
 

Entanglement entropy: Holography and renormalization group

Tatsuma Nishioka

Department of Physics, Faculty of Science, The University of Tokyo,
Bunkyo-ku, Tokyo 113-0033, Japan

(published 17 September 2018)

Entanglement entropy plays a variety of roles in quantum field theory, including the connections
between quantum states and gravitation through the holographic principle. This article provides a
review of entanglement entropy from a mixed viewpoint of field theory and holography. A set of basic
methods for the computation is developed and illustrated with simple examples such as free theories
and conformal field theories. The structures of the ultraviolet divergences and the universal parts are
determined and compared with the holographic descriptions of entanglement entropy. The utility of
quantum inequalities of entanglement are discussed and shown to derive the C theorem that constrains
renormalization group flows of quantum field theories in diverse dimensions.
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I. INTRODUCTION

Entanglement is one of the most important concepts that
distinguish quantum physics from classical physics as the
former allows a superposition of states, causing a nonlocal
correlation between subsystems far apart from each other. A
measure of quantum entanglement, known as entanglement
entropy, has seen an unexpectedly wide range of applications
in quantum information theory, condensed matter physics,
general relativity, and even in high energy theory in recent
years. The most substantial progress in the subject includes the
holographic formula for entanglement entropy proposed by
Ryu and Takayanagi (2006a, 2006b), which has proved to be a
profitable tool to explore various aspects of quantum entan-
glement in strongly coupled quantum field theories, being a
source of inspirational ideas in defining quantum gravity from
quantum many-body entangled states (Van Raamsdonk, 2009;
Swingle, 2012; Maldacena and Susskind, 2013).
The motivation for studying quantum entanglement varies

depending on the area of research fields, and we are able only to
make a partial list here. In quantum information theory,
quantum entanglement is exploited as an invaluable resource
for manipulating computational tasks that are impossible to
achieve in classical information theory (Preskill, 1997; Vedral,
2002; Ohya, 2004; Eisert, 2006; Horodecki et al., 2009;
Nielsen and Chuang, 2010). In condensed matter physics,
entanglement is recognized to characterize quantum phases
of matter that cannot be distinguished by their symmetries
(Kitaev and Preskill, 2006; Levin and Wen, 2006) and to
diagnose quantum critical phenomena (Vidal et al., 2003;
Calabrese and Cardy, 2004; Jin and Korepin, 2004) and
dynamics of strongly correlated quantum systems (Calabrese
and Cardy, 2005, 2007; Eisler and Peschel, 2007). In quantum
field theory (QFT), entanglement holds an eminent role as
nonlocal operators definable for any type of theories that serve
as a good probe for a variety of phase transitions such as
confinement or deconfinement transition (Nishioka and
Takayanagi, 2007; Klebanov, Kutasov, and Murugan, 2008;
Pakman and Parnachev, 2008). Moreover, the monotonic
properties of entanglement measures have been successfully
applied to derive nontrivial constraints on energy and entropy in
recent studies (Bousso et al., 2014, 2015, 2016; Faulkner et al.,
2016; Balakrishnan et al., 2017).
In this article we will review recent developments of

entanglement entropy from holographic and field theoretic
viewpoints, highlighting its aspect as measures of degrees
of freedom under renormalization group (RG) flows in QFTs.
Seeking such a measure is a long-standing activity in
theoretical physics. Zamolodchikov’s c theorem is one of
the most beautiful outcomes proving the existence of the so-
called C function that monotonically decreases along any RG
flow and agrees with the central charge of the conformal field
theory (CFT) at fixed points of the flow in (1þ 1) dimensions
(Zamolodchikov, 1986). The C function is of theoretical
importance for it orders QFTs along RG flows in the theory

space and imposes strong constraints on them to rule out their
unusual behaviors.
Attempts to extend the C theorem to higher dimensions

resulted in a conjecture by Cardy (1988) who employed a
certain type of central charge for conformal anomalies as a
measure of degrees of freedom in even spacetime dimensions.
This conjecture named the a theorem was given a proof in four
dimensions more recently by Komargodski and Schwimmer
(2011). In odd dimensions, however, generalizing the C theo-
rem faced a significant obstacle as there are no conformal
anomalies, hence no central charges. A major breakthrough
was triggered by two novel conjectures. One is based on the
observation that the universal finite part of the entanglement
entropy for a spherical region obeys the C theorem in a
holographic setup in any dimensions (Myers and Sinha, 2010,
2011). The other, now known as the F theorem, states
the monotonicity of the free energy on an Euclidean sphere
under any RG flow in odd dimensions (Jafferis et al., 2011;
Klebanov, Pufu, and Safdi, 2011). These two conjectures were
seemingly unrelated at first sight, but they turned out to be the
same by showing the equivalence between the universal part
of the sphere entanglement entropy and the sphere free energy
for CFTs (Casini, Huerta, and Myers, 2011).
This intriguing connection not only unified the two con-

jectures, but also was the key to the proof of the F theorem in
three dimensions (Casini and Huerta, 2012) that shows the
monotonicity of the renormalized entanglement entropy
interpolating the ultraviolet (UV) and infrared (IR) values
of the sphere free energy (Liu and Mezei, 2013a) based on the
strong subadditivity, one of the most stringent inequalities of
entanglement entropy, without directly relying on the unitarity
of QFT in contrast to the proofs of the C theorems in two and
four dimensions.
Among the best applications of the F theorem is to

constrain the phase diagram of noncompact quantum electro-
dynamics (QED) coupled with 2Nf two-component fermions,
which is in the conformal phase with a global symmetry
SUð2NfÞ for Nf above a critical value Ncrit, but is believed to
flow for Nf ≤ Ncrit to the chiral symmetry broken phase that
is described by 2N2

f Nambu-Goldstone bosons and a free
Maxwell field due to the spontaneous symmetry breaking to
the subgroup SUðNfÞ × SUðNfÞ × Uð1Þ at the IR fixed point.
The analyses using the F theorem by Grover (2014) and
Giombi, Klebanov, and Tarnopolsky (2016) exclude the
possibility of any RG flow from the conformal to the broken
symmetry phase for Nf⪆4.4, hence suggesting the upper
bound Ncrit ≤ 4 that can be used as a benchmark for the
estimates by the other methods (Di Pietro et al., 2016;
Gusynin and Pyatkovskiy, 2016; Herbut, 2016; Karthik and
Narayanan, 2016a, 2016b; Di Pietro and Stamou, 2017).1

The same sort of argument with the quantum inequality of
entanglement was extended more recently (Casini, Testé,
and Torroba, 2017a; Lashkari, 2017) and yielded monotonic
functions along RG flows in higher dimensions, which
provides an alternative proof of the a theorem in four

1A recent study of QED3 with Nf ¼ 1 shows the global symmetry
is enhanced to O(4) that indicates Ncrit ≤ 1 (Benini, Hsin, and
Seiberg, 2017). We thank Igor Klebanov for pointing this out to us.
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dimensions (Casini, Testé, and Torroba, 2017a). These mon-
otonic functions are of particular interest in themselves
as a C function due to their UV finiteness in any dimensions.
They certainly deserve further investigation regardless of
their applications to proving the conjectures for the higher-
dimensional C theorem (Myers and Sinha, 2010, 2011;
Klebanov, Pufu, and Safdi, 2011; Giombi and
Klebanov, 2015).

A. Outline

This review is intended to give a relatively self-contained
exposition of the recent applications of the quantum entan-
glement inequalities to the dynamics of the RG flows in QFT.
We try to streamline various approaches to the QFT entangle-
ment so that the reader can be quickly acquainted with the
modern techniques used in the literature.
In Sec. II, we start with reviewing the fundamentals of

bipartite entanglement in quantum mechanical (QM) systems.
After defining the notion of separable and entangled states,
we introduce several measures of quantum entanglement, such
as entanglement and Rényi entropies to quantify how much
entanglement a quantum state possesses for a given bipartition
of the system. We discuss the relations between a few
entanglement measures that we adopt in due course and
summarize some of the most important inequalities they
satisfy for later use in the QFT applications.
From Secs. III–VI, we consider the entanglement entropy

associated with a subregion of a constant time slice in QFT,
whose evaluation needs more sophisticated techniques than in
quantum mechanics due to the continuity of spacetime. The
real time formalism given in Sec. III is the most straightfor-
ward generalization of the quantum mechanical one where
the spacetime is discretized on lattice and the entanglement
entropy is calculated by taking the partial trace of the Hilbert
space of the lattice system. This approach can be implemented
easily for free field theories and is best suited for the numerical
calculations.
Section IV takes an alternative approach that employs the

so-called replica trick to reduce the calculation of the
entanglement entropy to the partition function on a certain
type of singular manifold in Euclidean QFT. In the Euclidean
formalism, the Lorentz invariance of the theory is manifest in
contrast to the real time approach, and one can resort to the
conventional QFT methods for the entropy calculation to
study the UV divergent structures of the entanglement entropy
by using the effective action on a curved background. In
Sec. V we describe a way to fix a few coefficients of the UV
divergent terms in the entanglement entropy by adapting the
heat kernel method to a manifold with a singular locus of
codimension two. Several useful identities obtained there
will be applied to the derivation of important formulas for
entanglement entropy in later sections.
Section VI is concerned with the entanglement entropy in

CFT, a class of QFTs invariant under the conformal symmetry
that emerges at the fixed points of RG flows in the theory
space of QFTs. The conformal symmetry will be exploited to
extract the universal parts of the entanglement entropy free
from the ambiguity caused by the renormalization scheme of
the UV divergences. When the conformal anomalies exist, the

case in even spacetime dimensions, we show the universal
parts are characterized by the central charges and the shape of
the codimension-two hypersurface surrounding the subregion
to define the entanglement entropy in a time slice.
Section VII begins with the quick overview of the

AdS=CFT correspondence, the equivalence between the
classical gravitational theory on the (dþ 1)-dimensional
anti–de Sitter (AdS) space and CFT with a large number of
degrees of freedom living on the d-dimensional boundary of
the AdS space. Given the AdS=CFT dictionary, we derive the
holographic formulas of entanglement and Rényi entropies
and show they fulfill the characteristic properties of entangle-
ment such as the strong subadditivity inequalities. An in-
triguing relation of the entanglement entropy across a sphere
to thermal entropy is established by making a coordinate
transformation to the AdS black hole geometry where the
holographic formula turns out to evaluate the black hole
entropy proportional to the area of horizon.
In Sec. VIII we explore the dynamics of RG flows in QFTs

with the aid of quantum entanglement. We use the mixture of
the techniques in field theory and holography developed in the
previous sections. We first outline the motivation and current
situation for the C theorem that orders theories along RG flows
in the space of QFTs. Then we show the quantum inequalities
of entanglement, in conjugation with the Lorentz invariance,
and provide strong constraints on the RG flows that are
enough to prove the entropic c and F theorems in (1þ 1) and
(2þ 1) dimensions, respectively. After briefly examining the
implications for the dynamics of RG flows, the validity of
the F theorem is exemplified by explicit calculations of the
entanglement entropy of a free massive scalar field in the large
mass limit. We compare the large mass expansion with the
numerical results and see the agreement, but will find the
nonstationary behavior at the UV fixed point that questions
the stationarity of entanglement entropy under the relevant
perturbation. We comment on the apparent puzzle between the
free scalar result and the conformal perturbation theory of
entanglement entropy and suggest a possible resolution by
pointing out that the conformal symmetry is broken for a
certain class of theories even at the UV fixed point.
To gain further insight from different viewpoints, we

consider a few examples of holographic RG flows and
evaluate the holographic entanglement entropies. In an
asymptotically AdS space describing a holographic gapped
system, we find a topology change of the Ryu-Takayanagi
hypersurface for the holographic entanglement entropy, which
is interpreted as a confinement or deconfinement phase
transition and indicates the prominent role of entanglement
entropy as an order parameter of quantum phase transitions. A
small test of the F theorem in the holographic RG models is
carried out under the assumptions of the null energy condition
as the bulk counterpart of the unitarity in QFT. We conclude
this review with a comment on the exact results on entangle-
ment entropy and its generalizations in supersymmetric field
theories.
Conventions: Throughout this review we use natural units

ℏ ¼ c ¼ kB ¼ 1 for the Planck constant, the speed of light,
and the Boltzmann constant, the mostly plus sign convention
ð−;þ;…;þÞ for the Lorentzian metric in (ðd − 1Þ þ 1)
dimensions, and the all plus sign convention ðþ;þ;…;þÞ
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for the Euclidean metric in d dimensions. The imaginary unit
is denoted by the roman letter “i.” The calligraphic letters M
and B stand for a d-dimensional manifold for QFT and a
(dþ 1)-dimensional manifold for gravitational theory,
respectively.

B. References to related subjects

We assume the reader has background knowledge about the
basics of QFT and general relativity. Some familiarity with
conformal field theory in higher dimensions and QFT on a
curved spacetime, covered by the standard textbooks (Di
Francesco, Mathieu, and Senechal, 1997) and (Birrell and
Davies, 1982), would also be helpful.
The interested reader may refer to the other sources of

literature listed for more comprehensive treatments of the
subjects that we will or will not touch on in this review.
An introductory account of quantum entanglement in finite-

dimensional systems is given by Nielsen and Chuang (2010)
and Preskill (1997) with the emphasis on the application to
quantum information theory. The implementation of the real
time approach is described for free lattice models by Peschel
and Eisler (2009) and for free field theories by Casini and
Huerta (2009) that also compares the approach with the
Euclidean formalism. The UV divergent structures of entan-
glement entropy are discussed for lattice models by Eisert,
Cramer, and Plenio (2010) and for QFT on a curved space by
employing the heat kernel method by Solodukhin (2011).
The condensed matter applications of entanglement being a
probe of quantum critical phenomena and quantum quench
dynamics are elaborated in the reviews by Calabrese and
Cardy (2009, 2016) by means of the CFT methods [see also
Laflorencie (2016)]. An accessible approach to more rigorous
mathematical aspects of the entanglement properties in QFT
can be found in the recent review by Witten (2018). The
developments of the holographic method in the early days are
summarized by Nishioka, Ryu, and Takayanagi (2009) and
more recent ones by Takayanagi (2012). The role of quantum
entanglement in the black hole information problem was
emphasized by Harlow (2016). Recent attempts to build up
spacetime geometry from the entanglement structure in QFT
can be found in Van Raamsdonk (2017). The exact results for
the F theorem in supersymmetric field theories are presented
by Pufu (2016). Finally, we recommend Rangamani and
Takayanagi (2017) for a comprehensive overview of the
entire subjects.

II. ENTANGLEMENT IN QUANTUM MECHANICAL
SYSTEM

We introduce the notion of bipartite entanglement for pure
states in finite-dimensional quantum mechanical systems and
classify the states into two types depending on whether they
contain nontrivial entanglement entropy that quantifies the
amount of quantum entanglement. A set of inequalities of
entanglement entropy, which will play crucial roles in the
latter sections, will be given without proofs. Other entangle-
ment measures frequently used in the literature will also be
introduced and compared with entanglement entropy.

A. Bipartite entanglement

Given a lattice model or QFT, suppose the system is in a
pure ground state jΨi, i.e., the density matrix for the Hilbert
space Htot is given in the form2

ρtot ¼ jΨihΨj: ð1Þ

We then divide the total system into two subsystems A and
B ¼ Ā complementary to each other as in Fig. 1.
In the spin chain example, we cut off the chain in between

the sites and divide the lattice points into two groups. Note
that this cutting procedure is an imaginary process without
changing the system at all. In what follows, the total Hilbert
space will be assumed to take a direct product form of two
Hilbert spaces of the subsystems,3

Htot ¼ HA ⊗ HB: ð2Þ

Let fjiiB; i ¼ 1; 2;…g be an orthonormal basis in HB and
define the reduced density matrix ρA of the system A by taking
the partial trace over the system B,

ρA ≡ trBðρtotÞ≡
X
i

BhijρtotjiiB: ð3Þ

Note that this definition depends on the choice of the
subsystem, but not on the choice of the orthonormal basis

(a) (b)

FIG. 1. The decomposition of the system into a subsystem A
shown in blue (light gray) and its complement B. (a) Two spin
systems. The subsystems A and B are left and right spins,
respectively. (b) In d-dimensional quantum field theory, a spatial
region at a given time slice is split into the subsystems A and B
whose common boundary ∂A ¼ ∂B is always a codimension-two
hypersurface in d dimensions.

2We normalize the ground state as hΨjΨi¼1 so that trtotðρtotÞ ¼ 1.
3This assumption is not necessarily valid for QFTs in general,

especially with gauge symmetries. We, however, will ignore this
issue for simplicity in the remainder of this review. For discussions
and attempts to define entanglement entropy in gauge theories,
see, e.g., (Casini, Huerta, and Rosabal (2014), Donnelly (2014),
Radicevic (2014, 2016), Aoki et al. (2015), Chen, Dai, and Pang
(2015), Donnelly and Wall (2015, 2016), Ghosh, Soni, and Trivedi
(2015), Huang (2015), Hung and Wan (2015), Ma (2016), Pretko and
Senthil (2016), Soni and Trivedi (2016), and Van Acoleyen et al.
(2016) and a review by Pretko (2018).
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fjiiBg. For example, if ρtot is the tensor product of the density
matrices ρA and ρB describing the subsystems ρtot ¼ ρA ⊗ ρB,
the partial trace simply recovers them, trBðρtotÞ ¼ ρA and
trAðρtotÞ ¼ ρB.
An alternative characterization of the reduced density

matrix is the condition

trðρtotOÞ ¼ trAðρAOAÞ; ð4Þ

for any operator O of the form O ¼ OA ⊗ 1B with the
identity operator 1B in HB. In this sense, the reduced density
matrix ρA has enough information for HA to reconstruct
every correlation function in the subregion A. The total
density matrix needs not be pure in this characterization, but
one may wonder, once the complete information ρA about a
system A is given, if it is possible to find a pure density
matrix in an enlarged Hilbert space ofHA whose partial trace
recovers ρA. Indeed the answer is affirmative, and one can
always construct such an enlarged Hilbert space and the
density matrix in the following way. The most general
density matrix is of the form

ρA ¼
X
i

pijiiAAhij; ð5Þ

where fjiiĀg is an orthonormal basis of HA and the
coefficients pi ≥ 0 sum up to 1,

P
ipi ¼ 1. We then copy

HA into another Hilbert space HĀ with the basis given by
fjiiĀg and define a pure density matrix ρ by

ρ ¼ jχihχj; jχi≡X
i

ffiffiffiffiffi
pi

p jiiA ⊗ jiiĀ; ð6Þ

in the enlarged Hilbert space H ¼ HA ⊗ HĀ. It is straight-
forward to check that this construct correctly reproduces ρA
under the partial trace over Ā. The operation is called
entanglement purification as it constructs a pure unentangled
state from a mixed entangled state by enlarging the Hilbert
space. In Sec. IV.E, we see that the entanglement purification
turns out to be a fundamental concept in understanding what
an observer restricted to a subregion feels like in a thermal
system in QFT.
Finally let us introduce a measure of entanglement,

the entanglement entropy of the subsystem A, by the
von Neumann entropy of the reduced density matrix ρA,

SA ¼ −trA½ρA log ρA�: ð7Þ

Note that the entanglement entropy of the total system always
vanishes, Stot ¼ 0 for a pure ground state (1). Entanglement
entropy remains finite in a finite-dimensional quantum sys-
tem, but it suffers from UV divergences in QFT due to the
short range interaction near the boundary ∂A of the subsystem
A as discussed in detail in Sec. IV.

B. Separable and entangled states

Having introduced a notion of entanglement entropy as the
von Neumann entropy of the density matrix of a subsystem A,
we want to understand what it really measures for a given
system. To proceed with the discussion, consider a pure
ground state jΨi in a general form

jΨi ¼
X
i;μ

ciμjiiA ⊗ jμiB; ð8Þ

where jiiA and jμiB are orthonormal bases for HA ¼ fjiiA;
i ¼ 1;…; dAg and HB ¼ fjμiB; μ ¼ 1;…; dBg, respectively,
and the coefficient ciμ is a dA × dB matrix with complex
entries. There are two different cases depending on the type of
the coefficient matrix ciμ.

1. Separable state

When cij factorizes, cij ¼ cAi c
B
μ , the ground state jΨi is

called a separable state (a pure product state) and can be recast
into the product form

jΨi ¼ jΨAi ⊗ jΨBi; ð9Þ

where jΨAi≡P
ic

A
i jiiA and jΨBi≡P

μc
B
μ jμiB. This is the

case where the reduced density matrix, Eq. (3), also becomes
pure ρA ¼ jΨAihΨAj. Thus a separable state has vanishing
entanglement entropy

SA ¼ 0: ð10Þ

Moreover, one can show entanglement entropy vanishes if and
only if the pure ground state is separable as we will see.

2. Entangled state

The ground state is called an entangled (or inseparable)
state if it is not separable (with the coefficient matrix
ciμ ≠ cAi c

B
μ ). This is the case where the entanglement entropy

takes a positive value.
Indeed, we can simplify Eq. (8) by changing the bases into

the Schmidt decomposition form,

jΨi ¼
XminðdA;dBÞ

k¼1

ffiffiffiffiffi
pk

p jψkiA ⊗ jψkiB; ð11Þ

where pk are non-negative real numbers satisfying
P

kpk ¼ 1

and jψkiA;B are new orthonormal bases for the subsystems A
and B. Note that this decomposition works for any dA × dB
rectangular matrix ciμ. To see how it actually works, we
“diagonalize” the coefficient matrix by the singular-value
decomposition

c ¼ UΣV†; ð12Þ

where U and V are dA × dA and dB × dB unitary matrices. Σ is
a diagonal dA × dB real matrix given by
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Σ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0
B@

ffiffiffiffiffi
p1

p
. .
.

0ffiffiffiffiffiffiffipdB
p

1
CA ðdA < dBÞ;

0
BBB@

ffiffiffiffiffi
p1

p

. .
.

ffiffiffiffiffiffiffipdA
p

0

1
CCCA ðdA ≥ dBÞ;

ð13Þ

with non-negative real entries
ffiffiffiffiffi
pk

p ≥0, k¼1;…;minðdA;dBÞ.
The square root for the eigenvalues is purely conventional
for later use. The new orthonormal bases jψkiA;B are the
unitary transformation of the original ones jiiA;B as jψkiA ¼P

iUikjiiA and jψkiB ¼ P
μVkμjμiB.

The Schmidt decomposition Eq. (11) is particularly nice as
it yields a mixed state density matrix with the probability
distribution fpkg for the reduced density matrix

ρA ¼
XdB
i¼1

Bhψ ijΨihΨjψ iiB;

¼
XminðdA;dBÞ

k¼1

pkjψkiAAhψkj: ð14Þ

In our case, the condition
P

kpk ¼ 1 follows from the
normalization hΨjΨi ¼ 1. We see that the reduced density
matrix of a subsystem can be mixed even if the total system is
in a pure ground state. This should be compared with the
discussion for entanglement purification around Eq. (6) where
we saw the opposite. In the Schmidt decomposition the
entanglement entropy

SA ¼ −
XminðdA;dBÞ

k¼1

pk logpk ð15Þ

is nothing but the Shannon entropy of the probability
distribution fpkg. Under the constraint

P
kpk ¼ 1, it takes

the maximum value

SAjmax ¼ logminðdA; dBÞ ð16Þ

at pk ¼ 1=minðdA; dBÞ for any k.4

In summary, an entangled state is a superposition of several
quantum states. An observer who can access only a subsystem
A will find him or herself in a mixed state when the pure
ground state jΨi in the total system is entangled:

jΨi∶ separable ↔ ρA∶ pure state;

jΨi∶ entangled ↔ ρA∶ mixed state: ð17Þ

Entanglement entropy measures how much a given state
differs from a separable state. It reaches the maximum value

when a given state is a superposition of all possible quantum
states with an equal weight.

a. Two spin system

Let us illustrate a simple example of an entangled state.
Consider a system of two particles A and B with spin 1=2.
The Hilbert spaces HA and HB are spanned by two states
HA;B ¼ fj0iA;B; j1iA;Bg. We let them be orthonormal bases
satisfying A;BhijjiA;B ¼ δij for i, j ¼ 0, 1. Since the total
Hilbert space is the tensor product of the two subsystems
Htot ¼ HA ⊗ HB, it has the four-dimensional orthonormal
basis Htot ¼ fj00i; j01i; j10i; j11ig, where jiji≡ jiiA ⊗ jjiB
are tensor product states.
Suppose the ground state is given by

jΨi ¼ 1ffiffiffi
2

p ðj01i − j10iÞ: ð18Þ

The reduced density matrix for the particle A is obtained by
taking the partial trace over HB of the total density matrix
Eq. (1),

ρA ¼ 1
2
ðj0iAAh0j þ j1iAAh1jÞ: ð19Þ

It is convenient to write it in a matrix form acting on the two-
dimensional vector space HA,

ρA ¼
�
1=2 0

0 1=2

�
: ð20Þ

It shows that ρA is not pure and the entanglement entropy does
not vanish,

SA ¼ −trA
��

1=2 0

0 1=2

��
logð1=2Þ 0

0 logð1=2Þ

��
;

¼ log 2: ð21Þ

This is a maximally entangled state for it saturates the upper
bound Eq. (16) with dA ¼ dB ¼ 2.
A more general state to consider is

jΨi ¼ cos θj01i − sin θj10i; ð22Þ

parametrized by a parameter θ ranging from 0 to π=2 that
reduces the state Eq. (18) at θ ¼ π=4. By a similar calculation
we have

SA ¼ −cos2θ logðcos2θÞ − sin2θ logðsin2θÞ; ð23Þ

which shows the states at θ ¼ 0, π=2 are pure product states
with vanishing entanglement entropy while the state Eq. (18)
at θ ¼ π=4 is maximally entangled.

b. Thermofield double state

A more nontrivial example of an entangled state is the
thermofield double state defined by

4To prove Eq. (16), one can introduce the Lagrange multiplier
xðPkpk−1Þ to the entropyEq. (15) and extremize it with respect topk.
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jΨi ¼ 1ffiffiffiffi
Z

p
X
n

e−βEn=2jniA ⊗ jniB; ð24Þ

where we normalize the state with the partition function
Z ¼ P

ne
−βEn . The peculiarity of the thermofield double state

becomes manifest in taking the partial trace over the sub-
system B. Namely, the reduced density matrix for the
subsystem A becomes a Gibbs state of inverse temperature β:

ρA ¼ 1

Z

X
n

e−βEn jniAAhnj;

¼ 1

Z
e−βHA: ð25Þ

In the second line, we introduced the (modular) Hamiltonian
HA such that HAjniA ¼ EnjniA. Actually the thermofield
double state is the entanglement purification of a thermal
state with the Boltzmann weight pi ¼ e−βEi=Z in Eq. (6).
Namely, we can purify the thermal system A in the extended
Hilbert space HA ⊗ HB by copying the state vectors fjniBg
from HA to HB. Then every expectation value of local
operators in the thermal system A is representable in the
thermofield double state Eq. (24) of the total system A ∪ B. In
this example, the entanglement entropy measures the thermal
entropy of the subsystem A:

SA ¼ −trA½ρAð−βHA − logZÞ�;
¼ βðhHAi − FÞ; ð26Þ

where F is the thermal free energy βF ¼ − logZ.
The thermofield double state is also important to understand

the thermal nature of black holes when we consider QFT on a
background geometry with a horizon in Sec. IV.E.

C. Bell states

In the two spin system, we saw the state Eq. (18) is
maximally entangled. Actually there are totally four indepen-
dent maximally entangled states in the two qubit system:

jB1i ¼
1ffiffiffi
2

p ðj00i þ j11iÞ;

jB2i ¼
1ffiffiffi
2

p ðj00i − j11iÞ;

jB3i ¼
1ffiffiffi
2

p ðj01i þ j10iÞ;

jB4i ¼
1ffiffiffi
2

p ðj01i − j10iÞ: ð27Þ

These are known as the Bell states or Einstein-Podolsky-Rosen
pairs in quantum information theory. These states manifest their
quantum mechanical aspects in the sense that they violate the
Bell’s inequalities holding in a local hidden variable theory
accounting for the probabilistic features of quantum mechanics
with a hidden variable and a probability density.
For a system of n qubits, there are entangled states called

the Greenberger-Horne-Zeilinger (GHZ) states (Greenberger,
Horne, and Zeilinger, 1989; Greenberger et al., 1990):

jGHZi ¼ 1ffiffiffi
2

p ðj0i⊗n þ j1i⊗nÞ: ð28Þ

Another type of entangled states is called the W state (Dur,
Vidal, and Cirac, 2000),

jWi¼ 1ffiffiffi
n

p ðj10 � � �00iþj010 � � �0iþ���þj00 � � �01iÞ: ð29Þ

These two types of states are inequivalent as the GHZ state is
fully separable while the W state is not as seen next.
Tripartite system: In a tripartite system (n ¼ 3), the GHZ

and W states become

jGHZi ¼ 1ffiffiffi
2

p ðj000i þ j111iÞ; ð30Þ

and

jWi ¼ 1ffiffiffi
3

p ðj001i þ j010i þ j100iÞ: ð31Þ

We denote the three subsystems by A, B, and C. Tracing out
the Hilbert space of the subsystem C, the reduced density
matrices for the system A ∪ B are

ρðGHZÞA∪B ¼ 1

2
ðj00ih00j þ j11ih11jÞ;

ρðWÞ
A∪B ¼ 2

3
jB3ihB3j þ

1

3
j00ih00j: ð32Þ

The ρðGHZÞA∪B is fully separable in a sense that it can be written in
the form

ρðGHZÞA∪B ¼
Xk
i¼1

piρ
ðiÞ
A ⊗ ρðiÞB ; ð33Þ

where k ¼ 2, pi ¼ 1=2, and ρð1ÞA;B ¼ j0ih0j, ρð2ÞA;B ¼ j1ih1j. On
the other hand, the ρðWÞ

A∪B cannot be written in such a form
because of the appearance of the Bell state jB3i. This implies
that the W state is still entangled even after the partial trace.

D. Properties of entanglement entropy

Entanglement entropy has several useful properties that we
summarize without proofs. The interested reader can refer to
Nielsen and Chuang (2010) for the derivations and the other
properties.

• If a ground state wave function is pure, the entanglement
entropy of the subsystem A and its complement B ¼ Ā
are the same:

SA ¼ SB: ð34Þ

This follows from the symmetry of the Schmidt decom-
position under the exchange of A and B and also from the
result Eq. (15). However, SA is no longer equal to SB
when the total system is in a mixed state, e.g., at finite
temperature.
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• Given two disjoint subsystems A and B, the entangle-
ment entropies satisfy the subadditivity,

SA∪B ≤ SA þ SB. ð35Þ

Also it satisfies the triangle inequality or the Araki-Lieb
inequality (Araki and Lieb, 1970),

jSA − SBj ≤ SA∪B; ð36Þ

which is symmetric between A and B.
• For any three disjoint subsystems A, B, and C, the
following inequalities hold:

SA∪B∪C þ SB ≤ SA∪B þ SB∪C;

SA þ SC ≤ SA∪B þ SB∪C. ð37Þ

These are known as the strong subadditivity, the most
fundamental inequalities for entanglement entropy.
The two inequalities are shown to be equivalent to each
other (Araki and Lieb, 1970). The proof is based on a
convexity of a function built from the density matrix that
is Hermitian when a system is unitary (Lieb and Ruskai,
1973; Narnhofer and Thirring, 1985). The subadditivity
Eq. (35) and the Araki-Lieb inequality Eq. (36) are
derivable from the strong subadditivity.

The strong subadditivity of entanglement will play vital
roles in the entropic proofs of the c and F theorems for
renormalization group flows in QFT as we see in Sec. VIII.

E. Relations between entanglement measures

Among several measures of quantum entanglement we list a
few, relative entropy, mutual information, and Rényi entropy,
that are often used in the applications to QFT and discuss their
features and connections to each other.

1. Relative entropy

Given two states described by the density matrices ρ and σ,
one can define the relative entropy by (Umegaki et al., 1962)

SðρkσÞ ¼ tr½ρðlog ρ − log σÞ�: ð38Þ

It measures the “distance” between the two states with several
(defining) properties (Vedral, 2002; Ohya, 2004),

SðρkρÞ ¼ 0; ð39Þ

Sðρ1 ⊗ ρ2kσ1 ⊗ σ2Þ ¼ Sðρ1kσ1Þ þ Sðρ2kσ2Þ; ð40Þ

SðρkσÞ ≥ 1
2
kρ − σk2; ð41Þ

SðρkσÞ ≥ SðtrpρjtrpσÞ; ð42Þ

where trp is a partial trace with respect to the subsystem p, and
the norm means

kρk ¼ tr
� ffiffiffiffiffiffiffi

ρ†ρ
q �

: ð43Þ

With particular choices of the density matrices, the relative
entropy reduces to entanglement entropy,

SðρAk1A=dAÞ ¼ log dA − SA; ð44Þ

where 1A is the dA × dA unit matrix for the dA-dimensional
Hilbert space of the region A.
The relative entropy is always non-negative, SðρkσÞ ≥ 0,

bounded from below by the inequality Eq. (41). Various
inequalities for the other entanglement measures follow from
the monotonicity of the relative entropy given by Eq. (42) (see
Table I). For example, the strong subadditivity Eq. (37) is
derivable as follows.
Let ρA∪B∪C be the density matrix for the total system

A ∪ B ∪ C, and we denote its restrictions to the subsystems
A ∪ B, B ∪ C, and B by ρA∪B; ρB∪C, and ρB, respectively.
Since the reduced density matrices have the property such
that trA∪B∪C½ρA∪B∪CðOA∪B⊗1C=dCÞ�¼ trA∪BðρA∪BOA∪BÞ, we
can show the identities

SðρA∪B∪Ck1A∪B∪C=dA∪B∪CÞ
¼ SðρA∪Bk1A∪B=dA∪BÞ þ SðρA∪B∪CkρA∪B ⊗ 1C=dCÞ;

SðρB∪Ck1B∪C=dB∪CÞ
¼ SðρBk1B=dBÞ þ SðρB∪CkρB ⊗ 1C=dCÞ: ð45Þ

On the other hand, the monotonicity Eq. (42) implies

SðρA∪B∪CkρA∪B ⊗ 1C=dCÞ ≥ SðρB∪CkρB ⊗ 1C=dCÞ; ð46Þ

and combined with the equalities Eq. (45), we arrive at the
inequality

SðρA∪B∪Ck1A∪B∪C=dA∪B∪CÞ þ SðρBk1B=dBÞ
≥ SðρA∪Bk1A∪B=dA∪BÞ þ SðρB∪Ck1B∪C=dB∪CÞ: ð47Þ

Translating the relative entropy to entanglement entropy
through Eq. (44) and noting the dimensional relations such
as dA∪B∪C ¼ dAdBdC, we find Eq. (47) is nothing but the
strong subadditivity of entanglement entropy given by the first
line of Eq. (37). We do not bother to derive the second
inequality in Eq. (37) from the monotonicity of the relative
entropy as it is equivalent to the first (Araki and Lieb, 1970).
One can estimate a lower bound for the relative entropy

by combining Eq. (41) with the Schwarz inequality
kXk ≥ trðXYÞ=kYk,

SðρkσÞ ≥ 1

2

ðhOiρ − hOiσÞ2
kOk2 ; ð48Þ

TABLE I. Equivalence between the entanglement inequalities of
various measures.

Entanglement entropy Mutual information Relative entropy

Subadditivity Positivity Positivity
Eq. (35) Eq. (50) Eq. (41)
Strong subadditivity Monotonicity Monotonicity
Eq. (37) Eq. (51) Eq. (42)
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where hOiρ is the expectation value of an operator O with the
density matrix ρ.

2. Mutual information

The mutual information IðA; BÞ of two systems A and B
(see Fig. 2) is defined by

IðA; BÞ≡ SA þ SB − SA∪B: ð49Þ

It measures how much the two subsystems are correlated. It is
symmetric under the exchange of A and B by definition and
free from ultraviolet divergences in QFT while entanglement
entropy generically diverges as discussed in Sec. IV.F. The
subadditivity Eq. (35) guarantees the mutual information to be
non-negative:

IðA; BÞ ≥ 0: ð50Þ

In addition, the strong subadditivity Eq. (37) leads to the
monotonicity

IðA; B ∪ CÞ ≤ IðA; BÞ; ð51Þ

for any region C.
The mutual information can be written by the relative

entropy as

IðA; BÞ ¼ SðρA∪BkρA ⊗ ρBÞ: ð52Þ

This relation shows that the mutual information between two
subsystems quantifies how much the state ρA∪B for the union
A ∪ B differs from the separable state ρA ⊗ ρB and can be a
good measure of global correlations over spatially discon-
nected regions in QFT.
Combining the third inequality of Eq. (41) and the expres-

sion of the mutual information Eq. (52) with the Schwarz
inequality, one obtains the lower bound for the mutual
information (Wolf et al., 2008)

IðA; BÞ ≥ 1

2

ðhOAOBi − hOAihOBiÞ2
kOAk2kOBk2

; ð53Þ

where OA and OB are any bounded operators in the regions A
and B, respectively.

3. Rényi entropy

The Rényi entropy is a one-parameter generalization of
entanglement entropy labeled by an integer n, called the
replica parameter (Rényi, 1961)

SnðAÞ ¼
1

1 − n
log trAðρnAÞ: ð54Þ

In the n → 1 limit with the normalization trAðρAÞ ¼ 1, the
Rényi entropy reduced to entanglement entropy,

SA ¼ lim
n→1

SnðAÞ: ð55Þ

The Rényi entropy provides us more information about the
eigenvalues of the reduced density matrix than entanglement
entropy. It is defined for an integer n, but one assumes
an analytic continuation of n to a real number in taking the
limit Eq. (55). This analytic continuation will be useful to
compute entanglement entropy of QFT by the replica method
in Sec. IV.

a. Thermal interpretation of Rényi entropic inequalities

The Rényi entropy Eq. (54) is shown to satisfy several
inequalities between different values of n (Życzkowski, 2003),

∂nSn ≤ 0; ð56Þ

∂n

�
n − 1

n
Sn

�
≥ 0; ð57Þ

∂n½ðn − 1ÞSn� ≥ 0; ð58Þ

∂2
n½ðn − 1ÞSn� ≤ 0: ð59Þ

To grasp the physical meaning of these inequalities we
introduce the modular Hamiltonian HA by

ρA ≡ e−2πHA; ð60Þ

and consider a “thermal” partition function

ZðβÞ≡ trAðρnAÞ ¼ trAðe−βHAÞ; ð61Þ

at inverse temperature β≡ 2πn where HA is regarded as a
Hamiltonian. In analogy to statistical mechanics we can define
the modular energy EðβÞ, the modular entropy S̃ðβÞ, and the
modular capacity CðβÞ5 by the canonical relations,

EðβÞ≡ −∂β logZðβÞ;
S̃ðβÞ≡ ð1 − β∂βÞ logZðβÞ;
CðβÞ≡ β2∂2

β logZðβÞ: ð62Þ

FIG. 2. The mutual information between two disjoint regions A
(blue, light gray) and B red (gray).

5The modular capacity CðβÞ is the same as the capacity of
entanglement defined by Yao and Qi (2010).
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With these “thermodynamic” quantities, the inequalities
Eqs. (57)–(59) are rewritten in more concise forms (Hung
et al., 2011; Nakaguchi and Nishioka, 2016):

S̃ðβÞ ≥ 0;

EðβÞ ≥ 0;

CðβÞ ≥ 0: ð63Þ

The inequality Eq. (56) is not independent from the others and
can be derived from Eq. (59). We thus find the inequalities of
the Rényi entropy have a good interpretation as the stability of
the thermal system when the replica parameter n is regarded as
the inverse temperature for the modular Hamiltonian.
There is a one-to-one correspondence between the modular

entropy and the Rényi entropy

S̃n ≡ n2∂n

�
n − 1

n
Sn

�
; ð64Þ

where we changed the notation for S̃ðβÞ to emphasize the n
dependence. Inverting this relation by integration, we can
reconstruct the Rényi entropy from the modular entropy,

Sn ¼
n

n − 1

Z
n

1

dn̂
1

n̂2
S̃n̂: ð65Þ

We discuss the implications of the inequalities Eq. (63) for a
gravitational system when a holographic description of the
Rényi entropy is available in Sec. VII.E.

b. Relative Rényi entropy

The relative Rényi entropy is an analog of the Rényi
entropy for the relative entropy, defined by (Müller-Lennert
et al., 2013; Wilde, Winter, and Yang, 2013)

SnðρkσÞ ¼
1

n − 1
log ½trðσð1−nÞ=ð2nÞρσð1−nÞ=ð2nÞÞn�; ð66Þ

for n ∈ ð0; 1Þ ∪ ð1;∞Þ and

S1ðρkσÞ ¼ SðρkσÞ;
S∞ðρkσÞ ¼ log kσ−1=2ρσ−1=2k∞: ð67Þ

The relative Rényi entropy is shown to be monotonic under
the partial trace operation trp,

SnðρkσÞ ≥ SnðtrpρktrpσÞ; ð68Þ

for n ≥ 1=2 as is the relative entropy (Beigi, 2013; Frank and
Lieb, 2013).
The relative Rényi entropy reduces to the Rényi entropy in

taking a special state as σ in the same way as in Eq. (44),

SnðρAk1A=dAÞ ¼ log dA − SnðAÞ. ð69Þ

It is also shown to be monotonic with respect to the parameter
n (Beigi, 2013; Müller-Lennert et al., 2013),

∂nSnðρkσÞ ≥ 0; ð70Þ

which is considered as a generalization of the inequality
Eq. (56) for the Rényi entropy.
One may be tempted to define the Rényi mutual informa-

tion in a similar manner to the mutual information Eq. (49).
This naive construction, however, can give rise to a negative
value for a certain class of states when n ≠ 1 in general
and does not allow the interpretation as an entanglement
measure of quantum information (Adesso, Girolami, and
Serafini, 2012).6

Instead, one can introduce the n-Rényi mutual information
by (Beigi, 2013)

InðA; BÞ ¼ minσBSnðρA∪BkρA ⊗ σBÞ; ð72Þ

where the minimum is taken over all density matrices σB. It is
always non-negative by definition and reduces to the mutual
information when n ¼ 1.

F. Entanglement entropy at finite temperature

The entanglement entropy SAðTÞ at finite temperature
T ¼ β−1 can be defined just by replacing the total density
matrix Eq. (1) with the thermal density matrix

ρthermal ¼
e−βH

trðe−βHÞ ; ð73Þ

where H is the Hamiltonian of the total system. By definition,
SAðβÞ equals the thermal entropy when A is the total system

Stot ¼ Sthermal: ð74Þ

Let jΨi be the ground state with no energy HjΨi ¼ 0, and jϕi
be the first excited (normalized) state with the energy
Hjϕi ¼ Eϕjϕi. Then the density matrix has an expansion
around the ground state at zero temperature,

ρthermal ¼
jΨihΨj þ jϕihϕje−βEϕ þ � � �

1þ e−βEϕ þ � � � . ð75Þ

The reduced density matrix allows a similar expansion,

ρA ¼ ρ0A þ e−βEϕðρϕA − ρ0AÞ þ � � � ; ð76Þ

where we defined ρ0A ≡ trBðjΨihΨjÞ and ρϕA ≡ trBðjϕihϕjÞ. It
follows from the n → 1 limit of the Rényi entropy Eq. (54)
that the entanglement entropy receives the universal thermal
contribution from the excited state (Cardy and Herzog, 2014;
Herzog, 2014),

SAðTÞ ¼ SAðT ¼ 0Þ þ e−βEϕΔhH0Ai þ � � � ; ð77Þ

6An example of such states for n ¼ 2 is

ρA∪B ¼ xj00ih00j þ yj01ih01j þ ð1 − x − yÞj10ih10j; ð71Þ

with the parameter ranges 0<x<1=2 and 0<y< ð1=2−xÞ=ð1−xÞ.
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where H0A ≡ − log ρ0A is the modular Hamiltonian for the
ground state and ΔhH0Ai stands for the difference of the
modular Hamiltonian,

ΔhH0Ai≡ trA½H0AðρϕA − ρ0AÞ�: ð78Þ

III. REAL TIME FORMALISM

We illustrate the real time approach for calculating the
reduced density matrix of a subsystem in the Hamiltonian
description. This method is suitable for the numerical com-
putation once we discretize the spacetime to lattice. We
describe only the bosonic case here and defer the fermionic
case to the Appendix.

A. Two coupled harmonic oscillators

To illustrate the real time approach, we start with a simple
example of two coupled harmonic oscillators (Bombelli et al.,
1986; Srednicki, 1993); see Fig. 3. Suppose this system is
described by the Hamiltonian

H ¼ 1
2
½p2

A þ p2
B þ kðx2A þ x2BÞ þ lðxA − xBÞ2�; ð79Þ

where xA;B and pA;B are the positions and the conjugate
momenta of the two oscillators, and k and l are related to
their mass and the coupling. First, we want to find the ground
state wave function of the system. To this end, we introduce
new variables x� ¼ ðxA � xBÞ=

ffiffiffi
2

p
, ωþ ¼ k1=2, and ω− ¼

ðkþ 2lÞ1=2. In these new variables, the Hamiltonian is for two
uncoupled harmonic oscillators and the Schrödinger equation
becomes

1
2
½−∂2þ−∂2

−þω2þx2þþω2
−x2−�Ψðxþ;x−Þ¼EΨðxþ;x−Þ: ð80Þ

Then the ground state wave function is the product of two
copies of the ground state wave function of one harmonic
oscillator,

Ψðxþ; x−Þ ¼
ðωþω−Þ1=4

π1=2
exp

�
−
ωþx2þ þ ω−x2−

2

�
; ð81Þ

with the energy E ¼ ðωþ þ ω−Þ=2. The overall factor is
chosen so that the wave function is normalized to beR
∞
−∞ dxA

R
∞
−∞ dxBjΨðxA; xBÞj2 ¼ 1 where we denote the wave

function in the original variables xA and xB by the same
symbol ΨðxA; xBÞ.
Next we trace out the oscillator at xB and construct

the reduced density matrix ρA for the oscillator at xA.
If we represent the ground state wave function as

ΨðxA; xBÞ ¼ ðhxAj ⊗ hxBjÞjΨi, then the reduced density
matrix follows as

ρAðxA; x0AÞ ¼ hxAjtrBðjΨihΨjÞjx0Ai;

¼
Z

∞

−∞
dxBΨðxA; xBÞΨ�ðx0A; xBÞ;

¼
ffiffiffiffiffiffiffiffiffiffiffi
γ − β

π

r
exp

�
−
γ

2
ðx2A þ x0A

2Þ þ βxAx0A

�
; ð82Þ

where we introduced the parameters

β ¼ ðωþ − ω−Þ2
4ðωþ þ ω−Þ

; γ ¼ 2ωþω−

ωþ þ ω−
þ β: ð83Þ

Finally, we need the eigenvalues of the reduced density
matrix to compute the entanglement entropy. The eigenfunc-
tion fn with the eigenvalue pn must satisfy

Z
∞

−∞
dx0ρAðx; x0Þfnðx0Þ ¼ pnfnðxÞ; ð84Þ

and the solution is given by

fnðxÞ ¼ Hnðα1=2xÞe−αx2=2 ðn ¼ 0; 1; 2;…Þ; ð85Þ

where α ¼ ðωþω−Þ1=2 andHn is the Hermite polynomial. The
eigenvalue pn is

pn ¼ ð1 − ξÞξn; ξ ¼ β

αþ γ
: ð86Þ

One way to derive the eigenfunction is to expand the reduced
density matrix by the Hermite polynomial,

ρAðx; x0Þ ¼
ffiffiffi
α

π

r
ð1 − ξÞe−α=2ðx2þx02Þ

×
X∞
n¼0

ξn

2nn!
Hnðα1=2xÞHnðα1=2x0Þ; ð87Þ

and use the orthogonality,

Z
∞

−∞
dxe−x

2

HnðxÞHmðxÞ ¼
ffiffiffi
π

p
2nn!δnm: ð88Þ

Having diagonalized the reduced density matrix, we are ready
to obtain the entanglement entropy from the eigenvalue
Eq. (86),

SA ¼ −
X∞
n¼0

pn logpn;

¼ − logð1 − ξÞ − ξ

1 − ξ
log ξ: ð89Þ

FIG. 3. A system of N-coupled harmonic oscillators. Here the
total size of the system is N ¼ 10 and the subsystem A in blue
(light gray) consists of four oscillators from the left.
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B. N-coupled harmonic oscillators

It is straightforward to generalize the model Eq. (79) of two
harmonic oscillators to a system of N-coupled harmonic
oscillators (see Fig. 3)

H ¼ 1

2

XN
i¼1

π2i þ
1

2

XN
i;j¼1

ϕiKijϕj; ð90Þ

where K is a real symmetric matrix and πi is a canonical
conjugate momentum of the oscillator ϕi satisfying the
commutation relation,7

½ϕi; πj� ¼ iδij: ð91Þ

It reduces to the previous model Eq. (79) for N ¼ 2,
K11 ¼ K22 ¼ kþ l, and K12 ¼ −l. Instead of repeating the
arguments in the literature (Bombelli et al., 1986; Srednicki,
1993), we adopt a different method that suites for numerical
computation.
First, we introduce creation and annihilation operators aI

and a†I satisfying the commutation relation ½aI; a†J� ¼ δIJ.
Note that the new indices I and J are different from the indices
i and j labeling the lattice site. They parametrize the Fock
space generated by aI and a

†
I . We assume the operators aI and

a†I are linearly related to the original oscillators ϕi and πj with
indices i and j in the region A by (Casini and Huerta, 2009),

ϕi ¼ αiIða†I þ aIÞ;
πj ¼ −iβjJða†J − aJÞ; ð92Þ

where αiI and βjJ are real matrices with the mixed indices of
the coordinate space and the Fock space. These matrices are
not independent of each other due to the commutation relation
Eq. (91) and have to be real matrices satisfying

αβT ¼ −1
2
: ð93Þ

We now assume that there exists a (modular) Hamiltonian
bilinear in the creation and annihilation operators,

HA ¼
X
I

ϵIa
†
I aI; ð94Þ

which generates the reduced density matrix (Peschel and
Chung, 1999; Chung and Peschel, 2000),

ρA ¼
Y
I∈A

ð1 − e−ϵI Þe−HA: ð95Þ

In order to determine the spectrum ϵI , we compare the two-
point functions hϕiπji ¼ iδij=2, Xij ≡ hϕiϕji, and Pij ¼
hπiπji in the subsystem A with those evaluated with the
ansatz Eq. (95),

Xij ¼ trAðρAϕiϕjÞ;
Pij ¼ trAðρAπiπjÞ;
i
2
δij ¼ trAðρAϕiπjÞ: ð96Þ

The right-hand sides can be diagonalized by the coefficient
matrices α and β in Eq. (92):

X ¼ αð2nþ 1ÞαT;
P ¼ βð2nþ 1ÞβT; ð97Þ

where n is the diagonal matrix with entries,

nIJ ¼ trAðρAa†I aJÞ ¼
δIJ

eϵI − 1
: ð98Þ

We can read off the spectrum ϵI of the reduced density matrix
from the matrix product XP that is also diagonalized with
Eq. (93) as

XP ¼ 1
4
αð2nþ 1Þ2α−1: ð99Þ

Comparing the eigenvalues of the matrices in both sides,
we find

νI ¼
1

2
coth

ϵI
2
; ð100Þ

where νI are the eigenvalues of C ¼ ffiffiffiffiffiffiffi
XP

p
.

The entanglement entropy follows from the limit of the
Rényi entropy Eq. (55). Since the trace of the nth power of ρA
is given by

trAðρnAÞ ¼
Y
I

ð1 − e−ϵI Þn
1 − e−nϵI

;

¼
Y
I

��
νI þ

1

2

�
n
−
�
νI −

1

2

�
n
�
−1
; ð101Þ

we can represent the entanglement entropy in terms of the
matrix C,

SA ¼ trA½ðCþ 1
2
Þ log ðCþ 1

2
Þ−ðC − 1

2
Þ log ðC − 1

2
Þ�; ð102Þ

where trA means the indices of the matrix Cij are restricted to
the subsystem A, i, j ∈ A.
While Eq. (102) is enough to determine the entanglement

entropy of the subsystem on lattice, it is cumbersome to
calculate the matrix C from the two-point functions Xij and
Pij. Actually there is a shortcut for the system of the coupled
harmonic oscillators Eq. (90), where Xij and Pij are repre-
sentable by the interaction matrix K as follows. First consider
the case where the K matrix is a diagonal matrix
D ¼ diagðω2

1;ω
2
2;…;ω2

NÞ. One can then define creation and
annihilation operators

7The oscillator and conjugate momentum are considered as
Hermitian operators.
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bi ¼
1ffiffiffiffiffiffiffi
2ωi

p ðωiϕi þ iπiÞ;

b†i ¼
1ffiffiffiffiffiffiffi
2ωi

p ðωiϕi − iπiÞ; ð103Þ

with the commutation relations ½bi; b†j � ¼ δij. With them, the
Hamiltonian equation (90) with the interaction matrix K ¼ D
is recast into the following standard form:

H ¼
XN
i¼1

ωi

�
b†i bi þ

1

2

�
: ð104Þ

Let j0i be a ground state annihilated by all bi, then the two-
point correlation functions are

Xij ¼ h0jϕiϕjj0i ¼
1

2ωi
δij;

Pij ¼ h0jπiπjj0i ¼
ωi

2
δij: ð105Þ

Since any real symmetric matrix K can be diagonalized by an
orthogonal matrix O, K ¼ OTDO, and Kn ¼ OTDnO for any
real n, applying the derivation to the new basis ϕ̃i ¼ Oijϕj

leads to

Xij ¼ 1
2
ðK−1=2Þij; Pij ¼ 1

2
ðK1=2Þij: ð106Þ

The matrix C ¼ ffiffiffiffiffiffiffi
XP

p
is constant, C ¼ 1=2, when A is the

total system, and the entanglement entropy Eq. (102) clearly
vanishes in this case as expected. On the other hand, it no longer
vanishes for a subsystem A specified by i ¼ 1;…; NA where
NA < N because Cij ¼ ½Pk¼1;…;NA

ðK−1=2ÞikðK1=2Þkj�1=2=2 is
not necessarily 1=2 in general.

C. Free massive scalar fields

The argument used in the previous section can be extended
to higher-dimensional theories without difficulty if the system
has rotational symmetry. Namely, for a spherical entangling
surface, the system can be effectively reduced to (1þ 1)-
dimensional theories on the radial coordinate (Srednicki,
1993; Lohmayer et al., 2010; Huerta, 2012).
Consider a free massive real scalar field with the action8

I ¼ −
1

2

Z
ddx

ffiffiffiffiffiffi
−g

p ½ð∂μϕÞ2 þm2ϕ2�: ð107Þ

We put the theory on the radial coordinates,

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
d−2; ð108Þ

where dΩ2
d−2 is the metric for a unit (d − 2) sphere. Rescaling

the scalar field ϕ by rd=2−1 and Fourier decomposing along the
angular directions simplifies the Hamiltonian

H ¼ 1

2

X∞
l¼0

gsðd − 2; lÞ

×
Z

∞

0

dr

	
π2l ðrÞ þ rd−2

�
∂r

�
ϕlðrÞ
rd=2−1

��
2

þ
�
m2 þ lðlþ d − 3Þ

r2

�
ϕ2
l ðrÞ



; ð109Þ

where πl are the conjugate momenta of the field ϕl with the
orbital angular momentum l, satisfying the commutation
relation

½ϕlðrÞ; πl0 ðr0Þ� ¼ iδll0δðr − r0Þ: ð110Þ

The factor gsðd; lÞ is the degeneracy of the lth angular mode of
a scalar field on unit d sphere Sd,

gðd; lÞ ¼ ð2lþ d − 1ÞΓðlþ d − 1Þ
l!ΓðdÞ : ð111Þ

We discretize the radial coordinate r to N sites parametrized
by i with lattice spacing a that leads to the following
replacement rule:

r → ia; δðr − r0Þ → δii0

a
;

ϕlðrÞ → ϕl;i; πlðrÞ →
πl;i
a

; ð112Þ

for the terms without derivatives and

r →

�
iþ 1

2

�
a;

∂r

�
ϕlðrÞ
rd=2−1

�
→

1

ad=2

�
ϕl;iþ1

ðiþ 1Þd=2−1 −
ϕl;i

id=2−1

�
; ð113Þ

for the terms with derivatives.9 The resulting Hamiltonian on
the lattice takes a similar form as Eq. (90) for the N-coupled
harmonic oscillator:

H ¼ 1

2a

X∞
l¼0

gsðd − 2; lÞ
�XN
i¼1

π2l;j þ
XN
i;j¼1

ϕl;iK
ij
l ϕl;j

�
: ð114Þ

The symmetric matrix Kl is chosen to be

K11
l ¼

�
3

2

�
d−2

þ lðlþ d − 3Þ þ ðmaÞ2;

Kii
l ¼ 1

id−2

��
i −

1

2

�
d−2

þ
�
iþ 1

2

�
d−2

�

þ lðlþ d − 3Þ
i2

þ ðmaÞ2;

Ki;iþ1
l ¼ Kiþ1;i

l ¼ −
ðiþ 1=2Þd−2

id=2−1ðiþ 1Þd=2−1 : ð115Þ

8We may use a nonminimally coupled scalar field with a termRϕ2

in the action, but the result is the same as the minimally coupled case
(Casini, Mazzitelli, and Testé, 2015; Herzog and Nishioka, 2016).

9Among several discretization schemes we exclusively use Sred-
nicki lattice (Srednicki, 1993) in this article.
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Hence the entanglement entropy of a free massive scalar field
for a spherical system amounts to the summation of those over
each angular mode,

SA ¼
X∞
l¼0

gsðd − 2; lÞSl; ð116Þ

where Sl is the entropy for the lth mode of the form Eq. (102),

Sl ¼ trA½ðCl þ 1
2
Þ log ðCl þ 1

2
Þ−ðCl − 1

2
Þ log ðCl − 1

2
Þ�; ð117Þ

with Cl ¼ ðClÞij for i, j ∈ A being

ðClÞij ¼
1

2

�X
k∈AðK

−1=2
l ÞikðK1=2

l Þkj
�
1=2

: ð118Þ

For a spherical entangling surface of radius R, the indices
i, j, k ∈ A range from 1 to NA, where NA is fixed by
R ¼ ðNA þ 1=2Þa.

IV. EUCLIDEAN FORMALISM

In this section, we rewrite the definition of entanglement
entropy by introducing an auxiliary (replica) parameter. After
giving a representation of the reduced density matrix in terms
of the path integral, we derive an expression of the entangle-
ment entropy given by the Euclidean partition function on a
singular manifold. This approach is sometimes easier than the
real time approach in performing analytic computations
in QFT.

A. Replica trick

We adopt the definition Eq. (7) of entanglement entropy
with Eqs. (54) and (55),

SA ¼ −lim
n→1

log trAðρnAÞ
n − 1

;

¼ −lim
n→1

∂n log trAðρnAÞ; ð119Þ

where we used the fact that the reduced density matrix is
normalized trAðρAÞ ¼ 1. Although the Rényi entropy is
defined only for an integer n, the analytic continuation
is assumed in taking the n → 1 limit. This method is called
the replica trick that is often employed for the entanglement
entropy calculation in QFT.
Two spin system with the replica trick: We revisit the two

spin system Eq. (18) in Sec. II.B.2.a with the replica trick. The
reduced density for the spin Awas given by Eq. (20), hence we
immediately have the trace of the nth power,

trAðρnAÞ ¼ 21−n: ð120Þ

Plugging this into Eq. (119) yields the entanglement entropy

SA ¼ −lim
n→1

∂n log 21−n ¼ log 2; ð121Þ

which agrees with the previous calculation Eq. (21).

B. Path integral representation in quantum mechanics

We have seen how the reduced density matrix for entan-
glement entropy is calculated in the Hamiltonian formulation
so far. There is an equivalent, but complementary approach
using the path integral formulation of quantum mechanics
which we are going to deal with and will be further extended
to quantum field theory in the next section.
We first recap the basic facts about quantum mechanics and

the path integral formulation. In the Schrödinger picture a
state evolves under the Schrödinger equation,

i
d
dt
jψðtÞi ¼ ĤjψðtÞi; ð122Þ

while operators such as a position operator x̂ do not. Hence
the eigenvector x̂jxi ¼ xjxi for the operator is also time
independent.
In the Heisenberg picture, operators evolve under the

Heisenberg equation

i
d
dt
ÂðtÞ ¼ ½Ĥ; ÂðtÞ�; ð123Þ

but the state vectors are time independent. The operator x̂ðtÞ
and the eigenvector jx; ti are related to those in the
Schrödinger picture as

x̂ðtÞ ¼ eiĤtx̂e−iĤt; jx; ti ¼ eiĤtjxi: ð124Þ

The transition amplitude from an initial state jxi; tii at time
t ¼ ti to a final state jxf; tfi at t ¼ tfð> tiÞ is given by their
overlap hxf; tfjxi; tii in the Heisenberg picture. Thus the
transition amplitude in the Schrödinger picture is

hxf; tfjxi; tii ¼ hxfje−iĤðtf−tiÞjxii: ð125Þ

A standard argument for splitting the time interval to a number
of small intervals and inserting the complete bases at each
time slice yields the path integral representation,

hxfje−iĤðtf−tiÞjxii ¼
Z

xðtfÞ¼xf

xðtiÞ¼xi

½DxðtÞ�ei
R

tf
ti

dtLðx;_xÞ
; ð126Þ

where Lðx; _xÞ is the Lagrangian for the system of the given
Hamiltonian and ½DxðtÞ� is the path integral measure.
We represent the ground state wave function in the path

integral language. It is most easily achieved by analytically
continuing the Lorentzian time t to the Euclidean time τ by the
Wick rotation t ¼ −iτ. The transition amplitude becomes

hxf; τfjxi; τii ¼ hxfje−Ĥðτf−τiÞjxii;

¼
Z

xðτfÞ¼xf

xðτiÞ¼xi

½DxðτÞ�e−IEðxÞ; ð127Þ

where IEðxÞ is the Euclidean action. We specialize the
propagator Eq. (127) to the case with ðxf; τfÞ ¼ ðx; 0Þ and
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ðxi; τiÞ ¼ ðy; TÞ, and insert a complete set of the energy
eigenstates Ĥjni ¼ Enjni of the Hamiltonian in the left-hand
side to obtain

hx; 0jy; Ti ¼ hxjeĤT jyi;
¼

X
n

ψnðxÞψ�
nðyÞeEnT; ð128Þ

where ψnðxÞ≡ hxjni is the wave function of the nth eigenstate
with energy En. The transition amplitude Eq. (128) is
dominated by the ground state wave function in the
T → −∞ limit,

hx; 0jy;−∞i ¼ lim
T→−∞

ψ0ðxÞψ�
0ðyÞeE0T: ð129Þ

Multiplying ψ0ðyÞ and integrating over y usingR
dyjψ0ðyÞj2 ¼ 1, we obtain the path integral representation

of the ground state wave function ψ0ðxÞ at τ ¼ 0:

ψ0ðxÞ ¼
Z

dy
Z

xð0Þ¼x

xð−∞Þ¼y
½DxðτÞ�e−IEðxÞψ0ðyÞ; ð130Þ

where we set E0 ¼ 0 for simplicity. We make a change of the
notation and use ΨðxÞ≡ ψ0ðxÞ for the ground state wave
function from now on. Also we write the path integral without
specifying the boundary condition at τ ¼ −∞,

ΨðxÞ ¼
Z

τ¼0;xð0Þ¼x

τ¼−∞
½DxðτÞ�e−IEðxÞ: ð131Þ

Similarly, the complex conjugate of the ground state wave
function is given by the path integral from τ ¼ 0 with a given
boundary condition to τ ¼ ∞,

Ψ�ðxÞ ¼
Z

τ¼∞

τ¼0;xð0Þ¼x
½DxðτÞ�e−IEðxÞ: ð132Þ

We are now in a position to apply the path integral
representation to calculating the entanglement entropy.
Suppose the system is at zero temperature and in a pure
(not necessarily normalized) ground state jΨi. The Hilbert
space is described by the density matrix ρtot ¼ jΨihΨj=Z with
the partition function Z≡ hΨjΨi and the reduced density
matrix ρA becomes

ρA ¼ 1

Z
trBðjΨihΨjÞ: ð133Þ

We consider a bipartite system of two particles whose
coordinates are denoted by xA and xB. Then a state in
the total system is spanned by a tensor product state
jxA; xBi≡ jxAi ⊗ jxBi, with which the matrix element of
the reduced density matrix ρA is written as

hxAjρAjx0Ai ¼
1

Z

Z
dxBhxA; xBjΨihΨjx0A; xBi; ð134Þ

where the partial trace over the Hilbert space B is taken by the
integration over xB. We substitute into Eq. (134) the path
integral representations Eqs. (131) and (132) of the ground

state, but slightly shift the Euclidean time from τ ¼ 0 to τ ¼
−ϵ for ΨðxÞ and τ ¼ ϵ for Ψ�ðxÞ with a small parameter ϵ > 0
as a regularization,

hxAjρAjx0Ai ¼
1

Z

Z
dxB

×
Z

τ¼∞

τ¼ϵ;bcþ

Z
τ¼−ϵ;bc−

τ¼−∞
½DyAðτÞDyBðτÞ�e−IEðyA;yBÞ;

ð135Þ

where bc� are the boundary conditions at τ ¼ �ϵ specified by

bcþ ¼ fyAðϵÞ ¼ x0A; yBðϵÞ ¼ xBg;
bc− ¼ fyAð−ϵÞ ¼ xA; yBð−ϵÞ ¼ xBg: ð136Þ

Performing the xB integral and letting ϵ be zero amounts to the
path integral for yB over the entire Euclidean time while the
boundary conditions for yA at τ ¼ �ϵ can be implemented by
inserting delta functions

hxAjρAjx0Ai ¼
1

Z

Z
τ¼∞

τ¼−∞
½DyAðτÞDyBðτÞ�e−IEðyA;yBÞ

× δ½yAð0þÞ − x0A�δ½yAð0−Þ − xA�; ð137Þ

where we introduced the notation 0� ¼ limϵ→þ0 � ϵ.
Equation (137) leads to the path integral representation of
the entanglement entropy, but we postpone the derivation until
the next section where we focus on the QFT case.

C. Path integral representation of entanglement entropy in
quantum field theory

The real time formalism is not effective for QFT unless we
discretize the space to lattices, and the reduced density matrix
is not so straightforward to obtain in QFT. We want to make
use of the path integral representation and represent the
entanglement entropy in terms of the partition function on
a manifold with a singularity on the entangling surface.
To this end, we need a representation of the ground state

wave function in the path integral form as in the quantum
mechanical case. In QFTd, the variable corresponding to the
coordinate x̂ in QM is a quantum field ϕ̂ðx⃗Þ living on a
(d − 1)-dimensional space parametrized by the coordinate
vector x⃗ and the state vector obeying the Schrödinger equation
is the eigenvector of the field operator ϕ̂ðt; x⃗Þ at t ¼ 0:
ϕ̂ð0; x⃗Þjϕ0ðx⃗Þi ¼ ϕ0ðx⃗Þjϕ0ðx⃗Þi (see Table II).
In QFT the wave function of the ground state jΨi is

given by the wave functional Ψ½ϕ0ðx⃗Þ� ¼ hϕ0ðx⃗ÞjΨi whose
Euclidean path integral representation is

TABLE II. Correspondence between quantum mechanics (QM)
and quantum field theory (QFT).

QM QFT

Variable x̂ ϕ̂ðx⃗Þ
State jxi jϕðx⃗Þi
Wave function ΨðxÞ Ψ½ϕðx⃗Þ�
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Ψ½ϕ0ðx⃗Þ� ¼ hϕ0ðx⃗ÞjΨi;

¼
Z

t¼0;ϕðt¼0;x⃗Þ¼ϕ0ðx⃗Þ

t¼−∞
½Dϕðt; x⃗Þ�e−IE½ϕ�: ð138Þ

Similarly, we can represent the conjugate of the wave func-
tional by

Ψ�½ϕ0
0ðx⃗Þ� ¼ hΨjϕ0

0ðx⃗Þi;

¼
Z

t¼∞

t¼0;ϕðt¼0;x⃗Þ¼ϕ0
0
ðx⃗Þ
½Dϕðt; x⃗Þ�e−IE½ϕ�: ð139Þ

Figure 4 shows the pictorial representations of the wave
functionals. The partition function Z is the path integral over
the entire Euclidean space as it is written by

Z ¼
Z

½Dϕ0ðt ¼ 0; x⃗Þ�hΨjϕ0ihϕ0jΨi: ð140Þ

In this pictorial expression, taking the partial trace over the
subsystem B ¼ Ā is equivalent to gluing the edges of the two
sheets hΨjϕ0i and hϕ0jΨi along B. In other words, this is
implemented by integrating the total density matrix over every
state ϕBðt ¼ 0; x⃗Þ with support only on x⃗ ∈ B:

ρA ¼ 1

Z

Z
½DϕBðt ¼ 0; x⃗ ∈ BÞ�hϕBjΨihΨjϕBi: ð141Þ

The reduced density matrix has two indices ½ρA�ab ¼
hϕA

a jρAjϕA
bi, where ϕA

aðx⃗ ∈ AÞ and ϕA
bðx⃗ ∈ AÞ specify the

boundary conditions on A at t ¼ 0þ and 0−, respectively.10

Therefore, ρA is represented by the path integral on the
Euclidean space with a cut along the subsystem A,

ð142Þ

While we derived it pictorially here it takes exactly the same
form as the quantum mechanical case, Eq. (137). In other
words, we are able to arrive at the path integral representation
Eq. (142) of the reduced density matrix in QFT from the
previous result Eq. (137) in QM using the dictionary in
Table II.
It follows from this representation that the trace of nth

power of the reduced density matrix is given by the partition
function Zn on the n-fold cover Mn of the original spacetime
that is constructed by gluing n copies of the sheet with a cut
along A (Holzhey, Larsen, and Wilczek, 1994; Calabrese and
Cardy, 2004),

ð143Þ

FIG. 4. Path integral representations of a wave function. The
integral is performed over the shaded regions.

10Here the order of the indices of ρA is chosen so that the path
integral representation looks natural. One may use the opposite order
and still obtain the same result.
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where we denote the partition function on the n-fold cover by
Zn. Substituting this representation into Eq. (119) gives an
alternative definition of entanglement entropy in QFT,

SA ¼ −lim
n→1

∂nðlogZn − n logZÞ: ð144Þ

The n-fold cover Mn has a conical singularity along the
codimension-two entangling surface Σ ¼ ∂A with a deficit
angle 2πð1 − nÞ. This expression will be used in later sections.
It is interesting and valuable to give the path integral

representation of the modular entropy in Eq. (62) to manifest
the relation to thermal entropy. If we regard β ¼ 2πn as
an inverse temperature, the thermal partition function ZðβÞ
defined by Eq. (61) is proportional to the partition function on
the singular manifold Mn,

ZðβÞ ¼ Zn

ðZÞn : ð145Þ

The modular entropy S̃n, when written in terms of the replica
partition function, then becomes

S̃n ¼ ð1 − n∂nÞ logZn; ð146Þ

which reduces to the entanglement entropy Eq. (144) in the
n → 1 limit. Finally performing the integral Eq. (65) gives the
Rényi entropy

Sn ¼
1

1 − n
log

�
Zn

Zn

�
; ð147Þ

which can also be obtained more directly using Eq. (143) and
the definition of the Rényi entropy, Eq. (54).

D. Entanglement entropy across a hyperplane

The Euclidean version of the action Eq. (107) for a free
massive scalar field is

IE ¼ 1

2

Z
ddx½ð∂μϕÞ2 þm2ϕ2�: ð148Þ

We denote the space and Euclidean time coordinates by
xiði ¼ 1;…; d − 1Þ and x0. Let A and B be regions in
x1 > 0 and x1 ≤ 0, respectively. The entangling surface Σ
is chosen to be a (d − 2)-dimensional hyperplane at x1 ¼ 0:
Σ ¼ fðx0; xiÞjx0 ¼ x1 ¼ 0g. Introducing the metric in the
polar coordinates for the ðx0; x1Þ plane,

ds2 ¼ dx20 þ dx21 þ
Xd−1
i¼2

dx2i ;

¼ dr2 þ r2dτ2 þ
Xd−1
i¼2

dx2i ; ð149Þ

the n-fold cover Mn with a cut along A is given by the same
metric with 0 ≤ r and 0 ≤ τ ≤ 2πn as shown in Fig. 5.11

Hence the manifold Mn is the direct product of the two-
dimensional cone Cn parametrized by ðr; τÞ and Rd−2.
We are concerned with the partition function Zn of the free

scalar field on Mn, which is simply given by the one-loop
determinant

logZn ¼ −
1

2
log detð−∇2 þm2Þ;

¼ −
1

2
tr logð−∇2 þm2Þ;

¼ 1

2

Z
∞

ϵ2

ds
s
tr½e−sð−∇2þm2Þ − e−s�; ð150Þ

where ∇ is the covariant derivative onMn and we introduced
the Schwinger parameter s in the third equality.12

In the Schwinger representation Eq. (150) the calculation of
the partition function amounts to evaluating the kernel in the
integrand. This is straightforward to carry out once the
eigenvalues of the Laplacian ∇2 are given, but finding the
eigenfunctions is a formidable task on the n-fold coverMn of
a general type of entangling surfaces. Fortunately, the mani-
fold Mn for the hyperplanar entangling surface has the direct
product structure Mn ¼ Cn × Rd−2 as seen from Eq. (149);
thus the Laplacian decomposes into the sum of those on Cn
and Rd−2: ∇2 ¼ ∇2

Cn
þ∇2

Rd−2 . We know the plane waves are

the eigenfunctions of the flat space Laplacian ∇2
Rd−2 , and we

only need to solve the eigenvalue problem for the cone
Laplacian ∇2

Cn
.

The rotational symmetry of the cone Cn allows the Fourier
decomposition by the modes expðilτ=nÞ with integer l along

FIG. 5. The n-fold cover of Rd with a cut along the subregion A
(x1 > 0) at t ¼ 0 in the polar coordinates.

11The angular variable τ should not be confused with the
Euclidean time. It is rather considered as the “modular time” for
the modular Hamiltonian.

12This follows from the identity for a matrix M,

logM ¼
Z

∞

0

ds
s
½e−s − e−sM�: ð151Þ

The parameter s ¼ ϵ2 ≪ 1 is introduced so as to act as a regulator for
the UV divergence.
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the angle τ of period 2πn; hence the eigenfunctions ϕk;lðr; τÞ
of the Laplacian are parametrized by two parameters ðk; lÞ
satisfying

∇2
Cn
ϕk;lðr; τÞ ¼ −k2ϕk;lðr; τÞ ðk ∈ Rþ; l ∈ ZÞ;

ϕk;lðr; τÞ ¼
ffiffiffiffiffiffiffiffi
k

2πn

r
eilτ=nJjl=njðkrÞ; ð152Þ

where Jn is the Bessel function of the first kind. We normalize
the eigenfunctions so that they form an orthonormal basis on
the cone Cn (Kabat, 1995),

Z
Cn

d2xϕk;lðxÞϕ�
k0;l0 ðxÞ ¼ δll0δðk − k0Þ: ð153Þ

The Laplacian on Rd−2 has the orthonormal basis of the
eigenfunctions spanned by the plane waves, ϕk⊥ðyÞ ¼
expðik⊥ · yÞ=ð2πÞðd−2Þ=2, with the eigenvalues −k2⊥. Thus
we can construct the orthonormal basis ϕk;l;k⊥ðx; yÞ≡
ϕk;lðxÞϕk⊥ðyÞ of the Laplacian ∇2 with the eigenvalues

k2 þ k2⊥, and evaluate the trace of the kernel tr½e−sð−∇2þm2Þ�
that appeared in the third line of Eq. (150):

tr½e−sð−∇2þm2Þ� ¼
Z
Cn

d2x
X∞
l¼−∞

Z
∞

0

dke−sðk2þm2Þϕk;lðxÞϕ�
k;lðxÞ

×
Z
Rd−2

dd−2y
Z

dd−2k⊥e−sk
2⊥ϕk⊥ðyÞϕ�

k⊥ðyÞ;

¼ VolðRd−2Þ
12n

e−sm
2

ð4πsÞðd−2Þ=2 : ð154Þ

There are technical subtleties in performing the integral in
Eq. (154) associated with the UV and IR divergences, each
coming from the angular modes l and the volume of the
spacetime, respectively. One way to see the IR divergence is to
use the identity for the calculation that holds for ReðαÞ > −1,

Z
∞

0

dkke−sk
2

JαðkrÞ2 ¼
e−r

2=ð2sÞ

2s
Iα

�
r2

2s

�
; ð155Þ

Z
∞

0

drre−r
2

Iαðr2Þ ¼ −
α

2
þ
Z

∞

0

dr
1ffiffiffiffiffi
2π

p ; ð156Þ

where Iα is the modified Bessel function of the first kind. The
second term on the right-hand side of Eq. (156) is divergent,
but independent of αð¼ jl=njÞ, thus giving rise to a term
proportional to n from the volume of Mn to logZn and does
not contribute to the entanglement entropy. On the other hand,
the UV divergence arises from the summation over the angular
momentum l, which can be regularized, for example, by using
the zeta function,

X∞
l¼−∞

jlj ¼ 2ζð−1Þ ¼ −
1

6
: ð157Þ

Our derivation of Eq. (154) is slightly different from the one
given by Kabat (1995) that employs another regularization

scheme. An alternative way to evaluate the partition function
Zn is to take a derivative with respect to m2 and find the
coincident Green’s function Gnðx; xÞ on the n-fold cover
space Mn (Calabrese and Cardy, 2004),

1

m2
logZn ¼ −

1

2

Z
Mn

ddxGnðx; xÞ: ð158Þ

We are left with the other kernel trðe−sÞ to evaluate in
Eq. (150), but it is easily seen to be proportional to n due to the
volume of the cone Cn and does not contribute to Eq. (144) in
contrast to Eq. (154). Thus, by putting all together, we obtain
the entanglement entropy across a hyperplane Rd−2 for a free
massive scalar field,

SA ¼ πVolðRd−2Þ
3

Z
∞

ϵ2
ds

e−sm
2

ð4πsÞd=2 : ð159Þ

The UV divergent terms of the entanglement entropy can be
read off by expanding it around ϵ ¼ 0,

SA ¼ VolðRd−2Þ
6ð4πÞd−1

�
1

ðd − 2Þϵd−2 −
m2

ðd − 4Þϵd−4 þ � � �
�
: ð160Þ

The leading term is of the order of 1=ϵd−2 and the coefficient is
proportional to the area of the entangling surface Σ ¼ Rd−2.
This is the manifestation of the area law of entanglement
entropy, one of the characteristics of quantum entanglement in
QFTs. The subsequent terms are less divergent of order ϵd−2i

with i ¼ 1; 2;…. We discuss these UV structures in a more
general setting in Sec. IV.F and show that they hold for any
local quantum field theory on any manifold without boundary.
It, however, should be noted that the area law does not hold in
d ¼ 2 dimensions where the entropy logarithmically diverges

SA ¼ − 1
12
logðm2ϵ2Þ: ð161Þ

E. Rindler spacetime and thermofield double

The previous example of the entanglement entropy across a
hyperplane is not merely the simplest setup we can carry out
for the exact calculation, but also has its physical origin in
understanding of a thermal aspect of black holes as an
entanglement of a field across the horizon (Israel, 1976;
Laflamme, 1989).
To see their relation we analytically continue the metric

Eq. (149) by Wick rotation τ ¼ iη to the Rindler spacetime

ds2 ¼ −r2dη2 þ dr2 þ
Xd−1
i¼2

dx2i ; ð162Þ

with the new variable η ranging −∞ < η < ∞. The Rindler
spacetime covers a portion specified by x1 ≥ jTj of the
Minkowski spacetime R1;d−1 (see Fig. 6 for illustration),

ds2 ¼ −dT2 þ dx21 þ
Xd−1
i¼2

dx2i ; ð163Þ
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as seen from the coordinate transformation

T ¼ r sinh η; x1 ¼ r cosh η: ð164Þ

This transformation implies that an observer who is at rest
in the Rindler spacetime is uniformly accelerating in the
Minkowski spacetime and is confined to the wedge x1 ≥ jTj
separated by the “Rindler horizon” at r ¼ 0 from the rest of
the spacetime. Hence at a given time slice, say, T ¼ 0, there is
a region x1 < 0 (denoted by B in Fig. 6) that is inaccessible to
the Rindler observer living on x1 > 0 (denoted by A in Fig. 6),
whose state is described by the reduced density matrix ρA that
is a mixed thermal ensemble at inverse temperature β ¼ 2π
even if the total system A ∪ B is in a pure state. This is
precisely the same situation we considered in the previous
section, and the entanglement entropy calculated there is
equivalent to the thermal entropy that the Rindler observer
measures in her or his frame.
Now we want to give a concrete expression of the modular

Hamiltonian HA defined by Eq. (25) for the Rindler observer.
In order to fix its form, we consider the matrix element of the
reduced density matrix ρA,

hϕ0
AjρAjϕAi ¼

1

Z
hϕ0

Aje−2πHA jϕAi; ð165Þ

and regard the right-hand side as a transition amplitude from
an initial state jϕAi to a final state jϕ0

Ai. The Euclidean “time”
evolution is generated by the modular Hamiltonian HA over
the period 2π. Looking back to the example in the previous
section, we can understand that the system on the region A is
time evolved along the angular direction τ starting from τ ¼ 0

to 2π (see Fig. 5). We thus conclude the modular Hamiltonian
in the present case is the generator of the translation along the
modular time τ, hence HA ¼ ∂τ.

13 In Euclidean QFT, the
modular Hamiltonian is written explicitly by the Noether’s
theorem as

HA ¼
Z
x0¼0;x1≥0

dd−1xx1T00; ð166Þ

where Tμν is the stress tensor, which will be defined in
Eq. (209). This result is a particular case of the theorem by
Bisognano and Wichmann (1975, 1976) that is valid for any
QFT even with interactions.
Recalling the construction of the thermofield double state

Eq. (24), we can rewrite the ground state wave function in the
Minkowski spacetime in the following form:

Ψ½ϕA;ϕB� ¼
1ffiffiffiffi
Z

p
X
n

e−βEn=2φn½ϕA�φn½ϕB�; ð167Þ

where ϕA and ϕB are states on the time slice A and B,
respectively, and φn½ϕ� is the nth eigenfunction of the modular
Hamiltonian HA with eigenvalue En. Namely, we are able to
purify a mixed state in the Rindler spacetime to a pure state in
the Minkowski spacetime by viewing the region inside the
Rindler horizon as a fictitious system (Israel, 1976; Laflamme,
1989).

F. Structure of UV divergences

In the previous section, we rewrite the definition of
entanglement entropy in terms of an Euclidean effective
action logZn on an n-fold coverMn with a conical singularity
along a codimension-two surface Σ ¼ ∂A surrounding the
region A of interest. In QFT on a curved spacetime, the
effective action is regarded as a function of the metric gμν on
Mn; thus we are able to classify the UV divergent terms by
diffeomorphism invariant local terms. Here we restrict our
attention to QFTs without dimensionful parameters (= CFTs)
for simplicity, whose effective action may be given by14

logZn½gμν� ¼
X½d=2�
i¼0

Cd−2i

Z
Mn

ddx
ffiffiffi
g

p
Λd−2iRi

þ ð−1Þðd−1Þ=2F½gμν�; ð168Þ

where Λ is the UV cutoff scale of mass dimension one andRi

is a scalar polynomial of the Riemann tensors of order i on
Mn. We call F½gμν� the renormalized free energy that is
dimensionless and a scheme-independent nonlocal functional
of the metric in odd dimensions. In contrast, there is a
logarithmic divergence ∼C0 logΛ in addition to Eq. (168)
in even dimensions, which makes the renormalized free
energy ambiguous. It is actually the source of the conformal
anomaly and the coefficient C0 depends on the central charges
when the theory is conformally invariant.
We put aside the logarithmic divergence for a moment and

determine the general structure of the UV divergences of
entanglement entropy. We plug the general form Eq. (168) into

FIG. 6. The Rindler spacetime (shaded region) embedded in the
Minkowski spacetime.

13In Lorentzian signature, the modular Hamiltonian generates the
boost K ¼ ∂η in the Rindler spacetime.

14One can repeat the same argument presented here for any
renormalizable QFTs with a slight modification. For example, one
can add terms Λd−2M2;Λd−4M2R;… to the integrand if M is a
parameter of mass dimension one. This does not change the UV
structure, and we ignore them for the moment.
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Eq. (144), where there appears only the difference logZn −
n logZ of the effective actions for n close to 1. The UV
divergent term of order Λd−2i is proportional to the integral15R
Mn

Ri − n
R
M Ri that should localize on the entangling

surface Σ since the n-fold covering space Mn differs from
the original space M only around Σ. Especially, the leading
divergence with i ¼ 0 cancels out because of VolðMnÞ ¼
nVolðM1Þ. We thus end up with the UV divergences in the
entanglement entropy starting from OðΛd−2Þ:

SA ¼ cd−2Λd−2 þ cd−4Λd−4 þ � � � ; ð169Þ

where cd−2i are given by the integrals of local diffeomorphism
invariants on Σ, schematically written as

cd−2i ¼
X

lþm¼i−1

Z
Σ
RlK2m; ð170Þ

where K is the extrinsic curvature of Σ of the order of 2m,
whose definition will be given in Eq. (190), and RlK2m are
scalar polynomials of R and K of the order of l and 2m,
respectively. The reason only even powers of the extrinsic
curvatures appear in Eq. (170) is that the entanglement entropy
for a region A is equal to that of its complement Ā while their
extrinsic curvatures have opposite signs, hence the odd powers
of K vanish.
We derived the UV structure Eq. (169) assuming the

covariance and renormalizability of QFTs on a manifold
without boundaries. If we relax the assumptions, there are a
variety of cases where entanglement entropy can take a
different UV structure. For instance, nonrelativistic systems
with Fermi surfaces have the entanglement entropy that violates
the area law logarithmically (Gioev and Klich, 2006; Wolf,
2006) [see also Huijse, Sachdev, and Swingle (2012) and
Ogawa, Takayanagi, and Ugajin (2012) for the holographic
descriptions]. For nonsmooth entangling surfaces such as those
with corners and wedges, the entanglement entropies have
additional UV divergences whose coefficients depend on the
opening angles (Fradkin and Moore, 2006; Casini and Huerta,
2007; Hirata and Takayanagi, 2007; Casini, Huerta, and Leitao,
2009; Klebanov et al., 2012b; Myers and Singh, 2012b; Elvang
and Hadjiantonis, 2015; Bueno and Myers, 2015; Bueno,
Myers, and Witczak-Krempa, 2015).16

The general structure Eq. (169) guarantees the UV
finiteness of the mutual information IðA; BÞ of two disjoint
systems A and B defined by Eq. (49) because every
coefficient cd−2i of the UV divergent term Λd−2i of the
entanglement entropy is given by an integral on the
entangling surface and they cancel in the mutual information
due to the trivial identity (see Fig. 2)

Z
ΣAþB

¼
Z
ΣA

þ
Z
ΣB

: ð171Þ

We fix the precise forms of the coefficients for free fields in
the next Sec. V. Note that there is a logarithmic divergence in
even dimensions which we separately deal with when we
discuss CFT in Sec. VI.

V. HEAT KERNEL EXPANSION

The effective action logZn is a one-loop determinant
provided that a theory is noninteracting. The computation
of the effective action is carried out in a standard way using the
heat kernel method (Birrell and Davies, 1982). Here we
reexamine a free massive scalar field in d dimensions on
Mn using this method. The one-loop effective action is
given by

logZn ¼ −
1

2
log detðDþm2Þ;

¼ 1

2

Z
∞

ϵ2

ds
s
trKMn

ðsÞe−m2s; ð172Þ

where D is a scalar Laplacian plus the scalar curvature D ¼
−∇2 þ ξR andm is the mass of the scalar field. The parameter
ξ is free, but becomes ðd − 1Þ=ð4dÞ when the theory is
conformally invariant (see Sec. VI). In the second equality,
we used the Schwinger representation and introduced the UV
cutoff scale ϵ. The heat kernel operator17 KMn

ðsÞ ¼ e−sD has
the expansion around s ¼ 0 of the following form:

trKMn
ðsÞ ¼ 1

ð4πsÞd=2
X∞
i¼0

aiðMnÞsi: ð173Þ

Note that the heat kernel coefficients ai do not depend on s.
As we see shortly, the heat kernel coefficients allow the

expansion in the n → 1 limit into the bulk and surface parts on
a singular manifold Mn,

ai ¼ abulki þ ð1 − nÞaΣi þO(ð1 − nÞ2): ð174Þ

The bulk part abulki for the n-fold cover Mn is n times larger
than the one for the original space M1

abulki ðMnÞ ¼ nabulki ðM1Þ: ð175Þ

The subleading terms arise from the contributions of the
conical singularity at the hypersurface Σ. Using the heat kernel
expansion Eq. (173) in the effective action Eq. (172), we
obtain the entanglement entropy as a power series of the
inverse of the mass with the heat kernel coefficients,

SA ¼ 1

2ð4πÞd=2
X∞
i¼0

aΣi
m2i−d Γ

�
i −

d
2
; m2ϵ2

�
; ð176Þ

where Γða; zÞ is the incomplete gamma function defined by
Γðt; xÞ ¼ R

∞
x dsst−1e−s. Hence given the surface parts of the

15We often use the shorthand notation for an integral
R
M ≡R

M ddx
ffiffiffi
g

p
with the measure suppressed.

16See also Ghasemi and Parvizi (2018) for a more recent work.

17The name follows from the fact that it satisfies the heat equation
ð∂s þDÞKMn

ðsÞ ¼ 0.
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heat kernel coefficients, the entanglement entropy is calcu-
lable at any order of the heat kernel expansion.18

We fix the heat kernel coefficients following the strategy
used by Fursaev (1994), Fursaev and Solodukhin (1995), and
Fursaev, Patrushev, and Solodukhin (2013) [see also
Solodukhin (2011) for a review]. First, we start with the
known results for the bulk heat kernel coefficients on a
nonsingular manifold M (Birrell and Davies, 1982;
Vassilevich, 2003):

abulk0 ¼
Z
M

1;

abulk1 ¼
�
1

6
− ξ

�Z
M

R;

abulk2 ¼
Z
M

�
1

180
R2

μνρσ −
1

180
R2

μν

þ 1

2

�
1

6
− ξ

�
2

R2 þ 1

6

�
1

5
− ξ

�
∇2R

�
: ð177Þ

To obtain the surface parts, we regularize the conical singu-
larity at Σ and replace Mn with a regularized manifold M̃n.
Equations (177) are valid for the smooth geometry M̃n from
which we read off the surface parts aΣi .

A. Regularized cone with U(1) symmetry

Before presenting general cases, we consider a two-
dimensional cone Cn with a conical singularity at the origin
(we denote it by Σ),

ds2Cn ¼ eσðrÞðdr2 þ r2dτ2Þ;
σðrÞ ¼ σ1r2 þ σ2r4 þ � � � ; ð178Þ

where 0 ≤ r; 0 ≤ τ ≤ 2πn, and σ1 and σ2 are constant. It has a
deficit angle 2πð1 − nÞ at the tip.
In order to properly take into account the singularity, we

regularize the cone by deforming the metric so that the origin
at r ¼ 0 becomes smooth while it has the same geometry as Cn
away from Σ. We call such a geometry a regularized cone C̃n,
letting the metric be

ds2
C̃n

¼ eσðrÞ½fδðrÞdr2 þ r2dτ2�; ð179Þ

where fδðrÞ is a smooth function satisfying

fδðr → 0Þ ¼ n2; fδðr > δÞ ¼ 1; ð180Þ

with a small parameter δ ≪ 1.19 The regularized cone C̃n
agrees with Cn for r > δ and becomes flat space at r ¼ 0 as
illustrated in Fig. 7.

Next we evaluate the Riemann tensors Rμνρσ on C̃n. Since
the Riemann tensor in two dimensions is fixed by the Ricci
scalar,

Rμνρσ ¼
R
2
ðgμρgνσ − gμσgνρÞ; ð181Þ

it is enough to calculate R on C̃n. The Ricci scalar for the
metric (179) is given by

R ¼ e−σ
�
f0δ
rf2δ

−
∂2
rσ

fδ

�
: ð182Þ

The first term in the bracket of the right-hand side, represent-
ing a contribution to the Ricci curvature from the singularity,
naively vanishes when δ ¼ 0. However, it contributes to the
integral as a surface term even in δ → 0 limit as seen from the
integral of the Ricci scalar,

Z
C̃n

R ¼ 2πn
Z

∞

0

dr½−2∂rf
−1=2
δ ðrÞ − rf−1=2δ ðrÞ∂2

rσ�;

¼ 4πð1 − nÞ − 2πn
Z

∞

0

drrf−1=2δ ðrÞ∂2
rσ: ð183Þ

The first term proportional to n − 1 is the contribution of the
singularity to the curvature while the second term is the bulk
contribution accounting for the curvature of Cn away from
the singularity. Taking the δ → 0 limit, the second term
approaches the integral of the Ricci scalar on the cone Cn
with the origin Σ removed:

lim
δ→0

Z
C̃n

R ¼
Z
Cn=Σ

Rþ 4πð1 − nÞ. ð184Þ

The final result does not depend on the choice of the smooth
function fδðrÞ and thus is independent of the regularization
scheme.
This argument can be equally generalized to higher-

dimensional theories if the n-fold cover Mn has a U(1)
symmetry around Σ, namely, if the metric is of the form

ds2Mn
¼ eσðrÞ½dr2 þ r2dτ2 þ γijðr; yÞdyidyj�; ð185Þ

FIG. 7. A cone that has a singularity at r ¼ 0 is smoothened by
replacing the tip with a disk.

18The heat kernel method may be adapted to the perturbative
studies of Rényi entropy near n ¼ 1, which requires the subleading
coefficients in the expansion Eq. (174).

19The small parameter δ has nothing to do with the UV cutoff ϵ in
general and can be tuned arbitrarily.
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where yi ði ¼ 1;…; d − 2Þ are the coordinates of the entan-
gling surface Σ located at r ¼ 0. This is actually the case when
Σ does not have an extrinsic curvature as we see in the next
section. The regularized space M̃n is obtained by replacing
the cone with C̃n, being the product manifold C̃n × Σ near Σ.
We do not reproduce the derivation, but the results are
conveniently summarized in the following relations
(Fursaev and Solodukhin, 1995):

RjM̃n
¼ RjM1

þ 4πð1 − nÞδΣ;
RμνjM̃n

¼ RμνjM1
þ 2πð1 − nÞNμνδΣ;

RμνρσjM̃n
¼ Rμνρσ jM1

þ 2πð1 − nÞðNμρNνσ − NμσNνρÞδΣ; ð186Þ

where δΣ is the delta function for the entangling surface Σ
and Nμν is defined by Nμν ¼

P
2
a¼1 n

a
μnaν with the normal

vectors naμ (a ¼ 1, 2) to the surface.
As an example, let us apply Eq. (186) to the Euler density

defined in 2m dimensions by

E2m ¼ 1

22ðmþ1Þπmm!
ϵμ1μ2���μ2m−1μ2mϵ

ν1ν2���ν2m−1ν2m

×Rμ1μ2
ν1ν2 � � �Rμ2m−1μ2m

ν2m−1ν2m : ð187Þ

The integral of the Euler density over a manifold M is called
the Euler invariant χ½M�≡ R

M E2m that is a topological
invariant. It is normalized so that χ½S2m� ¼ 2 for an even-
dimensional sphere. Then the application of Eq. (186) to
Eq. (187) yields an interesting relation between the Euler
densities of the n-fold cover M̃n and the entangling surface Σ
(Fursaev and Solodukhin, 1995):

E2mjM̃n
¼ E2mjM1

þ ð1 − nÞE2m−2jΣ þO(ð1 − nÞ2): ð188Þ

Although these relations are likely to hold for the case even
without U(1) symmetry, to our best knowledge, there is no
general proof so far.

B. Regularized cone without U(1) symmetry

Without a U(1) symmetry around the entangling surface,
the metric can take a more general form than Eq. (185). If we
parametrize the two-dimensional transverse directions to Σ
by xa (a ¼ 1, 2), the manifold M looks like a product form
R2 × Σ near the origin x1 ¼ x2 ¼ 0. Even away from the
origin, we can still control the metric in the so-called Riemann
normal coordinates (Fursaev, Patrushev, and Solodukhin,
2013; Lewkowycz and Maldacena, 2013; Rosenhaus and
Smolkin, 2014),

ds2M ¼ δabdxadxb þ ðγijðyÞ þ 2Ka
ijx

aÞdyidyj þOðx2Þ:
ð189Þ

We introduced the extrinsic curvature Ka
μν by

Ka
μν ¼ hμρhνρ∇ρnaσ jΣ; ð190Þ

where h is the induced metric on Σ, hμν ¼ gμν −
P

2
a¼1 n

a
μnaν

with the unit normal vector naμ ¼ δaμ to Σ. Moving to the polar
coordinates x1 ¼ r sin τ, x2 ¼ r cos τ, the metric becomes

ds2M ¼ dr2 þ r2dτ2 þ ½γijðyÞ þ 2r cos τK1
ij

þ 2r sin τK2
ij�dyidyj þOðr2Þ: ð191Þ

The U(1) symmetry is broken due to the explicit dependence
on the angular coordinate τ. Compared with Eq. (185) for
n ¼ 1, the extrinsic curvature Ka

ij has to vanish when the U(1)
symmetry is present.
We want to calculate the integrals of geometric invariants

on the n-fold cover as in the U(1) symmetric case. To this end,
we use the regularized n-fold cover M̃n proposed by Fursaev,
Patrushev, and Solodukhin (2013),

ds2
M̃ðFPSÞ

n
¼ fδðrÞdr2 þ r2dτ2 þ ½γijðyÞ
þ 2rnc1−nðcos τK1

ij þ sin τK2
ijÞ�dyidyj þOðr2Þ;

ð192Þ

where τ ∼ τ þ 2πn, c is a constant of dimension of length, and
fδðrÞ is the smoothing function Eq. (180). Using the regu-
larized metric, the following formulas for the integrals of the
Riemann curvatures are argued to hold based on several
explicit calculations (Fursaev, Patrushev, and Solodukhin,
2013):

Z
M̃n

R ¼ n
Z
M

Rþ 4πð1 − nÞ
Z
Σ
1; ð193Þ

Z
M̃n

R2 ¼ n
Z
M

R2 þ 8πð1 − nÞ
Z
Σ
R; ð194Þ

Z
M̃n

R2
μν ¼ n

Z
M

R2
μν þ 4πð1 − nÞ

Z
Σ

�
Raa −

1

2
ðKa

μ
μÞ2

�
;

ð195Þ
Z
M̃n

R2
μνρσ ¼ n

Z
M

R2
μνρσ þ 8πð1 − nÞ

Z
Σ
½Rabab −Ka

μνKaμν�;

ð196Þ

where Eq. (193) is exact while only the terms up to Oð1 − nÞ
are shown in the rest. The subleading integrals are performed
on the codimension-two surface Σ andRΣ,Raa andRabab are
the Ricci scalars for the induced metric h, the induced Ricci
tensor Raa ¼

P
a¼1;2n

a
μnaνRμν, and the induced Riemann

tensor Rabab ¼
P

a;b¼1;2n
a
μnbμnaρnbσRμνρσ, respectively. These

are enough to fix the heat kernel coefficients ai in Eq. (177) up
to second order.
The results given in Eqs. (193)–(196) can be used to derive

a similar relation to Eq. (188), but in the integrated forms in
two and four dimensions:

χ½M̃n� ¼ χ½M� þ ð1 − nÞχ½Σ� þO(ð1 − nÞ2); ð197Þ
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where we used the fact that the regularized n-fold cover M̃n is
topologically the same as the original manifold M.

C. Heat kernel coefficients

We move onto the determination of the heat kernel
coefficients for the surface parts. Substituting Eqs. (193)–
(196) into the coefficients (177) on the smooth geometry M̃n,
one finds the bulk parts satisfy Eq. (175) and the surface parts
become (Fursaev, Patrushev, and Solodukhin, 2013)

aΣ0 ¼ 0;

aΣ1 ¼ 2πð1 − 6ξÞ
3

Z
Σ
1;

aΣ2 ¼ π

9

Z
Σ

�
1

5

�
2Rabab −Raa − 2Ka

μνKa μν þ 1

2
ðKa

μ
μÞ2

�

þ ð1 − 6ξÞ2R
�
; ð198Þ

where we used the Gauss-Codazzi equation to simplify the
expression

R ¼ RΣ þ 2Raa −Rabab − ðKa
μ
μÞ2 þKa

μνKa μν: ð199Þ

It follows that the entanglement entropy Eq. (176) for a free
massive scalar field has the UV divergences:

SA ¼ ð1 − 6ξÞ
6ðd − 2Þð4πÞd=2−1

AΣ

ϵd−2
þ cd−4

ϵd−4
þ � � � þ γðmÞ; ð200Þ

where γðmÞ includes all the mass dependences. The area law
divergence can be found in the leading term that comes from
the coefficient aΣ1 proportional to the area AΣ of the surface Σ.
In addition, there is a universal term proportional to the area in
γðmÞ (Hertzberg and Wilczek, 2011):

γðmÞ ¼ ð1 − 6ξÞγdAΣmd−2 þ � � � ; γd ¼
Γð1 − d=2Þ
12ð4πÞd=2−1 :

ð201Þ

The coefficient γd is finite for odd d, but is divergent due to
the pole of the gamma function for even d. This divergence
signals the conformal anomaly in even dimensions and
modifies the mass expansion of γðmÞ for even de,

γðmÞ ¼ ð1 − 6ξÞγðevenÞde
AΣmde−2 logðmϵÞ þ � � � ;

γðevenÞde
¼ ð−1Þde=2−1

6ð4πÞde=2−1Γðde=2Þ
: ð202Þ

This may be inferred from Eq. (201) by expanding it around
d ¼ de − ϵ and using the replacement 1=ϵ → logðmϵÞ for the
pole in the dimensional regularization.

VI. CONFORMAL FIELD THEORY

In this section, we consider QFTs invariant under the
conformal transformation

ḡμνðx0Þ ¼ Ω2ðxÞgμνðxÞ; ð203Þ

where ḡμν is the transformed metric. In Euclidean space Rd,
the group of the conformal transformation is SOð1; dþ 1Þ
while in Minkowski space R1;d−1 the group is SOð2; dÞ. The
conformal group is an extension of the Poincaré group,
including the dilatation x0μ ¼ λxμ for a constant λ and
the special conformal transformation x0μ ¼ ðxμ þ bμx2Þ=
ð1þ 2bμxμ þ b2x2Þ for a vector bμ, hence preserving the
angle between two curves infinitesimally (Di Francesco,
Mathieu, and Senechal, 1997).
Let IE½gμν;ϕ� be the Euclidean action for a theory with a

field ϕðxÞ and a metric gμν. This theory is called classical
conformal field theory if the action does not change under the
following transformation:

IE½ḡμν; ϕ̄� ¼ IE½gμν;ϕ�; ϕ̄ðx0Þ ¼ Ω−ΔðxÞϕðxÞ; ð204Þ

for some constant Δ being the conformal dimension of the
field ϕðxÞ. For example, a scalar field theory coupled to a
curved space

IE½gμν;ϕ� ¼
1

2

Z
ddx

ffiffiffi
g

p �
∂μϕ∂μϕþ d − 2

4ðd − 1ÞRϕ2

�
ð205Þ

is conformally invariant with Δ ¼ d=2 − 1. It is straightfor-
ward to check that Eq. (205) is conformal invariant using the
transformation law of the Ricci scalar (Birrell and Davies,
1982):

R½ḡμν� ¼ Ω−2R½gμν� − 2ðd − 1ÞΩ−3∇2Ω

− ðd − 1Þðd − 4ÞΩ−4∂μΩ∂μΩ; ð206Þ

where the covariant derivatives on the right-hand side are
taken with respect to the metric gμν before the conformal
transformation. An equivalent, but a slightly simpler way to
derive Eq. (205) is to construct a conformal invariant
ϕd=Δ ffiffiffi

g
p

R½ϕ2=Δgμν� out of the metric and the scalar field
and use Eq. (206) with Ω ¼ ϕ1=Δ. To make it quadratic in ϕ,
one needs to set Δ ¼ d=2 − 1 for the conformal dimension
(Brown, 1977) and find

ϕd=ΔR½ϕ2=Δgμν�

¼ ϕ2R½gμν� þ
4ðd − 1Þ
d − 2

½∂μϕ∂μϕ −∇μðϕ∂μϕÞ�: ð207Þ

This gives the conformal invariant action (205) up to the total
derivative and normalization.
Next, consider an action IE½gμν� of the metric, which may be

obtained by integrating out all fields on a curved space. The
variation of the action under the infinitesimal conformal
transformation δgμν ¼ 2δΩðxÞgμν becomes

δIE½gμν� ¼
Z

ddxδgμν
δIE½gμν�
δgμν

¼
Z

ddx
ffiffiffi
g

p
Tμ

μδΩðxÞ; ð208Þ

where the stress-energy tensor is defined by
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Tμν ¼ 2ffiffiffi
g

p δIE
δgμν

: ð209Þ

If the theory is conformally invariant, the action has to be
invariant under any deformation δΩðxÞ; hence the trace of the
stress-energy tensor has to vanish, Tμ

μ ¼ 0.
The traceless property of the stress tensor at the classical

level is violated at the quantum mechanical level due to the
conformal anomaly in even dimensions (Bonora, Pasti, and
Bregola, 1986; Deser and Schwimmer, 1993; Duff, 1994),
which can be put in the form

hTμ
μi ¼ ð−1Þd=2

2
AEd −

X
i

BiIi þ∇μJμ; ð210Þ

where Ed is the Euler density, normalized so that
R
Sd Ed ¼ 2,

and Ii are a set of the independent Weyl invariants built from
the Weyl tensor in d dimensions. The coefficients A and Bi are
referred to as type A and B central charges, respectively. The
total derivative term ∇μJμ is scheme dependent as it can be
affected by adding local counterterms to the effective action.20

Thus we ignore the total derivative term contribution to the
conformal anomaly in the following discussion.

A. Correlation functions

The conformal symmetry restricts the form of correlation
functions more severely than the Poincaré symmetry. We
start with a primary scalar operator OðxÞ of conformal
dimension Δ transforming under the conformal transforma-
tion Eq. (203) as

Ōðx0Þ ¼ Ω−ΔðxÞOðxÞ: ð211Þ

The translation invariance imposes the constancy of the one-
point function hOðxÞi ¼ c, but the scaling law (211) implies
c ¼ Ω−ΔðxÞc for any ΩðxÞ, thus the one-point function
vanishes:

hOðxÞi ¼ 0: ð212Þ

Similarly the two-point function hO1ðxÞO2ðyÞi of primary
operators O1 and O2 of conformal dimensions Δ1 and Δ2

depends only on the distance jx − yj between the two points
by the translation invariance. To incorporate the dilatation and
the special conformal invariances, the two conformal dimen-
sions should be the same. Then the two-point function of
appropriately normalized operators takes the form

hO1ðxÞO2ðyÞi ¼
δΔ1Δ2

jx − yj2Δ1
: ð213Þ

The three-point function of primary operators O1, O2, and
O3 of conformal dimensions Δ1, Δ2, and Δ3 are similarly
fixed by the conformal symmetry,

hO1ðxÞO2ðyÞO3ðzÞi

¼ C123

jx − yjΔ1þΔ2−Δ3 jy − zjΔ2þΔ3−Δ1 jz − xjΔ3þΔ1−Δ2
; ð214Þ

where C123 is an undetermined constant. Correlation functions
of more than four operators cannot be completely fixed by
only the conformal invariance in this way.
For conserved currents jμðxÞ of dimension Δ ¼ d − 1 and

the stress tensor TμνðxÞ of dimension d, their one-point
functions vanish and the two-point functions are fixed to
be (Osborn and Petkou, 1994; Erdmenger and Osborn, 1997)

hjμðxÞjνðyÞi ¼ CJ
Iμνðx − yÞ
ðx − yÞ2ðd−1Þ ; ð215Þ

and

hTμνðxÞTρσðyÞi ¼ CT
Iμν;ρσðx − yÞ
ðx − yÞ2d ; ð216Þ

with the conformally invariant functions,

IμνðxÞ ¼ δμν −
2xμxν
x2

;

Iμν;ρσðxÞ ¼
1

2
½IμρðxÞIνσðxÞ þ IμσðxÞIνρðxÞ� −

1

d
δμνδρσ: ð217Þ

The two-point functions of a scalar primary fieldOðxÞ and the
conserved current or the stress tensor vanish,

hjðxÞOðyÞi ¼ hTμνðxÞOðyÞi ¼ 0; ð218Þ

due to the conformal invariance and the conservation laws
∂μjμ ¼ 0 and ∂μTμν ¼ 0.

B. Conformal anomaly in entanglement entropy

We saw in the previous section that entanglement entropy
has the UV divergences whose leading part is always propor-
tional to the area of the entangling surface Σ in Eq. (200).
There are also universal logarithmic divergences depending on
whether d is even or not. We show this logarithmic divergence
is induced by the conformal anomaly Eq. (210) of the stress-
energy tensor in even d dimensions.
Let us consider the scale transformation of the entangle-

ment entropy of an entangling surface Σ of size l. We need to
know how the partition function Zn on the n-fold cover Mn
transforms under the Weyl scaling l → eσl. Equivalently we
act the scaling of the metric gμν → e2σgμν on the effective
action logZn and read off the variation locally given by the
expectation value of the stress tensor on Mn:

l
d
dl
logZn ¼ −

Z
Mn

ddx
ffiffiffi
g

p hTμ
μi: ð219Þ

It follows with the QFT definition Eq. (144) that the
entanglement entropy varies under the scale transformation as

20For example, there is a total derivative term ∇μJμ ∝ □R in four
dimensions, which can be removed by a local countertermR2 (Birrell
and Davies, 1982).
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l
d
dl
SA ¼ −

Z
M1

ddx
ffiffiffi
g

p hTμ
μi þ lim

n→1
∂n

Z
Mn

ddx
ffiffiffi
g

p hTμ
μi:

ð220Þ

In odd dimensions, hTμ
μi ¼ 0 for CFTs and there are no

logarithmic divergences in the entropy. On the other hand, the
right-hand side can be nonvanishing due to the conformal
anomaly, Eq. (210), in even dimensions. If a theory is defined
on a flat space (M1 ¼ Rd), the first term always vanishes
while the second term has a nontrivial contribution from the
conical singularity at the entangling surface Σ. In what
follows, we estimate the second term explicitly using
Eqs. (193)–(196) in two and four dimensions.
In two dimensions, the Euler density is E2 ¼ R=ð4πÞ while

there are no Weyl invariants. We rescale the type A central
charge, A ¼ c=3, so as to follow the canonical convention in
CFT2. Then substituting the trace of the stress tensor

hTμ
μi ¼ −

c
24π

R; ð221Þ

into Eq. (220) and applying Eq. (193), we find the entangle-
ment entropy for an interval of width l,

l
d
dl
SA ¼ c

6

Z
Σ
1 ¼ c

3
: ð222Þ

This result yields a well-known behavior of entanglement
entropy of CFT2 (Holzhey, Larsen, and Wilczek, 1994;
Calabrese and Cardy, 2004; Jin and Korepin, 2004)

SA ¼ c
3
log

l
ϵ
þ � � � ; ð223Þ

where ϵ is a UV cutoff and � � � are finite parts.
In four dimensions, there is one Euler density and one Weyl

invariant,

E4 ¼
1

32π2
ðR2

μνρσ − 4R2
μν þR2Þ;

I4 ¼
1

16π2

�
R2

μνρσ − 2R2
μν þ

1

3
R2

�
; ð224Þ

whose coefficients we conventionally take to be A ¼ a and
B ¼ c, respectively. Again, Eqs. (193)–(196) and the iden-
tities (210) and (220) lead to the logarithmic divergence of
entanglement entropy in CFT4:

SA ¼ c2
ϵ2

þ c0 log
l
ϵ
þ � � � ; ð225Þ

where c2 is a constant proportional to the area AΣ of the
entangling surface Σ and c0 is fixed to be (Solodukhin, 2008;
Fursaev, Patrushev, and Solodukhin, 2013)

c0 ¼ −
a
2
χ½Σ� þ c

2π

Z
Σ

�
Rabab −Raa þ

1

3
R

þ 1

2
ðKa

μ
μÞ2 −Ka

μνKa μν

�
: ð226Þ

Here we used the Gauss-Codazzi equation (199) relating the
Ricci curvature on Σ to the intrinsic and extrinsic curvatures,
which gives the first term proportional to the topological
invariant (the Euler characteristic)

χ½Σ� ¼
Z
Σ
E2 ¼

1

4π

Z
Σ
RΣ; ð227Þ

of the entangling surface Σ. If the entangling surface is
spherical, Σ ¼ S2, only the a anomaly contributes to
Eq. (226), while if it is cylindrical Σ ¼ S1 ×R, only the
c anomaly survives. The same expression (226) for the
coefficient c0 can be obtained by a holographic calculation
in higher derivative gravities (Hung, Myers, and Smolkin,
2011), where the logarithmic divergences arise from a
particular class of anomalies for a submanifold of even
dimensions in CFT, known as the Graham-Witten anomalies
(Graham and Witten, 1999).
In higher dimensions, there is one Euler density and several

independent Weyl invariants. Entanglement entropy in even d-
dimensional CFT allows the structure,

SA ¼ cd−2
ϵd−2

þ cd−4
ϵd−4

þ � � � þ c2
ϵ2

þ c0 log
l
ϵ
þ � � � ; ð228Þ

with the logarithmic coefficient given by

c0 ¼
ð−1Þd=2þ1

2
Aχ½Σ� −

X
i

Bi

�
∂n

Z
Mn

Ii

�����
n→1

: ð229Þ

The finite terms represented by the last dots depend on
the regularization scheme and do not have any physical
meaning. On the other hand, entanglement entropy in odd
d-dimensional CFT has similar expansions without the log-
arithmic term,

SA ¼ cd−2
ϵd−2

þ cd−4
ϵd−4

þ � � � þ c1
ϵ
þ ð−1Þðd−1Þ=2F: ð230Þ

The finite part F is scheme independent and physically
observable. The sign factor ð−1Þðd−1Þ=2 is introduced for F
being positive in d dimensions (Klebanov, Pufu, and Safdi,
2011), but there are no proofs for the positivity except for
topological field theory where F is the topological entangle-
ment entropy that can be shown to be non-negative (Kitaev
and Preskill, 2006; Levin and Wen, 2006). We investigate the
role of the finite part of entanglement entropy in odd
dimensions in later sections.

1. One interval in CFT2

One can derive the entanglement entropy of one interval
Eq. (223) in CFT2 on a flat space C using purely CFT
techniques. Suppose the interval is placed between z ¼ −l=2
and l=2 in the complex z plane C. We first map the interval
to a semi-infinite line from the origin to the infinity by the
transformation

ζ ≡ zþ l=2
z − l=2

: ð231Þ
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Then we make use of the conformal transformation from the
complex plane to a cylinder,

w≡ τ þ iφ ¼ l
2π

log ζ; ð232Þ

where l is the circumference of the cylinder φ ∼ φþ l as ζ is
the complex coordinate of C.21 For a later convenience, we
excise two small holes of radius ϵ at z ¼ �l=2 to regularize
the UV divergence (Ohmori and Tachikawa, 2015). Then the
interval or equivalently the semi-infinite line is mapped to
the line at φ ¼ 0 ranging from τ ¼ −l logðl=ϵÞ=ð2πÞ to
l logðl=ϵÞ=ð2πÞ (see Fig. 8).
Now we want to construct the n-fold cover Mn of C by

gluing n copies of the complex plane along the interval. This is
easy to carry out in the w coordinates by just gluing n sheets of
cylinder at φ ¼ kl (k ¼ 0; 1;…; n), resulting in one cylinder
of circumference nl as in Fig. 8. Then the partition function
on Mn is mapped to the cylinder partition function,

Z½Mn� ¼ h0je−βHj0i; ð233Þ
where β is the regularized length of the cylinder

β≡ l
π
log

l
ϵ
; ð234Þ

and H is the Hamiltonian along τ that will be fixed.
The stress tensor in the holomorphic sector transforms

under the conformal mapping as

TðzÞ ¼
�
dw
dz

�
2

TðwÞ þ c
12

fw; zg; ð235Þ

where fw; zg≡ w000ðzÞ=w0ðzÞ − 3½w00ðzÞ=w0ðzÞ�2 is the
Schwarzian derivative and similarly for the antiholomorphic
sector.22 We parametrize the cylinder of circumference nl by

the complex coordinate w and map it to a complex plane
parametrized by z using the conformal transformation of
Eq. (232) with l and ζ replaced with nl and z, respectively.
Using Eq. (235), we find the Hamiltonian along the τ direction
on the cylinder,

H ¼
Z

nl

0

dφ
2π

ðTðwÞ þ T̄ðw̄ÞÞ;

¼ 2π

nl

�
L0 þ L̄0 −

c
12

�
; ð236Þ

where L0 ðL̄0Þ is the Virasoro generator in the (anti)holo-
morphic sector on C.
The ground state j0i is annihilated by L0 and L̄0, hence

the partition function Eq. (233) with the Hamiltonian (236)
resulting in

logZ½Mn� ¼
c
6n

log
l
ϵ
: ð237Þ

The entanglement entropy follows from Eq. (144),

SA ¼ c
3
log

l
ϵ
; ð238Þ

which agrees with the previous result Eq. (223) derived with
the conformal anomaly.

C. Rényi entropy and conformal maps

In this section, we are concerned with the Rényi entropy Sn,
Eq. (147), for a spherical entangling surface in CFT and
discuss the connection to a thermal entropy on a conformally
flat space.
First, let Fn ≡ − logZn be a free energy for the partition

function Zn on the n-fold cover, then the Rényi entropy takes
the following form:

Sn ¼
nF1 − Fn

1 − n
: ð239Þ

Calculating the free energy Fn on the n-fold cover is far from
reach even in CFT, but if we restrict our attention to a spherical
entangling surface in CFT, we are able to find universal results
for the Rényi entropy.
We locate a spherical entangling surface Sd−2 at ρ ¼ R (and

t ¼ 0) in the Euclidean polar coordinates,

ds2Flat ¼ dt2 þ dρ2 þ ρ2dΩ2
d−2: ð240Þ

The conformal symmetry allows one to connect various
geometries that are conformally equivalent to the metric
Eq. (240), which simplifies the calculation of Fn as we will
see below.

1. Conformal map to hyperbolic coordinates

We first map the flat space Rd to a hyperbolic space
S1 × Hd−1 with the metric

FIG. 8. The n-fold coverMn of C with a cut between z ¼ −l=2
and l=2 is conformally mapped to a cylinder. The intervals are
mapped to lines at φ ¼ kl (k ¼ 0; 1;…; n − 1) where the n
copies are glued together. This shows the conformal trans-
formation for n ¼ 3.

21Although the final result does not depend on l, we keep track of
the l dependence so as to make the argument as general as possible.

22We consider a theory only with equal left and right central
charges cL ¼ cR ¼ c. A theory with cL ≠ cR has a gravitational
anomaly and the entanglement entropy of such a theory was studied
by Castro et al. (2014), Iqbal and Wall (2016), Nishioka and Yarom
(2016), Hughes et al. (2016), and Azeyanagi, Loganayagam, and Ng
(2017).
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ds2Hyp ¼ dτ2 þ du2 þ sinh2udΩ2
d−2 ð241Þ

with the ranges 0 ≤ τ ≤ 2π and 0 ≤ u < ∞, by the coordinate
transformation

t ¼ R
sin τ

cosh uþ cos τ
; ρ ¼ R

sinh u
cosh uþ cos τ

: ð242Þ

The two metrics are conformally equivalent:

ds2Flat ¼ Ω2
Hypds

2
Hyp; ð243Þ

with the conformal factor

ΩHyp ¼
R

cosh uþ cos τ
: ð244Þ

Under this coordinate transformation, the entangling surface
at ρ ¼ R is mapped to a sphere Sd−2 at u ¼ ∞ in the
hyperbolic coordinates. The n-fold cover Mn around the
entangling surface at ρ ¼ R in Eq. (240) is equivalent to
extending the ranges of τ to 0 ≤ τ ≤ 2πn (see Fig. 9). After
this conformal map, CFT is defined on the hyperbolic space
Hd−1 at temperature Tn ¼ 1=ð2πnÞ.
We assume there are no conformal anomalies (i.e., d is odd)

for the moment. Then the partition function is invariant under
the conformal map; hence on the hyperbolic coordinates
Eq. (241), Zn is the thermal partition function

Zn ¼ trðe−HHyp=TnÞ; ð245Þ

where HHyp is the Hamiltonian generating the translation
along τ on Hd−1,23

HHyp ¼
Z
Hd−1

dd−1x
ffiffiffi
g

p
TττðxÞ: ð247Þ

The free energy Fn ¼ − logZn and the thermal free energy
FðTÞ on Hd−1 at temperature T ¼ Tn are related by Fn ¼
FðTnÞ=Tn. Using the thermodynamic identity SthermðTÞ ¼
−∂FðTÞ=∂T, the Rényi entropy Eq. (239) is given by the
integral of the thermal entropy (Hung et al., 2011),

Sn ¼
n

1 − n
FðT1Þ − FðTnÞ

T1

;

¼ n
n − 1

1

T1

Z
T1

Tn

dTSthermðTÞ: ð248Þ

This is an intriguing connection between the Rényi entropy of
a spherical entangling surface on the flat space and the thermal
entropy on Hd−1 at finite temperature, which will be useful
for the holographic studies in the following sections.
Moreover, it follows from the n → 1 limit of Eq. (248) that
the entanglement entropy equals the thermal entropy at
temperature T ¼ T1,

S1 ¼ lim
n→1

Sn ¼ SthermðT1Þ: ð249Þ

There is a subtle issue in this relation associated with the
boundary of the hyperbolic space in even dimension (Casini,
Huerta, and Myers, 2011). The universal logarithmic diver-
gence proportional to the type A anomaly in the entanglement
entropy (228) is attributed to a boundary effect (Herzog,
Huang, and Jensen, 2016; Herzog and Huang, 2017).

2. Conformal map to spherical coordinates

We can make a further conformal transformation from the
hyperbolic coordinates Eq. (241) to the spherical coordinates
Sd of unit radius,

ds2Sp ¼ dθ2 þ sin2θdτ2 þ cos2θdΩ2
d−2; ð250Þ

with the ranges 0 ≤ τ ≤ 2π and 0 ≤ θ ≤ π=2, by the coor-
dinate transformation sinh u ¼ cot θ (see Fig. 9). It is also
conformally equivalent to the flat space

FIG. 9. The coordinate transformation Eq. (242) induces the conformal map from a flat space (left) to a hyperbolic space times a circle
(middle). The latter is further conformally mapped to a sphere (right) by the coordinate transformation sinh u ¼ cot θ. The blue dashed
circles represent the entangling surface Sd−2, and the orange circles with arrows stand for the modular time, respectively.

23The Hamiltonian or the energy is given by the generator of τ
translation Tμνξ

μ with ξμ∂μ ¼ ∂τ integrated over a spacelike surface

H ¼
Z
Hd−1

dd−1x
ffiffiffi
g

p
TμνðxÞξμnν; ð246Þ

where nμ∂μ ¼
ffiffiffiffiffiffi
gττ

p ∂τ is the unit normal vector.
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ds2Flat ¼ Ω2
Spds

2
Sp ð251Þ

with the conformal factor

ΩSp ¼
R

1þ sin θ cos τ
: ð252Þ

The n-fold coverMn ofRd is conformally equivalent to the
n-fold cover of the d sphere Sd

n with the extended range
0 ≤ τ ≤ 2πn, and the free energy Fn equals to the logarithm of
the partition function Z½Sd

n� for CFT,

Fn ¼ − logZ½Sd
n�: ð253Þ

The Rényi entropies for free fields were computed by
Klebanov et al. (2012d) based on Eq. (253) and shown to
agree with the calculation on the hyperbolic coordinates.
Next we look into Eq. (249), the entanglement entropy to

the thermal entropy. Through the thermodynamic relation,
Stherm is given by the free and total energies FðTÞ, EðTÞ of the
CFTd,

SthermðTÞ ¼
EðTÞ − FðTÞ

T
: ð254Þ

When d is odd, the total energy vanishes for CFTd because
the round sphere Sd is conformally equivalent to the flat
space Rd: EðTÞ ¼ 0 (Casini, Huerta, and Myers, 2011;
Klebanov et al., 2012d). Combining Eqs. (249) and (254)
with FðT1Þ=T1 ¼ F1 ¼ − logZ½Sd

n�, we obtain the equality
between the entanglement entropy of a sphere Sd−2 and the
partition function on Sd,

S1 ¼ logZ½Sd�: ð255Þ

Note that this equality should be taken up to UV divergences
as the vanishing of the total energy holds for CFTd only after
renormalizing the divergences. If the right-hand side is the
correctly renormalized effective action, it should be identified
with the universal part of the entanglement entropy in
Eq. (230),

F ¼ ð−1Þðd−1Þ=2 logZ½Sd�: ð256Þ

This will be the key relation in Sec. VIII when we construct
a monotonically decreasing function along RG flows in odd
dimensions.
When d is even, there are conformal anomalies in the

partition function Z½Sd�, which gives rise to the logarithmic
divergence in entanglement entropy as appeared in Eq. (228).
This is most easily seen by analytically continuing Eq. (255)
from odd to even dimensions and replacing the pole with the
logarithm.

D. Universal behavior of Rényi entropy in CFT

Having established the universal relation (255) for the
spherical entanglement entropy, we now seek for the universal

aspects of the Rényi entropies. We set R ¼ 1 since the result
should not depend on R because of the conformal symmetry.
We want to examine the universal part of the spherical

Rényi entropy in odd dimensions and expand it around n ¼ 1

where S1 ¼ −F1 up to the UV divergences. From Eq. (239)
we have the expansion

Sn ¼ S1 þ
Fn − F1

n − 1
;

¼ S1 þ
X∞
k¼1

1

k!
∂kFn

∂nk
����
n¼1

ðn − 1Þk−1: ð257Þ

For a spherical entangling surface in CFT, the free energy
is given by the partition function(245) on the hyperbolic
coordinates, which fixes the derivatives of Fn,

∂kFn

∂nk
����
n¼1

¼ −ð−2πÞkhHk
Hypi; ð258Þ

where hOi≡ trð·e−2πHHypÞ=trðe−2πHHypÞ stands for the
expectation value of an operator O and we used the fact
that the energy vanishes for CFT in odd dimensions:
EðTÞ ¼ hHHypi ¼ 0. The form of the Hamiltonian (247) on
the hyperbolic space allows us to obtain the expansion in
terms of the correlation functions of the stress tensors,

Sn ¼ S1 −
X∞
k¼1

ð−2πÞkþ1

ðkþ 1Þ! ðn − 1Þk

×
Z
Hd−1

� � �
Z
Hd−1

Ykþ1

i¼1

dd−1xi
ffiffiffi
g

p hTττðx1Þ � � �Tττðxkþ1Þi:

ð259Þ

The leading term is fixed by the two-point function of the
stress tensors, whose integral results in (Perlmutter, 2014)

∂nSnjn¼1 ¼ −CTVolðHd−1Þ π
d=2þ1ðd − 1ÞΓðd=2Þ

Γðdþ 2Þ ; ð260Þ

where CT is a constant present in Eq. (216). For odd d, the
regularized volume of Hd−1 is [see Klebanov et al. (2012d)
for d ¼ 3]

VolðHd−1Þ¼ð−1Þðd−1Þ=2 πd=2

Γðd=2Þ¼πd=2−1Γð1−d=2Þ; ð261Þ

which may be obtained by putting the cutoff Λ ≫ 1 at the
spatial infinity of Hd−1 and picking up a constant term in
Λ → ∞ limit.24

While the universal result Eq. (260) was derived under the
assumption that d is odd, it is shown to hold for even d
(Perlmutter, 2014), where there are additional terms including
the one-point function hHi which no longer vanishes due
to the conformal anomaly. In addition, the volume of the

24In the second equality, we used the reflection formula for the
gamma functions, ΓðzÞΓð1 − zÞ ¼ π= sinðπzÞ ¼ πð−1Þðd−1Þ=2.
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hyperbolic space VolðHd−1Þ logarithmically diverges for even
d after regularizing the power law divergence, which may be
inferred from Eq. (261) as a pole of the gamma function by
analytically continuing odd d to even.
We finally note that the first derivative of the sphere

entanglement entropy Eq. (260) can be useful to read off
the coefficient CT of the two-point function of the stress
tensor. A similar expansion and a universal leading coefficient
will be derived for a supersymmetric generalization of the
Rényi entropy in Sec. VIII.G.

VII. HOLOGRAPHIC METHOD

The holographic principle, stating the equivalence between
gauge theory and gravity theory, is implied by string theory.
One of the most famous duality is the AdS=CFT correspon-
dence conjectured by Maldacena (1998), which has been the
main focus of research in high energy theory for two decades.
String theory has extended objects called D-branes that allow
two complementary descriptions as a black hole in general
relativity and a gauge theory on the world volume. In the
former picture, one finds the AdS geometry in the near
horizon region, which turns out to be equivalent to the gauge
theory of the latter picture. The AdS=CFT correspondence
crystalizes the equivalence by connecting the type IIB super-
string theory on the AdS space with a supersymmetric CFT
living on the boundary of the AdS space. This is a concrete
example of duality where a strongly coupled region of one
theory is described by a weakly coupled region of the other
theory. Hence the direct check of this correspondence is far
reaching in its nature and remains to be proved.
Apart from the string theory implication, we can take the

AdS=CFT correspondence as a gauge or gravity duality in
its own right simply based on the symmetry argument that
the isometry SOð2; dÞ of the AdSdþ1 space agrees with the
conformal group of CFTd.
In this section, we give a quick review of the AdS=CFT

correspondence. This subject is comprehensively covered
by a review paper by Aharony et al. (2000) and many others
in the literature including Klebanov (2000) and McGreevy
(2010) from different points of view. We then introduce the
holographic formula of entanglement entropy proposed by
Ryu and Takayanagi (2006a, 2006b) and discuss the impli-
cations. The reviews on entanglement entropy from the
holographic point of view can be found in Nishioka, Ryu,
and Takayanagi (2009), Takayanagi (2012), and Rangamani
and Takayanagi (2017).

A. The AdS geometries

We briefly sketch several types of the useful coordinates for
the AdS geometry that we adopt in the following sections.
Table III is the summary of the relations between the AdS
coordinates and the corresponding conformally flat spaces on
their boundaries.
To begin with, consider the flat (dþ 2)-dimensional pseudo

Euclidean space defined by

ds2 ¼ −dy2−1 − dy20 þ dy21 þ � � � þ dy2d: ð262Þ

The AdSdþ1 space with radius L is an embedding hypersur-
face satisfying

−y2−1 − y20 þ y21 þ � � � þ y2d ¼ −L2: ð263Þ

This construction manifests the isometry SOð2; dÞ of the
AdSdþ1 space. Among many coordinates in the AdS space we
focus on the typical examples, the global, Poincaré, and
hyperbolic coordinates.

1. Global coordinates

The global coordinates are introduced by the coordinate
transformations:

y−1 ¼ L cosh ρ sin t;

y0 ¼ L cosh ρ cos t;

yi ¼ L sinh ρei ði ¼ 1;…; dÞ; ð264Þ

where ei satisfy the relation
P

d
i¼1ðeiÞ2 ¼ 1 and span a d-

dimensional sphere. The metric Eq. (262) then becomes

ds2 ¼ L2½− cosh2 ρdt2 þ dρ2 þ sinh2 ρdΩ2
d−1�: ð265Þ

By the coordinate transformation r ¼ sinh ρ, we find another
form of the global coordinates often used in literature,

ds2 ¼ L2

�
−ðr2 þ 1Þdt2 þ dr2

r2 þ 1
þ r2dΩ2

d−1

�
: ð266Þ

These coordinates cover the whole AdSdþ1 space whose
boundary at r ¼ ∞ is R × Sd−1 space.
The global AdSdþ1 space can have de Sitter space (dSd) as

its boundary,

ds2 ¼ L2½dρ2 þ sinh2 ρð− sin2 θdt2 þ dθ2 þ cos2 θdΩ2
d−2Þ�;
ð267Þ

which follows from the coordinate transformations

y−1 ¼ L cosh ρ;

y0 ¼ L sinh ρ sin θ sinh t;

yd ¼ L sinh ρ sin θ cosh t;

yi ¼ L sinh ρ cos θẽi ði ¼ 1;…; d − 1Þ; ð268Þ

where
P

d−1
i¼1 ðẽiÞ2 ¼ 1. This is also useful when we consider a

holographic dual of a Euclidean QFT on Sd after the Wick
rotation.

TABLE III. Conformally flat spaces and the corresponding Lor-
entzian AdS metrics.

Conformally flat space AdS metric

Rd Eq. (240) Poincaré coordinates Eq. (271)
S1 × Hd−1 Eq. (241) Hyperbolic coordinates Eq. (273)
Sd Eq. (250) Global coordinates Eq. (266)
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2. Poincaré coordinates

The Poincaré coordinates are introduced by the coordinate
transformations:

y−1 ¼
1

2r

�
1þ r2

�
L2 − t2 þ

Xd−1
i¼1

x2i

��
;

y0 ¼ Lrt;

yd ¼
1

2r

�
1þ r2

�
−L2 − t2 þ

Xd−1
i¼1

x2i

��
;

yi ¼ Lrxi ði ¼ 1;…; d − 1Þ; ð269Þ

whose metric is given by

ds2 ¼ L2

�
dr2

r2
þ r2

�
−dt2 þ

Xd−1
i¼1

dx2i

��
: ð270Þ

These coordinates cover a half portion of the whole AdSdþ1

space and the boundary at r ¼ ∞ is the Minkowski space
Rd−1;1.
Inverting the radial coordinate z≡ 1=r yields another

version of the Poincaré coordinates,

ds2 ¼ L2
dz2 − dt2 þP

d−1
i¼1 dx

2
i

z2
: ð271Þ

3. Hyperbolic coordinates

The hyperbolic coordinates of the AdSdþ1 space are
obtained by the coordinate transformations:

y−1 ¼ Lr cosh u;

y0 ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
sinh t;

yd ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
cosh t;

yi ¼ Lr sinh uẽi ði ¼ 1;…; d − 1Þ: ð272Þ

The resulting metric becomes

ds2 ¼ L2

�
−ðr2 − 1Þdt2 þ dr2

r2 − 1

þ r2ðdu2 þ sinh2udΩ2
d−2Þ

�
: ð273Þ

These coordinates cover a half portion of the whole AdSdþ1

space whose boundary at r ¼ ∞ is R × Hd−1 space. While
these coordinates are locally equivalent to the other coordi-
nates, there is a coordinate singularity at the event horizon
r ¼ 1. In Euclidean signature, the Euclidean time τ ¼ −it
becomes a circle of period β ¼ 2π to avoid the conical
singularity at the horizon. The period is identified with an
inverse temperature of the dual CFT.
Table III summarizes the relations of the conformally flat

(Euclidean) spaces to the corresponding (Lorentzian) AdS
metrics.

B. The GKP-W relation

In what follows we deal with the Euclidean case. The
Euclidean AdSdþ1 spacetime is a solution to the Einstein
equation of the Einstein-Hilbert action

Ibulk½B� ¼ −
1

16πGN

Z
B
ddþ1x

ffiffiffi
g

p �
Rþ dðd − 1Þ

L2

�

−
1

8πGN

Z
∂B

ddx
ffiffiffi
h

p
K; ð274Þ

where the cosmological constant is chosen so that L is the
radius of the AdSdþ1 space when B ¼ AdSdþ1. The second
integral is the Gibbons-Hawking term that ensures the
variational principle with the induced metric hαβ fixed on
the boundary ∂B. K is the trace of the extrinsic curvature
K ¼ ∇αnα for the vector nα normal to the boundary ∂B.
The most fundamental relation in the AdS=CFT correspon-

dence is the equality between the partition functions of the
gravity on an asymptotically AdSdþ1 space B and the dual
CFTd living on the boundary M ¼ ∂B,

e−Ibulk½B� ¼ ZCFT½M�: ð275Þ

This is called the GKP-W relation named after Gubser,
Klebanov, and Polyakov (1998) and Witten (1998). When a
bulk scalar field ϕ is present in the bulk B, we need to add to
the left-hand side the matter action Imatter½ϕ� and replace the
right-hand side with the generating functional of correlation
functions,

e−Ibulkþmatter ½B;ϕjM¼ϕ0� ¼ he
R
M

ϕ0OiCFT; ð276Þ

where ϕ0ðxÞ is the boundary value of the bulk field ϕ that
couples to an operator OðxÞ as the external source in CFT.
Figure 10 shows a schematic picture of the AdS=CFT

correspondence when B is the AdSdþ1 space in the Poincaré
coordinates Eq. (271). In this case, the boundary of AdSdþ1 at
z ¼ 0 is a flat space M ¼ Rd where the dual CFTd is
supposed to live, but we introduced a cutoff at z ¼ ϵ ≪ 1

FIG. 10. The AdS=CFT correspondence in the Poincaré coor-
dinates. The (shaded) boundary of AdSdþ1 at z ¼ ϵ is the flat
space Rd on which CFTd lives.
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to regularize the volume of the AdS space. This cutoff in the
bulk corresponds to the UV cutoff Λ in CFTas Λ ∼ 1=ϵ, while
the large z region corresponds to the IR region of the CFT.

C. Holographic entanglement entropy

The AdS=CFT correspondence connects, through the GKP-
W relation (275), the partition function of QFTd on a manifold
M to a classical gravity action on an asymptotically AdSdþ1

space B that asymptotes toM on its boundary. Assuming that
the bulk is described by the Einstein gravity Eq. (274), we
present the holographic formula of entanglement entropy and
its derivation.
Given the GKP-W relation (275), we can, in principle,

rewrite the replica trick formula (144) of entanglement
entropy in terms of the bulk action. We however need a dual
gravity solution Bn whose boundary is the n-fold cover Mn
with conical singularity at the entangling surface Σ ¼ ∂A for a
given region A. Assuming the existence of such a bulk space
Bn we arrive at the holographic definition of entanglement
entropy

SA ¼ lim
n→1

∂nðIbulk½Bn� − nIbulk½B�Þ: ð277Þ

We need a sophisticated machinery to find a bulk solution Bn
and evaluate the on-shell action Ibulk½Bn� and we postpone it to
Sec. VII.C.1. Ryu and Takayanagi (2006b) rather conjectured
the holographic formula of entanglement entropy (also known
as the Ryu-Takayanagi formula) should be

SA ¼ A
4GN

; ð278Þ

where A is the area of a (unique) minimal surface γA in B
anchored on the entangling surface Σ (see Fig. 11). We see this
geometric formula shows the same characteristics as entan-
glement entropy in QFT after reviewing its proof by
Lewkowycz and Maldacena (2013).25

The holographic formula for higher derivative gravity
theory is derived along the same lines of arguments as
Lewkowycz and Maldacena (2013) by Camps (2014),
Dong (2014), and Miao and Guo (2015), which correctly
reproduces the Jacobson-Myers–type formula (Jacobson and
Myers, 1993) for the Lovelock gravity (de Boer, Kulaxizi, and
Parnachev, 2011; Hung, Myers, and Smolkin, 2011). A
generalization to the covariant formula of holographic entan-
glement entropy in a time-dependent QFT was proposed by
Hubeny, Rangamani, and Takayanagi (2007) and later proved
by Dong, Lewkowycz, and Rangamani (2016). We refer the
interested readers to the recent textbook by Rangamani and
Takayanagi (2017) and references therein for the details.

1. A derivation of the holographic entanglement entropy

In evaluating the right-hand side of Eq. (277) we need to
analytically continue the bulk solution Bn from an integer n to
a real value. The boundary condition for Bn is by the n-fold

cover Mn that has periodicity 2πn along the modular time τ.
Mn is invariant under the Zn symmetry that shifts τ by 2π
when n is an integer. The bulk geometry Bn is a smooth
solution to the Einstein equation derived from the action
Eq. (274) with the prescribed boundary ∂Bn ¼ Mn, and the
modular time τ naturally extends into the bulk (see Fig. 12). In
order to guarantee the uniqueness of the analytic continuation
of Bn to a noninteger n, we assume that the bulk solution Bn is
invariant under the replica Zn symmetry that also acts as a
shift in τ by 2π. The entangling surface Σ, which is the fixed
locus of the Zn action on Mn, should extend to a codimen-

sion-two hypersurface γðnÞA anchored on Σ at the boundary of
Bn as in Fig. 12. After rescaling the modular time by τ̂≡ τ=n,
both the bulk and boundary manifolds are periodic in τ̂ of
period 2π. We emphasize that there is no deficit angle around

γðnÞA in the smooth bulk geometry Bn; the τ̂ circle with period

2π shrinks smoothly at γðnÞA due to the regularity of the bulk
space Bn.
The replica Zn symmetry in the bulk allows one to define

the orbifold

B̂n ≡ Bn=Zn; ð279Þ

which has a conical singularity along the hypersurface γðnÞA
with the deficit angle

δn ¼ 2π

�
1 −

1

n

�
; ð280Þ

when measured in the rescaled modular time τ̂. While the
original bulk solution Bn has the singular boundary Mn, the
boundary of the orbifold B̂n is regular,

∂B̂n ¼ ∂B ¼ M: ð281Þ

We find it convenient to introduce the bulk-per-replica action
Î½B̂n� for the orbifold B̂n by

FIG. 11. The minimal surface γA in orange (light gray) anchored
on the boundary of the region A in blue (gray) located at the AdS
boundary z ¼ ϵ. The holographic entanglement entropy of the
region A is given by the area of the surface γA divided by 4 times
the Newton constant GN as in Eq. (278).

25An earlier attempt for the proof was put forward by Fursaev
(2006).
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Î½B̂n�≡ Ibulk½Bn�=n; ð282Þ

which simplifies Eq. (277) to

SA ¼ lim
n→1

∂nfnðÎ½B̂n� − Ibulk½B�Þg;

¼ ∂nÎ½B̂n�jn¼1: ð283Þ

With this representation of the holographic entanglement
entropy, we derive the Ryu-Takayanagi equation (278) by
showing the bulk-per-replica action Î½B̂n� contains a term

proportional to the area of the hypersurface γðnÞA .
There is an important difference between the bulk-per-

replica action Î½B̂n� and the on-shell action Ibulk½B̂n� of the
orbifold B̂n. The former has an additional contribution from

the conical singularity at γðnÞA compared to the latter. To see this
explicitly, we adapt the argument in Sec, V.B to the singular

bulk manifold by replacing Mn → B̂n, Σ → γðnÞA , and n →
1=n as the orbifold B̂n has a deficit angle not 2πð1 − nÞ but
2πð1 − 1=nÞ. With this in mind in applying Eq. (193) to the
present case, the bulk-per-replica action in the Einstein gravity
Eq. (274) is shown to be (Dong, 2016; Nakaguchi and
Nishioka, 2016),

Î½B̂n� ¼ Ibulk½B̂n� þ
δn

8πGN
An; ð284Þ

where An is the area of the hypersurface γðnÞA :

An ≡
Z
γðnÞA

dd−1y
ffiffiffi
h

p
; ð285Þ

with the world volume coordinates ya (a ¼ 1;…; d − 1) and
the induced metric hab. The right-hand side of Eq. (284) may
be interpreted as the action of the Einstein gravity coupled

to a codimension-two cosmic brane on γðnÞA with tension
δn=ð8πGNÞ. We denote collectively by Φ all the fields such as
the metric and matter fields in the action, whose configura-
tions are to be determined by solving the equations of motion
δÎ½B̂n�=δΦ ¼ 0 with fixing the replica parameter n. Varying
the action Eq. (284) with respect to n one finds

∂nÎ½B̂n� ¼
δΦ
δn

δÎ½B̂n�
δΦ

þ An

4GNn2
: ð286Þ

Then imposing the equations of motion leaves the second term
proportional to the area, which results in the Ryu-Takayanagi
equation (278) with A ¼ A1 when plugged into Eq. (283).

The minimality of the surface γA ¼ γð1ÞA in Eq. (278) is
guaranteed in this derivation as follows. We can use the probe

approximation for the cosmic brane γðnÞA in the n → 1 limit
where the tension proportional to δn vanishes and fix the
position without taking into account the backreaction to the

background bulk geometry B̂n. In other words, the surface γ
ð1Þ
A

is just a solution to the equation of motion of the area
functional δA1 ¼ 0 in the background B. If there exist
multiple solutions, we pick up a solution with the least area
that dominates in the gravity partition function.

2. Inequalities satisfied by the holographic formula

Provided the proof of the holographic formula (278), the
next thing to be done is to check if it satisfies the basic
properties of entanglement entropy given in Sec. II.D. The
equality SA ¼ SB is somewhat trivial in the holographic
picture. Since the boundary of the region A is equal to the
boundary of its compliment B, the minimal surface γA is the
same as γB as long as there is no obstruction in the bulk AdS
space.26

First, consider the strong subadditivity Eq. (37), whose
proof relies on an ingenious inequality for Hermitian operators
in quantum mechanics. We show that Eq. (37) simply follows
from the minimality of the Ryu-Takayanagi surface in the
holographic formula (Headrick and Takayanagi, 2007;
Headrick, 2014). For three adjacent subsystems A, B, and
C, the holographic entanglement entropies SA∪B and SB∪C are
given by the areas of the minimal surfaces γA∪B and γB∪C
colored in light gray and black, respectively, on the leftmost
side of Fig. 13(a). By decomposing each minimal surface into
two pieces and reconnecting them appropriately as in the
middle of Fig. 13(a), we obtain the other set of surfaces γ0B and
γ0A∪B∪C colored in light gray and black whose total area is
equal to that of the original minimal surfaces. Although the

FIG. 12. The smooth bulk manifold Bn whose boundary is the n-fold cover ∂Bn ¼ Mn used for the boundary QFT in the replica trick
by gluing n copies of a manifold along the entangling region A (the blue dotted lines). The entangling surface Σ ¼ ∂A is the fixed point
of theZn symmetry acting as the shift τ → τ þ 2π, which extends to the bulk as a codimension-two hypersurface γðnÞA (the orange dashed
curves).

26Such an obstruction shows up at finite temperature as the horizon
of an AdS black hole.
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new surfaces γ0B and γ0A∪B∪C are anchored on B and
A ∪ B ∪ C, respectively, they are not necessarily the minimal
surfaces γB and γA∪B∪C [see the rightmost side of Fig. 13(a)].
Since the minimal surfaces have less areas than the surfaces
γ0B and γ0A∪B∪C in the middle of Fig. 13(a), we obtain the
inequality

AA∪B þAB∪C ≥ AA∪B∪C þAB: ð287Þ

This is equivalent to the first line of the strong subadditivity
Eq. (37). The other inequality can be proved similarly by
taking a different choice of reconnection of the surfaces as in
Fig. 13(b).
In the holographic setup, one can prove another nontrivial

inequality (Hayden, Headrick, and Maloney, 2013),

SA∪B þ SB∪C þ SC∪A ≥ SA þ SB þ SC þ SA∪B∪C: ð288Þ

It takes a simpler form when written in the mutual informa-
tion,

IðA; Bþ CÞ ≥ IðA; BÞ þ IðA;CÞ; ð289Þ

which is called a monogamy of mutual information. The proof
proceeds in a very similar way to the strong subadditivity as in
Fig. 14.27

Actually there are an infinite set of entanglement inequal-
ities generalizing the monogamy of mutual information that
must be satisfied for a holographic system (Bao et al., 2015).
An important caution is that the inequality (288) holds in

any holographic system, but does not in general quantum
systems. For example, a three qubit state with the density
matrix

ρA∪B∪C ¼ 1
2
ðj000ih000j þ j111ih111jÞ ð290Þ

violates the monogamy inequality because the entropies in the
subsystems are (Hayden, Headrick, and Maloney, 2013)

SA∪B∪C ¼ SA∪B ¼ SB∪C ¼ SC∪A;

¼ SA ¼ SB ¼ SC;

¼ log 2: ð291Þ

Turning it around, the monogamy of mutual information is
requisite for a quantum system having a holographic descrip-
tion in gravity theory on an asymptotically AdS space.
Although these geometric proofs are easy to understand,

they are not enough to take account of subtle situations such
that the subregions share their boundaries in an intricate way.
The rigorous proofs in more general settings in the Einstein
gravity can be found in Headrick (2014) for a time-indepen-
dent case where only the minimality condition of the Ryu-
Takayanagi surface is assumed with the null energy condition
to exclude unphysical bulk configurations.28

D. Spherical entangling surface

We illustrate the calculation of the holographic entangle-
ment entropy for the entanglement entropy across a sphere
Sd−2 of radius R located at ρ ¼ R in the polar coordinates.
It is easiest to work in the (Euclidean) Poincaré AdSdþ1

space,

ds2 ¼ L2
dz2 þ dt2 þ dρ2 þ ρ2dΩ2

d−2
z2

: ð292Þ

We let z ¼ zðρÞ to respect the spherical symmetry of the
entangling surface (see Fig. 15).
The minimal surface γA is the solution of the variational

problem for the area functional with respect to z ¼ zðρÞ,

A ¼ Ld−1VolðSd−2Þ
Z

R

0

dρ
ρd−2

zd−1ðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρzÞ2

q
: ð293Þ

(a) (b)

FIG. 13. The holographic proof of the strong subadditivity. (a)
The minimal surfaces γA∪B and γB∪C are light gray and black on
the leftmost side, which can be reconnected to surfaces γ0B (light
gray) and γ0A∪B∪C (black) bounding the regions B and A ∪ B ∪ C
in the middle. The total area is minimized by the minimal surfaces
γB (light gray) and γA∪B∪C (black) on the rightmost side, proving
the strong subadditivity SA∪B∪C þ SB ≤ SA∪B þ SB∪C. (b) A
similar setup for proving the inequality SA þ SC ≤ SA∪B þ SB∪C.

FIG. 14. A schematic proof of the monogamy of mutual
information.

27One should not resort to the pictorial proof too much as the
derived inequalities may fail (Hayden, Headrick, and Maloney,
2013).

28For a time-dependent holographic system where entanglement
entropy is given by the Hubeny-Rangamani-Takayanagi prescription
(Hubeny, Rangamani, and Takayanagi, 2007), the null curvature
condition Rμνξ

μξν ≥ 0, ξ2 ¼ 0 is shown to be sufficient for the
entanglement inequalities to hold (Wall, 2014). In general higher
derivative gravity theories, however, there are no known proofs for
the inequalities as the null curvature condition would be invalidated
and a minimization procedure of the surface may fail (Dong, 2014;
Wall, 2014).
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Solving the equation of motion with the boundary condition
ρ ¼ R at the boundary z ¼ 0,29 the solution turns out to be a
hemisphere in any d dimensions (Ryu and Takayanagi, 2006b)
(see Fig. 15)

zðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ρ2

q
: ð294Þ

It follows that the holographic entanglement entropy of a
sphere of radius R is

SA ¼ Ld−1VolðSd−2Þ
4GN

Z
1

ϵ=R
dy

ð1 − y2Þðd−3Þ=2
yd−1

; ð295Þ

where we introduced the UV cutoff ϵ ≪ 1 at z ¼ ϵ.
Expanding the integral around y ¼ 0 and performing the

integration near y ¼ ϵ=R, one finds the UV divergent terms
consistent with the generic structure in Eq. (228) for even d
and in Eq. (230) for odd d. The leading divergent part is
proportional to the area of the entangling surface:

Areað∂AÞ ¼ Rd−2VolðSd−2Þ; ð296Þ

which is known to be the area law of entanglement.

1. Universal terms

There is the logarithmic divergence of the entanglement
entropy for even d, whose coefficient c0 is proportional to
the type A anomaly for a spherical entangling surface [see
Eq. (229)],

c0 ¼ ð−1Þd=2þ1A: ð297Þ

Compared with Eq. (295), the type A central charge in a large-
N CFTd, described by the Einstein gravity on the AdSdþ1

spacetime, is determined to be (Myers and Sinha, 2010, 2011)

A ¼ Ld−2

2GN

πd=2−1

Γðd=2Þ : ð298Þ

The universal finite term F for odd d in Eq. (230) is
similarly read off from Eq. (295). By analytically continuing d
and letting ϵ be zero before carrying out the integral, we find
(Kawano, Nakaguchi, and Nishioka, 2014)

F ¼ Ld−1

4GN

πd=2

Γðd=2Þ : ð299Þ

This is always positive thanks to the sign factor put in front of
F in Eq. (230). This universal term is conjectured to decrease
monotonically under any renormalization group flow (Myers
and Sinha, 2010, 2011; Klebanov, Pufu, and Safdi, 2011), and
known as the holographic C theorem (Girardello et al., 1998;
Freedman et al., 1999; Myers and Sinha, 2010, 2011) that will
be discussed in sec. VIII.

2. Relation to thermal entropy on Hd − 1

We revisit Eq. (249) between the entanglement entropy
across a sphere and the thermal entropy on a hyperbolic space
derived in Sec. VI.C.1 from the holographic point of view.
We show, in the hyperbolic coordinates Eq. (273) of the AdS
space, that the minimal surface coincides with the black hole
horizon of the AdS topological black hole, and thus the
entanglement entropy agrees with the thermal entropy of the
black hole.
The Euclidean Poincaré coordinates Eq. (292) can be

mapped by the coordinate transformations

z ¼ R
1

r cosh uþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
cos τ

;

t ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
sinðτÞ

r cosh uþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
cos τ

;

ρ ¼ R
r sinh u

r cosh uþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
cos τ

; ð300Þ

to the new coordinates

ds2 ¼ L2

�
ðr2 − 1Þdτ2 þ dr2

r2 − 1

þ r2ðdu2 þ sinh2udΩ2
d−2Þ

�
: ð301Þ

This is the Euclidean AdS topological black hole given by
Eq. (273) whose boundary is S1 × Hd−1 (see Fig. 16). The τ
coordinate has period τ ∼ τ þ 1=T with the temperature
T ¼ 1=ð2πÞ fixed to avoid the conical singularity at r ¼ 0.
The entangling surface located at ρ ¼ R, t ¼ 0, z ¼ 0 in the

original coordinates Eq. (292) is conformally mapped to a
hypersurface at r ¼ ∞, τ ¼ 0, and u ¼ ∞ in the hyperbolic
coordinates Eq. (273) under the transformations Eq. (300).
The minimal surface in the latter coordinates anchored on
constant time τ ¼ 0 and r ¼ ∞, u ¼ ∞ is obtained by
extremizing the area functional with respect to r ¼ rðuÞ,

FIG. 15. The minimal surface of a spherical entangling surface
in the Poincaré coordinates of AdSdþ1.

29The equation of motion is a second-order differential equation,
but can be reduced to a first-order one (Bakhmatov et al., 2017;
Colgáin, 2018).

Tatsuma Nishioka: Entanglement entropy: Holography and …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035007-34



A ¼ Ld−1
Z

∞

0

duðr sinh uÞd−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð∂urÞ2

r2 − 1

r
: ð302Þ

It is easy to check r ¼ 1 is the solution to the equation of
motion, which is nothing but the horizon of the topological
AdS black hole. We thus find the holographic entanglement
entropy is equal to the black hole entropy (Casini, Huerta, and
Myers, 2011),

SAðRÞ ¼ SBHðTÞ ¼ SthermðTÞ; ð303Þ

where we used one more relation between the AdSdþ1 black
hole entropy SBH and the thermal entropy Stherm of the dual
CFTd on Hd−1 at temperature T. This completes the holo-
graphic derivation of Eq. (249).

E. Holographic Rényi entropy

Before concluding this section, we make a few comments
on the holographic calculation of the Rényi entropy. We first
derive the holographic formula of the modular entropy in a
similar manner to the holographic entanglement entropy in
Sec. VII.C and show it is given by the area of a cosmic brane.
The Rényi entropy is constructed out of the modular entropy
by Eq. (65). As an example, we calculate the holographic
Rényi entropy across a spherical entangling surface in CFT.

1. A derivation of the holographic formula

The argument for deriving the Ryu-Takayanagi formula in
Sec. VII.C.1 has more implications for the holographic
description of quantum entanglement than it appears. The
modular entropy Eq. (62) written in terms of the partition
function

S̃n ¼ ð1 − n∂nÞðlogZn − n logZÞ ð304Þ

can be turned, with the GKP-W relation and the bulk-per-
replica action Eq. (282), into

S̃n ¼ ðn∂n − 1ÞfnðÎ½B̂n� − Ibulk½B�Þg;
¼ n2∂nÎ½B̂n�: ð305Þ

This reminds us of the holographic definition of entanglement
entropy Eq. (283), and one can recycle the resulting rela-
tion (286) to find the holographic formula of the modular
entropy (Dong, 2016),

S̃n ¼
An

4GN

����
δÎ¼0;∂γðnÞA ¼Σ

: ð306Þ

It resembles the Ryu-Takayanagi formula (278) and actually
reproduces it when n ¼ 1. This formula, however, contains

the area of a codimension-two cosmic brane γðnÞA with tension
δn=ð8πGNÞ that backreacts to the bulk geometry. Hence it is
more intricate in practice than the case of the Ryu-Takayanagi
formula (278) as we have to fix the location of the cosmic
brane by solving the equations of motion of the action Î
describing the Einstein gravity coupled to the cosmic brane
and possibly matter fields as indicated by the subscript δÎ ¼ 0

in Eq. (306) [see Eq. (286) for the definition of Î]. We are also
able to build the holographic Rényi entropy by combining
Eq. (306) with the relation (65).
Given the holographic formula of the Rényi entropy, one

may ask whether it satisfies the inequalities Eqs. (56)–(59)
characterizing the Rényi entropy. To this end it is enough to
check the three inequalities Eq. (63) implying the non-
negativities of the modular energy, entropy, and capacity.
The easiest one to show is the inequality S̃n ≥ 0 that follows
from the non-negativity of the area of a cosmic brane in
Eq. (306). The non-negativity of the modular energy E ≥ 0

becomes clear by expressing E in the form

E ¼ Ibulk½B̂n� − Ibulk½B� þ
An

4GN
; ð307Þ

and invoking B the on-shell solution with the least action
while B̂n is not necessarily so. The last inequality C ≥ 0

for the modular capacity is most nontrivial and turns out to
require the stability of the bulk geometry Bn (Nakaguchi and
Nishioka, 2016). It remains an open issue whether and when
such a stability condition is guaranteed to hold in the holo-
graphic setup.

2. Spherical entangling surface in CFT

We have seen in Sec. VII.D.2 that the entanglement entropy
across a spherical entangling surface in CFT is equal to the
thermal entropy on Hd−1 at inverse temperature 2πR and
can be calculated holographically as the black hole entropy in
the dual AdS spacetime. Here we see the holographic formula
of the modular entropy (306) also has an elegant interpretation
as a black hole entropy when the entangling surface is
spherical in accordance with the CFT story in Sec. VI.C
(Hung et al., 2011).
The AdS topological black hole given by Eq. (301) is a

particular case of the following AdS black hole:

FIG. 16. The global AdS space obtained by the conformal map
Eq. (300) from the Poincaré coordinates. The outside of the
AdS topological black hole horizon covers half of the global
coordinates. The minimal surface (the thick dotted orange
curve) at r ¼ R in Fig. 15 is on the horizon of the AdS
topological black hole.
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ds2¼L2

�
fðrÞdτ2þ dr2

fðrÞþr2ðdu2þsinh2udΩ2
d−2Þ

�
; ð308Þ

where the function fðrÞ vanishes at r ¼ rH,

fðrÞ ¼ r2 − 1 −
rd−2H

rd−2
ðr2H − 1Þ: ð309Þ

This black hole has a temperature parametrized by rH,

TðrHÞ ¼
1

4π

�
drH −

d − 2

rH

�
; ð310Þ

and the dual CFT lives on the boundary that is a hyperbolic
space Hd−1 at finite temperature TðrHÞ.
In this setup, the codimension-two cosmic brane in

Eq. (306) is at the black hole horizon and the modular entropy
can be identified with the thermal entropy by matching the
black hole temperature Eq. (310) with Tn ¼ 1=ð2πnÞ. By
setting rH to

rn ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðd − 2Þ þ 1

p
dn

; ð311Þ

the black hole entropy at temperature Tn becomes

S̃n ¼ SthermðTnÞ ¼
VolðHd−1ÞLd−1

4GN
rd−1n : ð312Þ

Performing the integration in Eq. (65) or Eq. (248) leads to the
Rényi entropy,

Sn ¼
VolðHd−1ÞLd−1

4GN

n
2ðn − 1Þ ð2 − rd−2n − rdnÞ: ð313Þ

VIII. RENORMALIZATION GROUP FLOWS

In this section, we turn our attention to the dynamical
aspects of entanglement entropy under a RG flow. We first
overview the idea of RG flows as a coarse graining of
microscopic degrees of freedom and detail the motivation
and implication of the so-called C theorem realizing our
intuition that the effective degrees of freedom monotonically
decrease along RG flows in the theory space of QFT. The
current status of the C theorems in various dimensions will be
recapitulated for the readers’ convenience. We then proceed to
the proofs for the entropic version of the c theorem in two
dimensions and the F theorem in three dimensions. The
monotonicities of C functions built from entanglement entropy
will be shown as a consequence of the strong subadditivity
and Lorentz invariance of QFT. As a specific example, we
consider a free massive scalar field and examine the F theorem
by introducing a systematic method of the large mass
expansion. After sketching the attempts to formulate the
C theorems in higher dimensions, we move onto the holo-
graphic descriptions of entanglement under RG flows and
reveal the role of entanglement entropy as an order parameter
of phase transitions. We also make a small test of the F

theorem in holographic models of RG flows and conclude the
section with comments on some exact results for entanglement
in supersymmetric field theories.

A. Ordering theories along RG flows

In the Wilsonian picture of QFT, the renormalization group
transformation takes one theory to another effective theory by
coarse graining the microscopic degrees of freedom heavier
than the energy scale of our interest, resulting in a trajectory
called an RG flow in the space of QFTs parametrized by
coupling constants (Wilson and Kogut, 1974; Polchinski,
1984).
To be more concrete, let us denote the theory space of

QFTs by T whose coordinates are given by a set of coupling
constants fgig, and the RG transformation by Rt that
induces a flow from one theory T ∈ T to another theory
RtT. The parameter t ≥ 0 counts how many times the coarse
graining is processed, hence playing a role of time for RG
flows. It will be convenient to relate the RG time t with the
energy scale μ by t ¼ − logðμ=ΛÞ where Λ is the UV cutoff.
One can follow the trajectory of the RG flow of a given
theory T by changing t from the UV (t ¼ 0) to the IR
limit (∞).
The fixed points of RG flows are by definition scale

invariant field theories, which are expected to be CFTs under
the assumptions of unitarity and Poincaré invariance
(Nakayama, 2015). We thus associate to an RG flow the
UVand IR CFTs denoted by TUV and TIR at t ¼ 0 and t ¼ ∞,
respectively. There can be multiple RG flows attached to one
fixed point depending on the types of perturbation added to
the corresponding CFT. Figure 17 illustrates a situation of the
theory space with four fixed points T1, T2, T3, and T4

represented by the black dots, some of which are connected
by RG flows in a nontrivial way.
Intuitively, physical degrees of freedom must decrease

monotonically under any RG flow because massive degrees
of freedom are integrated out once the energy scale of the flow
becomes below the scale set by the masses. In other words,
we hope to find a function C∶ T → R≥0 that quantifies the
effective degrees of freedom of a given theory T ∈ T by a
non-negative real number and decreases monotonically along
any RG flow on T 30:

dCðRtTÞ
dt

≤ 0: ð314Þ

This type of a function, broadly termed a C function, brings us
a natural interpretation that every RG flow goes downward
when its value is regarded as a height on the theory space T
(Fig. 17). In particular, the UV fixed point is higher than (or at
the same altitude as) the IR fixed point:

CUV ≥ CIR; ð315Þ

30The number of degrees of freedom in QFT is conventionally
measured by a C function in units of a simplest quantum field such as
a free scalar theory.
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where Ci ≡ CðTiÞ are the fixed point values. As we will see,
the fixed point value of a C function is often calculable as a
scheme-independent quantity in the corresponding CFTwith-
out any information around the point. If this is the case, the
inequality (315) constrains the dynamics of RG flows as
follows. Suppose there are two CFTs T3 and T4 in the theory
space as in Fig. 17, and we are interested in whether there
exists an RG flow interpolating them. In principle, we could
perturb one of the theories, e.g., T3, by relevant operators
and see if it triggers an RG flow toward the other T4 by
perturbative calculations. On the other hand, if the fixed point
values C3 and C4 are available to us and it turns out that
C3 < C4, then we can conclude, without any perturbative
calculation, that there are no RG flows from T3 to T4 just by
resorting to the inequality (315).
We are thus able to characterize a C function by the

following conditions:
• C is a function of a renormalization scale μ ¼ Λe−t that
we can tune by hand.

• C is well defined for any QFT, independent of the types
of field contents and their interactions.

• C is a monotonic function of the renormalization time t
for any unitary and Lorentz invariant QFT in one of the
following senses (Barnes et al., 2004; Gukov, 2016):
(i) (Weak version) The fixed point value of C

should decrease along RG flows as in Eq. (315).
(ii) (Stronger version) C monotonically decreases

along the entire RG flow as in Eq. (314).
(iii) (Strongest version) C is a potential that gen-

erates RG flows:

βiðgÞ ¼ GijðgÞ
∂C
∂gj ; ð316Þ

where βiðgÞ≡ −dgi=dt andGijðgÞ is a positive-
definite metric on the theory space T .

Here we distinguish the three versions of a C function in
increasing order of strength for completeness. The weak
version follows from the stronger one by integrating
Eq. (314) along the flow. The stronger version is implied
by the strongest one too,

dC
dt

¼ −βi
∂C
∂gi ¼ −Gij

∂C
∂gi

∂C
∂gj ≤ 0: ð317Þ

While the existence of a C function may be taken for
granted from the physical point of view, the problem is how to

construct such a well-behaved function satisfying the afore-
mentioned properties. Indeed the construction of a C function
for QFT in dimensions higher than 2 has been a long-standing
problem for three decades since the initiating work by
Zamolodchikov (1986) and was successfully settled down
recently in only three and four dimensions.
One possible approach to this problem is to formulate a set

of axioms that guarantee the existence of a C function in any
dimension without any explicit construction. The power of an
axiomatic approach is well demonstrated in axiomatic thermo-
dynamics whose most important consequence is the very
existence of a unique entropy function that never decreases
under adiabatic processes and characterizes thermal equilib-
rium states when represented as a function of extensive
variables such as energy and volume [see, e.g., Lieb and
Yngvason (1999) for areview of the subject]. In fact, there are
considerable similarities between the theory space of QFT and
the state space of thermodynamics. For instance, the irrevers-
ibility of an RG flow between two fixed points Ta, Tb ∈ T
corresponds to an irreversible adiabatic process a → b that
takes one equilibrium state a to the other b. A partial list of the
analogies between thermodynamics and QFT is shown in
Table IV. It would be of great interest to translate the set of
axioms for equilibrium thermodynamics into the language of
QFTand examine to what extent the formulation of an entropy
function carries over to the construction of a C function. We
will not address this possibility any further in this review and
leave it to future investigations. Instead, we take a constructive
approach for a C function in the subsequent sections.

B. List of C theorems

We now provide a list of the known C theorems and related
conjectures in various dimensions along with comments on
their historical backgrounds.

1. Two dimensions

Zamolodchikov (1986) proved his celebrated c theorem in
the following form.
Theorem (Zamolodchikov’s c theorem): In two-dimen-

sional renormalizable QFTs, there exists Zamolodchikov’s
c function cðgi; μÞ that depends on a set of dimensionless
coupling constants fgig and the energy scale μð¼ Λe−tÞ,
satisfying the following properties:

(1) It takes the same value as the central charge c of the
CFT corresponding to each fixed point of RG flows:

cðgi; μÞjCFT ¼ c. ð318Þ

FIG. 17. (Left) An example of RG flows in the theory space T .
The black dots stand for the fixed points of RG flows. (Right) A
C function monotonically decreases as the RG time t is increased.

TABLE IV. An analogy between thermodynamics and QFT.

Thermodynamics QFT

Equilibrium states Conformal fixed points
a, b Ta, Tb
Union of two states Coupling of two theories
aþ b Ta and Tb
Irreversible adiabatic process RG flow
a → b from Ta to Tb
Entropy function C function
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(2) It monotonically decreases along any RG flow:

dcðgi; μÞ
dt

¼ −μ
dcðgi; μÞ

dμ
≤ 0. ð319Þ

(3) It is stationary only at the fixed points:

∂cðgi; μÞ
∂gi

����
CFT

¼ 0: ð320Þ

Hence, Zamolodchikov’s c theorem falls into the strongest
version in the terminology introduced in the previous section
(Friedan and Konechny, 2010). Zamolodchikov’s c function
can be built explicitly from the two-point correlation functions
of the stress-energy tensor in two dimensions, and the
monotonicity follows from the reflection positivity of the
correlator.

2. Three dimensions

Given the fact that Zamolodchikov’s c function gives the
central charge at the fixed points, it is tempting to look for
counterparts of the two-dimensional central charge in d > 2

dimensions. Let us consider a few candidates for central
charges that can be defined irrespective of dimensionality.

(a) A “thermal central charge” CTherm as a coefficient of
the thermal free energy density fTherm at finite
temperature T defined by

fTherm ∼ CThermTd: ð321Þ

(b) The coefficient CT for the two-point function of the
stress-energy tensor in Eq. (216).

(c) The central charges A, Bi for the conformal anoma-
lies defined by Eq. (210) that exist only in even d
dimensions.

In d ¼ 2 dimensions, all of these are known to be proportional
to the central charge CTherm ∝ CT ∝ A ∝ c for CFT, but they
do not generally have linear relations in higher dimensions.
The possibility (a) of adopting the thermal central charge

CTherm as a measure of degrees of freedom was studied by
Sachdev (1993) for the three-dimensional OðNÞ vector model
in the large-N limit. This model has the RG flow from the
Gaussian fixed point TGaussian, where all the N scalar fields are
free and massless, to the critical OðNÞ (interacting) fixed point
Tcritical by keeping the renormalized masses vanishing.
Perturbing the critical OðNÞ fixed point by giving the scalars
negative mass squared terms triggers the RG flow to the
OðN − 1Þ symmetric (Goldstone) fixed point TGoldstone with
N − 1 massless free scalar fields (Goldstone modes).31 If the
thermal central charge measures the degrees of freedom
correctly, we expect them to be ordered along the RG flow
CThermðTGaussianÞ > CThermðTcriticalÞ > CThermðTGoldstoneÞ. The
thermal central charges at the Gaussian and Goldstone fixed
points are simply given by CThermðTGaussianÞ¼NCThermðTscalarÞ

and CThermðTGoldstoneÞ ¼ ðN − 1ÞCThermðTscalarÞ as consistent
with the RG flow, where Tscalar is a real massless free scalar
field theory. On the other hand, the large-N analysis showed
CThermðTcriticalÞ ¼ ½4N=5þOð1Þ�CThermðTscalarÞ, which can be
less than the IR value CThermðTGoldstoneÞ for large N and ruled
out the possibility of CTherm being the fixed point value of a
C function (Sachdev, 1993).
The option (b) employing the coefficient CT as a fixed point

value of a C function was suggested by Petkou (1995) based
on the result CTðTcriticalÞ ¼ ðN − 40=9π2ÞCTðTscalarÞ consis-
tent with the RG flows described for the OðNÞ vector model.
This possibility was explored by Nishioka and Yonekura
(2013) more systematically for N ¼ 2 supersymmetric field
theories in three dimensions that allows the exact calculation
of CT due to the supersymmetric localization technique. In
that work it was shown that a supersymmetric analog of the
OðNÞ vector model (N ¼ 2 Wess-Zumino model) can be a
counterexample for the “CT” theorem. Another counterex-
ample was also found by Fei, Giombi, and Klebanov (2014)
by examining the RG flows in the five-dimensional OðNÞ
symmetric scalar field theory with the OðNÞ symmetric
interacting fixed point.
In three dimensions, there exists no conformal anomaly;

hence the third option (c) is unavailable on its own.
Alternatively, a proposal was made by Jafferis et al. (2011)
[and independently by Myers and Sinha (2010, 2011) in a
different form from the holographic viewpoint] based on
the extremization principle of the supersymmetric partition
function (Jafferis, 2010), which is now known as the
F theorem,
Theorem (F theorem): In three-dimensional QFTs, there

exists a function F ðgi; μÞ on the theory space satisfying the
following properties:

(1) It takes the same value as the sphere free energy F of
the CFT corresponding to each fixed point of RG
flows,

F ðgi; μÞjCFT ¼ F; ð322Þ

where F ¼ − log jZ½S3�j and Z½S3� is the (renormal-
ized) Euclidean partition function on S3.

(2) It is a monotonically decreasing function under any
RG flow,

dF
dt

¼ −μ
dF
dμ

≤ 0: ð323Þ

This statement can be regarded as a variant of the third
option (c) since we can extract the type A central charge of
the conformal anomaly from the sphere partition function
A ∝ logZ½Sd� in even dimensions.
While the F theorem was originally stated in the weak form

FUV ≥ FIR, a perturbative argument (Klebanov, Pufu, and
Safdi, 2011; Yonekura, 2013) suggests the sphere free energy
is the strongest version of a C function. Strong evidence
supporting the F theorem was given for N ¼ 2 supersym-
metric theories with Uð1ÞR symmetry, where the sphere free
energy F is shown to be locally maximized at RG fixed points
(Jafferis, 2010; Closset et al., 2012) unless there is no

31There is one massive scalar field that decouples at the Goldstone
fixed point.
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accidental symmetry at the IR fixed point [see also the review
by Pufu (2016) for details]. A nonperturbative proof of the
strong version of the F theorem was given by Casini and
Huerta (2012) by exploiting the unexpected relation between
the free energy and the entanglement entropy of a disk we
derived in Eq. (255). We outline the proof and the implications
in Sec. VIII.D.

3. Four dimensions

Seeking for a C theorem in four dimensions has a long
history starting from the conjecture [of the type (c) in
Sec. VIII.A] by Cardy (1988) for the a theorem.
Theorem (a theorem): In four-dimensional QFTs, the

type A central charge a of the conformal anomaly decreases
along any RG flow

aUV ≥ aIR: ð324Þ

This weak version of the a theorem has passed a number of
tests over the years in perturbative QFTs (Osborn, 1989; Jack
and Osborn, 1990) and was given an evidence for N ¼ 1
supersymmetric theories by the a-maximization method
that implies the strongest a theorem (Intriligator and
Wecht, 2003; Barnes et al., 2004). A proof of the a theorem
without relying on supersymmetry was presented more
recently by Komargodski and Schwimmer (2011) who con-
nected the difference of the a coefficient with the scattering
amplitude of four dilaton fields that naturally couple to the
stress-energy tensor (Komargodski, 2012). Interestingly the
unitarity of the scattering amplitude turns out to guarantee the
inequality (324) in their proof.
Recently, an alternative proof of the a theorem was given

by Casini, Testé, and Torroba (2017a) who resorted to the
monotonicity of entanglement as in the case of the F theorem.
We touch on the proof in Sec. VIII.E.
Finally, a few comments on the other possibilities are

in order:
(a) The thermal central charge CTherm does not

satisfy a C theorem in a class of four-dimensional
gauge theories that are not asymptotically free at
UV (Appelquist, Cohen, and Schmaltz, 1999).

(b), (c) The CT coefficient of the stress-tensor two-point
function is proportional to the type B central
charge c, CT ∝ c, in four dimensions (Osborn
and Petkou, 1994). The latter was extensively
studied in supersymmetric and nonsupersym-
metric theories and many counterexamples are
known in a typical class of gauge theories
(Cappelli, Friedan, and Latorre, 1991; Anselmi
et al., 1998).

4. Higher dimensions

Given the success in d ≤ 4 dimensions, one may be tempted
to extend a C theorem to higher dimensions d > 4. This
problem was less explored than the lower-dimensional cases,
but once formulated it will provide us a unifying picture of RG
flows in QFT irrespective of dimensionality. It is too early to
survey the whole subject as it is still under active investigation.

We thus comment only on the two following promising
conjectures32:

• The a theorem in higher even dimensions postulates
the monotonicity of the type A central charge for the
conformal anomaly under RG flows. There is supporting
evidence for the a theorem from holography (Myers and
Sinha, 2010, 2011) and even proofs for a certain class
of supersymmetric field theories in six dimensions
(Cordova, Dumitrescu, and Yin, 2015; Cordova, Dumi-
trescu, and Intriligator, 2016).

• The F theorem in higher odd dimensions was suggested
by Myers and Sinha (2011, 2010) and Klebanov, Pufu,
and Safdi (2011) and further incorporated into the
generalized F-theorem proposal (Giombi and Klebanov,
2015) that interpolates between the F theorem and the
a theorem in noninteger dimensions. A few examples
supporting the F theorem in five dimensions are pre-
sented by Fei, Giombi, and Klebanov (2014) and Jafferis
and Pufu (2014).

C. The entropic c theorem in (1 + 1) dimensions

We shall prove the strong version of the C theorem in two
dimensions by constructing a C function built from entangle-
ment entropy. A C function should be well defined for any
QFT and monotonically decreases as the energy scale μ is
lowered while fixing the size of a system (e.g., an entangling
region). One good candidate for it is the entanglement entropy
SðRÞ of an interval of width R in (1þ 1) dimensions
(see Fig. 18).
Instead of tuning the energy scale μ with the system size

fixed, we would rather change the size R to trigger an RG flow
while fixing μ. In this picture, we can probe the physics at the
UV and IR scales by small and large intervals, respectively.
The conditions for a function cEðRÞ being a C function are
restated in the following form:

(1) cEðRÞ coincides with the central charge c of CFT2 at a
fixed point of an RG flow,

cEðRÞjCFT ¼ c: ð325Þ

(2) cEðRÞ is a monotonically decreasing function under
any RG flow,

c0EðRÞ ≤ 0: ð326Þ

Recalling from Eq. (223), the entanglement entropy of the
interval in CFT2 becomes33

SðRÞjCFT ¼ c
3
log

R
ϵ
; ð327Þ

where the central charge c appears as a coefficient of the
logarithmic divergence. It follows that we can introduce the

32See also Gukov (2016, 2017) for a recent discussion on
constraining RG flows by topological data of the theory space.

33We can redefine the UV cutoff ϵ so as to remove a finite term in
Eq. (223).
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entropic c function (Casini and Huerta, 2004) satisfying the
first condition,

cEðRÞ≡ 3RS0ðRÞ: ð328Þ

Note that the entropic c function is well defined for any QFT
as it is built from the entanglement entropy of an interval. It
should also be stressed that the entropic c function is free from
the UV divergence as there is only logarithmic divergence in
two dimensions, and it always takes a finite value in contrast
to the entanglement entropy itself.
In order to prove that the monotonicity of the entropic

c function, Eq. (326), we consider two intervals A and C on
the light rays t ¼ �x (the dashed lines) and an interval B of
width r on a time slice t ¼ 0 as in Fig. 19. More precisely we
choose the three regions as follows:

A ¼
	
t ¼ −x;−

R
2
≤ x ≤ −

r
2



;

B ¼
	
t ¼ 0;−

r
2
≤ x ≤

r
2



;

C ¼
	
t ¼ x;

r
2
≤ x ≤

R
2



: ð329Þ

Entanglement entropy is invariant under unitary time evolu-
tion and hence is Lorentz invariant in QFT. We thus are able to
use the boosted interval connecting the left end point of A and
the right end point of B to calculate the entanglement entropy
of the union A ∪ B. Similarly the entanglement entropy of the
union B ∪ C is equal to that of the boosted interval connecting
the left end point of B and the right end point of C,34

SA∪B ¼ SB∪C ¼ Sð
ffiffiffiffiffiffi
rR

p
Þ: ð331Þ

The union of the three regions A ∪ B ∪ C can also be time
evolved into the interval of width R at t ¼ ðR − rÞ=2. Hence
the entanglement entropies of A ∪ B ∪ C and B are

SA∪B∪C ¼ SðRÞ; SB ¼ SðrÞ: ð332Þ

Now we apply the strong subadditivity Eq. (37) and find the
inequality

SðRÞ þ SðrÞ ≤ 2Sð
ffiffiffiffiffiffi
rR

p
Þ: ð333Þ

We can reduce it in the limit r → R to (Casini and Huerta,
2004)35

c0EðRÞ
3

¼ S0ðRÞ þ RS00ðRÞ ≤ 0; ð334Þ

which is actually what we wanted to prove, Eq. (326). It is
worthwhile to emphasize that conformal symmetry plays no
roles in the proof of the inequality, and hence it is valid for any
QFT as it follows from the strong subadditivity of entangle-
ment entropy and Lorentz invariance in QFT.
We note that the entropic c function Eq. (328) is not

stationary at the UV fixed point for a free massive scalar
theory (Casini and Huerta, 2005); hence it is an example of the
stronger C theorem in the terminology of Sec. VIII.A. It
behaves quite differently from the Zamolodchikov c function
under RG flows although they coincide at conformal fixed
points. It remains open whether there exists a strongest
C function built from entanglement entropy.

D. The F theorem in (2 + 1) dimensions

We adapt the argument for the entropic c theorem to the
proof of the strong version of the F theorem in a (2þ 1)-
dimensional QFT. A counterpart of the entropic c function
will be introduced as the renormalized entanglement entropy
F (Liu and Mezei, 2013a). We content ourselves with out-
lining the proof of the monotonicity of F and leave the
technical details to the original paper (Casini and Huerta,
2012). After examining the UV and IR behaviors of F , we
discuss the possibility of the strongest version of the
F theorem.

1. A sketch of the proof

The nonperturbative proof of the F theorem goes in parallel
with that of the entropic c theorem in the previous section. To
this end, we construct a function F ðRÞ from the entanglement
entropy of a disk satisfying the following:

FIG. 18. An interval of width R as an entangling region.

FIG. 19. A proof of the entropic c theorem. Two intervals A and
C are on the light rays t ¼ �x while an interval B is on a time
slice t ¼ 0.

34The diffeomorphism invariant length ΔR between two points
ðt; xÞ and ðtþ Δt; xþ ΔxÞ is defined by

ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðΔtÞ2 þ ðΔxÞ2

q
: ð330Þ 35See also Bhattacharya et al. (2015) for the generalization of this

argument to prove the positivity of the entanglement density.
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(1) F ðRÞ coincides with the sphere free energy F of CFT3

at a fixed point of an RG flow,

F ðRÞjCFT ¼ F: ð335Þ

(2) F ðRÞ is a monotonically decreasing function under
any RG flow,

F 0ðRÞ ≤ 0: ð336Þ

The key in finding such a function is the relation (255)
between the sphere free energy F and the entanglement
entropy SðRÞ of a disk of radius R for CFT3,

SðRÞjCFT ¼ α
2πR
ϵ

− F; ð337Þ

where α is a theory-dependent constant. In three dimensions,
the UV divergence of entanglement entropy SðRÞ is of order
Oð1=ϵÞ for any QFT, and it is always proportional to the
radius R of the disk due to the area law. We want to regularize
the divergence as in the entropic c function Eq. (328), thus
introducing the renormalized entanglement entropy or the
F function (Liu and Mezei, 2013a)

F ðRÞ≡ ðR∂R − 1ÞSðRÞ: ð338Þ

Then we see the first condition Eq. (335) for F being a
C function immediately follows from Eq. (337).
Furthermore, Casini and Huerta (2012) completed a proof

of the F theorem by showing the monotonicity of F ,
Eq. (336), with the strong subadditivity for any Lorentz
invariant field theory. We only sketch the proof of the
inequality Eq. (336), leaving the technical details to the
original paper (Casini and Huerta, 2012) [see also Casini,
Huerta et al. (2015) for a proof using the mutual information].
The point for proving the entropic c theorem was the choice

of the boosted intervals whose union and intersection are
intervals of different widths at different time slices as in
Fig. 19. In order to extend the previous argument to the
present case, we have to choose a set of boosted disks
touching on the null cone, whose union and intersection
approximate disks of different radii, say, R and rð≤ RÞ (see
Fig. 20). Clearly an infinite number of boosted disks are
needed to realize such a situation. Hence, we begin with N
boosted disks labeled by Xi (i ¼ 1;…; N) whose diffeo-
morphism invariant radii are

ffiffiffiffiffiffi
rR

p
and apply to them the

inequality obtained by the repeated use of the strong sub-
additivity

S∪iXi
þ S∪fi;jgXij

þ S∪fi;j;kgXijk
þ � � � þ S∩iXi

≤
X
i

SXi
; ð339Þ

where we used the shorthand notation Xij���k ≡ Xi ∩
Xj ∩ � � � ∩ Xk. There are N terms on the left-hand side, each
of which gives a disk entropy of a radius ranging from r to R.
Dividing by N on both sides, the sum on the left-hand side
approaches an integral in the N → ∞ limit,

1

π

Z
π

0

dθS

�
2rR

Rþ r − ðR − rÞ cos θ
�

≤ Sð
ffiffiffiffiffiffi
rR

p
Þ: ð340Þ

Letting R ¼ r − ϵ and expanding both sides at ϵ ¼ 0, one
finds S00ðRÞ ≤ 0 at order Oðϵ2Þ,

F 0ðRÞ ¼ RS00ðRÞ ≤ 0; ð341Þ

which is the other necessary condition Eq. (336) for F being
a c function in three dimensions. We again stress, as in the
case of the entropic c theorem in two dimensions, that the
inequality is valid for any QFT as the proof does not rely on
conformal symmetry at all.

2. Constraints from the F theorem

As applications of the F theorem, we want to constrain the
phase diagram of noncompact QED3 coupled to 2Nf two-
component Dirac fermions of unit charges ψ i (i ¼ 1;…; 2Nf)
(Grover, 2014; Giombi, Klebanov, and Tarnopolsky, 2016).
This theory enjoys the SUð2NfÞ global symmetry and flows to
the conformal phase for large Nf at the IR fixed point. On the
other hand, the theory is suspected to exhibit a spontaneous
symmetry breaking when the number of the fermions are
smaller than a critical value Nf ≤ Ncrit due to the condensa-

tion of the operator of the form
PNf

i¼1ðψ̄ iψ
i − ψ̄ iþNf

ψ iþNfÞ.
The chiral symmetry broken (CSB) phase preserves the
subgroup SUðNfÞ × SUðNfÞ × Uð1Þ of SUð2NfÞ and is
described by the 2N2

f Nambu-Goldstone bosons associated
with the spontaneous symmetry breaking and a free Maxwell
field that is dual to a free scalar field in the IR.
In order to estimate the critical value Ncrit, we compare the

sphere free energies FconfðNfÞ, FCSBðNfÞ of the conformal
and CSB phases. If there exists an RG flow from the
conformal phase to the CSB phase, the latter should have a
lower sphere free energy than that of the former FCSBðNfÞ <
FconfðNfÞ as dictated by the F theorem.
In the large Nf expansion, the conformal phase has

(Klebanov et al., 2012c)

FconfðNfÞ ¼ 2NfFferm þ 1

2
log

�
πNf

4

�
þOð1=NfÞ; ð342Þ

FIG. 20. N ¼ 3 boosted disks of radii
ffiffiffiffiffiffi
rR

p
(blue circles)

touching on the null cone (gray). The dashed and dotted curves
are circles of radii R and r at constant time slices t ¼ R and r,
respectively.
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while there are 2N2
f þ 1 massless free scalar fields in the CSB

phase

FCSBðNfÞ ¼ ð2N2
f þ 1ÞFscalar; ð343Þ

which grows quadratically in Nf and exceeds FconfðNfÞ for
large Nf as expected. Using the values of the sphere free
energies for a free scalar and a free Dirac fermion (Dowker,
2010; Klebanov, Pufu, and Safdi, 2011),

Fscalar ¼
log 2
8

−
3ζð3Þ
16π2

≈ 0.0638;

Ffermion ¼
log 2
4

þ 3ζð3Þ
8π2

≈ 0.2189; ð344Þ

we can estimate the value Nf ≈ 4.4 at which FCSBðNfÞ ¼
FconfðNfÞ. A more precise analysis using the ϵ expansion and
the Padé approximation also yields a similar value (Giombi,
Klebanov, and Tarnopolsky, 2016). Hence the F theorem rules
out any RG flow from the conformal phase to the broken
symmetry phase for Nf ≥ 5 and predicts the upper bound for
the critical value Ncrit ≤ 4.

3. Large mass expansion

We consider a free massive scalar field to examine the
F theorem by a concrete example.
In general, the entanglement entropy across an entangling

surface Σ for a theory with a mass gap of order m allows an
expansion in terms of large m (Grover, Turner, and
Vishwanath, 2011; Huerta, 2012),

SΣ ¼ α
lΣ

ϵ
− γ þ

X
i∈Z

cΣi m
i; ð345Þ

where we separate the mass effect with the coefficients cΣi of
mass dimension −i from the contributions of the UV diver-
gence proportional to the length lΣ of the contour Σ and the
topological entanglement entropy γ. In the presence of the
mass gap, the entanglement entropy would be dominated by
the local contributions within the correlation length ξ ∼ 1=m
from the entangling region Σ, and it is reasonable to expect cΣi
are characterized by local geometric data around Σ,

cΣi ¼
I
Σ
dsfðκ; ∂sκ; ∂2

sκ;…Þ; ð346Þ

where κ is the extrinsic curvature and s is a coordinate
parametrizing Σ. It follows that there are no cΣi ’s for i ≥ 2, and
the leading coefficient is given by cΣ1 ¼ β

H
Σ ds ¼ βlΣ for a

constant β.
For a pure ground state, the entanglement entropy is

symmetric under the exchange of the region A bounded by
Σ and its complement, hence the coefficients cΣi must be
invariant under the Z2 symmetry acting on the integrand
fðκ; ∂sκ;…Þ with κ → −κ and s → −s (Grover, Turner, and
Vishwanath, 2011). To illustrate it, let us work out the first few
coefficients. Since κ and s have dimensions 1 and −1, the Z2

symmetry allows

cΣ−1 ¼ β0
I
Σ
dsκ2;

cΣ−3 ¼
I
Σ
ds½β001κ4 þ β002ð∂sκÞ2�; ð347Þ

where β0 and β001 , β
00
2 are some constants depending on the

details of QFT, but the possibilities cΣ0 ∝
H
Σ dsκ, cΣ−2 ∝H

Σ dsκð∂sκÞ are excluded. Extending this argument, we find
fðκ; ∂sκ;…Þ always has even dimensions, and there only
remain terms with the odd i in the expansion Eq. (345),

SΣ ¼ α
lΣ

ϵ
þ βmlΣ − γ þ

X∞
n¼0

cΣ−2n−1
m2nþ1

; ð348Þ

Now we want to compute the leading coefficient cΣ−1 for a
free massive scalar field. We start with a (3þ 1)-dimensional
free massless scalar theory on R2;1 times S1 of circumference
L as in Fig. 21. By this compactification, the higher-
dimensional scalar field reduces a tower of massive scalar
fields in (2þ 1) dimensions with masses,

m2
n ¼

�
2π

L

�
2

n2; n ∈ Z: ð349Þ

If we choose an entangling surface of the form Σ2 ¼ Σ × S1

with Σ a smooth curve in (3þ 1) dimensions, the entangle-
ment entropy in four dimensions should equal the summation
of the entanglement entropies across Σ for the massive scalar
fields in (2þ 1) dimensions:

Sð3þ1Þ
Σ2

¼
X
n∈Z

Sð2þ1Þ
Σ ðmnÞ;

→
L→∞L

π

Z
1=ϵ

0

dpSð2þ1Þ
Σ ðm ¼ pÞ; ð350Þ

where we took the large L limit and replaced the summation
over the massive modes with the integral over a continuous
parameter p. We also introduced the UV cutoff ϵ for the
integral in the large L limit, which is to be regarded as the
UV cutoff in (3þ 1) dimensions. As seen from Eq. (228),
the entanglement entropy in even-dimensional CFT has the
logarithmic divergence whose coefficient is fixed by the

FIG. 21. The dimensional reduction of a (3þ 1)-dimensional
field theory to the (2þ 1)-dimensional field theory.
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conformal anomaly by Eq. (226). Then the logarithmically
divergent part of the left-hand side becomes

Sð3þ1Þ
Σ2

jlog ¼
c
2π

Z
Σ2

�
1

2
ðKa

μ
μÞ2 −Ka

μνKa μν

�
log

l
ϵ
; ð351Þ

where we assume Σ is topologically S1 whose typical size is l.
Here we use the fact that the Euler number of Σ2 ∼ T2

vanishes, and the induced curvatures Raa and Rabab are zero
on a flat space. On the other hand, we found the logarithmic
divergent term on the right-hand side of Eq. (350) from the
leading term of the mass expansion Eq. (348),

−
L
π
cΣ−1 log ϵ: ð352Þ

Comparing Eqs. (351) and (352), the coefficient cΣ−1 is fixed
by the central charge c and the integral of the extrinsic
curvatures. If we choose Σ to be a disk of radius R, for a
scalar field with c ¼ 1=120, we obtain (Huerta, 2012;
Klebanov et al., 2012b)

cΣ−1 ¼ −
π

240R
: ð353Þ

This coefficient also fixes the leading form of theF function
Eq. (338) in the large mass limit,36

F ¼ 1

120ðmRÞ þO(1=ðmRÞ3); ð354Þ

which is indeed monotonically decreasing as consistent
with the F theorem.37 One can generalize the argument and
compute the higher order coefficients cΣ−2n−1 by starting from
a free theory on R2;1 × T2nþ1 and comparing the logarithmic
divergence of the entanglement entropy of Σ2nþ2 ¼ Σ × T2nþ1

with that of massive fields in three dimensions (Klebanov
et al., 2012b). The coefficients cΣ−2n−1 are generally given by
the conformal anomalies in (2nþ 4) dimensions. The sub-
leading coefficient cΣ−3 is calculated in this way by Klebanov
et al. (2012b) and Safdi (2012).
We can check the validity of the large mass expansion by

comparing with the numerical estimation using the real time
approach developed in Sec. III. The numerical plot of the
F function is shown in Fig. 22 with respect to ðmRÞ2
(Klebanov et al., 2012a; Nishioka, 2014a). It starts from
FUV ≈ 0.064 and monotonically approaches to F ∼
1=ð120mRÞ in the large mR limit as expected. In addition,
the UV value of the F function agrees with the sphere free
energy Fscalar of a free massless scalar field given by
Eq. (344). Hence we confirmed the F function of a massive
scalar field obeys the general properties Eqs. (335) and (336)

analytically in the large mass region and numerically in the
entire region.

4. Stationarity at UV fixed points

Having dealt with the IR expansion of the F function of the
free massive scalar field, we look into the UV behavior around
m ¼ 0.38 We see from the numerical plot in Fig. 22 that the
derivative of F is not stationary even at the UV fixed point
when the free massive scalar field theory is considered as the
relevant perturbation of a free massless scalar field theory by
the mass term m2ϕ2=2 (Klebanov et al., 2012a; Nishioka,
2014a). This should be contrasted with Zamolodchikov’s
c function that is guaranteed to be stationary at conformal
fixed points. The lack of stationarity is not peculiar to the
F function. Indeed, the entropic c function Eq. (328) of a
massive free scalar field in two dimensions is also known to be
nonstationary at the UV fixed point (Casini and Huerta, 2005).
One may wonder if the nonstationarity is a generic feature

for the entropic c and F functions, independent of the types
of QFTs. To inspect it a little more, let OðxÞ be a relevant
scalar operator of dimension Δ ð≤ dÞ in d-dimensional CFT
and consider the relevant perturbation by the operator

IE ¼ IUV þ gO

Z
ddx

ffiffiffi
g

p
OðxÞ; ð355Þ

which induces an RG flow from the UV fixed point theory
described by the action IUV to an IR fixed point. The
perturbative expansion of entanglement entropy around the
UV fixed point (gO ¼ 0) should take the form

SðgOÞ ¼ SUV þ s1gO þ s2g2O þOðg3OÞ: ð356Þ

The leading order term is the integrated two-point function
of the modular Hamiltonian HA and the relevant operator
(Rosenhaus and Smolkin, 2014, 2015),

s1 ¼ −2π
Z

ddx
ffiffiffi
g

p hHAOðxÞi: ð357Þ

FIG. 22. The numerical plot of the F function of a free massive
scalar field (the black solid curve). The dotted red line is the UV
fixed point value FUV ≈ 0.064 of the F function.

36The topological entanglement entropy γ is zero for a massive
scalar field since there is nothing left in the IR fixed point.

37Since F is dimensionless, the mass m and the radius R are
always paired in the expansion.

38See Hertzberg (2013) for the case of an interacting scalar field
theory.
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The modular Hamiltonian is nonlocal in general, but can be
expressed as the integral of a local integrand proportional to
the stress tensor for a planar or spherical entangling surface in
CFT as given in Eq. (166). In this case, the first-order term is
expected to vanish, s1 ¼ 0, for hTμνðxÞOðyÞi ¼ 0 in CFT [see
Eq. (218)] (Rosenhaus and Smolkin, 2014). Thus this per-
turbative argument shows quite generally that entanglement
entropy is stationary at the UV fixed point. We record for the
reader’s reference that the second-order term s2 is nonvanish-
ing, whose form is determined for a spherical entangling
surface of radius R on Rd to be (Faulkner, 2015)

s2 ¼ −R2ðd−ΔÞ π
ðdþ1Þ=2ðd − ΔÞΓðd=2þ 1 − ΔÞ

2Γðdþ 3=2 − ΔÞ ; ð358Þ

for operators with Δ ≥ d=2.
The contradiction between the presented general argument

and the numerical result for a free massive scalar field needs
some explanation. The origin of this puzzle may be traced
back to our tacit assumption for the stress tensor being
conformal invariant, i.e., Tμ

μ ¼ 0 in deriving the expansion
Eq. (356) with the conformal perturbation theory. For a free
scalar field, however, we have a family of the stress tensors

TðξÞ
μν parametrized by a coupling constant ξ for the curvature

coupling Rϕ2 that can be added to the action when lifting

the theory from flat spacetime to a curved spacetime. TðξÞ
μν

is conformally invariant (traceless) only when ξ ¼ ξc≡
ðd − 2Þ=4ðd − 1Þ even on flat spacetime. There is no a priori

reason to prefer the conformal stress tensor TðξcÞ
μν to the others

in calculating entanglement entropy. The possibility of adopt-
ing the nonconformal stress tensors was examined by Casini,
Mazzitelli, and Testé (2015), Lee et al. (2015), and Herzog
and Nishioka (2016), resulting in the speculation that the
correct value of the leading coefficient s1 is given by Eq. (357)

with the stress tensor Tðξ¼0Þ
μν for the minimal coupling ξ ¼ 0.

Furthermore, the stationarity of entanglement entropy is
conjectured to break down when there exists an operatorOd−2
of dimensionΔ ¼ d − 2 that can couple to the scalar curvature
ROd−2 (Herzog and Nishioka, 2016). It remains to be clarified
under what condition the entropic c and F functions become
the stronger version of a C function.

E. The entropic C theorems in d ≥ 4 dimensions

We have seen that the entropic c and F theorems in (1þ 1)
and (2þ 1) dimensions follow from the strong subadditivity
of entanglement entropy and the Lorentz invariance of QFTs.
One may then expect the a theorem in (3þ 1) dimensions
similarly follows from the same argument. There however are
two obstacles in the generalization to the higher-dimensional
cases: (i) the strong subadditivity inequalities become trivial
due to logarithmic divergences coming from singular surfaces
of intersecting boosted spheres, and (ii) there is a finite
mismatch between the entanglement entropies of the wiggly
spheres and the round spheres in taking the number N of the
boosted spheres to infinity.
To overcome these difficulties, Casini, Testé, and Torroba

(2017a) and Lashkari (2017) considered a difference of the

entanglement entropies across a (d − 2) sphere of radius R
between a theory T along an RG flow and the UV CFT at its
UV fixed point in d dimensions,

ΔST ðRÞ≡ ST ðRÞ − SUVðRÞ; ð359Þ

and define a new entanglement measure,

ST ðRÞ≡ ½R∂R − ðd − 2Þ�ΔST ðRÞ: ð360Þ

The strong subadditivity Eq. (339) still holds for the difference
ΔST ðRÞ thanks to the Markov property of the CFT vacuum
that saturates the strong subadditivity for entangling regions
whose boundaries are located on a light cone (Casini, Testé,
and Torroba, 2017b). Furthermore, this subtraction plays a
twofold role to solve the problems: (i) the UV divergences
from the singular intersections are canceled out in the differ-
ence ΔST ðRÞ, and (ii) the wiggly spheres can be replaced by
the round spheres in the strong subadditivity as the finite
mismatch of their entropies cancels out in ΔST ðRÞ (Casini,
Testé, and Torroba, 2018).39 Hence taking the large N limit of
Eq. (339) with S replaced with ΔST results in the monoto-
nicity of ST ðRÞ in any dimension,

S0
T ðRÞ ≤ 0: ð361Þ

This new measure reduces to the entropic c and F functions
when d ¼ 2 and 3, respectively, and the inequality (361)
guarantees their monotonicities.
Now we move onto the four-dimensional case and see what

we are able to draw from the inequality (361). Recalling
Eqs. (225) and (226), the entanglement entropy across a two
sphere of radius R in CFT4 is given by

SðRÞjCFT ¼ α
4πR2

ϵ2
− a log

R
ϵ
: ð362Þ

We are interested in the difference of the a anomalies
between the UV and IR fixed points of an RG flow and
hence consider the IR CFT as a theory T for the measure
ST ðRÞ. Evaluating the inequality (361) with the fixed point
value Eq. (362) we find

S0
IRðRÞ ¼ 2ðaIR − aUVÞ

1

R
≤ 0; ð363Þ

which proves the weak version of the a theorem Eq. (324)
(Casini, Testé, and Torroba, 2017a).40

In d ≥ 4 dimensions Giombi and Klebanov (2015) con-
jectured the generalized F theorem, stating the generalized F
coefficient defined by

F̃≡ sin

�
πd
2

�
logZ½Sd�; ð364Þ

39We thank Eduardo Testé for clarifying this point.
40The dilation effective action was used by Solodukhin (2013) to

prove the a theorem using the entanglement entropy of a spherical
entangling surface.
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decreases along an RG flow,

F̃UV ≥ F̃IR: ð365Þ

We want to examine if the monotonicity Eq. (361) in d ≥ 4
dimensions also proves the conjecture as in the lower-
dimensional cases.
Noting the small R limit that corresponds to the UV region

of an RG flow, we found ST ð0Þ ¼ 0 for any theory T . Then
the inequality Eq. (361) implies

ST ðRÞ ≤ 0: ð366Þ

By choosing T to be the IR theory, it leads to an inequality
that contains the UV divergence of order Oð1=ϵd−4Þ as seen
from the UV structures Eqs. (228) and (230) in CFT. Hence
we are not able to derive a relation between finite values of the
form, Eq. (365).
One can still hope to regularize the UV divergence in

Eq. (366) by the dimensional regularization and derive the
finite relation (365). Indeed the equality Eq. (255) leads to

F̃jCFT ¼ sin

�
πd
2

�
SCFTðRÞ; ð367Þ

and one can recast Eq. (366) into the inequality for the fixed
point values F̃UV and F̃IR. While the resulting inequality
agrees with Eq. (365) for 2 < d < 4, it becomes rather the
opposite, F̃IR ≥ F̃UV for 4 < d < 6, which is in apparent
contradiction to the free field results (Giombi and Klebanov,
2015). This conflict stems from the fact that the inequality
Eq. (366) holds only in the presence of the UV divergences. It
is challenging, at the time of writing this review, to derive an
inequality for the dimensionally regularized entanglement
entropies, which hopefully proves the generalized F theorem
in higher dimensions.

F. Holographic RG flow

In this section, we switch gears to consider a simple class of
holographic RG flows that are dual to Lorentz invariant QFTs
in d dimensions and examine the entanglement entropy across
a sphere under the flows (Klebanov et al., 2012b; Liu and
Mezei, 2013a, 2013b). A complementary test of the F theorem
in three dimensions is performed in the holographic systems.

1. Domain wall and gapped RG flows

The most general metric holographically describing an RG
flow on a flat space R1;d−1 is of Poincaré type:

ds2 ¼ L2

z2

�
dz2

fðzÞ − dt2 þ dx⃗2d−1

�
; ð368Þ

where dx⃗2d−1 is the metric of the (d − 1)-dimensional flat space
Rd−1. We require the function fðzÞ approaches to a constant
(that we choose to 1 here),

fðzÞ→
z→0

1; ð369Þ

so that the metric asymptotes to an AdSdþ1 spacetime of
radius L near the boundary z ¼ 0.
We are interested in a physical situation where the metric

is a solution to the Einstein equation, so hence not every
function fðzÞ satisfying Eq. (369) is of interest. Moreover we
should exclude unphysical solutions by introducing a physi-
cally sensible condition.
Suppose the metric (368) describing an RG flow is a

solution in the Einstein gravity coupled to matter fields,

I ¼ 1

16πGN

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ½Rþ Lmatter�; ð370Þ

where Lmatter is the Lagrangian of the matter fields. The
metric (368) with an arbitrary function fðzÞ can be a solution
to the Einstein equation,41 Tmatter

μν ¼ Rμν −Rgμν=2, by tuning
the bulk matter stress tensor Tmatter

μν or equivalently the matter
Lagrangian Lmatter properly. This construction, however, often
leads to unreasonable solutions that we may want to rule out
on a physical ground. It is common practice to impose the null
energy condition for making a theory of gravity physically
sensible (Hawking and Ellis, 2011):

Tmatter
μν ξμξν ≥ 0: ð371Þ

This condition must be met for any future directed null vector
ξμ (ξ2 ¼ 0).
Using the Einstein equation Tmatter

μν ¼ Rμν −Rgμν=2 and
the null vector of the form

ξz ¼
ffiffiffiffiffiffiffiffiffi
fðzÞ

p
; ξt ¼ 1; ξi ¼ 0 ði ≠ t; zÞ; ð372Þ

one can derive from the null energy condition a constraint,

f0ðzÞ ≥ 0; ð373Þ

which implies the monotonicity of fðzÞ. This constraint
Eq. (373) restricts a class of solutions available to us, but
is not strong enough to fix the IR geometry in the large z
region. Here we consider the following two possibilities in the
z → ∞ limit (Liu and Mezei, 2013a):

(1) The IR geometry is a different fixed point from the UV.
Namely, the metric (368) describes a domain wall
between two AdSdþ1 solutions with radii L and LIR,

fðzÞ⟶
z→∞

L2

L2
IR

> 1: ð374Þ

(2) The IR geometry is a confining or gapped phase when
the metric described by Eq. (368) has the function
with the IR boundary condition,

fðzÞ⟶
z→∞

bzn; n > 0; ð375Þ

where b is a positive constant.

41Our definition of the stress tensor in Lorentzian signature is
Tμν ¼ ð2= ffiffiffiffiffiffi−gp ÞδI=δgμν.
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Now we are concerned with a spherical entangling sur-
face.42 It is convenient to choose the spatial metric to be in the
polar coordinates:

dx⃗2d−1 ¼ dρ2 þ ρ2dΩ2
d−2: ð376Þ

Since the entangling surface is spherical, ρ has to be a function
of z to respect the spherical symmetry. Then the area func-
tional is given by

A ¼ Ld−1VolðSd−2Þ
Z

z�

0

dzL;

L ¼ ρðzÞd−2
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ðzÞ2 þ 1

fðzÞ

s
; ð377Þ

where z� is the maximum value of z for the minimal surface.
To find a solution minimizing the area, we impose the
boundary condition at the UV fixed point (z ¼ 0),

ρðzÞ ¼ RþOðz2Þ; ð378Þ

while at the IR fixed point there are two types of boundary
conditions depending on the topology of the minimal surface
(see Fig. 23).

• Disk type (z� < ∞): the minimal surface terminates at
z ¼ z� where ρ has the expansion of the form

ρðzÞ ¼ ðz� − zÞ1=2½ρ� þOðz� − zÞ�: ð379Þ

• Cylinder type (z� ¼ ∞): the minimal surface extends to
the infinity as

ρðzÞ ¼ ρ∞ þOð1=zÞ: ð380Þ

When fðzÞ ¼ 1, i.e., the AdSdþ1 spacetime, the minimal
surface is of a disk type as we saw in Eq. (294):

ρ0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
: ð381Þ

Hence we expect to have a disk type solution when the radius
R of the entangling surface is small in an asymptotically AdS
spacetime. On the other hand, a cylinder type solution can
exist in a gapped geometry with the IR behavior Eq. (375)
only when n > 2 [see Appendix C in Liu and Mezei (2013a)
for details].

2. Topology change in a gapped phase

The minimal surface in the asymptotically AdS spacetime
Eq. (368) is approximated by the solution Eq. (381) for small
R. If the bulk geometry allows the cylinder type minimal
surface for large R, there must be a topology change at some
critical value R ¼ Rc. This is actually a typical phenomenon
for a gapped phase Eq. (375) as one can verify as follows.

We can probe the IR region even for small z by letting the
parameter b be very large, b ≫ 1. The large b expansion of the
equation of motion for the area functional Eq. (377) amounts
to, in the leading order, either

ρ0ðzÞ ¼ 0; ð382Þ

or

ρ0ðzÞ ¼ czðd−1Þ=ðd−2Þ; ð383Þ

for a constant c. The solution to the second equation diverges
for large z and is not acceptable as a minimal surface while the
solution to the first implies a cylinder type minimal surface.
The topology change of the minimal surface is observed
numerically in many examples (Klebanov et al., 2012b; Liu
and Mezei, 2013a, 2013b).
The area of the cylinder type minimal surface may be

evaluated in the system with a large gap (b ≫ 1) by dividing
the calculation into the UV part z ≤ zb ≡ b−1=n and the IR part
z > zb. In the UV region, the solution is close to the disk
solution Eq. (381) in the AdS space while it approaches to a
constant in the IR region. Taking into account the continuity
at z ¼ zb, it is reasonable to approximate the solution by the
piecewise function,

ρðzÞ ¼
	
ρ0ðzÞ ðz ≤ zbÞ;
ρ0ðzbÞ ðz > zbÞ:

ð384Þ

Now the area consists of two parts,A ¼ Az≤zb þAz≥zb , where
the UV part is approximated in the large b limit by

Az≤zb ¼
Z

zb

ϵ
dz

ρ0ðzÞd−2½ρ00ðzÞ2 þ 1�1=2
zd−1

×

�
1 −

bzn

2½ρ00ðzÞ2 þ 1�
�
; ð385Þ

while the IR part becomes

Az≥zb ¼
Z

∞

zb

dz
ρ0ðzbÞd−2

b1=2zd−1þn=2 : ð386Þ

FIG. 23. Two types of a minimal surface. The dashed blue
and solid orange curves are disk and cylinder type surfaces,
respectively.

42See Myers and Singh (2012a) for a similar calculation with an
entangling surface of a strip type.
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Using the dimensional regularization assuming n is large
enough, we have the expansion for zb ≪ 1,

A¼ 1

2dþn−4

�
2

�
R
zb

�
d−2

−ðd−2Þ
�
R
zb

�
d−4

þ���
�
: ð387Þ

The entanglement entropy across a sphere of radius R is
Ld−1VolðSd−2Þ=ð4GNÞ times larger that this area. Compared
with Eq. (176) for a free massive scalar field, the parameter zb
allows for interpretation as a gap scale m as expected.
Similar topology change can be observed for a strip

entangling region in a gapped system where the entangling
surface is two parallel planes. There are two types of extremal
surfaces, one with a connected surface, and the other with two
disconnected surfaces terminate on the IR boundary of the
gapped geometry. The topology change between these two
types of surfaces is interpreted as a confinement or deconfine-
ment phase transition in a confining gauge theory (Nishioka
and Takayanagi, 2007; Klebanov, Kutasov, and Murugan,
2008; Pakman and Parnachev, 2008).

3. Testing the F theorem in holography

As seen in Sec. VIII.D, the proof of the F theorem was
based on the Lorentz invariance and the strong subadditivity
of entanglement entropy that replaces the role of unitarity in
QFT. The same argument for the proof remains to work in a
holographic system as well just by resorting to the strong
subadditivity of the Ryu-Takayanagi formula (for the static
case in Sec. VII.C.2). Nevertheless, it is worthwhile examin-
ing the validity of the F theorem from the holographic point of
view to draw implications for the interplay between unitarity
in QFT and its counterpart in the dual gravity.
First let us consider a holographic gapped system with a

large gap that we dealt with in the previous section. The
renormalized entanglement entropy Eq. (338) across a sphere
of large radius is calculated from Eq. (387) with d ¼ 3 as

F ðRÞ ¼ πL2

ðnþ 2ÞGN

zb
R
þO(ðzb=RÞ3): ð388Þ

This result should be compared with the typical behavior of
the F function in the large gap limit given in Eq. (354) for a
free massive scalar. Note that the value of F (the sphere free
energy) at the UV fixed point of the holographic RG flow is
FUV ¼ πL2=ð2GNÞ [see Eq. (299)], which is always greater
than Eq. (388) in the large gap system with zb ≪ R. We thus
find this type of holographic RG flow is consistent with the
F theorem.
The next example to consider is a domain wall RG flow

interpolating two closely separated fixed points without a gap
(Liu and Mezei, 2013a). Such a solution can be realized by
choosing the function fðzÞ in the general metric Eq. (368) to
be of the form

fðzÞ ¼ 1þ ηgðzÞ; η ¼ L2

L2
IR
− 1 ≪ 1; ð389Þ

and imposing the boundary conditions at the UV and IR
regions,

gðzÞ⟶
z→0

0; gðzÞ⟶
z→∞

1: ð390Þ

The null energy condition Eq. (373) indicates gðzÞ to be a
monotonically increasing function,

g0ðzÞ ≥ 0: ð391Þ

In this setup, we are allowed to expand the solution of the
equation of motion of the area functional Eq. (377) around the
UV solution Eq. (381),

ρðzÞ ¼ ρ0ðzÞ þ ηρ1ðzÞ þOðη2Þ; ð392Þ

and it follows the expansion of the area functional,

A ¼ A0 þ ηA1 þOðη2Þ: ð393Þ

We now focus on the d ¼ 3 case to inspect the behavior of
the F function. Varying Eq. (377) around the UV solution, we
obtain the subleading term of the form43

A1 ¼ 2πL2

Z
R

0

dzgðzÞ δL
δf

����
f¼1;ρ¼ρ0

;

¼ −
πL2

R

Z
R

0

dz
R2 − z2

z2
gðzÞ: ð394Þ

This integral is UV divergent due to the contribution near the
UV boundary, z ¼ 0, but we can regularize it with the
F function and find the leading correction

ΔF ðRÞ ¼ −η
πL2

2GN

Z
1

0

dzgðzRÞ; ð395Þ

which is always nonpositive due to Eq. (391). We thus find the
F function of the domain wall solution decreases as R
increases. Furthermore, the leading correction matches the
difference between the UV and IR free energies,

ΔF ðR → ∞Þ ¼ −η
πL2

2GN
;

¼ FIR − FUV þOðη2Þ: ð396Þ

Hence the domain wall RG flow realizes the strong version of
the F theorem.44

We note that the monotonicity of the F function is a direct
consequence of the null energy condition (373) in this
holographic RG flow while it follows in the field theoretic
derivation in Sec. VIII.D from the strong subadditivity
that is substituted by the minimality condition for the

43There are contributions from the boundaries at z ¼ z� and 0,
which turns out to be negligible for d ≤ 4 (Liu and Mezei, 2013a).

44The entanglement entropy of a holographic RG flow describing
a relevantly perturbed CFT is shown to have the expansion of the
form(356) with s1 ¼ 0 and supports the strongest version of the
F theorem at least around the UV fixed point when the dimension of
the relevant operator is close to 3 (Taylor and Woodhead, 2016a,
2016b).
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Ryu-Takayanagi surface. The derivation for Eq. (395) indi-
cates that the minimality condition is not enough to prove the
monotonicity of the F function in holography. To our best
knowledge, no holographic proofs of the strong version of the
F theorem are known; hence it is desirable to elucidate it with
the null energy condition along the line of Girardello et al.
(1998) and Freedman et al. (1999) beyond the perturba-
tive level.

G. Supersymmetric Rényi entropies

We conclude this section with a comment on some exact
results for entanglement and Rényi entropies in interacting
field theories with supersymmetries.
Calculating the exact value of entanglement entropy in

QFTs is generally an intractable task unless theories are free
and the entangling surface preserves a rotational symmetry
around it. The difficulty is most manifest in the replica method
where the conical singularity on the entangling surface
prevents us from carrying out the perturbative calculation
in a conventional manner. On the other hand, there are
powerful computational techniques, called supersymmetric
localizations, in supersymmetric field theories that allow the
exact calculation of the partition function and a certain class of
correlation functions by reducing the infinite-dimensional
path integral to a finite-dimensional one (Pufu, 2016;
Dumitrescu, 2017; Willett, 2017). To apply supersymmetric
localization, a supersymmetric field theory must be placed on
manifolds preserving enough number of supersymmetries.
A simple example is a round sphere and the resulting

supersymmetric partition function Zsusy½Sd� turns out to be the
partition function Z½Sd� of the supersymmetric field theory at
the IR fixed point. Given the relation (255) between the
entanglement entropy across a round sphere and the sphere
partition function Z½Sd� for CFTs, it is possible to calculate the
exact value of entanglement entropy for a class of super-
symmetric field theories (Jafferis et al., 2011; Pufu, 2016).
Given the success of the entanglement entropy, one may

wonder if the same story applies to the Rényi entropy,
Eq. (147), for supersymmetric field theories as well. Such an
attempt would fail as supersymmetries are completely broken
on the n-fold cover of the d sphere Sd

n [defined by Eq. (250)],
thus the supersymmetric localization cannot be applied.
In order to leverage the supersymmetric localization tech-

nique, wewould rather tailor the definition of the Rényi entropy
so as to be compatible with supersymmetries. Namely, we
define the supersymmetric Rényi entropy Ssusyn for supersym-
metric conformal field theories by (Nishioka and Yaakov, 2013)

Ssusyn ≡ 1

1 − n
log

���� Zsusy½Sd
n�

ðZsusy½Sd�Þn
����; ð397Þ

where Zsusy½Sd� is the supersymmetric partition function on Sd
n

with background fields turned on to preserve a part of super-
symmetries.45 This definition takes the same form as the Rényi
entropy Eq. (147) across a spherical entangling surface Sd−2 in

CFT on Rd [see Eq. (253)], except for the partition function
being replaced with the supersymmetric one.46

The explicit formula for Zsusy½Sd� is given by an integration
over finite-dimensional matrix variables that depends on the
spacetime dimensions, the rank of the gauge group, and the
matter contents of supersymmetric field theories, but we are
not concerned with the explicit form here. Instead of giving
examples, we recap the universal aspects of the supersym-
metric Rényi entropy for N ¼ 2 supersymmetric field theo-
ries with the global Uð1ÞR symmetry in three dimensions
(Nishioka and Yaakov, 2013):

• The expansion around n ¼ 1 takes the form

Ssusyn ¼ S1 þ
π2

16
τRRðn − 1Þ þO(ðn − 1Þ2); ð398Þ

where τRR appears as the coefficients CJ ¼ τRR=ð4π2Þ
and CT ¼ 3τRR=ð2π2Þ in the correlators of the Uð1ÞR-
symmetry current jðRÞμ and the stress tensor given by
Eqs. (215) and (216). Compared with the expansion
Eq. (259) of the Rényi entropy with the first derivative
Eq. (260) in d ¼ 3 dimensions,

Sn ¼ S1 þ
π2

8
τRRðn − 1Þ þO(ðn − 1Þ2); ð399Þ

we find a factor of 2 discrepancy at the leading order
coefficient. This is due to the effect of the background
gauge field for the Uð1ÞR symmetry that is turned on to
maintain supersymmetries on Sd

n. Hence the supersym-
metric Rényi entropy is different from the Rényi entropy
when n ≠ 1 in general.

• For theories with gauge groups of rank N, the n
dependence simplifies in the large-N limit,

Ssusyn ¼ 3nþ 1

4n
S1. ð400Þ

A curious fact is that the ratioHn ≡ Ssusyn =S1 satisfies the
inequalities (56)–(59) of the Rényi entropies.

• For a certain class of superconformal field theories
allowing for the holographic dual description, the gravity
dual of the supersymmetric Rényi entropy is described
by the charged topological AdS4 black hole that pre-
serves half of supersymmetries in the N ¼ 2 U(1)
gauged four-dimensional supergravity (Huang, Rey,
and Zhou, 2014; Nishioka, 2014b).

• The description by codimension-two defects living
on the entangling surface is manifest (Nishioka and
Yaakov, 2017).

The supersymmetric Rényi entropies and their gravity duals
have been explored with applications in the other dimensions
(Hama, Nishioka, and Ugajin, 2014; Alday, Richmond, and
Sparks, 2015; Huang and Zhou, 2015; Zhou, 2015, 2016;
Giveon and Kutasov, 2016; Mori, 2016; Nian and Zhou, 2016;

45The effect of the background fields vanishes for CFT on a round
sphere, hence Zsusy½Sd� ¼ Z½Sd�.

46The absolute value inside the logarithm ensures that the super-
symmetric Rényi entropy is universal at least in three dimensions
(Closset et al., 2012).
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Yankielowicz and Zhou, 2017). We believe they shed new
light on understanding the nature of quantum entanglement in
QFT and the fundamental connection of quantum states to the
holographic spacetime.

IX. OUTLOOK

In this review, we put emphasis on the roles of quantum
inequalities of entanglement entropy in constraining the
dynamics of RG flows in QFTs. In particular, the monoto-
nicity of C functions built from entanglement entropy follows
from the strong subadditivity, which should be contrasted with
Zamolodchikov’s c theorem and the a theorem in two and four
dimensions whose proofs are based on unitarity in QFT.
Clearly the strong subadditivity assumes almost an equal role
with unitarity when applied to QFTs, and indeed it is a
consequence of the Hermiticity of density matrices in finite-
dimensional quantum mechanical systems (Lieb and Ruskai,
1973; Araki, 1975). It is thus important to see whether the
strong subadditivity can be proved by a conventional method
within the canonical framework of unitary and Lorentz
invariant QFTs.
Some attempts for C theorems in higher dimensions were

discussed in Sec. VIII.E where a certain class of monotonic
functions were constructed out of entanglement entropy. They
result in the known C theorems in less than four dimensions,
but do not lead to the conjectured F and a theorems in higher
dimensions. It deserves further investigation to see if the
conjectures can be proved by a similar method to the lower-
dimensional case.
It would also be interesting to consider C theorems for RG

flows across dimensions. This possibility is anticipated on
general grounds, but has attracted less attention so far (Gukov,
2016; Bobev and Crichigno, 2017). It is not clear at first sight
what can be a measure of degrees of freedom, i.e., a C function
for RG flows across dimensions. A naive speculation is to
use as a measure the generalized F coefficient defined by
Eq. (365) possibly with a dimension-dependent normalization
factor. It would be intriguing to explore this direction and find
an appropriate measure that may or may not have a relation to
entanglement entropy.
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APPENDIX: REAL TIME FORMALISM FOR FERMIONS

In this Appendix, we extend the real time formalism,
developed for free bosonic systems in Sec. III, to free
fermionic systems.

1. Fermionic system on lattice

We consider a quadratic Hamiltonian of fermions on lattice
labeled by an integer i ¼ 1;…; N,

H ¼
XN
i;j¼1

ψ†
i Mijψ j; ðA1Þ

with fermionic operators satisfying the anticommutation
relation fψ i;ψ

†
jg ¼ δij. The Hermitian matrix M can be

diagonalized to M ¼ U†ΔU by a unitary matrix U, and then
the Hamiltonian becomes

H ¼
XN
l¼1

λlψ̃
†
l ψ̃ l; ψ̃ ¼ Uψ ; ðA2Þ

where λl are real diagonal entries of Δ and the new operators
ψ̃ l satisfy the anticommutation relation fψ̃ l; ψ̃

†
mg ¼ δlm.

We let SðþÞ and Sð−Þ be the sets of indices for positive and
negative eigenvalues, respectively. We define the ground state
as the Dirac sea

j0i≡ Y
l∈Sð−Þ

ψ̃ lj0̃i; ðA3Þ

where j0̃i is the state annihilated by all ψ̃ l. Then the two-
point function of the original fermionic operators hψ iψ

†
ji ¼

h0jψ iψ
†
j j0i is

Cij ≡ hψ iψ
†
ji ¼ ½UΘðΔÞU†�ij; ðA4Þ

where Θ is the step function defined by

ΘðΔÞlm ¼
	
δlm for l; m ∈ SðþÞ;

0 otherwise:
ðA5Þ

Now we consider the entanglement entropy between the
subregion A and its compliment. As in the bosonic case,
we assume the reduced density matrix ρA is generated by
the modular Hamiltonian HA ¼ P

i;j∈Aψ
†
i Gijψ j (Peschel,

2003) as

ρA ¼ N e−HA; ðA6Þ

whereN is a normalization constant such that trAðρAÞ ¼ 1. We
diagonalize G by a unitary matrix V and rewrite the modular
Hamiltonian as HA¼

P
IϵId

†
I dI where new operators dI ¼

VIiψ i for i∈A satisfy fdI;d†Jg¼δIJ. In this basis, the nor-
malization constant N is fixed to be N ¼ Q

Ið1þ e−ϵI Þ−1.
The two-point function Cij for i, j ∈ A is evaluated with the
modular Hamiltonian, which is diagonalized to be
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Cij ¼ NtrAðψ iψ
†
je

−HÞ ¼ V†
iI

δIJ
1þ e−ϵI

VJj: ðA7Þ

Thus the eigenvalues ϵI can be determined by those νI of C,

νI ¼
1

1þ e−ϵI
: ðA8Þ

The trace of the nth power of ρA is

trAðρnAÞ ¼
Y
I

1þ e−nϵI

ð1þ e−ϵI Þn ;

¼
Y
I

½νnI þ ð1 − νIÞn�; ðA9Þ

and we obtain the entanglement entropy Eq. (55) given by the
matrix C,

SA ¼ −trA½C logCþ ð1 − CÞ logð1 − CÞ�: ðA10Þ

2. Free massive fermionic fields

We proceed to deal with free massive fermions whose
action is

I ¼
Z

ddx
ffiffiffiffiffiffi
−g

p
Ψ†Γ0ðiΓAeMA ∇M − imÞΨ; ðA11Þ

where A is the local Lorentz index in the range A ¼ 0;…;
d − 1 and M stands for the coordinate indices. The gamma
matrices obey the anticommutation relations fΓA;ΓBg ¼ 2ηAB
for the metric η ¼ diagð−1; 1; 1;…; 1Þ. eA are the vielbein
one-form and ∇μ is the spinor covariant derivative defined
by ∇M ≡ ∂M þ ωAB

M ½ΓA;ΓB�=8 with the spin connection two-
form ωAB satisfying deA þ ωA

B ∧ eB ¼ 0.
We concentrate on the case in d ≥ 3 dimensions. See, for

example, Herzog and Nishioka (2013) for the implementation
in two dimensions. We set the theory on the radial coordinates
Eq. (108) and choose the vielbein as

e0 ¼ dt; ed−1 ¼ dr;

ea ¼ rêa ða ¼ 1;…; d − 2Þ; ðA12Þ

where êa are the vielbein on Sd−2. The Hamiltonian becomes

H ¼
Z

dΩd−2drrd−2

×Ψ†Γ0

�
−iΓd−1

�
∂r þ

d − 2

2r

�
−
i
r
Γaêμa∇̂μ − im

�
Ψ;

ðA13Þ

where ∇̂μ and m are the spinor covariant derivative and the
coordinate index on Sd−2, respectively. We want to reduce this
to a number of (1þ 1)-dimensional fermions on r. We choose
the basis of the gamma matrices as follows:

Γ0¼ i1⊗σ3; Γd−1¼1⊗σ2; Γa¼ γa⊗σ1; ðA14Þ

where γa and 1 are the gamma matrices and the identity matrix
in (d − 2) dimensions satisfying fγa; γbg ¼ 2δab, and σi
(i ¼ 1, 2, 3) the Pauli matrices. Then there appears the
Dirac operator =∇Sd−2 ≡ γaêμa∇̂μ on Sd−2 in the second term
in the angle bracket. It is known that the eigenfunction ψ l

of the Dirac operator =∇Sd on a unit sphere Sd is labeled by a
non-negative integer l ≥ 0 with eigenvalues (Camporesi and
Higuchi, 1996),

i=∇SdχðsÞl;d ¼ s

�
lþ d

2

�
χðsÞl;d ; ðA15Þ

where s ¼ � and their degeneracy gfðd; lÞ is

gfðd; lÞ ¼
2½d=2�Γðlþ dÞ

l!ΓðdÞ : ðA16Þ

We expand the Dirac fermion by the eigenfunctions

ΨðsÞ
l ¼ χðsÞl;d−2 ⊗ ½r1−d=2ψ ðsÞ

l ðrÞ�; ðA17Þ

so that ψ ðsÞ
l ðrÞ satisfies the anticommutation relation

fψ ðsÞ
l ðrÞ; (ψ ðs0Þ

l0 ðr0Þ)†g ¼ iδss0δll0δðr − r0Þ; ðA18Þ

and rewrite the Hamiltonian as the sum over the angular
modes

H ¼
X∞
l¼0

X
s¼�

gfðd − 2; lÞHðsÞ
l ; ðA19Þ

with

HðsÞ
l ¼

Z
dr

�
−
i
2
½ψ ðsÞ

l ðrÞ�†σ1∂rψ
ðsÞ
l ðrÞ

þ i
2
∂r½ψ ðsÞ

l ðrÞ�†σ1ψ ðsÞ
l ðrÞ

þ s
r

�
lþ d − 2

2

�
½ψ ðsÞ

l ðrÞ�†σ2ψ ðsÞ
l ðrÞ

þm½ψ ðsÞ
l ðrÞ�†σ3ψ ðsÞ

l ðrÞ
�
: ðA20Þ

To discretize the radial coordinate r to lattice labeled by
j ¼ 1; 2;…; N with lattice spacing a, we replace

r → ja; δðr − r0Þ → δjk
a

;

ψ ðsÞ
l ðrÞ → ψ ðsÞ

l;jffiffiffi
a

p ; ∂rψ
ðsÞ
l ðrÞ → ψ ðsÞ

l;jþ1 − ψ ðsÞ
l;j

a
; ðA21Þ

and then the discretized Hamiltonian reads
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HðsÞ
l ¼ 1

a

XN
j;k¼1

ðψ ðsÞ
l;j Þ†ðMðsÞ

l Þj;kψ ðsÞ
l;k ðA22Þ

with the Hermitian matrix MðsÞ
l given by

ðMðsÞ
l Þk;k ¼ s

k

�
lþ d − 2

2

�
σ2 þ ðmaÞσ3;

ðMðsÞ
l Þk;kþ1 ¼ −ðMðsÞ

l Þkþ1;k ¼ −
i
2
σ1: ðA23Þ

Finally the entanglement entropy of the free massive Dirac
fermion is given by the sum over the angular modes l,

SA ¼
X∞
l¼0

X
s¼�

gfðd − 2; lÞSðsÞl ; ðA24Þ

where SðsÞl is the entropy of the lth mode given by the

formula (A10) with the two-point function CðsÞ
l of the

form (A4) for the Hermitian matrix MðsÞ
l , Eq. (A23).
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new generalization and some properties,” J. Math. Phys. (N.Y.) 54,
122203.

Myers, Robert C., and Ajay Singh, 2012a, “Comments on Holo-
graphic Entanglement Entropy and RG Flows,” arXiv:1202.2068.

Myers, Robert C., and Ajay Singh, 2012b, “Entanglement Entropy
for Singular Surfaces,” J. High Energy Phys. 09, 013.

Myers, Robert C., and Aninda Sinha, 2010, “Seeing a C-Theorem
with Holography,” Phys. Rev. D 82, 046006.

Myers, Robert C., and Aninda Sinha, 2011, “Holographic c-theorems
in arbitrary dimensions,” J. High Energy Phys. 01, 125.

Nakaguchi, Yuki, and Tatsuma Nishioka, 2016, “A holographic proof
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