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If colloidal solute particles are suspended in a solvent close to its critical point, they act as cavities in a
fluctuating medium and thereby restrict and modify the fluctuation spectrum in a way that depends on
their relative configuration. As a result, effective, so-called critical Casimir forces (CCFs) emerge
between the colloids. The range and the amplitude of CCFs depend sensitively on the temperature and
the composition of the solvent as well as on the boundary conditions of the order parameter of the
solvent at the particle surfaces. These remarkable, moreover universal features of the CCFs provide
the possibility for an active control over the assembly of colloids. This has triggered a recent surge of
experimental and theoretical interest in these phenomena. An overview is presented of current
research activities in this area. Various experiments demonstrate the occurrence of thermally
reversible self-assembly or aggregation or even equilibrium phase transitions of colloids in the
mixed phase below the lower consolute points of binary solvents. The status is discussed of the
theoretical description of these phenomena, in particular, the validity of a description in terms of
effective, one-component colloidal systems and the necessity of a full treatment of a ternary solvent-
colloid mixture. Perspectives are suggested on the directions toward which future research in this field
might develop.
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I. INTRODUCTION

Finite-size contributions to the free energy of a spatially
confined fluid give rise to an effective force per area acting on
the confining surfaces (Evans, 1990). Fisher and de Gennes
(1978) made the crucial observation that this fluid-mediated
interaction acquires a universal, long-ranged contribution fC
if the bulk critical point of the fluid is approached. This is due
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to critical fluctuations, and hence the notion “critical Casimir
force,” in analogy with quantum-mechanical Casimir forces
which are due to quantum fluctuations of confined electro-
magnetic fields (Casimir, 1948; Kardar and Golestanian,
1999). In the case of colloidal suspensions with near-critical
suspending fluids (referred to as solvents), the typically
micrometer-sized colloidal particles act as cavities inside
the critical solvent. At the colloid surfaces these cavities
impose boundary conditions (BCs) for the fluctuating order
parameter (OP) of the solvent and perturb the OP field on the
length scale of the bulk correlation length ξ. Such modifica-
tions of the OP and the restrictions of its fluctuation spectrum
depend on the spatial configuration of the colloids. Following
the argument by Fisher and de Gennes (1978), this gives rise
to the critical Casimir force (CCF) between the colloids,
which is attractive for identical particles and has a range
set by the bulk correlation length ξ of the solvent. Since

ξ½t ¼ ðTðsÞ
c − TÞ=TðsÞ

c → 0� ∼ jtj−ν, where ν is a standard bulk
critical exponent, this range diverges upon approaching the

bulk critical temperature TðsÞ
c of the pure solvent.

The collective behavior of colloids dissolved in the near-
critical solvent is determined by the interplay between the
CCFs and other interactions acting between the constituents.
In general, in colloidal suspensions the dissolved particles
interact directly via van der Waals interactions; these are
attractive and lead to irreversible aggregation (called coagu-
lation) (Verwey and Overbeek, 1948). In charge-stabilized
suspensions, the colloids acquire surface charges due to
dissociation of the surface groups in water or due to chemical
functionalization of the surface of the particles. This causes
the formation of electric double layers around the colloids and
results in electrostatic repulsion between them. In sterically
stabilized suspensions, the short polymer chains grafted onto
the surface of colloidal particles give rise to a repulsive
interaction which is of entropic origin. Additionally, the
presence of other smaller solute particles or macromolecular
additives such as polymers, surfactants, or micelles (Likos,
2001) induces effective entropic interactions between the
colloids, called depletion forces, which are predominantly
attractive and short ranged (Asakura and Oosawa, 1954; Vrij,
1976). If the CCFs between colloidal particles are attractive
and sufficiently strong to overcome the direct repulsive forces,
one may expect the occurrence of a thermodynamically stable
colloid-rich liquid or solid phase—even in the absence of any
direct attractive interactions. If the resulting attractive poten-
tial is sufficiently strong, the condensation transition from a
colloid-poor (“gas”) to a colloid-rich (“liquid”) phase may be
preempted (on the characteristic time scales of the observa-
tions) by the formation of nonequilibrium aggregates in which
the colloidal particles stick together. In general, such aggre-
gates may grow or shrink and their structure varies from loose
fractals through gels and glasses to crystals, depending on the
packing fraction of the colloidal particles in the aggregates and
on the strength of the attraction among the colloidal particles.
Beysens and Estève (1985) were the first to experimentally

study aggregation phenomena for colloids suspended in
binary solvents. They studied silica spheres immersed in a
water-lutidine mixture by using light scattering. They found
the formation of aggregates that sediment upon approaching

the bulk coexistence region of demixing from the one-phase
region of the binary liquid mixture at constant composition of
the solvent. Strikingly, the observed aggregation was ther-
mally reversible; moving back the thermodynamic state
deeply into the one-phase region the sediments dissolved
again. In the decade following this pioneering work, quite a
number of further experiments were performed leading to a
similar behavior for various binary solvents and a variety of
colloids. The structure of the aggregates and the kinetics of
aggregation and the reverse process of fragmentation have
been investigated. Silica, quartz powder, and polystyrene
particles immersed in water-lutidine mixtures were studied
by Gurfein, Beysens, and Perrot (1989), Gallagher, Kurnaz,
and Maher (1992), Gallagher and Maher (1992), Broide,
Garrabos, and Beysens (1993), Kurnaz and Maher (1995),
Narayanan et al. (1995), and Kurnaz and Maher (1997),
whereas Narayanan et al. (1993), Kline and Kaler (1994),
Grüll and Woermann (1997), Jayalakshmi and Kaler (1997),
Koehler and Kaler (1997), and Rathke, Grüll, and Woermann
(1997) employed other solvents; for corresponding reviews,
see Beysens et al. (1994), Beysens and Narayanan (1999), and
Law (2001). These experiments, which were performed
mostly in the one-phase region of a binary liquid mixture,
revealed that reversible aggregation (termed flocculation) is
accompanied by a strong adsorption phenomenon in the
vicinity of the bulk two-phase coexistence curve.
Generically, colloidal particles have a preference for one of
the two components of the binary solvent. At the surface of the
colloid this preference gives rise to an effective surface field
conjugate to the OP at the surface and thus leads to an
adsorption layer rich in this preferred component. The
measurements demonstrated that the temperature-composition
ðT; cÞ region in which colloidal aggregation appears is not
symmetric about the critical composition cc of the binary
solvent. Strong aggregation occurs on that side of the critical
composition which is rich in the component not preferred by
the colloids.
Various mechanisms were put forward for strong adsorption

giving rise to attraction which in turn could explain the
occurrence of (nonequilibrium) flocculation. For example,
capillary condensation and/or wetting can occur when par-
ticles come close together via diffusion, even far off the
critical composition of the solvent. In this case a liquid
“bridge” can form which induces attractive solvation forces
(Bauer, Bieker, and Dietrich, 2000) (see Sec. II.B.6). Another
possibility is that the presence of an adsorption layer around
the colloidal particles increases the strength of the direct
attractive dispersion interactions. However, in the close
vicinity of the bulk critical point of the solvent, in line with
the predictions of Fisher and de Gennes, effective attraction
induced by critical fluctuations is expected to be dominant. In
their original paper, Beysens and Estève identified an “aggre-
gation line” in the temperature-composition phase diagram of
the solvent with a prewetting line. Yet, they observed that this
aggregation line extends to temperatures below the lower
demixing critical point of a solvent. However, in general
such an extent of prewetting lines has not been found up to
now, neither for planar nor for spherical substrates. Actually,
positive curvature even shortens prewetting lines (Bieker and
Dietrich, 1998a, 1998b). (Regrettably, the wetting behavior of
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this system in planar geometry has never been investigated.)
They did not comment on this difference nor did they admit
the role of critical fluctuations and CCFs for aggregation in the
critical region. They presumed that the aggregation process
results from the attractive forces between the colloids due to
the presence of the adsorption layer and referred to de Gennes
(1981) as the one who proposed such fluctuation-induced
interactions at and near the bulk critical point of the solvent,
but they have not put their results into the proper context of
de Gennes’s predictions. According to another interpretation
of the experimental findings previously mentioned, the
observed phenomenon is regarded as a precursor of a bona
fide phase transition in the ternary mixture rather than a
nonequilibrium flocculation of colloidal particles (Kline and
Kaler, 1994; Jayalakshmi and Kaler, 1997; Koehler and Kaler,
1997). A few theoretical (Sluckin, 1990) and simulation
(Löwen, 1995; Netz, 1996) attempts have been concerned
with such an interpretation. The status of knowledge about
reversible aggregation of colloids in binary solvents up to the
late 1990s was reviewed by Beysens and Narayanan (1999)).
More recently, the scenario of “bridging” transitions has again
been theoretically studied by Archer et al. (2005), Okamoto
and Onuki (2011, 2013), and Labbé-Laurent, Law, and
Dietrich (2017).
In spite of the relevance of aggregation phenomena for the

stability of colloidal suspensions, the basic understanding of
the collective behavior of colloids dissolved in a near-critical
solvent has started to emerge only recently. This progress had
to await the advances made during the last decade concerning
the statistical mechanical theory and computer simulations of
CCFs. The accumulated theoretical knowledge of two-body
CCFs has also triggered an increase of experimental activities
in this field. This renewed interest is driven by application
perspectives, in particular, concerning the buildup of nano-
structured materials of well-defined structure by using self-
assembly of colloidal particles. In order to achieve a desirable
morphology of aggregates, one has to be able to control
colloidal self-assembly and to manipulate the particles. The
remarkable features of CCFs offer such possibilities. The
range and the strength of the CCFs, which depend sensitively
on temperature via the bulk correlation length ξ, can be tuned
reversibly and continuously by moving the thermodynamic
state of the solvent around its critical point. The sign of fC can
be manipulated as well by suitable surface treatments of the
colloids (Hertlein et al., 2008; Gambassi et al., 2009; Nellen,
Helden, and Bechinger, 2009). Additional interest is sparked
by the potential relevance of CCFs for lipid membranes. These
are two-dimensional (2D) liquids consisting of two (or more)
components, such as cholesterol and saturated and unsaturated
lipids, which can undergo phase separation into two liquid
phases, one being rich in the first two components and the
other rich in the third (Veatch and Keller, 2005). Lipid
membranes serve as model systems for cell plasma mem-
branes (Lingwood and Simons, 2010). Recent experiments
suggest that cell membranes are tuned to the miscibility
critical point of the 2D Ising model (Heinrich et al., 2008;
Honerkamp-Smith et al., 2008; Gray et al., 2013; Kimchi
and Machta, 2015) so that CCFs may arise between macro-
molecules embedded in the membrane (Machta et al., 2011;

Machta, Sethna, and Veatch, 2012; Benet, Paillusson, and
Kusumaatmaja, 2017).
Other mechanisms, which—similar to the ones generating

the critical Casimir effect—also induce solvent-mediated
long-ranged interactions, occur inter alia in a chemical sol
upon approaching its percolation transition (Gnan, Zaccarelli,
and Sciortino, 2014), in a binary liquid mixture subjected to a
steady temperature gradient due to the concomitant non-
equilibrium concentration fluctuations (Kirkpatrick, Ortiz
de Zárate, and Sengers, 2015), in driven noncohesive granular
media due to hydrodynamic fluctuations (Cattuto et al., 2006),
or if the solvent comprises active matter such as bacteria or
self-propelled colloidal particles (Ray, Reichhardt, and Olson
Reichhardt, 2014; Ni, Stuart, and Bolhuis, 2015). Related to
the critical Casimir effect is also the behavior of a single
polymer chain upon approaching the critical demixing point
of its binary solvent (Brochard and de Gennes, 1980; Vilgis,
Sans, and Jannink, 1993; Venkatesu, 2006). First, the polymer
chain collapses as a result of the attractive CCFs between the
monomers of the polymer chain. But when the correlation
length of the solvent becomes larger than the globular size of
the polymer, it reexpands.
Compared with other effective forces between colloid par-

ticles ormacromolecules, CCFs have two advantages. First, due
to the concept of universality for critical phenomena, to a large
extent CCFs do not depend on microscopic details of the
system. Second, whereas adding depletion agents or ions
changes the resulting effective forces de facto irreversibly,
the tuning of fC via temperature is fully and easily reversible.
This review discusses current theoretical and numerical

approaches toward the description of the static, equilibrium
properties of colloidal suspensions with a near-critical binary
solvent. The related experimental body of research is put into the
corresponding context and a number of intriguing possible
developments are highlighted. Recent developments concerning
colloidal assembly due toCCFswith a focus on the experimental
observations are reviewed by Nguyen et al. (2016).

II. EFFECTIVE ONE-COMPONENT APPROACH

A common approach to the statistical mechanical descrip-
tion of colloidal suspensions follows the ideas developed for
multicomponent molecular liquids, such as ionic solutions,
by considering the colloidal particles as “supramolecules”
(Vrij et al., 1978; Hansen, 1993; Likos, 2001). Within this
approach, the degrees of freedom of the solvent and the ions,
in the case of charged-stabilized suspensions, are traced out in
order to construct an effective one-component system of
colloidal particles interacting via state- and configuration-
dependent forces. For most cases, carrying out the integration
over microscopic degrees of freedom can be done only
approximately, leading to additive pairwise interactions
between the colloidal particles (see the corresponding dis-
cussion later). For any binary mixture with pair interactions
for which the volume integral is finite, a formal expression for
an effective Hamiltonian, describing particles of one species
only but in the presence of the particles of the other species,
was given by Dijkstra, van Roij, and Evans (1998, 1999). This
effective Hamiltonian consists of zero-body, one-body, two-
body, three-body, and higher-body interactions, which depend
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on the density of the second species and have to be determined
one by one. For additive hard-sphere mixtures with a large size
asymmetry, a comparison with direct simulations of true
binary mixtures has shown that the pairwise (depletion)
potential approximation of the effective Hamiltonian between
two large particles accounts remarkably well for the phase
equilibria, even in limits for which one might expect that
higher-body terms cannot be neglected. This success encour-
ages one to use an effective one-component approach (with
the approximation of an additive pairwise potential) to
colloids suspended in a near-critical solvent, despite the fact
that the CCFs are inherently nonadditive. The critical Casimir
interaction between two colloidal particles depends on the
instantaneous spatial configuration of all colloids (Mattos,
Harnau, and Dietrich, 2013, 2015; Hobrecht and Hucht, 2015;
Paladugu et al., 2016; Vasilyev, Dietrich, and Kondrat, 2018).
Only for dilute suspensions or for temperatures sufficiently far

away from the bulk critical temperature TðsÞ
c of the pure

solvent, such that the range of the critical Casimir interaction
between the colloids is much smaller than the mean distance
between them, the assumption of pairwise additive CCFs is
expected to be reliable.

A. Effective interactions

Inmost of the experimentally studied systems, the solvent is a
binary mixture of molecular liquids and the colloidal particles
are microsized spheres of radius R. For such a sizewise highly
asymmetric multicomponent system, one can ignore the dis-
crete nature of the solvent and use a simplified pair potential
model for the background interaction potential between the
colloids, which is present also away from the critical temper-

ature TðsÞ
c of the solvent. Such a model is supposed to capture

only the essential features of a stable suspension on the relevant,
i.e., mesoscopic, length scale. Besides the van der Waals
contribution, discussed later, these features are the hard-core
repulsion for center-to-center distances r < 2R and a soft
repulsive contribution, for which one can employ the
Yukawa potential. This leads to the screened Coulomb model
of suspensions which are charge stabilized against flocculation
(Russel, Saville, and Schowalter, 1989; Hansen and Löwen,
2000; Barrat and Hansen, 2003):

VrepðDÞ
kBT

¼ UrepðDÞ ¼ U0

κðDþ 2RÞe
−κD; D¼ r− 2R > 0;

ð1Þ

where D is the surface-to-surface distance and kB is the
Boltzmann constant. The range κ−1 of the repulsion is the
Debye screening length κ−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵϵ0kBT=e2

P
iρi

p
[see, e.g.,

Parsegian (2006)], where e is the elementary charge, ϵ the
permittivity of the solvent relative to the vacuum, ϵ0 ¼ 8.854 ×
10−12 C2=Jm is the vacuum permittivity, and fρig the number
densities of all ions (regardless of the sign of their charges). The
potential given byEq. (1) is in fact a repulsive contribution to the
classical Derjaguin, Landau, Verwey, and Overbeek (DLVO)
theory, which invokes the Debye-Hückel approximation to
linearize the Poisson-Boltzmann equation for two charged

spheres immersed in a dielectric medium containing counter-
ions. The DLVO potential also contains the van der Waals
contribution (Verwey and Overbeek, 1948). A simplified,
purely exponential form of the repulsive pair potential,

UrepðDÞ ¼ Ae−κD; ð2Þ

is often used for distancesD ≪ R at which all curvature effects
associated with the spherical shape of the colloidal particles
effectively drop out (Israelachvili, 1998; Levin, 2002), provided
D≳ κ−1. These conditions imply κ−1 ≪ R, which in practice is
satisfied for experimentally relevant systems for which the
Debye length is of theorder of 10nmand the colloidal size of the
order of 1 μm. For the effective Coulomb interaction screened
by counterions the amplitudeA is given by (Russel, Saville, and
Schowalter, 1989)

A ¼ 2πðϵϵ0Þ−1ϒ2κ−2R=kBT; ð3Þ

whereϒ is the surface charge density of the colloid. For small,
highly charged colloidal particles, for which the linearized
Debye-Hückel theory breaks down, the pair potential can still be
given by Eq. (1) or (2), but the bare colloidal charge is replaced
by an effective renormalized charge (Levin, 2002; Frydel,
Dietrich, and Oettel, 2007). The literature concerning the
electrostatic forces between two charged colloids in a suspen-
sion is very extensive; thus for more details the interested reader
is referred to reviews such as Alexander et al. (1984), Belloni
(1998), or Levin (2002). The purely exponential form of
repulsion [Eq. (2)] can also describe sterically stabilized
suspensions beyond the hard-sphere model (Israelachvili,
1998). In that case the range κ−1 of the repulsion is associated
with the length of the grafted polymers and the strengthA of the
repulsion depends on the surface coverage of grafted polymers.
In order to describe certain experimental systems, one has to

also consider the interaction which accounts for effectively
attractive van der Waals forces. Among them are the so-called
London or dispersion forces, which are quantum mechanical in
nature and caused by induced charge fluctuations in neutral
atoms or molecules with no permanent dipoles. The quantum
fluctuations of the electrons in neighboring (even neutral) atoms
lead to the formation of an instantaneous dipole. The fluc-
tuation-induced dipole in one atom induces an instantaneous
dipole in the other; these two dipoles are parallel which gives
rise to attraction. The induced dipole-dipole interaction decays
as 1=D6 (in contrast to the decay ∝ 1=D3 for the permanent
dipole-dipole interaction). This algebraic decay is due to the
scale invariance of the Coulomb interaction. As discussed in
detail in Sec. II.B, the CCF decays algebraically only at the
critical point but exponentially off criticality. However, its range
can be changed continuously byvarying the temperature. Such a
tuning of the range of the van der Waals forces is not possible.
Even though the London interactions of two molecules are
rather weak, at short distances the overall interactions between
twomacroscopic bodies can become significant compared with
kBT. Indeed, for two spheres, the nonretarded van der Waals
forces contribute to the total potential through a term (Hamaker,
1937; Parsegian, 2006)
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VvdWðΔÞ=kBT
¼ UvdWðΔÞ

¼ −
AH

6kBT

�
2

ΔðΔþ 4Þ þ
2

ð2þ ΔÞ2 þ ln

�
1þ 4=Δ

ð1þ 2=ΔÞ2
��

;

ð4Þ

where AH is the Hamaker coefficient, which has a typical
value of ≃10−20 J. As Δ ¼ D=R increases, this term crosses
over from the behavior UvdWðD ≪ RÞ ≃ −ðAH=12ÞðR=DÞ to
UvdWðD ≫ RÞ ≃ −ð16AH=9ÞðR=DÞ6. For larger distances,
however, the retardation effect due to the finite velocity of light
sets in and the London forces cross over to the classical Casimir
interaction. The leading decay of the potentials of these
interactions [not captured by Eq. (4)] is ∝ −1=D2. Here we
refer to a recent review (Klimchitskaya, Mohideen, and
Mostepanenko, 2009) on classical Casimir forces and on the
closely related van der Waals forces. We note that the complete
continuum theory for dielectricmacroscopic bodies immersed in
a dielectric medium was developed by Lifshitz, Dzyaloshinskii,
and Pitaevskii (Lifshitz, 1955; Dzyaloshinskii, Lifshitz, and
Pitaevskii, 1961). This theory is derived in terms of the
frequency-dependent dielectric permittivities εjðωÞ, j ¼ 1, 2,
of the two bodies and of ε0ðωÞ for the medium. It is valid for any
distance, large on molecular scales, between the surfaces of the
macroscopic bodies. Moreover, it does not assume pairwise
additivity of the interactions and includes in a consistentway two
limits: the van derWaals limit at small separations, for which the
retardation effects can be neglected, and the opposite limit at
large distances, where the classical Casimir force dominates.
However, for intermediate distances and geometries other than
planar, the implementation of the Lifshitz theory is rather
cumbersome. In particular, the expression for the interaction
energy does, in general, not factorize into a material-dependent
(via the Hamaker coefficient) and a geometrical contribution as
in Eq. (4). However, one can estimate the significance of the van
der Waals interactions between two spheres by considering a
planar geometry. For the latter the interaction energy for two
parallel walls across a film of thickness D can be expressed in
terms of AHðDÞ as (Parsegian, 2006)

VðD; TÞ=kBT ¼ −
1

12πkBT
AHðDÞ
D2

: ð5Þ

Within a first approximation (Parsegian, 2006) one has

AHðDÞ ≃ 3

2
kBT

X0∞

n¼0

ε1 − ε0
ε1 þ ε0

ε2 − ε0
ε2 þ ε0

����
iωn

RnðDÞ

≡ An¼0 þ An>0ðDÞ; ð6Þ
where the permittivities εjðωÞ of the various materials are
evaluated at the imaginary frequencies iωn, with ωn ¼
2πkBTn=ℏ, n ∈ N0. The factor RnðDÞ accounts for retardation
which, however, does not affect the zero-frequency term An¼0.
The prime in Eq. (6) indicates that the contribution of the
static permittivities, i.e., n ¼ 0, is to be multiplied by 1=2.
By using index-of-refraction-matched colloidal suspensions
(Israelachvili, 1998) the value of AH can be strongly reduced.
This way dispersion forces can be effectively switched off. For

polar solvents such as water, the static dielectric constant
εðω ¼ 0Þ is large, which makes the contribution of the zero-
frequency mode An¼0 to AH dominant. In this case, it is not
possible to reduce the strength of the dispersion forces uniformly
at all frequencies. On the other hand, An¼0 can be screened by
adding salt to the solvent. Therefore, in colloidal suspensions
with aqueous solvents, even though the van der Waals inter-
actions are still present, their relevance can be restricted to very
short distances. Often, these distances are below the rangewhich
can be resolved experimentally such as, e.g., the measurements
of CCFs between a colloid, immersed in a mixture of water and
2,6-lutidine, and a planar wall (Hertlein et al., 2008; Gambassi
et al., 2009). [A detailed discussion of the Hamakar constant for
a polystyrene colloid near a silica glass substrate immersed in a
mixture of water and 2,6-lutidine can be found in Gambassi
et al. (2009).]
Additionally, in the presence of small co-solutes such as

free polymer coils or smaller colloids in a sterically stabilized
colloidal suspension, one has to consider depletion inter-
actions which arise between large colloidal particles due to
entropic effects caused by the small solutes. This so-called
depletion interaction is mainly attractive and has a range
proportional to the size of the depletant (Asakura and Oosawa,
1954; Vrij, 1976). There are several theories and approx-
imations for the depletion potential, which are summarized by
Götzelmann, Evans, and Dietrich (1998) and Roth, Evans, and
Dietrich (2000). For example, for a fluid of large hard spheres
of radius R and a small spherical depletant of diameter σ,
which on its own behaves as an ideal gas, the depletion
potential is (Vrij, 1976)

VdðDÞ
kBT

¼ UdðDÞ ¼
�−nbVovðDÞ; 0 ≤ D ≤ σ;

0; D ≥ σ;
ð7Þ

whereVovðDÞ ¼ ðπ=6Þðσ −DÞ2ð3Rþ σ þD=2Þ. InEq. (7)nb
is the bulk number density of the small spheres. Note that
jVdðDÞj inEq. (7) is equal to the pressure (p ¼ nbkBT) times the
overlap volumeVov between the excluded volumes denied to the
centers of the small spheres around each big sphere. Taking into
account hard-core repulsion among the depletants produces a
repulsive contribution to the depletion interaction as well as an
oscillatory decay at large distances (Götzelmann, Evans, and
Dietrich, 1998; Roth, Evans, and Dietrich, 2000). For many
actual colloidal suspensions the depletion attraction is strong
enough to induce colloidal aggregation and, despite its rather
short range, a gas-liquid-like phase separation, because even a
small degree of polydispersity or nonsphericity of the particles
causes the fluid phase to not be preempted by crystallization.
If the depletant is only a co-solute in the suspension in which

the solvent becomes critical, the resulting depletion potential
simply adds to the background potential. It may, however,
occur that due to an effective depletant-depletant interaction the
depletant itself exhibits a phase transition with a critical point.
This means that the solvent, which is common to both the big
spheres and the depletant, does not display a critical point of its
own as the one discussed previously. A system that realizes this
interesting scenario was studied experimentally by Buzzaccaro
et al. (2010) and Piazza et al. (2011) and viaMonte Carlo (MC)
simulations (Gnan et al., 2012) (see Secs. II.B.5 and IV.Fwhere
we review the results of these studies). In such a case one
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expects that the depletant produces one unique effective pair
potential between the big particles. Far away from the critical
point of the depletant, this unique pair potential has the
character of a depletion interaction, whereas close to the critical
region of the depletant it should display the features of the
CCFs pair potential. As has been shown by Buzzaccaro et al.
(2010) and Piazza et al. (2011), the framework of density
functional theory (DFT) (Evans, 1979), which is commonly
adopted in colloidal science, can provide both forms for the
effective pair potential in the corresponding limits (see Sec. II.B
for details). Gnan et al. (2012) numerically determined the
effective pair potential VeffðrÞ between two big hard-sphere
colloids for two models of the depletant particles within a wide
range of state points, including the critical region. In the first
model, the spherical depletant particles interact via a pairwise
square-well (SW) potential:

VSWðrÞ ¼
8<
:

∞; r < σ;

−dw; σ ≤ r ≤ 1þ rwσ;

0; r ≥ ð1þ rwÞσ;
ð8Þ

where r is the center-to-center distance between two depletant
particles, rw is a dimensionless well width, and dw is the well
depth. The second depletant model is an anisotropic three-
patches (3P) Kern-Frenkel system which consists of hard-
sphere particles decorated with three attractive sites (Kern and
Frenkel, 2003). The critical packing fraction of these patchy
particles is very small—as in the experimental system studied
by Buzzaccaro et al. (2010) and Piazza et al. (2011). For this
kind of depletant, the numerically determined effective pair
potential VeffðrÞ between two big spheres has subsequently
been used in a grand canonical off-lattice MC simulation in
order to analyze the stability of the colloidal suspension for a
system of colloidal particles interacting via the pairwise
additive interaction VHSðrÞ þ VeffðrÞ, where VHSðrÞ is a
hard-sphere potential. The results of this study are discussed
in Sec. II.B.5.

Upon approaching the bulk critical point (TðsÞ
c ; cc) of the

solvent, CCFs between the particles emerge and the corre-
sponding pair potential VC=kBT ¼ UC appears in addition to
the background contribution. In the next section we discuss
the details of the pair potential of critical Casimir inter-
actions (CCP).

B. Critical Casimir pair potential

The solvent-mediated force between two spherical par-
ticles, a surface-to-surface distance D apart, is defined as the
negative derivative of the excess free energy F ex ¼ F − Vfb,

fs ¼ −
∂F ex

∂D ¼ −
∂ðF − VfbÞ

∂D ; ð9Þ

where fb is the bulk free energy density of the solvent and F
is the free energy of the solvent in the macroscopically large
volume V excluding the volume of two suspended colloids.
The derivative in Eq. (9) is carried out at constant T and at a
constant number of solvent molecules. If the solvent is in
contact with a reservoir, one has to consider the excess grand
potential Ωex and the derivative has to be taken at constant T
and at constant chemical potential μ. It follows from the

definition in Eq. (9) that, in an open system, fs per surface
area is excess pressure over the bulk value (fixed by the
reservoir). As already discussed in the Introduction, the CCF
fC is the long-ranged universal contribution to fs which
emerges upon approaching the bulk critical point of
the solvent. The CCF arises due to the modifications of the
structure of the solvent and due to the restrictions of the
thermal fluctuations of the corresponding OP which are
caused by the surfaces of the colloids at a fixed distance.
These surface induced modifications extend spatially to
distances set by the bulk correlation length ξ. If the separation
between the two colloids is smaller than ξ, i.e., D≲ ξ, the
second colloid interacts with a solvent which is significantly
modified by the first one and therefore an effective interaction
between the two objects emerges with a spatial range set by ξ.
Since at criticality ξ diverges, upon approaching the critical
point this effective force becomes long ranged and acquires a
universal character. Universality means that material proper-
ties and microscopic details of the interaction between the
colloid and the solvent are largely irrelevant for the behavior
of the CCF at mesoscospic scales D, ξ ≫ ξð0Þ, where ξð0Þ is a
molecular size of the solvent. If many colloidal particles are
suspended in the near-critical solvent, the modifications of the
solvent generated by each particle are experienced by all the
others. Therefore, an effective many-body critical Casimir
interaction emerges. Because of its many-body nature, this
interaction does not simply follow from the linear super-
position of the separate effects caused by the various bodies,
but it is expected to show genuine and interesting n-body
interactions which cannot be accounted for by pairwise
summation of two-body interactions only.
The pair CCP associated with the CCF is

VCðD;R; T; hbÞ≡
Z

∞

D
dzfCðz; R; T; hbÞ ð10Þ

so that the CCF is given by

fCðD;R; T; hbÞ ¼ −
∂
∂DVCðD;R; T; hbÞ.

According to finite-size scaling theory (Barber, 1983;
Privman, 1990), near criticality the singularities of thermo-
dynamic functions are rounded and shifted when the bulk
correlation length ξ becomes comparable to the characteristic
linear size D of the finite system. This phenomenological
argument implies that the finite-size contribution to the free
energy, and hence also the CCP, is expected to be a scaling
function of the scaling variable D=ξ. One can argue more
formally by using the fact that due to the self-similarity of the
critical fluctuations the singular part of the free energy is a
generalized homogeneous function of the relevant scaling
fields, including the separation D and, in the case of two
identical spheres, their radius R. Further support can be gained
by invoking systematic field-theoretical renormalization
group theory [see Krech and Dietrich (1992)] and see, e.g.,
Diehl (1986) and Esser, Dohm, and Chen (1995)]. It follows
that in the well-defined scaling limit T → Tc and all length
scales of the system being large on molecular scales, UC
attains a scaling form (Barber, 1983; Privman, 1990) in terms
of suitable dimensionless scaling variables describing the
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distance between the colloids, the dependence on the thermo-
dynamic state of the solvent, and the shape of the colloidal
particles. For example, for the spherical particles one has

VCðDÞ
kBT

¼ UCðDÞ

≃
R
D
Θ
�
Y ¼ sgnðtÞD

ξt
;Δ ¼ D

R
;Λ ¼ sgnðhbÞ

D
ξh

�
;

D ¼ r − 2R > 0: ð11Þ
Θ is a universal scaling function determined solely by the so-
called universality class of the continuous phase transition
occurring in the bulk, the geometry of the setup, and the
surface universality classes of the confining surfaces (Diehl,
1986; Krech, 1994; Brankov, Dantchev, and Tonchev, 2000;
Gambassi, 2009). The relevant bulk universality class for
colloidal suspensions is the Ising universality class in spatial
dimension d ¼ 3 or 2. For the CCF one has

fC
kBT

≃
R
D2

ϑðY;Δ;ΛÞ

¼ R
D2

�
Θ − Y

∂
∂Y Θ − Δ

∂
∂ΔΘ − Λ

∂
∂ΛΘ

�
: ð12Þ

In Eq. (11), ξtðt≷0Þ ¼ ξð0Þt;�jtj−ν, with t ¼ �ðT − TðsÞ
c Þ=TðsÞ

c

for an upper (þ) and a lower (−) critical point, respectively, is
the true correlation length governing the exponential decay of
the solvent bulk two-point OP correlation function for t → 0�

and hb ¼ 0, where hb is the bulk ordering field conjugate to

the OP. The amplitudes ξð0Þt;� (with � referring to the sign of t)

are nonuniversal but their ratio ξð0Þt;þ=ξ
ð0Þ
t;− is universal. The

correlation length ξh ¼ ξð0Þh jhbj−ν=βδ governs the exponential
decay of the solvent bulk two-point OP correlation function

for t ¼ 0 and hb → 0, where ξð0Þh is a nonuniversal amplitude

related to ξð0Þt;� via universal amplitude ratios; ν, β, and δ are
standard bulk critical exponents (Pelissetto and Vicari, 2002).
For the demixing phase transition of a binary liquid mixture,
the OP ϕ is proportional to the deviation of the concentration
of species, say a,

ca ¼
ϱa

ϱa þ ϱb
ð13Þ

from its value ca;c at the critical point, i.e., ϕ ∼ ca − ca;c; here
ϱα, α ∈ fa; bg are the number densities of the particles of
species a and b, respectively. The bulk ordering field,
conjugate to this OP, is proportional to the deviation of the
difference Δμ ¼ μa − μb of the chemical potentials μα, α ∈
fa; bg of the two species from its critical value, i.e.,
hb ∼ Δμ − Δμc. We note that the actual scaling fields of
fluids are linear combinations of hb and of the reduced
temperature t.
A crucial ingredient for an effective one-component

approach is to have an accurate CCP between two colloidal
particles. This is not only relevant for the investigation of
aggregation or the bulk phase behavior of colloids, but it is
also of intrinsic scientific interest. In recent years the exper-
imental technique of total internal reflection microscopy
(TIRM) (Walz, 1997; Prieve, 1999; Hertlein, 2008) has been

developed which allows one to directly measure and with
femto-Newton resolution the effective potential of the CCF
between a colloidal particle, suspended in a near-critical
binary mixture, and a fixed object such as a planar wall
(Hertlein et al., 2008; Gambassi et al., 2009; Nellen, Helden,
and Bechinger, 2009). Video microscopy has also been used
in order to determine the CCP between two spherical colloids
(Dang et al., 2013; Nguyen et al., 2013; Shelke et al., 2013;
Paladugu et al., 2016; Stuij et al., 2017). For discussions of
experimental studies of CCFs see Sec. IV.A. Although the
resolution and the sophistication of such experiments keep
increasing, it is difficult to interpret the raw data of these
measurements mainly due to the inevitable, simultaneous
presence of various contributions to the effective pair potential
(see the corresponding discussion in Sec. IV.C). Therefore,
reliable theoretical results are required in order to improve the
interpretations of the experimental data.
The main difficulty in theoretically determining the scaling

function of CCFs and their potential lies in the character of the
critical fluctuations; an adequate treatment has to include non-
Gaussian fluctuations. Usually colloidal particles exert a
potential on the surrounding fluid which is infinitely repulsive
at short distances and attractive at large distances. Such
potentials give rise to pronounced peaks in the density profile
of the fluid near the surface of the particle, i.e., there is strong
adsorption. In terms of a field-theoretical description this
corresponds to the presence of a strong (dimensionless)
surface field hs ≫ 1. For binary liquid mixtures one has hs ∼
δΔμs=kBT so that there is a local increment at the surface of
the chemical potential difference between the two species. It
determines which species of the solvent is preferentially
adsorbed at the surface of the colloid. The preference for
one component of a binary liquid mixture may be so strong as
to saturate the surface of the colloids with the preferred
component, which corresponds to hs ¼ þ∞ ð−∞Þ. For two
colloids this gives rise to symmetry-breaking BCs [denoted by
ðþþÞ or ð−−Þ] for the solvent OP. The resulting spatial
variation of the order parameter poses a significant compli-
cation for obtaining analytic results. Moreover, nonplanar
geometries lower the symmetry of the problem. Apart from a
few exceptions and limiting cases, the presently available
analytical results for CCFs are of approximate character.
At first, for two spherical colloidal particles, the corre-

sponding CCP has been studied theoretically right at the bulk
critical point. Early on, de Gennes (1981) proposed the
singular effective interaction potential between two widely
separated spheres by using a free energy functional, which
goes beyond mean field in the sense that it incorporates the
nonclassical bulk critical exponents, but neglects the critical
exponent η; η is the standard bulk critical exponent for the
two-point correlation function at criticality with η ∼ 0.04 in
d ¼ 3 and η ¼ 1=4 in d ¼ 2 (Pelissetto and Vicari, 2002).
Within this approach he found that for d ¼ 3 the energy of

interaction in the limitD ≫ R is−4π × 1.69ð4Þ × kBT
ðsÞ
c R=D.

For that interaction potential, the so-called protein limit,
which corresponds to D=R, ξ=D ≫ 1 and which is based on
exact arguments using conformal invariance, renders within a
small-sphere expansion (Burkhardt and Eisenriegler, 1995;
Eisenriegler and Ritschel, 1995)
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UCðD; T ¼ TðsÞ
c ; hb ¼ 0; RÞ ∼ ðR=DÞd−2þη ¼d¼3ðR=DÞ1þη

¼d¼2ðR=DÞη; ð14Þ
which implies for the scaling function in Eq. (11)

ΘðY ¼ 0;Δ ¼ D=R → ∞;Λ ¼ 0Þ ∝ Δ−ðd−3þηÞ ¼d¼3Δ−η.

Burkhardt and Eisenriegler (1995) estimated the amplitude
of UC in d ¼ 3 to be slightly larger than

ffiffiffi
2

p
≃ 1.41ð4Þ,

which by and large checks with the prediction given by
de Gennes (1981)—up to the factor of 4π, which is the
surface area of the three-dimensional unit sphere. In the
opposite, the so-called Derjaguin limit D ≪ R, the CCP for
two parallel plates has been employed after conformally
mapping two spheres at separation D into two concentric
spheres and using conformal invariance in order to obtain
(Burkhardt and Eisenriegler, 1995; Eisenriegler and
Ritschel, 1995)

UCðD; T ¼ TðsÞ
c ; hb ¼ 0; RÞ ∼ ðR=DÞðd−1Þ=2 ¼d¼3ðR=DÞ ¼ Δ−1

¼d¼2ðR=DÞ1=2 ¼ Δ−1=2: ð15Þ

This in turn implies for the scaling function in Eq. (11)

Θ
�
Y ¼ 0;Δ ¼ D

R
→ 0;Λ ¼ 0

�
¼d¼3const.

These results confirm that the CCFs can indeed success-
fully compete with direct dispersion (Dantchev, Schlesener,
and Dietrich, 2007; Valchev and Dantchev, 2017) or
electrostatic forces in determining the stability and phase
behavior of colloidal systems. In Sec. II.C we discussed the
minimal model for the effective pair potential describing
the effects of a critical solvent on dissolved colloids due to
CCFs. Since the shape of the total pair potential depends
sensitively on details of the CCP, there is a need to elaborate
on it. This is done in the following sections where we also
survey various approaches used to determine the CCP and
its universal scaling function.
Before proceeding we comment on the terminology used in

the context of CCFs. The notion “critical Casimir effect,”
which has been adopted for the phenomenon described in this
section, stems from a certain analogy with the “classical”
Casimir effect which is due to the confinement of the quantum
fluctuations of the electromagnetic field (either in vacuum or
in a medium, at nonzero or zero temperature). Indeed, at large
separations both the classical Casimir force and the CCF right
at the critical point are long ranged and universal. One often
alludes to the common origin of the two effects in the sense
that both of them involve a confinement of the region in space
within which a relevant field (electromagnetic or the order
parameter of the continuous phase transition) fluctuates.
Beyond these analogies there are important differences
between these effective forces. For example, the fluctuations
of the electromagnetic field in vacuum are Gaussian, whereas
the fluctuations of the order parameter near the critical point
are non-Gaussian. The analogy with the fluctuation-induced
classical Casimir interactions gives rise to some confusion
concerning the rightfulness of using the notion of CCFs when
the confining surfaces impose one or more symmetry-break-
ing BCs on the OP, i.e., if the surface fields are present. In such
a case, the mean field OP is spatially inhomogeneous and
depends on the separation between the confining surfaces D.
This way, the corresponding mean field free energy density
also depends on D and is commonly referred to as the critical

Casimir energy. Using the notion CCF in this context is
sometimes questioned because, in view of the analogy with
the classical Casimir effect, only fluctuation-induced inter-
actions are considered to be Casimir like. However, in fact, the
OP profiles include some contributions from fluctuations.
Moreover, in practice it is impossible to determine separately
and uniquely the contributions which the CCF receives either
from the mean field profiles of the OP field or from
fluctuations around the latter. In addition, even within mean
field theory of continuous phase transitions the correlation
length diverges at the critical point. This divergence is the very
reason for the emergence of universality which in turn
characterizes, inter alia, the critical Casimir effect.
The universal nature of CCFs distinguishes them from the

depletion forces discussed in the previous section. The latter
ones are due to short-ranged fluctuations and thus are very
sensitive to microscopic details (on the scale of the size of the
depletion agents or shorter). In contrast, CCFs are due to long-
ranged fluctuations. The long-ranged fluctuations can give
rise to algebraically decaying forces whereas depletion forces
always decay at least exponentially and they exhibit oscil-
lations, which signal the presence of microscopic length
scales. Instead, CCFs decay monotonically, because they
do not depend on microscopic length scales.

1. Mean field theory

Concerning the full range of parameters, theoretical pre-
dictions for the universal scaling function of the CCP between
spheres are available only within mean field theory (Hanke
et al., 1998; Schlesener, Hanke, and Dietrich, 2003).
Within the Landau-Ginzburg-Wilson approach, the CCF is

conveniently calculated using the stress tensor T (ϕðrÞ) in
terms of the mean field profile ϕðrÞ (Cardy, 1987):

fC ¼ kBT
Z
A
dd−1rT (ϕðrÞ) · n; ð16Þ

where A is an arbitrary (d − 1)-dimensional surface enclosing
a colloid, n is the outward normal of this surface, and fC ¼
fCe is the force between two colloids, where e is a unit vector
along the line connecting their centers. The orientation of e is
such that fC < 0 ð> 0Þ corresponds to attraction (repulsion).
In most cases the mean field profile ϕðrÞ is determined by
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numerical minimization of the Landau-Ginzburg-Wilson
Hamiltonian encompassing suitable surface contributions
from the colloid surfaces in order to account for symmetry-
breaking BCs there. In d ¼ 3 spatial dimensions such a theory
is approximate. In the spirit of a systematic expansion in terms
of ϵ ¼ 4 − d, it is exact in d ¼ 4 for four-dimensional spheres.
Within the Landau-Ginzburg-Wilson mean field approach, the
universal scaling function can be determined only up to an
unknown prefactor. An appropriate way to cope with this
uncertainty and in order to facilitate the comparison with
experimental or other theoretical results is to express the
scaling function in units of the well-known critical Casimir
amplitude for the film geometry so that in this ratio the
unknown prefactor drops out (see Sec. II.B.4).
Recently, the same approach was employed in order to

calculate the scaling function of theCCFs for three-dimensional
spheres posing as hypercylinders ðHd¼4;d�¼3Þ in spatial
dimension d ¼ 4,1 where Hd;d� ¼ fr ¼ ðr⊥; rkÞ ∈ Rd� ×
Rd−d� jjr⊥j ≤ Rg (Mohry et al., 2014). The results obtained
differ from the ones for four-dimensional spherical particles
Hd¼4;d�¼4 in d ¼ 4. This raises the question whetherHd¼4;d�¼3

orHd¼4;d�¼4 renders the bettermean field approximation for the
physically relevant case of three-dimensional spheresHd¼3;d�¼3

in d ¼ 3. Because of this uncertainty more accurate theoretical
approaches are highly desirable. Recent MC simulations of a
sphere near a wall constitute the first step in this direction
(Hasenbusch, 2013).
The mean field Landau-Ginzburg-Wilson theory is a

versatile approach for calculating CCFs. In the case of the
simple film geometry, this approximate approach correctly
reproduces the qualitative behavior of CCFs (i.e., their sign,
functional form, and structure) for various combinations of
surface universality classes. Therefore it has been used to
calculate CCFs for various shapes of colloidal particles and for
other geometries. Nonspherical, i.e., highly ellipsoidal or
spherocylindrical colloids, or elongated particles such as
cylindrical micelles (Gilroy et al., 2010), block copolymers
(Walther et al., 2009), the mosaic tobacco virus (Namba and
Stubbs, 1986), and carbon nanotubes (Pérez-Juste et al., 2005;
Zhao and Fang, 2006) are experimentally available and widely
used in the corresponding current research efforts, with
application perspectives toward new materials in mind. The
orientation-dependent CCP for ellipsoidal particles near a
planar wall at vanishing bulk field hb ¼ 0 was studied by
Kondrat, Harnau, and Dietrich (2009). In this case, due to the
anisotropy of the particles, there is not only a force but also a
torque acting on the particle. This may lead to additional
interesting effects such as the orientational ordering of
nonspherical colloids in a critical solvent. The behavior of
hypercylinders Hd¼4;d�¼3 and Hd¼4;d�¼2 near planar, chemi-
cally structured substrates was studied by Tröndle et al. (2009,
2010). Mattos, Harnau, and Dietrich (2013) calculated the
scaling function associated with CCFs for a system consisting
of two spherical particles facing a planar, homogeneous
substrate. This allows one to determine the change of the
lateral CCF between two colloids upon approaching a wall

which acts like a large third body. Within the applied mean
field theory, this many-body contribution can reach up to 25%
of the pure pair interaction. As one would expect, the many-
body effects were found to be more pronounced for small
distances as well as for temperatures close to criticality. This
trend has been confirmed by studying three parallel hyper-
cylinders within mean field theory (Mattos, Harnau, and
Dietrich, 2015) and three disks in d ¼ 2 within MC simu-
lations (Hobrecht and Hucht, 2015). Three-body interactions
in d ¼ 3 for spherical colloids have been determined exper-
imentally (Paladugu et al., 2016). However, at the present
stage these data cannot yet be compared quantitatively with
theoretical results. Labbé-Laurent et al. (2014) determined the
CCP for the ensuing alignment of cylindrical colloids near
chemically patterned substrates within mean field theory. The
case in which the particles exhibit spatially inhomogeneous
surface properties, forming so-called Janus particles carrying
two opposing BCs, was also considered (Labbé-Laurent and
Dietrich, 2016). The experimental fabrication of such particles
is of research interest in itself (Prasad et al., 2009; Walther
et al., 2009; Yi, Pine, and Sacanna, 2013; Labbé-Laurent and
Dietrich, 2016) as is the theoretical understanding of the
interactions between spherical (Hong et al., 2006; Sciortino,
Giacometti, and Pastore, 2009; Labbé-Laurent and Dietrich,
2016) or nonspherical Janus particles (Li et al., 2012; Liu
et al., 2012; Labbé-Laurent and Dietrich, 2016), because they
are considered to be promising building blocks for self-
assembling materials (Viry et al., 2010; Jiang et al., 2011;
Iwashita and Kimura, 2013, 2014).

2. Beyond mean field theory

Beyond mean field theory, theoretical predictions for the
CCP for two spheres immersed in a critical fluid are available
from conformal field methods which, however, are restricted
to the bulk critical point of the solvent and to d ¼ 2. As
mentioned in passing, the exact analytical results for the
limiting behavior of spheres which nearly touch [Eq. (15)] and
spheres which are widely separated [Eq. (14)] have been
obtained by using conformal invariance of the free energy and
taking the Derjaguin limit in the first case and applying the
small-sphere expansion in the second case, respectively
(Burkhardt and Eisenriegler, 1995). For the 2D Ising univer-
sality class, the CCP has been calculated numerically
(Burkhardt and Eisenriegler, 1995) within the full range of
distancesD between two spheres. More recently, this was also
achieved analytically (Machta, Sethna, and Veatch, 2012) via
the partition function of the critical Ising model on a cylinder,
using a conformal mapping onto an annulus. For nonspherical
colloidal particles with their dumbbell or lens shapes being
small compared to the correlation length and to the inter-
particle distances, exact results for the orientation-dependent
CCFs have been obtained by using a small-particle operator
expansion and by exploiting conformal invariance for d≲ 4
and d ¼ 2 (Eisenriegler, 2004). In fact, in d ¼ 2 conformal
field theory provides a general scheme for critical Casimir
interactions between two (or more) objects of arbitrary shape
(Bimonte, Emig, and Kardar, 2013). This can be achieved by
using the local conformal mappings of the exterior region of
two such objects onto a circular annulus for which the stress

1In the present notation d and d� correspond to D and d used by
Mohry et al. (2014), respectively.
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tensor is known. Assuming the availability of a simple
transformation law for the stress tensor under any such local
conformal mappings, the CCFs are obtained from the contour
integral of the transformed stress tensor along a contour
surrounding either one of the two objects (Bimonte, Emig, and
Kardar, 2013).
Another nonperturbative approach, which allows one to

calculate CCFs directly at a fixed specific spatial dimension
potentially an advantage over field-theoretic approaches based
on a systematic expansion in terms of ϵ ¼ 4 − d, is the use of
semiempirical free energy functionals for critical inhomo-
geneous fluids and Ising-like systems. They were developed
by Fisher and Upton (1990) in order to extend the original de
Gennes–Fisher critical-point ansatz (Fisher and de Gennes,
1978; Fisher and Au-Yang, 1980). Upon construction, these
functionals fulfill the necessary analytic properties as a
function of T and a proper scaling behavior for arbitrary d.
The only input needed is the bulk Helmholtz free energy and
the values of the critical exponents. (However, the available
functional is valid only for symmetry-breaking BCs.) The
predictions of this functional for films with ðþ;þÞ boundary
conditions are in very good agreement with previous results
obtained by ϵ expansion and conformal invariance for the
scaling function of the OP and for the critical Casimir
amplitudes (Borjan and Upton, 1998). Also the predictions
for the full scaling functions of the CCFs at hb ¼ 0 (Borjan
and Upton, 2008) are in good agreement with results fromMC
simulations. These predictions have been obtained from a
linear parametric model, which in the neighborhood of a
critical point provides a simple scaled representation of the
Helmholtz free energy in terms of “polar” coordinates ðr; θÞ
centered at the critical point ðt; hb;ϕÞ ¼ ð0; 0; 0Þ, where r is a
measure of the distance from the critical point and which
assumes a linear relationship between the OP ϕ and θ.
A similar local-functional approach proposed by Okamoto
and Onuki (2012) used a form of the bulk Helmholtz free
energy which differs from the one employed by Borjan and
Upton (2008), in that it is a field-theoretic expression for the
free energy with (in the sense of renormalization group theory)
renormalized coefficients. Such a version does not seem to
produce more accurate results for the Casimir amplitudes
(Okamoto and Onuki, 2012). Within this renormalized local-
functional approach, the CCFs between two spherical particles
immersed in a near-critical binary solvent (consisting of a and
b particles) have been calculated as a function of both scaling
fields T and hb (Okamoto and Onuki, 2013). The focus of the
study is the situation that the b-rich phase forms on the colloid
surfaces in thermal equilibrium with the subcritical a-rich bulk

solvent (T < TðsÞ
c and hb < 0). This gives rise to a bridging

transition between two spherical particles and the resulting
effective forces are of different nature than the CCFs (see
Sec. II.B.6). We note that the validity of the extended de
Gennes–Fisher or renormalized local-functional approach in
the presence of bulk ordering fields has not yet been tested,
not even for the simple film geometry.

3. Computer simulations

In cases in which one cannot obtain analytical results, MC
simulations offer a highly welcome tool in order to overcome

the shortcomings of approximate theoretical approaches and
to study CCPs within the whole temperature range and also in
the presence of the bulk ordering field hb. In the case that the
solvent is a simple fluid and in the spirit of the universality
concept of critical phenomena, one can study the simplest
representative of the corresponding universality class of the
critical solvent, e.g., spin models such as the Ising lattice gas
model. In the case of a lattice, the derivative in Eq. (9) is
replaced by a finite difference ΔF ex associated with a single
lattice spacing. This also requires one to introduce a lattice
version of a spherical particle. In general, MC methods are
not efficient to determine quantities such as the free energy,
which cannot be expressed in terms of ensemble averages.
Nevertheless, free energy differences can be cast into such a
form via the so-called “coupling parameter approach” (Mon,
1989; Mon and Binder, 1990). This approach can be applied
for systems characterized by two distinct Hamiltonians H0

and H1 but the same configurational space. In such a case,
one can introduce the crossover Hamiltonian HcrðλÞ ¼
ð1 − λÞH0 þ λH1, which interpolates between H0 and H1

as the crossover parameter λ ∈ ½0; 1� increases from 0 to 1.
The difference between the free energies of two systems
characterized by these different Hamiltonians can be conven-
iently expressed as an integral with respect to λ over canonical
ensemble averages of H1 −H0 (with the averages taken by
using the corresponding crossover Hamiltonian for a given
value of the coupling parameter). Alternatively, the free
energy difference can be determined by integrating the
corresponding difference of internal energies over the inverse
temperature. The drawback of both methods is that they
usually require knowledge of the corresponding bulk free
energy density (as in the case of CCFs for a slab geometry).
The accurate computation of the bulk free energy density
poses a numerical challenge by itself and extracting it from
finite-size data requires an accurate analysis. Moreover, the
internal energy differences, when determined by using stan-
dard MC algorithms, are affected by large variances, espe-
cially for nonplanar geometries such as the sphere-planar wall
or the sphere-sphere geometry. In such geometries, the
differences between local energies of the two systems with
different (by one lattice spacing) sphere-wall or sphere-sphere
distances are large only close to the sphere or the wall. This
implies that the variance is dominated by the remaining part of
the system, for which the local energy difference is very small.
Recently a more sophisticated algorithm (Hasenbusch, 2013)
and new approaches (Hobrecht and Hucht, 2014) were
developed in order to overcome these problems. The numeri-
cal method proposed by Hobrecht and Hucht (2014) is
analogous to the experimental one used by Hertlein et al.
(2008) according to which the CCP is inferred directly from
the Boltzmann distribution function of the positions of the two
interacting objects. (In this experiment a sphere performs
Brownian motion near a planar substrate.) So far, the
improved algorithm of Hasenbusch (2013) and the dynamic
method of Hobrecht and Hucht (2014) have been applied only
to the slab geometry and to the geometry of a single sphere (or
disk) near a planar wall. The only available simulation data for
two quasispheres in the d ¼ 3 Ising model have been obtained
by using a method based on the integration of the local
magnetization over the applied local magnetic field (Vasilyev,
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2014). In that study, the CCP has been calculated at fixed
distances between the two spheres as a function of the
temperature scaling variable [related to sgnðtÞðD=ξtÞ] for a
few values of hb, or as a function of the bulk field scaling
variable [related to sgnðhbÞðD=ξhÞ] for several temperatures.
Results of this calculation have been obtained only for small
separations D ≤ 2R, where R ¼ 3.5 (in units of the lattice
spacing a) is the radius of the particle, because the strength of
the potential decreases rapidly upon increasing D. The
accuracy of these data deteriorates at low temperatures.
Alternative ways of computing the sphere-sphere CCP via

MC simulations have been used for two-dimensional lattice
models. One of them (Machta, Sethna, and Veatch, 2012) uses
Bennett’s method (Bennett, 1976), according to which one can
efficiently estimate the free energy difference between two
canonical ensembles, characterized by two different energies
E0 and E1 with the same configuration space, provided that
these two ensembles exhibit a significant overlap of common
configurations. This method was employed for the 2D Ising
model, with frozen spins forming two quasispheres with an
effective radius R; in the reference ensemble (with energy E0)
the quasispheres are separated by a distance D whereas in the
second ensemble (with energy E1), they are separated by a
distance Dþ a (Machta, Sethna, and Veatch, 2012). In order
to estimate the corresponding free energy difference, within
this approach one considers a trial move which keeps the
configuration space the same but switches the energy from E0

to E1, e.g., by mimicking the move of one of the particles from
a distance D to a distance Dþ a by suitably changing and
exchanging spins. The estimate of the free energy difference is
given by F1 − F0 ¼ −kBT lnhexp½ðE0 − E1Þ=kBT�i0, where
the canonical ensemble average h·i0 is taken with respect to
the “reference” ensemble with the energy E0. Integrating this
free energy difference up to infinity, one obtains the CCP.
Machta, Sethna, and Veatch (2012) provided the results for the
CCP as a function of distance D=R≳ 25 for four values of the

temperature in the disordered phase of the solvent, i.e., T ≥
TðsÞ
c and hb ¼ 0. At the critical temperature, these MC

simulation results agree well with the analytical ones obtained
from conformal field theory. Still another route toward
determining the CCP from MC simulations was followed
by Edison, Tasios et al. (2015) and Tasios et al. (2016) for two
quasidisks immersed in a 2D lattice model of a binary liquid
mixture (Rabani et al., 2003). Here the pair potential VCðx; yÞ
was obtained from the numerically determined probability
Pðx; yÞ of finding one colloid at position ðx; yÞ provided
that another one is fixed at the origin: VCðx; yÞ ¼
−kBT ln½Pðx; yÞ=Pð∞;∞Þ�. In order to determine Pðx; yÞ
accurately at fixed values of hb ∼ Δμ − Δμc and T, the so-
called transition matrix MC technique (Errington, 2003) was
employed. This technique relies on monitoring the attempted
transitions between macrostates, as defined, for example, by
specific positions of the two quasidisks, and on using this
knowledge in order to infer their relative probability
PðYÞ=PðY 0Þ, where Y and Y 0 are two distinct states of the
system; once sufficient transition data are collected, the entire
probability distribution PðYÞ can be constructed. The studies
of Edison, Tasios et al. (2015) and Tasios et al. (2016) focused
on the case that the b-rich phase adsorbs on the colloid

surfaces in thermal equilibrium with a supercritical a-rich

bulk solvent (T ≥ TðsÞ
c and hb ≤ 0). It was found that data for

UC ¼ VC=kBT obtained for hb ¼ 0 and D ≪ R collapse on a
common master curve if multiplied by ðD=RÞ1=2 and plotted
as a function of D=ξt, i.e.,

ðD=RÞ1=2UC ¼ Θ(Y ¼ sgnðtÞD=ξt;Δ ¼ D=R ¼ 0;Λ

¼ sgnðhbÞD=ξh ¼ 0).

The scaling exponent 1=2 for the prefactor agrees with the
prediction in Eq. (15) for d ¼ 2, which is obtained based on
the conformal invariance in the Derjaguin limit D ≪ R, and
which implies Θðy → 0;Δ → 0;Λ → 0Þ ¼ const.
The standard algorithms used for the MC simulation studies

described are based on trial moves generating a trial configu-
ration, which are local (Metropolis-type flips of spins) and
hence become very slow near the critical point. This critical
slowing down effect can be weakened by using so-called
cluster algorithms such as the Swendsen and Wang (1987) or
the Wolff (1989) algorithm in which instead of a single spin a
whole cluster of spins is flipped simultaneously. The Wolff
algorithm constructs clusters which consist of spins that are
aligned and connected by bonds. The proof that the Wolff
algorithm obeys detailed balance, and hence generates the
Boltzmann distribution, hinges on the spin inversion sym-
metry of the Hamiltonian. [The Wolff algorithm can be
generalized to systems that contain bulk or surface fields
(Landau and Binder, 2009).] One can also exploit other
symmetries in order to develop a cluster method, for example,
by using geometric operations on the spin positions such as
point reflection or rotation with respect to a randomly chosen
“pivot.” Hobrecht and Hucht (2015) extended the geometric
cluster algorithm (GCA) introduced by Heringa and Blöte
(1998) for bulk Ising models in the absence of external fields
to the case of Ising systems containing areas of spins with a
fixed orientation, facilitated by infinitely strong bonds, which
mimic a colloidal suspension. The GCA makes use of the
invariance of the Hamiltonian with respect to a point inflection
in order to construct two symmetric clusters of spins which are
then exchanged. Contrary to the Wolff cluster algorithm, the
GCA conserves the OP. The modification due to Hobrecht and
Hucht consists of including into the clusters not only spins but
also the bond configuration between them. This way, the
particles, encoded into the bond configuration, can be moved
and the configuration of a solvent represented by the Ising
spins can be updated within one cluster step. In the cluster
exchange the neighboring lattice sites i and j as well as the
connecting bond hiji are mapped via point reflection
with respect to a pivot onto the sites i0 and j0 and the bond
hi0j0i, respectively. Using this apparently efficient MC
cluster algorithm, Hobrecht and Hucht (2015) studied two-
dimensional systems with a fixed number of identical, disklike
particles defined as regions of fixed positive spins, which thus
effectively impose symmetry-breaking (þ) BC onto the
surrounding free spins. Within this scheme, they calculated
the two- and three-body CCP at the bulk critical point of the
Ising model. They reported strong finite-size effects: for
periodic simulation boxes with a fluctuating total magnetiza-
tion, the presence of a nonzero number density of colloidal
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particles with a non-neutral surface preference for up and
down spins shifts the system away from the critical point. As a
result, their MC results for the CCP do not exhibit the form
expected to hold at the critical point for a single pair of
particles in solution [Eqs. (14) and (15)]. In order to suppress
this effect, Hobrecht and Hucht (2015) proposed to use a fixed
total magnetization M ¼ 0 or to insert in addition the same
number of particles but with the opposite surface preference.

4. Derjaguin approximation

a. General discussion

Within the so-called Derjaguin approximation curved,
smooth surfaces are approximated by surfaces which are a
steplike sequence of parallel planar pieces (Hobrecht and
Hucht, 2015). Between two vis à vis, flat pieces of the
opposing surfaces partitioned this way, locally a force acts
as in the slab geometry and the total force is taken to be the
sum of the forces between each individual pair with the
appropriate areal weight. For two spheres with the same radius
R, this yields for the radial force F at surface-to-surface
separation D ≪ R:

FðDÞ ¼ πRVkðDÞ; ð17Þ

where VkðDÞ is the interaction energy per unit area of two
parallel walls separated byD. The Derjaguin approximation is
widely used to estimate the effective interactions between
colloidal particles, because the forces between parallel surfa-
ces are much easier to calculate. Indeed, for the slab geometry
the CCFs are known even beyond mean field theory (see
later). Therefore, by using this approximation one can account
even for non-Gaussian critical fluctuations, albeit at the
expense of not fully considering the shape of the particles.
The Derjaguin approximation is valid for temperatures which
correspond to ξt ≲ R, because under this condition the CCFs
between the colloids act only at surface-to-surface distancesD
which are small compared with R. In many cases this appro-
ximation is surprisingly reliable even for D≲ R (Gambassi
et al., 2009; Tröndle et al., 2009, 2010).

Knowing the universal scaling function ϑ̃ðd¼3Þ
k ðY;ΛÞ ¼

fkCðD; T; hbÞD3=kBTS of the CCF for the film geometry
ðkÞ with macroscopically large surface area S of each wall,
one can calculate the scaling function of CCF between two
spheres (∘∘). Summing up the contributions stemming
from all parallel planar pieces one obtains, in d¼3,

f∘∘C =kBT ≃
R
dSfkC ¼ 2π

R
R
0 dρρfkC(DðρÞ), where DðρÞ ¼

Dþ 2R½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρ=RÞ2

p
�. This leads to the scaling function

ϑðd¼3;DerjÞ
ð∘∘Þ ðY;Δ;ΛÞ

¼ π

Z
1þ2Δ−1

1

dxx−d
�
1 −

Δ
2
ðx − 1Þ

�
ϑ̃ðdÞk ðxY; xΛÞ: ð18Þ

In many instances it is sufficient to set Δ to zero in Eq. (18).
Thus, in this limit and within the Derjaguin approximation, the

scaling function ϑðd¼3;DerjÞ∘∘ does not depend on Δ.
Based on exact results in d ¼ 2 (Evans and Stecki, 1994;

Abraham and Maciołek, 2010, 2013) and in d ¼ 4 (Krech,

1997), and based on the predictions from the local-functional
approach in d ¼ 3 (Borjan and Upton, 2008), it is expected
that the CCF fCðDÞ between two planar walls with symmetry-
breaking ðþþÞ BCs at separation D varies as expð−D=ξtÞ for
D ≫ ξt and t > 0, i.e., in the one-phase region of the solvent.
This implies that the asymptotic behavior of the scaling
function is given by

ϑ̃ðd¼3Þ
k (Y ¼ sgnðtÞD=ξt ≫ 1;Λ ¼ sgnðhbÞD=ξh ¼ 0)

¼ AþYd expð−YÞ;

where Aþ ¼ 1.2–1.5 is a universal number valid for ðþþÞ
BCs (Gambassi et al., 2009). By applying the Derjaguin
approximation to this functional form of the CCFs, one
obtains the following asymptotic behavior of the scaling

function Θðd¼3;DerjÞ
⊕⊕ (Y;Λ ¼ sgnðhbÞD=ξh ¼ 0) for the

sphere-sphere CCP:

Θðd¼3;DerjÞ
⊕⊕ (Y → ∞;Λ ¼ sgnðhbÞD=ξh ¼ 0) ¼ πAþYe−Y ;

D ≫ ξt; t > 0; ð19Þ

so that in this limit

Uðd¼3;DerjÞ
C ¼ πAþ

R
ξt
e−D=ξt ð20Þ

[Eq. (11)]. Because the Derjaguin approximation is exten-
sively used in the context of critical Casimir interactions, in
the next section we summarize the present knowledge of
CCFs for the film geometry.

b. Critical Casimir interactions for the film geometry

In the absence of a bulk ordering field, i.e., for hb ¼ 0 and
strongly adsorbing ðþþÞ confining surfaces, the results for
the critical Casimir interactions in the film geometry have
been provided by field-theoretical studies (Krech, 1997), the
extended de Gennes–Fisher local-functional method (Borjan
and Upton, 2008; Okamoto and Onuki, 2012; Mohry et al.,
2014), and MC simulations of the Ising model (Vasilyev et al.,
2007, 2009; Hasenbusch, 2012) or improved models
which offer the benefit that the amplitude of the leading
bulk correction to scaling vanishes (Hasenbusch, 2010, 2012,
2015; Toldin and Dietrich, 2010; Parisen Toldin, Tröndle, and
Dietrich, 2013). Within MC simulations the case of weakly
adsorbing surfaces was also considered (Hasenbusch, 2011;
Vasilyev, Maciołek, and Dietrich, 2011). In this latter case the
corresponding surface field hs might be so small that upon
approaching the critical point one effectively observes a
crossover of the type of boundary condition imposed on
the OP from symmetry-preserving to symmetry-breaking
BCs. In this case there appears to be no effective enhancement
of the OP upon approaching the confining wall. The CCP
reflects such crossover behaviors; depending on the film
thickness, the CCP can even change sign (Mohry,
Maciołek, and Dietrich, 2010; Hasenbusch, 2011; Vasilyev,
Maciołek, and Dietrich, 2011). On the basis of scaling
arguments one expects that for moderate adsorption
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preferences the scaling function of the CCP in film geometry
additionally depends on the dimensionless scaling variables

yðiÞs ¼ aih
ðiÞ
s LΔ1=ν, i ¼ 1, 2, where hð1Þs and hð2Þs are the

effective surface fields at the two confining surfaces, a1
and a2 are nonuniversal amplitudes, and Δ1 ¼ 0.456 72ð5Þ
(Hasenbusch, 2011) is the surface crossover exponent at the
so-called ordinary surface phase transition (see Sec. IV.C for
an experimental example).
Knowledge of the dependence of CCP on the bulk ordering

field hb is rather limited, although it is crucial for under-
standing the aggregation of colloids near the bulk critical
point of their solvent. The presently available MC simulations
for Ising films provide such results only along the critical

isotherm T ¼ TðsÞ
c (Vasilyev and Dietrich, 2013). In

Schlesener, Hanke, and Dietrich (2003), Mohry, Maciołek,
and Dietrich (2012a, 2012b), and Mohry et al. (2014) the
variation of CCFs with hb has been approximated by adopting
the functional form obtained within mean field theory (d ¼ 4)
by using a field-theoretical approach within the framework of
the Landau-Ginzburg-Wilson theory, but by keeping the
actual critical exponents in d ¼ 3 for the scaling variables.
Within this “dimensional” approximation, the scaling function
of the CCF for the film geometry is taken to be

ϑðd¼3Þ
k (Y ¼ sgnðtÞD=ξt;Σ ¼ Λ=Y ¼ sgnðthbÞξt=ξh)
≃ ϑðd¼3Þ

k ðY;Σ ¼ 0Þϑðd¼4Þ
k ðY;ΣÞ=ϑðd¼4Þ

k ðY;Σ ¼ 0Þ;

where ϑðd¼3Þ
k ðY;Σ ¼ 0Þ has been adopted from MC simu-

lation data (Vasilyev et al., 2007, 2009). [The normalization

by ϑðd¼4Þ
k ðY;Σ ¼ 0Þ eliminates a nonuniversal prefactor

carried by the Landau-Ginzburg-Wilson expression for the
scaling function of the CCF.] Mohry et al. (2014) compared

the scaling functions ϑðd¼3Þ
k resulting from the dimensional

approximation with those obtained within the extended de
Gennes–Fisher local functional. This allows us to compare in
Fig. 1 (unpublished) results for the scaling function

Θðd¼3;DerjÞ
⊕⊕ ðY;ΣÞ of the sphere-sphere CCP [see Eq. (11)]

within the Derjaguin approximation, i.e.,

Θðd¼3;DerjÞ
⊕⊕ ðY;ΣÞ ≃ ðD=RÞUc

¼ π

Z
∞

1

dxðx−2 − x−3Þϑðd¼3Þ
k ðxY;ΣÞ

(Mohry et al., 2014), where ϑðd¼3Þ
k is obtained by using these

two aforementioned approaches. Only for weak bulk fields the
curves in Fig. 1 for both approaches compare well. Otherwise
there are clear quantitative discrepancies, the origin of which
is not clear. The dimensional approximation might deteriorate
upon increasing hb. On the other hand, as mentioned, the
reliability of the local-functional approach for hb ≠ 0 has not
yet been tested systematically. For example, the result of the
local-functional approach for the scaling function of the CCFs
along the critical isotherm differs substantially from the MC
simulations (Mohry et al., 2014). Buzzaccaro et al. (2010) and
Piazza et al. (2011) reported results of a long wavelength

analysis of density functional theory for the scaling function
of the CCF (see also Sec. II.B.5); they are in qualitative
agreement with the results obtained using the extended de
Gennes–Fisher local functional (Mohry et al., 2014). The first
microscopic off-lattice results for the scaling function of the
CCF, both along the critical isochore and in the off-critical
regime, have been worked out by Anzini and Parola (2016).
Anzini and Parola (2016) studied a hard-core Yukawa model
of a fluid by using DFT within a specific weighted density
approximation (Leidl and Wagner, 1993), coupled with
hierarchical reference theory (Parola and Reatto, 1995).
This kind of DFT weighted density approximation, related
to the one proposed early on by Tarazona (1985) and
independently by Curtin and Ashcroft (1985), captures the
short-ranged correlations of the underlying hard-sphere fluid
rather accurately, whereas the hierarchical reference theory is
also able to account for the critical properties of a homo-
geneous fluid. Anzini and Parola (2016) applied this technique
in order to determine the effective interaction between two
hard walls immersed in that fluid. This approach facilitates
investigating the crossover between depletionlike roots of
such effective forces at high temperatures and the critical
Casimir effect upon approaching the critical point of the fluid.
It appears that for hard-core Yukawa fluids the universal
features of CCF emerge only in close neighborhood of the
critical point. The predictions obtained by Anzini and Parola
(2016) for the scaling function of the CCF for various
temperatures along the critical isochore (hb ¼ 0) differ sig-
nificantly from the Ising model MC simulation results by
Vasilyev et al. (2009). Moreover, the data along various
isotherms do not collapse as expected from scaling theory.
Anzini and Parola (2016) interpreted these deviations as an

FIG. 1. Scaling function Θðd¼3;DerjÞ
⊕⊕ ðY;ΣÞ ≃ ðD=RÞUcðD; t;

hb; RÞ [see Eq. (11) and the main text] of the sphere-sphere
CCP, as obtained within the Derjaguin approximation by using
the extended de Gennes–Fisher functional (solid lines) and the
“dimensional” approximation (dashed lines) as a function of the
surface-to-surface distance D (in units of ξt) for several values of
the scaling variable Σ ¼ Λ=Y ¼ sgnðthbÞξt=ξh related to the
bulk ordering field hb. At fixed temperature in the one-phase
region of the solvent (t > 0), the CCP is shorter ranged and much
weaker for hb > 0 (i.e., Σ > 0), which favors the same (þ) phase
of the solvent as the one preferred by the colloid surfaces, than for
hb < 0 (i.e., Σ < 0), which favors the other phase.
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indication of strong corrections to scaling occurring in the
hard-core Yukawa fluid.
Recently, in the slab geometry the first direct computation

of the CCF from off-lattice simulations of a binary liquid
mixture was reported (Puosi et al., 2016). A binary liquid
mixture of species a and b which interact via smoothly
truncated Lennard-Jones potentials was simulated in the
semigrand canonical ensemble, by using hybrid molecular
dynamics and Metropolis MC simulations. The differential of
the semigrand canonical (SGC) potential ΩSGCðT;N; V;ΔμÞ
is given by

dΩSGC ¼ −SdT − ðp − μnÞdV − ΔNdðΔμÞ; ð21Þ

where n ¼ N=V is the overall number density, which is kept
constant, N ¼ Na þ Nb is the fixed total number of mole-
cules, ΔN ¼ Na − Nb, Δμ ¼ μa − μb is the difference of the
chemical potentials μα, α ∈ fa; bg, of the two species, and
μ ¼ ðμa þ μbÞ=2. This implies that within the semigrand
canonical ensemble the CCF emerges from the system size
dependence of the generalized pressure p̃ ¼ p − μn, which is
conjugate to volume changes at fixed n rather than from the
pressure itself. Within molecular dynamics simulations the
pressure can be computed from the virial formula (Hansen and
McDonald, 1986). However, the determination of the excess
generalized pressure, which is the difference between two
strongly fluctuating quantities, proved to be at the limit of
available computing resources. Accordingly, the numerical
data are very noisy and thus carry large error bars. However,
the results obtained by Puosi et al. (2016), although being
interesting as such, in particular, concerning the occurrence of
the pressure anisotropy associated with the confinement, are
not relevant for colloidal systems because the simulation data
pertain to periodic BCs.
As far as experimental data for the film geometry are

concerned, they are available only indirectly from measure-
ments of the thickness of wetting films; they correspond to
opposing ðþ−Þ BCs (Fukuto, Yano, and Pershan, 2005; Rafaï
et al., 2007). The scaling function of the CCF determined by
Fukuto, Yano, and Pershan (2005) compared well with the
theoretical predictions. The measurements performed by Rafaï
et al. (2007) provided data which show stronger deviations
from the theoretical curves, in particular, around the maximum
of the CCF. The scaling function of the CCF for wetting films
corresponding to ðþþÞ BCs could not be determined due to
the collapse of the incomplete wetting film in the course of the
measurements (Rafaï et al., 2007). For a discussion of
experimental studies of CCFs see Sec. IV.A.

5. Pair potential in the presence of depletants

In order to interpret their experimental data (see Sec. IV.E
for details), Buzzaccaro et al. (2010) and Piazza et al. (2011)
determined the effective pair potential between two large hard
spheres immersed in a fluid of depletants close to their gas-
liquid critical point. They used DFT, which is a powerful tool
for describing equilibrium properties of colloidal suspensions
(see Sec. II.A). The hard spheres have been analyzed within
the Derjaguin approximation, which is inherent in recent
approaches to depletion forces acting in hard-sphere mixtures.

In this context, the Derjaguin approximation relates the force
between the two big objects to the integral of the solvation
force fsolvðDÞ ¼ −ð1=SÞðð∂Ω=∂DÞμ;T;S − pÞ of the small
particles (i.e., the depletant agents) confined between two
parallel planar walls with cross-sectional area S. (The film
solvation force fsolv per surface area S is an excess pressure
over the bulk value p of the confined fluid described by the
grand potential Ω.) In the limiting case of hard walls exposed
to an ideal gas of depletants, this relation reproduces the well-
known Asakura-Oosawa result for depletion forces (Asakura
and Oosawa, 1954). This scheme can also be applied to
interacting systems. In fact, such a relation is equivalent to the
general formula obtained by Derjaguin (1934) relating the
force between two convex bodies to the free energy, in excess
of its bulk value, of a fluid confined between planar walls.
Within an actual DFT approach this formula holds even for
approximations of the excess part of an intrinsic Helmholtz
free energy functional of a fluid. Within nonlocal DFT, the
solvation force between two hard walls can be determined via
the exact statistical mechanical relation (Henderson, 1986)

fsolvðDÞ ¼ kBT½ρDð0þÞ − ρ∞ð0þÞ�; ð22Þ

where ρDð0þÞ is the fluid density at contact with the wall in a
confined system, whereas ρ∞ð0þÞ is the corresponding quan-
tity for the separation D ¼ ∞. Buzzaccaro et al. (2010) and
Piazza et al. (2011) have not used the contact theorem given by
Eq. (22)—rather they employed the square gradient approxi-
mation (for which the contact theorem does not hold). The
square gradient local-density approximation for the intrinsic
Helmholtz free energy functional, which enters into DFT, is
valid only for spatially slowly varying depletant number
densities ρ such that ∇ρ=ρ ≪ 1=ξt. In order to incorporate
the non-Gaussian behavior near the gas-liquid critical point of
the depletant, in the spirit of the Fisk-Widom or local-
functional approach (Fisk and Widom, 1969; Fisher and
Upton, 1990; Okamoto and Onuki, 2012), Buzzaccaro et al.
(2010) and Piazza et al. (2011) adopted the scaling form for the
singular part of the bulk free energy density of the fluid
½fðρÞ − fðρcÞ�=kBT ¼ a11t2−αΨðxÞ with the scaling variable
x ¼ b1ϕt−β, where ϕ ¼ ρ − ρc is the bulk OP, a11 and b1 are
nonuniversal, dimensional constants, and β and α are standard
bulk critical exponents (Pelissetto andVicari, 2002). By using a
parametric expression for Ψ (Pelissetto and Vicari, 2002) and
the critical exponents of the 3D Ising universality class, they
obtained good agreement between this analytic approach and
the scaling function of the CCF obtained fromMC simulations
(Vasilyev et al., 2009) at hb ¼ 0. This is not surprising because,
within the square gradient local-density approximation, DFT
reduces to the local-functional approach which turned out to
correctly capture critical fluctuations (Fisher and Upton, 1990;
Borjan and Upton, 1998, 2008), at least for hb ¼ 0.
This theoretical approach has been followed up by MC

simulation studies (Gnan et al., 2012) aiming at the compu-
tation of the CCP between two hard-sphere colloids sus-
pended in an implicit solvent in the presence of interacting
depletant particles. In these off-lattice MC simulations of
fluctuation-induced forces, the effective potential between
two hard spheres has been determined upon approaching the
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gas-liquid critical point of the depletant for two different
depletant models, one for SW and one for 3P particles [see
Eq. (8) and thereafter]. Given the computational limitations,
they have considered the size ratio q between the hard-sphere
depletant and the hard-sphere colloid within the range
0.05 < q < 0.2. The resulting effective colloid-colloid force
has been evaluated by using canonical MC simulations for
various fixed values of the depletant concentration in the
reservoir. The method consists of performing virtual displace-
ments of each colloid from its fixed position and computing the
probability of encountering at least one collision with a
depletant particle. The effective colloid-colloid potential fol-
lows from integrating the corresponding force. These MC
results show that upon cooling the effective potential between
two colloidal particles gradually loses its high-temperature,
pure hard-sphere depletion character of exhibiting oscillations
and transforms into a completely attractive potential with a
progressive and significant increase of its range, signaling the
onset of critical Casimir forces. For large distances between the

surfaces of the two colloids, theMC data for the CCP fit well to
the asymptotic form given by Eq. (20). This numerical study
has been extended to the case in which colloids interact with
SW depletant particles; this interaction has been continuously
modified from hard-core repulsion to strong attraction, thus
changing from ð−−ÞBCs (i.e., preference for the gas phase) to
ðþþÞ boundary conditions (i.e., preference for the liquid
phase) (Gnan, Zaccarelli, and Sciortino, 2012). For strong
colloid-depletant attraction, the effective colloid-colloid poten-
tial exhibits oscillations as they occur for the high-temperature
depletion potential, modulating its exponentially decaying
attractive tail. The variation of the colloid-colloid effective
potential upon crossing over from ð−−Þ to ðþ−Þ and from
ðþþÞ to ðþ−ÞBCs has been determined too. In the asymptotic
spatial range these two crossovers are the same.However, in the
numerical study byGnan, Zaccarelli, and Sciortino (2012) only
the behavior at short distances has been probed, where the
effective potential is dominated by nonuniversal aspects of the
solvent-colloid interaction so that the aforementioned pairs of
BCs are no longer equivalent.

6. The structure of the critical Casimir force between two
identical colloids

We close this section by discussing the structure of critical
Casimir interactions between two colloidal particles in very
dilute suspensions. This is crucial for interpreting the exper-
imental data concerning the onset of aggregation around the
consolute point of the binary solvent in such suspensions,
which will be reviewed in Sec. IV.B.
The results for spheres in d ¼ 3, obtained from the variety

of methods described, tell that they share the same qualitative
features of the CCFs with “spheres” in d ¼ 2 and 4 as well as
with planar walls. This refers to the property that for like BCs
CCFs are attractive and it refers to the position of a force
maximum along various thermodynamic paths. Around the
consolute point of a binary solvent the main features of the
CCFs between two planar walls are summarized in Fig. 2 in

terms of the force scaling function ϑðd¼4Þ
k ðY;ΣÞ obtained from

Landau theory [see Fig. 1 of Mohry et al. (2014)]. The main
message conveyed by Fig. 2 is the asymmetry of the CCFs
around the critical point of the solvent with the maximum
strength occurring at hb ∼ Δμ − Δμc < 0, where Δμ ¼ μa −
μb is the chemical potential difference of the two species. This
asymmetry is a result of the strong influence of capillary
condensation, i.e., the shift of the bulk phase diagram due to
the presence of surface fields hs ∼ δΔμs=kBT, where δΔμs is a
local increment at the surface of the chemical potential
difference between the two species. In films with identical
surfaces, for surface fields hs > 0 two-phase coexistence
occurs along the line hcxðTÞ < 0 ending in a (capillary)
critical point ðTcap; hcapÞ, where TcapðhsÞ < Tc (for solvents
with an upper critical point) and hcapðhsÞ < 0 (Evans, 1990).
The analog of capillary condensation for geometries in

which one or both surfaces are nonplanar is a bridging
transition (Bauer, Bieker, and Dietrich, 2000; Archer et al.,
2005; Okamoto and Onuki, 2013). However, there is a
conceptual difference. Contrary to capillary condensation,
bridging transitions are interfacial phase transitions which
leave the bulk phase diagram unchanged. Bridging occurs at

FIG. 2. Normalized mean field CCF scaling function

ϑðd¼4Þ
k ðY;ΣÞ ¼ D4fkC=kBTS, where Y ¼ sgnðtÞD=ξðt; hbÞ and

Σ ¼ sgnðthbÞξt=ξh for films (of thicknessD and macroscopically
large cross-sectional area S) along isolines of constant scaling
variable Y ¼ 4; 5;…; 10 (from the inner to the outermost ring) in

the thermodynamic state space of the solvent spanned by t̂ ¼
ðD=ξð0Þt;þÞ1=νt and ĥb ¼ ðD=ξð0Þh Þβδ=νhb; ξðt; hbÞ is the bulk corre-
lation length of the solvent with ξt ¼ ξðt; hb ¼ 0Þ and
ξh ¼ ξðt ¼ 0; hbÞ. Note that depending on the particular thermo-
dynamic path under consideration, representations of the scaling
function of the critical Casimir force can be more convenient in
terms of other scaling variables, such as in Fig. 1 where Y ¼
sgnðtÞD=ξt is chosen. The color along the lines of constant Y

indicates the absolute value jϑðd¼4Þ
k =Δðd¼4Þ

k j. The bulk critical

point of the solvent ðt̂; ĥbÞ ¼ ð0; 0Þ is indicated by •. The region
shown here lies above the capillary transition critical point, where
the film coexistence line ends. For ðþþÞ BCs, the capillary
condensation transition occurs for t̂ < 0 and ĥb < 0. The dashed
line indicates the path of constant OP ϕ of the solvent

ϕ̂ ¼ ðD=ξð0Þt;þÞϕ=B ¼ −5, where B is the nonuniversal amplitude
of the bulk OP ϕ ¼ Bjtjβ. Within mean field theory ν ¼ β ¼ 1=2,

ν=βδ ¼ 1=3, and Δðd¼4Þ
k ¼ ϑðd¼4Þ

k ðY ¼ 0;Σ ¼ 0Þ. From Mohry

et al., 2014.
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temperatures for which two phases may coexist, i.e., for T >
Tc in the case of a binary liquid mixture with a lower
consolute point, and it depends on the adsorption properties
of the surfaces. If, say, both surfaces favor the α phase rich in
species a over the β phase rich in species b, one expects the α
phase to form a bridge between the surfaces for a certain
chemical potential μa of species a such that μa < μcxa , where
μcxa is the value corresponding to bulk coexistence. In an
alternative description, this occurs at a concentration ca < ccxa
slightly smaller than its value ccxa at bulk coexistence. If the
surfaces favor the β phase, the β phase fills the gap between
the surfaces forming a bridge for μa > μcxa , i.e., the phase
separation line for this morphological transition occurs on the
other side of the bulk phase diagram, i.e., for ca > ccxa .
Bridging may occur in the presence of thin wetting layers
on both surfaces, i.e., in the partial wetting regimes of the two
individual surfaces or if one or both surfaces are covered by a
thick wetting film (Bauer, Bieker, and Dietrich, 2000). As
discussed in the Introduction, such kind of bridge formation
around the particles was first invoked as a possible explan-
ation for the flocculation of colloidal particles (Beysens and
Estève, 1985; Beysens and Narayanan, 1999). This explan-
ation is plausible if the concentration of the binary liquid
mixture differs significantly from the critical one. However,
the colloidal aggregation occurring in regions of the solvent

phase diagram which extend far from the two-phase coexist-
ence line and from the wetting transition (into the homo-
geneous phase) cannot be related to prewetting phenomena.
Near capillary condensation or bridging phase transitions,

the effective force acting between the confining surfaces, i.e.,
the solvation force, is attractive, exhibits a jump, and is very
strong: the depth of the corresponding potential can reach a
few hundred kBT. Upon changing temperature toward the
critical temperature of the solvent, due to the critical fluctua-
tions of the intervening fluid, the solvation force acquires a
universal contribution, which turns into the CCF. The con-
comitant strong increase of the absolute value of the CCF
occurring for noncritical compositions results from the
residual capillary condensation or bridging. This is reflected
by the corresponding universal scaling function and extends to
the thermodynamic region beyond the capillary condensation

or bridging critical point, even to temperatures T > TðsÞ
c

(T < TðsÞ
c for solvents with the lower critical point).

C. Minimal model for a pair potential in a near-critical solvent

The minimal model for a pair potential, describing the
effects of a critical solvent on dissolved colloids due to CCFs,
corresponds to the sum of Eqs. (2) and (11) with Σ ¼ Λ=Y:

UðrÞ ¼
�∞; D < 0;

Urep þ Uðd¼3Þ
C ¼ A expð−κDÞ þ ð1=ΔÞΘðd¼3ÞðY;Δ;ΣÞ; D > 0:

ð23Þ

The effective pair potential given by Eq. (23) is applicable
only for sufficiently large distances D ≳ κ−1, because it takes
into account only the electrostatic repulsive interactions and
neglects possible short-ranged contributions to the effective
van der Waals interactions. Furthermore, the CCP attains its
universal form as given by the scaling function Θðd¼3Þ only in
the scaling limit, i.e., for distances D which are sufficiently
large compared with the correlation length amplitude

ξð0Þt;þ ≈ 0.25 nm. Analogously, ξt and ξh must also be suffi-
ciently large compared with microscopic scales. From the
behavior of the scaling function Θðd¼3Þ [discussed by Mohry,
Maciołek, and Dietrich (2012b) within the Derjaguin approxi-
mation] it follows that along the typical thermodynamic paths
realized experimentally, the range of attraction due to the CCF
grows steadily upon increasing the bulk correlation length ξt,
but the amplitude of the CCF is a nonmonotonic function of ξt
with its maximal strength attained for an intermediate value of
ξt. Depending on the values of A in Eq. (23) and of ξt, the
CCFs compensate the repulsion for all values of D or only
within certain ranges of D, i.e., a secondary attractive
minimum of UðrÞ can occur at a certain distance Dmin (in
addition to the primary, global minimum atD → 0þ) while for
small distances D < Dmin and for D < 0 the potential main-
tains a repulsive part. The presence of the repulsive barrier and
the attractive secondary minimum in the effective potential,
and thus the occurrence of flocculation, depends on temper-
ature. But also in the case in which for all values of ξt a

repulsive barrier remains, coagulation can appear, due to a
deep secondary minimum. However, this mechanism differs
from the one for aggregation due to the primary minimum.
While in the latter case the colloids will stick together with
their surfaces in contact, in the former case they are close but
not in contact. The shape of the total potential exhibiting the
secondary minimum has not yet been probed experimentally
(see Sec. IV.C).
The model given in Eq. (23) was used by Bonn et al.

(2009), Gambassi and Dietrich (2010), Mohry, Maciołek, and
Dietrich (2012a, 2012b), Dang et al. (2013), Nguyen et al.
(2013), and Mohry et al. (2014). Zvyagolskaya, Archer, and
Bechinger (2011) modeled the electrostatic repulsion via a
hard-disk repulsion with an effective diameter, instead of a
soft repulsive potential of the form as in Eqs. (2) and (3). In
some of the studies cited, a simplified functional form of the
universal scaling function Θwas employed (Bonn et al., 2009;
Gambassi and Dietrich, 2010; Dang et al., 2013; Nguyen
et al., 2013), such as using a form similar to the one given in
Eq. (20), which is valid only asymptotically for large values of
the temperature scaling variable neglecting the dependence on
the other, also relevant scaling variables.

1. Stability

Knowing the effective pair potential for colloids one can
investigate the kinetic stability of the colloidal suspensions
and the aggregation of colloids. These phenomena are related
to kinetic processes (Russel, Saville, and Schowalter, 1989),
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which are based on the diffusion of single particles in the
presence of other particles of the same kind, interacting with
them via interaction potentials which contain both attractive
and repulsive contributions. Aggregation occurs if the attrac-
tive interactions of the particles dominate over their thermal
kinetic energy, which is responsible for the Brownian motion
of the particles. Hydrodynamic interactions may also play a
role, e.g., by slowing down the aggregation process for
solvents with high viscosity.
In the initial phase of aggregation the individual particles

form dimers. In order to quantify the behavior of interacting
particles, which irreversibly stick together once their surfaces
touch each other, Fuchs (1934) introduced the concept of a
stability ratio. It is defined as the ratio W ¼ J0=J between the
Brownian motion induced pair formation rate J0 in the absence
of other than excludedvolume interactions between theparticles
and the corresponding formation rate J of particle pairs in the
presence of such interactions. The stability ratio is accessible
experimentally through the measurements of the rates J and J0
by using various experimental techniques such as turbidimetry,
light scattering, or fluorescent correlation spectroscopy.W can
be calculated by extending Smoluchowski’s diffusion equation
for the radially symmetric relative motion of two coagulating
spherical particles of radius R in order to account for their
interaction potential (Fuchs, 1934):

W ¼ 2R
Z

∞

2R

exp fUðrÞg
r2

dr: ð24Þ

The analysis, which leads to this expression, is valid only in the
early stages of coagulation before triplets, etc., are formed.
However, it does not deal with the very beginning of the
coagulation process but considers only the steady-state situa-
tion, which is established quickly. In the analysis based on
Smoluchowski’s equation hydrodynamic interactions are
neglected. From the definition of W it follows that for hard
spheres W ¼ 1, while for W > 1 (W < 1) the repulsive
(attractive) part of the pair potential ðkBTÞU dominates. In
the case of a potential barrier, i.e., ifUðrÞ ≫ 1 for a certain range
of distances r > 2R, which leads toW > 1, one can expect that
on intermediate time scales the suspension will be in a (meta)
stable homogeneous state. The cluster formation will set in only
on a very large time scale.
For the mixed phase of the solvent and for a diversity of

possible shapes of the effective pair potential given in
Eq. (23), the ratio W was calculated by Mohry, Maciołek,
and Dietrich (2012b). The results of this calculation are useful
for predicting the onset of nonequilibrium aggregation as a
function of experimentally relevant parameters. However, this
possibility has not yet been explored experimentally. Mohry,
Maciołek, and Dietrich (2012b) complemented the investiga-
tions of the stability ratio by the analysis of the bulk structure
of colloidal suspension. To this end, the radial distribution
function gðrÞ was calculated within the integral equation
approach by using the hypernetted chain and the Percus-
Yevick closure (Hansen and McDonald, 1986). The results for
both types of closure are almost the same. [The applicability
and reliability of this integral equation approach was dis-
cussed in detail by Caccamo (1996).] For temperatures far
from the critical temperature of the solvent, the colloids

behave effectively as hard spheres with an effective diameter
σ > 2R due to the soft repulsive background contribution
Urep. Accordingly, for such values of ξt, gðrÞ has the
corresponding characteristics of a fluid of hard spheres, such
as the rather broad first peak for small values ofD. Because of
the emerging attractive CCFs, for increasing ξt the radial
distribution function gðrÞ is enhanced close to the surfaces of
the colloids. This implies an enhanced short-ranged order and
that the formation of colloidal dimers is favored. The way in
which the shape of the radial distribution function gðrÞ
changes upon increasing the temperature reveals whether
the effective potential exhibits a repulsive barrier at small
values of D and is attractive throughout large distances or
whether an attractive minimum develops at intermediate
values of D upon increasing temperature while repulsion
remains at small and large values of D.
Since, throughW as given by Eq. (24), the rate of association

of two colloids depends on the strength of the interparticle
potential, it allows one to address the issue whether a relation-
ship can be established between the onset of aggregation and the
behavior of the second virial coefficientB2, which is accessible
both theoretically and experimentally. For dilute suspensions,
the second virial coefficient (Hansen and McDonald, 1986)
provides information about the strength of the radially sym-
metric attraction between spherical particles:

B2 ¼
1

2

Z
d3rð1 − e−UðrÞÞ

¼ 2π

Z
∞

0

drr2ð1 − e−UðrÞÞ ¼ 2π

Z
∞

0

drr2½1 − gðrÞ�;

ð25Þ

where gðrÞ is taken in the dilute limit. Beyond the ideal gas
contribution it determines the leading nontrivial term in the
expansion of the pressure pðρÞ=kBTρ ¼ 1þ B2ρþ � � � in
terms of powers of the number density ρ. Mohry, Maciołek,
and Dietrich (2012b) calculated B2 for the potential given by
Eq. (23) at the state points for which, according to the experi-
ments reported by Gallagher, Kurnaz, and Maher (1992) and
Gallagher andMaher (1992), aggregation sets in. These experi-
ments have been performed for very small (10−7 − 10−3)
packing fractions of the colloids. It turns out that at these states
of aggregation onset, thevalues ofB2 are close to each other and
that to a certain extent those B2 isolines, which emerge by
belonging to these experimental data points, agree with each
other and with the possible shape of the aggregation onset line
(see Fig. 3). However, this analysis was based on many fitting
parameters and hence it is not compelling. Further efforts in this
direction, as undertaken by Stuij et al. (2017), have combined
theory and experiment in order to provide more accurate values
of the relevant parameters (for details see Sec. IV.C). The
outcome has demonstrated that B2 serves well as a quantitative
indicator for the onset of aggregation, at which the system
separates into a colloid-rich and a colloid-poor phase (see the
next section).

2. Phase behavior

In suspensions with sufficiently large packing fractions of
colloids, the attraction among them due to CCFs can induce a
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so-called “liquid-gas” phase separation of the colloids, i.e.,
the separation of two phases which differ with respect to
their colloidal number density. Adopting the effective one-
component approach allows one to use standard liquid state
theory in order to determine the onset of phase separation.
Within this effective approach, feedback mechanisms of the
colloids, acting on the solvent and changing its critical
behavior, are neglected. Therefore, this approximation does
not allow one to reliably describe all details of the full many-
component system. However, one can identify certain regions
of the thermodynamic phase space for which this approach is
applicable. One expects the effective one-component model to
work well for temperatures corresponding to the one-phase
region of the pure solvent and for an intermediate range of
values of the colloid number density ρ. The latter should be
large enough so that the competition between the

configurational entropy and the potential energy due to the
effective forces can induce a phase separation, but small
enough so that the approximation of using an effective pair
potential between the colloids is valid and the influence of the
colloids on the phase behavior of the solvent is secondary.
This is in fact true for most of the experimental conditions
discussed in Sec. IV.
In Mohry, Maciołek, and Dietrich (2012a), for particles

interacting via the effective pair potential given in Eq. (23), the

phase coexistence curve TðeffÞ
cx (η ¼ ð4=3ÞπR3ρjca) with the

critical-point temperature TðeffÞ
c and the spinodal (i.e., the loci

where, within mean field theory, the isothermal compressibility
χT diverges) have been calculated using DFT within the so-
called random-phase approximation (RPA) (Evans, 1979) and
the integral equation approach (Hansen and McDonald, 1986).
The results obtained from these two approaches, presented in
Fig. 4 [Fig. 2 of Mohry, Maciołek, and Dietrich (2012a)], differ
only slightly. The loci of the phase separation depends
sensitively on the strengthA of the repulsive part of the effective
pair potential [Eq. (3)] and the solvent compositions. For
solvent compositions, which are somewhat poor in the compo-
nent preferred by the colloids, even short correlation lengths
suffice to bring about phase separation. The critical value ηc of
the colloidal packing fraction η ¼ ð4π=3ÞR3ρ (in terms of
number density ρ) is rather small, i.e., ηc ≈ 0.07, because the
effective hard-sphere diameter σ, which results from the soft
repulsion Urep, is larger than 2R. Furthermore, the binodals
shown in Fig. 4 are rather flat compared with the ones for hard
spheres interacting via a short-ranged, attractive, and temper-
ature independent potential. In the present system, the deviation

of T from the critical temperature TðsÞ
c , which corresponds to a

range of η for the coexisting phases as large as the one shown in
Fig. 4, is about 1‰, whereas for a system of hard spheres with
an additional attractive interaction the corresponding temper-

ature deviation is a few percent. The critical temperature TðeffÞ
c

obtained within DFT agrees with the simple prediction
B�
2 ¼ B�

2;c, acting as an implicit equation for Tc, as suggested
byVliegenthart and Lekkerkerker (2000) andNoro and Frenkel

(2000) (VLNF), where B�
2ðTÞ≡ B2ðTÞ=BðHSÞ

2 is the reduced
second virial coefficient and B�

2;c is the critical value of B
�
2 for

Baxter’s model of adhesive hard spheres (Baxter, 1968).

BðHSÞ
2 ¼ ð2π=3Þσ3 is the second virial coefficient of a

suitable reference system of hard spheres with diameter σ.
The effective hard-sphere diameter can be taken as σ ¼R r0
0 ð1 − exp½−UðrÞ�dr, with Uðr ¼ r0Þ ¼ 0. One can also
adopt other definitions of σ (Andersen, Weeks, and
Chandler, 1971). According to VLNF, B�

2 is a useful indicator
of the occurrence of a phase separation into a colloidal-rich
(liquid) and a colloidal-poor (gas) phase. An extended law of
corresponding states proposed by VLNF predicts that the value
of the reduced second virial coefficientB�

2 at the critical point is
the same for all systems composed of particles with short-
ranged attractive interactions, regardless of the details of these
interactions. This approximate empirical rule is supported by
experimental data (Vliegenthart and Lekkerkerker, 2000) and
theoretical results (Largo and Wilding, 2006; Foffi and
Sciortino, 2007; Orea and Duda, 2008; Gazzillo, 2011).

FIG. 3. The experimentally determined coexistence points (⊙) of
the water-2,6-lutidine mixture (Gallagher, Kurnaz, and Maher,
1992; Gallagher and Maher, 1992) which exhibits a lower, con-

tinuous demixing phase transition. TðsÞ
c is the critical temperature of

this demixing transition and ωL is the mass fraction of lutidine.
These coexistence points on the binodal of phase segregation agree
well with jωL − ωc;Lj ¼ Bωjtjβ, where β ¼ 0.3265 and Bω ¼
0.765 (dark gray line). Squares denote the experimental state points
of the onset of aggregation (the straight black dotted lines in between
are a guide to the eye) from the middle panel of Fig. 1 in Gallagher,
Kurnaz, and Maher (1992). Each isoline of constant B2 (solid,
colored lines; for visibility of the blue line the red one is dashed, both
lines nearly coincide) corresponding to one of the state points
(squares), is calculated by using the effective potential given by
Eq. (23); their values are B2=ð4π=3ÞR3 ¼ −67 (red square), −65
(blue square),−23 (yellow square), and 5.4 (green square). EachB2

isoline can capture some qualitative trends of the possible shape of
the line of onset of aggregation. The blue and the red lines reveal
agreement, but the yellow and the green one do not. From Mohry,
Maciołek, and Dietrich, 2012b.
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III. MULTICOMPONENT MIXTURE

A. General discussion

For the kind of systems considered here, the determination
of phase equilibria is rather subtle because, due to the
concomitant adsorption phenomena, which are state depen-
dent, the effective potential between the colloids depends on
the thermodynamic state itself. Experiments have revealed
(Gallagher, Kurnaz, and Maher, 1992; Gallagher and Maher,
1992; Grüll and Woermann, 1997; Rathke, Grüll, and
Woermann, 1997) that for suspensions very dilute in colloids
and with a phase-separated solvent, basically all colloidal

particles are populating the phase rich in the component, say

a, preferred by the colloids (this phase has concentration cð1Þa ).
This implies that in coexisting distinct phases the effective
potential acting between the particles is different. This is not
captured by the effective potential approach discussed pre-
viously. Besides the colloid-solvent the solvent-solvent inter-
actions can also influence the effective potential and,
accordingly, the phase behavior of the effective colloidal
system. This has been demonstrated by recent MC studies in
which various kinds of model solvents have been used (Gnan
et al., 2012). On the other hand, the presence of colloidal
particles may alter the phase behavior of the solvent. In the
case of molecular fluids, it is well established that the phase
diagrams of ternary mixtures, as they emerge from those of
binary mixtures by adding a third component, are distorted
and become more complex relative to the underlying original
binary ones (Andon and Cox, 1952; Cox, 1952; Prafulla,
Narayanan, and Kumar, 1992). Similar distortions and com-
plex features of phase diagrams are observed experimentally
(Kline and Kaler, 1994; Jayalakshmi and Kaler, 1997; Koehler
and Kaler, 1997) upon adding colloidal particles to binary
solvents. In particular, one finds a decrease of the lower
critical temperature. Such a shift of the critical point of a
binary liquid mixture can also occur due to impurities which
are considerably more soluble in one of its two components.
The effects of impurities on the phase diagram of a simple
mixture have been studied theoretically, e.g., by Rice (1976),
and more recently also experimentally (for a polymer impu-
rity) (Venkatesu, 2006). If the number density of the colloids
is very low, they can be regarded as impurities. However, for
reliably determining phase diagrams of colloidal suspensions
with binary solvents, especially for smaller particles at higher
concentrations, the full many-component mixture has to be
considered. The importance of considering the colloidal
suspension with a binary solvent as a truly ternary mixture
was already pointed out by Sluckin (1990). If a microscopic
model of the colloidal suspension with a binary solvent could
be solved exactly, the emerging nonadditive, configuration-
dependent CCFs would be included automatically in the free
energy from which the phase behavior of such ternary
mixtures follows. Nonetheless, taking into account those
characteristic features of the CCP, which neglect the many-
body interactions, one can try to predict the expected topology
of the phase diagrams for ternary solvent-solvent-colloid
mixtures (Mohry, Maciołek, and Dietrich, 2012a). Upon
adding colloids, the two-phase region of the demixed phases
of the pure solvent extends into the three-dimensional
thermodynamic space of the actual colloidal suspension. At
fixed pressure this space is spanned by T, the concentration ca
of the component a of the binary solvent, and by the colloidal
number density ρ. The actual shape of the two-phase region
forming a tubelike manifold is expected to depend sensitively
on all interactions present in the ternary mixture (see Fig. 5).
The foremost difficulty in describing such mixtures theoreti-
cally or in dealing with them via computer simulations
consists of the fact that the sizes of their constituents differ
by a few orders of magnitude. This property distinguishes
them significantly from mixtures of hard spheres, needles, and
polymers (Schmidt and Denton, 2002; Schmidt, 2011), for

(a) (b)

FIG. 4. In the plane spanned by temperature and colloidal packing
fraction η: (a) colloidal gas-liquid phase coexistence curves

TðeffÞ
cx (η ¼ ð4=3ÞπR3ρjca) (solid lines, cf., Fig. 5), spinodals (i.e.,

loci of mean field divergence of the isothermal compressibility χT,

dotted lines), and the critical points TðeffÞ
c (crosses) of an effective,

one-component system of large colloidal particles as obtained by
density functional theory. These particles of radiusR interact via an
effective potential given by Eq. (23) with parameters κR ¼ 10 and

A ¼ 1000 (Mohry, Maciołek, and Dietrich, 2012a) at TðsÞ
c . The

curves correspond to a solvent with a lower critical temperature TðsÞ
c

and with various fixed solvent compositions ca [Eq. (13)] repre-
sented by the variablem0 ¼ sgnðϕÞðζ0Þ1=νjB=ϕj1=β ¼ −100 (red),
−20 (green), and−6 (blue).B is defined via the shape of the solvent

binodal ϕ ¼ Bjtjβ and ζ0 ¼ κξð0Þt;þ (see later). The bulk critical
exponents used here are ν ¼ 1=2 and β ¼ 1=2. Close to the phase
separation of the solvent the dominant temperature dependence
within the effective approach described by Eq. (25) is that

of the CCFs, encoded in ζðt ¼ 1 − T=TðsÞ
c Þ ¼ sgnðtÞκξtðtÞ ¼

sgnðtÞζ0jtj−ν. Therefore, if the temperature (a) is expressed in terms
of ζ (b) the members of each set of curves with equal color in (a),
corresponding to various values of ζ0 [ζ0 ¼ 0.01 ð□Þ, 0.05 ð∘Þ, and
0.1 ð▵Þ] fall de facto on top of each other and are characterized
by m0. The dashed lines in (b) correspond to the spinodals
determined within the integral equation approach. [Because of

m0 ∼ ðca − cðsÞa;cÞ−1, the quantities m0 ¼ �∞ correspond to the

critical composition cðsÞa;c.] For solvent compositions which are
somewhat poor in the component preferred by the colloids, i.e.,
for intermediate negative values such as m0 ≃ −20, the CCFs are
strongly attractive. Therefore, short correlation lengths suffice to
bring about phase separation; accordingly, the binodals occur at
small values of ζ. Here only thermodynamic states of the solvent
which are in the one-phase region, i.e., for t > 0, are considered.
From Mohry, Maciołek, and Dietrich, 2012a.
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which the constituents are of comparable size, i.e., none of
them is larger by a factor of 10 or more than the others. In
contrast to molecular ternary mixtures as modeled in terms of
a lattice gas (Mukamel and Blume, 1974; Sivardière and
Lajzerowicz, 1975), in colloidal suspensions the colloidal
particles influence the other two components not only by
direct interactions but also via strong entropic effects. These
occur because their surfaces act as confinements to fluctua-
tions of the concentration of the solvent and they also generate
a sizable excluded volume for the solvent particles.

B. Monte Carlo studies

MC simulations for a lattice model of ternary mixtures,
suitably mimicking colloidal particles suspended in a near-
critical binary solvent, offer the advantage over other available
approaches that they account for both fluctuations and non-
additivity of the emerging CCFs. Because of the large size
difference between the colloid and solvent particles and due to
the critical slowing down of the ternary mixture upon
approaching its critical point, studying the corresponding
three-dimensional systems by MC simulations is computa-
tionally challenging. As a computationally cheaper substitute,

two-dimensional lattice models have been treated by this
method in Edison, Tasios et al. (2015), Hobrecht and Hucht
(2015), and Tasios et al. (2016). In the first of such a MC
simulation study (Edison, Tasios et al., 2015), the colloids
have been modeled as discretized hard disks of radius R (in
units of the lattice spacing) occupying a fraction η of sites on
the square lattice. The remaining lattice sites have been taken
to be occupied by a solvent molecule of either species a or b
with no empty sites left. A similar model of solvent-solvent-
colloid mixtures was considered earlier by Rabani et al.
(2003) in order to study drying-mediated self-assembly of
nanoparticles. Edison, Tasios et al. (2015) and Tasios
et al. (2016) considered only the nearest-neighbor repulsive
interactions between the components of a binary solvent.
This drives phase segregation, which in the absence of
colloids has a critical point belonging to the 2D Ising
universality class. In order to mimic the preference of the
colloids for component b of the binary solvent, a nearest-
neighbor attractive interaction between the colloid and com-
ponent b was taken into account. It was assumed that there is
only a nearest-neighbor repulsion between the colloid and
component a. In the limit Δμs ¼ μa − μb → ∞ of the chemi-
cal potential difference between the components a and b, the

(a) (b)

(c)

FIG. 5. Sketch of the phase diagram for colloids immersed in a binary liquidmixture at fixed pressure corresponding to a liquid state of the

system. Upon adding colloids the phase separation curve TðsÞ
cx ðcaÞ of a pure solvent in the ðT; ca; ρ ¼ 0Þ plane extends to a tubelike two-

phase region Tcxðca; ρÞ in the 3D thermodynamic (td) space spanned by the temperature T, the concentration ca, and the colloidal number

density ρ. The lower critical point⧆ (TðsÞ
c ; cðsÞa;c; ρ ¼ 0) of a pure solvent extends to a line Cc (black curve) of critical points (some of which

are shown as black squares). Its shape reflects the fact that the 2DmanifoldTcxðca; ρÞ of coexisting states is not straight but bent and twisted
due to the specific properties of the CCP. The red dashed curves denote the projections of Cc onto the planes ðρ; caÞ and ðT; caÞ. Within the
effective one-component approach the coexistence curves are explicit functions of ρ only and depend parametrically on the overall
concentration ca. All three panels show that in general forT ¼ const the coexisting phases (i.e., the points connected by a tie line) differwith
respect to both ρ and ca. Thus the effective one-component approach has a limited applicability for determining the phase diagram.
Experimentally or within suitable, sufficiently rich models, upon increasing temperature (along thermodynamic paths indicated by vertical
arrows) one is able to determine a coexistence curve [black line in (c)] in the 3D td space. From Mohry, Maciołek, and Dietrich, 2012a.
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ternary mixture reduces to a binary mixture of 2D hard disks
and solvent component a, which exhibits coexistence between
a fluid and a solid phase. In the study by Edison, Tasios et al.
(2015), the preclusion of solvent-mediated colloidal aggre-
gation, arising from complete wetting and capillary conden-
sation, was implemented by focusing on colloids, which are
immersed in a supercritical mixed phase of components a and

b, such that b-rich critical adsorption layers [for critical
adsorption profiles at spheres and cylinders see Flöter and
Dietrich (1995), Hanke and Dietrich (1999), and Yabunaka
and Onuki (2017) and references therein] form on the colloid
surfaces in equilibrium with a supercritical a-rich solvent in
the bulk. The simulation study by Tasios et al. (2016), in
which the solvent has been treated grand canonically at
constant pressure, revealed the existence of gas-liquid and
fluid-solid transitions, occurring in a region of the thermo-

dynamic variables ½η; t ¼ ðT − TðsÞ
c Þ=TðsÞ

c ;Δμs ¼ μa − μb� of
ternary mixtures which extends well away from the critical
point of the solvent reservoir (especially concerning the fluid-
solid transitions). It has been found that in all phases the local
solvent composition is strongly correlated with the local
colloid density. The coexisting colloidal liquid and solid
phases are poor in component a, whereas in the gas phases
coexisting with the liquid or the solid phases the solvent
composition is very close to the composition of the solvent
reservoir, which, however, is far from its critical composition.
These features agree with experimental observations
(Gallagher, Kurnaz, and Maher, 1992; Gallagher and
Maher, 1992; Grüll and Woermann, 1997; Rathke, Grüll,
and Woermann, 1997) and cannot be captured by an effective
one-component approach as discussed in the previous section.
As expected (Evans et al., 1994), all pair correlation functions
decay exponentially on the scale of the same correlation
length. Strikingly, the correlation length found in the homo-
geneous supercritical state of the ternary mixture was much
larger than the colloid radius (R ¼ 6), which in turn exceeded
the correlation length of the solvent reservoir. Upon adding a
small volume fraction of colloids, the gas-liquid critical point
of a ternary mixture shifts continuously from that of the
colloid-free solvent to the negative values of Δμs, which
decrease upon increasing t. In addition, the MC simulation
data indicate the existence of a second, lower metastable gas-
liquid critical point located at larger values of η. The gas-
liquid-solid triple point is also expected to occur near the
fluid-solid coexistence of pure hard disks shown as the vertical
dashed lines in Fig. 6. Tasios et al. (2016) checked to what
extent a description in terms of an effective pair potential can
account for the phase behavior observed in their MC simu-
lations as shown in Fig. 4(d) of Edison, Tasios et al. (2015).
They concluded that those approaches, which exclusively
employ effective pair potentials, as obtained from planar slit
studies combined with the Derjaguin approximation, over-
estimate the extent of gas-liquid coexistence and under-
estimate how much the critical point of the ternary mixture
is shifted relative to that of the solvent reservoir.
Hobrecht and Hucht (2015) treated the two-dimensional

Ising model with embedded colloids represented as disklike
clusters of spins with fixed orientation, by the geometric
cluster algorithm (see Sec. II.B.3). However, the focus of this
study has not been the phase behavior of a ternary mixture but
rather the two- and three-body CCPs. Employing the geo-
metric cluster algorithm facilitated the study of the same
lattice model as in Edison, Tasios et al. (2015) and Tasios et al.
(2016) but in d ¼ 3 (Tasios and Dijkstra, 2017). As antici-
pated by Edison, Tasios et al. (2015) and Tasios et al. (2016),
the phase diagram displays the same qualitative features as in
the two-dimensional case. Examples of colloidal gas-liquid

(a)

(b)

FIG. 6. Phase diagrams of the full ternary colloid–solvent a–
solvent b 2D lattice model for three values of t ¼ 1 − T=TðsÞ

c [in
Edison, Tasios et al. (2015) denoted by τ]: 0.025 (black), 0.05
(dark red), and 0.075 (blue) in the ðΔμs; ηÞ plane of the solvent
chemical potential difference and the colloidal packing fraction.
The quantity Δμs ¼ μa − μb is the chemical potential difference
between species a and b (in units of the solvent a–solvent b
interaction strength). (a) Results obtained within mean field
theory. The gray, pale red, and pale blue curves correspond to
metastable colloidal gas-liquid (G-L) coexistence, which also
terminates at the critical point. For each τ the upper (stable) and
lower (metastable) gas-liquid critical points are indicated by red
dots. X denotes the solid phase. (The various phases are inferred
from monitoring their free energies.) (b) The corresponding phase
diagrams as determined by MC simulations. The diamonds and
dots denote the phase boundaries as obtained from grand
canonical staged insertion MC simulations and ðΔμs=kBT; η; τÞ
ensemble MC simulations, respectively. Their color corresponds
to the value of τ given in the upper panel. The blue area
corresponds to the two-phase region for τ ¼ 0.075; for τ ¼
0.05 and 0.025 the two-phase regions encompass the previous
regions and have added (colored) slices. The vertical dashed lines
denote fluid-solid coexistence for pure colloidal hard disks.

TðsÞ
c ¼ TMFT

c and TðsÞ
c ¼ TMC

c is the critical temperature of the
binary (ab) solvent within mean field theory andMC simulations,
respectively. From Edison, Tasios et al., 2015.
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and colloidal gas-solid coexistence as well as a supercritical
configuration are shown in Fig. 7 [Fig. 3 of Tasios and
Dijkstra (2017)]. The significant fractionation of the solvent
species favored by the colloids is visually evident.

C. Mean field theory

The mean field approximation of the model considered by
Tasios et al. (2016) was studied in more detail by Edison, Belli

et al. (2015). It is based on free-volume arguments, according
to which the Helmholtz free energy is taken as the sum of three
contributions, describing the direct interactions among the
pure colloids, the pure binary mixture of solvent a and solvent
b, and the colloid, solvent b mixture. For the pure-colloid
contribution the hard-disk free energy has been employed,
with its distinct expressions for the fluid (Santos, López de
Haro, and Bravo Yuste, 1995) and the solid (Young and Alder,
1979) phases. In the free space between the colloids, the mean
field free energy for the a-b mixture has been taken; the
solvent is excluded from the volume of the colloids.
Concerning the colloid–solvent b contribution, the mean
adsorption energy of component b at the colloid surface
has been taken. As inferred from Fig. 6, the topology of the
resulting phase diagram and its temperature dependence agree
qualitatively with the simulations [see Fig. S2 in the
Supplemental Material of Tasios et al. (2016)] and Fig. 1
of Edison, Belli et al. (2015). In particular, a lower critical
point has been found. However, as expected on the basis of the
different spatial dimensions, there is no quantitative agree-
ment; the parameter values used in order to obtain phase
diagrams, which are similar to those from simulations, were
chosen empirically. It seems that in these studies the under-
lying mean field approximation severely underestimates the
effect of the hard-core repulsion of the colloids. In addition to
the colloidal gas and colloidal liquid, this theory predicts the
occurrence of two crystal phases which have the same
(hexagonal) structure but with different lattice spacings. In
the 3D thermodynamic state space of a ternary mixture
spanned by Δμs, η, and t one finds also upper and metastable
lower colloidal gas-liquid critical lines and a colloidal solid-
solid critical line. [The critical points in Fig. 6(a) lie in the
planes cutting the full phase diagram at three constant
temperatures.] The fluid-solid transition corresponds to a
first-order freezing transition. The critical point of the col-
loid-free solvent (t ¼ 0, Δμs ¼ 0, η ¼ 0) is shifted consid-
erably upon adding a small amount of colloids [see the red
dots in Fig. 6(a)]. Edison, Belli et al. (2015) pointed out that
experiments on colloidal aggregation are typically performed
by suspending a fixed number of colloids in a solvent at a

fixed (pure) solvent composition, which we denote by cðsÞa , and
then by adjusting the temperature of the system to reversibly
induce aggregation. They identified the so-called aggregation

line, i.e., the loci of the points ðt; cðsÞa Þ at fixed η and cðsÞa at
which aggregation is observed first, as the line which
demarcates the one-phase region of the ternary mixture,
which lies at the outside of the line, and the region at its
inside where colloidal phase separation can be found. Such a
line (see Fig. 8) ends at an η-dependent critical point of the
ternary mixture, which is shifted from the critical point of
the pure solvent toward a higher (η-dependent) temperature. In
the vicinity of their end points these lines are slightly bent,
which indicates reentrant dissolution. Such lines qualitatively
resemble the experimental results for strong aggregation
reported by Beysens and Estève (1985) (see the solid line
in Fig. 3). This tends to support the view on the aggregation
lines as the line of onset of colloidal phase separation in the
full ternary mixture. The mean field calculation was per-
formed in d ¼ 2 (Edison, Tasios et al., 2015) and then

FIG. 7. Representative configurations of the full three-component
(colloid–solvent a–solvent b) three-dimensional lattice model at

the reduced temperature t ¼ 1 − T=TðsÞ
c ¼ 0.05 [in Tasios and

Dijkstra (2017) denoted as τ], colloid radius R ¼ 6 (in units of the
lattice constant), and for three chemical potentialsΔμs; top:Δμs ¼
0.002 (supercritical phase); middle: Δμs ¼ 0.008 (colloidal gas-
liquid coexistence); and bottom: Δμs ¼ 0.3 (colloidal gas-solid
coexistence). The pink-colored particles represent the colloids,
while the blue-colored ones represent the species b of the solvent;
solvent a is not represented. The quantity Δμs ¼ μa − μb is the
chemical potential difference between species a and b (in units of
the solvent a–solvent b interaction strength). The strong fractiona-
tion of the solvent species b, which is favored by the colloids, is
particularly visible in the middle panel. The colloidal gas phase is
poor in solvent speciesb so the right side of the simulation boxhas a
light blue color. On the other hand, the colloidal liquid is rich in
solvent species b so that the space between the colloids on the left
side of the simulation box has a dark blue color. The phase diagram
of the two-dimensional version of this model is shown in Fig. 6.
From Tasios and Dijkstra, 2017.
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extended to d ¼ 3 (Edison, Belli et al., 2015) but no new
features of the phase behavior have been found. Although the
uncertainties generated by the large differences of length
scales prevent a quantitative comparison with the available
experimental data, the studies reported by Edison, Belli et al.
(2015) and Edison, Tasios et al. (2015) are valuable because
they reveal the possible scenarios for the phase behavior,
which can occur in such ternary mixture, highlighting the
physical mechanisms behind it.

IV. EXPERIMENTS

A. Experimental studies of critical Casimir interactions

Following the example of the “classical” Casimir effect, the
first experimental investigations of CCFs have been carried
out for the film geometry. Even for such a simple geometry,

the experimental detection of fkC is particularly challenging

due to the difficulty of realizing, maintaining, and controlling
with sufficient accuracy the parallel alignment between the
confining surfaces less than a micrometer apart. Moreover,
CCFs are rather weak. On the basis of the theoretical results
discussed in the previous sections, a rough estimate reveals

that the Casimir force fkC acting on the confining surfaces of a
film of transverse area S ¼ 1 mm2 and thicknessD ¼ 1 μm is
expected to be about 10−10 N for critical points at room
temperature. The natural solution for this challenge is to use
fluid wetting films. Such films occur in systems which in the
bulk exhibit a first-order phase transition such as a gas-liquid
phase transition. The wetting films form as a result of the
subtle interplay between the substrate potential, the interaction
among the fluid molecules, and the fluctuations of the
depinning interface. Under the action of the so-called effective
interface potential (Dietrich, 1988), the fluid forming a
wetting film is confined naturally by the substrate-fluid and
the fluid-vapor interfaces, which are perfectly aligned.
In wetting films of classical binary liquid mixtures, the

CCFs arise near a critical end point of the binary liquid
mixtures, at which the line of the continuous liquid-liquid
demixing transitions ends at the liquid-liquid-vapor triple line
(Nightingale and Indekeu, 1985; Krech and Dietrich, 1992).
The CCFs originate from the restriction of the critical
fluctuations of the composition of the binary mixture imposed
by the solid substrate and the liquid-vapor interface. The CCF
acts on the movable liquid-vapor interface and, together with
the omnipresent background dispersion forces and gravity,
determines the equilibrium thickness l of the wetting films.
The dependence of l on temperature T provides an indirect
measurement of the CCF. It is also possible to probe the
universal properties of the CCF as given by its scaling
function. By varying the undersaturation of the vapor one
can tune the film thickness and thus determine the scaling
behavior of the CCF as a function of T and l.
Classical binary liquid mixtures near their demixing tran-

sition belong to the 3D Ising universality class. Since the two
confining surfaces typically exhibit opposite preferences for
the two species forming binary liquid mixtures, wetting films
of classical binary mixtures are generically characterized by
opposing effective surface fields [ðþ−Þ BCs], which results in
a repulsive CCF. Following this theoretical suggestion, such
an experimental approach has successfully provided the first
experimental evidences for the occurrence of CCFs in wetting
films of a binary liquid mixture of methylcyclohexane
(MeC) (C6H11-CH3) and perfluoromethylcyclohexane (PF)
(C6F11-CF3) on a SiO2=Si substrate (Fukuto, Yano, and
Pershan, 2005). Around 30 °C, this system exhibits complete
wetting by the mixed fluid with an enhanced concentration of
(MeC) at the substrate and of PF at the fluid-vapor interface.
Upon approaching the demixed phase from the mixed one, in
the middle of the wetting film a strongly fluctuating (MeC)/PF
interface is forming. The variations of the film thickness along
several thermodynamic paths near the bulk critical demixing
point of the binary mixture have been measured by using x-ray
reflectivity. The measure of the actual film thickness l was
obtained from the extremum positions of the well-defined
interference fringes arising from the substrate/film and film/
vapor interfaces.

FIG. 8. Aggregation lines (black and green) for a ternary colloid–
solvent a–solvent bmixture (interpreted as a colloidal condensation
transition), as determined within mean field theory for the lattice
model considered by Edison, Tasios et al. (2015) plotted
in the reduced temperature composition of the pure solvent

in the reservoir ðt ¼ 1 − T=TðsÞ
c ; caÞ representation [in Edison,

Belli et al. (2015) denoted by (τ ¼ ðT − TMFT
c Þ=TMFT

c ; xr)]. A
point on the aggregation line at xr gives the temperature at which
phase separation of colloids is observed first, upon cooling the
suspension at a fixed packing fraction η of colloids and for fixed
solvent composition xr. The 2D calculations have been performed
for a parameter vc (approximately equal to the area of the colloidal
disk) chosen to be equal to 1000a2 [in order to reproduce most
closely the MC simulations results of Edison, Tasios et al. (2015)],
where a is the lattice spacing for the coupling strength between
colloid and solvent species b equal to 32 (in units of the solvent-
solvent interaction strength), and for two fixed values η ¼ 0.1 and
η ¼ 0.05 of the colloid packing fraction. The colloids interact with
themembers of solvent species a andwith each other via a hard-core
repulsion. The dotted orange line is the binodal of the colloid-free
a-b solvent. Each aggregation line ends at a critical point of the
ternary mixture, which is removed from the binodal of the solvent
reservoir (see the main text). The origin of the break in slopes of the
aggregation curves is not discussed by Edison, Belli et al. (2015).
The bending of the aggregation lines near their critical points implies
the occurrence of reentrant dissolution upon cooling. From Edison,
Belli et al., 2015.
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Rafaï et al. (2007) measured via ellipsometry the thickness
of a wetting film of the binary liquid mixture of methanol and
an alkane as formed on a silica substrate. By changing the
alkane chain length in the mixture Rafaï et al. (2007) were
able to modify the affinity of the boundaries from being
opposite to equal, i.e., to change the effective BCs from ðþ−Þ
to ðþþÞ. Rafaï et al. observed a thinning of the wetting film
due to an attractive CCF, which led to its collapse when the
attractive CCF overpowers its dispersion counterpart in the
effective interface potential. These resulting thin films no
longer probe the CCF.
It is worthwhile to stress that, following theoretical pro-

posals (Nightingale and Indekeu, 1985; Krech and Dietrich,
1992), the first convincing evidence for CCFs has been
provided by superfluid 4He films adsorbed on a solid substrate
and close to the lambda point (Garcia and Chan, 1999;
Ganshin et al., 2006) as well as by 3He-4He mixtures close
to the tricritical point (Garcia and Chan, 2002). In wetting
films of 4He, the CCF stems from the confined critical
fluctuations associated with the superfluid transition in the
fluid film. Similarly as for the classical binary liquid mixtures,
the CCF emerges near the critical end point of the fluid; for
4He this is the point at which the λ line of the second-order
phase transitions to the superfluid phase ends at the liquid-
vapor coexistence curve. Capacitance measurements of the
equilibrium thickness of 4He wetting films provided quanti-
tative evidence for an attractive CCF (Garcia and Chan, 1999;
Ganshin et al., 2006), in agreement with the corresponding
theoretical predictions (Krech and Dietrich, 1992) for the bulk
XY universality class with symmetric Dirichlet-Dirichlet BCs
(O,O). They correspond to the vanishing superfluid order
parameter both at the surface of the substrate and at the liquid-
vapor interface.
The experimental approach based on studying wetting films

requires rather detailed knowledge of the material-dependent,
nonuniversal properties of both the fluid and the substrate.
Indeed, in order to determine the CCF from the observed
variation of the film thickness l, it is essential to know the
van der Waals interactions among the materials involved.
Moreover, since the universal properties of the CCF emerge
only in the scaling limit in which the film thickness l and the
correlation length ξ are both large on the molecular scale
(typically set by the correlation length amplitude ξþ0 ), experi-
ments based on incomplete wetting or being not sufficiently
close to the critical point are seriously affected by nonuni-
versal corrections to scaling so that a quantitative comparison
with theoretical predictions is no longer possible.
The first direct measurement of the CCF or, equivalently, of

the associated potential has been performed for the geometry
of a sphere in front of the planar wall. Within this geometrical
setting, the experimental challenge is to detect the onset of the
contribution of the CCF to the total force acting on the sphere
as the critical point of the surrounding fluid is approached. In
order for the effects of the CCF to be detectable, fC has to be
comparable in magnitude with other forces acting on the
sphere. This suggests the use of a micrometer-sized colloid,
which is suspended in a binary liquid mixture. Within such a
system the typical scale of the interaction energy is kBT, i.e.,
the same scale as the one for the CCP. The necessary

sensitivity for the measurement of the force can be achieved
by using TIRM, which is capable of measuring forces with
femto-Newton force resolution (Walz, 1997; Prieve, 1999;
Hertlein, 2008). With this technique it has been possible
(Hertlein et al., 2008; Gambassi et al., 2009; Nellen, Helden,
and Bechinger, 2009) to study the onset of CCFs acting on a
single colloid near a wall as the temperature T of a water-
lutidine solvent is increased toward its lower critical point
Tc ≈ 34 °C at a fixed lutidine mass fraction equal to its critical
value ωc;L ≃ 0.286. For a hydrophilic colloid of radius R ¼
1.2 μm and a hydrophilic wall, corresponding to ð−−Þ BCs,
the attractive CCF sets in between Tc − T ¼ 0.30 and 0.21 K.
The same experiment, but with a hydrophobic colloid of
radius R ¼ 1.8 μm, changes the BCs into ð−þÞ. The repul-
sive force is already detected for temperatures Tc − T ¼
0.9 K. If, via a suitable chemical surface treatment, the
adsorption preference of the silica wall is changed from
hydrophilic (−) to hydrophobic (þ), attraction is recovered
in agreement with theoretical expectations. After subtracting
the gravity contribution, the measured potentials could be
successfully fitted to the model of the minimal effective
potential given by Eq. (23).
In Sec. IV.C we discuss measurements of the CCP for two

colloidal particles.

B. Phase transitions and aggregation in bulk

The view that aggregation, as observed in pioneering
experiments by Beysens and Estève (1985), is in fact a
reversible phase transition in a ternary suspension has been
tested via early experimental studies by Guo et al. (2008). In
these studies, charge-stabilized polystyrene spheres of radius
R ¼ 105 nm suspended in a mixture of 3-methylpyridine
(3MP), water, and heavy water near its lower critical point
have been considered. The mass fractions ω of the compo-
nents of this latter mixture have been chosen such that the
mass density of the solvent mixture closely matches that of the
colloidal particles in the region of the parameter space where
phase transitions have occurred. If the system is density
matched, the growth of the nucleated liquid or solid phases
is not perturbed by gravity at a very early stage and can be
followed until macroscopically large coexisting phases are
formed. In order to characterize the phase behavior of the
system Guo et al. used small angle x-ray scattering. Transition
temperatures were also determined by measuring the sample
turbidity. Moreover, the samples have been observed directly
with a charged coupled device camera. The only information
which has been provided about the phase diagram of the 3MP-
water-heavy-water mixture at the mass fractions actually used

is the coexistence temperature TðsÞ
cx ≈ 65 °C at which the

chemically, in fact, binary solvent mixture at the studied
composition demixes. The schematic phase diagram Fig. 1(a)
of Guo et al. (2008) suggests that the considered mass fraction
ω3MP of 3-methylpyridine investigated in this study (and
therein denoted as c3MP) has been smaller than the critical one.

Instead of the deviation t ¼ 1 − T=TðsÞ
c from the critical

temperature of the solvent, Guo et al. (2008) used the

deviation ΔT ¼ T − TðsÞ
cx ðω3MPÞ from the phase coexistence

for the studied mass fraction ω3MP as the actual control
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parameter. Upon increasing the temperature from a value in the

one-phase region of the pure solvent toward TðsÞ
cx ðω3MPÞ, the

onset of colloid aggregation, at which the system separates into
a colloid-rich and a colloid-poor phase as indicated by regions
of high and low turbidity and by the appearance of peaks in the
structure factor, has been observed at a sharply defined
temperature Ta. Depending on the particle volume fraction
of the colloids in the suspension (which is the ratio between the
volume of all colloids in the suspension and the volume of the
system), two or three phases of the colloidal suspension have
been found: at low volume fractions this is a fluid phase in
equilibrium with a fcc crystal, whereas at larger volume
fractions there is a gas phase in equilibrium with a liquid
phase and this liquid phase is coexisting with a fcc solid.
Interestingly, upon quickly increasing the temperature the
measured structure factor indicated the formation of a glassy
state as in a molecular system. On the basis of the experimental
results reported by Guo et al. (2008), it is not possible to
uniquely infer the physical origin of the attractive potential
which gives rise to the observed reversible aggregation, mainly
due to insufficient information about the relevant parameters.
Thus it is not surprising that it was concluded that all
mechanisms discussed in Sec. II can play a role. Indeed, the
bulk correlation length of the solvent at the aggregation
temperature T ¼ Ta, as estimated from light scattering to be
ca. 8 nm, is somewhat short, which suggests that the system has
been off the critical region. However, the experiments were
performed at an off-critical composition of 3MP such that along
the corresponding thermodynamic path the phase is relatively
poor in the solvent component preferred by the colloids. If

Ta < TðsÞ
c , this composition precludes that colloidal aggrega-

tion arises from complete wetting and capillary condensation
(Evans, 1990). On the other hand, it is this thermodynamic
region where the CCFs are expected to be strongest although
their range, governed by bulk correlation length, is smaller than
the one at the critical composition. Thus it is rather plausible
that CCFs are playing a crucial role in this experiment.
In a subsequent study by Bonn et al. (2009), the aggrega-

tion of colloidal particles suspended in the same (quasi)binary
mixture of 3MP, water, and heavy water has been observed
directly by using confocal microscopy. The fluorescent
fluorinated latex colloids of radius R ¼ 200 nm used in this
study exhibit affinity for water. In this experiment the
refractive indices between the colloids and the solvent have
been closely matched. Two different compositions of 3MP

have been studied, one below (mass fraction ωð1Þ
3MP ¼ 0.24)

and one above (mass fraction ωð2Þ
3MP ¼ 0.37) the critical

composition ω3MP;c ¼ 0.31. [Bonn et al. (2009) denoted
the critical mass fraction of 3MP as Xc.] The colloid volume
fraction has been kept fixed at the rather small value 0.002 and
the D2O=H2O mass ratio was chosen as 0.25. For the
suspension poor in 3MP no aggregation has been observed
upon increasing temperature within the homogeneous one-
phase region of the solvent until phase separation of the whole
mixture has taken place. This is expected to occur for 3MP
mass fractions so far off the critical value that the CCFs are
negligibly small. Above ω3MP;c, within a rather wide temper-

ature range of TðsÞ
cx − Ta ¼ 8 K, reversible aggregation has

been observed. For the very small volume fraction of colloids

used, the formation of clusters rather than a colloid phase
transition has been observed and the kinetics of this aggre-
gation process has been studied (see Sec. IV.G). Based on
these studies, Bonn et al. were able to estimate the energy
scale of the attraction between the particles to be 3kBT. They
rightfully argued that the CCFs alone are sufficient to induce
aggregation in charged-stabilized colloids. In order to show
that this is indeed the case for their experiments, they analyzed
their data assuming that the pair potential between the
colloidal particles is the sum of two competing exponentials:
a repulsive one decaying on the scale of the Debye screening
length κ−1 [denoted as lD by Bonn et al. (2009)] and an
attractive one decaying on the scale of the bulk correlation
length. Based on these oversimplified shapes of the CCP, the
hypothesis was put forward that aggregation should occur
when both decay lengths ξt and κ−1 become comparable.
This data analysis has been objected and was redone by

Gambassi and Dietrich (2010) with the conclusion that, in
fact, most of the data reported by Bonn et al. (2009) for the
onset of aggregation have been located within ranges of values
of ξ and κ for which the proposed pair potential does not
apply. In other words, the model proposed by Bonn et al.
(2009) does not predict aggregation to occur at ξt ¼ κ−1 (see
Fig. 9). However, the reanalysis presented by Gambassi and
Dietrich (2010) does not exclude the possibility that the
observed aggregation is solely due to the competing effects
of repulsive electrostatic and attractive critical Casimir inter-
actions (Bonn, Wegdam, and Schall, 2010). As emphasized by
Bonn, Wegdam, and Schall (2010), a more accurate form of
the CCP is needed in order to resolve this issue.

C. Effective colloid-colloid pair potential

Recently, several attempts have been made to determine the
colloid-colloid pair CCP experimentally. Dang et al. (2013)
and Nguyen et al. (2013) inferred the effective pair potential
between colloidal particles for a dilute (volume fraction 2%)
suspension of poly-n-isopropyl acrylamid microgel
(PNIPAM) particles with a radius of R ¼ 250 nm from the
pair correlation function gðrÞ. For a sufficiently dilute sus-
pension of solute, the potential of mean force VmfðrÞ ∼
−kBT ln gðrÞ can be identified with the effective pair potential
VðrÞ; gðrÞ has been determined from the 2D images obtained
by confocal microscopy. The spatial resolution has been
estimated to be ca. 0.03 μm in the image plane and ca. 0.05 μm
in the direction perpendicular to it. The solvent was, as before,
a (quasi)binary mixture of 3MP-water-heavy water with
various compositions, including the critical one and compo-
sitions slightly off the critical one (toward the 3MP poor
phase). The measurements have been performed for various
temperatures upon approaching the solvent two-phase coex-
istence curve from the homogeneous mixed phase. The
obtained pair potential displayed a very soft repulsion at
small separations and developed an increasingly deep mini-

mum as T approaches the coexistence temperature TðsÞ
cx of the

solvent. At low temperatures, at which VðrÞ is purely
repulsive, they were able to fit VðrÞ=kBT to the screened
electrostatic, exponentially decaying potential Urep [see
Eq. (2)] with plausible values of the parameters. From this
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the CCP has then been determined by the best fit to the
exponential form given in Eq. (20), but with the amplitude and
the decay length treated as fit parameters, assuming that the
total UðrÞ is the sum of UC and Urep [as in Eq. (23)]. This
assumption is justified for small salt concentrations (Bier
et al., 2011; Pousaneh and Ciach, 2011; Pousaneh, Ciach, and
Maciołek, 2014) which has been the case for the samples
studied there. [There is experimental (Nellen et al., 2011) and
theoretical (Bier et al., 2011; Pousaneh and Ciach, 2011;
Pousaneh, Ciach, and Maciołek, 2014) evidence that at larger
salt concentrations the coupling between the charge density
and the OP can significantly alter the standard critical
adsorption and CCFs.] Moreover, it was assumed that for
the temperatures studied, within a range ΔT < −1 K, the
“background” repulsive contribution is de facto temperature
independent. This data analysis has rendered the length scale
for the experimental decay of the CCP, which, however, differs
from the bulk correlation length. This discrepancy as well as
the softness of the repulsion at small separations has been
attributed to the fluffiness of the colloidal particles. It is
plausible that PNIPAM soft particles behave similarly to a
single polymer chain near the critical point of the binary
solvent, i.e., they may shrink [see the Introduction and
Brochard and de Gennes (1980) and Venkatesu (2006)],
which might explain the softness of the repulsion at small
separations. The choice of PNIPAM particles has been
motivated by their special properties when dissolved in the
solvent described. They swell, which prevents sedimentation,

and in this swollen state their refractive index matches that of
the solvent.
In a subsequent paper (Dang et al., 2013), the fitting

procedure was improved in the sense that the bulk correlation
length ξt was no longer an adjustable parameter. Assuming the
standard scaling law for ξt as a function of temperature, the

amplitude ξð0Þt;þ has been used as a fit parameter in addition to
the amplitude and the decay length of Urep. Using one set of
these three fit parameters, Dang et al. (2013) fitted all
experimental data to the sum of two exponentially decaying
functions. The fitted analytic expression for the potential has
been further used for performing MC simulations of the
colloidal sample. The colloidal gas-liquid coexistence was
investigated by using Gibbs ensemble MC (Frenkel and Smit,
2001) whereas colloidal liquid-solid coexistence was deter-
mined by using Kofke’s Gibbs-Duhem integration technique
(Kofke, 1993). The conclusiveness of these MC simulation
results for the actual colloidal phase behavior may be
questioned because the fits of the experimental data to the
analytic expression for the potential are not completely
satisfactory. The strongest deviations have occurred at small
separations, where the potential has been finite even for
center-to-center separations smaller than the diameter of the
particles. Moreover, the pair potentials obtained from
the fitting have not followed the data around the minimum
of the total potential, especially close to Tc. Also these
deviations have been attributed to the softness of the
PNIPAM particles and to the fact that the scaling variable
Λ describing off-critical compositions has been neglected. It
has been tested if all these deviations may significantly affect
the observed phase behavior by calculating the reduced

second virial coefficient B�
2 ¼ B2=B

ðHSÞ
2 . Empirically, gas-

liquid phase transitions are expected to occur for B�
2 ≲ −1.5

(Noro and Frenkel, 2000; Vliegenthart and Lekkerkerker,
2000). Applying this criterion for experimentally determined
and fitted potentials has led to an estimate for an upper bound

for the deviation ΔT ¼ Tcx − TðsÞ
cx ðcaÞ < −0.3 K of the tem-

perature Tcx, at which a colloidal gas-liquid transition takes
place from that of the pure solvent phase separation [i.e.,

TðsÞ
cx ðcaÞ], which is in agreement with both the experiments

and the simulations reported by Dang et al. (2013). The
comparison between computed and measured phase diagrams
at fixed composition of a pure solvent in the plane spanned by

ΔT ¼ Tcx − TðsÞ
cx and by the colloidal volume fraction [in

Dang et al. (2013) denoted as ϕ] is shown in Fig. 10 [Fig. 2 of
Dang et al. (2013)]. For solutions with off-critical composi-
tions of a pure solvent, a reasonable agreement has been
found, given the large uncertainties in the experimental
determinations of the volume fraction and of ΔT, as well
as given the simplified functional form taken for UC. On the
other hand, for solutions with the supposedly critical compo-
sition, the agreement is not as good. Deviations occur
concerning the shape of the colloidal gas-liquid coexistence
curve, which in simulations is shifted toward values of ΔT
lower than those for the experimental data. Such a shift
suggests that the fitted potentials underestimate the attractions
between the colloids. According to Dang et al., this is due to
many-body interactions and too small simulation boxes; both

FIG. 9. Shapes of the effective total potential VðDÞ ¼ VelðDÞ þ
VCðDÞ of the force acting on two identical colloids of radius R,
with both contributions purely exponential functions of D, for
various values of the bulk correlation length ξ ¼ ξðt; hb ¼ 0Þ ¼
ξt and the Debye screening length κ−1, where D is the surface-to-
surface distance of the two colloids. Six different regions of
distinct shapes of VðDÞ are limited by the thin solid lines. These
lines meet at κ−1 ¼ ξt ≡ ξ�c. Dmin is the position Vmin of the
minimum of VðDÞ. Within the hatched area enclosed by the thick
dashed lines the condition R ≫ Dmin ≳ ξt; κ−1 is satisfied. The
additional requirement that Vmin ≲ −3kBT is fulfilled in
the cross-hatched part of the hatched are. The black dots mark
the experimentally determined (Bonn et al., 2009) aggregation
line. From Gambassi and Dietrich, 2010.
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are particularly relevant for systems at the critical composi-
tion. Another possibility is that the effective one-component
approach is not adequate to describe the considered exper-
imental system. Concerning the colloidal liquid-solid phase
coexistence in this system, there are currently no experimen-
tal data.
The experimental data for gðrÞ at a 3MP mass fraction of

0.28, which is close to the critical value, and for the phase
segregation have been reanalyzed by Mohry et al. (2014). The
main improvement over the earlier analyses has been due to a
better treatment of the CCP contribution UðrÞ ¼ Ubck þ UC

to the total pair potential, where Ubck is a background term.
Within this approach, the dependence of UC on the solvent
mass fraction has also been taken into account. The scaling
function of UC as a function of the scaling variable Σ ¼
sgnðthbÞξt=ξh [see Eq. (23) and Fig. 1] has been calculated
within the Derjaguin approximation by using a local-func-
tional approach. In order to minimize the number of fit

parameters, the amplitude ξð0Þt;þ has been set to the value
extracted from the experimental data presented by Sorensen
and Larsen (1985). Because the value of the critical mass
fraction ω3MP;c of the 3MP-heavy water binary liquid mixture
is not well established, the reduced OP ϕ̃ ¼ ðω3MP;c −
ω3MPÞ=B has been used as a fitting parameter for achieving
the weakest variation of the background potential Ubck with
temperature. [B is the nonuniversal amplitude of the bulk
coexistence curve ω3MP;cxðt < 0Þ ¼ ω3MP;c � Bjtjβ.] A fair
agreement with the experimental data has been obtained by
allowing the value of ω3MP;c to differ significantly from the
value cited by the authors of the experiment [see Fig. 5 of
Mohry et al. (2014)]. The best fit has been achieved for
ϕ̃ ¼ −0.088; it has rendered the background potential which
varies slightly with temperature and has an attractive part. This
might be due to the coupling between critical fluctuations and
electrostatic interactions and thus deserves further studies. The
colloidal gas-liquid coexistence has been calculated within the
effective one-component DFT approach for the off-critical
composition of the solvent, which renders the best expression
for Ubck (i.e., the least temperature-dependent one) extracted
from the experimental data of Dang et al. (2013). The RPA
has been employed for the free energy together with the
Percus-Yevick expression for the hard-sphere reference con-
tribution. Unfortunately, gas-liquid coexistence turns out to be
rather sensitive to even a slight temperature variation of Ubck.
Therefore the estimate for a phase diagram has been obtained
by taking the mean curve of Ubck which correspond to the
various temperatures considered. The corresponding results
together with the experimental and MC simulation data from
Dang et al. (2013) are shown in Fig. 11. At high colloidal
densities, the RPA is in surprisingly good agreement with the
experimental data. On the other hand, at low densities the RPA
agrees well with the MC simulations, while for these densities
both approaches underestimate the experimental values which,
in turn, agree well with the RPA spinodal. While this latter
“agreement” might be accidental, it nevertheless raises the
question whether the experimental system had actually been
fully equilibrated at the time of the measurements. As pointed
out by Dang et al. 92013) and Nguyen et al. (2013), the phase
diagrams shown in Fig. 10 are analogous to those of molecular
fluids modeled, e.g., by Lennard-Jones or square-well fluids,
but with a lower critical point. The peculiarity of the CCP, i.e.,
the strong temperature dependence of the shape of the potential
and of its range, is mirrored by the small temperature range over
which colloidal gas-liquid coexistence extends and in the shift
of the critical point and of colloidal liquid-solid coexistence to
lower volume fractions.
Experience gained from these studies summarized tells that

a meaningful comparison of experimental data and theoretical
predictions for the CCP requires accurate experimental knowl-
edge of the solvent bulk phase diagram and of the solvent

FIG. 10. Phase diagram in terms of ΔT ¼ T − TðsÞ
cx and volume

fraction, in Dang et al. (2013) denoted as ϕ ¼ Vs=V tot, where Vs
is the volume of colloids and V tot is the total volume of the
sample. These data have been obtained from MC simulations
(colored symbols) for the effective one-component colloidal
system governed by a pair potential which is the sum of repulsive
and attractive, exponentially decaying functions describing
screened electrostatic and critical Casimir interactions. G, L, F,
and C denote colloidal gas, liquid, fluid, and crystal phases,
respectively. Gþ L, Gþ C, and Lþ C stand for the gas-liquid,
gas-crystal, and the liquid-crystal coexistence regions. Black
squares with error bars are experimental data for PNIPAM
particles suspended (a) in the 3MP-heavy water mixture at the
critical 3MP mass fraction ω3MP ¼ 0.28 ≃ ω3MP;c and (b) in the
3MP-water-heavy water mixture at the off-critical 3MP mass
fraction ω3MP ¼ 0.25. Dang et al. (2013) interpreted the snap-
shots of confocal microscopy images for the mixture in (b) as the
coexistence of colloidal gas and crystal at (c) ΔT ¼ −0.2 and
colloidal gas and liquid at (d) ΔT ¼ −0.3. Stars indicate the
experimental position of the colloidal gas-liquid critical point as
estimated by using the law of rectilinear diameters. (a) The star
appears as being placed at a too small value of jΔTj. From Dang
et al., 2013.
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bulk correlation length. Such corresponding dedicated mea-
surements have been reported by Stuij et al. (2017) for
PNIPAM particles suspended in a binary liquid mixture of
3MP and heavy water with the addition of 1 mMKCl salt. The
solvents have been prepared with 3MP mass fractions ω3MP
(and therein denoted as c and given in units of weight
percentage wt% 3MP ¼ 100ω3MP) ranging from 23.5% to

33% around the critical value ωðsÞ
3MP;c ≈ 28.0%, and for each of

them the temperature has been varied from the homogeneous,
mixed phase toward the solvent two-phase coexistence. In order
to achieve intrinsic consistency of the experimental data and to
link them to theoretical predictions, the measurements of the
pair potentials of the particles in terms of radial distribution
functions gðrÞ have been complemented with dynamic light
scatteringmeasurements of the solvent phase diagramandof the
bulk correlation length. Below the lower critical temperature

TðsÞ
c , the solvent correlation lengths have been inferred from the

temperature-dependent correlation functions determining the
scattered intensity, which are well described by single-
exponential decays with a characteristic time scale td related
to the effective diffusion coefficient D ¼ ðq2tdÞ−1, where q is
thewave vector of the incident wave (equal to 19 μm−1 in these
specific measurements). This effective diffusion coefficient
depends on the linear extent ξ of the correlated regions via a
relation analogous to the Stokes-Einstein relation for Brownian
particles. However, close to the critical point one has to take into
account that D ¼ Dc þDbg decomposes into a critical and a
background part (Sorensen and Larsen, 1985), where (Burstyn
and Sengers, 1982; Burstyn et al., 1983; Sorensen and Larsen,
1985)

Dc ¼
RkBT
6πηξ

KðqξÞ½1þ b2ðqξÞ2�z=2

and

Dbg ¼
kBT

16ηbgξ

1þ ðqξÞ2
qcξ

.

HereR ≈ 1.05 is a universal dynamic amplitude ratio (Burstyn
and Sengers, 1982; Burstyn et al., 1983; Das, Sengers, and
Fisher, 2007), KðxÞ ¼ ð3=4x2Þ½1þ x2 þ ðx3 − x−1Þ arctan x�
is the Kawasaki function (Kawasaki, 1972), b ¼ 0.55
(Burstyn andSengers, 1982;Burstyn et al., 1983) is a correction
to the scaling amplitude, and ηbg is the background viscosity.
The latter has been obtained as a function of T and ω3MP by
extrapolating the available viscosity data (Oleinikova, Bulavin,
and Pipich, 1999) to the critical region. This detailed analysis
has allowed one to determine the correlation length for various

compositions and to extract the amplitude ξð0Þt;þ ¼ 0.44 nm. The
phase separation temperatures have been defined as thosewhich
correspond to theminimumof the diffusion constant for various
values ofω3MP. They are fitted to the relationω3MP − ω3MP;c ¼
Bjtjβ with the fixed critical exponent β ¼ 0.3265 leading to the
estimate B ¼ 0.6 for the OP amplitude. The diameter
2R ¼ 2.12 μm of the particles has been deduced by using
confocal microscopy whereas their surface charge density
ϒ ≃ −0.17e nm−2 has been obtained from electrophoresis.
The experimental radial distribution function gðrÞ, determined
by particle tracking, reveals a very soft repulsion, according to
which the measured effective potential fulfills Uðr < 2RÞ > 0

and is very large but not infinite as one would expect for hard-
core repulsion. As mentioned in the present section, in the
previous studies (Nguyen et al., 2013) this softness has been
attributed to the fluffiness of the colloidal particles. A plausible
alternative explanation for this softness consists of the

(a)

(b)

FIG. 11. Segregation phase diagrams obtained from theory
(RPA), experiment, and simulations (MC). (a) The phase diagram
obtained within the RPA using the four available background
potentials Ubck extracted from effective potentials inferred from
experimental data (Mohry et al., 2014) at ΔT=K ¼ 0.6 (ma-
genta), 0.5 (green), 0.4 (orange), and 0.3 (blue) and using Ubck as
obtained by averaging these four potentials Ubck (thick dark red
curve). The solid lines show the colloidal liquid-gas phase
boundaries in terms of the packing fraction η of the colloids,
whereas the dashed lines correspond to the spinodals, and dots
represent critical points. (b) Comparison of the theoretical
predictions for the phase boundaries (based on the mean Ubck)
[thick dark red curve in (a)] with MC simulation data (⊡) and
experimental data (×, with error bars) from Dang et al. (2013).

On the temperature axis ΔT ¼ TðsÞ
c − T increases from top to

bottom in order to mimic the visual impression of a lower critical

point TðsÞ
c (of the solvent) as observed experimentally. (Note that

compared with Fig. 10, ΔT has reversed its sign.)
ϕ̃ ¼ ðω3MP;c − ω3MPÞ=B ¼ −0.088, where B is the nonuniversal
amplitude of the bulk coexistence curve (see the main text). From
Mohry et al., 2014.
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inaccuracy associated with determining a three-dimensional
gðrÞ from two-dimensional images and, in addition, a certain
polydispersity. Stuij et al. (2017) compared this inaccuracy of
the experimental radial distribution function with the projected
theoretical function

gproj

�
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

q �

¼
Z

∞

−∞
dz

Z
∞

−∞
dy

Z
∞

−∞
dxff0;σzgðzÞffy0;σgðyÞffx0;σgðxÞ

× g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q �
;

where ffx0;σgðxÞ, ffy0;σgðyÞ, and ff0;σzgðzÞ are the probability
distributions, which account for the uncertainty in the two
horizontal directions and the vertical direction, respectively,
with the in-plane spreads σ ¼ σx ¼ σy being equal. Stuij et al.
(2017) took these distributions to be the normal ones. Building
upon the consistent description of the bulk properties of the
binary solvent, the comparison between the measured pair
potentials and the theoretical model, given by Eq. (23) within
the Derjaguin approximation for the CCP, would not have
required any fitting parameter if the surface of the colloids had
exhibited strong preferential adsorption. However, the PNIMP
particles are only weakly hydrophilic. In such a case the CCP
depends also on the surface field hs via the scaling variable
ĥs ¼ hsjtj−Δ1 , where Δ1 is the surface counterpart of the bulk
gap exponent (Diehl, 1986) (see Secs. II.B and II.B.4). For the
film geometry, withinmean field theory the dependence on ĥs at
the critical concentration (Σ ¼ 0) can be reduced to a remapping

ϑ̃ðdÞk ðY;Σ; ĥsÞ ¼ sdϑðdÞk ðs−1Y;ΣÞ with a rescaling parameter s,

which depends on ĥs (Mohry, Maciołek, and Dietrich, 2010).
Stuij et al. (2017) found that within the experimentally
accessible range of the CCP scaling function, which usually
consists of only its exponential tail, one may mimic such a
rescaling by using an effective temperature offset toff
which shifts the reduced temperature according to
t0 ¼ ðTc − T þ ΔToffÞ=Tc ¼ tþ toff . Assuming that such a
rescaling is valid also beyond mean field theory, Stuij et al.
(2017) were able to fit all pair correlation functions for a variety
of temperatures and even of off-critical compositions, by taking
the single parameter toff to vary smoothly with composition.
Based on these fits the predictions for the pair potential are also
given (see Fig. 12). Remarkably, any distorting influence on
gðrÞ, which can be described by probability distribution
functions which are symmetric about their argument, leaves
the second virial coefficient unchanged. This holds because B2

is determined by the integrated pair potential [see Eq. (25)].
Taking advantage of this property, Stuij et al. (2017) compared
virial coefficients computed from the raw data of gðrÞ directly
with theoretical predictions, without any need to account for
experimental inaccuracies and particle polydispersity. The
experimental and theoretical values of B�

2 show very good
agreement in the entire temperature-composition plane (see
Fig. 13). The comparison based directly on the raw data
provides clear evidence that in the investigated solvent compo-
sition range it is indeed the critical Casimir interaction which
underlies the colloidal attraction. Hence, this direct comparison

suggests that not only at the critical composition, but also at
these off-critical compositions, the attraction is described in
terms of the CCF rather than by wetting effects. Yet, at even
larger off-critical compositions, wetting effects are expected to
eventually take over and dominate the attraction as observed by
Hertlein et al. (2008).
Using the same experimental imaging and particle tracking

techniques, Newton et al. (2017) extracted the effective
interaction potentials for nonspherical dumbbell particles from
observed radial and angular distributions. The colloidal patchy
dumbbell particles have been suspended in heavy water and
3MP with a mass fraction ω3MP ¼ 0.25 (therein denoted as
c3MP). At this subcritical composition, the hydrophobic spheri-
cal ends prefer 3MP, while the neck joining these two spherical
ends (called a “shell”) prefers water. While the one-to-one
mapping between radial distribution function and the effective,
angularly averaged pair potential still holds for the anisotropic
particles, the simple procedure of inferring the effective
potential from the radial distribution function is not valid
anymore. In order to find an optimal effective potential Newton
et al. (2017) assumed that dumbbells are the rigid construction
of two isotropic spheres each of which interacts via an isotropic
pair potential. They used several distribution functions which
facilitate the comparison of simulations, theory, and experi-
ment—this way determining that set of potential parameters
which renders the best match. Because the corresponding
experimental system has not been density matched, the
particles sedimented, which was taken into account by includ-
ing the gravitational potential and a surface field in order to
describe the interaction with the bottom wall. Concerning the
CCP, Newton et al. (2017) adopted an oversimplified expres-
sion such as the one given by Eq. (19), in line with Bonn et al.
(2009), Dang et al. (2013), and Nguyen et al. (2013). As
discussed, such a form is valid only in the limitD=ξ → ∞ and
at the critical composition. Neither condition is met in the
experiment under consideration. Moreover, the amplitude of
the bulk correlation length of the solvent and the surface charge,
which determines the strength and the decay length of the
electrostatic repulsion, respectively, have not been measured.
As a consequence, the numerous adjustable parameters have
been used to fit the theoretically proposed effective potentials to
the measured ones. Following Stuij et al. (2017), Newton et al.
(2017) used the projected theoretical distribution functions in
order to mimic the experimental uncertainties. Nevertheless,
the extent of agreement between the measured and the
theoretically proposed effective potentials depends on temper-
ature and is not satisfactory. The results for the dumbbell
effective pair potentials, based on so many crude approxima-
tions and numerous fit parameters, are not conclusive and
cannot be predictive. In particular, the quantitative modeling
carried out by Newton et al. (2017) is not able to provide an
explanation for the observed two ranges of temperatures
featuring distinct aggregation behaviors (see Sec. IV.D).
On theoretical grounds CCFs are expected to exhibit many-

body interactions (Hobrecht and Hucht, 2015; Mattos,
Harnau, and Dietrich, 2015; Vasilyev, Dietrich, and
Kondrat, 2018). Direct experimental evidence for the non-
additivity of CCFs was reported by Paladugu et al. (2016) for
three colloidal microspheres immersed in a mixture of
water and 2,6-lutidine at the critical lutidine mass fraction
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ωc;L ¼ 0.286 [denoted as ccL by Paladugu et al. (2016)]. These
particles have been held by holographic optical tweezers,
which are realized by shaping a laser beam using a spatial light
modulator. In the bulk of the critical mixture the particles are
fixed in space with nanometric accuracy at the corners of an
almost equilateral triangle. For this setup digital video
microscopy has been used in order to measure the probability
distribution P2ðD12Þ of the in-plane surface-to-surface dis-
tance D12 between the particles 1 and 2 and the probability
distribution P3ðD12Þ of the in-plane distance between particles
1 and 2 in the presence of particle 3. The effective pair
potentials have been inferred from the relation
UαðD12Þ≡ −kBT lnPαðD12Þ, α ¼ 2, 3. In order to allow
for both attractive and repulsive CCFs the surfaces of
hydrophilic silica colloids of diameter 2R ¼ 2.06� 0.05 μm
have been treated with octyltriethoxysilane to make them
hydrophobic. Upon approaching the critical point of the
solvent, the two-body CCF has been measured for each of
the three pairs of particles in the absence of the remaining
colloid, which has been temporarily placed into an auxiliary
trap. Assuming additivity of CCFs, these measurements
would predict the forces acting on a pair of particles in the
presence of a third one. Then the prediction based on
additivity has been compared with the actually measured

three-body potential. The observed significant discrepancies
have been interpreted as manifestations of the actual non-
additivity of CCFs. The experiment has been performed for
three hydrophilic particles [ð− − −Þ BCs] and repeated for
one hydrophobic (3) and two hydrophilic (1, 2) particles
ð− − þÞ. The results for the measured and predicted potential
U3ðD12Þ for symmetric ð− − −Þ BCs are shown in Fig. 14.
The experimental results for the effective potentials for each
pair of particles compare well with the theoretical ones based
on the effective model given by Eq. (23), complemented by
the harmonic potentials exerted by the optical traps.

D. Applications of critical Casimir forces for self-assembly and
aggregation of colloids

The possibility of controlled aggregation by exploiting
CCFs has been used, near the lower critical point of the
suspension, for the self-assembly of cadium telluride quantum
dots in water-3MP liquid mixtures with NaCl salt (Marino
et al., 2016). By measuring the intensity of scattered light as a
function of time and by following the time evolution of the
intensity correlation function, it was found that 1 K below the
phase separation temperature of the suspension the hydro-
philic quantum dots with a size of ca. 2.6 nm form aggregates

(a) (b)

(c) (d)

FIG. 12. (a), (b) Radial distribution function gðrÞ of the PNIPAM particles suspended in the 3MP-heavy water liquid mixture for the
off-critical mass fractions ω3MP (in the figures denoted as c and given in units of weight percentage wt% 3MP ¼ 100ω3MP), c ¼ 26.5%
(with ΔToff ¼ 0.7 K) and c ¼ 29.5% (with ΔToff ¼ 0.18 K), where the effective temperature offset ΔToff defined via ðTc − T þ
ΔToffÞ=Tc ≡ tþ toff is a fit parameter. The experimental data (symbols), obtained by Stuij et al. (2017) by using confocal microscopy,
are compared with the theoretical predictions (solid lines) based on the model given by Eq. (25) with the Derjaguin approximation for
the CCP. (c), (d) Theoretically predicted pair potentials uðrÞ for the same compositions. From Stuij et al., 2017.
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with an average radius of ca. 700 nm. As expected, for a
composition with the 3MP volume fraction being larger than
its critical value, i.e., corresponding to the phase poor in the
component preferred by the quantum dots, aggregation takes
place on shorter time scales and within a larger temperature
interval than for a mixture with a 3MP volume fraction being
smaller than the critical one.
Critical Casimir interactions can be utilized for aggregation of

colloids being induced by a substrate such that the colloids
follow the chemical pattern designedon the surface of a substrate
which characterizes the boundary conditions. This is because
CCFs respond sensitively to the chemical properties of the
confining surfaces. As discussed in Sec. II, depending on
whether the surfaces of the colloid and the substrate have the
same or opposite preferences for the species of the solvent
(symmetric or asymmetric BCs), attractive or repulsive CCFs
arise. Soyka et al. (2008) and Tröndle et al. (2009) suspended
charged polystyrene spheres with R ¼ 1.2 μm in a water-2,6-
lutidine mixture at its critical composition, i.e., a lutidine mass
fraction of ωL;c ≅ 0.286. The suspension has been exposed to a
chemically patterned substrate with well-defined, spatially
varying adsorption preferences. This was achieved by first
coating the glass surface with a monolayer of hexamethyldisi-
lazane which rendered the glass surface hydrophobic with a

preferential adsorption of lutidine, corresponding to a (þ) BC.
Spatial patterning of the BCs has been obtained by using a
focused ionbeam (FIB) of positively charged gallium ionswhich
created well-defined hydrophilic (−) areas with a lateral reso-
lution on the order of several tens of nanometers extending over
an area of approximately 400 × 400 μm2. Close to the lower
critical demixing point Tc ≈ 307 K of water-2,6-lutidine mix-
ture (Beysens andEstève, 1985), normal and lateralCCFs lead to
a strongly temperature-dependent attraction between the hydro-
philic (−) polystyrene particles and the hydrophilic squares
(forming a 2D square lattice of locally symmetric boundary
conditions) and to a repulsion from the hydrophobic regions (þ)
(locally asymmetric boundary conditions). This gives rise to the
formation of highly ordered colloidal self-assemblies, the
structure of which is controlled by the underlying chemical
pattern (see Fig. 15). At higher particle concentrations, addi-
tional CCFs between neighboring particles arise and eventually
lead to the formation of three-dimensional, facetted colloidal
islands on the substrate. In order to quantify lateral CCFs,
substrates with a periodic one-dimensional chemical pattern
have been created forming hydrophilic (−) and hydrophobic (þ)
stripes with widths of 24.6 and 5.2 μm, respectively. For these

FIG. 13. Reduced second virial coefficient B�
2 ¼ B2=B

ðHSÞ
2 as a

function of T and c for the same system as in Fig. 12. The color of
the shading provides the theoretically predicted values of
B�
2ðT; cÞ, while the colored symbols provide the experimental

value of B�
2ðT; cÞ as obtained by numerically integrating the

measured radial distribution function gðrÞ [Eq. (25)]. The weak
color contrast between the colors of the symbol and the
corresponding underlying shading indicates agreement between
the experimental and theoretical data. The values B�

2 ≈ 1 depicted
in blue indicate a significant repulsion, while the values B�

2 ≈ −1
depicted in red indicate strong attraction. Yellow marks the

crossover. The critical temperature TðsÞ
c (denoted as Tc) and the

critical mass fraction cc are indicated by arrows and the critical
point is indicated by þ. Via the color, B�

2 is shown in the entire
ðT; cÞ plane. The black dashed lines correspond to those five
concentrations for which there are experimental data; each dashed
line corresponds to a certain symbol type. From Stuij et al., 2017.

FIG. 14. Many-body CCFs with symmetric boundary condi-
tions. The symbols represent the measured effective potential
U3ðD12Þ between particles 1 and 2 (labeled in black in the inset)
in the presence of particle 3 (labeled in white in the inset) as a
function of the in-plane surface-to-surface distance D12 [denoted
by Paladugu et al. (2016) as l12] upon increasing (from top to
bottom) the correlation length ξ. All particles are hydrophilic
ð− − −Þ, resulting in attractive CCFs. The solid lines represent
the corresponding theoretical predictions obtained by assuming
additivity of the measured pair potentials between particles 1–2,
1–3, and 2–3, with the associated uncertainty indicated by the
shading. The observed discrepancy increases as ξ increases,
providing quantitative evidence of the nonadditive nature of the
CCFs. The symbols and lines are vertically separated by 1kBT for
clarity. Inset: The trap and colloid configuration during the
measurement. From Paladugu et al., 2016.
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one-dimensional surface patterns the particle distribution was
measured by digital video microscopy and from the two-
dimensional projection of this distribution the effective one-
dimensional CCPwas determined by resorting to the Boltzmann
factor. Tröndle et al. (2009) repeated the experiment for
substrates with the chemical pattern created by microcontact
printing, which provided sharper, chemical steplike, one-dimen-
sional interfaces between alternating regions of antagonistic
adsorption preferences than the FIB technique does. The reason
for the disadvantage of FIB is that the ion beam charges the
substrate surface and thus deflects the incoming beam which
gives rise to fuzzy chemical steps. It turns out that the agreement
between theory and the experimental data is so sensitive (Fig. 16)
that the CCP can be used to probe the geometry of the chemical
structures, which at present cannot be achieved by other
experimental techniques. Accordingly, CCFs can be used as
novel surface sensitive probes.
Reversible aggregation of spherical Janus particles has been

studied experimentally for microsized silica particles half
covered by a layer of gold and suspended in the water-2,6-
lutidine mixture at the critical concentration (Iwashita and
Kimura, 2013). The gold caps of the particles have been
modified chemically by sulfonic groups, which have bestowed
a large charge density on their surfaces, leading to an
adsorption property which differs from that of the bare silica
surfaces. Because of this anisotropy, the particles assembled to
clusters with a very specific structure, followed by a hierar-
chical growth of the clusters. These structures depend on the
“valence” of the Janus particle, i.e., the maximum possible
number of bonded nearest neighbors. In two spatial dimen-
sions, which applies to the dispersion of the sedimented
particles considered in the experiment, the valence is equal to
six. Direct visual observation has revealed that particles,
randomly dispersed at low temperatures, have started to form
micellar structures upon increasing T toward the lower critical
point of the water-2,6-lutidine mixture. Most of the clusters

have been trimers and tetramers, with gold-coated hemi-
spheres inside the micelle and silica hemispheres always
facing outward. No “inverted” micelles have been observed,
which indicates that the effective attraction between golden
patches of colloids has been much stronger than the attraction
between the silica parts of the particles. At higher temper-
atures small clusters, mostly tetramers, have assembled into
chainlike structures, finally forming a percolating network.
The reversibility of the aggregation, the value of the onset
temperature, and the apparent increase of the strength of

attraction upon approaching TðsÞ
c have supported the expect-

ation that this aggregation is due to CCFs. The structures of
the clusters observed in the experiments are similar to those
obtained within MC simulations of hard disks with a pairwise
square-well potential acting between the semicircular patches
of the particles. However, the strength of attraction could not
be determined from the experimental data. The analysis of the
cluster structures corresponding to the lowest internal energy
and of the hierarchical clustering suggested the possibility
that the self-assembly of Janus particles is governed by the
valence structure of the clusters and not by that of a single
particle.

FIG. 15. Mean particle density distribution (represented by
different colors ranging from black to yellow for minimal to
maximal density, respectively) of a dilute colloidal suspension of
spherical particles with R ¼ 2.4 μm dissolved in a critical water-
2,6-lutidine mixture in the presence of a chemically patterned
substrate. Particle positions were determined by digital video

microscopy with a spatial resolution of ca. 50 nm. (a) TðsÞ
c − T ¼

0.72, (b) 0.25, (c) 0.23, and (d) 0.14 K. From Soyka et al., 2008.

FIG. 16. Total effective potential δV̂ðxÞ ¼ V̂ðxÞ − V̂ðx ¼ P=2Þ
of the forces acting on hydrophilic polystyrene spheres of radius
R ¼ 1.2 μm above a chemically striped pattern of periodicity P
with alternating (−) and (þ) boundary conditions and immersed
in a water-2,6-lutidine mixture at its critical concentration as a

function of its lateral position x for various temperatures TðsÞ
c −

ΔT below the experimental value TðsÞ
c of the lower critical

temperature of the solvent. The potential is given by
V̂ðxÞ ¼ −kBT ln½ρ̂ðxÞ�, where ρ̂ðxÞ is the effective number
density of the colloids at x, obtained by projecting the actual
number density onto the x axis. The width of (−) and (þ) stripes
is 2.25 μm. Symbols indicate experimental data, whereas the
lines are the corresponding theoretical predictions for sharp
(dashed lines) and fuzzy (solid lines) chemical steps. From top
to bottom the measured temperature deviations ΔT are 0.175
(0.165), 0.16 (0.152), 0.145 (0.143), 0.13, 0.115, and 0.10 K. If
indicated, the values in parentheses are corrected values of
temperature (but compatible within the experimental inaccuracy)
which have been used for evaluating the theoretical predictions.
From Tröndle et al., 2009.
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Recent progress in synthesizing colloidal building blocks
allowed Nguyen, Newton, Kraft et al. (2017) and Nguyen,
Newton, Veen et al. (2017) to fabricate particles with complex
shapes and surface patch properties which act as analogs of
molecular valence. Multivalent particles such as dimers,
trimers, and tetramers have been produced by swelling and
polymerizing clusters of poly(methylmethacrylate) spheres
with a methylmethacrylate/methacrylic acid shell, resulting in
geometrically well-defined patches. The specific solvent
affinity of the particle patches has been achieved by grafting
a polyhydroxy stearic acid copolymer onto the surface patch,
which renders it hydrophobic. The central part of the patchy
particles is made hydrophilic by using the ionic initiator
potassium persulfate. The particles have been suspended in
the homogeneous phase of a binary solvent of heavy water and
3MP at temperatures below the lower critical temperature
Tc ¼ 38.55 °C, which has been determined by light scattering
and microscopy from solvent phase separation at the critical
composition. The solvents were prepared with 3MP mass
fractions ω3MP ¼ 0.25 and 0.31 (therein denoted as c3MP),
i.e., slightly below and above the critical composition
ω3MP;c ¼ 0.28, respectively. The hydrophobic patches have
a strong affinity for the nonaqueous component 3MP of the
binary solvent, while the hydrophilic central part has an
affinity for water. It has been observed that, in solvents poor in
the component preferred by the particle patches, the patches

approach each other at temperatures close to TðsÞ
c , and that

dimer particles assemble into directed, chainlike structures.
The bending stiffness of the chains has been directly measured
by monitoring thermally activated bending fluctuations. In
contrast, in 3MP-rich solvents, the particles approach each
other sideways resulting in distinct parallel structures. For
trimers, the patch-to-patch binding in 3MP-poor solvents
leads to staggered chains, while the side-by-side binding in
3MP-rich solvents leads to bent filaments associated with the
dense alternating stacking of trimers. In all cases, the assembly
is fully reversible as confirmed by the breakup of aggregates

upon lowering the temperature several degrees below TðsÞ
c .

Interestingly, in the case in which the chain structure is formed

by dimers, upon further approaching TðsÞ
c , Nguyen, Newton,

Veen et al. (2017) observed that the chain spontaneously

collapses into a compact state, the dimer particles approach
each other sideways, and eventually form a close-packed
arrangement. It has been argued that in this close-packed state
a particle has more bonding neighbors, and hence a more
negative bond energy. Nguyen, Newton, Veen et al. (2017)
regarded this as being similar to the collapse transition of a
polymer, which occurs if the solvent conditions go from good
to poor. For polymers, too, the reduction of the conformational
entropy of the chain is offset by the stronger interparticle
interaction energy. Using MC simulations with the effective
pair potential determined by Newton et al. (2017) (see the
preceding Sec. IV.C), Nguyen, Newton, Veen et al. (2017)
argued that the colloidal chain collapse results from the
enlarged interaction range due to the increase of the solvent
correlation length upon approaching the solvent critical point.
Nguyen, Newton, Kraft et al. (2017) experimentally inves-
tigated the effect of patch width on the topology of colloidal
aggregates.

E. Colloidal mixtures

The way the unique properties of CCFs can be harnessed to
manipulate colloidal suspensions was demonstrated by experi-
ments on colloidal mixtures (Zvyagolskaya, Archer, and
Bechinger, 2011). This experimental system has been com-
posed of a binary mixture of microsized silica particles with
slightly different diameters which were suspended in the
water-2,6-lutidine mixture. For this small size difference of the
colloids the inherent depletion interaction cannot induce
demixing. However, the CCFs can accomplish this, if the
two types of particles carry opposite adsorption preferences.
The a-type particles were functionalized with silane rendering
them hydrophobic, i.e., (þ) BC, whereas the b-type particles
had a strong adsorption preference for water, i.e., (−) BC. For
such BCs the CCFs among the a-type and b-type particles are
attractive, whereas between a particles and b particles they are
repulsive. At the same temperature and the same distance, the
repulsive CCF is stronger than the attractive CCF. In the
system under consideration, the van der Waals forces have
been eliminated by index matching so that besides the CCFs
the only remaining forces have been the screened electrostatic
interactions. In the suspension, this mixture of colloids

FIG. 17. The two-dimensional configurations of binary colloidal systems (black and orange disks) for three different compositions,
expressed in terms of the concentration xa ¼ ρa=ðρa þ ρbÞ, where ρa and ρb are (areal) number densities of the particles of type a and b,
respectively. (a) xa ¼ 0.28, (b) xa ¼ 0.32, and (c) xa ¼ 0.54 with a ¼ orange, exhibiting distinct structures formed after 1 h at a

temperature deviation ΔT ¼ TðsÞ
c − T ¼ 0.01 K from the lower critical point of the solvent. The horizontal scales range from 20 to 120

in (a) and from 0 to 100 in (b) and (c), whereas the vertical scales range from 20 to 80 in (a) and (b) and from 0 to 80 in (c); the authors
have not provided the units. From Zvyagolskaya, Archer, and Bechinger, 2011.
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sedimented at the bottom of the cell forming a dense
monolayer. One species has been labeled with a fluorescent
dye and traced by using video microscopy. As expected, upon
approaching the lower critical point of the binary solvent at its
critical composition, large structural changes in the colloidal
mixture have been observed, signaling the demixing process.
It was found that the morphology of this process depends
strongly on the mixing ratio xa;b ¼ ρa;b=ðρa þ ρbÞ of a and
b particles, where ρa;b are the number density of a and b
particles (see Fig. 17). For xa ¼ 0.54 and at low temperatures
an initially random distribution of particles transforms into a
bicontinuous network, which is coarsening further upon
increasing the temperature. For xa ¼ 0.28, no bicontinuous
structure has been observed; demixing has proceeded via the
growth of small clusters of the minority phase (here rich in a
particles).
In the theoretical part of this study (Zvyagolskaya, Archer,

and Bechinger, 2011), the effective approach has been
employed in order to construct an approximation for the
Helmholtz free energy of the colloid mixture. It has been
assumed that the effective pair potential Ui;j; i; j ¼ a; b can
be split into a hard-disk part and a tail, which for identical
particles is attractive and for the distinct ones repulsive. For
the hard-disk part of the free energy the scaled particle
approximation has been used, whereas the attractive or
repulsive tail has been treated within the mean field van
der Waals approximation. The predictions of this simple
theory for the locations of the colloid demixing transitions
and their critical point agree fairly well with the experimen-
tal data.

F. Effects of depletants on colloidal phase separations

Buzzaccaro et al. (2010) and Piazza et al. (2011) studied
experimentally the colloidal phase separation in suspensions
with a depletion agent, which occurred near the critical point
of the depletant enriched solvent. They used the so-called
HyflonTM MFA latex particles (a copolymer of tetrafluoro-
ethylene and perfluoromethylvinylether) of average size R ∼
90 nm suspended in water with the nonionic surfactant C12E8.
Salt (NaCl) has been added in order to screen electrostatic
interactions between the colloids, caused by their surfaces
carrying a negative charge. In addition, this surfactant has also
provided steric stabilization of the suspension due to its
spontaneous adsorption on the colloid surfaces. What makes
this system interesting is that at concentrations above the
critical micellar concentration, C12E8 in water forms globular
micelles with a radius σ ¼ 3.5 nm. These micells act as a
depletant for the MFA particles. Moreover, the surfactant-
water mixture exhibits a liquid-liquid phase transition termi-

nating at a lower critical point ðTðsÞ
c ; cðcÞs Þ with a very small

value of the critical concentration cðcÞs of the surfactant (1.8%
mass fraction cs ¼ ms=mtot, where ms is the mass of the
surfactant and mtot is the total mass of the sample). (We use
superscript s as an acronym for the solvent and subscript s
for the surfactant.) Above this critical point two liquid
phases exist, one rich and the other poor in micelles. They
determined, as a function of temperature, the minimum

concentration cðmÞ
s of surfactants required to induce colloidal

gas-liquid phase separation. The onset of this phase separation
has been assumed to manifest itself via the sudden increase of
turbidity followed by fast sedimentation of the colloidal
particles. The results of these measurements (see Fig. 18)

show a drastic decrease of cðmÞ
s upon increasing temperature

toward the consolute point ðTðsÞ
c ; cðcÞs Þ of the surfactant-water

mixture, such that cðmÞ
s approaches cðcÞs as T → TðsÞ

c . Far below
the surfactant-water miscibility gap, the colloidal phase
separation has been obtained due to the action of depletion
forces, provided that a sufficient amount of surfactant has been
added. The range of the depletion interaction is set by the ratio
≈0.03 between the micelle and the particle size and is very
short, but the strength depends on the concentration of the

micelles. In Fig. 18, the solid dots ðTðmÞ
s ; cðmÞ

s Þ show the

minimum amount cðmÞ
s of surfactant required to induce

colloidal phase separation at the temperature TðmÞ
s . These

points are expected to correspond to the thermodynamic states
of the surfactant-water solvent for which the strength of the
effective attractive potential between the colloidal particles is

roughly constant. They have interpreted the reduction in cðmÞ
s

observed at higher temperatures as an increase of depletant
“efficiency.” Although the colloidal gas-liquid coexistence
line crosses continuously from a depletion force to a CCF
governed region, one should keep in mind that depletion and
CCF originate from very different physical mechanisms (see
Sec. II.B).
Inspired by these experiments, Gnan et al. (2012) per-

formed a numerical study of the phase separation of hard
spheres dispersed in an implicit solvent (i.e., there are no
direct interactions, beyond the hard-core ones, between the
solvent molecules and these spheres) in the presence of
interacting depletant particles. The particles have been taken
to interact via the corresponding effective potential Veff as
determined by MC simulations for SW and 3P models of
depletants [see Eq. (8) as well as Secs. II and IV.F]. The phase
separation of the colloids as a function of the depletant
concentration for various depletant-colloid size ratios has
been determined within grand canonical MC simulations.
The numerically determined loci of the onset of colloidal gas-
liquid phase separation has been displayed within the phase
diagram of the depletant which exhibits an upper critical point.
This revealed that for almost all parameters studied in the MC
simulations, the colloidal phase separation induced by CCFs is
preempted by the one driven by standard depletion forces. The
important message of this study is that only by weakening the
attractive depletion interactions, either by lowering the critical

depletant concentration cðcÞs or by introducing a repulsive
interaction between the colloids, is it possible to exploit CCFs
for the fine-tuning of the self-assembly of colloids in solvents
with interacting depletant agents.

G. Aggregation kinetics and structures of aggregates

Aggregation of colloids in a near-critical binary solvent was
studied experimentally on the ground and under microgravity
conditions (Bonn et al., 2009; Veen et al., 2012; Shelke et al.,
2013; Potenza et al., 2014). The advantage of the critical
Casimir effect of providing the ability to tune the effective
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interactions between the colloids by varying the temperature
has been used in order to study systematically the internal
structure of the aggregates as a function of their interparticle
attraction. Direct visual observations via confocal microscopy
of a dilute suspension of latex particles of radius R in a
D2O=H2O − 3MP mixture have revealed the formation of
fractal clusters of colloidal particles near the critical point of
the solvent (Bonn et al., 2009). The analysis of the time-
dependent intensity Iðq; tÞ revealed that Iðq; tÞ exhibits a
maximum at q ¼ q�ðtÞ, which corresponds to the inverse of
the mean cluster size. It has been found that in the course of
time q� decreases as q�ðtÞ ∝ t−1 and that this linear growth of
the size of the clusters with time t is self-similar. The latter
property has been inferred from the data collapse of Iðq; tÞ

plotted as a function of the rescaled wave vector q0 ¼ q=q0 ¼
ðt=t0ÞqR with t0 ¼ 33 min.2 The fractal dimensions df
determined from 2D projection images have indicated that
this system exhibits diffusion-limited cluster aggregation
rather than diffusion-limited particle aggregation, for which
df is larger (Dutcher and Maragoni, 2004). The fractal
dimension reflects the internal structure of an aggregate
and relates its radius Rg of gyration to the number of particles
N according to Rg ∝ N1=df ; df ≲ 3 corresponds to a close-
packed structure. Rg measures the mean size of the fractal
aggregate. It is defined in terms of the mass density ρðrÞ of the
particles at a distance r from the center of mass of the
aggregate as R2

g ¼
R
∞
0 r4ρðrÞdr= R∞

0 r2ρðrÞdr or, alterna-
tively, based on the pair correlation function gðrÞ of colloidal
particles R2

g ¼ ð1=2Þ R∞
0 r4gðrÞdr= R

∞
0 r2gðrÞdr (Van

Saarloos, 1987). For fractal structures consisting of spheres
with spherically symmetric mass density distribution ρðrÞ, one
has Rg ¼ Rc, where Rc is the largest radius beyond which the
aggregate has zero mass. The images from confocal micros-
copy showed that the width of the branches of the clusters is a
few particle sizes and that the particles escape from the
aggregate at a finite rate. The latter observation provides an
estimate of the energy scale of the attraction between the
particles by comparing the observed escape frequency with
the corresponding attempt frequency, which is the inverse of
the Brownian time, i.e., the time in which a particle diffuses a
distance equal to its radius. By assuming that this whole
process is thermally activated, this renders ≈ 3kBT as an
estimate for the energy scale of attraction. A more detailed
investigation of the structure of the clusters and its evolution
was impeded by sedimentation.
In order to avoid this complication, using near field light

scattering (NFS), new measurements for the same type of
particles have been performed under microgravity conditions
on board the International Space Station and, simultaneously,
on the ground (Veen et al., 2012; Potenza et al., 2014). [For
these experiments, the composition of the solvent and the
volume fraction of the colloidal particles have been taken to be
different from those in Bonn et al. (2009). Moreover, different
amounts of salt (NaCl) have been added. Thus the results of
both studies cannot be compared directly.] The normalized
variance of the light scattering intensity Iðq; tÞ, defined as
hI2ðq; tÞi=hIðq; tÞi2 − 1, with the angular brackets h� � �i denot-
ing the time average, has been used as an indicator of the onset
and the time scale of the aggregation process. The time
dependence of the normalized variance results from variations
of the number density of the scatters. Accordingly, the start of
aggregation has been marked by the time ta at which this
quantity starts to increase from zero. From the slope in the log-
log plot of Iðq; tÞ at large momentum transfer q, which
has been temporally constant during the growth process
(which is characteristic of scattering off fractal structures),
a fractal dimension has been inferred. It has been found that,

upon varying the temperature toward TðsÞ
c , df has decreased

from a value, which is close to the theoretical one of 2.5 for

FIG. 18. Experimental phase diagram of aqueous suspensions of
MFA latex particles in the presence of a nonionic surfactant of
mass fraction cs ¼ ms=mtot (in units of mass percentage, some-
times called weight percentage, wt % w=w ¼ 100 × cs), where
ms is the mass of all surfactant particles and mtot is the total mass
of the sample. For state points of the surfactant-water mixtures to
the left of the line of dots (denoted as “stable”) the dissolved
colloidal particles with a volume fraction Vc=V tot ¼ 0.03 form a
homogeneous colloidal phase whereas for state points to the right
of the line of dots (denoted as “separated”) the colloids phase
separate into a colloidal gas and a colloidal liquid. (Vc is the
volume taken by colloidal particles and V tot is the total volume of
the sample.) At a given temperature, the solid black dots represent

the minimum amount cðmÞ
s of surfactant required to induce

colloidal gas-liquid phase separation at a given temperature.
The rather shallow coexistence curve of the surfactant-water
mixture with a lower critical point (located around 1.8% of cs, not
marked in the plot) is shown by open blue dots. The data
correspond to 250 mM added NaCl salt. The inset shows (in our

present notation) cðmÞ
s in units of its critical value cðcÞs (i.e., cs at

the critical point) as a function of reduced temperature t ¼
ðTðsÞ

c − TÞ=TðsÞ
c [note that, as in Piazza et al. (2011), in this figure

cðmÞ
s =cðcÞs and t are denoted by cs=cc and ε, respectively]. From
Piazza et al., 2011.

2In the original paper (Bonn et al., 2009) q0 is given as
q0 ¼ ðt0=tÞqR, which we consider as a typo.
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diffusion-limited aggregation, to about 1.8. This indicates that
more open structures of clusters are formed if, as expected, the
strength of the attraction increases. This has been interpreted
to the effect that for an attractive interaction potential with a
well depth of ca. 1kBT the restructuring of the aggregates into
more compact objects can proceed, whereas for deeper
attraction wells restructuring gradually stops and the resulting
structure is more open. Such more open structures have been
observed in the presence of gravity with df ≃ 1.6–1.8 for all
temperatures studied. In both cases, i.e., in the presence and
absence of gravity, only a slight variation with the salt
concentration has been found. The observation made already
by Bonn et al. (2009) that, independent of temperature and
thus of the strength of the attraction the aggregates grow
similarly, has been confirmed and analyzed in more detail.
Specifically, the scattered intensity of the growing aggregates
as obtained at different times has been reduced to a scaling
function Iðq; tÞ ≈ ðqredÞ−dfF(q=qredðtÞ), where the time-de-
pendent characteristic momentum transfer qredðtÞ has been
determined from the best fit in the sense of Iðq; tÞðqredÞdf
yielding data collapse to a function F of a single variable
q=qredðtÞ. Based on this apparent scaling behavior, an analogy
has been drawn between the observed aggregation process and
spinodal decomposition processes. For the latter, a similar
scaling holds with df replaced by the spatial dimension d
(Carpineti and Giglio, 1992). As for spinodal decomposition,
IðqÞ exhibits a maximum at q ≃ qred corresponding to the
inverse of the characteristic length in the system. Over the
course of time the momentum qred shifts to smaller values
indicating the growth of this characteristic length. The
decrease of IðqÞ for small values of q reflects the fact that
a region around the cluster is depleted of colloids (Carpineti
and Giglio, 1992). The growth rate of the characteristic length
scale q−1red ∝ Rg ∝ N1=df of the aggregates has been found to be
a power law with exponent 1=df, regardless of the salt
concentration. This is characteristic of diffusion-limited mod-
els of aggregation (Witten and Sander, 1983; Meakin, 1984).
Under gravity, the growth rate has been observed to be
significantly faster and nonmonotonic (see Fig. 19). At early
stages it has followed the purely diffusive behavior. After that,
aggregation has been influenced strongly by convection of the
solvent and by sedimentation. The aggregation among clusters
has been found to set in rather fast, resulting in an exponential
growth rate, which is characteristic of reaction limited
aggregation with a strong dependence on temperature and
thus on the strength of the attraction. At still later times, a
sudden drop in q−1red has been observed, which corresponds to
the sedimentation of the largest clusters.
Whereas in Veen et al. (2012) the static properties of the

aggregates, i.e., their structure factor SðqÞ, have been mea-
sured as aggregation proceeds, in the subsequent NFS study of
this system (Potenza et al., 2014) the dynamical counterpart of
SðqÞ, the intermediate scattering function Sðq; tÞ has been
measured under microgravity conditions. The aim has been to
determine the ratio β≡ Rh=Rg of the hydrodynamic radius Rh

of the aggregate and its gyration radius Rg. This ratio provides
information about the density distribution within an aggregate
as function of its fractal dimension, which in turn depends on
the strength of the particle attraction. The hydrodynamic

radius Rh of the aggregate is defined through the translational
diffusion coefficient D ¼ kBT=6πηRh, where η is viscosity
of the solvent. For a densely packed spherical aggregate of
radius Rc and with df ¼ 3 one expects Rh to be very close
to Rc. The intermediate scattering function Sðq; tÞ is the
spatial (three-dimensional) Fourier transform of the van
Hove distribution function Gðr; tÞ, which is the dynamical
counterpart of the radial distribution function gðrÞ (Hansen
and McDonald, 1986). The NFS technique enables one
to measure Sðq; tÞ instantaneously, on the time scale of
the much slower aggregation and diffusion processes.
This provides the concurrent measurement of Rh from the
dynamic and Rg from the static structure factor, simultane-
ously for all accessible wave vectors. Rg follows from the
Fisher-Burford expression (Fisher and Burford, 1967)
Sðq;RgÞ ¼ ½1þ ð2=3dfÞq2R2

g�−df=2, which is valid for mono-
disperse fractal aggregates. Rh has been determined via the
effective diffusion constant Deff obtained from the measured
decay time td of Sðq; tÞ ∝ e−t=td via td ¼ 1=Deffq2 followed
by relating Deff to D by using SðqÞ (Lin et al., 1990). The
analysis of the data has shown that upon approaching the
critical point of demixing (i.e., for stronger attraction) the ratio
β has varied between 0.76 for df ¼ 1.8 and 0.98 for df ¼ 2.5
at the onset of aggregation (i.e., for weaker attraction).
Potenza et al. (2014) assumed that the fractals are spherically
symmetric. Accordingly, they defined the radial density
distribution of the fractal objects as ρðrÞ ¼ rdf−3fcutðrÞ,
where r is the distance from the center of mass of the cluster
and fcut is a cutoff function which accounts for the finite size
of the aggregates. [The exponent follows from the fact that
ρðrÞ ¼ N ðrÞ=VðrÞ ∼ rdf−3, where N ðrÞ ∼ rdf is the number
of particles within a sphere of radius r from the center of the
cluster and VðrÞ ∝ r−3 is the volume of such sphere.] The
expected behavior of the ratio for various forms of a cutoff
function has been then compared with the experimental data.
It was observed (see Fig. 20) that the data for the ratio β have
been closest to those values which correspond to the
assumption of fully compact objects with a Heaviside step
function for fcut, independent of the strength of the attraction
and of the fractal dimension.
The way to avoid sedimentation for experiments performed

on the ground (Shelke et al., 2013) has been to use PNIPAM,
which swell in solution. This swelling adjusts their buoyancy,
preventing particle sedimentation. This also has allowed one
to directly observe individual particles (after labeling them
with a fluorescent dye) even deep in the bulk of the
suspension. Using confocal microscopy, the compactness of
aggregates of PNIPAM particles, suspended at small volume
fractions in the D2O=H2O − 3MP mixture, has been studied
by determining the number of particles N ðrÞ within a sphere
of radius r from the center of the cluster for quenches with
various temperature deviations ΔT from and below the lower

critical point TðsÞ
c of the demixing transition of the solvent.

These data have confirmed the fractal character of the
structures, i.e., the relation N ðrÞ ∼ rdf , with df decreasing

continuously upon increasing temperature toward TðsÞ
c from

df ≈ 3 to ≈ 2.1. This indicates the formation of more compact
structures for weaker attraction [see Fig. 21(h)], in agreement
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with the behavior observed for the latex particles under
microgravity (see the previous paragraph). MC simulations
of diffusion-limited particle aggregation in d ¼ 2 and 3 have
been used in order to relate df to the attractive effective
interaction potential of the particles. Experimentally, the pair
potential has been determined from the radial distribution
function of the colloids in a way similar to that described by
Nguyen et al. (2013). The depth V0 < 0 of the attractive well
of this pair potential has been related to the quantity α ∝
expðV0=kBTÞ used in the simulations for the probability with
which the particles can detach from the growing cluster. The
experimental variations of d − df as a function of V0 and α in
simulations exhibit a common curve after suitable rescaling.
They interpreted this result as a manifestation of a certain type
of universality which occurs although the corresponding
simulations have been carried out for different spatial dimen-
sions (d ¼ 2 and 3) and although the mechanisms of aggre-
gation differ, i.e., diffusion-limited cluster aggregation in the
actual experiments, in which clusters aggregate to form a
fractal, and diffusion-limited particle aggregation in

simulations, in which a fractal grows by aggregation of single
particles. It is worth noting that reversible diffusion-limited
cluster aggregation has been extensively studied in the past,
both theoretically and experimentally. For example, the
theoretical model developed by Kolb (1986) has been
extended in order to incorporate rearrangements of the
particles and clusters, based on energetic considerations rather
than on effects due to random bonding (Shih, Aksay, and
Kikuchi, 1987). Fernandez-Nieves et al. (2001) experimen-
tally studied and analyzed the reversible aggregation of soft
particles, such as PNIPAM, based on the aforementioned
theoretical models.

V. PERSPECTIVES

We have presented a detailed account of the theoretical and
experimental investigations concerning the collective behav-
ior of colloidal particles suspended in a binary liquid mixture
close to its demixing point. These studies also cover the
reversible aggregation of particles into small clusters, which
takes place in dilute suspensions, as well as the occurrence of

FIG. 19. The evolution of the characteristic size scale of the
aggregating colloidal suspension studied by Veen et al. (2012)
(see Fig. 3 therein) as given by the quantity q−1redðtÞ, which renders
a reduced description of the light scattering intensity Iðq; tÞ of the
growing aggregates in terms of a scaling function F(q=qredðtÞ) of
a single variable (see the main text). Results from both micro-
gravity (solid symbols) and ground experiments (open symbols)
are shown. (The sample contains 1.5 mmol=liter NaCl.) The
curves correspond to various temperatures T ramped up beyond
the aggregation temperature Tagg, up to Tagg þ 0.4 [from bottom
to top as indicated by the arrow; the caption to Fig. 3 of Veen
et al. (2012) does not provide the temperature values correspond-
ing to the various symbols]. The temperature Tagg at which the
aggregation starts is identified (somewhat loosely) as the onset of
the rapid increase of the normalized variance of IðqÞ (see the
main text). The sudden drop of q−1red at late times is due to the
massive sedimentation of the aggregates so that the suspension
becomes poor in large aggregates and rich in small ones
which shifts down q−1red. The inset provides an enlarged view
of the data concerning the onset of the aggregation process, at
which the characteristic length scale q−1red starts to increase. From
Veen et al., 2012.
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FIG. 20. Ratio β ¼ Rh=Rg of the hydrodynamic to the gyration
radius of aggregates as a function of their fractal dimension df for
various temperature deviations ΔT above the aggregation temper-
ature Tagg characterized by the colors of the symbols: ΔT ¼ 0

(black), 0.1 K (red), 0.2 K (blue), 0.3 K (green), and 0.4 K
(violet). Tagg is determined as in Fig. 19, i.e., from the behavior of
the normalized variance of the scattered intensity IðqÞ. The types
of symbols indicate the salt concentrations of 0.31 mmol=liter
(squares), 1.5 (circles), and 2.7 (triangles), corresponding to the
Debye screening length κ−1 [denoted as λD in Potenza et al.
(2014)] of 14, 6.4, and 4.8 nm, respectively. Concerning the
values of β, from top to bottom the lines indicate the dependence
on df as expected for steplike, Gaussian, and exponentially
decaying cut functions of the density distribution of the aggre-
gates, respectively (see the main text). The insets show holo-
graphic reconstructions of the real-space shape of the aggregates

(white regions) grown at T ¼ Tagg þ 0.4 K (closest to TðsÞ
c and

hence strongest attraction between the colloids, top) and T ¼
Tagg (farthest from TðsÞ

c and hence weakest attraction between the
colloids, bottom). The length of the scale bar is 25 μm. From
Potenza et al., 2014.
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phase transitions in suspensions which are more dense in
colloids. Based on the actual knowledge of the CCP it is
possible to identify that region in the thermodynamic space of
the suspensions where these phenomena are due to CCFs. In
addition, the effective pair potential approach can correctly
predict the specific structures into which homogeneous, Janus,
and other patchy particles self-assembe under the action of
CCFs. An accurate determination of the corresponding phase
diagrams requires one to incorporate the apparent partitioning
of colloids into that phase of the phase-separated binary
solvent, which is preferred by the colloids. This effect is not
captured by the effective pair potential approach. Therefore,
the appropriate description of colloidal suspensions with a
binary solvent is the one of a ternary mixture. The challenge is
that a microscopic theoretical treatment of a ternary mixture
consisting of microsized colloids and a binary molecular
liquid is currently not feasible. Even MC simulations of a
simplified lattice model mimicking such a suspension con-
stitute a serious computation challenge. Thus, currently in a
certain sense one is thrown back to the effective one-
component approach. Accordingly, combined experimental
and theoretical efforts, which help to assess the validity of this
approach, are highly welcome.
The bibliography of this review testifies that critical Casimir

interactions in colloidal systems are an active research field

which generates an abundance of interesting challenges for
various disciplines. Some future avenues of research can
easily be identified. For example, a detailed knowledge of the
pair potentials is essential for the effective one-component
approach. However, it remains as a challenge to accurately
determine the CCP and its scaling function within the range of
the relevant parameters and boundary conditions. This applies
to chemically homogeneous or Janus particles of spherical or
anisotropic shapes such as cylinders, ellipsoids, cubes, or even
more complex shapes such as dumbbells or L-like ones.
Quantitative reliability demands to carry out calculations
beyond mean field theory and the Derjaguin approximation.
This requires the development of new theoretical approaches
and simulation algorithms.
Janus particles have already been used in experiments on

aggregation in near-critical binary solvents (Iwashita and
Kimura, 2013). Colloids with chemically homogeneous or
inhomogeneous surfaces, forming patchy particles (Nguyen
et al., 2016; Garcia, Gnan, and Zaccarelli, 2017), with various
shapes as well as their mixtures are attractive building blocks
for generating a large variety of self-assembled structures by
using CCFs. This lends itself to be explored further by
experiments and computer simulations. In addition, suitably
designed surfaces might provide temperature-controlled
confining potentials which might find applications for
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FIG. 21. Tuning the morphology of colloidal aggregates by CCFs. Confocal microscopy images and the three-dimensional

reconstructions of the aggregates formed upon temperature quenches to (a), (d) ΔT ¼ TðsÞ
c − T ¼ 0.2 K, (b), (e) 0.14 K, and (c),

(f) 0.12 K below the lower critical phase separation temperature TðsÞ
c of the binary solvent. (g) Scaling of the number of particles N ðrÞ

within a sphere of radius r from the center of the cluster at ΔT ¼ 0.2 K (triangles), ΔT ¼ 0.14 K (squares), and ΔT ¼ 0.12 K (circles);
r0 is the radius of the particles. (h) Fractal dimension as a function ofΔT determined fromN ðrÞ ∼ rdffcutðrÞ and thus from the slopes in
(g). The dashed line is a guide to the eye. Upon increasing ΔT a continuous increase of the fractal dimension to the space-filling limit
df ¼ 3 is observed (see the main text). From Shelke et al., 2013.
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self-assembly processes. Further analyses of the interplay
between CCFs and other forces, such as electrostatic, retarded,
and nonretarded van der Waals ones, are needed to further
understand the observed aggregation phenomena. More
elaborate as well as combined experimental and theoretical
investigations are required in order to determine material-
dependent quantities, such as Hamakar coefficients, colloid
surface charges, Debye screening lengths, and solvent corre-
lation lengths, which enter into the effective pair potential.
With this, the number of fit parameters in the theoretical
models will be reduced. For an optimal tuning of colloidal
self-assembly it is important to explore the crossover from
colloidal aggregation driven by CCFs to the one due to wetting
or bridging. This crossover is still not fully understood and
calls for further theoretical and simulation studies. New
opportunities for colloidal assembly can be created by using
mixtures of active and passive colloidal particles immersed in
a near-critical binary liquid mixture. The mobility of one
component of a colloidal mixture might accelerate self-
assembly processes and help to improve the perfection of
the emerging structures.
Concerning the thermodynamic properties of colloidal

suspensions with near-critical solvents, a multicomponent
theory beyond the effective approach and beyond mean field
theory is needed. One of the challenges along this line is to
construct a suitable theory, which accounts for all relevant
degrees of freedom of the solvent and the solute particles and
which masters the size differences of the various species.
A rewarding line of research would be to study aggregation

of colloids in lipid membranes, close to the corresponding
lipid phase segregation, or in a liquid analog of such quasi-
two-dimensional systems.
It is very likely that the unique features of CCFs will find

useful applications, which can even be patented. An actual
recent example thereof is concerned with a size-selective
nanoparticle purification or separation method based on CCFs
(Guo, Stan, and Liu, 2018). These perspectives are already
now so wide that the further development of this research field
appears to be very promising and rewarding.
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Labbé-Laurent, M., and S. Dietrich, 2016, Soft Matter 12, 6621.
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