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I. INTRODUCTION

Ideas of quantum information theory and entanglement
have played an increasingly important role in quantum field
theory and string theory in recent years. Unfortunately, it is
really not possible in a short space to give references to the
many developments in this general area that have occurred in
the last decade. Many important developments are cited and
summarized in the recent review article (Nishioka, 2018).
The present notes are not an overall introduction to this

subject. The goal here is more narrow: to make accessible
some of the mathematical ideas that underlie some of these
developments and which are present in the existing literature
but not always so easy to extract. In the process, we will also
make contact with some of the older literature on axiomatic
and algebraic quantum field theory.
In Sec. II, we describe the Reeh-Schlieder theorem (Reeh

and Schlieder, 1961), which demonstrates that, in quantum
field theory, all field variables in any one region of spacetime
are entangled with variables in other regions. Actually, the
entanglement of spatially adjacent field modes is so strong that
entanglement entropy between adjoining spacetime regions in
quantum field theory is not just large but ultraviolet divergent.
[Early references on this ultraviolet divergence include
Bombelli et al. (1986), Srednicki (1993), Callan and
Wilczek (1994), Holzhey, Larson, and Wilczek (1994),
McGuigan (1994), and Susskind and Uglum (1994).] This
ultraviolet divergence means that the entanglement is not just a
property of the states but of the algebras of observables.
Explaining this statement and how to deal with it in the context
of local quantum field theory is a primary goal in what follows.
(We do not consider the implications of quantum gravity.)
An important tool in dealing with entanglement when it is a

property of the algebras and not just the states is provided by
Tomita-Takesaki theory, which we introduce in Sec. III. It has
been used in a number of recent developments, including
an attempt to see behind the horizon of a black hole
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(Papadodiamas and Raju, 2013), a proof of the quantum null
energy condition (Balakrishnan et al., 2017), and too many
others to properly cite here. As an inducement for the reader
who is not sure this mathematical tool is worthwhile, we
describe in Sec. III a rigorous definition—due to Araki (1975,
1976)—of relative entropy in quantum field theory, with a
surprisingly simple proof of its main properties, including its
monotonicity when one enlarges the region in which mea-
surements are made.
In Sec. IV we explain what Tomita-Takesaki theory means

for a quantum system with a finite-dimensional Hilbert space.
This motivates the statement of some of the subtler properties
of Tomita-Takesaki theory. It also leads—following Araki’s
work and later developments by Petz (1986) and Nielsen and
Petz (2005)—to a natural proof of monotonicity of quantum
relative entropy for a finite-dimensional quantum system.
Monotonicity of relative entropy and its close cousin, strong
subadditivity of quantum entropy, were first proved by Lieb
and Ruskai (1973), using a lemma by Lieb (1973). These
results underlie many of the deeper statements in quantum
information theory.
In Sec. V we describe a fundamental—and fairly well-

known—example of entanglement in quantum field theory.
This is the case, first analyzed by Bisognano and Wichmann
(1976) and Unruh (1976), of two complementary “wedges” or
Rindler regions in Minkowski spacetime. In Unruh’s formu-
lation, the question is what is seen by an accelerating observer
in Minkowski spacetime. We approach this problem both from
a path integral point of view, which is important in black hole
physics (Hawking, 1977), and following the rigorous
approach of Bisognano and Wichman, which was based on
analyticity rather than path integrals.
In Sec. VI we explain, following von Neumann and others

(von Neumann, 1938; Powers, 1967; Araki andWoods, 1968),
a short direct construction of algebras—such as the algebra
of quantum field theory observables in a given spacetime
region—with the property that a divergent entanglement
entropy is built into the structure of the algebra.
Finally, in Sec. VII, we give some examples of the use of

Tomita-Takesaki theory to prove statements in quantum field
theory that would be more obvious if one could assume a
simple factorization of the Hilbert space between degrees of
freedom localized in different spacetime regions. All of these
statements have been analyzed in previous rigorous papers, in
some cases before the relevance of Tomita-Takesaski theory
was understood.
The topics discussed in these notes can be treated

rigorously, but the presentation here is certainly not rig-
orous. More complete treatments of most of the points about
quantum field theory can be found in Borchers (2000) and
Haag (1992). Quantitative measures of entanglement in
quantum field theory such as Bell’s inequalities have been
discussed by Summers and Werner (1987) and from a
different standpoint by Narnhofer and Thirring (2012).
See also a recent article by Hollands and Sanders (2017)
for another point of view on entanglement measures in
quantum field theory and much interesting detail. For a
general mathematical background on von Neumann alge-
bras, a convenient reference is the lecture notes of
Jones (2015).

II. THE REEH-SCHLIEDER THEOREM

A. Statement

Our starting point will be the Reeh-Schlieder theorem
(Reeh and Schlieder, 1961), which back in 1961 came as a
“surprise” according to Streater and Wightman (1964).
We consider a quantum field theory in Minkowski space-

time MD of dimension D with spacetime coordinates
xμ ¼ ðt; x⃗Þ and metric

ds2 ¼
XD−1

μ;ν¼0

ημνdxμdxν ¼ −dt2 þ dx⃗2: ð2:1Þ

Wewrite Ω for the vacuum state andH0 for the vacuum sector
of Hilbert space, which consists of all states that can be created
from the vacuum by local field operators. (H0 is not
necessarily the full Hilbert space H of the given theory, since
there may be “superselection sectors”; see Sec. II.C.) For
simplicity of notation, we assume that the algebra of local
fields of the theory under discussion is generated by a
Hermitian scalar field ϕðxμÞ; otherwise, additional generators
are included in what follows. Whether ϕðxμÞ is an “elementary
field” is not relevant. For any smooth function f, we write ϕf

for the smeared field
R
dDxfðx⃗; tÞϕðx⃗; tÞ. Then states of the

form

jΨf⃗i ¼ ϕf1ϕf2 � � �ϕfn jΩi ð2:2Þ

are sufficient to generate H0 in the Hilbert space sense. (The
purpose of smearing is to make sure that these states have
finite norm and thus really are Hilbert space states.) In other
words, any state inH0 can be approximated arbitrarily well by
a linear combination of states Ψf⃗. This is the definition of the

vacuum sector H0.
An initial value hypersurface (or Cauchy hypersurface) Σ is

a complete spacelike hypersurface on which, classically, one
could formulate initial data for the theory. For example, Σ
could be the hypersurface t ¼ 0. In Eq. (2.2), we can require
that the functions fi are supported in any given open
neighborhood U of Σ (for example, in the open set jtj < ϵ
for some ϵ > 0 if Σ is defined by t ¼ 0), and it is reasonable to
hope that such states will still be enough to generate the
Hilbert space H0. This statement is a quantum version of the
fact that, classically, a solution of the field equations is
determined by initial data (fields and their time derivatives)
on Σ. Quantum mechanically, one may view this statement as
part of what we mean by quantum field theory; it is Postulate 8
(a) in Haag and Schroer (1962). But actually, we will prove a
stronger statement that is known as the Reeh-Schlieder
theorem.
The Reeh-Schlieder theorem states that one can further

restrict to an arbitrary small open set V ⊂ Σ, and a corre-
sponding small neighborhood UV of V in spacetime. Thus,
even if we restrict the functions f1;…; fn to be supported in
UV , the states Ψf⃗ still suffice to generate H0.
If this were false, there would be some state j χi orthogonal

to all states jΨf⃗i such that the fi are supported in UV :
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0 ¼ h χjΨf1f2;…;fni: ð2:3Þ

This is true for all functions f1;…; fn if and only if it is true
without smearing, in other words if and only if

h χjϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi ¼ 0; x1;…; xn ∈ UV : ð2:4Þ

There is not really much difference between the two state-
ments, since the matrix element of a product of local fields, as
in Eq. (2.4), has singularities as a function of the xi and must
be interpreted as a distribution. So a precise interpretation of
Eq. (2.4) involves a slightly smeared version, as in Eq. (2.3).

B. Proof

To prove the Reeh-Schlieder theorem, we will show that if,
for some χ, the left-hand side of Eq. (2.4) vanishes for all
x1;…; xn ∈ UV , then it actually vanishes for all x1;…; xn in
Minkowski spacetime MD. This then implies that χ must
vanish, by the definition of the vacuum sector. So only the
zero vector is orthogonal to all states created from the vacuum
by local operators supported in UV ; in other words, such states
are dense in H0.
First let us show1 that

φðx1; x2;…; xnÞ ¼ h χjϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi ð2:5Þ

continues to vanish if xn is moved outside of UV , keeping the
other variables in UV . We write t for the timelike vector
ð1; 0;…; 0Þ and examine the effect of shifting xn to xn þ ut for
some real u. In other words, we shift xn by u in the time
direction, leaving its spatial coordinates unchanged. Consider
the function

gðuÞ ¼ h χjϕðx1Þϕðx2Þ � � �ϕðxn−1Þϕðxn þ utÞjΩi
¼ h χjϕðx1Þϕðx2Þ � � � expðiHuÞϕðxnÞ expð−iHuÞjΩi;

ð2:6Þ

where H is the Hamiltonian. We are given that gðuÞ ¼ 0

for sufficiently small real u (since for small enough u,
xn þ ut ∈ UV) and we want to prove that it is identically 0.
Because HjΩi ¼ 0, we can drop the last factor of expð−iHuÞ
in Eq. (2.6):

gðuÞ ¼ h χjϕðx1Þϕðx2Þ � � � expðiHuÞϕðxnÞjΩi: ð2:7Þ

Because H is bounded below by 0, the operator expðiHuÞ is
holomorphic for u in the upper half plane.2 Thus the function
gðuÞ is holomorphic in the upper half plane, continuous as one

approaches the real axis, and vanishes on a segment
I ¼ ½−ϵ; ϵ� of the real axis.
If gðuÞ were known to be holomorphic along the segment I,

its vanishing along I would imply that a Taylor series of gðuÞ
around, say, u ¼ 0 must be identically 0 and therefore that
gðuÞ is identically 0. As it is, to begin with, we only have
continuity along the real axis and holomorphy in the upper
half plane. However, using the fact that gðuÞ vanishes in a
segment of the real axis (and imitating the proof of the
Schwarz reflection principle), we can argue as follows. For u
in the upper half plane, gðuÞ can be represented by a Cauchy
integral formula

gðuÞ ¼ 1

2πi

I
γ
du0

gðu0Þ
u0 − u

: ð2:8Þ

Here γ is any contour that wraps counterclockwise once
around u [Fig. 1(a)]. For fixed γ, the formula is only valid for u
inside the contour, since if we move u across the contour, we
meet the pole of the integrand. However, if it is known that
gðuÞ is identically 0 in a segment I of the real axis, we can
choose γ to include that segment and then we can drop that
part of the integral since gðu0Þ vanishes for u0 ∈ I. Once we do
this, we are free to move u through the segment I and into the
lower half plane [Fig. 1(b)]; in particular, we learn that gðuÞ is
holomorphic along I. As already explained, it follows that
gðuÞ is identically 0.
In this argument, we could replace t by any other timelike

vector.3 Using some other timelike vector instead, we learn
that h χjϕðx1Þϕðx2Þ � � �ϕðx0nÞjΩi ¼ 0 if x0n − xn is any timelike
vector and x1;…; xn ∈ UV . But now we repeat the process
with x0n replaced by x00n ¼ x0n þ vt0 for real v and with
some possibly different timelike vector t0. Analyzing the
dependence on v in exactly the same way, we learn that
h χjϕðx1Þϕðx2Þ � � �ϕðx00nÞjΩi ¼ 0 for any x00n of this form. But
since every point in Minkowski spacetime can be reached by
starting with UV and zigzagging back and forth in different
timelike directions, we learn that if, for some x1;…; xn−1,

(a) (b)

FIG. 1. (a) A function gðuÞ holomorphic in the upper half u
plane can be computed by a Cauchy integral formula: any contour
γ in the upper half plane can be used to compute gðuÞ for u in the
interior of γ. (b) If gðuÞ is continuous on the boundary of the
upper half plane, one can take γ to run partly along the boundary.
If in addition gðuÞ ¼ 0 along part of the boundary—indicated
here by dashed lines—then that part of the contour can be
dropped. In this case, the Cauchy integral formula remains
holomorphic as u is moved through the gap and into the lower
half plane, implying that gðuÞ is holomorphic on that part of the
real axis and is identically zero.

1The following argument is along the lines of that in Streater and
Wightman (1964). However, to avoid invoking the multidimensional
edge of the wedge theorem, we consider one variable at a time, as
suggested by R. Longo.

2The rigorous proof of this sort of statement in Streater and
Wightman (1964) uses some smearing with respect to xn to first
replace ϕðxnÞjΩi with a normalizable vector. So although it is true
that the smeared and unsmeared statements (2.3) and (2.4) are
equivalent, the smeared version is convenient in the rigorous proof.

3In the case of a past-pointing timelike vector, we make the same
argument as before using holomorphy in the lower half u plane.

Edward Witten: APS Medal for Exceptional Achievement in …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045003-3



φðx1;…; xn−1; xnÞ vanishes for all xn ∈ UV , then it actually
vanishes for all xn, without the restriction xn ∈ UV .
The next step is to remove the restriction xn−1 ∈ UV . We

do this in exactly the same way, now shifting the last two
coordinates in a timelike direction. Thus we look now at

gðuÞ ¼ h χjϕðx1Þϕðx2Þ � � �ϕðxn−2Þϕðxn−1 þ utÞϕðxn þ utÞjΩi:
ð2:9Þ

Using again the fact that HjΩi ¼ 0, we have

gðuÞ ¼ hχjϕðx1Þϕðx2Þ � � �expðiHuÞϕðxn−1ÞϕðxnÞjΩi: ð2:10Þ
Just as before, the function gðuÞ is holomorphic in the upper
half plane and vanishes along a segment of the real axis, so it is
identically zero. Repeating this with a second timelike vector,
we learn that we can make an arbitrary shift xn−1; xn →
xn−1 þ w; xn þ w without affecting the vanishing of
φðx1;…; xnÞ. Since we are also free to shift xn in an arbitrary
fashion, we learn that for x1;…; xn−2 ∈ UV, φðx1;…; xnÞ is
identically zero, with no restriction on xn−1 and xn.
The rest of the argument is hopefully clear at this point. At

the kth step, we make a timelike shift of the last k points, adding
ut to each of them, and show as before that this does not affect
the vanishing of φðx1; x2;…; xnÞ. Repeating this with a shift by
vt0 and combining with the results of previous steps, we learn
that vanishing of φðx1; x2;…; xnÞ is not affected by moving
the last k points. At the nth step, we finally learn that
φðx1; x2;…; xnÞ is identically zero for all x1; x2;…; xn.
For future reference, a systematic holomorphy statement

that can be proved similarly to the above is as follows. The
H-valued function

Fðx1; x2;…; xnÞ ¼ ϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi ð2:11Þ

(or the inner product of this function with any other state) is
holomorphic if the imaginary part of x1 and of xiþ1 − xi,
i ¼ 1;…; n − 1 is future timelike. (It is continuous up to the
boundary of that domain.) This is proved by writing4

Fðx1; x2;…; xnÞ ¼ ½expð−ix1 · PÞϕð0Þ expðix1 · PÞ�
× ½expð−ix2 · PÞϕð0Þ expðix2 · PÞ� � � �
× ½expð−ixn−1 · PÞϕð0Þ expðixn−1 · PÞ�
× ½expð−ixn · PÞϕð0Þ�jΩi. ð2:12Þ

C. Vectors of bounded energy momentum

In proving the Reeh-Schlieder theorem, we used the fact that
the energy-momentum operators Pμ; μ ¼ 0;…; D − 1 annihi-
late the vacuum state jΩi. This implies, in particular, that for
any D vector c, expðic · PÞjΩi ¼ jΩi. However (Borchers,
1968), in the proof it would be sufficient to know that, for a

general D vector cμ, expðic · PÞjΩi varies holomorphically
with the components c0, c1;…; cD−1 of c. Then in the above
argument, we could not drop the factor expðiut · PÞjΩi, but its
presence would not affect the discussion of holomorphy.
If a state Ψ has the property that expðic · PÞjΨi is

holomorphic in c, we say that the translation group acts
holomorphically onΨ. This is not true for an arbitraryΨ, since
if c has a future timelike imaginary part, expðic · PÞ is an
unbounded operator and expðic · PÞjΨi may not make sense
in Hilbert space.5

A source of many vectors on which the translation group
has a holomorphic action is the following. The Pμ are a set of
D commuting, self-adjoint operators. This leads to a spectral
decomposition of the Hilbert spaceH on which the Pμ act. For
every closed set S in momentum space, there is a correspond-
ing projection operator ΠS onto the subspace HS of Hilbert
space consisting of states whose energy momentum is con-
tained in the set S. (We cannot actually diagonalize the Pμ in
Hilbert space, since states of definite energy momentum—
other than the vacuum—are not normalizable.) If S is
compact, then in any Lorentz frame, the energy of a state
Ψ that is in the image of ΠS is bounded. This gives, for any c,
an upper bound on the norm of expðic · PÞΨ and ensures that
the translation group acts holomorphically on Ψ.
If Ψ is any state and S is compact, the projection ΠSΨ to

states with energy momentum in S is a state on which the
translation group acts holomorphically. Moreover, ΠSΨ is
nonzero for sufficiently large S and in fact converges to Ψ as S
becomes large. So every state can actually be approximated by
states that could be used instead of the vacuum in the Reeh-
Schlieder theorem.
As an example of why this is useful, we can consider

superselection sectors. In general, the “vacuum sector” H0,
consisting of states that can be created from the vacuum by a
product of local operators, is not the full Hilbert space H of a
quantum field theory. In part, this is because there may be
conserved charges that are not carried by any local operator. For
example, in four spacetime dimensions, a theory with a
massless U(1) gauge field has conserved electric and magnetic
charges that are not carried by any local operators.6 Let H0

be the subspace of Hilbert space characterized by particular
values of these charges. Such an H0 is called a superselection
sector. In a nontrivial superselection sector (not containing
the vacuum), there is no state of lowest energy that we could

4We work in signature −þþ � � � þ, so x · P ¼ −tH þ x⃗ · P⃗where
H is the Hamiltonian; this operator is negative semidefinite for
t > jx⃗j, so j expð−ix · PÞj ≤ 1 for Imx future timelike. This ensures
that for such x, the operator expð−ix · PÞ is defined for all states and
holomorphically varying.

5An unbounded operator on a Hilbert space is defined at most on a
dense set of vectors. Suppose, for example, that in some orthonormal
basis ψn of a Hilbert spaceH, an operator X acts by Xψn ¼ λnψn. For
X to be unbounded means that the λn are unbounded. In this case,
there is a vector Ψ ¼ P

ncnψn with
P

njcnj2 < ∞ (so Ψ ∈ H) butP
njλnj2jcnj2 ¼ ∞ (so XΨ does not make sense as a vector in H).
6Below four spacetime dimensions, it may not be possible to fully

characterize superselection sectors by conserved charges. An exam-
ple is given by three-dimensional theories with non-Abelian statis-
tics. [For a treatment of this situation in algebraic quantum field
theory, see Fredenhagen, Rehren, and Schroer (1989).] Likewise,
soliton sectors in two spacetime dimensions cannot always be fully
characterized by conserved charges. However, the following remarks
about the Reeh-Schlieder theorem do not depend on whether a given
superselection sector can be characterized by conserved charges.
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use instead of the vacuum in the Reeh-Schlieder theorem.7

However, in such a sector, there is no problem to construct
states of bounded energy momentum, and for any such state
Λ, the analog of the Reeh-Schlieder theorem holds: whatever
can be created by local operators acting on Λ can be created
by local operators that act on Λ in the small open set UV .
What happens to the Reeh-Schlieder theorem if Minkowski

spacetime MD is replaced by another globally hyperbolic
spacetime M? In curved spacetime, there is no natural analog
of the vacuum state, and there are, of course, also no natural
translation generators Pμ. However, it is reasonable to expect
that the Reeh-Schlieder theorem should have an analog for
any spacetime M that is globally hyperbolic and real analytic.
An analog of a vector on which spacetime translations act
holomorphically is a vector whose evolution is holomorphic in
the following sense. In general, a vector ΨΣ defined in
quantization on a Cauchy hypersurface Σ ⊂ M can be evolved
forward or backward in time to a vector ΨΣ0 on any other such
hypersurface Σ0. If M is real analytic, it can be “thickened”
slightly to a complex analytic manifold bM, and we can ask
whetherΨΣ0 evolves holomorphically with Σ0 if Σ0 is displaced
slightly away from M in bM. If so, we say that ΨΣ has
holomorphic evolution and a reasonable analog of the Reeh-
Schlieder theorem would say that states aΨΣ, where a is
supported in some given open set, are dense in Hilbert space.
For results in this direction, see Strohmaier, Verch, and
Wollenberg (2002) and Gérard and Wrochna (2017). There
is also a version of the Reeh-Schlieder theorem adapted to
anti–de Sitter space and holography (Morrison, 2014), and
there are attempts to generalize the theorem to curved
spacetime without assuming real analyticity (Sanders, 2009).

D. An important corollary

The Reeh-Schlieder theorem has an important and imme-
diate corollary. Let us assume that the open set V ⊂ Σ is small
enough so that its closure V̄ is not all of Σ. Then the
complement of V̄ in Σ is another open set V 0, disjoint from
V. V 0 and V are spacelike separated, and they are contained in
small open sets UV ;UV 0 ⊂ MD that are also spacelike sepa-
rated. One also may choose to let UV and UV 0 be as large as
possible, while remaining at spacelike separation. The precise
choice of UV and UV 0 is not important in this section.
Let a be any operator supported in the spacetime region UV ,

not necessarily constructed from a product of finitely many
local operators. Because the regions UV , UV 0 are spacelike
separated, a commutes with local operators in UV 0 ;

½ϕðxÞ; a� ¼ 0; x ∈ UV 0 : ð2:13Þ

Conversely, an operator a0 supported in UV 0 satisfies

½ϕðxÞ; a0� ¼ 0; x ∈ UV : ð2:14Þ

The Reeh-Schlieder theorem applies equally well to V or to
V 0, as they are both nonempty open sets in the initial value

hypersurface Σ. This has the following consequence. Suppose
that an operator a supported in UV annihilates the vacuum
state

ajΩi ¼ 0: ð2:15Þ

Because a commutes with the local operators ϕðxiÞ, xi ∈ UV 0 ,
the vanishing of ajΩi implies that

aϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi ¼ 0; xi ∈ UV 0 : ð2:16Þ

But the Reeh-Schlieder theorem tells us that the states
ϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi, xi ∈ UV 0 are dense, in the vacuum
sector H0 of Hilbert space. So the vanishing of the left-hand
side of Eq. (2.16) for all n and all xi ∈ UV 0 implies that the
operator a is identically 0, in the vacuum sector.
For an open set U in spacetime, let us define AU to be the

algebra of operators supported in U. We will call this a “local
algebra” of the quantum field theory. In Sec. II.F, we will be
more specific about what we mean by “all operators.” For now
we leave this open. In the present discussion, we have
considered two open sets, namely U ¼ UV and U 0 ¼ UV 0 ,
which are thickenings of V and V 0, respectively, so there are
two algebras to consider, namely AU and AU 0 .
By way of terminology, a vector Ψ in a Hilbert space H0 is

called a cyclic vector for an algebra such as AU if the states
ajΨi, a ∈ AU are dense in H0. Ψ is said to be separating for
AU if the condition ajΨi ¼ 0, a ∈ AU implies that a ¼ 0. The
Reeh-Schlieder theorem says that the vacuum vector Ω is
cyclic for AU and for AU 0. As we have just explained, a state
that is cyclic for one of these algebras is separating for the
other, so in fact the vacuum is cyclic and separating for AU
and for AU 0.
More generally, the Reeh-Schlieder theorem implies that, in

each superselection sector, any vector on which the translation
group acts holomorphically is cyclic and separating for AU
and for AU 0.
As we have seen, if U and U 0 are a pair of spacelike

separated open sets, then many vectors are cyclic and
separating for AU and for AU 0, but it is certainly not true
that every vector has this property. For a simple counterex-
ample, consider a theory with a complex free fermion ψ .
Then for a smearing function f supported in U, ψf ¼R
d4xfðxÞψðxÞ obeys ψ2

f ¼ 0. It therefore annihilates any
vector of the form ψf χ. If one defines the local algebras to
consist of bosonic operators only [as does Haag (1992)], then
one can pick a pair of smearing functions f, g supported in U
and set Of;g ¼ ψfψg. Then Of;g is a bosonic operator
supported in U and obeying O2

f;g ¼ 0, so Of;g annihilates
any state Of;g χ. So ψf χ or Of;g χ is a state that is not
separating for AU, or cyclic for AU 0.
The fact that the vacuum is separating for the algebra AU

has interesting consequences for the energy density in
quantum field theory (Epstein, Glaser, and Jaffe, 1965). Of
course, the total energy H is positive semidefinite, and
annihilates only the vacuum state. It can be defined as the
integral of the energy density T00 over an initial value surface
t ¼ 0. However, in contrast to classical physics, the energy
density T00ðxÞ is not positive semidefinite in quantum field

7To minimize the energy of, say, a magnetic monopole, we want it
to have zero momentum. But such a state is not normalizable.
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theory, and the same holds for any smeared operator
Tf ¼ R

UV
dDxfðxÞT00ðxÞ, where f is any real smearing

function with support in UV . Poincaré invariance and the fact
that HΩ ¼ 0 imply that the vacuum has vanishing energy
density, hΩjT00ðxÞjΩi ¼ 0. However, the separating property
of the vacuum for the algebra AU implies that TfjΩi ≠ 0.
Let χ be some state with h χjTfjΩi ≠ 0. Let W be the two-
dimensional subspace of Hilbert space generated by Ω and χ.
If we write a vector in W as a column vector with Ω and χ
corresponding to the upper and lower components, then Tf

restricted to W takes the form�
0 b

b̄ c

�
; ð2:17Þ

with b ¼ h χjTfjΩi ≠ 0. Such a matrix is not positive semi-
definite, implying that Tf has a negative expectation value in
some state eχ ∈ W ⊂ H.

E. Discussion

The Reeh-Schlieder theorem may seem paradoxical at first.
It implies that by acting on the vacuum with an operator a
supported in a small region UV , one can create whatever one
wants—possibly a complex body such as the Moon—in a
faraway, spacelike separated region of spacetime.
To understand this better, let V� be a distant region in which

we want to create the Moon. LetM be an operator supported in
region UV� that to good approximation has expectation value 0
in states that do not contain a moon in region V� and 1 in states
that do contain one. Thus

hΩjMjΩi ≈ 0; ð2:18Þ

but according to the Reeh-Schlieder theorem, there is some
operator a supported in UV such that the state aΩ, to very
good approximation, contains a moon in region V�. Thus
haΩjMjaΩi ≈ 1, so hΩja†MajΩi ≈ 1. As a† is supported in
region UV andM is supported in the spacelike separated region
UV� , these operators commute and thus

hΩjMa†ajΩi ≈ 1: ð2:19Þ

Is there a conflict between Eqs. (2.18) and (2.19)? If we
could choose the operator a to be unitary, we would have
a†a ¼ 1, and then there would indeed be a conflict. However,
the Reeh-Schlieder theorem does not say that there is a unitary
operator supported in UV that will create the Moon in some
distant region; it merely says that there is some operator
supported in UV that will do this.
If one asks about not mathematical operations in Hilbert

space but physical operations that are possible in the real
world, then the only physical way that one can modify a
quantum state is by perturbing the Hamiltonian by which it
evolves, thus bringing about a unitary transformation. If one
is able to couple a given quantum field theory to some
auxiliary quantum system, then one can implement a unitary
transformation on the combined system. It is not possible by
such a unitary transformation supported in UV to make any

change in observations in a spacelike separated region V�.
That is what we learn from the above computation, which
shows that for any operator M supported in UV� and any
unitary operator a supported in V, haΩjMjaΩi ¼ hΩjMjΩi.
This computation is unaffected if a acts also on some auxiliary
quantum system, as long as a is unitary and commutes with
operators in V�.
While it is not possible for a physical operation in one

region to influence a measurement in another region, there
can be correlations in the vacuum between operators in
the two regions. This happens all the time in quantum
field theory, even in free field theory. We are seeing
such correlations in Eq. (2.19), which shows that
hΩjMa†ajΩi ≠ hΩjMjΩihΩja†ajΩi.
The Reeh-Schlieder theorem can be given an intuitive

interpretation by considering a finite-dimensional quantum
system with a tensor product Hilbert space H ¼ H1 ⊗ H2.
For what follows, the most interesting case is that H1 and H2

have the same dimension n. We let A1 be the algebra of n × n
matrices acting on H1, and A2 the algebra of n × n matrices
acting on H2. (In language that we will introduce shortly,
these are �-algebras and they are each other’s commutants.) A
generic state Ψ of the composite system is entangled. For any
given Ψ, it is possible to choose a basis ψk, k ¼ 1;…; n ofH1

and another basis ψ 0
k, k ¼ 1;…; n of H2 such that

Ψ ¼
Xn
k¼1

ckψk ⊗ ψ 0
k; ð2:20Þ

with some coefficients ck. It is convenient to write jki and jk0i
for ψk and ψ 0

k, so that this formula becomes

Ψ ¼
Xn
k¼1

ckjki ⊗ jki0: ð2:21Þ

The vector Ψ is cyclic and separating for A1 and for A2 if and
only if the ck are all nonzero, or equivalently if the reduced
density matrices on H1 and on H2 are invertible. We will
return to this setup in Sec. IV.A.
The Reeh-Schlieder theorem says that, in quantum field

theory, if AV and AV 0 are the algebras of operators supported
in complementary regions of spacetime, then similarly the
vacuum is a cyclic separating vector for this pair of algebras.8

This might make one suspect that the Hilbert space H should
be factored asH ¼ HV ⊗ HV 0 , with the vacuum being a fully
entangled vector in the sense that the coefficients analogous to
ck are all nonzero. This is technically not correct. If it were
correct, then picking ψ ∈ HV , χ ∈ HV 0 , we would get a vector
ψ ⊗ χ ∈ H with no entanglement between observables in V
and those in V 0. This is not what happens in quantum field
theory. In quantum field theory, the entanglement entropy

8This remains so if V is replaced by a smaller region, and V 0 by a
correspondingly larger one. That fact would have no natural analog
for a finite-dimensional quantum system, and shows in a different
way from what is explained in the text the limitations of the analogy
between the vacuum of a quantum field theory and a fully entangled
state of a finite-dimensional quantum system.
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between adjacent regions has a universal ultraviolet diver-
gence, independent of the states considered. The leading
ultraviolet divergence is the same in any state as it is in the
vacuum, because every state looks like the vacuum at short
distances. The universality of this ultraviolet divergence
means that it reflects not a property of any particular state
but rather the fact that H cannot be factored as HV ⊗ HV 0 .
It is also not correct, technically, to write H as a direct sum

or integral of Hilbert spaces Hζ
V and Hζ

V 0 , where ζ is some

discrete or continuous variable and each Hζ
V , H

ζ
V 0 is supposed

to furnish a representation of AV or AV 0. If one had
H ¼ ⊕ζH

ζ
V ⊗ Hζ

V 0 (where the direct sum over ζ might be
a continuous integral), then there would be operators—such as
any function of ζ—that commute with both AV and AV 0 .
Bounded functions of the ζ’s would be bounded Hilbert space
operators, defined on all states. Moreover, because the leading
ultraviolet divergence in the entanglement entropy is propor-
tional to the area of the boundary between these two regions,
these operators would have to be local along the boundary.
There is nothing like that in quantum field theory. What we
usually call a local operator ϕðxÞ has to be smeared just to
make a densely defined unbounded operator (let alone a
bounded operator, defined on all of Hilbert space), and such a
smeared operator does not commute with AV and AV 0 .
Despite all this, many statements that one could deduce

from a naive factorizationH ¼ HV ⊗ HV 0 and whose analogs
are true for entangled quantum systems of finite dimension are
actually true in quantum field theory. Tomita-Takesaki theory,
which we introduce in Sec. III, is an important tool in proving
such statements.

F. The local algebras

In Sec. II.D, we introduced the notion of associating to an
open set U in spacetime a “local algebra”AU consisting of “all
operators” supported in U.
But what do we mean by all operators? The operators that

we have considered so far are what one might call simple
operators, namely, polynomials in smeared local fields.
However, there are serious drawbacks to considering only
simple operators.9 For one thing, one wants to be able to claim
(Haag and Schroer, 1962) that if U is an open set in spacetime

and bU is a larger open set that is its domain of dependence
[Fig. 2(a)] then the algebras AU and AbU coincide. The logic

behind this is that the dynamical time evolution of the theory

determines operators in the larger region bU in terms of
operators in U. This is true, but operators supported in regions
of bU that are to the future or the past of U are in general
exceedingly complex functions of operators in U. Thus we can
only get a simple relation AU ¼ AbU if we include in AU all

operators that can be made from the simple ones.
What sort of operators can we make from simple ones?

Some elementary operations come to mind. For example, if f

is a real smearing function and ϕf ¼ R
dDxfϕ, we can

consider the operator expðiϕfÞ, which actually is a bounded
operator made from ϕf. More generally, if F is any bounded
function of a complex variable, we can consider FðϕfÞ (now
with a possibly complex-valued smearing function f); this
again is a bounded operator. Still more generally, if f1;…; fn
are n smearing functions and F is a bounded function of n
complex variables, we can consider Fðϕf1 ;ϕf2 ;…;ϕfnÞ.
The reason to consider bounded operators is that they are

defined on all of Hilbert space, so they can be multiplied
without any trouble, and naturally form an algebra. Unbounded
operators in general cannot be multiplied, as they are defined on
different dense subspaces of Hilbert space. If we try to define
“all unbounded functions” of the ϕf’s and hope to make them
into an algebra, we will probably have a lot of trouble.
We could go on with elementary constructions. To complete

the story, what is really needed is to include limits of the
operatorswe already have. To decidewhat sort of limits to allow,
let us think for amoment aboutwhat is involved inmeasuring an
operator, such as the weak Hamiltonian that is involved in beta
decay.What an experiment gives us is a measurement of finitely
many matrix elements of an operator, each with some exper-
imental error. Ifa1; a2;… is a sequence of operators all ofwhose
matrix elements hψ janj χi converge for large n to the corre-
sponding matrix elements hψ jaj χi of some operator a, this
means that any given experiment will not distinguish an from a
once n is large enough. In such a situation, it is reasonable
physically to say that a ¼ limn→∞an. What we have just
described [following Haag (1992) in this reasoning] is the
mathematical notion of a weak limit of a sequence of operators.
It is reasonable to believe that we should define AU to be

closed under such weak limits.10 One also expects AU to be
closed under a more trivial operation. The set of smeared
fields in a given region is closed under Hermitian conjugation.

(a) (b) (c)

FIG. 2. (a) An open set U in Minkowski spacetime, and its
domain of dependence bU (the union of U with the regions labeled
as bU in the figure), which in this case is a causal diamond and
coincides with the causal completion U 00 of U. (b) The two open
sets U and U 0 are causal complements; each is the largest open set
that is spacelike separated from the other. (c) A quite different
open set U whose causal completion U 00 (the union of U and the
regions labeled U 00) is the same causal diamond as in (a).

9The simple operators also have important advantages, of course;
they are the basis of a standard and powerful machinery of
renormalization theory, operator product expansions, and so on.

10However, a result of von Neumann shows that if we defineAU to
be closed only under a more restricted type of limit called a strong
limit, we will actually get the same algebra. A sequence a1; a2;… of
operators has an operator a as its strong limit if for any Hilbert space
state χ, limn→∞an χ ¼ a χ.
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[If ϕf ¼
R
dDxfðxÞϕðxÞ is a smeared field supported in a

given region, then so is ϕ†
f ¼ R

dDxf̄ðxÞϕðxÞ.] Any reason-
able set of operations that builds new operators from old ones,
starting from a set of operators that is closed under Hermitian
conjugation, will give a set of operators that remains closed
under Hermitian conjugation. An algebra acting on a Hilbert
space and closed under Hermitian conjugation is called a �-
algebra. Thus any reasonable choice of what we would mean
by AU will be a �-algebra.
A �-algebra of bounded operators on a Hilbert space that is

closed under weak limits (and contains the identity operator)
is called a von Neumann algebra. Thus we are led in this way
to the notion that the local algebra AU of an open set U should
be a von Neumann algebra.
If A is a �-algebra of bounded operators on a Hilbert space

H, then its commutant A0, defined as the set of all bounded
operators onH that commute with A, is another �-algebra. A0

is always a von Neumann algebra even if A is not.11 If A is a
von Neumann algebra, then the relation between A and A0 is
reciprocal: each is the commutant of the other. This is von
Neumann’s theorem that if A is a von Neumann algebra, then
A00 ¼ ðA0Þ0 satisfies A00 ¼ A.
Operators at spacelike separation commute, so one expects

that if U and U 0 are spacelike separated, then12

½AU ;AU 0 � ¼ 0; ð2:22Þ

which is an abbreviated way to say that ½a; a0� ¼ 0 if a ∈ AU ,
a0 ∈ AU 0 . Thus one expects that AU 0 is always contained
in AU

0.
It was proposed by Haag (1963) and by Haag and Schroer

(1962) that if U and U 0 are causal complements, meaning that
they are maximal open sets under the condition of being
spacelike separated, then the corresponding algebras AU and
AU 0 are commutants, meaning that they are maximal under the
condition of commuting with each other. This condition,
sometimes called Haag duality, can be written

AU 0 ¼ AU
0: ð2:23Þ

This condition is stated in Haag (1992) as part of Tentative
Postulate 4.2.1. The rest of the postulate says that if U is a
union of open sets Uα, then AU is the smallest von Neumann
algebra containing the AUα

, and that if U, eU are two open sets
then AU∩eU ¼ AU ∩ AeU . Haag duality is known to be true in
many circumstances; for example, it was proved by
Bisognano and Wichmann (1976) for complementary

Rindler regions in Minkowski spacetime (this is explained
at the end of Sec. V.B). Haag duality and the rest of Postulate
4.2.1 are apparently valid in an interesting class of quantum
field theories and for some open sets in a wider class, but it
appears that in some theories and for some classes of open
sets, Haag duality and other parts of Tentative Postulate 4.2.1
can fail (Leyland, Roberts, and Testard, 1978; Doplicher and
Longo, 1984; Schroer, 2017; Harlow and Ooguri, 2018).
We give an example of the simplification that occurs if two

algebras are commutants. IfA andA0 are commutants, then a
vector Ω ∈ H is separating for A if and only if it is cyclic for
A0, and vice versa. The “if” part of this statement only
depends on A and A0 commuting and was explained in
Sec. II.D. What we gain if A and A0 are commutants is the
“only if” statement. Suppose in fact that a vector Ω is not
cyclic for A0. Then the vectors a0jΩi, a0 ∈ A0 generate
a Hilbert space H0 that is a proper subspace of H. Let
Π∶H → H be the orthogonal projection onto H0⊥. Then Π is
bounded and commutes with A0, so if the two algebras are
commutants, Π ∈ A. But ΠΩ ¼ 0 (since 1 ∈ A0, certainly
Ω ¼ 1 ·Ω is of the form a0Ω, a0 ∈ A0, and thereforeΩ ∈ H0).
Thus if Ω is not cyclic for A0, then Π ∈ A annihilates Ω and
Ω is not separating for A.
We conclude by describing an analogy between algebras

and open sets that is developed in Haag (1992). In the analogy,
a �-algebra corresponds to an open set in spacetime, a von
Neumann algebra corresponds to a causally complete open
set, and commutants correspond to causal complements.
Let A be a �-algebra of bounded operators on H (not

necessarily a von Neumann algebra) and A0 its commutant.
ThenA0 is a von Neumann algebra as explained in footnote 11.
In particular, the commutant A00 ¼ ðA0Þ0 of A0 is a von
Neumann algebra. Clearly A ⊂ A00 (A00 consists of all
bounded operators that commute with A0, and the definition
ofA0 ensures that any element ofA commutes withA0).A00 is
called the von Neumann algebra closure ofA; it is the smallest
von Neumann algebra containingA. IfA was a von Neumann
algebra to begin with, then A ¼ A00. On the other hand A0 is
always a von Neumann algebra so one always has A0 ¼ A000.
If A is a von Neumann algebra, A and A0 are each other’s
commutants.
Now consider open sets. If U is an open set, then as above,

its causal complement U 0 is the union of all open sets that are
spacelike separated from U (equivalently, it is the largest open
set spacelike separated from U). The causal complement
U 00 ¼ ðU 0Þ0 of U 0 always contains U, since U is an open set
spacelike separated from U 0. One always has U 000 ¼ U 0.
[Indeed, since U ⊂ U 00, the condition for a point to be
spacelike separated from U 00 is stronger than the condition
for it to be spacelike separated from U, so U 000 ¼ ðU 00Þ0 ⊂ U 0.
The opposite inclusion U 0 ⊂ U 000 just says that the open set U 0

is contained in ðU 0Þ00 ¼ U 000.] U is said to be causally complete
if U 00 ¼ U. The result U 000 ¼ U 0 means that U 0 is always
causally complete. In general, U 00 (which also is always
causally complete since U 0 ¼ U 000 implies U 00 ¼ U 0000) is the
smallest causally complete set containing U and is called the
causal completion of U. If U is causally complete, then U and
U 0 are each other’s causal complements.

11The nontrivial point is that A0 is closed under weak limits. If
a1 0;a2 0;… is a sequence of bounded operators that commute with A
and has weak limit a0, then for any states ψ ; χ ∈ H and any a ∈ A,
one has hψ j½a;a0�j χi ¼ limn→∞hψ j½a; a0n�j χi ¼ 0; vanishing of
hψ j½a;a0�j χi for all ψ , χ means ½a; a0� ¼ 0 and therefore a0 ∈ A0,
showing that A0 is closed under weak limits.

12In the presence of fermions, one has anticommutativity as well as
commutativity of operators at spacelike separation. In the algebraic
approach, one can consider a von Neumann algebra with an auto-
morphism that distinguishes even and odd operators. For one
approach, see Guido and Longo (1995).
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If Haag duality holds in some theory for all open sets, not
necessarily causally complete, then it implies that AU ¼ AU 00

for all U, a property stated in Haag (1992), (III.1.10). [Indeed,
Haag duality says that AU 00 ¼ ðAU 0 Þ0 ¼ ðAUÞ00 ¼ AU , where
in the last step we use the fact that A00 ¼ A for any von
Neumann algebra A.] The conditions for this to hold do not
appear to be known,13 but it does have a surprisingly wide
range of validity. Two illustrative cases are shown in Figs. 2(a)
and 2(c). In Fig. 2(a), U 00 is a causal diamond, and coincides

with the domain of dependence bU of U. Causality would lead
us to expect in this example that AU ¼ AU 00 and this was
indeed an input to the previous discussion. In Fig. 2(c), U is a
thin “timelike tube” (with corners at the top and bottom)
whose causal completion U 00 is the same causal diamond. In
this case, there is no simple reason of causality to expect that
AU ¼ AU 00 , but this can be proved with a more sophisticated
use of the ingredients that went into proving the Reeh-
Schlieder theorem. The result is sometimes called the
Borchers timelike tube theorem (Borchers, 1961, 1996;
Araki, 1963; Wightman, 1964).

III. THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEORY

A. Definition and first properties

In some quantum field theory in Minkowski spacetime with
Hilbert space H, let AU be the algebra of observables in a
spacetime region U, and let AU

0 be its commutant. (If Haag
duality holds, thenAU

0 coincides withAU0, but we do not need
to assume this.) If the context is clear, we sometimes write just
A and A0 for AU and AU

0. Let Ψ be a vector—such as the
vacuum vector—that is cyclic and separating for both regions.
The Tomita operator for the state Ψ is an antilinear operator

SΨ that, roughly speaking, is defined by

SΨajΨi ¼ a†jΨi ð3:1Þ

for all a ∈ AU . To understand this definition, first note that
because Ψ is a separating vector for AU, the state ajΨi is
nonzero for all nonzero a ∈ AU . Therefore, we avoid the
inconsistency that would arise in this definition if some a
would satisfy ajΨi ¼ 0, a†jΨi ≠ 0. Second, because the states
ajΨi, a ∈ AU are dense inH, Eq. (3.1) does define the action
of SΨ on a dense subspace of H.
The definition of Eq. (3.1) will lead to an unbounded

operator SΨ for the following reason. In the region U, given
that it is small enough that its causal complement contains
another open set U 0, it is not possible to make a mode of
definite positive or negative frequency. But by using modes
of very short wavelength, we can construct an operator a in
region U that is arbitrarily close to being an annihilation

operator (one that lowers the energy) while a† is equally close
to being a creation operator. So ajΩi can be arbitrarily small
while a†jΩi is not small. Thus SΨ is unbounded.
An unbounded operator cannot be defined on all states in

Hilbert space (recall footnote 5). But it is important to slightly
extend the definition of SΩ as follows. If an, n ¼ 1; 2; 3;… is
a sequence of elements of AU such that both limits

x ¼ lim
n→∞

anjΨi; y ¼ lim
n→∞

a†njΨi ð3:2Þ

exist, then we define14

SΨx ¼ y: ð3:3Þ

Extending the definition of SΨ in this way gives what
technically is known as a “closed” operator, meaning that
its graph is closed; see Sec. III.F.
The definition (3.1) makes it clear that

S2Ψ ¼ 1; ð3:4Þ

so in particular SΨ is invertible. Another obvious fact is that

SΨjΨi ¼ jΨi: ð3:5Þ

We could of course similarly define the modular operator
S0Ψ for the commuting algebra A0

U . In fact, these operators are
Hermitian adjoints:

S0Ψ ¼ S†Ψ: ð3:6Þ

The definition of the adjoint of an antilinear operatorW is that
for any states Λ, χ,

hΛjW χi ¼ hW†Λj χi ¼ h χjW†Λi: ð3:7Þ

A special case of this which we will use shortly is that if W
is antiunitary, meaning that it is antilinear and satisfies
W†W ¼ WW† ¼ 1, then

hWΛjW χi ¼ hΛj χi ¼ h χjΛi: ð3:8Þ

To show that S0Ψ ¼ S†Ψ, we have to show that for all states Λ,
χ, we have hS0ΨΛj χi ¼ hSΨ χjΛi. It is enough to check this for
a dense set of states, so we can take χ ¼ aΨ, Λ ¼ a0Ψ, with
a ∈ AU , a0 ∈ AU

0. Using the definitions of SΨ and S0Ψ and of a
Hermitian adjoint and the fact that a and a0 commute, we get

13As a counterexample if U is not required to be connected, in two-
dimensional spacetime, let U be the union of small balls centered at
the two points ðt; xÞ ¼ ð�1; 0Þ. Then U 00 is again a (slightly rounded)
causal diamond. Massless fields are functions only of x� ¼ x� t.
In U 00, one can measure modes of massless fields in the whole range
−1 ≤ x� ≤ 1, but in U, one only see values of x� near �1.

14For this definition to make sense, it must be that if
limn→∞anΨ ¼ 0 then also limn→∞a

†
nΨ ¼ 0. Suppose that y ¼

limn→∞a
†
njΨi exists and is nonzero. As it is separating for AU ,

the state Ψ is cyclic for A0
U. So there is a0 ∈ A0

U with nonzero

C ¼ ha0Ψjyi ¼ limn→∞ha0Ψja†nΨi. Then C̄ ¼ limn→∞ha†nΨja0Ψi ¼
limn→∞ha0†ΨjanΨi is also nonzero. This implies that x ¼
limn→∞anjΨi is nonzero. Mathematically, we have proved that the
operator SΨ is “closeable.” The importance will become clear in
Sec. III.F.
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hS0Ψa0ΨjaΨi ¼ ha0†ΨjaΨi ¼ hΨja0aΨi
¼ hΨjaa0Ψi ¼ ha†Ψja0Ψi
¼ hSψaΨja0Ψi ð3:9Þ

as desired.15

Since it is invertible, SΨ has a unique polar decomposition

SΨ ¼ JΨΔ
1=2
Ψ ; ð3:10Þ

where JΨ is antiunitary and Δ1=2
Ψ is Hermitian and positive

definite. This implies that

ΔΨ ¼ S†ΨSΨ: ð3:11Þ

ΔΨ and JΨ are called the modular operator and the modular
conjugation. Since SΨΨ ¼ S†ΨΨ ¼ Ψ, we can deduce the
important result

ΔΨjΨi ¼ jΨi: ð3:12Þ

From Eq. (3.12), it follows that for any function f,

fðΔΨÞjΨi ¼ fð1ÞjΨi: ð3:13Þ

In addition, because S2Ψ ¼ 1, we have JΨΔ
1=2
Ψ JΨΔ

1=2
Ψ ¼ 1

or

JΨΔ
1=2
Ψ JΨ ¼ Δ−1=2

Ψ : ð3:14Þ

Hence

J2ΨðJ−1Ψ Δ1=2
Ψ JΨÞ ¼ Δ−1=2

Ψ ¼ 1 · Δ−1=2
Ψ : ð3:15Þ

Since J−1Ψ Δ1=2
Ψ JΨ is positive, this gives two different polar

decompositions of the operator Δ−1=2
Ψ . By the uniqueness of

the polar decomposition, we must have

J2Ψ ¼ 1: ð3:16Þ

Therefore

S0Ψ ¼ S†Ψ ¼ Δ1=2
Ψ JΨ ¼ JΨΔ

−1=2
Ψ : ð3:17Þ

Comparing this to the polar decomposition S0Ψ ¼ J0ΨΔ0
Ψ
1=2,

we find

J0Ψ ¼ JΨ; Δ0
Ψ ¼ Δ−1

Ψ : ð3:18Þ

Finally, because JΨΔΨJΨ ¼ Δ−1
Ψ , we have JΨfðΔΨÞJΨ ¼

f̄ðΔ−1
Ψ Þ for any function f. In particular, taking fðxÞ ¼ xis

for real s, we get

JΨΔisJΨ ¼ Δis; s ∈ R: ð3:19Þ

The operators that we introduced have a number of other
important properties, which we will explain in Sec. IV after
exploring these definitions for finite-dimensional quantum
systems.

B. The relative modular operator

Now let Φ be a second state. The relative Tomita operator16

SΨjΦ for the algebra AU is defined by (Araki, 1975)

SΨjΦajΨi ¼ a†jΦi: ð3:20Þ

In this definition, we usually assume that

hΨjΨi ¼ hΦjΦi ¼ 1: ð3:21Þ

The definition of SΨjΦ is completed by taking limits as
in Eq. (3.2).
As before, for SΨjΦ to make sense as a densely defined

operator, the state Ψ must be cyclic and separating for the
algebra AU . But Φ can be any state at all. If Φ is cyclic
separating, then we can define

SΦjΨajΦi ¼ a†jΨi: ð3:22Þ

In this case SΦjΨSΨjΦ ¼ 1 and in particular SΨjΦ is invertible.
A calculation similar to that of Eq. (3.9) shows that SΨjΦ for
one algebra AU is the adjoint of SΨjΦ for the commutant AU

0.
The relative modular operator is defined by

ΔΨjΦ ¼ S†ΨjΦSΨjΦ: ð3:23Þ

It is positive semidefinite, and is positive definite if and only if
SΨjΦ is invertible. If Φ ¼ Ψ, SΨjΦ reduces to SΨ and ΔΨjΦ
reduces to the usual modular operator:

ΔΨjΨ ¼ ΔΨ: ð3:24Þ

The polar decomposition of the relative modular operator is

SΨjΦ ¼ JΨjΦΔ
1=2
ΨjΦ; ð3:25Þ

15This argument really only shows that S†Ψ is an extension of S0Ψ
(meaning that the two operators act in the same way on any vector on
which S0Ψ is defined). For the proof that it is not a proper extension

(meaning that S†Ψ cannot be defined, consistent with hS†Ψ χjΛi ¼
hSΨΛj χi, on any vector on which S0Ψ is not defined), see, for
example, Theorem 13.1.3 in Jones (2015).

16We should warn the reader that what we call SΨjΦ is often
denoted SΦjΨ (or SΦ=Ψ, SΦ;Ψ, etc.). The purpose of our convention is
to agree with quantum information theory, where it has become
standard to define the relative entropy between density matrices ρ, σ
as SðρjjσÞ ¼ Trρðlog ρ − log σÞ. In the relation to information theory,
Ψ and Φ correspond, respectively, to ρ and σ, as we will learn in
Sec. IV.A, so we putΨ beforeΦ just as ρ is conventionally put before
σ in SðρjjσÞ. Note that some of the classic papers used the opposite
ordering for both SΨjΦ and SðρjjσÞ.
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where JΨjΦ is the relative modular conjugation. Here we have
to be careful. If Φ is not separating, then SΨjΦ has a kernel,

which is also a kernel of ΔΨjΦ and Δ1=2
ΨjΦ. In such a situation, to

make the polar decomposition unique, JΨjΦ is defined to
annihilate this kernel. Also, if Φ is not cyclic, then the image
of SΨjΦ is not a dense subspace of H. In general, JΨjΦ is an
antiunitary map from the orthocomplement of the kernel of
SΨjΦ to its image. However, ifΦ is cyclic separating, then JΨjΦ
is antiunitary.
Now let us discuss what happens if Φ is replaced by a0Φ,

where a0 is a unitary element of the commuting algebra AU
0.

For a ∈ AU, we get SΨja0ΦaΨ ¼ a†a0Φ ¼ a0a†Φ, since a† and
a0 commute. So SΨja0Φ ¼ a0SΨjΦ. With a0 unitary, this implies

ΔΨja0Φ ¼ ΔΨjΦ: ð3:26Þ

If it is important to specify the region U, we write ΔΨjΦ;U for
the relative modular operator for the algebra AU and the states
Ψ, Φ, and similarly for SΨjΦ;U.
The following gives a useful characterization of the relative

modular operator:

ha†ΨjΔΨjΦjbΨi ¼ ha†ΨjS†ΨjΦSΨjΦjbΨi
¼ hSΨjΦbΨjSΨjΦa†Ψi ¼ hb†ΦjaΦi: ð3:27Þ

Remark: For future reference, observe that the definition of
SΨjΦ and ΔΨjΦ does not require that Ψ andΦ are vectors in the
same Hilbert space. Let H and H0 be two different Hilbert
spaces with an action of the same algebraAU . For example,H
and H0 might be different superselection sectors in the same
quantum field theory. If Ψ is a cyclic separating vector in H
and Φ is any vector in H0 then Eq. (3.20) makes sense and
defines an antilinear operator SΨjΦ∶H → H0. Its adjoint is an
antilinear operator S†ΨjΦ∶H

0 → H. The product S†ΨjΦSΨjΦ is a

non-negative self-adjoint operator, the modular operator
ΔΨjΦ∶H → H. When not otherwise noted, we usually assume
H ¼ H0.

C. Relative entropy in quantum field theory

A primary application of the relative modular operator in
these notes will be to study the relative entropy. Relative
entropy was defined in classical information theory by
Kullback and Leibler (1951) and in nonrelativistic quantum
mechanics by Umegacki (1962); a definition suitable for
quantum field theory was given by Araki (1975, 1976). The
relative entropy SΨjΦðUÞ between two states Ψ and Φ, for
measurements in the region U, is

SΨjΦðUÞ ¼ −hΨj logΔΨjΦjΨi: ð3:28Þ

(In this section, U is kept fixed and we write ΔΨjΦ for ΔΨjΦ;U.)
In general, SΨjΦðUÞ is a real number or þ∞. For example,
SΨjΦðUÞmay beþ∞ ifΔΨjΦ has a zero eigenvalue, which will
occur if Φ is not separating for AU. How this definition is
related to what may be more familiar definitions of relative

entropy will be explained in Sec. IV. In this section, we simply
discuss the properties of the relative entropy.
An important elementary property is that SΨjΦðUÞ is always

non-negative, and vanishes precisely if Φ ¼ a0Ψ where a0 is a
unitary element of the commuting algebraAU

0. This condition
implies that hΦjajΦi ¼ hΨjajΨi for all a ∈ AU , so it means
that Φ and Ψ cannot be distinguished by a measurement in
region U. To see the vanishing if Φ ¼ a0Ψ, with a0 ∈ AU

0,
note that in this case, according to Eqs. (3.24) and (3.26),ΔΨjΦ
is the ordinary modular operator ΔΨ. So using Eq. (3.13)
with fðxÞ ¼ log x, we get logΔΨjΦjΨi ¼ 0 for Φ ¼ a0Ψ,
hence SΨjΨðUÞ ¼ 0.
To show that SΨjΦðUÞ > 0 if Φ is not of the form a0Ψ, one

uses (Araki, 1976) the inequality for a non-negative real
number log λ ≤ λ − 1. This inequality for numbers implies
the operator inequality logΔΨjΦ ≤ ΔΨjΦ − 1, or − logΔΨjΦ ≥
1 − ΔΨjΦ. So

SΨjΦðUÞ ≥ hΨjð1 − ΔΨjΦÞjΨi ¼ hΨjΨi − hΨjS†ΨjΦSΨjΦjΨi
¼ hΨjΨi − hΦjΦi ¼ 0;

ð3:29Þ

since we assume hΨjΨi ¼ hΦjΦi ¼ 1.
Because the inequality log λ ≤ λ − 1 is only saturated at

λ ¼ 1, to saturate the inequality (3.29) we need ΔΨjΦ to equal
1 in acting on Ψ, that is we need ΔΨjΦΨ ¼ Ψ. But as we will
show, this implies that Φ ¼ a0Ψ for some unitary a0 ∈ AU

0.
The statement that ΔΨjΦΨ ¼ Ψ implies that for any state χ,

h χjΔΨjΦΨi ¼ h χjΨi: ð3:30Þ

In particular, this must be so if χ ¼ aΨ for a ∈ AU. We
calculate

haΨjΔΨjΦΨi ¼ haΨjS†ΨjΦSΨjΦΨi ¼ haΨjS†ΨjΦΦi
¼ hΦjSΨjΦaΨi ¼ hΦja†Φi ¼ haΦjΦi: ð3:31Þ

We used SΨjΦΨ ¼ Φ and the definition of the adjoint of an
antilinear operator. The condition (3.30) then is that
haΦjΦi ¼ haΨjΨi for all a ∈ AU . Accordingly, for a,
b ∈ AU ,

haΦjbΦi ¼ hb†aΦjΦi ¼ hb†aΨjΨi ¼ haΨjbΨi: ð3:32Þ

Since states of the form aΨ or bΨ are dense in H, we can
define a densely defined linear operator that takes aΨ to aΦ.
Equation (3.32) states that this operator is unitary (and so,
being bounded, it can be naturally extended to all of H), and
as it commutes with AU , it is given by multiplication by a
unitary element a0 ∈ AU

0. Thus aΦ ¼ a0aΨ for all a, and in
particular Φ ¼ a0Ψ, as claimed.
Positivity of relative entropy has various applications in

quantum field theory, for instance in the interpretation and
proof (Casini, 2008; Longo and Xu, 2018) of the Bekenstein
bound on the energy, entropy, and size of a quantum system.
The more subtle property of monotonicity of relative entropy,
to which we come next, also has various applications, for
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instance in the proof of a semiclassical generalized second
law of thermodynamics that includes black hole entropy
(Wall, 2012).

D. Monotonicity of relative entropy

In quantum field theory, in the definition of the algebra of
observables and the associated modular operators, we can
replace the open set U by a smaller open set eU ⊂ U. Thus, for
given Ψ and Φ, we can define Tomita operators SΨjΦ;U and
SΨjΦ;eU and associated modular operators ΔΨjΦ;U and ΔΨjΦ;eU .
Then we have the relative entropy SΨjΦðUÞ for measurements
in U,

SΨjΦðUÞ ¼ −hΨj logΔΨjΦ;U jΨi ð3:33Þ

and the corresponding relative entropy for measurements in eU,
SΨjΦðeUÞ ¼ −hΨj logΔΨjΦ;eU jΨi: ð3:34Þ

Monotonicity of relative entropy says that if eU is contained in
U, then

SΨjΦðUÞ ≥ SΨjΦðeUÞ: ð3:35Þ

In nonrelativistic quantum mechanics, a version of monot-
onicity of relative entropy was proved by Lieb and Ruskai
(1973), along with strong subadditivity of quantum entropy, to
which it is closely related. The proof used a lemma of Lieb
(1973). A more general form of monotonicity of relative
entropy was proved by Uhlmann (1977). In a form that
encompasses the statement (3.35) in quantum field theory,
monotonicity of relative entropy was proved by Araki (1975,
1976). Petz (1986), with later elaboration by Nielsen and Petz
(2005), formulated a proof for nonrelativistic quantum
mechanics that drew partly on Araki’s framework. Some of
these matters will be explained in Sec. IV, but for now we just
concentrate on understanding Eq. (3.35).
The states Ψ and Φ will be kept fixed in the rest of this

section, so to lighten the notation we usually just write SU for
SΨjΦ;U and ΔU for ΔΨjΦ;U, and similarly for eU. The inequality
(3.35) is a direct consequence of an operator inequality

ΔeU ≥ ΔU : ð3:36Þ

A self-adjoint operator P is called positive if h χjPj χi ≥ 0 for
all χ; in that case, one writes P ≥ 0. If P and Q are bounded
self-adjoint operators, one says P ≥ Q if P −Q ≥ 0. (The
reason for assuming here that P and Q are bounded is that it
ensures that h χjP −Qj χi ¼ h χjPj χi − h χjQj χi is defined for
all χ; we explain shortly how to interpret the statement P ≥ Q
in general.) If P;Q ≥ 0, an equivalent statement to P ≥ Q is

1

sþ P
≤

1

sþQ
; ð3:37Þ

for all s > 0. (If P and Q are strictly positive, one can take
s ¼ 0.) To show this, consider the family of operators

RðtÞ ¼ tPþ ð1 − tÞQ, t ∈ R. Writing _R ¼ dR=dt, we see
that _R ¼ P −Q ≥ 0. We have

d
dt

1

sþ RðtÞ ¼ −
1

sþ RðtÞ
_R

1

sþ RðtÞ : ð3:38Þ

The right-hand side is ≤ 0 since it is of the form −ABA with A
self-adjoint and B ≥ 0. Integrating Eq. (3.38) in t from t ¼ 0

to 1, we learn that 1=½sþ Rð1Þ� ≤ 1=½sþ Rð0Þ�, which is
Eq. (3.37). We describe this result by saying that 1=ðsþ PÞ is
a decreasing function of P, or equivalently that −1=ðsþ PÞ is
an increasing function of P. The opposite inequality that
Eq. (3.37) implies P ≥ Q is proved in the same way, writing
P ¼ 1=T − s, with T ¼ 1=ðsþ PÞ.
So far we assumed that P andQ are bounded. If P andQ are

densely defined unbounded operators, but non-negative, then
it is reasonable to interpret Eq. (3.37) as the definition of what
we mean by P ≥ Q. In general, P and Q are defined on
different (dense) subspaces, so it can be hard to interpret the
statement that h χjPj χi ≥ h χjQj χi for all χ. But 1=ðsþ PÞ
and 1=ðsþQÞ are bounded, and so defined for all χ. The
statement (3.37) just means that

h χj 1

sþ P
j χi ≤ h χj 1

sþQ
j χi; ∀ χ ∈ H: ð3:39Þ

This is a much stronger and more useful statement than just
saying that h χjPj χi ≥ h χjQj χi for all χ on which both P and
Q are defined.
Using

logR ¼
Z

∞

0

ds

�
1

sþ 1
−

1

sþ R

�
; ð3:40Þ

we see that since 1=ðsþ RÞ is a decreasing function of R,
logR is an increasing function of R. Thus P ≥ Q or its
equivalent 1=ðsþ PÞ ≤ 1=ðsþQÞ implies

logP ≥ logQ: ð3:41Þ

So Eq. (3.36) implies that

logΔeU ≥ logΔU : ð3:42Þ

The monotonicity statement (3.35) is simply the expectation
value of this operator inequality in the state Ψ.
The proof of the crucial inequality (3.36) is rather short and

is explained in Sec. III.F. However, we first explain some
background and motivation in Sec. III.E. The goal of Sec. III.E
is to ensure that the reader will consider the result obvious
before actually getting to the proof.
To conclude this section, we explain another monotonicity

statement that will be useful later, and then, to help the reader
appreciate the subtlety of such statements, we explain a
superficially similar version that is false. For 0 < α < 1,
we have

Rα ¼ sin πα
π

Z
∞

0

dssα
�
1

s
−

1

sþ R

�
: ð3:43Þ
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If R depends on a parameter t, and _R ¼ dR=dt, we get

d
dt

Rα ¼ sin πα
π

Z
∞

0

dssα
1

sþ R
_R

1

sþ R
: ð3:44Þ

This is non-negative if _R ≥ 0, so Rα is an increasing function
of R in this range of α. If, however, α > 1, then Rα is in
general not an increasing function of R. For α > 1, the
representation (3.43) is not valid. But if 1 < α < 2, we can
write Rα ¼ R · Rβ, with 0 < β < 1, and then use Eq. (3.43) for
Rβ. So in this range of α,

Rα ¼ sin πðα − 1Þ
π

Z
∞

0

dssα−1
�
R
s
− 1þ s

sþ R

�
; ð3:45Þ

and hence

d
dt

Rα ¼ sin πðα − 1Þ
π

Z
∞

0

dssα−1
�
_R
s
− s

1

sþ R
_R

1

sþ R

�
:

ð3:46Þ

This is not necessarily non-negative for _R ≥ 0, since the last
term is negative definite and can dominate. For an example
with 2 × 2 matrices, set R ¼ ð2

0
0
1
Þ, _R ¼ ð1

1
1
1
Þ, and χ ¼ ð 1

−1Þ.
Then

h χj d
dt

Rαj χi < 0: ð3:47Þ

E. Examples

The relation between SU and SeU is as follows. They are both
defined on a dense set of states by the same formula SaΨ ¼
a†Ψ [together with limiting cases as described in Eq. (3.2)].
The only difference is that the dense subspace on which SU is
defined is larger than the dense subspace on which SeU is
defined. In the case of SeU , a is an element of the algebra AeU ,
while in the case of SU , a is an element of the larger
algebra AU .
Let X and Y be unbounded operators17 on a Hilbert spaceH

(either both linear or both antilinear). If X is defined whenever
Y is defined and they act in the same way on any vector on
which they are both defined, then X is called an extension of
Y. In this situation, as we will see, it is always true that
X†X ≤ Y†Y, and therefore that logX†X ≤ logY†Y. Applied to
the case X ¼ SU , Y ¼ SeU , this is the inequality we want.

The following remarks apply for either U or eU, so we
drop the subscripts from S and Δ. The operator Δ ¼ S†S is
associated with the Hermitian form Fð χ; ηÞ ¼ hS χjSηi, which
is defined on the dense set of vectors χ; η ∈ H in the domain
of S. This Hermitian form is positive definite in the sense that
Fð χ; χÞ ≥ 0 with equality only if χ ¼ 0. Formally

hS†Sηj χi ¼ hS χjSηi: ð3:48Þ

The way we interpret this statement is that if, for some η in the
domain of S, the relation hζj χi ¼ hS χjSηi holds for all χ on
which S is defined, then we define

S†Sη ¼ ζ: ð3:49Þ

In other words, we define S†S on every vector on which it can
be defined so as to make Eq. (3.48) true.
If F and G are two Hermitian forms on H, we say that F is

an extension of G if it is defined whenever G is defined and
they agree where they are both defined. In our problem, we
have two Hermitian forms WUð χ; ηÞ ¼ hSU χjSUηi and
WeUð χ; ηÞ ¼ hSeU χjSeUηi. WU is an extension of WeU because
SU is an extension of SeU . The claim that we motivate here
and prove in Sec. III.F is that in this situation, the operators
ΔU ¼ S†USU and ΔeU ¼ S†eUSeU associated to the two Hermitian

forms satisfy ΔeU ≥ ΔU. In these statements, it does not matter
if S is linear or antilinear or if S maps a Hilbert space H to
itself or to some other Hilbert space H0.
To motivate the claim, we consider a more familiar

example. Let M be a compact region in Rn with boundary
N. Let H be the Hilbert space of square-integrable functions
on M, and H0 the Hilbert space of square-integrable 1-forms
on M. Roughly speaking, we want to consider the exterior
derivative d acting from functions to 1-forms. But we consider
two different versions of this operator. We let T0 be the
exterior derivative acting on continuous functions ϕ on M
such that dϕ is square integrable and ϕ vanishes along the
boundary of M. Such functions are dense in H, so T0 is a
densely defined unbounded operator. We let T1 be the exterior
derivative acting on continuous functions ϕ on M such that
dϕ is square integrable but with no restriction on ϕ along the
boundary of M. Clearly T1 is an extension of T0. The
corresponding Hermitian form F1 is likewise an extension
of the Hermitian form F0:

F0ðϕ; ρÞ ¼ hT0ϕjT0ρi ¼
Z
M
dnx

X
i

∂ϕ̄
∂xi

∂ρ
∂xi ; ð3:50Þ

F1ðϕ; ρÞ ¼ hT1ϕjT1ρi ¼
Z
M
dnx

X
i

∂ϕ̄
∂xi

∂ρ
∂xi . ð3:51Þ

The only difference between F0 and F1 is that in the definition
of F0, ϕ and ρ are required to vanish along N ¼ ∂M, while F1

is defined without this condition.
Now let us compute the operators T†

0T0 and T†
1T1 asso-

ciated to the quadratic forms F0 and F1. Since T0 and T1 are
both defined by the exterior derivative on some class of
functions, it is natural to expect that T†

0T0 and T†
1T1 will both

equal, in some sense, the Laplacian

Δ ¼ d†d ¼ −
Xn
i¼1

∂2

∂x2i : ð3:52Þ

The identity that we need in order to show that T†Tϕ ¼ Δϕ
for some function ϕ (where T may be T0 or T1) is that

17A much more systematic explanation of the requisite facts can be
found in Reed and Simon (1972), Chapter VIII, and Simon (2015),
Chapter VII.5. The example with the Dirichlet and Neumann
Laplacians is analyzed in the latter reference.
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Z
M
dDx

�
−
Xn
i¼1

∂2ϕ̄

∂x2i
�
ρ¼?

Z
M
dnx

Xn
i¼1

∂ϕ̄
∂xi

∂ρ
∂xi ð3:53Þ

for all ρ in the appropriate domain. When we try to prove this
identity by integration by parts, we run into a surface termZ

N
dμð−∂⊥ϕ̄Þρ; ð3:54Þ

where dμ is the Riemann measure of N and ∂⊥ is the inward
normal derivative along N.
If we are trying to define T†

0T0, then ρ and ϕ are constrained
to vanish along N. Therefore, the surface term (3.54) vanishes.
Accordingly, the identity (3.53) is satisfied for any functions
ϕ, ρ in the domain of T0, that is, any functions (continuous and
with square-integrable exterior derivative) that vanish along
N ¼ ∂M. Thus T†

0T0 is the Laplacian Δ acting on functions
that are constrained to vanish on the boundary. This is usually
called the Dirichlet Laplacian, and we denote it as ΔD.
If we are trying to define T†

1T1, then there is no constraint
on ρ along the boundary, and hence to make the surface term
vanish we have to require ∂⊥ϕ ¼ 0 along N. The Laplacian
acting on such functions is usually called the Neumann
Laplacian, and we will denote it as ΔN .
Thus the inequality T†

0T0 ≥ T†
1T1 corresponds in this case

to ΔD ≥ ΔN . To make it obvious that one should expect such
an inequality, we can interpolate between F0 and F1 in the
following way. For λ ≥ 0, we define the Hermitian form

Gλðϕ; ρÞ ¼
Z
M
dnx

X
i

∂ϕ̄
∂xi

∂ρ
∂xi þ λ

Z
N
dμϕ̄ρ; ð3:55Þ

which is defined for continuous functions ϕ, ρ, with square-
integrable first derivative, and also square-integrable restric-
tion to N. The associated quadratic form Gλðϕ;ϕÞ is
increasing with λ for generic ϕ and nondecreasing for all
ϕ. We therefore expect that the operator associated with this
quadratic form, which we call Xλ, will be increasing with λ. Xλ

will again be the Laplacian, with some boundary condition,
since Gλ coincides with the Hermitian forms considered
earlier except for a boundary term.
To identify the boundary condition in Xλ, we observe that in

order to have Xλϕ ¼ Δϕ for some function ϕ, the identity we
need is

hΔϕjρi ¼ Gλðϕ; ρÞ ¼
Z
M
dnx

X
i

∂ϕ̄
∂xi

∂ρ
∂xi þ λ

Z
N
ϕ̄ρ; ð3:56Þ

for all ρ in the domain of Gλ. In trying to prove this identity,
we run into a surface term, which now isZ

N
dμð−∂⊥ϕ̄þ λϕ̄Þρ: ð3:57Þ

The boundary condition that we need is therefore
−∂⊥ϕþ λϕ ¼ 0. The operator Xλ is the Laplacian with this
boundary condition.

Xλ coincides with the Neumann Laplacian ΔN at λ ¼ 0, and
with the Dirichlet Laplacian ΔD in the limit λ → ∞. Since Xλ

is increasing with λ, this accounts for the inequality ΔD ≥ ΔN.
A more compact way to say some of this is that to go from

the Neumann quadratic form to the Dirichlet quadratic form,
we impose a constraint on the wave function: it should vanish
on the boundary. This naturally increases the energy, so it
leads to our inequality.
It is useful, especially with a view to Sec. IV, to consider a

somewhat similar situation in finite dimensions. Let X be a
positive Hermitian matrix acting on Cnþm ¼ Cn × Cm. We
write

X ¼
�

A B

B† C

�
; ð3:58Þ

where A and C are blocks of size n × n and m ×m, acting
on a column vector Ψ ¼ ðψχÞ, with ψ ∈ Cn, χ ∈ Cm. For real

λ > 0, let

Xλ ¼
�

A B†

B† Cþ λ

�
: ð3:59Þ

Clearly Xλ is increasing with λ, and in particular, for s ≥ 0,

1

sþ X
≥

1

sþ Xλ
: ð3:60Þ

On the other hand, for very large λ, 1=ðsþ XλÞ simplifies,
because the upper and lower components decouple:

1

sþ Xλ
∼
�
1=ðsþ AÞ Oð1=λÞ
Oð1=λÞ 1=λ

�
; λ ≫ 0: ð3:61Þ

The inequality (3.60) means that for any Ψ ∈ Cnþm,

hΨj 1

sþ X
jΨi ≥ hΨj 1

sþ Xλ
jΨi: ð3:62Þ

Let us evaluate this for Ψ ¼ ðψ
0
Þ. The right-hand side, for

λ → ∞, reduces to hψ jðsþ AÞ−1jψi. If we define an isometric
embedding U∶Cn → Cnþm by UðψÞ ¼ ðψ

0
Þ, then the left-hand

side is hψ jU†ðsþ XÞ−1Ujψi. So for ψ ∈ Cn,

hψ jU† 1

sþ X
Ujψi ≥ hψ j 1

sþ A
jψi: ð3:63Þ

Integrating over s and using Eq. (3.40), we get

hψ jU†ðlogXÞUjψi ≤ hψ j logAjψi: ð3:64Þ

Since A ¼ U†XU, this is equivalent to

hψ jU†ðlogXÞUjψi ≤ hψ j logðU†XUÞjψi: ð3:65Þ
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F. The proof

Now we will complete the proof of monotonicity of relative
entropy under reducing the size of a region.
Suppose that T is an unbounded, densely defined operator

from one Hilbert spaceH to a possibly different Hilbert space

H0. It is convenient to set bH ¼ H ⊕ H0 and to consider the

graph Γ of T, which is the set of all vectors ðx; TxÞ ∈ bH. Γ is

obviously a linear subspace of bH. The operator T is said to be

closed if Γ is a closed subspace of bH, or equivalently if it is a
Hilbert subspace. For Γ to be closed means that if a sequence

ðxn; TxnÞ ∈ Γ has a limit ðx; yÞ ∈ bH, then this limit is actually
in Γ. In more detail, this amounts to saying that if ðxn; TxnÞ is
a sequence of elements of Γ such that both limits

x ¼ lim
n→∞

xn; y ¼ lim
n→∞

Txn ð3:66Þ

exist, then T is defined on x and Tx ¼ y. The reason that in
defining the Tomita operator SΨ and its relative cousin SΨjΦ,
we included limit points (3.2) was to ensure that these are
closed operators.
If Γ is a closed subspace of a Hilbert space bH, then one can

define an orthogonal projection Π∶bH → Γ. Π is bounded
(with eigenvalues 0,1) and so is defined on all states. Such an
orthogonal projection does not exist if Γ is a linear subspace ofbH that is not closed.
If Γ is the graph of T, then the orthogonal projector Π onto

its graph can be written explicitly as a 2 × 2 matrix18 of
operators acting on a column vector ðψψÞ with ψ ∈ H, χ ∈ H0:

Π ¼
� ð1þ T†TÞ−1 ð1þ T†TÞ−1T†

Tð1þ T†TÞ−1 Tð1þ T†TÞ−1T†

�
: ð3:67Þ

It is straightforward to verify that Π is Hermitian and
Π2 ¼ Π, so Π is an orthogonal projection operator. It
projects onto the graph of T, since ΠðψχÞ ¼ ð η

TηÞ with η ¼
ð1þ T†TÞ−1ðψ þ T† χÞ. Clearly, ð η

TηÞ is in the graph of T, and
every vector in the graph of T is of this form.
We are finally ready for the proof. Suppose that T0, T1 are

densely defined operators from H to H0, with graphs Γ0

and Γ1. LetΠ0 andΠ1 be the projectors onto the two graphs. If
T1 is an extension of T0, then Γ0 is a subspace of Γ1. This
implies that Π1 ≥ Π0, so hΨjΠ1jΨi ≥ hΨjΠ0jΨi for any state
Ψ ¼ ðψχÞ. Specializing to the case χ ¼ 0 and using Eq. (3.67),

we get the inequality

hψ j 1

1þ T†
0T0

jψi ≤ hψ j 1

1þ T†
1T1

jψi: ð3:68Þ

Repeating this analysis with T0=
ffiffiffi
s

p
and T1=

ffiffiffi
s

p
instead of T0

and T1 for some s > 0, we get

hψ j 1

sþ T†
0T0

jψi ≤ hψ j 1

sþ T†
1T1

jψi: ð3:69Þ

Thus T†
1T1 ≤ T†

0T0 and logT†
1T1 ≤ logT†

0T0.
Taking SeU and SU for T0 and T1, this is what we needed to

prove Eq. (3.36) and thus the monotonicity of relative entropy.
There is perhaps just one more detail to clarify. SU and SeU are

usually defined as antilinear operators from a Hilbert space H
to itself. However, an antilinear operator from H to H is the
same as a linear operator from H to H, where H is the
complex conjugate19 of the Hilbert spaceH. So we can regard
SU and SeU as linear operatorsH → H0, withH0 ¼ H, and then

the above analysis applies precisely.
We followed Borchers (2000) in this explanation of whyΔU

increases as the region U is made smaller. Borchers uses this
inequality not to analyze the relative entropy but for another
application. The computation involving the projection on the
graph is much older (Stone, 1951; Halmos, 1969).
It might be helpful to analyze the graphs Γ0 and Γ1 in the

example considered in Sec. III.E. In doing this, for simplicity,
we work in one dimension, so we takeM to be the unit interval
[0, 1] on the x axis. The operators T0 and T1 reduce to d=dx,
acting on functions that are or are not required to vanish at
the end points in the case of T0 or T1, respectively. The graph
Γ0 consists of pairs (fðxÞ; dfðxÞ=dx), where f vanishes at the
end points, and the graph Γ1 consists of pairs (gðxÞ; dgðxÞ=dx)
with no such constraint on g at the end points. We claim that Γ0

is a proper subspace of Γ1. To show this, we show that there are
pairs ðg; g0Þ ∈ Γ1 that are orthogonal to all ðf; f0Þ ∈ Γ0. The
condition of orthogonality isZ

1

0

dxf̄gþ
Z

1

0

dx
df̄
dx

dg
dx

¼ 0: ð3:70Þ

We want to find g such that this is true for all f. The requisite
condition is that �

1 −
d2

dx2

�
g ¼ 0: ð3:71Þ

In verifying that Eq. (3.71) implies Eq. (3.70) for all f, one has
to integrate by parts; there is no surface term as f vanishes at
the end points. Equation (3.71) has a two-dimensional space of
solutions gðxÞ ¼ Aex þ Be−x, so Γ0 is of codimension two
in Γ1.

18Since Π is bounded, also the operators ð1þ T†TÞ−1,
ð1þ T†TÞ−1T†, etc., appearing as matrix elements of the following
matrix are bounded. In particular these operators are defined on
all states. That is actually part of why introducing Π is useful in
making a rigorous proof. For example, when we write
η ¼ ð1þ T†TÞ−1ðψ þ T† χÞ, this formula makes sense because,
although χ may not be in the domain of T†, it is in the domain
of ð1þ T†TÞ−1T†.

19The complex conjugate H̄ of a Hilbert space H is defined as
follows. Vectors in H̄ are in 1-1 correspondence with vectors in H.
But a complex scalar that acts on H as multiplication by λ acts on H̄
as multiplication by λ̄, and inner products in H̄ are complex
conjugates of those inH. H̄ satisfies all the axioms of a Hilbert space.

Edward Witten: APS Medal for Exceptional Achievement in …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045003-15



Directly explaining the relation between the unbounded
operators T0 and T1 is subtle because one has to talk about
two dense but nonclosed subspaces of Hilbert space, one of
which is larger than the other. Passing to the graphs brings the
essential difference into the open, as it now involves a
comparison of the Hilbert spaces Γ0 and Γ1.

IV. FINITE-DIMENSIONAL QUANTUM SYSTEMS AND
SOME LESSONS

In this section, we will explore the modular operators for
finite-dimensional quantum systems and draw some lessons.

A. The modular operators in the finite-dimensional case

In finite dimensions, the interesting case is a tensor product
Hilbert space H ¼ H1 ⊗ H2 with tensor factors H1 and H2.
Such a tensor product describes what is called a bipartite
quantum system. We let A be the algebra of linear operators
acting on H1 and A0 the algebra of linear operators acting on
H2. A linear operator a∶H1 → H1 is taken to act on H as
a ⊗ 1, while a0∶H2 → H2 similarly acts onH as 1 ⊗ a0. The
algebras A and A0 are each other’s commutants, since a linear
transformation of H that commutes with a ⊗ 1 for all a is of
the form 1 ⊗ a0, and vice versa. So from Sec. II.F, we know
that a vector is cyclic forA if and only if it is separating forA0,
and vice versa.
Any vector Ψ ∈ H has an expansion

Ψ ¼
Xn
k¼1

ckψk ⊗ ψ 0
k; ð4:1Þ

where ψk are orthogonal unit vectors in H1 and ψ 0
k are

orthogonal unit vectors in H2. Moreover, we can assume the
ck to be all nonzero (or we could omit some terms from the
sum). We have

ða ⊗ 1ÞΨ ¼
X
k

ckaψk ⊗ ψ 0
k; ð4:2Þ

so a ⊗ 1 annihilates Ψ if and only if a annihilates all of the
ψk. If the ψk are a complete basis for H1, this implies that
a ¼ 0; otherwise, there is some nonzero a that annihilates all
of the ψk. Thus Ψ is separating for the algebraA if and only if
the ψk are a basis of H1; likewise it is separating for A0 if and
only if the ψ 0

k are a basis for H2. Since Ψ is cyclic for one
algebra if and only if it is separating for the other, it follows
that Ψ is cyclic and separating forA and forA0 precisely if the
ψk and the ψ 0

k are orthonormal bases for their respective
spaces. In particular, this is possible precisely ifH1 andH2 are
of equal dimension. Conversely, ifH1 andH2 are of the same
dimension n, then a generic vector Ψ ∈ H1 ⊗ H2 has an
expansion as in Eq. (4.1) with all ck nonzero, and thus is cyclic
and separating for the two algebras. As a matter of notation,
we write ψk ¼ jki, ψ 0

k ¼ jki0. We also abbreviate jji ⊗ jki0 as
jj; ki. Thus

Ψ ¼
Xn
k¼1

ckjkijki0 ¼
Xn
k¼1

ckjk; ki: ð4:3Þ

As a check on some of this, we observe that as H1 and H2

have dimension n, H has dimension n2. The algebras A and
A0 are algebras of n × n matrices, so they likewise are of
dimension n2. So the linear map A → H that takes a ∈ A to
ða ⊗ 1ÞΨ ∈ H is surjective if and only if it has trivial kernel.
In other words, Ψ is separating for A if and only if it is cyclic.
Both properties are true precisely if the ck are all nonzero.
We want to find the modular operators in this situation. The

definition of SΨ∶H → H is

SΨ(ða ⊗ 1ÞΨ) ¼ ða† ⊗ 1ÞΨ: ð4:4Þ

To work out the consequences of this, pick some i and j in the
set f1; 2;…; ng, and let a be the elementary matrix that acts
on H1 by

ajii ¼ jji; ajki ¼ 0 if k ≠ i: ð4:5Þ

Its adjoint acts by

a†jji ¼ jii; a†jki ¼ 0 if k ≠ j: ð4:6Þ

So

ða ⊗ 1ÞΨ ¼ cijj; ii; ða† ⊗ 1ÞΨ ¼ cjji; ji: ð4:7Þ

Thus the definition of SΨ implies

SΨðcijj; iiÞ ¼ cjji; ji: ð4:8Þ

Recalling that SΨ is supposed to be antilinear, this implies

SΨjj; ii ¼
cj
c̄i
ji; ji: ð4:9Þ

That gives a complete description of SΨ, since the states ji; ji
are a basis of H. The adjoint S†Ψ acts by

S†Ψji; ji ¼
cj
c̄i
jj; ii: ð4:10Þ

The modular operator ΔΨ ¼ S†ΨSΨ hence acts by

ΔΨjj; ii ¼
jcjj2
jcij2

jj; ii: ð4:11Þ

To get this formula, one must recall that S†Ψ is antilinear.
We also want to find the antiunitary operator JΨ that

appears in the polar decomposition SΨ ¼ JΨΔ
1=2
Ψ . Since

Δ1=2
Ψ jj; ii ¼

ffiffiffiffiffiffiffiffiffi
jcjj2
jcij2

s
jj; ii; ð4:12Þ

we have
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JΨjj; ii ¼
ffiffiffiffiffiffiffiffi
cjci
c̄jc̄i

r
ji; ji: ð4:13Þ

IfΦ is a second state inH, we can work out in a simple way
the relative operators SΨjΦ and ΔΨjΦ. In some orthonormal
bases ϕα of H1 and ϕ0

α of H2, α ¼ 1;…; n, we have

Φ ¼
Xn
α¼1

dαϕα ⊗ ϕ0
α; ð4:14Þ

with some coefficients dα. We write jαi and jαi0 for ϕα

and ϕ0
α, and abbreviate jαi ⊗ jβi0 ¼ jα; βi, and similarly

jαi ⊗ jii0 ¼ jα; ii, jii ⊗ jαi0 ¼ ji; αi, etc. The state Φ is
cyclic and separating for both algebras if and only if the dα
are all nonzero; we do not assume this. We will determine the
operator SΨjΦ directly from the definition

SΨjΦ(ða ⊗ 1ÞΨ) ¼ ða† ⊗ 1ÞΦ; ∀ a ∈ A: ð4:15Þ

For some i; α ∈ f1; 2;…; ng, suppose that a ∈ A acts by

ajii ¼ jαi; ajji ¼ 0 for j ≠ i: ð4:16Þ

Then

a†jαi ¼ jii; a†jβi ¼ 0 for β ≠ α: ð4:17Þ

So

ða ⊗ 1ÞΨ ¼ cijα; ii; ða† ⊗ 1ÞΦ ¼ dαji; αi: ð4:18Þ

Accordingly

SΨjΦjα; ii ¼
dα
c̄i

ji; αi: ð4:19Þ

The adjoint is characterized by

S†ΨjΦji; αi ¼
dα
c̄i

jα; ii: ð4:20Þ

It follows that

ΔΨjΦjα; ii ¼
jdαj2
jcij2

jα; ii: ð4:21Þ

Some of these formulas can be conveniently described in
terms of density matrices. Let us assume that Ψ, Φ are unit
vectors: X

i

jcij2 ¼
X
α

jdαj2 ¼ 1: ð4:22Þ

To the state Ψ ∈ H1 ⊗ H2, one associates a density matrix
ρ12 ¼ jΨihΨj. It is a matrix acting on H by j χi → jΨihΨj χi;
in other words it is the projection operator onto the subspace
generated by jΨi. In particular, it is positive and has trace 1:

Tr12ρ12 ¼ 1: ð4:23Þ

Here Tr12 represents the trace over H ¼ H1 ⊗ H2. By
taking a partial trace over H2 or H1, one defines reduced
density matrices ρ1 ¼ Tr2ρ12, ρ2 ¼ Tr1ρ12. Here ρ1 and ρ2 are
positive matrices acting onH1 andH2 respectively. They have
trace 1 since for example Tr1ρ1 ¼ Tr1Tr2ρ12 ¼ Tr12ρ12 ¼ 1.
Likewise, one defines a density matrix σ12 ¼ jΦihΦj asso-
ciated to Φ and reduced density matrices σ1 ¼ Tr2σ12,
σ2 ¼ Tr1σ12, all positive and of trace 1.
For the state Ψ defined in Eq. (4.1), the corresponding

reduced density matrices are

ρ1 ¼
X
i

jcij2jiihij; ρ2 ¼
X
i

jcij2jii0hij0: ð4:24Þ

Clearly, ρ1 and ρ2 are invertible if and only if the ci are all
nonzero, that is if and only if Ψ is cyclic separating for both
algebras. Similarly the reduced density matrices of Φ are

σ1 ¼
X
α

jdαj2jαihαj; σ2 ¼
X
α

jdαj2jαi0hαj0: ð4:25Þ

Comparing these formulas to Eqs. (4.11) and (4.21), the
modular operator ΔΨ and the relative modular operator ΔΨjΦ
can be conveniently written in terms of the reduced density
matrices:

ΔΨ ¼ ρ1 ⊗ ρ−12 ; ΔΨjΦ ¼ σ1 ⊗ ρ−12 : ð4:26Þ

The density matrix ρ2 is conjugate to ρ1 under the exchange
jii ↔ jii0, and similarly for σ1 and σ2.
It can be convenient to pick the phases of the states jii0

relative to jii to ensure that the ci are all positive. If we do this,
the antiunitary operator JΨ becomes a simple flip:

JΨji; ji ¼ jj; ii: ð4:27Þ

The existence of a natural antiunitary operator JΨ that flips the
two bases in this way suggests that it is natural (once a cyclic
separating state Ψ is given) to identify H2 as the dual of H1,
by thinking of an element of H1 in the basis jii as a column
vector and an element of H2 in the basis jii0 as a row vector.
Then an element of H ¼ H1 ⊗ H2 is regarded as an n × n
matrix, acting on H1. The Hilbert space inner product of H is
interpreted in terms of matrices x; y∶H1 → H1 as

hxjyi ¼ TrH1
x†y: ð4:28Þ

The action of a ∈ A on H becomes

x → ax ð4:29Þ

and the action of a0 ∈ A0 on H becomes

x → xa0tr; ð4:30Þ

where btr is the transpose of a matrix b. With states
reinterpreted in this way as matrices, the state Ψ becomes

Ψ ¼ ρ1=21 : ð4:31Þ
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This follows upon comparing Eqs. (4.1) and (4.24), remem-
bering that we now take the ck to be positive and interpret
ψk ⊗ ψ 0

k as a matrix jkihkj.
When states are reinterpreted as matrices, Eq. (4.26) for the

action of ΔΨjΦ on a state x becomes ΔΨjΦðxÞ ¼ σ1xðρtr2 Þ−1.
But once we identify H2 as the dual of H1, ρtr2 ¼ ρ1 so

ΔΨjΦðxÞ ¼ σ1xρ−11 : ð4:32Þ

For future reference, we note that this implies

Δα
ΨjΦðxÞ ¼ σα1xρ

−α
1 ; ð4:33Þ

leading to a formula that will be useful later:

hΨjΔα
ΨjΦjΨi ¼ TrH1

ρ1=21 Δα
ΨjΦðρ1=21 Þ

¼ TrH1
ρ1=21 σα1ρ

1=2
1 ρ−α1 ¼ TrH1

σα1ρ
1−α
1 : ð4:34Þ

The identification of H2 with the dual of H1 depended on
the choice of a cyclic separating vector Ψ, so we do not
automatically get an equally simple relation betweenΦ and its
reduced density matrices σ1 and σ2. However, if we are only
interested in σ1 and not σ2, we can act on Φ with a unitary
element of A0 without changing σ1. In general, once we
identify H with the space of matrices acting on H1, Φ
corresponds to such a matrix. As such it has a polar
decomposition Φ ¼ PU, where P is positive and U is unitary.

In general P ¼ σ1=21 . Acting with a unitary element of A0 to
eliminate U, one reduces to Φ ¼ σ1=21 .

B. The modular automorphism group

All of the properties of the operators SΨ, ΔΨ, etc., that we
deduced in general in Secs. III.A and III.B are of course still
true in this finite-dimensional setting.
However, some important additional properties are now

more transparent. Most of these involve what is called the
modular automorphism group. This is the group of unitary
transformations of the form Δis

Ψ, s ∈ R. We already know
[Eq. (3.19)] that Δis

Ψ commutes with JΨ. In the finite-
dimensional setting, we have the explicit formula (4.26) for
ΔΨ. By virtue of this formula, Δis

Ψ ¼ ρis1 ⊗ ρ−is2 . So for any
a ⊗ 1 ∈ A,

Δis
Ψða ⊗ 1ÞΔ−is

Ψ ¼ ρis1 aρ
−is
1 ⊗ 1: ð4:35Þ

The important fact here is that the right-hand side of Eq. (4.35)
is of the form b ⊗ 1 for some b, so it is in A. In other words,
conjugation by the modular group mapsA to itself. It similarly
maps A0 to itself. We summarize this as

Δis
ΨAΔ−is

Ψ ¼ A; Δis
ΨA

0Δ−is
Ψ ¼ A0: ð4:36Þ

On the other hand, conjugation by JΨ exchanges the two
algebras A and A0:

JΨAJΨ ¼ A0; JΨA0JΨ ¼ A: ð4:37Þ

For example, if we choose the phases of the states so that JΨ
flips basis vectors ji; ji as in Eq. (4.27), then JΨða ⊗ 1ÞJΨ ¼
1 ⊗ a� (where a� is the complex conjugate matrix to a) and
likewise Jψð1 ⊗ aÞJΨ ¼ a� ⊗ 1.
The group of unitary transformations Δis

ΨjΦ, s ∈ R, is called

the relative modular group. In the finite-dimensional setting,
Eq. (4.26) leads to

Δis
ΨjΦða ⊗ 1ÞΔ−is

ΨjΦ ¼ σis1 aσ
−is
1 ⊗ 1: ð4:38Þ

Again, conjugation by the relative modular group maps A (or
A0) to itself. But now we see the additional important property
that this conjugation depends only on Φ and not on Ψ. Thus if
Ψ and Ψ0 are two cyclic separating vectors, we have

Δis
ΨjΦða ⊗ 1ÞΔ−is

ΨjΦ ¼ Δis
Ψ0 jΦða ⊗ 1ÞΔ−is

Ψ0 jΦ: ð4:39Þ

The properties just stated are regarded as the main theorems
of Tomita-Takesaki theory. For general infinite-dimensional
von Neumann algebras with cyclic separating vectors, these
properties are not so easy to prove. However, there is a
relatively simple proof (Longo, 1978) in the case of an
infinite-dimensional algebra A that is a limit of matrix
algebras. This is believed to be the case in quantum field
theory for the algebra AU associated to an open set U in
spacetime. The statement means roughly that one can think of
the degrees of freedom in region U as an infinite collection of
qubits. Taking just n of these qubits, one gets an algebraMn of
2n × 2n matrices that is an approximation of AU . Adding
qubits, one gets an ascending chain of algebras M1 ⊂ M2 ⊂
� � � ⊂ Mn ⊂ � � � ⊂ AU with AU as its limit.20 It is believed that
this picture is rigorously valid in quantum field theory. At each

finite step in the chain, one defines an approximation21 ΔðnÞ
Ψ to

the modular operator (or similarly to JΨ or ΔΨjΦ). Each such
approximation obeys Eq. (4.35), and the nature of this
statement is such that if it is true at each step, it remains
true in the limit. Of course the main point of the proof is to

show that ΔðnÞ
Ψ does in an appropriate sense converge to ΔΨ.

Similarly the statements (4.37) and (4.39) have the property
that if true in a sequence of approximations, they remain true
in any reasonable limit. So one should expect these statements
to hold in quantum field theory.
The infinite-dimensional case becomes essentially different

from a finite-dimensional matrix algebra when one considers
the behavior of Δis

Ψ (or Δis
ΨjΦ) when s is no longer real. For a

matrix algebra, there is no problem; Δiz
Ψ ¼ expðiz logΔΨÞ is

an entire matrix-valued function of z. In quantum field theory,
ΔΨ is unbounded and the analytic properties ofΔiz

Ψ χ for a state
χ depend very much on χ. By taking spectral projections, we
can find states χ such that Δiz

Ψ χ is entire in z, just as in

20We will discuss algebras defined in this way in Sec. VI.
21This is done as follows. If Ψ ∈ H is a cyclic separating vector,

then for each n,Hn ¼ MnΨ is a subspace ofH of dimension 22n.Mn

acts on Hn with cyclic separating vector Ψ, so one can define the

modular operator Δhni
Ψ ∶Hn → Hn. One defines ΔðnÞ

Ψ ∶H → H to

coincide with Δhni
Ψ on Hn and to equal 1 on the orthocomplement.
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Sec. II.C we found vectors on which expðic · PÞ acts hol-
omorphically. At the opposite extreme, we can also find states
χ on which Δiz

Ψ χ can only be defined if z is real.
Frequently, however, we are interested in the action of ΔΨ

on a vector aΨ, a ∈ A (or a0Ψ, a0 ∈ A0). Here we have some
simple holomorphy. First of all,Δ1=2

Ψ aΨ has finite norm and so
makes sense as a Hilbert space vector:

jΔ1=2
Ψ aΨj2 ¼ hΔ1=2

Ψ aΨjΔ1=2
Ψ aΨi ¼ haΨjΔΨjaΨi

¼ haΨjS†ΨSΨjaΨi
¼ hSaΨjSaΨi ¼ ha†Ψja†Ψi < ∞: ð4:40Þ

On the other hand, for 0 ≤ r ≤ 1, the inequality λr < λþ 1 for
a positive real number λ implies Δr

Ψ < ΔΨ þ 1. So

hΔr=2
Ψ aΨjΔr=2

Ψ aΨi < hΔ1=2
Ψ aΨjΔ1=2

Ψ aΨi þ haΨjaΨi < ∞;

0 ≤ r ≤ 1: ð4:41Þ

The unitary operator Δis
Ψ, s ∈ R does not change the norm

of a state so Δis
ΨΔ

r=2
Ψ aΨ also has finite norm for s ∈ R,

0 ≤ r ≤ 1=2. The upshot of this is that Δiz
ΨaΨ is continuous in

the strip 0 ≥ Imz ≥ −1=2 and holomorphic in the interior of
the strip. Replacing A with A0 has the effect of replacing the
modular operatorΔΨ with its inverse, aswe learned in Sec. III.A,
so Δiz

Ψa
0Ψ is continuous in the strip 1=2≥ Imz≥0 and hol-

omorphic in the interior of the strip.
In Sec. V, we find in a basic quantum field theory example

that the holomorphy statements that we just made are the best
possible: generically, ΔzaΨ and Δza0Ψ cannot be continued
outside the strips that we identified.
Now for a, b ∈ A, let us look at the analytic properties of

the function

FðzÞ ¼ hΨjbΔiz
ΨajΨi; ð4:42Þ

initially defined for real z. If z ¼ s − ir, this is

hb†ΨjΔis
ΨΔr

ψajΨi ¼ hΔr=2
Ψ b†ΨjΔis

ΨjΔr=2
Ψ aΨi: ð4:43Þ

For r ≤ 1, the statesΔr=2
Ψ aΨ andΔr=2

Ψ b†Ψ are normalizable, as
we have already discussed. So the function FðzÞ is continuous
in the strip 0 ≥ Imz ≥ −1 and holomorphic in the interior of
the strip. On the upper boundary of the strip, we have

FðsÞ ¼ hΨjbΔis
ΨajΨi: ð4:44Þ

Let us determine the boundary values on the lower boundary
of the strip. We have

Fð−iþ sÞ ¼ hΨjbΔ1þis
Ψ ajΨi ¼ hΔ1=2

Ψ b†ΨjΔis
ΨjΔ1=2

Ψ aΨi
¼ hJΨSΨb†ΨjΔis

ΨjJΨSΨaΨi
¼ hJΨbΨjΔis

ΨjJΨa†Ψi ¼ hJΨbΨjJΨΔis
Ψa

†Ψi
¼ hΔis

Ψa
†ΨjbΨi ¼ hΨjaΔ−is

Ψ bjΨi: ð4:45Þ

We used the fact that JΨ is antiunitary and commutes withΔis
Ψ.

To understand what these statements mean for a finite-
dimensional quantum system with H ¼ H1 ⊗ H2 and A
acting on the first factor, consider again the density matrix
ρ12 ¼ jΨihΨj and the reduced density matrix ρ1 ¼ Tr2ρ12.
The “modular Hamiltonian” H is defined by ρ1 ¼ expð−HÞ.
In the definition of FðzÞ,Δiz

ΨaΨ can be replaced byΔiz
ΨaΔ

−iz
Ψ Ψ

since ΔΨΨ ¼ Ψ. As in Eq. (4.35), Δiz
ΨaΔ

−iz
Ψ Ψ ¼ ρiz1 aρ

−iz
1 Ψ ¼

e−izHaeizHΨ. Moreover, for any O that acts on H1,
hΨjOjΨi ¼ TrH1

ρ1O ¼ TrH1
e−HO. Hence

FðzÞ ¼ TrH1
e−Hbe−izHaeizH: ð4:46Þ

From this it is clear that the values for z ¼ s and z ¼ −iþ s
are

FðsÞ ¼ TrH1
e−Hbe−isHaeisH;

Fð−iþ sÞ ¼ TrH2
e−He−isHaeisHb: ð4:47Þ

In the usual physical interpretation, s represents real time,
aðsÞ ¼ e−isHaeisH is a Heisenberg operator at time −s, and
these functions are real time two-point functions in a thermal
ensemble with Hamiltonian H (and inverse temperature 1),
with different operator orderings. The fact that the different
operator orderings can be obtained from each other by analytic
continuation is important, for example, in the derivation of a
general bound on quantum chaos (Maldacena, Shenker, and
Stanford, 2016), and in many other applications.
For a finite-dimensional quantum system, FðzÞ is an entire

function. Let us, however, relax the assumption of finite
dimensionality, while still assuming a factorization H ¼
H1 ⊗ H2 of the Hilbert space. The definition ρ1 ¼ e−H implies
thatH is non-negative, but in the infinite-dimensional case,H is
inevitably unbounded above, given that Trρ1 ¼ 1. For the trace
in Eq. (4.46) to be well behaved, given that H is unbounded
above, both iz and 1 − izmust have non-negative real part. This
leads to the strip 0 ≥ Imz ≥ −1, which we identified earlier
without assuming the factorization H ¼ H1 ⊗ H2.
Assuming the factorization H ¼ H1 ⊗ H2, one would

actually predict further holomorphy of correlation functions.
For example, generalizing Eq. (4.46), a three-point function

Fðz1; z2Þ ¼ TrH1
e−Hce−iz1Hbe−iðz2−z1ÞHaeiz2H ð4:48Þ

should be holomorphic for Imz1, Imðz2 − z1Þ, −1 − Imz2 < 0.
Such statements can actually be proved without assuming a
factorization of the Hilbert space. See Sec. III of Araki (1973)
and also Appendix A.2.
All statements we have made about holomorphy still apply

if ΔΨ is replaced by the relative modular operator ΔΨjΦ.

C. Monotonicity of relative entropy in the finite-dimensional case

Using results of Sec. IV.A, we can compare Araki’s
definition of relative entropy, which we used in discussing
quantum field theory, to the standard definition in nonrela-
tivistic quantum mechanics.
We recall that Araki’s definition for the relative entropy

between two states Ψ, Φ, for measurements in a spacetime
region U, is
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SΨjΦ;U ¼ −hΨj logΔΨjΦ;U jΨi: ð4:49Þ

Here Ψ is a cyclic separating vector for a pair of commuting
algebras AU , A0

U .
In nonrelativistic quantum mechanics, we do not in general

associate algebras with spacetime regions. But we do have the
notion of a vector Ψ that is cyclic separating for a commuting
pair of algebras A, A0. Given a second vector Φ we have the
relative modular operatorΔΨjΦ. Given this, we could imitate in
nonrelativistic quantum mechanics Araki’s definition, which
in terms of the density matrix ρ12 ¼ jΨihΨj is

SΨjΦ ¼ −hΨj logΔΨjΦjΨi ¼ −Tr12ρ12 logΔΨjΦ: ð4:50Þ

From Eq. (4.26), ΔΨjΦ ¼ σ1 ⊗ ρ−12 , so logΔΨjΦ ¼ log σ1 ⊗
1 − 1 ⊗ log ρ2. The relative entropy is then

SΨjΦ ¼ −Tr12ρ12ðlog σ1 ⊗ 1 − 1 ⊗ log ρ2Þ: ð4:51Þ

Here Trρ12ðlog σ1 ⊗ 1Þ ¼ Tr1ρ1 log σ1, as one learns by first
taking the trace over H2. Likewise Trρ12ð1 ⊗ log ρ2Þ ¼
Tr2ρ2 log ρ2. But ρ1 and ρ2 are conjugate as explained at
the end of Sec. IV.A, so Tr2ρ2 log ρ2 ¼ Tr1ρ1 log ρ1. Finally
then

SΨjΦ ¼ Trρ1ðlog ρ1 − log σ1Þ: ð4:52Þ

We have arrived at the usual definition of the relative
entropy in nonrelativistic quantum mechanics. (Of course, that
was Araki’s motivation.) The usual approach runs in reverse
from what we have said. One starts with a Hilbert space H1

and two density matrices ρ1 and σ1. The relative entropy
between them is defined as

Sðρ1jjσ1Þ ¼ Trρ1ðlog ρ1 − log σ1Þ: ð4:53Þ

After introducing a second Hilbert spaceH2, ρ1 and σ1 can be
“purified” by deriving them as the reduced density matrices of
pure states Ψ, Φ ∈ H1 ⊗ H2. The above formulas make clear
that Sðρ1jjσ1Þ is the same as SΨjΦ.
Now let us discuss properties of the relative entropy. Using

the definition (4.50), the proof of positivity of relative entropy
that was described in Sec. III.C carries over immediately to
nonrelativistic quantum mechanics.
There is also an analog in nonrelativistic quantum mechan-

ics of the more subtle property of monotonicity of relative
entropy. We will recall the statement and then explain how
it can be understood in a way similar to what we explained for
quantum field theory in Sec. III. In fact, although we
explained the idea in Sec. III in the context of quantum field
theory, Araki’s point of view was general enough to encom-
pass nonrelativistic quantum mechanics. In our explanation,
we follow Petz (1986), later elaborated by Nielsen and Petz
(2005), who developed an approach based in part on Araki’s
framework.
To formulate the problem of monotonicity of relative

entropy, the first step is to take what we have been calling
H1 to be the Hilbert space of a bipartite system AB. IfHA and
HB are the Hilbert spaces of systems A and B, then the Hilbert

space of the combined system AB is HA ⊗ HB. In what
follows, we call this HAB rather than H1. If we are given
density matrices ρAB and σAB on HAB, then we can define the
reduced density matrices ρA ¼ TrBρAB and σA ¼ TrBσAB on
HA, and the relative entropies SðρABjjσABÞ and SðρAjjσAÞ.
Monotonicity of relative entropy is the statement22

SðρABjjσABÞ ≥ SðρAjjσAÞ: ð4:54Þ

We want to explain how this inequality can be understood in a
way similar to what we said in the quantum field theory case in
Sec. III. In proving this inequality, we assume that ρAB (and
therefore ρA) is invertible. The general case can be reached
from this case by a limit.
In quantum field theory, the starting point was to study two

open sets U, eU with eU ⊂ U. We associated to them algebras
AU , AeU . For the bipartite system AB, we can introduce two
algebras that will play a somewhat similar role. These algebras
will be simply the algebras of matrices acting onHAB andHA,
respectively. We write AAB and AA for these algebras.
In the quantum field theory case, the smaller algebra AeU is

naturally a subalgebra of AU . The closest analog of this in
nonrelativistic quantum mechanics is that there is a natural
embedding φ∶AA → AAB by a → φðaÞ ¼ a ⊗ 1.
By passing from HAB to a doubled Hilbert space

HAB ⊗ H0
AB, we can “purify” ρAB and σAB, in the sense of

deriving them as reduced density matrices on HAB associated
to pure states23 ΨAB, ΦAB ∈ HAB ⊗ H0

AB. Since we assume
ρAB to be invertible,ΨAB is cyclic separating. Likewise, ρA and
σA are reduced density matrices associated to pure states ΨA,
ΦA in a doubled Hilbert space HA ⊗ H0

A, and ΨA is cyclic
separating.
In quantum field theory, the two algebras AU and AeU

naturally act on the same Hilbert spaceHwith the same cyclic
separating vector Ψ. In nonrelativistic quantum mechanics, it
is more natural for the smaller algebraAA to act on the smaller
Hilbert space HA ⊗ H0

A, while the larger algebra AAB acts on
HAB ⊗ H0

AB. The best we can do in nonrelativistic quantum
mechanics to imitate the idea that AU and AeU act on the same
space is to find a suitable isometric embedding

U∶HA ⊗ H0
A → HAB ⊗ H0

AB: ð4:55Þ

The embedding that will enable us to imitate what we had in
quantum field theory is

UðaΨAÞ ¼ ða ⊗ 1ÞΨAB: ð4:56Þ

22This is the version of monotonicity of relative entropy proved by
Lieb and Ruskai (1973). A more general version of Uhlmann (1977)
involves an arbitrary quantum channel. It can be reduced to what is
stated here by considering the Stinespring dilation of the channel.

23The reader may wish to consult Nielsen and Petz (2005), where

they make the specific choice ΨAB ¼ ρ1=2AB , ΨA ¼ ρ1=2A , etc., as in
Eq. (4.31). This leads to short and explicit formulas. The approach
below aims to draw out the analogy with the quantum field theory
case. See also Narnhofer and Thirring (1985) and Ghosh and Raju
(2017) for somewhat similar explanations.
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Since ΨA is cyclic separating, this formula does define a
unique linear transformation U∶HA ⊗ H0

A → HAB ⊗ H0
AB,

and since ΨAB is separating, this linear transformation is an
embedding. To show that it is an isometry, which means that
hηj χi ¼ hUηjU χi for all η, χ ∈ HA ⊗ H0

A, we observe that as
ΨA is cyclic, we can take η ¼ aΨA, χ ¼ bΨA. We need then
haΨAjbΨAi ¼ hða ⊗ 1ÞΨABjðb ⊗ 1ÞΨABi. Indeed

hða ⊗ 1ÞΨABjðb ⊗ 1ÞΨABi ¼ hΨABjða†b ⊗ 1ÞΨABi
¼ TrρABa

†b ⊗ 1

¼ TrρAa
†b ¼ hΨAja†bjΨAi

¼ haΨAjbΨAi: ð4:57Þ

Finally, the isometric embedding that we defined commutes
with the action of AA in the sense that for any χ ∈ HA ⊗ H0

A,
we have Uða χÞ ¼ φðaÞUð χÞ. Indeed, if χ ¼ bΨA, we have

Uða χÞ ¼ UðabΨAÞ ¼ ðab ⊗ 1ÞΨAB

¼ ða ⊗ 1Þðb ⊗ 1ÞΨAB ¼ φðaÞUð χÞ: ð4:58Þ

This shows that, if we identify a with φðaÞ, we can regard AA
as a subalgebra of AAB and the action of AA on HA ⊗ H0

A is
unitarily equivalent to its action on a subspace of
HAB ⊗ HAB

0. We are almost ready to imitate the proof of
Sec. III, but we still have to compare the relative modular
operators.
We have a relative modular operator ΔΨABjΦAB

for the
algebra AAB acting on HAB ⊗ H0

AB, and a corresponding
relative modular operator ΔΨAjΦA

for the algebra AA acting on
HA ⊗ H0

A. To lighten the notation, we write just ΔAB and ΔA

instead of ΔΨABjΦAB
and ΔΨAjΦA

.
The last fact that we need for the proof of monotonicity

of relative entropy is that our isometric embedding
U∶HA ⊗ H0

A → HAB ⊗ H0
AB intertwines the relative modular

operators, in the sense that

U†ΔABU ¼ ΔA: ð4:59Þ

Here U†∶HAB ⊗ H0
AB → HA ⊗ H0

A is the adjoint of
U∶HA ⊗ H0

A → HAB ⊗ H0
AB. It is possible to work out an

explicit formula for U†, but we will not need it. To prove
Eq. (4.59), it is enough to verify that the left- and right-hand
sides have the same matrix elements between arbitrary states
a†Ψ and bΨ. This is actually a rather direct consequence of
Eq. (3.27). For the matrix element of ΔA, we have

ha†ΨAjΔAjbΨAi ¼ hb†ΦAjaΦAi
¼ hΦAjbajΦAi
¼ TrAσAba: ð4:60Þ

The corresponding matrix element of U†ΔABU is

ha†ΨAjU†ΔABUjbΨAi ¼ hUða†ΨAÞjΔABjUðbΨAÞi
¼ hða† ⊗ 1ÞΨABjΔABjðb ⊗ 1ÞΨABi
¼ hðb† ⊗ 1ÞΦABjða ⊗ 1ÞΦABi
¼ hΦABjðba ⊗ 1ÞjΦABi
¼ TrABσABðba ⊗ 1Þ ¼ TrAσAba:

ð4:61Þ

Equation (3.65) (which was proved for an arbitrary iso-
metric embedding), when combined with Eq. (4.59), gives us
an inequality

U†ðlogΔABÞU ≤ logΔA: ð4:62Þ

Now we are finally ready to compare the relative entropies

SðρAjjσAÞ ¼ −hΨAj logΔAjΨAi;
SðρABjjσABi ¼ −hΨABj logΔABjΨABi: ð4:63Þ

Using Eq. (4.62), we have

SðρAjjσAÞ ¼ −hΨAj logΔAjΨAi
≤ −hΨAjU†ðlogΔABÞUjΨAi
¼ −hUΨAj logΔABjUΨAi
¼ −hΨABj logΔABjΨABi
¼ SðρABjjσABÞ: ð4:64Þ

This completes the proof.
Was it obvious that this proof would work, or did it depend

on checking tricky details? Hopefully, we succeeded in
convincing the reader that this explanation—which largely
follows (Petz, 1986) and (Nielsen and Petz, 2005)—is the
natural analog of what was explained for quantum field theory
in Sec. III. Philosophically, it might seem obvious that
quantum field theory is not simpler than nonrelativistic
quantum mechanics, so that an analogous proof in non-
relativistic quantum mechanics must work somehow.
The only property of the logarithm that we used was that

logX is an increasing function of a positive operator X. Many
other functions have the same property; an example, as shown
in Sec. III.D, is the function Xα, 0 ≤ α ≤ 1. Replacing
− logΔAB in Eq. (4.64) with Δα

AB (and reversing the direction
of the inequality because of the sign), we get

hΨAjΔα
AjΨAi ≥ hΨABjΔα

ABjΨABi: ð4:65Þ

Evaluating this with the help of Eq. (4.34), we learn that24

TrAσαAρ
1−α
A ≥ TrABσαABρ

1−α
AB ; 0 ≤ α ≤ 1: ð4:66Þ

24For recent applications of this inequality, see Bernamonti et al.
(2018). They consider also the case of α < 0, which can be analyzed
by replacing Eq. (3.43) with Rα ∼

R∞
0 dssα=ðsþ RÞ (in a certain

range of α).
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This inequality is saturated at α ¼ 0, since TrAρA ¼
TrABρAB ¼ 1. Expanding around α ¼ 0, the leading term in
the inequality gives back the monotonicity of relative entropy.
Similarly, the only property of the states ΨA and ΨAB that was
used was thatUΨA ¼ ΨAB. One can derive further inequalities
by replacing ΨA and ΨAB by aΨA and UðaΨAÞ ¼
ða ⊗ 1ÞΨAB. These inequalities (in a formulation originally
in terms of convexity rather than monotonicity) go back to
Wigner, Yanase, and Dyson (Wigner and Yanase, 1963) and
Lieb (1973), with later work by Araki (1976) and Petz (1986),
among others.
We conclude this section by briefly explaining how

positivity and monotonicity of relative entropy are related
to other important concepts in quantum information theory.
The von Neumann entropy SðρÞ of a density matrix ρ is
defined as

SðρÞ ¼ −Trρ log ρ: ð4:67Þ
Consider a bipartite system AB with Hilbert space
HAB ¼ HA ⊗ HB, density matrix ρAB and reduced density
matrices ρA ¼ TrBρAB, ρB ¼ TrAρAB. One sets SAB ¼ SðρABÞ,
SA ¼ SðρAÞ, etc. The mutual information IðA;BÞ between
subsystems A and B is defined as

IðA;BÞ ¼ SA þ SB − SAB: ð4:68Þ
Subadditivity of quantum entropy is the statement that
IðA;BÞ ≥ 0 for all ρAB. To prove this, define the product
density matrix σAB ¼ ρA ⊗ ρB for system AB. The relative
entropy between ρAB and σAB is

SðρABjjσABÞ ¼ TrABρABðlog ρAB − log σABÞ: ð4:69Þ

Since log σAB ¼ log ρA ⊗ 1þ 1 ⊗ log ρB, this is

SðρABjjσABÞ
¼ TrABρABðlog ρAB − log ρA ⊗ 1 − 1 ⊗ log ρBÞ
¼ −SAB þ SA þ SB ¼ IðA;BÞ: ð4:70Þ

Thus, subadditivity of quantum entropy follows from pos-
itivity of relative entropy. For strong subadditivity of quantum
entropy (Lieb and Ruskai, 1973), one considers a tripartite
system ABC with Hilbert space HA ⊗ HB ⊗ HC and density
matrix ρABC. One can define various reduced density matrices,
such as ρAB ¼ TrCρABC, with corresponding entropy SAB,
and likewise for other subsystems. Strong subadditivity of
quantum entropy is the statement that mutual information is
monotonic in the sense that

IðA;BÞ ≤ IðA;BCÞ: ð4:71Þ

Expanding this out using the definition of the mutual
information, an equivalent statement is

SB þ SABC ≤ SAB þ SBC: ð4:72Þ

To deduce strong subadditivity from the monotonicity of
relative entropy, we compare the two tripartite density

matrices ρABC and σABC ¼ ρA ⊗ ρBC. As we have just seen,
the relative entropy between them is

SðρABCjjσABCÞ ¼ IðA;BCÞ: ð4:73Þ

On the other hand, taking a partial trace over system C, the
reduced density matrices for the AB subsystem are ρAB and
σAB ¼ ρA ⊗ ρB. The relative entropy between them is

SðρABjjσABÞ ¼ IðA;BÞ: ð4:74Þ

Monotonicity of relative entropy tells us that taking the
trace over subsystem C can only make the relative entropy
smaller, so

SðρABjjσABÞ ≤ SðρABCjjσABCÞ: ð4:75Þ

Putting the last three statements together, we arrive at strong
subadditivity.

V. A FUNDAMENTAL EXAMPLE

A. Overview

A certain simple decomposition of Minkowski spacetime
provides an important (and well-known) illustration of some
of these ideas.
We factorize D-dimensional Minkowski spacetime MD as

the product of a two-dimensional Lorentz signature spacetime
R1;1 with coordinates t, x and a (D − 2)-dimensional
Euclidean space RD−2 with coordinates y⃗ ¼ ðy1;…; yD−2Þ.
Thus the metric is

ds2 ¼ −dt2 þ dx2 þ dy⃗ · dy⃗: ð5:1Þ

In this spacetime, we let Σ be the initial value surface t ¼ 0

(Fig. 3). We let Vr be the open right half-space in Σ, defined by
x > 0. The complement of its closure, which we call Vl, is the
left half-space x < 0. The domain of dependence of Vr is what
we call the right wedge Ur, defined by x > jtj. And the domain
of dependence of Vl is what we call the left wedge Ul, defined
by x < −jtj. These wedgelike regions are also often called
Rindler spaces (Rindler, 1966). Finally, we denote as Ar and
Al the algebras of observables in Ur and Ul, respectively.
They commute and we will learn that they are each other’s
commutants.
LetΩ be the vacuum state of a quantum field theory onMD.

The goal of this section will be to determine the modular
operators JΨ and ΔΨ for observations in region Ur. This
problem was first analyzed and solved by Bisognano and
Wichmann (1976). Their approach involved the analytic
behavior of correlation functions and will be sketched in
Sec. V.C. But first, in Sec. V.B, we explain a direct path
integral approach. This path integral approach is important
in Unruh’s thermal interpretation of accelerated motion in
Minkowski spacetime (Unruh, 1976), which we explain in
Sec. V.D. It is also closely related to analogous path integral
derivations of the thermal nature of black hole physics
(Hawking, 1975, 1977) and of correlation functions in
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de Sitter spacetime (Figari, Hoegh-Krohn, and Nappi, 1975;
Gibbons and Hawking, 1977). As this approach is relatively
well known, we will be brief.
The CPT symmetry of quantum field theory will enter in

what follows, so we pause to discuss it. CPT acts as −1 on all
space and time coordinates. The basic reason that CPT is an
unavoidable symmetry of quantum field theory in 3þ 1

dimensions is that in Euclidean signature,25 the transformation
that acts as −1 on all four coordinates is in the connected
component of the rotation group. (If we factor R4 as R2 × R2,
then a simultaneous π rotation on each copy of R2 acts as −1
on all four coordinates.) Therefore, in Euclidean signature this
operation is inevitably a symmetry of any rotation-invariant
theory. After continuation back to Lorentz signature, this
symmetry becomes CPT.
The statement that a transformation of Euclidean space that

acts as −1 on all coordinates is in the connected component
of the rotation group is true in and only in even spacetime
dimension. For odd D, that operation has determinant −1 and
is not in the connected component of the rotation group.
Accordingly, for oddD, there is no CPT symmetry in general.
A better formulation that is uniformly valid in any dimension
is to replace parity—a sign change of all spatial coordinates—
with a reflection of just one spatial coordinate. We call this
operation R. Regardless of the spacetime dimension, a
simultaneous sign change of both the time t and one spatial
coordinate x is in the identity component of the rotation group
in Euclidean signature, as it is a π rotation of the xt plane.
Thus, the universal symmetry of quantum field theory in any

dimension is CRT rather than CPT. In 3þ 1 dimensions,
CPT is the product of CRT times a π rotation of two spatial
coordinates, so the two are essentially equivalent.
Because CPT or CRT is antiunitary, it reverses the signs

of conserved charges. Historically, P and T were defined to be
good approximate symmetries of ordinary matter (until the
1950s, they were assumed to be exact symmetries). Since
ordinary matter is made of leptons and baryons without
antileptons and antibaryons, P and T were defined to
commute with baryon number and lepton number. With this
choice, the universal discrete symmetry does not coincide with
PT or RT and deserves to be called CPT or CRT, to express
the fact that it reverses conserved charges.26

B. Path integral approach

We continue to Euclidean signature, setting t ¼ −iτ.
Euclidean path integrals are an effective way to compute
the vacuum state Ω of a quantum field theory. Thus, the path
integral on, say, the half-space τ ≤ 0, as a function of
boundary values on the hyperplane τ ¼ 0, gives a way to
compute Ω [Fig. 4(a)].
Suppose it were true that the Hilbert space H of a quantum

field theory has a factorization H ¼ Hl ⊗ Hr, where Hl and
Hr are Hilbert spaces of degrees of freedom located at x < 0

and x > 0 respectively, and thus acted on by the algebras Al
andAr. In this case, starting with the pure state density matrix
jΩihΩj and taking a partial trace on the degrees of freedom in

(a) (b) (c)

FIG. 4. (a) The path integral on the half-space τ < 0 as a
function of boundary values of the fields gives a way to compute
the vacuum wave function Ω. (b) To compute the reduced density
matrix of the vacuum for the right half of the surface τ ¼ 0 by a
Euclidean path integral, we use the path integral on the lower
half-space τ < 0 to compute a vacuum bra hΩj, and the path
integral on the upper half-space τ > 0 to compute a vacuum ket
jΩi. Then we glue together the left halves of the boundaries of the
τ < 0 and τ > 0 half-spaces, identifying the field variables on
those boundaries in the bra and the ket. The net effect—a path
integral on the upper half-space and the lower half-space together
with an integral over field variables on half of the τ ¼ 0
hypersurface—produces a path integral on the space depicted
here. It can be obtained from Euclidean space RD by making a
“cut” along the half-hyperplane τ ¼ 0, x ≥ 0. (c) Sketched here is
a Euclidean wedge of opening angle θ.

FIG. 3. The right wedge Ur and the left wedge Ul in Minkowski
spacetime. They are the domains of dependence of the right half
and left half of the initial value surface t ¼ 0, which are labeled as
Vr and Vl.

25The rigorous proof ofCPT invariance can be conveniently found
in Streater and Wightman (1964). It depends on the holomorphy
statement of Eq. (2.11). Holomorphy is built in for free when one
starts in Euclidean signature, so if one assumes that a quantum field
theory can be obtained by analytic continuation from Euclidean
signature, then one can see CPT without a careful discussion of
conditions of holomorphy.

26Both R and what is usually called CT come from the same
operation in Euclidean signature (reflection of one spatial coordi-
nate), continued back to Lorentz signature in different ways. So
purely from a relativistic point of view, it would be natural to
exchange the names T and CT and refer to the universal discrete
symmetry as PT or RT, rather than CPT or CRT. However, this
would involve too much conflict with standard terminology.
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Hl, we could define a reduced density matrix ρr on Hr.
Technically, it is not quite true that H has the suggested
factorization, but assuming that it does will lead to a correct
and illuminating determination of the operators ΔΩ and JΩ for
the vacuum state.
To formally construct the density matrix ρr for the right

half-space, we simply reason as follows. Very roughly, think
of the vacuum wave function Ω as a function Ωðϕl;ϕrÞ that
depends on field variables ϕl in the left half-space and ϕr in
the right half-space. (We schematically write ϕl or ϕr for all
the field variables at x < 0 or x > 0.) The density matrix
jΩihΩj is as usual a function jΩðϕ0

l;ϕr
0ÞihΩðϕl;ϕrÞj that

depends on two sets of field variables. A partial trace overHl
to get the density matrix ρr is carried out by setting ϕ0

l ¼ ϕl

and integrating over ϕl:

ρrðϕr
0;ϕrÞ ¼

Z
DϕljΩðϕl;ϕr

0ÞihΩðϕl;ϕrÞj: ð5:2Þ

This has a simple path integral interpretation. The bra
hΩðϕl;ϕrÞj can be computed, as already noted, by a path
integral on the lower half-space τ ≤ 0, and similarly the ket
jΩðϕ0

l;ϕr
0Þi can be computed by a path integral on the upper

half-space. To set ϕl ¼ ϕ0
l, we glue together the portion

x < 0 of the boundaries of the upper and lower half-spaces.
This gluing gives the spacetime W2π that is sketched in
Fig. 4(b).W2π is a copy of Euclidean space except that it has
been “cut” along the half-hyperplane t ¼ 0, x > 0. (The
reason for the notation W2π will be clear in a moment.) In
Eq. (5.2), the path integral over the lower half-space to get
hΩj, the path integral over the upper half-space to get jΩi,
and the final integral over ϕl to take a partial trace all
combine together to make a path integral over W2π. In this
path integral, boundary values ϕr and ϕr

0 are specified just
below and above the cut.
To identify the modular operator ΔΨ, we want to give a

Hamiltonian interpretation to the path integral in W2π . For
this, we first consider a path integral on a Euclidean wedgeWθ

of opening angle θ [Fig. 4(c)]. This path integral can be
viewed as computing an operator. A matrix element of this
operator between initial and final states is computed by
specifying an initial state at the lower boundary of the wedge
and a final state at the upper boundary. The wedge operator is
a Euclidean rotation of the τx plane by an angle θ. Thus, the
rotation acts by

Rθ

�
τ

x

�
¼

�
cos θ sin θ

− sin θ cos θ

��
τ

x

�
: ð5:3Þ

To identify in familiar terms the operator that acts in this way
in Euclidean signature, let us express the formula in terms of
real time t ¼ −iτ:

Rθ ¼
�
t

x

�
¼

�
cos θ −i sin θ
−i sin θ cos θ

��
t

x

�
¼

�
coshðiθÞ − sinhðiθÞ
− sinhðiθÞ coshðiθÞ

��
t

x

�
: ð5:4Þ

Looking at the right-hand side, we see a Lorentz boost of the
tx plane by an imaginary boost parameter −iθ. The generator
of such a Lorentz boost can be written as an integral over the
initial value surface t ¼ 0:

K ¼
Z
t¼0

dxdy⃗xT00: ð5:5Þ

It has been defined to map the right wedge forward in time,
and the left wedge backward in time. Formally we can write

K ¼ Kr − Kl; ð5:6Þ

where Kr and Kl are partial Lorentz boost generators

Kr ¼
Z
t¼0;x≥0

dxdy⃗xT00;

Kl ¼ −
Z
t¼0;x≥0

dxdy⃗xT00. ð5:7Þ

The minus sign is included so that Kl boosts the left wedge
forward in time, just as Kr does to the right wedge.27

The operator K is self-adjoint, and the unitary operator that
implements a Lorentz boost by a real boost parameter η is
expð−iηKÞ. Setting η ¼ −iθ, we learn that, in real time
language, the path integral on the wedge Wθ constructs the
operator expð−θKrÞ. The path integral on the wedge prop-
agates the degrees of freedom on the right half-space only, so
the operator in the exponent is Kr, not K. To get the density
matrix ρr of the right wedge, we set θ ¼ 2π:

ρr ¼ expð−2πKrÞ: ð5:8Þ

A precisely similar analysis shows that the density matrix of
the left wedge is

ρl ¼ expð−2πKlÞ: ð5:9Þ

We want to combine these results to determine the modular
operator ΔΩ for the vacuum state Ω, for the algebra Ar of
observables in the right wedge. Factoring the Hilbert space as
H ¼ Hl ⊗ Hr and using Eq. (4.26) (where we identify Hr
and Hl with H1 and H2), the modular operator is

ΔΩ ¼ ρr ⊗ ρ−1l ¼ expð−2πKrÞ expð2πKlÞ ¼ expð−2πKÞ:
ð5:10Þ

In the last step, we use the fact that formally the operators Kr
and Kl commute, since they act respectively on Hr and Hl.

27Rather as there is not a rigorous factorizationH ¼ Hl ⊗ Hr, the
operators Kl and Kr are not really well defined as Hilbert space
operators, although of course the difference K ¼ Kr − Kl is a well-
defined Hilbert space operator. Kl and Kr have well-defined matrix
elements hΨjKlj χi and hΨjKrj χi between suitable Hilbert space
states χ andΨ, but if one tries to compute the norm of the stateKlj χi
or Krj χi, one will find a universal ultraviolet divergence, near x ¼ 0,
independent of the choice of χ. This is related to the fact that the
factorization H ¼ Hl ⊗ Hr is not really correct.
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Now let us consider a state ajΩi obtained by acting on the
vacuum with an operator a ∈ Ar, supported on the right
wedge. For simplicity, we assume that a well-defined operator
a can be given by smearing a local operator ϕ in space with no
corresponding smearing in time. This is so if the dimension
of ϕ, measured in the ultraviolet, is less than ðD − 1Þ=2. It is
not true that the operator product algebra of a quantum field
theory is always generated by operators of such relatively low
dimension, so in general the following discussion has to be
modified to allow a very slight smearing in time, but we
omit this.
Under our hypothesis, the state ajΩi can be computed by a

path integral on the lower half-space, with an insertion of the
operator a on the right half of the boundary [Fig. 5(a)]. Now
let us consider the state

Δα
ΩajΩi ¼ expð−2παKÞajΩi

¼ expð2παKlÞ expð−2παKrÞajΩi: ð5:11Þ

The operator expð−2παKrÞ is implemented by gluing on a
wedge of opening angle 2πα to the right half of the boundary
in Fig. 5(a), while the operator expð2παKlÞ removes such a
wedge from the left. If we add one wedge and remove the
other, and also rotate the picture so that the boundary is still
horizontal, we arrive at Fig. 5(b). There is still a path integral
on the lower half-plane, but now the operator a is inserted at
an angle −2πα relative to where it was before. We can
continue in this way until we get to α ¼ 1=2. This case is
depicted in Fig. 5(c). What at α ¼ 0 was an operator insertion
a on the right boundary at x > 0 has now turned into the
insertion of some other operator ea on the left boundary at
x < 0. As ea is inserted on the left boundary, it is an element of
the algebra A0. Thus for a ∈ Ar,

Δ1=2
Ω ajΩi ¼ eajΩi; ð5:12Þ

for some ea ∈ Al. A similar statement holds, of course, with
Al and Ar exchanged.
We have learned that ΔαajΩi is a well-defined Hilbert

space state for 0 ≤ α ≤ 1=2. But we cannot go farther. The
operator Δα has removed a wedge of angle 2πα from the left
side of the picture. By the time we reached α ¼ 1=2, there is
no wedge left to remove on that side and we have to stop. On
the other hand, there is no problem in acting on any Hilbert
space state with the unitary operator Δis. So a more general
conclusion is that, as was claimed in Sec. IV.B, Δiz

ΩajΩi is
holomorphic in the strip 0 > Imz > −1=2 (and continuous on
the boundary of the strip) but not beyond.
Our final goal in this discussion is to determine and exploit

the modular conjugation JΩ. We use the fact that SΩ ¼ JΩΔ1=2

is supposed to satisfy

SΩajΩi ¼ a†jΩi; a ∈ Ar: ð5:13Þ

For simplicity, let us assume that the operator algebra of our
theory is generated by a Hermitian scalar field ϕ. To determine
what JΩ must be, it suffices to consider the case that a is equal
to either ϕ or _ϕ ¼ dϕ=dt, inserted on the right wedge at the
initial value surface t ¼ 0. Since ϕ and _ϕ are both Hermitian,
we want

SΩϕð0; x; y⃗ÞjΩi ¼ ϕð0; x; y⃗ÞjΩi;
SΩ _ϕð0; x; y⃗ÞjΩi ¼ _ϕð0; x; y⃗ÞjΩi: ð5:14Þ

(One could introduce a smearing function in these statements,
but this would not change what follows.) Instead, from
Eq. (5.12), we have

Δ1=2
Ω ϕð0; x; y⃗ÞjΩi ¼ ϕð0;−x; y⃗ÞjΩi;

Δ1=2
Ω

_ϕð0; x; y⃗ÞjΩi ¼ − _ϕð0; x; y⃗ÞjΩi: ð5:15Þ

The reason for the minus sign in the second line is that acting
withΔ1=2

Ω turns a future-pointing time derivative acting on ϕ in
Fig. 5(a) into a past-pointing time derivative in Fig. 5(c), so it
reverses the sign of dϕ=dt. Comparing Eqs. (5.13) and (5.15),
we see that we want

JΩϕð0; x; y⃗ÞJΩ ¼ ϕð0;−x; y⃗Þ;
JΩ _ϕð0; x; y⃗ÞJΩ ¼ − _ϕð0;−x; y⃗Þ: ð5:16Þ

In other words, JΩ is supposed to be an antiunitary operator
that maps x → −x, t → −t, y⃗ → y⃗.
The antiunitary operator that acts in this way on any

Hermitian scalar field (with an analogous action on fields
of other types) is the operator CRT that was discussed in
Sec. V.A. Thus

JΩ ¼ CRT: ð5:17Þ

We now pause a moment to explain more explicitly why
this operator is traditionally called CRT rather than RT.

(a)

(c)

(b)

FIG. 5. (a) The state ajΩi can be obtained by a path integral in
the lower half-plane, with a inserted on the right half of the
boundary. (b) Acting with expð2παKlÞ expð−2παKrÞajΩi adds a
wedge of opening angle 2πα to the right boundary and removes
one from the left boundary. If we rotate the picture so that the
boundary is again horizontal, it looks like this; the operator a is
now inserted on a ray that is at an angle 2πα from the horizontal.
(c) By the time we get to α ¼ 1=2, a is inserted on the left
boundary of the lower half-plane. We cannot extend this process
further.
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Consider a theory with two Hermitian scalar fields ϕ1 and ϕ2

rotated by an SOð2Þ symmetry with generator

Q ¼
Z
t¼0

dxdy⃗ðϕ1
_ϕ2 − _ϕ1ϕ2Þ: ð5:18Þ

This charge is odd under JΩ, since ϕ1 and ϕ2 are even while
_ϕ1 and _ϕ2 are odd. So JΩ reverses the sign of Q, and similarly
of any other Hermitian conserved charge. Since R and T are
traditionally defined to commute with Lorentz-invariant con-
served charges while JΩ reverses their sign, JΩ corresponds to
what is traditionally called CRT rather than RT. CRT is a
universal symmetry of relativistic quantum field theory, while
there is no universal symmetry corresponding to RT.
In this example, we can explicitly verify the deeper

properties of the modular automorphisms Δis
Ω and JΩ that

were described in Sec. IV.B. Δis
Ω implements a Lorentz boost

with a real boost parameter 2πs, so it is an automorphism of
the algebras Al and Ar of the two wedges. And JΩ ¼ CRT
exchanges the two wedges so it exchanges the two algebras.
In general, in Tomita-Takesaki theory, the modular con-

jugation JΩ exchanges an algebra A with its commutant A0.
So in the present context, the fact that JΩ exchanges Al and
Ar tells us that these algebras are commutants:

A0
l ¼ Ar; A0

r ¼ Al: ð5:19Þ

This is how Bisognano and Wichmann (1976) proved Haag
duality for complementary Rindler spaces.

C. The approach of Bisognano and Wichmann

The path integral derivation of the last section is extremely
illuminating, and it gives the right result although it is not
altogether rigorous. (The flaws all involve an imprecise treat-
ment of the boundary between the two regions at x ¼ 0.) Here,
following the presentation by Borchers (2000), we briefly
sketch the original approach of Bisognano and Wichmann
(1976). The main difference is that instead of a Euclidean path
integral and a claimed factorization H ¼ Hl ⊗ Hr, one uses
holomorphy.
Since JΩ ¼ CRT certainly acts as in Eq. (5.16), to

determine ΔΩ and SΩ, we have to justify the claim that for
a ∈ Ar,

expð−2πKÞajΩi ¼ eajΩi; ð5:20Þ

where ea is obtained from a by t; x; y⃗ → −t;−x; y⃗. In checking
this, we can take a to be a product of field operators

a ¼ ϕðt1; x1; y⃗1Þϕðt2; x2; y⃗2Þ � � �ϕðtn; xn; y⃗nÞ ð5:21Þ

inserted in the right wedge Ur at points pi ¼ ðti; xi; y⃗iÞ,
i ¼ 1; 2;…; n. Moreover, we can take the points pi to be
spacelike separated from each other; as the field operators
ϕðti; xi; y⃗iÞ thereby commute, we can order them so that
xj ≥ xi for j > i. Even more specifically, we can restrict to

xj − xi > jtj − tij; j > i: ð5:22Þ

It suffices to consider operators a of this form roughly because
states ajΩiwith a of this type are dense28 inH, so in particular
they are dense among all states ajΩi, a ∈ Ar. For a precise
statement, see Lemma 3.1.7 in Borchers (2000).
For real s, the Lorentz boost operator expð−2πisKÞ is

unitary and its action on a state ajΩi is straightforward to
determine. The normal coordinates y⃗ play no role in what
follows so we omit them to simplify the notation. A Lorentz
boost expð−2πisKÞ maps x ¼ ðtxÞ to

x0ðsÞ¼
�
t0ðsÞ
x0ðsÞ

�
¼
�
coshð2πsÞ sinhð2πsÞ
sinhð2πsÞ coshð2πsÞ

��
t

x

�
: ð5:23Þ

The corresponding transformation of operators in the
Heisenberg picture is

ϕ(xðηÞ) ¼ expð2πiηKÞϕðxÞ expð−2πiηKÞ: ð5:24Þ

So for real η, remembering that KΩ ¼ 0,

expð2πiηKÞϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi
¼ ϕ(x01ðηÞ)ϕ(x02ðηÞ) � � �ϕ(x0nðηÞ)jΩi: ð5:25Þ

We want to analytically continue this formula in η. If it can be
continued to η ¼ i=2, then, since x0ði=2Þ ¼ −x, Eq. (5.25)
will give the desired result (5.20).
In Sec. II.B, we learned that the H-valued function

Fðx01; x02;…; x0nÞ ¼ ϕðx01Þϕðx02Þ � � �ϕðx0nÞjΩi ð5:26Þ

is holomorphic in x01;…; x0n in a certain domain. To be precise,
if x0i ¼ ui þ ivi with real ui, vi, then Fðx01; x02;…; x0nÞ is
holomorphic in the domain in which v1 and viþ1 − vi are
future timelike.
We claim that if the points x1, x2;…; xn are chosen as in

Eq. (5.22), then for 1=2 > Imη > 0, the points x01ðηÞ,
x02ðηÞ;…; x0nðηÞ are in the domain of holomorphy that was
just described. Since this statement is manifestly invariant
under real Lorentz boosts, it suffices to verify it for imaginary
η, say η ¼ ib, 0 < b < 1=2. Let x be either x1 or one of the
differences xiþ1 − xi. Our assumptions imply in each case that
x is in the right wedge x > jtj. We have to show that the
imaginary part of x0ðηÞ, defined in Eq. (5.23) (with s replaced
by η ¼ ib), is future timelike for the claimed range of b. We
compute �

t0ðηÞ
x0ðηÞ

�
¼

�
t cos 2πbþ ix sin 2πb

x cos 2πbþ it sin 2πb

�
: ð5:27Þ

Since x > jtj, the imaginary part is future timelike for
0 < b < 1=2, which ensures that sin 2πb > 0. The H-valued

28One can see this by reviewing the proof of the Reeh-Schlieder
theorem from Sec. II.B. The proof would go through perfectly well if
one begins by assuming only that the functions φðx1; x2;…; xnÞ ¼
h χjϕðx1Þϕðx2Þ � � �ϕðxnÞjΩi [Eq. (2.5)] vanish under the hypothesis
(5.22); one can still prove in the same way that these functions vanish
identically for all x1; x2;…; xn.
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function on the right-hand side of Eq. (5.25) is thus hol-
omorphic for 1=2 > Imη > 0, and continuous up to the
boundary at Imη ¼ 1=2. (It cannot be continued holomorph-
ically beyond that.) This is precisely enough to justify setting
η ¼ i=2 in Eq. (5.25), and thus to complete the proof.

D. An accelerating observer

The problem discussed is closely related to Unruh’s
question (Unruh, 1976) of what is seen by an observer
undergoing constant acceleration in Minkowski spacetime,
say in the xt plane. The worldline of the observer (Fig. 6) is�

tðτÞ
xðτÞ

�
¼ R

�
sinhðτ=RÞ
coshðτ=RÞ

�
; ð5:28Þ

where τ is the observer’s proper time; the proper acceleration
is a ¼ 1=R. As before, we abbreviate ðtðτÞxðτÞÞ as xðτÞ.
We suppose that the observer probes the vacuum Ω

of Minkowski spacetime by measuring a local operator O
and its adjoint O† along this worldline. For simplicity,
we consider only the two-point functions O ·O†, but we
consider both operator orderings. Thus, we suppose that the
observer has access to hΩjO(xðτ1Þ)O†(xðτ2Þ)jΩi and
hΩjO†(xðτ2Þ)O(xðτ1Þ)jΩi. Lorentz invariance implies that
these functions depend only on τ ¼ τ1 − τ2, so there is no
essential loss to set τ2 ¼ 0 and to consider the two functions:

FðτÞ ¼ hΩjO(xðτÞ)O†(xð0Þ)jΩi;
GðτÞ ¼ hΩjO†(xð0Þ)O(xðτÞ)jΩi: ð5:29Þ

Unruh’s basic insight was that these correlation functions
have thermal properties. The basic property of real time two-
point functions in a thermal ensemble, as already explained in
Eqs. (4.46) and (4.47), is that there is a holomorphic function
on a strip in the complex plane whose boundary values on the
two boundaries of the strip are FðτÞ and GðτÞ. In general, the
width of the strip is 2πβ, where β is the inverse temperature; in

the derivation of Eqs. (4.46) and (4.47), we took β ¼ 1 so the
width of the strip was 2π. We give two derivations of Unruh’s
result, first starting in real time and deducing the holomorphic
properties of the correlation functions, and second starting
in Euclidean signature and analytically continuing back to
real time.
To understand the analytic properties of the real time

correlation functions, we first analytically continue the
observer’s trajectory. We set τ=R ¼ sþ iθ with real s, θ
and compute that

xðτÞ ¼ R

�
sinh s cos θ þ i cosh s sin θ

cosh s cos θ þ i sinh s sin θ

�
: ð5:30Þ

Thus

ImxðτÞ ¼ R sin θ

�
cosh s

sinh s

�
: ð5:31Þ

FðτÞ is holomorphic when ImxðτÞ is future timelike and GðτÞ
is holomorphic when ImxðτÞ is past timelike. So FðτÞ is
holomorphic in the strip 0 < θ < π and continuous on the
boundaries of that strip; we describe this more briefly by
saying that FðτÞ is holomorphic in the strip 0 ≤ θ ≤ π.
Similarly GðτÞ is holomorphic in the strip π ≤ θ ≤ 2π (or
equivalently but less conveniently −π ≤ θ ≤ 0).
In terms of τ, FðτÞ is holomorphic for 0 ≤ Imτ ≤ πR.

At Imτ ¼ 0, FðτÞ is simply the original correlation function
hΩjO(xðτÞ)O†(xð0Þ)jΩi on the observer’s worldline. On the
other boundary of the strip at Imτ ¼ πR, xðτÞ is again real:

xðτ þ iπRÞ ¼ −xðτÞ ¼ −R
�
sinhðτ=RÞ
coshðτ=RÞ

�
: ð5:32Þ

So the boundary values at τ ¼ Rðsþ iπÞ are

F(Rðsþ iπÞ) ¼ hΩjO( − xðRsÞ)O†(xð0Þ)jΩi: ð5:33Þ

Similarly, GðτÞ at Imτ ¼ 2πR is simply the original
correlation function hΩjO†(xð0Þ)O(xðτÞ)jΩi on the observ-
er’s worldline. But at Imτ ¼ πR, we get, similarly to (5.33),

G(Rðsþ iπÞ) ¼ hΩjO†(xð0Þ)O( − xðRsÞ)jΩi: ð5:34Þ

Crucially, the operators O( − xðRsÞ) and O†(xð0Þ) com-
mute, since for all real s, −xðRsÞ is spacelike separated from
xð0Þ (see Fig. 6). So the correlation functions in Eqs. (5.33)
and (5.34) are equal.
Thus, we have one function FðτÞ that is holomorphic for

πR ≥ Imτ ≥ 0 and another function GðτÞ that is holomorphic
for 2πR ≥ Imτ ≥ πR; moreover at Imτ ¼ πR, these two
functions are equal. It follows that we can define a single
function HðτÞ on the combined strip 2πR ≥ Imτ ≥ 0 by

HðτÞ ¼
�
FðτÞ if πR ≥ Imτ ≥ 0;

GðτÞ if 2πR ≥ Imτ ≥ πR:
ð5:35Þ

FIG. 6. An accelerating trajectory xðτÞ in the right quadrant of
the xt plane. The point τ ¼ 0 is marked. Shown in dotted lines,
on the left, is the mirror trajectory −xðτÞ, which can be obtained
from the first by a shift in imaginary time. The two trajectories are
spacelike separated.
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This function is holomorphic in the combined strip and
continuous on its boundaries. (For the proof of holomorphy
on the line Imτ ¼ πR where the two functions were glued
together, see Fig. 8 in Appendix A.2.) The boundary values at
the top and bottom boundaries of the strip are the two
correlation functions that we started with, with the two
possible operator orderings.
We have arrived at the usual analytic behavior of a real time

two-point correlation function in a thermal ensemble: two-
point functions with different operator ordering are opposite
boundary values of a single function that is holomorphic
in a strip. We found a strip of width 2πR, so the effective
temperature is 1=2πR.
A derivation that begins with the Euclidean correlation

functions might be more transparent. Let tE ¼ it be the
Euclidean time. A Euclidean version of Eq. (5.28) is

tE ¼ R sin θ; x ¼ R cos θ: ð5:36Þ

This is the thermal circle that is related to the observations of
the accelerated observer. Let xE ¼ ðtEx Þ. In Euclidean space,
one considers the correlation function hO(xEðθÞ)O†(xEð0Þ)i.
A priori, a Euclidean correlation function has no operator
interpretation. To introduce an operator interpretation, one
picks a direction as Euclidean time and introduces a transfer
matrix that propagates operators in that direction. Then
Euclidean correlation functions acquire an operator interpre-
tation, with the operators being ordered in the direction of
increasing Euclidean time. For example, if tE is chosen as the
Euclidean time direction, then a general Euclidean two-point
function is interpreted in the transfer matrix formalism as

hOðtE; xÞO†ðt0E; x0Þi

¼
� hΩjOðtE; xÞO†ðt0E; x0ÞjΩi if tE ≥ t0E;

hΩjO†ðt0E; x0ÞOðtE; xÞjΩi if t0E ≥ tE:
ð5:37Þ

As before, this is consistent because if tE ¼ t0E, the operator
ordering does not matter. Given this, the operator ordering
in the operator interpretation of the Euclidean correlation
function hO(xEðθÞ)O†(xEð0Þ)i depends on the sign of
tE ¼ R sin θ, as in the previous derivation. When we analyti-
cally continue hO(xEðθÞ)O†(xEð0Þ)i from a function of θ to a
function of τ ¼ Rðsþ iθÞ, we get the two operator orderings
depending on the sign of sin θ, as before. This distinction
remains in the limit θ → 0�, where we recover the real time
correlation functions with different operator orderings.

VI. ALGEBRAS WITH A UNIVERSAL DIVERGENCE IN
THE ENTANGLEMENT ENTROPY

A. The problem

Let U be an open set in Minkowski spacetime. It has a local
algebra A ¼ AU with commutant A0 (which, if Haag duality
holds, is AU 0 for some other open set U 0). As in Sec. II.F, we
understandA andA0 to be von Neumann algebras of bounded
operators (closed under Hermitian conjugation and weak
limits, and containing the identity operator). They act on

the Hilbert spaceH of the theory in question with the vacuum
state Ω as a cyclic separating vector.
For a finite-dimensional quantum system, the existence of

such a cyclic separating vector would imply a factorization
H ¼ H1 ⊗ H2, with A acting on one factor and A0 on the
other. Such a factorization cannot exist in quantum field
theory, for it would imply the existence of tensor product
states ψ ⊗ χ with no entanglement between U and U 0.
Instead, in quantum field theory, there is a universal ultraviolet
divergence in the entanglement entropy.
The essence of the matter is that in quantum field theory, the

divergence in the entanglement entropy is not a property of
the states but of the algebras A and A0. These algebras are not
the familiar type I von Neumann algebras which can act
irreducibly in a Hilbert space. Instead they are more exotic
algebras with the property that the structure of the algebra has
the divergence in the entanglement entropy built in. In this
section, we explain barely enough about von Neumann
algebras to indicate how that comes about.

B. Algebras of type I

A type I von Neumann algebra A can act irreducibly by
bounded operators on a Hilbert space K. We will only be
interested here in algebras that have trivial centers (consisting
only of complex scalars).29 Under this restriction, A will
actually consist of all bounded operators on K. We also only
consider Hilbert spaces of at most countably infinite
dimension.
If K has finite dimension d, then all operators on K are

bounded. We say that the algebra of operators on K is of type
Id. If K is infinite dimensional, we call the algebra of bounded
operators onK an algebra of type I∞. A von Neumann algebra
(with trivial center) acting irreducibly on a Hilbert space is
always of one of these two types.
A “trace” on a von Neumann algebra is a linear function

a → Tra that satisfies Trab ¼ Trba and Tra†a > 0 for a ≠ 0.
Obviously, an algebra of type Id has a trace. For type I∞, we
can define a trace that has the right properties except that it
cannot be defined on the whole algebra as it may diverge; for
instance, the trace of the identity operator on an infinite-
dimensional Hilbert space is þ∞.
In constructing more exotic algebras, we are interested in

algebras that can be constructed as limits of matrix algebras.
(Such algebras are called hyperfinite.) Such constructions
were introduced and developed by von Neumann (1938),
Powers (1967), and Araki and Woods (1968).

C. Algebras of type II

The first nontrivial example is the hyperfinite type II1
factor of Murray and von Neumann. It can be constructed as
follows from a countably infinite set of maximally entangled
qubit pairs.

29A von Neumann algebra with trivial center is called a factor.
Factors exhibit the main subtleties of von Neumann algebras, and von
Neumann algebras that are not factors are built from factors in a
relatively simple way. So it is natural to concentrate on factors here.
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Let V be a vector space consisting of 2 × 2 complex
matrices, with Hilbert space structure defined by
hv; wi ¼ Trv†w. Let M2 and M0

2 be two copies of I2, the
algebra of 2 × 2 complex matrices. We letM2 andM0

2 act on V
on the left and right, respectively. Thus a ∈ M2 acts on v ∈ V
by v → av, and a0 ∈ M0

2 acts on v by v → va0tr where tr is the
transpose. Obviously, M2 and M0

2 are commutants.
We can view V as a tensor product W ⊗ W0, where W is a

space of two-component column vectors acted on by M2 and
W0 is a space of two-component row vectors acted on by M0

2.
Thus V is a bipartite quantum system. Let I2 be the 2 × 2

identity matrix. A normalized maximally entangled vector in
V is given by I02 ¼ I2=

ffiffiffi
2

p
.

Now consider a countably infinite set of copies of this
construction; thus, for k ≥ 1, let V ½k� be a space of 2 × 2

matrices acted on on the left byM½k�
2 and on the right byM0

2
½k�.

Roughly speaking, we want to consider the infinite tensor
product V ½1� ⊗ V ½2� ⊗ � � � ⊗ V ½k� ⊗ � � �. However, taken liter-
ally, this infinite tensor product is a vector space of uncount-
able dimension. To get a Hilbert space of countably infinite
dimension, we instead proceed as follows. To start with, we
define a space H0 that consists of tensor products

v1 ⊗ v2 ⊗ � � � ⊗ vk ⊗ � � � ∈ V ½1� ⊗ V ½2� ⊗ � � � ⊗ V ½k� ⊗ � � �
ð6:1Þ

such that all but finitely many of the vk are equal to I02. This
gives a countably infinite-dimensional vector space, but not
yet a Hilbert space. To make a Hilbert space, we first define an
inner product on H0. This is done as follows. If v ¼ v1 ⊗
v2 ⊗ � � � and w ¼ w1 ⊗ w2 ⊗ � � � are elements of H0, then
there is some n such that vk and wk both equal I02 for k > n.
We truncate v and w at vhni ¼ v1 ⊗ v2 ⊗ � � � ⊗ vn,
whni ¼ w1 ⊗ w2 ⊗ � � � ⊗ wn, and define

hv; wi ¼ Trv†hniwhni: ð6:2Þ

This does not depend on where the truncation was made.
Having defined a Hermitian inner product onH0, we complete
it to get a Hilbert space H, which is called a restricted tensor
product of the V ½k�. For v1 ⊗ v2 ⊗ � � � ⊗ vn ⊗ � � � to be a
vector in the restricted tensor product, the vn must tend rapidly
to I02 for n → ∞.
We do something similar with the algebras. Roughly

speaking, we want to define an algebra A as an infinite

tensor product M½1�
2 ⊗ M½2�

2 ⊗ � � � ⊗ M½n�
2 ⊗ � � �. However, a

general element a ¼ a1 ⊗ a2 ⊗ � � � ⊗ an ⊗ � � � cannot act
on the restricted tensor product H. (Acting on
v1 ⊗ v2 ⊗ � � � ⊗ vn ⊗ � � �, it would not preserve the con-
dition that the vn go rapidly to I02 for n → ∞.) To get around
this, we first define an algebra A0 that consists of elements
a ¼ a1 ⊗ a2 ⊗ � � � ⊗ an ⊗ � � � such that all but finitely many
of the ai are equal to I2. This algebra acts on H, and it obeys
all the conditions of a von Neumann algebra except that it is
not closed. To make it closed we add limits. We say that a
sequence aðkÞ ∈ A0 converges if limn→∞aðnÞ χ exists for all
χ ∈ H; if so, we define an operator a∶H → H by

a χ ¼ limn→∞aðnÞ χ, and we define A to include all such
limits. This definition ensures that for a ∈ A, χ ∈ H, a χ is a
continuous function of a. Note that the definition of A
depends on a knowledge of the Hilbert space that it is
supposed to act on, which entered the question of which
sequences aðnÞ converge. This will be important in Sec. VI.D.
The commutant of A is an isomorphic algebra A0 that is

defined in just the same way, as a subalgebra of M0
2
½1� ⊗

M0
2
½2� ⊗ � � � ⊗ M0

2
½n� ⊗ � � �.

The vector

Ψ ¼ I02 ⊗ I02 ⊗ � � � ⊗ I02 ⊗ � � � ∈ H ð6:3Þ

is cyclic separating for A and for A0. (To show that aΨ ≠ 0

for any nonzero a ∈ A, we approximate a by a linear
combination of tensor products a1 ⊗ a2 ⊗ � � � ⊗ an ⊗ � � �,
where in each term an ¼ I2 for sufficiently large n, and
observe that a nonzero element of this kind certainly does
not annihilate Ψ.)
A natural linear function on the algebra A is defined by

FðaÞ ¼ hΨjajΨi. Since Ψ is separating for A, any nonzero
a ∈ A satisfies aΨ ≠ 0 and hence Fða†aÞ > 0. We claim that
the function F has the defining property of a trace:
FðabÞ ¼ FðbaÞ. Indeed, if a ¼ a1 ⊗ a2 ⊗ � � � ⊗ an ⊗ � � �,
b ¼ b1 ⊗ b2 ⊗ � � � ⊗ bn ⊗ � � � with an, bn ¼ I2 for n > k,
then

FðabÞ ¼ Tr
M½1�

2
⊗M½2�

2
⊗���⊗M½k�

2

a1b1 ⊗ a2b2 ⊗ � � � ⊗ akbk

¼ FðbaÞ: ð6:4Þ

Since elements a, b of the form just considered are dense inA,
the general result FðabÞ ¼ FðbaÞ follows by taking limits,
given the way thatA was defined. Since the function FðaÞ has
the properties of a trace, we denote it as Tra.
We recall that in the case of a type I∞ algebra, one can

define a trace on a subalgebra but the trace of the identity
element is infinite. By contrast, a hyperfinite type II1 algebra
has a trace that is defined on the whole algebra, and which we
have normalized so that Tr1 ¼ 1.
The entanglement entropy in the state Ψ is infinite, since

each factor of I02 represents a perfectly entangled qubit pair
shared between A and A0. Replacing Ψ by another vector in
H will only change the entanglement entropy by a finite or
at least less divergent amount, because of the way the
restricted tensor product was defined. So the leading
divergence in the entanglement entropy is universal, as in
quantum field theory.
Another fundamental fact—more or less equivalent to the

universal divergence in the entanglement entropy—is that the
type II1 algebra A has no irreducible representation.
A acts on the Hilbert spaceH that we have constructed, but

this action is far from irreducible, as it commutes with the
action of A0 on the same space. We can make a smaller
representation of A by projecting H onto an invariant sub-
space. Set J2 ¼ ð1

0
0
0
Þ and consider the following element ofA0:

Π0
k ¼ J2 ⊗ J2 ⊗ � � � ⊗ J2 ⊗ I2 ⊗ I2 ⊗ � � � ð6:5Þ
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with precisely k factors of J2 and the rest I2. This is a
projection operator with30 TrΠ0

k ¼ 2−k. The subspace HΠ0 of
H (that is, the set of all elements of H of the form χΠ0 for
some χ ∈ H) is a representation of A that, in a sense that was
made precise by Murray and von Neumann, is smaller by a
factor of 2k. We can keep going and never get to an irreducible
representation. Concretely, Π0

k projects onto vectors v1 ⊗
v2 ⊗ � � � ⊗ vn ⊗ � � � ∈ H such that v1, v2;…; vk are of the
form ðst 00Þ. To get an irreducible representation of A, we must
impose such a condition on vn for all n, but an infinite tensor
product of vectors of this type is not in H.
The type II1 algebra that we considered has some properties

in common with local algebras in quantum field theory—they
share a universal divergence in the entanglement entropy and
the absence of an irreducible representation. But local algebras
in quantum field theory do not possess a trace.

D. Algebras of type III

More general algebras can be constructed by proceeding
similarly, but with reduced entanglement.
For 0 < λ < 1, define a matrix

K2;λ ¼
1

ð1þ λÞ1=2
�
1 0

0 λ1=2

�
: ð6:6Þ

This matrix describes a pair of qubits with nonzero but also
nonmaximal entanglement. (We sometimes include the case
λ ¼ 1; note that K2;1 is the matrix I02 of Sec. VI.B.)
In the construction of a Hilbert space H in Sec. VI.C,

replace I02 everywhere by K2;λ. Thus, consider the space
H0 spanned by vectors v1 ⊗ v2 ⊗ � � � ⊗ vn ⊗ � � � ∈ V ½1� ⊗
V ½2� ⊗ � � � ⊗ V ½n� ⊗ � � � such that all but finitely many of the
vn are equal to K2;λ. DefineHλ to be the Hilbert space closure
of H0. Similarly, to define an algebra, start with the same A0

that we used in Sec. VI.C, and take its closure in the space of
bounded operators acting on Hλ. This gives a von Neumann
algebra Aλ. Aλ differs from the algebra A constructed in
Sec. VI.C because the Hilbert space Hλ differs from the
Hilbert space H of that section. In other words, the condition
for a sequence of operators an ∈ A0 to converge depends on
which vectors the an are supposed to act on, so it depends on
the choice of the matrix K2;λ.
Again, the commutant A0

λ is defined similarly and is
isomorphic to Aλ. The vector Ψ ¼ K2;λ ⊗ K2;λ ⊗ � � � ⊗
K2;λ ⊗ � � � is cyclic and separating for Aλ and for A0

λ. The
corresponding function FðaÞ ¼ hΨjajΨi does not satisfy
FðabÞ ¼ FðbaÞ, and indeed the algebra Aλ does not admit
a trace.
The entanglement entropy betweenAλ andA0

λ in the stateΨ
is divergent, because Ψ describes an infinite collection of
qubit pairs each with the same entanglement. As in Sec. VI.C,

this divergence is universal; any state in Hλ has the same
leading divergence in the entanglement entropy.
As in Sec. VI.C, the action of Aλ on Hλ is far from

irreducible; it can be decomposed as finely as one wishes
using projection operators in A0

λ. In this case, however,
although we will not prove it, the invariant subspaces in
which Hλ can be decomposed are isomorphic as represen-
tations of Aλ to Hλ itself: a hyperfinite von Neumann
algebra of type III has only one nontrivial representation,
up to isomorphism. All statements in the last three para-
graphs also apply to the additional type III algebras that we
come to momentarily.
Powers (1967) proved that Aλ and Aλ̃ for λ ≠ eλ are

nonisomorphic. Araki and Woods (1968) considered a gen-
eralization of this construction involving a sequence λ1,
λ2;…; 0 < λi ≤ 1. Now one considers vectors v1 ⊗ v2 ⊗
� � � ⊗ vn ⊗ � � � ∈ V ½1� ⊗ V ½2� ⊗ � � � ⊗ V ½n� ⊗ � � � such that
vn ¼ K2;λn for all but finitely many n. Such vectors make a
vector space H

0;λ⃗ whose Hilbert space closure gives a Hilbert
space Hλ⃗. To construct an algebra Aλ⃗, we start with the same
algebra A0 as before, and take its closure in the space of
bounded operators on Hλ⃗. The commutant A0

λ⃗
is constructed

similarly, and

Ψλ⃗ ¼ K2;λ1 ⊗ K2;λ2 ⊗ � � � ⊗ K2;λn ⊗ � � � ð6:7Þ

is a cyclic and separating vector for this pair of algebras. (The
expectation hΨjajΨi is not a trace unless the λi are all 1.)
Araki and Woods (1968) showed that if the sequence

λ1; λ2;… converges to some λ satisfying 0 < λ < 1, then this
construction gives the same type IIIλ algebra as before. If the
sequence converges to 0, one gets an algebra of type I∞ if the
convergence is fast enough. If it is not fast enough, one gets a
new algebra that is defined to be of type III0.
However, if the sequence λ1; λ2;… does not converge and

has at least two limit points in the interval 0 < λ < 1, which
are generic in a sense that will be described in Sec. VI.E,
then the algebra Aλ⃗ is a new algebra that is defined to be of
type III1.

E. Back to quantum field theory

Local algebras AU in quantum field theory are of31 type III,
since they do not have a trace—even one defined only on part
of the algebra. In fact, they are believed to be of type III1. We
will give a somewhat heuristic explanation of this statement,
by using the spectrum of the modular operator to distinguish
the different algebras.
Because of the way the algebras were constructed from an

infinite tensor product of 2 × 2 matrix algebras, we can
understand the modular operator by looking first at the
2 × 2 case. Let us return to the case of a single product
M2 ×M0

2 acting on a Hilbert space V of 2 × 2 matrices, with
the cyclic separating vector K2;λ. We factorize V ¼ W ⊗ W0

30More generally, for every real x with 0 ≤ x ≤ 1, A0 has a
projection operator Π0

x with TrΠ0
x ¼ x. Projecting on the image of Π0

x

(acting on H on the right) gives a representation of A whose
“dimension” in the sense of Murray and von Neumann is x.

31This was first shown for free fields by Araki (1964), before the
finer classification of type III algebras was known; see also Longo
(1982) and Fredenhagen (1985).
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in terms of column and row matrices. The reduced density
matrices for the two factors are

ρ1 ¼ ρ2 ¼
1

1þ λ

�
1 0

0 λ

�
: ð6:8Þ

According to Sec. IV.A, ΔΨ acts on a 2 × 2 matrix x ∈ V by
x → ρ1xðρtr2 Þ−1. We see that, in this case, its eigenvalues are
1; λ, and λ−1.
Now let us consider the type IIIλ algebra Aλ that was

constructed in Sec. VI.D. It has the cyclic separating vector

Ψ ¼ K2;λ ⊗ K2;λ ⊗ � � � ⊗ K2;λ ⊗ � � � ð6:9Þ

constructed as an infinite tensor product of copies of K2;λ. In
this case,ΔΨ is an infinite tensor product of the answer that we
just found in the 2 × 2 case. The eigenvalues of ΔΨ are all
integer powers of λ, each occurring infinitely often. The
accumulation points of the eigenvalues32 are the powers of λ
and 0 (which is an accumulation point as it is the large n limit
of λn). More generally, the vector Ψλ⃗ ¼ K2;λ1 ⊗ K2;λ2 ⊗
� � � ⊗ K2;λn ⊗ � � � is cyclic separating for Aλ if the λk
approach λ sufficiently fast. The operator ΔΨλ⃗

now has a
more complicated set of eigenvalues, but 0 and the integer
powers of λ are still accumulation points. Still more generally,
in the case of a type IIIλ algebra, for any cyclic separating
vector Ψ, not necessarily of the form Ψλ⃗, the integer powers of
λ and 0 are accumulation points of the eigenvalues. Roughly
this is because any cyclic separating vector can be very well
approximated by only changing the original one in Eq. (6.9) in
finitely many factors.
For type III0, the λk are approaching 0 and the only

unavoidable accumulation points of the eigenvalues of ΔΨλ⃗

are 0 and 1. These values continue to be accumulation points if
Ψλ⃗ is replaced by any cyclic separating vector of a type III0
algebra.
Now let us consider a type III1 algebra. Suppose that in

Eq. (6.7), the λk take the two values λ and eλ, each infinitely
many times. Then the eigenvalues of ΔΨλ⃗

consist of the

numbers λneλm, n;m ∈ Z, each value occurring infinitely many
times. If λ and eλ are generic, then every non-negative real
number can be approximated arbitrarily well33 as λneλm, with
integers n,m. So in this case all non-negative real numbers are
accumulation points of the eigenvalues. This is the hallmark of
a type III1 algebra: for any cyclic separating vector Ψ, the
spectrum of ΔΨ (including accumulation points of eigenval-
ues) comprises the full semi-infinite interval ½0;∞Þ.

Now let us return to quantum field theory and consider the
case that U is a wedge region, as analyzed in Sec. V. The
modular operator for the vacuum stateΩ isΔΩ ¼ expð−2πKÞ,
where K is the Lorentz boost operator. K has a continuous
spectrum consisting of all real numbers, so ΔΩ has a
continuous spectrum consisting of all positive numbers. In
particular, all points in ½0;∞Þ are in that spectrum. Now
suppose we replace Ω by some other cyclic separating vector
Ψ. At short distances, any state is indistinguishable from the
vacuum. So we would expect that acting on excitations of very
short wavelength, ΔΨ can be approximated by ΔΩ and
therefore has all points in ½0;∞Þ in its spectrum. See
Fredenhagen (1985) and Sec. V.6 of Haag (1992) for more
precise statements. Thus the algebra AU is of type III1.
What about other open sets U ⊂ M? For an important class

of examples, let Σ be an initial value surface, and let V ⊂ Σ be
an open subset whose closure V̄ has a nonempty boundary. Let
UV ⊂ M be the domain of dependence of V. Its closure ŪV has
a “corner” along the boundary of V̄. Let ΔΩðUVÞ be the
modular operator of the state Ω for the algebra AUV

. For very
high energy excitations localized near the corner, UV looks
like the wedge region U. So one would expect that for such
high energy excitations, ΔΩðUVÞ looks like the Lorentz boost
generators and has all positive real numbers in its spectrum.
Again, changing the state will not matter. So again in this case,
the algebra AUV

is of type III1.
According to the Borchers timelike tube theorem, which

was already mentioned at the end of Sec. II.F, for many open
sets U that are not of the form UV , AU actually coincides with
some AUV

where U ⊂ UV . So then AU is again of type III1.

VII. FACTORIZED STATES

A. A Question

Let U and U 0 be complementary open sets with local
algebras AU , AU 0 . (We recall that complementary open sets
are each other’s causal complements and there is no “gap”
between them.) If one had a factorization of the Hilbert space
H ¼ H1 ⊗ H2 with each algebra acting on one of the two
factors, then one could specify independently the physics in U
and in U 0. For any Ψ ∈ H1, χ ∈ H2, the tensor product state
Ψ ⊗ χ would look like Ψ for observations in U and like χ for
observations in U 0.
In fact, there is no such factorization and it is not possible to

independently specify the state in U and in U 0.
Suppose, however, that there is a “gap” between U and U 0,

leaving room for another open set U 00 that is spacelike
separated from both of them (Fig. 7). Then, given states Ψ,
χ ∈ H, the question of finding a state looking like Ψ in U and
like χ in U 0 is not affected by ultraviolet divergences. But
there is still a possible obstruction, which arises if there is
some nontrivial operator x (not a multiple of the identity) that
is in both AU and AU 0 . Such an operator is central in both AU
and AU 0 (since these algebras commute with each other). In
Minkowski spacetime, it is reasonable based on what we know
from canonical quantization to expect that AU and AU 0 have
trivial center and trivial intersection, but in general, in more
complicated spacetimes, this might fail (Schroer, 2017;

32Mathematically, the “spectrum” of an unbounded operator is
defined to include accumulation points of its eigenvalues, along with
the eigenvalues themselves and a possible continuous spectrum. The
accumulation points and the possible continuous spectrum are
important in the following remarks.

33The case that this is not true is that there is some λ0 with λ ¼ λ0n,eλ ¼ λ0m, n, m ∈ Z. Then the spectrum of ΔΨλ⃗
consists of integer

powers of λ0, and the algebra is of type IIIλ0 .
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Harlow and Ooguri, 2018). If there is some x ∈ AU ∩ AU 0

with hΨjxjΨi ≠ h χjxj χi, then obviously, since x can be
measured in either U or U 0, there can be no state that looks
like Ψ in U and like χ in U 0.
In proceeding, we assume that there is a gap between U and

U 0 and that the intersection of the two algebras is trivial. We
impose a further restriction on the boundedness of U and/or U 0

that is discussed later. Given this, it actually is possible,34 for
any Ψ, χ ∈ H, to find a state that is indistinguishable from Ψ
for measurements in U, and indistinguishable from χ for
measurements in U 0.
We make use of the gap between U and U 0 in two ways.

First, it ensures that the union of the two open sets,bU ¼ U ∪ U 0, is “small” enough so that the Reeh-Schlieder
theorem applies and the vacuum state Ω is cyclic and
separating for the local algebra AbU . (There is another open

set U 00 that is spacelike separated from bU, and this is enough to
invoke the theorem.)
Second, we want to use the gap as an ingredient in ensuring

that there are no subtleties in building observables in bU from
observables in U and in U 0, in the sense that the algebra AbU is
just a tensor product:

AbU ¼ AU ⊗ AU 0 : ð7:1Þ

However, this point is not straightforward, for several reasons.
First of all, we have to explain what is meant by the tensor

product AU ⊗ AU 0 of von Neumann algebras. The algebraic
tensor product AU ⊗alg AU 0 is defined in the familiar way;
elements are finite linear combinations

P
s
i¼1 ai ⊗ a0i, with

ai ∈ AU , a0i ∈ AU 0 . Such finite linear combinations are added
and multiplied in the familiar way.
However, to get a von Neumann algebra, we have to take a

completion of AU ⊗alg AU 0 . As usual, what we get when we
take a completion depends on what Hilbert space the algebra
is acting on. We have seen several examples of this in Sec. VI.

The completion we want is one in which AU and AU 0 act
completely independently.35 For this, we introduce a Hilbert

space bH ¼ H ⊗ H0 consisting of two copies of the Hilbert
space of our quantum field theory, and we consider the action

of AU ⊗alg AU 0 on bH with AU acting on the first factor and
AU 0 acting on the second. The von Neumann algebra com-

pletion of AU ⊗alg AU 0 acting on bH is the von Neumann
algebra tensor product AU ⊗ AU 0 .
This explains what Eq. (7.1) would mean, but it is not true

without some further condition on U and U 0. The gap between
them avoids ultraviolet issues that would obstruct the factori-
zation in Eq. (7.1), but there are still infrared issues.
Before explaining this, we consider a simpler question that

will actually also be relevant in Sec. VII.C. If a given quantum
field theory has more than one vacuum state,36 does the
algebra AU for an open set U depend on the choice of
vacuum? If U is a bounded open set, with compact closure,
one expects on physical grounds that the answer will be “no.”
But in the case of a noncompact region, in general AU does
depend on the vacuum.
To understand this, first pick a smooth real smearing

function f supported in region U such thatZ
U
dDxjfj2 < ∞ ð7:2Þ

but Z
U
dDxf ¼ ∞: ð7:3Þ

Such an f is, of course, not compactly supported. Now pick a
local field ϕ and consider the question of whether there exists
an operator corresponding to

ϕf ¼
Z
U
dDxfðxÞϕðxÞ: ð7:4Þ

A “yes” answer means that there is a dense set of Hilbert space
states Ψ such that jϕfΨj2 < ∞. If so, then bounded functions
of ϕf such as expðiϕfÞ would be included in the algebra AU .
Actually, since we assume (as part of what we mean by saying
that ϕ is a local field) that ϕf is a Hilbert space operator if f is
compactly supported, the only concern in the noncompact
case is a possible infrared divergence in computing jϕfΨj2.
Since any state looks like the vacuum near infinity, such an
infrared divergence will not depend on the choice ofΨ and the
condition for ϕf to be a good operator is just that jϕfΩj2 < ∞.
When we compute jϕfΩj2 ¼ hΩjϕfϕfjΩi, we will run into
connected and disconnected two-point functions of ϕ. Let us

FIG. 7. Two spacelike separated open sets U and U 0 in
Minkowski spacetime, with a gap between them.

34This question and similar ones are related to what is called the
split property in algebraic quantum field theory and have been
analyzed with increasing detail by Roos (1970), Buchholz (1974),
and Doplicher and Longo (1984).

35It is here that we assume that the intersection of the two algebras
is trivial. If they have a nontrivial element x in common, it is not
possible for them to act independently.

36This can happen because of a spontaneously broken symmetry,
but there are other possible reasons. For instance, vacuum degeneracy
not associated to any symmetry can arise at a first order phase
transition, and supersymmetric models often have multiple vacua.
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assume for simplicity that our theory has a mass gap. Then the
connected correlation function is short range and the condition
(7.2) is sufficient to ensure that there is no infrared divergence
in the connected part of the correlation function. However,
Eq. (7.3) means that the disconnected part of the correlation
function will make a divergent contribution to jϕfΩj2 unless
hΩjϕjΩi ¼ 0, that is, unless the disconnected part of the
correlation function is 0. The condition that hΩjϕjΩi ¼ 0

certainly depends on the vacuum, and therefore, the question
of which ϕ we can use in constructing ϕf depends on the
vacuum. Thus, for an unbounded open set U, AU depends on
the vacuum.
Somewhat similarly, while keeping fixed the vacuum at

infinity, one can ask whether AU, for noncompact U, depends
on the choice of a superselection sector. The general answer to
this question is not clear to the author.
Now let us return to the case of AbU with bU ¼ U ∪ U 0. For

completely general regions U and U 0, there can be a subtlety
analogous to what we encountered in comparing different
vacua. For example,37 suppose that U and U 0 are noncompact
and are asymptotically parallel in the sense that there is some
fixed vector b such that, at least near infinity, the translation
x → xþ b maps U to U 0. Then we can pick local fields ϕi and
ϕ0
i, i ¼ 1;…; s and with f as given before, we can attempt to

define the operator

Xf ¼
Xs
i¼1

Z
U
dDxfðxÞϕiðxÞϕ0

iðxþ bÞ; ð7:5Þ

whose support is in bU ¼ U ∪ U 0. Assuming again a mass gap,
the condition for Xf to be well defined is that the relevant
vacuum expectation value must vanish. In the present case, the
operator whose vacuum expectation value must vanish is
X ¼ P

iϕiðxÞϕ0
iðxþ bÞ. The condition for this to vanish in the

vacuum depends on whether AU and AU 0 (and hence ϕi and
ϕ0
i) act on the same Hilbert space H or on the two factors ofbH ¼ H ⊗ H0. When the two algebras act on the same copy of

H, connected two-point functions contribute in the evaluation
of hΩjXjΩi ¼ hΩjPiϕiðxÞϕ0

iðxþ bÞjΩi. There are no such
connected contributions if the two algebras act on two
different copies of the Hilbert space. The operators Xf that
are well defined are different in the two cases, and thus this
gives an example of U and U 0 for which the relation (7.1) that
we want is not true.
A sufficient condition that avoids all such questions is to

consider bounded open sets only. Indeed, to avoid such issues,
and because of a belief that physics is fundamentally local in
character, Haag (1992) bases the theory on the AU for
bounded open sets U. However, for the specific question
under discussion here, we can avoid infrared issues in
connected correlation functions if just U or U 0 is bounded.
Then the well definedness of an operator such as Xf is the
same whether the two algebras act on the same copy or two
different copies of H. We make this assumption going

forward. For applications discussed in Sec. VII.C that involve
just one open set U, we assume that U is bounded.
Now let us suppose that U and U 0 have been chosen to

ensure the factorization (7.1). Since the Reeh-Schlieder
theorem applies to bU, the algebra AbU acts on the Hilbert
spaceH of our quantum field theory with the vacuum vectorΩ
as a cyclic separating vector. But Eq. (7.1) means by definition
that precisely the same algebra can act on bH ¼ H ⊗ H0 with
AU acting on the first copy and AU 0 acting on the second.
In bH, the vector Φ ¼ Ω ⊗ Ω is cyclic and separating.
However, whenever the same von Neumann algebra AbU

acts on two different Hilbert spaces H and bH, in each case
with a cyclic separating vector, there is always a map between
the two Hilbert spaces that maps one action to the other.
(It does not generically map one cyclic separating vector to the
other.) Applied to our problem, this will enable us to find inH
a state that looks like Ψ for observations in U and like χ for
observations in U 0.
We explain the statement about von Neumann algebras in

Sec. VII.B. The application to our question, and a few other
applications, are discussed in Sec. VII.C.

B. Mapping one representation to another

We assume that the von Neumann algebra A acts on two
Hilbert spacesH and bH with cyclic separating vectors Ψ ∈ H
and Φ ∈ bH. As remarked at the end of Sec. III.B, the relative
modular operators SΨjΦ∶H → bH and ΔΨjΦ∶H → H are
defined in this generality.
We will find an isometric or unitary embedding T∶bH → H

that commutes with the action of A. Using the finite-dimen-
sional formulas of Sec. IV.A, one can guess what the map
should be. We define a linear map T∶bH → H by

TðajΦiÞ ¼ aΔ1=2
ΨjΦjΨi: ð7:6Þ

To begin with T is only defined on the dense set of vectors
ajΦi, a ∈ A. But once we show that T is an isometry, this
means in particular that it is bounded and it will automatically
extend to all of bH as an isometry.
For T to be an isometry means that for all a; b ∈ A,

hbΦjaΦi ¼ hbΔ1=2
ΨjΦΨjaΔ1=2

ΨjΦΨi: ð7:7Þ

One can show, using formulas of Sec. IV.A, that this statement
is true if the Hilbert space factorizes as H ¼ H1 ⊗ H2 with
each algebra A and A0 acting on one factor. Very often,
statements that are easy to check if one assumes a factorization
can be demonstrated in general using Tomita-Takesaski theory.
What follows is fairly illustrative of many such arguments.
The right-hand side of Eq. (7.7) is

hΨjΔ1=2
ΨjΦb

†aΔ1=2
ΨjΦjΨi: ð7:8Þ

We want to show that this equals the left-hand side of
Eq. (7.7), but first let us consider

37This example is discussed in Buchholz (1974) and attributed to
Araki.
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FðsÞ ¼ hΨjΔis
ΨjΦb

†aΔ1−is
ΨjΦ jΨi

¼ hΨjΔis
ΨjΦb

†aΔ−is
ΨjΦS

†
ΨjΦSΨjΦjΨi ð7:9Þ

for real s.
The antiunitarity of SΨjΦ gives

FðsÞ ¼ hSΨjΦΨjSΨjΦΔis
ΨjΦa

†bΔ−is
ΨjΦΨi: ð7:10Þ

Now we have to remember that conjugation by Δis
ΨjΦ is an

automorphism of A, so in particular Δis
ΨjΦa

†bΔ−is
ΨjΦ ∈ A.

Moreover, for any x ∈ A, SΨjΦxΨ ¼ x†Φ. So

FðsÞ ¼ hΦjΔis
ΨjΦb

†aΔ−is
ΨjΦjΦi: ð7:11Þ

Now we remember from Sec. IV.B that the automorphism
x → Δis

ΨjΦxΔ
−is
ΨjΦ of A depends only on Φ and not on Ψ. So in

evaluating this last formula for FðsÞ, we can set Ψ ¼ Φ,
whence ΔΨjΦ reduces to the ordinary modular operator

ΔΦ∶bH → bH. Thus

FðsÞ ¼ hΦjΔis
Φb

†aΔ−is
Φ jΦi: ð7:12Þ

But ΔΦjΦi ¼ jΦi, so Δ−is
Φ jΦi ¼ jΦi. Thus finally for real s

FðsÞ ¼ hΦjb†ajΦi ¼ hbΦjaΦi: ð7:13Þ

In particular, FðsÞ is independent of s for real s.
Suppose we know a priori that FðsÞ is holomorphic in the

strip 0 > Ims > −1=2 and continuous up to the boundary of
the strip. Then FðsÞ has to be constant even if s is not real, so
in this case Eq. (7.13) remains valid if we set s ¼ −i=2. A look
back at the definition (7.9) of FðsÞ shows that Eq. (7.13) at
s ¼ −i=2 is what we want. This formula says precisely that
Eq. (7.8) equals the left-hand side of Eq. (7.7).
The desired holomorphy goes beyond what was proved in

Sec. IV.B and is explained in Appendix A.2.
The result that we found is useful even if the two Hilbert

spaces H and bH are the same. There are many states that are
equivalent to Φ for measurements by operators in A; any state
a0Φ, where a0 ∈ A0 is unitary, has this property. But in that case
ΔΨja0Φ ¼ ΔΨjΦ [Eq. (3.26)] soΔ1=2

Ψja0ΦΨ ¼ Δ1=2
ΨjΦΨ. Thus onceΨ

is chosen, in every equivalence class of vectors that are
equivalent to someΦ formeasurements inA, there is a canonical

representative Δ1=2
ΨjΦΨ. These representatives make up the

canonical cone (Araki, 1974), which has many nice properties.

C. Applications

Our first application of the result of the last section is to
a case discussed in Sec. VII.A. Thus, H is the Hilbert space

of a quantum field theory, and bH ¼ H ⊗ H0 is the tensor
product of two copies ofH. For open sets U, U 0, at least one of
which is bounded, with a gap between them, the same algebra

AbU ¼ AU ⊗ AU 0 can act on H and also on bH ¼ H ⊗ H0,
within the latter case AU acting on the first factor and AU 0

acting on the second. For cyclic separating vectors, we take

Ψ ∈ H to be the vacuum vector Ω, and Φ ∈ bH to be Ω ⊗ Ω.
The construction of the last section gave an isometric

embedding T∶bH → H that commutes with the action of AbU .
Because of the way we chose the action of AU and AU 0 on bH,

the vector Ψ ⊗ χ ∈ bH looks like Ψ for measurements in U
and like χ for measurements in U 0. So TðΨ ⊗ χÞ is a vector in
H that has the same property.
This sort of reasoning has other applications. For example,

let H1 and H2 be two different superselection sectors in the
same quantum field theory. Let U be a bounded open set; then
the same algebraAU acts on bothH1 andH2. BothH1 andH2

contain cyclic separating vectors for AU, by the slight
extension of the Reeh-Schlieder theorem that was described
in Sec. II.C. So we can find an isometric embedding T∶H1 →
H2 that commutes with AU . If Ψ is a vector inH1, then TΨ is
a vector in H2 that cannot be distinguished from Ψ by
measurements in the region U. As explained in Haag and
Kastler (1964), there is an intuitive reason for this. For
example, superselection sectors that are defined by the total
magnetic charge cannot be distinguished by measurements in
region U, because by such measurements one cannot tell how
many magnetic monopoles there are in distant regions.
Similarly, consider a quantum field theory with more than

one vacuum state. Let H1 and H2 be the Hilbert spaces based
on these two vacua. For bounded U, the same algebra AU will
act inH1 and inH2. The same argument as before tells us that
measurements in region U cannot determine which vacuum
state we are in. The intuitive reason is that in the Hilbert space
built on one vacuum, there can be a state that looks like some
other vacuum over a very large region of spacetime.
For a final application, let us consider the following

question.38 Suppose that ρ is a density matrix on H. Is there
a pure state χ ∈ H that is indistinguishable from ρ for
measurements in region U? If the Hilbert space factored as
H ¼ H1 ⊗ H2 with AU acting on the first factor, we would
answer this question as follows. For measurements in U, we
can replace ρ with the reduced density matrix ρ1 ¼ TrH2

ρ on
H1. Then, picking a purification χ of ρ1 inH1 ⊗ H2, χ would
be indistinguishable from ρ for measurements in U.
To answer the question without such a factorization, we

can use something called the Gelfand-Neimark-Segal (GNS)
construction. Consider the function on AU defined by
FðaÞ ¼ TrHρa; this function is called a faithful normal state
on the algebra AU . Given this function, the GNS construction
produces a Hilbert space K with action of AU and a cyclic
separating vector Ψ such that FðaÞ ¼ hΨjajΨi. The con-
struction is quite simple. To make Ψ cyclic separating, vectors
aΨ are assumed to satisfy no relations (aΨ ≠ bΨ for a ≠ b)
and to comprise a dense subspace K0 of K. The inner product
onK0 is defined to be haΨjbΨi ¼ Fða†bÞ, which in particular
ensures that hΨjajΨi ¼ TrHρa. All axioms of a Hilbert space
are satisfied except completeness. K is defined as the Hilbert
space completion of K0. Now A acts on one Hilbert space H
with cyclic separating vector Ω (the vacuum) and on another

38See Sec. V.2.2 of Haag (1992), where much more precise results
are stated than we explain here.
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Hilbert space K with cyclic separating vector Ψ. So as in
Sec. VII.B, we can find an isometric embedding T∶K → H.
Then TðΨÞ is the desired vector in H that is indistinguishable
from ρ for measurements in U.
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APPENDIX A: MORE HOLOMORPHY

1. More on subregions

Here [following Borchers (2000)] we will prove a result
relating the modular operators ΔΨ;U and ΔΨ;eU for a pair of

open sets U, eU with eU ⊂ U. Ψ is a vector that is cyclic
separating for both algebras AU and AeU ; it is kept fixed in the
following and will be omitted in the notation. The result we
will describe is useful in applications [for example, see
Eqs. (6.7) and (6.8) in Balakrishnan et al. (2017)].
From Sec. III.F, we know already that ΔeU ≥ ΔU , and from

Sec. III.E, it follows that

ΔαeU ≥ Δα
U ; 0 ≤ α ≤ 1: ðA1Þ

From this, it follows that for any state χ, and 0 ≤ β ≤ 1=2,
we have

h χjΔ−βeU Δ2β
U Δ−βeU j χi ¼ hΔ−βeU χjΔ2β

U jΔ−βeU χi
≤ hΔ−βeU χjΔ2βeU jΔ−βeU χi ¼ h χj χi; ðA2Þ

so

Δ−βeU Δ2β
U Δ−βeU ≤ 1; 0 ≤ β ≤ 1=2: ðA3Þ

Since X†X ≤ 1 implies kXk ≤ 1, it follows that

kΔβ
UΔ

−βeU k ≤ 1; 0 ≤ β ≤ 1=2: ðA4Þ

An imaginary shift in β does not affect this bound, since the
operators Δis

U , ΔiseU , s ∈ R are unitary. So

kΔ−iz
U ΔizeUk ≤ 1 ðA5Þ

in the strip 1=2 ≥ Imz ≥ 0. This bound implies that the
operator-valued function Δ−iz

U ΔizeU is holomorphic in that strip.

2. More on correlation functions

In Sec. VII.B, we needed to know that for x ¼ b†a ∈ A,

FðzÞ ¼ hΨjΔiz
ΨjΦxΔ

1−iz
ΨjΦ jΨi

¼ hΨjΔiz
ΨjΦxΔ

1=2−iz
ΨjΦ jΔ1=2

ΨjΦΨi ðA6Þ

is holomorphic in the strip 0 > Imz > −1=2 as well as
continuous along the boundaries of the strip. In fact, we will
prove that it is holomorphic in a larger strip39 0 > Imz > −1
and again continuous on the boundaries.
As we will see, it helps to consider first the case that the

state Δ1=2
ΨjΦΨ is replaced by yΨ for some y ∈ A. So we

consider the function

GðzÞ ¼ hΨjΔiz
ΨjΦxΔ

1=2−iz
ΨjΦ jyΨi: ðA7Þ

Holomorphy in the strip is now trivial, because the condition
0 > Imz > −1=2 means that the exponents iz and 1=2 − iz in
Eq. (A7) both have real part between 0 and 1=2, and
consequently from Sec. IV.B, we know that both

Δ1=2−iz
ΨjΦ jyΨi and hΨjΔiz

ΨjΦ are holomorphic in this strip.

The norm of a state χ is j χj ¼ ffiffiffiffiffiffiffiffiffiffiffiffih χj χip
, and the norm kyk

of a bounded operator y is the least upper bound of jy χj=j χj
for any state χ. The following proof will depend on getting an
upper bound on jGðzÞj in the strip by a constant multiple of
jyΨj. An immediate upper bound is

jGðzÞj ≤ jΔ−iz̄
ΨjΦΨj jjxjj jΔ1=2−iz

ΨjΦ yΨj: ðA8Þ

If z ¼ s − iα, with s, α ∈ R, then the right-hand side of
Eq. (A8) only depends on α, since Δis

ΨjΦ is unitary. For s ¼ 0,

the function GðzÞ is bounded on the compact set 0 ≤ α ≤ 1=2
[for α in that range it is the inner product of two states that
are well defined and bounded in Hilbert space according to
Eq. (4.41)], so it is bounded in the whole strip
0 ≥ Imz ≥ −1=2. We need to improve this to get a bound
by a multiple of jyΨj.
Let us look at the function GðzÞ on the boundaries of the

strip. On the lower boundary z ¼ s − i=2, Δ1=2−iz is unitary.

Also on that boundary jΔ−iz̄
ΨjΦΨj ¼ jΔ1=2

ΨjΦΨj < ∞. So on the

lower boundary, Eq. (A8) bounds jGðzÞj by a constant
multiple of jyΨj. On the upper boundary z ¼ s, we write

jGðzÞj ¼ jhΔ1=2þis
ΨjΦ x†Δ−is

ΨjΦΨjyΨij
≤ jΔ1=2

ΨjΦΔ
is
ΨjΦx

†Δ−is
ΨjΦΨj jyΨj: ðA9Þ

Reasoning similarly to Eq. (4.40), this implies

jGðzÞj ≤ jΔis
ΨjΦxΔ

−is
ΨjΦΦj jyΨj: ðA10Þ

Because the operator Δis
ΨjΦ is unitary and hΦjΦi ¼ 1, we get

on the upper boundary

jGðzÞj ≤ jjxjj jyΨj: ðA11Þ

39Similarly to Eq. (4.48), one would expect this if one assumes a
factorization H ¼ H1 ⊗ H2 of the Hilbert space. In this Appendix,
we follow Araki’s approach to proving such statements without
assuming a factorization. See Araki (1973), Sec. III.
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So there is a constant C, independent of y and z, such that on
the boundaries of the strip

jGðzÞj ≤ CjyΨj: ðA12Þ

A holomorphic function, such as GðzÞ, that is bounded
and holomorphic in a strip, and obeys a bound jGðzÞj ≤ bC
on the boundary of the strip, obeys the same bound in the
interior of the strip. This statement is a special case of the
Phragmén-Lindelöf principle, and can be proved as follows
(we state the argument for our strip 0 > Imz > −1=2). For
ϵ > 0, the function GϵðzÞ¼expð−ϵz2ÞGðzÞ satisfies jGϵðzÞj≤bCexpðϵ=4Þ on the boundary of the strip. The function GϵðzÞ
vanishes rapidly for Rez → �∞, so jGϵðzÞj achieves its
maximum somewhere in the interior of the strip or its boundary.
By the maximum principle, this maximum is achieved some-
where on the boundary of the strip. Therefore the bound
jGϵðzÞj ≤ bC expðϵ=4Þ is satisfied throughout the strip. As this
is true for all ϵ, we get jGðzÞj ≤ bC throughout the strip.
Going back to the original definition of GðzÞ in Eq. (A7),

GðzÞ can be interpreted as a linear functional on the dense
subset of H consisting of states yΨ, y ∈ A. The validity of
Eq. (A12) throughout the strip says that this linear functional
is bounded. A bounded linear functional on a dense subset of a
Hilbert space H always extends to the whole space, and
remains bounded. Moreover a bounded linear functional on a
Hilbert space H is always the inner product with a state in H.
So we learn that there is some z-dependent state χðzÞ such that

GðzÞ ¼ h χðzÞjyΨi ðA13Þ

for all y ∈ A. Moreover h χðzÞj is holomorphic in the strip
since GðzÞ is holomorphic in the strip for all y. The fact that
the linear functional in question extends over all of H means
that for any ϒ ∈ H,

h χðzÞjϒi ðA14Þ

is well defined and holomorphic in the strip.
The original function FðzÞ is then

FðzÞ ¼ h χðzÞjΔ1=2
ΨjΦΨi: ðA15Þ

HereΔ1=2
ΨjΦΨ is a Hilbert space state [as in Eq. (4.40)], so this is

a special case of Eq. (A.14), and therefore is holomorphic in
the strip. Moreover the original definition [and bounds such as
Eq. (4.41) that were used along the way] make it clear that
FðzÞ has a continuous limit as one approaches the boundaries
of the strip.
This is what we needed in Sec. VII.B, but actually the

function FðzÞ is holomorphic in a larger strip. Writing

FðzÞ ¼ hΔ1=2
ΨjΦΨjΔ−1=2þiz

ΨjΦ xΔ1−iz
ΨjΦ jΨi; ðA16Þ

we make an argument very similar to the previous, but with
the role of the bra and the ket exchanged. Thus, we begin by

replacing Δ1=2
ΨjΦΨ with yΨ with y ∈ A. So we have to study

HðzÞ ¼ hyΨjΔ−1=2þiz
ΨjΦ xΔ1−iz

ΨjΦ jΨi: ðA17Þ

We consider the function HðzÞ in the strip −1=2 ≥ Imz ≥ −1.
An argument very similar to what we have already seen,
reversing the role of the bra and the ket, shows that in this strip
HðzÞ ¼ hyΨjϒðzÞi, where ϒðzÞ is holomorphic in the strip.

Then FðzÞ ¼ hΔ1=2
ΨjΦΨjΥðzÞi, and in this representation, hol-

omorphy of FðzÞ for −1=2 > Rez > −1 is manifest.
We now have a function FðzÞ that is holomorphic for

0 > Imz > −1=2 and for −1=2 > ImFðzÞ > −1. Moreover,
this function is continuous on the line l defined by
Imz ¼ −1=2. As sketched in Fig. 8, the Cauchy integral
formula can be used to show that FðzÞ is actually holomorphic
on the line l. This fact about holomorphic functions of a
single complex variable has a less elementary analog, known
as the edge of the wedge theorem, for functions of several
complex variables. For some of its applications in quantum
field theory, see Streater and Wightman (1964).
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