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This review discusses the lattice Boltzmann–particle dynamics (LBPD) multiscale paradigm for the
simulation of complex states of flowing matter at the interface between physics, chemistry, and
biology. In particular, current large-scale LBPD simulations of biopolymer translocation across
cellular membranes, molecular transport in ion channels, and amyloid aggregation in cells are
described. Prospects are provided for future LBPD explorations in the direction of cellular
organization, the direct simulation of full biological organelles, all the way up to physiological
scales of potential relevance to future precision-medicine applications, such as the accurate
description of homeostatic processes. It is argued that, with the advent of Exascale computing,
the mesoscale physics approach advocated in this review may come to age in the next decade and
open up new exciting perspectives for physics-based computational medicine.
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I. INTRODUCTION

Thanks to the spectacular advances of computer technology
(hardware and software), on the one hand, and mathematical
modeling, on the other hand, in the last few decades modern
science has come to the point of providing a quantitative
description of many biological systems, whose complexity
would have been regarded as impossible until only recently. In
this review, we illustrate the point through several concrete
examples.
Notwithstanding such major advances, the challenge of

modeling biological and physiological systems remains for-
midable, as it actually amounts to cover some ten decades in
space (from molecules to the human body) and easily twice as
many in time. No mathematical or computational model in the
foreseeable future can take up such a challenge head-on, i.e.,
by direct simulation of all the actual mechanisms, scales, and
levels involved in the process.
Coarse-grained methods come in many flavors and fami-

lies, depending on the range of scales and problems they are
targeted to, but in this review we focus on a specific mesoscale
technique, known as the lattice Boltzmann method (LBM),
namely, a minimal lattice version of the Boltzmann equation
(Cercignani and Berman, 1976; Boltzmann, 2012) which has
witnessed a burgeoning growth for the description of complex
flow phenomena across an impressively broad range of scales.
The lattice Boltzmann equation (LBE) was developed as a

computational alternative to the discretization of the Navier-
Stokes (NS) equations of continuum fluid mechanics (Benzi,
Succi, and Vergassola, 1992; Succi, 2001).
Over the years, however, it has been proof of an amazing

and largely unanticipated versatility and ability to describe a
broad variety of phenomena involving complex states of
flowing matter, beyond the strict realm of continuum hydro-
dynamics, including nontrivial flows at microscales and
nanoscales. Thanks to this versatility, and to the coupling
with various families of mesoscale particle methods, in the last
decade the LBE has gained increased status for the simulation
of many complex flow problems at the interface between fluid
dynamics, chemistry, material science, and biology. These
include, for instance, multiphase and multicomponent flows
with complex interfaces or the motion of suspended bodies
under strong geometrical confinement, possibly with chemical
reactions (Krüger et al., 2017; Succi, 2018). After revisiting

the main ideas behind the lattice Boltzmann (LB) theory, in
this review we discuss current and future prospects of multi-
scale or level lattice Boltzmann–particle dynamics (LBPD)
simulations at the physics-chemistry-biology interface in an
attempt to identify and portray outstanding problems of
potential relevance to clinical applications in the not-so-distant
future, i.e., computational medicine.
Computer-assisted medicine is a consolidated branch of

modern science, which generally develops around two separate
pillars: molecular biology and macroscale physiology. The
former is heavily leaning on bioinformatics and data science
tools, while the latter usually relies upon the methods of
continuum and fluid mechanics. In this review, we portray a
third, alternative approach, based on mesoscale physics, i.e.,
physics-informed coarse-grained models of microscale biologi-
cal processes, possibly embedded within their physiological
environment. This mesoscale approach is grounded into the
intermediate level of the description of matter, namely, kinetic
theory, in both its versions, Boltzmann’s kinetic theory and
Langevin stochastic particle dynamics. As a result, the main
tools of the mesoscale approach are fluids, particles, and
probability distribution functions. The multiscale LBPD con-
cept is thus apparent; Boltzmann’s theory naturally connects
upward to continuum hydrodynamics, while Langevin dynam-
ics connects downward to the molecular level. Combining the
two in a single computational harness opens up a direct route
from the continuum to the atomistic word and back.
Several specific examples have already shown the potential

of LBPD simulations in areas straddling across physics and
biology. A selected set of applications is described in detail in
this review to provide a taste for the breadth of applications
that have been tackled in the recent past. Readers keen on
specific details are directed to the original literature.
Clearly, the physical-chemical-biological (PCB) interface

is enormously rich and varied, ranging from nanometric
macromolecular phenomena, to peptidic aggregation and
biopolymer translocation, to cellular motion and active matter,
as sketched in Fig. 1. In a few words, the topic goes way
beyond the scope of the present work. Nevertheless, it is

FIG. 1. Scales related to biological and medical applications,
whose stretch can be covered by the LBPD approach. While the
particle description enables the representation of complex macro-
molecules or cellular organizations by tracking the fate of each
individual particle, the LB description is based on the collective
motion of solvent molecules. The boundary between LB and PD
is blurred and depends on the degree of microscopic detail
required by each single application (see also Fig. 8).
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important for one to appreciate the great flexibility of the
method to cope with multiple scales of motion and, more
importantly, its ability to incorporate the desired degree of
biochemical specificity inherent to the problem at hand.
The LBPD framework can be enriched in the direction of

describing complex flowing states of matter at microscales
and nanoscales. Although not “rigorous,” such variants prove
capable of providing new physical insight into highly complex
states of flowing matter. Remarkably, such extensions can be
put in place without compromising the outstanding parallel
amenability to parallel processing of the method. On the
assumption that computing power will keep growing in the
next few decades, if only perhaps at sub-Moore’s paces, this
state of affairs spawns tremendous opportunities to gain new
insight into a series of fundamental problems dealing with
complex states of flowing matter in general, and with a special
focus on those relevant to biology and medicine.
This review is organized into three main parts. In the first

one, we discuss the basic aspects of Boltzmann’s kinetic
theory with a special emphasis on its lattice version for fluid
dynamics and its extensions to soft matter and biological
applications, including the coupling to particle dynamics for
the motion of suspended bodies.
In the second part, we describe selected applications to

biological and physiological systems, such as biopolymer trans-
location, ion channels, protein diffusion, and amyloid aggrega-
tion in cellular environments. For a quick visual appreciation, see
Figs. 2, 3, and 4 to be commented on in detail later.
In the third part, we provide a prospective view of a series of

problems at the physics-chemistry-biology interface, whichmay
become accessible once Exascale computers arewith us. Special
attention is paid to their potential import for clinical applications,
such as the direct simulation of biological organelles and the
quantitative description of hemostatic processes.

Finally, due to the crucial role played by high-performance
computing in this story, in the Appendix we provide an
extended account of the main issues involved with the
implementation of the LBPD scheme on high-end parallel
computers in the Exascale range.
The main message we want to convey in this review is that

a mesoscale physics-based approach to computational medi-
cine may come of age in the next decade.

FIG. 2. Translocation of a biopolymer, as in the case of DNA, through a narrow pore. Different representations can be used to study
multiple levels of detail during the translocation process. (a), (b) The biopolymer is represented as a simple necklace of beads by
neglecting correlations stemming from the local molecular rigidity or backbone charge. (c), (d) At the next level, the macromolecule is
charged and moves in an electrolyte solution, whereby a neutral solvent and counterions and coions migrate due to an externally applied
electric field, giving rise to an electro-osmotic flow that ultimately causes the molecule to translocate. From Datar et al., 2017.

FIG. 3. Representation of the crowded interior of the cell as
obtained from simulations. The inset illustrates the embedding
of a protein in the LB mesh and each protein atom is
represented via the DPM particle-fluid exchange scheme. From
Bernaschi et al., 2013a.
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II. BOLTZMANN KINETIC THEORY

The Boltzmann equation (BE) is the core of Boltzmann’s
kinetic theory that, in turn, is the cornerstone of nonequili-
brium statistical mechanics, a pillar of theoretical physics at
large (Boltzmann, 2012). Besides its paramount conceptual
value as a bridge between the microscopic world of atoms and
molecules and the macroscopic world of thermohydrody-
namic fields, the BE also provides a concrete tool for the
quantitative investigation of a broad variety of practical
nonequilibrium transport problems (Cercignani and
Berman, 1976). However, the BE is all but an easy piece
to work with a nonlinear integrodifferential equation in 6þ 1
(phase-space plus time) dimensions. This motivates a relent-
less search for new methods to solve the BE either analytically
or numerically, the latter option usually covering a broader
ground. Graeme Bird’s direct simulation Monte Carlo
(DSMC) method has played a leading role in this respect
and continues to do so to this day (Bird, 1994). In principle,
DSMC solves the BE directly and in full, i.e., accounting for
the specificity of molecular interactions, as well as strong
nonequilibrium effects, using a stochastic particle technique,
whence the Monte Carlo label. This comes at a major
computational cost, which is why various approximations
have been developed and considerably refined over the years
(Ketsdever and Struchtrup, 2016; Dimarco et al., 2018). Close
to local equilibrium and away from confining elements,
however, molecular details become increasingly irrelevant.
Universality takes stage and more economical descriptions
can be devised. The basic idea is to relinquish the “irrelevant”
details while still preserving the basic properties of macro-
scopic physics, namely, the symmetries and conservation laws
which secure the emergence of the NS equations from the
underlying molecular dynamics. Among others, a description

which has gained major interest for the last three decades is
the LB method (Benzi, Succi, and Vergassola, 1992; Succi,
2001, 2018; Krüger et al., 2017). The LB method was devised
with the specific intent of providing an alternative to the
discretization of the NS equations for the numerical solution
of continuum hydrodynamic problems. This still is its main-
stay and, for some, also the only place where it belongs.
Indeed, the use of LB for flows beyond NS was ruled out
(Luo, 2004; Junk, Klar, and Luo, 2005), mostly on account of
the lack of a rigorous asymptotic limit. The above no go has
been proven largely over-restrictive and current applications
beyond the strict realm of continuum fluid dynamics abound,
especially in the direction of soft matter. Since problems in
biology and medicine hardly involve fluid mechanics alone,
such developments are of direct relevance to computational
explorations at the interface between physics, chemistry, and
biology, the main scope of this review.

A. The Boltzmann equation

The BE of classic kinetic theory is basically a continuity
equation in six-dimensional phase space, namely (Boltzmann,
2012),

∂tf þ v⃗ ·∇rf þ a⃗ ·∇vf ¼ Cðf; fÞ; ð1Þ

where f ≡ fðr⃗; v⃗; tÞ is the probability density of finding a
molecule at position r⃗ in ordinary space, with velocity v⃗ at
time t. The left-hand side of the BE represents the streaming of
the molecules under the effect of a force field F⃗ ¼ ma⃗ and
reflects the Newtonian mechanics dr⃗=dt ¼ v⃗ and dv⃗=dt ¼
F⃗=m of a representative molecule, while the right-hand side
describes intermolecular interactions. For the case of a dilute

FIG. 4. Left: Snapshot of a configuration of 1000 amyloid peptides Aβ16−22 simulated in a cubic box of size 30 × 30 × 30 nm3 and
complex flow structure generated by their motion in the surrounding solvent. Right: Evolution of the size of the peptidic aggregates as a
function of time. From Nasica-Labouze et al., 2015, and Chiricotto et al., 2017.
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gas, as originally considered by Boltzmann, these interactions
are typically taken in the form of two-body local collisions,
since higher-order encounters are much less frequent, and
hence negligible in the collision count. Even under such major
simplifications, solving the BE presents a daunting challenge
on account of its high-dimensionality, six phase-space dimen-
sions plus time, as well as due to the nonlinear (quadratic)
integral character of the collision operator (Cercignani and
Berman, 1976).
Regardless of the complexity of the underlying microscopic

interactions, the collision operator must comply with the
mass-momentum-energy conservation laws, namely,

Z
Cðf; fÞf1; v⃗; v2gdv⃗ ¼ 0. ð2Þ

In addition, it must also secure compliance with the second
principle, which amounts to supporting a so-called H theorem,
namely,

−
d
dt

Z
f log fdr⃗dv⃗ ≥ 0. ð3Þ

In other words, the dynamics of the distribution function must
converge to a universal global attractor, corresponding to the
thermodynamic equilibrium.
The macroscopic fluid variables are obtained by a linear and

local contraction of the Boltzmann distribution, namely,

ρðr⃗; tÞ ¼
Z

fdv⃗; ð4Þ

ρu⃗ðr⃗; tÞ ¼
Z

fv⃗dv⃗; ð5Þ

ρkBTðr⃗; tÞ ¼
Z

fmðv − uÞ2dv⃗ ¼ 0; ð6Þ

where ρ is the mass density, u⃗ the flow speed, and T the flow
temperature in D spatial dimensions.
Central to the emergence of hydrodynamic behavior is the

notion of local equilibrium. This is defined as the specific
form attained by the Boltzmann distribution once collisions
come in complete balance, i.e.,

Cðfeq; feqÞ ¼ 0. ð7Þ

Inspection of the Boltzmann collision operator provides the
following universal Maxwell-Boltzmann (MB) local equilib-
rium distribution:

feqðv⃗; r⃗; tÞ ¼ Z−1ρe−c
2=2; ð8Þ

where Z ¼ ð2πv2TÞD=2 is a normalization constant in D spatial
dimensions, vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

is the thermal speed, and

c⃗ ¼ v⃗ − u⃗
vT

is the peculiar speed, i.e., the molecular velocity relative to the
fluid one, in units of the thermal speed. One familiar with
statistical mechanics will readily recognize the canonical
distribution e−E=kBT in the comoving frame of the fluid, with
the identification E ¼ mc2=2.
A few comments are in order. First, the MB distribution

depends on space and time only through the hydrodynamic
fields fnðr⃗; tÞ; u⃗ðr⃗; tÞ; Tðr⃗; tÞg, its dependence on the velocity
variable being a universal Gaussian distribution. This is a
strict consequence of Eq. (2), i.e., the microscopic conserva-
tion laws.
Such dependence is largely arbitrary, with the caveat that it

should be weak on the molecular scale. More precisely, the
macrofields should not show appreciable changes on the scale
of the molecular mean-free path, that is,

Kn≡ λ

����∇rM
M

���� ≪ 1; ð9Þ

where M designates any macrofield and λ is the molecular
mean-free path. The ratio (9), known as the Knudsen number,
serves as the smallness parameter controlling the emergence
of the hydrodynamic limit from Boltzmann’s kinetic equation.
Ordinary fluids dynamics holds in the range Kn ∼ 0.01
and below.

B. From Boltzmann to Navier-Stokes hydrodynamics

The conceptual path from the BE to the NS equations of
continuum fluids is based on two fundamental steps:

(1) Projection of the Boltzmann equation upon a suitable
basis function in velocity space, typically Hermite
polynomials in Cartesian coordinates.

(2) Multiscale expansion using the Knudsen number as a
smallness parameter on the assumption of weak
departure from local equilibrum.

The projection generates a hierarchy of partial differential
equations for the kinetic moments:

∂tM0 þ∇ ·M1 ¼ 0; ð10Þ

∂tM1 þ∇ ·M2 ¼ 0; ð11Þ

∂tM2 þ∇ ·M3 ¼
Meq

2 −M2

τ
; ð12Þ

where

Mn ≡Mnðr⃗; tÞ ¼
Z

fðr⃗; v⃗; tÞHnðv⃗Þdv⃗; ð13Þ

and HnðvÞ denotes the nth order tensor Hermite polynomial.
Note that Mn is a tensor of rank n, namely, M0 (scalar) is the
fluid density,M1 (vector) is the fluid current, andM2 (second-
order tensor) is the momentum flux, whose trace delivers
twice the kinetic energy of the fluid and the triple tensorM3 is
the flux of momentum flux.
The left-hand side shows that the moment hierarchy is open,

since the time derivative of Mn is driven by the divergence of
Mnþ1. This is the mechanism by which heterogeneities fuel
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nonequilibrium. Also note that the right-hand side of the first
two equations is zero because collisions conserve mass and
momentum. However, they do not conserve momentum flux,
which is why the right-hand side of the third equation is
nonzero, expressing the relaxation of the momentum flux to its
equilibrium expression. Such relaxation takes place on a
collisional time scale τ, which in turn fixes the kinematic
viscosity of the fluid. Instantaneous relaxation (τ → 0) denotes
the infinitely strong collisional regime whereby collisions do
not leave any chance for nonequilibrium to survive, formally
corresponding to the idealized case of a perfect (zero dis-
sipation) fluid. Macroscopically, this corresponds to the
inviscid Euler equations.
All real fluids, though, relax in a short but finite time (strictly

speaking this is also true for superfluids), and consequently the
moment equations present an open hierarchy which needs to be
closed somehow. This is where the assumption of weak
departure from local equilibrium takes stage.
By that assumption, one formally expands the distribution

function and space-time derivatives in powers of the Knudsen
number, replaces the expansion in the moment equations, and
collects homologue terms order by order in the Knudsen
number. To zero order, the Euler equations are obtained,
whereas the first order delivers the NS equations of dissipative
fluids, namely,

∂tρþ∇ · ðρu⃗Þ ¼ 0; ð14Þ

∂tðρu⃗Þ þ ∇ · ðρu⃗ u⃗Þ ¼ −∇pþ∇ · σ
↔
; ð15Þ

where σ
↔
is a second-order tensor formed by spatial derivatives

of the flow field. Typically,

σ
↔ ¼ 2μS

↔ þ λd I
↔
; ð16Þ

where S
↔

¼ ð1=2Þ½∇u⃗þ ð∇u⃗ÞT � is the symmetrized gradient

tensor, d ¼ ∇ · u⃗ is the divergence of the flow, and I
↔

is the
unit tensor. The first scalar μ is the dynamic shear viscosity
whereas λ associates with the bulk viscosity η ¼ 2μ=3þ λ.
Despite their deceivingly simple physical content, essen-

tially mass and momentum conservation (Newton’s law), as
applied to a finite volume of fluid, the NS equations prove
exceedingly difficult to solve as they involve the nonlinear
evolution of a three-dimensional vector field, often in a
complex geometry setup. This sets a formidable challenge
to even the most advanced computational methods, whence
the ceaseless hunt for more efficient numerical methods.
Those methods include a broad array of techniques to
discretize the NS equations, using finite differences, elements,
and volume schemes.
Three decades ago, however, an entirely different route was

devised, which consists of attacking fluid dynamics “from
the bottom,” i.e., appealing to a microscopic description of
the fluid states matter, namely, a highly stylized version of
molecular dynamics known as lattice gas cellular automata
(Chopard and Droz, 1998; Rivet and Boon, 2005). In a
nutshell, the idea is to introduce a boolean lattice fluid,
consisting of a set of boolean particles whose dynamics is

confined to the lattice sites. Boolean here means that the state
of the system at a given lattice site and instant in time is
uniquely defined by a set of b binary digits, coding for the
absence or presence of a corresponding particle moving with
unit speed along one of the b links connecting each lattice site
to its neighbors. By a suitable choice of the lattice connectivity
and interaction rules, such a boolean system can be shown to
reproduce the NS equations of continuum fluid dynamics.
An associated LB equation was also derived in the process of
taking the boolean automaton to NS, but its computational
capabilities went unnoticed. Even though the lattice gas
cellular automata did not make it into a competitive tool
for computational fluid dynamics, it nonetheless paved the
way for the idea of computing fluid flows by simulating
fictitious particle dynamics instead of discretizing the NS
equations. The LB method (Higuera, Succi, and Benzi, 1989)
fully inscribes within this line of thought.

C. Boltzmann equation for biology

The Boltzmann factor e−E=kBT is a household name in
biology as it governs the statistical behavior of a broad class of
equilibrium and nonequilibrium (activated processes) phe-
nomena of utmost relevance to biological systems. But, how
about the Boltzmann equation? At first sight, the Boltzmann
kinetic theory, in its original form at least, offers little scope
for biological applications, since it formally applies to dilute
states of matter in which molecular collisions are rare, the so-
called weakly coupled regime, in which many-body inter-
actions can safely be neglected with respect to binary
molecular encounters. On the contrary, most biological
phenomena are hosted primarily by condensed and soft-matter
systems in which many-body effects play a primary role.
However, here a change of perspective proves exceedingly

fruitful. Rather than the original Boltzmann equation for
actual molecules, we refer to model Boltzmann’s equations
for fluid particles, the latter denoting the effective degrees
of freedom describing the behavior of representative groups of
molecules. Historically, the distinctive feature of model
Boltzmann equations is a dramatic simplification of the
collision operator in an attempt to relinquish most mathemati-
cal complexities while retaining the essential physics at hand.
The most popular Boltzmann model is the celebrated
Bhatnagar-Gross-Krook (BGK) equation, in which the colli-
sion operator is replaced by a simple single-time relaxation
term (Bhatnagar, Gross, and Krook, 1954):

CBGK ¼ −ωðf − feqÞ; ð17Þ

where feq is the local equilibrium and ω is a relaxation
frequency controlling the relaxation to the local equilibrium
on a time scale τ ¼ 1=ω.
The key advantage of this change is that model equations

are more flexible by construction; hence they can be modified
(extended) not only to simplify the collision operator but also
to describe a wide host of physical effects not included in the
original Boltzmann equation.
In particular, they can reinstate the effects of (i) many-

body interactions, via effective one-body forces, in the
spirit of density functional theory (the Vlasov-Boltzmann
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equation) (Hansen and McDonald, 1990); (ii) statistical
fluctuations through appropriate stochastic sources (the
fluctuating Boltzmann equation) (Ladd, 1993); and (iii) far-
from-equilibrium inhomogeneities, via suitably extended
collision-relaxation operators in which the relaxation time
is promoted to the status of a self-consistent dynamic
field (Higuera, Succi, and Benzi, 1989; d’Humières, 1992;
Chen et al., 2003).
These three extensions inscribe to the general framework of

the reverse kinetic theory (RKT), the strategy whereby the
kinetic equation is designed top down, based on prescriptions
securing compliance with macroscopic hydrodynamics in the
first place, and then adding “molecular” details “on demand”
by the specific application under investigation.
RKT reverses the canonical bottom-up route, whereby

kinetic equations are derived from the underlying microscopic
models and prove quite effective in bringing Boltzmann-like
equations within the realm of condensed and soft-matter
physics. However, care must be exercised in securing com-
pliance of the top-down approach with the basic principles of
statistical physics, namely, symmetries or conservation laws
as well as evolutionary constraints (the second principle and
its local form, known as the H theorem).
After this is all said and done, a practical question still

remains: although simplified, the model BEs still leave in an
unwieldy (6þ 1)-dimensional space. Here a time-honored
ally of any computational scientist, the lattice, makes its entry.

D. Hydrodynamics for biology

Hydrodynamics and biology couple across an amazingly
broad spectrum of scales, ranging from the macromolecular
level in the compartments of living cells all the way up to
industrial bioreactors, rivers, lakes, and oceans. From
macromolecular motion in crowded cellular spaces to the
deformations of membranes, to the motion of cells and the
self-propulsion of bacteria, the common goal is to capture
the effect of hydrodynamics under both equilibrium and
nonequilibrium conditions. The latter may arise under the
effect of an external flow, such as the transport of proteins and
cells in the blood stream, or via the consumption of energy in
cellular metabolic pathways. Indeed, the response of biologi-
cal matter to temperature, pH, or mechanical forces plays a
key role in most biological processes. For instance, biological
macromolecules, cells or tissues, are usually fragile and easily
damaged by hydrodynamic or shear forces as they occur far
from equilibrium and under strong confinement. Following in
the footsteps of hydrodynamic experimental techniques,
customarily used to measure basic molecular properties, such
as weight, size, and shape, computer simulations can be used
in biophysical chemistry to explore and assess the mechanical
and dynamical properties of macromolecules far from equi-
librium, hence much closer to the in vivo conditions relevant to
medical purposes. The benefits of including hydrodynamic
forces is even more apparent whenever thermodynamic forces,
stemming from solute-solvent interactions, can also be taken
into account (see Fig. 5). A comprehensive computational
framework including both hydrodynamic and thermodynamic
forces stands therefore as a most desirable target. Owing to its
inherently intermediate nature, between atomistic and

continuum descriptions of matter, lattice kinetic theory sits
at a vantage point to meet this goal.

III. LATTICE BOLTZMANN METHOD FOR CONTINUUM
HYDRODYNAMICS

The basic idea of the LBM is to constrain the velocity
degrees of freedom to a discrete lattice with sufficient
symmetry to protect the conservation laws which secure the
emergence of standard hydrodynamic behavior in the macro-
scopic limit. The LBM is based on the idea of representing
fluid populations on a uniform Cartesian grid.
The standard LB scheme in single-relaxation time (BGK)

form reads as follows (Higuera, Succi, and Benzi, 1989; Qian,
d’Humières, and Lallemand, 1992):

fiðr⃗þ c⃗i; tþ ΔtÞ − fiðr⃗; tÞ
¼ −ω½fiðr⃗; tÞ − feqi ðr⃗; tÞ� þ Siðr⃗; tÞ; i ¼ 0; b; ð18Þ

where fi is the discrete Boltzmann distribution associated
with the discrete velocity c⃗i, i ¼ 0, and b running over the
discrete lattice to be detailed shortly. In Eq. (18), ω is a
relaxation parameter controlling the fluid viscosity and feqi is
the lattice local equilibrium, basically the local Maxwell-
Boltzmann distribution truncated to the second order in the
Mach number. The truncation is not a luxury, but a require-
ment dictated by the Galilean invariance (GI).
Remember that GI refers to the invariance of the NS

equations under an arbitrary change of the local fluid velocity

u⃗ → u⃗0; upon such change, the NS equations stay the same,

provided u⃗ is replaced by u⃗0. In continuum kinetic theory,

FIG. 5. Snapshot of molecules and particles in a multiphase
flow, either (a) dragging the fluid from one phase to another or
(b) sitting at the fluid-fluid interface. From Sega et al., 2013.
(c) In absence or (d) in the presence of colloids modifying the
shape of the interface to a corrugated one to reflect molecular
correlations. From Tiribocchi et al., 2019.
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Galilean invariance is encoded within the dependence of the
local Maxwell-Boltzmann distribution on the relative velocity
of the molecules with respect to the fluid one, namely, v⃗ − u⃗.
As a result, an observer in the comoving frame, that is a frame
moving at the local fluid velocity, experiences the same local
equilibrium as if there were no fluid motion. Note that, in
Eq. (18), u⃗≡ u⃗ðr⃗; tÞ is an arbitrary function of space and time,
indicating that Galilean invariance is a local and continuum
symmetry, i.e., it holds even if different regions of the fluid
move at different velocities, which is of course the case in
most fluids of practical interest. Galilean invariance is
reflected by the specific form taken by the moments of the
equilibrium distribution, and specifically by those explicitly
relevant to hydrodynamics, namely, mass, momentum, and the
momentum flux tensor, that is,

Z
feqf1; va; vavbgdv⃗ ¼ fρ; ρua; ρuaub þ pδabg;

where the Latin subscripts run over spatial coordinates x, y,
and z. This expression follows straight from the property of
Gaussian integrals in velocity space.
One might naively expect that the same would be true in the

lattice, provided the local Maxwell-Boltzmann distribution is
retained with the plain replacement v⃗ ¼ c⃗i. Straightforward
algebra shows that the situation is different not for a mere
mathematical accident, but as a consequence of the fact that a
local and continuum symmetry cannot remain unbroken in a
discrete lattice. More precisely, it cannot remain unbroken for
any arbitrary velocity field. It turns out, though, that this is
possible whenever the fluid velocity is much smaller than the
sound speed, i.e., in the low-Mach number limit.
Under such a perturbative approximation, replacing veloc-

ity integrals with discrete sums returns exactly the same
moments as in the continuum, namely,

X
i

feqi f1; ciaciacibg ¼ fρ; ρua; ρuaub þ pδabg; ð19Þ

provided that lattice tensors up to fourth order are isotropic. Of
course, this by no means implies that the GI is fully restored,
but simply that the GI-breaking terms are confined to kinetic
moments higher than the order of 4.

In other words, the hydrodynamic constraints can be
matched perturbatively by expanding the local Maxwellian
to second order in the Mach number, which is sufficient to
recover the isothermal NS equations, since those equations are
quadratic in the fluid velocity. Full Galilean invariance for an
arbitrary flow field ua implies instead an infinite series in the
Mach number, corresponding to the full expansion of the local
Maxwellian in Hermite polynomials.
The actual expression of the discrete local equilibria reads

as follows:

feqi ¼ wiρð1þ ui þ 1
2
qiÞ; ð20Þ

where ui ¼ ciaua=c2s and qi ¼ ðciacib − c2sδabÞuaub=c4s re-
present the dipole and quadrupole contributions, respectively.
Hereafter, repeated indices are summed upon. In Eq. (20), wi
is a set of lattice-dependent weights, normalized to unity,
which represent the lattice analog of the global (no-flow)
Maxwell-Boltzmann distribution. Finally c2s ¼

P
iwic2ia is the

lattice sound speed.
We hasten to note that, at variance with its continuum

counterpart, Eq. (20), being a polynomial truncation of the
Maxwell-Boltzmann equilibria, is non-negative definite only
in a finite range of fluid velocities, typically of the order of
u=cs ∼ 0.3. This configures the LB method as an appropriate
description of quasi-incompressible, low Mach-number flows.
The discrete velocities matching isotropy constraints up to

fourth order can be shown to be subsets of the D3Q27 (DnQm
is a widely used notation to indicate a LB scheme in n
dimensions using a set of m velocities) mother lattice with
27 discrete speeds in three spatial dimensions. D2Q9 and
D3Q27 are the direct tensor product of the elementary one-
dimensional D1Q3 stencil, cix ¼ f−1; 0;þ1g, in two and
three spatial dimensions, respectively (see Fig. 6).
The expansion of Eq. (20) implies that hydrodynamic

LB flows are bound to be quasi-incompressible, i.e., Mach
number well below unity. Likewise, third-order kinetic
moments, describing energy and heat flux, are not correctly
reproduced, since these terms require sixth-order isotropic
lattice tensors. Such constraints cannot be met by lattices
confined to the first Brillouin region described by D3Q27:
higher-order lattices extending beyond the first Brillouin
cell are necessary. So much for the low Mach number

FIG. 6. Examples of standard 2D and 3D LB lattices, with 9, 19, and 27 discrete speeds, typically denoted as D2Q9, D3Q19, and
D3Q27, respectively.
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approximation, which is specific to the lattice. But what about
the low-Knudsen limit, which, on the contrary, lies at the very
roots of the convergence of Boltzmann to NS?
Since the Knudsen number controls the heterogeneity-

driven departures from local equilibrium, it is intuitively clear
that the low-Knudsen hydrodynamic limit implies further
constraints on the nonequilibrium component of the momen-
tum-flux tensor, which amounts to recovering the continuum
expression of the stress tensor.
Based on Eqs. (19) and (20), it can be shown that in order

for such constraints to be met, isotropic tensors, again up to
the order of 4, need to be exactly reproduced in the lattice. It
may come as a surprise that nonequilibrium constraints can be
matched at the same order of isotropy of the equilibrium ones.
The reason is parity invariance, namely, the fact that each
discrete lattice velocity c⃗i comes with a mirror partner
c⃗i� ¼ −c⃗i. Indeed, nonequilibrium constraints involve lattice
corrections driven by fifth-order lattice tensors, which are
identically zero due to parity invariance. Readers interested in
the straightforward but laborious algebraic details can look up
the vast literature on the subject (Hénon, 1987; Chopard and
Droz, 1998; Rivet and Boon, 2005).
Next, let us comment on the source term Si on the right-

hand side of the LB equation (18). This term stands for a
generic source of mass, momentum, and energy, describing
the coupling of the fluid to the surrounding environment.
Mass sources are typically associated with the presence of
chemical reactions, turning one species into another in
multicomponent versions of the LB for reactive flows.
In the case of inert flows, the source term typically encodes

the momentum exchange due to the coupling to external (or
internal) fields, such as gravity or more complex interactions,
like self-consistent forces reflecting potential energy inter-
actions within the fluid, as well as thermal fluctuations. As we
shall see, the two latter cases are crucial for the extension of
the LB method beyond NS hydrodynamics.
From the operational standpoint, the source term Si acts like

a bias promoting the populations which move along the local
force field and setting a penalty on those that move against it.
It is therefore clear that the strength of such term is subject to
stringent stability and positivity constraints.

A. From the lattice Boltzmann method to continuum
hydrodynamics

The conceptual path taking the LBM to NS is exactly the
same as in the continuum theory, with the crucial caveat of
turning around the many catches associated with lattice
discreteness. To make a long story short, it amounts to
securing the proper symmetries of the lattice tensors entering
the set of lattice moment equations. As always with lattice
physics, the name of the game is to erase the lattice
dependence to the desired order. For the case of isothermal,
incompressible fluids, the desired order is the fourth one. In
equations, and using coordinate notation for tensors (Hénon,
1987),

X
i

wi ¼ 1; ð21Þ

X
i

wiciacib ¼ c2sδab; ð22Þ

X
i

wiciacibciccid ¼ c4sðδabδcd þ δacδbd þ δadδbcÞ; ð23Þ

where the Latin indices run over spatial coordinates. In
Eqs. (21)–(23), wi is a set of weights normalized to unity
and odd-rank tensors are automatically equal to zero by parity
invariance, i.e., every discrete velocity cia comes with an equal
and opposite partner, so that the sum of the two gives a null.
Finally c2s is a lattice-dependent constant expressing the sound
speed in the lattice, as per the expressions (21)–(23).
With the symmetries secured, everything proceeds as in the

continuum theory, with another important caveat though,
namely, the fact that the effective mean-free path of the lattice
fluid is replaced by the lattice spacing Δx whenever the latter
is larger than the physical one, the typical case in most
macroscopic LB simulations.
This is a very technical and somewhat thorny issue, whose

details are out of the scope of the present review. Nevertheless,
we caution the reader that the physics taking place at the scale
of a few lattice spacings should always be inspected with a
large pinch of salt, because it is constantly in danger of
breaking the hydrodynamic assumptions.
Once these catches are disposed of, one ends up with a

lattice fluid obeying an ideal equation of state p ¼ ρc2s and a
kinematic viscosity given by

ν ¼
�
1

ω
−
1

2

�
νl; ð24Þ

where νl ¼ c2sΔx2=Δt is the natural lattice viscosity. Note that
the stability range of the discrete time marching 0 < ω < 2
also secures the positivity of the kinematic viscosity.
Both ends of this range must be handled with care. In the

low-viscosity regime ω → 2, typical of turbulence, strong
gradients may develop posing a serious threat to the numerical
stability of the scheme. A powerful variant of the basic LB
method includes a self-consistent tuning of the relaxation
parameter ω so as to ensure compliance with local entropy
growth (H theorem) (Karlin, Ferrante, and Öttinger, 1999;
Succi, Karlin, and Chen, 2002). That variant, known as the
entropic lattice Boltzmann (ELB) method, is normally
intended to simulate high-Reynolds macroscopic flows, but
lately is proving very effective also to stabilize microscale LB
simulations with sharp interfaces.
In the opposite high-viscous regime ω → 0, the one most

relevant to biological applications, the viscosity may formally
diverge, signaling a departure from hydrodynamic behavior,
due to the onset of ballistic motion. As a result, whenever
possible, LB simulations should be kept away from both
limits, say νLB ∼ 0.1. We return to this important point in
Sec. VII.

B. Boundary conditions

In the early days, boundary conditions were hailed as one of
the main assets of the LB method, and, to a certain extent, they
still are. As a matter of fact, since information always travels
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along straight lines, even complex geometries can be handled
by comparatively straightforward computational methods
based on elementary mechanical operations. For instance,
no slip on solid walls can be implemented through a simple
bounce back between distributions propagating along oppo-
site directions, i.e., from the fluid to the wall and vice versa;
see Fig. 7.
For generality, let us consider a fluid flowing in a bounded

domain Ω confined by a surrounding boundary ∂Ω. The
problem of formulating boundary conditions within the LBE
formalism consists of finding an appropriate relation express-
ing the incoming (unknown) populations f<i as a function of
the outgoing (known) ones f>i . Outgoing populations at a
boundary site x⃗ are defined by

c⃗i · n⃗ > 0;

where n⃗ is the outward normal to the boundary cell centered in
x⃗. Incoming populations are defined by the opposite sign of
the inequality. In mathematical terms, this relationship trans-
lates into a linear integral equation

f<i ðx⃗Þ ¼
X
y

X
j

Bijðx⃗ − y⃗Þf>j ðy⃗Þ; ð25Þ

where the kernel Bijðx⃗ − y⃗Þ of the boundary operator gen-
erally extends over a finite range of values y⃗ inside the fluid
domain. This boundary operator reflects the interaction among
the fluid molecules and the molecules in the solid wall.
Consistently with this molecular picture, boundary conditions
can be viewed as a special (sometimes even simplified) type of
collisions between fluid and solid molecules. Physical fidelity
can make the boundary kernel quite complicated, which is
generally not the idea with LBE. Instead, one usually looks for
expressions minimizing the mathematical burden without
compromising the essential physics.

In particular, one seeks minimal kernels fulfilling the
desired constraints on the macroscopic variables (density,
speed, temperature, and possibly the associated fluxes as well)
at the boundary sites x⃗. This may lead to a mathematically
underdetermined problem, more unknowns than constraints,
opening up an appealing opportunity to accommodate more
interface physics within the formulation of the boundary
conditions. However, it also calls for some caution to guard
against mathematical ill posedness. By now, vast literature
which, however, goes beyond the scope of the present review
is available on this topic (Chen, Martinez, and Mei, 1996;
Zou and He, 1997; Krüger et al., 2017).
Here we point out that the main issue controlling the

complexity of the boundary problem is whether the collection
of boundary points lies on a surface aligned with the grid (so-
called staircase wall boundary) or it is given by a set of off-
grid surface elements (sometimes called surfels). The latter
case is significantly more complex and requires extra care, the
immediate benefit being that the near-wall physics is second-
order accurate as compared to the first-order accuracy of the
staircased approximation [for a detailed account see Krüger
et al. (2017) and Succi (2018)]. Advanced applications of the
off-lattice boundary method prove capable of dealing with
fairly complex geometries, an important but highly technical
topic which also goes beyond the scope of the present review.
For full details see the recent books by Krüger et al. (2017)
and Succi (2018).

C. The bright sides of the lattice Boltzmann method

Why does the LB method represent an appealing scheme
for simulating complex states of flowing matter? Several
features merit highlight, but essentially they all come down to
the benefits of working with extra dimensions opened up by
the six-dimensional phase space inhabited by kinetic theory.
More in detail, the upshots are the following: First, the

information always travels along straight lines, regardless of
the space-time complexity of the emergent hydrodynamics.
What we mean by this is that the discrete distributions move in
sync along the discrete light cones, defined by

Δr⃗i ¼ c⃗iΔt;

no matter the complexity of their space-time dependence.
Since the discrete velocities do not depend on space and

time, the streaming is exact, no information is lost in hopping
from one lattice site to another, literally an error-free oper-
ation. This stands in sharp contrast with the self-advection
term u⃗ ·∇u⃗ of macroscopic hydrodynamics, whereby the
velocity fields, or any other field for that matter, moves along
space-time dependent material lines defined by the fluid
velocity itself, typically a complicated function of space
and time. Such independence explains the outstanding LB
amenability to parallel computing, a practical asset which
cannot be underestimated.
Second, space and time always come on the same (first-

order) footing. In particular, this means that dissipation is not
expressed by second-order spatial derivatives (Laplace oper-
ator) but simply as a local relaxation to a local equilibrium, as
described earlier. This is a substantial advantage for confined

FIG. 7. The effect of wall boundaries on the LB populations
according to the bounce-back scheme. Populations hitting a wall
node are reflected from the incoming fluid direction, giving rise
to no-slip flow conditions.
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flows, whose dynamics is largely dictated by the presence of
solid boundaries, where spatial gradients are usually at their
largest. Taking space derivatives near the boundaries is
notoriously prone to numerical inaccuracies, especially when-
ever the geometry of the domain is irregular, as is often the
case for biological flows. LB equipped with suitable for-
mulations for curved boundaries can significantly mitigate
such difficulties.
Third, LB carries pressure as just any other macroscopic

field, with no need of solving a usually expensive Poisson
problem to compute the pressure field consistent with an
incompressible flow. This is because the discrete distributions
carry the momentum-flux tensor “on their back” and con-
sequently the pressure obeys its own dynamic equation. More
specifically, the second-order momentum-flux tensor Pab
obeys the relaxation equation

∂tPab þ ∂cQabc ¼ −ωðPab − Peq
abÞ; ð26Þ

where Qabc ¼
P

ificiacibcic is the third-order energy-flux
tensor, and Latin indices are running over spatial dimen-
sions. In the limit where the Pab tensor is enslaved to its
equilibrium value, the time derivative can be dropped and
the energy-flux tensor can be approximated by its equilib-
rium expression. Under such conditions, Eq. (26) deliv-
ers Pab ∼ Peq

ab þ ω−1∂cQ
eq
abc.

Once the due lattice symmetries are fulfilled, the equilib-
rium component delivers the advection and pressure terms of
the NS equation, while the third-order nonequilibrium term
delivers the dissipative term.
Fourth, coupling of the fluid to a broad variety of other

physical phenomena is readily achieved by formulating
suitable expressions of the source term Si.
Typically this reflects the action of mesoscale forces

describing the effective interactions between fluid-fluid and
fluid-solid molecules. The positive side effect is that an entire
new world of complexity may be supported simply by
inserting a few lines of additional code.
This feature is crucial to the extension of the LB method

beyond the traditional realm of dilute gases and particularly to
biological flows as we detail in the sequel.
Once again, this rosy picture refers only to the conceptual

fresco, actual implementations requiring great care in circum-
venting lattice artifacts.

D. The dark side of the LB moon

Following Frenkel, it is often more instructive to analyze
what can go wrong in a computer simulation, rather than
indulging in the description of its success stories. To abide by
this, in the following we mention things that can still go wrong
with LB simulations, the dark side of the LB moon.
The LB method draws much of its computational simplicity

from the features of uniform and regular lattices that, at times,
recall an ideal Legoland. Realistically complex geometries
may sometimes challenge this setup and call for more flexible
and elaborate formulations, such as interpolation procedures
for curved boundaries, local grid refinement, or mergers with
finite-volume techniques, to name just a few of some popular
options. It is only fair to acknowledge that implementing such

extensions may be laborious and possibly tax the computa-
tional simplicity as well.
Another limitation is the finite compressibility. While

buying major computational savings through dispensing with
the Poisson problem for pressure, a finite amount of com-
pressibility must be tolerated in return. Such effects are
usually negligible for low Reynolds flows, but they need
nevertheless to be watched carefully in open flows, especially
at outlets, where spurious density waves may eventually
backpropagate into the fluid and undermine the accuracy
and sometimes even the stability of the simulation.
A similar observation applies to flows with strong thermal

transport. For one, it should be appreciated that the LB method
is essentially athermal in the sense that the discrete Boltzmann
distribution is represented by a linear superposition of
monochromatic beams with no dispersion in velocity space,
hence, zero temperature in a strict equilibrium thermodynamic
sense. Nevertheless, a kinetic temperature can still be defined
as a measure of the dispersion around the mean flow velocity,
namely, in D spatial dimensions DkBT ¼ P

ifiðc⃗i − u⃗Þ2. The
inclusion of strong thermal effects typically requires higher-
order lattices, accommodating sixth-order tensors describing
the flux of energy (Nie, Shan, and Chen, 2008; Krüger et al.,
2017). Several alternatives are also possible which go beyond
the scope of the present work [for details see Chapter 22 in
Succi (2018)]. Despite major progress, it is fair to say that
thermal LB schemes still lag behind their athermal counter-
parts in terms of numerical robustness. Consequently, the LB
method is often coupled to independent thermal solvers
typically based on finite-difference or finite-volume methods.
These limitations said, we believe it is fair to surmise that

the appealing features of the LB method largely outweigh its
weaknesses.

IV. LATTICE BOLTZMANN FOR GENERALIZED
HYDRODYNAMICS

The ideas and methods presented so far deal with flows of
“simple” fluids that can be described in terms of the NS
equations (note that simple fluids can give rise to highly
complex flows, turbulence being a prime example in point).
Modern high-tech applications, nanoengineering and biol-

ogy in the first place, set a pressing demand of quantitative
understanding of more complex states of flowing matter, in
which fluids interact with external or self-consistent fields,
undergo chemical reactions, phase transitions, or interact with
a variety of suspended bodies, such as colloids or biological
molecules.
This emerging sector of modern science, often referred to

as “complex fluids” or more trendily “soft-matter physics”
portrays a multidisciplinary scenario whereby fluid dynamics
makes contact with other disciplines, primarily chemistry,
material sciences, and biology as well.
There is growing evidence that the LB method, and

extensions thereof, holds a vantage point as a computational
framework for the simulation of complex states of flowing
matter. Ideally, the LB method would fill the gap between
fluid dynamics and molecular dynamics, namely, the large and
all-important region where fluid dynamics breaks down and
molecular dynamics is not yet ready to take over for lack of
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efficient algorithms and computing power; see Fig. 8 (Boon
and Yip, 1991).
The LB method is a natural candidate to fill that gap

because of its mesoscopic ability to incorporate microscopic
details into the kinetic theory formalism via suitable external
fields and/or equivalent generalizations of local hydrodynamic
equilibria: a microscope for fluid mechanics, a telescope for
molecular dynamics (Succi, 2018).
The extension of the LB method to generalized flows is

based on a number of major upgrades of the basic LB theory.
In the sequel, we focus on the following selections:

• reactive systems,
• charged flows,
• flows far from equilibrium,
• fluctuating hydrodynamics,
• nonideal fluids, and
• flows with suspended bodies.

We now proceed to a more detailed discussion of these items.

A. Advection-diffusion-reaction systems

Chemical reactivity is an essential element to deal with
when facing the task of simulating systems at the PCB
interface (Boon et al., 1996; Coveney, Boon, and Succi,
2016; Alowayyed et al., 2017; Succi, 2018).
Biochemical reactions lie at the heart of most biological

phenomena, controlling species interconversion. They involve
the breaking and making of covalent bonds, often catalyzed
by enzymes, ubiquitous in all metabolic and synthetic reac-
tions within the cell and in the body. Reactions occur in bulk
conditions in single-phase (homogeneous) or multiphase
(heterogeneous) environments, typically at the interface
between phases or in a porouslike environment. Biological
reactions take place under a wide host of different conditions.
The antigen-antibody binding in solution or the binding of
small molecules to plasma proteins in blood, clotting reactions
on the surface of blood vessels, the hydrolysis of adenosine
triphosphate (ATP) on the surface of endothelium, ion trans-
port, and the release of nitric oxide are examples of homo-
geneous reactions. Heterogeneous reactions within tissues

include aerobic metabolism, glucose consumption, and recep-
tor-mediated endocytosis.
In all cases, reactions can occur in either no-flow or

underflow conditions, as, for example, the enzyme reactions
on the surface of the blood vessels. Diffusion and convection
affect the rates of homogeneous and heterogeneous reactions.
Because reactants must diffuse or convect to the surface where
they react, the mass transfer mechanisms occur in sequence
with the reaction process. In many cases, the effects of
reaction and diffusion on the reaction rates cannot be easily
separated and numerical methods provide the only viable
route to study the process.
The LB method is a powerful framework to capture

diffusion and reaction since its mathematical apparatus is
by no means confined to fluid equations. As a matter of fact,
by suitable tuning of the local equilibria, relaxation matrix,
and external forces, it permits one to generate a broad variety
of linear and nonlinear partial differential equations, including
those describing relativistic and nonrelativistic quantum
phenomena (Succi, 2002a; Mendoza et al., 2010).
Of relevance are advection-diffusion-reaction (ADR) equa-

tions of the general form

∂tCþ u⃗ ·∇C ¼ DΔCþ RðCÞ; ð27Þ

where C is a species concentration, say molecules per unit
mass or volume. The left-hand side describes the passive
transport along the fluid material lines, whereas the right-hand
side describes diffusion plus the effects of chemical reactions
occurring in the fluid moving at the barycentric velocity u⃗.
Although thermodynamically favorable, many reactions are

limited by the energy barrier which needs to be crossed in
order to form the activated state, so that, in the absence of the
catalyst, reactions simply do not occur. In its presence, the rate
of reaction can increase dramatically, although the change in
energy between reactants and products is not affected. In fact,
the enzymes affect the rate of a reaction, not its equilibrium.
For many reactions involving a single substrate, the rate of
consumption of the substrate follows the Michaelis-Menten
equation

RðCÞ ¼ RC
K þ C

;

where R is the magnitude of the rate of disappearance of the
substrate (or reactant) and K is the Michaelis constant, the
concentration of the substrate at which the reaction attains half
of its maximum rate.
Another reaction term particularly relevant to populations

biology is the logistic expression

RðCÞ ¼ aC − bC2;

where a describes the Malthusian growth rate and b character-
izes the nonlinear decay of the species due to competition for,
say, space and/or food. The ADR class falls naturally within
the formalism, by simply defining a LB distribution Ci for the
concentration, such that

P
iCi ¼ C and specifying the follow-

ing local equilibria:

FIG. 8. The description of physical-chemical-biological (PCB)
systems requires a suitable integration of microscopic details
(individuality) within the universal harness dictated by symmetry
principles and ensuing conservation laws which govern the
macroscopic behavior (universality). Kinetic theory is expected
to strike an optimal (problem-dependent) balance between
universality and individuality.
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Ceq
i ¼ wiC

�
1þ u⃗ · c⃗i

c2s

�
;

where both fluid and lattice speeds are normalized by the
sound speed cs. To be noted that in the above u⃗ is the fluid
speed, which does not match the current Cu⃗ ≠

P
iCic⃗i,

because ADRs conserve mass but not momentum. The LB
method is then particularly well suited to solve the ADR
equations in complex geometries, such as those occurring in
morphogenesis (Ponce Dawson, Chen, and Doolen, 1993;
Ayodele, Varnik, and Raabe, 2011), heterogeneous catalysis
(Falcucci et al., 2016), and related phenomena.

B. Charged fluids

Electrostatics plays a vital role in biological processes and
requires handling electrolytic solutions and charged solutes
typically in flow conditions, the realm of the so-called
electrokinetics. Solutes range from strongly charged mole-
cules, such as DNA, to weakly charged macromolecules, such
as proteins, where partially screened mobile charges and
charged surfaces are ubiquitous conditions of biological
settings. Prominent examples include (i) the stability of
proteins as a function of pH and ionic strength, such as
salting-in and salting-out effects due to the interplay of protein
charges with the aqueous or saline environment; (ii) protein-
ligand association processes, including enzymatic allostery
modulated by salt bridges, salt bridges in virus assemblies,
and thermal stability; and (iii) membrane proteins and their
specific electrostatic properties, whereby the collective
charges of the intracellular residues tend to be more positive
as compared to the extracellular ones (the so-called “positive
inside” rule), and so on. The associated biological flows are
driven by electro-osmosis and electrophoresis. Well-known
examples of those processes include (i) ion channels and the
gating of ions across the cell membrane that regulate electrical
signaling in secretory and epithelial cells, as much as the cell
volume; (ii) the electrokinetic flow due to the glycocalyx layer
covering cells, a polyelectrolyte exhibiting a surface charge
and responsible for an electrochemical gradient that regulates
mechanotransduction; and (iii) the mitochondria and the
chloraplast, where proton gradients generate a chemiosmotic
potential, also known as a proton motive force, for the
synthesis of ATP.
Although the general principles of electrokinetics are fairly

well understood (Masliyah and Bhattacharjee, 2006), methods
that translate these principles into accurate numerical pre-
dictions are still in their infancy. In fact, deriving the
interactions between charged solutes and the solvent requires
computing the interactions of a large number of molecules
and the averaging of these over many solvent configurations.
Such daunting computational requirements are partly over-
come through the continuum mesoscopic approach, whereby
solvent and ions are described in the continuum and in a
preaveraged sense (Capuani, Pagonabarraga, and Frenkel,
2004; Reboux et al., 2006; Wang and Kang, 2010).
The LB framework solves complex electrokinetic problems

through an efficient formulation of the electrolytic solution as
a multispecies problem: one species for the neutral solvent,
water, and two for the positively and negatively charged ionic

components. The Poisson equation provides the solution
for electrostatics and the self-consistent forces for the trans-
port of the fluid species in the so-called Vlasov-Poisson
approximation.
Let us briefly survey the LB method for charged multi-

component systems. The fluid mixture is composed of three
sets of populations labeled by index α ¼ 0, 1, 2, two ionic
components with charges zαe, e being the proton charge,
density nα, and velocity u⃗α. Given the barycentric velocity

u⃗ ¼
P

αn
αu⃗αP

αn
α ;

the species relative velocity is δu⃗α ¼ ðu⃗α − u⃗Þ. The aqueous
medium accommodates solute biomolecules, with the ith
particle having position r⃗i and valence zi. The electrostatic
potential is obtained by solving the Poisson equation,

∇2ψ ¼ −
1

ϵ
e

�
nþ − n− þ

X
n

znδðr⃗n − r⃗Þ
�
; ð28Þ

where the medium has dielectric permittivity ϵ, duly com-
plemented by boundary conditions of the Dirichlet or
Neumann kind. For insulating confining walls, where the
surface has local charge density Σ, this reads −∇ϕ · n̂ ¼ Σ=ϵ,
where n̂ is the unit vector normal to the surface.
The dynamics of each species follows the evolution

equation:

fαi ðrþ ci; tþ 1Þ ¼ fαi ðr; tÞ þ ωðfα;eqi − fαi Þ þ Sαi ; ð29Þ

where the Maxwellian equilibrium for mixtures is given by
(Marconi and Melchionna, 2011a, 2011b)

fα;eqi ¼ winα
�
1þ δu⃗α · c⃗i

v2T
þ ½ðδu⃗α · c⃗iÞ2 − v2TðδuαÞ2�

2v4T

�
ð30Þ

and the force term

Sαi ¼ winα
�
F⃗α · c⃗i
v2T

þ ½ðc⃗i · u⃗Þðc⃗i · F⃗αÞ − v2TF⃗
α · u⃗�

v4T

�
.

The local self-consistent forces are Fα ¼ Fα;drag − ezα∇ψ ,
where Fα;drag ¼ −ωα

drag

P
βðnβ=nÞðuα − uβÞ is the drag force

exerted on species α, resulting in a cross-diffusion coefficient
Dα ¼ v2T=ω

α
drag, where ωα

drag is the relaxation frequency.
So much for the governing equations. However, a hallmark

of charged systems is that local electrostatic forces can be
dramatically intense, often exhibiting rapid spatial modula-
tions of the electrolytic densities, as in the presence of double
layers.
Such an occurrence can lead to severe numerical instabil-

ities in methods based on the direct solution of the NS
equation, as a consequence of local violations of the
Courant-Friedrichs-Lewy stability condition (Courant,
Friedrichs, and Lewy, 1928). Thanks to its inherently small
time step (in macroscale units), the LB method can often
handle stiff forces without losing stability. However, strong
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polyelectrolytes are problematic to handle and cannot be
treated directly, thus some sort of charge rescaling is required
(Datar et al., 2017). Despite these liabilities, LB simulations of
electrolytic systems show stable behavior over a wide range of
solute charges and molarities, in particular, in the submolar
range that covers a large portion of biological conditions.

C. Flows far from equilibrium

Most biological systems operate far from equilibrium,
i.e., they draw energy from their environment and dissipate
heat back to it, thereby lowering their own entropy content
at the expense of the environment. This is the operating
principle of the so-called “dissipative structures,” a corner-
stone of nonequilibrium thermodynamics (Prigogine, 2017).
In the process of dumping entropy to the environment, they
manage to migrate across a sequence of different non-
equilibrium steady states (NESS), in which they deliver
different functions.
Examples of NESS in biology include molecular machines,

cells in motion, metabolic pathways, and many others. For
instance, the kinesin protein walks along the microtubule,
carrying cargos from one part of the cell to another, by
absorbing energy from ATP hydrolysis and converting chemi-
cal energy into mechanical work, of which ∼60% is used for
motion and the rest is dissipated to the surroundings. Off-
equilibrium conditions imply that biological agents exchange
mass, momentum, energy, and entropy with the environment
through transient or steady currents and fluxes. Clearly, such a
complex space-time dependent network of currents and
fluxes, typically operating on a broad spectrum of concurrent
space and time scales, needs to be captured by the numerical
approach (Takahashi, Arjunan, and Tomita, 2005), hence a
major need for multiscale methods.
Indeed, these currents and fluxes typically occur through

thin (atomic scale) interfaces, which resolve the tension
between competing mechanisms, say chemical reactions
and molecular diffusion, through a sudden spatial transition
between distinct bulk phases, say the liquid and vapor in a
multiphase flow.
For the case of a diffusion-reaction system, the width of the

transition region can be estimated as

w ∼
ffiffiffiffiffiffiffiffiffiffi
Dτch

p
;

where D is the diffusion coefficient and τch is a typical
chemical time scale. By expressing D ∼ λ2=τc, with λ being
the mean-free path and τc the collisional time scale, we obtain
w ∼ λðτch=τcÞ1=2. This shows that, unless chemical reactions
are much slower than inert collisions (slow chemistry), the
interface width is comparable with the molecular mean-free
path, or shorter (fast chemistry).
Another example in point is foams and emulsions, i.e.,

droplets (bubbles) of liquid (vapor) dispersed in a continuum
liquid phase, typically water. In these multiphase systems, the
transition between the dense and light phases is controlled by
the surface tension which is, in turn, dictated by molecular
interactions, notably the strength of the potential and its spatial
range. That leads to interface widths of the order of the spatial

range of such interactions, typically nanometers or below.
A typical estimate of the interface width w is as follows:

w ∼
ffiffiffiffiffiffiffiffi
kBT
σ

r
;

where σ denotes the surface tension. Typical values in
International System of Units are kBT ∼ 4 × 10−21 and
σ ∼ 7 × 10−2, deliver w ∼ 4 × 10−10, i.e., a fraction of
nanometer.
As shown in Fig. 9, such nanometric interfaces challenge

the low Knudsen assumption which lays at the foundation of
the hydrodynamic description. In fact, given that the interface
thickness is comparable with the molecular mean-free path,
the results are local Knudsen numbers of the order unity. In the
last decade, a number of technical extensions of the original
LB method have been developed with the aim of gaining
insight into these complex nonequilibrium interfacial phe-
nomena (and yet, much remains to be done).
Here we summarize the main upgrades, namely, (i) higher-

order lattices, (ii) kinetic boundary conditions, and (iii) regu-
larization techniques.

1. Higher-order lattices

As discussed in the initial part of this paper, hydrodynamics
represents the “infrared” limit of kinetic theory, whereby all
macroscopic heterogeneities live on much longer scales than
the molecular ones (hydrodynamic transport regime). From a
formal viewpoint, this means that the Boltzmann distribution
is accurately described by its lower-order moments, typically
density (order of 0), current (order of 1), and momentum flux
(order of 2).
In the hydrodynamic transport regime, all higher-order

moments (nonequilibrium excitations) are directly enslaved

FIG. 9. A sketch of a high-density–low-density diffuse interface
of width w, as typical for many biosystems (dotted line), for
different values of the mean-free path, of length l. Each solid line
shows a different profile of the interface, depending on its
intrinsic structure. Here we assume that the wavelength of the
density profile coincides with l. In the limit l=w ≪ 1 (solid line,
bottom), nonequilibrium effects are negligible and hydrodynam-
ics holds. On the other hand, when l becomes comparable to the
interface width w (solid line, top), nonequilibrium effects can no
longer be neglected and higher-order kinetic moments must be
accounted for.
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to the low-order ones, hence they have no independent
dynamics of their own.
Far from equilibrium, where strong inhomogeneities may

persist down to near-molecular scales, such a low-order
picture breaks down, and more kinetic moments concur to
define the motion of matter beyond the hydrodynamic regime.
Without giving details, it is intuitively clear that this far-

from-equilibrium regime requires the use of higher-order
lattices, securing the proper recovery of the correspondingly
higher-order moments. A formal theory of the LB method
beyond NS equations, based upon higher-order lattices, was
given by Shan, Yuan, and Chen (2006). They developed the
discrete analog of Grad’s expansion in Hermite polynomials
with full details on its specific implementation on a series of
higher-order lattices associated with different numerical quad-
rature rules. The first observation as compared to Grad’s 13
moment formulation is that the scheme provides a larger set of
degrees of freedom (Grad, 1949). The discrete speeds of the
corresponding lattices are typically of the order of 40 or more,
hence many more than the 13 Grad’s moments (Zhang, Shan,
and Chen, 2006; Meng and Zhang, 2011).

2. Kinetic boundary conditions

Higher-order lattices offer room for extra moments, but this
is not sufficient per se, unless suitable boundary conditions are
formulated near solid boundaries. This is where the lattice
formulation makes a distinct contribution: while it appears
hard to devise well-posed boundary conditions for the kinetic
moments, in fact complicated nonlinear tensors, lattice for-
mulations lend themselves to conceptually transparent and
mathematically well-posed formulations. The reason is always
the same: the information moves along straight lines and
boundary conditions can be formulated in terms of mechanical
relations between the outgoing (fluid-to-wall) and the incom-
ing (wall-to-fluid) discrete distributions. Nonequilibrium
flows exchange momentum with the solid walls along both
tangential and normal directions: describing this exchange is
the mandate of kinetic boundary conditions. Empirical forms
adapting this constraint to the lattice environment have
been formulated in terms of accommodation coefficients
(Succi, 2002b). Following Maxwell (1878), the idea is that
molecules impinging on the wall lose track of their incoming
speed. Consequently, they are reinjected into the fluid along a
random direction, with a velocity drawn from a Maxwellian
at the local wall speed and temperature. Albeit handy, these
accommodation schemes remain empirical in nature. A more
satisfactory formulation was developed by Ansumali and
Karlin (2002), who basically expressed the accommodation
coefficients in terms of the outgoing (fluid-to-wall) distribu-
tion functions and their equilibrium version, thus providing a
closed and consistent recipe. The Ansumali-Karlin boundary
conditions exhibit a number of appealing properties. First,
they preserve the positivity of the distribution at boundary
nodes, i.e., if the incident distribution is positive, the reflected
one is guaranteed to be positive too. Second, they readily
extend to general wall scattering kernels, such as those
allowing a blend of slip and reflection. At the time of this
writing, these kinetic boundary conditions are the tool of the
trade for finite Knudsen LB simulations.

3. Regularization

Regularization is a general and powerful idea across many
fields of theoretical physics to remove various forms of
divergences and singularities which arise whenever a given
description or theory fails to capture the physics in point.
Kinetic theory is no exception. Indeed, it has been long

known that posthydrodynamic equations beyond the NS level
suffer a number of problems, primarily short-scale linear
instabilities (Bobylev, 1982). Many regularization schemes
have been proposed ever since to tame such instabilities
(Struchtrup and Torrilhon, 2003, 2007). Regularization pro-
cedures have been (re)discovered only recently by the LB
community (Latt and Chopard, 2006; Montessori et al., 2014)
and it is not yet clear how they relate to the corresponding
counterparts in continuum kinetic theory. LB regularization
consists of filtering out the contribution of nonhydrodynamic
moments (ghosts) to the hydrodynamic ones: mass, momen-
tum, and momentum flux.
Let us dig a little bit deeper into the subject. The standard

LB scheme in BGK form reads (time step made unit for
simplicity)

fiðr⃗þ c⃗i; tþ 1Þ ¼ ð1 − ωÞfiðr⃗; tÞ þ ωfeqi ðr⃗; tÞ. ð31Þ

The actual distribution can be split as follows:

fi ¼ hi þ gi;

where the hydrocomponent hi collects terms up to third-order
Hermite polynomials associated with mass, momentum,
momentum flux, and energy flux, while gi collects all
higher-order terms, transport plus genuinely kinetic fields
with no immediate macroscopic interpretation (ghosts in LB
jargon). Formally, one defines a regularization operator R,
projecting the actual distribution onto the hydrodynamic
subspace, i.e., hi ¼ Rfi, that is Rgi ¼ 0.
Both hydro and ghost terms further split into equilibrium

and nonequilibrium components, the ghost equilibrium being
identically null by construction. Thus, what remains to be
filtered out is just the ghost nonequilibrium, which is con-
stantly revived at each free-streaming step, the nonequilibrium
engine.
By applying the regularization projector to the right-hand

side of the BGK equation, an operation corresponding to
filtering out ghost components after streaming, we obtain the
following regularized LB equation:

fiðr⃗þ c⃗i; tþ 1Þ ¼ ð1 − ωÞhiðr⃗; tÞ þ ωfeqi ðr⃗; tÞ. ð32Þ

The regularized LB equation has recently provided signifi-
cant benefits in terms of improving the stability of the LB
scheme under finite Knudsen conditions.
The “posthydro” LB literature is vast and growing, but not

conclusive yet. In particular, it is not clear how the three main
ingredients mentioned should be combined in order to obtain
correct finite Knudsen behavior.
A valuable step in the comprehension of LB posthydro

capabilities was provided by Ansumali et al. (2007), who
discovered exact solutions to the hierarchy of nonlinear LB
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kinetic equations for stationary planar Couette flow at non-
vanishing Knudsen numbers. By using a 16-speed two-
dimensional lattice and kinetic boundary conditions, they
have derived closed-form solutions for all higher-order
moments and solved them analytically.
The results indicate that the LB hierarchy with larger

velocity sets does indeed approximate kinetic theory beyond
the NS level. If only for a simple setup, those exact solutions
indicate that LB equipped with kinetic boundary conditions is
able to carry quantitative nonhydrodynamic information,
hence it can be regarded as a kinetic closure in its own right.
It thus appears that the extension of the LB formalism to

higher-order lattices can result in an effective tool to probe
deeper into nonequilibrium regimes beyond the hydrody-
namic description (Gan et al., 2015).

D. Fluctuating lattice Boltzmann method

For the case of nanoscale flows, reproducing thermal
behavior implies that the LB method must incorporate the
effects of statistical fluctuations. To achieve this goal, follow-
ing in the footsteps of Landau-Lifshitz fluctuating hydro-
dynamics, Ladd (1993) added a source of random fluctuations
of the momentum-flux tensor, namely,

S̃i ¼ ÃkBTSabðciacib − c2sδabÞ; ð33Þ

where Sab ¼ ð∂aJb þ ∂bJaÞ=2 is the shear tensor and Ã is the
amplitude of the fluctuations.
The latter must be tuned so as to comply with the

fluctuation-dissipation theorem. The resulting fluctuating
NS equation reads

ρ

� ∂
∂t u⃗þ u⃗ ·∇u⃗

�
¼ ∇ · ðP↔ þ S

↔
Þ þ η∇2u⃗þ G⃗; ð34Þ

where P
↔
is the fluctation-free momentum-flux tensor and G⃗ is

the body force acting on the fluid.
The LB scheme is modified accordingly by adding a

stochastic source to the right-hand side:

f̃iðr⃗þ c⃗i; tþ 1Þ ¼ ð1 − ωÞf̃iðr⃗; tÞ þ ωf̃eqi ðr⃗; tÞ þ S̃i ð35Þ

as sketched in Fig. 10. The source term S̃i is local in space and
time and acts at the level of the stress tensor and non-
hydrodynamic modes, with no effect on mass and momentum
conservation.
In actual practice, the source term S̃i is constructed via a set

of the lattice eigenvectors fχkg with k ¼ 0, Q − 1 orthonor-
mal according to the scalar product

PQ−1
m¼0 wmχkmχlm ¼ δkl.

In the D3Q19 scheme, the eigenvectors correspond to the
kinetic moments: k ¼ 0 is relative to density, k ¼ 1∶3 to the
current, k ¼ 4∶9 to the momentum-flux tensor, the remaining
k ¼ 10∶ðQ − 1Þ eigenvectors to nonhydrodynamic modes.
The stochastic forcing reads as follows:

S̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρkBTωð2 − ωÞ

c2s

s XQ−1

k¼4

wiχipN k; ð36Þ

where N k is a set of 15 random numbers with zero mean and
unit variance. Given the fact that the thermal velocity is fixed
and equals the underlying lattice speed c, the thermal mass is
chosen in such a way as to obtain the thermal fluctuations
according to kBT ¼ mv2T .
The stochastic forcing has been subsequently improved so

as to produce consistent fluctuations at all spatial scales, in
particular, at short distances where the effect on the trans-
locating molecule is critical (Adhikari et al., 2005; Dünweg,
Schiller, and Ladd, 2007). The fluctuating LB method passes
a number of litmus tests, particularly the compliance of
velocity-velocity and force-force autocorrelation functions
with the principle of stochastic kinetic theory, in particular,
the fluctuation-dissipation theorem.

E. Lattice Boltzmann method for nonideal fluids

Boltzmann originally derived his equation under the
assumption of diluteness, whereby molecular collisions take
place as zero-ranged, instantaneous events, leading to large
scattering angles. This rules out long-range, soft interactions
giving rise to small-angle deflections. Such interactions,
however, are of utmost importance for biological applications,
since soft interlayers based on membranes and biopolymers
define the spatial boundaries between different phases in
biological systems. In aqueous media containing various ions,
interactions are governed by a complex interplay of generic
and specific interfacial interactions, typically controlled by
dispersion and electrostatic forces, and locally shaped as
hydrogen-bond networks, disulphide bridges, hydrophobic,
entropy-induced interactions, etc.
Soft-core interactions can be included in the kinetic

equation in the form of effective one-body forces, resulting
from the collective interaction of a representative particle with
the self-consistent environment (bath) due to all other par-
ticles. Formally, such an effective one-body force takes the
following form:

F⃗1 ¼
Z

∇r1Vðr⃗1 − r⃗2Þf12dv⃗2dr⃗2; ð37Þ

where f12 ≡ fðr⃗1; r⃗2; v⃗1; v⃗2Þdv⃗2dr⃗2 is the unknown two-body
distribution and V12 ≡ Vðr⃗1 − r⃗2Þ is the two-body atomistic

FIG. 10. A sketch of the fluctuating distribution f̃ (wiggly line),
featuring rapid oscillations with respect to the nonfluctuating
one f (smooth line). Fluctuating hydrodynamics emerges as a
consequence of the stochastic component of the distribution
function.
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potential. Following a customary practice, one writes f12 ¼
f1f2g12, where g12, the two-body correlation function, col-
lects the two-body physics. The exact form of the correlation
function is known exactly only in a few cases; yet one can
introduce several useful Ansätze which turn the formal
expression (37) into an operational one. A typical Ansatz,
which has proven fruitful for LB modeling of nonideal fluids,
looks like

F⃗ðr⃗1Þ ¼ ψðr⃗1Þ
Z

Gðr⃗1; r⃗2Þψðr⃗2Þðr⃗2 − r⃗1Þdr⃗2; ð38Þ

where Gðr⃗1; r⃗2Þ is a model Green’s function and ψ ½r⃗�≡
ψ ½ρðr⃗Þ� is a local functional of the fluid density ρðr⃗1; tÞ.
Equation (38) is quite general and allows a wide degree of
latitude in modeling nonideal fluid interactions.

F. Pseudopotential models

The most popular lattice transcription, due to Shan and
Chen (1993, 1994), reads as follows:

F⃗ðr⃗Þ ¼ ψðr⃗Þ
X
i

wiGiψðr⃗þ c⃗iÞc⃗i. ð39Þ

The sum runs over the prescribed set of neighbors, typically
the first Brillouin region in the original version, and sub-
sequently extends to the second or even the third one.
Typically, all discrete speeds in the same Brillouin region
share the same Gi, so that in the original Shan-Chen (SC)
formulation, there is just one coupling strength G; see Fig. 11.
This is nonetheless sufficient to generate the main ingredients
of nonideal fluids, namely, a nonideal equation of state
supporting phase transitions, as well as surface tension.
Moreover, this limitation can be readily lifted by extending
the Shan-Chen interaction beyond the first Brillouin region,
thereby explicitly accounting for both repulsive and attractive
interactions.
The Shan-Chen expression delivers a nonideal equation of

state of the form

p ¼ ρc2s þ
G
2
c2sψ2½ρ�. ð40Þ

By choosing the generalized density in the form

ψ ½ρ� ¼ 1 − e−ρ

it is readily checked that the Shan-Chen fluid becomes critical
for G < Gcrit ¼ −4 at a critical density ρc ¼ ln 2. Note that
even though the interaction is purely attractive (G < 0), no
pileup instabilities take place because the force becomes
increasingly faint as the density increases. This is the reason
for using the generalized density ψ ½ρ� instead of the physical
one ρ. This is an expedient trick to trigger phase transitions
without any repulsive force. The translation from the force to
the LB source Si proceeds through a systematic expansion in
lattice Hermite polynomials. To leading order Si ∼ F⃗ · c⃗i, but
higher-order terms, at least quadrupole ones, are definitely
needed to obtain accurate results.

More generally, thick interfaces lead to large values of the
Cahn number, namely, the ratio of the interface width to a
typical mesoscopic scale, say the droplet (bubble) diameter:

Cn ¼ w
D
:

For most applications D is in the range of tens, up to 100,
microns, leading to very small Cahn numbers Cn ∼ 10−5.
Replicating this number in LB simulations is totally unviable,
for it would amount to placing Oð105Þ lattice spacings across
the particle diameter. LB simulations are forced to operate at
much higher Cahn numbers of the order of 0.01–0.1, which
means that potential inaccuracies due to finite Cahn number
effects need to be carefully monitored.
Lack of sufficient symmetry also leads to the appearance

of spurious currents, which may seriously affect the physical
results whenever the density ratio between the light and dense
phases is above 30–50, a problem which is further exacerbated
in the case of fast-moving interfaces. Finally, the model is not
thermodynamically consistent, as it is not derived from a
mean-field free-energy functional. That limitation is, however,
less serious than it seems, since the method is, actually,
equipped with a quasifree energy (Sbragaglia et al., 2009). As
a matter of fact, more disturbing, instead, is the fact that the
Shan-Chen state equation features a sound speed smaller in
the liquid with respect to the vapor phase, with significant
consequences on the stability of the light phase across the
interface.
Most of these limitations have been significantly mitigated,

if perhaps not fully resolved, by subsequent developments.
Among others, particularly noteworthy for the simulation of
soft-glassy materials, is the so-called multirange pseudopo-
tential method.

FIG. 11. Sketch of the Shan-Chen piecewise linear potential
extending over the first Brillouin lattice cell at a distance Δx. The
potential mimics the attractive tail of a van der Waals potential
(dashed line) while the repulsive one is quenched to zero.
Notwithstanding the absence of hard-core repulsion, the Shan-
Chen potential does not cause any unstable density pileup
because, in the high-density limit ρ ≫ 1, the generalized density
ψðρÞ ¼ 1 − e−ρ flattops to a constant 1, yielding a zero gradient,
hence zero force.
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The main idea is to augment the original Shan-Chen short-
range attraction in the first Brillouin region (belt, in LB
jargon), say the D3Q27 lattice in three dimensions, with a
repulsive interaction acting on the second Brillouin region,
i.e., including discrete velocities up to

ffiffiffi
5

p
. The main advan-

tage of this formulation is that a proper tuning between the
first-belt attraction and the second-belt repulsion makes it
possible to achieve smaller values of the surface tension,
thereby permitting one to sustain long-lived, multidroplet
configurations with a highly complex interfacial dynamics.
Despite its many limitations, the SC method remains the most
popular version of the LB method for nonideal fluids, mostly
on account of its simplicity and transparency.
However, for applications leading to complex interfacial

dynamics more advanced schemes are required.

1. Free-energy models

Another successful route to LB schemes for nonideal fluids
is lattice density functional theory, whereby the nonideal
physics is encoded within a free-energy functional of the form

F ½ρ� ¼
Z

ϕðρ;∇ρÞdr⃗; ð41Þ

where ϕ is a local functional of the fluid density and its
gradients (Swift et al., 1996). The former encodes the nonideal
equation of state, while the latter describes the effect of surface
tension.
Variational minimization over density changes delivers the

equations of motion of the nonideal fluids, governed by the
Korteweg pressure tensor:

Pabðr⃗Þ ¼ pðr⃗Þδab þ κ∂aρ∂bρ; ð42Þ

where

pðr⃗Þ ¼ p0ðρÞ − κ½ρΔρ − 1
2
ð∂aρÞ2�

is the nonlocal pressure, consisting of the bulk contribution
p0ðρÞ, fixing the equation of state, plus an interface contri-
bution associated with surface tension. In Eq. (42), ∂a stands
for the space derivative along direction a ¼ x, y, z and κ is a
tunable coefficient controlling the surface tension.
From a practical standpoint, the free-energy formulation

leads to nonlocal equilibria, which involve second-order
derivatives of the density field, thus taxing the simplicity of
the method, and sometimes its stability as well, as compared
to the pseudopotential method. Nevertheless, the free-energy
method has found broad use for many applications such as
microflows over geometrically or chemically patterned sur-
faces and various types of droplet motions (Liu et al., 2014).
Several variants have been developed over the years, which

have considerably improved over the original versions,
especially in terms of reaching higher density ratios without
compromising numerical stability, among others, high-
order finite-difference schemes (Lee and Lin, 2005) and
mergers with flux-limiting methods (Sofonea et al., 2004).
These methods are currently used to simulate a variety of
multiphase and multicomponent fluid applications, such as

Rayleigh-Taylor instabilities, droplet collisions, cavitation,
and free-surface flows. For a review, see the recent books
by Montessori and Falcucci (2018) and Succi (2018) and
references therein.

2. Chromodynamic models

Another class of LB methods for nonideal fluids which
has been revamped in the recent past is the so-called color-
gradient model. Here the two phases or components, call them
red and blue for convenience, segregate based on a top-down
“coloring” rule, which sends the particles along the color
gradient, namely, red toward red and blue toward blue,
thereby triggering an instability leading to interface formation
(Gunstensen et al., 1991).
The recoloring amounts to correcting the red and blue

populations as follows:

fR;Bi ¼ ϕR;Bf�i � βϕRϕBμif
eq;0
i ; ð43Þ

where ϕR;B ¼ ρR;B=ðρR þ ρBÞ is the mass density fraction,
and μi is the cosine of the angle between the color gradient
G⃗ ¼ ∇ðρB − ρRÞ and the ith discrete velocity. In Eq. (43)
f�i ¼ fR;�i þ fB;�i , where the asterisk indicates the population
after the application of the nonideal force stemming from

surface tension, and fðeq;0Þi ¼ fðeq;0Þ;Ri þ fðeq;0Þ;Bi , where super-
script ðeq; 0Þ denotes the equilibria at zero flow. Finally, β is a
free parameter controlling the strength of the recoloring
procedure, to all effects and purposes an antidiffusive oper-
ator. The crucial term is the second one on the right-hand side
of Eq. (43), which, by construction, is active only at the
interface between the two components. For more details,
see Leclaire et al. (2017) and Montessori, Lauricella, and
Succi (2018).
The interface is then stabilized by means of a chromody-

namic force proportional to the amplitude of the color
gradient, but opposite to it, so as to level out the deficit of
one species over the other (color gradient). Although essen-
tially rule driven, modern variants of this scheme have proved
capable of accessing parameter regimes which appear to be off
limits for Shan-Chen schemes and extensions thereof, as well
as for free-energy methods. For instance, such methods have
been recently applied to the design of microfluidic devices for
droplet generation, such as flow focusers and step emulsifiers
(Montessori, Lauricella, La Rocca et al., 2018; Montessori,
Lauricella, Succi et al., 2018).

3. Entropic models for multiphase flows

The lattice Boltzmann method can also be formulated
by minimizing a suitable lattice H function of the form
(Kullback-Leibler entropy)

H½f� ¼
X
i

fi logðfi=wiÞ;

where wi are suitable lattice weights. The resulting scheme
takes the usual form of a standard LB method, with the crucial
twist that the relaxation time is adaptively adjusted in such a
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way as to secure compliance with the second principle of
thermodyamics, namely,

dS
dt

¼
Z

H½f�dr⃗dv⃗ ≥ 0.

Leaving a detailed description to the original literature, here
we just mention that compliance with the second principle
translates into a significant enhancement of numerical stability
(Karlin et al., 1998). For this reason, the ELB method has
found profitable use for the simulation of low-viscous flows
typical of fluid turbulence.
More recently, the ELB method was extended to the case

of multiphase flows and shown to provide stability benefits
also in the viscous regime of relevance to many biological
applications (Montessori et al., 2017; Wöhrwag et al., 2018).
Although these developments are too recent to permit a solid
statement, the results appear encouraging and leave hope that
the entropic version of the LB method may become a major
player in the field for the years to come.

V. FLUIDS AND PARTICLES: THE LATTICE
BOLTZMANN–PARTICLE DYNAMICS SCHEME

The multiphase LB schemes discussed in the previous
section have generated a mainstream of applications in soft-
matter research, since they permit one to deal with flows of
major dynamic and morphological complexity, such as foams
and emulsions. However, they are unsuited to handle rigid
bodies suspended in the continuum phase, nor can they
describe in detail mechanical properties of deformable objects,
say membranes, vesicles, cells, and other biological bodies. To
this purpose, the LB method needs to be explicitly coupled to
particle methods, tracking the dynamics of the biological
bodies immersed in the flow.
Indeed, most flows of biological interest consist of bio-

logical bodies of assorted nature: cells, polymers, proteins,
floating in a fluid solvent, typically water. Such flows often
operate at low, often near-zero, Reynolds number (Purcell,
1977), but this does not mean that hydrodynamic interactions
(HI) can be neglected. To the contrary, HI have repeatedly
been shown to accelerate a variety of nanoscale biological
transport processes, such as biopolymer translocation across
nanopores, amyloid aggregation of proteins in the cell, and
other related phenomena. This explains why the combination
of the LB method with particle dynamics has made the object
of extensive research and the development of multiple
simulation schemes.

A. The extended particle model (EPM)

Flows with suspended objects have been modeled since the
early days of LB research, starting with the trailblazing work
of Ladd 1994a, 1994b). Ladd’s original method consists of
tracking the motion of rigid spherical bodies under the impact
of the surrounding solvent hitting the surface of the body. The
scales pertaining to body and solvent are fairly separate, since
the former is much larger and heavier than the latter; hence the
mass ratio m=M serves as a suitable scale separator.

In the EPM, the exchange of momentum between particles
and LB fluid is a boundary-collision method whereby the
suspended bodies interact with each other only through the
mediation of local collisions with the solvent molecules (LB).
The solvent-body collision is conservative, and the momen-
tum lost (gained) by the solvent to the body is gained (lost) by
the body on the solvent. The method therefore is based on the
local exchange of momentum by computing the amount of
momentum that every population hitting the body surface
exchanges with the latter. Being the total force F⃗ and torque T⃗
the sum of fluid-body momentum exchange (or drag inter-
actions), direct particle-particle mechanical interactions or, in
case of microscopic conditions, stochastic forces due to the
Brownian motion, the body linear momentum p⃗ and angular

momentum ⃗l obey the classical equations of motion

dp⃗i

dt
¼ F⃗i;

d⃗li
dt

¼ T⃗i; i ¼ 1; Np. ð44Þ

It is worth mentioning that the fluid-particle coupling is
hydrokinetic in nature because it is treated at a collisional
level rather than at a hydrodynamic level, so that hydro-
dynamic forces such as long-time tails naturally emerge at
times larger than the LB marching one. The approach
naturally takes into account the solvent fluctuations, if present,
since the latter are transmitted across the body surface
analogously to the drag forces; see Fig. 12.
Since the solvent-body collisions are conservative, no extra

stochastic source is needed on the body side.
Ladd’s method finds its best use in simulating colloidal

suspensions of rigid particles and in this sense has found a
comparatively limited application in the biological context.
However, it provides the first and reliable example of
coupling between the LB method and suspended bodies.
At the same time, the method shows some inaccuracy due to
the lattice discreteness, especially for near-contact colloid-
colloid interactions, occurring below the grid scale where
the LB method cannot resolve the lubrication forces. Some
variants have been developed in the literature, making use of
grid refinement and/or dynamic interpolations. Not surpris-
ingly, they add only to the computational complexity of the
method, which is comparatively laborious on its own, as it
demands full knowledge of the local fluid-solid connectiv-
ity, namely, the dynamic list of fluid nodes interacting with
the solid ones.

B. The point-particle model (PPM)

A qualitatively different strategy was proposed by Ahlrichs
and Dünweg (1998). This is a minimal way to embed pointlike
particles in the LB fluid which, as opposed to Ladd’s method,
is entirely force driven, hence metric instead of topologic. In
essence, particles carry a phenomenological friction coeffi-
cient γT (also known as the bare friction coefficient) and the
fluid exerts a drag force based on the instantaneous difference
between the particle and fluid velocities, reading

F⃗drag ¼ −γT ½V⃗ − u⃗δðr⃗ − R⃗Þ�. ð45Þ

Massimo Bernaschi, Simone Melchionna, and Sauro Succi: Mesoscopic simulations at the physics-chemistry-biology interface

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025004-19



The addition of the point force into the fluid equations
introduces a singularity into the flow field, as represented
by Dirac’s delta function. This is automatically smoothed out
by interpolation procedures, but requires nonetheless due care
in the numerical treatment.
On the other hand, the flow field around a finite-sized

particle is generated by a distributed force located around the
particle position, as shown in Fig. 13.
In the scheme, the flow field is treated as everywhere finite

and the force density acts onto the LB fluid at position r as

G⃗ ¼ −F⃗dragIðr⃗; R⃗Þ; ð46Þ

where Iðr⃗; R⃗Þ is a function interpolating between the particle
position R⃗ and the surrounding mesh node r⃗. In its original
formulation, the method replaced u⃗δðr⃗ − R⃗Þ and Iðr⃗; R⃗Þ by the
values of these fields at the mesh node nearest to the particle
position.
A refined version resorts to a simple linear interpolation

scheme using the mesh points on the elementary lattice
cell containing the particle. Denoting the relative position
of the particle in this cell by ðdx; dy; dzÞ with the origin being
at the lower left front edge, one defines δ0;0;0 ¼
ð1 − dxÞð1 − dyÞð1 − dzÞ, δ1;0;0 ¼ dxð1 − dyÞð1 − dzÞ etc.,
as the interpolation weights. The interpolated velocity then
reads u⃗δðr⃗ − R⃗Þ ≃P

r∈cellδru⃗ðr⃗Þ, where the sum is over the
mesh points on the considered elementary lattice cell. The
force exerted back to the fluid can then be chosen with
the same weight coefficients or by spreading the force equally
on the edges of the cell, the corresponding rule to preserve
linear momentum being easily derived.
Because of the regularization of the point force, one

should expect that the mobility of the suspended particle is
not simply given by the bare friction coefficient γT , but is
somehow renormalized. Indeed, the mobility is given by the
sum of the bare mobility and a Stokes-type contribution due to
the lattice discretization. The effective friction coefficient

relates to the bare one via 1=γeffT ¼ 1=γ þ 1=gηΔx, where
g ≃ 25 is a geometrical correction coefficient (Ahlrichs and
Dünweg, 1998).
The PPM finds application in simulating microscopic

systems with a stochastic term added on each particle in

FIG. 12. Ladd’s method for a suspended (spherical) body: (a) the body-fluid interface is tracked by searching the mesh points inside
and outside the particle (Ladd, 1994a). Here a modified bounceback scheme is applied to account for the local exchange of momentum.
The midpoint of the connecting links identifies the staircased surface that corresponds to the no-slip condition. (b) the particle center
moves in the continuum according to the momentum exchange, and the rotational motion is accounted for by computing the total torque.

FIG. 13. Examples of immersed bodies in the LBPD approach.
(a)–(c) The different coupling methods between particles and fluid
as detailed in the text: (a) The PPM with pointlike particles
exchanging information with the nearest grid node. (b) The DPM
for diffused isotropic particles. (c) The DPM for diffused aniso-
tropic particles. (d) The time-stepping method between particle
dynamics (PD) and fluid dynamics (LB). The time-stepping
scheme of the LB and PD individual components can be either
synchronous or asynchronous. Typically, the PD component ticks
more frequently than the LB component, allowing for more
efficient simulations. (e) A typical configuration of the fluid
around a moving particle. Hydrodynamic response manifests itself
as Stokes flow field (upper part) and long-range flow structure
around a spherical particle or its far-field flow pattern (lower part).

Massimo Bernaschi, Simone Melchionna, and Sauro Succi: Mesoscopic simulations at the physics-chemistry-biology interface

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025004-20



addition to the fluctuating LB bath. In this way, the particle
does not leak energy on average and the fluctuation-
dissipation balance maintains a well-defined temperature of
the fluid-particle system. Again, to balance and preserve
momentum, such stochastic force is also restituted to the
fluid with an opposite sign. The presence of long-time tails,
that is, the inherent hydrodynamically sustained motion of
the moving particle generating a long-time decay of velocity,
has also been observed (Ahlrichs and Dünweg, 1998). On
the downside, the PPM is permeable to fluid momentum as
the local force is unable to create enough resistance to the
incoming flow, and the classical Stokes-like picture of the
streamlines does not apply.
Owing to its inherent simplicity, the PPM was first

recognized to be useful to simulate topologically connected
particles, such as polymers, in the presence of hydrodynamic
interactions. Whenever the embedded particles represent
microscopic or mesoscopic objects, such as atoms or the
beads of a polymer, mass diffusion plays a role comparable to
mechanical and hydrodynamic forces. Another interesting
extension involves coupling PPM with the Shan-Chen multi-
component LB to simulate efficiently complex fluid-fluid
interfaces. The idea is to introduce a solvation free energy for
the particle-fluid interaction proportional to the fluid density
gradients (Sega et al., 2013) and reads as follows:

F⃗solv ¼ −ζ∇ρ. ð47Þ

Such force drives particles toward maximal or minimal
density gradients, depending on the sign of the coupling
coefficient ζ. The approach is particularly appealing when
used in conjunction with multiphase conditions. As a matter of
fact, the approach makes it possible to treat different multi-
phase fluids in the presence of suspended molecules, such as
amphiphilic molecules as surfactants or by adding another

level of detail with electrostatics, polyelectrolytes in bicom-
ponent fluids.

C. The diffused-particle model (DPM)

An extension of the PPM represents particles with finite-
size extension, still relying on a force-based mechanism.
Given the finite extension, it is well suited for anisotropic
particles, providing a handy computational flexibility for the
description of biological suspensions, cellular compartments,
or even entire cells (recalling that the interior of the cell is
anisotropic due to intracellular organelles). The strategy is to
consider the particle rototranslational response as originating
from the coupling of the finite-size extension of the particle
with the fluid momentum and vorticity. The particle is an
effective diffused body, with no need to track its boundary to
control its coupling with the environment.
The particle shape is described as an ellipsoid having three

major radii along the three principal directions ξα with α ¼ 1,
2, 3. To fit in the discrete nature of the lattice, ξα are taken as
three integers, one for each Cartesian component (such
requirement can be lifted but a few interesting properties
described later would be lost). The rototranslation is governed
by rigid body dynamics of Eqs. (44). The particle rotational

state is encoded by the matrix Q
↔

whose rows are three
orthogonal unit vectors aligned along the principle axis of
the particle, that is, the basis to transform between the
laboratory and the moving frames. The rototranslational state
is given by the tensorial product

δ̃ðr⃗; Q↔Þ ¼
Y

α¼x;y;z

δ̃½ðQr⃗Þα�; ð48Þ

where

δ̃ðyαÞ ¼

8>>><
>>>:

1
8

�
5 − 4jyαj=ξα −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8jyαj=ξα − 16y2α=ξ2α

p 	
jyα=ξαj ≤ 0.5;

1
8

�
3 − 4jyαj=ξα −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−7þ 24jyαj=ξα − 16y2α=ξ2α

p 	
0.5 < jyα=ξαj ≤ 1;

0 jyα=ξαj > 1

is a shape function having compact support and the
normalization property

P
r δ̃ðr⃗Þ ¼ 1. Typically ξx ¼ ξy ¼

ξz ¼ 2 corresponds to a spherically symmetric diffused
particle with a support extending over 64 mesh points. The
translational response of the suspended body is designed
according to the fluid-particle exchange kernel

ϕ⃗ðr⃗; R⃗; V⃗Þ ¼ −γT δ̃ðV⃗ − u⃗Þ;

where δ̃≡ δ̃ðr⃗ − R⃗; Q
↔Þ and the hydrodynamic DPM force

is obtained via integration over the particle spatial exten-
sion. It reads as follows:

F⃗drag ¼
X
r

ϕ⃗ðr⃗; R⃗; V⃗Þ ¼ −γTðV⃗ − ˜u⃗Þ;

where ˜u⃗≡P
r δ̃ u⃗.

The coupling between the body motion and the fluid
vorticity is represented by a rotational kernel

τðr⃗; R⃗;ωÞ ¼ −γRδ̃ðΩ⃗ − ω⃗Þ

with γR a rotational coupling coefficient. The corresponding
drag torque is

T⃗drag ¼
X
r

τ⃗ðr⃗; R⃗; ω⃗Þ ¼ −γRðΩ⃗ − ˜ω⃗Þ;

where ˜ω⃗≡P
r δ̃ ω⃗.

In the DPM, the smooth function δ̃ is a very natural
interpolating device, and moving information back and forth
between the grid and the particles bears a significant influence
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on the effective hydrodynamic size of the body. In particular,
spherical particles acquire an effective radius given by

Reff

R
¼ 1þ a

Δx
R

− b
R
L
.

In this equation, a and b are positive numerical prefactors
taking into account the range of the interpolators and finite-
size effects. The former make the effective radius larger, hence
larger dissipation, due to defective autocorrelations triggered
by grid discreteness. The latter have the opposite sign because
the lack of large-scale modes above the box size results in
lesser dissipation.
These corrections are crucial to the purpose of matching the

diffusion coefficient of the simulated bodies to the physical
one (Ahlrichs and Dünweg, 1998; Dünweg, Schiller, and
Ladd, 2007).

D. Immersed boundary methods

The hydrodynamic force and torque acting on the DPM
are obtained via integration over the particle spatial extension
(volume force). A different approach represents the finite
extension of particles by tracking only the particle boundary
degrees of freedom, the so-called immersed boundary method
(IBM), developed by Peskin (2002) decades ago, to deal with
immersed moving boundaries within fluid flows. Borrowing
from Ladd’s approach, on the one hand, and Ahlrichs and
Dünweg, on the other hand, the LB-IBM procedure is both
boundary driven and force driven. The major benefit is that the
body surface is treated like a deformable membrane, emanat-
ing an elastic force field toward the outside fluid. In the
following:

F⃗fðr⃗; tÞ ¼
Z
M

F⃗mðR⃗; tÞδ½r⃗ − R⃗ðtÞ�dR⃗; ð49Þ

where r⃗ is the generic fluid location, R⃗ runs over the two-
dimensional membrane, and F⃗m is the force acting on the
membrane at location R⃗. The latter is usually computed as
the divergence of the elastic stress tensor of the membrane.
The membrane equation of motion is given by the Lagrangian
condition

dR⃗
dt

¼ u⃗fðR⃗; tÞ; ð50Þ

where u⃗f is the fluid velocity extrapolated to the membrane
location, i.e.,

u⃗fðR⃗; tÞ ¼
Z
M

δðr⃗ − R⃗Þu⃗ðr⃗Þdr⃗. ð51Þ

The fluid equation of motion is the standard (Eulerian) LB,
with the force given by the numerical version of the integral
in Eq. (49).
Note that the accuracy and efficiency of the LB-IBM

scheme are highly dependent on the discrete representation
of the Dirac delta. This is usually replaced by piecewise
polynomials extending over a few lattice sites, typically four

for cubic splines, sometimes also known as “smoothed
particles.” The LB-IBM is a fully coupled nonlinear and
nonlocal Eulerian-Lagrangian scheme; hence it presents a
demanding computational task. However, it provides the
major benefit of smoothness, due to the integral nature of
the convolutions which control the exchange of information
between the LB fluid and the IBM membrane. The LB-IBM
scheme is gaining increasing popularity for soft-matter appli-
cations involving the interaction of micronanoscale fluids with
deformable suspended bodies.

E. Chemical specificity and coarse graining

Realistic microscopic biological simulations set a key quest
for chemical specificity. As summarized in the announcement
of the 2013 Nobel prize in Chemistry (http://www.nobelprize
.org/nobel_prizes/chemistry/laureates/2013/), a tremendous
amount of information has been gained during the last
40 years by using molecular dynamics to simulate proteins,
that is, by reproducing molecular forces to high accuracy and
the complex motion of biological settings based on Newton’s
equations of motion.
The hallmark of protein simulations has been the discovery

that complex macromolecules can be represented by force
fields that include intra-aminoacidic and interaminoacidic
interactions via comparatively compact potential functions.
Several force fields, such as the well-known Charmm and
Amber force fields (Ponder and Case, 2003; Guvench and
MacKerell, 2008; Lindorff-Larsen et al., 2012), have been
developed in the all-atom context, that is, by taking into
consideration all possible atoms stemming from the macro-
molecule and the aqueous solvent. The all-atom strategy was
dictated by the high level of heterogeneity of biological
interactions, ranging from the local hydrogen bonds, to
dispersion forces, to the long-range electrostatic interactions.
Computing such diverse forces at high-performance rates

mandates sophisticated parallel algorithms and dedicated
hardware. In order to unveil macromolecular dynamics and,
most notably, folding within the characteristic funneled free-
energy landscapes (Levitt and Warshel, 1975; Frauenfelder,
Sligar, and Wolynes, 1991; Bryngelson et al., 1995), to large
stretches of time, up to milliseconds, few outstanding simu-
lations have been carried out to date, by exploiting custom or
specialized hardware (Shaw et al., 2008; Feig et al., 2017).
While providing extraordinary results, such efforts are still
isolated and, more importantly, cannot deal with large size
systems, due to the large memory requirements required in
practice, and the large hardware and power costs of extreme-
scale simulations.
For these reasons, more simplified versions of force fields

have emerged in recent years, the so-called coarse-grained force
field (CGFF)with the aim to tackle large systemswhile retaining
the desired degree of chemical specificity and accuracy in place
(Kamerlin et al., 2011). A few examples of CGFF are currently
available (MARTINI, OPEP) (Chiricotto, Melchionna et al.,
2016; Chiricotto et al., 2017) and they are being deployed to
study many different macromolecular systems, ranging from
polypeptides to polynucleotides. A key point of the CGFF
approach is the mesoscale nature of the molecular representa-
tion, in fact, multiple atoms are replaced by effective particles.
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Such particles are then connected by bonding potentials that
enforce local backbone connectivity and structure. Other non-
bonding interactions are used to enforce dispersion and hydro-
gen bond forces packaged into a lumped form.
Importantly, the CGFF was developed to remove the explicit

need to represent the molecular details of the solvent and as
such, solvent-mediated interactions, as much as electrostatics,
are effectively recast in terms of the CGFF potential form. It is
true, though, that coming up with a consistent form of the
solvent-mediated interactions is not an easy task and some force
fields, such as the MARTINI one, use some form of particle-
based method to represent a minimalistic type of solvent.
Setting aside details, the CGFF provides a major step toward
biosimulations. In future years, we are most likely to witness
more force fields, with the goal of dispensing with the explicit
representation of the solvent.
The most relevant aspect in the present context is that the

CGFF approach sits well with the mesoscale description for
the embedding solvent and the LB method provides an ideal
partner to simulate large protein assemblies. Since thermal
fluctuations are key at this scale, the simulations require
Langevin terms as well as thermal fluctuations on the LB side;
see Fig. 14.
As the basic form of the LB method contains only ideal

thermodynamics, the CGFF does not need to be modified
with respect to the original version used in the absence of HI.
This holds true because from the statistical mechanics
viewpoint, effective forces under equilibrium conditions do
not depend on hydrodynamic, velocity-dependent interactions
(Hansen and McDonald, 1990; Noid et al., 2008). Conversely,
under nonequilibrium conditions, say subject to external

macroscopic flow, the CGFF requires changes. As the need
arises in the direction of reintroducing solvent-mediated
interactions stemming from nonideal thermodynamics or
hydrogen-bond interactions, one may think of reformulating
the CGFF to account for an explicit nonideal thermodynamics
of the solvent. Many research works and applications ahead
are awaiting for full exploration.
As for any simulation of proteins in solution, a word of

caution is in order about the usage of mesoscale simulations to
describe the aqueous solvent as a continuum. The LB mesh
spacing Δx is defined as a coarse-grained representation of the
collective kinetic behavior of a group of solvent molecules. In
order to observe hydrodynamic behavior down to the mesh
spacing distances, the mean-free path is usually expected not
to exceed Δx. In the liquid state, the molecular mean-free path
extends over just a few angstroms, thus commanding sub-
nanometric lattice spacings to allow the emergence of hydro-
dynamic behavior at scales larger than Δx.
As shown by Horbach and Succi (2006), this strategy is

effective for simulating nanofluidic coherent patterns in close
agreement with those obtained by molecular dynamics
simulations.

1. Life at low Mach and Reynolds numbers: Numerical caveats

In this section we briefly touch on some caveats that need to
be taken into account in the LBPD simulations at vanishingly
small values of the Reynolds and Mach numbers.
The three main dimensionless groups characterizing incom-

pressible flows are the Reynolds number Re ¼ UL=ν, the
Mach number Ma ¼ U=Cs, and the Knudsen number
Kn ¼ λ=L, where U is the flow speed, Cs is the physical
sound speed, L is a typical length scale, and λ is the molecular
mean-free path. Elementary manipulations show that the three
groups are related through the so-called von Karman relation:

ReKn ¼ Ma:

In order for an ensemble of molecules to behave collectively
as a fluid, the Knudsen number must be significantly below
unity, Kn ≪ 1, which means that low Reynolds numbers
imply even smaller Mach numbers. Since the LB method
explicitly tracks sound waves, this implies extremely small
time steps. A few numbers help in clarifying the point.
Consider a nanoscale LB simulation of water with a lattice
spacing Δx ¼ 10−9 m. Given that the kinematic viscosity of
water is ν ¼ 10−6 m2=s, using νLB ¼ 0.1 implies a time step
Δt ¼ ðν=νLBÞΔx2 ¼ 10−13 s. This shows that the LB method
ticks “just” 2 orders of magnitude above molecular dynamics.
While appropriate for nanoscale simulations, it is clear that
such small time steps do not allow one to cover macroscopic
time spans. At a given spatial resolution, the only way to
increase the time step is to increase the lattice viscosity νLB,
but, as explained earlier, taking νLB above unity runs against
the hydrodynamic constraint Kn < 1. Hence LB simulations
in the Stokes limit Re → 0 are restricted to very small time
steps. One way of short-circuiting the problem is to artificially
enhance the Mach, hence the Reynolds number, in the hope
that the physics in point be rather insensitive to the specific
value of these numbers, as long as they are both well below

FIG. 14. Proteins immersed in a LB solvent are treated as
mesoscopic objects. Consequently, their representation is coarse
grained, that is, a level of detail based on a handful of
pseudoatoms per amino acid (five pseudoparticles in the current
case from the OPEP model) (Chebaro, Pasquali, and Derreu-
maux, 2012). The pseudoparticles are needed to encode the
details of the peptidic backbone and effective interparticle
interactions.
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unity. Under such benevolent conditions, the Reynolds num-
ber, say 10−6, could be safely inflated to, say Re ¼ 10−2,
without incurring any major disruption of the physics at hand.
Needless to say, this “inflationary stratagem” works only as
long as the physics exhibits analytic and nonsingular depend-
encies on the Reynolds number. Although characterized by the
onset of nonlocal, long-range interactions, the limit Re → 0 is,
in principle, a nonsingular one, thus leaving some chances to
the inflationary strategy previously discussed.

F. LB versus PD resolution

The LBPD scheme relies on two essential time scales for
both the fluid solvent dynamics, controlled by kinematic
viscosity ν, and the molecular dynamics, controlled by the
friction, or drag coefficient γT . The two are related via
Stokes law:

γT ¼ 3πηD=M;

where η ¼ ρν is the solvent dynamic viscosity, D is the
particle (protein) equivalent diameter, and M its mass. In the
LBPD scheme, however, fluid and particles are handled as
numerically independent quantities, so as to achieve the
desired level of coarse graining between fluid and particle
degrees of freedom. By obeying the fluctuation-dissipation
principle D ¼ kT=γT , at a given level of thermal fluctuations,
mass diffusivity and coupling parameter are changed as a
single parameter. Another important quantity is the ratio of
solvent viscous and solute mass diffusivities, the so-called
Schmidt number,

Sc ¼ ν

D
.

In an ideal gas Sc ¼ 1, but in a liquid it typically exceeds 100.
When simulating proteins within the LBPD scheme, a

conservative approach is to represent proteins at a coarse-
grained level by taking a mesh spacing Δx ¼ 2 Å and a time
step of Δt ¼ 1 fs. The latter guarantees that the protein internal
motion is duly resolved by the PD solver, whereas the mesh
spacing guarantees that the local hydrodynamic signal is
captured by the LB solver. Since proteins and biological
aggregates range in size from tens to thousands nm in diameter,
such mesh spacing fully resolves the mesoscale structure. One
may reasonably wonder whether at the subnanometric scales
the notion of Boltzmann distribution functions still makes
sense, due to the dominance of statistical fluctuations. This is
indeed possible by introducing the notion of effective thermal
mass to be detailed in the sequel.
The starting setting is such that a protein particle sits

typically inside a mesh voxel, a comfortable situation for
numerical production purposes. On the other hand, it is often
desirable to increase Δx to minimize the computational
burden. Under such conditions, the numerical effort involved
in handling the LB solver dominates the MD component,
typically by a factor of 3–5. However, it is well known that, in
principle, resolving the subnanometric hydrodynamics is
unnecessary, since hydrodynamic interactions typically set
in above the 3–5 Å scale.

Under operating conditions, it is convenient to fix the
time step Δt, as this is a rather strict requirement from the PD
side. Thus, changing Δx at fixed physical viscosity or
equivalently Reynolds number, implies altering the numerical
viscosity. If we utilize the method of matching advection,
we require that the characteristic velocity remains
unchanged, u ¼ ðΔx=ΔtÞuLB, implying that numerical vis-
cosity changes as

νLB ¼ Δt
Δx2

ν ¼ uLBν
u

1

Δx
.

However, this simple scheme is inconvenient if the numeri-
cal mass diffusivity of solutes must be kept fixed at varying
Δx. In fact, mass diffusivity is primarily a function of the
interatomic distances, their mutual interactions, and the
solvent viscosity, so that the numerical counterpart, expressed
as DPD ¼ DΔt=d2, where d is the interparticle distance,
should be left unchanged as much as d. In summary, we
are left with a varying Δx, with fixed Sc, Δt, and d.
To analyze the implications on the solvent viscosity, let us

recast the Schmidt number as follows:

Sc ¼ ν

D
¼ νLB

DPD

Δx2

d2
.

From this expression, we see that in order to keep Sc, Δt, and
d unchanged at changing Δx, the LB viscosity must scale as
νLB ∝ 1=Δx2. This shows that Δx cannot grow too large,
which can cause undermining numerical stability. Typically,
νLB should stay above 0.005, although resorting to an entropic
version of LB may loosen this constraint.
Overall, this strategy can achieve a significant speedup of

the simulation, reaching a factor of 3 in solvent coarsening and
a sizable speedup of 27 for the LB solver, without affecting
protein diffusivity and related phenomena, such as the kinetics
of peptidic aggregation.

1. The Boltzmann number

As discussed earlier in this review, the fluctuating LB
(FLBE) is meant to account for the statistical fluctuations
about the equilibrium state being dictated by the number of
particles in the discrete states as is the case for actual
molecules.
The relative intensity of the fluctuations, proportional to

1=
ffiffiffiffiffiffiffiffi
ΔN

p
, is controlled by the so-called Boltzmann number,

defined as (Dünweg and Ladd, 2009)

Bo ¼
�

θ

nΔx3

�
1=2

.

For most fluids θ≡ v2T=c
2
s ∼Oð1Þ, θ ¼ 1 corresponding to

the ideal gas limit. The denominator is the number of
molecules represented by a single LB particle, once we
stipulate a number density nLB ¼ 1 in lattice units, which
is always possible in an incompressible fluid.
The squared Boltzmann number can also be recast in the

following alternative form:
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Bo2 ¼ θ

�
d
r0

�
3
�
r0
Δx

�
3

;

where d is the interparticle distance and r0 is the range of the
intermolecular potential. The second term on the right-hand
side is the granularity parameter, controlling the degree of
nondiluteness, while the third one is a direct measure of the
spatial coarse graining.
By definition, the standard nonfluctuating LB corresponds

to the macroscopic limit

Bo → 0.

Note that in a liquid, where d=r0 ∼Oð1Þ, and even more so
in a dilute gas, d=r0 ≫ 1, the smallness of the Boltzmann
number is entirely in charge of spatial coarse graining, i.e.,
r0=Δx ≪ 1. In a nanofluid, however, the latter condition is no
longer guaranteed.
For macroscopic flows, the Boltzmann number is pretty

small indeed, typically of the order of the inverse square root
of the Avogadro number.
For a millimeter cube of water, about 30 molecules per

cubic nanometer: with Δx ¼ 10−3, d=r0 ∼ 1, and θ ∼ 1, we
obtain Bo ∼ 10−10.
In microfluidics, the Boltzmann number gets larger: with

Δx ¼ 10−6 m, we obtain Bo ∼ 10−5, still much smaller than 1,
no point for the FLBE.
Nanofluidics, though, tells another story; with Δx ¼

10−9 m, Bo ∼ 0.2. By pushing the LB method even farther
down, to atomistic scales, Δx ¼ 0.1 nm (Horbach and Succi,
2006), the Boltzmann number may get even larger than 1: the
LB particles become “quarky,” i.e., they represent a fraction of
a real molecule.
Clearly, this is a strongly fluctuating regime, for which the

notion of the FLBE as a weak perturbation on top of the LBE
comes under heavy question. In fact, at such subnanometric
scales, the very notion of the distribution function becomes
shaky because of many-body density correlations. The ques-
tion is how can we possibly use the fluctuating LBE altogether
at such small scales? Here mass and temperature come to
some rescue as detailed later.
FLBE simulations work at v2T ∼ 10−4–10−3, much smaller

than c2s ∼Oð1Þ, both in lattice units, for otherwise numerical
instabilities arise due to the stochastic source being too strong.
This constraint is conveniently analyzed in terms of the

“thermal mass” introduced by Dünweg and Ladd (2009),
namely,

mT ≡ kBT
c2s

¼ mθ;

where m is the mass of the solvent molecules, i.e., m=mi ≪ 1.
Given that the inertial mass is typically set to m ¼ 1 in LB

units, if the thermal mass were to coincide with the inertial
one, i.e., mT ¼ m ¼ 1, one would indeed obtain v2T=c

2
s ∼

Oð1Þ in lattice units.
Since in actual practice the above ratio is of the order of

10−3 at most, the thermal mass is much smaller than 1, thus

ensuring the condition Bo ≪ 1 even when fluctuations in
particle number are of the order of Oð1Þ.
In practical terms, it is like replacing a particle of mass m

with m=mT ≫ 1 particles of mass mT , a procedure with many
similarities with variance reduction techniques popular in
Monte Carlo simulations.

VI. SIMULATIONS AT THE PHYSICS-CHEMISTRY-
BIOLOGY INTERFACE

In order to appreciate the specificity of the LBPD approach
to tackle diverse problems at the PCB interface, we consider
the computational complexity of the distinct LB and PD
components of the methodology. The number of floating
point operations needed to simulate a given problem over
its characteristic dynamical evolution depends on the repre-
sentation adopted for its constituents. In addition, k ¼
#Flops=ðΔx3ΔtÞ is the computational density, being given
by the ratio of the number of floating point operations needed
to update the degrees of freedom contained in an elementary
cell of volume V ¼ L3 and for a time T, both in lattice units.
The complexity (Flops) is thus expressed as

C ¼ ðkLB þ pkPDÞL3T; ð52Þ

where p is the fraction of particles contained in the elementary
lattice volume Δx3. Note that the cost of the LBPD cross
coupling has been empirically absorbed by the prefactors kLB
and kPD.
For diffusion-dominated applications, the typical case in

biological processes T ∼ L2 thus C ∼ L5, while for ballistic
or convective dynamics, T ∼ L thus C ∼ L4. Granted that
for quantitative purposes, C needs to be evaluated for the
specific application at hand, as a first estimate, we assume
kLB ∼ pkPD ∼ 104.
A similar argument goes for the memory demand, which

can be written as

M ¼ 8ðnLB þ pnPDÞL3 bytes; ð53Þ

where nLB is the number of discrete LB populations per lattice
cell and nPD is the number of degrees of freedom per discrete
particle. For a standard single-species LB scheme nLB ≃ 20,
while for pointlike particles nPD ¼ 6 (position and momen-
tum), for rigid bodies nPD ¼ 12 (position, momentum, angles,
and torque) and for extended deformable bodies nPD can reach
up to several hundreds. For the applications to be discussed in
the sequel, we simply take

M ≃ 103L3 bytes; ð54Þ

which is an overestimate for dilute rigid particles and a likely
underestimate for dense deformable ones.

A. Biopolymer translocation

The translocation of biopolymers, in particular, DNA or
RNA strands, in nanometric pores provides a showcase of
the synergistic hydrodynamic effects assisting or interfering
with the translocation process. The translocation mimics a
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genuinely biological one, whereby viral penetration takes
place via the injection of viral genetic material into the host
cell’s cytoplasm. At a technological level, understanding how
the physics of nanopores controls translocation inspires new
paths to fast DNA sequencing (Fyta, Melchionna, and Succi,
2011). Nanopore-based technologies ultimately aim at trans-
locating polynucleotidic chains through a nanoconfined envi-
ronment, where the genetic information can be decoded by
optical mapping, ionic, or electronic detection. The challenge
is to control the process and the random, squiggly forms that
the polynucleotide takes in solution, eventually designing
nanofluidic devices according to stringent photolithographic
requirements.
Computer simulations have the ability to access the fine

details of the translocation process, both for technological
innovations and for a better understanding of the biological
processes involving the migration of small biopolymers.
Consequently, various applications of LBPD have also
appeared in recent years (Chen et al., 2007; Hammack,
Chen, and Pearce, 2011; Ledesma-Aguilar, Sakaue, and
Yeomans, 2012; Hickey, Holm, and Smiatek, 2014;
Alfahani, Antonelli, and Kreft Pearce, 2015).
Biopolymer translocation has been analyzed in different

setups and modeling details for the translocating biopolymer,
starting with a single necklace and neutral polymer threading
between two chambers driven by a localized force acting only
within the pore region (bead pulling) (Fyta et al., 2006a; Fyta,
Melchionna, Succi, and Kaxiras, 2008; Melchionna et al.,
2009). This setup mimicked real experiments where, given the
presence of two electrodes at large distance from the pore, the
electric field is overly intense where resistance is higher and
mostly constant inside the pore region. In addition, electro-
static interactions stemming from the charged polymer are
modeled in terms of effective beads of the chain. Simulations
of translocation in small pores have thus focused on the
dependence of the translocation time on the polymer length,
thereby showing that the effect of hydrodynamic interactions
is best seen on the translocation time versus chain length
T ∝ Nα

b, with the characteristic exponent being 1.27 for
short and 1.32 for long polymer chains, a result that is
explained in terms of scaling analysis and energetic consid-
erations that are peculiar to such a hydrodynamic-assisted
process. Translocation in large pores showed an even richer
phenomenology, with the appearance of several different
configurations of the polymer folds, the consequence of fast
translocation events that create discrete states that reflect on
quantized current blockades on the measurable ionic currents
(Bernaschi et al., 2008; Melchionna et al., 2009). Even more
central is the role of electrokinetic forces on the process, the
physical ingredient that can be included only by the full
solution of the charged polymer whose translocation is driven
by the self-consistent electric field. Even by including the
double helix structure of polynucleotides, the complexity of
the numerical apparatus can be optimally handled within the
coherent LBPD framework, complemented by the solution of
the Poisson equation for electrostatics. The result is a detailed
description of translocation and the measure of the ionic
currents, locally modulated by the threading polymer and
being the result of the concurrent effects of excluded volume,

drag, and electrostatic forces (Datar et al., 2017). Importantly,
the development of new coarse-grained potentials for DNA
(Hsu et al., 2012) and RNA (Cruz-León et al., 2018) paves the
way to reveal the effect of the strong charging of the nucleic
backbone that could not be elicited by using more aggressive
coarse-grained models (Miocchi et al., 2019).
For the translocation process, the associated threading time

is proportional to the number of beads of the polymer Nb and
in lattice units, and in lattice units it can be estimated as

T ≈ 102N1.27
b ;

where the characteristic exponent is a direct signature of
hydrodynamic interactions assisting translocation (Storm
et al., 2005; Fyta, Melchionna, Succi, and Kaxiras, 2008).
Most of the computational time goes into solving hydro-
dynamics via the LB component, while the time to compute
the mechanical forces and evolve the PD component is
negligible. Consequently, for a typical size L ¼ 102, the
problem requires

C ≃ 1013 Flops ¼ 10 TeraFlops

to translocate a chain of about 100 beads. This is well
within the capabilities of present-day computers. In fact,
scaling up the size L by a factor of 10 would take to the
order of Exaflops, still feasible on present-day leading-edge
Petaflops/s computers.
As to memory requirements, based on Eq. (54), one

estimates M ≃ 109, a rather modest gigabyte. These figures
reflect the fact of working with highly stylized polymers,
without internal structure and chemical specificity (physics
and biology instead of PCB).
The setup of translocation consists of two large chambers, a

cis and a trans chamber, containing the pretranslocating and
posttranslocated portions of the DNA strand. The chambers
are typically much larger than the nanopore characteristic size.
Translocating a long DNA or RNA chain into extremely
narrow pores results in large entropy loss caused by the
confinement and the need to stretch the macromolecule. The
associated free-energy barrier reduces the biopolymer capture
rates and causes clogging at the nanochannel or pore entrance.
On the other hand, solvent-assisted interactions lubricate the
process. It is key in understanding that the hydrodynamics of
the translocating biopolymer in such fluidic device, being
modulated by competing forces acting in the chambers and in
the pore, give rise to a genuine multiscale scenario (Fyta et al.,
2006a, 2006b, 2006c; Melchionna et al., 2007; Bernaschi
et al., 2008; Fyta, Melchionna, Kaxiras, and Succi, 2008;
Fyta, Melchionna, Succi, and Kaxiras, 2008). When facing
such a complex setup, all-atom molecular dynamics methods,
or even coarse-grained representations of the translocating
biopolymer, neglect the explicit representation of the solvent,
thus imposing severe limitations to the overall accuracy.
Resorting to strategies based on a direct solution of the NS
equations, or using other mesoscopic numerical methods
(Lagrangian or Eulerian based), is challenging in terms of
generating consistent fluctuations under confinement and
achieving a stable numerical method. In this respect, the
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LBPD method is attractive because it allows generating the
thermal fluctuations in a natural way and guarantees numeri-
cal stability over a wide range of translocation rates. In
addition, one can analyze biomolecules of different size
and initial configurations, in situations where the biomolecule
is approaching the pore or is already in a docked configura-
tion. LBPD has been utilized to analyze multiple scenarios
(Fyta et al., 2006b; Chen et al., 2007; Fyta, Melchionna, and
Succi, 2011) when the biopolymer has lateral size comparable
or smaller than the pore diameter, conditions giving rise to
single-file or multifile translocation configurations as illus-
trated in Fig. 2.
When accounting for the simultaneous presence of hydro-

dynamic and frictional forces, one can initially rely on the
assumption of charge neutrality for the biopolymer and saline
solution, a simplification justified by the need to reduce the
computational effort. However, electrostatics is essential to
guide the ionic currents and the current blockades caused by
the impeding DNA molecule. A direct understanding of the
ionic current blockades provides a stringent comparison with
experimental measurements. The situation is even more
complicated under flow conditions, whereby the interplay
between electrostatics and flow does not allow one to utilize
simplified solutions based on the assumption of global or
local equilibrium. The inclusion of electrokinetics, that is, the
representation of the multicomponent saline solution that
flows together with DNA from chamber to chamber, provides
direct access to the electrohydrodynamic process (Fyta,
Melchionna, and Succi, 2011).

B. Ion channels

As anticipated, electrohydrodynamics is a fundamental
aspect of the biological function, in particular, with regards
to ion channels, the prototypical example of nanoscopic pores
that subtend to the passage of ions in and out of the cell and
regulate its volume. Ion channels are found within the
membrane of most cells and are basically proteins that form
the pore connecting the inner and outer parts of the cell. They
look like narrow, water-filled pores that allow ions of certain
types to pass through via selective permeability, privileging
specific species, typically sodium or potassium. The transport
of monovalent or divalent species depends crucially on the
morphological properties of the confining elements that
decorate the pore, notably charged peptidic groups that
form the inner scaffold of the channel (Doyle et al., 1998;
Hille et al., 2001).
Knowledge of the way that ionic transfer takes place unveils

the biological functioning, but simulating a large biological
aggregate composed of a membrane, ion channel and the inner
and outer sides of the cell comprise a number of degrees of
freedom, easily in excess of millions. Because of the large
spread of relevant time scales, often inaccessible to today’s
computers. In principle, an alternative route is to leverage the
statistical-mechanical approach such that the atomistic repre-
sentation of the pore proteins is substituted by higher-level,
coarse-grained descriptions. Another pillar of kinetic model-
ing, the Nernst-Planck equation, makes drastic simplifications
by neglecting hydrodynamics altogether, but provides the

fluxes of ionic species as a function of the concentration and
applied voltage. Such drastic simplification misses the fine
details of ionic transport and the imperfect screening occurring
inside the narrow cavities of the ion channel. From an
operational standpoint, studying ionic transport requires
matching the atom-based with the continuum-based descrip-
tion, a computationally unviable route due to the large space
or time gap separating the two levels (Marconi, Melchionna,
and Pagonabarraga, 2013).
As to translocating DNA, an optimal strategy is to proceed

along the tandem LBPD path, whereby any feature that takes
place at the fine atomic scale can surface up at the largest
available scale, with its full content of long-range and
unscreened electrokinetics. The numerical approach grants
access to the characteristic ionic response by combining the
fluid dynamics of multiple species in solution, the interplay
of electrostatics and viscous forces, together with chemical
specificity for the confining protein. The latter is particularly
effective in determining the fine features within the pore
lumen and vestibules that are responsible for ionic selectivity.
Another intriguing aspect of ion channels functioning is the

fact that transport takes place under strictly microscopic
confinement, whereby the competition among diffusive, sto-
chastic, and migration forces together with the channel walls
acts as an effective thermalizing bath for the moving ions.
Ion channels have provided a stringent benchmark to

quantify the mechanisms by which local details arising from
the channel geometry and the surface charge, the salinity of
the electrolytic solution and the physical scale under study,
affect ionic transport and the ensuing biological function.
Electrokinetic forces have been shown to be highly modulated
by geometrical details and by the channel surface charge
(Melchionna and Marconi, 2011; Marconi and Melchionna,
2012). The presence of internal vestibules of the biological
channel, for example, are easily modeled in the simulation and
provide a direct inspection of the way that the electric
field focuses along the channel axis, thereby modifying its
activity. The role of axial asymmetries can be probed directly.
Assimilating the channel shape to a conical one revealed the
peculiar characteristic curves where currents are highly
rectified by rather modest shape asymmetries. Similarly,
the presence of boundary effects at the channel inlet are crucial
to capture ions from the bulk and convey them
under confinement by lowering de facto the involved energy
barriers (Chinappi et al., 2014). The effect of millimolar
concentrations of electrolytes has been studied in terms of
the double layer theory and revealed the role of screening on
confined transport. Finally, and possibly most importantly, the
role of nanoscale forces stemming from excluded volume
interactions, acting among solvent molecules and ions, provides
the critical ingredient to understand transport under strong
confinement (Marconi, Melchionna, and Pagonabarraga, 2013).
Within the LBPD framework, let us estimate the computa-

tional effort by considering a typical current of 1 pA,
traversing an ion channel corresponding to a flux of 107 ions
per second. Consequently, to study the passage of a single ion
in a simulation box of edge length L ¼ 102 (accommodating a
membrane of thickness 4 nm) with a time step of 10−12 s,
required to cover 10−7 s, delivers a computational complexity:
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C ≃ 104 × 106 × 105 Flops ¼ 1 PetaFlops.

This is well within reach of standard computational resources,
a Teraflop computer would deliver in less than a hour. With
L ¼ 102, the memory requirements position around the tens of
gigabytes.
However, such effort may not be needed to understand the

ionic currents semiquantitatively. In fact, under confinement,
hydrodynamics and long-range coherent motion of the aque-
ous solution dissipate away, due to the channel wall.
Therefore, the continuum picture of fluid flow is not the
most effective way to represent the ion channel or the entire
embedding membrane in 3D. Alternatively, the Fokker-Planck
equation describes well the action of the thermalizing channel
wall. The mandate is then to cast the Fokker-Planck equation
within the LB framework, a task that was successfully
accomplished a decade ago (Melchionna, Succi, and
Hansen, 2006; Moroni et al., 2006). Although less popular
than its fluid dynamic counterpart, the lattice Fokker-Planck
methodology shows the same levels of accuracy, robustness,
and scalability.
The LB method can be comfortably extended to a broad

variety of kinetic equations and one more proof comes from
handling excluded volume interactions. The atomic correla-
tions stemming from both electrostatics and excluded volume
interactions are particularly intense under the channels oper-
ating conditions. Modeling correlations is a crucial element
that other methodologies, such as the Nernst-Planck or
dynamical density functional theory, cannot provide in con-
junction with the solution of the NS dynamics.
The LB method applied to ion channels has found various

applications, although most of them neglect the role of
excluded volume and local specificity. Excluded volume
forces acting between molecules can be determined starting
from the Enskog collisional kernels, a revised version of
kinetic theory of gases, by resolving the ballistics of hard-core
collisions (Melchionna and Marconi, 2008; Marconi and
Melchionna, 2009, 2011a, 2011b). The LB scheme accom-
modates this new collisional kernel in a natural way, another
example of the versatility of the LB framework. An upsurge
of more chemical-specific LB schemes is awaited for and
expected in the forthcoming years.

C. Protein diffusion and amyloid aggregation

Mesoscopic simulations of macromolecules in aqueous
solvent not only allow one to account for nanometric-scale
hydrodynamics, but also for macromolecular interactions that
are of paramount importance to avoid misfolding (Knowles,
Vendruscolo, and Dobson, 2015) and molecular recognition.
An important question is the extent to which molecular details
are sufficient to reach the required level of biological realism.
The answer is definitely problem specific: representing a
protein, a DNA chain, or a lipidic chain may require different
degrees of chemical specificity, depending on the research
target in point.
It is also legitimate, however, to utilize coarse-grained force

fields in a rather flexible way, as long as the mesoscopic
properties, fixed at the nanometer or nanosecond scale, are
reproduced.

Following these lines, simulations of 18 000 proteins have
been performed to demonstrate the capabilities of the com-
putational method, together with the parallel scalability on
the Titan hardware platform composed of 18 000 GPUs
(Bernaschi et al., 2013a), a multiprotein configuration being
sketched in Fig. 3. Such a simulation allowed one for the first
time to observe the diffusional properties of the solution under
realistic crowding conditions. Another valuable application is
provided by the joint usage of the particle-based approach
with a multiphase LB scheme (Sega et al., 2013). A direct
illustration of the nontrivial fluid-particle interplay in the
formation and modulation of membranes driven by the action
of drag and solvophilic forces is shown in Fig. 5.
To answer the question about the optimal scale to represent

given biological solutions, this is where kinetic modeling,
particularly for the liquid state solution, and the force fields
match in accuracy.
At larger scales, micrometers and above, such level of detail

may become irrelevant; therefore a fair representation for
thermodynamics, possibly via an equation of state, and an
accurate representation of fluid mechanics, may fulfill most
practical needs. The scenario should also cope with the
possible action of long-range forces, especially of electrostatic
origin. Fortunately, cellular conditions are such that in bulk
conditions and away from the compartment boundaries,
screening acts as a powerful localizer of interactions that
die off at distances above a few nanometers.
In order to integrate the protein force fields with the

physicochemical features of solvation, the LB framework
should also be enriched with waterlike features, inclusive of
directional interactions, and hydrogen-bond features, having
deep implications on the macromolecular structures (Papoian
et al., 2004). Preliminary efforts in this direction have been
made in the past, but their thorough validation remains
entirely open (Succi et al., 2014).
Many applications of a more water-specific methodology

naturally suggest themselves: the thermal stability of proteins,
the onset of neurodegenerative diseases due to peptidic
aggregation, the diffusion of proteins, and trafficking in
cellular crowding, being just some examples in point.
Besides initial foot-in-the-door applications, this plan

requires a massive amount of implementation and validation
work, one that possibly suggests the need for coordinated
community efforts.
The aggregation of misfolded soluble proteins into fibrils is

the precursor of several neurodegenerative diseases, such as
the Alzheimer, Parkinson, and Huntington ones. In particular,
Alzheimer’s disease is marked by atrophy of the cerebral
cortex showing accumulation of amyloid plaques and numer-
ous neurofibrillary tangles made of filaments of the phospho-
rylated tau proteins. The major constituents of plaques are
made of the amyloid β peptides made of 40 and 42 amino
acids (Buckner et al., 2005).
The fibrillogenesis of amyloid β peptides is a complex

process whereby fibrils extend up to hundreds of nanometers,
and the time scale of full growth exceeds hours in vitro. The
details of the emergence of amyloid protofilaments are
still debated but it has been observed that the formation of
ordered arrays of hydrogen bonds drives the formation of
β sheets within aggregates that form early under the effect
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of hydrophobic forces (Auer et al., 2008). Understanding the
mechanisms of amyloid aggregation is key to the design of
drugs able to prevent fibril formation and toxicity in the brain
and computer simulation is an essential tool to explore the
aggregation process. First and foremost, describing the
kinetics of amyloid formation via conventional nucleation
theory lacks information on the structure and size of the
primary nucleus.
Mimicking amyloid aggregation cannot be done by implicit

solvent models, since the lack of solvent interactions does not
include the treatment of solvation thermodynamics and
altogether neglects the action of solvent-mediated correla-
tions. Self-assembly initiates via a hydrophobic collapse and
the formation of molten oligomers, with the common feature
of fibrils being the interdigitation of the side chains, the so-
called steric zipper. Since fibril formation is under kinetic and
not thermodynamic control, this is a great showcase for the
LBPD strategy (Nasica-Labouze et al., 2015).
Large-scale aggregates form only with the correct kinetics

and show up the correct intermediate and metastable states by
using the highest level of physical fidelity. If a simplifying
assumption on the dynamics, such as those provided by the
Langevin level, is used, spurious intermediate states even-
tually kick in, as long as the final aggregate is kinetically
driven.
By including hydrodynamic interactions and by employing

the OPEP force field, the LBPD methodology has shown that
the solvent-mediated interactions have a key role in regulating
amyloid aggregation; see Fig. 4 (Chiricotto, Melchionna et al.,
2016; Chiricotto et al., 2017). As a matter of fact, hydro-
dynamics enhances peptidic mobility, thus facilitating mutual
encounters and collapse of the aggregated structure. This
should be appreciated in view of the nontrivial computational
effort required to simulate the aggregation process, which is
not only driven by diffusion but also features a slow down due
to the energetic barriers involved in the process. For a dense
number of peptides, pPD ≃ 1 and a typical box edge of length
L ¼ 102, the complexity is about 2 orders of magnitude larger
than a purely diffusive process, resulting in a total of

C ≃ 102 TeraFlops.

With current hardware facilities, the aggregation process
can be observed during its full course. This is an important,
possibly first real-life application of the methodology, in a
situation where macromolecular realism and solvent-mediated
interactions change drastically the conventional picture of
amyloid aggregation as compared to assuming negligible
hydrodynamic forces (Sterpone et al., 2014).
This becomes even more interesting when looking at

the effect of shear flow onto the kinetics of aggregation.
In a Couette flow, fibril formation can accelerate from one
month down to a few hours (Dunstan et al., 2009; Bekard
et al., 2011).
A possible mechanism for the effect of shear is the align-

ment of aggregates, which in turn facilitates their assembly.
Even changing the specific nature of the shear flow can
enhance the formation of protofibrils and the growth of
fibrils. Clearly, there is still a long way to go toward a full

characterization of the aggregation process, but at this point, it
is clear that the LBPD strategy is highly apt at coping with this
complex scenario.
A side observation regards the computational efficiency of

LBPD to simulate pepditic solutions. Clearly, interparticle
interactions are a major bottleneck, due to the burden of
computing a large number of nonbonding and bonding forces,
with a significant share of computing a large number of
nonbonding and bonding forces, with a significant portion of
computing time spent in searching interacting pairs and
bookkeeping them. In addition, as seen earlier, chemical
realism requires one to account for rather stiff forces and
therefore a consequent small time step imposed on the particle
solver. If the system is dense in particles, handling inter-
particle forces is going to be the slowest segment of the
simulation, while the optimal setting is when particles are in
diluted or semidiluted conditions. This is precisely the
operating conditions pertaining to the aggregation of amyloid
β peptides.
The effect of hydrodynamics on protein diffusion has been

studied for a solution made of 18 000 Rat1 proteins in a bulk
simulation at 40% volume concentration (Bernaschi et al.,
2013a; Sterpone et al., 2014). The study showed that in such
crowding conditions, protein diffusion proceeds according to
the experimental values measured by quasielastic neutron
scattering and pertaining to the 3.5–5 ns temporal range,
exceeding the hydrodynamic time scale arising from the
propagation of vorticity over the protein linear size, and
ultimately slowing down the protein self-diffusion. A drop of
the diffusion coefficient at volume fraction between 10% and
30% marks the onset of caging mechanisms, whereas at larger
volume fractions the diffusivity dangerously approaches a
jamming transition, while protein motion is still in action.
Amyoid aggregation represents an examplar instance of
hydrodynamic forces impacting the formation of molecular
aggregates. By studying a system of unprecedented size,
LBPD simulations were able to explore a branched disordered
fibril-like structure that had never been described by computer
simulations before (Chiricotto, Melchionna et al., 2016).
The results show that hydrodynamics forces also steer the
growth of the leading largest cluster and impact the aggre-
gation kinetics and the fluctuations of the oligomer sizes, by
favoring the fusion and exchange dynamics of oligomers
between aggregates.

D. Toward computational physiology and medicine

Physiological flows offer one of the most attractive appli-
cations of the LB framework to real-life situations, with high
potential social impact in utilizing computer simulations to
diagnose pathologies, prognose a medical condition, or even
guiding clinical intervention (Fenner et al., 2008; Noble,
2008, 2016; Patronis et al., 2018).
In the age of evidence-based medicine, the decision-making

process needs to be optimized by using evidence from well-
designed and well-conducted research. Although all medicine
has some degree of empirical support, the evidence-based
approach requires that only the strongest data coming from
meta-analyses, systematic reviews, and randomized controlled
trials can be used to inform clinical recommendations.
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Incidentally, this spawns major opportunities for the syner-
gistic operation with machine-learning techniques (Goldberg
and Holland, 1988), a delicate subject we will return to at the
end of this review.
Physiological flows, for instance, are conditions where a

biofluid circulates in complex anatomical conduits and net-
works, examples ranging from blood flow to lymphatic
circulation, to airways, the urinary system, etc.
Blood flow has made the subject of intense research over

the last decades, the application of LB to blood flows
experienced a major burst of activity (Buick et al., 2003;
Dupin, Halliday, and Care, 2003, 2006; Sun, Migliorini, and
Munn, 2003; Sun and Munn, 2006; Boyd, Buick, and Green,
2007; Sui, Chew, and Low, 2007; Dupin et al., 2008; Hua-
Bing, Li, and Bing, 2008; Sui et al., 2008; MacMeccan et al.,
2009; Wu and Aidun, 2010; Reasor, Clausen, and Aidun,
2012; Xiong and Zhang, 2012; Krüger et al., 2013; Shi et al.,
2013; Xu, Tian, and Deng, 2013; Krüger, Holmes, and
Coveney, 2014; Pontrelli et al., 2014), with several applica-
tions to coronary, carotid, and cerebral blood flow. Of course,
this is no surprise, since these are macroscale applications for
which the most conventional NS hydrodynamics appears
perfectly adequate.
It is to be stressed that statistical averaging is of little

meaning in a physiological context, since each individual is a
story of her or his own. Rather, the detailed access to the
patient-specific 4D hemodynamic data across scales of motion
may offer a quantum leap in the quality and accuracy of
preemptive medicine (Artoli, Hoekstra, and Sloot, 2003;
Hirabayashi et al., 2004; Pelliccioni, Cerrolaza, and
Herrera, 2007; Caiazzo et al., 2009; Rybicki et al., 2009;
Melchionna et al., 2010; Groen et al., 2013; Yun et al., 2014;
Omori et al., 2015).
This is why a fully 4D (three-space dimensions and time)

real-time numerical and visual access at the blood dynamic
flow patterns from microns all the way up to the full-scale
geometry can disclose unprecedented opportunities for per-
sonalized and precision medicine; see Fig. 15.
Again, a few numbers may help to convey a concrete

sense of what is meant here. Based on Eq. (52), the computa-
tional complexity of a 4D real-time LBPD simulation cover-
ing four spatial decades (L ¼ 104) and just a single circulation
time (T ∝ L) is of the order of

C ∼ 104 × 1016 Flops ¼ 102 ExaFlops.

This is at least a factor of 10 short of the real time span needed
to collect significant diagnostics, so let us take 1000 Exaflops
(1 Zettaflop) instead. On a current-time Petaflop computer,
this makes 106 seconds wall-clock time, about two weeks,
which is not exactly what one would label as real time. A
prospective Exaflop computer, though, would complete the
job in some 20 min, thus bringing the real-time task within
direct clinical fruition.
LB simulations of physiological conduits offer an exciting

opportunity due to its most practical asset: simplicity in
handling complex geometries and in automated mesh gen-
eration. To the best of our knowledge, such simplicity remains
unparalleled as compared to grid methods for the numerical

solution of NS equations. Another strength of the LB
simulation comes from its local structure in space and time.
As typical in the study of unsteady flows, the flow patterns
are particularly rich and accurate once unsteadiness is taken
into account as for the study of gas flows. Hemodynamics
also sets a case, due to the large excursions of local Reynolds
number (going from virtually zero in microcapillaries to
nearly 10 000 in the aorta), whereby unsteadiness promotes
both local and global patterns. Most importantly, blood is
pumped into the vessels by a pulsatile injection rate, a
situation that requires time-explicit boundary conditions. In
biomechanics, the ratio of transient inertial to viscous forces,
the Womersely number, can range from 10−3 in capillaries to
10 in the aorta, calling for the direct time-explicit solution in
the most general case. The applications are widespread, but it
is worth recalling the study of coronary and carotid arteries,
as critical vessels that subtend to the oxygenation of the heart
muscle or the brain. Any anomaly in the blood flow would
cause major risks of heart attack or stroke to the patient. In
such networks of arteries, geometric complexity is highly
nontrivial; particularly challenging is the handling of con-
ditions where narrowings and plaques give rise to eccentric
passages and tiny spaces, at times as large as a handful of red
blood cells.
The way pressure is distributed in arteries has thus great

physiological relevance, since the supply and demand of
oxygen in organs, primarily the heart muscle, is regulated by
the distribution of pressure in vessels. It is well known that
narrowings and blockages lead to strong pressure losses, with

FIG. 15. Three-level representation of blood flow. Upper panel:
continuum macroscale (cm). Bottom left panel: the granular
nature of red blood cells starts to be apparent (100 μm) and is
fully revealed at the level of the cell spacing (10 μm, bottom right
panel). From Bernaschi et al., 2013b.
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consequent starvation of the tissues depending on blood
circulation.
Here the LB method has a technical, yet important point.

When looking at the possible buildup of atherosclerotic
plaques, the LB framework offers facilitated access to the
wall shear stress tensor. This can be computed locally based
on the nonequilibrium populations, via

S
↔ðr⃗; tÞ ¼ νω

c2
X
i

c⃗ic⃗iðfi − feqi Þ

thereby dispensing with expensive and inaccurate finite-
difference operations.
As mentioned several times in this review, a truly major

asset of the LB method is parallel performance, with a large
potential for the biofluidic context. As in other applications,
the LB mesh is plain Cartesian and, for most biofluidic
applications, a single resolution is sufficient. Because of the
excellent scalability of the basic method, one may suppose
that parallel performance would persist also for intricate
vessel networks. Unfortunately, in this case the computational
domain covers a sparse region of space, typically filling space
by less than 10%. This is definitely a challenge, even for a
highly scalable LB solver and countermeasures have to be
taken. Possible solutions to this issue are discussed in the
Appendix.
The LB method is today widely used to study biofluidics

and blood flow. The fast turnaround makes it an excellent
candidate for rapid screening in clinical practice, with the
prospective possibility to even predict the outcome of clinical
intervention. Stenting, angioplasty, flow diverting, and aneu-
rism wiring, to mention but a few, are all possible applications
of the LBPD methodology. Clearly, this is not the end of the
story, as moving parts, as concerning valve placement or
compliant vessel deformations can be taken into account by
using the various schemes available today, starting from the
IBM to handle the moving walls (Fang et al., 2002; Hoekstra
et al., 2003; Descovich et al., 2013; De Rosis, 2014).
Microcirculation is interesting in itself. Because of the red

blood cells constituents of blood that reach up to 45% in
volume in humans, two main concurrent effects take place: the
Farhaeus-Lindqvist effect, whereby the average concentration
of red blood cells decreases as the diameter of the containing
vessel is decreased; the second effect is the viscosity change
with the diameter of the vessel it travels through. The two
effects arise because red blood cells move preferentially over
the center of the vessel, leaving the plasma at the wall, thus
lowering the near-wall dissipation effects. The Farhaeus-
Lindqvist effect becomes visible in the range between 10
and 300 μm.
In recent years, the study of microcirculation witnessed an

upsurge of interest by using mesoscale particle methods
(Noguchi and Gompper, 2005; McWhirter, Noguchi, and
Gompper, 2009; Clausen, Reasor, and Aidun, 2010;
Fedosov, Caswell, and Karniadakis, 2010; Janoschek,
Toschi, and Harting, 2010; Melchionna, 2011; Pontrelli et al.,
2012, 2014, 2015Matyka, Koza, and Mirosław, 2013).
In capillaries of lateral size of 100 μm and below, the motion
of red blood cells reveals highly nontrivial signatures of

granularity and deformability. For capillaries with a diameter
of a few μm, erythrocytes undergo large deformations in order
to squeeze into the vessel and the globules are able to crawl
into the micrometer-sized space. On the other hand, when
looking at larger-scale circulation, in the 100–500 μm range, it
is generally sufficient to consider blood cells as rigid bodies.
The grand challenge here is to reach up to physiological scales
(1–10 cm) while retaining essential microfeatures, the finite
size of red blood cells (8 μm) in the first place. This is of major
interest for many reasons; the granular nature of blood may
have a significant impact on the recirculation patterns in the
proximity of natural geometrical irregularities, such as bifur-
cations, stenoses, aneurysms, or man-made ones, like stents
and other medical devices.
Micro-to-macrohemodynamics is particularly rich, showing

a peculiar distribution of oxygen-carrying cells at every
bifurcation depending on the local Reynolds number, and
with far reaching consequences on physiology. Erythrocytes
exhibit both a tumbling motion and the tank-threading effect,
whereby the cell membrane can slide under a shear force
(Keller and Skalak, 1982), two conditions that have deep
impact on blood rheology. Plasma skimming near the arterial
walls has important consequences on the local and global
circulation in order to optimize the oxygen supply chain,
keeping, at the same time, the flow speed high in the
capillaries. Further consequences relate to the most common
of cardiovascular diseases since atherosclerosis depends on the
uptake of lipidic material by the arterial wall and, ultimately on
the near-wall shear stress. The discussion is still open and its
outcome is extremely important to understand the causes of
myocardial infarction for diagnostic or preemptive medicine.
Cellular hemodynamics is an open branch of research.

A direct extension of the LBPD method can account for
suspended bodies for the explicit presence of cells suspended
in plasma. This is a typical case where the hydrodynamic
medium hosts particles with finite size, anisotropic shape, in
fact oblate ellipsoids that represent red blood cells to first
approximation. Diverse community software packages
(Heuveline and Latt, 2007; Mazzeo and Coveney, 2008;
Bernaschi et al., 2009; Clausen, Reasor, and Aidun, 2010),
such as OPENLB, MUPHY, or HEMELB, are making their way to
offer several cell-type capabilities and performance so much
so that studying flows composed by red blood cells and
leukocytes becomes extremely attractive. Previous work
showed the complex hydrodynamic interplay between cells
of different shapes, with the margination of leukocytes and
their rolling along the vessel wall (Munn and Dupin, 2008).
All LB assets show great value for deployment in

hemodynamics.
To appreciate the computational complexity of a typical

blood flow system, let us consider a coronary arterial tree and
estimate the number of mesh voxel needed to fill the sparse
volume occupied by the vessels to 107. The problem is
typically advective and the number of time steps to cover a
pulsatile cycle is ∼106. When red blood cells are also
simulated, the computational effort on the PD side can easily
exceed the LB component by 1 or 2 orders of magnitude.
Consequently, ranging from LB to LBPD simulations of a
coronary tree requires
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C ∼ 102–104 PetaFlops.

As discussed previously, with Exaflops computers at hand,
this may be brought close to the realm of real-time simulation.
Besides the most appealing features, the downsides of the

LB method should be mentioned also. An important point
concerns low-Mach flow circulation. The virtually incom-
pressible nature of blood flow (with Ma < 10−3) can neg-
atively impact the accuracy of simulations, in particular, when
the pressure distribution is the goal of the investigation. The
compressibility error of the LB method scales as Ma2 and
making it negligible typically requires lowering the simulated
Mach number Ma�, or equivalently, the numerical typical
velocity, since u=c ¼ Ma�. However, the price to pay is a
corresponding reduction of the LB time step, down to values
that can easily be as small as microseconds, potentially
undermining its practical efficiency for simulating biofluidics.
The answer to the conundrum comes from practice and from
the observation that, even at such low time step, computing
efficiency is sufficient to resolve highly complex fluid flows.
It is worth noting that the optimal working conditions can be
problem specific, and a study versus resolution and simulated
Mach is recommended.
Besides blood flow, the LB method applied to biofluidics

is also witnessing medical applications to airways, ranging
from nasal to pulmonary flows (Freitas and Schröder, 2008;
Eitel et al., 2010; Krause, 2010; Li and Kleinstreuer, 2011;
Lintermann, Meinke, and Schröder, 2011; Miki et al., 2012).
This is yet another story, where compressibility effects
become much less important and the focus shifts toward very
intricate geometries in the presence of collapsible walls.
Understanding how air flows in these regions, the conse-
quence of rather small but crucial imperfections, or the
transport of small molecules or odorants are all applications
that draw great profits from the possibility of solving fluid
mechanics in a multiphysics scenario in order to study
peculiar conditions. Again, the LB and LBPD methods are
particularly well suited to computationally embrace the
presence of multiple agents in solution.

VII. SIMULATIONS AT THE PHYSICS-CHEMISTRY-
BIOLOGY INTERFACE: LOOKING AHEAD

The growth in computing power that is expected to be
sustained for the next decades will spawn tremendous oppor-
tunities to gain new insight into a series of fundamental
problems dealing with complex states of flowing matter in
general, and, in particular, those relevant to biology and
medicine.
For reference, let us speculate what can and hopefully will

be possible once LBPD operates at Exascale performance.
Since this review is mostly intended to discuss applications at
the physics-chemistry-biology interface, hereafter we will
focus our attention mostly on that paramount scenario.
To that purpose, we reiterate that the LBPD description of

biological systems is based on a mesoscopic picture, whereby
molecular details are incorporated within suitable coarse-
grained terms in the effective kinetic equation for the solvent
and coupled to stochastic particle models of the biological
molecules. The art, as usual, is to incorporate the least amount

of molecular details required to describe the essential physical
phenomena under scrutiny.

A. Future challenges: Toward extreme LBPD computing

The inclination of the LB method for parallel processing
comes from the fact that within the LB formalism information
always travels along straight streamlines, regardless of the
physical complexity of the emergent flow structure. This
marks a major divide versus macroscopic formulations,
whereby information moves along material lines defined by
the space-time dependent flow field u⃗ðr⃗; tÞ. The point is key to
achieve outstanding parallel efficiency also in the case of
geometries having real-life complexity, such as those that
often occur in biological problems where shape and function
are tightly correlated, as described in previous sections. Albeit
highly technical, this point is absolutely crucial to achieve the
levels of extreme scalability [extreme LB (XLB)], which are
mandatory to access the “disruptive” applications described
in the previous sections. In a way, we may compare these
technological advances to the development of a new exper-
imental technique or device aimed at exploring new states of
matter: tera-electron-volts in high-energy physics or teramo-
lecules in computer explorations at the physics-chemistry-
biology interface. Needless to say, scaling up to millions and
soon billions of computing cores surely does not come for
free, especially when the geometry is not regular; it must
be won via very advanced and dedicated programming
strategies [see the Appendix and the recent prospective paper
by Succi et al. (2019).
However, once such efforts are put into place, the results are

extremely rewarding on virtually any parallel platform. In the
last decade a few multiscale codes coupling LB for the fluid
motion with various forms of stochastic particle methods for
the dynamics of floating bodies within the flow have been
developed (Bernaschi et al., 2009; Feichtinger et al., 2011;
Rossinelli et al., 2015). Among these, MUPHY is a fully
scalable LBPD code which has been successfully used for the
simulation of a variety of biofluidic applications (Bernaschi
et al., 2009, 2011, 2013a). These include biopolymer trans-
location, multiscale hemodynamics and, lately, proteins.
MUPHY has attained fairly impressive parallel performance,
with an escalating progression from 11 TeraFlops=s for
biopolymer translocation on the IBM Jugene (2011), to
0.7 PetaFlops=s for multiscale hemodynamics on Tsubame
(2012), up to a world record (to the best of our knowledge) of
20 PetaFlops=s (sustained performance) for protein crowding
on Titan (2013). Although such figures refer to leading-edge
supercomputing experiments rather than fully fledged bio-
fluidic applications, they point to a tremendous potential for
prospective applications at the physics-chemistry-biology
interface, suggesting to proceed along the road map illustrated
in Fig. 16. However, extracting such potential on upcoming
Exascale architectures faces a number of challenging issues.
Since a successful handling of these issues is key to open up
new and otherwise inconceivable LBPD applications at the
PCB interface. In the Appendix we will provide a relatively
detailed coverage of the main technical topics, including
(i) how to best exploit modern CPU and accelerators archi-
tectures for LBPD simulations, (ii) how to exploit at their best
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modern CPU and accelerators architectures for the simulation
of LB methods, (iii) how to overlap computation and
communication, so as to hide the overheads of the latter,
and (iv) how to secure a balanced load among millions of
computing cores in realistic geometries such as the cell or
blood vessels.
Having laid down the two-legged engine for fluids and

molecules, a stringent requirement is to design accurate
kernels to exchange forces among fluids and particles of
different kinds: hydrodynamic, solvation, dispersion, electro-
static, etc. This program requires accessing algorithmic
methods from a vast array of options and organizing various
types of biological agents, representing proteins, nucleic
acids, lipids, sugars, etc. At the core, one must devise new
algorithms that allow reproducing environments of increasing
complexity, either from the bottom-up molecular route or from
the top-down macroscopic or mesoscopic perspective. Most
importantly, the plan requires not only the representation of
multiple agents (fluids, macromolecules or small molecules,
continuum-based solutes) but also the architected orchestra-
tion of their evolution, as they move across multiple scales.
This presents an outstanding challenge in both conceptual and
technical respects.
At the time of this writing, a fully fledged multiscale

numerical strategy is still lacking, thus making the subject of
intense research. Since multiple particle-based and field-based
agents need to coexist within a unified computational frame-
work, the search for a robust and universal strategy to achieve
their seamless coexistence is still pretty open.
The first step forward is to devise numerical methods

whereby only the fluid component is allowed to cross scales:
generally speaking, these fall in the class of multigrid fluid
dynamics, where adaptive, multiresolution or body-fitted
meshes are used to resolve fluid dynamic patterns via static
or automatic mesh generation. Although pretty laborious,
these methods have been developed for several decades and

are presently in the position of providing dramatic savings in
both memory and number-crunching requirements.
A second, much more challenging aspect regards the

evolution of multiple Eulerian or Lagrangian transmuting
agents, meaning by this that such agents are capable of
changing their identity and representation on the fly, depend-
ing on the local physics in point.
By its very mesoscopic nature, the LB method is concep-

tually at a vantage point for multiscale or level coupling, both
upward, toward continuum representations and downward,
toward atomistic models. For all its conceptual appeal, such a
high-level program requires a concrete computational sub-
stantiation in order to turn theoretical ideas into actual
computational tools.
A most useful LB asset in this respect is the Cartesian mesh.

Owing to its simplicity, mesh construction, management, and
extensions offer a particularly flexible approach to handle
complex biological settings. As two or more neighboring
scales are juxtaposed in space and time, mesh refinement
corresponds to increasing the number of mesh points in
proximity of geometrical variations, where mass or momen-
tum gradients are most likely to attain peak values.
To date, a number of multigrid LB schemes have been

proposed, some of which are customarily used in large-scale
academic codes (Bernaschi et al., 2009; Lagrava et al., 2012)
or in industrial applications (Chen et al., 2003). The common
approach is to consider two juxtaposed meshes, a factor of 2
ratio in spacing. A possible strategy is to exchange informa-
tion between two neighboring meshes that overlap in some
finite region of space and to exchange populations by spatial
and temporal interpolation schemes. This hand-shaking pro-
cedure must make sure that not only the flow fields, mass, and
momentum density are continuous across the surface, but also
their fluxes. This leads to a specific map between the discrete
populations in the coarse and fine grids. Another approach is
to consider the fluxes across neighboring meshes by using a
finite-volume description of the LB method and to exchange
these components (Chen et al., 2006). Yet another, recent but
promising approach is to merge the standard LB formulation
with unstructured finite-volume LB formulations in corre-
spondence with sharp features of the flow (Di Ilio et al., 2017).
Given the underlying mesh connectivity (e.g., by taking

the D3Q19 mesh as a reference), the mesh nodes that are
connected by a complete (18) set of mesh neighbors of the
same mesh spacing are called “saturated” nodes as opposed to
the “unsaturated” ones, which have only an incomplete (< 18)
set of mesh neighbors connecting nodes from different
meshes.
For clarity, let us define S1;S2;S3;…, as a sequence of

scopes that describe the ownership of fluids and particles to a
single scale and help to coherently organize the computation
across scales.
By construction, each scope accommodates a single

Cartesian mesh M1;M2;M3;…,

Mk ∈ Sk.

A given scope Sk contains a set of fluids F k;α and a set of
Lagrangian particles Pk;α:

FIG. 16. The road map of the MUPHY code, based on the
Gordon Bell performance obtained over the years. From
Bernaschi et al., 2013b.
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X
α

fF k;αg ∪ fPk;αg ∈ Sk.

By associating a fluid to a scope, by design, we posit
that LB fluids are forced to belong to a given Cartesian mesh
and cannot cross the interface between different meshes.
On the other hand, since particles are, by definition, grid free
they are allowed to move anywhere in space. As a result,
their ownership to a given scope is purely a matter of
organization.
However, particles can change their physical identity or

even disappear (change to class “nihil”) as they cross scales. In
fact, a particle belonging to a physical domain can swap to
another particle type (possibly with a different representation)
as it crosses scale boundaries, without necessarily leading to a
discontinuous trajectory.
As a further development, one can transform Lagrangian

agents into Eulerian ones and vice versa, a procedure which
involves not only interpolation but also projection from
particles to LB distributions via hydrodynamic fields and
direct sampling of particle coordinates directly from the LB
distribution.
These “transmutational” functionalities raise genuinely new

issues, both conceptual (compliance with the basic principles
of statistical physics) and computational, i.e., the design and
efficient manipulation of the corresponding data structures. It
is conceivable that they might spawn the needed for dedicated
transmutational multiscale-multilevel software as well.
Coming back to our conceptual scheme, meshes are best

organized in a hierarchical order, such that the kth level mesh
Mk has spacing Δxk ordered in an ascending sequence
Δxk ¼ 2Δxk−1 ¼ � � � ¼ 2k−1Δx1, thus the mesh spacing dou-
bles at each level increase.
Juxtaposed meshes feature a finite overlapping or compe-

netration between neighboring meshes (Lagrava et al., 2012),
and the extent of the compenetration region is taken
as LðMk ∩ Mk−1Þ ¼ Δk.
In its simplest implementation, all boundary conditions

operate on the finest mesh, covering regions where the
strongest gradients need to be resolved, typically in the
proximity of solid walls. In multigrid LB, let us consider
the propagation in time of the LB fluid across a set of scales
labeled 0;…; K and illustrate the scheme based on interpo-
lation or extrapolation of fluid populations rather than on the
fluxes.
To that purpose, spatial averaging of a generic field A living

on mesh M is given by

Āðr⃗k; tÞ ¼ 1

q

X
p∈N

Aðr⃗k þ ckpΔmin; tÞ; ð55Þ

where N is the set of all the nodes of M that are neighbors of
the nodes ofM0 at r⃗k, q ¼ CardðN Þ, and Δmin is the smallest
spacing between M and M0. When M is finer than M0,
averaging or interpolation corresponds to a low-pass filter.
Another useful tool is time averaging between the

latest updated time of M (tMi ) and the previous one (tMi−1),
which is needed to estimate the field A at time
t ¼ tMi ¼ ðtMi−1 þ tMi Þ=2:

Āðr⃗k; tÞ ¼ 1
2
½Āðr⃗k; tMi Þ þ Āðr⃗k; tMi−1Þ�.

In this equation, the quantities Ā within the square brackets
can be evaluated from Eq. (55).
The multigrid LB method proceeds by a local time-stepping

frequency and by rescaling the relaxation time according
to the local mesh in action. Each scope agent is evolved
according to a specific propagator. For either LB fluids or
particles, the evolution time step reflects the ownership to a
given scale, with its own specificity. For the LB method, mesh
spacing and time step are strictly related so that in a single
streaming operation, information hops between neighboring
nodes of the same mesh. For particles, the time step is an
independent quantity and, as long as the energies involved are
well sampled and the simulation is stable, one can tweak the
time step to achieve optimal performance.
When information travels across neighboring meshes, the

lattice speed should not change between meshes and fluid
velocity and pressure should be continuous across the inter-
face. Given a reference length scale l and time scale τ, all
other scales are such that lk ¼ Δxkl and τk ¼ Δtkτ. For the
time marching, it is possible to adopt the convective scaling,
which leaves the flow speed invariant across scales,
i.e., uk ¼ uk−1 ¼ � � � ¼ u1.
Then the time step Δtk is related to Δxk via

Δxk

Δtk
¼ Δxk−1

Δtk−1
¼ � � � ¼ Δx1

Δt1
.

By matching the Reynolds number across all scales to a single
reference value Re ¼ ul=ν, where u is a typical flow speed,

uklk

νk
¼ � � � ¼ u1l1

ν1
≡ Re;

we obtain the scaling relation for the fluid viscosity, namely,

νk ¼ 2νk−1 ¼ � � � ¼ 2k−1ν.

Given the reference viscosity ν, a scale-specific frequency ωk

is derived. In fact, in order to have a single global kinematic
viscosity, each species has the same viscosity ν, related to the
relaxation frequency via Eq. (24).
It is important to appreciate the fact that the local nature of

the LB methodology makes the construction of hydrodynamic
moments and gradients, such as the deviatoric stress, for
multiresolution as simple as in the single-resolution case. This
marks a plus as compared to NS schemes, where gradients
need to be computed through stencils or other numerical
templates.
However, when considering embedded particles, a number

of adaptations have to be catered to. The single mesh
described in Sec. IV requires interpolation or extrapolation
schemes that are well posed in terms of smoothness and
robustness. The scheme then adapts to the situation where
particles cross mesh (or scale) boundaries.
A particularly desirable extension to simulate biosystems

concerns the case when the mesh locally readapts to
accommodate the presence of moving macromolecules.
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This operation implies refining the LB mesh on the fly by
following the instantaneous position of the molecular agents.
As the macromolecules diffuse and encounter each other,
assemble or undergo structural transitions, a finer level of
meshes must follow the macromolecule like a shadow;
see Fig. 17.
Owing to the simplicity in constructing the Cartesian mesh,

the price to pay for automatic mesh refinement is, in principle,
negligible although the associated software management can
become nonetheless pretty demanding.
The availability of multiresolution techniques makes it

increasingly attractive to design fully fledged, LBPD-based
multiscale or level environments.
The underlying multiresolution mesh is the basic support

to move information between juxtaposed regions, whereas
Eulerian and Lagrangian agents cross the boundaries and
unveil their essential nature locally in space and time. Note
that in this context we refer to Eulerian and Lagrangian as to
two distinct levels of description, each of which does embrace
multiple scales. Here we follow Noble’s definition (Noble,
2016), according to which scale pertains to the physical extent
over which information is distributed in space and time,
whereas a level touches at the mathematical or computational
organization of such information. In this terminology, “trans-
mutation” is basically a change of level.
As a result, at each scale, the following four quadrants are

involved (see Fig. 18):
• EE (Eulerian-Eulerian): LB populations that coarsen and
refine

• LE (Lagrangian-Eulerian): Particles that transform into
LB populations

• EL (Eulerian-Lagrangian): LB populations that trans-
form into particles

• LL (Lagrangian-Lagrangian): Particles that coarsen or
refine

As previously discussed, the EE transform can be accom-
plished within LB-adapted multigrid techniques. The LL
transform also involves homogeneous quantities and adjusting
their interactions to the required scale appears to be doable
within currently existing methods (Praprotnik, Site, and
Kremer, 2008). A typical example of LL transform is between

a detailed representation of a polypeptide to an elastic network
and vice versa. Coarsening implies loss of information by
projection and it is easier to handle than the reverse case,
namely, reconstruction of the information lost in the projection
step, a inherently non-zero-error task. The cross-level terms
LE and EL are specific of LBPD, and hence less consolidated.
We note that the mechanism that regulates the crossing is

inherently different for LE versus EL transitions, since the
single-particle identity is inevitably lost in LE. For the EL
case, we need to guess the identity of individual particles, and
even more unwieldy, construct the topology of extended
molecules.
A fully fledged multiscale or level LBPD framework still

awaits for conceptual validation from the point of view of
fundamental statistical physics as well as in terms of computa-
tional implementations. Hence, making an educated guess on
its future is far from being an easy task. Yet we can make a
conservative prediction about the concurrent spatiotemporal
scales that can be accessed once Exascale computing becomes
available.
The LBPD code MUPHY was reported to deliver

20 PetaFlops=s for extreme simulations involving 20 × 109

fluid sites and nearly 70 × 106 particles. By naive linear
extrapolation, an Exaflop computer would permit one to scale
these figures up by another factor of 50, leading to 1 × 1012

fluid sites and nearly 10 × 109 particles. This corresponds to
four decades in space, the best one can expect without any of
the multigrid or level sophistications previously described.
Once such multiscale or level strategies are in place, another 2
orders of magnitude can reasonably be envisaged (in a plain

FIG. 17. The flow structure around a macromolecule resolved
by a multiresolution mesh being finer in proximity and inside the
macromolecule.

FIG. 18. Diagram for the multiscale approach where Eulerian
(E) and Lagrangian (L) agents can move across scales and across
representations. The boxes of different size in the left column
indicate the coarse or fine grain of the Eulerian representation,
and the ball-and-stick representations in the right column indicate
particle-based molecules at different resolution. The arrows
indicate the exchange of agents between E-E scales, L-L scales,
and E-L representations.
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multigrid scenario this corresponds to about seven levels of
refinement, which is well within the current capabilities of
multigrid LB solvers). The resulting LBPD tool would then be
able to handle six decades in space and time.
With these advances in mind, several exciting scenarios

may open up to the LBPD strategy, described next in some
detail.

B. Protein crowding

Protein trafficking in cellular compartments is deeply
connected to the structural and diffusional behavior of
proteins under crowding conditions. Realizing that the interior
of cells is characterized by high concentrations of macro-
molecules and, depending on the organelle or subcellular
location, 5% to 40% of the total volume is occupied by
macromolecules, those proteins conduct their activity in
extremely crowded environments. Therefore, organelle func-
tioning depends on the structural and dynamical response of
proteins to dense packing conditions, a critical yet elusive
element of cellular organization. While advances are made
through in vitro studies, crowding effects can force molecules
in cells to behave in radically different ways as compared to
test-tube assays (Ellis, 2001; Zhou, Rivas, and Minton, 2008).
The way that cells utilize intracellular spatial features to

optimize their signaling characteristics is still not clearly
understood. The physical distance between the cell-surface
receptor and the gene expression machinery, fast reactions,
and slow protein diffusion coefficients are some of the
properties that contribute to the intricacy.
Extracellular signals captured by receptor proteins on the

cell surface are transduced inward to control target proteins or
gene expression. Two interconnected underpinnings of this
cellular response are molecular mobility (e.g., diffusion
and active transport) and the signal transduction reactions.
Despite their importance, limited attention has been paid to the
former biophysical properties of the cellular environment,
which can contribute to overall signaling characteristics of the
system by introducing nonlinear signal delays. The Stokes-
Einstein relation implies a slow diffusion rate of protein

macromolecules, which are key players in the signaling.
The significance of diffusion in reaction-diffusion systems
becomes key whenever reactions are comparatively faster than
diffusion rates.
Extremely high protein density in the intracellular space,

commonly called molecular crowding, can magnify the spatial
effect. In a typical cell, the total macromolecular density is
50–400 mg=ml, far higher than typical in vitro conditions
(1–10 mg=ml). If a solution contains 30% by volume of
identical globular molecules, less than 1% of the remaining
space is available to an additional molecule of the same size
due to the excluded volume effect caused by steric repulsion,
resulting in a mutual impenetrability of macromolecular
solutes. In such environment, slow (5–20 times lower than
saline solutions) translational diffusion is still observed, which
exhibits the footprint of anomalous diffusion (Takahashi,
Arjunan, and Tomita, 2005; Sterpone et al., 2014; Timr et al.,
2019). Anomalous diffusion is defined as sublinear scaling of
mean-squared displacement of the molecule over time and is
used as a measure for cytoplasmic crowding. Molecular
crowding, as exemplified by two snapshots of simulation
shown in Fig. 19, can also alter protein activities and break
down classical reaction kinetics.
Ideally, to reproduce crowding effects, with the ensuing

anomalous diffusion and protein encounters, simulation
methods should be able to track coarse-grained shapes and
sizes of molecules and their positions in three-dimensional
space. Proteins stay localized in certain compartments as a
result of cell compartmentalization and noncovalent weak
interactions such as ionic, van der Waals, hydrogen bonds, and
hydrophobic-polar interactions. Weak interactions, which can
also influence the reaction and diffusion rates of molecules,
should be considered during simulation. As the first estimate,
the problem being dominated by diffusive motion, one should
consider the simulation of a cubic system of side L ¼ 103

lattice units. For such systems, the LB and PD methods
contribute almost equally to the computational effort. With a
unit diffusion coefficient in lattice units, the computational
complexity scaling as L3T ¼ L5 is particularly challenging,
resulting in an estimated complexity

FIG. 19. Snapshot of globular proteins in solution, shown in different visual representations. (a) Proteins are shown with wirelike
bundles and the surrounding hydrodynamic signal is represented via an isosurface of its velocity field. Streamlines generated by selected
proteins in the crowded macromolecular environment show how the hydrodynamic disturbance propagates in the aqueous solution.
(b) Proteins represented via conventional ribbon-sticks style and the constant velocity isosurface that illustrates the complexity of the
flow structure.
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C ∼ 101 − 102 ExaFlops.

Clearly, high scalability is mandatory to support the handling
of such large intracellular systems.
Biological interactions are quite promiscuous and their

occurrence cannot be predicted based on conformational
considerations. It is essential to account for chemical speci-
ficity in order to capture the local details of molecular
recognition and signaling. LBPD stands as an appealing
approach to address the plethora of questions related to
signaling in the protein crowd.
Having drastically reduced the number of degrees of

freedom for the water solvent down to the stringent economics
of the LB method, the PD engine should already be sufficient
to track enzymatic activity and related pathways. This is
sufficient for a subset of possible conditions in the cell, but
still not satisfactory for the general case. As described earlier,
an essential feature is to resolve the local hydrodynamic,
thermodynamic, and chemical patterns in the surroundings
of active sites, with their peptidic components, hydrogen
exchanging groups, or metal atoms. Local mesh refinement
entails dramatic benefits in terms of reducing the cost of the
far-field regions, and so would the corresponding adaptive
time stepping. Leveraging the minimalistic LB mesh is
precisely the option at stake to reduce the number of degrees
of freedom (by a factor of 23 gain) together with the time step
(by a factor of 2 gain) at every resolution change. The same
advantage applies for every partial differential equation that
can be solved on the fly via a concurrent LB scheme, say the
ADR equation, for electrostatics, or for other modeling
purposes. If the same LB mesh is used for solving concurrent
PDE via conventional finite-difference approaches, one
should refer to the consolidated multigrid algorithms.

C. Direct simulation of full-scale cell compartments:
Golgi and neuronal firing

Cellular organization relies upon the operation of several
organelles, from the nucleus to ribosomes, mitochondria,
lysisomes, Golgi, etc. Each organelle lives its own life
separated by confining lipid bilayers. These specialized
subunits are in action and continuously interplay with one
another. The scenario is extraordinarily rich and no numerical
framework can hope to capture the entire picture. Yet a few
characterizing elements make the LB framework particularly
appealing. With the Exascale capability at our doorsteps, the
LB method can be taken to the next level: from the study of
basic biofluidic processes to the direct simulation of full-scale
cellular compartments, such as protein cargoes, vesicles, and
possibly even full-scale organelles. The endeavor commands
the integration of the LBPD paradigm within broad scope
software infrastructures, including mechanical models of
biological structures, ranging from all-atom molecules to
elastic networks for membranes and so forth (Chiricotto,
Sterpone et al., 2016).
In order to design the most appropriate strategy, it is

instructive to take a look at a few processes involving
macromolecules that are transported within the cellular
environment. During the cell life cycle, proteins are contin-
uously translated and delivered to specific cellular locations

by traversing different membrane structures. However, most
molecules, including proteins, are too large to pass directly
through membranes. Instead, large molecules are loaded into
small membrane-wrapped containers called vesicles. Vesicles
are constantly forming—especially at the plasma membrane,
the endoplasmic reticulum, and the Golgi apparatus, or simply
the Golgi. Once formed by exocytosis, vesicles deliver their
contents to destinations within or outside the cell. On the
different, yet related, scenario of neurotransmission, signaling
neurotransmitters are released by a neuron and bind to and
activate the receptors of another neuron. Neurotransmission is
the essential process of communication between two neurons
with synaptic transmission and firing relying on the release of
neurotransmitters. The latter are stored in vesicles in the axon
terminal. Different mechanisms involve partial opening and
then reclosing of vesicles, together with the fusion of vesicles
with the membrane.
The emerging picture is that the entire arsenal of the

LBPD approach, entailing single or multiphase variants, in
presence or absence of suspended macromolecules, provides
a powerful, flexible and self-contained framework to solve
multiple levels of cellular biology. A closer look at how
proteins and vesicles interplay unveils the type of challenge
the numerical approach has to tackle. The way proteins are
transferred inside in cellular compartments is fascinating.
Vesicles form when the membrane bulges out and pinches
off. Then it travels to its destination, where it merges with
another membrane to release its cargo. In this way, proteins
and other large molecular cargoes are transported without
ever having to cross a membrane. Even more, the mecha-
nism underlying the formation of vesicles is budding and is
deeply assisted by proteins. When vesicles bud, they wear
“coats” and when coat proteins assemble at the member,
they force the lipid bilayer to begin to bend. As they gather
at the membrane, coat proteins may also select the specific
cargo that is packaged into the forming vesicle. As more
coat proteins are aged, they shape the surrounding mem-
brane into a sphere. Finally, once a coated vesicle pinches
off, the coat falls off, and the cargo-filled vesicle is ready
to travel to its final destination. The plain fact shows that
the proteins-fluid system is inherently two way such that
chemical specificity as much as the vesicular chemical
composition has to be correctly included to convey the
required molecular realism.
The feasibility of reproducing full-size organelles can be

analyzed by considering the typical size of the Golgi. This
organelle has a lateral size of 2.5 μm and is composed of 1012

atoms, that is, the “TeraSize.” The typical time span for
morphogenesis spans between 1 μs and a minute. In operating
conditions, one femtosecond time step is required for the
accurate, bottom-up description of molecular trajectories.
Given the burgeoning progress of computing power promises
for the forthcoming years to reach the ExaFlops/s capabilities.
Sustained by the development of modeling techniques and
specialized algorithms, the available power will soon allow
facing astonishing assemblies of macromolecules above the
microsecond time scale and, at the next level, targeting entire
cellular compartments. Under such conditions, one can expect
that, on an Exascale computer, one could simulate the system
evolution in full at a cost of
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C ∼ 104–106 ExaFlops

corresponding to about 1–10 days of wall-clock time.
Clearly, the path to simulate full-scale compartments can be

a multistage process and the first step is to represent lipidic
membranes at a coarse LB level, namely, by neglecting the
molecular character and chemical specificity of the confining
components, as sketched in Fig. 20. Being a peculiar visco-
elastic fluid, the membrane can be handled by the multiphase
LB, e.g., via Shan-Chen or free-energy approaches. The
description has to cope with the fact that a membrane has
finite thickness; therefore any multiphase approach should
reproduce not only the interfacial properties of the lipidic
bilayer, but also its phase diagram, including the multiple
shapes of micelles, vesicles, etc., with their tendency to
deform. The formation of lipidic chains and their preferential
orientation under external forces induce changes in shapes
from circular to elongated, as observed in experiments.
Complex fluid-fluid interfaces featuring mesoscale structures
with adsorbed particles are key elements of biological
components. For such a schematic approach, the expectation
is demanding but one should keep in mind that confiners and
carriers can provide a minimal, yet satisfactory, level of
realism.

D. Biochemical reactivity and signaling pathways

As discussed earlier, LBPD can reproduce the interplay
between flow and macromolecules in a relatively large, cell-
like environment. Dealing with biochemical reactivity is a
different, large sector that calls for a full deployment of the
simulation capabilities (Takahashi, Arjunan, and Tomita,
2005). Application of the LB method to reproduce advec-
tion-diffusion-reaction phenomena is an option. However,
biochemical reactions are not always classifiable according
to simple statistical rules, as for the Michaelis-Menten or
logistic laws (Voit, 2013).

In biology details matter since a small minority of active
sites immersed in a jungle of organic groups can make the
whole difference. In addition, metabolic and synthetic reac-
tions can occur in bulk conditions within a single phase
(homogeneous reactions) or in a multiphase environment,
typically at the interface between regions (heterogeneous
reactions), in no-flow or flow conditions, as, for example,
the enzyme reactions on the surface of the blood vessels.
Although there are many possible reactive events in action,

they all fall into two broad categories: oxidation and reduc-
tion, the motion of functional groups within or between
molecules, the addition and removal of water, and the
bond-breaking reactions. Most reactions are catalyzed by
proteins, RNA, or DNA. A different class of reactions involves
electrostatic, electrodynamic, and hydrophobic interactions,
where electrons are not shared and covalent bonds are not
modified. Enzymes have the property to increase the rate of
the reactions and are specific to the reactant molecules, also
known as the substrates, interacting with high affinity. Finally,
the activity of enzymes is regulated in a number of ways,
controlling the rate and amount of products formed. Examples
of regulation include cofactors binding to the enzymes or
the presence of reaction products that inhibit the reaction
(Fersht, 2017).
The range of biological activity does not result from many

different types of reactions, but rather from a few simple
reactions, occurring under many different situations. Thus, for
example, water can be added to a carbon-carbon double bond
as a step in the breakdown of many different compounds,
including sugars, lipids, and amino acids. One could model
this compact set of reactions by utilizing the LBPD apparatus.
Within a classical description this is feasible indeed, except
that bond breaking and formation requires using electronic
structure methodologies, notably by using one of the most
successful theories to date, the quantum density functional
theory. The good news is that, given the small number of
active sites present in macromolecules, this stands as a perfect
candidate to embed a numerical solver for electrons within a
classical solver for particles, and ultimately within the LB
overarching framework. The quantum-mechanical molecular
mechanics (QM-MM) approach is an active avenue of
research today and proceeds along similar ideas as the
LBPD scheme. Clearly, the numerical details of the LB and
QM methods are different in nature, but basic similarities can
be found. Indeed, like LBPD, the QM-MM procedure is based
on a combination of Lagrangian (classical molecular dynam-
ics) and Eulerian (quantum electronic structure) components.
One may push the similarities even further by utilizing the LB
method to solve the electronic structure too. Work in this
direction (Mendoza, Succi, and Herrmann, 2014) is promising
for the future.
To the point that, in the far distance, one may envisage an

unprecedented four-level QM-MM-PD-LB unified multiscale
structure that ranges from electronic scales all the way up to
the cellular ones, the overlap link being MM-PD. Incidentally,
three-level structures of this sort have now been in place for
two decades, although their routine operation seems to remain
somewhat unwieldy (Abraham et al., 1998).
In prospect, evolutions of the LBPD methodology to cope

with reacting systems should benefit from one of its major

FIG. 20. Multiscale representation of vesicles transporting
proteins. Vesicle firing from a membrane where the vesicles
are modeled as immiscible fluid phase separating from the
aqueous host. The central panel zooms the vesicle bilayer with
liquid water in the interior. The right panel depicts a molecular
representation of the vesicle containers with an heterogeneous
protein suspension in the interior and membrane proteins em-
bedded in the bilayer.
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assets. Reactions control species interconversion and involve
the breaking and forming of covalent bonds, often catalyzed
by enzymes. Dealing with particles or molecules that change
identity on the fly, their molecular connectivity and can
undergo multiple reaction channels, is a tall order for the
Lagrangian treatment. Instead, electron transfer and chemical
breaking and forming can take advantage of the probabilistic
nature of the kinetic representation. In this respect, one can
envisage interconversion between the Eulerian and
Lagrangian representations for molecules that are likely to
react, and choose between the optimal treatment, possibly on
the fly. An estimate of the computational resources must
embrace the full-scale organelles, for which a region of
L ¼ 104 sites in size must be catered to. With diffusive-
reactive scaling, T ≃ L2 and some k ≃ 105 flops/(site/step),
we obtain

C ∼ 107 ExaFlops

corresponding to about three months wall-clock time on a
Exaflop computer.
Assuming sufficient accuracy to model the chemical

reactions is available, the next objective is to examine the
structure and dynamics of cellular functioning at the system
level, rather than the characteristics of isolated regions.
Collective properties of networks, such as their efficiency
and robustness, emerge as a central characteristic in system
biology. Needless to say, the understanding of these properties
may deeply impact medicine, bolstering the emerging notion
of network medicine, as opposed to the “magic-bullet”
approach of genomics. Advances in this direction can take
full advantage of LBPD once sufficient chemical specificity is
incorporated via coarse-grained force fields. Caution must be
exercised to find the optimal balance between resolving local
details and the collective properties of the metabolic network.
As it stands, this is an ideal scenario to develop innovative
multiscale or level methodologies for the biological context.

E. Hemostasis

Another grand challenge is the study of hemostasis, a
crucial healing mechanism in which molecular specificity and
chemical reactivity contribute on an equal footing. Hemostasis
is the immediate response of the body to stop bleeding from
within a damaged blood vessel. It is the first stage of wound
healing and involves a blood change from the liquid to the gel
state (coagulation). When an endothelial injury occurs, the
endothelial cells stop secreting coagulation and aggregation
inhibitors and secrete instead the globular glycoprotein
von Willebrand factor (vWF), which uncoils and initiates
the maintenance of hemostasis after injury. The overall
process is governed by Virchow’s triad which comprises
composition of blood, wall surface reactivity, and material
flow. A multiscale simulation approach stands out as a prime
route to gain a better understanding of such a complex and
life-essential mechanism.
As we delve into the details, it becomes clear that

hemostasis shows articulated features, as sketched in
Fig. 21, highlighting the multistep and multiscale elements
in action. It proceeds along three subsequent steps that seal the
injury until tissues are repaired: vasoconstriction, temporary
blockage by a platelet plug, and the formation of a blood clot.
Vascular spasm is the first response to constrict the blood
vessels and reduce the blood loss. Second, platelets stick
together to form a temporary seal via the so-called primary
hemostasis: platelets adhere to damaged endothelium to form
the plug and then degranulate as activated by the vWF. Finally,
coagulation takes place and reinforces the platelet plug with
fibrin threads that act as the “molecular glue.” In this picture,
platelets are key to the process: the plug forms almost directly
after the vessel has ruptured and within seconds and disrupted
platelets adhere to the subendothelium surface. Within a
minute the first fibrin strands begin to intersperse among
the wound and just a few minutes later, the plug is completely
formed by fibrin. During the process, a dozen clotting proteins
are activated in a sequence known as the coagulation cascade

FIG. 21. The major phases of hemostasis following the vessel injury: (a) a platelet plug is formed to rapidly stop the initial bleeding;
(b) a mesh of fibrin is made at the injury point to make the platelet plug stronger; and (c) finally the clot is formed by the coagulation of
fibrin, red and white blood cells.
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to hold it in place, the so-called secondary hemostasis. Here
red and white blood cells are trapped in the mesh which causes
the primary hemostasis plug to become harder: the resultant
plug is called a thrombus or clot.
The role of blood flow is even more important than it might

appear at first sight. Since the 1970s, experiments have
demonstrated that shear stress strongly affects the activation
of platelets and their adhesion to the injured tissue. However,
there is still confusion about the mechanism that regulates
platelet arrangement and about the reasons why sites of
disturbed flow appear to be more prone to platelet deposition.
When the level of shear exceeds a certain threshold,

platelets aggregate even in the absence of any chemical
agonist and without any modification of the vWf. The reason
for this behavior remains unclear. Shear-enhanced exposure
or the alteration in the structure of receptors on the platelets
membrane increases the frequency of collisions where particle
migration is known to increase with shear up to 3 orders of
magnitude above the Brownian value, due to the enhanced
collision frequency, primarily between platelets and erythro-
cytes. Furthermore, erythrocytes are known to enhance shear-
induced platelet adherence not only mechanically, but also
chemically, through the release of the platelet agonist adeno-
sine diphosphate.
The uncoiling of bound globular vWf at elevated shear is

responsible for the increased platelet deposition and upon
platelet activation, the release reaction feedback amplifies
the hemostatic system. At high shear, adhesion requires the
synergistic action of several receptors on the platelets
membrane and on other ligands. Upon activation, platelets
change their shape from discoid to spherical, release their
granule content, and increase their stickiness among them-
selves, as a function of the amount of local shear stress.
Chemistry plays a major role, as a multitude of reactions lead
to the production of thrombin, which is a key enzyme in
the hemostatic process as well as a strong platelet agonist. In
the course of hemostasis, fibrin fibers which surround the
platelet aggregate and stabilize it against the shear forces in
the flowing blood.
Shear stress and saturation-dependent changes in surface

reactivity influence thrombus growth and the adhesion and
aggregation of platelets to reactive materials. Simplified
models based on fluid dynamic and species conservation
equations can match in vitro experimental data, as regarding
the initial phase of platelet deposition, when thrombus growth
can be neglected, while accounting for shear stress and
changes in surface reactivity. However, taking thrombus
growth into account results in a free-boundary problem, with
fully coupled fluid dynamic and species conservation equa-
tions, again a scenario that calls for the LBPD apparatus, as
witnessed by a few pioneering studies (Ouared and Chopard,
2005; Chopard, Ouared, and Rüfenacht, 2006; Harrison et al.,
2007, 2008; Ouared et al., 2008; Tamagawa et al., 2009). In
these studies, activation of platelets in the bulk flow and
subsequent agonist production were not included as a part of
the model. On the other hand, flow could be explained by
using a shear-independent adhesion rate. By using such a
model, predictions on the flow structure were improved in
some parts of the flow chamber, such as in stagnation points,
whereas notable discrepancies remained in some other parts.

In order to be effective, the LBPD approach should include
the combined effects of shear stress, changes in surface
reactivity, and aggregate growth in modeling both hemostasis
and thrombosis. The practical outcome would be paramount,
i.e., assist the minimization of thrombus formation in vascular
prostheses without the use of strong anticoagulants. This is all
important in bioengineering to design materials with improved
surface properties, also for shape optimization techniques in
flow conditions versus platelet deposition. Because of its
fundamental character, the influence of shear stress demands
the inclusion of the full coupling of flow and thrombus growth
in models intended to capture the long-term behavior of
platelet deposition, with the potential to enlighten the basic
mechanisms taking place in further kinds of adhesion proc-
esses. Given the extended multiscale nature of hemostasis,
Exascale computers may still be insufficient to solve the
problem. For an estimate of computational requirements, we
take a cubic box of side L ¼ 104, in order to acknowledge the
need for micron-scale resolution of regions of the order of the
centimeters. With a diffusive-reactive scaling T ≃ L2 and a
computational density of the order of k ≃ 106 flops, leading to

C ∼ 108 ExaFlops.

Such a value could be reduced by making systematic
assumptions on the process and analyzing the different phases
of primary and secondary hemostasis at different stages.
Notwithstanding the mentioned current limitations, it is of

paramount importance to consider the simulation of hemo-
stasis for medical purposes. Hemostasis is life essential
because it can go wrong in atherosclerotically narrowed
vessels. Ruptured plaques and elevated shear rates may induce
the formation of platelet-rich thrombi that may eventually
become life threatening by occluding the vascular lumen. In
fact, a major number of deaths is due to thrombotic events
provoked by disorders of the hemostatic system. Severe
consequences are triggered if the thrombus detaches from
the vessel wall and travels through the circulatory system. If
the clot reaches the brain, heart, or lungs, it can lead to a
stroke, heart attack, or pulmonary embolism, respectively.
Here again the full potential of LBPD for medical purposes
cannot be understated, and a full-scale deployment of the
method in complex arterial networks should be considered.
As before the large spread of scales, the presence of multiple
agents, and the need for specialized solvers for chemical
reactivity calls for similar, if not more sophisticated, high-
performance techniques that push the computational limits to
their extreme.

VIII. PCB MODELING VERSUS BIG DATA SCIENCE

All throughout this review, we have advocated the meso-
scale physics-inspired modeling of complex phenomena at
the interface between physics, chemistry, and biology as a
promising avenue toward the ultimate goal of benefitting
medical science and clinical practice. Before concluding, it is
worth mentioning prospective connections of LBPD with the
current trend toward the use of large data and machine-
learning techniques in science. Putting aside the most aggres-
sive instances of large data (Anderson, 2008), which can be
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readily commented away (Coveney, Dougherty, and
Highfield, 2016; Hosni and Vulpiani, 2018; Succi and
Coveney, 2018), it is undeniable that data science, and notably
physics-aware machine learning (PAML), bears major poten-
tial to enhance the LBPD scenario. By PAML we refer to the
machine-learning scenario whereby neural networks are
designed in such a way as to incorporate physical constraints
directly into their architecture; see Karpatne et al. (2017) and
Raissi and Karniadakis (2018) and references therein.
We note in fact that, due to its inherent mesoscale nature,

LBPD will necessarily be exposed to increasing parametriza-
tions, as it proceeds toward enhanced biological fidelity. For
instance, PAML techniques could prove of great value in
automating the search of effective potentials providing an
optimal match to the desired biological properties, such as the
mechanical response of red blood cells (size, shape, stiffness,
etc.), so as to improve the description of their interaction with
tissue cells. More ambitiously, PAML could even help in
automating the choice of the relevant degrees of freedom
which characterize the mesoscale formulation of the problem,
thus helping to strike an optimal balance between computa-
tional efficiency and biological fidelity.

IX. SUMMARY AND PERSPECTIVE

The lattice Boltzmann method has undergone major
progress over the last decade, moving from an alternative
technique for solving Navier-Stokes hydrodynamics to a
versatile computational strategy to simulate complex states
of matter across many scales of motion, including microflows
and nanoflows of relevance to biological processes. This
quantum leap has been fueled by major advances of the LB
“technology” alone and by its successful coupling to particle
methods, i.e., the lattice Boltzmann–particle dynamics para-
digm illustrated in this review.
The lattice Boltzmann–particle dynamics paradigm has

given access to a new level of complexity in the description
of phenomena occurring at the physics-chemistry-biology
interface. In this review, we have focused our attention on
the possibility of reaching up to scales of direct relevance to
clinical applications, thus portraying the grand dream of a
mesoscale physics-based approach to precision medicine.
This grand dream has been illustrated through a series of
actual examples which, albeit not quite there yet, support the
expectation that, once Exascale computing is with us, the
dream will come true. The task is neither simple nor
straightforward, but its scientific and societal impact cannot
be overstated.
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APPENDIX: HIGH-PERFORMANCE LBPD COMPUTING

The LBPD paradigm described in the present review
connects two basic computational pillars, a lattice-
bound treatment of the fluid field with an off-lattice
handling of the discrete particle dynamics. Given the
markedly distinct nature of the associated data structures,
the optimal merge of these two components must neces-
sarily be realized through a careful trade-off between
the two. In this Appendix we provide an overview of
the main technical issues which concur to achieve such
compromise.

1. High performance simulations of particle dynamics

The computational requirements of PD simulations have
always limited their applicability to short time intervals, but
advances in parallel algorithms and special-purpose hardware
(GPU, FPGA, ASIC, etc.) have recently extended the scope of
such simulations to much longer time scales. The state-of-the-
art platform for high performance and parallel execution of PD
simulations is the Anton 2 system developed by DE Shaw
Research (Shaw et al., 2014). Anton 2 performs the entire PD
computation within custom ASICs that are tightly intercon-
nected by a specialized high-performance network. A key
component of the Anton 2 design is a set of new mechanisms
devoted to efficient fine-grained operations. The resulting
architecture exploits at its best the parallelism of PD simu-
lations, which fundamentally consists of a large number of
fine-grained computations involving individual particles or
small groups of them. By providing direct hardware support
for fine-grained communication and synchronization, Anton 2
allows these computations to be distributed across an
increased number of functional units while maintaining high
utilization of the underlying hardware resources. Fine-grained
operation is exposed to software via distributed shared
memory and an event-driven programming model, with
hardware support for scheduling and dispatching small
computational tasks. Anton 2 breaks the microsecond-
per-day barrier on million-atom systems, allowing larger
biomolecules such as ribosomes to be simulated for much
longer time scales.

2. Achieving high performance for lattice Boltzmann methods

In general the performance of the LB method on most
platforms is memory bandwidth limited, that is, the rate by
which the set of LB populations can be read off and written to
the memory is the main bottleneck. This issue and its
consequences can be understood looking at, for instance,
the widely used D3Q19 model in which there are 19
populations that need to be read and written twice from the
memory. Data are moved from or to memory once for the
collision phase and once for the streaming phase. If the size of
the memory word used to store each population is WS, then
4 × 19 ×WS bytes are moved for each point of the lattice.
The number of floating point operations depends on the
collision operator only (there are no floating point operations
during the streaming phase) but it is safe to assume that it
does not exceed 300 so, using single-precision floating point
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format (WS ¼ 4), the arithmetic intensity1 of the LB update
procedure is 300=4 × 19 × 4 ≃ 1. On virtually any modern
platform the number of bytes that can be moved from or to the
memory in a unit of time (e.g., in a nanosecond) is smaller that
the number of floating operations that the computing cores can
execute during the same unit of time (assuming that the
operands are available in the registers) so it is the memory that
limits the throughput also in the ideal situation in which the
access to the memory achieves its peak performance. The
performance of LB codes is typically given in terms of
millions of fluid nodes updates per second (MFLUPS). On
a platform with a memory bandwidth Bmax, the peak perfor-
mance in MFLUPS is

PMFLUPS ¼ Bmax

4 × 19 ×WS × 106
.

However, to alleviate the problem of the memory bandwidth
several variants of the LB method have been proposed. One of
the most widely used is the so-called fused implementation, in
which the collision and the streaming phases of the LB update
are combined in a single procedure that either reads the
populations from the source locations and collides them
(prestream) or collides them and stores the result directly to
the target locations (poststream). The advantage is that the
populations are read from and written to the memory just once
for each time step.
In this way the achievable peak performance doubles.

A fused implementation increases the complexity of the
code (and, most of the times, the memory requirements).
Unfortunately, the actual performance may be significantly
lower than PMFLUPS since the memory bandwidth is hardly
exploited at its best due to the memory access pattern of the
LB method. The situation is the same for any platform (i.e., a
general purpose CPU or an accelerator) but the techniques to
improve the situation, that is to reach a higher percentage of
PMFLUPS, strongly depend on the features of the memory
hierarchy and on the programming model. For instance, there
are several alternatives for the data layout of the populations in
memory. It is possible to store all populations of a single
lattice point close to each other in a data structure containing
19 floating point values. The populations of all lattice points
will form an array of structures (Fig. 22) that can exploit the
data-locality principle of cache-based memory hierarchies like
those found in a general purpose CPU. However that layout
prevents one from exploiting vector instructions available, for
instance, on Intel CPU, because populations of different mesh
nodes are stored in noncontiguous memory locations. For this
reason, especially on accelerators like the Nvidia GPUs, a
different layout, in which each population is stored in a single
array and the whole data set of populations forms a structure
of arrays, must be used so that neighboring threads access
contiguous memory locations according to a principle of
thread locality. Many studies have been carried out, some
of them in the recent past, proposing variants in the usage of

these two data layouts with special attention to the Nvidia
GPUs which expose a complex memory hierarchy to the
explicit control of the programmer. Although their main
purpose is the optimization of the LB update, those works
provide useful indications to enhance the performance of other
procedures, like those for the solution of PDE, that need to use
3D stencils to access data.
Recently, new technologies promise a significant boost in

performance for any memory bandwidth-limited application,
including the LB method. In particular, multidimensional
memory-processor interfaces provide a much higher band-
width. Preliminary tests with a recent generation Nvidia GPU
card (featuring the so-called Pascal GPU architecture) that
offers a memory bandwidth up to 720 Gbytes=s show an
improvement of the LB performance of a factor of 3 with no
change in the source code.
As mentioned several times in this review, the populations

update procedure of the lattice Boltzmann method is suitable
to parallel processing and usually achieves good efficiency on
shared memory systems. The only drawback is that a parallel
fused implementation requires a double memory buffer for
storing the populations: at each iteration, one of the buffers is
used as a source of the populations and the other as a target; at
the end of the iteration the role of the two buffers swaps.
Actually, following a tricky ordering, the collision and
streaming phases could be carried out without requiring a
double buffer but only with a serial update procedure. As a
consequence, a parallel implementation of the fused procedure
for the D3Q19 model requires, at least, 19 × 2 ×WS bytes of
memory for each lattice site (actually more, because memory
is required also for the hydrodynamic variables, i.e., density,
velocities, etc.) so that large-scale simulations may not fit in
the memory of a shared memory system. In those cases or
simply for reducing the simulation times by exploiting many
more computing resources, it is necessary to resort to a
distributed system with multiple computing nodes. We discuss
the main issue of that approach in Sec. A.3.

3. Overlap between computation and communication

Exascale computing platforms will very likely be based
on super clusters of powerful computing nodes, possibly
equipped with accelerators like GPUs. A general and detailed

FIG. 22. CPU vs GPU optimal data layout. Row major ordering
is assumed for storing multidimensional arrays in memory
(typical of C and C++ languages). AoS stands for array of
structures; SoA stands for structure of arrays.

1The arithmetic intensity of a numerical procedure is defined as
the ratio between the number of floating point operations and the
number of bytes moved from or to the memory.
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discussion of the challenges posed by the efficient exploitation
of such platforms is beyond the scope of the present work;
however, at least one specific issue, related to the scalability of
large-scale LBPD simulations, deserves to be mentioned,
namely, the need of overlapping the computation and the
communication stages of the LB algorithm, so as to “hide” the
overhead of the latter behind the former.
When more than one computing node (CN) is available for

the simulation of a system, it is quite natural to apply a domain
decomposition. With this approach, each computing node is
responsible for a subset of the whole mesh. Here we assume
that the domain has a regular geometry postponing the
discussion of irregular and/or sparse geometries to
Sec. A.4. When NCN are available, each CN i needs to know
for the update of the nodes in its own boundaries, the value of
variables belonging to the nodes in the boundaries of its
neighbors, so, at each iteration, it must (assuming a simple
one-dimensional domain decomposition and periodic boun-
dary conditions)

(1) Send data belonging to the points of its bottom
boundary to CN ði − 1Þ%NCN.

Send data belonging to the points of its top
boundary to CN ðiþ 1Þ%NCN.

(2) Receive data sent by CN ði − 1Þ%NCN.
Receive data sent by CN ðiþ 1Þ%NCN.

(3) Update data belonging to the nodes of its subdomain i
(both bulk and boundaries).

That “naive” scheme is represented in Fig. 23(a). We define it
as naive because computation and communication are carried
out one after the other whereas they can be overlapped to a
large extent when accelerators are used for the computation.
We now briefly describe how the overlap works for one of the
most common accelerators in use at the present time.

a. Effective multi-GPU CUDA programming

CUDA, the programming environment of the Nvidia GPU,
supports concurrency within an application through streams
(Cuda C, 2019). A stream is a sequence of commands that
execute in order. Different streams, on the other hand, may
execute their commands out of order with respect to each
other or concurrently. By using two streams on each GPU it is
possible to implement the following scheme that assigns one
stream to the bulk and one to the boundaries of the LB
domain:

(1) Starts to update the boundaries by using the first
stream.

(2) First stream:
• copy data in the boundaries from the GPU to the CPU;
• exchange data between nodes by using message
passing interface (MPI);

• copy data in the boundaries from the CPU to the GPU.
(3) Second stream:

• updates the bulk.
(4) Starts a new iteration.

The overlap with this scheme, also shown in Fig. 23(b), is
between the exchange of data within the boundaries (carried
out by the first stream and the CPU) and the update of the
bulk (carried out by the second stream). The CPU acts as a
data-exchange coprocessor of the GPU. Nonblocking MPI

primitives should be used if multiple CPUs are involved in the
data exchange.
Recently, Nvidia announced NVLink, a new high-speed

interconnect technology for GPU-accelerated computing.
Supported on SXM-2 based Tesla V100 accelerator boards,
NVLink significantly increases performance both for GPU-to-
GPU communications and for GPU access to system memory.
Programs running on NVLink-connected GPUs can execute
directly on data in the memory of another GPU as well as on
local memory. That feature should further improve the
scalability of LBPD simulations running on large clusters
of GPUs.

4. Sparse and irregular geometries

A number of LB applications may use regular and dense
geometries for which domain decomposition is, most of the
time, straightforward (e.g., a uniform decomposition along
one, two, or three directions). However, in biofluidics, soft
matter, or porous media simulations the geometry is often
neither regular nor dense. In those situations it is not possible
or, at least, it is a waste of memory to store LB populations in a
simple, regular multidimensional data structure whose size
would be proportional to the bounding box of the domain. It is
much more convenient to follow other approaches for storing
only the minimal set of populations required for the simulation
of nonsolid nodes of the mesh. In the present section we
describe two possible alternatives.

a. Indirect addressing

The first solution relies on a linearized indirect addressing
scheme (Dupuis and Chopard, 1999; Schulz et al., 2002).
Each node of the LB lattice is labeled with a tag that identifies
it as belonging to a specific subregion of the computational
domain (i.e., fluid, wall, inlet, outlet, or solid). Mesh nodes

FIG. 23. Communication schemes: (a) with no overlap between
communication and computation and (b) multi-GPU scheme
using two streams.
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may be grouped according to their features in several one-
dimensional arrays, so that there is an array of fluid nodes, an
array of wall nodes, an array of inlet nodes, etc., with the
exception of solid nodes that do not need to be stored at all
since they refer to inactive regions of the domain.
As a consequence, homogeneous nodes (i.e., all fluid

nodes, all wall nodes, etc.) are contiguous in memory
regardless of their geometrical distance. This type of data
organization requires, for each node, an additional data
structure (connectivity matrix) that contains the list of all
positions, within the previous mentioned one-dimensional
arrays, of its neighboring nodes; see Fig. 24 for a simple
2DQ9 case.
With this approach only the nodes playing an active role in

the lattice Boltzmann dynamics need to be accessed and stored
in memory, resulting in a large savings in storage require-
ments, despite the additional data structure (Axner et al.,
2008), for most nontrivial geometries. An indirect addressing
scheme allows one to support very flexible domain decom-
position strategies, a fundamental requirement for a good load
balancing among computational tasks. For instance, the
MUPHY code (Bernaschi et al., 2010) supports all possible
Cartesian decompositions (along X, Y, Z, XY, XZ, YZ, XYZ)
and custom decompositions, e.g., those produced by graph or
mesh partitioning tools like METIS(MET) or SCOTCH(SCO),
which are necessary for distributing the computational load
in an even manner in the case of very irregular domains.
Those graph-based procedures utilize, most of the time, a

graph bisection algorithm that is completely unaware of the

geometry of the computational domain. However, the lack of
geometrical information degrades the quality of the partition-
ing as the number of partitions increases, in which case the
subdomains reduce to highly irregular shapes with large
contact areas between subdomains and large communication
loads. A possible solution is to combine the graph-based
partitioning with a flooding-based approach (also known as
the graph-growing method) according to the following pro-
cedure: the mesh is first partitioned, in a given number of
subdomains (e.g., 256). If the mesh needs to be partitioned in a
finer number of parts, say 256 � P, with P an integer ≥ 2, then
each of the 256 domains is further divided according to the
following flooding scheme: starting from a seed mesh point, a
region is iteratively grown in an isotropic way until the
number of mesh points equals Ni=P (with Ni being the
number of mesh point in the ith original partition). As the
condition is met, the visited mesh points are assigned to a
computational resource. Subsequently, a new growth pro-
cedure starts from a new seed until all points in the subdomain
are assigned to a new computational resource. Bernaschi et al.
(2011) showed how the distribution of tasks versus the
number of neighbor tasks with which they exchange data
tends, for a large number of tasks, to stabilize instead of
increasing up to much higher values as would happen with a
pure graph-based partitioning approach.

b. Tiling and blocking

Another possible solution is to “tile” the sparse geometry
using much smaller (with respect to the original domain size)
regular, square, or cubic (depending on the dimension of the
original domain) tiles (Tomczak and Szafran, 2017). One of
the advantages of the tiling is that during a single LB
iteration, the tiles can be processed independently and in
any order provided that values at the tile edges are correctly
propagated. Moreover, the update of each square or cubic tile
can be carried out according to the simple addressing scheme
used for the case of regular geometries. However, a tiling
procedure also introduces some overheads due to the
presence of solid nodes inside tiles and additional memory
requirements for saving information about tiles placement.
An interesting variant of this approach has been described by
Feichtinger et al. (2011) where a given geometry is divided
using a hierarchical structure of “patches” composed of
“blocks.” For sparse geometries, empty blocks can be
removed reducing memory usage and computational com-
plexity. Blocks correspond to leaves in a distributed forest of
octrees2 and are quite sophisticated data structures designed
rather for efficient multiprocessor implementations, where
load balancing and communication may affect performance.
This approach quite naturally supports grid refinement
procedures; however, the load balancing may suffer from
the granularity of the blocks.

FIG. 24. Organization of mesh nodes according to the indirect
addressing scheme for an irregular domain. (a) In the D2Q9
scheme, red (dark gray) squares correspond to fluid regions and
green (light gray) squares to wall regions. Inactive nodes are in
white and are not numbered since they are not stored in memory.
Entries in the connectivity matrix are shown for fluid node 9.
(b) Indirect addressing on the GPU for a 3D case. Each GPU
thread handles a subset of fluid nodes and a subset of populations.

2An octree is a tree data structure in which each internal node has
exactly eight children. Octrees are most often used to partition a
three-dimensional space by recursively subdividing it into eight
octants.
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c. Parallel particle dynamics in irregular domains

Multiple techniques for parallel particle dynamics have
been suggested over the years. In particular, PD has now
reached a good degree of efficiency when dealing with regular
geometries. However, in the presence of highly irregular
domains, such as those found in biofluidic devices or in
physiological conduits, several critical issues arise related to
the calculation of forces and migration of particles among
subdomains. For instance, irregular subdomains imply irregu-
lar contact surfaces and, in principle, irregular communication
patterns. The geometrical tests for particle ownership and the
exchange of particles among domains requires strategic
decisions that affect the efficiency of stand-alone PD as much
as the LBPD multiphysics applications.
The first general solution to those problem was presented

by Bisson, Bernaschi, and Melchionna (2011). The proposed
method relies on two basic notions: proximity and member-
ship tests. Those tests are used to discriminate particles
according to their position relative to the geometry of the
domains. Proximity tests are used to select the particles that
have out-of-domain interactions and are used to perform
interdomain forces computation. The membership tests regard
the assignment of particles to domains and exploit a tracking
method to associate particles position to the domains mor-
phology. Moreover, the critical regions around the contact
surfaces of the subdomains are approximated so that it is
computationally simple to find a superset of the particles
located inside those regions and to apply the tests only to those
particles. This is possible by covering each subdomain with
identical box-shaped cells.
There are several other issues that deserve attention in the

design and implementation of large-scale LBPD based sim-
ulations. However, for brevity, here we just mention them:
(i) whether it is better to use only accelerators to run the
simulation leaving the CPU as a sort of communication and
I/O coprocessor of the accelerators or if it makes sense to
develop hybrid codes running the LBPD code on both the
CPU and the accelerators; (ii) whether it is actually possible to
develop portable LB high-performance codes by using direc-
tive-based software; and finally, (iii) how to implement some
form of fault tolerance within the LBPD, so as to secure
prompt and error-free recovery from hardware or software
failures in multimillion and possibly billion-core computing
environments.
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