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Quantum resource theories (QRTs) offer a highly versatile and powerful framework for studying
different phenomena in quantum physics. From quantum entanglement to quantum computation,
resource theories can be used to quantify a desirable quantum effect, develop new protocols for its
detection, and identify processes that optimize its use for a given application. Particularly, QRTs have
revolutionized the way we think about familiar properties of physical systems such as entanglement,
elevating them from being just interesting fundamental phenomena to being useful in performing
practical tasks. The basic methodology of a general QRT involves partitioning all quantum states into
two groups, one consisting of free states and the other consisting of resource states. Accompanying
the set of free states is a collection of free quantum operations arising from natural restrictions placed
on the physical system, restrictions that force the free operations to act invariantly on the set of free
states. The QRT then studies what information processing tasks become possible using the restricted
operations. Despite the large degree of freedom in how one defines the free states and free operations,
unexpected similarities emerge among different QRTs in terms of resource measures and resource
convertibility. As a result, objects that appear quite distinct on the surface, such as entanglement and
quantum reference frames, appear to have great similarity on a deeper structural level. This article
reviews the general framework of a quantum resource theory, focusing on common structural features,
operational tasks, and resource measures. To illustrate these concepts, an overview is provided on
some of the more commonly studied QRTs in the literature.
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I. INTRODUCTION AND MOTIVATION

Basic economic principles dictate that objects acquire value
when they cannot be easily obtained. From this perspective,
value is a property that emerges relative to physical capabil-
ities. A resource theory for a given scenario extends this
principle by categorizing actions in terms of being either free
or prohibited, and then analyzing what can be accomplished
using the allowable operations. Certain objects cannot be
generated in this setting and they are considered to be a
resource. For example, a camper is forced to consider what
types of food can be prepared using a camping stove and
nonperishable ingredients. The ability to bake and refrigerate
is prohibited, and any ingredient requiring, say, a refrigerator
is a resource for the camper.
In recent years, the resource theory perspective has flour-

ished within the quantum information community. Instead of
the resources being cooking ingredients for a camper or fuel
for an automobile driver, the resources considered within
quantum physics involve objects and phenomena at the atomic
and subatomic levels as depicted in Fig.1. Resource theories
of this sort are called quantum resource theories (QRTs). It is
quite natural to apply a resource-theoretic outlook to the study
of quantum systems since processes such as decoherence
rapidly eliminate most quantum behavior of a system. Similar
to an oil digger, one must exert considerable experimental
effort to witness and control the subtle effects of quantum
mechanics.
While the technical details will be covered in this review

article, the basic idea of a quantum resource theory is to study
quantum information processing under a restricted set of
physical operations. The permissible operations are called
“free,” and because they do not encompass all physical
processes that quantum mechanics allows, only certain physi-
cally realizable states of a quantum system can be prepared.
These accessible states are likewise called free, and any state
that is not free is called a resource state. Thus a quantum
resource theory identifies every physical process as being
either free or prohibited, and similarly it classifies every
quantum state as being either free or a resource.

The most celebrated example of a quantum resource theory
is the theory of entanglement. For two or more quantum
systems, entanglement can be characterized as a resourcewhen
the allowed dynamics are local quantum operations and
classical communication (LOCC). For example, as depicted
in Fig. 2, Alice and Bob may be working in their own quantum
laboratorywhile being separated from each other by some large
distance. Because of current technological limitations, the only
communication channel connecting their laboratories is
classical, such as a telephone. Hence Alice cannot directly
send quantum states to Bob and vice versa, and the free
operations in this resource theory consist of LOCC. While
the classical communication channel allows for the preparation
of classically correlated states between the two laboratories, not
every type of joint quantum state can be realized for Alice and
Bob’s systems using LOCC. A state is said to be entangled, and
therefore a resource, precisely when it cannot be generated
using the free operations of LOCC. For instance, if Alice and
Bob each control a single spin-1=2 quantum system, the singlet
state

ffiffiffiffiffiffiffiffi
1=2

p ðj01i − j10iÞ cannot be created by LOCC and it is
therefore called an entangled state.

FIG. 1. In a quantum resource theory, the precious commodity is
some physical property or phenomenon that emerges according
to the principles of quantum mechanics. The paradigmatic
example is quantum entanglement.

FIG. 2. Quantum entanglement is a quantum resource in the
“distant-lab” scenario where the free operations are LOCC. From
Plenio and Virmani, 2007.
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Inspired by its success researchers have adopted the
resource theory framework within many other areas of
quantum information and physics. For example, asymmetry
and quantum reference frames, quantum thermodynamics,
quantum coherence and superposition, secret correlations in
quantum and classical systems, non-Gaussianity in bosonic
systems, “magic states” in stabilizer quantum computation,
non-Markovianity in multipart quantum processes, nonlocal-
ity, and quantum correlations have all been studied as resource
theories. Even more foundational objects such as contextuality
and Bell nonlocality have been envisioned as resources within
quantum information theory.
There are multiple benefits to framing a given quantum

phenomenon in terms of a resource, and here we highlight four
of them.

(1) Resource theories can be desirable from a practical
perspective as they often restrict attention to quantum
operations that reflect current experimental capabilities.
For example, one advantage of capturing entanglement
as a resource under LOCC is that, relative to the
challenges of faithfully transmitting quantum systems
across large distances, classical communication is easy.
Practically speaking then, it is reasonable to consider
what information processing tasks can be performed
when restricted to LOCC. More generally, a resource
theory can be associated with any experiment where the
free operations are those that can be performed within
the experimental degrees of freedom inherent to the
particular setup (e.g., rotation of the inhomogeneous
magnetic field in the Stern-Gerlach experiment).

(2) Resource theories provide the foundation to rigorously
compare the amount of resource held in different
quantum states (or quantum channels). Operationally
speaking, one state possesses at least as much resource
as another if it is possible to transform the former into the
latter using the free operations of the resource theory.
This is simply because whatever tasks can be accom-
plished using the transformed state can also be accom-
plished using the original one. By considering
convertibility under the free operations, a preordering
is established on the set of quantum states. With a
resource theory, measures can also be constructed so
that it becomes possible to say “how much” resource is
in a given state. While the specific numerical value of
these measures can have various operational meanings
such as transformation probability or conversion rate, all
meaningful measures of resource are monotonically
decreasing under the free operations of the resource
theory. This captures the intuitive notion that a resource
is something precious and its value cannot be freely
increased.

(3) Resource theories enable a fine-grained analysis ofwhat
fundamental processes and properties drive a certain
phenomenon. By placing restrictions on the allowed
operations, one can precisely pinpoint the essential
physical requirements for performing some information
processing task. Quantum teleportation provides an
example of how, when restricting to LOCC, entangle-
ment emerges as the essential ingredient for transmitting
quantum information from one physical location to

another. By decomposing a given task in terms of free
operations and resource consumption, one can further
consider resource trade-offs. For certain tasks, it may be
advantageous to expand the set of free operations in
order to reduce the overall consumption of resource.

(4) By capturing a particular object of interest within a
quantum resource theory, it becomes possible to
identify structures and applications that are common
to resource theories in general. Problems that are
challenging or not even recognized when approached
internally take on a new light when approached
externally, from the more general resource-theoretic
perspective. For example, elegant solutions to the
notoriously difficult problem of entanglement revers-
ibility emerge when drawing resource-theoretic con-
nections to thermodynamics. As another example, new
areas of research in classical information theory open
after recognizing that certain features of quantum
entanglement can also be observed in the classical
setting of private and public correlations.

This review surveys the subject of quantum resource theories.
There are already a number of reviews on individual resource
theories: entanglement (Plenio and Virmani, 2007; Horodecki
et al., 2009), quantum reference frames and asymmetry
(Bartlett, Rudolph, and Spekkens, 2007), quantum thermody-
namics (Gour, Muller et al., 2015; Goold et al., 2016),
coherence (Streltsov, Adesso, and Plenio, 2017), nonlocality
(Brunner et al., 2014), non-Gaussianity (Weedbrook et al.,
2012), non-Markovianity (Rivas, Huelga, and Plenio, 2014),
and quantum correlations (Modi et al., 2012; Adesso, Bromley,
and Cianciaruso, 2016). The purpose of this article is to review
the plethora of features that unite all these theories together
under a common resource-theoretic framework, similar to the
approach taken byHorodecki andOppenheim (2013b). Early in
its development, quantum entanglement was seen to possess
many formal similarities to thermodynamics (Popescu and
Rohrlich, 1997; P. Horodecki, Horodecki, and Horodecki,
1998; Horodecki, Oppenheim, and Horodecki, 2002), and
connections between different resource theories have been
investigated ever since (Horodecki and Oppenheim, 2013b;
Brandão and Gour, 2015; Anshu, Hsieh, and Jain, 2017; Gour,
2017; Liu, Hu, and Lloyd, 2017; Sparaciari et al., 2018). Many
of the same mathematical tools and techniques can be applied
across a wide variety of resource theories. Examples include
majorization theory, entropic quantities and their properties,
results from convex analysis such as the hyperplane separation
theorem, and optimization techniques such as cone program-
ming. Furthermore, recently it was recognized that a resource
theory can be formulated as a symmetric monoidal category
(Coecke, Fritz, and Spekkens, 2016; Fritz, 2017). This abstract
formulation recognizes that the structure of resource theories
goes far beyond quantum physics and has the potential to be
useful in many other areas of science. Here, however, we focus
only on resource theories admitting the structure of quantum
mechanics.
As one of its primary goals, this review outlines the general

framework for constructing a quantum resource theory and
discusses the typical questions that emerge in its development.
After describing the different approaches to answering these
questions, a comparative review is provided of the more
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well-known resource theories. A broad overview of tasks,
measures, and analytic techniques is then conducted over the
course of three sections. The review closes with an overview of
open problems and future research directions.

II. NOTATION AND PRELIMINARIES

Here we introduce the notation that will be used throughout,
and we quickly review some of the basic concepts in quantum
information theory that are relevant to quantum resource
theories. More detailed expositions of this introductory
material can be found in Nielsen and Chuang (2000),
Wilde (2017), and Watrous (2018). We denote Hilbert spaces
by HA, HB, etc., where the superscripts indicate the physical
systems associated with these Hilbert spaces. Composite
systems are denoted by HAB, HABC, etc. In some cases we
want to envision systems A, B, C, etc., as being held by
generic agents Alice, Bob, Charlie, etc., but an association
with personal agents is not necessary. The set of bounded
operators acting on a Hilbert spaceHA are denoted by BðHAÞ,
or simply BðAÞ. Positive semidefinite operators in BðAÞ are
typically denoted by lowercase Greek letters (e.g., ρ, σ, ω),
and we write ρ ≥ 0 to indicate that all eigenvalues are non-
negative. The set of quantum states (i.e., density matrices) in
BðAÞ consists of positive semidefinite matrices with trace 1
and are denoted by SðAÞ. Two common ways to quantify
“how close” a given state ρ is to another σ is the trace distance,
given by DTrðρ; σÞ ¼ ð1=2Þkρ − σk1 (where kXk1 ¼
Tr

ffiffiffiffiffiffiffiffiffi
X†X

p
), and the fidelity given by Fðρ; σÞ ¼ k ffiffiffi

ρ
p ffiffiffi

σ
p k1

(Uhlmann, 1976). The two can be related using the inequal-
ities (Fuchs and van de Graaf, 1999)

1 − Fðρ; σÞ ≤ DTrðρ; σÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ; σÞ2

q
: ð1Þ

Linear maps, or superoperators, that act on BðAÞ are
denoted by capital Greek letters (e.g., Φ, Λ, Γ), and the
identity map are denoted by idA∶ BðAÞ → BðAÞ. The set of all
bounded linear maps from BðAÞ to BðBÞ are denoted by
BðHA → HBÞ, or simply BðA → BÞ. Linear maps that re-
present a physical evolution of a possibly open system must
take density matrices to density matrices. We say that a linear
map Φ∶ BðAÞ → BðBÞ is positive if ΦðρÞ ≥ 0 for all
0 ≤ ρ ∈ BðAÞ, k positive if Φ ⊗ idC is positive with
dimðHCÞ ¼ k, and completely positive (CP) if it is k positive
for all k. It is known that if a linear map is k positive with
k ≥ dimðHAÞ then it is completely positive. A physical
evolution is therefore represented by a CP map. Moreover,
since density matrices can evolve only to density matrices, a
physical evolution must preserve the trace. Such completely
positive trace-preserving (CPTP) maps are called quantum
channels. The set of all quantum channels in BðA → BÞ are
denoted by QðA → BÞ.
Quantum mechanics allows for stochastic processes and

quantum measurements. For measurements with a discrete set
of outcomes, a quantum state ρ is converted to another
quantum state σi with some probability pi. The average
postmeasurement description of both the classical measure-
ment register and the quantum system can be given by a
quantum-classical (QC) state of the form

σQX ¼
X
i

piσi ⊗ jiihijX: ð2Þ

Therefore, the entire measurement can be modeled by a
deterministic process Φ, converting ρ to σQX. The map Φ
in this case is a particular type of a quantum channel, often
called a measurement map, that has the form
Φð·Þ ¼ P

i Φið·Þ ⊗ jiihijX, with each Φi being CP andP
iΦi being trace preserving. By appending the classical

ancillary system X we can thereby consider trace-preserving
maps even when discussing stochastic processes. Throughout
this review we adopt the convention that HX denotes a
classical system whose states are always dephased in some
a priori fixed orthonormal basis fjiigi.
Any quantum channel has three important representations

that are frequently used in the field of quantum information
science, and all three representations play a crucial role in
quantum resource theories as well. The most physically
intuitive one is related to the Stinespring dilation theorem
(Stinespring, 1955). In this representation, the evolution of an
open quantum system A is modeled by a unitary interaction
UAE of the joint system A with the environment (represented
by system E). When the environment is initially in some
uncorrelated state j0ih0jE, the reduced-state dynamics of
system A is described by the quantum channel

ρA ↦ ΦðρAÞ ¼ TrE0 ½UAEðρA ⊗ j0ih0jEÞU†AE�; ð3Þ

where E0 need not be the same system E. It turns out that for
every CPTP map Φ, there exists such a unitary representation
UAE in which Eq. (3) holds for all ρA. This can be interpreted
as saying that every physical evolution is essentially a unitary
evolution on the joint system and environment, and CPTP
maps provide only an effective description of the evolution
due to the inaccessibility of the environment’s degrees of
freedom.
The second representation of a quantum channel is known

as the operator-sum representation. It states that the action of
any quantum channel Φ can be written as ΦðρAÞ ¼P

j Kjρ
AK†

j , where fKjgj is a set of complex matrices (known

as Kraus operators) satisfying
P

jK
†
jKj ¼ IA, with IA being

the identity in BðAÞ. If we relax the trace-preserving condition
on Φ to be just trace nonincreasing, then the Kraus operators
satisfy

P
jK

†
jKj ≤ IA. Just as the unitary UAE in Eq. (3) is not

unique for each Φ, the set of Kraus operators fKjgj is not
unique and is defined up to a unitary mixing (Nielsen and
Chuang, 2000). While the operator-sum representation at first
seems very mathematical, translating physical constraints into
Kraus operator constraints is often a convenient way to
characterize the allowed (i.e., free) operations of a QRT, such
as in entanglement.
The last representation of a quantum channel that we

consider involves an isomorphism between bipartite positive
operators and CP maps. At first glance, the mathematical
structure of quantum channels appears to be more complex
than that of density matrices. However, the two objects are
actually equivalent. To establish this, we first let
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jϕþ
dA
i ¼

XdA
j¼1

jjiAjjiA0

denote a canonical unnormalized maximally entangled vector
acting on HA ⊗ HA0

, with HA ≈HA0
. When the dimension of

the system is clear, we omit the subscript dA. Then consider
the action of the CP (but not necessarily trace-preserving) map
Φ∶ BðA0Þ → BðBÞ when acting on one-half of the maximally
entangled vector jϕþiAA0

. This produces the bipartite operator

JABΦ ≔ idA ⊗ ΦðϕþÞ; ð4Þ

where ϕþ ¼ jϕþihϕþj. The operator JABΦ is called the Choi
matrix of Φ, and when the context is clear, we omit the
subscript Φ and simply write JAB or just J. Any CP map Φ
corresponds to such a bipartite positive semidefinite operator
JABΦ via Eq. (4), and conversely, any bipartite positive semi-
definite operator JAB corresponds to a CP map Φ given by

ΦJðρÞ ¼ TrA½JABðρT ⊗ IBÞ�; ð5Þ

where ρT indicates the matrix transpose with respect to some
fixed basis ofHA. If this basis is chosen to be the same as that
used in the definition of jϕþiAA0

, then it is easy to see that
ΦJΦ ¼ Φ. The relations in Eqs. (4) and (5) therefore define an
isomorphism between the set of CP maps in BðA → BÞ and
the set of bipartite positive semidefinite operators in BðABÞ,
typically called the Choi-Jamiołkowski isomorphism. If we
further require Φ to be trace preserving (i.e., a quantum
channel), then the system A reduced operator in JABΦ of Eq. (4)
is the identity, i.e., JAΦ ¼ IA. Conversely, if the reduced
operator of JAB is the identity in Eq. (5), then ΦJ will also
be trace preserving. Thus, there is a bijection between the set
of quantum channels and the set of positive semidefinite
operators with the system-A marginal being the identity.
Each of these three representations plays an important role

in QRTs. As we will see, different representations fit more
naturally in the analysis of different QRTs. Some, more
physical QRTs, lend themselves best to a unitary representa-
tion, while others, more mathematical in nature, allow for
easier analysis using the Choi representation.
We finally draw attention to a special class of CP maps that

act invariantly on the identity; i.e., ΦðIÞ ¼ I. These are called
unital maps, and they are closely related to the dual of a
quantum channel. Namely, for every CP map Φ ∈ BðA → BÞ,
its dual Φ† ∈ BðB → AÞ is the adjoint map fixed by the
Hilbert-Schmidt inner product; that is, it is the unique map Φ†

satisfying

Tr(XΦ†ðYÞ) ¼ Tr(ΦðXÞY) ð6Þ

for all Hermitian X ∈ BðAÞ and Hermitian Y ∈ BðBÞ. One can
verify that a CP map Φ is trace preserving if and only if its
dual Φ† is a unital CP map. To see this, it is perhaps easiest to
substitute the operator-sum representation ΦðAÞ ¼ P

jKjAK
†
j

directly into Eq. (6), which reveals fK†
jg to be the Kraus

operators of Φ†. In terms of its Choi matrix, JABΦ† for a channel

Φ has the property that its system B reduced state is the
identity; i.e., JBΦ† ¼ IB. Compare this to the condition JAΦ ¼ IA

for JABΦ previously mentioned.

III. THE GENERAL STRUCTURE OF QUANTUM
RESOURCE THEORIES

As discussed in the Introduction, the structure of resource
theories goes far beyond quantum physics. For example, the
set of all shapes that can be generated by a compass and a ruler
could represent “free states” of a resource theory, with the
action of the compass and ruler being the free operations.
Therefore, in this resource theory, all the shapes that cannot be
generated by a compass and ruler are considered as resources.1

However, the type of resource theories that we will consider
here focus on quantum phenomena such as entanglement and
coherence. Therefore, in what follows, QRTs are defined with
respect to a given Hilbert space so that the structure of
quantum mechanics is prominent.

A. Definition of a QRT and tensor-product structures

Already in the early stages of its development, it was clear
that quantum information is a theory of interconversions
among different resources (Bennett, 2004; Devetak,
Harrow, and Winter, 2008). These resources are diversely
classified as classical or quantum, noisy or noiseless, and
static or dynamic. However, the term “resource theory”
appeared much later. Originally, it was coined by
Schumacher in 2003 (unpublished), and later in a 2008 paper
on the resource theory of quantum reference frames (Gour and
Spekkens, 2008). The latter provided one of the first explicit
constructions of a QRT that is different from entanglement
theory, although the framework for a QRT of information had
already been investigated in a series of earlier papers
(Oppenheim et al., 2002; M. Horodecki et al., 2003,
2005). Since then, many other resource theories have been
developed, and a precise mathematical definition of a resource
theory was given by Coecke, Fritz, and Spekkens (2016) and
Fritz (2017) as a symmetric monoidal category. However, this
definition involves terms from category theory and goes
beyond the scope of this review. We therefore start with a
mathematically less general definition of quantum resource
theories, yet probably more accessible to a reader with a
physics background. While in this review we consider mostly
finite-dimensional Hilbert spaces over the complex field (in
which case the Hilbert spaces will be isomorphic to Cd for
some integer d), the definition can also be applied to infinite-
dimensional Hilbert spaces.

Definition 1. Let O be a mapping that assigns to any two
input or output physical systems A and B, with corresponding
Hilbert spaces HA and HB, a unique set of CPTP operations
OðA → BÞ≡OðHA → HBÞ ⊂ QðA → BÞ. Let F be the
induced mapping F ðHÞ ≔ OðC → HÞ, where H is an

1We credit Rob Spekkens for this simple example of a non-
quantum resource theory.
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arbitrary Hilbert space. Then the tupleR ¼ ðF ;OÞ is called a
QRT if the following two conditions hold:

(1) For any physical system A the set OðAÞ ≔ OðA → AÞ
contains the identity map idA.

(2) For any three physical systems A, B, and C, if Φ∈
OðA→BÞ and Λ∈OðB→CÞ then Λ∘Φ∈OðA→CÞ.

In a QRT, the set F ðHÞ ⊂ SðHÞ defines the set of free states
acting on H, and the elements belonging to SðHÞnF ðHÞ are
called resource states or static resources. Likewise the CPTP
maps in OðA → BÞ are called free operations and the CPTP
maps that are not in OðA → BÞ are called dynamical
resources.As before, for Hilbert spacesHA, HB, etc., we often
denote sets of free states and free operations in terms of
system labels, e.g., F ðAÞ≔F ðHAÞ, F ðABÞ≔F ðHA⊗HBÞ,
OðA → BÞ ≔ OðHA → HBÞ, OðAÞ ≔ OðHA → HAÞ, etc.
With a slight abuse of terminology, when the underlying
Hilbert spaces are clear, we often refer to F as the free states
andO as the free operations. Here and throughout the reviewwe
also use the notation⊂ to indicate a generic set inclusion, which
may or may not be strict.
The physical interpretation of Definition 1 is as follows.

Consider a quantum system held by one agent or distributed to a
group of parties. AQRTmodels what the parties can physically
accomplish given some restrictions or constraints that result
from technical or experimental limitations, the rules of some
game, or simply the laws of physics.What operations the agents
can still perform given these restrictions is mathematically
described by OðA → BÞ, which is typically much smaller than
the set of all quantum channels. The first condition in
Definition 1 simply says that the identity map (i.e., doing
nothing) is free, an obvious requirement for any meaningful
QRT. Condition (2) says thatΛ∘Φ is free wheneverΦ andΛ are
both free. This ensures that the operations belonging to O are
indeed free in the sense that they can be performed freely any
number of times and in any order. A consequence of condition
(2) is that the free operations cannot convert any state inF to one
not belonging to F . More formally,

for any two physical systems A and B, if
Φ ∈ OðA → BÞ and ρ ∈ F ðAÞ, then ΦðρÞ ∈ F ðBÞ.

This can be referred to as the golden rule of QRTs, and
it justifies the terminology of “resource” for states in
SðHÞnF ðHÞ.
In the literature, the free states and free operations are

typically presented on equal footing. However, here we
identify the free operations as being more fundamental. If
free states are special objects that an experimenter can work
with, then one must be able to prepare or obtain them. Such an
initial preparation is thus identified by an operation in
OðC → HÞ. Nevertheless, note that by keeping the
set OðC → HÞ fixed, different QRTs can be defined with
the same set of free states. We therefore treat the free states as
their own component of a QRT, even though they emerge from
the definition of free operations. Then unless otherwise stated,
when we speak of “free operations,” we always mean maps
acting on input spaces having dimension of at least 2.
The golden rule of QRTs does not imply that resource states

fail to play a functional role in the theory. On the contrary, if

the agents or parties do happen to have access to a resource
state (perhaps prepared separately by a third party), it could
possibly be used to circumvent (at least partially) the restric-
tions on the allowed operations. That is, for some σ ∉ F ðBÞ,
there may exist maps Φ ∈ OðABÞ and Λ ∉ OðAÞ such that
Φðρ ⊗ σÞ ¼ ΛðρÞ for all ρ ∈ SðAÞ [or perhaps just a subset of
SðAÞ]. In this case, the state σ is literally functioning as a
resource for the simulation of an otherwise restricted operation
Λ (see Secs. III.D.5 and V.E). The most celebrated example of
this is quantum teleportation in entanglement theory (Bennett
et al., 1993).
QRTs correspond to physical models. As such, Hilbert

spaces represent the state space of specific physical systems.
Therefore, a mathematical isomorphism between two Hilbert
spaces, such as C2 ⊗ C2 ≅ C4, does not necessarily translate
into the same set of free states (or free operations) for the two
spaces. That is, F ðC2 ⊗ C2Þ can be very different from
F ðC4Þ since the two Hilbert spaces can represent different
physical systems. For instance, the space C2 ⊗ C2 might
represent two spatially separated spin-1=2 particles, while C4

may correspond to a single particle with four spin or energy
levels. Therefore, in the assignments of F and O for a given
QRT, one must carefully consider what physical scenario the
QRT is attempting to model. On the other hand, a relabeling of
tensor-product spaces does not change the free states and free
operations of a QRT. That is, if HA is a Hilbert space for
system A andHB is a Hilbert space for system B, then density
matrices acting on HA ⊗ HB represent the same physical
states as density matrices acting on HB ⊗ HA.
While Definition 1 stipulates the minimal mathematical

requirements of a QRT, in practice there are other natural
properties that one might desire in a QRT. The most obvious
of these can be collected together in what will be referred to as
a tensor-product structure.

Definition 2. A QRT R ¼ ðF ;OÞ is said to admit a
tensor-product structure if the following three condi-
tions hold:

(1) The free operations are “completely free”: For any
three physical systems A, B, and C, if Φ ∈ OðA → BÞ
then idC ⊗ Φ ∈ OðCA → CBÞ, where idC is the
identity map on BðCÞ.

(2) Appending free states is a free operation: For any
given free state σ ∈ F ðBÞ, the CPTP map ΦσðρÞ ≔
ρ ⊗ σ is a free map, i.e., it belongs to OðA → ABÞ.

(3) Discarding a system is a free operation: For any
Hilbert space H, the set OðH → RÞ is not empty.

Remark. Note that BðH → RÞ contains only one CPTP
map which is given by the trace. Therefore, the statement that
OðH;RÞ is not empty is equivalent to the statement that the
trace of a system is a free map.
These conditions are highly intuitive and are to be expected in

most physical models. The first says that a free operation
remains free when acting on just one part of any joint system.
Such maps are called “completely free” analogous to the notion
of “completely positive” maps (see Sec. III.C.1). As a conse-
quence of the first condition, ifΦ ∈ OðA → BÞ is free andΦ0 ∈
OðA0 → B0Þ is free, then Φ ⊗ Φ0 must be free as well. This
follows from the fact thatΦ ⊗ Φ0 ¼ ðidB ⊗ Φ0Þ∘ðΦ ⊗ idA

0 Þ is

Eric Chitambar and Gilad Gour: Quantum resource theories

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025001-6



a composition of two free operations. The second and third
conditions in Definition 2 state that appending a free ancillary
system and discarding a system are both free. Both are natural
properties to suppose of a QRT. In particular, the ability to
append arbitrary free states to any system reflects the situation
where free states are really free to generate.
The defining conditions of a tensor-product structure are

not completely independent, and they have several interesting
consequences. The first consequence is that the partial trace
Tr ⊗ id is a free operation, a fact that follows immediately
from the first and third properties in Definition 2. A second
consequence is that every replacement channelΦσ∈QðA→BÞ
of the form ΦσðXÞ ≔ Tr½X�σ, with a fixed σ ∈ F ðBÞ, is free
[i.e., belonging toOðA → BÞ]. This can be seen by combining
the partial trace with the second property in Definition 2. In
particular, if ρ and σ are two free states in a QRTwith tensor-
product structure, then ρ can be converted to σ by free
operations, and vice versa. Finally, a third consequence is
that if both ρ ∈ F ðAÞ and σ ∈ F ðBÞ are free, then
ρ ⊗ σ ∈ F ðABÞ. This property follows from the previous
consequence and the first condition of Definition 2. The
intuition behind this property is that if ρ and σ are free to
prepare separately, then their joint state ρ ⊗ σ is also free to
prepare. This justifies the terminology of tensor-product
structure since it implies that F ðAÞ ⊗ F ðBÞ ⊂ F ðABÞ for
any two Hilbert spaces HA and HB. Note that a partial
converse of this inclusion also holds in the sense that if
ρAB ∈ F ðABÞ, then its marginals are also free; i.e., ρA ∈ F ðAÞ
and ρB ∈ F ðBÞ. This holds in light of the earlier observation
that the partial trace is a free map.
Most of the physically motivated and previously studied

QRTs admit a tensor-product structure, such as the QRTs of
entanglement, coherence, asymmetry, and athermality.
However, there are less intuitive but still important QRTs that
do not possess a tensor-product structure. For example, certain
models of Bell nonlocality do not admit such a structure and
lead to examples of states ρ and σ that are free, even though
ρ ⊗ σ is not (Palazuelos, 2012). In such cases, theQRTis said to
demonstrate a “superactivation” of resource.

B. Consistent QRTs for a given set of free operations

When attempting to model some quantum phenomenon
using a QRT, often physical constraints dictate the appropriate
choice for either the free states or more generally the free
operations. For example, in many quantum information
problems, multiple spatially separated parties share a
composite quantum system and LOCC emerges as the natural
choice of free operations. On the other hand, in the resource
theory of coherence, it is more natural to first turn to the free
states and identify these as being the collection of density
matrices that are diagonal in some fixed basis. With either the
free states or free operations given, the other must then be
consistently specified so that the golden rule of QRTs is
satisfied. We now explore this specification in more detail. As
we will first see, when the free operations are given, the choice
of free states is often unique.
For a given Hilbert space, suppose that the free operations

of a physical system A are fixed by the physical constraints,
and let us consider the structure of QRTs that are consistent

with these free operations OðAÞ. First observe that the set
OðAÞ imposes a preorder on the set of density matrices SðAÞ
(see Sec. V.D). That is, given two arbitrary states ρ, σ ∈ SðAÞ,
we can write ρ!O σ if there exists a free operation Φ ∈ OðAÞ
such that σ ¼ ΦðρÞ. If both ρ!O σ and σ!O ρ we write ρ≈

O
σ.

Clearly, the relation!O is a preorder on SðAÞ since for any ρ, σ,
γ ∈ SðAÞ, if ρ!O σ and σ!O γ then also ρ!O γ. For any set of
operations OðAÞ, we can then define the associated minimal
set of free states FminðAÞ as follows:

FminðAÞ≡ fρ∶ ∀ σ ∈ SðAÞ ∃Φ ∈ OðAÞ
such that ρ ¼ ΦðσÞg: ð7Þ

In other words, ρ ∈ FminðAÞ if it can be freely generated
starting from any other state. For a QRT with free operations
OðAÞ and any nonempty set of free states F ðAÞ consistent
withOðAÞ, we must have thatFminðAÞ ⊂ F ðAÞ, a relationship
expressing the sense in which FminðAÞ is a “minimal” set.
This is because if σ ∈ F ðAÞ and ρ ∈ FminðAÞ, then by

definition σ!O ρ, which means that ρ can be obtained from
a free state by a free operation; hence, ρ ∈ F ðAÞ.
Suppose further that the QRT has the property that any two

free states on the same space can be converted from one to the
other using the free operations. That is, ρ, σ ∈ F ðAÞ implies

ρ≈
O
σ. When this condition holds, then we must have that

FminðAÞ ¼ F ðAÞ. This remarkable observation follows easily
from the fact that FminðAÞ ⊂ F ðAÞ, which by assumption

means that ρ!O σ for any σ ∈ F ðAÞ and any ρ ∈ FminðAÞ. But
by the definition of FminðAÞ, it holds that ω!O ρ for all
ω ∈ SðAÞ. Hence, we also have that σ ∈ FminðAÞ since

ω!O σ, which establishes the equality FminðAÞ ¼ F ðAÞ.
In what type of QRTs can one free state always be

converted to any other using the free operations? Clearly
the property holds for any QRT that admits a tensor-product
structure. But more generally, it suffices for the QRT to allow
both discarding a system (i.e., “trash”) and preparing any free
state. Combining these yields a replacement channelΦσðXÞ ¼
Tr½X�σ for some free state σ, and thus the set of free states
must be FminðAÞ for these QRTs.
In conclusion, given a set of free operations OðAÞ, if one

desires a QRT in which any two free states are freely
interconvertible and discarding systems is allowed, then
FminðAÞ is the only set of free states that is consistent with
the set OðAÞ. This demonstrates clearly how any natural
physical constraint on the set of quantum processes leads to a
unique QRT.

C. Consistent QRTs for a given set of free states

As previously discussed, certain types of quantum phe-
nomena can be identified directly on the level of states without
involving constraints on quantum processes. This is the case
for coherence and some models of Bell nonlocality. When
characterizing such phenomena within a QRT framework, the
task then becomes to identify sets of free operations that are
consistent with the given set of free states. Unlike the
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conclusion reached in the previous section—that fixing the
free operations leads to a unique set of free states Fmin under
reasonable assumptions—here there exists much greater free-
dom in choosing a consistent set of free operations for a fixed
set of free states, even for QRTs admitting a tensor-product
structure.
Often some physical consideration will motivate a certain

choice of free operations. But even in this case, it is valuable to
study different classes of free operations for the same set of free
states. This is because different classes may have an easier or
more elegant mathematical structure than the physically moti-
vated class of operations. This is the case, for example, in
entanglement theory where LOCC is a notoriously difficult
class of operations to characterize. To avoid the technical
difficulties that arise when using these operations, much work
has been devoted to the study of entanglement theory under
larger and more analytically friendly sets of operations such as
separable operations, nonentangling operations, and more
(Rains, 1997, 1999a; Vedral and Plenio, 1998; Pankowski et al.,
2013; Chitambar et al., 2017). All of these resource theories
have in common that the set of separable states is the set of free
states. Studying more powerful operations can lead to proving
no-go results for the weaker yet more natural choice of free
operations. Indeed, any quantum information task that cannot
be performed by the more powerful class cannot be performed
by theweaker one. In this section,we survey different consistent
sets of free operations in general QRTs, highlighting their
various physical motivations and properties.

1. Resource nongenerating (RNG), k-RNG, and completely RNG
operations

Associated with any set of free states, there will always be a
maximal set of operations that is allowed by the definition of a
QRT. This is the set of resource nongenerating operations
which is defined as follows:

Definition 3. Let F be as in Definition 1. For any
two physical systems A and B, the set of RNG operations
OmaxðA → BÞ consists of all quantum channels Φ∈QðA→BÞ
having the property that ΦðρÞ ∈ F ðBÞ whenever ρ ∈ F ðAÞ.
Since the defining property of QRTs is that resource states

cannot be generated from free states, it is obvious that if O is
any other assignment of free operations that is consistent with
F , then it must be that O ⊂ Omax [meaning OðA → BÞ ⊂
OmaxðA → BÞ for any input or output systems A and B]. In this
sense, Omax is justified in being called the maximal assign-
ment of operations for F.
One might wonder whether the maximal set of operations

OmaxðAÞ is related to theminimal set of statesFminðAÞ given by
Eq. (7). In fact, there is a connection based on the discussion
following Eq. (7). From its definition, the RNG operations
OmaxðAÞ for a given set of free states F ðAÞ can transform any
free state to any other. Therefore, by the conclusion of Sec. III.B,
we must have F ðAÞ ¼ FminðAÞ, and it is the unique set of free
states that is consistent with OmaxðAÞ.
We can extend the notion of RNG maps to the setting where

HA and HB represent subsystems of some large system. By
Definition 1 of a QRT, the identity map is considered free.
Therefore, if Φ ∈ OðA → BÞ is a free CPTP map, one would

intuitively expect that idC ⊗ Φ is also a free operation, where
idC is the identity map on BðCÞ. Condition (1) of a tensor-
product structure has identified any free map Φ having this
property as being “completely” free. Note that if Φ is not
completely free, then there exists a bipartite free state σCA ∈
F ðCAÞ such that idC ⊗ ΦðσCAÞ is not free. More generally,
we can restrict the dimension of system C and see whether
idC ⊗ Φ is still resource nongenerating. This leads to the
following family of operational classes defined for a given set
of free states.

Definition 4. Let F be as in Definition 1. A map Φ ∈
OmaxðHA → HBÞ is k-resource nongenerating (k-RNG) if
idk ⊗ Φ ∈ OmaxðCk ⊗ HA → Ck ⊗ HBÞ. Moreover, Φ is
completely resource nongenerating (CRNG) if it is k-RNG
for all k. We denote by OkmaxðA → BÞ the set of k-RNG
operations, and byOcmaxðA → BÞ the set of CRNG operations.
This definition generalizes the concepts of k positivity and

complete positivity to QRTs. Particularly, if we take the free
set F ðAÞ to be the set of all density matrices acting on HA,
then maps that are k-RNG and completely RNG are equivalent
to maps that are k positive and completely positive, respec-
tively. Moreover, the set of k-RNG maps with k ¼ 1 is simply
the set of RNG maps, and similar to k positivity, it is known
that if a CPTP map in QðA → BÞ is k-RNG with k ≥ dA ≔
dimðHAÞ then it is completely RNG. We therefore have the
following inclusion relations:

RNG ¼ 1-RNG ⊃ 2-RNG ⊃ � � � ⊃ dA-RNG ¼ CRNG:

In some QRTs these inclusions are all equalities while in
others they are all strict. For example, if the free states F are
separable states, then the set Oc max is precisely the set of
separable maps, while if the free states are those with a
positive partial transpose (PPT), then Oc max is the set of
completely PPT-preserving maps (Rains, 1999b). In both
these cases, the set Oc max is strictly smaller than Omax. In
contrast, for the QRT of speakable coherence, the two sets of
operations are equivalent. Note that if a QRT R ¼ ðF ;OÞ
admits a tensor-product structure, then any CPTP map in
OðA → BÞ must be completely RNG.

2. Physically implementable operations

The use of CPTP maps and generalized measurements in
quantum information science is so common that their physical
implementations are often taken for granted. As described in
Sec. II, the Stinespring dilation theorem ensures that every
CPTP map on system A can be implemented by applying a
unitary evolution on joint system Aþ E, where E represents
the environment that has inaccessible degrees of freedom and
which is initially uncorrelated with A. True as this may be,
often the joint unitary identified in this theorem may not be
physically implementable under the physical constraints of the
QRT. For example, in any QRTwith locality constraints (such
as entanglement), joint unitaries cannot be applied across the
spatially separated subsystems. This means that the only
consistent unitary dilations are those that factor into indepen-
dent dilations on each of the subsystems. If no resource is
drawn from the environment, the generated CPTP maps would
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then likewise factor into a product of independent maps.
However, if classical communication is allowed between the
subsystems, then there will be free CPTP maps not having this
form. Does this mean that operations such as LOCC cannot be
implemented in a way that is consistent with the constraints
of the QRT? If quantum mechanics permitted only unitary
evolution, then this would indeed be the case. Yet standard
quantum mechanics also allows for projective measurements
as a distinct physical process, and this should be combined
with the application of a joint unitary on system Aþ E when
considering physical implementations.
From a QRT perspective, it is natural to suppose that the

free operations can be generated by a sequence of unitary
evolutions (possibly on composite systems), projective mea-
surements, and processing of the classical outcomes, where
each element in the sequence is itself a free action. In
particular, the classical processing would encompass classical
communication between subsystems, if this were allowed in
the QRT. Without such consistency, the QRT would identify
certain maps as being free with no way to physically imple-
ment these processes using free operations (Chitambar and
Gour, 2016b; Marvian and Spekkens, 2016). We formalize
this idea in the following definition.

Definition 5. Let R ¼ ðF ;OÞ be a QRT in which
appending free states and discarding subsystems are free
operations. A CPTP map Φ ∈ OðA → BÞ is said to be
physically implementable if it can be decomposed into a
composition of CPTP maps each acting on QC states
according to

X
i

piρi ⊗ jiihijX ↦
X
i;j;k

qkji;jpiΦjjiðρiÞ ⊗ jkihkjX; ð8Þ

where qkji;j is a family of conditional probability distributions,
and each CP map Φjji has the form

Φjji∶ BðHAiÞ → BðHAjjiÞ;
Φjji∶ ρ ↦ TrE0

i
½ðIA0

i ⊗ PjjiÞUiðρ ⊗ γiÞU†
i �; ð9Þ

in which γEi ∈ F ðEiÞ is a free state, Ui ∈ OðAiEi → A0
iE

0
iÞ is

a free unitary, and fPjjigj constitutes a complete set of
orthonormal projectors for a free projective measurement
on system E0

i. The resource theory R is called physically
implementable if all the free CPTP maps are physically
implementable.
In this definition, it is assumed that appending free states

and discarding subsystems are both free operations. This is to
ensure that the CPTP maps of Eq. (8) are indeed free.
In more detail, the transformation in Eq. (8) is generated as

follows; see Fig. 3. Conditioned on a classical input i, which
might represent the outcome of a previous measurement, the
experimenter introduces the free state ωi on system Ei and
applies a joint unitary Ui across Ai and Ei. A projective
measurement fPjjigj is then performed on a subsystem E0

i,
which may be larger or smaller than the original ancilla system
Ei. At this point in the process, the generated CPTP map has
the form

P
i;jΦjji ⊗ jjihjjX. The final step involves sending

the classical register through the classical channel
jjihjj → P

kpkji;jjkihkj. Doing so generates a CPTP map
described by Eq. (8).
For a given designation of free states F , it is possible to

construct a unique physically implementable QRT that admits
a tensor-product structure. Simply define the free operations to
be any composition of (i) appending arbitrary free states,
(ii) discarding subsystems, (iii) CRNG unitaries and projective
measurements, and (iv) all free classical postprocessing maps.
For the overall input and output spaces HA=HB, we denote
this set of operations asOminðA → BÞ. By design, ðF ;OminÞ is
physically implementable and has tensor-product structure.
Moreover, Omin is the minimal set of free operations that is
consistent with F , when considering QRTs such that all the
isometries inOmax are completely free. The classOmin fits into
the hierarchy of operations as follows:

Omin ⊂ Ocmax ⊂ Omax:

In a general resource theory, the set of CRNG unitaries can
be strictly smaller than the set of RNG unitaries and strictly
larger than the set of free unitaries. In several theories such as
the QRT of athermality, the set of free operations is defined
precisely as in Eq. (9). One starts by identifying the set of free
unitaries and then proceeds with the definition of free
operations as in (9) (in the case of thermodynamics, there
would be no projective measurement). However, in general,
since the setOmin can be very small, this procedure often leads
to a degenerate QRT where it is almost always impossible to
convert one resource state to another using physically imple-
mentable operations. This is the case in the QRT of speakable
coherence (see Sec. IV.A.4).

3. Other classes of free operations

Beyond those just discussed, there are many other types of
operations that one can consider for a given set of free states.
Here we describe three more that have been explored in the
literature. The first is the class of dually resource nongenerat-
ing operations, and it has been studied only recently in QRTs.
This set of operations, denoted by Odual, consists of all RNG
operations for which their dual is also RNG. More precisely,
Φ ∈ Odual if Φ ∈ Omax and for any free state ρ, the state
Φ†ðρÞ=Tr½Φ†ðρÞ� is also free. Here we must normalize the
state since Φ† is not necessarily trace preserving.

FIG. 3. A physically implementable CPTP map is one that can
be realized by a sequence of channels, each having the form
depicted in the figure. The four steps—(i) appending ancilla state
ωi, (ii) applying a unitary Ui, (iii) performing a projective
measurement, and (iv) classically postprocessing the measure-
ment outcome—all must be free operations in the QRT.
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By definition, dually RNG operations are a subset of RNG,
and in certain QRTs this inclusion is strict, with dually RNG
operations being a subset of even CRNG operations. For
example, in the QRT of speakable coherence RNG ¼ CRNG
whereas the set of dually RNG operations coincides with the
set of dephasing covariant incoherent operations (Chitambar
and Gour, 2016b; Marvian and Spekkens, 2016), which is a
strict subset of CRNG. In entanglement theory, on the other
hand, all separable maps are CRNG, and it is simple to see that
the dual of a separable map is also separable. In fact, the set
CRNG in this theory is precisely the set of separable maps,
and it can be shown to be a strict subset of the set of dually
nonentangling operations (Chitambar et al., 2017). In general,
dually RNG operations provide a better approximation to the
physically motivated set of free operations than the full set of
RNG operations. Their usefulness arises in QRTs where the
problem of state interconversion can be solved by semidefinite
programming (SDP) for RNG operations but not the physi-
cally motivated ones (this occurs, for example, in some
models of coherence). In such QRTs, state interconversion
under the dually RNG operations can also be solved with SDP,
thereby providing a better approximation of what is feasible
using the physically motivated free operations.
The replacement channelΦðXÞ ¼ Tr½X�σ with σ ∈ F ðAÞ is

RNG. However, it is not necessarily dually RNG. To see why,
observe that its dual is given by Φ†ðYÞ ¼ Tr½Yσ�I. Therefore,
the replacement channel is dually RNG if and only if the
maximally mixed state is considered free in the resource
theory.
Another family of free operations is stochastically resource

nongenerating operations, which we denote by Ostochastic. This
set of operations has been used heavily in the QRT of
coherence (Baumgratz, Cramer, and Plenio, 2014), and it is
defined in terms of a Kraus operator decomposition. A CPTP
map Φ ∈ OðA → BÞ belongs to Ostochastic if there exists an
operator-sum representation Φð·Þ ¼ P

jKjð·ÞK†
j such that for

any free state ρ ∈ F ðAÞ, it holds that
KjρK

†
j

Tr½KjρK
†
j �
∈ F ðBÞ ∀ j: ð10Þ

That is, any element in this particular operator-sum repre-
sentation of Φ induces a resource nongenerating transforma-
tion. This is a much stronger requirement than Φ being RNG,
and often this strengthening makes Ostochastic simpler to work
with. Both LOCC and separable operations in entanglement
theory are stochastically RNG. In terms of CPTP maps,
stochastically RNG operations can be modeled by appending
a classical register to each resource nongenerating Kraus
operator Kj and summing over all outcomes Φð·Þ ¼P

jKjð·ÞK†
j ⊗ jjihjjX. This CPTP map is sometimes called

a “heralded” or “flagged” measurement since the outcome j
can always be recovered after applying Φ by measuring the
classical system X.
A final class of operations for a given set of free states F

actually violates the golden rule of QRTs. Nevertheless, as
discussed in Sec. VII.C, these operations have proven to be
quite useful in the study of asymptotic resource convertibility.
For a fixed ϵ > 0, the class of ϵ-resource generating (ϵ-RG)

operations is the set of CPTP maps belonging to QðA → BÞ
such that

sup
ρ∈F ðAÞ

Rrob(ΦðρÞ) < ϵ; ð11Þ

where

RrobðωÞ ¼ minσ∈SðHÞ

�
s ≥ 0

����ωþ sσ
1þ s

∈ F ðHÞ
�

is the resource robustness for ω ∈ SðHÞ (Brandão and Gour,
2015); see also Sec. VI.E.2.

D. Types of QRTs

Definition 1 provides the general definition of a QRT, and it
imposes little structure on the theory. We immediately
introduced the tensor-product structure since it embodies a
collection of highly natural properties that are possessed by
almost all QRTs studied in literature. In this section we review
other types of mathematical structures that can arise in
QRTs that are independent of the tensor-product structure.
A summary of these structures is given in Fig. 4.

1. Convex resource theories

Convexity is a convenient mathematical property. A QRT
R ¼ ðF ;OÞ is called convex if OðA → BÞ is convex for any
choices of Hilbert spaces [i.e., pΦþ ð1 − pÞΛ ∈ OðA → BÞ
for any Φ, Λ ∈ OðA → BÞ, p ∈ ½0; 1�, and arbitrary HA and
HB]. In our formulation of QRTs, the free states F ðHÞ ¼
OðC → HÞ are defined as a special case of the free operations,
and so convexity of the free operations implies that the set of free
statesF ðHÞ is convex for everyH. The converse however is not
true in general: a convex set of free states does not imply a
convex set of free operations. On the other hand, if the set of free

FIG. 4. A heuristic diagram of QRTs, classified according to the
properties of their set of free states. Non-Gaussianity is an
example of a QRT with a nonconvex set of free states. Entangle-
ment theory is an example of a QRT that is convex but not affine.
Real (vs complex) quantum mechanics is an example of an affine
QRT that does not have a resource-destroying map, and athe-
rmality, asymmetry, and coherence, are examples of QRTs with a
resource-destroying map. From Hickey and Gour, 2018.
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states is convex, then any convex combination of free operations
is a RNG map. In particular, the set of RNG maps is convex if
and only if the set of free states is convex.
Many QRTs, such as entanglement, coherence, asymmetry,

and athermality, are all convex. The rich mathematical tools
from convex analysis can therefore be applied to these
resource theories. This is briefly discussed in Sec. VII.B.
There are subtleties in associating physical meaning to the

convexity of a QRT. It is often argued that convex QRTs do
not allow for the generation of resource simply through the act
of forgetting. Specifically, suppose a free state ρi is prepared
with probability pi, for i ¼ 1;…; n. Then, as the reasoning
goes, forgetting which state was prepared leads to the mixtureP

ipiρi, which should also be a free state. However, as
pointed out by Plenio and Virmani, this model for forgetting
information is too simplistic (Plenio, 2005; Plenio and
Virmani, 2007). First, the described transformation of an
ensemble of states fρi; pigi to the mixed density matrix pρþ
ð1 − pÞσ is not a CPTP map, and it therefore lies outside the
resource-theoretic framework described here. But more
importantly, “forgetting information” involves discarding
classical information, and this process needs to be considered.
A more precise model begins by describing a probabilistic
state preparation through the introduction of some classical
randomness

P
ipijiihijX, which is a density matrix diagonal in

the computational basis fjiigi. State preparation maps are then
performed, conditioned on the classical system X. This leads
to the QC state

P
ipiρ

A
i ⊗ jiihijX. The act of forgetting is then

modeled by discarding the classical system X, which corre-
sponds to the transformation

X
i

piρ
A
i ⊗ jiihijX →

X
i

piρ
A
i ð12Þ

(Plenio, 2005; Plenio and Virmani, 2007). Thus, if the
classically “flagged” mixture

P
ipiρ

A
i ⊗ jiihijX is free, one

naturally expects that the “unflagged” mixture
P

ipiρ
A
i is also

free. In this model, the intuition that “forgetting should not
generate quantum resource” is made precise in the condition
that “discarding classical information does not generate a
quantum resource.”
While every ensemble-to-mixture transformation

fρi; pigi →
X
i

piρi ð13Þ

is resource nongenerating if and only if the QRT is convex,
whether or not the transformation in Eq. (12) is resource
nongenerating has nothing to do with the QRT being convex.
Rather, it depends entirely on whether discarding classical
systems is a free operation in the theory. Nevertheless, in most
nonconvex QRTs discarding classical systems can indeed be
resource generating, which explains why nonconvexity is
often associated with the phenomenon of “resource generation
by forgetting,” even though the precise model described here
is usually overlooked.

2. Affine resource theories

Many QRTs such as quantum thermodynamics, coherence,
and asymmetry satisfy a stronger condition than convexity,

which can be described as the affine condition. Recall that
F ðAÞ is convex if any convex combination of free states
σj ∈ F ðAÞ, i.e.,Pjtjσj, is itself free. Here the numbers tj are
all non-negative and sum to 1. In an affine combination of
states, the non-negativity condition on the coefficients is
relaxed while still requiring that

P
jtj ¼ 1. As a result, affine

combinations of states are not necessarily positive semi-
definite, but their trace is still 1.
A QRTR ¼ ðF ;OÞ is called affine if, for any two physical

systems A and B, any CPTP map that can be written as an
affine combination of elements in OðA → BÞ is itself in
OðA → BÞ. Like convexity, this definition implies that the
set of free states is closed under affine combinations that result
in a valid density matrix. That is, if σ ¼ P

jtjσj ∈ SðAÞ with
tj ∈ R and σj ∈ F ðAÞ, then σ ∈ F ðAÞ. This property alone
does not ensure that the QRT is affine. However, the set of free
states is affine if and only if the set of RNG maps is affine, as
well as the set of dually RNG operations. Finally, we remark
that the set of free operations is affine if and only if their Choi
matrices form an affine set.
In entanglement theory, every bipartite quantum state (even

an entangled one) can be written as an affine combination of
pure product states. Therefore, in this sense, entanglement
theory is maximally nonaffine. On the other hand, the sets of
free states in the QRTs of quantum thermodynamics, coher-
ence, and asymmetry are all affine. In thermodynamics it is
affine because there is only one free state, namely, the Gibbs
state, while in the QRT of coherence it is affine because the
free states are all the diagonal states and any linear combi-
nation of diagonal states is still diagonal.
As exemplified by entanglement theory, the affine condition

is much stronger than convexity. Consequently, certain math-
ematical tools used to study affine QRTs cannot be applied to
convex QRTs (Gour, 2017). If a QRT has an affine free set of
states, but nonaffine free operations, then one can replace the
free operations with an affine one (e.g., the set of RNG or
dually RNG) to obtain a fully affine QRT. This can often
provide a good approximation to the original QRT.

3. QRTs with a resource-destroying map

While the structure of a general affine QRT is simpler than a
convex one, it can still be very rich and complex thereby
making certain information-theoretic tasks difficult to analyze.
In fact, many of the highly studied QRTs (such as quantum
thermodynamics, coherence, and asymmetry) have an addi-
tional structure that is not captured by the affine condition.
These theories all possess what is called a resource-destroying
map (Liu, Hu, and Lloyd, 2017).

Definition 6. Given a QRTR ¼ ðF ;OÞ and Hilbert space
H, a resource-destroying map is a (not necessarily linear) map
Δ∶ BðHÞ → BðHÞ with the following two properties:

(1) It maps any free state ρ ∈ F ðHÞ to itself; i.e.,
ΔðρÞ ¼ ρ.

(2) It maps any (possibly not free) state ρ ∈ SðHÞ to a free
state; i.e., ΔðρÞ ∈ F ðHÞ.

From its definition, it is not clear that a resource-destroying
map exists for a given QRT. However, for quantum correla-
tions (specifically quantum discord), Liu, Hu, and Lloyd

Eric Chitambar and Gilad Gour: Quantum resource theories

Rev. Mod. Phys., Vol. 91, No. 2, April–June 2019 025001-11



(2017) described a nonlinear resource-destroying map and
studied some of its applications in the QRT of quantum
discord. They further showed that nonlinearity is a necessary
condition of a resource-destroying map in any nonconvex
QRT, such as quantum discord. In contrast, for the QRT of
coherence, a linear resource-destroying map indeed exists and
plays a central role in the theory. Namely, it is the completely
dephasing map which removes all the off-diagonal terms from
the input density matrix (with respect to some fixed basis).
One necessary condition for the existence of a linear CPTP

resource-destroying map is that the set of free states F ðHÞ be
affine (Gour, 2017). This follows from the simple observation
that if σ ¼ P

jtjσj ≥ 0 is an affine combination of free states
then ΔðσÞ ¼ P

jtjΔðσjÞ ¼
P

jtjσj ¼ σ, which implies that σ
is free since the output of a resource-destroying map is always
free. However, the affine condition alone is not sufficient to
determine if there exists a CPTP resource-destroying map.
Particularly, there exists affine QRTs that do not have a CPTP
resource-destroying map. The full necessary and sufficient
conditions for the existence of a CPTP resource-destroying
map were derived by (Gour (2017).

4. Nonconvex resource theories

While convexity is a mathematically convenient property to
have, there are many QRTs that are not convex. For example,
consider a bipartite quantum system consisting of two sub-
systems A and B held by Alice and Bob, respectively. If the
parties cannot communicate (not even classically) due to some
constraint, then their physical capabilities amount to applying
local quantum channelsΦ and Λ, resulting in an overall CPTP
map of the form Φ ⊗ Λ. Therefore, in this scenario every
allowed operation is a tensor product of two CPTP maps, and
similarly every free state is a tensor-product state ρA ⊗ ρB.
The sets of free states and free operations are not convex,
which makes this QRT mathematically difficult to study. The
resources in this model are bipartite states having either
classical or quantum correlations. It is therefore a QRT of
total correlations, distinguished from resource theories of
quantum correlations, such as discord.
There are other important nonconvex QRTs. For example,

in quantum optics, Gaussian operations are relatively easier to
implement than non-Gaussian operations, and therefore one
can construct a QRT in which Gaussian states and Gaussian
operations are free. This QRT is neither convex nor finite
dimensional, making results relatively difficult to obtain (see
Sec. IV.C.1 for recent progress).
One general strategy for studying a nonconvex theory is to

enlarge the set of free states and free operations by taking their
convex hulls. Then the standard techniques of convex analysis
can be employed. In some cases, such as the QRT of total
correlations, this relaxation is too strong, and all states become
free. On the other hand, this strategy leads to nontrivial results
in the QRT of non-Gaussianity (Lami et al., 2018; Zhuang,
Shor, and Shapiro, 2018).

5. Resource theories of quantum processes

So far we have discussed QRTs involving interconversions
among resource states. That is, the resources have been

identified as all states not belonging to the set of free states
F ðAÞ. However, quantum states are static objects, and not all
resources are static in nature. To generalize the concept of
resource, recall first that every resource state can be identified
as a special type of CPTP map Ψ∶ BðAÞ → BðBÞ, in which
BðAÞ ¼ C. More generally, one then constructs a QRT in
which the resources are CPTP maps Ψ∶ BðAÞ → BðBÞ for
different input spaces BðAÞ. We say that Ψ is a dynamical
resource if dA ¼ dimðHAÞ > 1.
Already in its early days (Bennett, 2004; Devetak and

Winter, 2004; Devetak, Harrow, and Winter, 2008; Wilde,
2017), it was recognized that the whole field of quantum
information can be viewed as a theory of interconversions
among different resources, where the resources can be
classified as being static or dynamic, classical or quantum,
noisy or noiseless. This diverse classification of resources
leads to the rich field of quantum Shannon theory.
From this more general perspective in which resources are

not limited to quantum states, any QRTmust also specify what
type of transformations a given dynamical resource Ψ can
undergo. To answer this question, we first need to understand
what is the most general yet still physical transformation that a
quantum channel can undergo. Let BðA → BÞ be the space of
all linear maps from BðAÞ to BðBÞ. The space BðA → BÞ is
itself a finite-dimensional Hilbert space with inner product
given by

hΦ;Ψi ≔ Tr½ðJΦÞ†JΨ�;

for all linear maps Ψ, Φ∶ BðAÞ → BðBÞ having Choi matrices
JΦ and JΨ, respectively. Similarly, let BðC → DÞ be the
Hilbert space of all linear maps from BðCÞ to BðDÞ, and let
Θ∶ BðA → BÞ → BðC → DÞ be a linear map. Note that the
spaces BðA → BÞ and BðC → DÞ contain the subsets of all
CPTP maps. Therefore, if Θ represents a physical trans-
formation, then we must have Θ½Ψ� ∈ QðC → DÞ if
Ψ ∈ QðA → BÞ. In this case we say that Θ is positive.
Moreover, Θ is said to be completely positive if 1A

0B0 ⊗
Θ∶ BðA0 → B0Þ ⊗ BðA → BÞ → BðA0 → B0Þ ⊗ BðC → DÞ
is positive for all systems A0 and B0. Here we used the symbol
1A

0B0
to denote the identity map from BðA0 → B0Þ to itself.

Since transformations restricted to subsystems are physically
possible, we conclude that any physical transformation
Θ∶ BðA → BÞ → BðC → DÞ must be completely positive,
and we call these objects superchannels.
Chiribella, D’Ariano, and Perinotti (2008) showed that any

superchannel Θ∶ BðA → BÞ → BðC → DÞ can be realized as
follows. Denoting ΦC→D ≔ Θ½ΨA→B� for an arbitrary input
ΨA→B, the action of Θ decomposes as

ΦC→D ¼ ΓBE→D
post ∘ðΨA→B ⊗ idEÞ∘ΓC→AE

pre ; ð14Þ

where ΓC→AE
pre ∈ QðC → AEÞ is a preprocessing CPTP map,

ΓBE→D
post ∈ QðBE → DÞ is the postprocessing CPTP map, and

system E corresponds to a possible side channel; see Fig. 5.2

2In fact, dimðEÞ can be taken to be no greater than dimðAÞ · dimðCÞ,
and Γpre can also be taken to be an isometry.
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Figure 5 depicts the most general evolution that a quantum
channel Ψ can undergo. In general, the only restriction on the
pre- and postprocessing is that they are quantum channels (i.e.,
CPTP maps). However, in each QRT, the set of free channels
consists of only a subset of all CPTP maps. Hence, a
dynamical resource Ψ∶ QðA → BÞ can be converted by free
operations to another dynamical resource Φ∶ QðC → DÞ if
and only if there exists an auxiliary system E, a free
preprocessing map ΓC→AE

pre ∈ OðC → AEÞ, and a free post-
processing map ΓBE→D

post ∈ OðBE → DÞ such that the relation
(14) holds. Note that we can view this interconversion as a
simulation of the quantum channel Φ with the dynamical
resource Ψ.
The free superchannels, acting on dynamical resources as

previously described, cannot generate a resource from a
free channel. That is, from the definition of a QRT, if Ψ∈
OðA→BÞ then the map ΦC→D as given in Eq. (14) with free
pre- and postprocessing is also a free channel [i.e.,
Φ ∈ OðC → DÞ]. However, in analogy with RNG channels,
the set of all RNG superchannels (i.e., superchannels that do
not generate a dynamical resource from a free resource) can, in
general, be larger than the set of free superchannels. One can
therefore define different types of free superchannels in
analogy with those defined in the previous sections; but to
our knowledge, this direction has not been studied so far.
This formalism of superchannels enables one to consider

the most general conversion of a resource channel ΨA→B into
another channel ΦC→D. In the special case that both dA ¼ 1

and dC ¼ 1, ΨA→B and ΦC→D can be viewed as density
matrices, and in this case the free superchannel that achieves
this transformation becomes equivalent to a free channel in
OðB → DÞ. Another interesting special case is that in which
dA > 1 but dC ¼ 1. That is, a dynamical resource (a quantum
channel) is used to generate a static resource (a quantum state).
Conversely, when dA ¼ 1 but dC > 1, a static resource is used
to generate a dynamical resource. Quantum teleportation is a
perfect example of such an interconversion; see Fig. 6.
The resource ΨA→B can be classified into different types.

Devetak and Winter (2004) introduced a useful notation to
account for the different types of resources that are typically

encountered in quantum information. We follow that con-
vention here in letting the letter c denote classical systems, and
q for quantum ones. In addition, square brackets represent
noiseless resources while curly brackets indicate noisy ones.
Finally, an arrow → is used to distinguish between a
dynamical resource and a static resource. With these rules,
½q → q�, for example, corresponds to an ideal qubit channel
ΨA→B ¼ idA→B with dA ¼ dB ¼ 2. The symbol ½qq� stands for
an ebit, i.e., a unit of a static noiseless resource consisting of a
maximally entangled state of two qubits. Similarly, ½c → c�
stands for a classical bit channel capable of transmitting
perfectly one classical bit, and ½cc� corresponds to one bit of
uniform shared randomness. An arbitrary noisy quantum
channel ΨA→B is denoted by fq → qg and an arbitrary
classical channel by fc → cg. In addition, a preparation of
a quantum system is denoted by fc → qg and a quantum
measurement by fq → cg.
With these symbols, all the protocols in quantum Shannon

theory can be characterized as conversions between different
resources (Wilde, 2017). For example, the rate at which
classical communication can be communicated reliably over
a quantum channel is the supremum ratio n=m such that

mfq → qg ≥ϵ n½c → c� ∀ ϵ ∈ ð0; 1�: ð15Þ

This inequality is to be understood as meaning that m uses of
the channel fq → qg are able to simulate n uses of the channel
½c → c� with ϵ error (Devetak and Winter, 2004; Devetak,
Harrow, and Winter, 2008). A comprehensive table of many
different types of resource interconversions can be found in
Devetak and Winter (2004). From this perspective, the whole

FIG. 5. Realization of a superchannel.

FIG. 6. Quantum teleportation. )Single (respectively, double)
line arrows corresponds to quantum (respectively, classical)
communication. The static resource, a maximally entangled state,
is converted to a dynamical resource via LOCC. From Bennett
et al., 1993.
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field of quantum Shannon theory can be viewed as a resource
theory. Continuing with the previous example, in the Holevo-
Schumacher-Westmoreland (HSW) theorem (Schumacher and
Westmoreland, 1997; Holevo, 1998), which identifies the
optimal conversion in Eq. (15), one assumes that the side
channel E in Fig. 5 is not allowed since only local operations
are free. That is, in the setting of the HSW theorem, one can
only apply coding (preprocessing) and decoding (postpro-
cessing) to many copies of a channel ΨA→B, thereby con-
verting it to many copies of a classical bit channel idX→Y (here
X and Y stand for classical bit systems on Alice and Bob’s
sides, respectively).
Another good example to illustrate the usefulness of this

notation is quantum teleportation (Bennett et al., 1993). In the
process of teleportation, one ebit plus two uses of a classical
one-bit channel simulate a qubit channel; see Fig. 6. In the
resource calculus symbols, this can be characterized as the
inequality

½qq� þ 2½c → c� ≥ ½q → q�; ð16Þ

where here ≥ indicates zero-error simulation. Note that this is
an inequality, rather than equality, since a single use of a
quantum channel cannot generate both a maximally entangled
state and two uses of a classical channel.
For superdense coding, an ebit plus one use of a quantum

channel can be used to simulate two uses of a classical
channel. This can be expressed as the resource inequality

½qq� þ ½q → q� ≥ 2½c → c�: ð17Þ

Note that if entanglement is not considered as a resource, that
is, if the parties are supplied with unlimited singlet states, then
we can remove the ebit cost ½qq� in Eqs. (16) and (17) and get
that 2½c → c� ≥ ½q → q� for teleportation and ½q → q� ≥
2½c → c� for superdense coding. This makes teleportation
and superdense coding dual protocols of each other, and in this
case we can say that ½q → q� ¼ 2½c → c�.
In almost all practical scenarios, however, entanglement is

an expensive resource that can be difficult to generate over
long distances because of its high sensitivity to decoherence
and noise. The question then is whether the protocols of
teleportation and superdense coding can be modified slightly
to make them more symmetric, in the sense that the two
resource inequalities of Eqs. (16) and (17) become a single re-
source equality. This is indeed possible if we replace 2½c→c�
on the right-hand side (rhs) of Eq. (17) with two uses of an
isometry channel, denoted by ½q → qq� and known as the
coherent bit (cobit) channel (Harrow, 2004; Wilde, 2017).
The cobit channel is given in terms of an isometry VA→AB,

defined with respect to some fixed basis fjxiAgx¼0;1 as

VjxiA ¼ jxiAjxiBx ¼ 0; 1.

Hence, the unit resource ½q → qq� is highly nonlocal as it can
be used to generate an ebit (i.e., ½qq�) from the state
jþiA ≔ ðj0iA þ j1iAÞ= ffiffiffi

2
p

. We therefore have

½q → qq� ≥ ½qq�:

It is also straightforward to see that the cobit is more
resourceful than one use of a classical bit channel; i.e.,

½q → qq� ≥ ½c → c�:

Harrow (2004) showed that

½qq� þ ½q → q� ¼ 2½q → qq�:

That is, one ebit and one use of a qubit channel can be used to
simulate two cobit channels (a process known as coherent
superdense coding), and conversely, two cobit channels can be
used to simulate a qubit channel along with one ebit (a process
known as coherent teleportation). This result demonstrates
that superdense coding is not the most efficient protocol since
it simulates only two uses of a classical bit channel, whereas in
coherent superdense coding, two cobit channels are simulated
with the exact same resources.
The previous discussion reflects the perspective that all of

quantum (and classical) information theory can be viewed as a
theory of interconversions among different types of resources.
Moreover, it reveals how a resource-theoretic framework can
not only help determine if a protocol is optimal, but it can also
help to motivate novel and innovative protocols. Most of the
current literature has focused on QRTs of states, and much less
work has been conducted on resource theories of quantum
processes. Nevertheless, among the QRTs of processes are the
recent works on Markovian evolution (Huelga, Rivas, and
Plenio, 2012; Wakakuwa, 2017a), quantum memories
(Rosset, Buscemi, and Liang, 2018), incompatibility of
quantum measurements (Gour, Heinosaari, and Spekkens,
2018), simulability of quantum measurements (Guerini et al.,
2017; Oszmaniec et al., 2017), steering (Gallego and Aolita,
2015), quantum coherence beyond states (Ben Dana et al.,
2017), and the amortized resource of a channel in a general
QRT (Kaur and Wilde, 2018).

IV. EXAMPLES OF SPECIFIC RESOURCE THEORIES

A. Convex resource theories

1. Entanglement

The theory of quantum entanglement is an exemplar of a
QRT. In this resource theory, the free operations capture the
physical scenario where spatially separated parties freely
exchange classical information, but all quantum information
is processed locally through CPTP maps on the individual
subsystems. The global maps that can be implemented under
this restriction constitute the class of LOCC, and this
represents the free operations in the QRT of entanglement
(Bennett, Bernstein et al., 1996; Bennett, DiVincenzo et al.,
1996; Vedral et al., 1997).
The general structure of an LOCC map is quite complex.

Every LOCC operation is built from an interactive protocol in
which each round of the protocol involves a local measure-
ment by one of the parties followed by a global broadcast of
the measurement outcome. By concatenating the Kraus
operators for each round, it is then not too difficult to see
that every LOCC map Λ will have the form
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Λð·Þ ¼
X
k

ð⊗N
i¼1 M

Ai
k;iÞð·Þð⊗N

i¼1 M
Ai
k;iÞ†; ð18Þ

whereMAi
k;i acts on the Hilbert space of partyAi. In other words,

Λ has a Kraus operator decomposition in which each Kraus
operator is a tensor product (Bennett et al., 1999; Donald,
Horodecki, and Rudolph, 2002). Structurally, LOCC is a
physically implementable set of operations, and the dual of
every LOCC map also has the form of Eq. (18). However,
LOCC is not a closed set of operations in the sense that there
exists a sequence of protocols, each increasing in round number,
that converge to a map which cannot be implemented by either
finite-round or unbounded-round LOCC (Chitambar, 2011;
Chitambar, Cui, and Lo, 2012; Chitambar et al., 2014). Hence
the number of interactive communication rounds can also be
seen as a resource in the LOCC framework, and the general
topic of LOCC round complexity is an active area of research
(Owari and Hayashi, 2008; Nathanson, 2013; Wakakuwa,
Soeda, and Murao, 2016; Chitambar and Hsieh, 2017).
Turning to the free states, one can easily identify FminðHÞ,

the minimal set of free states for LOCC on N-partite state

space H ¼ ⊗
N

k¼1
HAk . From its definition in Eq. (7), this set

consists of all density matrices on H that can be generated
from any other state using LOCC. Since LOCC involves local
operations coordinated by global classical communication, the
transformation σA1���AN → ρA1���AN is achievable by LOCC for
any σA1���AN and any ρA1���AN of the form

ρA1���An ¼
Xn
k¼1

pkρ
A1

1;k ⊗ ρA2

2;k ⊗ � � � ⊗ ρAN
N;k; ð19Þ

where ρAi
i;k is an arbitrary state for party Ai. Indeed, the parties

can just discard the state σ and then locally generate their
respective state according to a globally shared probability
distribution pk (Werner, 1989). Any state having the form of
Eq. (19) is called separable, and we denote the set of separable
states by SEPðHÞ, where H has a fixed tensor-product
structure. Furthermore, from Eq. (18), it can be directly seen
that LOCC leaves SEPðHÞ invariant; hence FminðHÞ ¼
SEPðHÞ. Any state not belonging to SEPðHÞ is called
entangled.
The set SEPðHÞ is closed, a fact that follows from the

continuity of certain entanglement measures, such as the
entanglement of formation (Nielsen, 2000). Also, since every
convex combination of separable states is again separable,
entanglement theory is a convex QRT. However, it is non-
affine. In fact, it is maximally nonaffine in the sense that every
state can be expressed as an affine combination of free states.
This can be seen by taking an Hermitian tensor-product basis
of BðA1A2 � � �ANÞ and then spectrally decomposing each of
the Hermitian operators into a linear combination of eigen-
space projectors.
Deciding membership of SEPðHÞ is a notoriously difficult

problem. In fact, the problem is NP-Hard (Gurvits, 2003;
Gharibian, 2010). To cope with this difficulty, one strategy
involves relaxing the separability constraint to encompass
a more computationally manageable and experimentally
verifiable set of states. Traditionally this approach has

consisted of identifying separability criteria, which are neces-
sary (but not) sufficient conditions for a state to be separable
(Horodecki et al., 2009). The most famous separability
criterion is PPT (Peres, 1996), which says that ρΓi ≥ 0 for
any separable state ρ, where Γi indicates a partial transpose on
system Ai. Satisfying the PPT criterion is also sufficient for
separability in 2 ⊗ 3 and 3 ⊗ 2 bipartite systems (Horodecki,
Horodecki, and Horodecki, 1996). In higher dimensions,
PPT entangled states are known to exist and are called
“bound” entangled states since no pure-state entanglement
can be asymptotically distilled from them (see Sec. V.B)
(M. Horodecki, Horodecki, and Horodecki, 1998). One of the
most prominent open problems in entanglement theory is
determining whether the converse is true; i.e., whether non-
PPT (NPT) bound entangled states exist.
The complexity of LOCC presents formidable challenges

for understanding its precise operational capabilities. For
example, it is currently unknown how to decide whether a
given map Λ belongs to LOCC. While having the form of
Eq. (18) is a necessary condition for LOCC maps, it is not
sufficient. Any map having tensor-product Kraus operators
belongs to the class of separable maps (Rains, 1997; Vedral
et al., 1997), and LOCC represents a strict subset of the
separable maps. Separable maps that cannot be implemented
by LOCC were originally described as demonstrating
“nonlocality without entanglement” (Bennett et al., 1999).
This expression is perhaps best understood from a QRT
perspective. For the set of separable states SEPðHÞ, separable
operations are precisely the class of completely RNG oper-
ations, OcmaxðHÞ (Cirac et al., 2001). Therefore, nonlocality
without entanglement in this context refers to non-LOCC
maps lacking the ability to generate entanglement, even when
acting on one part of some larger system.
One can move beyond separable maps to consider other

classes of free operations that are consistent with the set of
separable states. Even though LOCC is the physically moti-
vated class of operations in the study of entanglement, its
operational power is sharply limited when the number of
parties exceeds 2. Specifically, for a generic state jψiA1A2���AN

with N > 3, the set of states into which it can transform using
LOCC constitutes a measure zero set in state space (Sauerwein
et al., 2017). Hence to obtain interesting QRTs, one needs to
consider free operations more powerful than LOCC.
Starting with the set Omax, the RNG or nonentangling

operations consist of all CPTP maps that map separable states
to separable states. Nonentangling operations were first
proposed by Harrow and Nielsen (2003) in the study of
quantum computation. Later, Brandão and Plenio (2008,
2010b) invoked such maps and their asymptotic variant in
the study of entanglement reversibility. Nonasymptotic studies
on the power of general nonentangling maps have been
conducted by Brandão and Datta (2011) and Chitambar et al.
(2017). The simplest example of a bipartite nonentangling
quantum operation that has no LOCC implementation is the
swap operator F. Since F jαiAjβiB ¼ jβiAjαiB for any two
states jαi and jβi, the map is clearly nonentangling. However,
by considering F on subsystems A and B in the unentangled
state ðj00i þ j11iÞA0A ⊗ ðj00i þ j11iÞB0B=2, we see that
entanglement is generated across the bipartite cut A0A∶B0B.
In fact, the swap operator is not even a 2-RNG operation.
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Other types of relaxations on LOCC can be obtained by
considering the Choi matrix. In the study of multipartite
QRTs, it is helpful to define the Choi matrix of a map
Λ∶ BðHA1 ⊗ � � �HAN Þ → BðHA0

1 ⊗ � � �HA0
N Þ in terms of the

underlying tensor-product structure:

JΛ ¼ idA1���Ak ⊗ Λ½ðϕþÞA0
1
A1 ⊗ � � � ⊗ ðϕþÞA0

kAk �. ð20Þ

Because separable operations are completely RNG, the Choi
matrix of a CPTP map Λ is separable, and the converse is also
true (Cirac et al., 2001). Consequently, any separability
criterion on the set of density matrices can be applied to
the Choi matrix JΛ as a separable criterion on the set of CPTP
maps. For example, a condition of k-symmetric extendibility
has been integrated on the level of maps to study entanglement
distillation and quantum communication (Pankowski et al.,
2013; Kaur et al., 2018). Similarly, the use of entanglement
witnesses on the level of Choi matrices was recently inves-
tigated by Chitambar et al. (2017).
The operations most frequently employed beyond LOCC

are the so-called PPT operations. As originally defined by
Rains (1999a), a CPTP map is called PPT (or completely PPT
preserving) if its Choi matrix is PPT for any party Ai. This is
equivalent to the condition that Γi∘Λ∘Γi is completely
positive, where Γi is the partial transpose map for party Ai.
A strictly weaker condition is that the map be PPT preserving,
i.e., ΛðρÞΓi ≥ 0 whenever ρΓi ≥ 0. The distinction between
these two operational classes can be elegantly characterized
by considering a QRT of NPT entanglement. Letting the free
states be all density matrices with positive partial transpose,
then the PPT-preserving maps correspond to the set of RNG
operations, while Rains’ original PPT maps correspond to the
set of CRNG operations (Horodecki, 2001; Matthews and
Winter, 2008). The QRT of NPT entanglement under com-
pletely PPT-preserving operations has been studied in the
literature (Audenaert, Plenio, and Eisert, 2003; Ishizaka and
Plenio, 2005; Matthews and Winter, 2008; Wang and Duan,
2017), primarily motivated by the insight it offers on the
nature of entanglement and the limitations of LOCC.

2. Quantum reference frames and asymmetry

In Shannon theory, information is modeled as having a
fungible nature. Information can be encoded into any degree
of freedom of any physical system, and the information
content is independent of the choice of encoding. For
example, a simple yes or no message can be equivalently
transmitted through a 5- or 0-volt potential difference across a
circuit element, or through a heads or tails orientation of a
coin. Information of this sort is called speakable information,
and it is characterized by its ability to be communicated
verbally or through a string of symbols.
On the other hand, there also exists nonfungible types of

information such as a direction in space, the time of some
event, or the relative phase between two quantum states in a
superposition state. Information of this sort is called unspeak-
able information since it cannot be communicated verbally
without first having a shared coordinate system, a synchron-
ized clock, or a common phase reference (Peres and Scudo,
2002; Bartlett, Rudolph, and Spekkens, 2007; Chiribella et al.,

2012). For example, in the absence of, say, a common
gravitational field or stellar background, directional informa-
tion can be transmitted between two parties only through the
exchange of some physical system whose state represents the
direction itself, such as a classical gyroscope.
Unspeakable information becomes speakable in the presence

of a reference frame (Bartlett, Rudolph, and Spekkens, 2007),
and this applies to both classical and quantum information.
Furthermore, even though speakable information is fungible,
two or more parties must first establish how this information is
to be encoded or decoded in some physical system, and this
implicitly requires a common reference frame. Thus, one
always assumes a shared reference frame in the background
of any quantum information processing task, and the absence of
this greatly limits what can be accomplished.
A lack or degradation of a shared reference frame is

therefore a natural constraint that often arises in the physics
of multiple systems. As such, it leads to a resource theory of
reference frames. For simplicity, let us consider two parties
(Alice and Bob) who do not share a reference frame, and we
mathematically represent the information about the frame by
an element g of a compact group G. For instance, g ∈ G could
correspond to a particular orientation in space, clock synchro-
nization, phase information, etc. Each element g ∈ G is
represented by a unitary matrix Ug such that if ρ ∈ SðHÞ
is the density matrix assigned to some quantum system
relative to Alice’s reference frame, then

UgðρÞ ≔ UgρU
†
g ð21Þ

is the state of the same physical system as described in Bob’s
frame. On the other hand, since Alice lacks the information of
g, her description of Bob’s density matrix is obtained by
averaging over all the possible values of g. Denoting by dg the
uniform Haar measure over the group G, this average can be
expressed as

GðρÞ ≔
Z

dgUgðρÞ:

The averaging CPTP map G is called the G-twirling map. If
the group G is finite then the integral is replaced with a
discrete sum over the jGj elements of the group; i.e.,

GðρÞ ¼ 1

jGj
XjGj
g¼1

UgðρÞ.

The lack of a shared reference frame hence imposes a
restriction on what type of states Alice can prepare relative
to Bob’s reference frame. Specifically, she can prepare states
only of the form GðρÞ, and these constitute the free states in the
QRT of reference frames,

F ðHÞ ≔ fGðρÞ∶ ρ ∈ SðHÞg: ð22Þ

The free states in this QRT have a very particular structure.
First note that ρ ∈ F ðHÞ if and only if it is G invariant,
meaning that UgðρÞ ¼ ρ for all g. In particular, GðρÞ ¼ ρ for
all ρ ∈ F ðHÞ. Combining this with the definition of F ðHÞ
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implies that G twirling is a resource-destroying map (see
Sec. III.D.3). Additionally, one can characterize the free states
using techniques from representation theory. This is accom-
plished by decomposing the underlying Hilbert space H into
its irreducible representations (irreps) of G (Bartlett, Rudolph,
and Spekkens, 2007):

H ¼
X
q

Hq ≡
X
q

Mq ⊗ N q;

where q labels the irreps of G (with the sum over q being a
direct sum), and Mq and N q are the q-representation space
and the q-multiplicity space, respectively. Note that Mq and
N q are virtual (mathematical) subspaces which do not
correspond to physical subsystems. With this notation, any
free state has the form

GðρÞ ¼
X
q

ΔMq
⊗ idN q

ðΠHq
ρΠHq

Þ; ð23Þ

where ΔMq
is the completely decohering map in the space

Mq, idN q
is the identity map on the space N q, and ΠHq

is the
projection onto Hq.
As an example, consider the group G ¼ Uð1Þ that corre-

sponds to an optical phase reference. In this case, the unitary
representation of G is given by Uθ ¼ eiN̂θ, where θ ∈ Uð1Þ
and N̂ is the total number operator. All the irreps of Uð1Þ are
one dimensional and can be labeled by the eigenvalues of N̂
(i.e., non-negative integers). In this case, q ¼ n ∈ N, and the
action of G twirling on a pure state jψi ¼ P

n
ffiffiffiffiffiffi
pn

p jni
therefore produces the state

Gðjψihψ jÞ ¼
X
n

pnjnihnj: ð24Þ

More generally, we can see from the forms of the free states
in Eqs. (23) and (24) that the lack of a shared reference frame
imposes a superselection rule on the type of states that Alice
can prepare. This superselection rule is manifested by the fact
that coherent superposition between states in different irrep
subspaces Hq and Hq0 are not possible. For example, with
Uð1Þ states in a coherent superposition among eigenstates of
the number operator are not free and cannot be prepared
by Alice.
The set of free operations in the QRT of reference frames

can be defined in a way similar to the free states. Consider an
arbitrary density matrix σ ∈ SðHÞ of system H described
relative to Bob’s reference frame. Suppose now that Alice
performs a quantum operation on this system, with the
operation being described by the CPTP map Φ∶ BðHÞ →
BðHÞ relative to her frame. How would this operation be
described relative to Bob’s frame? If he knows that their
reference frames are related by an element g ∈ G, then U†

gðσÞ
is Alice’s description of the initial state and Φ(U†

gðσÞ) is her
description of the final state. Hence the final state relative to
Bob’s system is given by UgðΦ(U†

gðσÞ)Þ, and his description

of Alice’s operation would be Ug∘Φ∘U†
g. However, if Bob

does not know how their frames are related, he averages over
G, and the resulting CPTP map has the form

Z
dgUg∘Φ∘U†

g: ð25Þ

Alice and Bob have a similar description of the CPTP map
Alice performs only if her operation has this form. Quantum
channels of this sort are called G covariant, and they
constitute the free operations in the QRT of reference frames.
Similar toG-invariant states, a quantum channel isG covariant
if and only if it commutes with Ug for all g ∈ G. Therefore, the
set of free operations in the QRT of reference frames can be
expressed as

OðHÞ ¼ fΦ ∈ CPTP∶ ½Φ;Ug� ¼ 0 ∀ g ∈ Gg; ð26Þ

where ½Φ;Ug� ≔ Φ∘Ug − Ug∘Φ; see Fig. 7. Note also that Φ
being G covariant is equivalent to the condition that
Φ ¼ R

dgUg∘Φ∘U†
g. Gour and Spekkens (2008) showed that

G-covariant operations can be expressed in terms of Kraus
operators, each being an irreducible tensor operator as defined
in nuclear and atomic physics [see, e.g., Sakurai (1994)].
To summarize, we found that in the QRT of reference

frames the set of free states is the set of symmetric states (i.e.,
those states that commute withUg for all g ∈ G), and the set of
free operations is the set of symmetric operations (i.e., those
operations that commute with Ug for all g ∈ G). Symmetric
evolutions are very common in physics and can occur in
different contexts, other than those arising from the lack of a
shared reference frame. Therefore, the set of G-covariant
operations defines a resource theory that has applications far
beyond quantum reference frames. It can therefore be
described as a QRT of asymmetry, since in any QRT for
which O defines a family of G-covariant operations, asym-
metric states and asymmetric operations are the resources of
the theory.
So far we considered only G-covariant channels with the

same input and output dimensions. More generally, a quantum
channel Φ∶ BðAÞ → BðBÞ is G covariant with respect to two
(unitary) representations of G, fUA

g gg∈G and fUB
g gg∈G, if

Φ∘UA
g ¼ UB

g ∘Φ ∀ g ∈ G:

See Fig. 7 for a heuristic depiction of G-covariant operations.
The reformulation of symmetric dynamics in the context of

a resource theory has profound implications. For example,

FIG. 7. Heuristic description of G-covariant operations. The
channel Φ is G covariant if the blue and purple pathways
commute for all group elements.
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quite often the dynamics of a system is so complicated that a
complete characterization of its evolution becomes infeasible.
Instead, by learning the symmetries of the Hamiltonian, one
can gain partial information about its dynamics. Here one can
invoke Noether’s theorem, which states that a differentiable
symmetry of the action of a physical system has a corre-
sponding conservation law. However, Noether’s theorem is
not applicable to open systems, and it therefore does not
capture all the consequences of symmetric evolution of mixed
states. Recently, Marvian and Spekkens (2013, 2014) showed
that the QRT of asymmetry provides a systematic way to
capture all the consequences of symmetric evolution. The
main idea is that the conserved quantities of closed systems
can be replaced with resource monotones in open systems.
These resource monotones quantify the amount of asymmetry
in a quantum state, and they cannot increase under symmetric
evolution (see Sec. VI.A.2).

3. Quantum thermodynamics

Thermodynamics and quantum mechanics represent two
pillars of physics, and connections between them have been
studied long before the advent of quantum information
science. However, recently quantum information theory has
shed new light on some of the most fundamental questions in
thermodynamics. For example, by adopting a QRT perspec-
tive, the four laws of thermodynamics can be stated more
precisely, and the relationships between them can be made
more apparent (Brandão, Horodecki et al., 2015; Masanes and
Oppenheim, 2017). This is not surprising since the “golden
rule” of QRTs can be seen as expressing something akin to the
second law of thermodynamics, and similar connections
between thermodynamics and the structure of general
QRTs can also be formulated (Sparaciari et al., 2018).
Within quantum thermodynamics, several different QRTs

have been studied, but almost all can be described using a
similar framework. The essential idea is to identify free
operations as those that conserve certain extensive properties
(such as energy, particle number, volume, etc.) when a given
system interacts with a bath. Here we describe the resource
theory of athermality, which involves just energy conserva-
tion, but its generalization to other conserved observables
follows analogously (Yunger Halpern and Renes, 2016; Gour
et al., 2018; Yunger Halpern, 2018), including noncommuting
observables (Guryanova et al., 2016; Halpern et al., 2016;
Lostaglio, Jennings, and Rudolph, 2017). One begins by
characterizing a physical system not only by its underlying
Hilbert space H, but also by its Hamiltonian, since this
corresponds to the property being conserved. Hence a “state”
in this QRT is represented by a pair ðρ; HÞ consisting of a
density matrix and a time-independent Hamiltonian. For a
heat bath held at some fixed inverse temperature β ¼ 1=kBT,
the free states consist of those that are in thermal equilibrium
with the bath. That is, the free states F ðHÞ are given by
ðγH;HÞ, where γH ¼ e−βH=Tr½e−βH� is the thermal equilib-
rium state (also called the Gibbs state) for the Hamiltonian H.
Next a physical justification is given for why these objects are
considered free.
As first introduced by Janzing et al. (2000) and later

extended by Brandão et al. (2013) and Horodecki and

Oppenheim (2013a), the free operations in the QRT of
athermality consist of all physical dynamics that conserve
total energy as the system exchanges heat with the bath. Any
such process is called a thermal operation, and it is con-
structed from three basic steps. Let S denote the primary
system and HS its Hamiltonian. First, the experimenter
introduces an ancilla system A in free state ðγHA

;HAÞ.
Second, the primary and ancilla systems can interact via
some unitaryU that commutes with the total Hamiltonian, i.e.,
½U;Htot� ¼ 0 where Htot ¼ HS ⊗ I þ I ⊗ HA. Third, a sub-
system B is discarded whose Hamiltonian enters the total
Hamiltonian collectively; i.e., Htot ¼ HSAnB ⊗ I þ I ⊗ HB,
with SAnB denoting all subsystems other than B. Note that B
may include part of the original system in addition to all or just
part of the ancilla system A. The composition of these three
steps yields a CPTP map Φ ∈ BðS → SAnBÞ having the form

ΦðρÞ ¼ TrB½Uðρ ⊗ γHA
ÞU†�: ð27Þ

By construction, the QRT of athermality is a physically
implementable resource theory. In fact, having physically
implementable free operations is essential to the overall
objective of rigorously accounting for all dynamics in a
system-bath exchange. As a result, a thermodynamic trans-
formation ðρ; HÞ → ðσ; H0Þ on a system becomes possible if
and only if there exists a map having the form of Eq. (27) such
that ΦðρÞ ¼ σ and H0 ¼ Htot −HB. Whereas macroscopic
state transformations via heat exchange are essentially gov-
erned by a decrease in free energy, in the quantum regime,
more constraints dictate whether a given transformation is
possible (Horodecki and Oppenheim, 2013a; Brandão,
Horodecki et al., 2015; Gour et al., 2018).
The free states in the QRT of athermality consist of Gibbs

states ðγH;HÞ, and there is strong operational justification for
this. First, the Gibbs state is the unique equilibrium state that a
quantum system will evolve to under weak coupling with the
bath (Riera, Gogolin, and Eisert, 2012). Second, if, in the
implementation of a thermal operation, one could freely
introduce any other density operator σ inequivalent to the
Gibbs state of the ancilla system, then the QRTwould become
trivial. More precisely, it would be possible to freely generate
any density matrix ρ to arbitrary precision by consuming
many copies of σ (Brandão, Horodecki et al., 2015; Yunger
Halpern and Renes, 2016). The final and perhaps most
compelling reason for considering the Gibbs state to be free
involves work extraction and the notion of passivity. A
thermodynamic state ðρ; HÞ is called passive if Tr½UρU†H� ≥
Tr½ρH� for all unitaries U. Intuitively, if there exists some
unitary for which this relation does not hold, then there exists
a process in which energy can be drawn from the state to
perform work. For example, all states diagonal in the energy
eigenbasis with eigenvalues decreasing with energy are
passive. A state ρ is called completely passive if ρ⊗n is
passive for any n. A classic result says that a state is
completely passive if and only if it is the Gibbs state
(Lenard, 1978; Pusz and Woronowicz, 1978; Jennings,
2018). Hence, the state ðγH;HÞ is the unique state from
which work cannot be extracted, even after taking multiple
copies.
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Returning to Eq. (27), it is straightforward to verify that if
the discarded system B is the original ancilla system A, then
every thermal operation acts invariantly on the Gibbs state.
That is,

γHS
¼ ΦðγHS

Þ; ð28Þ

and all maps having this property are called Gibbs preserving
with respect to the Hamiltonian H. It is interesting to compare
thermal operations with the more general class of Gibbs-
preserving maps. In the case that ρ and σ both commute with
the Hamiltonian, if ρ can be converted to σ by some Gibbs-
preserving map, then it can also be converted by thermal
operations (Janzing et al., 2000; Horodecki and Oppenheim,
2013a; Korzekwa, 2016). However, for the convertibility
between general states ρ and σ (i.e., those not commuting
with the Hamiltonian), Gibbs-preserving operations are
strictly more powerful (Faist, Oppenheim, and Renner,
2015). The origin of this difference can be understood by
invoking principles from the QRT of asymmetry. With a time-
independent Hamiltonian, states diagonal in the energy
eigenbasis are symmetric under time evolution. By introduc-
ing the one-parameter group of time translations
fUt ≔ e−iHt∶ t ∈ Rg,3 we see that ½ρ; H� ¼ 0 if and only if
U tðρÞ ¼ ρ for all t, where we adopted the notation of Eq. (21).
States with full time-translation symmetry are often called
quasiclassical because, while having discrete eigenvalues,
they lack coherence between the different energy eigenspaces.
In addition, from Eq. (27) (with the system A being dis-
carded), it can be seen that every thermal operation is time-
translation covariant, i.e., ½Φ;U t� ¼ 0 for all t (Lostaglio,
Jennings, and Rudolph, 2015). In contrast, a general Gibbs-
preserving map need not satisfy this constraint. Unlike
thermal operations, Gibbs-preserving operations can break
the time-translation symmetry of a state, and this is precisely
what is demonstrated in the example of Faist, Oppenheim, and
Renner (2015).
In summary, every thermal operation with the same input or

output system satisfies the two properties of being
(i) Gibbs preserving: ΦðγHÞ ¼ γH;
(ii) time-translation covariant: ½Φ;U t� ¼ 0 for all t.

Maps satisfying these properties were identified as Gibbs-
preserving covariant (GPC) maps by Gour et al. (2018), and
they represent a strictly larger class than thermal operations. It
was shown that GPC maps are equivalent to the maps
generated by so-called thermal processes, which are more
general physical processes than the ones leading to thermal
operations in Eq. (27) (Gour et al., 2018). Nevertheless, it
remains an open problem whether there exists a state trans-
formation ρ → σ that is possible by a GPC but not by a
thermal map.
A special type of QRT emerges when the Hamiltonians are

required to have a fully degenerate spectrum. For instance, a
paramagnetic system in the absence of an external magnetic
field has complete degeneracy in its energy. In this case, the
Gibbs state of a d-dimensional system is the completely mixed

state I=d, and all unitaries commute with the total
Hamiltonian. Every free CPTP map then has the form

ΦðρÞ ¼ TrB½Uðρ ⊗ IdÞU†�; ð29Þ

where U is an arbitrary unitary and B is an arbitrary
subsystem. Maps having this form are called noisy operations,
and they were originally proposed by Horodecki et al. (2003)
and Horodecki, Horodecki, and Oppenheim (2003) as the free
operations in the resource theory of purity. The latter is also
called the QRT of nonuniformity to better reflect the dimen-
sional dependence in the resourcefulness of pure states (Gour,
Muller et al., 2015). The set of Gibbs-preserving maps here is
precisely the set of unital maps, and all operations are trivially
time-translation covariant. Haagerup and Musat (2011)
showed that noisy operations form a strict subset of unital
channels. Yet, the two operational classes have the same
conversion power since one density matrix can be converted to
another by noisy operations if and only if the conversion can
be achieved by a unital channel (Gour, Muller et al., 2015).

4. Quantum coherence

For a given quantum system, consider some quantum
observable T with eigenvectors fjλnign and eigenvalues
fλngn. Quantum mechanics allows the system to be prepared
in a coherent superposition of eigenstates jψi ¼
cos θjλii þ sin θjλji, and there are two ways in which such
states can be viewed as a resource. The first identifies a specific
task in which jψi can assist in accomplishing the task, and the
degree of its resourcefulness depends on the particular jλii and
jλji forming the superposition. For example, when λn ¼ n ∈ N,
the state cos θj0i þ sin θj1i can detect a phase shift of ϕ ¼ π
induced by the unitary e−iϕT while the state cos θj0i þ sin θj2i
cannot (Marvian and Spekkens, 2014, 2016). The second
interpretation deems jψi as a resource simply because it is a
coherent superposition in the eigenbasis fjλnign. From this
perspective, the eigenvectors jλii and jλji of T appearing in the
superposition are irrelevant, and the full nature of this resource is
captured just in the wave components cos θ and sin θ.
These two ways of characterizing jψi as a resource reflects

the broader distinction between speakable and unspeakable
information described in Sec. IV.A.2. The QRT of unspeak-
able coherence is essentially a resource theory of asymmetry
for translations generated by some quantum observable
(Marvian and Spekkens, 2014, 2016; Marvian, Spekkens,
and Zanardi, 2016). Similar to the group of time translations
discussed in the previous section, for an observable T, one
defines the group of s translations fUs ≔ e−iTs∶ s ∈ Rg. A
map is called a translationally covariant incoherent operation
(TIO) if it is covariant under the action of this group (i.e.,
½Φ;Us� ¼ 0 for all s), and likewise a quantum state is
identified as free in this QRT if it is invariant under the action
of the group (i.e., ½ρ;Us� ¼ 0 for all s). Coherence here refers
to nonzero off-diagonal elements of a density matrix when it is
expressed in an eigenbasis of T. This coherence is said to be
unspeakable since it is needed when establishing a phase
reference for s translations, information which is unspeakable.
The second school of thought regards coherence as a

resource in the context of processing speakable information.

3Note this group is isomorphic to Uð1Þ provided the energy levels
of H are evenly spaced.
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These are QRTs of speakable coherence, and most attention in
the literature has focused on coherence theories of this sort.
Åberg (2006) first proposed a resource theory of speakable
coherence as an operational framework for quantifying super-
position in general mixed states. For a given system, one
begins by fixing a direct sum decomposition of state space
H ¼ ⨁

i
Hi. The set of free states F ðHÞ then consists of all

those for which ρ ¼ P
iPiρPi, where Pi is the projector onto

Hi. The free operations, as originally considered by Äberg,
consists of the maximal set OmaxðHÞ, i.e., the collection of all
resource nongenerating operations. This is sometimes called
the set of maximal incoherent operations (MIO).
Note the subspaces Hi in the direct sum decomposition of

H could correspond to the eigenspaces of some observable T.
Then this QRT would resemble the theory of unspeakable
coherence previously described. However, the key difference
is that in Äberg’s theory, the index i on the eigenspace Hi
functions exclusively as a label, having no connection to the
resource content of the state. In contrast, the index is important
in the QRT of unspeakable coherence since coherence across
different eigenspaces of H carries different physical meaning
when the encoded quantum information is unspeakable.
Hence, transformations of the form

1ffiffiffi
2

p ðj0i þ j1iÞ → 1ffiffiffi
2

p ðj0i þ j2iÞ

are forbidden using TIO but not by MIO.
A different QRT of speakable coherence was put forth by

Baumgratz, Cramer, and Plenio (2014), which has now
become the most frequently studied resource theory of
coherence. In the approach of Baumgratz et al., a complete
orthonormal basis fjiigi is fixed for every Hilbert space. This
is called the incoherent basis, and a state is free (or “incoher-
ent”) if it is diagonal in this basis, a condition that can be
expressed as

ρ ¼ ΔðρÞ; ð30Þ

where Δð·Þ ¼ P
ijiihijð·Þjiihij is the completely dephasing

map in the incoherent basis. The free states in this QRT are
thus defined in the same way as Äberg’s theory, except that the
direct sum decomposition of H consists of one-dimensional
subspaces. For the free operations, Baumgratz et al. defined
the class of incoherent operations (IO), which consists of all
stochastically resource nongenerating operations. In other
words, Φ is free if it can be represented by Kraus operators
fKjgj such that for all ρ

KjΔðρÞK†
j ¼ ΔðKjρK

†
jÞ ∀ j: ð31Þ

It is not difficult to show that every Kraus operator
satisfying Eq. (31) has the form Kj ¼

P
kcj;kjfðkÞihkj, where

f is a function with domain and range being the labels of the
incoherent basis vectors. In particular, every coherence non-
generating unitary belongs to IO since it has the form
U ¼ P

ke
iϕk jπðkÞihkj. Yadin et al. (2016) used this latter

observation to consider what CPTP maps arise when such
unitaries are used in a Stinespring dilation, i.e.,

ΦðρÞ ¼
X
j

TrE½ðI ⊗ PjÞUðρS ⊗ γEÞU†� ⊗ jjihjjX

¼
X
j

KjρK
†
j ⊗ jjihjjX; ð32Þ

where γE is an arbitrary incoherent state, U is coherence
nongenerating on systems SE, and the fPjgj form an arbitrary
rank-one projective measurement on system E. The Kraus
operators Kj can be shown to have the form Kj ¼P

kcj;kjπðkÞihkj, where π is a permutation on the labels of
the incoherent basis vectors. These operations have been
referred to as strictly incoherent operations (SIO) by Yadin
et al. (2016), and they also received prior consideration by
Winter and Yang (2016) as a special subclass of IO.
Note in the description of an SIO operation, the projectors

fPjgj on the ancilla system might be coherence generating.
Consequently, the resource theory of coherence under SIO is
not a physically implementable theory, as defined in
Sec. III.C.2. Starting from the set of incoherent states, which
consists of those satisfying Eq. (30), the most general set of
physical implementable operations can be constructed. This is
the set Omin, and Chitambar and Gour (2016b) showed that
every Φ ∈ Omin has a Kraus operator decomposition of the
form Kj ¼ UjPj ¼

P
ie

iϕi jπjðiÞihijPj, where the Pj are
coherence nongenerating projectors and the πj are permuta-
tions. These physically implementable incoherent operations
(PIO) represent a highly restricted operational class, and in
terms of state convertibility, almost any two pure states will
not be interconvertible using PIO.
If one discards the classical system X in Eq. (32), the

resulting map has the property that

Φ(ΔðρÞ) ¼ Δ(ΦðρÞ): ð33Þ

AnyCPTPsatisfying this equality is called a dephasing covariant
incoherent operation (DIO). These operations were introduced
independently byChitambar andGour (2016b) andMarvian and
Spekkens (2016). While not being physically implementable,
DIO does represent a duallyRNG set of operations, unlike IO. A
number of results have been established comparing the con-
vertibility of states using different classes of incoherent oper-
ations (Chitambar and Gour, 2016a; Fang et al., 2018; Regula
et al., 2018; Zhao, Liu, Yuan, Chitambar, and Ma, 2018; Zhao,
Liu, Yuan, Chitambar, and Winter, 2018).
Note that the set of incoherent states forms an affine set of

density matrices, and therefore the QRT is affine. Indeed this
already follows from the fact that the completely dephasingmap
Δð·Þ is resource destroying (see Sec. III.D.3). All operational
classes discussed can interconvert any two incoherent states,
and they therefore identify FminðHÞ as the set of incoherent
states acting onH. Other families of incoherent operations have
also been studied in the literature (de Vicente and Streltsov,
2017), and connections with stabilizer operations have been
considered (Mukhopadhyay, Sazim, and Pati, 2018).

5. Stabilizer computation and “magic” states

One of the most important questions in quantum informa-
tion theory is to what extent quantum computers offer
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advantages over their classical counterparts. Shor’s algorithm
provides one of the most celebrated examples of how, in
principle, a quantum computer can perform a task exponen-
tially faster than the best known classical algorithms (Shor,
1997). This has motivated researchers to try and identify
certain features of quantum mechanics that appear to enable its
superior computational capabilities. Such features become a
resource for the purposes of quantum computation.
To make this more precise, a resource-theoretic formalism

can be adopted in which the free operations are quantum-
computational processes that can be efficiently simulated using
a classical computer. Interestingly, the known results of such a
resource theory depend onwhether the underlying dimension of
the system is even or odd. Nevertheless, the basic framework is
the same in both cases. For prime dimension d, one first
introduces the Heisenberg-Weyl operators

Tða1;a2Þ ¼
�
iZa1Xa2 for d ¼ 2;

e−πia1a2=dZa1Xa2 for odd d;
ð34Þ

for ða1; a2Þ ∈ Zd × Zd, where all arithmetic is done modulo d,
and

Xjji ¼ jjþ 1i Zjji ¼ e2πij=djji: ð35Þ
The Tða1;a2Þ generalize the Pauli operators in d ¼ 2 up to a
modification in the overall phase, and extending to nonprime
dimensions can be accomplished by taking tensor products of
the Tða1;a2Þ. The Clifford group Cd consists of operators that, up
to an overall phase, transform the Tu among themselves by
conjugation. In other words, U is a Clifford operator on the d-
dimensional space ifUTbU† ¼ eiϕTb0 forb;b0 ∈ Zd × Zd and
arbitrary ϕ. The family of d-dimensional stabilizer states is
defined as

F ðHdÞ ¼ convfUj0ih0jU†∶ U ∈ Cdg; ð36Þ
where convf·g indicates the convex hull of the set. These are the
free states in the theory. The free operations are called stabilizer
operations, and they consist of (i) preparing an ancilla in a
stabilizer state, (ii) applying aClifford unitary, (iii) measuring in
the computational basis, and (iv) discarding subsystems (Veitch
et al., 2014). The QRT of stabilizer quantum computation for
odd dimensions was developed by Veitch et al. (2012, 2014),
while a multiqubit treatment was conducted by Howard and
Campbell (2017). The maximal QRT consistent with stabilizer
states was also recently studied by Ahmadi et al. (2018).
Stabilizer operations provide a fault-tolerant scheme for

quantum computation (Gottesman, 1998b), thereby making
them an attractive candidate for implementing scalable quan-
tum computation. Unfortunately, the Gottesman-Knill theo-
rem stipulates that any stabilizer operation acting on pure
stabilizer states can be efficiently simulated using classical
computers (Gottesman, 1998a). Thus, to attain a computa-
tional speed-up using quantum computers, some additional
ingredient beyond stabilizer states and operations is needed.
Perhaps the cleanest approach involves simulating nonstabil-
izer operations through stabilizer operations and the con-
sumption of nonstabilizer states. In fact, this technique is
universal in that any nonstabilizer operation can be imple-
mented in such a way, provided the nonstabilizer states

consumed belong to the class of so-called magic states
(Gottesman and Chuang, 1999; Bravyi and Kitaev, 2005;
Knill, 2005). For example, the nonstabilizer qubit state
cosðπ=8Þj0i þ sinðπ=8Þj1i can be used to realize the π=8
phase gate using stabilizer operations, which can then be
subsequently used to perform any single qubit gate with
arbitrary precision (Nielsen and Chuang, 2000).
In realistic implementations, an experimenter is faced with

noisy and nonideal ancilla states. One of the most important
questions in this resource theory is whether a general mixed
state can be freely converted into a magic state. In many-copy
form, this is a problem of resource transformation

ρ⊗n!O ϵjϕihϕj, where jϕi is a magic state. This task has been
coined magic state distillation (Bravyi and Kitaev, 2005;
Reichardt, 2005; Campbell and Browne, 2009; Anwar,
Campbell, and Browne, 2012), and it is an analog to the task
of ebit distillation in the QRT of entanglement.
A natural question is whether all nonstabilizer states can be

distilled into magic states. For qubit states, Campbell and
Browne (2010) showed that undistillable resource states indeed
exist if a finite limit is placed on the number of copies consumed
in the distillation protocol. For odd dimensions,Mari and Eisert
(2012) and Veitch et al. (2012) demonstrated a stronger form of
bound resource, in the sense that no magic state can be distilled
from certain nonstabilizer states even in the asymptotic limit.
The proof of this result involves connecting the task of magic
state distillation to the discrete Wigner function of a quantum
state (Wootters, 1987;Gross, 2006).Veitch et al. (2012) showed
that the action of a stabilizer operation on any state with a non-
negative discrete Wigner function can be efficiently simulated
by a classical computer. Consequently, magic states cannot be
distilled from a state if its discrete Wigner function is non-
negative. Hence, positivity of the discrete Wigner function is
analogous to the PPT distillability criterion in entanglement.
The existence of bound resource states in the QRT of magic
states then follows from the existence of nonstabilizer states
with a non-negative discrete Wigner function (Gross, 2006;
Veitch et al., 2012).
It remains an open problem whether, conversely, negativity

of the discrete Wigner function is a sufficient condition for
magic state distillability (analogous to the question of NPT
bound entanglement). However, a deep connection has been
drawn between the QRT of magic states and the QRT of
contextuality (see Sec. IV.B.2 for a description of the latter).
Any state having a negative discrete Wigner function can be
used, in principle, to demonstrate contextuality in some family
of stabilizer measurements (Howard et al., 2014). In other
words, a quantum state must have the capacity to reveal
contextual effects using the free operations if it can generate
universal quantum computation through magic state distilla-
tion. This suggests that contextuality may be a key resource
that empowers quantum computing. However, this cannot be
the full story in qubits, at least, since undistillable multiqubit
states can nevertheless demonstrate contextuality (Mermin,
1990; Howard, Brennan, and Vala, 2013).

B. Resource theories in quantum foundations

QRTs can transform the way we think about previously
well-studied properties of physical systems, even those
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touching the foundations of quantum mechanics. This
includes Bell nonlocality, contextuality, incompatibility of
quantum measurements, steering, nonprojectiveness, and
more. Here we provide a succinct description of some of
these properties, focusing on how the set of free operations is
defined in each of the theories.

1. Bell nonlocality

Perhaps one of the most profound discoveries in the history
of science is the incompatibility between quantum mechanics
and the intuitive notion of locality, as first demonstrated by
Bell (1964). Since Bell’s discovery, there have been numerous
studies on the subject, and quantum nonlocality has emerged
as a genuine resource in quantum communication (Buhrman
et al., 2010) and cryptography (Ekert, 1991) tasks. A
comprehensive review on its state of the art can be found
by Brunner et al. (2014).
A resource theory of nonlocality can be formulated on

different levels, and we begin by describing the most abstract,
which is characterized entirely in terms of classical channels.
We focus just on bipartite systems, but its generalization to
multipartite systems is straightforward. Consider all possible
classical channels pða; bjx; yÞ from input set X × Y to output
set A × B. One can then construct a static resource theory in
which states are bipartite probability distributions pðx; yÞ and
the allowed operations belong to some restricted set of
channels. A particular class of channels are those that are
generated by local channels pAðajx; λÞ and pBðbjy; λÞ for
Alice and Bob, which are conditioned on some shared variable
λ; see Fig. 8(b). When averaging over λ with some probability
density function qλ, the resulting channel is given by

pða; bjx; yÞ ¼
Z

dλpAðajx; λÞpBðbjy; λÞqλ: ð37Þ

Channels of this form constitute the class of classical local
operations and shared randomness (LOSR). However, these
operators are too powerful to define a static resource theory:
any probability distribution pðx; yÞ can be converted into any
other pða; bÞ by a suitable LOSR channel. To obtain a
nontrivial theory, one must move a level higher and consider
the dynamical resource theory of non-LOSR processes.
Applying the general discussion of Sec. III.D.5, the induced
resource theory here is a resource theory of nonlocality, and it
involves the conversion of one bipartite channel pða; bjx; yÞ
(or “box”) into another pða0; b0jx0; y0Þ by LOSR superchannels

(Jones and Masanes, 2005; Barrett, 2007; Gallego et al., 2012;
de Vicente, 2014). The free boxes in this theory are those
satisfying Eq. (37), and the allowed conversions are built
using three ingredients: pre-LOSR, post-LOSR, and local side
channels (see Fig. 9 and compare with the general construc-
tion of a free superchannel in Fig. 5 with free pre- and
postprocessing).
The abstract resource theory of nonlocal boxes can be

connected to a fully quantum resource theory of nonlocality
by studying the boxes generated through local quantum
measurements. Consider a bipartite quantum state
ρAB ∈ SðABÞ, and suppose Alice and Bob perform one out
of several possible positive-operator valued measures
(POVMs) on their respective subsystems. Letting ΘA

x ¼
fMajxga denote the POVM elements for Alice’s x POVM
and ΘB

y ¼ fNbjygb the POVM elements for Bob’s y POVM,
the probability of outcome ða; bÞ given measurement choice
ðx; yÞ is computed using Born’s rule:

pða; bjx; yÞ ¼ Tr½ρABðMajx ⊗ NbjyÞ�: ð38Þ

It is immediately straightforward to verify that separable
states, i.e., states of the form ρAB ¼ P

λqλσ
A
λ ⊗ ωB

λ , can
generate boxes only having the structure of Eq. (37), although
determining the minimum amount of shared randomness
needed to simulate the quantum statistics can still be nontrivial
(Jebaratnam, Aravinda, and Srikanth, 2017). Any state whose
local measurements have outcomes that can always be
described in the form of Eq. (37) are called Bell local and
are said to admit a local hidden-variable model (Augusiak,
Demianowicz, and Acn, 2014).
One very natural class of free operations in a QRT of Bell

nonlocality consists of quantum LOSR maps. These are
bipartite CPTP maps of the form

R
λ dλqλΦ

A
λ ð·Þ ⊗ ΨB

λ ð·Þ. It
is easy to see that such operations act invariantly on the set of
Bell-local density matrices. Thus, a QRTof nonlocality can be
defined in which the free states are all Bell local. In such a
theory, a state ρ is a quantum static resource if and only if it

FIG. 8. Resource theory of Bell nonlocality.

FIG. 9. Free superchannels.
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can be converted into a dynamical classical resource via
Eq. (38). Other approaches can be taken, however, such as the
semiquantum theory of Buscemi (2012), which identifies a
state as being a static nonlocal resource if it can be converted
into a dynamic quantum-classical resource. Even more gen-
erally, one could consider the dynamic nonlocal resource of
quantum channels themselves, which is manipulated under
LOSR superchannels.
The relationship between entanglement and Bell nonlocality

is subtle. Werner (1989) showed that there exist bipartite
entangled states that cannot generate a nonlocal box by local
measurements. Historically this gave the first indication that
entanglement and nonlocality may be inequivalent resources,
and the precise relationship between the two is still an area of
active research (Méthot and ?, 2007; Lipinska et al., 2018).
Another topic of ongoing investigation involves the activation
of nonlocality. Palazuelos (2012) showed that there exist
bipartite quantum states ρ and σ such that each one of them
cannot be converted into a nonlocal box, but when combined
together, the joint state ρ ⊗ σ can generate a nonlocal box. This
phenomenonoccurs in someotherQRTsaswell, and it is known
as resource activation since the nonlocality of ρ is activated by
the state σ and vice versa. In some cases, it is even possible to
activate the nonlocality of ρ with the same state ρ or several
copies of it, in which case it is called superactivation.

2. Contextuality

Bell nonlocality can be seen as a specific manifestation of
contextuality in quantum mechanics. In general, contextuality
refers to a certain way in which a state is prepared, a
transformation arises, or a measurement is performed
(Spekkens, 2005). Here we focus just on measurement
contextuality.
We begin by reviewing the notion of measurement incom-

patibility in quantum mechanics, and this discussion will be
relevant to the QRTs described in the next section as well.
A family of POVMs is called compatible if its elements can be
generated from a single “mother” POVM (Guerini et al.,
2017). More precisely, a collection of POVMs fΘxgnx¼1 with
Θx ¼ fEaxjxgax is compatible if there exists a single POVM
fFλgλ such that

Eaxjx ¼
X
λ

pðaxjx; λÞFλ ∀ ax; x; ð39Þ

where pðaxjλ; xÞ is some classical conditional probability
distribution. For an arbitrary state ρ, Eq. (39) immediately
yields a joint distribution for the measurement outcomes a ¼
ða1; a2;…; anÞ of the POVMs ðΘ1;Θ2;…;ΘnÞ given by

pðajρÞ ≔
X
λ

Yn
x¼1

pðaxjx; λÞTr½Fλρ� ¼ Tr½Gaρ�; ð40Þ

where Ga ≔
P

λ

Q
n
x¼1 pðaxjx; λÞFλ defines the elements of a

multivalued POVM Θ̄ ¼ fGaga. Note that Eaxjx ¼P
y≠x

P
ay Ga. Thus, the single POVM Θ̄ is able to simulta-

neously measure all of the Θx, and the Θx are therefore
described as being “jointly measurable” (Kraus, 1983; Lahti,

2003; Heinosaari, Reitzner, and Stano, 2008). We use the
terms “compatible” and “jointly measurable” interchangeably.
Returning to contextuality, suppose that Θ is a POVM

belonging to two different families of jointly measurable
POVMs, M1 and M2. We say that each of these families
constitutes a context for measuring Θ. This can be understood
from Eq. (39), which shows M1 and M2 arising from two
different mother POVMs, each one generating a different way,
or context, for measuring Θ.
This notion of contextuality can be used to distinguish and

rule out certain hidden-variable theories of quantum mechan-
ics. Let M ¼ ðΘ1;Θ2;…Þ be an arbitrary family of POVMs
for some quantum system. A noncontextual classical model
for M on state ρ is a probability distribution fρðaÞ over all
sequences a ¼ ða1; a2;…Þ of outcomes for the POVMs inM.
To be consistent with the predictions of quantum mechanics,
the model must have the correct marginals for any subset of
jointly measurable POVMs. That is, ifM0 ⊂ M is one family
of jointly measurable POVMs, i.e., one context, then

Tr½Ga0ρ� ¼
X
ai∉a0

fρða1; a2;…Þ; ð41Þ

where a0 is any sequence of outcomes inM0, the operator Ga0

is a POVM element for outcomes a0 as defined, and the sum is
over all outcomes for POVMs not in M0. The model is called
noncontextual because for every POVM in M, the state ρ is
assigned an outcome distribution with no regard to contexts.
Hence in such a model, the measurement outcomes for any
POVM depend only on the state ρ and not on the way the
measurement is carried out.
The famous Bell-Kochen-Specker theorem shows that a full

description of quantum mechanics cannot be attained by a
noncontextual hidden-variable theory (Bell, 1966; Kochen
and Specker, 1967). In other words, there exist families of
POVMs M that require context-dependent hidden-variable
models to accurately match the predictions of quantum
mechanics. Since context-dependent effects are purely a
quantum phenomenon, it is possible to consider quantifying
the amount of noncontextuality in a quantum measurement
scenario, as a numerical signature of nonclassicality
(Kleinmann et al., 2011; Svozil, 2012; Grudka et al., 2014;
Fagundes and Kleinmann, 2017).
Additionally, steps have been taken to develop a resource

theory of contextuality (Horodecki et al., 2015; Abramsky,
Barbosa, and Mansfield, 2017; Amaral et al., 2018). In this
resource theory, one first fixes a collection of POVMs M.
A state is then a family of probability distributions
fpða0jM0ÞgM0 called a “box,” with a distribution defined
for every jointly measurable subset M0 ⊂ M. A consistency
condition requires that if two contexts M1

0 and M2
0 share a

common POVM, then pða10jM1
0Þ and pða20jM2

0Þ must have
the same reduced distributions for this POVM (Horodecki
et al., 2015; Amaral et al., 2018). Free states, called non-
contextual boxes, are boxes in which pða0jM0Þ is a marginal
distribution of a single distribution pðajMÞ for every jointly
measurable subset M0 ⊂ M. Regarding free operations,
Horodecki et al. (2015) proposed all consistency-preserving
transformations of boxes that act invariantly on the set of
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noncontextual boxes, i.e., the set Omax. A more operational
approach was taken by Amaral et al. (2018), which involves
modifying the formalism slightly to allow for composing, or
“wiring” of boxes. Then the free operations are described
analogously to Fig. 9 in the resource theory of nonlocality.
Namely, free operations are built by composing pre- and
postnoncontextual boxes with a classical side channel extend-
ing from the latter to the former.
It is interesting to observe that within this resource-theoretic

framework, Bell nonlocality can be characterized as a special
case of contextuality (Horodecki et al., 2015). Consider again
the local POVMs ΘA

x and ΘB
y leading to Eq. (37) for a given

state ρ. By the locality constraint, Mx;y ≔ ðΘA
x ;ΘB

y Þ is a
jointly measurable pair for every ðx; yÞ. It can then be seen that
fpða; bjMx;yÞgx;y forms a noncontextual box if and only if
pða; bjx; yÞ is an LOSR channel [i.e., satisfying Eq. (38)]
(Fine, 1982; Abramsky, Barbosa, and Mansfield, 2017).
Consequently, a state ρ is Bell local if and only if it generates
noncontextual boxes under any family of local POVMs.

3. Incompatibility, steering, and projective simulability

Measurement incompatibility, as previously described in
detail, is a property of quantum mechanics that has been
intensely studied since the early days of the subject. This
highly nonclassical feature can be characterized in terms of a
quantum resource theory. The main objects in this QRT are
sets of quantum measurements. Formally, these can be
characterized in terms of a special type of quantum channel,
called a multimeter (Pusey, 2015; Gour, Heinosaari, and
Spekkens, 2018), which has one classical input (the setting
variable) that determines which measurement to perform, one
quantum input upon which the measurement is performed,
and one classical output corresponding to the measurement
outcome. The notion of a multimeter can be further gener-
alized to include a quantum output of the measurements. In
this case, the device is called a multi-instrument (see Fig. 10).
Note that if we trace out the quantum output, then a multi-
instrument reduces to a multimeter, and if we remove the
quantum input, then the device reduces to a multisource.
In Fig. 10(b) a free (i.e., compatible) multi-instrument is

depicted, which is a single quantum instrument that simulates

several instruments. Note that a compatible multi-instrument
has the property that the quantum output is independent of the
setting variable. This is a property belonging to a more general
class of multi-instruments called semicausal (Beckman et al.,
2001; Eggeling, Schlingemann, andWerner, 2002; Piani et al.,
2006), and these can always be realized by replacing the
classical communication and classical processing in Fig. 10(b)
with quantum communication and quantum processing.
With the definition of free operations, the QRT of incom-

patibility of quantum instruments is well defined. Since this is
a resource theory of quantum processes, one resource (i.e.,
incompatible multi-instrument) can simulate another by a free
superchannel as depicted in Fig. 5, where the pre- and
postprocessing are compatible multi-instruments [see more
details in Gour, Heinosaari, and Spekkens (2018)].
TheQRTof compatibility also captures the notion of steering

as a special case, and it can therefore be used to define the QRT
of steering (Gallego and Aolita, 2015). Steering is a process by
which a bipartite quantum state ρAB is used to remotely prepare
an ensemble of quantum states in systemB, by performing local
measurements on system A (Jones, Wiseman, and Doherty,
2007; Wiseman, Jones, and Doherty, 2007; Cavalcanti and
Skrzypczyk, 2017). The objects in this resource theory are
called “assemblages,” which are equivalent to multisources in
the terminology used here (i.e., devices with classical input and
both classical and quantum outputs). That is, an assemblage has
the form fpðajxÞ; σajxga∈A;x∈X with fpðajxÞ; σajxga∈A being
an ensemble of quantum states for every x ∈ X. An assemblage
is called unsteerable if it admits a local hidden-state model:

pðajxÞσajx ¼
X
λ

pðajx; λÞρλqλ ∀ a; x; ð42Þ

and these are the free objects in the QRT of steering. From
Fig. 10(b) it can be seen that unsteerable assemblages are
precisely compatible multisources. Moreover, the forward
classical communication in semicausal multisources corre-
sponds to the allowed one-way communication from Bob to
Alice in the steering scenario. Hence, the QRT of steering
is equivalent to the QRT of incompatible (semicausal) multi-
sources.
One can think of other types of resources that are associated

with quantum measurements. One such example is the degree
in which a general quantum measurement or POVM differs
from a projective von-Neumann measurement. Since gener-
alized quantum measurements and POVMs provide only an
effective description of the measurement process, it is natural
to ask how difficult it is to physically implement them, as in
Sec. III.C.2. Any implementation will involve projective
measurements acting on a larger Hilbert space (a joint
systemþ ancillary space). As joint projective measurements
can be more challenging to realize, it is natural to consider a
QRT in which such measurements are forbidden; this gives
rise to a resource theory of joint measurability (Guerini et al.,
2017; Oszmaniec et al., 2017). In this model, the free
operations are projective measurements assisted with classical
processing and mixing. Simulability of one POVM (or
generalized measurement) from another can be obtained as
in Fig. 5 with the pre- and postprocessing being the free
operations.

FIG. 10. (a) Multi-instrument: Quantum input and output in
purple (double line) and classical input and output in black
(single line). (b) Free (compatible) multi-instrument.
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C. Nonconvex resource theories

1. Non-Gaussianity

The QRT of non-Gaussianity, such as entanglement, is
another example of a resource theory that arises from natural
constraints on the set of free operations. Gaussian states and
Gaussian operations (including Gaussian measurements) are
relatively easy to realize in experiments using lasers, phase-
sensitive and phase insensitive optical amplifiers, and sponta-
neous parametric downconversion (Braunstein and van
Loock, 2005). Consequently, Gaussian quantum information
was developed (Weedbrook et al., 2012; Serafini, 2017),
demonstrating that many quantum information processing
tasks, such as quantum key distribution (QKD), can be
implemented with only Gaussian states and Gaussian oper-
ations. Analogous to entanglement-breaking channels, the
structure of nonclassicality-breaking Gaussian channels was
also investigated (Ivan, Sabapathy, and Simon, 2013;
Sabapathy, 2015). Despite the success of Gaussian quantum
information, it was also realized that many other important
tasks such as entanglement distillation, quantum error cor-
rection, optimal cloning and more [see, e.g., Lami et al.
(2018), Takagi and Zhuang (2018), and Zhuang, Shor, and
Shapiro (2018) and references therein] require non-Gaussian
resources to be implemented. All this provides a strong
motivation to develop a resource theory in which the free
operations and free states are given in terms of Gaussian states
and Gaussian operations. The QRT of non-Gaussianity is
different in two aspects from the QRTs we discussed. First, it
deals with continuous variable systems which are described by
infinite-dimensional Hilbert spaces, and second, the sets of
Gaussian states and Gaussian operations are not convex. To
overcome the challenge of nonconvexity, one typically
enlarges the set of free states and free operations to be the
convex hull of Gaussian states and Gaussian operations
(Albarelli et al., 2018; Lami et al., 2018; Takagi and
Zhuang, 2018; Zhuang, Shor, and Shapiro, 2018).
Some techniques from QRTs have been adopted to quantify

non-Gaussianity, such as measures based on the relative
entropy (Genoni, Paris, and Banaszek, 2008; Genoni and
Paris, 2010; Marian and Marian, 2013), and recently more
systematic methods have been explored (Albarelli et al., 2018;
Lami et al., 2018; Takagi and Zhuang, 2018; Zhuang, Shor,
and Shapiro, 2018). For example, Albarelli et al. (2018)
developed a state-based approach, where both quantum non-
Gaussianity and the Wigner negativity have been identified as
resources, depending on whether one chooses the set of free
states to be the convex hull of Gaussian states or the set of
states with positive Wigner function. Unlike entanglement
theory, Albarelli et al. (2018) showed that there is no maximal
resource state in this QRT. Non-Gaussian states have also been
shown to be resource states for universal quantum computa-
tion (Takagi and Zhuang, 2018), and in Zhuang, Shor, and
Shapiro (2018) the entanglement-assisted non-Gaussianity
generating power has been defined and proved to be a
monotone under Gaussian operations.
Lami et al. (2018) developed a broad resource-theoretic

framework that encompasses Gaussian quantum information.
Interestingly, it was shown that in all these models there are

fundamental constraints on state manipulations, leading to a
remarkable conclusion that no Gaussian quantum resource can
be distilled with free Gaussian operations. Despite all of the
recent activities on the QRTof non-Gaussianity, there is much
more room for development, and the theory is undoubtedly
still in its infancy.

2. Non-Markovianity

Two markedly different resource theories of quantum non-
Markovianity have been proposed in the literature. We first
recall the notion of Markovianity in the classical setting. Three
random variables XYZ with joint distribution pXYZ form a
short Markov chain, denoted by X − Y − Z, if

IðX∶ZjYÞ ¼ 0; ð43Þ

where IðX∶ZjYÞ ¼ IðX∶YZÞ − IðX∶YÞ. Equivalently, the
conditional distributions

pZjX¼xðzÞ ≔
pZXðz; xÞ
pXðxÞ

satisfy

pZjX¼xðzÞ ¼
X
y

pZjY¼yðzÞpYjX¼xðyÞ: ð44Þ

Equation (43) can be interpreted as a static condition on the
variables XYZ, while Eq. (44) can be interpreted as a dynamic
condition on the induced transition matrices pZjY and pYjX.
These two sides of the same classical coin lead to two different
generalizations of quantum Markovianity.
The first approach follows Eq. (44) and involves classifying

a quantum dynamical process as being either Markovian or
non-Markovian. In general, a time-parametrized evolution for
a quantum system is represented by a family of trace-
preserving dynamical maps fΦðt2;t1Þ∶ τ ≥ t2 ≥ t1 ≥ 0g, with
each map characterizing how the system transforms over time
interval ½t1; t2�. Note that this encompasses the notion of the
“process” discussed in Sec. III.D.5, with the latter capturing a
particular “snapshot” in some family of dynamical CP maps
(Wolf et al., 2008). An evolution is called Markovian if its
dynamical maps are CP and satisfy the composition law
Φt3;t1 ¼ Φt3;t2∘Φt2;t1 (Rivas, Huelga, and Plenio, 2010, 2014).
Markovian processes are nonconvex in the sense that the
CPTP map λΦt2;t1 þ ð1 − λÞΦ0

t2;t1 need not arise within some
Markovian evolution even if Φt2;t1 and Φ

0
t2;t1 do. Nevertheless,

in the resource-theoretic spirit, several nonconvex measures
have been constructed to quantify the degree in which a
particular quantum evolution is non-Markovian (Wolf et al.,
2008; Breuer, Laine, and Piilo, 2009; Chruścińki,
Kossakowski, and Rivas, 2011; Rivas, Huelga, and Plenio,
2014; Hall et al., 2014; Bhattacharya, Bhattacharya, and
Majumdar, 2018).
The second type of resource theory follows Eq. (43)

and characterizes quantum non-Markovianity in terms of
tripartite static resources, i.e., tripartite quantum states
ρABE. A quantum Markov state refers to any state ρABE whose
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conditional quantum mutual information vanishes. That is,
IðA∶BjEÞρ ¼ 0, where

IðA∶BjEÞρ ≔ SðAEÞρ þ SðBEÞρ − SðABEÞρ − SðEÞρ
with SðXÞρ denoting the von Neumann entropy of systems X
in state ρ. Non-Markov states have been shown to provide a
resource for the tasks of quantum state redistribution (Devetak
and Yard, 2008), secure communication by a one-time condi-
tional pad (Sharma, Wakakuwa, and Wilde, 2017), and state
deconstruction (Berta et al., 2018). The conditional quantum
mutual information of a state is also closely related to how
well it allows for reconstruction from its bipartite reduced
states (Brandão, Harrow et al., 2015; Fawzi and Renner,
2015). Note that IðA∶BjEÞρ ¼ 0 when the strong subaddi-
tivity bound is tight (Lieb and Ruskai, 1973), and the structure
of such states was determined by Hayden et al. (2004). AQRT
was recently proposed by Wakakuwa, Soeda, and Murao
(2017) in which Markov states are free and the free operations
consist of LOCC between Alice and Bob, reversible quantum
operations by Eve, and quantum communication from Alice
and Bob to Eve. Any combination of such actions leaves the
set of Markov states invariant. Moreover, these are natural
operations to consider in cryptographic settings, such as the
one-time pad, where Eve is an unwanted eavesdropper. In fact,
a full resource theory of secrecy involving two (or more)
honest parties and one adversary can be constructed along
these lines (K. Horodecki et al., 2005). Classically, such a
resource theory studies the processing of tripartite distribu-
tions pXYZ under local (classical) operations and public
communication (LOPC) (Collins and Popescu, 2002;
Christandl et al., 2007). A number of remarkable results have
been obtained revealing analogous structures between quan-
tum entanglement under LOCC and classical secrecy under
LOPC (Collins and Popescu, 2002; Gisin, Renner, and Wolf,
2002; Renner and Wolf, 2003; Oppenheim, Spekkens, and
Winter, 2008; Chitambar, Fortescue, and Hsieh, 2015;
Chitambar and Hsieh, 2017).

3. Quantum correlations

Traditionally, the term “quantum correlations” has been
used in reference to the quantum entanglement in a multi-
partite quantum state. However, as the subject of quantum
information theory matured, quantum correlations became
recognized as an arguably broader concept than just entan-
glement. There are a variety of ways to quantify quantum
correlations (Modi et al., 2012; Horodecki and Oppenheim,
2013b; Adesso, Bromley, and Cianciaruso, 2016), including
those that measure the correlated dynamics in the evolution of
a multipart quantum system (Rivas and Müller, 2015; Postler
et al., 2018). Here we just focus on bipartite quantum discord
(Ollivier and Zurek, 2001) and its associated resource theory.
As originally defined by Ollivier and Zurek (2001) [see also
Zurek (2000)], the quantum discord from Bob to Alice is
defined by

JðAjBÞρ ¼ IðA∶BÞρ − max
fPB

i gi
IðA∶XÞρ0 ; ð45Þ

where IðA∶BÞρ is the quantum mutual information in ρ, the
maximization is taken over all projective measurements on
Bob’s side, and ρ0 ¼ P

iTrBðIA ⊗ PB
i ρÞ ⊗ jiihijB is a QC

state. From Eq. (45), the discord JðAjBÞ can be interpreted as
the correlations that remain when the classical correlations in
ρ are subtracted from its total correlations (Henderson and
Vedral, 2001). An overview of different operational interpre-
tations of discord can be found in Modi et al. (2012), Streltsov
(2015), and Berta et al. (2018).
In a QRT of discord, the free states are characterized by the

condition JðAjBÞρ ¼ 0 and are said to be classically corre-
lated. It is not difficult to show that ρ has vanishing discord if
and only if it is a QC state ρ ¼ P

ipiρ
A
i ⊗ jeiiheijB, where

fjeiigi is any orthonormal basis for Bob’s system (Ollivier and
Zurek, 2001; Hayashi, 2006; Datta, 2008). An alternative
characterization can be given by considering isometries of the
form UB→BC∶ jeiiB → jeiiBjeiiC applied to a given state ρAB.
It can be shown (Datta and Madhok, 2017) that ρAB has
vanishing discord if and only if there exists such an isometry
for which ρ̂ABC ¼ ðI ⊗ UÞρABðI ⊗ UÞ† is a Markov state
conditioned on system B. In other words, we must have
IðA∶CjBÞρ̂ ¼ 0 (see Sec. IV.C.2). As for the free operations, it
is obvious that any local CP map on Alice’s side is resource
nongenerating. On the other hand, Bob’s actions must be
restricted, and Hu et al. (2012) showed that a CPTP map on
Bob’s side is resource nongenerating if and only if it is
commutativity preserving; i.e., ½ΦðηÞ;ΦðζÞ� ¼ 0 whenever
½η; ζ� ¼ 0. Other classes of free operations for discord have
also recently been considered by Liu, Hu, and Lloyd (2017).

V. RESOURCE-THEORETIC TASKS

In all QRTs, the same basic information-theoretic tasks can
be studied, and often techniques used to solve a problem in
one QRT can be applied to solve the analogous problem in
another. Here we review the most well-studied tasks in QRTs
and highlight their general features.

A. Single-shot convertibility

The most basic problem studied in any QRT is the
conversion of one resource state to another using the free
operations of the theory. For any ρ ∈ SðAÞ and σ ∈ SðBÞ, the
question is whether there exists a CPTP map Φ ∈ OðA → BÞ
such that ΦðρÞ ¼ σ. If such a map exists, then we write

ρ!O σ: ð46Þ

Unfortunately, the task of exact state transformation is usually
too strict. That is, in the most interesting QRTs, it will
generally not be possible to perfectly transform one given
state to another using the free operations, or vice versa.
Furthermore, from an experimental perspective, exact trans-
formations are artificial since any physical implementation
will deviate from the theoretical ideal.
These considerations have motivated several variations to

the problem of exact resource transformation. The first
involves relaxing the condition that the transformation
ρ → σ be achieved deterministically. Instead, one only seeks
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a flagged CPTP map Φð·Þ ¼ P
jΦjð·Þ ⊗ jjihjjX that is free

and such that ΦjðρÞ=pj ¼ σ for some j with
pj ¼ Tr½ΦjðρÞ� ≠ 0. Starting with ρ, one then freely obtains
σ with probability pj by performing Φ and then measuring
classical system X. If such a map exists, σ is said to be
obtained from ρ by a stochastic or probabilistic transforma-
tion, and we denote this relationship by

ρ!SOσ: ð47Þ

Note the only requirement in Eq. (47) is that ρ be freely
transformed to σ with some nonzero probability, regardless of
how small this may happen to be. A more general yet typically
more difficult question is to compute the greatest probability
of transforming one state to another using the free operations.
That is, for a given σ one can consider the problem of
determining the value

PðmaxÞ
ρ ðσÞ ≔ sup

Φ0

�
Tr½Φ0ðρÞ�

���� Φ0ðρÞ
Tr½Φ0ðρÞ�

¼ σ

�
; ð48Þ

where the supremum is taken over all CP maps Φ0 such that
Φð·Þ ¼ Φ0ð·Þ ⊗ j0ih0jX þΦ1ð·Þ ⊗ j1ih1jX is a free CPTP
map for some CP map Φ1. Interest in stochastic convertibility
first arose in the study of entanglement distillation where it
was observed that every bipartite weakly entangled state can
be transformed into a maximally entangled state with nonzero
probability, a process sometimes called the procrustean
method (Bennett, Bernstein et al., 1996). But the idea of
stochastic transformations applies to all QRTs in which
classically flagged CPTP maps are free.
A second variation involves relaxing perfect fidelity in the

target state. One allows for an ϵ ball or an “ϵ smoothing”
around σ and deems the transformation a success if ρ is
transformed to any state within that ball. More precisely,
one first defines the set of density matrices BϵðσÞ ¼
fσ0∶ Fðσ; σ0Þ ≥ 1 − ϵg and then writes

ρ!O ϵσ ð49Þ

if ρ!O σ0 for some σ0 ∈ BϵðσÞ. Transformations like Eq. (49)
are the primary focus in one-shot information theories, and
they are operationally linked to the “smooth” entropic
quantities (see Sec. VII.C). The single-shot transformations
of Eqs. (46)–(49) are ostensibly different from the many-copy
or asymptotic transformations that are traditionally considered
in information theory, and which we discuss next.

B. Asymptotic convertibility

Even after relaxing the demand of exact transformation to
allow for stochastic or approximate outcomes, most pairs of
states in a typical QRT will still not be interconvertible.
Another approach is to abandon the one-shot scenario and
consider transforming multiple copies of the same state. The
object of interest now becomes the optimal rate of input to
output states that is achievable using the free operations. More
precisely, a rate R is said to be achievable in transforming ρ to

σ if for every R0 < R and every ϵ ∈ ð0; 1� there exists an
integer n sufficiently large so that

ρ⊗n!O ϵσ
⊗bnR0c: ð50Þ

The optimal rate is then denoted as Rðρ → σÞ ¼ supfRj such
that R is achievable under Og.
Computing Rðρ → σÞ for arbitrary states is usually a

formidable task. Nevertheless, there are some general proper-
ties of Rðρ → σÞ that can be observed. Trivially if the QRT
allows for the preparation of free states, then Rðρ → σÞ ¼ þ∞
for any free state σ. Likewise, one would expect that Rðρ →
σÞ ¼ 0 for any free state ρ and any resource state σ. However,
some care is needed because a nonzero asymptotic rate in this
case would not automatically violate the golden rule of QRTs.
On the other hand, if (for any dimension) the set of free states
is closed and discarding subsystems is RNG, then it is easy to
show that indeed Rðρ → σÞ ¼ 0 for ρ ∈ F and σ ∉ F .
A fundamental problem in any QRT is to compare the two

directions of asymptotic convertibility for a given pair of
states. How does Rðρ → σÞ compare to Rðσ → ρÞ? States ρ
and σ are said to be weakly reversible in a QRT if
Rðρ → σÞRðσ → ρÞ ¼ 1. Roughly speaking, reversibility in
this sense means that the transformation cycle ρ → σ → ρ
returns one copy of ρ for each starting copy of ρ, in the
asymptotic limit. For the definition of optimal convertibility
rate, it follows that Rðρ → ωÞ ≥ Rðρ → σÞRðσ → ωÞ for any
three states (Horodecki, Sen(De), and Sen, 2003).
Consequently, if ρ and σ are reversible, and σ and ω are also
reversible, then we must have that ρ and ω are reversible.
Reversibility thus establishes an equivalence class on the set

of all density matrices such that two states belong to the same
family if and only if they are asymptotic reversible under the
free operations of the QRT. A canonical representative τ0 can
be identified for each equivalence class, and to compute
Rðρ → σÞ for any two states in the class, it suffices to
determine Rðρ → τ0Þ for all ρ in the class. For example, in
bipartite entanglement theory, the maximally entangled state
jΦþi ¼ ffiffiffiffiffiffiffiffi

1=2
p ðj00i þ j11iÞ is the natural choice for a class

representative, and all pure states belong to the same revers-
ibility class as jΦþi (Bennett, Bernstein et al., 1996). In this
case, the quantity Rðρ → jΦþihΦþjÞ is called the distillable
entanglement of ρ (Bennett, DiVincenzo et al., 1996), while
RðjΦþihΦþj → ρÞ is called the entanglement cost of ρ
(Hayden, Horodecki, and Terhal, 2001).
In most QRTs, Brandão and Gour (2015) showed that all

resource states become asymptotically reversible using oper-
ations that are asymptotically resource nongenerating for the
set of free states, and the optimal rate of convertibility is
determined by R∞

rel, the regularized relative entropy of
resource (see Sec. VII.C). Using strictly weaker classes of
operations, reversibility between any two states was also
shown to hold in the QRTs of purity (Horodecki, Horodecki,
and Oppenheim, 2003) and coherence (Chitambar, 2018).
However, in most QRTs, different reversibility classes will

exist and Rðρ → σÞRðσ → ρÞ < 1 for states belonging to
different classes. In this case, the states ρ and σ demonstrate
resource irreversibility and the cycle ρ → σ → ρ incurs non-
zero loss per initial copy of ρ. The strongest manifestation of
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irreversibility arises when Rðρ → σÞ > 0 but Rðσ → ρÞ ¼ 0

for some resource state σ. This has been observed most
prominently in the QRT of entanglement, a phenomenon
known as bound entanglement (M. Horodecki, Horodecki,
and Horodecki, 1998). A bound entangled state ρ is charac-
terized by the conditions that RðjΦþihΦþj → ρÞ ∈ ð0;þ∞Þ
and Rðρ → jΦþihΦþjÞ ¼ 0. An analog to bound entangle-
ment was also discovered in the resource theories of thermo-
dynamics (Lostaglio, Jennings, and Rudolph, 2015), magic
state quantum computation (Veitch et al., 2012), speakable
(de Vicente and Streltsov, 2017; Zhao, Liu, Yuan, Chitambar,
and Winter, 2018) and unspeakable (Marvian, 2018) coher-
ence, and even multipartite secret key (Acín, Cirac, and
Masanes, 2004).
There is a stronger form of asymptotic reversibility that is

not defined in terms of transformation rates. Again, consider
the transformation cycle ρ → σ → ρ, but instead of just
demanding that one copy of ρ returns for every initial copy,
one demands that the output of the cycle have arbitrarily close
fidelity to the input. While second-order losses can be ignored
when just focusing on rates, they become largely important
when considering transformation fidelities. A precise defini-
tion for this stronger form of resource reversibility was
proposed by Kumagai and Hayashi (2013) for the specific
case of entanglement. Under the stronger definition of
reversibility, nonmaximally entangled pure states can no
longer be reversibly transformed into jΦþi.

C. Catalytic convertibility

In a chemical process, a reaction catalyst is a substance
whose presence makes the process possible while remaining
unaltered at the end of the process. This effect can be
incorporated within the framework of QRTs. A state ω is
called a resource catalyst for the transformation of ρ to σ if

ρ=!
O
σ but ρ ⊗ ω⟶

O
σ ⊗ ω: ð51Þ

If ρ can be transformed into σ using some catalysis state, then

we write ρ!cOσ.
The fact that catalysts exist in QRTs is not obvious.

However, it was discovered by Jonathan and Plenio that
entanglement transformations allow for catalysts (Jonathan
and Plenio, 1999a), and since then nearly all QRTs have been
found to demonstrate catalytic phenomena. Analyzing cata-
lyst-assisted transformations has been particularly illuminat-
ing in the QRTof quantum thermodynamics where a family of
free energies has been shown to characterize convertibility
from one state to another, thereby generalizing the second law
of thermodynamics (Brandão, Horodecki et al., 2015).
Like the single-shot problem of Eq. (46), variations to the

question of exact catalytic convertibility can also be consid-
ered. Stochastic catalytic transformations refer to pairs of
states ρ and σ such that ρ=!

SO
σ but ρ ⊗ ω!SOσ ⊗ ω for some ω

(Chen et al., 2010). A more general question is whether
catalysts can increase the optimal success probability of a
stochastic transformation. In other words, does there exist an
ω such that

PðmaxÞ
ρ⊗ω ðσ ⊗ ωÞ > PðmaxÞ

ρ ðσÞ; ð52Þ

where PðmaxÞ is defined in Eq. (48) (Feng, Duan, and
Ying, 2005)?
It is also possible to consider ϵ approximations in the

catalytic transformation, i.e., ρ ⊗ ω!O ϵσ ⊗ ω. Here one can
further stipulate that the output be an exact tensor-product
state with σ obtained on the primary system and all the error in
the final state occurring on the catalysis system. Error in this
case represents noncyclic behavior for the catalysis, and often
a more operationally based measure of this acyclicity is better
to use than just the fidelity between initial and final states
(Brandão, Horodecki et al., 2015). If one allows for ϵ error to
occur across both the primary and the catalysis systems, then
the problem often becomes trivial. This is because of a
powerful phenomenon known as resource embezzlement,
which refers to a family of states fωngn such that for any
σ ∈ SðHÞ and any ϵ > 0,

ωn!O ϵσ ⊗ ωn ð53Þ

for all n sufficiently large. Entanglement embezzlement was
first discovered by van Dam and Hayden (2003), and it has
found important applications in, for example, proving the
quantum reverse Shannon theorem (Berta, Christandl, and
Renner, 2011; Bennett et al., 2014). Outside of entanglement,
resource embezzlement or variations to this idea have also
been demonstrated in the QRTs of thermodynamics (Brandão,
Horodecki et al., 2015; Gour, Muller et al., 2015) and
coherence (Åberg, 2014).

D. Convertibility preordering

The convertibility tasks described in the past three sections
establish various preorderings of state space. Recall that
for a general set S, a preorder is a binary relation ≺ satisfying
the properties of (i) reflexivity a ≺ a for all a ∈ S, and
(ii) transitivity a ≺ b and b ≺ c implies a ≺ c for all

a; b; c ∈ S. Clearly the relations !O , !SO, and !cO form pre-
orders. Approximate convertibility fails to be transitive in

general, but if ρ!O ϵσ, and σ!O ϵω, then ρ!O 2ϵω. Optimal rates
of asymptotic convertibility also induce a preorder on state
space, the details of such can be found in Bennett et al. (2000).
One advantage of studying preorders in a QRT is that it

allows for a comparison of resources without first having to
specify any sort of resource measure. If ρ → σ under any of
the aforementioned orders, then ρ has no less resource than σ
in a truly operational sense. However, comparing resources in
this manner is limited since typically state convertibility will
not form a total order on the set of density matrices, whether
the convertibility is considered to be exact, asymptotic, or
even with small ϵ error.
There are two extremes that can arise in a convertibility

preorder for a given QRT. The first occurs when most if not all
pairs of states fail to be ordered, i.e., one cannot be trans-
formed into any other. This is the case in the QRT of
multipartite entanglement under LOCC (Sauerwein et al.,
2017). The other extreme is when any state can be converted
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into any other. In this case the free operations are so powerful
that all preorders collapse, and all states are essentially
equivalent. Both extremes are uninteresting to study from a
QRT perspective. An analytically rich QRT is one where the
preorders are not trivial and resource hierarchies can be
established for a wide range of physically relevant states.

E. Simulation of nonfree operations

One of the most important tasks in any QRT is overcoming
the operational limitations intrinsic to the definition of the
resource theory. Given that the QRT allows only certain
physical operations, how can the experimenter transcend this
restriction and perform essentially nonfree operations? This
question is especially important because often the operational
constraints in a QRT reflect practical challenges that would
not arise in ideal experimental setups. In general, it is possible
for nonfree operations to be simulated by free operations at the
cost of consuming a resource state. More precisely, we say
ΦResource ∉ OðA → BÞ is simulated by ΦFree ∈ OðAC → BÞ
and ν ∉ F ðCÞ if

ΦResourceðρÞ ¼ ΦFreeðρ ⊗ νÞ ð54Þ
for all ρ ∈ SðAÞ. Such channels have been studied for LOCC
under the name of σ-stretchable channels (Pirandola et al.,
2017), and later for general resource theories under the name of
ν-freely simulable channels (Kaur and Wilde, 2018). This
equation can be seen simply as the conversion of a static
resource ν into the dynamic resourceΦResource (see Sec. III.D.5).
For a givenQRT, a natural question iswhether all CPTPmaps

Φ ∈ OðA → BÞ can be simulated in such a manner. If not, what
is the largest set of channels that can be simulated? Furthermore,
for those channels that can be simulated, what is the minimal
amount of resource needed? Note that the task of channel
simulation generalizes the task of catalytic convertibility.
Quantum teleportation describes one of the most important

examples of such a simulation, where general bipartite CPTP
maps can be simulated using shared entanglement (Bennett
et al., 1993; Bennett, DiVincenzo et al., 1996; Horodecki,
Horodecki, and Horodecki, 1999). A similar result holds for
coherence (Chitambar and Hsieh, 2016). As another example,
the underlying motivation for the QRTof magic states lies in the
fact that magic states generate universal computation when
consumed by stabilizer operations (Gottesman and Chuang,
1999; Bravyi andKitaev, 2005; Knill, 2005). Finally, in theQRT
of asymmetry, the state ω in Eq. (54) could represent a shared
reference frame, or more generally one that breaks the under-
lying symmetry, thereby allowing for the simulation of asym-
metric transformations (Bartlett, Rudolph, and Spekkens, 2007).

F. Erasing resources

In Sec. III.D.3 resource-destroying maps were discussed,
and the existence of such maps was shown to be intimately
linked to the overall structure of the particular QRT. Although
not all QRTs possess resource-destroying maps, the general
task of erasing resource can be studied in any QRT. By
understanding the operational requirements to erase the
resource in a given state, a fundamental connection is drawn

between dynamic physical processes and the static resource
held in the state. This idea has its origins in Landauer’s
principle, which identifies the amount of information stored in
a computer system as being proportional to the amount of
work needed to reset (i.e., erase) the system into some fixed
initial configuration (Landauer, 1961).
Landauer’s principle can be extended to the erasing of

resources in a general QRT having minimal structure. Suppose
maps of the form

ρ ↦
XN
i¼1

piUiρU
†
i ⊗ jiihijX ð55Þ

are allowed, where the Ui are free unitaries. If discarding
classical information is also permitted (as in Sec. III.D.1), then
Eq. (55) could be continued to obtain the CPTP map
Φð·Þ ¼ P

N
i¼1 piUið·ÞU†

i . Even though this process is deemed
free by the QRT, Landauer’s principle still associates a
thermodynamical cost with the step of discarding classical
information. In the many-copy limit, the rate of physical work
required to erase the classical memory is given by the entropy
of the distribution pi. For a given resource ρ, one can
minimize the entropy over all such channels such thatP

N
i¼1 piUiðρÞU†

i is a free state. This then captures the
asymptotic minimal work cost to erase the resource in ρ
via such a protocol. The minimum number of random
unitaries needed to erase the resource in a given state (i.e.,
N in the sum) also provides a more conservative and often
asymptotically tight measure of erasure cost (Groisman,
Popescu, and Winter, 2005).
One can also consider the task of erasing resources using

catalysis. Building on the work of Majenz et al. (2017)
involving catalytic decoupling, Anshu, Hsieh, and Jain
(2017) recently showed that in convex QRTs admitting a
tensor-product structure, R∞

rel quantifies the optimal asymp-
totic rate of erasing resource using free unitaries and catalysis,
where R∞

rel is the regularized relative entropy of resource
(see Sec. VI.C). Roughly speaking this means that for any
R > R∞

rel, there exists free unitaries Ui and a probability
distribution pi such that

Φðρ⊗n ⊗ ωÞ ¼
X2nR
i¼1

piUiðρ⊗n ⊗ ωÞU†
i ≈ σ ⊗ ω; ð56Þ

where σ is a free state. Specific cases of this task have been
investigated in the QRTs of entanglement (Groisman, Popescu,
and Winter, 2005), coherence (Singh et al., 2015), non-
Markovianity (Wakakuwa, Soeda, and Murao, 2017), asym-
metry (Wakakuwa, 2017b), and more generally in scenarios
involving state deconstruction (Majenz et al., 2017;Berta et al.,
2018). One-shot variations of the problem have also been
proposed and extensively studied by Anshu, Hsieh, and Jain
(2017), Majenz et al. (2017), and Berta and Majenz (2018).

VI. QUANTIFYING RESOURCES

One of the most useful aspects of a QRT is that it generates
precise and operationally meaningful ways to quantify a given
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physical resource. Dedicated studies on the broad characteri-
zation and computation of resource measures in a general
QRT have been conducted (Liu, Hu, and Lloyd, 2017;
Bromley et al., 2018; Regula, 2018). Here we review a variety
of resource measures that can be introduced in any QRT. We
first begin with an axiomatic approach which involves
identifying some necessary and desirable properties that
any resource measure should satisfy. After that, we review
different families of specific resource measures that can be
used in the study of general QRTs.

A. An axiomatic approach

In its definition, a QRT is defined for any Hilbert space H.
Therefore, a true resource measure should be able to quantify
the resource of a density operator acting on any space; that is,
we should consider non-negative functions of the form
f∶ ∪H SðHÞ → R≥0. However, in practice one may be
satisfied with restricting the domain of a measure and focusing
on just a single input space H. The additional structure
required of f to be a resource measure can be cast in axiomatic
form. Next we state five axioms for a resource measure. Lest
this approach be too restrictive, we distinguish the first two
axioms (vanishing for free states and monotonicity) as being
essential, while the others (convexity, subadditivity and
subextensivity, and asymptotic continuity) as being conven-
ient and nonessential.

1. Vanishing for free states

The first and most obvious axiom of a resource measure is
that for a given system A

ρ ∈ F ðAÞ ⇒ fðρÞ ¼ 0: ð57Þ

This condition makes the statement “no resource” quantita-
tively precise. Intuitively it may be tempting to require that the
converse of Eq. (57) also holds. This property is called
faithfulness, and a general function f is called resource faithful
if fðρÞ ¼ 0 implies that ρ is free. However, it may be that for a
given task, certain resource states provide no operational
advantage over free states. Such states should then be assigned
zero resource by any measure that quantifies the utility of a state
for performing the given task. For example, the distillable
entanglement is an important measure of entanglement that
vanishes for all bound entangled states. Thus, while faithfulness
is intuitively appealing, it is not required for a resource measure.

2. Monotonicity

A more fundamental property of any resource measure is
that its value cannot be increased using free operations. This
is called monotonicity, and it can be seen as encompassing
the golden rule of QRTs. A non-negative function f∶ ∪H
SðHÞ → R≥0 is called a resource monotone if, for any Φ ∈
OðA → BÞ and ρ ∈ SðAÞ, it holds that

fðρÞ ≥ f(ΦðρÞ): ð58Þ

For QRTs in which any two free states are interconvertible,
such as those admitting a tensor-product structure,

monotonicity immediately implies that fðρÞ ¼ fðσÞwhenever
ρ and σ are free. Thus, the axiom of vanishing for free states
can always be satisfied by shifting the function f so
that fðρÞ ¼ fðσÞ ¼ 0.
Quantum measurements represented in the form of QC

maps Φð·Þ ¼ P
iΦið·Þ ⊗ jiihijX are not permitted in every

resource theory, quantum thermodynamics being one such
example. However, in QRTs such as entanglement and magic
states, measurements are physically allowed, and they re-
present an important component of the theory. We are thus
typically interested in the behavior of a resource monotone
when evaluated on QC states. We say that such a function f is
convex linear on QC states if

f

�X
i

piσi ⊗ jiihij
�

¼
X
i

pifðσi ⊗ jiihijÞ ð59Þ

for every QC state σQX ¼ P
ipiσi ⊗ jiihij. For example, the

von Neumann entropy and all Schatten p norms have this
property. If f is convex linear on QC states, then monotonicity
obviously implies

fðρÞ ≥
X
i

pifðσi ⊗ jiihijÞ: ð60Þ

Equation (60) says that the function is nonincreasing on
average under any “flagged-outcome” quantum measurement.
In many QRTs appending or discarding classical flags is a free
operation; i.e., ρ ↔ ρ ⊗ jiihijX is allowed for any orthonor-
mal set of vectors fjiigi. For such QRTs, all monotones
must satisfy fðρiÞ ¼ fðρi ⊗ jiihijÞ. Then from Eq. (60) it
follows that

fðρÞ ≥
X
i

pifðσiÞ; ð61Þ

where ρ ↦
P

iΦiðρÞ ⊗ jiihij is any free QC measurement
map, σi ¼ ΦiðρÞ=pi, and pi ¼ Tr½ΦiðρÞ�. This property is
sometimes referred to as strong monotonicity (Vidal, 2000).
An intuitive justification for requiring strong monotonicity is
to prevent f from increasing on average when the experi-
menter can postselect or flag the multiple outcomes of a
quantum measurement. However, Eq. (61) does not precisely
reflect this justification since the full description of a post-
measurement quantum system with measurement outcome i is
the QC state σi ⊗ jiihijX. When including the measurement
outcome, the statement of f being nonincreasing on average is
Eq. (60), which always holds when f satisfies Eq. (58) and
demonstrates convex linearity on QC states.
Every non-negative monotone satisfying Eq. (61) can be

used to derive an upper bound on the stochastic convertibility
of transforming one state ρ into another σ using the
free operations. For any stochastic transformation on ρ
generating outcomes ρx, Eq. (61) immediately implies that
fðρÞ=fðρxÞ ≥ px. Hence one obtains

Pmax
ρ ðσÞ ≤ fðρÞ

fðσÞ ; ð62Þ

with Pmax
ρ ðσÞ defined in Eq. (48). In fact, Pmax

ρ ðσÞ is itself a
resource monotone (Vidal, 2000).
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3. Convexity

Convexity of a resource measure says that

f

�X
i

piρi

�
≤
X
i

pifðρiÞ ð63Þ

for any collection of density matrices ρi and associated
probability distribution pi. This is a desirable property to have
from a mathematical perspective when it comes to computing
the value of some function for a given state (Girard, Gour, and
Friedland, 2014; Regula, 2018). A physical interpretation often
associated with convex measures is that mixing states never
increases the amount of resource. However, since mixing in this
sense describes a process of discarding information, care is
needed when relating convexity to the physical process of
mixing states (see Sec. III.D.1).

4. Subadditivity

A function f∶ ∪H SðHÞ → R is called subadditive if

fðρ ⊗ σÞ ≤ fðρÞ þ fðσÞ ð64Þ
for all ρ, σ. While subadditvity is a natural property to suppose
of a resource measure, Eq. (64) will not hold for all measures
in a general QRT. In particular, for any QRT admitting
superactivion, such as nonlocality (Palazuelos, 2012) and
quantum channel capacities (Smith and Yard, 2008; Cubitt,
Chen, and Harrow, 2011), all faithful resource measures will
not be subadditive.
The function f is called additive when equality holds in

Eq. (64) for all states. This is a strong property that most
resource measures will not possess. However, a procedure
known as regularization allows for the general construction of
functions that are additive on multiple copies of the same state.
For a function f∶ ∪H SðHÞ → R, its regularized version is
defined by

f∞ðρÞ ¼ lim
n→∞

1

n
fðρ⊗nÞ; ð65Þ

provided the limit exists. One sufficient condition for the
existence of this limit is a weaker form of subadditivity given
by fðρ⊗ðmþnÞÞ ≤ fðρ⊗mÞ þ fðρ⊗nÞ for all ρ andm, n (Donald,
Horodecki, and Rudolph, 2002). By definition, f∞ðρ⊗nÞ ¼
nf∞ðρÞ, and furthermore, if f is a resource monotone then so
will be f∞.

5. Asymptotic continuity

Continuity of measure is a reasonable property to expect
for any resource measure having physical meaning. If one
state can be obtained from another through subtle perturba-
tion, then one would naturally anticipate their resource content
to be very similar. Of course, the range of a resource measure
should grow as the system dimension increases, and thus
relative to the dimension, two states can have similar resource
content while their absolute difference in resource measure is
proportional to the dimension. Asymptotic continuity is a
notion of continuity that considers convergence relative to the
dimension. More precisely, a function f is said to be
asymptotically continuous if

jfðρÞ − fðσÞj ≤ Kϵ log½dimðHÞ� þ cðϵÞ ð66Þ
for all states ρ and σ having support on H, where K is some
constant, ϵ ¼ ð1=2Þkρ − σk1, and cðϵÞ is any function con-
verging to zero as ϵ → 0 (Synak-Radtke and Horodecki,
2006). For example, the von Neumann entropy S is an
asymptotic continuous function, as revealed by the Fannes-
Audenaert inequality

jSðρÞ − SðσÞj ≤ ϵ log½dimðHÞ − 1� þ hðϵÞ;
where hðxÞ ¼ −x log x − ð1 − xÞ logð1 − xÞ (Fannes, 1973;
Audenaert, 2007). Asymptotic continuity plays a crucial role
in the analysis of asymptotic state convertibility. As we
discuss in Sec. VII.C, the regularized version of all asymp-
totically continuous measures coincides on states in the same
reversibility class.
The regularization of an asymptotically continuous mono-

tone can be used to bound the rate of any asymptotic
transformation. Suppose that f is an asymptotically continu-
ous monotone with regularization f∞, and consider the
asymptotic convertibility of ρ into σ. If R is an achievable

rate, then for any δ > 0, there exists some n such that ρ⊗n!O σn
with Fðσn; σ⊗bnRcÞ > 1 − δ. In terms of the trace distance, this
means

1
2
kσn − σ⊗bnRck <

ffiffiffiffiffi
2δ

p
.

Then

fðρ⊗nÞ ≥ fðσnÞ
≥ fðσ⊗bnRcÞ − K0 ffiffiffi

δ
p

nR log d − cðδÞ; ð67Þ
where the first inequality follows from monotonicity and the
second from asymptotic continuity, with d being the dimen-
sion of suppðσÞ. To obtain the regularizations, we divide both
sides by n and take the limit. Noting that

limn→∞
1

n
fðσ⊗bnRcÞ ≥ limbnRc→∞

R
bnRc fðσ

⊗bnRcÞ;

we have f∞ðρÞ ≥ Rf∞ðσÞ −Oð ffiffiffi
δ

p Þ. Since this holds for all
δ > 0 and any achievable rate R, the optimal asymptotic rate
of conversion is bounded as (Horodecki, Oppenheim, and
Horodecki, 2002)

Rðρ → σÞ ≤ f∞ðρÞ
f∞ðσÞ : ð68Þ

This can be seen as the asymptotic version of Eq. (62).

B. General distance-based constructions

We now describe a general recipe for constructing measures
in a general QRT. The idea is to quantify the amount of
resource in a quantum state by “how far” it is from the set of
free states. There are many well-defined measures that satisfy
the mathematical requirements of distance between two
positive operators in Hilbert space. However, from a physical
perspective, the property of monotonicity offers a more useful
foundation for quantifying distance than standard metric space
approaches. A function d∶ SðH ⊗ HÞ → R≥0 is said to be
contractive under CTPP maps Φ if dðρ; σÞ ≥ d(ΦðρÞ;ΦðσÞ)
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for arbitrary ρ and σ. If d is such a function, then one can
define for any QRT the resource measure

RdðρÞ ¼ inf
σ∈F ðHÞ

dðρ; σÞ: ð69Þ

This is easily shown to be a resource monotone by the
following argument. Let ρ ∈ SðAÞ be a density matrix, and
Φ ∈ OðA → BÞ a free operation. Then,

Rd(ΦðρÞ) ¼ inf
τ∈F ðBÞ

d(ΦðρÞ; τ)

≤ inf
σ∈F ðAÞ

d(ΦðρÞ;ΦðσÞ)

≤ inf
σ∈F ðAÞ

dðρ; σÞ ¼ RdðρÞ: ð70Þ

Under this construction strong monotonicity is not guaranteed
to be satisfied, but for the measures considered later this will
indeed be the case. In general,Rd is subadditive, and it will be
a convex measure for all convex QRTs. We describe in the
next few sections specific resource measures that are con-
structed using the approach described here.

C. Entropic measures

The starting point for most entropic measures is some
quantum generalization of the relative Rényi entropies from
classical information theory (Rényi, 1961). Two well-studied
generalizations are the quantum relative Rényi entropies (Petz,
1986), defined by

DαðρkσÞ ¼
�þ∞ if α ∉ ð0; 1Þ ∧ suppðρÞ⊄suppðσÞ;

1
α−1 logðTrρασ1−αÞ otherwise;

ð71Þ

for all α ∈ ½0;þ∞Þnf1g, and the quantum Rényi divergences (Müller-Lennert et al., 2013) or sandwiched Rényi entropies
(Wilde, Winter, and Yang, 2014), defined by

D̃αðρkσÞ ¼
�þ∞ if α ∉ ð0; 1Þ ∧ suppðρÞ⊄suppðσÞ;

1
α−1 logfTr½ðσð1−αÞ=2αρσð1−αÞ=2αÞα�g otherwise;

ð72Þ

for all α ∈ ð0;þ∞Þnf1g. Both families of entropies have
found applications in quantum information theory, particu-
larly in quantum hypothesis testing (Mosonyi and Hiai,
2011; Mosonyi and Ogawa, 2015; Hayashi and Tomami-
chel, 2016), and various strong converse proofs (König and
Wehner, 2009; Wilde, Winter, and Yang, 2014; Cooney,
Mosonyi, and Wilde, 2016; Leditzky, Wilde, and Datta,
2016). Of special interest are certain limiting cases of
DαðρkσÞ and D̃αðρkσÞ. For states ρ, σ with suppðρÞ ⊂
suppðσÞ, we have

D0ðρkσÞ ¼ − log TrðΠρσÞ; ð73Þ

lim
α→1

DαðρkσÞ → SðρkσÞ ≔ −Tr½ρðlog σ − log ρÞ�; ð74Þ

where Πρ is the projector onto suppðρÞ and SðρkσÞ is
the quantum relative entropy (Vedral, 2002). Similarly,
we have

lim
α→1

D̃αðρkσÞ → SðρkσÞ; ð75Þ

lim
α→∞

D̃αðρkσÞ → DmaxðρkσÞ ≔ inffλjρ ≤ 2λσg; ð76Þ

where DmaxðρkσÞ is called the max-relative entropy (Datta,
2009b). Henceforth we use the definitions D1ðρkσÞ ¼
D̃1ðρkσÞ ≔ SðρkσÞ and D̃∞ðρkσÞ ≔ DmaxðρkσÞ.

The relative Rényi entropy serves as a building block for a
number of other useful entropic quantities. For example, if ρ is
a state whose support is contained in a d-dimensional sub-
spaceH, then the Rényi entropy of the eigenvalues of ρ can be
obtained by taking σ ¼ IH:

SαðρÞ ≔ −DαðρkIHÞ ¼
−1
α − 1

logðTrραÞ: ð77Þ

As described in Sec. VII.A.2, the quantities SαðρÞ determine
catalytic convertibility of states in many resource theories. For
special choices of α we have

HminðρÞ ¼ −DmaxðρkIHÞ ¼ − log kρk∞;
SðρÞ ¼ −D1ðρkIHÞ þ log d ¼ −Tr½ρ logðρÞ�;
HmaxðρÞ ¼ −D0ðρkIHÞ ¼ log rank½ρ�; ð78Þ

where kρk∞ is the largest eigenvalue of ρ.
For operational purposes, one crucial property of the Rényi

relative entropies is that they are contractive under CPTP maps
for certain ranges of α, i.e., DαðρkσÞ ≥ Dα(ΦðρÞkΦðσÞ) for
any CPTP mapΦ and all states ρ and σ. This is also sometimes
referred to as a data-processing inequality. For the range
α ∈ ½0; 2�, the quantum relative Rényi entropy is monotonic
under CPTP maps (Petz, 1986), similarly the quantum Rényi
divergence behaves monotonically for α ∈ ½1=2;∞� (Beigi,
2013; Frank and Lieb, 2013; Wilde, 2018). It also holds that
DαðρkσÞ ¼ 0 if and only if ρ ¼ σ, and likewise for the
equality D̃αðρkσÞ ¼ 0.
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Given these properties, one then obtains a whole family of
resource measures for any QRT ðF ;OÞ. These are functions
Rα and R̃α whose values on any ρ ∈ SðHÞ are given by

RαðρÞ ≔ inf
σ∈F ðHÞ

DαðρkσÞ for α ∈ ½0; 2�; ð79Þ

R̃αðρÞ ≔ inf
σ∈F ðHÞ

D̃αðρkσÞ for α ∈ ½1=2;∞�: ð80Þ

In particular, we define

RmaxðρÞ ≔ R̃∞ðρÞ ¼ inf
σ∈F ðHÞ

fλjρ ≤ 2λσg: ð81Þ

Note that whenever the set of free states F ðHÞ is closed, each
infimum is attained by some free state σ. These are true
resource measures since RαðρÞ ¼ 0 and R̃αðρÞ ¼ 0 if and
only if ρ ∈ F ðHÞ. Monotonicity under any free CPTP map Φ
follows from the data-processing inequality and the discussion
of Sec. VI.B. Furthermore, Rα and R̃α demonstrate strong
monotonicity for α ∈ ½1; 2�. To see this, consider any free
transformation ρ → ΦðρÞ ¼ P

ipiρi ⊗ jiihij and suppose for
simplicity that F ðHÞ is closed. Then there exists someP

iqiσi ⊗ jiihij ∈ F ðH ⊗ HXÞ attaining the minimum in
the definition of RαðΦðρÞÞ. Monotonicity or Rα then implies

RαðρÞ ≥ Dα

�X
i

piρi ⊗ jiihijjj
X
i

qiσi ⊗ jiihij
�

¼ 1

α − 1
log

�X
i

pα
i q

1−α
i Tr½ραi σ1−αi �

�

≥
1

α − 1

X
i

pi log fðqi=piÞ1−αTr½ραi σ1−αi �g

≥
X
i

piRαðρiÞ; ð82Þ

where the concavity of the logarithm function has been used
for α > 1, and the last inequality follows from the fact that
−
P

ipi logðqi=piÞ is non-negative as it is the relative entropy
of the distributions ðpiÞi and ðqiÞi. An analogous argument
holds for R̃α. It is also easy to see that these measures are
subadditive and subextensive in general, and they are convex
for all convex QRTs.
For example, in the QRTof thermodynamics the Gibbs state

γH is the unique free state for a given Hamiltonian and bath
temperature. The quantitiesRαðρÞ ¼ DαðρkγHÞ andRαðρÞ ¼
D̃αðρkγHÞ are then resource measures, and their monotonicity
represents an α family of second laws of thermodynamics
(Brandão, Horodecki et al., 2015).
The most important entropic measure emerges when α ¼ 1,

and it is called the relative entropy of resource, denoted as

RrelðρÞ ¼ inf
σ∈F ðHÞ

SðρkσÞ ð83Þ

for ρ ∈ SðHÞ. It can be shown that Rrel is asymptotically
continuous in any convex QRT for which the maximally
mixed state is free (Donald and Horodecki, 1999; Synak-
Radtke and Horodecki, 2006) [see also (Winter (2016)]. As

mentioned, the regularization of Rrel is the key quantifier in
most asymptotic resource tasks such as the asymptotic
convertibility and erasing resources (see also Sec. VII.C).
One can also consider a relative entropy-type measure by

switching the roles of ρ and σ (Vedral and Plenio, 1998; Eisert,
Audenaert, and Plenio, 2003). That is, the function

R0
relðρÞ ¼ inf

σ∈F ðHÞ
SðσkρÞ ð84Þ

provides a resource measure that vanishes on free states and
behaves monotonically under free operations. In addition,R0

rel
has the relatively rare feature of being an additive function in
QRTs admitting a tensor-product structure. This follows from
the equality

SðσABkρA ⊗ ρBÞ ¼ −Tr½σAB logðρ1 ⊗ ρ2Þ� − SðσABÞ
¼ SðσAkρAÞ þ SðσBkρBÞ þ IðA∶BÞσ:

This is minimized by taking σAB ¼ σA ⊗ σB. In QRTs
with a tensor-product structure, σA ⊗ σB is free whenever
σAB is free. Hence, additivity holds: R0

relðρA ⊗ ρBÞ ¼
R0

relðρAÞ þR0
relðρBÞ. Unfortunately, despite having these nice

properties, R0
rel is usually not convenient to use as a resource

measure. If, for example, the set of free states contains full
rank states, then R0

relðρÞ will diverge for all states ρ not of
full rank.

D. Geometric measures

The relative entropies are not proper metrics in the
mathematical sense since they, for example, fail to satisfy
the triangle inequality. One resource measure derived from a
true metric is the trace distance of resource, defined as

RTrðρÞ ¼ inf
σ∈F ðHÞ

DTrðρ; σÞ ¼ inf
σ∈F ðHÞ

1
2
kρ − σk1 ð85Þ

for any ρ ∈ SðHÞ. Since k · k1 is contractive under CPTP
maps, it automatically holds thatRTrðρÞ ≥ RTr(ΦðρÞ) for any
free channel Φ.
The trace distance of resource has an appealing operational

meaning in terms of state distinguishability. Namely, for a
system prepared in one of two states ρ0 and ρ1 with respective
probabilities p0 and p1, the minimum error in guessing the
correctly prepared state after measuring the system is given by
1=2 − ð1=2Þkp0ρ0 − p1ρ1k1 (Helstrom, 1969; Holevo, 1973).
When guessing between the equiprobable state preparation
of ρ or some free state in the QRT, the quantity 1=2 −
ð1=2ÞRTrðρÞ represents the minimum-error probability over
all the free states, provided the QRT is convex (Gutoski and
Watrous, 2005).
Another example of a metric used in quantum information

theory is the Bures metric DBðρ; σÞ ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ; σÞp

.
Using it, the Bures distance of resource measure can be
defined as

RBðρÞ ¼ inf
σ∈F ðHÞ

DBðρ; σÞ: ð86Þ
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Both RTr and RB are called geometric measures because
they are built from a true metric. Historically, however, the
first type of geometric measure studied was for pure states in
entanglement theory, and it involves minimizing Fðρ; σÞ2
directly (Shimony, 1995; Barnum and Linden, 2001). This is
typically referred to as the geometric measure of entangle-
ment, and we generalize it to a measure on pure states in an
arbitrary QRT as

RGðjψiÞ ¼ inf
σ∈F ðHÞ

½1 − Fðjψihψ j; σÞ2� ¼ 1
4
RBðjψiÞ4: ð87Þ

If F ðHÞ is a convex set whose extreme points are pure
states, then this infimum is always attained by a pure state.
Entanglement theory is one such QRT where this is the case,
and thus in entanglement theory RGðjψiÞ is essentially given
by the largest overlap that jψi has with a product state. Such a
quantity has wide applications in quantum information theory,
such as quantifying performance in LOCC state discrimina-
tion (Markham, Miyake, and Virmani, 2007) and quantum
algorithms (Biham, Nielsen, and Osborne, 2002; Gross,
Flammia, and Eisert, 2009).
There are two ways to extendRG defined in Eq. (87) to be a

resource measure for mixed states as well (Chen, Aulbach,
and Hajdušek, 2014). The first and most obvious does not
change the functional form at all, and one simply defines

RGðρÞ ¼ inf
σ∈F ðHÞ

½1 − Fðρ; σÞ2� ð88Þ

for ρ ∈ SðHÞ. As an interesting observation, the α ¼ 1=2 case
of R̃αðρÞ in Eq. (80) reduces to a quantity quite similar to
RGðρÞ. One sees from Eq. (72) that

D̃1=2ðρkσÞ ¼ −2 log Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

p
ρ

ffiffiffi
σ

pq
¼ − logFðρ; σÞ2: ð89Þ

Minimizing both sides over all free states σ yields

RGðρÞ ¼ 1 − 2−R̃1=2ðρÞ: ð90Þ

Monotonicity of R̃1=2 then implies F(ΦðρÞ;ΦðσÞ) ≥ Fðρ; σÞ
for any CPTP map Φ.
The second approach to obtaining a mixed-state measure

from Eq. (87) uses a standard technique in entanglement
theory known as convex-roof extension (Wei and Goldbart,
2003; Uhlmann, 2010). For any arbitrary mixed state, its
extended geometric measure is defined by

R0
GðρÞ ¼ inf

fjϕii;pig

X
i

piRGðjϕiiÞ; ð91Þ

where the infimum is taken over all pure-state ensembles
such that ρ ¼ P

ipijψ iihψ ij. Remarkably, if the QRT has the
property that its free states are the convex hull of some set of
pure states, then the two proposed geometric measures of
resource coincide (Streltsov, Kampermann, and Bru, 2010);
i.e.,

RGðρÞ ¼ R0
GðρÞ: ð92Þ

A consequence of this equality is that RGðρÞ necessarily
satisfies strong monotonicity since R0

G is built from a pure-
state function RG that satisfies strong monotonicity under
pure-state transformations (Vidal, 2000).
Even though RG has a relatively convenient mathematical

form, it lacks an operational interpretation such as the
minimum-error guessing probability associated with RTr.
However, RG is still useful in deriving bounds for the latter
since from Eq. (1) we immediately have

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −RGðρÞ

p
≤ RTrðρÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RGðρÞ

p
: ð93Þ

E. Witness-based measures

The next family of measures we consider relies on the idea
of resource witnessing. In a general QRT, a witness for the
particular resource is a quantum observable W ∈ BðHÞ such
that

∃ σ ∉ F ðHÞ∶ Tr½Wσ� < 0; ∀ ρ ∈ F ðHÞ∶ Tr½Wρ� ≥ 0.

ð94Þ

IfW satisfies these two conditions, then it is said to witness the
resource content of σ. For convex closed QRTs, the separating
hyperplane theorem assures that every resource state pos-
sesses at least one observable that witnesses it (Barvinok,
2002). Consequently, in such QRTs witnesses themselves can
be used to fully characterize the free states.
The theory of witnesses is appealing from an experimental

perspective. If multiple copies of a quantum system are
prepared in the same unknown state, the presence of a
quantum resource can be detected whenever a resource
witness yields a negative average measurement value. In
entanglement theory, the study of entanglement witnesses is
a mature research area (Chruciski and Sarbicki, 2014), with a
number of experimental applications already developed
(Gühne and Tóth, 2009). In the QRT of Bell nonlocality,
the so-called Bell operators serve as resource witnesses,
and the experimental implementation of these witnesses in
a “loophole” free manner has been a long quest that only
recently was completed (Giustina et al., 2015; Hensen et al.,
2015; Shalm et al., 2015).
Beyond distinguishing resource states from free ones,

witnesses can also be used for the construction of resource
measures. This approach was originally taken by Brandão
(2005) in the context of entanglement, but it was recently
expanded by Regula (2018) to encompass general convex
resource theories. While we encourage the reader to consult
the latter for a detailed mathematical development of the
subject, here we just review the basic framework and describe
the more well-known applications.
For a collection of Hermitian operators CðHÞ ⊂ HermðHÞ,

we let C�ðHÞ ⊂ HermðHÞ denote its dual cone, i.e.,

C�ðHÞ ≔ fX∶ Tr½XY� ≥ 0; ∀ Y ∈ CðHÞg:

For a given QRT ðF ;OÞ and any Hilbert spaceH, let CðHÞ be
a collection of Hermitian operators that is closed under the
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adjoint of every free CPTP map; more precisely, for spaces
H and H0 it holds that Φ�ðXÞ ∈ CðHÞ whenever X ∈ CðH0Þ
and Φ ∈ OðH → H0Þ. Then for ρ ∈ SðHÞ we define the
function

RC
WðρÞ ¼ supf−Tr½Xρ�∶ X ∈ F �ðHÞ ∩ CðHÞg: ð95Þ

By definition, RC
WðρÞ ¼ 0 for all ρ ∈ F ðHÞ, and monoto-

nicity is easy to verify. First note that F �ðHÞ itself is closed
under the adjoint of every free map, which follows from
the observation that if 0 ≤ Tr½Xρ� for all free states ρ, then
under any RNG map Φ, we likewise have 0 ≤ Tr½XΦðρÞ� ¼
Tr½Φ�ðXÞρ�. Monotonicity of RC

W is then a consequence of
the inequality

−Tr½XΦðρÞ� ¼ −Tr½Φ�ðXÞρ� ≤ RC
WðρÞ;

since Φ�ðXÞ ∈ F �ðHÞ ∩ CðHÞ. In any QRT with tensor-
product structure, one can see that F �ðHÞ is also closed
under processing of classical flags; i.e.,

P
iXi ⊗ jiihijX ∈

F �ðH ⊗ HXÞ if and only if Xi ∈ F �ðHÞ for all i. If the
set CðHÞ also has this property, then the constructed
resource measure RC

WðρÞ is convex linear on QC states.
Consequently, the monotonicty

RC
WðρÞ ≥

X
i

piRC
WðρiÞ ð96Þ

holds for any free transformation ρ →
P

ipiρi ⊗ jiihij.
As an example, for any real numbers m < n, the set C ¼

fX∶ −mI ≤ X ≤ nIg is closed under the adjoint of every
CPTP map (Brandão, 2005). Indeed, if nI ≥ X, then
0 ≤ Φ�ðnI − XÞ ¼ nI −Φ�ðXÞ, where the inequality follows
from Φ being CP and the equality follows from Φ being trace
preserving, which implies Φ� is unital. A similar argument
holds for the operator X þmI, and therefore we see thatRC

W is
a resource measure for any choice of m and n (Regula
et al., 2018).
In many cases of interest, the chosen set C is a cone in the

space of Hermitian matrices. That is, C is such that
P

iciXi ∈
C whenever Xi ∈ C and ci ≥ 0. From its definition, F � is
also a cone, and thus the value RC

WðρÞ represents a conic
optimization problem (Boyd and Vandenberghe, 2004). Every
conic optimization problem has a dual representation obtained
by the introduction of Lagrange multipliers. If C is convex
with F � ∩ C having a nonempty interior, then strong duality
holds, and we are assured that the dual-optimal solution is
equal to RC

WðρÞ. In what follows, we consider three resource
measures built using the dual formulation of RC

W under
different choices of C.

1. Trace distance measures

Building from the example in the previous section, consider
the specific choice of m ¼ n ¼ 1 so that C ¼ fX∶ − I ≤
X ≤ Ig. The dual optimization problem of Eq. (95) is given by

inf
R;S≥0

ω∈FþðHÞ
fTr½Rþ S�∶ ρ − ω ¼ R − Sg;

where FþðHÞ ¼ F ��ðHÞ ≔ fλσ∶ σ ∈ F ðHÞ; λ ≥ 0g. It is
well known that this minimization problem is equivalent to
minimizing the trace distance between ρ and the set FþðHÞ.
Since strong duality holds for all nontrivial QRTs in this case,
we therefore have

Rþ
TrðρÞ ≔ inf

ω∈FþðHÞ
kρ − ωk1: ð97Þ

We refer to this as the modified trace distance of resource, as it
has been given such a name in the study of quantum coherence
(Yu et al., 2016).
One advantage of considering the modified trace distance of

resource rather than the standard RTr of Eq. (85) is that the
former satisfies strong monotonicity while the latter does not.
To see where the distinction arises, consider a multi-outcome
free operation Φð·Þ ¼ P

iΦið·Þ ⊗ jiihijX. For an input state
ρ ∈ BðHSÞ, its postmeasurement trace distance of resource is
given by

RTr(ΦðρÞ) ¼ inf
ω∈F ðH⊗HXÞ

����
X

i
EiðρÞ ⊗ jiihijX − ωSX

����
1

;

where ωSX is a QC state of the form ωSX ¼ P
iqiωi ⊗ jiihijX

for quantum states ωi. Then writing ρi ¼ EiðρÞ=pi and
pi ¼ Tr½EiðρÞ�, we have

RTr(ΦðρÞ) ¼
X
i

pi inf
qiωi∈FþðHÞP

i
qi¼1

����ρi − qi
pi

ωi

����
1

: ð98Þ

In general the terms in the sum on the rhs will differ from
RTrðρiÞ. On the other hand, if the normalization conditionP

iqi ¼ 1 is removed from the infimum in Eq. (98), then the
rhs becomes

P
ipiR

þ
TrðρiÞ. Hence, we can conclude that the

modified trace distance demonstrates convex linearity on QC
states and therefore also strong monotonicity,

Rþ
TrðρÞ ≥

X
i

piR
þ
TrðρiÞ: ð99Þ

While strong monotonicity of RTr is known to hold in
coherence and entanglement theories for special cases
(Eisert, Audenaert, and Plenio, 2003; Rana, Parashar, and
Lewenstein, 2016), explicit counterexamples can be found
(Yu et al., 2016).

2. Robustness measures

One appealing way to quantify the resource content of a
quantum state is by its resilience to hold resource when mixed
with some other state. Let T ðHÞ be any set of quantum states,
and for a given state ρ consider mixtures of the form ω ¼
λρþ ð1 − λÞσ with σ ∈ T ðHÞ. If F ðHÞ ∩ T ðHÞ ≠ ∅, there
always exists a λ such that ω is a free state for some choice of
σ ∈ T ðHÞ. The smallest such λ having this property quantifies
a resource robustness of ρ against mixtures from T ðHÞ.
For many interesting choices of T ðHÞ, this notion of

robustness can be captured using the framework of resource
witnesses. Specifically, suppose that the set
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CðHÞ ¼ I − T � ¼ fX∶ I − X ∈ T �ðHÞg

is closed under the adjoint action of every free map. The dual
of Eq. (95) is readily found to be

inf
ω∈FþðHÞ

fTr½ω� − 1∶ω − ρ ∈ T þðHÞg;

where T þðHÞ is the conic hull of T ðHÞ. If there exists an
ω ∈ T þðHÞ so that ρþ ω lies in the interior of FþðHÞ, then
strong duality holds. In this case, we can rewrite the previous
equation in a more standard form, which represents the
resource robustness of ρ against T ,

RT
robðρÞ ≔ inf

γ∈T ðHÞ

�
s∶

ρþ sγ
1þ s

∈ F ðHÞ
�
: ð100Þ

Different robustness measures are obtained for different
choices of T . For example, if T ¼ F , then one obtains the
resource absolute robustness (Vidal and Tarrach, 1999), which
quantifies the minimum fraction that a given state ρ must be
mixed with a free state so that their convex combination is
free. An analogous measure has been studied in the QRT of
magic states (Howard and Campbell, 2017). The other
extreme involves taking T to be the set of all density matrices.
This is called the resource global robustness (Harrow and
Nielsen, 2003), and it is written as

RrobðρÞ ¼ inf
γ∈SðHÞ

�
s∶

ρþ sγ
1þ s

∈ F ðHÞ
�
: ð101Þ

Beyond its study in entanglement theory, the global robustness
was recently investigated in the QRTs of coherence and
asymmetry (Napoli et al., 2016; Piani et al., 2016). In
addition, the global robustness plays an important role in
the study of general asymptotic resource reversibility since it
is used to define the class of asymptotically RNG trans-
formations (Brandão and Plenio, 2008; Brandão and Gour,
2015) (see Sec. VII.C). A thoughtful comparison between
Eqs. (101) and (81) shows that

RmaxðρÞ ¼ log½1þRrobðρÞ� ð102Þ

(Datta, 2009a). The rhs is sometimes referred to as the log
robustness.
A third type of robustness commonly considered is the

resource random robustness of ρ, and it is defined by taking
T ðHÞ ¼ fð1=dÞIg, where d ¼ dim½H� (Vidal and Tarrach,
1999). Assuming the maximally mixed state is free, this
quantity essentially measures how much “white noise”
must be mixed with ρ before it becomes a free state.
Alternatively, it can be characterized as the minimal depola-
rizing parameter λ that removes all resource content from ρ
when it is sent through the completely depolarizing channel
ΦλðρÞ ¼ ð1 − λÞρþ λð1=dÞI. However, unlike the absolute
and global robustness measures, the resource random robust-
ness is not a monotone in general (Harrow and Nielsen, 2003).

For the choice of T ðHÞ taken here, it holds that CðHÞ ¼
fX∶Tr½X� ≤ dg. Consequently, it follows that the resource
random robustness is a monotone in any QRT for which
every free map has an adjoint that is trace nonincreasing on
the set of Hermitian operators. For example, the random
robustness is a monotone if the free CPTP maps are unital, a
fact which also directly follows from the definition of
random robustness.

3. Resource-rank measures

We introduce one final family of witness-based measures
that extends the general construction previously described.
Suppose that F ðHÞ possesses a collection of rank-one free
states fjfiihfijgi such that the vectors fjfiigi form a basis for
H. Then one can define the resource rank of an arbitrary pure
state jϕi as

RrkðjϕiÞ ¼ inf

�
r∶ jϕi ¼

Xr

i¼1

cijfii; the jfii are free

�
:

ð103Þ

The rank is then extended to mixed states using the pre-
scription of Eq. (91),

RrkðρÞ ¼ inf
fjϕii;pig

X
i

piRrkðjϕiiÞ; ð104Þ

where the infimum is taken over all pure-state decompositions
of ρ. The most well-known example of Rrk is in entanglement
theory where it is referred to as the Schmidt rank or Schmidt
number of a bipartite state (Terhal and Horodecki, 2000). In
multipartite entanglement theory, the Schmidt rank generalizes
to the so-called tensor rank (Chitambar, Duan, and Shi, 2008),
and it can be used certify the presence of genuine multipartite
entanglement (Eisert and Briegel, 2001). Outside of entangle-
ment, the coherence rank has been used to quantify and
experimentally measure multilevel coherence (Ringbauer et al.,
2018). Additionally, in the resource theory of magic states, the
stabilizer rank of magic states has been related to their classical
simulation costs (Bravyi, Smith, and Smolin, 2016).
If we let SkðHÞ denote the set of states on space H with

resource rank no greater than k, then SkðHÞ forms a convex
set. Thus, there exist observables W which, analogous to
Eq. (94), witness a resource rank greater than k (Sanpera,
Bruß, and Lewenstein, 2001; Shahandeh, Sperling, and Vogel,
2014; Regula, 2018). That is, Tr½Wσ� < 0 for some σ ∉
SkðHÞ yet Tr½Wρ� ≥ 0 for all ρ ∈ SkðHÞ. Note that these
witnesses depend just on the structure of the free states in the
resource theory. To promote RrkðρÞ to a genuine resource
measure, it must be shown to be a monotone under the free
operations. In the resource theories of entanglement and
magic states, the resource rank is a monotone under LOCC
and stabilizer operations, respectively. For coherence, the
coherence rank has been shown to be a monotone under IO
(Baumgratz, Cramer, and Plenio, 2014) but not DIO (Yue and
Chitambar, 2018). Operationally, the resource ranks have been
shown to quantify one-shot resource costs in entanglement
(Buscemi and Datta, 2011) and coherence theories (Zhao, Liu,
Yuan, Chitambar, and Ma, 2018).
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VII. GENERAL TECHNIQUES, MATHEMATICAL TOOLS,
AND RESULTS

A. Majorization theory

We saw earlier that the set of free operations induces a
preorder. Specifically, we write ρ!O σ if there exists a free
operation Φ ∈ O such that σ ¼ ΦðρÞ, and in general, deter-

mining if ρ!O σ can be a difficult task. Moreover, even if
the solution is computationally feasible, it is still possible that

the preorder !O has no simple elegant characterization.
Remarkably, for pure bipartite entanglement the preorder

!O has a simple characterization known as majorization.
Majorization theory is a topic in matrix analysis with

several textbooks written on the subject; see, e.g., Bhatia
(1996) and Marshall, Olkin, and Arnold (2011). It has many
applications in different areas of science, from mathematics
to economy and statistics, and more recently quantum
physics. Nielsen’s discovery (Nielsen, 1999) of the role
that majorization plays in entanglement theory has been
extended to other resource theories using generalizations of
majorization. These include thermomajorization (Horodecki
and Oppenheim, 2013a), conditional majorization (Gour,
Grudka et al., 2018), relative majorization and subrelative
majorization (Renes, 2016), matrix majorization (Dahl,
1999), and quantum majorization (Gour et al., 2018).
Before introducing the mathematical definitions, we start
with a simple example to gain some intuition behind the
definition of majorization.

1. Majorization in gambling

Consider the following three gambling games. In each
game a player is given the choice between one of two biased
dice. The first has probability vector p ¼ ð1=16; 1=2; 1=8;
1=16; 1=4; 0ÞT for the distribution of symbols (outcomes)
x ∈ f1; 2; 3; 4; 5; 6g, while the second is described by prob-
ability vector q ¼ ð1=12; 1=3; 1=3; 1=4; 0; 0ÞT. In the first
game, the player rolls her die, and she wins if she correctly
guesses its outcome. In the second game she can guess two
outcomes, and in the third she can guess three outcomes.
Which die should the player choose in each of these games to
maximize her winning probability?
Clearly, in the first game the answer is the first die since if

she bets on outcome 2 she will have a 1=2 chance to win the
game, whereas with the second die the highest probability of
correctly guessing is 1=3. In the second game, the player
should also choose the first die since if she gambles on
outcomes 2 and 5 she will have a probability 1=2þ 1=4 ¼
3=4 to win, whereas with the second die the maximum
probability that she can win is 1=3þ 1=3 ¼ 2=3 < 3=4.
However, for the third game, the second die has a higher
probability to win since 1=3þ 1=3þ 1=4 ¼ 11=12, which is
greater than 1=2þ 1=4þ 1=8 ¼ 7=8. Therefore, the best die
to choose in this scenario depends on the game.
In general, if the player can guess k symbols, she should

choose a die with probability vector p ¼ ðp1;…; p6ÞT over a
die with probability vector q ¼ ðq1;…; q6ÞT if and only if the
following condition holds:

Xk
x¼1

p↓
x ≥

Xk
x¼1

q↓x ; ð105Þ

where the symbol ↓ stands for the rearrangement of the

elements of p in a nonincreasing order; i.e., p↓
1 ≥ p↓

2 ≥
� � � ≥ p↓

6 . If Eq. (105) holds for all k ¼ 1;…; 5 then the
player should choose the p die over the q die to maximize her
chances of winning every such game. When Eq. (105) is
satisfied for all k, we say that the probability vector p
majorizes the probability vector q, and we write q ≺ p or
p≻q. This definition extends to arbitrary probability distri-
butions p, q ∈ Rn

≥0; that is, p≻q if and only if Eq. (105) holds
for all k ¼ 1;…; n with equality for k ¼ n.
Majorization is a preorder. Moreover, if both p ≺ q and

q ≺ p then p and q are related by a permutation matrix.
Therefore, up to permutations, the majorization relation ≺ can
be viewed as a partial order. It is simple to check that any
d-dimensional probability vector p satisfies

ð1=d;…; 1=dÞT ≺ p ≺ ð1; 0;…; 0ÞT .

This relationship lends itself to the interpretation that majo-
rization measures how spread out a probability distribution is
over its possible events. This idea is further clarified in what
follows.
Consider again the p die and suppose that the player can

permute (relabel) its symbols before guessing an outcome.
Such a relabeling corresponds to a permutation of the
probability vector p. Denoting this permutation by π, the
relabeled die has probability distribution πp. Clearly, such
relabeling will not change her probability of winning any of
the games described above. Additionally, suppose she flips
an unbiased coin, and if it lands “heads” she does nothing,
while she relabels the die according to the permutation π if it
lands “tails.” If she forgets the outcome of the coin flipping,
the probability of the die from her perspective becomes

q ¼ 1
2
pþ 1

2
πp:

Since “forgetting” information clearly cannot increase the
winning probability, we conclude that any die with corre-
sponding probability q has a smaller winning probability than
a die with corresponding probability p. This process of
relabeling and forgetting is called random relabeling; see,
e.g., Friedland, Gheorghiu, and Gour (2013). The relation
between p and q can be expressed as q ¼ Dp, where D ¼
ð1=2ÞI þ ð1=2Þπ is a convex combination of the identity
matrix and the permutation matrix π. More generally, we
conclude that if q ¼ Dp, where D is any convex combination
of permutation matrices, then the q die has a smaller winning
probability than the p die.
Birkhoff’s theorem from matrix analysis states that a matrix

D can be expressed as a convex combination of permutation
matrices if and only if it is a doubly stochastic matrix (i.e., a
matrix whose entries are non-negative and each row and
column sums to 1). Moreover, a fundamental theorem of
majorization states that q ≺ p if and only if q ¼ Dp for some
doubly stochastic matrix D (Bhatia, 1996).
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2. Majorization in entanglement and coherence theories

In entanglement theory, any pure bipartite state is equiv-
alent up to a local unitary operation on a state of the form
(known as the Schmidt form)

jψiAB ¼
Xd
x¼1

ffiffiffiffiffi
px

p jxiAjxiB; ð106Þ

where px ≥ 0 and
P

d
x¼1 px ¼ 1. Since local unitary opera-

tions are reversible, all bipartite states with the Schmidt
probability vector p ¼ ðp1;…; pdÞT possess the same entan-
glement (Vidal, 2000). Nielsen’s majorization theorem
(Nielsen, 1999) states that a bipartite pure state with a
corresponding Schmidt vector p can be converted by
LOCC to another pure bipartite state q if and only if p ≺ q.
One can use the definition of majorization in Eq. (105) to

define d-entanglement monotones for the state in Eq. (106):

EkðjψiÞ ≔
Xd
x¼k

p↓
x k ∈ f1;…; dg:

With this definition, Nielsen’s majorization theorem can be
expressed as

jψi !LOCCjϕi ⇔ EkðjψiÞ ≥ EkðjϕiÞ ∀ k.

Therefore, the functions Ek, known as Vidal’s monotones
(Vidal, 2000) (also called Ky-Fan norms), quantify the
entanglement of bipartite pure states. They form a complete
set in the sense that if EkðjψiÞ ≥ EkðjϕiÞ for all k, then any
other entanglement monotone (or measure), E, must satisfy
EðjψiÞ ≥ EðjϕiÞ. The Vidal monotones play an important role
also in nondeterministic LOCC transformations (Jonathan and
Plenio, 1999b), and, in particular, they provide the maximum
probability with which it is possible to convert jψi to jϕi by
LOCC (Vidal, 1999):

PðmaxÞ
jψi ðjϕiÞ ¼ min

k

EkðjψiÞ
EkðjϕiÞ

;

where the minimum is over all k ∈ f1;…; dg.
The majorization criterion for entanglement transformation

implies the existence of entanglement catalysis. To see this,
consider, for example (Jonathan and Plenio, 1999a), the two
bipartite entangled states with probability vectors

p ¼ ð2=5; 2=5; 1=10; 1=10Þ;T q ¼ ð1=2; 1=4; 1=4; 0ÞT:

Note that q ⊀ p since 2=5 < 1=2 but also p ⊀ q since
2=5þ 2=5 > 1=2þ 1=4. We say in this case that the two
probability distributions are incomparable. Consider another
entangled state with Schmidt vector r ¼ ð3=5; 2=5ÞT. It is
straightforward to check that

p ⊗ r ≺ q ⊗ r;

even though p ⊀ q. That is, the pure bipartite state with
Schmidt vector r acts as a catalyst in a similar way as it
happens in chemical reactions.
This example demonstrates that catalyst-assisted LOCC

(CLOCC) transformations are more powerful than LOCC
alone. Following the notation of Sec. V.C, we write

jψi !CLOCCjϕi if there exists a finite-dimensional catalyst state
jχi such that

jψi ⊗ jχi !LOCCjϕi ⊗ jχi: ð107Þ

An important question then follows: given two bipartite states
jψi and jϕi, under what conditions does there exist a catalyst
such that jψABi !CLOCCjϕABi? Note that if there exists a catalyst
jχA0B0 i such that Eq. (107) holds, then any measure of
entanglement that is additive under tensor product satisfies

Eðψ ⊗ χÞ ¼ EðψÞ þ EðχÞ ≥ Eðϕ ⊗ χÞ ¼ EðϕÞ þ EðχÞ:

Hence,

jψi !CLOCCjϕi ⇒ EðψÞ ≥ EðϕÞ

for any additive measure of entanglement E. Remarkably,
the converse is also true. In two independent works by Turgut
(2007) and Klimesh (2007), it was shown that

jψABi !CLOCCjϕABi ⇔ EαðψÞ ≥ EαðϕÞ ∀ α ∈ R; ð108Þ

where EαðψÞ is the α-Rényi entropy of entanglement extended
for all real α and defined by

EαðjψiABÞ ≔ sgnðαÞSαðρÞ ¼
sgnðαÞ
1 − α

log Tr½ρα�;

where ρ ¼ TrBjψihψ jAB is the reduced density matrix of jψi.
Nearly all of these majorization results in entanglement

theory can be translated into analogous statements in the
QRT of quantum coherence. For a pure state jψi ¼P

i¼1

ffiffiffiffiffi
pi

p
eiϕi jii in a d-dimensional system with incoherent

basis fjiigdi¼1, the probability amplitudes p ¼ ðp1;…; pdÞT
play the role of the Schmidt coefficients. Under the classes of
SIO and the more general IO, a transformation jψi → jϕi is
possible if and only if p ≺ q, where p and q are the probability
amplitudes of jψi and jϕi, respectively (Winter and Yang,
2016; Zhu et al., 2017). The phenomenon of catalytic
coherence convertibility is also possible, with the necessary
and sufficient conditions being given by Eq. (108) and the
replacement

EαðψÞ → CαðψÞ ≔ sgnðαÞ 1

1 − α
log

Xd
i¼1

pα
i

(Bu, Singh, and Wu, 2016).
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3. Majorization and statistical comparisons

Consider two random variables with probability distribu-
tions p and q, respectively. For concreteness imagine, as
before, that these distributions represent two biased dice.
However, the game is now different. The player is given one of
the two die, and her goal is to determine if it is the p die or the
q die. Clearly if she can roll the die many times, then by the
law of large numbers, she can infer its underlying probability
distribution and successfully guess which one she was given.
However, if she canroll only a finite number of times, there is a
chance that she will make an error in her identification guess.
Intuitively, the smaller this error, the more distinguishable are
p and q. In fact, one could quantify the distinguishability
between p and q as the optimal probability that the player
correctly guesses which die she holds after a fixed number of
rolls. This is the problem of hypothesis testing, and its
quantum version is discussed in Sec. VII.C. Other distance
measures between p and q could also be chosen to quantify
the distinguishability of the two distributions.
In statistical comparisons, we are interested in adopting a

resource-theoretic perspective and measuring distinguishabil-
ity in an operational way. Specifically, we say that a pair of
distributions ðp;qÞ is more distinguishable than another pair
of distributions ðp0;q0Þ if there exists a column stochastic
matrix M such that

p0 ¼ Mp and q0 ¼ Mq:

To make the connection with resource theories, interpret
ðp;qÞ and ðp0;q0Þ as two states and M as a free operation.
The rationale for defining distinguishability in this way is as
follows: if Alice is tampering with her die and changing its
probability distribution (e.g., replacing the symbols of her dice
at random) then this alone cannot improve her ability to
distinguish between the original two distributions. More
generally, the matrix M represents a classical channel con-
verting, respectively, the input distributions p and q to the
output distributions p0 and q0. In this case we write

ðp0;q0Þ ≺r ðp;qÞ; ð109Þ

and we say the ðp; qÞ relatively majorizes ðp0;q0Þ. Note that
relative majorization is a generalization of majorization.
Indeed, suppose that all vectors involved are of the same
dimension and suppose q ¼ q0 ¼ e ≔ ð1=dÞð1;…; 1ÞT .
In this case we have

ðp0;q0Þ ≺r ðp; qÞ ⇔ p0 ≺ p;

since the condition q0 ¼ Mq is equivalent to e ¼ Me, which
implies that the column stochastic matrix M is in fact doubly
stochastic.
Originally, the preorder as definedwas called dmajorization

in the case where q ¼ q0 ¼ d is some fixed vector d (Veinott,
1971). Here we follow the terminology of Renes (2016), who
identified Eq. (109) as relative majorization since all relative
entropy functions, such as all the quantum Rényi divergences,
behave monotonically under this preorder. In this sense,

relative majorization is the fined-grained version of the
relative entropy.
Relative majorization has a very simple characterization in

terms of testing regions (Renes, 2016), which can represent
Neyman-Pearson hypothesis testing (Cover and Thomas,
2006). The testing region of a pair of d-dimensional proba-
bility vectors p and q (see Fig. 11), is a region on the plane
that is defined by

T ðp; qÞ ≔ fðt · p; t · qÞ ∈ R2j0 ≤ t ≤ e; t ∈ Rdg;

where the inequalities 0 ≤ t ≤ e are entrywise; i.e., the
components of t are between 0 and 1. Such a vector t can
be viewed as a “test” since t and e − t correspond to a binary-
outcome experiment.
Any testing region contains both the origin (0,0) and the

point (1,1). Moreover, for any test vector t, the vector e − t is
also a test. Hence, if a point ðx; yÞ is in the testing region of the
pair ðp;qÞ so is the point ð1 − x; 1 − yÞ. This in turn implies
that a testing region is completely specified by its upper
(or lower) boundary. The upper boundary is known in the
literature [see, e.g., Gour, Muller et al. (2015)] as the Lorenz
curve of the pair ðp;qÞ; see Fig. 11.
It can be shown that a pair of probability distributions ðp;qÞ

relatively majorizes another pair ðp0;q0Þ if and only if the
testing region of ðp0;q0Þ is inside the testing region of ðp;qÞ,
see Fig. 12. That is,

ðp0; q0Þ ≺r ðp; qÞ ⇔ T ðp0;q0Þ ⊂ T ðp;qÞ:

This remarkable result was already proven by Blackwell
(1953). However, Blackwell’s proof was not direct, and a
more direct proof was given later by Ruch, Schranner, and
Seligman (1980). A different proof was also found by Dahl
(1999), where the testing regions are viewed as zonotopes.
Since testing regions are specified by their Lorenz curves, this

FIG. 11. Testing region of a pair ðp;qÞ.
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result can be expressed as follows: ðp0; q0Þ ≺r ðp; qÞ if and
only if the Lorenz curve of ðp0;q0Þ is never above the Lorenz
curve of ðp;qÞ.

4. Majorization in quantum thermodynamics

As discussed in Sec. IV.A.3, the set of free operations in
the resource theory of athermality are thermal operations.
A strictly larger class of operations are those that preserve the
Gibbs state EðγHÞ ¼ γH. In the quasiclassical case, where
states are diagonal in the energy eigenbasis, the conversion of
a state ρ to σ is possible by thermal operations if and only if it
is possible by Gibbs-preserving operations (Janzing et al.,
2000; Horodecki and Oppenheim, 2013a; Korzekwa, 2016).
To phrase this as a majorization condition, let p, q, and g be
the vectors consisting of the diagonal components of ρ, σ, and
γH, respectively. Then in the quasiclassical setting, ρ can be
converted to σ by thermal operations if and only if there exists
a column stochastic matrix M such that

q ¼ Mp and g ¼ Mg:

This equation is precisely the condition

ðq;gÞ ≺r ðp;gÞ:

When the condition above holds we say that p thermoma-
jorizes q. The characterization of relative majorization in
terms of testing regions immediately applies to thermomajo-
rization. In particular, p thermomajorizes q if and only
if the Lorenz curve of p (with respect to the Gibbs state g)
is never below the Lorenz curve of q (Horodecki and
Oppenheim, 2013a).
Thermomajorization [which is equivalent to d majorization

of Veinott (1971)] has several alternative characterizations.
One of them can be expressed as (Alberti and Uhlmann, 1980)

kp − tgk1 ≥ kq − tgk1 ∀ t ≥ 0;

where kxk1 ≔
P

jjxjj is the l1 norm. Alberti and Uhlmann
(1980) demonstrated that this characterization has a quantum

analog in the case of qubits. Specifically, given two pairs
of qubit density matrices ðρ1; ρ2Þ and ðσ1; σ2Þ, it was shown
that there exists a quantum channel such that σj ¼ EðρjÞ for
j ¼ 1, 2 if and only if

kρ1 − tρ2k1 ≥ kσ1 − tσ2k1 ∀ t ≥ 0;

where k · k1 is the trace norm. Taking ρ2 ¼ σ2 ¼ γH we obtain
necessary and sufficient conditions for the existence of a
Gibbs-preserving channel that converts the qubit ρ1 to σ1
(Buscemi and Gour, 2017). However, this result holds only for
two-dimensional systems and already in three dimensions
there are counterexamples (Chefles, Jozsa, and Winter, 2004)
(i.e., states that satisfy the above inequality even though they
cannot be converted by Gibbs-preserving operations).
In the fully quantum case with states not necessarily

diagonal in the energy eigenbasis, deciding whether ρ can
be transformed into σ is a more complex issue. While the
convertibility equivalence between thermal operations and
Gibbs-preserving maps no longer holds, one can additionally
require the latter to have time-translation covariance in order
to obtain a better approximation of thermal operations
(Lostaglio et al., 2015; Gour et al., 2018) (see also
Sec. IV.A.3). It is currently unknown whether the converti-
bility power of Gibbs-preserving, time-translation covariant
maps is strictly greater than the convertibility power of
thermal operations. This problem is important to the field
of quantum thermodynamics since the former is much simpler
to characterize mathematically than thermal operations.
Particularly, it was demonstrated by Gour et al. (2018) that
the problem of converting one general state to another by a
Gibbs-preserving and time-translation covariant operation can
be solved efficiently and algorithmically using SDP. It was
shown by employing a generalization of relative majorization
which is called quantum majorization.
Quantum majorization is a preorder among bipartite states

in SðHA ⊗ HBÞ having the same marginal state on system A.
We say the ρAB quantum majorizes σAB with respect to a group
G, and denote it by

σAB ≺G
q ρAB;

if and only if there exists a G-covariant channel E such that

σAB ¼ idA ⊗ EðρABÞ:

To see how quantum majorization is related to thermodynam-
ics, take both ρAB and σAB to be the following states:

ρAB ¼ 1
2
j0ih0j ⊗ ρ1 þ 1

2
j1ih1j ⊗ γH;

σAB ¼ 1
2
j0ih0j ⊗ ρ2 þ 1

2
j1ih1j ⊗ γH:

With this choice we see that σAB ≺G
q ρAB if and only if ρ1 can

be converted to ρ2 by Gibbs-preserving and time-translation
symmetric operations. Hence, since quantum majorization
can be determined by an SDP so can the conversion of ρ1
to ρ2. Other variants of majorization and their applications
in thermodynamics can be found by Egloff et al. (2015) and
Faist et al. (2015).

FIG. 12. Inclusion of two testing regions.
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B. Convex analysis, semidefinite programming, and duality
theory

Convex analysis plays an important role in many areas
of science [see, e.g., Barvinok (2002) and Boyd and
Vandenberghe (2004)], so it is not surprising that many of
its tools are intensively employed in quantum information. To
see its application specifically to resource theories, we
consider here a convex resource theory R with a convex
set of free states F , and a convex set of free operations O.
Recall in Sec. VI.E that if the set of free states is both

convex and closed, then ρ ∈ F ðHÞ if and only if

min
W∈F �ðHÞ

Tr½Wρ� ≥ 0: ð110Þ

This problem is known as the weak membership problem
(Gurvits, 2003) for the convex set F ðHÞ.
In some QRTs the optimization problem is relatively

easy, such as the resource theory of coherence, and it can
be solved using standard techniques in semidefinite pro-
gramming. For other QRTs, such as entanglement theory,
the problem is computationally hard (Gurvits, 2003;
Gharibian, 2010) (particularly, the computational time is
believed to grow exponentially with the dimension of H).
In such cases, the condition that W ∈ F � does not have a
simple form.
One approach [see, e.g., Pérez-Garcìa (2004) in entangle-

ment theory] is to allow for an ϵ error, and then intersect
F �ðHÞ with an ϵ net, which is a finite set such that every state
is at most a distance ϵ from some state in the set, as measured
by the trace distance. Using an ϵ net, one can replace the
minimization of W in Eq. (110) with one having a finite
number of constraints onW, namely, Tr½Wσj� ≥ 0, where σj is
the jth element in the ϵ net. This approach can be useful in
small dimensions (Pérez-Garcìa, 2004) as it provides a way to
determine if a state is free or not by using standard techniques
from semidefinite programming. Remarkably, Brandão,
Christandl, and Yard (2011) showed that if one replaces the
trace distance with an operationally motivated distance, based
on the so-called one-way LOCC norm (Matthews, Wehner,
and Winter, 2009), it is possible to construct a quasi-
polynomial-time algorithm for solving the weak membership
problem for the set of separable bipartite quantum states.
Convex analysis is also useful for the study of single-shot

state transformations. For a given QRT, denote the set of all
free Choi matrices by

CðA → BÞ ≔ fJABΦ jΦ ∈ OðA → BÞg;

where JABΦ is the Choi matrix of the channel Φ. Since we
assume here that O is convex we get that also the set C is
convex. Now consider the problem of deciding whether one
quantum state ρ ∈ SðAÞ can be converted into another σ ∈
SðBÞ by free operations. That is, we want to know if there
exists Φ ∈ O such that σ ¼ ΦðρÞ. In the Choi picture, the
question becomes if there exists a state JAB ∈ C such that

σ ¼ TrA½JABðρT ⊗ IBÞ�:

By multiplying both sides of this equation by some matrix
X ∈ BðHBÞ and taking the trace, one can express this equation
in the form

Tr

	
JAB

�
ρT ⊗ X −

Tr½σX�
dA

IAB
�


¼ 0;

where we used the property that JA ¼ IA. This equation has to
hold for all X, but since it is linear in X, we just need to check

that it holds for all X ∈ fXjgd
2
B

j¼1, where Xj are some basis
elements of BðBÞ. If we assume again that C is convex and
closed (so that C�� ¼ C�) we conclude that ρ can be converted
to σ by free operations if and only if there exists a matrix
JAB with marginal JA ¼ IA that satisfy the following two
conditions:

Tr

	
JAB

�
ρT ⊗ Xj −

Tr½σXj�
dA

IAB
�


¼ 0 ∀ j ¼ 1;…; d2B;

Tr½JABW� ≥ 0 ∀ W ∈ C�:

This problem, similar to the weak membership problem (110),
is a feasibility problem in conic linear programming. In some
QRTs [e.g., affine QRTs (Gour, 2017), QRTs of asymmetry
and thermodynamics (Gour et al., 2018)], the condition that
W ∈ C� can be expressed as an SDP problem, and in this case

determining whether ρ!O σ can be solved efficiently and
algorithmically by SDP. In other QRTs, the problem can be
much harder.

C. Smooth entropies and the generalized Stein’s lemma

In the imperfect one-shot scenario, the goal is to transform
an initial state ρ into some target state σ within an ϵ error.
A fundamental technique in the study of this problem
involves the “smoothing” of some function over a small
subset of density matrices. The general use of ϵ smoothing in
quantum information theory was pioneered by Renner
(2005), originally for application in QKD [see Cachin
and Maurer (1997) for classical origins]. Since then it has
been used prominently in quantum hypothesis testing and
other studies of one-shot quantum Shannon theory (Renner
and König, 2005; Konig, Renner, and Schaffner, 2009;
Tomamichel, Colbeck, and Renner, 2010; Renes and
Renner, 2011; Tomamichel, 2012; Wang and Renner,
2012; Datta and Hsieh, 2013; Datta, Mosonyi et al.,
2013; Datta, Renes et al., 2013; Tomamichel and
Hayashi, 2013; Matthews and Wehner, 2014;
Radhakrishnan, Sen, and Warsi, 2016; Wang, Xie, and
Duan, 2017). Here we review two smooth entropic quan-
tities and describe their application in terms of single-shot
resource formation and distillation. This will set the stage
for the asymptotic reversibility result based on quantum
hypothesis testing and the generalized Stein lemma.
We begin with the quantity Rmax, which is defined in

Eq. (81) as

RmaxðρÞ ¼ inf
σ∈F ðHÞ

fλjρ ≤ 2λσg: ð111Þ
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As noted in Sec. VI.E.2, this is equivalent to the log robustness
of resource. For ϵ ∈ ð0; 1�, a smoothed version of Rmax is
given by

Rϵ
maxðρÞ ¼ inf

ρ̂AB∈BϵðρABÞ
Rmaxðρ̂Þ; ð112Þ

where BϵðρÞ ¼ fσ∶Fðρ; σÞ ≥ 1 − ϵg. Essentially, Rϵ
maxðρÞ

finds the smallest value of RmaxðρÞ within an ϵ ball centered
at ρ. In the QRTof entanglement,Rϵ

max quantifies the one-shot
catalytic entanglement cost under δ-resource generating oper-
ations (Brandão and Datta, 2011). In the QRT of coherence,
the relaxations of catalytic convertibility and δ-resource
generating operations can be dropped, as Rϵ

max provides the
one-shot (noncatalytic) coherence cost of a given state using
strictly resource nongenerating operations (Zhu et al., 2017).
The second smooth entropic quantity we discuss is based on

the problem of quantum hypothesis testing. In quantum
hypothesis testing, the goal is to distinguish one state ρ,
called the null hypothesis, from another σ, called the alter-
native hypothesis (Hiai and Petz, 1991; Ogawa and Nagaoka,
2000). Typically one attempts to minimize the identification
error when the system is in state σ, given some threshold in the
identification error when the system is in state ρ. In more
detail, one considers a two-outcome POVM fM; I −Mg with
associated error probabilities

αðMÞ ¼ Tr½ðI −MÞρ�;
βðMÞ ¼ Tr½Mσ�:

Then for any ϵ > 0, the problem asks to compute the smallest
possible value of βðMÞ under the constraint that αðMÞ ≤ ϵ.
This can be phrased as an entropic quantity known as the
hypothesis testing relative entropy, which is defined as

Dϵ
HðρkσÞ ¼ sup

0≤M≤I
αðMÞ≤ϵ

½− log βðMÞ�: ð113Þ

This quantity, which involves an “operator smoothing”
(Buscemi and Datta, 2010), provides the appropriate one-
shot quantifier for many other information-theoretic tasks
(Wang and Renner, 2012; Dupuis et al., 2013; Tomamichel
and Hayashi, 2013; Matthews and Wehner, 2014). Note that
Dϵ

HðρkσÞ is expressed as a semidefinite optimization, and it
can therefore be efficiently computed.
For a QRTwith a compact convex set of free states, we can

introduce the resource measure

Rϵ
HðρÞ ¼ inf

σ∈F ðHÞ
Dϵ

HðρkσÞ

¼ sup
0≤M≤I

Tr½ðI−MÞρ�≤ϵ

inf
σ∈F ðHÞ

f− log Tr½Mσ�g; ð114Þ

where the minimax theorem has been applied to switch the
order of extrema. For entanglement theory, this quantity
corresponds to the one-shot distillable entanglement under
maximal operations, i.e., the largest R such that ρAB !Omax

ϵϕ
þ
2R

(Brandão and Datta, 2011). For coherence, an analogous result
holds in terms of distillable coherence provided the allowable
set of σ is enlarged slightly (Regula et al., 2018). The quantity

Rϵ
HðρÞ also has application in quantum thermodynamics. Note

that in thermodynamics, the Gibbs state γH is the unique free
state for a given thermodynamic system, and so we have the
reduction

Rϵ
HðρÞ ¼ sup

0≤M≤I
Tr½ðI−MÞρ�≤ϵ

− log Tr½MγH�: ð115Þ

Yunger Halpern and Renes (2016) showed this to, roughly
speaking, quantify the one-shot extractable work of a ther-
modynamical state as well as the one-shot work cost of
forming it.
A more traditional version of hypothesis testing is in the

asymptotic setting where the two hypotheses are presented
in many-copy form, ρ⊗n and σ⊗n. For any ϵ ∈ ð0; 1Þ, the
asymptotic rate of Dϵ

H is given precisely by the relative
entropy:

lim
n→∞

1

n
Dϵ

Hðρ⊗nkσ⊗nÞ ¼ SðρkσÞ: ð116Þ

This is known as the quantum Stein’s lemma, and its proof
was given by Hiai and Petz (1991) and Ogawa and Nagaoka
(2000). This result is quite appealing since any task quantified
by Dϵ

H in the single-shot level can then be quantified by the
relative entropy in the many-copy setting.
To apply the results and techniques of quantum hypothesis

testing to quantum resource theories, one needs to generalize
the problem. One such scheme involves a scenario in which
either the null hypothesis ρ or a set S of alternative hypotheses
is possible. The goal then is to distinguish ρ from the states
belonging to S. In the context of quantum resource theories, it
is typical to let S ¼ F ðHÞ be the set of free states. Brandão
and Plenio (2010a) have proven a generalization of the
quantum Stein’s lemma that holds for most well-structured
sets of free states. Specifically, suppose that F ðHÞ has the
properties of being

(1) closed and convex,
(2) closed under tensor products,
(3) closed under the partial trace, and
(4) closed under permutation of spatially separated sub-

systems.
Note that the free states in any QRT having tensor-product
structure will satisfy these conditions. The generalized quan-
tum Stein’s lemma ensures that

lim
n→∞

1

n
Rϵ

minðρ⊗nÞ ¼ R∞
relðρÞ ð117Þ

for any ϵ ∈ ð0; 1Þ (Brandão and Datta, 2011), and further-
more, Brandão and Plenio (2010a) were able to also show that

lim
ϵ→0

lim
n→∞

1

n
Rϵ

maxðρ⊗nÞ ¼ R∞
relðρÞ: ð118Þ

In subsequent work, Brandão and Gour (2015) explicitly
connected Eqs. (117) and (118) to the problem of asymptotic
resource convertibility under asymptotically RNG operations.

This involves transformations of the form ρ⊗n!On

ϵσ
⊗bnR0c,

where On is the class of ϵn-resource generating operations
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(see Sec. III.C.3) such that limn→∞ϵn ¼ 0. If the free states in a
QRT satisfy these four properties, then the result of Brandão
and Gour (2015) says that andy two states ρ and σ are
reversible under asymptotically RNG transformations, with a
rate given by the ratio of the regularized relative entropies of
resource. That is,

Rðρ → σÞ ¼ R∞
relðρÞ

R∞
relðσÞ

; ð119Þ

provided that R∞
relðρÞ, R∞

relðσÞ ∈ ð0;∞Þ. Note the restriction
that R∞

rel be nonzero and finite is more than just a mathemati-
cal detail. Physically relevant QRTs, such as the QRT of
asymmetry, have free states which satisfy the four necessary
properties, and yet R∞

relðρÞ ¼ 0 for all resource states (Gour,
Marvian, and Spekkens, 2009). In this case, the results of
Brandão and Gour (2015) cannot be directly applied.
Nevertheless, whenR∞

rel is nonzero and finite, Eq. (119) along
with the arguments of Horodecki, Oppenheim, and Horodecki
(2002) and Gour, Marvian, and Spekkens (2009) imply that

R∞
relðρÞ

R∞
relðσÞ

¼ f∞ðρÞ
f∞ðσÞ ; ð120Þ

where f∞ is the regularized versions of any asymptotically
continuous function for which f∞ðρÞ, f∞ðσÞ ∈ ð0;∞Þ. This
says that the regularized version of all asymptotically con-
tinuous resource measures are equivalent up to an overall
proportionality factor. Thus, the regularized relative entropy of
resource can be interpreted as the unique measure of resource
for the task of asymptotic convertibility.

VIII. OUTLOOK

A common theme in physics is the unification of theories
and models that at first glance may seem completely unre-
lated. Most notable in this regard is the successful unification
of the three nongravitational forces in nature. Such an
amalgamation not only leads to new discoveries, but it also
has the potential to profoundly change the way we perceive
the world around us. With the advent of quantum information
science, many seemingly unrelated properties of physical
systems, such as entanglement, asymmetry, and athermality,
have now become recognized as resources. This recognition is
profound as it allows them to be unified under the same roof of
quantum resource theories. Entanglement, athermality, and
asymmetry are no longer regarded as just interesting physical
properties of a quantum system, but they now emerge as
resources that can be utilized and manipulated to execute a
variety of remarkable tasks, such as quantum teleportation.
This review began with a precise definition of quantum

resource theories and then considered general structural
features of different QRTs. As discussed in Sec. III.D.5, all
QRTs in quantum information theory can be viewed as a
resource theory of processes. For example, in Sec. IV.B.3 we
discussed how the phenomenon of quantum steering can be
cast as a resource theory of incompatible (semicausal) multi-
sources, just one specific type of quantum process. More work

is needed in the future to better understand unifications like
this for other QRTs.
Section IV provided a summary of specific QRTs that

reflect recent and ongoing developments in the field. We
hope this choice of examples sparks the reader’s interest on
new topics or motivates the construction of novel QRTs.
Unfortunately, since the subject of QRTs spans a large range
of topics, we could not cover all resource theories previously
studied in the literature. Notable omissions include the
resource theory of knowledge (del Rio, Kraemer, and
Renner, 2015; Kraemer and del Rio, 2016), imaginarity
(Hickey and Gour, 2018), superposition (Theurer et al.,
2017), and others. Moreover, this review did not discuss
the characterization of resource theories as symmetric mono-
idal categories (Coecke, Fritz, and Spekkens, 2016; Fritz,
2017). This category theory approach to QRTs can be useful
when considering other models beyond quantum physics,
such as the framework of generalized probabilistic theories
or when incorporating resource theories in other fields of
science.
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