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Memory formation in matter is a theme of broad intellectual relevance; it sits at the interdisciplinary
crossroads of physics, biology, chemistry, and computer science. Memory connotes the ability to
encode, access, and erase signatures of past history in the state of a system. Once the system has
completely relaxed to thermal equilibrium, it is no longer able to recall aspects of its evolution. The
memory of initial conditions or previous training protocols will be lost. Thus many forms of memory
are intrinsically tied to far-from-equilibrium behavior and to transient response to a perturbation.
This general behavior arises in diverse contexts in condensed-matter physics and materials, including
phase change memory, shape memory, echoes, memory effects in glasses, return-point memory
in disordered magnets, as well as related contexts in computer science. Yet, as opposed to the
situation in biology, there is currently no common categorization and description of the memory
behavior that appears to be prevalent throughout condensed-matter systems. Here the focus is
on material memories. The basic phenomenology of a few of the known behaviors that can be
understood as constituting a memory will be described. The hope is that this will be a guide toward
developing the unifying conceptual underpinnings for a broad understanding of memory effects that

appear in materials.
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I. INTRODUCTION

The dancer and choreographer Twyla Tharp wrote in her
book, The Creative Habit: “There are as many forms of
memory as there are ways of perceiving, and every one of
them is worth mining for inspiration” (Tharp, 2003). Indeed,
memories come in many forms and strike us in odd and
seemingly unpredictable ways. We experience this daily: we
have long-term memories of our childhood, we have short-
term memory of where we left our overcoat, we have muscle
memory of how to walk or ride a bicycle, we have memories
of smell. The list goes on and is overwhelming in its variety.
While memory is acutely present in our consciousness, it is
less well recognized as an organizing principle for studying
the properties and dynamics of matter. However, once we
acknowledge this possibility, we realize that there are, as in
our experience of consciousness, many forms of memory that
are stored in untold numbers of ways in the matter surround-
ing us. Some are obvious and mundane while others require a
much greater degree of sophistication and ingenuity to encode
or retrieve from a material. In contrast, memory loss seems to
be less problematic and we often take it for granted. However,
these aspects of memory retention and loss are intrinsically
linked; neither are simple processes.

As Twyla Tharp asserted, each form of memory should be
an “inspiration” for asking new questions. When we apply this
dictum to memory in materials, it gives us a chance to examine
the nature of far-from-equilibrium behavior in a new light. As
we will show, there are a great many ways in which materials
can retain an imprint of their previous history that can be read
out at a later time by following protocols that often are
specialized to the type of information encoded. While unde-
niably we take inspiration from the idea of memory in our
world of consciousness, we will focus not on such phenomena
but rather on their counterpart in the material world. Our aim
in this review is to indicate the great variety of issues that can
be addressed in this context.

In the physical world, we find many different forms of
memory formation. We are taught early on to store certain
memories by making pencil marks on a sheet of paper. In a
more sophisticated fashion, media such as compact discs store
information as binary markings. In one form of computer
memory, digitized information is stored in the form of
magnetic bits. On paper or a computer, one can store unlimited
amounts of information by increasing the system size.
However, some forms of memory can encode only small
amounts of information. For example, a common feature of
glassy physics is that a system can retain an imprint of the
largest strain that was applied to it by either compression or
shear in a specified direction. Similarly, a system can store the
time over which it has been subjected to an applied stress.

As these examples suggest, memory engages us in a study
that targets phenomena related to transient or far-from-
equilibrium behavior. A system that has not yet fully relaxed
to equilibrium may retain memories of its creation, while one
that is in equilibrium has no memory of its past; the very
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process of reaching equilibrium erases the memory of pre-
vious training. In the study of evolving systems, such as in
geophysics and on an even grander scale, in cosmology and
astrophysics, one uses information from the local terrain or the
current state of the Universe to infer previous conditions.

Disordered, out-of-equilibrium systems are often described
by a vast rugged potential or free-energy landscape. This allows
a memory to be formed by falling into a recognizable state in
this terrain. Some memories that are encoded in this way
include, among others, the Hopfield paradigm of associative
memory and the memories caused by the oscillatory shear of a
jammed system. Similar considerations underlie the deep neural
networks now used in machine learning (Mehta et al., 2019), a
subject which is beyond the scope of this review.

Memories may be stored in a myriad of different systems:
from solids to fluids, from paper to stone, from atomic positions
to spin orientations, from chemical-reaction pathways to
avalanches in transition dynamics. Memories can be encoded
in time, as in the spacing between pulses in a spin echo; in
position, as in the spacing of particles in a sheared suspension;
in temperature, as in the rejuvenation, aging, and memory of
glassy systems; or in chemical bonding, as in a chemically
controlled soup of colloids with designed interparticle inter-
actions. For each of these forms of information there are
specific training protocols. Some systems may need only a
single training pulse while others may require repeated cyclic
training before a signal can be read out reliably. This last is
reminiscent of training by rote that many of us have experi-
enced in school to learn the alphabet. Although many materials
exhibit the memory of past conditions by some form of history
dependence, we will focus here on examples where a readout
method also exists that recovers the encoded information with
some fidelity; in the examples we consider there is a protocol
for recovering as well as storing a specific input.

Each form of memory is a stimulus for asking new ques-
tions and for examining the nature of far-from-equilibrium
materials in a new light. The observation that memories can be
stored in a seemingly countless number of ways raises the
question of whether different kinds of memories share
common principles. Other questions can be asked: What
constitutes a memory? Are there different categories of
memory, and can they be enumerated? How many memories
can be stored in a system—that is, what is the capacity of the
memory storage? How fast can a memory be stored or
retrieved? What is the entropy associated with a memory?
What gives rise to plasticity, that is, the ability of a system to
continue to store new memories? A study of these questions
can be an entree for understanding the nature of the non-
equilibrium world.

As an invitation into this study, this review outlines a set of
memory behaviors. We describe a collection of distinct physical
systems, and show how their responses may be considered as
memories. The set of behaviors and systems described here is
not meant to be exhaustive. In particular, we will not attempt
to cover the vast range of technology associated with memory
storage in computers, nor the fascinating array of memory
effects in biological function such as in the immune system
(Osterholm et al., 2012; Barton, Kardar, and Chakraborty,
2015). Rather, we intend to illustrate the breadth of memory
phenomena in materials and, in the words of Tharp, to “inspire”
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new questions about, and new ways of classifying, material
properties. We will outline recent advances and raise open
questions that may guide future work. These will help to
identify some of the issues that one must confront when trying
to build a broader understanding of memories in materials. We
hope that our perspective will help guide the beginnings of such
a venture.

II. SIMPLEST FORMS OF MEMORY: DIRECTION AND
MAGNITUDE

A. Memory of a direction

One of the simplest memory phenomenologies is when a
material remembers the most recent direction in which it was
driven. A well-known application of this behavior is digital
magnetic storage, where an external field puts individual
magnetic regions in one of two polarities to represent a 1 or
a 0. Yet, the same phenomenology occurs in other materials
where it is not commonly associated with information storage,
such as amorphous materials made of large particles, from
suspensions of non-Brownian particles in a liquid (e.g.,
concrete) to packings of dry grains.

For example, this behavior has been studied in a Couette
cell holding a suspension of neutrally buoyant hard spheres, as
illustrated in Fig. 1(a). When the outer cylinder holding the
sample is rotated azimuthally, there will be a torque on the
inner cylinder in the direction of shear. There is a transient
period where the torque gradually evolves until it reaches a
constant steady-state value as shown in the first positive
portion of the response curve of Fig. 1(a) (Gadala-Maria and
Acrivos, 1980). If the rotation is stopped and then restarted in
the same direction, the torque immediately adopts the steady-
state value with no transient. This behavior occurs because the
dynamics are overdamped and inertia can be neglected
completely, so the particles immediately stop moving when
the shearing stops, and they restart almost exactly where they
left off when the shearing resumes. If the shearing direction
is reversed, however, the response once again undergoes a
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transient. This shows that the particle structure in the steady
state has become anisotropic due to the previously applied
shear. One can thus detect the most recent shear direction by
moving the inner cylinder in one direction and looking for the
presence or absence of a transient in the torque response.
Similar behavior has been seen in dry granular material
(Toiya, Stambaugh, and Losert, 2004).

The same gross phenomenology was discovered in the
electrical response of charge-density wave conductors and has
been called “pulse-sign memory” (Gill, 1981; Fleming and
Schneemeyer, 1983). Figure 1(b) shows the observed voltage
in a sample of K;30MoO; when several current pulses were
applied sequentially. The voltage has a transient response to
the first pulse; the transient disappears for the second current
pulse, which is in the same direction as the first. When the
direction of the current is reversed, the transient in the voltage
reemerges. Thus the response of the voltage depends on the
direction of the last applied current pulse.

In materials science, the Bauschinger effect also displays a
memory of the last direction of driving (Bannantine, Comer,
and Handrock, 1990). This effect refers to a phenomenon
where the yield stress of a material decreases when the
direction of working is reversed, and it occurs in polycrystal-
line metals and also amorphous materials (Karmakar, Lerner,
and Procaccia, 2010). Although the details may certainly
differ, the basic idea is the same as for a sheared suspension or
granular material discussed previously: shearing the material
introduces anisotropy in its microstructure. In this case, plastic
deformations encode a direction, which may be detected in
subsequent measurements of the stiffness.

The previous examples deal with bulk materials that are
inherently disordered, but the same phenomenology can be
seen in an even simpler system: the coupling between two
gears. Suppose the left gear in Fig. 1(c) presents some
resistance when it is driven either clockwise or counterclock-
wise by the right gear. If the right gear is turned in one
direction, pauses, and then resumes in the same direction,
resistance will immediately be felt when the driving resumes.

(b) o (c)

Ko.30M003
T=77K

40

TIME

FIG. 1.

Memory of a direction. (a) Two concentric cylinders that are rotated with respect to one another may be used to measure the

shear stresses in a suspension of neutrally buoyant particles in a viscous liquid that fills the gap between the cylinders. The top graph
shows a series of rotations of the outer cylinder (counterclockwise, clockwise, clockwise, counterclockwise), with pauses between each
rotation. The bottom graph shows a schematic curve of the torque felt on the stationary inner cylinder; the presence (or absence) of a
transient may be viewed as a memory of the previous shear direction. From Gadala-Maria and Acrivos, 1980. (b) Pulse-sign memory in
the traveling charge-density wave conductor K 30MoOs. If an applied current pulse has the same sign as the previous one, the voltage
response lacks a strong transient. From Fleming and Schneemeyer, 1983. (c) Backlash between two gears as a memory of a direction. If
the right gear is rotated clockwise, the left gear responds immediately. If the right gear is rotated counterclockwise, there is a small lag.

Adapted from Richfield, 2019.
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However, if the rotation is reversed, there will be a small
interval before contact is established with the left gear, due to
the small gap between the gear teeth. This clearance, called
“backlash,” is essential to prevent jamming of the gears. Its
existence means that whenever we walk away from a simple
gear box, we may leave behind a bit of information that is
stored in the contacts between the gears.

Our discussion of this simple form of memory has raised
several themes that will appear again as we consider more
complicated memory behaviors. One theme is that similar
memory phenomena can occur in systems that seem very
different, such as a slurry or a charge-density wave. Some
memories also have a counterpart at the macroscale that is
material independent, as in the previous example of the gears.
We will show several more examples of such phenomena
throughout the text. These observations may prompt us to ask
how deep the connections are among such systems: when does
similar memory behavior imply similar underlying physics?

There is also a distinction that can be made: in some
systems memories persist for extremely long times, whereas in
others the memories are constantly fading and must be
continually reinstated to preserve them. In a colloidal sus-
pension, the memory of the previous shear direction is
eventually lost as the particles diffuse, losing their positional
correlations. In contrast, in a granular material, because the
energy for any particle rearrangement is much larger than
thermal energy, the memory will remain until the system is
disturbed. In computers too, there is so-called “volatile
memory,” which refers to a device that only retains data
when provided with power, in contrast to nonvolatile memory
such as magnetic storage, optical disks, or punched cards,
which do not change their state when left alone.

Finally, the ability of many disordered materials to remem-
ber a direction highlights another theme: memories can have
important practical consequences. When performing rheo-
logical characterization, sample preparation must be done
carefully so as to avoid influencing the measurements because
of the material’s history. This memory is one facet of the
complex history dependence displayed by emulsions, slurries,
and dry grains, which can complicate their industrial handling
and transport, since their effective bulk properties may depend
on what was previously done to them (Jaeger, Nagel, and
Behringer, 1996; Kim and Mason, 2017; Lasanta ez al., 2019).

B. Memory of largest input: Kaiser and Mullins effects

We have just discussed how a material may remember one
aspect of its most recent driving. Slightly more complex is the
ability of many physical systems to retain a memory of the
maximum value of any previously applied perturbation. For
memories of this type, when the system has been trained by
application of an input of a given magnitude, it shows
reversible behavior as long as the input is kept below that
initial training magnitude; in this range, varying the input
leads to reproducible behavior. However, if that input value is
exceeded, the system evolves to a new state so that the system
now displays a new response curve. This curve is itself
reproducible as long as the input does not exceed the new
maximum value.
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One example, which is particularly easy to visualize, is a
very thin crumpled sheet confined by a piston of mass m under
gravity in a vertical cylindrical tube (Matan et al., 2002). As
the weight compresses the sheet, the height of the piston i
decreases logarithmically in time. The training of the system is
accomplished using a mass m = M. Because it is not feasible
to wait until all relaxation has stopped, the training is done for
a fixed initialization time. Once the training is finished, the
mass m = M, is removed, and the height 4(m) is measured
for different values of mass m, where for each measurement
the fixed waiting time is much smaller than the initializa-
tion time.

As long as m < M, the measurements are reproducible as
shown for a Mylar sheet in Fig. 2; the same values of /(m) are
obtained on both increasing (red triangles) and decreasing
(blue disks) m. However, once the training mass has been
exceeded so that the mass on the piston is M, > M, the
situation changes; the curve i(m) is extended to higher values
of m and appears to have a different dependence above M,
than it did below that value. This is shown by the red triangles
above m = 2.6 kg in the figure. Now, when the height is
measured again starting at low values of m, h(m) no longer
follows the original curve but drops to a lower value.

If the crumpled sheet is now trained at M, (by either
allowing it to sit under this mass for a long time or by cycling
the mass multiple times up to m = M,), then a new repro-
ducible curve is found for h(m < M,) as shown by the green
squares in the figure. The crumpled sheet has a memory of the
largest weight to which it has been subjected. When the
system is pushed into a new regime into which it had never
been previously exposed, it changes irreversibly.
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FIG. 2. Kaiser effect. The height of a piston compressing a
Mylar sheet is shown, following the protocol described in the
text. The inset shows the Mylar sheet compressed within a
cylindrical tube by a piston of mass m. The piston height i(m) is
reproducible (shown by blue circles for diminishing mass and by
red triangles for increasing mass) as long as the maximum mass
does not exceed the previously applied maximum value of m =
M, = 2.6 kg indicated by the dashed line. When a larger mass
(red triangles above 2.6 kg) is placed on the piston, the curve
changes; green square data points show the reproducible curve
after training with m = M, = 5 kg. Adapted from Matan ef al.,
2002; inset: Carin Cain (APS).
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The case of the crumpled sheet is not the earliest example of
this rather ubiquitous effect. It has been observed in many
other systems and goes by different names depending on the
material and the measurement. The Kaiser effect was origi-
nally observed in the acoustic emission of a metal under strain
(Kaiser, 1950); the acoustic emission of the sample vanishes if
the applied stress is smaller than the previously applied
maximum value. The material thus retains a memory of the
largest strain to which it was subjected. Similar behavior is
seen in other materials such as rock (Kurita and Fujii, 1979)
where acoustic emission is a harbinger of material failure.
Another close analogy is the reversible and irreversible
compaction of soil, where reading out the memory of
maximum load (“overconsolidation”) can be crucial in pre-
dicting how a new building will settle (Budhu, 2010).

Another example of this type of behavior is the Mullins
effect, which occurs in rubber after it has been stretched
(Mullins, 1948; Diani, Fayolle, and Gilormini, 2009).
A schematic stress-strain curve is shown in Fig. 3. The black
(full) line shows the pristine loading curve that occurs on the
first application of stress. When the stress ¢ is removed, the
curve does not retrace the pristine loading curve but drops
more rapidly as shown by the red (dashed) curve. This new
response is reversible on reloading up to the point where
originally the stress was removed. At that point there is a kink
where it rejoins the pristine loading curve. When the stress is
increased further, the strain increases as in the original pristine
behavior. This unloading and loading procedure can be
repeated at different values of the stress as shown by the
blue (dash-dotted) curve. The Mullins effect, as in the Kaiser
effect and in the crumpled sheet, demonstrates a memory of
the largest stress that had been applied.

C. Memory of a duration: Kovacs effect

A different type of memory where a single input value is
remembered is the Kovacs effect (Kovacs, 1963; Mossa and
Sciortino, 2004; Bouchbinder and Langer, 2010). Originally
observed in polymer glasses, the time-dependent evolution of
a glassy system is observed to depend sensitively on its

€

FIG. 3. Mullins effect. Schematic stress-strain curve for the
Mullins effect in rubber. The pristine loading curve (black full
line) is smooth. After partial loading, when the stress o is
removed the response changes and the unloading curves (red
dashed and blue dash-dotted curves) do not follow the original
loading. On reloading, the response is reversible up to where the
previous largest stress had been applied. At that point there is a
kink where the curve rejoins the original pristine loading curve.
Adapted from Cantournet, Desmorat, and Besson, 2009.
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thermal history. In the conventional protocol, a sample is
cooled and allowed to relax for some duration at a low
temperature, and then warmed up to a higher temperature.
The subsequent evolution of the sample, observed in
quantities such as volume, can be nonmonotonic, exhibit-
ing a peak at a time that depends on the duration spent at
the lower temperature (Volkert and Spaepen, 1989; Bertin
et al., 2003; Cugliandolo, Lozano, and Lozza, 2004).
Although the relationship between the waiting time and
the peak time is not always emphasized, one may view the
response as a memory of the duration of the aging at the
low temperature.

This aspect of the Kovacs effect has a simple phenom-
enology (i.e., a single value is remembered), but the mecha-
nism is more subtle than the memories presented in Secs. II.A
and IL.B. Because it also has some features in common with
echoes, we wait until Sec. VII.C to describe the Kovacs effect
in more detail.

III. HYSTERESIS AND RETURN-POINT MEMORY

In Sec. II, we considered a system that remembers the most
recent direction of driving, and we modeled it as being in one
of two states. We can build on this simple kind of hysteresis by
considering a system that responds to a scalar field H—
perhaps from an electrical current in a magnetic coil—and can
be in a “41” or “—1” state. The two values H* and H™ are
properties of the system that specify when it switches states.
Conventionally, H* > H~ for a dissipative system; in this
case the system is always in the +1 state when H > H", and
always in the —1 state when H < H~, but in between, the state
depends on the driving history. (We assume the driving is
quasistatic, meaning H is varied much more slowly than the
system’s response.) These systems are basic elements of
hysteresis, sometimes termed “hysterons.”

One conceptually simple and important application of
such hysterons is in digital memory storage. If H* > 0 and
H~ < 0, the hysteron retains its state even after the field is
removed and in the presence of noise, thereby storing a single
bit of information indefinitely. In the case of magnetism the
state sets the direction of a magnetic field made by the
hysteron itself; a nearby probe can read the bit. This models a
building block of digital magnetic memory—the hard disks
and tapes that currently store most of the world’s data
(Jiles, 2016).

A. Single return-point memories

When they make up a larger system, these hysterons can
give rise to a rich behavior called return-point memory,
which describes the system’s ability to recall a previous state
when H is returned to a previous value (Barker ef al., 1983;
Sethna et al., 1993). To illustrate this behavior we use the
model of a ferromagnet described by Preisach (1935), in
which each hysteron represents a magnetic domain that is
coupled only to the applied magnetic field H, and there
is a distribution of H* and H~ to represent the material’s
disorder. Figure 4(a) shows return-point memory in the
model’s magnetization M, the average state of the hysterons,
versus H, where H was varied in the directions shown by the
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arrows. The switchbacks and loops on the plot reveal the
hysteresis of the system’s many components. As we follow
the evolution along some trajectory, such as the one through
the labeled states a - B — b — B, we can define an interval
of time that starts when we first reach state B, and lasts as
long as H, < H < Hg, where H, and Hp are the magnetic
field for states a and B, respectively. Return-point memory
means that during this interval, returning to H = Hp will
always restore the system to state B. By contrast, when
H < Hp, the state depends on the history of H since Hp was
last visited. Returning to Hp erases this history.

There is an important side effect of the erasure of history at
H = Hp: as we continue past Hp toward H, there is a
transition from behavior that depended on recent history (i.e.,
the excursion to b) to behavior that does not. Here we exit the
subloop delimited by states (b, B) and rejoin the older outer
loop delimited by states (a,A). There is a subtle change in
slope at point B where we first switched from increasing H to
decreasing it. Analogous to the Mullins effect, discussed in
Sec. IT and illustrated in Fig. 3, we cannot see this signature of
the memory without overwriting it.

B. Multiple memories through nested hysteresis loops

Simple memories of one or two quantities, like the Mullins
and Kaiser effects, seem exceptional given the disorder and
many degrees of freedom within most nonequilibrium matter.
Return-point memory gives us our first example of multiple
memories. We can see this by applying the definition of
return-point memory recursively. In Fig. 4(a), at point C we
again change from increasing H to decreasing it. This begins a
time interval in which H is bounded by H,, and H . We go on
to traverse a subloop delimited by (¢, C) that is nested inside
(b, B). This nested structure means that if we want to encode a
given set of H values, there is only one ordering of the values
that works (Middleton, 1992; Sethna et al., 1993). To read out
the memories, we sweep H continuously toward H, and look
for changes in the slope dM /dH. Figure 4(b) shows a close-up
of the trajectory we would follow, and its derivative, which
reveal the memories of our reversals at H- and Hp. Note that
we could have instead chosen to sweep the field in the other
direction toward H, and observed memories of our reversals
at H. and H,. While we are accustomed to the readout of
magnetic memory by observing only the present value of the
local magnetization (as in audio tape or a computer hard disk),
this method lets us recover the value of the applied field that
formed each memory in the first place (Perkovi¢ and
Sethna, 1997).

C. Generality

Many types of matter can be modeled as collections of
subsystems that are individually hysteretic. It should therefore
come as no surprise that return-point memory is observed in a
wide range of systems beyond ferromagnets, from spin ice
(Deutsch, Dhar, and Narayan, 2004) and high-temperature
superconductors (Panagopoulos ef al., 2006), to adsorption of
gases on surfaces (Emmett and Cines, 1947), to solids with
shape memory (Ortin, 1992) (not to be confused with the
shape-memory effect itself, discussed in Sec. V). Interactions
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FIG. 4. Return-point memory. (a) Magnetization of a simulated
ferromagnet model (Preisach, 1935) as the applied magnetic field
H is varied. The sequence @ — B — b creates a memory at
H = Hp. Aslong as H, < H < Hp, returning to Hp will restore
the system to the same state B every time, regardless of
intervening events (such as the excursion to b). The sequence
b — C — c creates a new subloop and encodes a second memory
at H = H. (b) Detail of trajectory from (a), showing signatures
of the two nested memories as H is swept from H, to H,. Each
time a subloop is exited (points C and B), its history is erased and
the slope of the curve changes. The inset shows the slope dM /dH
during readout. The jumps at H - and Hp indicate memories. For
this figure 5 x 10* hysterons were simulated, with a Gaussian
distribution of H; and H; with a standard deviation of 1.8, and
selected so that H > H;.

within these systems can give rise to cooperative and even
critical phenomena such as avalanches, so that the actual
dynamics are usually dramatically different from the Preisach
model we have just examined (Sethna, Dahmen, and Myers,
2001). Nonetheless, Sethna er al. (1993) proved that these
systems will have return-point memory as long as the
interactions are ferromagnetic, i.e., a hysteron flipping to
the +1 state encourages others to do so. Even when this
condition is violated, return-point memory can still hold
approximately or wunder certain additional conditions
(Deutsch and Narayan, 2003; Deutsch, Dhar, and Narayan,
2004; Hovorka and Friedman, 2008; Gilbert et al., 2015).
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Mungan and Terzi (2019) have begun work toward a general
framework for describing these behaviors. We will revisit
these possibilities in Sec. IV.C.

We can also demonstrate the generality of return-point
memory by finding it in a perhaps unexpected context: the
backlash between gears from Sec. II [Fig. 1(c)]. Consider a
long train of N gears, each one driving the next, with a large
amount of backlash between each pair. We can turn only the
first gear, and we neglect inertia so that the nth gear moves
only when turned by gear n — 1. After a long period of forward
rotation, we turn the first gear backward, but only enough to
overcome the backlash among the first n gears. Those n gears
begin to reverse, but gear n + 1 is left disengaged by some
amount—a fraction of the total available backlash. Finally, the
first gear is once again rotated forward. As it reaches the
position where it was originally reversed, the entire system
returns to its previous state, fulfilling return-point memory.

Just as in the other systems we can encode multiple
memories by repeatedly reversing the direction of the first
gear. Each time we reverse, we rotate by a smaller amount so
that we progressively manipulate fewer and fewer gears. For
each reversal, a pair of gears is left disengaged by some
fractional amount we choose—we can place a distinct
memory in each of the N — 1 couplings. This same principle
is used in a single-dial combination lock to store multiple
values from the history of a single input. We can then read out
half the memories without disassembling the gearbox using
the same method as in Fig. 4(b): we turn the first gear
unidirectionally and note the positions at which the torque
abruptly increases as each gear is engaged in sequence—a
sensation familiar to anyone who has reset a combination lock
dial after using it.

IV. MEMORIES FROM CYCLIC DRIVING

The memories discussed so far may be written by applying
a deformation or changing a field just once. But repeated
cyclic driving is also ubiquitous: buildings and bridges
are repeatedly loaded and unloaded, temperatures change
between day and night, and we practice a skill repeatedly in
the hope of learning it. These forms of driving may create
memories.

Driving that lasts for multiple cycles may also be used to
store multiple values, by varying its parameters, e.g., strain
amplitude, from cycle to cycle. In Sec. III we encountered one
way that a system can remember multiple values of a single
variable. By considering the case of cyclic driving, we will be
able to talk about these various behaviors using similar
language.

A. Memory of an amplitude

When some systems are driven repeatedly, e.g., by shear,
electrical pulses or temperature, they eventually reach a
steady state in which the system is left virtually unchanged
by further repetitions. This behavior is astonishingly common
among nonequilibrium systems, including granular matter
(Toiya, Stambaugh, and Losert, 2004; Mueggenburg, 2005;
Ren, Dijksman, and Behringer, 2013); crystalline (Laurson
and Alava, 2012) and amorphous solids made of colloids
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(Haw et al., 1998; Petekidis, Moussaid, and Pusey, 2002),
bubbles (Lundberg et al., 2008), or molecules (Packard et al.,
2010); colloidal suspensions (Ackerson and Pusey, 1988;
Corté et al., 2008) and gels (Lee and Furst, 2008); liquid
crystals (Sircar and Wang, 2010); vortices in superconductors
(Mangan, Reichhardt, and Reichhardt, 2008); charge-density
wave conductors (Brown, Griiner, and Mihaly, 1986; Fleming
and Schneemeyer, 1986); and even crumpled sheets of plastic
(Lahini ef al., 2017). Often there is also an amplitude past
which the system cannot reach a steady state.

It is natural to suspect that the steady state contains a
memory of the driving that formed it over many cycles. An
early and important example is a charge-density wave con-
ductor (Thorne, 1996), which when subjected to many
identical voltage pulses comes to “anticipate” the end of each
pulse with a rush of current (Brown, Griiner, and Mihdly,
1986; Fleming and Schneemeyer, 1986; Coppersmith and
Littlewood, 1987).

An accessible recently studied example is a suspension of
particles in a liquid when inertia and Brownian motion are
negligible (Corté ef al., 2008; Keim and Nagel, 2011; Paulsen,
Keim, and Nagel, 2014). For pure Stokes flow, cyclically
shearing such a suspension back and forth will return each
particle exactly to its starting point. However, pairs of particles
that come too close to each other during shearing may touch
and change their trajectories irreversibly (Pine et al., 2005;
Popova et al., 2007; Corté et al., 2008; Pham, Metzger, and
Butler, 2015). Over many cycles of shearing between strain
y = 0 and a constant amplitude y, the particles may move into
new positions where they no longer disturb each other. When
viewed stroboscopically (once per cycle), the system stops
changing. But this steady state persists only if the strain stays
between the extrema encountered so far (0 and y)). To read out
the memory of yy, we begin with a cycle of smaller strain
amplitude, which does not change the system, and then apply
cycles with larger and larger amplitudes until a change is first
observed, as shown in Fig. 5(a) (Keim and Nagel, 2011;
Paulsen, Keim, and Nagel, 2014). Just past y,, many pairs
of particles that have been “swept out” of the interval [0, 7,
promptly come into contact (Keim, Paulsen, and Nagel, 2013).
Experiments by Paulsen, Keim, and Nagel (2014) also show
an immediate, sharp change in mechanical response at y,
as shown in Fig. 5(b), similar to how the Mullins effect is
read out.

Memories formed over many cycles of driving are sometimes
termed “self-organized” (Coppersmith, 1987; Coppersmith and
Littlewood, 1987; Tang et al., 1987; Coppersmith et al., 1997).
This refers to the somewhat efficient way that the system evolves
its many degrees of freedom to conform to the driving. If a
charge-density wave conductor, suspension, or granular packing
simply explored new states at random each time it was driven, it
might never find a steady state. Instead, the evolution is regulated
and directed toward the goal of conforming to the driving. For
example, in suspensions, driving does not change the entire
system uniformly, but instead disrupts only the regions where
particle positions are inconsistent with a steady state (Corté ez al.,
2008; Keim and Nagel, 2011), and leaves other regions
untouched. Because the driving regulates evolution, rather than
justactivating it, such systems seem predisposed to form specific
memories.
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FIG. 5. Memories from cyclic driving. (a) To read out memory

in a sheared suspension, cycles are applied with successively
larger strain amplitude (horizontal axis). After each cycle, each
particle’s position along the direction of shear is compared with
its position at the start of the cycle (vertical axis). An untrained
system (black triangles) shows no memory, while a system
trained for many cycles with amplitude y, = 1.6 (red circles)
shows a memory. Adapted from Paulsen, Keim, and Nagel, 2014.
(b) After ten cycles with yy = 1.44, measuring shear stress 7 vs
strain y, and its derivative dz/dy, shows a clear memory in the
mechanical response. Adapted from Paulsen, Keim, and Nagel,
2014. (c) Multiple transient memories: In a simulation of the
sheared suspension, memories are read out by monitoring
collisions as strain amplitude is increased, analogous to (a).
Curves are labeled with the number of training cycles applied.
Training with amplitudes 2.0 and 3.0 is evident after just 100
cycles, but eventually a steady state is reached with only one
memory. The shaded curve shows the result after many cycles
when noise is added. Adapted from Keim and Nagel, 2011.

B. Multiple transient memories

When the driving is varied from one cycle to the next, some
of these systems are known to retain memories of multiple
values, but only before the transient self-organization has
finished. This behavior, called multiple transient memories,
was first seen in charge-density waves when the duration
of the pulses was varied (Coppersmith er al., 1997). The
principles are easier to illustrate for non-Brownian suspen-
sions. If successive cycles of shear begin at strain y = 0 and
alternate between amplitudes y; and y, > y;, particle colli-
sions will be reduced for strains in the interval from O to y;
more rapidly than from y; to y,. The system will respond
differently in each interval. This has been observed in
simulations and experiments (Keim and Nagel, 2011;
Paulsen, Keim, and Nagel, 2014), as illustrated in Fig. 5(c).
In principle, for large enough systems, we can store arbitrarily
many memories in this way. There is no restriction on the
order in which we apply these amplitudes; this is in contrast to
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FIG. 6. Multiple transient memories in a row of benches on a
lawn. The schematic shows the park viewed from above. The
park entrance is at the left, and lighter colors indicate worn grass.
Even though there is only one path, the grass heights encode the
memory that benches 2 and 3 were visited. If this pattern of visits
continues without the grass regrowing, eventually only the largest
memory (bench 3) will remain. From Paulsen and Keim, 2019.

the case of return-point memories. However, once self-
organization is completed for [0,7,], the system’s response
is uniform (no collisions) in this interval. There is no way to
read or write the memory of y,, and only the memories at 0
and y, remain. Thus at long times and without noise, systems
with multiple transient memories recover the Mullins- or
Kaiser-effect memory of the extrema of driving.

Remarkably, this long-term memory loss can be avoided.
Adding noise to the charge-density wave and suspension
systems (Povinelli et al., 1999; Paulsen, Keim, and Nagel,
2014) has the effect of prolonging the transient indefinitely,
preserving the ability to retain multiple memories and
allowing the memory content to evolve as inputs change.
This is a concrete example of “memory plasticity” whereby a
system has the ability to continue storing new memories. Non-
Brownian suspensions also have a critical strain amplitude
above which complete self-organization is impossible (Corté
et al., 2008); driving the system just above this amplitude has
the same memory-enhancing effect (Keim, Paulsen, and
Nagel, 2013).

The examples of charge-density waves and non-Brownian
suspensions show that two very different systems, one
electronic and one fluid, can show this same type of memory.
It must, therefore, be a canonical form of encoding inputs. We
describe a third physical example (albeit at a macroscopic
scale) that drives this point home. Consider the lawn of a small
park, with several benches arranged in a row as shown in
Fig. 6. Visitors can enter the park only at the left. Some weeks
after the park opens, there is a narrow path worn into the grass.
The heights of the grass along this path encode which benches
were visited, as illustrated by the shading in the figure. If the
grass does not regrow, eventually the path to the farthest bench
that receives visitors will be worn bare, erasing the memory of
all the other benches’ popularity. This is similar to the charge-
density waves or the non-Brownian suspensions without
noise. However, if the grass does regrow at an appreciable
rate, the system can reach a steady state that encodes the full
set of memories, equivalent to the effect of noise in the other
systems (Paulsen and Keim, 2019). Thus all three physical
examples show the same form of memory.

C. Cyclic memory in jammed and glassy systems

Multiple transient memories in a suspension were associ-
ated with particles moving to positions where they no longer
made any contact with their neighbors during a shear cycle.
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As the particle density is increased, the system may no longer
be able to find such positions. Thus one might expect that a
steady state with the memory of a shear-cycle amplitude could
no longer be formed. However, even in this higher-density
regime, one can still observe memory formation with a
surprisingly similar phenomenology to that of the sheared
suspensions, but with crucial differences.

At sufficiently high density, the system undergoes a dramatic
transition: it jams and becomes rigid (Liu and Nagel, 2010; van
Hecke, 2010; Cubuk ez al.,2017). In the jammed state, contacts
endure throughout the oscillation cycle, except for sporadic and
abrupt contact changes; the system traverses a rugged potential-
energy landscape and visits different distinct energy minima.
Yet, under cyclic shear, athermal jammed systems can still
reach a steady state in which subsequent cycles leave the
system unchanged (Hébraud et al., 1997, Petekidis, Moussaid,
and Pusey, 2002). As in dilute suspensions the steady state
encodes a memory, and a suitable readout protocol can recover
the strain amplitude (Fiocco, Foffi, and Sastry, 2014). But the
character of this memory is different. In dilute suspensions, the
steady-state quasistatic motion was fully reversible, with
particles following the same paths in forward and reverse
directions in each cycle; in jammed systems the motion is
periodic but not reversible, so that the particles trace different
paths in the forward and return parts of the cycle. Thus each
particle traverses a loop so that, at the end of a cycle, it returns to
the identical position it had at the start of that cycle (Slotterback
etal.,2012; Keim and Arratia, 2014; Nagamanasa et al., 2014).
In some cases periodic states are found where it takes multiple
cycles to return to a previous configuration (Regev, Lookman,
and Reichhardt, 2013; Royer and Chaikin, 2015; Lavrentovich,
Liu, and Nagel, 2017; Mungan and Witten, 2019).

Simulations of these systems (Fiocco, Foffi, and Sastry,
2014; Adhikari and Sastry, 2018) and experiments (Keim
et al., 2018; Mukherji et al., 2019) show that multiple strain
amplitudes can be remembered from past shearing, as illus-
trated in Fig. 7. But this memory seems distinctly different
from the multiple transient memories in the dilute case. These
systems never lose their capacity for multiple memories, but
the order in which memories were encoded is important—
traits reminiscent of return-point memory (Sec. II1.B). Indeed,
microscopic observations and further modeling show that the
steady-state behavior is approximately consistent with return-
point memory (Keim et al., 2018).

Systems at densities just below jamming can show similar
behavior (Schreck et al., 2013; Adhikari and Sastry, 2018), but
that behavior appears to be much less stable at finite temper-
ature and strain rate than in jammed systems. Continuing a
theme of this review, some superficially very different systems
also share this behavior; similar results were found in
simulations of a system of magnetic spins (Fiocco, Foffi,
and Sastry, 2014) and in an abstract model of driven state
transitions (Fiocco, Foffi, and Sastry, 2015). These examples,
and a form of spin ice recently studied in experiments (Gilbert
et al., 2015), seem to represent an extension of return-point
memory in which a system’s disorder must be “trained” for
multiple cycles before it exhibits the return-point behavior
(Mungan and Terzi, 2019).

We note that in systems with “native” return-point memory
that need no training, the disorder is quenched: the hysterons,
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FIG. 7. Multiple memories in a jammed solid. Shown is a
readout of memories of two strain amplitudes in a simulation of a
jammed, amorphous solid. The system was trained by alternating
between strain amplitudes y; = 0.06 and y, = 0.04, for 30
repetitions of the pattern. The readout involves applying cycles
of increasing strain amplitude y.,4, Starting from zero, and
comparing the state of the system after each cycle to the state
after training. Here mean-squared displacement (MSD) of par-
ticles is used to measure differences. The system returns to the
same state when y,.,q = 7>, and shows a sharp change in behavior
past ¥eaqa = 71. Adapted from Adhikari and Sastry, 2018.

their interactions, and their coupling to an external field cannot
ordinarily change. In contrast, these properties are generally not
as stable in systems that require extended training to learn one
or more inputs; there must be some mechanism by which
quenched disorder emerges (Pérez-Reche et al., 2016). Finally,
the systems just discussed are dominated by disorder, but the
presence of limit cycles, avalanches, and other nonequilibrium
phenomena in crystals hints that those solids may also harbor
rich cyclic memory behaviors (Laurson and Alava, 2012;
Pérez-Reche et al., 2016; Sethna et al., 2017).

V. SHAPE MEMORY

Another dramatic instance of a material remembering its
past is the phenomenon of “shape memory.” Figure 8(a) shows
a nickel-titanium wire in a messy crumpled configuration.
Note that the wire is in mechanical equilibrium in this
shape, and if kept at constant ambient conditions, it would
stay in this shape indefinitely. Remarkably, when the wire
is heated, it spontaneously reconfigures into a paperclip.
Evidently, this shape was somehow programmed into the
material at a previous time.

At the heart of the effect is a phase transformation
(Bhattacharya, 2003). For sufficiently high temperatures the
thermodynamically stable phase is a simple cubic lattice
called austenite, whereas at lower temperatures the material
transforms to a lower-symmetry martensite phase. Crucially,
when the paper clip is cooled down, it can transition from
austenite to martensite without significantly changing its
macroscopic shape, by forming the martensite phase in
alternating orientations (i.e., a “twinned martensite”). This
solid-to-solid phase transition from one crystal structure to
another is drawn schematically in Fig. 8(b). Then when stress
is applied to the material, the orientation of any martensite
region may flip to its mirror-image version (i.e., its twin),
allowing large strains in the material while keeping the bond
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Shape memory. (a) When this bent titanium-nickel wire (top) is submerged in hot water, it spontaneously reconfigures into a

paperclip (bottom). Adapted from Maerki, 2019. (b) Simplified description of shape-memory alloys. Bottom row: When the sample is
cooled, it undergoes a phase transition to the martensite phase without changing its macroscopic shape. The material may then be
deformed to relatively large strains without changing the topology of the bond network (top). Heating up the sample recovers the
original shape by restoring the cubic lattice (bottom left). (c) Optical microscopy image of the shape-memory alloy Au;,CuysZnys.
Colors (different shades) indicate different orientations of the martensitic phase. Adapted from Song et al., 2013. (d) A medical stent
made from a shape-memory polymer, shown expanding in a glass tube. Black rings were drawn for visualization. Adapted from Yakacki

et al., 2007.

network unchanged. Because the different twinned micro-
structures are all mechanically stable, the material will hold a
new shape when the external stress is released. Thus despite
the different macroscopic appearance of the entire wire, the
atoms in the two macroscopic configurations in Fig. 8(a) have
approximately the same network of atomic bonds. This is the
key to the recovery of a preprogrammed shape. When the wire
is heated, the multitude of microscopic shear deformations are
removed as the microstructure returns to the austenite phase,
and the original macroscopic shape is recovered.

Shape-memory alloys may also be reprogrammed to learn a
different shape. This is done by forming the austenite
phase when the rod is in a new configuration, typically by
clamping the sample tightly, raising it to a much higher
temperature, and cooling rapidly. In this way, the bond
network in the austenite phase is rewired to prefer a different
shape. Thus these materials may learn new memories while
forgetting old ones.

This simplified picture gets at the essence of the “one-way
effect,” but it ignores other rich aspects of real shape-memory
alloys. For instance, the samples generally require multiple
thermal or mechanical training cycles to learn a particular
shape in order to coax crystal defects and grain boundaries
into desirable configurations. Figure 8(c) shows one example
of a complex arrangement of the martensitic domains, from
Song et al. (2013). Surprisingly, these materials also show
signs of critical behavior, even though the relevant phase
transition is first order (Gallardo et al., 2010). This criticality
appears to be a self-organized behavior that arises in the
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steady state of cyclic driving (Pérez-Reche, Truskinovsky, and
Zanzotto, 2007; Pérez-Reche et al., 2016). Other surprising
phenomena that we do not address here are the ability to train
two shapes into a single sample (the “two-way effect”), as well
as superelasticity, in which the austenite-martensite transition
occurs at ambient temperature. Here the sample is driven into
the martensite phase by an external stress, and the material
returns to the austenite phase when the stress is removed,
thereby allowing unusually large reversible deformations.
Recent efforts try to understand some of these behaviors by
focusing on the constraints that arise from fitting together
separate phases of a material (James, 2019).

How does shape memory compare to the other memories
we have considered? In this case, the memory is stored in the
network topology of the constituent atoms, namely, the set of
bonds between the atoms. If the material is not deformed too
far, the bonds remain intact, which allows the atoms to return
to their original positions upon heating. In this sense, the
behavior is not so different from the simple memory of an
elastic solid—the familiar and commonplace phenomenon
that an elastically deformed solid will return to its rest state
when loading is removed. What makes shape-memory mate-
rials different from typical elastic solids is a mechanism
for temporarily arresting a deformed configuration. This is
achieved by mixing together different symmetry-broken
domains of the martensite phase to assume a different macro-
scopic shape, as described in Fig. 8(b). As a result, the
deformed configuration is mechanically stable, yet the
material has retained its original network of bonds.
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A similar shape-memory effect can occur in polymers
(Lendlein and Kelch, 2002) but by a different microscopic
mechanism. Here the effect relies on polymer chains that can
be tuned from being flexible to being rigid as a function of
temperature, typically by vitrification or crystallization
(Mather, Luo, and Rousseau, 2009). Starting with a suitable
polymer sample, a deformation is applied and held while the
sample is cooled below a transition temperature where
the polymer chains become rigid. As a result, the sample
holds the deformed shape when it is released. Raising the
temperature returns the polymer chains to their flexible state,
and the sample recovers its original macroscopic shape. This
shape recovery is primarily entropic in nature—the original
macroscopic shape is preferred because it allows the largest
number of microscopic polymer conformations. As in the case
of shape-memory alloys, the topology of the bond network is
maintained throughout the entire process.

In part due to their relatively low cost, shape-memory
polymers are finding use in a wide range of applications.
Figure 8(d) shows a medical stent that is activated by body
temperature to expand inside a blood vessel. In addition to
medicine (Mano, 2008), shape-memory polymers are starting
to be used in textiles (Chan Vili, 2007), structural repairs
such as self-peeling adhesives (Xie and Xiao, 2008), and self-
deployable structures for space applications (Sokolowski
and Tan, 2007). Alternative triggering mechanisms such as
light (Lendlein et al., 2005) further expand the range of
possible uses.

While more expensive, shape-memory alloys can withstand
much larger loads than polymers, and they are used as sensors
and actuators in a variety of aerospace, automotive, and
biomedical settings (Lagoudas, 2008). There are also impor-
tant engineering challenges for improving these materials,
such as delaying their eventual failure due to many cycles of
actuation (Chluba er al., 2015).

VI. AGING AND REJUVENATION

A very different type of memory can form in spin glasses,
which are magnetic materials with quenched disorder, arising

for instance due to a mixture of ferromagnetic and antiferro-
magnetic bonds. One way of probing these materials is by
their response to an applied magnetic field via the magnetic
susceptibility y. This quantity may be measured continually to
monitor the material as a function of temperature and time.
Figure 9(a) shows the out-of-phase part of the ac magnetic
susceptibility " in the spin-glass CdCr, ;In, 5S4, measured at
low frequency and low applied field (Jonason et al., 1998).
The reference curve shows the measurements starting from
25 K and going down to 5 K at a constant cooling rate of 0.1 K
per minute. If the experimenter repeats the same cooling
protocol but holds the sample at some intermediate temper-
ature for an interval of time (e.g., at 12 K as shown in Fig. 9),
the out-of-phase susceptibility gradually drops to lower and
lower values. This phenomenon is called “aging,” wherein the
sample relaxes through a series of states with progressively
lower energy. The dynamics of aging is in general very slow
and may proceed logarithmically in time, as in the example of
the piston compressing a crumpled Mylar sheet in Sec. 1I.B.
Thus the lowest value of y” that may be measured at any given
temperature is set by the amount of time available to the
experimenter. The lower open symbol at 12 K shows the final
value obtained after 7 h of aging, which represents the lowest
energy state the system was able to find. Remarkably, as the
temperature is lowered again, y” climbs up to the reference
curve—the system seems to have forgotten everything about
the aging. Evidently, finding a lower-energy state at 12 K had
little effect on the properties of the system at 10 K.

This behavior, called “rejuvenation,” is certainly surprising,
but something even more remarkable happens as the sample is
subsequently heated up. The solid symbols show that upon
reheating at a constant rate, y” dips at 12 K; there is a memory
of the temperature where it was aged. After that point in the
experiment, all of these features are erased; it is only on
increasing the temperature that one can retrace what happened
on the way down.

Further experiments show that multiple memories may be
stored simultaneously within a single sample (Jonason et al.,
1998, 2000; Bouchaud et al., 2001; Vincent, 2007). Here the
sample is aged at multiple temperatures during the cooldown.
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FIG. 9. Aging and rejuvenation. (a) Relaxation of the spin-glass CdCr ;Iny3S,, measured by the imaginary part of the magnetic
susceptibility. The reference curve is obtained when cooling from 25 K down to 5 K at a constant rate. Open symbols: If the system is
held at an intermediate temperature, here 12 K, the susceptibility slowly drops (‘“aging’), but upon further cooling it returns to the curve
it was previously following (“rejuvenation”). Remarkably, the same curve is traced out upon reheating at a constant rate (solid symbols).
Adapted from Jonason et al., 1998. (b) Left: Similar behavior is observed in a simple number-sorting algorithm, where nearest neighbors
are swapped with a probability given by a Boltzmann factor. Right: Subtracting the reference curve (obtained for a constant cooling rate)

makes the trend more clear. From Zou and Nagel, 2010.
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When the temperature is increased, a dip is observed at each
temperature where the system was aged.

The origin of this memory behavior is not yet fully
understood. In principle, numerical simulations of spin-
glass models could provide valuable insight into the relaxa-
tion processes and the relevant length scales involved.
Unfortunately, reproducing the phenomenon on a computer
has proven difficult, and several studies have reported differ-
ent interpretations of the situation (Komori, Yoshino, and
Takayama, 2000; Picco, Ricci-Tersenghi, and Ritort, 2001;
Berthier and Bouchaud, 2002; Takayama and Hukushima,
2002). In light of this, Maiorano, Marinari, and Ricci-
Tersenghi (2005) focused on identifying the basic phenom-
enology of finite-dimensional Edwards-Anderson spin-glass
models. They found only simple cumulative aging, which is
incompatible with rejuvenation over the timescales they
studied. In the same year, Jiménez, Martin-Mayor, and
Perez-Gaviro (2005) reported deviations from cumulative
aging in these models. It remains an open question whether
rejuvenation and memory might be recovered at longer
timescales, or whether further physical effects must be added
to the Edwards-Anderson model to reproduce the experimen-
tal phenomenology.

If this memory behavior occurred only in spin glasses,
while very interesting, it might be just an isolated phenome-
non. However, one can also observe this behavior in molecular
glasses (Yardimci and Leheny, 2003) and polymers (Bellon,
Ciliberto, and Laroche, 2002; Fukao and Sakamoto, 2005).
Remarkably, the same effect occurs in a simple model where a
list of numbers is sorted in a thermally activated manner (Zou
and Nagel, 2010). Suppose you are given the numbers one
through five in a random order, and you want to put them into
increasing order. One way would be to pick a random nearest-
neighbor pair and swap them with a probability given by a
Boltzmann factor, where temperature is replaced by an
effective temperature and the energy is a function of the
difference between adjacent pairs of numbers. In addition,
there is an energy term that couples the system to an external
field that favors sequences of numbers in ascending (or
descending) order. This is actually a terrible algorithm in
terms of how many steps are required, but it has the flavor of a
physical annealing process. Interestingly, this sorting algo-
rithm turns out to show glassy behavior. To draw an analogy
with the previous spin-glass experiments, one may define a
susceptibility in this system as its linear response with respect
to variations in the external field. That susceptibility y},
displays a logarithmically slow relaxation to the fully-sorted
state. Even more than this, if you take just 30 numbers and do
a similar cooling protocol, you can observe aging, rejuvena-
tion, and memory, as shown in Fig. 9(b). The relevant features
are somewhat subtle in the raw curves, but they become
clearly apparent when the reference curve is subtracted, as
shown in the second panel of Fig. 9(b). This result is not trivial
at all; it is not easy to think about how this arises in thermally
activated list sorting. What we can say is that this looks like a
generic kind of memory formation.

An eventual explanation of this memory behavior must
address how the memory is stored and survives so that it can
be read out at a later time. One promising view is that aging
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coarsens the system, organizing it over larger and larger length
scales. This makes the memory robust to any subsequent
evolution over shorter times, which would correspond to
smaller length scales. This physical picture has been ex-
ploited by a recent simulation algorithm called “patchwork
dynamics,” which accesses the nonequilibrium behavior of
spin glasses over a broad range of timescales by directly
equilibrating the model glass on successively larger length
scales (Thomas, White, and Middleton, 2008; Yang and
Middleton, 2017).

VII. MEMORY THROUGH PATH REVERSAL: ECHOES

A shout across a mountain valley often results in an acoustic
echo as the sound is returned to its source a few moments later.
The sound waves reflecting from the far side of the valley
follow in reverse the path along which they propagated in the
first half of their journey. This is as close as one can get to time
reversal—the velocities of the wave packets are reversed and
they follow the identical path both to and from the valley’s far
side. The sound waves that return to their source contain a
memory of what was shouted including the timing between
different syllables.

A. Spin echoes

Perhaps due to our familiarity with this phenomenon, such
acoustic echoes are captivating, but they no longer challenge
our intuition. However, they have counterparts in various
material systems which are not at all intuitive; they are subtle,
challenging to understand, and ultimately very surprising. A
well-known example is the case of the spin echo first
demonstrated by Hahn (1950) and developed by Carr and
Purcell (1954). One of their measurements is shown in
Fig. 10(a). Such echoes are now an integral component
of how magnetic resonance imaging produces a three-
dimensional representation of water- or oil-containing sam-
ples. As with the more familiar acoustic echo, these spin
echoes likewise preserve a memory—they encode the precise
timing between discrete radio-frequency pulses applied to an
ensemble of spins.

In the spin echo, a large static magnetic field HyZ produces
a small polarization of the spins in the sample; slightly more of
the spins point in the +Z direction than in the —Z direction.
Each spin precesses about the Z axis at its Larmor frequency o,
determined by both the applied static field HyZ and the small
magnetic inhomogeneities in the sample. When a radio-
frequency (rf) pulse tuned to the average (w,) is applied in
a direction perpendicular to H, the spins rotate away from +2
axis. The trick with the spin echo is that the rf pulse can be
applied for only a short time so that when it is turned off, the
spins instantaneously point in an arbitrary direction. In the
simplest case for this explanation, a “z/2 pulse” rotates spins
into the x-y plane perpendicular to Z, where they again precess
about the static field HZ. Because of the local inhomogene-
ities of the magnetic field in the sample, the Larmor frequency
varies from one spin to another so some spins will precess
farther. This causes the spins to dephase so that they will
eventually fan out and point in all directions in the x-y plane.
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FIG. 10. Echo phenomena. (a) Spin echo produced with the pulse sequence described in the text. The timing of the two input pulses is
indicated above a photograph of the oscilloscope trace; the subsequent peak is the echo. Note that there is no signal coinciding with the

[P

7" pulse, as this simply flips the (dephased) spins at that instant. From Carr and Purcell, 1954. (b) Quench echo in a simulated Lennard-

Jones glass of 500 particles. The two quenches consist of setting the kinetic energy of the particles equal to zero instantaneously.
Because they have potential energy, they will start to move again after each quench. Remarkably, this leads to an echo at a later time.
From Nagel, Grest, and Rahman, 1983. (c) Echo in a jammed amorphous solid due to anharmonic modes. The signal is an average of 10*
independent simulations, each composed of 1000 soft spheres in three dimensions. From Burton and Nagel, 2016. (d) Echo in a system
of capillary waves. A dish of water is disturbed by a face-shaped template, creating surface waves that radiate outwards. The entire dish
is then accelerated downwards, causing the existing ripples to act as sources, sending a new set of “time-reversed” waves back to the site
of the initial disturbance. The face reappears as the waves reconvene. From Bacot et al., 2016.

After the spins have been allowed to dephase for a time r,
another 1f pulse of twice the duration (called a z pulse) is
applied, flipping the spins in their orientation in the x-y plane.
The spins will once again precess about the field with the same
Larmor frequency that they had originally. However, the fast
and slow spins have been switched. The fast spins (that had
rotated farther during the period between the pulses) will now
be in a position where they lag behind those that precess more
slowly. Now, because the fast spins rotate more rapidly, after
waiting an additional time 7 they will catch up with the slow
ones that were in a lower field. This realignment can be read
out in a pulse. Such an echo is a memory of the time delay =
between the two rf pulses. Multiple rf pulses, with different
durations, can also be applied. These protocols have helped to
make nuclear magnetic resonance a useful tool for measuring
and unscrambling many different spin interactions in solids.

The spin echo is only one of many related effects. Similar
behavior is associated with other ensembles of two-state
systems. These include photon echoes (Kurnit, Abella, and
Hartmann, 1964) as well as phonon echoes (Golding and
Graebner, 1976), which have been interpreted as being due to
quantum mechanical tunneling between two nearly degenerate
configurations in low-temperature glasses.

Other echoes.—Other types of echoes do not require a two-
state system in order to return an imposed signal. An example
is the temperature quench echo shown in Fig. 10(b), which
requires only a set of classical normal modes that share energy
between kinetic- and potential-energy contributions (Nagel,
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Grest, and Rahman, 1983). Another echo is the anharmonic
echo that appears in a set of anharmonic modes [Fig. 10(c)].
This requires the frequency of a mode to vary with its
amplitude (Gould, 1965; Hill and Kaplan, 1965; Kegel and
Gould, 1965; Burton and Nagel, 2016).

In all these cases, the memory is encoded in the coherence
of the spins (or oscillators). The initial pulse sets up a
reference time when all the phases are in synchrony with
one another. The system then evolves according to its
dynamics and apparently dephases so that the phase of each
oscillator appears to be unrelated to that of all the others. A
snapshot at any instant of time would not appear to have any
special order within the sample. However, the second pulse
allows all the phases to coalesce at a later time.

Capillary waves present another arena where an echo may
be produced. Raindrops striking a puddle or pond create
surface waves that are easily observed with the naked eye.
Starting from an initially localized wave front, the different
wavelength components radiate outwards at different speeds,
so the total energy is spread over a growing area and the waves
become harder to see. If you were to watch a video of this
scene in reverse, it would look awry: the waves would instead
travel inward toward a single point and arrive there in concert,
focusing all their energy at that location. Remarkably, recent
experiments have shown that this reversal of dynamics may be
achieved in real time (Bacot et al., 2016). By imposing a
sudden downward acceleration to a bath of water at some time
7 after an initial surface perturbation, the existing ripples act as
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sources that create two waves—one continuing onward plus a
“time-reversed” wave that propagates in the opposite direc-
tion. As in other echo phenomena, the refocusing occurs at a
time 7 after the second pulse (in this case, the downward
acceleration of the bath). Moreover, this protocol even
reproduces the shape of the initial perturbation, as shown
in Fig. 10(d).

In the study of all these echo phenomena, the crucial
ingredient for creating a memory is the ability to retrace the
dynamics in the reverse order from how the initial system
evolved. That is, it relies on a form of time reversal in which
the spins, or waves, are manipulated to be in a configuration so
that they effectively retrace their previous dynamics. [For
anharmonic echoes, the effect is attributed to phase conjuga-
tion (Korpel and Chatterjee, 1981), which is closely related to
time reversal.] This is one distinctive way in which matter can
retain a memory of the inputs.

B. Apparent time reversal in viscous fluids

Such behavior is not only relegated to the case of an echo. It
is well known that a liquid of sufficiently high viscosity (i.e.,
low Reynolds number) is reversible if the boundaries are
distorted and then returned to their original positions along
precisely the reverse sequence of motions as they were
originally deformed. This phenomenon is showcased in a
video-recorded demonstration by Taylor (1985) for the
National Committee for Fluid Mechanics Films. He begins
with a synopsis: “Low Reynolds number flows are reversible
when the direction of motion of the boundaries which gave
rise to the flow is reversed. This may lead to some surprising
situations, which might almost make one believe that the fluid
has a memory of its own.”

In the demonstration, a blob of dye is introduced into a
viscous liquid occupying a narrow gap between two cylin-
drical walls. When the inner cylinder is rotated, the fluid is
sheared and the spot of dye smears out into a sheet. After the
first shear, it appears as if the fluid is completely mixed and
that there is no way of regaining the original conformation.
But there is a subtle memory in the fluid that remembers
where it came from. When the shear is then performed in the
opposite direction, the spot reappears.

This memory, like the spin echo, is surprising but is based
on the idea of time, or more precisely path, reversal. If the
system can be manipulated so that after a first set of
deformations the dynamics can be made to repeat itself but
in the opposite direction, then there is a reversal of dynamics,
if not in the time itself.

C. The Kovacs effect

Another situation in which this type of behavior shows up is
in a form of relaxation phenomenon. Consider a system that
has a set of modes by which relaxation can take place. Each of
these modes has a specified relaxation time (or spectrum of
times). The origin of these relaxation times is a detail of the
system that is often unclear, though in some cases they are
simply the relaxations of a material’s subsystems individually
(Chakraverty et al., 2005). Independent of where the system
is started, it will approach an equilibrium state via these
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relaxation modes. The ones with short time constants will
equilibrate first and the ones with longer time constants will
equilibrate more slowly. It is important to specify that the time
constants themselves do not change due to a perturbation of
the system.

If the system is perturbed so that it relaxes toward a new
state, all the modes will relax. However, if the system is only
held in this new position for a waiting time 7., before it is
returned closer to its starting configuration, then only the
modes that have relaxation times smaller than z.,, will
contribute appreciably to that relaxation. The modes with
longer relaxation times will not have had a chance to evolve
much (Chakraverty et al., 2005). The memory may be seen in
the behavior of the system after the set of two perturbations
has been applied (shown by the response curve in the bottom
of Fig. 11). In particular, the initial relaxation appears to be in
the reverse direction of the first perturbation, but then at a later
time the system responds as if the intermediate perturbation
had never happened. This nonmonotonic behavior contains a
memory of the time the system was forced to wait after the
initial perturbation.

This effect is named after André J. Kovacs who discovered
it in amorphous polymers, as we noted earlier (Kovacs, 1963;
Kovacs et al., 1979). An analogous example of this behavior is
in the physics of crumpled sheets (Lahini et al., 2017). We
note that the behavior of a crumpled thin sheet was also used
in Sec. II.B to illustrate the rudiments of another form of
memory, the Kaiser effect. In these experiments, a sheet of
plastic is prepared by crumpling it many times and then
confining it in a cylinder. It is compressed into a smaller
volume for a time 7., and then allowed to expand into an
intermediate volume. Once the sheet expands it begins to exert
a force on the container. This force continues to grow for a
time comparable to 7,.;,, but then starts to decay as the slower
modes become involved—modes slow enough to effectively
ignore the time spent at the smallest volume. The elapsed time
until the peak force 7., is proportional to 7y, and is a
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FIG. 11. Kovacs effect. The top curve shows the general

experimental protocol, whereby a perturbation is applied to a
sample for a duration 7,;,, and then the size of the perturbation is
reduced and held constant at a value closer to the initial one. The
bottom curve shows the response, which peaks at a time 7, that
is proportional to 7,;,, indicating a memory of 7,.;,. Experiments
show such a memory of waiting time in a crumpled Mylar sheet
(Lahini et al., 2017), where the control parameter is the volume
controlled by a piston, and the response is the force exerted by the
sheet on the piston. See the image inset in Fig. 2.
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memory of the waiting time. A similar behavior has been
observed in measurements of the total area of microscopic
contact between two solid objects, where a large normal force
is applied for a duration 7., and then reduced to a smaller
value, thus demonstrating that frictional interfaces exhibit a
similar type of memory of their loading history (Dillavou and
Rubinstein, 2018).

The model proposed for the Kovacs effect in compressed
crumpled sheets relied on having a set of relaxation pathways
that could retrace their paths once the driving compressive
force is released (Amir, Oreg, and Imry, 2012). This way of
looking at the problem suggests that echo phenomena and the
Kovacs effect (seen in a myriad of different examples) have a
common underlying origin in the reversal of path or relaxation
dynamics.

Relation to aging and rejuvenation.—Once thought of in
this context, the rejuvenation, aging, and memory experiments
in spin glasses might also be included as a form of path
reversal. In that much more complicated case, when the spin
glass is quenched and held for some time at a temperature T,
it evolves most rapidly on short length scales and more and
more sluggishly as the system tries to reach its ground state on
longer scales. In the model by Middleton (Thomas, White, and
Middleton, 2008; Yang and Middleton, 2017) for how spin
glasses age under a temperature quench, a small change in
temperature creates a drastic readjustment of all the interspin
interactions. Each time the temperature is changed, the system
must start to search once again for an adequate ground state.
In that model, the evolution can be thought of as a series of
relaxation events that have a timescale that is tied to the spatial
length over which the relaxation has taken place. When the
system is reheated to the temperature where it was first
partially aged, the spin configuration again goes through a
sequence of relaxations that occur first on the smallest lengths,
and therefore fastest timescales, and proceed to larger and
slower relaxation modes. Through the states of these slower
modes, the spin glass remembers that it was aged at a certain
temperature as it passes through that temperature in the
heating cycle. This model has a flavor of the physics that
was required for the Kovacs effect in the crumpled sheet. In
both cases, precisely how the ingredients for memory might
arise from the collective dynamics of the system remains an
open question.

VIII. ASSOCIATIVE MEMORY

A memory that we all have firsthand experience with is
associative memory. At one point or another you probably had
a hard time remembering the name of a person you knew or a
place you once visited. Yet, if you can conjure up some
specific detail associated with it, a scene or an event or even a
smell or taste, suddenly the name comes back to you. What
makes this particular kind of memory special is that you can
use a partial or approximate version of the memory to recall
much more.

This experience is by its very nature subjective, and there
may be many important biological factors that affect this
processing of information in our brains. Nonetheless, the
physics community was able to formulate model systems
which also exhibit the phenomena of associative memories.
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Some of this work has contributed to the study of artificial
neural networks with associative memory—systems that have
growing applications in technology and scientific research
(Mehta et al., 2019).

A. Hopfield neural networks

Consider a network of identical nodes, each node denoting
aneuron 7, and each connection ij being assigned a weight J;;.
Each neuron may be “on” (s; = 1) or “off” (s; = —1). The
connection weights govern the evolution of the system:
starting from some initial state [e.g., the top image in
Fig. 12(a)], the neurons are updated by turning s; on if
Z_/‘J i75j 2 0 and off otherwise. A memory is one particular
state of the system S, = {s™™, s5°™ ...}, defined by our
choice of which neurons are on, as represented, for example,
by the pixels in Fig. 12(a) (lower panel). There is an appealing
and intuitive idea that one stores a memory by making certain
connections stronger. Following this notion, we set the
weights J;; = 1 if 57" = s7" (strengthening the connec-
tion between neurons which are both on or off in the
memory) and J;; = —1 if 57" # s7". The model with such
weights reproduces the desired associative memory behav-
ior: if one is in a state § that is merely close to the memory
Smems then the evolution will lead to the state § = 5o
which is a stable fixed point unchanged by further evolu-
tion. In that sense, the stored memory is successfully
retrieved by the system.

Although this behavior might not be surprising, consider
trying to store three different memories in the same network
in such a way that any of them can be retrieved. Suppose
the memory of your friend would be stored in a set of bond

(1)

strengths J;.’, the memory of your boss is given by another

i
set Jl(;), and the memory of your pet fish is yet another Jl(-;-)
[Fig. 12(b)]. A straightforward approach would be to take

the sum of the weights for each individual memory:

(@) H-j - (b)
EEEEEEN
T

Jij = Ji(jl) + Ji(f) +

FIG. 12. Associative memory. (a) Partial or corrupted informa-
tion may be used to retrieve a memory. (b) Schematic of Hopfield
model, showing three sets of connections (solid, dashed, and
dash-dotted edges) defined on the same set of neurons (vertices).
For simplicity, only the bonds between the on neurons (s; = 1)
are drawn. Under the right conditions, the single set of weighted

connections J;; = JE_}) + JE_?) + JS;) may be used to store the
three individual memories.
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Jiy=00 + 08 w0, (1)

J ij

You may expect the system to form three stable fixed
points; one for each of the memories. But problems
develop: Spurious stable fixed points also arise. Some are
mixtures of the desired states (e.g., a combination of your
boss and your pet fish) and others look completely
unrelated. So while you set out to write a few memories
in the system, you have unwittingly written many more
false memories—things that you can now remember but
have never experienced. Hopfield (1982), Amit, Gutfreund,
and Sompolinsky (1985), and Hertz, Krogh, and Palmer
(1991) showed in the 1980s that although this is true, the
idea can still work. Below some threshold number of stored
memories, each desired memory is indeed a stable fixed
point, while all spurious fixed points have a smaller basin of
attraction, i.e., only very nearby states converge to them.
Thus below the threshold (which is of the same order as
the number of nodes) multiple memories may be simulta-
neously stored across many nodes without any unintended
consequences.

Many other aspects of the Hopfield model have been
studied vigorously. As an illustration, the straightforward
learning rule in Eq. (1), called Hebbian learning, may be
replaced by various others. Further, different dynamics have
been studied by allowing simultaneous or sequential updates
of neurons; and there are extensive studies of time depend-
ences, stochasticity, and memory correlations (Hertz, Krogh,
and Palmer, 1991).

Although the network model started as an abstraction of
neuronal behavior, its mathematical form is reminiscent of
magnetic systems in condensed-matter physics, starting from
the observation that each node could describe a spin state
s; = 1 or —1. We refer the reader to the textbook by Hertz,
Krogh, and Palmer (1991) for an introduction to the study of
neural networks using the theory of magnetic systems and the
tools of statistical physics. This relationship points to the
possibility of observing associative memory in a host of
settings, due to the pervasiveness of physical systems that may
be modeled as coupled spins.

B. Toward models of biological memory

The abstract mathematical model of a neural network
introduced by Hopfield (1982) exhibits some remarkable
features, such as a large capacity and stability of stored
memories, which we also observe in very complex biological
systems such as the human brain. However, this performance
of the abstract model comes from a biologically and physi-
cally unsound assumption that the values of J;; may grow
unboundedly as new memories are stored (Amit, 1989; Amit
and Fusi, 1994; Fusi and Abbott, 2007). Early work (Parisi,
1986) showed that by limiting the magnitude of J;;, under
certain conditions new memories will erase old ones as they
are stored in the J; i This behavior evokes a first-in, first-out
type of memory buffer in computing, where the storage of
fixed capacity is emptied by first removing the oldest item in
it. Intense research continues decades later in search of toy
models which capture more realistically the associative
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memory performance of biological neural networks; we
point the interested reader to reviews by Amit (1989) and
Fusi (2017).

One key insight from such models is the recognition of an
intrinsic balance in a biological neural network: either new
memories are easily accepted (plasticity of synapses) or old
memories are retained for a long time (stability of synapses)
(Fusi, 2017). The Hopfield model could maximize both as it
had the freedom to store unbounded information in its J;;
values. To optimize the memory performance of more realistic
models, researchers have taken inspiration from the complex-
ity of components in a biological neural network by consid-
ering multiple coupled hidden degrees of freedom for each
synapse. These hidden variables can evolve on different
timescales, and with some tuning of their mutual couplings,
can control both the stability and plasticity of the modeled
synapse. As a result, such models can reach an impressive
capacity of ~N/log(N) memories in a network of N neurons,
with a relatively slow power-law decay of old memories
(Benna and Fusi, 2015). As opposed to the Hopfield model,
these models with dynamical coupled hidden variables are
explicitly studied in a steady state, so their associative memory
behavior is an out-of-equilibrium phenomenon.

C. Associative memory through self-assembly

Associative memory may also arise in the seemingly
disparate context of self-assembly. The process of self-
assembly entails building blocks, driven only by thermal or
other random fluctuations, that aggregate into a larger object.
Mutual interactions between different constituents may be the
only guide during this otherwise mindless process of sponta-
neous assembly. The building blocks can come from a wide
variety of natural or artificial nanoscale and mesoscale objects.
Likewise, the design for their mutual interactions can vary
immensely in their range, anisotropy, specificity, and physical
mechanism. The emergent assembly may be quite distinct and
intricate—a specific crystal, macromolecule, biological cell
component, or metamaterial.

While the behavior of particles attracting or repelling each
other while moving around may seem far removed from the
artificial neural network or a synapse network of a brain, one
may intuit the phenomenon of associative memory here as well.
We suggest that the desired assembled structure may be viewed
as a memory that is stored in the building blocks through the
design of their mutual interactions. Correspondingly, when the
structure is self-assembled due to a willful trigger (say, by
providing a small substructure to act as a nucleation seed), one
may claim that the memory has been retrieved.

A simple associative memory for assembly then contains a
mixture of independent batches of building blocks, with each
batch designed to assemble into a particular structure when the
appropriate trigger is applied. This construction is, however,
quite wasteful. In contrast, biology is much more economical
and reuses the same building blocks, e.g., individual proteins,
in many different cellular assemblies (Kiihner et al., 2009).
We therefore want to consider a potent mixture of building
blocks, which uses most of its blocks to assemble any of
several different stored structures. The choice of which
assembly will be constructed is determined by the trigger.
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FIG. 13. Self-assembling memories. (a) Square building blocks

may bind with up to four nearest neighbors on a lattice. Three
different assembled structures (A, B, C) represent three memo-
ries. The memories are simultaneously stored by defining
attractive interactions between blocks which are neighbors in
any of the structures. (b) Simplified diagram of self-assembly
regimes in simulations. Three behaviors (separated by heavy
lines) are distinguished by the fate of an introduced seed for a
desired structure. Building blocks are pixels in a given snapshot
of the system (bordered by a thin square), each pixel being
colored (shaded) according to the structure whose part it is
forming in that snapshot. Below a critical number of stored
structures m,, and at low enough temperatures (bottom-left
regime), a seed for the B structure (irregular shape in initial
snapshot on the left) leads to its self-assembly, i.e., the desired B
memory is successfully retrieved. Above storage capacity the
same seed leads to an erroneous structure, bottom-right regime.
When the thermal energy sufficiently exceeds the binding energy,
all assembly is prevented. (b) Adapted from Murugan et al., 2015.

Some of this phenomenology was captured in a simple
physical model of self-assembly (Murugan et al., 2015). This
model considers many types of particles existing on a square
lattice, while the “memories” are specific large contiguous
arrangements of the particles as shown in Fig. 13(a). To
encode any given structure in the mutual interactions, one
introduces a strong bonding between any pair of particles that
appear as a nearest-neighbor pair in the structure; particles that
are not neighbors have no attractive interactions. To encode
multiple structures, the bond strengths are simply added, in the
spirit of the Hebbian rule in neural networks given by Eq. (1).
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A particle may thus bind with any one of several different
particles, each of which corresponds to a desired neighbor in
one of the multiple stored target structures.

One might imagine that this simple set of rules would
inevitably cause errors in the assembly of a chosen structure
from among the encoded memories, analogous to the part-
fish—part-boss chimera that we sought to avoid in the Hopfield
model. However, it was shown that because each particle has
multiple neighbors (four in the case of the square lattice), its
bonds have enough specificity that this confusion can be
averted.

Consider the trivial construction where each encoded
structure uses a completely distinct set of blocks. In this case
only m = N/M different structures can be stored, where N is
the number of block types and M is the size of the structures.
Using instead the Hebbian-like scheme, one can safely encode
up to m, ~ /N (N/M) structures on a square lattice. The
different memories can be retrieved by using various triggers,
such as introducing a seed, or increasing certain concentra-
tions or bond strengths so that a seed forms spontaneously.
A diagram showing the various possible outcomes of such an
assembly model is shown in Fig. 13(b). Some possible
connections between the self-assembly system and variants
of the neural network model have been carefully elaborated
(Murugan et al., 2015; Zhong, Schwab, and Murugan, 2017).

The relatively simple theoretical model of self-assembly
described here suggests that one can design materials that
change states and transform at will, while using a limited pool
of constituents (Zeravcic, Manoharan, and Brenner, 2017).
Recent experimental advances suggest that such materials will
soon be achieved in the laboratory. In particular, DNA is
proving a most promising ingredient, as it has been used both
as a building block and as a mediator of interactions that are
highly designable (Rogers, Shih, and Manoharan, 2016; Ong
et al., 2017; Zhang et al., 2018).

IX. MEMORY OF INITIAL CONDITIONS IN DYNAMICS

We conclude our survey of different forms of memory
formation with a discussion of the memory of initial con-
ditions that occur in experiments on dynamical systems.
In Fig. 14 we show two situations where a fluid fissions into
two parts. On the left is an image of a viscous drop of glycerol
breaking apart inside a bath of silicone oil of nearly equal
viscosity. The three images on the right show the rupture of an
air bubble rising from an underwater nozzle. The viscous
liquid appears pristine—symmetrical and smooth as the drop
disconnects—while the air bubble looks jagged as if it were
being torn apart. As we will indicate, these examples dem-
onstrate dynamics in which initial conditions, which are
irrelevant for some systems, can in other situations influence
the physical outcomes. They indicate a difference in terms of
what initial conditions have been remembered by the fluids.

These are examples of a finite-time singularity in which a
fluid mass (viscous liquid or air) detaches from a surface
(Keller and Miksis, 1983; Goldstein, Pesci, and Shelley, 1993;
Eggers and Dupont, 1994; Shi, Brenner, and Nagel, 1994;
Eggers, 1997). First, a fluid neck stretches from the drop to the
remaining fluid clinging to the surface. The neck radius
becomes progressively thinner until at some point it shrinks
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FIG. 14. Forgetting and remembering initial conditions. (a) A
drop of glycerol falls and pinches off from a faucet submerged in
silicone oil. Near the top of the spherical drop, the dynamics
become singular and have no dependence on the drop’s initial
conditions. Nozzle diameter is 0.48 cm. From Cohen er al., 1999.
(b) Detail of a bubble pinching off from an underwater nozzle
located just below the images. The black region is the rising air
bubble and the surrounding white and gray is the water. The
pinch-off is seen in the bottom frame where the black regions
become disconnected. The dynamics become singular, but
remember initial conditions strongly—in this case, the bubble’s
release from an asymmetrically shaped nozzle. Scale bar is
0.5 mm and the images are 122 ys apart. From Keim ez al., 2006.

to atomic dimensions, at which point the liquid has separated
into two parts. The Laplace pressure between the inside and
the outside of the drop P is proportional to the local curvature
of the fluid « and to the interfacial tension of the liquid o, that
is, P = ko. As the neck radius shrinks, x diverges so that there
is a singularity in the pressure at the point of disconnection. At
this point, other physical quantities, such as fluid velocities or
viscous stresses, may diverge as well.

This finite-time singularity is determined by a balance
of terms in the Navier-Stokes equations governing the fluid
flow. Depending on the properties of the internal and external
fluids, i.e., the fluid making up the drop and the fluid into
which the drop is falling, there will be different similarity
solutions for the singularity. For the case of droplet snap-off,
these situations fall into a discrete set of “universality classes”;
the singularities within a given class share behavioral sig-
natures with other breakup events in the same class (Cohen
and Nagel, 2001). The nature of the singularity depends on a
few physical dimensions of the apparatus and on the proper-
ties of the fluids, which for simple Newtonian fluids are the
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inner and outer viscosities, the inner and outer densities, and
the interfacial tension.

The universality classes themselves can be divided up
into two qualitatively distinct kinds. In the first kind, the
singularity does not depend on the initial conditions, but
depends on the liquid properties only. This is the situation
for the breakup in Fig. 14(a). Because the process spans
several decades in length scales and timescales, we do not
expect initial conditions to influence the dynamics just
before disconnection. The shape of the nozzle, for example,
does not influence the behavior about the point of breakup.
This expectation of universality is borne out in pinch-offs
with a wide variety of inner and outer fluids (Eggers, 1997;
Cohen and Nagel, 2001), making these nonequilibrium
systems notable for their tendency to forget their initial
conditions.

The second kind of singularity is extremely sensitive to
the initial conditions, as in the example of the air bubble
in Fig. 14(b). The jagged and asymmetrical shape of the
connecting neck of air depends sensitively on how the bubble
was released from the nozzle. The initial shape of the neck sets
the amplitudes of a set of modes that proceed to oscillate with
constant amplitudes and diverging frequencies while the
average size of the neck shrinks (Schmidt er al., 2009).
Near the singularity, the relative amplitude of the oscillations
with respect to the neck radius diverges. The uncertainty in a
measurement of the amplitudes grows but never overwhelms
the signal, permitting the memory to be read out. By contrast,
the initial phase of each mode is preserved, but because
its frequency diverges, the uncertainty in its measurements
quickly exceeds +z. Thus, effectively, only half the initial
conditions are remembered (Schmidt er al, 2009). This
example illustrates an idea used implicitly throughout this
review: it is important not only to store a memory but also to
be able to read it out as well.

The two classes of breakup behavior presented here differ in
their memory of initial conditions. The falling liquid drop is
insensitive to its evolution history and has lost the memory of
its initial conditions. In contrast, the rising air bubble is highly
sensitive to the forces present during its lifetime and remem-
bers a great deal about how it was initiated. These examples
present a clear dichotomy of how in some cases it is nature
while in other cases (that may naively appear similar) it is
nurture that determines the fate. Memory and its loss still
surprise.

The type of memory discussed in this section deals with the
dynamics of the system, such as remembering initial con-
ditions. The basic forms of this memory are the conservation
laws that we usually take for granted. Remembering initial
conditions may appear to have a somewhat different character
than some of the memories mentioned in previous sections, in
which the input is embedded in a system’s steady-state
configuration and can be extracted at an arbitrary later time.
However, there are also similarities with some of those more
conventional material memories. In echoes, the memory also
appears in the dynamics as the spins return to their original
phases relative to one another; likewise in the Kovacs effect,
the memory appears only once in the relaxation dynamics
of the material. Note also that in the present case of the
dynamics of the disconnecting air bubble, the memory is not
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as fleeting as it first seems. While the memory of the
amplitude is directly observable only in the brief moments
before the singularity, aspects of the dynamics can still be
reconstructed because of the lasting effect that the initial
conditions have on the size distribution and trajectories of the
satellite bubbles (Keim, 2011).

X. DISCUSSION

Focusing on memory storage and recall across the entire
range of material properties has not been a widespread
approach for studying matter. However, such a study provides
a common language for physicists to discuss some of the most
fascinating aspects of history dependence, dynamics, and
information storage in far-from-equilibrium systems. As
Tharp suggests, each new memory can provide a novel
way to perceive material behavior and thus may lead to an
alternate framework for organizing our knowledge about
matter in general. This prompts us to seek behaviors, patterns,
and similarities that may have been overlooked. It can also
lead to new experimental and theoretical endeavors because it
compels us to ask questions of a somewhat unusual, and
therefore novel, nature. This perspective may lead to new
insights and even the creation of new forms of matter with
unique functionality dictated by the memories stored in their
creation.

One lesson from a comparative study of memory is that we
should not assume that a memory behavior is unique, because
we can often find another system—sometimes with no super-
ficial similarities—that obeys the same rules for storage and
recall. Thus among the many memory behaviors we have
encountered we perceive a smaller number of generic types
and principles. The preceding sections have provided some
examples of how different memories are related. Here we
summarize some of the most relevant threads that connect or
delineate them, and that motivate a broader perspective on
memory formation.

A. Some common threads and distinctions

Hysteresis.—We have tried to draw a few conclusions about
ways of uniting different phenomena under some common
principles. In Sec. II we noted several systems that remember
the direction or sign of the input that was applied most
recently. This simple principle underlies most of the world’s
digital memory and is the building block of the much richer
return-point behavior (Sec. III).

Maximal input.—In Sec. II, we grouped together another
set of memories that shared the somewhat obvious property
that they all remembered a maximal value of an applied input.
This form of memory is rather common and has been found in
many materials and with many different probes.

Oscillatory training over multiple cycles.—Less obvious
are the memories encoded in physical systems subjected to
oscillatory perturbations. While these seem to have rather dif-
ferent forms, some of these phenomena appear to be related. A
good example is the observation of multiple transient memo-
ries in charge-density wave systems, in sheared non-Brownian
suspensions, and in paths worn by visitors in grass. These
memories have the same overall phenomenology despite one
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of them arising in a hard-condensed-matter system, another in
a fluid, and the third being a macroscopic human-scale
phenomenon. All three initially learn many inputs and then
forget all but one (or two) of them; however, if noise is present
they can remember all inputs indefinitely.

Reversal of dynamics.—More ambitious and less obvious
was our attempt to group echo phenomena together with
examples of rejuvenation and aging in glasses and with the
Kovacs effect. The point of commonality was taken to be that
they each manipulate their respective system as a way of
“reversing paths.” This allows them to retrace their dynamical
evolution to the instant when the phases were initially set to be
coherent. We also suggested that the Kovacs effect may
likewise be conceived as allowing a system’s relaxation
dynamics to be reversed in time.

Besides these common phenomenologies, we can discern
common physical principles among some memory-forming
systems:

Memory as a marginal state or an energy minimum.—In
the example of non-Brownian dilute suspensions, a memory is
encoded in a steady state with reversible particle motions,
which is reached by shearing with a constant training
amplitude. Yet, one reads out that memory not by observing
the steady state, but by observing the onset of irreversible
motion when the training amplitude is exceeded slightly
[Fig. 5(a)]. Thus the steady state encodes a memory by being
marginally stable at the training amplitude. More generally,
this memory is where many quiescent portions of the system
promptly begin changing and participating in the dynamics
[e.g., as measured by the shear stress in Fig. 5(b)]. We can see
this pattern in the single- and multiple-memory behaviors of
dilute suspensions, but also in the Mullins and Kaiser effects,
return-point memory, and charge-density waves. Most of these
memories are indicated by a change in the first derivative of an
observable such as particle displacements, magnetization, or
stress. We can contrast these examples with the Hopfield
model, in which a memory corresponds to the bottom of a
potential-energy well.

Role of quenched or unquenched disorder.—Disorder can
give a system the ability to distinguish among, and remember,
many possible input values. For example, a system with
return-point memory that can be modeled with many identical
hysterons (i.e., having identical hysteresis loops) would store
no more information than a single hysteron. Instead, because
the transition thresholds of the hysterons are distributed
broadly (typically due to defects), a sufficiently large system
can make fine distinctions among values of the applied field.
Thus in some of the systems we have described, disorder plays
a beneficial role in providing a large ensemble of subsystems
that together allow a nearly continuous range of input values
to be stored. This principle also applies to the case of the
charge-density wave that exhibits multiple transient memo-
ries, where the charge density evolves to find a metastable
state in the presence of disordered pinning sites (Coppersmith
and Littlewood, 1987).

In both these examples the disorder cannot evolve (i.e., it is
quenched), and is encoded in the system’s Hamiltonian.
However, in other systems the disorder itself can evolve.
To see this, one need only think about aging and rejuvenation
in molecular glasses, exemplified by the thermal sorting
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algorithm with that behavior (Zou and Nagel, 2010). There,
every part of the system can change. The disorder is the
medium in which to encode memories, and yet in small
systems it can be annealed away entirely.

Training by following a path.—In considering these exam-
ples there is another aspect that appears to lead to different
behaviors. In the case of the multiple transient memories in
suspensions, the path of the dynamics in phase space is
remembered; it is not only the marginal final configuration
that is trained. We observe the same memory of a path in
charge-density wave conductors and jammed solids, and the
notion of a path is even more explicit in the model of park
benches on a lawn. In these examples, training must typically
be repetitive as the system learns the path. This is distinct from
memories in the Hopfield model or self-assembly where
the memory is stored (at least in some rules) by varying
the interaction strengths between pairs of spins or particles.
In those associative memories, a well-chosen learning rule
deterministically sets the interactions to store a memory,
without the need for any dynamics in the training.

B. Making materials functional

That a material carries a memory of its formation suggests
that one may use that memory to create some specific
functionality based on the stored information. Memory could
inform the design and processing of new materials with a
range of applications.

Amplitude variation.—Oscillatory manipulation of a solid
is common and is, indeed, the essential ingredient of most
ac (linear and nonlinear) susceptibility measurements. By
focusing on the particular aspect of memory, one is motivated
to concentrate not only on how the response depends on
the amplitude of the oscillation, but also on how it depends
on changes to the amplitude during the experiment—or, in
more practical terms, during the material’s preparation
and use. In systems such as dilute suspensions and jammed
solids, amplitude variation is the basis for reading out
memories—and for recognizing that memories are present
in the first place.

Learned mechanical properties.—In systems where
memory storage is in response to an external stress, as in
the examples of dilute suspensions or jammed solids, memory
can have mechanical consequences. Memories formed by
cyclic training in these systems show that one can tailor a
material’s responses at specific amplitudes or values of strain
[Fig. 5(b)]. An example of how such a mechanism may be
used to reduce viscous dissipation in continuously flowing
suspensions or grains may be found in the works of Lin et al.
(2016) and Ness, Mari, and Cates (2018). Rigid disordered
materials can become auxetic (i.e., have a negative Poisson’s
ratio), or even develop a coordinated response at one location
due to a stress applied elsewhere, when certain bonds are cut
(Goodrich, Liu, and Nagel, 2015; Rocks et al., 2017, 2019;
Yan et al., 2017; Hexner, Liu, and Nagel, 2018a, 2018b). A
material that is aged under an imposed stress can remember its
history and respond by altering the bonds that are stressed the
most. This, as in the case of cutting bonds, can lead to novel
elastic response (Pashine et al., 2019). Mechanical memory of
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this sort may also be one way that living matter can adapt to its
environment (Bieling ez al., 2016; Majumdar et al., 2018).

Memory capacity.—Another type of question that leads to
novel investigations is the memory capacity in a system. For
example, the pulse-duration memory in charge-density wave
solids or the approach to the absorbing-state transition in non-
Brownian suspensions, have shown an even richer phenom-
enology when, in addition to addressing the creation of a
single memory, one asks how many different memories can be
encoded in these systems. In the case of self-assembly, the
goal of encoding a greater variety of structures with fewer
types of particles motivates further development of theoretical
design principles and experimental systems. Disorder and
diversity are especially relevant to the design of multiple-
memory systems because they can make various parts or
coarse-grained scales of the system susceptible to different
inputs.

XI. CONCLUSIONS

Throughout this review we have raised a number of
questions about memory that enrich our study of the physics
of matter. We have indicated a few, but certainly not all, of the
ways in which memories are similar or dissimilar to one
another and have suggested that addressing such questions can
lead not only to interesting questions about the variety
and robustness of memory formation but also to useful
applications, once the science of material memory is better
understood.

In her novel Mansfield Park, Austen’s protagonist claimed:
“If any one faculty of our nature may be called more
wonderful than the rest, I do think it is memory. ... [OJur
powers of recollecting and of forgetting do seem peculiarly
past finding out” (Austen, 1994). While in our life experiences
this may indeed be true, in the world of materials, the
mysteries of memory formation have been yielding to acute
scientific examination. Thus the ideas of memory formation,
and the mechanisms that nature uses to implant information of
different kinds into matter, can be articulated into sets of
coherent principles that seem to bind them together. However,
much work still needs to be done to delineate the distinctions
between different types and provide a common framework for
understanding the interconnection between them. We hope
that such questions strike a chord within the broader research
community and call attention to this novel and exciting branch
of inquiry.
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