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The fundamental coherent radiation emission processes from a bunched charged particles beam are
outlined. In contrast to spontaneous emission of radiation from a random electron beam that is
proportional to the number of particles, a prebunched electron beam can emit spontaneously coherent
radiation proportional to the number of particles—squared, through the process of (spontaneous)
superradiance (SP-SR) (in the sense of Dicke’s). The coherent SP-SR emission of a bunched electron
beam can be even further enhanced by a process of stimulated superradiance in the presence of a seed-
injected radiation field. In this review, these coherent radiation emission processes for both single bunch
and periodically bunched beams are considered in a model of radiation mode expansion. The general
model of coherent spontaneous emission is extended to the nonlinear regime, particularly for undulator
(wiggler) interaction: tapering-enhanced stimulated-superradiant amplification (TESSA). Processes of
SP-SR and TESSA take place in taperedwiggler seed-injected free-electron lasers (FELs). In such FELs,
operating in the x-ray regime, these processes are convoluted with other effects. However these
fundamental emission concepts are useful guidelines for the strategy of wiggler tapering efficiency and
power enhancement. Based on this model, previous theories and experiments are reviewed on coherent
radiation sources based on SP-SR (coherent undulator radiation, synchrotron radiation, Smith-Purcell
radiation, etc.), in the THz regime and on-going works on tapered wiggler efficiency-enhancement
concepts in all optical frequency regimes up to x rays.
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I. INTRODUCTION

Free electrons emit electromagnetic radiation when sub-
jected to an external force, e.g., synchrotron radiation
(Nodvick and Saxon, 1954; Green, 1976; Michel, 1982;
Krinsky, 1983; Hirschmugl, Sagurton, and Williams, 1991;
Tamada et al., 1993; Berryman et al., 1996; Wang, Krafft, and
Sinclair, 1998; Giovenale et al., 1999; Andersson, Johnson,
and Nelander, 2000; Arp, 2001; Carr et al., 2001, 2002; Abo-
Bakr et al., 2002; Byrd et al., 2002, 2004; Geloni et al., 2003;
Adams, 2004; Sannibale et al., 2004), undulator radiation
(Bonifacio, Pellegrini, and Narducci, 1984b; Gover,
Friedman, and Luccio, 1987; Jeong et al., 1992; Ciocci et al.,
1993; Doria et al., 1993; Jaroszynsky et al., 1993; Asakawa
et al., 1994; Gover et al., 1994; Cohen et al., 1995; Mayhew
et al., 1997; Gallerano et al., 1999; McNeil, Robb, and
Jaroszynski, 1999; Arbel et al., 2000, 2001; Neuman,
Graves, and O’Shea, 2000; Faatz et al., 2001; Pinhasi and
Lurie, 2002; Neumann et al., 2003; Huang, 2007; Lurie and
Pinhasi, 2007; Watanabe et al., 2007; Hama et al., 2011;
Kuroda et al., 2011; Musumeci et al., 2013; Seo, 2013a;
Huang et al., 2014, 2015), and Compton scattering (Gover and
Sprangle, 1981). Radiation can also be emitted by currents
that are induced by free electrons in polarizable structures and
materials, such as in Cherenkov radiation (Cherenkov, 1934;
Neighbors, Buskirk, and Saglan, 1984; Wiggins et al., 2000),
transition radiation (Piestrup and Finman, 1983; Happek,
Blum, and Sievers, 1991; Shibata et al., 1994; Lihn et al.,
1996; Orlandi, 2002; Leemans et al., 2003; Geloni et al.,
2009), and Smith-Purcell radiation (Smith and Purcell, 1953;
Brownell, Walsh, and Ducas, 1998; Korbly et al., 2005; Shin
et al., 2007; Ginzburg et al., 2013). Currently, most interesting
are free-electron lasers (FELs), most potent intense coherent
radiation sources that can operate in a wide range of radiation
wavelengths from microwaves to x rays [see recent reviews by
Bostedt et al. (2016), Pellegrini, Marinelli, and Reiche (2016),
and Feng and Deng (2018)].
Here we use the laser physics terminology of stimulated

interaction and spontaneous emission by atomic radiators,
namely, stimulated emission or absorption is the radiation field
amplification or attenuation of an incident radiation field, and
spontaneous emission is the radiation emission of the particu-
late radiators in the absence of incident radiation field. The
laser physics quantum description of free-electron radiation
sources reduces to the classical point-particle description of
radiation emission by electrons in acceleration or deceleration

structures, including analogous fundamental (Einstein) rela-
tions between spontaneous and stimulated emission (Madey,
1979; Friedman et al., 1988; Pan and Gover, 2018). In the
present context, both spontaneous and stimulated interactions
of electrons with radiation are treated in the classical point-
particle limit of force equations and Maxwell equations.
Contrary to a FEL, that by its definition as a laser is a

stimulated radiation emission device and is based on a
continuous stream of accelerated electrons, the first focus
of the present review is free-electron radiation devices that
emit intense coherent spontaneous (superradiant) radiation
without the fundamental process of stimulated emission. This
is possible in all the previously mentioned radiation schemes,
if the electron beam is prebunched before entering the
radiative interaction region (in the case of a prebunched beam
FEL—a magnetic undulator). Namely, such radiation sources
emit coherent radiation without a coherent input radiation
field (as required in a laser). However, as discussed later on,
the coherent spontaneous radiation field can still be further
amplified by stimulated emission if an external coherent input
radiation field is inserted.
The condition for the generic coherent spontaneous super-

radiance process is

2σtb < T ¼ 2π=ω; ð1Þ

where ω is the radiation emission frequency, and 2σtb is the
duration of the electron beam bunch. The process is visualized
in Fig. 1 as a time interference of a train of radiation waves
emitted by the electrons in a bunch, and observed, with some
retardation and Doppler shift, at a long distance away from the
emission point. Each electron emits in any specific direction
radiation wave packets of frequency ω ¼ 2π=T and duration
NwT, where Nw is the number of wiggling oscillations in the
interaction length. The spontaneously emitted radiation fields
of the different electrons add coherently in phase if the
electron beam bunch is shorter than the emitted radiation
period [Fig. 1(b), Eq. (1)], and the resultant field is propor-
tional to the number of electrons in the bunch, N.
Consequently, the intensity of the radiation of a prebunched
beam is proportional to N2. This is in contrast to spontaneous

FIG. 1. (a) Spontaneous radiation emission. (b) Superradiant
emission (coherent spontaneous emission).
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emission from a randomly distributed beam in a long pulse
[Fig. 1(a), opposite of Eq. (1)], where the radiation intensity is
proportional to the number of electrons in the beam (N). This
coherent radiation process is analogous to Dicke’s super-
radiance from an ensemble of stationary atoms located within
a volume smaller than their spontaneous emission radiation
wavelength and excited so that their dipole moments emit in
phase with each other (Dicke, 1954; Gross and Haroche,
1982). While Dicke’s analysis started from a fundamental
quantum-electrodynamics (QED) formulation, he showed that
this process is valid also in the classical limit. The difference
between a bunched electron beam and Dicke’s ensemble of
oscillating dipoles is only the movement of the electron bunch
in the axial dimension. This provides, in the relativistic beam
velocity limit, a large Doppler frequency shift of the radiation
emitted in the forward direction.
As mentioned, superradiant emission from a single electron

bunch beam takes place when the beam enters the interaction
region of the radiative emission scheme with duration shorter
than the period of the radiationwave [Eq. (1)]. Superradiance of
a periodically bunched beam takes place when a train of tightly
bunched electron bunches enters the interaction region at a rate
equal to the radiation wave frequency. This generic coherent
spontaneous radiation process can take place in any kind of
free-electron radiation emission scheme (Schnitzer and Gover,
1985; Dattoli et al., 1997; Gover, 2005b; Gover et al., 2005;
Penn, Reinsch, and Wurtele, 2006), including synchrotron
radiation [where it is also termed coherent synchrotron radi-
ation (CSR) or edge radiation] (Nodvick and Saxon, 1954;
Green, 1976; Michel, 1982; Krinsky, 1983; Hirschmugl,
Sagurton, and Williams, 1991; Tamada et al., 1993;
Berryman et al., 1996; Wang, Krafft, and Sinclair, 1998;
Giovenale et al., 1999; Andersson, Johnson, and Nelander,
2000;Arp, 2001;Carr et al., 2001, 2002;Abo-Bakr et al., 2002;
Byrd et al., 2002, 2004; Geloni et al., 2003; Adams, 2004;
Sannibale et al., 2004), coherent transition radiation (CTR)
(Piestrup and Finman, 1983; Happek, Blum, and Sievers, 1991;
Shibata et al., 1994; Lihn et al., 1996; Orlandi, 2002; Leemans
et al., 2003; Geloni et al., 2009), undulator radiation (Bonifacio,
Pellegrini, and Narducci, 1984b; Gover, Friedman, and Luccio,
1987; Jeong et al., 1992; Ciocci et al., 1993; Doria et al., 1993;
Jaroszynsky et al., 1993; Asakawa et al., 1994; Gover et al.,
1994; Cohen et al., 1995; Mayhew et al., 1997; McNeil, Robb,
and Jaroszynski, 1999; Arbel et al., 2000, 2001; Neuman,
Graves, and O’Shea, 2000; Faatz et al., 2001; Pinhasi and
Lurie, 2002; Neumann et al., 2003; Huang, 2007; Lurie and
Pinhasi, 2007;Watanabe et al., 2007; Hama et al., 2011; Kuroda
et al., 2011; Musumeci et al., 2013; Seo, 2013a; Huang et al.,
2014, 2015), Smith-Purcell radiation (Brownell, Walsh, and
Ducas, 1998; Korbly et al., 2005; Shin et al., 2007; Ginzburg
et al., 2013), Cherenkov radiation (Neighbors, Buskirk, and
Saglan, 1984; Wiggins et al., 2000), dielectric waveguide
radiation, and more.
Another interesting related coherent emission effect is

exhibited by the same kind of single or periodically bunched
electrons when they are subjected to a coherent radiation field
of a copropagating wave in any kind of radiation emission
scheme. If such a beam is tightly bunched relative to the wave
period, or periodically bunched at the wave frequency, and if
properly phased, then all electrons would experience the same

deceleration force and emit in phase stimulated-superradiance
radiation. This process is analogous to the same process
of enhanced coherent radiation emission by an ensemble of
two-quantum-level atoms that are subjected to a strong
coherent radiation field. In the nonlinear regime all atoms
undergo phase correlated Rabi oscillation between the two
quantum levels and simultaneously can emit coherent
stimulated-superradiance radiation (Ismailov and Kazakov,
1999; Brooke, 2008; Svidzinsky, Yuan, and Scully, 2013).
The analog of the quantum Rabi oscillation, in the case of a
bunched electron beam, is the synchrotron oscillation of a
trapped bunched electron beam under the time harmonic force
of a synchronous coherent radiation wave (ponderomotive
wave in the case of undulator radiation).
Superradiant emission from a bunched beam may have

important application in the development of coherent radiation
sources at wavelength regimes and operating conditions where
a stimulated emission radiation source is not practical, because
the accelerated beam current is too low to provide sufficient
gain within a practicable interaction length. We identify the
THz frequency regime as a range where compact superradiant
radiation sources are being developed (Ciocci et al., 1993;
Gover et al., 1994, 2005; Faatz et al., 2001; Shibata, Sasaki,
and Ishi, 2002; Korbly et al., 2005; Shin et al., 2007; Yasuda
et al., 2008; Huang, 2010; Hama et al., 2011; Ginzburg et al.,
2013; Huang et al., 2015; Lurie, Friedman, and Pinhasi, 2015;
Su et al., 2018) based on moderately accelerated subpico-
second bunched beams, generated in photocathode injector
electron guns (Akre et al., 2008). We also assert that future
compact coherent extreme ultraviolet (EUV) radiation sources
based on dielectric laser accelerator (DLA) schemes (Peralta
et al., 2013) are likely to be developed as superradiant sources
because of the low current and short interaction length
expected to be attainable with such schemes. Beam bunching
at the femtosecond and subfemtosecond duration ranges was
demonstrated (Hommelhoff et al., 2006; Zholents and
Zolotorev, 2008; Hilbert et al., 2009; Marceau et al., 2013,
2015; Hoffrogge et al., 2014; Wong et al., 2015) and may be
useful for superradiant radiation emission in the optical to
EUV range. Various schemes for microprebunching the
electron beam, including high gain harmonic generation
(HGHG), echo-enabled harmonic generation (EEHG), or
phase-merging enhanced harmonic generation (PEHG), have
been developed for the superradiant generation of coherent
UV and x-ray radiation (Yu, 1991; L. Yu et al., 2000; Jia,
2008; Reiche et al., 2008; Stupakov, 2009; Freund, Nguyen,
and Carlsten, 2012; Graves et al., 2013; Feng et al., 2014;
Qika, 2017). Most interestingly, recently tens of attoseconds
duration of e-beam bunching was demonstrated at the electron
quantum wave function level (Feist et al., 2015; Kozák,
Schönenberger, and Hommelhoff, 2018; Vanacore et al.,
2018), and it may exhibit superradiant emission in the
modulated quantum electron wave packet level.
In the first part of this review, Secs. II and III, we present an

analysis of superradiant emission in a general radiation emission
scheme, but subsequently specify particularly to the case of
undulator radiation. In general, the analysis of a radiative emi-
ssion process requires a simultaneous solution of Maxwell equ-
ations for a particulate charge current source together with the
force equations that govern the particles trajectories.However, in
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the case of spontaneous emission (contrary to stimulated
emission), the effect of the emitted radiation on the electron
that had generated it is usually neglected (namely, a self-radiative
interaction effect is not considered).
In this case, superradiant emission can be calculated based

on solution on solving Maxwell equations alone, after
evaluating the trajectories of the bunched beam in a force
field in the absence of radiation. This is presented in Secs. II
and III as follows: in Sec. II we derive the general expressions
for random spontaneous emission, superradiant emission, and
stimulated-superradiant emission from either single bunch or
finite duration pulse of periodic bunches (“bunches train”).
This analysis is carried out in a general spectral (Fourier
transform) presentation of Maxwell equations. In both cases
the current source is finite in time, the emitted radiation has
finite energy, and therefore the continuous multifrequency
spectral formulation is proper. In Sec. III we reiterate the
analysis of spontaneous superradiance (SP-SR) and “zero-
order” (in terms of the radiation field) stimulated super-
radiance (ST-SR) (namely, the effect of the radiation on the
electron trajectories is negligible) for the case of an infinite
(long) periodically bunched beam. The analysis is carried out
in a single frequency (phasor) formulation for the steady-state
case of undulator radiation (UR) by a periodically bunched
electron beam (namely, an infinite train of bunches). In this
case the radiation is composed only of the fundamental
bunching frequency and its harmonics, and a single frequency
model is proper. In this section we still use the approximation
of negligible energy loss of the interacting e beam, namely, the
radiation field is not intense enough to modify the electron
trajectories, and explicit zero-order expressions for SP-SR and
ST-SR emission are derived from Maxwell equations only.
Using this zero-order approximation, we analytically evaluate
the contribution of these two terms for the case of undulator
radiation, and weigh the ratio between them and its scaling.
Confining the analysis to undulator radiation schemes, we

extend in Sec. IV the zero-order analysis of superradiance and
stimulated superradiance to a nonlinear interaction regime
(namely, the effect of the radiation on the electron trajectories is
non-negligible) in a uniform and tapered wiggler. This is the
case where an intense radiation wave is injected externally into
the interaction region together with a bunched e beam, and the
interaction between the radiation and the beam is strong
enough to produce non-negligible e-beam energy loss and a
consequent slowing down of the beam. We review there the
bunched beam dynamics qualitatively in terms of the math-
ematical pendulum equation and tilted pendulum equation
models for the uniform and tapered wiggler, respectively. The
characteristics of the pendulum equations are outlined in
Appendix A.
A nonlinear analysis is required for studying the dynamics

of the bunched beam interaction with a strong radiation field
that can trap the electrons and for understanding the role of the
fundamental processes of SP-SR, ST-SR in this regime, and
the process of tapering-enhanced stimulated-superradiant
amplification (TESSA) in a tapered wiggler. For this purpose
we present in Sec. V a simple model for the beam-radiation
interaction. This model is a self-consistent, energy-conserving
formulation for the simultaneous solution of Maxwell equa-
tions and the force equations. The conservation of the energy

relation is proved for general free-electron radiation schemes
in Appendix C. The formulation is employed for the idealized
case of an infinite, periodically tightly bunched cold beam,
interacting with a single transverse radiation mode in a
uniform or tapered wiggler. Expectedly, this model is con-
sistent with the tilted pendulum equation model of KMR
(Kroll, Morton, and Rosenbluth, 1981) for FEL saturation, but
rather than starting from a random beam, we assume a beam
with initial conditions of tight electron bunches and study their
full nonlinear dynamics in the ponderomotive wave traps of
the radiation mode as they evolve along the wiggler.
InSec. VI we present the solution of the coupled bunched-

beam-radiation interaction equations based on numerical
solutions of normalized master equations of the model for
a uniform and tapered wiggler. The nonlinear dynamics of the
fundamental SP-SR, ST-SR, and TESSA processes are pre-
sented by numerical examples and video simulations and are
checked for consistency with the zero-order limits of the
earlier sections. Interestingly enough, we identify there a
special case of “self-interaction” (discussed in detail in
Sec. VI.G), where a periodically bunched beam interacts
nonlinearly with the spontaneous superradiant radiation it had
generated in the first place.
In Sec. VII, the rigorous but ideal model of a perfect tightly

bunched e beam is replaced by an approximate but more
practical multiparticle model of arbitrary beam bunching and
energy spread. This model is used for estimating limits of
efficiency enhancement in a tapered wiggler in realizable
configurations.
In Sec. VIII we review the applications of superradiant

radiation sources in different realizations. These include a
review of the development of various superradiant sources in
the THz regime, new concepts of energy efficient schemes of
TESSA and tapering-enhanced stimulated-superradiant oscil-
lator (TESSO), and the relation to simulation and design work
for optimization of energy extraction in a tapered wiggler FEL.

A. Superradiance in the wide sense

In the simplified model of superradiance processes presented
in this review, we refer to processes in which the bunching
amplitude of the electron beam is fixed. Whether we refer to a
single short bunch beam or to an infinitely long periodically
bunched beam, the assumption is that the bunch shape and
bunching amplitude is constant throughout the interaction. The
radiation emission is then characterized in the zero-order
regime by the scaling ∝ N2 as in Dicke’s superradiance.
Also in the nonlinear regime, discussed from Sec. IV on, the
model assumption is of tight full bunching: The bunches have
dynamic processes of energy exchange with an intense radi-
ation wave, but they do not spread and remain tightly bunched.
Of course, this model is a simplified idealization of more

elaborate processes in real free-electron radiation sources.
There are two main reasons that elaborate any clear-cut
distinction between the processes of seeded FEL (FEL
amplifier), self-amplified spontaneous emission (SASE)
FEL and superradiant FEL, and lead to alternative wider
sense definitions of superradiance (beyond superradiance in
Dicke’s sense). We explain and briefly review here the
alternative definitions but will keep the terminology of
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superradiance in the rest of the review in the narrow sense of
Dicke’s superradiance.
The first reason that breaks the distinction between a

superradiant undulator radiation source and a FEL amplifier
is the fact that while a superradiant source is based on a
prebunched e beam, the conventional FEL radiation process
also involves bunching. The stimulated emission process that is
the fundamental radiation process in any laser is carried out in
the FEL through a bunching process of a random electron beam
by an externally injected coherent radiation field that bunches
the beam at its frequency. Thus, in the case of a FEL amplifier
there is no coherent radiation emission in the first sections of the
interaction region (wiggler), but as the random electron beam
gets bunched by the external radiation field, it starts radiating
“superradiantly” in phase with the “seed-injected” radiation
field. As the bunching and radiation emission processes
continue along the interaction length, the radiation field starts
growing exponentially by stimulated interaction, until the beam
bunching saturates. The bunching stage in the FEL amplifier is
the linear (low or high) gain regime of FEL theory. This stage is
skipped in a prebunched superradiant FEL.
The situation is somewhat similar in SASE-FEL. In this

case, there is no external radiation field that establishes
coherent bunching in the beam, but the partially coherent
spontaneous synchrotron undulator radiation emitted in the
first section of the undulator can produce bunching of short
coherence length in the beam that can still lead to a linear
(field) exponential stimulated emission gain. In single path
interaction, this process is enabled owing to the establishment
of partial coherence in the beam through the “optical slippage
effect”: the light wave packets, emitted by the electrons, are
faster than the electrons that generate them (propagating one
wavelength λ relative to the electron during any wiggling
period λw path of the electron in the wiggler). Consequently,
partial coherence is established between electrons within the
so-called “cooperation length” lc which is the accumulated
slippage λðlg=λwÞ of the electrons, where lg is the exponential
gain length of the SASE-FEL.
Even though some bunching and superradiance processes

are involved in the exponential light generation and amplifi-
cation process of the FEL amplifier and the SASE-FEL,
they would not usually be considered superradiant radiation
sources. There are however some mixed cases of superradiance
and stimulated emission gain. Such is the case of the micro-
wave klystron, where the bunching of a continuous beam and
the radiation process take place in separate cavities (Collin,
2007). The emission of the prebunched beam in the second
cavity is superradiance in the narrow sense. A similar example
is the “optical klystron oscillator” (Girard et al., 1984). Here at
steady-state oscillation the energy of the electron beam is
bunched in an undulator by an input radiation field, after a
process of density bunching in a dispersive magnetic section
(chicane), the bunched beam is injected into a second undu-
lator within the resonator together with the circulating radiation
wave that interacts in phase with the bunched beam and
enhances the oscillation gain. The interaction in this second
step is certainly stimulated superradiance in the narrow sense.
Another case of mixed superradiance and stimulated emis-

sion is when the electron beam is partially bunched and then, at

short interaction lengths, it emits superradiantly in the narrow
sense (∝ b2nN2), where bn < 1 is the bunching factor of
harmonic n. However, before saturation, if the beam is not
fully bunched, it can continue to increase exponentially its
bunching and radiation emission by stimulated emission in the
linear gain regime as in a regular FEL amplifier (Schnitzer and
Gover, 1985; Qika, 2017). This principle is used in the HGHG
process (L.-H. Yu et al., 2000) in which a beam is energy
bunched by an intense laser at optical (IR) frequency, and after
passage through a dispersive magnet (chicane) it gets tightly
bunched spatially, and its density contains high harmonics at
small amplitude. The beam is then injected into a second
undulator, synchronous with this small amplitude high har-
monic current, where it radiates and gets amplified in an
exponential “stimulated-superradiant” process, producing
coherent radiation at extreme UV frequencies (Yu, 1991;
Allaria et al., 2012a).
Another case where the superradiance and stimulated

emission processes are mixed and lead to alternative wider-
sense definitions of radiation is the case of a finite pulse
beam. In this case the SASE exponential growth process gets
mixed with the short pulse superradiance process when the
random beam pulse length lb is shorter or near equal to the
cooperation length lb ≲ lc. In this case, the partially coherent
SASE process may eventually yield a “single spike” coherent
radiation pulse that may be termed “superradiant” in a wider
sense, but the scaling of the radiation with the beam density is
not always (∝ N2) as in Dicke’s superradiance because of the
involvement of the exponential SASE processes. These kinds
of wider sense superradiance processes were thoroughly
studied mostly by Bonifacio et al. and others (Bonifacio,
Pellegrini, and Narducci, 1984a; Bonifacio, Piovella, and
McNeil, 1991; Bonifacio et al., 1994; Krinsky, 1999;
Watanabe et al., 2007) who also identified similar super-
radiance processes in the leading and trailing regions of a long
pulse (lb > lc) (Bonifacio et al., 1990; Bonifacio, Piovella,
and McNeil, 1991). Also numerous publications of Ginzburg
and co-workers operating at the long wavelength (THz)
regime (Ginzburg et al., 2015) may be considered in this
same category of superradiance in the wider sense.
As indicated, in the remainder of this review we will use the

term of superradiance in the narrow (Dicke’s) sense.

II. SUPERRADIANCE AND STIMULATED
SUPERRADIANCE OF BUNCHED ELECTRON BEAM

As a starting point we present the theory of SP-SR and
ST-SR emission from free electrons in a general radiative
emission process (Gover, 2005b). In this section we use a
spectral formulation, namely, all fields are given in the
frequency domain as Fourier transforms of the real time-
dependent fields:

Ăðr;ωÞ ¼
Z

∞

−∞
Aðr; tÞeiωtdt. ð2Þ

We use the radiation modes expansion formulation of Gover
(2005b), where the radiation field is expanded in terms of an
orthogonal set of eigenmodes in a waveguide structure or in
free space (e.g., Hermite-Gaussian modes):
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fẼqðrÞ; H̃qðrÞg ¼ fẼqðr⊥Þ; H̃qðr⊥Þgeikqzz; ð3Þ

Ĕðr;ωÞ ¼
X
�q

C̆qðz;ωÞẼqðr⊥Þeikqzz; ð4Þ

H̆ðr;ωÞ ¼
X
�q

C̆qðz;ωÞH̃qðr⊥Þeikqzz. ð5Þ

The electric and magnetic fields representing the structure of
the mode are named Ẽq and H̃q and are usually nearly
frequency independent. Their units are [V=m] and [A=m],
respectively. The actual fields Ĕ and H̆ are Fourier transforms
and hence are in units of [s V=m] and [s A=m], respectively.
Therefore, the amplitude coefficients C̆q have dimensions of
time, hence units of [s].
The excitation equation of the mode amplitudes is

dC̆qðz;ωÞ
dz

¼ −1
4Pq

Z
J̆ðr;ωÞ · Ẽ�

qðr⊥Þe−ikqzzd2r⊥; ð6Þ

where the current density J̆ðr;ωÞ is the Fourier transform
of Jðr; tÞ.
Equation (6) is formally integrated and given in terms of the

initial mode excitation amplitude and the currents

C̆qðz;ωÞ − C̆qð0;ωÞ ¼ −
1

4Pq

Z
J̆ðr;ωÞ · Ẽ�

qðr⊥Þe−ikqzzdV;

ð7Þ

where Pq is the power normalization parameter:

Pq ¼
1

2
Re
ZZ

ðẼq × H̃�
qÞ · êzd2r⊥ ¼ jẼqðr⊥ ¼ 0Þj2

2Zq
Aemq;

ð8Þ

where Zq is the mode impedance (in free space Zq¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
),

and for a narrow beam, passing on axis near r⊥ ¼ 0, Eq. (8)
defines the mode effective area Aemq in terms of the field of

the mode on axis Ẽqðr⊥ ¼ 0Þ.
For the Fourier transformed fields we define the total

spectral energy (per unit of angular frequency) based on
Parseval theorem as

dW
dω

¼ 2

π

X
q

PqjC̆qðωÞj2. ð9Þ

This definition corresponds to positive frequencies only:
0 < ω < ∞. Considering now one single mode q,

dWq

dω
¼ 2

π
PqjC̆qðωÞj2. ð10Þ

For a particulate current (an electron beam):

Jðr; tÞ ¼
XN
j¼1

−evjðtÞδ(r − rjðtÞ). ð11Þ

The field amplitude increment appears as a coherent sum of
contributions (energy wave packets) from all the electrons in
the beam:

C̆out
q ðωÞ − C̆in

q ðωÞ≡
XN
j¼1

ΔC̆qjðωÞ ¼ −
1

4Pq

XN
j¼1

ΔW̆qj; ð12Þ

ΔW̆qj ¼ −4PqΔC̆qj ¼ −e
Z

∞

−∞
vjðtÞ · Ẽ�

q(rjðtÞ)eiωtdt. ð13Þ

The contributions can be split into a spontaneous part
(independent of the presence of the radiation field) and a
stimulated (field dependent) part:

ΔW̆qj ¼ ΔW̆0
qj þ ΔW̆st

qj: ð14Þ

We do not deal in this section with stimulated emission, but
indicate that in general the second term ΔW̆st

qj is a function of

C̆qðzÞ through rjðtÞ and vjðtÞ; therefore the integral in Eq. (13)
cannot be calculated explicitly. Its calculation requires solving
the electron force equations and the differential equation (6).
In the context of the linear gain regime of conventional FEL,
ΔC̆st

qj is proportional to the input field, i.e., proportional to C̆
in
q ,

and in this case the solution of Eq. (6) results in the
exponential gain expression of conventional FEL (Gover
and Sprangle, 1981).
Assuming a narrow cold beam where all particles follow

the same trajectories, we can write rjðtÞ ¼ r0jðt − t0jÞ and
vjðtÞ ¼ v0jðt − t0jÞ, change variable t0 ¼ t − t0j in Eq. (13)
(Ianconescu et al., 2015), so that the spontaneous emission
wave packet contributions are identical, except for a phase
factor corresponding to their injection time t0j:

ΔW̆0
qj ¼ ΔW̆0

qeeiωt0j ; ð15Þ

where

ΔW̆0
qe ¼ −e

Z
∞

−∞
v0eðtÞ · Ẽ�

q(r0eðtÞ)eiωtdt: ð16Þ

The radiation mode amplitude at the output is composed of a
sum of wave packet contributions including the input field
contribution (if any):

C̆out
q ðωÞ ¼ C̆in

q ðωÞ þ ΔC̆0
qeðωÞ

XN
j¼1

eiωt0j þ
XN
j¼1

ΔC̆st
qj

¼ C̆in
q ðωÞ −

1

4Pq
ΔW̆0

qe

XN
j¼1

eiωt0j −
1

4Pq

XN
j¼1

ΔW̆st
qj

ð17Þ

so that the total spectral radiative energy from the electron
pulse is
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dWq

dω
¼ 2

π
PqjC̆out

q ðωÞj2 ¼ 2

π
Pq

�
jC̆in

q ðωÞj2 þ jΔCð0Þ
qe ðωÞj2

����XN
j¼1

eiωtoj
����
2

þ
�
C̆in
q ðωÞΔCð0Þ

qe ðωÞ
XN
j¼1

eiωtoj þ c:c:

�

þ
�
C̆in
q ðωÞ

XN
j¼1

ΔCst
qjðωÞ þ c:c:

�
þ
����XN
j¼1

ΔCst
qjðωÞ

����
2�

≡
�
dWq

dω

	
in
þ
�
dWq

dω

	
SP=SP-SR

þ
�
dWq

dω

	
ST-SR

þ
�
dWq

dω

	
st
: ð18Þ

The first term in the{ }represents the inputwave spectral energy,
given the subscript “in.” The second term is the spontaneous
emission SP, which may also be spontaneous superradiant in
the case that all contributions add in phase, hence given the
subscript “SP-SR.” The third term has a very small value
(averages to 0) if the contributions add randomly. Thus it is
relevant only if the electrons of the beam enter in phase with the
radiated mode. It is therefore dependent on the coherent mode
complex amplitude C̆in

q , and hence it is marked by the subscript
“ST-SR,” i.e., “zero-order”stimulated superradiance. The last
two terms in the { } represent stimulated emission.
Figures 2(a) and 2(b) represent in the C̆q complex plane

the conventional spontaneous emission and superradiant
emission that correspond to the second term in Eq. (18),
where in Fig. 2(a) the wave packets interfere randomly and in
Fig. 2(b), constructively in phase. Figure 2(d) represents the
third term in Eq. (18), where the coherent constructive
interference of a prebunched beam interferes with the input
field with some phase offset. When the electrons in the beam
are injected at random in a long pulse, then in averaging the

second term in Eq. (18), the uncorrelated mixed terms cancel
out, and one obtains the conventional shot-noise driven
spontaneous emission (Gover, 2005b; Ianconescu et al., 2015):

�
dWq

dω

	
sp

¼ 1

8πPq
jΔW̆ð0Þ

qe j2N. ð19Þ

Only when the electrons are bunched into a pulse shorter than
an optical period ωjt0i − t0jj ≪ π does one get enhanced
superradiant spontaneous emission, in which case all the terms
in the bracket of the third term of Eq. (18) add up constructively
in phase

P
N
j¼1 e

iωtoj ¼ Neiωto resulting in

�
dWq

dω

	
SP-SR

¼ 1

8πPq
jΔW̆ð0Þ

qe j2N2 ¼

�

dWq

dω

	�
sp
N. ð20Þ

Figure 2(d) displays a process of stimulated superradiance: all
electrons oscillate in phase, but because a radiation mode of
distinct phase is injected in, the third term in Eq. (18) will

FIG. 2. Different cases of radiation: (a) spontaneous emission, (b) superradiance, (c) stimulated emission, and (d) stimulated
superradiance.
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contribute positive or negative radiative energy, depending
whether the electron bunch oscillates in phase or out of phase
with the input radiation field. If the phase of the electron bunch
relative to the wave is φ, then the third term in Eq. (18)
represents stimulated-superradiance spectral energy (Gover,
2005b):

�
dWq

dω

	
ST-SR

¼ −
1

π
jC̆in

q jjΔW̆ð0Þ
qe jN cosφ: ð21Þ

For purpose of comparison, we also display in Fig. 2(c) the
process of conventional stimulated emission [fourth term in
Eq. (18)], e.g., for the case of the FEL amplifier that we do not
further consider here.
At this point we extend the analysis to include partial

bunching, namely, electron beam bunches of finite duration
and arbitrary bunch-shape function. One can characterize the
distribution of electron entrance times t0j of the electron
bunch by means of a normalized bunch-shape function
fðt00 − t0Þ ¼ iðt00 − t0Þ=eN, where iðtÞ is the e-beam bunch
current, and t0 is the bunch center entrance time:

Z
∞

−∞
fðt00 − t0Þdt00 ¼ 1: ð22Þ

Then the summation over t0j may be substituted by integration
over entrance times t00:

XN
j¼1

eiωtoj ¼ N
Z

fðt00 − t0Þeiωt00dt00 ¼ Neiωt0MbðωÞ; ð23Þ

where

MbðωÞ ¼
1

N


XN
j¼1

eiωt0j
�

¼
Z

fðtÞeiωtdt ð24Þ

is the Fourier transform of the bunch-shape function, i.e., the
bunching amplitude at frequency ω. It modifies Eqs. (20)
and (21) to

�
dWq

dω

	
SP-SR

¼ 1

8πPq
jΔW̆ð0Þ

qe j2jMbj2N2 ð25Þ

and

�
dWq

dω

	
ST-SR

¼ −
1

π
jC̆in

q jjΔW̆ð0Þ
qe jjMbjN cosφ: ð26Þ

In conditions of perfect bunching fðtÞ ¼ δðtÞ (and conse-
quently Mb ¼ 1), Eqs. (20) and (21) are restored. For a finite
size bunch, modeled by a Gaussian electron beam bunch
distribution

fðtÞ ¼ 1ffiffiffiffiffi
2π

p
σtb

e−t
2=ð2σ2tbÞ; ð27Þ

the bunching factor is

MbðωÞ ¼
Z

∞

−∞
eiωtfðtÞdt ¼ e−ω

2σ2tb=2: ð28Þ

The zero-order analysis so far is valid for any interaction
scheme for which the electron trajectories in the radiating
structure are known explicitly to zero order, namely, in the
absence of a radiation field, or where the change in the
particles velocity and energy due to interaction with an
external radiation field or their self-generated radiation field
is negligible.

A. Superradiant undulator radiation

For the case of interest of undulator radiation we specify
for each electron:

viðtÞ ¼ Re½ṽ⊥ie−ikwziðtÞ�; ð29Þ

where

ṽ⊥i ¼
cãw
γi

¼ eẑ × B̃w

γimkw
; ð30Þ

where B̃w is the complex amplitude of the undulator periodic
magnetic fieldBðzÞ ¼ Re½B̃we−ikwz�. Assume that the electron
beam is narrow enough so that all electrons experience the
same field when interacting with the mode

Ẽq(r0jðtÞ) ¼ Ẽqðr⊥ ¼ 0Þeikqzz0j ðtÞ; ð31Þ

where z0jðtÞ ¼ vzðt − t0jÞ, and r⊥ is the transverse coordinates
vector of the electron beam, then substituting this and Eq. (29)
into Eq. (16) one obtains

ΔW̆0
qj ¼ −e

ṽ⊥0 · Ẽ
�
q

2vz
Lw sin cðθLw=2ÞeiθLw=2eiωt0j ; ð32Þ

where Lw ¼ Nwλw is the interaction length (λw ¼ 2π=kw),
sin cðxÞ ¼ sin x=x, and θðωÞ, the detuning parameter, is
defined by

θðωÞ ¼ ω

vz
− kzqðωÞ − kw: ð33Þ

The detuning function sin cðθL=2Þ attains its maximum value
at the synchronism frequency ωr defined by

θðωrÞ ¼
ωr

vz
− kzqðωrÞ − kw ¼ 0: ð34Þ

Near synchronism

θðωÞLw ≃ ðω − ωrÞts ¼ 2π
ω − ωr

Δω
; ð35Þ

where

ts ¼
2π

Δω
¼ Lw

vz
−
Lw

vgq
ð36Þ

A. Gover et al.: Superradiant and stimulated-superradiant emission …

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035003-8



is the wave packet slippage time and vgq ¼ dω=dkzq at ωr is
the group velocity of the mode. In free space kzq ¼ ω=c,
vgq ¼ c, and the solution of Eq. (34) results in

ωr ¼
ckw

1=βz − 1
≃ 2γ2zckw; ð37Þ

Δω ¼ ωr

Nw
; ð38Þ

where the second part of Eq. (37) applies for an ultra-
relativistic beam (β ≃ 1), and

γ2z ¼
γ2

1þ ā2w
; ð39Þ

where āw ≡ eB̄w=mckw is the one period rms average of
awðzÞ. It is equal to the amplitude aw in the case of a helical
(circularly polarized) wiggler and to aw=

ffiffiffi
2

p
in a linear

(linearly polarized) magnetic wiggler.
When substituting Eqs. (30) and (32) into Eqs. (20) and

(21) one obtains the expressions of UR superradiance and
stimulated superradiance from a tight single bunch into a
single mode q (Gover, 2005b)

�
dWq

dω

	
SP-SR

¼ N2e2Zq

16π

�
āw
βzγ

	
2 L2

w

Aemq
sin c2ðθLw=2Þ; ð40Þ

�
dWq

dω

	
ST-SR

¼ N
π

�
āw
βzγ

	
ejĔð0;ωÞjLw sin cðθLw=2Þ

× cosðφqb0 − θLw=2Þ; ð41Þ

where Ĕð0;ωÞ ¼ C̆qð0;ωÞẼqðr⊥ ¼ 0Þ is the Fourier trans-
form of the input injected radiation mode [Eqs. (2) and (4)]
and φqb0ðωÞ is the phase between the radiation field and the
bunch at the entrance to the wiggler.
While in the present paper we stay, for transparency, with a

single radiation mode analysis, we point out that the general
expression for radiation into all modes is found from sum-
mation over the contributions of all modes [Eq. (9)]. This
expression can also be extended to the case of free-space
radiation (Ianconescu et al., 2015), where the far field spectral
energy intensity is found to have a similar frequency func-
tional dependence as Eq. (40) with the substitution kz ¼
ðω=cÞ cosΘ in the detuning parameter θðωÞ [Eq. (33)], where
Θ is the far field observation angle off the wiggler axis.
We now extend the analysis to the case of spontaneous

emission from a finite train of bunches. Following the
formulation of Gover (2005b), we consider a train of NM
identical bunches (neglecting shot noise) separated in time
Tb ≡ 2π=ωb apart. The arrival times of bunch k is

t0k ¼ ½k − ðNM=2Þ�2π=ωb. ð42Þ

The summation of the phasors eiωt0j in the second term of
Eq. (17) is now reorganized into summation over the NM

bunches and summation over theNb particles in each bunch as
shown in Fig. 3. Given that electron n (n is between 1 to
N ¼ NMNb) is the electron j of bunch k, and jΔt0ij < Tb, we
have t0n ¼ t0k þ Δtj þ t0 (t0 being a pulse origin reference,
e.g., the arrival time of the center of the train pulse), we can
write

XN
n¼1

eiωt0n ¼
XN
n¼1

eiωt0keiωΔtjeiωt0 ¼ eiωt0
XNM

k¼1

XNb

j¼1

eiωt0keiωΔtj

¼ eiωt0
�XNM

k¼1

eiωt0k
	�XNb

j¼1

eiωΔtj
	
: ð43Þ

We define the microbunch bunching factor:

MbðωÞ ¼
1

Nb


XNb

j¼1

eiωΔtj
�
; ð44Þ

where h i mean averaging on the random Δtj. We also define
the macrobunch (pulse) form factor:

MMðωÞ ¼
1

NM

XNM

k¼1

eiωt0k : ð45Þ

Setting Eqs. (44) and (45) into (43) we obtain


XN
n¼1

eiωt0n
�

¼ NMbðωÞMMðωÞeiωt0 . ð46Þ

Note that the assumption that all microbunches in the macro-
bunch have an equal number of particles Nb amounts to
neglecting shot noise due to a random variance of particles
along the macrobunch. If one assumes that the distribution of
the electron particles within the bunches is tight enough

FIG. 3. The charge distribution function of a “macropulse”
finite train of bunches arriving at times t0k, with period
Tb ¼ 2π=ωb. Each bunch is a normalized Gaussian [Eq. (27)]
with σtb ≪ Tb.
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jΔt0jj ≪ Tb, Eq. (44) can be written in terms of the particles
distribution function within one period

MbðωÞ ¼
ωb

2π

Z
π=ð2ωbÞ

−π=ð2ωbÞ
fbðΔt0ÞdðΔt0Þ

and approximated by Eq. (24). For a Gaussian distribution
(27), Mb is then given by Eq. (28). The macrobunching
form factor (42) is calculated using Eq. (45), as a geometric
series sum:

MMðωÞ ¼
sinðNMπω=ωbÞ
NM sinðπω=ωbÞ

: ð47Þ

This form factor contains the basic bunching frequency ωb
peak and an infinite number of high harmonics, as shown in
Fig. 4. Consequently the superradiant spectral energy of the
bunch train [the second term in Eq. (18)] is

�
dWq

dω

	
SP-SR

¼ N2

8πPq
jΔW̆ð0Þ

qe j2jMbðωÞj2jMMðωÞj2; ð48Þ

and the stimulated superradiance at zero-order approximation
[the third term in Eq. (18)] is

�
dWq

dω

	
ST-SR

¼ N
π
jC̆in

q ðωÞjjΔW̆ð0Þ
qe jjMbðωÞj

× jMMðωÞj cosφqb0ðωÞ; ð49Þ

where φqb0ðωÞ is the phase between the radiation field and
the periodically bunched beam, determined at the entrance to
the wiggler.
For the case of interest of UR we substitute Eq. (32) into

Eqs. (48) and (49) and obtain the general expression for
spontaneous SP-SR and ST-SR spectral energy of a finite train
of periodic bunches:

�
dWq

dω

	
SP-SR

¼ N2e2Zq

16π

�
āw
βzγ

	
2 L2

w

Aemq
jMbðωÞj2jMMðωÞj2

× sin c2ðθLw=2Þ ð50Þ

and the stimulated-superradiant term is

�
dWq

dω

	
ST-SR

¼ N
π

�
āw
βzγ

	
ejĔð0;ωÞjLw

× jMbðωÞjjMMðωÞj sin c½θðωÞLw=2�
× cos½φqb0ðωÞ − θLw=2�. ð51Þ

The spectrum of superradiant and stimulated-superradiant UR
is composed of harmonics of narrow linewidth Δω ≃ ωb=NM
(Fig. 4) within the low frequency filtering band of the
bunching factor ω < 1=σtb [Eq. (28)] and the finite interaction
length bandwidth (38).

III. SINGLE FREQUENCY FORMULATION

In the limit of a continuous train of microbunches or a long
macropulse NM ≫ 1, the macropulse form factor MMðωÞ
behaves like a comb of delta functions and narrows the
spectrum of the prebunched beam SP-SR and ST-SR undu-
lator radiation to harmonics of the bunching frequencies
ω ¼ nωb. Instead of spectral energy, one can then evaluate
the average radiation power output within the macropulse by
integrating the spectral energy expressions (48) and (49) over
frequency and dividing the integrated spectral energy by the
pulse duration TM ¼ NM2π=ωb. Alternatively, one may have
analyzed the continuous bunched beam problem from the start
in a single frequency model using “phasor” formulation,
concentrating for now on a single frequency ω0:

Aðr; tÞ ¼ Re½Ãðr;ω0Þe−iω0t�. ð52Þ

Note that in this case the radiation frequency ω must be
equal to the bunching frequency or one of its harmonics
ω ¼ ω0 ¼ nωb, otherwise there will not be any steady-state
interaction between them. The radiation mode excitation
equations in the phasor formulation of the radiation fields
fẼðrÞ; H̃ðrÞg are the same as Eqs. (3)–(6) with C̃qðz;ω0Þ≡
C̃qðzÞ replacing C̆qðz;ωÞ, and the spectral energy radiance
expression (9) replaced by the total steady-state radiation
power

P ¼
X
q

PqjC̃qj2. ð53Þ

As in Schnitzer and Gover (1985), Arbel et al. (2014),
and Schneidmiller and Yurkov (2015), we take a model
of a periodically modulated e-beam current of a single
frequency ω0:

Iðz; tÞ ¼ I0f1þ Re½M̃e−iω0ðt−z=vzÞ�g. ð54Þ

This current represents one of the harmonics of a periodically
bunched beam ω0 ¼ nωb.

FIG. 4. The absolute square of the macropulse form-factor
function in Eq. (47) for NM ¼ 8.
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The parameter M̃ can be calculated for each of the
harmonics ωn ¼ nωb from the Fourier series expansion of
an infinite train of identical microbunches (shot noise is
neglected):

Iðz; tÞ ¼ I0Tb

X∞
n¼−∞

fðt − z=vz − nTbÞ; ð55Þ

where Tb ¼ 2π=ωb and the bunch profile is normalized
according to

R Tb=2
−Tb=2

fðtÞdt ¼ 1. The Fourier expansion is

Iðz; tÞ ¼ I0f1þ 2Re½bneinωbðt−z=vzÞ�g; ð56Þ
where

bn ¼
Z

Tb=2

−Tb=2
fðtÞe−inωbðt−z=vzÞdt. ð57Þ

Thus, Eq. (54) represents one of the harmonic components
of frequency ω0 ¼ ωbn ¼ nωb and phasor amplitude
M̃ ¼ 2bn.
The bunching parameter bn depends on the profile function

of the microbunch. If the microbunches can be represented
by the Gaussian function (27), such that σtb ≪ Tb=n, then
the integration in Eq. (57) can be carried to infinity, and then
[see Eq. (28)]

bn ¼ MbðωnÞ ¼ e−ω
2
nσ

2
tb=2: ð58Þ

The Gaussian approximation is not always most fitting to
describe the bunch distribution function. A most useful scheme
of bunching a continuous or long pulse beam is modulating its
energy with a high intensity laser beam in a wiggler (or another
interaction scheme), and then turning its energy modulation to
density modulation by passing it through a dispersive section
(DS), such as a “chicane” (see Appendix B). This scheme of
bunching is useful for a variety of short wavelength radiation
schemes, including HGHG (Yu, 1991; L. Yu et al., 2000),
EEHG (Stupakov, 2009; Xiang and Stupakov, 2009), PEHG
(Jia, 2008; Feng et al., 2014), and enhanced SASE (eSASE)
(Zholents, 2005). Following the notation of Stupakov (2009),
the bunching parameter after the DS is determined in this case
by the initial energy spread of the beam σγ0=γ0, the compression
parameter B ¼ ωbσt ¼ ωbðR56=cÞðσγ0=γ0Þ, and the energy
modulation parameter A ¼ Δγmod=σγ0, where σγ0 is the intrin-
sic energy spread of the beambeforemodulation. For optimized
bunching of harmonic n (given n > 4), the dispersion is
adjusted so that AB ¼ 1. In this case a useful expression for
the bunching coefficient is (see Appendix B)

bn ¼
0.67

n1=3
e−n

2B2=2. ð59Þ

Assuming the beam has a normalized transverse profile
distribution fðr⊥Þ, the transverse current density in the
wiggler is

J⊥ðr;ω0Þ ¼
Ĩm⊥ê⊥

2
fðr⊥Þeiðω0=vz−kwÞz; ð60Þ

where

Ĩm⊥ê⊥ ¼ I0M̃
β̃w
βz

. ð61Þ

Writing now the excitation equation in phasor formulation:

C̃qðzÞ ¼ C̃qð0Þ −
1

4Pq

Z
J̃⊥ðr;ω0Þ · Ẽ�

qðr⊥Þe−ikzqzdV; ð62Þ

one obtains

C̃qðzÞ ¼ C̃qð0Þ −
Ĩm⊥
8Pq

jẼqð0ÞjFqzeiθz=2 sin cðθz=2Þ; ð63Þ

where

Ĩm⊥ ¼ jĨm⊥jeiφb0 ð64Þ

and Fq is a field “filling factor”:

Fq ¼
1

jẼqð0Þj

����
Z

∞

−∞
ˆ̃e⊥ · Ẽ�

qðr⊥Þfðr⊥Þd2r⊥
����: ð65Þ

This parameter is close to 1 when the beam is narrow relative
to the transverse variation of the mode and the diffraction
effect is negligible, or in the case of a transversely uniform
beam and radiation field (1D model).
The time averaged radiation power will then be given by

PqðzÞ ¼ PqjC̃qðzÞj2 ¼ Pqð0Þ þ PSP-SRðzÞ þ PST-SRðzÞ. ð66Þ

With the definition (8) for the effective area of the radiation
mode Aemq, the superradiant and stimulated-superradiant
powers are

PSP-SRðzÞ ¼
1

32
ZqjĨm⊥j2F2

q
z2

Aemq
sin c2ðθz=2Þ ð67Þ

and

PST-SRðzÞ ¼ 1
4
Eð0ÞjĨm⊥jFqz cosðφqb0 − θz=2Þ sin cðθz=2Þ;

ð68Þ

where

Eð0Þ ¼ jC̃qð0ÞjjẼqð0Þj ð69Þ

and

φqb0 ¼ φq0 − φb0 ð70Þ

is the phase difference between the radiation field phase φq0

and the bunching current phase φb0 at the entrance to the
wiggler.
Maximal power generation is attained for θ ¼ 0 and

φqb0 ¼ 0 (phase matching between the bunched current and
radiation field):
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PSP-SRðzÞ ¼
1

32
ZqjĨm⊥j2F2

z2

Aemq
ð71Þ

and

PST-SRðzÞ ¼
1

4
jĨm⊥j

ffiffiffiffiffiffiffiffiffiffi
2Zq

Aemq

s ffiffiffiffiffiffi
Pin

p
Fqz. ð72Þ

The ratio between the two contributions to the radiation
power is

PST-SR

PSP-SR
¼8

Aemq

ZqĨm⊥Fqz

ffiffiffiffiffiffiffiffiffiffi
2Zq

Aemq

s ffiffiffiffiffiffi
Pin

p
¼8

Aemq

ZqĨm⊥Fqz
Eð0Þ. ð73Þ

In Fig. 5 we show the ratio of zero-order ST-SR to SP-SR for
different initial power levels at z ¼ z0. Initially the ST-SR
power dominates the SP-SR power, but evidently, for long
interaction length the SP-SR power that grows like z2 exceeds
the ST-SR power that grows like z. At the beginning stages of
interaction in the wiggler the ST-SR power may be signifi-
cantly higher than the SP-SR power if the initial radiation
power Pin injected is large enough. This balance is demon-
strated in Fig. 5 for the parameters of the Linac Coherent Light
Source (LCLS) (Emma et al., 2014) (without tapering).
We point out that in the case of a long wiggler, diffraction

effects of the radiation beam become significant (see
Sec. VIII.C), and a single mode analysis would be relevant
only in the initial part of the wiggler up to a distance of a
Rayleigh length. The superradiant part of the radiation
emission was analyzed, including diffraction effects, based
on a Gaussian model for the radiation beam in Schneidmiller
and Yurkov (2015). The contribution of the stimulated super-
radiance to the radiation emission has usually been ignored in
analytic modeling. Our conclusion on the dominance of this
contribution in the initial section of the wiggler is valid at least
up to the distance of a Rayleigh length, within which the
single radiation mode model is valid and would be valid then
only if tight bunching is realizable. A more complete review
of the modeling of radiation in the tapered wiggler section
of an FEL and the limitations of the 1D modeling is postponed
to Sec. VIII.C.

IV. SUPERRADIANCE AND STIMULATED
SUPERRADIANCE IN THE NONLINEAR REGIME

The underlying assumption in the calculation of sponta-
neous emission, superradiant spontaneous emission, and
zero-order stimulated-superradiant emission is that the beam
energy loss as a result of radiation emission is negligible.
When this is not the case, the problem becomes a nonlinear
evolution problem. We now extend our model to the case of a
continuously bunched electron beam interacting with a strong
radiation field in an undulator, so that the electron beam loses
an appreciable portion of its energy in favor of the radiation
field. In this case, the electrons experience the dynamic
force of the radiation wave and change their energy according
to the force equation (C14) in Appendix C. As derived in the
conventional theory of a FEL (Kroll, Morton, and Rosenbluth,
1981; Pellegrini, Marinelli, and Reiche, 2016) the scalar
product of the radiation field Eðr; tÞ and the wiggling velocity
viðtÞ [Eq. (29)] produces a periodic “beat wave” force (the
“ponderomotive force”), propagating with phase velocity

vph ¼
ω0

kzq þ kw
. ð74Þ

This force wave can be synchronous with the electron beam
near the synchronism condition of Eq. (34) or (37).
Near synchronism, electrons interact efficiently with the

sinusoidal ponderomotive force. The dynamics of this inter-
action is analyzed and presented in Sec. V. In this section we
discuss qualitatively the conceptual transition from the zero-
order regime (no e-beam dynamics) to the nonlinear regime.
For this we use the “pendulum” model that had been
developed earlier for FEL theory (Colson, 1977; Kroll,
Morton, and Rosenbluth, 1981; Pellegrini, Marinelli, and
Reiche, 2016). According to this model, the incremental
energy of the electron (off the synchronism energy) and its
phase (relative to the sinusoidal ponderomotive wave) satisfy
the “pendulum equations.” The characteristics of the solution
of this well-known mathematical equations and of the “tilted
pendulum equations” are presented briefly in Appendix A. In
analogy to the physical pendulum, the dynamics of the
electron in the ponderomotive wave potential is described
in terms of its trajectories in the phase space of its detuning
parameter θ [Eq. (33)] and its phase ψ relative to the
ponderomotive wave. The nonlinear regime saturation process
of a FEL is explained in Appendix A in terms of the phase-
space trajectories of Fig. 29 that consist of two kinds of
trajectories: open and closed (trapped). The maximal loss of
energy of an electron within the trap (and, respectively, its
maximal deviation off synchronism Δθ due to the interaction)
depends on the height of the trap Δθ ¼ 2θm. A well-bunched
electron beam will release maximum energy (transformed to
radiation), if inserted into the trap near synchronism at phase
ψ ¼ 0 and detuning parameter near −θ ¼ θm corresponding
to the top of the trap (Fig. 29), and winds up at the bottom of
the trap at the end of the interaction length (the wiggler).
Extending the technology of a uniform wiggler FEL, a

scheme of a “tapered wiggler” has been developed in the field
of FELs for extracting higher radiation energy from the beam
(Kroll, Morton, and Rosenbluth, 1981) beyond the maximal

FIG. 5. Ratio of zero-order ST-SR to SP-SR generated power for
different initial input power.
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energy extraction efficiency of a uniform FEL. The exper-
imental realization of this scheme is described schematically
in Fig. 6 for the case of a tapered wiggler FEL. After providing
linear gain in a uniform wiggler, the wasted beam that is partly
bunched due to the interaction in the first section continues to
interact along a tapered wiggler with the coherent radiation
wave that was generated in the first section and is further
amplified in the second section. In such a scheme, the wiggler
wave number kwðzÞ is increased along the tapered wiggler
section, so that the ponderomotive phase velocity vph
[Eq. (74)] decreases gradually, keeping synchronism with
the correspondingly slowing down electrons, trapped in the
ponderomotive wave, so that the synchronism condition in
Eq. (34) can be kept all along:

θðzÞ ¼
Z

z

0

�
ω0

vzðz0Þ
− kzqðω0Þ − kwðz0Þ

�
dz0 ≃ 0. ð75Þ

The trapped electrons dynamics and the energy extraction
process in this scheme can be presented in terms of the tilted
pendulum model (Appendix A). They are described quanti-
tatively in terms of their trajectories in phase space in Fig. 32
that shows that the electrons can stay trapped (although the
trap is somewhat shrinked) and still keep decelerating along
the tapered wiggler, keeping near synchronism with the
slowing down ponderomotive wave. Note that in Eq. (75)
vz is the axial velocity of the beam averaged over the wiggler
period. In a linear wiggler with āw ≫ 1 the linear transverse
wiggling gives rise to the longitudinal periodic quiver of
vzðzÞ and a consequent radiative interaction at odd harmonic
frequencies (Gover, 2005a; Pellegrini, Marinelli, and Reiche,
2016). For simplicity we ignore here these harmonic inter-
actions. Also, in using the pendulum equation model to
describe the dynamics of the electron inside the trap (syn-
chrotron oscillation), it is implicitly assumed that the pendu-
lum oscillation period (synchrotron period λS) is much longer
than the wiggler period λS ≫ λw.
For completion of this short review of a tapered wiggler

FEL, we point out that besides tapering the wiggler wave
number kwðzÞ, enhanced energy extraction efficiency of
saturated FEL is also possible in an alternative scheme of
magnetic field wiggler parameter tapering. In this scheme, the
period of the tapered wiggler stays constant, but the strength
of the magnetic field and correspondingly the wiggler param-
eter awðzÞ ¼ jãwðzÞj [Eq. (30)] is reduced gradually along the
wiggler so that γ2zðzÞ ¼ γ2ðzÞ=½1þ a2wðzÞ� remains constant in

Eq. (39). Since βz ¼ ½1 − 1=γ2z �1=2, the detuning synchronism
condition (34) or (37) can be maintained along the interaction
length despite the decline of the beam energy.
For a free-space wave, propagating on axis kzq¼k0¼ω0=c,

and then from Eq. (33):

θðzÞ ¼ k0½β−1z ðzÞ − 1� − kwðzÞ; ð76Þ

where k0 ¼ ω0=c. The synchronism condition θðzÞ ¼ 0

defines an energy synchronism condition between the electron
beam and the wave for a general case of either a period or a
field tapered wiggler:

γrðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ā2wðzÞ
1 − ½1þ kwðzÞ=k0�−2

s
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ā2wðzÞ

2

k0
kwðzÞ

s
; ð77Þ

where we used the identities γz ¼ ð1 − β2zÞ−1=2 and
γz ¼ γ=ð1þ ā2wÞ1=2, and the second part simplification of
the equation corresponds to the ultrarelativistic beam limit.
Assuming that the electrons are trapped, so that in the

presence of the radiation field they stay with energy close to
the synchronism energy γr, we write

γ ¼ γr þ δγ ð78Þ

and therefore the connection between the dynamic energy
exchange of the electron within the trap δγðzÞ and the detuning
parameter relative to the slowing down ponderomotive wave
θðzÞ is

θ ¼ dθ
dγ

����
γr

δγ ¼ −
k0

β3zrγ
2
zrγr

δγ ≃ −2kwðzÞ
δγ

γrðzÞ
ð79Þ

[the approximate expression is for the ultrarelativistic case
where βzr ≃ 1, kw ¼ k0=ð2γ2zrÞ]. The synchronism energy
γrðzÞ is the energy of an electron moving at exact synchronism
with the ponderomotive wave phase velocity (“fully trapped”).
In the following sections we analyze the dynamic processes

of a tightly bunched electron beam trapped in the ponder-
omotive potential of a uniform or tapered wiggler. Tight
bunching of the beam relative to the period of the ponder-
omotive wave allows determination of the bunching phase
relative to the ponderomotive phase and corresponding
optimization of superradiant and stimulated-superradiant

FIG. 6. Schematics of a seed-injected FEL followed by a tapered wiggler: at the end of the constant parameters wiggler, the partially
bunched e beam and the amplified radiation wave are injected into a tapered wiggler section, where further radiation energy is extracted
out of the bunched beam.
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processes. However, such tight bunching is hard to obtain in
the present technological state of the art.
The tight bunching model presented in the next section can

describe quite well recent experiments of TESSA and inverse
FEL (IFEL) bunched beam acceleration demonstrated on the
Rubicon and Nocibur setups at the Accelerator Test Facility
(ATF) at Brookhaven National Laboratory (Tremaine et al.,
2011; Sudar et al., 2016) that are described in Sec.VIII.B. Here
very tight prebunching was attained using a high intensity
10.6 μm CO2 laser. In the case of a seed-injected tapered
wiggler FEL the tight bunching model is presently only partly
relevant for describing the dynamics in the tapered wiggler
section. In this case (see Fig. 6), both the coherent radiation field
and a bunched e beam are inserted into the tapered wiggler
section from the uniformwiggler (linear gain) section. Both SP-
SR and ST-SR radiation would have been emitted from the
tapered section, if the bunching produced in the uniformwiggler
section of the FEL is tight enough. If phase-shifter technology
(Ratner et al., 2010; Mak, Curbis, and Werin, 2017) can be
harnessed then to adjust the phase of the bunching relative to the
radiation field, it could be used to enhance the ST-SR emission
process. However, tight bunching is hard to get, and the input
field intensity and phase of the bunching are not independently
controlled in present day taperedwiggler x-ray FEL facilities, as
is necessary for optimizing ST-SR. These, as well as the
maintenance of small enough energy spread of the bunched
beam when it enters the tapered section, are hard to control in
present x-ray FEL facilities. Furthermore, transverse effects,
primarilywave diffraction (see Fig. 6), are significant in the long
section of the tapered undulator, despite the short wavelength of
the radiation: they require extension of the single mode analysis
to a multimode formulation or full 2D or 3D solution of
Maxwell equations (Chen et al., 2014; Emma and Pellegrini,
2014; Tsai et al., 2018). These limitations are discussed inmore
detail in Sec. VIII.C. Thus the presented ideal model of the
distinct SP-SR and ST-SR radiation extraction schemes serve in
this case only for qualitative identification of tapering optimi-
zation strategies.

V. FORMULATION OF THE DYNAMICS OF A
PERIODICALLY BUNCHED ELECTRON BEAM
INTERACTING WITH RADIATION FIELD
IN A GENERAL WIGGLER

In this section we extend the analysis of SP-SR and ST-SR
in undulator radiation of a periodically bunched beam that
was presented in Sec. III based on radiation mode excitation
and phasor formulations, and we add the dynamics of the
electrons under interaction with the radiation wave. Beyond
the qualitative introduction of the pendulum equation in
Sec. IV, we develop here master equations for the coupled
radiation field and periodically bunched beam.
Solving now for the axial (z coordinate) evolution of the

bunched beam in steady state, we assume that the infinite
periodically bunched beam is composed of all identical
bunches (namely, shot noise and finite pulse effects are
neglected). The bunches are tightly bunched, hence they
can be modeled as Dirac delta functions [see Appendix C,
Eqs. (C1) and (C2)]. They all experience the same force
equation and have the same trajectories as macroparticles of

charge Qb ¼ −eNb, and the time interval between two
consecutive injected bunches is Tb ≡ 2π=ω0, therefore

Jðr; tÞ ¼ QbveðtÞfðr⊥Þ
X∞
n¼−∞

δ½z − zeðt − nTb − t0Þ�; ð80Þ

where we use fðr⊥Þ in order to represent a beam of finite
transverse distribution, as in Eq. (60).
With these simplifying assumptions, the phasor mode

excitation equation (6) can be employed to any harmonic
frequency of the radiation emitted by the current (80) for
calculating the radiation power (53). As we show in
Appendix C, this radiation power expression, combined with
the beam energy exchange rate, derived from the force
equation on the bunches

Nbmc2
dγ
dt

¼ Qbv ·Eðr; tÞ; ð81Þ

results in exact conservation of power exchange between
the radiation power PðzÞ and the beam power Pe ¼
Nbmc2ðγ − 1Þ=Tb, so that

dP
dz

¼ −
dPe

dz
. ð82Þ

Quite remarkably, this result is shown in generality for a
bunched beam interaction with the radiation field (either
external or self-generated by the beam) in any kind of
radiation mechanism. It demonstrates the rigor of the mode
expansion formulation of Maxwell equation [Eqs. (3)–(5)]
and its consistency with the simplified bunched beam dynam-
ics model.
The excitation equation for interaction of a tightly bunched

periodic beam [Eq. (80)] interacting in a wiggler is derived in
Appendix C [Eq. (C30)] (for simplicity we assume from now
on Fq ¼ 1):

dC̃qðzÞ
dz

¼ −
Qbω0β̃wðzÞ · Ẽ�

qð0Þ
8πPqβzr

eiφbðzÞ; ð83Þ

where the beam bunching phase relative to the ponderomotive
wave dynamically changes as a function of z because of the
tapering and because of the energy change in the nonlinear
regime:

φbðzÞ ¼
Z

z

0

�
ω0

vzðz0Þ
− kwðz0Þ − kzq

	
dz0 þ φb0. ð84Þ

We define the dynamic detuning parameter, consistent with
Eq. (33) (Gover, 2005a)

θðzÞ≡ dφb

dz
¼ ω0

vzðzÞ
− kwðzÞ − kzq: ð85Þ

The rate of change of the bunches energy is found in
generality based on Appendix C by substituting

E(r; teðzÞ) ¼ Re½C̃qðzÞẼðr⊥Þe−i
R

z

0
½ω0=vzðz0Þ−kz�dz0−iφb0 �; ð86Þ
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and (C24) in Eq. (C15), which for a thin beam (r⊥ ¼ 0)
results in

mc2
dγ
dz

¼ 1

2βzr
ð−eÞηpjβ̃wjjẼqð0ÞjjC̃qðzÞj cos½φqbðzÞ�; ð87Þ

where

φqbðzÞ ¼ φqðzÞ − φbðzÞ: ð88Þ

It is evident that the rate of beam energy change (87) depends
both on the amplitude of the field jC̃qðzÞj and on the z-
dependent relative phase φqbðzÞ, which is the dynamic phase
of the radiation field relative to the bunching current [con-
sistent with Eq. (70)]. The phase φbðzÞ is defined in Eq. (C29)
and φqðzÞ is the z-dependent phase of the radiation complex
amplitude, so that

C̃qðzÞ ¼ jC̃qðzÞjeiφqðzÞ: ð89Þ

The polarization match factor ηp is defined by

ηp ¼ jβ̃�w · Ẽqð0Þj
jβ̃wjjẼqð0Þj

. ð90Þ

It is useful at this point to redefine the interaction coordinate
z-dependent varying phase of the ponderomotive wave rela-
tive to the varying phase of the bunches as

ψ ≡ φqbðzÞ þ π=2 ¼ ψð0Þ þ ½φqðzÞ − φqð0Þ� −
Z

z

0

θðz0Þdz0;

ð91Þ

so that ψð0Þ ¼ φqb0 þ π=2, where φqb0 ¼ φq0 − φb0 is the
phase of the radiation mode relative to the bunching at z ¼ 0

[see Eq. (70)]. The π=2 phase shift corresponds to relating
the bunches to the phase of the radiation vector potential or the
ponderomotive wave potential, rather than to the electric field
phase φqðzÞ (Ẽ ¼ −iωÃ).
Since at present we confine the analysis to interaction with a

single mode, we simplify the notation for the field amplitude:

ẼðzÞ ¼ C̃qðzÞjẼqð0Þj; ð92Þ

where ẼðzÞ is the complex radiation field amplitude on and
along the beam axis. This results in, similarly to KMR (Kroll,
Morton, and Rosenbluth, 1981), the following coupled beam
and wave equations:

dγ
dz

¼ −ajẼðzÞj sinψ ; ð93Þ

dẼðzÞ
dz

¼ beiφbðzÞ ¼ ibei½φqðzÞ−ψ �; ð94Þ

where

a ¼ eηp
2βzrγrmc2

āwðzÞ; ð95Þ

b ¼ jQbjω0ηpāwðzÞjẼqð0Þj2
8πPqβzrγr

¼ IηpāwðzÞZq

2Aemqβzrγr
; ð96Þ

where we used jβ̃wj ¼ āwðzÞ=γ, jQbj ¼ eNb and I is the
current. Here ψðzÞ [Eq. (91)] is the phase of the bunch relative
to the vector potential of the wave AðtÞ (or relative to the
electric field of the wave with π=2 phase shift), and φqðzÞ is
the phase of the radiation wave (89) that may also change
dynamically due to the interaction.
The complex equation (94) can be broken into two equations

for the modulus and the phase of the radiation mode:

djẼj
dz

¼ b sinψ ; ð97Þ

dφq

dz
¼ b

jẼj cosψ . ð98Þ

The detailed solution of the problem includes an iterative
calculation of the beam energy (γ) [Eq. (93)] and the radiation
mode amplitude jẼj [Eq. (97)] that are coupled to each other
through the phase ψðzÞ [Eq. (91)] and the definition of the
detuning parameter θðzÞ [Eqs. (78) and (79)].
Note that only the initial phase of the mode relative to the

bunching φqb0 ¼ φqð0Þ − φbð0Þ is required for the determi-
nation of the initial condition ψð0Þ ¼ φqb0 þ π=2. After the
solution of the two coupled equations [Eqs. (91) and (97)] the
phase variation of the mode can always be calculated by
integration of Eq. (98)

φqðzÞ ¼ ϕqð0Þ þ
Z

z

0

b

jẼðz0Þj cosψðz
0Þdz0: ð99Þ

A. Uniform wiggler

In this section we specify to a uniform wiggler, and
therefore γr [see Eq. (77)] is independent of z, so that

dθ
dz

¼ −
k0

β3zrγ
2
zrγr

dδγ
dz

¼ −
k0

β3zrγ
2
zrγr

dγ
dz

: ð100Þ

The total power of the electron beam can be expressed as

Pel ¼
1

Tb
Nbmc2ðγ − 1Þ ≃ 1

Tb
Nbmc2γ; ð101Þ

and using γ ¼ γr þ δγ, it is written as

Pel ¼
1

Tb
Nbmc2γ

¼ 1

Tb
Nbmc2ðγr þ δγÞ

¼ 1

Tb
Nbmc2

�
γr −

β3zrγ
2
zrγr

k0
θ

	
. ð102Þ
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Using Eq. (100), the energy equation (93) can be written in
terms of the detuning parameter:

dθ
dz

¼ K2
sðzÞ sinψ ; ð103Þ

where

K2
sðzÞ ¼

k0eηp
2β4zrγ

2
zrγ

2
rmc2

āwjẼðzÞj ð104Þ

is the synchrotron oscillation wave number.
We summarize here the equations to be solved in terms of

θðzÞ or δγðzÞ:

djẼj
dz

¼ b sinψ ; ð105Þ

dθ
dz

¼K2
sðzÞsinψ or

dδγ
dz

¼−
β3zrγ

2
zrγr

k0
K2

sðzÞsinψ ; ð106Þ

dψ
dz

¼ −θ þ b

jẼj cosψ or
dψ
dz

¼ k0
β3zrγ

2
zrγr

δγ þ b

jẼj cosψ .

ð107Þ

Equations (98) and (107) seem to be singular for the special
case of Ẽð0Þ ¼ 0, corresponding to a case of spontaneous
emission and self-interaction of the e-beam bunch train with
its own generated radiation. As explained in Sec. VI.G, this
singularity is removable, and the formulation is valid also for
the case of spontaneous emission and self-interaction.
Note that in the case in which ẼðzÞ ≃ const these equations

reduce to regular pendulum equations for the bunches (see
Appendix A).

B. Tapered wiggler

In the case of a tapered wiggler, the synchronism energy γr
is a function of z [Eq. (77)]. Using Eqs. (78) and (79), one
obtains for the dynamics of the detuning parameter:

dθ
dz

¼ −
k0

β3zrγ
2
zrγr

�
dγ
dz

−
dγr
dz

�
− δγ

d
dz

�
k0

β3zrγ
2
zrγr

�

≃ −
k0

β3zrγ
2
zrγr

�
dγ
dz

−
dγr
dz

�
; ð108Þ

where the last equality is obtained by assuming that the energy
tapering rate is slow relative to the synchrotron oscillation
dynamics near synchronism, hence neglecting the second term
in Eq. (108). Using Eq. (87) we obtain

dθ
dz

¼ K2
sðzÞ sinψ þ k0

β3zrγ
2
zrγr

dγr
dz

: ð109Þ

Hence Eqs. (105)–(107) remain unchanged, except for
Eq. (106) which becomes

dθ
dz

¼ K2
sðzÞ

�
sinψ þ k0

β3zrγ
2
zrγrK2

s

dγr
dz

�
. ð110Þ

The second term in Eq. (110) adds a slope to the pendulum
equation potential, and if this slope is too large then there
cannot be trapped trajectories. This puts a limit on the tapering
strength, so that the absolute value of the term which adds to
sinψ in Eq. (110) must be smaller than 1, and therefore it is
useful to define it as

sinψ r ≡ −
k0

β3zrγ
2
zrγrK2

s

dγr
dz

: ð111Þ

With the simplifying assumptions βzr, ηp ¼ 1 and using
Eq. (104) with jẼðzÞj ¼ E ¼ const, the tapering resonant
phase can be expressed as

sinψ r ≡ −2
mc2

eE
γr
āw

dγr
dz

: ð112Þ

Hence we need only to add a term to Eq. (106) and we
rewrite here the master equations for the tapering case

djẼj
dz

¼ b sinψ ; ð113Þ

dθ
dz

¼ K2
sðzÞ½sinψ − sinψ r� or

dδγ
dz

¼ −
β3zrγ

2
zrγr

k0
K2

sðzÞ½sinψ − sinψr�; ð114Þ

dψ
dz

¼ −θ þ b

jẼj cosψ or
dψ
dz

¼ k0
β3zrγ

2
zrγr

δγ þ b

jẼj cosψ .

ð115Þ

In a radiation emitting wiggler (as opposed to an accelerator
scheme) (Musumeci, Pellegrini, and Rosenzweig, 2005),
the electrons lose energy; hence one will usually design
dγr=dz < 0, so that 0 < ψr < π=2.
Except for Eq. (106) that is replaced by Eq. (114), the other

master equations to be solved are unchanged, but note that the
coefficients of jẼj in Eq. (104) [γrðzÞ, γzrðzÞ, βzrðzÞ, and
āwðzÞ] are z dependent in the case of tapering, and so is the
parameter b [Eq. (96)] if āw ¼ āwðzÞ.
The power of the electron bunches is still given by

Eq. (102), but here γr is a function of z; therefore the kinetic
power exchanged is composed of the contribution of the
tapered deceleration of the trap (first term) plus the contri-
bution of the dynamics of the bunch within the trap (second
term):

dPel

dz
¼ Nb

Tb
mc2

dγ
dt

¼ 1

Tb
Nbmc2

β3zrγ
2
zrγr

k0

�
k0

β3zrγ
2
zrγr

dγr
dz

−
dθ
dz

�

¼ −
1

Tb
Nbmc2

β3zrγ
2
zrγr

k0

�
K2

s sinψr þ
dθ
dz

�
. ð116Þ
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VI. ANALYSIS OF THE INTERACTION DYNAMICS
OF A BUNCHED ELECTRON BEAM WITH RADIATION
IN THE TRAPPING REGIME

A. The fundamental radiation processes in phase space

We analyze in this section the phase-space dynamics of the
bunched electron beam that come out of the solution of the
coupled equations of Sec. Vand relate them to the fundamental
coherent spontaneous radiation emission processes presented in
Secs. II and III. Qualitatively, we expect specific phase-space
dynamic processes as depicted in Figs. 7 and 8. For a uniform
wiggler the trap height in the θ − ψ plane is 2θm ¼ 4Ks [see
Appendix A, Fig. 29 and Eq. (A5)]. The generalization for a
tapered wiggler is 2θm ¼ 4Ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosψr þ ðψr − π=2Þ sinψr

p
[see Appendix A, Fig. 31 and Eq. (A13)].
Using Eq. (104) for K2

s and the connection between θ and
δγ in Eq. (79) one finds δγm at the wiggler’s entrance:

δγm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
eηpβ2zrγ2zrāwEð0Þ

mc2k0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosψ r þ ðψr − π=2Þ sinψr

p

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eηpāwEð0Þ
mc2kw

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosψr þ ðψr − π=2Þ sinψr

p
ð117Þ

and the second part simplification of the equation corresponds
to the ultrarelativistic beam limit.
In Sec. VI.B we formulate a normalized version of the

bunched beam–radiation coupled equations, and in the sub-
sequent sections we demonstrate the phase-space evolution
dynamics of these processes in a uniform and tapered wiggler,
by presenting the z dependent numerical computation sol-
utions of the normalized coupled mode equations and via the
linked video displays [see the Supplemental Material (207)].

B. Simulation of the dynamics and radiation of a perfectly
periodically bunched beam in the saturation regime

To demonstrate the fundamental dynamic processes of SP-
SR and ST-SR in a uniform and tapered wiggler, described
in the previous section, we present simulation results and
video displays based on the numerical solution of the master
equations (105)–(107) and for the case of a tapered wiggler
(113)–(115) that we normalized in Appendix D. The normal-
ized equations (D2)–(D9) can be solved for a general case of
wiggler amplitude and period tapering with arbitrary varying
beam parameters: āwðzÞ, γrðzÞ, and sinψrðzÞ, and for general
initial conditions of the bunches and the radiation ψð0Þ, θð0Þ,
and jẼð0Þj. The development of the radiation wave power and

FIG. 7. SP-SR and ST-SR phase-space diagrams of trap dynamics for a uniform wiggler: (a) trapped bunch—maximum energy
extraction, (b) zeroth-order ST-SR—high gain, (c) superradiance SP-SR, and (d) saturated superradiance (self-interaction).
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the beam power along the interaction length are then calcu-
lated explicitly from Eqs. (D12)–(D14).
In the absence of tapering and in the case of linear tapering

(ψr ¼ const), and also assuming moderate variation of the
wiggler parameters along the interaction length, we can set the
coefficients fBðuÞ, fKðuÞ ≃ const [Eqs. (D8) and (D9)]. We
use this model in the following computations for the purpose
of illustrating the interaction processes discussed in the
previous sections. In this case, the general equations (113)–
(115) are cast into a simple compact form for the normalized
field Ē≡ jẼj=bð0ÞLw, the phase ψ , and the normalized
detuning parameter θ̄≡ θLw, in terms of a normalized
interaction length u ¼ z=Lw:

dĒ
du

¼ sinψ ; ð118Þ

dθ̄
du

¼ K2
s0Ē½sinψ − sinψr�; ð119Þ

dψ
du

¼ −θ̄ þ 1

Ē
cosψ . ð120Þ

Remarkably, only one parameter K2
s0 [Eq. (D7)] is

required in addition to the initial conditions in order to solve

the closed-form equations (118)–(120) as a function of the
normalized axial coordinate u, and display its trajectories in
the normalized phase space ðθ̄;ψÞ. Other laboratory param-
eters are needed only to calculate of the power exchange [see
Appendix D, Eqs. (D12)–(D14)]:

P̄em ¼ Ē2ðuÞ; ð121Þ

ΔP̄el ¼ ΔP̄tap þ ΔP̄dyn; ð122Þ

where

ΔP̄tap ¼ −2
Z

u

0

Ēðu0Þ sinψrðu0Þdu0; ð123Þ

ΔP̄dyn ¼ −2½θ̄ðuÞ − θ̄ð0Þ�=K2
s0; ð124Þ

where all overbar power parameters are normalized
P̄ ¼ P=PREF, PREF being defined in Eq. (D13) is

PREF ¼ 1

16π2
η2pā2wð0Þ

β2zrð0Þγ2rð0Þ
Q2

bω
2
0L

2
wZq

Aemq
. ð125Þ

FIG. 8. TES and TESSA phase-space diagrams of trap dynamics for a tapered wiggler: (a) TES (resonant trapping), (b) TESSA
(maximum gain), and (c) TESSA (maximum energy extraction).
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Under the simplifying assumptions leading to Eqs. (118)–
(120) we arrive at the conclusion [Eq. (122)] that the electron
energy loss is a sum of contributions due to the tapering
(ΔPtap) and the inner trap dynamics (ΔPdyn).
In the following simulations (Figs. 9–12 and five videos

[see the Supplemental Material (207)] we use a numerical
value K2

s0 ¼ 1.59 (see Appendix D). This parameter (corre-
sponding to the Nocibur experiment) (Sudar et al., 2016) is
sufficient for the θ̄ − ψ trajectories display. In order to display
the γ − ψ phase-space trajectories, we use in the following
examples in Eq. (79) the laboratory parameters γr ¼ 127.2,
Nw ¼ Lw=λw ¼ 11 (Sudar et al., 2016) assuming idealized
tight bunching and moderate tapering.

C. Untrapped trajectories in a uniform wiggler

In order to show the consistency of the normalized non-
linear equations with the earlier results of SP-SR and ST-SR in
the zero-order approximation of Secs. II and III [Eqs. (67) and
(68)], we set ψr ¼ 0 in Eq. (119), and for an untrapped
electron we consider θ̄ to be almost constant, i.e., θ̄ðuÞ ≃ θ̄ð0Þ.
Expressing Eq. (94) in terms of the normalized parameters

u≡ z=Lw, θ̄≡ θLw, [using Eq. (91)], and defining
Ẽ≡ Ēeiφq ¼ ðjẼj=bLwÞeiφq , one obtains

dẼ
du

¼ eiφb . ð126Þ

Using the definition of φb from Eq. (C29) or (85), with
θ̄ðuÞ ≃ θ̄ð0Þ, we obtain

φb ≃ θ̄ð0Þuþ φb0: ð127Þ
Integrating Eq. (126) we obtain

ẼðuÞ ¼ Ẽð0Þ þ uei½φb0þθ̄ð0Þu=2� sin c½θ̄ð0Þu=2�: ð128Þ
With Ẽð0Þ ¼ jẼð0Þjeiφqð0Þ, one gets

jẼðuÞj2¼jẼð0Þj2þu2sinc2½θ̄ð0Þu=2�
þ2ujẼð0Þjsinc½θ̄ð0Þu=2�cos½φqb0− θ̄ð0Þu=2�;

ð129Þ

and using the definition of ψ in Eq. (91), it can also be
written as

Pem=PREF ¼ jẼðuÞj2
¼ jẼð0Þj2 þ u2sin c2½θ̄ð0Þu=2�
þ 2ujẼð0Þj sin c½θ̄ð0Þu=2� sin½ψð0Þ − θ̄ð0Þu=2�.

ð130Þ

This represents the normalized output power with full corre-
spondence to the zero-order approximate expressions (66)–
(68) derived in Sec. III for superradiance (SP-SR) (quadratic
term) and stimulated superradiance (ST-SR) (linear term),
respectively.

D. Maximal energy extraction from a bunched beam
in a uniform wiggler

In Fig. 9 and the Supplemental Material (207) we display
the dynamics of the electron beam in the case of maximal
energy extraction from a bunched beam [Fig. 7(a)], which
corresponds to the case of maximum power extraction from a
perfectly bunched beam in a saturated FEL. Maximal energy
extraction from the e beam (2δγm) is attained when the bunch
enters the trap at phase ψð0Þ ¼ 0 with energy detuning
δγð0Þ ≃ δγm and winds up at the end of the interaction length
at the bottom of the trap δγðLwÞ ≃ −δγm, after performing half
a period of synchrotron oscillation. Note that in this case of
maximal extraction, the initial gain is null: dδγ=dzjz¼0 ¼ 0

[Eq. (105)] and the radiation buildup starts slow [quadratically
as in Eq. (25)]; see Fig. 9(b).

E. Stimulated superradiance in a uniform wiggler

Of special interest is the stimulated superradiance
[Fig. 7(b)] where maximum initial gain is expected when
starting from δγð0Þ ≃ 0 and ψð0Þ ¼ π=2. The simulation
result of this case is shown in Fig. 10 and the Supple-
mental Material (207).
Note that direct differentiation of Eqs. (121), (122), and

(124) results in

FIG. 9. Maximal energy extraction of a perfectly bunched beam in a uniform wiggler trap. Left panel: The phase-space diagram γ − γr,
where the black line shows the separatrix at the end of the trajectory. Right panel: The radiation power change, the electron beam power
change, and their sum, which stays at 0. See the Supplemental Material (207).
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1

PREF

dPem

du
¼ −

1

PREF

dPel

du
¼ 2ĒðuÞ dĒðuÞ

du
¼ 2ĒðuÞ sinψðuÞ

ð131Þ

and therefore the initial power growth (in a range 0 < u ≪ 1)
is proportional to u (see the tangent dash-dotted line in Fig. 10,
right panel):

ΔPem ¼ −ΔPel ¼ 2PREFĒð0Þu sinψð0Þ. ð132Þ

This is exactly consistent with the zero-order approximation
of ST-SR power growth [Eq. (68)]. Also it is evident that the
maximum initial gain is attained with ψð0Þ ¼ π=2.
In second order in u, the integration of Eq. (118) results in

ĒðuÞ ¼ Ēð0Þ þ u sinψð0Þ and consequently from the inte-
gration of Eq. (131) or directly from the definition (121):

ΔPem=PREF ¼ Ē2ðuÞ − Ē2ð0Þ
¼ 2uĒð0Þ sinψð0Þ þ u2sin2ψð0Þ. ð133Þ

We conclude that the initial emission process is always
composed of both contributions of ST-SR (first term) and SP-
SR (second term). When the field is strong enough Ēð0Þ ≫
u sinψð0Þ=2 then the ST-SR term is dominant and the power
starts growing linearly as in Fig. 10(b).

F. Tapered wiggler

As shown in Fig. 8, in case of a tapered wiggler, the main
contribution to the radiated power extraction from the e beam
comes usually from the tapering process, but there is con-
tribution also from the phase-space evolution of synchrotron
oscillation dynamics inside the decelerating trap. If the bunch
is deeply trapped [ψð0Þ ¼ ψr, δγð0Þ ¼ 0] [Fig. 8(a)] the beam
energy drops only with the trap deceleration. When the
trapped bunch is not at the bottom of the trap potential as
is the case in Fig. 8(b) [ψð0Þ ¼ π=2, δγð0Þ ¼ 0] and Fig. 8(c)
[ψð0Þ ¼ 0, δγð0Þ ¼ δγmð0Þ], there is also contribution of the
inner-trap synchrotron oscillation dynamics to the beam
energy total drop. Maximal energy extraction is attained in

the case of Fig. 8(c); however, the initial energy drop rate is
zero in this case [ψð0Þ ¼ ψ r] and is maximal in the case of
Fig. 8(b) [ψð0Þ ¼ π=2]. This may play a role in optimal
tapering and bunch phasing strategy.
In Fig. 11 and the Supplemental Material (207), we show a

bunch initially trapped in the middle of the trap [at
ψð0Þ ¼ ψ r], and θð0Þ ¼ 0 [i.e., γð0Þ − γrð0Þ ¼ 0] for nor-
malized parameters example of initial input field Ēð0Þ ¼ 2,
using ψr ¼ π=4. Figure 11, left panel, shows the phase-space
diagram ψ , γ − γrð0Þ in which the upper black line shows the
separatrix at the beginning of the trajectory and the lower
black line shows the separatrix at the end of the trajectory.
This shift in the separatrix location is due to the tapering and
gives the major contribution to the e-beam power decrement
(deceleration). Figure 11, right panel, shows the radiation
power incremental growth (blue), the electron beam power
decrement (green), and the sum of radiation and e-beam
power increments which stays at 0. To get a better insight into
the different phenomena, we show separately the contributions
of the tapering (ΔPelðγrÞ) (light blue) and the synchrotron
oscillation dynamics (ΔPelðδγÞ) (red) to the total beam power
drop (ΔPel) (green); see Eq. (122). The tapering contribution
here is around 9 times bigger than the synchrotron oscillation
dynamics contribution.
Figure 12 [see Supplemental Material (207)] shows the

same as Fig. 11, only the initial bunch phase is at ψð0Þ ¼ π=2,
instead of ψr. We find that in this case the contribution of the
tapering to the total e-beam power loss is still dominant, but
less, being around 2.6 times bigger than the synchrotron
oscillation dynamics contribution. This is due to the fact
that the synchrotron oscillation contribution increased sig-
nificantly in the case of ψð0Þ ¼ π=2, relative to the case
ψð0Þ ¼ ψ r ¼ π=4. Therefore, the total radiation power
enhancement is bigger in this case by 30% over the case
of ψð0Þ ¼ ψr ¼ π=4.
We draw attention to the initial power growth rate

Eqs. (131)–(133) that were derived without the use of the
ψr dependent Eq. (119), and therefore are also valid for the
tapered wiggler case ψr ≠ 0. To better illustrate the role of
the tapering and inner trap dynamics, as well as the sponta-
neous superradiance and stimulated-superradiance processes

FIG. 10. Stimulated superradiance in a uniform wiggler with maximum gain bunching phase ψð0Þ ¼ π=2. Left panel: The phase-space
diagram γ − γr, where the black line shows the separatrix at the end of the trajectory. Right panel: The radiation power change, the
electron beam power change, and their sum, which stays at 0. The broken line shows the initially linear radiation power growth as in
Eq. (132). See the Supplemental Material (207).
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in the initial interaction stage u ≪ 1, it helps to rewrite Eq. (133)
(that is valid also for a tapered wiggler sinψr ≠ 0) in the
following form:

ΔPem=PREF ¼ 2uĒð0Þ sinψ r þ f2uĒð0Þ½sinψð0Þ − sinψr�
þ u2sin2ψð0Þg. ð134Þ

In Eq. (134) the terms in brackets (linear and square in u)
represent the effect of the dynamics inside the trap (synchrotron
oscillations): ST-SR (linear) and SP-SR (quadratic) processes.
The first term (linear) is the effect of tapering [see Eq. (123)].
We therefore also conclude that in the tapering case, the

highest gain is attained for initial phasing ψð0Þ ¼ π=2, a factor
of

ffiffiffi
2

p
relative to the case of deep trapping ψð0Þ ¼ ψr ¼ π=4

shown in Fig. 11.
However, the case of ψð0Þ ¼ ψ r is also important in

practice, because the trapping is deeper, and it may be a
preferred strategy for the case of imperfect bunching, where
trapping efficiency is an issue (see Sec. VII). For ψð0Þ ¼ ψr
Eq. (134) reduces to

ΔPem=PREF ¼ 2uĒð0Þ sinψr þ u2sin2ψr: ð135Þ

G. Superradiance and self-interaction

Of special interest is the case of pure superradiance where
the radiation grows spontaneously in a uniform wiggler
without any input field [Ēð0Þ ¼ 0] [Fig. 7(c)]. If the built-
up radiation grows up enough, the beam may saturate by its
own radiation [Fig. 7(d)].
The second term in Eq. (133) is independent of Ēð0Þ and for

Ēð0Þ ¼ 0 it results in ΔPem=PREF ¼ u2 sin2 ψð0Þ. The phase
ψð0Þ is ill defined because the null radiation field has arbitrary
phase. This is the reason for the seeming singularities in
Eqs. (98) and (107) that can be removed only when
ψð0Þ ¼ π=2. The physical explanation for this particular deter-
mination of the radiation phase is that in the absence of the initial
radiation phase, the phase of the excited radiation mode is
determinedby the phase of the bunchedbeamφb0, as can be seen
[Eqs. (63), (64), and (92)] by setting z ¼ δz ≪ 2π=θ:

ẼðδzÞ ¼ 0þ þ jẼjeiφb0 . ð136Þ

Setting then φqð0Þ ¼ φb0, and using Eqs. (C29) and (70), i.e.,
φð0Þ ¼ φb0, we get from the definition (91) ψð0Þ ¼ π=2 and
therefore,

FIG. 11. Tapering-enhanced superradiance (TESSA) of a perfectly bunched beam starting at the bottom of the trap δγð0Þ ¼ 0,
ψð0Þ ¼ ψr. Left panel: The phase-space diagram ψ , γ − γrð0Þ, where the upper black line shows the separatrix at the beginning of the
trajectory (u ¼ 0) and the lower black line shows the separatrix at the end of the trajectory (u ¼ 1). Right panel: The radiation power
change, the electron beam power change, and their sum which stays at 0. We show separately the contributions of the tapering (ΔPelðγrÞ)
and the synchrotron oscillation dynamics (ΔPelðδγÞ) to the total beam power drop (ΔPel). See the Supplemental Material (207).

FIG. 12. TESSA radiation extraction by a perfectly bunched beam, phased initially at ψð0Þ ¼ π=2 for maximal initial radiation growth
rate (gain). Note that the total radiation emission power in this case is 30% higher than in the case of ψð0Þ ¼ ψ r (Fig. 11). See the
Supplemental Material (207).
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Pem=PREF ¼ u2. ð137Þ

This is evidently a normalized parameters representation of the
case of superradiance, where the power grows quadratically
from 0 with the interaction length z; see Eq. (67).
In Fig. 13 and the Supplemental Material (207) we show the

trajectories and power growth of the prebunched beam
radiation in a uniform wiggler, starting from the zero input
field. The quadratic approximation (137) is also shown in
Fig. 13 by the dash-dotted line and matches well the power
growth rate.
This case of radiation emission by the beam in a uniform

wiggler when Ẽð0Þ ¼ 0 is of special interest. Although in the
derivation of the quadratic growth of superradiance [Eq. (67)]
it was assumed that the beam energy does not change, in the
present energy-conserving nonlinear model we see that in the
more complete energy-conserving analysis, the beam energy
goes down as expected, in correspondence with the super-
radiant power growth. This case can be related to the problem
of radiation emission due to charged particles acceleration in
free space. In that case, the energy loss of the particle due to its
radiation emission is explained in terms of the Abraham-
Lorentz effective radiation reaction force that can be derived
only indirectly from energy conservation considerations
(Dirac, 1938; Wheeler and Feynman, 1945; Schwinger,
1949; Ianconescu and Horwitz, 1992, 2002, 2003; Gupta
and Padmanabhan, 1998).
In contrast to the free-space self-interaction case, in the

present case of periodic bunched beam radiation emission into
a transversely confined single mode, the self-interaction
problem is explicitly soluble. As seen in Fig. 13, the sponta-
neous emission of the undulator radiation field grows from 0
(at u ¼ 0) with a distinct phase, so that the tight bunches are
found initially automatically at phase ψð0Þ ¼ π=2 relative to
the ponderomotive wave bucket. This happens to be exactly
the phase of maximum stimulated superradiance, where the
bunched beam experiences maximum deceleration by the
electric field of the radiation mode that it had excited. Further
tracing of the beam dynamics, as shown in Fig. 13, the
periodic beam self-interacts with its own radiation and slows
down, reaching a nonlinear self-absorption saturation regime

at long interaction length u, and even can be reaccelerated
after the maximal deceleration point u ¼ 2, reabsorbing the
radiation that is generated in the first part of the undulator.
Figure 14 displays an even more interesting case of

tapering-enhanced superradiance (TES), showing that in the
nonlinear regime, a periodically bunched beam that is trapped
in its own generated radiation trap as in Fig. 13 can exhibit
further enhanced radiation emission if the undulator becomes
tapered after a long enough section of trap buildup along a
uniform undulator section. In Fig. 14 and the Supplemental
Material (207) the uniform undulator in the section 0 < u <
0.5 turns adiabatically at u ¼ 0.5 into a tapered undulator with
ψr ¼ π=4, extracting further beam energy in the tapered
section 0.5 < u < 2.
Note that contrary to the Abraham-Lorentz case of free-

space emission into a continuum of modes and frequencies,
here we consider emission into a single mode, and because the
beam is infinitely periodically bunched, there is no issue of
slippage effect. Note that a similar “self-interaction” nonlinear
superradiance process has been predicted also with a single
bunch interaction with a wave-guided THz beam in a tapered
wiggler under conditions of zero slippage attained due to the
wave-guide dispersion (Snively et al., 2019). These schemes
of self-interaction may have a practical advantage in develop-
ment of future short wavelength radiation sources because
they are not susceptible to jitter problems between the beam
bunch (bunches) and the seed radiation, since the electrons are
trapped in the tapered section at the right phase of the coherent
radiation generated by themselves.

VII. TAPERED WIGGLER FEL WITH PREBUNCHED
ELECTRON BEAM OF FINITE DISTRIBUTION

The ideal tight bunching model presented in the previous
sections is good for identifying the fundamental processes
of superradiance and stimulated superradiance in a tapered
wiggler FEL. At the present state of the art of technology it is
hard to satisfy the tight bunching condition σtbnω0 ≪ 1

required for attaining a nondiminishing bunching factor
(58) and for taking advantage of bunch phasing optimization
of inner-trap stimulated-superradiance dynamics [Eq. (132),

FIG. 13. Saturated self-interaction superradiance in a uniform wiggler. Left panel: The phase-space diagram γ − γr, where the thick
middle black line shows the nonexistent separatrix at the beginning of the trajectory (u ¼ 0) and the upper and lower black lines show
the separatrix at the end of the trajectory (u ¼ 2). Right panel: The radiation power change, the electron beam power change, and their
sum which stays at 0. See the Supplemental Material (207).
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Fig. 10] which is valid only in the tight bunch model. Short
wavelength bunching techniques involve high harmonic
energy modulation of a beam subjected to high-power IR
lasers in a wiggler as in HGHG (Yu, 1991; L. Yu et al., 2000),
EEHG (Jia, 2008; Stupakov, 2009; Qika, 2017), and PEHG
(Feng et al., 2014). The energy bunching turns into tight
density bunching when passed through a dispersive magnetic
element (chicane) (Sudar, Musumeci, and Duris, 2017).
However, obtaining significant harmonic current components
at short wavelengths is still a challenging technical task.
Furthermore, the model assumption of a cold beam often does
not hold, and, in particular, in the case of efficiency enhance-
ment in the postsaturation tapered wiggler section of a seeded
FEL, the beam energy spread σγ is as large as the trap height
δγm. However, a new concept of “fresh-bunch” input signal
injection (where the first bunch is used to generate the
modulation power and then discarded while a second bunch
is overlapped with the seed) (Ben-Zvi, Yang, and Yu, 1992;
Emma, Feng et al., 2017; Emma, Lutman et al., 2017) and
further technological developments may make it possible to
get closer to the ideal conditions of our model. We mention
that the fresh-bunch technique can be applied to two different
slices of the same electron bunch, in which case it is some-
times termed “fresh slice” (Lutman et al., 2016; Emma,
Lutman et al., 2017). The cases discussed in Allaria et al.
(2012) and the Shanghai deep-ultraviolet FEL tests (Zhao and
Wang, 2016) are fresh-bunch results for HGHG schemes, and
they also apply there the same principle (suppressing or
enhancing lasing for different parts of the bunch in different
portions of the undulator).
In this section we present a more general model for

efficiency enhanced radiation emission in a FEL with energy
spread and phase distribution of the prebunched beam and
compare the simulation results to the case of no bunching
at all.
Following the analysis by Emma, Sudar et al. (2017) we

redefine the interpretation of Eqs. (93), (118), and (120) to
correspond to individual electrons in the particle distribution
of each bunch. We present the single radiation mode excitation

(6) in terms of the absolute value of its transverse electric field
on axis (92):

EðzÞ ¼ jC̃qðzÞjjẼq(r⊥ð0Þ)j. ð138Þ

These equations for the electron phase ψ jðzÞ, energy γiðzÞ, and
radiation field EðzÞ are then recast correspondingly to the
following:

dψ j

dz
¼ kw

�
1 −

γ2j
γ2r

	
; ð139Þ

dγj
dz

¼ −
āweE
γjmc2

sinψ j; ð140Þ

dE
dz

¼ χāw



sinψ j

γj

�
; ð141Þ

with χ ¼ Z0I=2Aemq, āw ¼ eB̄w=mckw is the undulator
parameter [Eq. (30)], and γ2r ¼ ð1þ ā2wÞk=2kw [Eq. (77)] is
the resonant energy.
In this transformation we used the relativistic beam

approximation γj ≫ 1, and used the definition of the nor-
malization power in terms of the effective mode cross-section
area [Eq. (8)] in the definitions of the parameters a and b
[Eqs. (95) and (96)].
In the resonant particle approximation the efficiency can be

written as

ηðzÞ ¼ 1

γ0

����X
i

γiðzÞ − γi;0

���� ≃ ft

���� γrðzÞ − γ0
γ0

���� ¼ ft

����Δγrγ0

����;
ð142Þ

where ft is the fraction of trapped electrons which in general
depends on the size of the bucket, i.e., the input seed power,
the undulator field, and the resonant phase. We assume for
simplicity that the trapping fraction is independent of z in the
postsaturation regime. Different initial conditions for tapered

FIG. 14. Self-interaction tapering-enhanced superradiance (TES). Left panel: The phase-space diagram γ − γrð0Þ, where the thick
horizontal black line shows the nonexistent separatrix at the beginning of the trajectory (u ¼ 0), the upper “eye” separatrix shows the
self-interaction built-up trap at the transition of the uniform wiggler into a tapered wiggler at u ¼ 0.5 and the lower separatrix at the
end of the trajectory (u ¼ 2). Right panel: The radiation power change (em), the electron beam power change due to internal trap
dynamics (δγ) and due to tapering (γr), and their sum (el). The sum of the generated radiation power (em) and the negative beam power
increment (el) is null, keeping energy conservation. See the Supplemental Material (207).
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FELs result in different trapping fractions and different scaling
of the output efficiency. Note that as we discuss in Sec. VIII.C,
the assumption of the constant trapping fraction breaks down
for long undulators due to diffraction and time-dependent
effects as evidenced in 3D simulations (Emma et al., 2016).
Integrating Eqs. (139)–(141) as shown by Emma, Sudar

et al. (2017) we have an approximation for the power
extraction efficiency for ψ j ¼ ψr ¼ const:

ηðzÞ ¼ ft
e

γ0mc2

�
E0

āwð0Þ
γ0

z sinψr þ
ftχ
2

ā2wð0Þ
γ20

z2sin2ψr

	
ð143Þ

and with PradðzÞ ¼ P0 þ ηðzÞPbeam, after rearranging the
constants we have [compare with Eq. (135)]

PradðzÞ ¼ P0 þ E0

āwð0Þ
γ0

ftIz sinψr

þ Z0

4Aemq

�
āwð0Þ
γ0

	
2

ðftIz sinψrÞ2

≡ P0 þ PTAPER þ PSR; ð144Þ
where the seed field is given by E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0P0=Aemq

p
.

Equation (144) is identical to the normalized equation (135),
after multiplication by the normalizing power PREF
[Eq. (D13)], and using ft ¼ 1. We also remark that in the
ideal case of perfect bunching (Sec. VI) ft can be either 0 or 1,
so in case it is 1 (fully trapped bunch), instead of choosing
initial phase ψð0Þ ¼ ψr, which is meant to maximize ft, one
would rather choose ψð0Þ ¼ π=2 [cf. Figs. 11 and 12 and
discussion before Eq. (135)].
In the absence of an input seed we recover the familiar

scaling for coherent emission from a bunched beam PradðzÞ ¼
PSRðzÞ ∝ ðftIzÞ2 (Saldin, Schneidmiller, and Yurkov, 2005).
This is also true for long undulators since the quadratic term
PSR dominates the radiation power scaling if the undulator
length Lw satisfies

Lw ≫ 106
γ0

āwð0Þ

ffiffiffiffiffiffiffiffiffiffi
Aemq

p ½μm�
I½kA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½MW�p
sinψr

.

At the same time for short undulators and intense seed pulses,
the efficiency and output power are linearly proportional to the
undulator length and the field strength. This is the low gain
TESSA regime (Duris, Murokh, and Musumeci, 2015) dis-
cussed in the previous sections. We apply the power scaling
law to a tapered FEL amplifier in two different scenarios:
starting from a large seed with an unbunched and a pre-
bunched electron beam (Emma, Sudar et al., 2017).
The analytic power estimate from Eq. (144) is in good

agreement with numerical integration of the 1D FEL equa-
tions (Emma, Sudar et al., 2017). The scaling highlights the
trade-off between fast energy extraction (large ψr) and large
trapping fraction (small ψr), with the optimal value around
ψr ≃ 40°, compared to ψr ¼ 90° which emerged from the
single particle picture. This estimate recovers the well-known
result of Brau and Cooper (1980) in the low gain (constant
Prad) high efficiency FEL in which the optimal resonant phase
is also ψr ≃ 40° for a cold beam with ft ¼ fb. This occurs

because the efficiency in the low and high gain cases scales as
η ∝ ft sinψr and η ∝ ðft sinψrÞ2, respectively, and hence is
maximized at the same value of ψr.

A. Scaling laws of tapering-enhanced superradiance
and stimulated superradiance

It is instructive at this point to compare and distinguish the
scaling laws of radiation emission derived in different parts of
this review. The general nonlinear interaction regime was
analyzed numerically and graphically for a tightly bunched
beam in Sec. VII. However, examination of the initial power
growth scaling, by first and second order expansion in terms
of the axial propagation parameter u ¼ z=LW, provided
insight into the different coherent spontaneous and stimu-
lated-superradiance processes in a uniform and in a tapered
undulator. We can now compare these scaling laws to the ones
derived for a finite distribution beam [Eq. (144)].
In the ideal case of a cold tightly bunched beam

[σtb ≪ 1=nω0, see Eq. (28)], the initial phase of the bunches
ψð0Þ [Eq. (91)] is well defined, and the radiation power
increment is given in terms of a linear term 2uĒð0Þ sinψð0Þ
and a quadratic term u2 sin2 ψð0Þ [Eq. (133)]. The linear term
is due to the ST-SR radiation emission process and is
maximized when ψð0Þ ¼ π=2; it represents the ST-SR in
the high gain initial stage of a synchrotron oscillation process
of a tight bunch in a built-up trap. The quadratic term is due to
the SP-SR radiation emission process. It exists whether there
is an input field Ēð0Þ or not. In the latter case [Ēð0Þ ¼ 0], the
bunches determine the radiation field and its phase
ψð0Þ ¼ π=2. The radiation fields and the trap bucket grow
slowly (∝ u2) around the bunch that eventually interacts with
its self-generated radiation and saturates in a synchrotron
oscillation process (Sec. VI.G).
Remarkably, Eq. (133) and the two terms of ST-SR (linear

in u) and SP-SR (quadratic in u) also exist in the case of
tapering, but here, for linear tapering, an additional energy
extraction term, linear with u, is added in Eq. (134)
2uĒð0Þ sinψr. The ST-SR term 2uĒð0Þ½sinψð0Þ − sinψr�
corresponds to the start of a synchrotron oscillation process
around central phase ψr in a decelerating and somewhat
shrunk trap, and the SP-SR term u2 sin2 ψð0Þ stays the same.
In the case of ψð0Þ ¼ ψ r, the synchrotron oscillation stimu-
lated emission process diminishes and one is left only with
a linear term due to tapering and a quadratic term due to SP-
SR [Eq. (135)].
The extension to the finite distribution case Eq. (144) is

fully consistent with Eq. (135) for the most practical case,
where only a fraction ft of the electrons in the beam gets
trapped. The main consideration then for optimizing power
extraction is maximizing ft. It is then optimal to choose
ψð0Þ ≃ ψ r. In this case one abandons any contribution from
the synchrotron oscillation dynamic process and remains only
with the linear term due to the tapering and the quadratic term
due to SP-SR [second and third terms in Eq. (144)] that are
proportional to ftIz and ðftIzÞ2, respectively.
The scaling of the term PTAPER and PSR in Eq. (144) in the

TESSA interaction is the same as the scaling of the ST-SR
[Eq. (72)] and SP-SR [Eq. (71)] expressions in the uniform

A. Gover et al.: Superradiant and stimulated-superradiant emission …

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035003-24



undulator with factors of sinψr and sin2 ψr, respectively.
Similarly to Eq. (73), the ratio between the terms is

PTAPER

PSR
¼ 4AemqE0

Z0½āwð0Þ=γ0�ftIz sinψr
. ð145Þ

For a short interaction length the tapering power extraction
PTAPER is dominant if a strong input radiation field is
exercised.

B. Unbunched beam

Even though prebunching is desirable, quite significant
tapered wiggler energy extraction from an unbunched beam is
possible if the slanted traps still capture enough particles.
Starting from a large seed with a cold unbunched beam, the

trapping fraction is a function of the resonant phase only. It
can therefore be approximated by the bucket width

ft ¼ fb ¼
ψ2 − ψ1

2π

(see Fig. 15, left) with ψ1;2 the solutions of the equations

ψ2 ¼ π − ψr; ð146Þ

cosψ1 þ ψ1 sinψ r ¼ cosψ2 þ ψ2 sinψr ð147Þ

(see Appendix A, Fig. 31).

C. Bunched beam

From Eq. (144) for the power estimate, we can see that
increasing the trapping fraction greatly increases the output
power for the same resonant phase PradðzÞ ∝ PSRðzÞ ∝ f2t .
Figure 15 (right two panels) shows the significantly enhanced
trapping fraction of particles trapped in the bucket with a
prebunched electron beam considering also the effect of
energy spread σγ0 and the modulation strength

A≡ Δγmod=σγ0; ð148Þ

where A is the modulation parameter, defined in Appendix B
[Eq. (B6)]. Figure 15 shows the trapping fraction ft computed
for examples of a one-stage or two-stage prebuncher setup
similar to that discussed by Sudar, Musumeci, and Duris
(2017). Note that in the context of Fig. 15 it was assumed
that the strength of the wiggler and the intensity of the
radiation wave field are the same in the modulation and
tapered wiggler sections, so that Δγmod ¼ δγm, where δγm is
given in Eq. (117). In the more general case these may be
independent controllable parameters.
Experimental results demonstrating very high energy extrac-

tion from a prebunched electron beam in a tapered undulator
have recently been reported by Sudar et al. (2016), and are
discussed in Sec. VIII.B. The trapping fraction in this case is
not only a function of the resonant phase but also of the initial
laser seed power which sets the prebunching modulation
strength A. Figure 16 displays comparison of [from Emma,
Sudar et al. (2017)] the trapping fraction without prebunching
to the analytic fit of the trapping fraction ft ¼ ftðψr; AÞ for
optimal buncher settings in a single or double buncher
configuration (Sudar et al., 2018) with a bucket height
10–30 times larger than the initial electron energy spread.
The advantage of prebunching is clear in the increasing
trapping fraction for both the single and double buncher cases
at modest modulation strengths A ∼ 10. As discussed in more
detail by Emma, Sudar et al. (2017) the main challenge in this
scheme is to generate the seed laser power capable to induce an
A ¼ 10modulation which could be achieved, for example, in a
fresh bunch configuration (Ben-Zvi, Yang, and Yu, 1992;
Emma, Feng et al., 2017; Emma, Lutman et al., 2017).
Our analysis of the 1D physics of high gain–high efficiency

tapered FELs, including the effects of energy spread and
bunching, displays the advantage of prebunching in a high
efficiency FEL due to the increased particle trapping in the
postsaturation region. Prebunching not only increases the peak
efficiency but exhibits optimal energy extraction at larger
resonant phase compared to the unbunched case. This faster

FIG. 15. Left: Trapping fraction for a cold unbunched beam and a large input seed, approximately given by the bucket width. Middle
and right: The trapping fraction ft as a function of the modulation parameter A≡ Δγmod=σγ0 [see Eq. (148)] and the resonant phase ψr

for a (middle) single buncher and a (right) double buncher (Sudar, Musumeci, and Duris, 2017; Sudar et al., 2018). The broken lines are
polynomial fitting curves of ftðψ r; AÞ ¼ const. The color coded diagrams of ft as a function of ψr and A were computed for the single
and double buncher examples (Sudar, Musumeci, and Duris, 2017). The trapping fraction obtained with prebunching is larger than in the
unbunched case. The advantage of the double buncher compared to the single buncher scheme is largest for large modulation parameter
A > 10 and ψr < π=4. Adapted from Emma, Sudar et al., 2017.
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extraction of energy is important for reducing harmful 3D
effects, specifically diffraction due to reduced optical guiding
in tapered FELs with long undulators. Having a prebunched
electron beam also allows more aggressive (larger resonant
phase) tapered FEL designs, damping the time-dependent
parasitic effects of the sideband instability (see Sec. VIII.C.2
(Kroll and Rosenbluth, 1980; Kroll, Morton, and Rosenbluth,
1981)), which can limit the output efficiency.

VIII. APPLICATIONS

A. Superradiant coherent radiation sources

A straightforward application of superradiance is in devel-
oping THz superradiant sources. This is quite expected,
because the electron beam bunches generated in a common
photocathode gun of modern rf linacs have a bunch duration
of σtb < 1 ps. Consequently, a bunching factor of Mb ≃ 1 is
attainable for radiation frequencies in the range of f < 1 THz.
Figure 17 shows an experimental demonstration of the

transition of radiation power from spontaneous emission ∝ N
[Eq. (19)] to superradiant emission ∝ N2 [Eq. (20)] that takes
place with the cutoff condition ωσtb ≃ 1. In this experiment,
carried out at the Jefferson Lab energy retrieval linac (ERL)
FEL (Carr et al., 2002), a record high frequency-integrated
THz power (20 W) was measured due to repetitive single
bunch superradiant CSR emission from a bending magnet.
The THz radiation was generated from a continuous stream of
electron beam microbunches of duration 0.5 ps, circulating in
a superconducting ERL at a repetition rate of 75 MHz.
Figure 17 shows more than 7 orders of magnitude enhance-
ment in the spectral power at the superradiance regime relative
to the spontaneous emission regime. This corresponds to the
large enhancement by a factor of N, which is the number of
electrons in each bunch [Eq. (20)].

There are numerous SR experiments world-wide pursued or
planned,mainly in the THz spectral regime (Ciocci et al., 1993;
Gover et al., 1994, 2005; Faatz et al., 2001; Shibata, Sasaki, and
Ishi, 2002; Korbly et al., 2005; Shin et al., 2007; Yasuda et al.,
2008; Huang, 2010; Hama et al., 2011; Ginzburg et al., 2013;
Huang et al., 2015; Lurie, Friedman, and Pinhasi, 2015; Su
et al., 2018). More than 20 experiments of SR THz sources
based on either undulator, CTR, or bending magnets (CSR or
edge radiation) are listed in Gensch et al. (2013). We review
several representative THz radiation facilities based on super-
radiance and refer the interested reader to review articles on this
subject (Gensch et al., 2013; Asgekar et al., 2014; Green et al.,
2016). An example is the TELBE (Terahertzstrahlung
Elektronen Linearbeschleuniger für strahlen hoher Brillanz
und niedriger Emittanz) facility located in Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), shown schematically in Fig. 18
(Green et al., 2016). This facility is based on superradiant
enhancement of radiation from relativistic electron bunches in a
compact superconducting linear accelerator. This prototype
source generates high-field THz pulses at quasicontinuous-
wave repetition rates up to the MHz regime and exceeds the
power of state-of-the-art laser-based sources by more than 2
orders of magnitude.
Other facilities in design are the Ferninfrarot Linac Und Test

Experiment (FLUTE) (Nasse et al., 2013) located at the
Karlsruhe Institute of Technology and the Photo Injector
Test facility at Zeuthen (PITZ) (Boonpornprasert et al.,
2014) at Deutsches Elektronen-Synchrotron (DESY). The first
one uses a 2.5 cell normal conducting photocathode rf gun to
preaccelerate the electrons to an energy of 7MeV. This gunwas
specially designed for very high bunch charge and operates at
2.998 GHz (European S band). This facility is designed to
employ coherent synchrotron and edge radiation (CSR and
CER) or superradiant coherent transition radiation (CTR).
Another notable planned facility (PITZ) is intended todevelop

THz radiation generation sources in two complementary
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FIG. 16. Analytic estimate of the power extraction efficiency
based on Eq. (B13) and on simulation [solution of Eqs. (139)–
(141)] (dots) without prebunching and for three different values
of the modulation strength A. The advantage of prebunching is
clear in both the larger maximum efficiency and the peak
efficiency occurring at larger resonant phase, allowing faster
energy extraction. From Emma, Sudar et al., 2017.

FIG. 17. Average power from multiple single-bunch super-
radiant (CSR) emission of wide bandwidth THz radiation in
an ERL accelerator. An enhancement of the spontaneous emis-
sion radiation spectral power takes place at low frequencies due to
superradiant CSR. From Carr et al., 2002.

A. Gover et al.: Superradiant and stimulated-superradiant emission …

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035003-26



schemes: (i) SASE FEL using an undulator and high charge
electron bunches and (ii) CTR using an ultrashort electron bunch
tightly compressed by a chicane. The SASE radiation is
anticipated to cover a radiation short wavelengths range of
20–100 μm while radiation wavelengths above 100 μm for

which the bunch duration is shorter than the wavelength will be
generated by the superradiant CTR scheme.
A good experimental demonstration of narrow-band coher-

ent THz superradiant emission in an undulator with a finite
pulse train of bunches is shown in Fig. 19. Here the relatively
long pulses of the UVISOR-II storage ring are periodically
modulated in an undulator by a THz modulated laser beam and
emit narrow-band superradiant CSR radiation [as in Eq. (48),
Fig. 3] at the bending magnet (Bielawski et al., 2008).
Another example of THz superradiance by a periodically

bunched finite pulse train was recently demonstrated by
Tsinghua University in China (Su et al., 2018). In this scheme
a bunch train is created by laser stacking using birefringent α
barium borate crystal serials from a Ti:sapphire laser system,
an energy chirp is introduced into the electron pulse which is
then compressed with a magnetic chicane and entered into a
permanent magnet undulator. The resulting narrow bandwidth
radiation is tunable in the range of 0.4 to 10 THz.
Under construction in Ariel University is the Israeli THz

FEL, a cooperation between Ariel University and Tel Aviv
University (Friedman et al., 2014). The device, depicted in
Fig. 20, is designed to operate with a compact rf photocathode
gun of up to 6.5 MeV. The gun introduces an energy chirp to
the beam, thus resulting in a compression of the electron
pulse. The compressed pulse then enters into a 2 cm period
80 cm long linear Halbach undulator, generating superradiant
radiation at 1–4 THz. Tuning is carried out by varying the
electron energy and/or the undulator gap. Another ultrashort
(5 mm period) wiggler is under construction for operating in
a mode of negative mass effect (Balal et al., 2015; Lurie,
Bratman, and Savilov, 2016; Bratman and Lurie, 2018).
The project is planned to be carried out in several phases.

In the first phase the FEL will operate in a single bunch
superradiance mode [Eq. (40)] with bunches compressed to
less than 150 fs, generating 10 ps THz pulses of about 50 kW
peak power. In a second phase, the FEL will operate in a
periodic prebunching superradiant mode [Eq. (50)]. The THz
prebunching will be produced by illuminating the photo-
cathode with two optical beams, generated by splitting the
naturally chirped ultrafast laser beam. With proper relative
delay, the two beams will produce on the cathode a THz laser
beat and thus modulate the emitted electron photocurrent. In a
future phase of the project, it is intended to equip the facility
with an additional tapered undulator (Duris et al., 2014) in

FIG. 18. Electron bunches are extracted from a solid, accelerated
to relativistic energies and compressed to sub-ps duration in a
compact superconducting radio-frequency linac with a chicane
bunch compressor. The electron bunches can emit THz pulses in
different types of radiators. At TELBE, repetition rates up to
13 MHz are feasible. THz pulses are generated by a diffraction
radiator (DR) and one undulator. From Green et al., 2016.

FIG. 19. Superradiant CSR narrow bandwidth THz radiation
emission by trains of ps bunches generated in a storage ring by
laser modulation in a wiggler. From Bielawski et al., 2008.

FIG. 20. Layout of the Israeli superradiant THz FEL.

A. Gover et al.: Superradiant and stimulated-superradiant emission …

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035003-27



order to demonstrate intense THz radiation in a zero-slippage
waveguide TES operating mode (Sec. VI.G) and THz beam
acceleration (Snively et al., 2019).
Beside CSR and superradiant undulator radiation mecha-

nisms, there have been numerous demonstrations of super-
radiant radiation in various radiation emission mechanisms,
including CTR (Happek, Blum, and Sievers, 1991; Shibata
et al., 1994), diffraction radiation, Cherenkov dielectric struc-
ture radiation (Neighbors, Buskirk, and Saglan, 1984; Wiggins
et al., 2000) and Smith-Purcell radiation (Brownell, Walsh, and
Ducas, 1998; Korbly et al., 2005; Shin et al., 2007; Ginzburg
et al., 2013; Bluem et al., 2015). A demonstration of super-
radiant Smith-Purcell radiation by a finite pulse train of tight
bunches was reported by Korbly et al. (2005). In this experi-
ment a 100 ns macropulse beam, composed of a 17 GHz train
of 1500 microbunches of 0.5 ps from a 15 MeV linac, was
passed in proximity to a 1 cm period blazed grating of
10 periods. The experiment demonstrated extremely narrow
bandwidth THz radiation at up to the 30th harmonic of the
fundamental 17 GHz frequency in a comb pattern characterized
by the macrobunching form factor [Eq. (47)]; see Fig. 4.
Superradiant THz sources are being developed in many

advanced XUV FEL facilities taking advantage of the coher-
ent radiation emitted by the spent electrons from the FEL
undulators before being dumped. Coherent THz beams
synchronous with the main XUV output pulses of the FEL
are useful for pump-probe experiment applications such as
using the high-power THz pulses as a pump in order to
modulate structural properties of matter, thereby inducing
phase transitions (Adams, 2004). The linear acceleration
sections produce naturally THz radiation using dedicated
undulators and bending magnets (CSR) in the free-electron
laser in Hamburg (FLASH) (Gensch et al., 2008) or a
dedicated target foil (CTR) in FLASH (Hoffmann et al.,
2011) and FERMI (TeraFERMI (Svetina et al., 2016). The
quality of the beam after UV and XUV generation in the FEL
is good enough for producing superradiant THz radiation that
can be synchronized with some delay with the UV and XUV
pulses of the same bunch for pump-probe experiments.
We point out that there are superradiant emission effects

(in the narrow and wider sense) also in common IR and
FIR FEL oscillators based on photocathode rf linacs,1

e.g., the CLIO (Centre Laser Infrarouge d’Orsay) FEL
in France (Ortega, 1996), the FELBE (Fel Elektronen
Linearbeschleuniger für strahlen hoher Brillanz und nie-
driger Emittanz) in HZDR (Gabriel et al., 2000b), the
FELIX (Free Electron Lasers for Infrared eXperiments)
(Gabriel et al., 2000a), Radboud University (Zhaunerchyk
et al., 2010), and Novosibirsk FEL (Kulipanov et al., 2015).
These facilities, operating as FELs in oscillator configura-
tion, provide tunable coherent narrow bandwidth radiation
in the THz up to a mm-wavelength range. The rf accelerator
bunches in such facilities are in the picosecond scale
duration, so that in the shorter wavelength (IR) range of
their operation, the pulse duration is longer than the slippage
time along the wiggler, and therefore, their operation is
primarily in a stimulated emission (laser) mode. However,

when operating at the long wavelength range (FIR or THz),
they exhibit pronounced slippage effects and superradiance
in the wider sense. Even a stimulated-superradiance effect
was observed by Zhaunerchyk et al. (2010) due to the
presence of an intense circulating field in the resonator.
We would be amiss if we did not mention that long wave-

length superradiance effects can be observed in synchrotron
storage rings. The turn of the electron in the bends of a
synchrotron light source generates a wide band radiation with
frequencies ranging fromzero frequency to the cutoff frequency.
It is inevitable that due to the pulsed nature of the electron beam,
superradiancewould occur at wavelengths longer than the pulse
length. The superradiant emission at the synchrotron bending
magnets is termed “coherent synchrotron radiation.”. The
typical spectral range of CSR corresponding to the steady-state
bunch duration in synchrotron storage rings is in the microwave
to mm-wave range. However, there are numerous demonstra-
tions of CSR emissionwith synchrotron storage rings also in the
THz regime (Abo-Bakr et al., 2002; Byrd et al., 2004; Sannibale
et al., 2004; Wang et al., 2006). Billinghurst et al. (2013) at the
Canadian Light Source reported observation of superradiance at
frequencies that were harmonics of the electron beam pulse
train. Synchrotron storage rings employ rf frequencies of
500 MHz and lower. Therefore, their circulation bunch lengths,
and consequently their CSR wavelength cutoffs, are in the mm-
wavelength range (Abo-Bakr et al., 2002). It is still possible to
operate such a synchrotron storage ring at THz frequencies in a
“burst mode” of fewer circulating bunches (Abo-Bakr et al.,
2002) at the expense of instability and a shorter circulating
lifetime. Also worth mentioning is that in storage rings it is
possible to get THz radiation in dedicated IRbeam lines, and this
requires a special mode of operation where the bunches are
compressed (however, this has a negative effect on the synchro-
tron ring lifetime). FLUTE (Nasse et al., 2013) used this
special regime where the bunch is squeezed longitudinally to
the picosecond range, offering THz radiation to its users.
Alternatively, stable THz CSR emission can be demonstrated
with dedicated storage rings, operating at high (S-band) fre-
quency (Byrd et al., 2004; Wang et al., 2006).
Finally we mention the great interest in extending the

concepts of superradiant emission to short wavelengths in the
optical to x-ray regime. Several techniques have been pro-
posed for attaining electron beam bunches in the femtosecond
(Hommelhoff et al., 2006; Zholents and Zolotorev, 2008;
Hilbert et al., 2009; Marceau et al., 2013, 2015; Hoffrogge
et al., 2014; Wong et al., 2015) and subfemtosecond range
and may be used for optical XUV superradiant sources.
Attosecond level bunching has been demonstrated even at
the quantum electron wave function level (Feist et al., 2015;
Priebe et al., 2017; Kozák, Schönenberger, and Hommelhoff,
2018). Spontaneous and stimulated superradiance have also
been considered at the quantum wave function level (Pan and
Gover, 2018).
An entire class by itself comprises the schemes of combined

bunching and harmonic emission in undulators with ultrafast
optical lasers (Appendix B). The interested reader is referred
to reports on these processes of HGHG (Yu, 1991; L. Yu et al.,
2000), EEHG (Jia, 2008; Stupakov, 2009; Qika, 2017), and
PEHG (Feng et al., 2014).1Europe, 2005, “European fel,” https://www.fels-of-europe.eu.
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B. TESSA and TESSO concepts

This section contains a summary of the recent activities in
high extraction efficiency experiments taking advantage of the
TESSA process. Using an intense seed pulse in conjunction
with prebunched beams it becomes possible to initialize the
system in a favorable initial state with particles deeply trapped
in the ponderomotive bucket of a tapered undulator.
It is interesting here to note the reciprocal relation between

the challenges of radiation emission and the quest for laser-
driven accelerators. TESSA can be thought of as the reverse
of an inverse free-electron laser accelerator (Palmer, 1972;
Courant, Pellegrini, and Zakowicz, 1985) which among other
laser-driven schemes has some unique advantages due to the
lack of nearby boundaries, structure, or medium to couple the
light to the electrons. These result in a direct coupling between
an electromagnetic field and a relativistic electron beam with
little irreversible losses enabling in principle very high con-
version efficiencies. A long history of IFEL experiments
(Marshall et al., 1991; Kimura et al., 2001; Musumeci, 2005)
was recently followed by experimental results on IFEL (ATF
Rubicon experiment) (Duris et al., 2014) and the Lawrence
Livermore National Laboratory (LLNL) IFEL experiment
(Moody et al., 2016) which showed the advantages of the
helical geometry and the possibility to double the energy of a
50 MeV relativistic beam using < 200 GW peak power CO2

laser and accelerating gradients up to 200 MeV=m. The
experience gained over many years in developing a tapered
undulator for acceleration purposes gives thanks to the TESSA
mechanism direct application in the field of high efficiency
coherent radiation sources.
A schematic of a TESSA amplifier is shown in Fig. 21. The

strong seed pulse stimulates the emission of a large amount
of radiation from prebunched superradiant electron beams.
This emission of radiation causes the electrons to quickly lose
their energy. If the undulator is tapered in order to maintain
the resonant condition and sustain the interaction over long
undulator section(s) with strong coupling to the fundamental
laser mode, one can achieve very high conversion efficiency.

The scheme differs from a tapered FEL amplifier since
using a very high initial intensity and an initially micro-
bunched beam allows trapping the beam into a deep ponder-
omotive bucket (as oppose to a tapered FEL amplifier where
the trapping potential well is always “full to the brim” with
particles, see comparison in Fig. 22). A consequence of this
important difference in the initial conditions of the system is
that the TESSA undulator can be tapered more aggressively
(hence the use of strongly tapered helical undulator) before
suffering from particle detrapping as is usually the case for
tapered FELs. This results in a higher decelerating gradient
and energy extraction from the electron beam. Furthermore,
the steeper tapering profile and higher radiation gain reduces
the degrading effects of diffraction and sideband instability.
In order to better frame the experiments, it is helpful to

distinguish two regimes of operation of TESSA.

1. Small gain regime

In this regime the electromagnetic radiation is assumed to be
nearly constant along the interaction. In this case the amplifier
behaves as a particle decelerator with an output signal only
moderately larger than the input (gain close to unity). This
regime can be useful to quickly estimate the efficiency for a low
gain amplifier. In practice it can be useful in an optical cavity
configuration where part of the output power is split and
redirected at the input. This scheme implementation is dis-
cussed further in Sec. VIII.B.4 (see Fig. 28).
Using Eq. (77), assuming a constant period undulator

(λw ¼ const), and defining the normalized potential vector

Kl ≡ eE
mc2k

; ð149Þ

one can integrate Eq. (112) and obtain the total change of the
wiggler parameter, along the wiggler (Duris et al., 2018):

Δāw ¼ 4πNwKl sinψr. ð150Þ
In practice the contribution of internal dynamics to the

power extraction efficiency is negligible in these experiments

FIG. 21. Tapering-enhanced stimulated-superradiant amplifier.
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and the main contribution to the power generation is the
wiggler tapering. The extraction efficiency is given by the
ratio of the energy decrement γrð0Þ − γrðLwÞ and γrð0Þ
[Eq. (77)] times the trapping efficiency:

η ¼ ft

�
1 −

γrðLwÞ
γrð0Þ

	
¼ ft

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðāw − ΔāwÞ2

1þ ā2w

s !

¼ ft

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2āwð0ÞΔāw
1þ ā2wð0Þ

þ Δā2w
1þ ā2wð0Þ

s !

≈ ft
āwð0ÞΔāw
1þ āwð0Þ2

; ð151Þ

where Δāw is given in Eq. (150), ft is the fraction of particles
trapped in the ponderomotive potential and ψr is the design
resonant phase (typically ∼45° to compromise optimum
deceleration and maximum trapping). If one includes dif-
fraction effects in the optimization, it is found that the input
seed should be focused at the center of the undulator with a
Rayleigh range about 1=6 of the undulator length. For largeKl
and long undulator this number can easily approach 50%.

2. High gain regime

In the small signal gain regime, the conversion efficiency is
independent of the beam current, since there we are not
considering the fact that the radiation is increasing along the
undulator. When one includes the growth of the signal
amplitude, a steeper tapering can be allowed and stronger
amplification can occur. In order for this to occur it is essential
to develop a tapering optimization algorithm which can take
advantage of the newly generated radiation intensity in the most
efficient way. Duris, Murokh, and Musumeci (2015) obtained
the optimization algorithm through fully three-dimensional

computer simulations. The Genesis-informed tapering algo-
rithm was developed to read off the on-axis intensity after
solving the field propagation equations for a small section of
the undulator and use this information to optimize the next
period undulator parameter variations maximizing the energy
extraction without compromising the trapping.

3. Nocibur experiment: Demonstration of small gain regime

The Nocibur experiment (Sudar et al., 2016) demonstrated
the low gain TESSA regime, converting up to 30% of a
highly relativistic electron beam’s energy to coherent 10.3 μm
radiation. The experiment was performed at the Brookhaven
National Laboratory’s Accelerator Test Facility, utilizing a
200 GW seed from the high-power mid-IR CO2 laser. The
strongly tapered, helical Rubicon undulator that was used as
an inverse FEL accelerator (Tremaine et al., 2011) was
reversed to decelerate up to 45% of a 100 pC, 65 MeV
electron beam to 35 MeV; see Fig. 23.
Considering the initial beam energy of 6.5 mJ and defining

the total electron beam energy after the interaction as

Etot ¼
Q
e

Z
1

Ntot

dN
dE

EdE ð152Þ

gives an average final electron beam energy of 4.5� 0.4 mJ
and an extraction efficiency of 30%; see Fig. 24.
The Rubicon undulator consists of two 11 period planar

Halbach undulators oriented perpendicular and shifted in
phase by π=2 with a total interaction length of 0.54 m. The
undulator period is tapered from 6 to 4 cm, allowing the
undulator gap to remain approximately constant throughout
the interaction. Undulator āwðzÞ tapering was determined by
matching the resonant gradient, determined by the undulator

FIG. 22. (Left) Deeply trapped TESSA initial conditions. (Right) Full bucket tapered FEL initial conditions.
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parameters, to the ponderomotive gradient (Fig. 25) asserting
a resonant phase of π=4.
To increase the energy extraction efficiency further, the

electron beam was prebunched to increase the fraction of
particles trapped in the ponderomotive potential. The pre-
buncher consists of a single 5 cm period planar Halbach
undulator followed by a permanent magnet chicane with a
variable gap. As the electron beam passes through the short
undulator section, interaction with the same laser seed used
to drive the Nocibur interaction produces a sinusoidal
energy modulation on the electron beam, periodic at the laser
wavelength This modulation is now locked in phase with
the Nocibur seed laser. The subsequent chicane provides
dispersion, converting the energy modulation to density
modulation. This produces a series of periodically spaced
microbunches, while also introducing a phase delay between
the microbunches and laser. The variable chicane gap allows
for tunability of the dispersion and phase delay, allowing
injection of the microbunches in the ponderomotive potential
at the resonant phase; see Fig. 26. Prebunching increased the
fraction of particles trapped from 17% without prebunching to
45% increasing the extraction efficiency by a factor of 3.
Direct measurement and characterization of the produced

radiation was hindered by the presence of the 200 GW seed.
However, experimental spectra are in excellent agreement
with 3D time-dependent Genesis simulations which predict a

FIG. 23. Nocibur experiment beam line layout.

FIG. 24. Experimental spectra.

FIG. 25. (Left) Undulator period (red) and magnetic field amplitude (blue). (Right) Resonant energy.
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2 mJ increase in radiation energy. This is consistent with the
previously defined total energy lost by the electron beam,
validating the assumption that energy lost by the electron
beam is converted directly to coherent radiation; see Fig. 27.
Note that the transverse distribution of the newly generated

radiation is particularly interesting. The emission source
in fact is the tightly focused electron beam current, which
has a spot size much smaller than the seed radiation.
Consequently the radiation has a much stronger divergence
angle. We highlight this effect by showing in the right panel
of Fig. 27(b) the intensity distribution difference between the
seed mode and the amplified mode which exhibits a hole on
axis due to diffraction.
Furthermore, Genesis simulations show an increase in the

divergence angle of the produced radiation since it is emitted
by the electron beam at a waist much smaller than the laser
seed. This is important to account for when considering
utilizing the low gain TESSA interaction in a recirculation
scheme.

4. Outlook: TESSO

The features of the TESSA concept have naturally the
potential for very high-power extraction efficiency. However,
since the concept requires a high intensity coherent radiation
signal input in order to form the traps for an injected
prebunched beam, its optical amplification gain is low or
moderate. It is reasonable in this case to consider a radiation
recirculation approach, namely, an oscillator or a regenerative
amplifier, as shown schematically in Fig. 28. Such a TESSO
device may be an exceptionally energy efficient and high
average power radiation source (Duris et al., 2018).
The main challenge for realizing this concept is the

requirement for a high intensity radiation seed “igniter”
and a high repetition bunched beam train synchronous with
the round-trip time of the resonator. Concepts of stimulated-
superradiant FEL oscillator radiation with a uniform wiggler
have been considered by Alexeev et al. (1989) and Seo (2013)
and by Krongauz et al. (2000) and Gover et al. (2005), where

FIG. 26. (Left) Prebunched e-beam longitudinal phase space in the Nocibur initial ponderomotive potential. (Right) Fraction trapped
data (points) vs injection phase controlled by a varying chicane gap compared with general particle tracer simulations with seed energy
0.55 J (yellow) 0.45 J (red), and 0.35 J (blue).

FIG. 27. (a) Total e-beam energy and radiation gain along the Nocibur interaction from Genesis simulation. (b) Output radiation
transverse distribution from Genesis.
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a strategy of buildup in the resonator is considered starting
from zero-order superradiance and stimulated superradiance.
In this scheme the beam energy is temporally ramped in a
process in which the bunched beam eventually gets trapped in
the built-up radiation field and then continues in a steady-state
saturated superradiant oscillation mode. However, such a
strategy would not be efficient for a tapered wiggler oscillator
concept, because in this case there is no gain in the small
signal regime before saturation. On the other hand, concepts
of tapered wiggler oscillators have been considered in the past
with continuous beams (Saldin, Schneidmiller, and Yurkov,
1993; Dattoli et al., 2012) and can be helpful to the case of
bunched beam TESSO.
A high-power TESSO radiation source would be highly

desirable especially in the UV regime. Such a scheme was
considered theoretically for wavelength 266 nm (Duris et al.,
2018). This wavelength comfortably lies in the easily acces-
sible region using cm period undulators and a moderate
energy (375 MeV) beam energy (Murokh et al., 2017).
More recently it was studied in the high gain TESSA regime
using numerical simulations showing the various trade-offs to
optimize the efficiency as a function of the beam and laser
parameters. In particular, the challenges associated with start-
up from low power have been bypassed by assuming that
a short pulse high-power laser source (low repetition rate)
would be available to ignite the oscillator. Conversion
efficiencies approaching 40% have been shown feasible in
3D simulations.

C. Efficiency enhancement in the tapered wiggler section
of a seed-injected FEL

In real short wavelengths UV-XUV FELs (Fig. 6) the
fundamental efficiency enhancement processes are not
straightforwardly applicable. In the first place, as displayed
in Fig. 6, diffraction effects are significant and the use of a
single radiation mode model is not valid in a long interaction
length. Furthermore, in present-day x-ray FEL facilities there
is little control over the input field intensity and the bunching
phase of the beam at the entrance to the tapered wiggler

section, independently of the prior section of uniform wiggler
amplification. Nevertheless, in the future, emerging new
techniques may enable better control of the bunched beam
and implementation of SR and ST-SR processes. Indeed,
phase jump efficiency enhancement methods have been
proposed based on small chicanes placed in the space between
wiggler sections in short wavelength FEL (Ratner et al., 2010;
Mak, Curbis, and Werin, 2017; Tsai et al., 2019). In such a
scheme the bunched beam is made to go a longer path relative
to the radiation wave, and after each section, the slowed down
bunches can be reinserted into an optimized (downstream
side) of the next (backstream) ponderomotive potential trap. It
is thus conceivable that similar methods can be developed in
the future to optimize the entrance phase of the bunches in the
tapered wiggler to enhance the radiation power emission rate.
Furthermore, new developments of fresh-bunch techniques
(Ben-Zvi, Yang, and Yu, 1992; Emma, Feng et al., 2017;
Emma, Lutman et al., 2017) make it possible to inject into the
tapered wiggler traps bunches with energy spread smaller than
the depth of the trap. Recent works also suggest that with such
a fresh bunch, maintaining a high trapping efficiency along the
interaction length may be possible with proper strategies of
wiggler tapering (Tsai et al., 2019). However, at the present
state of the art of short wavelength FELs, the fundamental
interaction processes of SR and ST-SR are complicated by
many supplemental effects that do not enable use of simple
analytic models.
Numerical simulations have played a key role in under-

standing the various physical mechanisms at work in high
efficiency tapered wiggler FELs. The importance of numerical
studies is due to the inherently nonlinear evolution of the
electron beam and radiation emission in the postsaturation
region of tapered FELs which makes analytic results difficult
to obtain without resorting to approximation. As qualitatively
discussed in the previous section, early numerical studies
revealed the importance of two fundamental effects which
limit the efficiency of tapered FELs: diffraction due to
reduced radiation guiding (Prosnitz, Szoke, and Neil, 1981;
Scharlemann, Sessler, and Wurtele, 1985) (see Fig. 6) and the
sideband instability (Kroll and Rosenbluth, 1980; Kroll,

FIG. 28. TESSO scheme: The scheme requires the use of a high repetition rate electron bunch with temporal separation tuned to the
cavity round-trip length. A fraction of the output radiation is redirected at the input to prebunch the beam and start the TESSA
amplification for the next electron bunch.
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Morton, and Rosenbluth, 1981). These effects have been
analyzed both separately and in combination via 1D and 3D
codes, with multifrequency effects enabled or intentionally
disabled (Quimby, Slater, and Wilcoxon, 1985; Hafizi et al.,
1989; Isermann and Graham, 1992; Fawley, 1995; Reiche,
1999; Fawley et al., 2002; Jiao et al., 2012; Emma et al.,
2014; Duris, Murokh, and Musumeci, 2015; Schneidmiller
and Yurkov, 2015; Emma, Sudar et al., 2017).

1. Transverse effects

The simple single mode model is not valid in the long
wiggler FEL where diffraction effects dominate. One must
then use a multimode analysis (Chen et al., 2014; Emma and
Pellegrini, 2014; Tsai et al., 2018) or numerical solutions of
Maxwell equations. Growth of the radiation spot size during
the postsaturation region decreases the effective bucket area
in which electrons are trapped and continue to lose energy to
the radiation field. This effect becomes dominant for tapered
wigglers of multiple Rayleigh lengths and sets a limit on the
maximum achievable efficiency. This limit was first esti-
mated analytically by Fawley (1996) and has subsequently
been verified in numerical studies (Jiao et al., 2012). To deter
the expansion of the radiation it is necessary to maintain the
refractive guiding as strong as possible in the tapered section
of the undulator. The strength of the guiding (given by the
electron beam refractive index) (Scharlemann, Sessler, and
Wurtele, 1985) is proportional to the beam bunching which
underscores the importance of maintaining a large fraction
of the beam trapped and bunched in the tapered wiggler for
maximum output efficiency. Recent numerical studies have
suggested improving the effect of the guiding by varying the
electron beam spot size in the tapered section (Jiao et al.,
2012) or shaping the electron transverse distribution from
Gaussian to parabolic or uniform (Emma et al., 2014b),
yielding a relative improvement in the efficiency around
10%–40%. In particular, Jiao et al. (2012) developed an
iterative optimization algorithm which optimizes the poly-
nomial taper profile as well as the strength of the quadrupole
focusing based on the evolution of the radiation spot size in
different sections of the tapered undulator. Another recent
study (Schneidmiller and Yurkov, 2015) examined the effect
of diffraction on the optimization of a tapered FEL by
parametrizing the z-dependent emission of radiation as a
function of the Fresnel number N ¼ kσ2=z where k ¼ 2π=λ
is the radiation wave number. The two limits of a thin
electron beam N ≫ 1 and a wide electron beam N ≪ 1
correspond to a quadratic and a linear growth in the radiation
power and occur in the early and late stages of a tapered
wiggler, respectively. As such, the tapering law determined is
a hybrid of a quadratic taper at the start of the postsaturation
section followed by a linear taper toward the end of the
wiggler, with the exact form depending on the electron beam
and undulator parameters. As we remark in the next section,
the useful guidelines provided in these studies must be
applied while also taking into account the impact of multi-
frequency effects, as they can prove crucial when coupled
with transverse effects and can change the form of the
optimal tapering profile for maximum output efficiency
(Emma et al., 2014).

2. Multifrequency effects

Multifrequency effects in the postsaturation regime can
cause the amplification of undesired frequencies which can
perturb the dynamics of the electron motion, disrupting the
radiation gain and reducing the output efficiency. One of the
most deleterious of these effects to the tapered FEL perfor-
mance is the synchrotron sideband instability (Kroll and
Rosenbluth, 1980; Kroll, Morton, and Rosenbluth, 1981).
Sidebands are generated due to amplitude and phase modu-
lations of the electric field which result from the trapped
particles undergoing multiple synchrotron oscillations as they
pass through the tapered section of the wiggler. From the 1D
FEL field equation it is clear that as the electrons oscillate
in the longitudinal phase space the gain and the phase shift of
the radiation field will be different at different locations in the
undulator and, due to shot noise and/or existing current
modulations imprinted on the electron beam, at different
locations along the bunch. This results in a temporal modu-
lation of the radiation amplitude and phase giving rise to
sidebands displaced from the central wavelength. Suppression
of shot noise in the early stages of electron beam acceleration
would be a way to deter the start of sideband instability out of
noise. Theoretically the scaling of noise suppression schemes
could reach x-ray frequencies (Nause, Dyunin, and Gover,
2014) but these have been demonstrated so far only at optical
frequencies (Gover et al., 2012; Ratner and Stupakov, 2012;
Ratner et al., 2015).
The resonance between sideband radiation frequencies and

the electron synchrotron motion gives rise to the synchrotron
sidebands displaced from the central wavelength by an
amount Δλ=λ0 ¼ λw=Ls, where Ls ¼ 2π=Ks [Eq. (104)] is
the synchrotron period. Since the resonance between the
electron synchrotron motion and the ponderomotive wave
is what causes the net energy transfer to the sidebands, we
expect the sideband gain to be small in the regions in which
the electric field, and thus the synchrotron frequency, are
changing rapidly. For this reason in the original literature
(Kroll, Morton, and Rosenbluth, 1981) it was thought that
high gain FEL amplifiers (as opposed to the low gain FEL
oscillators) would avoid the sideband problem due to the
rapidly increasing radiation field in the tapered region causing
a rapidly changing synchrotron frequency. Suppressing side-
band growth in the FEL oscillator was therefore first studied in
the 1D limit with a time-dependent FEL code, and it was
shown that the instability could be suppressed by adding
suitable frequency filters into the FEL optical cavity (Quimby,
Slater, and Wilcoxon, 1985). While the 1D FEL theory
predicts weak sideband growth for FEL amplifiers, as we
have discussed, diffraction effects in tapered wiggler FELs
cause the electric field growth to slow down and eventually
saturate due to reduced optical guiding. As a result, the onset
of sideband-induced detrapping is coupled to the limits on
the electric field growth set by the reduction in guiding. As the
electric field approaches its asymptotic value we expect the
effect of the sidebands to be more pronounced and more
significant detrapping to occur as a result. Eventually this
process can lead to a second saturation of the tapered FEL
power, as shown, for example, by Jiao et al. (2012) and Emma
et al. (2014).
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Suppressing the sideband instability therefore remains one of
the key issues for tapered FEL amplifiers, particularly those
which are multiple synchrotron periods in length. To that end, a
number of sideband suppression schemes have been recently
proposed for high efficiency FEL amplifiers. For example, it
was shown in simulations that a large seed power in an FEL
amplifier can offer a significant “head start” for the fundamental
compared to the sidebands which start from noise. This allows
the fundamental to reach high peak power before the sidebands
grow to an appreciable amplitude (Emma et al., 2014). In order
to achieve a large enough seed for a tapered x-ray FEL while
preserving the beam quality necessary for efficient amplifica-
tion in the tapered wiggler, a technique termed “fresh-bunch
self-seeding”was recently demonstrated at theLCLS, recording
an increase in x-ray brightness by a factor of 2 compared to the
state of the art (Emma, Lutman et al., 2017). An alternative
methodmaking use of periodic delays betweenwiggler sections
which introduce a π=2 phase shift for the sideband oscillations
while preserving the phase of the resonant frequency was
proposed by Duris, Murokh, and Musumeci (2015). Therein it
was shown that amodest number of such delays could be used to
recover the maximum efficiency achievable with multifre-
quency effects disabled.A similar technique has been suggested
which introduces a modulation in the undulator magnetic field,
effectively achieving a π=2 delay at the sideband frequency
while maintaining resonance with the fundamental (Emma,
Lutman et al., 2017). This has been shown in simulations to
reduce the sideband amplitude by more than an order of
magnitude, improving the brightness of tapered wiggler
FELs. Finally, a prebunched electron beam allows the FEL
undulator tapering to be more rapid, thus leading to a faster-
changing synchrotron frequency and consequently a reduction
in the sideband growth. In conclusion note that, in addition to
the previous analysis, the optimization of FEL efficiency via
undulator tapering remains an active field of research with
recent simulations and experiments revealing interesting results
(Wu et al., 2018).More experimental results can be found at the
Sorgente Pulsata Auto-amplificata di Radiazione Coerente
(SPARC) UV FEL (Giannessi et al., 2013), the Shanghai
Institute of Applied Physics (SINAP) (Li et al., 2013), etc.

IX. CONCLUSIONS

Electron beams of small emittance and energy spread are in
principle low entropy sources of radiative energy and there-
fore have the potential for ultimately high energy extraction
efficiency and power. When the electron beam is prebunched
at optical frequency, it is a good match with the coherent
radiation wave at the corresponding six-dimensional volume
in Liouville’s phase space, and therefore a phase-space
transformation of beam kinetic energy to optical power can
take place with high energy extraction efficiency.
Based on this general principle,we identify radiation emission

schemes of enhanced coherent spontaneous radiation: super-
radiance (SP-SR) and stimulated superradiance (ST-SR). In both
schemes the enhancement is due to the constructive coherent
interaction of the radiation wave with all electrons in a single or
multiple bunchedbeam.For a short interaction length, theSP-SR
emission is characterized by power generation scaling ∝ N2L2,
and the ST-SR power increment scales as ∝ NLE0, where N is

the number of particles,L is the interaction length, andE0 is the
field strength at the entry to the interaction region. At longer
interaction lengths, these scaling laws change due to a nonlinear
process in which the beam energy drops and the electron
dynamics during the interaction plays a role.
We used a simple model of ideally tightly bunched electron

beams to describe the nonlinear interaction process for
coherent radiative interaction in a magnetic wiggler (FEL).
The model is applied to both uniform wiggler and tapered
wiggler cases. In the case of tapering, the ponderomotive wave
traps that are created by an intense input radiation wave and
the tapered wiggler enable continued phase-matched stimu-
lated interaction with the slowing down bunched beam
(TESSA) and enhanced energy extraction from the beam.
The simplified nonlinear model presented is energy con-

serving and consistent with the zero-order analysis and scaling
of SP-SR and ST-SR. At short distances (z) a bunched beam
always exhibits SP-SR emission scaling as ∝ N2z2, and ST-SR
emission scaling as ∝ NzE0 if it is injected at a deceleration
phase relative to the wave (ψ ¼ π=2). It is then possible to get
initially enhanced radiation extraction when the input radiation
field and its relative bunching phase are controllable.
The nonlinear dynamics of the electrons in the potential

traps of the ponderomotive potential is analogous to that of
a mathematical pendulum, and in the case of a tapered
wiggler—a titled pendulum. In the case of a tapered wiggler
(TESSA) the analysis reveals that the electron beam energy
drop (turned into radiation gain) is composed of two con-
tributions: (a) an energy drop due to the reduced average
kinetic energy of all electrons that stay trapped in the slowing
down traps along the tapered wiggler, and (b) internal
synchrotron oscillation dynamics of the tight bunches within
the trap. If the bunching is tight there is an advantage to inject
the beam at maximum ST-SR deceleration phase ψð0Þ ¼ π=2,
but in practice the bunching efficiency is not perfect, and for
maximum trapping efficiency one would prefer to inject the
spread-phase bunch at the resonant particle center phase
ψð0Þ ¼ ψ r. In this case, the contribution of the internal trap
dynamics and ST-SR emission are negligible.
Beyond the ideal tight bunching model that is useful for

identifying the fundamental emission processes, we also
presented for the TESSA case an approximate analysis and
simulation results for the interaction with a beam of finite
energy and phase spread. In this case, relevant to the present
state of the art of TESSA and FEL technology, the con-
tribution of the internal dynamics of synchrotron oscillation
is washed out, and the dominant contribution is the resonant
energy drop due to tapering Δγ ¼ γrð0Þ − γrðLwÞ. Also in
this case there is an advantage in having high initial field E0,
tight bunching, and good control over the injection phase
ψð0Þ in order to achieve high trapping efficiency and enable
an aggressive tapering rate with deep enough traps. Future
development of beam and laser technology, such as the fresh
bunch technique (Emma, Lutman et al., 2017), may lead to
better control of these parameters and development of very
high efficiency TESSA and TESSO radiation sources.
In the last part of this article we reviewed the applications and

experimental demonstrations of radiation sources based on a
bunched e beam: superradiant, stimulated superradiant, and
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TESSA.Most of the superradiant radiation sources operate in the
THz regime, because practically, modern rf accelerators are
based on subps short electron bunches photoemitted using
femtosecond ultrafast lasers. In the case of nonlinear interaction
of a bunched beam in a tapered wiggler we reviewed the
experimental demonstration of significant radiative energy
transfer efficiency in TESSO experiments in Tremaine et al.
(2011) and Sudar et al. (2016). We finally pointed out the
relevance of SP-SR and ST-SR processes in considering
optimized tapering strategy in tapered wiggler FEL. It was
indicated, however, that in this case several processes of energy
andphase spread radiation diffraction andmultifrequency effects
mask the fundamental radiation processes in a long wiggler, and
they have been analyzed primarilywithnumerical computations.

LIST OF SYMBOLS AND ABBREVIATIONS

CSR coherent synchrotron radiation
CTR coherent transition radiation

EEHG echo-enabled harmonic generation
ERL energy retrieval linac
FEL free electron laser

HGHG high gain harmonic generation
IR infrared

KMR Kroll-Morton-Rosenbluth
linac linear accelerator

PEHG phase-merging enhanced harmonic genera-
tion

SASE self-amplified spontaneous emission
SP-SR spontaneous superradiance
ST-SR stimulated superradiance
TES tapering-enhanced superradiance

TESSA tapering-enhanced stimulated-superradiant
amplification

TESSO tapering-enhanced stimulated-superradiant
oscillator

THz terahertz
UR undulator radiation

Note that the terms “wiggler” and “undulator” are inter-
changeably used in this review, as are the terms “super-
radiance” and “coherent spontaneous radiation.”
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APPENDIX A: PENDULUM EQUATION IN FEL
CONTEXT

The classical pendulum equation is given by

dθ
dz

¼ K2
s sinψ ; ðA1Þ

dψ
dz

¼ −θ ðA2Þ

(in the case of a physical pendulum K2
s ¼ g=l, where g is the

gravitation constant and l is the length of the pendulum, ψ is
the tilt angle and θ is the angular velocity, and the independent
variable would be t and not z).
In the context of a periodically bunched electron beam, θ

represents the detuning parameter between the velocity of the
bunches and the phase velocity of the ponderomotive wave
radiation field [see Eq. (33)], while ψ represents the phase of
the bunch relative to the ponderomotive wave

ψ ≡ −½φbðzÞ − φqðzÞ − π=2�. ðA3Þ

The parameter Ks, called the synchrotron oscillation wave
number, represents the small oscillation frequency of
the bunches relative to the center of the trap. Ks is essentially
the amplitude of the ponderomotive wave and is proportional
to the wiggler strength and the radiation field amplitude
[Eq. (104)].
Multiplying the left-hand side (lhs) of Eq. (A1) with the

right-hand side (rhs) of Eq. (A2) and vice versa, and
integrating, results in

1
2
θ2 − K2

s cosψ ≡ TðθÞ þ UðψÞ ¼ C: ðA4Þ

Here we identify TðθÞ ¼ 1
2
θ2 with the kinetic energy

and UðψÞ ¼ −K2
s cosψ with the potential energy. C is an

integration constant that is determined by the initial value
of the electron trajectory C ¼ T(θð0Þ)þ U(ψð0Þ). Inspe-
cting Fig. 29 we observe two kinds of trajectories: for
Cðθð0Þ;ψð0Þ) > K2

s all trajectories are open, namely, elec-
trons injected at phase and detuning initial conditions corre-
sponding to this case propagate in open phase-space
trajectories, bypassing the periodic traps without getting
trapped. In the opposite case C(θð0Þ;ψð0Þ) < K2

s electrons
follow closed trajectories, and if injected into the trap, they
stay trapped, performing “synchrotron oscillations” around

FIG. 29. The θ − ψ phase-space trajectories of the pendulum
equation.
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the center of the trap and moving on the average at the
phase velocity of the ponderomotive force (74). The equality
C(θð0Þ;ψð0Þ) ¼ K2

s represents the separatrix—the borderline
between open and closed trajectories. The separatrix repre-
sents a “trap” or a “bucket” in which electrons are trapped,
executing synchrotron trajectories without escape. The height
of the trap is

2θm ¼ 4Ks ðA5Þ

and its width is 2π, i.e., −π < ψ < π.
To describe the electron dynamics in a tapered wiggler we

note that in this case the phase velocity of the ponderomotive
wave (74) decelerates when the wiggler period gets shorter as
a function of z. This can be envisioned as a physical situation
where the electron in a decelerating frame experiences an
imaginary acceleration force in addition to the restoring
force of the pendulum. This can be shown to be equivalent
to adding a term to the rhs of Eq. (A1). To make sure that the
acceleration (tapering force) is smaller than the restoring
force, and the electrons can still be trapped, we define this
term as −K2

s sinψr:

dθ
dz

¼ K2
s ½sinψ − sinψr�: ðA6Þ

Since sinψr < 1, there is always a range of phases ψ around
ψ ¼ ψr in which oscillatory dynamics around the resonant
phase ψr is possible.
For the case sinψr ¼ const (linear wiggler tapering), the

integration of Eq. (A6) with (A2) is straightforward (Kroll,
Morton, and Rosenbluth, 1981):

1
2
θ2 − K2

s ½cosψ þ ψ sinψr�≡ TðθÞ þ UðψÞ ¼ C; ðA7Þ

where the kinetic energy TðθÞ is the same as before, but the
potential energy UðψÞ has an additional term:

UðψÞ ¼ −K2
s ½cosψ þ ψ sinψr� ðA8Þ

shown in Fig. 30 with Ks ¼ 1 and sinψr ¼ 0.5. C ¼
T(θð0Þ)þ U(ψð0Þ) is an integration constant established
by the initial values of θ and ψ .
To analyze the potential energy UðψÞ in Eq. (A8), we

find the maxima and minima by solving dU=dψ ¼ 0. This
results in

ψn
max ¼ π − ψr þ 2πn≡ ψn

2; ðA9Þ

which is the right limit of the trap n, named ψn
2 , and

ψn
min ¼ ψr þ 2πn. ðA10Þ

We define the separatrix for the trap n by setting
Cn
sep ¼ Uðψn

2Þ ¼ K2
s ½cosψr − ðπ − ψ r þ 2πnÞ sinψ r�, so that

nonzero kinetic energy TðθÞ ≥ 0 is possible for either ψ > ψn
2

(open trajectories) or ψn
1 < ψ < ψn

2 (closed trajectories). Here
ψn
1 is the other (left boundary phase) of the equation UðψÞ ¼

Cn
sep (see Fig. 30 and the phase space presentation of the

separatrix for n ¼ 0 in Fig. 31). Using C ¼ Cn
sep in Eq. (A7),

for n ¼ 0 we obtain

1
2
θ2¼K2

s ½cosψþψ sinψ rþcosψr−ðπ−ψrÞsinψr� ðA11Þ

from which the curve of the separatrix in Fig. 31 is
represented by

θ ¼
ffiffiffi
2

p
Ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosψ þ ψ sinψr þ cosψr − ðπ − ψrÞ sinψr

p
.

ðA12Þ

The height of the tilted pendulum separatrix is 2θm, where θm
is the value of θ in Eq. (A12) for ψ ¼ ψr. We found

2θm ¼ 4Ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosψ r þ ðψr − π=2Þ sinψr

p
; ðA13Þ

so that for ψr ¼ 0 we recover Eq. (A5) and for ψr ¼ π=2 the
trap vanishes (θm ¼ 0). The width of the trap is ψ2 − ψ1.
For other energy conservation constant values C(θð0Þ;

ψð0Þ), one gets open trajectories if C > Cn
sep and closed

trajectories if C < Cn
sep; see Fig. 30. The open and closed

FIG. 30. The potential energy for a tapered wiggler with
Ks ¼ 1 and sinψr ¼ 0.5. Shown are Csep and the values of ψ1

and ψ2 for n ¼ 0.

FIG. 31. The separatrix for the n ¼ 0 trap in a tapered wiggler
for Ks ¼ 1=

ffiffiffi
2

p
and ψ r ¼ π=6. The trap ranges in the region

ψ1 ≤ ψ ≤ ψ2, where ψ2 ¼ π − ψ r and ψ1 has to be calculated
numerically and is in this case −0.6752. The height of the trap is
1.6551, according to Eq. (A13).
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trajectories in phase space ðψ ;−θÞ are shown in Fig. 32 (Kroll,
Morton, and Rosenbluth, 1981) for the multiple traps.

APPENDIX B: ELECTRON BEAM BUNCHING

While the thrust of this review is the coherent superradiant
emission processes, we cannot ignore the processes of
prebunching the electron beam.
There is a variety of processes for attaining tight bunches of

electron beams. At long wavelength (THz range) single bunch
electron beam and periodic bunching can be achieved by direct
photoemission from femtosecond laser-illuminated cathodes.
This can also be a train of such femtosecond laser beams that
are replicated by various optical splitting and delay schemes. In
all these schemes, the Gaussian distribution model for the
electron bunch [Eq. (27)] is usually a good approximation:

fðtÞ ¼ 1ffiffiffiffiffi
2π

p
σt
e−t

2=ð2σ2tbÞ. ðB1Þ

Thus the bunching coefficients of the single electron bunch
and periodic Gaussian bunch train, respectively, are
Eqs. (28) and (57),

MbðωÞ ¼ e−ω
2σ2tb=2; ðB2Þ

bn ¼ e−ω
2
nσ

2
tb=2; ðB3Þ

where ωn ¼ nωb.
At short wavelengths, a most useful scheme of bunching a

continuous or long pulse electron beam is to modulate its
energy with a high intensity laser beam in a wiggler (or any
other interaction scheme), and then turn its energy modulation
into density modulation by passing it through a DS, such as a
“chicane.” This scheme of bunching is useful for a variety of
short wavelength radiation emission schemes, including
HGHG (Yu, 1991; L. Yu et al., 2000), EEHG (Stupakov,
2009), PEHG (Feng et al., 2014), TESSA (Sudar et al., 2016),
and eSASE (Zholents, 2005).
In the laser bunching scheme, the bunch distribution

deviates from a single Gaussian shape (B3). Because of the
importance of this bunching technique we review here briefly
the derivation of the bunching distribution and the bunching
coefficient of this case following the parametric notations of
Hemsing et al. (2014).
The beam is assumed to be initially uniform but has initial

energy spread. Its initial normalized energy distribution is

fðpÞ ¼ 1ffiffiffiffiffi
2π

p e−p
2=2; ðB4Þ

where p ¼ ðγ − γ0Þ=σγ0.

After energy modulation γ ¼ γ0 þ Δγmod sinðωbtÞ, the
energy distribution is periodically dependent on time t
(or z) dependent:

fðpÞ ¼ 1ffiffiffiffiffi
2π

p e−½p−A sinðωbtÞ�2=2; ðB5Þ

where A ¼ Δγmod=σγ0.
In a dispersive section of dispersive strength R56 the

electron time and longitudinal coordinates pass a com-
pression transformation z0 ¼ ct0 ¼ zþ R56ðγ − γ0Þ=γ0 ¼
zþ R56pðσγ0=γ0Þ, so after the DS

f0ðp; tÞ ¼
1ffiffiffiffiffi
2π

p e−½p−A sinðωbt−BpÞ�2=2. ðB6Þ

This current distribution, periodic in time with period
Tb ¼ 2π=ωb, depends on the modulation parameter A and
the compression parameter B:

B ¼ ωbσt ¼ ωbðR56=cÞðσγ0=γ0Þ. ðB7Þ

Figure 33 displays this distribution in p ¼ ðγ − γ0Þ=σγ0 and
t=Tb over one bunching period at A, B parameters choice of
maximum bunching.
Integrating over energy and using Eq. (B6), we find the

bunching amplitude of harmonic n:

bn ¼
Z

Tb=2

−Tb=2
dt
Z

∞

−∞
dpe−inωbtf0ðt; pÞ

¼ JnðnABÞe−n2B2=2

¼ JnðnABÞe−ω2
nσ

2
t =2. ðB8Þ

For harmonics n > 4 the maximum of the Bessel function
in Eq. (B8) is about 0.67=n1=3 and is achieved when the
argument is nþ 0.8n1=3. Thus the optimal strength of the DS
for maximal bunching is

B ¼ ðnþ 0.8n1=3Þ=nA ≃ 1=A. ðB9Þ

The approximate expression for the bunching parameter is

bn ¼ JnðnÞe−n2B2=2 ≃
0.67

n1=3
eω

2
nσ

2
t =2; ðB10Þ

FIG. 32. Separatrix trajectories for trap n ¼ m are unbound
around traps n > m and are not allowed near traps n < m.

FIG. 33. Longitudinal phase space after the chicane showing
microbunching of electrons and an enhanced electron density.
From Zholents, 2005.
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where σt ¼ B=ωb is the approximate width of the bunch
distribution. The Bessel function factor in Eq. (B10) reduces
somewhat the bunching coefficient relative to the Gaussian
distribution (B3). Note that the width parameter σt is con-
trollable in this case, and the Gaussian factor in Eq. (B8) that is
limited by the initial energy spread σγ0=γ0 can be enhanced by
decreasing B and increasing correspondingly A ≃ 1=B.
Furthermore, it has been proposed that in a scheme of a
transverse gradient wiggler the effect of the energy spread and
the Gaussian factor may be nearly eliminated and the bunch-
ing factor gets close to (Feng et al., 2014)

bn ¼
0.67

n1=3
ðB11Þ

as shown in Fig. 34.
Besides the derivation of the bunching coefficient for a

laser modulated beam, the formulation here is also useful
for calculating the trapping fraction ftðψ r; AÞ of a laser-
prebunched electron beam in the traps of a tapered wiggler
FEL characterized by a separatrix

δγsep ¼ δγsepðKs;ψnÞ. ðB12Þ

The trapping efficiency of harmonic n can then be calculated
numerically using the distribution (B6):

ftn ¼
Z

ψn2

ψn1

dψn

Z
δγsep=σγ0

−δγsep=σγ0
dpf0ðp;ψnÞ. ðB13Þ

This procedure was used to calculate the trapping efficiency in
Sec. VII.

APPENDIX C: CONSERVATION OF ENERGY AND THE
HARMONIC RADIATION EXCITATION EQUATION
IN A WIGGLER

For a single electron

JðtÞ ¼ −evδðr⊥Þδ½z − zeðtÞ� ðC1Þ

with the transformation teðzÞ ¼
R
z dz0=vz

JðzÞ ¼ −e
v
vz

fðr⊥Þδ½t − teðzÞ�; ðC2Þ

where we replaced δðr⊥Þ → fðr⊥Þ in order to represent a
bunch of finite transverse distribution. For a train of electrons

Jðz; tÞ ¼ −e
v
vz

fðr⊥Þ
X∞
n¼−∞

δ½t − teðzÞ − nTb�; ðC3Þ

which may be expressed as a Fourier series

Jðz; tÞ ¼
X∞
n¼−∞

J̃ne−inωbt; ðC4Þ

where the Fourier components are

J̃n ¼
−ev
Tbvz

fðr⊥ÞeinωbteðzÞ; ðC5Þ

so that

Jðz; tÞ ¼ J0 þ
X∞
n¼1

½J̃ne−inωbt þ J̃�neinωbt�

¼ J0 þ
X∞
n¼1

2Re½J̃ne−inωbt�: ðC6Þ

For each harmonic n of the current we have

Jnðz; tÞ ¼ Re½2J̃ne−inωbt�: ðC7Þ

In order to match this formulation to the phasor formulation
of Sec. III, we equate Eq. (C7) to the single frequency phasor
presentation for ω0:

Jðz; tÞ ¼ Re½J̃e−iω0t�: ðC8Þ

Therefore, for interaction with a single harmonic ω0 ¼ nωb

J̃ðω0; zÞ ¼ 2J̃n ¼
−eωbv
πvz

fðr⊥ÞeinωbteðzÞ. ðC9Þ

Substitute this current into the excitation equation (6)

dC̃q

dz
¼ −1

4Pq

Z
J̃ · Ẽ�

qd2r⊥; ðC10Þ

it can be employed for any harmonic frequency ω0 ¼ nωb (in
synchronous interaction schemes, such as undulator radiation,
only one harmonic is interacting efficiently),

dC̃q

dz
¼ 1

4Pq

eωbβ
πβz

eiω0teðzÞ · Ẽ�
q: ðC11Þ

FIG. 34. Comparison of the bunching factor of PEHG and
standard HGHG with different energy modulation amplitudes.
The black line is the theoretical prediction of the maximal
bunching factor of PEHG. From Feng et al., 2014.
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We will show that the conservation of energy is kept
separately for each harmonic. The radiation power is

dP
dz

¼
X
q

Pq
d
dz

jCqðzÞj2

¼
X
q

Pq

�
C�
q
dCq

dz
þ Cq

dC�
q

dz

�

¼
X
q

Pq

�
C�
q
dCq

dz
þ c:c:

�
. ðC12Þ

Using Eq. (C11) this results in

dP
dz

¼ 1

4

eωbβ
πβz

·
X
q

½C�
qẼ

�
qeiω0teðzÞ þ c:c:�

¼ 1

4

eωbβ
πβz

· 2E(r; teðzÞ). ðC13Þ

On the other hand, the energy equation for each electron
interacting with the radiation field Eðr; tÞ is

mc2
dγ
dt

¼ −ev · Eðr; tÞ; ðC14Þ

so that

mc2
dγ
dz

¼ −
e
βz

β ·E(r; teðzÞ). ðC15Þ

The power in the beam at any plane z is Pe ¼ mc2ðγ − 1Þ=Tb,
and its derivative dPe=dz ¼ mc2ðdγ=dzÞωb=ð2πÞ satisfies
[see Eq. (C13)]

dP
dz

¼ −
dPe

dz
. ðC16Þ

This result of conservation of energy in the interaction
between a periodically bunched e beam and a coherent
radiation mode is very general. It applies to any kind of
interaction scheme including the nonlinear regime. We now
specify our formulation to the scheme of radiative interaction
in a wiggler structure in order to derive the radiation excitation
equation for this case.
To apply the excitation equation (C10) to the case of a

wiggler we need to calculate the transverse current component
of harmonic n [Eq. (C9)] for this case. For the tight bunching
model, replacing e by Nbe in Eq. (C3) we can write for the
periodic beam density

nðr; tÞ ¼ Nbfðr⊥Þ
X
j

δ

�
z −
Z

t

toj

vzðt0Þdt0
�
; ðC17Þ

where

t0j ¼ jTb þ t0. ðC18Þ

Here t0j is the entrance time of bunch j into the wiggler
at z ¼ 0.

The function nðr; tÞ is periodic in time, with a period of
Tb ¼ 2π=ωb, so it may be represented by the Fourier series

nðr; tÞ ¼
X∞
n¼−∞

ñnðrÞe−inωbt; ðC19Þ

where the n harmonic coefficient of the density ñnðrÞ is
given by

ñnðrÞ ¼
1

Tb

Z
Tb=2

−Tb=2
nðr; tÞeinωbtdt: ðC20Þ

Setting Eq. (C17) in Eq. (C20) results in

ñnðrÞ ¼
Nbωb

2πvz
fðr⊥Þeinωb½

R
z

0
dz0=vzðz0Þþt0�. ðC21Þ

For use in the force equations all bunches are assumed
identical, namely, Iðz¼ 0; tÞ ¼ −eNb

P∞
j¼−∞ δðt− jTb − t0Þ

(this corresponds to jM̃bj ¼ 1 in the phasor formulation of
Sec. III [Eq. (61)]). This current contains an infinite number
of harmonics, but we assume here that only one harmonic at
ω0 ¼ nωb is interacting synchronously with the wave, so that
we need to keep in Eq. (C19) only ñnðrÞ and ñ−nðrÞ ¼ ñ�nðrÞ.
Equating (C9) to the phasor representation (52):

nðr; tÞ≡ RefñðrÞe−iω0tg ¼ 1
2
ñðrÞ þ c:c: ðC22Þ

we set

ñðrÞ ¼ 2ñnðrÞ. ðC23Þ

Formulating the analysis so that it can be applied to a general
wiggler, uniform or tapered, planar or helical, we write the
perpendicular velocity of the wiggler as

v⊥ ¼ RefṽwðzÞei
R

z

0
kwðz0Þdz0 g ¼ 1

2
ṽwðzÞei

R
z

0
kwðz0Þdz0 þ c:c:;

ðC24Þ

and define the perpendicular current density as

J⊥ ¼ −env⊥ ¼ RefJ̃⊥e−iω0tg: ðC25Þ

From Eqs. (C23)–(C25) we obtain

J̃⊥ ¼ −e
1

2
ñðrÞṽ�wðzÞe−i

R
z

0
kwðz0Þdz0 ; ðC26Þ

and using Eq. (C21) in Eq. (C26), and allowing vz (and in the
tapered case also kw) to change with z, results in

J̃⊥ ¼ Qbω0β̃
�
w

2πβzr
fðr⊥Þei

R
z

0
ðω0=vzðz0Þ−kwðz0ÞÞdz0þiφb0 ; ðC27Þ

where φb0 ¼ ω0t0 is the entrance phase of the bunched beam,
and operating near resonance we used βz ≃ βzr.

A. Gover et al.: Superradiant and stimulated-superradiant emission …

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035003-40



By comparing Eq. (60) with (C27), we find that for the
model of tightly bunched beam (C3) the wiggling excitation
current is

Ĩm⊥ ¼ Qbω0jβ̃wðzÞjeiφb0

πβzr
. ðC28Þ

Defining

φbðzÞ ¼
Z

z

0

�
ω0

vz
− kw − kzq

	
dz0 þ φb0; ðC29Þ

and using the excitation equation (C10) one obtains

dC̃qðzÞ
dz

¼ −
FQbω0β̃wðzÞ · Ẽ�

qð0Þ
8πPqβzr

eiφbðzÞ; ðC30Þ

where the transverse filling factor F is defined in Eq. (65).

APPENDIX D: PARAMETERS CHOICE AND
NORMALIZATION

We normalize the general dynamic equations of a pre-
bunched beam in a tapered wiggler with varying parameters
by substituting in Eqs. (105)–(107) or (113)–(115):

u ¼ z=Lw; ðD1Þ

θ̄ ¼ θLw; ðD2Þ

ĒðzÞ ¼ jẼðzÞj
bð0ÞLw

; ðD3Þ

where bð0Þ is the value of b in Eq. (96) at z ¼ 0 (or u ¼ 0).
This results in

dĒ
du

¼ fBðuÞ sinψ ; ðD4Þ

dθ̄
du

¼ fKðuÞK2
s0ĒðuÞ½sinψ − sinψrðuÞ�; ðD5Þ

dψ
du

¼ −θ̄ þ 1

fBðuÞĒðuÞ
cosψ ; ðD6Þ

where

K2
s0 ¼

I0Zqk0η2pā2wð0ÞeL3
w

4mc2β5zrð0Þγ2zrð0Þγ3rð0ÞAemq
; ðD7Þ

fBðuÞ ¼
bðuÞ
bð0Þ ¼

āwðuÞβzrð0Þγrð0Þ
āwð0ÞβzrðuÞγrðuÞ

; ðD8Þ

fKðuÞ ¼
β3zrð0Þγ2zrð0Þγrð0Þ
β3zrðuÞγ2zrðuÞγrðuÞ

. ðD9Þ

The beam trajectories in the dynamic range 0 < u < 1 are best
displayed in phase space ½γðuÞ − γrð0Þ;ψ �, where

γðuÞ − γrð0Þ ¼ γrðuÞ − γrð0Þ þ δγðuÞ; ðD10Þ

and where for the ultrarelativistic beam case [see Eq. (79)]

δγðuÞ ¼ −
γrðuÞθ̄ðuÞ
4πNw

. ðD11Þ

The consequent radiation mode and beam energy powers are
given by

Pem ¼ Ē2ðuÞPREF; ðD12Þ

where

PREF ¼ Pqb2ð0ÞL2
w

jẼqð0Þj2
¼ 1

16π2
η2pā2wð0Þ

β2zrð0Þγ2rð0Þ
Q2

bω
2
0L

2
wZq

Aemq
; ðD13Þ

and the incremental electron beam power, relative to PREF, is
obtained from Eq. (116)

ΔPel¼½γðuÞ−γð0Þ�Nbmc2

Tb

¼½γrðuÞ−γrð0ÞþδγðuÞ−δγð0Þ�Nbmc2

Tb
¼

−2PREF

�Z
u

0

Ēðu0Þsinψ rðu0Þdu0 þ½θ̄ðuÞ− θ̄ð0Þ�=K2
s0

�
.

ðD14Þ

Note that fBðuÞ, fKðuÞ, and sinψ rðuÞ depend in general on
the tapering scheme. If the tapering is moderate and linear, we
may set fBðuÞ ≈ 1, fKðuÞ ≈ 1, and sinψ rðuÞ ¼ const. In this
case Eqs. (D4)–(D6) simplify to

dĒ
du

¼ sinψ ; ðD15Þ

dθ̄
du

¼ K2
s0Ē½sinψ − sinψr�; ðD16Þ

dψ
du

¼ −θ̄ þ 1

Ē
cosψ . ðD17Þ

In the numerical computations and the video displays
we used the parameters from the Nocibur (Sudar et al.,
2016) experiment, from which we calculated γrð0Þ¼127.2,
PREF ¼ 37.4 MW, and K2

s0 ¼ 1.59.
For reference, note that when Ē ≈ const (saturation con-

ditions) the first equation is irrelevant and the other two
represent a tilted pendulum equation oscillating within the trap

at normalized frequency Ks0

ffiffiffiffī
E

p
and in real space at the

synchrotron wave number Ks0

ffiffiffiffī
E

p
=Lw.
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