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I. INTRODUCTION

Ideas of quantum information theory and entanglement
have played an increasingly important role in quantum field
theory and string theory in recent years. Unfortunately, it is
really not possible in a short space to give references to the
many developments in this general area that have occurred in
the last decade. Many important developments are cited and
summarized in the recent review article (Nishioka, 2018).

The present notes are not an overall introduction to this
subject. The goal here is more narrow: to make accessible
some of the mathematical ideas that underlie some of these
developments and which are present in the existing literature
but not always so easy to extract. In the process, we will also
make contact with some of the older literature on axiomatic
and algebraic quantum field theory.

In Sec. II, we describe the Reeh-Schlieder theorem (Rech
and Schlieder, 1961), which demonstrates that, in quantum
field theory, all field variables in any one region of spacetime
are entangled with variables in other regions. Actually, the
entanglement of spatially adjacent field modes is so strong that
entanglement entropy between adjoining spacetime regions in
quantum field theory is not just large but ultraviolet divergent.
[Early references on this ultraviolet divergence include
Bombelli et al. (1986), Srednicki (1993), Callan and
Wilczek (1994), Holzhey, Larson, and Wilczek (1994),
McGuigan (1994), and Susskind and Uglum (1994).] This
ultraviolet divergence means that the entanglement is not just a
property of the states but of the algebras of observables.
Explaining this statement and how to deal with it in the context
of local quantum field theory is a primary goal in what follows.
(We do not consider the implications of quantum gravity.)

An important tool in dealing with entanglement when it is a
property of the algebras and not just the states is provided by
Tomita-Takesaki theory, which we introduce in Sec. III. It has
been used in a number of recent developments, including
an attempt to see behind the horizon of a black hole
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(Papadodiamas and Raju, 2013), a proof of the quantum null
energy condition (Balakrishnan ef al., 2017), and too many
others to properly cite here. As an inducement for the reader
who is not sure this mathematical tool is worthwhile, we
describe in Sec. III a rigorous definition—due to Araki (1975,
1976)—of relative entropy in quantum field theory, with a
surprisingly simple proof of its main properties, including its
monotonicity when one enlarges the region in which mea-
surements are made.

In Sec. IV we explain what Tomita-Takesaki theory means
for a quantum system with a finite-dimensional Hilbert space.
This motivates the statement of some of the subtler properties
of Tomita-Takesaki theory. It also leads—following Araki’s
work and later developments by Petz (1986) and Nielsen and
Petz (2005)—to a natural proof of monotonicity of quantum
relative entropy for a finite-dimensional quantum system.
Monotonicity of relative entropy and its close cousin, strong
subadditivity of quantum entropy, were first proved by Lieb
and Ruskai (1973), using a lemma by Lieb (1973). These
results underlie many of the deeper statements in quantum
information theory.

In Sec. V we describe a fundamental—and fairly well-
known—example of entanglement in quantum field theory.
This is the case, first analyzed by Bisognano and Wichmann
(1976) and Unruh (1976), of two complementary “wedges” or
Rindler regions in Minkowski spacetime. In Unruh’s formu-
lation, the question is what is seen by an accelerating observer
in Minkowski spacetime. We approach this problem both from
a path integral point of view, which is important in black hole
physics (Hawking, 1977), and following the rigorous
approach of Bisognano and Wichman, which was based on
analyticity rather than path integrals.

In Sec. VI we explain, following von Neumann and others
(von Neumann, 1938; Powers, 1967; Araki and Woods, 1968),
a short direct construction of algebras—such as the algebra
of quantum field theory observables in a given spacetime
region—with the property that a divergent entanglement
entropy is built into the structure of the algebra.

Finally, in Sec. VII, we give some examples of the use of
Tomita-Takesaki theory to prove statements in quantum field
theory that would be more obvious if one could assume a
simple factorization of the Hilbert space between degrees of
freedom localized in different spacetime regions. All of these
statements have been analyzed in previous rigorous papers, in
some cases before the relevance of Tomita-Takesaski theory
was understood.

The topics discussed in these notes can be treated
rigorously, but the presentation here is certainly not rig-
orous. More complete treatments of most of the points about
quantum field theory can be found in Borchers (2000) and
Haag (1992). Quantitative measures of entanglement in
quantum field theory such as Bell’s inequalities have been
discussed by Summers and Werner (1987) and from a
different standpoint by Narnhofer and Thirring (2012).
See also a recent article by Hollands and Sanders (2017)
for another point of view on entanglement measures in
quantum field theory and much interesting detail. For a
general mathematical background on von Neumann alge-
bras, a convenient reference is the lecture notes of
Jones (2015).
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II. THE REEH-SCHLIEDER THEOREM
A. Statement

Our starting point will be the Reeh-Schlieder theorem
(Reeh and Schlieder, 1961), which back in 1961 came as a
“surprise” according to Streater and Wightman (1964).

We consider a quantum field theory in Minkowski space-
time Mp of dimension D with spacetime coordinates
X = (1,X) and metric

D—1
ds* = pdetdx’ = —di? + d¥°.

u,v=0

(2.1)

We write Q for the vacuum state and H,, for the vacuum sector
of Hilbert space, which consists of all states that can be created
from the vacuum by local field operators. (H, is not
necessarily the full Hilbert space H of the given theory, since
there may be “superselection sectors”; see Sec. II.C.) For
simplicity of notation, we assume that the algebra of local
fields of the theory under discussion is generated by a
Hermitian scalar field ¢ (x#); otherwise, additional generators
are included in what follows. Whether ¢(x*) is an “‘elementary
field” is not relevant. For any smooth function f, we write ¢,
for the smeared field [ d”xf(X,1)¢(X, ). Then states of the
form

W5) =p s, 91, 1Q) (22)

are sufficient to generate H, in the Hilbert space sense. (The
purpose of smearing is to make sure that these states have
finite norm and thus really are Hilbert space states.) In other
words, any state in H, can be approximated arbitrarily well by
a linear combination of states T}- This is the definition of the

vacuum sector H.

An initial value hypersurface (or Cauchy hypersurface) X is
a complete spacelike hypersurface on which, classically, one
could formulate initial data for the theory. For example, X
could be the hypersurface r = 0. In Eq. (2.2), we can require
that the functions f; are supported in any given open
neighborhood U of X (for example, in the open set |7| < ¢
for some e > 0 if X is defined by # = 0), and it is reasonable to
hope that such states will still be enough to generate the
Hilbert space H,. This statement is a quantum version of the
fact that, classically, a solution of the field equations is
determined by initial data (fields and their time derivatives)
on X. Quantum mechanically, one may view this statement as
part of what we mean by quantum field theory; it is Postulate 8
(a) in Haag and Schroer (1962). But actually, we will prove a
stronger statement that is known as the Reeh-Schlieder
theorem.

The Reeh-Schlieder theorem states that one can further
restrict to an arbitrary small open set V C Z, and a corre-
sponding small neighborhood /), of V in spacetime. Thus,
even if we restrict the functions f7, ..., f,, to be supported in
Uy, the states ‘P/;. still suffice to generate H,.

If this were false, there would be some state | x) orthogonal
to all states |‘I‘];> such that the f; are supported in Uy:
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0= (¥ for,)- (2.3)
This is true for all functions f1, ..., f,, if and only if it is true
without smearing, in other words if and only if

(X|p(x1)p(x2) - - h(x,)|Q) =0,

There is not really much difference between the two state-
ments, since the matrix element of a product of local fields, as
in Eq. (2.4), has singularities as a function of the x; and must
be interpreted as a distribution. So a precise interpretation of
Eq. (2.4) involves a slightly smeared version, as in Eq. (2.3).

Xis oo Xy EUy. (2.4)

B. Proof

To prove the Reeh-Schlieder theorem, we will show that if,
for some y, the left-hand side of Eq. (2.4) vanishes for all
X1, ..., X, €Uy, then it actually vanishes for all xq, ..., x, in
Minkowski spacetime Mp. This then implies that y must
vanish, by the definition of the vacuum sector. So only the
zero vector is orthogonal to all states created from the vacuum
by local operators supported in I/y); in other words, such states
are dense in H,.

First let us show' that

Xn) = (X)) (x2) - - P(x,)|Q)

continues to vanish if x,, is moved outside of I/, keeping the
other variables in Uy,. We write t for the timelike vector
(1,0, ...,0) and examine the effect of shifting x, to x,, + ut for
some real u. In other words, we shift x,, by u in the time
direction, leaving its spatial coordinates unchanged. Consider
the function

@(x1,x9, ... (2.5)

P (xpm1)p(x, + ut)|Q)
(x@(x1)p(x2) - - - exp(iHu)p(x,) exp(—iHu)|Q),
(2.6)

where H is the Hamiltonian. We are given that g(u) =0
for sufficiently small real u (since for small enough u,
x, + ut € Uy)) and we want to prove that it is identically O.
Because H|Q) = 0, we can drop the last factor of exp(—iHu)
in Eq. (2.6):

g(u) = (£p(x)p(xa) - expliHU)p(x,)|).  (27)
Because H is bounded below by 0, the operator exp(iHu) is

holomorphic for « in the upper half plane.2 Thus the function
g(u) is holomorphic in the upper half plane, continuous as one

'The following argument is along the lines of that in Streater and
Wightman (1964). However, to avoid invoking the multidimensional
edge of the wedge theorem, we consider one variable at a time, as
suggested by R. Longo.

The rigorous proof of this sort of statement in Streater and
Wightman (1964) uses some smearing with respect to x, to first
replace ¢(x,)|Q) with a normalizable vector. So although it is true
that the smeared and unsmeared statements (2.3) and (2.4) are
equivalent, the smeared version is convenient in the rigorous proof.
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FIG. 1. (a) A function g(u) holomorphic in the upper half u
plane can be computed by a Cauchy integral formula: any contour
y in the upper half plane can be used to compute g(u) for u in the
interior of y. (b) If g(u) is continuous on the boundary of the
upper half plane, one can take y to run partly along the boundary.
If in addition g(u) = 0 along part of the boundary—indicated
here by dashed lines—then that part of the contour can be
dropped. In this case, the Cauchy integral formula remains
holomorphic as u is moved through the gap and into the lower
half plane, implying that g(u) is holomorphic on that part of the
real axis and is identically zero.

approaches the real axis, and vanishes on a segment
I = [—e¢, €] of the real axis.

If g(u) were known to be holomorphic along the segment 7,
its vanishing along / would imply that a Taylor series of g(u)
around, say, ¥ = 0 must be identically O and therefore that
g(u) is identically 0. As it is, to begin with, we only have
continuity along the real axis and holomorphy in the upper
half plane. However, using the fact that g(u) vanishes in a
segment of the real axis (and imitating the proof of the
Schwarz reflection principle), we can argue as follows. For u
in the upper half plane, g(u) can be represented by a Cauchy
integral formula

9(u) L]{ e I (2.8)

27i u—u’

Here y is any contour that wraps counterclockwise once
around u [Fig. 1(a)]. For fixed y, the formula is only valid for u
inside the contour, since if we move u across the contour, we
meet the pole of the integrand. However, if it is known that
g(u) is identically O in a segment I of the real axis, we can
choose y to include that segment and then we can drop that
part of the integral since g(u’) vanishes for u’ € I. Once we do
this, we are free to move u through the segment / and into the
lower half plane [Fig. 1(b)]; in particular, we learn that g(u) is
holomorphic along I. As already explained, it follows that
g(u) is identically 0.

In this argument, we could replace t by any other timelike
vector.’ Using some other timelike vector instead, we learn
that (| (x1)p(xy) - - - p(x},)|Q) = 0if x], — x,, is any timelike
vector and xi,...,x, €Uy. But now we repeat the process
with x), replaced by xJ =x), + ot for real » and with
some possibly different timelike vector t. Analyzing the
dependence on v in exactly the same way, we learn that
(x|p(x1)p(x2) - - - p(x)|) = O for any x|, of this form. But
since every point in Minkowski spacetime can be reached by
starting with U, and zigzagging back and forth in different

timelike directions, we learn that if, for some xi,...,x,_,

*In the case of a past-pointing timelike vector, we make the same
argument as before using holomorphy in the lower half u plane.
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@(xy, ..., x,_1,x,) vanishes for all x, € U, then it actually
vanishes for all x,, without the restriction x,, € Uy.

The next step is to remove the restriction x,_; € Uy,. We
do this in exactly the same way, now shifting the last two
coordinates in a timelike direction. Thus we look now at

9(u) = (xld(x1)(x2) - P(x2) (x5 + ut)Pp(x, + ut)|Q).

(2.9)

Using again the fact that H|Q) = 0, we have

g(u) = (x| (x1)(x2) - -exp(iHu)p(x,-1)h(x,)|€2).

Just as before, the function g(u) is holomorphic in the upper
half plane and vanishes along a segment of the real axis, so it is
identically zero. Repeating this with a second timelike vector,
we learn that we can make an arbitrary shift x,_;,x, —
X,—1 +w,x, +w without affecting the vanishing of
@(xy,...,x,). Since we are also free to shift x, in an arbitrary
fashion, we learn that for x|, ..., x,_» € Uy, ¢(x;,...,x,) is
identically zero, with no restriction on x,_; and x,,.

The rest of the argument is hopefully clear at this point. At
the kth step, we make a timelike shift of the last £ points, adding
ut to each of them, and show as before that this does not affect
the vanishing of ¢(x, x,, ..., x,,). Repeating this with a shift by
vt’ and combining with the results of previous steps, we learn
that vanishing of ¢(x, xs, ..., x,) is not affected by moving
the last k points. At the nth step, we finally learn that
@(x1, %, ..., x,) is identically zero for all x{, x, ..., x,.

For future reference, a systematic holomorphy statement
that can be proved similarly to the above is as follows. The
‘H-valued function

(2.10)

Fl1 %, o) = (x)h(x) - px)IQ) (2.11)
(or the inner product of this function with any other state) is
holomorphic if the imaginary part of x; and of x; | —x
i=1,...,n—1is future timelike. (It is continuous up to the
boundary of that domain.) This is proved by Writing4

F(xy, %0, ..., x,) = [exp(—ix; -

P)¢(0) exp(ix; - P)]

X [exp(—ix, - P)¢p(0) exp(ix, - P)] -

x [exp(—ix,_; - P)¢(0) exp(ix,_; - P)]
P)$(0)]]€). (2.12)

x [exp(—ix,, -

C. Vectors of bounded energy momentum

In proving the Reeh-Schlieder theorem, we used the fact that
the energy-momentum operators P*, 4 =0, ..., D — 1 annihi-
late the vacuum state |Q). This implies, in particular, that for
any D vector ¢, exp(ic- P)|Q) = |Q). However (Borchers,
1968), in the proof it would be sufficient to know that, for a

“We work in signature — + +---+,s0x- P = —tH + X - P where
H is the Hamiltonian; this operator is negative semidefinite for
t > |X|, so |exp(—ix- P)| <1 for Imx future timelike. This ensures
that for such x, the operator exp(—ix - P) is defined for all states and
holomorphically varying.
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general D vector c#, exp(ic - P)|Q) varies holomorphically
with the components c°, ¢!, ..., ¢P~! of c. Then in the above
argument, we could not drop the factor exp(iut - P)|Q), but its
presence would not affect the discussion of holomorphy.

If a state W has the property that exp(ic-P)|¥) is
holomorphic in ¢, we say that the translation group acts
holomorphically on . This is not true for an arbitrary ¥, since
if ¢ has a future timelike imaginary part, exp(ic - P) is an
unbounded operator and exp(ic - P)|¥) may not make sense
in Hilbert space.5

A source of many vectors on which the translation group
has a holomorphic action is the following. The P* are a set of
D commuting, self-adjoint operators. This leads to a spectral
decomposition of the Hilbert space H on which the P* act. For
every closed set S in momentum space, there is a correspond-
ing projection operator Ilg onto the subspace Hg of Hilbert
space consisting of states whose energy momentum is con-
tained in the set S. (We cannot actually diagonalize the P* in
Hilbert space, since states of definite energy momentum—
other than the vacuum—are not normalizable.) If § is
compact, then in any Lorentz frame, the energy of a state
Y that is in the image of Il is bounded. This gives, for any c,
an upper bound on the norm of exp(ic - P)¥ and ensures that
the translation group acts holomorphically on V.

If ¥ is any state and S is compact, the projection I1g¥ to
states with energy momentum in § is a state on which the
translation group acts holomorphically. Moreover, I1¢¥ is
nonzero for sufficiently large S and in fact converges to ¥ as S
becomes large. So every state can actually be approximated by
states that could be used instead of the vacuum in the Reeh-
Schlieder theorem.

As an example of why this is useful, we can consider
superselection sectors. In general, the “vacuum sector” H,,
consisting of states that can be created from the vacuum by a
product of local operators, is not the full Hilbert space H of a
quantum field theory. In part, this is because there may be
conserved charges that are not carried by any local operator. For
example, in four spacetime dimensions, a theory with a
massless U(1) gauge field has conserved electric and magnetic
charges that are not carried by any local opelrators.6 Let H'
be the subspace of Hilbert space characterized by particular
values of these charges. Such an H' is called a superselection
sector. In a nontrivial superselection sector (not containing
the vacuum), there is no state of lowest energy that we could

> An unbounded operator on a Hilbert space is defined at most on a
dense set of vectors. Suppose, for example, that in some orthonormal
basis y,, of a Hilbert space H, an operator X acts by Xy, = 4,y,,. For
X to be unbounded means that the 4, are unbounded. In this case,
there is a vector ¥ = Y, ¢, with 3, |c,|> < co (so ¥ € H) but
Sl Plen|? = o0 (so X does not make sense as a vector in H).

®Below four spacetime dimensions, it may not be possible to fully
characterize superselection sectors by conserved charges. An exam-
ple is given by three-dimensional theories with non-Abelian statis-
tics. [For a treatment of this situation in algebraic quantum field
theory, see Fredenhagen, Rehren, and Schroer (1989).] Likewise,
soliton sectors in two spacetime dimensions cannot always be fully
characterized by conserved charges. However, the following remarks
about the Reeh-Schlieder theorem do not depend on whether a given
superselection sector can be characterized by conserved charges.
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use instead of the vacuum in the Reeh-Schlieder theorem.’
However, in such a sector, there is no problem to construct
states of bounded energy momentum, and for any such state
A, the analog of the Reeh-Schlieder theorem holds: whatever
can be created by local operators acting on A can be created
by local operators that act on A in the small open set Ufy,.
What happens to the Reeh-Schlieder theorem if Minkowski
spacetime M, is replaced by another globally hyperbolic
spacetime M? In curved spacetime, there is no natural analog
of the vacuum state, and there are, of course, also no natural
translation generators P*. However, it is reasonable to expect
that the Reeh-Schlieder theorem should have an analog for
any spacetime M that is globally hyperbolic and real analytic.
An analog of a vector on which spacetime translations act
holomorphically is a vector whose evolution is holomorphic in
the following sense. In general, a vector Wy defined in
quantization on a Cauchy hypersurface ¥ C M can be evolved
forward or backward in time to a vector Wy on any other such
hypersurface X'. If M is real analytic, it can be “thickened”

slightly to a complex analytic manifold M, and we can ask
whether Wy evolves holomorphically with X/ if ¥’ is displaced

slightly away from M in M. If so, we say that Wy has
holomorphic evolution and a reasonable analog of the Reeh-
Schlieder theorem would say that states a¥s, where a is
supported in some given open set, are dense in Hilbert space.
For results in this direction, see Strohmaier, Verch, and
Wollenberg (2002) and Gérard and Wrochna (2017). There
is also a version of the Reeh-Schlieder theorem adapted to
anti—de Sitter space and holography (Morrison, 2014), and
there are attempts to generalize the theorem to curved
spacetime without assuming real analyticity (Sanders, 2009).

D. An important corollary

The Reeh-Schlieder theorem has an important and imme-
diate corollary. Let us assume that the open set V' C X is small
enough so that its closure V is not all of X. Then the
complement of V in ¥ is another open set )/, disjoint from
V. V' and V are spacelike separated, and they are contained in
small open sets Uy, U,y C Mp that are also spacelike sepa-
rated. One also may choose to let /), and U,y be as large as
possible, while remaining at spacelike separation. The precise
choice of Uy, and U,y is not important in this section.

Let a be any operator supported in the spacetime region Uy,
not necessarily constructed from a product of finitely many
local operators. Because the regions Uy, Uy are spacelike
separated, a commutes with local operators in Uyy;

[p(x).a] =0.  x€Uy. (2.13)
Conversely, an operator @' supported in U/, satisfies
[p(x),a’] =0, X € Uy. (2.14)

The Reeh-Schlieder theorem applies equally well to )V or to
V', as they are both nonempty open sets in the initial value

7, e . .
To minimize the energy of, say, a magnetic monopole, we want it
to have zero momentum. But such a state is not normalizable.
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hypersurface X. This has the following consequence. Suppose
that an operator a supported in I/, annihilates the vacuum
state
alQ) =0. (2.15)
Because a commutes with the local operators ¢(x;), x; € Uy,
the vanishing of a|Q) implies that
ag(x))p(xz) - p(x,)|Q) =0,  x; €Uy (2.16)
But the Reeh-Schlieder theorem tells us that the states
P(x1)p(xy) - - p(x,)|Q), x; €Uy are dense, in the vacuum
sector H, of Hilbert space. So the vanishing of the left-hand
side of Eq. (2.16) for all n and all x; € U, implies that the
operator a is identically O, in the vacuum sector.

For an open set U in spacetime, let us define .4;, to be the
algebra of operators supported in /. We will call this a “local
algebra” of the quantum field theory. In Sec. ILF, we will be
more specific about what we mean by “all operators.” For now
we leave this open. In the present discussion, we have
considered two open sets, namely U = Uy and U’ = Uy,
which are thickenings of V and V', respectively, so there are
two algebras to consider, namely A;, and A;,.

By way of terminology, a vector ¥ in a Hilbert space H,, is
called a cyclic vector for an algebra such as A, if the states
al¥), a € Ay are dense in H,. W is said to be separating for
Ay, if the condition a|¥) = 0, a € A, implies thata = 0. The
Reeh-Schlieder theorem says that the vacuum vector Q is
cyclic for Ay, and for A;,. As we have just explained, a state
that is cyclic for one of these algebras is separating for the
other, so in fact the vacuum is cyclic and separating for A4;,
and for A;,.

More generally, the Reeh-Schlieder theorem implies that, in
each superselection sector, any vector on which the translation
group acts holomorphically is cyclic and separating for A4;,
and for A;,.

As we have seen, if &/ and U’ are a pair of spacelike
separated open sets, then many vectors are cyclic and
separating for 4;, and for A;,, but it is certainly not true
that every vector has this property. For a simple counterex-
ample, consider a theory with a complex free fermion .
Then for a smearing function f supported in U, y, =
Jd@*xf(x)w(x) obeys w7 =0. It therefore annihilates any
vector of the form y y. If one defines the local algebras to
consist of bosonic operators only [as does Haag (1992)], then
one can pick a pair of smearing functions f, g supported in I/
and set Oy, =wsy, Then O, is a bosonic operator
supported in U and obeying Oj%g =0, so O, annihilates
any state O, y. So wyy or O,y is a state that is not
separating for A, or cyclic for A;,.

The fact that the vacuum is separating for the algebra .4;,
has interesting consequences for the energy density in
quantum field theory (Epstein, Glaser, and Jaffe, 1965). Of
course, the total energy H is positive semidefinite, and
annihilates only the vacuum state. It can be defined as the
integral of the energy density 7'y, over an initial value surface
t = 0. However, in contrast to classical physics, the energy
density Ty(x) is not positive semidefinite in quantum field
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theory, and the same holds for any smeared operator
T,= fuv dPxf(x)Too(x), where f is any real smearing
function with support in {y,. Poincaré invariance and the fact
that HQ = 0 imply that the vacuum has vanishing energy
density, (Q|Ty(x)|Q) = 0. However, the separating property
of the vacuum for the algebra A, implies that 7,|Q) # 0.
Let y be some state with (y|T/|Q) # 0. Let WV be the two-
dimensional subspace of Hilbert space generated by Q and y.
If we write a vector in WV as a column vector with Q and y
corresponding to the upper and lower components, then 7'y
restricted to )V takes the form

5 o)

with b = (x|T(|Q) # 0. Such a matrix is not positive semi-
definite, implying that 7'y has a negative expectation value in
some state y € W C H.

(2.17)

E. Discussion

The Reeh-Schlieder theorem may seem paradoxical at first.
It implies that by acting on the vacuum with an operator a
supported in a small region {/,,, one can create whatever one
wants—possibly a complex body such as the Moon—in a
faraway, spacelike separated region of spacetime.

To understand this better, let V* be a distant region in which
we want to create the Moon. Let M be an operator supported in
region Uy that to good approximation has expectation value 0
in states that do not contain a moon in region V* and 1 in states
that do contain one. Thus

(QM|Q) ~ 0, (2.18)
but according to the Reeh-Schlieder theorem, there is some
operator a supported in /), such that the state a2, to very
good approximation, contains a moon in region V*. Thus
(aQMjaQ) ~ 1, so (Qa’Ma|Q) ~ 1. As a' is supported in
region Uy, and M is supported in the spacelike separated region
Uy-, these operators commute and thus

(QMa*a|Q) ~ 1. (2.19)

Is there a conflict between Eqgs. (2.18) and (2.19)? If we
could choose the operator a to be unitary, we would have
ata = 1, and then there would indeed be a conflict. However,
the Reeh-Schlieder theorem does not say that there is a unitary
operator supported in fy, that will create the Moon in some
distant region; it merely says that there is some operator
supported in Uy, that will do this.

If one asks about not mathematical operations in Hilbert
space but physical operations that are possible in the real
world, then the only physical way that one can modify a
quantum state is by perturbing the Hamiltonian by which it
evolves, thus bringing about a unitary transformation. If one
is able to couple a given quantum field theory to some
auxiliary quantum system, then one can implement a unitary
transformation on the combined system. It is not possible by
such a unitary transformation supported in U/, to make any
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change in observations in a spacelike separated region V*.
That is what we learn from the above computation, which
shows that for any operator M supported in Uy and any
unitary operator a supported in V, (aQ|M|aQ2) = (Q|M|Q).
This computation is unaffected if a acts also on some auxiliary
quantum system, as long as a is unitary and commutes with
operators in V*.

While it is not possible for a physical operation in one
region to influence a measurement in another region, there
can be correlations in the vacuum between operators in
the two regions. This happens all the time in quantum
field theory, even in free field theory. We are seeing
such correlations in Eq. (2.19), which shows that
(Q|Ma’a|Q) # (QIM|Q)(Qa’a|Q).

The Reeh-Schlieder theorem can be given an intuitive
interpretation by considering a finite-dimensional quantum
system with a tensor product Hilbert space H = H; ® H,.
For what follows, the most interesting case is that H; and H,
have the same dimension n. We let .4, be the algebra of n x n
matrices acting on H;, and .4, the algebra of n x n matrices
acting on H,. (In language that we will introduce shortly,
these are x-algebras and they are each other’s commutants.) A
generic state W of the composite system is entangled. For any
given P, it is possible to choose a basis wy, k = 1, ..., n of H,
and another basis ), k =1, ...,n of H, such that

n
Y= Z i ® Wi (2.20)

k=1

with some coefficients ¢;. It is convenient to write |k) and |k’)
for y; and . so that this formula becomes

y = ick|k> ® [k, (2.21)

The vector W is cyclic and separating for A, and for A, if and
only if the ¢, are all nonzero, or equivalently if the reduced
density matrices on H; and on H, are invertible. We will
return to this setup in Sec. IV.A.

The Reeh-Schlieder theorem says that, in quantum field
theory, if Ay, and Ay, are the algebras of operators supported
in complementary regions of spacetime, then similarly the
vacuum is a cyclic separating vector for this pair of algebras.8
This might make one suspect that the Hilbert space H should
be factored as H = Hy, @ H,», with the vacuum being a fully
entangled vector in the sense that the coefficients analogous to
¢, are all nonzero. This is technically not correct. If it were
correct, then picking v € Hy,, y € H,», we would get a vector
v ® y € 'H with no entanglement between observables in V
and those in V'. This is not what happens in quantum field
theory. In quantum field theory, the entanglement entropy

¥This remains so if V is replaced by a smaller region, and V' by a
correspondingly larger one. That fact would have no natural analog
for a finite-dimensional quantum system, and shows in a different
way from what is explained in the text the limitations of the analogy
between the vacuum of a quantum field theory and a fully entangled
state of a finite-dimensional quantum system.
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between adjacent regions has a universal ultraviolet diver-
gence, independent of the states considered. The leading
ultraviolet divergence is the same in any state as it is in the
vacuum, because every state looks like the vacuum at short
distances. The universality of this ultraviolet divergence
means that it reflects not a property of any particular state
but rather the fact that H cannot be factored as Hy, ® H,.

It is also not correct, technically, to write H as a direct sum

¢
v

discrete or continuous variable and each H%, Hf,, is supposed
to furnish a representation of A4, or A,,. If one had
H= @ng) ® Hfj, (where the direct sum over { might be
a continuous integral), then there would be operators—such as
any function of {—that commute with both Ay, and A,,.
Bounded functions of the {’s would be bounded Hilbert space
operators, defined on all states. Moreover, because the leading
ultraviolet divergence in the entanglement entropy is propor-
tional to the area of the boundary between these two regions,
these operators would have to be local along the boundary.
There is nothing like that in quantum field theory. What we
usually call a local operator ¢(x) has to be smeared just to
make a densely defined unbounded operator (let alone a
bounded operator, defined on all of Hilbert space), and such a
smeared operator does not commute with A4, and A,».

Despite all this, many statements that one could deduce
from a naive factorization H = H,, @ H,» and whose analogs
are true for entangled quantum systems of finite dimension are
actually true in quantum field theory. Tomita-Takesaki theory,
which we introduce in Sec. III, is an important tool in proving
such statements.

or integral of Hilbert spaces H%; and H;,, where { is some

F. The local algebras

In Sec. II.D, we introduced the notion of associating to an
open set { in spacetime a “local algebra” A4;, consisting of “all
operators” supported in .

But what do we mean by all operators? The operators that
we have considered so far are what one might call simple
operators, namely, polynomials in smeared local fields.
However, there are serious drawbacks to considering only
simple operators.9 For one thing, one wants to be able to claim
(Haag and Schroer, 1962) that if ¢/ is an open set in spacetime
and U is a larger open set that is its domain of dependence
[Fig. 2(a)] then the algebras A;, and Aﬁ coincide. The logic
behind this is that the dynamical time evolution of the theory
determines operators in the larger region U in terms of
operators in /. This is true, but operators supported in regions
of U that are to the future or the past of U are in general
exceedingly complex functions of operators in /. Thus we can
only get a simple relation Ay, = Az if we include in Ay, all
operators that can be made from the simple ones.

What sort of operators can we make from simple ones?
Some elementary operations come to mind. For example, if f

“The simple operators also have important advantages, of course;
they are the basis of a standard and powerful machinery of
renormalization theory, operator product expansions, and so on.
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(a) (b) ©)

q q

FIG. 2. (a) An open set U in Minkowski spacetime, and its
domain of dependence u (the union of ¢/ with the regions labeled
as U in the figure), which in this case is a causal diamond and
coincides with the causal completion U of U. (b) The two open
sets U and U’ are causal complements; each is the largest open set
that is spacelike separated from the other. (c) A quite different
open set I/ whose causal completion I/ (the union of U and the
regions labeled /") is the same causal diamond as in (a).

is a real smearing function and ¢, = Ik dPxf¢p, we can
consider the operator exp(i¢h,), which actually is a bounded
operator made from ¢ . More generally, if F' is any bounded
function of a complex variable, we can consider F(¢;) (now
with a possibly complex-valued smearing function f); this
again is a bounded operator. Still more generally, if fi, ..., f,
are n smearing functions and F is a bounded function of n
complex variables, we can consider F(gbfl,qﬁfz, ey d’fn)'

The reason to consider bounded operators is that they are
defined on all of Hilbert space, so they can be multiplied
without any trouble, and naturally form an algebra. Unbounded
operators in general cannot be multiplied, as they are defined on
different dense subspaces of Hilbert space. If we try to define
“all unbounded functions” of the ¢;’s and hope to make them
into an algebra, we will probably have a lot of trouble.

We could go on with elementary constructions. To complete
the story, what is really needed is to include limits of the
operators we already have. To decide what sort of limits to allow,
let us think for a moment about what is involved in measuring an
operator, such as the weak Hamiltonian that is involved in beta
decay. What an experiment gives us is a measurement of finitely
many matrix elements of an operator, each with some exper-
imental error. If 8, @,, ... isa sequence of operators all of whose
matrix elements (y|a,|y) converge for large n to the corre-
sponding matrix elements (y|aly) of some operator a, this
means that any given experiment will not distinguish a,, from a
once n is large enough. In such a situation, it is reasonable
physically to say that a = lim,_a,. What we have just
described [following Haag (1992) in this reasoning] is the
mathematical notion of a weak limit of a sequence of operators.

It is reasonable to believe that we should define A;; to be
closed under such weak limits."” One also expects A, to be
closed under a more trivial operation. The set of smeared
fields in a given region is closed under Hermitian conjugation.

1OHowever, aresult of von Neumann shows that if we define A, to

be closed only under a more restricted type of limit called a strong
limit, we will actually get the same algebra. A sequence @, @,, ... of
operators has an operator a as its strong limit if for any Hilbert space
state y, lim,_a,y =ay.
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(If ¢y = [dPxf(x)¢p(x) is a smeared field supported in a
given region, then so is ¢;- = [dPxf(x)¢p(x).] Any reason-
able set of operations that builds new operators from old ones,
starting from a set of operators that is closed under Hermitian
conjugation, will give a set of operators that remains closed
under Hermitian conjugation. An algebra acting on a Hilbert
space and closed under Hermitian conjugation is called a -
algebra. Thus any reasonable choice of what we would mean
by A;; will be a x-algebra.

A x-algebra of bounded operators on a Hilbert space that is
closed under weak limits (and contains the identity operator)
is called a von Neumann algebra. Thus we are led in this way
to the notion that the local algebra A4;, of an open set U/ should
be a von Neumann algebra.

If A is a *-algebra of bounded operators on a Hilbert space
‘H, then its commutant A’, defined as the set of all bounded
operators on H that commute with A, is another *-algebra. A’
is always a von Neumann algebra even if A is not.'' If A is a
von Neumann algebra, then the relation between A and A’ is
reciprocal: each is the commutant of the other. This is von
Neumann’s theorem that if 4 is a von Neumann algebra, then
A" = (A'Y satisfies A" = A.

Operators at spacelike separation commute, SO one expects
that if I/ and U/’ are spacelike separated, then'?

[Auv AU'] = O»

which is an abbreviated way to say that [a,a'] = 0if a € A,
a’ € A;y. Thus one expects that A;, is always contained
in A;/.

It was proposed by Haag (1963) and by Haag and Schroer
(1962) that if U and U’ are causal complements, meaning that
they are maximal open sets under the condition of being
spacelike separated, then the corresponding algebras A;, and
Ay are commutants, meaning that they are maximal under the
condition of commuting with each other. This condition,
sometimes called Haag duality, can be written

(2.22)

Ay = Ay (2.23)
This condition is stated in Haag (1992) as part of Tentative
Postulate 4.2.1. The rest of the postulate says that if ¢/ is a
union of open sets U, then A;, is the smallest von Neumann

algebra containing the Ay, , and that if /, U are two open sets
then A, ~ = Ay n Az Haag duality is known to be true in
many circumstances; for example, it was proved by
Bisognano and Wichmann (1976) for complementary

""The nontrivial point is that A’ is closed under weak limits. If
a,’,a,’, ... is a sequence of bounded operators that commute with .4
and has weak limit @', then for any states y, ¥ € H and any a € A,
one has (y|[a,a]ly) =lim,_(w|[a a,]|y) =0; vanishing of
(w|la.a’l|y) for all y, y means [a,a’] =0 and therefore a’ € A,
showing that A’ is closed under weak limits.

“In the presence of fermions, one has anticommutativity as well as
commutativity of operators at spacelike separation. In the algebraic
approach, one can consider a von Neumann algebra with an auto-
morphism that distinguishes even and odd operators. For one
approach, see Guido and Longo (1995).
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Rindler regions in Minkowski spacetime (this is explained
at the end of Sec. V.B). Haag duality and the rest of Postulate
4.2.1 are apparently valid in an interesting class of quantum
field theories and for some open sets in a wider class, but it
appears that in some theories and for some classes of open
sets, Haag duality and other parts of Tentative Postulate 4.2.1
can fail (Leyland, Roberts, and Testard, 1978; Doplicher and
Longo, 1984; Schroer, 2017; Harlow and Ooguri, 2018).

We give an example of the simplification that occurs if two
algebras are commutants. If A and .A" are commutants, then a
vector Q € H is separating for A if and only if it is cyclic for
A’, and vice versa. The “if” part of this statement only
depends on A and A’ commuting and was explained in
Sec. II.D. What we gain if A and A’ are commutants is the
“only if” statement. Suppose in fact that a vector Q is not
cyclic for A’. Then the vectors a’|Q), a’ € A’ generate
a Hilbert space H’ that is a proper subspace of H. Let
IT:'H — H be the orthogonal projection onto 7/, . Then IT is
bounded and commutes with A’, so if the two algebras are
commutants, IT € A. But IIQ = 0 (since 1 € A’, certainly
Q =1-Qisofthe forma'Q, a’ € A, and therefore Q € H').
Thus if Q is not cyclic for A’, then IT € A annihilates Q and
Q is not separating for A.

We conclude by describing an analogy between algebras
and open sets that is developed in Haag (1992). In the analogy,
a x-algebra corresponds to an open set in spacetime, a von
Neumann algebra corresponds to a causally complete open
set, and commutants correspond to causal complements.

Let A be a x-algebra of bounded operators on H (not
necessarily a von Neumann algebra) and A’ its commutant.
Then A’ is a von Neumann algebra as explained in footnote 11.
In particular, the commutant A" = (A’) of A’ is a von
Neumann algebra. Clearly A cC A" (A" consists of all
bounded operators that commute with A’, and the definition
of A’ ensures that any element of .4 commutes with .A"). A" is
called the von Neumann algebra closure of A; it is the smallest
von Neumann algebra containing 4. If A was a von Neumann
algebra to begin with, then A = A”. On the other hand A’ is
always a von Neumann algebra so one always has A" = A",
If A is a von Neumann algebra, A and A’ are each other’s
commutants.

Now consider open sets. If I/ is an open set, then as above,
its causal complement I/’ is the union of all open sets that are
spacelike separated from ¢/ (equivalently, it is the largest open
set spacelike separated from (f). The causal complement
U" = (U')" of U' always contains U, since I/ is an open set
spacelike separated from /. One always has U" =U'.
[Indeed, since U C U”, the condition for a point to be
spacelike separated from /" is stronger than the condition
for it to be spacelike separated from U, so U" = (U") cU'.
The opposite inclusion U’ C U" just says that the open set U’
is contained in (U")" = U"".] U is said to be causally complete
if U" =U. The result U” =U' means that U’ is always
causally complete. In general, /" (which also is always
causally complete since U’ = U" implies U" = U"") is the
smallest causally complete set containing ¢/ and is called the
causal completion of /. If I/ is causally complete, then ¢/ and
U’ are each other’s causal complements.
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If Haag duality holds in some theory for all open sets, not
necessarily causally complete, then it implies that A, = Ay
for all U, a property stated in Haag (1992), (II.1.10). [Indeed,
Haag duality says that A, = (Ay) = (Ay)” = Ay, where
in the last step we use the fact that A” = A for any von
Neumann algebra A.] The conditions for this to hold do not
appear to be known,"? but it does have a surprisingly wide
range of validity. Two illustrative cases are shown in Figs. 2(a)
and 2(c). In Fig. 2(a), U” is a causal diamond, and coincides

with the domain of dependence UofU. Causality would lead
us to expect in this example that A;; = A;» and this was
indeed an input to the previous discussion. In Fig. 2(c), U is a
thin “timelike tube” (with corners at the top and bottom)
whose causal completion U is the same causal diamond. In
this case, there is no simple reason of causality to expect that
Ay = Ay, but this can be proved with a more sophisticated
use of the ingredients that went into proving the Reeh-
Schlieder theorem. The result is sometimes called the
Borchers timelike tube theorem (Borchers, 1961, 1996;
Araki, 1963; Wightman, 1964).

III. THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEORY

A. Definition and first properties

In some quantum field theory in Minkowski spacetime with
Hilbert space H, let A4;, be the algebra of observables in a
spacetime region U, and let A;, be its commutant. (If Haag
duality holds, then A4;, coincides with .4;,,, but we do not need
to assume this.) If the context is clear, we sometimes write just
A and A’ for A, and A;/. Let ¥ be a vector—such as the
vacuum vector—that is cyclic and separating for both regions.

The Tomita operator for the state ¥ is an antilinear operator
Sy that, roughly speaking, is defined by

Syal¥) = a'|¥) (3.1)
for all a € A;,. To understand this definition, first note that
because W is a separating vector for A, the state a|¥) is
nonzero for all nonzero a € A;,.. Therefore, we avoid the
inconsistency that would arise in this definition if some a
would satisfy a|¥) = 0, a’|¥) # 0. Second, because the states
a|¥), a € A, are dense in H, Eq. (3.1) does define the action
of Sy on a dense subspace of H.

The definition of Eq. (3.1) will lead to an unbounded
operator Sy for the following reason. In the region U, given
that it is small enough that its causal complement contains
another open set I/, it is not possible to make a mode of
definite positive or negative frequency. But by using modes
of very short wavelength, we can construct an operator a in
region U that is arbitrarily close to being an annihilation

PAsa counterexample if ¢/ is not required to be connected, in two-
dimensional spacetime, let ¢/ be the union of small balls centered at
the two points (7, x) = (£1,0). Then " is again a (slightly rounded)
causal diamond. Massless fields are functions only of x. = x = ¢.
In U"”, one can measure modes of massless fields in the whole range
—1 <x. <1, butin U, one only see values of x, near %1.
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operator (one that lowers the energy) while a' is equally close
to being a creation operator. So a|Q) can be arbitrarily small
while a’|Q) is not small. Thus Sy is unbounded.

An unbounded operator cannot be defined on all states in
Hilbert space (recall footnote 5). But it is important to slightly
extend the definition of Sq as follows. If a,,, n = 1,2,3, ... is
a sequence of elements of A;, such that both limits

x = lima,|¥), y= lima;|¥) (3.2)
n—oo n—oo
exist, then we define'*
Syx = y. (3.3)

Extending the definition of Sy in this way gives what
technically is known as a “closed” operator, meaning that
its graph is closed; see Sec. IIL.F.

The definition (3.1) makes it clear that

(3.4)
so in particular Sy is invertible. Another obvious fact is that

Sy|¥) = [¥). (3.5)
We could of course similarly define the modular operator
Sy for the commuting algebra 4;,. In fact, these operators are
Hermitian adjoints:
Sy = S (3.6)
The definition of the adjoint of an antilinear operator W is that
for any states A, y,

(AW ) = (WiA|y) = (xIW'A). (3.7)
A special case of this which we will use shortly is that if W
is antiunitary, meaning that it is antilinear and satisfies
W'W = WW' = 1, then

(WAIWY) = (Alx) = (x|A). (3.8)

To show that Sy, = STI,, we have to show that for all states A,
x, wehave (SGA|y) = (Sy y|A). Itis enough to check this for
a dense set of states, so we can take y = a¥, A = a’'¥, with
ae Ay a € Ay Using the definitions of Sy and Sy and of a
Hermitian adjoint and the fact that a and &’ commute, we get

YFor this definition to make sense, it must be that if
lim,_,.a,¥ =0 then also lim,Hoan‘I’:O. Suppose that y =
lim,Hwa;H‘P) exists and is nonzero. As it is separating for A,
the state ¥ is cyclic for Aj,. So there is a' € A;, with nonzero
C = (@¥]y) = lim,_(a'¥P|a)¥). Then C = lim,_ . (a,¥[a'¥) =
lim,_(@"¥|a,¥) is also nonzero. This implies that x =
lim,,_ ,a,|¥) is nonzero. Mathematically, we have proved that the
operator Sy is “closeable.” The importance will become clear in
Sec. IILF.
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(Sya'¥|a¥) = (a'T¥|a¥) = (Y|a'a?)
= (Y|aa'?) = (a'¥|a'¥P)

= (S, a¥a'¥y) (3.9)

. 5
as desired.'
Since it is invertible, Sy has a unigue polar decomposition

Sy = JyAy?, (3.10)

where Jy is antiunitary and A}J * is Hermitian and positive
definite. This implies that

Ay = SiSy. (3.11)
Ay and Jy are called the modular operator and the modular

conjugation. Since Sy¥ = STP‘P =Y, we can deduce the
important result

Ay|¥) = |¥). (3.12)
From Eq. (3.12), it follows that for any function f,
f(Ag)¥) = fF(]Y). (3.13)

In addition, because SZ, = 1, we have JTA\II,/ZJWAllI,/Z =1
or

TeAy Ty = A2 (3.14)
Hence
B A Ty) = A2 =1-832 (3.15)

Since Jg' A\ll,/ 2le is positive, this gives two different polar
decompositions of the operator A\;l/ 2, By the uniqueness of
the polar decomposition, we must have

B=1. (3.16)

Therefore

b= Sk = AY Ty = JyAy (3.17)
Comparing this to the polar decomposition S§ = JiAL'/2,
we find

‘I(I‘ - J\y,

Ay = A7 (3.18)

This argument really only shows that Sfl, is an extension of S{,
(meaning that the two operators act in the same way on any vector on
which Sy, is defined). For the proof that it is not a proper extension
(meaning that S}, cannot be defined, consistent with (Si, y|A) =
(SyAlyx), on any vector on which Sy is not defined), see, for
example, Theorem 13.1.3 in Jones (2015).
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Finally, because JyAyJy = AG!, we have Jyf(Ay)Jy =
f(AG') for any function f. In particular, taking f(x) = x*
for real s, we get

JyASJy = A s € R. (3.19)

The operators that we introduced have a number of other
important properties, which we will explain in Sec. IV after
exploring these definitions for finite-dimensional quantum
systems.

B. The relative modular operator

Now let @ be a second state. The relative Tomita operator16
Sy|e for the algebra Ay is defined by (Araki, 1975)

Sq,@a|‘l’) = a'|®). (3.20)
In this definition, we usually assume that
(P|¥) = (®|®) = 1. (3.21)

The definition of Sy)e is completed by taking limits as
in Eq. (3.2).

As before, for Syq to make sense as a densely defined
operator, the state ¥ must be cyclic and separating for the
algebra 4;,. But @ can be any state at all. If @ is cyclic
separating, then we can define

Sopa|®) = a’|w). (3.22)

In this case SqwSyje = 1 and in particular Sy|q is invertible.

A calculation similar to that of Eq. (3.9) shows that Sy|q for

one algebra Ay is the adjoint of Sy for the commutant A;,".
The relative modular operator is defined by

Ayio = SyipSwio- (3.23)

It is positive semidefinite, and is positive definite if and only if
Sy|e is invertible. If ® =W, Sy|p reduces to Sy and Ay
reduces to the usual modular operator:

The polar decomposition of the relative modular operator is

Sly|q> - J\y‘q)A\IP/‘?D, (325)

'We should warn the reader that what we call Sy|e is often
denoted Sqpy (O Sqp, Sew, €tc.). The purpose of our convention is
to agree with quantum information theory, where it has become
standard to define the relative entropy between density matrices p, ¢
as S(p||o) = Trp(log p — log 6). In the relation to information theory,
Y and @ correspond, respectively, to p and o, as we will learn in
Sec. IV.A, so we put ¥ before ® just as p is conventionally put before
o in S(p||o). Note that some of the classic papers used the opposite
ordering for both S| and S(p||o).
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where Jy| is the relative modular conjugation. Here we have
to be careful. If @ is not separating, then Sy|e has a kernel,
Vo
make the polar decomposition unique, Jy|e is defined to
annihilate this kernel. Also, if @ is not cyclic, then the image
of Sy|e is not a dense subspace of H. In general, Jy|p is an
antiunitary map from the orthocomplement of the kernel of
Sy|o to its image. However, if @ is cyclic separating, then Jyq
is antiunitary.

Now let us discuss what happens if @ is replaced by a’®,
where @’ is a unitary element of the commuting algebra A;,’.
Fora € Ay, we get Syjgpa¥ = a’'a’® = a'a’®, sincea’ and
a’ commute. So Syjap = &'Sy|e. With @' unitary, this implies

which is also a kernel of Ay, and A In such a situation, to

Ayare = Ayo. (3.26)
If it is important to specify the region U, we write Ayqy, for
the relative modular operator for the algebra 4;, and the states
¥, @, and similarly for Sy|qy.-
The following gives a useful characterization of the relative
modular operator:

(@"¥|Ay|e|0¥) = <aTT‘S\T}'|¢S‘P\®|bT>

= (Syob®?[SypalP) = (bidlad). (3.27)

Remark: For future reference, observe that the definition of
Sy|o and Ay does not require that ¥ and @ are vectors in the
same Hilbert space. Let H and H' be two different Hilbert
spaces with an action of the same algebra 4;,. For example, H
and H’ might be different superselection sectors in the same
quantum field theory. If ¥ is a cyclic separating vector in H
and ® is any vector in ' then Eq. (3.20) makes sense and
defines an antilinear operator Sy : H — H'. Tts adjoint is an

antilinear operator S};,‘q) :H' — H. The product S;‘QSly‘q) isa
non-negative self-adjoint operator, the modular operator
Ayjp i H — H. When not otherwise noted, we usually assume
H="H.

C. Relative entropy in quantum field theory

A primary application of the relative modular operator in
these notes will be to study the relative entropy. Relative
entropy was defined in classical information theory by
Kullback and Leibler (1951) and in nonrelativistic quantum
mechanics by Umegacki (1962); a definition suitable for
quantum field theory was given by Araki (1975, 1976). The
relative entropy Syje(U) between two states ¥ and @, for
measurements in the region U, is

S‘I‘\Cb(u) = —(¥[log AW\@\‘P>~ (3.28)
(In this section, ¢ is kept fixed and we write Ay for Ayp,,.)
In general, Syjq () is a real number or +oo. For example,
Syjo(U) may be +o0 if Ay|q has a zero eigenvalue, which will
occur if @ is not separating for 4;,. How this definition is
related to what may be more familiar definitions of relative
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entropy will be explained in Sec. IV. In this section, we simply
discuss the properties of the relative entropy.

An important elementary property is that Sy (1) is always
non-negative, and vanishes precisely if ® = a’"¥ where @’ is a
unitary element of the commuting algebra .4;,". This condition
implies that (®|a|®) = (¥|a|¥) for all a € Ay, so it means
that @ and W cannot be distinguished by a measurement in
region U. To see the vanishing if ® = a'¥P, with a’ € A/,
note that in this case, according to Eqs. (3.24) and (3.26), Aye
is the ordinary modular operator Ay. So using Eq. (3.13)
with f(x) =logx, we get logAye|¥) =0 for ® =a'?,
hence Syy(U) = 0.

To show that Sy|q, (i) > 0 if @ is not of the form a"¥, one
uses (Araki, 1976) the inequality for a non-negative real
number logA < A— 1. This inequality for numbers implies
the operator inequality log Ayjp < Ayjp — 1, or —log Ay >
1- A‘I’\(D' So

SpioU) 2 (P|(1 = Ayo)|P) = (P|P) = (P[S}4 Syjo¥)
= (¥|¥) — (®|®) =0,
(3.29)

since we assume (¥|¥) = (®|D) = 1.
Because the inequality log4A <A1 —1 is only saturated at
A =1, to saturate the inequality (3.29) we need Ay to equal
1 in acting on ¥, that is we need Ayjp'¥ = ¥. But as we will
show, this implies that ® = a’¥ for some unitary a8’ € A;,.
The statement that Ayje'¥ =¥ implies that for any state y,
(x|Ayp¥) = (x|¥). (3.30)

In particular, this must be so if y =a¥ for a € Ay, We
calculate

(aP|Aye¥) = <alP‘SlTp\¢S‘P\<I>lP> = (alP|ST{,‘®<D>

= (®[Sypa¥) = (®|la’d) = (ad|d). (3.31)
We used Syjp¥ = @ and the definition of the adjoint of an
antilinear operator. The condition (3.30) then is that
(a®|®) = (a¥|¥) for all ae Ay Accordingly, for a,
be .Az,{,

(a®|b®) = (b'ad|®) = (b'a¥|¥) = (a¥|b¥). (3.32)
Since states of the form a¥ or b¥ are dense in H, we can
define a densely defined linear operator that takes a¥ to ad.
Equation (3.32) states that this operator is unitary (and so,
being bounded, it can be naturally extended to all of H), and
as it commutes with Ay, it is given by multiplication by a
unitary element @’ € A;/. Thus a® = a’a¥ for all a, and in
particular ® = a’¥, as claimed.

Positivity of relative entropy has various applications in
quantum field theory, for instance in the interpretation and
proof (Casini, 2008; Longo and Xu, 2018) of the Bekenstein
bound on the energy, entropy, and size of a quantum system.
The more subtle property of monotonicity of relative entropy,
to which we come next, also has various applications, for
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instance in the proof of a semiclassical generalized second
law of thermodynamics that includes black hole entropy
(Wall, 2012).

D. Monotonicity of relative entropy

In quantum field theory, in the definition of the algebra of
observables and the associated modular operators, we can

replace the open set U/ by a smaller open set U C U. Thus, for
given ¥ and @, we can define Tomita operators Sy|py, and
S‘{,| o7 and associated modular operators Ay|qy, and Al{,‘ ol
Then we have the relative entropy Sy () for measurements
in U,

S‘P\tb(u) = —(¥|log A‘I’|<D;Z/l|lp> (3.33)

and the corresponding relative entropy for measurements in u,

Swjo(Ul) = —(¥|log Ay 7 |¥). (3.34)

Monotonicity of relative entropy says that if U is contained in
U, then

Syjo(U) 2 Syjo(U). (3.35)

In nonrelativistic quantum mechanics, a version of monot-
onicity of relative entropy was proved by Lieb and Ruskai
(1973), along with strong subadditivity of quantum entropy, to
which it is closely related. The proof used a lemma of Lieb
(1973). A more general form of monotonicity of relative
entropy was proved by Uhlmann (1977). In a form that
encompasses the statement (3.35) in quantum field theory,
monotonicity of relative entropy was proved by Araki (1975,
1976). Petz (1986), with later elaboration by Nielsen and Petz
(2005), formulated a proof for nonrelativistic quantum
mechanics that drew partly on Araki’s framework. Some of
these matters will be explained in Sec. IV, but for now we just
concentrate on understanding Eq. (3.35).

The states ¥ and ® will be kept fixed in the rest of this
section, so to lighten the notation we usually just write S;, for

Swyjogy and Ay for Aygyy, and similarly for U. The inequality
(3.35) is a direct consequence of an operator inequality

(3.36)
A self-adjoint operator P is called positive if ( y|P|y) > 0 for
all y; in that case, one writes P > 0. If P and Q are bounded
self-adjoint operators, one says P > Q if P—Q > 0. (The
reason for assuming here that P and Q are bounded is that it
ensures that ( y|P — Q| y) = (x|P|x) — {x|0O| x) is defined for
all y; we explain shortly how to interpret the statement P > Q
in general.) If P, Q > 0, an equivalent statement to P > Q is

R(t) =tP+ (1 —1)Q, t € R. Writing R = dR/dt, we see
that R = P — Q > 0. We have

d_ 11 1
dts+R(t)  s+R(t) s+R()

(3.38)

The right-hand side is < O since it is of the form —ABA with A
self-adjoint and B > 0. Integrating Eq. (3.38) in ¢ from t = 0
to 1, we learn that 1/[s + R(1)] < 1/[s + R(0)], which is
Eq. (3.37). We describe this result by saying that 1/(s + P) is
a decreasing function of P, or equivalently that —1/(s 4 P) is
an increasing function of P. The opposite inequality that
Eq. (3.37) implies P > Q is proved in the same way, writing
P=1/T—s,with T=1/(s + P).

So far we assumed that P and Q are bounded. If P and Q are
densely defined unbounded operators, but non-negative, then
it is reasonable to interpret Eq. (3.37) as the definition of what
we mean by P > Q. In general, P and Q are defined on
different (dense) subspaces, so it can be hard to interpret the
statement that (y|P|y) > (y|Q|y) for all y. But 1/(s+ P)
and 1/(s + Q) are bounded, and so defined for all y. The
statement (3.37) just means that

L < —
s+P){_)(s+Q

(x] lx). VY yeH.  (3.39)

This is a much stronger and more useful statement than just
saying that ( y|P|y) > (y|Q| x) for all y on which both P and
Q are defined.

Using
o0 1 1
logR = ds| ——-———,
o8 /0 s(s—I—l s+R>

we see that since 1/(s 4+ R) is a decreasing function of R,
log R is an increasing function of R. Thus P > Q or its
equivalent 1/(s + P) < 1/(s + Q) implies

(3.40)

log P > log Q. (3.41)
So Eq. (3.36) implies that
log Aj; > log Ay. (3.42)

The monotonicity statement (3.35) is simply the expectation
value of this operator inequality in the state .

The proof of the crucial inequality (3.36) is rather short and
is explained in Sec. IIL.LF. However, we first explain some
background and motivation in Sec. IIL.E. The goal of Sec. IIL.LE
is to ensure that the reader will consider the result obvious
before actually getting to the proof.

To conclude this section, we explain another monotonicity
statement that will be useful later, and then, to help the reader
appreciate the subtlety of such statements, we explain a
superficially similar version that is false. For 0 <a < 1,

1 1
<—: 3.37
STPS310 (3.37)  we have
. o sinza [ 1 1
for all s > 0. (If P and Q are strictly positive, one can take RY = dss®( = — ) (3.43)
s =0.) To show this, consider the family of operators T Jo s s+R
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If R depends on a parameter 1, and R = dR/dt, we get

d sinza [ 1 .
—R% = dss? R
dt T 0 s+ R

. 44
s+ R (3:44)

This is non-negative if R > 0, so R is an increasing function
of R in this range of a. If, however, a > 1, then R” is in
general not an increasing function of R. For a > 1, the
representation (3.43) is not valid. But if 1 < a < 2, we can
write R* = R - R”, with 0 < f# < 1, and then use Eq. (3.43) for
R’. So in this range of a,

i -1 0 R
R% = M/ dssa—l (_ 1 + s ), (345)
T 0 s s+ R
and hence
iR”‘—Lnﬂ(a_1)/°oa'ss”"l 5—s—l R—l .
dt T 0 s s+R s+R
(3.46)

This is not necessarily non-negative for R > 0, since the last
term is negative definite and can dominate. For an example
with 2 x 2 matrices, set R = (39), R= (1), and y= ().
Then

d
—R* . 47
(2] SR 2) <0 (347)

E. Examples

The relation between Sy, and S7; is as follows. They are both

defined on a dense set of states by the same formula Sa¥ =
afyp [together with limiting cases as described in Eq. (3.2)].
The only difference is that the dense subspace on which S, is
defined is larger than the dense subspace on which S7; is
defined. In the case of S 7 a is an element of the algebra Aﬁ,
while in the case of S, a is an element of the larger
algebra A;,.

Let X and Y be unbounded operators17 on a Hilbert space H
(either both linear or both antilinear). If X is defined whenever
Y is defined and they act in the same way on any vector on
which they are both defined, then X is called an extension of
Y. In this situation, as we will see, it is always true that
XX < Y'Y, and therefore that log XTX < log YY. Applied to
the case X = Sy, ¥ = S, this is the inequality we want.

The following remarks apply for either U or U, so we
drop the subscripts from S and A. The operator A = S'S is
associated with the Hermitian form F(y,n) = (S y|Sn), which
is defined on the dense set of vectors y,n € H in the domain
of S. This Hermitian form is positive definite in the sense that
F(y, y) = 0 with equality only if y = 0. Formally

"7 A much more systematic explanation of the requisite facts can be
found in Reed and Simon (1972), Chapter VIII, and Simon (2015),
Chapter VIL5. The example with the Dirichlet and Neumann
Laplacians is analyzed in the latter reference.
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(STSnlx) = (SxISn). (3.48)
The way we interpret this statement is that if, for some 7 in the
domain of S, the relation ({|y) = (S y|Sy) holds for all y on
which § is defined, then we define

Stsn=¢. (3.49)
In other words, we define STS on every vector on which it can
be defined so as to make Eq. (3.48) true.

If F and G are two Hermitian forms on H, we say that F is
an extension of G if it is defined whenever G is defined and
they agree where they are both defined. In our problem, we
have two Hermitian forms Wy (yx.n) = (Syx|Syn) and
W (x.m) = (Sgx|Szm). Wy is an extension of W; because
Sy 1s an extension of S7;. The claim that we motivate here
and prove in Sec. IIL.F is that in this situation, the operators
Ay = SLSM and Ay; = S%Sﬂ associated to the two Hermitian
forms satisfy Aj; > Ay,. In these statements, it does not matter
if S is linear or antilinear or if S maps a Hilbert space H to
itself or to some other Hilbert space H'.

To motivate the claim, we consider a more familiar
example. Let M be a compact region in R" with boundary
N. Let 'H be the Hilbert space of square-integrable functions
on M, and ‘H' the Hilbert space of square-integrable 1-forms
on M. Roughly speaking, we want to consider the exterior
derivative d acting from functions to 1-forms. But we consider
two different versions of this operator. We let 7y be the
exterior derivative acting on continuous functions ¢ on M
such that d¢ is square integrable and ¢ vanishes along the
boundary of M. Such functions are dense in H, so T is a
densely defined unbounded operator. We let 7' be the exterior
derivative acting on continuous functions ¢ on M such that
d¢ is square integrable but with no restriction on ¢ along the
boundary of M. Clearly 7 is an extension of 7. The
corresponding Hermitian form F; is likewise an extension
of the Hermitian form F:

o o

Foldhp) = ToflTp) = [ x> 520 (350)
¢ 0,
Fip) = (i) = [ any 520 s

The only difference between Fy and F is that in the definition
of Fy, ¢ and p are required to vanish along N = OM, while F,
is defined without this condition.

Now let us compute the operators 74T, and T|T; asso-
ciated to the quadratic forms F, and F;. Since T and T are
both defined by the exterior derivative on some class of
functions, it is natural to expect that T§T and T} T, will both
equal, in some sense, the Laplacian

n 82

A=did=-5"2.
— Ox?

(3.52)

The identity that we need in order to show that T'T¢ = A¢
for some function ¢ (where T may be T, or T) is that
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(3.53)

I A " 0% Op
D _ - = n
A/Id x( ; 8x%)p A,Id * £ Ox; Ox;

for all p in the appropriate domain. When we try to prove this
identity by integration by parts, we run into a surface term

| dut-0.9p. (3.54)

where du is the Riemann measure of NV and 0, is the inward
normal derivative along N.

If we are trying to define Tg Ty, then p and ¢ are constrained
to vanish along N. Therefore, the surface term (3.54) vanishes.
Accordingly, the identity (3.53) is satisfied for any functions
¢, p in the domain of T, that is, any functions (continuous and
with square-integrable exterior derivative) that vanish along
N = OM. Thus TSTO is the Laplacian A acting on functions
that are constrained to vanish on the boundary. This is usually
called the Dirichlet Laplacian, and we denote it as Ap,.

If we are trying to define T'ITI, then there is no constraint
on p along the boundary, and hence to make the surface term
vanish we have to require 9, ¢ = 0 along N. The Laplacian
acting on such functions is usually called the Neumann
Laplacian, and we will denote it as Ay.

Thus the inequality T(T)TO > T“{Tl corresponds in this case
to Ap > Ay. To make it obvious that one should expect such
an inequality, we can interpolate between F and F; in the
following way. For 4 > 0, we define the Hermitian form

— n 84_5 8,0 7
GA(¢7P)—/[de i ax,axi”/ﬂ”@”

which is defined for continuous functions ¢, p, with square-
integrable first derivative, and also square-integrable restric-
tion to N. The associated quadratic form G,(¢,¢) is
increasing with A for generic ¢ and nondecreasing for all
¢. We therefore expect that the operator associated with this
quadratic form, which we call X, will be increasing with 1. X,
will again be the Laplacian, with some boundary condition,
since G, coincides with the Hermitian forms considered
earlier except for a boundary term.

To identify the boundary condition in X, we observe that in
order to have X;¢ = A¢ for some function ¢, the identity we
need is

(3.55)

¢ 0 :
(Aglp) = G,(¢.p) = /M d'xy 8)? 85’4—/1 A dp. (3.56)

for all p in the domain of G,. In trying to prove this identity,
we run into a surface term, which now is

[ dut-0.3+ . (3.57)

The boundary condition that we need is therefore
—0,¢ + A¢ = 0. The operator X, is the Laplacian with this
boundary condition.
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X, coincides with the Neumann Laplacian Ay at A = 0, and
with the Dirichlet Laplacian A, in the limit A — oco. Since X,
is increasing with 4, this accounts for the inequality Ap > Ay,.

A more compact way to say some of this is that to go from
the Neumann quadratic form to the Dirichlet quadratic form,
we impose a constraint on the wave function: it should vanish
on the boundary. This naturally increases the energy, so it
leads to our inequality.

It is useful, especially with a view to Sec. IV, to consider a
somewhat similar situation in finite dimensions. Let X be a
positive Hermitian matrix acting on C"™ = C" x C". We

write
(s )
X = ,
B" C

where A and C are blocks of size n x n and m x m, acting
on a column vector ¥ = (ﬁ), with y € C", y € C™. For real

A >0, let
( C )
g B +A ’

Clearly X, is increasing with A, and in particular, for s > 0,

(3.58)

(3.59)

1 1
>

> . (3.60)
S+X S+Xj(

On the other hand, for very large A4, 1/(s 4+ X;) simplifies,
because the upper and lower components decouple:

1 1/(s+A) O(1/2)
s+X1N< o(/4) 1 ) A>0. (3.61)

The inequality (3.60) means that for any ¥ € C"™™,

(¥] %) 2 (¥ s+1—)g ), (3.62)

Let us evaluate this for ¥ = (¥). The right-hand side, for

A — o0, reduces to (y|(s + A)~!y). If we define an isometric
embedding U:C" — C"*" by U(y) = (}), then the left-hand

side is (y|U"(s + X)~'U|y). So for y € C",

WU U 2 ). (.6)
Integrating over s and using Eq. (3.40), we get
(w|U"(log X)Uly) < (w|log Aly). (3.64)
Since A = UTXU, this is equivalent to
(WU (log X)Uly) < (w|log(U'XU)ly).  (3.65)
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F. The proof

Now we will complete the proof of monotonicity of relative
entropy under reducing the size of a region.

Suppose that T is an unbounded, densely defined operator
from one Hilbert space H to a possibly different Hilbert space
H'. It is convenient to set H = H @ H’' and to consider the
graph T of T, which is the set of all vectors (x,Tx) € H. T is
obviously a linear subspace of H. The operator 7 is said to be
closed if T is a closed subspace of H, or equivalently if it is a
Hilbert subspace. For I" to be closed means that if a sequence
(x,, Tx,) € T"has alimit (x,y) € H, then this limit is actually
in I'. In more detail, this amounts to saying that if (x,,, Tx,) is
a sequence of elements of I' such that both limits

x = limx,, y = limTx,

n—0o0 n—00

(3.66)

exist, then T is defined on x and Tx = y. The reason that in
defining the Tomita operator Sy and its relative cousin Syq,
we included limit points (3.2) was to ensure that these are
closed operators.

If I is a closed subspace of a Hilbert space H, then one can

define an orthogonal projection II: H —>T. 11 is bounded
(with eigenvalues 0,1) and so is defined on all states. Such an
orthogonal projection does not exist if I" is a linear subspace of

H that is not closed.

If T is the graph of T, then the orthogonal projector IT onto
its graph can be written explicitly as a 2 x 2 matrix'® of
operators acting on a column vector (gj) withy € H, y € H":

= ( (1+777) (3.67)

(1 +T1'7)~'T? )
T(1+TT)! '

T(1+T'T)~'TT

It is straightforward to verify that IT is Hermitian and
II> =11, so II is an orthogonal projection operator. It
projects onto the graph of T, since H(";) = (T”n) with 5 =
(1+T7T) (w + T ). Clearly, (1) is in the graph of 7, and
every vector in the graph of 7 is of this form.

We are finally ready for the proof. Suppose that T, T are
densely defined operators from H to H’, with graphs [y
and I';. Let I, and IT; be the projectors onto the two graphs. If
T, is an extension of T, then Iy is a subspace of I';. This
implies that IT; > I, so (‘P|IT;|¥) > (¥|II,|¥) for any state
Y= (");) Specializing to the case y = 0 and using Eq. (3.67),
we get the inequality

"Since IT is bounded, also the operators (14 TTT)7!,
(1+ TTT)"'TT, etc., appearing as matrix elements of the following
matrix are bounded. In particular these operators are defined on
all states. That is actually part of why introducing IT is useful in
making a rigorous proof. For example, when we write
n=0+TT) (w+Ty), this formula makes sense because,
although y may not be in the domain of 77, it is in the domain
of 14+ TT)~'T7.
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Lo < (] —
1+T$T0W W1+TjT1

IA

(vl ly).  (3.68)

Repeating this analysis with Ty/+/s and T';/+/s instead of T
and T, for some s > 0, we get

1 1

— ) < | ——— ). 3.69
s+T2)TO|W> <W|s+T§T1|W> (3.69)

(vl

Thus T|T| < T{T, and log T[T, <log T{T,.

Taking S;; and Sy, for T and 7', this is what we needed to
prove Eq. (3.36) and thus the monotonicity of relative entropy.
There is perhaps just one more detail to clarify. S;, and Sa are

usually defined as antilinear operators from a Hilbert space H
to itself. However, an antilinear operator from H to H is the
same as a linear operator from H to H, where H is the
complex conjugate]9 of the Hilbert space H. So we can regard
S, and Sa as linear operators H — H’, with H’ = H, and then

the above analysis applies precisely.

We followed Borchers (2000) in this explanation of why A,
increases as the region ¢/ is made smaller. Borchers uses this
inequality not to analyze the relative entropy but for another
application. The computation involving the projection on the
graph is much older (Stone, 1951; Halmos, 1969).

It might be helpful to analyze the graphs Iy and I'y in the
example considered in Sec. IIL.E. In doing this, for simplicity,
we work in one dimension, so we take M to be the unit interval
[0, 1] on the x axis. The operators T and T reduce to d/dx,
acting on functions that are or are not required to vanish at
the end points in the case of T, or T, respectively. The graph
Ty consists of pairs (f(x), df(x)/dx), where f vanishes at the
end points, and the graph I'; consists of pairs (g(x), dg(x)/dx)
with no such constraint on g at the end points. We claim that I,
is a proper subspace of I";. To show this, we show that there are
pairs (g, ¢') € 'y that are orthogonal to all (f, f’) € ['y. The
condition of orthogonality is

1 1 £
/ dxfg+/ dxdf@—o.
0 0

Ddr (3.70)

We want to find g such that this is true for all f. The requisite

condition is that
&?
1—-—]g=0.
< dx2>g

In verifying that Eq. (3.71) implies Eq. (3.70) for all f, one has
to integrate by parts; there is no surface term as f vanishes at
the end points. Equation (3.71) has a two-dimensional space of
solutions g(x) = Ae® + Be™, so I is of codimension two
in Ty

(3.71)

"The complex conjugate F of a Hilbert space H is defined as
follows. Vectors in H are in 1-1 correspondence with vectors in .
But a complex scalar that acts on 7 as multiplication by 2 acts on H
as multiplication by 1, and inner products in 7 are complex
conjugates of those in 7. 7 satisfies all the axioms of a Hilbert space.
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Directly explaining the relation between the unbounded
operators T, and 7' is subtle because one has to talk about
two dense but nonclosed subspaces of Hilbert space, one of
which is larger than the other. Passing to the graphs brings the
essential difference into the open, as it now involves a
comparison of the Hilbert spaces I'y and I';.

IV. FINITE-DIMENSIONAL QUANTUM SYSTEMS AND
SOME LESSONS

In this section, we will explore the modular operators for
finite-dimensional quantum systems and draw some lessons.

A. The modular operators in the finite-dimensional case

In finite dimensions, the interesting case is a tensor product
Hilbert space H = H; ® H, with tensor factors H; and H,.
Such a tensor product describes what is called a bipartite
quantum system. We let A be the algebra of linear operators
acting on H,; and A’ the algebra of linear operators acting on
H,. A linear operator a:H; — H, is taken to act on H as
a® 1, while &’ : H, — H, similarly acts on H as | ® a’. The
algebras A and A’ are each other’s commutants, since a linear
transformation of H that commutes with a ® 1 for all a is of
the form 1 ® &', and vice versa. So from Sec. IL.F, we know
that a vector is cyclic for A if and only if it is separating for .4',
and vice versa.

Any vector ¥ € 'H has an expansion

Y= Wik @ Wy, (4.1)

n
k=1

where y, are orthogonal unit vectors in H; and /) are
orthogonal unit vectors in H,. Moreover, we can assume the
¢, to be all nonzero (or we could omit some terms from the
sum). We have

(@a® ¥ = chal//k ® v (4.2)
X

so a ® 1 annihilates ¥ if and only if a annihilates all of the
yy. If the y,; are a complete basis for H;, this implies that
a = 0; otherwise, there is some nonzero a that annihilates all
of the ;.. Thus W is separating for the algebra A if and only if
the y, are a basis of H; likewise it is separating for A’ if and
only if the y/), are a basis for H,. Since ¥ is cyclic for one
algebra if and only if it is separating for the other, it follows
that ¥ is cyclic and separating for A and for A’ precisely if the
w; and the yj are orthonormal bases for their respective
spaces. In particular, this is possible precisely if /| and H, are
of equal dimension. Conversely, if H; and H, are of the same
dimension n, then a generic vector ¥ € H; ® H, has an
expansion as in Eq. (4.1) with all ¢; nonzero, and thus is cyclic

As a check on some of this, we observe that as H; and H,
have dimension n, H has dimension n2. The algebras A and
A’ are algebras of n X n matrices, so they likewise are of
dimension n2. So the linear map A — H that takes a € A to
(a ® 1)¥ € H is surjective if and only if it has trivial kernel.
In other words, ¥ is separating for A if and only if it is cyclic.
Both properties are true precisely if the ¢, are all nonzero.

We want to find the modular operators in this situation. The
definition of Sy:H — H is

Sy((a®@ 1)¥) =(a’' ® 1)¥. (4.4)
To work out the consequences of this, pick some i and j in the

set {1,2,...,n}, and let a be the elementary matrix that acts
on H; by

ali) = |j), alk) =0 if k#1i. (4.5)
Its adjoint acts by
a’lj)y = i), aflk)y =0 if k#j. (4.6)
So
@@ ¥ =clji)., @ @N¥=cjlij. (47
Thus the definition of Sy implies
Sw(cili, i) = ¢jli, j). (4.8)

Recalling that Sy is supposed to be antilinear, this implies

Sy

.. Ciy. .
jiiy =i ). (49)

That gives a complete description of Sy, since the states |7, j)

are a basis of . The adjoint S}, acts by

c

Shli.j) =2 17.1). (4.10)
The modular operator Ay = ST*,S\}, hence acts by
.. |Cj|2 ..
Aglj. i) = 2 s )- (4.11)

|ci

To get this formula, one must recall that STP is antilinear.
We also want to find the antiunitary operator Jy that

. .. o 1/2 -
and separating for the two algebras. As a matter of notation, appears in the polar decomposition Sy = JyAy". Since
we write y;, = |k), w), = |k)’. We also abbreviate |j) @ |k) as
J.k). Thus /2 . lcil?)
ALY = [ 5sh),s (4.12)
n n |ci|
W= clk)k) = cplk. k). (4.3)
k=1 k=1 we have
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. . C‘C. . .
Jylj.i) = E{Z’l-|l’]>'
jCi

(4.13)

If @ is a second state in H, we can work out in a simple way
the relative operators Sy and Aye. In some orthonormal
bases ¢, of H; and ¢}, of H,, a =1, ...,n, we have

D= dupy ® Pl (4.14)
a=1

with some coefficients d,. We write |a) and |a)’ for ¢,
and ¢, and abbreviate |@) ® |f) = |a,f), and similarly
) ® |i) = |a, i), |i) ® |a) = |i,a), etc. The state @ is
cyclic and separating for both algebras if and only if the d,,
are all nonzero; we do not assume this. We will determine the
operator Sy directly from the definition

Syp(@®1)P) = (@' ® 1)@, VacA  (4.15)

For some i,a € {1,2,...,n}, suppose that a € A acts by

ali) = |a), alj) =0 for j#i. (4.16)
Then
a'la) = i), a'|p) =0 for f+#a. (4.17)
So
(a® )Y = ¢jla, i), (@@ NP =d,|i,a). (4.18)
Accordingly
. da .
Syiola, i) = = i,q). (4.19)
The adjoint is characterized by
d
Syoli-a) = = la,i). (4.20)
Ci
It follows that
el
Ayjpla, i) = o a,i). (4.21)

Some of these formulas can be conveniently described in
terms of density matrices. Let us assume that ¥, @ are unit
vectors:

(4.22)

Sleil =3l = 1.

To the state ¥ € 'H; ® H,, one associates a density matrix
pro = [P)(WP|. It is a matrix acting on H by |y) — [¥)(¥|y);
in other words it is the projection operator onto the subspace
generated by |¥). In particular, it is positive and has trace 1:

Tr12p12 =1. (423)
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Here Try, represents the trace over H =H; ® H,. By
taking a partial trace over H, or H,, one defines reduced
density matrices p; = Tryp1s, po = Tr1p12. Here p, and p, are
positive matrices acting on H; and H, respectively. They have
trace 1 since for example Trip; = TrTryp1, = Trippp = 1.
Likewise, one defines a density matrix ¢, = |®)(®| asso-
ciated to @ and reduced density matrices o, = Try04,,
0, = Trj04,, all positive and of trace 1.

For the state ¥ defined in Eq. (4.1), the corresponding
reduced density matrices are

pr= lelli)l. = leiPli) il
i i

Clearly, p; and p, are invertible if and only if the c; are all
nonzero, that is if and only if W is cyclic separating for both
algebras. Similarly the reduced density matrices of @ are

o1 =Y ldLla)lal. o= |dPla){al

a a

(4.24)

(4.25)

Comparing these formulas to Egs. (4.11) and (4.21), the
modular operator Ay and the relative modular operator Ayq
can be conveniently written in terms of the reduced density
matrices:

Ay =p; @ p3'. Ayp =01 ®py'.  (4.26)
The density matrix p, is conjugate to p; under the exchange
|i) <> |i)’, and similarly for ¢, and o,.

It can be convenient to pick the phases of the states |i)’
relative to |i) to ensure that the ¢; are all positive. If we do this,
the antiunitary operator Jy becomes a simple flip:

Joliij) = 1j.i). (4.27)
The existence of a natural antiunitary operator Jy that flips the
two bases in this way suggests that it is natural (once a cyclic
separating state ¥ is given) to identify H, as the dual of H,,
by thinking of an element of 7, in the basis |i) as a column
vector and an element of H, in the basis |i)’ as a row vector.
Then an element of H = H; @ H, is regarded as an n x n
matrix, acting on H;. The Hilbert space inner product of H is
interpreted in terms of matrices x,y:H; — H; as

(x]y) = Try,xTy. (4.28)
The action of a € A on H becomes
X - ax (4.29)
and the action of @’ € A’ on H becomes
x — xa, (4.30)

where b is the transpose of a matrix b. With states
reinterpreted in this way as matrices, the state ¥ becomes

Y= pl2 (4.31)

045003-17



Edward Witten: APS Medal for Exceptional Achievement in ...

This follows upon comparing Eqgs. (4.1) and (4.24), remem-
bering that we now take the c; to be positive and interpret
Wi @ ) as a matrix |k) (k|.

When states are reinterpreted as matrices, Eq. (4.26) for the
action of Aye, on a state x becomes Ay|q(x) = o1 x(ph)!
But once we identify H, as the dual of H,, p§ = p; so

Ay (x) = arxpy " (4.32)

For future reference, we note that this implies

A{’l’,l(b( x) = o{xp7®, (4.33)
leading to a formula that will be useful later:
12 ha (.1/2
(W[AG o |P) = Try, p) 2 A% 4 (0)?)
= Ty, i 08p) pi = Try,ofpl~e.  (4.34)

The identification of 7, with the dual of H; depended on
the choice of a cyclic separating vector ¥, so we do not
automatically get an equally simple relation between @ and its
reduced density matrices o; and o,. However, if we are only
interested in o, and not ¢,, we can act on ® with a unitary
element of A" without changing o,. In general, once we
identify H with the space of matrices acting on H;, ®
corresponds to such a matrix. As such it has a polar
decomposition ® = PU where P is positive and U is unitary.

In general P = a] ?. Acting with a unitary element of A’ to

1/2
eliminate U, one reduces to ® = 61/ .

B. The modular automorphism group

All of the properties of the operators Sy, Ay, etc., that we
deduced in general in Secs. III.A and III.B are of course still
true in this finite-dimensional setting.

However, some important additional properties are now
more transparent. Most of these involve what is called the
modular automorphism group. This is the group of unitary
transformations of the form Af;, s € R. We already know
[Eq. (3.19)] that A} commutes with Jy. In the finite-
dimensional setting, we have the explicit formula (4.26) for
Ay. By virtue of this formula, A = p* ® p3™. So for any
aRledA,

Af(a® 1)AG" =plfapi™ @ 1. (4.35)
The important fact here is that the right-hand side of Eq. (4.35)
is of the form b ® 1 for some b, so it is in .A. In other words,
conjugation by the modular group maps A to itself. It similarly
maps A’ to itself. We summarize this as
ASAANGS = A, AGAAGS = A'. (4.36)
On the other hand, conjugation by Jy exchanges the two
algebras A and A"
] lIJAJ y = A,,

le.A,]\y - A (437)
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For example, if we choose the phases of the states so that Jy
flips basis vectors |i, j) as in Eq. (4.27), then Jy(a @ 1)Jy =
1 ® a* (where a* is the complex conjugate matrix to a) and
likewise J,,(1 ® a)Jy =a" @ 1.

The group of unitary transformations A’

Bjor S € R, is called

the relative modular group. In the finite-dimensional setting,
Eq. (4.26) leads to

AIY

Wb(a ® 1)AYE =o'ac™ @ 1.

¥io (4.38)
Again, conjugation by the relative modular group maps A (or
A’) to itself. But now we see the additional important property
that this conjugation depends only on @ and not on . Thus if
¥ and W' are two cyclic separating vectors, we have
Aff,l(p(a ® 1)A ‘Y|<I> = A(;,‘(D(a ® l)Agilﬂp (4.39)

The properties just stated are regarded as the main theorems
of Tomita-Takesaki theory. For general infinite-dimensional
von Neumann algebras with cyclic separating vectors, these
properties are not so easy to prove. However, there is a
relatively simple proof (Longo, 1978) in the case of an
infinite-dimensional algebra A that is a limit of matrix
algebras. This is believed to be the case in quantum field
theory for the algebra A;, associated to an open set U in
spacetime. The statement means roughly that one can think of
the degrees of freedom in region I/ as an infinite collection of
qubits. Taking just n of these qubits, one gets an algebra M,, of
2" x 2" matrices that is an approximation of A;. Adding
qubits, one gets an ascending chain of algebras M| C M, C
.CM,C---C Ay with Ay as its limit.” It is believed that

this picture is rigorously valid in quantum field theory. At each
finite step in the chain, one defines an approximation21 Af;’ ) to
the modular operator (or similarly to Jy or Ayg). Each such
approximation obeys Eq. (4.35), and the nature of this
statement is such that if it is true at each step, it remains

true in the limit. Of course the main point of the proof is to

show that Af}'f) does in an appropriate sense converge to Ay.

Similarly the statements (4.37) and (4.39) have the property
that if true in a sequence of approximations, they remain true
in any reasonable limit. So one should expect these statements
to hold in quantum field theory.

The infinite-dimensional case becomes essentially different
from a finite-dimensional matrix algebra when one considers
the behavior of Afli (or Am|<1>) when s is no longer real. For a

matrix algebra, there is no problem; Alj = exp(izlog Ay) is
an entire matrix-valued function of z. In quantum field theory,
Ay is unbounded and the analytic properties of Aff y for astate
x depend very much on y. By taking spectral projections, we
can find states y such that Afli J is entire in z, just as in

We will discuss algebras defined in this way in Sec. VL.
*'This is done as follows. If ¥ € H is a cyclic separating vector,
then for each n, H,, = M, ¥ is a subspace of H of dimension 2. M|
acts on H,, with cyclic separating vector ¥, so one can define the
modular operator A H — H,. One defines Ay WiH - H to
(n)

coincide with Ay’ on H,, and to equal 1 on the orthocomplement.
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Sec. II.C we found vectors on which exp(ic - P) acts hol-
omorphically. At the opposite extreme, we can also find states
x on which A(l, y can only be defined if z is real.
Frequently, however, we are interested in the action of Ay
on a vector a¥, a € A (or a'P, a’ € A’). Here we have some

simple holomorphy. First of all, A\II,/ *aV has finite norm and so
makes sense as a Hilbert space vector:
Ay a2 = (AY a¥|AYa¥) = (a¥|Ay|aW)
= (@¥|S}Syla¥)
= (Sa¥|Sa?) = (a’?P|a’¥) < oo.

(4.40)

On the other hand, for 0 < r < 1, the inequality A" < 1 + 1 for
a positive real number A implies Aj, < Ay + 1. So

(AYPaW| A7 a¥) < (AY a¥|AY aY) + (a¥[aP) < oo,

0<r<l. (4.41)

The unitary operator A%, s € R does not change the norm
of a state so A{;A(Y/ 2a¥ also has finite norm for s € R,
0 < r £ 1/2. The upshot of this is that Aflia‘P is continuous in
the strip 0 > Imz > —1/2 and holomorphic in the interior of
the strip. Replacing A with A’ has the effect of replacing the
modular operator Ay with its inverse, as we learned in Sec. I1ILA,
SO Af;}a"I‘ is continuous in the strip 1/2>Imz>0 and hol-
omorphic in the interior of the strip.

In Sec. V, we find in a basic quantum field theory example
that the holomorphy statements that we just made are the best
possible: generically, A?a¥ and A?a’¥ cannot be continued
outside the strips that we identified.

Now for @, b € A, let us look at the analytic properties of
the function

F(z) = (‘I‘|bAfI§a|‘P), (4.42)
initially defined for real z. If z = s — ir, this is
(b"W|AALaW) = (A DTP|AL|AY W),  (4.43)

For r < 1, the states A\rp/ ’a¥ and A(P/ b are normalizable, as
we have already discussed. So the function F(z) is continuous
in the strip 0 > Imz > —1 and holomorphic in the interior of
the strip. On the upper boundary of the strip, we have

F(s) = (¥Y|bAa|¥). (4.44)

Let us determine the boundary values on the lower boundary
of the strip. We have

YbALalW) = (Ay b W|AL|AY *a¥)
JySyb ¥ |AL| Ty Syal)
TybW|Als|Jya™W) = (JybW|JyAla W)
Aa"¥|b¥) = (¥|aAy b|¥).

F(-i+s) =

o~ o~~~

(4.45)

We used the fact that Jy is antiunitary and commutes with AJ.
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To understand what these statements mean for a finite-
dimensional quantum system with ‘H =H; ® H, and A
acting on the first factor, consider again the density matrix
P12 = |¥)(¥| and the reduced density matrix p; = Trypp,.
The “modular Hamiltonian” H is defined by p; = exp(—H).
In the definition of F(z), Aja¥ can be replaced by AjaAg*¥
since Ay%¥ = V. As in Eq. (4.35), Af,EaAl;ile' = p’izap]_iz‘{‘ =
e *HaeltP  Moreover, for any ( that acts on H,,
(P|O|¥) = Try, p1O = Try, e #O. Hence

F(z) = Try, e "be~"HaeH (4.46)
From this it is clear that the values for z = s and z = —i + s
are
F(s) = Try, e "be"HaesH
F(—i+s) = Try,e e 5Haefb. (4.47)

In the usual physical interpretation, s represents real time,
a(s) = e"“HaeH is a Heisenberg operator at time —s, and
these functions are real time two-point functions in a thermal
ensemble with Hamiltonian H (and inverse temperature 1),
with different operator orderings. The fact that the different
operator orderings can be obtained from each other by analytic
continuation is important, for example, in the derivation of a
general bound on quantum chaos (Maldacena, Shenker, and
Stanford, 2016), and in many other applications.

For a finite-dimensional quantum system, F(z) is an entire
function. Let us, however, relax the assumption of finite
dimensionality, while still assuming a factorization H =
H; ® H, of the Hilbert space. The definition p; = e~ implies
that H is non-negative, but in the infinite-dimensional case, H is
inevitably unbounded above, given that Trp; = 1. For the trace
in Eq. (4.46) to be well behaved, given that H is unbounded
above, both iz and 1 — iz must have non-negative real part. This
leads to the strip 0 > Imz > —1, which we identified earlier
without assuming the factorization H = H; ® H,.

Assuming the factorization H = H; ® H,, one would
actually predict further holomorphy of correlation functions.
For example, generalizing Eq. (4.46), a three-point function

F(z1.22) = Try, e Hoeiutlpe~ila=a)Hgeinl (4.48)
should be holomorphic for Imz;, Im(z, — z;), =1 — Imz, < 0.
Such statements can actually be proved without assuming a
factorization of the Hilbert space. See Sec. III of Araki (1973)
and also Appendix A.2.

All statements we have made about holomorphy still apply
if Ay is replaced by the relative modular operator Ayg.

C. Monotonicity of relative entropy in the finite-dimensional case

Using results of Sec. IV.A, we can compare Araki’s
definition of relative entropy, which we used in discussing
quantum field theory, to the standard definition in nonrela-
tivistic quantum mechanics.

We recall that Araki’s definition for the relative entropy
between two states W, @, for measurements in a spacetime
region U, is

045003-19



Edward Witten: APS Medal for Exceptional Achievement in ...

Swioy = —(¥[log Ayjpy|¥). (4.49)
Here ¥ is a cyclic separating vector for a pair of commuting
algebras Ay, Aj,.

In nonrelativistic quantum mechanics, we do not in general
associate algebras with spacetime regions. But we do have the
notion of a vector ¥ that is cyclic separating for a commuting
pair of algebras A, A’. Given a second vector ® we have the
relative modular operator Ay)e. Given this, we could imitate in
nonrelativistic quantum mechanics Araki’s definition, which
in terms of the density matrix p;, = |¥)(¥| is

Syjo = —(¥|log Ayje|¥) = —Trippiplog Aye.  (4.50)
From Eq. (4.26), Ayjp = 01 ® p;', 50 log Ay, = logo; @
1 — 1 ® log p,. The relative entropy is then

Syjo = =Trppip(loge; @ 1 — 1 @ logp,). (4.51)
Here Trp,(logo; ® 1) = Trip, log oy, as one learns by first
taking the trace over H,. Likewise Trp;(1 ® logp,) =
Trop, logp,. But p; and p, are conjugate as explained at
the end of Sec. IV.A, so Tryp, log p, = Tryp; log p;. Finally
then

Syjo = Trp)(logp, —logo). (4.52)

We have arrived at the usual definition of the relative
entropy in nonrelativistic quantum mechanics. (Of course, that
was Araki’s motivation.) The usual approach runs in reverse
from what we have said. One starts with a Hilbert space H;
and two density matrices p; and o;. The relative entropy
between them is defined as

S(pillor) = Trp, (logp, —logoy). (4.53)
After introducing a second Hilbert space H,, p; and o, can be
“purified” by deriving them as the reduced density matrices of
pure states ¥, ® € H; ® H,. The above formulas make clear
that S(p,||y) is the same as Syo.

Now let us discuss properties of the relative entropy. Using
the definition (4.50), the proof of positivity of relative entropy
that was described in Sec. III.C carries over immediately to
nonrelativistic quantum mechanics.

There is also an analog in nonrelativistic quantum mechan-
ics of the more subtle property of monotonicity of relative
entropy. We will recall the statement and then explain how
it can be understood in a way similar to what we explained for
quantum field theory in Sec. IIl. In fact, although we
explained the idea in Sec. III in the context of quantum field
theory, Araki’s point of view was general enough to encom-
pass nonrelativistic quantum mechanics. In our explanation,
we follow Petz (1986), later elaborated by Nielsen and Petz
(2005), who developed an approach based in part on Araki’s
framework.

To formulate the problem of monotonicity of relative
entropy, the first step is to take what we have been calling
‘H, to be the Hilbert space of a bipartite system AB. If H, and
‘H p are the Hilbert spaces of systems A and B, then the Hilbert
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space of the combined system AB is H, @ Hp. In what
follows, we call this H,p rather than H,. If we are given
density matrices p,p and o45 on H,p, then we can define the
reduced density matrices p, = Trpp,p and 64 = Trgo,p on
H,, and the relative entropies S(pag|loag) and S(pallo,).
Monotonicity of relative entropy is the statement

S(paslloas) = S(palloa). (4.54)
We want to explain how this inequality can be understood in a
way similar to what we said in the quantum field theory case in
Sec. III. In proving this inequality, we assume that p,p (and
therefore p,) is invertible. The general case can be reached
from this case by a limit.

In quantum field theory, the starting point was to study two

open sets U, U with U C U. We associated to them algebras
Ay, Ag;. For the bipartite system AB, we can introduce two
algebras that will play a somewhat similar role. These algebras
will be simply the algebras of matrices acting on H 5 and H,,
respectively. We write A,z and A, for these algebras.

In the quantum field theory case, the smaller algebra A'Z; is

naturally a subalgebra of A;,. The closest analog of this in
nonrelativistic quantum mechanics is that there is a natural
embedding p: A, - A pbya—-gpa)=a® 1.

By passing from H,p to a doubled Hilbert space
Hap ® H'yp, we can “purify” p,p and o,p, in the sense of
deriving them as reduced density matrices on H,p associated
to pure states™ Wap, Pup € Hap ® H)yp. Since we assume
pap to be invertible, W 4 is cyclic separating. Likewise, p4 and
o, are reduced density matrices associated to pure states ¥,
®, in a doubled Hilbert space H, ® H/,, and ¥, is cyclic
separating.

In quantum field theory, the two algebras A and Az
naturally act on the same Hilbert space H with the same cyclic
separating vector V. In nonrelativistic quantum mechanics, it
is more natural for the smaller algebra A, to act on the smaller
Hilbert space H, ® H/,, while the larger algebra A, acts on
Hap ® H',5. The best we can do in nonrelativistic quantum
mechanics to imitate the idea that A;, and Ag; act on the same
space is to find a suitable isometric embedding

U:Hy @ H)y = Hap @ Hyp- (4.55)
The embedding that will enable us to imitate what we had in
quantum field theory is

U@@¥,) = (a ® 1)¥,p. (4.56)

“This is the version of monotonicity of relative entropy proved by
Lieb and Ruskai (1973). A more general version of Uhlmann (1977)
involves an arbitrary quantum channel. It can be reduced to what is
stated here by considering the Stinespring dilation of the channel.

The reader may wish to consult Nielsen and Petz (2005), where
they make the specific choice W p :pz/Bz, Y, :p}f, etc., as in
Eq. (4.31). This leads to short and explicit formulas. The approach
below aims to draw out the analogy with the quantum field theory
case. See also Narnhofer and Thirring (1985) and Ghosh and Raju

(2017) for somewhat similar explanations.
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Since ¥, is cyclic separating, this formula does define a
unique linear transformation U:H, @ H)y — Hap @ H)p,
and since W, is separating, this linear transformation is an
embedding. To show that it is an isometry, which means that
(nlx) = (Un|Uy) forally, y € Hy & H),, we observe that as
¥, is cyclic, we can take n = a¥,, y = b¥,. We need then
(a¥4|b¥,) = (@ ® 1)P43|(b ® 1)W4p). Indeed

(@® 1)¥45/(b @ 1)Wyp) = (Yapl(@’b @ 1)¥,43)
=Tr, ab®1l
=Tr, a'b = (¥,|a’b|¥,)

= (a¥,|b¥,). (4.57)

Finally, the isometric embedding that we defined commutes
with the action of .4, in the sense that for any y € H, ® H),,
we have U(ay) = ¢(a)U(y). Indeed, if y = b¥,, we have

U(ay) = U(ab¥,) = (ab @ 1)¥45

=@®1)(b® 1)¥4 = @(@)U(x). (4.58)

This shows that, if we identify a with ¢(a), we can regard A,
as a subalgebra of A, and the action of A, on H, & H), is
unitarily equivalent to its action on a subspace of
Hip ® Hup'. We are almost ready to imitate the proof of
Sec. III, but we still have to compare the relative modular
operators.

We have a relative modular operator Ay, p,, for the
algebra A,p acting on Hup ® H)pz. and a corresponding
relative modular operator Ay, |, for the algebra A, acting on
H, ® H,. To lighten the notation, we write just A,z and A,
instead of Ay,,|p,, and Ay, o,

The last fact that we need for the proof of monotonicity
of relative entropy is that our isometric embedding
U:Hy @ H, — Hap ® H,p intertwines the relative modular
operators, in the sense that

UTAABU:AA. (459)

Here U':H,p @ H,y > Hs ® H) is the adjoint of
U:Hy @ H), > Hap ® H)p. It is possible to work out an
explicit formula for U, but we will not need it. To prove
Eq. (4.59), it is enough to verify that the left- and right-hand
sides have the same matrix elements between arbitrary states
a’¥ and bW. This is actually a rather direct consequence of
Eq. (3.27). For the matrix element of A4, we have

(@4 |UTA\UIDY,) = (U(a™¥y)[Ax5U (DY)

((@" ® 1)¥4p/A45|(D ® 1)¥45)

(b ®@ 1)®ypl(a ® 1)Dyp)

(@ap|(ba @ 1)|Dap)

Trapoap(ba ® 1) = Tryo,ba.
(4.61)

Equation (3.65) (which was proved for an arbitrary iso-
metric embedding), when combined with Eq. (4.59), gives us
an inequality

U'(log Ayp)U < log Ay. (4.62)

Now we are finally ready to compare the relative entropies

S(palloa) = —(Pallog Ay|Py),

S(paglloap) = —(Pag|log Ayp|Pas). (4.63)

Using Eq. (4.62), we have

S(palloa) = —(Yallog Ay|¥y)

< —(Pa|UT (log Agp)U|W4)
UY,|log Agp|U¥y)
W5l log Ayp|Pas)

==
=~
= S(paslloas)- (4.64)
This completes the proof.

Was it obvious that this proof would work, or did it depend
on checking tricky details? Hopefully, we succeeded in
convincing the reader that this explanation—which largely
follows (Petz, 1986) and (Nielsen and Petz, 2005)—is the
natural analog of what was explained for quantum field theory
in Sec. III. Philosophically, it might seem obvious that
quantum field theory is not simpler than nonrelativistic
quantum mechanics, so that an analogous proof in non-
relativistic quantum mechanics must work somehow.

The only property of the logarithm that we used was that
log X is an increasing function of a positive operator X. Many
other functions have the same property; an example, as shown
in Sec. IIL.LD, is the function X% 0 < a < 1. Replacing
—log A,p in Eq. (4.64) with A%, (and reversing the direction
of the inequality because of the sign), we get

(WalAGIWa) 2 (PaplAip|Wag).- (4.65)

Evaluating this with the help of Eq. (4.34), we learn that™*

(@444 [b¥,) = (b'slady) Trachpi™ 2 Trapcippis’. O<ax<l (4.66)
= (@4|ba|D,)
= Tryo,ba. (4.60) *For recent applications of this inequality, see Bernamonti ef al.
(2018). They consider also the case of @ < 0, which can be analyzed
by replacing Eq. (3.43) with R* ~ [$°dss®/(s+ R) (in a certain
The corresponding matrix element of UTA,zU is range of a).
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This inequality is saturated at a =0, since Tryp, =
Tryppap = 1. Expanding around a = 0, the leading term in
the inequality gives back the monotonicity of relative entropy.
Similarly, the only property of the states ¥, and W, that was
used was that U¥Y, = W,5. One can derive further inequalities
by replacing ¥, and Y,z by a¥, and U(a¥,) =
(a2 ® 1)¥,5. These inequalities (in a formulation originally
in terms of convexity rather than monotonicity) go back to
Wigner, Yanase, and Dyson (Wigner and Yanase, 1963) and
Lieb (1973), with later work by Araki (1976) and Petz (1986),
among others.

We conclude this section by briefly explaining how
positivity and monotonicity of relative entropy are related
to other important concepts in quantum information theory.
The von Neumann entropy S(p) of a density matrix p is
defined as

S(p) = —Trplogp. (4.67)
Consider a bipartite system AB with Hilbert space
Hap = Ha @ Hp, density matrix p,z and reduced density
matrices py = Trppap, pp = Trapap- One sets Sup = S(pap).
S84 = S(py4), etc. The mutual information I(A; B) between
subsystems A and B is defined as
Subadditivity of quantum entropy is the statement that
I(A;B) >0 for all pyp. To prove this, define the product
density matrix o, = py ® pp for system AB. The relative
entropy between p,p and o,p is

S(paslloas) = Trappap(logpap —log o4p). (4.69)
Since logo,p =logps @ 1 + 1 @ log pp, this is
S(paslloas)

= Trappas(logpap —logps ® 1 =1 ® log pg)
:_SAB+SA +SB :I(A,B) (470)

Thus, subadditivity of quantum entropy follows from pos-
itivity of relative entropy. For strong subadditivity of quantum
entropy (Lieb and Ruskai, 1973), one considers a tripartite
system ABC with Hilbert space H, ® Hp ® H and density
matrix p,pc. One can define various reduced density matrices,
such as pap = Trepape, with corresponding entropy Sy,
and likewise for other subsystems. Strong subadditivity of
quantum entropy is the statement that mutual information is
monotonic in the sense that
I(A;B) < I(A; BC). (4.71)
Expanding this out using the definition of the mutual
information, an equivalent statement is
Sp + Sapc < Sap + Spe- (4.72)

To deduce strong subadditivity from the monotonicity of
relative entropy, we compare the two tripartite density
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matrices pypc and oapc = pa  ppc- As we have just seen,
the relative entropy between them is

S(pasclloasc) = 1(A; BC). (4.73)

On the other hand, taking a partial trace over system C, the

reduced density matrices for the AB subsystem are p,p and

oap = pa @ pp. The relative entropy between them is

S(paslloas) = I1(A; B). (4.74)

Monotonicity of relative entropy tells us that taking the

trace over subsystem C can only make the relative entropy
smaller, so

S(paslloas) < S(pagclloasc). (4.75)
Putting the last three statements together, we arrive at strong
subadditivity.

V. A FUNDAMENTAL EXAMPLE
A. Overview

A certain simple decomposition of Minkowski spacetime
provides an important (and well-known) illustration of some
of these ideas.

We factorize D-dimensional Minkowski spacetime M, as
the product of a two-dimensional Lorentz signature spacetime
R!' with coordinates 7, x and a (D — 2)-dimensional
Euclidean space RP=? with coordinates ¥ = (y,,...,yp_2).
Thus the metric is

ds* = —dr* + dx* + dy - dy. (5.1

In this spacetime, we let X be the initial value surface r = 0
(Fig. 3). We let V, be the open right half-space in %, defined by
x > 0. The complement of its closure, which we call V,, is the
left half-space x < 0. The domain of dependence of V), is what
we call the right wedge U/, defined by x > |#|. And the domain
of dependence of V, is what we call the left wedge U/, defined
by x < —|#|. These wedgelike regions are also often called
Rindler spaces (Rindler, 1966). Finally, we denote as A, and
A, the algebras of observables in U, and Uy, respectively.
They commute and we will learn that they are each other’s
commutants.

Let Q be the vacuum state of a quantum field theory on M.
The goal of this section will be to determine the modular
operators Jy and Ay for observations in region U,. This
problem was first analyzed and solved by Bisognano and
Wichmann (1976). Their approach involved the analytic
behavior of correlation functions and will be sketched in
Sec. V.C. But first, in Sec. V.B, we explain a direct path
integral approach. This path integral approach is important
in Unruh’s thermal interpretation of accelerated motion in
Minkowski spacetime (Unruh, 1976), which we explain in
Sec. V.D. It is also closely related to analogous path integral
derivations of the thermal nature of black hole physics
(Hawking, 1975, 1977) and of correlation functions in
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FIG.3. Theright wedge U/, and the left wedge U/, in Minkowski
spacetime. They are the domains of dependence of the right half
and left half of the initial value surface = 0, which are labeled as
Vr and Vf.

de Sitter spacetime (Figari, Hoegh-Krohn, and Nappi, 1975;
Gibbons and Hawking, 1977). As this approach is relatively
well known, we will be brief.

The CPT symmetry of quantum field theory will enter in
what follows, so we pause to discuss it. CPT acts as —1 on all
space and time coordinates. The basic reason that CPT is an
unavoidable symmetry of quantum field theory in 3 + 1
dimensions is that in Euclidean signature,25 the transformation
that acts as —1 on all four coordinates is in the connected
component of the rotation group. (If we factor R* as R? x R?,
then a simultaneous 7 rotation on each copy of R? acts as —1
on all four coordinates.) Therefore, in Euclidean signature this
operation is inevitably a symmetry of any rotation-invariant
theory. After continuation back to Lorentz signature, this
symmetry becomes CPT.

The statement that a transformation of Euclidean space that
acts as —1 on all coordinates is in the connected component
of the rotation group is true in and only in even spacetime
dimension. For odd D, that operation has determinant —1 and
is not in the connected component of the rotation group.
Accordingly, for odd D, there is no CPT symmetry in general.
A better formulation that is uniformly valid in any dimension
is to replace parity—a sign change of all spatial coordinates—
with a reflection of just one spatial coordinate. We call this
operation R. Regardless of the spacetime dimension, a
simultaneous sign change of both the time ¢ and one spatial
coordinate x is in the identity component of the rotation group
in Euclidean signature, as it is a z rotation of the xt plane.
Thus, the universal symmetry of quantum field theory in any

“The rigorous proof of CPT invariance can be conveniently found
in Streater and Wightman (1964). It depends on the holomorphy
statement of Eq. (2.11). Holomorphy is built in for free when one
starts in Euclidean signature, so if one assumes that a quantum field
theory can be obtained by analytic continuation from Euclidean
signature, then one can see CPT without a careful discussion of
conditions of holomorphy.
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(a) (b)

FIG. 4. (a) The path integral on the half-space 7 <0 as a
function of boundary values of the fields gives a way to compute
the vacuum wave function €. (b) To compute the reduced density
matrix of the vacuum for the right half of the surface 7 = 0 by a
Euclidean path integral, we use the path integral on the lower
half-space 7 < 0 to compute a vacuum bra (Q|, and the path
integral on the upper half-space 7 > 0 to compute a vacuum ket
|Q2). Then we glue together the left halves of the boundaries of the
7 < 0 and 7 > 0 half-spaces, identifying the field variables on
those boundaries in the bra and the ket. The net effect—a path
integral on the upper half-space and the lower half-space together
with an integral over field variables on half of the 7 =0
hypersurface—produces a path integral on the space depicted
here. It can be obtained from Euclidean space RP by making a
“cut” along the half-hyperplane 7 = 0, x > 0. (c) Sketched here is
a Euclidean wedge of opening angle 6.

dimension is CRT rather than CPT. In 3 + 1 dimensions,
CPT is the product of CRT times a 7 rotation of two spatial
coordinates, so the two are essentially equivalent.

Because CPT or CRT is antiunitary, it reverses the signs
of conserved charges. Historically, P and T were defined to be
good approximate symmetries of ordinary matter (until the
1950s, they were assumed to be exact symmetries). Since
ordinary matter is made of leptons and baryons without
antileptons and antibaryons, P and T were defined to
commute with baryon number and lepton number. With this
choice, the universal discrete symmetry does not coincide with
PT or RT and deserves to be called CPT or CRT, to express
the fact that it reverses conserved charges.26

B. Path integral approach

We continue to Euclidean signature, setting t = —iz.
Euclidean path integrals are an effective way to compute
the vacuum state Q of a quantum field theory. Thus, the path
integral on, say, the half-space 7 <0, as a function of
boundary values on the hyperplane z = 0, gives a way to
compute Q [Fig. 4(a)].

Suppose it were true that the Hilbert space H of a quantum
field theory has a factorization H = H, ® H,, where H, and
‘H, are Hilbert spaces of degrees of freedom located at x < 0
and x > 0 respectively, and thus acted on by the algebras A,
and A,. In this case, starting with the pure state density matrix
|€2)(€2] and taking a partial trace on the degrees of freedom in

*Both R and what is usually called CT come from the same
operation in Euclidean signature (reflection of one spatial coordi-
nate), continued back to Lorentz signature in different ways. So
purely from a relativistic point of view, it would be natural to
exchange the names T and CT and refer to the universal discrete
symmetry as PT or RT, rather than CPT or CRT. However, this
would involve too much conflict with standard terminology.
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‘H,, we could define a reduced density matrix p, on H,.
Technically, it is not quite true that H has the suggested
factorization, but assuming that it does will lead to a correct
and illuminating determination of the operators Ag and J for
the vacuum state.

To formally construct the density matrix p, for the right
half-space, we simply reason as follows. Very roughly, think
of the vacuum wave function Q as a function Q(¢,, ¢,) that
depends on field variables ¢, in the left half-space and ¢, in
the right half-space. (We schematically write ¢, or ¢, for all
the field variables at x < 0 or x > 0.) The density matrix
|Q)(Q| is as usual a function |Q(¢).d,"))(Q(¢P,,¢,)| that
depends on two sets of field variables. A partial trace over H,
to get the density matrix p, is carried out by setting ¢, = ¢,
and integrating over ¢,:

() $)) = / Do b d Qb b)) (52)

This has a simple path integral interpretation. The bra
(Q(¢hs, ¢p,)| can be computed, as already noted, by a path
integral on the lower half-space 7 < 0, and similarly the ket
|Q(¢), ¢,)) can be computed by a path integral on the upper
half-space. To set ¢, = ¢, we glue together the portion
x < 0 of the boundaries of the upper and lower half-spaces.
This gluing gives the spacetime W,, that is sketched in
Fig. 4(b). W,, is a copy of Euclidean space except that it has
been “cut” along the half-hyperplane t =0, x > 0. (The
reason for the notation W,, will be clear in a moment.) In
Eq. (5.2), the path integral over the lower half-space to get
(Q|, the path integral over the upper half-space to get |Q),
and the final integral over ¢, to take a partial trace all
combine together to make a path integral over W,,. In this
path integral, boundary values ¢, and ¢,’ are specified just
below and above the cut.

To identify the modular operator Ay, we want to give a
Hamiltonian interpretation to the path integral in W,,. For
this, we first consider a path integral on a Euclidean wedge W,
of opening angle 0 [Fig. 4(c)]. This path integral can be
viewed as computing an operator. A matrix element of this
operator between initial and final states is computed by
specifying an initial state at the lower boundary of the wedge
and a final state at the upper boundary. The wedge operator is
a Euclidean rotation of the zx plane by an angle 6. Thus, the
rotation acts by

T cos@ sinf T
Rg - . .

X —sinf cosf/) \ x
To identify in familiar terms the operator that acts in this way
in Euclidean signature, let us express the formula in terms of

real time t = —it:
—isin9> (t>
cos @ X

<t> ( cosd
R9: pr— .
X —isin@

(5.3)

Looking at the right-hand side, we see a Lorentz boost of the
tx plane by an imaginary boost parameter —if. The generator
of such a Lorentz boost can be written as an integral over the
initial value surface ¢t = 0:

K:/ dxdxTo. (5.5)
t=0

It has been defined to map the right wedge forward in time,
and the left wedge backward in time. Formally we can write

K=K, -K,, (5.6)
where K, and K, are partial Lorentz boost generators
Kr :/ dxd)_)'xTOO,
1t=0,x>0
Kf = —/ dxdj;xTOO. (57)
t=0,x>0

The minus sign is included so that K, boosts the left wedge
forward in time, just as K, does to the right wedge.27
The operator K is self-adjoint, and the unitary operator that
implements a Lorentz boost by a real boost parameter 7 is
exp(—inK). Setting n = —if, we learn that, in real time
language, the path integral on the wedge W, constructs the
operator exp(—6K,). The path integral on the wedge prop-
agates the degrees of freedom on the right half-space only, so
the operator in the exponent is K, not K. To get the density
matrix p, of the right wedge, we set 0 = 2x:
p, = exp(—2zK,). (5.83)
A precisely similar analysis shows that the density matrix of
the left wedge is
pr = exp(—2zK,). (5.9)
We want to combine these results to determine the modular
operator Ag for the vacuum state Q, for the algebra A, of
observables in the right wedge. Factoring the Hilbert space as
H ="H, ® H, and using Eq. (4.26) (where we identify H,
and H, with H; and H,), the modular operator is

Ag = p, ® p;' = exp(-27K,) exp(27K ;) = exp(—2zK).
(5.10)

In the last step, we use the fact that formally the operators K,
and K, commute, since they act respectively on H, and H,.

*'Rather as there is not a ri gorous factorization H = 'H, ® H,, the
operators K, and K, are not really well defined as Hilbert space
operators, although of course the difference K = K, — K, is a well-
defined Hilbert space operator. K, and K, have well-defined matrix
elements (¥|K,|y) and (¥|K,|y) between suitable Hilbert space
states y and W, but if one tries to compute the norm of the state K| y)

cosh(if)  —sinh(if) ¢ or K,| y), one will find a universal ultraviolet divergence, near x = 0,
= ( . . ) ) < > (5.4) independent of the choice of y. This is related to the fact that the
—sinh(if)  cosh(if) X factorization H = H, ® H, is not really correct.
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Now let us consider a state a|Q2) obtained by acting on the
vacuum with an operator a € A,, supported on the right
wedge. For simplicity, we assume that a well-defined operator
a can be given by smearing a local operator ¢ in space with no
corresponding smearing in time. This is so if the dimension
of ¢, measured in the ultraviolet, is less than (D — 1)/2. It is
not true that the operator product algebra of a quantum field
theory is always generated by operators of such relatively low
dimension, so in general the following discussion has to be
modified to allow a very slight smearing in time, but we
omit this.

Under our hypothesis, the state a|Q) can be computed by a
path integral on the lower half-space, with an insertion of the
operator a on the right half of the boundary [Fig. 5(a)]. Now
let us consider the state

A%a|Q) = exp(—27aK)a|Q)

= exp(27aK,) exp(—2zakK ,)a|Q). (5.11)
The operator exp(—2zaK,) is implemented by gluing on a
wedge of opening angle 2za to the right half of the boundary
in Fig. 5(a), while the operator exp(2zaK,) removes such a
wedge from the left. If we add one wedge and remove the
other, and also rotate the picture so that the boundary is still
horizontal, we arrive at Fig. 5(b). There is still a path integral
on the lower half-plane, but now the operator a is inserted at
an angle —2za relative to where it was before. We can
continue in this way until we get to a = 1/2. This case is
depicted in Fig. 5(c). What at @ = 0 was an operator insertion
a on the right boundary at x > 0 has now turned into the
insertion of some other operator a on the left boundary at
x < 0. As a is inserted on the left boundary, it is an element of
the algebra A’. Thus for a € A,,

(a) (b)

(©

FIG. 5. (a) The state a|Q) can be obtained by a path integral in
the lower half-plane, with a inserted on the right half of the
boundary. (b) Acting with exp(2zaK ) exp(—2zaK,)a|Q) adds a
wedge of opening angle 2z« to the right boundary and removes
one from the left boundary. If we rotate the picture so that the
boundary is again horizontal, it looks like this; the operator a is
now inserted on a ray that is at an angle 2z« from the horizontal.
(c) By the time we get to @ = 1/2, a is inserted on the left
boundary of the lower half-plane. We cannot extend this process
further.
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AJ%alQ) = alQ), (5.12)
for some a € A,. A similar statement holds, of course, with
A, and A, exchanged.

We have learned that A%a|Q) is a well-defined Hilbert
space state for 0 < a < 1/2. But we cannot go farther. The
operator A* has removed a wedge of angle 2z« from the left
side of the picture. By the time we reached @ = 1/2, there is
no wedge left to remove on that side and we have to stop. On
the other hand, there is no problem in acting on any Hilbert
space state with the unitary operator A”. So a more general
conclusion is that, as was claimed in Sec. IV.B, Aga Q) is
holomorphic in the strip 0 > Imz > —1/2 (and continuous on
the boundary of the strip) but not beyond.

Our final goal in this discussion is to determine and exploit
the modular conjugation Jo,. We use the fact that S = JoA!/2
is supposed to satisfy

SealQ) = a’|Q), acA,. (5.13)
For simplicity, let us assume that the operator algebra of our
theory is generated by a Hermitian scalar field ¢. To determine
what J must be, it suffices to consider the case that a is equal
to either ¢ or ¢ = d¢p/dt, inserted on the right wedge at the

initial value surface ¢ = 0. Since ¢ and (/) are both Hermitian,
we want

Sa¢(0,x.5)|Q) = (0. x.5)|Q).

Sad(0,x,5)|Q) = ¢(0, x,7)|Q). (5.14)
(One could introduce a smearing function in these statements,
but this would not change what follows.) Instead, from
Eq. (5.12), we have

ASZP(0,x,5)|Q) = (0. —x,7)|).

A H(0,x,7)Q) = —¢(0, x,7)|). (5.15)

The reason for the minus sign in the second line is that acting
with A;{ ? turns a future-pointing time derivative acting on ¢ in
Fig. 5(a) into a past-pointing time derivative in Fig. 5(c), so it
reverses the sign of d¢p/dt. Comparing Egs. (5.13) and (5.15),
we see that we want

Tag(0.x.5)Jq = ¢(0.—x.5).

Jab(0.x, )]0 = ~h(0.—x.5). (5.16)
In other words, Jq is supposed to be an antiunitary operator
that maps x — —x, t — —t£, y — y.

The antiunitary operator that acts in this way on any
Hermitian scalar field (with an analogous action on fields
of other types) is the operator CRT that was discussed in
Sec. V.A. Thus

Jo = CRT. (5.17)

We now pause a moment to explain more explicitly why

this operator is traditionally called CRT rather than RT.
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Consider a theory with two Hermitian scalar fields ¢ and ¢,
rotated by an SO(2) symmetry with generator

0- / dxd5(1 s — diha). (5.18)
=0

This charge is odd under Jg, since ¢; and ¢, are even while

(}51 and JJZ are odd. So J reverses the sign of O, and similarly
of any other Hermitian conserved charge. Since R and T are
traditionally defined to commute with Lorentz-invariant con-
served charges while Jq, reverses their sign, Jq corresponds to
what is traditionally called CRT rather than RT. CRT is a
universal symmetry of relativistic quantum field theory, while
there is no universal symmetry corresponding to RT.

In this example, we can explicitly verify the deeper
properties of the modular automorphisms A} and Jg that
were described in Sec. IV.B. A§ implements a Lorentz boost
with a real boost parameter 27s, so it is an automorphism of
the algebras A, and A, of the two wedges. And Jo = CRT
exchanges the two wedges so it exchanges the two algebras.

In general, in Tomita-Takesaki theory, the modular con-
jugation J exchanges an algebra A with its commutant A’.
So in the present context, the fact that Jo exchanges A, and
A, tells us that these algebras are commutants:

L =A, Al = A, (5.19)
This is how Bisognano and Wichmann (1976) proved Haag
duality for complementary Rindler spaces.

C. The approach of Bisognano and Wichmann

The path integral derivation of the last section is extremely
illuminating, and it gives the right result although it is not
altogether rigorous. (The flaws all involve an imprecise treat-
ment of the boundary between the two regions at x = 0.) Here,
following the presentation by Borchers (2000), we briefly
sketch the original approach of Bisognano and Wichmann
(1976). The main difference is that instead of a Euclidean path
integral and a claimed factorization H = H, ® H,, one uses
holomorphy.

Since Jo = CRT certainly acts as in Eq. (5.16), to
determine Ay and So, we have to justify the claim that for
aeA,

exp(—27K)alQ) = a|Q), (5.20)
where a is obtained from a by ¢, x, ¥ — —t, —x, y. In checking
this, we can take a to be a product of field operators

a= (1. 10 51) (2 12, 0) -~ bt xn ) (5:21)
inserted in the right wedge U, at points p; = (;, x;, Vi),
i=1,2,...,n. Moreover, we can take the points p; to be
spacelike separated from each other; as the field operators
@(t;,x;,y;) thereby commute, we can order them so that
x; > x; for j > i. Even more specifically, we can restrict to
(5.22)

Xi—X; > |tj—tl‘,

J j>i.
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It suffices to consider operators a of this form roughly because
states a|Q) with a of this type are dense®® in H, so in particular
they are dense among all states a|Q), a € A,. For a precise
statement, see Lemma 3.1.7 in Borchers (2000).

For real s, the Lorentz boost operator exp(—2zisK) is
unitary and its action on a state a|Q) is straightforward to
determine. The normal coordinates y play no role in what
follows so we omit them to simplify the notation. A Lorentz
boost exp(—2zisK) maps X = () to

9= (1)) (oo om0 6

The corresponding transformation of operators in the
Heisenberg picture is

¢ (x(n)) = exp(2zinK)p(x) exp(—2zinkK). (5.24)
So for real 5, remembering that KQ = 0,
exp(2zinK) (X )p(X2) - - - (X, )|Q)
= p(Xi ()G () -+ - p(x,(n))1Q).  (5.25)

We want to analytically continue this formula in #. If it can be
continued to = i/2, then, since X'(i/2) = —x, Eq. (5.25)
will give the desired result (5.20).
In Sec. II.B, we learned that the H-valued function
F(X], X, ...

X) = O)B0G) - p)IQ)  (5.26)
is holomorphic in X, ..., X}, in a certain domain. To be precise,
if X; =u; +iv; with real u;, v;, then F(X|,X},....X]) is
holomorphic in the domain in which v; and v; | —v; are
future timelike.

We claim that if the points X;, X,, ..., X, are chosen as in
Eq. (5.22), then for 1/2>Imy >0, the points X](n),
X5(1), ..., X, () are in the domain of holomorphy that was
just described. Since this statement is manifestly invariant
under real Lorentz boosts, it suffices to verify it for imaginary
n, say n = ib, 0 < b < 1/2. Let X be either X; or one of the
differences X, | — X;. Our assumptions imply in each case that
X is in the right wedge x > |¢f|. We have to show that the
imaginary part of X' (1), defined in Eq. (5.23) (with s replaced
by 1 = ib), is future timelike for the claimed range of b. We
compute

( '(n) ) ( tcos2zb + ix sin2zh
xX'(n))  \xcos2xb + it sin 2zb

Since x > |t|, the imaginary part is future timelike for
0 < b < 1/2, which ensures that sin 2zb > 0. The H-valued

). (5.27)

%One can see this by reviewing the proof of the Reeh-Schlieder
theorem from Sec. II.B. The proof would go through perfectly well if
one begins by assuming only that the functions ¢(x;,x,, ..., X,) =
(xlp(x1)p(x3) - - - p(x,)|Q) [Eq. (2.5)] vanish under the hypothesis
(5.22); one can still prove in the same way that these functions vanish
identically for all x, x5, ..., x,,.
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function on the right-hand side of Eq. (5.25) is thus hol-
omorphic for 1/2 > Imn > 0, and continuous up to the
boundary at Imzy = 1/2. (It cannot be continued holomorph-
ically beyond that.) This is precisely enough to justify setting
n =1/2 in Eq. (5.25), and thus to complete the proof.

D. An accelerating observer

The problem discussed is closely related to Unruh’s
question (Unruh, 1976) of what is seen by an observer
undergoing constant acceleration in Minkowski spacetime,
say in the xt plane. The worldline of the observer (Fig. 6) is

< t(7) ) R( sinh(z/R) )
x(z))  \cosh(z/R) )’
where 7 is the observer’s proper time; the proper acceleration
is a = 1/R. As before, we abbreviate (;((’T))) as X(7).

We suppose that the observer probes the vacuum Q
of Minkowski spacetime by measuring a local operator O
and its adjoint OF along this worldline. For simplicity,
we consider only the two-point functions O - O, but we
consider both operator orderings. Thus, we suppose that the
observer has access to (Q|O(X(7,))O"(x(r,))|Q) and
(Q|OT(X(7,))O(x(7,))|Q). Lorentz invariance implies that
these functions depend only on 7 = 7; — 7,, so there is no
essential loss to set 7, = 0 and to consider the two functions:

(5.28)

F(z) = (QIO(x(2)) O (x(0))[).

G(r) = (@O (x(0)O(x(7))|%). (5.29)

Unruh’s basic insight was that these correlation functions
have thermal properties. The basic property of real time two-
point functions in a thermal ensemble, as already explained in
Egs. (4.46) and (4.47), is that there is a holomorphic function
on a strip in the complex plane whose boundary values on the
two boundaries of the strip are F(z) and G(z). In general, the
width of the strip is 2z, where f is the inverse temperature; in

FIG. 6. An accelerating trajectory X(z) in the right quadrant of
the xt plane. The point 7 = 0 is marked. Shown in dotted lines,
on the left, is the mirror trajectory —X(z), which can be obtained
from the first by a shift in imaginary time. The two trajectories are
spacelike separated.
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the derivation of Eqs. (4.46) and (4.47), we took f# = 1 so the
width of the strip was 2z. We give two derivations of Unruh’s
result, first starting in real time and deducing the holomorphic
properties of the correlation functions, and second starting
in Euclidean signature and analytically continuing back to
real time.

To understand the analytic properties of the real time
correlation functions, we first analytically continue the
observer’s trajectory. We set 7/R = s + i0 with real s, 6
and compute that

sinh s cos @ + i cosh s sin @
X(zr) =R

). (5.30)

cosh s cos @ + i sinh s sin @

Thus

5.31
sinh s ( )

coshs

Imx(7) = RsinH( >
F(7) is holomorphic when Imx(7) is future timelike and G(7)
is holomorphic when Imx(z) is past timelike. So F(z) is
holomorphic in the strip 0 < § < z and continuous on the
boundaries of that strip; we describe this more briefly by
saying that F(z) is holomorphic in the strip 0 <6 < z.
Similarly G(z) is holomorphic in the strip 7 <6 <2z (or
equivalently but less conveniently —z < 6 < 0).

In terms of 7, F(r) is holomorphic for 0 < Imr < zR.
At Imz = 0, F(z) is simply the original correlation function
(Q|O(x(7)) O (x(0))|€2) on the observer’s worldline. On the
other boundary of the strip at Imz = zR, X(z) is again real:

inh(z/R
X(z + inR) = —x(1) = —R Cozh((Tj R)) ) (5.32)
So the boundary values at 7 = R(s + i) are
F(R(s +in)) = (QIO( - x(Rs))O"(x(0))|Q).  (5.33)

Similarly, G(z) at Imr =2zR is simply the original
correlation function (Q|O(x(0))O(x(z))|Q) on the observ-
er’s worldline. But at Imz = 7R, we get, similarly to (5.33),

G(R(s +in)) = (Q|OT(x(0))O( = x(Rs))|Q).  (5.34)

Crucially, the operators O( — X(Rs)) and O'(x(0)) com-
mute, since for all real s, —X(Rs) is spacelike separated from
x(0) (see Fig. 6). So the correlation functions in Egs. (5.33)
and (5.34) are equal.

Thus, we have one function F(z) that is holomorphic for
7R > Imtr > 0 and another function G(r) that is holomorphic
for 2zR > Imz > nR; moreover at Imr = zR, these two

functions are equal. It follows that we can define a single
function H(z) on the combined strip 2zR > Imz > 0 by

F(7)
Hie) = { G(r)

if zR > Imz > 0,

) (5.35)
if 2zR > Imz > 7R.
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This function is holomorphic in the combined strip and
continuous on its boundaries. (For the proof of holomorphy
on the line Imz = zR where the two functions were glued
together, see Fig. 8 in Appendix A.2.) The boundary values at
the top and bottom boundaries of the strip are the two
correlation functions that we started with, with the two
possible operator orderings.

We have arrived at the usual analytic behavior of a real time
two-point correlation function in a thermal ensemble: two-
point functions with different operator ordering are opposite
boundary values of a single function that is holomorphic
in a strip. We found a strip of width 2zR, so the effective
temperature is 1/2zR.

A derivation that begins with the Euclidean correlation
functions might be more transparent. Let t; = it be the
Euclidean time. A Euclidean version of Eq. (5.28) is

tgp = Rsind, x = Rcos0. (5.36)
This is the thermal circle that is related to the observations of
the accelerated observer. Let Xz = ("%). In Euclidean space,
one considers the correlation function (O(xg(8))O" (x£(0))).
A priori, a Euclidean correlation function has no operator
interpretation. To introduce an operator interpretation, one
picks a direction as Euclidean time and introduces a transfer
matrix that propagates operators in that direction. Then
Euclidean correlation functions acquire an operator interpre-
tation, with the operators being ordered in the direction of
increasing Euclidean time. For example, if ¢z is chosen as the
Euclidean time direction, then a general Euclidean two-point
function is interpreted in the transfer matrix formalism as

(Ot x) O (1. X))
_ { (Q|O(t5. x)O (1. x')[Q)
(QIO" (. ") O(tg. x)|Q)

if tp > 1},
S EEE (537
if 1 > 1.

As before, this is consistent because if 1z = 1}, the operator
ordering does not matter. Given this, the operator ordering
in the operator interpretation of the Euclidean correlation
function (O(xz(0))O'(x£(0))) depends on the sign of
tg = Rsin@, as in the previous derivation. When we analyti-
cally continue (O(Xz(0))O" (x(0))) from a function of 6 to a
function of 7 = R(s + i), we get the two operator orderings
depending on the sign of sin#, as before. This distinction
remains in the limit & — 0%, where we recover the real time
correlation functions with different operator orderings.

VI. ALGEBRAS WITH A UNIVERSAL DIVERGENCE IN
THE ENTANGLEMENT ENTROPY

A. The problem

Let U be an open set in Minkowski spacetime. It has a local
algebra A = A;; with commutant A" (which, if Haag duality
holds, is A;, for some other open set Uf’). As in Sec. ILF, we
understand A and A’ to be von Neumann algebras of bounded
operators (closed under Hermitian conjugation and weak
limits, and containing the identity operator). They act on
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the Hilbert space H of the theory in question with the vacuum
state Q as a cyclic separating vector.

For a finite-dimensional quantum system, the existence of
such a cyclic separating vector would imply a factorization
H ="H, ® H,, with A acting on one factor and A’ on the
other. Such a factorization cannot exist in quantum field
theory, for it would imply the existence of tensor product
states yw ® y with no entanglement between U and Uf'.
Instead, in quantum field theory, there is a universal ultraviolet
divergence in the entanglement entropy.

The essence of the matter is that in quantum field theory, the
divergence in the entanglement entropy is not a property of
the states but of the algebras .4 and A’. These algebras are not
the familiar type I von Neumann algebras which can act
irreducibly in a Hilbert space. Instead they are more exotic
algebras with the property that the structure of the algebra has
the divergence in the entanglement entropy built in. In this
section, we explain barely enough about von Neumann
algebras to indicate how that comes about.

B. Algebras of type I

A type I von Neumann algebra A can act irreducibly by
bounded operators on a Hilbert space K. We will only be
interested here in algebras that have trivial centers (consisting
only of complex scalars).”’ Under this restriction, A will
actually consist of all bounded operators on IC. We also only
consider Hilbert spaces of at most countably infinite
dimension.

If IC has finite dimension d, then all operators on K are
bounded. We say that the algebra of operators on K is of type
I,;. If K is infinite dimensional, we call the algebra of bounded
operators on K an algebra of type /. A von Neumann algebra
(with trivial center) acting irreducibly on a Hilbert space is
always of one of these two types.

A “trace” on a von Neumann algebra is a linear function
a — Tra that satisfies Trab = Trba and Tra’a > 0 fora # 0.
Obviously, an algebra of type 1, has a trace. For type I, we
can define a trace that has the right properties except that it
cannot be defined on the whole algebra as it may diverge; for
instance, the trace of the identity operator on an infinite-
dimensional Hilbert space is +oo.

In constructing more exotic algebras, we are interested in
algebras that can be constructed as limits of matrix algebras.
(Such algebras are called hyperfinite.) Such constructions
were introduced and developed by von Neumann (1938),
Powers (1967), and Araki and Woods (1968).

C. Algebras of type II

The first nontrivial example is the hyperfinite type II;
factor of Murray and von Neumann. It can be constructed as
follows from a countably infinite set of maximally entangled
qubit pairs.

*A von Neumann algebra with trivial center is called a factor.
Factors exhibit the main subtleties of von Neumann algebras, and von
Neumann algebras that are not factors are built from factors in a
relatively simple way. So it is natural to concentrate on factors here.
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Let V be a vector space consisting of 2 x2 complex
matrices, with Hilbert space structure defined by
(v,w) = Tro'w. Let M, and M) be two copies of I,, the
algebra of 2 x 2 complex matrices. We let M, and M) acton V
on the left and right, respectively. Thus a € M, actson v € V
by v — av, and a’ € M) acts on v by v — va™ where tris the
transpose. Obviously, M, and M/, are commutants.

We can view V as a tensor product W ® W', where W is a
space of two-component column vectors acted on by M, and
W' is a space of two-component row vectors acted on by M.
Thus V is a bipartite quantum system. Let /, be the 2 x 2
identity matrix. A normalized maximally entangled vector in
V is given by I} = I,//2.

Now consider a countably infinite set of copies of this
construction; thus, for £ > 1, let VIH be a space of 2 x2
matrices acted on on the left by M%) and on the right by M.

Roughly speaking, we want to consider the infinite tensor
product VIl @ VPl @ - .- ® V¥ ® - - .. However, taken liter-
ally, this infinite tensor product is a vector space of uncount-
able dimension. To get a Hilbert space of countably infinite
dimension, we instead proceed as follows. To start with, we
define a space H,, that consists of tensor products

1 Q- --eVllgVle. ... @vlg-..
(6.1)

such that all but finitely many of the v, are equal to I}. This
gives a countably infinite-dimensional vector space, but not
yet a Hilbert space. To make a Hilbert space, we first define an
inner product on H,. This is done as follows. If v =v; ®
- ---and w=w; @ w, ® --- are elements of H,, then
there is some n such that v; and w; both equal I}, for k > n.
We truncate v and w at v, =0, Q@ 1, ® -+ ® v,
Wiy =W @wy @ -+ @ w,, and define
(v,w) = Trvzn>w<n>. (6.2)
This does not depend on where the truncation was made.
Having defined a Hermitian inner product on H, we complete
it to get a Hilbert space H, which is called a restricted tensor
product of the V. For v, @ 1, ® - ® v, ® --- to be a
vector in the restricted tensor product, the v,, must tend rapidly
to I, for n — .
We do something similar with the algebras. Roughly
speaking, we want to define an algebra A as an infinite

tensor product M[zl] ® M[zz] R QR M[2n] ® ---. However, a
general element a=a; @® a, @ --- ® a, ® --- cannot act
on the restricted tensor product 7. (Acting on
11 - Qu, - -+, it would not preserve the con-
dition that the v, go rapidly to I} for n — c0.) To get around
this, we first define an algebra A that consists of elements
a=a ®a, ® - a, ® ---such that all but finitely many
of the a; are equal to /,. This algebra acts on 7, and it obeys
all the conditions of a von Neumann algebra except that it is
not closed. To make it closed we add limits. We say that a
sequence 8y € A, converges if lim,_, 8, y exists for all
x € H; if so, we define an operator a:H — H by
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ay =lim,_.a,)x, and we define A to include all such
limits. This definition ensures that fora € A, y € H,ayisa
continuous function of a. Note that the definition of A
depends on a knowledge of the Hilbert space that it is
supposed to act on, which entered the question of which
sequences @,,) converge. This will be important in Sec. VI.D.

The commutant of 4 is an isomorphic algebra A’ that is
defined in just the same way, as a subalgebra of M’zm ®
M’2[2] ® - ®M/2[n} ® -

The vector

Y=LRL®  -®L® --€H (6.3)
is cyclic separating for A and for A’. (To show that a¥ # 0
for any nonzero a € A, we approximate a by a linear
combination of tensor products a1 @ a1, ® - - ®a, ® - - -,
where in each term a, = I, for sufficiently large n, and
observe that a nonzero element of this kind certainly does
not annihilate P.)

A natural linear function on the algebra A is defined by
F(a) = (¥]a|¥). Since ¥ is separating for .4, any nonzero
a € A satisfies a¥ # 0 and hence F(a'a) > 0. We claim that
the function F has the defining property of a trace:
F(ab) = F(ba). Indeed, if a=a; ® 1, ® -  ®a, ® - - -,
b=0,®b0® - ®b,® --- with a,, b, =1, for n > k,
then

F(ab) = Tty g g.guti @101 ® a2by ® -+ ® ayby

= F(ba). (6.4)
Since elements a, b of the form just considered are dense in .4,
the general result F(ab) = F(ba) follows by taking limits,
given the way that A was defined. Since the function F'(a) has
the properties of a trace, we denote it as Tra.

We recall that in the case of a type [, algebra, one can
define a trace on a subalgebra but the trace of the identity
element is infinite. By contrast, a hyperfinite type II; algebra
has a trace that is defined on the whole algebra, and which we
have normalized so that Trl = 1.

The entanglement entropy in the state W is infinite, since
each factor of I, represents a perfectly entangled qubit pair
shared between A and A". Replacing ¥ by another vector in
‘H will only change the entanglement entropy by a finite or
at least less divergent amount, because of the way the
restricted tensor product was defined. So the leading
divergence in the entanglement entropy is universal, as in
quantum field theory.

Another fundamental fact—more or less equivalent to the
universal divergence in the entanglement entropy—is that the
type II; algebra .4 has no irreducible representation.

A acts on the Hilbert space H that we have constructed, but
this action is far from irreducible, as it commutes with the
action of A’ on the same space. We can make a smaller
representation of 4 by projecting H onto an invariant sub-
space. Set J, = (} %) and consider the following element of A’:
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with precisely k factors of J, and the rest /,. This is a
projection operator with™ TrIT, = 27%. The subspace HIT' of
‘H (that is, the set of all elements of H of the form yIT' for
some y € H) is a representation of A that, in a sense that was
made precise by Murray and von Neumann, is smaller by a
factor of 2¥. We can keep going and never get to an irreducible
representation. Concretely, II, projects onto vectors vy ®
1»Q® - ®v,® - €H such that vy, v,, ..., v, are of the
form (§9). To get an irreducible representation of A, we must
impose such a condition on v, for all n, but an infinite tensor
product of vectors of this type is not in H.

The type II; algebra that we considered has some properties
in common with local algebras in quantum field theory—they
share a universal divergence in the entanglement entropy and
the absence of an irreducible representation. But local algebras
in quantum field theory do not possess a trace.

D. Algebras of type III

More general algebras can be constructed by proceeding
similarly, but with reduced entanglement.
For 0 < A < 1, define a matrix

1 I 0
Kz.z—m o 2) (6.6)

This matrix describes a pair of qubits with nonzero but also
nonmaximal entanglement. (We sometimes include the case
A= 1; note that K, ; is the matrix I, of Sec. VI.B.)

In the construction of a Hilbert space H in Sec. VILC,
replace I, everywhere by K,,. Thus, consider the space
‘H, spanned by vectors v; @ 1, @ - Q v, ® --- € vl @
V2 ® ... ® VIl ® - - such that all but finitely many of the
v, are equal to K, ;. Define H, to be the Hilbert space closure
of H. Similarly, to define an algebra, start with the same A4
that we used in Sec. VI.C, and take its closure in the space of
bounded operators acting on ;. This gives a von Neumann
algebra A;. A, differs from the algebra A constructed in
Sec. VI.C because the Hilbert space H, differs from the
Hilbert space H of that section. In other words, the condition
for a sequence of operators a, € A, to converge depends on
which vectors the a,, are supposed to act on, so it depends on
the choice of the matrix K, ;.

Again, the commutant A} is defined similarly and is
isomorphic to A4;. The vector ¥ =K,, ®K,; ® - ®
K,; ® --- is cyclic and separating for A, and for A}. The
corresponding function F(a) = (¥|a|¥) does not satisfy
F(ab) = F(ba), and indeed the algebra A; does not admit
a trace.

The entanglement entropy between A, and A in the state ¥
is divergent, because ¥ describes an infinite collection of
qubit pairs each with the same entanglement. As in Sec. VI.C,

**More generally, for every real x with 0 <x <1, A has a
projection operator IT, with TrIT, = x. Projecting on the image of IT,
(acting on H on the right) gives a representation of .4 whose
“dimension” in the sense of Murray and von Neumann is x.

Rev. Mod. Phys., Vol. 90, No. 4, October—December 2018

this divergence is universal; any state in H,; has the same
leading divergence in the entanglement entropy.

As in Sec. VI.C, the action of A; on H, is far from
irreducible; it can be decomposed as finely as one wishes
using projection operators in Aj. In this case, however,
although we will not prove it, the invariant subspaces in
which H, can be decomposed are isomorphic as represen-
tations of A; to H, itself: a hyperfinite von Neumann
algebra of type III has only one nontrivial representation,
up to isomorphism. All statements in the last three para-
graphs also apply to the additional type III algebras that we
come to momentarily.

Powers (1967) proved that 4, and A; for A# 1 are
nonisomorphic. Araki and Woods (1968) considered a gen-
eralization of this construction involving a sequence A4,
A, ...,0 < 1; < 1. Now one considers vectors v ® v, ®
RV, ® € VleVvl @ ... VWl ® ... such that
v, = K, for all but finitely many n. Such vectors make a
vector space H,, ; whose Hilbert space closure gives a Hilbert
space H;. To construct an algebra A3, we start with the same
algebra A, as before, and take its closure in the space of
bounded operators on H;. The commutant .A% is constructed

similarly, and

V=K ®Ky, ®-®Ky, @ (6.7)
is a cyclic and separating vector for this pair of algebras. (The
expectation (¥|a|¥) is not a trace unless the A; are all 1.)

Araki and Woods (1968) showed that if the sequence
A1, 4o, ... converges to some 4 satisfying 0 < A < 1, then this
construction gives the same type III; algebra as before. If the
sequence converges to 0, one gets an algebra of type I, if the
convergence is fast enough. If it is not fast enough, one gets a
new algebra that is defined to be of type IIl.

However, if the sequence 4;, 4,, ... does not converge and
has at least two limit points in the interval 0 < 4 < 1, which
are generic in a sense that will be described in Sec. VLE,
then the algebra A; is a new algebra that is defined to be of
type III;.

E. Back to quantum field theory

Local algebras A, in quantum field theory are of°' type III,
since they do not have a trace—even one defined only on part
of the algebra. In fact, they are believed to be of type III;. We
will give a somewhat heuristic explanation of this statement,
by using the spectrum of the modular operator to distinguish
the different algebras.

Because of the way the algebras were constructed from an
infinite tensor product of 2 x 2 matrix algebras, we can
understand the modular operator by looking first at the
2 x 2 case. Let us return to the case of a single product
M, x M), acting on a Hilbert space V of 2 x 2 matrices, with
the cyclic separating vector K, ;. We factorize V=W @ W’

3This was first shown for free fields by Araki (1964), before the
finer classification of type III algebras was known; see also Longo
(1982) and Fredenhagen (1985).
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in terms of column and row matrices. The reduced density
matrices for the two factors are

1 10)
,01—,02—1_‘_}L o 1)

According to Sec. IV.A, Ay acts on a 2 x 2 matrix x € V by
x = pix(p¥)~!. We see that, in this case, its eigenvalues are
1,4, and A7L.

Now let us consider the type III, algebra 4, that was
constructed in Sec. VL.D. It has the cyclic separating vector

(6.8)

V=K,®K,® QKy;®: (6.9)
constructed as an infinite tensor product of copies of K, ;. In
this case, Ay is an infinite tensor product of the answer that we
just found in the 2 x 2 case. The eigenvalues of Ay are all
integer powers of A, each occurring infinitely often. The
accumulation points of the eigenvalues32 are the powers of 1
and O (which is an accumulation point as it is the large n limit
of A"). More generally, the vector ¥; =K,,; ® K;,, ®
- ®K,, ®--- is cyclic separating for A, if the A
approach A sufficiently fast. The operator Ay. now has a

more complicated set of eigenvalues, but 0 and the integer
powers of A are still accumulation points. Still more generally,
in the case of a type III, algebra, for any cyclic separating
vector ¥, not necessarily of the form W, the integer powers of
A and 0 are accumulation points of the eigenvalues. Roughly
this is because any cyclic separating vector can be very well
approximated by only changing the original one in Eq. (6.9) in
finitely many factors.

For type IIl,, the A, are approaching O and the only
unavoidable accumulation points of the eigenvalues of A\yI

are 0 and 1. These values continue to be accumulation points if
> is replaced by any cyclic separating vector of a type Ill,
algebra.

Now let us consider a type III; algebra. Suppose that in
Eq. (6.7), the 1, take the two values A and 1, each infinitely
many times. Then the eigenvalues of Alyz consist of the

numbers "™, n, m € Z, each value occurring infinitely many
times. If A and A are generic, then every non-negative real

number can be approximated arbitrarily well® as 2"A™, with
integers n, m. So in this case all non-negative real numbers are
accumulation points of the eigenvalues. This is the hallmark of
a type III; algebra: for any cyclic separating vector ¥, the
spectrum of Ay (including accumulation points of eigenval-
ues) comprises the full semi-infinite interval [0, o).

32Mathematically, the “spectrum” of an unbounded operator is
defined to include accumulation points of its eigenvalues, along with
the eigenvalues themselves and a possible continuous spectrum. The
accumulation points and the possible continuous spectrum are
important in the following remarks.

*The case that this is not true is that there is some A’ with 1 = A",
A=2™ n, meZ. Then the spectrum of Aq,z consists of integer

powers of A’, and the algebra is of type III,.
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Now let us return to quantum field theory and consider the
case that U/ is a wedge region, as analyzed in Sec. V. The
modular operator for the vacuum state Q is Ag = exp(—2zK),
where K is the Lorentz boost operator. K has a continuous
spectrum consisting of all real numbers, so Ag has a
continuous spectrum consisting of all positive numbers. In
particular, all points in [0,c0) are in that spectrum. Now
suppose we replace Q by some other cyclic separating vector
W. At short distances, any state is indistinguishable from the
vacuum. So we would expect that acting on excitations of very
short wavelength, Ay can be approximated by A, and
therefore has all points in [0,00) in its spectrum. See
Fredenhagen (1985) and Sec. V.6 of Haag (1992) for more
precise statements. Thus the algebra 4;; is of type III;.

What about other open sets ¢/ C M? For an important class
of examples, let Z be an initial value surface, and let VV C X be
an open subset whose closure ) has a nonempty boundary. Let
Uy, C M be the domain of dependence of V. Its closure Iy, has
a “corner” along the boundary of V. Let Ag(U)) be the
modular operator of the state € for the algebra Ay,,. For very
high energy excitations localized near the corner, U/, looks
like the wedge region Y. So one would expect that for such
high energy excitations, Ag(I4y,) looks like the Lorentz boost
generators and has all positive real numbers in its spectrum.
Again, changing the state will not matter. So again in this case,
the algebra A, is of type III;.

According to the Borchers timelike tube theorem, which
was already mentioned at the end of Sec. IL.F, for many open
sets U that are not of the form U, A;, actually coincides with
some Ay, where U C Uy. So then Ay is again of type III;.

VII. FACTORIZED STATES
A. A Question

Let & and U’ be complementary open sets with local
algebras Ay, A;y. (We recall that complementary open sets
are each other’s causal complements and there is no “gap”
between them.) If one had a factorization of the Hilbert space
H =H, ® H, with each algebra acting on one of the two
factors, then one could specify independently the physics in I/
and in U/’. For any ¥ € H,, y € H,, the tensor product state
Y ® y would look like ¥ for observations in I/ and like y for
observations in U/’

In fact, there is no such factorization and it is not possible to
independently specify the state in ¢ and in U/'.

Suppose, however, that there is a “gap” between U and U/,
leaving room for another open set U” that is spacelike
separated from both of them (Fig. 7). Then, given states ¥,
x € H, the question of finding a state looking like ¥ in ¢/ and
like y in U’ is not affected by ultraviolet divergences. But
there is still a possible obstruction, which arises if there is
some nontrivial operator X (not a multiple of the identity) that
is in both A;; and A;,. Such an operator is central in both A,
and A;, (since these algebras commute with each other). In
Minkowski spacetime, it is reasonable based on what we know
from canonical quantization to expect that 4;, and A;, have
trivial center and trivial intersection, but in general, in more
complicated spacetimes, this might fail (Schroer, 2017;
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FIG. 7. Two spacelike separated open sets U and U’ in
Minkowski spacetime, with a gap between them.

Harlow and Ooguri, 2018). If there is some X € A;; N Ay
with (P|x|¥) # (y|X|x), then obviously, since X can be
measured in either U or U, there can be no state that looks
like ¥ in U and like y in /.

In proceeding, we assume that there is a gap between I{ and
U’ and that the intersection of the two algebras is trivial. We
impose a further restriction on the boundedness of ¢ and/or I/’
that is discussed later. Given this, it actually is possible,34 for
any ¥, y € H, to find a state that is indistinguishable from ¥
for measurements in U/, and indistinguishable from y for
measurements in U/’

We make use of the gap between U and U’ in two ways.
First, it ensures that the union of the two open sets,
U=UulU , is “small” enough so that the Reeh-Schlieder
theorem applies and the vacuum state Q is cyclic and
separating for the local algebra Ag. (There is another open

set 4" that is spacelike separated from U, and this is enough to
invoke the theorem.)
Second, we want to use the gap as an ingredient in ensuring

that there are no subtleties in building observables in U from
observables in U and in /', in the sense that the algebra Ag; is

just a tensor product:

Ag = Ay @ Ay. (7.1)
However, this point is not straightforward, for several reasons.

First of all, we have to explain what is meant by the tensor
product A;; ® A,y of von Neumann algebras. The algebraic
tensor product Ay ®,, Ay is defined in the familiar way;
elements are finite linear combinations » ¢ | a; ® a}, with
a; € Ay, a; € Ay Such finite linear combinations are added
and multiplied in the familiar way.

However, to get a von Neumann algebra, we have to take a
completion of Ay, ®, Ay. As usual, what we get when we
take a completion depends on what Hilbert space the algebra
is acting on. We have seen several examples of this in Sec. VI.

**This question and similar ones are related to what is called the
split property in algebraic quantum field theory and have been
analyzed with increasing detail by Roos (1970), Buchholz (1974),
and Doplicher and Longo (1984).
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The completion we want is one in which A;, and A4;, act
completely independently.” For this, we introduce a Hilbert

space H = H ® H' consisting of two copies of the Hilbert
space of our quantum field theory, and we consider the action

of Ay ®u Ay on H with Ay, acting on the first factor and
Ay acting on the second. The von Neumann algebra com-
pletion of Ay ®,, Ay acting on H is the von Neumann
algebra tensor product A;; & A,

This explains what Eq. (7.1) would mean, but it is not true
without some further condition on &/ and I/’. The gap between
them avoids ultraviolet issues that would obstruct the factori-
zation in Eq. (7.1), but there are still infrared issues.

Before explaining this, we consider a simpler question that
will actually also be relevant in Sec. VIL.C. If a given quantum
field theory has more than one vacuum state,g’6 does the
algebra A;, for an open set &/ depend on the choice of
vacuum? If U/ is a bounded open set, with compact closure,
one expects on physical grounds that the answer will be “no.”
But in the case of a noncompact region, in general 4;, does
depend on the vacuum.

To understand this, first pick a smooth real smearing
function f supported in region U/ such that

/de|f|2 < o0 (7.2)
u

but

/ dPxf = co. (7.3)
U
Such an f is, of course, not compactly supported. Now pick a

local field ¢ and consider the question of whether there exists
an operator corresponding to

by = / Pxf(x)p(x). (7.4)

A “yes” answer means that there is a dense set of Hilbert space
states ¥ such that [¢p¥|> < co. If so, then bounded functions
of ¢ such as exp(i¢;) would be included in the algebra A;,.
Actually, since we assume (as part of what we mean by saying
that ¢ is a local field) that ¢ is a Hilbert space operator if f is
compactly supported, the only concern in the noncompact
case is a possible infrared divergence in computing |¢f‘l—‘|2.
Since any state looks like the vacuum near infinity, such an
infrared divergence will not depend on the choice of ¥ and the
condition for ¢, to be a good operator is just that |¢,Q[* < 0.
When we compute |¢,Q[* = (Q|¢,¢/|Q), we will run into
connected and disconnected two-point functions of ¢. Let us

1t is here that we assume that the intersection of the two algebras
is trivial. If they have a nontrivial element X in common, it is not
possible for them to act independently.

*This can happen because of a spontaneously broken symmetry,
but there are other possible reasons. For instance, vacuum degeneracy
not associated to any symmetry can arise at a first order phase
transition, and supersymmetric models often have multiple vacua.
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assume for simplicity that our theory has a mass gap. Then the
connected correlation function is short range and the condition
(7.2) is sufficient to ensure that there is no infrared divergence
in the connected part of the correlation function. However,
Eq. (7.3) means that the disconnected part of the correlation
function will make a divergent contribution to \¢f§2|2 unless
(Q|p|Q) =0, that is, unless the disconnected part of the
correlation function is 0. The condition that (Q|¢|Q) =0
certainly depends on the vacuum, and therefore, the question
of which ¢ we can use in constructing ¢, depends on the
vacuum. Thus, for an unbounded open set I/, .4;; depends on
the vacuum.

Somewhat similarly, while keeping fixed the vacuum at
infinity, one can ask whether A4;,, for noncompact I/, depends
on the choice of a superselection sector. The general answer to
this question is not clear to the author.

Now let us return to the case of Aﬁ with U = U U U'. For
completely general regions ¢/ and U’ there can be a subtlety
analogous to what we encountered in comparing different
vacua. For example,37 suppose that I/ and U/’ are noncompact
and are asymptotically parallel in the sense that there is some
fixed vector b such that, at least near infinity, the translation
x = x + b maps U to U'. Then we can pick local fields ¢; and

t,i=1,...,s and with f as given before, we can attempt to
define the operator

X =Y [ @xrwpaen. 09

whose support is in U=uull. Assuming again a mass gap,
the condition for X, to be well defined is that the relevant
vacuum expectation value must vanish. In the present case, the
operator whose vacuum expectation value must vanish is
X =>",¢:(x)¢pi(x + b). The condition for this to vanish in the
vacuum depends on whether A;, and A4;, (and hence ¢; and
@%) act on the same Hilbert space H or on the two factors of

‘H = H ® H'. When the two algebras act on the same copy of
'H, connected two-point functions contribute in the evaluation
of (QIX|Q) = (Q>,¢:(x)¢pi(x + b)|Q). There are no such
connected contributions if the two algebras act on two
different copies of the Hilbert space. The operators X, that
are well defined are different in the two cases, and thus this
gives an example of ¢/ and U’ for which the relation (7.1) that
we want is not true.

A sufficient condition that avoids all such questions is to
consider bounded open sets only. Indeed, to avoid such issues,
and because of a belief that physics is fundamentally local in
character, Haag (1992) bases the theory on the .4; for
bounded open sets U{. However, for the specific question
under discussion here, we can avoid infrared issues in
connected correlation functions if just ¢ or U’ is bounded.
Then the well definedness of an operator such as X, is the
same whether the two algebras act on the same copy or two
different copies of H. We make this assumption going

3 This example is discussed in Buchholz (1974) and attributed to
Araki.

Rev. Mod. Phys., Vol. 90, No. 4, October—December 2018

forward. For applications discussed in Sec. VII.C that involve
just one open set U/, we assume that ¢/ is bounded.

Now let us suppose that I/ and U’ have been chosen to
ensure the factorization (7.1). Since the Reeh-Schlieder

theorem applies to U, the algebra A acts on the Hilbert

space H of our quantum field theory with the vacuum vector
as a cyclic separating vector. But Eq. (7.1) means by definition

that precisely the same algebra can act on H = H ® H’' with
A, acting on the first copy and A4;, acting on the second.

In H, the vector ® = Q ® Q is cyclic and separating.
However, whenever the same von Neumann algebra Aa

acts on two different Hilbert spaces H and 7T[, in each case
with a cyclic separating vector, there is always a map between
the two Hilbert spaces that maps one action to the other.
(It does not generically map one cyclic separating vector to the
other.) Applied to our problem, this will enable us to find in H
a state that looks like W for observations in U/ and like y for
observations in .

We explain the statement about von Neumann algebras in
Sec. VIL.B. The application to our question, and a few other
applications, are discussed in Sec. VIL.C.

B. Mapping one representation to another

We assume that the von Neumann algebra A acts on two
Hilbert spaces H and H with cyclic separating vectors ¥ € ‘H
and ® € ﬂ As remarked at the end of Sec. III.B, the relative
modular operators Sy H — H and Ayjp:H — H are
defined in this generality.

We will find an isometric or unitary embedding T:H—-H
that commutes with the action of .A. Using the finite-dimen-
sional formulas of Sec. IV.A, one can guess what the map

should be. We define a linear map T:H—>H by
Al
T(a|®)) = ady,|V). (7.6)

To begin with 7 is only defined on the dense set of vectors
a|®), a € A. But once we show that 7 is an isometry, this
means in particular that it is bounded and it will automatically

extend to all of H as an isometry.
For T to be an isometry means that for all a,b € A,

(b®|ad) = (bA)/

1/2
P ERVA OF

o (7.7)
One can show, using formulas of Sec. IV.A, that this statement
is true if the Hilbert space factorizes as H = H; ® H, with
each algebra A and A’ acting on one factor. Very often,
statements that are easy to check if one assumes a factorization
can be demonstrated in general using Tomita-Takesaski theory.
What follows is fairly illustrative of many such arguments.
The right-hand side of Eq. (7.7) is

(P|AY2bTaAl?

/o ol ) (7.8)

We want to show that this equals the left-hand side of
Eq. (7.7), but first let us consider
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F(s) = (Y]Agob'adyg|¥)
= (‘P|Ag‘QbTaA\;f;S;|¢SW‘¢|‘P) (7.9)
for real s.
The antiunitarity of Sye gives
Now we have to remember that conjugation by A{f,"q) is an
automorphism of A, so in particular Aff,“d)aTbA;,’lfb e A
Moreover, for any X € A, SyoX¥ = X'®. So
F(s) = <®|A$|¢bTaA;jfl)|®>. (7.11)

Now we remember from Sec. IV.B that the automorphism
X — Afg‘q)xA\;,"‘g of A depends only on ® and not on ¥. So in
evaluating this last formula for F(s), we can set ¥ = ®,
whence Ay reduces to the ordinary modular operator

Ag:H — H. Thus

F(s) = (®|AkbTarg”|®). (7.12)

But Ag|®) = |®), so Ag”|®) = |®). Thus finally for real s

F(s) = (®|bfa|®) = (bd|ad). (7.13)
In particular, F(s) is independent of s for real s.

Suppose we know a priori that F(s) is holomorphic in the
strip O > Ims > —1/2 and continuous up to the boundary of
the strip. Then F(s) has to be constant even if s is not real, so
in this case Eq. (7.13) remains valid if we set s = —i/2. A look
back at the definition (7.9) of F(s) shows that Eq. (7.13) at
s = —i/2 is what we want. This formula says precisely that
Eq. (7.8) equals the left-hand side of Eq. (7.7).

The desired holomorphy goes beyond what was proved in
Sec. IV.B and is explained in Appendix A.2.

The result that we found is useful even if the two Hilbert

spaces H and H are the same. There are many states that are
equivalent to @ for measurements by operators in 4; any state
a'®, where @’ € A’ is unitary, has this property. But in that case

Ayjae = Ayje [Eq. (3.26)] s0 A\II,/‘;@‘I‘ = A\ll,/é‘l‘. Thus once ¥

is chosen, in every equivalence class of vectors that are
equivalent to some ® for measurements in A4, there is a canonical
1/2
¥|o
canonical cone (Araki, 1974), which has many nice properties.

representative Ay, . These representatives make up the

C. Applications

Our first application of the result of the last section is to
a case discussed in Sec. VILA. Thus, H is the Hilbert space

of a quantum field theory, and H=H®H is the tensor
product of two copies of H. For open sets U, UL, at least one of
which is bounded, with a gap between them, the same algebra

Aa = Ay ® Ay can act on H and also on H=mH ® H,
within the latter case 4;, acting on the first factor and A,
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acting on the second. For cyclic separating vectors, we take

Y € H to be the vacuum vector Q, and ® € 7Ai to be Q ® Q.
The construction of the last section gave an isometric

embedding T:H — H that commutes with the action of Az

Because of the way we chose the action of 4;, and 4, on H.

the vector Y ® y € H looks like W for measurements in U/
and like y for measurements in /. So T(¥ ® y) is a vector in
‘H that has the same property.

This sort of reasoning has other applications. For example,
let H; and H, be two different superselection sectors in the
same quantum field theory. Let I/ be a bounded open set; then
the same algebra .4;, acts on both H; and H,. Both H; and H,
contain cyclic separating vectors for A;, by the slight
extension of the Reeh-Schlieder theorem that was described
in Sec. II.C. So we can find an isometric embedding 7:'H; —
'H, that commutes with A;,. If ¥ is a vector in H;, then TV is
a vector in H, that cannot be distinguished from ¥ by
measurements in the region /. As explained in Haag and
Kastler (1964), there is an intuitive reason for this. For
example, superselection sectors that are defined by the total
magnetic charge cannot be distinguished by measurements in
region U, because by such measurements one cannot tell how
many magnetic monopoles there are in distant regions.

Similarly, consider a quantum field theory with more than
one vacuum state. Let H; and H, be the Hilbert spaces based
on these two vacua. For bounded U/, the same algebra A;; will
act in H; and in H,. The same argument as before tells us that
measurements in region {{ cannot determine which vacuum
state we are in. The intuitive reason is that in the Hilbert space
built on one vacuum, there can be a state that looks like some
other vacuum over a very large region of spacetime.

For a final application, let us consider the following
question.38 Suppose that p is a density matrix on H. Is there
a pure state y € H that is indistinguishable from p for
measurements in region U/? If the Hilbert space factored as
H =H, ® H, with A;, acting on the first factor, we would
answer this question as follows. For measurements in U/, we
can replace p with the reduced density matrix p; = Try,p on
‘H ;. Then, picking a purification y of p; in H; ® H,, y would
be indistinguishable from p for measurements in U.

To answer the question without such a factorization, we
can use something called the Gelfand-Neimark-Segal (GNS)
construction. Consider the function on .A4; defined by
F(a) = Trypa,; this function is called a faithful normal state
on the algebra A;,. Given this function, the GNS construction
produces a Hilbert space K with action of A;, and a cyclic
separating vector ¥ such that F(a) = (¥|a|¥). The con-
struction is quite simple. To make W cyclic separating, vectors
aV¥ are assumed to satisfy no relations (a¥ # bW for a # b)
and to comprise a dense subspace K of K. The inner product
on K, is defined to be (a¥|b¥) = F(a’b), which in particular
ensures that (¥|a|¥) = Trypa. All axioms of a Hilbert space
are satisfied except completeness. K is defined as the Hilbert
space completion of /Cy. Now A acts on one Hilbert space H
with cyclic separating vector Q (the vacuum) and on another

#See Sec. V.2.2 of Haag (1992), where much more precise results
are stated than we explain here.
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Hilbert space K with cyclic separating vector W. So as in
Sec. VIL.B, we can find an isometric embedding 7:C — H.
Then T(¥) is the desired vector in H that is indistinguishable
from p for measurements in U.
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APPENDIX A: MORE HOLOMORPHY
1. More on subregions

Here [following Borchers (2000)] we will prove a result
relating the modular operators Ayy, and A,, 7 for a pair of

open sets U, U with U CU. ¥ is a vector that is cyclic
separating for both algebras A;; and Az; it is kept fixed in the
following and will be omitted in the notation. The result we
will describe is useful in applications [for example, see
Egs. (6.7) and (6.8) in Balakrishnan et al. (2017)].

From Sec. IILF, we know already that A3y > Ay, and from

Sec. IIL.E, it follows that

AL> Ay, O0<a<l. (A1)

From this, it follows that for any state y, and 0 < < 1/2,
we have

B 20 A — — 2 -
<Z|AgﬂAuﬁAaﬁ|Z> = <A;Z|Auﬂ|AaﬂZ>

B AN ) —
<(AFxATZIAT 2) = (xlx).  (A2)

S0
LA NP
ALAYAT <1 0<p<l)2 (A3)
Since X'X < 1 implies ||X|| < 1, it follows that
IMadlst osp<ia (ad)

An imaginary shift in # does not affect this bound, since the

operators AS, A’LZ;, s € R are unitary. So
—iz A2

Az <1 (a3)

in the strip 1/2 >Imz > 0. This bound implies that the
operator-valued function A;,iZA% is holomorphic in that strip.
2. More on correlation functions

In Sec. VIL.B, we needed to know that for x = bfa € A,

F(z) = (P|AgoXAyg

¥)

is holomorphic in the strip 0 > Imz > —1/2 as well as
continuous along the boundaries of the strip. In fact, we will
prove that it is holomorphic in a larger strip39 0>1Imz > -1
and again continuous on the boundaries.

As we will see, it helps to consider first the case that the

state A‘II,/;D‘P is replaced by y¥ for some y € A. So we

consider the function

G(2) = (WA XA G “ YY),

(A7)
Holomorphy in the strip is now trivial, because the condition
0 > Imz > —1/2 means that the exponents iz and 1/2 — iz in
Eq. (A7) both have real part between O and 1/2, and
consequently from Sec. IV.B, we know that both

Alll,/‘i_iz|y‘1’> and (‘I‘|Af§‘¢ are holomorphic in this strip.

The norm of a state y is | y| = /(x| x), and the norm |y||
of a bounded operator Y is the least upper bound of |y y|/| x|
for any state y. The following proof will depend on getting an
upper bound on |G(z)| in the strip by a constant multiple of
|y¥|. An immediate upper bound is

—iz 1/2—i
1G(2)] < |AGP XAy “y|.

(A8)
If z=s—ia, with 5, a € R, then the right-hand side of
Eq. (A8) only depends on a, since Afg‘(b is unitary. For s = 0,
the function G(z) is bounded on the compact set 0 < a < 1/2
[for « in that range it is the inner product of two states that
are well defined and bounded in Hilbert space according to
Eq. (441)], so it is bounded in the whole strip
0>TImz > —1/2. We need to improve this to get a bound
by a multiple of |y¥|.

Let us look at the function G(z) on the boundaries of the
strip. On the lower boundary z = s — i/2, A/>~% is unitary.

Also on that boundary |A;iqu‘| = |A\l{,/|fb‘{‘\ < 0. So on the

lower boundary, Eq. (A8) bounds |G(z)| by a constant
multiple of [y¥|. On the upper boundary z = s, we write

1/2+is —is
G(2)| = [{Ayg "X A,

1/2 nis b A—is
<Ay pAgeX Ayl

Yly¥)l

Iy (A9)

Reasoning similarly to Eq. (4.40), this implies

G(2)] < |AG XA L@ Y.

o |0 (A10)

Because the operator Af;@ is unitary and (®|®) = 1, we get
on the upper boundary

G| < [Ix[[ [y¥]. (A1)

3()Similarly to Eq. (4.48), one would expect this if one assumes a
factorization H = H; ® H, of the Hilbert space. In this Appendix,
we follow Araki’s approach to proving such statements without

o iz 1/2—iz) A 1/2
- <T‘A‘P\¢XA‘I’\‘1’ |A‘I’\¢lp> (A6) assuming a factorization. See Araki (1973), Sec. III.
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So there is a constant C, independent of y and z, such that on
the boundaries of the strip

G(2)| < Cly¥. (A12)

A holomorphic function, such as G(z), that is bounded

and holomorphic in a strip, and obeys a bound |G(z)| < c
on the boundary of the strip, obeys the same bound in the
interior of the strip. This statement is a special case of the
Phragmén-Lindel6f principle, and can be proved as follows
(we state the argument for our strip 0 > Imz > —1/2). For
€ > 0, the function G, (z) =exp(—ez?)G(z) satisfies |G.(z)| <
Cexp(e/4) on the boundary of the strip. The function G.(z)
vanishes rapidly for Rez — +o0, so |G.(z)| achieves its
maximum somewhere in the interior of the strip or its boundary.
By the maximum principle, this maximum is achieved some-
where on the boundary of the strip. Therefore the bound
|G.(2)] < 6‘exp(e/4) is satisfied throughout the strip. As this
is true for all €, we get |G(z)| < C throughout the strip.
Going back to the original definition of G(z) in Eq. (A7),
G(z) can be interpreted as a linear functional on the dense
subset of H consisting of states y¥, y € A. The validity of
Eq. (A12) throughout the strip says that this linear functional
is bounded. A bounded linear functional on a dense subset of a
Hilbert space H always extends to the whole space, and
remains bounded. Moreover a bounded linear functional on a
Hilbert space H is always the inner product with a state in H.
So we learn that there is some z-dependent state y(z) such that

(x(2)y¥)

for all y € A. Moreover ((z)| is holomorphic in the strip
since G(z) is holomorphic in the strip for all y. The fact that
the linear functional in question extends over all of H means
that for any Y € H,

G(z) = (A13)

(x(2)|7T) (A14)
is well defined and holomorphic in the strip.
The original function F(z) is then
F(z) = (2(2)| A5 ¥). (A15)
Here Alll,/lq)‘l‘ is a Hilbert space state [as in Eq. (4.40)], so this is

a special case of Eq. (A.14), and therefore is holomorphic in
the strip. Moreover the original definition [and bounds such as
Eq. (4.41) that were used along the way] make it clear that
F(z) has a continuous limit as one approaches the boundaries
of the strip.

This is what we needed in Sec. VILB, but actually the
function F(z) is holomorphic in a larger strip. Writing

Al2 —1/2+izy A 1
(MY YIAGl XAy E ),

F(z) = (A16)
we make an argument very similar to the previous, but with

the role of the bra and the ket exchanged. Thus, we begin by

replacing A2 @ with y¥ with y € A. So we have to study

¥|d
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(a) = (b) = (c) =
FIG. 8. (a) If a function F(z) is holomorphic in the strip

0 > Imz > —1/2 and continuous at the lower boundary of the
strip, we can write a Cauchy integral formula with a contour that
runs partly on the lower boundary. (b) If F(z) is holomorphic for
—1/2 > Imz > —1 and continuous on the upper boundary of that
strip, we can write a Cauchy integral formula with a contour that
runs partly on the upper boundary. (c) If F(z) satisfies both
conditions, we can combine the contours from (a) and (b),
choosing them so that the part that runs on the line Rez =
—1/2 cancels. The resulting Cauchy integral formula shows that
F(z) is holomorphic on that line. The argument sketched in Fig. 1
of Sec. ILB is actually the special case of this in which F(z)
vanishes in the lower strip.

1/2+iz Al lz|lP>.

H(z) = 9| ¥l

(YA (A17)

We consider the function H(z) in the strip —1/2 > Imz > —1.
An argument very similar to what we have already seen,
reversing the role of the bra and the ket, shows that in this strip

H(z) = (y¥|Y(z)), where Y(z) is holomorphic in the strip.
Then F(z) = (A ‘1{,/‘31)‘1’|Y( )), and in this representation, hol-

omorphy of F(z) for —1/2 > Rez > —1 is manifest.

We now have a function F(z) that is holomorphic for
0 > Imz > —1/2 and for —1/2 > ImF(z) > —1. Moreover,
this function is continuous on the line # defined by
Imz = —1/2. As sketched in Fig. 8, the Cauchy integral
formula can be used to show that F(z) is actually holomorphic
on the line #. This fact about holomorphic functions of a
single complex variable has a less elementary analog, known
as the edge of the wedge theorem, for functions of several
complex variables. For some of its applications in quantum
field theory, see Streater and Wightman (1964).

REFERENCES

Araki, H., 1963, “A generalization of Borchers theorem,” Helv. Phys.
Acta 36, 132-139.

Araki, H., 1964, “Type of von Neumann algebras associated to the
free field,” Prog. Theor. Phys. 32, 956.

Araki, H., 1973, “Relative Hamiltonian for faithful normal states of a
von Neumann algebra,” Publ. RIM, Kyoto Univ. 9, 165-209.

Araki, H., 1974, “Some properties of modular conjugation operator
of von Neumann algebras and a noncommutative Radon-Nikodym
theorem with a chain rule,” Pac. J. Math. 50, 309-354.

Araki, H., 1975, “Inequalities in von Neumann algebras,” Les
rencontres physiciens-mathématiciens de Strasbourg, RCP25,
Vol. 22, pp. 1-25.

Araki, H., 1976, “Relative entropy of states of von Neumann
algebras,” Publ. RIMS Kokyuroku (Kyoto) Vol. 11, 809-833.

Araki, H., and E. J. Woods, 1968, “A classification of factors,” Publ.
RIMS, Kyoto Univ. Ser. A Vol. 3, 51-130.

Balakrishnan, S., T. Faulkner, Z.U. Khandker, and H. Wang,
2017, “A general proof of the quantum null energy condition,”
arXiv:1706.09432.

045003-36


https://doi.org/10.1143/PTP.32.956
https://doi.org/10.2977/prims/1195192744
https://doi.org/10.2140/pjm.1974.50.309
http://arXiv.org/abs/1706.09432

Edward Witten: APS Medal for Exceptional Achievement in ...

Bernamonti, A., F. Galli, R. C. Myers, and J. Oppenheim, 2018,
“Holographic second laws of black hole thermodynamics,”
arXiv:1803.03633.

Bisognano, J., and E. H. Wichmann, 1976, “On the duality condition
for quantum fields,” J. Math. Phys. (N.Y.) 17, 303-321.

Bombelli, L., R. K. Koul, J. Lee, and R. D. Sorkin, 1986, “A quantum
source of entropy for black holes,” Phys. Rev. D 34, 373-383.

Borchers, H.T., 1961, “Uber die vollstandigkeit lorentzinvarianter
felder in einer zeitartigen Rohre,” Nuovo Cimento 19, 787.

Borchers, H.J., 1968, “On the converse of the Reeh-Schlieder
theorem,” Commun. Math. Phys. 10, 269-293.

Borchers, H.J., 1996, Translation Group and Particle Representa-
tions in Quantum Field Theory (Springer-Verlag, Berlin).

Borchers, H. J., 2000, “On revolutionizing quantum field theory with
Tomita’s modular theory,” J. Math. Phys. (N.Y.) 41, 3604-3673.

Buchholz, D., 1974, “Product states for local algebras,” Commun.
Math. Phys. 36, 287-304.

Callan, C. G., and F. Wilczek, 1994, “On geometric entropy,” Phys.
Lett. B 333, 55-61.

Casini, H., 2008, “Relative entropy and the bekenstein bound,”
Classical Quantum Gravity 25, 205021.

Doplicher, S., and R. Longo, 1984, “Standard and split inclusions of
von Neumann algebras,” Invent. Math. 75, 493.

Epstein, H., V. Glaser, and A. Jaffe, 1965, “Nonpositivity of the
energy density in quantized field theories,” Nuovo Cimento 36,
1016-1022.

Figari, R., R. Hoegh-Krohn, and C.R. Nappi, 1975, “Interacting
relativistic boson fields in the de Sitter universe with two space-
time dimensions,” Commun. Math. Phys. 44, 265-278.

Fredenhagen, K., 1985, “On the modular structure of local algebras
of observables,” Commun. Math. Phys. 97, 79.

Fredenhagen, K., K. H. Rehren, and B. Schroer, 1989, “Super-
selection sectors with braid group statistics and exchange algebra,
I. general theory,” Commun. Math. Phys. 125, 201-226.

Gérard, C., and M. Wrochna, 2017, “Analytic Hadamard states,
Calderén projectors and Wick rotation near analytic Cauchy
surfaces,” arXiv:1706.08942.

Ghosh, S., and S. Raju, 2017, “Quantum information measures for
restricted sets of observables,” arXiv:1712.09365.

Gibbons, G. W., and S.W. Hawking, 1977, “Cosmological event
horizons, thermodynamics, and particle creation,” Phys. Rev. D 15,
2738-2751.

Guido, D., and R. Longo, 1995, “An algebraic spin and statistics
theorem,” Commun. Math. Phys. 172, 517.

Haag, R., 1963, “Bemerkungen zum nahmwirkungsprinzip in der
quantumphysik,” Ann. Phys. (Berlin) 466, 29-34.

Haag, R., 1992, Local Quantum Physics (Springer-Verlag, Berlin).

Haag, R., and D. Kastler, 1964, “An algebraic approach to quantum
field theory,” J. Math. Phys. (N.Y.) 5, 848-861.

Haag, R., and B. Schroer, 1962, “Postulates of quantum field theory,”
J. Math. Phys. (N.Y.) 3, 248.

Halmos, P., 1969, “Two subspaces,” Trans. Am. Math. Soc. 144,
381-389.

Harlow, D., and H. Ooguri, 2018, unpublished.

Hawking, S. W., 1975, “Particle creation by black holes,” Commun.
Math. Phys. 43, 199-220.

Hawking, S. W., 1977, “Action integrals and partition functions in
quantum gravity,” Phys. Rev. D 15, 2752-2756.

Hollands, S., and K. Sanders, 2017, “Entanglement measures and
their properties in quantum field theory,” arXiv:1702.04924.

Holzhey, C., F. Larson, and F. Wilczek, 1994, “Geometric and
renormalized entropy in conformal field theory, Nucl. Phys. B 424,
443-467.

Rev. Mod. Phys., Vol. 90, No. 4, October—December 2018

Jones, V. V. R., 2015, “VonNeumann algebras,” https://math.vanderbilt
.edu/jonesvi/VONNEUMANNALGEBRAS2015/VonNeumann
2015.pdf.

Kullback, S., and R. A. Leibler 1951, “On information and suffi-
ciency,” Ann. Math. Stat. 22, 79-36.

Leyland, P., J. Roberts, and D. Testard, 1978, “Duality for quantum
free fields,” Centre de Physique Theorique, CNRS Marseille.

Lieb, E. H., 1973, “Convex trace functions and the wigner-yanase-
dyson conjecture,” Adv. Math. 11, 267-288.

Lieb, E. H., and M. B. Ruskai 1973, “Proof of the strong subaddi-
tivity of quantum mechanical entropy,” J. Math. Phys. (N.Y.) 14,
1938-1941.

Longo, R., 1978, “A simple proof of the existence of modular
automorphisms in approximately finite dimensional von Neumann
algebras,” Pac. J. Math. 75, 199-205.

Longo, R., 1982, “Algebraic and modular structure of von Neumann
algebras of physics,” Proc. Symp. Pure Math. 38, Part 2, 572.
Longo, R., and E. Xu, 2018, “Comment on the Bekenstein bound,”

arXiv:1802.07184.

Maldacena, J., S. H. Shenker, and D. Stanford, 2016, “A bound on
chaos,” J. High Energy Phys. 08, 106.

McGuigan, M., 1994, “Finite black hole entropy and string theory,”
Phys. Rev. D 50, 5225-5231.

Morrison, 1. A., 2014, “Boundary-to-bulk maps for AdS causal
wedges and the Reeh-Schlieder property in holography,” arXiv:
1403.3426.

Narnhofer, H., and W. Thirring, 1985, “From relative entropy to
entropy,” Fizika (Zegreb) 17, 257-265, reprinted in Selected Papers
Of Walter E. Thirring With Commentaries, AMS, 1998.

Narnhofer, H., and W. Thirring, 2012, “Entanglement, Bell inequal-
ities, and all that,” J. Math. Phys. (N.Y.) 53, 095210.

Nielsen, M. A., and D. Petz, 2005, “A simple proof of the strong
subadditivity inequality,” Quantum Inf. Comput. §, 503-513,
arXiv:quant-ph/0408130.

Nishioka, T., 2018, “Entanglement entropy: Holography and re-
normalization group,” arXiv:1801.10352.

Papadodiamas, K., and S. Raju, 2013, “An infalling observer in
ads/cft,” J. High Energy Phys. 10, 212.

Petz, D., 1986, “Quasi-entropies for finite quantum systems,” Rep.
Math. Phys. 23, 57-65.

Powers, R.T., 1967, “Representations of uniformly hyperfinite
algebras and their associated von Neumann rings,” Ann. Math.
86, 138-171.

Reed, M., and B. Simon, 1972, Methods of Modern Mathematical
Physics, I: Functional Analysis (Academic Press, New York).

Reeh, H., and S. Schlieder, 1961, “Bemerkungen zur unitaraquiva-
lenz von Lorentzinvarienten feldern,” Nuovo Cimento 22, 1051.

Rindler, W., 1966, “Kruskal space and the uniformly accelerated
frame,” Am. J. Phys. 34, 1174.

Roos, H., 1970, “Independence of local algebras in quantum field
theory,” Commun. Math. Phys. 16, 238-246.

Sanders, K., 2009, “On the Reeh-Schlieder property in curved
spacetime,” Commun. Math. Phys. 288, 271-285.

Schroer, B., 2017, “Positivity and causal localization in higher spin
quantum field theories,” arXiv:1712.02346.

Simon, B., 2015, Methods of Modern Mathematical Physics I:
Functional Analysis (American Mathematical Society, Providence).

Srednicki, M., 1993, “Entropy and area,” Phys. Rev. Lett. 71, 666—669.

Stone, M., 1951, “On undbound operators in Hilbert space,” J. Ind.
Math Soc. 15, 155.

Streater, R. F., and A. S. Wightman, 1964, PCT, Spin and Statistics,
and All That (Benjamin, New York), 1964; paperback edition,
Princeton University Press, 2000.

045003-37


http://arXiv.org/abs/1803.03633
https://doi.org/10.1063/1.522898
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1007/BF02733373
https://doi.org/10.1007/BF03399501
https://doi.org/10.1063/1.533323
https://doi.org/10.1007/BF01646201
https://doi.org/10.1007/BF01646201
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1007/BF01388641
https://doi.org/10.1007/BF02749799
https://doi.org/10.1007/BF02749799
https://doi.org/10.1007/BF01609830
https://doi.org/10.1007/BF01206179
https://doi.org/10.1007/BF01217906
http://arXiv.org/abs/1706.08942
http://arXiv.org/abs/1712.09365
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1007/BF02101806
https://doi.org/10.1002/andp.19634660107
https://doi.org/10.1063/1.1704187
https://doi.org/10.1063/1.1703797
https://doi.org/10.1090/S0002-9947-1969-0251519-5
https://doi.org/10.1090/S0002-9947-1969-0251519-5
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.15.2752
http://arXiv.org/abs/1702.04924
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1063/1.1666274
https://doi.org/10.1063/1.1666274
https://doi.org/10.2140/pjm.1978.75.199
http://arXiv.org/abs/1802.07184
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevD.50.5225
http://arXiv.org/abs/1403.3426
http://arXiv.org/abs/1403.3426
https://doi.org/10.1063/1.4738376
http://arXiv.org/abs/quant-ph/0408130
http://arXiv.org/abs/1801.10352
https://doi.org/10.1007/JHEP10(2013)212
https://doi.org/10.1016/0034-4877(86)90067-4
https://doi.org/10.1016/0034-4877(86)90067-4
https://doi.org/10.2307/1970364
https://doi.org/10.2307/1970364
https://doi.org/10.1007/BF02787889
https://doi.org/10.1119/1.1972547
https://doi.org/10.1007/BF01646790
https://doi.org/10.1007/s00220-009-0734-3
http://arXiv.org/abs/1712.02346
https://doi.org/10.1103/PhysRevLett.71.666

Edward Witten: APS Medal for Exceptional Achievement in ...

Strohmaier, A., R. Verch, and M. Wollenberg, 2002, “Microlocal
analysis of quantum fields in curved spacetimes: Analytic wave-
front sets and Reeh-Schlieder theorems,” J. Math. Phys. (N.Y.) 43,
5514-4430.

Summers, S.J., and R. Werner, 1987, “Maximal violation of bell’s
inequalities is generic in quantum field theory,” Commun. Math.
Phys. 110, 247-259.

Susskind, L., and J. Uglum, 1994, “Black hole entropy in canonical
quantum gravity and superstring theory,” Phys. Rev. D 50,
2700-2711.

Uhlmann, A., 1977, “Relative entropy and the Wigner-Yanase-
Dyson-Lieb concavity in an interpolation theory,” Commun. Math.
Phys. 54, 21-32.

Rev. Mod. Phys., Vol. 90, No. 4, October—December 2018

Umegacki, H., 1962, “Conditional expectation in an operator algebra,
IV (entropy and information),” Kodai Math. Sem. Rep. 14, 59.
Unruh, W. G., 1976, “Notes on black-hole evaporation,” Phys. Rev. D

14, 870-892.

von Neumann, J., 1938, “On infinite direct products,” Comp. Math.
6, 1-77.

Wall, A., 2012, “A proof of the generalized second law for rapidly
changing fields and arbitrary horizon slices,” Phys. Rev. D 85,
104049.

Wightman, A.S., 1964, “La théorie quantique locale et la théorie
quantique des champs,” Annales de I’L. H. P. 1, Section A, 403-420.

Wigner, E., and M. M. Yanase, 1963, “Information content of
distributions,” Proc. Natl. Acad. Sci. U.S.A. 49, 910-918.

045003-38


https://doi.org/10.1063/1.1506381
https://doi.org/10.1063/1.1506381
https://doi.org/10.1007/BF01207366
https://doi.org/10.1007/BF01207366
https://doi.org/10.1103/PhysRevD.50.2700
https://doi.org/10.1103/PhysRevD.50.2700
https://doi.org/10.1007/BF01609834
https://doi.org/10.1007/BF01609834
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1073/pnas.49.6.910

