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The deformation and flow of disordered solids, such as metallic glasses and concentrated emulsions,
involves swift localized rearrangements of particles that induce a long-range deformation field. To
describe these heterogeneous processes, elastoplastic models handle the material as a collection of
“mesoscopic” blocks alternating between an elastic behavior and plastic relaxation, when they are
loaded above a threshold. Plastic relaxation events redistribute stresses in the system in a very
anisotropic way. A review is given of not only the physical insight provided by these models into
practical issues such as strain localization, creep, and steady-state rheology, but also the fundamental
questions that they addresswith respect to criticality at the yielding point and the statistics of avalanches
of plastic events. Furthermore, connections are discussed with concurrent mean-field approaches and
with related problems such as the plasticity of crystals and the depinning of an elastic line.
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I. INTRODUCTION

19th-century French Chef Marie-Antoine Carême (Carême,
1842) claims that “mayonnaise” comes from the French verb
manier (“to handle”), because of the continuous whipping that
is required to make the mixture of egg yolk, oil, and vinegar

thicken. This etymology may be erroneous, but what is certain
is that the vigorous whipping of these liquid ingredients can
produce a viscous substance, an emulsion consisting of oil
droplets dispersed in a water-based phase. At a high volume
fraction of oil, mayonnaise even acquires some resistance to
changes of shape, like a solid; it no longer yields to small
forces, such as its own weight. Similar materials, sharing solid
and liquid properties, pervade our kitchens and fridges:
Chantilly cream, heaps of soya grains, or rice are but a couple
of examples. They also abound on our bathroom shelves
(shaving foam, tooth paste, hair gel), and in the outside world
(sand heaps, clay, wet concrete); see Fig. 1 for further
examples. All these materials will deform and may flow, if
they are pushed hard enough, but will preserve their shape
otherwise. Generically known as amorphous (or disordered)
solids, they seem to have no more in common than what the
etymology implies: their structure is disordered, that is to say,
deprived of regular pattern at “any” scale, as liquids, but they
are nonetheless solid. So heterogeneous a categorization may
make one frown, but has proven useful in framing a unified
theoretical description (Barrat and de Pablo, 2007). In fact, the
absence of long-range order or of a perceptible microstructure
makes the steady-state flow of amorphous solids simpler, and
much less dependent on the preparation and previous defor-
mation history, than that of their crystalline counterparts.
A flowing amorphous material is therefore a relatively simple
realization of a state of matter driven far from equilibrium by
an external action, a topic of current interest in statistical
physics.
A matter of clear industrial interest, the prediction of the

mechanical response of such materials under loading is a
challenge for mechanical engineering too. This problem
naturally brings in its wake many questions of fundamental
physics. Obviously, it is not exactly solvable, since it
involves the coupled mechanics equations of the N ≫ 1
elementary constituents of the macroscopic material; this is a
many-body problem with intrinsic disorder and very few
symmetries. Two paths can be considered as alternatives:
(i) searching for empirical laws in the laboratory, and/or
(ii) proposing approximate, coarse-grained mathematical
models for the materials. This review is a pedagogical
journey along the second path.
Along this route, substantial assumptions are made to

simplify the problem. The prediction capability of models
hinges on the accuracy of these assumptions. Following their
distinct interests and objectives, different scientific commun-
ities have adopted different modeling approaches. Material
scientists tend to include a large number of parameters,
equations, and rules in order to reproduce different aspects of
the material behavior simultaneously. Statistical physicists
aspire for generality and favor minimal models, or even toy
models, in which the parameter space is narrowed down to a
few variables. At the interface between these approaches (see
Fig. 2), “elastoplastic” models (EPM) consider an assembly
of mesoscopic material volumes that alternate between an
elastic regime and plastic relaxation, and interact among
themselves. As simple models, they aim to describe a general
phenomenology for all amorphous materials, but they may
also include enough physical parameters to address material
particularities in view of potential applications. They rely on
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simple assumptions to connect the microsopic phenomenol-
ogy to the macroscopic behavior and therefore have a central
position in the endeavor to bridge scales in the field (Rodney,
Tanguy, and Vandembroucq, 2011). To some extent, EPM
can be compared to classical lattice models of magnetic
systems, which permit the exploration of a number of
fundamental and practical issues, by retaining a few key
features such as local exchange and long-range dipolar
interactions, spin dynamics, local symmetries, etc., without
explicit incorporation of the more microscopic ingredients
about the electronic structure.
This review aims to articulate a coherent overview of the

state of the art of these EPM, starting in Sec. II with the
microscopic observations that guided the coarse-graining
efforts. We will discuss several possible practical implemen-
tations of coarse-grained systems of interacting elastoplastic
elements, considering the possible attributes of the building
blocks (Sec. III) and the more technical description of their
mutual interactions (Sec. IV). Section V is then concerned

with the widespread approximations of the effect of the stress
fluctuations resulting from these interactions. In Sec. VI we
describe the current understanding of strain localization based
on the study of EPM. Section VII focuses on the statistical
marks of criticality encountered when the system is driven
extremely slowly, especially in terms of the temporal and
spatial organization of stress fluctuations in “avalanches,”
while Sec. VIII describes the bulk rheology of amorphous
solids in response to a shear deformation. Section IX gives a
short perspective on the much less studied phenomena of
creep and aging. The review ends on a discussion of the
relation between EPM and several other descriptions of
mechanical response in disordered systems, in Sec. X, and
some final outlooks.
These sections are largely self-contained and can thus be

read separately. Sections II and III are both particularly well
suited as entry points for newcomers in the field, while
Secs. IV and V might be more technical and of greater
relevance for the experts interested in the implementation of

FIG. 1. Overview of amorphous solids. From left to right, top row: (1) golf club made of metallic glass, (2) toothpaste, (3) mayonnaise,
(4) coffee foam, and (5) soya beans. Second row: a transmission electron microscopy (TEM) image of a fractured bulk metallic glass
(Cu50Zr45Ti5) by X. Tong et al. (Shanghai University, China). Adapted from Tong et al., 2016. TEM image of blend (PLLA/PS)
nanoparticles obtained by miniemulsion polymerization, from L. Becker Peres et al. (UFSC, Brazil). Adapted from Peres et al., 2015.
Emulsion of water droplets in silicon oil observed with an optical microscope by N. Bremond (ESPCI Paris). From Bremond, Thiam,
and Bibette, 2008. A soap foam filmed in the lab by M. van Hecke (Leiden University, Netherlands). From Deen, 2016. Thin nylon
cylinders of different diameters pictured with a camera by B. Metzger (Aix Marseille University, France). From Miller et al., 2013. The
white scale bars are approximate. Just below, a chart of different amorphous materials classified by the size and the damping regime of
their elementary particles. Bottom: some popular modeling approaches, arranged according to the length scales of the materials for
which they were originally developed. STZ stands for the shear transformation zone theory of Langer (2008), and SGR for the soft
glassy rheology theory of Sollich et al. (1997).
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EPM. Finally, Secs. VI–IX focus on applications of the
models to specific physical phenomena and are largely
independent from each other.

II. GENERAL PHENOMENOLOGY

A. What are amorphous solids?

From a mechanical perspective, amorphous solids are
neither perfect solids nor simple liquids. Albeit solid, some
of these materials are made of liquid to a large extent and
appear soft. Nevertheless, at rest they preserve a solid
structure and will flow only if a sufficient load is applied
to them. Accordingly, in the rheology of complex fluids
(Bonn et al., 2017), they are often referred to as “yield-stress
materials.” Foams and emulsions, that is, densely packed
bubbles or droplets dispersed in a continuous liquid phase,
are solid because surface tension strives to restore the
equilibrium shape of their constituent bubbles or droplets
upon deformation. Their elastic moduli, i.e., the coefficients
of proportionality between the elastic strain and stress, are
then approximately given by the surface tension divided by
the bubble or droplet radius (between a few microns and
several millimeters); a few hundred pascal would be a good
order of magnitude. Colloidal glasses, on the other hand, are
dense suspensions of solid particles of less than a micron in
diameter, which makes them light enough for Brownian
agitation to impede sedimentation. They rely on entropic
forces to maintain their reference structure and typically
have shear moduli of the order of 10–100 Pa.
Poles apart from these soft solids, “hard” amorphous solids

comprise oxyde or metallic glasses, as well as glassy
polymers. They are typically made of much smaller particles
than their soft counterparts. Indeed, roughly speaking, the
elastic moduli are inversely proportional to the linear size of
the constituents. (Granular media, in which the elastic moduli
depend on the material composing the grains and the applied
pressure, are an exception to this rule of thumb.) For
instance, the atoms that compose the metallic or silica
glasses live in the angström scale, and these materials have
very large Young moduli, of order 100 GPa (somewhat below
for silicate glasses, sometimes above for metallic glasses).
These atomic glasses are obtained from liquids when the
temperature is lowered below the glass transition temperature
while crystallization is avoided. To do so, high cooling rates
of typically 105–106 K s−1 are required for metallic glasses
(Greer, 1995; Greer and Ma, 2007), whereas values below
1 K s−1 may be used for oxide glasses. After a certain
amount of deformation, brittle materials will break without
incurring significant plastic (irretrievable) deformation,
whereas ductile materials will deform plastically before
breaking. We discuss connections between these forms of
deformation in Sec. VI.

B. What controls the dynamics of amorphous solids?

Another distinction regards the nature of the excitations that
can alter the structural configuration of the system.

1. Athermal systems

When the elementary constituent sizes are large enough
(≳1 μm) to neglect Brownian effects (thermal fluctuations),
the materials are said to be athermal. Dry granular packings,
dense granular suspensions, foams, and emulsions (see Fig. 1)
belong in this category. An external force is required to
activate their dynamics and generate configurational changes.
Typical protocols for externally driving the system include
shearing it by rotating the wall of a rheometer (Barnes, Hutton,
and Walters, 1989), deforming it by applying pressure in a
given direction, or simply making use of gravity if the material
lies on a tilted plane (Coussot and Boyer, 1995). Rheometers
control either the applied torque T or the angular velocityΩ of
the rotating part. In the former case, the applied macroscopic
shear stress is kept fixed, at a value Σ ¼ T=2πhR2 on a
rotating cylinder of radius R and height h (Fardin, Perge, and
Taberlet, 2014), while one monitors the resulting shear strain γ
or shear rate _γ if the material flows steadily. Conversely, strain-
controlled experiments impose γðtÞ or _γ and monitor the stress
response ΣðtÞ.
How do amorphous solids respond to such external forces?

For small applied stresses Σ, the deformation is elastic, i.e.,
mostly reversible. Submitted to larger stresses, the material
shows signs of plastic (irreversible) deformation; but the latter
ceases rapidly, unless Σ overcomes a critical threshold Σy

known as yield stress [see Fig. 3(a)]. For Σ > Σy, the material
yields. This process can culminate in macroscopic fracture; for
brittle materials such as silica glass, it always does so.
Contrariwise, most soft amorphous solids will finally undergo
stationary plastic flow. The ensuing flow curve Σ ¼ fð_γÞ in
the steady state is often fitted by a Herschel-Bulkley law

Σ ¼ Σy þ A_γn; ð1Þ

with n > 0 [see Fig. 3(b)].

FIG. 2. Scientific position of elastoplastic modeling.
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The transition between the solidlike elastic response and the
irreversible plastic deformation is known as the yielding
transition. Statistical physicists are inclined to regard it as a
dynamical phase transition, an out-of-equilibrium phenome-
non with characteristics similar to equilibrium phase
transitions (Jie Lin et al., 2014; Lin et al., 2015; Jaiswal
et al., 2016).

2. Thermal systems

Thermal fluctuations, on the other hand, may play a role in
materials with small enough (≲1 μm) elementary constituents,
such as colloidal and polymeric glasses, colloidal gels, silicate,
and metallic glasses. Still, these materials are out of thermo-
dynamic equilibrium and they do not sample the whole
configuration space under the influence of thermal fluctuations.
It follows that different preparation routes (and, in particular,
different cooling rates) tend to produce mechanically distinct
systems. Even thewaiting time between the preparation and the
experiment matters, because the system’s configuration
evolves meanwhile through activated events. The evolution
of the mechanical properties with the time since preparation,
usually making the system more solid, is called aging. In
particular, the high cooling rates used for quenching generate a
highly heterogeneous internal stress field in the material
(Ballauff et al., 2013). In some regions, particles manage to
rearrange geometrically, minimizing in part the interaction
forces among them, but many other regions are frozen in a
highly strained configuration. Slow rearrangements will take
place at finite temperature and tend to relax locally strained
configurations (“particles break out of the cages made by their
neighbors”) along with the stress accumulated in them.
That being said, the elastic moduli are usually only weakly

affected by the preparation route, i.e., the cooling rate (Ashwin,
Bouchbinder, and Procaccia, 2013) and the waiting time
(Divoux, Barentin, and Manneville, 2011b), while other key
features of the transient response to the applied shear are often
found to dependon it. This sensitivity to preparation particularly
affects the overshoot in the stress versus strain curve depicted in
Fig. 3 and used to define the static yield stress Σmax. It is
observed in experiments (Divoux, Barentin, and Manneville,
2011b) as well as numerical simulations (Rottler and Robbins,
2005; Patinet, Vandembroucq, and Falk, 2016). In softmaterials

amenable to stationary flow, this issue may be deemed secon-
dary; the flow creates a nonequilibrium stationary state, and the
memory of the initial preparation state is erased after a finite
deformation. On the other hand, in systems that break at finite
deformation, the amount of deformation before failure is of
paramount importance, and so is its possible sensitivity to the
preparation scheme, due to different abilities of the system to
localize deformations (see Sec. VI).

3. Potential energy landscape

The potential energy landscape (PEL) picture offers an
illuminating perspective to understand the changes associated
with aging in thermal systems (Goldstein, 1969; Doliwa and
Heuer, 2003a, 2003b). The whole configuration of the system
(particle coordinates and, possibly, velocities) is considered as
a “state point” Γ that evolves on top of a hypersurface VðΓÞ
representing the total potential energy. Despite the high
dimension of such a surface (proportional to the number N
of particles), it can be viewed as a rugged landscape, with hills
and nested valleys; the number of local minima generally
grows exponentially with N (Wales and Bogdan, 2006).
Contrary to crystals, glassy (disordered) states do not mini-
mize the free energy of the system; aging thus consists of an
evolution toward lower-energy states (on average) through
random, thermally activated jumps over energy barriers, or
more precisely saddle points of the PEL. As the state point
reaches deeper valleys, the jumps become rarer and rarer; the
structure stabilizes, even though some plasticity is still
observed locally (Ruta et al., 2012).
External driving restricts the regions of the PEL that can be

visited by the state point to, say, those with a (usually time-
dependent) macroscopic strain γ. Mathematically, this con-
straint is enforced by means of a Lagrange multiplier, which
effectively tilts VðΓÞ into

VσðΓ; γÞ≡ VðΓÞ −Ω0Σγ; ð2Þ

where Ω0 is the volume of the system and Σ the macroscopic
stress. The system’s dynamics are then controlled by ∂Vσ=∂Γ,
instead of ∂V=∂Γ, which results in major changes, as we shall
see next. Typically, driven systems respond on much shorter
times than quiescent aging ones. Accordingly, some thermal

(a) (b)

FIG. 3. Schematic macroscopic response of amorphous solids to deformation. (a) Evolution of the shear stress Σ with the imposed
shear strain γ, with a stress overshoot Σmax. In the event of material failure, which is generally preceded by strain localization, the stress
dramatically drops down. (b) Steady-state flow curve, i.e., dependence of the steady-state shear stress Σss on the shear rate _γ, represented
with semilogarithmic axes. If the flow is split into macroscopic shear bands, a stress plateau is generally observed.
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systems may be treated as athermal, for all practical purposes.
Nonetheless, interesting physical behavior emerges when the
aging and driving time scales compete, either because temper-
ature is high or because the driving is slow (Johnson and
Samwer, 2005; Rottler and Robbins, 2005; Shi and Falk,
2005; Chattoraj, Caroli, and Lemaître, 2010; Vandembroucq
and Roux, 2011).

C. Jagged stress-strain curves and localized rearrangements

The contrasting inelastic material responses to shear,
ranging from failure to flow, may give the impression that
there is a chasm between “hard” and “soft”materials. They are
indeed often seen as different fields, plasticity for hard solids
versus rheology for soft materials. Nevertheless, the gap is not
as wide as it looks. Indeed, some hard solids may flow
plastically to some extent without breaking, while soft solids
retain prominent solidlike features under flow at low enough
shear rates, unlike simple liquids.
To start with, consider the macroscopic response to a

constant stress Σ (or shear rate _γ) of a foam (Lauridsen,
Twardos, and Dennin, 2002) or a metallic glass (Wang et al.,
2009): Instead of a smooth deformation, the evolution of strain
γðtÞ with time [or stress ΣðtÞ] is often found to be jagged. The
deeper the material lies in its solid phase, the more “serrated”
the curves (Dalla Torre et al., 2010; Sun et al., 2012). This
type of curve is not specific to the deformation of amorphous
solids. It is observed in all “stick-slip” phenomena, in which
the system is repeatedly loaded until a breaking point, where
an abrupt discharge (energy release) occurs. Interestingly, this
forms the basis of the elastic rebound theory proposed by Reid
(1910) after the 1906 California earthquake. Other elementary
examples include pulling a particle with a spring of finite
stiffness in a periodic potential, a picture often used in
crystalline solids to describe the motion of irregularities
(defects) in the structure called dislocations—the elementary
mechanism of plasticity. In the plastic flow of amorphous
solids, potential energy V is accumulated in the material in the
form of elastic strain, until some rupture threshold is passed.
At this point, a plastic event occurs, with a release of the stored
energy and a corresponding stress drop.
From the PEL perspective, the energy accumulation phase

coincides with the state point smoothly tracking the evolution
of the local minimum in the effective potential VσðΓ; γÞ
[Eq. (2)], as γ increases. Meanwhile, some effective barriers
subside, until one flattens so much that the system can slide
into another valley without energy cost. This topological

change in Vσ at a critical strain γ ¼ γc is a saddle-node
bifurcation and marks the onset of a plastic event. For smooth
potentials, close to γc, the effective barrier height scales as
(Gagnon, Patton, and Lacks, 2001; Maloney and Lacks, 2006)

V⋆ ∼ ðγc − γÞ3=2: ð3Þ

Note that the instability can be triggered prematurely if
thermal fluctuations are present. In summary, in the PEL,
deformation is a succession of barrier-climbing phases (elastic
loading) and descents. The first step in building a microscopic
understanding of the flow process is to identify the nature of
these plastic events.
But what can be said about the microscopic deformation of

atomic or molecular glasses when the motion of atoms and
molecules remains virtually invisible to direct experimental
techniques? In the 1970s, inspiration came from the better
known realm of crystals. As early as 1934, with the works of
Orowan, Polanyi, and Taylor, the motion of dislocations was
known to be the main lever of their (jerky) deformation. Could
similar static structural defects be identified in the absence of a
regular structure? The question has been vivid to the present
day, so that it is at least fair to say that, should they exist, such
defects would be more elusive than in crystals (we will return
to this question later in this section). In fact, the main
inspiration drawn from research on crystals was of a more
pragmatic nature: Bragg and Nye (1947) showed that bubble
rafts, i.e., monolayers of bubbles, could serve as upscaled
models for crystalline metals and provide insight into the
structure of the latter. The lesson was simple: If particles in
crystals are too small to be seen, let us make them larger. Some
30 years later, the idea was transposed to disordered systems
by Argon and Kuo (1979), who used bidisperse bubble rafts as
models for metallic glasses. Most importantly, they observed
prominent singularities in the deformation: rapid rearrange-
ments involving a few bubbles. Princen and Kiss (1986)
suggested that the elementary rearrangement in these 2D
systems was a topological change involving four bubbles,
termed a T1 event; see Fig. 4(a).

1. Evidence

Since these early studies of foams and emulsions, evidence
for swift localized rearrangements has been amassed both
experimentally and numerically, in very diverse systems,
namely,

FIG. 4. Localized rearrangements. (a) A T1 event in a strained bubble cluster. From Biance, Cohen-Addad, and Höhler, 2009. (b)
Sketch of a rearrangement. From Bocquet, Colin, and Ajdari, 2009. (c) Instantaneous changes of neighbors in a slowly sheared colloidal
glass. Adapted from Schall, Weitz, and Spaepen, 2007. Particles are magnified and colored according to the number of nearest neighbors
that they lose.
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(1) simple numerical glass models such as Lennard-Jones
glasses (Falk and Langer, 1998; Maloney and Le-
maître, 2004, 2006; Tanguy, Leonforte, and Barrat,
2006) and other systems (Gartner and Lerner, 2016),

(2) numerical models of metallic glasses (Srolovitz, Vitek,
and Egami, 1983; Rodney and Schuh, 2009),

(3) numerical models of silicon glasses (amorphous
silicon) (Fusco, Albaret, and Tanguy, 2014; Albaret
et al., 2016),

(4) numerical models of polymer glasses (Papakonstan-
topoulos et al., 2008; Smessaert and Rottler, 2013),

(5) dense colloidal suspensions (Schall, Weitz, and
Spaepen, 2007; Chikkadi and Schall, 2012; Jensen,
Weitz, and Spaepen, 2014),

(6) concentrated emulsions (Desmond and Weeks, 2015),
(7) dry and wet foams (Debregeas, Tabuteau, and Di

Meglio, 2001; Kabla and Debrégeas, 2003; Biance,
Cohen-Addad, and Höhler, 2009; Biance, Delbos, and
Pitois, 2011), and

(8) granular matter (Amon et al., 2012; Amon, Bertoni,
and Crassous, 2013; Le Bouil et al., 2014; Denisov
et al., 2016).

Recently, Poincloux, Adda-Bedia, and Lechenault (2018)
proposed to extend the list to knits, where local slip events at
inter-yarn contacts play the role of rearrangements.
These are the essential events whereby the irreversible

macroscopic deformation is transcribed into the material
structure. As such, they are the building bricks of EPM
and we refer to them as “plastic events.”1 Since they must
contribute to the externally imposed shear deformation, they
will retain part of its symmetry and can thus be idealized as
localized shear deformations, or “shear transformations” (ST).
Admittedly, in reality, their details do somewhat vary across
systems (see later), but, compared to the crystalline case, their
strong spatial localization is a generic and remarkable feature.
At this stage, no doubt should be left as to the solid nature

of the materials considered here. Our review is concerned with
materials that are clearly solid at rest and excludes systems at
the fringe of rigidity, such as barely jammed packings of
particles or emulsions. The latter are most probably governed
by different physics, in which spatially extended rearrange-
ments may occur under vanishing loading (Müller and
Wyart, 2015).

2. Quantitative description

Although rearrangements can sometimes be spotted visu-
ally, a more objective and quantitative criterion for their
detection is desirable. Making use of the inelastic nature of
these transformations, Falk and Langer (1998) pioneered the
use of D2

min, a quantity that measures how nonaffine the local
displacements around a particle are. More precisely, the
relative displacements of neighboring particles between suc-
cessive configurations are computed and compared to the ones
that would result from a locally affine deformation F; D2

min is

the minimal square difference obtained by optimizing the
tensor F. This quantity has been used heavily since then
(Schall, Weitz, and Spaepen, 2007; Chikkadi et al., 2011;
Chikkadi and Schall, 2012; Jensen, Weitz, and Spaepen,
2014), Generally speaking, very strong localization of events
is observed at low enough shear rates, with spatial maps of
D2

min that consist of a few active regions of limited spatial
extension, separated by regions of locally affine and elastic
deformation.
Other indicators of nonaffine transformations have also

been used. For instance, different observables, including the
strain component along a neutral direction (say, ϵyz if the
applied strain is along ϵxy in a 3D system) (Schall, Weitz, and
Spaepen, 2007), the field of deviations of particle displace-
ments with respect to a strictly uniform deformation, the count
of nearest-neighbor losses (Chikkadi and Schall, 2012), or the
identification of regions with large (marginal) particle veloc-
ities (Nicolas and Rottler, 2018), are also good options to
detect rearrangements. Up to differences in their intensities,
these methods were shown to provide similar information
about STs in slow flows of colloidal suspensions (Chikkadi
and Schall, 2012). Alternative methods take advantage of the
irreversibility of plastic rearrangements, by reverting every
strain increment δγ imposed on the system (γ → γ þ δγ → γ)
in a quasistatic shear protocol and comparing the reverted
configuration with the original one (Albaret et al., 2016).
Differences will be seen in the rearrangement cores (which
underwent plasticity) and their surroundings (which were
elastically deformed by the former). To specifically target the
anharmonic forces active in the core, shear can be reverted
partially, to harmonic order, by following the Hessian
upstream instead of performing a full nonlinear shear reversal
(Lemaître, 2015).
Some reservations should now be made about the picture of

clearly separated localized transformations. First, the validity
of the binary vision distinguishing elastic and plastic regions
has been challenged for hard particles, such as grains (Bouzid,
Izzet et al., 2015). de Coulomb et al. (2017) thus recently
contended that, as particles become stiffer, this binary picture
fades into complex reorganizations of the network of contacts
via cooperative motion of the particles. It is tempting to relate
these changes to the surge of delocalized low-energy excita-
tions in emulsions (Lin et al., 2016) and packings of
frictionless spheres (Wyart et al., 2005; Andreotti, Barrat,
and Heussinger, 2012) as pressure is reduced and they
approach jamming from above: These spatially extended
and structurally complex soft modes are swept away upon
compression and leave the floor to more localized excitations
at higher pressure and energies.
It is also clear that as the temperature or the shear rate is

increased and the material departs from solidity, thermal or
mechanical noise may wash out the picture of well-isolated,
localized events. Nevertheless, it has recently been argued that
localized rearrangements can still be identified at relatively
high temperatures. For instance, these rearrangements leave
an elastic imprint in supercooled liquids via the elastic field
that each of them induces. This imprint is revealed when one
studies suitable stress or strain correlation functions (Chattoraj
and Lemaître, 2013; Lemaître, 2014; Illing et al., 2016).

1The reader should however be warned that the expression was
also used in the literature to refer to cascades of such localized
rearrangements (Maloney and Lemaître, 2006; Tanguy, Leonforte,
and Barrat, 2006; Fusco, Albaret, and Tanguy, 2014).

Nicolas et al.: Deformation and flow of amorphous solids: …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045006-7



3. Variations

The foregoing quantitative indicators of microscale plastic-
ity have brought to light substantial variations and differences
between actual rearrangements and idealized STs. Even though
EPM will generally turn a blind eye to this variability, let us
shortly mention some of its salient features.
First, the sizes of rearranging regions vary from a handful of

particles in foams, emulsions, and colloidal suspensions [for
instance, about four particles in a sheared colloidal glass,
according to Schall, Weitz, and Spaepen (2007)] to a couple of
dozen or a couple of hundred in metallic glasses [10 to 30 in
the numerical simulations of Fan, Iwashita, and Egami (2015),
25 for the as-cast glass, and 34 for its annealed counterpart in
the indentation experiment of Choi et al. (2012), and 200 to
700 in the shearing experiments of Pan et al. (2008)]. Note
that, for metallic glasses, the indicated sizes are not backed out
by direct experimental evidence, but are based on activation
energy calculations and therefore strongly tied to Tg (Johnson
and Samwer, 2005; T. H. Zhang et al., 2017).
Albaret et al. (2016) proposed a detailed numerical char-

acterization of plastic rearrangements in atomistic models for
amorphous silicon by fitting the actual particle displacements
during plastic events with the elastic displacement halos
expected around spherical STs, that is, by finding the size
and spontaneous deformation ϵ⋆ of the inclusion which, upon
embedding in an elastic medium, generates displacements that
best match the observed ones (see Sec. II.D). Although
rearrangements seem to have a typical linear size, around
3 Å, they found that the most robust quantity is actually the
product of ϵ⋆ with the inclusion volume V in. Furthermore, the
mean strain Trðϵ⋆Þ=3 is either positive or negative depending
on the specificities of the implemented potential (thus evi-
dencing either a local dilation or a local compression) and
represents only about 5% of the shear component, which
confirms that shear prevails in the transformation. The
orientations of the STs, i.e., the directions of maximal shear,
were studied in greater detail in a more recent work, in 2D,
where a fairly broad distribution of these orientations around
the macroscopic shear direction was reported (Nicolas and
Rottler, 2018). Finally, Albaret et al. (2016) were able to
reproduce the stress versus strain curve on the basis of the
strain-dependent shear modulus and the fitted local elastic
strain releases ϵ⋆. This proves that localized plastic rearrange-
ments surrounded by an elastic halo are the unique elementary
carriers of the plastic response.
Secondly, the shape of the rearrangements is also subject to

variations. In quiescent systems rearrangements through string-
like motion of particles seem to be more accessible (Keys et al.,
2011), even though STs have also been claimed to be at the core
of structural relaxation in deeply supercooled liquids (Lemaître,
2014). The application of a macroscopic shear clearly favors the
latter type of rearrangements. Albeit facilitated by the driving, in
thermal systems these STs may nonetheless be predominantly
activated by thermal fluctuations (Schall, Weitz, and Spaepen,
2007). There is some (limited) indication that the characteristics
of the rearranging regions change as one transits from mechan-
ically triggered events to thermally activated ones, for instance
with a visible increase in the size of the region in metallic glass
models (Cao, Park, and Lin, 2013).

Thirdly, owing to the granularity of the rearranging region
(which is not a continuum), the displacements of the indi-
vidual particles in the region do not strictly coincide with an
ST, i.e., r → rþ ϵ · ðr − rcÞ (where r generically refers to a
particle position). Incidentally, this is the major reason why
the observable D2

min detects plastic rearrangements.

4. Structural origins of rearrangements

What determines a region’s propensity to rearrange? Local
microstructural properties underpinning the weakness of a
region (i.e., how prone to rearranging it is) have long been
searched. In the first half of the 20th century efforts were made
to connect viscosity with the available free volume Vf per
particle, notably by using contested experimental evidence
from polymeric materials (Batschinski, 1913; Fox and Flory,
1950; Doolittle, 1951; Williams, Landel, and Ferry, 1955).
The idea that local variations of Vf control the local weakness
have then been widely applied to systems of hard particles
(metallic glasses, colloidal suspensions, granular materials)
(Spaepen, 1977). The shear transformation zone theory of
Falk and Langer (1998) originally proposed to distinguish
weak zones prone to STs on the basis of this criterion. Hassani
et al. (2016) invalidated criteria based on the strictly local free
volume but showed that a nonlocal definition distinctly
correlates with the deformation field, as do potential-energy
based criteria (Shi et al., 2007). Paying closer attention to the
microstructure, Ding et al. (2014) proved the existence of
correlations between rearrangements and geometrically unfa-
vored local configurations (whose Voronoi cell strongly
differs from an icosahedron) in model binary alloys.
Beyond this particular example, the question of how to
decipher the weakness of a region from its local micro-
structure remains largely open.
Looking beyond locally available information, the linear

response of the whole system has also been considered with
the hope that linearly soft regions will also be weak in their
nonlinear response. Regions with low elastic shear moduli
were indeed shown to concentrate most of the plastic activity
(Tsamados et al., 2009), even though no yielding criterion
based on the local stress or strain is valid uniformly through-
out the material (Tsamados et al., 2008). One should mention
that, albeit a local property, the local shear modulus is best
evaluated if the response of the global system is computed.
Indeed, approximations singling out a local region and
enforcing an affine deformation of the outer medium are
sensitive to the size of the region and overestimate the shear
modulus, because they hinder nonaffine relaxation (Mizuno,
Mossa, and Barrat, 2013).
Focusing on vibrational properties, Brito and Wyart (2007)

and Widmer-Cooper et al. (2008) provided evidence that in
hard-sphere glasses as well as in supercooled liquids the
particles that vibrate most in theM lowest energy modes (i.e.,
those with a high participation fraction in theM softest modes,
where M is arbitrarily fine-tuned) are more likely to rearrange
(note that for hard spheres the vibrational modes were
computed using an effective interaction potential). This holds
true at zero temperature (Manning and Liu, 2011) and also for
metallic and polymer glasses (Smessaert and Rottler, 2015);
see Fig. 5. Note that this enhanced likelihood should be
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understood as a statistical correlation, beating random guesses
by a factor of 2 or 3 or up to 7 in some cases, rather than as a
systematic criterion. However, in the cases where the rear-
rangement spot is correctly predicted, the soft-mode-based
prediction for the direction of motion during the rearrange-
ment is fairly reliable (Rottler, Schoenholz, and Liu, 2014).
If one is allowed to probe nonlinear local properties, then

Patinet, Vandembroucq, and Falk (2016) showed that pre-
dictions based on the local yield stress, numerically measured
by deforming the outer medium affinely, outperform criteria
relying on the microstructure and the linear properties, as
indicated by Fig. 5(b).
Leaving behind traditional approaches, a couple of recent

papers showed that it is possible to train an algorithm to
recognize the atomic-scale patterns characteristic of a glassy
state and spot its soft regions (Cubuk et al., 2015, 2016;
Schoenholz et al., 2016). In this machine learning approach,
rather than focusing on typical structure indicators, a large
number of “features” evaluated for every particle are used,
concretelyM ¼ 166 “structure functions,” indicating, e.g., the
radial and angular correlations between an atom and its
neighbors (Behler and Parrinello, 2007). Adopting both an
experimental frictional granular packing and a bidisperse glass
model, Behler and Parrinello focused on the identification of
local softness and its relation with the dynamics of the glass
transition. First, with computationally costly shear simulations
and measurements of nonaffine displacements via D2

min, the
particles that “move” (i.e., break out of the cages formed by
their neighbors) are identified as participating in a plastic
rearrangement and used to train a support vector machine
(SVM) algorithm. Each particle’s environment is handled as a
point in the high-dimensional vector space parametrized by
the structure functions and the algorithm identifies the hyper-
plane that best separates environments associated with “mov-
ing” particles and those associated with “stuck ones” in the
training set. Once trained, the algorithm is able to predict with

high accuracy if a particle will “move” or not when the
material is strained, depending on its environment in the
quiescent configuration, prior to shear.

D. Nonlocal effects

Once a rearrangement is triggered, it will deform themedium
over long distances in the same way as an earthquake is felt a
large distance away from its epicenter. This may trigger other
rearrangements at a distance, which rationalizes the presence of
nonlocal effects in the flow of disordered solids. Importantly,
this mechanism relies on the solidity of the medium, which is
key to the transmission of elastic shear waves.
These long-range interactions and the avalanches that they

may generate justify the somewhat hasty connection sketched
above between the serrated macroscopic stress curves and the
abrupt localized events at the microscale. The problem is that
in the thermodynamic limit any one of these microevents
should go unnoticed macroscopically. Admittedly, the thermo-
dynamic limit is not reached in some materials, notably those
with large constituents, such as foams and grains, but also in
nanoscale experiments on metallic glasses and numerical
simulations. On the other hand, if the sample is large
compared to the ST size, the impact of microscopic events
on the macroscopic response could not be explained without
collective effects and avalanches involving a large number of
plastic events. Since mesoscale plasticity models intend to
capture these collective effects, a description of the inter-
actions at play is required.

1. Idealized elastic propagator

Let us start by focusing on the consequence of a single ST.
Its rotational part can be overlooked because its effect is
negligible in the far field, as compared to deformation,
represented by the linear strain tensor ϵ ¼ ð∇uþ∇u⊤Þ=2,
where u stands for the displacement. Recall that a shear

FIG. 5. Comparison between different indicators based on the local structure to predict future plastic rearrangements. (a) Contour maps
of the participation ratio in the 1% softest vibrational modes for two numerical samples of a binary metallic glass. From Ding et al., 2014.
(b) Correlation between the locations of future rearrangements and diverse local properties in an instantaneously quenched binary glass
model. The following properties have been considered: local yield stress (τy), participation fraction (PF) in the soft vibrational modes,
lowest shear modulus (2μI), local potential energy (PE), short-range order (SRO), and local density (ρ). From Patinet, Vandembroucq, and
Falk, 2016. (c) Identification of soft particles (thick black contours) by a machine-learning algorithm (SVM), in a compressed granular
pillar. Particles are colored from gray to red according to their actual nonaffine motion (D2

min value). From Cubuk et al., 2015.
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deformation, say ϵðr ≈ 0Þ ¼ ð0
1
1
0
Þ in two dimensions (2D),

consists of a stretch along the direction θ ¼ ðπ=4Þ½π�, in polar
coordinates, and a contraction along the perpendicular direc-
tion. The induced displacement field u simply mirrors this
symmetry, with displacements that point outward along θ ¼
ðπ=4Þ½π� and inward along θ ¼ ð3π=4Þ½π�. This leads to a
dipolar azimuthal dependence for u and a fourfold (“quad-
rupolar”) one for its symmetrized gradient ϵ. More precisely,
by imposing mechanical equilibrium on the stress Σ, viz.,

∇ · Σ ¼ 0

in an incompressible medium (∇ · u ¼ 0) with a linear elastic
law Σdev ∝ ϵdev (where the superscript denotes the deviatoric
part), Picard et al. (2004) derived the induced strain field
in 2D,

ϵxyðr; θÞ ∝
cos ð4θÞ

r2
: ð4Þ

Here only one of the strain components is expressed, but
the derivation is straightforwardly extended to a tensorial
form (Nicolas and Barrat, 2013a; Budrikis et al., 2017).
Experiments on colloidal suspensions (Schall, Weitz, and
Spaepen, 2007; Jensen, Weitz, and Spaepen, 2014) and
emulsions (Desmond and Weeks, 2015) as well as numerical
works (Kabla and Debrégeas, 2003; Maloney and Lemaître,
2006; Tanguy, Leonforte, and Barrat, 2006) have confirmed
the relevance of Eq. (4), as illustrated in Fig. 6.

2. Exact induced field and variations

The strain field of Eq. (4) is valid in the far field or for a
strictly pointwise ST. Yet the response can be calculated in the
near field following Eshelby (1957), by modeling the ST as an
elastic inclusion bearing an eigenstrain ϵ⋆, i.e., spontaneously
evolving toward the deformed configuration ϵ⋆. This handling
adds near-field corrections to Eq. (4), whose analytical
expression is derived by Weinberger, Cai, and Barnett
(2005) and Jin et al. (2016) for an ellipsoidal inclusion in
3D on the basis of a method based on Green’s function, which
is probably more accessible than the original paper by Eshelby

(1957) [see Jin et al. (2017) for the 2D version of the
problem].
Describing a plastic rearrangement with an elastic eigen-

strain is imperfect in principle, but the difference mostly
affects the dynamics of stress relaxation (Nicolas and Barrat,
2013a). In fact, Eshelby’s expression perfectly reproduces the
average displacement field induced by an ideal circular ST in a
2D binary Lennard-Jones glass (Puosi, Rottler, and Barrat,
2014), although significant fluctuations around this mean
response arise because of elastic heterogeneities. The numeri-
cal study was then extended to the deformation of a spherical
inclusion in 3D, and to the nonlinear regime, by Priezjev
(2015). [Also see Puosi, Rottler, and Barrat (2016) for the
nonlinear consequences of artificially triggered STs in a
2D glass.]
Besides elastic heterogeneity, further deviations from the

Eshelby response result from the difference between an actual
plastic rearrangement and the idealized ST considered here.
Cao, Park, and Lin (2013) reported differences in the medium
or far-field response to rearrangements between the shear-
driven regime and the thermal regime; only the former would
quantitatively obey Eshelby’s formula. It might be that the
dilational component of the rearrangement, discarded in the
ideal ST, is important in the thermal regime.
The salient points discussed in the rheology of amorphous

solids seem to build a coherent scenario, consisting of periods
of elastic loading interspersed with swift localized rearrange-
ments of particles. These plastic events may interact via the
long-range anisotropic elastic deformations that they induce.
These elements are the phenomenological cornerstones of the
EPM described in the following section.

III. THE BUILDING BLOCKS OF EPM

A. General philosophy of the models

The simplicity and genericity of the basic flow scenario has
led to the emergence of multiple, largely phenomenological,
coarse-grained models. These models are generally described
as elastoplastic or “mesoscopic” models for amorphous
plasticity, or sometimes “discrete automata.” To mimic the
basic flow scenario, the material is split into mesoscopic
blocks, presumably of the typical size of a rearrangement.

FIG. 6. Average stress redistribution around a shear transformation in 2D. (a) Experimental measurement in very dense emulsions.
Adapted from Desmond and Weeks, 2015. (b) Average response to an imposed ST obtained in atomistic simulations with the binary
Lennard-Jones glass used by Puosi, Rottler, and Barrat (2014). (c) Simplified theoretical form, given by Eq. (4). FromMartens, Bocquet,
and Barrat, 2012. Note that the absolute values are not directly comparable between the graphs and that in (b) and (c) the central blocks
are artificially colored.
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These blocks are loaded elastically (R1) until a yield condition
is met (R2), at which point their stress relaxes plastically and
is redistributed to other blocks via the emission of an elastic
stress field (R3); finally, they become elastic again (R4).
Accordingly, EPM hinge on the following set of predefined
rules (Rodney, Tanguy, and Vandembroucq, 2011):

R1: A default elastic response of each mesoscopic block.
R2: A local yield criterion that determines the onset of a
plastic event (n∶ 0 → 1).

R3: A redistribution of the stress during plasticity that
gives rise to long-range interactions among blocks.

R4: A recovery criterion that fixes the end of a plastic
event (n∶ 1 → 0),

where the activity n is defined as n ¼ 0 if the block is purely
elastic, and n ¼ 1 otherwise.
To make it more concrete, consider the class of EPM

pioneered by Picard et al. (2005). To fix rules R2 and R4,
which define when a region switches from elastic to plastic
and conversely, the model specifies the rates governing the
transitions

n∶ 0 ↔ 1;

whereas R1 and R3 are implemented via the following
equation of evolution for the stress σi carried by block i
(where i is a d-dimensional vector denoting the lattice
coordinates of the block):

_σi ¼ μ_γ|{z}
driving

þ
X
j≠i

Gijnj
σj
τ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

nonlocal contributions

− jG0jni
σi
τ|fflfflfflffl{zfflfflfflffl}

local relaxation

: ð5Þ

Here the stress increment _σi per unit time is the sum of three
contributions. First, the externally applied simple shear
contributes a uniform amount _σ ¼ μ_γ following Hooke’s
law, with μ the shear modulus and _γ the shear rate.
Second, nonlocal plastic events (at positions j with nj ¼ 1)
release a stress of order σj over a time scale τ, which is
transmitted by the elastic propagator Gij. Third, if the site is
currently plastic (i.e., if ni ¼ 1), its stress σi relaxes. Spo-
ntaneously, it would do so at a rate τ−1, but, owing to the
constraint of the surrounding elastic medium, the efficiency of
the process is not optimal and the rate drops to jG0j=τ, with
0 < jG0j < 1. (During this relaxation, elastic stress increments
are still received, as are they in Maxwell’s viscoelastic
fluid model.)
In many regards, the stress evolution described by Eq. (5) is

overly simplified: It focuses on one stress component whereas
stress is a tensor, it assumes instantaneous linear transmission
of stress releases in a uniform medium, the local stress
relaxation rate is constant, etc. In Sec. IV, we detail how
these approximations have been relaxed in part in some EPM
and we see how the phenomenological set of rules R1–R4 can
emerge in the framework of continuum mechanics (Sec. IV.E).
But, for the time being, we find it important to delve into the
philosophy of these models and reflect on their goals.
In essence, EPM aspire to follow in the footsteps of the

successes of simplified lattice models in describing complex
collective phenomena in condensed matter and statistical

physics. Central is the assumption that most microscopic
details are irrelevant for the main rheological properties and
that only a few relevant parameters or processes really matter.
Several reasons could be suggested to favor their use over
more realistic modeling approaches, e.g.,

(1) to assess the validity of a theoretical scenario and
identify the key physical processes in the rheology,

(2) to provide an efficient simulation tool giving access to
otherwise inaccessible large statistics or long-time runs,

(3) to facilitate the derivation of macroscopic equations
and to bridge the gap between rheological models
(constitutive laws) and statistical physicsmodels (sand-
pile models, depinning models, Ising-like models).

That distinct EPM highlight distinct physical ingredients
seems to be a strong blow to the first objective. But one
should bear in mind that these materials are so diverse that a
given process (e.g., thermal activation) may be negligible in
some of them and paramount in others. Less intuitive is
perhaps the role of the experimental conditions and the
observables of interest in determining the important physical
ingredients, but here come a couple of enlightening examples:
There is no need to keep track of previous configurations (e.g.,
past yield stresses) to study steady shear, whereas this might
be crucial for oscillatory shear experiments in which the
system cycles between a few configurations (Fiocco, Foffi,
and Sastry, 2014). Also, potentially universal aspects of the
yielding transition show little to no sensitivity to the precise
EPM rules, while the latter affect the details of the flow
pattern. Thus, as noted by Bonn et al. (2017), one should not
select the relevant ingredients in a model only in light of the
intrinsic importance of these effects (as quantified for instance
by dimensionless numbers), but also depending on their
bearing on the properties of interest.
In the following, we list the physical processes that are

brought to light in diverse EPM and indicate for what type of
materials and inwhat conditions they are of primary importance.

B. Thermal fluctuations

How relevant are thermal fluctuations and the associated
Brownian motion of particles? This question brings us back to
the distinction between thermal materials and athermal ones
discussed in Sec. II.B.
It is widely believed that thermal fluctuations largely

contribute to the activation of plastic events in metallic and
molecular glasses, as well as in suspensions of small enough
colloids. For a suspension of 1.5-μm-large colloids, Schall,
Weitz, and Spaepen (2007) thus argued on the basis of an
estimate of the activation energy that transformations are
mostly thermally activated, with a stress-induced bias toward
one direction. This will impact the choice of the yield criterion
(R2 above). EPM focusing on thermal materials (Bulatov and
Argon, 1994a; Ferrero, Martens, and Barrat, 2014) set a yield
rate based on a stress-biased Arrhenius law for thermal
activation, viz.,

νðσÞ ¼ ν0e−V
⋆
σ=kBT; ð6Þ

where ν0 is an attempt frequency, and V⋆
σ is the height of the

smallest potential barrier hindering the rearrangement.
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Recalling from Eq. (2) that the potential is tilted by the stress
σ, i.e., Vσ ¼ V −Ω0σγ, one immediately recovers the expres-
sion of νðσÞ used by Eyring (1935) to calculate the viscosity of
liquids if σ and γ are treated as independent parameters. On the
contrary, if the local stress and elastic strain are related by
Hooke’s law, viz., σ ∝ γ, one finds the γ2 scaling of the tilt
used in the soft glassy rheology model of Sollich et al. (1997)
(Sec. V.D.1).
On the other hand, thermal activation plays virtually no role

in foams (Ikeda, Berthier, and Sollich, 2013) and granular
materials. Consequently, EPM designed for athermal materi-
als (Chen, Bak, and Obukhov, 1991; Hébraud and Lequeux,
1998) favor a binary yield criterion, viz.,

νðσÞ ¼ ν0Θð−V⋆
σ Þ

or equivalently

νðσÞ ¼ ν0Θðσ − σyÞ;

where σy is the local stress threshold for yielding and Θ is the
Heaviside function; a deterministic yield criterion is recovered
in the limit ν0 → ∞. Incidentally, note that, in this 1D tilt
picture, the existence of favorable directions in the PEL is
handled somewhat light heartedly. Indeed, in a high-dimen-
sional PEL, the direction in which the loading pushes the
system may differ from that of the lowest saddle point; this
fact may be particularly relevant for small systems whose
granularity is more apparent.
As far as rheology is concerned, thermal activation can be

neglected if it does not trigger rearrangements much below the
local yield stress σy. By requiring that the activation rate νðσÞ
in Eq. (6) match the driving rate _γ=γy (rescaled by the yield
strain γy) at a stress close to σy, we find that the athermal
approximation is conditioned on

ν0e−V
⋆=kBT ≪

_γ

γy
: ð7Þ

This criterion bears some resemblance with the limit of large
Péclet number Pe≡ _γa2=D, where a is the particle size and D
is the single-particle diffusivity in the dilute limit (Ikeda,
Berthier, and Sollich, 2013), but duly takes into account the
cage constraints which restrict diffusion in a dense system.
Now some subtleties ought to be mentioned. An athermal

system may be sensitive to temperature variations, through
changes in their material properties (e.g., dilation): For
example, the observation of creep by Divoux, Gayvallet,
and Géminard (2008) in a granular heap submitted to cyclic
temperature variations does not underscore a possible impor-
tance of thermal activation, but rather points to dilational
effects. Secondly, as already stressed, the relevance of thermal
fluctuations may depend on the considered level of detail: It
has been argued that they may expedite the emergence of
avalanches by breaking nanocontacts between grains in very
slowly sheared systems (Zaitsev et al., 2014), but it is dubious
that this may impact steady-shear granular rheology.

C. Driving

Suppose that the material deforms under external driving;
how important are the specific driving conditions?

1. Driving protocol

Numerical simulations have mostly considered strain-con-
trolled (fixed _γ), rather than stress-controlled (fixed Σ), sit-
uations (see Sec. II.B). For strain-driven protocols, the stress
redistribution (R3) operated by the elastic propagatorG in EPM
keeps the macroscopic strain fixed. Meanwhile, the elastic
response (R1) is generally obtained by converting the macro-
scopic driving into local stress increments μ_γðtÞdt, where dt is
the time step and _γðtÞ is the current macroscopic strain rate.
EPM often focus on steady-shear situations, in which case
_γðtÞ ¼ const. But time-dependent driving protocols _γ ¼ fðtÞ
[or Σ ¼ fðtÞ] are also encountered, in particular, step shear
_γðtÞ ¼ γ0δðtÞ and oscillatory shear _γðtÞ ¼ γ0 cos ðωtÞ, which
gives access to linear rheology for small γ0.
Stress-controlled setups have received less attention in the

frame of EPM but examples have been given by Picard et al.
(2004), Homer and Schuh (2009), Jie Lin et al. (2014), Lin et
al. (2015), and Jagla (2017b). In this case, the zero Fourier
mode of the elastic propagator G is adjusted so that G keeps the
macroscopic stress constant (see Sec. IV.C.2). In creeping
flows subjected to σðtÞ ¼ const < σy, _γðtÞ eventually decays
to zero, often as a power law (Leocmach et al., 2014). Creep is
further discussed in Sec. IX.

2. Symmetry of the driving

Plastic events are biased toward the direction of the external
loading (Nicolas and Rottler, 2018). If the latter acts uniformly
on the material, it is convenient to focus on only one stress
component, thus reducing the stress and strain tensors to
scalars. In particular, for simple shear conditions, with a
displacement gradient ∇u ¼ ð0

0
γðtÞ
0
Þ (in the linear approxima-

tion in 2D), one may settle with the ϵxy component of the
linear strain tensor ϵ ¼ ð∇uþ∇u⊤Þ=2. It has the same
principal strains (eigenvalues) �γðtÞ=2 as pure shear,

∇u ¼
�

0

γðtÞ=2
γðtÞ=2

0

�
;

but involves a rotational part

ω ¼
�

0

−γðtÞ=2
γðtÞ=2

0

�
;

whereas the latter is rotationless. These deformations are
encountered locally whenever volume changes can be
neglected; the cone-and-plate, plate-plate, and Taylor-
Couette rheometers (Larson, 1999) used to probe the flow
of yield-stress fluids fall in this category. For metallic glasses
and other hard materials, uniaxial compression tests [i.e.,
σðtÞ ¼ σðtÞð1

0
0
0
Þ in the bulk, with σðtÞ < 0] and tension

[σðtÞ > 0] are often performed (Priezjev and Makeev, 2017).
Even though in several of these situations the macroscopic

loading is more or less uniform and acts mostly on one

Nicolas et al.: Deformation and flow of amorphous solids: …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045006-12



component of the suitably defined stress tensor, the other
components reach finite values because of stress redistrib-
ution. Full tensorial approaches may then be justified (Bulatov
and Argon, 1994a; Homer and Schuh, 2009; Sandfeld and
Zaiser, 2014). Recently, the influence of a tensorial, rather
than scalar, description on the flow and avalanche properties
in these cases was evaluated; it was found to be insignificant
overall (Nicolas et al., 2014; Budrikis et al., 2017), and the
effect of dimensionality to be weak (Liu et al., 2016); see
Sec. VII for more details. However, there exist a wide range of
experimental setups in which the loading is intrinsically
heterogeneous, in particular, the bending, torsion, and inden-
tation tests on hard glasses [see Budrikis et al. (2017) for an
implementation of these tests in a finite-element-based EPM]
or the microchannel flows of dense emulsions (Nicolas and
Barrat, 2013a). For these heterogeneous driving conditions,
EPM have emerged as a promising alternative to atomistic
simulations. Nevertheless, further upscaling is needed when-
ever the length scale associated with the heterogeneous
driving is very large compared to the particle size.

D. Driving rate and material time scales

To resolve the flow temporally, the simplest approach is an
Eulerian method, which computes the strain increments on all
blocks at each time step from Eq. (5). Kinetic Monte Carlo
methods have also been employed. They are particularly
efficient in stress-controlled slow flows, insofar as the long
elastic loading phases without plastic events are bypassed:
The activation rate νi is calculated for every block i using a
refined version of Eq. (6) and the time lapse before the next
plastic event is deduced from the cumulative rate ν ¼ P

iνi
(Homer and Schuh, 2009).
In various models the finite duration of plastic events plays

a major role in the _γ dependence of the rheology (Picard et al.,
2005; Martens, Bocquet, and Barrat, 2012; Nicolas, Martens,
and Barrat, 2014; Liu et al., 2016) or in the intrinsic relaxation
of the system (Ferrero, Martens, and Barrat, 2014). Suppose
that, under slow driving, a rearrangement takes a typical time2

τpl. For overdamped dynamics, one expects this time scale to
be the ratio between an effective microscopic viscosity ηeff
and the elastic shear modulus μ (Nicolas and Barrat, 2013a),
viz.,

τpl ∼ ηeff=μ;

while for underdamped systems τpl is associated with the
persistence time of localized vibrations. If τpl competes with
the driving time scale τ_γ ≡ γy=_γ, where γy is the local yield
strain, then plastic events will be disrupted by the driving. The
rate dependence of the macroscopic stress may then stem from
this disruption (Nicolas, Martens, and Barrat, 2014).
At even lower driving rates, one reaches a regime where

τpl ≪ τ_γ and individual rearrangements become insensitive to
the driving. But the latter may still affect avalanches of

rearrangements (i.e., the series of plastic events that would still
be triggered by an initial event were the driving turned off).
Indeed, since the size of avalanches is expected to diverge in
an athermal system in the limits of vanishing shear rate and
infinite system size L, their duration τavðLÞ, bounded below
by the signal propagation time between rearranging regions,
may become arbitarily large as _γ → 0. While most EPM turn a
blind eye to the delays due to shear wave propagation, some
works have bestowed them a central role in the finite shear-
rate rheology (Lemaître and Caroli, 2009; Jie Lin et al., 2014)
and there have been endeavors to represent this propagation in
a more realistic way in EPM (Nicolas et al., 2015; Karimi and
Barrat, 2016) (see Sec. IV.D). Sections VII.D.3 and VIII.B
will provide more details on the influence of vanishingly small
shear rates on the flow curve.
The quasistatic limit is reached when

τpl
τ_γ

→ 0 and
τavðLÞ
τ_γ

→ 0 ð8Þ

and the athermal criterion of Eq. (7) is satisfied. In that case,
the material remains in mechanical equilibrium at all times
and its trajectory in the PEL is rate independent. Atomistic
simulations can then be simplified by applying a small strain
increment at each step and letting the system relax athermally
to the local energy minimum (Maloney and Lemaître, 2004).
The EPM counterparts of these quasistatic simulations are
called extremal or quasistatic models and have been studied
intensively (Baret, Vandembroucq, and Roux, 2002; Talamali
et al., 2012; Jie Lin et al., 2014; Jagla, 2017b). In these
models, the algorithm identifies the least stable site at each
step and increases the applied stress enough to destabilize it.
From this single destabilization an avalanche of plastic events
may ensue. The material time scales are then naturally brushed
aside, while connection to real time is lost.

E. Spatial disorder in the mechanical properties

Glasses, and more generally amorphous solids, are mechan-
ically heterogeneous. Indeed, there have been both experimen-
tal and numerical reports on the heterogeneity of the local
elastic moduli (see Fig. 7) and the energy barriers on the
mesoscale (Tsamados et al., 2008; Zargar et al., 2013). Yet the
extent to which this disorder impacts the rheology remains
unclear. This uncertainty is reflected in EPM. Some models
feature no such heterogeneity (Hébraud and Lequeux, 1998;
Picard et al., 2005), while it plays a central role in others
(Sollich et al., 1997; Langer, 2008). In the latter case,
heterogeneity is generally implemented in the form of a
disorder on the yield stresses or energy barriers. Let us mention
a couple of examples. The soft glassy rheology model of
Sollich et al. (1997) introduces exponentially distributed
energy barriers. This translates into an even broader distribu-
tion of activation rates via Eq. (6) and leads to a transition from
Newtonian to non-Newtonian rheology as temperature is
reduced (see Sec. V.D.1 for more details on the model). In
their EPM centered on metallic glasses, Li, Homer, and Schuh
(2013)modified the free energy required for the activation of an
event depending on the free volume created during previous
rearrangements. Finally, amorphous composite materials, i.e.,

2A subtlety may arise if the destabilization process is dawdling,
due to the flattening of a smooth local potential: In this particular
case, τpl may diverge as _γ → 0.
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materials featuring mesoinclusions or macroinclusions of
another material, can be modeled as a patchwork of regions
of high and low yield stresses (Tyukodi, Lemarchand et al.,
2016) or high and low elastic moduli (Chen and Schuh, 2016).
In the latter case, macroscopic effective shear and bulk moduli
can be derived.

More generally, for single phase materials, the survey of
these results gives the impression that disorder has bearing on
the rheology when thermal activation plays an important role.
On the other hand, the impact of a yield-stress disorder may be
less important in athermal systems. In fact, Agoritsas et al.
(2015) showed that disorder is irrelevant in the mean-field

FIG. 7. Spatial variations of the mechanical and configurational properties of glasses. (a) Maps of the weaker local shear modulus in a
2D Lennard-Jones glass. Black (white) represents values larger (smaller) than the mean value. Distances are in particle size units. From
Tsamados et al., 2009. (b), (c) Maps of the local contact-resonance frequency, which is related to the indentation modulus, measured by
atomic force acoustic microscopy in (b) a bulk metallic glass (PdCuSi) and (c) a crystal (SrTiO3). The latter clearly appears to be
mechanically more homogeneous. The radius of contact is of the order of 10 nm. From Wagner et al., 2011.

TABLE I. Classification of some of the main EPM in the literature.

Yielding Reference Features Remarks Proposed for

Activated Bulatov and Argon (1994a) Propagator computed on hexagonal
lattice

Amorphous solids, in particular,
glasses and glass-forming
liquids

Homer and Schuh (2009) Stress redistribution computed with
finite elements

Metallic glasses

Ferrero, Martens, and Barrat (2014) Plastic events of finite duration Amorphous solids
Sollich et al. (1997) (SGR model) Effective activation temperature

accounts for mechanical noise
Soft materials (foams,
emulsions, etc.)

Merabia and Detcheverry (2016) Variant of SGR, with a bona fide
(instead of mechanical) temperature

Polymeric and metallic glasses
under creep

Threshold Chen, Bak, and Obukhov (1991) Propagator computed on square spring
network

Earthquakes

Baret, Vandembroucq, and Roux
(2002)a,
Talamali et al. (2011)b,
Budrikis and Zapperi (2013)c

Uniform distribution of barriers; coupled
to a moving springb, c; or stress
controlled with extremal dynamicsa or
adiabatic drivingc

Amorphous solids, notably
metallic glasses

Dahmen, Ben-Zion, and Uhl (2011) “Narrow” distribution of thresholds;
static and dynamic thresholds differ;
mean-field approach

Granular matter and akin

Hébraud and Lequeux (1998) Finite yield rate above threshold; stress
redistributed as white noise

Soft materials (dense
suspensions)

Picard et al. (2005) and Martens,
Bocquet, and Barrat (2012)

Finite yield rate above threshold; plastic
events of finite duration

Amorphous solids

Nicolas, Martens, and Barrat (2014) Plastic events end after finite strain Soft athermal amorphous solids
Jie Lin et al. (2014) Stress- and strain-controlled protocols Soft amorphous solids

“Continuous”
approaches

Onuki (2003b) Dynamical evolution on a periodic
potential; dipolar propagator due to
opposite dislocations

2D crystalline and glassy solids

Jagla (2007) Dynamical evolution on random
potential; propagator computed via
compatibility condition

Amorphous solids

Marmottant and Graner (2013) Overdamped evolution in a periodic
potential; plastic events of finite
duration; no stress redistribution

Foams

Symbols—Barrier distribution: single value, distributed (exponentially, unless otherwise specified).
Plastic events: instantaneous, finite duration.
Interactions: quadrupolar elastic propagator, other (uniform redistribution, noise temperature, etc.).
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description of athermal plasticity originally proposed by
Hébraud and Lequeux (1998), in the low-shear-rate limit: It
affects only the coefficients of the rheological law and not the
functional shape.

F. Spatial resolution of the model

On a related note, how important is it to spatially resolve an
EPM? In what cases can one settle with a mean-field approach
blind to spatial information? Clearly, there are situations in
which mean field makes a bad candidate, in particular, when
the driving or flow is macroscopically heterogeneous, when
the focus is on spatial correlations (Nicolas, Rottler, and
Barrat, 2014), or even on some critical properties (Jie Lin
et al., 2014; Liu et al., 2016). But a mean-field analysis could
suffice in many other situations. For example, Martens,
Bocquet, and Barrat (2012) showed that the flow curve
obtained with their spatially resolved EPM at finite shear
rates can be predicted on the basis of mean-field reasoning,
whereas spatial correlations and avalanches are thought to
impact the macroscopic stress at vanishing shear rates (Roy,
Karimi, and Maloney, 2015; Liu et al., 2016). Similarly, EPM-
based simulations of Ferrero, Martens, and Barrat (2014)
confirmed mean-field predictions by Bouchaud and Pitard
(2001) regarding thermal relaxation of amorphous solids in
some regimes; but not without finding discrepancies in others.
In the latter regimes, spatial correlations thus seemed to play a
significant role.
The discussion about whether spatial resolution is required

to describe global quantities is not settled yet. It has been argued
that, owing to the long range of the elastic propagator (which
decays radially r−d in d dimensions), mean-field arguments
should generically hold in amorphous solids (Dahmen, Ertaş,
and Ben-Zion, 1998; Dahmen, Ben-Zion, and Uhl, 2009).
However, it has been realized that the nonconvex nature of the
propagator (alternately positive and negative along the azimu-
thal direction) undermines this argument (Budrikis and
Zapperi, 2013) and results in much larger fluctuations than
the ones produced by a uniform stress redistribution (Talamali
et al., 2011; J. Lin et al., 2014; Nicolas et al., 2014).Mean-field
predictions have been tested against the results of lattice-based
model simulations of a sheared amorphous solid close to (or in)
the limit of vanishing driving, with a focus on the statistics of
stress drops or avalanches, and nonmean-field exponents were

found for the power-law distribution of avalanche sizes
(Talamali et al., 2011; Budrikis and Zapperi, 2013; Jie Lin
et al., 2014; Liu et al., 2016). This question is addressed in
greater depth in Sec. VII.
In this review, we put the spotlight on spatially resolved

models, which are not exactly solvable in general and require
a numerical treatment. When relevant, we will discuss how a
mean-field treatment can be performed to obtain analytical
results.

G. Bird’s eye view of the various models

To conclude this section, some of the main EPM are
classified in Table I.

IV. ELASTIC COUPLINGS AND THE INTERACTION
KERNEL

A key feature of EPM is to allow plastic events to interact
via an elastic deformation field, which can generate ava-
lanches. In this respect, the choice of the elastic interaction
kernel may significantly impact the results of the simulations
(Martens, Bocquet, and Barrat, 2012; Budrikis and Zapperi,
2013). This technical section presents the various idealizations
of the interaction kernel that have been used in the literature on
amorphous solids by increasing order of sophistication. We
relate this level of sophistication with the nature of the
developments that were sought.

A. Sandpile models and first-neighbor stress redistribution

EPM owe much to the quake-ridden scientific grounds on
which they burgeoned at the beginning of the 1990s,marked by
the advent of seminal models for earthquakes and avalanches.
As a paradigmatic example for earthquakes, consider the

celebrated model by Burridge and Knopoff (1967), whose
main features are concisely reviewed by Carlson, Langer, and
Shaw (1994). It focuses on the fault separating two slowly
moving tectonic plates. This region is structurally weak
because of the gouge (crushed rock powder) it is made of;
thus, failure tends to localize along its length. In the model, the
contact points across the fault are represented by massive
blocks and the compressive and shear forces acting along it are
modeled as springs, as sketched in Fig. 8(a). Because of these

FIG. 8. Blocks-and-springs models. (a) Sketch of the discrete 1D Burridge and Knopoff model. From Carlson, Langer, and Shaw,
1994. (b) Sketch of the effect of a bond rupture in a spring network model. From Chen, Bak, and Obukhov, 1991. (c) Distribution of
avalanche sizes in terms of the number of broken bonds in the model sketched in (b). Adapted from Chen, Bak, and Obukhov, 1991.
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forces, the initially pinned (stuck) blocks may slide during
avalanches. More precisely, in the continuous, nondimen-
sional 1D form, the displacement Uðx; tÞ at time t of the
material at position x reads

Ü ¼ ξ2
∂2U
∂x2 þ vt −U − ϕð _UÞ: ð9Þ

Here the left-hand side (lhs) is related to inertia, the second
derivative on the right-hand side (rhs) is of compressive origin,
and the loading term vt due to the motion of the plate and the
displacement −U contribute to a shear term. Finally, ϕð _UÞ is a
velocity-dependent frictional term. Had Coulomb’s law of
friction been used, it would have been constant for j _Uj ≠ 0,
but the original model assumed velocity weakening, i.e., a
decrease of jϕð _UÞj with j _Uj. At _U ¼ 0, the function ϕ is
degenerate, which allows static friction to exactly cancel the
sum of forces on the rhs of Eq. (9), so the blocks remain
pinned at a fixed position U until the destabilizing forces
ξ2∂2U=∂x2 þ vt exceed a certain threshold. Phenomeno-
logically, simulations of the model show frequent small events
(with a power-law distribution of cumulative slip) and rare
events of large magnitude, in which the destabilization
of a number of sites close to instability results in a perturbation
of large amplitude (Otsuka, 1972; Carlson, Langer, and
Shaw, 1994).
Important in this model is the effect of the pinning force ϕ at

_U ¼ 0. It entails that the destabilizing action caused by the
depinning of a site [via the diffusive term in Eq. (9)] is fully
screened by its neighbors, unless they yield too. Such first-
neighbor redistribution of strain is readily simulated using
cellular automata, which can be interpreted as sandpile
models: Whenever a column of sand, labeled ði; jÞ, gets
too high with respect to its neighbors (say, for convenience,
whenever σi;j ≥ 4), some grains at its top are transferred to the
neighboring columns, with the following discharge rules in
2D:

σi;j ≥ 4∶ σi;j → σi;j − 4;

σi�1;j → σi�1;j þ 1;

σi;j�1 → σi;j�1 þ 1; ð10Þ

where σ is the height difference between columns. The
sandpile is loaded by randomly strewing grains over it in a
quasistatic manner. The study of these systems soared in the
late 1980s and early 1990s; hence the concept of self-
organized criticality emerged (Bak, Tang, and Wiesenfeld,
1987). According to the latter, avalanches naturally drive the
sandpiles toward marginally stable states, with no character-
istic length scale for the regions on the verge of instability,
hence the observation of scale-free frequency distributions of
avalanche sizes. As an aside, let us mention that this approach
has not been used only for earthquakes (Bak and Tang, 1989;
Carlson and Langer, 1989; Sornette and Sornette, 1989; Ito
and Matsuzaki, 1990) and avalanches in sandpiles; it has also
been transposed to the study of integrate-and-fire cells (Corral
et al., 1995) and forest fires (Chen, Bak, and Jensen, 1990),
inter alia.

In seismology, these models have been fairly successful in
reproducing the Gutenberg and Richter (1944) statistics of
earthquakes. This empirical law states that the frequency of
earthquakes of (energy) magnitude

Me ¼ 2
3
logðEÞ − 2.9; ð11Þ

where E is the energy release, in a given region obeys the
power-law relation logPðm ≥ m0Þ ≃ −bm0 þ const, where
b ≃ 0.88, or equivalently

pðEÞ ∼ E−τ; with τ ¼ 1þ 2
3
b ≈ 1.5:

For accuracy, we ought to say that there exist several earth-
quake magnitude scales besides that of Eq. (11). They roughly
coincide at not too large values; in fact, Me is not the initial
Richter scale. More importantly, the value of the exponent
b ∈ ½0.8; 1.5� depends on the considered earthquake catalog
and notably on the considered region. For sandpilelike
models, various exponents have been reported: τ ≈ 1 in 2D
and τ ≈ 1.35 in 3D, with no effect of disorder of the yield
stresses (Bak and Tang, 1989), whereas the exponent for the
mean-field democratic fiber bundle close to global failure is
τ ¼ 3=2 (see Sec. X.C). More extensive numerical simulations
led to the values τ ≃ 1.30 (Lübeck and Usadel, 1997), or τ ≃
1.27 (Chessa et al., 1999), for the 2D Bak, Tang, and
Wiesenfeld (1987) sandpile model.
Olami, Feder, and Christensen (1992) modified the model

to make the redistribution rule of Eq. (10) nonconservative. In
this sandpile picture, this would correspond to a net loss of
grains, which seems unphysical. But in the block-and-spring
model of Burridge and Knopoff (1967) the nonconservative
parameter simply refers to the fraction of strain which is
absorbed by the driving plate during an event, instead of being
transferred to the neighbors. Interestingly, as nonconservative-
ness increases, criticality is maintained, insofar as the ava-
lanche distribution pðEÞ remains scale free, even though the
critical exponent τ gradually gets larger. Only when less than
20% of the strain is transferred to the neighbors does a
transition to an exponential distribution occur. The dynamics
then become more and more local with increasing dissipation,
until the blocks completely stop interacting, when the transfer
is purely dissipative.
However, unlike the redistribution of grains in the sandpile

model, elastic interactions are actually long ranged, as we
wrote in Sec. II.D. In particular, in the deformation of
amorphous solids, no pinning of the region surrounding an
event can be invoked to justify the restriction of the interaction
to the first neighbors.

B. Networks of springs

Accordingly, a more realistic account of the long-ranged
elastic propagation is desirable. Unfortunately, the complexity
of the bona fide Eshelby propagator obtained from continuum
mechanics hampers its numerical implementation and use, so
most studies have relied on simplified variants thereof.
First, in the spirit of the classical description of a solid as an

assembly of particles confined to their positions by inter-
actions with their neighbors, the material was modeled as a
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system of blocks connected by “springs” of stiffness κ and
potential energy

1
2
κðui − ujÞ2;

where ui is the displacement of block i. Note that this
expression for the potential energy entails noncentral forces,
so that the springs can bear shear forces. Some details about
the difference with respect to networks of conventional
springs are presented in Sec. X.C. The pioneering steps
toward EPM followed from the application of such spring
network models to the study of rupture. For this purpose, each
bond is endowed with a random threshold, above which it
yields and redistributes the force that it used to bear. In their
study of a 2D triangular lattice with central forces, Hansen,
Roux, and Herrmann (1989) measured the evolution of the
applied force F with the displacement u; this evolution starts
with a phase of linear increase, followed by a peak and a
smooth decline until global failure. The FðuÞ curves for
different linear lattice sizes L roughly collapsed onto a master
curve if F and u were rescaled by L−3=4. In addition, just
before failure, the distribution of forces in the system was
“multifractal,” with no characteristic value.
Chen, Bak, and Obukhov (1991) considered a square lattice

of blocks and springs, sketched in Fig. 8(b). The rupture of a
spring triggers the release of a dipole of opposite point forces
(generating vorticity) on neighboring blocks. In passing, note
the subtle difference with respect to the double force dipole
(often called quadrupole) describing irrotational local shear
(see Sec. IV.C), which has a distinct anisotropy. Contrary to
Hansen, Roux, and Herrmann (1989), they allowed broken
springs to instantly regenerate to an unloaded state, after
redistribution of their load. Physically, this discrepancy
parallels a change of focus, from brittle materials to earth-
quakes, for which the external loading due to tectonic
movements is assumed to be by far slower than the healing
of bonds. For a quasistatic increase of the load, the model
displays intermittent dynamics and scale-free avalanches, and
a power-law exponent τ ¼ 1.4 was reported in 2D, in semi-
quantitative agreement with the Gutenberg-Richter earthquake
statistics.

C. Elastic propagators

After the discrete vision promoted by block-and-spring
models, let us momentarily turn to a continuous description of
the amorphous solid. The free energy of the material can be
expressed in terms of the displacement field uðrÞ as

F½u� ¼
Z

ψ(ϵðrÞ)ddr; ð12Þ

where the free energy density ψ depends on the strain tensor
ϵðrÞ ¼ ½∇uðrÞ þ∇uðrÞ⊤�=2 (in the linear approximation),
because rigid transformations cost no energy. In the quiescent
system, ψ reaches its minimum in the reference strain state
ϵðrÞ ¼ 0, viz.,

δF
δuðrÞ ¼ ∇ · σðrÞ ¼ 0; ð13Þ

where σ ¼ dψ=dϵ is the stress. But a plastic rearrangement
taking place at, say, r ¼ 0 will shift the reference state to
ϵ ¼ ϵpl in a small region around 0. Because of its embedding,
this region cannot deform freely. Therefore, the plastic strain
ϵpl (more generally known as eigenstrain) will induce a
nonlocal elastic response in the surrounding medium, which
was worked out by Eshelby (1957) for ellipsoidal inclusions
in a linear elastic solid.

1. Pointwise transformation in a uniform medium

Picard et al. (2004) simplified the calculation of the elastic
response by supposing that the ST has vanishing linear size
a → 0. Prior to the ST, the material is linear elastic, viz.,

σð0Þ ¼ −pI þ 2μϵ; ð14Þ

where p is the pressure, and incompressible, ∇ · u ¼ 0. After
the ST, the reference state is shifted and Eq. (13) turns into

∇ · σð0ÞðrÞ þ f 0ðrÞ ¼ 0; ð15Þ

where the source term generated by the plastic strain at the
origin reads f 0ðrÞ ¼ −2μ∇ · ½ϵpladδðrÞ�.
The solution of Eq. (15) is well known in hydrodynamics

and involves the Oseen-Burgers tensor

OðrÞ ¼ 1

8πμr

�
I þ r ⊗ r

r2

�

in 2D, with I the identity matrix, viz.,

uðrÞ ¼
Z

Oðr − r0Þf 0ðr0Þ: ð16Þ

In the unbounded 2D plane, setting coordinates such that
ϵpl ¼ ð 0ϵ0

ϵ0
0
Þ, the response to f 0ðrÞ in terms of the x-y compo-

nent of the stress reads

σxyðrÞ¼2μϵ0a2G∞ðrÞ with the propagator G∞ðrÞ≡cosð4θÞ
πr2

;

ð17Þ

where ðr; θÞ are polar coordinates. This field is shown in
Fig. 6(c). Reassuringly, in the far field it coincides with the
response to a cylindrical Eshelby inclusion.
As a short aside, let us mention a variant to these

calculations, which underscores the connection with defor-
mation processes in a crystal. This variant is reminiscent of
Eshelby’s cut-and-glue method, whereby an ellipsoid is cut
out of the material, deformed, and then reinserted. Following
earlier endeavors by Ben-Zion and Rice (1993), Tüzes,
Ispánovity, and Zaiser (2017) carved out a square around
the rearrangement, instead of an ellipsoid, displaced its edges
to mimic shear, and then glued it back. This is tantamount to
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inserting four edge dislocations in the region and also yields
an Eshelby-like quadrupolar field.
Rather than focusing on unbounded media, it is convenient

to work in a bounded system with periodic boundary con-
ditions and with a general plastic strain field ϵplðrÞ. Switching
to Fourier space [r ↔ q≡ ðqx; qyÞ], the counterpart of
Eq. (17) is then

σxyðqÞ ¼ 2μGðqÞϵplxyðqÞ; where GðqÞ ¼ −
4q2xq2y
q4

: ð18Þ

Note that the frame is sometimes defined such that
ϵpl ¼ ðϵ0

0
0

−ϵ0
Þ; in this case, the propagator relating σxx and

ϵxx is

GðqÞ ¼ −ðq2x − q2yÞ2
q4

.

In practice, the system will generally be discretized into a
square lattice, which allows one to use a fast Fourier transform
routine and restrict the considered wave numbers to qx,

qy ¼
2πn
L

; n ∈
��

−L
2

�
;…;

�
L
2

	

.

Besides, because of dissipative forces, quantified by an
effective viscosity ηeff, the strain rate _ϵ in the ST cannot be
infinite and a rearrangement will last for a finite time τpl ∼
ηeff=μ (see Sec. III.D). Therefore, in each numerical time step,
the plastic strain ϵpl implemented in Eq. (18) will be the strain
increment δϵpl during that step. This amounts to saying that,
locally, dissipative forces make the rearrangement gradual,
while stress is redistributed instantaneously to the rest of the
medium (because of the assumption of mechanical equilib-
rium), so that there is no time dependence in the elastic
propagator in Eq. (18).

2. Technical issues with pointwise transformations and possible
remediations

The idealized elastic propagator in Eq. (18) brings on some
technical issues. First, its slow (∝ r−d) radial decay raises
convergence problems in periodic space. Indeed, the fields
created by the periodic images of each plastic event have to be
summed, but the sum converges only conditionally in real
space, i.e., depends on the order of summation. This is
reflected by the singularity of GðqÞ near q ¼ 0. In polar
crystals, such a difficulty also arises when computing the
Madelung energy, but may be solved with the Ewald (1921)
method. Here we make use of the conserved quantities to state
that Gðq ¼ 0Þ ¼ 0 in a stress-controlled system and
Gðq ¼ 0Þ ¼ −1 in a strain-controlled system. Another pos-
sibility is to sum the images in an arbitrary order that is
compatible with convergence. These distinct implementations
match in the far field, but differ in the near field, which leads
to different organizations for the flow (Budrikis and
Zapperi, 2013).
Secondly, on a periodic lattice, one should in principle

compute the periodic sum

GsumðqÞ≡ X
n∈Zd

Gðqþ 2πnÞ

if, at the lattice nodes, one wants the backward discrete
Fourier transform of GsumðqÞ to coincide with the solution
G∞ðrÞ for an unbounded medium. However, the high-fre-
quency components in GðqÞ, due to the spurious singularity of
G∞ðrÞ at r ¼ 0 [Eq. (18)], make the periodic sum diverge.
In practice, wave numbers outside the first Brillouin zone
� − π; π�d are plainly discarded, which comes down to solving
Eqs. (14) and (15) on the periodic lattice, rather than in the
continuum. Nevertheless, spurious fluctuations in the
response field are sometimes observed; the problem is
mitigated by using a finer grid and smoothing the obtained
field (Nicolas et al., 2014).

3. Variations: Soft modes and lattice symmetries; tensoriality;
convection

All in all, many technical details of the implementation of
the elastic propagator appear to affect the spatial organization
of the flow (Talamali et al., 2011), but leave the qualitative
picture and apparently the scaling laws unaltered. However, an
aspect that seems to be crucial is the need to preserve the
eigenmodes of the propagator GðqÞ associated with zero
energy. These so-called soft modes (or null modes) ϵpl,
satisfying

∀ q; GðqÞϵplðqÞ ¼ 0;

cost no elastic energy; their deployment is thus favored by the
dynamics (Tyukodi, Patinet et al., 2016). Their importance is
further explained in Sec. V.C. It turns out that the eigenmodes
of GðqÞ in Eq. (18) are the Fourier modes (plane waves);
among these, the soft modes are those with wave vectors q
making an angle �π=4 with respect to the principal direction
of the plastic strain tensor ϵpl.
In particular, under simple shear with velocity direction x

and velocity gradient along y, the emergence of a uniform
shear band along x should produce no elastic stress in the
medium, at least if such a band emerges uniformly. However,
misaligned lattice axes (not directed along x or y) are
incompatible with such a shear band (which would then have
sawtoothlike edges) and artificially suppress the soft modes
(Tyukodi, 2016). More generally, the use of a regular lattice in
EPM may be questioned, insofar as the localization of plastic
events is sensitive to variations of stress redistribution in the
near field (Budrikis and Zapperi, 2013). The scalings of
avalanche sizes, however, seem to be mostly insensitive to
these details. Indeed, these details do not affect the long-range
interactions between blocks.
On another note, the foregoing calculations focused on the

x-y shear stress component, because of the macroscopic stress
symmetry, thus promoting a scalar description. It is straight-
forward to generalize the reasoning to a fully tensorial form;
but it turns out that, for setups with uniform loading, the
tensorial extension has virtually no effect (Nicolas et al.,
2014). The statistics of avalanches of plastic events found in
tensorial models and in scalar models are similar up to tenuous
differences: The values of the critical exponents at the yielding
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transition reported for scalar models (Sandfeld et al., 2015) are
close to those obtained in the corresponding tensorial models
(Budrikis et al., 2017). Similarly, moving from 2D to 3D does
not introduce qualitative changes and scaling relations are
preserved (Liu et al., 2016; Budrikis et al., 2017).
Another refinement consists of taking into account the

possible anisotropy of the solid. Cao et al. (2018) argued that
anisotropic shear moduli (μ2 ≠ μ3Þ may result from the shear
softening of well-annealed solids just before their macro-
scopic failure. The displacement field induced by an ST,

urðr; θÞ ∝
1

r
cosð2θÞ

1þ δ cosð4θÞ ; uθðr; θÞ ¼ 0; ð19Þ

where θ ¼ 0 denotes the principal direction of positive stretch,
then tends to concentrate along “easy” axes as the anisotropy
parameter δ ¼ ðμ3 − μ2Þ=ðμ3 þ μ2Þ increases.
Translational invariance may also be broken, if the system

is confined between walls, as in a microchannel, instead of
being periodic. If there is no slip at the wall, a method of
images allows the derivation of the elastic propagator for the
bounded medium (Picard et al., 2004; Nicolas and Barrat,
2013a). Plastic events are found to relax stress faster, for a
given eigenstrain, if they occur close to the walls. Such
changes in boundary conditions affect the spatial organization
of the flow, but not the critical properties at the yielding
transition (Sandfeld et al., 2015).
Finally, despite the convenience of using a fixed lattice grid

with static elastoplastic blocks, physically these blocks should
be advected by the flow. In a bounded medium, a coarse
version of advection can be implemented by incrementally
shifting the blocks along the streamlines without altering the
global shape of the lattice (Nicolas and Barrat, 2013a). On the
other hand, with periodic boundary conditions, the deforma-
tion of the frame results in the shift of the periodic images with
respect to the simulation cell; advection thus requires one to
compute the elastic propagator afresh, in the deformed frame
(Nicolas et al., 2014).

D. Approaches resorting to finite-element methods

Albeit computationally more costly, finite-element- (FE-)
based computations of stress redistribution overcome some
limitations of the foregoing approaches and offer more

flexibility. The FE method solves the continuum mechanics
equation associated with the free energy of Eq. (12) by
interpolating the strain ϵ and stress σ within each element
of a mesh grid from the values of the displacements and point
forces at the nodes of the element. As far as EPM are
concerned, the default elastic response of each block is
generally assumed linear, so that the free energy density in
Eq. (12) reads ψðϵÞ ¼ 1

2
ϵ · C · ϵ and σ ¼ C · ϵ.

If mechanical equilibrium is maintained at all times, as in
Eq. (13), the response to an ST is obtained by equilibrating
the elastic stress Cϵpl that it releases. Using a triangular mesh
refined around the ST-bearing element, Sandfeld et al. (2015)
demonstrated that the computed stress field coincides with
the elastic propagator of Eq. (17) in the limit of a pointwise
ST. But these researchers also found that a coarser mesh
made of uniform square elements gives results that are almost
as good, except in a near-field region of a handful of
elements’ radius. The flexibility of the method was then
exploited to study the quasistatic deformation of the system
beyond the periodic boundary conditions, e.g., in a bounded
medium and with free surfaces, and with inhomogeneous
loading conditions (indentation, bending, etc.). Universal, but
non-mean-field, statistics of avalanches of plastic events were
reported in these diverse conditions (Budrikis et al., 2017);
also see Sec. VII.
In an earlier endeavor (Homer and Schuh, 2009; Homer,

Rodney, and Schuh, 2010), each ST zone consisted of several
elements of a triangular mesh which all bore an eigenstrain.
As the size of this zone increases, the redistributed stress field
accurately converged to the theoretical Eshelby field. Zones
made of 13 elements were deemed quite satisfactory in this
respect. Homer and Schuh (2010) later extended the approach
to 3D. Dynamics were brought into play via the implementa-
tion of an event-driven (kinetic Monte Carlo) scheme deter-
mining the thermal activation of STs, in the wake of the
pioneering works of Bulatov and Argon (1994a). The cooling
of the system, its thermal relaxation, and its rheology under
applied stress were then studied. Macroscopically homo-
geneous flows were observed at low stresses and/or high
temperatures, whereas the strain localized at low temperature
for initially unequilibrated (zero residual stress) systems,
which was not necessarily supported by experimental data.
More systematic strain localization at low temperature was
found by Li, Homer, and Schuh (2013), who incorporated the

FIG. 9. Average displacement field induced by an ST in an underdamped elastic medium, computed with a basic finite element routine.
The plotted snapshots correspond to different delays after the transformation was artificially triggered at the origin: (a) Δt ¼ 2, (b)
Δt ¼ 10, and (c) Δt ¼ 1000. Red hues indicate larger displacements. Adapted from Nicolas et al., 2015.
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processes of free volume creation during plastic rearrange-
ments and subsequent free volume annihilation (see
Sec. VI.C.2).
The capabilities of FE methods were further exploited by

Nicolas et al. (2015) to go beyond the assumption of elastic
homogeneity and capture the fluctuations caused by elastic
disorder, notably those evidenced in the response to an ideal
ST in molecular dynamics (MD) simulations of a binary glass
(Puosi, Rottler, and Barrat, 2014). For this purpose, stiffness
matrices C were measured locally in that model glass, in
mesoscale regions of five particles in diameter. A broad
distribution pðμÞ of local shear moduli was found, with a
relative dispersion of around 30%, and marked anisotropy
(i.e., one direction of shear being much weaker than the other
one). The dispersion of pðμÞ explains the fluctuations
observed in MD. Indeed, an FE-based model in which the
shear modulus of each element was randomly drawn from
pðμÞ displayed comparable fluctuations in the response to an
ideal ST, triggered by suitably moving the nodes of a chosen
element. On the other hand, accounting for anisotropy was
less critical. Furthermore, in the FE description inertial and
viscous terms were restored in Eq. (15). This gives access to
the transient elastic response, involving the propagation of
shear waves (see Fig. 9). Exploiting this opportunity, Karimi,
Ferrero, and Barrat (2017) analyzed the effect of inertia on the
avalanche statistics and compared it with results from atom-
istic simulations. [Note that the effect of a delay in signal
propagation had already been contemplated in an effective
way by J. Lin et al. (2014), while, for the same purpose,
Papanikolaou (2016) introduced a pinning delay in his EPM
based on the depinning framework.] It was then possible to
investigate the influence of the damping strength on the
rheology of the elastoplastic system, which was indeed done
by Karimi and Barrat (2016). Using a Maxwellian fluid
description for blocks in the plastic regime and an unstruc-
tured mesh, these researchers found trends qualitatively very
similar to what is observed in MDwhen the friction coefficient
is varied.

E. Continuous approaches based on plastic disorder potentials

Notwithstanding their variable sophistication, all of the
previous methods rest on a clear-cut distinction between
plastic rearrangements and elastic deformations. This binary
distinction is relaxed in continuous approaches, which intend
to stay closer to the schematic dynamics in the PEL outlined in
Sec. II.C. The PEL is reduced to a free energy functional akin
to that of Eq. (12), except that the strain tensor ϵ is
conveniently traded off for new strain variables: one volu-
metric strain e1 ¼ ðϵxx þ ϵyyÞ=2 and two “shear” strains e2 ¼
ðϵxx − ϵyyÞ=2 and e3 ¼ ϵxy, in 2D (5 in 3D, e2;…; e6). The
multiple valleys in the PEL between which the system
jumps during plastic rearrangements are reflected by multiple
equilibrium values for the shear strains in the free energy
functional.
For instance, Marmottant and Graner (2013) focused on the

shear strain e3, split it into a cumulated plastic strain ϵp and a
complementary elastic strain, and proposed a minimalistic
mean-field model based on an effective energy Ueff that
depends periodically on ϵp, viz.

Ueffðe3; ϵpÞ ¼
E
2
ðe3 − ϵpÞ2 þ Eϵy

ϵ0
2π

cos

�
2πϵp
ϵ0

�
;

where E is an elastic modulus, ϵy is a yield strain, and ϵ0 is the
period of the pinning potential. If this prescription is coupled
with a dynamical equation of the form

τ_ϵp ¼ 1

E

�
−
∂Ueff

∂ϵp
�
;

with τ the characteristic relaxation time scale (leading to the
Prandtl-Tomlinson model for stick slip), a serrated stress
versus strain curve is obtained under constant driving. The
finite time needed by the plastic deformation ϵp to jump
between energy valleys implies that, at high driving rates, ϵp
will not be able to instantaneously jump between, say, ϵð−Þp and

ϵðþÞ
p . Therefore, the elastic strain ðe3 − ϵpÞ will keep increas-

ing in the valley around ϵð−Þp for some time, although a new

equilibrium value ϵðþÞ
p has appeared. This is similar to having

a finite latency time before relaxation once the threshold is
exceeded in the Picard et al. (2005) model. Similar equations
of motion in a random potential have been proposed for solid
friction; the occurrence of stick-slip dynamics owes to the
“pinning” of the system in one potential valley, up to some
threshold, while there exists another stable position (Tyukodi,
Patinet et al., 2016).
To go beyond the mean-field level, this type of continuous

approach can be resolved spatially. In an inspirational study,
Onuki (2003a) introduced a free energy of the form

F½u� ¼
Z

ddr½Be21ðrÞ þ F(e2ðrÞ; e3ðrÞ)�; ð20Þ

where B is the bulk modulus and e1, e2, and e3 are explicit
functions of the displacement field uðrÞ. Here F is an
arbitrarily chosen function that is invariant under rotations
of the reference frame θ → θ þ π=3 (because a 2D triangular
lattice is assumed) and periodic in its arguments. Introducing
F in the equation of motion

ρüðrÞ ¼ −
δF

δuðrÞ þ η0∇2 _uðrÞ þ ∇ · σRðrÞ; ð21Þ

where ρ is the density, η0 is the viscosity, and σR is a random
stress tensor due to thermal fluctuations, suffices to obtain
qualitatively realistic stress versus strain curves. The frame-
work was then extended to study the effect of an interplay
between the volumetric strain e1 and the density ρ, and to
capture the elastic effects of edge dislocations, if the material
is crystalline (Onuki, 2003b).
To avoid keeping track of the displacement field u, one may

handle the strain components e1, e2, and e3 as independent
primary variables, writing for instance

F½e1; e2; e3� ¼
Z

ddr½Be1ðrÞ2 þ μe2ðrÞ2 þ V(e3ðrÞ)�; ð22Þ

if the only deviation from linear elasticity is borne by e3 and
encoded in a “plastic disorder potential” V. Close to the
reference state, V will not deviate much from linear elasticity,
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viz., Vðe3Þ ≈ μe23, but more globally it should have a corru-
gated shape that allows the system to reach new equilibria
after each ST. The compatibility of ðe1; e2; e3Þ as differentials
of a displacement field should then be ensured by the Saint-
Venant condition

S½e1;e2;e3�¼0; where

S½e1;e2;e3�≡
� ∂2

∂x2þ
∂2

∂y2
�
e1−

� ∂2

∂x2−
∂2

∂y2
�
e2−2

∂2

∂x∂ye3:

This constraint is implemented by means of a Lagrange
multiplier in the total free energy F, viz., F → F þ λS
(Jagla, 2007). It couples the different strain components. In
particular, in an incompressible linear elastic solid [B → ∞ and
Vðe3Þ ¼ μe23], a plastic strain arising at r ¼ 0 (for example, if
the potential V is chosen different at this position) will
eventually unfold into the “quadrupolar” elastic field given
by Eq. (18) (Kartha et al., 1995; Cao et al., 2018). But, contrary
to binary EPM, this unfolding is not instantaneous. Instead, it is
generally governed by overdamped dynamics, _eiðrÞ ∝
−δF=δeiðrÞ (i ¼ 1; 2; 3). An additional difference with respect
to binary EPM is that the potentialV affects the tangential shear
modulus μ3 ¼ ½V 00ðe3Þ as e3 varies andmay therefore alter the
destabilization dynamics. In this case, the system becomes
elastically heterogeneous, which precludes the use of Green’s
functions to calculate stress redistribution.
Jagla (2017a) examined the influence of different functional

choices for V on the flow curve and critical exponents and
reported differences between smooth and cuspy potentials.
In this section, different levels of detail in the description of

the elastic interactions have been considered. We will see that
the specific form of these interactions may impact the low-
shear-rate rheology (see Sec. VIII) and the local stress
fluctuations (discussed in the next section), while many flow
properties at high shear rates do not require as exquisite a
description.

V. MEAN-FIELD TREATMENTS OF MECHANICAL NOISE

The previous section shed light on the modeling of the
elastic propagator, i.e., the effect of a single rearrangement on
the surrounding elastic medium. In practice, however, several
rearrangements may occur simultaneously. The rate ζiðtÞ of
stress increment experienced by a given block (say, site i) at
time t is then a sum of contributions from many sites, i.e.,
using Eq. (5),

ζiðtÞ ¼
X
j≠i

njGij
σj
τ
;

where nj denotes the plastic activity of site j. Because of its
fluctuating nature, this quantity is often referred to as
mechanical noise. By rewriting Eq. (5) as

∂
∂t σiðtÞ ¼ μ_γ − ni

jG0jσiðtÞ
τ

þ ζiðtÞ; ð23Þ

one can readily see that, in combination with the external
loading and the dynamical rules governing ni, the mechanical

noise signal fζiðtÞg fully determines the local stress evolution.
All one-point properties (such as the flow curve, the density of
plastic sites, the distribution of local stresses, etc.) can be
obtained by averaging the local properties at i over time (and
over i if ergodicity is broken). This shows the central role of
fζiðtÞg in determining these properties. Unfortunately, this
signal is complex, as it stems from interacting plastic events
throughout the system; nevertheless, mean-field approaches
suggest to substitute it with a simpler “mean” field.

A. Uniform redistribution of stress

The mechanical noise can be split into
• a constant background hζii, which contributes to a drift
term μ_γeffi ≡ μ_γ þ hζii in Eq. (23), and

• zero-average fluctuations δζiðtÞ.
Owing to the infinite range and slow decay of the elastic
propagator (∝ r−d in d-dimensional space, see Sec. II.D), site
j is significantly coupled to a large number of other sites. This
large connectivity has led some researchers to brush aside
fluctuations in favor of the average drift term. Along these
lines, in the framework of Picard’s EPM, which features a
constant rate τ−1 of yield above a uniform threshold and a
constant rate τ−1res of elastic recovery, viz.,

n∶ 0 ⇌
τ−1Θðσ−σyÞ

τ−1res

1; ð24Þ

Martens, Bocquet, and Barrat (2012) averaged Eq. (23) over
time and found an analytical expression for the flow curve,
which reproduces the simulation results to a large extent, at
least at reasonably large shear rates. It also correctly predicts
the destabilization of the homogeneous flow leading to shear
banding for a range of model parameters, in particular, at
large τres.
In fact, the neglect of fluctuations would be rigorously

justified if the system were infinite and the propagator G were
positive. The latter criterion is for instance fulfilled in a simple
quasistatic model in which sites yield past a threshold σy and
redistribute the released stress (δσi) uniformly to the other
N − 1 ≈ N sites (Dahmen, Ertaş, and Ben-Zion, 1998), viz.,

σi > σy∶ σi → σi − δσi;

σj → σj þ
δσi
N

; ∀ j ≠ i:

The simplicity of the model allows analytical progress. A first
approach consists in treating the distances xi ¼ σy − σi to the
threshold σy as independent variables in the system and
sorting them in ascending order (i → 1; 2;…). An avalanche
will persist as long as the stress increment δσ1=N due to the
yielding of the most unstable site suffices to make the second
most unstable fail, viz., δσ1=N > x2. Using an argument along
these lines in a model featuring disorder in the yield thresholds
(σy → σy;i) and postfailure weakening [i.e., when site i yields,
the threshold is restored to a lower value σy;iðtþ 1Þ < σy;iðtÞ],
Dahmen, Ertaş, and Ben-Zion (1998) were able to rationalize
the existence of a regime of power-law distributed avalanches
and a regime of runaway, system-spanning avalanches.
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Alternatively, owing to the similarity of the simplified
problem with force-driven depinning, one can make use of
the machinery developed in the latter field. Transversal scaling
arguments and renormalization group expansions (Fisher
et al., 1997) then allow one to derive scalings for different
properties of the system in the quasistatic limit, such as the
size of avalanches. Note that this method was initially applied
to the depinning problem and to earthquakes. Only later on
was it claimed to be much more general and to have bearing
on very diverse systems exhibiting intermittent dynamics or
“crackling noise” (Sethna, Dahmen, and Myers, 2001), in
particular, the yielding transition of amorphous solids.
Recently, these mean-field scaling predictions about ava-
lanche sizes, shapes, and dynamics have been used to fit
experimental data, in metallic glasses subjected to extremely
slow uniaxial compression (Dahmen, Ben-Zion, and Uhl,
2009; Antonaglia et al., 2014) as well as in compacted
granular matter (Denisov et al., 2016). We come back to this
point in Sec. VII.

B. Random stress redistribution

1. Deviations from uniform mean field

The underpinning of the foregoing mean-field approach has
been called into question. Theoretically, the argument based
on the long range of the interactions is undermined by the fact
that these interactions are sometimes positive and sometimes
negative (Budrikis and Zapperi, 2013). The ratio of fluctua-
tions over mean value of the stress increments, estimated by
Nicolas et al. (2014) in an EPM, diverges at low shear rates _γ,
which points to the failure of the mean-field theory, according
to Ginzburg and Landau’s criterion. Numerically, some
lattice-based simulations do indeed reveal departures from
mean-field predictions for the critical exponents (Budrikis and
Zapperi, 2013; J. Lin et al., 2014; Liu et al., 2016). For
instance, in these simulations, near _γ → 0, the distribution of
avalanche sizes S follows a power law PðSÞ ∼ S−τ with an
exponent τ that deviates from the τ ¼ 3=2 value predicted by
mean field (see Sec. VII for details).

2. The Hébraud-Lequeux model

To improve on the hypothesis of a constant mean field _γeff ,
fluctuations of the mechanical noise need to be accounted for.
In the crudest approximation, they can be substituted by
random white noise ζðw:n:ÞðtÞ, with hζðw:n:Þi ¼ 0. This turns
Eq. (23) into a biased Brownian walk for the local stresses, in
the elastic regime ni ¼ 0. The model of Hébraud and Lequeux
(1998) was developed along these lines. The ensuing stochas-
tic equation [Eq. (23) with ζiðtÞ → constþ ζðw:n:ÞðtÞ and
τ → 0] can be recast into a probabilistic Fokker-Planck-like
equation operating on the distribution Pðσ; tÞ of local stresses
σ, viz.,

∂Pðσ; tÞ
∂t ¼ −μ_γ

∂Pðσ; tÞ
∂σ þDðtÞ ∂

2Pðσ; tÞ
∂σ2

−
Θðjσj − σyÞ

τc
Pðσ; tÞ þ ΓðtÞδðσÞ; ð25Þ

where the diffusive term D∂2P=∂σ2 on the rhs arises
from the fluctuations acting on σi, with a coefficient DðtÞ
assumed to be proportional to the number of plastic sites
ΓðtÞ≡ τ−1c

R
jσ0 j>σy

Pðσ0; tÞdσ0, viz., DðtÞ ¼ αΓðtÞ. The first

term on the rhs of Eq. (25) is a drift term, which amalgamates
_γeff with _γ; the last two terms correspond to the failure of
overloaded sites (above σy) on a time scale τc and their rebirth
at σ ¼ 0 due to stress relaxation. The resulting mean-field
equations can be solved in the limit of vanishing shear rates _γ
(Olivier and Renardy, 2011; Agoritsas et al., 2015). For a
coupling constant α < ½, diffusion vanishes at low shear
rates, with D ∝ _γ, a yield stress Σy > 0 is obtained and the
average stress obeys Σ ≃ Σy þ k_γ1=2, with k > 0, in the low-
shear-rate limit. For α > 1=2, the system behaves like a
Newtonian liquid.

3. Fraction of sites close to yielding

The diffusive term introduced in Eq. (25) impacts the
distribution of sites close to yield, i.e., at distances x≡ jσj −
σy ≪ 1 from the yield threshold σy. On these short distances,
or, equivalently, in the limit of short time scales Δt, the back-
and-forth diffusive motion over typical distances ∝

ffiffiffiffiffiffi
Δt

p
prevails over the drift in the random walk. Therefore, for
_γ → 0, determining the distribution PðxÞ is tantamount to
finding the concentration of Brownian particles near an
absorbing boundary at x ¼ 0 (yielding): The well-known
solution is a linear vanishing of the concentration near
x ¼ 0, viz., PðxÞ ∼ x for x ≈ 0 (J. Lin et al., 2014; Lin and
Wyart, 2016). This result ought to be compared with PðxÞ ∼
x0 for drift-dominated problems, such as depinning. J. Lin
et al. (2014) further claimed that this discrepancy is at the
origin of the differences in scaling behavior between the
depinning transition [v ∝ ðF − FcÞβ with β < 1] and the flow
of disordered solids [_γ ∝ ðΣ − ΣyÞβ with β > 1 generally].

C. Validity of the above mean-field approximations

The foregoing paragraphs presented distinct levels of mean-
field approximations. Now we enquire into their range of
validity and record the results in Table II.

1. Uniform mean field

Neglecting fluctuations in the constant mean-field approach
makes sense in the drift-dominated regime, i.e., when
j_γeff jΔt ≫ j RΔt

0 δζðt0Þdt0j on the considered time window
Δt, with the notations of Sec. V.A. With interactions that
change signs, this excludes vanishing shear rates or too small
Δt. But at higher shear rates, this approach appears to
correctly predict the avalanche scaling exponents in the
EPM studied by Liu et al. (2016).

2. White-noise fluctuations

Complemented with Gaussian fluctuations, the approxima-
tion is valid beyond the drift-dominated regime. In fact, if the
distribution of global mechanical noise δζ (i) is Gaussian
distributed and (ii) has no significant time correlations, the
noise fluctuations δζ can be replaced by Gaussian white noise
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in Eq. (23) (Lin and Wyart, 2016). Note that, if a single plastic
event releases stress fluctuations with a distribution w1 such as
w1ðδζÞ ∝ jδζj−1−k with k > 2, condition (i) will be fulfilled as
soon as condition (ii) is (i.e., events are uncorrelated).
Provided that the mechanical noise fulfils the above criteria

(i) and (ii), all models based on similar rules for plasticity thus
fall in the universality class of the Hébraud-Lequeux model in
the limit of large systems. In particular, for coupling constants
α such that the diffusivity DðtÞ goes to zero at _γ → 0, their
flow curves will follow a Herschel-Bulkley behavior Σ ¼
Σy þ k_γn with n ¼ 1=2 in the low-shear-rate limit. This holds
true in the presence of disorder on the local yield thresholds σy
(Agoritsas et al., 2015) and for plastic events that do not relax
the local stress strictly to zero, but to a low random value
(Agoritsas and Martens, 2017). On the other hand, should the
shear modulus of elastic blocks or the relaxation time depend
on _γ, the exponent n will deviate from 1=2 (Agoritsas and
Martens, 2017).

3. Heavy-tailed fluctuations

However, the decay of the elastic propagator as G ∼
cos 4θ=rd casts doubt on the Gaussian nature of the random
stress increments δζ and would rather suggest a broad density
function for the mechanical noise,

w1ðδζÞ ∼ jδζj−1−k with k ¼ 1 ð26Þ

in the limit of sparse plastic events, with an upper cutoff δζM
proportional to the volume of a rearranging region. For such a
heavy-tailed distribution, the biased random Brownian walk
of σj is replaced by a Lévy flight of index k ¼ 1 for σj. On the
basis of a simple extremal model, Lemaître and Caroli (2007)
demonstrated that this change altered the avalanche statistics
as well as the distribution of distances to yielding PðxÞ. To be
explicit, their model was based on plastic yielding above a
uniform yield strain γy, which resets the local stress to zero
and increments the stresses at other sites by random values
drawn from w1ðδζÞ. Somewhat surprisingly, the use of a
Gaussian distribution w1 gave better agreement with quasi-
static atomistic simulations than a heavy-tailed distribution, in
terms of the scaling of avalanches with system size.

Further insight is gained by understanding that the distri-
bution w1 in Eq. (26) describes the instantaneous stress
released by a single event, whereas a material region will
yield under the cumulated effect of a sum of such contribu-
tions. Assuming that this sum is random, Lin and Wyart
(2016) arrived at the following probabilistic equation:

∂P
∂γ ¼ v

∂P
∂x þ

Z
∞

−∞
½PðyÞ − PðxÞ�wðy − xÞdyþ δðx − 1Þ;

where PðxÞ ¼ 0 for x ∉ ½0; 2�, v > 0 drives sites toward their
yielding point under the action of stress, and the distribution
wδγ accounts for the sum of stress releases [drawn from
w1ðδζÞ] taking place over δγ: w ∼ w1 if k < 2; otherwise, it is
a Gaussian. This model is a variant of the Hébraud-Lequeux
model which differs from it in that (i) broad distributions
w1ðδζÞ are allowed, (ii) time is measured in terms of plastic
strain γ, and (iii) sites that cross the yield threshold σy ¼ 1

abruptly relax to 0 as γ is incremented. In this framework, Lin
and Wyart derived an asymptotic analytical expression for the
distribution PðxÞ (see Sec. V.B.3), which scales as xθ for
x ≪ 1. Interestingly, if the noise distribution is heavy tailed,
with k < 2, its breadth k affects the value of θ > 0 in this
mean-field model; θ turns into a nonuniversal exponent that
depends on the loading and the amplitude of the noise, in line
with atomistic simulations, and it supplements the other two
exponents characterizing the depinning transition. While these
predictions accurately match the value measured in lattice-
based EPM relying on the genuine elastic propagator in
dimension d ¼ 4, some discrepancy was noticed in 2D and
to a lesser extent 3D. This points to the progressive failure of
the criterion of no correlation as dimensionality is lowered.
These results can be confronted with the early speculation of
Chen, Bak, and Obukhov (1991) of an upper critical dimen-
sion of 3 for the applicability of a constant mean field in their
model. Leaving aside mean-field concerns for a minute, we
find quite noteworthy that the θ exponents measured in the
lattice-based EPM are compatible with their indirectly mea-
sured value in atomistic simulations in the quasistatic regime,
in 2D and 3D (J. Lin et al., 2014).
More recently, Aguirre and Jagla (2018) underlined the

need to improve on the foregoing approximation of mechani-
cal noise as a random sum of single events. In reality, the noise

TABLE II. Synthetic view of the distinct types of fluctuations at play and the methods with which they can be handled.

Fluctuation-dominated regime Drift-dominated regime

Mechanical noise
fluctuations δζ

Strong correlations and broad
distribution

No time correlations but
broad distribution
wðδζÞ ∝ δζ−1−k

Gaussian white noise wðδζÞ ∈ oðδζ−3Þ

Dynamics of σ in
elastic regime

Correlated evolution Lévy flight (Biased) Brownian motion

Applicable mean-
field treatment

None known so far Reasoning on PðσÞ taking
into account wðδζÞ

Equation on PðσÞ with
diffusive term due to δζ

Uniform mean-field
approximation may be
valid

PðxÞ for x ≈ 0 ∼xθ with unrationalized
exponent

∼xθ with dimension
dependent θ

∼x ∼x0

References and
examples

Lin and Wyart (2016) for
d ≤ 3; Liu et al. (2016) at
low _γ; Budrikis et al. (2017)

Lin and Wyart (2016)’s
shuffled model and EPM
in d ≥ 4

Hébraud et al. (1997) Liu et al. (2016) at high _γ
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results from avalanches displaying a linear spatial structure.
A schematic argument taking into account the statistics of
avalanche sizes S [namely, PðSÞ ∼ S−τ, see Sec. VII] then
suggests to use the cumulative noise distribution WðδσÞ ∼
jδσj−1−k with k ¼ 3 − τ (due to multiple avalanches), instead
of the instantaneous single-event distribution w1ðδζÞ. If the
density of stability PðxÞ ∼ xθ coincides with the probability of
presence of a random walker subjected to the noise δσ near the
absorbing boundary x ¼ 0, they further speculate that
θ ¼ k − 1, which is consistent with their data.

4. Structure of the elastic propagator and soft modes

Coming back to the validity of mean-field estimates, we
note that the latter become accurate (even for d < 4) if the
elastic propagator Gij is shuffled, that is, replaced by GτðiÞτðjÞ,
where τ is a random permutation of indices which changes at
each time step (Lin and Wyart, 2016). This shows that the
temporal correlations in the mechanical noise signal are due to
the spatial structure of G. Of particular importance in this
structure (Talamali et al., 2012; Tyukodi, Patinet et al., 2016)
are the soft deformation modes of the propagator (recall that
these are the uniform shear bands described in Sec. IV.C
which create no elastic stress in the material). To clarify this
importance, the authors focused on the evolution of the
cumulative plastic strain ϵpl in extremal dynamics and recast
the EPM equation of motion [Eq. (5)] into a depinninglike
equation (also see Sec. X.B), viz.,

η∂tϵ
pl ¼ Pðσext þ 2μG � ϵpl − σyÞ;

where η ¼ μτ is a viscosity, σy is the local stress threshold, and
PðxÞ ¼ x if x > 0 and 0 otherwise. The deformation of a
disordered solid in d dimensions is then regarded as the
advance of an elastic hypersurface in a (dþ 1)-dimensional
space, where the additional dimension is ϵpl. Under the
influence of the driving, the hypersurface moves forward
along ϵpl. In so doing, it gets deformed as a result of the
disorder in the thresholds σy seen by different sites.
Although EPM and depinning models share a formally

comparable framework, Tyukodi, Patinet et al. (2016) showed
that their results will differ because of the existence of soft
modes in the EPM kernel G, while nontrivial soft modes are
prohibited by the definite positiveness of the depinning

propagator. As time goes on, the width Wϵ ≡ hðϵpl − ϵplÞ2i
of the elastic hypersurface (where the overbar denotes a spatial
average and the brackets indicate an ensemble average over
the disorder) saturates in the depinning problem. This satu-
ration is due to the higher elastic stresses released by regions
of higher ϵpl, which destabilize regions of lower ϵpl and
therefore act as restoring forces to homogenize ϵpl over the
hypersurface. On the contrary, in EPM, Wϵ (the variance of
ϵpl) grows endlessly by populating the soft modes of plastic
deformation, which generate no elastic restoring force, and
diverges in a diffusive fashion at long times.

D. A mechanical noise activation temperature?

1. The SGR model

The soft glassy rheology model of Sollich et al. (1997)
proposed an alternative way to handle mechanical noise
fluctuations fδζðtÞg. In the SGR spirit, these random stress
“kicks” operate as an effective temperature x that can activate
plastic events, in the same way as thermal fluctuations do.
Accordingly, the diffusive term in Eq. (25) is replaced by an
Arrhenius rate to describe activated effects. More precisely, in
SGR, the material is divided into mesoscopic regions that
evolve in a landscape of traps whose depths are randomly
drawn from an exponential distribution (Bouchaud, 1992)

ρðEÞ ∝ expð−E=EgÞ:

Here Eg is a material parameter that will be set to unity. The
external driving facilitates hops from trap to trap (over the
local energy barrier E) by elastically deforming each region at
a rate _l ¼ _γ, where l is the local strain. This lowers the barrier
E → E − ð1=2Þkl2. (The stiffness parameter k is such that kl is
the local stress.) Finally, SGR assumes that the random kicks
due to mechanical noise activate hops at a rate ωðE; lÞ given
by an Arrhenius law, viz.,

ωðE; lÞ ¼ ω0 exp

�
−Eþ ð1=2Þkl2

x

�
; ð27Þ

where ω0 is the attempt frequency and x quantifies the
intensity of the mechanical noise. After a hop, l is set back
to zero and a new trap depth E is randomly picked from ρ.
The low-_γ rheology that emerges from this simple model is

quite interesting. As the effective temperature x decreases, the
system transits from a Newtonian regime Σ ∝ _γ, for x > 2, to a
power-law regime Σ ∝ _γx−1 for 1 < x < 2. A yield stress
emerges for x < 1 and the stress follows the Herschel-Bulkley
law Σ − Σy ∝ _γ1−x. Indeed, for x < 1, the ensemble average of
the time spent in a trap, viz.,

hτi ¼
Z

ρðEÞω−1ðE; lÞdE

diverges at _γ ¼ 0. The system ages and falls into deeper and
deeper traps on average; it follows that there is no typical
material time for the relaxation of the cumulated stress.
Moreover, the wealth of time scales afforded by an
Arrhenius law also leads to interesting linear viscoelastic
properties, in accordance with experimental data on colloidal
pastes and emulsions.

2. Mechanical noise versus thermal fluctuations

However, the grounds for using an effective activation
temperature to describe the effect of mechanical noise have
been contested in recent years (Nicolas, Martens, and Barrat,
2014; Agoritsas et al., 2015). The bone of contention is that,
contrary to thermal fluctuations, mechanical noise fluctuations
persistently modify the energy landscape of the region, insofar
as the plastic events that trigger them are mostly irreversible.
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More precisely, the argument runs as follows. The motion of
particles in a mesoscopic region, of unit volume, is controlled
by their interaction energy V0, subject to some constraint
enforced at the boundary of the region. This constraint tilts the
potentialV0 intoVσðtÞ≡ V0 − lðtÞσðtÞ, where σðtÞ is the time-
dependent stress imposed by the outer medium and lðtÞ is the
strain associated with the internal configuration (see Fig. 10).
While the region responds elastically, lðtÞ is a sensible proxy
for its configuration. Assuming overdamped dynamics (with
viscosity η), one can then write

0 ¼ −η_lðtÞ − ∂Vσ

∂l ðtÞ þ ξTðtÞ

¼ −η_lðtÞ − d
dl

V0½lðtÞ� þ σðtÞ þ ξTðtÞ:

Thermal fluctuations, denoted by ξT, differ from mechanical
noise in that they have a short-lived effect: hξTðtÞξTðt0Þi ∝
δðt − t0Þ in the case of white noise. Exceptional sequences of
fluctuations ξT are then required to climb up and overcome
energy barriers. In contrast, changes to σðtÞ, due to either the
external driving or distant plastic events, are persistent (hence
cumulative). Even if one subtracts a constant drift term from
σðtÞ, as we did in Sec. V.A, the effect of mechanical noise
fluctuations ξplðtÞ≡ R

t
0 δζðt0Þdt0 is cumulative, viz.,

hξplðtÞξplðt0Þi ¼
Z

t

0

dτ
Z

t0

0

dτ0Cðτ − τ0Þ ∼minðt; t0Þ;

where the autocorrelation functionCðΔtÞ≡ hδζðtÞδζðtþ ΔtÞi
was assumed to decay quickly to zero. It follows that, under the
sole influence of ξpl, the energy barrier Vσ flattens out after a
diffusive time T ∼ ðmax dV=dγÞ2 ≡ σ2y, hence much faster
than the Arrhenius law [Eq. (6)] encountered in activated
processes.
The diffusive growth of local stress fluctuations with time

has been confirmed by molecular dynamics simulations of
model glasses at least at very low shear rates, where Puosi,
Olivier, and Martens (2015) reported that

hðξplðtþ ΔtÞ − ξplðtÞÞ2i ∝ Δt:

One should however mention that in this context the
observation of stochastic resonance induced by mechanical

noise in lattice-Boltzmann simulations of emulsions is
puzzling (Benzi et al., 2015).
The question of the mechanical noise has also sparked

intense debate on the experimental side. In granular matter, it
is now clear that locally shearing a region of the sample can
affect distant, unsheared regions: The applied shear facilitates
the penetration of an intruder (Nichol et al., 2010) or the
motion of a rodlike probe (Reddy, Forterre, and Pouliquen,
2011), presumably by agitating the grains in the distant region,
as if they were thermally agitated. An Eyring-like activation
picture using the magnitude of force fluctuations as temper-
ature may indeed account for the observed fluidization. But
Bouzid, Trulsson et al. (2015) argued that other nonlocal
models can replicate this observation as well. Studying a
related effect, Pons et al. (2015) showed that applying small
oscillatory stress modulations to a granular packing subjected
to a small loading can dramatically fluidize it: Steady flow is
then observed even though the loading is below the yield
stress. This effect presumably stems from the cumulative
impact of the stress modulations; the secular enhancement of
the fluidity in the proposed rationalization is at odds with the
expectations for any activated process.

E. Connection with the diffusion of tracers

Rather than the local stresses, many experimental works
have access to observables related to particle displacements, in
particular, dynamic light scattering or particle tracking tech-
niques. It is thus interesting to be able to connect the local
stress dynamics to the diffusion of tracer particles. Single
events as well as plastic avalanches are expected to contribute
to the tracers’ motion even far away from the plastic zone due
to their long-range effects, as sketched in Fig. 11(a) (Lemaître
and Caroli, 2009; Nichol et al., 2010).
The displacement field induced by a single plastic event can

be calculated using Eq. (16) and is displayed in Fig. 11(b). To
mimic diffusion, Martens, Bocquet, and Barrat (2011) intro-
duced imaginary tracers that follow the displacement field
generated by the ongoing plastic events and were able to
rationalize the relation between the nonaffine part of the self-
diffusion coefficient D and dynamical heterogeneities (char-
acterized by the four-point stress susceptibility χ⋆4 ), as shown
in Fig. 11(c). In particular, D was found to decrease as _γ−½ at
high _γ, while at low shear rates saturation at a value depending

FIG. 10. Sketches illustrating the difference between thermal fluctuations ξT and mechanical noise ξpl; the variable l represents the
local strain configuration. ξT are thermal kicks within a fixed PEL, whereas σðtÞ and its fluctuations ξpl tilt the local PEL up and down.
From Agoritsas et al., 2015.
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on the linear system size L as L3=2 was reported, contrasting
with the D ∼ L scaling measured in atomistic simulations
(Maloney and Robbins, 2008). Nicolas et al. (2014) later
argued that including convection in the EPM favored linear
structures in the flow along the velocity direction and altered
the dependence of χ⋆4 on the system size, but no proper scaling
of the data could be achieved. The dispute was recently settled
by Tyukodi, Maloney, and Vandembroucq (2018): It turns out
that the roughly linear scaling of D with L observed in
atomistic simulations is also present in EPM, but when one
looks at short strain intervals Δγ. More precisely, the extremal
model of Tyukodi, Maloney, and Vandembroucq (2018) yields
a D ∼ L1.05 scaling, which is robust to variations of imple-
mentation and can be explained by considering that in each
window Δγ a roughly linear cascade of plastic events is either
present or not. At longer times, the diffusivity enters the
regime previously identified (D ∼ L1.6), which is very sensi-
tive to the presence of soft modes in the elastic propagator (see
Sec. IV.C.3).
Quantities comparable to the self-intermediate scattering

function in purely relaxing systems are also accessible as
discussed in Sec. IX.A.

VI. STRAIN LOCALIZATION: FROM TRANSIENT
HETEROGENEITIES TO PERMANENT SHEAR BANDS

In Sec. II, we brought to light latent similarities in the
deformation of amorphous solids. These, however, should not
mask the widely different macroscopic consequences of
applying shear to these materials. The elastoplastic viewpoint
helps one to understand these differences in a common
framework.

A. Two opposite standpoints

In the common sense, there is a chasm between (i) foams
and other soft solids that flow, and (ii) metallic or silicate
glasses that break or fracture after a certain amount of
deformation [see Fig. 12(b), right panel].
To start with the far end of the latter category, perfectly

brittle materials will deform elastically and then break, with-
out going through a stage of plastic deformation. In daily life,

this situation is exemplified by the soda-lime glasses routinely
used to make windowpanes, bottles, etc., and more generally
silicate glasses. Nevertheless, at small scales plastic deforma-
tions, resulting in a denser material, were revealed in inden-
tation experiments with a diamond tip (Yoshida, Sanglebœuf,
and Rouxel, 2007) as well as experiments of uniaxial
compression of micropillars of amorphous silica (Lacroix
et al., 2012) [which overall behaves comparably to soda-lime
glass (Perriot et al., 2011)] and simulations of extended shear
(Rountree et al., 2009). However, in many situations, plas-
ticity plays virtually no role, in particular, when failure is
initiated by a crack: No evidence of plasticity-related cavities
was seen by Guin and Wiederhorn (2004) (also see references
therein) and, with the help of simulations, Fett et al. (2008)
claimed that the surface displacements experimentally
observed at crack tips are compatible with theoretical pre-
dictions discarding plasticity. (It should however be men-
tioned that a minority of works support the existence of
plasticity near the crack tip.)
In metallic glasses, global failure is preceded by substantial

plastic deformation. The latter is generally localized in thin
shear bands, that appear as clear bands in postmortem
scanning electron micrographs. These bands are typically

FIG. 11. Origins of cooperative effects. (a) Schematic illustration of the long-range effects of plastic avalanches (in green) on the
diffusion of a tracer (in red). From Martens, Bocquet, and Barrat, 2011. (b) Color map of the stress redistributed by a plastic event at the
origin and associated displacement field (arrows). (c) Comparison of the scaling of the rescaled dynamical susceptibility χ=χ0 for
different system sizes and shear rates with the scaling of the rescaled long-time diffusion coefficient D̃=D0; the inset shows the
individual scalings. From Martens, Bocquet, and Barrat, 2011.

FIG. 12. Experimental observations of shear bands and material
failure. (a) In a granular packing of 90 μm glass beads under
biaxial compression. (b) Right: In a bulk metallic glass under
uniaxial tension. The composite glass shown in (b), left reinforced
with dendrites displays a more ductile response to tension. From
Le Bouil et al., 2014 and Hofmann et al., 2008, respectively.
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10 to 50 nm or even 100 nm thin (Schuh, Hufnagel, and
Ramamurty, 2007; Bokeloh et al., 2011), i.e., much thinner
than the adiabatic shear bands encountered in crystalline
metals and alloys, which are about 10–100 μm thick.
Despite these plastic deformations, brittleness remains a major
industrial issue for metallic glasses. Added to their cost and
the difficulty of obtaining large samples, this drawback may
outshine their advantageous mechanical properties, such as
their high elastic limit (Wang, 2012). As a consequence, much
effort has been devoted to improving their ductility.
By contrast, foams, emulsions, and various other soft solids

can undergo permanent shear flow without enduring irretriev-
able damage. This conspicuous discrepancy with hard
molecular glasses can however be lessened by noticing that,
even among soft solids, the flow sometimes localizes in shear
bands (Lauridsen, Chanan, and Dennin, 2004; Bécu,
Manneville, and Colin, 2006). Still, the distinction between
hard solids that deform and break and soft solids that deform
and flow is overly caricatural. The case of gels, which consist
of long entangled (and often cross-linked) chains, demon-
strates that soft solids, too, may break upon deformation. But,
then, what distinguishes a material that flows from one that
fails? What determines whether the deformation will be
macroscopically localized in shear bands or homogeneous
(on the macroscopic scale)?

1. The shear-banding instability from the standpoint of rheology

To start with, let us consider the rheological perspective.
Shear banding in complex fluids is interpreted as the conse-
quence of the presence of an instability in the constitutive
curve, i.e., the flow curve Σ0 ¼ fð_γÞ that would be obtained if
the flow were macroscopically homogeneous. Indeed, it is
easy to show that homogeneous flow in decreasing portions of
the constitutive curve is unstable to perturbations and gives in
to coexisting bands. The actual flow curve displays a stress
plateau Σð_γÞ ¼ const for _γ between two values _γl and _γh.
Shear localization corresponds to the particular case _γl ≃ 0,
i.e., that of a nonflowing band. In other words, it will occur if
the constitutive curve already starts decreasing at _γ ¼ 0.
Accordingly, the shear-banding criterion based on the slope

of the constitutive curve Σ0ð_γÞ can be studied at the mean-
field level [see, for instance, Coussot and Ovarlez (2010) for
an analysis of a simple model]. Incidentally, note that this is
somehow counterintuitive, given the manifest spatial hetero-
geneity associated with the phenomenon. Nevertheless,
mean-field calculations obviously leave aside the spatial
organization of the flow (its banded structure), which hinges
on the shape of the elastic propagator in simulations: In
EPM, with similar dynamical rules, the banded flow structure
obtained with the long-ranged elastic propagator of Eq. (18) is
not preserved if the propagator is substituted by a stress
redistribution to the first neighbors, even if the latter is
anisotropic (Martens, Bocquet, and Barrat, 2012).
The simple criterion based on the steady-state constitutive

curve needs to be somewhat adjusted for amorphous solids,
which often exhibit aging effects. Then the yield stress of the
quiescent material may vary with the waiting time since
preparation (Varnik et al., 2003). Consequently, even if the
flow curve obtained by ramping down _γ from a high value is

strictly monotonic, shear banding may arise in nonpresheared
samples. This will happen if an initially undeformed band
gradually solidifies and thus further resists deformation, while
the rest of the material is sheared. The solid band is “trapped”
in its solid state because of the aging at play (Moorcroft,
Cates, and Fielding, 2011; Martin and Thomas Hu, 2012).

2. The mechanics of bands in a solid

Turning to the viewpoint of solid-state mechanics, as
emphasized in Sec. IV.C, uniform strain bands inclined by
�π=4 with respect to the principal directions of the strain
tensor are soft modes of the elastic propagator [Eq. (18)],
which means that they do not generate elastic stresses in the
system. Should there be a weak stripe in the material (in the
sense of low elastic moduli or low yield thresholds), it will
then be energetically beneficial to accommodate part of the
macroscopic strain in it in the form of a slip line. Such an
energy-based argument is especially relevant in a quasistatic
protocol in which the system always reaches the local energy
minimum between strain increments. If the stripe in which the
strain localizes displays ideal plasticity, the macroscopic
stress-strain curve Σ ¼ fðγÞ stops increasing due to the
banding instability.
But this continuum-based approach ignores the granularity

of the material at the scale of plastic rearrangements by
postulating the spontaneous and synchronous creation of a
strain band all at once. Contrasting with this postulate, some
experimental evidence in colloidal glasses (Chikkadi et al.,
2011) and granular matter (Amon et al., 2012; Le Bouil et al.,
2014) indicates that shear bands actually consist of discon-
nected, nonsimultaneous localized plastic rearrangements, as
implemented in EPM. Therefore, only on average is a strain
band uniform; its granularity (as a patchwork of localized
plastic rearrangements) as well as the time fluctuations in its
plastic activity has no reason to be overlooked. The sequential
emergence of the band may explain its sensitivity to details
in the implementation of the elastic propagator (Talamali
et al., 2012).
Taking the granularity of the band into account, Dasgupta,

Hentschel, and Procaccia (2012) and Dasgupta et al. (2013)
proposed to explain the existence and the direction of shear
bands by an argument based on the minimization of the elastic
energy of a collection of Eshelby inclusions in a uniform
elastic medium over their possible configurations in space.
The neglect of the elastic heterogeneity of glasses in the
reasoning was justified by the specific consideration of
carefully quenched (hence, more homogeneous) glasses.
An additional concern could be raised with regards to the
use of a global one-step minimization, whereas plastic events
occur sequentially and the elastic deformation field in the
material evolves during the process. Nevertheless, in a similar
endeavor, Karimi and Barrat (2018) rationalized the observed
deviation between the direction of the macroscopic shear band
in a deformed granular medium and that of the microscopic
correlations between rearrangements. They contended that the
former direction is the direction of maximal instability with
respect to the Mohr-Coulomb failure criterion, rather than that
of maximal increase of the shear stress.
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More generally, the strain bands described in the context of
solids probably differ from the long-lived or permanent shear
bands observed experimentally in steadily sheared materials.
The former might be more accurately referred to as transient
“slip lines” and some reports of “shear bands” in atomistic
simulations should probably rather be interpreted as slip lines,
as already noted byMaloney and Lemaître (2006). However, it
has been suggested that the transient banding instability can act
as a precursor to the formation of a shear band (Fielding, 2014).
In fact, transient banding is a matter of interest per se, as it

can be long lived (Divoux et al., 2010). Moorcroft and
Fielding (2013) proposed a way to rationalize its occurrence
on the basis of a generic banding criterion involving the
transient constitutive curves Σ0 ¼ fð_γ; γÞ, where γ is the
cumulative strain since shear startup, in a fictitious system
constrained to deform homogeneously. The rheological cri-
terion dΣ0=d_γ < 0 is recovered at infinite times γ → ∞, while
a purely elastic banding instability is predicted if

A
∂Σ0

∂γ þ _γ
∂2Σ0

∂γ2 < 0;

with a model-dependent prefactor A > 0, provided that the
material is sheared much faster than it can relax (_γ → ∞).
In light of this, the authors claimed that there is a generic
tendency to transient banding in materials that exhibit a stress
overshoot in shear startup.
Coincidence between a stress overshoot and an emerging

shear band has effectively been noticed in EPM and atomistic
simulations (Lin et al., 2015; Ozawa et al., 2018; Popović,
Geus, and Wyart, 2018). Moreover, EPM unveiled the major
impact of the system’s preparation on these features. Within a
depinninglike model, Ozawa et al. (2018) proved that a broad
initial distribution P0ðxÞ of site stabilities (i.e., distances to
yield, as defined in Sec. V.B.3), reflecting poor annealing,
suppresses the overshoot. Contrariwise, the latter and the
associated stress drop grow as P0ðxÞ becomes more sharply
peaked, as expected for a well-aged glass. At some point, the
stress-strain curve even becomes discontinuous, as the system
undergoes a spinodal instability. A critical point separates the
continuous and discontinuous regimes. Ozawa et al., 2018
observed good agreement between these mean-field results
and atomistic simulations of ultrastable glasses. In a parallel
paper, Popović, Geus, and Wyart (2018) showed that these
features survive in a spatially resolved EPM. In addition, they
related the presence of runaway avalanches to the curvature of
the distribution of site stabilities PðxÞ at x ¼ 0. The stress
drops caused by these avalanches grow as failure is
approached and can thus signal the imminence of failure.
But there may exist an alternative mechanism for failure
(without diverging avalanches), namely, the nucleation of a
shear band in a fortuitously weak region. We will discuss an
earlier work by Vandembroucq and Roux (2011) in Sec. VI.C,
where we review the mechanisms promoting shear banding.
For the time being, let us enquire about the fate of the

material after the overshoot. Ozawa et al. (2018) and Popović,
Geus, and Wyart (2018) argued that the transition from a
continuous stress-strain curve to a discontinuous one, as the
initial preparation P0ðxÞ is varied, marks a transition from a

ductile response to a brittle one. Accordingly, the disconti-
nuity in the stress curve is interpreted as irreversible material
failure, in the spirit of fiber-bundle models, where fibers break
irreversibly (see Sec. X.C.2). In this case, the finite stress
signal displayed by their systems (EPM and atomistic sim-
ulations) after failure must be considered spurious: The model
is no longer valid after failure.
On the other hand, if the material does preserve some

cohesion after the stress drop accompanying the overshoot,
one may wonder whether the transient band will convert into a
steady-state band, under homogeneous loading. What is
required for this purpose is a mechanism that explains how
the transient slip lines, instead of being dispersed, concentrate
in the same region of the shear-banded material as time goes
on. The distinction between the situation at finite strains and in
the steady state should perhaps be emphasized. The first-order
yield transition in the statistics of low-energy barriers
observed by Karmakar, Lerner, and Procaccia (2010) at a
finite strain γc is not necessarily associated with a first-order
(banding) transition in the steady-state flow curve Σð_γÞ.
Similarly, Jaiswal et al. (2016) numerically observed that,
in a batch of finite-size samples subjected to a strain γ, about
half of the samples will have irreversibly yielded when γ ¼ γc,
while the other half come back to their initial configuration
upon unloading; but it is not straightforward to conclude from
this interesting observation that, if one stitched a “yielding”
sample together with a “recovering” one, a shear band would
localize in the yielding part at longer times.

B. Spatial correlations in driven amorphous solids

EPM help bridge the time and length scale gap between
transient slip lines and permanent shear banding. At short to
intermediate time scales and under slow enough driving, the
organization of the flow is complex and exhibits strong
intermittency and marked spatial correlations between rear-
rangements even in driven amorphous solids that are not
susceptible to macroscopic shear localization.

1. Spatial correlations

The spatial extent of correlations in the flow can be
quantified by cooperativity or correlation lengths ξ in bulk
flows, brought within reach by the computational efficiency
of EPM. The kinetic elastoplastic (KEP) theory of Bocquet,
Colin, and Ajdari (2009), an extension of the Hébraud-
Lequeux model (see Sec. V.B.2) that includes heterogeneities,
predicts a decrease of ξ with the shear rate as

ξ ∼ ðΣ − ΣyÞ−1=2 ∼ _γ−1=4;

in contrast with the theoretical prediction of Lemaître and
Caroli (2009) of ξ ∼ _γ−1=2 in 2D, beyond which independent
avalanches are supposedly triggered.
Simulations of homogeneous shear flow in spatially

resolved EPM have generally shown results departing from
the ξ ∼ _γ−1=4 scaling. Picard et al. (2005) reported a corre-
lation length that scales with _γ−1=2 in 2D [see Fig. 13(a)], on
the basis of a study of the variations of the average stress drop
hδσi with _γ for different linear system sizes L; indeed, the data
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can be collapsed onto a master curve by rescaling _γ into L2 _γ.
Nicolas et al. (2014) related this scaling to the average spacing
between simultaneous plastic events, which scales as _γ−1=d in
d dimensions, and several definitions of correlation lengths
were shown to follow this dependence in EPM. The variable
sign of the elastic propagator enters the reasoning, insofar as
plastic events are able to screen each other, because the sign of
their contributions may differ.
Nevertheless, the _γ−1=d scaling is not generic. In particular,

the correlation length derived from the four-point stress
correlator G4ðrÞ, exploited by Martens, Bocquet, and Barrat
(2011) [see Fig. 13(b)], is more sensitive to the avalanche
shape and was shown to depend on the chosen EPM
dynamical rules. Along similar lines, the atomistic simulations
of Roy (2015) of soft disks in 2D point to a sensitivity of the
correlation length ξD derived from finite-time particle diffu-
sion to the damping scheme; more precisely, they measured
ξD ∼ _γ−1=3 for mean-field drag and ξD ∼ _γ−1=2 if the drag force
depends on the relative particle velocities.
Below the yield stress, Lin et al. (2015) claimed that

the system is critical, with system-spanning avalanches in the
transient, which is supported by a study of the cutoffs in the
avalanche size distributions in EPM simulations. This implies
a diverging correlation length ξ ¼ ∞ in the whole Σ < Σy

phase—not unlike what is seen in 2D dislocation systems at
all applied stresses (Ispánovity et al., 2014). However, the
divergence ξ → ∞ observed in athermal EPM, e.g., in the
quasistatic limit _γ → 0, will be strongly cut off in systems at a
finite temperature, where thermal noise stifles the correlations
(Hentschel et al., 2010). More generally, one should say that
EPM tend to overestimate the absolute magnitude and extent
of the correlations between plastic events, e.g., compared
to particle-based simulations (Nicolas, Rottler, and Barrat,
2014). We surmise that the overestimation is due not only to
the neglect of elastic heterogeneities, but also to the regular
lattice generally used in EPM, which standardizes the inter-
actions between blocks.

2. Cooperative effects under inhomogeneous driving

Correlations in the flow dynamics are found in macroscop-
ically homogeneous flows, but their impact is most conspicu-
ous when the loading or the flow is inhomogeneous over the
correlation length scale. In these situations, marked co-
operative effects are generated.
This is the case in pressure-driven flows through a narrow

channel, of transverse width w (w ≈ 100 μm for microchan-
nels). In this geometry, the streamline-averaged shear stress Σ
varies linearly across the channel, from zero in the center
(in 2D, but also in 3D) to ðw=2Þ∇p at the wall. Therefore, a
“plug” of advected, but unsheared material is expected in the
central region where jΣj < Σy for yield-stress fluids.
These expectations were reshaped following seminal

experiments on concentrated oil-in-water emulsions by
Goyon et al. (2008). Indeed, compared to the predictions
from the bulk rheology, the observed 2D velocity profiles are
more rounded and, overall, the flow is enhanced. Thus, there is
no unique relation between the local strain rate and the local
stress (Goyon, Colin, and Bocquet, 2010): the rheology is
nonlocal. Using a similar system, Jop et al. (2012) demon-

strated the existence of finite strain rate fluctuations δ_γðrÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h_γðrÞ2i − h_γðrÞi2

p
in the plug, which reach their minimum at

the channel center. Numerical simulations of athermal soft
disks confirmed the impact of confinement on the rheology: In
2D periodic Poiseuille flows, which put side by side Poiseuille
flows of alternate directions, the wall stress below which flow
stops substantially increases with decreasing channel width w
(Chaudhuri et al., 2012). All these phenomena clearly arise
because of the interactions between streamlines subjected to
different stresses, via the elastic fields generated by plastic
events.
The remarkable effect of spatial correlations on inhomo-

geneous flows is often rationalized by means of a nonlocal
term in the equation controlling the fluidity f. This variable,
defined here as the inverse viscosity _γ=σ, is thought of as a

FIG. 13. Evaluation of cooperative effects in EPM. (a) Mean stress drop Δσ̃ as a function of the shear rate _γ. (Both variables were
appropriately rescaled and made dimensionless.) From Picard et al., 2005. (b) Top: Time evolution of the dynamical stress susceptibility
χ4ðt; _γÞ at different _γ. Bottom: Finite-size scaling plot of the maxima of χ4. Adapted from Martens, Bocquet, and Barrat, 2011. (c)
Velocity profiles across a microchannel for different applied pressures. (Red crosses) Experimental data for an oil-in-water emulsion;
(dashed cyan lines) EPM; (solid black lines) bulk rheology predictions. The profiles have been shifted vertically for legibility. Adapted
from Nicolas and Barrat, 2013b.
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proxy for the rate of plastic events. Owing to the symmetry of
the propagator, the leading-order correction to the local
fluidity involves the Laplacian ∇2f. The steady-state fluidity
diffusion equation thus reads

ξ2∇2f þ ½fbðΣÞ − f� ¼ 0; ð28Þ

where ξ is a cooperative length and fb is the fluidity in a bulk
flow subject to stress Σ. The KEP model of Bocquet, Colin,
and Ajdari (2009) provides a formal justification for Eq. (28)
to linear order in f, with ξ ∼ ðΣ − ΣyÞ−1=2, by accounting for
the mechanical noise generated in the immediate vicinity of
plastic events. In fact, using a constant value of ξ (for each
material) in Eq. (28) already provides good fits of the
experimental curves, not only for concentrated emulsions
(Goyon et al., 2008) and lattice-Boltzmann simulations
thereof (Benzi et al., 2014), but also for polymer microgels
(Carbopol) (Geraud, Bocquet, and Barentin, 2013). In the
case of emulsions, ξ vanishes below the jamming point and
reaches up to 3 to 5 droplet diameters (20–30 μm) in the very
dense limit (Goyon et al., 2008). Similarly, for Carbopol
samples, ξ measures 2 to 5 structural sizes (sizes of optical
heterogeneities) (Géraud et al., 2017).
However, the fitting is highly sensitive to the adjustment of

the fluidity fw at the wall (Geraud, Bocquet, and Barentin,
2013), which limits the accuracy of the experimental meas-
urement of ξ. This difficulty highlights the value of EPM for
testing the validity of theoretical predictions. In EPM descrip-
tions of channel flow, the driving term μ_γ is set to zero in
Eq. (5); flow arises on account of the initially imposed
transverse stress profile ΣðyÞ. Channel walls are accounted
for by a no-slip boundary condition. This adds a correction to
Eq. (18) for the elastic propagator, which can be calculated via
a method of images (Nicolas and Barrat, 2013a), and leads to a
faster local relaxation for plastic events near walls [see also
Hassani, Engels, and Varnik (2018)]. Combined with appro-
priate dynamical rules, the model semiquantitatively repro-
duces the shear-rate fluctuations δ_γðrÞ observed by Jop et al.
(2012) in the plug as well as the moderate deviations of the
velocity profiles from the bulk predictions witnessed with
smooth walls, provided that the EPM block size corresponds
to around 2 droplet diameters [see Fig. 13(c)]. The fluidity
diffusion equation, Eq. (28) with either ξ ¼ const or ξ ∼ _γ−1=4,
captures the EPM fluidity profiles reasonably well, albeit
imperfectly.
Gueudré et al. (2017) took a closer look at the decay of _γðyÞ

in a region (y > 0) subject to Σ < Σy contiguous to a sheared
band (y < 0). They found that EPM results obey a scaling
relation involving a length scale ξðΣÞ ∼ ðΣ − ΣyÞ−ν but the
scaling exponents differ from mean-field predictions and are
also inconsistent with KEP-based Eq. (28). In particular, for
Σ ≈ Σy, _γðyÞ is argued to decay algebraically with y > 0

instead of exponentially. Gueudré et al. (2017) further claimed
that pressure-driven flows display larger finite-size effects
than simple shear flows. Indeed, the finite size L of a system
shifts the critical stress for flow initiation by ΔΣ ∝ L−1=ν in a
homogeneous setup [so that ξðΣÞ ¼ L at initiation]. On the
other hand, in a pressure-driven flow, the length scale entering
the critical stress for flow cessation should not be the system

size L, but the (much smaller) width of the sheared band near
the wall.
The description of nonlocal effects by Eq. (28) has also

been applied to granular matter, which generically display
heterogeneous flow and shear bands (Kamrin and Koval,
2012). To do so, the fluidity was redefined as _γ=μ, because the
rheology of dry frictional grains is best expressed in terms of
the inertial number I (a rescaled shear rate) and its depend-
ence on the friction μ≡ Σ=P (with P the pressure). The
resulting model successfully captures cooperative effects and
accounts for the global velocity profile observed in discrete-
element simulations of a simple shear flow with gravity, a
gravity-driven flow in a channel (Kamrin and Koval, 2012) as
well as the flow of a granular layer on an inclined plate, which
is sensitive to the thickness of the layer (Kamrin and Koval,
2012). Nevertheless, the validity of the definition of a
“granular fluidity,” which is not an intrinsic state variable
(because of the denominator Σ or μ), has been questioned;
employing another variable would also lead to an exponential
decay of the flow away from an actively sheared zone
(Bouzid, Izzet et al., 2015). Other suggestions for the fluidity
variable f that should enter a diffusive equation include the
ratio between the “static” and the “fluid” parts of the stress
tensor (Aranson and Tsimring, 2006) and the inertial number
I , which Bouzid, Trulsson et al. (2015) claimed to best match
their discrete-element simulations, in particular, regarding the
necessary continuity of f ¼ I at the interface between differ-
ently loaded regions.

3. Cooperative effects due to boundaries

Coming back to emulsions, the observations of Goyon et al.
(2008) indicate that the flow deviates much more from the
bulk predictions, with an enhanced fluidization, when smooth
walls are replaced by rough walls. Further experimental
studies on regularly patterned surfaces show that the wall
fluidization enhancement varies nonmonotonically with the
height of the steplike asperities, for asperities smaller than the
droplet diameter, as does the wall slip velocity (Mansard,
Bocquet, and Colin, 2014).
These strong deviations in the presence of rough walls

exceed by far what is found in EPM. This points to another
physical origin than the coupling to regions subject to higher
shear stresses. Since wall slip was experimentally observed, it
has been suggested that the “collisions” of droplets against
surface asperities, as they slide along the wall, are the missing
source of plastic activity. Adding sources of mechanical noise
along the walls in EPM can indeed capture the experimental
features (Nicolas and Barrat, 2013b). Derzsi et al. (2017)
experimentally confirmed the presence of roughness-induced
scrambles at the wall and, with the help of lattice-Boltzmann
simulations, the ensuing increase in the rate of plastic
rearrangements near rough walls.

C. Alleged causes of permanent shear localization or fracture

Several EPM have been able to reproduce permanent strain
localization (Bulatov and Argon, 1994b; Jagla, 2007; Coussot
and Ovarlez, 2010; Vandembroucq and Roux, 2011; Martens,
Bocquet, and Barrat, 2012; Li, Homer, and Schuh, 2013;

Nicolas et al.: Deformation and flow of amorphous solids: …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045006-30



Nicolas et al., 2014). In these cases, after a transient, the
plastic activity will typically concentrate in a narrow region of
space, generally a band, that may slowly diffuse over time.
Hints at the ingredients suspected of causing this phenomenon
come from its observation in certain (but not all) EPM and for
a certain range of parameters only. Suspicions particularly
target the rules for yielding or for elastic recovery, as we will
see. Of course, relating these somewhat abstract rules to
microscopic physical properties may not be straightfoward.
Therefore, the interpretation remains mostly qualitative, with
few detailed comparisons so far between microscopic calcu-
lations and EPM rules.
To start with, one notices that large applied stresses Σ ≫ Σy

are incompatible with localization. Indeed, the applied stress
then exceeds the local yield stresses: Plastic events pervade the
system, which globally flows in a viscous manner. In other
words, large loadings fluidize the material, consistently with
experimental observations (Divoux et al., 2012).
On the other hand, at lower stresses (hence, lower shear

rates), plastic events are sparser and may hit the same regions
over and over again, provided that the latter are strongly or
durably weakened by these events. Meanwhile, in the rest of
the material, the driving term in Eq. (5) is compensated by the
nonlocal contributions due to a band of plastic events, i.e., a
uniform relaxation (Martens, Bocquet, and Barrat, 2012). The
general cause for localization thus evidenced is the insufficient
healing of regions following rearrangements (Nicolas et al.,
2014). In the following, we look into the distinct possible
origins of this weakening.

1. Long breakdowns (rearrangements), slow recovery

Coussot and Ovarlez (2010) rationalized shear banding in
jammed systems by considering the formation and breakage
of particle clusters. Locally, these events delimit periods of
solid and liquid behavior, with elastic stresses σel ¼ μ_γt and
0, respectively, that comes on top of a constant viscous stress
η_γ. Here μ is the shear modulus and _γt is the local strain. On
the basis of a mean-field argument, they showed that if the
liquidlike phase lasts longer than η=μ, then the flow curve
becomes nonmonotonic, which is the hallmark of shear
banding. The idea was elaborated by Martens, Bocquet,
and Barrat (2012), who used a spatially resolved EPM of the
Picard type with a variable rearrangement (“healing”) time
τres as a parameter, with the notation of Eq. (24). Their
findings confirmed the formation of shear bands in space for
large τres, associated with the emergence of nonmonotonicity
in the macroscopic flow curve. The banded flow shares many
properties with systems at a first-order transition in which
different phases coexist. The shear rate is well defined
(independent of the driving) inside the band and there is
an interface with the nonflowing phase. This spatial organi-
zation in the form of a band is intrinsically related to the band
being a soft mode of the propagator (see Sec. IV.C); this
would not be possible without its long range and its
anisotropy.
Attractive interactions in adhesive colloidal systems (Irani,

Chaudhuri, and Heussinger, 2014) and directional bonds in
molecular systems are tentative candidates for possible micro-
scopic origins of long rearrangements, i.e., long time delays

before the destabilized region reaches another stable configu-
ration. Similarly, deactivating potential forces for a finite
“pinning delay” after yielding enhances strain localization
(Papanikolaou, 2016).

2. Influence of initial stability (aging) and shear rejuvenation
(softening)

In thermal amorphous solids, with age comes strength and
above all stability (see Sec. II.B.2). Yielding will then be more
abrupt. Indeed, letting a system age in the absence of strain
favors strain localization, or even fracture, as indicated by
experimental (Rogers, Vlassopoulos, and Callaghan, 2008)
and numerical (Shi and Falk, 2005) data. The EPM proposed
by Vandembroucq and Roux (2011) and inspired by the
weakening mechanism in the model of Fisher et al. (1997) for
earthquakes helped interpret this effect: The distribution PðσyÞ
used for resetting the local yield stresses σy following a plastic
event was shifted by an amount δ with respect to the initial
PðσyÞ, to mimic the lower structural temperature of the
pristine material. For large enough negative δ (strain weak-
ening), the first regions to yield are rejuvenated to a state with
lower threshold, so that the system gets trapped in a banded
structure. The bands thus created, shown in Fig. 14, are
localized and pinned in space if the elementary slip distance is
small; otherwise, larger slip events are created, enhancing
nonlocal effects and making bands less stable and more
diffusive.
Nicolas et al. (2014) introduced a healing process in

this picture, by allowing the blocks that have just become
elastic again to age and gradually recover higher energy
barriers, viz.,

_EyðtÞ ¼ k
E∞
y − EyðtÞ
E∞
y − Emin

y
;

where k is the rate of recovery at which the energy barrier rises
from its postyielding value Emin

y to the asymptotic value E∞
y .

For low enough recovery rates k, shear localization was
observed. However, the localized behavior tends to fade away
when _γ reaches very small values. This may be paralleled with
the recovery of a homogeneous flow in the dense colloidal
suspension studied by Chikkadi et al. (2011) for shear rates
below a certain value, which allow the strained system to
structurally relax before further deformation.
Along similar lines, Li, Homer, and Schuh (2013) imple-

mented a process of free volume creation and annihilation in a
finite-element-based EPM designed to describe the deforma-
tion of themetallic glass Vitreloy 1. In their model, free volume
is created by the dilation accompanying a shear transformation
and is annihilated gradually in strictly local diffusional events.
The activation of STs, in turn, is facilitated by a local excess of
free volume. Simulations relying on a kinetic Monte Carlo
scheme for the dynamics showed that at low temperatures the
deformation localizes in bands and that the variations of free
volume are critical for this localization. A parallel can be drawn
between the creation of free volume during STs and the
lowering of yield stresses in other EPM. There is perhaps
an even stronger connection with the plasticity-induced
enhancement of the local effective temperatures x and χ in
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variants of the soft glassy rheologymodel (Fielding, Cates, and
Sollich, 2009) and the shear transformation zone theory
(Manning, Langer, and Carlson, 2007), respectively. In these
models, the effective temperature evolves locally in response to
three processes: (i) rises due to plastic rearrangements,
(ii) relaxation to a steady-state value, and (iii) diffusion in
the shear gradient direction. For a range of parameters, the
homogeneous temperature profile is unstable and a high-
temperature shear band emerges in the midst of a low-temper-
ature unsheared background.
Another approach to account for the competition between

local relaxation and driving-induced plastic events was pro-
posed by Jagla (2007). In his continuous model (see
Sec. IV.E), the system relaxes via a slow drift of the local
energy landscape seen by a given site toward lower energies.
Sites whose evolution toward potential minima is not inter-
rupted by plastic deformations benefit from this local “struc-
tural relaxation.” Their elastic energy decreases and the local
yield stress increases, while their plastically active counter-
parts have no time to undergo structural relaxation, and their
yield stress remains consequently low. Again, this leads to a
nonmonotonic flow curve in a mean-field analysis and to
strain localization at low _γ.
To what extent precisely these strain localization mecha-

nisms are connected with the weakening-induced runaway
(system-spanning) events observed in the model of Fisher
et al. (1997) for earthquakes or Papanikolaou et al. (2012) and
Jagla, Landes, and Rosso (2014) topple-down oscillations due
to viscoelastic relaxation between earthquakes remains
uncertain.

3. Shear bands like it hot

A temperature rise ΔT has been experimentally evidenced
during the operation of shear bands in metallic glasses
(Lewandowski and Greer, 2006; Zhang et al., 2007). The
dominant view is that it is however not the initial cause of the
shear banding observed at low strain rates, as ΔT is small in
this case. Still, local heating may result in the recrystallization
of the material, with associated changes in its mechanical
properties (presumably more brittle behavior). Such effects
are obviously not included in EPM and probably better
described at the level of macroscopic equations as a thermo-
mechanical instability. This discussion is therefore relevant
only for the initiation of the instability and for systems in
which thermal effects are weak.
A related mechanism leading to a nonmonotonic flow

curve, first identified in MD simulations (Nicolas, Barrat, and
Rottler, 2016) and then also seen in finite-element-based
EPM (Karimi and Barrat, 2016), is at play when one enters
the underdamped regime. At a given strain rate _γ, long-lived
inertial vibrations can then be sustained, because of which
the yield threshold may be exceeded earlier than if mechani-
cal equilibrium had been maintained the whole time. In other
words, the energy dissipated in the underdamped flow
remains long enough in the relevant degrees of freedom to
activate plastic relaxation. In MD simulations this facilitation
was shown to be quantitatively described by a heating effect,
whereby a more strongly damped system is heated to a
strain-rate-dependent temperature Tð_γÞ. For strongly

underdamped systems, this leads to a nonmonotonic con-
stitutive curve and to the formation of shear bands, if the
system is large enough.3

VII. CRITICAL BEHAVIOR AND AVALANCHES AT THE
YIELDING TRANSITION

Amorphous solids retain complex solidlike properties under
continuous flow, but the onset of flow is of particular interest
from a physical viewpoint owing to the critical behavior that
may come along with this transition. Far from being a
weakness, the simplified description provided by EPM (which
were originally phenomenological models) represents an asset
for the study of these critical properties. In this section we
review the thriving literature about the statistics of avalanches
close to the yielding transition.

A. Short introduction to out-of-equilibrium transitions

Statistical physics is largely concerned with phase transi-
tions, whereby some properties of a system abruptly change
upon the small variation of a control parameter. The para-
digmatic example of an equilibrium phase transition is the
Ising model, which consists of spins positioned on a lattice
and interacting with their first neighbors. This model describes
the ferromagnetic to paramagnetic transition of a magnet as
the temperature T rises above a critical temperature Tc. The
transition is marked by the presence of correlated domains of
all sizes and the vanishing of the magnetization m (the “order
parameter”) as

m ∼ ðTc − TÞβ: ð29Þ

Quite interestingly, the critical exponents β and its kin are
shared by many other, a priori unrelated systems: The latter
are said to belong to the same universality class as the
Ising model.
These ideas extend beyond equilibrium, but fewer methods

are available to deal with the dynamical phase transitions
encountered out of equilibrium. In this respect, it is worth
noting that the Herschel-Bulkley constitutive law can be recast
into an expression analogous to Eq. (29), viz.,

_γ ∼ ðΣ − ΣyÞβ: ð30Þ

This yielding transition is receiving more and more attention
as an example of transition in a driven system. Still the
existence of a critical behavior as _γ → 0 is not unanimously
accepted: While some reasonably argue that thermal fluctua-
tions will wash out criticality at any T > 0 (Hentschel et al.,
2010), others claim that the material’s state should become
independent of _γ once the driving gets slower than any internal
relaxation rate (Langer, 2015), perhaps overlooking the
possibility that the latter (for instance, mediated by the
propagation of shear waves) may become unboundedly long
for increasingly large systems under slow driving. Besides,
among the defenders of criticality, there have been lively

3J.-L. Barrat, K. Martens, and V. Vasisht (to be published).
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discussions as to whether it belongs to the same universality
class as the depinning transition of driven elastic lines
(Sec. X.B).

1. Avalanches in sandpile models

As models featuring threshold dynamics and a toppling
rule, EPM are also connected to the somewhat simpler
sandpile models, introduced in Sec. IV.A. Let us clarify some
concepts using the latter class of systems.
Simulations of 2D sandpile models display avalanches of

grains of duration T (number of iterations to reach stability)
and size S (total number of transferred grains). Because of the
rules governing grain transfer, these avalanches are compact
structures, unlike those observed in EPM. In a nutshell, at
vanishing deposition rates, the cumulative distributions of S
and T exhibit power-law scalings, with a cutoff at large scales
due to the finite size of the system, viz.,

CSðSÞ¼ S1−τfðS=LdfÞ and CTðTÞ¼T1−τ0gðT=LzÞ; ð31Þ

where τ > 0 and τ0 > 0 are critical exponents, f and g are fast
decaying functions, and the positive exponents df and z are
called the fractal dimension of the avalanches and the
dynamical exponent, respectively. This means that small
avalanches are more frequent than larger ones, but in such
a fashion that no typical or characteristic size can be
established, which has been called self-organized criticality.
Let us note that the extremal dynamics used to trigger
avalanches can be substituted by a very slow (quasistatic)
uniform loading of the columns of sand if some randomness is
introduced in the stability thresholds. In this sense, self-
organized criticality in the sandpile model simply exposes the
criticality associated with the dynamical phase transition
undergone by the loaded system.
Different regimes of avalanches can be seen when the

deposition rate is varied or, somewhat equivalently, when one
inspects them at different frequencies ω. At large frequencies
ω, independent, nonoverlapping avalanches are observed. As
ω decreases, the avalanches start interacting. In this regime,
their overlaps cut off the correlation lengths of single
avalanches, but due to mass conservation during grain trans-
fer, the scale-free behavior is preserved. On long time scales,
i.e., for low ω, the observed features are typical of discharge
events, whereby the whole sandpile becomes unstable after
having been loaded (Hwa and Kardar, 1992).

2. Stress drops and avalanches in EPM

Similar to the instabilities in sandpile models, the plastic
events occurring in EPM can trigger avalanches of successive
ruptures. To facilitate the comparison with experiments or
atomistic simulations, these avalanches are usually quantified
by looking at the time series of the macroscopic stress σðtÞ
and, more specifically, at the stress drops Δσ associated with
plastic relaxation (in this section, we use a lowercase symbol σ
for the stress to underscore that it is an intensive variable).
Close to criticality, the duration T of these drops and their
extensive size S≡ ΔσLd in a system of volume Ld in d
dimensions most often display statistics formally similar to
Eq. (31), viz.,

PðSÞ ∼ S−τfðS=ScutÞ and PðTÞ ∼ T−τ0gðT=TcutÞ; ð32Þ

where the upper cutoffs Scut and Tcut entering the scaling
functions f and g will typically depend on system size, e.g.,
Scut ∝ Ldf . In the following, we pay particular attention to the
possible impact of the peculiarities of the quadrupolar stress
redistribution in EPM, notably its fluctuating sign, on the
avalanche statistics.

B. Avalanches in mean-field models

Shortly after the emergence of the first EPM, mean-field
approximations were exploited to determine the statistics of
avalanches. Most of these approaches assume a uniform
redistribution of the stress released by plastic events, as
exposed in Sec. V.A. An exponent τ ¼ 3=2 is then consis-
tently found in the avalanche size scaling of Eq. (32).
For instance, Sornette (1992) proposed to map the

Burridge-Knopoff model for earthquakes, introduced in
Sec. IV.A, onto a fiber bundle which carries a load equally
shared among unbroken fibers (see Sec. X.C). At criticality
the extremal load needed to make the weakest surviving fiber
break fluctuates; more precisely, it performs an unbiased
random walk. An avalanche of failures lasts as long as this
extremal load remains below the initial load, so its size is
given by the walker’s survival time close to an absorbing
boundary, hence an exponent τ ¼ 3=2. If deformation starts
farther from the critical point, a larger exponent is found,
τ ¼ 5=2. A posterior, but widely celebrated model for
heterogeneous faults in earthquakes was proposed by
Fisher et al. (1997) and later applied to the deformation of
crystals by Dahmen, Ben-Zion, and Uhl (2009) and more
recently to the deformation of granular matter (Dahmen, Ben-
Zion, and Uhl, 2011) and amorphous solids (Antonaglia et al.,
2014). Here the problem is directly mapped onto an elastic
line depinning problem (see Sec. X.B). Once again, above an
upper critical dimension that decreases with the interaction
range, the model yields the mean-field exponent τ ¼ 3=2. But
if a postyield weakening mechanism is introduced or if stress
pulses due to inertial effects are present, the power-law regime
only holds for small avalanches, while larger ones trigger
runaway events that span the whole system and result in a
bump at a characteristic size in the avalanche statistics.
Much more recently, there have been endeavors to extend

mean-field approaches in order to account for the nonposi-
tiveness of the redistributed stress, which undermines the
mean-field reasoning. For instance, the Hébraud-Lequeux
model introduced in Sec. V.B.2 features an additional dif-
fusive term acting on local stresses. Jagla (2015) studied
avalanches in a discrete variant of this model and reported on
subtleties that are absent from depinning problems. Indeed, if
avalanches are artificially triggered by picking a random block
and destabilizing it, the problem can yet again be mapped onto
a survival problem for an unbiased random walk, similar to the
fiber bundle, and the mean-field exponent τ ≃ 3=2 is obtained.
[In passing, with a random-kick protocol of the sort, J. Lin
et al. (2014) arrived at a similar result in two EPM variants.]
But now consider the physically more relevant protocol of
quasistatic loading, where stresses are uniformly increased
until a block is destabilized. The foregoing result still holds in
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the depinning case, because the distribution of local stresses σ
is fairly homogeneous close to the yield point σy, viz.,
pðσ ≈ σyÞ ≃ const, and thus insensitive to the stress shift
induced by the uniform loading. By contrast, stress fluctua-
tions in disordered solids deplete local stresses close to σy, so
much so that pðσ−y Þ ¼ 0 and pðσÞ varies substantially close to
σy. Accordingly, significantly smaller exponents τ ≃ 1.1–1.2
are both predicted and observed numerically in that case
(Jagla, 2015). Furthermore, the power law is cut off at a value
Scut that depends on the distance to criticality and on the
system size. An extension of these results to heavy-tailed
distributions of stress fluctuations (Lin and Wyart, 2016) is
still pending.

C. Experimental observations and atomistic simulations of
avalanches

1. Experiments

Various experimental settings have been designed to char-
acterize avalanche statistics in deformed amorphous solids in
the last decade, even though experiments are still trailing
behind the theoretical predictions and numerical computations
in this area. Let us mention examples of such works.
Lauridsen, Twardos, and Dennin (2002) sheared a foam in a

Couette cell and investigated its plastic behavior. The dis-
tributions PðSÞ of normalized stress drops S [plotted in Fig. 15
(a)] were shown to follow a power law at three different shear

rates, with an apparent exponent τ ≃ 0.8 in Eq. (32). This
value was reported to be consistent with the bubble model of
Durian (1997), but contrasts with other theoretical predictions,
as we will see. It should however be noted that the power law
was fitted over barely a decade in S.
At the other end of the softness spectrum, the compression

of millimetric metallic glass rods was studied by Sun et al.
(2010) and the stress drops were analyzed. Again, PðSÞ
follows a power-law regime over one decade of experi-
mental measurements, but this time with exponents in
the range τ ∈ ½1.37; 1.49�, as can be seen in Fig. 15(b).
Among several works that came in the wake of this seminal
paper, the compression experiments of Antonaglia et al.
(2014) of microsamples were argued to be compatible with
the mean-field prediction PðSÞ ∼ S−3=2. Following the
same approach, Tong et al. (2016) reported exponents in
the range τ ∈ ½1.26; 1.6� for four different samples of a
Cu50Zr45Ti5 alloy.
A granular packing subject to the simultaneous application

of pressure and shear was also shown to display stress drops
with power-law statistics by Denisov et al. (2016). The power-
law exponents, which seem to lie in a relatively broad range in
Fig. 15(c), were not fitted, but, upon rescaling, were reported
to be in good agreement with the mean-field value τ ¼ 3=2. It
remains uncertain to what extent the value reported in this
work and in the other ones may have been influenced by the
large body of literature claiming that the deformation of
a large variety of amorphous materials belongs to a unique

FIG. 14. Strain localization in an EPM. Maps of the cumulated plastic strain ϵp at different rescaled “times” hϵpi; δ quantifies the
weakening of the local yield stresses when they are renewed, as explained in the main text (the bottom row is strain weakening, while the
top row is not). Darker colors represent larger values of ϵp. The principal strain directions are the horizontal and vertical directions.
Adapted from Vandembroucq and Roux, 2011.
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universality class, the one describing the depinning of an
elastic line (Dahmen, Ben-Zion, and Uhl, 2009; Dahmen,
2017). Also note that the two decades of raw (noncumulative)
stress drops over which Denisov et al. (2016) could collect
data, at least for the smaller strain rates, make granular
packings particularly promising experimental test systems.
The recent study of Barés et al. (2017) of a sheared bidisperse
mixture of photoelastic particles confirms these promises.
From the gradient of the image intensity, they quantified the
local pressure acting on each grain, hence the energy stored in
it, and tracked the fluctuations of the global energy. This
allowed them to define avalanches as spontaneous energy
drops, with a dissipated power E related to granular rearrange-
ments. The researchers reported power-law distributions of
avalanches, PðEÞ ∼ E−τ with τ ¼ 1.24� 0.11, in a range
dependent on the threshold used to filter the signal and
spanning over three decades in E.

2. Atomistic simulations

In parallel to experiments, stress drops have been analyzed
in atomistic simulations of the deformation of glassy materi-
als. In a 2D packing of soft spheres, Maloney and Lemaître
(2004) measured power-law distributed energy drops with an
exponent τ ¼ 0.5–0.7 comparable to that obtained in the foam
experiments of Durian (1997). On the contrary, exponential
distributions of stress drops and energy drops were then
reported in athermal systems of particles interacting with three
distinct potentials in 2D (Maloney and Lemaître, 2006), but
also with a more realistic potential for a metallic glass in 3D
(Bailey et al., 2007). All these studies were however limited to
fairly small system sizes. Using larger systems in 2D and 3D,
Salerno and Robbins (2013) found power-law distributed
energy drops and stress drops, with distinct values for the
exponent τ in the overdamped regime and the underdamped
one, and in 2D and 3D. In the overdamped case, the value is
identical in 2D and 3D, τ ¼ 1.3� 0.1. We also mention that,
opposing the rather consensual view of scale-free avalanches
and nontrivial spatiotemporal correlations, Dubey et al. (2016)
suggested that the characteristics of the stick-slip behavior
stemmed from trivial finite-size effects.

D. Avalanche statistics in EPM

The large amount of statistics afforded by EPM can
enlighten the debate about the criticality of the yielding
transition and the existence (or not) of a unique class of
universality by overcoming the uncertainty and limitations of
some experimental measurements. In the last years, EPM have
tended to challenge the strict amalgamation of the yielding
transition with the depinning one.

1. Avalanche sizes in the quasistatic limit

Avalanches are most easily defined in the limit of quasi-
static driving, in which the external load is kept fixed during
avalanches (Sec. III.C). Applying extremal dynamics to a 2D
EPM, Talamali et al. (2011) defined an avalanche size S as the
number of algorithmic steps Δt during which the external
stress Σ remains lower than Σstart − kΔt, as though the system
were driven by a slowly moving spring of stiffness k. Quite
interestingly, driving the system by pulling on it with a
moving spring is equivalent to a strain-controlled protocol
in the limit k → ∞, while a stress-controlled protocol is
recovered in the opposite limit k → 0 (Popović, Geus, and
Wyart, 2018). The numerical simulations of Talamali et al.
(2011) displayed a scale-free distribution PðSÞ ∝ S−τ with τ ¼
1.25� 0.05 cut by a Gaussian tail [Fig. 16(a)]. It was made
explicit that this result is at odds with the mean-field exponent
τ ¼ 3=2. On the other hand, the measured value is similar to
that measured by Durin and Zapperi (2000) (τ ≃ 1.27) for one
class of Barkhausen avalanches, due to the motion of
ferromagnetic domain walls under an applied magnetic field,
and to that predicted for this effect using a model of elastic line
depinning with anisotropic (dipolar, but positive) interactions
(Zapperi et al., 1998). Of at least equal relevance is the
similarity with the avalanche size exponent τ ≃ 1.25 found
when simulating differential equations (Bonamy, Santucci,
and Ponson, 2008) or cellular automata (Laurson, Santucci,
and Zapperi, 2010) to describe the interfacial growth of a
crack in a heterogeneous medium. Indeed, the alignment of
plastic events along the Eshelby “easy” axes was seen as an
effective dimensional reduction, leading to avalanches belong-
ing to a quasi-1D problem with positive interactions decaying

FIG. 15. Distributions of stress drops in the deformation of amorphous materials. (a) Distribution of stress drops Δσ in a foam that is
strained in a Couette cell for three different strain rates. From Lauridsen, Twardos, and Dennin, 2002. The solid line in this logarithmic
plot has a slope of −0.8. (b) Distribution DðsÞ of stress drops of normalized magnitude s in a metallic glass (Cu47.5Zr47.5Al5). The red
line represents a power law with exponent τ ≃ 1.49. Adapted from Sun et al., 2010. (c) DistributionDðsÞ of force fluctuation sizes s in a
sheared granular system, for different shear rates and at constant confining pressure P ¼ 9.6 kPa. ) The data suggest truncated power
laws DðsÞ ∼ s−τ expð−s=_γμÞ, with τ ¼ 1.5 and μ ¼ 0.5. Adapted from Denisov et al., 2016.
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as r−2, similar to the interfacial crack growth model of
Bonamy, Santucci, and Ponson (2008).
A couple of years later, Budrikis andZapperi (2013) exploited

a closely related EPM, with randomly distributed stress thresh-
olds, to investigate the effect of two distinct implementations of
periodicity for the long-range elastic propagator G defined in
Sec. IV.C.2. The first series of simulations focuses on the
nonstationary plastic activity below the macroscopic yield stress
Σy, by adiabatically increasing the applied stress Σ. Overloaded
blocks yield simultaneously; their strain is increased by dγ ¼
0.1 and a new local yield stress is drawn. ForΣ ≪ Σy, avalanche
distributions PðSÞ are found to decay as exponentials (or
compressed exponentials); but for stresses closer to Σy, a short
power-law regime appears. The distributions can be fitted by
a first-order correction of Le Doussal and Wiese (2012) to
the mean-field prediction for depinning [see Eq. (35)], but with
τ ≃ 1.35 instead.The tails ofPðSÞ collapse upon rescalingwith a

cutoff depending on the distance to the critical point Scut ∝
ðΣy − ΣÞ−1=σ with 1=σ ≃ 2.3. In a second series of simulations,
inspired by Talamali et al. (2011), the system was pulled by a
spring of stiffness k ∈ ½0.1; 1�, moving adiabatically, hence an
external stress Σ ¼ kðγtot − γÞ, where γtot is the position of the
spring and γ is the plastic strain. In this case, the statistics can be
improved because the system eventually reaches a critical steady
state. The avalanches size distributions show a larger power-law
regime and a little “bump,” and the authors fit them with the
empirical shape

PðSÞ ¼ c1S−τ expðc2S − c3S2Þ; ð33Þ

where all coefficients are free. Two very close, but not strictly
identical, exponents τ ≃ 1.35 (again) were measured for differ-
ent implementationsof the propagator; the precisevaluesof τ can
be found in Fig. 16(b) and Table III. These values differ

FIG. 16. Distributions PðSÞ of avalanche sizes obtained with 2D EPM in the quasistatic limit in diverse settings. (a) Under extremal
dynamics, where the system (of linear size L ¼ 256) is driven by springs of variable stiffnesses k, indicated in the legend. The fitted
exponent is τ ≃ 1.25. From Talamali et al., 2011. (b) In strain-controlled simulations with the “image sum” implementation of the elastic
propagator kernel (see Sec. IV.C.2), with fits to Eq. (33). Notice that the driving springs are much stiffer than in (a). From Budrikis and
Zapperi, 2013. (c) Under extremal dynamics for systems of different sizes L. The exponent reported for the unscaled curves (inset) is
τ ≃ 1.2, while the rescaled curve shown in the main plot was fitted with τ ≃ 1.36. From Jie Lin et al., 2014.

TABLE III. List of values measured for the critical exponents characterizing avalanches in EPM. Only values measured in EPMwith extremal
dynamics (or akin) and a quadrupolar propagator are reported. Mean-field values are added for comparison.

Exponent τ τ0 df θ γ
Expression PðSÞ ∼ S−τ PðTÞ ∼ T−τ0 Scut ∼ Ldf pðxÞ ¼ xθ with x≡ σy − σ S ∼ Tγ

2D EPM

Talamali et al. (2011) (spring coupling k → 0) 1.25� 0.05 � � � ∼1 � � � � � �
Budrikis and Zapperi (2013)

(spring coupling k≳ 0.1)
1.364� 0.005 1.5� 0.09 ≳1a � � � ∼1.85

Jie Lin et al. (2014) (extremal) ∼1.2 ∼1.6 1.10� 0.04b ∼0.50 � � �
Liu et al. (2016) (_γ → 0) 1.28� 0.05 1.41� 0.04 0.90� 0.07 0.52� 0.03 1.58� 0.07
Budrikis et al. (2017) (adiabatic loading) 1.280� 0.003 � � � � � � 0.354� 0.004 1.8� 0.1

3D EPM
Jie Lin et al. (2014) (extremal) ∼1.3 ∼1.9 1.50� 0.05b ∼0.28 � � �
Liu et al. (2016) (_γ → 0) 1.25� 0.05 1.44� 0.04 1.3� 0.1 0.37� 0.05 1.58� 0.05
Budrikis et al. (2017) (adiabatic loading) 1.280� 0.003 � � � � � � 0.354� 0.004 1.8� 0.1

Mean field
Fisher et al. (1997) (depinning) 3=2 2 � � � 0 2
Jagla (2015) (Hébraud-Lequeux like) 1.1–1.2 � � � � � � 1 � � �

aEstimated from the shape of the avalanches.
bObtained using the τ exponents from the random-kick protocol.
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somewhat from the measurement of Talamali et al. (2011),
presumably because larger spring constants k were used. Still,
they definitely deviate from the mean-field value too. Budrikis
and Zapperi also considered the avalanche durations T, mea-
sured in algorithmic steps and fitted them to the power law
PðTÞ ∝ T−τ0 , with τ0 ≃ 1.5. Joining these researchers, Sandfeld
et al. (2015) tested the robustness of these avalanche statistics to
(i) variations of the boundaries, (ii) different computations of
stress redistribution, and (iii) finite-size effects. To do so, they
used an eigenstrain-based finite-element method with different
types of meshgrids and found that these variations have no
influence on the critical exponents.
J. Lin et al. (2014) implemented two slightly different

automata based on the Hébraud-Lequeux model but
embedded in finite dimensions. In stress-controlled simula-
tions at Σ ∼ Σy, in which sites are randomly kicked to trigger
an avalanche, they found an exponent τ larger than that of the
quasistatic simulations described above: They measured τ ≈
1.42 in both model variants. This may be a consequence of the
random-kick protocol [see Sec. VII.B and Jagla (2015)]. Yet,
later on, Jie Lin et al. (2014) reported τ ≃ 1.36 in 2D and
τ ≃ 1.43 in 3D, for the same protocol. Besides, power-law
distributions were reported for the avalanche durations, with
exponents τ0 ≃ 1.6 in 2D and 1.9 in 3D. In parallel, extremal
dynamics were implemented and yielded smaller exponents
for the same models, τ ≃ 1.2 in 2D and τ ≃ 1.3 in 3D, closer to
previous quasistatic approaches, even though not devoid of
finite-size effects.

2. Connection with other critical exponents

A discussion on the density of zones close to yielding and
its connection with the critical exponents was given by J. Lin
et al. (2014). Denoting x≡ σy − σ as the distance to the
threshold of local stresses, a stark contrast was emphasized
between depinninglike models, with only positive stress
increments and pðxÞ ∼ x0 for small x, and EPM, where a
pseudogap emerges at small x, viz., pðxÞ ∼ xθ with θ > 0. In
the stress-controlled simulations of J. Lin et al. (2014) with
randomly kicked sites, identical values of θ were obtained in
two variants of the model embedded in 2D (θ ≃ 0.6) and 3D
(θ ≃ 0.4), as displayed in Figs. 17(a) and 17(b), whereas the

stress-strain curves differed (see Table III for the slightly
smaller values of θ measured using extremal dynamics).
Shortly afterward, Jie Lin et al. (2014) proposed to link pðxÞ

with PðSÞ, in a scaling description of the yielding transition.
Their scaling argument can be summarized as follows. Starting
from Eq. (32), one obtains hΔσi ∝ Ldfð2−τÞ−d. Now, in a
stationary situation, on average this stress drop must balance
the stress increase that is applied to trigger an avalanche. Among
the Ld sites, the one with the smallest x, xmin, will start the
avalanche, so Δσ ∝ xmin. If pðxÞ ∼ xθ, then xmin ∝ L−d=ðθþ1Þ.
Identifying the two expressions of Δσ leads to

τ ¼ 2 −
θ

θ þ 1

d
df

; ð34Þ

which is supported by their EPM simulations (notably with the
random-kick protocol). In this regard, the discrepancy was once
again underscored between the depinning transition (with fractal
dimensions df ≥ d typically, due to the compactness of the
avalanches, and a velocity-force exponent β ≤ 1) and the
yielding transition [with typically df < d and a rheological
exponent β ≥ 1 in Eq. (30)]. Generalized scaling relations
encompassing both transitions were put forward [see Jie Lin
et al. (2014)].

3. At finite strain rates

Seeking to narrow the gap between experiments and EPM,
Liu et al. (2016) analyzed the EPM stress signal with methods
mimicking the experimental ones and studied the effect of
varying the applied shear rate _γ. At very low _γ, avalanches are
power-law distributed with an exponent τ ≃ 1.28 in 2D and
τ ≃ 1.25 in 3D, cut off by finite-size effects with df ¼ 0.90
and 1.3, respectively. These results coincide well with MD
simulations in the quasistatic limit and support the nascent
convergence toward an avalanche size exponent τ ≃ 1.25 in
2D or 3D EPM, deviating from the depinning mean-field
value 3=2. Much more tentatively, there might be a downward
trend of τ with increasing dimensions, which would be
compatible with Jagla (2015)’s suggestion τ ≃ 1.1–1.2 above
the upper critical dimension.
Interestingly, Liu et al. (2016) observed a systematic

crossover toward higher values of τ when the shear rate is

FIG. 17. Probability densities PðxÞ of the distances x to the yield threshold in EPM: (a) In 2D and (b) in 3D systems, whose size L is
varied. From Jie Lin et al., 2014. (c) In a 3D system, as the shear rate is varied. The inset shows the rescaled distribution of avalanche
sizes. From Liu et al., 2016.
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increased, so that τ reaches τ ≃ 1.5 at intermediate _γ, before
entering the high-_γ regime of pure viscous flow [see Fig. 17
(c)]. At the same time, the external driving starts to dominate
over the signed stress fluctuations originating from mechani-
cal noise. This nudges the system into a depinninglike
scenario, with an exponent θ in pðxÞ ∼ xθ decreasing toward
zero as _γ reaches finite values both in 2D and 3D. Note that the
same effect occurs in a stress-controlled system, as soon as the
imposed stress gets perceptibly lower than the yield stress
(Budrikis et al., 2017). Similarly to pulling the system with a
stiff spring (large k), increasing the shear rate generates
simultaneous uncorrelated plastic activity in the system,
which leads to larger τ, closer to 1.5. Overall, applying a
finite shear rate does not destroy the criticality of avalanche
statistics; but it affects the critical exponents and eventually
produces more trivial effective statistics.

4. Insensitivity to EPM simplifications and settings

At present, technical difficulties still hamper a clear
discrimination between theoretical predictions through experi-
ments. The simplifications used in the models thus need to
be carefully examined. Budrikis et al. (2017) investigated
the effect of the scalar approximation of the stress (see
Sec. III.C.2) by comparing the results of a scalar model to
those of a finite-element-based fully tensorial model, under
different deformation protocols (uniaxial tension, biaxial
deformation, pure shear, simple shear) and in both 2D and
3D. Irrespective of the dimension, and most of the loading and
boundary conditions, a universal scaling function is observed
for the avalanche distribution, shown in Fig. 18 and coinciding
with the proposal of Le Doussal and Wiese (2012)

PðSÞ ¼ A
2

ffiffiffi
π

p S−τ exp

�
C

ffiffiffi
u

p
−
B
4
uδ
�
; ð35Þ

with an exponent τ ¼ 1.280� 0.003 [note the perfect agree-
ment with the results of Liu et al. (2016)], u≡ S=Smax and
Smax ∝ ðΣc − ΣÞ−1=σ (with 1=σ ≃ 1.95). The constants A, B,
and C are functions of τ as is δ ¼ 2ð1 − τ=3Þ.

Heterogeneous deformations, such as bending and inden-
tation, were also considered and yielded similar values for τ.
Nevertheless, the cutoff value is different from the homo-
geneous cases. This is not unexpected: An independent length
scale enters the problem and the yield stress Σy used to
measure exponent σ is not universal. Also, while the observed
τ value was nearly identical in the different (homogeneous)
loading cases when treated separately, some range of variation
was observed for exponent σ ∈ ½1.53; 2.05�. Finally, the
average avalanche size was related to its duration T via
S ∼ Tγ with γ ¼ 1.8� 0.1.
A possible explanation for the insensitivity of avalanche

statistics to the aforementioned aspects may lie with the quasi-
1D geometry of the avalanches, resulting from the quadru-
polar propagator. Most cooperative phenomena thus appear to
be controlled by the stress component along one direction, and
a scalar description may be sufficient in this respect. [Scalar
models do indeed reproduce the same power-law exponent
and evidence a fractal dimension df ≈ 1 in 2D and 3D, as
shown in Fig. 18(c).]

5. Effects of inertia

Without the assumption of instantaneous stress redistrib-
ution, stress waves are expected to propagate throughout the
system (see Sec. IV.D and Fig. 9), in a ballistic way or a
diffusive one depending on the damping. This is not described
by the traditional elastic propagator G of Eq. (17), but finite-
element-based EPM have recently made it possible to account
for inertial effects (Karimi and Barrat, 2016). Karimi, Ferrero,
and Barrat (2017) exploited this type of model to study the
claim of Salerno and Robbins (2013), based on extensive
atomistic simulations in the quasistatic regime, that inertial
effects drive the system into a new (underdamped) class of
universality. At odds with this claim, but consistently with
results of sandpile models (Prado and Olami, 1992; Khfifi and
Loulidi, 2008) and seismic fault models (Carlson and Langer,
1989), they found that inertial effects destroy the universal,
scale-free avalanche statistics. A characteristic hump (or
secondary peak) of large events emerges in the avalanche

FIG. 18. Avalanche size distributions PðSÞ in EPM. (a) Dependence on the loading conditions and the external stress Σ, as computed in
an EPM based on a finite-element routine. The values in the legend refer to the ratio Σ=Σy. (b) The data are collapsed using exponents
τ ≃ 1.280 and 1=σ ≃ 1.95 and Eq. (35). From Budrikis et al., 2017. (c) Rescaled distributions LdfτPS vs S=Ldf in 2D, compared to MD
simulations, in the quasistatic limit. The fitted exponents are τ ≃ 1.28 and df ≃ 0.90. The inset shows the raw data. From Liu et al., 2016.
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size distribution PðSÞ, similarly to the findings of Fisher et al.
(1997). In the work of Karimi, Ferrero, and Barrat (2017),
both the relative weight and the scaling with the system size of
this peak are controlled by the damping coefficient Γ, a
dimensionless parameter that quantifies the relative impact of
dissipation. The effective fractal dimension d0fðΓÞ of ava-
lanches, albeit dependent on the damping, satisfies a scaling
relation with the exponent θ0ðΓÞ defined by pðxÞ ∼ xθ

0ðΓÞ.
These results are compatible with the phenomenological

description of inertial effects of Papanikolaou (2016), which
are accounted for by a temporary vanishing of elasticity after
local plastic events (plastic delay): Simulations of the model
showed the appearance of a hump of large events in PðSÞ, an
increase of the exponent τ, as well as the emergence of
dynamical oscillations, accompanied with strain localization.

6. Avalanche shapes

In addition to their duration and size, further insight has
been gained into the avalanche dynamics by considering their
average temporal signal, i.e., the “shape” of the bursts. This
observable can be determined experimentally with higher
quality (Antonaglia et al., 2014; Denisov et al., 2017).
Avalanche shapes have thus been estimated for various
systems displaying crackling noise; examples include earth-
quakes (Mehta, Dahmen, and Ben-Zion, 2006), plastically
deforming crystals (Laurson et al., 2013), and the Barkhausen
noise (Mehta et al., 2002; Papanikolaou et al., 2011).
In the latter example, the magnetization of a film mostly

changes via the motion of domain walls4; its rate of change is
recorded as a time series VðtÞ. When the film thickness, which
controls the long-range dipolar interactions, is such that mean
field is valid, the average shape VðtjTÞ of avalanches of

duration T is well described in the scaling limit by an inverted
parabola (Papanikolaou et al., 2011), viz.,

VðtjTÞ ∝ Tt̃ð1 − t̃Þ; where t̃≡ t=T: ð36Þ

Since oftentimes mean field does not hold, a generalized
functional form was proposed by Laurson et al. (2013):

VðtjTÞ ∝ Tγ−1½t̃ð1 − t̃Þ�γ−1½1 − aðt̃ − 1
2
Þ�: ð37Þ

Here the shape factor γ is also the exponent that controls the
scaling between size and duration (S ∼ Tγ), since SðTÞ is
nothing but the integral

R
T
0 VðtjTÞdt. γ and the parameter a

control the asymmetry (a > 0 refers to positive skewness);
the mean-field formula is recovered for γ ¼ 2 and a ¼ 0. As
the interaction range increases from local to infinite, the
university-class parameters evolve from γ ≃ 1.56, a ≃ 0.081 to
γ ≃ 2.0, a ≃ 0.01. Dobrinevski, Doussal, and Wiese (2014)
provided an analytic formalization for this expression as a
one-loop correction around the upper critical dimension; these
authors also computed the shape of avalanches of fixed size S.
The need for this generalization beyond mean field was
confirmed by Durin et al. (2016).
In the deformation of amorphous solids, the inverted-

parabola shape predicted by mean field was shown to provide
a satisfactory description of some experiments, e.g., in
metallic glasses (Antonaglia et al., 2014) and granular matter
(Denisov et al., 2017), even though the agreement is not
perfect [see Fig. 19(a)]. On the contrary, the granular experi-
ments of Barés et al. (2017) point to a clear asymmetry in the
shape of long avalanches.
On the EPM side, Liu et al. (2016) studied the effect of

finite shear rates _γ on the avalanche shape. By sorting the
avalanches according to their duration T, at fixed _γ, they found
that short avalanches are noticeably more asymmetric and
display faster velocities at earlier times [positive skewness, see

FIG. 19. Avalanche shapes in experiments and EPM. (a) Experimental avalanche shapes for avalanches of fixed (top) duration and
fixed (bottom) sizes in bulk metallic glasses (BMG) and a granular system. From Denisov et al., 2017. (b) Avalanche shapes at different
fixed durations in a strain-controlled EPM simulation at fixed _γ. From Liu et al., 2016. (c) Avalanche shapes at fixed sizes. From
Budrikis et al., 2017.

4Rigorously speaking, this is true in the central part of the
hysteresis loop near the coercive field.
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Fig. 19(b)]. For larger T, it is argued that avalanches most
likely result from the superposition of uncorrelated activity,
which leads to more mean-field-like results. This would
explain the gradually more symmetric shapes observed for
increasing T [see the evolution of the asymmetry parameter in
the inset of Fig. 19(b)]. In the quasistatic limit, asymmetric
stress-drop shapes are then expected. Indeed, at low _γ, fits with
Eq. (37) give a non-mean-field value γ ≃ 1.58 in both 2D and
3D. This feature gradually disappears at larger _γ. Budrikis
et al. (2017) extended the study to different loading con-
ditions, in 2D and 3D, and measured values for γ in the range
[1.74, 1.87]. Contrary to the findings of Liu et al. (2016) with
a scalar EPM, they saw clearly asymmetric avalanches with
positive skewness only in the bending and indentation pro-
tocols, and not in the tension and shear simulations or at least
not visibly. In addition, the shapes obtained by sorting the
avalanches according to their sizes [see Fig. 19(c)] collapsed
well with the scaling form proposed by Dobrinevski, Doussal,
and Wiese (2014), with a shape exponent γ ≃ 1.8 (note the
difference with respect to the mean-field value γ ¼ 2).

VIII. STEADY-STATE BULK RHEOLOGY

In this section we redirect the focus to materials that flow
rather than fail. This is the relevant framework for foams, dense
emulsions, colloidal suspensions, and various other soft glassy
materials exhibiting a yield stress. Experimentally, in the
absence of shear banding, their flow curve (which characterizes
the steady-state macroscopic rheology) is generally well
described by the Herschel-Bulkley law [Eq. (1)] Σ ¼ Σyþ
A_γn. The exponent n typically lies in the range 0.2–0.8, often
around 0.5, perhaps closer to 0.3 for foams (Bécu, Manneville,
and Colin, 2006; Jop et al., 2012; Bonn et al., 2017). Such a
nontrivial dependence on the shear rate _γ proves that the
rheology of these materials cannot be understood as a mere
sequence of _γ-independent elastic loading phases interspersed
with _γ-independent plastic events (Puglisi and Truskinovsky,
2005). Instead, the violation of the quasistatic conditions of
Eq. (8) at finite shear rates implies that the specific dynamical
rules implemented in EPM will affect the rheology (see

Fig. 20), at odds with the situation observed in the quasistatic
limit. In particular, we will see that the local yielding and
healing dynamics (notably via rules R2 and R4 in Sec. III.A)
play a crucial role in determining the flow properties at finite _γ.
More generally, different flow regimes will be delineated,
depending on the material time scales at play.

A. Activation-based (glassy) rheology versus dissipation-based
(jammed) rheology

The rheology of glasses was long thought to be tightly
connected with that of jammed systems such as foams (Liu and
Nagel, 1998). But the contrast between the role played by
thermal activation in the former and the importance of
dissipative processes for the latter has pointed to prominent
differences. The particle-based simulations of Ikeda, Berthier,
and Sollich (2012, 2013), in particular, contributed to disen-
tangling glassy (thermal) and jammed (athermal) rheologies.
They identified the time scales of the relevant processes at play,
namely, Brownian motion and dissipation, in addition to the
driving, and were able to separate the thermal rheology
associated with the former from the dissipation-based one.
As the shear rate _γ is increased, the driving starts to interrupt the
thermally triggered plastic relaxation and dissipation starts to
dominate the rheology. The idea of a transition from a thermal
to an athermal regime was bolstered by experiments on
microgel colloidal suspensions, which are impacted by thermal
fluctuations close to the transition to rigidity (glass transition),
but obey jamminglike scalings farther from the transition (Basu
et al., 2014). Already in the first EPM, the competition between
the driving and the realization of plastic events was empha-
sized. Since then, it has been implemented in different ways.
For flows dominated by thermal relaxation, it makes sense

to consider EPM of the type of Bulatov and Argon (1994a)
and Homer and Schuh (2009), as well as the SGR model of
Sollich et al. (1997) (presented in Sec. V.D.1), in which plastic
events are activated at a rate given by an Arrhenius law
[Eq. (6)]. For instance, in SGR, where the Arrhenius law is
controlled by a fixed effective temperature x, as _γ increases,
blocks can accumulate more elastic strain before a plastic

FIG. 20. Steady-state flow curves obtained in variants of Picard’s EPM. (a) Rescaled flow curves in Picard’s original EPM, for different
system sizes, in logarithmic representation. The inset shows a typical stress-strain curve at low shear rate, starting from a stress-free
configuration. From Picard et al., 2005. (b) Nonmonotonic flow curve obtained in Picard’s model with a long local restructuring time τres,
plotted with semilogarithmic axes. Inset: Average local shear rate in the flowing regions. For _γ < _γc a mechanical instability leads to shear
banding,withacoexistenceofa flowingbandandastatic region.FromMartens,Bocquet, andBarrat, 2012. (c)Flowcurveobtained inavariant
of Picard’s model. The solid line is a fit to a Herschel-Bulkley equation, with exponent n ¼ 0.56. Inset: Same data, in linear representation.
From Nicolas, Martens, and Barrat, 2014.
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event is activated. The macroscopic stress thus increases with
_γ. It does so in a nonuniversal way: The flow curve at low _γ
follows a Herschel-Bulkley law [Eq. (1)] with exponent 1 − x
for x < 1.
Most other EPM dedicated to the study of steady-state

rheology consider systems close to the athermal regime, in
particular, foams and dense emulsions of large droplets, which
in practice undergo negligible thermal fluctuations. This will
be the focus of the rest of this section. These athermal systems
will depart from the quasistatic conditions of Eq. (8) because
the driving time scale γy=_γ competes with either the time scale
τpl of individual rearrangements, or, at lower shear rates, the
duration τav of avalanches. A rough upper bound for the latter
is given by the propagation time (if applicable) across the
system of linear size L, viz., τav ∼ Lz, where the exponent z
depends on the damping regime. Concretely, at vanishing
shear rate, the flow consists of well-separated avalanches,
some of which span the whole system. These avalanches are
gradually perturbed and cut off as _γ is increased, while higher
shear rates further add more local corrections. The external
driving thus hampers the relaxation of the system at increas-
ingly local scales as it gets faster. Therefore, at least two
scaling regimes could be seen as _γ is varied (Bonn et al.,
2017), and, indeed, two regimes were observed by Liu et al.
(2016) in their EPM simulations, as shown in Fig. 21(a). We
will discuss these regimes separately.

B. Athermal rheology in the limit of low shear rates

At vanishingly low shear rates _γ the nonlinear response of
athermal materials is anchored in the critical dynamics
discussed in Sec. VII. Accordingly, there have been many
recent endeavors to deduce the Herschel-Bulkley exponent n
(which controls the variations of Σ when _γ → 0) from other
critical properties.
To start with, the phenomenological mean-field model

proposed by Hébraud and Lequeux (1998) and discussed in
Sec. V.B.2 leads to n ¼ 1=2, a typical experimental value.
Recall that, in this model, the local stresses in the system drift

and diffuse due to endogenous Gaussian white noise and yield
at a finite rate τ−1c above a local threshold σy. The growth of
the macroscopic stress with _γ mirrors the associated decrease
of the relative yielding rate ð_γτcÞ−1, which makes the
boundary σ ¼ σy more permeable. The result n ¼ 1=2 is
robust to several variations of the yielding rules (Olivier, 2010;
Olivier and Renardy, 2011), notably the inclusion of a
distribution of yield stresses (Agoritsas et al., 2015), and
tensorial generalizations of the model for multidimensional
flows (Olivier and Renardy, 2013). On the other hand, it varies
if a shear-rate dependence is introduced in the elastic modulus
or the local restructuring time [Fig. 21(b)] (Agoritsas and
Martens, 2017).
Although this model can fit several aspects of athermal

rheology, the assumption of Gaussian mechanical noise
fluctuations has been debated. Indeed, the distribution of
stress releases due to a single plastic event is heavy tailed,
w1ðδζÞ ∼ jδζj−1−k with k ¼ 1 for the elastic propagator (see
Sec. V.C.3). Accordingly, more cautious approximations have
been propounded. Assuming that the stress received by a
block is a sum of random stress increments drawn from w1 in a
variant of the Hébraud-Lequeux model, Lin and Wyart (2018)
showed that the Herschel-Bulkley exponent n, while equal to
1=2 for any k > 2, rises to 1=k for mechanical noises
characterized by k ∈ ½1; 2�. For the physically relevant value
k ¼ 1, an exponent n ¼ 1 is thus found up to logarithmic
corrections. To derive these results, the authors perturbed the
density of stabilities PðxÞ around its critical state at the yield
stress (x ¼ jσj − σy is the local distance to yield). However,
the mean-field values thus obtained are larger than those
measured in the corresponding spatially resolved EPM in 2D
(n ≃ 0.66) and 3D (n ≃ 0.72), although the discrepancy seems
to shrink as the dimensionality is increased.
Besides, Lin and Wyart (2018) argued that the flow

exponent β ¼ 1=n should obey the hyperscaling relation

β ¼ 1þ z
d − df

; ð38Þ

FIG. 21. Dependence of steady-state EPM flow curves on the shear rate _γ. (a) The difference Δσ0 ≡ Σ − Σy (circles) between the
steady-state stress Σ and Σy as a function of _γ, in the model of Nicolas, Martens, and Barrat (2014). From Liu et al., 2016. The data
suggest two different scaling regimes: Close to criticality the Herschel-Bulkley exponent is n ¼ 0.65, whereas at high _γ n tends toward
1=2. (b) Flow curves for the same EPM at relatively high _γ with a shear-rate-dependent local shear modulus G0ð_γÞ ∼ _γψ1 and plastic
event “duration” γcð_γÞ ∼ _γ−ψ2 . These dependences introduce corrections to the Herschel-Bulkley exponent n ¼ ð1þ ψ1 − ψ2Þ=2 (see
the horizontal axis on the plot). From Agoritsas and Martens, 2017. (c) Flow curves obtained from stress-imposed EPM simulations in
2D. The dashed line is a fit to a Herschel-Bulkley law with n ≈ 0.66. From Jie Lin et al., 2014.
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where the exponent z relating the duration and the size of
avalanches (T ∼ Lz) is claimed to be close to 1 and the fractal
dimension df of avalanches can be expressed with Eq. (34)
[also see Jie Lin et al. (2014)]. Equation (38) yields flow
exponents β somewhat larger than typical experimental values
and than those actually measured in EPM with instantaneous
elastic propagation [Eq. (17)]; it was claimed that the differ-
ence originates from a better account of the finite speed of
shear waves.
So far we have seen that, within mean-field models, the

dynamics of shear wave propagation and the heavy-tailed
statistics of mechanical noise fluctuations may affect the low-
shear-rate rheology, and that the finite dimension of space
introduces deviations from mean-field predictions due to
correlations in the noise. Another ingredient of the models
is worth studying: the way blocks soften when they are
destabilized—or, in other words, the plastic disorder potential
Vðe3Þ of Eq. (22), where e3 ∼ γ is the shear strain. We recall
that binary EPM rely on linear elasticity [Vðe3Þ ∝ e23] within
the elastic regime, which is equivalent to V being a concat-
enation of parabolas joined by cusps. For the problem of
elastic line depinning (Sec. X.B), it is known that such a cuspy
potential will not give the same results as a smooth potential in
mean field, because destabilization is very slow atop a smooth
hill (which has a flat crest), whereas it is instantaneous at a
cusp. The discrepancy vanishes in finite dimensions, because
sites are destabilized by abrupt kicks anyway.
Aguirre and Jagla (2018) suggested that the situation differs

widely for the yielding transition. Within a 2D continuous
approach based on a plastic disorder potential [see Sec. IV.E],
they separated the mean background of the mechanical noise
from its zero-average fluctuations δσðtÞ and arrived at an
equation of motion which schematically reads

η_e3 ¼ −V 0ðe3Þ þ k½wðtÞ − e3� þ δσðtÞ; ð39Þ

where η is a viscosity and k > 0 can be interpreted as the
constant of a spring connecting the current strain e3 to a driven
“wall” at wðtÞ. This equation can be compared with Eq. (23),
but it should be noted that the fluctuations δσ are here
cumulative, i.e., integrated since t ¼ 0. As mentioned in
Sec. V.C.3, Aguirre and Jagla (2018) argued that spatial
correlations (avalanches) affect the distribution of these
fluctuations WðδσÞ ∼ δσ−1−k; the value k ¼ 1 expected for
uncorrelated (and unbounded) stress releases should thus be
substituted by k ¼ 1.5 if one considers objects as extended as
avalanches. Once again, we should note that this result is
heavily impacted by the nonpositiveness of the elastic
propagator, which undermines purely mean-field arguments.
Equation (39) describes the motion of a particle pulled by a

spring on a corrugated potential; it is a stochastic Prandtl-
Tomlinson equation. This model was worked out by Jagla
(2018), who obtained the following scaling relation:

β ¼ k −
1

α
þ 1; ð40Þ

where α ¼ 1 for the cuspy parabolic potentials V and α ¼ 2 if
V is smooth. We also recall the speculation k ¼ θ þ 1 from
Sec. V.C.3. In the case of parabolic potentials, the proposed

scaling relation is obeyed by the values of k, θ, and β ≃ 1.51
measured in their simulations, as well as those found by Liu et
al. (2016) in 2D [β ≃ 1.54ð2Þ] and 3D. Contrary to θ or k, the
flow exponent β is thus found to explicitly depend on α, i.e.,
the shape of the potential (Jagla, 2017a). The scaling relation
(40) seems to involve fewer parameters of the problem than
Eq. (38); one should nonetheless bear in mind that in
depinning problems the relevant effective potential V entering
mean-field reasoning nontrivially depends on different proper-
ties of the system.
Besides the choice of a specific potential shape, an alter-

native way to model the different destabilization speeds is to
introduce stress-dependent transition rates (Jagla, 2017b).
This, too, yields diverse exponents β. In this regard, note
that a dependence of the flow exponent on the specific form of
the viscous dissipation was reported in particle-based simu-
lations (Roy, Karimi, and Maloney, 2015).
Despite promising recent works in this direction, no firm

theoretical consensus has been reached yet regarding the flow
exponent β and how universal it is. This exponent clearly has a
value distinct from that encountered in elastic depinning
problem and, as discussed at length in Sec. VII, the mechani-
cal noise fluctuations induced by the alternate sign of the
elastic propagator most probably play a prominent role in
these deviations close to criticality. As one departs from the
low-shear-rate limit, among other corrections, the mechanical
noise properties are expected to vary. Uncorrelated events will
start to occur simultaneously, presumably leading to a more
Gaussian noise distribution (see Table II), and scalings
different from those obtained at _γ → 0 may be expected.

C. Athermal rheology at finite shear rates

Rheology is concerned not only with the onset of flow at
_γ → 0, but with the whole range of _γ > 0. The regime of finite
driving rates was already targeted by early EPM, including
that of Picard et al. (2005) (see Sec. V.A). In this athermal
model, elastoplastic blocks can yield only when their stress
exceeds a uniform local threshold σy. Yielding is then a
stochastic local process and so is the subsequent elastic
recovery; these processes have fixed rates τ−1 and τ−1res,
respectively [see Eq. (24)]. Figure 20(a) shows the resulting
monotonic flow curve for τ ¼ τres ¼ 1. Its shape broadly
matches that of many experimental flow curves, but more
quantitatively the simulated rheology does not follow a
Herschel-Bulkley law: It crosses over to a Newtonian regime
at stresses Σ only slightly above the yield stress Σy. This is
due to the postulated elastic stress accumulation above the
threshold σy for a fixed duration τ on average.
These seemingly oversimplified yielding and healing rules

have been refined since then. To make the picture more
realistic, Nicolas, Martens, and Barrat (2014) opted for an
instantaneous triggering of plastic events at σy; they also
introduced a yield-stress distribution. In their model, the event
lasts for a fixed local strain “duration” γc. Therefore, the local
dissipation process can be disrupted by the external driving,
which contributes to the local strain. This mimics the fact that,
contrary to any problem of depinning on a fixed substrate, a
deforming region in a solid will not wade through the same
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potential landscape at different driving rates. The ensuing flow
curves are more compatible with experimental ones and are
well described by a Herschel-Bulkley law, as shown in Fig. 20
(c). Liu et al. (2016) noticed that this model actually exhibits a
transition from a low-shear-rate regime, characterized by a
Herschel-Bulkley exponent n ≃ 0.65, to a regime with an
exponent n ≃ 0.5 over the range Σ ∈ ½1.06; 1.6� in units of Σy,
beyond which further corrections to scaling set in.
It is worth noting that many experimental soft systems

exhibit a qualitative change of their flow behavior when the
adhesion properties of their constituents are modified, with
higher propensity to shear banding when an emulsion is
loaded with bentonite, creating attracting links between
droplets (Ragouilliaux et al., 2007) [also see Bécu,
Manneville, and Colin (2006)]. This discovery prompted
the idea that there exist different classes of jammed systems
depending on microscopic interactions. Coussot and Ovarlez
(2010) suggested that adhesion results in longer local restruc-
turing events. The EPM-based studies of Martens, Bocquet,
and Barrat (2012) confirmed that long plastic events lead to a
nonmonotonic constitutive curve and the formation of per-
manent shear bands in the unstable parts of the flow curve, as
discussed in detail in Sec. VI.C and shown in Fig. 20(b).
Thus, EPM and experiments highlight the sensitivity of the

finite-shear-rate rheology to the specific microscopic inter-
actions between particles or dynamical rules at play. On the
other hand, quite interestingly, this finite-shear-rate regime
appears to be amenable to mean-field approaches oblivious to
correlations in the flow. While the latter are pivotal for
avalanches, stronger driving decorrelates plastic events. The
mechanical noise felt in a given region, then, results from the
superposition of a large number of events and its distribution
acquires a Gaussian shape (Liu, 2016). Concomitantly, as
noted in Sec. V.C.1, mechanical noise fluctuations play a less
important role. As a result, one should not be particularly
surprised that Martens, Bocquet, and Barrat (2012) succeeded
in reproducing the finite-shear-rate rheology of the model of
Picard et al. (2005) with a mean-field approach discarding
fluctuations. In the same vein, we remark that overall flow
curves are only moderately altered by finite-size effects,
whether it be in particle-based (Roy, Karimi, and Maloney,
2015) or EPM computations [see Fig. 20(a)].

D. Strain-driven versus stress-driven protocols

Most EPM works consider strain-controlled protocols
(defined in Sec. III.C). Some of the counterexamples are
given by Jie Lin et al. (2014) [see Fig. 21(c)] and the recent
work by Jagla (2017a). Another example of stress-imposed
modeling is the numerical work of Liu (2016). In a section
dedicated to the transient dynamics prior to fluidization, a
stress-controlled EPM is introduced. To this end, the internal
stress resulting from plastic events is separated from the
externally applied stress field, which can be chosen arbitrarily.
In this type of protocol, depending on the initial condition,

two types of stationary solutions are obtained, namely, steady
flow and a dynamically frozen state. Under athermal con-
ditions the system may always reach a configuration with
large local yield stresses, in which the dynamics gets stuck,
even if the applied stress Σ is larger than the dynamical yield

stress Σy. The smaller Σ and the smaller the system size, the
more likely becomes the visiting of such an absorbing state.
But if a flowing stationary state is reached for a given time and
granted that the mechanical properties do not show history
dependence (Narayanan, Mugele, and Duits, 2017), strain-
controlled and stress-controlled protocols yield identical flow
curves (Liu, 2016).

IX. RELAXATION, AGING, AND CREEP PHENOMENA

So far EPM have mostly been exploited to investigate the
macroscopic flow behavior and flow profiles (Sec. VI),
characterize stationary flow (Sec. VIII), or study fluctuations
and correlations in the steady flow close to criticality, where
one finds scale-free avalanches (Sec. VII). Still, some works,
however few, are concerned with relaxation, aging, and creep
phenomena. This section is dedicated to both the dynamics in
the temperature assisted relaxation (aging) of disordered
systems and to the transient dynamics under loading (creep),
prior to yielding or complete arrest. The latter phenomenon
can be either an athermal process, provided that the stress load
is above, but close to, the yielding point, or thermally assisted
creep, in response to a load below the dynamical yield stress.

A. Relaxation and aging

A striking feature in the theory of viscous (glass-forming)
liquids is their response to an external perturbation, close to
the glass transition: They do not exhibit an exponential
structural relaxation, with a simple time scale, but a stretched
exponential relaxation. More specifically this means that the
temporal behavior of the response function RðtÞ [e.g., the
response in stress ΣðtÞ to the application of a strain step at time
t ¼ 0] can often be described by the so-called Kohlrausch-
Williams-Watt (KWW) function

RðtÞ ∝ exp

�
−
�
t
τ

�
b


; with RðtÞ≡ ΣðtÞ − Σð∞Þ

Σð0Þ − Σð∞Þ : ð41Þ

In this expression, b typically takes a value between 0 and 1,
which stretches the exponential relaxation. This was ascribed
to the formation of dynamical heterogeneities close to the
glass transition, thus producing separately relaxing domains
and leading to a broad distribution of relaxation times
(Macedo and Napolitano, 1967), hence a stretched exponen-
tial relaxation (Campbell et al., 1988; Bouchaud, 2008).
With this picture in mind, it came as a surprise that a series

of dynamical light-scattering measurements on colloidal gels
showed the opposite behavior, namely, a compressed expo-
nential structural relaxation, characterized by an exponent
b > 1 (Cipelletti et al., 2000; Ramos and Cipelletti, 2001;
Cipelletti et al., 2003). More recent experiments using
x-ray photon correlation spectroscopy have found that this
feature is not specific to gels (Orsi et al., 2012), but also arises
in supercooled liquids (Caronna et al., 2008), colloidal
suspensions (Angelini et al., 2013), and even in hard amor-
phous materials such as metallic glasses (Ruta et al., 2012,
2013). Although this anomalous relaxation was observed
ubiquitously in experimental systems, it took more than a
decade to reproduce dynamics with compressed exponential
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decay in molecular-scale simulations, until Bouzid et al.
(2017) and Chaudhuri and Berthier (2017) eventually reported
such dynamics in microscopic models for gels. The main
obstacle had been to probe the right parameter range, notably
with respect to temperature and also length scales.
From the outset, Cipelletti et al. (2000) suggested that the

faster than exponential relaxation stems from the elastic
deformation fields generated by local relaxation events.
Shortly afterward Bouchaud and Pitard (2001) put forward
a mean-field model based on the assumption of elasticity to
explain this anomalous relaxation. In case this explanation is
correct, EPM should be the ideal tool to test it (Ferrero,
Martens, and Barrat, 2014). In a quiescent system, the driving
term vanishes in Eq. (5), which turns into

_σiðtÞ ¼
X
j

2μGij _ϵ
pl
j ðtÞ;

where ϵplj ðtÞ denotes the local plastic deformation at site j and
the other notations were defined below Eq. (5). As before, this
equation describes the response of the surrounding medium to
local relaxation events. Here only thermally activated proc-
esses are relevant, and their modeling is inspired by the trap
model of Denny, Reichman, and Bouchaud (2003) and the
SGR model of Sollich et al. (1997) [see Eq. (27)], with an
Arrhenius-like yielding rate for sites below the threshold, viz.,

p� ∼ exp

�
−
σ2y ∓ sgnðσÞσ2

2κT



; ð42Þ

while sites with jσj > σy yield instantaneously. In Eq. (42), the
signs correspond to the direction of the yielding event, σy is a
local yield stress, κ is a dimensional prefactor, and T the
ambient temperature.
Such models confirm the dependence of the shape param-

eter b of structural relaxation on the dimensionality of the
system, which Bouchaud and Pitard (2001) predicted to be

b ¼ 3=2 in 3D and b ¼ 2 in 2D. Moreover, in EPM insight
into the microscopic dynamics can be gained by following the
motion of tracers advected by the elastic displacement field, as
explained in Sec. V.E. This led Ferrero, Martens, and Barrat
(2014) to distinguish three dynamical regimes in 2D, namely
(I) ballistic, (II) subdiffusive, and (III) diffusive. In the ballistic
regime (see Fig. 22), compressed relaxation was found, with a
shape parameter b ≈ 2. The subdiffusive regime was ascribed
to correlations in the relaxation dynamics, a feature that has
not been reported in experiments. This disagreement can be
due either to oversimplifications of the model or to the fact
that experiments are usually performed in 3D, and not 2D.
Preliminary EPM studies in 3D observed ballistic motion at
short times, with a compressed exponent b ¼ 3=2, followed
by a diffusive regime.5

There remain many other open questions that could be
addressed by EPM. For instance the q dependence of the
experimental intermediate scattering functions Sðq; tÞ
(Cipelletti et al., 2003) cannot be captured in EPM at present,
but could be included by implementing hybrid models that
consider smaller-scale dynamics as well. Besides, the self- and
the intermediate parts of Sðq; tÞ cannot be distinguished in
EPM yet, because the tracers do not interact, but the two may
differ in reality. Other questions include the 3D dynamics and
the possibility of intermittency in time as well as spatial
correlations of the localized relaxation events.

B. Creep

Another field that has stimulated much experimental work
in recent years (Bonn et al., 2017) but few rationalization
attempts at the mesoscale is creep. The definition of creep is
somewhat ambiguous. In some contexts it may refer to
stationary motion at a vanishingly small velocity, in particular,
the creep dynamics of a driven elastic manifold over a
disordered landscape at finite temperature (Ferrero et al.,

FIG. 22. Structural relaxation in quiescent systems. (a) Diffusivity DðtÞ (i.e., mean-square displacement divided by time) of tracer
particles measured in an EPM, at four temperatures, increasing from bottom (blue) to top (black). (b) Rescaled self-part of the
intermediate scattering function Sðq; tÞ for t in the first ascending regime of DðtÞ in (a). The motion is close to ballistic (linear in time),
with τ ≈ q−1 in Eq. (41), and the form factor β ≃ 2, defined in the same equation, implies a compressed exponential relaxation. From
Ferrero, Martens, and Barrat, 2014. (c) Relaxation of thin Zr67Ni33 metallic glass ribbons with time, measured by the decay of the x-ray
photon intensity autocorrelation g2 at T ¼ 373 K, for different waiting times tw and wave vectors Q (shown in the inset). The
characteristic relaxation time τðQ; twÞ was determined by fitting R ¼ g2 − 1 to the KWW form of Eq. (41), which yielded a shape
parameter b ≃ 1.8� 0.08. From Ruta et al., 2013.

5Unpublished data of Ferrero, Martens, and Barrat (2014).
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2017), but also the flow of a granular medium subjected to a
constant stress Σ ≪ Σy supplemented with an additional small
cyclic stress modulation (Pons et al., 2016). But here we
restrict our attention to the traditional definition in material
science, namely, the slowdown of deformation prior to failure,
fluidization, or complete arrest, under load Σ. This load is
usually comparable to, or smaller, than the material yield
stress Σy and creep can in principle be both of thermal and
athermal nature.
For Σ > Σy the usual response of most dense soft glassy

materials can be separated into three regimes [in polymeric
systems, five regimes are listed by Medvedev and Caruthers
(2015)]. Primary creep corresponds to a first slowdown of the
dynamics, with a gradual decrease of the (initially high) strain
rate _γ. The deformation rate is roughly constant in the
secondary creep regime but abruptly shoots up in the tertiary
regime, which ultimately culminates in macroscopic failure
or fluidization. The measured macroscopic quantities are
usually the time-dependent _γðtÞ and the fluidization or failure
time τf (Skrzeszewska et al., 2010; Divoux, Barentin, and
Manneville, 2011a).
Creep is observed in many experimental systems, from

crystalline and amorphous solids to soft materials. In the
former materials, a power-law slowing down of the deforma-
tion rate with an exponent close to or slightly less than 2=3 is
often reported (Miguel et al., 2002), viz.,

_γðtÞ ∼ t2=3 or; equivalenty; γðtÞ ∼ t1=3:

This law is commonly called Andrade creep and hints at a
possible universality of the dynamics. However, experiments
and simulations on creep in amorphous systems have found a
variety of power-law exponents for the decay of _γðtÞ in
primary creep, ranging between −1=3 (Bauer, Oberdisse, and
Ramos, 2006) and −1.0 [the latter value corresponding to
logarithmic creep γðtÞ ∼ lnðtÞ], with a multitude of values in
between (Divoux, Barentin, and Manneville, 2011b;
Chaudhuri and Horbach, 2013; Leocmach et al., 2014;
Sentjabrskaja et al., 2015; Ballesta and Petekidis, 2016;
Landrum, Russel, and Zia, 2016). Bonn et al. (2017) exten-
sively reviewed the literature on the topic. Scaling results for
the fluidization (or failure) time τf also vary and basically fall
into two classes. Among other works, Divoux, Barentin, and

Manneville (2011b) found a power-law scaling of τf, defined
as the time to reach a homogeneous stationary flow, viz.,
τf ∼ ðΣy − ΣÞ−β, where β varies between 4 and 6. On the other
hand, other works defined τf as the duration of the rapid
increase of _γðtÞ at the end of secondary creep and reported
an inverse exponential dependence τf ∼ exp ðΣ0=ΣÞ, where
a characteristic stress scale Σ0 has been introduced
(Gopalakrishnan and Zukoski, 2007; Gibaud, Frelat, and
Manneville, 2010; Lindström et al., 2012).
Thus, rather than a universal behavior, experiments suggest a

multitude of dependencies, notably on the preparation protocol
prior to the application of the step stress (quench or preshear),
on temperature, age, and also on the dominant physical process
at play during creep. In some systems the initial creep regime
appears to be completely reversible and one expects the creep to
be a result of viscoelasticity. Accordingly, Jaishankar and
McKinley (2013) were able to reproduce the experimental
power-law creep in Acacia gum solutions using a modified
Maxwell model featuring fractional time derivatives. On the
other hand, on the basis of molecular dynamics simulations,
Shrivastav, Chaudhuri, and Horbach (2016) claimed that the
power-law creep in a variety of glassy systems can be related to
a percolation dynamics of mobile regions, thus plasticity,
which would render EPM particularly suitable to tackle the
open questions in the field. Among the “hot topic” highlighted
byBonn et al. (2017), the detection of precursors thatmay point
to incipient failure stands as the Atlantis in many disciplines
from material science to engineering and geology.
Using a lattice-based EPM, Bouttes and Vandembroucq

(2013) made a first endeavor to address thermal creep and
showed its strong dependence on initial conditions and the
impact of aging on the creep behavior. In the model, each site
is assigned an energy barrier E0 (renewed after every plastic
event) in the stress-free configuration, with a uniform dis-
tribution of E0. The elastic stress redistributed by plastic
events via the usual elastic propagator [Eq. (18)] biases this
potential. The plastic activation probabilities are analogous to
Eq. (42), with an Arrhenius-like law, and are resolved with a
kinetic Monte Carlo algorithm. The resulting creep dynamics
_γðtÞ, studied in pure shear, depend on the applied stress Σ and
temperature T and all display an apparent exponent suggestive
of logarithmic creep; see Fig. 23(a). Besides, the fluidization
time τf is found to decrease with increasing Σ and T.

FIG. 23. EPM characterization of creep. (a) Strain rate _ϵ as a function of time t for different applied stresses Σ in the EPM of Bouttes
and Vandembroucq (2013). (b) Nonlinear compliance J ≡ ϵ=Σ0 as a function of time for different applied stresses Σ0, obtained with the
mesoscopic model of Merabia and Detcheverry (2016). (c) Dependence of the fluidization time tf on Σ0. (b), (c) From Merabia and
Detcheverry, 2016.
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Merabia and Detcheverry (2016) explored the transient
thermal creep that occurs upon application of a stress step,
prior to steady flow, at relatively high temperatures. Within an
EPM, they also resorted to a kinetic Monte Carlo scheme and
Arrhenius-type plastic activation rates, but they used a
nonuniform distribution of intrinsic trap depths ρðE0Þ. With
an exponential distribution ρðE0Þ ∼ expð−αE0Þ (leaving aside
a lower cutoff), the model is formally similar to the SGR
model (see Sec. V.D.1), but here the temperature parameter is
interpreted as the room temperature, instead of an effective
noise temperature, and samples are assumed to be thermally
equilibrated before stress is applied (αkBT > 1). Contrary to
Bouttes and Vandembroucq (2013), the simulated creep does
not always slow down logarithmically. Instead, a power-law
decay γðtÞ ∼ tα−1 is observed, for 1 < α < 2, in agreement
with a mean-field analysis; it tends to logarithmic creep as
α → 1. Merabia and Detcheverry (2016) also considered a
Gaussian distribution ρðE0Þ. In that case, the steady-state flow
curve grows logarithmically, Σ ∼ lnð_γÞ. Regarding the creep
regime before steady state, the cumulative strain contains a
term that grows linearly in time and the fluidization time τf
follows the inverse exponential dependence on Σ [i.e.,
τf ∼ exp ðΣ0=ΣÞ, see Fig. 23(c)] found in experiments on
Carbopol black gels by Gibaud, Frelat, and Manneville
(2010). The latter result is robust to variations of the
Gaussian half-peak width.
Merabia and Detcheverry (2016) also tried different stress

propagators of short-range character, besides the quadrupolar
(Eshelby-like) one. It turns out that their mean-field predic-
tions agree best with the simulations with a short-range
propagator and an exponential distribution of energy barriers,
whereas there is a systematic offset in the creep exponent with
respect to the more realistic quadrupolar propagator. This is
somewhat counterintuitive because increasing the interaction
range usually leads to a more mean-field-like behavior.
An alternative mean-field approach is based on the

Hébraud-Lequeux model (see Sec. V.B.2). Its initial purpose
was not to describe aging, but Sollich, Olivier, and Bresch
(2017) showed that the modeled systems that age under zero
stress rapidly freeze into a preparation-dependent state; the
initial stress does not fully relax. Within the same framework,
Liu, Martens, and Barrat (2018) studied athermal creep under
a load Σ≡ hσi > Σy and they, too, reported a strong depend-
ence on the preparation. The initial distribution of stresses
Pðσ; t ¼ 0Þwas taken as a proxy for the sample age insofar as,
in real systems, aging results in stress relaxation and thus a
narrower distribution Pðσ; t ¼ 0Þ. For Σ slightly above the
yield stress and long aging, there is first a power-law decay
_γðtÞ ∼ t−μ (μ > 0) to a minimal value and then an acceleration
up to the steady-state value. This evolution is consistent with
several experimental measurements in bentonite suspensions
and colloidal hard-sphere systems. But, contrary to expect-
ations, the model exhibits a parameter-dependent (thus,
nonuniversal) power-law exponent μ. Within the model, the
first creep regime is dominated by the plastic activation of
sites that have not yielded yet, which become rarer and rarer,
until the memory of the initial configuration is lost and steady-
state fluidization is achieved. This occurs at a fluidization time
τf that decreases as Σ increases, but in a nonuniversal way.

In conclusion, these few seminal papers proposing a
mesoscopic approach to creep leave room for further explo-
ration with EPM, for instance about the universality (or not) of
the long-time response in thermal and athermal systems. It
would also be interesting to determine if precursors can be
defined to predict failure and, once the validity of EPM is
established, to upscale the mesoscopic approach into a valid
macroscopic description of the creep response.

X. RELATED TOPICS

Amorphous solids seem to form a specific class of
materials. However, the phenomenology exposed in the
previous sections suggests underlying theoretical connections
with other problems. And, indeed, EPM are related to a
spectrum of other models, notwithstanding physical
differences, in particular, in the interaction kernels. This
section reviews, and attempts to compare to EPM, some of
these related approaches, from mesoscale models for crystal-
line plasticity and elastic line depinning to fiber bundles, fuse
networks, and random spring models. The ample connections
with seismology, hinted at in Sec. IV, and tribology (Persson,
1999; Lastakowski, Géminard, and Vidal, 2015; Jagla, 2018)
—the latter being plausibly mediated by fracture mechanics
(Svetlizky and Fineberg, 2014; Svetlizky et al., 2017)—will
not be discussed here.

A. Mesoscale models of crystalline plasticity

1. Crystal plasticity

Similar to amorphous solids, driven crystalline materials
respond elastically to infinitesimal deformations, via an affine
deformation of their structure, but undergo plastic deformation
under higher loading. To be energetically favorable, plastic
deformation increments must somehow preserve the regular
stacking of atoms. The question is whether it saves energy to
jump to the closest regular structure (“switch neighbors”),
rather than to keep on with the affine deformation of the
current structure. For a perfect crystal, such a criterion would
predict an elastic limit of around 5%.
Real crystals actually have a much lower elastic limit

because they harbor structural defects, which were created
at the stage of their preparation and which play a key role in
the deformation. These defects in the regular ordering take the
form of dislocations and grain boundaries separating incom-
patible crystalline domains. Dislocations are line defects
obtained by making a half-plane cut in a perfect crystal
and mismatching the cut surfaces before stitching them back
together. Dislocations are similar to creases on a carpet in that
they can glide across the crystal (and occasionally “climb”
when they encounter a defect), thereby generating slip planes,
in the same way as creases can be pushed across the rug to
move it gradually without having to lift it as a whole. Grain
boundaries also promote deformation; in these regions, glid-
ing is facilitated by the mismatch-induced weakness of the
local bonds. On the other hand, the presence of impurities,
e.g., solute atoms in the crystal, may pin a dislocation at some
location in space until it is eventually freed by a moving
dislocation, which results in a dent in the stress versus strain
curve; this is the so-called Portevin–Le Chatelier effect.
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The stress field around a dislocation is well known (it
decays inversely proportionally to the distance to the line) and
the attractive or repulsive interactions between dislocations
can also be rigorously computed. As a matter of fact, the
elastic propagator used in EPM can be regarded as the stress
field induced by four edge dislocations whose Burgers vectors
sum to zero (Ben-Zion and Rice, 1993; Ispánovity et al., 2014;
Tüzes, Ispánovity, and Zaiser, 2017). However, owing to the
vast length scales separating the individual dislocation from
the macroscopic material, it is beneficial to coarse grain the
description to the mesoscale, by considering the dislocation
density field.

2. Models and results

Mesoscale dislocation models, which exist in several
variants (field dislocation model, continuum dislocation
dynamics), bear formal similarities with EPM.
Noticing that the plastic deformation induced by crystallo-

graphic slip generates an elastic stress field τintðrÞ (via the very
same elastic propagator as in EPM), Zaiser and Moretti (2005)
separated this internal stress τintðrÞ from the aspects more
specific to dislocations and crystals and arrived at the
following equation in 2D:

1

B
∂tγðrÞ ¼ τext þ τintðrÞ þ

DG
ρ

∂2
xγ þ δτðr; γÞ; ð43Þ

where B,D, and G are material constants, τext is the externally
applied stress, and ρ is the dislocation density. The last two
terms on the rhs have no strict counterparts in EPM. They
account for the mechanisms generated by interactions between
dislocations that alter the stress required to set a dislocation in
motion. The third term is a homogenizing termwhile the fourth
one is a ρ-dependent fluctuating term. Its dependence on the
plastic strain γ may be used to effectively describe strain
hardening effects due to the multiplication of dislocations. In
EPM, such effects would belong to the rules that govern the
onset of a plastic event. Armed with this model, Zaiser and
Moretti (2005) then studied the slip avalanches in order to
explain the experimentally observed deformation patterns
consisting of slip lines and bands, echoing the endeavors in
this direction on the EPM side. They found scaling exponents
for such avalanches that are comparable, but not strictly equal,
to the mean-field exponents for the depinning problem. This
difference is not unexpected, owing to the fluctuating sign of
their elastic propagator, which is identical to the EPM one (see
Sec. VII). Also, large avalanches are cut off due to strain
hardening, which is one possible explanation for the macro-
scopic smoothness of the deformation.
Contrasting with this macroscopically smooth situation, the

deformation dynamics may feature strong intermittency,
which points to collective effects. Power-law-distributed
fluctuations have recently been evidenced in the acoustic
emissions as well as in the stress versus strain curves of loaded
crystals (Weiss et al., 2015; Peng Zhang et al., 2017). These
fluctuations may be “mild,” with bursts superimposed on a
relatively constant, seemingly uncorrelated fluctuation back-
ground, which is the case for many bulk samples, especially
those with a face-centered cubic (fcc) structure. On the other

hand, intermittency becomes dominant in hexagonal close-
packed (hcp) crystals and in smaller samples, where large
bursts dominate the statistics. Samples with fewer defects also
tend to have “wilder” fluctuations. A mean-field rationaliza-
tion of these phenomena considers the density ρm of mobile
dislocations and expresses its evolution with the strain γ as

dρm
dγ

¼ A − Cρm þ
ffiffiffiffiffiffiffi
2D

p
ρmξðγÞ;

where A is a nucleation rate, C is the rate of annihilation of
dislocation pairs, and D controls the intensity of the white
noise ξ (Weiss et al., 2015). Note that the latter is multiplied
by ρ, owing to the long-ranged interactions between disloca-
tions; the presence of multiplicative mechanical noise makes
collective cascade effects possible. Such a model allowed the
authors to capture the distinct types of fluctuations in the
dynamics, from mild to wild, depending on the noise intensity
D. More recently, Valdenaire et al. (2016) rigorously coarse-
grained a fully discrete 2D dislocation picture into a con-
tinuum model centered on a kinetic equation for the dis-
location density, with superficial similarities with the EPM
equation of motion, Eq. (5).

3. Relation to EPM

Although the microscopic defects and the microscopic
deformation mechanisms differ between crystals and disor-
dered solids, the macroscopic phenomenology and, to some
extent, the mesoscopic one share many similarities:
Microscopic defects interact via long-range interactions and
their activity is, in some conditions, controlled by temperature.
Globally, the dynamics are highly intermittent at low shear
rates and involve scale-invariant avalanches, as indicated,
inter alia, by acoustic emission measurements on stressed ice
crystals (Miguel et al., 2001). This intermittency is generically
known as crackling noise (Sethna, Dahmen, and Myers, 2001)
and does not connect EPM only to crystal plasticity, but also to
the fields of seismology and tribology.
The phenomenological similarity is paralleled by a prox-

imity in the models. In some EPM, the stress redistributed by a
shear transformation is actually described as the effect
of a combination of dislocations (Ben-Zion and Rice, 1993;
Ispánovity et al., 2014; Tüzes, Ispánovity, and Zaiser, 2017).
Conversely, quadrupolar interactions may be directly imple-
mented in mesoscale models of crystal plasticity, for instance,
in Eq. (2) of Papanikolaou et al. (2012). More generally, the
basic equations of evolution in the two fields look very much
alike, and models sometimes seem to have bearing on both
classes of materials (Shiba and Onuki, 2010). Rottler,
Schoenholz, and Liu (2014) numerically investigated the
transition between the dislocation-mediated plasticity of
crystals and the shear-transformation-based deformation of
amorphous solids. They found that the directions of the
nonlinear displacements under strain could be well predicted
from the low-frequency vibrational modes and that polycrys-
tals already behave comparably to glasses, despite their
regular structure at the grain scale.
Nevertheless, the connection between crystals and disor-

dered solids should not be overstated. Even though flow
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defects (“soft spots”) in the latter might to some extent persist
over rearrangements (Schoenholz et al., 2014), on no account
can they be assimilated to well-identified structural defects
moving through a crystal. Following from this discrepancy are
the facts that, contrary to plastic rearrangements, dislocations
are strongly dependent on the preparation of the material
(which determines the dislocation density), and may be pinned
by defects, annihilate through the merger of partials (“oppo-
site” defects) or multiply.

B. Depinning transition

1. The classical depinning problem

In several systems, an interface is driven through a
disordered medium by a uniform external force. This interface
can be a magnetic or ferroelectric domain wall, the water front
(contact line) in a wetting problem, the fracture front, or even
charge density waves and arrays of vortices in superconduc-
tors. In all these cases, the interplay between the quenched
disorder (e.g., due to impurities) and the elastic interactions
along the interface is at the root of a common phenomenology
and a universal dynamical response.
If the external force is weak, the interface will advance and

soon get pinned and be unable to advance any further. If the
force is strong enough, instead, the interface will overcome
even the largest pinning centers, reaching a steady state of
constant velocity. This is the well-documented dynamical
phase transition known as depinning. Beyond the transition
itself, the literature now also describes the equilibrium
configuration of the elastic line, several variations of the
problem (short-range or long-range elasticity, different dis-
order types, etc.), thermally activated dynamical regimes and,
in general, tackles the transport problem and its relation with
the geometry of the interface. The interested reader is referred
to one of the following self-contained works or reviews:
Fisher (1998), Chauve, Giamarchi, and Doussal (2000),
Kolton et al. (2009), Agoritsas, Lecomte, and Giamarchi
(2012), or Ferrero et al. (2013).

2. Models

The most celebrated model to describe the depinning
problem is the quenched Edwards-Wilkinson (QEW) equa-
tion. A (d ¼ 1)-dimensional interface without overhangs is
driven by an external pulling force f. In the overdamped limit,
its local displacement at time t, described by a single-valued
function hðx; tÞ obeys

η∂thðx; tÞ ¼ c∇2hðx; tÞ þ f þ Fpðx; hÞ þ ξðx; tÞ; ð44Þ

where c∇2hðx; tÞ represents the elastic force due to the
surface tension, the quenched disorder induced by impurities
is encoded in the pinning force Fpðx; hÞ, and thermal
fluctuations are included as a Langevin thermal noise
ξðx; tÞ. In general, two different kinds of disorder are
considered: random bond disorder, in which the pinning
potential is short range correlated in the direction of motion
[hVðh; iÞVðh0; jÞi ¼ δijδhh0 ], and random-field disorder,
where the pinning force is short range correlated [thus

generating correlations of the potential in the direction of
motion, hVðh; iÞVðh0; jÞi ¼ δij minðh; h0Þ].
Of course, the QEW model just mentioned is minimal.

Some of its variants take into account additional ingredients.
For example, charge density waves and vortices involve a
periodic elastic structure, in fracture and wetting the elastic
interactions are long ranged, and anharmonic corrections to
elasticity or anisotropies could also be relevant. These features
would call for a rewriting of Eq. (44) into a more general form
involving an elastic interaction energy Hel

η∂thðx; tÞ ¼
−δHel½h�
δhðxÞ þ f þ Fpðx; hÞ þ ξðx; tÞ. ð45Þ

Remarkably, all these different problems, grouped in a few
distinct universality classes, share the same basic physics
discussed in the following.

3. Phenomenology

The velocity-force characteristics h _hi ¼ vðfÞ are well
known for the depinning problem [see Fig. 24(a)]. The
information conveyed by this “equation of state” is enriched
by a vast analytical and numerical knowledge of universal
properties at three special points: (i) equilibrium, i.e., f ¼ 0;
(ii) depinning, i.e., f ¼ fc at T ¼ 0; and (iii) fast flow f ≫ fc.
Around these points, at vanishing temperature, the steady-state
interface hðxÞ displays a self-affine geometry [in the sense that
it is invariant under dimensional rescaling, viz., hðaxÞ ∼
aζhðxÞ] above a microscopic length scale, with characteristic
roughness exponents: (i) ζeq, (ii) ζdep, and (iii) ζff.
Turning to transport properties, at equilibrium, the mean

velocity is zero and the dynamics is glassy. When the applied
force approaches zero, macroscopic movement can be
observed only at finite temperatures and at very long times.
Collective rearrangements on a scale of size lopt (lopt → ∞ as
f → 0) are needed in order to overcome barriers EbðloptÞ
growing as Eb ∼ lθ

opt, with θ > 0 a universal exponent related
to the roughness by θ ¼ d − 2þ 2ζeq. This is the creep
regime. At the zero temperature depinning transition the
velocity vanishes as vðf; T ¼ 0Þ ∼ ðf − fcÞβ for f > fc while
v ¼ 0 for f < fc. Approaching fc from above the motion is
very jerky and involves collective rearrangements of a typical
longitudinal size lav that diverges at fc. The avalanche size S,
defined as the area covered by the moving interface, has
power-law statistics, viz.,

PðSÞ ∼ S−τdep ; where τdep ¼ 2 −
2

dþ ζdep
: ð46Þ

At finite temperature, the sharp depinning transition is
rounded, the velocity behaves as vðfc; TÞ ∼ Tψ , and the size
lav is finite at the transition. In the fast-flow regime f ≫ fc,
the response is linear, viz., v ∼ f. Here impurities generate an
effective thermal noise on the interface. Therefore, the fast-
flow roughness corresponds to the Edwards-Wilkinson rough-
ness ζff ¼ ð2 − dÞ=2.
One of the remarkable lessons learned from this simple

model is the possibility to relate transport and geometry. If the
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applied force f lies in between two of the above-mentioned
reference points, the interface geometry [in particular, the
roughness exponent, see Fig. 24(b)] depends on the obser-
vation scale and its relative position compared to the char-
acteristic lengths (lopt;lav;…). Granted that one knows the
functional dependencies of these characteristic lengths with f
and the velocity-force characteristics for a given system,
transport properties (which intrinsically pertain to the dynam-
ics) can be deduced from the static interface geometry, and
vice versa.

4. Similarities and differences with EPM

The manifest qualitative similarity between the yielding
transition and the depinning one has enticed many researchers
to look for a unification of these theories. The analogy has
promoted the vision of yielding as a critical phenomenon and
has given rise to interesting advances, but, in our opinion, the
misguided belief in a strict equivalence of the problems has
been deceptive in some regards.
To stay on firm ground, a formal approach consists of

finding an EPM analog to the depinning equation, Eq. (45). In
the stress-controlled situation (with applied stress Σext), Weiss
et al. (2014) (Eq. S3 of the Supplemental Information) and
Tyukodi, Patinet et al. (2016) thus proposed to substitute the
EPM equation of motion [Eq. (5)] with

η∂tϵ
plðr; tÞ ¼ P

�
−δUel½ϵpl�
δϵplðrÞ þ Σext − Fpðr; ϵplÞ



; ð47Þ

where

Uel½ϵpl�≡ −
1

2

ZZ
drdr0ϵplðrÞGðr − r0Þϵplðr0Þ;

with G the elastic propagator, and PðxÞ denotes the positive
part of x (x if x > 0, 0 otherwise). In so doing, the deformation

of an amorphous solid is mapped onto a problem of motion
through an abstract disordered space for the ϵpl-manifold
pulled by the “force” Σext. The positive part P in Eq. (47)
creates genuine threshold dynamics. It has no direct counter-
part in the depinning equation but was argued by Tyukodi,
Patinet et al. (2016) not to be a core dissimilarity between
yielding and depinning.
This formal similarity between the two classes of phenom-

ena seems to buttress the application of results from the
depinning problem (hence mean field, owing to the long range
of the elastic propagator) to the question of avalanche statistics
in disordered solids (see Sec. VII). However, the following
differences must be borne in mind.
First, and perhaps foremost, as often mentioned in the

present review, the interaction kernel in depinning problems is
positive, whereas the quadrupolar elastic propagator G used in
EPM has positive and negative bits. This has profound
consequences on the critical behavior at the yielding transition
observed in EPM, in particular, with respect to the possibility
of strain localization and the avalanche statistics. Furthermore,
while in depinning v vanishes at fc as v ∼ ðf − fcÞβ with
typically β < 1, the strain rate _γ does so at the yielding
transition as _γ ∼ ðΣ − ΣcÞβ with β > 1, as schematically
shown in Fig. 24(c). Note that, if the systems were at
equilibrium, this difference in the value of β would imply a
change in the order of the continuous phase transition. Other
consequences can be deduced from the general scaling
relations proposed by Jie Lin et al. (2014) (Supplementary
Information), which are claimed to encompass the depinning
and the yielding cases (not all these relations are strictly
obeyed in finite-dimensional EPM):

β ¼ νðd − df þ zÞ; ð48Þ

ν ¼ 1

d − df þ αk
; ð49Þ

FIG. 24. The depinning picture. (a) Connection between transport and geometry in depinning. From Ferrero et al., 2013. (i) Snapshot
of a domain wall in a 2D ferromagnet. (ii) Typical velocity-force characteristics. (iii) Crossover lengths lopt and lav representing the
optimal excitation and the deterministic avalanches, respectively. (iv) Geometric crossover diagram. (b) Steady-state structure factor
SðqÞ of the line in the limit of vanishing temperature for different forces (curves are shifted for clarity). Adapted from Kolton et al., 2006.
(c) Comparison of the depinning and yielding critical transitions in a correspondence ðv ↔ _γÞ; ðf ↔ ΣÞ.
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τ ¼ 2 −
df − dþ 1=ν

df
−

θ

θ þ 1

d
df

. ð50Þ

Here df is the fractal dimension of the avalanches, z is the
dynamical exponent, ν is the exponent controlling the diver-
gence of the correlating length at the transition, and αk is
the dimension of the elastic interaction kernel. In EPM αk ¼ 0

and df < d so that β > 1. In depinning, αk ¼ 2 for short-
ranged elasticity and αk ¼ 1 for long-ranged elasticity, θ ¼ 0
and df ≥ d.
Secondly comes the question of the nature of the disorder in

the pinning force Fp. In elastic depinning models, regardless
of how realistic the chosen correlations of Fp are, the origin of
the disorder is generally extrinsic. More precisely, it reflects
the disorder of the substrate on which the elastic manifold
advances, hence Fp ¼ FpðhÞ. On the other hand, in the
yielding phenomenon, as stated by Papanikolaou (2016),
“the pinning disorder for every particle originates in the
actual interface that attempts to depin (other nearby particles);
a disordered solid pins itself during deformation.” Therefore,
it is inaccurate to consider that Fp depends only on the local
value of ϵpl. In particular, a given system will not encounter
the same pinning forces Fp along its deformation between,
say, ϵpl ¼ 0 and ϵpl ¼ 1 if it is sheared slowly or if it is sheared
fast. Typically, at high shear rates, the potential energies of the
inherent structures of the material are higher (as evidenced by
the variations of potential energies of the inherent structures
with the shear rate, in atomistic simulations). This dependence
should impact the _γ ¼ fðΣÞ curve at finite shear rates.
Lastly, the EPM equation of motion [Eq. (5)] cannot always

be reduced to an expression akin to Eq. (47), because of the
memory effects contained in the plastic activity variable n.
Let us now mention a subclass of problems that may be

more closely related to EPM: the so-called “plastic depin-
ning.” This phenomenon is observed, for example, in particle
assemblies driven over random substrates whenever irrevers-
ible plastic deformations actually occur, or in charge density
wave problems. Unfortunately, this comparison has been
much less exploited by the amorphous solids community,
even though the connection was recently pointed out by
Reichhardt and Reichhardt (2016).
To conclude this topic, there undoubtedly remains much to

be learned from the 30+ years of studies on depinning
phenomena. Some intriguing open questions left from this
comparison are the following: Are the transport properties of
driven amorphous solids related to geometrical properties, as
they are in elastic manifolds? Is it possible, for example, to
infer from a picture at which strain rate a dense emulsion is
being sheared?

C. Fiber bundle, fuse networks, and continuum models for the
study of cracks and fracture

1. Introduction to cracks and fracture

In partial overlap with the scope of EPM, the question of the
failure of hard solids under loading, e.g., in tension, has
attracted much attention over the last centuries. Pioneering in
this respect, as recalled by Alava, Nukala, and Zapperi (2006),

is Leonardo da Vinci’s observation that, if one loads a metal
wire in tension with a weight, it will fail more readily if it is
longer, for the same cross section; this runs counter to basic
continuum mechanics predictions for a uniform medium.
In fact, the failure of brittle solids, in particular, rocks, is
ascribed to the growth and propagation of preexisting cracks
(at the scale of the crystalline grains constituting the material)
or, more generally, defects.
If one considers an individual crack in a homogeneous

medium, according to Griffith (1921), its growth hinges on a
competition between a surface energy term averse to the
opening of solid-air interfaces and an elastic energy term
favoring its growth and thereby reducing the elastic energy
stored in the bulk. For example, for a single elongated elliptic
crack of length a in a 2D medium, the sum of these competing
terms reads

ET ¼ −πΣ2a2

2E|fflfflfflffl{zfflfflfflffl}
elastic energy

þ 2γa|{z}
surface energy

;

where E is the Young modulus of the material, γ is the
interfacial energy, and Σ is the applied stress. Thus, the
evolution of the crack depends on the sign of the derivative
dET=da (Alava, Nukala, and Zapperi, 2006). However, cracks
very seldom have so simple a geometric shape. Roughly
speaking, owing to the presence of heterogeneities, the crack
will zigzag around hard spots. This will result in undulations
and protrusions in the postmortem fracture surface, which
exhibits a self-similar (fractal) pattern: If the surface height at
a point ðx; zÞ is denoted by hðx; zÞ, the root mean square
fluctuation wðlÞ of the height in a region of size Δx ≈ Δz ≈ l
obeys

wðlÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhðx; zÞ2i − hhðx; zÞi2

q
∼ lζ⊥ ;

where ζ⊥ is the out-of-plane Hurst exponent, or roughness
exponent. Interestingly, this exponent seems to be weakly
sensitive to the material or the loading, with values centered
around ζ⊥ ≃ 0.8 and early claims of universality (Bouchaud,
Lapasset, and Planes, 1990). The fractal dimension df of the
surface is then related to ζ⊥ via df ¼ 3 − ζ⊥ for 3D fracture.
While the material is being fractured, the crack propagates
along a rough, scale-invariant frontline [see Fig. 25(a)],
characterized by the in-plane roughness exponent ζk.
Roughness bears practical importance, since it modifies the
scaling of the surface energy term.
Let us mention two subtleties. First, the exponents ζk and

ζ⊥ are not independent (Ertaş and Kardar, 1994). Second, ζ⊥
might in fact mix two distinct exponents, insofar as the
fracture experiments of Ponson, Bonamy, and Bouchaud
(2006) on silica and aluminum alloys hint at anisotropic
height variations in the fracture plane, with distinct behaviors
along the front line and along the crack propagation direction.
In addition to being spatially nontrivial, the propagation of

the crack front also displays marked variations in time. The
associated dynamics is highly intermittent and involves
avalanches of events which span a broad range of energies.
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Indeed, the crackling noise emitted during these events has a
power-law power spectrum, for instance in composite materi-
als (Garcimartin et al., 1997). For instance, the crack produced
when tearing apart two sandblasted Plexiglas sheets stuck
together through annealing undergoes a stick-slip motion at
small scales that is reminiscent of dry solid friction (Måløy
and Schmittbuhl, 2001), which in turn may tell us about
earthquake dynamics (Svetlizky and Fineberg, 2014).
At this stage, a discrepancy with respect to soft solids ought

to be mentioned: In rock fracture, the microruptures generally
do not have time to heal on the time scale of the deformation;
without recovery process, the material is thus permanently
damaged. However, the crack velocity may still have an
influence on the dynamics of the process owing to the finite
duration of the avalanches.

2. Fiber bundles

Arguably, the simplest way to model fracture is to consider
two blocks bound by N aligned fibers. These fibers share the
global load and break irreversibly when their elongation x
exceeds a randomly distributed threshold; this is the basis of
fiber-bundle models (Herrmann and Roux, 2014). In demo-
cratic fiber bundles, the load of broken fibers is redistributed
equally to all survivors. Analytical progress is possible in this
intrinsically mean-field model. In particular, it is easy to show
that, on average, when the bundle is stretched by x (with x ¼ 0

the reference configuration), a fraction CðxÞ of fibers have
broken, where CðxÞ is the cumulative distribution of thresh-
olds, and the total load (normalized by the initial number of
fibers, of stiffness κ each) reads f̄ðxÞ ¼ κx½1 − CðxÞ�. It
follows that the maximum strength per fiber of the bundle
is, on average,

fc ¼ max
x

κx½1 − CðxÞ�:

If one pulls on a given bundle, however, the load f will not
evolve along the smooth average profile f̄ðxÞ, but along a
rugged profile ffðxkÞ≡ κxk½1 − CðxkÞ�; k ¼ 1;…; Ng due to
the randomness of the thresholds x1 ≤ x2 ≤ � � � ≤ xN , sorted
according to the order of failure. The fðxkÞ thus perform a
random walk in “time” k with a time-dependent bias
hfðxkþ1Þ − fðxkÞi (Sornette, 1992). If, starting from a stable

situation, the rupture of the kth bond leads to S additional
failures, viz.,

fðxkþiÞ<fðxkÞ for i between 1 and S ðbut not for i¼Sþ1Þ;
ð51Þ

an avalanche of size S will occur under a fixed load. Noting
that (i) this is a problem of first return for the walker fðxkÞ [or,
equivalently, of survival close to the absorbing boundary
f ¼ fðxkÞ−], and that (ii) close to global failure f ≈ fc the
random walk is unbiased, i.e., hfðxkþ1Þ − fðxkÞi ¼ 0,
Sornette (1992) showed that the distribution of avalanche
sizes s obeys

pðSÞ ∼ S−τ; where τ ¼ 3=2: ð52Þ

More precisely, for a uniform distribution of thresholds
between xl and 1, the distribution reads

pðSÞ ∼ S−5=2ð1 − e−S=ScutÞ;

where the cutoff size

Scut ≡ 1

2ð1 − 2xlÞ2

diverges at the critical point xl ¼ 1=2 (Pradhan, Hansen, and
Hemmer, 2005). For xl < 1=2, the fiber fails gradually as the
loading is increased, whereas for xl > 1=2 failure occurs all at
once. A parallel may here be drawn with the discussion about
the brittle-to-ductile transition in amorphous solids in Sec. VI.
For xl ≤ 1=2, the power law with exponent τ ¼ 3=2 of
Eq. (52) is recovered for S ≪ Scut, whereas for S ≫ Scut
the random walk of the fðxkÞ is biased upward and a steeper
power law is obtained, with an exponent 5=2. The scaling
pðSÞ ∼ S−5=2 is found generically if all avalanches since the
start of the deformation (x ¼ 0) are taken into account
(Hemmer and Hansen, 1992). The gradual shift to an exponent
τ ¼ 3=2 then signals imminent failure. Interestingly, the
power-law behavior fades out in favor of a much faster decay
of pðSÞ if the load released by broken fibers is redistributed
locally to the first neighbors only, instead of being shared by
all intact fibers (Kloster, Hansen, and Hemmer, 1997).

FIG. 25. Observation and modeling of crack propagation. (a) Raw image of the front of an in-plane crack propagating between
Plexiglas plates. The intact region appears in black and the image-processed front line is shown in (b). The roughness along the
propagation (z) direction has a power-law spectrum characterized by the roughness exponent ζk. From Schmittbuhl and Måløy, 1997.
(c) Sketch of the random fuse network and (d), (e) failure process for distinct probability density functions for the thresholds pðxÞ ∼ xθ.
The crack has been colored in red. From Shekhawat, Zapperi, and Sethna, 2013.
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3. Fuse networks

Unfortunately, the picture promoted by mean-field or 1D
fiber bundles is incapable of describing the heterogeneous and
anisotropic propagation of cracks. Extending the approach to
higher dimensions, fuse networks connect lattice nodes (say,
nodes i and j) by fuses of conductance Kij that break past a
threshold x ∈ ½0; 1�, thereby burning the fuse (Kij → 0). To
take an example, the distribution p of the thresholds can be set
as a power law pðxÞ ∼ xθ with θ > 0. The voltages Vi are
imposed at two opposite edges of the system, as depicted in
Fig. 25(c). The Hamiltonian of the system reads

Hnc ¼
1

2

X
hi;ji

KijðVi − VjÞ2; ð53Þ

where the sum runs over all adjacent nodes ði; jÞ. Note that, if
the Kij are constant, then the model can be viewed as a
discretization of Poisson’s equation in the vacuum ∇2V ¼ 0.
Fuse networks are thus closer to EPM than fiber bundles,
insofar as the stress redistribution when one fuse burns (in the
pristine network) is strongly anisotropic, with a shielding of
the current fore and aft and an enhancement sideways
(Barthelemy, Silveira, and Orland, 2002; Rathore, 2016). It
can then be understood that failure occurs along a line of burnt
fuses, the “crack” line, provided that there is finite disorder
(θ > 0) and the network is large (Shekhawat, Zapperi, and
Sethna, 2013). Besides, in a 2D fuse network, Hansen,
Hinrichsen, and Roux (1991) computed a roughness exponent
ζ approximately equal to 0.7 for weak disorder, not far from
experimental values for fractured surfaces ζ⊥ ≈ 0.8 (note that
ζ ¼ ζ⊥ in 2D).
The expression of the Hamiltonian in Eq. (54) evokes a

random bond Ising model; the equivalence is formally exact if
the voltages are restricted to the values �1, and the thresholds
are infinite, thus making bonds unbreakable (perfect ductility).
These differences are not negligible in any way. Indeed, the
interactions between nodes are thereby much reduced, in
spatial extent and magnitude; by contrast, in random fiber or
fuse models, the impact of breaking a bond is magnified close
to failure, owing to the small number of intact bonds which
will share the load. Nevertheless, the process of fracture can be
mimicked in the random Ising models by imposing spin þ1

(−1) on the left (right) edges of the sample and monitoring the
interface line between the þ1 and −1 domains. Rosti et al.
(2001) studied the probability that this interface passes
through an artificial “notch,” i.e., a segment in which the
bond strengths Kij have been set to zero, and observed a
transition from low to high probabilities as the notch length
was increased above a disorder-dependent threshold value.
Similar results were obtained in experiments in which sheets
of papers with precut notches were torn.

4. Spring models

From a mechanical perspective, should one replace the
voltage Vi in Eq. (53) with the displacement ui at node i, viz.,

H0
nc ¼

1

2

X
hi;ji

Kijðui − ujÞ2; ð54Þ

the interpretation of the Hamiltonian as the energy of a
network of random springs of stiffness Kij will become
apparent. The x, y, and z components of the dispacements
in H0

nc decouple, so that the model is actually scalar (De
Gennes, 1976). However, it features noncentral forces: the
force exerted by j on i is not aligned with eij. A more
consistent description of a network of nodes connected by
harmonic springs relies (to leading order) on the Hamiltonian

Hc ¼
1

2

X
hi;ji

Kij½ðui − ujÞ · eij�2: ð55Þ

On a triangular lattice, with bonds of uniform strength
Kij ¼ 1, the continuum limit of this Hamiltonian represents
an isotropic elastic medium with a Poisson ratio of 1=3 in 2D
and 1=4 in 3D (Monette and Anderson, 1994). As bonds are
gradually removed in a random fashion, the initially rigid
system transitions to a nonsolid-state with vanishing elastic
moduli at a critical bond fraction pc. Such a transition is also
observed with the models based on the scalar Hamiltonian
Hnc or the noncentral Hamiltonian H0

nc, although at a distinct
fraction pc. Somewhat surprisingly, the scalings of the shear
and bulk moduli with the fraction of bonds p around pc differ
between the Hc and Hnc-based models. The discrepancy
stems from the distinct symmetries, in the same way as the
Heisenberg model differs from the Ising model (Feng and Sen,
1984). The distinction subtly differs from the dichotomy
between scalar and tensorial EPM, in that the EPM propagator
is always derived from the same constitutive model (tensorial
continuum elasticity); the scalar description simply discards
some tensorial components at the end of the day.
Regarding the avalanches of ruptures close to the point of

global failure, i.e., under loading f ≈ fc, Zapperi et al. (1999)
claimed that both the random fuse network of Eq. (53) and the
central-force spring model of Eq. (55) (supplemented with
bond-bending forces) fall in the universality class of spinodal
nucleation, in that the avalanche sizes S are distributed
according to

pðSÞ ∼ S−τΦ½Sðfc − fÞ�; where τ ¼ 3=2

and Φ is a scaling function. Zaiser, Lennartz-Sassinek, and
Moretti (2015) also found that fuse networks yielded results
similar to spring models regarding the initiation of failure,
with localized correlations in the damage patterns.
We conclude this section on spring models with a historical

note referring to the fact that such models had in fact been
pioneered by De Gennes (1976) to tackle the “converse
problem,” namely, gel formation (e.g., through cross-linking):
Instead of gradually destroying bonds, he cranked up the
fraction p of bonds by randomly connecting pairs of neigh-
bors until bonds percolated throughout the system; this
occurred at a critical fraction pc, supposedly corresponding
to gel formation. In any event, the nature of the transition
associated with the random depletion (or creation) of bonds,
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which pertains to percolation, is distinct from what is observed
in random fuse or spring networks. In the latter models, the
disorder in the yield thresholds bestows critical importance to
the spatial redistribution of stresses following ruptures. This
distinction is at the origin of different scaling relations, e.g.,
between the failure force and the system size (Hansen, Roux,
and Herrmann, 1989).

5. Beyond random spring models

Refinements have been suggested to bring random fuse (or
spring) networks closer to models of material deformation and
fracture. First, the irreversible breakage of the fuses past a
threshold mirrors perfectly brittle fracture. At the opposite
end, perfect plasticity is mirrored by the saturation of the fuse
intensity past a threshold. But a continuum of possibilities can
be explored between these extreme cases, whereby the
conductivity of the fuse is decreased to mimic partial weak-
ening, similarly to what can be done in EPM.
Another limitation of the models stems directly from the

description of the bonds on a regular lattice: let alone the
presence of soft modes in several cases, the (Hc-based)
central-force model, discretized on a triangular lattice, dis-
plays an anisotropic tensile failure surface (despite an iso-
tropic linear response), with an anisotropy ratio of 50%
(Monette and Anderson, 1994). These deficiencies can be
remedied in part by complementing the spring-stretching
energies in Hc with bond-bending energies. This refinement
leads to an isotropic elastic medium with adjustable Poisson
coefficient and a more isotropic failure surface.
As with EPM, the following step in the endeavor to refine

the description led to the introduction of a finite-element
approach, which relies on a continuum description down to
the scale of one mesh element. The equations of inhomo-
geneous elasticity are solved and a damage (of magnitude D)
is introduced by reducing the local elastic constant E →
ð1 −DÞE whenever the local stress exceeds a threshold value.
The process can evolve into avalanches, and eventually to a
vanishing of the elastic resistance through the propagation of a
fracture through the system. Incidentally, this mechanism had
first been implemented by Zapperi, Vespignani, and Stanley
(1997) using a fuse network with damage operating on the
fuse resistances; the model displayed scale-free behavior with
power-law distribution of event sizes PðSÞ ∼ S−τ with τ ≃ 1.2.
Amitrano, Grasso, and Hantz (1999) refined the modeling

approach by using a pressure-modified (Mohr-Coulomb)
criterion for the onset of plasticity, viz.,

Cþ σn tanϕ − σ < 0;

where C represents the cohesion of the material, and σn and σ
are the normal and shear stresses, respectively. A transition
from brittle failure with very localized damage (at low internal
friction angle ϕ, i.e., little sensitivity of the yield criterion to
pressure) to ductile with diffuse damage (at large ϕ) was
observed. At low ϕ the damage around a single event is similar
to the stress redistribution considered in EPM, while for large
ϕ it becomes much more directional. The transition from
ductile to brittle shares qualitatively similarities with the strain

localization transition, but the control parameter is different
from those discussed in Sec. VI.C.
In the case of large ϕ and brittle failure, a description of

compressive failure under uniaxial stress as a critical phe-
nomenon analogous to depinning was proposed by Girard,
Amitrano, and Weiss (2010) and elaborated by Weiss et al.
(2014). The interpretation in terms of a criticality notably
affords a detailed description of size effects on the critical
stress (Girard, Weiss, and Amitrano, 2012).

XI. OUTLOOK

In the last ten years, EPM have become an essential
theoretical tool to understand the flow of solids. Starting
from elementary models intended to reproduce earthquake
dynamics, they have blossomed into more refined approaches
that have helped rationalize many experimentally observed
features, at least at a qualitative level, and unveil new facets of
the rheology of these materials. Future developments in the
field can be expected in a number of directions, following
current experimental and theoretical interests.
In rheology, considerable attention has recently been

devoted to the study of transient regimes. For instance, one
can mention the study of the load curves at fixed shear rate _γ
that can exhibit stress overshoots depending on the initial
preparation and nontrivial scalings of the time to reach the
stationary state with _γ. Other examples include creep under
imposed stress, the dynamics of relaxation and the residual
stresses after sudden cessation of the driving, and oscillatory
regimes. In the latter category, the large amplitude oscillatory
strain (LAOS) protocol probes the nonlinear behavior and the
frequency dependent one at the same time, and therefore
involves a complex interplay between plastic deformation and
internal relaxation. Reproducing the complex response of
particular systems under such protocols is particularly chal-
lenging for simple models. Several issues could be inves-
tigated within the framework of EPM, such as the onset of
tracer diffusion as the amplitude of the oscillatory strain is
increased, or the fatigue behavior leading to failure. Recently,
it was suggested that the LAOS protocol could induce strain
localization in systems with a monotonic flow curve, based on
a study of a spatially resolved version of the soft glassy
rheology model, presented in Sec. V.D.1 (Radhakrishnan and
Fielding, 2016, 2018). Creep (see Sec. IX) is an equally
challenging phenomenon; a recent mean-field EPM illustrated
its very strong sensitivity to the initial conditions (Liu,
Martens, and Barrat, 2018).
A more unexpected emerging avenue is the study of

systems with internal activity, such as living tissues or dense
cell assemblies. The general ideas exploited for the description
of amorphous systems can indeed be expanded to incorporate
new types of events, such as cell division (assimilated to a
local anisotropic dilation) and cell death (local isotropic
contraction). At the mean-field level, Matoz-Fernandez et
al. (2017) and others conducted a first analysis along these
lines. For further exploration of the collective behavior
resulting from the interplay between cell division, apoptosis,
locomotion, and contractility, as well as the mechanosensi-
tivity of these processes, an EPM describing all these
ingredients at the same time would be invaluable. At present,
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new experimental tools are providing information on the
statistical fluctuations in such systems, which will allow to
calibrate these models.
From the viewpoint of statistical physics, the yielding

transition described by EPM stands as a new type of dynamical
phase transition, with specificities that are still to be understood
in extent. Considerable efforts have been devoted to the
theoretical study of the related problem of the depinning
transition (Sec. X.B). In the latter case, mostly exact exponents,
scaling functions, and avalanche shapes were derived using
scaling analysis and renormalization techniques. For theyielding
transition, the slow process of consensus building has not
converged yet, but there are reasons to believe that the results
on avalanche statistics obtained in the depinning problem cannot
be directly transposed to this field, because the propagator
controlling stress redistribution is partly negative, which affects
the density of sites close to yielding. Whether this feature only
induces an effective dimensional reduction, leaving us in a well-
known universality class but for d < D, or whether it exhibits a
completely distinct set of critical exponents still needs to be
clarified. Scaling relations between critical exponents have been
proposed (Jie Lin et al., 2014; Aguirre and Jagla, 2018) and
tested in diverse EPM, but analytical calculations beyond mean
field are scant. Recent efforts to relate EPM to better known
problems of motion through a disordered landscape open new
vistas for the understanding of yielding and transport properties
under slow driving (Jagla, 2017b), but there is still no consensual
theory explaining the flow exponents (the low-shear-rate rheol-
ogy).The situation is somewhat similar on the experimental side:
The depinning phenomenon has benefited from a detailed
experimental characterization in various systems (magnetic
domain walls, contact lines, vortices), including avalanche
statistics and shapes, which has permitted comparison to the
theory. Amorphous plasticity is not on quite so good a footing,
with only a few attempts to characterize the distribution of stress
drops in deformed systems. The situation is however improving,
thanks to several recent efforts, e.g., those combiningmechanical
deformation and confocal microscopy in colloidal glasses.
The foregoing discussion is related to the critical aspects of

the yielding phenomenon, discussed in Secs. VII and VIII. In
a number of real systems (Bonn et al., 2017), the onset of flow
is in fact discontinuous and implies a coexistence between
flowing and immobile states. EPM and other theoretical
studies have proposed possible mechanisms that may influ-
ence the continuous or discontinuous character of the tran-
sition (see Sec. VI). Nevertheless, it turns out to be
experimentally difficult to control the transition in a system-
atic way by changing some experimental parameter. The work
of Wortel, Dauchot, and Hecke (2016) on weakly vibrated
granular media represents a notable exception, insofar as the
intensity of external shaking could be used to continuously
tweak the flow curve towards nonmonotonicity. The ensuing
emergence of a critical point at a finite driving rate has
scarcely been addressed in the literature and could be analyzed
with the EPM approach. Similar systems of vibrated grains
have also permitted the experimental realization of a Gardner
transition (Seguin and Dauchot, 2016), a transition which may
be important for the theory of glasses and which has been
associated with shear yielding (Urbani and Zamponi, 2017).
On a related note, cutting-edge atomistic simulations suggest

that the ductility or brittleness of the yielding phenomenon
hinges on the initial preparation of the glass, rather than the
microscopic interactions between particles or the dynamics
(Ozawa et al., 2018); this puts EPM in the forefront for the
study of these questions, but requires them to establish
adequate proxys for the initial stability of the glass.
These prospective lines of research have hardly been

explored using EPM. So, for all our efforts to articulate a
comprehensive view of the state of the art here, we can only
wish that this review will soon need to be updated with
insightful results in these new avenues.

LIST OF SYMBOLS AND ABBREVIATIONS

Σ macroscopic shear stress
Σy macroscopic yield stress
σ local shear stress
σy local yield stress
μ shear modulus
γ shear strain
_γ shear rate

EPM elastoplastic model
MD molecular dynamics

rhs (lhs) right-hand side (left-hand side)
ST shear transformation
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pratique des entrées froides, des socles, et de l’entremets de sucre:
suivi d’observations utiles aux progrès de ces deux parties de la
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