
 

Colloquium: Proteins: The physics of amorphous
evolving matter

Jean-Pierre Eckmann*
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Protein is matter of dual nature. As a physical object, a protein molecule is a folded chain of
amino acids with diverse biochemistry. But it is also a point along an evolutionary trajectory
determined by the function performed by the protein within a hierarchy of interwoven interaction
networks of the cell, the organism, and the population. A physical theory of proteins therefore needs
to unify both aspects, the biophysical and the evolutionary. Specifically, it should provide a model of
how the DNA gene is mapped into the functional phenotype of the protein. Several physical
approaches to the protein problem are reviewed, focusing on a mechanical framework which
treats proteins as evolvable condensed matter: Mutations introduce localized perturbations in
the gene, which are translated to localized perturbations in the protein matter. A natural tool to
examine how mutations shape the phenotype are Green’s functions. They map the evolutionary
linkage among mutations in the gene (termed epistasis) to cooperative physical interactions among
the amino acids in the protein. The mechanistic view can be applied to examine basic questions of
protein evolution and design.
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I. THE PROTEIN PROBLEM: A THEORETICAL PHYSICS
PERSPECTIVE

The macromolecules that make living matter, such as lipids,
hydrocarbons, nucleic acids, and, in particular, proteins, are
among the most studied objects of nature. Proteins comprise the
central nanomachinery of the cell, whose numerous functions
include the formation of structural elements, catalyzing meta-
bolic reactions, and conveying biochemical signals (Alberts,
1998; Fersht, 1999; Howard, 2001; Goodsell, 2009; Whitford,
2013). For their significance in life, proteins and the genes that
encode them have been extensively investigated using various
experimental methods, such as crystallography, biochemical
assays, mass spectrometry, fluorescence imaging, electron
microscopy, directed evolution, and deep sequencing (Cohen
and Chait, 2001; Barrera and Robinson, 2011; Chapman et al.,
2011; Collins, Kim, and Gruner, 2011; Ha and Tinnefeld, 2012;
Mardis, 2013; Rambo and Tainer, 2013; Mehmood, Allison,
and Robinson, 2015; Fernandez-Leiro and Scheres, 2016;
Mandala, Williams, and Hong, 2018). In parallel, sophisticated
computational models, such as molecular dynamics, have been
developed to predict the structure, function, and folding of
proteins (Isralewitz, Gao, and Schulten, 2001; Karplus and
McCammon, 2002; Karplus and Kuriyan, 2005; Adcock and
McCammon, 2006; Dror et al., 2012; Scheraga, Khalili,
and Liwo, 2007).
These experiments and simulations provide valuable data on

protein structure, dynamics, and genetics. However, there
remain two inherent challenges: (i) sparsity of data—the protein
is the outcome of a long evolutionary search in a high-
dimensional space of gene sequences, which is impossible to
sample, even by high-throughput experiments. (ii) Complexity
of interactions—the function of a protein arises from collective
many-body interactions in the heterogeneous amino acid
matter, which are hard to probe and model.
In light of these challenges, we focus in this Colloquium on a

complementary theoretical approach that links the protein pro-
blem to the realm of condensed-matter physics. Rather than
using realistic simulations predicting the dynamics and function
of concrete proteins, we shall discuss minimal models that
allow one, under several simplifying assumptions, to examine
basic questions of protein evolution, especially how the collec-
tive physical interactions within the protein direct its evolution.1

The structure of many proteins is known at a resolution of a
few angstroms and there are detailed computational models of
the forces between the amino acids. Here, however, the protein
will be examined at a coarse-grained level, in the spirit of
lattice (Lau and Dill, 1989; Shakhnovich et al., 1991) and
network (Chennubhotla et al., 2005) models. The protein will
be described as a connected network whose nodes represent
the amino acids. Furthermore, from this conceptual point of
view, it suffices to assume that there are only two types of
amino acids instead of the usual 202 [for example, the classical
HP model (Lau and Dill, 1989) used in Sec. VIII.B, in which
amino acids can only be either hydrophobic (H) or polar (P)].
In a real protein, forces between the amino acids are a
complicated combination depending, for example, on their
polarity, hydrophobicity, charge, and shape. At the coarse-
grained level, it again suffices to consider instead just simple
springs between pairs of neighboring sites. This is akin to
using harmonic approximations in mechanics, which provide
a generic understanding and good physical insight.
With this kind of simplifications, one can translate certain

questions of biology to analogous questions in the physics of
amorphous networks. Among the rich set of methods in this
classical subject of physics, some tools seem particularly well
adapted to the protein problem. The approach is based on the
dual nature of the protein; it is a physical object whose
formation and physical interactions are also represented in the
“dual” gene, a sequence of symbols from a four-letter alphabet
of the DNA bases, A, C, G, T. Evolution progresses by
introducing mutations, that is, permanent modifications of this
sequence. There are local mutations (nucleotide substitutions,
short insertions, and deletions) besides larger scale modi-
fications (e.g., translocations, inversions, or duplications).
A natural approach to study protein evolution is to model
the effect of mutations on the physical properties of the amino
acids network.
Local mutations amount to short jumps between neighbor-

ing sequences in the genotype space, differing by one letter
only, while large-scale mutations are equivalent to longer
jumps. Both classes of mutations can be described in terms of
alterations of the mechanical properties of the amino acid
network. However, we shall focus on the class of local
mutations. Practically, local mutations are easy to treat with
classical techniques of condensed matter, for instance, via
Green’s functions, since they induce localized perturbations
in the spring network. More importantly, it is possible to
statistically sample the genotype space with continuous
trajectories progressing by consecutive local mutations.
This is the main focus of this Colloquium. Along the evolu-
tionary trajectory, mutations come in three flavors: The ones
leading to some sort of functional catastrophe or significant
disadvantage, and therefore get eliminated by selection; others
which improve the properties of a protein and finally, the large
“neutral”majority which do not induce any significant change
in the function of the protein (Kimura, 1983; Neher and
Shraiman, 2011). In this manner, the “learning” evolutionary
process reduces the problem of improving a protein from an

1The main body of this Colloquium is based on and expands ideas
from Tlusty (2007a, 2008b, 2010, 2016), Eckmann (2008), Tlusty,
Libchaber, and Eckmann (2017), and Dutta et al. (2018).

2Twenty-one amino acids when counting the rare pyrrolysine
(Hao et al., 2002; Srinivasan, James, and Krzycki, 2002).
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exhaustive combinatorial search approach into a biased
random walk. This drastically reduces the dimension of the
space which one needs to explore.
The condensed-matter approach to the protein problem may

be viewed as an example of a potentially general framework
that may be used to examine other strongly coupled biological
systems. For example, one may analyze metabolic and genetic
networks in terms of localized perturbations and Green’s
functions. Such analysis may suggest common underlying
principles. It might as well turn out that biology is more
contingent and depends on the history of the evolutionary
process, but the few examples we describe give us hope that a
rational approach, based on the laws of physics, may be useful
in some cases.
Biological molecules are far from being the spring networks

we use as a model. Still, similar abstractions proved successful
in many areas of physics. For example, the dynamical systems
of the so-called Axiom A class (Eckmann and Ruelle, 1985)
are systems with a special, yet simple, structure. And although
most systems do not belong to the Axiom A class, it proved
useful to consider that they behave “as if.”
There is a long history of studies in a similar spirit of

abstraction and simplification, starting with the conformal
maps of Thompson (1942) through the morphogenetic studies
based on the theory of catastrophes by Thom (2018). In the
21st century researchers have much more data available on
biological systems. This allows one to test hypotheses against
measurements, infer from the data other questions to inves-
tigate, and suggest possible experiments to confirm or refute
the theory. We close the Introduction by two citations which
reflect the general outlook of this Colloquium:
Misha Gromov (Gromov, 2013):

When you read a textbook on molecular/cellular
biology you are enchanted by the logical beauty of
biological structures. You want to share your
excitement with your colleagues, but… you find
out you are unable to do it: there is no language in
the 21st century mathematics that can express this
beauty. You feel there must be a new world of
mathematical structures shadowing what we see in
Life, a new language we do not know yet, some-
thing in the spirit the “language” of calculus we use
when describing physical systems.

Giovanni Jona-Lasinio (Jona-Lasinio, 2012):

Theoretical physics was recognized as an indepen-
dent field of research only at the end of the 19th
century, shortly before the great conceptual revolu-
tions of relativity and quantum mechanics. Today
theoretical physics has multiple facets. I think that the
time has come for a more precise characterization of
the research field of theoretical biology, and for an
assessment of its scope (translated from Italian).

We are convinced that such outlooks are important and our
work should be viewed as an attempt in this general direction

in the hope that readers will be encouraged to proceed along
this path.

II. BIOLOGY AS A CHALLENGE TO THEORISTS

Biological research has been extremely active in the past
decades and experimental results have flourished to vastly
improve our understanding of living matter. The challenge
for theorists is to find subtopics which are at a stage where
theoretical abstraction can be fruitful.
Here we focus on the relation between genes and the

functions of proteins: genes (in DNA) code for amino acid
chains that fold into the three-dimensional configurations of
functional proteins. This sequence-to-function map is hard
to decrypt since it links the collective physical interactions
inside the protein to the corresponding evolutionary forces
acting on the genome (Koonin, Wolf, and Karev, 2002; Xia
and Levitt, 2004; Zeldovich and Shakhnovich, 2008; Dill
and MacCallum, 2012; Liberles et al., 2012). Furthermore,
evolution selects the tiny fraction of functional sequences in
an enormous, high-dimensional space (Keefe and Szostak,
2001; Koehl and Levitt, 2002; Povolotskaya and Kondrashov,
2010), which implies that proteins form nongeneric, informa-
tion-rich matter, outside the scope of standard statistical
methods. Therefore, although the structure and physical forces
within a protein have been extensively studied, the funda-
mental question of how a functional protein originates from a
linear DNA sequence still provides research challenges, in
particular, how functionality constrains the accessible DNA
sequences.
To examine the geometry of the sequence-to-function map,

we devise a mechanical model of proteins as amorphous
evolving matter.3 Rather than simulating concrete proteins, we
construct models which describe the hallmarks of the geno-
type-to-phenotype map (the translation of the gene to the
protein). These models are sufficiently simple so that large-
scale simulations can be performed, which allow one to
average over stochastic noise inherent to evolutionary dynam-
ics. Furthermore, we restrict our approach to models in which
the function of a protein arises from large-scale conforma-
tional changes, where big chunks of the protein move with
respect to each other. These motions are central to certain
functions (Koshland, 1958; Huse and Kuriyan, 2002; Henzler-
Wildman et al., 2007; Savir and Tlusty, 2007, 2010, 2013;
Schmeing et al., 2009). For example, allosteric proteins are a
type of “mechanical transducers” that transmit regulatory
signals between distant sites (Perutz, 1970; Lockless and
Ranganathan, 1999; Goodey and Benkovic, 2008; Ferreon
et al., 2013).
We end this section by mentioning a few papers which have

dealt with similar issues and which highlight the increasing
interest in connecting biological questions with methods from
solid state physics.

3In his book “What is Life?” Schrödinger (1944) used the term
“aperiodic crystal” to describe material which contains genetic
information. This is of course an interesting forethought, but since
the advent of quasiperiodic crystals, the term “amorphous” leads to a
more precise classification.
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Common to these studies is a mechanical perspective on
protein function. The motivation originates from many obser-
vations of proteins whose functions involve collective patterns
of forces and coordinated displacements of their amino acids
(Huse and Kuriyan, 2002; Karplus and McCammon, 2002;
Daniel et al., 2003; Bustamante et al., 2004; Eisenmesser
et al., 2005; Boehr et al., 2006; Hammes-Schiffer and
Benkovic, 2006; Henzler-Wildman et al., 2007; Goodey
and Benkovic, 2008; Savir and Tlusty, 2010). In particular,
the mechanisms of allostery (Monod, Wyman, and Changeux,
1965; Koshland, Némethy, and Filmer, 1966; Perutz, 1970;
Cui and Karplus, 2008; Daily, Upadhyaya, and Gray, 2008;
Motlagh et al., 2014; Thirumalai et al., 2018), induced fit
(Koshland, 1958), and conformational selection (Grant,
Gorfe, andMcCammon, 2010) often involve global conforma-
tional changes by hingelike rotations, twists, or shearlike
sliding of protein subdomains (Gerstein, Lesk, and Chothia,
1994; Mitchell, Tlusty, and Leibler, 2016; Mitchell and
Leibler, 2018).
A now-standard approach to examine the link between

function and motion is to model proteins as elastic networks
of amino acids connected by springlike bonds. Early studies
that apply this class of models are from the 1980s and 1990s
(Levitt, Sander, and Stern, 1985; Tirion, 1996), and in the last
two decades the methods have been further developed and
applied to many proteins (Chennubhotla et al., 2005; Bahar,
2010; Lòpez-Blanco and Chacòn, 2016). Decomposing the
dynamics of the network into normal modes revealed that low-
frequency “soft” modes capture functionally relevant large-
scale motion (Tama and Sanejouand, 2001; Bahar et al., 2010;
Haliloglu and Bahar, 2015), especially in allosteric proteins
(Ming and Wall, 2005; Hawkins and McLeish, 2006; Zheng,
Brooks, and Thirumalai, 2006; Arora and Brooks, 2007;
Tehver, Chen, and Thirumalai, 2009; Wrabl et al., 2011;
Greener and Sternberg, 2015).
Recent work associates the soft modes of protein con-

formations with the emergence of weakly connected regions
as previously described, but also “cracks” (Miyashita,
Onuchic, and Wolynes, 2003), “shear bands,” or “channels”
(Mitchell, Tlusty, and Leibler, 2016; Tlusty, 2016; Tlusty,
Libchaber, and Eckmann, 2017; Dutta et al., 2018; Mitchell
and Leibler, 2018; Rocks, Liu, and Katifori, 2019) that enable
low-energy viscoelastic motion (Qu and Zocchi, 2013; Joseph
et al., 2014). Such contiguous domains evolve in models of
allosteric proteins (Hemery and Rivoire, 2015; Flechsig, 2017;
Tlusty, Libchaber, and Eckmann, 2017).
Sources of inspiration for linking proteins to the physics

of amorphous matter are the papers by the late Shlomo
Alexander, especially Alexander and Orbach (1982) and
Alexander (1998). In these works, Alexander highlighted
the essential role of “floppy modes” in the mechanical
spectrum of amorphous solids. Also relevant are studies by
Thorpe and Phillips on constraint theory and rigidity perco-
lation in glasses, such as Phillips and Thorpe (1985) and
Thorpe (1985). Those works highlighted the ability to control
the rigidity and accessible zero-energy modes of mechanical
networks by balancing the number of degrees of freedom and
the number of constraints, as noted by Maxwell (1864).
The link between the dynamical spectra of proteins and

amorphous matter has been further explored in a recent series

of works on mechanical metamaterials. The emergence of long-
range allosteric response was used by Rocks et al. (2017) as a
design principle for “programmable” metamaterial made of
amorphous spring networks (Rocks et al., 2019). A similar
random network approach was applied by Yan et al. (2017) to
design elastic materials with tailored mechanical response.
These works suggest that tunable amorphous materials have the
flexibility required to produce elaborate designs as recently
demonstrated by mimicking the cyclical conformational motion
of protein motors (Flechsig and Togashi, 2018). These pro-
mising approaches to metamaterial design are discussed else-
where, for example, by Rocklin (2017), Baardink et al. (2018),
Kim et al. (2018), and Ronellenfitsch et al. (2018).
The present Colloquium focuses on a different aspect:

understanding fundamental properties of the protein evolu-
tion, in particular the genotype-to-phenotype map, within the
framework of condensed-matter theory.

III. PROTEINS AS INFORMATION MACHINES

The building plan of a protein is determined by its
corresponding gene, via the genetic code. The gene is a
one-dimensional string in an alphabet of four letters: the
nucleotides A (adenine), C (cytosine), G (guanine), and T
(thymine) [see Alberts et al. (2002), Chapter 6]. The protein is
a (folded) chain of amino acids (AA) which is translated from
the gene according to the genetic code: each three successive
letters (each nonoverlapping triplet, called a codon) maps to a
single AA. In principle, this would allow for 43 possibilities,
but in general there are only 20 different AAs, making the
code redundant, as discussed in Sec. III.A.
We view the gene, i.e., the one-dimensional string of letters,

as the tape of a Turing machine (Turing, 1936; Herken, 1992;
Condon et al., 2018). Since any alphabet can be recoded in
binary (for example, each of the four nucleotides can be
recoded as a 2-bits number), one can always think of it as a
string of 0s and 1s. The proteins (and the transcription-
translation machinery, which is itself made of proteins) would
be the computer, which is able to read and interpret the string.
This particular machine is an example of a self-reproducing

Turing machine (von Neumann, 1966), since the replication of
the genome can be achieved by genome-encoded proteins. In
addition, these machines are evolving when the genes are
mutated. In other words, the machine can modify its own tape
[see also Tlusty (2016)]. A further study in this direction was
given by Dyson (1970), but there are many more; see, e.g.,
Freitas and Merkle (2004).

A. Handling reading errors

Translation of the gene into its corresponding string
of amino acids requires a specialized machinery, which
includes the ribosome (Alberts et al., 2002).4 The translation

4In addition to the ribosome, the machinery includes two sets of
molecules, tRNAs, which carry the amino acids, and aminoacyl-
tRNA synthetases, which charge the tRNAs with amino acids. The
translation is preceded by a transcription step in which the DNA
gene (a segment of the genome) is copied into a mRNA (a single
molecule).
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machinery “reads” the code through chemical affinity and
might therefore misread the tape. Most amino acids are
encoded by more than one codon, and this hard-coded
redundancy of the genetic code helps to reduce the impact
of such misreadings [see Tlusty (2007a, 2008a, 2008b, 2008c,
2010) for a theoretical study and Eckmann (2008) for an
illustration].
As noted, this system allows for 64 ¼ 43 different codons

(number of triplets from an alphabet of four nucleotides), but
they generate only 21 different symbols.5 The geometric
aspects of this arrangement of 21 among 64 possibilities
can be understood in graph-theoretical terms: One presents the
64 codons as the nodes of a codon graph, and two nodes are
connected by a link if the corresponding codons differ in only
one symbol. Note that swapping C and T in the codon’s third
position always results in the same AA (Fig. 1) and we can
therefore reduce the graph to 48 ¼ 42 · 3 nodes.6 In the codon
graph, each amino acid is coded as a simply connected region,
as shown in Fig. 1, with the exception of Serine (ser) [Arginin
(arg) is disconnected in the 2D table, but not in the graph].
Such an arrangement minimizes the ratio of boundary by the
area for each region. This reduces the probability of coding the
wrong AA, under the assumption that most reading errors
involve only one-letter differences.
Additionally, amino acids with similar chemical properties

(for example, polarity) tend to be neighbors in this graph. This
can be visualized by plotting the measured polarity as a
function of the codon, which produces a relatively smooth
landscape. The smoothness manifests the chemical similarity
between neighboring amino acids and implies that most
misreadings change the polarity of AA only moderately.
We note that, unlike the 2D landscape of Fig. 1, an ideal
representation should wrap the surface so that each AAwould
have eight neighbors (and can therefore be embedded only in
high dimension).
For the connection between the numbers 21 and 48, an

inequality can be given in terms of the genus of the codon
graph (Tlusty, 2007a, 2007b, 2010) [this uses results from
Banchoff (1965) and Colin de Verdière (1993)]. Without
going into further detail we conclude the following: The
optimal code must balance contradicting needs for tolerance
to errors (with the smoothness of the mapping between
codons and chemical space) and chemical diversity, which
is essential for the versatility of protein function.

B. Folding

Having translated the gene into a linear chain of amino
acids (the backbone, see Fig. 2) via the genetic code (and
modulo translation errors), this chain will spontaneously fold

into a three-dimensional shape which gives rise to its function.
How this folding proceeds is an important and difficult
question, which we do not address here. Instead we assume
that a certain folding pattern is preserved [see Petsko (2008) for
a discussion of these issues]. This assumption is practical, as we
are be mostly interested in how the function of the protein
changes under point mutations of the gene, i.e., bit flips of the
code in the tape. Such mutations often do not seriously affect
the overall shape of the protein [see also Bussemaker,
Thirumalai, and Bhattacharjee (1997)].
We can next model the function of this folded amino acid

chain and show that there is yet another level of redundancy
besides the redundancy of the genetic code and the robustness
of the folding. We shall see that there are many mutations
which have no effect on performance. Namely, there is high
redundancy in the AA sequences that are mapped to the same
or similar enough protein function. We shall quantify this

FIG. 1. A representation of the genetic code, as a function of the
measured polarity of each codon [values from Woese (1965) and
Haig and Hurst (1991)]. The smoothness of the landscape shows
that moving from one AA to its neighbor does not change the
polarity too abruptly.

FIG. 2. Schematic illustration of protein folding: Proteins are
polypeptides, linear heteropolymers of AAs (colored spheres),
linked by covalent peptide bonds (red sticks), which form the
protein backbone. These peptide bonds are much stronger than
the noncovalent interactions among the AAs (side chains) and do
not change when the protein mutates.

5Some terminology: The individual symbols (A, C, G, and T) refer
to nucleotides. The triplets of three nucleotides form the 64 codons.
The 64 codons code for 20 AA and the stop symbol (which does not
generate an AA). One of the AA is methionine (codon ATG) which
marks the start of a protein.

6This graph is difficult to draw, as each node has 8 ¼ 3þ 3þ 2

neighbors which differ in exactly one position. As such, a repre-
sentation would have to be in 8 dimensions. Recall that in a cube in 3
dimensions, every corner has three neighbors.
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property in terms of dimension (Grassberger and Procaccia,
1983; Eckmann and Ruelle, 1992).

IV. MECHANICAL VIEWS ON PROTEIN EVOLUTION

Consider a protein interacting with a small molecule. The
presence of the latter often induces a conformational change
at some distance from the interaction site. One important
example is the class of allosteric proteins for which an active
site is regulated by binding at another site, resulting in a
reconfiguration of the active site. More specifically, we shall
examine the role of large-scale, functionally relevant dynami-
cal modes and their link to long-range genetic correlations.
Before reviewing the literature on this issue, we illustrate

such a mechanical effect on a particular example: human
glucokinase (which is involved in sugar metabolism); see
Fig. 3. The data were obtained from the crystallographic
structure of two conformations of that protein: the first (PDB7

accession 1v4s) corresponds to the binding of glucose to its
active site and is compared to the conformation in the absence
of glucose (PDB 1v4t) (Kamata et al., 2004).
The backbone (see Sec. VIII.B.2) is shown as a light blue

curled tube, and the arrows indicate the displacement from one
shape to the other (any Galilean motion between the two is
eliminated). The color of the arrows indicates up or down
motion relative to a horizontal plane. The red coloring in the
twisted tube shows the high shear region separating two low-
shear domains that move as rigid bodies [shear calculated by
the method of Mitchell, Tlusty, and Leibler (2016) and
Rougemont, Eckmann, and Tlusty (2019)].
On a conceptual level, one can simplify the figure as shown

in Fig. 4. The protein seems to have a central shear band and
two external flaps which perform a rotating motion when a
ligand attaches to the protein. This kind of mechanical
phenomenology is accessible to the language of physics.
Large-scale motions take part in several basic bio-

logical functions and mechanisms. For example, in the
induced fit (Koshland, 1958) and conformational selection
(Bahar, Chennubhotla, and Tobi, 2007; Grant, Gorfe, and
McCammon, 2010) mechanisms, the presence of a substrate
induces reshaping of the enzyme to properly align the catalytic
groups in the active site. Such reshaping is a dynamic
mechanism of specific recognition that allows the selection
of a target ligand among similar competing molecules (Savir
and Tlusty, 2007, 2013). In allostery, reconfiguration of the
active site is regulated by binding at a secondary, allosteric
site, often via long-range mechanical interactions (Motlagh
et al., 2014; Thirumalai et al., 2018). In this Colloquium,
we describe simple physical models for the emergence of
these mechanisms via evolutionary tuning of the protein’s
mechanical response.
Like their dynamic phenotypes, proteins’ genotypes (their

gene sequences), as explained in Sec. III, are remarkably
collective. The history of protein evolution can be traced by
gathering evolutionary related proteins in different species
(homologous proteins) and aligning their sequences. Genes
of these proteins sometimes display long-range correlations

(Göbel et al., 1994; Lockless and Ranganathan, 1999; Suel
et al., 2003; Halabi et al., 2009; Marks et al., 2011; Jones
et al., 2012; de Juan, Pazos, and Valencia, 2013; Teşileanu,
Colwell, and Leibler, 2015; Hopf et al., 2017; Poelwijk,
Socolich, and Ranganathan, 2017). The correlations indicate
epistasis, the compensatory mutations that take place among
residues linked by physical forces or common function. As an
example (Rougemont, Eckmann, and Tlusty, 2019), consider
again glucokinase. We aligned about 120 variants of this
molecule and asked where along the gene have mutations
preferentially occurred; see Fig. 5.

FIG. 3. The motion and deformation between two states of
glucokinase, 1v4s and 1v4t. The arrows are scaled up for better
visibility. They are colored green or red depending on whether
they move down or up relative to a plane passing horizontally
through the center of the protein, respectively. Galilean motions
have been eliminated. The red coloring of the tube corresponds to
concentration of shear and is the same as in the leftmost panel of
Fig. 5; see Sec. IX.E.

FIG. 4. A schematic interpretation of Fig. 3. Emphasis is given
to the two moving pieces, with a hinge between them. This kind
of hinge will be called the “fluid channel” or “shear band.”7PDB is the protein data bank, https://www.rcsb.org.
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Still, the relationship between sequence correlation, epis-
tasis, and selection pressure is not fully understood. As
discussed in Sec. I, the two main challenges are the intricacy
of the physical forces among the amino acids, and the high
dimensionality of the genotype-to-phenotype map (Koonin,
Wolf, and Karev, 2002; Povolotskaya and Kondrashov, 2010;
Liberles et al., 2012). These inherent difficulties motivated the
development of complementary approaches which utilized
simplified coarse-grained models, such as lattice proteins (Lau
and Dill, 1989; Shakhnovich et al., 1991) or elastic networks
(Chennubhotla et al., 2005). Network and lattice models have
been recently used to study the evolution of allostery in
proteins and in biologically inspired allosteric matter (Hemery
and Rivoire, 2015; Tlusty, 2016; Flechsig, 2017; Rocks et al.,
2017; Tlusty, Libchaber, and Eckmann, 2017; Yan et al.,
2017). Our aim here is different: to construct a simplified
condensed-matter model in terms of how the mechanical
interactions within the protein shape its evolution.

V. CONDENSED-MATTER THEORY OF PROTEINS

This section reviews a theory of proteins in terms of
evolvable condensed matter. We discuss the conceptual roots
of this approach in the physics of amorphous matter (mainly
glasses) and spectral theory. We introduce the basic setting of
modeling proteins as evolving amino acid networks. The
emergence of function is associated with the evolution of a
weakly connected region, which enables a low-energy
“floppy” mode to appear. This minimal network approach
allows one to examine basic questions of protein evolution.
We discuss two different models in this review. One is

called the “cylinder model” and the other the “HPmodel.” The
first model is simpler, but the second comes somewhat closer
to the biological reality. Before distinguishing the two models,
we describe their common features.

A. Lattice models

Our protein is modeled by a finite (regular) lattice in two
(or three) dimensions. We assume that the lattice forms a
cylinder (periodic boundary conditions) or an open rectangle

(open boundary conditions) of width w and height h (see the
examples in Secs. VIII.A and VIII.B).
It is important to note that w and h are finite while

otherwise quite arbitrary. This is so because the protein should
not be viewed as a problem of thermodynamic limits, but
rather in the context of small amorphous objects. This being
said, other aspects of the geometry seem less important.
The points may also be chosen as lying on small perturbations
from the regular lattice to avoid effects of lattice symmetry
on the spectrum. The number of AAs should typically be
in the range 200–2000, corresponding to the typical size of
the protein.
Amino acids interact via electrostatic forces, van der Waals

forces, hydrogen bonds, disulfide bonds, or hydrophobicity
(Fersht, 1999; Petsko, 2008). All these are short-range
interactions, which amount to local coupling between lattice
points. We therefore assume that each AA interacts with
its nearest and next-nearest neighbors. For example on a
hexagonal lattice, with nearest and next-nearest neighbors
linked, the number of connections (the node’s degree) is at
most 12; all nodes in the protein interior have 12 links
(i.e., bonds) while those at the boundary have fewer (but at
least 3); see Fig. 10.
Finally, the coupling itself is modeled by harmonic springs

carried by each graph link (Born and Huang, 1954; Tirion,
1996; Alexander, 1998; Chennubhotla et al., 2005). Its
strength is determined only by the types of AAs at each
end of the link.

B. The lattice Laplacian

The lattice and its links may be viewed as an abstract
graph. This means that one can define gradients and
Laplacians (Biggs, 1993; Chung, 1997).8 In the graph, there
are na ¼ w × h amino acid nodes, indexed by Roman letters,
and nb bonds, indexed by Greek letters.9

FIG. 5. Evolutionary and mechanical properties of glucokinase. Left: Shear (darker is more shear), discussed in Sec. IX.E. Center:
Conservation (darker represents fewer mutations), discussed in Sec. IX.J. Right: Correlation (dark red represents sites of correlated
mutations), discussed in Sec. IX.K.

8The first book is more combinatorial, and the second introduces
more spectral concepts.

9If a bond α connects nodes i and j (i ≠ j), we also write
α ¼ ði; jÞ.
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First, one endows every bond in the graph with an arbitrary
but fixed orientation, and then the incidence matrix of a graph
is the nb × na matrix defined by

∇αi ¼
8
<

:

−1; if i is the initial vertex of edge α;

1; if i is the final vertex of edge α;

0; if i is not in α:

Note that for any function f on the vertices, the map f ↦ ∇f
is the coboundary mapping of the graph, namely,

∇fðαÞ ¼ fðjÞ − fðiÞ;

where α is the link connecting i to j.
As in the continuum case, the Laplace operator Δ is the

product Δ ¼ ∇T∇, where the superscript T denotes the
adjoint. The nondiagonal elements Δij are −1 if i and j are
connected and 0 otherwise. The diagonal part of Δ is the
degree Δii ¼ zi, i.e., the number of nodes connected to i. Note
that this is a discrete graph Laplacian, and no coordinates are
involved so far.
We next embed the graph in a Euclidean space Rd (d ¼ 2),

by assigning positions ri ∈ Rd to each AA, i.e., to each
lattice point i ¼ 1;…; na. This is coded as a na × d real
matrix r. Finally, to each bond α we assign a spring with
constant kα which we view as the diagonal elements of an
nb × nb matrix K:

Kαβ ¼ kαδαβ: ð1Þ

This defines a deformable spring network which has an
internal energy and an equilibrium configuration.
To account for the energy cost of deformations in the lattice

protein, one considers the elastic tensor H (or Hamiltonian)
which we now describe in detail (Chung and Sternberg, 1992,
pp. 618 and 619). The quantity H is a tensor because the
deformations are not scalars, but vectors inRd. We first denote
by nα the (normalized) direction vectors for each bond
α ¼ ði; jÞ: nα ¼ ðri − rjÞ=jri − rjj. Then, we define the
“embedded” gradient tensor D (of size nb × na × d) which
is obtained by multiplying each element of the graph gradient
∇ by the corresponding vector n:

Dαi ¼ nT
α∇αi; ð2Þ

namely, each projection of D on a bond α, Dα;∶ is a na × d
matrix containing only 2d nonzero entries in rows i and j,
which correspond to the components of the unit vector along
the bond α ¼ ði; jÞ.
Let ui be the displacement vectors of each vertex from ri

to ri þ ui, therefore u is a na × dmatrix. The elastic energy of
such a perturbation is

E ¼ 1

2
uTHu ¼ 1

2

X

ij

X

kl

uikðHijÞklujl; ð3Þ

where the Hamiltonian tensor is defined as

H ¼ DTKD ¼
�X

αβ

DαikKαβDβjl

�

i;j¼1;…;na;k;l¼1;…;d
:

The d × d off-diagonal components are

Hij ¼
X

α

∇αinαKααnT
α∇αj

¼ Δijkði;jÞnði;jÞnT
ði;jÞ ;

which we complete with the diagonal blocks (i ¼ j) so that
rows and columns sum to zero: Hii ¼ −

P
j≠iHij.

In this construction, we assumed that the equilibrium
configuration of the network (described by the vectors ri)
is such that all springs are at their equilibrium length,
disregarding the possibility of “internal stress” (Alexander,
1998), hence the initial elastic energy is 0. The extension of
the theory to networks that are initially frustrated, where some
springs are stretched or squeezed is a difficult subject. A paper
which studies the conjectures by Alexander on internally
stressed networks is Kustanovich, Rabin, and Olami (2003).
The spring constant is therefore the derivative of the force at
the equilibrium length of the spring.
We next consider only small deviations of the AAs from

their equilibrium, i.e., the linear mechanical response of the
protein to an applied force. While this approximation cannot
account for plastic and nonaffine deformations that often
occur in real proteins, it certainly simplifies the analysis in
contrast to the inherent difficulties of studying fully nonlinear
systems.
Given a prescribed “protein fold” (the lattice positions ri,

i ¼ 1;…; na), a gene first determines the spring constants via
a “genetic code” which maps codons to AAs on the lattice
and thereby determines the interaction strength between
neighbors on the lattice. This in turn defines a phenotype
of the protein, namely, its mechanical response under defor-
mations. Each choice of the gene, i.e., the set of codons
c ¼ fcig, defines a HamiltonianH ¼ HðcÞ. Componentwise,
each d × d block Hij (i ≠ j) depends only on the codons ci
and cj: HijðcÞ ¼ Hijðci; cjÞ.
In summary, note that H depends on three things:
(1) The position ri of each amino acid i ¼ 1;…; na.
(2) The type ci of each amino acid i ¼ 1;…; na.
(3) The spring constants kðc; c0Þ representing the inter-

action strengths between amino acid types c and c0.
This definition is versatile enough to be generalized to
other systems, such as proteins made of the standard
20 AAs with specific interaction constants for each of the
possible AA pair.

C. Hooke’s law

We now have a map from genes c to Hamiltonians HðcÞ,
and we want to study the deformability of the network as a
function of c. In the linear regime of relatively moderate
deformations, one can use Hooke’s law (Alexander, 1998) to
relate a (small) deformation u to the force by

f ¼ Hu;

Jean-Pierre Eckmann, Jacques Rougemont, and Tsvi Tlusty: Colloquium: Proteins: The physics of amorphous …

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 031001-8



where f is a force vector field. We are interested in the inverse
relation, since we want to know the deformation of the
network (protein) as a function of the applied force f. This
inverse will be described by Green’s function G:

u ¼ Gf: ð4Þ

VI. SIMULATING EVOLUTION

Next we consider modeling evolution for a general genetic
code. As described, to each gene c there is a natural
Hamiltonian HðcÞ associated with it. This is the mechanical
genotype-to-phenotype map. We assume that a fitness func-
tion F is given, mapping every H to its fitness score
FðHÞ ∈ R. The observable we take later as F will be an
expectation value for some components of the force field f.
The evolutionary process alters this fitness by mutating
individual random positions in the gene c (the collection
of ci). This is realized by a Metropolis algorithm (Metropolis
et al., 1953).
In an evolution simulation, one exchanges a randomly

selected codon with another one (at the same position), while
demanding that the fitness change δF is positive or non-
negative. We call δF > 0 a beneficial mutation, whereas
δF ¼ 0 corresponds to a neutral one. Deleterious mutations
δF < 0 are generally rejected.
As in statistical physics, variants of this algorithm can be

envisaged, for example, by asking for an increase of F by a
minimal factor jFj → jFj · ð1þ εÞ with ε > 0, for a step to be
accepted. Other possibilities include the introduction of
“temperature,” i.e., accepting or rejecting even deleterious
mutations δF < 0 with some probability. The rationale behind
using these variants of Metropolis algorithms lies in the nature
of natural mutations. For a review of the role of deleterious
mutations, see Kondrashov (2017). Details of F will be given
when we discuss various models in Sec. VIII.

VII. GREEN’S FUNCTION AS A LINK BETWEEN
THE THEORY OF AMORPHOUS SOLIDS
AND LIVING MATTER

In the previous section, the ground was prepared for
studying the connection between the genes and the mechani-
cal properties of the proteins they code. We use the mapping
from the gene c to the Hamiltonian HðcÞ previously intro-
duced. One of the questions to be examined is how the protein
reacts to forces applied to it, and how this response is encoded
in the gene. Such forces occur when a small ligand molecule
attaches to a binding site on the protein’s surface, inducing a
mechanical response in other regions of the protein.
Intuitively, this means that we are looking for a relatively

strong reaction to a weak signal. Such phenomena are
captured by soft modes. Such modes are given by zero
eigenvalues of the Hamiltonian H, and the corresponding
deformations are described by the eigenvector u of displace-
ments of r (corresponding to the zero eigenvalue).
Among the many approaches to the zero eigenvalue

problem, we use the methods of Green’s functions, which
are well adapted to the emergence of soft modes in protein

evolution. Green’s function (also called the resolvent, matrix
inverse) is useful here because of the following observation:
Consider a mutation that alters just one ci. Given the short-
range nature of H, this implies that only a small number of
terms in Eq. (3) will change, independently of the size of the
system. For example, for the hexagonal lattice in Fig. 6, no
more than 12 terms change with each mutation.
Since, by Hooke’s law, f ¼ HðcÞu, the response of the

system to an external force is given by the inverse relation
u ¼ GðcÞf, where G is the Green’s function, i.e., the inverse
ofH. So, G maps the genotype c to the reaction of the protein
to an external force f. A typical example of such a stimulus
appears when f “pinches” two neighboring AAs toward each
other; we want to measure the effect of the pinch on another
AA pair (usually on the opposite side of the protein).
In dimension d ¼ 2, the Hamiltonian H has always

dðdþ 1Þ=2 ¼ 3 zero eigenvalues, owing to the rigid
Galilean transformations (two translations and one rotation)
of the lattice as a whole. Therefore, since H is bound to be
singular, it lacks a proper inverse. Instead, one may compute
the inverse on the subspace of Rna × Rd in the complement of
the three Galilean directions. This is called the pseudoinverse
(Penrose, 1955) and is usually denoted by GðcÞ ¼ HðcÞ†.
Let P be the projection on the subspace spanned by the

generators of the Galilean transformations, then

GðcÞ ¼ ½ð1 − PÞHðcÞð1 − PÞ�−1 ≡HðcÞ†:

It is easy to verify that if u is orthogonal to the zero
modes, u ¼ ð1 − PÞu, then u ¼ GHu. The pseudoinverse
obeys the four requirements: (i) HGH ¼ H, (ii) GHG ¼ G,
(iii) ðHGÞT ¼ HG, and (iv) ðGHÞT ¼ GH.
The projection onto the complement of the 0 space

commutes with the action of mutations, since changing the

FIG. 6. The main features of the cylinder model. Left: The
mapping from the binary gene to the connectivity of the amino acid
(AA) network that makes a functional protein. The color of the
AAs represents their rigidity state as determined by the connec-
tivity according to the algorithm of Sec. VIII.A.3. Each AA can be
in one of three states: rigid (yellow) or fluid (i.e., nonrigid), which
are divided between shearable (blue) and nonshearable (red).
Right: The AAs in the model protein are arranged in the shape
of a cylinder, in this case with a fluid channel (blue region). Such a
configuration can transduce a mechanical signal of shear or
hingelike motion along the fluid channel.
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AA at a site does not change the Galilean invariance of the
lattice. Therefore, the pseudoinverse can be used for our
purposes just like the standard inverse.

A. Woodbury’s formula

When one changes a gene c to some c0, then the change in
the Hamiltonian is δH ¼ Hðc0Þ −HðcÞ and correspondingly
the changes in the Green’s function from GðcÞ to Gðc0Þ. The
Woodbury formula (Woodbury, 1950; Deng, 2011) relates
δG ¼ Gðc0Þ −GðcÞ to δH as follows: First, one notes that the
rank of the change tensor δH is equal to the number r of bonds
altered by the mutation. δH can therefore be written as

δH ¼ MBMT;

where the r × r diagonal matrix B records the strength change
of the bonds (e.g., from weak to strong or vice versa). M is a
r × na × d tensor which is the restriction of D [see Eq. (2)] to
bonds which were changed. This allows one to easily calculate
changes in the Green’s function:

δG ¼ −GMðB−1 þMTGMÞ†MTG: ð5Þ

The reader who is not familiar with Eq. (5) can compare it to
the resolvent formula (in the commutative, scalar case):

1

xþ y
−
1

x
¼ −

1

x

�
1

1=xþ 1=y

�
1

x
;

with x−1 corresponding to G, and y to B (and δH).
The Woodbury formula is especially useful since one has

to invert only square matrices of size r [B and the term in
brackets in Eq. (5)], instead of inverting the larger tensorH of
size d × na (Henderson and Searle, 1981). For point muta-
tions, this difference is dramatic, since the rank r can be at
most z, the number of neighbors of the mutated AA, implying
that r ≪ na × d. For example, in the hexagonal model, Fig. 6,
r ≤ z ¼ 12 while na × d ¼ 1080.

B. Dyson’s formula

Another useful (and more common) identity is Dyson’s
formula (Dyson, 1949a, 1949b; Abrikosov, Gorkov, and
Dzyaloshinski, 1963). It can be obtained by applying the
resolvent identity to G0 ¼ Gþ δG, leading to

G0 ¼ G −GδHG0: ð6Þ

Since G0 appears on the right-hand side (rhs), one may
successively iterate this identity to get the Dyson series,

δG ¼ G0 −G ¼ −GδHGþGδHGδHG − � � � : ð7Þ

The series is widely used in potential scattering and is
interpreted there as expansion in multiple scattering. The first
term is usually called the Born term. We interpret this identity
in terms of multiple mutations and this is another contact of
methods known from the physics literature with questions in
evolution.

VIII. MODELS: PROTEIN AS AN EVOLVING MACHINE

After introducing the basic principles of our approach,
we now discuss how to apply them in specific models. As in
any simplifying model, there is an intrinsic conflict: On
the one hand, one wants to keep the model as simple as
possible, because the goal is to test basic principles, not
specific proteins. On the other hand, there should still be
some connection to real proteins. As mentioned before,
one cannot apply the thermodynamic limits of standard
statistical mechanics (infinite number of particles, long-range
potentials, and the like), since the protein boundary plays an
important role. So the protein is treated as a finite, amorphous
system.

A. A model with very simple structure (cylinder model)

This model, introduced by Tlusty, Libchaber, and Eckmann
(2017), assumes that the coupling between nodes will depend
only on one of the two AAs linked by a bond. Although we
reformulate the problem differently, it is in fact equivalent to a
lattice model as previously described (Sec. V.A) in the limit of
infinite spring constants (bonds are solid rods).
To get somewhat closer to the standard genetic code with

its 20 AAs, we introduce 25 ¼ 32 species of AAs; each AA
is coded by a 5-bit codon written in a binary alphabet of 0s
and 1s.10 The geometry of the model is a square lattice with
periodic boundary conditions in the horizontal direction,
forming a cylinder. One realization is shown in Fig. 6 (right)
where the blue region corresponds to the shear band. This
should be compared to Fig. 3 where the shear band is between
the red and green arrows (in Fig. 4 the shear band is shown in
red). We see later that the motion around shear bands in the
models is similar in nature to the one of Fig. 3.

1. The cylindrical amino acid network

We now define the model in further detail. We consider a
geometry with height h ¼ 18, i.e., the number of layers in the
z direction, and width w ¼ 30, i.e., the circumference of the
cylinder. The row and column coordinates of an AA are ðr; qÞ,
with r for the row ð1;…; hÞ and q for the column ð1;…; wÞ.
The cylindrical periodicity is realized by taking the horizontal
coordinate q modulo w, q → modwðq − 1Þ þ 1.
Each AA in row r can connect to any of its five nearest

neighbors in the next row below it. This defines 25 ¼ 32

effective species of amino acids that differ by their
“chemistry,” i.e., by the pattern of their bonds. An AA at
ðr; qÞ is encoded in the gene as a 5-letter binary codon lrqk,
k ¼ −2;…; 2, where the kth letter denotes the existence (¼ 1)
or absence (¼ 0) of the kth bond. The full gene is therefore
a binary sequence of length 2700 ¼ 5 · w · h. Each of its w ·
h ¼ 540 codons specifies which of the five bonds are present
or absent. The effective size of the problem is only ns ¼
2550 ¼ w · ðh − 1Þ · 5 because the bonds of the bottom row
are never used and do not affect the configuration of the
protein and the resulting dynamical modes.

10There are 2 nucleotides and 32 nonredundant codons.
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2. Evolution searches for a mechanical function

We next define the evolutionary fitness of the cylindrical
protein as follows: To become functional, the protein has to
evolve a configuration of AAs and bonds that can transduce a
mechanical signal from a prescribed input at the bottom of the
cylinder to a prescribed output at its top. This signal is a large-
scale, low-energy deformation where one domain moves
rigidly with respect to another in a shear or hingelike motion,
which is facilitated by the presence of a fluidized, “floppy”
channel separating the rigid domains (Alexander et al., 1983;
Phillips and Thorpe, 1985; Alexander, 1998).
The definition of the fluid channel is described in detail in

Sec. VIII.A.3, but can be summarized by two features of amino
acids in the channel (Fig. 6): (A) Fluidity—These AAs are not
part of rigid subnetworks in the protein. Locally, this means that
fluid AAs cannot be linked to too many rigid neighbors.
(B) Shearability—The AAs in the channel should have enough
fluid AAs around them to sustain low-energy shear motion.
The fluidity, rigidity, and shearability propagate in a manner

reminiscent of percolation. Note that, while the system
“learns,” through mutations, to form a fluid channel, this
learning is not by presenting it with many inputs, but by only
checking the quality of the output under random mutations.
Tlusty (2016) (Fig. 8), imagined feedback of the following

type: A protein can evolve the ability to activate its own
transcription in response to a stimulus, which is the first step
toward cellular regulatory networks; see Lee et al. (2002) for
how this appears in the biological context and Djordjevic,
Sengupta, and Shraiman (2003), Lässig (2007), and Tlusty
(2016) for theoretical studies.

3. Rigidity propagation algorithm

The aim of this section is to define a model in which some
local rigidity rules, spelled out next, are able to transmit
deformability from the bottom of the cylinder to the top. There
are many ways in which this can be realized, and the rules we
give are a compromise between simplicity and the ability to
fulfil this aim. We have tested other variants with a similar
outcome.
The large-scale deformations are governed by the rigidity

pattern of the protein, which is determined by the connectivity
of the AA network via a simple majority rule (Figs. 6 and 7),
as follows. These large-scale deformations could in principle
change the ability of the protein to bind a target, and in this
way implement the response trigger in the feedback loop
previously mentioned. Each AA position will have two binary
properties which define its state: rigidity σ (an AA is either
solid, σ ¼ 1, or fluid, σ ¼ 0) and shearability s (an AA is
either shearable, s ¼ 1, or nonshearable, s ¼ 0). Only three
of the four possible combinations are allowed:

(1) nonshearable and solid (yellow): σ ¼ 1, s ¼ 0,
(2) nonshearable and fluid (red): σ ¼ 0, s ¼ 0,
(3) shearable and fluid (blue): σ ¼ 0, s ¼ 1.

Nonshearable protein domains tend to move as rigid bodies
(i.e., via translation or rotation), whereas shearable regions are
easy to deform. The nonshearable domains are mostly rigid,
but can still have pockets of fluid AAs.
Given a fixed sequence and an input state in the bottom

row of the cylinder, fσ1;q; s1;qg the state of the cylinder is

completely determined by “percolation” of the two properties,
rigidity or fluidity and shearability, through the network, as
follows.
In a first sweep through the rows, we establish the rigidity

property σ. The rigidity of AAs in row r ¼ 1 is prescribed
initially. In all other rows (r ¼ 2;…; h) the bonds determine
the value of the rigidity of ðr; qÞ through a majority rule:

σr;q ¼ θ

�X2

k¼−2
lrqkσr−1;qþk − σ0

�

; ð8Þ

where θ is the step function [θðx ≥ 0Þ ¼ 1, θðx < 0Þ ¼ 0].
The parameter σ0 ¼ 2 is the minimum number of rigid AAs
from the r − 1 row required to rigidly support an AA: In 2D
each AA has two coordinates which are constrained if it is
connected to two or more static AAs. In this way, the rigidity
property of being pinned in place propagates through the
lattice as a function of the initial row and of the bonds as
encoded in the gene.
We next address the shearability property s which is

determined by the rigidity as follows: We assume that all
fluid AAs in row r ¼ 1 are also shearable [blue: (σ ¼ 0;
s ¼ 1)]. A fluid node ðr; qÞ in row r will be shearable if any of
its neighbors at ðr − 1; qÞ or ðr − 1; q� 1Þ is shearable:

sr;q ¼ ð1 − σr;qÞ · θ
�X1

k¼−1
sr−1;qþk − s0

�

; ð9Þ

where s0 ¼ 1. The first factor on the rhs ensures that a solid
AA is never shearable.

4. Fitness and mutations

As explained before, evolution searches for a functional
protein which can transfer forces. The simulation of this

FIG. 7. Illustration of the percolation rules for shearability and
rigidity states. Note that site ðr; qÞ was turned solid because it is
attached to two solid sites below it. Also note that the red site
above it is fluid, because it is attached to less than two solid sites
below it. But it is not shearable because it does not connect to a
shearable site below it. On the other hand, the top right site is
shearable and fluid, since it is attached to only one solid site
[namely, ðr; qÞ] and no others on the invisible part of the structure
(as seen by its blue connections), and it is also connected to the
blue site at ðr; qþ 2Þ.
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search starts from a random sequence (of 2550 codons), and
from an initial state (input) in the bottom row of the cylinder.
For most simulations, this initial state consisted of only solid
beads except a stretch of five consecutive shearable beads, as
shown in Fig. 8.
We next define a fitness function which will direct the

evolutionary process. The state with maximal fitness (i.e.,
the “target”) is a chain of w values, fluid and shearable
(σ ¼ 0; s ¼ 1) or solid (σ ¼ 1; s ¼ 0), in the top row, which
the protein should yield as an output: we call it x�≡
fσ�q; s�qgq¼1;…;w. Given

(1) a gene sequence c, which determines the connectiv-
ity lrqk,

(2) the input state fσ1;q; s1;qgq¼1;…;w,
the algorithm described uniquely defines the output state in
the top row, fσh;q; sh;qgc¼1;…;w. At each step of evolution, the
output state is compared to the fixed target by measuring
the Hamming distance11 to the target x�:

F ¼ −wþ
Xw

q¼1

ð1 − jsh;q − s�qjÞ · ð1 − jσh;q − σ�qjÞ: ð10Þ

This is the fitness function F of Sec. VI.
It is an important feature of this model that the fitness of the

network is measured only at the target line. This corresponds
to the biological fact that the protein can interact with the
outside world only through its surface (in our case, the ends of
the cylinder). One of the major outcomes of the model is that
this fitness still has a strong influence on the connectivity deep
inside the interior of the protein. While similar, the propaga-
tion of fluidity should not be confused with learning in neural
networks: In the learning case, the system is presented with
several inputs and learns to recognize others, while here there
is a fixed task, and the connections are driven only by the
target function F.

5. Simulation of evolutionary dynamics

Thanks to the simplicity of the model, one can easily
perform 106 simulations in a short time and gain much better

statistical insight than is possible with typical bioinformatic
data (of course, at the price of disregarding many biochemi-
cal details). We present results for one specific fitness:
the input at the bottom is a fluid region of length 6 and
output target at the top is a fluid region of length 5. For
other variants of this model, cf. Tlusty, Libchaber, and
Eckmann (2017).
We study 200 independent initial states (genes), starting

from a random sequence with about 90% of the bonds present
at the start. Given a sequence, we sweep according to the rules
of Eqs. (8) and (9) through the net and measure the Hamming
distance F [Eq. (10)] between the last row and the desired
target.
Solutions are then searched by successive mutations, with

a Metropolis algorithm (Metropolis et al., 1953). At each
iteration, a randomly drawn digit in the gene is flipped, that is,
the values of 0 and 1 are exchanged. This corresponds to
erasing or creating a randomly chosen link of a randomly
chosen AA. After each flip, a sweep is performed, and the new
output at the top row is again compared to the target. If F
(which is negative) decreases, we backtrack and flip another
randomly chosen bond. This procedure is repeated until
optimal fitness is reached (F ¼ 0). This will happen with
probability 1 if such a state exists and typically requires
103–105 mutations.
Although the functional sequences are extremely sparse

among the 32510 ¼ 22550 possible sequences, the small bias
for getting closer to the target in configuration space directs
the search rather quickly.
Once a maximal F is reached, we move away from it by

further mutations and then look again for a new optimum.
Reaching a state with F ¼ 0 takes around 11.2 beneficial
mutations on average. Getting from an initial sequence to
a maximizer is called a “generation.” For each of the 200
initial random genes, we followed 5000 generations, finding
a total of 106 optima. The typical length of a generation
between two maxima is about 1500 mutations (most of them
neutral, see Fig. 9), similar to the time it takes starting from a
totally random gene. We also simulated one-generation paths
starting from 106 random genes. The two cases are very
similar, but the destruction-reconstruction simulations show
some correlations between consecutive generations, which
disappear after about four generations.

FIG. 8. Evolution of a mechanical function: A configuration (left) with a prescribed input (black ellipse at bottom) and random
connectivity pattern eventually evolved to form a fluid channel (right). The initial state has six fluid points (black ellipse), and our fitness
requires five fluid points at the top (black ellipse).

11The Hamming distance between two sequences is the number of
indices where they differ.
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B. A model with more realistic interactions (HP model)

This model differs from the cylinder model in several
respects:

(1) Geometry—The lattice is hexagonal with open boun-
dary conditions.

(2) Two-body interactions—The bonds depend on the
nature of the AA at both ends of the link.

(3) Amino acids species—There are only two species, H
(hydrophobic) or P (polar).

The two amino acid species are encoded in a binary genetic
alphabet and a codon size of 1: each AA chain is encoded in a
gene c of the same length na, where ci ¼ 1 encodes H and
ci ¼ 0 encodes P, i ¼ 1;…; na (in other words, the genetic
code is the identity map).
We next give details of how the model is constructed. The

lattice has width h ¼ 20 and height w ¼ 10, and therefore
na ¼ 200 AAs (see Sec. V.A). The bonds stretch over the 12
nearest and next-nearest neighbors of an AA (see Fig. 10, right
panel, for the connectivity and any of the panels in Fig. 11 for
the global arrangement of the lattice).
The strength of the springs is given by the HP model

(Lau and Dill, 1989) according to the rule

kði;jÞ ¼ κw þ ðκs − κwÞcicj;

where ci and cj are the (binary) codons of the AA connected
by bond α ¼ ði; jÞ, with ci ¼ 1 corresponding to H and ci ¼ 0

to P. This implies that a strong H − H bond has kα ¼ κs,
whereas the other bonds P − P, H − P, and P − H are weak
with kα ¼ κw. In our simulations we used κs ¼ 1 and
κw ¼ 0.01.

1. Pinching the network

The network is subjected to an external “pinch” which is a
localized force f applied at the boundary of the network. This
force acts in the complement of the subspace of Galilean

invariance, i.e., Pf ¼ 0 (see Sec. VII). The pinch acts on a pair
of neighboring boundary vertices p0 and q0 in the direction
np0q0 ¼ rp0 − rq0 which is parallel to the boundary (the L face
of the network). Thus f is a force dipole, i.e., two opposing
forces fq0 ¼ −fp0 ¼ f · np0q0 , which can be related to the
deformation u of the network by the Green’s function
Eq. (4). The pinch stimulus may represent localized inter-
actions, for example, a ligand binding at a specific binding
site (Fig. 4).
The biological fitness is specified by how well the response

of the network fits to a prescribed deformation vector v. This
vector is zero except at p and q which are on the opposite side
of the network (R face). The fitness function F is therefore

F ¼ vTu ¼ vTGf ¼ vpup þ vquq: ð11Þ

Note that Eq. (11) is a specific way of defining F, adapted
to the phenomenology of building a fluid channel that can
transmit allosteric interaction between two specific sites.
Other choices of f and u could be treated similarly, such
as multisite force patterns and multidomain dynamical modes.
For example, if the response can occur at any ðp; qÞ site at the
R face, the model may describe the emergence of induced fit
or conformational selection mechanisms (Sec. IV). To model
the emergence of specific recognition, one sets as a target a
strong response to a stimulus f, but hardly any response to a
similar “competitor” stimulus f̃.
In the spirit of the Metropolis algorithm used in the cylinder

model, one randomly exchanges AAs between H and P while
looking for changes in the fitness F. A gene c� is considered
a solution if F exceeds a certain large value.12 Figure 11
illustrates the vector field u of the deformation for three
genes c, along an evolutionary trajectory, improving the
fitness value F from left to right.

2. The protein backbone

One hallmark of proteins is that they are made from a long
chain of amino acids connected by strong covalent bonds,
called a backbone (see Fig. 2). This backbone is then folded in
an intricate way to form the protein, but the chain is not

FIG. 9. Following the progress of evolution during a typical run.
It is a sequence of mostly neutral steps, a fraction of deleterious
ones, and rare beneficial steps. The vertical axis is the accumu-
lated number of steps of each type.

FIG. 10. The protein is made of two species of AAs, polar
(P, red) and hydrophobic (H, blue) whose sequence is encoded in
a gene. Each AA forms weak or strong bonds with its 12 nearest
neighbors on the hexagonal lattice (right) according to the
interaction rule in the table (left).

12It is not reasonable to ask for F ¼ ∞, but it suffices to look for
F > Fcrit. In our case, Fcrit ¼ 5 is a good choice since in general, the
channel will have already formed and increasing Fcrit will only
enlarge the channel somewhat.
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broken. Here we assume that the folding process is just given
and that the mutations we consider are moderate enough so
that they do not change the general folding. Given this
restriction, one can still ask whether the existence of the
backbone affects such studies. From a conceptual point of
view, having a backbone just means that some springs in the
lattice are much stronger than the others, and therefore, it is
not surprising that adding a backbone does not change the
general picture.
In Fig. 12 we show two extreme cases, a serpentine

backbone either parallel to the shear band or perpendicular
to it. The presence of the backbone does not interfere with the
emergence of a low-energy mode of the protein whose flow
pattern (i.e., displacement field) is similar to the backboneless
case with two eddies moving in a hingelike fashion. In the
parallel configuration, the backbone constrains the channel
formation to progress along the fold (Fig. 12, left). The
resulting channel is narrower than in the model without a
backbone (Fig. 11). In the perpendicular configuration, the
evolutionary progression of the channel is much less oriented
(Fig. 12, right).
We expect that, in a realistic 3D geometry, the backbone

will have a weaker effect than what we observed in 2D
networks, since the extra dimension adds more options to
avoid the backbone constraint.

3. Pathologies and broken networks

As our criterion for evolution is the floppiness (large
eigenvalue of the Green’s function), there is of course the
trivial case where the network is just broken in two disjoint
pieces or into pieces with dangling ends. Such broken net-
works exhibit floppy modes owing to the low energies of the
relative motion of the disjoint domains with respect to each
other. Any evolutionary search might end up in such non-
functional unintended modes. The common pathologies one
observes are as follows:

(1) isolated nodes at the boundary that become weakly
connected via H → P mutations,

(2) “sideways” channels that terminate outside the target
region (which typically include around 8–10 sites),
and

(3) channels that start and end at the target region without
connecting to the binding site.

All of these are floppy modes that can vibrate independently
of the pinch and cause the response to diverge (> Fcrit)
without producing a functional mode. To avoid such pathol-
ogies, we apply the pinch force symmetrically: pinch the
binding site on face L and look at responses on face R and vice
versa. Thereby we not only look for the transmission of the

FIG. 12. Illustration of the backbone. The backbone is shown as
a solid black serpentine curve. AAs in neighboring sites along the
backbone tend to move together. We show two configurations:
(left) parallel to the channel and (right) perpendicular to the
channel. Parallel: The backbone favors the formation of a narrow
channel along the fold (compared to Fig. 11). Perpendicular: The
formation of the channel is “dispersed” by the backbone.

FIG. 11. Illustration of the deformation field uðcÞ ¼ GðcÞf, Eq. (4) for three choices of c. The force f ¼ f · np0q0 is applied on the left
of the lattice. The three panels show, from left to right, how the response u (shown in small arrows) evolves as the network fitness
F ¼ vTuðcÞ increases. The choice of v corresponds to the vertical separation of the two central points on the right.
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pinch from the left to the right but also from right to left. The
basic algorithm is modified to accept a mutation only if it does
not weaken the two-way response and enables hinge motion
of the protein. This prevents the vibrations from being
localized at isolated sites or unwanted channels. Of course,
the presence of a backbone (see Sec. VIII.B.2 and Fig. 12) will
make disconnection of the network more difficult. This is also
a more realistic model.
One may also impose a stricter minimum condition

δF ≥ εF with a small positive ε, say 1%. An alternative,
stricter criterion would be the demand that each of the terms in
F, vpup, and vquq increases separately.

IX. CONNECTING THE MODELS TO BIOLOGICAL
CONCEPTS

The theoretical methods introduced earlier lead to a family
of easily implementable numerical simulations. We discuss
these simulations and show that they can explain several basic
observations from the biology literature. They also suggest
new connections to be explored. The main idea is that
mechanical properties of the protein constrain the genetics
in multiple ways.
Each section introduces a technique of analysis, application

to one of the models described earlier, and an interpretation in
terms of biological questions.

A. Dimension of the solution set in the genotype
and phenotype spaces

We describe the set of solutions for the cylinder model of
Sec. VIII.A. The (genotype) sequence space is f0; 1g2550 (see
Fig. 6, bottom left). One can view this space as a 2550-
dimensional hypercube, with 22550 corners, and any flip of a
digit will move along an axis from one corner to another (the
dimension of a hypercube equals the number of directions in
which one can move from a corner). The space of configu-
rations (phenotypes) is the arrangements of colors (see Fig. 6,
top left), which is f0; 1; 2g540, since there are three colors (red,
blue, and yellow).
The set S of solutions to the mutation problem is a subset of

this hypercube; see Fig. 13. To determine the dimension of
experimental data, with large sample size, it is convenient to
use the box-counting algorithm (Grassberger and Procaccia,
1983). First, one counts the number NðϱÞ of pairs of points in
S at Hamming distances ≤ ϱ, i.e., with not more than ϱ
changes. One then plots logNðϱÞ vs log ϱ and the dimension
is the slope in this log-log plot, as indicated by black lines in
Fig. 13. We see that the dimension in the space of configu-
rations (phenotypes) is about 8–9, while, in the space of
sequences (genotypes), the dimension is basically “infinite,”
namely, just limited by the maximal slope one can obtain
(Procaccia, 1988) from the 106 simulations.13 It would be
interesting to discuss this problem as a special case of the
problem of hitting times of small sets in hypercubes (these
hitting times are usually exponentially distributed). The

novelty in the current context is the use of a very small drift,
namely, we do not allow steps which increase the distance to
the set S.14

The dramatic dimensional reduction in mapping genotypes
to phenotypes stems from the different constraints that shape
them (Savir et al., 2010; Savir and Tlusty, 2013; Friedlander
et al., 2015; Kaneko, Furusawa, and Yomo, 2015). In the
phenotype space, most of the protein is rigid, and only a small
number of shear motions are low-energy modes, which can be
described by a few degrees of freedom. In the genotype space,
in contrast, there are many neutral mutations which do not
affect the motion of the protein.
The biological interpretation is that the gene is much more

random than the phenotype of the protein it forms. However,
as we shall see, in particular, in Sec. IX.F, that the gene still
needs to be quite precise in certain well-defined positions. In
the case of allosteric proteins these critical positions are the
hinges and other locations of strong stress.

B. Expansion of the protein universe

Here we test the cylinder model against the ideas of
Povolotskaya and Kondrashov (2010). Our results will give
some insight about the nature of the set of solutions, i.e., genes
of functional proteins. Povolotskaya and Kondrashov (2010)
considered any two solutions with gene sequences s1 and s2.
They ask how much the solution s3, one generation after s2,
differs from s1, and define the following observable.
Let xi ¼ ð2s1;i − 1Þðs3;i − s2;iÞ (since s1;i ∈ f0; 1g, xi > 0

if the change between s3;i and s2;i is toward s1 and xi < 0

otherwise). Finally, Naway ¼ #fi∶xi < 0g and Ntowards ¼
#fi∶xi > 0g. In Fig. 14, the ratio Ntowards=Naway is plotted

FIG. 13. Dimensional reduction of the genotype-to-phenotype
map: Dimension measurement from 106 independent configura-
tions (phenotypes) for the cylinder model. The dimension of the
configuration space is about 9 (red curve), while in sequence
space it is basically infinite (blue curve). All pairs seem to have
the same distance, namely, 1275 ¼ 2550=2, which is the typical
distance between two random sequences.

13For explanation of the flat pieces of the graph, see Eckmann and
Ruelle (1985). 14We thank G. Ben Arous for helpful discussions on this point.
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as a function of the distance D between s1 and s2, normalized
by the diameter dmax ¼ 2550. The interested reader will notice
the similarity to Fig. 3 in Povolotskaya and Kondrashov
(2010): In their case, because of the small number of
experimental samples, they see only the low-D region of
Fig. 14, far from the diameter of the “protein universe.”
The set of solutions is a very dilute, but complex, subset S

of the hypercube. The search for a good gene corresponds to a
slightly biased random walk along a path of monotonically
increasing fitness (δF ≥ 0). While we do not have a good
mathematical description of such intricate walks, we can
compare them to the null model of purely random walks. In
this case, one gets the simple expression D=ð1 −DÞ as a
function of D (the normalized Hamming distance). This is
shown as a black curve in Fig. 14 (i.e., D is the proportion of
sites which differs between the pair of solutions s1 and s2).
The good fit shows that the fitness-constrained evolutionary
paths expand as if one performed a random walk on the
full cube.
It is interesting to note the following: First, that this

result must be intimately connected to the high dimension of
the problem, since for low-dimensional hypercubes it does
not hold. Second, most samples are near the edge D ¼ 1 of
the universe, where the Hamming distances among the
sequences are close to the typical distance between any
two random sequences. To conclude: While maintaining
functionality, the divergence of acceptable gene sequences
has all aspects of a random walk (on a hypercube). This
conclusion is close to the “expansion of the protein uni-
verse” (in honor of E. Hubble), described by Povolotskaya
and Kondrashov (2010).

C. Spectrum in phenotype and genotype spaces

Another useful method to analyze large sets of solutions is
by spectral analysis in terms of singular value decompositions
(SVD). For the cylinder model, we have 106 binary vectors
with n ¼ 2550 components each. To find the typical corre-
lation spectrum of the solution, one forms a matrix W of size
m × n ¼ 106 × 2550. The SVD of this matrix is a generali-
zation of the spectral decomposition of positive (semidefinite)
square matrices: W is decomposed as U ·D · VT, where U is
m ×m, V is n × n, and D is an m × n diagonal matrix (only
the elements Dii with i ¼ 1;…; n are nonzero). In our case,
m ≫ n, which is required to obtain good statistics of the
random process. The singular values λGi ¼ Dii are in general
positive and in this case the decomposition is unique. The
columns of V are the (generalized) eigenvectors ofW, the first
few of which are shown in Fig. 15.
The singular values λGi are the square roots of the spectrum

of the covariance matrix15 WTW, which has the same
eigenvectors as W. Therefore, the high values correspond
to the principal covariance components, the directions with
maximal variation in the solution set. Mutatis mutandis, we
perform the same SVD for the configurations, using the 540
s values [that is, of the shearability Eq. (9)] of vectors of the
configurations.
Figure 15 illustrates the difference between the configura-

tion space (phenotype) and the sequence space (genotype).
Configuration space (The eight figures on the bottom left):

The first mode is proportional to the average configuration.
The next modes reflect the basic deviations of the solution
around this average. For example, the second mode is left-to-
right shift, the third mode is expansion contraction, etc. Since
the shearable/nonshearable interface can move at most one
AA sideways between consecutive rows, the modes are
constrained to diamond-shaped areas in the center of the
protein. This is the overlap of the influence zones of the input
and output rows.
Sequence space (The eight figures on the bottom right): The

first eigenvector is the average bond occupancy in the 106

solutions. The higher eigenvalues reflect the structure in
the many-body correlations among the bonds. The typical
pattern is that of “diffraction” or “oscillations” around the
fluid channel. This pattern mirrors the biophysical constraint
of constructing a rigid shell around the shearable region.
Higher modes exhibit more stripes, until they become noisy,
after about the tenth eigenvalue.
The sequence spectrum, top right in Fig. 15, has some

outliers, which correspond to the localized modes shown in the
eight panels. Apart from that, the majority of the eigenvalues
seem to obey the Marčenko-Pastur formula (Marčenko et al.,
1967). If the matrix is m × n, m > n, then the support of the
spectrum is ð1=2Þð ffiffiffiffi

m
p � ffiffiffi

n
p Þ. In our case, since we have a

106 × 2550 matrix, one expects (if the matrices were really

random) to find the spectrum at ð1=2Þð
ffiffiffiffiffiffiffi
106

p
� ffiffiffiffiffiffiffiffiffiffi

2550
p Þ, which

is close to the simulations and confirms that most of the bonds
are just randomly present or absent. The slight enlargement of

FIG. 14. Distribution of solutions in the sequence universe: A
measure for the expansion of functional genes in the sequence
universe is the backward-to-forward ratio, the fraction of point
mutations that make two sequences closer vs the ones that
increase the distance (Povolotskaya and Kondrashov, 2010).
The Hamming distances D (normalized by the universe diameter
dmax ¼ 2550) show that most sequences reach the edge of the
universe, where no further expansion is possible. The black curve
D=ð1 −DÞ is the backward-to-forward ratio of purely random
mutations. Given the overwhelming number of samples near the
maximal D, the Gaussian distribution is well visible (in the
vertical direction).

15The definition of the covariance requires one to subtract the
mean. Instead we project out the first eigenvalue.
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the spectrum is attributed to memory effects between gener-
ations in the same branch. This corresponds to phylogenetic
correlations among descendants in the same tree (Felsenstein,
1985).16 We conclude: The small number of discrete eigen-
values shows that a small number of parameters characterizes
both the phenotype and the nonrandom part of the genotype of
proteins.

1. Geometry of the genotype and phenotype solution spaces

The 106 genotype vectors form a “cloud” of points in a
2550-dimensional space. The geometry of the cloud can be

explored by plotting projections along the axes defined by the
eigenvectors ci, i ¼ 1; 2;…; 2550; see Fig. 16. Consider, for
example, the projection of the cloud onto the subspace
spanned by c2, c3, and c100. The variation along the three
axes is of comparable size. However, the equivalent projection
of the 540-dimensional phenotypes along their eigenvectors
u2, u3, and u100 shows very small variation along the vertical
(u100) axis, similar to the projections of a flat ellipsoid.
The projections reflect the differing shapes of the solution

clouds: in the genotype space the cloud is a 2550-dimensional
spheroid object, while in the phenotype space it is a flat
discoid of dimension ∼10.

D. Stability of the mechanical phenotype under mutations

Any protein is the outcome of a long evolutionary trajectory
starting from a distant ancestor. It is likely to find other
descendants of the same ancestor in closely related species. In
practice, one fetches the pairwise most similar proteins from a
collection of species and aligns their sequences to identify
homologous amino acids (all descendants of a given amino
acid in the ancestor protein) (Karlin and Altschul, 1993). Once
this has been accomplished, one can study mutation patterns
in this multiple sequence alignment. There are two questions
of interest here:

(1) Which positions in the gene are conserved, i.e., they
encode the same AA?

(2) Which pairs of positions are covarying: A mutation at
one position is frequently compensated by a mutation
at the other position?

The second question, about genetic correlations, will be
discussed in detail in Sec. IX.K. In this section, we discuss
the first question, regarding AA conservation, in the context
of the cylinder model. To produce Fig. 17 one takes 106

sample solutions and mutates, for each of them, every
possible position in the AA network. One then asks which
mutations destroy the solution. At every position, the
intensity of the blue color is proportional to the probability
that a mutation at that position destroys the solution. The
end of the channel is very sensitive, but also the boundaries
between the channel and the bulk. This should be compared
to Fig. 5 (center) where the analogous question was asked
for glucokinase (Rougemont, Eckmann, and Tlusty, 2019),
and answered by aligning 122 homologs of glucokinase. We
conclude: Sensitivity to mutations is localized near mechan-
ically critical regions.

E. Shear modes in the amino acid network

We focus here on the HP model, although similar results
hold for the cylinder model. In Sec. VIII.B.1 we have shown a
pinch stimulus f leads to a deformation field u ¼ Gf; see
Eq. (4). As the fitness F of Eq. (11) improves, the system
forms a fluid channel and the response field u shows a
hingelike rotation, as is visible in Fig. 11. This should be
compared to Fig. 3, showing the experimentally measured
deformation of glucokinase. Opening a hinge in a network
will not only move the two sides of the hinge but also shear the
connecting bonds, especially at the hinge itself. Furthermore,
remaining links near the opening of the hinge (at the opposite

FIG. 15. Correspondence of modes in sequence (genotype) and
configuration (phenotype) spaces for the cylinder model: We
produced the spectra by singular value decomposition of the
106 solutions. (a) Top: The spectrum in configuration space
exhibits about 8–10 eigenvalues outside the continuum (large first
eigenvalue not shown). Bottom: The corresponding eigenvectors
describe the basic modes of the fluid channel, such as side-to-side
shift (second) or expansion (third). (b) Top: The spectrum of the
solutions in sequence space is similar to that of random sequences
(black line), except for about eight to nine high eigenvalues that are
outside the continuous spectrum. (Note that the x axis does not
start at 0.) Bottom: The first eight eigenvectors exhibit patterns of
alternating þ=− stripes, which we term correlation “ripples,”
around the fluid channel region. Seeing these ripples through the
random evolutionary noise required at least 105 independent
solutions; cf. Teşileanu, Colwell, and Leibler (2015).

16The continuous part of the sequence spectrum, which is not quite
of the standard form, could in principle be studied by taking into
account the known correlations. However, even the techniques of
Guhr, Müller-Groeling, and Weidenmüller (1998) seem difficult to
implement.
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side of the protein) will be stretched as well. These observa-
tions can be quantified by measuring the shear. The shear s at
any (lattice) point is the symmetrized derivative of the
displacement field u, which is computed as follows.
First, the displacement vector at the point x ∈ Rd is uðxÞ

with uiðxÞ ¼ x0iðxÞ − xi, the difference between the “new”
points x0ðxÞ and the “old” points x in Rd. The local
deformation matrix DðxÞ is then given by

Dij ¼
∂x0iðxÞ
∂xj ;

so that ∇uðxÞ ¼ DðxÞ − 1. [This matrix is also called the
“compatibility matrix” in the review by Lubensky et al.
(2015).] The shear matrix ε is

εijðxÞ ¼
1

2

�∂ui
∂xj þ

∂uj
∂xi þ

Xd

k¼1

∂uk
∂xi ·

∂uk
∂xj

�

:

In short notation

ε ¼ 1
2
f½∇uðxÞ�T þ ∇uðxÞ þ ½∇uðxÞ�T∇uðxÞg

¼ 1
2
½CðxÞ − 1�; ð12Þ

with CðxÞ ¼ DðxÞTDðxÞ, which is the metric of the coor-
dinate transformation.

FIG. 16. The projections of the set of 106 solutions as 2550-dimensional gene sequences (left column) and corresponding 540-
dimensional phenotypes (right column) onto their SVD eigenvectors c and u. The top row shows axes 2 (horizontal) and 100 (vertical),
and the bottom row shows axes 3 (horizontal) and 100 (vertical). Note that the phenotypes have larger variation along their 2 and 3
components than their 100 component, unlike the genotypes which appear evenly distributed in all directions.

FIG. 17. The sensitivity of solutions to a single mutation as a function of the mutation position. Mutations at the output and around the
shear band tend to be more deleterious (darker blue), while in the rigid regions they are likely to be neutral.
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As a measure of the magnitude of the shear one can use

sðxÞ ¼ Trðε2Þ − 1

d
½TrðεÞ�2

¼ Tr

�

ε −
1

d
TrðεÞ · 1

�
2

; ð13Þ

which is the square of the Frobenius norm (L2) of the traceless
part of ε.17 The trace of ε is related to the isotropic dilation,
which in the protein is a smaller effect than the shear and
therefore will not be further considered.18

1. Implementation in the case of protein structure data

As proteins are discrete objects, we replace the derivatives
by difference operators (Gullett et al., 2008; Mitchell, Tlusty,
and Leibler, 2016).
We consider the crystallographic data of two conformations

of a given protein [for example, the PDB structures 1v4s and
1v4t in Fig. 3 (Kamata et al., 2004)]. To produce Fig. 3 from
these data (Rougemont, Eckmann, and Tlusty, 2019), we take
a ball of radius ϱ of about 10 Å around each atom X in the
protein.19 This will encompass m ¼ mðXÞ other atoms, at
positions ri ∈ R3, i ¼ 1;…; m. Let r0 be the coordinates of X,
and let AðXÞ be the m × 3 matrix of the m distance vectors
ri − r0, in the first configuration (i.e., one of the PDB
structures). Let BðXÞ be the analogous matrix for the second
configuration and compute

Q ¼ 1
2
ðATAÞ−1ATðBBT −AATÞAðATAÞ−1: ð14Þ

The matrix Q is an approximation of ε and is obtained by
observing that B ¼ ADT:

C ¼ DTD ¼ ðATAÞ−1ATBBTAðATAÞ−1:
By substituting this into Eq. (12), we verify that Eq. (14)
holds. With this approximate shear tensor ε one computes its
magnitude sðr0Þ using Eq. (13).
The discrete approximation of the shear field in glucokinase

is shown in the leftmost panel of Fig. 5 (with m typically
around 50). The strain is found to be large in the hinge of the
protein and also at a somewhat loose outer surface.20 In
Fig. 18, the corresponding shear magnitude fields sðxÞ are
shown for the HP model, using a statistical average over many
solutions (see Sec. IX.E.2 for more details). One again
observes strong shear in the hinge. We conclude: shear is
critical in the hinges among moving domains of the protein.

2. Genetic and mechanical correlation spectra

We describe here in detail the procedure of calculating the
correlation spectra of the shear, the genes, and the displace-
ment in the HP model, leading to Fig. 18. This figure shows

averages over many realizations of the random process, in the
following sense. One starts with 106 solutions.21 Each solution
c� together with the (fixed) pinch f, defines three vectors as
follows:

(1) The gene of the functional protein c� (a vector of
length na ¼ 200 codons).

(2) The flow field (displacement) uðc�Þ ¼ Gðc�Þf (a
vector of length nd ¼ 400 of the x and y velocity
components).

(3) The shear field sðc�Þ (a vector of length na ¼ 200).
The 106 solutions are then written as three corresponding
matrices WC, WU, and WS of size 200 × 106, respectively,
400 × 106, where each row of these matrices is one of c�,
uðc�Þ, and sðc�Þ.
Next one calculates the singular eigenvalues and corre-

sponding eigenvectors of the three matrices (using SVD, as in
Sec. IX.C) and isolates the leading eigenvalues. The central
row in Fig. 18 shows that the flow field can be decomposed
into successively weaker motions Uk, with the strongest being
a rotating hinge motion around the fluid channel. One should
note that evolution in this case did not impose this global
rotation, but only the localized response to a pinch on the left
side of the sample.

F. Similarity of gene and shear

The results for the HP model reveal a tight relation between
the gene fields Ck and the shear intensities Sk, as shown in

FIG. 18. The vector fields for the HP model: The first four
eigendirections for the three vector fields k ¼ 1;…; 4. Top: The
first four SVD eigenvectors of the gene Ck. Center: The
corresponding displacement flow field Uk. Bottom: The corre-
sponding shear intensity Sk.

17As all norms on finite dimensional spaces are equivalent, other
norms amount basically just to a rescaling.

18There are many variants of the shear calculation; see, e.g.,
McGinty (2012).

19It usually suffices to look at atoms N, C, and O along the
backbone, while one may also include side chains.

20The dilatation (the trace) is much smaller.

21The characteristics we are looking for do not show cleanly unless
there are at least 105 samples.
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Fig. 18. Comparing the top and bottom rows, one observes a
similar structure of the corresponding eigenfunctions.22 A
similar relation is visible in Fig. 15 for the cylinder model.
The functions of many proteins are known to involve large-

scale motions of the amino acid network, such as hinge
rotation, shear sliding, or twists (Gerstein, Lesk, and Chothia,
1994). Recently, the strain that occurs during such conforma-
tion changes was computed in several proteins by comparing
structures obtained from x-ray and NMR studies (Mitchell,
Tlusty, and Leibler, 2016). However, the tight correspondence
between the shear tensor and the genetic correlations that we
observe here (Fig. 18) has not yet been measured in real
protein. In principle, one would need to follow a procedure
similar to the one presented here: first, to calculate the
mechanical shear using the methods of Gullett et al. (2008)
and Mitchell, Tlusty, and Leibler (2016), and then to compare
it to the genetic correlations from sequence alignment
(Rougemont, Eckmann, and Tlusty, 2019).

G. Point mutations are localized mechanical perturbations

A mutation in the HP model may vary the strength of no
more than z ¼ 12 bonds around the mutated AA; see Fig. 10.
The corresponding perturbation of the Hamiltonian δH is
therefore localized, akin to a defect in a crystal (Tewary,
1973; Elliott, Krumhansl, and Leath, 1974). The mechanics
of mutations can be further explored by examining pertur-
bations of the Green’s function G0 ¼ Gþ δG. They obey
the Dyson equation and the Dyson series, Eqs. (6) and (7).
This series has a straightforward physical interpretation
as a sum over multiple scatterings [Fig. 23(b)]: As a result of
the mutation, the elastic force field is no longer balanced
by the imposed force f, leaving a residual force field
δf ¼ δHu ¼ δHGf. The first scattering term in the series
balances δf by the deformation δu ¼ Gδf ¼ GδHGf.
Similarly, the second scattering term accounts for further
deformation induced by δu, and so forth.23 We conclude:
Standard expansions of Green’s functions correspond to
hierarchical organization of the effects of mutations in terms
of multiple scattering.

H. Mechanical function emerges as a sharp transition

As the evolution reaches a solution gene c�, there emerges a
new (almost) zero energy mode u� in addition to the Galilean
symmetry modes (which we already projected away). As the
other eigenvalues of Gðc�Þ remain typically distant from this
small eigenvalue λ�, there will be a gap between λ� and the rest
of the spectrum. While we do not have proof that such a gap
should appear, this is found to be the generic case in the
models described here. The response to a pinch will be mostly
through this soft mode, as we show now.
Consider a sequence of mutations ck which converges to c�

(in the Hamming distance) as k → k�. The corresponding

sequence of fitness values is Fk ¼ FðckÞ. For the HP model
with the pinch introduced earlier, the fitness is [Eq. (11)]

Fk ¼ vTuðckÞ ¼ vTGðckÞf:

When ck gets closer to c�, the almost-zero eigenvalue λk of
HðckÞ will dominate the Green’s function GðckÞ ¼ HðckÞ†

GðckÞ ≃
1

λk
juðckÞihuðckÞj ∼

1

λk
ju�ihu�j:

The fitness sequence is therefore

Fk ≃
ðvTu�ÞðuT�fÞ

λk
: ð15Þ

On average, the fitness increases exponentially with the
number of beneficial mutations as shown in Fig. 19. The
growth of the fitness follows the formation of the channel and
the narrowing of the remaining rigid “neck” in the middle of
the channel. We lack, however, a quantitative explanation
for the generic exponential dependence, which is probably
related to the structure of the Hamiltonian H.24 In the
particular instance of the two models considered here, one
can argue that the mutations which improve the channel all act
multiplicatively on the fitness F. Since this discussion is
“spectral,” we expect it to hold for models with more colors
(i.e., AAs) than the HP model.
As noted in Fig. 9, beneficial mutations are rare and are

separated by long stretches of neutral mutations. One may ask
where the neutral mutations take place, and this is illustrated
in Fig. 20, which shows that, in most sites, the effect of
mutations is practically neutral.
The vanishing of the spectral gap λk → 0 can further be

viewed as a topological transition in the system: The AA
network is being divided into two domains that can move
independently of each other at low energetic cost. The relative
motion of the domains defines the emergent soft mode and the
collective degrees of freedom, for example, the rotation of a
hinge or the shear angle.
The soft mode appears at a dynamical transition, where the

average shear in the protein jumps abruptly as the channel is
formed and the protein can easily deform in response to the
force probe; see Fig. 21. The trajectories are plotted as a
function of p, the fraction of AAs of type P. The distribution
of the critical values pc is rather wide owing to the random
initial conditions and finite-size effects.
Another connection is provided by the Kirchhoff matrix-

tree theorem (Tutte, 1948; Chaiken, 1982). LetM be an n-by-
n graph Laplacian, with links i ↔ j given by Mij ¼ −1 and
P

jMij ¼ 0 for all i. The matrix M has an eigenvalue 0, with
eigenvector ð1; 1;…; 1Þ. Take the submatrix M0 where one
row and one column are omitted. In analogy with the weighted
links of the HP model, assume now that detM0 ¼ 0, i.e., that a
second eigenvalue vanishes. Then, by the Kirchhoff theorem,
the number of spanning trees of the full graph vanishes. In

22One could in principle measure the distance between the
corresponding pairs using an L2 norm over the whole area.

23In problems of this local nature, calculating a mutated Green’s
function using theWoodbury formula (5) accelerates the computation
by a factor of ∼104 as compared to standard matrix inversion.

24Note that the exponential increase is much stronger than what
could be explained by the choice of the factor δF > εF of Sec. VI.
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other words, the graph is disconnected in analogy to the
formation of the fluid channel.

I. Correlation and alignment

As the shear band (fluid channel) is taking shape, the
correlation among codons builds up. To see this, we align
genes from the 106 simulations in analogy to sequence
alignment of real protein families (Göbel et al., 1994;
Lockless and Ranganathan, 1999; Suel et al., 2003;
Halabi et al., 2009; Marks et al., 2011; Jones et al., 2012;
de Juan, Pazos, and Valencia, 2013; Teşileanu, Colwell, and
Leibler, 2015; Hopf et al., 2017; Poelwijk, Socolich, and
Ranganathan, 2017). At each time step we calculate the

two-codon correlation Qij between all pairs of codons ci
and cj,

Qij ≡ hcicji − hciihcji; ð16Þ

where brackets denote ensemble averages. One finds that most
of the correlation is concentrated in the region where the
channel will form. In Fig. 22 one sees that the average
correlation is tenfold larger in the channel than in the whole
protein. Within the channel, the correlation is long range, and
propagates from side to side in the protein [see Dutta et al.
(2018) for a figure].
Analogous correlated domains containing functionally

related amino acids that co-evolve appear in real protein
families (Lockless and Ranganathan, 1999; Suel et al., 2003;
Halabi et al., 2009; Teşileanu, Colwell, and Leibler, 2015),
as well as in coarse-grained models of protein allostery
(Hemery and Rivoire, 2015; Tlusty, 2016; Flechsig, 2017;

FIG. 19. Progression of the fitness F corresponding to the
evolution of Fig. 11 (black). The fitness trajectory averaged over
∼106 runs hFi is shown in red. Shown are the last 16 beneficial
mutations toward the formation of the channel. The contribution
of the emergent low-energy mode hFki alone, shown in blue,
dominates the fitness [according to Eq. (15)].

FIG. 20. Landscape of the fitness change δF ¼ vTδGf, aver-
aged over 106 solutions, for all 200 possible positions of point
mutations at a solution. Underneath, the average AA configura-
tion of the protein is shown in shades of red (P) and blue (H). In
most sites, mutations are neutral, while mutations in the channel
are, on average, deleterious (blue, below the flat surface).

FIG. 21. The mean shear in the protein in a single run (black)
and averaged over 106 samples (red) as a function of the fraction
p of P-amino acids. The values of p are shifted by the position of
the jump pc. Inset: Distribution of pc.

FIG. 22. The average magnitude of the two-codon correlation
jQijj Eq. (16) as a function of the number of beneficial mutations
t. The red curve shows jQijj in the shear band (AAs in rows 7–13,
of Fig. 11). The black curve shows jQijj for the whole protein.
The correlations in the channel are clearly larger.
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Tlusty, Libchaber, and Eckmann, 2017) and allosteric matter
(Rocks et al., 2017; Yan et al., 2017).
We conclude: Genetic correlations are significantly larger in

the mechanically important regions.

J. Conserved amino acids

In this section, we discuss single mutations (and the lack
thereof), while in the next, we discuss the case where one
mutation is “compensated” by another (this is called epistasis).
Both phenomena are intimately related to those sites on the
protein which matter for the function: These are the sites
which are mechanically important.
In the cylinder model (Fig. 17), mutations near the top

edge and the boundary of the fluid channel have the most
deleterious effect on the mechanical function (dark regions in
the figure). Therefore, to preserve the functionality of the
protein in this model, these sensitive amino acids are also
conserved more than average among the solutions.
In comparison, the center panel of Fig. 5 highlights the most

conserved positions among the 122 aligned homologs of the
real protein glucokinase. Similar to the model, here conser-
vation also appears to be correlated with mechanical impor-
tance, as measured by the magnitude of the shear (left panel of
Fig. 5). We conclude: Mechanically critical regions of a
protein are sensitive to mutation. If, however, a mutation does
occur at such a sensitive amino acid, then it should be
compensated by another one (or a few). This is dealt with
in the next section.

K. Epistasis links protein mechanics to genetic correlations

The correlations among amino acids in the gene exhibit tight
correspondence to the pattern of the shear field (see Sec. IX.I
and Fig. 18). We now discuss how to link these genetic
correlations among mutations to the physical interaction in
the amino acid network. The procedure will be similar to how
the effect of a single mutation was interpreted in terms of a
scattering expansion of the Green’s function (Sec. IX.G).
In genetics, the term epistasis refers to the departure of fitness

from additivity in the effect of combined mutations owing to
intergenetic interaction. For example, the phenotypic effect of
one gene may be masked by a different gene (Cordell, 2002;
Phillips, 2008; Mackay, 2014). In analogy, on the smaller scale
of a single gene described here, intragenetic epistasis is
nonadditivity of protein fitness owing to the nonlinear inter-
action among its amino acids (Clark and Wang, 1997; Ortlund
et al., 2007; Breen et al., 2012; Harms and Thornton, 2013).
For example, one mutation can be compensated by another one
in order to keep the protein functional. This second mutation
can be far away on the gene sequence. The use of Green’s
functions allows for a calculable definition of epistasis in terms
of the Dyson series Eq. (6).
Algorithmically, one takes one functional solution obtained

from the evolution simulation and mutates one AA at a site i.
This mutation induces a change δGi as the difference of the
new and the old Green’s function. Then,

δFi ¼ vTδGif

is the change of the observable fitness F [which can be
computed by Eq. (5)]. One can similarly perform another,
independent mutation at a site j ≠ i, producing a second
deviation δGj and δFj, respectively. Finally, starting again
from the original solution, one mutates both i and j simulta-
neously, with combined effects δGi;j and δFi;j. It is then
natural to define the epistasis ei;j as the departure of the double
mutation from additivity of two single mutations,

ei;j ≡ δFi;j − δFi − δFj: ð17Þ

The epistasis ei;j is simply the inner product value of this
nonlinearity with the pinch and the response,

ei;j ¼ vTδ2Gf ¼ vTðGi;j − δGi − δGjÞf: ð18Þ

Equation (18) shows how epistasis is directly related to
mechanical forces among mutated AAs.
To evaluate the average epistatic interaction among amino

acids in the HP model, we perform the double-mutation
calculation for all 106 solutions and take the ensemble average
Eij ¼ hei;ji. Landscapes of Eij show significant epistasis in
the channel; see Fig. 24. AAs outside the high shear region
show only small epistasis, since mutations in the rigid
domains hardly change the elastic response. The epistasis
landscapes [Figs. 24(a)–24(c)] are mostly positive since the
mutations in the channel interact antagonistically (Desai,
Weissman, and Feldman, 2007): after a strongly deleterious
mutation, a second mutation has a smaller effect.
In the gene, epistatic interactions are manifested in codon

correlations (Hopf et al., 2017; Poelwijk, Socolich, and
Ranganathan, 2017) shown in Fig. 24(d), which depicts two-
codon correlations Qij of Eq. (16) from the alignment of 106

functional genes c�. We find a tight correspondence between
the mean epistasis Eij ¼ hei;ji and the codon correlations Qij.
Both patterns exhibit strong correlations in the channel region
with a period equal to a channel’s length, 10 AAs. The
similarity in the patterns of Qij and Eij indicates that a major
contribution to the long-range, strong correlations observed
among aligned protein sequences stems from the mechanical
interactions propagating through the amino acid network.

L. Epistasis as a sum over scattering paths

One can classify epistasis according to the interaction
range. Neighboring AAs exhibit contact epistasis (Göbel
et al., 1994; Marks et al., 2011), because two adjacent
perturbations δHi and δHj interact nonlinearly via the AND

gate of the interaction table of Fig. 10, δ2Hi;j ≡ δHi;j − δHi −
δHj ≠ 0 (where δHi;j is the perturbation by both mutations).
In the case of contact epistasis, the leading term in the Dyson
series Eq. (6) of δ2Gi;j is a single scattering from an effective
perturbation with an energy δ2Hi;j, which yields the epistasis

ei;j ¼ −vTðGδ2Hi;jGÞfþ � � � :

Long-range epistasis among nonadjacent, noninteracting
perturbations (δ2Hi;j ¼ 0) is observed along the channel; see
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Fig. 24. In this case, Eq. (6) expresses the nonlinearity δ2Gi;j

as a sum over multiple scattering paths which include both i
and j [Fig. 23(c)],

ei;j ¼ vTðGδHiGδHjGþGδHjGδHiGÞf − � � � : ð19Þ

The perturbation expansion further links long-range epistasis
to shear deformation: Near the transition at which the function
emerges, the Green’s function is dominated by the single soft
mode G ≃ u�uT�=λ� with fitness F given by Eq. (15). From
Eqs. (6) and (18), one deduces a simple expression for the
mechanical epistasis as a function of the shear,

ei;j ≃ F ·

�
hi

1þ hi
þ hj
1þ hj

−
hi þ hj

1þ hi þ hj

�

: ð20Þ

The factor hi ≡ uT�δHiu�=λ� in Eq. (20) is the ratio of the
change in the shear energy due to mutation at i (the expect-
ation value of δHi) and the energy λ� of the soft mode, and
similarly for hj. Thus, hi and hj are significant only in and
around the shear band, where the bonds varied by the
perturbations are deformed by the soft mode.
When both sites are outside the channel, hi, hj ≪ 1, the

epistasis Eq. (20) is small, ei;j ≃ 2hihjF. It remains negligible
even if one of the mutations i is in the channel hj ≪ 1 ≪ hi
and ei;j ≃ hjF. Epistasis can be long ranged only along
the channel when both mutations are significant hi ≫ 1
and hj ≫ 1 and ei;j ≃ 1. It follows that Eq. (20) can be
roughly approximated as

ei;j ≃ F · min ð1; hiÞ · min ð1; hjÞ: ð21Þ

We conclude that epistasis is maximal when both sites
are at the start or end of the channel, as illustrated in
Fig. 24. The nonlinearity of the fitness function gives rise

v
f

G
Hi

GGf v

Hi

G
f v

Hj

GG

(a) (b) (c)

FIG. 23. Force propagation, mutations, and epistasis. (a) The
Green’s function G measures the propagation of the mechanical
signal across the protein (blue) from the force source f (pinch) to
the response site v, depicted as a “diffraction wave.” (b) A
mutation δHi deflects the propagation of force. The effect of the
mutation on the propagator δG can be described as a series of
multiple scattering paths Eq. (6). The diagram shows the first
scattering path GδHiG. (c) Epistasis is the departure from
additivity of the combined fitness change of two mutations.
The epistasis between two mutations δHi and δHj is equivalent
to a series of multiple scattering paths Eq. (19). The diagram
shows the path GδHiGδHjG.

(a) (b)

(c) (d)

FIG. 24. Mechanical epistasis. The epistasis of Eq. (17), averaged over 106 solutions Eij ¼ hei;ji, between a fixed AA at position i
(black arrow) and all other positions j. Here i is located at (a) the binding site, (b) the center of the channel, and (c) slightly off the
channel. Underneath, the average AA configuration of the protein is drawn in shades of red (P) and blue (H). Significant epistasis
mostly occurs along the P-rich channel, where mechanical interactions are long ranged. Although epistasis is predominantly
positive, negative values also occur, mostly at the boundary of the channel (c). (d) The two-codon correlation function Qij of
Eq. (16) measures the coupling between mutations at positions i and j. The epistasis Eij and the gene correlation Qij show similar
patterns. Axes are the positions of i and j loci. Significant correlations and epistasis occur mostly in and around the channel region
(positions 70–130, rows 7–13).
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to antagonistic epistasis since the combined effect of two
deleterious mutations is nonadditive as either mutation is
enough to diminish the fitness.
As evident from Eq. (21), the epistasis matrix Eq. (20) is

approximately a rank-one tensor ei;j ∼ jeihej, with a single
dominant eigenvector ei ∼min ð1; hiÞ. The eigenvector jei is
localized in and around the shear band. As a result, the
epistasis matrix exhibits a “checkered” pattern visible in
Fig. 24(d). The rank-one nature of the ei;j is verified numeri-
cally by spectral decomposition of the epistasis matrix
obtained from the simulation. Interestingly, the genetic corre-
lation matrix [Eq. (16)] is also approximately a rank-one
tensor Qij ∼ jqihqj with a dominant eigenvector jqi localized
in the channel. This explains the striking similarity of the
genetic correlation Qij and the epistasis ei;j in Fig. 24(d).
Again, comparing to the real protein glucokinase, the

rightmost panel of Fig. 5 shows that the correlation of
mutations is concentrated in the mechanically critical regions
of the protein (left panel). Mutations away from these spots
seem more independent and need not be corrected for other
mutations. We conclude: mutations correlate near mechan-
ically critical positions.

M. Multilocus epistasis

So far we examined the interaction between two mutations
in terms of the nonlinearity of the double-mutation fitness
function ei;j Eq. (17). This two-body interaction can be seen
as the change in the effect ofmutation j in the presenceof another
mutation i. As an isolated mutation, j has a fitness effect δFj,
whereas in the presence of i the effect of j is δFi;j − δFi, and
the difference defines ei;j ≡ ðδFi;j − δFiÞ − δFj.
Higher-order epistasis, involving more than two mutations,

has a significant role in shaping the fitness landscape (Weinreich
et al., 2013; Poelwijk, Socolich, and Ranganathan, 2017). This
motivates us to generalize the methodology of Sec. IX.L to
many-body interactions. For example, the three-loci epistasis
ei;j;k measures the change in the two-loci epistasis ei;j of the
double i, jmutation, induced by the presence of a third mutation
k (Horovitz and Fersht, 1990):

ei;j;k ≡ δFi;j;k − ðδFi;j þ δFj;k þ δFi;kÞ þ δFi þ δFj þ δFk;

ð22Þ

where δFi;j;k is the phenotypic effect of a triple i, j, kmutation.
In a similar fashion, one derives the general Nth-order

epistasis, among mutations at positions i1;…; iN ,

ei1;i2;…;iN ≡XN

q¼1

ð−1ÞN−q
X

i1<…<iq

δFi1;…;iq ; ð23Þ

where δFi1;…;iq is the fitness effect of the q-site mutation at
positions i1;…; iq. Equations (17) and (22) are the second-
and third-order epistasis terms (N ¼ 2, 3), while the first-order
epistasis (N ¼ 1) is the mutation effect itself ei ≡ δFi.
Summing over all orders of epistasis interactions [Eq. (23)]
up to order N, one obtains the N-site mutation effect

δFi1;i2;…;iN ¼
XN

q¼1

X

i1<���<iq

ei1;…;iq :

To link the multilocus epistasis to protein mechanics and
deformation, we follow the derivation of Eq. (20). Near the
transition at which the function emerges, we use the Dyson
series Eq. (6), and the resulting N-site mechanical epistasis is

ei1;…;iN ¼ −F
XN

q¼1

ð−1ÞN−q
X

i1<���<iq

Pq
p¼1 hip

1þPq
p¼1 hip

; ð24Þ

where elastic factor hip ≡ uT�δHipu�=λ� is the ratio of the
change in the shear energy due to mutation at ip and the
energy λ� of the soft mode.
One concludes from Eq. (24) that the N-order epistasis is

significant only within and around the shear band, where
the bonds are stretched and compressed by the soft mode. In
this region, where all the elastic factors are large, i.e., hip ≫ 1,
all orders of epistasis are relevant and are of the samemagnitude,

ei1;i2;…;iN ≃ Fð−1ÞN:

We conclude: the mechanically critical regions are strongly
coupled with many-body epistatic interactions among the
mutations.

X. OUTLOOK

This Colloquium has described a method which relates
biological questions and concepts regarding protein evolution
to the techniques of theoretical physics. Our purpose is to
make this approach accessible to a wide community. While we
made an effort to cite some of the current literature, there are
certainly works which we have incompletely cited. We hope
that this Colloquium will encourage others to build bridges
between other biological questions and the long tradition of
physics and mathematics.
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