicates the direction of time evolution of the oscillon
from the emission of relativistic waves.
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waves. The mass of an oscillon decreases steadily because of
the emission of scalar waves with relativistic frequencies. An
oscillon on the stable branch in Fig. 4 therefore moves steadily
to the left. When it reaches the point where the binding energy
is 0, it becomes unstable to large fluctuations and it can
disappear into outgoing waves with nonrelativistic frequencies
near ma. If the oscillon reaches the critical point, it becomes
unstable to small fluctuations and it must disappear into
outgoing nonrelativistic waves. The explanation for the
sudden decay of the oscillon in terms of the real scalar field
is more complicated (Gleiser and Sicilia, 2008).
Studies of the time evolution of the axion field in the

expanding Universe by Kolb and Tkachev (1993, 1994)
revealed the existence of localized solutions with the three
stages described in Sec. III.B. The second stage consists of
multiple cycles of growth in the amplitude of ϕ to a value near
πfa followed by sudden collapse. Kolb and Tkachev used the
word axiton to refer to these three-stage localized solutions.
We suggest that a more useful definition of an axiton is an
oscillon in an axion field theory. By this definition, axiton
would refer to the axion field during the growth phase of one of
the multiple cycles. The sudden collapse of the axiton is caused
by its central density decreasing to below the critical value.

VI. GRAVITATIONALLY BOUND SYSTEMS

We first describe the simplest boson stars, which are
gravitationally bound BECs of bosons that have no self-
interactions. We then discuss axion stars, which are bound
BECs of axions with gravity.

A. Boson stars

A boson star is a gravitationally bound system of bosons.
Reviews of boson stars from a general relativity perspective
have been presented by Jetzer (1992) and Liebling and
Palenzuela (2012). The simplest boson stars consist of
identical bosons whose number is conserved. Such a boson
star can be described by a classical solution of the Einstein-
Klein-Gordon equations with a complex field ΨðxÞ. These
equations have black-hole solutions with Ψ ¼ 0 whose size is
roughly the Schwarzchild radius 2GM. They also have boson-
star solutions with much larger radius that are localized and
spherically symmetric, with a time-independent metric tensor
and a harmonic scalar field Ψðr; tÞ ¼ Ψ0ðrÞe−iωt. There is a
critical mass M� of the boson star above which there are no
such solutions. A boson star with mass greater than M� will
either collapse into a black hole or decrease its mass to below
M� by scalar field radiation. The solutions for boson stars
were first studied by Kaup (1968) and Ruffini and Bonazzola
(1969). Breit, Gupta, and Zaks (1984) determined the critical
mass accurately and expressed it in a convenient parametric
form M� ¼ 0.633=Gma. If the boson mass is ma ¼ 10−4 eV,
the critical mass is 8 × 10−7M⊙, where M⊙ is the mass of
the Sun.
Identical bosons whose number is not conserved can also be

bound gravitationally into a boson star. The boson star can be
described by a classical solution of the Einstein-Klein-Gordon
equations in Eqs. (20) for a real scalar field ϕðxÞ with

V 0 ¼ m2
aϕ. There are black-hole solutions with ϕ ¼ 0.

All periodic solutions with nonzero ϕ have infinite energy,
because they must have standing scalar waves extending to
infinity, with the flux of the incoming waves balancing that of
the outgoing waves. Seidel and Suen (1991) discovered that
there are boson-star solutions that can be accurately approxi-
mated by localized periodic solutions. They referred to such
solutions that are approximately periodic and approximately
localized as oscillatons. The critical mass for a boson star with
a non-self-interacting real scalar field is M� ¼ 0.607=Gma
(Urena-Lopez, Matos, and Becerril, 2002). This is about 4%
smaller than the critical mass of a boson star with a complex
scalar field.
If the massM of the boson star is much smaller thanM�, the

bosons are all nonrelativistic. In this limit, the equations for a
boson star with either a real scalar field or a complex scalar
field can be reduced to the Schrödinger-Poisson equations
given by Eqs. (44) with Veff ¼ 0. The boson star is a
gravitationally bound BEC in which all the bosons are in
the same quantum state with the wave function ψðr; tÞ.
Chavanis and Delfini (2011) obtained simple scaling results
for some basic properties of the boson star as functions of its
massM ¼ Nma in the limit GMma ≪ 1. The basic properties
of the nonrelativistic boson star consisting of bosons with no
self-interactions are

εb ¼ 0.159ðGMmaÞ2ma; ð50aÞ

ρ0 ¼ 4.23 × 10−3ðGMmaÞ3Mm3
a; ð50bÞ

Eb ¼ 6.15ðGMmaÞ2M; ð50cÞ

R99 ¼ 10.05ðGMmaÞ−1=ma: ð50dÞ

As M increases, the radius R99 decreases, which is somewhat
counterintuitive.

B. Dilute axion stars

An axion star is a boson star that consists of axions, a
possibility first considered by Tkachev (1991). The potential
energy provided by axion self-interactions can alter the
balance of forces in the star. The interaction between a pair
of axions gives an attractive force, because the scattering
length a in Eq. (6) is negative. The classical solutions for an
axion star can be determined by solving the Einstein-Klein-
Gordon equations in Eq. (20) for a real scalar field ϕðr; tÞ with
axion potential VðϕÞ. The solutions are approximately local-
ized and approximately periodic, so they can be called
oscillatons. Solutions for spherically symmetric axion stars
were first calculated numerically by Barranco and Bernal
(2011). They found solutions with central energy density
comparable to the QCD scale ðmafaÞ2, but these solutions are
actually unstable (Eby et al., 2019).
There are stable solutions with central energy density much

smaller than the QCD scale. We refer to these solutions as
dilute axion stars. The equations for dilute axion stars can be
greatly simplified without much loss of accuracy. The axions
are nonrelativistic, so they can be described by the complex
scalar field ψðr; tÞ of NREFT. The number density ψ�ψ is
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small compared to maf2a, so the effective potential can be
approximated by the leading term in its power series:

Veffðψ�ψÞ ≈ 2πa
ma

ðψ�ψÞ2 ¼ λ4
16f2a

ðψ�ψÞ2: ð51Þ

Finally, the gravitational forces are weak, and they can be
described by Newtonian gravity. Dilute axion stars can
therefore be described accurately by the GPP equations in
Eqs. (44). These equations were used by Chavanis to derive
simple variational approximations to basic properties of boson
stars with attractive self-interactions (Chavanis, 2011). His
results can be applied to axion stars simply by replacing the
scattering length a by the expression in Eq. (6). They imply
that dilute axion stars have a maximum mass of order
G−1=2fa=ma.
Variational methods provide simple approximations to the

solutions for axion stars (Chavanis, 2011; Joshua Eby et al.,
2018; Schiappacasse and Hertzberg, 2018). More accurate
solutions can be obtained by matching asymptotic expansions
(Kling and Rajaraman, 2018). The most accurate solutions are
obtained by solving differential equations numerically. The
results presented below were obtained by solving the
Schrödinger-Poisson equations in Eqs. (44), where Veff is
either the naive effective chiral potential in Eq. (36) or the
naive effective instanton potential in Eq. (38).
The dependence of the radius R99 of the dilute axion star on

the mass M is illustrated in Fig. 5. There are two branches of
solutions that meet at the critical point indicated by the solid
dot. As the central number density n0 increases, the solutions
approach the critical point along the stable upper branch and
then move away from the critical point along the unstable
lower branch. The number of spherically symmetric unstable
modes changes from 0 to 1 at the critical point. Well before the
critical point, the basic properties of the stable dilute axion star
reduce to those in Eq. (50) for a boson star consisting of
nonrelativistic bosons with no self-interactions.

The GPP equations were used by Chavanis and Delfini
(2011) to derive scaling approximations to basic properties of
a dilute axion star at the critical mass. The basic properties of
the critical dilute axion star are

εb� ¼ ð36=jλ4jÞðGf2aÞma; ð52aÞ

n0� ¼ ð404=λ24ÞðGf2aÞmaf2a; ð52bÞ

Eb� ¼ ð90.7=jλ4j3=2ÞðGf2aÞ1=2f2a=ma; ð52cÞ

N� ¼ ð10.15=jλ4j1=2ÞðGf2aÞ−1=2f2a=m2
a; ð52dÞ

R99� ¼ ð0.55jλ4j1=2ÞðGf2aÞ−1=2=ma: ð52eÞ

If the axion mass isma ¼ 10−4�1 eV, the critical number with
the chiral potential is N� ¼ 1.2 × 1057∓3. (For the instanton
potential, the critical number is smaller by the factor 0.59
because of the different value of λ4.) The critical mass N�ma

with the chiral potential is 1.1 × 10−13∓4M⊙, whereM⊙ is the
mass of the Sun. The critical radius R99� is 1.9 × 10−4R⊙,
where R⊙ is the radius of the Sun.
The contributions to the energy density of the critical dilute

axion star are shown as functions of the radial coordinate r in
Fig. 6. The mass density maψ

�ψ is many orders of magnitude
larger than the other contributions to the energy density. The
gravitational and potential energy densities are comparable at
small r. The kinetic and gravitational energy densities are
comparable in absolute value at large r. Thus the balance of
forces in the critical dilute axion star is between the attractive
forces from gravity and from axion self-interactions and the
repulsive force from the kinetic pressure of the axions.
The contributions to the total energy of the dilute axion star

are shown in Fig. 7 as functions of its mass M. The mass
energy Nma is many orders of magnitude larger than the other
contributions. The potential energy becomes increasingly
important as M approaches the critical mass M�.

FIG. 5. Radius R99 vs mass M for a dilute axion star. The axion
mass is ma ¼ 10−4 eV. The axion potential is the chiral potential
with z ¼ 0.48 (black lines) or the instanton potential (gray lines).
The dot is a critical point that separates the stable branch (solid
line) from the unstable branch (dashed line). The dotted line is for
a boson star with no self-interactions. The arrow indicates the
direction of time evolution of the axion star from the condensa-
tion of additional axions.

FIG. 6. Contributions to the energy density ρðrÞ in the critical
dilute axion star as functions of the radial coordinate r. Their
absolute values are shown on a log scale, with positive (negative)
contributions shown as solid (dashed) curves. The axion potential
is the chiral potential with z ¼ 0.48 and ma ¼ 10−4 eV. The
curves in order of decreasing size at small r are mass (black,
multiplied by 10−14), gravitational (gray), potential (blue), and
kinetic (red).
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C. Dense axion stars

Braaten, Mohapatra, and Zhang (2016a) pointed out that
there could be other branches of axion star solutions in addition
to the dilute axion stars. Evidence for another branchwas found
by following the unstable solution that emerges from the
critical point for the dilute axion star in Fig. 5 as the central
density n0 is increased further. The field equations solved by
Braaten, Mohapatra, and Zhang (2016a) were those for the
complex field ψðrÞ and the gravitational potential ΦðrÞ in
Eqs. (44)with the naive effective instanton potential in Eq. (38).
The mass Nma and the radius R99 were calculated as functions
of the central number density n0. The corresponding results
using the naive effective chiral potential in Eq. (36) are shown
in Fig. 8. After the radius decreases by about 7 orders of
magnitude, there is a second critical point where dεb=dn0 is
infinite. By Poincare’s theory of linear series of equilibria
(Katz, 1978), the number of unstable modes must change from
1 to either 2 or 0 at the second critical point. The solutions near
and beyond the second critical point were called dense axion
stars by Braaten, Mohapatra, and Zhang (2016a), because the
mass densitymaψ

�ψ inside the axion star becomes comparable

to the QCD scale ðmafaÞ2. The effective potential Veff there-
fore cannot be truncated after the ðψ�ψÞ2 term as in Eq. (51).
The plot of R99 vs M for the dense axion star near the

second critical point in Fig. 8 is almost indistinguishable from
that for the oscillon in Fig. 4. The reason for this is that the
effects of gravity are almost negligible, as pointed out by
Visinelli et al. (2018). Thus a dense axion star near the second
critical point is actually an oscillon. The number of unstable
modes changes from 1 to 0 at the second critical point. The
basic properties of the critical dense axion star are the same as
those for the critical oscillon in Eqs. (48).
The contributions to the energy density of the critical dense

axion star or critical oscillon are shown as functions of the
radial coordinate r in Fig. 9. The largest contribution to the
energy density at all r is the mass density maψ

�ψ. It is always
larger than the kinetic energy density by at least a factor of 4.6.
The second largest contribution is from the potential energy at
small r and from the kinetic energy at large r. The gravita-
tional contribution is smaller by many orders of magnitude, as
first pointed out by Visinelli et al. (2018). The balance of
forces is between the repulsive kinetic pressure and an
attractive force from the axion effective potential.
Beyond the second critical point, the radius R99 of the dense

axion star begins to increase as a function of the mass M, as
shown in Fig. 8. As the central density continues to increase,
the results from Eqs. (44) come close to smoothly matching
the Thomas-Fermi approximation (Wang, 2001), which is the
straight dotted line in Fig. 8. In this approximation, the kinetic
pressure is neglected except near the surface. In the interior,
the attractive force from gravity is balanced instead by a
repulsive force from the axion effective potential. Braaten,
Mohapatra, and Zhang (2016a) used the Thomas-Fermi
approximation to extrapolate the curve of R99 to very large
values of M. Visinelli et al. (2018) pointed out the curve for
R99 vs M actually crosses the line for the Thomas-Fermi
approximation at a small angle. Thus the Thomas-Fermi
approximation is not appropriate for dense axion stars.
The contributions to the total energy of the dense axion star

are shown as functions of the mass M in Fig. 10. As M

FIG. 7. Contributions to the total energy of the stable dilute
axion star as functions of its mass M. Their absolute values are
shown on a log scale, with positive (negative) contributions
shown as solid (dashed) curves. The curves in order of decreasing
size are mass (black, multiplied by 10−14), gravitational (gray),
kinetic (red), and potential (blue).

FIG. 8. Radius R99 vs mass M for an axion star. The axion
potential is the chiral potential with z ¼ 0.48 and ma ¼ 10−4 eV.
The dots are critical points that separate the stable branches (solid
lines) from the unstable branch (dashed line). The dotted line is
the Thomas-Fermi approximation.

FIG. 9. Contributions to the energy density ρðrÞ in the critical
dense axion star as functions of the radial coordinate r. Their
absolute values are shown on a log scale, with positive (negative)
contributions shown as solid (dashed) curves. The curves in order
of decreasing size at r ¼ 0.4R99� are mass (black), kinetic (red),
potential (blue), relativistic correction to kinetic (orange), and
gravitational (gray, multiplied by 1010).
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increases from the critical valueM�, the negative total binding
energy Eb increases. It reaches 0 when the mass is about
1.5M�, which is near where the potential and kinetic energies
cross in Fig. 10. At larger M, the dense axion star is stable to
large fluctuations as well as to small fluctuations. In the
scaling region of M, the basic properties of the dense axion
star are given in Eq. (49).
A simple picture for the fate of an isolated dense axion star

emerges. A dense axion star corresponds to a point on the
lower branch in Fig. 8. As time proceeds, the point moves to
the left, because the axion star emits relativistic axions with
momenta of order ma. When it reaches the open dot in Fig. 4
where the total binding energy is 0, the axion star becomes
unstable to large fluctuations, and it can disappear into
nonrelativistic axions with momenta much smaller than ma.
If it reaches the critical point, the axion star becomes unstable
to small fluctuations and it must disappear into nonrelativistic
axions. The lifetime of a dense axion star may be too short for
it to be cosmologically significant as an astrophysical object.
However dense axion stars can still have an important
cosmological effect by transforming nonrelativistic axions
into relativistic axions.
The gravitational contribution to the energy in Fig. 10 is

smaller than the other contributions by many orders of
magnitude. Extrapolation of the curves to much larger values
ofM implies that the gravitational energy may be comparable
to the kinetic energy when the mass is about 1013M�, which
corresponds to about 10−7M⊙. At much smaller masses, the
oscillon description of the dense axion star should be accurate.

VII. THEORETICAL ISSUES

In this section, we discuss theoretical issues involving axion
stars that have not yet been completely understood.

A. Emission of relativistic axions from axion stars

Since the axion field is a real Lorentz scalar, the number of
axions is not conserved. There are scattering reactions that

change the number of axions and that can transform non-
relativistic axions into relativistic axions. A localized axion
configuration with nonrelativistic wavelengths, such as an
axion star, inevitably radiates axion waves with relativistic
wavelengths. A bound configuration of axions therefore has a
finite lifetime. It is important to understand the lifetime of
axion stars, because it determines whether they can have any
significance as astronomical objects.
NREFTappears to give unambiguous predictions for the loss

rate of nonrelativistic axions from axion stars (Braaten,
Mohapatra, and Zhang, 2017). The rate of decrease in the
number N of nonrelativistic axions is determined by the anti-
Hermitian terms in the effective Hamiltonian and is given in
Eq. (42). In a dilute axion star, the loss of axions is dominated
by their decays into two photons. The decay rate of the dilute
axion star is the same as the decay rate Γa of the axion, which is
given in Eq. (18). The lifetime of a dilute axion star is therefore
tens of orders of magnitude longer than the age of the Universe.
The lifetime of the dense axion star can be defined as the time
required for its mass to decrease by a factor 1=e as it moves to
the left along the lower branch in Fig. 8. In a dense axion star,
the loss rate from inelastic axion reactions is much larger than
that from decay into two photons. The contribution to dN=dt
from the 4 → 2 process is given by the second term in Eq. (42).
This term is about 5 orders of magnitude larger than the first
term. The resulting prediction for the lifetime of the dense axion
star is still much longer than the age of the Universe (Braaten,
Mohapatra, and Zhang, 2017).
The predictions of NREFT for the loss rate of nonrelativ-

istic axions are incomplete. There are loss processes for axions
in the relativistic theory that do not seem to be reproduced by
NREFT. Gravity is an inessential complication for these loss
processes, so we discuss them in terms of oscillons. NREFT
should correctly reproduce results from the relativistic theory
for an oscillon with a small boson binding energy εb ≪ ma as
an expansion in powers of εb=ma. However such an expansion
is blind to terms that are exponentially small inma=εb, such as
expð−c ffiffiffiffiffiffiffiffiffiffiffiffiffi

mb=εb
p Þ, where c is a constant. Thus we should not

expect a loss rate having such an exponential factor to be
reproduced by NREFT.
The existence of loss processes whose rates have exponen-

tially small factors can be inferred from the asymptotic
expansion for the oscillon in Eq. (46). The asymptotic
expansion differs from the exact periodic solution by terms
that are exponentially small in ϵ (Segur and Kruskal, 1987).
These terms are not localized: they have a radiative tail in the
form of a standing wave with an exponentially small ampli-
tude that extends to infinity and has infinite energy. In the
absence of incoming waves, the outgoing waves decrease the
total energy M of the localized part of the solution. The rate
dM=dt of decrease in the mass of the oscillon with angular

frequency ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
ma in the limit ϵ → 0 has the form

(Fodor et al., 2009)

−
dM
dt

¼ A
ϵ2

expð−3.406=ϵÞf2a; ð53Þ

where the prefactor A depends on the axion potential VðϕÞ.
The sine-Gordon model is a special case in which A is

FIG. 10. Contributions to the total energy of the locally stable
dense axion star as functions of its mass M ¼ Nma. Their
absolute values are shown on a log scale, with positive (negative)
contributions shown as solid (dashed) curves. The curves in order
of decreasing size atM ¼ 3M� are mass (black), potential (blue),
kinetic (red), relativistic correction to kinetic (orange), and
gravitational (gray, multiplied by 1012).
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suppressed by ϵ2 (Fodor et al., 2009). Fodor et al. determined
A for the sine-Gordon model in 3D: A ¼ 760.5ϵ2.
Eby, Suranyi, and Wijewardhana (2016) derived an expres-

sion for the axion loss rate that can be expressed in terms of
the complex field ψðxÞ of NREFT. Their derivation involves
the matrix element of VðϕÞ between an initial state of N
condensed axions, each with energy ω ¼ ma − εb, and a final
state consisting of N − 3 condensed axions plus an on-shell
axion with energy 3ω. This can be interpreted as a 3 → 1

reaction, which is forbidden in the vacuum by conservation of
energy and momentum. Their result for the rate of energy loss
(Eby, Suranyi, and Wijewardhana, 2016) can be expressed in
the form

−
dM
dt

¼ maωk
192πf4a

����
Z

d3reik·r
�
λ4 þ

λ6ψ
�ψ

8maf2a
þ � � �

�
ψ3

����
2

; ð54Þ

where k2 ¼ 9ω2 −m2
a and ψðrÞ is the common wave function

of the condensed axions normalized so the number of axions is
given in Eq. (41). [An error by a factor of 4π2 was corrected by
J. Eby et al. (2018).] A result consistent with Eq. (54) was also
obtained by Mukaida, Takimoto, and Yamada (2017), where
this loss mechanism was referred to as “decay via spatial
gradients.” Since jkj ≈ ffiffiffi

8
p

ma, the loss comes from the small
high-momentum tail of the wave function. In the case of the
instanton potential, the expansion in powers of ψ�ψ in the
integrand of the Fourier transform in Eq. (54) can be summed
to all orders in terms of a Bessel function (Eby, Suranyi, and
Wijewardhana, 2016). Eby et al. obtained a result for the loss
rate in Eq. (54) for the sine-Gordon model in the limit εb → 0

(J. Eby et al., 2018). Their exponential suppression factor is
consistent with Eq. (53), with the argument differing by less
than 2%. Their result for the coefficient in the prefactor is
A ¼ 2723. It does not have the suppression factor of ϵ2

predicted by Fodor et al. (2009).

B. Collapse of dilute axion star

If a dilute axion star is embedded in a gas of unbound
axions, thermalization can condense additional axions,
increasing the mass of the axion star. If the mass M of the
axion star is near the critical value M� ≈ N�ma, where N� is
given by Eq. (52d), the condensation of additional axions can
increase M to above M�. It will then be unstable to collapse.
The fate of a collapsing dilute axion star has not been
definitively established. The possibilities for the remnant after
the collapse include the following:

• a black hole, with Schwarzschild radius smaller than the
critical radius R99� by about 15 orders of magnitude,

• a dense axion star, with radius smaller than R99� by about
7 orders of magnitude,

• a dilute axion star, with radius larger than R99�, and
• no remnant, because of complete disappearance into
scalar waves.

Chavanis (2016) considered the possibility that the collapse
of a dilute axion star produces a black hole. The axions were
described by the GPP equations for ψ and Φ given by
Eqs. (44) with the truncated effective potential Veff in
Eq. (51). The collapse was described by a Gaussian ansatz

for the complex axion field ψðr; tÞ with a time-dependent
radius RðtÞ. If the initial configuration is an unstable solution
with massM nearM�, the time for collapse to R ¼ 0 scales as
ðM −M�Þ−1=4. Similar variational methods were used pre-
viously to study the collapse of gravitationally bound BECs of
bosons with a positive scattering length (Harko, 2014).
Chavanis (2018) also studied phase transitions between dense
axion stars and dilute axion stars.
Eby et al. (2016) and Eby, Leembruggen, Suranyi, and

Wijewardhana (2017) studied the collapse of a dilute axion
star using a similar time-dependent variational method, but
with Veff given by the naive instanton effective potential in
Eq. (38). They found that the collapse to a black hole is
prevented by repulsive terms in the effective potential that
become important when the radius is comparable to that of a
dense axion star. A significant fraction of the energy of the
axion star is lost through the emission of relativistic axions.
They were unable to determine whether the remnant is a dense
axion star.
Helfer et al. (2017) studied the fate of spherically sym-

metric axion configurations by solving the full nonlinear
classical field equations of general relativity for axions with
the instanton potential. Their initial condition was an oscil-
laton configuration for bosons with mass ma and no self-
interactions and with a specified total mass M. By evolving
the configurations in time, they found the possibilities for the
remnant were a black hole, a dilute axion star, and no remnant.
Their calculations were limited to the parameter region
4 × 10−8 < Gf2a < 4 × 10−2 and 0.03 < GMma < 0.12.
The three possibilities for the remnant came from separate
regions of the plane of Gf2a vs GMma. Their results were
consistent with the three regions meeting at a triple point given
by Gf2a ¼ 3.6 × 10−3 and GMma ¼ 0.095. The extrapolation
of the results of Helfer et al. (2017) to the small value of Gf2a
for the QCD axion in Eq. (21) implies that the only
possibilities for the remnant are a black hole or no remnant.
Levkov, Panin, and Tkachev (2017) described the collapse

of a dilute axion star above the critical mass by using the GPP
equations. The collapsing solutions approach a self-similar
scaling limit with a singularity at a finite time t�. To describe
the behavior at later times t > t�, they used Eqs. (23) for ϕ and
Φ with the chiral potential VðϕÞ, but with the _Φ _ϕ and Φ∇2ϕ
terms omitted. These equations predict multiple cycles of
growth of the energy density near the center of the star
followed by collapse. The collapse dramatically increases the
energy density near the center, and it produces a burst of
outgoing relativistic axion waves, which then depletes the
energy density near the center. Levkov et al. found that after
these multiple cycles, the remnant is gravitationally bound.
They concluded that the remnant must ultimately relax to a
dilute axion star by gravitational cooling.
The collapse of the axion star followed by a burst of

relativistic axions is an example of a Bose nova. A Bose nova
was first produced by a group at JILA using a BEC of
rubidium-85 atoms (Donley et al., 2001). These atoms have a
magnetic Feshbach resonance that can be used to control the
scattering length a. The experiment began with a stable BEC
with a positive scattering length in a trapping potential. The
Feshbach resonance was used to suddenly reverse the sign of
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the scattering length, making the BEC unstable to collapse.
The collapse of the BEC produced a burst of high-energy
atoms, analogous to the explosion produced by gravitational
collapse in a supernova. The burst from the collapsing BEC
was followed by its relaxation into a remnant BEC.
The collapse of a dilute axion star whose mass has

increased to above the critical mass can be modeled more
closely by experiments using a BEC of trapped atoms with a
fixed negative scattering length a. The BEC in a trapping
potential is stable unless the number N of atoms exceeds a
critical value. The first observations of the collapse of the BEC
with fixed negative a and well-controlled atom number were
carried out by a group at Rice University using lithium-7
atoms (Gerton et al., 2000).

C. Relativistic corrections

Visinelli et al. (2018) argued that axions in dense axion
stars may be too relativistic to use a nonrelativistic approach
such as NREFT. Their evidence was not completely convinc-
ing except in the limit ω → 0, in which the boson binding
energy εb approaches ma. One way to test the accuracy of the
nonrelativistic approximation is to compare the relativistic
correction to the kinetic energy density, which is given by the
second term in T eff in Eq. (31), to the other terms in the energy
density. For the critical dense axion star, the relativistic
correction is small compared to the nonrelativistic kinetic
energy density except near the center where the nonrelativistic
kinetic energy density vanishes, as shown in Fig. 9. At the
center, the relativistic correction to the kinetic energy density
is smaller than the potential energy density by a factor of 0.36.
This is large enough that one might question the accuracy of
the nonrelativistic approximation in the core of the critical
dense axion star.
At the critical mass, the relativistic correction to the total

kinetic energy is smaller than the total nonrelativistic kinetic
energy by a factor of −0.23. As M increases, the relativistic
correction increases, but the nonrelativistic kinetic energy
and the potential energy increase more rapidly, as shown in
Fig. 10. Thus the accuracy of the nonrelativistic approxima-
tion may improve along the dense axion star branch as one
moves away from the critical point.

D. Higher harmonics

The harmonic approximation for ϕðr; tÞ in Eq. (9) may have
large errors on the dense branch of axion stars (Joshua Eby
et al., 2018; Visinelli et al., 2018). Accurate results may
require taking into account the higher harmonics in the cosine
series in Eq. (8). The harmonic approximation for ϕ is
equivalent to the harmonic approximation for ψ in Eq. (34)
along with the naive effective potential in Eq. (27). Therefore,
there could be significant corrections from higher harmonics
to the properties of oscillons given in Eqs. (48) and (49) and to
the curves shown in Figs. 4, 9, and 10.
One way to take the higher harmonics into account is to use

a truncated odd cosine series for ϕðr; tÞ as in Eq. (8) with a
maximum frequency nmaxω and to increase nmax until the
results are stable. If gravity is important, one must also include
an even cosine series for the functions that determine the

metric tensor. Such a procedure, with frequencies up to 12ω,
was used by Helfer et al. (2017) to study the fate of
axion stars.
InNREFT, the higher harmonics are integrated out in favor of

local terms in the effective Hamiltonian. For example, the term
−ð17=8Þλ24 in the coefficientv3 of the effective potential given in
Eq. (35a) takes into account the third harmonic ofϕ, because the
third diagram in Fig. 2 has a virtual axion line whose invariant
mass is approximately 3ma. Inside a dense axion star, the
dimensionless number density 2ψ�ψ=maf2a is large enough that
the power series for Veffðψ�ψÞ cannot be truncated. In order to
take into account higher harmonics, it is necessary to use
approximations to the effective Hamiltonian that sum up addi-
tional termswith all powers ofψ�ψ . An example is the sequence

of improved effective potentials VðkÞ
eff ðψ�ψÞ introduced by

Braaten, Mohapatra, and Zhang (2018).

E. Rotating axion stars

Since an axion star is a superfluid, its angular momentum
must be concentrated in vortices. Banik and Sikivie (2013)
pointed out that the interactions between the vortices in an
axion BEC are attractive, so the angular momentum in an
axion star is concentrated in a single large vortex passing
through the center. They also suggested that instead of
considering axion stars with definite values of the angular
momentum, it might be more appropriate to consider definite
values of the Legendre transform variable, which is an angular
frequency.
Davidson and Schwetz (2016) studied rotating dilute axion

stars using the GPP equations given by Eqs. (44) with Veff in
Eq. (51) along with the simplifying assumption that the
complex field ψðr; θ;ϕÞ can be expressed as the product of
a spherical harmonic Ylmðθ;ϕÞ and a function of the radial
coordinate r. Similar approximations were used by Hertzberg
and Schiappacasse (2018). Sarkar, Vaz, and Wijewardhana
(2018) studied rotating boson stars using the GPP equations
with an additional term in Eq. (44a) that takes into account
frame dragging due to the rotation.

F. Encounters with other astrophysical objects

We conclude this review with a brief survey of research on
encounters between axion stars and other astrophysical
objects.
The encounter between an axion star with a neutron star is

particularly interesting, because a neutron star can produce an
extremely strong magnetic field. The presence of the magnetic
field allows axion-to-photon transitions through the electro-
magnetic interaction term in Eq. (17). If the QCD axion is
nonrelativistic, the photon is in the radio-frequency region of
the spectrum. This makes it tempting to consider the pos-
sibility that axion stars are responsible for fast radio bursts.
Iwazaki (2015) considered radiation from the oscillating
electric field in the atmosphere of the neutron star when it
is inside a dilute axion star. Raby (2016) considered radiation
from the oscillating electric dipole moments of neutrons in the
outer crust of the neutron star when it is inside a dilute axion
star. Bai and Hamada (2018) also took into account interfer-
ence effects and medium effects and concluded that the
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emission of radio waves was many orders of magnitude too
small to account for fast radio bursts. It would even be
challenging to observe the emission of radio waves produced
by the encounter between a dense axion star and a neutron star.
Iwazaki also considered other possible signatures of the

encounter between an axion star with a neutron star that
exploit the large magnetic field of the neutron star. Those
signatures include gamma ray bursts (Iwazaki, 1999a), x-ray
emission (Iwazaki, 2000b), and ultra-high-energy cosmic rays
(Iwazaki, 2000a). Iwazaki also considered the effects of an
encounter between an axion star and a white dwarf star. The
collision could heat up a cold magnetized white dwarf
sufficiently to make it visible (Iwazaki, 1999b).
The head-on collision of an axion star with a neutron star

has been studied using numerical general relativity under the
assumption that the two objects interact only through gravity
(Clough, Dietrich, and Niemeyer, 2018). The radius of the
axion star was comparable to that of the neutron star, which
requires the axion mass to be several orders of magnitude
smaller than allowed for the QCD axion. The remnant after the
collision depends on the mass of the axion star. For a smaller-
mass axion star, the neutron star is only weakly perturbed and
the remnant is a neutron star surrounded by an axion cloud.
For an intermediate-mass axion star, the remnant is a strongly
excited neutron star. For a larger-mass axion star, the remnant
is a black hole. The messengers produced by the collision
include gravity waves, ejected baryonic matter, radio flares,
neutrino emission, and electromagnetic bursts (Dietrich
et al., 2019).
The head-on collision of an axion star with a black hole was

studied using numerical general relativity under the
assumption that the two objects interact only through gravity
(Clough, Dietrich, and Niemeyer, 2018). The two masses were
comparable and the radius of the axion star was roughly the
Schwarzchild radius of the black hole. The remnant after the
collision depends on the mass of the axion star. For a smaller-
mass axion star, the remnant is a black hole with a fairly
incoherent slowly decaying axion cloud. As the mass of the
axion star increases, the black hole absorbs more of the
axionic matter and the remaining axion cloud becomes more
coherent. For a larger-mass axion star, the remnant is a black
hole that has absorbed as much as 98% of the original
axion star.
Eby, Leembruggen, Leeney et al. (2017) considered the

collision of a dilute axion star with an ordinary star. They
point out that the critical density of a dilute axion star is
decreased by about 10% when it is inside an ordinary star. The
collision can therefore stimulate the collapse of a dilute axion
star that is near the critical point. They also considered the
collision of two dilute axion stars near the critical point. The
collision can stimulate their collapse only if their relative
velocity is very small.
Bai, Barger, and Berger (2016) considered the possibility

that a dense axion star in the early Universe could accrete
hydrogen and form a hydrogen axion star. The axion star is
inside the hydrogen cloud. The hydrogen changes from a hot
gas at the edge of the cloud to a metallic liquid at the center.
As an axion minicluster evolves in the early Universe, it is

possible for the conditions at some radius to reach those for
the amplification of light by the stimulated decay of the axion.

The result of this lasing process can be the explosive decay of
the axion minicluster into a coherent burst of monochromatic
radio-frequency photons (Tkachev, 1986; Kephart and Weiler,
1995). This provides a possible mechanism for fast radio
bursts (Tkachev, 2015).
Black-hole superradiance is a remarkable effect that arises

when a rapidly rotating black hole has angular frequency ωbh
larger than the mass ma of a boson (Brito, Cardoso, and Pani,
2015). A rotating Bose-Einstein condensate is created in the
region around the black hole, extracting energy and angular
momentum from the black hole. The density of the BEC
grows exponentially until ωbh is no longer larger than ma. The
most rapid growth of the BEC occurs for a black hole with
mass Mbh that satisfies GMbhma ∼ 1. For a QCD axion with
mass 10−4�1 eV, the black-hole mass is about 10−6∓1M⊙.
When the superradiance turns off, the axion BEC forms a
quasistable cloud around the black hole that can be regarded
as an axion star solution in the Kerr metric of the rotating
black hole. The axion cloud dissipates energy by emitting
gravitational waves as well as relativistic axion waves and
radio-frequency electromagnetic waves (Arvanitaki and
Dubovsky, 2011). Most studies of black-hole superradiance
have ignored the self-interactions of the bosons. The attractive
self-interactions of axions can cause the growing axion cloud
from superradiance to collapse, resulting in a Bose nova that
produces a burst of relativistic axions (Yoshino and Kodama,
2012, 2014, 2015). For quasistable axion clouds around the
rotating black hole, there may be a critical point analogous to
that for dilute axion stars in Fig. 5. A deeper understanding of
axion stars could help refine predictions for the signals from
black-hole superradiance.
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