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Conformal field theories have been long known to describe the fascinating universal physics of scale
invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous
other materials, while at the same time sit at the heart of our modern understanding of quantum field
theory. For decades it has been a dream to study these intricate strongly coupled theories
nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal
bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been
fully realized in three, four, and other dimensions of interest. This renaissance has been possible due
to both significant analytical progress in understanding how to set up the bootstrap equations and the
development of numerical techniques for finding or constraining their solutions. These developments
have led to a number of groundbreaking results, including world-record determinations of critical
exponents and correlation function coefficients in the Ising and OðNÞ models in three dimensions.
This article will review these exciting developments for newcomers to the bootstrap, giving an
introduction to conformal field theories and the theory of conformal blocks, describing numerical
techniques for the bootstrap based on convex optimization, and summarizing in detail their
applications to fixed points in three and four dimensions with no or minimal supersymmetry.
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I. INTRODUCTION

For most physical systems, the first step to qualitative
understanding is to identify their characteristic scales (length,
energy, etc.), through which everything else can be expressed
via approximate dimensional analysis. However, there exist
theories for which this familiar approach does not work and
which are therefore harder to understand intuitively. These are
scale invariant theories, which by definition look the same at all
distances and energies and hence do not possess any character-
istic scales.
Scale invariant theories are important in physics, because

they arise naturally in the theory of critical phenomena. One
experimental manifestation of scale invariance in critical
phenomena is critical opalescence, first observed near the
critical point of CO2 by Andrews (1869) and interpreted as a

sign of density fluctuations occurring over many distance
scales by Smoluchowski (1908). The exact solution of the
two-dimensional (2D) Ising model by Onsager (1944) also
made it possible to see the emergence of scale invariance at the
ferromagnet-paramagnet critical point. Nowadays it is under-
stood that all critical points are described by scale invariant
theories. This has been incorporated into Wilson’s renormal-
ization group (RG) theory of phase transitions, introduced by
Wilson and Kogut (1974) and Wilson (1983), according to
which continuous phase transitions are described by the fixed
points of RG flows and are therefore scale invariant.
Formally, scale invariance is expressed as invariance under

a rescaling (dilatation) of all coordinates by a uniform factor
x → λx. Another interesting class of transformations of space
is conformal transformations, defined as transformations
preserving angles. Thus conformal transformations are
required to look locally at each point as a rotation accom-
panied by a dilatation, although the rescaling factor can be
x dependent. Conformal transformations have been studied by
mathematicians since the 19th century (Monge, 1850). They
first entered into physics when Bateman (1910) and
Cunningham (1910) showed that Maxwell’s equations are
conformally invariant (they are also trivially scale invariant
because of the masslessness of the photon).1

With conformal invariance being thus a natural extension of
scale invariance, one may wonder if scale invariant theories
describing critical points in fact possess full conformal
invariance. That this should be the case was first conjectured
by Polyakov (1970). Since then several theoretical arguments
have been given for why scale invariance should generically
imply conformal invariance.2 By now it is understood that
most physically relevant scale invariant theories are confor-
mally invariant and hence referred to as “conformal field
theories” (CFTs).
In addition to their role in the theory of critical phenomena,

CFTs are also extremely important for the study of quantum
field theories (QFTs). For this discussion QFTs may be
Euclidean d-dimensional field theories, relevant for statistical
physics, or field theories in Lorentzian signature, which are
relevant for high-energy physics and quantum condensed
matter.3 From the modern perspective, large classes of
QFTs can be seen as RG flows which emerge from one
CFT (called the UV fixed point) at short distances and flow to
either another nontrivial CFT (called the IR fixed point) or a
massive phase at long distances.4 In this sense CFTs can be
called signposts in the space of general QFTs. The quest to
classify and solve CFTs is a major goal of modern theoretical
physics.

1See Kastrup (2008) for the early history of conformal
transformations.

2See Polchinski (1988) and references therein as well as the recent
review by Nakayama (2015b). The question is subtle because in
fact rare examples of scale invariant and not conformally invariant
theories do exist (Riva and Cardy, 2005), although it is fully
understood how they evade the general expectation.

3In this review the space dimension d denotes the total number of
coordinate dimensions, including time if one works in Lorentzian
signature.

4Some QFTs cannot be viewed as coming from a CFT in the UV,
for example, RG flows involving 3D gauge fields.
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The study of CFTs was initiated in the late 1960s, focusing
mostly on formal properties of these theories.5 This early work
was done in general dimension d, where the group of
conformal transformations is finite dimensional, while it is
infinite dimensional in d ¼ 2 where any holomorphic map
gives rise to a conformal transformation. The importance of
this special case was realized by Belavin, Polyakov, and
Zamolodchikov (1984). Using the infinite-dimensional con-
formal symmetry, they solved the 2D minimal models—an
infinite sequence of CFTs describing the critical points of the
2D Ising model and other lattice models such as the three-state
Potts model.
Of course many 2D models can be exactly solved directly

on the lattice (Baxter, 1989), starting with the Onsager
solution of the 2D Ising model. The approach of Belavin,
Polyakov, and Zamolodchikov (1984) was different in that it
allowed for a solution of critical theories using the constraints
of conformal symmetry alone, with minimal or no micro-
scopic input. The crucial idea to find these solutions was the
conformal bootstrap, first described by Ferrara, Grillo, and
Gatto (1973) and Polyakov (1974). The conformal bootstrap
combines conformal invariance with the existence of the
operator product expansion (OPE), another powerful concept
going back to Wilson (1969) and Kadanoff (1969). This
leads to mathematical consistency conditions on the CFT
parameters, which were enough to solve the 2D minimal
models.
Following these developments, CFT has become an indis-

pensable tool in the theory of 2D critical phenomena.6 On
the other hand, applications of the conformal bootstrap in
higher dimensions lagged behind. For example, 3D continu-
ous phase transitions are traditionally studied using the RG by
starting from a microscopic action and looking for a fixed
point. Often the 3D fixed point of interest is strongly coupled,
requiring one to deform the theory artificially in order to do
perturbation theory in a small parameter with the large-N
expansion [see, e.g., Moshe and Zinn-Justin (2003) for a
review] and the ϵ expansion (Wilson and Fisher, 1972) being
two prime examples. While these theoretical approaches have
undoubtedly scored some success in describing the exper-
imental data, one may wonder what a fully nonperturbative
approach such as the conformal bootstrap has to say about this
problem.
A period of renewed interest in the conformal bootstrap

started following Rattazzi et al. (2008). This work proposed a
numerical method, based on linear programming, which made
it possible to extract concrete predictions from the conformal
bootstrap equations. The method was applicable in higher
dimensions (as well as in 2D). Also, an advantage of the
method was that rigorous predictions could be extracted

without having to fully solve the equations.7 Since then the
method was greatly improved and many interesting results
were obtained, mostly for conformal field theories in 3D and
4D, but also in other dimensions. One flagship result of this
line of research is the world’s most precise determination of
the critical exponents of the critical 3D Ising model [see Kos
et al. (2016) for the current world-record results]. Our purpose
is to review these developments focusing on applications to
the most interesting 3D and 4D CFTs considered so far, as
well as to give an overview of the theoretical and numerical
techniques which proved useful for these applications.

A. Outline

Because of the overwhelming number of results in various
incarnations of the conformal bootstrap, our review will
necessarily be limited in scope. Let us briefly outline the
topics that we will cover. We begin in Sec. II with an informal
overview of the conformal bootstrap. Section III provides a
concise introduction to the conformal field theory techniques
that are needed to set up the bootstrap in d dimensions. We
follow in Sec. IV with an overview of the various numerical
methods that have been employed in studies of the bootstrap.
Sections Vand VI review results obtained from applying these
methods to 3D and 4D CFTs. Section VII reviews results
obtained with the stronger assumptions of 4D N ¼ 1 or 3D
N ¼ 2 superconformal symmetry. We comment on applica-
tions to nonunitary models in Sec. VIII. Notably absent from
our main review are CFTs in other dimensions (e.g., d ¼ 2 or
d > 4), CFTs with extended supersymmetry, analytical
progress in the bootstrap, logarithmic and nonrelativstic
CFTs, and other related topics. We finish with a brief overview
of progress in these related lines of research in Sec. IX and
give some concluding words in Sec. X.

II. CONFORMAL BOOTSTRAP: INFORMAL OVERVIEW

In this section we will give a brief outline of the conformal
bootstrap approach to critical phenomena in d dimensions.
We will be rather informal in this section, while in the
subsequent sections the same material will be treated in more
depth and at a higher level of rigor. For another short
introduction to these matters, see Poland and Simmons-
Duffin (2016). For longer pedagogical introductions see
Rychkov (2016b) and Simmons-Duffin (2017b).
As a simple physical setup where these methods would be

applicable, we can consider a statistical physics system in d
spatial dimensions which is (a) in thermodynamic equilibrium
and (b) at a temperature corresponding to a continuous phase
transition (so that the correlation length is infinite). Suppose
that we are interested in equal-time correlation functions of
some local quantities characterizing this system:

hO1ðx1Þ � � �OnðxnÞi; ð1Þ
where xi are positions inRd. For example, one can think of the
3D Ising model at the critical point with OiðxÞ the local

5We do not attempt here a full historical account. Early pioneering
contributions included Mack and Salam (1969), Polyakov (1970,
1974), Ferrara, Grillo, and Gatto (1971, 1973), Migdal (1971), Parisi
(1972), Ferrara et al. (1972, 1974), Ferrara, Gatto, and Grillo
(1974,1975), Dobrev et al. (1977), and Mack (1977c).

6Many excellent 2D CFT reviews include Cardy (1990), Ginsparg
(1990), Di Francesco, Mathieu, and Senechal (1997), and Henkel
(1999).

7Such full solutions in d > 2 are still beyond reach except in very
special cases; see Sec. III.I.1.
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magnetization, local energy density, etc. In general, the OiðxÞ
are called local operators.
We are interested in the behavior of the correlators (1) at

distances large compared to any microscopic (such as lattice)
scale a. According to Wilson’s RG theory, continuous phase
transitions are fixed points of RG flows, which means that the
long-distance behavior of Eq. (1) will have scale invariance (as
well as rotation and translation invariance). Using scale
invariance, we can formally extend the long-distance behavior
of these correlators from distances jxi − xjj ≫ a to arbitrary
short distances. In what follows we work in the so-defined
continuous limit theory, which is exactly scale invariant at all
distances from 0 to ∞.8

As discussed in the Introduction, we expect that the critical
theory is also conformally invariant (i.e., aCFT).Thismeans that
for any conformal transformation ofd-dimensional spacex → x0

(see Sec. III.A for the definition), Eq. (1) is related to the same
correlation function evaluated at points x01;…; x0n. This invari-
ance property (or covariance) of correlation functions is
expressed as a transformation rule for local operators, in the
next section appearing in Eq. (16). For scalar operators, we have

Oðx0Þ ¼ ΩðxÞ−ΔOOðxÞ; ð2Þ
whereΩðxÞ ¼ j∂x0=∂xj1=d is the x-dependent scale factor of the
conformal transformation, and ΔO is a fixed parameter charac-
terizing the operator O, called its scaling dimension.9

Polyakov (1970) noticed that invariance under Eq. (2)
strongly restricts two-point (2pt) and three-point (3pt) corre-
lation functions. The 2pt function is nonzero only for identical
operators and can be normalized to 1:

hOiðx1ÞOjðx2Þi ¼ δijjx1 − x2j−2Δi ; ð3Þ
while the 3pt function is fixed up to a numerical coefficient:

hO1ðx1ÞO2ðx2ÞO3ðx3Þi ¼
λ123

jx12jh123 jx13jh132 jx23jh231
; ð4Þ

where xij ≡ xi − xj and hijk ≡ Δi þ Δj − Δk. Similar equa-
tions hold for operators with indices; see Sec. III.C.
The set of numerical parameters Δi and λijk appearing in

Eqs. (3) and (4) is called theCFT data. It turns out that the CFT
data determine not only 2pt and 3pt functions, but are also
sufficient to compute all local observables inCFTs in flat space,
by which we mean all correlation functions of local operators,
including four-point (4pt) and higher-order correlation
functions.10

To see this, one uses the OPE, which says that we can
replace the insertion of two nearby local operators inside a
correlation function by a series of single local operators:

Oiðx1ÞOjðx2Þ ¼
X
k

fijkOkðyÞ: ð5Þ

The coefficients of the series fijk may and will depend on the
relative positions of the operators Oi, Oj, Ok, and on their
quantum numbers. Crucially, however, these coefficients are
not supposed to depend on which other operators appear in the
correlation function, as long as they are sufficiently far away
from x1, x2, and y. The precise criterion in the CFT context
will be given in Eq. (7).
Notice the freedom in where we put operators appearing

on the right-hand side (rhs) of the OPE: we can choose
y ¼ ð1=2Þðx1 þ x2Þ, y ¼ x1, or any other point nearby.
Different choices of y can be related by Taylor expanding
Ok, and thus can be compensated by changing the coefficients
of derivatives ofOk in the OPE. In what follows we will group
the operator Ok together with all its derivatives, formally
thinking of fijk as an infinite power series in ∂y.
There are two things that make OPE in conformal field

theories more powerful than in a generic QFT. First, compat-
ibility of the OPE with conformal invariance determines the
functions fijk up to a numerical prefactor, coinciding with the
3pt function coefficient λijk (for this reason it is also called an
OPE coefficient):

fijkðx1; x2; y; ∂yÞ ¼ λijkf̂ijkðx1; x2; y; ∂yÞ: ð6Þ

The reduced functions f̂ijk depend only on the operator
dimensions Δi, Δj, Δk, the spins of these operators (which
are kept implicit in this informal discussion), and on the space
dimension d.11

Secondly, the OPE in conformal theories has a finite radius
of convergence, which is determined by the distance to the
next operator insertions. For example, in the correlator of
Eq. (8) given later, the OPE will converge if

jx1 − yj; jx2 − yj < min
i¼3;…;n

jxi − yj; ð7Þ

i.e., if there exists a sphere centered at y and separating x1 and
x2 from any other operator insertion.
Because of these two reasons we can compute any

correlation function recursively using the OPE, provided that
we know the CFT data. For example, suppose we want to
compute the n-point function

hO1ðx1ÞO2ðx2ÞO3ðx3Þ � � �OnðxnÞi: ð8Þ

Applying the OPE toO1ðx1ÞO2ðx2Þ, we reduce this correlator
to a sum of correlators containing n − 1 operators

hOkðyÞO3ðx3Þ � � �OnðxnÞi: ð9Þ

8However, in this paper we will not consider behavior of
correlators at coincident points.

9To be precise, such transformation rules hold for primary local oper-
ators, a subtlety which will not play a role in this informal discussion.

10It should be mentioned that CFTs also possess nonlocal
observables in addition to the local ones, which are not necessarily
determined by the OPE data. For example, one can probe a CFT by
extended operators, such as boundaries or defects, or put it in a space
of nontrivial geometry or topology. In this review we will focus on
the local observables, although the bootstrap philosophy can also be
useful in the study of some nonlocal observables; see Sec. V.B.6 for
boundaries and defects and Sec. IX for the modular bootstrap. 11Note that here we are assuming the normalization in Eq. (3).
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Proceeding in this way, we will eventually get down to 2pt
functions, which are determined by the CFT data. The only
parameters which will enter this computation are the operator
positions and quantum numbers, the CFT data, and the space
dimension d.12

Consider now the case of a 4pt function [Eq. (8) with
n ¼ 4] and compute it in two different ways. The first way is
to apply the OPE to the pairs of operators O1O2 and O3O4.
This reduces the 4pt function to an infinite sum of 2pt
functions of operators which appear in these OPEs. A second
way is to apply the OPE to the pairs O1O4 and O2O3. Since
we are dealing with the same 4pt function, the two expansions
must agree in their overlapping regions of convergence. This
crossing relation represents a consistency condition on the
CFT data and is illustrated in Fig. 1.
The main idea of the conformal bootstrap is that by

imposing the crossing relation, we should be able to signifi-
cantly winnow down the set of all possible CFT data. In the
subsequent sections of this review, we will see how the
crossing relation can be written in a mathematically manage-
able form, and how numerical algorithms can be applied to
extract from it concrete constraints.
Ideally, if we impose crossing relations for all 4pt functions

of the theory, we will be left with the CFT data corresponding
to the actually existing critical theories. In practice, it has so
far been possible to impose crossing relations on only a
handful of 4pt functions at a time. However, we will see that
even this limited procedure produces nontrivial constraints,
which are in some cases surprisingly strong.

A. Universality and the role of microscopic input

A fundamental concept in the theory of critical phenomena
is universality: all continuous phase transitions can be grouped
into universality classes which share the same critical expo-
nents. This is neatly explained in Wilson’s RG theory: two
phase transitions will fall into the same universality class if
they are described by the same fixed point. On the other hand,
the conformal bootstrap provides a different perspective on the
same phenomenon: each universality class corresponds to a
different CFT, with a different set of CFT data.
These two points of view are clearly complementary, and it is

important to establish the correspondence between them.
Consider, for example, the critical exponents. In RG theory
they can be related to the eigenvalues λyi of the RG

transformation linearized around the fixed point, where
λ > 1 is the RG rescaling factor. As is well known, these
eigenvalues are simply related to the scaling dimensions of the
local operators yi ¼ d − Δi. Thus, information about the
critical exponents can be easily extracted from CFT data,
and agreement of their values between an RG fixed point and a
CFT may give us confidence that the two describe the same
critical universality class.
There are however three more fundamental structural

characteristics which can be used to identify universality
classes, even before considering the numerical values of
critical exponents. These characteristics may not be sufficient
to uniquely classify the different CFTs, but they will give us a
convenient starting point.
(1) The global (or internal) symmetry group: It can be

discrete, as for the Z2 symmetry of the Ising model, or
continuous, as for the OðNÞ models. In RG studies, the global
symmetry group is specified by considering an RG flow in the
space of microscopic theories described by an action pos-
sessing a given symmetry. The global symmetry group for a
CFT is the same group G as for the corresponding RG fixed
point, although it is specified in a different way: by demanding
that each local operator transform in an irreducible represen-
tation of G and that OPE coefficients respect this symmetry
structure.
We note in passing that unlike the global symmetry, the

presence of a gauge symmetry in a microscopic description
does not manifest itself in the conformal bootstrap, because
physically observable local CFT operators are gauge
invariant.13

(2) The number of relevant singlet scalars: The number of
scalar operators which are relevant (i.e., have dimension
Δi < d) and transform as singlets under the global symmetry
determines whether the universality class has critical as
opposed to multicritical behavior. This will be discussed in
more detail in Sec. V.A. Here it suffices to note that this
number is easy to identify from both the RG and CFT
perspectives.
(3) Unitarity: Unitarity is of course a required property

when quantum mechanics is involved, which is the case for
theories of interest to high-energy physics and quantum
condensed matter. Many universality classes of interest to
statistical physics also happen to be unitary.14 Importantly, the
existence of unitarity can be established at the microscopic
scale and is then inherited by the RG fixed point. In the CFT
description, unitarity is imposed via lower bounds on the
operator dimensions and reality constraints on the OPE
coefficients; see Sec. III.E.
Finally, let us comment on the OPE coefficients λijk. From

the CFT point of view, they are an integral part of the CFT data
on par with the scaling dimensions. In the conformal bootstrap
approach, the crossing relation involves both λijk and Δi.

FIG. 1. The crossing relation for the 4pt function hO1O2O3O4i.

12Note that although the presented scheme solves the problem of
computing n-point functions in principle, it is not trivial to do in
practice. For 4pt functions, the necessary techniques will be
presented in Sec. III.F.

13Gauge symmetries can make themselves known more indirectly,
through anomaly coefficients which show up in the correlation
functions of local operators or the existence of higher-form
symmetries.

14In statistical physics, the role of unitarity is played by its
Euclidean counterpart called reflection positivity.
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In the examples presented, when we are able to determine the
Δi’s to some accuracy [as for the 3D Ising and the OðNÞ
models], we can typically determine the λijk’s to a comparable
accuracy. This can be contrasted with the RG approach, where
the OPE coefficients do not appear to play such a fundamental
role, and they have received relatively little attention.

III. CONFORMAL FIELD THEORY TECHNIQUES IN
d DIMENSIONS

In this section we review the theory techniques that form the
backbone of the conformal bootstrap. These include con-
formal symmetry, operators and their correlation functions,
unitarity and reflection positivity, conformal blocks, and the
way they enter crossing relations (also in the presence of
global symmetries).

A. Conformal transformations

The content of this section is standard textbook material.
We mention only a few fundamental results and set up our
conventions. For more details see, e.g., Rychkov (2016b) and
Simmons-Duffin (2017b).15

We consider CFTs in flat Euclidean or Lorentzian space
with coordinates xμ and metric ημν.

16 Conformal transforma-
tions are diffeomorphisms x → x0 which locally look like a
rotation Λμ

νðxÞ combined with a rescaling ΩðxÞ ≥ 0 (also
called a dilatation), which means that the Jacobian takes the
form

∂x0μ
∂xν ¼ ΩðxÞΛμ

νðxÞ; ηρσΛρ
μðxÞΛσ

νðxÞ ¼ ημν: ð10Þ

Alternatively, the same condition can be expressed by saying
that the transformation preserves angles or that it leaves the
metric invariant up to an overall factor.
In any dimension d ≥ 3,17 the case of primary interest for

this review, a theorem of Liouville says that any conformal
transformation can be obtained by composing four types of
basic transformations: translations and rotations (which by
themselves form the Poincaré group and have Ω ¼ 1),
dilatations x0μ ¼ Ωxμ with Ω a constant, and inversions x0μ ¼
xμ=x2 which have ΩðxÞ ¼ 1=x2.18

The resulting conformal group is a Lie group of dimension
ðdþ 1Þðdþ 2Þ=2. Its special role in physics and mathematics

is explained by the fact that it is actually the largest nontrivial
subgroup of diffeomorphisms of Rd.
The inversion belongs to the component of the conformal

group which is disconnected from the identity, but by
composing an inversion, translation, and a second inversion
we can define special conformal transformations (SCTs), also
called conformal boosts, given by

x0μ ¼ xμ−bμx2

1−2x ⋅ bþb2x2
; ΩðxÞ¼ 1−2x ⋅ bþb2x2; ð11Þ

where bμ ∈ Rd is an arbitrary constant vector.
The conformal algebra generators can be obtained by

considering the infinitesimal versions of the above-mentioned
transformations. We denote byMμν and Pμ the usual Poincaré
generators, D the dilatation generator, and Kμ the generators
of SCTs. Their nonzero commutation relations are19

½Mμν; Mρσ� ¼ ηνρMμσ − ημρMνσ þ ηνσMρμ − ημσMρν;

½Mμν; Pρ� ¼ ηνρPμ − ημρPν;

½Mμν; Kρ� ¼ ηνρKμ − ημρKν;

½D;Pμ� ¼ Pμ;

½D;Kμ� ¼ −Kμ;

½Kμ; Pν� ¼ 2ημνD − 2Mμν: ð12Þ

In Euclidean signature, the conformal algebra is isomorphic
to the algebra of SOðdþ 1; 1Þ.20 This is shown by the
mapping

J dþ1μ ¼ ðPμ − KμÞ=2; J dþ2μ ¼ ðPμ þ KμÞ=2;
J μν ¼ Mμν; J dþ1dþ2 ¼ D; ð13Þ

which satisfies the SOðdþ 1; 1Þ commutation relations

½J AB;J CD� ¼ ηBCJ AD − ηACJ BD þ ηBDJ CA − ηADJ CB;

ð14Þ

where ηAB is the Lorentzian metric on Rdþ1;1.

B. Operators: Primaries and descendants

Our main objects of study will be correlation functions of
local operators. Conformal symmetry places constraints on
these correlators, expressed as covariance properties when the
operators are transformed in a certain way. Our goal here will
be to present these transformations, the form of which is
determined by representation theory of the conformal group.
Following Mack and Salam (1969), we can restrict to

operators inserted at x ¼ 0, since the transformation properties
at any other point can be obtained by applying a translation

OðxÞ ¼ ex
μPμOð0Þe−xμPμ ; ð15Þ

15Other expository sources about CFTs in d > 2 dimensions
containing material of interest to this review are Ferrara, Gatto,
and Grillo (1973), Cardy (1987), Fradkin and Palchik (1996), Di
Francesco, Mathieu, and Senechal (1997), Qualls (2015a), and
Osborn (2018).

16Set ημν → δμν if interested uniquely in the Euclidean signature.
17See footnote 3.
18As is well known, the 2D case is special. The group of

2D conformal transformations is infinite dimensional, since any
holomorphic function fðzÞ with z ¼ x1 þ ix2 defines a conformal
transformation z0 ¼ fðzÞ. This case has been subject to intense study
(see footnote 6), and it will be mostly left out of this review except for
a few comments in Sec. IX.

19We follow the conventions of Simmons-Duffin (2017b).
20In Lorentzian signature it is SOðd; 2Þ.
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and the commutation relations of Eq. (12). Then we have only
to specify the action of the stabilizer group of the origin,
generated by Mμν, D, and Kμ. We will assume that Oð0Þ≡
Oi

Δ;rð0Þ forms a finite-dimensional irreducible representation
(irrep) r of the rotation group (with indices i) and is
characterized by the dilatation eigenvalue Δ, called its scaling
dimension:

½D;Oi
Δ;rð0Þ� ¼ ΔOi

Δ;rð0Þ;
½Mμν;Oi

Δ;rð0Þ� ¼ ðRμνÞijOj
Δ;rð0Þ: ð16Þ

Here Rμν are generators of the representation r of SOðdÞ [or its
double cover SpinðdÞ for spinor representations].
According to the conformal algebra in Eq. (12), the

generators Pμ and Kμ act as raising and lowering operators
for D, generating what we call the conformal multiplet of O.
In physically interesting theories the spectrum of the dilatation
operator is real and bounded from below,21 so the conformal
multiplet must contain an operator of lowest dimension.
Without loss of generality we assume that Oð0Þ is this lowest
operator, so that

½Kμ;Oi
Δ;rð0Þ� ¼ 0: ð17Þ

An operator satisfying this condition is called the primary
operator of the conformal multiplet.22 All other operators in
the multiplet are called descendants and are obtained from the
primary by acting n ≥ 1 times with Pμ, which means that they
are simply its derivatives.23

Equations (16) define the main quantum numbers character-
izing the operator: its scaling dimensionΔ and its irrep r under
the rotation group. In practice it is important to know the
transformation rules of an operator OðxÞ under general
infinitesimal or finite conformal transformations and for
any x. These rules can be determined uniquely from
Eqs. (15), (16), and (17). Infinitesimal transformations take
the form of first-order differential operators; see, e.g.,
Rychkov (2016b) (Sec. III.1.2). Here we will just give the
explicit form for the finite transformations in terms of the
parameters of Eq. (10):

O0i
Δ;rðx0Þ ¼ F i

jO
j
Δ;rðxÞ; F ¼ 1

ΩðxÞΔ R½Λμ
νðxÞ�; ð18Þ

where R½Λμ
νðxÞ� is the matrix representing the finite rotation

Λμ
νðxÞ in the representation r.24 This equation generalizes

Eq. (2) for scalar operators.25

The scaling dimensions of primary operators comprise the
spectrum of the theory. In d ≥ 3, the spectrum is typically
discrete.26 Discreteness of the spectrum follows, e.g., from the
requirement of a well-defined thermal partition function
(Simmons-Duffin, 2017b).

C. Correlation functions

Consider now a correlation function of n primaries:

Gi1���inðxiÞ ¼ hOi1
Δ1r1

ðx1Þ � � �Oin
Δnrn

ðxnÞi: ð19Þ

For our purposes we will need only to work at noncoincident
points and will not be concerned with possible delta-function-
like “contact terms,” which play no role in the numerical
conformal bootstrap.
Equation (18) implies that this correlator transforms cova-

riantly under the conformal group. Operationally, for any
conformal transformation x → x0, correlators at points x0j and
xj are related by

Gi1���inðx0jÞ ¼ F ð1Þi1
j1 � � �F ðnÞin

jnG
j1���jnðxjÞ: ð20Þ

While covariance under translations, rotations, and dilatations
is straightforward to understand, it is less intuitive for SCTs,
since they act nonlinearly on x.
One can classify the most general form of the correlator

satisfying Eq. (20). This problem has been addressed using
different techniques over the years, starting with Polyakov
(1970).27 Two modern efficient methods to obtain such results
are the embedding formalism of Costa et al. (2011b) reviewed
in the Appendix, and the conformal frame approach described
in Sec. III.C.4; see Osborn and Petkou (1994) and Kravchuk
and Simmons-Duffin (2018a).
We will now state results for the most frequently

occurring cases n ¼ 2, 3, and 4. We will focus on scalars
OΔ as well as operators OΔ;l transforming in the rank l
traceless symmetric representation of SOðdÞ. For the latter
we will introduce an auxiliary polarization vector ζμ and
consider the contraction

OΔ;lðx; ζÞ ¼ ζμ1 � � � ζμlOμ1���μl
Δ;l ðxÞ: ð21Þ

The components of the operator itself can be recovered by
differentiating in ζ.28

21As discussed in Sec. III.E, in unitary theories this property can
be shown rigorously.

22This is called a quasiprimary in the context of 2D CFTs.
23Explicitly ½Pμ;Oi

Δ;rðxÞ� ¼ ∂μOi
Δ;rðxÞ. Often n is called the level

of the descendant.
24If r is a spinorial representation then Λμ

ν specifiesR only up to a
sign, and this sign has to be chosen consistently for all operators in a
correlator.

25Although we write the left-hand side (lhs) as O0 (as is
customary), it is important to remember that O and O0 represent
the same operator.

26The only exceptions known to us have been discussed by Levy
and Oz (2018). They are nonunitary.

27General 3pt functions in 4D were first worked out by Mack
(1977b).

28This is called the index free notation; see, e.g., Dobrev et al.
(1976) and Costa et al. (2011b). Often one imposes ζ2 ¼ 0, which
sets to zero the “traces” in, e.g., Eq. (22), but we will not do this here.
Index free notation can be generalized to mixed-symmetry tensors
and fermions; see e.g., Giombi, Prakash, and Yin (2013), Simmons-
Duffin (2014a), Li and Stergiou (2014), Costa and Hansen (2015),
and Iliesiu et al. (2016a).
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1. 2pt functions

It follows from Eq. (20) that the 2pt function of two
operators OΔ1;r1 and OΔ2;r2 vanishes unless Δ1 ¼ Δ2 and

r1 ¼ r†2.
29 As a consequence, for every physical operatorOΔ;r,

one can identify an operator O†
Δ;r† which transforms in the

conjugate representation.30

Further, one can almost always work in a basis of operators
such thatO has a nonzero 2pt function only withO†, which is
usually stated as “the 2pt function is diagonal.”31 For example,
this is always possible in unitary theories. For operators in real
SOðdÞ representations r† ¼ r, like traceless symmetric ten-
sors, we can choose a real operator basis so that O† ¼ O.
Specializing to traceless symmetric tensors, the 2pt function

takes the form32

hOΔ;lðx1; ζ1ÞOΔ;lðx2; ζ2Þi ¼
½Iμνðx12Þζμ1ζν2�l − traces

ðx212ÞΔ
;

IμνðxÞ ¼ ημν − 2xμxν=x2; ð22Þ

where xij ≡ xi − xj, and “traces” are terms proportional to ζ21,
ζ22, which are uniquely fixed by the tracelessness ofOΔ;l. This
generalizes Eq. (3) for scalars. It is customary to normalize
such 2pt functions to unity, with exceptions being conserved
currents and the stress tensor; see Sec. III.H. The nontrivial
part of the correlator is its numerator, which specifies the
dependence on the operator indices. We refer to such
numerators as “tensor structures.”
If the CFT contains a global symmetry, operators are

grouped into global symmetry multiplets π. In this case
Eq. (22) still applies to the individual components of the
multiplets, with appropriate modifications.33 We discuss the
consequences of global symmetries further in Sec. III.G.

2. 3pt functions

Next we turn to 3pt functions, focusing on the case where
the first two operators are scalars. Then it turns out that the

third operator can only be a traceless symmetric tensor.
Generalizing Eq. (4) for three scalars, the 3pt function takes
the form (Mack, 1977b)

hOΔ1
ðx1ÞOΔ2

ðx2ÞOΔ3;lðx3; ζÞi
¼ λ123½ðZμ

123ζμÞl − traces�K3; ð23Þ
where K3 ¼ K3ðΔi; xiÞ is given by

K3 ¼
1

ðx212Þðh123þlÞ=2ðx213Þðh132−lÞ=2ðx223Þðh231−lÞ=2
; ð24Þ

hijk ≡ Δi þ Δj − Δk, and

Zμ
123 ¼

xμ13
x213

−
xμ23
x223

.

This 3pt function is unique up to the overall coefficient λ123.
Notice that as defined,

λ123 ¼ ð−1Þlλ213; ð25Þ
while if l ¼ 0 we can exchange any pair of fields and λ123 is
fully symmetric. The normalization of these coefficients is
unambiguous, since the operators are assumed to be unit
normalized according to Eq. (22). Together with the spectrum,
the λ’s constitute the CFT data, which distinguish one CFT
from another, as discussed in Sec. II.
In unitary theories, the CFT data must satisfy a set of

general well-understood constraints; see Sec. III.E.
Significantly more nontrivial constraints on the CFT data
come from the crossing relations to be discussed in Sec. III.I.
For operators in three general SOðdÞ representations, the

3pt functions take a form more complicated than Eq. (23).
They are also in general not unique, although for any three
representations there is at most a finite-dimensional space of
allowed tensor structures. The problem of their construction
has been completely solved in the most physically important
cases of d ¼ 3 (Costa et al., 2011b; Iliesiu et al., 2016a) and
d ¼ 4 (Elkhidir, Karateev, and Serone, 2015). For general d
there are partial results, e.g., Costa et al. (2011b) for 3pt
functions of traceless symmetric tensors, Costa et al. (2016a)
for traceless mixed-symmetry tensors, and Kravchuk and
Simmons-Duffin (2018a) for a general approach to classifying
the structures.

3. 4pt functions

Finally let us consider 4pt functions, which as mentioned in
Sec. II play a fundamental role in the conformal bootstrap.
Focusing here on the case of scalars, the 4pt function must
take the general form

hOΔ1
ðx1ÞOΔ2

ðx2ÞOΔ3
ðx3ÞOΔ4

ðx4Þi ¼ gðu; vÞK4: ð26Þ
The factor K4 ¼ K4ðΔi; xiÞ is given by

K4 ¼
1

ðx212ÞðΔ1þΔ2Þ=2ðx234ÞðΔ3þΔ4Þ=2

�
x224
x214

�Δ12=2
�
x214
x213

�Δ34=2

;

ð27Þ

29Here the † means complex conjugation in Lorentzian signature
or taking the dual reflected representation in Euclidean signature,
where reflected means replacing generators R1ν by −R1ν. In 3D all
representations are real, so the requirement r1 ¼ r†2 reduces to
r1 ¼ r2, while in 4D if r1 ¼ ðl; l̄Þ then r2 ¼ ðl̄;lÞ.

30The precise action of Hermitian conjugation on Hilbert space
operators depends on the signature and choice of quantization
surface. For a detailed discussion see Simmons-Duffin (2017b).

31Examples of nonunitary conformal theories in which the 2pt
functions cannot be so diagonalized occur in logarithmic CFTs; see,
e.g., Hogervorst, Paulos, and Vichi (2017). Wewill not consider them
in this review.

32For the purposes of this review, it is sufficient to consider
correlation functions in Euclidean signature. Most equations can also
be used in Lorentzian signature, provided that all points are spacelike
separated. For timelike separation one needs modifications, such as
an iϵ prescription, which we will not discuss.

33If π is a complex representation, then it is not convenient to use
the real operator basis. The nonzero 2pt function will then be between
O and O† transforming in π̄.
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where Δij ≡ Δi − Δj. This factor by itself transforms under
conformal transformations as prescribed by Eq. (20). The
remaining part of the correlator gðu; vÞ must be a function of
two cross ratios u and v:

u ¼ x212x
2
34

x213x
2
24

; v ¼ x214x
2
23

x213x
2
24

; ð28Þ

which are invariant under all conformal transformations.
While no further information about gðu; vÞ can be obtained

from conformal invariance alone, it can in fact be computed in
terms of the CFT data using additional tools such as the OPE
and conformal blocks. This will be discussed in Secs. III.D
and III.F.

4. Conformal frames

Here we give a more group theoretical intuition of the
number of degrees of freedom contained in a given correlator,
and, in particular, of why conformal invariance fixes 2pt and
3pt functions up to a few constants, but allows arbitrariness in
4pt functions.
Given a set of n points, we can make use of conformal

transformations to arrange them in convenient configurations.
For instance, given three arbitrary points we can find a
conformal transformation which maps them to x1;2;3 ¼ 0, ê,
∞, where ê is a fixed unit vector.
For four points, we can first find a conformal transformation

fixing three of them as above and then rotate around the axis to
put the fourth point into a fixed plane (we assume that d ≥ 2).
The resulting configuration can be parametrized in Euclidean
signature as (0≡ 0d−2)

34

x1 ¼ ð0; 0; 0Þ; x2 ¼ ðσ; τ; 0Þ;
x3 ¼ ð1; 0; 0Þ; x4 ¼ ð∞; 0; 0Þ: ð29Þ

It is customary to define (see Fig. 2)

z ¼ σ þ iτ; z̄ ¼ σ − iτ; ð30Þ
which are complex conjugate variables if we are working in
the Euclidean signature.35 The conformal cross ratios can be
expressed in terms of z and z̄ as

u ¼ zz̄; v ¼ ð1 − zÞð1 − z̄Þ: ð31Þ
A choice of points xi, as in Eq. (29), is called a conformal

frame. It can be thought of as a gauge fixing of most or all of the
conformal symmetry. By construction, any coordinate configu-
ration can be reduced to the conformal frame form. Therefore,
the knowledge of a correlation function in the conformal frame is
sufficient to reconstruct it at any other point through its
covariance properties (Osborn and Petkou, 1994). The func-
tional forms of 2pt and 3pt functions are fixed because their
conformal frames do not contain any free parameters. The 4pt
conformal frame (29) has two real parameters, explaining the

functional freedom of the conformal 4pt function. See
Sec. III.F.2 for another frequently used conformal frame.
Conformal frames provide a way to construct conformal

correlators which is sometimes more convenient than the
embedding formalism described in the Appendix. This method
can also be used to classify the allowed tensor structures. An
important role is then played by the stabilizer group, defined as
the set of conformal transformations leaving the conformal
frame configuration invariant. It is SOðd − 1Þ for 3pt functions
andSOðd − 2Þ for 4pt functions. One classifies tensor structures
invariant under the stabilizer group, and each of them lifts to an
independent conformally invariant tensor structure (Kravchuk
and Simmons-Duffin, 2018a). Thismethod is particularly useful
when dealing with 4pt functions of tensor operators: it does not
overcount tensor structures, which may happen in the embed-
ding formalism unless special care is taken.

D. Operator product expansion

Our point of view on the origin and the role of the OPE in
CFT is the one pedagogically reviewed by Rychkov (2016b)
and Simmons-Duffin (2017b). Here we present the main logic
and set some conventions.
The key idea is that of radial quantization, which says that

we can represent Euclidean CFT correlation functions as
scalar products of states hΨoutjΨini which live on a sphere of
radius R. The state jΨini is generated by operators in the
interior of the sphere, while hΨoutj by those in the exterior.
Once we replace the interior operators by the state jΨini, in a
scale invariant theory we can scale the radius of the sphere to
zero. Thus any state jΨini can be expanded in a basis of local
operators inserted at the center of the sphere. This is called the
state-operator correspondence.
The OPE, written schematically in Eq. (5), is just the special

case of the above when there are two operators at points x1 and
x2 inside the sphere centered at y. We also see the origin of the
OPE convergence criterion (7), since we need to have a
separating sphere to start the argument.36

As discussed in Sec. II, the next step is to group primaries
and descendants in the OPE and to impose the constraints of
conformal invariance. This gives the “conformal OPE”:

OΔi
ðx1ÞOΔj

ðx2Þ ¼
X
k

λijkf̂ijkðx1; x2; y; ∂yÞOΔk
ðyÞ: ð32Þ

FIG. 2. A conformal frame defining the z coordinate. From
Hogervorst and Rychkov, 2013.

34We defineOð∞Þ by taking the limit of jx4j2ΔOOðx4Þ as x4 → ∞,
which yields a finite value for the correlation function.

35Note that we can analytically continue to the Lorentzian via
τ → it, and then z and z̄ become independent real variables, but this
does not play a role in this review.

36See Pappadopulo et al. (2012) for a detailed discussion of OPE
convergence in CFT.
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The differential operator f̂ijk is fixed by conformal invariance.
It can be determined by demanding that the conformal OPE
reproduce the 3pt function hOΔi

ðx1ÞOΔj
ðx2ÞO†

Δk
ðx3Þi, whose

form is by itself fixed by conformal invariance up to the
constants λijk.
Any SOðdÞ [or SpinðdÞ] index which the operators OΔi

may have are left implicit in Eq. (32). Depending on their
representations, there may be several allowed 3pt function
tensor structures, and then each structure comes with its own
OPE coefficient and a corresponding conformally invariant
differential operator f̂ijk. In the most frequently occurring case
where OΔi

and OΔj
are scalars and OΔk;l a spin-l traceless

symmetric tensor there is just one OPE coefficient.
While it is important to know that the conformal OPE exists

and converges, it turns out that in practice one rarely needs its
full explicit form.37 For example, conformal block computa-
tions can be organized in ways that avoid explicit knowledge
of the full OPE; see Sec. III.F. For this reason, one frequently
writes only the “leading OPE,” i.e., the primary term.
For example, in the case of two scalars and a traceless

symmetric tensor, the leading OPE has the form (specializing
to x1 ¼ x, x2 ¼ y ¼ 0)

OΔi
ðxÞOΔj

ð0Þ ⊃ λijk
xμ1 � � � xμl

ðx2ÞðhijkþlÞ=2 O
μ1���μl
Δk;l

ð0Þ þ � � � : ð33Þ

This reproduces the leading asymptotics of the 3pt function
(23) in the limit x → 0 with x3 fixed, including the normali-
zation, provided that the 2pt function of OΔk;l is unit
normalized as in Eq. (22). Occasionally we will schematically
write such a leading OPE as OΔi

×OΔj
⊃ OΔk;l, but the form

(33) should always be understood.
As explained in Sec. II, any n-point function can be

computed from the CFT data by repeated application of the
OPE. The 4pt function case, of primary importance for the
bootstrap, will be discussed in Sec. III.F.

E. Constraints from unitarity

Here we review the notion of a unitary CFT, focusing on the
constraints on CFT data arising for such theories which make
the bootstrap especially powerful.
Unitary CFTs can be considered in both Lorentzian and

Euclidean signature. They are characterized in the latter by a
property called reflection positivity.38 On the other hand, non-
unitary CFTs are generally expected to make sense only in
Euclidean signature. They will be discussed briefly in Sec. VIII.
Unitary theories allow for quantization in a Hilbert space

with a positive-definite norm. In the quantization by planes
normally used in Euclidean QFT, an “in” state jΨi is generated
by n local operators Oi inserted in the half-space x1 < 0, and
an “out” state hΨj is generated by reflected operators O†

i ,

inserted at x1 > 0 at mirror-symmetric positions.39 Unitarity
implies that the norm hΨjΨi must be non-negative. This norm
is just a 2n-point function in a particular kinematic configu-
ration, and its positivity is called Osterwalder-Schrader
reflection positivity.
Analogously, in the radial quantization usually used for

CFTs, an in state jΨi is generated by local operatorsOi inserted
at positions xi inside the unit sphere ði ¼ 1;…; nÞ, and a
conjugate out state hΨj is generated by operatorsO†

i inserted at
positions related by an inversion transformation x0i ¼ xi=x2.
The norm hΨjΨi, which is just an inversion-symmetric 2n-point
function, must be non-negative, a property we call “inversion
positivity.”40 In CFTs, both forms of positivity are equivalent,41

and they are both useful depending on circumstances.

1. Unitarity bounds

We already get a simple and powerful constraint by
considering radial quantization states jΨi produced by a local
operator O acting at the origin. In this case the conjugate
operator is inserted at infinity. For a primaryOwe recover that
its 2pt function must have positive normalization and hence
can be normalized to 1 as in Eq. (22). Additional constraints
arise from considering descendants of O. The conformal
algebra computes the norms of descendants as polynomials in
the primary dimension Δ. Imposing that all descendants have
a non-negative norm gives a lower bound onΔ. This “unitarity
bound” depends on the representation r of SOðdÞ (or its
double cover for spinor representations) in which the primary
transforms.42,43

37For some cases when the explicit conformal OPE has been
worked out, see Ferrara, Grillo, and Gatto (1971), Ferrara, Gatto, and
Grillo (1973), Mack (1977b), and Dolan and Osborn (2001).

38We often abuse terminology and refer to “reflection
positivity” as “unitarity” in the context of Euclidean CFTs or
when the signature is ambiguous.

39For reflected tensor operators, each tensor component is multi-
plied by a factor Θ ¼ ð−1ÞN⊥ , where N⊥ is the number of tensor
indices perpendicular to the reflection plane.

40If theOi are not scalars, their indices at the inverted positions are
contracted with the Iμν tensors defined in Eq. (22), as in Simmons-
Duffin (2017b), Eq. (110).

41By a conformal transformation, radial quantization may be
mapped onto a “North-South quantization,” relating inversion pos-
itivity to the usual reflection positivity (Rychkov, 2016b).

42Standard CFT references are Ferrara, Gatto, and Grillo (1974),
Mack (1977a), and Minwalla (1998). An early physics reference is
Evans (1967). In the mathematics literature, these bounds were derived
by Jantzen (1977), although the relevance of this work for physics was
realized only recently (Penedones, Trevisani, and Yamazaki, 2016;
Yamazaki, 2016). See also Rychkov (2016b) and Simmons-Duffin
(2017b) for a review. Unitarity bounds can be equivalently derived by
studying the positivity of the Fourier transform of the 2pt function
analytically continued toLorentzian signature (theWightman function).
See Ferrara, Gatto, and Grillo (1974), Mack (1977a) (in the sufficiency
part of the argument), as well as Grinstein, Intriligator, and Rothstein
(2008) for a recent exposition emphasizing physics.

43In Lorentzian signature, operators satisfying the unitarity bounds
correspond to the unitary representations of the universal covering
group of the Lorentzian conformal group SOðd; 2Þ having positive
energy. Note that in Euclidean signature operators satisfying
the unitarity bounds have no relation to the representation of the
Euclidean conformal group SOðdþ 1; 1Þ which are unitary in the
usual mathematical sense of the term. This is already clear from
looking at the principal series unitary representations of SOðdþ 1; 1Þ
which have complex scaling dimensions d=2þ iR.
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In 3D, the representation r is labeled by a half integer j,
with j ¼ l for traceless symmetric spin-l tensors. The
unitarity bounds are

d ¼ 3∶ Δ ≥ 1=2 ðscalar; j ¼ 0Þ;
Δ ≥ 1 ðsmallest spinor; j ¼ 1=2Þ;
Δ ≥ jþ 1 ðj > 1=2Þ: ð34Þ

In 4D, we can label the representation r by two integers
ðl; l̄Þ, with traceless symmetric spin-l tensors having
l ¼ l̄.44 The unitarity bounds then read

d ¼ 4∶ Δ ≥ 1 ðscalar; l ¼ l̄ ¼ 0Þ;
Δ ≥ 1

2
lþ 1 ðl > 0; l̄ ¼ 0Þ;

Δ ≥ 1
2
ðlþ l̄Þ þ 2 ðll̄ ≠ 0Þ: ð35Þ

For the 5D and 6D unitarity bounds, see Minwalla (1998).
For some representations occurring in all dimensions the
unitarity bounds can be written in a dimension-independent
form as follows:

Δ ≥ 1
2
ðd − 2Þ ðscalarÞ;

Δ ≥ 1
2
ðd − 1Þ ðsmallest spinorÞ;

Δ ≥ lþ d − 2 ðtraceless symmetric; spin l ≥ 1Þ: ð36Þ

As a final comment, in the physics literature the unitarity
bounds are often derived by imposing positivity of the
descendant norms on the first (and the second, for scalars)
level. It is a nontrivial fact that no further constraints arise
from higher levels. See Bourget and Troost (2018), Tables 3
and 5, for a review of rigorous mathematical results for unitary
bounds in any d.

2. OPE coefficients

Unitarity also gives reality constraints on OPE coefficients
of real operators. Consider the 3pt function (23) between
two scalars and a traceless symmetric tensor, assuming all
three operators are real. Then the 3pt function coefficient must
be real:

λ123 ∈ R: ð37Þ

To argue this, we can consider a 6pt function
hO1O2ðΘO3ÞO3O2O1i, with the operators arranged mirror
symmetrically against a plane into two compact groups
positioned a large distance from each other (see Fig. 3).
Here Θ is the reflection factor mentioned in footnote 39.
Reflection positivity implies that this 6pt function should be
real and positive.45 On the other hand, by cluster decom-
position this 6pt function is equal to the product of two distant
3pt functions, which is easily seen to be λ2123 times a positive

number. As a result Eq. (37) follows. We stress that this
conclusion holds for both even and odd l.46

It was important for this argument that the tensor structure
entering Eq. (23) was parity invariant (i.e., it did not involve the
ϵ tensor). This argument can be generalized toOPE coefficients
for general 3pt tensor structures. TheOPE coefficients of tensor
structures must be purely imaginary or real depending on
whether they involve the ϵ tensor or not. One must similarly be
careful with OPE coefficients involving spinors.
Consider now the 4pt function hO2O1O1O2i, where O1

andO2 are real scalars and the point configuration is reflection
symmetric or inversion symmetric. This 4pt function should
be non-negative as a basic consequence of unitarity, and
Eq. (37) implies that a more nuanced statement is true: the
individual contribution of every primaryO to this 4pt function
is non-negative; see Eq. (43). This can be generalized to
external operators in general SOðdÞ [or SpinðdÞ] representa-
tions, including the case when there are multiple 3pt function
tensor structures.
To summarize, the unitarity bounds say that the CFT Hilbert

space has a positive-definite norm, and the OPE coefficient
reality constraints say that the OPE preserves this positive-
definite structure. If the CFT data satisfy both of these
constraints, we are guaranteed that the CFT will be unitary.
The bootstrap obtains further constraints on CFT data by
combining unitarity with crossing relations.

3. Averaged null energy condition

In aQFTinLorentzian signature, we can consider the integral
of the stress-tensor component Tþþ along a light ray: the
lightlike direction xþ with all other coordinates fixed to zero.
The averaged null energy condition (ANEC) says that this light-
ray operator has a non-negative expectation value in any state:47

FIG. 3. The positivity of the 6pt function implies reality of the
3pt function coefficient λ123; see the text.

44It is also common in the literature to label by half integers
j ¼ l=2 and j̄ ¼ l̄=2.

45For this argument we are using the standard Osterwalder-
Schrader reflection positivity and not the inversion positivity.

46In essence we argued that the complex conjugate of a 3pt
function is equal to the 3pt function of conjugate fields at reflected
positions. This for general n-point functions is sometimes taken as an
additional axiom for unitary theories, encoded by the equation
Oðτ;xÞ† ¼ O†ð−τ;xÞ valid in Euclidean quantization by planes.
Upon analytic continuation to Lorentzian signature, this leads to
commutativity of operators at spacelike separation, used to prove
reality of OPE coefficients in Rattazzi et al. (2008). Our 6pt argument
shows that this axiom is not independent but follows from reflection
positivity and cluster decomposition.

47Such conditions were first introduced in general relativity, with
integration along a null geodesic, in connection with singularity
theorems and wormholes. Here we focus on the ANEC in flat space,
first discussed by Klinkhammer (1991).
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hΦj
Z

∞

−∞
dxþTþþjΦi ≥ 0: ð38Þ

TheANEC should hold in any unitary QFT. Two general proofs
of the ANECwere given recently, one via quantum information
(Faulkner et al., 2016), and one by causality (Hartman, Kundu,
and Tajdini, 2017).48 Specializing to CFTs, the causality argu-
ment makes it clear that the ANEC is not an extra assumption
but follows from other CFT axioms such as unitarity, the OPE,
and crossing relations for correlation functions involving Tμν.

49

Note, however, that any results following from the ANEC will
require the existence of a local stress-tensor operator.
Choosing jΦi in Eq. (38) to be generated by a local operator

O acting on the vacuum, the ANEC leads to positivity
constraints on 3pt functions hOTμνOi called “conformal
collider bounds” (Hofman and Maldacena, 2008).50

Recently, Cordova and Diab (2018) used the ANEC to
argue that primaries of high chirality (large jl − l̄j) in unitary
4D CFTs should satisfy unitarity bounds stronger than
Eq. (35). From partial checks for l̄ ¼ 0, 1, they conjecture
the general bound (assuming l ≥ l̄)

Δ ≥ l: ð39Þ

If l̄ ¼ 0 this becomes stronger than Eq. (35) for l > 2 and for
l > l̄þ 4 otherwise. This can be viewed as a CFT strength-
ening of the theorem of Weinberg and Witten (1980).

F. Conformal blocks

Conformal blocks are of capital importance for the boot-
strap. Their theory was initiated in the 1970s (Ferrara et al.,
1972, 1974; Ferrara, Gatto, and Grillo, 1975), with further
advances in the early 2000s (Dolan and Osborn, 2001, 2004)
which were crucial for the bootstrap revival. Recently it
experienced further rapid developments, and here we review
its current state.
Consider a 4pt function of four primary scalar operators

ϕiðxiÞ with i ¼ 1;…; 4 (see Sec. III.F.7 for the general case of
external operators with spin). As mentioned in Sec. II, this 4pt
function can be computed by applying the OPE of Eq. (5) to

two pairs of fields. For definiteness we fix here the pairing
ϕ1ðx1Þϕ2ðx2Þ and ϕ3ðx3Þϕ4ðx4Þ. This is referred to as “the
(12)-(34) OPE channel” to distinguish it from other pairings
which will play a role when we discuss crossing. This gives an
expansion

hϕ1ðx1Þϕ2ðx2Þϕ3ðx3Þϕ4ðx4Þi ¼
X
O

λ12Oλ34OWO; ð40Þ

where WO ≡WOðxiÞ are the conformal partial waves
(CPWs) given by

WO ¼ f̂12Oðx1; x2; y; ∂yÞf̂34Oðx3; x4; y0; ∂y0 ÞhOðyÞOðy0Þi:
ð41Þ

Since the 2pt function is diagonal, the summation is over the
same operator O in both OPEs. It follows from conformal
invariance of the OPE that each CPW transforms under the
conformal transformations in the same way as the 4pt function
itself; see, e.g., Costa et al. (2011a). It is then conventional to
split off the factor K4 defined in Eq. (27), so that we finally
have

WO ¼ gΔ12;Δ34

ΔO;lO
ðu; vÞK4; ð42Þ

where gΔ12;Δ34

ΔO;lO
ðu; vÞ is called the conformal block.51 It repre-

sents the contribution of a primaryO and all of its descendants
to the 4pt function. As shown, it depends on the dimension
and spin of the exchanged traceless symmetric primaryO, and
also on the dimension differences Δ12, Δ34 of the external
scalars.52 Comparing with Eq. (26), we thus have

gðu; vÞ ¼
X
O

λ12Oλ34Og
Δ12;Δ34

ΔO;lO
ðu; vÞ: ð43Þ

Equations (40) and (43) are referred to as the CPW decom-
position and the conformal block decomposition.
Let us briefly discuss the regions of convergence of the

considered expansions. If one works in the z conformal frame
of Eq. (29) in Euclidean signature, then Eq. (41) defining the
CPWs converges for jzj < 1, and the conformal block decom-
position (43) is also seen to converge in this region, at least if
the theory is unitary (Pappadopulo et al., 2012). While this is
sufficient for many applications, a stronger convergence result
can be established using the ρ frame; see Sec. III.F.2.
The above definition of conformal blocks via the conformal

OPE is important in principle. In practice, there exist efficient
approaches to compute the blocks which avoid needing
explicit knowledge of the conformal OPE.53 They will be
described next.

48See also Kravchuk and Simmons-Duffin (2018b) for a recent
discussion of light-ray operators in Lorentzian CFTs and an alter-
native proof of the ANEC.

49This is also suggested by the fact that bounds following from the
ANEC can be reproduced in the numerical bootstrap; see Sec. V.F.

50Conformal collider bounds in general dimensions for states
created by the stress tensor or global symmetry currents were
obtained by Buchel et al. (2010) and Chowdhury et al. (2013).
A proof of these bounds independent from the ANEC was given by
Hofman et al. (2016); see also Hartman, Jain, and Kundu (2016a,
2016b). Other generalizations of these bounds have been explored
by Li, Meltzer, and Poland (2016a), Komargodski, Kulaxizi
et al. (2017), Chowdhury, David, and Prakash (2017a), Cordova,
Maldacena, and Turiaci (2017), Meltzer and Perlmutter (2017),
and Cordova and Diab (2018). Sum rules involving the same
coefficients were also recently presented by Witczak-Krempa (2015),
Chowdhury, David, and Prakash (2017b), Chowdhury (2017), and
Gillioz, Lu, and Luty (2017, 2018).

51We make a distinction between CPWs and conformal blocks
following the conventions of Costa et al. (2011a). In part of the
literature these two terms are used interchangeably.

52Sometimes we omit the latter dependence, if it is clear from the
context.

53However, see Dolan and Osborn (2001) and Fortin and Skiba
(2016a, 2016b) for direct constructions using the conformal OPE.
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1. The Casimir equation

Let us consider the following alternative representation of
CPWs. In radial quantization, as mentioned in Sec. III.D, the
above 4pt function is expressed as a scalar product of two
states

hϕ3ðx3Þϕ4ðx4Þjϕ1ðx1Þϕ2ðx2Þi ð44Þ

living on a sphere separating x1, x2 from x3, x4. The CPW then
corresponds to inserting an orthogonal projector PΔ;l onto the
conformal multiplet of OΔ;l:

λ12Oλ34OWO ¼ hϕ3ðx3Þϕ4ðx4ÞjPΔ;ljϕ1ðx1Þϕ2ðx2Þi: ð45Þ

For future reference, the projector can be written as

PΔ;l ¼
X

α;β¼O;PO;PPO;…

jαiGαβhβj; ð46Þ

where Gαβ ¼ hαjβi is the Gram matrix of the multiplet and
Gαβ is its inverse.
Furthermore, consider the quadratic Casimir54

C2 ¼ 1
2
J ABJ BA; ð47Þ

where J AB are the SOðdþ 1; 1Þ generators, Eq. (14). Insert
this operator into Eq. (45) right after PΔ;l. The resulting
expression can be computed in two ways. When we act with
C2 on the left we have

PΔ;lC2 ¼ CΔ;lPΔ;l; ð48Þ

where CΔ;l is the quadratic Casimir eigenvalue:

CΔ;l ¼ ΔðΔ − dÞ þ lðlþ d − 2Þ: ð49Þ

On the other hand, the action of C2 on the right can be
computed using the representation of the conformal gener-
ators on primaries as first-order differential operators, men-
tioned in Sec. III.B. We conclude that the CPW, and hence the
conformal block, satisfies a second-order partial differential
equation.55 The actual form of this “Casimir equation” is most
conveniently found using the embedding formalism (Dolan
and Osborn, 2004). In the z, z̄ coordinates of Eq. (31) it takes
the form

DgΔ12;Δ34

Δ;l ðz; z̄Þ ¼ CΔ;lg
Δ12;Δ34

Δ;l ðz; z̄Þ; ð50Þ

where

D¼DzþDz̄þ2ðd−2Þ zz̄
z− z̄

½ð1− zÞ∂z− ð1− z̄Þ∂ z̄�;

Dz ¼ 2z2ð1− zÞ∂2
z − ð2þΔ34−Δ12Þz2∂zþ

Δ12Δ34

2
z: ð51Þ

Moreover, the leading z; z̄ → 0 behavior of the conformal
block can be easily determined using the OPE, and this
provides boundary conditions for Eq. (50). Considering the
x12, x34 → 0 limit in Eq. (42) and using Eqs. (22) and (33), one
obtains56

gΔ12;Δ34

Δ;l ðz; z̄Þ ∼
z;z̄→0

N d;lðzz̄ÞΔ=2Gegl
�
zþ z̄

2
ffiffiffiffiffi
zz̄

p
�
; ð52Þ

where GeglðxÞ is a Gegenbauer polynomial,

GeglðxÞ ¼ Cðd=2−1Þ
l ðxÞ; ð53Þ

and the normalization factor N d;l is given by57

N d;l ¼ l!
ð−2Þlðd=2 − 1Þl

: ð54Þ

We warn the reader that many different normalization choices
can be found in the literature. Different conformal block
normalizations correspond to different normalizations of OPE
coefficients as compared with the one in Eq. (33). In this
review we use this normalization unless mentioned otherwise.
For the reader’s convenience, we have collected some other
frequently used normalizations in Table I.
By solving Eq. (50) one can find conformal blocks for even

d (Dolan and Osborn, 2004). They are expressed in terms of
the basic function

kβðxÞ ¼ xβ=22F1

�
β − Δ12

2
;
β þ Δ34

2
; β; x

�
; ð55Þ

which satisfies

DxkβðxÞ ¼ 1
2
βðβ − 2ÞkβðxÞ; kβðxÞ ∼

x→0
xβ=2: ð56Þ

In the simplest case of d ¼ 2, we have D ¼ Dz þDz̄, so the
conformal blocks factorize. They take the form58

d ¼ 2∶ gΔ12;Δ34

Δ;l ðz; z̄Þ ¼ 1

ð−2Þlð1þ δl0Þ
× ½kΔþlðzÞkΔ−lðz̄Þ þ z ↔ z̄�: ð57Þ

54The quartic Casimir operator C4 ¼ ð1=2ÞJ ABJ BCJ CDJ DA has
also proved useful in some conformal block studies (Dolan andOsborn,
2011; Hogervorst, Osborn, and Rychkov, 2013).

55We followed the presentation of Simmons-Duffin (2017b),
Sec. IX.3. The same conclusion can be reached using the OPE (Costa
et al., 2011a).

56The limit is worked out carefully in, e.g., Dolan and Osborn
(2001) or Costa et al. (2011a).

57Here ðaÞn stands for the Pochhammer symbol.
58A partial case of this result was first found in Ferrara, Gatto, and

Grillo (1975) by another method. See also Osborn (2012) for general
conformal blocks in 2D. Note that the 2D global conformal blocks
discussed here should be distinguished from the Virasoro conformal
blocks.
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Results for higher even d can then be found using recursion
relations relating blocks in d and dþ 2 dimensions (Dolan
and Osborn, 2004). The important case of d ¼ 4 reads59

d¼4∶ gΔ12;Δ34

Δ;l ðz; z̄Þ¼ 1

ð−2Þl
zz̄
z− z̄

½kΔþlðzÞkΔ−l−2ðz̄Þ−z↔ z̄�:

ð58Þ

In odd d, general closed-form solutions of the Casimir
equation are so far unavailable. Sometimes, one can get
closed-form solutions along the “diagonal” z ¼ z̄, as, e.g.,
in d ¼ 3 for all equal external dimensions [Rychkov and
Yvernay, 2016, see Eqs. (3.7)–(3.10)]. Other expressions
along the diagonal, valid for any d, can be found in
Hogervorst, Osborn, and Rychkov (2013). Using these results
as a starting point, one can compute derivatives of conformal
blocks orthogonal to the diagonal using the Casimir equation,
by the Cauchy-Kovalevskaya method; see Sec. III.F.5. The
knowledge of these derivatives is usually sufficient for
numerical conformal bootstrap applications. Other techniques
used to access the conformal blocks numerically will be
discussed below.
Finally, let us mention that conformal blocks have simple

transformation properties under the interchange of external
operators 1 ↔ 2 and 3 ↔ 4 (Dolan and Osborn, 2001, 2011):

gΔ12;Δ34

Δ;l ðu=v; 1=vÞ ¼ ð−1ÞlvΔ34=2g−Δ12;Δ34

Δ;l ðu; vÞ
¼ ð−1Þlv−Δ12=2gΔ12;−Δ34

Δ;l ðu; vÞ: ð59Þ

This follows from the symmetry of the OPE under the same
interchange. As a check, the explicit expressions in Eqs. (57)
and (58) satisfy these relations.

2. Radial expansion for conformal blocks

While closed-form expressions for conformal blocks in
general d are unknown, there exist rapidly convergent power
series expansions. Following Hogervorst and Rychkov
(2013), we describe a particular conformal frame used to
generate such expansions.
Starting from the conformal frame (29), we apply an

additional conformal transformation which keeps the four
points in the same 2-plane but moves them into a configu-
ration symmetric around the origin as in Fig. 4. So the points
x1 ¼ −x2 are now on a circle of radius r < 1, while x3 ¼ −x4
lie on the unit circle.
Let us call n and n0 the unit vectors pointing to x2 and x3

and introduce the complex radial coordinate (Pappadopulo
et al., 2012)

ρ ¼ reiθ; n · n0 ¼ cos θ ¼ η; ð60Þ
which is related to the variable z in Eq. (30) via

ρ ¼ z

ð1 − ffiffiffiffiffiffiffiffiffiffi
1 − z

p Þ2 ; z ¼ 4ρ

ð1þ ρÞ2 :

See Hogervorst and Rychkov (2013) for why ρ is preferable to
z for constructing rapidly convergent power series expansions
for conformal blocks.
In this configuration, the 4pt function is interpreted as amatrix

element between two radial quantization states: hϕ3ð1;n0Þϕ4ð1;
−n0Þj and jϕ1ðr;−nÞϕ2ðr;nÞi ¼ rDjϕ1ð1;−nÞϕ2ð1;nÞi. The
factor rD, withD the dilatation generator, takes care of the radial
dependence.60

Consider then the conformal partial wave given in Eq. (45).
The conformal multiplet of the operator OΔ;l at level m
contains descendants jΔþm; ji of spin j varying from
maxð0;l −mÞ to lþm. We need to know the matrix
elements between these descendants and the above in and
out states. Leaving aside the overall normalization of these
matrix elements, their dependence on the unit vector n must
be proportional to the traceless symmetric tensor ðnμ1 � � �nμj−
tracesÞ. Contracting two such tensors for n and n0 gives, up to

TABLE I. Summary of various conformal block normalizations
N d;l, Eqs. (52) and (62), used in the literature.

N d;l Reference
l!

ð−2Þlðd=2−1Þl Dolan and Osborn (2001, 2004), Rattazzi et al.
(2008), Penedones, Trevisani, and Yamazaki
(2016), this review

l!
ðd−2Þl Dolan and Osborn (2011); El-Showk et al. (2012,

2014b); Hogervorst and Rychkov (2013);
JULIBOOTS, Paulos (2014b); Costa et al. (2016b);
CBOOT, Ohtsuki (2016)

ð−1Þll!
4Δðd=2−1Þl Kos, Poland, and Simmons-Duffin (2014a); Kos et al.

(2015b, 2016); Li, Meltzer, and Stergiou (2017);
PYCFTBOOT, Behan (2017a)

l!
ðd=2−1Þl Poland, Simmons-Duffin, and Vichi (2012), Poland

and Stergiou (2015)

l!
4Δðd−2Þl Kos, Poland, and Simmons-Duffin (2014b);

MATHEMATICA notebook, Simmons-Duffin (2015b)
ð−1Þll!
ðd=2−1Þl Simmons-Duffin (2017c)

FIG. 4. A conformal frame defining the radial coordinate. From
Hogervorst and Rychkov, 2013.

59This result was first found by Dolan and Osborn (2001) by
resumming the OPE expansion.

60D plays the role of the Hamiltonian operator in radial quantiza-
tion and log r is time.
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a constant factor, the Gegenbauer polynomial Gegjðn · n0Þ
from Eq. (53).
We conclude that the conformal block has a power series

expansion of the form

gΔ12;Δ34

Δ;l ðu; vÞ ¼ rΔ
X∞
m¼0

rm
X
j

wðm; jÞGegjðηÞ; ð61Þ

where wðm; jÞ ≠ 0 only for maxð0;l −mÞ ≤ j ≤ lþm.
Using unitarity, one can also conclude that wðm; jÞ ≥ 0 if
Δ is above the unitarity bound and Δ12 ¼ −Δ34.
Since z ∼ 4ρ at small z, the OPE limit (52) becomes

gΔ12;Δ34

Δ;l ðr; ηÞ ∼
r→0

N d;lð4rÞΔGeglðηÞ; ð62Þ

which fixes wð0;lÞ ¼ N d;l4
Δ. To find higher wðm; jÞ, one

must determine the normalization of the descendant matrix
elements and not just their dependence on n;n0. While in
principle this can be done using conformal algebra, two more
efficient techniques will be discussed later.
The expansion (61) converges for jρj < 1, showing that

conformal blocks are smooth and real-analytic functions in
this region.61 The conformal block decomposition (43) can be
similarly argued to converge for jρj < 1.62 In terms of the z
coordinate, this covers the whole complex plane minus the cut
ð1;þ∞Þ, improving the convergence result argued below
Eq. (43) using the z frame.

3. Recursion relation from the Casimir equation

The first method to find the coefficients wðm; jÞ is to
substitute the expansion (61) into the Casimir equation. This
gives rise to recurrence relations, obtained by Hogervorst and
Rychkov (2013) and Costa et al. (2016b), which determine
wðm; jÞ for m > 0 starting from wð0;lÞ.
Namely, defining the functions fm;j ≡ rmGegjðηÞ, it is

straightforward to show that any of the operators fr; η; ∂r;∂ηg acting on these functions produces linear combinations of
fm�1;j�1. Similarly, the operator D in Eq. (50), when written
in radial coordinates, maps fm;j into a linear combination of
fmþm̂;jþ|̂ functions with suitable shifts. Equation (50) then
gives rise to a relation which can be economically written in
the form (Costa et al., 2016b)

X
ðm̂;|̂Þ∈S

cðm̂; |̂Þwðmþ m̂; jþ |̂Þ ¼ 0; ð63Þ

where the set S ¼ fð0; 0Þ; ð−1; 1Þ; ð−1;−1Þ;…g contains 30
points, all of which but the first have m̂ < 0. The coefficients
cðm̂; |̂Þ are known functions of the variables Δ12, Δ34, Δ, l, d,
m, and j (Costa et al., 2016b, attached MATHEMATICA note-
book). Using Eq. (63), the coefficient wðm; jÞ can then be
recursively expressed in terms of wðm0; jÞ with m0 < m.

4. Recursion relation from analytic structure

The second method exploits the analytic structure in Δ to
obtain a recursion relation for the conformal blocks. A similar
approach was first applied by Zamolodchikov (1984, 1987) to
the 2D Virasoro conformal blocks by considering them as
meromorphic functions of the central charge c or of the
scaling dimension Δ. For conformal blocks of external scalars
in arbitrary d, this idea was introduced by Kos, Poland, and
Simmons-Duffin (2014a, 2014b). It was formalized and
extended to conformal blocks for external operators with
spin in Penedones, Trevisani, and Yamazaki (2016). Here we
explain the external scalar case.
Equations (45) and (46) provide a convenient starting point

for discussing the analytic structure of a conformal block as a
function of the exchanged primary dimension Δ. When Δ is
above the unitarity bound, the Gram matrix GαβðΔÞ is positive
definite and invertible. However it turns out that for special
values of Δ ¼ Δ�

A at or below the unitarity bounds, the Gram
matrix becomes degenerate in the sense that some states are
null (i.e., have zero norm). The conformal block then develops
a pole in Δ − Δ�

A. Here we assume that there are only simple
poles, as is true, for example, in odd d (see the end of this
section for even d).
The crucial observation is that the residue of the pole is

proportional to another conformal block:

gΔ12;Δ34

Δ;l ðr; ηÞ ∼ RA

Δ − Δ�
A
gΔ12;Δ34

ΔA;lA
ðr; ηÞ: ð64Þ

Namely, we identify the first descendant state Onull
A of O

which becomes null when Δ → Δ�
A. Let ΔA ¼ Δ�

A þ nA be its
dimension in this limit and lA its spin. It can be shown that
Onull

A is annihilated by Kμ when Δ → Δ�
A and so can be

thought of as both a descendant and a primary. Consider then a
fictitious primary OA which has quantum numbers ðΔA;lAÞ
and which is unit normalized. It is the conformal block of such
a primary, with standard normalization (62), that appears in
the residue.
To be more precise, consider the rate with which Onull

A
becomes null as Δ → Δ�

A:

hOnull
A jOnull

A i ∼QAðΔ − Δ�
AÞ; ð65Þ

with QA some constant. When Onull
A becomes null, all of its

descendants become null too, with the rate proportional to
Eq. (65). Moreover, it can be shown that the Gram matrix in
the submultiplet consisting of these descendants is equal to
(65) times the (nonsingular) Gram matrix of the multiplet of
OA, up to corrections of higher order in Δ − Δ�

A. This explains
why the residue in Eq. (64) involves the whole conformal
block of OA.

63

61An exception occurs at the origin because of the rΔ factor.
62This can be shown rigorously in unitary CFTs (Pappadopulo

et al., 2012). While there are no general results concerning
the convergence of conformal block decomposition is nonunitary
theories, it appears reasonable to assume that it remains convergent in
the same region.

63The Casimir equation gives another argument for why the
residue is a conformal block. Near the pole the Casimir equation
for the block reduces to the Casimir equation for the residue
(Rychkov, 2016a). The Casimir eigenvalue of the null descendant
is the same as for the original block (since it is a descendant):
CΔ�;l ¼ CΔA;lA

. Finally, the boundary condition at r → 0 is con-
sistent with the residue being the conformal block.
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The coefficient RA in Eq. (64) is a product of three factors:

RA ¼ MðLÞ
A Q−1

A MðRÞ
A ; ð66Þ

where QA is defined in Eq. (65), while MðLÞ
A and MðRÞ

A come
from the 3pt functions hϕ3ϕ4jOnull

A i and hOnull
A jϕ1ϕ2i.

Using information about the poles, we can now write a
complete formula for the conformal block. It is convenient to
define the regularized conformal block hΔ;l ≡ hΔ12;Δ34

Δ;l by
removing a ð4rÞΔ prefactor:

gΔ12;Δ34

Δ;l ðr; ηÞ ¼ ð4rÞΔhΔ;lðr; ηÞ: ð67Þ

The function hΔ;l has the same poles inΔ as gΔ;l. Moreover
it is a meromorphic function of Δ and is therefore fully
characterized by its poles and the value at infinity:

hΔ;lðr; ηÞ ¼ h∞;lðr; ηÞ

þ
X
A

RA

Δ − Δ�
A
ð4rÞnAhΔ�

AþnA;lA
ðr; ηÞ: ð68Þ

Detailed analysis shows that the poles occurring in this
equation organize into one finite and two infinite sequences:

A Δ�
A nA lA

Inðn ∈ NÞ 1 − l − n n lþ n;
IInð1 ≤ n ≤ lÞ lþ d − 1 − n n l − n;
IIInðn ∈ NÞ d=2 − n 2n l.

ð69Þ

Using this definition, it is easy to check that the residues of the
poles themselves are nonsingular, except in even dimensions.
The h∞;l term and the constants RA are given by (Kos,

Poland, and Simmons-Duffin, 2014a; Penedones, Trevisani,
and Yamazaki, 2016)

h∞;lðr; ηÞ ¼
ð1 − r2Þ1−d=2N d;lGeglðηÞ

ðr2 − 2ηrþ 1Þð1−Δ12þΔ34Þ=2ðr2 þ 2ηrþ 1Þð1þΔ12−Δ34Þ=2 ;

RIn ¼
−nð−2Þn
ðn!Þ2

�
Δ12 þ 1 − n

2

�
n

�
Δ34 þ 1 − n

2

�
n
;

RIIn ¼
−nl!

ð−2Þnðn!Þ2ðl − nÞ!
ðdþ l − n − 2Þn

ðd=2þ l − nÞnðd=2þ l − n − 1Þn

�
Δ12 þ 1 − n

2

�
n

�
Δ34 þ 1 − n

2

�
n
;

RIIIn ¼
−nð−1Þnðd=2 − n − 1Þ2n

ðn!Þ2ðd=2þ l − n − 1Þ2nðd=2þ l − nÞ2n

�
Δ12 − d=2 − l − nþ 2

2

�
n

�
Δ12 þ d=2þ l − n

2

�
n

×

�
Δ34 − d=2 − l − nþ 2

2

�
n

�
Δ34 þ d=2þ l − n

2

�
n
: ð70Þ

The key property of Eq. (68) is that each pole residue comes
with a factor rnA. This means that it can be used as a recursion
relation to generate the regularized conformal block as a
power series in r. Indeed, suppose we want to compute
hΔ;lðr; ηÞ up to OðrNÞ. We use Eq. (68) keeping all poles with
nA ≤ N of which there are finitely many. The residues of these
poles themselves are needed up to smaller order OðrN−nAÞ, so
we get a recursion relation. This is one of the most elegant and
efficient currently known methods to compute the conformal
blocks outside of even d.
The described recursion relation is adequate for computing

conformal blocks in odd dimensions and also in generic d. It
cannot be applied directly in even d, since some simple poles
coalesce into double poles. This is not a problem, since even d
conformal blocks are known in closed form. Alternatively, one
can apply the recursion relation ϵ away from an even d and
take the limit ϵ → 0 after the coefficients of the r expansion
have been generated. This gives the correct result because the
conformal blocks vary analytically with d.

5. Rational approximation of conformal blocks and their
derivatives

We now describe how to construct rational approximations
to conformal blocks and their derivatives at a given point
ðr�; η�Þ, which permit an efficient numerical evaluation of

these quantities as a function of Δ. This will play an
important role in the numerical techniques described in
Sec. IV. Our focus will be on rational approximations to
scalar conformal blocks, but later in Sec. III.F.7 we also
describe how they can be extended to blocks for external
spinning operators.
A rational approximation for conformal block derivatives at

a given point can be obtained by combining the radial
expansion (61) and the recursion relation (68). It can be
expressed in the form

∂m
r ∂n

ηgΔ;lðr�; η�Þ ¼ ð4r�ÞΔ
�
Pmn
N ðΔÞ

QNðΔÞ
þOðrN−m� Þ

�
: ð71Þ

Here QN is a polynomial made by the product of poles given
in Eq. (69) up to order N,

QNðΔÞ ¼
Y

A¼ðI;II;IIIÞn;n≤N
ðΔ − Δ�

AÞ; ð72Þ

and Pmn
N ðΔÞ is a polynomial with degðPmn

N Þ ≤ degðQNÞþ
m. The approximation can be made arbitrarily precise by
increasing N at the expense of increasing the order of the
polynomials.
In numerical applications it is often desirable to keep the

polynomial order relatively small while maintaining a precise
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approximation. This can be accomplished using a trick
introduced by Kos, Poland, and Simmons-Duffin (2014b),
where one discards some number of poles but compensates by
modifying the residues of the kept poles. For example, if one
keeps n poles, one can choose their new residues by
demanding that the first n=2 Δ derivatives match between
the old and new functions at both the unitarity bound
and Δ ¼ ∞.
An important property that will be exploited in Sec. IV is

that the denominator QNðNÞ is always positive in unitary
theories. This follows from the fact that all the poles are at
values of Δ below the unitarity bound.
The techniques introduced in the previous sections allow

one to compute conformal blocks either in closed form or as a
power series in the variable r. Starting from these expressions
one can take a direct approach of first analytically computing
the r expansion to order N, taking r, η derivatives of the
resulting expression, and evaluating the result at the points r�,
η�. The result can then be recombined to the form in Eq. (71).
Since the crossing relations will be more simply written in z, z̄
coordinates, one then typically converts to z, z̄ derivatives at
the corresponding points z�, z̄� using a suitable transformation
matrix. This approach, while somewhat inefficient at large N
due to the need to compute the analytical dependence on η, has
been successfully used in the literature, almost always at the
crossing symmetric point z� ¼ z̄� ¼ 1=2 which corresponds
to η� ¼ 1, r� ¼ 3 − 2

ffiffiffi
2

p
.

A somewhat more efficient algorithm is the following:
(i) Compute the r expansion to order N and take derivatives

only along the radial direction η ¼ 1 (z ¼ z̄) using the
methods of either Sec. III.F.3 or III.F.4.64

(ii) Convert to z, z̄ derivatives along the diagonal z ¼ z̄
using a suitable transformation matrix.
(iii) Use the Casimir equation to recursively compute

derivatives in the transverse direction.
Let us briefly discuss the last step, also called the Cauchy-

Kovalevskaya method. Consider the Casimir differential
equation (50) and express it in the variables a ¼ zþ z̄,ffiffiffi
b

p ¼ ðz − z̄Þ. The radial direction corresponds to b ¼ 0.
Moreover, since conformal blocks are symmetric in z ↔ z̄,
their power series expansion away from the z ¼ z̄ line will
contain only integer powers of b. Let us denote the ∂m

a ∂n
b

derivative of the conformal block evaluated at z ¼ z̄ ¼ 1=2 by
hm;n. From step (i) we know hm;0 for any m. Then we can
translate the Casimir equation into a recursion relation for hm;n

(with n > 0) in terms of hm;n with lower values of n. This
recursion relation was obtained by El-Showk et al. (2012),
Appendix C for Δ12 ¼ Δ34 ¼ 0 and generalized by Behan
(2017a), Eq. (2.17). It has the following general structure:

hm;n ¼
X

m0≤m−1

mð� � �Þhm0;n

þ
X

m0≤mþ2

½ð� � �Þhm0;n−1 þ ðn − 1Þð� � �Þhm0;n−2�: ð73Þ

Since the Casimir equation is of second order, m0 can take
values only up to mþ 2. Also the recursion relation for h0;n
involves only hm0;n0 with n0 < n. Equation (73) is then all that
we need to perform step (iii).
Finally, let us mention a few software packages that

implement the efficient algorithms described in this section.
Their functionality for solving convex optimization problems
will be discussed in Sec. IV, so here we focus on how they
compute conformal blocks.
A MATHEMATICA notebook by Simmons-Duffin (2015b)

can be used for general scalar conformal blocks; at step (i) it
implements the recursion relation from analytic structure
discussed in Sec. III.F.4. It also implements the trick of
shifting pole residues as already described.
Another MATHEMATICA notebook by Paulos (2014a) can

also be used for general scalar conformal blocks. At step (i) it
implements the recursion relation from the Casimir equation
discussed in Sec. III.F.3. This notebook accompanies the
JULIA package JULIBOOTS for bootstrap computations using
linear programming (Paulos, 2014b).
A PYTHON package PYCFTBOOT (Behan, 2017a) and a SAGE

package CBOOT (Ohtsuki, 2016) contain integrated functions
that compute general scalar conformal block derivatives using
the above procedure. These two packages are designed as
front ends to the semidefinite program solver SDPB (Simmons-
Duffin, 2015a).

6. Shadow formalism

Next we briefly review the shadow formalism, which was
historically the very first technique to access the conformal
blocks (Ferrara et al., 1972), and it continues to play a role
conceptually and also in explicit computations.
Suppose we want to compute the conformal block gΔ;l of a

primary operator OΔ;l in a scalar 4pt function hϕ1ϕ2ϕ3ϕ4i.
Consider a primary “shadow operator” Õd−Δ;l which has the
same spin l as O and dimension d − Δ. We stress that this
operator is fictitious, it does not belong to the theory as a local
operator, and, in particular, the fact that its dimension is below
the unitarity bound is of no concern.
The starting point of the shadow formalism is the following

integral:

UΔ;lðx1;x2;x3;x4Þ¼
Z

ddxhϕ1ðx1Þϕ2ðx2ÞOμ1���μl
Δ;l ðxÞi

×hÕd−Δ;l;μ1���μlðxÞϕ3ðx3Þϕ4ðx4Þi; ð74Þ

where under the integral sign we have a product of the
conformal scalar-scalar-(spin-l) 3pt functions in Eq. (23),
with the spin-l operators having dimensions Δ and d − Δ.
The function UΔ;l has two special properties. First, it

conformally transforms in the same way as the 4pt function
hϕ1ðx1Þϕ2ðx2Þϕ3ðx3Þϕ4ðx4Þi. This is because the product
(operator × shadow) transforms as a dimension d primary
scalar, which compensates for the Jacobian in the trans-
formation of ddx. Consequently we can write

UΔ;l ¼ fΔ;lðu; vÞK4; ð75Þ
64In even dimensions one can start from the closed-form

expression of Sec. III.F.1 evaluated at η ¼ 1 and expand in r.
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whereK4 is as in Eq. (40) and fΔ;lðu; vÞ is some function of u
and v.
Second, it is straightforward to see that UΔ;l is an

eigenfunction of the Casimir operator acting at x1, x2, with
eigenvalue CΔ;l. Since the latter property is also true for the
CPWWO, it is tempting to identify fΔ;lðu; vÞ in Eq. (75) with
the conformal block (up to a proportionality factor). However,
this is not quite true. The point is that the conformal blocks of
the operator and of its shadow satisfy the same Casimir
equation, since their Casimir eigenvalues coincide: CΔ;l ¼
Cd−Δ;l. For this reason fΔ;l is a linear combination of the
block gΔ;l and of the shadow block gd−Δ;l; see Dolan and
Osborn (2011), Eq. (3.25), for the precise relation.
From the practical viewpoint, the main advantage of the

shadow formalism is that the integrand in Eq. (74) is quite
easy to write. The downside is that the resulting conformal
integrals are not always easy to evaluate, and that it is
necessary to disentangle the contribution of a proper con-
formal block from the shadow one.
Efficient ways to deal with these problems were proposed

by Simmons-Duffin (2014a). First of all, the integrals become
much easier to evaluate when written using the embedding
formalism. Second, to separate the block from the shadow one
uses that they transform differently under a monodromy
transformation

z → e2πiz; z̄ ¼ fixed; ð76Þ

gΔ;lðz; z̄Þ → e2πΔigΔ;lðz; z̄Þ: ð77Þ

The wanted conformal block is isolated via a monodromy
projector, implemented as a proper choice of the integration
contour in Eq. (74). This prescription allows one to extract
integral expressions for generic conformal blocks in arbitrary
d. In some cases the conformal integrals can be performed
exactly, and the results match the known formulas from other
techniques.

7. Spinning conformal blocks

Although in this review we mostly deal with scalar 4pt
functions, the bootstrap has also been successfully applied to
4pt functions of operators with spin; see, e.g., Secs. V.D for
j ¼ 1=2 spinors and V.F for l ¼ 1, 2 tensors in 3D. Here we
review the theory of the associated conformal blocks, referred
to as “spinning,” which present additional difficulties com-
pared to the blocks of external scalars.
As in the scalar case, spinning conformal blocks correspond

to the contribution of an entire conformal multiplet to a 4pt
function. They are defined by

hO3O4jPΔ;rjO1O2i

¼ K4

Xn3
a¼1

Xn03
b¼1

Xn4
c¼1

λðaÞ
12O†λ

ðbÞ
34OT

ðcÞ
4 ðxi; ζiÞGa;b

c;Δ;rðΔi; ri; u; vÞ:

ð78Þ

Here the external operators Oi ¼ OΔi;riðxi; ζiÞ are positioned
at xi and have their indices contracted with auxiliary

polarization vectors (or spinors) ζi. They transform in some
general SOðdÞ [or SpinðdÞ] representations ri. On the other
hand, OΔ;r is the exchanged operator (and O

†
Δ;r† its conjugate,

see the discussion in Sec. III.C.1), and PΔ;r is the projector
onto its conformal multiplet similar to Eq. (46).
The prefactor K4 is as in Eq. (40); it captures the scaling

properties of the 4pt function, leaving everything else dimen-
sionless. Equation (78) also contains a sum over possible

conformally invariant 4pt tensor structures TðcÞ
4 and a double

sum over possible 3pt function structures

hOΔ1;r1ðx1;ζ1ÞOΔ2;r2ðx2;ζ2ÞO†
Δ;r†ðx3;ζ3Þi

¼
Xn3
a¼1

λðaÞ
12O†T

ðaÞ
3 ðxi;ζi;fΔ1;r1g;fΔ2;r2g;fΔ;r†gÞ; ð79Þ

and similarly for n03. Finally, the functions G
a;b
c;Δ;rðΔi; ri; u; vÞ

are the spinning conformal blocks.
According to the above definition, when r is not a real

representation, both Ga;b
c;Δ;r and Ga;b

c;Δ;r† have to be considered

and generally both these blocks are nonzero. We will see a 4D
example for r ¼ ðl; lþ pÞ later.
Spinning blocks can be computed by reducing them to

“seed” blocks. Consider the simplest case when the exchanged
primary is a traceless symmetric spin l. To understand the
reduction to seeds, the key observation is that the 3pt tensor
structures (79) can be produced by differentiating the more
elementary scalar-scalar (spin-l) 3pt functions (23). Namely,
Costa et al. (2011a) showed that there exist “spinning-up”

differential operators DðaÞ
r1;r2 , depending on xi and ζi, such that

TðaÞ
3 ðxi; ζi; fΔ1; r1g; fΔ2; r2g; fΔ; rgÞ
¼ DðaÞ

r1;r2T3ðxi; ζ3; fΔ0
1; 0g; fΔ0

2; 0g; fΔ; rgÞ; ð80Þ

for a suitable basis of 3pt structures and choice of Δ0
i.
65 Note

that in Eq. (80) the third point is not affected. Therefore, in the
definition (78), the differential operators do not interfere with
the sum over descendants in PΔ;l. One concludes that the
spinning blocks can be obtained by differentiating the scalar
blocks:

K4ðΔiÞ
Xn4
c¼1

TðcÞ
4 ðxi; ζiÞGa;b

c;Δ;lðΔi; ri; u; vÞ

¼ DðaÞ
r1;r2D

ðbÞ
r3;r4K4ðΔ0

iÞgΔ12
0;Δ34

0
Δ;l ðu; vÞ; ð81Þ

where gΔ12
0;Δ34

0
Δ;l ðu; vÞ is the scalar conformal block discussed at

length in the previous sections, referred to as a seed block in
this situation.
In 3D, traceless symmetric tensors exhaust all bosonic

SOðdÞ representations, and therefore all bosonic spinning

65In a generic basis of 3pt structures, e.g., one that would be
naturally constructed using the embedding space or conformal frame
formalisms, there would be a linear combination of terms like the rhs
with different shifts.
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blocks can be obtained from scalar seeds via Eq. (81).66 The
3D spinning-up operators were also extended to external
spinors and exchanged spin l by Iliesiu et al. (2016a).
If a representation r does not couple to two scalars, its

conformal block cannot be reduced to the scalar seed using
this method. One therefore needs more seed blocks for such
representations. As an example, consider the half-integer spin
representations in 3D. The simplest pair of external operators
to which they couple are a scalar ϕ and a Majorana fermion ψ .
The corresponding conformal block hϕ3ψ4jPΔ;jjϕ1ψ2i for
half integer j can be taken as a seed. It was computed by
Iliesiu et al. (2016b), using recursion relations as in
Sec. III.F.4, making the list of 3D seeds complete.
A similar discussion holds in 4D. In this case the complete

set of seed blocks corresponds to the representations r ¼
ðl;lþ pÞ and ðlþ p;lÞ appearing in the 4pt function of two
scalars, one ðp; 0Þ tensor, and one ð0; pÞ tensor:

hϕ3ðx3ÞOΔ4;ð0;pÞðx4ÞjPΔ;rjϕ1ðx1ÞOΔ2;ðp;0Þðx2Þi: ð82Þ

All of these seeds were computed in closed form by Castedo
Echeverri, Elkhidir et al. (2016), making use of the shadow
formalism from Sec. III.F.6.
Once the seeds are known, a relation analogous to Eq. (81)

allows one to relate any conformal block to a combination of
seed blocks thorough a suitable set of spinning-up operators

DðaÞ
ri;rj . The latter can be nicely written in the embedding

formalism discussed in the Appendix or one of its general-
izations. The precise expressions can be found in Costa et al.
(2011a) and Iliesiu et al. (2016b) in 3D or Echeverri et al.
(2015) in 4D. In 4D there is also available a comprehensive
MATHEMATICA package CFTS4D (Cuomo, Karateev, and
Kravchuk, 2018) designed to facilitate general spinning 4D
conformal block computations. Spinors and spinor-tensor
correlators in arbitrary dimensions were instead studied by
Isono (2017).
Let us briefly mention several other ideas which have

proved useful when dealing with spinning blocks. Karateev,
Kravchuk, and Simmons-Duffin (2018) introduced a more
general class of “weight-shifting” operators which act on
correlation functions. In addition to reproducing the spinning-
up operators as a special case, they have a further interesting
consequence: when acting on a conformal block these
operators can change the SOðdÞ [or SpinðdÞ] representation
of the exchanged state by utilizing the 6j symbols of the
conformal group. Through repetitive use of these operators, it
is possible to express any conformal block, including the
seeds, in terms of the scalar ones.67 These methods also lead to
efficient derivations of various recursion relations satisfied by
the conformal blocks.
The Casimir recursion approach from Sec. III.F.3

was extended to arbitrary external bosonic operators by

Costa et al. (2016b). More recently, Kravchuk (2018) con-
sidered similar expansions for arbitrary external operators, and
related the recursion relation coefficients to the 6j symbols of
Spinðd − 1Þ, which are known in closed form for arbitrary
representations in d ¼ 3, 4, and for representations entering
the seed blocks in arbitrary d. He also discusses how to
convert from the z to the ρ coordinate as is needed for practical
applications.
The pole expansion of Sec. III.F.4 has also been generalized

to spinning conformal blocks (Costa et al., 2016b; Penedones,
Trevisani, and Yamazaki, 2016). Although no closed-form
expressions are known for the analogs of h∞ and of the
residues RA in Eq. (68), these ingredients can sometimes be
found by combining this approach with the spinning-up or
weight-shifting operators as in Iliesiu et al. (2016b),
Dymarsky et al. (2017), and Karateev, Kravchuk, and
Simmons-Duffin (2018). Commuting these operators with
the pole expansion sum, one obtains the expected pole
expansion for spinning conformal blocks. By truncating the
pole expansion, rational approximations similar to those
considered in Sec. III.F.5 can then be constructed for each
spinning block tensor structure.
Finally, the shadow block technique discussed in

Sec. III.F.6 has been used to compute the conformal blocks
appearing in 4pt function of two scalars and two identical
conserved currents (Rejon-Barrera and Robbins, 2016).

G. Global symmetry

A majority of CFTs also possess a global symmetry group
G, which acts on local operators in a way that commutes with
conformal transformations.68 The conformal multiplet is then
characterized by an additional label: an irreducible G repre-
sentation π in which the primary transforms. The cases of
interest to physics are when G is a finite discrete group or
compact Lie group, or a product thereof.
The correlator of n primaries will then be as discussed in

Sec. III.C, times an extra factor which determines the
dependence on indices in G representations. This extra factor
is a ðπ1 ⊗ � � � ⊗ πnÞG tensor, i.e., a G-invariant tensor
belonging to the tensor product representation.
By Schur’s lemma, the 2pt function can be nonzero only if

π2 ¼ π̄1 are conjugate representations (or the same represen-
tation if self-conjugate), in which case its form is uniquely
determined. The three typical cases of a real, pseudoreal,
or complex representation are illustrated by the extra factors
being δab for π1 ¼ π2 a fundamental of SOðNÞ, iϵab for
π1 ¼ π2 a fundamental of SUð2Þ, and δb̄a for π1ðπ2Þ
(anti)fundamentals of SUðNÞ, N > 2.69,70

The 3pt function can be nonzero only if ðπ1 ⊗ π2 ⊗ π3ÞG is
nonempty. This leads to selection rules. For example, if π1 and

66Some explicitly worked out cases in 3D are for external operator
pairs being (current)-(current) (Costa et al., 2011a), scalar-(current or
stress tensor) (Li, Meltzer, and Poland, 2016a), and (stress tensor)-
(stress tensor) (Dymarsky et al., 2018).

67Explicit formulas expressing the seed blocks in 3D and 4D are
provided by Karateev, Kravchuk, and Simmons-Duffin (2018).

68If the CFT arises as an IR fixed point of a gauge theory, we work
only with gauge-invariant local operators. As mentioned in Sec. II.A,
the gauge group does not enter into our considerations.

69The indices of global symmetry representations will be denoted
by either a; b;… or i; j;… depending on the situation.

70In unitary CFTs, complex representations π necessarily occur in
conjugate pairs, so it is natural to choose an operator basis so that O,
O† transform in π, π̄.
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π2 are fundamentals of SOðNÞ, then π3 can be either a singlet
or a rank-2 traceless symmetric or antisymmetric SOðNÞ
tensor. The invariant tensors corresponding to these three
possibilities can be readily written down (Rattazzi, Rychkov,
and Vichi, 2011a).
Alternatively one can think in terms of the OPE:

hOπ1Oπ2Oπ3i is nonzero if O†
π̄3 appears in the OPE

Oπ1 ×Oπ2 . The global symmetry structure is given by the
Clebsch-Gordan coefficient for π̄3 in π1 ⊗ π2. Note that the
tensor product π1 ⊗ π2 may include several copies of a given
representation, in which case there may be several different
invariant tensors possible in the 3pt function. This is similar to
how conformal tensor structures for 3pt functions of primaries
are in general nonunique.
The 4pt functions are proportional to nonzero tensors

appearing in ðπ1 ⊗ π2 ⊗ π3 ⊗ π4ÞG. In a CPW decomposi-
tion such as Eq. (40), individual CPWs will be proportional to
the invariant 4pt tensors obtained by contracting the 3pt
tensors from ðπ1 ⊗ π2 ⊗ πÞG and ðπ3 ⊗ π4 ⊗ π̄ÞG, where π
is the exchanged representation. By basic group theory
(decomposing π1 ⊗ π2 and π3 ⊗ π4 into irreducibles and
applying Schur’s lemma), it is easy to see that any 4pt
invariant tensor can be obtained in this way for an appropriate
choice of π.
Another interesting possibility for additional symmetry is

supersymmetry, in which case the conformal group is
enhanced to a superconformal group, primary operators are
grouped into supersymmetry multiplets, and conformal blocks
are enhanced to superconformal blocks. Later in Sec. VII we
will describe in more detail some of the consequences of
superconformal symmetry for the bootstrap.

H. Conserved local currents

Next we turn to the conserved currents associated with
conformal or global symmetries. Such currents are supposed
to exist at the IR fixed points of RG flows starting from a
microscopic Lagrangian or from a lattice model with finite-
range interactions.71

1. Stress tensor

In the axiomatic approach considered here, a local CFT is
simply defined as a CFT having a local conserved stress-
tensor operator Tμν. In the operator classification, Tμν is a
traceless symmetric spin-2 primary of scaling dimension d.72

In local CFTs, the conformal algebra generators (12) are
obtained by integrating the stress tensor against a vector field
ϵJν ðxÞ, describing the corresponding infinitesimal conformal

transformation, over a surface Σ surrounding the origin. Thus
we have

J ¼ −
Z
Σ
dSμϵJν ðxÞTμνðxÞ; ð83Þ

which is independent of the shape of Σ. See Simmons-Duffin
(2017b) for a detailed review of this way of introducing the
conformal algebra.73 In particular, the dilatation generatorD is
given by Eq. (83) with ϵDν ¼ xν.
It is conventional to normalize the stress tensor via Eq. (83).

Namely, inserting the above surface operator in any correlator
should have the effect of replacing the operator at the origin by
½J ;Oð0Þ�, assuming the other operators are outside of the
region enclosed by Σ. This constraint is called an (integrated)
Ward identity.
A frequently occurring case is to consider the 3pt function

hOð0ÞTμνðxÞOðyÞi which by the Ward identity should reduce
to h½J ;Oð0Þ�OðyÞi after integration. Since ½J ;Oð0Þ� is
known, this provides constraints on the coefficients of various
tensor structures in the 3pt function.
These constraints should be imposed in addition to con-

straints from conservation of Tμν. Vanishing of the divergence
is automatic for 2pt functions, while in general it must be
imposed on 3pt functions containing Tμν, placing constraints
on the allowed tensor structures. Such constraints are not
independent if the other operators are scalars, but become
nontrivial if they have spin; see Osborn and Petkou (1994) and
Costa et al. (2011b).74

In particular, whenO ¼ ϕ is a scalar, there is just one tensor
structure. Using the Ward identity, e.g., for J ¼ D one fixes
the OPE coefficient completely. In the notation of Eq. (23) we
have (Osborn and Petkou, 1994)

hϕðx1Þϕðx2ÞTðx3; ζÞi ¼ λϕϕT ½ðZ123 · ζÞ2 −
1

2
ζ2�K3;

λϕϕT ¼ −
dΔϕ

ðd − 1ÞSd
; Sd ¼

2πd=2

Γðd=2Þ :

ð84Þ

71In a classical or weakly coupled quantum local field theory, the
existence of local conserved currents follows from Noether’s theo-
rem. We are not aware of a general Noether’s theorem for strongly
coupled theories and lattice models. The existence of local conserved
currents in these cases remains a physically motivated assumption,
taken for granted in most of the literature. For an intuitive argument
for the existence of a local stress tensor using the RG, see Cardy
(1996), Sec. 11.3.

72Conformal invariance allows one to consistently impose con-
servation of the stress tensor. In technical language, the divergence of
the dimension d traceless symmetric spin-2 primary is a null
descendant and can be set to zero.

73However, it should be stressed that there are physically interest-
ing theories which satisfy all CFT axioms except for the existence of
the local stress tensor. Examples include defect and boundary CFTs
(see Sec. V.B.6 and footnote 109), and critical points of models with
long-range interactions; see, e.g., Paulos et al. (2016) and Behan
et al. (2017a, 2017b).

74Some important cases are whenO is a conserved spin-1 vector or
the stress tensor itself. In both of these cases there are several tensor
structures allowed by conformal invariance and conservation and
only one independent Ward identity; see Osborn and Petkou (1994)
and Dymarsky et al. (2017, 2018). Ward identity constraints on 3pt
functions hψTψ̄iwith ψ a fermion were studied in 3D by Iliesiu et al.
(2016a) and in 4D by Elkhidir and Karateev (2017). In these cases
there are two independent tensor structures allowed by conservation,
and their coefficients can both be fixed by considering the Ward
identity for D as well as for Pμ or Mμν.

David Poland, Slava Rychkov, and Alessandro Vichi: The conformal bootstrap: Theory, numerical …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 015002-20



It can also be shown that the stress tensor does not couple to
two scalars of unequal dimension, as the 3pt function structure
(23) is then incompatible with conservation.
Since we normalize via Eq. (83), the stress-tensor 2pt

function will not be unit normalized but will contain a
constant CT called the central charge75:

hTðx1; ζ1ÞTðx2; ζ2Þi ¼
CT

S2d

ðζ1 · I · ζ2Þ2 − ð1=dÞζ21ζ22
ðx212Þd

: ð85Þ

A similar convention will be set below for conserved spin-1
currents, while the rest of primaries are kept unit normalized.
In the normalization equations (84) and (85), the

contribution of the stress tensor to 4pt functions of scalars
is given by76

hϕðx1Þϕðx2Þϕ0ðx3Þϕ0ðx4Þi ⊃ pd;2g
0;0
d;2ðu; vÞK4;

pd;2 ¼ λϕϕTλϕ0ϕ0T
S2d
CT

¼ d2

ðd − 1Þ2
ΔϕΔϕ0

CT
: ð86Þ

As usual, the conformal block is normalized according to
Eq. (52). This constraint can play an important role in
bootstrap analyses involving multiple 4pt functions, as it
implies that the stress tensor contributes to different 4pt
functions in a correlated way.
While outside of 2D there is no analog of the “c theorem”

(Zamolodchikov, 1986) for CT,
77 the central charge typically

scales with the number of degrees of freedom. This is
illustrated by the values of the central charge of a free theory
containing nϕ scalars, nψ Dirac fermions, and nA gauge
vectors (in 4D only), given by (Osborn and Petkou, 1994)

CT ¼ d
d − 1

nϕ þ 2bd=2c−1dnψ þ 16δd;4nA: ð87Þ

2. Global symmetry currents

The case of a continuous global symmetry in a local CFT is
analogous. In this case there are conserved spin-1 currents JAμ
which transform in the adjoint representation of G and have
scaling dimension d − 1. Global symmetry generators are
obtained by integrating JAμ over a surface, which defines a
normalization for the current and leads to Ward identities.
For concreteness, consider scalar operator ϕi with gener-

ators ðTAÞji transforming in some representations r of G as
well as ϕ†j transforming in r̄. We assume that the scalar 2pt
function is unit normalized, hϕiϕ

†ji ∝ δji , as discussed in

Sec. III.G. The generators of the global symmetry trans-
formations are then QA ¼ −i

R
Σ dS

μJAμ and the associated

Ward identity requires ½QA;ϕi� ¼ −ðTAÞjiϕj. The 3pt function
with JA is then fixed to be (Osborn and Petkou, 1994; Poland
and Simmons-Duffin, 2011)

hϕiðx1Þϕ†jðx2ÞJAðx3; ζÞi ¼ −
i
Sd

ðTAÞji ½Z123 · ζ�K3: ð88Þ

In this normalization one can define a current central charge
CJ by

hJAðx1; ζ1ÞJBðx2; ζ2Þi ¼ τAB
CJ

S2d

ζ1 · I · ζ2
ðx212Þd−1

; ð89Þ

where τAB ¼ Tr½TATB�.
In the end, rescaling JAμ to match the normalization of

Eq. (22), the contribution of a spin-1 conserved current to the
scalar 4pt function is

hϕiðx1Þϕ†jðx2Þϕkðx3Þϕ†lðx4Þi ⊃ −
T jl

ik

CJ
gd−1;1ðu; vÞK4;

T jl
ik ¼ ðτ−1ÞABðTAÞjiðTBÞlk: ð90Þ

Note that τAB in Eq. (89), ðTAÞji in Eq. (88), and T jl
ik are

examples of 2pt, 3pt, and 4pt G-invariant tensors as discussed
in Sec. III.G.
For example, if ϕ is a complex scalar charged under a Uð1Þ

with charge 1, then T jl
ik ¼ T ¼ 1. In the case in which ϕi is in

the fundamental representation of SUðNÞ or SOðNÞ (where
r̄ ¼ r) we have instead

T jl
ik ¼ δliδ

j
k −

1

N
δjiδ

l
k ½G ¼ SUðNÞ�; ð91Þ

T ijkl ¼ 1
2
ðδilδkj − δikδjlÞ ½G ¼ SOðNÞ�: ð92Þ

A note about normalization is in order: once the generators
TA are chosen, the Ward identity fixes the normalization of JA

and determines CJ according to our definition. Clearly, if we
use a different generator normalization, then the value of CJ
would be modified accordingly. Moreover, once Eq. (88) is
established, the Ward identity fixes the normalization of any
other generator in any other representation.
Finally, it should be mentioned that while free theories

contain higher-spin conserved currents, there exist no-go
theorems showing that interacting CFTs in d ≥ 3 dimensions
do not have conserved currents of spin l ≥ 3; see Maldacena
and Zhiboedov (2013) and Alba and Diab (2016). This can be
thought of as a CFT analog of the Coleman-Mandula theorem
for S matrices.

I. Crossing relations

The main idea of the conformal bootstrap is to constrain
CFT data by using the crossing relations for 4pt functions; see
Fig. 1. Crossing relations are usually analyzed in the con-
formal frame of Fig. 2. Consider the 4pt function of scalar

75This corresponds to one of the central charge definitions in
d ¼ 2. Note, however, that in d > 2 there is no known analog of the
Virasoro algebra interpretation of the central charge.

76This is easy to find by rescaling Tμν to match the normalization
in Eq. (22).

77Instead, it is known that in 3D the sphere free energy satisfies an
“F theorem” [see Jafferis et al. (2011), Klebanov, Pufu, and Safdi
(2011), and Casini and Huerta (2012)], while in 4D the a anomaly
coefficient satisfies an “a theorem” [see Cardy (1988), Osborn
(1989), Jack and Osborn (1990), Komargodski and Schwimmer
(2011), and Komargodski (2012)].
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operators in this frame and expand it into conformal blocks in
the (12)-(34) and in the (32)-(14) OPE channels, referred to as
the s and t channels. The two channels are obtained by
interchanging points 1 and 3, which transforms z → 1 − z.
Taking into account the value of the K4 factor in both
channels, and equating the two CPW decompositions, we
get the crossing relation

X
O

λ12Oλ34O
gΔ12;Δ34

ΔO;lO
ðz; z̄Þ

ðzz̄ÞðΔ1þΔ2Þ=2

¼
X
O0

λ32O0λ14O0
gΔ32;Δ14

ΔO0 ;lO0 ð1 − z; 1 − z̄Þ
½ð1 − zÞð1 − z̄Þ�ðΔ3þΔ2Þ=2 : ð93Þ

Here the sums run over the operators O and O0 which appear
in the OPE in the two channels.
One frequently occurring special case is a 4pt function of

identical scalars hσσσσi. Then the crossing relation simplifies
because O ¼ O0 and also because we get squares of the OPE
coefficients λσσO. It is customary to write it as

X
O

λ2σσOF
Δσ
ΔO;lO

ðz; z̄Þ ¼ 0; ð94Þ

where

FΔσ
Δ;lðz; z̄Þ ¼ ½ð1 − zÞð1 − z̄Þ�Δσg0;0Δ;lðz; z̄Þ

− ðzz̄ÞΔσg0;0Δ;lð1 − z; 1 − z̄Þ: ð95Þ

Among the operators O which appear in Eq. (94), a special
role is played by the identity operator and (in local CFTs) by
the stress tensor, because these are two operators of known
dimension whose OPE coefficients are nonzero. In particular,
the identity operator appears with the coefficient λσσ1 ¼ 1. By
studying the z → 0 limit of the crossing relation, it is easy to
show analytically that there should be infinitely many further
operators with nonzero λσσO (Rattazzi et al., 2008). We will
see later what can be learned about these operators using
numerical methods.
Going back to the general case (93), it is similarly

convenient to rewrite it as follows (Kos, Poland, and
Simmons-Duffin, 2014a). We introduce the functions

Fij;kl
�;Δ;lðz; z̄Þ ¼ ½ð1 − zÞð1 − z̄Þ�ðΔkþΔjÞ=2gΔij;Δkl

Δ;l ðz; z̄Þ
� ðzz̄ÞðΔkþΔjÞ=2gΔij;Δkl

Δ;l ð1 − z; 1 − z̄Þ; ð96Þ

which are symmetric or antisymmetric under z → 1 − z,
z̄ → 1 − z̄. We then take the sums and differences of
Eq. (93) with the same equation with z, z̄ replaced by
1 − z, 1 − z̄. Then Eq. (93) is equivalent to the following
pair of equations:

X
O

λ12Oλ34OF
12;34
∓;ΔO;lO

ðz; z̄Þ

�
X
O0

λ32O0λ14O0F32;14
∓;ΔO0 ;lO0 ðz; z̄Þ ¼ 0: ð97Þ

If all operators are equal, the lower sign case is trivial, and
the upper sign reduces to the single correlator crossing
relation (94).
Crossing relations can be imposed at any point z, z̄ where

both the s and t channels converge. From the discussion in
Sec. III.F.2, this is the plane of all complex z minus cuts along
ð1;þ∞Þ where the s channel diverges and ð−∞; 0Þ where the
t channel diverges. As we will see in Sec. IV.A, the standard
choice in numerical studies is to impose crossing in a Taylor
expansion around the point z ¼ z̄ ¼ 1=2, which is well inside
this region.
There is also a third u-channel OPE (13)-(24). The

u channel is typically not considered in the numerical boot-
strap, because it is not convergent at z ¼ z̄ ¼ 1=2.78 For four
identical external scalars, the u channel is automatically
satisfied if the s-t channel crossing relation holds (Poland
and Simmons-Duffin, 2011). For nonidentical external oper-
ators, the u channel is important. To impose the u-channel
crossing relation, one changes the conformal frame by
interchanging the positions of operators 1 and 2 (Rattazzi,
Rychkov, and Vichi, 2011a). The u channel in the original
frame becomes the t channel in the new frame, and crossing
can be imposed around z ¼ z̄ ¼ 1=2. The s-channel CPW
decomposition in the new frame differs only by signs of all
odd-spin terms because of Eq. (25).
In the case when the CFT has a global symmetry G, the

crossing relations were formalized by Rattazzi, Rychkov, and
Vichi (2011a). Consider a 4pt function of scalar operators
transforming in G representations πi. The exchanged oper-
ators Oπ then transform in representations π appearing in the
tensor product decompositions of πi ⊗ πj. Each term in the
s- and t-channel CPW decompositions comes multiplied with
a tensor structure obtained by contracting two 3pt G-invariant
tensors, as described in Sec. III.G. We represent it by a vector
V⃗π in the space of 4pt G-invariant tensors ðπ1 ⊗ π2 ⊗ π3 ⊗
π4ÞG. (Anti)symmetrizing under z → 1 − z, z̄ → 1 − z̄, the
crossing relation takes form (97), with every term multiplied
by the corresponding vector V⃗π. It is thus a constraint in the
space of vector functions. As an explicit example, crossing
relations of 4pt functions hϕaϕbϕcϕfi and hϕaϕ

†bϕcϕ
†fi for

ϕa a fundamental of SOðNÞ or SUðNÞ were found in Rattazzi,
Rychkov, and Vichi (2011a).
A similar vector structure arises when analyzing 4pt

functions of operators with Lorentz spin, with the conformally

invariant 4pt tensors TðcÞ
4 in Eq. (78) playing the role of the

G-invariant 4pt tensors in the case of global symmetry.
General crossing relations involving both global symmetry
and Lorentz indices were formalized by Kos, Poland, and
Simmons-Duffin (2014a).

1. Explicit solutions to crossing

Many nontrivial 2D CFTs have exact solutions (e.g., the
minimal models), and the conformal block decompositions of
their 4pt functions provide explicit solutions to crossing
relations. Here we will discuss a few explicit solutions to

78Although it can be considered when crossing relations are
analyzed around another point, e.g., u ¼ v ¼ 1 (Li, 2017).
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crossing known in d > 2. Their existence is important, even
though as we will see they come from theories which are not
physically the most interesting ones. For example, it is
common to check the numerical algorithms against the known
explicit solutions to exclude coding errors, before proceeding
to study more physically interesting solutions numerically.
Essentially all explicit solutions in d > 2 are provided by

scale invariant “Gaussian theories,” i.e., theories coming from
a quadratic action written in terms of a fundamental field and
not having any massive parameter.79 The correlation functions
of such theories are generated by Wick’s theorem from the
basic 2pt function of the fundamental field. The simplest
examples are the massless free scalar and massless free
fermion theory, which are conformally invariant in any d,
and the free Abelian gauge theory, conformally invariant
in d ¼ 4. In 4D, explicit conformal block decompositions
of 4pt scalar correlation functions hOOOOi in these theories
(for O ¼ ϕ, ϕ2, ψ̄ψ , F2

μν) were obtained by Dolan and
Osborn (2001).
Another class of Gaussian theories are mean field theories

(MFTs), also called generalized free fields (Heemskerk et al.,
2009; El-Showk and Papadodimas, 2012, Sec. 4). Correlation
functions in these theories have the same disconnected
structure generated by Wick’s theorem as in the above-
mentioned free theories. The only difference is that the scaling
dimension of the fundamental field, fixed to a particular value
in free theories, becomes a free parameter in MFT.80 For
example, we can consider the MFT of a scalar field ϕ of
arbitrary dimension Δϕ. Such a MFT is unitary as long as Δϕ

satisfies the unitarity bound and reduces to the free massless
scalar for Δϕ ¼ ðd − 2Þ=2. Just as for the usual free theories,
the full space of operators in MFTs can be classified by
considering normal-ordered products of the fundamental field
and its derivatives.81 For example, there is an operator ϕ2

which has dimension 2Δϕ.
Although relatively trivial and nonlocal, MFTs satisfy most

CFT axioms (except for the existence of a local stress tensor).
As wewill see later, they frequently fall inside regions allowed
by the bootstrap bounds, so it helps to be familiar with them.
Explicit conformal block decompositions of MFT 4pt func-
tions containing scalars were obtained by Heemskerk et al.
(2009) for d ¼ 2, 4 and by Fitzpatrick and Kaplan in
general d.

IV. NUMERICAL METHODS

A. Convex optimization and linear programming

The CFT crossing relations describe a continuously infinite
number of constraints on the CFT data parametrized by the
cross ratios. In order to study the crossing relations numeri-
cally one must discretize this set of constraints. Starting with
the results of Rattazzi et al. (2008), the common approach
adopted in numerical studies is to Taylor expand the crossing
relations around a point in cross-ratio space, typically taken to
be the symmetric configuration u ¼ v ¼ 1=4 or equivalently
z ¼ z̄ ¼ 1=2. If one takes derivatives only up to a certain order
Λ, then one obtains a finite set of constraints.
Before proceeding, let us highlight the fact that a number of

other choices could be made here, e.g., evaluating the crossing
equations at different values of the cross ratios, Taylor
expanding around other points, integrating the crossing
equations, etc.82 Here we focus on the approach of Taylor
expanding around the symmetric configuration since it works
well in practice and is the most common approach in the
literature. One justification for this choice of the expansion
point is that it makes both the direct and the crossed channel in
the conformal block expansion to converge maximally fast
(Pappadopulo et al., 2012). However, it is by no means
obvious that it is the most efficient way to discretize the
crossing relations.
In the case of a single 4pt function of identical scalars

hσσσσi, the resulting constraints take the form

0 ¼
X
O

λ2σσOF⃗
Δσ
ΔO;lO

; ð98Þ

where F⃗Δσ
ΔO;lO

can be thought of as a vector with components

ðF⃗Δσ
ΔO;lO

Þmn ¼ ∂m
z ∂n

z̄F
Δσ
ΔO;lO

ðz; z̄Þjz¼z̄¼1=2; ð99Þ

where we take derivatives of the functions (95) and keep
components up to a cutoff mþ n ≤ Λ.83 This computation
will thus involve derivatives of conformal blocks up to some
finite order.
Computing the vectors F⃗Δσ

Δ;l constitutes a nontrivial pre-
liminary step for analyzing Eq. (98). This step is handled
starting from one of the many exact or approximate expres-
sions for conformal blocks discussed in Sec. III.F. The state-
of-the-art approach is to use the rational approximation, see
Sec. III.F.5, where available software packages are also
described. This approach gives rise to approximate expres-
sions which reproduce F⃗Δσ

Δ;l with any desired precision. These
expressions can be efficiently evaluated “on the fly,” as needed
in the continuous simplex algorithm from Sec. IV.A.1.

79The only exceptions known to us are the “fishnet theories”—
nonunitary biscalar field theories integrable in the large-N limit
(Gürdoğan and Kazakov, 2016). Recently some conformally invariant
4pt functions and their conformal block decompositions were computed
in such theories in 4D (Grabner et al., 2018), and in their nonlocal
generalizations to arbitrary d (Kazakov and Olivucci, 2018).

80This structure naturally emerges in large-N CFTs as a conse-
quence of large-N factorization. This is particularly transparent in
CFTs with holographic duals, since MFT correlation functions are
generated by free massive fields in AdSdþ1 and the arbitrary scaling
dimension is determined by the mass.

81The OPE ϕ × ϕ contains only operators of the schematic form
ϕð∂2Þn∂lϕ, which have spin l and dimension 2Δϕ þ 2nþ l.

82Some of these alternative ideas have been explored by
Hogervorst and Rychkov (2013), Sec. 4.2, Castedo Echeverri,
Harling, and Serone (2016), Li (2017), Mazac (2017), and Mazac
and Paulos (2018).

83Since the functions (95) are odd under z → 1 − z, z̄ → 1 − z,
only components with mþ n odd lead to nontrivial equations.
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They can also be used as an input to the semidefinite
programming methods described in Sec. IV.B.
We now proceed to describe strategies on how to decide if

Eq. (98) has solutions, i.e., if there exists some choice of the
exchanged CFT spectrum fΔO;lOg and OPE coefficients
λσσO which makes it satisfied. First, let us remark that Eq. (98)
is a set of linear equations in λ2σσO. This is at the heart of both
the linear programming approaches described in this section
as well as the extremal functional and truncation methods
described later. In particular, if one has a candidate CFT
spectrum for operators appearing in σ × σ but does not know
the OPE coefficients, one can straightforwardly solve a linear
algebra problem to find the coefficients.
In unitary (or reflection positive) CFTs, Eq. (98) states that

a sum of vectors must add to zero with positive coefficients,
due to λσσO necessarily being real. For some choices of the
CFT spectrum fΔO;lOg this is not possible, as illustrated in
Fig. 5. When it is not possible one can identify a separating
plane α through the origin such that all vectors point to one
side of the plane.84

This observation forms the basis for the first numerical
strategy of analyzing the crossing relation (Rattazzi et al.,
2008): input some assumption about the CFT spectrum (e.g., a
gap in the scalar spectrum with all other operators satisfying
unitarity bounds) and numerically search for a separating
plane α. Equivalently we can say that we are applying a linear
functional

P
mnαmn∂m

z ∂n
z̄ ½·�jz¼z̄¼1=2 to the crossing relations

and checking if it is possible to derive a contradiction.
Concretely, one can look for a vector α⃗ such that the scalar
product is strictly positive on at least one operator whose OPE
coefficient is nonzero (this may be the identity, the stress
tensor, or any other operator that we assume appears in the
OPE):

α⃗ · F⃗Δσ
ΔO� ;lO� > 0; ð100Þ

while it is non-negative for all other fΔO;lOg allowed by our
assumptions:

α⃗ · F⃗Δσ
ΔO;lO

≥ 0: ð101Þ

Each inequality α⃗ · F⃗Δσ
ΔO;lO

≥ 0 identifies a half-space and their
intersection carves out a convex cone.
There is still one issue before the vector α⃗ can be searched

for numerically—a priori there are an infinite number of
allowed vectors labeled by all fΔO;lOg. The first numerical
bootstrap studies85 employed a discretization approach:
namely, they discretized the set fΔO;lOg using some small
spacing between allowed dimensions so that there are a finite
number of linear inequalities satisfied by a finite number of
unknown coefficients α⃗. Then the problem becomes a standard

linear programming problem and can be solved using standard
algorithms. These include simplex algorithms, where one
moves from vertex to vertex on the edge of the feasible region,
or interior point algorithms, where one instead traverses the
interior of the feasible region. Software packages that have
been used in the past for this purpose are MATHEMATICA, the
GNU LINEAR PROGRAMMING KIT (GLPK), and the IBM ILOG

CPLEX OPTIMIZER. This discretization approach is currently
considered to be obsolete, although it retains pedagogical
value. More efficient approaches avoiding discretization will
be discussed next.
One can slightly modify the problem in order to place

bounds on OPE coefficients (Caracciolo and Rychkov, 2010).
By isolating one particular contributionO� and again applying
a functional α⃗ one rewrites the equation as

λ2σσO� α⃗ · F⃗Δσ
ΔO� ;lO� ¼ −α⃗ · F⃗Δσ

0;0 −
X
O

λ2σσOα⃗ · F⃗Δσ
ΔO;lO

: ð102Þ

Then by imposing the normalization condition α⃗ · F⃗Δσ
ΔO� ;lO� ¼

1 and the positivity constraints α⃗ · F⃗Δσ
ΔO;lO

≥ 0 one obtains the

upper bound λ2σσO� ≤ −α⃗ · F⃗Δσ
0;0. The strongest upper bound is

obtained by minimizing −α⃗ · F⃗Δσ
0;0, which yields an optimiza-

tion problem that can be solved with linear programming
algorithms, adopting the above-mentioned discretization
approach or other methods discussed next. Alternatively,
one can also seek lower bounds by instead imposing α⃗ ·

F⃗Δσ
ΔO;lO

≤ 0 and maximizing −α⃗ · F⃗Δσ
0;0 (Poland, Simmons-

Duffin, and Vichi, 2012). However, in general it is not
possible to obtain lower bounds on OPE coefficients unless
the operator O� is isolated in the allowed spectrum, since one
could always imagine that O� has a zero OPE coefficient but
operators infinitesimally close to it have nonzero coefficients.

1. Continuous primal simplex algorithm

Instead of looking for a vector α⃗ with the desired positivity
properties, an alternate strategy is to search directly for a set of
vectors fF⃗Δσ

ΔO;lO
g appearing in Eq. (98), subject to the

positivity conditions λ2σσO ≥ 0. This search can be viewed
as a “primal” formulation of the linear program, whereas the

FIG. 5. Left: A case where vectors can sum to zero with positive
coefficients. Right: A case where vectors cannot sum to zero with
positive coefficients and there exists a separating plane α such
that all vectors point on one side of the plane. From Poland and
Simmons-Duffin, 2016.

84Some vectors may point in the plane but at least one must point
outside of it.

85See Rattazzi et al. (2008), Rychkov and Vichi (2009),
Caracciolo and Rychkov (2010), Poland and Simmons-Duffin
(2011), Rattazzi, Rychkov, and Vichi (2011a, 2011b), Vichi
(2011, 2012), and El-Showk et al. (2012).
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search for α⃗ described above can be viewed as the related
“dual” problem. Note that in this formulation there are a
continuously infinite number of possible vectors F⃗Δσ

ΔO;lO
in the

search space. El-Showk et al. (2014b) developed a modifi-
cation of Dantzig’s simplex algorithm in order to handle such
a continuous search space.86 The essential idea is to use
Newton’s method at each step of the algorithm to identify a
vector to add, which is optimal over some continuous interval
of scaling dimensions ½Δmin;Δmax� and discrete set of spins
½0;lmax�. For reasons explained by El-Showk et al. (2014b), it
is necessary to perform computations at a precision higher
than machine precision. This continuous simplex algorithm is
one of two state-of-the art methods for the conformal boot-
strap, the other one being the semidefinite programming
method described below. Three implementations of this
algorithm are available: a C++ code SIPSOLVER (Simmons-
Duffin, 2014b) and a PYTHON/CYTHON code (El-Showk and
Rychkov, 2014) which were used for the computations in
El-Showk et al. (2014b), as well as a JULIA package
JULIBOOTS (Paulos, 2014b).

B. Semidefinite programming

While the linear programming techniques previously
described are adequate for crossing relations of single 4pt
functions (possibly charged under some global symmetry),
they are more difficult to adapt for systems of crossing
relations containing multiple operators. The reason is that
the resulting crossing relations for mixed correlators are no
longer linear in the positive squares of OPE coefficients.87 The
same issue arises when considering 4pt functions of spinning
operators, where multiple 3pt function tensor structures exist.
In these situations one can phrase the optimization problem
needed to obtain bounds using the language of semidefinite
programming rather than linear programming (Kos, Poland,
and Simmons-Duffin, 2014a).88

Another use of semidefinite programming (Poland,
Simmons-Duffin, and Vichi, 2012) is to avoid needing to
discretize and impose a cutoff on the exchanged operator
dimensions appearing in the positivity constraints such as
α⃗ · F⃗ΔO;lO

≥ 0. In this section, we will describe both of these
uses of semidefinite programming, as well as how they can be
combined.
In most applications to the bootstrap, it has proven

necessary for numerical stability to solve the semidefinite
programs described below at a precision higher than machine
precision. The first numerical studies made use of the software
SDPA-GMP (Nakata, 2010) [a variant of SDPA (Yamashita et al.,
2010)] for this purpose. The state of the art is an efficient
software package SDPB, described by Simmons-Duffin

(2015a), which improves on the SDPA’s primal-dual interior
point algorithm primarily by taking advantage of matrix block
structure and parallelization.89 In order to set up the problems
so that they can be solved by SDPB, recent studies have
typically used either MATHEMATICA notebooks, or the inter-
faces PYCFTBOOT (Behan, 2017a) or CBOOT (Ohtsuki, 2016).

1. Mixed correlators

We illustrate the use of semidefinite programming for
mixed correlators with a simple example. Consider a system
of 4pt functions containing two operators σ and ϵ, where σ is
odd under a Z2 symmetry and ϵ is even. The resulting system
of crossing relations for hσσσσi, hσσϵϵi, and hϵϵϵϵi takes the
form (Kos, Poland, and Simmons-Duffin, 2014a)

0¼
X
Oþ

ðλσσO λϵϵO ÞV⃗þ;Δ;l

�
λσσO

λϵϵO

�
þ
X
O−

λ2σϵOV⃗−;Δ;l; ð103Þ

where the components of the vectors V⃗�;Δ;l run over five
independent crossing relations,90 O� denote operators even or
odd under Z2 symmetry, and each V⃗þ;Δ;l is a 5-vector of
2 × 2 matrices:

V⃗−;Δ;l ¼

0
BBBBBB@

0

0

Fσϵ;σϵ
−;Δ;lðz; z̄Þ

ð−1ÞlFϵσ;σϵ
−;Δ;lðz; z̄Þ

−ð−1ÞlFϵσ;σϵ
þ;Δ;lðz; z̄Þ

1
CCCCCCA
;

V⃗þ;Δ;l ¼

0
BBBBBBBBBBBBBBBBBBB@

�
Fσσ;σσ
−;Δ;lðz; z̄Þ 0

0 0

�

�
0 0

0 Fϵϵ;ϵϵ
−;Δ;lðz; z̄Þ

�

�
0 0

0 0

�

�
0 1

2
Fσσ;ϵϵ
−;Δ;lðz; z̄Þ

1
2
Fσσ;ϵϵ
−;Δ;lðz; z̄Þ 0

�

�
0 1

2
Fσσ;ϵϵ
þ;Δ;lðz; z̄Þ

1
2
Fσσ;ϵϵ
þ;Δ;lðz; z̄Þ 0

�

1
CCCCCCCCCCCCCCCCCCCA

: ð104Þ

The appearing functions Fij;kl
�;Δ;l are given in Eq. (96).

One can then look for bounds by making some assumption
about the spectrum and searching for a functional α⃗ ¼P

mnα⃗mn∂m
z ∂n

z̄ ½·�jz¼z̄¼1=2 satisfying the properties
86Such linear programming problems are called “continuous” or

“semi-infinite” (Reemtsen and Görner, 1998).
87However, they can be made linear at the expense of introducing

additional continuous parameters (El-Showk and Paulos, 2018). This
observation has not yet been implemented and it is not known how it
would perform in practice.

88For a related problem of multiple internal symmetry coupling
structures see Rattazzi, Rychkov, and Vichi (2011a).

89Further development of SDPB is being carried out within the
Simons Collaboration on the nonperturbative bootstrap (http://
bootstrapcollaboration.com/), and this package will likely remain
at the forefront of the numerical bootstrap studies in the coming
years.

90In this section we are using vector notation to describe the vector
of crossing relations rather than derivatives.
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ð 1 1 Þα⃗ · V⃗þ;0;0

�
1

1

�
> 0;

α⃗ · V⃗þ;Δ;l≽0 for allZ2-even operators withl even;

α⃗ · V⃗−;Δ;l ≥ 0 for allZ2-odd operators: ð105Þ

The novel feature is now that α⃗ · V⃗þ;Δ;l≽0 must be a positive
semidefinite 2 × 2 matrix, which makes the search in
Eq. (105) a semidefinite programming problem. A similar
structure appears for more general systems of mixed or
spinning correlators, where if an exchanged operator has N
OPE coefficients appearing in the system then the needed
positivity condition will be phrased in terms of positive
semidefinite N × N matrices.

2. Polynomial approximations

A different use of semidefinite programming, relevant for
either single correlators or mixed correlators, is to avoid any
discretization of the exchanged operator dimensions (Poland,
Simmons-Duffin, and Vichi, 2012). We first explain the idea
for single correlators, where one imposes inequalities of the
form

X
mn

αmn∂m
z ∂n

z̄F
Δσ
Δ;lðz; z̄Þjz¼z̄¼1=2 ≥ 0: ð106Þ

Because of the pole expansion of the conformal blocks
described in Sec. III.F.4, if one keeps a finite number of
poles, then by reorganizing hΔ;l into a rational function
of Δ, such derivatives can be rewritten in the form (see
Sec. III.F.5)

∂m
z ∂n

z̄F
Δσ
Δ;lðz; z̄Þjz¼z̄¼1=2 ≈ χlðΔÞPmn

l ðΔÞ; ð107Þ

where Pmn
l ðΔÞ is a polynomial in Δ, and χlðΔÞ is a

positive function for all Δ and l satisfying the unitarity
bounds. The degree of the polynomial depends on the
number of poles kept in the expansion of the conformal
block. Then one simply needs to impose the polynomial
inequalities

X
mn

αmnPmn
l ðΔmin

l þ xÞ ≥ 0 ð108Þ

for all x ≥ 0, where the minimum dimension at each spin Δmin
l

depends on the assumptions being made.
Such inequalities for polynomials can be rewritten in terms

of positive semidefinite matrices following a theorem of
Hilbert (1888). The relevant theorem states that any poly-
nomial PðxÞ that is non-negative on the interval ½0;∞Þ can be
written in the form

PðxÞ ¼ aðxÞ þ xbðxÞ; ð109Þ

where aðxÞ and bðxÞ are sums of squares of polynomials. Such
sums of squares can in turn always be expressed in the form

aðxÞ ¼ Tr½AQd1ðxÞ�; bðxÞ ¼ Tr½BQd2ðxÞ�; ð110Þ

where QdðxÞ≡ ½x�d½x�Td is a matrix built out of the monomials
½x�d ¼ ð1; x;…; xdÞT , d1 ¼ b1

2
degPc, d2 ¼ b1

2
ðdegP − 1Þc,

and A and B are some positive semidefinite matrices.
With this rewriting, one needs to search for coefficients αmn

and positive semidefinite matrices Al, Bl≽0 such that

X
mn

αmnPmn
l ðΔmin

l þ xÞ ¼ Tr½AlQd1ðxÞ� þ xTr½BlQd2ðxÞ�:

ð111Þ

In practice one must also impose a cutoff on the set of included
spins 0 ≤ l ≤ lmax. This search, combined with a normali-
zation condition such as α⃗ · F⃗Δσ

0;0 ¼ 1, is now in the form of a
semidefinite programming problem.
As explained in detail by Kos, Poland, and Simmons-Duffin

(2014a), this idea can also be applied to systems of mixed or
spinning correlators where exchanged operators have multiple
OPE coefficients appearing in the system. In those cases, after
truncating the conformal block pole expansions one imposes
constraints of the form

X
mn

α⃗mn ⋅

0
BBB@

P⃗ð11;mnÞ
l ðΔÞ � � � P⃗ð1N;mnÞ

l ðΔÞ
..
. . .

. ..
.

P⃗ðN1;mnÞ
l ðΔÞ � � � P⃗ðNN;mnÞ

l ðΔÞ

1
CCCA≽0

for Δ ≥ Δmin
l : ð112Þ

Again there is a theorem that such positive semidefinite matrix
polynomials can always be written as sums of squares of
matrix polynomials. A consequence, worked out by Kos,
Poland, and Simmons-Duffin (2014a), is that each entry can
be written as

X
mn

α⃗mn · P⃗
ðij;mnÞ
l ðΔmin

l þxÞ¼Tr½Aij
lQd1ðxÞ�þxTr½Bij

lQd2ðxÞ�

ð113Þ

in terms of positive semidefinite matrices Aij
l ; B

ij
l≽0, and the

problem is again phrased as a semidefinite programming
problem.

C. Bounds and allowed regions

The algorithms described in the previous sections can be
used to establish if a given point in the space of CFT data,
parametrized by the dimensions of external operators and by
assumptions on the exchanged spectrum, belongs to the region
allowed by crossing and unitarity. Since the exchanged
spectrum contains infinitely many operators, there are infi-
nitely many assumptions one can test. The art of the numerical
bootstrap is to choose an interesting assumption, and then to
delineate as precisely as possible the allowed region corre-
sponding to this assumption.
As we will see in the next sections, one of the most

frequently asked questions is the following: given an OPE
O ×O, derive an upper bound Δmax on the dimension of the
first operator appearing in this OPE having specified
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transformation properties under SOðdÞ (and eventually under
a global symmetry G),91 assuming that other operator dimen-
sions are allowed to take any values allowed by unitarity. One
can answer this question, for instance, as a function of ΔO.
This defines an allowed region with a boundary ΔmaxðΔOÞ.
Similarly, when one obtains an upper (or lower) bound on an
OPE coefficient as discussed in Sec. IV.A, this represents the
boundary of an allowed region. These boundaries give us a
view into the intricate underlying geometry of the space of
CFT data allowed by crossing and unitarity.

D. Spectrum extraction

A point in the allowed region (see Sec. IV.C) is specified by
external operator dimensions and by a handful of other
numbers characterizing the assumptions, such as gaps on
the exchanged operator spectrum. Once we ascertained that a
point belongs to the allowed region, in some cases it is
important to be able to go one step further and to extract an
explicit solution to crossing, i.e., the whole spectrum of
exchanged operator dimensions and their OPE coefficients.
The precise way of doing this depends on which algorithm one
uses. An important point is that we expect this solution to be
nonunique inside the allowed region, but it should generically
become unique on its boundary, as we will now explain.
The spectrum extraction is simplest in the primal simplex

method; see Sec. IV.A.1. In this case the spectrum is encoded
directly in the set of basic vectors and is available in each step
of the algorithm.
In the dual formulation of the linear programming method,

one does not have access to the spectrum strictly inside the
allowed region. However, one can extract a solution to
crossing symmetry from the limiting functional when one
approaches a boundary of this region, by extremizing either an
operator dimension or OPE coefficient. This is called the
extremal functional method, introduced by Poland and
Simmons-Duffin (2011) and El-Showk and Paulos (2013).
Namely, when approaching the boundary from the disal-

lowed region, the system is on the verge of no longer allowing
a separating plane, and the vector on which we require strict
positivity is degenerating into the plane. In the case of a single
crossing relation where we have imposed strict positivity on
the identity operator, as we approach a dimension boundary
we can find a vector α⃗ such that α⃗ · F⃗Δσ

0;0 → 0, together with the
sum rule

0 ¼
X
O

λ2σσOα⃗ · F⃗Δσ
ΔO;lO

; ð114Þ

where α⃗ · F⃗Δσ
ΔO;lO

≥ 0 for all other possible (nonidentity)
operators in the spectrum. One obtains a similar condition
from the OPE coefficient bound in Eq. (102) if one sets the
OPE coefficient to its extremal value λ2σσO� ¼ −α⃗ · F⃗Δσ

0;0.
In fact, it is easy to see that in order for these sums to hold

along the boundary of the allowed region, it is necessary either
for λ2σσO to be zero or for α⃗ · F⃗Δσ

ΔO;lO
to be zero. Thus, the zeros

of α⃗ · F⃗Δσ
ΔO;lO

tell us the scaling dimensions and spins at which
the OPE coefficients are allowed to be nonzero. The resulting
extremal spectrum is generically unique (El-Showk and
Paulos, 2013).
In the above-mentioned primal simplex method, the

extremal spectrum is reached from within the allowed region
and is encoded in the set of basic vectors that remain after the
algorithm terminates. That this should agree with the dual
approach via extremal functionals is guaranteed by the strong
duality of linear programs.
The extremal functional method for extracting the spectrum

is also applicable when using semidefinite programming. In
this case the extremal functional is constructed in the dual
formulation.92 Once the extremal spectrum is known, it is
straightforward to reconstruct the OPE coefficients of the
exchanged operators by either directly solving the bootstrap
equations after inputting the extremal spectrum or extracting
them from the primal solution of the primal-dual algorithm.
Simmons-Duffin (2017c) gave a precise algorithm for doing
this using functionals output by SDPB, realized in a PYTHON

code (Simmons-Duffin, 2016a).
An important open question is to understand which CFTs

are described by spectra which are extremal with respect to
some extremization condition. As we will see in subsequent
sections, empirically this seems to be the case for a variety of
interesting CFTs including the 3D Ising and OðNÞ models.
Although it is not currently understood why it should be so,
some speculations are given in Sec. V.B.3.

1. Flow method

An interesting idea was proposed by El-Showk and Paulos
(2018), where given one extremal solution one can efficiently
“flow” along the boundary to reconstruct nearby extremal
solutions. The idea is to perturb the extremal spectrum and
then impose that the perturbed spectrum is also extremal using
Eq. (114) as well as the tangency conditions α⃗ · ð∂ΔO

F⃗Δσ
ΔO;lO

Þ.
By linearizing perturbations of these conditions, the search for
a nearby extremal spectrum (or a more precise extremal
spectrum) can be efficiently solved using Newton’s method.
This approach then avoids the use of convex optimization after

91In particular, the existence of a bound withΔmax < ∞ provides a
proof that such an operator exists. See Rattazzi et al. (2008) and
Simmons-Duffin (2017b), Sec. 10.5, for intuitive explanations
involving some numerics of why such bounds should exist at all,
and Hogervorst and Rychkov (2013) and Rychkov (2016a),
Sec. 4.3.3, for an approximate analytic argument. At present, while
the existence of bounds can sometimes be understood via such simple
means, their actual values can only be precisely computed using the
powerful numerical techniques described in the previous sections.
Only in a handful of cases, e.g. Mazac (2017) and Mazac and Paulos
(2018), have the best possible bounds been proven analytically.

92It is not understood at present how to formulate an algorithm to
extract the extremal spectrum along a dimension bound directly from
the allowed region in the context of semidefinite programming. The
currently used procedure is to sit in the interior of the space allowed
by scaling dimension bounds and extremize an OPE coefficient to
find an extremal functional.
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the initial step of finding an initial extremal solution and can
also be used to flow to nonunitary extremal solutions. This
idea was shown to work well in d ¼ 1 in Paulos et al. (2017)
and El-Showk and Paulos (2018).93 It appears very promising
and it needs to be further explored and extended, especially
into higher dimensions.

E. Truncation method

Finally we turn to an idea introduced by Gliozzi (2013) and
explored in a variety of works,94 which we call the truncation
method. The basic idea is to truncate the bootstrap equations
to a finite number of operators fΔσ ;OIg with N unknown
scaling dimensions. After normalizing by the identity con-
tribution fΔσ

ΔOI
;lOI

ðz; z̄Þ≡ FΔσ
ΔOI

;lOI
ðz; z̄Þ=½−FΔσ

0;0ðz; z̄Þ�, let us

write the crossing equations as

X
OI

λ2σσOI
fΔσ
ΔOI

;lOI
¼ 1;

X
OI

λ2σσOI
f⃗Δσ
ΔOI

;lOI
¼ 0: ð115Þ

Here the first equation containing

fΔσ
ΔOI

;lOI
≡ fΔσ

ΔOI
;lOI

ð1=2; 1=2Þ

is viewed as an “inhomogeneous” equation containing the
identity contribution on the right-hand side, and the second
“homogeneous” equation contains the vector of derivatives

ðf⃗Δσ
ΔOI

;lOI
Þmn ¼ ∂m

z ∂n
z̄ f

Δσ
ΔOI

;lOI
ðz; z̄Þjz¼z̄¼1=2.

If one keeps M derivatives with M > N then the system
becomes overconstrained and has solutions only if all of the
minors of order N of the linear system vanish,

detAi ¼ 0; Ai ⊂ A ¼ ½ðf⃗Δσ
ΔOI

;lOI
Þmn�

N×M
: ð116Þ

Here the “rows” of A would run over different choices of N
derivatives mn and the “columns” run over the N unknown
scaling dimensions. Note that the set of unknown scaling
dimensions will include the external dimension Δσ in addition
to the OI , but may exclude exchanged operators of known
dimension, such as the stress tensor of known dimension
ΔT ¼ d. The general strategy is to solve the determinant
conditions Eq. (116) to obtain an approximate spectrum of
scaling dimensions and then use the system in Eq. (115),
including the inhomogeneous equation, in order to fix the
OPE coefficients.
An advantage of the truncation approach over the linear

and semidefinite programming approaches of the previous

sections is that it does not require unitarity, i.e., it works
equally well for any sign of the OPE coefficients. For
example, the idea has been successfully applied to the
nonunitary Lee-Yang model, as well as to bulk-boundary
bootstrap problems where there is no positivity in the
coefficients. Another advantage is that it is relatively simple
to implement, and the idea can be explored, e.g., using fairly
simple MATHEMATICA notebooks.
On the other hand, we also see several disadvantages with

this approach in its current incarnation. One is that the
resulting spectrum can have a strong sensitivity to the set
of included operators (e.g., the choices of spins) and to the set
of derivatives included. It is also very difficult to assign
reliable errors to the spectrum output from the method.95 Thus,
it would be desirable to find ways to make the approach more
systematic with errors under control. Some steps in this
direction were recently taken by Li (2017). Applications to
the boundary bootstrap also seem to be less sensitive to these
issues (Gliozzi, 2016; Gliozzi et al., 2015).
Another issue is that simple implementations of numerical

studies of the nonlinear determinant conditions (116), such
as using the iterative Newton method implemented in
MATHEMATICA’s FINDROOT function, do not scale very well
with increasing the number of operators and the method likely
needs a more efficient numerical implementation in order to
push beyond ∼10 operators.96

Note that since we are truncating the spectrum, we cannot
generally expect to find exact solutions of Eq. (116). On the
other hand, the set of determinant conditions is in fact
redundant because of the Plücker relations satisfied by the
minors of a matrix; see Hikami (2017b). A cleaner numerical
formulation can be obtained by replacing Eq. (116) with the
problem of minimizing the smallest singular value of the
matrix A (Esterlis, Liam Fitzpatrick, and Ramirez, 2016;
LeClair and Squires, 2018).
Finally, similar to the extremal spectra methods previously

mentioned, it is not clear which CFT spectra are “truncable” in
the sense that they can be found with this approach.

V. APPLICATIONS IN d = 3

In this section we turn to applications of the numerical
bootstrap techniques to CFTs in d ¼ 3 dimensions. Our
discussion is organized as follows. We start in Sec. V.A by
presenting a general bound on critical versus multicritical
behavior in unitary 3D CFTs. In Secs. V.B and V.C we discuss
bootstrap bounds which can be derived under the assumption
of a Z2 or OðNÞ global symmetry. Applications to the most
famous 3D CFTs realizing these symmetries—the critical 3D
Ising and OðNÞ models—will be emphasized.
In Sec. V.D we describe bounds on CFTs with

fermionic operators, such as the IR fixed point of the

93The code is implemented as a separate module of JULIBOOTS

(Paulos, 2014b), available on request from its author.
94See Gliozzi and Rago (2014), Gliozzi et al. (2015), Gliozzi

(2016), Esterlis, Liam Fitzpatrick, and Ramirez (2016), Hikami
(2017a, 2017b, 2018), Li (2017, 2018), and LeClair and Squires
(2018).

95Comparison with the rigorous results obtained using the linear
and semidefinite programming methods, when possible, shows that
the published truncation method errors are often underestimated.

96One can view the flow method described in Sec. IV.D.1 as a kind
of more efficient implementation where additional extremality
conditions have been added.
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Gross-Neveu-Yukawa models. In Sec. V.E we discuss what
the bootstrap currently has to say about CFTs realizable as IR
fixed points of 3D QED coupled to matter. In Sec. V.F we
discuss recent bootstrap studies which implement crossing
symmetry constraints on 4pt functions of stress tensors and
conserved currents. These results are very general as they
apply to any local 3D CFT. Finally, in Sec. V.G we highlight
some targets that may be interesting to look at in future
numerical bootstrap studies.
While most of the results will be phrased in a way which is

highly model independent and in the language of conformal
field theory, we hope that we can emphasize the physical
interpretation of the various assumptions that are being made.
All of the results summarized in this section have been
obtained under the assumption of unitarity. Nonunitary
CFTs, which can be studied, e.g., using the truncation method,
are discussed separately in Sec. VIII.
Finally, let us remind the reader that all of the numerical

results summarized have been obtained using a variety of
methods for numerically computing conformal blocks, with
different choices of tolerance parameters in linear or semi-
definite programs, with different choices of the cutoff Λ on the
number of derivatives applied to the crossing relation, etc. To
keep our discussion readable, we will in most cases suppress
these details, which can be found described in the original
studies.

A. Bounds on critical versus multicritical behavior

As discussed in Sec. II.A, two basic structural character-
istics of any CFT are the global symmetry group G and the
number of relevant scalar operators S which are singlets under
G. For this discussion we view discrete spacetime symmetries
such as the spatial parity P, if preserved, as a part of G.
The importance of the number S becomes clear when we try

to reach the CFT as an IR fixed point of an RG flow starting
from a microscopic description, which for this discussion we
assume has the full symmetry G. Later in Sec. V.E.3 we will
comment on the situation of emergent symmetries which are
not present in the microscopic description.
It follows from basic RG theory that the RG flow can reach

the IR fixed point without any fine-tuning if and only if S ¼ 0.
We call such CFTs “self-organized” by loose analogy with
what happens in self-organized criticality (Bak, Tang, and
Wiesenfeld, 1987). Examples include QED3 and QCD4 in the
conformal window to be discussed in Secs. V.E and VI.C.
On the other hand, if relevant singlet scalars are present

(S > 0), then reaching the fixed point requires fine-tuning S
parameters in the microscopic Lagrangian. A common case is
when S ¼ 1, as is realized for the critical Ising model and
OðNÞ models discussed later. Then we say that we have a
critical point. Finally, the case S > 1 is classified as a
multicritical point.97

The simplest example of a 3D multicritical point is the free
scalar field ϕ. It has a Z2 global symmetry acting as ϕ → −ϕ,

with two relevant singlet scalars ϕ2 and ϕ4 of dimensions 1
and 2, respectively. A third singlet scalar ϕ6 has dimension
exactly 3 and is marginal (it is actually marginally irrelevant).
This CFT describes a tricritical 3D Ising model. Many
nontrivial multicritical fixed points can be realized in systems
of multiple interacting scalar fields.
Suppose that we know that we have a critical point, but not

a multicritical point, i.e., that there is one and only one singlet
scalar, call it O0. The OPE of O0 with itself has the schematic
form

O0 ×O0 ∼ 1þ λO0 þ λ0O0
0 þ � � � ; ð117Þ

where sinceO0 is a singlet it can appear on the rhs, we denote
the next singlet scalar as O0

0, and � � � stands for all other
operators. In this setup, Nakayama and Ohtsuki (2016) used
the numerical bootstrap to derive an upper bound on the
dimension of O0

0 as a function of dimension of O0, shown in
Fig. 6. From this plot, the requirement ΔO0

0
> 3 translates into

the lower bound

ΔO0
> 1.044 for any critical 3D CFT: ð118Þ

In terms of the critical exponent ν ¼ 1=ð3 − ΔO0
Þ, this means

that ν > 0.511 for any critical (but not multicritical) 3D fixed
point described by a unitary CFT.
Among all critical 3D fixed points that we know of, the

lowest ΔO0
≈ 1.41 is realized in the critical Ising model, see

later. This satisfies the general bound (118) by a large margin.

B. Z2 global symmetry

1. General results

We are not aware of any unitary 3D CFTs which do not
possess any global symmetry.98 Actually, most 3D CFTs have
continuous global symmetries. Here we start by considering
the effect of having a discrete Z2,

99 which may be a full
symmetry as for the 3D Ising model or a subgroup of a
larger group.100

In the CFT context, a Z2 symmetry imposes selection rules
on the possible operators appearing in different OPE channels.
Let us take a Z2-odd scalar operator σ and consider the σ × σ
OPE. It can contain only Z2-even operators:

97In microscopic realizations which do not have the full symmetry
G, one must tune a number of parameters equal to the number of
relevant singlets under the microscopic symmetry.

98The Lee-Yang model has no global symmetry but is nonunitary;
see Sec. VIII. In any CFTwith a global symmetryG, the singlet sector
is closed under OPE. From the bootstrap point of view the singlet
sector can be studied in isolation, the results of Sec. V.A being an
example, and would appear as a perfectly consistent CFT with no
global symmetry. Dealing only with local operators, we do not
consider this construction as defining a complete CFT, as the singlet
sector can in principle be extended back by including the other
sectors (although it is not known how to decide in practice whether
such an extension is possible by looking at the correlators of the
singlet sector).

99The bounds described in this section will also hold if the Z2 is
taken to be a parity or time-reversal symmetry.

100Another physically important discrete symmetry is cubic
symmetry; see Sec. V.C.4 and footnote 116.
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σ × σ ∼ 1þ λσσϵϵþ λσσTTμν þ � � � : ð119Þ

Here 1 is the identity operator, ϵ is the leading Z2-even scalar,
Tμν is the stress-energy tensor, and so on. In particular, unlike
in Eq. (117), σ does not appear in the OPE.
In this setup, we ask what is the maximal allowed value of

Δϵ. A numerical bootstrap analysis of the 4pt function hσσσσi
(via linear or semidefinite programming) produces an upper
bound on Δϵ as a function of Δσ , shown in Fig. 7.

101 The point
f1=2; 1g corresponds to the theory of a free massless scalar
while the point ∼f0.518; 1.413g, sitting near a discontinuity in
the boundary, corresponds to the critical 3D Ising model
which we discuss further. Other theories that live in the
interior of this region are the critical OðNÞ models (see
Sec. V.C), where we can identify σ with a component of the
OðNÞ fundamental ϕi and ϵ with a component of the OðNÞ
symmetric tensor tij, as well as the line of mean field theory
CFTs with Δϵ ¼ 2Δσ (see Sec. III.I.1).
A particularly physically interesting class of Z2-symmetric

CFTs is that with only one relevant Z2-even operator (i.e.,
they have S ¼ 1). If the microscopic realization of the theory
preserves the Z2 symmetry, then this condition ensures that
only one parameter must be tuned in order to reach the critical
point. This allowed region in fΔσ;Δϵg space was also
computed by El-Showk et al. (2012) from the hσσσσi
correlator, assuming that all scalars aside from the contribu-
tion at Δϵ are irrelevant. This region is shown in Fig. 8, with
the assumption having the effect of carving into the allowed
region from both the left and the bottom.
Another general result from this 4pt function is a lower

bound on the central charge CT shown in Fig. 9, obtained by
computing an upper bound on the coefficient λσσT ∝ Δσ=

ffiffiffiffiffiffi
CT

p
[see Sec. III.H and Eq. (86)]. As Δσ → 1=2, the lower bound
on CT approaches the free scalar value, while near the critical
3D Ising dimension Δσ ∼ 0.518, the lower bound on CT is

seen to have a minimum. This particular bound was computed
with the mild assumption Δϵ ≥ 1, so it is applicable to any
theory living in the allowed region seen in Fig. 7.
Before we move on to discussing what can be learned from

systems of several 4pt functions, we highlight the fact that
upper bounds on the leading unknown scaling dimension in
other channels can also be computed and are often quite

FIG. 6. The upper bound on the dimension of the second singlet
scalar O0

0 as a function of the dimension of the first O0. From
Nakayama and Ohtsuki, 2016, Supplementary Material.
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FIG. 7. The upper bound on Δϵ as a function of Δσ in 3D CFTs.
From El-Showk et al., 2012.
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FIG. 8. The allowed region in the fΔσ ;Δϵg plane under the
assumption that ϵ is the only relevant scalar. From El-Showk
et al., 2012.

0.50 0.52 0.54 0.56 0.58 0.60
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
c cfree

FIG. 9. The lower bound on the central charge as a function of
Δσ . From El-Showk et al., 2012.

101Nakayama and Ohtsuki (2016) observed empirically that the
bounds in Figs. 6 and 7 coincide. A priori one may have expected a
stronger bound in Fig. 7 due to the extra constraint of not allowing σ
on the rhs of the OPE.
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strong. For example, an upper bound on the leading unknown
spin-2 dimension ΔT 0 (the first Z2-even spin-2 operator after
the stress tensor) is shown in Fig. 10, and an upper bound on
the leading spin-4 dimension ΔC is shown in Fig. 11. The
bound on ΔT 0 shows a sharp jump near the critical 3D Ising
value, while no such transition is seen in the bound on ΔC
(which is close to being saturated by MFT: ΔC ¼ 2Δσ þ 4).
The jump in ΔT 0 shows that it is possible for the low-
dimension spin-2 operator present in the spectrum for Δσ ≳
0.52 to decouple at smaller values of Δσ . We discuss operator
decoupling phenomena further in Sec. V.B.3.
Next one can ask what is the effect of adding constraints

from other 4pt functions. So far the main system that has been
studied in the literature is fhσσσσi; hσσϵϵi; hϵϵϵϵig, although
other systems may also prove interesting. An advantage of
including the correlator hσσϵϵi is that it allows one to probe
the Z2-odd operators appearing in the OPE:

σ × ϵ ∼ λσϵσσ þ λσϵσ0σ
0 þ � � � : ð120Þ

Kos, Poland, and Simmons-Duffin (2014a) found that with no
assumptions this system leads to an allowed region identical to
Fig. 7, while by inputting the assumption of a single relevant
Z2-odd operator (i.e., Δσ0 ≥ 3) it leads to the allowed region
shown in Fig. 12. In this plot one can see a detached “island”

containing the critical Ising model as well as a “bulk” region
further to the right. This bulk region has so far not been
systematically explored in the literature: it would be interest-
ing to understand what other CFTs lie inside of it.
In Fig. 13 we also show the difference between assuming

Δϵ0 ≥ 3, Δσ0 ≥ 3, and both assumptions simultaneously. One
can see that the assumption of a gap in the Z2-odd spectrum is
primarily responsible for creating the detached region. In the
next section we describe the connection to the critical Ising
model in more detail, as well as the techniques and additional
inputs that can be used to make this detached island as small as
possible.

2. Critical Ising model

Perhaps the most well-known 3D CFT is the critical 3D
Ising model. The study of this model has a long history
(Domb, 1974), in part because it describes critical behavior in
uniaxial magnets, liquid-vapor transitions, binary fluid mix-
tures, the quark-gluon plasma, and more (Pelissetto and
Vicari, 2002). While these applications are predominantly
for systems in three spatial dimensions at finite temperature,
described by a 3D Euclidean CFT, the critical Ising model can

Ising
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FIG. 10. The upper bound on the dimension ΔT 0 of the first Z2-
even spin-2 operator after the stress tensor as a function of Δσ .
From El-Showk et al., 2012.
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FIG. 11. The upper bound on the dimension of the leading Z2-
even spin-4 operator. From El-Showk et al., 2012.

FIG. 12. An allowed region following from the analysis of three
4pt functions assuming Δσ0 ≥ 3 with no assumption on Δϵ0 . From
Kos, Poland, and Simmons-Duffin, 2014a.

FIG. 13. This plot assumes Δϵ0 ≥ 3 (light blue), Δσ0 ≥ 3
(medium blue), or both gaps simultaneously (dark blue). From
Kos, Poland, and Simmons-Duffin, 2014a.
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also be realized as a Lorentzian ð2þ 1ÞD quantum critical
point (Fradkin and Susskind, 1978; Henkel, 1984). Here we
work in the Euclidean signature; the Lorentzian version is
obtainable by Wick rotation and has the same set of CFT data.
In its original formulation as a model of ferromagnetism,

the 3D Ising model is described using a set of spins si ¼ �1

on a cubic lattice in R3 with nearest neighbor interactions,
with the partition function

Z ¼
X
fsig

exp

�
−J

X
hiji

sisj

�
: ð121Þ

At a critical value of the coupling J, the model becomes a
nontrivial CFT at long distances. Note that the lattice model
has a manifest Z2 symmetry under which si → −si. This
symmetry is inherited by the CFT, which contains local
operators that are either even or odd under its Z2 global
symmetry.
Another microscopic realization is in terms of a continuous

scalar field theory in three dimensions, with action

S ¼
Z

d3x

�
1

2
ð∂σÞ2 þ 1

2
m2σ2 þ 1

4!
λσ4

�
; ð122Þ

which also has a Z2 symmetry under which σ → −σ. Because
both m2 and λ describe relevant couplings, this theory is
described by a free scalar at short distances but has nontrivial
behavior at long distances. At a critical value of the dimen-
sionless ratio m2=λ2 the long-distance behavior is described
by a CFT, which is the same as for the above lattice model.
From the conformal bootstrap perspective, the Ising CFT

has aZ2 global symmetry, one relevant Z2-odd scalar operator
σ, and one relevant Z2-even scalar operator ϵ. This is evident
from experimental realizations, where Z2-preserving micro-
scopic realizations require one tuning (e.g., tuning the temper-
ature in uniaxial magnets) and Z2-breaking microscopic
realizations require two tunings (e.g., tuning both temperature
and pressure in liquid-vapor transitions).102 Note that the
assumption that the only relevant scaling dimensions are Δσ

and Δϵ is the same assumption that went into producing the
dark blue detached region of Fig. 13.
Kos et al. (2016) pursued a numerical analysis of the

mixed-correlator bootstrap system containing σ and ϵ to high
derivative order. In addition, they studied the impact of
scanning over different possible values of the ratio
λϵϵϵ=λσσϵ. This scan effectively inputs the information that
there is a single operator in the OPE occurring at the scaling
dimension Δϵ, whereas the plot of Fig. 13 allowed for the
possibility of multiple degenerate operator contributions at
the dimension Δϵ.

103 This led to the three-dimensional
allowed region shown in Fig. 14 and its projection to the

fΔσ;Δϵg plane shown in Fig. 15. In addition, for each point
in this region the magnitude of the leading OPE coefficients
were also bounded, with the result shown in Fig. 16. These
world-record numerical determinations are summarized in
Table. II.

FIG. 14. An allowed region in the fΔσ ;Δϵ; λϵϵϵ=λσσϵg space
obtained by Kos et al. (2016).

FIG. 15. Projection of the 3D region in Fig. 14 on the fΔσ ;Δϵg
plane and its comparison with a Monte Carlo prediction for the
same quantities. From Kos et al., 2016.

FIG. 16. Variation of λϵϵϵ and λσσϵ within the allowed region in
Fig. 14. From Kos et al., 2016.

102The existence of Z2-breaking liquid-vapor experimental
realizations, allowing one to get Z2 as an emergent symmetry and
predict the total number of relevant scalars, is a nice feature of the
Ising model which does not have analogs for the OðNÞ models.

103More precisely, the scan inputs that the outer product of OPE
coefficients ðλσσϵ λϵϵϵÞ ⊗ ðλσσϵ λϵϵϵÞ appearing in Eq. (103) at
dimension Δϵ is a rank 1 matrix, rather than the more generic rank 2
possibility which occurs if there are degenerate contributions.
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Finally let us mention that recent studies of the conformal
bootstrap for stress-tensor 4pt functions have also made
contact with the 3D Ising model. In particular, after inputting
known values of the leading parity-even spectrum, Dymarsky
et al. (2018) gave a new bound on the leading parity-odd Z2-
even scalar Δodd < 11.2 and constrained the independent
coefficient in the stress-tensor 3pt function (parametrized
by the variable θ) to be in the range 0.01 < θ < 0.05 if Δodd >
3 and in a tighter range 0.01 < θ < 0.018–0.019 if Δodd is
close to saturating its bound. We will discuss these constraints
in more detail in Sec. V.F.

3. Spectrum extraction and rearrangement

We saw in the previous section the remarkable precision
with which the leading scaling dimensions of the critical 3D
Ising model can be determined. This raises the immediate
question of how well we can extract other operator dimensions
and OPE coefficients in the spectrum using bootstrap methods
(specifically the strategies described in Sec. IV.D).
Even prior to the mixed-correlator studies already men-

tioned, El-Showk et al. (2014b) extracted the spectrum using
the primal simplex method strategy from a solution to
crossing for the hσσσσi correlator which minimizes the
central charge CT . For example, Fig. 17 shows the scalar
operators in the extracted spectrum as a function of Δσ near
the 3D Ising model. A fascinating feature of these plots is the
bifurcation of operators that occurs at the Ising value of Δσ ,
which can be interpreted as a decoupling of one of the
operators in the spectrum. This “spectrum rearrangement”
phenomenon has yet to be fully understood, but speculatively
it could be connected to the nonperturbative equations of
motion (i.e., the 3D analog of the relation σ∂2σ ∼ σ4 at the
Wilson-Fisher fixed point) or a higher-dimensional extension

of the null state conditions in the 2D Ising CFT (see also
Sec. V.B.4).104

On the other hand, spectrum extraction using the extremal
functional method was applied to the critical 3D Ising model
by Komargodski and Simmons-Duffin (2017) and Simmons-
Duffin (2017c). In the latter work, for a set of 20 trial points
distributed within the island of Fig. 14, CT minimization was
performed and the zeros of the extremal functional were
found. While some zeros jump significantly when moving
from point to point, many of them are found to be present in all
families with tiny variations. About a hundred such “stable
zeros” were identified and are believed to represent operators
which truly exist in the 3D Ising CFT, providing a remarkable
view of the spectrum of this theory. The subset of stable
operators with dimensions Δ ≤ 8, and their OPE coefficients,
are shown in Table II.
This approach, while not fully rigorous, is intuitively

justified as a means to extend the reach of rigorous analysis
which produced the island in Fig. 14. The errors on stable
operator dimensions and OPE coefficients are assigned as
standard deviations in the set of trial points. Although these
errors are not rigorous, as opposed to rigorous errors implied

TABLE II. Stable operators in the critical 3D Ising model with dimensions Δ ≤ 8 (Simmons-Duffin, 2017c).
Conventional names are shown in the leftmost column when available. Errors in bold are rigorous. All other errors
are nonrigorous but, in our opinion, realistic. See Eq. (123) for the central charge prediction from the same study. Because
we have chosen a different conformal block normalization convention, the OPE coefficients are related to our convention
by λijO ¼ 2l=2fijO (see Table I).

O Z2 l Δ fσσO fϵϵO

ϵ þ 0 1.412 625(10) 1.051 8537(41) 1.532 435(19)
ϵ0 þ 0 3.829 68(23) 0.053 012(55) 1.536 0(16)

þ 0 6.895 6(43) 0.000 7338(31) 0.127 9(17)
þ 0 7.253 5(51) 0.000 162(12) 0.187 4(31)

Tμν þ 2 3 0.326 137 76(45) 0.889 1471(40)
T 0
μν þ 2 5.509 15(44) 0.010 574 5(42) 0.690 23(49)

þ 2 7.075 8(58) 0.0004 773(62) 0.218 82(73)
Cμνρσ þ 4 5.022 665(28) 0.069 076(43) 0.247 92(20)

þ 4 6.420 65(64) 0.001 955 2(12) −0.110 247ð54Þ
þ 4 7.385 68(28) 0.002 377 45(44) 0.229 75(10)
þ 6 7.028 488(16) 0.015 741 6(41) 0.066 136(36)

O Z2 l Δ fσϵO

σ − 0 0.518 148 9(10) 1.051 853 7(41)
σ0 − 0 5.290 6(11) 0.057 235(20)

− 2 4.180 305(18) 0.389 159 41(81)
− 2 6.987 3(53) 0.017 413(73)
− 3 4.638 04(88) 0.138 5(34)
− 4 6.112 674(19) 0.107 705 2(16)
− 5 6.709 778(27) 0.041 915 49(88)

104The 2D analog of Fig. 7 also displays a sharp kink exactly at the
location of the 2D Ising model (Rychkov and Vichi, 2009), at which
the corresponding extremal solution displays a decoupling of states
expected from the null state conditions (El-Showk et al., 2014b). The
upper bound to the right of the kink can be interpreted as a one-
parameter family of unitary 4pt functions which for a discrete
sequence of Δσ ’s reduce to the 4pt function of the ϕ1;2 operator
in the higher unitary minimal models; see Liendo, Rastelli, and van
Rees (2013) and Behan (2017b). While these higher minimal models
exhibit further null state conditions, they are not visible in this 4pt
function and hence do not lead to kinks in this bound.
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by Figs. 14, 15, and 16, we believe that they represent realistic
estimates. In future studies the error estimates can be further
checked by enlarging the set of trial points and by extremizing
multiple quantities as opposed to just CT .
Results of this approach for the leading towers of low-twist

operators (of increasing spin) have also been tested against the
analytical bootstrap computations in the light cone limit105

which yield analytical expressions for the large-spin asymp-
totics. In Fig. 18, the data points extracted from the extremal
functional approach show the leading twist (τ ¼ Δ − l)
trajectory in the Z2-even sector as a function of
h̄ ¼ lþ τ=2, while the curve shows the analytical computa-
tion, displaying excellent agreement with the data even down
to small spins. Similar good agreement was also found with
the extracted OPE coefficients and subleading trajectories as
well as in the Z2-odd sector.
We also report here the prediction for the central charge

from the above CT minimization over the 20 points in the
island (Simmons-Duffin, 2017a):

CIsing
T =Cfree boson

T ¼ 0.946 538 9ð12Þ; ð123Þ

improving the previous CT -minimization determination by
El-Showk et al. (2014b).106

4. Why kink? Why island?

One may be wondering why the 3D Ising model happens to
live at a kink in Fig. 7. Plausibly, this has to do with the
minimality of the spectrum of exchanged operators required to
satisfy the crossing relation. In the interior of the allowed

region in Fig. 7, the solution to crossing is not unique. When
working numerically, a typical solution contains as many
operators as the number of derivatives at z ¼ z̄ ¼ 1=2 one is
keeping in Eqs. (98) and (99). On the other hand, when one
approaches the boundary of the allowed region in Fig. 7, the
nature of the solution changes in that the operators first
organize into pairs with nearby dimensions, and the pairs then
merge into single operators at the boundary (El-Showk et al.,
2014b). Thus the extremal solutions to crossing are quite
economical, containing many fewer operators than the interior
solutions, roughly by one-half.107

Further reduction of the spectrum occurs at the kink. When
one approaches the kink moving along the boundary, squared
OPE coefficients of certain operators tend to zero. Further
analytic continuation of the solution beyond the kink would be
inconsistent with unitarity. Thus two different solution
branches meet at the kink (El-Showk et al., 2014b), and
the spectrum exhibits rearrangement phenomena mentioned in
Sec. V.B.3.
To summarize, that the 3D Ising model lives at a kink

suggests that it is a CFTwith a particularly minimal spectrum
of operators. If this idea can be made precise, perhaps it can
pave the way to an exact solution.
Leaving the kink aside, let us discuss the island. It is

perhaps not surprising that considering crossing for several
4pt functions the allowed region shrinks compared to what
was allowed when considering just one 4pt function. It is
however altogether unexpected and remarkable that consid-
ering only three 4pt functions, plus a physically motivated and

FIG. 17. The spectrum of Z2-even scalar operators appearing in
the solution to crossing minimizing CT near Δσ corresponding to
the 3D Ising model. Line 1 corresponds to the ϵ operator
and shows little variation on the scale of this plot. All other
lines exhibit the spectrum rearrangement phenomenon. From
El-Showk et al., 2014b.

FIG. 18. Comparison of the extremal functional spectrum with
the analytic bootstrap; see the text. From Simmons-Duffin,
2017c.

105See Fitzpatrick et al. (2013), Komargodski and Zhiboedov
(2013), Alday and Zhiboedov (2017), and Simmons-Duffin (2017c).

106One can also extract CT from Table II using λσσT ∝ Δσ=
ffiffiffiffiffiffi
CT

p
.

While consistent with Eq. (123), this would have a larger error,
because the errors on λσσT and Δσ are correlated.

107It is a bit more than half because doubling never occurs for
operators which remain at the unitarity bound, such as the stress
tensor (if present in the extremal solution), and for operators which
saturate the gaps that one is imposing. In general, whether doubling
occurs in the bulk of the spectrum depends on how many second-
order zeros the extremal functional has. If there are too many zeros,
then for some of them, called “singles” by El-Showk and Paulos
(2018), doubling will not occur. See also Sec. IV.D.1 for the flow
method which uses such considerations to move along the boundary
of the allowed region.
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robust108 assumption of only two relevant operators, allows
one to produce the tiny island shown in Figs. 12 and 15.
It is not currently understood why this happens. Would the

island continue to shrink indefinitely with increasing the
number of included derivatives? Or would it stabilize, requir-
ing one to add further correlators to fully fix the CFT? More
generally, is it sufficient to include only 4pt functions of
relevant operators or are external irrelevant operators also
needed to have a unique solution? These are fascinating
questions for the future.
We will see many kinks and islands in the subsequent

sections of this review, about which similar considerations can
be made.

5. Non-Gaussianity

Since the leading spectrum and OPE coefficients of the
critical 3D Ising model are now known to a high degree of
precision, it is possible to reconstruct the full 4pt function
hσσσσi over a wide range of cross ratios. One can then probe
the question of how much this 4pt function deviates from
the “Gaussian,” i.e., fully disconnected, form hσσσσi ¼
hσσihσσi þ perms. This question is also motivated by the
fact that the Ising model contains higher-spin operators with
dimensions that deviate by a small amount from those of
higher-spin currents; see Fig. 18. The first two of these
operators are the Z2-even spin-4 and spin-6 operators in
Table II, of dimensions close to 5 and 7, respectively.
Rychkov, Simmons-Duffin, and Zan (2017) probed this

question quantitatively using bootstrap data to reconstruct
the ratio

Qðz; z̄Þ ¼ gðz; z̄Þ
1þ ðzz̄ÞΔσ þ ½zz̄=ð1 − zÞð1 − z̄Þ�Δσ

in the critical 3D Ising model, where the denominator
corresponds to the Gaussian expectation. A plot of this
deviation over a fundamental domain in the complex z plane
is shown in Fig. 19. They found, e.g., that Q < 0.75 over a
wide range of cross-ratio space and that it attains a minimum
value of Qmin ≈ 0.683. Thus, any attempt to explain the small
anomalous dimensions of higher-spin operators must account
for this significant non-Gaussianity.

6. Boundary and defect bootstrap, nontrivial geometries, off
criticality

It is also interesting to study the physics of defects in the 3D
Ising model. These include both codimension one defects
(e.g., flat 2D boundaries or interfaces) and codimension two
defects (i.e., 1D line defects).109 Here we highlight for the

interested reader some recent numerical bootstrap studies of
such defects.
Bootstrap constraints in the 3D Ising model in the presence

of a flat 2D boundary were first studied using linear program-
ming techniques in Liendo, Rastelli, and van Rees (2013),
where a number of rigorous bounds were placed on the scaling
dimensions and OPE coefficients of boundary operators for
different choices of boundary conditions, corresponding to the
“special” and “extraordinary” transitions, assuming positivity
of the bulk channel expansion coefficients. Estimates of the
leading boundary data using the truncation method were also
computed by Gliozzi et al. (2015) and Gliozzi (2016), where
precise estimates applicable to the boundary condition of the
“ordinary” transition could also be made.
Studies have also been performed of theZ2 twist line defect

in the 3D Ising model, constructed on the lattice by reversing
the Ising coupling on a semi-infinite half plane. The 1D
boundary of this half plane then yields the twist line defect,
which can also be defined in terms of its simple monodromy
properties. Local operators living on this defect were studied
using both Monte Carlo techniques (Billò et al., 2013) and
numerical bootstrap (linear programming) techniques
(Gaiotto, Mazac, and Paulos, 2014), with excellent agreement.
A related line of inquiry is to study CFTs such as the critical

3D Ising model on nontrivial geometries, the nontrivial case
being manifolds not globally conformally equivalent to
infinite flat space.110 This is motivated in part by the search
for a higher-dimensional analog of modular invariance. One
concrete realization has been to study the 3D Ising model on
real projective space (Nakayama, 2016b). In this case the
unknown coefficients in one-point functions of scalar primary
operators hOi ∝ AO enter into a variant of the bootstrap
equations called the cross-cap bootstrap equations. Numerical
truncation studies of the cross-cap bootstrap equations in this
work have yielded new nontrivial predictions, e.g., Aϵ ¼
0.667ð2Þ and Aϵ0 ¼ 0.896ð5Þ in the critical 3D Ising model on
real projective space. Another interesting geometry is

FIG. 19. The non-Gaussianity ratio Q in the critical 3D Ising
model. From Rychkov, Simmons-Duffin, and Zan, 2017.

108Islands can also be produced for the Ising and other CFTs using a
single 4pt function and reasonable assumptions about gaps in the spin-1
and spin-2 operator spectrum (Li andSu, 2017a). The robustness of these
results (i.e., their independence of the numerical values of the assumed
gaps in a certain range) needs further investigation.

109See Billò et al. (2016), Gadde (2016), Lauria, Meineri, and
Trevisani (2017), Lemos, Liendo, Meineri, and Sarkar (2017) Rastelli
and Zhou (2017), Herzog and Huang (2017), Fukuda, Kobayashi,
and Nishioka (2018), and Herzog, Huang, and Jensen (2018) for
some recent general discussions of defects in CFT.

110CFT correlation functions on manifolds conformally equivalent
to flat space, such as the sphere Sd or the “cylinder” Sd−1 × R, can be
obtained from the flat space correlators via a Weyl transformation.
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S1 × Rd−1, which corresponds to putting the CFT at finite
temperature. This was studied for the 3D Ising model and
other higher-dimensional CFTs in Iliesiu, Koloğlu et al.
(2018). Gobeil et al. (2018) also discussed a generalization
of the conformal block concept relevant for this geometry.
Let us finally mention an interesting study (Caselle,

Costagliola, and Magnoli, 2016) which combined the knowl-
edge of the 3D Ising model CFT data acquired by the
bootstrap with conformal perturbation theory. They achieved
a remarkable agreement with the experimental data describing
the 2pt function hσσi off criticality, i.e., at temperatures
slightly different from the critical temperature, which corre-
sponds to perturbing the CFT by a

R
d3xϵðxÞ perturbation.

C. OðNÞ global symmetry

Most known unitary 3D CFTs have a continuous global
symmetry, and we now turn to such CFTs. We focus on
bootstrap results obtained by assuming OðNÞ as a full
symmetry or as a subgroup.111

1. General results

As discussed in Sec. III.G, correlation functions of CFT
operators that are in irreducible representations of the global
symmetry G can be organized using group theory and
decomposed into different G-invariant tensor structures.
Section III.I explained how these structures enter the crossing
relations. The first numerical analyses of the resulting equa-
tions occurred in the context of 4D CFTs,112 but the group
theoretic structure is d independent. The bootstrap for OðNÞ
symmetry in 3D was investigated by Kos, Poland, and
Simmons-Duffin (2014b), Nakayama and Ohtsuki (2014b),
and Kos et al. (2015b, 2016).
We start our analysis assuming that the CFT contains an

operator ϕ≡ ðϕaÞNa¼1 in the fundamental representation of
OðNÞ of dimension Δϕ. Mimicking the discussion in
Sec. V.B.1, we want to learn about the operators in the
OPE ϕa × ϕb. By group theory, operators of even spin l in
this OPE will transform as OðNÞ singlets or symmetric
traceless tensors of rank 2, while odd-spin operators will
transform in the rank-2 antisymmetric representation.
From the crossing relations for the 4pt function of ϕ one can

put upper bounds on the dimensions of various operators. For
the lowest dimension scalars (l ¼ 0) in the singlet (s) and
symmetric traceless tensor (t) sector, these bounds are shown in
Figs. 20 and 21 as a function ofΔϕ for various values ofN. The
“kinks” in these bounds will be interpreted in the next section.
The ϕ × ϕ OPE also contains two interesting operators of

spin l ≥ 1: the stress tensor T and the conserved current J.
Using the bootstrap one can put lower bounds on their two-
point function coefficients CT and CJ (defined in Sec. III.H)
given in Figs. 22 and 23. This is done by bounding from above

the OPE coefficients λϕϕT ∝ Δϕ=
ffiffiffiffiffiffi
CT

p
and λϕϕJ ∝ 1=

ffiffiffiffiffiffi
CJ

p
[see Eqs. (86) and (90)].
Let us discuss the monotonicity of these bounds with N.

Since OðN þ 1Þ ⊃ OðNÞ, the bounds on CT , CJ, and Δt

FIG. 20. The upper bound on the dimension of s. From Kos,
Poland, and Simmons-Duffin, 2014b.

FIG. 21. The upper bound on the dimension of t. From Kos,
Poland, and Simmons-Duffin, 2014b.

FIG. 22. The lower bound on CT computed under the
assumption Δs;Δt ≥ 1. From Kos, Poland, and Simmons-Duffin,
2014b.

111All bounds in this section are applicable also under a weaker
assumption of SOðNÞ global symmetry; see Kos et al. (2015b),
Sec. 2.1.1.

112See Poland and Simmons-Duffin (2011), Rattazzi, Rychkov,
and Vichi (2011a), Vichi (2012), and Poland, Simmons-Duffin, and
Vichi (2012).

David Poland, Slava Rychkov, and Alessandro Vichi: The conformal bootstrap: Theory, numerical …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 015002-36



should get stronger with increasing N, and indeed they do
(note that CT is plotted divided by N). Although it may seem
counterintuitive that theΔs bound gets weaker with N, there is
no contradiction. The point is that the symmetric traceless
tensor of OðN þ 1Þ contains a singlet s̃ when decomposed
with respect to OðNÞ. Therefore the only constraint is that the
OðNÞ singlet bound should be weaker than the OðN þ 1Þ
symmetric traceless bound, which is satisfied by inspection.
Note also that the scaling of the CT , CJ bounds withN close

to Δϕ ¼ 1=2 is consistent with the fact that in the theory of N
free scalars, CT grows linearly with N while CJ is constant.

2. Critical OðNÞ model

The most famous 3D CFT with OðNÞ symmetry is the
critical point of the OðNÞ lattice model, which is the
generalization of Eq. (121) to N-component spins satisfying
the constraint js⃗j ¼ 1. This CFT is also known as the Wilson-
Fisher fixed point, being an IR fixed point of the OðNÞ
symmetric scalar field theory with quartic interaction (Wilson
and Fisher, 1972). For any integer N this 3D CFT is unitary,
given that the microscopic realizations are unitary.113

It is natural to ask where the critical OðNÞ models lie in the
parameter space of OðNÞ symmetric CFTs allowed by the
general bounds from the previous section. In the Wilson-
Fisher description, ϕa is the fundamental scalar field appear-
ing in the Lagrangian, s ¼ ϕ2, and t is the traceless part of
ϕaϕb. Dimensions of these fields have been previously
estimated using RG methods (in particular, the ϵ expansion
and the large N expansion), Monte Carlo studies, and experi-
ments. Comparing the s and t bounds and these prior
determinations, marked with crosses in Figs. 20 and 21,
one is led to conjecture that the critical OðNÞ models
correspond to the kinks. Similar kinklike features are visible

in the lower bounds on CJ and CT . In the latter case the kinks
can be made sharper by imposing that the S operator saturate
the gap; see Fig. 5 in Kos, Poland, and Simmons-Duffin
(2014b). This conjecture can be used to extract values of the ϕ,
s, t dimensions and of CT , given in Table 3 of Kos, Poland,
and Simmons-Duffin (2014b).
We now discuss how to isolate the critical OðNÞ models

without relying on the kink conjecture. The idea is to exploit
the crucial physical feature of these CFTs—that they possess
robust gaps in the operator spectrum. The singlet scalar s
corresponds to the temperature deformation of the critical
point and is relevant. The next singlet scalar s0 must
necessarily be irrelevant (otherwise the critical point would
be multicritical), implying the gap Δs0 ≥ 3 in the singlet scalar
sector. We also expect a gap in the fundamental representation
scalar sector. The order parameter ϕa belongs to this sector
and is relevant, while most likely the next fundamental scalar
is irrelevant: Δϕ0 ≥ 3. This can be also deduced using the
Wilson-Fisher description, using a nonrigorous but suggestive
equation of motion argument (Kos et al., 2015b).
Kos et al. (2015b) studied bootstrap constraints for the

system of three correlators fhϕaϕbϕcϕdi, hϕaϕbssi, hssssig.
Imposing the assumptions Δs0 ≥ 3 and Δϕ0 ≥ 3, they found
small allowed regions (“islands”) shown in Fig. 24. Improved
versions of these islands for Oð2Þ and Oð3Þ, discussed in the
next sections, were subsequently obtained by Kos et al.
(2016). It is important to stress that, as in Fig. 12 for the
Ising model, there are disconnected allowed regions outside
the shown part of the parameter space; see, e.g., Fig. 25 for the
Oð2Þ case. These regions are practically unexplored and they
might contain other interesting CFTs.

3. Oð2Þ global symmetry

We finally discuss separately specific values of N starting
with Oð2Þ ⊃ Uð1Þ. There are many physically interesting 3D
CFTs possessing Oð2Þ or Uð1Þ symmetry. The most famous
of these is the critical OðNÞ model for N ¼ 2, also known as
the critical XY model. It describes, in particular, the Curie
point of easy-plane ferromagnets, and of easy-plane antifer-
romagnets on bipartite lattices. Here theOð2Þ symmetry arises
as the symmetry of local magnetic moment interactions.
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FIG. 23. The Lower bound on CJ . From Nakayama and
Ohtsuki, 2014b.
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FIG. 24. The OðNÞ archipelago. From Kos et al., 2015b.

113Sometimes one discusses analytic continuation ofOðNÞmodels
to noninteger N. These analytic continuations are nonunitary
(Maldacena and Zhiboedov, 2013) and fall outside the range of
validity of the linear or semidefinite methods. Although such
attempts were made (Shimada and Hikami, 2016), we would advise
caution. Here we consider only integer N ≥ 2. We will discuss
nonunitary CFTs in Sec. VIII.
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Another frequent appearance of Uð1Þ symmetry in con-
densed matter physics is as particle number conservation. The
most famous such Uð1Þ transition is the superfluid transition
in 4He. Another example is the superfluid-insulator quantum
phase transition in the ð2þ 1ÞD Bose-Hubbard model at
integer particle density (Fisher et al., 1989). Both these
transitions are also described by the critical Oð2Þ model.
A wide class of CFTs with Uð1Þ global symmetry are IR

fixed points of theories which at the microscopic level contain
Uð1Þ gauge fields coupled to fermion or scalar matter. The
global Uð1Þ symmetry in these theories is topological in
origin, and the local operators charged under it are monopoles
of the gauge field. These CFTs often appear in condensed
matter applications; they will be discussed in more detail
in Sec. V.E.
Here we discuss general constraints from the multiple

correlator bootstrap for Uð1Þ symmetric CFTs, which have
been pursued further than in the general OðNÞ case previously
discussed.
Operators in Uð1Þ theories are classified by their Uð1Þ

charge, with s;ϕ; t of the previous section114 having charge
0, 1, and 2. Imposing the constraints that there is a unique
relevant charge 1 and a unique relevant charge 0 scalar, one
gets the allowed region shown in dark blue in Fig. 25. Note
that this region consists of a detached island to which the
critical Oð2Þ model belongs, and a further region on the right,
similar to Fig. 12 for the Ising model.
The island containing the critical Oð2Þ model has been

studied more accurately by Kos et al. (2016) by increasing the
derivative order and performing a scan over the OPE coef-
ficient ratio λsss=λϕϕs. This led to the improved constraints

shown in Fig. 26. The resulting dimensions and OPE
coefficients are given in Table III.
In Table III we give the determinations of Δt and CJ

obtained by Kos et al. (2015b) by scanning over the allowed
island in the fΔϕ;Δsg plane, under the respective assumptions
that Δt0 ≥ 3 and ΔJ0 ≥ 3.115

These results are compatible but somewhat less precise in
the case of Δϕ, Δs, and Δt than other available determinations
by lattice and RG methods; see Kos et al. (2015b, 2016) for
references. In particular, a further increase in precision is
required to resolve the discrepancy between the experimental
and theoretical determinations of Δs shown in Fig. 26. This is
an important problem for the future. On the other hand, the
bootstrap is currently the only source of information about the
OPE coefficients λϕϕs and λsss. The central charge CJ is
related to the zero-temperature (or high-frequency) conduc-
tivity of the quantum critical points described by the critical
Oð2Þ model. Although not yet experimentally measured, this
parameter has been extensively studied theoretically and
numerically in the condensed matter literature. As discussed
by Kos et al. (2015b), the bootstrap currently provides the best
determination of CJ.

4. Oð3Þ global symmetry

We now specialize to the case of Oð3Þ global symmetry,
focusing on the most famous such CFT which is the critical
Oð3Þ model. Apart from describing the critical point of
isotropic ferromagnets, the same CFT also describes the
ð2þ 1ÞD quantum critical point in coupled dimer antiferro-
magnets; see Sachdev (2004) and references therein.
The bootstrap analysis of this theory mimics the Uð1Þ case

from the previous section. Under the assumption that ϕa and s
are the only two relevant scalars transforming in the funda-
mental and trivial representation of Oð3Þ, Kos et al. (2016)
found an island allowed by the bootstrap constraints shown in

FIG. 25. Allowed regions in the parameter space of Oð2Þ or
Uð1Þ symmetric CFTs. The strongest constraint (dark blue) has
been obtained from the analysis of three correlators
fhϕϕϕϕi; hϕϕssi; hssssig, assuming that s and ϕ are the only
two relevant scalars of charge 0 and 1, and imposing the OPE
coefficient relation λϕϕs ¼ λϕsϕ. From Kos et al., 2015b.

FIG. 26. Allowed islands in the mixed correlator analysis of
Oð2Þ or Uð1Þ symmetric CFTs after performing a scan over the
OPE coefficient ratio λsss=λϕϕs. From Kos et al., 2016.

114Instead of vectors and tensors of Oð2Þ here we use, as is
customary, complex fields charged under Uð1Þ ⊂ Oð2Þ. In the
bootstrap studies we describe the distinction between Uð1Þ ¼
SOð2Þ and Oð2Þ is unimportant, so the constraints will apply to
either symmetry (see footnote 111).

115As before, we denote by a prime the subleading operator with
the same quantum numbers. So t0 is the next traceless symmetric
scalar after t, and J0 is the next vector after the conserved current Jμ,
transforming in the antisymmetric SOðNÞ representation.

David Poland, Slava Rychkov, and Alessandro Vichi: The conformal bootstrap: Theory, numerical …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 015002-38



Fig. 27. The bootstrap determinations of the scaling dimen-
sions and OPE coefficients following from this analysis are
given in Table III. As for the Uð1Þ case, the scaling dimension
determinations are compatible but somewhat less precise than
the best available Monte Carlo and RG results.
One long-standing question about the critical Oð3Þ model

concerns its stability with respect to perturbations which may
potentially lead to two different CFTs, the so-called cubic and
biconical fixed points, which have symmetries B3 ¼
S3⋊ðZ2Þ3 and Oð2Þ × Z2, respectively. These perturbations
take the form KijklΦijkl, where Φ is a scalar operator trans-
forming in the rank-4 symmetric traceless representation of
Oð3Þ, and K is a constant tensor breaking Oð3Þ to one or the
other subgroup. RG calculations indicate that the Oð3Þ fixed
point is unstable while the cubic and biconical fixed points are
stable, with the correction to scaling critical exponents
ωOð3Þ ¼ −0.013ð6Þ and ωB3

¼ 0.010ð4Þ or 0.015(2) accord-
ing to two calculations; see Pelissetto and Vicari (2002)
Secs. 11.3 and 11.7, and references therein. This would imply
that ΔΦ ¼ 3þ ωOð3Þ is very weakly relevant. From the
bootstrap point of view, Φ appears in the OPE t × t, and
its dimension could be determined by an analysis involving
correlators of t. This is an interesting problem for the future.116

Let us mention another 3D CFT with an Oð3Þ global
symmetry—the critical Gross-Neveu-Heisenberg (GNH)
model (Herbut, Juricic, and Vafek, 2009), realized as the
IR fixed point of a microscopic Lagrangian with Yukawa and
quartic couplings

gΨ̄σiϕiΨþ λðϕ2
i Þ2; ð124Þ

where ϕi is a three-component scalar order parameter, and Ψ
is a two-component multiplet of massless Dirac fermions. This
CFT is believed to describe the continuum limit of the
Hubbard model on the honeycomb and π-flux lattices
(Sachdev, 2010). While clearly distinct from the critical
Oð3Þ model, the scalar sector of this theory would be subject

to the general Oð3Þ bounds shown in Figs. 20–23. However,
the expected value of Δϕ ≈ 0.85 (Parisen Toldin et al., 2015)
[Eq. (25)] puts it outside of the region explored so far. The
fermionic sector of this theory could be constrained by
methods from the next section.

D. CFTs with fermion operators

1. Models

The preceding sections discussed constraints from crossing
relations for 4pt functions of scalar operators. Many 3D or
ð2þ 1ÞD CFTs of theoretical and experimental interest also
contain fermionic operators, and here we discuss what the
bootstrap has so far been able to say about them.
Perhaps the simplest example is the family of CFTs

described by the Gross-Neveu model at criticality (Gross
and Neveu, 1974).117 While the critical theory is often
described as the UV fixed point in a theory of fermions with
4-fermi interactions L ∼ ðψ̄ψÞ2, a better nonperturbative
definition is as an IR fixed point in a theory with a scalar
field coupled to fermions via Yukawa interactions. The latter
Gross-Neveu-Yukawa (GNY) model contains a scalar ϕ andN
Majorana fermions ψ i:

LGNY ¼ 1

2

XN
i¼1

ψ̄ ið=∂ þ gϕÞψ i þ
1

2
∂μϕ∂μϕþ 1

2
m2ϕ2 þ λϕ4:

ð125Þ

This model has an OðNÞ symmetry rotating the fermions. A
fixed point can be established perturbatively at large N in a
1=N expansion; see, e.g., Gracey (1992, 1994) and Derkachov

TABLE III. Bootstrap results for the operator dimensions and OPE
coefficients in the criticalOð2Þ andOð3Þmodels (see Secs. V.C.3 and
V.C.4).

Oð2Þ Oð3Þ
Δϕ 0.519 26(32) 0.519 28(62)
Δs 1.511 7(25) 1.595 7(55)
λsss=λϕϕs 1.205(9) 0.953(25)
λϕϕs 0.687 26(65) 0.524 4(11)
λsss 0.828 6(60) 0.499(12)
Δt 1.235 7(33) 1.210(6)
CJ=Cfree

J 0.905 0(16) 0.906 5(27)

FIG. 27. The Oð3Þ analog of Fig. 26. From Kos et al., 2016.

116Preliminary investigations of the htttti bootstrap have produced
bounds that still allow Φ to be irrelevant (Kos et al., 2015a;
Nakayama and Ohtsuki, 2016). See also Rong and Su (2017) and
Stergiou (2018) for recent bootstrap studies of 3D CFTs assuming
cubic and related discrete symmetries. The latter finds evidence that
there may be two different critical 3D theories with cubic symmetry,
one of which is related to the physics of magnets, while the other may
describe structural phase transitions in perovskites.

117This model and its variations are frequently invoked to describe
quantum phase transitions in condensed matter systems with
emergent Lorentz symmetry in ð2þ 1ÞD. Some examples of its
applications include models for phase transitions in graphene
(Herbut, 2006; Herbut, Juricic, and Vafek, 2009), the Hubbard
model on the honeycomb and π-flux lattice (Parisen Toldin et al.,
2015), models of time-reversal symmetry breaking in d-wave
superconductors (Vojta, Zhang, and Sachdev, 2000; Vojta, 2003),
and models of three-dimensional gapless semiconductors (Moon
et al., 2013; Herbut and Janssen, 2014).
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et al. (1993). This model has also been studied extensively
from the perspective of the ϵ expansion, with recent results by
Fei et al. (2016), Mihaila et al. (2017), and Zerf et al. (2017).
An interesting special case is N ¼ 1 (a single Majorana

fermion coupled to a real scalar). It is expected (Fei et al.,
2016) that this model may contain a fixed point with
N ¼ 1 supersymmetry. This supersymmetric fixed point
has been proposed to described a critical point on the
boundary of topological superconductors (Grover, Sheng,
and Vishwanath, 2014).
There are variations of this model containing multiple scalar

order parameters. One notable example is the N ¼ 2 super-
symmetric critical Wess-Zumino model, containing a complex
scalar related to a 3D Dirac fermion by supersymmetry.118

This theory has been proposed to describe a critical point on
the surface of topological insulators (Grover, Sheng, and
Vishwanath, 2014; Ponte and Lee, 2014), and a superconduct-
ing critical point in ð2þ 1ÞD Dirac semimetals with an
attractive Hubbard interaction (Li et al., 2017). Another
important example is the Gross-Neveu-Heisenberg model,
described in Sec. V.C.4.

2. General results

We first discuss general results following from the existence
of fermionic operators. Specialized bounds where the critical
GNYand other models are featured more prominently will be
discussed later.
A bootstrap analysis of 4pt functions of identical Majorana

fermions hψψψψi was performed by Iliesiu et al. (2016a) and
extended to 4pt functions hψ iψ jψkψ li containing fermions
that are vectors under anOðNÞ symmetry by Iliesiu, Kos et al.
(2018). These studies both assumed a general ð2þ 1ÞD CFT
with parity symmetry. Tensor structures and conformal blocks
for 4pt functions were derived using a spinorial embedding-
space formalism also developed by Iliesiu et al. (2016a),
similar in logic to the vectorial embedding space reviewed in
the Appendix.
In Fig. 28 we show general upper bounds on the leading

parity-odd and parity-even scalars in the ψ × ψ OPE, called σ
and ϵ, respectively. The bound on σ is nearly saturated by the
MFT line Δσ ¼ 2Δψ , at least at small values of Δσ . As
Δψ → 1 the bound approaches the free theory value Δσ ¼ 2,
where we can identify σ ¼ ψ̄ψ. On the other hand, there is an
abrupt discontinuity in the bound around Δψ ∼ 1.27 occurring
when Δσ approaches 3. This jump also coincides with a kink
in the bound on Δϵ. The interpretation of these features is
currently an open question—it is tempting to speculate that a
CFT may live at the top of the jump in the bound on Δσ and in
the kink in the bound on Δϵ but no concrete candidate CFTs
have yet been identified. If it exists, this CFTwould appear to
have an unusual property of not possessing any relevant scalar
deformations.119

In Fig. 29 we also show the general lower bounds on the
central charge CT (normalized to its value in the theory of a
free Majorana fermion), obtained by bounding the coefficient
of the stress-tensor conformal block. These lower bounds
approach the free values as Δψ → 1 and disappear completely
for Δψ ≳ 1.47. In the case ofOðNÞ symmetry they can be seen
to grow linearly with N and are compatible with values
computed in the 1=N expansion of the GNY model.
Generalizations to the current central charge CJ for fermions
charged underOðNÞ symmetry were also computed by Iliesiu,
Kos et al. (2018).

3. Gross-Neveu-Yukawa models

In the critical GNY model at large N, ψ i has dimension
1þ 4=ð3π2NÞ þ � � �, while the leading parity-odd scalars in
the ψ i × ψ j OPE are the OðNÞ singlet ϕ with dimension 1 −
32=ð3π2NÞ þ � � � and the OðNÞ symmetric tensor ψ̄ iψ j with
dimension 2þ 32=ð3π2NÞ þ � � � (Iliesiu, Kos et al., 2018,
Table 1). The accumulation point ðΔψ ;ΔσÞ → ð1; 1Þ sits well
in the interior of Fig. 28(a), but by imposing a gap until the
second parity-odd scalar, Δσ0 ≥ 2þ δ for different positive

(a)

(b)

FIG. 28. The upper bounds on the dimension of (a) the first
parity-odd scalar σ and (b) the first parity-even scalar ϵ in the OPE
ψ × ψ as a function of Δψ . Here ψ is a Majorana fermion primary
operator in a 3D parity-invariant unitary CFT. From Iliesiu et al.,
2016a.

118We describe some of the implications of supersymmetry and a
bootstrap analysis connecting to this model later in Sec. VII.

119Hypothetical theories with this property were recently named
“dead-end” CFTs by Nakayama (2015a). They should be distin-
guished from “self-organized” CFTs which do not have any relevant
singlet scalars as defined in Sec. V.A.
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values of δ, we have the possibility of obtaining an allowed
region that rules out critical GNY models with N suffi-
ciently large.
This is realized in Fig. 30, where the effects of gaps ranging

from Δσ0 ≥ 2.01 to Δσ0 ≥ 2.9 are shown. At very small values
of δ the lower bounds of the allowed regions possess a kink
whose location matches very well to the large-N GNY model
prediction. At larger values of δ, the precise map between δ
and N is not known but it is plausible that the kinks continue
to match to the GNY model even at small values of N.
However, starting around Δσ0 ≥ 2.3, a second lower feature
also appears in these curves, where they all intersect and have
an additional kink at a point near (1.08, 0.565).
This structure of an “upper” and a “lower” kink can be seen

clearly in Fig. 31, specialized to the case Δσ0 ≥ 3. In fact, in
this case the line Δψ ¼ Δσ þ 1=2 expected for theories with
supersymmetry comes very close to (but just misses) the upper
kink. Thus, it is tempting to conjecture that the N ¼ 1 super-
symmetric Gross-Neveu-Yukawa model (see Sec. V.D.1) may
sit in this feature and has Δσ0 slightly smaller than 3. This
picture seems consistent with estimate Δσ ≈ 0.59 from a Padé
extrapolation of the ϵ expansion (Fei et al., 2016), as well as
with the rigorous lower bound Δσ ≥ 0.565 (Bashkirov, 2013),

which follows using another supersymmetric relation Δϵ ¼
Δσ þ 1 together with the bootstrap bound in Fig. 7, applicable
with parity playing the role of a Z2 symmetry.120 An addi-
tional speculation is that the lower feature may coincide with a
nonsupersymmetric fixed point, called GNY* by Iliesiu, Kos
et al. (2018), which is seen in the ϵ expansion as a nonunitary
fixed point at large N, but whose fate at small N and ϵ → 1 is
not known.
Additional evidence for this picture comes from the

generalization of the bounds to OðNÞ symmetry (Iliesiu,
Kos et al., 2018), where one can place independent bounds
on different OðNÞ representations. In Fig. 32 we show
computed bounds on the leading singlet dimension Δσ ,
assuming that the next singlet is irrelevant, Δσ0 ≥ 3. These
bounds also show both an upper and a lower kink, which
appear not too far from the ϵ-expansion estimates for the GNY
and GNY* models. In Fig. 33 we also highlight the bounds on
the leading OðNÞ symmetric tensor σT, which display

(a)

(b)

FIG. 29. The lower bounds on CT as a function of Δψ , where ψ
is (a) a Majorana fermion or (b) a multiplet of Majorana fermions
in the fundamental representation of an OðNÞ global symmetry
group. From Iliesiu et al., 2016a and Iliesiu, Kos et al., 2018.

FIG. 30. The effect of imposing a gap until the second
pseudoscalar σ0 on the parameter space of 3D parity-invariant
CFTs. From Iliesiu et al., 2016a.

120Further progress on this CFT was made very recently by Rong
and Su (2018) and Atanasov, Hillman, and Poland (2018), where it
was understood how to obtain an island in the scalar mixed-correlator
bootstrap around Δσ ¼ 0.584 444ð30Þ. In these studies in addition to
relations between scaling dimensions it is important to incorporate
nontrivial 3D N ¼ 1 superconformal blocks.
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mysterious and unexplained jumps when ΔσT reaches margin-
ality and at smaller values of Δψ i

show a series of kinks which
match to the large-N GNY models. Understanding the
mechanism behind these jumps is an important open problem,
which may be related to the spectrum rearrangement phenom-
ena from Sec. V.B.3.

E. QED3

Continuing our survey of physically important 3D CFTs,
another class of theories are those defined by coupling 3D
gauge or Chern-Simons fields to matter. One of the simplest
examples is 3D quantum electrodynamics (QED3), containing
a Uð1Þ gauge field coupled to Nf two-component massless
Dirac fermions ψ i. This theory is known to flow to a nontrivial
CFT at large Nf, which can be studied in the 1=Nf expansion
(Appelquist, Nash, and Wijewardhana, 1988; Nash, 1989).
There has been a long-standing question of whether there is a
critical value of Nf below which the theory undergoes
spontaneous breaking of the SUðNfÞ global symmetry.
Numerous estimates of the critical value of Nf have been
made over the years; see, e.g., Gukov (2017), Table 5.
It would be interesting to shed light on these theories and

the question of the conformal window using bootstrap
techniques. One starting point would be to study the bootstrap
for 4pt functions of the gauge-invariant fermion bilinears

ψ̄ iψ j.
121 Basic bootstrap bounds on scalar 4pt functions, of the

type discussed in Secs. V.B and V.C, would apply to this
operator, but it is not a priori clear how to isolate QED3 as
compared to other theories with similar scalar operators such
as QCD3. However, this is an underexplored direction and in
future studies it may be useful to combine the bootstrap for
SUðNfÞ adjoints and singlets with additional gap assumptions
and bootstrap constraints for other operators.

1. Monopole bootstrap for QED3

An alternate approach, pursued by Chester and Pufu (2016)
and Chester et al. (2017), is to focus on monopole operators.
When dealing with a compact Uð1Þ gauge field, these
operators create topologically nontrivial configurations of
the gauge field having magnetic flux emerging from a
spacetime point.122 Such operators are charged under a
topological Uð1ÞT global symmetry with symmetry current
JμT ¼ ð1=8πÞϵμνρFνρ. Taking the monopole operators to have
charge q ∈ Z=2, the scalar monopoles transform in represen-
tations of SUðNfÞ corresponding to fully rectangular Young
diagrams with Nf=2 rows and 2jqj columns (Dyer, Mezei, and
Pufu, 2013). Thus, the lightest scalar monopoles MI

�1=2 are
expected to be in SUðNfÞ representations with Nf=2 fully
antisymmetric indices.123

The bootstrap for 4pt functions of MI
�1=2 was studied by

Chester and Pufu (2016) for Nf ¼ 2, 4, and 6, where they
focused on placing bounds on the dimension of the second
monopole operator ΔM1

, making various assumptions about
gaps in the uncharged (q ¼ 0) sector. These bounds are shown
in Figs. 34 and 35, where for Nf ¼ 4 and 6 they can be
compared with the large Nf estimate (black cross).
Intriguingly, there is a kinklike discontinuity in the bound
which comes close to the large Nf estimate for certain values
of the gap in the uncharged sector for operators in the same
SUðNfÞ representation. By increasing the gap above M1, the
allowed region could also be turned into a peninsula around
the kink. Similar bounds for the lightest spinning monopoles
in the case Nf ¼ 4, along with a comparison to the large Nf

predictions, were presented by Chester et al. (2017).
While these results are not definitive, they seem promising

and show that the bootstrap for QED3 has a reasonable chance
to be successful, perhaps after a few more ingredients are
added. Some possible directions would be to consider a
multiple correlator bootstrap involving M�1=2, M�1, and/or
ψ̄ iψ

j. It may also be fruitful to combine these with constraints
from 4pt functions containing the Uð1ÞT current, the SUðNfÞ
current, or the stress tensor.

FIG. 31. The effect of imposing that there is only one relevant
pseudoscalar Δσ0 ≥ 3 in 3D parity-invariant CFTs. From Iliesiu
et al., 2016a.

121Because of gauge symmetry, a single fermion field is unphys-
ical in QED3 and it would not be legitimate to consider its 4pt
functions, unlike in GNY models in Sec. V.D, where ψ was physical.

122Thus they could also be called instantons, but the common
terminology refers to them as monopoles.

123Monopoles with spin transform in other nontrivial flavor
representations; see Chester et al. (2017).
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FIG. 32. The effect of imposing a gap Δσ0 ≥ 3 in the singlet pseudoscalar sector ofOðNÞ-symmetric fermionic CFTs. The kinks at low
N may perhaps be identified with the GNY and GNY* CFTs. From Iliesiu, Kos et al., 2018.

(a)

(b)

FIG. 33. The upper bounds on the dimension of the symmetric
traceless pseudoscalar σT in the OPE ψ i × ψ j inOðNÞ-symmetric
fermionic CFTs. Notice the mysterious jumps in the wide
view of the bounds (a) when they cross marginality. (b) A zoom
on the small Δψ region, where the bounds exhibit kinks,
in agreement with the GNY dimensions at large N. From
Iliesiu, Kos et al., 2018.
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FIG. 34. Bounds on (a) ΔM1
in terms of ΔM1=2

in d ¼ 3 for
Nf ¼ 2 and 6, and (b) with various assumptions on the gaps in
the uncharged sector in the same SUðNfÞ representation as M1.
From Chester and Pufu, 2016.
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2. Bosonic QED3 and deconfined quantum critical points

Finally we review the rich physics of bosonic QED3, where
some bootstrap insights have recently been obtained. Bosonic
QED3 is obtained by coupling the Uð1Þ gauge field to N
complex scalars ϕi with an SUðNÞ invariant potentialm2jϕj2þ
λðjϕj2Þ2. This is also known as theN-component Abelian Higgs
model and is believed to flow to a CFT for large enough N.
Unlike for fermions, the boson mass term preserves all the
symmetries and has to be fine-tuned to reach the fixed point.
This model has beenmuch discussed in the condensedmatter

literature as the “noncompact CPN−1 model” (NCCPN−1)
in connection with the phenomenon of “deconfined criticality”
(Senthil et al., 2004). To briefly review this connection,
the physical systems of interest are certain quantum anti-
ferromagnets in 2þ 1 dimensions, which have a quantum
phase transition between Néel and valence-bond-solid (VBS)
phases.124 The transition can be described by theOð3Þ nonlinear

sigma model (NLSM) for the Néel order parameter, modified
by the inclusion of Berry phase effects which suppress
topological defects (hedgehogs), which will play an important
role below.
The Oð3Þ NLSM can be written as the CP1 model, which

has two complex vectors z ¼ ðz1; z2Þ subject to the constraint
jz1j2 þ jz2j2 ¼ 1 and a Uð1Þ gauge invariance z ∼ eiϕz. This
explains the emergence of the gauge field. Replacing the
constraint by a quartic potential and adding a Maxwell kinetic
term for the gauge field (expected to be generated by the RG
flow), one obtains bosonic QED3 with N ¼ 2.
In the language of QED3, the above-mentioned topological

defects are the monopole operators of quantized charge,
similar to the ones in Sec. V.E.1. Of course the dimensions
of monopole operators differ in bosonic and fermionic QED.
Also here we normalize the topological charge to be inte-
ger q ∈ Z.
If a monopole of charge q appears in the action, it breaks the

global topological Uð1ÞT symmetry to the Zq subgroup.
Microscopic descriptions of quantum antiferromagnets may
realize a discrete subgroup of Uð1ÞT at the lattice level. On
cubic lattices, a Zq0 with q0 ¼ 4 is preserved, while for the
hexagonal and rectangular lattices we have q0 ¼ 3 and 2. The
Zq0 symmetry is also visible in the VBS phase where it
permutes the vacua. This microscopic symmetry means that
onlymonopoleswith chargesmultiple ofq0 appear.Monopoles
with different charges have their fugacity killed by the above-
mentioned Berry phases (Read and Sachdev, 1990).
In light of the above discussion, the analysis of the critical

behavior of QED3 can be split into two parts. First, does
bosonic QED3, with all monopoles suppressed, have a fixed
point? If the answer is yes, then one can ask: can this fixed
point be reached provided that one allows monopoles with
charges in multiples of q0? For this to happen, the monopole
of charge q0 has to be irrelevant.
One can study these questions analytically at large N: one

finds a fixed point and computes the critical exponents in the
1=N expansion.125 At small N one resorts to Monte Carlo
simulations. The bootstrap at present cannot by itself resolve
the question of the fixed point existence. However, it can
provide valuable consistency checks on the other studies.
Suppose that a certain Monte Carlo simulation is done on a
lattice preserving a Zq0 subgroup, finds a second-order phase
transition, and measures the scaling dimensions Δq of
monopole operators Mq for a subset of charges q (we denote
by M0 the relevant singlet scalar driving the transition). We
have the following OPE algebra in the scalar sector, omitting
the OPE coefficients (M−q ¼ M†

q):

Mq ×Mq0 ∼ δqþq01þMqþq0 þ � � � : ð126Þ

From the previous discussion, the operator Mq0 has to be
irrelevant, as well as the higher charge monopoles. We can use
the bootstrap to study the consistency of this algebra given the
measured operator dimensions.
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FIG. 35. (a) The analog of Fig. 34 for Nf ¼ 4. (b) Starting from
the Δ2 ≥ 3 case of (a) and showing that placing an additional gap
ΔM0

1
above ΔM1

turns the kink into a peninsula. From Chester and
Pufu, 2016.

124The absence of a disordered phase in such transitions can be
understood using ‘t Hooft anomalies; see Komargodski, Sharon et al.
(2017). This perspective also gives insight into the rich physics of
interfaces in these theories (Komargodski, Sulejmanpasic, and Ünsal,
2018).

125See Murthy and Sachdev (1990), Kaul and Sachdev (2008),
Metlitski et al. (2008), and Dyer et al. (2015).
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3. Aside: Constraints on symmetry enhancement

What we just presented is an instance of a more general
question: under which conditions can the global symmetry of
the fixed point G be larger than the microscopically realized
symmetry H? The case of interest for the previous section is
G ¼ Uð1Þ and H ¼ Zq0 . For the symmetry enhancement to
happen, operators which break G to H must be irrelevant. The
bootstrap is a powerful tool to study whether this irrelevance
assumption is consistent with conformal symmetry and with
other information which may be available about the fixed
point. We will see further applications of this philosophy in
Secs. VI.B and VI.C.
We now describe bootstrap constraints on the symmetry

enhancement from Zq0 to Uð1Þ derived by Nakayama and
Ohtsuki (2016). Enhancement from Z2 requires that M2 is
irrelevant. SinceM1 ×M1 ∼M2, one can bound Δ2 given Δ1,
by studying the 4pt function hM1M

†
1M1M

†
1i. The resulting

bound is given in Fig. 36. Imposing Δ2 > 3, one gets a
necessary condition Δ1 > 1.08 for enhancement from Z2

to Uð1Þ.
The same plot in Fig. 36 can be used to derive rough

necessary conditions on the enhancement from Z4 to Uð1Þ.
Indeed, the bound also applies to M2 ×M2 ∼M4. If M4 is
irrelevant, then we must have Δ2 > 1.08, which in turn
implies Δ1 > 0.504.
To study enhancement from Z3, one analyzes simultane-

ously three 4pt functions hM1M
†
1M1M

†
1i, hM1M

†
1M2M

†
2i, and

hM2M
†
2M2M

†
2i. It is reasonable to assume thatM4 is irrelevant

(as would be the case if M3 is irrelevant and Δq is monotonic
in q), and to impose Δ0 > 1.044 (which follows from an
assumption that the fixed point is critical and not multicritical;
see Sec. V.A). Under these assumptions, the upper bound on
Δ3 as a function of fΔ1;Δ2g is shown in Fig. 37. From this
bound, irrelevance of M3 requires Δ1 > 0.585.

4. Back to deconfined criticality: Is the transition second order?

The necessary conditions described in the previous section
have been compared with available Monte Carlo and large-N

data on the Néel VBS transition which claim to see a second-
order transition and measure some critical exponents. For
square and hexagonal lattices, there is nice consistency, as for
rectangular lattices for N ≤ 4 and N ≥ 6, while some N ¼ 5

simulations are inconsistent with the bootstrap. The conclu-
sion is that there must either be an error in the N ¼ 5

Monte Carlo measurement or in the assumption that the
transition is second order. See Nakayama and Ohtsuki
(2016) for this survey and for further details.
It should be emphasized that while the bootstrap results

may point out an inconsistency in Monte Carlo simulations,
they cannot, at present, validate them and prove that the phase
transition is indeed second order. It is still possible that even in
the above cases when there is a nice agreement between
Monte Carlo results and the bootstrap necessary conditions,
the transition is still very weakly first order and not sec-
ond order.
Let us focus on the case N ¼ 2 which presents a con-

troversy. Large-scale Monte Carlo simulations for N ¼ 2were
performed by Nahum, Chalker et al. (2015), using a loop
model on a cubic lattice which is in the same universality class
as NCCP1 and has monopole suppression up to q0 ¼ 4, and
going up to very large lattices of linear size up to L ¼ 640.126

While they have not seen signs of a finite correlation length or
a conventional first-order transition, and observed scaling
behavior of correlation functions at distances 1 ≪ r ≪ L, they
have seen scaling violation for observables at larger distances
r ∼ L, inconsistent with a conventional second-order
transition.
So, is the transition second order or weakly first order?

Assuming a second-order transition, Nahum, Chalker et al.

FIG. 36. The 3D upper bound on Δ2 as a function of Δ1. It may
be possible to improve this bound if Δ0 is known. The same
bound applies to M2 ×M2 ∼M4. From Nakayama and Ohtsuki,
2016.

FIG. 37. An upper bound on Δ3 as a function of fΔ1;Δ2g under
the assumptions that Δ0 > 1.044, Δ4 > 3. It follows from Fig. 36
that the range of Δ2 is restricted by the latter assumption from
below, and, for fixed Δ1, from above. From Nakayama and
Ohtsuki, 2016.

126See also Harada et al. (2013) and Sreejith, Powell, and Nahum
(2018) for simulations of other microscopic models in the same
universality class.
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(2015) extracted the scaling dimension of the monopole
operator Δ1 ¼ 0.625ð15Þ, which is consistent with the boot-
strap condition Δ1 > 0.504 necessary for the enhancement
from Z4 to Uð1Þ. However, there is an extra piece of
information which allows one to set up an even more stringent
bootstrap test: further symmetry enhancement at the transition
from SOð3Þ × Uð1Þ to SOð5Þ. Here SOð3Þ acts on the Néel
order parameter Na ¼ z†σaz. Empirically, the scaling dimen-
sion of N is very close to Δ1 (Nahum, Chalker et al., 2015)
and, moreover, the joint probability distribution of ðN;M1Þ is
very close to the spherical one after a rescaling (Nahum, Serna
et al., 2015), which can be explained if N and M1 belong to a
vector multiplet Φ of SOð5Þ of dimension ΔΦ ¼ Δ1.
In this description, the relevant scalar which drives the

transition is a component of the symmetric traceless tensor
(roughly ΦAΦB − trace).127 For the SOð5Þ enhancement to
happen, any other scalar which breaks SOð5Þ back to SOð3Þ ×
Uð1Þ must be irrelevant. In addition, the SOð5Þ singlet S
(roughly ΦAΦA) must be irrelevant for the transition to be
second order, since otherwise the fixed point will not be
reached; see Wang et al. (2017) for further discussion. Given
the dimension ΔΦ ¼ Δ1 as above, it is straightforward to
compute an upper bound on the dimension of S which occurs
in the OPE Φ ×Φ. This is the same bound as for N ¼ 5 in
Fig. 21 except the plot has to be extended to larger ΔΦ.
Nakayama and Ohtsuki (2016) and Simmons-Duffin (2016b)
performed this analysis and reported that ΔS > 3 is excluded
for ΔΦ as above. In fact ΔS > 3 requires ΔΦ > 0.76
(Nakayama, 2016a).
To summarize, the bootstrap excludes a second-order phase

transition described by a unitary 3D CFT with symmetry
enhanced to SOð5Þ and the order parameter scaling dimension
taking the above value suggested by the Monte Carlo sim-
ulations. In our opinion, the most compelling interpretation of
available data is a weakly first-order transition due to walking
RG behavior which ensues when the RG flow has no fixed
points for a real value of the coupling but two complex
conjugate fixed points with small imaginary parts. This is the
same mechanism as for the weakly first-order transition in the
2D Potts model with Q≳ 4. As discussed by Nahum, Chalker
et al. (2015), this scenario may resolve the observed scaling
violations at distances r ∼ L. It can also accommodate the
enhancement to SOð5Þ (Wang et al., 2017). In this scenario,
there is no unitary 3D CFT (the complex fixed points being
nonunitary), and the bootstrap bounds do not apply, resolving
the contradiction.
Finally, let us note that a similar analysis can constrain

another scenario outlined by Wang et al. (2017), in which a
variant called the easy-plane NCCP1 model is conjectured to
have a fixed point with enhanced Oð4Þ symmetry and be dual
to Nf ¼ 2 fermionic QED3. In this scenario, the conjectured
fixed point cannot contain any fully Oð4Þ-invariant scalar
perturbations. However, recent Monte Carlo simulations (Qin
et al., 2017) point to a dimension for the Oð4Þ vector order
parameter ΔΦ ¼ 0.565ð15Þ which seems incompatible with
the bootstrap bound assuming irrelevance of the Oð4Þ singlet

(Fig. 20 extended further to the right), which requires ΔΦ >
0.868 (Poland, 2017). In the future it will be interesting to
further study the fate of these models using both bootstrap and
Monte Carlo data.

F. Current and stress-tensor bootstrap

In the previous sections we discussed results following
from 4pt functions of scalars and fermions. Here we discuss
interesting results which have recently been obtained from 4pt
functions of tensor operators, specifically of conserved cur-
rents and stress tensors. Namely, a number of numerical
bounds on scaling dimensions and OPE coefficients from such
correlators in parity-preserving 3D CFTs were recently
computed by Dymarsky et al. (2017, 2018), building on
important analytical developments for spinning correlators as
reviewed in Sec. III.F.7.128 Such studies are well motivated
because they probe the general space of local CFTs and may
even lead to the discovery of new theories.
A concrete application of these constraints is to study

bounds on current and stress-tensor 3pt function coefficients
under various assumptions. These coefficients are known to
satisfy various analytical bounds following from the averaged
null energy condition (see Sec. III.E.3), as was originally
argued in the context of conformal collider physics by
Hofman and Maldacena (2008), with 3D bounds worked
out by Buchel et al. (2010) and Chowdhury et al. (2013). One
application of the numerical bootstrap is to study how the
conformal collider bounds change as a function of gaps.
Another application is to determine these coefficients in
various CFTs, e.g., the critical 3D Ising and OðNÞ models.
These studies also allow one to probe parity-odd operators in
the spectrum which have previously been inaccessible from
the perspective of scalar 4pt functions (although they could be
accessed from the fermionic correlators in Sec. V.D).
In Fig. 38 we show general lower bounds on the central

charge (in units of the free boson central charge CB) from the
bootstrap applied to hTTTTi, as a function of the independent
parity-preserving hTTTi 3pt function coefficient which is
parametrized by the variable θ.129 In this notation the
conformal collider bound is 0 ≤ θ ≤ π=2, where a free scalar
has θ ¼ 0 and free Majorana fermion has θ ¼ π=2. It can be
readily seen that the numerical bootstrap is able to reproduce
this constraint in addition to giving general lower bounds on
CT . A similar set of bounds from the hJJJJi bootstrap is
shown in Fig. 39, where in this plot CT is normalized to the
central charge of a free complex scalar Cfree

T and the

127Nahum, Serna et al. (2015) measured its scaling dimension to
be ∼1.5.

128See also Dymarsky (2015) for a discussion about the general
properties of these correlation functions.

129In fact, Figs. 38 and 39 should also apply to parity-violating
theories since all needed conformal blocks have been included (e.g.,
contributions from parity-violating hTTTi or hJJTi couplings are
accounted for by allowing parity-odd spin-2 contributions at the
unitarity bound). This also holds for bounds where identical gaps
have been imposed in a given parity-even and parity-odd sector
simultaneously (e.g., Fig. 45 along the diagonal). Stronger bounds
may hold in parity-violating theories after adding crossing relations
from parity-violating 4pt structures and assuming nonzero values of
parity-violating coefficients.
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independent parity-preserving hJJTi coupling is parametrized
by γ, where the conformal collider bound is given by
−1=12 ≤ γ ≤ 1=12. In this case the free complex scalar has
γ ¼ −1=12 while the free Dirac fermion has γ ¼ 1=12.
As mentioned, the advantage of the numerical bootstrap is

that it can readily probe how constraints on these couplings
depend on gaps in the spectrum. For example, in Fig. 40 we
show how the lower bound on CT as a function of θ in the
hTTTTi bootstrap varies as one increases the gap in the parity-
odd scalar sector Δodd from 2 to 8. It can be seen that
increasing the parity-odd gap forbids the “fermion” end of the
range for θ but allows the “scalar” end. This is consistent with
the fact that the free scalar has a very large parity-odd gap
Δodd ¼ 11, while the free Majorana fermion has a small
gap Δodd ¼ 2.
Similarly, imposing a parity-even gap forbids the scalar

end. In Fig. 41 we illustrate this by showing what happens
when the leading parity-even scalar is irrelevant, correspond-
ing to “self-organized” CFTs (see Sec. V.A). This lower
central charge bound applies for instance to fermionic QED3

in the conformal window from Sec. V.E, with Nf even for
parity invariance.
Furthermore, imposing gaps on both parity-even and parity-

odd scalars forces one to live with intermediate values of θ, at
least for moderately small values of the central charge. These
and other bounds with different gap assumptions (including
upper bounds on CT for gaps excluding large-N theories) can
be found by Dymarsky et al. (2018).
A similar story holds for bounds from the hJJJJi bootstrap,

where Fig. 42 shows how the lower bound on CT changes
when either parity-even or parity-odd scalars are irrelevant
(dashed blue lines), or when both are irrelevant (solid blue
line). These bounds are consistent with the gaps for a free
complex scalar (Δþ

0 ¼ 2, Δ−
0 ¼ 7) and free Dirac fermion

(Δþ
0 ¼ 4,Δ−

0 ¼ 2). Similar bounds with different gap assump-
tions have been found by Dymarsky et al. (2017). In the
future, by generalizing this analysis to SUðNfÞ [or
SUðNfÞ × Uð1Þ] global symmetry one may be able to place
interesting bounds on the fermionic QED3 central charge
using the same argument as the one based on Fig. 41.

FIG. 38. Bounds on CT as a function of the hTTTi 3pt function
parameter θ. From Dymarsky et al., 2018.
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FIG. 39. Bounds on CT as a function of the hJJTi 3pt function
parameter γ. From Dymarsky et al., 2017.

FIG. 40. Bounds on CT as a function of the hTTTi 3pt function
parameter θ for different values of the parity-odd scalar gap Δodd.
From Dymarsky et al., 2018.

FIG. 41. Bounds on CT as a function of the hTTi 3pt function
parameter θ assuming that the leading parity-even scalar is
irrelevant. From Dymarsky et al., 2018.
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It is interesting to ask if one can use these general boot-
strap constraints to determine θ or γ in some CFTs of interest,
e.g., the Ising orOð2Þmodels. In the case of the Ising model, it
is a plausible assumption (e.g., from the ϵ expansion) that its
leading parity-odd (but Z2-even) operator has a very large
dimension as in the free scalar theory. Using known parity-
even data the hTTTTi bootstrap yields an upper bound
ΔIsing

odd < 11.2, and one can obtain small closed regions in
the fθ; CTg plane that are consistent with the known Ising
central charge, Eq. (123). These regions, shown in Fig. 43,
yield the determination 0.01 < θ < 0.018–0.019 if Δodd is
close to saturating its bound. Note that if one makes the
weaker assumption of irrelevanceΔodd > 3, then there is still a
reasonably tight range 0.01 < θ < 0.05 consistent with CIsing

T .
In the case of the hJJJJi bootstrap, one can similarly try to

determine γ for theOð2Þmodel. In this case after inputting the

known dimension of the leading Oð2Þ parity-even singlet,
irrelevance of the second Oð2Þ parity-even singlet, and the
plausible parity-odd gaps Δ−

0 ≥ 5 and Δ−
l ≥ lþ 2, Fig. 44

yields the range −0.0824 < γ < −0.0494. Based on a linear
extrapolation, Dymarsky et al. (2017) also estimated the more
restrictive range −0.080 < γ < −0.061. A negative value of γ
in the Oð2Þ model also appears to be favored by the results of
quantum Monte Carlo simulations (Katz et al., 2014). In
future work it will be interesting to find ways to improve these
determinations, extend them to other OðNÞ models, and
perhaps connect the smallness of the deviations of θ and γ
from their free values to the existence of approximate higher-
spin currents in these theories.
Finally, in Fig. 45 we show a more global picture of the

allowed region of parity-odd and parity-even scalar gaps
from both the hTTTTi and hJJJJi bootstrap, making no
additional assumptions. These regions satisfy a number of
consistency checks, e.g., being consistent with known gaps
in free theories, MFTs, and critical OðNÞ models. They
additionally show fairly sharp features near the scaling
dimensions in the Ising and Oð2Þ models. It will be
interesting to improve these maps in future studies and
identify the locations of other CFTs of interest. The lower
“scalar exclusion” regions of these plots are ruled out from
4pt functions of the leading parity-odd scalar (assuming the
parity-even scalar appears in both OPEs as would be
generically expected), an example of how the scalar and
the stress-tensor and current bootstraps can yield comple-
mentary information.
There are a number of directions for future work, which

include considering mixed systems containing stress tensors
and currents together with scalars, studying the implications
of parity violation (see footnote 129), studying in more detail
the conditions for large N and holographic theories, and
generalizing these studies to other dimensions. Recent
progress on how to compute spinning conformal blocks in
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FIG. 42. Bounds on CT as a function of the hJJTi 3pt function
parameter γ with no assumptions (lower solid curve), parity-odd
scalars irrelevant (lower dashed curve), parity-even scalars
irrelevant (upper dashed curve), and all scalars irrelevant (upper
solid curve). From Dymarsky et al., 2017.

FIG. 43. Bounds on CT as a function of the hTTTi 3pt function
parameter θ with gap assumptions plausible for the Ising model.
From Dymarsky et al., 2018.
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FIG. 44. Bounds on CT as a function of the hJJTi 3pt function
parameter γ with gap assumptions plausible for the critical Oð2Þ
model. From Dymarsky et al., 2017.
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4D and in general dimensions130 should make these analyses
tractable in the future outside of 3D. Current and stress-tensor
multiplets can also be considered in superconformal theories,
where the bootstrap analysis can be simplified using the fact
that they reside in multiplets with operators of lower spin.131

G. Future targets

In this sectionwe collect some additional 3Dmodelswhich in
our opinion represent interesting future targets for the bootstrap.

1. Multifield Landau-Ginzburg models

There exists rich phenomenology of fixed points arising
from Lagrangians with multiple scalar fields transforming
under product group symmetries, e.g., SOðnÞ × SOðmÞ. One
can consider Lagrangians involving two coupled scalar
multiplets, one transforming in the fundamental of SOðnÞ
and another of SOðmÞ. Alternatively, one can consider a field

transforming in the bifundamental of SOðnÞ × SOðmÞ. Such
Lagrangians have been invoked to describe phase transitions
in many physical systems; see Vicari (2007) for further details.
When studying these fixed points using the RG, a recurrent

feature is that many of them do not exist in the 4 − ϵ expansion
and have to be studied directly in 3D. Since such computa-
tions lack a manifestly small expansion parameter, there seems
to be no consensus about the existence of these fixed points.
So this appears to be a perfect target for a nonperturbative
approach such as the bootstrap. Some preliminary bootstrap
studies of 3D CFTs with SOðnÞ × SOðmÞ were carried out by
Nakayama and Ohtsuki (2014a, 2015), but in our opinion
more work is needed before firm conclusions can be drawn.

2. Projective space models

An interesting 3D lattice model is the CPn model, where
microscopic lattice variables belong to CPn and have ferro-
magnetic interactions preserving the symmetry (see below for
the antiferromagnetic case). Recall that CPn can be realized by
starting with (nþ 1)-dimensional complex vectors z ¼
ðz1;…; znþ1Þ and imposing the constraint z† · z ¼ 1, preserved
up to the equivalence z ∼ eiϕz. A simple lattice Hamiltonian is

H ¼ −J
X
hiji

jz†i · zjj2; ð127Þ

with J > 0 in the considered ferromagnetic case. The physics
of this model is influenced by defects (hedgehogs), which are
possible because π2ðCPnÞ ¼ Z. Here we consider the CPn

model with defects allowed. It should be distinguished from the
“noncompact CPn model” which results when defects are
suppressed; see Sec. V.E.2.
The CP1 model is equivalent to the Oð3Þ model, with the

order parameter Na ¼ z†σaz, and it has a second-order phase
transition described by the same CFT.
The CP2 model has an internal symmetry SUð3Þ (modulo

global issues), with traceless Hermitian matrix Qab ¼ zaz̄b −
δab as an order parameter. The Landau-Ginzburg description
contains a cubic invariant TrðQ3Þ and would suggest a first-
order transition, but Monte Carlo simulations (Nahum et al.,
2013) indicate that the phase transition is continuous. This is
similar to what happens for the three-state Potts model in 2D
and can be explained as an effect of fluctuations. Monte Carlo
results for the critical exponents are η ¼ 0.23ð2Þ and
ν ¼ 0.536ð13Þ, translating into the dimensions of Q and of
the relevant singlet scalar. Can this model be isolated using the
numerical bootstrap?
One can also consider antiferromagnetic projective space

models, taking J < 0 in the above Hamiltonian. Antifer-
romagnetic CPn models (Delfino, Pelissetto, and Vicari,
2015) do not give rise to new universality classes.132 On

(a)

(b)

FIG. 45. Allowed region for parity-even and parity-odd scalar
gaps from (a) the hTTTTi bootstrap. From Dymarsky et al.,
2018. (b) The hJJJJi bootstrap. From Dymarsky et al., 2017.

130See Secs. III.C.2 and III.F.7 for a summary.
131However, to do this requires knowledge of the superconformal

blocks. Some studies where this has been pursued are mentioned in
Secs. VII and IX.

132The ACP1 model on a cubic lattice is equivalent to the
ferromagnetic model and, as the latter, has a phase transition in
the Oð3Þ universality class. For higher n there is no equivalence
between the antiferromagnetic and ferromagnetic models. The ACP2

model has a second-order transition which belongs to the Oð8Þ
universality class (and so is different from CP2). For still higher n the
transition is first order.
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the other hand, a new class is observed for the antiferromag-
netic RP4 model Pelissetto, Tripodo, and Vicari (2018), and it
could constitute a target for the bootstrap.133

3. Non-Abelian gauge and Chern-Simons matter theories

While we focused our attention on QED3, there is a whole
landscape of 3D gauge theories coupled to various types of
matter. An interesting case is QCD3 with a simple gauge group
G coupled to Nf fundamental fermions. Such theories may,
for example, play a role in the physics of cuprate super-
conductors (Chowdhury and Sachdev, 2014, 2015). A fixed
point can be established and the properties studied at large Nf

(Appelquist and Nash, 1990). For example, Dyer, Mezei, and
Pufu (2013) performed a systematic study of monopole
operators in such theories, allowing for estimates of the
bottom of the conformal window for different choices of G
by imposing irrelevance of the monopole operators (Dyer,
Mezei, and Pufu, 2013, Table 4). QCD3 coupled to both
fermions and scalars was also proposed to describe the critical
point of the “orthogonal semimetal” confinement transition in
Gazit et al. (2018), with critical exponents extracted in
quantum Monte Carlo simulations. It would be interesting
to understand how to isolate these theories using bootstrap
techniques and test these estimates.
Another natural set of targets consists of Chern-Simons

gauge fields coupled to matter. Such theories are known to
have conformal fixed points and sit in an intricate web of
dualities.134 Some possible experimental realizations of these
theories as transitions between fractional quantum Hall states
were proposed by Lee et al. (2018). A hallmark of these
theories is the existence of parity violation; it would be
interesting to see if they can be found after introducing parity-
violating couplings into the bootstrap. Monopole operators in
these theories were also recently studied by Chester et al.
(2017) and would constitute natural targets for the bootstrap.

4. Other models

Another theory briefly mentioned in Sec. V.C.4 is the GNH
model, a variant of the GN models with a three-component
scalar order parameter. For a pedagogical review of the model,

its applications, and its connection to the lattice Hubbard
model, see Sachdev (2010). This constitutes another interest-
ing target for the bootstrap.
A 3D CFT with SUð4Þ global symmetry and an order

parameter in the symmetric tensor representation was con-
sidered by Basile, Pelissetto, and Vicari (2005, 2006). It was
proposed to describe a continuous chiral phase transition in
4D SUðNÞ gauge theory coupled to Nf ¼ 2 massless quarks
in the adjoint representation at finite temperature. The
existence of this CFT and some information about critical
exponents was found using RG methods; it would be
interesting to explore it using the bootstrap.

VI. APPLICATIONS IN d = 4

In this section we now turn to numerical bootstrap appli-
cations in unitary 4D CFTs. We first present general con-
straints in Sec. VI.A and then discuss more specific physical
applications. In Sec. VI.B we review applications to high-
energy physics beyond the standard model (SM). Applications
to 4D conformal gauge theories will be discussed in
Sec. VI.C. Supersymmetric 4D CFTs will be presented in
the next section.

A. General results

This section will follow the same logic as Secs. V.B.1 and
V.C.1 devoted to 3D CFTs. Historically, however, the first
attempt to study crossing relations using numerical techniques
focused on 4D CFTs. This analysis, pioneered by Rattazzi et al.
(2008) and then refined by Rychkov and Vichi (2009), was
spurred by high-energy physics motivations which will be
reviewed in Sec. VI.B. But first let us discuss general conformal
bootstrap results for 4D CFTs with various global symmetries.
Consider first the simple case of a 4DCFT containing a scalar

operator ϕ with dimension Δϕ. We further assume that it is
charged under a global symmetry (e.g., a Z2 symmetry) so that
the OPE ϕ × ϕ does not contain ϕ. Then it is interesting to ask
how high can one push the dimension of the first scalar operator
in this OPE. It is also interesting to ask how large the OPE
coefficient of the stress tensor λϕϕT ∝ Δϕ=

ffiffiffiffiffiffi
CT

p
is allowed to be

(Poland and Simmons-Duffin, 2011; Rattazzi, Rychkov, and
Vichi, 2011b), which translates into a lower bound on the central
charge CT . The best bounds to date were computed by Poland,
Simmons-Duffin, and Vichi (2012) and are shown in Fig. 46.135

WhenΔϕ approaches the unitarity bound, both bounds approach
the free theory value for Δϕ2 and CT . This is consistent with the
fact that a scalar with dimension ðd − 2Þ=2 satisfies ∂2ϕ ¼ 0
whenever inserted in a correlation function andmust therefore be
a free scalar.
Analogous bounds have been obtained for CFTs assuming

various continuous global symmetries. Poland, Simmons-
Duffin, and Vichi (2012) studied the 4pt functions of a scalar
ϕ transforming in the fundamental representation of SOðNÞ or
SUðNÞ, deriving an upper bound on the dimension of the
lowest singlet scalar in the OPEs ϕi × ϕj [or ϕ†i × ϕj in the

133The RPn models are versions ofOðnÞ models with a gauged Z2

symmetry. Their second-order phase transitions for n ¼ 2 and 3
belong to theOð2Þ andOð5Þ classes, respectively, but the n ¼ 4 class
is mysterious.

134See, for example, Aharony (2016), Seiberg et al. (2016), Hsin
and Seiberg (2016), Aharony, Benini et al. (2017), Benini, Hsin, and
Seiberg (2017), and Gomis, Komargodski, and Seiberg (2017).
Duality means that two different microscopic descriptions lead to
the same IR CFT (perhaps after tuning some parameters). Why
should dualities exist? One reason may be the paucity of CFTs. If so,
some dualities may perhaps be explained by the bootstrap, providing
evidence that there is a single CFT satisfying certain constraints
(symmetry, the number of relevant operators, etc.). Then any
microscopic theory satisfying these constraints should flow to this
CFT at criticality. In this sense, the results of Sec. V.C.3 provide an
explanation for the particle-vortex duality of the Abelian Higgs
model, originally proposed by Peskin (1978) and Dasgupta and
Halperin (1981).

135The boundonCT can be somewhat strengthened by incorporating
the assumption that ϕ is the lowest dimension scalar, as in Rattazzi,
Rychkov, and Vichi (2011b).
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case of SUðNÞ], as well as a lower bound on the central
charge, shown in Fig. 47.136 As expected, the bounds scale
with N, the size of the fundamental representation, at least
when the dimension of the external scalar approaches the free
value. It should be possible to extend this analysis to obtain
upper bounds on the dimensions of operators transforming in
other representations. For scalars in the symmetric traceless
representation of SOð4Þ this was done by Poland, Simmons-
Duffin, and Vichi (2012).
It is also possible to place upper bounds on the OPE

coefficients of conserved vectors of dimension 3 in the OPE of
ϕ with its conjugate. This class of operators includes the
conserved currents of the considered global symmetry G ¼
SOðNÞ or SUðNÞ, transforming in the adjoint representation
of G. The upper bounds on their OPE coefficients translate
into the lower bounds on the central charges CJ. These bounds

are shown in Fig. 48. Once again the SUðN=2Þ bounds
coincide with SOðNÞ ones (Caracciolo et al., 2014). For Δϕ

close to the free value, these bounds smoothly approach the
free SOðNÞ value.

(a)

(b)

FIG. 46. (a) The upper bound on the dimension of the first scalar
in the ϕ × ϕ OPE as a function of Δϕ in 4D unitary CFTs; (b) the
lower bound on the central charge CT , computed by maximizing
the OPE coefficient λϕϕT . From Poland, Simmons-Duffin, and
Vichi, 2012.

(a)

(b)

FIG. 47. (a) The upper bounds on the singlet scalar dimension in
SOðNÞ and SUðNÞ symmetric 4D CFTs, as a function of Δϕ in
the fundamental; (b) the lower bounds on CT in the same theories.
From Poland, Simmons-Duffin, and Vichi, 2012.

FIG. 48. The lower bounds on CJ in SOðNÞ-symmetric unitary
4D CFTs as a function of the dimension of a scalar in the funda-
mental (Poland, Simmons-Duffin, and Vichi, 2012). SUðN=2Þ
adjoint currents satisfy the same bound (Caracciolo et al., 2014).

136Numerics indicate that SUðNÞ and SOð2NÞ singlet and central
charge bounds coincide (Poland, Simmons-Duffin, and Vichi, 2012).
A priori, because SUðNÞ ⊂ SOð2NÞ, and because only singlets give
rise to singlets when representations are reduced, these SOð2NÞ
bounds must be at least as strong as for SUðNÞ, but the exact
coincidence is unexpected and remains unexplained.
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In addition, for G ¼ SUðNÞ the OPE ϕ†i × ϕj may also
contain conserved currents of some other global symmetry
which may exist in the theory, which are singlets under G. The
lower bound on their inverse-square OPE coefficient is given
in Fig. 49. Close to the free theory dimension, these bounds
approach the value corresponding to the theory of N massless
complex scalar fields, whose full symmetry SOð2NÞ is indeed
larger that SUðNÞ.
Additionally, Caracciolo et al. (2014) derived lower bounds

on CJ in the presence of a gap in the scalar singlet sector, as
well as for extended global symmetries SOðNÞ × SOðMÞ
and SOðNÞ × SUðMÞ.
Unlike in 3D, most of the 4D bounds computed so far do

not display any prominent kink or other dramatic feature,
suggesting that existing 4D CFTs may lie inside the allowed
regions and not on the boundary. Note however that some
unexplained features are visible in the CJ lower bounds in
Fig. 48, as well as in the bounds on supersymmetric CFTs
discussed in Sec. VII.
The bounds discussed in this section have been obtained by

studying a 4pt function hϕiϕjϕkϕli or hϕiϕ
†jϕkϕ

†li, where ϕi

is a single primary operator or a global symmetry multiplet of
primary operators. As far as we are aware, a systematic study
of numerical bootstrap constraints from mixed correlators in
4D CFTs has not yet been performed outside of the super-
symmetric context (Lemos and Liendo, 2016a; Li, Meltzer,
and Stergiou, 2017). It will be important to do so in the future
and to study the impact on such bounds of assuming only a
limited set of relevant operators.

B. Applications to the hierarchy problem

Next we review some bootstrap results which shed light on
the attempts to alleviate the hierarchy problem of the SM of
particle physics, which historically was one of the motivations
for the development of the numerical bootstrap in 4D.
For our discussion, the hierarchy problem can be briefly

summarized as follows. The SM is certainly not the complete
description of fundamental interactions, as it does not account
for dark matter, baryogenesis, neutrino masses, and gravity.

Instead it can be regarded as an effective description, valid at
least up to the electroweak scale, where it has been extensively
tested, including at the ongoing Large Hadron Collider (LHC)
experiments. According to the effective field theory paradigm,
the leading effects in this description are captured by the
relevant and marginal operators, while all higher-dimensional
operators correspond to subleading effects and are suppressed
by powers of the electroweak scale (ΛIR ∼ 100 GeV) over the
scale of new physics (ΛUV). The incredible success of the SM
in precisely describing all phenomena observed so far is
explained by simply pushing the scale of new physics to high
values. In particular, electroweak precision tests and more
importantly bounds from flavor physics (in particular, from
K-K̄ mixing) generically require ΛUV ≳ 105 TeV.
This simple assumption creates however a tension (called the

hierarchy problem) with the other energy scale in the theory,
namely, the scale associated with the only relevant operator
present in the SM—the Higgs mass term H†H. Indeed, when-
ever a relevant deformation exists, it is generically expected to be
generated at the fundamental scale with order one strength,
unless some symmetry prevents this from happening. The
contrary is usually considered an unnatural tuning of the model,
similarly to how, in condensed matter systems, one typically
needs to adjust a control parameter to approach a critical point.
Thequest for a solution to the hierarchyproblemhas been and

remains an important goal in theoretical high-energy physics.
Strategies for solving it can be broadly divided into two
categories: the first makes use of an additional symmetry that
prevents the Higgs mass term from appearing, and then slightly
breaks it in order to generate a scale parametrically smaller than
ΛUV. The second strategy instead removes altogether the
dangerous relevant deformation by increasing the scaling
dimension of the Higgs mass term. An example of the first
strategy is low-energy supersymmetry, while the second one is
realized in technicolor, which replaces the Higgs field with a
fermion bilinear operator, of scaling dimension close to 3.
While technicolor solves the hierarchy problem by making

the Higgs mass term irrelevant, it also raises the SM Yukawa
operator dimensions from 4 to 6. To generate heavy quark
masses of needed size, these operators need to originate at an
energy scale not much above ΛIR. This leads to a tension with
flavor observables, due to four-fermion operators expected to
originate at about the same scale unless yet additional structure
is added. To solve this problem, Luty and Okui (2006)
proposed the “conformal technicolor” scenario, in which the
Higgs field has a scaling dimension close to the free value,
while the Higgs mass term is close to marginality or irrelevant.
More precisely, to realize this scenario one would need a

unitary CFT which contains a scalar operator H replacing the
SM Higgs field. To preserve the SM custodial symmetry, the
CFT must have an SOð4Þ global symmetry, with H trans-
forming in the fundamental. The scaling dimension require-
ments are as follows: ΔH has to be close to 1, while ΔS ≳ 4,
where S is the first scalar SOð4Þ-singlet operator in the OPE
H† ×H, playing the role of the Higgs mass term in this setup.
Given the scaling dimension requirements, this hypothetical
CFT must necessarily be strongly coupled, while its coupling
to the rest of the SM (gauge fields and fermions) can be treated
as a small perturbation.

FIG. 49. The lower bounds on the inverse-square OPE coef-
ficient of a singlet current in SUðNÞ-symmetric unitary 4D CFTs
as a function of dimension of a scalar in the fundamental. From
Poland, Simmons-Duffin, and Vichi, 2012.
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The 4D numerical bootstrap grew out from the attempts to
show that the most optimistic requirements ΔH → 1, ΔS > 4
are impossible to realize. A proof of this theorem about unitary
4D CFTs is visible in the upper bound on ΔS provided by the
N ¼ 4 curve in Fig. 47, which approaches 2 for ΔH → 1.
It is phenomenologically acceptable to have ΔH slightly

deviate from 1 without violating flavor constraints, and to
allow ΔS somewhat below 4 at the price of some moderate
tuning (Luty and Okui, 2006; Rattazzi et al., 2008; Rychkov,
2011). Although this freedom helps to alleviate bootstrap
constraints, some tension remains. Figure 50 from Poland,
Simmons-Duffin, and Vichi (2012) shows the regions of
fΔH;ΔSg allowed under different degrees of tuning and
different assumptions about the structure of the flavor sector.
The conclusion is that compatibility with the bootstrap bound
can be achieved only under optimistic flavor assumptions and
with a moderate tuning.
An additional phenomenological constraint on conformal

technicolor comes from the existence of the Higgs boson
particle. While a SM-like Higgs boson may appear in con-
formal technicolor as a resonance of the strong dynamics at the
electroweak scale associated with breaking of conformal
invariance (Luty andOkui, 2006), it is expected to be somewhat
heavier than the experimentally observed value 125GeVand to
have some deviations in its coupling to the top quark, which
were not seen so far. This further reduces the likelihood that the
conformal technicolor scenario is realized in nature. Still, the
above analysis, performed prior to the Higgs boson discovery,
remains an example of how theoretical investigations can lead
to first-principles constraints on strongly coupled scenarios for
particle physics beyond the SM.

C. Constraints on the QCD4 conformal window

Perhaps the most famous class of unitary 4D CFTs is the IR
fixed points of asymptotically free non-Abelian gauge theories
coupled to massless fermions, often referred to as Banks-Zaks

fixed points (Banks and Zaks, 1982) although they were first
considered by Caswell (1974) and Belavin and Migdal (1974).
Depending on the number of fermion representations N, this
IR conformal behavior is realized in an interval of N called the
“conformal window.” These CFTs are of great interest
theoretically and historically have also been discussed because
of their relation to walking technicolor models of electroweak
symmetry breaking.137 Close to the upper end of the con-
formal window these theories can be studied perturbatively;
see, e.g., Ryttov and Shrock (2017). They have also been
studied actively using lattice Monte Carlo techniques; see
Nogradi and Patella (2016) and Svetitsky (2018) for recent
reviews.
Here we describe what the bootstrap so far has to say about

these CFTs. For concreteness we provide our discussion for a
QCD-like theory with N massless Dirac fermions in the
fundamental representation (□) of an SUðNcÞ gauge group,
with Nc ≥ 3, although the results will also apply to the case
Nc ¼ 2. The global symmetry G of this theory is

G ¼ Uð1ÞV ×H; H ¼ SUðNÞL × SUðNÞR; ð128Þ

where H rotates left and right Weyl components ψL and ψR of
the fermions separately, while the vectorial Uð1ÞV rotates
them simultaneously; its axial counterpart is instead anoma-
lous. The theory also preserves P and C, which interchange
left and right fermions.
If an IR fixed point is reached, the above global symmetry

remains unbroken. This implies that all operators of the
would-be CFT must organize in irreducible representation
of G. We are interested, in particular, in gauge-invariant scalar
operators (“mesons”) which are fermion bilinears:

Φk̄
i ¼ ψ̄ k̄

LψRi; ð129Þ

which transform in □̄ ×□ under H. The mesons are not
charged under the Uð1ÞV , which will play no role below.
Parity maps Φ into its complex conjugate Φ̄. The scaling
dimension of Φ is an interesting observable, often expressed
in terms of the anomalous dimension γΦ ¼ 3 − ΔΦ; see Giedt
(2016) for a review of lattice measurements of γΦ. The
bootstrap will give lower bounds on ΔΦ, translating into
upper bounds on γΦ.
Nakayama (2016c) carried out a bootstrap analysis of the

4pt function hΦΦΦ̄ Φ̄i using the global symmetry H.138 Of
particular interest is an upper bound on the dimension of the
lowest scalar in the OPE Φ × Φ̄ which is a singlet under H,
shown in Fig. 51 for N ¼ 8. Such scalars are parity even, with
an example being Tr½FμνFμν�, where Fμν is the Yang-Mills

FIG. 50. Viable regions in the fΔH;ΔSg plane for conformal tech-
nicolor models in the flavor-generic (red) and flavor-optimistic
(cross-hatched green) cases, superimposed with the SOð4Þ bound.
Regions for no tuning, 10%, and 1% tuning are shown in
successively lighter shades of each color, with the largest region
corresponding to 1% tuning in each case. Flavor-generic models
are ruled out. From Poland, Simmons-Duffin, and Vichi, 2012.

137Walking behavior is expected to be realized for N just below the
lower end of the conformal window (Kaplan et al., 2009), but
detailed discussion of this physics is beyond our scope. See
Gorbenko, Rychkov, and Zan (2018a, 2018b) for a recent CFT
perspective and Appelquist, Ingoldby, and Piai (2017, 2018) for a
recent lattice perspective using effective field theory.

138In his notation Φ was a bifundamental of H under a different
(but equivalent) convention for the transformation of left-handed
fermions.
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field strength.139 A necessary condition for reaching a fixed
point is that all such scalars must be irrelevant. Indeed, the
Banks-Zaks fixed point is an example of a “self-organized”
CFT in the terminology of Sec. V.A. Using this crucial
observation and the bound in Fig. 51, we conclude that if
N ¼ 8 belongs to the conformal window, then necessarily

ΔΦ > 1.21 ðN ¼ 8Þ: ð130Þ

For N ¼ 16 the analogous bound is ΔΦ > 1.71 (Nakayama,
2016c), and for other N the bounds can be derived analo-
gously but have not been published.
Nakayama (2016c) also derived, under the same assump-

tions, upper bounds on the lowest scalars in Φ × Φ̄ which
transform as TT or AA under H, where T=A stands for the
symmetric or antisymmetric traceless tensor representation.
See Fig. 52 for the bound at N ¼ 8. From an idea of Iha,
Makino, and Suzuki (2016),140 such bounds constrain possible
global symmetry enhancements, in parallel with Sec. V.E.3.
Namely, imagine that we are trying to reach the CFT
describing the Banks-Zaks fixed point in an RG flow from
a microscopic description which at short distances preserves
only a subgroup H0 of H, as well as parity. For example, this
would be true for lattice studies with Wilson or domain wall
fermions, which only realize the diagonal subgroup

H0
Wilson ¼ SUðNÞV; ð131Þ

as in Ishikawa et al. (2014, 2015). A second example is
furnished by staggered fermions, another lattice fermion
realization commonly used to study the QCD4 conformal
window. Being defined for N a multiple of 4, these preserve
microscopically a subgroup

H0
staggered ¼ SUðN=4Þ × SUðN=4Þ: ð132Þ

Observing the Banks-Zaks fixed point in a lattice
Monte Carlo simulation using a fermion realization with a
reduced symmetry implies a symmetry enhancement. For this
to be possible, all parity-even scalar operators which are
singlets under H0 (but not necessarily under H) must be
irrelevant. Since the TT and AA representations ofH contain a
singlet when reduced under either Eq. (131) or (132), we
obtain a necessary condition that the TT and AA scalars must
be irrelevant in both cases. So, from the TT bound in Fig. 52,
enhancement from H0

Wilson or H0
staggered requires

Wilson or staggered ⇒ ΔΦ > 1.69 ðN ¼ 8Þ: ð133Þ

Compared to Nakayama (2016c), the earlier analysis of
symmetry enhancement bounds for lattice QCD by Iha,
Makino, and Suzuki (2016) did not use the full symmetry
H but only the vectorial subgroup SUðNÞV , grouping the
operators (129) into the irreducible representations of
SUðNÞV × P,

S ¼
XN
j¼1

ψ̄ j̄ψ j; Sk̄i ¼ ψ̄ k̄ψ i −
1

N
δk̄i S;

ϕ ¼
XN
j¼1

ψ̄ j̄γ5ψ j; ϕk̄
i ¼ ψ̄ k̄γ5ψ i −

1

N
δk̄iϕ; ð134Þ

FIG. 51. The upper bound on the dimension of the first singlet
operator appearing in the OPE Φ × Φ̄ for N ¼ 8 as a function of
ΔΦ. From Nakayama, 2016c.

FIG. 52. The upper bounds on the dimensions of the first TT
and AA operators appearing in the OPE Φ × Φ̄ for N ¼ 8 as a
function of ΔΦ. From Nakayama, 2016c.

139On the other hand, the instanton density operator Tr½FμνF̃μν�
is parity odd and does not appear in the OPE Φ × Φ̄. We note that
this operator is also expected to be irrelevant, since at the fixed
point it becomes a descendant of the anomalous axial current:
∂μJAμ ∼ Tr½FμνF̃μν�.

140See also Hasenfratz, Rebbi, and Witzel (2017, 2018) for a
lattice perspective.
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which transform as singlets or adjoints under SUðNÞV and
have P ¼ �. This simplifies the analysis, as the system of
crossing relations for representations of SUðNÞV is easier than
for the full H. Of course, by not using the full symmetry one
loses information, although this can be partially remedied by
imposing by hand the constraint that all operators in Eq. (134)
have the same dimension.
In this setup Iha, Makino, and Suzuki (2016) could extract

bounds from the symmetry enhancement for staggered fer-
mions (but not for Wilson fermions). To do this they analyzed
the 4pt function of the adjoint pseudoscalar ϕk̄

i for N ¼ 8, 12,
and 16. They derived upper bounds on the lowest dimension
scalar in the ϕ × ϕ OPE transforming in the representation
½N − 1; N − 1; 1; 1�141 of SUðNÞV . They argued that symmetry
enhancement requires that this scalar be irrelevant.
To illustrate this more clearly, using results of Lee and

Sharpe (1999) they identified explicitly some four-fermion
operators which are singlets under Eq. (132) and which have
nonzero overlap with ½N − 1; N − 1; 1; 1� when the symmetry
is reduced to SUðNÞV . The resulting necessary condition for
staggered fermion enhancement is

Staggered⇒ΔΦ > 1.67;1.71;1.71 ðN¼ 8;12;16Þ: ð135Þ

The fact that for N ¼ 8 this bound is somewhat weaker than
Eq. (133) is explained partly by not using the full symmetry
and partly by working at a lower derivative order.
It should be mentioned that most studies of the QCD

conformal window by lattice Monte Carlo or RG methods
point to rather small anomalous dimensions γΦ. Hence the
above bootstrap bounds on ΔΦ are probably not optimal.
Finding better bootstrap constraints on the QCD conformal
window is an interesting open problem. Some possibilities to
make further progress are to pursue mixed correlator studies,
to include global symmetry currents and the stress-tensor in
the bootstrap (whose 3pt functions contain known anomaly
coefficients), and/or to study baryon operators.

VII. APPLICATIONS TO SUPERCONFORMAL THEORIES

Conformal symmetry admits a supersymmetric extension
into a superalgebra containing the standard anticommuting
supercharges fQ; Q̄g ∼ P as well as R-symmetry generators
and the anticommuting analog of SCTs fS; S̄g ∼ K (called
special superconformal transformations). Superconformal
field theories (SCFTs) are extraordinarily rich and have been
studied intensively from many viewpoints. In the last decades
the variety of known theories has grown in size: new
constructions have been made, including many Lagrangian
models, but remarkably also many theories that appear to
admit no such description have been found. Also, a great
number of strongly coupled SCFTs are known to exist, in
different dimensions and with different number of super-
charges, some of which can be understood using field theory
or holographic dualities.

SCFTs represent an important playground to test our
understanding of CFTs and the effectiveness of bootstrap
techniques. The presence of supersymmetry allows one to
exactly compute some interesting CFT data, even in a strongly
interacting regime, which in turn can be compared with
bootstrap predictions.
From the point of view of the conformal bootstrap,

supersymmetry has essentially three consequences: (1) relating
the OPE coefficients and dimensions of operators belonging to
the same supersymmetric multiplet, creating superconformal
blocks; (2) acting as a selection rule for the operators entering
a given OPE and imposing stronger constraints from unitarity;
and (3) fixing the dimensions of certain short multiplets. By
virtue of these constraints, crossing symmetry is expected to
be more effective in SCFTs.

A. Theories with 4D N = 1 supersymmetry

Before discussing the numerical bootstrap results, let us
say a few words on the structure of representations of the
superconformal algebra. For concreteness we provide this
discussion for SCFTs with 4D N ¼ 1 supersymmetry.142

Superconformal primary operators (annihilated by the special
superconformal generators S; S̄) are labeled by four numbers
ðq; q̄;l; l̄Þ, where l; l̄ are the usual Lorentz quantum
numbers and q, q̄ are related to the scaling dimension Δ
and R charge of the superconformal primary operator:

Δ ¼ qþ q̄; R ¼ 2
3
ðq − q̄Þ: ð136Þ

Unitarity bounds on these operators were worked out by Flato
and Fronsdal (1984) and Dobrev and Petkova (1985), taking
the form

q ≥ 1
2
lþ 1; q̄ ≥ 1

2
l̄þ 1 ðll̄ ≠ 0Þ;

q ≥ 1
2
lþ 1 ðq̄ ¼ l̄ ¼ 0Þ;

q̄ ≥ 1
2
l̄þ 1 ðq ¼ l ¼ 0Þ: ð137Þ

The second and third lines in the above expression identify
chiral (Φα1���αl ) or antichiral (Φ̄ _α1��� _αl̄ ) operators, which are

annihilated by the supercharge Q̄ or Q, respectively.
Finally, we mention a few theoretical results for super-

conformal blocks present in the literature, focusing on those
relevant for the 4D N ¼ 1 bootstrap. Superconformal blocks
for correlation function of scalar superconformal primaries
can be expressed in terms of finite linear combinations of
ordinary scalar conformal blocks with suitable dimensions
and spin; however, computing these coefficients can be a
challenging task. The work of Poland and Simmons-Duffin
(2011) and Vichi (2012) obtained the superconformal blocks
for 4pt functions of a scalar chiral supermultiplet Φ. Shortly
after, Fortin, Intriligator, and Stergiou (2011) computed

141The notation gives a list of the number of boxes in each
successive column of the Young tableau.

142For similar results in other dimensions or with extended
supersymmetry see Minwalla (1998) and the summary of recent
progress in Sec. IX. Many results described here can also be treated in
a uniform way across dimensions for algebras with the same number
of supercharges; see Bobev et al. (2015a).
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superconformal blocks for 4pt functions of the multiplet
associated with global symmetry conserved currents, whose
lowest component is again a scalar field.143 A similar analysis
applicable to 4pt functions of R-current multiplets (containing
the stress tensor) was also recently carried out by Manenti,
Stergiou, and Vichi (2018). The general approach in these
works was to classify the possible three-point functions in
superspace using the formalism of Osborn (1999) and then
expand in the Grassmann variables θi to compute relations
between OPE coefficients of conformal primaries. In this
approach one must also carefully compute the norm of each
conformal primary in the multiplet.144

The work of Fitzpatrick et al. (2014) developed
alternate techniques based on either solving the super-
Casimir equation or writing the blocks as superconformal
integrals using a superembedding formalism. The latter
approach was employed by Khandker et al. (2014) to find
the blocks appearing in the more general correlation function
hΦ1Φ̄2Ψ1Ψ̄2i, where Φi and Ψi are scalar superconformal
primary operators with arbitrary dimension and R charge,145

with the restriction that the exchanged operator is neutral
under R symmetry. This analysis was later extended by Li and
Su (2016) to the more general case of four distinct scalar
superconformal primary operators with arbitrary scaling
dimensions and R charges, with no restriction on the
exchanged operators besides those imposed by superconfor-
mal symmetry. However, this analysis was missing a particular
class of superconformal blocks, associated with exchanged
primaries in representations of the Lorentz group with l ≠ l̄.
In this case the corresponding superconformal primary does
not enter the OPE of the external operators, but some of its
superconformal descendants do. This issue was fixed by Li,
Meltzer, and Stergiou (2017).

1. Bounds without global symmetries

Now we summarize numerical results for correlation
functions involving scalar chiral superfields. The first numeri-
cal studies, starting with Poland and Simmons-Duffin (2011)
and improved by Vichi (2012) and Poland, Simmons-Duffin,
and Vichi (2012), focused on 4pt functions containing a single
scalar chiral supermultiplet hΦΦ̄ΦΦ̄i. Crossing symmetry for
this correlation function involves two OPE channels. Because
of the chirality conditions, the Φ × Φ̄ OPE receives contri-
butions only from traceless symmetric tensor superconformal
primaries together with their QQ̄ and Q2Q̄2 superdescend-
ants, giving rise to the superconformal blocks described
above. The Φ ×Φ OPE, on the other hand, is more subtle
and can receive three different contributions: (1) the chiral
superfield Φ2, (2) Q̄ descendants of semishort multiplets,
and (3) Q̄2 descendants of generic (long) multiplets. As a

result, this channel allows conformal blocks of even spin
l ¼ l̄ either at the protected dimensions Δ ¼ 2ΔΦ þ l or at
unprotected dimensions satisfying the unitarity bound
Δ ≥ j2ΔΦ − 3j þ lþ 3.
In Fig. 53 we show an upper bound on the dimension of the

first real scalar supermultiplet R entering the OPE Φ × Φ̄.
A first important consequence of this result is that in any
perturbative SCFT, the combination 2ΔΦ − ΔR must be
positive (or very suppressed) to satisfy the bound.
Secondly, one can observe a minor kinklike feature on the
boundary of the allowed region. The same feature appears in
the lower bound on the central charge, Fig. 54, and it also
coincides with the minimal value of ΔΦ consistent with the
absence of the chiral operator Φ2, as shown in the bottom
panel of Fig. 53.
In light of this, it is tempting to conjecture the existence of a

“minimal SCFT” that realizes the chiral ring relation Φ2 ¼ 0
and saturates these bounds. This conjecture has been seriously
addressed by Poland and Stergiou (2015) and Li, Meltzer, and
Stergiou (2017), who studied the properties of this hypotheti-
cal theory. Note that the minimal value of ΔΦ consistent with
the chiral ring assumption, let us call it ΔmSCFT

Φ , represents an
extremal solution, and it is therefore uniquely determined. In
addition, to coincide with the kinks it should agree with the

(a)

(b)

FIG. 53. (a) The upper bound on the dimension of the operator
R as a function of ΔΦ. The shaded area is excluded. The dashed
line at ΔR ¼ 2ΔΦ corresponds to generalized free theories. From
Li, Meltzer, and Stergiou, 2017 and Poland, Simmons-Duffin,
and Vichi, 2012. (b) The lower and upper bounds on the OPE
coefficient of the chiral operatorΦ2 entering theΦ ×ΦOPE. The
vertical dotted line is at ΔΦ ¼ 1.407 and the horizontal dashed
line is at the free theory value λΦΦΦ2 ≡ λ2ϕ ¼ ffiffiffi

2
p

. From Poland
and Stergiou, 2015.

143Some incorrect coefficients and missing blocks were later
pointed out by Berkooz, Yacoby, and Zait (2014) and Khandker
et al. (2014).

144Such norms were worked out for general multiplets by Li and
Stergiou (2014).

145The first and second pairs have the same conformal weights q
and q̄, hence the notation.
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solution obtained from maximizing the dimension of the first
neutral unprotected operator and the solution obtained from
minimizing the central charge at the same value of ΔΦ.
Figure 54(a) shows that the two extremization procedures

generically lead to two different solutions, except at ΔmSCFT
Φ .

This confirms our expectation of a unique solution coinciding
with the kinks. Furthermore, by inputting a gap between the
stress-tensor multiplet [whose lowest component is the spin-1
Uð1ÞR current] and the next spin-1 supermultiplet, one is able
to extract an upper bound on the central charge. While this
bound is gap dependent at generic ΔΦ, it almost coincides
with the lower bound at ΔmSCFT

Φ , as shown in Fig. 54(b). By
extrapolating these results at large Λ, Poland and Stergiou
(2015) obtained the prediction ΔmSCFT

Φ ≈ 1.428, c ≈ 0.111,
perhaps consistent with ΔmSCFT

Φ ¼ 10=7, c ¼ 1=9.
Recently a few theories have been proposed as mSCFT

candidates (Buican and Nishinaka, 2016; Xie and Yonekura,
2016), which implement the chiral ring condition Φ2 ¼ 0;
however, they do not quite match the bootstrap predictions
presented here. In particular, the central charge is much larger
than 1=9.
It is also worth noting that, in any solution saturating the

dimension bound of Fig. 53, the chiral operator Φ is not

charged under any global symmetry. If it was, in fact,
the solution would contain a spin-1 conserved current,
which in N ¼ 1 SUSY happens to be the superdescendant
of a dimension-2 real scalar which would appear in the
Φ × Φ̄ OPE.
To conclude this section, let us mention that the work of Li,

Meltzer, and Stergiou (2017) who also performed a bootstrap
study of a system of mixed correlators involving a scalar chiral
superfieldΦ and a long real scalar superfiedR, identified with
the first scalar operator appearing in the Φ × Φ̄ OPE. Unlike
in 3D, this analysis did not seem to allow one to easily isolate
a closed region. A preliminary inspection of the extremal
solution does not reveal any obvious low-lying operators
decoupling from the spectrum, but rather it involves a
rearrangement of higher-dimensional operators (Stergiou,
2017). It will be interesting to study this rearrangement further
and understand how to robustly isolate the conjectured
mSCFT in future work.

2. Bounds with global symmetries

As mentioned in the previous section, conserved currents of
global symmetries jaμ sit in real supermultiplets J a whose
lowest component is a dimension-2 scalar Ja. In addition,
the multiplet satisfies the conservation condition D2J a ¼
D̄2J a ¼ 0. Bootstrapping correlation functions of the scalars
Ja allow one access to the space of local SCFTs with a given
global symmetry. Hence, due to supersymmetry, one can
apply the same machinery encountered so far, with no need to
deal with spinning conformal blocks.
Bounds on OPE coefficients of SUðNÞ currents were

explored by Berkooz, Yacoby, and Zait (2014) and dimension
bounds (and coefficient bounds assuming gaps) from single
4pt functions hJJJJi were explored by Li, Meltzer, and
Stergiou (2017). The latter work also studied the case of
mixed correlators involving J and a chiral field Φ charged
under the global symmetry. Note that this charge necessarily
differs from the R symmetry, which instead is part of the
conformal algebra: the conserved current associated with the
latter is the lowest component of the Ferrara-Zumino multiplet
which contains the stress tensor and supercurrents.
A key result, shown in Fig. 55, shows that any local SCFT

with a continuous global symmetry must contain a real scalar
multipletOwith dimensionΔO ≤ 5.246. The same figure also
shows upper bounds on the OPE coefficient associated with J
itself as well as the one associated with the stress-tensor
multiplet, denoted as V. Interestingly, both bounds on cJ and
cV show plateaus for small values of the gap in the scalar
sector. These are perhaps consistent with the existence of
SCFT solutions shaping the bounds. On the other hand, the
values extracted from Fig. 55 are much smaller than the limits
one obtains by inspecting the correlation functions of chiral
superfields. For instance, the relation between cV and Fig. 54
is c2V ¼ 1=ð90cÞ, making the bound on the central charge very
weak.146

(a)

(b)

FIG. 54. (a) The lower bound on the central charge as a function
of ΔΦ assuming that ΔR is consistent with the unitarity bound
(thin line) or it saturates the upper bound in Fig. 53 (thick line).
The shaded area is excluded. From Li, Meltzer, and Stergiou,
2017. (b) The lower and upper bounds on the central charge as a
function of ΔΦ, with the assumption that there is no Φ2 operator.
The upper bounds correspond to different gaps until the second
spin-1 superconformal primary Δl¼1 ≥ 3.1; 3.3; 3.5; 3.7; 3.9; 4;
4.1 (from left to right). The shaded area is excluded. From Poland
and Stergiou, 2015.

146The OPE coefficient bounds obtained by Berkooz, Yacoby, and
Zait (2014) for SUðNÞ current 4pt functions were also relatively
weak.
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An alternative method to study SCFTs with global
symmetries is to consider external scalar operators in
nontrivial representations of the symmetry. An important
target is to make contact with supersymmetric QCD
(SQCD) theories, e.g., supersymmetric gauge theories with
gauge group SUðNcÞ and Nf flavors of quarks Qi, Q̄j̄, with
Nf in the conformal window 3Nc=2 ≤ Nf ≤ 3Nc (Seiberg,
1995). The simplest gauge-invariant operators are the mesons

Mj̄
i¼QiQ̄j̄, which transform as bifundamentals of SUðNfÞL×

SUðNfÞR and have dimension ΔM ¼ 3ð1 − Nc=NfÞ. Because
of supersymmetry, both the central charge and current
central charge can be exactly computed due to their relation
to anomaly coefficients.
A partial bootstrap analysis applicable to meson 4pt

functions was performed by Poland, Simmons-Duffin, and
Vichi (2012), which considered chiral scalar multiplets
transforming in the fundamental representation of SUðNÞ
and obtained bounds on the OPE coefficients associated
with conserved currents transforming in both the singlet
and the adjoint representations of SUðNÞ. As can be
seen in Fig. 56, these bounds are still somewhat far
from the exact results of SQCD, most likely because this
study did not utilize the full symmetry. It will be
interesting in future work to extend these analyses of
chiral 4pt functions to use the whole SQCD global
symmetry, together with mixed correlators containing
the SUðNfÞL=R current multiplets and/or the stress-tensor
multiplet.

B. Theories with 3D N = 2 supersymmetry

Another interesting set of targets for the conformal bootstrap
are the 3D CFTs withN ¼ 1 or 2 supersymmetry. We initially
discussed the former in Sec. V.D.3, where there were no
constraints from supersymmetry used other than relations
between scaling dimensions (see, however, footnote 120).
The superconformal representation theory of the latter has a
similar structure to that of 4D N ¼ 1 SCFTs; for details see
Minwalla (1998) andBobev et al. (2015a). Perhaps the simplest
such theory is theN ¼ 2 supersymmetricWess-Zuminomodel
described in Sec. V.D.1. This CFT can be thought of as the IR
fixed point of a theory of a single chiral superfield Φ ¼ ϕþ
ψθ þ Fθ2 and superpotential W ¼ λΦ3. The fixed point has a
Uð1ÞR symmetryunderwhichΦ has charge2=3, implying exact
dimensions for the complex scalar ϕ and the Dirac fermion ψ :
Δϕ ¼ qϕ ¼ 2=3, Δψ ¼ Δϕ þ 1=2 ¼ 7=6.
Applying the numerical bootstrap to the 4pt function

hΦΦ̄ΦΦ̄i and incorporating the unitarity bounds and super-
conformal blocks ofN ¼ 2 superconformal symmetry, Bobev
et al. (2015a, 2015b) and Li and Su (2017a) studied general
bounds on the dimension of the leading unprotected scalar
operator ΦΦ̄, with the basic result shown in Fig. 57.
Curiously, the resulting bound has three distinct features,
the first of which occurs at a scaling dimension ΔΦ ≃ 2=3.
This gives a sharp upper bound ΔΦΦ̄ < 1.91 for the N ¼ 2

supersymmetric Wess-Zumino model and a plausible con-
jecture that the model saturates the optimal version of this
bound. Further analysis of the extremal spectrum of this kink
can be found in Bobev et al. (2015a, 2015b), while Li and Su
(2017a) found that an isolated island around fΔΦ;ΔΦΦ̄g ¼
f0.6678ð13Þ; 1.903ð10Þg could be obtained by assuming
a modest gap in the spectrum of spin-1 superconformal
primaries ΔJ0 ≥ 3.5.

(a)

(b)

FIG. 55. The upper bounds on the OPE coefficients cO ≡
2−l=2λJJO appearing in the J × J OPE arising from (a) J itself
or (b) the stress-tensor supermultiplet V, as a function of the
dimension of the first unprotected scalarO in the J × J OPE. The
region to the right of the dotted vertical line at ΔO ¼ 5.246 is not
allowed. From Li, Meltzer, and Stergiou, 2017.

FIG. 56. The lower bounds on the effective 2pt function
coefficient κeff ¼ 1=λ2ΦΦJ of SUðNÞ singlet currents appearing
in Φ × Φ̄, where Φ is a chiral scalar of dimension d in the
fundamental of SUðNÞ, for N ¼ 2;…; 14. The bounds are
normalized to the value κchiral corresponding to a free chiral
superfield. Each dot connected to a bound corresponds to the
exact value in an SQCD theory with the same symmetry. From
Poland, Simmons-Duffin, and Vichi, 2012.
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The middle kink occurs near ΔΦ ¼ 3=4 and coincides with
a kinematic threshold beyond which superconformal descend-
ants of antichiral operators Q2Ψ̄ can no longer appear in the
Φ ×Φ OPE. It is not yet clear if any CFT sits at this kink. The
rightmost kink, occurring near ΔΦ ∼ 0:86, also still lacks a
clear interpretation, but seems to interpolate to the kink in the
4D N ¼ 1 bounds discussed above. Notably, the extremal
spectrum of this kink seems to satisfy the chiral ring relation
Φ2 ¼ 0 (Bobev et al., 2015a) and an island around the point
can also be isolated using a set of gap assumptions (Li and Su,
2017a), making it a plausible candidate for a new CFT. Finally
let us mention that this analysis was also extended to 3D
N ¼ 2 supersymmetric CFTs with OðNÞ global symmetry by
Chester, Giombi et al. (2016) and Chester, Iliesiu et al. (2016),
who found similar features at each value of N. A related 3D
N ¼ 2 theory with multiple interacting chiral superfields and
a conformal manifold was also recently studied using boot-
strap methods by Baggio et al. (2018).

VIII. APPLICATIONS TO NONUNITARY MODELS

The majority of numerical conformal bootstrap applications
considered to date have concerned unitary CFTs. This
limitation was mainly due to the fact that the main two
rigorous numerical bootstrap methods, linear programming
and semidefinite programming (Sec. IV), require positivity of
the squares of OPE coefficients or positive definiteness of the
matrices made of their pairwise products, which hold only in
unitary theories. Nevertheless there have been some promising
attempts to apply conformal bootstrap methods to nonunitary
theories, which we briefly describe here.
One naturally occurring class of nonunitary CFTs is

theories analytically continued from integer to noninteger
space dimensions d, the prime example being the Wilson-
Fisher family of fixed points in 2 ≤ d < 4. It was understood
only recently that these CFTs are nonunitary for nonin-
teger d.147

Fortunately, the violation of unitarity in these theories
seems to be rather mild as the negative-norm operators have

rather high dimension (Hogervorst, Rychkov, and van Rees,
2016). As a result it is believed that the standard linear and
semidefinite programming methods, while nonrigorous in this
context, should still give reasonable results. This explains the
success of El-Showk et al. (2014a) who found good agree-
ment between the numerical bootstrap and the ϵ expansion in
the entire range 2 ≤ d < 4 using the 4pt function hσσσσi and
analytically continuing conformal blocks to noninteger d.
Similarly, Behan (2017a) generalized to noninteger d the
multiple-correlator analysis leading to the 3D Ising model
island in Fig. 13. A related successful study by Bobev et al.
(2015a) analyzed the analytic continuation to 2 ≤ d ≤ 4 of
theories with four supercharges, which for d ¼ 3 reduces to
the N ¼ 2 Wess-Zumino model from Sec. VII.B.148

Leaving aside the physical interpretation, the Z2-invariant
Wilson-Fisher fixed points can actually be analytically con-
tinued even below d ¼ 2 and perhaps all the way to d ¼ 1þ

(Holovatch, 1993). Interestingly, the analytic continuation
seems to no longer be reproduced by the linear programming
bootstrap in d < 2, likely because violations of unitarity are
stronger in this case than for d ≥ 2 (Golden and Paulos, 2015).
This serves as a warning to keep in mind when applying the
linear and semidefinite methods to nonunitary theories.
As described in Sec. IV.E, the truncation method should in

principle be more suitable for analyzing nonunitary theories.
Gliozzi (2013) and Gliozzi and Rago (2014)149 successfully
applied the truncation method to the Lee-Yang CFT, which is
a nonunitary CFT describing the IR fixed point of the ϕ3

scalar theory in 2 ≤ d < 6 dimensions (Fisher, 1978).
Truncating the ϕ × ϕ OPE to the identity operator, ϕ itself,
the stress tensor, and two more operators, estimates of Δϕ

were obtained in good agreement with RG and lattice
predictions and with the exact solution available for d ¼ 2.
Finally we mention that bootstrap methods can also be

straightforwardly applied to nonunitary CFTs if a reasonable
conjecture for the spectrum is available as happens in the case
of 2D percolation (Picco, Ribault, and Santachiara, 2016). In
this special situation, one simply solves crossing relations for
the squares of OPE coefficients, with no restriction on sign.

IX. OTHER APPLICATIONS

We finish our review by briefly describing some of the
many related topics that we have not been able to cover. Many
of these topics have also seen significant recent progress and
would merit their own reviews. We hope that we can at a
minimum give the interested reader some useful entry points
into the literature.

FIG. 57. The bound on the dimension of the first unprotected
scalar ΦΦ̄ in the Φ × Φ̄ OPE in 3D SCFTs with N ¼ 2
supersymmetry. From Bobev et al., 2015b.

147See Hogervorst, Rychkov, and van Rees (2015, 2016) for the
original observation and Di Pietro and Stamou (2018) for further
work.

148See also Chester, Pufu, and Yacoby (2015), Chester, Giombi et al.
(2016), Chester, Iliesiu et al. (2016), and Pang, Rong, and Su (2016) for
related studies.

149See also Hikami (2017b). Other nonunitary models of interest
to statistical physics tackled by the truncation method include the
self-avoiding walk, branched polymers, random field Ising model,
and percolation (Hikami, 2017a, 2018; LeClair and Squires, 2018).
The analytic continuation of the OðNÞ model to noninteger N was
also studied using the linear programming method by Shimada and
Hikami (2016), but the unitarity violation effects may not be
sufficiently small to allow this (see footnote 113).
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A traditional approach to learning about CFTs has been to
use perturbation theory, often in the context of ϵ expansions or
1=N expansions. There is older literature about using boot-
straplike techniques to reproduce 1=N expansions [see, e.g.,
Lang and Ruhl (1992) and Petkou (1996)], involving setting up
self-consistency equations using a sum over dressed Feynman
diagrams sometimes called a “skeleton expansion.” More
recently, there have been a number of recent works which use
more modern analytical bootstrap techniques to study perturba-
tive expansions, e.g., studying bootstrap equations in a 1=N
expansion,150 using conformal invariance and the appearance of
null states to reproduce ϵ expansions,151 and using a formulation
of the bootstrap in Mellin space152 to reproduce ϵ and large-N
expansions by reviving an old idea by Polyakov (1974) to make
crossing symmetry manifest and impose unitarity.153

A related analytical approach has been to study bootstrap
equations in various Lorentzian limits. One such limit is the
light cone limit developed by Fitzpatrick et al. (2013) and
Komargodski and Zhiboedov (2013), which has allowed for a
systematic study of CFT data in a large spin expansion154 or
with slightly broken higher-spin symmetry in the works
(Alday and Zhiboedov, 2016; Alday, 2017b). Another limit
where recent progress has been made is the Regge limit.155

Both of these limits can be connected to constraints from
Lorentzian causality, where nontrivial bounds and sum rules
can be derived,156 yielding new arguments for the conformal

collider bounds of Hofman and Maldacena (2008), Buchel
et al. (2010), and Chowdhury et al. (2013), as well as the more
stringent constraints of Camanho et al. (2016) in holographic
theories. Finally we should mention the recent development of
a powerful Lorentzian inversion formula157 as well as related
work on higher-dimensional crossing kernels,158 which are
another promising route for further analytical progress.
The conformal bootstrap in two dimensions has a long

history, for example, the seminal applications to rational CFTs
in Belavin, Polyakov, and Zamolodchikov (1984).159 The
modern numerical bootstrap has been reapplied to 2D CFTs
in a number of works.160 A related direction is the modular
bootstrap, which sets up consistency conditions arising
from modular invariance. A number of recent studies161 have
also looked at these constraints using modern numerical
bootstrap techniques. A proper summary of these results
and related analytical progress in the context of both the
history of the 2D bootstrap and holography would merit its
own review; see, e.g., Yin (2017).
One can also study the conformal bootstrap in more than

four dimensions or with extended supersymmetry. One
application of the numerical bootstrap has, e.g., been to the
6D (2,0) SCFT (Beem, Lemos, Rastelli, and van Rees, 2016),
interesting in part because of its non-Lagrangian nature and
ability to teach us about new dualities. Another application in
d > 4 has been to probe the existence of OðNÞ vector models
in 5D.162 Progress has also been made placing constraints
on a variety of other 5D and 6D SCFTs,163 4D N ¼ 2 and
N ¼ 3 SCFTs,164 4D N ¼ 4 supersymmetric Yang-Mills150See Heemskerk et al. (2009), Heemskerk and Sully (2010),

Alday, Bissi, and Lukowski (2015b), and Aharony, Alday et al.
(2017).

151See Rychkov and Tan (2015), Basu and Krishnan (2015),
Ghosh et al. (2016), Raju (2016), Roumpedakis (2016), Gliozzi et al.
(2017a, 2017b), Liendo (2017), and Gliozzi (2018).

152The Mellin transformation of CFT correlation functions was
introduced by Mack (2009), Penedones (2011), Paulos (2011), and
Fitzpatrick et al. (2011) and developed in many subsequent works.
While it is not yet known if and how it can be used for the numerical
bootstrap, this formalism can be used to study many related
questions. For example, Sleight and Taronna (2017, 2018b) con-
structed spinning CPWs in Mellin space for external traceless
symmetric tensors in general d (see Sec. III.F.7 for the discussion
in real space).

153See Sen and Sinha (2016), Gopakumar et al. (2017a, 2017b),
Dey, Kaviraj, and Sinha (2017), Dey, Ghosh, and Sinha (2018), and
Dey and Kaviraj (2018).

154See Fitzpatrick, Kaplan, and Walters (2014), Kaviraj, Sen,
and Sinha (2015a, 2015b), Alday, Bissi, and Lukowski (2015a),
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theory,165 and 3D N ¼ 8 SCFTs (Chester et al., 2014)
including ones inspired by M theory (Agmon, Chester, and
Pufu, 2017b). Related analytical progress at solving subsec-
tors of SCFTs with extended supersymmetry was also made
by Beem, Lemos et al. (2015), Beem, Rastelli, and van Rees
(2015), and Chester et al. (2015) and used in a number of
follow-up studies.166

Work on the superconformal bootstrap (particularly with
extended supersymmetry) is not possible without analytical
computations of superconformal blocks, which have been
developed in a number of works using both superembedding
space methods and by solving the superconformal Casimir
equation.167

Another intriguing line of research is the development of a
direct relation between conformal blocks and the wave
functions of integrable Hamiltonians.168 Finally, while we
cannot review here all of the interesting developments in the
AdS=CFT correspondence, it is worth mentioning that there
has been an abundance of activity in connecting both global
blocks169 and semiclassical Virasoro blocks170 to geodesics in
AdS and bulk semiclassical physics.

All of the conformal bootstrap constraints and numerical
bounds we have considered in this review have applied to
either Euclidean CFT or relativistic Lorentzian CFT. It is also
of interest to learn about nonrelativistic conformal field
theories due to their many experimental realizations, e.g.,
to ultracold atomic gases near the unitary limit. While non-
relativistic conformal symmetries are inherently less con-
straining, some important theoretical groundwork on
correlation functions and the OPE has been laid for systems
governed by the nonrelativistic Schrödinger algebra,171 which
is a necessary precursor to any bootstrap analysis.
Another interesting situation that we have not discussed is

systems governed by logarithmic CFTs, a class of nonunitary
CFTs describing, e.g., models of percolation, self-avoiding
random walks, and systems with quenched disorder. While
such theories have been considered for a long time in two
dimensions [see Creutzig and Ridout (2013) for a review],
logarithmic CFTs in higher dimensions have received less
attention. A general theoretical analysis of correlation func-
tions in such theories was recently developed by Hogervorst,
Paulos, and Vichi (2017), building on earlier work
(Ghezelbash and Karimipour, 1997). Attempts to apply direct
numerical bootstrap to such theories have been mentioned in
Sec. VIII.172 Let us also mention the study by Komargodski
and Simmons-Duffin (2017) of the Ising model with
quenched disorder which made extensive use of bootstrap
data to develop an approach based on conformal perturbation
theory.

X. OUTLOOK

The conformal bootstrap is still in its infancy and there
remains much low-hanging fruit to pick along with many
important open questions. For instance, can we use the
bootstrap to fully classify the space of critical CFTs with a
given symmetry, placing universality on a rigorous footing?
Can the bootstrap solve the conformal windows of QED3 and
QCD4? Can it be used as a discovery tool to find new, perhaps
non-Lagrangian CFTs? Is there an analytical understanding of
the kinks in numerical bounds or why certain CFTs such as the
3D Ising model live in them? Which CFTs can be found using
extremal spectrum or truncation methods? And is there a
fruitful way to incorporate developments in the analytical
bootstrap with rigorous numerical methods?
For newcomers to the numerical bootstrap who want to

quickly get started, after learning CFT basics we recommend
becoming familiar with the available software tools,173 par-
ticularly SDPB which is under active development, along with
one of the efficient methods to compute conformal blocks in
the dimension of interest as described in Sec. III.F. Then one
can start reproducing numerical bounds and thinking about

165See Beem, Rastelli, and van Rees (2013, 2017), Alday and Bissi
(2014, 2015), and Liendo and Meneghelli (2017).

166See and Beem, Peelaers et al. (2015), Lemos and Peelaers
(2015), Beem, Lemos et al. (2016), Liendo, Ramirez, and Seo
(2016), Lemos and Liendo (2016b), Nishinaka and Tachikawa
(2016), Xie, Yan, and Yau (2016), Agmon, Chester, and Pufu
(2017a), Beem, Peelaers, and Rastelli (2017), Beem and Rastelli
(2017), Cordova, Gaiotto, and Shao (2017), Creutzig (2017), Fluder
and Song (2017), Liendo, Meneghelli, and Mitev (2017), Song
(2017), Dedushenko, Pufu, and Yacoby (2018), Dedushenko et al.
(2018), Fredrickson et al. (2018), and Pan and Peelaers (2018).

167See Dolan and Osborn (2002, 2006), Dolan, Gallot, and
Sokatchev (2004), Poland and Simmons-Duffin (2011), Fortin,
Intriligator, and Stergiou (2011), Goldberger, Skiba, and Son
(2012), Khandker and Li (2012), Goldberger et al. (2013), Fitzpatrick
et al. (2014), Khandker et al. (2014), Li and Stergiou (2014), Bobev
et al. (2015a), Doobary and Heslop (2015), Beem, Lemos et al.
(2016), Beem, Lemos, Rastelli, and van Rees (2016), Bissi and
Lukowski (2016), Li and Su (2016), Liendo, Ramirez, and Seo
(2016), Ramírez (2016), Bobev, Lauria, and Mazac (2017), Chang
and Lin (2017), Cornagliotto, Lemos, and Schomerus (2017), Lemos,
Liendo, Meneghelli, and Mitev (2017), Li, Meltzer, and Stergiou
(2017), Rong and Su (2018), and Zhijin Li (2018).

168See Isachenkov and Schomerus (2016, 2017), Chen and Qualls
(2017), Schomerus, Sobko, and Isachenkov (2017), and Schomerus
and Sobko (2018).

169See Hijano et al. (2016), Bhatta, Raman, and Suryanarayana
(2016), Dyer, Freedman, and Sully (2017), Castro, Llabrs, and
Rejon-Barrera (2017), Chen, Kuo, and Kyono (2017), Nishida and
Tamaoka (2017), Sleight and Taronna (2017), and Tamaoka (2017).

170See Fitzpatrick, Kaplan, and Walters (2014, 2015), Alkalaev
and Belavin (2015, 2016a, 2016b, 2016c, 2017), Hijano et al. (2015),
Hijano, Kraus, and Snively (2015), Alkalaev (2016), Banerjee, Datta,
and Sinha (2016), Besken et al. (2016), Fitzpatrick andKaplan (2016,
2017), Fitzpatrick, Kaplan, Li, andWang (2016), Fitzpatrick, Kaplan,
Walters, and Wang (2016), Alkalaev, Geiko, and Rappoport
(2017), Belavin and Geiko (2017), Hongbin Chen et al. (2017),
Fitzpatrick et al. (2017), Hulk, Prochzka, and Raeymaekers (2017),
Kraus et al. (2017), Lencsés and Novaes (2017), and Maloney,
Maxfield, and Ng (2017).

171See Nishida and Son (2007), Golkar and Son (2014),
Goldberger, Khandker, and Prabhu (2015), Gubler et al. (2015),
and Pal (2018).

172It should be kept in mind that the conformal blocks in
logarithmic theories are in general more complicated than in usual
CFTs (Hogervorst, Paulos, and Vichi, 2017, Sec. 5.2.2).

173Many of the currently available tools have been collected at
http://bootstrapcollaboration.com/activities/.

David Poland, Slava Rychkov, and Alessandro Vichi: The conformal bootstrap: Theory, numerical …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 015002-61

http://bootstrapcollaboration.com/activities/
http://bootstrapcollaboration.com/activities/


how they can be generalized to say something new about
situations of physical interest. For this purpose it is also
helpful to get used to restating the physical properties of
critical systems using symmetries and the spectrum of scaling
dimensions, so questions can be sharply rephrased in the
language of the bootstrap.
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APPENDIX: EMBEDDING FORMALISM

As we saw in Sec. III.A, the conformal group is isomorphic
to SOðdþ 1; 1Þ. This suggests that we can avoid complica-
tions due to the SCTs acting nonlinearly on Rd by embedding
this space into Rdþ1;1, where the whole conformal group will
act linearly. This main idea of the embedding formalism (also
called the projective null cone formalism) goes back to Dirac
(1936). Here we review only the main logic and a few
fundamental results; see Costa et al. (2011b) for details
and Rychkov (2016b) for a pedagogical introduction.
We denote points in the “embedding space” Rdþ1;1 by PA,

and use the light cone coordinates

PA ¼ ðPþ; P−; PμÞ; P� ¼ Pdþ2 � Pdþ1;

P2 ¼ PμPμ − PþP−: ðA1Þ

In this space we consider the “null cone” defined by P2 ¼ 0.
The physical space Rd is identified with the “Poincaré
section” of the cone given by

PA ¼ ð1; x2; xμÞ; xμ ∈ Rd: ðA2Þ

This identification is natural because, as is easy to check, the
flat Minkowski metric in Rdþ1;1 induces a flat d-dimensional
metric on the Poincaré section (see Fig. 58).
SOðdþ 1; 1Þ acts naturally on the null rays forming the null

cone, and this defines an action on the Poincaré section by
picking the intersection point. One can verify that this action
realizes a conformal transformation of Rd.
Similarly, operators in d dimensions can be lifted to the

embedding space. Focusing on traceless symmetric tensors,

Oμ1���μl
Δ;l ðxÞ is promoted to a traceless symmetric tensor

ÔA1���Al
Δ;l ðPÞ, transforming linearly under SOðdþ 1; 1Þ. The

latter operator is required to be homogeneous of degree −Δ:

ÔA1���Al
Δ;l ðλPÞ ¼ λ−ΔÔA1���Al

Δ;l ðPÞ: ðA3Þ

The relation between the two operators is obtained by the
projection

Oμ1���μl
Δ;l ðxÞ ¼ ∂PA1

∂xμ1
� � � ∂PAl

∂xμl
ÔA1���Al

Δ;l ðPÞ; ðA4Þ

where P is restricted to the Poincaré section so that

∂PA

∂xμ ¼ ð0; 2xμ; δαμÞ.

This is consistent with the symmetric traceless condition. Note
as well that two embedding space tensors which differ by
anything proportional to PA project to the same physical space
tensor, because PA∂PA=∂xμ ¼ 0. This is sometimes referred
to as “gauge freedom,” and it ensures that both representations
have the same number of physical components.
The main advantage of this formalism is that the embedding

space operators transform linearly under the conformal group.
Thus, the problem of classifying correlation functions in
embedding space is reduced to finding covariant tensors of
SOðdþ 1; 1Þ. In the index free notation, this is equivalent to
constructing invariant polynomials depending on the position
vectors PA and the polarization vectors ZA, with the correct
homogeneity properties (A3). For traceless tensors it is
enough to work with null polarization vectors Z2 ¼ 0. Due
to the above-mentioned gauge freedom, it is also enough to
restrict to transverse polarizations: Z · P ¼ 0. In these con-
ventions, all correlation functions can be built from the basic
building blocks (Costa et al., 2011b)

P+P−

FIG. 58. The light cone in the embedding space; light rays are in
one-to-one correspondence with points of Rd. The Poincaré
section of the cone is also shown. From Costa et al., 2011b.
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Hij ≡ ðZi · ZjÞðPi · PjÞ − ðZi · PjÞðZj · PiÞ
ðPi · PjÞ

;

Vi;jk ≡ ðZi · PjÞðPi · PkÞ − ðZi · PkÞðPi · PjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðPi · PjÞðPi · PkÞðPj · PkÞ

p : ðA5Þ

In particular, we have ðPij ≡ −2Pi · PjÞ,

hÔΔ;lðP1; Z1ÞÔΔ;lðP2; Z2Þi ¼
ðH12Þl
PΔ
12

; ðA6Þ

hÔΔ1
ðP1ÞÔΔ2

ðP2ÞÔΔ3
ðP3; Z3Þi ¼ λ123

ðV3;12Þl
Ph123þl
12 Ph132−l

13 Ph231−l
23

:

ðA7Þ

Projecting to Rd gives Eqs. (22) and (23).
Operators transforming in other SOðdÞ representations can

also be lifted to the embedding space; see, e.g., Costa and
Hansen (2015) for mixed-symmetry tensors. One can also
construct other types of embedding spaces which may be more
convenient for dealing with fermions, for supersymmetric
CFTs, or in specific d.174
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Valence-Bond-Solid Transition,” Phys. Rev. Lett. 115, 267203.

Nakata, M., 2010, “A numerical evaluation of highly accurate
multiple-precision arithmetic version of semidefinite programming
solver: Sdpa-gmp, -qd and -dd.,” in IEEE International Symposium
on Computer-Aided Control System Design (CACSD) (IEEE,
New York), pp. 29–34.

Nakayama, Yu, 2015a, “Perturbative search for dead-end CFTs,” J.
High Energy Phys. 05, 046.

Nakayama, Yu, 2015b, “Scale invariance vs conformal invariance,”
Phys. Rep. 569, 1–93.

Nakayama, Yu, 2016a, private communication.
Nakayama, Yu, 2016b, “Bootstrapping critical Ising model on
three-dimensional real projective space,” Phys. Rev. Lett. 116,
141602.

Nakayama, Yu, 2016c, “Bootstrap bound for conformal multi-flavor
QCD on lattice,” J. High Energy Phys. 07, 038.

Nakayama, Yu, 2017, “Bootstrap experiments on higher dimensional
CFTs,” arXiv:1705.02744.

Nakayama, Yu, and Tomoki Ohtsuki, 2014a, “Approaching the
conformal window of OðnÞ ×OðmÞ symmetric Landau-Ginzburg
models using the conformal bootstrap,” Phys. Rev. D 89, 126009.

David Poland, Slava Rychkov, and Alessandro Vichi: The conformal bootstrap: Theory, numerical …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 015002-71

https://doi.org/10.1007/JHEP10(2014)037
http://arXiv.org/abs/1711.09075
https://doi.org/10.1007/JHEP01(2018)077
http://arXiv.org/abs/1806.11550
https://doi.org/10.1007/JHEP05(2016)163
https://doi.org/10.1007/JHEP05(2016)163
http://arXiv.org/abs/1706.06960
https://doi.org/10.1007/JHEP04(2017)098
https://doi.org/10.1007/JHEP04(2017)098
http://arXiv.org/abs/1711.04772
https://doi.org/10.1016/j.nuclphysb.2017.04.020
https://doi.org/10.1007/JHEP01(2017)122
https://doi.org/10.1007/s00220-016-2715-7
https://doi.org/10.1007/JHEP02(2016)019
https://doi.org/10.1007/JHEP02(2016)019
https://doi.org/10.1007/JHEP07(2013)113
https://doi.org/10.1007/JHEP07(2013)113
https://doi.org/10.1007/JHEP05(2017)126
https://doi.org/10.1007/JHEP05(2017)112
https://doi.org/10.1007/JHEP05(2017)112
http://arXiv.org/abs/1808.00612
https://doi.org/10.1088/1126-6708/2006/09/070
https://doi.org/10.1007/BF01613145
https://doi.org/10.1007/BF01613145
https://doi.org/10.1007/BF01609130
https://doi.org/10.1016/0550-3213(77)90238-3
https://doi.org/10.1016/0550-3213(77)90238-3
https://doi.org/10.1016/0003-4916(69)90278-4
http://arXiv.org/abs/0907.2407
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1007/JHEP06(2017)117
http://arXiv.org/abs/1804.09717
https://doi.org/10.1007/JHEP04(2017)146
https://doi.org/10.1007/JHEP04(2017)146
http://arXiv.org/abs/1803.10233
http://arXiv.org/abs/1803.10233
http://arXiv.org/abs/1712.04861
https://doi.org/10.1103/PhysRevB.78.214418
https://doi.org/10.1016/0370-2693(71)90211-5
https://doi.org/10.1103/PhysRevB.96.165133
https://doi.org/10.1103/PhysRevB.96.165133
https://doi.org/10.4310/ATMP.1998.v2.n4.a4
https://doi.org/10.4310/ATMP.1998.v2.n4.a4
https://doi.org/10.1103/PhysRevLett.111.206401
https://doi.org/10.1016/S0370-1573(03)00263-1
https://doi.org/10.1016/0550-3213(90)90670-9
https://doi.org/10.1103/PhysRevB.88.134411
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1007/JHEP05(2015)046
https://doi.org/10.1007/JHEP05(2015)046
https://doi.org/10.1016/j.physrep.2014.12.003
https://doi.org/10.1103/PhysRevLett.116.141602
https://doi.org/10.1103/PhysRevLett.116.141602
https://doi.org/10.1007/JHEP07(2016)038
http://arXiv.org/abs/1705.02744
https://doi.org/10.1103/PhysRevD.89.126009


Nakayama, Yu, and Tomoki Ohtsuki, 2014b, “Five dimensional
OðNÞ-symmetric CFTs from conformal bootstrap,” Phys. Lett. B
734, 193–197.

Nakayama, Yu, and Tomoki Ohtsuki, 2015, “Bootstrapping phase
transitions in QCD and frustrated spin systems,” Phys. Rev. D 91,
021901.

Nakayama, Yu, and Tomoki Ohtsuki, 2016, “Necessary Condition for
Emergent Symmetry from the Conformal Bootstrap,” Phys. Rev.
Lett. 117, 131601.

Nash, Daniel, 1989, “Higher Order Corrections in (2+1)-
Dimensional QED,” Phys. Rev. Lett. 62, 3024.

Nishida, Mitsuhiro, and Kotaro Tamaoka, 2017, “Geodesic Witten
diagrams with an external spinning field,” Prog. Theor. Exp. Phys.
2017, 053B06.

Nishida, Yusuke, and Dam T. Son, 2007, “Nonrelativistic conformal
field theories,” Phys. Rev. D 76, 086004.

Nishinaka, Takahiro, and Yuji Tachikawa, 2016, “On 4d rank-one
N ¼ 3 superconformal field theories,” J. High Energy Phys. 09,
116.

Nogradi, Daniel, and Agostino Patella, 2016, “Strong dynamics,
composite Higgs and the conformal window,” Int. J. Mod. Phys. A
31, 1643003.

Ohtsuki, Tomoki, 2016, “CBoot: A sage module to create (con-
volved) conformal block table,” https://github.com/tohtsky/cboot.

Onsager, Lars, 1944, “Crystal Statistics. I. A Two-Dimensional
Model with an Order-Disorder Transition,” Phys. Rev. 65,
117–149.

Osborn, H., 1989, “Derivation of a Four-dimensional c Theorem,”
Phys. Lett. B 222, 97–102.

Osborn, H., 2012, “Conformal Blocks for Arbitrary Spins in Two
Dimensions,” Phys. Lett. B 718, 169–172.

Osborn, H., and A. C. Petkou, 1994, “Implications of conformal
invariance in field theories for general dimensions,” Ann. Phys.
(N.Y.) 231, 311–362.

Osborn, Hugh, 1999, “N ¼ 1 superconformal symmetry in four-
dimensional quantum field theory,” Ann. Phys. (N.Y.) 272, 243–
294.

Osborn, Hugh, 2018, “Lectures on Conformal Field Theories in more
than two dimensions,” lecture notes available online.

Pal, Sridip, 2018, “Unitarity and Universality in non relativistic
Conformal Field theory,” arXiv:1802.02262.

Pan, Yiwen, and Wolfger Peelaers, 2018, “Chiral Algebras, Locali-
zation and Surface Defects,” J. High Energy Phys. 02, 138.

Pang, Yi, Junchen Rong, and Ning Su, 2016, “ϕ3 theory with F4

flavor symmetry in 6 − 2ϵ dimensions: 3-loop renormalization and
conformal bootstrap,” J. High Energy Phys. 12, 057.

Pappadopulo, Duccio, Slava Rychkov, Johnny Espin, and Riccardo
Rattazzi, 2012, “OPE Convergence in Conformal Field Theory,”
Phys. Rev. D 86, 105043.

Parisen Toldin, Francesco, Martin Hohenadler, Fakher F. Assaad, and
Igor F. Herbut, 2015, “Fermionic quantum criticality in honeycomb
and π-flux Hubbard models: Finite-size scaling of renormalization-
group-invariant observables from quantum Monte Carlo,” Phys.
Rev. B 91, 165108.

Parisi, G., 1972, “On self-consistency conditions in conformal
covariant field theory,” Lett. Nuovo Cimento 4, 777–780.

Paulos, Miguel, 2014a, “JuliBoots: A Julia-based package for
performing numerical conformal bootstrap computations,”
https://github.com/mfpaulos/JuliBoots.

Paulos, Miguel F., 2014b, “JuliBootS: a hands-on guide to the
conformal bootstrap,” arXiv:1412.4127.

Paulos, Miguel F., 2011, “Towards Feynman rules for Mellin
amplitudes,” J. High Energy Phys. 10, 074.

Paulos, Miguel F., Joao Penedones, Jonathan Toledo, Balt C. van
Rees, and Pedro Vieira, 2017, “The S-matrix bootstrap. Part I: QFT
in AdS,” J. High Energy Phys. 11, 133.

Paulos, Miguel F., Slava Rychkov, Balt C. van Rees, and Bernardo
Zan, 2016, “Conformal Invariance in the Long-Range Ising
Model,” Nucl. Phys. B 902, 246–291.

Pelissetto, Andrea, Antonio Tripodo, and Ettore Vicari, 2018,
“Criticality of O(N) symmetric models in the presence of discrete
gauge symmetries,” Phys. Rev. E 97, 012123.

Pelissetto, Andrea, and Ettore Vicari, 2002, “Critical phenomena and
renormalization-group theory,” Phys. Rep. 368, 549–727.

Penedones, Joao, 2011, “Writing CFT correlation functions as AdS
scattering amplitudes,” J. High Energy Phys. 03, 025.

Penedones, João, Emilio Trevisani, and Masahito Yamazaki, 2016,
“Recursion Relations for Conformal Blocks,” J. High Energy Phys.
09, 070.

Peskin, Michael E., 1978, “Mandelstam ’t Hooft Duality in Abelian
Lattice Models,” Ann. Phys. (N.Y.) 113, 122.

Petkou, Anastasios, 1996, “Conserved Currents, Consistency Rela-
tions, and Operator Product Expansions in the Conformally
Invariant OðNÞ Vector Model,” Ann. Phys. (N.Y.) 249, 180–221.

Picco, Marco, Sylvain Ribault, and Raoul Santachiara, 2016,
“A conformal bootstrap approach to critical percolation in two
dimensions,” SciPost Phys. 1, 009.

Poland, David, 2017, unpublished.
Poland, David, and David Simmons-Duffin, 2011, “Bounds on 4D
Conformal and Superconformal Field Theories,” J. High Energy
Phys. 05, 017.

Poland, David, and David Simmons-Duffin, 2016, “The conformal
bootstrap,” Nat. Phys. 12, 535–539.

Poland, David, David Simmons-Duffin, and Alessandro Vichi, 2012,
“Carving Out the Space of 4D CFTs,” J. High Energy Phys. 05, 110.

Poland, David, and Andreas Stergiou, 2015, “Exploring the Minimal
4D N ¼ 1 SCFT,” J. High Energy Phys. 12, 121.

Polchinski, Joseph, 1988, “Scale and Conformal Invariance in
Quantum Field Theory,” Nucl. Phys. B 303, 226.

Polyakov, A.M., 1974, “Nonhamiltonian approach to conformal quan-
tum field theory,” Zh. Eksp. Teor. Fiz. 66, 23–42 [Sov. Phys. JETP 39,
10–18 (1974), http://www.jetp.ac.ru/cgi-bin/dn/e_039_01_0010.pdf].

Polyakov, Alexander M., 1970, “Conformal symmetry of critical
fluctuations,” JETP Lett. 12, 381–383 [http://www.jetpletters.ac.ru/
ps/1737/article_26381.pdf].

Ponte, Pedro, and Sung-Sik Lee, 2014, “Emergence of supersym-
metry on the surface of three dimensional topological insulators,”
New J. Phys. 16, 013044.

Qin, Yan Qi, Yuan-Yao He, Yi-Zhuang You, Zhong-Yi Lu, Arnab
Sen, Anders W. Sandvik, Cenke Xu, and Zi Yang Meng, 2017,
“Duality between the deconfined quantum-critical point and the
bosonic topological transition,” Phys. Rev. X 7, 031052.

Qualls, Joshua D., 2015a, “Lectures on Conformal Field Theory,”
arXiv:1511.04074.

Qualls, Joshua D., 2015b, “Universal Bounds on Operator Dimen-
sions in General 2D Conformal Field Theories,” arXiv:1508.00548.

Qualls, Joshua D., 2015c, “Universal Bounds in Even-Spin CFTs,”
J. High Energy Phys. 12, 001.

Qualls, Joshua D., and Alfred D. Shapere, 2014, “Bounds on
Operator Dimensions in 2D Conformal Field Theories,” J. High
Energy Phys. 05, 091.

Raju, Avinash, 2016, “ϵ-Expansion in the Gross-Neveu CFT,” J. High
Energy Phys. 10, 097.

Ramírez, Israel A., 2016, “Mixed OPEs in N ¼ 2 superconformal
theories,” J. High Energy Phys. 05, 043.

David Poland, Slava Rychkov, and Alessandro Vichi: The conformal bootstrap: Theory, numerical …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 015002-72

https://doi.org/10.1016/j.physletb.2014.05.058
https://doi.org/10.1016/j.physletb.2014.05.058
https://doi.org/10.1103/PhysRevD.91.021901
https://doi.org/10.1103/PhysRevD.91.021901
https://doi.org/10.1103/PhysRevLett.117.131601
https://doi.org/10.1103/PhysRevLett.117.131601
https://doi.org/10.1103/PhysRevLett.62.3024
https://doi.org/10.1093/ptep/ptx055
https://doi.org/10.1093/ptep/ptx055
https://doi.org/10.1103/PhysRevD.76.086004
https://doi.org/10.1007/JHEP09(2016)116
https://doi.org/10.1007/JHEP09(2016)116
https://doi.org/10.1142/S0217751X1643003X
https://doi.org/10.1142/S0217751X1643003X
https://github.com/tohtsky/cboot
https://github.com/tohtsky/cboot
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1016/0370-2693(89)90729-6
https://doi.org/10.1016/j.physletb.2012.09.045
https://doi.org/10.1006/aphy.1994.1045
https://doi.org/10.1006/aphy.1994.1045
https://doi.org/10.1006/aphy.1998.5893
https://doi.org/10.1006/aphy.1998.5893
http://arXiv.org/abs/1802.02262
https://doi.org/10.1007/JHEP02(2018)138
https://doi.org/10.1007/JHEP12(2016)057
https://doi.org/10.1103/PhysRevD.86.105043
https://doi.org/10.1103/PhysRevB.91.165108
https://doi.org/10.1103/PhysRevB.91.165108
https://doi.org/10.1007/BF02757039
https://github.com/mfpaulos/JuliBoots
https://github.com/mfpaulos/JuliBoots
http://arXiv.org/abs/1412.4127
https://doi.org/10.1007/JHEP10(2011)074
https://doi.org/10.1007/JHEP11(2017)133
https://doi.org/10.1016/j.nuclphysb.2015.10.018
https://doi.org/10.1103/PhysRevE.97.012123
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1007/JHEP03(2011)025
https://doi.org/10.1007/JHEP09(2016)070
https://doi.org/10.1007/JHEP09(2016)070
https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1006/aphy.1996.0068
https://doi.org/10.21468/SciPostPhys.1.1.009
https://doi.org/10.1007/JHEP05(2011)017
https://doi.org/10.1007/JHEP05(2011)017
https://doi.org/10.1038/nphys3761
https://doi.org/10.1007/JHEP05(2012)110
https://doi.org/10.1007/JHEP12(2015)121
https://doi.org/10.1016/0550-3213(88)90179-4
http://www.jetp.ac.ru/cgi-bin/dn/e_039_01_0010.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_039_01_0010.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_039_01_0010.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_039_01_0010.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_039_01_0010.pdf
http://www.jetpletters.ac.ru/ps/1737/article_26381.pdf
http://www.jetpletters.ac.ru/ps/1737/article_26381.pdf
http://www.jetpletters.ac.ru/ps/1737/article_26381.pdf
http://www.jetpletters.ac.ru/ps/1737/article_26381.pdf
http://www.jetpletters.ac.ru/ps/1737/article_26381.pdf
http://www.jetpletters.ac.ru/ps/1737/article_26381.pdf
https://doi.org/10.1088/1367-2630/16/1/013044
https://doi.org/10.1103/PhysRevX.7.031052
http://arXiv.org/abs/1511.04074
http://arXiv.org/abs/1508.00548
https://doi.org/10.1007/JHEP12(2015)001
https://doi.org/10.1007/JHEP05(2014)091
https://doi.org/10.1007/JHEP05(2014)091
https://doi.org/10.1007/JHEP10(2016)097
https://doi.org/10.1007/JHEP10(2016)097
https://doi.org/10.1007/JHEP05(2016)043


Rastelli, Leonardo, and Xinan Zhou, 2017, “The Mellin Formalism
for Boundary CFTd,” J. High Energy Phys. 10, 146.

Rattazzi, Riccardo, Slava Rychkov, and Alessandro Vichi, 2011a,
“Bounds in 4D Conformal Field Theories with Global Symmetry,”
J. Phys. A 44, 035402.

Rattazzi, Riccardo, Slava Rychkov, and Alessandro Vichi, 2011b,
“Central Charge Bounds in 4D Conformal Field Theory,” Phys.
Rev. D 83, 046011.

Rattazzi, Riccardo, Vyacheslav S. Rychkov, Erik Tonni, and
Alessandro Vichi, 2008, “Bounding scalar operator dimensions
in 4D CFT,” J. High Energy Phys. 12, 031.

Read, N., and Subir Sachdev, 1990, “Spin-peierls, valence-bond
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