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Atoms and molecules adapt to their environment through a rich hierarchy of electronic responses.
These include dipolar many-body polarization contributions arising in the classical limit, many-body
polarization beyond dipole order, as well as pair and many-body dispersion interactions and cross
interactions at all orders arising from multipolar quantum fluctuations. Such fundamental phenomena
give rise to emergent behavior across the physical and life sciences. However, their incorporation in
simulations of large complex systems faces significant challenges as these are intrinsically many-
body phenomena. Here the impetus for and development of a new class of molecular model
employing embedded quantum Drude oscillators (QDO) as a coarse-grained but complete
representation of electronic responses at long range within Gaussian statistics is given. The resulting
level of completeness in physical description enables isolated molecule properties to define model
parameters, thereby eliminating fitting to condensed phase data. This provides a physical and intuitive
basis for predictive, next-generation simulation wherein all long-range diagrams emerge naturally
from the model permitting the study of complex systems in novel environments. The model is derived
from a many-body Hamiltonian and would afford no advantage without an OðNÞ scaling, strong
coupling solution to avoid artificial truncation from perturbation theory and associated multipolar
expansions which is possible due to the model’s Gaussian structure. A scalar field theory and path
integral form of the QDO Hamiltonian cast in such a way as to generate a strong coupling solution to
the coarse-grained electronic structure are presented. Forces can be generated “on the fly” using
modern adiabatic molecular dynamics methods with linear compuational complexity. Thus, the
approach is applicable to large condensed phase systems at finite temperature and pressure. Example
applications and future perspectives are presented for key physical systems such as the phase diagram
of water from ice to the supercritical regime.
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I. INTRODUCTION

We begin by describing the fundamental challenges pre-
sented by intermolecular forces in condensed phase systems.
We then propose and develop a solution based on a strong
coupling solution of a model within Gaussian statistics to sum
diagrams to all orders and allow high accuracy modeling of
complex systems in nontrivial environments.

A. The origin of intermolecular forces

Atoms and molecules are composite objects consisting of
localized heavy nuclei and delocalized light electrons which
when assembled form complex charge distributions. Indeed, the
rich phenomenology of intermolecular interactions emerges
from this simple picture: The application of quantum theory to
atoms andmolecules (Heitler and London, 1927) quantified the
phenomenology and led to an in-depth understanding. Within

the adiabatic limit or the Born-Oppenheimer (BO) approxima-
tion (Born andOppenheimer, 1927), the province of this review,
the Hellmann-Feynman theorem (Hellmann, 1937; Feynman,
1939) formally defines the prescription for determining inter-
molecular forces. Given the electron distribution on a single
electronic surface within an assembly of molecules at some
instant via the solution to the coupled electron-nuclear
Schrödinger equation (i.e., in the adiabatic limit), the forces
follow as analytic derivatives of the potential averaged over the
electron distribution.
The consequences of connecting quantum theory to

assemblies of atoms and molecules are far reaching. The
time evolution of complex molecular systems under the
action of such forces is governed by the classical mechanics
of Newton and Hamilton (Goldstein, Poole, and Safko,
2001) or for light atoms, by the nuclear Schrödinger
equation, with statistical properties available via the seminal
work of Gibbs (1902). These properties can then be
compared with and validated by experimental results as a
test of the underlying model, thereby closing the loop.
Importantly, such an approach allows us to understand how
molecular properties and motion affect the behavior of
condensed phases as well as to predict the properties of
materials not yet experimentally synthesized.
In practice, however, exact solutions to the Schrödinger

equation, even within the Born-Oppenheimer approximation,
are not available for large systems. In fact, it could easily be
argued that the “electronic structure problem” has been the
most intensively investigated issue in 20th century condensed
matter physics and theoretical chemistry as recognized by the
Nobel Prize awarded jointly to John Pople and Walter Kohn
(Kohn, 1999; Pople, 1999). Their efforts and those of others
have led to the development of various approximate methods
that retain elements of the essential physics at reduced
computational cost.
In order to make progress, intermolecular forces are

usually decomposed into a physically motivated hierarchy
(Buckingham, 1967; Gray and Gubbins, 1984; Stone, 2013).
This begins with the choice of reference system components,
atoms, ions, and molecules, assuming here nonchemically
reactive species. Forces arising from static charge distribu-
tions of the isolated components from monopoles to dipoles
(giving rise to Keesom interactions) and higher-order multi-
poles. These forces are substantially modified by various
forms of many-body electronic redistribution, i.e., from
induced dipoles (Debye forces), a classical effect as well
as induced higher-order multipoles. Furthermore, correlated
quantum fluctuations of the electronic structure at the two-
atomic center limit yield at second order the London
dispersion interaction (induced dipole–induced dipole),
which can be extended to many-body levels and higher
multipolar interactions. On the other hand, short-range
interactions arising mainly from exchange repulsion can
typically be treated accurately at the pair level (Stone, 2013)
except at high pressures or in complex ionic solids or salts
(Madden and Wilson, 1996).
Although weaker than intramolecular chemical bonds

which we consider as fixed in this review, the wide spectrum
of long-range intermolecular forces is responsible for the
stability of liquid phases, self-assembly, supramolecular
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complexes, physisorption, as well as many other phenomena
in biological and soft condensed matter systems. Often,
simulation strategies involve a priori decisions as to which
of these interactions are to be included or neglected in a
particular instance. This step, which truncates the interaction
hierarchy at certain order, compromises the predictive power
of the conceptual advances given by the connection of
quantum or classical statistical mechanics and electronic
structure. Moving beyond this point requires understanding
the nature of intermolecular forces and the physical principles
underlying them, thus facilitating the development of simple
yet rich models that can be solved nonperturbatively and
subsequently employed to quantitatively interrogate complex
systems without an a priori bias due to choice of truncation
scheme. This sets high targets for new and improved models
with fewer assumptions and expanded ranges of validity
motivated by faster computers coupled to more efficient
methods that permit facile sample phase space exploration.
Here we review recent advances in intermolecular forces for
nonreactive systems that do not involve charge transfer on the
ground state Born-Oppenheimer surface.

B. Challenges in modeling complex soft condensed matter at the
molecular scale

1. Fundamental compromises

Despite steady progress in computational power and phase
space exploration methodology, in atomistic scale simulation
inevitable trade-offs exist between the completeness of the
description of interactions and the accessible time and length
scales. Different requirements have driven the evolution of
several distinct strategies which handle intermolecular forces
at various levels of detail as illustrated in Fig. 1.
The lowest order description of molecular interactions at

long range is the Coulomb interaction between molecules with
noninteracting molecular species forming the reference sys-
tem (Gray and Gubbins, 1984). The standard approach to
model an isolated molecular charge distribution is to assign
“point charges” to sites in the molecular frame as follows:
Consider two atoms with different electronegativity (Pauling,
1960) forming a covalent bond. The resulting valence electron

distribution will be asymmetric and in localized areas sur-
rounding the nuclei there will be a shift in electron density
resulting in the assignment of partial charges: for two atoms a
partial negative and a partial positive charge. Since molecules
can have moments higher than a dipole moment, more partial
charges can be assigned to various sites. More advanced
methods to capture the charge density include distributing
multipole moments in the frame (Millot and Stone, 1992;
Stone, 2013) and utilizing bond charges (Kaminski et al.,
2002). We note that the fitting procedure can become ill posed
for large molecules due to uniqueness problems in the
mapping which can be circumvented by fitting fragments
and allowing more complex interactions, polarization, etc., to
redistribute the charge in the larger entity. This approach
follows from the discussion of condensed systems consisting
of small molecules given next.
In condensed phase systems containing interfaces and

involving strong field gradients, the electrons surrounding
molecular moieties redistribute (polarize) in response to the
local environment affecting the electric fields of neighboring
molecules (Gray, Gubbins, and Joslin, 2011). All materials are
polarizable to some extent: A particularly well-known exam-
ple is the strong enhancement of the dipole moment of the
water molecule on moving from gas (1.85 D) to liquid phases
(≈2.7 D), polarization in the dipole limit, which arises in the
classical limit at second order in perturbation theory. Thus, the
first order description utilizing the isolated molecular limit for
the charge distribution can fail badly here. In general, and as
we will see later, polarization modifies all electrostatic multi-
pole moments with the responses determined by a series of
well-defined, higher-order polarizabilities. A mean-field
approach can be adopted where electrostatic moments of
the constituent moieties are adjusted for the condensed phase;
however, this limits transferability and fails at interfaces (e.g.,
between two media) where the “mean,” as characterized by the
bulk environment, is not a good approximation. Furthermore,
polarization induced between two molecules is affected by the
presence of others. Thus, polarization is fundamentally a
many-body phenomenon which cannot be fully described
within the pairwise approach (Martyna and Berne, 1988,
1989; Stone, 2013) although mean-field approximations can
be made as discussed herein.

FIG. 1. Simulation methodologies arranged according to the time scales and length scales which they sample. This image focuses on
electronic coarse graining occupying the range between so-called ab initio and classical molecular dynamics methods. From Cipcigan
et al., 2016.
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Dispersion interactions have no classical origin. They are
quantum mechanical phenomena arising from correlations
between spontaneous electron density fluctuations. These
include pairwise induced dipole–induced dipole interactions,
which give rise to the familiar pairwise 1=R6 interaction of
London (1937) again arising at second order in perturbation
theory. However, higher-order fluctuations generate a full
dispersion series (induced dipole–induced quadrupole, etc.)
at the pair level. Since dispersion interactions arise from long-
range correlations, they too are inherently many-body and
nonpairwise as recognized in the dipole limit independently by
Axilrod and Teller (1943) and Muto (1943), the well-known
Axilrod-Teller-Muto (ATM) three-body dispersion term.

2. The need for new strategies

The inherent compromise between completeness of the
physical description and accessible time and length scales
means that the study of large, complex systems requires using
highly simplified models which may not capture the funda-
mental interactions responsible for emergent behavior. Often
this means taking mean-field classical models to treat elec-
tronic responses even for systems possessing highly polar-
izable entities and nontrivial interfaces.
In more detail, atomistic models of biological and materials

systems are typically described via a force law with fixed
functional form. Many approaches within this class of model
include only pairwise electrostatic interactions between partial
charges and pairwise van derWaals forces with parameters fit to
data at some particular set of reference conditions, treating
electronic responses within mean field (Oostenbrink et al.,
2004;Wang et al., 2004;Vanommeslaeghe et al., 2010). That is,
all explicit polarization responses and many-body dispersion
effects are neglected as are all contributions from higher-order
terms in the dispersion series not captured well by mean-field
theory. As alluded to above, aspects of these neglected inter-
actions are represented in an average, mean-field sense by
treating the charges and molecular geometry as adjustable
parameters manipulated to match a set of reference properties
that may or may not match the actual molecular state in the
media. However, this procedure may produce significant dis-
tortion ofmolecular properties from their gas phasevalues if, for
example, parameters are tuned to fit certain features of the liquid
state. As an illustration, the molecular dipole moment of the
TIP4P=2005 model of water (Abascal and Vega, 2005) is
2.305 D across the entire phase diagram leading to poor
predictions of dielectric properties away from the fitting regime.
A key question, common to all empirically derived poten-

tials, concerns the notion of transferability which we have
presaged in the previous discussion: The extent to which the
physics incorporated in a model applies outside the training
conditions of parametrization or even depicts the true origin of
system properties within the fitting window. Current appro-
aches, based on multiparameter fitting, may obscure the
physical origins of transferability or of its failure modes, in
particular, circumstances.
In order to address this key question, upon which this review

centers,wewill explore inmoredetail the physical origins behind
transferability and its breakdown in simplified treatments. We
will develop the rationale for efficient, predictive models at the

molecular scale with complete electronic responses, reduced
reliance on empirical input from the condensed phase, and the
prospects for vastly improved transferability and predictive
value, including the ability to observe emergent phenomena
and elucidate the essential physics underlying it.
We review here a new class of molecular model for materials

simulation containing a more complete description of the
physical interactions than has been heretofore possible for
large systems: The collective electronic responses are
described by a set of charged oscillators embedded in the
molecular frame, extending and adapting the work of Drude
and Lorentz in the classical limit and London’s in the quantum
mechanical regime for noble gases. That is, a coarse-grained
model within Gaussian statistics in which the electronlike
particles are bound harmonically to sites within molecular
frames. Mathematically, the on-site terms of the many-body
Hamiltonian are simplified, preserving the full off-diagonal
couplings, such that the model can be treated nonperturba-
tively. It has been shown that the model exhibits the full
hierarchy of electronic responses at long range assuming the
reference system of isolated molecules (moieties) does not
undergo long-distance charge transfer (Jones, Crain, Sokhan
et al., 2013;Cipcigan et al., 2016). Polarization to all orders can
be induced by external fields (or fields arising from interfaces in
the media itself) and zero-point fluctuations lead naturally to
the full dispersion series, including many-body effects. Of
course, the description will fail to describe some interactions or
will not be able to achieve ab initio accuracy asmust be the case
for a model within Gaussian statistics, where sum rules which
are only approximately obeyed by the real system of interest
arise. However, we shall see that when solved nonperturba-
tively in strong coupling, including the whole hierarchy of
responses, it can capture condensed phase behavior remarkably
well (Sokhan et al., 2015b), delivering a key message of
theoretical physics over the last six decades. That is, a rich
albeit simplified model solved in strong coupling (i.e., terms to
all orders) is significantly more predictive and powerful than a
perturbative approach wherein key interactions are neglected
by choice of the modeler (i.e., through the order and/or
symmetry of the selected truncation scheme). In the context
of Fig. 1 this approach occupies a previously vacant space
between the ab initio methods commonly used in materials,
molecular and biomolecular simulation, and force-field driven
all-atom molecular dynamics.

II. LONG-RANGE ELECTRONIC RESPONSES OF ATOMS
AND MOLECULES: ELECTROSTATIC, INDUCTIVE, AND
DISPERSIVE EFFECTS

A. Many-body intermolecular forces and the emergence of
natural length scales

1. Adiabaticity: Decoupling of nuclear and electronic motion

The natural interaction-length scales which arise in atomic
and molecular systems are rich and multimodal. An obvious
fundamental scale is set by atomic size—the distance between
nuclei and some measure of the diffuse boundary of the
valence electron shell. A closely related concept is the van der
Waals radius, defined from the closest approach distance
between two atomic species which make contact but are not
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chemically bound, typically wherein exchange repulsion
effects become large.
Figure 2 illustrates a highly schematic representation of

interactions between charge distributions. The “nuclei” (A and
B) may refer to atoms or molecules with the position of two
arbitrary electrons denoted as 1 and 2.
Of course, molecules evolve as a result of translation,

rotation, and internal vibrational degrees of freedom driven
either classically at higher temperature or quantum mechan-
ically at lower temperature. However, the large mass disparity
between nuclei and electrons means that the nuclear motion is
much slower than electronic time scales in many circum-
stances of great interest in condensed phase molecular
physics. Therefore, the electronic system sees a slowly
varying nuclear potential which it can follow while remaining
in its many-body ground state for any instantaneous nuclear
configuration. It is analogous to the situation of a particle in a
box for which the wave function remains in the ground state if
the box dimensions are expanded gradually. This is the
fundamental concept of adiabatic separation. In this context
it means that there is no energy exchange between the nuclear
and electronic subsystems thereby making contact to the
thermodynamic notion of an adiabatic process. In dynamical
systems which can be separated into slow and fast time scales
the BO approximation allows for determination of energy
eigenvalues where the slow degrees of freedom are deemed
fixed. These considerations permit decoupling of the elec-
tronic and nuclear motion: We can then define a ground state
electronic energy for each fixed nuclear configuration to map
out the ground state BO potential energy surface. This is a
statement of the physics underlying a many-body wave
function of the form

Ψðr;RÞ ¼
X
n

X
k

cnkψnðr;RÞχnkðRÞ;

Ĥelðr;RÞψnðr;RÞ ¼ ϵnðRÞψnðr;RÞ;
½ĤNNðRÞ þ ϵnðRÞ�χnkðRÞ ¼ EnkχnkðRÞ;

Ĥel ¼ − ℏ2

2me
∇2

R þ VeNðr;RÞ þ VeeðrÞ;

ĤNN ¼ −
ℏ2

2mN
∇2

R þ VNNðRÞ; ð1Þ

where r and R denote electronic and nuclear degrees of
freedom, correspondingly, and electronic and nuclear
Hamiltonians are defined in the last two lines. For simplicity,
the nuclear masses are represented by a single scalar. In the
adiabatic limit, the ψnðr;RÞχnkðRÞ become pure eigenstates
with eigenvalue Enk. Strictly, there is a family of such
potential energy surfaces corresponding to ground state and
excited electronic levels as shown in Fig. 3. However, here we
concentrate on conditions wherein only the ground state
surface is populated (zero electronic temperature).
If the nuclei can be treated classically and only the

electronic ground state is occupied with nonzero probability,
the force law is derived from the potential formed by
VNNðRÞ þ ϵ0ðRÞ, the ground state BO surface, and the
principles of classical statistical mechanics can be applied
to study such systems. Similarly, in the limit the nuclei are
light, quantum statistical mechanics can be applied on a single
electronic surface, the χ0kðRÞ given occupancy derived from
the statistical mechanical ensemble of interest. When the
BO approximation breaks down, multiple electronic sur-
faces couple and a full quantum treatment or approximate

FIG. 2. Illustration of short- and long-range regimes determined by electron wave function overlap (a). Top left panel: The internuclear
separation is assumed large compared to atomic dimensions resulting in negligible electron density overlap. The electrons (1 and 2) are
therefore distinguishable particles. The relative electron-nuclear charges, positions, and polarizations result in electrostatic, inductive,
and dispersive interactions. Short range is defined as the regime of electron overlap. Here electrons are indistinguishable and are
described by antisymmetric wave functions and the emergence of exchange repulsion (in addition to classical electron-electron and
internuclear repulsion). (b) A generic intermolecular potential separated into aggregate attractive and repulsive components.
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semiclassical methods can be brought to bear as reviewed
elsewhere (Tully, 2012) and not discussed further herein.

2. Many-body effects and the Born-Oppenheimer surface

Since our objective is to reach long length and time scales in
simulation studies, the BO surface must be described via a
computationally efficient approximation which yet retains the
essential physics of the intermolecular interactions. With this
aim, various strategies at different levels of physical realism
are presently employed in large scale atomistic simulation.
However, the basic ingredients are uniformly similar: Nuclei
repel each other; electrons are attracted to nuclei and are
repelled by other electrons. This has been essentially captured
by seminal early work on the hydrogen molecule and the
hydrogen molecule ion—arguably the first applications of
quantum mechanics to a molecular system (Heitler and
London, 1927; James and Coolidge, 1933).
In principle, the ground state BO electronic wave function

ψ0ðr;RÞ encodes all the information required to create forces
derived from effects such as electrostatic multipole moments,
polarizabilities, dispersion, and short-range repulsion at fixed
nuclear position to all orders. The physical decomposition
and hierarchy with which we are familiar arises from
perturbation theory as emphasized above. According to the
Hellmann-Feynman theorem, in the adiabatic limit, F ¼
−hψ0ðr;RÞj∇RĤeljψ0ðr;RÞi −∇RVNNðRÞ.
As previously stressed, it is difficult to create a highly

accurate BO surface from first principles and typically a
reference of noninteracting molecules is adopted. Within this

approach, as we explore in the next sections, some contribu-
tions to the interaction energy emerge from permanent
electrostatic interactions (pairwise additive) between the fixed
reference states whereas others arise only because the elec-
tronic structure is responsive (polarizable) exhibiting many-
body correlations (which are not pairwise additive). This
motivates the idea of separating intermolecular interactions
between N molecules into a sum having the general structure,

VðRÞ ¼
XN
i<j

V2ðRi;RjÞ

þ
XN
i<j<k

V3ðRi;Rj;RkÞ þ ðhigher ordersÞ: ð2Þ

The above decomposition arises naturally from perturbation
theory around the reference system, as in the virial expansion
of the equation of state for a homogeneous fluid (Hansen and
McDonald, 2013) which measures (as powers of the density)
progressive deviations in the pressure p of a gas from
ideal (noninteracting) case at temperature T according to
βp ¼ ρþ B2ðTÞρ2 þ B3ðTÞρ3 þ � � �, where β ¼ 1=kBT.
Historically, the virial expansion provided direct evidence
for the impact of the three-body interactions which challenge
atomic and molecular simulation even now.
The virial expansion depends on the range and many-body

character of interactionswhere thevirial coefficientsBn are each
related to the terms (Vn) which appear in Eq. (2) corresponding
to pair (Vn¼2), triplet (Vn¼3), and higher n-tuplet contributions.
In practice, it is far from straightforward to extract specific terms
in the many-body expansion: Experiments measure all many-
body terms and model pairwise potentials are normally fit to
condensed phase data and therefore incorporate, to some extent,
mean-field effects of the many-body terms at some particular
thermodynamic state point (Sadus, 2002). In general, we note
that only Coulomb interactions can be described without
approximation by potentials of the V2 type; inductive and
dispersive effects require approaches beyond the pairwise-
additive approximation.

3. Separation of interaction length scales

If the A and B atoms or molecules of Fig. 2 are charged, the
familiar Coulomb interaction will dominate—the electrostatic
interaction with the longest range. If there are no net charges
but permanent asymmetric charge distributions occur we will
have dipole (or motionally averaged Keesom forces) or
higher-order multipole interactions. The charge or polarity
of one molecule will also influence another, leading to
induced interactions. Finally, since quantum mechanical
charge fluctuations are present in all atoms and molecules
they lead to attractive dispersion (London forces and higher-
order effects attenuated by r−n, n ¼ 6; 8; 10;…for spherical
centers). Some examples of these forces are presented
in Fig. 4.
When two atoms or molecular species approach sufficiently

closely, a new phenomena emerges—exchange repulsion. For
example, within a single particle picture of closed shell
systems, the Pauli exclusion principle prohibits further

FIG. 3. Accurate forces can be computed from the Hellmann-
Feynman theorem when the trajectory remains close to the
ground state Born-Oppenheimer surface ϵ0ðRÞ. Nonadiabatic
excitations to higher electronic states are negligible (as assumed
in the BO approximation) as long as jϵ1ðRÞ − ϵ0ðRÞj ≫ kT is
satisfied.
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occupancy of the lowest occupied reference states upon close
approach. To produce overlap some electrons must be
promoted to unoccupied states (of the reference state); there-
fore electron overlap produces overall a steep increase in
energy at very short range. More formally, in the overlap
region, where the concept of polarizing the charge distribution
within a tight binding picture breaks down, the electrons
extend over both molecules. As the wave function must be
antisymmetric under particle exchange, the effect is extra
repulsive energy (over what would occur for bosons) called
exchange repulsion.
For a two-electron system in which α and β denote distinct

sets of atomic quantum numbers including spin (n, l, ml, ms)
the antisymmetric linear combination of single particle prod-
ucts takes the form

Ψð1; 2Þ ¼ 1
2
½ψαð1Þψβð2Þ − ψαð2Þψβð1Þ�: ð3Þ

This has the property that Ψð1; 2Þ ¼ −Ψð2; 1Þ and can be
generalized to N—electron systems with the use of Slater
determinants (Stone, 2013). It is evident that in the case where
the two quantum states are identical (α ¼ β) the wave function
vanishes. This is the essence of the Pauli exclusion principle
which precludes multiple occupation of quantum states and
leads to an additional effective exchange repulsion which
arises from the antisymmetry requirement of the two-particle
wave function in addition to the electronic charge. The
resulting interaction energies are described by two terms:
First, the Coulomb integral hψ ið1Þψ jð2Þjr−1ij jψ ið1Þψ jð2Þji
which represents the classical electrostatic repulsion between
two interacting charge densities. In addition, the antisymmetry
requirement for the wave function (or Slater determinant)
produces an additional contribution—the exchange integral

hψ ið1Þψ jð2Þjr−1ij jψ jð1Þψ ið2Þji, which has no classical
counterpart.
These considerations therefore lead to a natural separation

of interaction range into two basic parts: The short-range
regime is defined as the region of close approach between two
interaction sites where electron density overlap and exchange
repulsion is not negligible. Roughly this occurs when the
contact distance between two atoms reaches the sum of their
van der Waals radii. At sufficiently small separations the
exchange repulsion overwhelms the asymptotic behavior of
the attractive terms to produce a steep repulsive potential.
At longer range, where overlap can be ignored, the

electrons are distinguishable and can be assigned as belonging
to one or other sets of nuclei (A or B). No antisymmetrization
of the wave function is needed outside of the overlap region—
the tight binding limit. The potential VðRÞ, arising from one
of the charge distributions ρðrÞ determined at some instant, is
given by

VðRÞ ¼
Z

dr
ρðrÞ

jR − rj ¼
Z

drρðrÞTðR − rÞ; ð4Þ

which is recognized as the general solution to Poisson’s
equation for an arbitrary charge distribution and is valid for
all observation pointsR outside the bodies. In the next section
we explore how the potential can be decomposed into
individual contributions with specific interaction ranges.
Equation (4) gives rise to Coulomb interactions that are in
some sense classical although ρðrÞ depends, implicitly, on ℏ.

B. Multipole electrostatics and induction in molecular systems

We establish here the formalism for the hierarchy of
electronic responses of a molecule as a basis for future
discussion and as a reference point for understanding the nature
of approximations made in molecular-level simulations of
materials. We consider first the description of an assembly of
fixed charges in terms of electrostatic multipoles as a repre-
sentation of an arbitrary molecule in which polarization is
neglected. Next, we immerse this distribution in a static,
homogeneous electric field F. Of course, neither the lack of
polarization response nor field homogeneity is representative of
real molecules or the variety of environments they encounter in
condensed or vapor phases but it permits systematic develop-
ment of the key ideas. Both assumptions will later be relaxed.

1. Electrostatic multipoles

Far from the charge distribution, where jRj > jrj the
potential introduced in Eq. (4) may be expanded in R−n

powers to decompose the contributions to the potential into a
series of simpler, fundamental configurations—multipoles of
ascending order (Stone and Alderton, 1985); see Appendix A
for a formal discussion of the multipole expansion and
development of the key concepts. The basic idea is that a
molecule is considered an “n-pole” object if it has an n-pole
electrostatic moment but no lower moments. So a charged
molecule is a monopole corresponding to n ¼ 0 (zeroth
moment). The charge is formally defined from a continuous
distribution as q ¼ R

ρðr0Þdr03.

FIG. 4. Various forms of intermolecular interactions (electro-
static, inductive, dispersive) and their distance dependences.
Ion-induced dipole and Debye forces are simple examples of
inductive interactions where a permanent dipole induces a dipole
moment in a neighboring molecule. London dispersion forces are
the simplest example of the “dispersion series” which will be
discussed more fully in Sec. II.C.
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A neutral molecule may however still exhibit various forms
of charge separation or polarity which produces characteristic
potential and field lines sufficiently far from the source. The
simplest form of charge separation is measured by the dipole
moment (n ¼ 1). This can occur between two ions in an ionic
bond or between atoms in a covalent bond where there is a
difference in electronegativity. In its elementary form, an
electric dipole consists of two equal and opposite electric
monopoles (�q) (so that the total charge is equal to zero),
separated by a small distance. In atomic units, the dipole is
expressed in terms of ea0 where e is the elementary charge
and a0 is the Bohr radius but debye (D) units are also used
where D ¼ 10−18 esu. For a continuous charge distribution
the general definition of the dipole is naturally extended as
μ⃗ ¼ R

ρðr0Þr0dr03 (Davis, 2011).
An electric quadrupole (Θ, n ¼ 2) can be built from two

electric dipoles, arranged so that the total charge and the total
dipole moment cancel (Buckingham, 1959). The atomic unit of
electric quadrupole moment is ea20. The so-called primitive
form is also a direct extension from the dipole such that
qij ¼

R
ρðr0Þrirjdr03. The resulting quadrupole tensor (Hess,

2015) is clearly symmetric and often expressed according to its
traceless definition here in the Cartesian frame: Θαβ ∝R ð3xαxβ − r2ÞρðrÞ which measures the asphericity of the
charge distribution and further reduces the number of inde-
pendent components (see Appendix A for further discussion
and the derivation of the traceless form).
Octopole moment tensors Ωαβγ and higher multipole

source configurations (Stone, 2013) can be similarly con-
structed from self-canceling lower moments as shown in
Fig. 5. The potential energy and field strength are attenuated
more sharply with distance for higher multipoles (as discussed
in the caption of Fig. 5) because the higher number of charges

required to build the multipole appear “more neutral” at shorter
distances. At very large distances from the distribution the
leading multipole will therefore dominate but at intermediate
distances higher multipoles are not negligible. The field lines
and equipotential surfaces for examples of dipole, quadrupole,
and octopolar source configurations are shown in Figs. 6(a)–
6(d). The questions of origin choice, translational invariance of
the lowest multipole moment, and nonuniqueness of higher
moments are discussed briefly in Appendix A.

2. Symmetry considerations

In the most general case, the nth multipole of a molecule
with the lowest possible (C1) point group symmetry can have
up to 2nþ 1 independent components. Such a molecule
can therefore have all three dipole moment components
(μα, α≡ fx; y; zg) as distinct and independent.
The rank-two quadrupole tensor has nine components in

total but even the lowest symmetry molecules can have at most
five independent quadrupole tensor elements (θx2;y2;xy;xz;yz)
since the quadrupole is both symmetric and traceless [see
Stone (2013) for a discussion of irreducible tensor notation].
Molecular symmetry further reduces the number of inde-

pendent moments and determines which multipoles exist
(Jeevanjee, 2015). For example, in molecules having a center
of inversion, the dipole (and all higher odd multipoles) are
zero (Davies, 2007). This includes, for example, the wide class
of ABn-type molecules, where A is the central atom and B are
all equivalent. Here common molecular geometries such as
linear, trigonal planar, tetrahedral, octahedral, and trigonal
bipyramid have zero dipole moment even though the bonds
are polar. Unlike the dipole, the quadrupole is unaffected by
inversion ðr → −rÞ and therefore has even parity. Various so-
called pi-stacked organic molecules have zero dipole with the
quadrupole as the lowest moment; see Fig. 5(e).

FIG. 5. Examples of elementary source configurations for the (a) electric monopole with far field F ∝ 1=R2, (b) dipole (F ∝ 1=R3),
(c) quadrupole F ∝ 1=R4, and (d) octopole (F ∝ 1=R5). Note that for (c) and (d) the use of unequal charges can produce additional
source configurations. In the lower panel are shown equivalent representations of multipole moments using spherical harmonics
Ym
l ðθ;ϕÞ to which an introduction is given in Appendix A. (e) How a complex charge distribution arising from pi stacking in benzene

exhibits quadrupolar symmetry.
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Higher symmetry tetrahedral molecules such as methane,
white phosphorous, neopentane, adamantane, C28 fullerene,
and many others with overall Td symmetry have the octopole
(Ωαβγ) as the lowest nonzero moment. Molecules with
octahedral (Oh) symmetry (e.g., sulfur hexafluoride and
molybdenum hexacarbonyl) have the hexadecapole as the
lowest moment (see Appendix A for a representation of the
linear and spatially extended hexadecapole).
Linear versions (point group C∞;v) of all multipoles

can be constructed. In this special case, there are
many restrictions imposed by the axial (z-axis) symmetry
which requires the lateral components of the dipole moment
to be zero leaving only μz ≠ 0 if there is no inversion
center. Also, all off-diagonal elements of the quadrupole
must be zero. Axial symmetry further enforces Qxx ¼ Qyy

leaving only Qzz as the independent moment. For this
symmetric case, in general, the distribution can be specified

with only one multipole component for all orders (Griffiths,
2017).
This axial form of the multipole (Zangwill, 2013) expansion

can also naturally be expressed in terms of a single polar angle.
Here symmetry requires that the dipole be described by odd
functions of the polar angle to permit the sign change on
reflection through the origin whereas the quadrupole is
described by an even function as it exhibits reflection sym-
metry. More generally the idea can be extended to construct the
multipole expansion using spherical harmonics of appropriate
symmetry rather than the Cartesian form. Examples (including
the axial cases) are shown in the lower panel of Figs. 5(a)–5(d)
and also briefly discussed in Appendix A.
In the case of water, for example, we can determine the

symmetry restrictions on the multipole moments from the
characters of its C2v molecular point group, which is shown
in Fig. 7.

FIG. 6. Equipotential (ϕ ¼ const solid lines) and field lines (E ¼ −∇ϕ) corresponding to (a) elementary dipole, (b) spatial quadrupole,
(c) linear quadrupole, and (d) linear octopole source configurations. Note that, despite the differences in the source configurations in (b)
and (c), the resulting far-field lines are similar. The spherical multipole representations corresponding to Y1

0ðθ;ϕÞ and Y2
1ðθ;ϕÞ are

superposed in (a) and (b), respectively.
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In this case the z component of the dipole moment trans-
forms according to the totally symmetric (A1) irreducible
representation with the lateral components being zero. Since
water is electrically neutral the dipole is the lowest nonzero
(unique) multipole moment. This is illustrated in Fig. 7(a)
showing the μz dipole moment and field lines; cf. Fig. 5(b).
The C2v character table also shows that quadrupole tensor

elements [bilinear forms rαrβ ¼ ðx2; y2 and z2Þ] transform
according to the totally symmetric A1 representation with
all others being zero. Therefore the water molecule also
exhibits a nonzero quadrupole moment; see Fig. 7 (top right
panel) and Figs. 5(c) and 5(d) for comparison. Finally, since
the quadrupole tensor Qαβ is traceless, there are only two
independent elements (Qzz, Qxx −Qyy) rather than three.

3. Multipoles in nonuniform fields

We next consider electrostatic interactions between two
charge distributions (A and B) at long range; see, for example,
Fig. 2. Herewe express the potential energy of one system in the
external field due to the other. IfA andB are separated by a large
distance then the potential due to the charges atB can be assumed
to be slowly varying over the distribution at A. In that case, the
potential can be expanded in a Taylor series and the interaction
between each multipole with the field and its gradients can be
separated. See Appendix A for a more complete discussion.

If we first consider the case of a neutral, polar molecule, the
electrostatic energy Eelec in a uniform external electric field F⃗
is simply given by Eelec ¼ −μ⃗ · F⃗ ¼ −μαFα in tensor notation.
This arises as the first term in the multipole expansion of the
interaction potential and is the familiar orientational energy of
a dipole. Here F denotes the field and α refers to the Cartesian
components. A dipole therefore experiences a torque in a
uniform field giving an orientational potential energy.
A pure quadrupole experiences no torque (no orientational

energy) in a uniform field because the effects of the constitu-
ent dipole moments cancel. In fact, all higher multipoles enter
the energy expression only through field gradients producing
systematic additions to the orientational energy Eelec beyond
the dipole term,

Eelec ¼ −μαFα − 1
3
ΘαβFαβ − 1

15
ΩαβγFαβγ þ � � � : ð5Þ

Here the notation Fαβ ¼ ∂Fα=∂β is the field gradient.
Additional indices imply higher field derivatives. The quadru-
pole moment then determines the energy of a quadrupolar
charge arrangement in a smoothly nonuniform external field
described by a constant field gradient. The terms of Eq. (5)
(coupling of multipole moments to field and field gradients)
are a consequence of the multipole expansion of the electro-
static potential (see Appendix A for further details). Finally
Eq. (5) and the individual terms of the multipole expansion for

FIG. 7. (Top left) Water molecule illustrating the presence of a dipole moment along the H-O-H bisector, and a (top right) quadrupolar
field as viewed along the dipolar axis. Both the dipole and quadrupole moments are permitted for molecules with C2v point group
symmetry for which the character table is also shown (bottom).
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the potential make it possible to extract expressions for the
interaction energy between electric multipoles of arbitrary
order. This is discussed in Appendix A.3.

4. Induction and many-body linear responses

In “real” materials, electrons are bound to their nuclei with
Coulomb forces which are not infinitely strong. Therefore
atomic and molecular charge distributions can be distorted
substantially by external fields. There are numerous examples
where polarization effects are important such as in water,
aqueous solutions, amine and amide hydration and other
biomolecular contexts and interfaces. See, for example, the
review by Halgren and Damm (2001) and references therein.
Recent work showed that many-body polarization effects have
a profound influence on the water contact angle (Misra and
Blankschtein, 2017).
Pairwise potentials can approximate the average effects of

polarization, in particular, environments by manipulation of
atomic charges or fragment dipole moments as is normally
done in conventional force fields (Allen and Tildesley, 2017).
However, in contrast to the case of electrostatics, there is no
superposition principle for polarization (induction): Induced
multipole moments arise cooperatively from the action of all
other molecules meaning that Eq. (2) cannot be truncated at
the first term in the case of induction.
The redistribution of charge which occurs during polari-

zation must also be accommodated within the electronic
energy level structure of the atoms or molecules. Therefore
we assume that it occurs by accessing orbitals which were
unoccupied in the undistorted ground state.
The involvement of unoccupied states in the polarization

response in atomic systems (Mahan and Subbaswamy, 2013)
is illustrated in the textbook case of the second-order
(quadratic) Stark shift in the hydrogen ground state
(Schwabl, 2007). This gives the form of the contribution
from the polarization energy (in the dipole limit, neglecting
higher multipoles which we will explore later) in a weak
homogeneous field F as

Eind ¼ −1
2
αijFiFj; ð6Þ

thereby defining the dipole polarizability as

α ¼ 2e2
X
n>1

jh1; 0; 0jzjn; 1; 0ij2
En − E1

; ð7Þ

which is interpreted as a measure of charge migration from the
ground state to an excited state. This involves a sum over
unoccupied states weighted by their energy relative to the
ground state.
By extension, we infer that in molecular systems the

electron distribution is more easily polarized if the gap
between the highest occupied molecular orbital and the lowest
unoccupied molecular orbital (ΔEH-L) is small so that the
excited states are more accessible. This reasoning leads to an
approximate extension to Eq. (7) for molecular systems which
says that dipole polarizability increases with increasing
molecular size and decreasing energy gap,

α ≈
e2R2

ΔEH-L : ð8Þ

The dipole polarizability is therefore an example of
a collective, coarse-grained description of the electronic
responses to a weak external field.
For a polarizable molecule in a homogeneous field the

components of the molecular dipole moment then acquire a
field dependence according to μαðFÞ ¼ μα þ ααβFβ where the
second term is the inducedmoment and ααβ ¼ ∂μα=∂Fβ is the
static linear, dipole-dipole polarizability tensor (of rank 2)
with units of C2m2 J−1 or e2a20E

−1
h in atomic units.

In the condensed phase of a real molecular system the field
F which appears here is the total field arising from both
permanent and induced moments on all other molecules. The
electronic configuration is then determined by many-body
effects which require an iterative or self-consistent solution. In
the dipole limit this can be expressed rigorously [following
Applequist, Carl, and Fung (1972)] by defining the induced
dipole as

μind ¼ αðFperm þ FindÞ ¼ αðFperm þ TμindÞ: ð9Þ

Here the total field acting on a molecule is separated into
permanent and induced fields from all surrounding polarizable
molecules. The second equality arises from the use of the
dipole interaction tensor [see Eq. (A11)]. The expression can
then be solved for the induced moment in terms of the
permanent field and a so-called “relay” tensor (Applequist,
1985),

μind ¼ ðα−1 − TÞ−1Fperm: ð10Þ

We note that if the weak field assumption is relaxed,
additional nonlinear (FβFγ) contributions to the induced
moment would arise (from hyperpolarizabilities) in the strong
field limit. However, as we are concerned with the interactions
between molecules in condensed phases we will not consider
effects beyond the linear response regime. So far, the
discussion has been limited to dipole polarizability but higher
multipoles will also respond to homogeneous fields: In the
quadrupole case ΘαβðFÞ ¼ Θαβ þ Aαβ;γFγ where A is the
third-rank polarizability tensor the physical significance of
which we will consider further in the next section. If we now
also relax the uniform field assumption, the dipole, quadru-
pole, and higher moments are further modified by local field
variations as determined by additional linear response tensors
(multipole polarizabilities) which couple to higher field
derivatives (Maroulis, 2006).
These effects lead to the complete form of the energy

expression arising from the sum of electrostatic and induced
contributions (Eelecþind) relevant for a polarizable molecule in
an inhomogeneous field,
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Eelecþind ¼ −μαFα − 1
3
ΘαβFαβ − 1

15
ΩαβγFαβγ

þ ðhigher-order electrostatic termsÞ
− 1

2
ααβFαFβ − 1

3
Aα;βγFαFβγ − 1

6
Cαβ;γδFαβFγδ

þ ðhigher-order induction termsÞ: ð11Þ

Despite its complexity, Eq.(11) directly illustrates the
consequences of various levels of approximation. In particu-
lar, it reduces to the familiar result that the energy of a neutral,
nonpolarizable charge distribution in a homogeneous field is
given simply by −μαFα as given by the first term. All the other
contributions arise from the combined effects of induction and
field inhomogeneity which are fundamental features of real
molecules and the environments they encounter in naturally
occurring situations. Here the first three terms represent the
orientational potential energy of the permanent multipoles
(nonpolarizable case). We see directly that the permanent
dipole contributes to the energy linearly in the field, the
permanent quadrupole via the field gradient, and so on.
The second set of terms illustrates the structure of the

energy contributions arising from induction. We can get some
further insight into the nature of the response tensors by
considering the derivatives of the energy with respect to
components of the field and field gradient. In particular,

∂E=∂Fξ ¼ μξ − αξβFβ − 1
3
Aξ;βγFβγ

and

∂E=∂Fξη ¼ 1
3
Θξη þ 1

3
Aα;ξηFα þ Cαβ;ξηFαβ.

From this we see that the derivative of energy with respect
to field produces the permanent dipole moment which exists
even in the limit of zero field as expected. The expressions
then illustrate how a hierarchy of additional contributions to
the dipole appear. First is the dipole polarizability (thereby
defining α) which we already introduced. The next correction
to the dipole moment arises from the field gradient and is
determined by the response tensor A and so on. By analogy,
the first term in the derivative with respect to the field gradient
is proportional to the permanent quadrupole moment with the
first correction being linear in the field and also determined by
the response tensor A. Therefore, A determines both the
response of a dipole in a field gradient and the response of a
quadrupole to a homogeneous field. It is therefore a mixed
response tensor called the dipole-quadrupole polarizability
which vanishes for molecules with inversion centers but is
otherwise nonzero. The response tensor Cαβ;γδ (defined as
∂Θαβ=∂Fγδ) determines the quadrupole induced by the field
gradient (hence it is called the quadrupole polarizability). It is
similarly possible to define higher multipole polarizabilities
(e.g., octopole-octopole, etc.).
As the final point we note that the group theory consid-

erations which determine whether particular multipole
moments are nonzero can be extended to polarizabilities.
In particular, the quantum mechanical expression for the
dipole polarizability appears [according to Eq. (7)] as a square
of electric dipole transition moments. Correspondingly, the
tensor A is defined from the product of transition dipole and

quadrupole moments. The forms and symmetry properties of
these have been discussed in detail by Hirschfelder (2009) and
Stone (2013).

C. Dispersion: Quantum mechanical prigins and many-body
effects

Although comparatively weak, dispersion is the most
ubiquitous of the intermolecular forces operating between
all atoms and molecules including those that are neutral and
nonpolar (for which there are neither electrostatic nor inductive
effects). These interactions are inherently quantummechanical
arising from correlated fluctuations in electron density at long
range (Mahanty and Ninham, 1976; Parsegian, 2005).
In the framework of Fig. 2 and Eq. (2), a neutral, nonpolar

atom (such as a noble gas atom) has zero expectation value for
all multipoles but nonzero variance. A schematic is shown in
Fig. 8. This is analogous to the case of a quantum harmonic
oscillator in its ground state which exhibits zero-point
fluctuations. Here the fluctuating dipole (or higher multipole)
moment of atom A creates a fluctuating field at atom B which
thereby induces a transient polarization.
These interactions are directly responsible for condensed

phases of nonpolar molecules and noble gases. And as a result
of their generality they also influence diverse phenomena
including liquid state physics, molecular crystal stability, low-
dimensional systems (Cole et al., 2009), hybrid organic–
inorganic systems (Maurer, Ruiz, and Tkatchenko, 2015),
interactions between atoms in cold optical traps, biophysical
interactions such as drug-ligand binding, and other aspects of
supramolecular associations.
The dispersion interaction is only approximately pairwise

additive and always attractive, at second order in perturbation
theory (London, 1937; Elrod and Saykally, 1994; Tkatchenko
et al., 2012). At third order, interactions between atom triplets
arise (Axilrod, 1951) which can be attractive or repulsive
depending on the interaction geometry. Further many-body
effects occur for higher orders and the contributions to
the interactions between atoms within molecules [EdispðRiÞ]
can therefore be separated [in the spirit of Eq. (2) into two-
body (Eð2Þ), three-body (Eð3Þ), and higher components
(Donchev, 2006)].
In general we have

EdispðRiÞ ¼
1

2

X
ij

Eð2ÞðRi; RjÞ þ
1

6

X
ijk

Eð3ÞðRi; Rj; RkÞ

þ ðhigher ordersÞ: ð12Þ

These contributions along with the effects contained in
Eq. (11) represent the full hierarchy of electrostatic, inductive,
and dispersive responses encountered in molecules. They also
define the ingredients of the general many-body interaction
decomposition introduced in Eq. (2) and a long-range repre-
sentation of the terms which are captured in Eq. (2), leading to
a realistic BO surface.
At long range (negligible charge overlap between interact-

ing species) the two-body dispersion terms can be organized
into the dispersion series as follows:
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Eð2Þ
dispðRA;RBÞ¼−

C6

R6
AB

−
C8

R8
AB

−
C10

R10
AB

þðhigher ordersÞ; ð13Þ

where RAB ¼ jRA −RBj is the internuclear distance in
Fig. 8.
The dispersion coefficient C6 appearing in Eq. (13) is

familiar from the Lennard-Jones two-body potential
(of spherically symmetric centers) and arises from correlated
dipole-dipole fluctuations. However, its attractive R−6

dependence is only the asymptotic behavior at large separa-
tions. Higher multipoles interact through shorter ranged
forces. The first of these arises from dipole-quadrupole
correlations (C8 coefficient) and C10 mixes quadrupole-
quadrupole and dipole-octopole correlations. Equation (13)
therefore includes contributions from fluctuating multipoles.
Measurements on ultracold atoms have now made it possible
to obtain high accuracy values for the C6 coefficients for
several atomic species and provided constraints and reduced
uncertainty on higher-multipole coefficients (Van Kempen
et al., 2002).
Although the fluctuating electrostatic moments leading to

dispersion interactions are spontaneous distortions of the
charge density, we may still surmise that they are related in
some way to the same polarizabilities that govern induction
[Eq. (11)]. In fact a rigorous relationship exists which links the
C6 coefficient (arising from dipole-dipole correlations) to the
frequency-dependent generalization of the static polarizability
tensor αðiωÞ of interacting molecules A and B evaluated at
complex frequency iω. This is expressed by the Casimir-
Polder equation (Casimir and Polder, 1948; Parrill and
Lipkowitz, 2016) which establishes the linear response
relationship as follows:

C6 ¼
3

π

Z
∞

0

dωαAðiωÞαBðiωÞ: ð14Þ

Correspondingly, higher-order terms in the dispersion
series can be computed from the Casimir-Polder expression
using higher-multipole dynamic polarizabilities (Parrill and
Lipkowitz, 2016). The extension of Eq. (7) to include the
frequency-dependent linear response is discussed, for exam-
ple, by Wheatley (2008).
The leading-order correction (∝ R−9) for many-body effects

arises from the three-body (triple-dipole) contribution (DDD)
to the total energy. This was first reported independently by
Axilrod and Teller (1943) and Muto (1943),

Eð3Þ
dispðRijÞ ∝

C9

R3
ABR

3
ACR

3
BC

: ð15Þ

Here the Rij are permutations of the A, B, and C nuclear
positions in Fig. 8 and C9 ∝ α3, where α is the molecular
polarizability. Since then, further contributions to the non-
additive third-order dipole term (DDD) arising from quad-
rupolar (Q) (e.g., DDQ, DQQ, QQQ, etc.) have been
considered (Bell, 1970; Elrod and Saykally, 1994). In the
case of solid argon, the dipole-dipole-quadrupole (DDQ)
energy is one-third as large as the triple-dipole (DDD) energy
(Johnson and Spurling, 1971).
In the case of weakly polarizable molecules, the pairwise-

additive approximation is often sufficient to capture essential
physics possibly including higher-order terms in the
dispersion series. However, many molecular systems are
not weakly polarizable making pairwise approximation less
viable. For nonpolar systems dominated by dispersion forces
(e.g., noble gas crystals) estimates of interatomic many-body

FIG. 8. Charge density fluctuations leading to transient multipoles produced by separated δ� charges in atoms A and B. In the dipole
limit, the effect of a third atom C is described by the Axilrod-Teller expression, Eq. (15), and can be attractive or repulsive depending on
the relative orientations given by the three interior angles θA, θB, and θC. Higher-order multipoles and n > 3-body interactions are also
present.
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contributions to cohesive energies may reach 10% (von
Lilienfeld and Tkatchenko, 2010). Also, several important
classes of problem depend on energy differences between
molecular systems in dissimilar environments. These might
include, for example, energy ordering among polymorphs or
self-assembled motifs. Here small contributions from non-
additive terms become particularly significant and may lead to
qualitative and quantitative failures of the pairwise approxi-
mation. Broadly, there is evidence that pairwise methods tend
to overbind molecular crystals: They perform better for
assemblies of relatively small molecules but fail to capture
essential collective effects in larger systems. A particularly
notable class of supramolecular assemblies is the wide range
of host-guest systems (Risthaus and Grimme, 2013) which
comprises some form of relatively large dock site and a
smaller molecule where cohesion occurs entirely via non-
covalent interactions (Ambrosetti et al., 2014). Some of these
minimal model systems for molecular recognition processes
appear to exhibit extreme collective phenomena which involve
many-body forces well beyond the Axilrod-Teller (three-
body) level.

D. Breakdown of transferability and a pathway to next-
generation strategies

We show in this section that molecules exhibit a rich and
varied set of electronic responses even in environments often
encountered in condensed phases. Across a wide range of
commonly encountered conditions, the manifestations and
relative influences of electrostatic, inductive, and dispersive
interactions are rebalanced and the importance of treatingmany-
body phenomena nonperturbatively is key. This presents a
fundamental challenge for the development of model potentials
where, normally, the force types included (or neglected) and
their relative importance are decided in advance. The resulting
(and often extreme) truncation of the response hierarchy
therefore limits transferability of models between distinct
conditions or environments such as between bulk liquids,
surfaces, interfaces, clusters, along the liquid-vapor coexistence
curve, or in supercooled or supercritical conditions. Such
artificial truncation challenges all perturbation theory inspired
approaches but modern physics presents a way forward—using
an exactly solvable model within Gaussian statistics to generate
approximate interactions to all orders.
In the next sections we introduce an alternative approach to

the problem expressed in Eq. (2) and a general pathway to
broad transferability in a practical model. In particular, we will
describe a minimal molecular model capable of generating the
full many-body inductive and dispersive response hierarchy
that has been developed here. The “reduced” electronic
structure arises from a quantum mechanical treatment of a
set of distributed quantum (Drude) oscillators (QDOs)
(Whitfield and Martyna, 2006, 2007). Unlike “full” electronic
structure methods, e.g., with full configuration interaction
(Martyn, 2004), this coarse-grained construction is simple
enough to be applied to relatively large condensed phase
systems—tractable low order scaling methods such as Car-
Parrinello-type computations are based on approximate density
functional theory methods and have higher prefactor (and most
often scaling) than QDOs. Also, due to the necessary use of

approximate functionals dispersion is either neglected,
included empirically at the pair level, and/or truncated at the
dipole level. We note that our proposed approach in its current
form is applicable to molecular systems without appreciable
electron transfer only. In order to cover the charge-transfer
processes significant extension of the model is required.
We describe how on-the-fly forces arising from the Born-

Oppenheimer surface [EelðRÞ in Eq. (2)] may be generated
with linear scaling in the number of atoms in the system using
adiabatic path integral molecular dynamics (APIMD) to
generate a nonperturbative solution within electronically
coarse-grained framework (Cao and Martyna, 1996; Jones,
Crain, Sokhan et al., 2013). We demonstrate the applicability
of the approach to challenging systems such as condensed
phases of noble gases (where dispersion dominates) and to
water (where polarization is significant and coexists with
dispersion). Predictions of the model are achieved with
substantially reduced empirical input suggesting that the
framework is rich enough to embody the essential physics
of emergent systems and yet simple enough to retain intuitive
features.

III. ELECTRONIC COARSE GRAINING WITH QUANTUM
OSCILLATORS

Here we introduce a new class of computational
models for materials that is rich enough to capture the full
hierarchy of inductive and dispersive responses at the atomic
and molecular scale, yet simple enough to render it practical
for application to large complex systems by employing
Gaussian statistics, fast computers, and novel modern
simulation.

A. A minimal model with complete long-range interactions

The objective is to develop a model with a rich BO surface
capable of generating a complete description of long-range
many-body forces and which can be sampled within an
efficient computational framework.
This is achieved by embedding a charged quantum har-

monic oscillator in the molecular frame with parameters
chosen to reproduce reference properties of the isolated
molecule. The classical version of this construction is far
from new and was used by Paul Drude over a century ago
(Drude, 1900) to explore the optical properties of materials.
For this classical Drude oscillator, an external electric field

will shift the equilibrium position of the charge, to produce an
induced dipole, but as the position of a classical particle is
precisely defined at any instant, this point distribution is too
limited to permit higher-multipole polarizations. By contrast,
the quantum Drude oscillator is much richer, yielding an
extended charge distribution. This profoundly changes the
behavior and brings the model’s physics much closer to that of
real atoms and molecules. Specifically, higher-order responses
such as multipole induction arise, as shown in Sec. III.A.1.
The quantum treatment of the oscillator also bring about

zero-point fluctuations of the multipole moments at all orders.
The full dispersion series (see Sec. II.C) therefore emerges
naturally within the same framework albeit within Gaussian
statistics.
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In the next sections we discuss the theoretical underpin-
nings of quantum Drude oscillators, construction of models of
realistic molecules and parametrization strategies, including
the handling of short-range repulsion. We then describe a path
integral method that solves the coarse-grained electronic
problem nonperturbatively, retaining all the responses of
the theoretical model. We note here that nonlinear polarization
effects, the subject of nonlinear optics (Bloembergen, 1996),
are outside the current consideration but are in principle
captured by the model with small modifications. Finally, we
discuss ideas introduced previously, such as the concept of
adiabaticity, calculation of forces via the Hellmann-Feynman
theorem, and the generation of a realistic BO surface.

1. Polarization responses

A quantum Drude oscillator (London, 1937; Jones, Crain,
Sokhan et al., 2013), models a bound state of two point
charges of opposite sign, a light particle of mass μ with a
charge −q that is harmonically tethered to a neutralizing
charge þq embedded in the nuclear framework of the
molecule. Its angular frequency ω is related to force constant
k ¼ mω2. Specifically, in this construction, the two charges do
not “see” each other electrostatically, but interact with
neighboring fields. This is one of the features that makes
this model a type of tight binding model valid for fixed
molecular connectivity. The “on-site” Coulomb attraction
between electrons and nuclei of real materials is replaced
by a simplified form—a tight binding approach.
Theharmonicpotential is an approximate representationof the

bonding between valence electrons and nuclei, giving rise to a
ladder of energy states. However, in the electric fields produced
in condensed systems, electronic responses involve a limited
range of orbitals. Intuitively, a major contribution to molecular
polarization will be due to the occupation of the lowest
unoccupiedmolecular orbital and a few low-lying empty orbitals
by the valence electrons (see Sec. II.B.4). To reproduce these
effects it is therefore not necessary to describe the full spectrum
of atomic energy states. A simplified model of low-lying states
may be sufficient for many practical problems. This is exactly
what a quantumDrude oscillator framework affords—by replac-
ing the on-site electron-nuclear interactionwith a harmonic bond
to create a course-grained model within Gaussian statistics.
When immersed in a uniform electric field Fx, this

oscillator acquires a displacement x determined by the balance
between the electrostatic and harmonic forces. Setting qFx

equal to μω2x gives a dipole moment qx ¼ ðq2=μω2ÞFx and
thus a dipole polarization α1 ¼ q2=μω2.
A classical calculation would end here. But, a quantum

mechanical oscillator has a full hierarchy of responses due to
the excitation of the ground state electron into excited states of
the oscillator. These states are separable into normalized radial
and angular parts RklðrÞ and Ylmðθ;ϕÞ:

ψklmðr; θ;ϕÞ ¼ RklðrÞYlmðθ;ϕÞ: ð16Þ

Here Ylmðθ;ϕÞ are the spherical harmonics and RklðrÞ are
proportional to the generalized Laguerre polynomials. The
radial quantum number k quantifies the distance between the
negative particle and the center. The angular quantum number

l quantifies the angular momentum and the resulting electro-
static moment. Specifically, a spherical harmonic of angular
momentum l corresponds to an electrostatic moment of order
l. In other words, l ¼ 1 causes an induced dipole moment,
l ¼ 2 a quadrupole moment, and so on. This can be seen in
Fig. 6 and detailed in Appendix A.
The energy of the isolated oscillator (or reference system)

depends on both the radial, k, and angular, l; m, quantum
numbers as follows:

Eðk; l; mÞ ¼ ℏωð2kþ lþ 3
2
Þ: ð17Þ

The energy spectrum is simple—increasing in a ladderlike
fashion by multiples of ℏω with each excitation up the ladder.
The spectrum of real molecules is more complex; however, we
shall show that this simple spectrum, with appropriate choice
of parameters, can mimic the responses of complex assemblies
surprisingly well—Gaussian statistics is generally observed to
be quite robust belying its simplicity.
In order to better understand the limitations and successes

of our Gaussian model we first perform a Raleigh-Ritz
perturbation theory analysis following Stone (2013). We note
that fields around molecules are strong and have complex
symmetries. Thus, single particle oscillator states with high
angular and radial quantum numbers will mix into the many-
body wave function. Jones, Crain, Sokhan et al. (2013)
provided a diagrammatic analysis that shows how high order
dispersion, polarization, and cross responses emerge as a
function of the number of bodies and powers in ℏ. Again, due
to high field strength, even interactions with high powers in ℏ
and many-body character and can become important in
condensed phase systems, particularly at interfaces or near
transitions where small terms of appropriate symmetry can
effect the emergent physics.
We next consider the form of the higher-order responses

(Jones, Crain, Sokhan et al., 2013) by introducing spherical
tensors, whose role in the expansion of electrostatic fields is
detailed in Appendix A. For our discussion here, we need only
to remember that higher-angular momentum spherical har-
monics correspond to higher-multipole moments. This intu-
ition leads to a natural definition of spherical multipole
moments as follows (Stone, 2013):

Qlm ¼
Z

ρðrÞrlClmðθ;ϕÞd3r; ð18Þ

where

Clmðθ;ϕÞ ¼
�

4π

2lþ 1

�
1=2

Ylmðθ;ϕÞ ð19Þ

are rescaled versions of the spherical harmonics. Intuitively, the
spherical multipole moments decompose the charge distribu-
tion into an orthonormal basis set defined by the spherical
harmonics, with higher-order spherical harmonics correspond-
ing to higher-order electrostatic moments. Qlm are in general
complex for m ≠ 0 and we will use this form as it simplifies
perturbation calculations. If needed, real forms can be defined,
as detailed by Stone (2013). For our purpose, as polarizabilities
of a spherical harmonic oscillator will be isotropic, we are
mainly interested in them ¼ 0 componentQl0, which is equal
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to the diagonal component of the corresponding Cartesian
moment: Q00 ¼ q, Q10 ¼ μz, Q20 ¼ Θzz, etc.
This representation is a spherical tensor since it transforms

like a spherical harmonic under a rotation described by three
Euler angles α, β, and γ,

Rðα; β; γÞQlm ¼
X
m0

Qlm0Dl
m0mðα; β; γÞ; ð20Þ

where Dl
m0mðα; β; γÞ are the Wigner rotation matrices (Stone,

2013). More detail is given in Appendix A.
The spherical multipole moments are more natural quan-

tities to work with in atomic and molecular physics than the
Cartesian ones, as they are an irreducible representation.
Molecular moments are not point charges aligned neatly in
a line, but are extended, three-dimensional distributions of
charge that are more naturally described by the spherical
harmonics. Since the spherical harmonics are the natural basis
in which to have a natural structure for describing electrostatic
moments and make the calculations more natural due to the
orthonormality of the spherical harmonics, we will use them
from now on in our analysis.
The definition of Qlm naturally gives rise to a spherical

multipole operator:

Q̂lm ¼ qrlClmðθ;ϕÞ ¼ qrl
�

4π

2lþ 1

�
1=2

Ylmðθ;ϕÞ: ð21Þ

In terms of this operator, the spherical polarizabilities are
defined perturbatively as (Stone, 2013)

αlm;l0m0 ¼
X
n

�h0jQ̂lmjnihnjQ̂†
l0m0 j0i

EðnÞ − Eð0Þ

þ h0jQ̂†
lmjnihnjQ̂l0m0 j0i
EðnÞ − Eð0Þ

�
; ð22Þ

where the quantum state jni ¼ jklmi is described by the three
quantum numbers previously introduced.
The matrix elements in this perturbation calculation are the

following:

h000jQ̂lmjkl00m00i

¼
Z
r

Z
Ω
R†
00ðrÞY†

00ðθ;ϕÞ
�
qrl

�
4π

2lþ 1

�
1=2

Ylmðθ;ϕÞ
�

Rkl00 ðrÞYl00m00 ðθ;ϕÞdr dΩ

¼
Z
r
R†
00ðrÞqrlRkl00 ðrÞdrZ

Ω
Y†
00ðθ;ϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ylmðθ;ϕÞYl00m00 ðθ;ϕÞdΩ: ð23Þ

In order to simplify these expressions, we use the following
orthonormality and ladder properties of the harmonic oscil-
lator eigenfunctions:

Z
Ω
Y†
lmðθ;ϕÞYl00m00 ðθ;ϕÞdΩ ¼ δl;l00δm;−m00 ; ð24Þ
Z
r
R†
klðrÞRk00l00 ðrÞdr ¼ δk;k00δl;l00 ; ð25Þ

Y00ðθ;ϕÞ ¼
1ffiffiffiffiffi
4π

p ; ð26Þ

rlR00ðrÞ ¼ ξlR0lðrÞ; ð27Þ

ξ2l ¼ ð2lþ 1Þ!!
�

ℏ
2μω

�
l
: ð28Þ

Substituting into the matrix elements (23) gives

h000jQ̂lmjkl00m00i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2lþ 1

s
ξlδ0;kδl;l00δm;−m00 : ð29Þ

Substituting back in Eq. (22) and simplifying gives

αlm;l0m0 ¼ q2

μω2

�ð2l − 1Þ!!
l

��
ℏ

2μω

�
l−1

δl;l0δm;m0 : ð30Þ

Given that the polarizabilities are isotropic and the previously
shown relationships between the Cartesian and spherical
polarizabilities, we can define the isotropic polarizabilities as

αl ¼
q2

μω2

�ð2l − 1Þ!!
l

��
ℏ

2μω

�
l−1

; ð31Þ

with α1 representing the dipole polarizability [introduced
earlier in the tensor form as ααβ in Eq. (11)], α2 the quadrupole
(corresponding to the tensor Cαβ;γδ), and so on for a full
infinite series of electrostatic responses arising due to a
perturbing electric field.
It is worth noting that αl ∼ ℏl−1, meaning that only α1 has

no dependency on ℏ. This means that the classical limit of the
model has only a dipole polarizability given by α1 ¼ q2=μω2,
exactly as the calculation presented at the start of this section.

2. Zero-point fluctuations and the emergence of dispersion

As in the previous section, we begin by looking at a simple
system: two interacting 1D harmonic oscillators of identical
mass μ, frequency ω, and charge q. The oscillators have a
displacement x1 and x2, are parallel to each other and
separated by a distance R. Their interaction energy is, in
atomic units,

E ¼ ðqx1Þðqx2Þ
R3

: ð32Þ

Thus, the Hamiltonian of the system is

Ĥ ¼ p̂2
1

2μ
þ p̂2

2

2μ
þ 1

2
μω2ðx21 þ x22 þ γx1x2Þ; ð33Þ

where

γ ¼ 2
q2

μω2

1

R3
¼ 2

α1
R3

: ð34Þ

Changing coordinates to
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p̂� ¼ 1ffiffiffi
2

p ðp̂1 � p̂2Þ

and

x� ¼ 1ffiffiffi
2

p ðx1 � x2Þ

decouples the system into two isolated oscillators

Ĥ ¼
�
p̂2þ
2μ

þ 1

2
μω2ð1þ γÞx2þ

�

þ
�
p̂2
−

2μ
þ 1

2
μω2ð1 − γÞx2−

�
: ð35Þ

The ground state energy of this system is, to leading order in γ,

E0 ¼ 1
2
ℏωð ffiffiffiffiffiffiffiffiffiffiffi

1þ c
p þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − c

p
Þ

≈ ℏω½1 − 1
8
γ2 þOðγ3Þ�: ð36Þ

The leading-order correction to the ground state energy is thus

ℏω
8

γ2 ¼ 1

2
ℏωα1α1

1

R6
: ð37Þ

Thus, the leading-order correction is the standard van der
Waals interaction, proportional to R−6 and α21 as first derived
by London.
Having established the fact that two quantum harmonic

oscillators can reproduce from physical principles the leading-
order van der Waals interaction between neutral atoms, we
now derive the interaction coefficients and energies of the full
model. Given two three-dimensional quantum Drude oscil-
lators in the same geometry, their interaction Hamiltonian is

H0
AB ¼ QA

lmT
AB
lm;l0m0QB

l0m0 ; ð38Þ

where TAB
lm;l0m0 is the spherical tensor version of the electro-

static interaction tensor.
The second-order perturbation energy is the following, with

the n indexing the quantum states specified by the three
indices k, l, and m:

Eð2Þ ¼ −
X
nA

X
nB

h0; 0jH0
ABjnA; nBi

EðnAÞ þ EðnBÞ
: ð39Þ

As before, due to the orthonormality of Rkl, the sum
simplifies to

Eð2Þ ¼ −
X
lAmA

X
lBmB

×
½TAB

lAmA;lBmB
h000jQA

lAmA
j0lAmAih000jQB

lBmB
j0lBmBi�2

lAℏωA þ lBℏωB
.

ð40Þ

Since the quantum Drude oscillator model considered here
is isotropic (anisotropy developed by interaction of multiple

spherical QDOs), h000jQA
lmj0lmi ¼ h000jQA

l0j0l0i for all m.
Thus, the energy reduces to

Eð2Þ ¼ −
X
lAlB

jTAB
lAlB

j2 h000jQ
A
lA0
j0lA0i2h000jQB

lB0
j0lB0i2

lAℏωA þ lBℏωB
; ð41Þ

where

jTAB
lAlB

j2 ¼
X
mAmB

½TAB
lAmA;lBmB

�2: ð42Þ

Substituting the matrix elements from Eq. (23) gives

Eð2Þ ¼ −
X
lAlB

jTAB
lAlB

j2 q2A
2lA þ 1

q2B
2lB þ 1

ξ2Aξ
2
B

lAℏωA þ lBℏωB
: ð43Þ

Simplifying,

Eð2Þ ¼ −
X
lAlB

jTAB
lAlB

j2αAlAαBlAB
�
ℏ
4

lAlBωAωB

lAωA þ lBωB

�
: ð44Þ

The m traces of the electrostatic interaction tensors are

jTAB
11 j2 ¼ 6R−6;

jTAB
12 j2 ¼ 15R−8;

jTAB
13 j2 ¼ 28R−10;

jTAB
22 j2 ¼ 70R−10: ð45Þ

Substituting into Eq. (44)

Eð2Þ ¼ −C6R−6 − C8R−8 − C10R−10 þOðR−12Þ; ð46Þ

with the two-body dispersion coefficients given by

CAB
6 ¼ 3

2
αA1α

B
1

ℏωAωB

ωA þ ωB
;

CAB
8 ¼ 15

2

�
αA1α

B
2

ℏωAωB

ωA þ 2ωB
þ αA2α

B
1

ℏωAωB

2ωA þ ωB

�
;

CAB
10 ¼

�
21αA1α

B
3

ℏωAωB

ωA þ 3ωB
þ 21αA3α

B
1

ℏωAωB

3ωA þ ωB

þ70αA2α
B
2

ℏωAωB

2ωA þ 2ωB

�
: ð47Þ

If the quantum Drude oscillators are identical, these
simplify to

C6 ¼ 3
4
α1α1ℏω;

C8 ¼ 5α1α2ℏω;

C10 ¼ ½21
2
α1α3 þ 35

2
α2α2�ℏω: ð48Þ

The use of a Gaussian model has limitations in that there are
obvious sum rules that will be only approximately obeyed by
real systems as discussed next.
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B. Model invariants for the QDO and the behavior of real atoms
and molecules

1. Relationships between electronic responses

Since the polarization and dispersion coefficients
depend only on three fundamental parameters of the oscil-
lator (μ, q, and ω), these can be combined to form model
invariants, closed expressions within QDO’s Gaussian sta-
tistics. Specifically, combining the lowest-order response
coefficients gives ffiffiffiffiffi

20

9

r
α2ffiffiffiffiffiffiffiffiffiffi
α1α3

p ¼ 1;ffiffiffiffiffi
49

40

r
C8ffiffiffiffiffiffiffiffiffiffiffiffiffi
C6C10

p ¼ 1;

C6α1
4C9

¼ 1: ð49Þ

Figure 9 shows the values of these quantities for noble
gases, alkali metals, and small hydrides. The agreement is
within 15% for all, with some with a 10% or better agreement.
This occurs because the outer shell of these elements is
algebraically spherical for the noble gases (filled shell) and
alkali metals (s orbitals) and close to spherical for hydrides
(due to the electronegativity of the dominant atom).
Taken together, the foregoing results imply that the QDO

construction contains a coarse-grained but complete (at long
range) set of the electronic structure response of an atom or
molecule to external influences. The reaction of this Gaussian
charge distribution to external fields naturally leads to many-
body polarization. Quantum correlations between QDOs lead
to van der Waals interactions. This includes three-body and all
higher level terms in the interaction energy.

The QDO invariants therefore appear to reflect the behavior
fairly well and show promise to be transferable to complex
systems. In the next section we demonstrate how the response
functions within the QDO model can be independently scaled
so as to allow exploration of how such electronic responses
influence physical properties.

2. Parametrization

An alternative combination of the coefficients gives rules
for parametrizing QDOs from the response coefficients:

FIG. 9. Three types of invariant ratios between polarization and dispersion coefficients, which arise within the quantum Drude
oscillator model as introduced here. Popularization ratios involve only polarization coefficients and analogously for dispersion ratios.
Mixed ratios involve both polarization and dispersion coefficients. Deviation from theory is shown for three types of atoms and
molecules: noble gases, alkali metals, and small hydrides. From Cipcigan et al., 2016.

TABLE I. The QDO parameters for various species determined
using the QDO parametrization rules. Eh ≈ 27.211 eV is the Hartree
energy, me ≈ 9.11 × 10−31 kg is the mass of an electron, and e ≈
1.60 × 10−19 C is the elementary charge. All of these parameters are
electronic in magnitude, with the Hartree energy being twice the
ionization energy of a hydrogen atom. From Jones, Crain, Sokhan
et al., 2013.

Species ω=ðEh=ℏÞ m=me q=e

H 0.4273 0.6099 0.708
Li 0.0687 1.2545 0.9848
K 0.063 0.8101 0.967
Rb 0.0603 0.7343 0.9274
Cs 0.0531 0.6939 0.895
He 1.0187 0.5083 0.8532
Ne 1.2965 0.3491 1.2494
Ar 0.7272 0.302 1.3314
Kr 0.6359 0.2796 1.3741
Xe 0.5152 0.2541 1.357
H2O 0.6287 0.3656 1.1973
NH3 0.5603 0.3541 1.2722
CH4 0.5794 0.2615 1.2313
BH3 0.8776 0.1165 1.0793
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ω ¼ 1

ℏ
4C6

3α21
;

μ ¼ ℏ
ω

3α1
4α2

; or μ ¼ ℏ
ω

5C6

C8

;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μω2α1

q
: ð50Þ

The resulting parameters are displayed in Table I and shown in
Fig. 10. Similar species have similar parameters, with the
exception of hydrogen, whose parameters are closer to noble
gases than to group I metals. There is in general a larger
variation of the parameters between the different categories
than within a single one. This is indicative of the fact that only
the outermost electrons contribute significantly to polarization

and dispersion. Hydrides and noble gases (with the exception
of hydrogen and helium) have q > e which indicates the fact
that there is more than one electron in the outer shell.
However, q is still close to a single electron’s charge, varying
from ∼0.7e for hydrogen to ∼1.4e for xenon. This indicates
that most of the contribution from polarization can be
effectively treated by the excitation of a single quasiparticle.
Since group I metals only have a single electron in their
unfilled shell, this might be expected intuitively.

3. Scaling of the response functions

Finally, we can derive scaling relationships between the
parameters of the QDO that increase or decrease the polari-
zation coefficients independent of each other. For example, we

FIG. 10. Variation in QDO parameters for various noble gases, first row metals, and simple hydrides. From Jones, Crain, Sokhan et al.,
2013.

Cipcigan et al.: Electronic coarse graining: Predictive atomistic …

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025003-19



can increase or decrease all dispersion coefficients of a model,
while keeping the polarization constant and vice versa. These
tunable parameters allows us to interrogate both types of
electronic responses separately.
To calculate these scaling relationships, we note that

αl ∼
q2

μω2

�
ℏ

2μω

�
l−1

;

Cn ∼
X

αjαkℏω; ð51Þ

with the sum over all possible j and k such that
n ¼ 2ðjþ kþ 1Þ. Consider scaling fμ;ω; qg to fμ0;ω0; q0g
such that C0

n ¼ κC0 and α0l ¼ λαl for all n and l. This requires

ðλαjÞðλαkÞℏω0 ¼ καjαkℏω;

μ0ω0 ¼ μω;

ðq0Þ2
μ0ðω0Þ2 ¼ λ

q2

μω2
: ð52Þ

Solving them for fμ0ω0q0g finally gives

ω0 ¼ κ

λ2
ω;

μ0 ¼ λ2

κ
μ;

q0 ¼
ffiffiffi
κ

λ

r
q: ð53Þ

Therefore, setting λ ¼ 1 would scale all dispersion coeffi-
cients by κ leaving polarizabilities intact. Alternatively, setting
κ ¼ 1 would scale all polarizabilities only by λ. This is of high
interest in studying model systems wherein polarization
effects can be examined at fixed dispersion interaction
strength and vice versa allowing a novel understanding to
emerge.

C. A route to real systems: Damping and short-range repulsion

We have seen that at large intermolecular distances, where
the interaction is well described in terms of monomer proper-
ties, the QDO model gives an accurate description including
all many-body effects. At short range, where a significant
overlap in electronic distributions of monomers starts to occur,
two factors arise that affect the performance of the model.
The first is related to the fact that QDOs are distinguishable

(spinless) quasiparticles which obey Boltzmann (distinguish-
able particle) statistics due to the replacement of the Coulomb
electron-nuclear (on-site) interaction with a harmonic bond.
Therefore, certain provisions should be made for the missing
exchange repulsion (discussed in Sec. II.A.3), arguably the
largest of the charge penetration effects. It is an important
ingredient of any classical force-field recipe, where using the
simplifying fact that all short-range energy contributions are
approximately additive (Stone, 2013), it is often given in
simple Lennard-Jones (A=r12) or Born-Mayer [A expð−r=bÞ]
forms, although more refined schemes exist (Van Vleet et al.,
2016). The problems with and controversies in accurate

determination of many-body contributions to the short-range
interactions, both theoretically and experimentally, have been
thoroughly analyzed and discussed by Elrod and Saykally
(1994), in particular, the apparent contradiction in condensed
phase properties described by pair potentials with the ATM
term and small-cluster results, indicating that three-body
exchange effects largely cancel the ATM term (in systems
such as water but not in van der Waals systems). In the QDO
approach, based on pairwise approximation to exchange, as
demonstrated later for the case of liquid water (Sec. V.B) and
clusters (Sec. V.B.5), for both systems the results are con-
sistently accurate.
Because of the complex nature of intermolecular inter-

actions at short range (Stone, 2013) there is no direct route to
derive an analytic expression in this case. One way to grossly
account for the missing interactions in the QDO approach is
empirical: fitting the difference between a reference potential
and the QDO energy to a suitable analytic expression using
a single cut through the potential energy surfaces of a
dimer, which also provides a good test of the accuracy of
the pairwise approximation. It is believed that these inter-
actions decay approximately exponentially (Stone and Tong,
1994). A triexponential decay, used in early QDO work
(Whitfield and Martyna, 2006, 2007),

UrepðrÞ ¼
X3
i¼1

κie−λir; ð54Þ

provides a suitable, albeit not unique solution.
In such an approach a high quality reference potential

energy surface is required. It can be provided, e.g., by
coupled-cluster (CC) calculations (Crawford and Schaefer,
2007) with single, double, and perturbative triple excitations
included [CCSD(T)], the so-called “gold standard” in calcu-
lating energy surfaces for molecular complexes (Řezáč and
Hobza, 2013). Currently, extensive data sets using this
approach are under development (Patkowski, 2017), provid-
ing a reference quality benchmark database of nonbonded
potentials taken at the complete basis set (CBS) limit.
Application of this procedure to noble gases is straightforward
and Fig. 11 shows excellent agreement in QDO predicted and
experimental compressibility factors of krypton along the
(supercritical) isotherm of T ¼ 251.4 K. The inset illustrates
ab initio ground state and QDO potential energies for the
krypton dimer. Ab initio energy was calculated with aug-
mented correlation-consistent Dunning basis sets (Dunning,
1989) extrapolated to CBS (Jäger et al., 2016).
The second complicating factor is more technical and stems

from the point charge approximation used for electrostatic
interactions. Utilizing pure Coulomb interactions as effective
interactions can fail at very short (intra-atomic) separationswhere
charges no longer can be regarded as classical point objects. This
is an abiding problem in atomistic simulation of condensed
matter where to regularize both Coulomb and multipolar inter-
actions various damping functions (Thole, 1981; Sprik andKlein,
1988; Whitfield and Martyna, 2006) have been used.
An efficient and convenient way to regularize the Coulomb

interactions is to employ a smearing of charges (Sprik and
Klein, 1988; Chialvo and Cummings, 1998) [see Thole (1981)
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for a general discussion of damping]. Interactions remain
finite at all separations, which obviates the necessity of
damping used in early work on QDO (Whitfield and
Martyna, 2007) and can easily be incorporated in the
framework of Ewald summation and its smooth particle mesh
variant (Essmann et al., 1995; Gingrich and Wilson, 2010).
One approach (Jones, Cipcigan et al., 2013; Sokhan et al.,
2015b) is to regularize using Gaussian charge distribution of
width σ,

ρðrÞ ¼ q

ð2πσ2Þ3=2 exp
�
−

r2

2σ2

�
. ð55Þ

For QDO quasiparticles it is convenient to set the Gaussian
width of the center charge equal to the unperturbed oscillator
width σ ¼ ℏ=μω. The electrostatic energy between two
Gaussian charges q1 and q2 with widths σ1 and σ2 is simply

Vðr12Þ ¼
q1q2
r12

erf

�
r12

σ12
ffiffiffi
2

p
�
; ð56Þ

where σ212 ¼ σ21 þ σ22 and r12 ¼ jr2 − r1j. Thole (1981) and
Madden and Wilson (1996) have shown that the Gaussian
approach is not necessarily the best.

IV. SOLVING THE COARSE-GRAINED ELECTRONIC
PROBLEM

In the preceding sections we introduced the concept of the
embedded quantum oscillator as a means of simplifying the
electronic structure problem for atoms and molecules while
retaining the full set of long-range responses. We next turn to
strategies for computing physical properties within the elec-
tronically coarse-grained framework and for incorporating it
into practical simulations of large systems.

We seek a nonperturbative solution strategy which pre-
serves the rich physics of the model and all its responses
without introducing further simplifications or assumptions.
In particular, we seek to determine interactions between the
nuclei directly from the Drude model electronic structure
calculations, in the spirit of the Hellmann-Feynman theorem,
thereby eliminating the need to devise condense phase
empirical potential in advance.

A. Path integral molecular dynamics for the quantum Drude
oscillator

1. Condensed phases and the density matrix

In the previous discussion, we employed perturbation theory
to understand physically the long-range electronic responses at
fixed molecular and atomic positions captured by the QDO
model. Our ambition, however, is to move toward implemen-
tation in condensed phases where the constituent species
evolve at finite temperature. As fields in condensed phases
are large we want a nonperturbative solution designed to
capture all the diagrams: continuum of environments with
complex interfaces using a selected a priori subset of diagrams
would almost certainly bias the results. We shall include all
diagrams by developing a scalar field theory approach based on
thermal density matrices with parameters selected for the
physics desired—to generate the ground state properties of
the quasiparticle QDO systems and develop highly accurate
solutions that do not employ perturbation theory.
One advantage of the QDO model, although it has a limit, is

its ability to model short-range interactions, is that it obeys
distinguishable particle statistics—Fermi statistics is not
required. The thermal density matrix ρðQDOÞðr; r0; βD;RÞ in
the canonical ensemble at inverse temperatureTD ¼ 1=kBβD of
the model is, therefore, positive semidefinite for all elements
(diagonal and off-diagonal) at all temperatures, allowing it to be
statistically sampled facilely. The associated free energy is

FDðRÞ ¼ −β−1D lnfTrρ̂ðQDOÞðβD;RÞg
¼ E0ðRÞ þO( expð−βDE10ðRÞ); ð57Þ

given a sufficiently low “electronic” temperature TD is selected
as desired here. In a typical simulation study the electronic
temperature required to generate the ground state is
TD ¼ 1=kBβD ≫ T, where T is the true or molecular temper-
ature. Thus, TD is referred to as the “faux high electronic
temperature”—for systems in their ground state, temperature is
irrelevant. The approximation βDE10ðRÞ ≈ βDℏωD with ωD
setting the temperature kBTD ⪅ ℏωD=8. Thus, theway forward
is to develop a formalism to statistically sample these QDO
density matrices at a high electronic temperature TD and then
couple that to nuclear motion at temperature T. Surprisingly,
using techniques developed over the last 25 years, these
seemingly contradictory goals can be accomplished.
More formally, the evaluation of quantum mechanical

observables in a statistical mechanical ensemble requires
computation of both expectation values and statistical aver-
ages with appropriate weights determined by the physical
conditions of the ensemble (Gibbs, 1902). In particular, if all
objects in an ensemble are in the same pure state jψi,
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FIG. 11. Compressibility factor of krypton at 251.4 K as a
function of reduced density. Solid line, empirical equation of state
Lemmon, McLinden, and Friend, 2018); points, QDO results.
Reduced density (ρ� ¼ ρσ3) values are based on Lennard-Jones σ
from the recent parametrization (Vrabec, Stoll, and Hasse, 2001).
The inset shows a comparison of the reference ab initio dimer
energy (red line) and neat QDO energy (blue line). The shadowed
area illustrates the energy difference fit to an analytic expression.
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the expectation value for an observable (A) would be the
elementary result hAi ¼ hψ jAjψi. With mixed states,
however, the jψ ii occur only with some assigned probability
pi so the expectation value expression generalizes toP

i pihψ ijAjψ ii≡ trðρAÞ=trðρÞ, where ρ ¼ P
ipijψ iihψ ij

defines the density matrix—again the expression for pi
depends upon ensemble.
In the canonical ensemble, for a system in equilibrium at

temperature T, governed by a Hamiltonian Ĥ with eigenvalues
Ei and eigenstates jii the statistical weights pi are proportional
to the Boltzmann factor expð−βEiÞ where β ¼ 1=kBT is the
inverse temperature. The thermal density matrix thus takes the
form

ρ̂ðβÞ ¼ e−βĤ ¼
X
i

e−βEi jiihij; ð58Þ

ρ̂ðβÞðr; r0Þ ¼ hrje−βĤjr0i ¼
X
i

hrjjiihijjr0ie−βEi ð59Þ

diagonal in the basis of energy eigenstates. The trace gives the
partition function for the system,

ZðβÞ ¼ trρ̂ðβÞ≡X
i

expð−βEiÞ; ð60Þ

from which all thermodynamic quantities can be derived.
The matrix elements of the density matrix in the position
representation, which will be useful in the next section, are

ρðr; r0; βÞ ¼ hrje−βĤjr0i: ð61Þ

If the temperature is low, correlation distances are long and
conversely if the temperature is high, the matrix is short range.
Properties of density matrices have been extensively reviewed
(Fano, 1957; Blum, 2013).
In the next section we introduce the path integral as a means

of computing quantum statistical properties.

2. Path integral formulation of the density matrix

Feynman’s path integral concept (Feynman, 1949) is an
alternative formulation of quantum theory that uses sums over
paths to express the density matrix. Importantly for the present
application, path integrals allow for an efficient formulation of
nonperturbative solutions to quantum mechanical problems.
The method is therefore the strategy of choice for coping with
the many-body character of the QDO model when applied to
condensed phase situations enabled by the absence of the
Fermi statistics (sign) problem in the QDO as presaged earlier.
The central idea is based upon the notion of the propagator

(time evolution operator) defined as

Kðx; x0; tÞ ¼ hxj exp
�
−
i
ℏ
Ht

�����x0i ð62aÞ

∝
X
paths

exp

�
−
i
ℏ
S½xðtÞ�

�
: ð62bÞ

The propagator gives the amplitude for detection of a
particle at a measurement point x0 given that it has evolved
from point x. The path integral for the propagator appearing in
Eq. (62b) arises from taking the limit of its discrete form,

Kðx; x0; tÞ ¼ lim
P→∞

Z
dxn

YP−1
n¼1

hxje−iĤϵ=ℏjxP−1i

× hxP−1je−iĤϵ=ℏjxP−2i � � � hx1je−iĤϵ=ℏjx0i; ð63Þ

in which the time is divided into P small intervals ϵ ¼ t=P.
The sum over positions at each time slice forms a sum over all
possible paths. The exponent becomes a time integral of the
Lagrangian—the action S for each path as in Eq. (62b). As
written, the expression is exact because the Hamiltonian
operator commutes with itself. The formalism naturally emits
the connection between classical and quantum propagation.
Consider the classical “Hamilton’s principle of least action”
governing propagation between two points (Dirac, 1933).
In the classical case only the stationary action paths contribute
whereas in the quantum case a family of neighboring low-
action (relative to ℏ) paths contributes giving rise to appro-
priate deviations from classical trajectories. Weighting the
paths by the exponent of action gives identical results in
solving the Schrödinger equation (Feynman, 1939). The
fundamental methodology employed here has been reviewed
many times: for excellent reviews see Herman, Bruskin, and
Berne (1982), Ceperley (1995), Altland and Simons (2010),
and Shankar (2017).
The transition to a path integral representation for the

density matrix and partition function involves recognizing
that the propagator [Eq. (62a)] and the density matrix
[Eq. (61)] are related by analytic continuation. It is clear
that a path integral form for the density matrix is available if
we associate the temperature dependent factor β [appearing
in Eq. (61)] with a time (β ¼ it=ℏ). This step of replacing
inverse temperature (1=kBT) with an imaginary time (it=ℏ)
is a Wick rotation (rotation by π=2 in the complex plane)
(Baym and Mermin, 1961); see Fig. 12. Obtaining insight
into quantum mechanics by invoking analytical continu-
ation in path integral forms remains a topic of research
today (Witten, 2010). Note that, unlike the propagator, the
canonical density matrix within Boltzmann statistics is
positive semidefinite and can be straightforwardly sampled
using modern statistical methodology.
Conventional basis set approaches to determining the

ground state energy of the quantized oscillator degrees of
freedom, as opposed to the path integral approach championed
herein, must explicitly include each individual term in the
many-body energy, such as the dipole term, as an “excitation”
in the basis set (Wang and Jordan, 2001). Such methods
therefore become computationally intractable for large sys-
tems, scaling as N! in general. Early attempts to include many-
body dispersion in the dipole approximation (Cao and Berne,
1992) have OðN3Þ scaling. Our path integral method, in
contrast, allows for the inclusion of all many-body contribu-
tions (beyond the dipole limit) uniformly and can be solved
with linear [OðNÞ or nearly linear scaling (O(N × logðNÞ)]
with system size when solved using Monte Carlo or molecular
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dynamics techniques [most easily applicable to bosons
or distinguishable quasiparticles (Boltzmann statistics) as
herein].
Since the thermal density matrix has an exponential form, it

is factorizable into products of higher temperature expres-
sions. Thus,

ZðβÞ ¼
Z

dx ρðx; x; βÞ ¼
Z

dx hxje−βĤjxi: ð64Þ

Since Ĥ commutes with itself, we can factorize and obtain

ZðβÞ ¼
Z

dx hxj½e−ðβ=PÞĤ�Pjxi ð65Þ

for any integer P ≥ 1. Introducing a complete set of basis
vectors jxiihxij in between the P density matrices gives

ZðβÞ ¼
Z

dx0dx1 � � � dxP−1hx0je−ðβ=PÞĤjx1i

× hx1je−ðβ=PÞĤjx2ihx2j � � � hxP−1je−ðβ=PÞĤjx0i: ð66Þ

In the limit P → ∞, Eq. (66) is a complete path integral
representation of a thermal density matrix. However, even for
finite P we can rewrite Eq. (66) as

ZðβÞ ¼
Z

dx0dx1 � � � dxP−1eĤPðfxig;βÞ; ð67Þ

where

ĤPðfxig; βÞ ¼
XP
i¼1

log ρðxi; xiþ1; β=PÞ: ð68Þ

The advantage of the discrete path integral form is that
increasing the temperature (corresponding to decreasing β)
makes the density more “classical” and thus more accurate to
approximate. What we essentially do is to start with a quantum
mechanical system of N particles in contact with a heat bath at
temperature T. Its state in the canonical ensemble is described
by a density matrix ρðβÞ, which encodes the state of the
system. Equation (67) tells us that the partition function of this
quantum system is equal to the partition function of a classical
system with a Hamiltonian −ĤPðfxig; βÞ=βfaux, with an
arbitrary inverse temperature βfaux that can be tuned to
improve sampling.

3. Approximate density matrices, staging, and dynamics

The next step is to approximate the high temperature
density matrices. For ease of notation, let τ ¼ β=P. Using a
Trotter factorization (Trotter, 1959; Whitfield and Martyna,
2007), the Hamiltonian Ĥ is split into a reference Ĥ0, with
known density matrix ρ0 ¼ e−τĤ0 , and a perturbation Vðx⃗Þ
such that

ρðx⃗; x⃗0; τÞ ≈ e−τVðx⃗Þ=2ρ0ðx⃗; x⃗0; τÞe−τVðx⃗0Þ=2 þOðτ3Þ: ð69Þ

In the case of QDOs it is convenient to set H0 as the
Hamiltonian of the isolated oscillator, with the following
reference density matrix:

ρ0ðx⃗; x⃗0; τÞ

¼
�
αPðτÞ
π

�
exp

�
αPðτÞðx⃗ − x⃗0Þ2 þ λPðτÞ

2
ðx⃗2 þ ðx⃗0Þ2Þ

�
;

ð70Þ

and coefficients αPðτÞ and λPðτÞ defined as

αPðβÞ ¼
mω

2ℏ sinhðfÞ ;

λPðβÞ ¼
2mω tanhðf=2Þ

ℏ
;

f ¼ βℏω
P

: ð71Þ

In order to motivate sampling schemes, we notice the strong
nearest-neighbor coupling between the coordinates x⃗ and x⃗0.
To treat this coupling, the density matrix is diagonalized to the
independent coordinates u⃗i via a staging transformation with
unit Jacobian (Whitfield and Martyna, 2007), leading to the
following form for the partition function:

FIG. 12. The canonical density matrix can be obtained from the
propagator at time t ¼ −iβℏ. The transformation is viewed as a
π=2 Wick rotation in a complex-time plane.
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ð72Þ

The coefficients of the transformation are as follows:

u⃗1 ¼ x⃗1;

u⃗i ¼ x⃗i − x⃗�i ;

x⃗�i ¼
sinhðτℏωÞ
sinh½iτℏω� x⃗1 þ

sinh½ði − 1Þτℏω�
sinhðiτℏωÞ x⃗iþ1;

xPþ1 ¼ x1;

σ21 ¼
ℏ

2mω tanhðβℏω=2Þ ;

σ2i ¼
ℏ sinh½ði − 1Þτℏω� sinhðτℏωÞ

mω sinh½iτℏω� : ð73Þ

One step remains in order to make the partition function
isomorphic to a fictitious classical system: the addition of
conjugate momenta p⃗i with corresponding faux masses m̃i.
Note that they are different from Drude oscillator mass μ,
defined in Eq. (50). This transforms the partition function
exactly to yield

ZðβDÞ ¼
YP
i¼1

Z
du⃗i

�
1

2πσ2i

�
3N=2

exp

�
−

u⃗2i
2σ2i

�

× exp

�
−τ

XP
i¼1

V(x⃗iðu⃗iÞ)
�

× C
Z

dp⃗i exp

�
−τ

p⃗2
i

2m̃i

�
; ð74Þ

where C ¼ Q
ið2πm̃i=τÞ−3=2 is a normalization constant

required to make the momentum integral unity. This final
transformation generates a form for the partition function with
the effective classical Hamiltonian HðfauxÞ, which can be
sampled via existing methods used to sample classical systems
(Tuckerman et al., 1993; Whitfield and Martyna, 2006, 2007),

HðfauxÞ ¼
XP
i¼1

p⃗2
i

2m̃i
þ u⃗2i
2σ2i τ

þ V(x⃗iðu⃗iÞ)
P

: ð75Þ

Note that we now have free parameters: the faux masses m̃i.
These parameters will not affect the results of the calculations,
but can be chosen to improve sampling efficiency. The masses
are chosen to equalize the frequencies of the harmonic modes
to a single sampling time scale 1=ωS. A choice of m̃i ¼
ðωSσiÞ−2 is appropriate (Jones, Crain, Cipcigan et al., 2013).
Using this approach, harmonic staging has been found to
improve the computational efficiency of path integral sam-
pling by 2–3 orders (Whitfield and Martyna, 2007) and the
Trotter discretization numbers P ≈ 102 are sufficient (Jones,
Crain, Cipcigan et al., 2013). The final free parameter ωS can
be selected equal to the fundamental oscillator frequency,
sometimes called the Einstein frequency (Allen and Tildesley,
2017). In systems with the atoms frozen, the choice of ωS
simply sets the molecular dynamics time step [e.g., δt ≈
1=ð10ωSÞ being a standard value].
We are primarily interested in coupling the nuclear motion

at thermal temperature T to the Born-Oppenheimer surface
generated by the path integral sampling of the QDO degrees of
freedom at high temperature TD selected as the lowest yet still
generates the ground state. We begin by considering the
equations of motion generated by independent heat baths
coupled to the nuclei and the QDO path integral degrees of
freedom. A variety of choices of heat bath are possible but for
the path integral degrees of freedom the massive Nosé-Hoover
method (Martyna, Klein, and Tuckerman, 1992; Tobias,
Martyna, and Klein, 1993; Tuckerman et al., 1993;
Martyna, 1994) or variants thereof have thus far been our
choice. For nuclei, if sampling of the ensemble and not
nuclear dynamics is desired, a multiple thermostat approach is
the most efficacious approach there as well. Typically, the heat
bath time scale is set to the fundamental frequency of the
associated degrees of freedom, here 1=ωN , for nuclei and
1=ωS for the path integral. Such a set of equations of motion,
with two temperatures, cannot be shown to sample any known
ensemble except in the adiabatic limit when one set of degrees
of freedom is much faster than the other. The result, as has
been shown analytically (Cao and Martyna, 1996; Marx,
Tuckerman, and Martyna, 1999), agrees with insight, that the
slow nuclear degrees of freedom move, at temperature T on
the potential of mean force generated by fast degrees temper-
ature at temperature TD as desired.
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In practice, adiabatic separation is generated imperfectly
through the introduction of a finite adiabaticity parameter γ,
which relates the fast path integral frequency ωS and nuclear
characteristic frequency ωN via ωS ¼ γωS. Taking the nuclear
time step ΔtMD ¼ 0.05=ωS, which is a safe choice (Allen and
Tildesley, 2017), and setting the adiabaticity factor γ ¼ 16

(a compromise between the numerical accuracy and computa-
tional costs) (Jones, Crain, Sokhan et al., 2013) defines the
method. The rates of convergence for the APIMD-QDO
simulated results to their thermodynamic values were studied
for water (Jones, Crain, Cipcigan et al., 2013); they define the
typical values of the method. Multiple time step integration
methods increase the time step and effective parallelization of
both the nuclear and electronic degrees of freedom combine to
permit the technique to generate high quality results using
quite reasonable computer time allotments. As an example, on
a modest Intel xeon-based system with 96 cores a system of
4000 noble gas atoms required 0.5 wall seconds per time step
of 0.15 fs.

V. APPLICATION EXAMPLES AND PHYSICAL INSIGHTS

A. Noble gas solids and liquids as proof of concept

We have shown that the QDO model is, in principle,
effective at reproducing the dispersion interaction behavior
between mixed species of atoms (Sec. III.A.2). A significant
consequence for materials simulation is that parameters fit for
a single species will automatically generate correct long-
range interactions when they interact with arbitrary new
neighbors. This arises naturally, without the need to obtain
distinct parameters for each possible pair, triplet or higher-
order term.
The noble gases represent the simplest systems with which

to implement the QDO method. While the electronic
responses are confined to those arising from the dispersion
series, the handling of short-ranged repulsion can be devel-
oped and the full machinery of molecular dynamics simulation
illustrated. QDO models for noble gases have now been
developed (Jones et al., 2009; Jones, Crain, Sokhan et al.,
2013) using experimental data for the polarizabilities and
dispersion coefficients to determine the three principle model
parameters with Coulomb regularization and short-range
internuclear pairwise repulsion potential. With no parametri-
zation to the condensed phase, QDOs predict correct zero
temperature properties of noble gas crystals (Ne, Kr, Ar, and
Xe). Specifically, the crystal lattice constants are in good
agreement and the energies are within 3% for all species
except neon, which shows 8% deviation. The corresponding
liquid phases (using APIMD-QDO) predict radial distribution
functions close to experiment (see Fig. 13).
The success of the quantum Drude model in capturing the

behavior of solid and liquid noble gases over a broad range
of state points demonstrates its general effectiveness.
Despite their simplicity they are nonetheless challenging
in the sense that lowest-order induction responses present in
systems with permanent multipole moments are absent
leaving the leading-order dispersion response, a second-
order perturbation effect.

B. Liquid water

Although water is among the simplest complex liquid. Its
condensed phase behavior is essential both for life on Earth
and for creating environmentally friendly technologies.
However, even though it has only three constituent atoms
its dynamics and thermodynamics are challenging to simulate.
Hundreds of molecular models of water exist at many levels of
physical description from all-electron simulations of small
water clusters (Maheshwary et al., 2001; Temelso, Archer,
and Shields, 2011; Gillan et al., 2012, 2013; Alfè et al., 2013;
Singh, Nandi, and Gadre, 2016) to density functional theory
(DFT) simulations of small periodic systems (Schmidt et al.,
2009; Lin et al., 2012; Gaiduk, Gygi, and Galli, 2015; Santra
et al., 2015; Ambrosio, Miceli, and Pasquarello, 2016; Gillan,
Alfè, and Michaelides, 2016) to fixed-charge empirical
models (Guillot, 2002; Abascal and Vega, 2005; Vega et al.,
2005; Vega and Abascal, 2011; Izadi, Anandakrishnan, and
Onufriev, 2014; Cisneros et al., 2016; Izadi and Onufriev,
2016) and coarse-grained simulations where each water
molecule is treated as a single particle (Shell, 2008;
Molinero and Moore, 2009; Lu et al., 2014; Mashayak et al.,
2015; Vega, 2015; Zavadlav et al., 2015; Wagner et al., 2016).
These models have given us insight into how water’s con-
densed phase properties emerge from its molecular structure,
emphasizing the importance of the competition between the
tetrahedral structure favored by hydrogen bonds and the close-
packed structure favored by dispersion interactions. The
contention between these two effects, with strong many-body
underpinnings, one driven by polarization and one driven by
dispersion, combined with the lack of a near-quantitative
molecular model for such an important substance inspired the
creation of QDO water, a molecular model of water.

1. Existing water models

Unlike the case of noble gases, the water molecule is
polar and the structure of its liquid form arises from
competition between directional hydrogen bonds, which
favor an open icelike local structure and more isotropic
dispersion forces, which favor a close-packed local structure.

FIG. 13. The radial distribution function for argon at 85 K at the
liquid coexisting density calculated using APIMD-QDO (dashed
red line), and from the neutron scattering experiments (blue line).
From Yarnell et al., 1973.
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This competition makes modeling of water challenging since
many-body polarization and dispersion interactions are key
to distinguishing between competing motifs (Morawietz
et al., 2016) and have nontrivial many-body origins.
Hydrogen bonds are known to be cooperative, meaning that

their interaction strength changes depending on environment
thus leading to the emergence of a wide variety of motifs.
A simple reporter of this cooperation is the molecular dipole
moment, which changes from a value of 1.85 D in the gas
phase to an estimated value of 2.5–3.6 D in the condensed
phase (Kemp and Gordon, 2008; Jones, Cipcigan et al., 2013),
where four hydrogen-bonded motifs are dominant.
Dispersion interactions are also important in water:

Including these responses is essential to generate even the
basic structure of water at room temperature. An illustrative
example of this balance is the overstructuring of room-
temperature water by local approximations within DFT
(Lin et al., 2012), where including the electron correlations
that lead to accurate van der Waals interactions is absent
(although, there have been promising results using a similar
technique of embedded quantum harmonic oscillators at the
dipole level) (Tkatchenko et al., 2012).
In addition, three-body effects account for as much as 25%

of the binding energy of water, according to the estimates of
Ojamaee and Hermansson (1994) calculated at the second-
order Moller-Plesset perturbation theory counterpoise-cor-
rected level of theory. Thus, monatomic two-body potentials
for the water molecule can only reproduce water’s condensed
phase properties if their parameters are allowed to vary with
state point (Johnson, Head-Gordon, and Louis, 2007;
Chaimovich and Shell, 2009). Even a full-atom description
of water cannot be transferable if its electrostatics is fixed.
Vega and Abascal (2005) showed that a nonpolarizable model
of water cannot simultaneously reproduce the melting temper-
ature and temperature of maximum density.

2. Ab initio models of water

High level ab initio simulations of water are challenged by
the computational expense of treating electron correlation
accurately. This has limited target systems to small clusters
(Maheshwary et al., 2001; Gillan et al., 2012, 2013).
Nonetheless, recent advances such as the use of embedded
fragments (Gordon et al., 2012) have enabled accurate
coupled cluster calculations to be applied to the condensed
phase (Willow et al., 2015).
In the case of density functional theory, local, gradient

corrected and hybrid functionals both overstructure liquidwater
(Lin et al., 2012), with a melting point of around 400 K (Yoo,
Zeng, andXantheas, 2009). To achieve amore realistic structure
dispersion interactions have to be included, using techniques
such as van der Waals corrected functionals (Williams and
Malhotra, 2006; Klimeš, Bowler, and Michaelides, 2009), the
Tkatchenko-Scheffler embedded oscillators method (Santra
et al., 2008; Tkatchenko and Scheffler, 2009; Tkatchenko et al.,
2012), or hybrid functionals (Benighaus et al., 2008).
Thus, despite the challenge, low level ab initio computations

have revealed interesting insight into the physics of water.
Cluster-based simulations are important in creating accurate
benchmarks for the parametrization of empirical models

(Maheshwary et al., 2001) and could even be used to interpret
ultrafast experiments using nanodroplets consisting of a few
thousand water molecules. Lower level DFT simulations are
essential in interpreting experimental results of x-ray spectros-
copy, which probes the change in electron ionization energies
as a function of different environments (Nilsson, Schlesinger,
and Pettersson, 2015; Amann-Winkel et al., 2016).
Ab initio simulations also reveal insight about the nature of

the hydrogen bond. For example, DFT simulations show, via
an energy partition scheme, that water molecules have on
average one strong acceptor and one strong donor bond,
uncovering a fluctuating asymmetry in water’s local structure
(Kühne and Khaliullin, 2013).

3. Fixed-charge models

The majority of simulations of water models have used an
approach wherewater molecules are modeled as a combination
of three elements: fixed point charges arranged to reproduce the
electrostatic moments of the molecule, Lennard-Jones R−6

interactions to reproduce dispersion, and an R−12 or exponen-
tial repulsion. This approach is conceptually simple, computa-
tionally cheap, and has reproduced the bulk properties of liquid
water with good accuracy.
Such models can be characterized by the number of inter-

action sites, ranging from three to six, as summarized in Fig. 14.
A few years after resolving the molecular structure of water,
Bernal andFowler, (1933) proposed the firstmolecularmodel of
water. It was a four-site model, resembling the nowwidely used
transferable intermolecular potential with four points (TIP4P)
family, with two positive charges placed on the hydrogen atoms
and a negative charge on the bisector of the HOH angle.
Computer simulation of water began in the late 1960s to the

early 1970s, with Barker andWatts (1969) and Rahman (1971)
performing the first Monte Carlo and molecular dynamics
simulations of liquid water. The 1980s saw the creation and
parametrization of an increasing number ofwatermodels. Some
followed the philosophy of Bernal and Fowler (1933) and
employed four interaction sites, leading to the TIP4P family of
models (Jorgensen et al., 1983). Others used only three sites,
leading to the transferable intermolecular potential with three
points (TIP3P) (Jorgensen et al., 1983) and simple point charge
(Berendsen, Grigera, and Straatsma, 1987) families. Others
created a model incorporating the lone pair orbitals, resulting in
five interaction sites and the Stillinger second model (ST2)
family of models (Stillinger and Rahman, 1974).
The 2000s saw an increase in optimized parametrizations of

these families of models, seeing the birth of models such as
TIP4P/Ew (Horn et al., 2004), optimized for use with Ewald
summation techniques, TIP4P/Ice (Abascal et al., 2005),
optimized to reproduce the phases of ice and TIP4P/2005
(Abascal and Vega, 2005), optimized to give the best overall
fit to the whole phase diagram of water.
All of these models assume that the interaction sites need to

be placed on atomic sites. However, this choice is not
optimum for reproducing the ground state electrostatic proper-
ties of real water. Recently, Izadi, Anandakrishnan, and
Onufriev (2014) showed that relaxing this assumption leads
to a better reproduction of the electrostatic moments of the
water molecule and to two models, OPC (optimized point
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charge, 4 site) and OPC3 (optimized point charge, 3 site) that
achieve a better fit to liquid water’s condensed phase proper-
ties than the TIP4P and TIP3P families.
Models such as OPC have reached the limits of what is

achievable with fixed-charge models. In order to go farther in
reproducing both the properties of bulkwater and those ofwater
in heterogeneous environments, the effects of many-body
polarization and dispersion have to be taken into consideration.

4. A new molecular model of water based on quantum Drude
oscillators

Quantum Drude oscillators unite the missing elements
from fixed-charge models into a single framework. They
closely reproduce the electrostatic responses including polari-
zation beyond the dipole approximation and many-body
dispersion interactions between molecules at a computational
cost that scales near linearly with the size of the system. Thus,
QDOs can provide the missing building block to water models
that brings their properties in near-quantitative agreement to
those of real water.
To construct a water model using a QDO, one needs three

elements: a rigid molecular frame with embedded point
charges to replicate the lowest-order electrostatic moments,
a QDO to replicate electronic responses, and a short-range,
pairwise repulsion potential to treat Pauli repulsion. These
elements are shown in Fig. 15 with their respective parameters
given in Table II.
The molecular frame is fixed in the experimental geometry

of the isolated molecule, with an HOH angle of 104.52° and an
OH distance of 0.9572 Å (Abascal and Vega, 2005). Two
positive charges of magnitude qH ¼ þ0.605e are placed on
the H site and a negative −2qH charge is placed on the M site,
on the bisector of the HOH angle at a distance ROM ¼
0.2667 Å from the oxygen. The distances and the charges
are fixed to generate the dipole moment of the isolated
molecule (1.85 D) and give the best fit to the quadrupole
moment components.
To create an electronically responsive model, a QDO is

centered on the M site. Its parameters are determined using
the dipole and quadrupole polarizabilities and the C6 dispersion

coefficient using Eq. (50). The reference values of the multipole
moments anddispersion coefficients are fromMillot et al. (1998),
who reported a mix of ab initio calculations and experiment.
The repulsive potential is fit by calculating one cut through

the dimer energy surface using the coordinates shown in Fig. 16.
Ab initio calculations were done at the CCSD(T) level, with the
aug-cc-pVTZ basis set using ACESIII 3.0.7 (Lotrich et al., 2008)
giving the energy shown in Fig. 16. The equivalent energy of the
repulsion-free model (frameþ QDO) was calculated using the
norm-conserving diffusion Monte Carlo method (Jones et al.,
2009) with 1000 walkers. The differences between ab initio
energies and repulsion-free models were fit to a double
exponential of the form given in Eq. (54).
The Coulomb potential between charges was damped by

replacing point charges with a Gaussian distribution of width
σi as per Eq. (55).

FIG. 14. Various parametrizations of classical, rigid, fixed-charge models using three sites (Berendsen et al., 1981; Jorgensen et al.,
1983; Berendsen, Grigera, and Straatsma, 1987; Fuentes-Azcatl, Mendoza, and Alejandre, 2015; Izadi and Onufriev, 2016), four sites
(Bernal and Fowler, 1933; Jorgensen et al., 1983; Horn et al., 2004; Abascal et al., 2005; Abascal and Vega, 2005; Fuentes-Azcatl and
Alejandre, 2014; Izadi, Anandakrishnan, and Onufriev, 2014), five sites (Ben-Naim, 1972; Stillinger and Rahman, 1974; Mahoney and
Jorgensen, 2000; Rick, 2004; Dias et al., 2009), and six sites (Nada and Eerden, 2003). From Molinero, 2013.

FIG. 15. QDO-water model with spherical regularizing Gaus-
sian surfaces shown in proportion.
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The Gaussian widths of each charge are given in Table II.
For the bead (the path integral molecular dynamics sampler),
hydrogen and the M site are 0.1 bohr, small in comparison to
the dimensions of the molecule. For the center charge of the
QDO, the Gaussian width is 1.2 bohr, which is comparable
with the size of the molecule. This choice was made so that the
center charge provides a background of positive charge inside
the molecule, making the ground state of the QDO more
uniformly neutral and reproducing some of the screening.

5. Cluster energies of QDO water: A basic benchmark

In order to assess how the energetics of QDO water
extrapolate beyond the single cut through the dipole energy
surface, a simple quantity to calculate is the energies of
various water clusters. The reference energies and geometries
were taken from the Benchmark Energy and Geometry
DataBase (Řezáč et al., 2008) and were calculated at the
CCSD(T)/CBS noCP level of theory by Temelso, Archer, and
Shields (2011), which is a comparable level of theory to what
was used to parametrize the model.
Since the reference geometries were optimized via ab initio

calculations (at the MP2/aug-cc-pVDZ noCP level of theory),

they had to be adapted to fit the rigid frame of QDO water. To
do so, the oxygen atom of QDO water was placed in
the position of the oxygen atom in the reference geometry.
The bisector of the model’s frame was then aligned with the
bisector of the reference geometry and the positions of the
hydrogen atoms were then generated. The model’s hydrogen
atoms were close to the reference ones, with the OH distances
changing by a few percent. This is consistent with a fairly rigid
OH bond. The rearrangement had to be done since the
energetics of QDO water were parametrized with reference
to a fixed geometry. The ab initio energies were not recom-
puted and hence quantitative agreement cannot be expected.
Figures 25–28 in Appendix B show a comparison of the

binding energies per molecule for 38 clusters between QDO
water and ab initio calculations. The agreement between QDO
water and ab initio is excellent. The energies differ by a few
percent, with 68% of the QDO-water clusters having energies
2% away from the ab initio reference and almost all (97%)with
an energy 5% away from the ab initio reference. The only large
deviation was the 3UUU trimer (three molecules in a triangle,
with all free hydrogen atoms oriented in the same direction),
with a deviation of 9.3%. It would be interesting to add the CP
correction to the ab initio results and estimate the contribution
of three-body repulsion, which is neglected in the QDOmodel.

6. Transferability of QDO water

The behavior of QDO water has been investigated in
multiple environments, illustrated in Fig. 17, spanning the
phase diagram of water. In a series of papers, it was shown to
correctly predict the following properties:

Sokhan et al. (2015b): The lattice constants and bulk
modulus of ice II, the liquid-vapor coexistence den-
sities above 300 K, the temperature of maximum
density, and the radial distribution function at 300 K.

Cipcigan et al. (2015): Surface tension, a positive
surface expansion, orientation of water molecules at
the liquid-vapor interface, and the radial distribution
function at the liquid-vapor interface.

Sokhan et al. (2015a): Pressures of supercritical water at
673, 773, and 873 K.

TABLE II. The free parameters of QDO water. Eh ≈ 27.211 eV is
the Hartree energy, a0 ≈ 0.5292 Å is the Bohr radius, and e ≈ 1.60 ×
10−19 C is the elementary charge.

Parameter Value Parameter Value

Molecular geometry Coulomb damping
ROH 0.9572 Å σD ¼ σH ¼ σM 0.1a0∠HOH 104.52° σC 1.2a0

Ground state electrostatics Short-range repulsion
qH 0.605e κ1 613.3Eh
ROM 0.2667 Å λ1 2.3244a−10

Quantum Drude oscillator κ2 10.5693Eh
mD 0.3656me λ2 1.5145a−10
ωD 0.6287Eh=ℏ
qD 1.1973e

FIG. 17. Examples of quantum Drude oscillators in different
environments: ice II, ambient temperature liquid water, and the
surface of liquid water. The images illustrate their electronic
responses, with red and blue isosurfaces corresponding to regions
of enhancement and depletion of electronic density, respectively.

FIG. 16. (Left) A cut through the dimer energy surface calcu-
lated via ab initio methods and QDO with added repulsion.
The figure is adapted from Sokhan et al. (2015b) and corrects the
error there by showing the distance between the oxygen atoms in
both cases. (Right) A sketch of the orientation used in calculations
with the coordinate defining the abscissa in the dimer energy
graph.
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Cipcigan et al. (2018): Pressure of supercooled water at
51.8 and 55.3 mol=l above 220 K, and a radial
distribution function of supercooled water.

7. Liquid-vapor coexistence

Fundamentally, the liquid-vapor interface is among the
simplest heterogeneous systems water can form in nature. At
this interface, the hydrogen-bondednetwork that binds the liquid
is abruptly truncated in a manner that is still of debate for both
simulation and experiment. The prediction of an accurate liquid-
vapor critical point, a temperature of maximum density, and
coexistence densities is an important benchmark for a water
model. This remains challenging due to the change in molecular
properties between the gas phase and the liquid phasewater,with
the dipole moment enhancing from 1.85 to around 2.6 D.
Sokhan et al. (2015b) reported a realistic enhancement

of the dipole and higher-order moments between the gas and
the liquid phases, leading to an accurate prediction of the
coexistence properties (summarized in Fig. 18). The complex
polarization produced by QDO water can be visualized by
rendering the difference in density between the charge
distribution of a QDO and its ground state. Figure 18 shows
such a visualization for bulk liquid water.
Cipcigan et al. (2015) reported an accurate surface tension

and novel insight into the molecular structure of the interface,
linking asymmetries in hydrogen bonding to the measured
surface orientation in surface-specific sum-frequency gener-
ation spectroscopy.

8. Ice II: A proton ordered ice

Ice II is a proton ordered ice with the structure illustrated
in Fig. 19. Its unit cell consists of two hexagonal rings with

FIG. 18. The liquid-vapor coexistence curve, temperature of
maximum density, and the polarization density of water mole-
cules in the liquid phase. Blue regions represent depletion of
electrons while red regions represent enhancement.

FIG. 19. The unit cell of ice II and predicted unit cell parameters compared to Fortes et al. (2005). The image in the top-left corner
shows the polarization density of QDO water on the two rings of the ice II unit cell. Blue regions represent depletion of electrons while
red regions represent enhancement.
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distinct hydrogen bonding motifs (Kamb, 1964). These rings
are staggered and connected by hydrogen bonds both verti-
cally and horizontally, resulting in a structure resembling
nanotubes of water molecules. The structure is determined by
two parameters: a is proportional to the size of each ring and c
is proportional to the separation between the rings.
Sokhan et al. (2015b) reported the lattice parameters of ice

II predicted by QDO, as a function of temperature, compared
to the experimental references of Fortes et al. (2005) (pre-
sented in Fig. 19). These show a good match: c is less than 1%
above experiment while a is 2% lower than experiment.
Taking into consideration that the experimental literature
shows a similar spread in values, this agreement is good.

9. Supercritical water

When water is heated above its critical temperature of
647 K, the distinction between liquid and vapor vanishes,
resulting in a single, supercritical phase. The existence of this
phase has been known almost for two centuries (Cagniard de
la Tour, 1822) and has excited both fundamental and tech-
nological interest. At the molecular level, supercritical water
contains small transient water clusters embedded in a gaslike
phase. Locally, it maintains the structure of liquid water yet
globally it expands to fill a space like a gas would.
Despite the lack of a phase transition, supercritical water

contains regions of liquidlike and gaslike properties (Fisher,
1969; Brazhkin et al., 2012; Fomin et al., 2015). These have
been separated using various boundaries in the phase diagram:
the critical isochore, the maxima in thermodynamic responses
(also known as the Widom lines) (Fisher, 1969) and a dynamic
crossover (known as the Frenkel line) (Brazhkin et al., 2012).
These boundaries coincide close to the critical point (in the
scaling region) anddiverge at higher pressures and temperatures.
Sokhan et al. (2015a) reported a new such crossover between

gaslike and liquidlike regions in supercooled water, marked by
a cusp in the molecular dipole moment. This is the first report of
such a molecular signature of the gas-liquid transition in
supercritical water. This study extends the transferability of
QDO water to supercritical water, where its predictions again
match experiment, as reproduced in Fig. 20. Note that
percolation transition in the hydrogen bond network and the
Widom line in general do not coincide (Strong, Shi, and
Skinner, 2018).

10. Supercooled water

A supercooled liquid is formed when the liquid is cooled
below its freezing temperature. In this region, the crystal is the
thermodynamically stable phase. However, without a nucle-
ation site, crystallization faces a large energy barrier since it
requires a global rearrangement from a low symmetry to a
high symmetry phase. The energy barrier makes supercooled
water metastable on a time scale influenced by a competition
of two effects: the relaxation times of liquid water, whose rate
of increase with cooling increases below the freezing point,
and the similarity of the local environment to the stable phase
(Limmer and Chandler, 2015).
Upon supercooling, the response functions of water such as

heat capacity and isothermal compressibility increase rapidly

and appear to diverge just below the temperature of homo-
geneous nucleation (Debenedetti, 2003). This is one of water’s
anomalies whereby below 4 °C cooling causes expansion.
Cipcigan et al. (2018) reported a molecular-level anomaly

driving this expansion. Below the temperature of maximum
density, the first coordination shell of water molecules (i.e.,
the first four neighbors) still contracts upon cooling, even if
the liquid expands. To counteract, the second coordination
shell (the next eight molecules) expands (Fig. 21). Further,
Cipcigan et al. (2018) compared predictions of QDO water in
the supercooled region, showing again a good match with
experiment.

FIG. 20. (Top) Isotherms of supercritical QDO water at 600
(triangles), 673 (circles), 773 (diamonds), and 873 K (squares).
The points are calculated values while the lines are NIST/
IAPWS–95 experimental data (Wagner and Pruß, 2002; Lem-
mon, McLinden, and Friend, 2018). The dotted line is the
liquid-vapor coexistence curve of water (Wagner and Pruß,
2002; Lemmon, McLinden, and Friend, 2018) ending in the
critical point, labeled CP. The errors are calculated using
bootstrapping (Allen and Tildesley, 2017) and are smaller
than the size of the points. (Bottom) Dipole moment of water
molecule as a function of water density at T ¼ 673 (blue
diamonds) and 873 K (orange circles). Green squares and right
scale, average number of hydrogen bonds per molecule at
T ¼ 673 K. The lines are linear fits to the data. Insets illustrate
the corresponding variation in electron density—pink and blue
isosurfaces correspond to gain and loss of electron density,
correspondingly.
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VI. FUTURE PERSPECTIVES

A. Toward complex physical systems

The electronically coarse-grained strategy described here
points to apromising andversatilenewapproach to the simulation
of nonreactive condensedmatter systems. The results validate the
basic premise that a complete model, sans a priori perturbative
cutoffs selected by the modeler, allows complex systems to be
described and their emergent properties to be gleaned.
While the systems studied so far have been limited to water

and noble gases these basic ingredients lay the foundation for
a rapid expansion in the space of applications on the path
toward the simulation of biomolecules within the overall
framework. The case of water is particularly significant as its
physics includes the coupled effects of polarity, polarizability,
dispersion, and network formation via hydrogen bonds.

Already within reach, as the next steps, are electronically
coarse-grained models for hydrophobic hydration under
ambient and extreme conditions. In the simplest cases of
hydrated noble gases it will be possible to make direct
structural comparisons between model predictions and avail-
able x-ray or neutron diffraction experiments. It then becomes
possible to examine largely unexplored questions about the
effects of electronic responses on hydration shell structure and
self-assembly. Conclusions drawn here would likely have
wider significance and guide thinking regarding the funda-
mentals of hydrophobic hydration at the small length scale
limit.
Beyond single component systems, but using the same

basic building blocks, it is possible to imagine assembling
simple extended interfaces between water and nonpolar
surfaces which may include apertures and other forms of
nanoconfinement. Such constructs are rudimentary models for
hydrophobic interactions on large length scales and for
complex biological systems. Phenomena such as “hydropobic
gating” (Aryal, Sansom, and Tucker, 2015) and liquid-vapor
oscillations in pores including the effects of long-range
electronic responses become accessible. There are early
indications of the importance of many-body electronic effects
at the interface between water and graphitic surfaces and that
polarization and dispersion interactions contribute differently
to wetting phenomena (Misra and Blankschtein, 2017).
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APPENDIX A: MULTIPOLE EXPANSION

1. Approximate potentials at long range: Cartesian multipole
expansion for a charge distribution

Here we set out the principles and key steps leading to the
multipole expansion for the potential of a charge distribution.
In general, a multipole expansion is a description of the
potential which generally converges to the exact potential
when the charges are spatially confined and the observation
point is far from the sources.
We start with the fundamental definition of the electrostatic

potential VðRÞ arising from an arbitrary charge distribution
ρðrÞ [see Fig. 22 and Eq. (4)] as

VðRÞ ¼
Z

drρðrÞTðR − rÞ: ðA1Þ

This is recognizable as the general solution for the Poisson
equation where TðR − rÞ ¼ jR − rj−1 is the Green’s function
(Tang, 2006). Since the Poisson equation is linear in both the
potential and the source term its solutions are completely
superposable.

FIG. 21. (Top) The pressure of 300 QDO-water molecules as a
function of temperature at two constant volumes: ρ1 ¼
51.8002 mol=l (red) and ρ2 ¼ 55.3173 mol=l (blue). The dashed
line represents equivalent data digitized from Pallares et al. (2014)
(ρ1, experimental estimates via simulations of TIP4P=2005). The
dotted lines represent the corresponding isotherms of the IAPWS-
95 reference equation of state for water (Wagner and Pruß, 2002).
The black dot-dashed line corresponds to an interpolated isochore
based on the experimental data measured by Mishima (2010).
(Bottom) Probability distribution of each neighbor (arbitrary units)
as a function of temperature, showing the range of distances from
a central molecule the neighbor occupies.
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Assuming we are in the far field (exterior multipole) range
where jrj ≪ jRj, TðR − rÞ can be expanded in a Taylor series
about the origin:

TðR − rÞ ¼ 1

R
− rα∇α

�
1

R

�
þ 1

2
rαrβ∇α∇β

�
1

R

�

−
1

3!
rαrβrγ∇α∇β∇β

�
1

R

�
þ � � � . ðA2Þ

From here the electrostatic potential can be expressed
[following its definition in Eq. (A1)] in terms of the expansion

VðRÞ ¼ TðRÞ
Z

ρðrÞdr
zfflfflfflfflfflffl}|fflfflfflfflfflffl{q

− TαðRÞ
Z
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2
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Z
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−
1

6
TαβγðRÞ

Z
rαrβrγρðrÞdr

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Ωαβγ

þ � � � . ðA3Þ

The various terms here define the multipole moments as
follows: The first term

R
ρðrÞdr ¼ q defines the overall charge

(monopole) within the distribution. The second term includes
the general definition of the dipole arising from a continuous
distribution as

R
rαρðrÞdr ¼ μα. The third term defines the

quadrupole (symmetric with nonzero trace) and so on.
Together these terms define the multipole expansion of the
potential as

VðRÞ ¼ qTðRÞ − μαTαðRÞ þ 1
2
QαβTαβðRÞ þ � � � ; ðA4Þ

where we define TðRÞ ¼ R−1, TαðRÞ ¼ ∇αR−1, TαβðRÞ ¼
∇α∇βðR−1Þ, and so on. The first term is the electrostatic
potential arising from a point charge. Note that the multipoles
are properties of the charge distribution while TðRÞ and its
gradients determine the distance dependences of the contri-
bution from each moment (properties of the observation
point R).
There is one subtlety concerning the choice of origin which

can be illustrated by returning to the case of a dipole
configuration formed by two charges (q1 and q2) positioned
on the x axis at x1 and x2, respectively. If we imagine translating

the origin to the left along the x direction by a, we would
compute a dipole moment in the translated coordinate system
μT ¼ q1ðx1 þ aÞ þ q2ðx2 þ aÞ ¼ q1x1 þ q2x2 þ aðq1 þ q2Þ.
Thus,

μT ¼ μþ aðq1 þ q2Þ: ðA5Þ

Therefore, only in the case where q1 ¼ −q2 (system has no net
charge) do we find that the dipole moment in the original and
translated coordinate systems are the same. In the case where
the two charges do not exactly cancel (i.e., the lowest-order
multipole is the monopole) the dipole moment will not be
invariant under translations. This is a special case of a general
result that only the lowest-order moment in the multipole
expansion is unique and independent of origin choice.
As a final comment in this section we note that while the

charge and dipole have familiar forms, there are several
conventions for the quadrupole and higher multipoles. Most
common among these alternatives is a traceless form of the
tensor which reduces further the number of independent
components:

Θαβ ¼
1

2

Z
drð3rαrβ − r2δαβÞρðrÞ: ðA6Þ

The freedom to choose such an alternative form arises because
the quadrupole potential is unaltered by the addition of a term
which satisfies the Laplace equation.
The trace-canceling term is interpreted as the spherically

averaged second moment. Similar traceless constructions exist
for higher moments.

2. Energy of a charge distribution in an external field

We next consider the general case where the charge
distribution is placed in an external potential ϕðrÞ. We will
see that the conclusions drawn here apply to the situation
where the external field arises from a neighboring molecule
and can be used to determine the interaction energy between
arbitrary charge distributions. We begin by performing a
similar expansion of the potential about the origin (chosen
to be inside the charge distribution),

ϕðrÞ ¼ ϕð0Þ þ rαϕαð0Þ þ
1

2
rαrβϕαβð0Þ

þ 1

3!
rαrβrγϕαβγð0Þ þ � � � ; ðA7Þ

where ϕαð0Þ ¼ ∂ϕð0Þ=∂rα, from which the electrostatic
interaction energy follows as

Eelec ¼
Z

drρðrÞϕðrÞ

¼
Z

drρðrÞϕð0Þ þ
Z

drrαρðrÞϕαð0Þ

þ 1

2

Z
drrαrβρðrÞϕαβð0Þ

þ 1

6

Z
drrαrβrγρðrÞϕαβγð0Þ þ � � � . ðA8Þ

FIG. 22. An arbitrary charge distribution used to define the
multipole expansion of the electric potential VðRÞ for R ≫ r.
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Using the definition of the multipole moments we obtain

Eelec ¼ qϕþ μαϕα þ 1
3
Θαβϕαβ þ 1

15
Ωαβγϕαβγ � � � . ðA9Þ

The prefactors of 1=3 and 1=15 arise from using the traceless
forms of the quadrupole and octopole tensors. Finally we can
now make contact with the expression in Eq. (5) by intro-
ducing the electric field components as gradients of the
potential according to Fα ¼ −∇αϕðRÞ,

Eelec ¼ qϕ − μαFα − 1
3
ΘαβFαβ − 1

15
ΩαβγFαβγ þ � � � ; ðA10Þ

which is equivalent to Eq. (5) with the exception that this
expression includes the monopole source term qϕ.
The resulting energy is then the scalar product of the field

with dipole, field gradient with quadrupole, and higher field
gradients with the higher multipole tensors.

3. Interactions between general multipoles

The multipole expansion for the potential of an arbitrary
charge distribution and the expression for the interaction
energy given in Eqs. (A4) and (A10), respectively, allow us
to determine forms for the interaction energy between multi-
poles of arbitrary order. To illustrate we consider first the
trivial case of two point charges. The interaction energy is
given by the first term of Eq. (A10). Here ϕ corresponds to the
potential of another point charge as given by the first term of
Eq. (A4). Taken together these produce the elementary result
that the interaction potential is q1q2=R12 the gradient of which
gives Coulomb’s force law, etc.
Interaction tensors for higher multipoles emerge system-

atically. In the case of two interacting dipoles we refer to the
second term of Eq. (A10). Here the relevant energy is that of
the dipole moment in the field of another dipole. We then need
to obtain the field by taking the gradient of the corresponding
dipole potential [the second term in Eq. (A4)]. This procedure
gives the components of the dipole field tensor Tij defined as

Tij ¼ ∇i∇j
1

jRj ¼
3RiRj

R5
−
δij
R3

: ðA11Þ

The dipole-dipole energy for a fixed orientation is then
expressed in a compact tensor notation as

Edip ¼ μATABμB: ðA12Þ

The interaction energy between multipoles of arbitrary
order can be similarly constructed with the basic trend being
that higher multipoles give rise to shorter ranged interactions.
The form of the interaction tensors also means that some
multipole pairs have similar functional forms and distance
dependences. For example, it is evident from Eqs. (A4) and
(A10) that the form of the dipole-dipole interaction tensor just
considered is the same as that for a quadrupole in the field of a
point charge. The dipole-quadrupole interaction tensor is also
the same as that for a charge-octopole pair, etc.

4. Spherical multipoles

We have seen that the potential of a distribution can be
expanded in powers of 1=R in the far field as a Taylor series in
the Cartesian coordinates. An alternative expansion can be
performed in terms of spherical harmonics which depend on
spherical polar coordinates; see Fig. 23.
The spherical multipole expansion includes terms which

capture progressively finer angular features: By analogy with
the Cartesian case, we expect the first term to be a monopole—a
constant, independent of angle. The next term should have
dipolar symmetry—varying once in angle from positive to
negative around the sphere. Higher-order terms (such as the
quadrupole and theoctopole) exhibit greater angularmodulation.
To develop these ideas rigorously we express the denom-

inator of TðR − rÞ as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − rÞ · ðR − rÞ

p
¼ ½R2 þ r2 − 2Rr cosðθÞ�1=2.

Here θ is the angle between the position vector of the charge
element and the observation direction (see Fig. 22). In the far
field case where r < R this can be arranged as

TðR − rÞ ¼ 1

R

�
1þ

�
r
R

�
2

− 2

�
r
R

�
cosðθÞ

�
−1=2

¼ 1

R

X∞
l¼0

Plðcos θÞ
�
r
R

�
l
; ðA13Þ

where Plðcos θÞ is the Legendre polynomial and the expres-
sion in brackets is recognized as the generating function. If
axes are chosen such that the observation point is located on
the z axis, the angle θ corresponds to the normal polar angle in
spherical coordinates.
If the radius of the observation point satisfies R > r, the

potential of the distribution can be expanded as

VðR; θÞ ¼
X∞
l¼0

1

Rlþ1

Z
ρðrÞPlðcos θÞrld3r

¼
X∞
l¼0

Ml

Rlþ1
Pl( cosðθÞ); ðA14Þ

which is a form of multipole expansion in the polar angle only
with multipole momentsMl defined exactly as in the Cartesian
case, that is M0 ¼ q—the net charge or zeroth moment for
which the potential is attenuated by R−1 and P0ðxÞ ¼ 1. The
next term in the sum gives the first moment, definingM1 as the
dipole moment modulated by P1( cosðθÞ) ¼ cosðθÞ which
changes sign once over the interval 0 to π (see Fig. 23).
This expansion applies to the axially symmetric distribution
since there is no azimuthal angle dependence. Themost general
expansion involves spherical harmonics which are related to
the Legendre functions by the addition theorem Pnðcos θÞ ∝P

mY
m
l ðθ;ϕÞY�m

l ðθ;ϕÞ. The spherical multipole moments of
the source are then defined as
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qlm ¼
Z

ρðrÞrlYm
l ðθ;ϕÞd3r: ðA15Þ

By analogy with the Cartesian case, l ¼ 1 corresponds to
the dipole for which there are three forms arising from
m ¼ −1, 0, 1 giving the μα¼x;y;z, Cartesian orientations.

The l ¼ 2 form has quadrupolar symmetry with five
(m ¼ �2;�1; 0) independent components; the l ¼ 3 octopole
has seven, etc.; therefore the proper number of independent
components for each multipole arises naturally in the spherical
expansion. More generally, we can again make contact with
group theory considerations as follows: the existence of a

FIG. 24. A pure hexadecapole corresponding to Y4
4ðθ;ϕÞ (a) showing field lines and equipotentials. The field distribution is equivalent

to that of alternating charges on the vertices of a regular octagon. (b) Two linear octopoles with charges reversed and displaced by a small
distance to illustrate the similarity in the far field.

FIG. 23. Illustration of the spherical harmonics representation for multipole moments corresponding to (a) dipole, (b) quadrupole, and
(c) octopole symmetries. Theplots in the top three panels show the behavior of the correspondingLegendre functionwhich determines the sign
in the case where there is full axial symmetry corresponding tom ¼ 0 (see the discussion in Sec. II.B.1 which introduced the idea of axially
symmetric charge distributions). General examples of cases for m ≠ 0 are also shown as viewed along the azimuthal (ϕ) axis.
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multipole there to be at least one nonvanishing multipole
moment. We therefore require that the integrand transform
according to the totally symmetric point group irreducible
representation. Because the total charge distribution and the
factor rl transform according already satisfy this requirement

the symmetry of the integrand is completely determined by the
spherical harmonic.
The spherical forms also permit natural extensions to higher

multipole moments. For example, beyond the octopole the
hexadecapole moment corresponds to the l ¼ 4 index. The

FIG. 25. (multipart figure 1/4) Energies per molecule of water clusters calculated using QDO water, compared with a CCSD(T)/CBS
noCP. ( Note that the axes in the first two parts of this figure are different than in the last two parts. The change in position of the orange
line at 10 mHa indicates this change. From Řezáč et al., 2008 and Temelso, Archer, and Shields, 2011.
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Y4
4ðθ;ϕÞ term is shown illustrating the azimuthal modulation

in Fig. 24(a). The charge distribution shown is that of equal
alternating charges on the vertices of a regular octagon. A
Cartesian hexadecapole comprised of two canceling, linear
octopoles with unequal charges is also shown for comparison.

APPENDIX B: CLUSTER ENERGIES

This Appendix contains Figs. 25–28 showing cluster
energies.

FIG. 26. (multipart figure 2/4) Energies per molecule of water clusters calculated using QDO water, compared with a CCSD(T)/CBS
noCP. Note that the axes in the first two parts of this figure are different than in the last two parts. The change in position of the orange
line at 10 mHa indicates this change. From Řezáč et al., 2008 and Temelso, Archer, and Shields, 2011.
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FIG. 27. (multipart figure 3/4) Energies per molecule of water clusters calculated using QDO water, compared with a CCSD(T)/CBS
noCP. Note that the axes in the first two parts of this figure are different than in the last two parts. The change in position of the orange
line at 10 mHa indicates this change. From Řezáč et al., 2008 and Temelso, Archer, and Shields, 2011.
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FIG. 28. (multipart figure 4/4) Energies per molecule of water clusters calculated using QDO water, compared with a CCSD(T)/CBS
noCP. Note that the axes in the first two parts of this figure are different than in the last two parts. The change in position of the orange
line at 10 mHa indicates this change. From Řezáč et al., 2008; Temelso, Archer, and Shields, 2011.
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