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Luca Pezzè and Augusto Smerzi

QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy

Markus K. Oberthaler

Kirchhoff-Institut für Physik, Universität Heidelberg,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

Roman Schmied and Philipp Treutlein

Department of Physics, University of Basel,
Klingelbergstrasse 82, 4056 Basel, Switzerland

(published 5 September 2018)

Quantum technologies exploit entanglement to revolutionize computing, measurements, and
communications. This has stimulated the research in different areas of physics to engineer and
manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms.
Thanks to the large and tunable nonlinearities and the well-developed techniques for trapping,
controlling, and counting, many groundbreaking experiments have demonstrated the generation of
entangled states of trapped ions, cold, and ultracold gases of neutral atoms. Moreover, atoms can
strongly couple to external forces and fields, which makes them ideal for ultraprecise sensing and time
keeping. All these factors call for generating nonclassical atomic states designed for phase estimation
in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the
sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and
the experiments with atomic ensembles that have demonstrated many-particle entanglement and
quantum-enhanced metrology.
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I. INTRODUCTION

The precise measurement of physical quantities such as
the strength of a field, a force, or time plays a crucial role in
the advancement of physics. Precision measurements are
very often obtained by mapping the physical quantity to a
phase shift that can be determined using interferometric
techniques. Phase estimation follows the general scheme
outlined in Fig. 1: a probe state ρ̂0 of N particles is prepared,
acquires a phase shift θ, and is finally detected. An estimate
ΘðμÞ of the phase shift is obtained from the measurement
outcome μ. This conceptually simple scheme is common to
all interferometric sensors: from gravitational wave detectors
to atomic clocks, gyroscopes, and gravimeters, just to name
a few. The goal is to estimate θ with the smallest possible
uncertainty Δθ given finite resources such as time and
number of particles. The noise that determines Δθ can be of
a technical (classical) or fundamental (quantum) nature
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(Helstrom, 1976; Holevo, 1982; Braunstein and Caves,
1994). Current two-mode atomic sensors are limited by
the so-called standard quantum limit ΔθSQL ¼ 1=

ffiffiffiffi
N

p
inher-

ent in probes using a finite number of uncorrelated
(Giovannetti, Lloyd, and Maccone, 2006) or classically
correlated (Pezzè and Smerzi, 2009) particles. Yet the
standard quantum limit is not fundamental (Caves, 1981;
Bondurant and Shapiro, 1984; Yurke, McCall, and Klauder,
1986). Quantum-enhanced metrology studies how to ex-
ploit quantum resources, such as squeezing and entangle-
ment, to overcome this classical bound (Giovannetti, Lloyd,
and Maccone, 2004, 2011; Pezzè and Smerzi, 2014; Tóth
and Apellaniz, 2014). Research on quantum metrology with
atomic ensembles also sheds new light on fundamental
questions about many-particle entanglement (Amico et al.,
2008; Gühne and Tóth, 2009; Horodecki et al., 2009)
and related concepts, such as Einstein-Podolsky-Rosen
correlations (Reid et al., 2009) and Bell nonlocality
(Brunner et al., 2014).
Since the systems of interest for quantum metrology often

contain thousands or even millions of particles, it is gen-
erally not possible to address, detect, and manipulate all
particles individually. Moreover, the finite number of mea-
surements limits the possibility to fully reconstruct the
generated quantum states. These limitations call for con-
ceptually new approaches to the characterization of entan-
glement that rely on a finite number of coarse-grained
measurements. In fact, many schemes for quantum metrol-
ogy require only collective manipulations and measurements
on the entire atomic ensemble. Still, the results of such
measurements allow one to draw many interesting conclu-
sions about the underlying quantum correlations between the
particles.

A. Entanglement and interferometric sensitivity enhancement:
Exemplary cases

We illustrate here how the standard quantum limit arises
in interferometry and how it can be overcome using
entanglement. Consider a Ramsey interferometer sequence
(Ramsey, 1963) between two quantum states jai and jbi;
see Sec. II. Let us discuss first the case of a single atom
initially prepared in the probe state jai. The atom is
transformed to ðjai þ jbiÞ= ffiffiffi

2
p

by a resonant π=2 pulse
corresponding to the first beam splitter of the interferometer.
During the subsequent interrogation time, jai and jbi

acquire a relative phase θ, such that the state evolves to
ðe−iθ=2jai þ eiθ=2jbiÞ= ffiffiffi

2
p

. The phase θ encodes the quantity
to be measured. Finally, a second resonant π=2 pulse (the
second beam splitter) is applied so that the output state is
cosðθ=2Þjai þ sinðθ=2Þjbi. The phase θ can now be esti-
mated, for instance, by measuring the population difference
M̂ ¼ jaihaj − jbihbj between the two states. In this simple
example the interferometer signal is the expectation value
hM̂i ¼ cos θ while the noise at the output is quantified by
the variance Δ2M̂ ¼ sin2 θ.
If we now repeat the same interferometric procedure

with N uncorrelated atoms, the signal hM̂i, where M̂ ¼P
N
i¼1 jaiihaj − jbiihbj is now the population difference of

N atoms, will be simply given by N times that of a single
atom. Because the atoms are uncorrelated, the variance Δ2M̂
will also be multiplied by a factor N and correspondingly the
standard deviation ΔM̂ will increase by

ffiffiffiffi
N

p
. Overall, this

results in a phase uncertainty of Δθ ¼ ΔM̂=jdhM̂i=dθj ¼
1=

ffiffiffiffi
N

p
. This is precisely the standard quantum limit ΔθSQL,

which arises from the binomial statistics of the N uncorrelated
particles.
Overcoming this sensitivity limit requires entanglement

between the particles. One possibility, suggested by the above
formula, is to engineer quantum correlations that lead to sub-
binomial statistics Δ2M < N at the point of maximum slope
of the signal, while keeping that slope (i.e., the interferometer
contrast) of the order of N. In this way, a phase uncertainty of
Δθ < 1=

ffiffiffiffi
N

p
can be achieved. States that satisfy these con-

ditions are called spin squeezed1 (Wineland et al., 1992, 1994)
and are an important class of useful states in quantum
metrology (Ma et al., 2011). Spin-squeezed states can be
created by making the atoms interact with each other for a
relatively short time (Kitagawa and Ueda, 1993) generating
entanglement between them (Sørensen et al., 2001; Sørensen
and Mølmer, 2001).
Spin-squeezed states are only a small subset of the full class

of entangled states that are useful for quantum-enhanced
metrology. A prominent example is the Greenberger-Horne-
Zeilinger (GHZ) state ðjai⊗N þ jbi⊗NÞ= ffiffiffi

2
p

(also indicated as
NOON state when considering bosonic particles), which is not
spin squeezed but can nevertheless provide phase sensitivities
beyond the standard quantum limit (Bollinger et al., 1996;
Lee, Kok, and Dowling, 2002).

B. Entanglement useful for quantum-enhanced metrology

In the context of phase estimation, the idea that quantum
correlations are necessary to overcome the standard quantum
limit emerged already in pioneeringworks (Yurke,McCall, and
Klauder, 1986; Wineland et al., 1992; Kitagawa and Ueda,
1993). In recent years, it has been clarified that only a special
class of quantum correlations can be exploited to estimate an
interferometric phase with sensitivity overcomingΔθSQL. This
class of entangled states is fully identified by the quantum

state  
preparation 

phase  
encoding readout estimation 

ρ̂0 θ μ Θ

FIG. 1. Building blocks of phase estimation: (i) preparation of
the probe state ρ̂0, (ii) encoding of a phase shift θ that depends on
the physical quantity of interest, (iii) readout, where μ indicates a
generic measurement result, and (iv) estimation, where the
estimator ΘðμÞ is a function of the measurement result(s). The
uncertainty Δθ of the estimation depends crucially on all of these
operations.

1Indeed we will later see that dhM̂i=dθ and Δ2M̂ can be
written in terms of mean and variance of collective spin operators;
see Sec. II.A.
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Fisher information FQ. The quantum Fisher information is
inversely proportional to the maximum phase sensitivity
achievable for a given probe state and interferometric trans-
formation: the so-called quantum Cramér-Rao bound
ΔθQCR ¼ 1=

ffiffiffiffiffiffi
FQ

p
(Helstrom, 1967; Braunstein and Caves,

1994). It thus represents the figure of merit for the sensitivity
of a generic parameter-estimation problem involving quan-
tum states and will be largely discussed in this review. The
condition FQ > N (Pezzè and Smerzi, 2009) is sufficient for
entanglement and necessary and sufficient for the entangle-
ment useful for quantum metrology: it identifies the class of
states characterized by ΔθQCR < ΔθSQL, i.e., those that can
be used to overcome the standard quantum limit in any two-
mode interferometer where the phase shift is generated by a
local Hamiltonian. Spin-squeezed, GHZ and NOON states
fulfill the condition FQ > N. Phase uncertainties down to

Δθ ¼ 1=
ffiffiffiffiffiffi
kN

p
can be obtained with metrologically useful k-

particle entangled states (Hyllus, Laskowski et al., 2012;
Tóth, 2012). In the absence of noise, the ultimate limit is
ΔθHL ¼ 1=N, the so-called Heisenberg limit (Yurke, McCall,
and Klauder, 1986; Holland and Burnett, 1993; Giovannetti,
Lloyd, and Maccone, 2006), which can be reached with

metrologically useful genuine N-particle entangled states
(k ¼ N).

C. Generation of metrologically useful entanglement
in atomic ensembles

A variety of techniques have been used to generate
entangled states useful for quantum metrology with atomic
ensembles. The crucial ingredient is interaction between the
particles, for instance atom-atom collisions in Bose-Einstein
condensates, atom-light interactions in cold thermal ensem-
bles (including experiments performed with warm vapors in
glass cells), or combined electrostatic and ion-light interaction
in ion chains. Figure 2 summarizes the experimental achieve-
ments (the gain of phase sensitivity relative to the standard
quantum limit) as a function of the number of particles. Stars
in Fig. 2 show the measured phase sensitivity gain obtained
after a full interferometer sequence using entangled states as
input to the atom interferometer. Filled circles report witnesses
of metrologically useful entanglement (i.e., spin squeezing
and Fisher information) measured on experimentally gener-
ated states, representing potential improvement in sensitivity.

FIG. 2. Gain of phase sensitivity over the standard quantum limit ΔθSQL ¼ 1=
ffiffiffiffi
N

p
achieved experimentally with trapped

ions (black symbols), Bose-Einstein condensates (red), and cold thermal ensembles (blue). The gain is shown on logarithmic
[left, dB, 10 log10ðΔθSQL=ΔθÞ2] and linear [right, ðΔθSQL=ΔθÞ2] scales. The solid thick line is the Heisenberg limit ΔθHL ¼ 1=N.
Stars refer to directly measured phase sensitivity gains, performing a full phase estimation experiment. Circles are expected
gains based on a characterization of the quantum state, e.g., calculated as Δθ ¼ ξR=

ffiffiffiffi
N

p
, where ξR is the spin-squeezing para-

meter or as Δθ ¼ 1=
ffiffiffiffiffiffi
FQ

p
, where F is the Fisher information. Filled (open) circles indicate results obtained (inferred) without

(with) subtraction of technical and/or imaging noise. Every symbol is accompanied by a number (in chronological order)
corresponding to the reference reported in the side table. Here N is the total number of particles or, in the presence of fluctuations,
the mean total.
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Open circles are inferred values, being obtained after sub-
traction of detection noise. The Heisenberg limit has been
reached with up to N ∼ 10 trapped ions. Attaining this
ultimate bound with a much larger number of particles is
beyond current technology as it requires the creation and
protection of large amounts of entanglement. Nevertheless,
metrological gains up to ðΔθSQL=ΔθÞ2 ∼ 100 have been
reported with large atomic ensembles (Cox et al., 2016;
Hosten, Engelsen et al., 2016). A glance at Fig. 2 reveals
how quantum metrology with atomic ensembles is a very
active area of research in physics. Moreover, the reported
results prove that the field is now mature enough to take the
step from proofs of principle to technological applications.

D. Outline

This review presents modern developments of phase
estimation techniques in atomic systems aided by quantum-
mechanical entanglement, as well as fundamental studies of
the associated entangled states. In Sec. II, we give a theoretical
overview of quantum-enhanced metrology. We first discuss
the concepts of spin squeezing and Fisher information con-
sidering spin-1=2 particles. We then illustrate different atomic
systems where quantum-enhanced phase estimation or, at
least, the creation of useful entanglement for quantum
metrology has been demonstrated. Sections III and IV review
the generation of entangled states in Bose-Einstein conden-
sates. Section V describes the generation of entangled states of
many atoms through the common coupling to an external light
field. Section VI describes metrology with ensembles of
trapped ions. Finally, Sec. VII gives an overview of the
experimentally realized entanglement-enhanced interferome-
ters and the realistic perspective to increase the sensitivity of
state-of-the-art atomic clocks and magnetometers. This sec-
tion also discusses the impact of noise in the different
interferometric protocols.

II. FUNDAMENTALS

In this review we consider systems and operations involving
N particles and assume that all of their degrees of freedom are
restricted to only two modes (single-particle states) that we
identify as jai and jbi. These can be two hyperfine states of an
atom, as in a Ramsey interferometer (Ramsey, 1963), two
energy levels of a trapping potential, or two spatially separated
arms, as in a Mach-Zehnder interferometer (Zehnder, 1891;
Mach, 1892); see Fig. 3. The interferometer operations are
collective, acting on all particles in an identical way. The
idealized formal description of these interferometer models is
mathematically equivalent (Wineland et al., 1994; Lee, Kok,
andDowling, 2002): as discussed in Sec. II.A, it corresponds to
the rotation of a collective spin (Yurke, McCall, and
Klauder, 1986).

A. Collective spin systems

1. Single spin

By identifying mode jai with spin up and mode jbi
with spin down, a (two-mode) atom can be described as an
effective spin-1=2 particle: a qubit (Peres, 1995; Nielsen

and Chuang, 2000). Any pure state of a single qubit can
be written as jϑ;φi ¼ cosðϑ=2Þjai þ eiφ sinðϑ=2Þjbi, with
0 ≤ ϑ ≤ π and 0 ≤ φ < 2π the polar and azimuthal angle,
respectively, in the Bloch sphere. Pure states satisfy hσ̂i ¼ s,
where σ̂ ¼ fσ̂x; σ̂y; σ̂zg is the Pauli vector and s ¼
fsin ϑ cosφ; sin ϑ sinφ; cos ϑg is the mean spin direction with
jsj ¼ 1. Mixed qubit states can be expressed as ρ̂ ¼ ð1þ
s · σ̂Þ=2 and have an additional degree of freedom given by the
length of the spin vector 0 ≤ jsj ≤ 1, such that the effective
state vector s lies inside the Bloch sphere.

2. Many spins

To describe an ensemble of N distinguishable qubits, we
can introduce the collective spin vector Ĵ ¼ fĴx; Ĵy; Ĵzg,
where

Ĵx¼
1

2

XN
l¼1

σ̂ðlÞx ; Ĵy¼
1

2

XN
l¼1

σ̂ðlÞy ; Ĵz¼
1

2

XN
l¼1

σ̂ðlÞz ; ð1Þ

and σ̂ðlÞ is the Pauli vector of the lth particle. In particular, Ĵz is
half the difference in the populations of the two modes. The
operators (1) satisfy the angular momentum commutation
relations

(a) 

(c) 

(b) 

a
⊗ N

π/2 rotation 
around the x axis 

b
⊗ N

θ rotation  
around the z axis 

-π/2 rotation 
around the x axis 

θ θ

θ rotation around the y axis 

FIG. 3. Two-mode interferometers. In a Mach-Zehnder inter-
ferometer (a) two spatial modes jai and jbi are combined on a
balanced beam splitter, followed by a relative phase shift θ ¼
θa − θb between the two arms, and finally recombined on a
second balanced beam splitter. In a Ramsey interferometer (b) a
resonant Rabi rotation creates a balanced superposition between
two internal states jai and jbi, followed by a relative phase shift
θ ¼ ðΔE=ℏÞTR given by the energy difference ΔE between these
states multiplied by the interrogation time TR. Finally a second
resonant Rabi rotation recombines the two modes. (c) Equivalent
representation of Mach-Zehnder and Ramsey interferometer
operations as rotations of the collective spin on the generalized
Bloch sphere. The initial state here jai⊗N is pointing toward the
north pole. The full sequence is equivalent to the rotation of an
angle θ around the y axis.
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½Ĵx; Ĵy� ¼ iĴz; ½Ĵz; Ĵx� ¼ iĴy; ½Ĵy; Ĵz� ¼ iĴx; ð2Þ

and have a linear degenerate spectrum spanning the 2N-
dimensional Hilbert space. The well-known set of states
jJ;Mi forms a basis, where Ĵ2jJ;Mi ¼ JðJ þ 1ÞjJ;Mi and
ĴzjJ;Mi ¼ MjJ;Mi, with J ∈ fN=2; N=2 − 1;…g as well as
M ∈ f−J;−J þ 1;…;þJg (Biederharn and Louck, 1981).

3. Many spins in a symmetrized state

The Hilbert space spanned by many-qubit states symmetric
under particle exchange is that of total spin J ¼ N=2, which is
the maximum allowed spin length for N particles. This Hilbert
space has dimension N þ 1, linearly increasing with the
number of qubits. Symmetric qubit states are naturally
obtained for N indistinguishable bosons and are described
by the elegant formalism developed by Schwinger in the
1950s (Biederharn and Louck, 1981). Angular momentum
operators are expressed in terms of bosonic creation â† and b̂†

and annihilation â and b̂ operators for the two modes jai
and jbi:

Ĵx ¼
â†b̂þ b̂†â

2
; Ĵy ¼

â†b̂ − b̂†â
2i

; Ĵz ¼
â†â − b̂†b̂

2
:

ð3Þ

They satisfy the commutation relations (2) and commute with
the total number of particles N̂ ¼ â†âþ b̂†b̂. The common
eigenstates of Ĵz and Ĵ2 ¼ ðN̂=2ÞðN̂=2þ 1Þ are called Dicke
states (Dicke, 1954) or two-mode Fock states,

jmzi ¼ jN=2þmiajN=2 −mib

¼ ðâ†ÞN=2þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2þmÞ!p ðb̂†ÞN=2−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2 −mÞ!p jvaci; ð4Þ

where jvaci is the vacuum. They correspond to the sym-
metrized combinations of N=2þm particles in mode jai
and N=2 −m particles in mode jbi, where m ¼ −N=2;
−N=2þ 1;…; N=2. The eigenstates jmni of Ĵn ¼ n · Ĵ,
where n is an arbitrary spin direction, can be obtained by a
proper rotation of jmzi: jmxi ¼ e−iðπ=2ÞĴy jmzi and jmyi ¼
eiðπ=2ÞĴx jmzi, for instance. Finally, it is useful to introduce
raising and lowering operators Ĵ� ¼ Ĵx � iĴy (Ĵþ ¼ â†b̂ and

Ĵ− ¼ b̂†â), transforming the Dicke states as Ĵ�jmzi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2ÞðN=2þ 1Þ −mðm� 1Þp jðm� 1Þzi.

4. Collective rotations

Any unitary transformation of a single qubit is a rotation
e−iðθ=2Þσ̂n on the Bloch sphere, where n and θ are the rotation
axis and rotation angle, respectively. With N qubits, each
locally rotated about the same axis n and angle θ, the

transformation is ⊗N
l¼1 e

−iðθ=2Þσ̂ðlÞn ¼ e−iθĴn . This collective
rotation is the idealized model of most of the interferometric
transformations discussed in this review. In the collective spin
language, a balanced beam splitter is described by e−iðπ=2ÞĴx,

and a relative phase shift by e−iθĴz. Combining the three
transformations eiðπ=2ÞĴxe−iθĴz e−iðπ=2ÞĴx ¼ e−iθĴy , the whole
interferometer sequence [Mach-Zehnder, Fig. 3(a), or
Ramsey, Fig. 3(b)] is equivalent to a collective rotation around
the y axis on the generalized Bloch sphere of maximum radius
N=2 (Yurke, McCall, and Klauder, 1986); see Fig. 3(c).

B. Phase estimation

An interferometer transforms a probe state ρ̂0 depending on
the value of an unknown phase shift θ. Following the general
scheme of Fig. 1, the parameter θ cannot be measured directly
and its estimation proceeds from the results of measurements
performed on identical copies of the output state ρ̂θ of the
interferometer. There are good and bad choices for a meas-
urement observable. Optimal ones (that we will quantify and
discuss in more detail later) are those characterized by a
statistical distribution of measurement results that is max-
imally sensitive to changes of θ. We indicate as PðμjθÞ the
probability of a result2 μ given that the parameter has the value
θ. The conditional probability of observing the sequence μ ¼
fμ1;…; μνg of ν independent measurements is PðμjθÞ ¼Q

ν
i¼1 PðμijθÞ. An estimator ΘðμÞ is a generic function

associating each set of measurement outcomes μ with an
estimate of θ. For instance, a familiar estimator can be
obtained from the interference fringes of a Ramsey interfer-
ometer (and belong to a more general estimation technique
known as the method of moments discussed in Sec. II.B.6).
Since the estimator is a function of random outcomes, it is
itself a random variable. It is thus characterized by a θ-
dependent statistical mean value Θ̄ ¼ P

μPðμjθÞΘðμÞ and
variance

ðΔθÞ2 ¼
X
μ

PðμjθÞ½ΘðμÞ − Θ̄�2; ð5Þ

the sum extending over all possible sequences of ν measure-
ment results. Different estimators can yield very different
values when applied to the same measured data. In the
following, we will be interested in locally unbiased estimators,
i.e., those satisfying Θ̄ ¼ θ and ∂Θ̄=∂θ ¼ 1, so that the
statistical average yields the true parameter value.

1. Cramér-Rao bound and Fisher information

How precise can a statistical estimation be? Are there any
fundamental limits? The first answer came in the 1940s with
the works of Fréchet (1943), Rao (1945), and Cramér (1946),
who independently found a lower bound to the variance (5) of
any arbitrary estimator. The Cramér-Rao bound is one of the
most important results in parameter-estimation theory. For

2In a simple scenario, μ is the eigenvalue of an observable. In a
more general situation, the measurement is described by a positive-
operator-values measure (POVM). A POVM is a set of Hermitian
operators fÊðμÞg parametrized by μ (Nielsen and Chuang, 2000) that
are positive, ÊðμÞ ≥ 0, to guarantee non-negative probabilities
PðμjθÞ ¼ Tr½ρ̂θÊðμÞ� ≥ 0, and satisfy

P
μ ÊðμÞ ¼ 1, to ensure nor-

malization
P

μPðμjθÞ ¼ 1.
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an unbiased estimator and ν independent measurements, the
Cramér-Rao bound reads

Δθ ≥ ΔθCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
νFðθÞp ; ð6Þ

where

FðθÞ ¼
X
μ

1

PðμjθÞ
�∂PðμjθÞ

∂θ
�

2

ð7Þ

is the Fisher information (Fisher, 1922, 1925), the sum
extending over all possible values of μ. The factor 1=

ffiffiffi
ν

p
in Eq. (6) is the statistical improvement when performing
independent measurements on identical copies of the probe
state. The Cramér-Rao bound assumes mild differentiability
properties of the likelihood function PðμjθÞ and thus holds
under very general conditions3; see, for instance, Kay (1993).
No general unbiased estimator is known for small ν. In the
central limit ν ≫ 1 at least one efficient and unbiased
estimator exists in general: the maximum of the likelihood;
see Sec. II.B.5.

2. Lower bound to the Fisher information

A lower bound to the Fisher information can be obtained
from the rate of change with θ of specific moments of the
probability distribution (Pezzè and Smerzi, 2009):

FðθÞ ≥ 1

ðΔμÞ2
�
dμ̄
dθ

�
2

; ð8Þ

where μ̄ ¼ P
μPðμjθÞμ, and ðΔμÞ2 ¼ P

μPðμjθÞðμ − μ̄Þ2.
The Fisher information is larger because it takes into account
the change with θ of the full probability distribution, rather
than some moments.
Lower bounds to the Fisher information can also be

obtained from reduced probability distributions. These are
useful, for instance, when estimating the phase shift encoded
in a many-body distribution from the reduced one-body
density, e.g., from the intensity of a spatial interference pattern
(Chwedeńczuk et al., 2012). One finds

FðθÞ ≥ NF1ðθÞ
1þ ðN − 1ÞC=F1ðθÞ

; ð9Þ

where

F1ðθÞ ¼
Z

dx
1

P1ðxjθÞ
�
dP1ðxjθÞ

dθ

�
2

is the Fisher information corresponding to the one-body
density P1ðxjθÞ, and the coefficient

C ¼
Z

dx1

Z
dx2

P2ðx1; x2jθÞ
P1ðx1jθÞP1ðx2jθÞ

dP1ðx1jθÞ
dθ

dP1ðx2jθÞ
dθ

ð10Þ
further depends on the two-body density P2ðx1; x2jθÞ.
Note that C ¼ 0 in the absence of correlations, namely,
P2ðx1; x2jθÞ ¼ P1ðx1jθÞP1ðx2jθÞ, and in this case Eq. (9)
reduces to FðθÞ ≥ NF1ðθÞ.

3. Upper bound to the Fisher information: The quantum Fisher
information

An upper bound to the Fisher information is obtained by
maximizing Eq. (7) over all possible generalized measure-
ments in quantum mechanics (Braunstein and Caves, 1994),
FQ½ρ̂θ� ¼ maxfÊgFðθÞ, called the quantum Fisher information
(see footnote 2 for the notion of generalized measurements and
their connection to conditional probabilities). We have
FðθÞ ≤ FQ½ρ̂θ�, and the corresponding bound on the phase
sensitivity for unbiased estimators and ν independent mea-
surements is

ΔθCR ≥ ΔθQCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νFQ½ρ̂θ�

p ; ð11Þ

called the quantum Cramér-Rao bound (Helstrom, 1967). The
quantum Fisher information and the quantum Cramér-Rao
bound allow one to calculate the optimal phase sensitivity of
any given probe state and interferometer transformation; for
recent reviews, see Paris (2009), Giovannetti, Lloyd, and
Maccone (2011), Pezzè and Smerzi (2014), and Tóth and
Apellaniz (2014). The quantum Fisher information can be
expressed as the variance FQ½ρ̂θ� ¼ ðΔL̂Þ2 of a θ-dependent
Hermitian operator L̂ called the symmetric logarithmic deriva-
tive and defined by ∂θρ̂θ ¼ ðρ̂θL̂þ L̂ρ̂θÞ=2 (Helstrom, 1967,
1976; Holevo, 1982). A general expression of the quantum
Fisher information can be found in terms of the spectral
decomposition of the output state ρ̂θ ¼

P
κqκjκihκj where

both the eigenvalues qκ ≥ 0 and the associated eigenvectors
jκi depend on θ (Braunstein and Caves, 1994; Braunstein,
Caves, and Milburn, 1996):

FQ½ρ̂θ� ¼
X
κ;κ0

qκþq
κ0>0

2

qκ þ qκ0
jhκ0j∂θρ̂θjκij2; ð12Þ

showing thatFQ½ρ̂θ� depends solely on ρ̂θ and its first derivative
∂θρ̂θ. This equation can also be rewritten as

FQ½ρ̂θ� ¼
X
κ

ð∂θqκÞ2
qκ

þ 2
X
κ;κ0

qκþq
κ0>0

ðqκ − qκ0 Þ2
qκ þ qκ0

jhκ0j∂θκij2: ð13Þ

The first term quantifies the information about θ encoded in qκ
and corresponds to the Fisher information obtained when
projecting over the eigenstates of ρ̂θ. The second term accounts
for the change of eigenstates with θ (we indicate j∂θκi≡∂θjκi). For pure states, ρ̂θ ¼ jψθihψθj, the first term in Eq. (13)

3The Cramér-Rao theorem follows from
P

μ∂θPðμjθÞ ¼ 0

that implies ∂θΘ̄ ¼ P
μ½ΘðμÞ − Θ̄�∂θPðμjθÞ, and the Cauchy-

Schwarz inequality ð∂θΘ̄Þ2 ≤ ðΔθÞ2PμPðμjθÞ½∂θ logPðμjθÞ�2. The
equality is obtained if and only if ∂θ logPðμjθÞ ¼ λ½ΘðμÞ − Θ̄�
with λ independent on μ. Equation (6) is recovered when
∂θΘ̄ ¼ 1, using the additivity of the Fisher informationP

μPðμjθÞ½∂θ logPðμjθÞ�2 ¼ νFðθÞ.
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vanishes, while the second term simplifies to FQ½jψθi� ¼
4ðh∂θψθj∂θψθi − jh∂θψθjψθij2Þ.
For unitary transformations generated by some Hermitian

operator Ĥ, we have ∂θρ̂θ ¼ i½ρ̂θ; Ĥ�, and Eq. (13) becomes4

(Braunstein and Caves, 1994; Braunstein, Caves, and
Milburn, 1996)

FQ½ρ̂0; Ĥ� ¼ 2
X
κ;κ0

qκþq
κ0>0

ðqκ − qκ0 Þ2
qκ þ qκ0

jhκ0jĤjκij2: ð14Þ

For pure states jψ0i, Eq. (14) reduces to FQ½jψ0i; Ĥ� ¼
4ðΔĤÞ2. For mixed states, FQ½ρ̂0; Ĥ� ≤ 4ðΔĤÞ2. It is worth
recalling here that 4ðΔĤÞ2 ≤ ðhmax − hminÞ2, where hmax and
hmin are the maximum and minimum eigenvalues of Ĥ with
eigenvectors jhmaxi and jhmini, respectively. This bound is
saturated by the states ðjhmaxi þ eiϕjhminiÞ=

ffiffiffi
2

p
, with arbitrary

real ϕ, which are optimal input states for noiseless quantum
metrology (Giovannetti, Lloyd, and Maccone, 2006). In the
presence of noise, the search for optimal quantum states is less
straightforward as discussed in Sec. VII.A.

a. Convexity and additivity

The quantum Fisher information is convex in the state:

FQ½pρ̂ð1Þθ þð1−pÞρ̂ð2Þθ �≤pFQ½ρ̂ð1Þθ �þð1−pÞFQ½ρ̂ð2Þθ �; ð15Þ

with 0 ≤ p ≤ 1. This expresses the fact that mixing quantum
states cannot increase the achievable estimation sensitivity.
The inequality (15) can be proved using the convexity of the
Fisher information (Cohen, 1968; Pezzè and Smerzi, 2014).
The quantum Fisher information of independent subsys-

tems is additive:

FQ½ρ̂ð1Þθ ⊗ ρ̂ð2Þθ � ¼ FQ½ρ̂ð1Þθ � þ FQ½ρ̂ð2Þθ �. ð16Þ

In particular, for an m-fold tensor product ρ̂⊗m
θ we obtain

an m-fold increase of the quantum Fisher information,
FQ½ρ̂⊗m

θ � ¼ mFQ½ρ̂θ�. A demonstration of Eq. (16) can be
found for instance in Pezzè and Smerzi (2014).

b. Optimal measurements

The equality FðθÞ ¼ FQ½ρ̂θ� can always be achieved by
optimizing over all possible measurements. An optimal choice
of measurement for both pure and mixed states is given by the
set of projectors onto the eigenstates of L̂ (Braunstein and
Caves, 1994). This set of observables is necessary and
sufficient for the saturation of the quantum Fisher information
whenever ρ̂θ is invertible and only sufficient otherwise. In
particular, for pure states and unitary transformations, the
quantum Fisher information can be saturated, in the limit
θ → 0, by a dichotomic measurement given by the projection
onto the probe state itself jψ0ihψ0j and onto the orthogonal

subspace 1 − jψ0ihψ0j (Pezzè and Smerzi, 2014). It should be
noted that the symmetric logarithmic derivative, and thus also
the optimal measurement, generally depends on θ, even for
unitary transformations. Nevertheless, without any prior
knowledge of θ, the quantum Cramér-Rao bound can be
saturated in the asymptotic limit of large ν using adaptive
schemes (Hayashi, 2005; Fujiwara, 2006).

c. Optimal rotation direction

Given a probe state, and considering a unitary trans-
formation generated by Ĥ ¼ Ĵn, it is possible to optimize
the rotation direction n in order to maximize the quantum
Fisher information (Hyllus, Gühne, and Smerzi, 2010). This
optimum is given by the maximum eigenvalue of the 3 × 3

matrix

½ΓQ�ij ¼ 2
X
κ;κ0

qκþq
κ0>0

ðqκ − qκ0 Þ2
qκ þ qκ0

hκ0jĴijκihκjĴjjκ0i; ð17Þ

with i; j ¼ x, y, z, and the optimal direction by the
corresponding eigenvector. For pure states ½ΓQ�ij ¼
2ðhĴiĴji þ hĴjĴiiÞ − 4hĴiihĴji.

4. Phase sensitivity and statistical distance

Parameter estimation is naturally related to the problem of
distinguishing neighboring quantum states along a path in the
parameter space (Wootters, 1981; Braunstein and Caves,
1994). Heuristically, the phase sensitivity of an interferometer
can be understood as the smallest phase shift for which the
output state ρ̂θ of the interferometer can be distinguished from
the input ρ̂0. We introduce a statistical distance between
probability distributions,

d2HðP0; PθÞ ¼ 1 − F clðP; PθÞ; ð18Þ

called the Hellinger distance, where F clðP0; PθÞ≡P
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðμj0ÞPðμjθÞp

is the statistical fidelity, or overlap,
between probability distributions, also known as the
Bhattacharyya coefficient (Bhattacharyya, 1943). dH is non-
negative, 0 ≤ dH ≤ 1, and its Taylor expansion reads

d2HðP0; PθÞ ¼
Fð0Þ
8

θ2 þOðθ3Þ: ð19Þ

This equation reveals that the Fisher information is the square
of a statistical speed υH ¼ ∂dH=∂θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fð0Þ=8p
. It measures

the rate at which a probability distribution varies when
tuning the phase parameter θ. Equation (19) has been used
to extract the Fisher information experimentally (Strobel
et al., 2014); see Sec. III.C. As Eq. (18) depends on the
specific measurement, it is possible to associate different
statistical distances to the same quantum states. This justifies
the introduction of a distance between quantum states by
maximizing d2HðP0; PθÞ over all possible generalized measure-
ments (i.e., over all POVM sets, see footnote 2), d2Bðρ̂0; ρ̂θÞ ¼
maxfÊgd

2
HðP0; PθÞ (Fuchs and Caves, 1995), called the Bures

distance (Bures, 1969). Hübner (1992) showed that

4We use the notation FQ½ρ̂θ� to indicate the quantum Fisher
information for a generic transformation of the probe state, and
FQ½ρ̂0; Ĥ� for unitary transformations.
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d2Bðρ̂0; ρ̂θÞ ¼ 1 − FQðρ̂0; ρ̂θÞ; ð20Þ

where FQðρ̂0; ρ̂θÞ ¼ Tr½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂θ

p
ρ̂0

ffiffiffiffiffi
ρ̂θ

pp
� is the transition prob-

ability (Uhlmann, 1976) or the quantum fidelity between states
(Jozsa, 1994); see Bengtsson and Zyczkowski (2006) and
Spehner (2014) for reviews. Uhlmann’s theorem (Uhlmann,
1976) states that FQðρ̂; σ̂Þ ¼ maxjψi;jϕijhψ jϕij, where the
maximization runs over all purifications jψi of ρ̂ and jϕi of
σ̂ (Nielsen and Chuang, 2000). In particular, FQðjψi; jϕiÞ ¼
jhψ jϕij for pure states. ATaylor expansion of Eq. (20) for small
θ gives

d2Bðρ̂0; ρ̂θÞ ¼
FQ½ρ̂0�

8
θ2 þOðθ3Þ: ð21Þ

The quantum Fisher information is thus the square of a
quantum statistical speed υQ ¼ ∂dB=∂θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FQ½ρ̂0�=8
p

, maxi-
mized over all possible generalized measurements. The quan-
tum Fisher information has also been related to the dynamical
susceptibility (Hauke et al., 2016), while bounds have
been derived by Frérot and Roscilde (2016) and Apellaniz
et al. (2017).

5. The maximum likelihood estimator

The maximum likelihood estimator (MLE) is the phase value
that maximizes the likelihood of the observed measurement
sequence μ; see Fig. 4(a): ΘMLEðμÞ ¼ argmaxφPðμjφÞ. The
key role played byΘMLEðμÞ in parameter estimation is due to its
asymptotic properties for independent measurements. For
sufficiently large ν, the distribution of the maximum likelihood
estimator tends to a Gaussian centered at the true value θ and
of variance equal to the inverse Fisher information (Lehmann
and Casella, 2003):

PðΘMLEjθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
νFðθÞ
2π

r
e−½νFðθÞ=2�ðθ−ΘMLEÞ2 . ð22Þ

Therefore, the maximum likelihood estimator is asymptotically
unbiased and its variance saturates the Cramér-Rao bound
ΔθMLE ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
νFðθÞp

. In the central limit, any estimator is as
good as, or worse than, the maximum likelihood estimate.

6. Method of moments

The method of moments exploits the variation with the
phase shift θ of collective properties of the probability
distribution, such as the mean value μ̄ and variance ðΔμÞ2.
Let us take the average μ̄ν ¼ ð1=νÞPν

i¼1 μi of νmeasurements
results μ1;…; μν. The estimator Θmom is the value for which μ̄
is equal to μ̄ν; see Fig. 4(b). Applying this method requires
μ̄ to be a monotonous function of the parameter θ at least in a
local region of parameter values determined from prior
knowledge. The sensitivity of this estimator can be calculated
by error propagation5 giving

Δθmom ¼ Δμffiffiffi
ν

p jdμ̄=dθj . ð23Þ

As expected on general grounds and proved by Eq. (8), the
method of moments is not optimal in general, Δθmom ≤ ΔθCR,
with no guarantee of saturation even in the central limit. The
equality Δθmom ¼ ΔθCR is obtained when the probability
distribution is Gaussian,

PðμjθÞ ¼ e−ðμ−μ̄Þ2=½2ðΔμÞ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðΔμÞ2

p ; ð24Þ

and dðΔμÞ=dθ ≪ dμ̄=dθ, such that the changes of the
complete probability distribution are fully captured by the
shift of its mean value (Pezzè and Smerzi, 2014).
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FIG. 4. Schematic representation of different phase estimation protocols. (a) Maximum likelihood estimation. ΘMLEðμÞ is the absolute
maximum (dashed line) of the likelihood function PðμjφÞ (solid line) corresponding to the observed sequence of results μ. As
schematically shown in the inset, the phase sensitivity ΔθMLE is identified as the root-mean-square fluctuation (shaded region) of the
statistical distribution of ΘMLE, obtained by repeating the measurements several times (at a fixed value of θ). (b) Method of moments.
The blue line is μ̄ as a function of the parameter φ. Via this functional monotonic behavior, it is possible to associate to the measured
mean value μ̄ν the phase estimate ΘmomðμÞ. The phase uncertainty Δθmom follows from the statistical uncertainty Δμ=

ffiffiffi
ν

p
of μ̄ν (gray

region). For ν ≫ 1, Δθmom has a simple expression, Eq. (23), obtained by error propagation, locally approximating μ̄ by the tangent to
the curve (thin black line). (c) Bayesian estimation. Posterior probability distribution PðφjμÞ (solid line). The phase estimate ΘBðμÞ can
be chosen as the weighted averaged phase. The integral

R
ΔθB dφPðφjμÞ gives the probability that the true phase value falls into the

confidence interval ΔθB (gray region) around ΘB.

5A Taylor expansion of μ̄ν around the true value θ gives
μ̄ν ≈ μ̄þ ðdμ̄=dθÞðΘmom − θÞ. We obtain Eq. (23) by identifying
μ̄ν − μ̄ ≈ Δμ=

ffiffiffi
ν

p
(valid for ν ≫ 1) and Θmom − θ ≈ Δθmom.
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Nevertheless, due to its simplicity, Eq. (23) is largely
used in the literature to calculate the phase sensitivity of an
interferometer for various input states and measurement
observables (Yurke, McCall, and Klauder, 1986; Wineland
et al., 1994; Dowling, 1998). For instance, in the case of
unitary rotations generated by Ĥ ¼ Ĵy (as in Ramsey and
Mach-Zehnder interferometers) and taking Ĵz as a measure-
ment observable, Eq. (23) in the limit θ ≈ 0 can be rewritten as

Δθmom ¼ ΔĴzffiffiffi
ν

p jhĴxij
: ð25Þ

This equation is useful to introduce the concept of metro-
logical spin squeezing; see Sec. II.C.5. We recall that
Eqs. (23) and (25) are valid for a sufficiently large number
of measurements.
Finally, there are many examples in the literature where

a small Δθmom is obtained for phase values where
Δμ; dμ̄=dθ → 0, while the ratio Δμ=jdμ̄=dθj remains finite
(Yurke, McCall, and Klauder, 1986; Kim et al., 1998). These
“sweet spots” are very sensitive to technical noise: an
infinitesimal amount of noise may prevent Δμ from vanishing,
while leaving unchanged dμ̄=dθ, such that Δθmom diverges
(Lücke et al., 2011).

7. Bayesian estimation

The cornerstone of Bayesian inference is Bayes’s theorem.
Let us consider two random variables x and y. Their joint
probability density can be expressed asPðx;yÞ¼PðxjyÞPðyÞ
in terms of the conditional probabilityPðxjyÞ and the marginal
probability distributionPðyÞ ¼ R

dxPðx;yÞ. Bayes’s theorem

PðxjyÞ ¼ PðyjxÞPðxÞ
PðyÞ ð26Þ

follows from the symmetry of the joint probability
Pðx;yÞ ¼ PðyjxÞPðxÞ.
We recall that, in a phase inference problem, the set of

measurement results μ is generated by a fixed and unknown
value θ according to the likelihood PðμjθÞ. In the Bayesian
approach to the estimation of θ one introduces a random
variable φ and uses the Bayes’s theorem to define the posterior
probability PðφjμÞ ¼ PðμjφÞPðφÞ=PðμÞ. PðφÞ is the prior
probability distribution that quantifies our (a priori) ignorance
of the true value of the interferometric phase, i.e., before any
measurements were done. One often has no prior knowledge
of the phase (maximum ignorance), which is expressed by a
flat prior distribution PðφÞ ¼ 1=ð2πÞ. Bayes’s theorem allows
one to update our knowledge about the interferometric phase θ
by including measurement results, since PðμjφÞ can be
calculated directly (see the introduction of Sec. II.B) and
PðμÞ is determined by the normalization

R
2π
0 PðφjμÞdφ ¼ 1.

The posterior probability PðφjμÞ provides a degree of belief,
or plausibility, that φ ¼ θ (i.e., that φ is the true value of the
phase), in the light of the measurement data μ. This is radically
different from the standard frequentist view where the
probability is defined as the infinite-sample limit of the

outcome frequency of an observed event. Having the posterior
distribution PðφjμÞ, we can consider any phase φ as the
estimate; see Fig. 4(c). In practice, it is convenient to choose
the weighted averaged

R
2π
0 φPðφjμÞdφ, or the phase corre-

sponding to the maximum of the probability argmaxφPðφjμÞ,
since the corresponding mean square fluctuations saturate the
Cramér-Rao bound (see later). We can further calculate
the probability that the chosen estimate falls into a certain
interval ½θ1; θ2� by integrating

R θ2
θ1

PðφjμÞdφ. To take into
account the periodicity of the probability, quantities such asR
2π
0 eiφPðφjμÞdφ can be calculated. Remarkably, Bayesian
estimation is asymptotically consistent: as the number of
measurements increases, the posterior probability distribution
assigns more weight in the vicinity of the true value. The
Laplace-Bernstein–von Mises theorem (Lehmann and
Casella, 2003; Gill, 2008; Pezzè and Smerzi, 2014) demon-
strates that, under quite general conditions,

PðφjθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
νFðθÞ
2π

r
e−½νFðθÞ=2�ðθ−φÞ2 ; ð27Þ

to leading order in ν, for ν ≫ 1. In this limit, the posterior
probability becomes normally distributed, centered at the true
value of the parameter, and with a variance inversely propor-
tional to the Fisher information. See Van Trees and Bell
(2007) and Li et al. (2018) for an overview of bounds in
Bayesian phase estimation.

C. Entanglement and phase sensitivity

In this section we show how entanglement can offer a
precision enhancement in quantum metrology. We start with
the formal definition of multiparticle entanglement and then
clarify, via the Fisher information introduced in the previous
section, the notion of useful entanglement for quantum
metrology.

1. Multiparticle entanglement

Let us consider a system of N particles (labeled as
l ¼ 1; 2;…; N), each particle realizing a qubit. A pure
quantum state is separable in the particles if it can be written
as a product

jψ sepi ¼ jψ ð1Þi ⊗ jψ ð2Þi ⊗ � � � ⊗ jψ ðNÞi; ð28Þ

where jψ ðlÞi is the state of the lth qubit. A mixed state is
separable if it can be written as a mixture of product states
(Werner, 1989),

ρ̂sep ¼
X
q

pqjψ sep;qihψ sep;qj; ð29Þ

with pq ≥ 0 and
P

qpq ¼ 1. States that are not separable are
called entangled (Gühne and Tóth, 2009; Horodecki et al.,
2009). In the case of N ¼ 2 particles, any quantum state is
either separable or entangled. For N > 2, we need further
classifications (Dür, Vidal, and Cirac, 2000). Multiparticle
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entanglement is quantified by the number of particles in the
largest nonseparable subset. In analogy with Eq. (28), a pure
state of N particles is k separable (also indicated as k produc-
ible in the literature) if it can be written as

jψk sepi ¼ jψN1
i ⊗ jψN2

i ⊗ � � � ⊗ jψNM
i; ð30Þ

where jψNl
i is a state of Nl ≤ k particles and

P
M
l¼1 Nl ¼ N. A

mixed state is k separable if it can be written as a mixture of
k-separable pure states (Gühne, Tóth, and Briegel, 2005)

ρ̂k sep ¼
X
q

pqjψk sep;qihψk sep;qj: ð31Þ

A state that is k separable but not (k − 1) separable is called k-
particle entangled: it contains at least one state of k particles
that does not factorize. Using another terminology (Sørensen
and Mølmer, 2001), it has an entanglement depth larger than
k − 1. In maximally entangled states (k ¼ N) each particle is
entangled with all the others. Finally, note that k-separable
states form a convex set containing the set of k0-separable
states with k0 < k (Gühne and Tóth, 2009).

2. Sensitivity bound for separable states:
The standard quantum limit

The quantum Fisher information of any separable state of N
qubits is upper bounded (Pezzè and Smerzi, 2009):

FQ½ρ̂sep; Ĵn� ≤ N: ð32Þ

This inequality follows from the convexity and additivity of
the quantum Fisher information and uses 4ðΔσ̂nÞ2 ≤ 1 (Pezzè
and Smerzi, 2014). As a consequence of Eqs. (11) and (32),
the maximum phase sensitivity achievable with separable
states is (Giovannetti, Lloyd, and Maccone, 2006)

ΔθSQL ¼ 1ffiffiffiffiffiffi
Nν

p ; ð33Þ

generally indicated as the shot noise or standard quantum
limit. This bound is independent of the specific measurement
and estimator and refers to unitary collective transformations
that are local in the particles. In Eq. (33) N and ν play the
same role: repeating the phase estimation ν times with one
particle has the same sensitivity bound as repeating the phase
estimation 1 time with N ¼ ν particles in a separable state.

3. Coherent spin states

The notion of coherent spin states was introduced by
Radcliffe (1971) and Arecchi et al. (1972) as a generalization
of the field coherent states first discussed by Glauber (1963);
see Zhang, Feng, and Gilmore (1990) for a review. Coherent
spin states are constructed as the product of N qubits (spins
1=2) in pure states all pointing along the same mean spin
direction s ¼ fsin ϑ cosφ; sin ϑ sinφ; cos ϑg:

jϑ;φ; Ni ¼ ⊗
N

l¼1

�
cos

ϑ

2
jail þ eiφ sin

ϑ

2
jbil

�
: ð34Þ

Equation (34) is the eigenstate of Ĵs with the maximum
eigenvalue of N=2. The coherent spin state is a product state
and no quantum entanglement is present between the qubits.
jϑ;φ; Ni can also be written as a binomial sum of Dicke states
with (Arecchi et al., 1972)

hmzjϑ;φ; Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

N
N=2þm

�s �
cos

ϑ

2

�
N=2−m

�
sin

ϑ

2

�
N=2þm

× e−iðmþN=2Þφ. ð35Þ

When measuring the spin component of jϑ;φ; Ni along any
direction ⊥ orthogonal to s, each individual atom is projected
with equal probability into the up and down eigenstates along
this axis, with eigenvalues �1=2, respectively: we thus have
hĴ⊥i ¼ 0, and ðΔĴ⊥Þ2 ¼ N=4 (Yurke, McCall, and Klauder,
1986; Itano et al., 1993).
Coherent spin states are optimal separable states for

metrology. They saturate the equality sign in Eq. (32) and
thus reach the standard quantum limit. Let us consider the
rotation of jϑ;φ; Ni around a direction n perpendicular
to the mean spin direction s (here s, n, and ⊥ are mutually
orthogonal). This rotation displaces the coherent spin state on
the surface of the Bloch sphere; see Fig. 5(a). The initial
and final states become distinguishable after rotating by an
angle θmin heuristically giving the phase sensitivity of the
state. This rotation angle can be obtained from a geometric
reasoning (Yurke, McCall, and Klauder, 1986): we have
ΔĴ⊥ ≈ hĴsi sin θmin, giving θmin ≈ 1=

ffiffiffiffi
N

p
for N ≫ 1. More

rigorously, the squared Bures distance, Eq. (20), between
jϑ;φ; Ni and the rotated e−iθĴn jϑ;φ; Ni is

d2Bðjϑ;φ; Ni; e−iθĴn jϑ;φ; NiÞ ¼ 1 − cosNðθ=2Þ; ð36Þ

that is, d2B ¼ Nθ2=8þOðθ4Þ for small values of θ. According
to Eq. (21) we obtain a quantum Fisher information
FQ½jϑ;φ; Ni; Ĵn� ¼ 4ðΔĴnÞ2 ¼ N. With the method of
moments, Eq. (25), we find a phase sensitivity Δθmom ¼
ΔĴ⊥=ð

ffiffiffi
ν

p jhĴsijÞ ¼ 1=
ffiffiffiffiffiffi
νN

p
(Yurke, McCall, and Klauder,

1986; Itano et al., 1993): while jhĴsij ¼ N=2 reaches its
maximum value, it is the quantum projection noise of
uncorrelated atoms ðΔĴ⊥Þ2 ¼ N=4 that limits the achievable
sensitivity (Wineland et al., 1992, 1994; Itano et al., 1993).
For any rotation around an axis orthogonal to the mean spin
direction, coherent spin states thus satisfy ΔθQCR ¼ ΔθSQL.

4. Useful entanglement for quantum metrology

The violation of Eq. (32), i.e.,

FQ½ρ̂; Ĵn� > N; ð37Þ

is a sufficient condition for particle entanglement in the
state ρ̂. To be more precise, the inequality (37) is the condition
of useful entanglement for quantum metrology: it is a
necessary and sufficient condition for a quantum state to be
useful in the estimation of a phase shift θ, with an interfer-

ometer implementing the transformation e−iθĴn , with a
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sensitivity overcoming the standard quantum limit (Pezzè and
Smerzi, 2009). Not all entangled states are useful for quantum
metrology. Yet, useless entangled states for quantum metrol-
ogy might be useful for other quantum technologies. It should
also be noted that not all useful entangled states for quantum
metrology are equally useful: large quantum Fisher informa-
tion requires large entanglement depth. For states of type (31),
we have (Hyllus, Laskowski et al., 2012; Tóth, 2012)

FQ½ρ̂k sep; Ĵn� ≤ sk2 þ r2; ð38Þ

where s ¼ bN=kc is the integer part of N=k, and r ¼ N − sk
(note that sk2 þ r2 ¼ Nk when N is divisible by k). If the

bound (38) is surpassed, then the probe state contains metro-
logically useful (kþ 1)-particle entanglement: when used as
an input state of the interferometer defined by the trans-
formation e−iθĴn , this state enables a phase sensitivity better
than any k-separable state. The bound (38) increases mono-
tonically with k (see Fig. 6), in particular, FQ½ρ̂k sep; Ĵn� ≤ Nk.
The maximum value of the quantum Fisher information is
obtained for genuine N-particle entangled states k ¼ N giving
(Pezzè and Smerzi, 2009)

FQ½ρ̂; Ĵn� ≤ N2: ð39Þ

Equation (39) defines the ultimate Heisenberg limit6 7 of phase
sensitivity (Giovannetti, Lloyd, and Maccone, 2006),

ΔθHL ¼ 1

N
ffiffiffi
ν

p : ð40Þ

The difference between Eqs. (33) and (40) is a faster scaling
of the phase sensitivity with the number of particles, which
cannot be obtained by exploiting classical correlations among
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FIG. 5. Rotation of different quantum states. Wigner distribu-
tion normalized by its maximum value (left column), see
Sec. II.D, and spin probability PyðmÞ ¼ jhmyjψij2 along the y
direction (thick red histograms, right column) of different
quantum states jψi: (a) a coherent spin state pointing along
the positive x axis, jπ=2; 0; Ni (Sec. II.C.3); (b) a spin-squeezed
state with ξ2R ¼ 0.1 (Sec. II.C.5); (c) a twin-Fock state
(Sec. II.C.6); and (d) a NOON state (Sec. II.C.7). The thin blue
histogram is PyðmÞ ¼ jhmyje−iθĴz jψij2 obtained after a rotation
of the state by an angle θ ¼ 2=

ffiffiffiffi
N

p
in (a), θ ¼ 2ξR=

ffiffiffiffi
N

p
in (b),

θ ¼ 2=N in (c), and θ ¼ π=N in (d). Here N ¼ 100.
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FIG. 6. Useful k-particle entanglement for quantum metrology.
k-separable states have a quantum Fisher information bounded by
the solid line, Eq. (38). The dashed line is FQ=N ¼ k. Here
N ¼ 100. Adapted from Hyllus, Laskowski et al., 2012.

6The name “Heisenberg limit”was first introduced by Holland and
Burnett (1993) referring to the heuristic number-phase Heisenberg
uncertainty relation ΔθΔN ≥ 1. We refer to the Heisenberg scaling
of phase sensitivity when Δθ ¼ OðN−1Þ.

7It is possible to maximize the phase sensitivity by optimizing the
number of particles N entering into the interferometer multiplied by
the times ν that the measurement is performed (Braunstein, Lane, and
Caves, 1992; Lane, Braunstein, and Caves, 1993; Pezzè, 2013). This
provides a definition of Heisenberg limit 1=NT , where NT ¼ Nνopt,
and νopt is the optimal number of measurements that maximize the
phase sensitivity for a fixed number of particles N. Since νopt may
depend on N, there might be, in principle, states having a Fisher
information larger than N but a phase sensitivity above the standard
quantum limit 1=

ffiffiffiffiffiffiffi
NT

p
.
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the qubits. Still the standard quantum limit can be surpassed
using separable states at the expense of other resources
(Giovannetti, Lloyd, and Maccone, 2006) such as, for in-
stance, exploiting a multiround protocol (Higgins et al.,
2007).
We note that the quantum Fisher information is bounded by

FQ½ρ̂; Ĵn� ≤ 4ðΔĴnÞ2 ≤ ð2JÞ2 ≤ N2, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp

is the
spin length. This shows that the most sensitive states lie in a
subspace with maximum spin J ¼ N=2, namely, those sym-
metric under particle exchange (see Sec. II.A).
Equations (33) and (40) can be generalized to transforma-

tions e−iθ
P

N
l¼1

ĥðlÞ , where ĥðlÞ is an arbitrary local Hamiltonian
for the lth particles (that can be a generic qudit). Taking ĥðlÞ ¼
ĥ for all N particles, we have ΔθSQL ¼ 1=ðδh ffiffiffiffiffiffi

Nν
p Þ, and

ΔθHL ¼ 1=ðδhN ffiffiffi
ν

p Þ (Giovannetti, Lloyd, and Maccone,
2006), where δh ¼ jhmax − hminj, and hmax and hmin are the
maximum and minimum eigenvalues of ĥ, respectively.
We finally note that not all N-particle entangled states

reach the Heisenberg limit, as exemplified by the W state
jWi ¼ jð�N=2 ∓ 1Þzi, which corresponds to a Dicke state
with one excitation. While theW state is N-particle entangled
(Dür, Vidal, and Cirac, 2000), its quantum Fisher information
amounts only to 3N − 2.

5. Metrological spin squeezing

Spin-squeezed states are a class of states having squeezed
spin variance along a certain direction, at the cost of
antisqueezed variance along an orthogonal direction. Spin
squeezing is one of the most successful approaches to witness
large-scale quantum entanglement beating the standard quan-
tum limit in interferometry.
Let us consider the unitary rotation of a state on the Bloch

sphere around an axis n perpendicular to the mean spin
direction s, see Fig. 5(b), and calculate the phase sensitivity
according to the error propagation formula, Eq. (25). We can
write Δθmom ¼ ξR=

ffiffiffiffiffiffi
νN

p
,8 where

ξ2R ¼ NðΔĴ⊥Þ2
hĴsi2

; ð41Þ

and ⊥ is orthogonal to both s and n. ξR is the spin-squeezing
parameter introduced by Wineland et al. (1992, 1994). If
ξ2R < 1 holds, the state is said to be (metrologically) spin
squeezed along the⊥ axis (Wineland et al., 1992, 1994) and it
can be used to overcome the standard quantum limit (i.e.,
reaching Δθmom < 1=

ffiffiffiffiffiffi
νN

p
). This requires states having spin

fluctuations orthogonal to the rotation axis smaller than the
projection noise of uncorrelated atoms, i.e., ðΔĴ⊥Þ2 < N=4,
and sufficiently large spin length hĴsi.

a. Optimal spin-squeezed states

Optimal spin-squeezed states are searched among the so-
called minimum uncertainty states (Aragone et al., 1974;
Rashid, 1978; Wòdkiewicz and Eberly, 1985). These states
saturate the Heisenberg uncertainty relation

ðΔĴnÞ2ðΔĴ⊥Þ2 ≥ jhĴsij2=4; ð42Þ

since ½Ĵn; Ĵ⊥� ¼ iĴs. We thus have ξ2R ¼ N=½4ðΔĴnÞ2� and a
lower bound to ξ2R is obtained by maximizing ðΔĴnÞ2, giving
(Hillery and Mlodinow, 1993; Agarwal and Puri, 1994)

ξ2R ≥
2

N þ 2
: ð43Þ

This bound can be saturated by the state
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
j0⊥i þ

αðj1⊥i þ j − 1⊥iÞ=
ffiffiffi
2

p
in the limit α ↦ 0 (Brif and Mann,

1996), where jm⊥i are Dicke states defined in Sec. II.A. Note
that spin-squeezed states can achieve a Heisenberg scaling of
phase sensitivity Δθmom ¼ OðN−1Þ, but not the Heisenberg
limit (40) for N > 2. Optimal spin-squeezed states for even
values of N and fixed values of hĴsi are given by the ground
state of the Hamiltonian Ĵ2⊥ − λĴs, where λ ≥ 0 is a Lagrange
multiplier (Sørensen and Mølmer, 2001).

b. Spin squeezing and bosonic quadrature squeezing

In the case of probe states having N ≫ 1 and a strong
population imbalance between the two modes, spin squeezing
can be well approximated by single-mode quadrature
squeezing. Let jai be the highly populated mode (continu-
ous-variable limit hâ†âi ≈ N ≫ 1) and perform the Holstein-
Primakoff transformation (Duan, Cirac, and Zoller, 2002;
Wang and Sanders, 2003a; Madsen and Mølmer, 2004)
Ĵþ=

ffiffiffiffi
N

p
↦ b̂, Ĵ−=

ffiffiffiffi
N

p
↦ b̂†, and 2Ĵz=N ↦ 1, formally

equivalent to the mean-field replacement â ↦
ffiffiffiffi
N

p
. Within

this approximation, the rescaled spin operators
ffiffiffiffiffiffiffiffiffi
2=N

p
Ĵx andffiffiffiffiffiffiffiffiffi

2=N
p

Ĵy map onto the position
ffiffiffiffiffiffiffiffiffi
2=N

p
Ĵx ↦ ðb̂þ b̂†Þ= ffiffiffi

2
p ¼

X̂ and momentum
ffiffiffiffiffiffiffiffiffi
2=N

p
Ĵy ↦ ðb̂ − b̂†Þ=ði ffiffiffi

2
p Þ ¼ P̂ quadra-

ture operators (Scully and Zubairy, 1997), respectively.
We thus find

ξ2R ¼ 2ðΔQ̂Þ2; ð44Þ

where Q̂ ¼ ðb̂e−iϕ þ b̂†eiϕÞ= ffiffiffi
2

p ¼ X̂ cosϕþ P̂ sinϕ and
0 ≤ ϕ < 2π. Equation (44) shows the equivalence between
the metrological spin-squeezing parameter and the quadrature
variance, within the approximations. In particular, the rotation
e−iθĴy maps onto a displacement of the state along the X
direction in the quadrature plane by an amount θ

ffiffiffiffiffiffiffiffiffi
N=2

p
,

generated by e−iθ
ffiffiffiffiffiffi
N=2

p
P̂; see Fig. 7. When squeezing the

quadrature variance below the vacuum noise limit, i.e.,
ðΔQ̂Þ2 < 1=2, it is possible to overcome the standard quantum
limit of phase sensitivity, i.e., ξ2R < 1. The sensitivity of
interferometers using a probe state with all atoms in a single
mode can be increased by feeding the other mode with a

8In the literature, it is possible to find different notations for
the metrological spin-squeezing parameter (e.g., ξ and ξS are also
commonly used). Here we follow the notation first introduced by
Wineland et al. (1994) and used in a previous review (Ma et al.,
2011). In particular, in this review we will use ξS to indicate the
Kitagawa and Ueda (1993) spin-squeezing parameter, see Eq. (51).
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quadrature-squeezed state as first proposed by Caves (1981)
for an optical interferometer.

c. Spin squeezing, entanglement, and Fisher information

Spin squeezing ξR < 1 is a sufficient condition for useful
particle entanglement in metrology (Sørensen et al., 2001).
Furthermore, Sørensen and Mølmer (2001) showed that the
degree of spin squeezing is related to metrologically useful
k-particle entanglement: for a given spin length, smaller and
smaller values of ξR can be obtained only by increasing the
entanglement depth; see Fig. 8. The quantum Fisher infor-
mation detects entanglement in a larger set of states than those
recognized by metrological spin squeezing (Pezzè and Smerzi,
2009):

N

FQ½ρ̂; Ĵn�
≤ ξ2R: ð45Þ

This inequality, which follows from Eq. (8), shows that if a
state is spin squeezed, ξ2R < 1, it also satisfies the condition of
metrologically useful entanglement, FQ½ρ̂; Ĵn� > N. The
contrary is not true: there are states that are not spin
squeezed and yet entangled and useful for quantum metro-
logy. The Dicke and NOON states, discussed later, are
important examples.

6. Dicke states

Dicke states, Eq. (4), have a precise relative number of
particles between the two modes and a completely undefined
phase. They are not spin squeezed (Wang and Mølmer, 2002).
A direct calculation of the quantum Fisher information gives

FQ½jmzi; Ĵ⊥� ¼
N2

2
− 2m2 þ N ð46Þ

for any rotation direction ⊥ orthogonal to the z axis. Dicke
states with m ¼ �N=2 are coherent spin states; those with
m ≠ �N=2 are metrologically usefully entangled. From the
perspective of quantum metrology, the most interesting Dicke

state is the twin-Fock state (Holland and Burnett, 1993;
Sanders and Milburn, 1995), jN=2iajN=2ib ¼ j0zi, corre-
sponding to N=2 particles in each mode. It can be visualized
as a ring on the equator of the Bloch sphere; see Fig. 5(c) for a
plot of the rotated ring, j0yi ¼ e−iðπ=2ÞĴx j0zi. The rotation of
j0zi of an angle π=2 around the x axis converts the well-
defined number difference into a well-defined relative phase
between the two modes. It should be noted that the twin-Fock
state has zero mean spin length, hĴxi; hĴyi; hĴzi ¼ 0. There-
fore, the metrologically useful entanglement of the twin-Fock
state cannot be exploited when measuring the relative number
of particles. A possible phase sensitive signal is the variance of
the relative population (Kim et al., 1998). The phase sensi-
tivity calculated via the method of moments strongly depends
on θ: for θ ≈ 0 and N ≫ 1, we have

ðΔθÞ2 ¼ ðΔĴ2zÞ2
νðdhĴ2zi=dθÞ2

¼ 2

νðN2 þ 2NÞ þOðθ2Þ; ð47Þ

which is a factor of 2 above the Heisenberg limit at θ ¼ 0 and
remains below the standard quantum limit for θ ≲ 1=

ffiffiffiffi
N

p
.

Similar results can be obtained with error propagation when
estimating the phase shift from the measurement of the parity
operator (Campos, Gerry, and Benmoussa, 2003; Gerry,
Campos, and Benmoussa, 2004). Parity measures the differ-
ence in populations between even and odd eigenstates of Ĵz
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θ N / 2
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P

FIG. 7. Relation between spin squeezing and quadrature squeez-
ing. For hĴzi ≈ N=2 ≫ 1, the Bloch sphere can be approximated
locally as a plane orthogonal to the mean spin direction (here
the z axis). Spin squeezing along the Ĵx axis is equivalent to
squeezing of the X̂ quadrature. A rotation around the y axis is
equivalent to a displacement in the X direction.
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squeezing parameter ξ2S and the squared spin length (Ramsey
contrast) 2jhĴsij=N. ξ2R < 1 is found in the blue (dark) region:
the upper limit is the standard quantum limit (SQL), while the
lower limit is the bound obtained for optimal spin-squeezed
states; see Sec. II.C.5.a. The dashed line is Eq. (43), which is
tight in the limit hĴsi → 0. The lower thick black line is the
Heisenberg limit (HL). The orange region above the SQL
highlights the regime of parameters showing ξ2S < 1 but no
metrological spin squeezing (i.e., ξ2R ≥ 1). The white lines are
lower bounds to ξ2R obtained for k-particle entangled states
(Sørensen and Mølmer, 2001). The gray region is not accessible
by metrological spin-squeezed states. Here N ¼ 1000.
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and can be difficult to implement for large spins. A θ-
independent phase sensitivity can be reached when measuring
the number of particles at the output ports of the interferom-
eter and using a maximum likelihood estimator or a Bayesian
method for sufficiently large number ν of repeated measure-
ments (Holland and Burnett, 1993; Pezzè and Smerzi, 2006;
Krischek et al., 2011).
Squeezing the number of particles at both inputs of the

interferometer is not necessary to overcome the standard
quantum limit (Pezzè and Smerzi, 2013). Let us consider a
probe state ρ̂ ¼ ρ̂a ⊗ jN=2ibhN=2j, where ρ̂a is an arbitrary
state in mode jaiwith mean particle number Na and jN=2ib is
a Fock state of N=2 particles in mode jbi. We find

FQ½ρ̂a ⊗ jN=2ibhN=2j; Ĵy� ¼ NNa þ
N
2
þ Na: ð48Þ

Heisenberg scaling is achieved when Na ¼ N=2, without any
assumptions on ρ̂a. In particular, existing interferometers that
operate with uncorrelated atoms can be improved by replacing
the vacuum state in one of the two input ports by a Fock state.

7. NOON states

The Heisenberg limit can be saturated by the state

jNOONi ¼ jNiaj0ib þ eiϕj0iajNibffiffiffi
2

p ; ð49Þ

given by a coherent superposition of all particles in mode jai
and all particles in mode jbi, where ϕ is an arbitrary phase.
This state is called the NOON state (Lee, Kok, and Dowling,
2002) when considering indistinguishable bosonic particles.
When considering distinguishable particles, as ions in a Paul
trap for instance, see Sec. VI, the state (49) is generally called
a “Schrödinger cat” (Bollinger et al., 1996; Leibfried et al.,
2005) or a Greenberger-Horne-Zeilinger state (Monz et al.,
2011), originally introduced by Greenberger et al. (1990) for
three particles. A look at the Wigner distribution of the NOON
state, see Fig. 5(d) (left), reveals substructures of angular size
1=N given by spherical harmonic contributions Yq

k with the
maximum allowed value k ¼ N (Schmied and Treutlein,
2011). Rotating the NOON state around the z axis, the initial
and final states become distinguishable after a rotation angle
θmin ≈ 1=N. The squared Bures distance between the probe
and the rotated state is

d2BðjNOONi; e−iθĴz jNOONiÞ ¼ 1 − cosðNθ=2Þ; ð50Þ

which oscillates in phase N time faster than the corresponding
overlap for a coherent spin state, Eq. (36), and is d2B ¼
N2θ2=8þOðθ4Þ for small θ (Pezzè and Smerzi, 2007).
According to Eq. (21), we obtain FQ½jNOONi; Ĵz� ¼
4ðΔĴzÞ2 ¼ N2, and thus ΔθQCR ¼ ΔθHL for the NOON state.
Note that the relative spin probability distribution of the
NOON state PðmyÞ ¼ jhmyje−iθĴz jNOONij2, see Fig. 5(d)
(right), shows a comblike structure as a function of m. These
substructures change quickly with θ: for θ ¼ 2πn=N only
even values of m are populated, for θ ¼ πð1þ 2nÞ=N only

odd values of m are populated, with n ¼ 0; 1;…; N − 1. This
quick change of parity with θ can be exploited in order to
reach the Heisenberg limit of phase sensitivity with the NOON
state (Bollinger et al., 1996); see also Sec. VI.B.2.

8. Further notions of spin squeezing and their relation
to entanglement

When it is not possible to address individual qubits, or in
the presence of low counting statistics, entanglement criteria
based on the measurement of collective properties—as the
condition ξR < 1 introduced in Sec. II.C.5—are experimen-
tally important. Moreover, states of a large number of particles
cannot be characterized via full state tomography: the
reconstruction of the full density matrix is hindered and
finally prevented by the exponential increase in the required
number of measurements. In the literature, different defini-
tions of spin squeezing for collective angular momentum
operators can be found (Ma et al., 2011; Tóth and Apellaniz,
2014). In the following we review the ones most relevant for
the present context.

a. Squeezing parameter of Kitagawa and Ueda

A spin-1=2 particle is characterized by isotropic spin
fluctuations, equal to 1=4, along any direction ⊥ orthogonal
to the mean spin direction s. By adding N uncorrelated spins
all pointing along s (as in a coherent spin state), we have
ðΔĴ⊥Þ2 ¼ N=4. Quantum correlations between spins may
result in reduced fluctuations in one direction ðΔĴ⊥Þ2 < N=4
at the expense of enhanced fluctuations along the other
direction orthogonal to s. This suggests the introduction of
the spin-squeezing parameter (Kitagawa and Ueda, 1993)

ξ2S ¼ 4min⊥ðΔĴ⊥Þ2
N

; ð51Þ

where ξ2S < 1 is the spin-squeezing condition. Equation (51)
is related to metrological spin squeezing via min⊥ξ2R ¼
½N=ð2hĴsiÞ�2ξ2S. Since jhĴsij ≤ N=2, we obtain

ξ2S ≤ ξ2R: ð52Þ

In other words, metrological spin squeezing ξ2R < 1 implies
spin squeezing ξ2S < 1 according to the definition of Kitagawa
and Ueda. The converse is not true: there is no direct relation
between ξ2S < 1 and the improvement of metrological sensi-
tivity, as illustrated in Fig. 8. It is worth noting that the
minimum in Eq. (51) is given by the smallest eigenvalue of the
covariance matrix CovðĴni ; ĴnjÞ¼hfĴni ; Ĵnjgi=2− hĴniihĴnji,
where n1 and n2 are two mutually orthogonal directions in the
plane perpendicular to s and fĴn1 ; Ĵn2g ¼ Ĵn1 Ĵn2 þ Ĵn2 Ĵn1 .
Taking, without loss of generality, hĴn1i ¼ hĴn2i ¼ 0, we have
(Wang and Sanders, 2003b)

ξ2S ¼
hĴ2n1 þ Ĵ2n2i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĴ2n1 − Ĵ2n2i2 þ hfĴn1 ; Ĵn2gi2

q
N=2

: ð53Þ
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b. Entanglement witnessed by mean values and variances
of spin operators

For separable states (29), the inequalities

NðΔĴn1Þ2 ≥ hĴn2i2 þ hĴn3i2; ð54aÞ

ðΔĴn1Þ2 þ ðΔĴn2Þ2 þ ðΔĴn3Þ2 ≥
N
2
; ð54bÞ

ðN − 1ÞðΔĴn1Þ2 ≥ hĴ2n2i þ hĴ2n3i −
N
2
; ð54cÞ

ðN − 1Þ½ðΔĴn1Þ2 þ ðΔĴn2Þ2� ≥ hĴ2n3i þ
NðN − 2Þ

4
ð54dÞ

are all fulfilled, where n1, n2, and n3 are three mutually
orthogonal directions. The violation of at least one of these
inequalities signals that the state is entangled. Equation (54a)
is equivalent to ξ2R ≥ 1, see Sec. II.C.5, and was introduced by
Sørensen et al. (2001). The inequalities (54b)–(54d) were
introduced by Tóth et al. (2007, 2009). A violation of the
condition (54b) can be used to detect entanglement in singlet
states (Tóth and Mitchell, 2010; Behbood et al., 2014). The
third condition, Eq. (54c), can be rewritten as ξ2D ≥ 1, where

ξ2D ¼ NðΔĴn1Þ2
hĴ2i − N=2 − hĴn1i2

: ð55Þ

In particular, the condition ξ2D < 1 can be used to detect
entanglement close to Dicke states (Tóth et al., 2007); see
also Raghavan et al. (2001). The detection of multiparticle
entanglement close to Dicke states for spin-1=2 particles
was studied by Duan (2011) and Lücke et al. (2014) and for
spin-J particles with J > 1=2 by Vitagliano et al. (2017). The
inequalities (54b)–(54d) and the further inequality
hĴ2i ≤ ðN=2ÞðN=2þ 1Þ, which is valid for all quantum states
(not only for separable states), form a system of conditions
that defines a polytope in the three-dimensional space with
coordinates hĴ2n1i, hĴ2n2i, and hĴ2n3i (Tóth et al., 2007, 2009).
The polytope encloses all separable states. It was demon-
strated that Eqs. (54) form a complete set (Tóth et al., 2007,
2009), meaning that it is not possible to add new entanglement
conditions based only on mean values and variances of spin
moments that detect more entangled states. The inequalities
(54) have been generalized to arbitrary spin systems
(Vitagliano et al., 2011, 2014) and to systems of fluctuating
numbers of particles (He et al., 2012; Hyllus, Pezzè et al.,
2012). Furthermore, Korbicz, Cirac, and Lewenstein (2005)
and Korbicz et al. (2006) have shown that, if the inequality

�
hĴ2n1i þ

NðN − 2Þ
4

�
2

<

�
hĴ2n2i þ hĴ2n3i −

N
2

�
2

þ ðN − 1Þ2hĴn1i2 ð56Þ

holds, then the state possesses pairwise entanglement,
i.e., entanglement in the two-qubit reduced density matrix

ρ̂i;j ¼ Trf1;…;Ngnfi;jg½ρ̂� obtained by tracing the N qubit state ρ̂
over all particles except the ith and jth.

c. Spin squeezing and entanglement of symmetric states

We emphasize that none of the above entanglement wit-
nesses require any assumptions on the symmetry of the state.
For states that are symmetric under particle exchange, we
have hĴ2i ¼ ðN=2ÞðN=2þ 1Þ. In this case, Eq. (56) can be
rewritten as

ξ2N ¼ 4ðΔĴnÞ2
N

< 1 −
4hĴni2
N2

; ð57Þ

where ξ2N is called the number-squeezing parameter. The
inequality (57) is necessary and sufficient for pairwise
entanglement (Korbicz, Cirac, and Lewenstein, 2005;
Korbicz et al., 2006). It should be noted that if ξ2S < 1 holds,
then the inequality (57) is satisfied as well (taking n ¼ ⊥ and
hĴni ¼ 0). Hence, symmetric spin-squeezed states possess
two-qubit entanglement. The converse is not true: since n in
Eq. (57) is not necessarily orthogonal to the mean spin
direction s, number squeezing (ξ2N < 1) does not imply spin
squeezing (ξ2S < 1).
The relationship between Kitagawa-Ueda spin squeezing

and pairwise entanglement has also been studied by Ulam-
Orgikh and Kitagawa (2001) and Wang and Sanders (2003b).
For an arbitrary symmetric state of N qubits, the spin-
squeezing parameter (51) can be written in terms of the
two-spin correlation function (Ulam-Orgikh and Kitagawa,
2001)

ξ2S ¼ 1þ ðN − 1Þhσ̂ðiÞ⊥ ⊗ σ̂ðjÞ⊥ i; i ≠ j: ð58Þ

This equation shows that spin squeezing ξ2S < 1 is equi-
valent to negative pairwise spin-spin correlations that, in turn,
are sufficient for pairwise entanglement.9 Furthermore,
for symmetric pure states of two qubits, there is a direct
correspondence between ξ2S and the concurrence C (Ulam-
Orgikh and Kitagawa, 2001; Wang and Sanders, 2003b):
ξ2S ¼ 1 − C. We recall that C > 0 is a necessary and sufficient
condition of, and quantifies, entanglement of a pair of qubits
(Hill and Wootters, 1997; Wootters, 1998). Symmetric pure
states of two qubits are entangled if and only if they satisfy
ξ2S < 1 (Ulam-Orgikh and Kitagawa, 2001). For symmetric
states of N qubits that fulfill ξ2S ≤ 1 and other conditions,10 the
equality

ξ2S ¼ 1 − ðN − 1ÞC ð59Þ

9The two-qubit reduced density matrix of a separable symmetric

state of N qubits has positive pairwise correlations: hσ̂ðiÞ⊥ ⊗ σ̂ðjÞ⊥ i > 0

for any i ≠ j (Wang and Sanders, 2003b).
10Equation (59) was derived in Wang and Sanders (2003b) for

symmetric states having hĴsi ≠ 0 and hĴnii ¼ hĴsĴnii ¼ hĴni Ĵsi ¼ 0,
i ¼ 1, 2, where n1 and n2 are vectors orthogonal to the mean spin
direction s.
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holds (Wang and Sanders, 2003b), where C is calculated from
the two-particle reduced density matrix. Equantion (59) tells
us that ξ2S < 1 implies C > 0 and thus pairwise entanglement.
When ξ2S > 1, Eq. (59) breaks down and we cannot draw any
conclusion about pairwise entanglement: for example, Dicke
states can be pairwise entangled even though they are not spin
squeezed (Wang and Mølmer, 2002).

d. Planar spin-squeezed states

While many useful spin-squeezed states have reduced
quantum fluctuations along a single spin direction (with a
corresponding increase in fluctuations along a perpendicular
direction), the spin commutation relations make it possible to
reduce the fluctuations along two orthogonal spin directions
simultaneously while increasing those along a third direction.
Specifically, an initially coherent state along the n3 direction
can be squeezed in the perpendicular plane such that simulta-
neously ðΔĴn1Þ2 < J=2 and ðΔĴn2Þ2 < J=2 (Puentes et al.,
2013), which does not violate Heisenberg’s uncertainty
relation, Eq. (42), if hĴn3i is reduced at the same time. In
general, such planar spin-squeezed states reduce the variance
sum ðΔĴkÞ2 ¼ ðΔĴn1Þ2 þ ðΔĴn2Þ2 below the coherent-state

value of ðΔĴcohk Þ2 ¼ J, ultimately limited by (He, Peng et al.,
2011)

ðΔĴkÞ2 ≥ CJ ≈ 0.595 275J2=3 þOðJ1=3Þ: ð60Þ

Planar spin-squeezed states are useful for interferometric
phase measurements where the phase fluctuations and the
number fluctuations are squeezed simultaneously (see
Sec. V.A.1), while the spin length fluctuates significantly.
Note that not all planar spin-squeezed states are entangled
(He et al., 2012; Puentes et al., 2013; Vitagliano et al., 2018);
see Eqs. (54b) and (54d) for relevant entanglement criteria.

9. Einstein-Podolsky-Rosen entanglement and Bell correlations

a. Continuous variable and Einstein-Podolsky-Rosen entanglement

Let us consider two bosonic modes jaþi and ja−i and
introduce the corresponding annihilation â�1 and creation â

†
�1

operators. Mode-separable quantum states are defined as

ρ̂msep ¼
P

qpqρ̂
ðþ1Þ
q ⊗ ρ̂ð−1Þq , where pq > 0,

P
qpq ¼ 1, and

ρ̂ð�1Þ
q is the state of the ja�1i mode. Mode entanglement, i.e.,
ρ̂ ≠ ρ̂msep, can be revealed by correlations between bosonic

position X̂�1ðϕÞ ¼ ðâ�1e−iϕ þ â†�1e
iϕÞ= ffiffiffi

2
p

and momentum
P̂�1ðϕÞ ¼ X̂�1ðϕþ π=2Þ quadratures (Reid et al., 2009).
Mode-separable states fulfill (Duan, Giedke et al., 2000;
Simon, 2000)

V�
XðϕÞ þ V∓

PðϕÞ ≥ 2; ð61Þ

where V�
XðϕÞ ¼ Var½X̂þ1ðϕÞ � X̂−1ðϕÞ� and V∓

PðϕÞ ¼
Var½P̂þ1ðϕÞ ∓ P̂−1ðϕÞ� are variances. A violation of this
condition detects entanglement between the ja�1i modes. It
is also a necessary and sufficient condition for mode entan-
glement in Gaussian states (Duan, Giedke et al., 2000; Simon,
2000); see also Giovannetti et al. (2003), Shchukin and Vogel

(2005), Walborn et al. (2009), and Gessner, Pezzè, and Smerzi
(2016, 2017) for further (and sharper) conditions. Mode
entanglement finds several applications in quantum techno-
logies (Braunstein and van Loock, 2005).
Correlations between quadrature variances are at the heart

of the Einstein-Podolsky-Rosen (EPR) paradox (Einstein,
Podolsky, and Rosen, 1935). When the quadratures X̂þ1

and P̂þ1 are measured in independent realizations of the
same state, the correlations allow for a prediction of X̂−1 and
P̂−1 with inferred variances violating the Heisenberg uncer-
tainty relation ΔX̂inf

−1ΔP̂inf
−1 < 1=2, known as the EPR criterion

(Reid, 1989; Reid et al., 2009). This extends the original EPR
discussion (Einstein, Podolsky, and Rosen, 1935) that was
limited to perfect quadrature correlations. Nonsteerable states,
including separable states, fulfill (Reid, 1989)

V−
XðϕÞV

þ
PðϕÞ ≥ 1=4: ð62Þ

The violation of this condition witnesses a strong form of
entanglement (“EPR entanglement”) necessary to fulfill the
EPR criterion. With atoms, continuous-variable entanglement
was first proven with room-temperature vapor cells (Julsgaard,
Kozhekin, and Polzik, 2001). With spinor Bose-Einstein
condensates, mode entanglement (Gross et al., 2011) and
EPR entanglement (Peise et al., 2015) were demonstrated; see
Sec. IV.C.

b. Bell correlations

The strongest form of correlations between particles are
those that violate a Bell inequality (Bell, 1964). The existence
of Bell correlations has profound implications for the foun-
dations of physics and underpins quantum technologies such
as quantum key distribution and certified randomness gen-
eration (Brunner et al., 2014). Bell correlations have been
observed in systems of at most a few (usually two) particles
(Freedman and Clauser, 1972; Aspect, Grangier, and Roger,
1982; Eibl et al., 2003; Zhao et al., 2003; Matsukevich et al.,
2008; Hofmann et al., 2012; Lanyon et al., 2014; Giustina
et al., 2015; Hensen et al., 2015; Shalm et al., 2015;
Rosenfeld et al., 2017), but their role in many-body systems
is largely unexplored (Tura et al., 2014).
Entanglement is necessary but not sufficient for Bell

correlations (Werner, 1989; Brunner et al., 2014). Therefore,
entanglement criteria such as those discussed cannot be used to
determine whether a system could violate a Bell inequality.
Schmied et al. (2016) derived a criterion in the spirit of a spin-
squeezing parameter to determine whether Bell correlations are
present in an N-particle quantum system. For any two axes n1
and n2, the inequality

W ¼ −
jhĴn2ij
N=2

þ ðn1 · n2Þ2
hĴ2n1i
N=4

þ 1 − ðn1 · n2Þ2 ≥ 0 ð63Þ

is satisfied for all states that are not Bell correlated. States that
satisfy W < 0 can violate the many-particle Bell inequality of
Tura et al. (2014), which is a statement about the strength of
two-body correlations, but does not imply the violation of a
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two-particle Bell inequality for every pair of particles. By
optimizing Eq. (63) over the angle between the two axes, a
criterion follows that facilitates comparison with well-known
spin-squeezing criteria: for any two axes n1 and n2
perpendicular to each other,

hĴ2n1i
N=4

≥
1

2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�hĴn2i
N=2

�2
s #

ð64Þ

is satisfied for all states that are not Bell correlated. A similar
criterion that is violated more easily was derived by Wagner
et al. (2017),

hĴ2n1i
N=4

≥ 1 −
�hĴn2i
N=2

�
=artanh

�hĴn2i
N=2

�
: ð65Þ

Detecting Bell correlations by violating inequalities (63), (64),
or (65) requires only collective manipulations and measure-
ments on the entire N-particle system. While this does not
provide a loophole-free and device-independent Bell test,
it is a powerful tool for characterizing correlations in many-
body systems state independently. Bell correlations according
to Eqs. (63), (64), and (65) have been observed with Bose-
Einstein condensates; see Sec. III.B.3.

D. Tomography of spin states

1. Spin-noise tomography

Spin-noise tomography is a widely used technique to gain
information about spin-squeezed states, whose main charac-
teristics are captured by their second spin moments along the
squeezing and antisqueezing directions. For this tomography,
the state is rotated by an angle ϑ using resonant Rabi rotations,
followed by projective spin measurements along the z axis: Ĵz
defined in Eqs. (3) is measured by counting the numbers of
particles in the two modes; see Sec. II.E. The kth moment
of these spin projections can be fit to a linear combination of
cosðnϑÞ and sinðnϑÞ with n ∈ fk; k − 2; k − 4;…g, which
allows interpolating these projective measurements to arbi-
trary angles ϑ. Also, technical noise sources can be charac-
terized and their influence subtracted from the resulting
moments; any spin squeezing concluded after noise subtrac-
tion will be called inferred spin squeezing (see open circles in
Fig. 2). Since this method estimates spin projection moments
separately, they do not necessarily fulfill all consistency
criteria imposed by the positive semidefiniteness of the
density operator (Schmied, 2016). In practical situations
concerning spin-squeezed states, however, this restriction is
often irrelevant. The information captured from low-order spin
moments through spin-noise tomography may be insufficient
to characterize and visualize general spin states. Different
techniques have been developed for full state tomography
(Paris and Řeháček, 2004; Blume-Kohout, 2010; Schmied and
Treutlein, 2011), estimating all spin moments up to order N.

2. Visualizing spin states

State representations on the Bloch sphere are very useful
to gain an intuition about the properties of quantum states

and their sensitivity to rotations. In the following we
consider symmetric states of N spin-1=2 particles (see
Sec. II.A). There are various representations in the form of
pseudoprobability densities (Schleich, 2001). These are
based on the decomposition of a general density

operator ρ̂ ¼ P
2J
k¼0

P
k
q¼−k ρkqT̂

ðJÞ
kq into the orthonorma-

lized spherical tensor (or multipole) operators T̂ðJÞ
kq ¼P

J
μ;μ0¼−Jð−1ÞJ−μ

0 hJ; μ; J;−μ0jk; qijJ; μzihJ; μ0zj defined in

terms of Clebsch-Gordan coefficients, with ρkq ¼
Tr½ρ̂ðT̂ðJÞ

kq Þ†� (Arecchi et al., 1972; Agarwal, 1981; Dowling,
Agarwal, and Schleich, 1994; Schmied and Treutlein, 2011).
This decomposition has properties similar to the Fourier
transform in Euclidean space: it separates low-frequency
components (small k) from high-frequency components (large
k), which are affected very differently by experimental noise.
Further, it allows us to define the family of spherical functions
(Agarwal, 1981)

fðϑ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

4π

r XN
k¼0

fk
Xk
q¼−k

ρkqYkqðϑ;φÞ ð66Þ

in terms of spherical harmonics Ykqðϑ;φÞ. All of these
functions are linear in the density operator. The following
representations (corresponding to different choices for the
coefficients fk) are often used, with examples given in
Table I and Fig. 9.

a. Wigner distribution

The Wigner quasiprobability distributionWðϑ;φÞ (Wigner,
1932) corresponds to the case fk ¼ 1 in Eq. (66). It is found
by replacing the spherical tensor operators in the decom-
position of ρ̂ by spherical harmonics of the same order, which
obey the same orthonormalization. Because of this close
similarity, the Wigner quasiprobability distribution is equiv-
alent to the density operator. Wðϑ;φÞ is not a true probability
density, as it can take negative values (Leibfried et al., 1996;
Lvovsky et al., 2001; McConnell et al., 2015). For continuous
variables, this is often understood as a sign of nonclassical
behavior. Note however that in the present finite-dimensional
space, even theWigner distribution of a coherent spin state has
negative parts of amplitude ∼2−N , exponentially decreasing
with the number of particles.

TABLE I. Distributions of a coherent spin state. Different repre-
sentations of a coherent spin state with mean spin direction s; the last
column is the approximate expression for N ≫ 1. Here
x ¼ fsin ϑ cosφ; sin ϑ sinφ; cosϑg · s, PkðxÞ are Legendre polyno-
mials, J1ðxÞ is a Bessel function of the first kind, and ζ ¼ cos−1ðxÞ.
Exact N ≫ 1

PðxÞ ¼ P
N
k¼0

2kþ1
4π PkðxÞ ≈ ðNþ1Þ2

2π
J1½ðNþ1Þζ�
ðNþ1Þζ

WðxÞ ¼ P
N
k¼0

2kþ1
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N!ðNþ1Þ!

ðN−kÞ!ðNþkþ1Þ!
q

PkðxÞ ≈ Nþ3=2
2π exp½− Nþ3=2

2
ζ2�

QðxÞ ¼ Nþ1
4π ð1þx

2
ÞN ≈ Nþ2

4π exp½− Nþ2
4

ζ2�
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b. Husimi-Kano representation

The Husimi-Kano Q representation (Husimi, 1940; Haas
et al., 2014; Barontini et al., 2015)

Qðϑ;φÞ ¼ N þ 1

4π
hϑ;φ; Njρ̂jϑ;φ; Ni

corresponds to the case

fk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N!ðN þ 1Þ!
ðN − kÞ!ðN þ kþ 1Þ!

s

in Eq. (66). It is non-negative and proportional to the
probability of finding the system in the coherent spin state
jϑ;φ; Ni. Since Qðϑ;φÞ is the convolution of Wðϑ;φÞ with
the Wigner distribution of a coherent spin state (Agarwal,
1981), in practice the former contains much less information
than the latter. Furthermore, recovering the Wigner distribu-
tion (and hence the density matrix) from an experimentally
determined Q representation is generally not feasible.

c. Glauber-Sudarshan representation

The Glauber-Sudarshan P representation Pðϑ;φÞ (Glauber,
1963; Sudarshan, 1963; Kiesel et al., 2008) is obtained for

fk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − kÞ!ðN þ kþ 1Þ!

N!ðN þ 1Þ!

s

in Eq. (66). It is the deconvolution ofWðϑ;φÞwith the Wigner
distribution of a coherent spin state (Agarwal, 1981) and
serves to construct the density operator from coherent spin
states: ρ̂¼R

π
0 dϑsinϑ

R
2π
0 dφPðϑ;φÞjϑ;φ;Nihϑ;φ;Nj. While in

infinite-dimensional Hilbert spaces the P representation is
often of limited practical use because of its singular behavior
(Scully and Zubairy, 1997), this is not the case for the
representation of a spin. Indeed, in this case, partial-wave
contributions are limited to angular momenta (spherical
harmonics) k ≤ N in Eq. (66) in order to match the number

of degrees of freedom of the density operator; the amplitudes
of the partial waves with k > N are not determined by the
density matrix and may be set to zero. However, if higher-
order partial waves (k > N) are added, then the P represen-
tation of any symmetric separable state can be chosen
non-negative (Korbicz, Cirac, and Lewenstein, 2005). In this
case, the entanglement condition (37) is sufficient for
nonclassicality (Rivas and Luis, 2010). In general, the
indeterminacy of the P representation does not allow the
conclusion that a given P representation with negative regions
implies either nonclassicality or entanglement: separable
states may have a P representation with negative parts as
can be seen in Table I.

E. Detection of atomic states

Quantum metrology requires the detection of large ensem-
bles of N atoms with a resolution in atom number that is
significantly better than

ffiffiffiffi
N

p
. In particular, reaching the

Heisenberg limit requires counting the N atoms with single-
atom resolution (we note that this requirement can be relaxed
by nonlinear detection, see Sec. VII.A.6). Traditionally, tech-
niques that provide single-atom detection have been applied
only to systems with at most a few atoms: for quantum
metrology, single-atom detectivity must be combined with a
much larger dynamic range.

1. Atom counting

For atomic qubits, there are two principal destructive
methods using (near-)resonant light for counting the number
of atoms in one level.

a. Resonant absorption imaging

The absorption of a narrow-linewidth laser beam is mea-
sured quantitatively and converted to an absolute atom number
(Reinaudi et al., 2007). The precision of this technique on
mesoscopic ensembles is currently at the level of four atoms
(Ockeloen et al., 2010; Muessel et al., 2013, 2015; Schmied
et al., 2016) (standard deviation on the detection of hundreds
of atoms). However, it is state selective and can be used to
measure both Na and Nb in a single atomic ensemble, i.e., in a
single run of the experiment.

b. Resonant fluorescence imaging

The intensity of atomic fluorescence is converted to an
absolute atom number. This method is used especially for ions
(Rowe et al., 2001) but also finds application for atomic
ensembles. In free space, single-atom resolution has been
achieved in ensembles of up to about N ¼ 1200 (Hume et al.,
2013); however, it is challenging to measure Na and Nb
separately (Stroescu, Hume, and Oberthaler, 2015). Very high
sensitivity in fluorescence detection of many atoms has been
shown by spatially resolving each atom in an optical lattice
(Nelson, Li, and Weiss, 2007; Bakr et al., 2009; Sherson et al.,
2010). This technique can image and count individual atoms
but does not determine the exact atom number as atom pairs
are quickly lost due to light-assisted collisions.
In order to count the atom numbers Na and Nb in the two

modes separately, different strategies have been employed.
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FIG. 9. Quasiprobability representations. Upper row: P,W, and
Q representations of a coherent state pointing in the þx direction
(see Table I), with s ¼ f1; 0; 0g. Lower row: P, W, and Q
representations of a spin-squeezed state reached by one-axis
twisting with χt ¼ 0.01π (see Sec. III.B). The color scale for each
panel is normalized to its maximum value. Here N ¼ 100.
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If the two modes jai and jbi are localized at different points
in space, then spatially resolved imaging can yield mode-
selective atom counts (Stroescu, Hume, and Oberthaler,
2015). Spatial separation can also be achieved by time-of-
flight imaging if two initially overlapping modes are given
different momentum kicks, usually by a state-selective force
as in a Stern-Gerlach experiment (Lücke et al., 2011). This
method is often used when the two modes are hyperfine
levels with equal total angular momentum F but different
projections MF. If the modes are spectrally separated by
more than the atomic linewidth, they can be addressed
individually with a laser and counted separately by absorption
or fluorescence. Particularly for states in different hyperfine
F levels this option is used frequently (Gross et al., 2010;
Riedel et al., 2010). The detection of level jbi can occur at a
different time than level jai by the same absorption or
fluorescence technique. The population of one level is counted
first, followed by a population exchange or transfer between
the levels jai and jbi, after which the same level is counted
again but now representing the original population of the
other level.

2. Quantum nondemolition measurements of atom number

Off-resonant light can be used to perform nondestructive
measurements of the atom numbers (Hammerer, Sørensen,
and Polzik, 2010; Ritsch et al., 2013). In atomic clocks,
nondestructive atom counting can reduce the loading (dead)
time and thus dramatically improve the clock frequency
stability (Lodewyck, Westergaard, and Lemond, 2009;
Norcia and Thompson, 2016). Quantum nondemolition meas-
urement can also be used to entangle the atoms (see Sec. V.A).
Specific techniques are as follows.

a. Faraday effect

A probe-light beam’s polarization rotates slowly around the
polarization direction of an atomic ensemble (Wasilewski
et al., 2010; Sewell et al., 2012). By measuring the effected
rotation angle, the ensemble’s polarization and thus its value
of Ĵz is determined.

b. Dispersion

The refractive index of an atomic ensemble depends on the
atomic populations; an off-resonant probe-light beam thus
picks up a Ĵz-dependent phase shift (Kuzmich, Mandel, and
Bigelow, 2000; Appel et al., 2009) that can be measured in an
optical interferometer (usually of Mach-Zehnder type).

c. Cavity-enhanced detection

Atoms that are coupled to a high-finesse optical cavity
make its transmission depend on the atoms’ internal state
(Kimble, 1998) and allow Ĵz of the atoms to be measured
(Schleier-Smith, Leroux, and Vuletić, 2010b; Zhang et al.,
2012; McConnell et al., 2015; Hosten, Engelsen et al., 2016).
For small atom numbers, this method can resolve single
excitations (Haas et al., 2014).

3. Inhomogeneous spin coupling and effective spin

The definition in Eq. (1) assumes that each atom contributes
to the collective spin with the same weight. This assumption
is not always satisfied: in experiments exploiting atom-light
interactions, the coupling is inhomogeneous if the atoms are
trapped in a standing wave whose wavelength is incommen-
surate with that of the probe field (Leroux, Schleier-Smith,
and Vuletić, 2010b; Tanji-Suzuki et al., 2011; McConnell
et al., 2015), if the atoms are trapped in a large volume that
samples the spatial profile of the probe field (Appel et al.,
2009), or if the atoms move in space (Hammerer, Sørensen,
and Polzik, 2010). In these situations, Eq. (1) is modified so
that each atom contributes to the collective spin with a weight
given by its coupling gi to the cavity mode. The internal-state
dynamics of the effectively addressed atoms can be described
by an effective spin operator

Ĵeff ¼
X
i

gi
geff

σ̂i
2

ð67Þ

and an effective atom number

Neff ¼
X
i

gi
geff

¼ ðPigiÞ2P
ig

2
i

; ð68Þ

where geff ¼ ðPig
2
i Þ=ð

P
igiÞ is the effective coupling

strength (Hu et al., 2015). Ĵeff satisfies the usual angular
momentum commutation and uncertainty relations as long as
the average total spin remains large (khĴeffik ≈ Neff=2 ≫ 1)
and the detection does not resolve single spins, i.e., in the limit
where the Holstein-Primakoff approximation is valid. In this
limit, the effective spin can be treated in the same way as a real
spin of length Neff=2, and the metrological methods described
remain valid. Special care is required for conclusions about the
correlations between real (not effective) atoms, such as the
entanglement depth (Hu et al., 2015; McConnell et al., 2015).

III. ENTANGLEMENT VIA ATOMIC COLLISIONS:
THE BOSONIC JOSEPHSON JUNCTION

Tunable elastic atom-atom collisions are naturally present
in Bose-Einstein condensates and represent a well-established
method to generate metrologically useful entanglement in
these systems. Furthermore, Bose-Einstein condensates have a
weak coupling to the environment and can be restricted to
occupy two modes only. These can be two “internal” hyper-
fine atomic states or two “external” spatial states of a trapping
potential; see Fig. 10. Two-mode Bose-Einstein condensates
can be described by the bosonic Josephson junction model11

11The Hamiltonian (69) maps to a class of models first introduced
by Lipkin, Meshkov and Glick in nuclear physics (Lipkin, Meshkov,
and Glick, 1965); see Ulyanov and Zaslavskii (1992) for a review.
This corresponds to a fully connected Ising Hamiltonian of spin-1=2
particles where each spin interacts with all the other spins. While in
the Lipkin-Meshkov-Glick model the spins are distinguishable, the
bosonic Josephson junction considers undistinguishable bosons
occupying two modes.
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ĤBJJ ¼ −ℏΩĴx þ ℏχĴ2z þ ℏδĴz: ð69Þ

Here Ĵx and Ĵz describe a linear coupling and an energy
imbalance between the two modes, respectively. The term Ĵ2z
accounts for the interaction of each atom with all the other
particles in the system. The parameters χ and Ω (in the
following we assumeΩ ≥ 0, without loss of generality) can be
precisely and independently tuned and, in particular, switched
on and off at will (Pethick and Smith, 2002). Furthermore,
Bose-Einstein condensates offer the possibility to control the
trapping geometry and to count atoms using established
techniques such as absorption or fluorescence imaging.
Useful entanglement for quantum metrology can be found
in the ground state of Eq. (69) for χ ≠ 0 (either positive or
negative); see Sec. III.A. The ground state can be experi-
mentally addressed by adiabatically tuning interaction and/or
coupling parameters. The nonlinear interaction can also be
exploited for the dynamical generation of entanglement
starting from particles prepared in a separable state; see
Secs. III.B and III.C. In particular, for Ω; δ ¼ 0, Eq. (69) is
equivalent to the one-axis twisting Hamiltonian first intro-
duced by Kitagawa and Ueda (1993). A limitation is that the
contact interaction, which is the ingredient to entangle the
atoms, is also—via particle losses induced by nonelastic
scattering—a main source of decoherence in these systems.
The external bosonic Josephson junction can be realized

with a dilute Bose-Einstein condensate confined in a double-
well potential VdwðrÞ (Javanainen, 1986; Milburn et al., 1997;
Smerzi et al., 1997; Zapata, Sols, and Leggett, 1998); see
Fig. 10(a). For a sufficiently high barrier and weak interaction,
we can describe the system in a two-mode approximation. The
two modes are given by the first spatially symmetric jψgi and
first antisymmetric jψ ei solutions of the Gross-Pitaevskii
equation in the double-well trap (Raghavan et al., 1999;
Ananikian and Bergeman, 2006). Spatial modes localized in
the left and right wells are given by jai ¼ ðjψgi þ jψeiÞ=

ffiffiffi
2

p

and jbi ¼ ðjψgi − jψ eiÞ=
ffiffiffi
2

p
, respectively; see Fig. 10(a). The

parameters in Eq. (69) are then identified as

ℏΩ ¼ μe − μg; ð70aÞ

ℏχ ¼ 2g
Z

d3rψ2
gðrÞψ2

eðrÞ; ð70bÞ

where

μg¼
Z

d3rψgðrÞ
�
−
ℏ2

2M
∇2þVdwðrÞ

�
ψgðrÞþgNψ4

gðrÞ ð71Þ

is the chemical potential (and analogous definition for μe),
g ¼ 4πℏ2as=M, as is the s-wave scattering length (positive for
repulsive interactions and negative for attractive interactions),
andM is the atomic mass. In the derivation of Eq. (69) we have
taken ψg;eðrÞ real and normalized to 1, and assumedR
d3rψ2

gψ
2
e ≈

R
d3rψ4

g ≈
R
d3rψ4

e , which is valid for a suffi-
ciently high tunneling barrier. Experimentally, the external
bosonic Josephson junction has been realized on atom chips
(Schumm et al., 2005; Hall et al., 2007; Jo, Choi et al., 2007;
Maussang et al., 2010; LeBlanc et al., 2011) as well as in
optical traps (Shin et al., 2004; Albiez et al., 2005; Hadzibabic
et al., 2006). The spatial separation allows for sensing of a
variety of fields and forces (Cronin, Schmiedmayer, and
Pritchard, 2009; Inguscio and Fallani, 2013). The experimental
challenges are the required high degree of stability of the
external potential as well as the precise control of the tunneling
coupling between the two wells (Gati et al., 2006; Levy et al.,
2007; Spagnolli et al., 2017).
The internal bosonic Josephson junction is created with

a trapped Bose-Einstein condensate in two different
hyperfine states (Cirac et al., 1998; Steel and Collett,
1998); see Fig. 10(b). The Josephson-like coupling is pro-
vided by an electromagnetic field that coherently transfers
particles between the two states via Rabi rotations (Hall,
Matthews, Ensher et al., 1998; Hall, Matthews, Wieman, and
Cornell, 1998; Böhi et al., 2009). Assuming that the external
motion of the atoms is not influenced by the internal
dynamics, one can apply a single-mode approximation for
each atomic species. The many-body Hamiltonian becomes
Eq. (69) with coefficients

ℏΩ ¼ ℏΩR

Z
d3rψ�

aðrÞψbðrÞ; ð72aÞ

ℏχ ¼ Uaa þ Ubb − 2Uab; ð72bÞ

Uij ¼
2πℏ2aði;jÞs

M

Z
d3rjψ iðrÞj2jψ jðrÞj2; ð72cÞ

where ΩR is the Rabi frequency, aða;aÞs , aðb;bÞs and aða;bÞs are the
intraspecies and interspecies s-wave scattering lengths, and
ψa;bðrÞ are mode functions of the two internal states
(jai ¼ jψai and jbi ¼ jψbi here), which can be determined
in a mean-field description from the Gross-Pitaevskii equa-
tion. A more accurate value for χ is obtained if one also takes
into account the change of the mode functions with particle
number; see Smerzi and Trombettoni (2003) and Li et al.
(2009). Since the phase and amplitude of the coupling field
ΩR can be switched on and off on nanosecond time scales, it is

) 

b  

b  

a  

(b) 

a  

b  

(b) (a) 

a  b  

FIG. 10. (a) External bosonic Josephson junction realized by a
Bose-Einstein condensate trapped in a double-well potential
(thick black line). The thin colored lines are the amplitudes of
the mean-field wave functions (see text) localized on the left and
right wells. (b) Internal bosonic Josephson junction made by a
trapped Bose-Einstein condensate in two different hyperfine
states. For each state, the thick black line is the harmonic trap
and the thin colored line is the condensate wave function.
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possible to implement arbitrary rotations on the Bloch sphere
that are helpful to read out and characterize the internal state.
Furthermore, during Rabi coupling pulses it is possible to
reach the regime Ω ≫ Nχ, where interaction effects can be
neglected.

A. Metrologically useful entanglement in the ground state
of the bosonic Josephson junction

Several approaches to the bosonic Josephson junction
model Hamiltonian (69) have been discussed in the literature.
A semiclassical mean-field approximation provides useful
insight (Smerzi et al., 1997; Raghavan et al., 1999). It
is obtained by replacing mode operators with complex
numbers â ↦

ffiffiffiffiffiffi
Na

p
e−iφa and b̂ ↦

ffiffiffiffiffiffi
Nb

p
e−iφb , where Na;b

and φa;b are the numbers of particles and phases of the
condensate in the jai and jbi modes, respectively. The spin
operators are replaced by Ĵx → ðN=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cosφ, Ĵy →

ðN=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sinφ, and Ĵz → ðN=2Þz, where φ ¼ φa − φb is

the relative phase between the two condensate modes, and
z ¼ ðNa − NbÞ=N is the fractional population difference
ð−1 ≤ z ≤ 1Þ. The Hamiltonian (69) becomes

Hðz;φÞ ¼ Λz2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cosφþ ΔEz; ð73Þ

where energies are in units of NℏΩ=2, Λ ¼ Nχ=Ω, and
ΔE ¼ δ=Ω. In the following we mainly focus on the case
ΔE ¼ 0 unless explicitly stated.
A common method to extend the analysis beyond the mean-

field approximation consists in quantizing the conjugate
number and phase semiclassical variables (Leggett and
Sols, 1991), i.e., replacing z and φ with operators ẑ and φ̂
obeying the commutation relation ½ẑ; φ̂� ¼ 2i=N, where 2=N
plays the role of the Planck constant. We can thus write φ̂ ¼
−ð2i=NÞ∂̂z and ẑ ¼ ð2i=NÞ∂̂φ by canonical quantization.
Note that a rigorous phase operator is lacking (Carruthers
and Nieto, 1968; Lynch, 1995), and the above phase quan-
tization may break down for large phase fluctuations. Series
expanding Eq. (73) to second order in z and φ we have

Hðz;φÞ ¼ Λþ 1

2
z2 þ φ2

2
. ð74Þ

By quantizing the conjugate variables we obtain

Ĥz ¼ −
2

N2
∂̂2
z þ

Λþ 1

2
ẑ2 ð75Þ

in number representation, and

Ĥφ ¼ −
2ðΛþ 1Þ

N2
∂̂2
φ þ

1

2
φ̂2 ð76Þ

in phase representation. Equations (75) and (76) predict
Gaussian number and phase ground state wave functions
with variances

σ2z ¼
1

N
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p and σ2φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p

N
; ð77Þ

respectively (Smerzi and Raghavan, 2000; Paraoanu et al.,
2001). Improvements over Eqs. (75) and (76) have been
discussed in the literature. Considering a second-order expan-
sion in phase around φ ¼ 0 of Eq. (73) one obtains the
Hermitian Hamiltonian

Ĥz ¼ −
2

N2
∂̂z

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ẑ2

p
∂̂z þW0ðẑÞ; ð78Þ

describing a fictitious quantum particle with z-dependent
effective mass moving in an anharmonic one-dimensional
potential

W0ðzÞ ¼
Λz2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
þ ΔEz: ð79Þ

Shchesnovich and Trippenbach (2008) derived the
Hamiltonian (78) using a continuous approximation of the
relative population difference and avoiding phase-number
commutation relations; see also Javanainen and Ivanov
(1999) and Spekkens and Sipe (1999). For ΔE ¼ 0, the
effective potential (79) changes from harmonic, for
Λ > −1, to quartic, at Λ ¼ −1, to a double-well shape with

wells centered at z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Λ2

p
, for Λ < −1. The

fictitious quantum particle description is expected to give
accurate results for large N, provided that the wave function is
sufficiently smooth and vanishes at the boundaries of z (Juliá-
Díaz, Zibold et al., 2012), and phase fluctuations remain
small. Anglin, Drummond, and Smerzi (2001) proposed a
complementary approach consisting of a projection
of the Hamiltonian (69) over the overcomplete Bargmann
basis

jφi ¼
XN=2

m¼−N=2

eimφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2þmÞ!ðN=2 −mÞ!p jmzi. ð80Þ

This leads to an exact quantum phase model

ĤBJJjψi ¼
Z

π

−π

dφ
2π

jφieðN=2ΛÞ cosφĤEQPMψðφÞ; ð81Þ

where jψi is an arbitrary two-mode state, ψðφÞ is an effective
phase wave function, and

ĤEQPM ¼ −
2Λ
N2

∂2
φ −

�
1þ 1

N

�
cosðφÞ − 1

4Λ
cosð2φÞ: ð82Þ

The first two terms in Eq. (82) give the quantum phase model
Hamiltonian that is widely used to study superconducting
Josephson junctions (Barone and Paternò, 1982). The quan-
tum phase model is relevant in the Josephson and Fock
regimes; see below. The additional term proportional to
cosð2φÞ is important for weak interactions in the Rabi regime.
Equation (82) is exact in the sense that the lowest N þ 1

frequencies in its eigenspectrum are exactly the spectrum of
Eq. (69) (Anglin, Drummond, and Smerzi, 2001).
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Finally, it is worth pointing out that the spectrum of
Eq. (69)—and of the more general Lipkin-Meshkov-Glick
model—is analytically known within a Bethe ansatz (Pan and
Draayer, 1999; Morita et al., 2006) and in the thermodynamic
limit (Ribeiro, Vidal, and Mosseri, 2007, 2008).

1. Ground state for positive nonlinearities

A positive effective nonlinearity (Λ > 0) makes number
fluctuations between the two modes energetically unfavor-
able. The ground state jψΛi of Eq. (69) with δ ¼ 0 is thus
characterized by a squeezed atom number distribution at the
expense of increased phase fluctuations (Leggett and Sols,
1998; Steel and Collett, 1998; Javanainen and Ivanov, 1999;
Spekkens and Sipe, 1999). Following Leggett (2001), we
distinguish three regimes; see Fig. 11.

a. Rabi regime, 0 < Λ ≪ 1

At Λ ¼ 0 the ground state is given by the coherent spin
state pointing in the positive-x direction (for Ω > 0),
jψΛ¼0i ∝ ðâ† þ b̂†ÞN jvaci, with binomial occupation of each
mode, where jvaci is the vacuum. In the Rabi regime, the
Josephson junction is dominated by tunneling, which keeps a
well-defined relative phase between the two modes. The
coherence is high, hĴxi ≈ N=2, and number (phase) fluctua-
tions slightly decrease (increase) with respect to the non-
interacting case. Using ðΔĴyÞ2 ¼ N2σ2φ=4, ðΔĴzÞ2 ¼ N2σ2z=4,
and Eq. (77), we find

ξ2R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p and
FQ½jψΛi; Ĵy�

N
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Λþ 1
p

: ð83Þ

In particular, FQ=N ¼ 1=ξ2R in this regime.12 The ground state
of Eq. (69) is spin squeezed along the z axis and useful for
sensing rotations around the y axis.

b. Josephson regime, 1 ≪ Λ ≪ N2

In the Josephson regime number (phase) fluctuations
are further reduced (increased) while the coherence remains
high. The approximations leading to Eq. (77) are still very
good. We thus expect Gaussian number and phase distribu-
tions with width σ2z ¼ 1=ðN ffiffiffiffi

Λ
p Þ and σ2φ ¼ ffiffiffiffi

Λ
p

=N, respec-
tively, giving (Pezzè et al., 2005)

ξ2R ¼ 1ffiffiffiffi
Λ

p and
FQ½jψΛi; Ĵy�

N
¼

ffiffiffiffi
Λ

p
: ð84Þ

For a fixed ratio χ=Ω ¼ Λ=N, we have FQ=N ¼ 1=ξ2R ¼ffiffiffiffiffiffiffiffiffi
χ=Ω

p ffiffiffiffi
N

p
, predicting a scaling of phase sensitivity

ðΔθQCRÞ2 ∼ N−3=2, intermediate between the standard quan-
tum limit and the Heisenberg limit.
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FIG. 11. Entanglement in the ground states of the bosonic Josephson junction. Upper panels: Normalized Wigner distributions
of the ground state jψΛi of the Hamiltonian (69) in different regimes and for δ ¼ 0. The histograms are probability distributions
PyðmÞ ¼ jhmyjψΛij2 and PzðmÞ ¼ jhmzjψΛij2. Crossing from the Rabi to the Fock regime (for positive nonlinearities), Pz

narrows while Py broadens. In the Fock regime, Py vanishes for odd values of m. In the transition from the disordered
to the ordered phase (for negative nonlinearities), Py narrows while Pz broadens and splits when crossing the critical value
Λ ¼ −1. Lower panels: Normalized quantum Fisher information (FQ=N, red line) and inverse spin-squeezing parameter
(1=ξ2R, blue line) as a function of Λ. For Λ > 0, the solid black line is Eq. (83). For Λ < 0, the solid black lines are Eq. (87) in
the disordered regime and Eq. (88) in the ordered regime. Here N ¼ 100 and the color scale of the Wigner distributions
is as in Fig. 5.

12In Eqs. (83)–(86), i.e., for positive nonlinearities, the spin
squeezing is calculated as ξ2R ¼ NðΔĴzÞ2=hĴxi2. For negative non-
linearities, Eq. (87), as ξ2R ¼ NðΔĴyÞ2=hĴxi2.
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c. Fock regime, Λ ≫ N2

In the Fock regime interaction dominates over tunneling,
giving rise to a fragmented Bose-Einstein condensate
(Spekkens and Sipe, 1999; Jääskeläinen, Zhang, and
Meystre, 2004). Phase fluctuations become of the order of
2π and the approach leading to Eq. (77) breaks down. The
ground state is approximately obtained by putting an equal
number of particles in both modes with vanishing number
fluctuations. For Λ → ∞ and even values of N, we have
jψΛi ¼ ðâ†ÞNðb̂†ÞN jvaci ¼ jN=2iajN=2ib. In the limit of
large but finite Λ, we find

ξ2R ¼ 2

N þ 2
and

FQ½jψΛi; Ĵ⊥�
N

¼ N þ 2

2
; ð85Þ

where ⊥ is any axis on the equatorial plane of the Bloch
sphere. In this limit, both ðΔĴzÞ2 and hĴxi vanish, such the
ratio ξ2R ¼ NðΔĴzÞ2=hĴxi is finite but very sensitive to
experimental noise. For odd values of N, the ground state
is given by

jψΛi ¼
1ffiffiffi
2

p
�����N þ 1

2

�
a

����N − 1

2

�
b
þ
����N − 1

2

�
a

����N þ 1

2

�
b

�
;

which is spin squeezed with

ξ2R ¼ 4N
NðN þ 2Þ þ 1

and
FQ½jψΛi; Ĵ⊥�

N
¼ ðN2 − 1Þ

2N
þ 1:

ð86Þ

2. Ground state for negative nonlinearities

A negative effective nonlinearity (Λ < 0) favors localiza-
tion of particles in one mode and, in a symmetric Josephson
junction (δ ¼ 0), enhances number fluctuations between the
two modes. The interplay of linear coupling and nonlinear
interaction in the Hamiltonian (69) gives rise to a second-order
quantum phase transition with discrete symmetry breaking
and mean-field critical exponents (Gilmore and Feng, 1978;
Botet, Jullien, and Pfeuty, 1982; Ulyanov and Zaslavskii,
1992). The quantum phase transition occurs in the thermo-
dynamic limit N → ∞ and χ → 0 such that Λ ¼ −1. The
order parameter is given by the absolute value of the
population imbalance jzj with W0ðzÞ in Eq. (79) playing
the role of an effective Ginzburg-Landau potential.
Entanglement (Vidal, Palacios, and Mosseri, 2004; Orús,
Dusuel, and Vidal, 2008; Ma and Wang, 2009; Mazzarella
et al., 2011; Buonsante et al., 2012) and fluctuations of the
order parameter (Ziń et al., 2008) approaching the critical
point have been extensively studied. This quantum phase
transition has been experimentally investigated by
Trenkwalder et al. (2016) in a double-well potential with
potassium atoms of tunable interaction. The dynamics follow-
ing the sudden quench into the vicinity of the quantum critical
point (in a two-component Bose gas) has been studied by
Nicklas et al. (2015).

a. Disordered phase, −1 < Λ < 0

The approximations leading to Eq. (77) remain valid also
for weak attractive interactions. This equation predicts phase
squeezing and number antisqueezing (Steel and Collett,
1998):

ξ2R ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
and

FQ½jψΛi; Ĵz�
N

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p : ð87Þ

The ground state is entangled and useful for sensing rotations
around the z axis; see Fig. 11. At Λ → −1 the harmonic
oscillator approximation breaks down and Eq. (77) predicts a
divergence of number fluctuations. At the transition point
one finds FQ=N ≈ 1=ξ2R ¼ OðN1=3Þ (Hauke et al., 2016;
Gabbrielli, Smerzi, and Pezzè, 2018).

b. Ordered phase, Λ < −1

This phase is characterized by the presence of macroscopic-
superposition states (Cirac et al., 1998; Ho and Ciobanu,
2004; Huang and Moore, 2006; Lee, 2006). Soon after
crossing the quantum phase transition critical point, the mean

spin length khĴik vanishes and spin squeezing is lost for Λ <

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ffiffiffi

5
p Þ=2

q
(Gabbrielli, Smerzi, and Pezzè, 2018); see

Fig. 11. For strong nonlinearities Λ ≪ −1 and unbalanced
modes (with ΔE ¼ 0), the ground state is given by the
symmetric superposition (i.e., a Schrödinger-cat-like state,
see Fig. 11) of distinguishable states localized on the right
and left wells of the effective double-well Ginzburg-Landau
potential W0ðzÞ in Eq. (79) (Shchesnovich and Trippenbach,
2008), giving

FQ½jψΛi; Ĵz�
N

¼ N

�
1 −

1

Λ2

�
: ð88Þ

In this regime, the quantum Fisher information has thus a
Heisenberg scaling with N. Finally, for Λ ≪ −

ffiffiffiffi
N

p
, the

ground state is approximatively given by a NOON state
(Shchesnovich and Trippenbach, 2008). The macroscopic
superposition states are lost for an infinitesimally small energy
imbalance ΔE ≠ 0, breaking the symmetry of W0ðzÞ.

3. Adiabatic splitting

Experimentally, the Rabi and Josephson regimes for repul-
sive interactions, and the disordered phase for attractive
interactions, can be reached by adiabatically splitting a
Bose-Einstein condensate initially prepared in the ground
state of the strong-tunneling (Rabi) regime (Javanainen and
Ivanov, 1999; Menotti et al., 2001; Isella and Ruostekoski,
2005; Pezzè et al., 2005; Streltsov, Alon, and Cederbaum,
2007; Bodet et al., 2010). By varying the plasma frequency
ωp ¼ Ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
adiabatically in time, the system follows its

ground state if (Javanainen and Ivanov, 1999; Schaff, Langen,
and Schmiedmayer, 2014)
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��� dωp

dt

���≲ ω2
p: ð89Þ

Increasing the height of the potential barrier in order to reach
the Fock regime, the required time scale for adiabaticity
eventually diverges, setting a limit to the attainable entangle-
ment. A shortcut to adiabaticity (Juliá-Díaz, Torrontegui et al.,
2012; Lapert, Ferrini, and Sugny, 2012; Yuste et al., 2013) and
optimal control techniques (Huang and Moore, 2008; Grond,
Schmiedmayer, and Hohenester, 2009; Pichler et al., 2016) for
the fast production of highly entangled states have also been
studied. It should be noted that Eq. (89) assumes that the gas is
prepared in the ground state configuration. Experimentally,
the finite temperature of the gas is the main factor limiting
the squeezing via the adiabatic-splitting technique (Estève
et al., 2008).

4. Experimental spin squeezing in the ground state of the BJJ

Estève et al. (2008) reported the first direct experimental
demonstration of spin squeezing and entanglement in the
ground state of the bosonic Josephson junction. A 87Rb Bose-
Einstein condensate confined in a shallow harmonic trap is

split adiabatically by ramping up a one-dimensional optical
lattice. The particles are distributed over two and six lattice
sites; see the inset of Fig. 12. Direct atom detection better than
atomic shot noise is implemented by absorption imaging of
the atomic density, with a spatial resolution well below the
lattice spacing. This gives direct access to the number-
squeezing parameter ξ2N ¼ 4ðΔĴzÞ2=N. Additionally, the
phase coherence hcosφi2 is directly obtained from the
interference pattern observed after releasing the atomic cloud
from the trap. Noticing that hĴxi2 ¼ hN̂aihN̂bihcosφi2 (valid
for hN̂ai, hN̂bi ≈ N=2 ≫ 1, and σ2φ ≪ 2π), metrological spin
squeezing is given by ξ2R ¼ ξ2N=hcosφi2. The simultaneous
presence of number squeezing and high phase coherence
allowed one to reach an inferred spin squeezing of ξ2R ¼
−3.8 dB for the two main well pairs of a six-well lattice, and
ξ2R ¼ −2.3 dB for the double-well configuration. The results
are summarized in Fig. 12.
More recent experiments studied number squeezing

(Maussang et al., 2010) and spin squeezing (Berrada et al.,
2013) when splitting a Bose-Einstein condensate in a double-
well trap on an atom chip. Maussang et al. (2010) realized
purely magnetic double-well potential. This experiment
reports a detailed investigation of the optimal splitting time,
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FIG. 12. Spin squeezing in the ground states of the bosonic
Josephson junction. Symbols report number squeezing (with
photon shot-noise subtracted) and phase coherence obtained by
splitting a Bose-Einstein condensate. Open and filled symbols
correspond to different barrier heights (larger for the open
symbols). The shaded areas show systematic error bounds. Solid
lines are reference values for ξ2R, the orange (0 dB) line being the
standard quantum limit. Measurements are shown for the two
main well pairs of a six-well lattice [red (dark) and blue (light)
circles] and for a double-well potential (green diamonds). The
total atom number in each pair is approximately N ¼ 2200 in the
six-well case and N ¼ 1600 in the double-well case. The inset
shows single-site-resolving absorption images of atoms trapped
in an optical lattice superposed on an atomic dipole trap. Adapted
from Estève et al., 2008.
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FIG. 13. Number and phase distributions after the adiabatic
splitting of a Bose-Einstein condensate in a double-well potential.
(a) Distribution of photon imbalance s ¼ sL − sR between
fluorescence images of the left and right clouds (inset), propor-
tional to the imbalance of atom numbers in the two wells. The
solid black line is the normal distribution corresponding to the
measured number-squeezing factor, the dotted red line is
the expected distribution when detection noise is subtracted,
and the dashed blue line is the distribution expected for a coherent
spin state in the absence of detection noise. (b) The curves
indicate a normal distribution with the measured Δφ (solid black
line) and the distributions expected for a coherent state in the
absence (dashed blue line) and in the presence (dash-dotted green
line) of detection noise. The inset shows a typical matter-wave
interference pattern from which the phase is extracted. Adapted
from Berrada et al., 2013.
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given by the interplay of the barrier raising rate (which must
be slow in order to avoid excitations to higher modes), heating
effects, and atom loss. Berrada et al. (2013) based the splitting
on a radio-frequency dressing (Hofferberth et al., 2006) that
dynamically deforms the static magnetic trap into a double-
well potential (Schumm et al., 2005). A split Bose-Einstein
condensate of N ¼ 1200 87Rb atoms is characterized via
the measurement of the number of particles in each well
and the relative phase, see Fig. 13, showing number squeezing
and phase antisqueezing. From these results, using
ξ2R ¼ ξ2N=hcosφi2, it is possible to obtain ξ2R ¼ −5.6 dB
(ξ2R ¼ −7.8 dB inferred). This corresponds to a metrologically
useful entanglement depth of 150 atoms, excluding useful
entanglement of less than 67 particles with 90% probability.
Berrada et al. (2013) also investigated the reduced phase
diffusion associated with number squeezing (Lewenstein and
You, 1996; Castin and Dalibard, 1997; Javanainen and
Wilkens, 1997) and the fast recombination (Negretti
and Henkel, 2004; Jo, Choi et al., 2007; Negretti, Henkel,
and Mølmer, 2008; Scott, Judd, and Fromhold, 2008; Berrada
et al., 2016) of the condensates in the two wells.

B. One-axis twisting dynamics

One-axis twisting is a benchmark model for studying the
generation of spin-squeezed states (Kitagawa and Ueda,
1993), Schrödinger cats (Mølmer and Sørensen, 1999),
and useful entanglement for quantum metrology (Pezzè and
Smerzi, 2009). The one-axis twisting Hamiltonian (here along
the z axis) is

ĤOAT ¼ ℏχĴ2z : ð90Þ
This model can be realized via atom-atom elastic collisions in
a Bose-Einstein condensate (Sørensen et al., 2001), trapped
ions, see Sec. VI.B, and cold atoms in an optical cavity,
see Sec. V.B.
The quantum dynamics e−iĤOATt=ℏ of a localized spin wave

packet can be roughly viewed as a rotation e−iχthĴziĴz around
the z axis. The hĴzi-dependent angular velocity (whose sign
differs on the two hemispheres of the Bloch sphere) leads to a

twisting of the state on the Bloch sphere. To analyze this effect
quantitatively, let us consider the dynamical evolution of an
initial coherent spin state pointing along the positive x axis,
jψOATðχtÞi ¼ e−iχtĴ

2
z jπ=2; 0; Ni; see Fig. 14. The coherent

spin state initially stretches in the y-z plane tangential to the
Bloch sphere. Kitagawa and Ueda (1993) identified the
squeezing angle δ ¼ ð1=2Þ arctanðB=AÞ in terms of A ¼ 1 −
cosN−2ð2χtÞ and B ¼ 4 sinðχtÞ cosN−2ðχtÞ, as well as the
squeezed and antisqueezed spin components Ĵs ¼ Ĵz cosðδÞ −
Ĵy sinðδÞ and Ĵas ¼ Ĵy cosðδÞ þ Ĵz sinðδÞ, respectively.
Squeezing is accompanied by loss of contrast hĴxi ¼
ðN=2ÞcosN−1ðχtÞ as the state spreads on the Bloch sphere.
The spin squeezing ξ2R ¼ NðΔĴsÞ2=hĴxi2 and the quantum
Fisher information FQ½jψOATðχtÞi; Ĵas� ¼ 4ðΔĴasÞ2 are
readily calculated, giving (Kitagawa and Ueda, 1993;
Sørensen et al., 2001)

ξ2R ¼ 4þ ðN − 1ÞðA −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
Þ

4 cos2N−2ðχtÞ ; ð91Þ

and (Pezzè and Smerzi, 2009)

FQ½jψOATðtÞi; Ĵas�
N

¼ 1þ ðN − 1Þ
4

ðAþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
Þ; ð92Þ

respectively.13 For χt≲ 1=
ffiffiffiffi
N

p
the state is spin squeezed,

ξ2R < 1, reaching ξ2R ¼ OðN−2=3Þ at an optimal time χt ¼
OðN−2=3Þ. For χt≳ 1=

ffiffiffiffi
N

p
the states wraps around the Bloch

sphere and spin squeezing is lost, ξ2R > 1. Yet, the state is still
entangled. The quantum Fisher information reaches a plateau
FQ½jψOATðχtÞi; Ĵas� ¼ NðN þ 1Þ=2 for 2=

ffiffiffiffi
N

p ≲ χt≲ π=2 −
2=

ffiffiffiffi
N

p
signaling entanglement in the oversqueezed state

(Pezzè and Smerzi, 2009), according to Eq. (37). The state

 / 

ga
in

 (
dB

)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20 HL 

SQL 

χ t / π

HLHL

SQLSQLSQL

χt =π / 2t = /2 

t = 0 t = 0.01  t = 0.02 t = 0.05  

t = /8 t = /3 

z 

y 
x 

z 

y 
x 

z 

y 
x 

z 

y 
x 

z 

y 
x 

z 

y 
x 

z 

y 
x 

z 

y 
x 

t/  

ga
in

 (
dB

) 

0 0.1 0.2 0.3 0.4 0.5 
0 

5 

10 

15 

20 

FIG. 14. One-axis twisting dynamics. The left panel reports the inverse spin-squeezing parameter (1=ξ2R, blue, lower line) and
normalized quantum Fisher information (FQ=N, red, upper line) as a function of χt=π. The right panels show snapshots of the Wigner
distribution at different times. For χt ¼ π=2 we plot both the Wigner distributions for N ¼ 100 (left) and N ¼ 101 (right). In all plots
N ¼ 100 (unless specified) and the color scale is as in Fig. 5.

13The quantum Fisher information optimized over rotation
directions in the Bloch sphere is given by the maximum between
FQ½jψOATðχtÞi; Ĵas�=N, Eq. (92), and FQ½jψOATðχtÞi; Ĵx�=N ¼
N½1 − cos2N−2ðχtÞ� − ðN − 1ÞA=2.
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evolves at time χt ¼ π=n into a coherent superposition of 2 ≤
n≲ π

ffiffiffiffi
N

p
=2 coherent spin states distributed evenly on the

equator of the Bloch sphere (Agarwal, Puri, and Singh, 1997);
see Fig. 14. At χt ¼ π=2 we observe the dynamical creation
of a NOON state along the x axis jψOATðπ=2Þi ¼
e−iðπ=2ÞĴy jNOONi if N is even and along the y axis
jψOATðπ=2Þi ¼ e−iðπ=2ÞĴx jNOONi if N is odd (Agarwal,
Puri, and Singh, 1997; Mølmer and Sørensen, 1999). For
the NOON state, the quantum Fisher information, optimized
over the spin direction, reaches its maximum value FQ ¼ N2;
see Sec. II.C.7. For even (odd) values of N, the dynamics is
reversed for χt ≥ π=2 (χt ≥ π) and we have a complete revival
of the initial condition at χt ¼ π (χt ¼ 2π). The one-axis
twisting dynamics is modified by particle loss (Li, Castin, and
Sinatra, 2008; Sinatra et al., 2011; Sinatra, Witkowska, and
Castin, 2012; Sinatra, Castin, and Witkowska, 2013; Spehner
et al., 2014) and other imperfections such as phase noise
(Ferrini, Minguzzi, and Hekking, 2008; Ferrini et al., 2011)
and finite temperature of the Bose gas (Sinatra et al., 2011),
limiting the achievable squeezing. We further comment on
these works in Sec. VII.

1. Spin squeezing and particle entanglement

Spin squeezing obtained via one-axis twisting dynamics
in a Bose-Einstein condensate was first experimentally dem-
onstrated by Gross et al. (2010) and Riedel et al. (2010).
These experiments used a 87Rb condensate prepared in a
coherent spin state with equal mean populations in two
hyperfine states. With 87Rb atoms, the interaction parameter
ℏχ ¼ Uaa þ Ubb − 2Uab, see Eq. (72b), is small due to an
almost perfect compensation of interspecies and intraspecies
collisional interactions, i.e., 2Uab ≈ Uaa þ Ubb. Different
approaches have been used to increase χ artificially.
Riedel et al. (2010) used a spatially inhomogeneous micro-

wave field to manipulate the trapping potentials of the atom
cloud in the two hyperfine states jai ¼ jF ¼ 1; mF ¼ −1i and
jbi ¼ j2; 1i by microwave level shifts (Treutlein et al., 2006;
Böhi et al., 2009). The trapping potential for atoms in one
state is suddenly shifted by such a state-selective force, and the
states coherently demix and begin to oscillate in space. In this
way the overlap of the wave functions of the two states
changes dynamically and modulates collisional effects
(Li et al., 2009): according to Eq. (72c), when the two
components are spatially separated, the interspecies interac-
tion Uab vanishes. The parameter χ is then determined solely
by intraspecies interactions and reaches sufficiently high
values to induce fast spin-squeezing dynamics. After each
full oscillation, the two states coherently remix and the
collisional squeezing dynamics stops. Spin-noise tomography
and the reconstructed Wigner distribution of the squeezed
state are shown in Fig. 15. The results demonstrate a
squeezing parameter ξ2R ¼ −1.2 dB (ξ2R ¼ −2.5 dB inferred).
More recent experiments using this technique achieved up to
ξ2R ¼ −7.0 dB with detection noise subtracted (Ockeloen
et al., 2013; Schmied et al., 2016).
Gross et al. (2010) used a Bose-Einstein condensate of

N ≈ 400 atoms in the jai ¼ j1; 1i and jbi ¼ j2;−1i hyperfine
levels of the electronic ground state of rubidium. A bias

magnetic field is used to bring the system near a Feshbach
resonance (Chin et al., 2010) in order to reduce the inter-

species s-wave scattering length aða;bÞs . This enhances the
effective nonlinearity χ leading to squeezing and entangle-
ment. Spin-noise tomography leads to an inferred ξ2R ¼
−8.2 dB, predicting an entanglement depth excluding less
than 80 particles within 3 standard deviations (and a mean of
170 entangled atoms).

2. Quantum interferometry

Gross et al. (2010) also demonstrated a full Ramsey
interferometer sequence with spin-squeezed states; see
Fig. 16. The squeezed-state creation is followed by a rotation
around the x axis to prepare a phase-squeezed state (i.e.,
squeezed along the y axis)—in effect constructing a nonlinear
beam splitter. After a short interrogation time χt ≪ 1, during
which the interaction is still active, a second π=2 beam splitter
closes the Ramsey sequence. The directly measured phase
sensitivity gain is ðΔθ=ΔθSQLÞ2 ¼ −1.4 dB, corresponding
to a reduction of phase variance 15% below the standard
quantum limit. In a more recent experiment, Muessel et al.
(2014) were able to scale the generation of spin-squeezed
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FIG. 15. Spin-noise tomography and reconstructed Wigner
function of a spin-squeezed Bose-Einstein condensate. Top:
Reconstructed Wigner distribution of a spin-squeezed state of
N ≈ 1250 atoms. The black contour line indicates where the
Wigner distribution has fallen to 1=e of its maximum. For
comparison, the circular 1=e contour of an ideal coherent spin
state is shown. Bottom: Observed spin fluctuations of a spin-
squeezed state (solid circles) and of a coherent spin state (open
circles), as a function of the turning angle of the Bloch sphere.
Solid lines are results of dynamical simulations including losses
and technical noise: blue (lowest), spin-squeezed state with losses
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with losses and technical noise; and black, coherent state with
losses and technical noise. Adapted from Riedel et al., 2010.
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states up to N ¼ 12 500 particles using a chain of trapped
independent condensates and exploiting a differential estima-
tion of the phase. They demonstrated a spin squeezing ξ2R ¼
−3.4 dB and a sensitivity 24% below the standard quantum
limit. Ramsey interferometry using spin-squeezed states
generated via one-axis twisting in Bose-Einstein condensate
has recently found application to sense magnetic fields
(Ockeloen et al., 2013; Muessel et al., 2014), as discussed
in more detail in Sec. VII.

3. Bell correlations

Schmied et al. (2016) observed Bell correlations in spin-
squeezed Bose-Einstein condensates of about N ¼ 480 87Rb
atoms trapped on an atom chip. Following the generation of
the spin-squeezed state by one-axis twisting, the Bell corre-
lation witness W of Eq. (63) is determined by measuring the
second spin moment along the squeezed direction and
combining it with spin contrast measurements along other
projection axes; see Fig. 17. The measured values of W
violate the inequality (63) and thus also the inequalities (64)
and (65). This proves the presence of Bell correlations and
implies that the spin-squeezed states can violate the many-
particle Bell inequality of Tura et al. (2014). The detection of
Bell correlations indicates that spin-squeezed states are useful
beyond quantum metrology: they also contain the resource
for quantum-information tasks such as certified randomness
generation or quantum key distribution (Brunner et al., 2014).
While Schmied et al. (2016) observed Bell correlations in a

spin-squeezed Bose-Einstein condensate, Engelsen et al.
(2017) confirmed Bell correlations in a spin-squeezed thermal

ensemble. The interpretation of these experiments relies on the
common assumption that atoms do not communicate through
unknown channels. This assumption can be relaxed if the
atoms are spatially separated in an optical lattice potential, as
proposed by Pelisson, Pezzè, and Smerzi (2016). Many-body
Bell tests with Bose-Einstein condensates have also been
proposed by Mullin and Laloë (2008) and Laloë and Mullin
(2009). In Sec. III.D we discuss proposals to create entangle-
ment between spatially separated condensates, which could
also be employed for Bell tests.

C. Twist-and-turn dynamics

The creation of entanglement in the one-axis twisting model
is enriched, and accelerated to some extent (Muessel et al.,
2015; Sorelli, Pezzè, and Smerzi, 2015), by the dynamical
evolution using the turning term Ĵx simultaneously with the
twisting term J2z in the Hamiltonian (69). The resulting twist-
and-turn dynamics is experimentally studied from the starting
point of a coherent spin state pointing in the þx or −x
direction. The interaction is suddenly switched to a finite value
of Λ in presence of linear coupling.
The twist-and-turn dynamics can be described as the

evolution of an effective relative-number wave packet
(Juliá-Díaz, Zibold et al., 2012). For an initial coherent spin
state polarized along the positive x axis, the effective
Hamiltonian is given by Eq. (78). W0ðzÞ can be well
approximated as a harmonic potential of frequency
ω0 ¼ Ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
. Suddenly switching the interaction from

Λ ¼ 0 to a positive value (corresponding to a tighter harmonic
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oscillator potential, i.e., ω0=Ω > 1) gives rise to a breathing
mode of the effective wave packet with periodic squeezing of
the relative population. For a coherent spin state polarized
along the negative x axis, the effective potential is

WπðzÞ ¼ −
Λz2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
. ð93Þ

For 0 < Λ < 1, WπðzÞ is harmonic with frequency ωπ ¼
Ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ

p
. Since ωπ=Ω < 1, in this case a sudden switch of

the interaction leads to a breathing motion predicting number
antisqueezing (and phase squeezing). Damping of the oscil-
lations is observed for increasing values of Λ (Gordon and
Savage, 1999; Choi and Bigelow, 2005) corresponding to
the wave packet feeling the anharmonicity of the effective
potential.
These predictions are recovered for 0 < Λ ≪ 1 by a frozen-

spin approximation (Law, Ng, and Leung, 2001) that consists
of neglecting fluctuations of the mean spin Ĵx being replaced
by �N=2. The variances

ðΔĴzÞ2 ¼
N
4

�
cos2ðωtÞ þ Ω2

ω2
sin2ðωtÞ

�
; ð94aÞ

ðΔĴyÞ2 ¼
N
4

�
cos2ðωtÞ þ ω2

Ω2
sin2ðωtÞ

�
; ð94bÞ

show periodic oscillations and the spin-squeezing parameter
reaches ξ2R ¼ 1=ð1þ ΛÞ (ξ2R ¼ 1 − Λ) for the coherent spin
state pointing along the positive (negative) x axis.
The situation changes completely if Λ > 1 (Gordon and

Savage, 1999; Micheli et al., 2003). The potential WπðzÞ,
Eq. (93), turns from a single-well to a double-well shape, with

minima at z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Λ2

p
. The repulsive potential tends

to split the initial Gaussian wave packet sitting at the top of the
barrier, see Fig. 18, corresponding to a coherent spin state.
This splitting gives rise to a macroscopic superposition
corresponding to the wave packet localized in the left and
right wells of WπðzÞ. The semiclassical equations of motion
_z ¼ −∂Hðz;φÞ=∂φ and _φ ¼ ∂Hðz;φÞ=∂z, where Hðz;φÞ is
given by Eq. (73), offer an alternative view (Smerzi et al.,
1997; Raghavan et al., 1999). The fixed point Υπ ≡ ðz ¼ 0;
φ ¼ πÞ becomes unstable for Λ > 1 and two new stable fixed
points Υ� ≡ ðz�; πÞ appear. The exact quantum dynamics
shows that, at short times, the state stretches along the
semiclassical separatrix passing through Υπ; see Fig. 18. At
longer times the quantum state wraps around Υ�. In this
regime, spin squeezing is lost, while the quantum Fisher
information, sensitive to the creation of macroscopic
superposition states, continues increasing. For Λ ¼ 2 the
semiclassical separatrix reaches the poles of the Bloch
sphere: the dynamics creates NOON-like states on a time
scale χt ≈ lnð8NÞ=N (Micheli et al., 2003). For Λ > 2 the
separatrix winds around the Bloch sphere, the maximum
distance between the separatrix and the equator decreases,
and the dynamics resembles that of the one-axis twisting.

1. Entanglement beyond spin squeezing

Twist-and-turn dynamics has been first experimentally
investigated by Strobel et al. (2014) using two internal
hyperfine levels jbi ¼ jF ¼ 1; mF ¼ 1i and jai ¼ j2;−1i
of 87Rb atoms. A narrow Feshbach resonance is used to
reduce the interspecies interaction. Coupling between the
internal levels is provided by radio frequency and microwave
drive. The experiments start with N ≈ 400 atoms in the jbi
mode, followed by a π=2 Rabi pulse that prepares a coherent
spin state aligned with the x axis. Subsequently, the Rabi
coupling is decreased to reach Λ ≈ 1.5, and its phase adjusted
to orient it along the negative x axis. Strobel et al. (2014) and
Muessel et al. (2015) have investigated the short-time spin-
squeezing dynamics. For an evolution of 15 ms, Strobel et al.
(2014) demonstrated ξ2R ¼ −4.5 dB [and inferred ξ2R ¼
−7.1 dB (Muessel et al., 2015)]. Muessel et al. (2015) also
demonstrated a spin squeezing ξ2R ¼ −4 dB using ∼30 inde-
pendent condensates in parallel (each condensate experienc-
ing independently a twist-and-turn dynamics), with a total of
N ¼ 104 particles. For longer times, spin squeezing is quickly
lost and the experimental Husimi distribution of the recon-
structed state shows the characteristic S shape; see Fig. 19.
Strobel et al. (2014) extracted the Fisher information reporting
values F > N and thus demonstrating that the state is
entangled. The experimental extraction of the Fisher infor-
mation requires one to rotate the state around the y axis and to

 / 

ga
in

 (
dB

)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

5

10

15

20 HL 

SQL 
z

z− z+

ω t = π / 4 ω t = πω t = / 2z z z 

y y y 

ϒ ϒ ϒ

ϒ ϒ ϒ
ϒ ϒ ϒ

W
(z

) 

 t /  

ga
in

 (
dB

) 

FIG. 18. Twist-and-turn dynamics. Top: Normalized quantum
Fisher information (FQ=N, red upper line) and inverse spin-
squeezing parameter (1=ξ2R, blue lower line) as a function of
ωπt=π, where ωπ ¼ Ω

ffiffiffiffiffiffiffiffiffiffiffiffi
Λ − 1

p
. The inset shows the effective

potential WπðzÞ initially (dotted line, Λ ¼ 0) and after a quench
to a finite Λ (solid line, Λ ¼ 1.5). The initial coherent spin state
corresponds to a Gaussian wave packet located at the top of the
barrier. Bottom: Snapshots of the Wigner distribution at differ-
ent times. The solid black lines are the mean-field separatrices
and the dots are fixed points of the semiclassical model. Here
N ¼ 100 and the color scale is as in Fig. 5.
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collect the probability distributions of the relative particle
number in jai and jbi at different rotation angles. The Fisher
information is obtained according to Eq. (19) from a quadratic
fit of the Hellinger distance (18) between a reference dis-
tribution (at θ ¼ 0) and the distribution obtained at a finite θ.
Experimental results are shown in Fig. 19.

D. Entanglement of two spatially separated Bose-Einstein
condensates

Creating entanglement between two spatially separated,
individually addressable, Bose-Einstein condensates offers
interesting possibilities: in such a system, local manipulations
and measurements can be performed on the spin state of each
condensate separately and nonlocal quantum correlations
between the measurement results can be directly observed.
This is particularly relevant for experiments on EPR entangle-
ment and Bell tests, where the spatial separation can be used to
rule out unknown causal influences between the clouds.
Bar-Gill et al. (2011), He, Reid et al. (2011), and Kurkjian

et al. (2013) proposed schemes to generate EPR entanglement
between two spatially separated Bose-Einstein condensates
using elastic collisions. The condensates represent collective
spins Ĵð1Þ and Ĵð2Þ, respectively, which can be individually
addressed and prepared in a coherent spin state. Bar-Gill et al.
(2011) and He, Reid et al. (2011) considered schemes where
EPR entanglement is generated by first spin squeezing each
condensate and then interfering the squeezed states on a
beam splitter. In the scheme of Kurkjian et al. (2013), on the
other hand, a state-dependent potential is turned on such that

the wave function of state jai of the first condensate overlaps
with the wave function of state jbi of the second condensate,
picking up a collisional phase shift. Dropping constant and
linear terms in ĴðiÞ, this realizes the Hamiltonian H2BEC ¼
χ1ðĴð1Þz Þ2 þ χ2ðĴð2Þz Þ2 − χ12Ĵ

ð1Þ
z Ĵð2Þz , which generates entangle-

ment between the two condensates in addition to spin
squeezing in each condensate. After an interaction time, the
state-dependent potential is turned off and the condensates
are spatially separated again for detection, revealing EPR
entanglement between them (Kurkjian et al., 2013). For
long interaction times, macroscopic entangled states can be
created, as also analyzed by Byrnes (2013), who investigated
applications of entangled Bose-Einstein condensates in quan-
tum-information processing (Byrnes, Wen, and Yamamoto,
2012). While such experiments have not yet been reported, we
note that continuous-variable entanglement has been created
between spatially separated atomic vapor cells using a
measurement-based scheme (Julsgaard, Kozhekin, and Polzik,
2001).

IV. ENTANGLEMENT VIA ATOMIC COLLISIONS:
SPIN-MIXING DYNAMICS

The generation of correlated photon pairs via spontaneous
parametric down-conversion in nonlinear crystals (Kwiat
et al., 1995) is one of themost widely used sources of entangled
quantum states in optics (O’Brien, Furusawa, and Vučović,
2009). When postselecting n photons in the pair distribution
(let us indicate with j � 1i the signal and idler modes), the
corresponding state is a twin Fock jniþ1jni−1. The twin-Fock
state has been used to overcome the standard quantum limit in an
optical interferometer using up to n ¼ 2 photons per pair
(Nagata et al., 2007; Krischek et al., 2011; Xiang et al.,
2011). Without postselection, parametric down-conversion
creates quadrature-squeezed light (Walls, 1983; Slusher
et al., 1985; Wu et al., 1986; Ou et al., 1992; Breitenbach,
Schiller, and Mlynek, 1997). Following the proposal of Caves
(1981), squeezed light has been successfully used for optical
interferometry beyond the standard quantum limit (Vahlbruch
et al., 2005, 2016), with direct application to gravitational wave
detectors (Schnabel et al., 2010; Aasi et al., 2013). In the same
spirit, the generation of correlated pairs of atoms has thus
attracted large interest: many experiments have been proposed
and performed. In the following, we review the most successful
of these techniques, namely, spin-mixing dynamics in a spinor
Bose-Einstein condensate (Kawaguchi and Ueda, 2012;
Stamper-Kurn and Ueda, 2013); see Sec. IV.A. We discuss
the creation of twin-Fock states in Sec. IV.B and quadrature
squeezing in Sec. IV.C. Finally, in Sec. IV.D we review
alternative protocols for the creation of atom pairs.

A. Spinor Bose-Einstein condensates

1. Spin-changing collisions

When a Bose-Einstein condensate is confined in a far-off
resonant optical dipole trap, the spin degree of freedom of the
atoms evolves freely. Spin-changing s-wave collisions, see
Fig. 20, give rise to a coherent redistribution of atomic
populations among Zeeman sublevels while preserving the
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FIG. 19. Entanglement of non-spin-squeezed states. (a) Exper-
imental Husimi distributions at different evolution times of the
twist-and-turn dynamics. (b) Normalized Fisher information
(F=N, red diamonds) and inverse spin-squeezing parameter
(1=ξ2R, blue circles) as a function of the tomography angle
[identified by the rotation angle α in (a)]. The gray shaded area
is accessible only by entangled states. At 26 ms, spin squeezing
cannot witness the entanglement that is detected by the Fisher
information. (c) Squared Hellinger distance as a function of the
rotation angle θ [see inset for the rotation of the initial (blue) state
to a final (green) one] at three evolution times: t ¼ 0 correspond-
ing to a separable state (black points), t ¼ 15 ms corresponding
to an optimal spin-squeezed state (light gray points), and t ¼
26 ms corresponding to a state that is entangled but not spin
squeezed (red points). The curvature of the quadratic fits (solid
lines) is proportional to F=N. Adapted from Strobel et al., 2014.
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total magnetization (Ho, 1998; Ohmi and Machida, 1998).
The quantum description of an ultracold gas of spin-F bosons
requires introducing a vector order parameter with 2F þ 1

components, fΨ̂−F; Ψ̂−Fþ1;…; Ψ̂Fg (Kawaguchi and Ueda,
2012; Stamper-Kurn and Ueda, 2013). Here Ψ̂mF

is the atomic
field annihilation operator associated with the hyperfine spin
state jF;mFi. The single-mode approximation (Law, Pu, and
Bigelow, 1998) assumes that the spatial atomic density
distribution of all spin components is approximately equal
and not affected by the spin dynamics. The common scalar
wave function ϕðrÞ defining the spatial mode of the con-
densate is determined as the solution of the Gross-Pitaevskii
equation, neglecting contributions from the spin-dependent
interactions. In this approximation, the field operators are
Ψ̂mF

ðrÞ ¼ ϕðrÞâmF
, where âmF

are annihilation operators that

obey the usual bosonic commutation relations. Let N̂mF
¼

â†mF âmF
be the number of particles in the mode jF;mFi, and

N̂ ¼ P
F
mF¼−F N̂mF

the total number of particles. The many-
body Hamiltonian for a F ¼ 1 Bose-Einstein condensate is
(Law, Pu, and Bigelow, 1998; Pu et al., 1999)

ĤSM ¼ ½qþ λð2N̂0 − 1Þ�ðN̂þ1 þ N̂−1Þ
þ 2λðâ†−1â†þ1â0â0 þ â†0â

†
0â−1âþ1Þ; ð95Þ

where we neglected terms proportional to the conserved
magnetization (we assume N̂þ1 − N̂−1 ¼ 0 in the following)
and total number of atoms. Here q ¼ ðΔE1 þ ΔE−1Þ=2 is an
effective quadratic Zeeman shift, where ΔEmF

¼ EmF
− E0 is

the relative energy shift of the mF ¼ �1 mode, which can be
tuned by a magnetic field (q being proportional to the square
of the magnetic field) and/or near-resonant microwave dress-
ing. The interaction parameter is

λ ¼ g2
2

Z
d3rjϕðrÞj4; ð96Þ

with g2 ¼ 4πℏ2ða2 − a0Þ=ð3MÞ, and aG the scattering lengths
for s-wave collisions in the G ¼ 0, 2 allowed channels. The
single-mode approximation is valid if the system size is much
smaller than the spin healing length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=2Mjg2jρ0

p
, where ρ0

is the density of the mF ¼ 0 component, giving the minimum
size of a spin domain (Stamper-Kurn and Ueda, 2013). The
last term in Eq. (95) describes the coherent and reversible
creation of a pair of atoms in the magnetic sublevelsmF ¼ �1

from the scattering of two atoms in mF ¼ 0.
It is useful to rewrite the Hamiltonian (95) in terms of the

spin operators

Ŝx ¼
â†0ŝþ â0ŝ†

2
; Âx ¼

â†0âþ â0â†

2
; ð97aÞ

Ŝy ¼
â†0ŝ − â0ŝ†

2i
; Ây ¼

â†0â − â0â†

2i
; ð97bÞ

Ŝz ¼
â†0â0 − ŝ†ŝ

2
; Âz ¼

â†0â0 − â†â
2

; ð97cÞ

where ŝ ¼ ðâþ1 þ â−1Þ=
ffiffiffi
2

p
and â ¼ ðâþ1 − â−1Þ=

ffiffiffi
2

p
are

symmetric and antisymmetric combinations of âþ1 and â−1.
The spin operators Ŝ ¼ fŜx; Ŝy; Ŝzg and Â ¼ fÂx; Ây; Âzg
do not commute with each other and define two SU(2)
subspaces. With these operators, the Hamiltonian (95) takes
the compact form (Duan, Cirac, and Zoller, 2002)

ĤSM ¼
�
4ℏλŜ2

x −
2ℏq
3

Ŝz

�
þ
�
4ℏλÂ2

y −
2ℏq
3

Âz

�
; ð98Þ

which highlights the presence of nonlinear spin terms. It
should be noted that a symmetric radio-frequency coupling
between the mF ¼ 0;�1 modes with Rabi frequency Ωrf

corresponds to a rotation of the Ŝ vector around the x axis,

Ĥrf ¼
ℏΩrf

2
ffiffiffi
2

p ðâ†0âþ1 þ â†0â−1 þ H:c:Þ ¼ ℏΩrf Ŝx. ð99Þ

A relative phase shift between the mF ¼ 0 and �1 modes
corresponds to a rotation of both Ŝ and Â around the

z axis, e−iθðN̂0−N̂þ1Þ=2e−iθðN̂0−N̂−1Þ=2 ¼ e−iθŜze−iθÂz .
Another popular expression of Eq. (95) is (Law, Pu, and

Bigelow, 1998; Zhang and Duan, 2013)

ĤSM ¼ λL̂ − qN̂0; ð100Þ

where L̂ ¼ fL̂x; L̂y; L̂zg, L̂x ¼ 2Ŝx, L̂y ¼ 2Ây, and L̂z ¼
N̂−1 − N̂þ1 obey angular momentum commutation relations.14

(a) (b) (c)

mF mF 

mG 

mF mF 

FIG. 20. Binary s-wave collision of two spin-F bosons.
(a) When two spin-F bosons in internal states jF;mFi and
jF;m0

Fi approach each other (here F is the hyperfine spin andmF,
m0

F ¼ −F;−F þ 1;…; F the magnetic quantum number), they
couple to form a total spin G ¼ F þ F0. (b) The combined
internal state is given by jG;mGi. For bosons undergoing elastic
s-wave scattering, G is restricted to even values satisfying
0 ≤ G ≤ 2F, e.g., G ¼ 0, 2 for two F ¼ 1 particles. (c) After
the collision the atoms fly apart and their internal states are again
well described by the hyperfine spins F. However, the magnetic
quantum numbers may have changed: jF;mFijF;m0

Fi ↦
jF;m00

FijF;m000
F i. The conservation of total angular momentum

imposes mF þm0
F ¼ m00

F þm000
F .

14Some authors have also studied spin-1 condensates using the a
quadrupole tensor operator Q̂ (Müstecaplıoğlu, Zhang, and You,
2002; Sau et al., 2010; Hamley et al., 2012) with components related

to Eq. (97) as Q̂yz ¼ −2Ŝy, Q̂xz ¼ 2Âx, Q̂zz − Q̂yy ¼ −4Ŝz,

Q̂xx − Q̂zz ¼ 4Âz, and Q̂xy ¼ iðâ†−1âþ1 − â†þ1â−1Þ.
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2. Metrologically useful entanglement in the ground state of the
spin-mixing Hamiltonian

The ground state of the Hamiltonian (95) is characterized
by the competition between the energy shift, proportional to q,
and the spin-dependent collisional interaction, proportional
to λ (Sadler et al., 2006; Lamacraft, 2007; Murata, Saito,
and Ueda, 2007). The mean-field limit of Eq. (95),
obtained by replacing âmF

¼ ffiffiffiffiffiffiffiffiffi
NmF

p
e−iϕmF and assuming

Nþ1¼N−1, gives ESM¼−qN0þ4ℏN0ðN−N0Þcos2ðϕ=2Þ,
where ϕ ¼ 2ϕ0 − ϕþ1 − ϕ−1 (Zhang et al., 2005; Stamper-
Kurn and Ueda, 2013). In a full quantum treatment, the
system is conveniently studied in the Fock basis
fjki−1jN − 2ki0jkiþ1gk¼0;1;…;N=2, where jnimF

indicates a
state of n particles in the mode mF, or in terms of the
eigenstates jl; mi (here m ¼ 0) of L̂ and L̂z (Law, Pu, and
Bigelow, 1998).
For a ferromagnetic condensate λ < 0 (e.g., 87Rb) there are

two quantum phase transitions with order parameter given by
the mean population of the mF ¼ 0 mode. For q > 4Njλj, the
ground state is j0i−1jNi0j0iþ1, corresponding to a polar phase
with all particles in mF ¼ 0 (N0 ¼ N). For jqj < 4Njλj,
the minimization of ESM leads to ϕ ¼ 0 and N0 ¼
ð4jλjN þ qÞ=ð8jλjÞ, corresponding to the so-called broken
asymmetry phase. The population of N0 decreases linearly
with q and the modes mF ¼ �1 are equally populated.
For q < −4Njλj, we have a twin-Fock phase with N0 ¼ 0
and the ground state given by the twin-Fock state
jN=2i−1j0i0jN=2iþ1. Entanglement in the ground state for
the spin-1 system was studied by Zhang and Duan (2013).
Feldmann et al. (2018) studied the quantum Fisher informa-
tion of the ground state jψgsi of the Hamiltonian (95) for

different operators. In particular, FQ½jψgsi; Ŝx� ¼ FQ½jψgsi;
Ây� ¼ NðN þ 1Þ=2 at q ¼ 0 (Feldmann et al., 2018; Zou
et al., 2018), associated with the presence of macroscopic
superposition states (Pezzè et al., 2017). Furthermore,
FQ½jψgsi; Ĵx;y� ¼ NðN þ 2Þ=2 in the twin-Fock phase,

see Fig. 21, where Ĵx ¼ ðâ†þ1â−1 þ âþ1â
†
−1Þ=2 and Ĵy ¼

ðâ†þ1â−1 − âþ1â
†
−1Þ=2i.

For an antiferromagnetic condensate λ > 0 (e.g., 23Na), the
mean-field energy is minimized by taking ϕ ¼ π and N0 ¼ N
for q > 0, and N0 ¼ N for q < 0. There is a quantum phase
transition at q ¼ 0: in the limit N → ∞, for q > 0 the ground
state is given by the fully polarized state j0i−1jNi0j0iþ1, while
for q < 0 by the twin-Fock state jN=2i−1j0i0jN=2iþ1. See
Wu and You (2016) for a calculation of the quantum Fisher
information of the ground state for q ¼ 0 and nonzero
magnetization.

3. Quantum spin-mixing dynamics in the low-depletion limit

The spin dynamics of an initial condensate in mF ¼ 0 is
formally analogous to optical spontaneous four-wave mixing
(Goldstein and Meystre, 1999): atom-atom interaction plays
the role of the nonlinear Kerr medium, themF ¼ 0 condensate
is equivalent to a coherent pump field with the external
trapping potential corresponding to a high-finesse cavity, and
the condensates in mF ¼ �1 can be identified as signal and
idler. Remarkably, spin-changing collisions are unaffected by

the linear Zeeman shift from a homogeneous magnetic field.
Only higher-order effects, such as a quadratic Zeeman shift or
a linear Zeeman shift from an inhomogeneous magnetic field,
affect it.
The low-depletion limit, i.e., N0 ≈ N ≫ 1, is analyzed

by replacing the mode operator â0 in Eq. (95) with
ffiffiffiffiffiffi
N0

p
.

In this approximation, the condensate serves as an unlimited
resource of particles for the parametric amplification of the
mF ¼ �1 modes. We obtain the quadratic Hamiltonian
ĤSM ¼ αðâ†þ1âþ1 þ â†−1â−1Þ þ βðâ†−1â†þ1 þ â−1âþ1Þ, where
α ¼ qþ λð2N0 − 1Þ and β ¼ 2λN0. This Hamiltonian
can be diagonalized by a Bogoliubov transformation
(Duan, Sørensen et al., 2000; Pu and Meystre, 2000);
see also Truax (1985). The unitary evolution jψSMðtÞi ¼
e−iĤSMt=ℏjvaci can be calculated exactly, giving

jψSMðtÞi ¼
Xþ∞

n¼0

½−iðβτ=ℏÞ sinðt=τÞ�n
½cosðt=τÞ þ iðατ=ℏÞ sinðt=τÞ�nþ1

jniþ1jni−1;

ð101Þ

where τ ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

p
, and jvaci ¼ j0iþ1j0i−1 indicates

empty mF ¼ �1 modes. This state has a vanishing population
difference Δ2ðN̂þ1 − N̂−1Þ ¼ 0, while the mF ¼ �1 modes
are nonempty,

hN̂�1i ¼
β2

α2 − β2
sin2

	
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

q
=ℏ



; ð102Þ

and characterized by large (super-Poissonian) population
fluctuations Δ2N̂�1 ¼ hN̂�1iðhN̂�1i þ 1Þ. It is also interest-
ing to consider the quadratures

q 
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FIG. 21. Entanglement in the ground state of the spin-mixing
Hamiltonian. The upper panel reports a schematic representation
of the different phases obtained as a function of q (linear Zeeman
shifts are not shown). The lower panel shows FQ½jψgsi; Ĵx�=N2

(solid line) and FQ½jψgsi; Ŝx�=N2 (dashed line) as a function of
q=4Njλj. The left inset shows the energy gap ΔE between the
ground state and the first excited state, closing at qc ¼ �4Njλj.
The right inset shows the normalized population of the mF ¼ 0
mode N0=N. Here λ < 0 and N ¼ 1000.
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2ðΔQ̂sÞ2 ¼ VQ cos2ðϕ − ϕQÞ þ
1

VQ
sin2ðϕ − ϕQÞ; ð103aÞ

2ðΔQ̂aÞ2 ¼ VQ sin2ðϕ − ϕQÞ þ
1

VQ
cos2ðϕ − ϕQÞ; ð103bÞ

where Q̂s ¼ cosϕX̂s þ sinϕP̂s, X̂s ¼ ðŝþ ŝ†Þ= ffiffiffi
2

p
, P̂s ¼

ðŝ − ŝ†Þ=ði ffiffiffi
2

p Þ, and an analogous definition of Q̂a in terms
of the operators â and â†. The time-dependent coefficients
are VQ ¼ 1þ 2hN̂�1i − 2ΔN̂�1 and cosð2ϕQÞ ¼ αhN̂�1i=
ðβΔN̂�1Þ.
For α2 < β2, τ is imaginary and the condensate is dynami-

cally unstable. The instability is characterized by the expo-
nential increase of population in the mF ¼ �1 modes,

hN̂�1i ¼
β2

β2 − α2
sinh2

	
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − α2

q
=ℏ



. ð104Þ

On resonance (α ¼ 0) the spin-mixing Hamiltonian becomes
ĤSM ¼ 2λN0ðâ†−1â†þ1 þ â−1âþ1Þ, which generates the fami-
liar two-mode squeezed-vacuum state (Walls and Milburn,
1994),

jψSMðtÞi ¼
Xþ∞

n¼0

ð−i tanh rÞn
cosh r

jniþ1jni−1; ð105Þ

where r ¼ jβjt=ℏ ¼ 2jλjN0t=ℏ and hN̂�1i ¼ sinh2 r. The
Hamiltonian ĤSM (for α ¼ 0) can be rewritten as
ĤSM ¼ 2λ½ðŜ2

x − Ŝ2
yÞ − ðÂ2

x − Â2
yÞ�, corresponding to two-

axis countertwisting (Kitagawa and Ueda, 1993; Duan,
Cirac, and Zoller, 2002; Anders et al., 2018) for the S and
A spins. Note that Ŝ and Â commute in the low-depletion
limit. For α ¼ 0, Eqs. (103a) and (103b) reduce to

2ðΔQ̂sÞ2 ¼ e2rsin2
�
ϕ −

π

4

�
þ e−2rcos2

�
ϕ −

π

4

�
; ð106aÞ

2ðΔQ̂aÞ2 ¼ e2rcos2
�
ϕ −

π

4

�
þ e−2rsin2

�
ϕ −

π

4

�
; ð106bÞ

respectively. The quadrature ðΔQ̂sÞ2 [ðΔQ̂aÞ2] is squeezed by
a factor e−2r below the vacuum level at an optimal angle ϕ ¼
π=4 (ϕ ¼ 3π=4), and antisqueezed by a factor e2r at ϕ ¼ 3π=4
(ϕ ¼ π=4). For a sufficiently long evolution time, t≳
ℏ=ð2jλjN0Þ spin dynamics is modified by the depletion of
the condensate. The initially exponential growth of population
in mF ¼ �1 slows down and finally stops (Law, Pu, and
Bigelow, 1998; Mias, Cooper, and Girvin, 2008).
For α2 ≥ β2 the spin-mixing dynamics is stable and the

population of mF ¼ �1 oscillates in time,

hN̂�1i ¼
β2

α2 − β2
sin2

	
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

q
=ℏ



. ð107Þ

For α2 ≫ β2 the amplitude of this oscillation becomes
negligible and the system remains stable in mF ¼ 0.
Typical experiments exploring the quantum spin-mixing

dynamics (Schmaljohann et al., 2004; Chang et al., 2005;
Leslie et al., 2009; Liu et al.m 2009; Klempt et al., 2010;
Peise, Lücke et al., 2015) start with a condensate in the
stable configuration. A sudden quench of parameters brings
the condensate in the dynamical unstable configuration. After
spin-mixing dynamics, the trap is turned off and a Stern-
Gerlach field is used to separate the mF components during a
time-of-flight expansion.
Finally, it is worth recalling that the discussion so far has

been focused on one spatial eigenmode. A rich resonance
structure is expected when taking into account many spatial
modes as experimentally shown by Klempt et al. (2010) and
Scherer et al. (2010).

B. Population correlations and twin-Fock state

Several experiments have explored the creation of the twin-
Fock state jniþ1jni−1 in the mF ¼ �1 Zeeman modes. This
can be accessed either by quantum spin-mixing dynamics
(which can turn a large fraction of an atomic Bose-Einstein
condensate into a mixture of perfectly correlated pairs of
atom, with large fluctuations of n) or by adiabatic preparation.
The twin-Fock state is particle entangled and useful in a
Ramsey interferometer to reach sensitivities beyond the
standard quantum limit; see Sec. II.C.6.

1. Number squeezing

The presence of correlations in the populations ofmF ¼ �1

modes after spin dynamics was first demonstrated by
Bookjans, Hamley, and Chapman (2011), Gross et al.
(2011), and Lücke et al. (2011). Number squeezing ξ2N ¼
Δ2ðN̂þ1 − N̂−1Þ=ðNþ1 þ N−1Þ up to ξ2N ≈ −7 dB [ξ2N ¼
−12.4 dB in the more recent experiment of Lücke et al.
(2014)] below the projection noise level has been reported; see
Fig. 22. The main limitation is given by detection noise for
short-time evolutions and particles losses for long time.

2. Quantum interferometry with twin-Fock states

Lücke et al. (2011) have investigated the phase sensitivity
of the paired atoms generated by the spin-mixing dynamics of
a 87Rb condensate prepared in jF ¼ 2; mF ¼ 0i. The gener-
ated atom pairs in j2;�1i (due to the short evolution time, the
populations in j2;�2i can be neglected due to the quadratic
Zeeman shift detuning) are coupled via a series of microwave
pulses of variable duration; see Fig. 23. This forms an internal-
state beam splitter e−iθĴx, where the rotation angle θ is esti-
mated via the measurement of Ĵ2z ¼ ðN̂þ1 − N̂−1Þ2=4. The
output state is postselected to a total number Nþ1þ
N−1 ≈ 104. Ideally, this postselection would correspond to a
twin-Fock state as input of the beam splitter operation.
Applying error propagation Δθ ¼ ðΔĴ2zÞ=jdhĴ2zi=dθj, it was
possible to demonstrate a phase variance 1.61 dB below the
standard quantum limit at an optimal rotation angle;
see Fig. 23.
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3. Particle entanglement

The experiment of Lücke et al. (2014) demonstrated the
generation of (metrologically useful) entanglement in an
atomic twin-Fock state. This has been further investigated
by Lücke et al. (2014). In this experiment, entanglement (in a
postselected twin-Fock state of N ≈ 8000 atoms in mF ¼ �1

modes) is witnessed by the inequality ξ2D < 1, Eq. (55),
additionally extended to detect an arbitrary k-particle entan-
glement (Lücke et al., 2014). Experimental data exclude an
entanglement depth of less than 28 atoms with 2 standard
deviations of confidence and show an average entanglement
depth of 68 atoms. It should be noted that ξ2D < 1 signals
entanglement independently from its metrological usefulness.
Useful k-particle entanglement is a more demanding resource
than algebraic k-particle entanglement. With experimental
data similar to those reported by Lücke et al. (2014),
Apellaniz et al. (2015) reported a useful entanglement depth
of about three atoms.

4. Adiabatic state preparation

Twin-Fock states can be accessed via an adiabatic passage
through the quantum phase transition(s) (Zhang and Duan,
2013; Luo et al., 2017), as discussed in Sec. IV.A.2. The
ferromagnetic condensate is favorable since the energy gap
at the critical points closes as ΔESM=Nℏjλj ¼ OðN−1=3Þ,
while the energy gap for the antiferromagnetic condensate
closes as ΔESM=Nℏλ ¼ OðN−1Þ. The condensate is initi-
ally prepared via optical pumping with all N atoms in
mF ¼ 0 and, ideally, an adiabatic ramp of qwould transform
the polarized state to a twin-Fock state with N=2 atoms in

mF ¼ �1 (Zhang and Duan, 2013). Hoang et al. (2016)
characterized the amplitude excitations and measured
the energy gap at the critical point in a 87Rb condensate.
The entangled state preparation was experimentally inves-
tigated by Luo et al. (2017). This experiment demonstrates,
despite the diabatic ramp of the parameter and the finite loss
rate, the deterministic and almost perfect preparation of a
twin-Fock state in mF ¼ �1 modes [ðNþ1 þ N−1Þ=N ¼
96� 2% at the end of the ramp], with high number
squeezing (ξ2N ¼ −10.7 dB) and high coherence. The
measurements demonstrate an average entanglement depth
of 910 atoms with more than 450 atoms at the confidence
level of 1 standard deviation. In a successive experiment,
Zou et al. (2018) investigated the adiabatic preparation
of the ground state at q ¼ 0, corresponding to a spin-1 Dicke
state jl ¼ N;m ¼ 0i of the L̂ manifold. The prepared
state has been used to estimate the angle of a Rabi rotation
with a sensitivity of 2.42 dB beyond the standard quantum
limit.

1.6

1.4

1.2

1.0

0.8P
ha

se
noita

mitse
ytniatrecnu
,

Δ
/Δ

θ
θ

sn

)
01(

>
)

(
<

J z
2

7
2

Δ

>
J<

z
3

2
)

01(

0

5

10

15

0

5

10

15

BA

C

0 0.01 0.02 0.03 0.04

20

25

Rotation angle, (rad)θ
0 0.02 0.04

Rotation angle, (rad)θ

Rotation angle, (rad)θ

0 0.02 0.04

A

F=2

F=1

1

4

1

2
3

mF = -1 0 +1

(c) 

rotation angle,  (rad)  

rotation angle,  (rad)  rotation angle, (rad)  

ph
as

e 
un

ce
rt

ai
nt

y,
 

/
SQ

L

J z
   

 (1
03 )

2 

(
J z

  )
2

(1
07 )

2 
 

0 0.01 0.02 0.03 0.04 

0.8 

1 

1.2 

1.4 

1.6 

0 

5 

10 

15 

0 0.02 0.04 
0 

5 

10 

15 

20 

25 

0 0.02 0.04 

(a) (b) 

FIG. 23. Twin-Fock interferometry. The inset of (a) shows the
experimental operations: (1) spin dynamics, (2) a resonant
microwave π pulse between j2;−1i and j1; 0i, (3) a pulse of
variable duration, defining θ, and (4) a second π pulse. (a)
Second moment hĴ2zi of the population imbalance Ĵz ¼ ðN̂þ1 −
N̂−1Þ=2 as a function of θ (dots with error bars) for postselected
numbers of atoms between 6400 and 7600. The solid line is a
polynomial fit (with gray uncertainty region); the dotted line is
the theoretical prediction including detection noise. (b) Same
for ðΔĴ2zÞ2 ¼ hĴ4zi − hĴ2zi2. (c) Phase estimation uncertainty
obtained via error propagation Δθ ¼ ðΔĴ2zÞ=jdhĴ2zi=dθj (solid
orange line with gray uncertainty region) compared to the
theoretical prediction (dashed orange line) and Cramér-Rao
bound (dotted orange line) including detection noise only.
Around θ ¼ 0.015 rad the phase variance lies 1.61 dB below
the standard quantum limit (black dashed line). Adapted from
Lücke et al., 2011.
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FIG. 22. Population correlations after spin-mixing dynamics.
Left panel: hN̂þ1 þ N̂−1i (red, light circles) and Δ2ðN̂þ1 − N̂−1Þ
(blue, dark circles) as a function of the total atom number N.
Error bars are fluctuations (1 standard deviation) and the
gray area corresponds to the sub-Poisson regime. The black line
is a theoretical model including particle loss due to spin
relaxation. The inset shows the distribution of Nþ1 þ N−1
for 250 < N < 300, where the black line is a fitted squeezed-
vacuum distribution corresponding to r ≈ 2. Adapted from
Gross et al., 2011. Right panel: Standard deviation of the
population difference ðN̂þ1 − N̂−1Þ=2 (red, lower line), compared
to the projection noise

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþ1 þ N−1

p
=2 (dashed line), andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNþ1 þ N−1Þ=4þ σ2dn
p

(dot-dashed line) taking into account
a number-independent detection noise σdn ¼ 20 (dotted line).
The blue, upper line is the experimental result for unentangled
atoms. The shaded area indicates the standard deviation. Adapted
from Lücke et al., 2011.
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C. Quadrature squeezing and squeezed-vacuum state

1. Quadrature squeezing

The experiments of Gross et al. (2011), Hamley et al.
(2012), and Peise et al. (2015) investigated quadrature
squeezing in the state generated via spin-mixing dynamics
in the low-depletion limit. In this regime, the quadrature
variance Eq. (103a) can be rewritten as 2ðΔQ̂sÞ2 ¼
NΔ2ðŜx cosϕþ Ŝy sinϕÞ=hŜzi2, where hŜzi ≈ N=2 [and

analogous relation between Eq. (103b) and the Â spin]:
quadrature squeezing thus corresponds to spin squeezing;
see Sec. II.C.5.b. Experimentally, the quadrature modes are
accessed via atomic homodyne detection, as first realized by
Gross et al. (2011); see also Peise et al. (2015). In analogy
to standard techniques in quantum optics (Ou et al.,
1992; Scully and Zubairy, 1997), atomic homodyne consists
of a symmetric radio-frequency coupling between the
condensate in mF ¼ 0, used as a local oscillator, and
the mF ¼ �1 modes. In the limit of low transfer and
N0 ≫ N�1, this corresponds to a displacement operation

e−iΩrf tŜx ¼ e−iΩrf t
ffiffiffi
N

p ðŝþŝ†Þ=2. Hamley et al. (2012) demon-
strated quadrature squeezing using N ¼ 4.5 × 104 87Rb
atoms and characterized the spin-squeezed states via noise
tomography; see Fig. 24. Values up to ξ2R ¼ −8.3 dB
(−10.3 dB inferred) below the SQL are reported.

2. Continuous variable and EPR entanglement

The two-mode squeezed-vacuum state (105) realizes, in
field modes, the position-momentum correlations that
are at the heart of the Einstein-Podolsky-Rosen criterion
(Reid, 1989); see Sec. II.C.9.a. Recall that15 V�

XðϕÞ ¼
coshð2rÞ ∓ sinð2ϕÞ sinhð2rÞ. As the angle ϕ is varied, these
quadrature variances oscillate between a maximum value e2r

and a minimum value e−2r, which is below the value of 1 of
the unsqueezed vacuum state. In the limit r → ∞, at ϕ ¼
3π=4 (ϕ ¼ π=4), we have perfect correlations between X̂þ1

and X̂−1 (X̂þ1 and −X̂−1), as well as between P̂þ1 and −P̂−1
(P̂þ1 and P̂−1), where P̂�1ðϕÞ ¼ X̂�1ðϕþ π=2Þ. According to
Eqs. (61) and (62) discussed in Sec. II.C.9, the two-mode
squeezed-vacuum state produced via spin-mixing dynamics in
spinor condensates (Duan, Sørensen et al., 2000; Pu and
Meystre, 2000) is mode entangled for r > 0 and fulfills the
EPR criterion for r > ln

ffiffiffi
2

p
(Reid et al., 2009).16 The

quadratures X�ðϕÞ are proportional to the number of particles
N̂þ1 � N̂−1 measured after a radio-frequency pulse coupling
mF ¼ 0 with mF ¼ �1 (Gross et al., 2011). With spinor
condensates (Duan, Cirac, and Zoller, 2002), continuos
variable entanglement, e.g., the violation of Eq. (61), was
first demonstrated by Gross et al. (2011), while EPR entan-
glement, e.g., the violation of Eq. (62) was observed by Peise
et al. (2015); see Fig. 25. The experimental violation of
Eq. (62) demonstrates a form of entanglement intrinsically
connected with local realism. The demonstration of the
continuous-variable EPR paradox with massive particles
would additionally require spacelike separation of measure-
ments to rule out causal influences, which has not yet been
experimentally achieved.

3. Interferometry with squeezed vacuum

Quadrature squeezing is a resource for quantum interfer-
ometry; see Sec. II.C.5.b (Caves, 1981). Within spin-mixing
dynamics, squeezing occurs in the quadratures corresponding
to the symmetric jsi ¼ ðj1;þ1i þ j1;−1iÞ= ffiffiffi

2
p

and the anti-
symmetric jai ¼ ðj1;þ1i − j1;−1iÞ= ffiffiffi

2
p

combinations of the
jF ¼ 1; mF ¼ �1i modes. Kruse et al. (2016) realized an
atomic clock that exploits the squeezed-vacuum states created
in the jsi mode. An initial condensate of N ≈ 104 atoms
undergoes spin-mixing dynamics in the F ¼ 1 manifold of
87Rb in the low-depletion regime (hN̂0i ≫ hN̂�1i after spin
dynamics). The interferometer consists of a rf coupling
(corresponding to a balanced beam splitter between the
condensate in j1; 0i and the squeezed vacuum in jsi,

FIG. 24. Top: Quadrature variance 4Δ2ðŜx cosϕþ Ŝy sinϕÞ=N
of the state generated after variable duration of the spin-mixing
dynamics (colored lines and symbols), as functions of the
quadrature angle ϕ. Symbols are experimental results obtained
via state tomography, whereas the solid lines are theoretical
predictions. Bottom: Reconstructed phase space distributions at
t ¼ 15 ms (left) and t ¼ 45 ms (right); the black ellipses are the
1=

ffiffiffi
e

p
uncertainty ellipse predicted theoretically. Adapted from

Hamley et al., 2012.

15Note the relations Q̂sðϕÞ¼ ½X̂þ1ðϕÞþ X̂−1ðϕÞ�=
ffiffiffi
2

p
and Q̂aðϕÞ ¼

½X̂þ1ðϕÞ − X̂−1ðϕÞ�=
ffiffiffi
2

p
, where X̂�1ðϕÞ ¼ ðâ�1e−iϕ þ â†�1e

iϕÞ= ffiffiffi
2

p
.

In particular Vþ
XðϕÞ ¼Var½X̂þ1ðϕÞþ X̂−1ðϕÞ�¼2ðΔQ̂sÞ2 and V−

XðϕÞ ¼
Var½X̂þ1ðϕÞ − X̂−1ðϕÞ� ¼ 2ðΔQ̂aÞ2.

16In the case of a finite number of particles in the local oscillator
(mF ¼ 0 mode), the inequalities (61) and (62) generalize to
V�
XðϕÞ þ V∓

PðϕÞ ≥ 2 − ðNþ1 þ N−1Þ=N0, and V−
XðϕÞV

þ
PðϕÞ ≥ ð1=4Þ×

ð1 − N−1=N0Þ2, respectively (Raymer et al., 2003; Ferris et al.,
2008).
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Ĥrf ¼ ℏΩrf Ŝx), a relative phase shift θ implemented by a
detuned π pulse between j1; 0i and j2; 0i, and a second
balanced beam splitter between j1; 0i and jsi. The antisym-
metric mode jai is left unchanged by the interferometer
transformation (up to an overall phase), while the jsi is
rotated in the Bloch sphere identified by the Ŝ manifold.
The experiment of Kruse et al. (2016) reported Ramsey
fringes as a function of θ reaching a clock sensitivity
2.05 dB below ΔθSQL ¼ 1=

ffiffiffiffi
N

p
. In the absence of noise,

the expected sensitivity is Δθ ¼ e−r=
ffiffiffiffi
N

p
(Caves, 1981) in the

low squeezing regime and can reach the Heisenberg limit
ΔθHL ¼ 1=N when the input states in each mode of the
interferometer have the same population on average (Pezzè
and Smerzi, 2008).

4. Nonlinear SU(1,1) interferometry

Spin-mixing dynamics can also be used to realize a SU(1,1)
interferometer as first proposed by Yurke, McCall, and
Klauder (1986) in optics17 and further analyzed by Marino,
Corzo Trejo, and Lett (2012) and Gabbrielli, Pezzè, and

Smerzi (2015) for spinor condensates. The basic idea of this
interferometric scheme is to replace the linear beam splitters of
a standard Mach-Zehnder scheme with nonlinear beam
splitters that create or annihilate pairs of particles, as imple-
mented via spin-mixing dynamics. Let us indicate with N the
total average number of atoms transferred in pairs from a
condensate prepared in mF ¼ 0 to the initially empty mF ¼
�1 modes. After spin mixing, the system acquires a relative
phase θ ¼ 2θ0 − ðθþ1 þ θ−1Þ between mF ¼ 0 and �1
modes. A second spin-mixing dynamics closes the interfer-
ometer. The final populations in mF ¼ 0;�1 depend on θ.
When treating the condensate in mF ¼ 0 as an undepletable
source of atomic pairs, the predicted phase sensitivity is
(Yurke, McCall, and Klauder, 1986)

Δθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðN þ 2Þ cos2ðθ=2Þ þ 1

N ðN þ 2Þ sin2ðθ=2Þ

s
: ð108Þ

Equation (108) reaches Δθ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðN þ 2Þp

at the optimal
working point θ ¼ π (a dark fringe, where no particle is found
in the output mF ¼ �1 states) and shows that only the
particles outcoupled from the mF ¼ 0 mode contribute to
the phase sensitivity.
An analysis beyond the low-depletion limit shows that the

SU(1,1) interferometer scheme can overcome the standard
quantum limit with respect to the total number of particles N
in the initial condensate (Gabbrielli, Pezzè, and Smerzi,
2015) and reach Δθ ¼ Oð1=NÞ. The sensitivity can be
further enhanced by an additional linear coupling of the three
modes before and after phase imprinting, a scheme called
“pumped-up” SU(1,1) interferometer (Szigeti, Lewis-Swan,
and Haine, 2017).
Linnemann et al. (2016) experimentally realized a non-

linear SU(1,1) interferometer within the F ¼ 2 manifold of
87Rb. The experiment is performed in the low-depletion
regime with N ¼ 2.8, using N ≈ 400 atoms. The interferom-
eter is probed by tuning the relative phase between themF ¼ 0
condensate and the mF ¼ �1 modes to the dark fringe. The
phase θ is imprinted via a second-order Zeeman shift by
applying a magnetic field for varying times and is read out
from the mean total number of atoms in the mF ¼ �1 modes.
Results demonstrate a sensitivity Δθ close to the theoretical
prediction of Eq. (108).

D. Other protocols to create correlated atomic pairs

Spin-mixing dynamics is not the only possibility to create
correlated atom pairs. Alternative methods have been studied
and implemented experimentally. Relative number squeezing
between two Bose-Einstein condensates with opposite
momenta has been obtained in the collisional deexcitation
of a one-dimensional quasicondensate, where the reduced
dimensionality restricted the number of available modes
(Bücker et al., 2011). The atoms were initially prepared in
a highly nonequilibrium state such that the only allowed
deexcitation channel is a two-particle collision process,
emitting atom pairs. Bücker et al. (2011) observed a number
squeezing of up to −4.3 dB. Jaskula et al. (2010) observed
sub-Poissonian atom number fluctuations, with 0.5 dB of
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FIG. 25. Einstein-Podolsky-Rosen entanglement with spinor
condensates. (a) Experimental variances Vþ

XðϕÞ and V−
XðϕÞ as

functions of the local oscillator phase ϕ. The dashed line is the
quadrature variance for the vacuum state. The lowest measured
quadrature variance is V−

X ¼ 0.42, corresponding to a squeezing of
3.77 dB below the vacuum limit. (b) Product V−

XðϕÞ × Vþ
Xðϕþπ=2Þ:

data points below the dashed line violate the inequality (62) and
thus signal Einstein-Podolsky-Rosen entanglement. Data reach
V−
XðϕÞ × Vþ

Xðϕþπ=2Þ ¼ 0.18ð3Þ, which is 2.4 standard deviations

below the limit of 1=4. (c) Sum Vþ
XðϕÞ þ V−

Xðϕþπ=2Þ: Data points

below the dotted line violate the inequality (61) and thus signal
entanglement between the mF ¼ �1 modes, and data below
the dashed line signal Einstein-Podolsky-Rosen entanglement.
Data reach Vþ

XðϕÞ þ V−
Xðϕþπ=2Þ ¼ 0.85ð8Þ. Adapted from Peise

et al., 2015.

17SU(1,1) interferometers have been recently realized with a bright
laser source by Hudelist et al. (2014) and with a hybrid atom-light
system by Bing Chen et al. (2015).
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number squeezing, between atoms of opposing momenta in
the halo produced by the s-wave scattering of two Bose-
Einstein condensates of metastable 4He. The amount of
detected squeezing was limited by the large number of
collisional modes (isotropically distributed over the scattering
sphere) and the correspondingly small number of atoms per
mode. With the same scheme (Lewis-Swan and Kheruntsyan,
2014) it was possible to demonstrate Hong-Ou-Mandel
interference (Hong, Ou, and Mandel, 1987). Each atom of
the pair in the motional degree of freedom is sent to the input
channel of a beam splitter realized using Bragg scattering on
an optical lattice (Bonneau et al., 2013). When two inputs are
indistinguishable, they emerge together in one of the output
channels, demonstrating two-particle interference (Lopes
et al., 2015).

V. ENTANGLEMENT CREATION VIA ATOM-LIGHT
INTERACTION

The light-matter quantum interface finds important appli-
cations in several areas of quantum-information processing
(Kimble, 2008; Hammerer, Sørensen, and Polzik, 2010). Here
we review the many successful experiments and proposals that
exploit the coupling between atoms and light for the creation
of useful entangled states for quantum metrology. This quest
started in the late 1990s with pioneering experiments using
room-temperature vapor cells (Kuzmich et al., 1999;
Kuzmich, Mandel, and Bigelow, 2000) and laser-cooled
atomic gases (Hald et al., 1999), which demonstrated the
reduction of atomic spin (or pseudospin) fluctuations. In these
experiments, the atom-light interface was implemented in free
space using optically thick atomic ensembles (Kuzmich and
Polzik, 2003). Optical cavities can be used to effectively
increase the optical depth of the atomic sample and represent a
versatile system with rich possibilities for creating entangle-
ment between atoms (Miller et al., 2005; Tanji-Suzuki et al.,
2011; Ritsch et al., 2013). These techniques have allowed the
demonstration of metrological spin-squeezing, squeezed-state
atomic clocks and the creation of highly nonclassical states.
Key theoretical proposals and experiments on atom-light

interfaces for quantum metrology can be classified into three
broad categories: (a) nondestructive measurements, including
quantum nondemolition measurements and Zeno dynamics,
Sec. V.A; (b) light-mediated coherent interaction between
distant atoms, Sec. V.B; and (c) the transfer of squeezing
to atoms via absorption of nonclassical light, Sec. V.C.
Atom-light interaction currently represents the most success-
ful method for producing large amounts of squeezing and
entanglement in atomic ensembles.

A. Quantum state preparation using nondestructive
measurements

1. Quantum nondemolition measurements in free space

In a quantum nondemolition (QND) measurement, a system
(e.g., an atomic ensemble) and a meter (a measurement degree
of freedom, e.g., a light beam) are coupled, such that a
direct measurement of the meter provides indirect information
about an observable of the system (Braginsky, Vorontsov,
and Thorne, 1980; Braginsky and Khalili, 1992; Grangier,

Levenson, and Poizat, 1998). The measurement is called QND
if the system and the measured value of the observable are
conserved after the measurement. QND measurements are a
resource for quantum metrology as they allow the preparation
of entangled and spin-squeezed states of many atoms. This is
well illustrated by a model Hamiltonian describing a far-off
resonant dispersive interaction between the collective spin of
an ensemble of atoms and a two-mode light beam in free space
(Kuzmich, Bigelow, and Mandel, 1998; Takahashi et al.,
1999):

ĤQND ¼ ðℏk=tpÞŜzĴz: ð109Þ

Here tp is the light pulse duration, Ĵ ¼ fĴx; Ĵy; Ĵzg is the

atomic collective spin, and Ŝ ¼ fŜx; Ŝy; Ŝzg is the Stokes

vector operator of the light, with components Ŝx ¼
ðâ†þâ− þ â†−âþÞ=2, Ŝy ¼ ðâ†þâ− − â†−âþÞ=ð2iÞ, and Ŝz ¼
ðâ†þâþ − â†−â−Þ=2. The operators â� can refer to two polari-
zation modes (Takahashi et al., 1999; Hammerer et al., 2004),
in which case Eq. (109) describes the paramagnetic Faraday
rotation of light; or to two spatial modes of an optical Mach-
Zehnder interferometer where atoms are placed in one arm and
phase shift the light (Oblak et al., 2005; Chaudhury
et al., 2006; Windpassinger et al., 2008). The dimensionless
interaction strength in Eq. (109) is k ∝ ðσ=AÞΓ=Δ, where σ is
the resonant photon scattering cross section of the probe
transition, Γ is the spontaneous emission rate, A is the spatial
cross section of the atomic ensemble illuminated by the pulse,
and Δ is the detuning of the light from resonance (Hammerer,
Sørensen, and Polzik, 2010). The Hamiltonian (109) satisfies
the backaction evasion condition ½Ĵz; ĤQND� ¼ 0 such that Ĵz
is a constant of motion. During the interaction, Ŝ precesses
around the z axis by an angle kĴz. To lowest order in this
angle, we have

Ŝoutx ≈ Ŝinx − kŜiny Ĵ
in
z ; Ĵoutx ≈ Ĵinx − kĴiny Ŝ

in
z ; ð110aÞ

Ŝouty ≈ Ŝiny þ kŜinx Ĵ
in
z ; Ĵouty ≈ Ĵiny þ kĴinx Ŝ

in
z ; ð110bÞ

Ŝoutz ¼ Ŝinz ; Ĵoutz ¼ Ĵinz : ð110cÞ

A measurement of Ŝoutx or Ŝouty thus realizes a QND meas-
urement of Ĵz while preserving the system’s quantum coher-
ence. As an illustration, we take atomic and optical systems
both initially prepared in coherent spin states polarized along
the x axis. Assuming hŜiny i ¼ 0 and hĴzi ¼ 0, the average

phase precession is zero, hŜouty i ¼ 0, while the variance

ðΔŜouty Þ2 ¼ nð1þ κ2Þ=4 increases with κ2 ¼ nNk2=4, where
N is the number of atoms and n is the number of photons in the
pulse. The mean value and variance of Ĵz after the measure-
ment of the light spin Ŝy (with result my) are

hĴoutz ijmy
¼ κ

1þ κ2

ffiffiffiffi
N
n

r
my; ð111aÞ

ðΔĴoutz Þ2jmy
¼ 1

1þ κ2
N
4
; ð111bÞ
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respectively; see Fig. 26. Although the final atomic state
depends on the result of the measurement of the light beam
(and it is thus termed conditional), the reduction in spin noise
according to Eq. (111b) is completely deterministic, with no
postselection necessary. Unconditional spin squeezing can be
achieved by an additional spin rotation that compensates the
stochastic shift of hĴzi in Eq. (111a) (Berry and Sanders,
2002; Thomsen, Mancini, and Wiseman, 2002). Inoue et al.
(2013) and Cox et al. (2016) experimentally demonstrated
such unconditional spin squeezing via feedback control; see
also Vanderbruggen et al. (2013). In the QND scheme, the
squeezing is due to the projective measurement of the atomic
state upon detection of the light, and its efficacy is determined
by the performance of the detector. Yet, this discussion is
highly idealized: far-off resonant dispersive probing is
unavoidably accompanied by decoherence due to Raman spin
flips.18 Note that κ2 ¼ ηα0, where α0 ∝ Nσ=A is the resonant
optical depth and η ∝ nðσ=AÞðΓ=ΔÞ2 is the average photon
scattering rate per atom during the probe pulse. Scattered
photons carry information about the spin state of the atoms:
these photons reduce the spin length as jhĴoutx ij ≈ ð1 − ηÞjhĴxij
for η ≪ 1 (Hammerer et al., 2004) and add noise that
counteracts the reduction of spin variance (Hammerer
et al., 2004; Madsen and Mølmer, 2004; de Echaniz et al.,
2005). A suitable choice of atomic levels may be used to avoid
this effect (Saffman et al., 2009; Chen et al., 2014). The
successful implementation of QND measurements is thus
based on the proper choice of light power (increasing n
reduces the photon shot noise of light detection but increases
Raman scattering) and detuning [exploiting the favorable

scaling of k ∝ Γ=Δ over η ∝ ðΓ=ΔÞ2]. The most important
figure of merit of an atom-light interface is the resonant optical
depth α0, which should be much larger than unity.
Appel et al. (2009) reported the first experimental dem-

onstration of metrological spin squeezing (reaching ξR < 1)
via QND measurements in free space. This experiment used
N ¼ 1.2 × 105 Cs atoms (with measured κ2 ≈ 3.2 and optical
depth α0 ≈ 16). Two equally intense and linearly polarized
laser beams of different frequencies enter the arms of an
optical Mach-Zehnder interferometer; see Fig. 27(a). The
beams off resonantly probe different atomic transitions and
experience phase shifts proportional to the number of atoms in
the probed levels (Saffman et al., 2009). The detection of the
relative phase shift ϕ accumulated in the optical path performs
a QND measurement of the relative population in the two
atomic levels (Kuzmich, Bigelow, and Mandel, 1998; Saffman
et al., 2009). Spin squeezing is quantified by correlations
between two consecutive QND measurements. One finds

Varðϕ2 − ζϕ1Þ ¼
1

n
þ κ2

1þ κ2
N
4
; ð112Þ

where ϕ1 and ϕ2 refer to the first and second phase shift
detections, respectively, and the covariance

Jy

Jz

Jy

Jz

FIG. 26. Conditional spin squeezing via QND measurements.
A light beam (blue arrows) propagates through the atomic
ensemble. By measuring the output light field, one gains infor-
mation about the atomic state. The initial coherent spin state
(orange circle) changes after the detection of the light beam (green
ellipse). It becomes squeezed in Ĵz and shifted (conditioned by the
measurement result), according to Eqs. (111a) and (111b).
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FIG. 27. Spin squeezing via quantum nondemolition measure-
ments in free space. (a) A cloud of cold Cs atoms is confined in an
elongated dipole trap placed in one arm of an optical Mach-
Zehnder interferometer and aligned with the largest resonant
optical depth. The relative populations of the clock levels jai and
jbi are measured via the phase shift ϕ accumulated by two
detuned probe beams propagating through the atomic cloud.
(b) Red diamonds are VarðΦÞ (with Φ ¼ ϕ1 − ζϕ2) obtained
after two consecutive QND measurements of covariance ζ. Blue
symbols are VarðΦÞ obtained for a coherent spin state (Φ ¼ ϕ1,
dots, and Φ ¼ ϕ2, stars). The solid line is a quadratic fit and the
dashed line is the expected linear scaling with the atom number N
due to projection noise. The dot-dashed line is the projection
noise scaled down by the factor ð1 − ηÞ2 ¼ 0.64, corresponding
to the reduction by the measured observed loss of atomic
coherence. Different color regions are the optical shot noise
(light blue), detector noise (dark blue), and projection noise
(green, light). The inset illustrates the trade-off between spin
squeezing ξ2R and loss of coherence η due to spontaneous
emission. Adapted from Appel et al., 2009.

18In the literature, nonideal measurements are still termed QND
provided that the loss of coherence in the atomic ensemble remains
small.
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ζ ¼ Covðϕ1;ϕ2Þ=Varðϕ1Þ ¼
κ2

1þ κ2
ð113Þ

expresses the correlations between the two measurements.
The results reveal a spin squeezing ξ2R ¼ −3.4 dB; see
Fig. 27(b). Furthermore, Louchet-Chauvet et al. (2010) used
a similar apparatus to perform a Ramsey sequence (between
the two QND measurements) and demonstrated an atomic
clock with a measured phase sensitivity 1.1 dB below the
standard quantum limit.
Spin squeezing has also been experimentally obtained by

measuring the polarization rotation of probe light passing
through a cloud of atoms. This technique was pioneered by
Kuzmich et al. (1999) and Kuzmich, Mandel, and Bigelow
(2000), and more recently investigated in ensembles of spin-
1=2 171Yb (Takano et al., 2009, 2010; Inoue et al., 2013) and
spin-1 87Rb atoms (Sewell et al., 2012, 2013, 2014). Sewell
et al. (2012, 2014) achieved spin squeezing using a two-
polarization probing technique (Koschorreck et al., 2010a,
2010b). These experiments demonstrated ξ2R ¼ −1.5 dB
(Sewell et al., 2014) [ξ2R ¼ −2 dB inferred (Sewell et al.,
2012)] using N ≈ 6 × 105 atoms, limited mainly by the
photon shot noise of the readout light. Polarization-based
QND measurements find direct application in entanglement-
assisted optical magnetometry; see Sec. VII.C.
Puentes et al. (2013) proposed to generate planar spin

squeezing (see Sec. II.C.8.d) in spin-1 atomic ensembles
via sequential QND measurements of two orthogonal spin
components. Measurements by Colangelo, Martin Ciurana,
Puentes et al. (2017) and Colangelo, Martin Ciurana, Bianchet
et al. (2017) in cold F ¼ 1 87Rb atoms show phase and
amplitude squeezing simultaneously, as well as entanglement
between the atoms’ spins (Vitagliano et al., 2018).

2. Cavity-based quantum nondemolition measurements
in the dispersive regime

The strength of the interaction between the light and the
atomic ensemble is usually weak, but can be enhanced by
placing the atoms inside an optical cavity. This method is very
promising as the squeezing factor increases with the cavity
finesse, which can be pushed to large values.Moreover, a small
single-pass optical depth is advantageous for applications in
atomic clocks, since it allows one to reduce atomic-density-
dependent atom losses, dephasing, and systematic errors.
The essential features of dispersive atom-light interaction in

a cavity (Vernac, Pinard, and Giacobino, 2000; Bouchoule and
Mølmer, 2002a; Madsen and Mølmer, 2004; Nielsen and
Mølmer, 2008) are captured by a simplified model comprising
N three-level atoms; see Fig. 28(a). Each atom has two
hyperfine levels jai and jbi of energy difference ℏω, and
an excited state jei with linewidth Γ (spontaneous decay
rate into free space). The atoms are placed in an optical cavity
with resonance frequency ωc and linewidth κc, driven reso-
nantly with a single-atom–single-photon effective intracavity
Rabi frequency 2g. The detuning of the cavity from the
jai ↔ jei and jbi ↔ jei transitions is chosen of equal
magnitude Δ ¼ �ω=2. Assuming homogeneous interaction
(see Sec. II.E.3), low intracavity photon number (nc ¼
hĉ†ĉi ≪ Δ2=g2), and large detuning (Δ ≫ κc;Γ;

ffiffiffiffi
N

p
g), the

coupling Hamiltonian is (Schleier-Smith, Leroux, and Vuletić,
2010a)

Ĥ ¼ ℏωcĉ†ĉþ ℏ
2g2

Δ
ĉ†ĉĴz þ ℏωĴz; ð114Þ

where ĉ and ĉ† are cavity mode operators. The effect of the
light on the atoms is an ac Stark shift of the transition
frequency δω ¼ ð2g2=ΔÞnc between jai and jbi. Atoms in jai
(jbi) increase (decrease) the index of refraction seen by the
probe light, so that the net effect is a shift of the cavity
resonance by

δωc ¼
2g2

Δ
Na − Nb

2
¼ 2g2

Δ
Jz; ð115Þ

where Na and Nb are the numbers of atoms in jai and jbi,
respectively. This shift can be probed by injecting a laser into
the cavity, providing a QND measurement of Ĵz. A detailed
analysis including decoherence associated with free-space
scattering of the probe light shows the possibility to achieve
(Chen et al., 2014; Hosten, Engelsen et al., 2016)

ξ2R ≈
1þ NCðΓ=ωÞ2ffiffiffiffiffiffiffi

NC
p ; ð116Þ

where C ¼ ð2gÞ2=ðκcΓÞ is the single-atom cavity coopera-
tivity. C is the ratio between the number of photons scattered

(a) 

(b) (c) 

FIG. 28. Spin squeezing via cavity-based quantum nondemo-
lition measurements in the dispersive regime. (a) Laser-cooled
atoms are optically trapped in a standing wave (red, lighter line)
inside an optical resonator. The cavity resonance is shifted in
proportion to the relative population of two clock levels. The shift
is measured from the transmission of a probe beam (blue, darker
line). Uniform atom-light coupling is achieved using trapping and
probe beams of commensurate frequencies. (b) Measured spin-
noise reduction 4ðΔĴzÞ2=N (dots) normalized to the coherent
spin state projection noise. The solid line is a model fit. (c) Allan
deviation of a clock that uses the generated squeezed states (black
dots; the solid line indicates 9.7 × 10−11 s1=2=

ffiffiffi
τ

p
) or coherent

spin states (blue circles; the dashed line is the standard quantum
limit). Adapted from Hosten, Engelsen et al., 2016.
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into the cavity mode and those scattered into free space and
quantifies the optical depth of an atom with respect to the
cavity mode (Tanji-Suzuki et al., 2011). Note that C depends
on the cavity geometry and is proportional to the cavity finesse
(Tanji-Suzuki et al., 2011).
Spin squeezing via a cavity-based QND measurement was

first demonstrated by Schleier-Smith, Leroux, and Vuletić
(2010b) using magnetically insensitive clock states of 87Rb
atoms. This experiment reported a spin squeezing ξ2R ¼
−1.45 dB with respect to the standard quantum limit
ðΔθSQLÞ2 ¼ 1=Neff , referring to Neff ≈ 0.66N uncorrelated
atoms (Neff accounts for spatial variation in the atom-light
coupling due to the trapping lattice being incommensurate
with the cavity mode used for probing, and N ¼ 5 × 104).
This result is mainly limited by inhomogeneous dephasing
due to the cavity locking light. Hosten, Engelsen et al. (2016)
used a cavity of higher cooperativity and exploited probing
and trapping beams of commensurate frequencies, achieving a
uniform atom-light coupling; see Fig. 28(a). This avoids the
need for spin-echo techniques required for nonuniformly
coupled systems. This experiment demonstrated 10.5 dB of
improved phase sensitivity with respect to ðΔθSQLÞ2 ¼ 1=N,
with N ¼ 1 × 105 87Rb atoms, and a spin squeezing ξ2R ¼
−18.5 dB (−20.1 dB inferred); see Figs. 28(b) and 28(c). This
represents the highest value in expected metrological spin
squeezing and measured phase sensitivity gain to date.

3. Heralded atomic entanglement created by single-photon
detection

In the preceding sections we discussed the interaction of an
atomic ensemble with an intense laser pulse (105–107 photons
in typical experiments), which is subsequently detected by a
standard linear photodetector that does not resolve individual
photons. The light in these experiments is effectively a
continuous-variable quantum system. A different approach
uses weak laser pulses in combination with single-photon
counting, in close analogy to the techniques developed for
atomic ensemble-based quantum repeaters (Duan et al., 2001;
Sangouard et al., 2011). These techniques allow one to create
a range of highly nonclassical states of a large number of
atoms in a heralded way, i.e., conditioned on the detection of a
single photon. The interaction of a linearly polarized photon
with the atoms according to Eq. (109) produces a weak
Faraday rotation of the photon polarization. Denoting jvi and
jhi the vertical and horizontal polarizations, respectively, an
atom-light system initialized in jvi ⊗ jϑ;φ; Ni (where
jϑ;φ; Ni is a coherent spin state, see Sec. II.C) evolves by
the QND interaction (109) to the state (McConnell et al.,
2013)

jψi ¼ 1
2
jvi ⊗ ðjϑ;φþ; Ni þ jϑ;φ−; NiÞ
þ 1

2
jhi ⊗ ðjϑ;φþ; Ni − jϑ;φ−; NiÞ; ð117Þ

where φ� ¼ φ� ϕ and ϕ is the phase accumulated during
the interaction. The detection of a vertically polarized
photon projects the atomic ensemble to jψvi ∝ jϑ;φþ; Niþ
jϑ;φ−; Ni, whereas the detection of a horizontally polari-
zed photon prepares jψhi ∝ jϑ;φþ; Ni − jϑ;φ−; Ni. The

entanglement properties strongly depend on the phase ϕ,
and the quantum Fisher information is (without loss of
generality we assume here that ϑ ¼ π=2 and φ ¼ 0)

FQ½jψh;vi; Ĵy�
N

¼ 1þ ðN − 1Þ sin2 ϕ� cosN ϕ

1� cosN ϕ
; ð118Þ

where the plus (minus) sign holds for the detection of a
vertically (horizontally) polarized photon. To the leading order
in N, we have FQ½jψvi; Ĵy�=N ¼ 1þ Nϕ2=2þOðN2ϕ4Þ and
FQ½jψhi; Ĵy�=N ¼ 3þ Nϕ2=2þOðN2ϕ4Þ: for jϕj≲ 2=

ffiffiffiffi
N

p
,

the state jψhi is metrologically more useful than jψvi.
In particular, for jϕj ≪ 1=

ffiffiffiffi
N

p
, the (rare) detection of a

horizontally polarized photon heralds the generation of
jψhi ¼ jðN=2 − 1Þxi, which is the one-excitation Dicke state.
For jϕj≳ 2=

ffiffiffiffi
N

p
, we have cosN ϕ ≈ 0 in Eq. (118) and the

two states approximately give the same quantum Fisher
information. At ϕ ¼ �π=2, we get the NOON state
jψh;vi ¼ ½jðN=2Þyi � jð−N=2Þyi�=

ffiffiffi
2

p
. In the realistic sce-

nario jϕj ≪ 1=
ffiffiffiffi
N

p
, the detection of a sequence of photons

conditionally prepares more and more entanglement. For
instance, disregarding losses and decoherence, the detection
of nh h-polarized photons prepares the NOON state
½jðN=2Þzi þ jð−N=2Þzi�=

ffiffiffi
2

p
when nhjϕj≳

ffiffiffiffi
N

p
. Finally,

W. Chen et al. (2015) generalized this method showing the
possibility to generate a broad class of entangled states of
many atoms using single photons having a tailored frequency
spectrum and time-resolved detection.
Experimentally, the use of single-photon detection for

preparing entangled states of an atomic ensemble was pio-
neered by Christensen et al. (2013, 2014). These experiments
reported the expected increase of spin fluctuations above
projection noise. McConnell et al. (2015) demonstrated the
generation of entanglement in an atomic ensemble of N ¼
3100 laser-cooled 87Rb atoms prepared in an optical cavity
and probed with an off-resonant weak pulse (of about 200
photons) of vertically polarized light; see Fig. 29(a). The
accumulated phase is ϕ ¼ 4g2=ðκcΔÞ, being 2=κc the char-
acteristic atom-photon interaction time [ϕ

ffiffiffiffi
N

p
≈ 0.03 in the

experiment of McConnell et al. (2015)]. This experiment
investigated the entangled state produced by the detection of a
horizontally polarized photon, while the detection of vertically
polarized photons gives, for these experimental parameters,
only a slight spin squeezing. From the tomographic recon-
structed density matrix it is possible to obtain a Wigner
distribution with negative areas, see Fig. 29(b), and an
entanglement depth (not related to metrological usefulness)
of 2900 atoms. This work demonstrates how the information
carried by a single (or a few) photon(s) can create entangle-
ment in a large atomic ensemble. Hu et al. (2017) reanalyzed
the experimental data of McConnell et al. (2015) to show that
the generated atomic state violates classical physics even if no
assumptions related to quantum mechanics are made. This
conclusion (Kot et al., 2012), similarly to Bell inequalities
(Brunner et al., 2014), observes that marginal probability
distributions measured for noncommuting observables do not
always come from a joint probability distribution identified
with a classical state. As in Schmied et al. (2016) (see Fig. 17),
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Hu et al. (2017) showed that classical physics is insufficient
for describing mesoscopic entangled states of atoms.

4. Cavity-based quantum nondemolition measurements in the
normal mode splitting regime

The experiments discussed in the previous sections operate
in the dispersive regime, where the cavity is far detuned from
atomic resonance. In this section, we discuss quantum state
preparation schemes where the cavity is tuned near an atomic
resonance with respect to the atomic transition jbi ↔ jei; see
Fig. 30(a). Let us assume that atoms in jai do not interact with
the cavity mode, the number of atoms in jbi is Nb ≫ 1, and
the system is driven weakly so that the mean number of atoms
in jei is small with respect to Nb. We have that atoms in jbi
cause a splitting ωc → ω�

c of the cavity resonance frequency
(Chen et al., 2014) that depends on Nb:

ω�
c ¼ ωc −

δc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2c þ 4g2Nb

p
2

; ð119Þ

where δc ¼ ωc − ωbe is the cavity detuning from the atomic
transition ωbe, ωc is the bare cavity frequency, and g is the
single-atom–single-photon coupling rate (uniform coupling is
assumed). At δc ¼ 0, the appearance of two well-resolved
resonances separated by 2g

ffiffiffiffiffiffi
Nb

p
is referred to as collective

vacuum Rabi splitting. In the limit of collective strong
coupling g

ffiffiffiffiffiffi
Nb

p
≫ κc;Γ the normal modes of the coupled

system are well resolved: a measurement of ω�
c thus allows

one to determine Nb.
In the experiments of Chen et al. (2011), Bohnet et al.

(2014), and Cox et al. (2016), the atom number Nb is
measured nondestructively by probing the cavity resonant
frequency with an additional probe laser injected into the
cavity. The number of particles in level jai can be probed by
first applying a resonant π pulse between jai and jbi and then
repeating the QND measurement. A detailed analysis of the
impact of decoherence in this system (mainly due to scattering
of cavity photons into free space) can be found in Chen et al.
(2014). Chen et al. (2011) tuned the optical cavity to

resonance δc ¼ 0 with NC ≈ 1400. This experiment reported
a spin squeezing ξ2R ¼ −1 dB (ξ2R ¼ −3.3 dB inferred) rela-
tive to the standard quantum limit using Neff ¼ 7 × 105 87Rb
atoms (Neff is an effective atom number taking into account
inhomogeneous coupling in the cavity, see Sec. II.E.3).
Bohnet et al. (2014) and Cox et al. (2016) considerably
reduced noise effects taking advantage of a cycling transition
(Saffman et al., 2009; Chen et al., 2014), and a higher
collective cooperativity NC ≈ 6000 was reached. Experi-
mental results demonstrate ξ2R ¼ −10.2 dB (Bohnet
et al., 2014), see Fig. 30, and ξ2R ¼ −17.7 dB (Cox et al.,
2016), using Neff ¼ 4 × 105 87Rb atoms. The achieved spin
squeezing witnesses the presence of useful 170� 30 particle
entanglement (Cox et al., 2016). This squeezing technique
was further combined with quantum feedback reaching ξ2R ¼
−7.4 dB of deterministic spin squeezing (Cox et al., 2016).
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FIG. 29. Entangled states generated by the detection of a single photon. (a) An atomic ensemble confined in a cavity interacts with
vertically polarized light. The detection of an outgoing horizontally (vertically) polarized single photon projects the atoms into a state
with a negative (positive) Wigner distribution. (b) Experimental Wigner distribution of the heralded atomic state obtained from the least-
squares-fitted atomic density matrix via Eq. (66). It shows negative parts. The dashed line is the contour at which the Wigner distribution
of an N-atom coherent spin state is equal to 1=

ffiffiffi
e

p
of its maximum value. Adapted from McConnell et al., 2015.

(a) (b)

FIG. 30. Spin squeezing obtained via quantum nondemolition
measurements in the normal mode splitting regime. (a) Energy-
level diagram showing the cavity shift due to atoms in level jbi.
(b) ξ2R=N as a function of atom number N for uncorrelated
particles (black dots) and spin-squeezed states [red (gray) dots].
The inset shows 1=ξ2R of the spin-squeezed state (red dots) as a
function of N. The black line is a fit to the data according to a
1=N2 scaling. Adapted from Bohnet et al., 2014.
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Resonant atom-light coupling in an optical cavity also
offers the possibility to create entangled states beyond spin
squeezing. Haas et al. (2014) used an atom chip integrated
with a high-finesse fiber-optical cavity in the strong-coupling
regime (Volz et al., 2011) to prepare a generalized W state of
N ≈ 40 cold 87Rb atoms. In this experiment the cavity and
probe laser tuned on resonance with the jbi ↔ jei transition.
The single-atom strong coupling g ≫ κc;Γ guarantees that the
cavity transmits light only if all N atoms are in level jai: a
single atom in jbi is sufficient to block the cavity trans-
mission. The experiment of Haas et al. (2014) starts with all
atoms in level jai, and a weak microwave pulse coupling jai
and jbi prepares the state ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p jNiaj0ib þ ffiffiffiffi

p
p jN − 1iaj1ib,

where p ≪ 1 to avoid multiparticle excitations. The cavity
transmission is then measured with a probe-light beam. A low
transmission heralds the QND preparation of the W state
jN − 1iaj1ib. The resulting state is characterized by state
tomography from which it is possible to extract an entangle-
ment depth of 13 atoms, at least.

5. Quantum state preparation via quantum Zeno dynamics

Quantum Zeno dynamics combines the coherent
evolution of a system with the measurement of an initially
unoccupied quantum state (Facchi and Pascazio, 2008): if the
measurement is performed with high enough frequency, the
measured state remains unoccupied. This profoundly modifies
the system dynamics and allows engineering specific
entangled states. Barontini et al. (2015) used a cavity-based
measurement in the regime of high cooperativity C ≫ 1 (Volz
et al., 2011) to prepare a generalizedW state of 36 87Rb atoms
via quantum Zeno dynamics. The N atoms are all initialized in
level jbi and coupled to the jai level by a microwave drive at
Rabi frequency Ω. The cavity is in resonance with the jbi ↔
jei transition and transmits only if there are no atoms in level
jbi. The cavity transmission is probed at a rate much larger
than Ω. When no measurement is performed, the microwave
Rabi coupling prepares the state jNiaj0ib after a time
T ¼ π=Ω. In the presence of the cavity measurement, the
quantum Zeno effect forbids the preparation of jNiaj0ib and
deterministically prepares the W state jN − 1iaj1ib; see
Fig. 31. From the density matrix extracted via state tomog-
raphy, it is possible to obtain a lower bound to the quantum
Fisher information, FQ=N ≥ 1.51 (Barontini et al., 2015).

B. Light-mediated coherent interaction between distant atoms

In contrast to the measurement-based scheme of Sec. V.A,
off-resonant atom-light coupling can also be used to realize a
light-mediated coherent interaction between distant atoms.
When the light Stokes operator Ŝz is proportional to the atomic
Ĵz, the Hamiltonian Ĥ ∝ ŜzĴz describing atom light inter-
action [see Eq. (109)] becomes Ĥ ∝ Ĵ2z (Agarwal, Puri,
and Singh, 1997; Zhang, Peng, and Braunstein, 2003),
corresponding to an effective one-axis twisting nonlinearity
that generates unconditional spin squeezing (Kitagawa and
Ueda, 1993). As a main difference with respect to contact
interaction discussed in Sec. III.B, this light-mediated inter-
action can be applied to a dilute atomic sample, which is
preferred for minimizing systematic errors in precision

measurements. Moreover, in contrast to spin squeezing
obtained from QND measurements, it deterministically pro-
duces known entangled states, independently from the detec-
tor performance. Furthermore, atom-cavity coupling can be
easily switched on and off.
There are different proposals for the realization of an

effective interaction between distant atoms. Takeuchi et al.
(2005) studied a double-pass Faraday interaction in free
space where a polarized light beam passes twice through an
atomic ensemble (after the first passage the polarization is
properly rotated such that Ŝz ∝ Ĵz at the second passage). An
improved version of this proposal was discussed by Trail,
Jessen, and Deutsch (2010) using a quantum eraser to
remove residual spin-probe entanglement. Schleier-Smith,
Leroux, and Vuletić (2010a) and Zhang et al. (2015)
proposed the realization of light-induced atom-atom inter-
action in an optical cavity (also called cavity squeezing or
cavity feedback); see Fig. 32(a). This relies on the dispersive
interaction between one mode of the cavity and an ensemble
of three-level atoms. As shown by Eq. (114) the atoms
modify the cavity resonance frequency by an amount
proportional to Ĵz. When the cavity is driven by a probe
laser of frequency ωp tuned to the slope of the cavity
resonance (ωp ¼ κc), the intracavity photon number nc ¼
hĉ†ĉi in Eq. (114), being detuning dependent, changes
linearly with the index of refraction of the atomic cloud
(which, in turn, is proportional to Ĵz); see Fig. 32(b). Note
that tracing out the light field (which carries information
about the atomic spin) yields a dissipative dynamics that

J = N

Nn=0 1 N-1N-2
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FIG. 31. State engineering via quantum Zeno dynamics. (a) jai
and jbi are coupled by a microwave field at Rabi frequency Ω,
while the optical cavity transition jbi ↔ jei is probed with a
coupling rate much faster than Ω. (b) Starting with all atoms in
jbi, microwave Rabi coupling and simultaneous measurement of
the cavity transmission leads to a coherent evolution restricted to
the subspace highlighted by the orange (right shaded) area. The
preparation of the state with no atoms in jbi (green, left shaded
area) is forbidden by the quantum Zeno effect. The upper row
shows the Husimi distributions of symmetric Dicke states.
(c) Experimental Husimi distributions for different evolution
times t=T, where T ¼ π=Ω is the time for a Rabi π pulse in the
absence of cavity probing. The upper row shows direct mea-
surements, while the lower row shows the reconstructed density
matrix. Adapted from Barontini et al., 2015.

Luca Pezzè et al.: Quantum metrology with nonclassical states of …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035005-42



limits the attainable squeezing (Leroux et al., 2012). See
also Pawłowski et al. (2016) for an analysis of the spin
squeezing reachable with the cavity feedback method in the
presence of cavity losses and spontaneous emission. Finally,
an alternative proposal to realize an effective one-axis
twisting atomic Hamiltonian uses a four-wave Raman
scheme to directly drive the atomic ensemble, where atoms
communicate with one another by exchanging photons via a
weakly occupied cavity mode (Sørensen, 2002).
One-axis twisting by light-mediated coherent interaction

has been experimentally implemented in an optical cavity
(Leroux, Schleier-Smith, and Vuletić, 2010a, 2010b), using an
effective number Neff ¼ 3 × 104 of 87Rb atoms. The experi-
ment realizes the scheme of Schleier-Smith, Leroux, and
Vuletić (2010a). The squeezed state is characterized via spin-
noise tomography and the contrast of Rabi oscillations. The
results of Leroux, Schleier-Smith, and Vuletić (2010a) are
summarized in Fig. 32(c) and demonstrate a gain ξ2R ¼
−4.6 dB over ðΔθSQLÞ2 ¼ 1=Neff (ξ2eff ¼ −5.6 dB over the
sensitivity experimentally reached in the absence of entangle-
ment). Leroux, Schleier-Smith, and Vuletić (2010b) used the

squeezed states generated with this method to realize an

atomic clock with short-time fractional frequency stability a
factor 2.8 (corresponding to 4.5 dB) in variance below the
standard quantum limit; see Sec. VII.

C. Quantum state transfer from nonclassical light to atoms

Spin-squeezed states can be also created by transferring
quadrature squeezing of light to atomic spin squeezing
(Agarwal and Puri, 1990; Kuzmich, Mølmer, and Polzik,
1997; Hammerer, Sørensen, and Polzik, 2010). This effect can
be understood from the Jaynes-Cummings model Hamiltonian

ĤJC ¼ ℏΩðĉĴþ þ ĉ†Ĵ−Þ; ð120Þ

describing the interaction of nondecaying two-level atoms
with a light mode. Here ĉ† and ĉ are the light creation and
annihilation operators, respectively, Ĵ� are spin rising and
lowering operators, see Sec. II.A, and Ω is a coupling
constant. The Heisenberg equations of motion for ĉ and Ĵ�
can be found analytically within a frozen-spin approximation,
assuming Ĵz constant and equal to N=2. We obtain (Wineland
et al., 1992, 1994)

ξ2RðtÞ ¼ ξ2Rð0Þcos2ðΩNtÞ þ ξ2pð0Þsin2ðΩNtÞ; ð121aÞ

ξ2pðtÞ ¼ ξ2pð0Þ cos2ðΩNtÞ þ ξ2Rð0Þ sin2ðΩNtÞ; ð121bÞ

where ξ2p ¼ 2ðΔP̂cÞ2, P̂c ¼ ðĉ − ĉ†Þ=ði ffiffiffi
2

p Þ, ξ2R ¼ NðΔĴxÞ2=
hĴzi2, and ΩN ¼ k

ffiffiffiffi
N

p
. Similar expressions can be obtained

relating ξ2R ¼ NðΔĴyÞ2=hĴzi2 with ξ2x ¼ 2ðΔX̂cÞ2, where

X̂c ¼ ðĉþ ĉ†Þ= ffiffiffi
2

p
. These equations predict that atomic

spin squeezing ξR < 1 can be achieved by first squeezing
the light field ξ2p < 1 and then transferring this quadrature
squeezing onto the spins. Optimal spin squeezing is reached at
t ¼ π=ð2ΩNÞ. For strong squeezing the contrast hĴzi
decreases, and the frozen-spin approximation breaks down.
Since the squeezed light is the source of spin squeezing in this
method, the degree of squeezing is determined by the quality
of the quadrature squeezed light.
Quantum state transfer from light to atoms was first

experimentally demonstrated by Hald et al. (1999) using an
ensemble of 107 cold Cs atoms, following the theoretical
proposal of Kuzmich, Mølmer, and Polzik (1997). This
experiment used a V-level scheme consisting of three atomic
hyperfine levels (Hald et al., 1999, 2000). The reduction of
atomic spin noise below the projection noise of uncorrelated
atoms is generated by the absorption of polarized coherent and
squeezed vacuum light with opposite circular polarizations.
An alternative approach mapping a quantum state of light

onto an atomic state via electromagnetically induced trans-
parency was proposed by Fleischhauer and Lukin (2000); see
also Liu et al. (2001) and Phillips et al. (2001). Further studies
include the mapping quantum states of light into a Bose-
Einstein condensate with application to atom interferometers
(Szigeti et al., 2014) and atom lasers (Fleischhauer and Gong,
2002; Haine and Hope, 2005).
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FIG. 32. Squeezing via light-mediated effective interaction
between atoms. (a) The atoms are trapped in a standing-wave
dipole trap inside an optical resonator. (b) The probe laser is
detuned from cavity resonance by half a linewidth, so that atom-
induced shifts of the cavity frequency change the transmitted
power by an amount proportional to Jz. (c) Effective spin
squeezing ξ2eff ¼ σ2ðQÞCð0Þ=CðQÞ2 giving the gain with respect
to the sensitivity experimentally achieved in the absence of
entanglement, as a function of the shearing strength Q (propor-
tional to the photon number in the cavity). Here σ2ðQÞ ¼
ðΔĴzÞ2=ðNeff=4Þ, and CðQÞ is the contrast of Rabi oscillations
of the sheared state, shown in the inset. The effective spin
squeezing is related to the metrological spin squeezing Eq. (41) as
ξ2eff ¼ Cð0Þξ2R. An effective squeezing ξ2eff ¼ −5.6 dB is reached,
corresponding to ξ2R ¼ −4.6 dB. Adapted from Leroux, Schleier-
Smith, and Vuletić, 2010a.
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VI. ENTANGLED STATES OF TRAPPED IONS

Ensembles of trapped ions confined in electromagnetic
traps and manipulated with laser beams are one of the most
successful systems to generate and exploit entanglement (Blatt
and Wineland, 2008; Wineland, 2013). Direct applications
include quantum information and computation (Häffner,
Roos, and Blatt, 2008; Roos, 2014), quantum networks
(Duan and Monroe, 2010), quantum simulations (Blatt and
Roos, 2012; Schneider, Porras, and Schaetz, 2012; Martinez
et al., 2016) and, as reviewed here, quantum metrology.
Trapped ions are well isolated from the environment, can be
coherently manipulated, individually addressed, and detected
with almost unit efficiency (Leibfried, Blatt et al., 2003).
Typical experiments (Leibfried, Blatt et al., 2003) confine

ions in linear Paul traps [Fig. 33(a)], surface-electrode Paul
traps (Sterling et al., 2014; Mielenz et al., 2016), or Penning
traps [Fig. 33(b)]. One- and two-dimensional ion arrange-
ments are well suited for individually controlling and reading
out internal states of the ions. We note that individual particle
manipulation and detection are crucial for many quantum-
computation and quantum information tasks, but they are not
necessary for quantum-enhanced metrology. Interesting met-
rological experiments can thus also be performed in Penning
traps (where local manipulation is currently not available),
which are well suited to store, manipulate, and entangle large
numbers of ions (Britton et al., 2012; Bohnet et al., 2016).
In trapped ion experiments, the qubit is formed by two

internal (usually hyperfine) states jai and jbi of each ion. This
internal qubit can be coupled by an electromagnetic field to
external (motional, vibrational) degrees of freedom; see
Fig. 33(c). A key aspect is the local detection of the internal

ion’s state with extremely high efficiency. This is usually
achieved by resonant fluorescence. Detection errors arise if the
qubit changes its state during the detection interval or if
photons scattered off trap electrodes are mistaken for fluo-
rescence photons. Myerson et al. (2008) and Harty et al.
(2014) reported qubit detection errors smaller than 10−4.

A. Generation of metrologically useful entangled states
of many ions

The generation of entanglement between different qubits is
one major challenge in quantum-information processing with
trapped ions (Wineland et al., 1998). The Coulomb force
pushes the ions apart to a distance much larger than the Bohr
radius and thus prevents state-dependent ion-ion interactions
in the absence of external electromagnetic fields. However, as
a consequence of the Coulomb force, the normal modes of
motion in the trap are shared among all ions and can provide a
means for entangling the qubits. Most of the schemes for
entangling trapped ion qubits are based on internal-state-
dependent forces acting on the ions, generated by external
electromagnetic fields. These forces can be arranged in time
and frequency in such a way that an effective entangling
operation is carried out between two or more qubits and no
entanglement persists between the qubits and the vibrational
degrees of freedom.
The entangling gates can be broadly classified in three

categories, according to the way the electromagnetic fields
interact with the ions: (i) Quantum gates induced by a laser
beam that interacts with a single ion at a time as originally
proposed by Cirac and Zoller (1995). The ion is entangled
with a vibrational mode of the ion string and the entanglement

(b) 

(c) 

x 
y 

z 

a 
(a) 

FIG. 33. Common ion-trapping setups. (a) Linear Paul trap. Ions are trapped using radio-frequency oscillating electric fields combined
with static electric control fields. In tight radial confinement, laser-cooled ions form a linear string (see the inset image for eight ions)
with a spacing determined by the balance between external confining fields and ion-ion Coulomb repulsion. From Blatt and Wineland,
2008. (b) Penning trap. Ions are confined in the x-y plane with a strong homogeneous magnetic field and axially by a quadrupole electric
field. The green ODF arrows indicate bichromatic light fields used to generate entanglement. The inset shows an image of a 2D crystal of
91 ions. From Bohnet et al., 2016. (c) Each trapped ion can be modeled as an effective internal two-level system, jai and jbi interacting
with a radiation characterized by Rabi frequency Ω and decay rate γ, and a shared external harmonic oscillator potential with equally
spaced energy levels of mode frequency ωm.
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is subsequently transferred from the vibrational mode to the
internal state of a second ion. (ii) Quantum gates induced by
an electromagnetic field that simultaneously addresses two or
more ions, either through optical ac Stark shifts (Mølmer and
Sørensen, 1999; Solano, de Matos Filho, and Zagury, 1999;
Sørensen and Mølmer, 1999, 2000; Milburn, Schneider, and
James, 2000; Leibfried et al., 2003; García-Ripoll, Zoller, and
Cirac, 2005; Lee et al., 2005; Kim et al., 2009, 2010), through
static magnetic-field gradients in combination with homo-
geneous radio-frequency fields (Mintert and Wunderlich,
2001; Johanning et al., 2009; Johanning, Varón, and
Wunderlich, 2009; Welzel et al., 2011), or with radio-frequency
field gradients (Ospelkaus et al., 2008, 2011). As an important
advantage, these gates do not require one to cool all ion normal
modes to their ground states, but only the ion motion to be well
within the Lamb-Dicke regime hẑ2i ≪ ðλ=2πÞ2, where z is the
displacement of an ion along the laser propagation direction and
λ is the laser wavelength. The basic idea is to drive a phonon
(normal) mode of frequency ν by a periodic state-dependent
force with frequency ω. In the rotating-wave approximation,
the Hamiltonian describing this conditional interaction is
(Roos, 2014)

Ĥ ¼ iℏkðĉ†eiδt − ĉe−iδtÞÔ; ð122Þ

where Ô is an operator acting on the (internal) qubit states, ĉ†

and ĉ are the harmonic oscillator creation and annihilation
operators of the addressed normal mode, respectively, k is a
coupling strength, and δ ¼ ω − ν. The propagator Û corre-
sponding to this time-dependent Hamiltonian is

ÛðtÞ ¼ exp½αðtÞÔĉ† − α�ðtÞÔ†ĉ� exp½iϕðtÞÔ2�; ð123Þ

where αðtÞ ¼ iðk=δÞð1 − eiδtÞ and ϕðtÞ ¼ ðk=δÞ2ðδt − sin δtÞ.
If the interaction time t ¼ τ is chosen such that αðτÞ ¼ 0, then
the propagator reduces to UðτÞ ¼ exp½iϕðτÞÔ2�. A vibrational
mode becomes transiently entangled with the qubits before
getting disentangled at the end of the gate operation, resulting in
an effective nonlocal operation capable of entangling the ions.
The conditional phase gate (Leibfried et al., 2003) is obtained

by setting Ô ¼ P
N
i¼1 σ̂

ðiÞ
z =2 ¼ Ĵz in Eq. (123), and is realized

by placing the ions in a qubit-state-dependent potential created
by two counterpropagating laser beams. The Mølmer-Sørensen
gate (Mølmer and Sørensen, 1999; Sørensen and Mølmer,

2000) is obtained by setting Ô ¼ P
N
i¼1 σ̂

ðiÞ
y =2 ¼ Ĵy (or

Ô ¼ Ĵx). This gate is realized by a bichromatic laser
field tuned close to the upper and lower motional sidebands
of the qubit transition (Sackett et al., 2000; Benhelm et al.,
2008). In both gates, the propagator is the one-axis twisting
Û ¼ exp½iϕðτÞĴ2n�; see Sec. III.B. Spin-dependent optical
dipole forces generated by a pair of off-resonance laser beams
with different frequencies, addressing many normal modes
simultaneously, have been recently used to engineer tunable
Ising spin-spin coupling (Lee et al., 2005; Porras and Cirac,
2006; Kim et al., 2009). The resulting propagator is (Porras and
Cirac, 2006)

ÛðtÞ ¼ exp

�
i
XN
i;j¼1

Vi;jσ̂
ðiÞ
z σ̂ðjÞz

�
; ð124Þ

where Vij ∝ d−αij , dij is the distance between the ith and jth
ions, and α can be tuned by adjusting the laser frequencies in
the range 0 ≤ α ≤ 3 (Schmied, Wesenberg, and Leibfried,
2011; Britton et al., 2012). Ising spin-spin couplings have
been implemented in a linear Paul trap with up to ∼20 ions
(Islam et al., 2013; Jurcevic et al., 2014; Richerme et al.,
2014) and in a Penning trap forming a 2D Coulomb crystal
of ∼200 ions (Britton et al., 2012; Bohnet et al., 2016); see
Fig. 33(b). (iii) A third way to generate ion entanglement is
based on performing joint measurements on photons that are
first entangled with ion qubits (Moehring et al., 2007; Stute
et al., 2012; Casabone et al., 2013). This scheme enables the
generation of entanglement between ions separated by large
distances and does not require the ions to be in the Lamb-Dicke
regime.

B. Quantum metrology with trapped ions

1. Quantum metrology with two ions

The first deterministic generation of entanglement of two
trapped ions was reported by Turchette et al. (1998). This
experiment was readily followed by the demonstration of a
phase sensitivity below the standard quantum limit (Sackett
et al., 2000; Meyer et al., 2001). Meyer et al. (2001) reported
the creation of the state

jψi ¼ cos βjai⊗2 þ i sin βjbi⊗2 ð125Þ

of two 9Beþ ions via a Mølmer-Sørensen gate in a linear Paul
trap. Here β is a tunable parameter proportional to the laser
pulse duration. The state (125) is spin squeezed,

ξ2R ¼ NðΔĴ⊥Þ2
hĴzi2

¼ 1 − sin 2β
cos22β

< 1 ð126Þ

for 0 < β < π=2. It reaches the Heisenberg limit ξ2R ¼ 1=2 at
β ¼ π=4, corresponding to a maximally entangled state. How-
ever, at β ¼ π=4, hĴzi ¼ 0 and any technical noise prevents
detecting the maximally entangled state as spin squeezed. The
experiment of Meyer et al. (2001) reached ξ2R ¼ 0.85 at the
experimentally optimal working point β ¼ π=10. A phase
estimation with sensitivity below ΔθSQL with the maximally
entangled state was demonstrated by applying a spin rotation
expð−iθĴzÞ followed by exp½−iðπ=2ÞĴx�. Measuring the parity

Π̂ ¼ σ̂ð1Þz σ̂ð2Þz led to a sensitivity ðΔθÞ2=ðΔθSQLÞ2 ¼ 0.7,
where Δθ ¼ ΔΠ̂=jdhΠ̂i=dθj (Meyer et al., 2001). Many
experiments with two ions have reported parity oscillations
from which it is possible to extract the phase sensitivity;
see Fig. 34. These experiments have been performed in
magnetic-field-insensitive clock states of 111Cdþ (Haljan et al.,
2005) and using an optical transition in 40Caþ (Home et al.,
2006; Monz et al., 2011; Noguchi, Toyoda, and Urabe, 2012)
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and 88Srþ (Navon et al., 2014) ions. A very high visibility of
the parity signal has been reported with 40Caþ (Benhelm et al.,
2008) and 43Caþ (Ballance et al., 2016) ions; see also Gaebler
et al. (2016) for the high-fidelity generation of the two-qubit
GHZ states with 9Beþ ions (Leibfried et al., 2003). Finally,
Meyer et al. (2001) also reported a full Ramsey sequence,
where the maximally entangled state is generated between two
Ramsey pulses and the phase θ is proportional to the inter-
rogation time. In this case, the initial probe state was a
symmetric Dicke state jψi ¼ ðjaijbi þ jbijaiÞ= ffiffiffi

2
p

. By meas-
uring the parity, it was possible to reach a spectroscopic
sensitivity ðΔθÞ2=ðΔθSQLÞ2 ¼ 0.77. Noguchi, Toyoda, and
Urabe (2012) reported the creation of symmetric Dicke states
of two and four 40Caþ ions.

2. Quantum metrology with GHZ states of several ions

The maximally entangled (or Schrödinger cat) state

jψN;cati ¼
jai⊗N þ jbi⊗Nffiffiffi

2
p ð127Þ

has been created with up to N ¼ 6 9Beþ ions (Leibfried et al.,
2005) and N ¼ 14 40Caþ ions (Monz et al., 2011) in a linear
Paul trap. This state is formally obtained from Ûcatjbi⊗N ,
where

Ûcat ¼ exp

�
−i

Nπ

2
Ĵx

�
exp

�
i
π

2
Ĵ2x

�
; ð128Þ

see Sec. III.B. When applying a spin rotation expð−iθĴzÞ, the
state (127) transforms as jψN;catðθÞi ¼ ½expðiθN=2Þjai⊗Nþ
expð−iθN=2Þjbi⊗N �= ffiffiffi

2
p

, such that the relative phase between
jai⊗N and jbi⊗N is Nθ. The state can be detected after a π=2
Rabi rotation around the x axis. The probability to obtain Na
atoms in level a and Nb ¼ N − Na atoms in level b is
PðNajN;θÞ ¼ 2−Nð NNa

Þf1þ ð−1ÞNa cos ½Nðθþ π=2Þ�g. These

probabilities oscillate with a frequency N times faster than
that of a single qubit. Therefore, most observable properties of
these states feature these rapid oscillations (Bollinger et al.,
1996). Notably, applying the nonlinear transformation Ûcat
again after phase encoding, one obtains only two detection
events (N atoms in level a or b) that can be experimentally
distinguished with high efficiency (Leibfried et al., 2004,
2005). Experiments exploring quantum metrology with states
(127) generally report dichotomic events—the parity of the
relative atom number, in Leibfried et al. (2004) and Monz
et al. (2011), or the detection of all atoms in the same level in
Leibfried et al. (2004, 2005). Figure 34(a) shows an example
of parity oscillations

Pð�jθÞ ¼ 1� V cosNθ

2
; ð129Þ

where the visibility 0 ≤ V ≤ 1 accounts for experimental
noise and imperfect state preparation. The corresponding
Fisher information is

FðθÞ ¼ V2N2 sin2 Nθ

1 − V2 cos2 Nθ
: ð130Þ

It reaches the maximum value F ¼ V2N2 when sinNθ ¼ �1.
It is thus possible to detected useful entanglement and
obtain sensitivities below the standard quantum limit when
V2 > 1=N (corresponding to F > N). Metrologically useful
N-partite entangled states are detected when

V2 >

�
1 −

1

N

�
2

þ 1

N2
ð131Þ

corresponding to F > ðN − 1Þ2 þ 1, obtained from Eq. (38)
with k ¼ N − 1. Figure 34(b) gives an overview of the
experimental results obtained with cat states of trapped ions.
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FIG. 34. Phase sensitivity of ion Schrödinger cat states. (a)
Typical parity oscillations obtained with cat states, Eq. (127).
These oscillations have a characteristic period 2π=N (here for
N ¼ 8). From Monz et al., 2011. (b) Summary of the exper-
imental achievements (symbols). Here we show the Fisher
information F ¼ V2N2 as a function of the number of qubits
N, obtained from the extracted experimental visibilities V. The
upper thick line is the Heisenberg limit F ¼ N2, and the lower
thick line is the standard quantum limit F ¼ N. The thin lines are
bounds for useful k-particle entanglement, Eq. (38): they delimit
from below a shaded region corresponding to (kþ 1)-particle
entanglement. In particular, the darker red region stands for useful
genuine N-particle entanglement. The next lighter red region
stands for useful (N − 1)-particle entanglement, and so on. For
instance, the point at N ¼ 10 reveals useful 4-particle entangle-
ment. The inset summarizes experimental results obtained with
Schrödinger cat states of N ¼ 2 ions. Adapted from Pezzè
et al., 2016.
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In Monz et al. (2011) the fringe visibility of parity oscillations
was sufficiently high that the Fisher information witnesses
metrologically useful genuine N-particle entanglement up to
N ¼ 6 ions (Pezzè et al., 2016).
Note that the fast oscillations of the output probabilities

obtained with the state (127) seem to prevent the unambiguous
estimate of a phase larger than 2π=N (Boto et al., 2000;
Mitchell, 2005; Pezzè and Smerzi, 2007; Berry et al., 2009).
A phase estimation at the Heisenberg limit with no con-
straint on θ in ½−π; π� can be obtained using states with
different numbers of particles. The optimal sequence
N ¼ 1; 2; 4;…; 2p provides Δθ ¼ 2.55=NT (at θ ¼ 0), where
NT ¼ Pp

n¼0 2
n ¼ 2pþ1 − 1 is the total number of particles

used (Pezzè and Smerzi, 2007).
It is finally worth pointing out that W states (that are less

useful than ideal cat states for metrological applications) have
been created experimentally with up to eight ions (Roos et al.,
2004; Häffner et al., 2005).

3. Spin squeezing and useful entanglement of many ions

Recently, entanglement and metrological spin squeezing
of hundreds of trapped 9Beþ ions have been demonstrated in a
Penning trap (Bohnet et al., 2016). The experiment realized a
homogeneous Ising spin-spin interaction (Kitagawa and Ueda,
1993), i.e., α ≈ 0 in Eq. (124) corresponding to the one-axis
twisting model; see Sec. III.B. Figure 35 shows ξ2R, optimized
over the evolution time, as a function of the number of ions
ranging from N ¼ 20 to 220. For long evolution times, the
state wraps around the Bloch sphere and spin squeezing is lost
(see Sec. III.B). In this case, Bohnet et al. (2016) inferred
(with noise subtraction) FQ=N > 2.1, where the bound has
been extracted following the Hellinger method of Strobel et al.
(2014). For an analysis of decoherence in this system see
Foss-Feig et al. (2013).

VII. WORKING ENTANGLEMENT-ENHANCED
INTERFEROMETERS AND PROSPECTS
FOR APPLICATIONS

Atomic ensembles are routinely used as precision sensors of
inertial forces or external fields, or as atomic clocks, which
usually operate as Ramsey interferometers (Bordè, 2002;
Wynands and Weyers, 2005; Cronin, Schmiedmayer, and
Pritchard, 2009; Wynands, 2009; Kitching, Knappe, and
Donley, 2011; Barrett, Bertoldi, and Bouyer, 2016). The
accumulated phase is θ ¼ ωTR, where TR is the Ramsey
interrogation time and ω is the parameter to be estimated. In
an atomic sensor ω ¼ ΔE=ℏ, where ΔE is the energy shift
between the two interferometer modes, induced by an external
field, an acceleration, a rotation, or a force. In an atomic clock
ω ¼ ωLO − ω0, where ωLO is the frequency of a local oscillator
to be locked to the transition frequency ω0 between the two
atomic levels that define the clock. The standard quantum limit
for the estimation of the frequency ω is, from Eq. (33),

ΔωSQL ¼ 1

TR

ffiffiffiffiffiffi
Nν

p ¼ 1

TR

ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffi
Tcycle

τ

r
; ð132Þ

where we expressed the number of measurements ν ¼ τ=Tcycle

in terms of the total averaging time τ and the cycle time Tcycle of
the experiment, with Tcycle ≥ TR. Using separable states, if
quantumnoise dominates over technical noise andTcycle ≈ TR is
optimized, the sensitivity can thus be increased only by
increasing the interrogation time TR, the number N of particles,
and/or the total averaging time τ. In realistic setups this is not
always possible: every sensor has an optimal working range for
TR and N, and drifts always limit the duration τ over which
identical state preparation can be assumed (Bak, Tang, and
Wiesenfeld, 1987). In general, increasing the atomnumber leads
to systematic errors due to collisions that spoil the sensitivity.
Ramsey interrogation times are limited by mechanical restric-
tions (e.g., the limited ballistic flight time in fountain clocks), by
the desired temporal resolution (e.g., when measuring high-
frequency magnetic fields in broadband magnetometers), or
decoherence (e.g., the phase coherence time of the local
oscillator in atomic clocks). Can entangled states improve the
performanceof atomic sensors and, if so, underwhat conditions?
Entangled states are typically more susceptible to

decoherence than separable states during phase encoding.
Thus their gain (i.e., their more favorable scaling of phase
sensitivity withN) may be counterbalanced by the requirement
of shorter interrogation times. Whether or not an improvement
is possible can be decided only after a detailed analysis of the
specific sensor taking its actual limitations into account, and
ultimately hinges on an experimental demonstration. As an
example we note that squeezing of light has recently been used
to improve the performance of a laser-interferometer gravita-
tional wave observatory (The LIGO Scientific Collaboration,
2011; Aasi et al., 2013). The aim of this section is to review the
state of the art of entanglement-enhanced measurements with
atomic ensembles beyond proof-of-concept demonstrations
and to discuss prospects for applications.
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FIG. 35. Metrological spin-squeezing parameter as a function of
the number of ions. The black points are obtained for a coherent
spin state. The purple symbols are obtained with spin-squeezed
states (optimized over probe preparation time): with (open
squares) and without (solid squares) subtraction of photon shot
noise. The dashed (solid) line is a theoretical prediction (includ-
ing spontaneous emission). From Bohnet et al., 2016.
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A. The influence of noise and decoherence

A common and central aspect of quantum-enhanced met-
rology is the fragility of useful entangled states when coupled
to the environment. Noise affects the preparation of the
probe state, phase encoding, and detection. The literature
has focused mainly on specific noise models and only few
general results are available. An important challenge is to
devise protocols (e.g., differential schemes, or error correc-
tion), special phase sensing situations (e.g., non-Markovian,
or transverse noise), and detection schemes that make met-
rology below the standard quantum limit robust against noise.

1. General results

Phase encoding in the presence of noise can be formally
described by a θ-dependent completely positive trace-
preserving map Λθ (Rivas and Huelga, 2012), such that
ρ̂θ ¼ Λθ½ρ̂0�, where ρ̂0 and ρ̂θ are the probe and output state,
respectively. The evolution from ρ̂0 to ρ̂θ can be conveniently
studied by introducing additional degrees of freedom that
are not under control and play the role of an “environment.”
The action of any quantum channel Λθ can be described
via its Kraus representation ρ̂θ ¼

P
lK̂lρ̂0K̂

†
l (Nielsen and

Chuang, 2000), where K̂l ≡ hlEjÛSEðθÞj0Ei are Kraus oper-
ators, jlEi is an orthonormal and complete set of states
(
P

ljlEihlEj ¼ 1E guarantees
P

lK̂lK̂
†
l ¼ 1), and j0Ei is

the initial state of the environment (taken pure, without loss of
generality). We recall that a Krauss representation is not
unique: we can generate a new set by a unitary (eventually θ-
dependent) transformation (Nielsen and Chuang, 2000).
In the enlarged Hilbert space HS ⊗ HE, given by the

product of the Hilbert space of the system and of the
environment, phase encoding is modeled by a unitary oper-
ation ÛSEðθÞ. Decoherence is taken into account by tracing
over the environment ρ̂θ ¼ TrE½jψSE

θ ihψSE
θ j�, where jψSE

θ i ¼
ÛSEðθÞjψSE

0 i is a purification of ρ̂θ and jψSE
0 i a purification of

the probe state ρ̂0 ¼ TrE½jψSE
0 ihψSE

0 j�. We recall that two
purifications jψSE

θ i and jψ̃SE
θ i of the same state are related

via unitary operations acting only on the environment
space (Nielsen and Chuang, 2000), jψSE

θ i ¼ ÛEðθÞjψ̃SE
θ i.

Discarding part of the information regarding the unitary phase
encoding in HS ⊗ HE motivates the inequality

FQ½ρ̂θ� ≤ FQ½jψSE
θ i�; ð133Þ

valid for all purifications jψSE
θ i of ρ̂θ, where

FQ½jψSE
θ i� ¼ 4ðh∂θψ

SE
θ j∂θψ

SE
θ i − jh∂θψ

SE
θ jψSE

θ ij2Þ: ð134Þ

Equation (133) suggests to search for the minimum of
FQ½jψSE

θ i� over all purifications of ρ̂θ (Escher, de Matos
Filho, and Davidovich, 2011; Escher et al., 2012).
Following Uhlmann’s theorem (Uhlmann, 1976), Escher,
de Matos Filho, and Davidovich (2011) indeed showed that

FQ½ρ̂θ� ¼ min
fjψSE

θ ig
FQ½jψSE

θ i�; ð135Þ

see also Fujiwara and Imai (2008). In other words, there is
always an environment that, when monitored together with the
system, does not lead to more information about θ than
monitoring the system alone. In particular, for an initial pure
state ρ̂0 ¼ jψ0ihψ0j, Eq. (135) can be rewritten as (Escher,
de Matos Filho, and Davidovich, 2011)

FQ½ρ̂θ� ¼ 4min
fK̂lg

X
l

hð∂θK̂
†
lÞð∂θK̂lÞi −

�
i
X
l

hK̂†
l∂θK̂li

�
2

;

ð136Þ
where the mean values are calculated over jψ0i and the
minimization runs over all Kraus representations of the quantum
channel. It is worth pointing out that, even if the optimal
purification in Eq. (135) or the optimal set of Kraus operators
in Eq. (136) are difficult to find, specific choices may yield
nontrivial upper bounds to the quantum Fisher information
(Escher, de Matos Filho, and Davidovich, 2011).
A special case of this formalism is that of a θ-independent

quantum channel Λ where noise acts after phase encoding.
In this case the quantum Fisher information never increases
(Petz, 1996; Petz and Ghinea, 2011):

FQ½Λðρ̂θÞ� ≤ FQ½ρ̂θ�: ð137Þ
For example, the partial trace operation can only decrease the
quantum Fisher information, consistent with the intuition that
ignoring part of a system can only decrease the information
about the estimated parameter. The equality in Eq. (137) is
always obtained if Λ is unitary, because unitary θ-independent
transformations can be absorbed into a redefinition of the opti-
mal measurement saturating the quantum Fisher information.

2. Uncorrelated decoherence

A typical example illustrating the fragility of frequency
estimation with respect to noise follows from Huelga et al.
(1997). Let us consider a single atom prepared in the super-
position ðjai þ jbiÞ= ffiffiffi

2
p

. It evolves freely for a time TR,
according to the Hamiltonian ℏωσ̂z, and acquires a phase
ωTR in the presence of local Markovian dephasing. The
probability of finding the probe in its initial state is P ¼
½1þ e−γTR cosðωTRÞ�=2, where γ ≥ 0 is the dephasing rate.
From this probability it is possible to estimate the frequency ω.
The corresponding Fisher information is FðωÞ¼ð∂ωPÞ2=
ðP−P2Þ¼T2

Re
−2γTRsin2ðωTRÞ=½1−e−2γTRcos2ðωTRÞ�, which

is optimal at ωoptTR ¼ π=2. To calculate the sensitivity we
take into account that the experiment can be repeated using N
uncorrelated atoms in parallel, ν ¼ T=TR times, where T is
the total duration of the experiment (neglecting dead
times). The Cramér-Rao bound is thus ΔωCR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR=½FðωoptÞNT�p ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTTRe−2γTR

p
. We can further opti-

mize this sensitivity over TR, giving ΔωCR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γe=ðNTÞp

at
the optimal Ramsey time TR ¼ 1=ð2γÞ. If we now take a
GHZ state ðjai⊗N þ jbi⊗NÞ= ffiffiffi

2
p

in the presence of the
same source of single-particle dephasing, the probability of
finding the probe in the initial state is P ¼ ½1þ
e−γNTR cosðωNTRÞ�=2: it oscillates N times faster than in
the single-particle case (this is typical for GHZ states, see
Sec. II.C.7), but the visibility of these oscillations decays N
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times quicker. The Fisher information at the optimal
point NωoptTR ¼ π=2 is given by FðωoptÞ ¼ N2T2

Re
−2NγTR.

Again, the experiment is repeated ν ¼ T=TR times, and
the Cramér-Rao bound is ΔωCR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TR=½FðωoptÞT�
p ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2TTRe−2NγTR

p
. The optimal Ramsey time is now TR ¼

1=ð2NγÞ and we find ΔωCR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γe=ðNTÞp

. We recover
exactly the same bound as in the case of uncorrelated atoms.
In this example, the ideal sensitivity enhancement offered by
GHZ states for γ ¼ 0 disappears in the presence of arbitrarily
small uncorrelated dephasing (γ > 0). Although the overall
absolute sensitivity is not improved, the GHZ state reaches the
sensitivity limit N times faster than using the uncorrelated
atoms: this may be of practical interest when experimental
constraints require TR ≪ 1=γ (Huelga et al., 1997; Shaji and
Caves, 2007). An optimization over probe states shows that at
most a constant factor of 1=

ffiffiffi
e

p
in the absolute frequency error

can be gained in the presence of single-particle dephasing
(Huelga et al., 1997; Ulam-Orgikh and Kitagawa, 2001;
Escher, de Matos Filho, and Davidovich, 2011).
Bounds to the quantum Fisher information in the presence

of more general models of uncorrelated decoherence have
been discussed in the literature. Let us consider N particles
prepared in a state ρ̂0 and a noisy channel Λθ that acts
independently on each particle, such that ρ̂θ ¼ Λ⊗N

θ ðρ̂0Þ. The
maximum of the quantum Fisher information over all possible
probe states is bounded as (Fujiwara and Imai, 2008)

max
ρ̂0

FQ½Λ⊗N
θ ðρ̂0Þ�≤4min

fK̂lg
fNkαKkþNðN−1ÞkβKk2g; ð138Þ

where αK ¼ P
lð∂θK̂

†
lÞð∂θK̂lÞ, βK ¼ i

P
lð∂θK̂

†
lÞK̂l, k · k

denotes the operator norm, and the minimization runs over
all equivalent Kraus representations of the channel Λθ. In
particular, if there exists a Kraus representation such that
βK ¼ 0, then the second term in Eq. (138) vanishes and
FQ½Λ⊗N

θ ðρ̂0Þ� has asymptotically in N a bound that scales
linearly with N. Relevant single-particle quantum channels
fulfill the condition19 βK ¼ 0 (Escher, de Matos Filho, and
Davidovich, 2011; Demkowicz-Dobrzański, Kołodyński, and
Guţă, 2012; Kołodyński and Demkowicz-Dobrzański, 2013).

This means that, for those channels, the phase sensitivity
achievable with an arbitrary probe state is Δθ ≥ 1=

ffiffiffiffiffiffiffiffiffi
ναN

p
,

with α ¼ 4minfK̂lg;βK¼0kαKk. Therefore, asymptotically in the
number of particles, the optimal achievable phase sensitivity
has a scaling N−1=2 and the possible gain over the standard
quantum limit is only limited to a prefactor (when α > 1). We
notice however that this is an asymptotic result for N → ∞:
entangled states may still provide a scaling of phase sensitivity
better than the standard quantum limit, up to the Heisenberg
limit, even for relatively large N.
According to Eq. (138) a necessary condition to overcome

the asymptotic scaling N−1=2 of precision is to have βK ≠ 0. It
has been shown that this condition can be achieved for
relatively short interrogation times in the case of non-
Markovian noise (Matsuzaki, Benjamin, and Fitzsimons,
2011; Chin, Huelga, and Plenio, 2012) and also when
considering dephasing noise perpendicular to phase-encoding
evolution (Chaves et al., 2013). In these cases, quantum-
enhanced frequency estimation can be found in the limit
N → ∞. In particular, Matsuzaki, Benjamin, and Fitzsimons
(2011) and Chin, Huelga, and Plenio (2012) showed that a
frequency variance ðΔωÞ2 ¼ OðN−3=2Þ can be reached for an
interrogation time TR ¼ OðN−1=2Þ under general models of
non-Markovian phase noise; see also Berrada (2013),
Szańkowski, Trippenbach, and Chwedeńczuk (2014),
Macieszczak (2015), and Smirne et al. (2016). Moreover,
Chaves et al. (2013) showed that if Markovian dephasing is
acting along a spin direction perpendicular to the phase encod-
ing, in the limitN → ∞ a sensitivity ðΔωÞ2 ¼ OðN−5=3Þ can be
obtained for interrogation times TR ¼ OðN−1=3Þ. The possibil-
ity of reaching the Heisenberg limit ðΔωÞ2 ¼ OðN−1Þ in this
casewas discussed byDür et al. (2014) andKessler, Lovchinsky
et al. (2014) when making use of quantum error correction
techniques (see later). The orientation-dependent lifetime
of spin-squeezed states was investigated experimentally by
Leroux, Schleier-Smith, and Vuletić (2010b).

3. Correlated phase noise, differential interferometry, and
decoherence-free subspaces

The above discussion regards uncorrelated noise, acting on
each atom separately. Yet, in many experimental systems, a
significant source of noise is correlated dephasing, where all
atoms are subject to the same stochastic fluctuation of the
phase shift. For instance, correlated dephasing is relevant in
experiments with ions stored in linear Paul traps (Roos et al.,
2006; Monz et al., 2011): phase fluctuations are caused by
noisy stray fields inducing random energy shifts of the atomic
levels. Correlated phase noise is modeled as

ρ̂θ ¼
Z

dφPðφjθÞÛφρ̂0Û
†
φ; ð139Þ

where PðφjθÞ describes the phase fluctuations around θ and
Ûφ is the phase-encoding unitary tramsformation. The prob-
ability of a generic detection event (being jμi the correspond-
ing eigenstate) is

19A notable class of channels that fulfills βK ¼ 0 is that of
quantum simulable channels (Kołodyński and Demkowicz-Dobrzań-
ski, 2013), i.e., those that can be written as Λθðρ̂Þ ¼ Φðρ̂ ⊗ σ̂θÞ,
whereΦ is a θ-independent channel (Matsumoto, 2010).Φ acts on an
enlarged space including the auxiliary state σ̂θ that contain all
information about the parameter. We have FQ½Λ⊗N

θ ðρ̂Þ�≤FQ½σ̂⊗N
θ �¼

NFQ½σ̂θ� that follows from Eq. (137) and the additivity of the
quantum Fisher information. A quantum simulable channel may
admit several decompositions, the optimal one being that giving the
smallest value FQ½σ̂θ�. When σ̂θ has a diagonal form σ̂θ ¼P

ipθ;ijeiiheij, where jeii is some basis of the enlarged Hilbert
space, the channels is said to be classical simulable (Matsumoto,
2010). In this case we have FQ½σ̂θ� ¼ 1=ϵþϵ− (Demkowicz-Dobr-
zański, Kołodyński, and Guţă, 2012), where ϵ� can be found from the
geometric properties of the convex space of quantum channels
(Bengtsson and Zyczkowski, 2006). In particular, ϵ� > 0 for
channels that lie in the set of completely positive trace-preserving
maps away from its boundary, including full-rank channels.
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PpnðμjθÞ ¼
Z

dφPðμjφÞPðφjθÞ; ð140Þ

where PðμjφÞ ¼ hμjÛφρ̂0Û
†
φjμi. Inserting PpnðμjθÞ into

Eq. (7) allows one to calculate the Cramér-Rao bound

in the presence of arbitrary phase noise. Taking PðφjθÞ ¼
e−ðφ−θÞ2=ð2σ2pnÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2pn

q
for σpn ≪ 2π, Ûφ ¼ e−iφĴz , and con-

sidering probe states symmetric under particle exchange, we
obtain

hmzjρ̂θjnzi ¼ hmzjρ̂0jnzie−ðσ2pn=2Þðm−nÞ2e−iθðm−nÞ; ð141Þ

where jmzi is an eigenstate of Ĵz with eigenvalue m. As a
consequence of correlated phase noise, off-diagonal elements
hmjρ̂θjni are exponentially suppressed at a rate proportional
to ðm − nÞ2. Equation (141) predicts that the coherence of a
N-qubit GHZ state decays faster than that of a single qubit by
a factor N2. This effect, also known as superdecoherence, has
been demonstrated experimentally with maximally entangled
states of 40Caþ ions by adding a variable delay time between
creation and coherence investigation (Monz et al., 2011).
Correlated phase noise is more dramatic than uncorrelated
dephasing. Indeed, taking the sum of the smallest possible
quantum and phase noise [see also Genoni, Olivares, and Paris
(2011) and Escher et al. (2012)], we have

Δθ ≥
1ffiffiffi
ν

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2pn þ

1

N2

r
; ð142Þ

which does not scale with N for N ≫ 1=σpn in contrast with
uncorrelated dephasing.
However, correlated phase noise can be counteracted by a

differential interferometer scheme (Roos et al., 2006; Dorner,
2012; Landini et al., 2014), see Fig. 36(a), that consists of two
interferometers running in parallel. The phase shift in the first
interferometer is θ þ φ1, while that in the second interferom-
eter is φ2, where θ is the signal phase to be estimated and φ1;2

are shot-to-shot random phases. Taking a Gaussian Pðφ1;2jθÞ
as before, Ûφ ¼ e−iφ1Ĵ

ð1Þ
z ⊗ e−iφ2Ĵ

ð2Þ
z and perfectly correlated

interferometers with φ ¼ φ1 ¼ φ2, we have

hmzjρ̂θjnzi ¼ hmzjρ̂0jnzie−ðσ2pn=2Þðm1þm2−n1−n2Þ2e−iθðm1−n1Þ;

ð143Þ

where jmzi ¼ jmð1Þ
z i ⊗ jmð2Þ

z i and jmð1;2Þ
z i are eigenstates of

Ĵð1;2Þz with eigenvalues m1;2. Components with m1 þm2 ¼
n1 þ n2 are insensitive to phase noise and define a
decoherence-free subspace (Zanardi and Rasetti, 1997;
Lidar, Chuang, and Whaley, 1998). This condition is met
by nontrivial states achieving the Heisenberg limit of phase
sensitivity (Dorner, 2012; Jeske, Cole, and Huelga, 2014;
Landini et al., 2014). Figure 36(b) illustrates examples
showing the superior performance of a differential scheme
(thick solid lines) with respect to that of a single interferometer
(dashed lines) affected by the phase noise with the same
amplitude σpn. For a differential scheme where each

interferometer is fed with NOON states, the Fisher informa-
tion saturates to FQ ¼ N2=4 for Nσpn ≳ 1 (Landini et al.,
2014). Finally, noise correlations between the two interfer-
ometers are crucial: achieving the Heisenberg limit in a
differential interferometer requires Δðφ1 − φ2Þ ≪ 1=N
(Landini et al., 2014). Roos et al. (2006) experimentally
demonstrated the preparation of a designed entangled state of
two ion qubits in a decoherence-free subspace and proved its
robustness by measuring the electric field quadrupole shift
while removing sensitivity to a noisy magnetic-field environ-
ment. Monz et al. (2011) constructed decoherence-free states
with up to eight ions, achieving long coherence times; see also
Pruttivarasin et al. (2015). In specific cases, entanglement can
be preserved in the presence of correlated dephasing even if
the state is not in a decoherence-free subspace (Carnio,
Buchleitner, and Gessner, 2015).

4. Error correction

Quantum error correction techniques are crucial in quantum
computing (Shor, 1995; Steane, 1996; Nielsen and Chuang,
2000) and can be used to counteract the effect of noise in
quantum metrology (Ozeri, 2013; Arrad et al., 2014; Dür
et al., 2014; Kessler, Lovchinsky et al., 2014; Herrera-Martí
et al., 2015; Plenio and Huelga, 2016). These schemes correct
the imprinting of phase information in a quantum state against
decoherence by employing ancilla qubits that neither interact
with the parameter nor are subject to noise. Noise operators
map the state to ancilla Hilbert subspaces orthogonal to the
phase-encoding subspace. Error correction is accomplished by
projective measurements into the orthogonal subspaces and
then applying a correction sequence. These techniques can be
used to extend the coherence time and/or to achieve the
Heisenberg limit for certain noise models (Ozeri, 2013; Arrad
et al., 2014; Dür et al., 2014; Kessler, Lovchinsky et al.,

!"
#

!"
$

!"
!

!"
"

!"
!"

!"

$"

&'(')(*+,-,+*.'/-

01
*,

-2
&

34
ga

in
 (

dB
) 

phase noise, pn
 

(b) (a) 20 

15 

10 

5 

0 
10-3 10-2 10-1 1 10 

  

interf. 1 interf. 2 

FIG. 36. Differential interferometry scheme (a): two Mach-
Zehnder interferometers working in parallel are coupled to the
shot-to-shot fluctuating phase noise φ. The signal to be estimated
is θ. (b) Normalized Fisher information (F=N, gain over the shot
noise) as a function of the phase noise, modeled according to
Eq. (139) with PðφjθÞ ∼ e−ðφ−θÞ2=ð2σ2pnÞ. The green (darker) lines
refer to NOON states in each interferometer, while the orange
(lighter) lines refer to spin-squeezed states obtained via Kita-
gawa-Ueda evolution e−iχtĴ

2
z j0; π=2i of a coherent spin state

j0; π=2i, with χt ¼ 0.01π. The thick solid lines are obtained with
a differential interferometer, while the dashed lines are obtained
with a single interferometer. The thin black solid line is Eq. (142).
The horizontal dashed line is N2=4. Here N ¼ 100.
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2014). Lu, Yu, and Oh (2015) provided conditions under
which the quantum Fisher information, rather than the full
quantum state, can be protected under a class of noisy
channels.
Finally, it was shown that entanglement between the

probe and an ancillary system in the preparation and meas-
urement stage can be useful in the presence of uncorrelated
noise (Demkowicz-Dobrzański and Maccone, 2014; Haine
and Szigeti, 2015; Haine et al., 2015; Huang, Macchiavello,
and Maccone, 2016).

5. Particle losses

The incoherent loss of particles can strongly impact the
usefulness of a state for quantum metrology. A paradigmatic
example is the NOON state: the loss of a single particle
transforms Eq. (49) into the incoherent mixture

1
2
jN − 1iahN − 1j ⊗ j0ibh0j þ 1

2
j0iah0j ⊗ jN − 1ibhN − 1j;

which is useless for phase sensing. Losses can be modeled by
a beam splitter of transmission coefficient 0 ≤ η ≤ 1 that
equally couples each interferometer arm to environment
modes. This leads to the bound of sensitivity

Δθ ≥
1ffiffiffi
ν

p
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1 − η

η
N

s
; ð144Þ

that is valid for any probe state (Escher, de Matos Filho, and
Davidovich, 2011): when N ≪ η=ð1 − ηÞ, Δθ is bounded by
the Heisenberg limit, while for N ≫ η=ð1 − ηÞ one recovers
the 1=

ffiffiffiffi
N

p
scaling with a prefactor that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞ=ηp
< 1

for η > 1=2.
For ultracold atoms, collisional losses are especially rel-

evant. One-body losses are due to collisions of trapped atoms
with residual hot atoms due to imperfect vacuum, whereas
two- and three-body losses are caused by inelastic collisions
within the trapped cloud and are relevant in dense samples.
For instance, Li, Castin, and Sinatra (2008) studied the impact
of atom losses during the preparation of spin-squeezed states
via one-axis twisting (see Sec. III.B) and showed that ξ2R ¼
OðN−4=15Þ for one-body losses, assuming N → ∞ and an
optimal evolution time. For two-body losses, the optimal ξ2R
does not depend on N, while for three-body losses ξ2R ¼
OðN4=15Þ and there is a finite optimal number of particles for
squeezing.

6. Finite detection efficiency and interaction-based readout

Low efficiency in the detection of large atom numbers is
one of the main limitations in many current entanglement-
enhanced metrology experiments. Finite detection efficiency
blurs the interferometer signal and thus degrades the phase
sensitivity. A noisy detector can be modeled as a beam splitter
of transmission coefficient η followed a perfect detector.
In this case (assuming equal efficiency for both detectors),
the bound (144) applies. More generally, we can model
an imperfect detection by replacing ideal probabilities
PðμjθÞ ¼ hμjρ̂θjμi—here μ is the result of a measurement
(we restrict for simplicity to projective measurements but the

discussion can be straightforwardly extended to generalized
measurements, see footnote 2)—with

PdnðμjθÞ ¼
X
μ̃

Pðμjμ̃ÞPðμ̃jθÞ; ð145Þ

where Pðμjμ̃Þ is a convolution function giving the
probability to obtain the result μ when the “true” value is
μ̃. In practice, one can use a normalized Gaussian
Pðμjμ̃Þ ¼ e−ðμ−η̃ μ̃Þ

2=ð2σ2dnÞ=
P

μe
−ðμ−η̃ μ̃Þ2=ð2σ2dnÞ, where σdn

accounts for the detection noise (independent of the detection
signal, for simplicity) and 0 ≤ η̃ ≤ 1 for the attenuation of the
signal. Finite detection efficiency limits the distinguishability
of the probability distribution when changing the parameter
and thus decreases the Fisher information; see Sec. II.B.4.
An interaction-based readout can make phase estimation

robust against detection noise, removing the requirement of
single-atom resolution to reach a precision approaching the
Heisenberg limit (Davis, Bentsen, and Schleier-Smith, 2016;
Fröwis, Sekatski, and Dür, 2016; Nolan, Szigeti, and Haine,
2017; Anders et al., 2018). In an interaction-based readout,
some nonlinear unitary evolution Ûnl (e.g., generated by the
interaction between the particles) is applied before the readout
measurement, such that the probability of a result μ is given by
PðμjθÞ ¼ hμjÛnlρ̂θÛ

†
nljμi. For instance, Ûnl can be the inverse

of the nonlinear transformation that generates the entangled
probe state, thus realizing an echo sequence (Macrì, Smerzi,
and Pezzè, 2016; Garttner et al., 2017). Note that SU(1,1)
interferometers, see Sec. IV.C.4, take advantage of an inter-
action-based readout and their robustness to detection noise
was emphasized by Marino, Corzo Trejo, and Lett (2012), Ou
(2012), and Gabbrielli, Pezzè, and Smerzi (2015). An example
of the advantage offered by the interaction-based readout is
illustrated in Fig. 37(a). This effect can be understood as a
phase magnification (Hosten, Krishnakumar et al., 2016):
output probability distributions of phase-shifted states can
become more distinguishable (and thus less prone to detection
noise) when applying a nonlinear evolution prior to readout.
As a simple example, following Leibfried et al. (2005), let us
consider phase estimation using the NOON state (49).
Applying a phase encoding expð−iθĴzÞ followed by a π=2
Rabi rotation around the x axis, one can measure the relative
number of particles in jai and jbi. The phase information is
included in fine structure of this probability distribution.
These structures are washed out by the detection noise of
just one atom; see Fig. 37(b). However, applying the trans-
formation e−iðπ=2ÞĴ2x after phase encoding, only two detection
events are possible (N atoms in jai or jbi) that can be
experimentally distinguished even for a large detection noise
(e.g., σdn ≈

ffiffiffiffi
N

p
); see Fig. 37(c).

A nonlinear readout was exploited by Leibfried et al. (2004,
2005) for quantum-enhanced metrology with GHZ states of
N ≲ 6 trapped ions (see Sec. VI.B), and more recently by
Linnemann et al. (2016) for the realization of a SU(1,1)
interferometer with a spinor Bose-Einstein condensate (see
Sec. IV.C.4). In the experiment of Hosten, Krishnakumar et al.
(2016) the collective spin of N ¼ 5 × 105 87Rb atoms is first
squeezed via a light-mediated interaction in an optical cavity
(see Sec. V.B), and then rotated by an angle θ. After a second
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period of collective spin interactions in the cavity, the state is
detected via fluorescence imaging, demonstrating a phase
sensitivity 8 dB below the standard quantum limit, using a
detection with a technical noise floor 10 dB above the
projection noise of uncorrelated atoms.

B. Atomic clocks

Passive atomic clocks operate by locking, via a feedback
loop, the frequency of a local oscillator to the transition
frequency ω0 between two levels jai and jbi of an atom
(Wynands andWeyers, 2005; Wynands, 2009; Kohlhaas et al.,
2015; Ludlow et al., 2015). The standard clock configuration
(e.g., for fountain clocks) is based on Ramsey spectroscopy
(Ramsey, 1963). Atoms are initially prepared in the clock state

jai. A near-resonant π=2 pulse from the local oscillator
prepares a superposition of jai and jbi. Finally, after a time
TR of free evolution (Ramsey interrogation time), a second
π=2 pulse is applied to the atoms. The accumulated phase,R TR
0 dt½ωLOðtÞ − ω0�, where ωLOðtÞ is the instantaneous local
oscillator frequency, is estimated from a measurement of the
atom number in the two levels and used for a feedback loop
that steers the ωLO toward ω0. Atomic clocks are characterized
by their accuracy and stability (Vanier and Audoin, 1992;
Rihele, 2004). Accuracy refers to the frequency offset from
the ideal value, whereas stability describes the fluctuations of
the instantaneous frequency ωLOðtÞ from ω0. Improving the
stability of time keeping is one of the primary targets of
quantum-enhanced metrology. It also allows for faster evalu-
ation of systematic errors, which in turn can improve the
accuracy (Nicholson et al., 2015).
The standard figure of merit for quantifying the stability

of a clock is the Allan standard deviation of the relative
frequency fluctuations yðtÞ ¼ ½ωLOðtÞ − ω0�=ω0 (Vanier and
Audoin, 1992; Rihele, 2004),

σðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ν−1
k¼1ðykþ1 − ykÞ2
2ðν − 1Þ

s
; with yk ¼

Z
tkþτ

tk

dt
τ
yðtÞ;

ð146Þ

where ykþ1 − yk is the relative change of the clock frequency
between two successive averaging bins of duration τ. The
Allan deviation quantifies the discrepancy between two
consecutive observations of the clock frequency averaged
for a time τ, including dead times in preparation of the sample
and data acquisition. For an atomic clock operating at the
standard quantum limit with uncorrelated (shot-to-shot) mea-
surements, we have

σSQLðτÞ ¼
1

ω0TR

ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffi
Tcycle

τ

r
; ð147Þ

where Tcycle ≥ TR is the clock cycle duration (τ=Tcycle being
the number of measurements performed in a time τ).
Currently, the stability of atomic clocks is nearly
(Nicholson et al., 2012; Hinkley et al., 2013; Bloom et al.,
2014) or already, as in the case of ion spectroscopy (Itano
et al., 1993) and fountain clocks (Santarelli et al., 1999),
limited by Eq. (147). In principle, the clock stability is
optimized by extending the interrogation time until atomic
decoherence dominates in the interferometer output signal.
In practice, the main limitations of current clocks, in particu-
lar, of optical clocks using trapped atoms, are random
fluctuations of the local oscillator frequency that induce fringe
hopping for sufficiently long interrogation times. These limit
the stability of frequency comparisons to interrogation times
of the order of a second, well short of the limits imposed by
atomic decoherence, such as excited-state decay (Wineland
et al., 1998).
Theoretical studies of entanglement-enhanced atomic

clocks have focused on the impact of collective dephasing
caused by fluctuations of the local oscillator frequency, taking
into account temporal noise correlations as well as the
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FIG. 37. Interaction-based readout. (a) Normalized Fisher
information (F=N, gain over the shot noise) as a function of
the detection noise, modeled according to Eq. (145) with a
Gaussian Pðμjμ̃Þ of width σdn and η̃ ¼ 1. The green (darker)
lines refer to a NOON state, and the orange (lighter) lines to a
spin-squeezed state obtained via Kitagawa-Ueda evolution
e−iτĴ

2
z j0; π=2i of a coherent spin state j0; π=2i, with τ ¼

0.01π. The solid lines are obtained with an interaction-based
readout, and the dashed lines with a standard particle number
detection. (b) Probability distributions of a NOON state
PðμjθÞ ¼ jhμzjeiðπ=2ÞĴx e−iθĴz jNOONij2 for θ ¼ 0 (red, lighter
histogram) and θ ¼ π=N (blue, darker histogram). Substruc-
tures that characterize the probability distributions are washed
out by a detection noise of just one atom (σ ¼ 1, black line).
(c) Probability distribution for an interaction-based readout
PðμjθÞ ¼ jhμzje−iðπ=2ÞĴ2xe−i½θþπ=ð2NÞ�Ĵz jNOONij2. The distribu-
tion for θ ¼ 0 [PðμjθÞ ¼ δμ;−N=2, red, lighter histogram] and
that for θ ¼ π=N [PðμjθÞ ¼ δμ;N=2, blue, darker histogram] are
maximally distinguishable and thus robust against detection
noise: the thick and thin black lines are PdnðμjθÞ for σdn ¼

ffiffiffiffi
N

p
for θ ¼ 0 and π=N, respectively, showing that the two distri-
butions do not overlap even in the presence of large detection
noise. Here N ¼ 100.
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feedback mechanism that controls the local oscillator fre-
quency. State and measurement optimization (Bužek, Derka,
and Massar, 1999; André, Sørensen, and Lukin, 2004;
Rosenband, 2011) as well as adaptive schemes (Borregaard
and Sørensen, 2013; Kessler, Kómár et al., 2014) have been
considered. André, Sørensen, and Lukin (2004) showed the
possibility of achieving an entanglement-enhanced stability
σðτÞ ∝ 1=ðN2=3 ffiffiffi

τ
p Þ by optimizing over a family of moder-

ately squeezed states. This provides the gain of a factor N1=3

(in variance) over the standard quantum limit. One of the main
limitations in using squeezed states is the strong dependence
of the sensitivity with the estimated phase. Borregaard and
Sørensen (2013) showed that this problem can be overcome
by using nondestructive measurements to steer the squeezed
state toward the optimal phase sensitivity point, before the
final distructive measurement; see also Shiga and Takeuchi
(2012). They demonstrated the possibility to achieve
σðτÞ ∝ 1=ðN ffiffiffi

τ
p Þ, thus reaching the Heisenberg scaling.

Rosenband (2011), Mullan and Knill (2014), Kessler,
Kómár et al. (2014), and Leroux et al. (2017) have studied
different adaptive schemes for optimal state preparation and
measurement in the presence of local oscillator fluctuations.
Overall, these protocols show that entangled states can be
useful to track and stabilize the fluctuations of the local
oscillator over long time scales. Finally, quantum bounds of
frequency stability were discussed by Chabuda, Leroux, and
Demkowicz-Dobrzański (2016) and Fraas (2016).

1. Entanglement-assisted atomic clocks

Atomic clocks with a performance beating the standard
quantum limit have been experimentally demonstrated with
two trapped ions (Meyer et al., 2001), ensembles of cold
thermal atoms (Leroux, Schleier-Smith, and Vuletić, 2010b;
Louchet-Chauvet et al., 2010; Hosten, Engelsen et al., 2016),
and Bose-Einstein condensates (Gross et al., 2010; Ockeloen
et al., 2013; Kruse et al., 2016). The neutral-atom experiments
have realized microwave-frequency clocks on magnetic field-
insensitive hyperfine transitions with spin-squeezed states as
input.20 Leroux, Schleier-Smith, and Vuletić (2010b) mea-
sured an Allan deviation of σðτÞ ¼ 1.1 × 10−9 s1=2=

ffiffiffi
τ

p
for their squeezed clock, corresponding to an improvement
of 4.5 dB in variance beyond the standard quantum limit;
see Fig. 38. More recently, Hosten, Engelsen et al.
(2016) performed a similar measurement, reaching σðτÞ ¼
9.7 × 10−11 s1=2=

ffiffiffi
τ

p
, or 10.5 dB in variance beyond the

standard quantum limit; see Fig. 28(c). While these experi-
ments are impressive proof-of-principle demonstrations of
entanglement-enhanced atomic clocks, they do not yet reach
the frequency stability of state-of-the-art fountain clocks. This
is mostly due to a much shorter Ramsey interrogation time of
TR ∼ 200 μs, limited by the noise of the microwave local
oscillator. For comparison, current fountain clocks using
uncorrelated atoms operate with TR ∼ 1 s and reach σðτÞ ∼
10−14 s1=2=

ffiffiffi
τ

p
(Wynands, 2009).

2. Proposals for entanglement-assisted lattice clocks and atom
interferometers

Optical atomic clocks that interrogate narrow optical
transitions in ensembles of atoms trapped in an optical lattice
are currently the most precise and accurate measurement
devices (Ye, Kimble, and Katori, 2008; Ludlow et al., 2015),
reaching stabilities of σðτÞ ∼ 10−16 s1=2=

ffiffiffi
τ

p
, integrating down

to the lower 10−18 level after a few thousand seconds of
averaging (Nicholson et al., 2015). Their stability is within a
factor of 2 above the quantum projection noise limit (Ludlow
et al., 2008; Hinkley et al., 2013; Bloom et al., 2014). Since,
in these systems, there is a limit to the exploitable number of
atoms, using entanglement to increase the sensitivity is of
considerable interest. So far only theoretical studies are
available. Meiser, Ye, and Holland (2008) studied the creation
of spin-squeezed states in a neutral-atom optical lattice clock
through a cavity-based QND measurement. Weinstein, Beloy,
and Derevianko (2010) considered the creation of GHZ states
through the on-site interaction of an atom moving across the
lattice. A further interesting possibility is to exploit long-
range Rydberg-dressing interactions between atoms at
different lattice sites induced by laser excitations
(Bouchoule and Mølmer, 2002b; Henkel, Nath, and Pohl,
2010; Pupillo et al., 2010; Opatrný and Mølmer, 2012;
Mohammadsadegh et al., 2016) [see Saffman, Walker, and
Mølmer (2010) and Browaeys, Barredo, and Lahaye (2016)
for reviews] to generate spin-squeezed (Gil et al., 2014)
and non-Gaussian entangled states (Macrì, Smerzi, and
Pezzè, 2016).
For precision sensing applications in atom interferometers it

would be highly desirable to generate strongly squeezed states
of the atomic center-of-mass motion. At present, this remains
a challenging and experimentally unexplored task (Hosten,
Engelsen et al., 2016). For a recent theoretical proposal see
Salvi et al. (2018).
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FIG. 38. Stability of an atomic clock beating the standard quantum
limit. Allan deviation of an atomic clock with a spin-squeezed input
state (red data with error bars, the solid red line being a guide to the
eye), with TR ¼ 200 μs,N ¼ 3.5 × 104, and Tcycle ¼ 9 s. The red
dotted line σðτÞ ¼ 1.1 × 10−9 s1=2=

ffiffiffi
τ

p
is a factor of 2.8 in variance

(corresponding to 4.5 dB) below the standard quantum limit [black
dashed line σðτÞ ¼ 1.85 × 10−9 s1=2=

ffiffiffi
τ

p
]. Open black circles:

reference measurements with uncorrelated atoms. From Leroux,
Schleier-Smith, and Vuletić, 2010b.

20Note that, to date, squeezing has not yet been realized on an
optical transition. Monz et al. (2011) created GHZ states on the
optical clock transition of 40Caþ ions.
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C. Optical magnetomenters

Optical magnetometers (Budker and Romalis, 2007;
Budker and Kimball, 2013) exploit the interaction of light
with a spin-polarized atomic ensemble (either thermal atoms
in a vapor cell at room temperature or laser-cooled atoms
in an optical trap21) to measure the strength of a magnetic
field (Budker et al., 2002). Generally, the device consists of N
spin-F atoms initially optically pumped into a fully polarized
state (pointing along the x axis, for instance), such that the
collective spin of the ensemble has length hĴxi ¼ FN. Aweak
magnetic field along the y axis causes the precession of the
collective spin in the x-z plane at a rate gμBB=ℏ, where g is
the gyromagnetic ratio, μB is the Bohr magneton, and B is the
magnetic field strength. The atomic spin precession is mea-
sured by observing the polarization rotation of the probe light
transmitted through the atomic sample. The interrogation time
is limited by spin relaxation due to collisions of the atoms with
the cell walls that enclose the vapor or, for high density gases,
due to spin-exchange collisions (Budker and Romalis, 2007).
The sensitivity of current optical magnetometers is funda-
mentally limited by quantum noise in the form of atomic
projection noise and photon (polarization) shot noise. The
backaction of light onto the atoms is a further limiting factor.
Current optical magnetometers are approaching quantum
noise limits (Kominis et al., 2003; Wasilewski et al., 2010).
Polarization squeezing of the probe light (Wolfgramm

et al., 2010; Horrom et al., 2012) or spin squeezing of the
atomic ensemble (Geremia et al., 2003; Auzinsh et al., 2004;
Petersen, Madsen, and Mølmer, 2005; Sewell et al., 2012) can
be used to reduce the quantum noise. Spin squeezing induced
by continuous quantum nondemolition measurements
(Auzinsh et al., 2004) can enhance the sensitivity, and a
scalingN−3=4 is predicted when using shot-noise-limited light.
This can be further pushed to the Heisenberg limit 1=N if
squeezed light is used. However, single-atom spin relaxation
modifies this picture, and a reduction of quantum noise below
the standard quantum limit is expected only for interrogation
times shorter than the spin coherence time (Auzinsh et al.,
2004). Spin-squeezed states can thus increase the measure-
ment bandwidth (i.e., they are useful for short interrogation
times) without loss of sensitivity, with important applications
in biology and medicine. For long interrogation times,
entanglement-enhanced sensitivity using spin-squeezed states
is expected for high-density ensembles due to the suppression
of spin-relaxation noise (Kominis, 2008; Vasilakis, Shah, and
Romalis, 2011).

1. Entanglement-assisted optical magnetometers

An improvement in magnetic-field sensing via the reduc-
tion of the optical polarization noise was demonstrated by

Wolfgramm et al. (2010) and Horrom et al. (2012) using
squeezed probe light. Atomic projection noise limited and
entanglement-assisted magnetometry was demonstrated in the
experiment of Wasilewski et al. (2010), who realized a pulsed
rf magnetometer made of two atomic ensembles (two vapor
cells with opposite atomic polarizations) with N ¼ 3.6 × 1012

Cs atoms. The first light pulse is used to entangle the two
ensembles via a quantum nondemolition measurement as first
demonstrated by Julsgaard, Kozhekin, and Polzik (2001). This
is a useful resource to improve the sensitivity of the magne-
tometer for large bandwidths as shown in Fig. 39(a). The
improvement is observed for interrogation times shorter than
the entanglement lifetime of 4 ms. The increase of the
measurement bandwidth in dc magnetometers was shown
by Shah, Vasilakis, and Romalis (2010) using continuous
quantum nondemolition measurements. Sewell et al. (2012)
generated spin-squeezed states in ensembles of cold spin-1
87Rb atoms via quantum nondemolition measurements
(Koschorreck et al., 2010a, 2010b) and applied them to
optical magnetometry. Results corresponding to interrogation
pulses of 5 μs (giving a measurement bandwidth of 200 kHz)
are shown in Fig. 39(b).

D. Scanning probe magnetometers using Bose-Einstein
condensates

Trapped Bose-Einstein condensates are particularly well
suited for sensing applications requiring high spatial reso-
lution, taking advantage of their small size, high degree of
coherence, and the availability of sophisticated techniques
for precise positioning of the atoms. Current Bose-Einstein
condensate magnetometers reach sensitivities of the order
of 10 pT=

ffiffiffiffiffiffi
Hz

p
with probe volumes of 102–104 μm3

(Wildermuth et al., 2006; Vengalattore et al., 2007; Aigner
et al., 2008; Eto et al., 2013). In these systems, the required
small probe size gives rise to an upper bound on the atom
number due to density-dependent collisional trap losses. It is

(a)

(b)

FIG. 39. Entanglement-assisted optical magnetometry. (a)Meas-
urement sensitivity obtained in the absence (squares) and the
presence (open circles) of entanglement between atomic ensem-
bles in a two-cell radio-frequency magnetometer. An improve-
ment was demonstrated for short radio-frequency pulse durations
τ, where δRF ¼ 1=τ. From Wasilewski et al., 2010. (b) Measure-
ment sensitivity as a function of the number of atoms with a
coherent spin state (blue circles) and spin-squeezed (red dia-
monds) probe. Solid lines are predictions obtained from an
independent analysis of the probe state, while dashed lines are
different noise contributions to the sensitivity. From Sewell et al.,
2012.

21Vapor cell magnetometers are currently the most sensitive
measuring devices for low-frequency magnetic fields, reaching
sensitivity levels below 1 fT=

ffiffiffiffiffiffi
Hz

p
with probe volumes of

106–1012 μm3 and large atom numbers N ¼ 1011–1015. Laser-cooled
atoms in an optical trap contain a much smaller number of atoms
N ¼ 105–108 but are more compact and better suited for field
measurements with high spatial resolution.
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thus crucial to use entangled states to increase the sensitivity
without increasing the atom number.
Ockeloen et al. (2013) demonstrated a scanning probe atom

interferometer operating beyond the standard quantum limit.
Bose-Einstein condensates of 87Rb atoms were prepared on an
atom chip and spin squeezed by means of collisions in a spin-
dependent trapping potential (see Sec. III.B). Using the spin-
squeezed state as input, a Ramsey interferometer sequence
was implemented, achieving a performance of 4 dB below the
standard quantum limit with N ¼ 1400 atoms for interrog-
ation times up to TR ¼ 10 ms; see Fig. 40. This interferometer
is sensitive to microwave magnetic fields, with a sensitivity of
77 pT=

ffiffiffiffiffiffi
Hz

p
using a small probe volume of 20 μm3. The

interferometer was operated as a scanning probe, by trans-
lating the Bose-Einstein condensate on the atom chip to
measure the spatial dependence of an on-chip microwave
near field.
The magnetometer of Muessel et al. (2014) consists of ∼30

independent Bose-Einstein condensates in a one-dimensional
optical lattice each containing about N ¼ 400 87Rb atoms.
Spin squeezing is created via one-axis twisting (see
Sec. III.B), with interactions tuned by a Feshbach resonance.
Subsequently, a microwave π pulse transfers the squeezing to
a magnetic-field-sensitive hyperfine transition. This experi-
ment demonstrated sub-SQL magnetometry (3.4 dB below the
standard quantum limit) with interrogation times up to 340 μs,
reaching a sensitivity of 1.9 nT=

ffiffiffiffiffiffi
Hz

p
for static magnetic

fields. The array configuration is particularly well suited for
differential measurements and magnetic-field gradiometry.
Taking the small probe volume into account, the experi-

ments of Ockeloen et al. (2013) and Muessel et al. (2014)

already achieved state-of-the-art sensitivity (Budker and
Kimball, 2013).

E. Nonlocal phase encoding

Usually, the coupling between an atomic ensemble and an
external field is local in the particles. The phase-encoding
transformation of standard (or linear) interferometers is thus

modeled by expð−iθPN
i¼1 σ̂

ðiÞ
n =2Þ, where σ̂ðiÞn is a single-

particle Pauli operator (see Sec. II). Yet in some cases the
coupling between the atoms and the external field to be
measured may be associated with a nonlocal Hamiltonian that
involves interactions between the particles. Nonlinear inter-
ferometry was first proposed by Luis (2004) and extensively
studied in the literature (Boixo et al., 2007, 2008; Luis, 2007;
Choi and Sundaram, 2008; Roy and Braunstein, 2008; Rivas
and Luis, 2010). In this case, the notions of a standard
quantum limit (i.e., the highest phase sensitivity achievable
by separable states) and a Heisenberg limit (i.e., the ultimate
allowed phase sensitivity) discussed in Sec. II.C still hold.
However, the scalings of these bounds with the number of
particles in the probe state depend on the specific phase-
encoding Hamiltonian. For instance, Boixo et al. (2007, 2008)
and Choi and Sundaram (2008) considered phase encoding of

the kind exp½−iθðPN
i¼1 σ̂

ðiÞ
n =2Þk�. For N ≫ 1, the standard

quantum limit and Heisenberg limit become

ΔθSQL ¼ αk
Nk−1=2 ffiffiffi

ν
p and ΔθHL ¼ βk

Nk ffiffiffi
ν

p ; ð148Þ

respectively, where αk and βk are constant prefactors. For
k > 1 these bounds have faster scalings of phase sensitivity
with the number of particles than ΔθSQL ¼ 1=

ffiffiffiffiffiffi
Nν

p
and

ΔθHL ¼ 1=ðN ffiffiffi
ν

p Þ, discussed in Sec. II for linear interferom-
eters. Several systems were proposed to observe these scalings
of phase sensitivity, including Kerr nonlinearities (Beltrán and
Luis, 2005), collisions in Bose-Einstein condensates (Rey,
Jiang, and Lukin, 2007; Boixo et al., 2008, 2009; Choi and
Sundaram, 2008), nonlinearities in nanomechanical resona-
tors (Woolley, Milburn, and Caves, 2008), double-pass effec-
tive nonlinearities with a cold atomic ensemble (Chase et al.,
2009), topological excitations in nonlinear systems (Negretti,
Henkel, and Mølmer, 2008), and atom-photon interactions in
cold atom systems (Napolitano and Mitchell, 2010).
Nonlinear interferometers find applications in optical mag-
netometry (Chase et al., 2009; Sewell et al., 2014) and in the
measurement of atomic scattering properties (Rey, Jiang, and
Lukin, 2007).
Napolitano et al. (2011) engineered an effective atom-light

Hamiltonian Ĥeff ¼ αĴzŜz þ βĴzŜzNph=2 using an optical
pulse passing through a cold atom ensemble of 87Rb atoms.
Here Ĵ is a collective atomic spin, Ŝ is the Stokes vector of
the light, and Nph is the photon number. Ĥeff describes a
paramagnetic (nonlinear) Faraday rotation of the light
beam (Napolitano and Mitchell, 2010) with rotation angle
proportional to hĴzi. The coefficients α and β strongly depend
on the detuning of the light beam and experimental conditions
for which α ¼ 0 can be achieved (Napolitano and Mitchell,

SQL
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FIG. 40. Performance of a spin-squeezed Bose-Einstein con-
densate magnetometer expressed in terms of ξ2R as a function of
varying interrogation times TR for squeezed (blue diamonds) and
coherent (red circles) input states. Dashed lines model the
constant performance of ξ2R ¼ −4.0 dB (squeezed state) and
þ0.2 dB (coherent state) plus technical noise due to shot-to-shot
frequency fluctuations. Inset: Scanning probe measurements of
microwave fields. The Bose-Einstein condensate (blue) is trans-
lated near the surface of an atom chip to measure the spatial
dependence of microwave magnetic near fields. Adapted from
Ockeloen et al., 2013.

Luca Pezzè et al.: Quantum metrology with nonclassical states of …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035005-55



2010). The second term in Ĥeff accounts for nonlinear photon-
photon interactions. The measurement uncertainty achieved
with unentangled photons is ΔJz ¼ 1=ðAN1=2

ph þ BN3=2
ph Þ,

where A ∝ α and B ∝ β. A scaling ΔJz ∝ N−3=2
ph obtained

by varying the photon number between 5 × 105 and 5 × 107

was demonstrated by Napolitano et al. (2011). Sewell et al.
(2014), using a nonlinear Faraday rotation based on align-
ment-to-orientation conversion (Budker et al., 2000), dem-
onstrated ΔJz ∝ N−3=2

ph , surpassing the sensitivity achievable
by a linear measurement with the same photon number.

VIII. OUTLOOK

The possibility to achieve phase sensitivities beyond the
standard quantum limit using atomic ensembles is fueling a
vivid and exciting research activity that focuses on the
engineering, characterization, and manipulation of entangled
many-body quantum states. On the theoretical side, a
comprehensive and convincing conceptual framework was
developed for quantum metrology with entangled states,
centered around key concepts such as spin squeezing and
Fisher information. Connections between the concepts of
quantum metrology and other fields of quantum information
(such as Bell correlations, quantum Zeno dynamics, and
Einstein-Podolsky-Rosen entanglement) can shed new light
on quantum technologies. Current active research trends are
centered on quantum-enhanced metrology taking into
account relevant experimental imperfections and searching
for protocols where the fragile entanglement is protected
against noise sources. On the experimental side, many of the
key concepts that were proposed during the past decades,
such as entanglement created via particle-particle or atom-
light interactions, have recently been implemented in proof-
of-principle experiments. The progress in terms of sensitivity
gain with respect to the standard quantum limit has been
extremely fast, in particular, when compared to squeezing of
light. In atomic ensembles, less than ten years after the first
spin-squeezing experiments, impressive gains up to 20 dB
have been achieved. The field is now at the verge of moving
from proof-of-principle experiments to technological appli-
cations in entanglement-enhanced precision measurements
of time, external fields, and forces.
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Berrada, T., S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff, and
J. Schmiedmayer, 2013, “Integrated Mach-Zehnder interferometer
for Bose-Einstein condensates,” Nat. Commun. 4, 2077.

Berrada, T., S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff,
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Pezzè, and A. Smerzi, 2018, “Interferometric sensitivity and
entanglement by scanning through quantum phase transitions in
spinor bose-einstein condensates,” Phys. Rev. A 97, 032339.

Ferrini, G., A. Minguzzi, and F.W. J. Hekking, 2008, “Number
squeezing, quantum fluctuations, and oscillations in mesoscopic
Bose Josephson junctions,” Phys. Rev. A 78, 023606.

Ferrini, G., D. Spehner, A. Minguzzi, and F. W. J. Hekking, 2011,
“Effect of phase noise on quantum correlations in Bose-Josephson
junctions,” Phys. Rev. A 84, 043628.

Ferris, A. J., M. K. Olsen, E. G. Cavalcanti, and M. J. Davis, 2008,
“Detection of continuous variable entanglement without coherent
local oscillators,” Phys. Rev. A 78, 060104.

Fisher, R. A., 1922, “On the mathematical foundations of theoretical
statistics,” Phil. Trans. R. Soc. A 222, 309–368.

Fisher, R. A., 1925, “Theory of statistical estimation,” Math. Proc.
Cambridge Philos. Soc. 22, 700.

Fleischhauer, M., and M. D. Lukin, 2000, “Dark-state polaritons in
electromagnetically induced transparency,” Phys. Rev. Lett. 84,
5094–5097.

Fleischhauer, M., and S. Gong, 2002, “Stationary source of non-
classical or entangled atoms,” Phys. Rev. Lett. 88, 070404.

Foss-Feig, M., K. R. A. Hazzard, J. J. Bollinger, and A. M. Rey,
2013, “Nonequilibrium dynamics of arbitrary-range Ising models
with decoherence: An exact analytic solution,” Phys. Rev. A 87,
042101.

Fraas, M., 2016, “An analysis of the stationary operation of atomic
clocks,” Commun. Math. Phys. 348, 363–393.

Fréchet, M., 1943, “Sur l’extension de certaines evaluations
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Gabbrielli, M., L. Pezzè, and A. Smerzi, 2015, “Spin-mixing
interferometry with Bose-Einstein condensates,” Phys. Rev. Lett.
115, 163002.

Gabbrielli, M., A. Smerzi, and L. Pezzè, 2018, “Multipartite
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Landini, M., M. Fattori, L. Pezzè, and A. Smerzi, 2014, “Phase-noise
protection in quantum-enhanced differential interferometry,”
New J. Phys. 16, 113074.

Lane, A. S., S. L. Braunstein, and C. M. Caves, 1993, “Maximum-
likelihood statistics of multiple quantum phase measurements,”
Phys. Rev. A 47, 1667–1696.

Lanyon, B. P., M. Zwerger, P. Jurcevic, C. Hempel, W. Dür, H. J.
Briegel, R. Blatt, and C. F. Roos, 2014, “Experimental violation of
multipartite Bell inequalities with trapped ions,” Phys. Rev. Lett.
112, 100403.

Lapert, M., G. Ferrini, and D. Sugny, 2012, “Optimal control of
quantum superpositions in a bosonic Josephson junction,” Phys.
Rev. A 85, 023611.

Law, C. K., H. T. Ng, and P. T. Leung, 2001, “Coherent control of
spin squeezing,” Phys. Rev. A 63, 055601.

Law, C. K., H. Pu, and N. P. Bigelow, 1998, “Quantum spins
mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett.
81, 5257–5261.

LeBlanc, L. J., A. B. Bardon, J. McKeever, M. H. T. Extavour,
D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, 2011,
“Dynamics of a tunable superfluid junction,” Phys. Rev. Lett.
106, 025302.

Lee, C., 2006, “Adiabatic Mach-Zehnder interferometry on a
quantized Bose-Josephson junction,” Phys. Rev. Lett. 97, 150402.

Lee, H., P. Kok, and J. P. Dowling, 2002, “A quantum Rosetta stone
for interferometry,” J. Mod. Opt. 49, 2325.

Lee, P. J., K.-A. Brickman, L. Deslauriers, P. C. Haljan, L.-M. Duan,
and C. Monroe, 2005, “Phase control of trapped ion quantum
gates,” J. Opt. B 7, S371.

Leggett, A. J., 2001, “Bose-Einstein condensation in the alkali gases:
Some fundamental concepts,” Rev. Mod. Phys. 73, 307–356.

Leggett, A. J., and F. Sols, 1991, “On the concept of spontaneously
broken gauge symmetry in condensed matter physics,” Found.
Phys. 21, 353.

Leggett, A. J., and F. Sols, 1998, “Comment on ‘phase and phase
diffusion of a split Bose-Einstein condensate’,” Phys. Rev. Lett. 81,
1344–1344.

Lehmann, E. L., and G. Casella, 2003, Theory of Point Estimation,
Springer Texts in Statistics (Springer, New York).

Leibfried, D., M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini,
W.M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, 2004,
“Toward Heisenberg-limited spectroscopy with multiparticle
entangled states,” Science 304, 1476.

Leibfried, D., R. Blatt, C. Monroe, and D. Wineland, 2003,
“Quantum dynamics of single trapped ions,” Rev. Mod. Phys.
75, 281–324.

Leibfried, D., D. M. Meekhof, B. E. King, C. Monroe, W.M. Itano,
and D. J. Wineland, 1996, “Experimental determination of the
motional quantum state of a trapped atom,” Phys. Rev. Lett. 77,
4281–4285.

Leibfried, D., et al., 2003, “Experimental demonstration of a robust,
high-fidelity geometric two ion-qubit phase gate,” Nature (London)
422, 412.

Leibfried, D., et al., 2005, “Creation of a six-atom ‘Schrödinger cat’
state,” Nature (London) 438, 639.

Leroux, I. D., M. H. Schleier-Smith, and V. Vuletić, 2010a, “Imple-
mentation of cavity squeezing of a collective atomic spin,” Phys.
Rev. Lett. 104, 073602.

Leroux, I. D., M. H. Schleier-Smith, and V. Vuletić, 2010b,
“Orientation-dependent entanglement lifetime in a squeezed atomic
clock,” Phys. Rev. Lett. 104, 250801.

Leroux, I. D., M. H. Schleier-Smith, H. Zhang, and V. Vuletić, 2012,
“Unitary cavity spin squeezing by quantum erasure,” Phys. Rev. A
85, 013803.

Leroux, I. D., N. Scharnhorst, S. Hannig, J. Kramer, L. Pelzer, M.
Stepanova, and P. O. Schmidt, 2017, “On-line estimation of local
oscillator noise and optimisation of servo parameters in atomic
clocks,” Metrologia 54, 307.

Leslie, S. R., J. Guzman, M. Vengalattore, Jay D. Sau, Marvin L.
Cohen, and D. M. Stamper-Kurn, 2009, “Amplification of fluctua-
tions in a spinor Bose-Einstein condensate,” Phys. Rev. A 79,
043631.

Levy, S., E. Lahoud, I. Shomroni, and J. Steinhauer, 2007, “The a.c.
and d.c. Josephson effects in a Bose-Einstein condensate,” Nature
(London) 449, 579.

Lewenstein, M., and L. You, 1996, “Quantum phase diffusion of a
Bose-Einstein condensate,” Phys. Rev. Lett. 77, 3489–3493.

Lewis-Swan, R. J., and K. V. Kheruntsyan, 2014, “Proposal for
demonstrating the Hong–Ou–Mandel effect with matter waves,”
Nat. Commun. 5, 3752.

Li, Y., Y. Castin, and A. Sinatra, 2008, “Optimum spin squeezing in
Bose-Einstein condensates with particle losses,” Phys. Rev. Lett.
100, 210401.
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Lücke, B., et al., 2011, “Twin matter waves for interferometry
beyond the classical limit,” Science 334, 773.

Ludlow, A. D., et al., 2008, “Sr lattice clock at 1 × 10−16 fractional
uncertainty by remote optical evaluation with a Ca clock,” Science
319, 1805.

Ludlow, A. D., Martin M. Boyd, Jun Ye, E. Peik, and
P. O. Schmidt, 2015, “Optical atomic clocks,” Rev. Mod. Phys.
87, 637–701.

Luis, A., 2004, “Nonlinear transformations and the Heisenberg
limit,” Phys. Lett. A 329, 8.

Luis, A., 2007, “Quantum limits, nonseparable transformations, and
nonlinear optics,” Phys. Rev. A 76, 035801.

Luo, X.-Y., Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M. K. Tey, and
L. You, 2017, “Deterministic entanglement generation from driving
through quantum phase transitions,” Science 355, 620–623.

Lvovsky, A. I., H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S.
Schiller, 2001, “Quantum state reconstruction of the single-photon
Fock state,” Phys. Rev. Lett. 87, 050402.

Lynch, R., 1995, “The quantum phase problem: a critical review,”
Phys. Rep. 256, 367.

Ma, J., and X. Wang, 2009, “Fisher information and spin squeezing
in the Lipkin-Meshkov-Glick model,” Phys. Rev. A 80, 012318.

Ma, J., X. Wang, C. P. Sun, and F. Nori, 2011, “Quantum spin
squeezing,” Phys. Rep. 509, 89.

Mach, L., 1892, “Ueber einen Interferenzrefraktor,” Z. Instrumen-
tenkd. 12, 89–93.

Macieszczak, K., 2015, “Zeno limit in frequency estimation with
non-Markovian environments,” Phys. Rev. A 92, 010102.

Macrì, T., A. Smerzi, and L. Pezzè, 2016, “Loschmidt echo for
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Pezzè, L., Y. Li, W. Li, and A. Smerzi, 2016, “Witnessing
entanglement without entanglement witness operators,” Proc. Natl.
Acad. Sci. U.S.A. 113, 11459.
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“Strong saturation absorption imaging of dense clouds of ultracold
atoms,” Opt. Lett. 32, 3143–3145.

Rey, A. M., L. Jiang, and M. D. Lukin, 2007, “Quantum-limited
measurements of atomic scattering properties,” Phys. Rev. A 76,
053617.

Ribeiro, P., J. Vidal, and R. Mosseri, 2007, “Thermodynamical limit
of the Lipkin-Meshkov-Glick model,” Phys. Rev. Lett. 99, 050402.

Ribeiro, P., J. Vidal, and R. Mosseri, 2008, “Exact spectrum of the
Lipkin-Meshkov-Glick model in the thermodynamic limit and
finite-size corrections,” Phys. Rev. E 78, 021106.

Richerme, P., Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig,
S. Michalakis, A. V. Gorshkov, and C. Monroe, 2014, “Non-local
propagation of correlations in quantum systems with long-range
interactions,” Nature (London) 511, 198–201.

Riedel, M. F., P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P.
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