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Recent experiments have demonstrated that light and matter can mix together to an extreme degree,
and previously uncharted regimes of light-matter interactions are currently being explored in a variety
of settings. The so-called ultrastrong coupling (USC) regime is established when the light-matter
interaction energy is a comparable fraction of the bare frequencies of the uncoupled systems.
Furthermore, when the interaction strengths become larger than the bare frequencies, the deep-strong
coupling (DSC) regime emerges. This article reviews advances in the field of the USC and DSC
regimes, in particular, for light modes confined in cavities interacting with two-level systems. An
overview is first provided on the theoretical progress since the origins from the semiclassical Rabi
model until recent developments of the quantum Rabi model. Next, several key experimental results
from a variety of quantum platforms are described, including superconducting circuits, semi-
conductor quantum wells, and other hybrid quantum systems. Finally, anticipated applications are
highlighted utilizing USC and DSC regimes, including novel quantum optical phenomena, quantum
simulation, and quantum computation.
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I. INTRODUCTION

The Rabi model (Rabi, 1936, 1937) arguably describes the
simplest class of light-matter interactions, namely, the dipolar
coupling between a two-level quantum system (qubit) and a
classical radiation field mode. This semiclassical model has a
fully quantum counterpart, where the electromagnetic radiation
is specified by a single-mode quantum field, yielding
the so-called quantum Rabi model (QRM) (Braak, 2011).
The QRM describes with accuracy the dynamical and static
properties of a wide variety of physical systems, such as
quantum optics and solid-state settings. Moreover, a variety
of protocols in modern quantum information theory (Nielsen
andChuang, 2004) employs theQRMas a fundamental building
block, with plausible applications in quantum technologies,
including, e.g., universal two-qubit gates (Schmidt-Kaler et al.,
2003; Chow et al., 2012; Barends et al., 2014), nondestructive
readout (Schuster et al., 2005), quantum state transfer (Majer
et al., 2007; Richerme et al., 2014), ultrafast quantum gates
(Romero et al., 2012), quantum error correction (Córcoles et al.,
2015; Kyaw, Herrera-Martí et al., 2015), and remote entangle-
ment generation (Ritter et al., 2012; Felicetti, Sanz et al., 2014;
Campagne-Ibarcq et al., 2018). In consequence, the QRM is
extremely important in both applied and theoretical physics.
Historically, and for nonrelativistic energies, light and matter

have been studied at the fundamental level using single atoms
interactingwith the electromagneticmodeof anoptical (Kimble,
1998) or a microwave cavity (Raimond, Brune, and Haroche,
2001), a field known as cavity quantum electrodynamics (cavity
QED). The standard cavity QED experiments are usually
constrained to light-matter couplings orders of magnitude
smaller than the natural frequencies of the noninteracting
contributions. Therefore, these experiments take place in the
realm of the well-known Jaynes-Cummings (JC) model (Jaynes

andCummings, 1963),which can be obtained byperforming the
rotating-wave approximation (RWA) on the QRM (Braak,
2011). However, the exploration of cavity QED physics in
atomic systems could only be initiated once the light-matter
interaction strength was engineered comparable to (Meschede,
Walther, andMüller, 1985; Rempe,Walther, andKlein, 1987) or
larger (Thompson, Rempe, and Kimble, 1992) than all decay
rates of the system.This regimeof coupling, knownas the strong
coupling (SC) regime, is necessary to observe coherent quantum
dynamics between light and matter, leading to the study of
fundamental single atom–single photon processes (Haroche,
2013), and, most importantly, developing the different archi-
tectures on which most existing quantum computing technol-
ogies are based. Thus, the JCmodel has represented a theoretical
and experimental milestone in the history of light-matter
interactions and quantum optics.
During the past decade, a novel coupling regime of the

QRM has been theoretically investigated in which the coupling
strength is a sizable fraction of the natural frequencies of the
noninteracting parts (Ciuti, Bastard, and Carusotto, 2005; De
Liberato, Ciuti, and Carusotto, 2007; Bourassa et al., 2009;
Todorov, Andrews et al., 2010; Beaudoin, Gambetta, and
Blais, 2011; Ballester et al., 2012; Pedernales et al., 2015), and
experimentally achieved in several quantum systems
(Anappara et al., 2009; Günter et al., 2009; Forn-Díaz et al.,
2010; Niemczyk et al., 2010; Todorov, Andrews et al., 2010;
Muravev et al., 2011; Schwartz et al., 2011; Geiser et al., 2012;
Scalari et al., 2012; Goryachev et al., 2014; Q. Zhang et al.,
2016; Braumüller et al., 2017; Chen et al., 2017; Li, Bamba
et al., 2018; Lv et al., 2018). In this ultrastrong coupling (USC)
regime, the RWA is not valid anymore, while the counter-
rotating terms produce novel, unexpected physical phenomena
(Ciuti, Bastard, and Carusotto, 2005) as well as applications in
quantum information (Romero et al., 2012; Felicetti, Sanz
et al., 2014; Kyaw, Herrera-Martí et al., 2015). In the regime in
which the counterrotating terms can still be analyzed with
perturbation theory (Anappara et al., 2009; Günter et al., 2009;
Forn-Díaz et al., 2010; Niemczyk et al., 2010; Todorov,
Andrews et al., 2010; Muravev et al., 2011; Schwartz et al.,
2011; Geiser et al., 2012; Scalari et al., 2012; Goryachev et al.,
2014; Q. Zhang et al., 2016; Chen et al., 2017), the QRM can
be described by the Bloch-Siegert (BS) Hamiltonian (Cohen-
Tannoudji, Dupont-Roc, and Fabre, 1973; Klimov and
Chumakov, 2009; Beaudoin, Gambetta, and Blais, 2011).
On the other hand, some experiments have recently reached
the nonperturbative USC regime (Maissen et al., 2014; Bayer
et al., 2017; Forn-Díaz et al., 2017; Yoshihara et al., 2017b),
where the coupling strength exceeds the natural frequencies of
the noninteracting parts, and the full-fledged QRM has to be
considered. Under these conditions, a new regime of light-
matter interaction emerges, with absolutely different physics
than the USC regime. In this deep strong coupling (DSC)
regime (Casanova, Romero et al., 2010), an approximate
solution can reasonably describe some aspects of the QRM.
In fact, recently, the DSC regime has been experimentally
achieved with a superconducting circuit (Yoshihara et al.,
2017b) and in a two-dimensional electron gas coupled with
terahertz metamaterial resonators (Bayer et al., 2017).
Figure 1 presents the evolution over time of the highest

reported coupling strength g normalized to the frequency of
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light of a confined mode ω, in all fields exploring light-matter
interactions. Clearly, experimental ultrastrong couplings are a
recent advent over the past decade, mostly as a consequence of
the interdisciplinary influence each area has had on the others.
Figure 2 shows the evolution over time of the parameter U,
which we propose as a novel figure of merit in the USC
regime. U corresponds to the geometric mean between
reduced coupling g=ω and the cooperativity factor used in
atomic systems C ¼ 4g2=κγ, with κ and γ representing the
cavity and atomic losses, respectively. U is therefore a
measure of coherence in ultrastrongly coupled systems and,
as observed in experiments, when its value largely exceeds
unity U ≫ 1 it is possible to access the exotic physics of the
USC regime without the blurring effects of dissipation.
Otherwise, one could enter the USC regime without satisfying
the usual definition of the strong coupling regime, i.e., g > γ,
κ (De Liberato, 2017). From the data collected in Fig. 2, the
superconducting qubits have entered well into the coherent
USC regime, while the electron cyclotron resonances just
achieved this new regime of physics (Li, Bamba et al., 2018).
This review presents a general overview of the theoretical

and experimental progress in the USC and DSC regimes of
light-matter interaction. In the past decade, experimental

access to increasingly larger light-matter coupling strengths
in different fields has brought forward USC and DSC regimes
to the frontiers in quantum optics, both from a theoretical as
well as from an experimental point of view. Moreover, beyond
the fundamental interest, it is becoming natural to consider the
impact of USC regimes in the context of the emerging
interdisciplinary aspects of quantum technologies.
The physics of the USC regimes is currently an active

research field that is in constant transformation and evolution.
In particular, new lines of exploration of USC involving a
continuum of modes have already been started (Forn-Díaz
et al., 2017; Magazzù et al., 2018; Puertas-Martinez et al.,
2018), enabling the exploration of condensed matter models
of relevant interest. Additionally, recent work in the two-
photon quantum Rabi model (Felicetti et al., 2018) represents
a playground for novel physics in nonlinear quantum optics. It
is noteworthy to mention that in this review we cover neither
open quantum systems nor multiphoton quantum Rabi mod-
els, nor the impressive developments in the QRM from a
mathematical physics perspective (Braak, 2011; Chen et al.,
2012; Wakayama, 2013; Zhong et al., 2013; Maciejewski,
Przybylska, and Stachowiak, 2014; Braak et al., 2016).
However, we have tried to provide a connection to these

FIG. 1. Evolution in cavity QED of the highest value of g=ω, with ω the cavity frequency, as a function of time for different physical
platforms. The dotted lines at g=ω ≃ 0.1 and g ≃ ω mark the beginning of the USC and DSC regimes, respectively. References for the
data, chronological: atoms in optical cavities (Thompson, Rempe, and Kimble, 1992; Turchette et al., 1995; Hood et al., 1998; Colombe
et al., 2007; Thompson et al., 2013; Tiecke et al., 2014); atoms in microwave cavities (Brune et al., 1994, 1996, Brune et al., 2008;
Maître et al., 1997; superconducting qubits (Wallraff et al., 2004; Chiorescu et al., 2004), (Johansson et al., 2006; Niemczyk et al.,
2010; Forn-Díaz et al., 2010; Baust et al., 2016; Yoshihara et al., 2017b); quantum dots (Reithmaier et al., 2004; Reinhard et al., 2012;
Takamiya et al., 2013; Kelaita et al., 2017; Mi et al., 2017; Stockklauser et al., 2017); exciton polaritons (Weisbuch et al., 1992; Bloch et
al., 1998; Bellessa et al., 2004; Wei et al., 2013; Kéna-Cohen, Maier, and Bradley, 2013; Gambino et al., 2014); intersubband polaritons
(Dupont et al., 2003; Dupont, Gupta, and Liu, 2007; Todorov, Andrews et al., 2010; Delteil et al., 2012; Askenazi et al., 2014); and
electron cyclotron resonance (Muravev et al., 2011; Scalari et al., 2012; Maissen et al., 2014; Bayer et al., 2017).
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growing areas of high theoretical and experimental interest.
The USC regimes of light-matter interaction will keep on
expanding at the frontier of quantum optics and quantum
physics. We envision that all related topics to USC physics
will remain a prominent field in the foreseeable future. During
the processing of this review, other articles have been
published with overviews on the field of USC (Gu et al.,
2017; Frisk Kockum et al., 2019), again demonstrating the
impact this field has attained.
The contents of this review can be summarized as follows.

Section II presents an overview of the different light-matter
interaction models. We follow a historical approach along the
lines of cavity QED and the recent progress in theory and
experiments related to the USC regimes. Section III reviews
the most relevant experiments having unveiled the physics
related to the USC and DSC regimes. In Sec. IV, the quantum
simulations of USC regimes are reviewed from a theoretical
perspective. Section V reviews a variety of potential appli-
cations of USC regimes from the point of view of quantum
optics and quantum computation. Finally, Sec. VI presents our
conclusions and outlook.

II. THE QUANTUM RABI MODEL

The Rabi model (Rabi, 1936) was introduced by Isidor Rabi
in 1936 to describe the semiclassical coupling of a two-level
atom with a classical monochromatic electromagnetic wave.
In its fully quantized version, the model is given by the
Hamiltonian

ĤR ¼ ℏðΩ=2Þσ̂z þ ℏωâ†âþ ℏgσ̂xðâþ â†Þ; ð1Þ

which is nowadays known as the quantum Rabi model. Here
Ω and ω are the frequencies of the atomic transition and the

electromagnetic field, respectively, and g is the light-matter
coupling strength. σ̂x;z are Pauli matrices describing the
atomic spin, while â and â† are the annihilation and creation
operators of the bosonic field mode, respectively.
Equation (1) describes the dipolar coupling between a two-

level atom, which could be a natural atom or an effective two-
level system engineered from a solid-state device, and a
quantized electromagnetic field mode. This Hamiltonian
appropriately describes a plethora of quantum systems, several
of which are laid out in Sec. III. Alternative, equivalent forms
of the quantum Rabi model have been studied in the literature
using gauge transformations (Drummond, 1987; Stokes et al.,
2012; Stokes, Deb, and Beige, 2017; Stokes and Nazir, 2018a,
2018b). We have omitted a constant term ℏω=2 in Eq. (1) as it
does not modify the physics being discussed in this review.
In atomic systems, the achievable ratio g=ω between the

coupling strength and the bosonic field mode frequency is
orders of magnitude lower than unity [see Kimble (2008) for an
overview of the achievements in cavity QED experiments].
One can easily understand the order of magnitude of the dipole

interaction energy ℏg ¼ −d⃗ · E⃗, by expressing it as a function
of system parameters (normalized to cavity frequency),

g=ω ¼ jd⃗jð2ℏϵ0VmωÞ−1=2, where d⃗ is the transition dipole
moment between the relevant atomic states of transition
frequency ωA, ω ¼ ωA is the resonant frequency of the cavity,
ϵ0 is the electric permittivity of vacuum, and Vm is the cavity
mode volume. A typical Fabry-Perot optical cavity such as the
ones used in experiments with cold atoms has mode volumes
on the order of Vm ∼ 10−15 m3 (Rempe et al., 1992). The
dipole moments of cesium and rubidium, which are heavy
alkali atoms typically used in cavity QED experiments, are on

the order of jd⃗j ∼ 10−29 Cm. For a cavity in resonance with
cesium at 351.7 THz, this yields g=ω ∼ 10−7. The only

FIG. 2. Evolution in time in cavity QED of the highest value of the parameter U ¼ ðCg=ωÞ1=2 for different physical platforms from the
same experimental points in Fig. 1. C ¼ 4g2=κγ is the cooperativity, with κ and γ being the cavity and qubit loss rates, respectively. U is
an indicator of combined coupling strength and quantum coherence. References in addition to those in Fig. 1: quantum dots (Faraon et
al., 2008); and cyclotron resonance (Q. Zhang et al., 2016; Li, Bamba et al., 2018).

P. Forn-Díaz et al.: Ultrastrong coupling regimes of light-matter interaction

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025005-4



parameter which can be optimized further is the mode volume
Vm. The efforts by several groups engineering increasingly
smaller mode volume cavities (Vahala, 2003) based on evan-
escent fields near dielectric photonic microstructures (Aoki
et al., 2006) and nanostructures (Tiecke et al., 2014), where Vm

scales as ∼λ3, have brought g=ω down to 10−6, which is a very
large number for atomic systems but is still far from what has
been achieved with solid-state devices (cf. Fig. 1).
Therefore, the QRM has been historically considered for

cavity QED systems (Raimond, Brune, and Haroche, 2001)
in the so-called JC regime (Jaynes and Cummings, 1963),
where one performs the rotating-wave approximation and
neglects the terms â†σ̂þ and âσ̂−, which contribute weakly to
the dynamics when g=ω ≪ 1. These terms are also known
as counterrotating terms, since the other two interacting
terms â†σ̂− and âσ̂þ are stationary in the interaction picture,
therefore corotating with the uncoupled system Hamiltonian
H0 ≡ ℏðΩ=2Þσ̂z þ ℏωâ†â. Here σ̂þ and σ̂− are the raising and
lowering atomic operators, respectively. The JC Hamiltonian
therefore is given by

ĤJC ¼ ℏðΩ=2Þσ̂z þ ℏωâ†âþ ℏgðσ̂þâþ σ̂−â†Þ: ð2Þ

The interaction term in the Hamiltonian ĤJC is of an exchange
type, leading to a conservation of the number of excitations in
the system. This implies that only states with the same number
of excitations interact, leading to a full diagonalization of ĤJC
in subspaces of n number of excitations with JC doublets j�in
as its eigenstates. By contrast, Eq. (1) contains only a parity
symmetry and its exact diagonalization presents important
difficulties [see discussion leading to Eqs. (6) and (7)] (Braak,
2011). The JC model has been a cornerstone of quantum
optics in the past 50 years. This model has had widespread use
in a variety of physical platforms, ranging from neutral atoms
in optical and microwave cavities, trapped ions with quantized
motion, to superconducting qubits coupled to electromagnetic
cavities, transmission line resonators, and nanomechanical
resonators. Recent implementations of small-scale quantum
processors use the physics from Eq. (2) as the basis for the
coherent quantum control of coupled quantum systems
(Córcoles et al., 2015).
In the regime where a detuning δ≡ Ω − ω exists between

the frequencies of the atom and the field mode, a Schrieffer-
Wolf transformation can be applied to Eq. (2) if the dispersive
condition is satisfied g=δ ≪ 1, to become, up to second order
in g (Blais et al., 2004),

Ĥac=ℏ ¼ 1

2

�
Ωþ g2

δ

�
σ̂z þ

�
ωþ g2

δ
σ̂z

�
â†â: ð3Þ

Equation (3) is known as the ac StarkHamiltonian aswell as the
dispersive Hamiltonian. The atom-photon interaction is man-
ifested in the nonradiative energy shifts that atom and field
mode exert on each other. A detection of the field frequency
yields information about the qubit state. This property is being
widely exploited in quantum computing approaches, particu-
larly with superconducting qubits (Schuster et al., 2005).
However, in the past decade, two novel regimes of light-

matter interaction have emerged, namely, the USC regime,

where 0.1 ≤ g=ω < 1, and the DSC regime, where g=ω > 1.
The lower limit g=ω ¼ 0.1 has been by now well established
as the regime where effects related to the counterrotating terms
become sizable and, hence, observable. These new regimes
exhibit a variety of physics which are not easily detectable
with lower light-matter coupling strengths. In addition, one
may take advantage of such new phenomena for quantum
information applications as will be shown in Sec. V. Figure 3
displays the classification of different coupling regimes of the
QRM (Rossatto et al., 2017) as a function of g=ω and for
increasing energy eigenstates of Eq. (1).
The USC regime 0.1 ≤ g=ω < 1 can be divided into a

perturbative region 0.1 ≲ g=ω≲ 0.3 and a nonperturbative
region 0.3≲ g=ω≲ 1 (Rossatto et al., 2017). The perturbative
region consists of a deviation from the JC model that
accepts an analytical treatment by considering the counter-
rotating terms â†σ̂þ and âσ̂− as an off-resonant driving
field. Applying perturbation theory to the quantum Rabi
Hamiltonian [Eq. (1)] up to second order on the perturbative
parameter λ≡ g=ðΩþ ωÞ yields the following Hamiltonian
(Klimov and Chumakov, 2009):

ĤBS=ℏ ¼ 1

2
ðΩþ ωBSÞσ̂z þ ðωþ ωBSσ̂zÞâ†â

−
ωBS

2
þ fðâ†âÞσ̂−â† þ σ̂þâfðâ†âÞ; ð4Þ

where ωBS≡g2=ðωþΩÞ is the Bloch-Siegert shift. The cou-
pling constant g is renormalized to fðâ†âÞ≡−g½1−â†âωBS=
ðωþΩÞ�. The additional terms appearing inEq. (4) compared to

FIG. 3. Classification of the different coupling regimes of the
quantum Rabi model (QRM). g0 in the figure corresponds to g
as defined in the main text. The leftmost region at lowest
couplings stands for the perturbative ultrastrong coupling
(pUSC), which includes the Bloch-Siegert Hamiltonian regime.
For the lowest-energy eigenstates it extends up to g=ω ∼ 0.4.
The intermediate region symbolizes the nonperturbative ultra-
strong and deep strong coupling (npUSC and npDSC) regime.
The color gradient around the boundaries symbolizes the lack
of an abrupt transition in the physical properties of the QRM.
The rightmost area is the perturbative deep strong coupling
regime pDSC, where the qubit becomes a perturbation to the
system. From Rossatto et al., 2017.
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Eq. (2) are analogous to the ac Stark Hamiltonian [cf. Eq. (3)],
arising from having treated the counterrotating terms as an off-
resonant driving field. Equation (4) is known as the Bloch-
Siegert Hamiltonian, in analogy to the case of a strongly driven
single spin (Bloch and Siegert, 1940).
The nonperturbative region 0.3 ≲ g=ω≲ 1 departs from the

standard quantum optical treatment of light-matter interaction.
In this region, one has to resort to the exact solution for
arbitrary coupling (Braak, 2011). The JC model contains a
conserved quantity which corresponds to the total number of
excitations Ĉ ¼ â†âþ ð1=2Þðσ̂z þ 1Þ, leading to the solvabil-
ity of the model. In contrast to the approximations in Eqs. (2)
and (4), the energy eigenvalues in the nonperturbative region
are no longer given in closed form. The conservation of Ĉ
generates a continuousUð1Þ symmetry of the JC model which
in the nonperturbative region is broken down to a discrete Z2

symmetry, usually called parity, due to the presence of the
counterrotating terms âσ̂− þ â†σ̂þ in Eq. (1). This is further
evidenced by noting that the quantum Rabi Hamiltonian
commutes with the parity operator P̂ ¼ σ̂zeiπâ

†â. This sym-
metry leads to a decomposition of the state space into two
subspaces and is still sufficient to solve the model exactly
(Braak, 2011), albeit in a nonanalytical form. However, the
spectrum can be analyzed qualitatively, leading to the uni-
fication of quasiexact crossing points (Judd, 1979; Kus and
Lewenstein, 1986) and avoided crossings (see Fig. 3).
In the first-ever work coining the USC regime (Ciuti,

Bastard, and Carusotto, 2005), it was found that the ground
state of an ultrastrongly coupled system in the nonperturbative
region consists of a squeezed vacuum. Later works (Ashhab
and Nori, 2010) further explored the ground-state properties of
the USC regime. In the ordinary vacuum jg0i, in the zero- or
weak-coupling regime, it is required that σ̂−jg0i ¼ âjg0i ¼ 0.

However, in the USC regime, the ground state gjg0i is a
squeezed state, which contains a finite number of cavity
photons and atomic population. Approximate solutions have

been found to gjg0i (valid in the perturbative USC regime)
(Beaudoin, Gambetta, and Blais, 2011)

gjg0i ≃ �
1 −

Λ2

2

�
jg0i − Λje1i þ ξ

ffiffiffi
2

p
jg2i; ð5Þ

where Λ≡ ωBS=g, ξ ¼ gΛ=2ω, explicitly showing qubit-
resonator excitations and a small degree of squeezing.
At larger interaction strengths, the degree of squeezing is
enhanced (Ashhab and Nori, 2010). Further studies have
looked into the possibility to release such a squeezed photon
field by modulating different system parameters (Ciuti and
Carusotto, 2006; De Liberato, Ciuti, and Carusotto, 2007; De
Liberato et al., 2009).
As shown in Fig. 3, the nonperturbative USC regime

merges in a continuous manner with the nonperturbative
DSC regime. On the other hand, the perturbative DSC regime
represents the extreme coupling condition g=ω ≫ 1. Here the
effective QRM Hamiltonian, in the spirit of spin-dependent
forces, can be solved analytically while unitarily creating
Schrödinger cat states.

In an important step to unveil the physics of the DSC
regime (Casanova, Romero et al., 2010), new light was shed
on the structure of the QRM following an analysis based on
the symmetries of Eq. (1). As already mentioned, the quantum
Rabi Hamiltonian contains a discrete Z2 symmetry. This
symmetry is characterized by the parity operator P̂ ¼ σ̂zeiπâ

†â,
which can take values �1 (Casanova, Romero et al., 2010;
Wolf et al., 2013). Therefore, the total Hilbert space splits into
two infinite-dimensional invariant chains labeled by the parity
eigenvalues

jg0i ↔ je1i ↔ jg2i ↔ je3i ↔ � � � ðp ¼ −1Þ;
je0i ↔ jg1i ↔ je2i ↔ jg3i ↔ � � � ðp ¼ þ1Þ: ð6Þ

The quantum Rabi Hamiltonian can be rewritten using the
parity operator P̂ and a composite bosonic mode b̂≡ σ̂xâ as

ĤR ¼ ℏωb̂†b̂þ ℏgðb̂þ b̂†Þ − ℏðΩ=2Þð−1Þb̂†b̂P̂: ð7Þ

In the slow qubit limit Ω→0, ĤR→½ℏωðb̂†þg=ωÞðb̂þg=ωÞ−
ℏg2=ω�, which corresponds to a simple harmonic oscillator
displaced by the ratio of the coupling with the frequency of the
cavity g=ω.
Figure 4 shows the time evolution of a state initially

prepared in the uncoupled vacuum j0; gi. Since this state is
not an eigenstate of the quantum Rabi Hamiltonian, the
system evolves as a wave packet climbing up and down
the parity chains, displaying photon number wave packet
oscillations. When the qubit frequency is finite, it effectively
dephases the photon number oscillations which decay in
amplitude over time. Also, the temporal development of qubit

FIG. 4. Dynamics of the deep strong coupling (DSC) regime.
(a) Photon statistics at different times of the evolution for
Ω ¼ 0.5ω. When the qubit frequency Ω ≠ 0, the photon number
wave packet suffers self-interference and is distorted. (b) Com-
parison of revival probability of the initial state Pþ0b

ðtÞ ¼
jhg; 0ajψðtÞij calculated for Ω ¼ 0 (solid line) and Ω ¼ 0.5ω
(dashed line). In the caseΩ ≠ 0, full collapses and partial revivals
are observed where the initial probability is not completely
restored, with a maximum value that deteriorates as time evolves.
In all simulations the initial state is jg; 0ai and g=ω ¼ 2. From
Casanova, Romero et al., 2010.
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operators depends crucially on the presence of parity chain
mixing (Wolf, Kollar, and Braak, 2012).
The DSC regime requires a specific theoretical treatment

due to its distinctive character when compared to USC
physics, both in the discrete (Bayer et al., 2017; Yoshihara
et al., 2017b) and in the continuous mode approaches (Forn-
Díaz et al., 2017). In the latter, the description of a two-level
system coupled to a continuum of modes has been tradition-
ally the domain of study of the spin-boson model (Leggett
et al., 1987; Weiss, 2008). Recent experiments have reached
the nonperturbative interaction regime (Forn-Díaz et al., 2017;
Magazzù et al., 2018), where the qubit becomes dressed by
the photonic modes, resulting in a polariton with renormalized
frequency (Shi, Chang, and García-Ripoll, 2018).
Within the QRM, in the regime where the coupling strength

dominates over any other term, the limit of spin-dependent
forces is expected. Such a limit was previously studied in
trapped ion systems in order to achieve faster quantum
computing operations, among other applications (Solano,
Agarwal, and Walther, 2003; Haljan et al., 2005). Finally,
it is noteworthy to mention another surprising limit of the
QRM when the mode frequency is negligible, giving rise to
the emergence of the (1þ 1)-dimensional Dirac equation
(Lamata et al., 2007; Gerritsma et al., 2010). This connection
was further explored in the literature (Gerritsma et al., 2011)
and may still produce important analogies for quantum
simulations of relativistic quantum models encoded in non-
relativistic quantum systems (Pedernales et al., 2018).
Note that in the USC regime, the complete cavity QED

Hamiltonian contains an additional term, the so-called A2 term
which represents the self-interaction energy of the field. This
term usually contains a part that looks like ðg2=ωÞâ†â, so it is
usually neglected due to the smallness of g=ω. In the USC
regime, however, it has an important role in most physical
systems. An historical dispute in the context of cavity QED
has surrounded the discussions about the A2 term due to an
initial prediction of a superradiant phase transition (Dicke,
1954; Hepp and Lieb, 1973; Wang and Hioe, 1973) followed
by a no-go theorem (Rzażewski, Wódkiewicz, and Żakowicz,
1975). More recently, the dispute has surged back in discus-
sing different quantum systems such as superconducting
qubits (Nataf and Ciuti, 2010; Viehmann, von Delft, and
Marquardt, 2011; Jaako et al., 2016) and polaritons (Chirolli
et al., 2012; Hagenmüller and Ciuti, 2012). Therefore, the
study of the USC regime unavoidably leads to the exploration
of the influence of the A2 term in different physical systems as
was highlighted in a recent theoretical work which also
included direct dipole interactions between the two-level
systems (DeBernardis, Jaako, and Rabl, 2018). Other theo-
retical works considered superradiance in a system with a
single (Ashhab, 2013) and many (Bamba, Inomata, and
Nakamura, 2016; Ashhab and Semba, 2017) superconducting
qubits in a cavity. Learning information about this term would
lead to profound insight in the ultimate nature of light-matter
interaction. Extensions of theQRMconsidering the anisotropic
Rabi model (Xie et al., 2014) including discussions of the A2

term (Liu et al., 2017) have also been investigated. In this
modified QRM, the counterrotating terms are assumed with a
different coupling strength gcr than the corotating terms g.

In systems based on a dense electron gas, such as polaritons
in semiconductor quantum wells (see Sec. III.B), many
identical electronic transitions are resonant with a single cavity
mode. In that limit, thematerial excitation behaves as a bosonic
quasiparticle, and a more adequate description is provided by
the Hopfield Hamiltonian (boson-boson coupling) (Hopfield,
1958), rather than the QRM (spin-boson coupling). It has been
theoretically demonstrated (Todorov and Sirtori, 2014) how an
electronic system can evolve from the quantum Rabi
Hamiltonian toward the Hopfield model, by changing the
number of electrons. In comparing the twomodels, themultiple
polariton branches of the dressed states in the QRM are
progressively washed out, leaving only two polariton branches
as observed in experiments with polaritons in semiconductor
quantum wells. In describing such dense electron gas systems,
alternative Hamiltonians were used in the literature in a
different gauge rather than the usual minimal coupling
Hamiltonian where the A2 term previously mentioned appears.
In the Coulomb gauge and the dipole representation, the A2

term is replaced by a P2 term. The resulting Hamiltonian was
used to study nonperturbative superradiant emission of col-
lective excitations in a two-dimensional electron gas (Huppert
et al., 2016). These modified Hamiltonians better capture the
effects in condensed matter systems, such as those described in
Sec. III.B.

III. EXPERIMENTS IN THE USC AND DSC REGIMES

Ultrastrong coupling regimes have been the focus of
theoretical studies for many decades (Shirley, 1965; Cohen-
Tannoudji, Dupont-Roc, and Fabre, 1973; De Zela, 1997;
Irish, 2007). It was not until the late 2000s that the first truly
experimental sightings of light-matter interactions in the USC
regime were realized (Anappara et al., 2007; Dupont, Gupta,
and Liu, 2007; Forn-Díaz et al., 2010; Niemczyk et al., 2010).
This first round of experimental results triggered a period of
intense theoretical exploration. Therefore, the experimental
progress has marked the pace at which the field has evolved.
Coincidentally, the exploration of the USC regime in several
physical systems has taken place at about the same period of
time. In this section, we overview the most relevant of these
fields, namely, superconducting quantum circuits (Sec. III.A),
semiconductor quantum wells (Sec. III.B), and other hybrid
quantum systems (Sec. III.C).

A. Superconducting quantum circuits

Superconducting circuits in the quantum regimewere shown
to be an excellent platform to study light-matter interactions in
the microwave regime of frequencies. Early studies of qubit-
resonator systems (Blais et al., 2004; Wallraff et al., 2004)
found that a superconducting qubit interactingwith themode of
amicrowave resonator follows the exact same physics as that of
cavity QED, with the qubit playing the role of an artificially
engineered atom and the resonator mode emulating the cavity.
By analogy, this platform of light-matter interactions on a
superconducting circuit was defined as circuit QED.
The experimental exploration of ultrastrong interactions in

superconducting quantum circuits was initiated in 2010,
following several years of development of circuit QED
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(Gu et al., 2017). Early experiments in the strong coupling
regime used capacitive (Schuster et al., 2007; Bishop et al.,
2009), mutual geometric (Johansson et al., 2006), and
galvanic inductive couplings (Chiorescu et al., 2004). The
first two experiments reaching USC regimes used galvanic
couplings instead (Forn-Díaz et al., 2010; Niemczyk et al.,
2010). Both experiments reported clear evidence of deviations
from the conventional model used in quantum optics, the JC
model introduced in Sec. II (Jaynes andCummings, 1963). The
couplings achieved are nowadays cast in the perturbative USC
regime (Rossatto et al., 2017). The experiments in 2010 were
followed by several studies addressing distinct features related
to counterrotating wave physics inherent to the perturbative
USC regime (Baust et al., 2016; Forn-Díaz et al., 2016; Chen
et al., 2017). In 2016, two independent experiments attained a
qualitative jump in the light-matter interaction strength, push-
ing the boundaries into the nonperturbative USC domain by
using Josephson junctions as coupling elements. These experi-
ments spanned both closed (Yoshihara et al., 2017b) and open
system settings (Forn-Díaz et al., 2017) and entered the DSC
regime (Casanova, Romero et al., 2010; Rossatto et al., 2017).
In parallel to the engineering of circuits showingUSC andDSC
physics, novel techniques of digital and analog quantum
simulation using superconducting circuits and trapped ions
studied the QRM in these extreme coupling regimes
(Braumüller et al., 2017; Langford et al., 2017; Lv et al.,
2018). Altogether, the year 2016 consolidated the field of
research onUSC regimes in superconducting circuits fromboth
a fundamental and an applied point of view (Braak et al., 2016).
A summary of the milestones in coupling strength achieved

in experiments with superconducting quantum circuits is
reported in Table I.

1. Circuit considerations: Qubit-resonator systems

The interaction between light and matter is fundamentally
manifested as a modification of a property of one of the

interacting subsystems due to the presence of the other one.
Consider a single atom placed in a dielectric. The presence of
the atom represents a sudden modification of the medium
through which light propagates. This pointlike discontinuity
in the dielectric causes a modification of the electromagnetic
field distribution of photons, resulting in a net light-matter
interaction. In the case of circuits, superconducting qubits play
the role of effective artificial atoms. In analogy to natural
atoms, the presence of a qubit induces a strong change in the
impedance of the circuit through which microwave photons
propagate, enabling qubit-photon interactions. The interaction
in this case may be capacitive or inductive, depending on the
circuit design, and generally will be determined by the
geometry of a coupling circuit element, a capacitor or an
inductor, respectively [Fig. 5(a)]. We define this type of
coupling as external. Within the strong coupling regime
where the interaction strength g dominates over qubit loss
γ and cavity loss κ, the qubit-photon interaction is perturbative
with respect to the cavity mode frequency ω, κ, γ ≪ g ≪ ω,
leaving the bare eigenstates of the interacting subsystems
unmodified. The eigenstates of the total system will still
consist of superpositions of qubit and photon in a dressed-state
basis (Jaynes and Cummings, 1963). So far, it has been
possible to attain the perturbative USC regime with external
couplings.
There exists an important difference between atomic

systems and superconducting circuits: superconducting qubits
are circuits themselves, allowing the possibility to directly
embed the artificial atom in the medium of propagation of
photons [Fig. 5(b)]. In this way, the two coupled systems share
more than just mutual geometric elements of the circuit
(capacitive and/or inductive) which store the interaction
energy, as is the case for external couplings [Fig. 5(a)]. As
described later in this section, circuit engineering permits
sharing an actual internal degree of freedom between the
artificial atom and the resonator, which becomes the actual
source of coupling. We refer to this type of coupling as

TABLE I. Experimental observations of ultrastrong light-matter coupling in superconducting quantum circuits. CPB: Cooper pair box. FQ:
flux qubit. TR: transmon qubit. TL: transmission line resonator. LE: lumped-element resonator. γ: qubit decay rate. κ: photon decay rate. g:
coupling strength. ωr: resonator frequency. U ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg=ωrÞ4g2=κγ
p

: geometric mean between cooperativity and normalized coupling strength.
SQUID: superconducting quantum interference device.

Qubit Cavity Interaction γ=2π κ=2π g=2π ωr=2π g=ωr U
Reference type type type (MHz) (MHz) (MHz) (GHz) (%) Notes

Wallraff et al. (2004) CPB TL Capacitive 0.7 0.8 5.8 6.044 0.1 0.24 First strong coupling
Chiorescu et al. (2004) FQ LE Galvanic, external 27 1.6 200 2.91 6.9 7.97 Resonator SQUID
Johansson et al. (2006) FQ LE Galvanic, external 0.2 0.2 216 4.35 5 241 First vacuum oscillations
Schuster et al. (2007) TR TL Capacitive 0.25 1.6 105 5.7 2 22.9 First transmon work
Bishop et al. (2009) TR TL Capacitive 0.3 0.09 173.5 6.92 2.5 167
Fedorov et al. (2010) FQ LE Galvanic, external 2.9 0.1 119.5 2.723 4.4 46.5
Niemczyk et al. (2010) FQ TL Galvanic, external 2.5 < 2 636 5.357 12 98 First USC work
Forn-Díaz et al. (2010) FQ LE Galvanic, external< 10 10 810 8.13 10 25.6 Bloch-Siegert in USC
Baust et al. (2016) FQ TL Galvanic, external ∼10 � � � 775 13.3 17.2 � � � Dressed mode coupling
Chen et al. (2017) FQ TL Galvanic, external ∼1 � � � 306 3.143 9.7 � � �
Yoshihara et al. (2017b) FQ LE Galvanic, internal ∼1 ∼1 7630 5.711 134 8819 First DSC work
Yoshihara et al. (2017a) FQ LE Galvanic, internal ∼1 ∼1 5310 6.203 86 4913
Bosman, Gely, Singh,

Bothner et al. (2017)
TR TL Capacitive 29.3 38 455 6.23 7.1 3.7

Bosman, Gely, Singh,
Bruno et al. (2017)

TR TL Capacitive 3.1 < 0.1 897 4.268 19 739 First USC transmon

Yoshihara et al. (2018) FQ LE Galvanic, internal ∼1 ∼1 7480 6335 118 16 256
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internal. In such a scheme, the qubit degrees of freedom
become renormalized by the elements of the coupling reso-
nator circuit (Manucharyan, Baksic, and Ciuti, 2017), such
that it is difficult to talk about separate qubit or resonator
degrees of freedom. With such a strong interaction, the natural
basis of eigenstates of the qubit circuit is modified, for both
charge-type [Cooper pair box (CPB), and transmon qubit] and
flux-type qubits (flux qubit and fluxonium qubit). This is the
fundamental key point that permitted attaining coupling
strengths well above the excitation frequencies of the inter-
acting subsystems, i.e., the nonperturbative USC and DSC
regimes (Forn-Díaz et al., 2017; Yoshihara et al., 2017b).
Superconducting qubits are generally classified into two

types: flux type and charge type. The qubit-resonator inter-
action can be of inductive (which includes galvanic coupling)
or capacitive nature. All types of superconducting qubits
developed so far have been shown to couple with either type of
interaction. Generally speaking, the capacitive interaction is
determined by themutual capacitance between the two coupled
circuits. Similarly, geometric inductive couplings are given by
the mutual qubit-resonator inductance. Galvanic couplings are
given by the superconducting phase drop that is developed
across the shared mutual inductance between the two circuits
(see Sec. III.A.3). It is possible to reach ultrastrong couplings
with both capacitive and galvanic interactions, with quite
different fundamental limits imposed for each type, as detailed
in the next sections.
We emphasize that all formulas shown in this section are

specific to a lumped-element resonator for which there is no
spatial dependence on the amplitude of the electromagnetic
field fluctuations, and only a single resonant mode exists. This
is in contrast to distributed resonators made of a section of a
transmission line. In the latter, the presence of the qubit

modifies the amplitude of the resonator field at that location,
leading to a decrease of the interaction strength. This is due to
the appearance of additional coupling mechanisms. For
example, a flux qubit inductively coupled to a transmission
line resonator develops a capacitive coupling at the expense of
the inductive interaction (Bourassa et al., 2012).
Each superconducting qubit is defined within a subset of a

larger Hilbert space of eigenstates of the whole quantum
circuit. A recent theoretical study considered the complete
circuit Hamiltonian of both flux-type and charge-type super-
conducting qubits embedded in a resonator (Manucharyan,
Baksic, and Ciuti, 2017). Deviations from the QRM were
evidenced but found to not alter the main qualitative properties
of the model, particularly for the ground state. The conclu-
sions of this study will be presented in Sec. III.A.3.
In the following sections we explore the limits to capacitive

and galvanic interactions. Mutual geometric inductive cou-
plings are less interesting as one requires very large qubits,
hundreds of μm long, to attain sufficiently large mutual
inductance. This in turn modifies the qubit eigenstates and
eventually reduces the qubit persistent current so the coupling
starts to decrease. Therefore, in practice the largest attainable
qubit-resonator interaction strength is lower than using gal-
vanic interactions.

2. Capacitive couplings

Capacitive couplings have been widely used with all types
of superconducting qubits engineered so far (Wallraff et al.,
2004; Hofheinz et al., 2009; Manucharyan et al., 2009;
Inomata et al., 2012). This type of coupling is proportional
to the root mean square (rms) voltage V̂ in the ground state of
the resonator mode with frequency ωr and capacitance Cr:

Vrms ≡ h0jV̂2j0i1=2 ¼
ffiffiffiffiffiffiffiffi
ℏωr

2Cr

s
¼ ωr

ffiffiffiffiffiffi
ℏZ
2

r
; ð8Þ

which scales as
ffiffiffiffi
Z

p
, where Z is the impedance of the resonator

mode coupled to the qubit (Devoret, Girvin, and Schoelkopf,
2007; Jaako et al., 2016; Andersen and Blais, 2017). This
scaling already points to high-impedance resonators to reach
the USC regime.
The most common type of charge qubit is known as the

Cooper pair box. This qubit consists of a superconducting
island connected to a large reservoir by a Josephson junction.
The island may be connected to another circuit by additional
capacitors, as shown in the circuit in Fig. 6. The qubit junction
capacitance Cq may consist of the self-capacitance of the
junction or a shunt capacitor externally defined. The CPB
Hamiltonian is given by (Bouchiat et al., 1998)

ĤCPB ¼ 4EC

X
N∈Z

ðN̂ − NextÞ2jNihNj

þEJ

X
N∈Z

ðjNihN þ 1j þ H:c:Þ: ð9Þ

Here N̂ is the Cooper pair number operator, and EC ¼ e2=2CΣ
is the charging energy of the Cooper pair island of total
capacitance CΣ, which is equal to Cq þ Cg in the circuit in

(a)

(b)

FIG. 5. (a) Circuit schematic of external coupling, with a circuit
element (center, red) which couples resonator (left, blue) and
qubit (right, yellow). Capacitors or inductors are examples of
possible coupling elements. (b) Internal coupling where the qubit
(right, yellow) and resonator (blue, left) shunt each other and
share internal degrees of freedom.

P. Forn-Díaz et al.: Ultrastrong coupling regimes of light-matter interaction

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025005-9



Fig. 6. EJ is the Josephson energy of the junction connecting
the box to the reservoir. Next ¼ CgVext=2e is the charge
externally induced on the island via the capacitor Cg.
“H.c.” stands for Hermitian conjugate. When the qubit is
connected to a resonator, as in Fig. 6, the external voltage
corresponds to the quantized voltage from the resonator
Vext ¼ V̂r ¼ Vrmsðâþ â†Þ (Blais et al., 2004). When writing
out explicitly all terms in Eq. (9), the cross term results in the
interaction energy between the charge qubit and the resonator,

Ĥint ¼ −2eN̂
Cg

CΣ
Vrmsðâþ â†Þ: ð10Þ

Equation (10) is general and applies to all types of charge-
based qubits, such as the CPB and the transmon. In Eq. (10),
the factor 2eN̂ plays the role of the qubit dipole moment.
One can picture this dipole moment as a charge 2e moving
between the two plates of the capacitor where an external
voltage V̂ext has been induced by the external circuit (Devoret,
Girvin, and Schoelkopf, 2007).
For a CPB in the charging regime 4EC ≫ EJ and for low

enough temperatures EC ≫ kBT that the system lies in its
ground state, the Cooper pair number operator may be repre-
sented in the basis defined by the two states j0i and j1i,
representing excess Cooper pairs on the island. Using the Pauli
matrix representation σ̂x ¼ jNihNþ1jþH:c:, the Cooper pair
number operator is now represented as N̂ ≃ σ̂z. Equation (9)
can be rewritten as ĤCPB¼−ðEel=2Þσ̂z−ðEJ=2Þσ̂x, with
Eel ≡ 4ECð1 − 2NgÞ. In this charging regime, Eq. (10) has a
modified form

ĤCPB
C ¼ 2e

Cg

Cg þ Cq
Vrmsσ̂xðâþ â†Þ: ð11Þ

The equivalent of the qubit dipolemoment here takes the simple
form jh0j2eN̂CPBj1ij ¼ 2e.
If we now consider the limit EJ ≫ EC, we enter the

transmon regime (Koch et al., 2007). In this regime, the
CPB Hamiltonian can be approximated by a harmonic
oscillator with some nonlinearity which introduces anharmo-
nicity in the spectrum. Now, the analog of the dipole moment
of the qubit, calculated in the transmon basis, takes a different

form jh0j2eN̂trj1ij ¼ eðEJ=2ECÞ1=4, leading to a modified
interaction Hamiltonian

Ĥtr
C ¼ e

Cg

Cg þ Cq

�
EJ

2EC

�
1=4

Vrmsσ̂xðâþ â†Þ: ð12Þ

The coupling strength g in the last expression can be
rewritten in a reduced form (Devoret, Girvin, and
Schoelkopf, 2007)

gtrC
ωr

¼ 1ffiffiffiffiffiffiffi
2π3

p
�

EJ

2EC

�
1=4

ffiffiffiffiffiffiffiffi
Z

Zvac

s
Cg

Cg þ Cq
α1=2: ð13Þ

Zvac ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
≃ 377Ω is the vacuum impedance while α ≃

1=137 is the fine structure constant. Note that in conventional
cavity QED experiments where a Rydberg atom interacts with
a photon, g=ω is proportional to α3=2 (Devoret, Girvin, and
Schoelkopf, 2007). The different scaling obtained in circuit
QED α1=2 is related to the different dimensionality of the
dipolemoment, being 3D for Rydberg atoms and 1D for circuit
QED. Equation (13) shows the fundamental limitations for
transmon qubits and capacitive couplings. It has been shown
(Jaako et al., 2016) that this type of coupling cannot reach the
DSC regime g=ωr > 1 as the coupling is bound by

gtrC
ωr

¼ Cgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CrðCq þ CgÞ þ CgðCg þ CqÞ

p < 1; ð14Þ

for exact qubit-photon resonance. The capacitances refer to the
circuit in Fig. 6. Typical circuit parameters limit this quantity to
gtrC=ωr ≈ 0.01 for Z ¼ 50 Ω.
The same analysis for pure charge qubits (CPB) gives a

reduced coupling of

gCPBC

ωr
¼

ffiffiffiffiffi
2

π3

r ffiffiffiffiffiffiffiffi
Z

Zvac

s
Cg

Cg þ CJ
α1=2: ð15Þ

Using a lumped-element resonator model, the reduced cou-
pling can be recast using circuit parameters in analogy to the
transmon case (Jaako et al., 2016)

gCPBC

ωr
¼ 2Cgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CrðCq þ CgÞ þ CgðCg þ CqÞ
p ffiffiffiffiffiffi

EC

EJ

s
: ð16Þ

Note that the frequency of a CPB is assumed here to be
ℏωq ¼ EJ. Equation (16) shows that it is in principle possible
to reach the DSC regime with a CPB with EC ≫ EJ. In
practice, the limitation on charge qubit lifetime makes this
circuit implementation challenging. The circuit parameters
used so far in experiments involving CPBs and resonators
(Wallraff et al., 2004) achieved values of gCPBC =ωr ≈ 0.01 with
a resonator impedance Z ¼ 50 Ω.
We point out that the limits imposed by Eqs. (13)–(16) are

specific to the circuit1 shown in Fig. 6. However, as will be
shown in Sec. III.A.3, a charge qubit, either transmon or CPB,

FIG. 6. Circuit model of a charge qubit shunted with capaci-
tance Cq coupled with a capacitor Cg to a lumped resonator of
capacitance Cr. The cross corresponds to the circuit element of a
Josephson junction. Lumped resonator (left) is depicted in blue,
charge qubit (right) in red. This model is valid both for Cooper
pair boxes as well as transmon qubits.

1Equations (14) and (16) are obtained from a modified but similar
circuit to that shown in Fig. 6 (Jaako et al., 2016).
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shunted by an LC circuit presents a chargelike interaction with
a coupling strength which can reach well into the g=ω > 1
regime (Manucharyan, Baksic, and Ciuti, 2017).
The

ffiffiffiffi
Z

p
scaling of the coupling in Eqs. (13) and (15) is

originated from the resonator voltage fluctuations Vrms,
favoring high-Z resonators. Employing high kinetic induct-
ance films or Josephson junction arrays (Masluk et al., 2012;
Andersen and Blais, 2017), impedances of several kΩ would
allow one to reach the regime gCPB;trC ≈ ωr.
The first experiment reporting USC with a capacitive

coupling consisted of a superconducting transmon qubit
coupled to a transmission line resonator (Bosman, Gely,
Singh, Bruno et al., 2017). The strength of the coupling was

attained by implementing a vacuumgap parallel-plate geometry
(see Fig. 7) in which the qubit shunt capacitor was suspended
over the ground plane, enhancing in this way the ratio of
coupling capacitance Cg to total capacitance Cg þ Cq in
Eq. (12). Being an effective drum 30 μm in diameter suspended
less than 1 μm over the resonator ground led to a coupling
capacitance nearly an order of magnitude larger than planar
capacitance designs. Combined with a high-impedance super-
conducting transmission line resonator, anUSCof up to g=ωr ∼
0.19 was observed with the fundamental resonator mode
[Figs. 8(a)–8(c)]. The high resonator impedance was achieved
by narrowing the center line of the resonator and in this way
reducing the capacitance per unit length between the ground

FIG. 7. USC with capacitive coupling. (a) Device schematic of a transmission line resonator capacitively coupled to a transmon qubit.
(b) Schematic of the vacuum gap capacitor shunting the qubit junctions. (c) Scanning electron micrograph (SEM) of the device, showing
the shunt capacitor that defines the resonator port. (d) SEM zoom-in of the qubit, displaying the vacuum gap capacitor and the Josephson
junctions.

FIG. 8. Spectrum of the capacitively coupled transmon-resonator device in the USC regime. (a) Spectrum displaying an avoided-level
crossing. The green dashed line shows the JC model. The blue dashed lines show the uncoupled qubit and resonator transitions. The red
dashed line is the QRM for a multimode system. A Bloch-Siegert shift of 62 MHz is clearly displayed as a deviation from the JC model.
(b) Vacuum Rabi splitting. (c) Zoom-in of the anticrossing area showing additional avoided-level crossings of the qubit.
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planes and the center line. The spectrum of the transmon qubit
shown in Fig. 8(a) displayed dispersive effects from themultiple
modes of the resonator coupling to the qubit, including qubit-
mediatedmode-mode interactions. Clear deviations from the JC
model were observed, reporting a single-photon Bloch-Siegert
shift of ωBS=2π ¼ 62 MHz.
Despite Eq. (14) limiting the ratio gtrC=ωr to lie below 1,

transmon-based devices approaching the DSC regime may be
demonstrated in the near future. One possible avenue to reach
that goal is to engineer the impedance of the transmission line
resonator to even higher values. In a separate work Puertas-
Martinez et al. (2018) demonstrated a USC coupling strength
between a qubit and multiple modes of a superconducting
quantum interference device (SQUID) array acting as a high-
impedance transmission line. The impedance of the array was
measured to lie in the kΩ range. Even though the experiment
was designed as an open system, and therefore modeling the
spin-boson model rather than the QRM, the scaling of the
qubit-line coupling followed closely that from Eq. (13). As
already mentioned, another straightforward way to enter the
DSC regimewith charge qubits is to directly shunt the qubit by
an LC resonator.

3. Galvanic couplings

Two systems are galvanically coupled when they share a
portion of their respective circuits. Here we distinguish two
types of galvanic couplings based on the amount of circuit
shared: (a) sharing a linear inductance and (b) embedding the
qubit directly into the resonator circuit. The general picture is
that the qubit and resonator share a circuit element, the latter
case being the entire qubit itself. In both situations, the qubit-
resonator coupling is then given by the superconducting phase
drop across the shared circuit element φ̂, which itself is a new
degree of freedom of the circuit; see Fig. 9. For flux-type
qubits [Figs. 9(a) and 9(b)], φ̂ can be represented in the basis of
eigenstates of the qubit hijφ̂jji, which relates to the current
running across the inductive element [see Eq. (18)]. For charge-
type qubits, an inductor in series with the qubit junctionmay be
shared with a resonator, as shown in Fig. 9(c). Increasing the
coupling strength in this configuration will be at the expense of
the qubit anharmonicity,2 since the linear inductance dilutes the
effect of the Josephson junction and brings the qubit closer to a
linear oscillator. Therefore, it is not very favorable for reaching
ultrastrong interaction strengths, and we will not discuss this
configuration further. In practice, this type of interaction has
been implemented only in coupled-qubit circuits (Y. Chen
et al., 2014). The other possibility3 is to embed the qubit in the
resonator circuit [Fig. 9(d)], where the coupling is to the charge
degree of freedom Q̂ on the island formed on one side of the
qubit junction.

Coupling to the phase φ̂ involves the rms current Î in the
ground state of the resonator mode with frequency ω and
inductance Lr:

Irms ≡ h0jÎ2j0i1=2 ¼
ffiffiffiffiffiffiffiffi
ℏωr

2Lr

s
¼ ωr

ffiffiffiffiffiffi
ℏ
2Z

r
: ð17Þ

Clearly, in order to maximize the coupling strength, low
resonator impedance Z is desirable.
In what follows, we will use the three-junction flux qubit

(Mooij et al., 1999) to analyze the different types of galvanic
couplings. The description can be easily extended to the
fluxonium (Manucharyan et al., 2009) and other flux-type
qubit circuits.

a. Linear inductance

Here we focus only on flux-type qubits, but the discussion
can be extended to charge qubits in the configuration shown in
Fig. 9(c). The circuit topology of a flux-type qubit consists of
one or more junctions interrupting a superconducting loop, a
section of which can be shared with a resonator circuit; see
Fig. 9(a). The coupling element is then the shared linear
inductor L, which adds a degree of freedom to the circuit,
the phase drop across it φ̂L. In the perturbative USC regime,
which corresponds to the experiments described in this section,
the value of the coupling inductance is typically small com-
pared to the resonator inductance Lr and the qubit loop
inductance. Therefore, φ̂L is frozen in its ground state and is
treated as a constant which becomes a perturbation to the qubit-
resonator system.4 Therefore, in this regime of small coupling

(a) (b)

(c) (d)

FIG. 9. Circuit model for galvanic couplings. (a) Flux qubit
sharing a section of its loop with a resonator. The coupling
element consists of a linear inductance. (b) Flux qubit embedded
into the resonator loop. The coupling is given by the phase across
the shared junction. (c) Charge qubit sharing an inductance with a
resonator. The coupling element is given by the shared induct-
ance. (d) Charge qubit embedded in the resonator loop. The
coupling operator is related to the charge Q̂ stored in the
superconducting island shared between qubit and resonator,
highlighted by the dashed line. (a) and (c) represent an external
coupling element, while (b) and (d) are internal couplings.

2See related literature for a more detailed calculation of the effects
of linear inductors in transmon qubits (Bourassa et al., 2012).

3Here we are discussing only transverse-type couplings. For both
flux-type and charge-type qubits, a longitudinal coupling can be
instead engineered by replacing one of the qubit junctions by a
SQUID loop and galvanically attaching a fraction of this loop to a
resonator circuit. We will not discuss longitudinal couplings in this
review.

4The linear coupling inductance in typical flux qubit loops a few
micrometers in size does not significantly contribute to the energy
spectrum and is usually neglected.
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inductance, the coupling element does not modify the bare
qubit or resonator spectra and is therefore an external coupling
as defined in Sec. III.A.1.
The inductance of a superconducting wire has a geometric

as well as a kinetic origin. The inductance from a Josephson
junction may also be used as a linear inductor, provided that its
critical current is much larger than the current flowing through
it. The geometric inductance is typically calculated from
LG ¼ ðμ0l=2πÞ½ln ð2l=wþ tÞ þ 1=2�. Here l, w, and t are
the wire length, width, and thickness, respectively. The kinetic
inductance has the origin in the inertia of Cooper pairs. In the
dirty superconductor limit, it takes the form (Tinkham, 2004)
LK ¼ μ0λ

2
Ll=wt, where λL is the London penetration depth,

which for thin films can reach values several times the bulk
value. The kinetic inductance can also be expressed as a
function of the normal state resistance of the wire Rn,
LK ¼ 0.14ℏRn=kBTc, with Tc being the superconductor
critical temperature. For a large, unbiased Josephson junction,
the inductance is given by LJ ¼ Φ0=2πIC (Orlando and Delin,
1991), with IC being the junction critical current, and Φ0 ¼
h=2e the flux quantum. Irrespective of the type of coupling
inductor, the phase across it can be treated as a constant
operator with off-diagonal matrix elements which are directly
calculated in the qubit eigenbasis h0jφ̂Lj1i ≃ LIpðΦ0=2πÞ.
Here Ip ≡ h0jÎj1i is the persistent current in the qubit loop.
The interaction strength in this case is given by the magnetic
dipolar energy Hint ¼ −m⃗ · B⃗, which for a superconducting
quantum circuit is rewritten as

Ĥint ¼ LIpIrmsσ̂xðâþ â†Þ; ð18Þ

leading to the definition of the coupling strength
g≡ LIpIrms=ℏ. Here L represents the sum of all linear
inductance contributions shared between qubit and resonator,
including galvanic and mutual geometric inductance.
An important remark needs to be made at this point

regarding flux qubits and their type of interactions to
resonators. The qubit Hamiltonian in the persistent current
basis is given by ĤFQ=ℏ ¼ −ðΔ=2Þσx − ðϵ=2Þσz, where Δ is
the tunnel coupling between the persistent current states, and
ℏϵ ¼ 2IpðΦext −Φ0=2Þ corresponds to the magnetic energy
proportional to the external magnetic flux Φext. The effective
magnetic dipole interaction [Eq. (18)] written in the persistent
current basis is given by Ĥint ¼ ℏgσzðaþ a†Þ. In the diagonal
basis of the qubits, the interaction Hamiltonian is rotated in
such a way that both transverse ∼σx as well as longitudinal
∼σz interactions exist

Ĥint ¼ ℏg

�
ϵ

ωq
σz −

Δ
ωq

σx

�
ðaþ a†Þ; ð19Þ

where ωq ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ϵ2

p
is the qubit transition frequency.

However, as the flux qubit is normally operated in the
neighborhood of the symmetry point Φext ¼ Φ0=2 where
ϵ ¼ 0, the longitudinal contribution is normally neglected.
The first two experiments demonstrating USC in super-

conducting circuits used linear inductors as coupling elements.
In the first experiment (Niemczyk et al., 2010), a flux qubit was

coupled to a transmission line resonator by means of the
large inductance of a shared Josephson junction operated in the
linear regime; see Figs. 8(b), 8(d)–8(f), and 10(a). Figure 10(c)
shows the spatial profile of the lowest three resonator modes
coupling to the qubit. The measurement setup is shown in
Fig. 10(g), where a vector network analyzer (VNA) used to
perform spectroscopy of the system is directly connected
to the input capacitor of the resonator (shown in light blue),
while the output capacitor couples to an amplifier chain before
entering back into the second port of the VNA. A signal
generator is combinedwith theVNAat the input line to perform
two-tone spectroscopy and extract in this way the whole
qubit spectrum. This experimental setup has become rather
ubiquitous nowadays in circuit QED experiments. The
spectrum of the system showed clear signatures of qubit-
photon interactions in different modes of the resonator. The
extracted qubit-resonator coupling rates to the first three
resonator modes were g0=2π¼314MHz, g1=2π¼ 636MHz,
and g2=2π ¼ 568 MHz, respectively. The maximum normal-
ized coupling strength was achieved by the second mode, i.e.,
g1=ω1 ¼ 0.12. Deviations from the JC model were clearly
observed with the appearance of avoided-level crossings
corresponding to a breakdown of the conservation of the
number of excitations. Because of the presence of the counter-
rotating terms, the states je; 1; 0; 0i and jg; 0; 0; 1i, which are
degenerate under the RWA, hybridize and result in visible
avoided-level crossings, as seen in Fig. 11.
In the second experiment (Forn-Díaz et al., 2010), a flux

qubit was galvanically attached to a lumped-element LC
resonator, such that both systems were coupled by the induct-
ance of the shared wire; see Fig. 12(a). The qubit spectrum
showed a large avoided-level crossing at the resonance point,
yielding a coupling strength of g=2π ¼ 810 MHz for a reso-
nator frequency of ωr=2π ¼ 8.13 GHz. This resulted in a
normalized coupling of g=ωr ¼ 0.1. Deviations from the RWA
were identified as a frequency shift in the resonator when the

(a)

(d)

(e) (f)

(b) (c)

(g)

FIG. 10. First experiment that reported breakdown of the
rotating-wave approximation in a superconducting qubit circuit.
(a) Optical image of the circuit, (b) scanning electron micrograph
(SEM) from coupling capacitor, (c) resonator mode profiles
coupling to the qubit, (d)–(f) SEM images showing qubit circuit
and qubit junctions, and (g) circuit schematic. From Niemczyk
et al., 2010.
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qubit was flux biased near its symmetry point Φ ¼ Φ0=2;
see Figs. 12(b) and 12(c). At this bias point, the effective
qubit-resonator coupling is maximal. The frequency
shift of the resonator compared to the JC model, also known
as the Bloch-Siegert shift (Bloch and Siegert, 1940), was
attributed to the dispersive effect of the counterrotating
terms, as explained in Sec. II. Its existence had long been
predicted (Cohen-Tannoudji, Dupont-Roc, and Fabre, 1973;
Zakrzewski, Lewenstein, and Mossberg, 1991) and this
experiment represented its first observation. The maximum
Bloch-Siegert shift attained in this experiment was
ωBS ≡ g2=ðωr þ ωqÞ ¼ 2π × 52 MHz.
The two experiments previously described were per-

formed in the perturbative USC regime, defined when the
normalized coupling constant is 0.1≲ g=ω≲ 0.3 (Rossatto
et al., 2017). The experiments achieved g=ω ¼ 0.12
(Niemczyk et al., 2010) and g=ω ¼ 0.10 (Forn-Díaz et al.,
2010), respectively, satisfying the condition of perturba-
tive USC.
In later experiments, a two-resonator circuit was coupled to

a single flux qubit by sharing a section of the qubit loop,
several μm long (Baust et al., 2016). The coupling strength
observed was of g=ωr ¼ 0.17, attained using a collective
mode between the two resonators.
Follow-up work on the Bloch-Siegert shift observation

experiment studied the energy-level transitions between
excited states as a function of coupling strength (Forn-Díaz
et al., 2016). In the RWA regime, the excited states of the JC
model appear in doublets jn;�i for each photon number n. In
circuit QED, the qubit is sometimes driven via the resonator.
With this indirect driving, a selection rule exists under the
RWA between eigenstates of different manifolds jn;�i and
jn� 1;�i. The observation of a transition between dressed
states j1;−i and j2;þi belonging to different manifolds was
identified in this work as another distinct feature of the USC
regime.

In another experiment in the perturbative USC regime,
Chen et al. (2017) explored multiphoton red sidebands in an
experiment consisting of a flux qubit coupled to a trans-
mission line resonator. These higher-order sidebands could be
unambiguously detected only in the USC regime, where the
counterrotating terms modify the selection rules. The largest
coupling in this experiment was attained between the flux
qubit and the fundamental mode of the resonator, reaching a
value of g=ω0 ¼ 0.097.

b. Embedded qubit circuit

Up to this point, the description of galvanic couplings as a
perturbation of the qubit-resonator system has been valid in
the range 0 < g=ω≲ 0.1. Increasing the coupling strength
toward the nonperturbative regime would be analogous to
considering the phase drop of the inductive element φ̂L as a
degree of freedom shared between the qubit and resonator
with dynamics of its own. While in principle it should be
possible to increase the shared inductance and enter the
nonperturbative USC regime (Rossatto et al., 2017), in
practice this would result in a very large qubit geometry,
hence susceptible to flux noise, and a decrease of the
persistent current in the qubit loop that would eventually
decrease the coupling strength.
The natural way to further enhance the interaction strength

is to share a junction of the qubit circuit with the resonator;
see Fig. 9(b). In other words, the qubit needs to be embedded
“in parallel” to the resonator. This circuit will require full
quantization in order to be properly described. In that case, the
interaction term becomes of a dipole type (Peropadre et al.,
2013)

Ĥint ¼
X

α¼x;y;z

ℏgαGðâ† þ âÞσ̂α: ð20Þ

The coupling operators are here defined as

(a) (b) (c)

(d)

FIG. 11. Observation of transitions which do not conserve the number of excitations in a flux qubit-resonator spectrum.
Plots display transmission through the circuit, with ωrf being the probe frequency. δΦx corresponds to the flux applied to the
qubit using an external coil. (a) Full circuit spectrum near the second resonator mode frequency. Dashed lines fitting the data
correspond to the full Hamiltonian, the green vertical lines represent the case of no qubit-resonator coupling, while the solid
magenta line is the prediction of the Jaynes-Cummings (JC) model; (b) zoom-in near the avoided qubit-resonator level crossing;
(c) avoided-level crossings not included in the JC model. The presence of the counterrotating wave terms introduce hybridization
between the indicated eigenstates that otherwise would not couple. From Niemczyk et al., 2010.
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ℏgxG ¼
ffiffiffiffiffiffiffiffi
ℏωr

2Lr

s
Φ0

2π
h0jφ̂j1i; ð21Þ

ℏgzG ¼
ffiffiffiffiffiffiffiffi
ℏωr

2Lr

s
1

2

�
Φ0

2π

�
ðh1jφ̂j1i − h0jφ̂j0iÞ: ð22Þ

The prefactor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωr=2Lr

p
corresponds to the rms of the

resonator current in its ground state, Eq. (17). The last factors
in Eqs. (21) and (22) correspond to the magnetic dipole
moment and the net magnetic flux generated by the qubit,
respectively. Near the qubit symmetry point, where the qubit
is usually operated to maximize quantum coherence, the
net flux generated is null. Therefore, we may neglect the
coupling term gzG. Equation (21) includes the case of a shared
linear inductor, since in that case we can write the dipole
moment as ðΦ0=2πÞh0jφ̂j1i ≃ LIp so that the coupling
becomes the mutual inductive energy LIpIrms, as in Eq. (18).
Equation (21) can be recast as a function of the resonator
impedance Z:

gxG
ωr

¼ 1

8

ffiffiffiffiffiffiffiffi
Zvac

πZ

r
α−1=2h0jφ̂j1i: ð23Þ

Notice the different scaling compared to Eqs. (13) and (15).
In Eq. (23), the fine structure constant appears with a
negative power, which is a consequence of coupling the flux
qubit to the fluctuations of the magnetic field generated by the
resonator (in fact, here the coupling is directly to the current in
the resonator). Comparing to Rydberg atoms, atomic magnetic
dipole couplings are typically an order of magnitude smaller
than electric dipole couplings and are therefore usually not
considered.
Manucharyan, Baksic, and Ciuti (2017) showed that for a

fluxonium qubit gxG=ωr yields an identical result. Using a
linear inductance as a coupler, the matrix element of the phase
operator is of the order of h0jφ̂j1i ≈ 10−2 (Forn-Díaz et al.,
2010; Baust et al., 2016; Chen et al., 2017) so that Eq. (23)
leads to gxG=ωr ≈ 0.1, just entering the perturbative USC
regime. Maximizing Eq. (21) may be accomplished by sharing
a qubit junction, as shown in Fig. 9(b). In that case,
h1jφ̂j0i ≈ 1, so gxG=ωr ≃ 2, which lies well in the DSC regime.
Increasing the coupling further is possible by using low-
impedance resonators.
Following the initial experiments in the perturbative USC

regime, a new wave of results was reported when two
experiments demonstrated DSC regimes between both a flux
qubit and a resonator (Yoshihara et al., 2017b) and a trans-
mission line in an open-space setting (Forn-Díaz et al., 2017).
In both experiments, the qubit was embedded in the resonator
and transmission line circuit, with the coupling element being
a Josephson junction of the qubit loop. Contrary to the first
experiment reporting USC (Niemczyk et al., 2010), the
coupling junction was part of the qubit internal dynamics,
therefore corresponding to an internal coupling as defined in
Sec. III.A.3. The effective inductance stored in the junction
enabled coupling strengths all the way into the DSC regime.
The qubit-resonator experiment consisted of an LC circuit

galvanically coupled to a flux qubit by sharing an array of four
Josephson junctions in parallel, acting as an effective SQUID,
which allowed tuning of the interaction strength (Peropadre
et al., 2010); see Fig. 13. The resonator was inductively

(a)

(b)

(c)

FIG. 12. Observation of physics beyond the rotating-wave
approximation: the Bloch-Siegert shift. (a) Circuit schematic
and scanning electron micrograph images. (b) Spectrum near
resonator frequency ωr=2π ¼ 8.13 GHz as a function of the
magnetic flux in the qubit. The acquired signal represents the
magnetic flux sensed by the SQUID coupled to the qubit.
(c) Resonator frequency shift with respect to the prediction of
the Jaynes-Cummings model, identified here as the Bloch-Siegert
shift. The horizontal dashed line is the prediction from the
Jaynes-Cummings model, the solid line is the full Hamiltonian
without approximations, and the dashed line fitting the data is the
approximated Hamiltonian in the perturbative USC regime. From
Forn-Díaz et al., 2010.
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coupled to a transmission line to allow probing the system
in transmission. In order to enhance the coupling strength,
a very large resonator capacitor was used to decrease its
impedance Z ¼ ffiffiffiffiffiffiffiffiffi

L=C
p

and enhance in this way the ground-

state current fluctuations hI2rmsi1=2 ¼ ωr

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Z

p
, as explained

in Sec. III.A.3. The spectrum of the system showed energy-
level transitions that agreedwith the full QRM; see Fig. 14. The
coupling strengths reported spanned the region 0.72 ≤ g=ωr ≤
1.34, with coupling strength values up to g=2π ¼ 7.63 GHz.
These remarkable results exceeded all previous reports of
ultrastrong couplings and entered the DSC regime g=ω > 1,
where the interaction operator starts to dominate the system
spectrum and its dynamics (Casanova, Romero et al., 2010).
Given the coupling strength achieved, the system ground state
should exhibit a large degree of qubit-resonator entanglement.
The results from Yoshihara et al. represented the largest
normalized atom-photon interaction strength reported in any
physical system to date. Within the same work, they found a
way to quantify the effect of the so-called A2 term in their
particular system. As alluded to in Sec. II, a debate exists
whether in circuit QED theA2 term precludes the existence of a
superradiant phase transition in the system ground state. Based
on the parameters extracted, they were able to demonstrate that
theA2 term in their setup did not satisfy the condition of the no-
go theorem which led them to claim that a superradiant state
may exist.

In follow-up experiments, Yoshihara et al. demonstrated
insight into the energy spectrum of the QRM tomore accurately
characterize the relative coupling strength g=ωr of the system.
By looking at higher-energy level transitions, a method was
developed to qualitatively estimate the regime of coupling g=ωr
in which the system lies without the need for complex fits of the
whole spectrum (Yoshihara et al., 2017a). Using two-tone
spectroscopy, they were able to map out the QRM spectrum
up to six levels, finding excellent agreement with Eq. (1)
(Yoshihara et al., 2018) and demonstrating in this way the
validity of circuit QED implementations to faithfully represent
the QRM (Manucharyan, Baksic, and Ciuti, 2017). The obser-
vations were consistent with remarkable Lamb shifts of up to
90% of the bare qubit energy splitting, together with 1-photon
and2-photonStark shifts of higher-energy levels,which resulted
in the inversion of the qubit states as the interaction strength
grows well into the DSC regime, which they were able to
demonstrate using devices tunable over awide range (Yoshihara
et al., 2018). This important work from the National Institute of
Information and Communications Technology (Tokyo, Japan)
group represents the first steps into the observationof novelDSC
physics in upcoming circuit QED experiments.
As discussed in Sec. II, the following natural step would be

to start exploring the dynamics of the QRM in the non-
perturbative regime, the coherence time of the system (Nataf
and Ciuti, 2011), its internal dynamics (Casanova, Romero
et al., 2010), and possibly phase transitions with multiple
qubits involved (Nataf and Ciuti, 2010; Jaako et al., 2016).
We turn now to galvanic couplings using charge qubits

embedded in the resonator circuit. In such a configuration, the
qubit couples directly to the charge operator of the resonator.
Recently (Manucharyan, Baksic, and Ciuti, 2017), a circuit
consisting of a charge qubit embedded in an LC resonator
circuit [Fig. 9(c)] was inspected, and the following normalized
coupling strength was obtained:

gchG
ω0
r
¼ Cr

Cq þ Cr

h0jQ̂j1i
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Z0
r

Zvac

s
α1=2: ð24Þ

Here the resonator frequency is renormalized due to the qubit
capacitor Cq, ω0

r ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
LrCp

p
, with C−1

p ¼ C−1
r þ C−1

q . The

resonator impedance is also renormalized as Z0
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr=Cp

p
.

h1jQ̂j0i is the qubit electric dipole in units of the electron
charge. For a Cooper pair box, h1jQ̂j0i ∼ 1. With sufficiently
large resonator capacitance, it is possible to reach the DSC
regime gchG =ω

0
r > 1 by employing very high-impedance res-

onators (Masluk et al., 2012).
A different circuit configuration was analyzed by Bourassa

et al. (2012). The circuit consisted of galvanically attaching a
charge qubit to a transmission line resonator. For charge qubits
in the transmon regime EJ=EC ≫ 1, the coupling to such a
resonator was calculated to be

gtrG
ωr

¼ 1ffiffiffiffiffi
8π

p
�

EC

8ðEJ þ ELÞ
�

1=4
ffiffiffiffiffiffiffiffi
Zvac

Z

r
α−1=2: ð25Þ

In Eq. (25), EL ¼ ðΦ0=2πÞ2=Lr corresponds to the inductive
energy of the resonator which dilutes the anharmonicity of the
transmon qubit and reduces the effective maximum coupling.

(a)

(b)

(c)

FIG. 13. DSC regime circuitry of a superconducting flux qubit
coupled to an LC resonator. (a) Circuit schematic. (b) Scanning
electron micrograph of the device. The large interdigitated-finger
capacitor occupies most of the image. The probing transmission
line can be seen to the right of the image. (c) Zoom-in of the
qubit, with the 4-junction SQUID coupler in the bottom arm.
From Yoshihara et al., 2017b.
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This inductive term was omitted in the first analysis of this
circuit (Devoret, Girvin, and Schoelkopf, 2007). Given that
the inductive energy of resonators is usually much larger than
the Josephson energy, achieving the DSC regime gtrG=ωr > 1

compromises the transmon condition EJ ≫ EC that is
required to derive Eq. (25). In addition, the presence of the
qubit junction was shown to reduce the resonator current,
leading to a maximum coupling of gtrG=ωr ∼ 0.2 (Bourassa
et al., 2012), which is far from the DSC regime.
It is worth at this point referring to the analysis carried out

by Manucharyan, Baksic, and Ciuti (2017). They considered
the full quantum circuit of both a fluxonium and a CPB qubit
and compared them to the QRM. It turns out that both fluxlike
and chargelike qubits display a spectrum that resembles very
closely with that of the QRM. In particular, the two lowest-
energy levels become nearly degenerate in the DSC regime
g=ωr > 1. Although a large number of bare qubit states are
involved in the qubit-resonator ground state, the entanglement
spectrum is dominated by the lowest two eigenvalues even

though the qubits are multilevel systems. The analysis for
fluxlike qubits using many of the circuit levels shows similar
features to the QRM even though the calculated low energy-
level splittings differ quantitatively. By contrast, the CPB
ultrastrongly coupled to a resonator results in a much more
faithful reproduction of the energy-level spectrum of the
QRM. Manucharyan et al. interpreted the vacuum level
degeneracy as an environmental suppression of flux and
charge tunneling due to dressing of the qubit with low- or
high-impedance photons in the resonator. In fluxlike qubits,
the flux tunneling suppression was understood as the qubit
circuit being shunted by the large resonator capacitor, which
increases the effective qubit mass and suppresses quantum
tunneling. In other words, the system localizes itself in one of
the two minima of the qubit potential, suppressing in this way
the qubit transition frequency. The CPB ultrastrongly coupled
to a resonator has a less obvious circuit model interpretation
since no simple circuit elements represent the system at high
coupling values. The charge tunneling suppression was related

(a) (e)

(i)

(k)

(l)

(n)(m)

(j)

(b) (f)

(c) (g)

(d) (h)

FIG. 14. DSC regime spectrum at different coupling strengths. (a)–(d) Spectrum near the bare resonator frequency. The signal
represents transmission through the resonator. (e)–(h) Same spectra with fitted theory calculations using the full quantum Rabi model,
finding an excellent agreement with the experiments. (j)–(n) Broader frequency range corresponding to the same coupling strengths in
(a)–(d), where additional transitions are identified which confirm the large size of the coupling strength of the system. Certain transitions
vanish due to the symmetry of the system Hamiltonian. The inset shows several transition matrix elements coinciding with resonances in
the experiment. From Yoshihara et al., 2017b.
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to the manifestation of the dynamical Coulomb effect of
transport in tunnel junctions connected to resistive leads.
In conclusion, Manucharyan et al. found the description
of the QRM by superconducting qubits to be quite faithful,
despite the presence of the multilevel spectrum. The CPB is
the most suitable qubit despite the fact that charge noise has so
far hindered the exploration of ultrastrong couplings, even
though the USC features may be robust against dissipation
(De Liberato, 2017).

B. Semiconductor quantum wells

Semiconductor quantum wells (QWs) provide one of the
cleanest and most tunable solid-state environments with
quantum-engineered electronic and optical properties. In
the context of cavity QED, microcavity exciton polaritons
in QWs have served as a model system for highlighting
and understanding the striking differences between light-atom
coupling and light-condensed-matter coupling (Weisbuch
et al., 1992; Khitrova et al., 1999; Deng, Haug, and
Yamamoto, 2010; Gibbs, Khitrova, and Koch, 2011).
However, the large values of resonance frequency (typically
in the near-infrared or visible) and relatively small dipole
moments for interband transitions make it impractical to
achieve USC using exciton polaritons [see, however, the cases
of microcavity exciton polaritons (MEPs) in organic semi-
conductors, carbon nanotubes, and two-dimensional materials
described in Sec. III.C.2].
Intraband transitions, such as intersubband transitions

(ISBTs) (Helm, 2000; Paiella, 2006) or inter-Landau-level
transitions (ILLTs) (colloquially known as a cyclotron reso-
nance, CR) (Kono, 2001; Hilton, Arikawa, and Kono, 2012),
are much better candidates for realizing USC regimes in QWs.
Shown schematically in Fig. 15, they have small resonance
frequencies, typically in the midinfared (MIR) and terahertz
(THz) range, and enormous dipole moments (tens of eÅ).
Theoretically, Liu (1996, 1997) was the first to propose and

analyze intersubband (ISB) polaritons in QWs. He demon-
strated that the vacuum Rabi splitting (VRS) increases
with the electron density as well as the number of QWs.
Figure 16(a) shows calculated absorption spectra, displaying
ISB polaritons for QWs for different numbers of QWs, while
in Fig. 16(b) the QW number dependence of the vacuum Rabi
splitting is calculated; Fig. 16(c) shows absorption spectra for
different electron densities, while in Fig. 16(d) the electron
density dependence of the vacuum Rabi splitting is displayed
(Liu, 1996, 1997). Unique electrically driven MIR emission
devices based on quantum cascade structures incorporating
ISB polaritons have also been proposed (Colombelli et al.,
2005). In particular, it was predicted that in InP-based
multiple-QW structures a polariton splitting 2ℏg of 40 meV
can be obtained for an ISBT at ℏω12 ≈ 130 meV, resonant
with a cavity frequency ω, i.e., g=ω ≈ 0.15. Ciuti, Bastard, and
Carusotto (2005) used a Bogoliubov transformation to diag-
onalize the full Hamiltonian and obtained the energies of the
upper polariton (UP) and lower polariton (LP) branches.)
Figure 16(e) shows the calculated UP and LP energies as a
function of normalized coupling strength, where ω12 is the
ISBT frequency, for zero detuning ω ¼ ω12, demonstrating
that USC is possible. Similarly, for ILL polaritons,

Hagenmüller, De Liberato, and Ciuti (2010) derived and
diagonalized an effective Hamiltonian describing the resonant
excitation of a two-dimensional electron gas (2DEG) by
cavity photons in the integer quantum Hall regime. ) The
dimensionless vacuum Rabi frequency in a 2DEG resonant
with a cavity of frequency ω, g=ωc, was shown to scale asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αNQWν

p
. Here ωc ¼ eBdc=m� is the cyclotron frequency,

Bdc is the dc magnetic field applied perpendicular to the
2DEG, e is the electronic charge,m� is the effective mass, α is
the fine structure constant, NQW is the number of QWs, and ν
is the Landau-level filling factor in each well. It was shown
that g=ωc > 1 could be achieved when ν ≫ 1 with realistic
parameters of a high-mobility 2DEG.
Furthermore, as mentioned in Sec. II, Ciuti, Bastard, and

Carusotto (2005) provided much physical insight into the
ground-state properties of ISB polaritons. They found that the
ground state consists of a two-mode squeezed vacuum.
Various experimental schemes have been proposed to

experimentally probe these special properties of the ground

(a)

(b)

FIG. 15. Semiconductor quantum well transitions. Two types of
intraband transitions in semiconductor quantum wells are shown
that have been demonstrated to exhibit USC: (a) intersubband
polaritons and (b) inter-Landau-level (or cyclotron) polaritons. In
contrast to interband transitions, which typically occur in the
near-infrared or visible range, these intraband transitions occur in
the midinfrared or THz range, with enormous dipole moments.
(a) The lowest two subbands of opposite parity, with an energy
separation of ℏω12, within the conduction or valence band are
resonantly coupled with a light field (Elight) polarized in the
growth direction (TM polarization), to form intersubband polar-
itons. (b) A magnetic field (Bdc) applied in the growth direction
quantizes each subband into Landau levels with an enery
separation of ℏωc, where ωc ¼ eBdc=m� is the cyclotron fre-
quency, e is the electronic charge, and m� is the effective mass;
the highest occupied Landau level and the lowest unoccupied
Landau level are resonantly coupled with a light field (Elight)
polarized in the quantum well plane (TE polarization) to form
inter-Landau-level polaritons.
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state of ISB polaritons in the USC regime. Ciuti, Bastard, and
Carusotto (2005) specifically considered a system in which a
cavity photon mode was strongly coupled to an ISBT. They
showed that the system could be brought into the USC regime,
where correlated photon pairs can be generated by tuning the
quantum properties of the ground state. The tuning could be
achieved by changing the Rabi frequency via an electrostatic
gate.
Similarly, De Liberato, Ciuti, and Carusotto (2007) pro-

posed to modulate the vacuum Rabi frequency in time and
calculated the spectra expected for the emitted radiation. More
recently, Stassi et al. (2013) described a three-level system
(j0i, j1i, j2i) in which a spontaneous j1i → j0i transition was
accompanied by the creation of real cavity photons out of
virtual photons resonant with the j1i → j2i transition. Finally,

Hagenmüller (2016) recently proposed an all-optical scheme
for observing the dynamical Casimir effect in a THz photonic
band gap using ILL polaritons.
These theoretical studies have stimulated much interest in

experimentally probing ultrastrong light-matter coupling phe-
nomena in semiconductor QWs.
The design and nature of photonic cavities used in the

context of semiconductor USC physics depend on, with
respect to the QW plane, whether the in-plane or out-of-plane
electric field component needs to be enhanced to couple with
the electronic excitations. ISBTs and ILLTs couple with the
out-of-plane and in-plane cavity electric field components.
Examples of typical cavities and their working principles are
described next.
Intersubband polariton cavities:
(i) A planar waveguide microcavity [Fig. 17(a)] consists

of, from bottom to top, an undoped GaAs layer, an
AlAsþ n-doped GaAs cladding layer, a QW layer,
and a metal layer. Light is obliquely incident onto the
side of thewaveguide and is confined throughmultiple
reflections between the top metal layer and the AlAs
cladding layer. The photonic resonance leads to
enhancement of the out-of-plane electric field com-
ponent around the metal layer [Ez plotted with blue
lines in Fig. 17(a)]. The metal layer also serves as an
electrical gate to tune the electron density in the QW.

(ii) A metal-dielectric-metal microcavity is shown in the
left panel in Fig. 17(b). It contains a QW sandwiched
between a planar metallic mirror and a metallic
rectangular strip grating. The grating defines a lateral
photonic confinement while at the same time ensures
efficient coupling of incident light into the double-
metal regions. Both obliquely incident (θ ≠ 0) and
normal incident (θ ¼ 0) light are able to excite the
ISBT in the QW due to enhancement of Ez [right
panel of Fig. 17(b)] in the cavities.

(iii) An inductor-capacitor resonator substitutes the top
metallic strip gating in a metal-dielectric-metal
cavity with a microstructure where a wire with finite
inductance connects two circular capacitor elements.
The electric and magnetic field distributions at
resonance are plotted in Fig. 17(c).

(iv) A surface plasmon photonic crystal replaces the
bottom planar metallic mirror of a metal-dielectric-
metal cavity with a cladding semiconductor layer
[left panel of Fig. 17(d)]. The device can be
considered as a 1D metallic photonic crystal, which
folds the modes guided by the cladding layer and the
QW into the first Brillouin zone. The full dispersion
can be mapped out by recording light transmittance
at various incident angles [right panel of Fig. 17(d)].

Landau polariton cavities:
(i) Depending on the applied magnetic field strength

and electron effective mass, ILLTs of typical semi-
conductor QWs occur in the microwave or terahertz
frequency range. Resonators that are standard
in the microwave technology, such as coplanar
microresonators [Fig. 17(e)], and metallic patch

FIG. 16. Theoretically predicted intersubband polaritons.
(a) Absorption spectra showing intersubband polaritons for
different numbers of QWs (1–50). (b) QW number dependence
of the vacuum Rabi splitting. (c) Absorption spectra for intersub-
band polaritons for different electron densities: 0.5 × 1012 cm2

(curve 1), 1.0 × 1012 cm2 (curve 2), 1.5 × 1012 cm2 (curve 3),
and 2.0 × 1012 cm2 (curve 4). (d) Electron density dependence
of the vacuum Rabi splitting. (e) Calculated upper polariton
(UP) and lower polariton (LP) frequencies as a function
of coupling strength, where ω12 is the transition frequency.
(a)–(d) Adapted from Liu, 1997. (e) Adapted from Ciuti, Bastard,
and Carusotto, 2005.
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resonators [Fig. 17(f)] can be easily integrated with
QWs to study the microwave dynamics of Landau
polaritons.

(ii) Metamaterial cavities are an array of metallic res-
onance microstructures, typically split-ring resona-
tors (SRRs), that are patterned and evaporated on top
of the semiconductor capping layer of the QW [left

panel of Fig. 17(g)]. The resonance frequencies and
quality factors can be adjusted by properly designing
the structure within a unit cell. In-plane electric
fields [right panel of Fig. 17(g)] are enhanced around
the gaps of the SRRs.

(iii) A photonic-crystal cavity [left panel of Fig. 17(h)]
consists of a QW that is sandwiched by silicon

FIG. 17. Assorted cavities used in semiconductor-based light-matter ultrastrong coupling experiments. (a) A planar waveguide cavity.
From Sapienza et al., 2008. (b) A metal-dielectric-metal cavity. From Laurent et al., 2017. (c) An inductor-capacitor resonator. From
Geiser et al., 2012. (d) A surface plasmon photonic crystal. From Porer et al., 2012. (e) A coplanar microresonator. FromMuravev et al.,
2011. (f) A metallic patch resonator. From Muravev et al., 2013. (g) A metamaterial cavity. From Maissen et al., 2014. (h) A photonic-
crystal cavity. From Q. Zhang et al., 2016.
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Bragg mirrors; each Bragg mirror consists of several
silicon wafers aligned parallel and at controllable
distances from each other. The in-plane electric field
at cavity resonance reaches maximum at the position
of the QW to ensure maximum coupling strength.

1. Intersubband transitions

Experimentally, the first observation of polariton splitting
of an ISBTwas reported by Dini et al. (2003). The dispersion
of the ISB polaritons in GaAs QWs was measured through
angle-dependent reflectance measurements using a prismlike
geometry, as shown in Fig. 17(a). Figure 18 shows measured
reflectance spectra at 10 K for TM-polarized waves for
different incidence angles. Two dips are clearly displayed,
exhibiting anticrossing behavior with a splitting (2ℏg) of
14 meV as a function of incident angle. With an ISBT
resonance energy of ℏω12 ¼ 142 meV, g=ω12 ∼ 0.05 at zero
detuning ω ¼ ω12 was achieved even in this early work. As a
comparison, in the top-right inset of Fig. 18, a TE reflectance
spectrum is shown; only a single dip corresponding to the
cavity mode is observed, as the ISBT is dipole forbidden for
this polarization. In the top-left inset, the energies of the UP

and LP dips are plotted as a function of the incidence angle,
highlighting the anticrossing behavior.
This initial ISB polariton work (Dini et al., 2003) was

immediately followed by similar observations by Dupont et al.
(2003), who measured a bound-to-quasibound transition in a
QW-IR-photodetector structure through both reflection and
photocurrent spectroscopy. Rabi splittings were demonstrated
with g=ω12 values similar to those reported by Dini et al.
Furthermore, by increasing the doping density, Dupont,
Gupta, and Liu (2007) were able to observe a square-root
dependence of the VRS on the total electron density (NQWne).
Here NQW corresponds to the number of QWs and ne is the
density per well, i.e., 2g ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NQWne

p
, indicating that electrons

in QWs interact cooperatively as a single giant atom with
cavity photons (Dicke, 1954; Kaluzny et al., 1983; Agarwal,
1984; Amsüss et al., 2011; Tabuchi et al., 2014; X. Zhang
et al., 2014). A coupling of g=ω12 ¼ 0.17 at zero detuning
ω ¼ ω12 was achieved at the highest electron density (Dupont,
Gupta, and Liu, 2007).
During the past decade, progressively higher values of g=ω

have been reported, as seen in Table II, due to the diverse
approaches used by different experimental groups.
In a simple approximation, for a parabolic band of massm�,

the g=ω12 ratio can be written as

g
ω12

∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m�ω12

p : ð26Þ

Therefore, one can immediately see that a lighter-mass
material can generally provide larger g=ω12 ratios for a given
ω12. Anappara et al. (2007) used QWs composed of InAs
(which has a bulk band-edge electron mass of 0.023m0, as
compared to 0.069m0 for electrons in GaAs) to achieve
g=ω12 ¼ 0.14 at zero detuning ω ¼ ω12. )Another guideline
for increasing the g=ω12 ratio, hinted at by Eq. (26), is to
increase the QW width, which naturally decreases ω12.
Todorov et al. used 32-nm-wide GaAs QWs embedded inside
a subwavelength metal-dielectric-metal microcavity (Todorov,
Tosetto et al., 2010) to demonstrate USC (g=ω ¼ 0.11) in
the THz regime (Todorov et al., 2009). By further reducing
the cavity volume with respect to the wavelength of the
mode Vcav=λ3res to 10−4, Todorov, Andrews et al. (2010)
achieved g=ω ¼ 0.24.
As one increases the electron density and QW width, more

subbands are occupied, which, within a single-particle picture,
leads to multiple ISBT peaks due to band nonparabolicity.
However, Delteil et al. (2012) showed that due to many-body
interactions a single peak appears. Namely, cooperative
Coulombic coupling of dipolar oscillators with different
frequencies can induce mutual phase locking, lumping
together all individual ISBTs into a single collective bright
excitation (multisubband plasmon resonance). Furthermore,
Askenazi et al. (2014) presented a model to describe the
crossover from the ISB plasmon to the multisubband plasmon
and then eventually to the so-called Berreman mode in the
classical limit as the QW width was increased. In the
Berreman mode limit, a record high g=ω value of 0.37 was
experimentally achieved. For a recent review, see Vasanelli,
Todorov, and Sirtori (2016).
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FIG. 18. First experimental observation of intersubband
polaritons. Reflectance spectra are shown for a GaAs quantum
well sample at 10 K for different angles of incidence for TM-
polarized light. The spectra are offset from each other for clarity.
Top-left inset: the dip position vs the angle shows a level
anticrossing. Top-right inset: a spectrum recorded for TE-polarized
light, showing only a dip due to the cavity mode. From
Dini et al., 2003.
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One of the attractive features of ISB polaritons is their
controllability via external fields, which can lead to practical
devices. Since the vacuum Rabi splitting 2g in a collective
system is proportional to

ffiffiffiffiffi
ne

p
, controlling the electrondensityne

in theQWcontrols 2g. An electric field applied perpendicular to
the QW changes the ground state ne through gating (Anappara
et al., 2005), or more quickly through resonant charge transfer
via tunneling (Anappara et al., 2006). Figure 19(a) shows
reflectance spectra for GaAs asymmetrically coupled QWs at
a fixed incidence angle at various bias voltages. At zero bias
voltage, all electrons are in the wider well, and the spectrum
showsa single peak due to the ISBTin thewiderwell.As the bias
voltage is increased, electrons are increasingly transferred into
the ground subband of the narrower quantum well, resulting in
the appearance of ISB polaritons. As the bias is further
increased, ne increases in the narrow well and thus the vacuum
Rabi splitting increases (Anappara et al., 2006).

An ultrafast optical excitation can also be used to control
ultrastrong light-matter coupling in ISB polaritons—an ultra-
short laser pulse can either enhance it (Günter et al., 2009;
Porer et al., 2012) or destroy it (Zanotto et al., 2012). For
example, an ultrafast buildup of the ultrastrong light-matter
coupling was demonstrated using interband-pump or ISBT-
probe measurements in undoped QWs (Günter et al., 2009), as
shown in Figs. 19(b)–19(d). A multiple-QW sample was
embedded into a planar waveguide structure based on total
internal reflection. The band diagram shows how the j1i →
j2i ISBT is activated by a near-infrared control pulse,
populating level j1i. Few-cycle TM-polarized multi-THz
transients guided through the prism-shaped substrate are
reflected from the waveguide to probe the ultrafast buildup
of light-matter coupling, as shown in Fig. 19(c). The blue
arrow shows the bare cavity resonance, whereas the red arrows
show the ISB LP and UP. Figure 19(d) plots THz reflectance

TABLE II. Experimental observations of ultrastrong light-matter coupling in semiconductor quantum wells. dQW: QWwidth.NQW: number of
QWs or periods. ℏγ: matter decay rate. ℏκ: photon decay rate; cavity: Q ¼ ω=κ. ℏg: coupling strength. ω ¼ ω12: ISBT; and ω ¼ ωc: ILLT.
ISBT: intersubband transition. ILLT: inter-Landau-level transition (i.e., cyclotron resonance). PWM: planar waveguide microcavity. MDM:
metal-dielectric-metal microcavity. ICR: inductor-capacitor (LC) resonator. SPPC: surface plasmon photonic crystal. CMR: coplanar
microresonator. MMC: metamaterial cavity. MPR: metallic patch resonator. PCC: photonic-crystal cavity. FPC: Fabry-Perot cavity. QC:
quantum cascade. U ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4g2=κγÞg=ω
p

: geometric mean between cooperativity and normalized coupling.

Transition Cavity dQW NQW ℏγ ℏκ ℏg ℏω g=ω U
Reference type type (nm) (meV) (meV) (meV) (meV) (%) Notes

Dini et al. (2003) ISBT PWM 7.2 18 5 15 7 142 5 0.62
Dupont et al. (2003) ISBT PWM 6.0 140 2.2 11 6 115 5 0.54 Bound to quasibound
Anappara et al. (2005) ISBT PWM 7.5 10 � � � � � � 7 135 5 � � � Electrical control
Anappara et al. (2006) ISBT PWM 7.2þ 14 9 � � � � � � 10.5 150 7 � � � Coupled double QWs
Anappara et al. (2007) ISBT PWM 13.7 10 � � � � � � 16.5 123 14 � � � InAs/AlSb QWs
Dupont, Gupta,

and Liu (2007)
ISBT PWM 7.5 160 6.9 12 21 123 17 1.9

Sapienza et al. (2007) ISBT PWM QC 30 ∼10 � � � 8 163 5 � � � QC photovoltaic
Sapienza et al. (2008) ISBT PWM QC 30 8 15 11 150 7 0.54 QC LED
Todorov et al. (2009) ISBT MDM 32 15 2 3 1.6 14.4 11 0.44 First THz ISB polariton
Anappara et al. (2009) ISBT PWM 6.5 70 12 ∼15 16.5 152 11 ∼0.82
Günter et al. (2009) ISBT PWM 9 50 � � � � � � 10 113 9 � � � Ultrafast buildup
Geiser et al. (2010) ISBT ICR 95 8 3.3 0.8 1.9 13 14 0.88 Parabolic QWs
Todorov,

Andrews et al. (2010)
ISBT MDM 32 25 � � � � � � 2.8 12 24 � � � 0D polaritons

Zanotto et al. (2010) ISBT SPPC 8.3 50 5 5 5.5 119 5 0.47
Jouy et al. (2011) ISBT MDM 9 10 � � � � � � 11 107 10 � � �
Geiser et al. (2012) ISBT ICR 72 8 � � � � � � 4.7 18 27 � � � Parabolic QWs
Porer et al. (2012) ISBT SPPC 8.3 50 � � � � � � 6.8 113 6 � � � Ultrafast buildup
Zanotto et al. (2012) ISBT SPPC 8.3 50 5.36 � � � 5.5 125 4 � � � Ultrafast bleaching
Delteil et al. (2012) ISBT MDM 18.5 5 � � � � � � 57 166 17 � � � Multisubband plasmon
Dietze et al. (2013) ISBT MMC 32 25 � � � 2.5 1.4 13 11 � � �
Askenazi et al. (2014) ISBT MMC 148 1 7.5 � � � 43 118 37 � � � The Berreman mode
Askenazi et al. (2017) ISBT MDM 148 18 � � � � � � 45 100 45 � � � Thermal emission
Laurent et al. (2017) ISBT MDM 5 18 77 17 53 403 13.1 1.06
Muravev et al. (2011) ILLT CMR 30 1 0.02 0.02 0.025 0.058 46 1.64
Scalari et al. (2012) ILLT MMC � � � 4 > 0.5 > 0.5 1.2 2.1 58 < 3.66
Muravev et al. (2013) ILLT MPR 20 1 � � � 0.002 0.01 0.05 25 � � �
Maissen et al. (2014) ILLT MMC 20 4 ∼0.8 ∼0.2 1.11 1.28 87 ∼5.16 InAs=AlSb QWs
Q. Zhang et al. (2016) ILLT PCC 30 1 < 0.04 < 0.04 0.18 1.5 12 > 3.2 C ¼ 4g2=κγ > 300
Maissen et al. (2017) ILLT MMC � � � 1 > 0.5 > 0.5 0.46 1.98 23 < 0.88
Keller et al. (2017a) ILLT MMC 20 1 � � � � � � 0.49 0.86 57 � � � Strained Ge QWs
Bayer et al. (2017) ILLT MMC 25 6 � � � � � � 2.85 1.99 143 � � � g=ω > 1
Li, Bamba et al. (2018) ILLT PCC 30 10 0.024 0.019 0.62 1.7 36 35.8 C ¼ 4g2=κγ ¼ 3513
Paravicini-Bagliani et al.

(2019)
ILLT MMC 20 1 � � � ∼0.1 0.17 0.58 30 � � � Magnetotransport
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spectra measured for various fluences of the control pulse at a
fixed time delay. As the fluence increases, ne increases, which
in turn increases the VRS.

2. Inter-Landau-level transitions (cyclotron resonance)

Strong light-matter coupling has also been actively studied
using ILLTs (or cyclotron resonance CR) in 2DEGs formed in
GaAs QWs (Muravev et al., 2011, 2013; Scalari et al., 2012,
2013; Maissen et al., 2014, 2017; Q. Zhang et al., 2016; Bayer
et al., 2017; Li, Bamba et al., 2018), InAs QWs (Maissen
et al., 2014), and on the surface of liquid helium
(Abdurakhimov et al., 2016). Muravev et al. (2011) studied
the USC of magnetoplasmon (also known as “cyclotron-
plasmon”) excitations with microwave photon modes in a
coplanar microresonator and a metallic patch resonator
(Muravev et al., 2013). An advantage of the straightforward
continuous magnetic field tuning of polaritons over ISB
polaritons was clearly demonstrated. High values of g=ω
close to 0.5 were achieved (Muravev et al., 2011) owing to the
large dipole moment of ILLTs.
Scalari et al. (2012) reported experiments showing USC of

2DEG CR with photons in a THz metamaterial cavity
consisting of an array of electronic split-ring resonators shown
in Figs. 20(a) and 20(b). They obtained a g=ω value of 0.58
and showed potential scalability in frequency to extend to the
microwave spectral range, where control of the magnetotran-
sport properties of the 2DEG through light-matter coupling
would be possible. Furthermore, using similar split-ring
resonators in the complementarymode,Maissen et al. obtained
g=ω ¼ 0.87, shown in Figs. 20(c) and 20(d). In addition, a
blueshift of both LP and UP was observed due to the
diamagnetic term of the interaction Hamiltonian.
In these CR studies of ultrastrong light-matter coupling

using metamaterial split-ring resonators, however, the value of
cooperativity C ¼ 4g2=γκ remained small due to ultrafast
decoherence (large γ) and/or lossy cavities (large κ). Recently,
Q. Zhang et al. (2016) developed a THz 1D photonic-crystal
cavity (PCC), utilizing Si thin slabs and air as the high and low
index materials, respectively; see Fig. 21(a). The air-Si
combination provided a large index contrast and thus signifi-
cantly reduced the number of layers needed on each side of the
cavity (Yee and Sherwin, 2009; T. Chen et al., 2014). A thin
2DEG film was transferred onto one surface of the central
layer, where the electric field maximum was located.
Figure 21(b) shows an experimental transmission spectrum
measured for one of the empty cavities, demonstrating an
ultranarrow photonic mode (κ=2π ∼ 2.6 GHz). The highest
cavity quality factor Q achieved in this scheme was ∼103.
Using these high-Q PCCs, Q. Zhang et al. (2016) simulta-

neously achieved small γ and small κ in ultrahigh-mobility
2DEGs in GaAs QWs in a magnetic field; see Fig. 21(c). High
cooperativity values C > 300 were achieved, with VRS lead-
ing to g=ω ∼ 0.1. With these favorable parameters it was
possible to observe Rabi oscillations in the time domain.
Zhang et al. showed that the influence of such USC extended
even to the region with detuning δ > ω. This effect could occur
only when g2=ωκ > 1, which in the experiment was satisfied
through a unique combination of strong light-matter coupling,
a small resonance frequency, and a high-Q cavity. Furthermore,

(a)

(b)

(c) (d)

FIG. 19. Switchable USC. (a) Reflectance spectra for
GaAs asymmetrically coupled quantum wells at various
bias voltages, showing field-tuned vacuum Rabi splitting.
The splitting increases with increasing voltage. From Anappara
et al., 2006. (b) Setup used for ultrafast control of ultrastrong
light-matter coupling. A quantum well structure embedded in a
planar waveguide structure is activated by a near-infrared control
pulse. Terahertz transients probe the ultrafast buildup of light-
matter coupling. (c) Ultrafast switch-on of ISB polaritons.
Spectra of the reflected terahertz field are given for various
delay times. (d) Terahertz reflectance spectra measured at 293 K
for various fluences of the control pulse. From Günter et al.,
2009.
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the expected
ffiffiffiffiffi
ne

p
dependence of 2g on the electron density (ne)

was observed, signifying the collective nature of light-matter
coupling (Dicke, 1954). A value of g=ω ¼ 0.12 was obtained
with just a single QW with a moderate ne (¼ 3 × 1011 cm−2).
Finally, Q. Zhang et al. (2014) observed a significant sup-
pression of a previously identified superradiant decay of CR in
high-mobility 2DEGs due to the presence of the high-Q THz
cavity. As a result, ultranarrow polariton lines were observed,
yielding an intrinsic CR linewidth as small as 5.6 GHz (or a CR
decay time of 57 ps) at 2 K.
More recently, through optimization of both electronic and

photonic components of a 2DEG-metamaterial system, Bayer
et al. (2017) significantly boosted the light-matter coupling
strength, entering the DSC regime. By tailoring the shape of
the vacuum mode in the cavity, they achieved a remarkable
g=ω ¼ 1.43, the highest result reported to date for semi-
conductor QWs. This achievement opens up the possibilities
of studying vacuum radiation with cutting-edge THz quantum
detection techniques (Riek et al., 2015, 2017; Benea-Chelmus
et al., 2016). Keller, Scalari et al. (2017) probed USC at

300 GHz to less than 100 electrons located in the last occupied
Landau level of a high-mobility two-dimensional electron gas.
By using hybrid dipole antenna-split ring resonator-based
cavities with extremely small effective mode volumes and
surfaces they achieved a normalized coupling ratio of
g=ω ¼ 0.36. Effects of the extremely reduced cavity dimen-
sions were observed as the light-matter coupled system
resulted better described by an effective mass heavier than
the uncoupled one.
In later work, Keller et al. (2017a) studied the USC of the

CR of a 2D hole gas in a strained germanium QW with THz
metasurface cavity photons. They observed a mode softening
of the polariton branches, deviating from the Hopfield model
successfully used in studies of GaAs QWs (Hagenmüller, De
Liberato, and Ciuti, 2010; Scalari et al., 2012). At the largest
coupling strength, the lower polariton branch was observed to
move toward zero frequency, raising the exciting perspective
of the Dicke superradiant phase transition in equilibrium
(Hepp and Lieb, 1973; Wang and Hioe, 1973). They modeled
this behavior by effectively reducing the magnitude of the A2

term in the Hamiltonian. The 2D hole gas exhibits heavy
nonparabolicity, strain, and spin-orbit interaction, features
differing from the standard GaAs QWs; however, theoretical
modeling of the observed deviation remains an open quest.

(a)

(c)

(d)

(b)

FIG. 20. USC of normal-incidence THz radiation with a GaAs
2DEG in a Landau-quantizing magnetic field. (a) Experimental
setup used to observed USC. An array of metamaterial THz
cavities is deposited on top of the 2DEG. (b) Scanning electron
microscopy picture displays a single cavity unit. Adapted from
Scalari et al., 2012. (c), (d) Transmittance spectra at different
magnetic fields showing anticrossing behavior with a g=ω value
of (c) 0.69 and (d) 0.87. From Maissen et al., 2014.

(a) (b) 

(c) 

FIG. 21. Observation of USC of CR of a 2DEG and high-Q THz
cavity photons. (a) 1D terahertz photonic-crystal cavity structure.
Two silicon layers are placed on each side of the central defect
layer. The blue part is the transferred 2DEG thin film. (b) Zoom-
in spectrum for the first cavity mode, together with a Lorentzian
fit with a full width at half-maximum of 2.6 GHz. (c) Anticrossing
of CR and the first cavity mode, exhibiting the LP and UP
branches. The central peak due to the cavity mode results from
the CR-inactive circularly polarized component of the linearly
polarized terahertz beam. Transmission spectra at different
magnetic fields are vertically offset for clarity. The magnetic
field increases from 0.4 T (bottom) to 1.4 T (top). From Q. Zhang
et al., 2016.
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Most recently, Li, Bamba et al. (2018) reported the vacuum
Bloch-Siegert shift, which is induced by the coupling of
matter with the counterrotating component of the vacuum
fluctuation field in a cavity, as explained in Sec. II; see, e.g.,
Eq. (4). Using an ultrahigh-mobility 2DEG in a high-Q THz
cavity in a magnetic field, they created Landau polaritons with
an ultrahigh cooperativity (C ¼ 3513), which exhibited a
vacuum Bloch-Siegert shift up to 40 GHz. They found that
the probe polarization plays a critical role in exploring USC
physics in this ultrahigh-cooperativity system. The resonant
corotating coupling of electrons with CR-active (CRA)
circularly polarized radiation leads to the extensively studied
VRS. Conversely, the counterrotating coupling of electrons
with the CR-inactive (CRI) mode leads to the time-reversed
partner of the VRS, i.e., the vacuum Bloch-Siegert shift.
Li et al. theoretically simulated polariton spectra to explain

their data while selectively removing the counterrotating terms
(CRTs) and the A2 terms from the full Hamiltonian, as shown
in Figs. 22(a)–22(d) together with experimental data. From the
perfect agreement between experiment and theory shown in
Fig. 4(a), deviations appear when either the CRTs or the A2

terms are removed. By comparing Figs. 22(a) and 22(b), one
can confirm that the A2 terms produce an overall blueshift for
both polariton branches and the CRI mode. On the other hand,
through comparison of Figs. 4(a) and 4(c), one can confirm
that the CRTs affect only the CRI mode, producing the
vacuum Bloch-Siegert shift. It is important to note that one
of the goals of cavity QED studies using semiconductor QWs,
or condensed matter systems in general, is to search for
cooperative effects and new ground states. To this aim,
adaptation of quantum optical concepts and tools in

condensed matter physics is an emerging subject of research
(Cong et al., 2016; Li et al., 2018), where Hamiltonians
traditionally used in atomic quantum optics must be modified
through the incorporation of many-body effects and disper-
sions of collective excitations (Dicke, 1954; Hopfield, 1958).
One peculiar aspect of ultrastrong light-matter coupling in a

cavity is the conspicuous absence of a strong external light
field in the problem. In other words, no strong field is needed
to induce strong-field physics. Matter placed inside a cavity
nonperturbatively couples with the vacuum fluctuation field of
the cavity to form polaritons with VRS comparable to the
original matter and photon energies. This is a highly unusual
situation for a nonlinear optical process, which would ordi-
narily increase with increasing strength of an applied light
field. This aspect of USC in a cavity allows one to study USC
in unusual ways, sometimes even without using light. For
example, electronic transport properties, such as the electrical
conductivity and Hall coefficient, are expected to be affected
by the presence of USC in a quantum Hall system
(Hagenmüller, De Liberato, and Ciuti, 2010; Bartolo and
Ciuti, 2018). The conductivity of a molecular crystal inside a
cavity has indeed been observed to be enhanced by strong
coupling with a plasmonic mode (Orgiu et al., 2015), and a
general theoretical treatment of charge transport in the USC
regime has recently been formulated (Hagenmüller et al.,
2017, 2018). Most recently, Paravicini-Bagliani et al. (2019)
demonstrated the crucial role played by the matter component
of polaritons in the USC regime through magnetotransport
measurements on a 2DEG embedded in a metamaterial cavity.
They showed that the dc resistivity of the 2DEG is substan-
tially modified by the USC to the cavity photons without
external irradiation. This observation is consistent with recent
theoretical predictions of vacuum-induced modifications of
resistivity (Hagenmüller, De Liberato, and Ciuti, 2010;
Hagenmüller et al., 2017, 2018; Bartolo and Ciuti, 2018).

C. Hybrid quantum systems

In Secs. III.A and III.B, we presented the main achieve-
ments in experimental USC regimes in the fields of super-
conducting quantum circuits and semiconductor quantum
wells, respectively. This section reviews quantum systems
of hybrid nature where ultrastrong couplings have also been
demonstrated. In these systems, the magnitude of the coupling
originates from a collective degree of freedom which is the
result of an ensemble of individual systems coupling to the
same cavity mode. In such a configuration, a typical scaling offfiffiffiffi
N

p
is obtained (Dicke, 1954; Yamamoto and Imamoğlu,

1999), withN being the number of systems participating in the
collective degree of freedom. The same scaling is found for
intraband transitions in semiconductor QWs (see Sec. III.B).
In particular, the systems described in this section consist of

molecular aggregates in optical microcavities, microcavity
exciton polaritons in unconventional semiconductors with
large binding energies and oscillator strengths, and magnons
in magnetic materials coupled to the magnetic field of a
microwave cavity. These cases combine quantum systems of a
very distinct nature and therefore fall into the category of
hybrid systems. Technically speaking, the previous section on
conventional III-V semiconducting quantum wells already

(a) (b)

(c) (d)

FIG. 22. Distinction between the vacuum Bloch-Siegert shift
due to the counterrotating terms (CRTs) and the shift due to the
A2 terms in the USC regime. Simulated spectra (a) with both the
CRTs and the A2 terms (full Hamiltonian), (b) with the CRTs but
without the A2 terms, (c) without the CRTs but with the A2 terms,
and (d) without the CRTs and A2 terms. Each graph includes
experimental peak positions as open circles. Adapted from Li,
Bamba et al., 2018.
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presented hybrid quantum systems, i.e., intersubband polar-
itons (Sec. III.B.1) and inter-Landau-level polaritons
(Sec. III.B.2). This section therefore covers topics of polar-
itons in ultrastrong coupling regimes in systems other than
traditional semiconductor quantum wells.

1. Molecules in optical cavities

The influence of cavity modes on the radiative properties of
quantum emitters such as molecules has been the object of
study since the early works of Purcell (1946). In more recent
times, the strong coupling regime was reached with ensembles
of molecules coupling to a single mode of an optical micro-
cavity (Lidzey et al., 1998; Holmes and Forrest, 2004). A key
element to maximize the coupling strength was the discovery
of molecules with a large enough electric dipole coupling to
the electric field of the cavity mode.
The electric dipole energy of interaction between an

ensemble of molecules and a cavity mode can be calculated
from (George et al., 2015)

ℏg ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω

2ϵ0Vm

s
: ð27Þ

Here d is the total electric dipole moment of the molecular
ensemble and is therefore proportional to

ffiffiffiffi
N

p
, d ¼ d0

ffiffiffiffi
N

p
with d0 being the electric dipole of a single molecule. ϵ0 is the
vacuum permittivity, and Vm is the cavity mode volume. The
square-root factor in Eq. (27) corresponds to the rms electric
field in the ground state of the cavity mode.
The first demonstration of amolecular ensemble ultrastrongly

coupled to a single mode of a microcavity was carried out by
Schwartz et al. (2011). The experiment consisted of a PMMA
(polymethyl methacrylate) matrix sputtered on both sides by a
thin Ag layer in a Fabry-Perot configuration, resulting in a
low-Q cavity. The PMMAmatrix was filled with photochromic
spiropyran (SPI) molecules (10, 30-dihydro-10, 30, 30-
trimethyl-6-nitrospiro[2H-1-benzopyran-2, 20-(2H)-indole]).
These molecules can undergo photoisomerization between a
transparent SPI form and a colored merocyanine (MC) form.
Schwarz et al. observed that molecules in the SPI form were not
coupling to the cavity mode. As shown in Fig. 23, upon
ultraviolet illumination, a transition between SPI andMC forms
was induced, the latter having a strong dipolar coupling to the
cavity mode. This was observed as a large mode splitting in the
cavity transmission, indicating strong coupling. With longer
illumination, more molecules transitioned and the value of ℏg
reached up to 357 meV, being 16.2% of the cavity resonance
and well in the USC regime. In later work (George et al., 2015),
other molecules, such as 1,10-diethyl-3,30-bis(4-sulfobutyl)-
5,50,6,60-tetrachlorobenzimidazolocarbocyanine (TDBC), 5-
(4-(dibutylamino)-benzylidene)-1,3-dimethylpyrimidine-2,4,6
(1H,3H,5H)-trione (BDAB), and fluorescenin, were observed
to yield g=ω values of 13%, 24%, and 27% of the cavity
resonance, respectively.
In a more recent study, the vibrational dipolar strength of a

molecular liquidwas also shown to simultaneously ultrastrongly
couple to several modes of a Fabry-Perot cavity in the infrared
(George et al., 2016). The molecules chosen for the study were
iron pentacarbonyl [FeðCOÞ5] and carbon disulphide (CS2),

both showing very strong oscillator strength, which was key to
the successful attainment of large coupling strengths to the cavity
modes. This work may be important in molecular chemistry as
vibrational strong coupling could be used to control chemical
reactions given the role played by vibrations in the process.
Finally, it is also worth mentioning that in a recent study

strong coupling (g=κ ∼ 0.2) was achieved in a single molecule
level (Benz et al., 2016). Benz and co-workers demonstrated
that individual molecules can be trapped inside the gap of a
plasmonic nanoassembly that localizes light to volumes well
below 1 nm3 (“picocavities”). Such extreme optical confine-
ment yielded a factor of 106 enhancement of optomechanical
coupling between the picocavity field and vibrations of
individual molecular bonds.

2. Microcavity exciton polaritons

As described in Sec. III.B, MEPs in semiconductor QWs
have long been studied as a model system for investigations of
solid-state cavity QED phenomena (Weisbuch et al., 1992;
Skolnick, Fisher, and Whittaker, 1998; Khitrova et al., 1999;
Deng, Haug, and Yamamoto, 2010; Gibbs, Khitrova, and
Koch, 2011). However, MEPs based on Wannier excitons in
inorganic semiconductors, such as GaAs QWs, have remained
in the strong coupling regime, typically with g=ω < 10−2, far
from the USC and DSC regimes. Wannier excitons in other
traditional inorganic semiconductors with larger exciton bind-
ing energies (and thus larger band gaps, effective masses, and
oscillator strengths) than GaAs, including GaN, CdTe, and

FIG. 23. USC achieved with a molecular ensemble in a Fabry-
Perot cavity. By shining ultraviolet (UV) light the molecules
change from spiropyran (SP) to merocyanine (MC) form. The
latter displays a large dipole moment which couples to the cavity
electromagnetic field all the way up to the USC regime. (a) Cavity
absorption spectrum. (b) Cavity transmission spectroscopy with
no UV illumination. (c) Cavity transmission for varying exposure
times. Traces are offset for clarity. Mode splitting increases as the
UV light exposes the molecules and closes back with infrared
radiation that returns the molecules into the SP state demonstrat-
ing the reversibility of the process. From Schwartz et al., 2011.
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ZnO, have been utilized to achieve larger values of g=ω up to
∼0.02; see Table III.
Frenkel excitons (i.e., excitons with Bohr radii of the same

order as the size of the unit cell) in organic semiconductors
(Lidzey et al., 1998) possess large binding energies and
oscillator strengths and have displayed larger VRS than
Wannier-exciton-basedMEPs, reporting generally larger values
of g=ω, as shown in Table III. In particular, two groups observed
giant VRSs, on the order of 1 eV, in Fabry-Perot microcavities
filled with 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di
(4-methylphenyl)fluorene (Kéna-Cohen, Maier, and Bradley,
2013) and squaraine (Gambino et al., 2014), respectively.
Representative spectra are shown in Fig. 24. The corresponding
g=ω values are 0.14 and 0.27, respectively, indicating that these
systems are in the USC regime.
Moreover, nanomaterials with large binding energy

Wannier excitons have recently emerged, including atomically
thin transition metal dichalcogenide layers (Liu et al., 2015,
2016; Flatten et al., 2016) and single-wall carbon nanotubes
(SWCNTs) (Graf et al., 2016, 2017). These novel materials
provide a platform for studying strong coupling physics under
extreme quantum confinement. In particular, one-dimensional
(1D) excitons in SWCNTs have enormous oscillator strengths,
revealing a very large VRS exceeding 100 meV in microcavity
devices containing a film of single-chirality SWCNTs (Graf
et al., 2016); the VRS showed a g ∝

ffiffiffiffi
N

p
behavior, where N is

the number of dipoles (i.e., excitons in the present case),
evidencing cooperative enhancement of light-matter coupling
(Dicke, 1954; Q. Zhang et al., 2016), as shown in Fig. 25(a).
Furthermore, Graf et al. (2017) recently demonstrated elec-
trical pumping and tuning of exciton polaritons in SWCNTs,
making impressive progress toward creating polaritonic devi-
ces (Sanvitto and Kena-Cohen, 2016).
Most recently, Gao et al. (2018) developed a unique

architecture in which 1D excitons in an aligned SWCNT

film interact with cavity photons in two distinct manners. The
system reveals ultrastrong coupling (VRS up to 329 meV) for
probe light with polarization parallel to the nanotube axis,
whereas VRS is absent for perpendicular polarization.
Between these two extreme situations, the coupling strength
is continuously tunable through facile polarization rotation;
see Fig. 25(b). Figure 25(c) shows complete mapping of
polariton dispersions, which demonstrates the existence of

TABLE III. Experimental observations of strong and ultrastrong light-exciton coupling in various microcavity exciton polariton systems. QW:
quantum well. ℏg: coupling strength. 2ℏg: vacuum Rabi splitting. ℏω: exciton resonance photon energy. Ry�: exciton binding energy. SWCNTs:
single-wall carbon nanotubes. TDAF: 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene. RT: room temperature,
300 K.

Exciton 2ℏg ℏω g=ω
Reference Material type Temperature (meV) (eV) (%) Notes

Weisbuch et al. (1992) GaAs Wannier 20 K 5 1.58 0.2 QWs
Bloch et al. (1998) GaAs Wannier 77 K 19 1.62 1.2 QWs
Deng et al. (2002) GaAs Wannier 4 K 15 1.61 0.46 QWs
Bellessa et al. (2004) J aggregates Frenkel RT 180 2.1 4.3 Plasmon-exciton coupling
Kasprzak et al. (2006) CdTe Wannier 5 K 26 1.68 0.77 QWs
van Vugt et al. (2006) ZnO Wannier RT 100 3.3 1.5 Nanowires
Christmann et al. (2008) GaN Wannier RT 50 3.64 0.7 QWs
Guillet et al. (2011) ZnO Wannier 120 K 130 3.36 1.9 Bulk
Wei et al. (2013) J aggregates Frenkel RT 400 2.27 8.8
Kéna-Cohen, Maier,

and Bradley (2013)
TDAF Frenkel RT 1000 3.534 14

Gambino et al. (2014) Squaraine Frenkel RT 1120 2.07 27
Liu et al. (2015) MoS2 Wannier RT 46 1.87 1.2
Flatten et al. (2016) WS2 Wannier RT 70 2 1.75
Liu et al. (2016) MoS2 Wannier 77 K 116 1.87 3 Plasmon-exciton coupling
Graf et al. (2016) SWCNTs Wannier RT 110 1.24 4.4 (6,5)-enriched
Brodbeck et al. (2017) GaAs Wannier 20 K 17.4 1.61 1.1 QWs, g=Ry� ¼ 0.64
Gao et al. (2018) SWCNTs Wannier RT 329 1.24 13.3 (6,5)-enriched and aligned

FIG. 24. Observation of giant vacuum Rabi splitting (∼1 eV) in
microcavity exciton polariton systems based on Frenkel-type
excitons. (a) Angle-resolved reflectivity spectra for a 67-nm-thick
cavity containing a thin film of 2,7-bis[9,9-di(4-methylphenyl)-
fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene measured using TE
(upper panel) and TM (lower panel) polarized light. Adapted
from Kéna-Cohen, Maier, and Bradley, 2013. (b) Contour
plots of angle-resolved transmission spectra for a 140-nm-thick
microcavity entirely filled with squaraine. Adapted from
Gambino et al., 2014.
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exceptional points (EPs), spectral singularities that lie at the
border of crossing and anticrossing; the points bounded by a
pair of EPs formed two equienergy arcs in momentum space,

onto which the upper and lower polariton branches coalesced.
This unique system with on-demand USC can be used for
exploring exotic topological properties (Yuen-Zhou et al.,

(a)

(c)

(d) (e)

)b(

FIG. 25. Single-wall carbon nanotube microcavity exciton polaritons exhibiting ultrastrong coupling. (a) Angle-resolved reflectivity
and photoluminescence spectra for (6,5) SWCNT microcavity exciton polaritons with increasing nanotube concentrations (from top to
bottom) and increasing cavity thickness and detuning from (left to right). Adapted from Graf et al., 2016. (b) Transmittance spectra for a
cavity containing aligned (6,5) SWCNTs at zero detuning for various polarization angles from 0° to 90°. (c) Continuous mapping of the
dispersion surfaces of the upper polartion (UP) and lower polartion (LP) for the device in (b). EP: exceptional points. (d) Transmittance
spectra for parallel polarization at zero detuning for devices containing aligned SWCNT films of different thicknesses. The device
containing a 64-nm-thick aligned SWCNT film demonstrates the largest VRS of 329 meV. (e) VRS for parallel polarization at zero
detuning vs the square root of the film thickness, demonstrating the

ffiffiffiffi
N

p
-fold enhancement of collective light-matter coupling. Adapted

from Gao et al., 2018.
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2014, 2016) and exploring applications in quantum technol-
ogies. Similar to Graf et al. (2016), the VRS exhibited
cooperative enhancement, proportional to the square root
of the film thickness, as shown in Figs. 25(d) and 25(e).
Figure 25(d) shows transmittance spectra for the three samples
with different thicknesses; the VRS for the thickest sample is
329� 5 meV, corresponding to g=ω ¼ 0.13, the highest
value for MEPs based on Wannier excitons.

3. Magnons in microwave cavities

In recent years, a new platform of coherent light-matter
interaction has been developed by combining magnetic fields
from cavity photons and spin waves in magnetic materials
(Huebl et al., 2013; Tabuchi et al., 2014; X. Zhang et al.,
2014). This quantum hybrid system consists of microwave
photons residing in a resonant cavity, which interact with a
spin wave in a ferromagnetic (ferri)magnetic material, as
shown in Fig. 26(a). At the fundamental level, a microwave
photon interacts with a quantum of excitation of such a spin
wave, known as a magnon. This emerging platform of
quantum magnonics is designed for strong magnon-photon
interactions for applications in quantum information such as
frequency conversion, quantum memories, and quantum
communication (X. Zhang et al., 2016).
The prototypical system used in these experiments is the

ferrimagnetic insulator yttrium iron garnet Y3Fe5O8 (YIG).
This material exhibits spin waves with the largest quality
factors among all magnetic materials explored so far, which
explains why it is the most widely used. YIG is often
employed in spherical form, with its fundamental mode being
the Kittel mode in which all spins oscillate collectively
in phase.
The coupling strength g between the Kittel and the cavity

modes is proportional to the square root of the number of
participating spins g ¼ g0

ffiffiffiffi
N

p
, where g0 is the coupling

strength of a single Bohr magneton to a cavity photon. The
rms magnetic field generated in the cavity in its ground state is
given by hB̂2i1=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ℏω=2Vc

p
, with ω being the cavity

frequency, Vc the mode volume occupied by the cavity mode,
and μ0 the vacuum permeability. The single-spin coupling
strength is calculated to be (Tabuchi et al., 2014; X. Zhang
et al., 2014)

g0=2π ¼ η
γ

2π

ffiffiffiffiffiffiffiffiffiffiffi
ℏωμ0
2Vc

s
: ð28Þ

Here η ≤ 1 describes the spatial overlap and polarization
matching conditions between the microwave field and the
magnon mode (X. Zhang et al., 2014). γ ¼ 2π × 28 GHz=T is
the electron gyromagnetic ratio.
In the first demonstration of strong coupling between

magnons and photons (Tabuchi et al., 2014), a collective
coupling strength in the range of 100s of MHz was observed
using a cavity of 10.7 GHz resonant to a ferromagnetic
resonance mode. The

ffiffiffiffi
N

p
scaling was further demonstrated

by using spheres of different volume (and therefore of a larger
number of spins). In a parallel experiment (X. Zhang et al.,
2014), real-time magnon-photon oscillations were observed at

room temperature; see Figs. 26(b)–26(d). X. Zhang et al.
studied the scaling properties of the coupling constant
[Eq. (28)] to maximize the interaction strength; see
Figs. 26(e) and 26(f). By using a smaller cavity to enhance
its frequency and a larger sphere containing more spins, a
coupling rate of g=2π ¼ 2.5 GHz was attained, being g=ω ¼
0.067 of the magnon resonance frequency resonant with a
cavity of ω=2π ¼ 37.5 GHz. Therefore, the system is
approaching the perturbative USC regime, being the only
result so far in this field reaching such a high coupling strength.

IV. QUANTUM SIMULATIONS

The previous section gave an overview of the most relevant
work in all experimental platforms studying ultrastrong
light-matter interactions. Besides the remarkable couplings
achieved in superconducting quantum circuits (see Sec. III.A),

(a) (b)

(c) (d)

(e) (f)

FIG. 26. Strong coupling between magnons and photons at
room temperature. (a) Image of a microwave cavity used in the
experiment with a yttrium-iron-garnet (YIG) sphere positioned
near a side wall. Simulations show the magnetic field profile of
the mode coupling to the magnons in the YIG sphere. The cavity
is designed to yield maximum magnetic field amplitude at the
position of the sphere. (b) Avoided-level crossing observed
at room temperature, indicating strong magnon-photon inter-
actions. The signal displays reflection off the cavity port.
(c) Real-time, resonant magnon-photon dynamics being driven
by an externally applied microwave field. (d) Cross section of the
trace indicated in (c). (e) Scaling of coupling strength as a
function of cavity mode frequency. The star indicates a device in
the USC regime. (f) Spectrum of device exhibiting USC. From
X. Zhang et al., 2014.
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these platforms have also been used to explore quantum
simulations (Georgescu, Ashhab, and Nori, 2014). With a
quantum simulator, all regimes of coupling between a qubit
and a resonator can be implemented in a fully tunable and
efficient manner. In this respect, some proposals were put
forward in the literature using superconducting circuits, which
include the analog quantum simulation of the quantum Rabi
model (Ballester et al., 2012; Felicetti, Pedernales et al., 2015;
Hwang, Puebla, and Plenio, 2015; Pedernales et al., 2015;
Puebla et al., 2017), Dirac equation physics (Pedernales et al.,
2013), the digital-analog quantum simulation of the quantum
Rabi model (Mezzacapo et al., 2014), and Dicke physics
(Mezzacapo et al., 2014; Lamata, 2017), as well as bosonic
modes in the USC regime (Fedortchenko et al., 2017). In this
section, we give an overview of several of these proposals.
Experimental realizations of the analog (Braumüller et al.,
2017; Lv et al., 2018) and the digital-analog quantum
simulation of the quantum Rabi model (Langford et al.,
2017) have recently been carried out, as well as the USC
regime of bosonic modes (Marković et al., 2018). In addition,
an experimental realization of a classical simulation of the
quantum Rabi model was performed in photonic chips
(Crespi, Longhi, and Osellame, 2012). Moreover, an analysis
of the quantum simulation of the Dicke model with cavity
QED was proposed (Dimer et al., 2007; Grimsmo and

Parkins, 2013), and an early experiment on Dicke physics
in this platform was performed (Baumann et al., 2010). We
point out that Secs. IV.A–IV.C analyze quantum simulations
of USC and DSC models, while Sec. IV.D deals with analog
quantum simulations employing devices already in the USC
and DSC regimes.
In Fig. 27, we summarize the different regimes of the QRM

that are reproduced by an analog or a digital-analog quantum
simulator, following Pedernales et al. (2015).

A. Analog quantum simulation of the quantum Rabi model

1. Quantum Rabi model with superconducting circuits and the
Jaynes-Cummings model

The first analog quantum simulation of the USC and DSC
dynamics was proposed by Ballester et al. (2012). The
proposed simulator consists of a superconducting qubit
coupled to a cavity mode in the strong coupling regime, with
a two-tone orthogonal drive applied to the qubit. It was shown
through analytical calculations and numerics that the method
can access all regimes of light-matter coupling, including USC
(0.1 ≲ g=ω≲ 1, with g=ω the ratio of the coupling strength
over the resonator frequency) and DSC (Casanova, Romero
et al., 2010) (g=ω≳ 1). This scheme allows one to realize an
analog quantum simulator for a wide range of light-matter
coupling regimes (Braak, 2011) in platforms where those
regimes are unattainable from first principles. This includes,
among others, the simulation of Dirac equation physics, the
Dicke and spin-boson models, the Kondo model, and the Jahn-
Teller instability (Meaney et al., 2010). We use the language of
circuit QED (Blais et al., 2004) to describe the method,
although it can also be implemented in microwave cavity
QED (Solano, Agarwal, and Walther, 2003).
Let us consider a physical system consisting of a super-

conducting qubit strongly coupled to a transmission line
microwave resonator. Working at the qubit degeneracy point,
the Hamiltonian reads (Blais et al., 2007)

Ĥ ¼ ℏΩ
2

σ̂z þ ℏωâ†â − ℏgσ̂xðâþ â†Þ; ð29Þ

where Ω is the qubit frequency, ω is the photon frequency,
and g denotes the coupling strength. Moreover, â and â†

stand for the annihilation and creation operators for the field
mode of the photon, while σ̂x ¼ σ̂þ þ σ̂− ¼ jeihgj þ jgihej,
σ̂z ¼ jeihej − jgihgj, where jgi; jei denote ground and excited
states of the superconducting qubit, respectively. One can
apply the RWA in a typical circuit QED implementation
to further simplify this Hamiltonian. More specifically
(Zueco et al., 2009), if fjω − Ωj; gg ≪ ωþ Ω, then it can
be expressed as

Ĥ ¼ ℏΩ
2

σ̂z þ ℏωâ†â − ℏgðσ̂þâþ σ̂−â†Þ; ð30Þ

which is formally equivalent to the well-known JC model of
cavity QED. By performing the RWA, one is neglecting
counterrotating terms σ̂−â and σ̂þâ†, producing in this way a
Hamiltonian [Eq. (30)] where the number of excitations is
conserved.

FIG. 27. Different parameter regimes of the quantum Rabi
model (QRM). Here g is the light-matter coupling strength,
ωR represents the resonator frequency, and ωR

0 the qubit energy
splitting, according to the QRM. (1) Jaynes-Cummings (JC)
regime: g≪fjωRj;jωR

0 jg and jωR−ωR
0 j≪ jωRþωR

0 j. (2) Anti-JC
regime: g ≪ fjωRj; jωR

0 jg and jωR − ωR
0 j ≫ jωR þ ωR

0 j. (3) Two-
fold dispersive regime: g < fjωRj; jωR

0 j; jωR − ωR
0 j; jωR þ ωR

0 jg.
(4) USC regime: jωRj < 10g. (5) DSC regime: jωRj < g. (6) De-
coupling regime: jωR

0 j ≪ g ≪ jωRj. (7) The intermediate regime
(jωR

0 j ∼ g ≪ jωRj) is still open to analysis. The (red) vertical
central line corresponds to the regime of the Dirac equation.
The colors indicate the different regimes of the QRM, color
degradation denotes transitions between different regions. From
Pedernales et al., 2015.
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The Hamiltonian in Eq. (30) is the basis for our derivations.
Consider now two classical microwave fields driving the
superconducting qubit. Adding the drivings to Eq. (30) results
in the following Hamiltonian:

Ĥ ¼ ℏΩ
2

σ̂z þ ℏωâ†â − ℏgðσ̂þâþ σ̂−â†Þ
− ℏΩ1ðeiω1tσ̂− þ e−iω1tσ̂þÞ − ℏΩ2ðeiω2tσ̂− þ e−iω2tσ̂þÞ;

ð31Þ

where ωj and Ωj denote the frequency and amplitude of the
jth driving. We point out that the orthogonal drivings interact
with the qubit in a similar manner as the microwave resonator
field. To obtain Eq. (31), we assumed a RWA not only applied
to the qubit-resonator coupling term, but also to the orthogo-
nal drivings.
We then write Eq. (31) in a frame rotating with the first

driving frequency ω1, namely,

ĤL1 ¼ ℏ
Ω − ω1

2
σ̂z þ ℏðω − ω1Þâ†â

− ℏgðσ̂þâþ σ̂−â†Þ − ℏΩ1ðσ̂− þ σ̂þÞ
− ℏΩ2ðeiðω2−ω1Þtσ̂− þ e−iðω2−ω1Þtσ̂þÞ: ð32Þ

This transformation permits mapping the original first
driving Hamiltonian into a time independent one ĤL1

0 ¼
−ℏΩ1ðσ̂−þσ̂þÞ, while leaving the number of excitations
unperturbed. We consider this term to be the most sizable
and treat the rest perturbatively by transforming into a rotating

framewith respect to ĤL1

0 , ĤIðtÞ¼eiĤL1
0
t=ℏðĤL1−ĤL1

0 Þe−iĤL1
0
t=ℏ.

By employing the rotated qubit basis j�i ¼ ðjgi � jeiÞ= ffiffiffi
2

p
,

we obtain

ĤIðtÞ ¼ −ℏ
Ω − ω1

2
ðe−i2Ω1tjþih−j þ H:c:Þ

þ ℏðω − ω1Þâ†â −
ℏg
2
ðfjþihþj − j−ih−j

þ e−i2Ω1tjþih−j − ei2Ω1tj−ihþjgâþ H:c:Þ

−
ℏΩ2

2
ðfjþihþj − j−ih−j − e−i2Ω1tjþih−j

þ ei2Ω1tj−ihþjgeiðω2−ω1Þt þ H:c:Þ: ð33Þ

The external driving parameters can be tuned in such a way that
ω1 − ω2 ¼ 2Ω1, allowing us to select the resonant terms in the
time-dependentHamiltonian. Therefore, if the first drivingΩ1 is
relatively strong, one can approximate Eq. (33) by an effective
Hamiltonian which is time independent as

Ĥeff ¼ ℏðω − ω1Þâ†âþ ℏΩ2

2
σ̂z −

ℏg
2
σ̂xðâþ â†Þ: ð34Þ

Note the similarity between the original Hamiltonian (29) and
Eq. (34). Even though the coupling g is fixed inEq. (34), one can
still tailor the relative size of the rest of the parameters by tuning
frequencies and amplitudes of the drivings. If one can reach
Ω2 ∼ ðω − ω1Þ ∼ g=2, the original system dynamics will emu-
late those of a qubit coupled to a bosonic mode with a relative

coupling strength beyond the SC regime, reaching the USC and
DSC regimes. The coupling strength attained with the effective
Hamiltonian (34) can be estimated by the ratio geff=ωeff , where
geff ≡ g=2 and ωeff ≡ ω − ω1.

2. Quantum Rabi model in the Brillouin zone
with ultracold atoms

In the following, we present a technique to implement a
quantum simulation of the QRM for unprecedented values of
the coupling strength using a system of cold atoms freely
moving in a periodic lattice. An effective two-level quantum
system of frequency Ω can be simulated by the occupation of
lattice Bloch bands, while a single bosonic mode is imple-
mented with the oscillations of the atom in a harmonic optical
trap of frequency ω that confines atoms within the lattice. We
see that highly nontrivial dynamics may be feasibly imple-
mented within the validity region of this quantum simulation.
At sufficiently low density, the dynamics of the neutral

atoms loaded in an optical lattice can be described by the
single-particle Hamiltonian

Ĥ ¼ p̂2

2m
þ V

2
cos ð4k0x̂Þ þ

mω2

2
x̂2;

where p̂ ¼ −iℏ∂=∂x, m is the mass of the atom, ω is the
frequency of the harmonic trap, while V and 4k0 are the depth
and wave vector of the periodic potential. Using the Bloch
functions, we can identify a discrete quantum number, the
band index nb, and a continuous variable, the atomic quasi-
momentum q. Fixing our attention to the bands with the two
lowest nb, the Hamiltonian can be recast into

Ĥ ¼ 1

2m

�
q2 þ 4ℏk0q 0

0 q2 − 4ℏk0q

�
þ V

4

�
0 1

1 0

�
−
mω2ℏ2

2

∂2

∂q2
�
1 0

0 1

�
: ð35Þ

By analogy to the usual QRM,

Ĥ ¼ ℏωâ†âþ ℏΩ
2

σz þ iℏgσxðâ† − âÞ;

we define an effective qubit energy spacing Ω≡ V=2ℏ and an
effective light-matter interaction g≡ 2k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω=2m

p
.

The value of the effective coupling strength is intrinsically
linked to the trap frequency g ∼

ffiffiffiffi
ω

p
, and since the trap

frequency is low (typically kilohertz in actual experiments)
the ratio g=ω is tunable only over a range of extremely high
values, g=ω ∼ 10. However, the tunability of the ratio g=Ω
allows us to explore a large region of parameters at the
transition between resonant and dispersive qubit-oscillator
regimes. Indeed, the value of Ω can be made large enough
such that the qubit free Hamiltonian becomes the dominant
term or small enough to make its energy contribution
negligible.
Given that only very high values of the ratio g=ω are

accessible, the RWA can never be applied and the model
cannot be implemented in the JC limit. Interesting dynamics at
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the crossover between the dispersive and resonant DSC
regimes can be observed for values of parameters unattainable
so far with available implementations of the QRM. However,
the analogy with the QRM breaks down when the value of the
simulated momentum exceeds the borders of the first Brillouin
zone. When this is the case, the model represents a generali-
zation of the QRM in periodic phase space.
Both the momentum (and correspondingly the state of σ̂x)

and the atomic cloud position can in principle be measured
with absorption imaging techniques. For the former, standard
time-of-flight imaging may be used, as performed by
simultaneously deactivating both the lattice beams and the
dipole trapping potential and then detecting the atoms in
the far field after a given free expansion time. While the
reconstruction in this way is possible with high precision,
achieving the required spatial resolution for an in situ
position detection of the oscillation is experimentally chal-
lenging. Figure 28 shows experimentally accessible quan-
tities like the distribution PðpÞ ¼ jhpjψðtÞij2 of the atomic
physical momentum p̂ for different evolution times. The
momentum distribution can be experimentally obtained using
time-of-flight measurements and gives a clear picture of the
system dynamics during the quantum simulation of the
QRM. The cloud is initialized in the momentum eigenstate
jq ¼ 0ijnb ¼ 0i. When the periodic lattice strength V is large
enough, the dynamics are dominated by the coupling
between jnb ¼ 0i and jnb ¼ 1i. This case corresponds to
the dispersive DSC regime. Otherwise, the dynamics are
dominated by the harmonic potential, and the evolution
resembles the QRM in the DSC regime.

An alternative implementation of the QRM with cold
atoms has been proposed using atomic Zeeman states and
vibrational modes of a trapping atomic potential. The coupling
is mediated by a suitable fictitious magnetic field pattern and
allows accessing a wide parameter regime of the QRM
(Schneeweiss, Dareau, and Sayrin, 2018).

B. Analog quantum simulation of Dirac physics

There exist strong connections between the QRM and the
Dirac equation (Lamata et al., 2007; Pedernales et al., 2013).
Therefore, simulating the physics of the Dirac equation is
important to connect to physics of the USC and DSC regimes.
We review here a particular method employing superconduct-
ing quantum circuits. We point out some crucial differences
with regards to previous implementations of the Dirac
equation Klein paradox in other quantum platforms, particu-
larly ion traps (Gerritsma et al., 2010). Using the method
described here, the dynamics of a spin-1=2 relativistic particle
are emulated by 2 interacting degrees of freedom from two
different subsystems, namely, a standing wave in a trans-
mission line resonator and a superconducting qubit, none of
them representing real motion. The position and momentum of
the simulated Dirac particle are codified in the field quad-
ratures. Contrary to the ion trap simulator (Gerritsma et al.,
2010), this approach paves the way for combining cavity fields
with quantum propagating microwaves (Menzel et al., 2010;
Bozyigit et al., 2011; Eichler et al., 2011) in complex quantum
network architectures (Leib et al., 2012).
In the protocol described here one requires a superconduct-

ing qubit, e.g., a flux qubit (Paauw et al., 2009), working
at its degeneracy point strongly coupled to an electromagnetic
field mode of a transmission line resonator. The interaction
between the two systems can be described by the JC
Hamiltonian (Jaynes and Cummings, 1963; Wallraff et al.,
2004; Blais et al., 2007). Additionally, we consider three
classical external microwave drivings, two of them transversal
to the resonator (Ballester et al., 2012) which will couple only
to the qubit, and the third drive coupled longitudinally to the
resonator. The Hamiltonian of the system reads

Ĥ ¼ ℏΩ
2

σ̂z þ ℏωâ†â − ℏgðσ̂þâþ σ̂−â†Þ
− ℏΩ1ðeiðωtþφÞσ̂− þ e−iðωtþφÞσ̂þÞ − ℏλðeiðνtþφÞσ̂−

þ e−iðνtþφÞσ̂þÞ þ ℏξðeiωtâþ e−iωtâ†Þ; ð36Þ

where σ̂y¼iðσ̂−−σ̂þÞ¼iðjgihej−jeihgjÞ and σ̂z¼jeihej−jgi
hgj, with jgi, jei denoting the ground and excited qubit states,
respectively. Here ℏω and ℏΩ correspond to photon and qubit
uncoupled energies, whereas g stands for the qubit-photon
coupling strength. The two orthogonal microwave drivings
have amplitudes Ω1, λ, phase φ, and frequencies ω and ν.
Additionally, the longitudinal driving has amplitude ξ and
frequency ω. Note that two of the drivings are chosen to be
resonant with the resonator mode. We also assume thatΩ ¼ ω,
i.e., the qubit and the resonator are on resonance as well.
This protocol is based on two transformations. First, the

Hamiltonian in Eq. (36) can be transformed into the rotating
frame with respect to the resonator frequency ω:

FIG. 28. Quantum Rabi model using ultracold atoms.
Distribution PðpÞ ¼ jhpjψðtÞij2 of the atomic physical mo-
mentum p̂ for different evolution times. ω0 corresponds to ω
of the main text. For the dispersive DSC regime (upper
panel), the parameters are given by g=ω ¼ 7.7 and
g=Ω ¼ 0.43. In this case, the initial wave function is trans-
formed back and forth between two distributions centered
around the states jp ¼ �2ℏk0i. For the resonant DSC regime
(lower panel), g=ω ¼ 10 and ω ¼ Ω. In this case, the system is
continuously displaced in momentum space up to a maximum
value of the momentum. From Felicetti et al., 2017.
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ĤL1 ¼ −ℏgðσ̂þâþ σ̂−â†Þ
− ℏΩ1ðeiφσ̂− þ e−iφσ̂þÞ þ ℏξðâþ â†Þ
− ℏλðei½ðν−ωÞtþφ�σ̂− þ e−i½ðν−ωÞtþφ�σ̂þÞ: ð37Þ

Second, the Hamiltonian obtained is transformed into
another frame rotating with respect to the Hamiltonian
ĤL1

0 ¼ −ℏΩ1ðeiφσ̂− þ e−iφσ̂þÞ,

ĤI ¼ −
ℏg
2
ðfjþihþj − j−ih−j þ e−i2Ω1tjþih−j

− ei2Ω1tj−ihþjgeiφâþ H:c:Þ

−
ℏλ
2
ðfjþihþj − j−ih−j − e−i2Ω1tjþih−j

þ ei2Ω1tj−ihþjgeiðν−ωÞt þ H:c:Þ þ ℏξðâþ â†Þ; ð38Þ

where we considered the rotated qubit basis j�i ¼
ðjgi � e−iφjeiÞ= ffiffiffi

2
p

. We now assume ω − ν ¼ 2Ω1 to simplify
the calculation, and also assume the first driving amplitude Ω1

to be large when compared to the other Rabi frequencies in
Eq. (38). Therefore, we can apply the RWA, which produces
the Hamiltonian

Ĥeff ¼
ℏλ
2
σ̂z þ

ℏgffiffiffi
2

p σ̂yp̂þ ℏξ
ffiffiffi
2

p
x̂; ð39Þ

where φ ¼ π=2 and we made use of the electromagnetic field
quadratures, i.e., x̂ ¼ ðâþ â†Þ= ffiffiffi

2
p

, p̂ ¼ −iðâ − â†Þ= ffiffiffi
2

p
,

obeying the commutation relation ½x̂; p̂� ¼ i. Note that Ω1

is not present in the effective Hamiltonian equation (39). This
is a consequence of deriving the Hamiltonian in a rotating
frame withΩ1 acting as a large frequency in the strong driving
parameter regime.
The Schrödinger dynamics of Eq. (39) are analogous to

those of the 1þ 1 Dirac equation, where the parameters
ℏg=

ffiffiffi
2

p
and ℏλ=2 simulate, respectively, the speed of light and

the particle mass. Moreover, we also have an external potential
Φ ¼ ℏξ

ffiffiffi
2

p
x̂ which is linear in the particle position. The

simulated dynamics allow one to cover a wide range of
physical regimes within this quantum simulation. We point
out that, for fixed coupling constant g, the simulated mass
grows linearly with the amplitude of the weak driving λ, while
the strength of the potential can be adjusted with the
longitudinal driving amplitude ξ. This is in contrast with
respect to the trapped ion implementation, where one needs a
second ion to simulate the external potential (Casanova,
García-Ripoll et al., 2010; Gerritsma et al., 2011). In the
case of a massless particle, λ ¼ 0 and ν ¼ 0, such that ω ¼
2Ω1 in Eq. (38).
In the superconducting quantum circuit implementation,

the analysis of relativistic quantum features, such as
Zitterbewegung or Klein paradox, should be carried out by
a phase-space description of the electromagnetic field in the
transmission line resonator. The initial quantum state of the
bosonic degree of freedom of the simulated Dirac particle may
be represented by a wave packet with average position hx̂0i
and average momentum hp̂0i,

ψðxÞ ¼ π−1=4 exp fihp̂0ixg exp
�
−
ðx − hx̂0iÞ2

2

�
: ð40Þ

The wave packet is analogous to the x-quadrature representa-
tion of an electromagnetic field coherent state				 hx̂0i þ ihp̂0iffiffiffi

2
p



¼ D̂

�hx̂0i þ ihp̂0iffiffiffi
2

p
�
j0i;

where j0i is the vacuum state of the bosonic field, and D̂ðαÞ ¼
exp fαâ† − α�âg is the displacement operator.

C. Digital-analog quantum simulation of the quantum Rabi and
Dicke models

The previous Secs. IV.A and IV.B described analog
simulations of different physical models. We now review
the digital-analog quantum simulation of the quantum Rabi
and Dicke models implemented in a circuit quantum electro-
dynamics platform. The simulation employs only JC dynamics
and local interactions (Mezzacapo et al., 2014; Lamata, 2017).
We describe how the rotating and counterrotating Hamiltonians
of the corresponding evolution can be straightforwardly imple-
mented using digital techniques. By interleaving the dynamics
of rotating and counterrotating Hamiltonians, the evolution of
the quantum Rabi and Dicke models can be implemented in all
parameter regimes of light-matter coupling. At the end of this
section, we illustrate how a Dirac equation evolution can be
achieved in the limit of negligible mode frequency.
We begin by assuming a generic circuit quantum electro-

dynamics platform composed of a superconducting qubit
coupled to a transmission line microwave resonator. This
scenario is described by the Hamiltonian (Blais et al., 2007)

Ĥ ¼ ℏωrâ†âþ ℏωq

2
σ̂z þ ℏgðâ†σ̂− þ âσ̂þÞ; ð41Þ

where ωr and ωq are, respectively, the resonator and qubit
transition frequencies, g is the qubit-cavity coupling strength,
â† is the creation bosonic operator for the cavity mode, and
σ̂þ; σ̂− are raising and lowering spin operators acting on
the qubit.
Let us take a look at the Hamiltonian of the QRM

ĤR ¼ ℏωR
r â†âþ ℏωR

q

2
σ̂z þ ℏgRσ̂xðâ† þ âÞ: ð42Þ

It turns out that its evolution can be codified in a super-
conducting qubit platform with available JC interactions
[Eq. (41)] by a digital decomposition. Let us express
Eq. (42) as the sum of two parts, ĤR ¼ Ĥ1 þ Ĥ2, with

Ĥ1 ¼
ℏωR

r

2
â†âþ ℏω1

q

2
σ̂z þ ℏgðâ†σ̂− þ âσ̂þÞ; ð43Þ

Ĥ2 ¼
ℏωR

r

2
â†â −

ℏω2
q

2
σ̂z þ ℏgðâ†σ̂þ þ âσ̂−Þ; ð44Þ

where we considered the qubit frequency in the two terms in
such a way that ω1

q − ω2
q ¼ ωR

q . The dynamics arising from the
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two Hamiltonians in Eqs. (43) and (44) can be implemented
in a standard circuit quantum electrodynamics platform
that includes the possibility of fast detuning of the qubit
frequency; see Fig. 29. Beginning with the qubit-resonator
Hamiltonian in Eq. (41), we can transform into a frame which
rotates at frequency ω̃, where an effective interaction
Hamiltonian results

H̃ ¼ ℏΔ̃râ†âþ ℏΔ̃qσ̂z þ ℏgðâ†σ̂− þ âσ̂þÞ; ð45Þ

with Δ̃r ¼ ωr − ω̃ and Δ̃q ¼ ðωq − ω̃Þ=2. Accordingly,

Eq. (45) coincides with Ĥ1 after redefinition of the coef-
ficients. The counterrotating Hamiltonian Ĥ2 can be realized

by local qubit drivings to ˆ̃H, employing a different detuning
for the qubit frequency,

e−iπσ̂x=2H̃eiπσ̂x=2 ¼ℏΔ̃râ†â−ℏΔ̃qσ̂zþℏgðâ†σ̂þþ âσ̂−Þ: ð46Þ

By choosing different qubit-resonator detunings in the two
steps Δ̃1

q and Δ̃2
q, the quantum Rabi Hamiltonian [Eq. (42)] is

simulated by a digital expansion (Lloyd, 1996) by interleaving
the different interactions.
In the protocol described here, customary quasiresonant JC

dynamics with different qubit frequencies are combined with
single-qubit drivings to perform standard qubit rotations
(Blais et al., 2007). This sequence is repeated following
the digital quantum simulation scheme in order to achieve a
better fidelity of the quantum Rabi dynamics.
Note the existence of a direct relationship between the

effective system parameters and the real circuit variables. The
simulated bosonic mode frequency is related to the resonator
detuning ωR

r ¼ 2Δ̃r, while the effective two-level system
frequency is connected to the qubit frequency considering
the two steps ωR

q=2 ¼ Δ̃1
q − Δ̃2

q. Finally, the qubit-resonator
coupling strength is the same in both cases gR ¼ g.

This digital-analog quantum simulation was carried out in a
circuit QED experiment (Langford et al., 2017).

D. Quantum simulation with ultrastrong couplings

In this section, we analyze analog quantum simulator
devices in the USC and DSC regimes which are used to
study complex phenomena occurring in real systems, such as
biologically relevant molecular complexes. This should not be
confused with Sec. IV.A.1, dealing with quantum simulations
of models in USC and DSC regimes employing superconduct-
ing quantum simulators in the strong coupling regime.

1. Jahn-Teller transitions in molecules

Jahn-Teller models describe the interaction of localized
electronic states with vibrational modes in crystals or in
molecules (Bersuker, 2006). Certain molecules contain a
degeneracy in their ground state due to their molecular
configuration. A spontaneous symmetry breaking of the
geometry of the molecule, a process known as a Jahn-
Teller transition, results in one favorable stable configuration,
becoming the absolute ground state of the system. Interesting
molecular systems undergoing a Jahn-Teller transition exist,
e.g., fullerene. Therefore, simulating such quantum systems is
very attractive.
In a pioneering work (Hines et al., 2004), a connection was

made between a class of Jahn-Teller Hamiltonians and a qubit
coupled to an oscillator in the USC regime. This initial work
was followed by several extensions into other classes of Jahn-
Teller models and how to efficiently simulate them using
superconducting quantum circuits (Meaney et al., 2010;
Dereli et al., 2012).
Following the original work (Hines et al., 2004; Larson,

2008), the most general Hamiltonian of a E × ϵ Jahn-Teller
model implemented in a cavity QED setting using a single
two-level system coupled to two degenerate modes of a cavity
has the form

Ĥϵ×E=ℏ¼ωcðâ†âþ b̂†b̂ÞþΩq

2
σ̂zþλ½ðâ†þ âÞðσ̂þe−iθþ σ̂−eiθÞ

þðb̂†þ b̂Þðσ̂þe−iϕþ σ̂−eiϕÞ�: ð47Þ

Here ωc is the frequency of the two cavity modes. θ and ϕ
represent different phases of the mode field interacting with
the two-level system. λ is the interaction strength between the
two-level system and each cavity mode. This Hamiltonian has
a strong resemblance to the QRM [Eq. (1)], where the only
difference is the presence of the second mode b̂. The Jahn-
Teller transition occurs for values of the qubit-oscillator
coupling strengths which correspond to the DSC regime.
Such a regime has recently been attained unambiguously in a
superconducting circuit (Yoshihara et al., 2017b), as detailed
in Sec. III.A. The ϵ × E Jahn-Teller model is the simplest
of its kind. More complex models, and thus more realistic,
contain several oscillator modes, with a hopping interaction
between those modes. The simplest of such multimode
models is the E × ðβ1 þ β2Þ Jahn-Teller model, also known
as the Herzberg-Teller model. Dereli et al. (2012) studied the
behavior of two coupled modes interacting with the same

FIG. 29. Frequency diagram of the digital-analog implemen-
tation of the quantum Rabi Hamiltonian. A superconducting
qubit of frequency ωq interacts with a microwave resonator
with transition frequency ωr. The evolution with Ĥ1;2 in
Eqs. (43) and (44) are implemented, respectively, with a
Jaynes-Cummings interaction (step 1), and other Jaynes-
Cummings dynamics with a different detuning, interspersed
with π pulses (step 2), to transform the second Jaynes-
Cummings evolution into an anti-Jaynes-Cummings interac-
tion. From Mezzacapo et al., 2014.
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qubit. Its implementation in a superconducting circuit is
presented in Fig. 30. The Hamiltonian of such a system
can be expressed as

Ĥðβ1þβ2Þ×E=ℏ ¼ Ωq

2
σ̂z þ Ω1â

†
1â1 þ Ω2â

†
2â2

þ ½g1ðâ1 þ â†1Þ þ g2ðâ2 þ â†2Þ�σ̂x
þ Jðâ†1â2 þ â†2â1Þ; ð48Þ

where J is the mode-mode coupling energy representing
the hopping rate of phonons in the simulated system. gi are the
qubit-mode interaction strength coefficients, representing
the coupling of a molecular transition to each of the two
vibrational modes of the simulated molecule. This type of
Hamiltonian can be realized using the technology of super-
conducting quantum circuits. This simple Hamiltonian
already contains the physics of real systems of interest such
as the two phonon modes in C6H�

6 and the two phonon modes
of Fe2þ in ZnS.
More complex Jahn-Teller models involve the interaction of

a qubit to several bosonic modes. A possible candidate to
perform an analog simulation would correspond to a qubit
ultrastrongly coupled to a coplanar waveguide resonator
supporting a collection of modes. By reducing the funda-
mental mode frequency of the resonator the qubit can
simultaneously interact to many modes. Experiments have
already been performed using superconducting qubit circuits
where such a configuration has been engineered (Sundaresan
et al., 2015; Puertas-Martinez et al., 2018).
Irrespective of the simulated type of Jahn-Teller model, it is

crucial to attain ultrastrong couplings between the two-level
system, or qubit, and the bosonic modes involved in order to

perform a faithful analog simulation of the actual molecular
system.

2. Energy transfer in photosynthetic complexes

The transfer of energy in light-harvesting systems has been
a subject of intense study in the last decade. The observation
of excitonic quantum oscillations in molecular complexes
as a result of light absorption triggered the birth of a field
known now as quantum biology (Engel et al., 2007; Lambert
et al., 2013).
Biological systems are inherently complex and particularly

hard to describe quantitatively, especially considering the fact
that key biological processes, in this case the transfer of
energy within the molecular complex, are heavily influenced
by the environmental fluctuations and the finite temperature.
Therefore, a quantum simulator that aims at simulating
such relevant processes needs to include the environmental
degrees of freedom. As measured in spectroscopic experi-
ments (Wendling et al., 2000), molecular complexes consist of
several nodes which are coupled to each other in a particular
network configuration. The most popular of light-harvesting
complexes, the Fenna-Matthews-Olson (FMO) complex, con-
tains seven nodes, and the interaction between nodes is in fact
ultrastrong. In addition, the correlation time of the bath is
found to be of comparable order as the internal dynamics of
the molecule. In other words, the system is heavily non-
Markovian. The strong effect of the environment is due to
an USC of the nodes within the molecular complex to its
environmental degrees of freedom, most likely phonons in the
case of FMO.
An analog quantum simulator must then consist of qubits

playing the role of the FMO nodes which couple to each other
ultrastrongly, with some of the qubits ultrastrongly coupled to
the environment. Ultrastrong qubit-qubit interactions are
relatively easy to obtain using superconducting circuits
(Majer et al., 2005), while ultrastrong qubit-bath interactions
have just recently been achieved in experiments using super-
conducting qubits in transmission lines (Forn-Díaz et al.,
2017). A theoretical proposal of such a quantum simulator
was already put forward (Mostame et al., 2012) using
superconducting flux qubits. Figure 31 shows a schematic
of the qubit network proposed to mimic that of the actual
FMO complex, along with a circuit representation of the
qubit-environment coupling. The interaction to the flux qubit
is longitudinal to simulate ultrastrong dephasing.
Two recent experiments (Gorman et al., 2018; Potočnik

et al., 2018) have reproduced certain aspects of the basic
physics believed to occur in light-harvesting complexes.
Potočnik et al. studied the interplay of quantum interference
and environmental fluctuations to lead to a maximal energy
transfer in a system of three superconducting qubits. The
qubits were directly coupled to each other and subject to
different types of environmental noise. They found a maximal
efficiency of energy transfer when the qubits were experi-
encing coherent excitation and Lorentzian noise, conditions
which mimic the phononic environment found in molecular
complexes such as FMO. Gorman et al. used a system of two
ions in a linear trap, one of which was coupled to one of
its vibrational modes, playing the role of the phononic

(a)

(b)

FIG. 30. Circuit schematic to produce the Jahn-Teller E × ðβ1 þ
β2Þ model. (a) Circuit diagram of a flux qubit galvanically
coupled to two lumped-element resonators, which are capaci-
tively coupled to each other. (b) Circuit representation with the
capacitors being interdigitated-finger style. The magenta sections
represent the qubit Josephson junctions. From Dereli et al., 2012.
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environment in an actual light-harvesting complex. By appli-
cation of external laser beams, they simulated the regime
where the relative energy splitting between the ions, their
interaction strength, and the interaction to the environment
were of the same order. This regime mimics a realistic
environment in a molecular complex such as the FMO.
They observed clear signatures of environment-assisted
energy transfer between ions, supporting the idea that this
process does play an important role in the actual energy
transfer of real photosynthetic molecular complexes.
Scaling up the system size of these experiments with more

qubits and more realistic parameters, some of which require
entering the USC regime, may lead to actual quantum
simulations of biological complexes and quantum chemistry.

V. PHYSICS OF THE ULTRASTRONGCOUPLING REGIME

In this section, we review some of the intrinsic physics
occurring in the USC regime, and what kind of applications
have been proposed for ultrastrongly coupled systems. First,
we present several instances in which novel quantum optical
phenomena are possible in the USC regime and how they
could be useful for quantum information processing purposes.
We continue with an important application in quantum
computing as is the generation of ultrafast quantum gates.
The section closes with a description of how dissipative
systems must be treated in the USC regime.

A. Quantum optics

The achievement of ultrastrong couplings in any physical
platform opens up the possibility to study counterintuitive
phenomena appearing in the Rabi model which is not present

in the more familiar JC model (Ridolfo et al., 2012; Stassi
et al., 2013; Felicetti, Romero et al., 2014; Garziano et al.,
2014, 2015a; Ma and Law, 2015). Beyond the instances
described in this section, concepts appearing in other branches
of physics are also being studied in the USC regime, such as
symmetry breaking and Higgs mechanism (Garziano et al.,
2014) and approaches relating to Feynman diagrams (Stefano
et al., 2017).

1. Two atoms excited by a single photon

A particular instance is the case of a photon which excites
two atoms at the same time in a reversible manner (Garziano
et al., 2016). In a generalized version of the Rabi model, two
two-level atoms interact with a single mode of a cavity [see
also Eq. (19)], given by the Hamiltonian

Ĥ ¼ ℏΩ
2

X
i

σ̂ðiÞz þ ℏωâ†â

þ ℏgðâþ â†Þ
X
i

½cosðθÞσ̂ðiÞx þ sinðθÞσ̂ðiÞz �: ð49Þ

As shown in Figs. 32 and 33, a mixing exists in
third-order perturbation theory between states jg; g; 1i and
je; e; 0i due to the counterrotating terms. At the resonance
point where the frequency of the cavity is twice the frequency
of each atom, the effective Hamiltonian is given by
Ĥeff ¼ −ℏΩeffðje; e; 0ihg; g; 1j þ H:c:Þ, where the maximum
coupling is achieved when

Ωeff

Ω

				
θ¼cos−1

ffiffiffiffiffiffi
2=3

p ¼ 16

9
ffiffiffi
2

p
�
g
Ω

�
3

: ð50Þ

FIG. 31. (a) Experimental layout for simulating the exciton
dynamics and environment-assisted quantum transport in the
FMO complex (Mostame et al., 2012). The different nodes Qi
represent eight qubits emulating the FMO nodes and their
connections. The green node Q8 is the receiver of the photon
excitation, the blue nodes are intermediate paths of the exciton,
and node Q3 is the final one where the energy is delivered and
couples to the rest of the molecule, labeled as “Sink.” (b) Circuit
schematic representation of a single qubit coupled to an Ohmic
environment. In this circuit, the coupling is longitudinal with
respect to the qubit, simulating in this way ultrastrong dephasing.
The environment can be simulated by a linear chain of LCR
resonators, as in this figure, or by using a transmission line, as
demonstrated experimentally. From Forn-Díaz et al., 2017.

FIG. 32. Multiatom excitation with a single photon. As a result
of USC physics, two or more atoms in an optical cavity can
absorb a single photon. A sketch of the process is shown giving
the main contribution to the effective coupling between the bare
states jg; g; 1i and je; e; 0i, via intermediate virtual transitions.
The coupling λ corresponds to g in the main text. The initial state
jg; g; 1i transitions to virtual intermediate excited states which
would not conserve the total energy. At the end of the process, the
final state je; e; 0i is excited, preserving the total system energy.
Here the processes which do not conserve the excitation number
are represented by an arrowed dashed line. Each path includes
three virtual transitions involving out-of-resonance intermediate
states. Only the process is displayed that gives the main
contribution to the effective coupling between the bare states
jg; g; 1i and je; e; 0i. Higher-order processes, depending on the
atom-field interaction strength, can also contribute. The transition
matrix elements are also shown. From Garziano et al., 2016.
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Analogous work (Kockum, Macrì et al., 2017) studied the
frequency conversion in a system of two cavities coupled to
the same atom in the USC regime. Moreover, it has been
shown (Kockum, Miranowicz et al., 2017) that other proc-
esses similar to the ones described in this section find
interesting applications for nonlinear optics. Also, an analo-
gous process to the one just described (Stassi et al., 2017) can
result in a single photon exciting multiple atoms. Furthermore,
processes that do not conserve the excitation number can also
be used for generating entanglement between photons (Macrí,
Nori, and Kockum, 2018).

2. Ancilla qubit spectroscopy

Given the extreme parameters required to reach the USC
regime, there is an intrinsic difficulty in performing direct

spectroscopic measurements of the system as well as observ-
ing its dynamics. By contrast, several proposals were put
forward to use a second qubit, known as an ancilla qubit,
coupled to the USC system to extract some of its properties
(Garziano et al., 2014; Felicetti, Douce et al., 2015; Lolli
et al., 2015). In a separate proposal of a qubit-cavity system in
the USC regime (Andersen and Blais, 2017), higher-order
modes of the cavity were suggested as an ancillary system to
extract information of the cavity mode which is ultrastrongly
coupled to the qubit via the cross-Kerr interaction which exists
between any pair of modes due to the nonlinearity induced by
the qubit. In all cases, the ancilla-system coupling strength is
in the strong coupling regime. In this configuration, the
spectrum of the ancilla qubit or cavity contains information
on the eigenstates of the USC system. Therefore, the ancillary
system can be used as a probe of the many properties of the
otherwise inaccessible ultrastrongly coupled system. There
exist other proposals for nondemolition detection of USC
ground-state properties, e.g., measuring the virtual radiation
pressure exerted by the photons in the ground state on a
mechanical mirror in an optomechanical system (Cirio
et al., 2017).
In the particular configuration studied by Lolli et al. (2015),

the Hamiltonian that describes the dynamics of the system is
given by

Ĥ ¼ ĤS þ
Ωan

2
σ̂ðanÞz þ ganðâþ â†Þσ̂ðanÞx þ Ωd cos ðωdtÞσ̂ðanÞx ;

ð51Þ

where Ωan is the natural frequency of the ancillary qubit, gan is
the coupling of the ancilla qubit to a single mode of the cavity,
Ωd andωd characterize the periodic driving of the ancilla qubit
with a classical field, and ĤS is the Hamiltonian of the
ultrastrongly coupled system [Eq. (1)] the ancilla qubit is
probing. In the particular work of Lolli et al., the ultrastrongly
coupled system consists of a single cavity mode coupled to an
ensemble of identical two-level systems with a collective
coupling well in the USC regime. Several instances were
studied corresponding to the Dicke, Tavis-Cummings (Tavis
and Cummings, 1968), and Hopfield (Hopfield, 1958) mod-
els, whose respective Hamiltonians are

ĤDicke ¼ ωâ†âþ ΩĴz þ
gffiffiffiffi
N

p ðâþ â†ÞðĴþ þ Ĵ−Þ;

ĤTC ¼ ωâ†âþ ΩĴz þ
gffiffiffiffi
N

p ðâĴþ þ â†Ĵ−Þ;

ĤHopfield ¼ ĤDicke þ
g2

Ω
ðâþ â†Þ2: ð52Þ

ω is the frequency of the single-mode cavity,Ω corresponds to
the transition frequency of the N identical two-level atoms, λ
describes the collective coupling, and the collective operators

are given by Ĵz ¼ ð1=2ÞPiσ̂
ðiÞ
z and Ĵ� ¼ P

iσ̂
ðiÞ
� .

All three models are shown in Fig. 34. Because of the
ancilla-system coupling, a measurable Lamb shift in the
frequency of the ancillary qubit appears. Up to second order
in perturbation theory in gan, this shift can be analytically
calculated to be

FIG. 33. (a) Frequency differences ωi;o ¼ ωi − ωo for the
lowest-energy eigenstates of Eq. (49) as a function of the
resonator frequency ωc=ωq. ωc and ωq correspond to ω and Ω
of the main text, respectively. Starting from the lowest excited
states of the spectrum, a large anticrossing around ωc=ωq ¼ 1 can
be observed, corresponding to the standard vacuum Rabi split-
ting. Here we consider a normalized coupling rate g=ωq ¼ 0.1
between the resonator and each of the two qubits. The particular
case θ ¼ π=6 is shown. The arrows indicate the ordinary vacuum
Rabi splitting arising from the coupling between the states
jg; g; 1i and ðjg; e; 0i þ je; g; 0iÞ= ffiffiffi

2
p

. (b) Enlarged view of the
spectral region delimited by a square in (a), where the third and
fourth levels display an apparent crossing. The enlarged view
shows a clear avoided-level crossing. The level splitting origi-
nates from the hybridization of the states jg; g; 1i and je; e; 0i
due to the presence of counterrotating terms in the system
Hamiltonian. The resulting states are well approximated by
ðjg; g; 1i � je; e; 0iÞ= ffiffiffi

2
p

. This splitting is not present in the
RWA, where the coherent coupling between states of a different
number of excitations is not allowed. From Garziano et al., 2016.
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δωan ∼ g2an

�
1

ωan − ω
þ 1

ωan þ ω

�
hðâþ â†Þ2i

þg2an

�
1

ðωan − ωÞ2 −
1

ðωan þ ωÞ2
�
hV̂ðSÞi; ð53Þ

where V̂ðDickeÞ¼gN−1=2ðâþâ†ÞĴx, V̂ðTCÞ¼gN−1=2ðâ†Ĵ−þâĴþÞ,
and V̂ðHopfieldÞ ¼ V̂ðDickeÞ þ 2g2Ω−1ðâþ â†Þ2. As is explicit
from the equations, the shift depends on the ground-state
photon population hâ†âi, on the anomalous expectation value
hâ†2 þ â2i, and on the correlations between the cavity and the
N two-level systems. Figure 34 shows the Lamb shift for the
three discussed models.

3. Optomechanics in the USC regime

Solid-state nanoelectromechanical resonators have been
considered as a mediator of the interactions between qubits
(Sornborger, Cleland, andGeller, 2004). Ultrastrongly coupled
optomechanical setups have been proposed to prepare quantum
states of motion (Garziano et al., 2015b). In the same scenario,
another type of quantum states which can be obtained as a
consequence of ultrastrong interactions are NOON states
which are entangled states that represent a superposition of
N excitations in one mode with zero excitations in a second
mode, and viceversa (Macrí et al., 2016). It has been shown that
the preparation of NOON states in ultrastrongly coupled
optomechanical systems is possible following a completely
controlled and deterministic procedure. The setup consists of
two identical, optically coupled optomechanical systemswhich
can be modeled by the photonic modes of the optical cavities
and the phononic modes from the mechanical oscillators (see
the description of the setup in Fig. 35). The dynamics of each
independent optomechanical subsystem are characterized by
the Hamiltonian

ĤðiÞ
0 ¼ ℏωRâ

†
i âi þ ℏωMb̂

†
i b̂i þ ℏgMâ

†
i âiðb̂i þ b̂†i Þ; ð54Þ

in the local Fock basis jni; mii, where the integers ni and mi
represent the number of photons and vibrational excitations in
the ith optomechanical system. The preparation of mechanicalFIG. 34. Ancilla qubit spectroscopy of ultrastrongly coupled

systems. The top, middle, and bottom panels correspond to
Eq. (51) with the system S being the Dicke, Tavis-Cummings,
andHopfieldmodels, respectively [Eq. (52)].ωc and λ correspond to
ω and g of the main text, respectively. Considering the ancilla qubit
as the measurement qubit M, for finite gM the coupling between S
andM creates amixing between states of the form jψSi ⊗ jψMi and
the driving induces transitions from the ground state jGSþMi to
excited states. Therefore, the relevant excited states jli are those
having the largest values of jhGSþMjσ̂ðMÞ

x jlij2. The results show that,
due to the off-resonant coupling, there is only one dominant
spectroscopically active level (thick black solid line), which has a
strong overlap with the state jGSi ⊗ j↑i. Left panels: excitation
energies for the three considered systems S vs the coupling λ
between the boson field and the N atoms. Right panels: Lamb shift
of the ancillary qubit transition as a function of the coupling λ=ωc of
the coupled system S under consideration. The dashed red lines
in the right panels depict the shift predicted by the analytic
calculation. The agreement between the numerical diagonalization
results and the analytical formula [Eq. (53)] is excellent in the
considered range of values for λ=ωc, except for points where there
are avoided crossings with other levels. From Lolli et al., 2015.

FIG. 35. Optomechanical USC. Two identical coupled opto-
mechanical systems, with frequency ωM, are parametrically
coupled with a single-mode optical resonator or cavity, which
can be driven by external optical pulses with specific central
frequencies. One cavity mirror can be added to the end of
both the optomechanical systems for optical readout. From
Macrí et al., 2016.
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entangledNOON states requires two interacting optical cavities
with an interaction Hamiltonian ĤI ¼ ℏgRðâ†1â2 þ â1â

†
2Þ.

Starting in the ground state of the system that contains no
photons or phonons in either system, one of the optical
resonators is excited with an external π pulse resonant with
the transition j01;01;02;02i↔ j11;m1;02;02i. Then the system
freely evolveswith the interactionHamiltonian undergoingRabi
oscillations. The time-dependent quantum state is then given
by jΨðtÞi¼cosðgRtÞj11;m1;02;02i−isinðgRtÞj01;01;12;m2i. A
second resonant pulse with the transition j1i; mii ↔ j0i; Nii
will produce the desired NOON state,

jΨi ¼ αj01; N1; 02; 02i − iβj01; 01; 02; N2i: ð55Þ
It is worth mentioning that further developments and

applications of the USC and DSC regimes to coupled
mechanical systems are expected, given that the physical
conditions are not necessarily equivalent to those of coupled
electromagnetic oscillators (Sudhir et al., 2012).
Other work in ultrastrongly coupled oscillator systems,

including optomechanics, have investigated the influence
of A2 terms and their possible detection in a real experi-
ment (Tufarelli et al., 2015; Rossi et al., 2017). A recent
coupled oscillator experiment in a superconducting circuit
(Fedortchenko et al., 2017) observed simultaneous single-
mode and two-mode squeezing of the radiated field below
vacuum fluctuations (Marković et al., 2018).

B. Quantum computation

Being able to tune the coupling strength in a light-matter
system from strong to the ultrastrong regime allows one to
observe and propose new strategies and protocols in quantum
information processing, such as remote entanglement applica-
tions (Leroux, Govia, and Clerk, 2018; Qin et al., 2018). In this
section, we discuss the possibility to achieve ultrafast quantum
computation, protected qubits to store quantum information,
and to manipulate and prepare a desired quantum state.

1. Ultrafast quantum computation

Ultrafast two-qubit gates have been considered as one
potential application (Wang et al., 2012, 2016; Kyaw,
Felicetti et al., 2015; Kyaw, Herrera-Martí et al., 2015) of
the USC regime in quantum computation (Romero et al.,
2012). In the original proposal (Romero et al., 2012), a two-
qubit Hamiltonian was considered

Ĥ ¼
X
i

ℏΩi

2
σ̂ðiÞz þ ℏωâ†â −

X
i

ℏgiσ̂
ðiÞ
z ðâþ â†Þ; ð56Þ

with switchable longitudinal couplings gi (see the circuit
diagram of the experimental proposal in Fig. 36). Based on a
four-step sequential displacement of the cavity D̂ðβσ̂zÞ ¼
exp ½ðβâ† − β�âÞσ̂z�, using D̂ðαÞD̂ðβÞ ¼ eiImðαβ�ÞD̂ðαþ βÞ,
the two-qubit gate was shown to be proportional to a
CPHASE quantum gate

Û ∝ exp

�
4i
g1g2
ω2

sin ðωt1Þσ̂ð1Þz σ̂ð2Þz

�
; ð57Þ

where the fidelity of the gate can reach 99% in the nanosecond
time scale for realistic circuit QED technology.
This protocol relies on being able to switch fluxes in the

qubit local bias lines faster than the coupling rate g, which
implies subnanosecond pulses. Implementing these short
pulses comes at a technological cost. First, the entire system
bandwidth should be able to transmit the pulses without
distortion which would slow down the fast edge. Second,
pulse generators able to synthesize picosecond pulses do exist,
albeit at a cost which would not easily lead to controlling a
large number of qubits. Further technological developments of
fast pulse generators are necessary before this technology can
be implemented in a scalable way, beyond a two-qubit proof
of principle.

2. Protected qubits

Another important example where the USC regime may
become relevant in quantum computation is in the encoding of
protected qubits (Nataf and Ciuti, 2011). Nataf and Ciuti
considered the case of multiple qubits coupled to the same
resonator mode

Ĥ=ℏ ¼ ωâ†âþ Ω
2

X
j

σ̂ðjÞz þ i
gffiffiffiffi
N

p ðâ − â†Þ
X
j

σ̂ðjÞx : ð58Þ

Here N is the total number of qubits coupled to the resonator.
It turns out that when the collective coupling of all qubits
reaches very large values, the two quasidegenerated lowest
states of the Hamiltonian become

FIG. 36. Ultrafast two-qubit gates. Circuit schematic to realize
ultrafast two-qubit controlled phase gates between two flux
qubits galvanically coupled to a single-mode transmission line
resonator. The bottom image shows a six Josephson-junction
circuit coupled galvanically to a resonator. The flux qubit is
defined by three Josephson junctions in the upper loop threaded
by external flux Φ1. Two additional loops allow a tunable and a
switchable qubit-resonator coupling by controlling fluxes Φ2 and
Φ3. The coupling is defined by the phase drop Δψ across the
shared junction. From Romero et al., 2012.
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jΨGi ∼
1ffiffiffi
2

p ½jαicjþi⊗N þ ð−1ÞN j − αicj−i⊗N �;

jΨEi ∼
1ffiffiffi
2

p ½jαicjþi⊗N − ð−1ÞN j − αicj−i⊗N �; ð59Þ

with j�i being eigenstates of σ̂x. Both these states are weakly
coupled to each other as they belong to a different parity chain
(Casanova, Romero et al., 2010). This doublet fjΨGi; jΨEig
therefore forms a robust qubit, with an energy difference
δ ∼ Ω exp ð−2g2ω−2NÞ. The analysis of the coherence times is
shown in Fig. 37. Clearly, for increasing coupling strengths,
and also for increasing number of qubits, the decoherence rate
decreases yielding a more protected qubit, up to a certain value
of the coupling where the decoherence rate saturates. In a
different work, a proposal by Stassi and Nori (2018) analyzed
a protected quantum memory in the DSC regime.

3. State preparation: Qubit-resonator entangled states

The eigenstates of a system in the USC regime result in
many-body qubit-resonator entangled quantum states (Ashhab
and Nori, 2010; Felicetti, Douce et al., 2015; Garziano et al.,
2016). Certain quantum information processing protocols may
require the generation of this type of states, an example being
cat-state-based quantum error correction (Ofek et al., 2016).
For instance, a paradigmatic multipartite entangled state, the
N-qubit GHZ state, results from a system of superconducting
qubits coupled to a transmission line resonator (Wang et al.,
2010). In this system, the Hamiltonian in the interaction

picture reads ĤIðtÞ ¼ ℏg
P

iðâ†eiωt þ âe−iωtÞσ̂ðiÞx . For par-
ticular periods Tn ¼ 2πn=ω commensurate with the cavity
frequency ω, the time evolution operator in the Schrödinger
picture takes the form

ÛðTnÞ ∝ exp

�
−iθðnÞ

X
i≠j

σ̂ðiÞx σ̂ðjÞx

�
; ð60Þ

with θðnÞ ¼ g2=ω22πn. Hence, starting from a product state

jΨð0Þi ¼⊗N
i¼1 j−iðiÞz , where σ̂ðiÞz j−iðiÞz ¼ −j−iðiÞz , the system

evolves into a GHZ state of the form

jΨðTminÞi¼
1ffiffiffi
2

p ð⊗N
i¼1 j−iðiÞz þeiπðNþ1Þ=2⊗N

i¼1 jþiðiÞz Þ; ð61Þ

for the minimum preparation time given by Tmin ¼ πω=8g2

(Wang et al., 2010).

C. Dissipation in the ultrastrong coupling regime

Dissipation, decay, or decoherence rates are natural scales
that appear in various platforms of quantum information
processing due to the coupling of qubits to any external
degrees of freedom. The first study of dissipation in the USC
regime (De Liberato et al., 2009) used the second-order time-
convolutionless projection operator method. In later work, an
equivalent method was found by projecting the master
equation in the dressed-state basis (Beaudoin, Gambetta,
and Blais, 2011). Using either technique, modifications of
the standard quantum optics master equation were obtained
which do not display unphysical effects when the USC regime
is reached.
Here we follow the master equation projection method

(Beaudoin, Gambetta, and Blais, 2011) to obtain a suitable
description of the system dynamics in the dissipative QRM,
valid in the Bloch-Siegert regime (perturbative USC). The
standard (Lindblad) form of the master equation at zero
temperature T ¼ 0 is given by

dρ̂
dt

¼ −i½Ĥ; ρ̂� þ Lρ̂; ð62Þ

where ρ̂ is the density matrix of the whole system. The
Lindbladian L in the standard form is defined as

Lρ̂ ¼ κD½â�ρ̂þ γgeD½σ̂−�ρ̂þ
γϕ
2
D½σ̂z�ρ̂: ð63Þ

Here κ, γge, and γϕ are the cavity decay, qubit decay, and
qubit dephasing rates, respectively. The superoperator
D½Ô� is defined as D½Ô�ρ̂¼ð1=2Þð2Ôρ̂Ô†−ρ̂Ô†Ô−Ô†Ôρ̂Þ.
Equation (62) assumes that the ground state of the qubit jgi
plus the vacuum of the cavity j0i is the ground state of the
whole system jg0i. However, in the QRM the ground state is a
superposition of different states of both subsystems, it is a
superposition of multiple photon number states entangled with
the qubit states (see Sec. II). Therefore, the master equation
needs to be modified in such a way that it damps any initial

state toward the actual ground state gjg0i. In Fig. 38 it is

FIG. 37. Protected quantum computation in the USC regime.Ω0

and ωeg correspond to g and Ω of the main text, respectively. To
investigate the robustness of the coherence between the two
quasidegenerate vacua jΨGi and jΨEi, they study the nonunitary
dynamics of the initially prepared pure state jΨ0i ¼ cos θjΨEi þ
sin θeiϕjΨGi in the presence of anisotropic qubit dissipation rates
Γy;Γz ≫ Γx and for several cavity loss rates. The simulations
proved that the coherence time increased while increasing the
normalized vacuum Rabi frequency g=Ω. In fact, the coherence
time was exponentially enhanced before reaching a saturation
value. Left-hand panel: Coherence time vs the normalized
vacuum Rabi frequency for one atom. Inset: Number of photons
plotted vs the normalized vacuum Rabi frequency. Top right-hand
panel: Coherence time for N ¼ 1, 2, and 3 atoms. Bottom right-
hand panel: Maximum coherence time as a function of the
number of atoms. From Nataf and Ciuti, 2011.
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possible to observe the detrimental effect of not using the
proper form of the master equation, which results in a
fictitious heating rate.
To obtain a master equation that takes into account the

actual eigenvalues of the QRM, we first move to the frame that
diagonalizes the quantum Rabi Hamiltonian [Eq. (1)] for both
the system and the system-bath Hamiltonians. Under exper-
imentally reasonable approximations,5 the correct form of the
Lindbladian at zero temperature T ¼ 0 reads

LQRM∘ ¼ D
�X

j

Φjjjihjj
�
∘þ X

j;k≠j
Γjk
ϕ D½jjihkj�∘

þ
X
j;k>j

ðΓjk
κ þ Γjk

γ ÞD½jjihkj�∘: ð64Þ

jki and jji are eigenstates of the QRM. The circle ∘ represents
the operator on which the Lindbladian is acting on. The first
two terms in Eq. (64) are the contributions from the bath that
caused only dephasing in the standard master equation [last
term in Eq. (63)]. Here this σ̂z bath causes dephasing in the
eigenstate basis with

Φj ¼
ffiffiffiffiffiffiffiffiffiffiffi
γϕð0Þ
2

r
σjjz ; ð65Þ

where γϕðωÞ is the dephasing rate corresponding to noise at

frequency ω due to the noise spectral density σjkz ¼ hjjσ̂zjki.
The fact that σ̂z is not diagonal in the system eigenbasis causes
undesired transitions at rate

Γjk
ϕ ¼ γϕðΔjkÞ

2
jσjkz j2: ð66Þ

This noise will be significant only if the power spectral density
of dephasing noise at frequency Δjk is significant. This is the
case away from the sweet spot in superconducting qubits. The
longitudinal noise along σz may stimulate transitions between
the QRM eigenstates jji, leading to dephasing-induced gen-
eration of photons and qubit excitations, a phenomenon linked
to the dynamical Casimir effect.
The last two terms in Eq. (64) are the contributions from the

resonator and qubit own baths that caused relaxation in the
standard master equation. These baths now cause transitions
between eigenstates at rates

Γjk
κ ¼ κðΔjkÞjXjkj2; ð67Þ

Γjk
γ ¼ γðΔjkÞjσjkx j2; ð68Þ

where

Xjk ¼ hjjX̂jki; ð69Þ

σjkx ¼ hjjσ̂xjki: ð70Þ

The rates κðωÞ and γðωÞ are proportional to noise spectra from
the resonator and qubit baths, respectively. X̂ is the cavity
quadrature X̂ ¼ â† þ â. The Lindbladian in Eq. (64) correctly
predicts the system evolution of the QRM under the presence
of dissipation and dephasing baths. This is illustrated by the
dashed blue line in Fig. 38. The new decay rates have specific
selection rules due to the parity of the eigenstates in the
quantum Rabi Hamiltonian. A direct consequence of the
modification of the emission rates is the appearance of an
asymmetry in the vacuum Rabi splitting when qubit and
resonator are resonant. The spectrum of the system could be
used in this way to probe dephasing noise (Beaudoin,
Gambetta, and Blais, 2011). A more general treatment has
been used to describe open systems in the USC regime at finite
temperatures (Settineri et al., 2018).
With the corrected version of the master equation, it was

demonstrated (De Liberato et al., 2009) that a harmonic
modulation of the qubit-cavity interaction strength in the USC
regime with a functional form

gðtÞ ¼ g0 þ Δg sinðωmodtÞ ð71Þ

produces extracavity radiation originated from the sponta-
neous emission of virtual photons existing in the ground state
of an ultrastrongly coupled system. Calculating the emitted
radiation employing the standard master equation [Eq. (62)]
instead produces the unphysical picture of generating radia-
tion even when the drive is very far from the cavity resonance,
which clearly violates energy conservation rules (see Fig. 39).

FIG. 38. Excess in the mean photon number due to relaxation in
the steady state of the ultrastrongly coupled qubit-resonator
system (Beaudoin, Gambetta, and Blais, 2011). Initially, the
system is in its true ground state gjg0i, but, under the standard
master equation (62), relaxation unphysically excites the system
even at T ¼ 0. The black line, which corresponds to the left axis,
represents the number of additional photons introduced in the
steady state by dissipation. The red dots, associated with the
right axis, designate 1 minus the fidelity of the Rabi ground

state gjg0i to the vacuum state jg0i. The parameters used are
Ω=2π ¼ ω=2π ¼ 6 GHz, κ=2π ¼ γ=2π ¼ 0.1 MHz, and no pure
dephasing. κ and γ are the resonator and qubit energy damping
rates, respectively. Inset: Mean photon number as a function of
time for the system starting in its ground state with
g=2π ¼ 2 GHz. In both the main plot and the inset, the blue
dashed line indicates results for the fidelity and the photon
number as obtained with the master equation given by the
Lindbladian in Eq. (64).

5Neglecting high-frequency terms, the resulting expressions in-
volve transitions jji ↔ jki between eigenstates at a rate that depends
on the noise spectral density at frequency Δkj ¼ ωk − ωj. If their
linewidth is small enough, these transitions can be treated as due to
independent baths. As a result, these independent baths can each be
treated in the Markov approximation.
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An important aspect related to dissipation that was just
recently addressed (De Liberato, 2017) is the impact of the
decay rates on the number of photons in the ground state of a
system in the USC regime. The ground state in an ultra-
strongly coupled qubit-cavity system is composed of hybrid-
ized qubit-cavity states which lead to a nonzero value of the
expectation value of the photon number operator, defined as6

N̂ ¼ hâ†âi. It is then crucial to understand what is the impact
of the qubit and cavity decay rates on the population of
photons in the USC ground state. The result is a bit surprising,
as it turns out that the USC effects are only quantitatively
affected by losses. Thus, USC phenomena such as extracavity
emission may be observed in systems with very high losses,
even when the usual condition of strong coupling is not
satisfied γ > g.
Another quantum optical phenomenon in open quantum

systems that is modified in the USC regime is photon
blockade (Ridolfo et al., 2012). In the strong coupling
condition where the RWA applies, the temporal photon-
photon correlation function shows an oscillatory behavior
with a frequency given by the Rabi frequency of the externally

applied drive. Instead, in the USC regime the frequency is
given by the ultrastrong emitter-photon coupling which can be
traced back to the presence of two-photon cascade decays
induced by counterrotating interaction terms. In order to reach
these conclusions, a generalized version of the input-output
relations had to be extended to the USC regime. The result is
the following relation:

âoutðtÞ ¼ âinðtÞ − i
ϵcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ℏϵ0v
p _̂P

þ
: ð72Þ

Here ϵc is a coupling parameter to the environment, ϵ0
describes the dielectric properties of the output waveguide,

and v is the phase velocity. Crucially, _̂P
þ
is not proportional to

the intracavity field â as is usual in quantum optics. Its explicit

form is _̂P
þ ¼ −i

P
j;k>jΔkjPjkjjihkj, where Δjk ¼ ωj − ωk,

and Pjk ¼ hjjP̂jki, with P̂ ¼ −iP0ðâ − â†Þ. Here jji are the
QRM eigenstates. Note that Pþj0i ¼ 0, while aj0i ≠ 0. This
redefinition of the input-output relations has a direct impact on
the output photon number flux, which otherwise would show a
finite value even without an externally applied drive.
Finally, a novel topic that has emerged is that of discrete

time crystals, which are out-of-equilibrium dynamical phases
recently proposed and observed. The analysis of these systems
in the context of open dissipative regimes has also been
carried out in terms of the open Dicke model (Gong,
Hamazaki, and Ueda, 2018).

VI. CONCLUSIONS AND OUTLOOK

The interaction between light and matter can be considered
as the essential dialogue that describes and explains most
fundamental phenomena in nature, emerging rather late in the
history of physics out of stepwise developments in mechanics
and optics. With the arrival of atomic physics in the 20th
century, after the success of electromagnetism at the end of the
19th century, light-matter models were proposed to account
for quantum effects observed in the laboratory, giving rise to
the (semiclassical) Rabi model. Along these lines, a final key
improvement had to be performed with the quantization of
light to produce the full-fledged quantum Rabi model. This
review aims at producing a biased overview of light-matter
interactions where the ultrastrong and deep strong coupling
regimes are necessary for describing the interplay between
models and experimental observations. Somehow, we needed
the advent of advanced tools in quantum control of atoms and
photons, in the wide frame of quantum technologies at the
beginning of this 21st century, to produce key experimental
results and their corresponding theoretical descriptions in the
USC and DSC regimes. Exploring these novel extreme
coupling strengths between quantized light and quantized
matter is a fundamental task of high scientific relevance,
which required conceptual and experimental improvements
during the last decade. As frequently happens in the interplay
between science and technology, the discovered USC and
DSC phenomena may find a variety of applications in
quantum simulations, quantum sensing, quantum communi-
cation, and quantum computing. Accelerating quantum
dynamics should also inspire novel protocols in scalable

FIG. 39. Extracavity photon emission rate Rem (in units of ω0,
the cavity frequency) for a resonant qubit-cavity system as a
function of the modulation frequency ωmod for a modulation
amplitude of the vacuum Rabi frequency Δg=γ ¼ 0.1, where γ is
the qubit and cavity emission rate. For comparison, the dashed
line shows the extracavity emission rate γcavNin, where Nin is the
steady-state intracavity photon number that would be predicted
by the Markovian approximation: note the unphysical prediction
of a finite value of the emission even far from resonance. The
inset shows the dependence of the photon emission rate on the
modulation amplitude, calculated both numerically and analyti-
cally. From De Liberato et al., 2009.

6We remind the reader that the photon number operator N̂ as
defined in traditional quantum optics textbooks is not a good
quantum number in the USC regime, as it does not commute with
the quantum Rabi Hamiltonian ½ĤR; N̂� ≠ 0. The consequence is a
nonstationary value of the population of photon number states of the
cavity, as shown by Casanova, Romero et al. (2010).
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quantum processing. We believe the study of USC and DSC
regimes is still in its infancy and that most advanced
discoveries and applications are still waiting to be discovered.
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