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Natural organisms such as photosynthetic bacteria, algae, and plants employ complex molecular
machinery to convert solar energy into biochemical fuel. An important common feature shared by
most of these photosynthetic organisms is that they capture photons in the form of excitons typically
delocalized over a few to tens of pigment molecules embedded in protein environments of light-
harvesting complexes (LHCs). Delocalized excitons created in such LHCs remain well protected
despite being swayed by environmental fluctuations and are delivered successfully to their
destinations over 100 nanometer distances in about 100 ps times. Decades of experimental and
theoretical investigation have produced a large body of information offering insight into major
structural, energetic, and dynamical features contributing to LHCs’ extraordinary capability to
harness photons using delocalized excitons. The objective of this review is (i) to provide a
comprehensive account of major theoretical, computational, and spectroscopic advances that have
contributed to this body of knowledge, and (ii) to clarify the issues concerning the role of delocalized
excitons in achieving efficient energy transport mechanisms. The focus of this review is on three
representative systems: the Fenna-Matthews-Olson complex of green sulfur bacteria, the light-
harvesting 2 complex of purple bacteria, and phycobiliproteins of cryptophyte algae. Although we
offer a more in-depth and detailed description of theoretical and computational aspects, major
experimental results and their implications are also assessed in the context of achieving excellent
light-harvesting functionality. Future theoretical and experimental challenges to be addressed in
gaining a better understanding and utilization of delocalized excitons are also discussed.
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I. INTRODUCTION

The energy for life on Earth begins with harvesting of
photons from sunlight. To perform this quantum-mechanical
(QM) process, photosynthetic organisms have developed
a wide range of highly tuned forms of light-harvesting
complexes (LHCs) (van Amerongen, van Grondelle, and
Valkunas, 2000; Hu et al., 2002; Cogdell, Gali, and
Köhler, 2006; Blankenship, 2014), while utilizing surprisingly
few kinds of pigment molecules (Blankenship, 2014; Croce
and van Amerongen, 2014) as primary units that absorb
photons and create electronic excitations (excitons) (Davydov,
1971; Agranovich and Galanin, 1982). Most LHCs consist of
about 10–100 pigment molecules held by protein scaffolds,
with typical interpigment distances ≳1 nm, and harness
excitons that are typically delocalized over a few to tens of
such pigment molecules. In general, the light-harvesting unit
of a specific photosynthetic organism is formed by aggregates
or supercomplexes of those LHCs.
Each LHC exhibits unique structural and energetic features

realized through specific arrangement of pigment molecules
with finely tuned excitation energies (Blankenship, 2014),
which in turn determine the energetics and the dynamics of
delocalized excitons. These are believed to embody certain
design principles that have been developed through long
evolutionary adaptation processes and ensure optimal light-
harvesting capability for given living environments and specific
light conditions. Figure 1 provides a simple overview of the
evolutionary tree of photosynthetic organisms andmajor LHCs.
Towhat extent do such design principles owe their success to

quantum effects associated with the delocalized nature of
excitons? Answering this question might have been the under-
lying motivation for decades of research on LHCs. However,
this question has become much more explicit only during the
past decade, attracting numerous experimental and theoretical
studies. While there have been excellent review articles on
various aspects of LHCs (Renger, May, and Kühn, 2001; Hu
et al., 2002; Cogdell, Gali, and Köhler, 2006; Cheng and
Fleming, 2009; Renger, 2009; Jankowiak et al., 2011; Olaya-
Castro andScholes, 2011;König andNeugebauer, 2012;Olaya-
Castro, Nazir, and Fleming, 2012; Pachón and Brumer, 2012;
Jang and Cheng, 2013; Lambert et al., 2013; Renger and Muh,
2013; Chenu and Scholes, 2015; Levi et al., 2015; Schröter
et al., 2015; Lee, Huo, and Coker, 2016; Curutchet and
Mennucci, 2017; Kondo, Chen, and Schlau-Cohen, 2017;
Mirkovic et al., 2017), a comprehensive review for the general
physics community, which encompasses all of the energetic,
dynamic, and spectroscopic information, seems currently lack-
ing to the best of our knowledge. Our objective is to offer such a
review with particular focus on quantum-mechanical aspects of
delocalized excitons in LHCs.

Excitons created in most LHCs are generally viewed as
Frenkel type (Frenkel, 1931; Davydov, 1971), for which the
Hamiltonian representing a single exciton can be expressed as

Ĥe ¼
X
j

Ejjsjihsjj þ
X
j

X
k≠j

Jjkjsjihskj; ð1Þ

where jsji represents an exciton localized at site j, namely, an
individual pigment or chromophore in LHCs, with Ej as the
corresponding energy. The term Jjk represents the electronic
coupling between site-local exciton states jsji and jski. In
general, this is a sum of Coulomb and exchange interactions
between the two site excitation states. Another commonly
accepted assumption of a Frenkel-type exciton, although not
essential, is that jsji’s form an orthogonal basis. This
assumption can be justified for most LHCs, where different
pigment molecules are separated well enough to have negli-
gible overlap integrals between respective electronic excited
states. Under these assumptions, the exciton Hamiltonian can
be diagonalized easily as

FIG. 1. (a) A simple evolutionary tree of photosynthetic organ-
isms. From Gregory D. Scholes. (b) Major light-harvesting anten-
nas and their spectral regions. Adapted from Scholes, 2010).
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Ĥe ¼
X
j

Ejjφjihφjj; ð2Þ

where Ej is the eigenvalue and jφji is the corresponding
eigenstate. This is related to the site excitation state through a
unitary transformation with matrix element Ujk ¼ hskjφji as
follows:

jφji ¼
X
k

Ujkjski: ð3Þ

For Frenkel excitons, delocalization occurs only through a
quantum-mechanical superposition of site-local exciton states
jsji. In other words, the extent of the superposition repre-
sented by Eq. (3) is solely dictated by the magnitudes of Jjk
relative to those of δEjk, where δEjk ¼ Ej − Ek. However, as
in most condensed phase molecular systems, Eq. (1) or (2)
alone is severely limited in representing the full quantum
nature of excitons in LHCs. Other factors such as molecular
vibrations and polarization response of protein environments
have to be taken into consideration as well. This requires
consideration of additional Hamiltonian terms.
Let us introduce X as a collective variable representing all

the degrees of freedom coupled to the exciton states. These
include the nuclear degrees of freedom of pigment molecules
as well as protein residues, and the environmental electronic
degrees of freedom that do not participate directly in the
electronic excitations of pigment molecules. Then, the total
Hamiltonian representing the entirety of the exciton and its
environments (the bath) can be expressed as follows:

Ĥex ¼ Ĥe þ ĤebðXÞ þ ĤbðXÞ; ð4Þ
where ĤbðXÞ is the bath Hamiltonian and ĤebðXÞ is the
exciton-bath Hamiltonian that can be expressed as

ĤebðXÞ ¼
X
j

X
k

B̂jkðXÞjsjihskj

¼
X
j

X
k

�X
j0

X
k0

U�
jj0 B̂j0k0 ðXÞUkk0

�
jφjihφkj: ð5Þ

All the parameters entering the Hamiltonian Ĥex of Eq. (4),
δEjk, Jjk, and B̂jkðXÞ, affect the nature of excitons directly. In
addition, some features of ĤbðXÞ may also have indirect
influence on the dynamics of excitons. In general, information
on all of these is necessary for quantitative characterization of
excitons. This in turn leads to reliable assessment of the
overall exciton migration mechanism and helps elucidate the
design principle of each LHC.
However, establishing a satisfactory level of information on

all the components of Ĥex of Eq. (4) has remained difficult for
most LHCs. This has been true even for well-known LHCs
such as the Fenna-Matthews-Olson (FMO) complex (Fenna
and Matthews, 1975) of green sulfur bacteria and the light-
harvesting 2 (LH2) complex of purple bacteria (Hu et al.,
2002; Cogdell, Gali, and Köhler, 2006), for which the x-ray
crystal structures (Fenna and Matthews, 1975; Fenna, Eyck,
and Matthews, 1977; McDermott et al., 1995; Koepke et al.,
1996) were discovered more than two decades ago. Even
when main features of the exciton Hamiltonians of these

systems were understood, much still needed to be established
regarding the details of the full exciton-bath Hamiltonian. As a
result, theoretical interpretations of many spectroscopic data
have remained ambiguous for a long time.
The past decade has seen a surge of new effort in the

spectroscopy, computational modeling, and theoretical
description of delocalized excitons in LHCs. This has become
possible through advances in nonlinear electronic spectros-
copy with femtosecond time resolution, improvement in
computational capability, and advances in quantum calcula-
tions. Another important source of motivation that has
inspired a large group of recent works was the suggestion
(Engel et al., 2007; Collini et al., 2010; Scholes, 2010) that
coherent quantum dynamics of excitons might play a much
more central role than what had been perceived before. While
definite assessment of this suggestion remains open, espe-
cially under natural light conditions, it is true that various
attempts to understand the role of quantum coherence have led
to significant advances in the spectroscopy and theoretical
description of excitons in LHCs.
A fundamental feature being shared by many LHCs, which

has become clearer during the past decade, thanks to a large body
of newly gathered information, is the intermediate nature of the
terms constituting Ĥex. In other words, for LHCs, it is common
that δEjk, Jjk, and B̂jkðXÞ constituting the Hamiltonian are of
comparable magnitudes. Typically, these parameters are of the
same order as those of the room-temperature thermal energy and
also of the major portion of the energy spectrum comprising
ĤbðXÞ. The energetic convergence of these multiple terms
endows LHCs with a rich repertoire of pathways and mecha-
nisms for exciton dynamics and energy harvesting. At the same
time, the lack of apparent small parameters in these systems
renders simple perturbation theories to be rather unreliable
quantitatively. Therefore, advanced levels of quantum dynamics
theories and computational approaches have become necessary
for accurate description of exciton dynamics and relevant
spectroscopic observables. In this sense, delocalized excitons
in LHCs have served as prominent testing cases of modern
quantum dynamics, electronic structure calculation approaches,
and spectroscopic methods.
The objective of this review is to provide a self-contained

exposition of excitons in LHCs, with particular attention to the
sources and implications of their quantum delocalization. For
this, we first introduce three major LHCs for which a
sufficient level of experimental information is available and
extensive theoretical and computational studies have also been
made. In order to clarify assumptions behind prevailing
models of excitons in LHCs, we provide a derivation of
the commonly used form of the exciton-bath Hamiltonian, and
make critical assessment of underlying assumptions. Then we
offer a comprehensive overview of major computational and
quantum dynamical methods to study and model these
excitons and summarize applications of these methods to
the three representative systems. While this review is devoted
more to theoretical and computational aspects as outlined, we
provide a wide range of experimental results that are crucial
for understanding the energetics and the dynamics of excitons.
We also discuss features that are deemed important for their
functionality. Ultimately, this work offers both rigorous
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theoretical framework and comprehensive information that
can stimulate future endeavor to elucidate important quantum-
mechanical design principles behind efficient and robust
harvesting of excitons by LHCs.

II. OVERVIEW OF MAJOR LIGHT-HARVESTING
COMPLEXES

Photosynthesis consists of three distinctive processes as
shown schematically in Fig. 2, which we call here light
harvesting (LH), charge separation (CS), and biochemical
reaction (BR). Although it remains difficult to make a definite
assessment of the length, time, and energy scales of all the
photosynthetic processes, it is possible to offer rough esti-
mates of these parameters based on the observation of many
systems studied so far, which are listed in Table I. There is
amazing diversity in how each of these processes is executed
and how the three processes are integrated together, as has
been reviewed comprehensively down to the molecular level
(Blankenship, 2014). Recent efforts to model the chromato-
phore of purple bacteria also offer unique insights into the
synergistic organization of all the photosynthetic processes
(Strümpfer, Sener, and Schulten, 2012; Cartron et al., 2014;
Sener et al., 2016). In this review, we focus on only one of the
three processes, namely, the LH process. In this section, we
present a general introduction of three major LHCs: the FMO
complex of green sulfur bacteria, the LH2 complex of purple
bacteria, and phycobiliproteins (PBPs) of cryptophyte algae.

A. FMO complex of green sulfur bacteria

The FMO complex is an LHC found in green sulfur bacteria
(Blankenship, 2014) and serves as the conduit for excitons
migrating to reaction centers from a large chlorosome super-
complex. Each functional unit of such a conduit is formed by a
trimer of FMO complexes assembled in C3 point group
symmetry, although the actual pathway of each exciton
appears to be confined to one complex for each transfer.

There are seven well-established bacteriochlorophyll-a
(BChl) forming each FMO complex, which had long been
believed to form a complete set of pigment molecules.
However, recent findings and analyses confirmed (Tronrud
et al., 2009; Schmidt am Busch et al., 2011) the existence of
the eighth BChl as well. This serves as a linker molecule to the
chlorosome, a superaggregate of BChls serving as the major
LHC of the green sulfur bacteria and mediates initial inception
of the exciton into the FMO complex. Figure 3 shows the
trimer and the monomer unit of the FMO complex and the
constituting BChl.
The FMO complex has historical significance because

it is the first LHC for which x-ray crystallography structural
data became available (Fenna and Matthews, 1975; Fenna,
Eyck, and Matthews, 1977) and has been subject to extensive
spectroscopic and computational studies since then. However,
its functional significance as an LHC was considered rather
minor. The FMO complex does not have an apparent internal
symmetry in its arrangement of pigment molecules. Thus, it
was a nontrivial task to assign complete details of its exciton
states and to determine the extent of their couplings to protein
environments. Earlier spectroscopic and computational inves-
tigations (Louwe et al., 1997; Vulto et al., 1998; Renger, May,
and Kühn, 2001; Wendling et al., 2002; Cho et al., 2005) thus
focused on quantifying such parameters as will be described in
more detail in the next section.
The zeroth-order exciton Hamiltonian of the FMO complex

can be expressed through Eq. (1) where the sum runs over the
eight BChl molecules. Tables II and III provide representative
model parameters for two different species, P. aestuari and C.
tepidum, with known x-ray crystallography structural data.
The consensus established through the earlier works was that
excitons formed in the FMO complex are modestly delocal-
ized (Cho et al., 2005) (up to 2–3 BChl molecules at most) and

FIG. 2. A schematic of three domains constituting photosyn-
thesis, performing light harvesting (LH), charge separation (CS),
and biochemical reaction (BR). Their respective time scales are
denoted as τLH, τCS, and τBR. The length scales of these domains
are denoted as lLH, lCS, and lBR, respectively. The ranges of
energy changes that occur in these domains are, respectively,
denoted as ΔELH, ΔECS, and ΔEBR.

TABLE I. Time, length, and energy scales of photosynthesis.

τLH τCS τBR lLH lCS lBR ΔELH ΔECS ΔEBR

100 ps 1 ns 1 μs 100 nm 10 nm 1 μm 0.1 eV 0.5 eV 1 eV

FIG. 3. (a) The FMO trimer complex. (b) View of the eight
BChls of the monomer unit A (only the heavy atoms of the BChls
ring are shown). (c) Chemical structure of the BChl pigment.
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are weakly coupled to protein environments. These assess-
ments were also consistent with the functional role of the
FMO complex as a “drain” of highly delocalized excitons
of the chlorosome into much more localized ones at the
reaction center.
In 2007, a two-dimensional electronic spectroscopy (2DES)

measurement (Engel et al., 2007) reported direct time-domain
observation of off-diagonal signals (in the 2DES frequency
plot of signals) with beating in time that lasts more than 500 fs
at 77 K, which was suggested as being purely due to electronic
coherence. This was viewed by many researchers as surprising
because direct observation of electronic coherence surviving

more than 100 fs was rare in such disordered environments.
However, considering relatively small magnitudes of elec-
tronic couplings (about 30–80 cm−1) among BChl molecules
and weak couplings of their electronic excitations to molecu-
lar vibrations or surrounding protein environments, it was not
unreasonable to expect the existence of electronic coherence
with such time scale. This also appeared to be consistent with
an earlier interpretation of the oscillating anisotropy from a
pump-probe spectroscopy as being due to electronic coher-
ence (Savikhin, Buck, and Struve, 1997).
However, for the electronic coherence to be detected as real-

time coherent signals, dephasing due to the inhomogeneity
should be eliminated successfully. Whether the 2DES signal
observed (Engel et al., 2007) indeed represents such a
condition was not clear initially, let alone the question of
whether the coherent signals can indeed be confirmed and
validated by other independent measurements (Thyrhaug
et al., 2016; Duan et al., 2017). Another key suggestion they
made (Engel et al., 2007) was that “wavelike energy motion
owing to long-lived coherence terms” may be active for the
exciton dynamics rather than the “semiclassical hopping
mechanism,” reviving an old debate (Knox, 1996; Fleming
and Scholes, 2004). They also alluded that the FMO complex
is implementing a kind of quantum search algorithm. This
suggestion drew the particular attention of the quantum
information community and motivated exploring LHCs as
natural quantum information processing machines.
During the past decade, the FMO complex has been subject

to a new level of quantum dynamics studies, electronic
structure calculations, all-atomistic simulations, and spectro-
scopic measurements. These were particularly focused on
(i) describing the exciton dynamics as accurately as possible
while accounting for all major atomistic details of the system,
(ii) rigorous understanding and modeling of the 2DES signals
and their implications, and (iii) a deeper understanding of how
quantum coherence and other quantum features make a
positive contribution to the functionality of the FMO complex.

B. LH2 complex of purple bacteria

The LH2 complex is the primary LHC responsible
for harvesting and delivering excitons in purple photosyn-
thetic bacteria. The first x-ray crystal structure (McDermott
et al., 1995) was determined for a bacterium called
Rhodopseudomonas (Rps.) acidophila, now reclassified as
Rhodoblastus acidophilus (Cogdell, Gali, and Köhler, 2006),
revealing a cylindrical form with C9 symmetry that contains
three BChl molecules, two helical polypeptides, and a
carotenoid in each symmetry unit. Soon after, a different
LH2 complex with C8 symmetry called Rhodospirillum (Rsp.)
molischianum, now reclassified as Phaeospirillum molischia-
num (Cogdell, Gali, and Köhler, 2006), was also reported
(Koepke et al., 1996). Another well-known LH2 complex
from Rhodobacter (Rb.) sphaeroides, although its structure
has not been determined, is often assumed to have almost the
same structure as Rps. acidophila. All the LH2 complexes
firmly confirmed to date are known to haveCN symmetry with
N ¼ 8–10 only (Cogdell, Gali, and Köhler, 2006; Cleary
et al., 2013). As an LHC with the highest level of symmetry
while being finite in its size (cylindrical forms with both the

TABLE II. Excitation energies (in cm−1) of BChls in the FMO
complex, for sets A1 (Wendling et al., 2002), A2 (Adolphs and
Renger, 2006), A3 (Schmidt am Busch et al., 2011), T1 (Vulto et al.,
1998), and T2 (Adolphs and Renger, 2006).

P. aestuari C. tepidum
A1 A2 A3 T1 T2

E3 12 160 12 230 12 195 12 140 12 210
E1 − E3 190 215 200 260 200
E2 − E3 305 220 230 460 320
E4 − E3 190 125 180 140 110
E5 − E3 440 450 405 360 270
E6 − E3 320 330 320 360 420
E7 − E3 300 280 270 290 230
E8 − E3 505

TABLE III. Electronic coupling constants of the FMO complex.
The labels for the sets are the same as Table II.

Jjk (cm−1)
P. aestuari C. tepidum

j k A1 A2 A3 T1 T2

1 2 −102 −98.2 −94.8 −106 −87.7
3 6 5.4 5.5 8 5.5
4 −6 −5.9 −5.9 −5 −5.9
5 7 7.1 7.1 6 6.7
6 −15 −15.2 −15.1 −8 −13.7
7 −14 −13.5 −12.2 −4 9.9
8 39.5

2 3 32 30.5 29.8 28 30.8
4 8 7.9 7.6 6 8.2
5 1 1.4 1.6 2 0.7
6 14 13.1 13.1 13 11.8
7 9 8.5 5.7 1 4.3
8 7.9

3 4 −56 −55.7 −58.9 −62 −53.5
5 −2 −1.8 −1.2 −1 −2.2
6 −10 −9.5 −9.3 −9 −9.6
7 2 3.1 3.4 17 6.0
8 1.4

4 5 −69 −65.7 −64.1 −70 −70.7
6 −19 −18.2 −17.4 −19 −17.0
7 −60 −58.2 −62.3 −57 −63.3
8 −1.6

5 6 89 88.9 89.5 40 81.1
7 −4 −3.4 −4.6 −2 −1.3
8 4.4

6 7 37 36.5 35.1 32 39.7
8 −9.1

7 8 −11.1
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diameter and height about 7 nm), the LH2 complex has been
subject to a wide range of spectroscopic studies (Sundström,
Pullerits, and van Grondelle, 1999; Cogdell, Gali, and Köhler,
2006). There have been various theoretical and computational
studies (Hu et al., 2002) modeling and explaining spectro-
scopic data and also addressing important issues such as
coherence length, dynamical time scales, and energetics of
excitons.
Figure 4(a) shows the structure of the complex from

Rps. acidophila without proteins, and Fig. 4(b) depicts the
whole complex embedded in lipid membrane environments.
Figure 4(c) shows a geometric representation of the LH2
complex (with the upside direction switched). Out of the 3N
BChl molecules constituting a LH2 complex with N-fold
symmetry, N of them in the cytoplasmic side form an exciton
band near 800 nm wavelength and the remaining 2N in the
periplasmic side form an exciton band near 850 nm wave-
length at room temperature. Thus, the former is called the
B800 band and the latter the B850 band. The N BChl
molecules constituting the B800 band are arranged circularly,
with nearest neighbor distances of about 2 nm. The 2N BChl
molecules constituting the B850 band are also arranged
circularly and are formed by two intervening concentric rings
(α and β) of BChl molecules of similar radii. In this B850 unit,
the nearest neighbor (formed by two adjacent α- and β-BChl
pairs) distances are about 1 nm.
The exciton Hamiltonian of the LH2 complex in the

absence of disorder can be compactly expressed as (Jang,
Dempster, and Silbey, 2001; Jang, Newton, and Silbey, 2007;
Montemayor, Rivera, and Jang, 2018)

Ĥ0
LH2 ¼

XN
n¼1

fEαjαnihαnj þ Eβjβnihβnj þ Eγjγnihγnj

þ Jαβð0Þðjαnihβnj þ jβnihαnjÞ
þ Jαγð0Þðjαnihγnj þ jγnihαnjÞ
þ Jβγð0Þðjβnihγnj þ jγnihβnjÞg

þ
XN
n¼1

XN
m≠n

X
s;s0¼α;β;γ

Jss0 ðn −mÞjsnihs0mj; ð6Þ

where jsni, with s ¼ α, β, or γ represents the excited statewhere
only sn BChl is excited with its energy Es, and Jss0 ðn −mÞ is
the electronic coupling between jsni and js0mi. The coordinates
of BChl molecules and transition dipole moments can also be
expressed as follows (Jang and Silbey, 2003a; Jang, Newton,
and Silbey, 2007; Montemayor, Rivera, and Jang, 2018):

Rs;n ¼

0
B@

Rs cos ½2πðn − 1Þ=N þ νs�
Rs sin ½2πðn − 1Þ=N þ νs�

Zs

1
CA; ð7Þ

and

μs;n ¼ μs

0
B@

sin θs cos½2πðn − 1Þ=N þ νs þ ϕs�
sin θs sin½2πðn − 1Þ=N þ νs þ ϕs�

cos θs

1
CA; ð8Þ

where s ¼ α, β, γ and n ¼ 1;…; N. Table IV provides values of
the parameters for Rps. acidophila.
Table V provides data for the electronic coupling constants

calculated by various approaches, which will be explained in

FIG. 4. (a) Side view of the pigment arrangement in the LH2
complex: α and β BChl molecules of the B850 ring constitute the
upper circular aggregate whereas γ BChl molecules of B800 form
the lower circular aggregate. The carotenoids are also reported in
purple. (b) Side view of the LH2 complex within its membrane
from a snapshot of an all-atomistic molecular dynamics (MD)
simulation (the carotenoids are not shown). (c) Geometric rep-
resentation of the arrangement of the BChl molecules in the B800
and B850 rings. Here a reflection of 180° has been used for
clarity’s sake leading the B800 ring above the B850 ring. Adapted
from Montemayor, Rivera, and Jang, 2018.
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detail in Sec. IV. For the B800 band, the magnitudes of the
nearest neighbor electronic couplings are ∼20 cm−1. These
electronic couplings are estimated to be smaller, by about a
factor of 2–3, than the disorder in the energy and the dynamic
coupling to protein environments of the excitation of each
BChl. For the B850 band, the magnitudes of electronic
couplings between nearest neighbor BChls (formed by two
adjacent α and β BChl pairs) are known to be about
200–300 cm−1. These are comparable to the disorder in the
excitation energy of each BChl and are somewhat larger than
the reorganization energy of the coupling between the
excitation of a BChl to its environment. Therefore, excitons
in this B850 unit are more delocalized than those in the B800
unit, although the debate on the coherence lengths of excitons
in both units still remain somewhat unsettled. In particular, the
B850 excitons serve as a unique example of the intermediate
coupling regime, where all major energetic and dynamical
parameters are of comparable magnitudes. This regime defies
simple classifications normally applicable in limiting

situations. For example, there have been different estimates
(Book et al., 2000; Dahlbom et al., 2001; Jang, Dempster, and
Silbey, 2001; Trinkunas et al., 2001) of the delocalization
lengths of excitons ranging from about 4 to the entire set of the
BChl molecules.
Both the B800 and B850 units serve as active absorbing

units of photons of the LH2 complex, but the excitons formed
in the B800 unit transfer quickly to the B850 unit, which
serves as main reservoir and relayer of excitons. Pump-probe
and photon-echo spectroscopy measurements (Jimenez et al.,
1996; Pullerits et al., 1997) suggested that this transfer occurs
within about 1 ps and is fairly insensitive to temperature. This
is much faster than theoretical estimates based on the Förster
theory (Förster, 1948, 1959; Scholes, 2003), and has been the
subject of theoretical and experimental studies (Mukai, Abe,
and Sumi, 1999; Herek et al., 2000; Scholes and Fleming,
2000; Kimura and Kakitani, 2003; Novoderezhkin, Wendling,
and van Grondelle, 2003; Jang, Newton, and Silbey, 2004;
Cheng and Silbey, 2006; Jang, Newton, and Silbey, 2007).
Other important issues concerning the LH2 complex

include understanding the role of carotenoids and their
dark states, and elucidating the effects of hydrogen bonding
on the structure and energetics of BChls. More recently, the
availability of the atomic force microscopy (AFM) images
of membranes containing aggregates of LH2 complexes
(Bahatyrova et al., 2004; Scheuring and Sturgis, 2005,
2009Scheuring et al., 2006) made it possible to investigate
the nature of arrangement of LH2 complexes. Along with
theoretical studies (Cleary et al., 2013; Jang, Rivera, and
Montemayor, 2015), this information helps to address the
dynamics of excitons in the aggregates of LH2 complexes and
their physical implications.

C. Phycobiliproteins of cryptophyte algae

PBPs are primary LHCs of cryptophyte algae, a diverse
group of eukaryotic single-cell photosynthetic organisms
(Blankenship, 2014) that can be found in both sea and fresh
water. These organisms live under water where the spectrum
of incident light lacks the chlorophyll-absorbing region but
still has significant intensities in blue and green spectral
regions. The pigment molecules of PBPs are linear tetrapyr-
roles called bilins, which are covalently attached to the protein
scaffold through single or double cysteine bonds. In the FMO
and LH2 complexes, tuning of excitation energies of pigment
molecules and their electronic couplings are main factors
dictating the excitonic features, respectively, as they contain a
single type of pigment. In PBPs, however, different types of
bilins can be found in the same complex, and the possibility to
tune their protonation states or their conformation provides
further mechanisms to adapt the spectral range for efficient
light harvesting. Another distinctive feature is that pigment
molecules are bound to proteins by covalent boding.
There are two well-known PBPs. One is phycoerythrin 545

(PE545), the structure of which was first determined with
rather low resolution (Wilk et al., 1999) and later with higher
resolution (Doust et al., 2004). The other is called phyco-
cyanin 645 (PC645), the detailed structure of which was
confirmed quite recently (Harrop et al., 2014). Figure 5 shows
the structures of PBPs and bilins.

TABLE IV. Geometric parameters representing the coordinates and
the transition dipole orientations of BChls in Rps. acidophila. Both
values derived from the crystal structure and MD simulation are
shown (Montemayor, Rivera, and Jang, 2018).

Crystal structure MD simulation
α β γ α β γ

Rs (Å) 25.8 27.0 31.0 26.0 27.5 32.1
Zs (Å) 0 0 16.8 0 0 16.5
θs (deg) 94.9 95.8 97.3 96.5 97.3 98.2
νs (deg) −10.2 10.2 23.6 −10.2 10.2 23.3
ϕs (deg) −108.2 64.0 65.2 −106.6 60.6 63.7

TABLE V. Major electronic coupling constants among BChls in the
LH2 complex of Rps. acidophila (see Fig. 3 for notations). All values
are in cm−1. C-1: Transition dipole coupling data based on the x-ray
crystal structure (Sundström, Pullerits, and van Grondelle, 1999).
C-2: Transition density cube method data based on the x-ray crystal
structure (Krueger, Scholes, and Fleming, 1998). C-3: TD-DFT
and MM data based on x-ray crystal structure (Segatta et al.,
2017). C-4: Multiconfiguration electronic structure calculation data
with MM solvation based on the x-ray crystal structure (Segatta et al.,
2017). C-5: TD-DFT data with MMPol solvation based on the x-ray
crystal structure (Cupellini et al., 2016). MD-1: TD-DFT data with
MMPol based on structures from MD simulation (Cupellini et al.,
2016). MD-2: Transition monopole charge calculation data based on
structures from MD simulation (Montemayor, Rivera, and Jang,
2018).

Parameter C-1 C-2 C-3 C-4 C-5 MD-1 MD-2

Jαβð0Þ 322 238 336 563 362 339 245
Jαβð1Þ 288 213 288 474 409 317 140

Jααð1Þ −46 −91 −83 −87 −66 −59
Jββð1Þ −37 −63 −69 −59 −51 −29
Jβαð1Þ 11 23 22 24 18 14
Jαβð2Þ 13 24 26 25 20 13

Jγγð1Þ −22 −27 −47 −46 −50 −32 −25
Jαγð1Þ 27 44 46 59 42 28
Jβγð1Þ 23 −11 −11 −6 −3 3
Jγαð0Þ −13 −19 −22 −20 −16 −12
Jγβð0Þ 5 −8 −9 −12 −10 −3
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The capability of PE545 to photosynthesize under low-light
conditions has been an important subject of both experimental
(Doust et al., 2005; Collini et al., 2010; Wong et al., 2012;
Harrop et al., 2014) and computational (Curutchet et al., 2011,
2013; Hossein-Nejad et al., 2011; Huo and Coker, 2011;
Viani, Curutchet, and Mennucci, 2013; Aghtar et al., 2014,
2017Viani et al., 2014) studies. A possible explanation of this
efficiency is in terms of the flexible structural nature of the
pigments. This allows the optimal modulation of the absorp-
tion and energy transfer processes through local pigment-
protein interactions. The crystal structure of PE545 contains
eight bilins (Doust et al., 2004). In particular, each α chain (A
and B) contains a 15,16-dihydrobiliverdin (DBV), whereas
each β polypeptide chain (C or D) is linked to three
phycoerythrobilins (PEB). The corresponding pigments are
labeled DBV19A, DBV19B, PEB158C, PEB158D, PEB50=61C,
PEB50=61D, PEB82C, and PEB82D, where the subscripts denote
the protein subunit and cysteine residue linked to the chromo-
phore. The central PEB50=61D pigments are linked to the
protein by two cysteine residues. The overall PE545 structure
displays a pseudosymmetry about the twofold axis relating the
α1β and α2β monomers (Doust et al., 2004).
Although the protein scaffolds of the PE545 and PC645

complexes are nearly identical, the compositions of pigment
molecules and their π-conjugation lengths are different. In
PE545, the lowest energy states are localized on the peripheral
DVB19 molecules. For the PC645 complex, which functions
at lower absorption energy, the DBV molecules reside at the
dimer interface and play the role of the source states, while the
phycocyanobilin (PCB) and the mesobiliverdin (MBV) mol-
ecules form lower energy intermediate and sink states,
respectively (Mirkovic et al., 2007; Collini et al., 2010;
Huo and Coker, 2011; Lee, Bravaya, and Coker, 2017).
We can express the exciton Hamiltonian for both PE5454

and PC645 commonly by abbreviating the two pigments with
the highest excitation energiesH1 andH2, the two lowest ones

L1 and L2, and the four intermediate ones asMn, n ¼ 1;…; 4.
Thus, for PE545, PEB50=61CðDÞ and DBVs are the H and the L
pairs, respectively, while for PC645, DBVs are the H’s and
PCBs the L’s. With these notations, the zeroth-order exciton
Hamiltonian for both can be expressed as

Ĥ0
PBP ¼

X2
n¼1

fEHnjHnihHnj þ ELnjLnihLnjg

þ
X4
n¼1

EMnjMnihMnj þ
X
s

X
s0≠s

Js;s0 jsihs0j; ð9Þ

where s and s0 run over all possible sites. Table VI provides
data for these electronic coupling constants calculated by
various approaches. As LHCs with their structures known
most recently among the three being considered here, spectro-
scopic data as well as the x-ray data played a key role early on

FIG. 5. (a) PBP complex. (b) View of the eight bilins (only the
heavy atoms are shown) present in PE545 (black) and PC645
(orange or gray). (c) Chemical structure of the different bilins
present in PE545 (PEB, DBV) and PC645 (PCB, DBV, MBV).
The ellipses indicate the double bond which is used to create the
second cysteine bond to the protein in PE545 (PEB) and
PC645 (DBV).

TABLE VI. Electronic coupling constants of PE545 and PC645.
MD1: configuration interaction singles (CIS) and MMPol calcula-
tions on structures obtained from an MD simulation (couplings are
obtained as a sum of Coulomb interactions of transition densities and
an environment term) (Curutchet et al., 2013). MD2: CIS and MM
calculations on structures obtained from an MD simulation (cou-
plings are obtained as dipole-dipole interactions of transition dipoles
positioned at the center of mass of the bilin sites. The resulting
couplings were then multiplied by a value of 0.72 to take into account
screening effects from the environment) (Lee, Bravaya, and Coker,
2017). C1: CIS and PCM calculations on the crystal structure
(Mirkovic et al., 2007; Collini et al., 2010).

Jss0 (cm−1)
PE545 PC645

s s0 MD1 MD2 C1 MD2

H1 H2 71.7 163.9 319.4 212.3
M1 −21.5 −29.5 −43.9 −53.4
M2 24.5 20.6 −9.6 −10.8
M3 34.0 38.8 25.3 34.9
M4 12.1 17.9 23.8 31.9
L1 2.2 2.7 −20.0 −19.9
L2 −46.6 −45.3 −46.8 −43.4

H2 M1 −15.2 −22.1 7.7 11.0
M2 19.1 29.8 43.9 49.0
M3 −16.0 −19.3 29.5 24.4
M4 −35.6 −38.1 30.5 33.7
L1 −39.3 −47.8 21.5 19.9
L2 1.4 3.2 48.0 48.9

M1 M2 −6.1 −6.3 4.3 3.4
M3 7.3 7.9 86.2 77.6
M4 6.4 6.4 3.4 2.3
L1 −27.3 −37.4 53.8 69.3
L2 −3.7 −3.5 −14.7 −16.0

M2 M3 6.8 6.2 −2.9 −2.0
M4 8.2 8.7 −86.7 −78.2
L1 3.5 3.6 −15.8 −17.2
L2 26.3 38.7 49.3 66.8

M3 M4 4.0 6.2 7.8 10.8
L1 −11.4 −13.0 29.0 11.8
L2 −36.1 −48.2 −10.7 −12.4

M4 L1 34.3 45.0 11.0 11.2
L2 11.6 13.8 10.0 10.7

L1 L2 −4.3 −4.8 48.0 9.8
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for PBPs. Detailed accounts of these spectroscopic studies are
provided in the next section.

III. SPECTROSCOPY OF EXCITONS IN
LIGHT-HARVESTING COMPLEXES

Absorption spectroscopy can identify distinctive signatures
of LHCs in terms of the positions and widths of major
excitonic peaks [see Fig. 1(b)]. Given the structural informa-
tion of an LHC, it is possible to assign some exciton states
corresponding to the peaks of the absorption line shape
directly. However, unambiguous modeling of the entirety of
the absorption line shape was difficult in the beginning, and
assignment of some peaks, especially in large LHCs without
apparent symmetry, still remains difficult. Excitation energies
of pigment molecules in LHCs can easily be modulated by
pigment-protein interactions, typically in the range of
1000 cm−1. Despite significant advances, present day elec-
tronic structure calculation methods cannot yet reliably
determine these modulations with sufficient efficiency and
accuracy. In addition, the three important factors influencing
the absorption line shape, namely, electronic couplings
between pigment molecules, vibronic couplings, and the
disorder and fluctuations are of comparable magnitudes in
the range of 100–500 cm−1, making it difficult to discern their
effects on detailed features of the line shape.
Earlier efforts to interrogate the energetics and the dynam-

ics of excitons in LHCs employed conventional subensemble
nonlinear spectroscopic techniques (Mukamel, 1995). For
example, pump-probe and photon-echo spectroscopies
(Sundström, Pullerits, and van Grondelle, 1999; Cho et al.,
2005) gave time-resolved information on the response of a
subensemble of excitonic states. Hole-burning spectroscopy
(Purchase and Völker, 2009; Jankowiak et al., 2011) allowed
identification of narrow zero-phonon exciton states and their
distributions hidden in the ensemble line shape. For LH2 and
LH1 complexes of purple bacteria and for other limited
examples of LHCs, single-molecule spectroscopy (SMS)
(van Oijen et al., 1999; Oellerich and Köhler, 2009; Saga,
Shibata, and Tamiaki, 2010; Schlau-Cohen et al., 2013) has
also played an important role. These nonlinear spectroscopic
and SMS data helped to extract information on exciton
relaxation kinetics, homogeneous broadening, and the disor-
der and fluctuations. However, they in general fell short of
offering unambiguous interpretation of experimental signals
for excitons in LHCs, the complexity of which typically
causes multitudes of competing models and scenarios to be
viable for interpreting the spectroscopic signals.
Further advances in laser technology have made it

possible to conduct a general 2DES (Jonas, 2003; Cho,
2008; Fuller and Ogilvie, 2015) and allowed one to investigate
new energetic and temporal details of exciton dynamics in
LHCs (Ginsberg, Cheng, and Fleming, 2009; Schlau-Cohen,
Ishizaki, and Fleming, 2011). 2DES is a femtosecond pump-
probe technique that resolves both pump and probe frequen-
cies. It thus correlates the visible-light absorption spectrum,
which enables related excitonic states to be identified by cross
peaks. 2DES is similar to transient absorption spectroscopy.
However, two excitation pulses are used cooperatively to
excite the sample followed by a third “probe pulse” which

interacts with the sample after the pump-probe time delay.
More detailed accounts of these spectroscopic studies are
outlined next for the FMO complex, the LH2 complex, and the
PBPs of cryptophyte algae.

A. Spectroscopy on the FMO complex

Already in the 1990s, high quality steady-state linear
spectroscopic data for FMO complexes such as absorption,
linear dichroism, and circular dichroism (CD) became avail-
able (Miller, Cox, and Olson, 1994; Savikhin and Struve,
1996; Louwe et al., 1997; Vulto et al., 1998; Wendling et al.,
2002). Earlier efforts (Pearlstein, 1992; Gülen, 1996; Louwe
et al., 1997; Vulto et al., 1998; Wendling et al., 2002) to
explain these spectroscopic data were based on simple exciton
models of the form of Eq. (1), without including bath
interactions. Thus, line broadening due to environmental
relaxation of exciton states and interexciton dynamics was
not properly taken into consideration in these works.
Nonetheless, the fittings of spectral data and the resulting
model parameters turned out to be reasonable. This indicates
that the exciton-bath coupling and interexciton couplings in
the FMO complex are not dominant factors. Later, the quality
of fitting was improved by including proper line-shape
functions and utilizing more systematic fitting algorithms
(Adolphs and Renger, 2006). The model parameters obtained
from these fittings are compared in Tables II and III. Figure 6
shows experimental absorption line shapes of the FMO
complex compared with a recent set of theoretical line shapes
(Renger et al., 2012). A more detailed account of computa-
tional methods underlying these theoretical calculations is
provided in the later sections.
Subensemble nonlinear spectroscopies such as pump probe

(van Amerongen and Struve, 1991; Savikhin and Struve,
1994, 1996; Buck, Savikhin, and Struve, 1997; Freiberg et al.,

780 800 820
wavelength / nm

4 K
150 K
300 K

Experiment
Wendling et al. 

780 800 820
wavelength / nm

Simulation
original spectral density

780 800 820
wavelength / nm

Simulation
corrected spectral density

FIG. 6. Experimental and theoretical absorption spectra of the
FMO complex at three different temperatures. The two simu-
lation data in the middle and right panels show that improvement
in the bath spectral density brings qualitative features of theo-
retical line shapes closer to those of experimental ones. Adapted
from Renger et al., 2012.
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1997; Savikhin, Buck, and Struve, 1997), hole burning
(Johnson and Small, 1991; Rätsep, Blankenship, and Small,
1999), and photon echo (Prokhorenko et al., 2002) were
employed to gain information on the dynamics and the
energetics of exciton states that are not clearly visible in
ensemble linear spectroscopic data. These experiments
revealed signatures of relaxation dynamics ranging from
hundreds of femtoseconds to hundreds of picoseconds.
However, definite assessment and quantitative quantum
dynamical modeling of these data have not been pursued
extensively.
Advances in the 2DES technique made it possible to access

new information on exciton states of the FMO complex that
had not been available otherwise. Earlier success was made in
determining detailed excitonic pathways (Brixner et al., 2005;
Cho et al., 2005) that were largely consistent with a model
exciton Hamiltonian developed earlier (Vulto et al., 1998,
1999). This was soon followed by direct observation of
beating signals lasting more than 500 fs at 77 K (Engel et al.,
2007). Engel and co-workers made further progress and
reported more detailed experimental results (Hayes et al.,
2010; Hayes and Engel, 2011) including the evidence that
beating signals can be observed even at room temperature
(Panitchayangkoon et al., 2010). While these were exciting
results that have motivated a broad community of experimen-
talists and theoreticians, interpretation of such 2DES signals
was not straightforward because of the fact that the FMO
complex has more than two exciton states and the exciton-bath
couplings are more complicated than simple models that are
typically used for analyzing 2DES signals. There was a strong
possibility that the beating signals might have originated from
any of electronic, vibrational, and vibronic contributions. In
fact, whether all of these contributions can be discerned by
any 2DES was not clear at all (Butkus et al., 2012). Thus,
there has been ongoing debate and various analyses on the
origins and sources of the beating signal (Christensson et al.,
2012; Fransted et al., 2012; Plenio, Almeida, and Huelga,
2013; Tiwari, Peters, and Jonas, 2013; Tempelaar, Jansen, and
Knoester, 2014; Fujihashi, Fleming, and Ishizaki, 2015; Liu
and Kühn, 2016). Furthermore, such beating signals have not
yet been independently confirmed in different 2DES data by
other groups (Thyrhaug et al., 2016; Duan et al., 2017).
Because of the unique arrangement of pigment molecules in

the FMO complex, different exciton states have well-defined
directions of transition dipole moments. Thus, control and
information of the light polarization can play an essential role
in characterizing the dynamics directly associated with elec-
tronic coherence. Indeed, utilization of the information on
polarizations of light pulses has been shown to be critical in
deducing structural data (Read et al., 2008). More recent work
demonstrated that full polarization control allows accurate
description of electronic structure and population dynamics
(Thyrhaug et al., 2016).
With further advances in spectroscopic and sample prepa-

ration techniques, efforts to clarify detailed characteristics of
excitons have continued in different directions. A new hole-
burning spectroscopy of the FMO trimer and modeling in
terms of excitonic calculations were reported (Kell et al.,
2014). Transient absorption and time-resolved fluorescence
spectroscopies were conducted for several mutants of C.

tepidum (Magdaong et al., 2017). A new 2DES spectroscopy
provided evidence that the FMO complex indeed functions as
a conduit of exciton energy (Dostál, Pšenčík, and Zigmantas,
2016). A single-molecule spectroscopy has finally become
possible for the FMO complex (Löhner et al., 2016).

B. Spectroscopy on the LH2 complex

Thanks to the high symmetry of the LH2 complex, the
number of independent parameters minimally necessary for
fitting its line shape is relatively small compared to the total
number of pigment molecules involved. Indeed, the average
values of excitation energies of α-, β-, and γ-BChls, nearest
neighbor electronic couplings, and the magnitudes of the
disorder for each of the B800 and B850 units seem sufficient
for fairly accurate fitting of ensemble line shapes. However,
on the other hand, the easiness of fitting the ensemble line
shape has also been a contributing factor for the lack of clear
consensus on some details of the exciton Hamiltonian.
For example, modeling of both absorption and CD

spectra (Georgakopoulou et al., 2002) based on the crystal
structure support the assumption that the excitation energy of
α-BChl is about 300 cm−1 higher than that of β-BChl.
However, more recent computational studies (Cupellini et al.,
2016; Montemayor, Rivera, and Jang, 2018) suggest that
the conformations and local environments of α- and β-BChls
are virtually the same in membrane environments without
indicating a significant difference in their excitation energies.
Efforts to refine the exciton-bath model of the LH2 complex
by combining more comprehensive spectroscopic data
and advanced computational tools have continued, for
example, based on temperature-dependent absorption spectra
(Urboniene et al., 2007; Zerlauskiene et al., 2008) and a
combination of temperature-dependent absorption, fluores-
cence, and fluorescence anisotropy (Pajusalu et al., 2011). As
yet, there has not been any attempt to explain all existing
steady-state spectroscopic data over all the temperatures based
on a universal exciton model.
The determination of the x-ray crystal structures of LH2

complexes coincided with new advances in nonlinear spectro-
scopic theories and techniques. Thus, LH2 complexes soon
became an important testing ground for evolving nonlinear
spectroscopic techniques. Along with the standard pump-
probe and hole-burning spectroscopies, various versions of
four-wave-mixing optical spectroscopy have been used to
interrogate mechanistic details and time scales of exciton
dynamics (Sundström, Pullerits, and van Grondelle, 1999;
Lampoura et al., 2000). Ultrafast fluorescence up-conversion
(Jimenez et al., 1996) provided information on time scales of
exciton dynamics within the B800 and B850 units. It also
showed that the time scale of the exciton transfer from the
B800 unit to the B850 at room temperature is about 1.5 ps.
Pump-probe spectroscopies at a few different temperatures
(Pullerits et al., 1997) provided similar estimates and dem-
onstrated that the transfer time decreases with temperature
moderately from 1.5 ps at 4.2 K to 0.7 ps at 300 K. Time-
resolved transient absorption spectroscopy of isolated and
native membrane-embedded LH2 complexes of Rb. sphaer-
oides at 10 K (Timpmann, Woodbury, and Freiberg, 2000)
showed that the inter-LH2-complex exciton transfer time is
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larger than 1 ps. Three-pulse photon-echo peak shifts sug-
gested that (Agarwal et al., 2002) the intra-LH2-complex
exciton relaxation takes about 200 fs, and the inter-LH2-
complex exciton transfer about 5 ps. Combinations of various
spectroscopic techniques were made to interrogate the delo-
calization length of excitons and their dynamical localization
with time scales less than 200 fs (Book et al., 2000).
As in the case of the FMO complex, a real-time coherent

beating signal was observed in 2DES data of the LH2
complex. Angle-resolved coherent four-wave-mixing spec-
troscopy showed evidence for coherent dynamics that can be
well separated from the relaxation signal due to energy
transfer (Mercer et al., 2009). 2DES has also been used to
determine parameters of the Hamiltonian for the LH3 complex
(Zigmantas et al., 2006), which is similar to the LH2 complex
and appears under a low-light condition. Clear peaks corre-
sponding to exciton transfer from the B800 unit to the B850
unit were shown to emerge even at about 200 fs after
excitation (Harel and Engel, 2012). Recent 2DES spectros-
copy suggested new aspects on the possible role of dark states
of carotenoids (Ostroumov et al., 2013) and dark charge
transfer states of BChls (Ferretti et al., 2016) in energy transfer
dynamics.
Hole-burning spectroscopy (Wu et al., 1997; Purchase and

Völker, 2009; Jankowiak et al., 2011) has long played a
unique role in gaining quantitative information on the low-
lying exciton states and has helped to validate the exciton
Hamiltonian model for the LH2 complex. However, more
direct experimental demonstration of the validity of the
Frenkel exciton model for the LH2 complex came from
low-temperature single-molecule spectroscopy based on the
fluorescence-excitation technique (van Oijen et al., 1999;
Berlin et al., 2007; Brotosudamo et al., 2009; Kunz et al.,
2012, 2014; Löhner et al., 2015). In particular, the SMS line
shapes for the B850 unit clearly consisted of two major
exciton peaks (k ¼ �1), which are perturbed due to the
disorder, and one or two minor exciton peaks at higher
energies. Figure 7 shows line shapes reported from a recent
SMS experiment (Kunz et al., 2012).
Following the success of low-temperature SMS experi-

ments, room-temperature SMS experiments were also con-
ducted to investigate the nature and the dynamics of excitons
at physiological temperature (Bopp et al., 1997, 1999).
However, the noisiness of the data made it difficult to obtain
any definite microscopic information. More recently, room-
temperature single-molecule emission spectroscopy of the
LH2 complex was shown to be able to identify three emissive
states switching at room temperature (Schlau-Cohen et al.,
2013). Single-molecule femtosecond pump-probe spectros-
copy employing ultrafast phase coherent excitation was also
recently reported (Hildner et al., 2013).
How excitons migrate in aggregates of LH2 complexes has

important implications for understanding the design principle
of efficient energy conversion. To this end, detailed informa-
tion on the arrangement of LH2 complexes is needed. AFM
images have revealed various patterns of aggregates depend-
ing on light conditions (Scheuring and Sturgis, 2005). The
extents of order and disorder also vary with other growth
conditions and species (Olsen et al., 2008; Sturgis et al.,
2009). AFM images and pump-probe spectroscopy of

aggregates reconstituted in phospholipids have become avail-
able (Sumino et al., 2013). Time-resolved spectroscopy of
exciton migration in arrays of LH2 complexes has also been
reported (Pflock et al., 2011).

C. Spectroscopy on PBPs of cryptophyte algae

Linear ensemble spectroscopy, polarization anisotropy, and
transient gratings were employed early on as a tool to augment
x-ray crystallography to construct an exciton model for PE545
(Doust et al., 2004). Oscillations lasting up to about 1 ps were
observed, which were assigned mostly coming from vibra-
tional coherence (Doust et al., 2004). Transient absorption
spectroscopy (Doust et al., 2005) also revealed broad time
scales of energy transfer within the PE545 ranging from
250 fs to picoseconds. A comprehensive set of absorption,
CD, fluorescence, and time-resolved transient absorption at
both 77 and 300 K were reported (Novoderezhkin et al.,
2010). This work also employed the experimental results to
construct the exciton Hamiltonian and to model exciton
transfer kinetics.
Photon-echo spectroscopy (Collini et al., 2010) of both

PE545 and PC645 at 294 K reported oscillatory cross peaks in
the two-dimensional representation lasting more than 400 fs,
which were initially interpreted as originating from electronic
coherence. Further interrogation of the sources and implica-
tions of these signals have continued, and ensuing studies
(Turner et al., 2012; McClure et al., 2014) clarified that most
of them have a vibrational origin, confirming the earlier
suggestion (Doust et al., 2004). In fact, this was not surprising
considering the covalent nature of the pigment-protein bond-
ing and rather strong vibronic coupling (Kolli et al., 2012).
Recent studies (O’Reilly and Olya-Castro, 2014; Dean et al.,
2016) suggest that vibronic couplings are in fact being utilized
positively for efficient and robust light-harvesting capability.

(a) (b)

FIG. 7. Single LH2 complex fluorescence-excitation spectra
(solid black lines) and emission spectra [dashed blue and red lines
(dashed gray)]). The corresponding ensemble line shapes are
shown at the top. The left panel is for LH2 complexes with sharp
emission line shapes, and the right panel is for LH2 complexes
with broad emission line shapes. A detailed experimental method
and a more comprehensive set of data are available by Kunz et al.
(2012). From Jürgen Köhler.
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Figure 8 provides the absorption and fluorescence line shapes
of PC645, vibrational spectra obtained from different sections
of transient absorption, and 2DES profiles at two different
temperatures.

IV. EXCITON-BATH HAMILTONIAN

The fact that the Frenkel exciton Hamiltonian of Eq. (1)
provides reasonable description of the electronic spectra of
many LHCs was well established at the phenomenological
level. However, computational efforts to validate its
assumption and to determine the parameters directly through
first principles calculation are fairly recent and are at a
relatively early stage. For further progress in this direction,
it is important to clarify the assumptions and approximations
involved in the exciton Hamiltonian or, more generally, the
exciton-bath Hamiltonian (EBH). To this end, we here provide
a comprehensive review of quantum-mechanical assumptions
implicit in the EBH typically used for LHCs and computa-
tional methods to calculate key elements of the EBH such as
the excitation energies, electronic couplings, and the spectral
densities of the bath.

A. Derivation

1. Aggregates of pigment molecules

Consider an aggregate of pigment molecules or, more
generally, chromophores (pigment molecules or part of them).
The total molecular Hamiltonian representing the aggregate
can in general be expressed as

Ĥc ¼
XNc

j¼1

Ĥj þ
1

2

XNc

j¼1

XNc

k≠j
Ĥjk; ð10Þ

where Nc is the total number of chromophores, Ĥj is the full
molecular Hamiltonian of the jth chromophore, and Ĥjk is the
interaction Hamiltonian between the jth and the kth
chromophores.
For the jth chromophore, we denote the positions and

momenta of the ith electron as rj;i and pj;i, and those of the lth
nucleus as Rj;l and Pj;l. Given that the jth chromophore has
Lj nuclei and Nj electrons, Ĥj in Eq. (10) can be expressed as

Ĥj ¼
XLj

l¼1

P̂2
j;l

2Mj;l
þ 1

2

XLj

l¼1

XLj

l0≠j

Zj;lZj;l0e2

jR̂j;l − R̂j;l0 j

þ
XNj

i¼1

p̂2
j;i

2me
−
XLj

l¼1

XNj

i¼1

Zj;le2

jR̂j;l − r̂j;ij

þ 1

2

XNj

i¼1

XNj

i0≠i

e2

jr̂j;i − r̂j;i0 j
¼ T̂j;n þ V̂j;nn þ T̂j;e þ V̂j;en þ V̂j;ee; ð11Þ

where the terms following the second equality are abbrevia-
tions of the kinetic (T̂) and potential (V̂) energy operator
terms. The subscripts n and e in these terms, respectively, refer
to nuclear and electron degrees of freedom.
The second term in Eq. (10) represents interactions between

all chromophores. These are pairwise at the level of explicit
description of all Coulomb interactions among electrons and
nuclei. Namely, each component, Ĥjk, represents the inter-
action between the jth and the kth chromophores and consists
of four potential terms as follows:

Ĥjk ¼
XLj

l¼1

XLk

l0¼1

Zj;lZk;l0e2

jR̂j;l − R̂k;l0 j
−
XLj

l¼1

XNk

i¼1

Zj;le2

jR̂j;l − r̂k;ij

−
XLk

l¼1

XNj

i¼1

Zk;le2

jR̂k;l − r̂j;ij
þ
XNj

i¼1

XNk

i0¼1

e2

jr̂j;i − r̂k;i0 j
¼ V̂jk;nn þ V̂jk;ne þ V̂jk;en þ V̂jk;ee; ð12Þ

where each term in the last line is again an abbreviation of the
corresponding interaction potential term.
One can employ the standard quantum-mechanical

procedure to derive an EBH corresponding to Eq. (11).
Appendix A provides a detailed description of such procedure,
based on the assumption that the ground electronic state and
the site excitation state can be defined in terms of direct
products of adiabatic electronic states of independent chro-
mophores defined at reference nuclear coordinates. The
default choice for these reference nuclear coordinates are
those of the optimized ground electronic states of chromo-
phores. Thus, the ground electronic state and the site exci-
tation states are defined by Eqs. (A29) and (A30). Collecting
all the terms in Appendix A, Ĥc can thus be expressed as

FIG. 8. Spectroscopic data for PC645. (a) Absorption line
shapes at 77 K (dashed black line) and ambient temperature
(solid black line), and fluorescence line shape [solid red line
(gray)] at ambient temperature. (b) Vibrational frequencies
extracted from transient absorption by Fourier transform at three
different emission frequencies. (c) 2DES taken at 295 K. t2 refers
to population time. (d) 2DES taken at 77 K. Adapted from Dean
et al., 2016.
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Ĥc ¼ Ec;0
g jgihgj þ

XNc

j¼1

ðĴc;0jg jsjihgj þ Ĵc;0gj jgihsjjÞ

þ
XNc

j¼1

Ec;0
j jsjihsjj þ

X
j

X
k≠j

Jc;0jk jsjihskj

þ
X
j

B̂c;0
j jsjihsjj þ Ĥc;0

b : ð13Þ

In Eq. (13),Ec;0
g is the energy of the ground electronic state and

is defined by Eq. (A36). Ĵc;0jg and Ĵc;0gj are the electronic
couplings between the site excitation state jsji and the ground
electronic state jgi, and are defined by Eqs. (A33) and (A34).
These terms originate from interactions between electrons in
the excited state of the jth chromophore and the nuclear degrees
of freedom in the ground electronic state of all others. Note that
these are in general operators with respect to the nuclear
degrees of freedom and may be responsible for nonadiabatic
transitions, although small. Ec;0

j is the electronic energy of the

site excitation state jsji as defined by Eq. (A37), Jc;0jk is the
electronic coupling between site excitation states jsji and jski,
and is defined by Eq. (A35). B̂c;0

j represents the coupling
between jsji and all the nuclear degrees of freedom, as

described by Eq. (A39), and Ĥc;0
b represents the bath

Hamiltonian originating from the nuclear degrees of freedom
of all the chromophores. The definition of this is given
by Eq. (A38).
It is important to note that we labeled all the terms defined

in Eq. (13) with an additional superscript 0. This was to make
it clear that they are defined with respect to reference adiabatic
states of independent pigment molecules. In fact, even for
simple aggregates of pigments, there are many-body effects of
other pigments which affect the definition and calculation of
adiabatic electronic states of each pigment molecule, making
the actual values of parameters and Hamiltonian terms differ-
ent from the zeroth-order ones in Eq. (13). For LHCs, these
implicit effects due to other pigment molecules are expected to
be less significant than those due to protein environments in
general, which can be considered together.

2. Light-harvesting complex

The presence of the protein environment in the LHC affects
the molecular Hamiltonian of the aggregate in all of its terms
and adds an additional one referring to its own degrees of
freedom. Expressing all these in the site excitation basis,
one can obtain the following expression for the Hamiltonian
of the LHC:

ĤLHC ¼ ðEc
g þ Er

gÞjgihgj

þ
XNc

j¼1

fðĴcjg þ ĴrjgÞjsjihgj þ ðĴcgj þ ĴrgjÞjgihsjjg

þ
XNc

j¼1

ðEc
j þ Er

jÞjsjihsjj þ
X
j

X
k≠j

ðJcjk þ ĴrjkÞjsjihskj

þ
XNc

j¼1

XNc

k¼1

ðB̂c
jδjk þ B̂r

jkÞjsjihskj þ Ĥc
b þ Ĥr

b; ð14Þ

where δjk in the last line is the Kronecker-delta symbol. All the
terms with superscript c represent contributions from chromo-
phores, which also include all the implicit effects on the
adiabatic state of each chromophore by the protein environ-
ments and the other chromophores in the ground electronic
state. The terms with superscript r represent explicit contri-
butions of the protein environment.
Equation (14) is the final and the most general form of the

exciton-bath Hamiltonian for LHC, and includes all possible
interactions between single excitons and other degrees of
freedom. The terms that are missing here are intrapigment
nonadiabatic terms, spontaneous emission terms of the site
excitation states, and interaction terms with the radiation,
which will be considered later. The common assumption
implicit in most theoretical models developed so far is that the
environment-induced nonadiabatic coupling between the
ground and the exciton state [cross terms between jgi and
jsji of Eq. (14)] are negligible compared to the spontaneous
emission term and the interaction terms with the radiation.
Thus, we also assume that they are negligible.
Combining the contributions of the chromophores and

protein environments, we define the following parameters:

Eg ¼ Ec
g þ Er

g; ð15Þ

Ej ¼ Ec
j þ Er

j; ð16Þ

Jjk ¼ Jcjk þ hĴrjki; ð17Þ

B̂jk ¼ B̂c
jδjk þ B̂r

jk þ Ĵrjk − hĴrjki; ð18Þ

Ĥb ¼ Ĥc
b þ Ĥr

b: ð19Þ

Employing these definitions and neglecting the environment-
induced nonadiabatic terms between the ground electronic
and the single-exciton states, as noted, Eq. (14) can be
simplified as

ĤLHC ¼ Egjgihgj þ Ĥe þ
XNc

j¼1

XNc

k¼1

B̂jkjsjihskj þ Ĥb

¼ Egjgihgj þ Ĥex; ð20Þ

where Ĥe has the same form as Eq. (1) and the second equality
serves as the definition of Ĥex. As can be seen, this also has
the same form as Eq. (4) except that the variable X is not
explicitly shown. The full determination of ĤLHC given by
Eq. (20) is a challenging task in general. Furthermore, even if
the full information on the Hamiltonian of this type were
available, the actual quantum dynamical calculation poses
as another theoretical challenge. Thus, in consideration of
practicality, further approximations have been made.

3. Site diagonal coupling to bath of harmonic oscillators

Given the structural and spectroscopic stability of LHCs, it
is reasonable to assume that the displacements of the bath
degrees of freedom remain small enough to be governed by
almost linear restoring forces. Under this condition, the bath
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Hamiltonian can be approximated as a set of harmonic
oscillators, and the exciton-bath interaction terms can be
assumed to be linear in the bath coordinates. While these
interaction terms may in general involve both diagonal and
off-diagonal terms of the exciton Hamiltonian in the site
excitation basis, most models of LHCs developed and
considered so far have assumed the existence of only diagonal
couplings. At least for the case of the FMO complex, explicit
calculation of normal modes confirmed that (Renger et al.,
2012) off-diagonal exciton-bath couplings are about an order
of magnitude smaller than diagonal ones, offering micro-
scopic justification for such assumption.
Thus, the typical form of the EBH that has been used for

LHC so far assumes that B̂jk is diagonal and linear in the
displacement of bath coordinates. Within this approximation,
Eq. (20) can be expressed as

ĤLHC ≈ Egjgihgj þ
XNc

j¼1

Ejjsjihsjj þ
XNc

j¼1

X
k≠j

Jjkjsjihskj

þ
XNc

j¼1

X
n

ℏωngj;nðb̂n þ b̂†nÞjsjihsjj

þ
X
n

ℏωn

�
b̂†nb̂n þ

1

2

�
; ð21Þ

where b̂†n and b̂n are raising and lowering operators of the nth
normal mode constituting all bath degrees of freedom. This
approximation also ignores Duschinsky rotation, which can be
significant if excitation causes nontrivial structural change of
chromophores.
Even though the exciton-bath coupling is assumed to be

diagonal in the site excitation basis, certain delocalized
vibrational normal modes can be coupled to different site
excitation states together, which are called common modes.
Thus, in general, the complete specification of the exciton-
bath coupling requires specification of the following spectral
densities of the bath for all pairs of j and k:

J jkðωÞ ¼ πℏ
X
n

δðω − ωnÞω2
ngj;ngk;n: ð22Þ

For practical calculations, it is convenient to decompose the
spectral density into the sum of contributions from the
intramolecular vibrational modes of the given chromophore
itself and those of the environment. It is reasonable to assume
that the former is local to each site excitation state in general.
Thus, Eq. (22) can be decomposed into

J jkðωÞ ¼ J c
jðωÞδjk þ J r

jkðωÞ: ð23Þ

The reorganization energy of the bath upon the creation of
each site excitation is given by

λj ¼ λcj þ λrj; ð24Þ

where

λcj ¼
1

π

Z
∞

0

dω
J c

jðωÞ
ω

; ð25Þ

λrj ¼
1

π

Z
∞

0

dω
J r

jðωÞ
ω

: ð26Þ

B. Electronic structure calculation

1. Excitation energies

The EBH for LHC given by Eq. (20) or (21) serves as an
efficient framework for describing excitons in LHCs and can
be used for practical calculations even for large aggregates of
many interacting pigments by keeping the computational cost
limited (Curutchet and Mennucci, 2017). Moreover, as the
cost is mainly due to the calculation of localized excitations,
accurate quantum chemical methods can in principle be used
within this model. However, even with this simplification,
typically large molecular dimensions of the pigments present
in natural LHCs (around 50–60 heavy atoms) prevent routine
use of highly accurate methods such as ab initio multi-
reference or coupled-cluster methods.
A good compromise between cost and accuracy is repre-

sented by the density functional theory (DFT) and its excited-
state extension, commonly known as time-dependent (TD)
DFT. Besides its computational efficiency, this approach has
two main limitations: (i) to be highly sensitive to the selected
functional and (ii) to be a single-reference description. The
first issue is particularly relevant for excitations that have a
(partial) charge-transfer character. TD-DFT is in fact well
known to be inaccurate in those cases due to its intrinsic limit,
commonly known as a “self-interaction error”; this arises from
the spurious interaction of an electron with itself in the
Coulomb term of the DFT Hamiltonian, which is not exactly
canceled by the exchange contribution as in the Hartree-Fock
(HF) approach.
More recently, functionals which introduce range separa-

tion into the exchange component and replace the long-range
portion of the approximate exchange by the HF counterpart
have been proposed to correct this error (Tsuneda and Hirao,
2014). By using these long-range corrected functionals,
charge-transfer-like transitions can be semiquantitatively
described at the TD-DFT level. The second issue, namely,
of being a single-reference approach, is instead particularly
relevant for excitations in long conjugated systems such as
carotenoids. In those systems, in fact, a multireference
approach is compulsory if a correct evaluation of the different
(“dark” and “bright”) excited states is needed. For such
systems, good performances have been shown by the multi-
reference configuration interaction (MRCI) extension of DFT,
known as the DFT/MRCI approach (Grimme and Waletzke,
1999; Kleinschmidt et al., 2009; Andreussi et al., 2015).
The optimal electronic structure calculation method for

LHCs should not only give accurate excitation energies for the
different pigments, but should also provide correct description
of the variation of the electronic density upon excitation and
the transition density. The former is required for accurate
evaluation of excited-state properties such as the geometrical
gradients, which are used for calculating relaxed geometries
and the coupling between electronic and nuclear degrees of
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freedom (see later). The transition density determines not only
the transition dipole corresponding to a selected excitation but
also the interpigment interactions defining the electronic
coupling Jjk (see later). These requirements on the electronic
densities largely limit the range of methods that can be used
safely. For example, many semiempirical approaches which
have been largely used in the past should be used with care. In
fact, by construction (e.g., by parametrization) they often give
correct excitation energies but this does not mean that the
corresponding transition densities are correct as well.
Moreover, only by chance they could give a reliable description
of the variation of the electronic density upon excitation, as
excited-state properties are not used in their parametrization.
Once more, at present, TD-DFT represents the only feasible
approach available in most cases even if the same two
limitations, (i) and (ii), mentioned in regard to the excitation
energies also apply for excited-state densities and transition
densities.
As a matter of fact, some DFT functionals can give quite

accurate transition energies but may completely fail in
correctly describing the change in the electronic density upon
excitation. In general, transition densities are known to be less
sensitive to errors of the DFT functional than excited-state
densities (Muñoz-Losa et al., 2008). However, benchmark
data should always be used to be fully confident about the
selected functional. Another aspect that should be prelimi-
narily checked before selecting an electronic structure calcu-
lation method is the robustness with respect to the change of
geometry. Some calculation methods, especially those based
on semiempirical formulation, can behave very differently if
the molecular system is out of the minimum region of the
potential energy surface (PES). For pigment molecules in
LHCs, significant deviations from the minimum geometry are
possible due to the temperature-dependent effects and/or to
geometrical constraints of the protein matrix. Indeed, this is an
important aspect to consider when selecting a reliable elec-
tronic structure calculation method. In this respect, at present,
systematic studies providing satisfactory references are not
available to the extent of our knowledge.

2. Electronic couplings

The electronic coupling Jjk in Eq. (1), (20), or (21) is a key
quantity determining both the dynamics and the mechanism of
exciton transfer. The magnitude of the electronic coupling,
compared to the exciton-phonon interactions, determines
whether states localized on different sites are mixed to
generate delocalized exciton states. An accurate computation
of the electronic coupling is thus necessary not only to predict
the rates of energy transfer processes, but also to determine
their mechanism. As shown in Eq. (17), Jjk consists of two
terms, one direct interaction term between chromophores Jcjk
and the other environmental contribution hĴrjki. Hereafter, we
denote this latter contribution simply as Jrkj. Thus, Eq. (17)
can be expressed as

Jjk ¼ Jcjk þ Jrjk: ð27Þ
Within the derivation of Appendix A, the direct

electronic coupling between chromophores Jcjk is defined

by generalizations of Eqs. (A28) and (A35) that include the
implicit effect of environments as well. Following the
convention, this can also be expressed as

Jcjk ¼
Z

drdr0ρtr�j ðrÞρtrk ðr0Þ
e2

jr − r0j ; ð28Þ

where ρtr�j ðrÞ ¼ ρ01j ðrÞ and ρtrk ðr0Þ ¼ ρ10k ðr0Þ, transition den-
sities of chromophores j and k including the implicit effects of
environments. Thus, this represents the Coulomb coupling
between deexcitation of the jth chromophore and the excita-
tion of the kth chromophore within the given LHC. More
generally, additional terms due to exchange interactions and
overlap between orbitals of different chromophores should be
included. This is missing in Eq. (28) because it has been
assumed that electrons from different chromophores are
distinguishable and have zero overlap. For most LHCs, the
interchromophore distances are large enough to make the
Coulomb term by far the most dominant one. The approxi-
mation of Eq. (28) is well justified under such conditions. Of
course, short-range non-Coulomb interactions are not always
negligible. For example, contributions originating from
charge-transfer states were shown to make a modest contri-
bution to the nearest neighbor couplings in the B850 unit of the
LH2 complex (Scholes et al., 1999) and to constitute a
significant portion of the interaction between the special pairs
of purple bacteria and photosystem 1 (PS1) (Madjet, Müh, and
Renger, 2009), where the BChls are closely packed together.
The simplest but still widely used approximation for the

Coulomb coupling is to use the expansion of the transition
densities up to dipolar terms, which leads to the following
point transition dipole approximation:

Jc;dpjk ¼ μj · μk
r3jk

−
3ðμj · rjkÞðμk · rjkÞ

r5jk
; ð29Þ

where rjk is the distance vector between pigments j and k, and
μj and μk are the corresponding electronic transition dipole
moments.
The dipolar term given by Eq. (29) yields the well-known

r−3jk asymptotic dependence of the singlet electronic coupling.
Where applicable, the dipole approximation has the clear
advantage of only needing experimental data, namely, the
transition dipole moments and the distance between the
centers of pigment molecules, provided that the orientation
of the transition dipole moments is known. For this reason,
the dipole approximation has been widely employed
(Jang, Dempster, and Silbey, 2001; Damjanović et al., 2002;
Georgakopoulou et al., 2002; Adolphs and Renger, 2006;
Wan et al., 2014). However, particular care should be taken in
using the approximation because it can result in significant
error in the estimation of the Coulomb coupling between
proximate pigment molecules. For example, this is the case for
the electronic couplings between the nearest neighbor BChl
molecules in the B850 unit of the LH2 complex and for the
two central bilins of PBPs of cryptophyte algae. On the other
hand, for the FMO complex, the transition dipole approxi-
mation serves as reasonable approximation for all the elec-
tronic couplings.
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Another widely used method to compute Jcjk is based on the
projection of the transition densities onto atomic transition
charges (TrCh). The Coulomb coupling is then computed as
the electrostatic interaction between those charges:

Jc;TrChjk ¼
X
n∈j
m∈k

qnqm
rnm

; ð30Þ

where the indices n and m run over the atoms of j and k,
respectively, qn and qm are the transition charges of atoms n
and m, and rnm is the distance between them. Atomic
transition charges with various definitions have been used
for a long time to compute Coulomb couplings (Chang, 1977;
Carbonera et al., 1999; Duffy et al., 2013). Arguably, a
definition of atomic charges that is physically accurate and
adequate for electrostatic interaction is the one based on
electrostatic potential (ESP) fitting. The calculation of the
Coulomb coupling with transition ESP charges (TrEsp) was
developed by Renger and co-workers (Madjet, Abdurahman,
and Renger, 2006) and now represents a widely used method
(Olbrich and Kleinekathöfer, 2010; van der Vegte et al., 2015;
Kenny and Kassal, 2016).
The Coulomb coupling can also be obtained by directly

evaluating the integral, Eq. (28). The first calculation of this
kind was developed by using a numerical integration over a
three-dimensional grid (Krueger, Scholes, and Fleming,
1998). This numerical approach is called the transition density
cube (TDC) method, and in principle gives the exact Coulomb
contribution of the electronic coupling with an appropriately
chosen grid. The TDC method has been employed extensively
(Scholes et al., 1999; Scholes and Fleming, 2000; Scholes,
2003; Bricker and Lo, 2014, 2015). However, a more reliable
and efficient approach is to perform the integration of Eq. (28)
analytically. This also allows the inclusion of explicit screen-
ing of the Coulomb interaction due to the environment (Hsu,
Fleming et al., 2001; Iozzi et al., 2004; Curutchet et al., 2009).
The coupling is also significantly affected by the presence

of the environment surrounding the pigments. While for site
energies environment effects are generally seen as a shift
depending on the nature of the transition and the characteristic
of the environment, the electronic couplings are affected
through two mechanisms, each leading to a specific change.
First, the environment can change both the geometrical and

the electronic structure of the pigment molecules and modify
their transition properties, i.e., transition dipoles and transition
densities. These changes will be “implicitly” reflected in a
change of the Coulomb coupling. The second effect is due to
the polarizable nature of the environment which acts as a
mediator of the pigments’ excitations. The resulting “explicit”
effect acts to reduce the magnitude of the direct (Coulomb)
coupling. For this reason it is common to say that the coupling
is “screened” by the environment.
The simplest way to account for the explicit effect of the

environment is to introduce a screening factor s such that
Jjk ¼ sJcjk, where J

c
jk is the direct electronic coupling between

chromophores with the implicit effect taken into consider-
ation. This definition is in line with the standard definition of
dielectric screening by environment in electromagnetism but
may not always be easy to determine. In practice, one may

introduce a total screening factor st such that Jjk ¼ stJ
c;0
jk ,

where Jc;0jk is the bare electronic coupling between chromo-
phores without including the implicit effect. The difference
between s and st can be significant, and care should be taken
in using the proper definition. More discussion of this issue is
provided later.
The screening factor s can be related to the inverse of an

effective dielectric constant ϵ∞ which represents the electronic
response of the environment approximated as a dielectric. ϵ∞
is generally approximated with the square of the refractive
index of the medium: when the environment is characterized
by a refractive index of 1.4 (typical for a hydrophobic region
of protein environments) the screening factor is ∼0.5 and the
electronic coupling is reduced by a factor of ∼2. Within this
approximation, the screening does not depend on either the
interacting chromophores or on their relative orientation and
distance. Moreover, at short distances, the dielectric medium
can be excluded from the intermolecular region, leading to
more complex effects. In particular cases, this can also
enhance the coupling.
To achieve a more accurate modeling of the environmental

effects on electronic couplings, a combination of a quantum-
mechanical description of the pigments with a continuum
model can be introduced. Various formulations of continuum
solvation models (Tomasi, Mennucci, and Cammi, 2005) can
be used to this end. By applying the PCM (Mennucci, 2012)
reported in Appendix B, the response of the environment (i.e.,
the polarization of the dielectric) is described by a set of
induced (or apparent) charges spreading on the surface of the
molecular cavity embedding the chromophores. Within this
framework, Jrjk becomes

Jr;PCMjk ¼
X
t

�Z
drρtr�j ðrÞ 1

jr − rtj
�
qtðϵ∞; ρtrk Þ. ð31Þ

Conceptually, the electronic transition in the chromophore k
drives a response in the polarizable medium, which in turn
affects the transition in the chromophore j. It is important to
note that the induced charges qt are calculated using the
optical permittivity of the medium, in order to account for the
fact that only the electronic component of the polarization can
respond. Also in this case, we can define an effective
screening factor as the ratio between the total coupling and
the direct interaction, namely s ¼ ðJcjk þ JrjkÞ=Jcjk. A QM-
PCM study has been conducted to investigate the dependence
of the screening factor on the nature of the interacting
chromophores and their relative arrangement, using different
pairs (chlorophylls, carotenoids, and bilins) extracted from
LHCs (Scholes et al., 2007). It has been shown that at large
interchromophore separation (>2 nm) the screening factor is
practically constant. At closer distances, instead, the screening
shows an exponential behavior approaching to ∼1 for dis-
tances of the order of a few tenths of a nanometer. At such a
close distance, the chromophores share a common cavity in
the medium (the environment cannot access the region where
the two chromophores are at close contact) and the screening
effect is reduced.
As noted, the scaling factor s accounts for only the explicit

screening. On the other hand, the environment can also affect
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the transition densities of chromophores, causing implicit
change of electronic couplings, which we call here si. A
detailed analysis of si ¼ Jcjk=J

c;0
jk was reported in detail in a

follow-up paper (Curutchet et al., 2007), which showed that it
is not possible to define a similar empirical expression for si as
has been done for s. The total empirical screening factor we
defined earlier is given by st ¼ s × si. In general, it cannot be
fitted by a simple function of the distance. Thus, care should
be taken in estimating the distance dependence of the total
screening factor.
An alternative way to account for environment effects in the

coupling is through the so-called Poisson-TrEsp method
developed by Renger and co-workers (Adolphs et al.,
2008; Renger and Müh, 2012). The TrEsp charges of the
pigments are placed in molecule-shaped cavities that are
surrounded by a homogeneous dielectric with a dielectric
constant, which represents the optical permittivity of the
protein and solvent environments. A Poisson equation is then
solved for the electrostatic potential of the TrEsp of each
pigment and the resulting potential is finally used to calculate
the coupling.
Despite the success of these continuum approaches, an

atomistic description of the protein environment is expected to
give a more complete description. In those cases, in fact, the
dielectric response varies locally and specific interactions
between the chromophores and the protein can be established.
A classical formulation can still be used by introducing a
molecular mechanics (MM) description in which each atom of
the environment is represented by a fixed point charge to
mimic the electrostatic effects. In order to properly account
for all the environmental effects, however, the MMmodel also
has to be polarizable. Various strategies are possible (see
Appendix B). In the context of LHCs, the most used approach
is represented by the induced-dipole (ID) formulation where
an atomic polarizability is added to the fixed charge to
describe each atom of the environment. Within this polarizable
MM (MMPol) framework, the Jrjk term becomes (Curutchet
et al., 2009)

Jr;MMPol
jk ¼ −

X
p

�Z
drρtr�j ðrÞ rp − r

jrp − rj3
�
μpðρtrk Þ; ð32Þ

where the transition densities ρtrk induce a response in the
environment which is represented by the induced dipoles μp.
As in the case of the QM/PCM, ρtrk here is calculated self-
consistently with the polarization of the environment. A mixed
continuum or atomistic strategy has also been proposed
(Caprasecca, Curutchet, and Mennucci, 2012): in this case,
Jrjk is the sum of Jr;PCMjk and Jr;MMPol

jk , and both terms are
obtained in a fully polarizable scheme.
As a cautionary remark, we note that, in the case of any

atomistic description, the QM-environment interactions, par-
ticularly those at short range, depend critically on the
configuration of the environment. Therefore, several configu-
rations of the whole system need to be taken into consid-
eration to get a correct sampling. Commonly, the sampling is
obtained by using classical molecular dynamics (MD). This
sampling is not needed when a continuum approach is

employed since it implicitly gives a configurationally aver-
aged effect due to the use of macroscopic properties to
describe environmental response.
A completely alternative way for determining the electronic

coupling between two sites is that based on a full quantum
calculation on the dimeric unit, which is also known as the
supermolecule approach. These schemes are based on the
diabatization of the electronic Hamiltonian of the whole
donor-acceptor system, and in principle yield the “exact”
coupling including exchange and overlap interactions within
the electronic structure method used (Hsu, 2009; You and
Hsu, 2014).
Consider a molecular system composed of two moieties,

which can be either two separate molecules or two fragments
of the same molecule. An electronic structure calculation on
the entire system necessarily yields the adiabatic states, which
are the eigenstates of the electronic Hamiltonian at a specific
nuclear geometry. However, a diabatic picture better describes
the states involved in energy transfer. Within this picture, the
electronic Hamiltonian is written in a basis of localized states
and is not diagonal. For example, considering only two states,
the Hamiltonian matrix reads as follows:

Hel ¼
�

Ej Jjk
Jjk Ek

�
; ð33Þ

where Ej and Ek are the energies of the diabatic states, and Jjk
is the electronic coupling between those states. At the avoided
crossing point, the condition Ej ¼ Ek means that the energy
gap between the adiabatic states is 2Jjk. Therefore, Jjk may be
computed as half of the energy gap. Obviously, this condition
holds at all geometries when the two fragments are identical.
In more general cases, a localization scheme is needed to
define the diabatic states, and to find the transformation matrix
between adiabatic and diabatic bases.
There is no unique choice for the diabatic states, the choice of

which also can alter the definitions of Coulomb and exchange
interactions (Vura-Weis et al., 2010). Several schemes have
been proposed, such as the fragment excitation difference (Hsu,
You, and Chen, 2008) or the more recent fragment transition
difference scheme (Voityuk, 2014). Within this framework, an
additional operator (which we call Ŷ), representing an observ-
able that has its extrema in the diabatic states, is introduced;
Ŷ can be defined in such a way that it has eigenvalues of 0 and
�1. The localized states are therefore those states that diag-
onalize Ŷ. The eigenvectors of the matrix Y form the unitary
matrix transformation U (i.e., U†YU is diagonal), which is
the adiabatic-to-diabatic (ATD) transformation, within the
assumption that the two adiabatic states are a linear combina-
tion of the localized states of interest. By applying the same
transformation to the diagonal energy matrix, one can obtain
the Hamiltonian in the diabatic basis and the electronic
coupling Jjk as the off-diagonal elements. Namely,

Jjk ¼ ðEk − EjÞ
Yjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYj − YkÞ2 þ 4Y2
jk

q : ð34Þ

Applying the transformation U to the adiabatic states yields
states that are localized as much as possible, and similar to the
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initial and final states. However, in many cases, a two-state
adiabatic basis is not sufficient to retrieve completely localized
states. In fact, an adiabatic state could be a combination of
many diabatic states of both the donor and the acceptor.
Moreover, charge-transfer states can mix with excitonic states,
and vice versa (Voityuk, 2013; Yang and Hsu, 2013; You and
Hsu, 2014). Another issue with the two-state model is its
inability to compute the couplings between states that are
more weakly coupled. To overcome these limits, one can
resort to a multistate formulation. The generalization to a
multistate model is not straightforward, as the additional
operators have only three different eigenvalues (0 or �1).
This means that the diagonalization of these operators will
separate the adiabatic basis in only three subspaces, and
therefore there is no unique choice for the transformation U
from the adiabatic to the diabatic basis.

C. Applications of electronic structure calculations to LHCs

We present here a summary of three computational studies
aimed at understanding the molecular origin of the protein
tuning of the excitonic properties of three LHCs introduced
earlier: the FMO complex of green sulfur bacteria, the LH2
complex of purple bacteria, and phycoerythrin PE545 of
cryptophyte algae.

1. The FMO complex

As mentioned in the overview of Sec. II, the spectral
features in the FMO complex arise from the subtle tuning of
the individual site energies due to the surrounding protein
environment. To shed light on this effect, the environment-
induced changes in the site energies were analyzed in detail
using the combination of TD-DFT and different classical
models based on either the atomistic or continuum descrip-
tions (Jurinovich, Curutchet, and Mennucci, 2014).
The trimeric crystal structure of Prosthecochloris aestuarii

(pdb entry 3EOJ, res. 1.30 Å), which contains eight BChl per
monomer, was used (Tronrud et al., 2009). Considering theC3

symmetry of the system, the QM analysis was performed only
on the monomer system shown in Fig. 3. The corresponding
excitation energies of BChl were computed at the TD-B3LYP/
6-31G(d) level of theory, the results of which are shown
in Fig. 9.
In the FMO complex, as in other LHCs, each pigment is

confined in a specific binding pocket, surrounded by the
protein matrix, which may perturb the pigment’s excitation
through two distinct effects: (1) a direct effect on the
electronic states determined by pigment-protein interactions,
or (2) an indirect effect due to the modifications induced by
the environment on the geometry of the pigment. In particular,
the isolated BChl has a planar equilibrium structure (exclud-
ing the flexible phythyl chain). However, when embedded in
the protein environment, such planarity becomes perturbed
differently in different binding pockets.
The phythyl chain of BChl also plays a role in differ-

entiating the excitation energy through variation in its con-
formations. According to the crystal structure, all the chains
adopt an outstretched configuration, except for BChl 1 and 4,
for which the chain is folded in a conformation capable of

interacting with the porphyrin ring (see Fig. 9). To investigate
these effects, site energy calculations were performed using
the crystallographic structure of the pigments and (1) including
all the BChl atoms at full quantum-mechanical level calcu-
lations, (2) replacing the phythyl chain with a methyl group
but still treated at the full quantum level, and (3) replacing the
entire phythyl chain with classical polarizable MM sites
through the MMPol approach (tail@MMPol). In this last
model, the boundary between the QM and the classical
subsystem was treated by using the link atom scheme. The
results shown in Fig. 9 reveal that, when the phythyl chain is
close to the porphyrin ring (BChl 1 and 4), the site energy is
lowered, as if it introduces an “additional environmental”
effect not present in the other pigments. This effect seems to
be largely due to a classical electrostatic and polarization
interaction. In fact, when the chain is treated at the MMPol
level, a similar lowering of the energy is observed, albeit not
as large as in the full QM description.
An important issue about the role of protein in tuning the

site excitation energies of pigments is the relative importance
of specific interactions and mean-field (or bulk) effects. This
issue can be investigated through detailed and careful analysis
of the two contributions. As an example, values of excitation
energies for 1–7 BChl molecules obtained with either the
atomistic (MMPol) or the continuum (PCM) model are
compared in Fig. 10. BChl 8 is excluded from this analysis
because of the external location of its binding site, being more
exposed to the solvent. This is manifested in a drastic
difference between the PCM and MMPol descriptions of
the environment, in particular, when the MMPol model is
based on the crystal structure and does not contain surround-
ing water molecules.

FIG. 9. Site energies (eV) of the eight BChls computed on the
crystal structure with three different models: the full model (full
line and circles) includes all BChl atoms, the truncated model
(dotted line and triangles) does not include the atoms of the
phythyl chain, and the tail@MMPol model (diamonds) describes
the atoms of the phythyl chain as MMPol sites. Inset: Structure of
BChl 1 for which the chain is folded in a conformation capable of
interacting with the porphyrin ring.
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As described in the previous section, the PCM model
describes the bulk effect of the environment through an effective
dielectric constant, which corresponds to a response averaged
over many different configurations of the environment. It is
evident that when some specific or directional interactions are
present (i.e., H bond or coordination bonds), their effects cannot
be accounted for in such an “average over the medium”model.
A practical solution for this deficiency is to enlarge the
definition of the quantum-mechanical subsystem being in the
dielectric medium by including not only the pigment but also its
proximate protein residues. Through this minimal environment
(so-called “me”) approach, the effects of short-range inter-
actions can be taken into account within the PCM model.
The comparison between QM/PCM and (me)QM/PCM

shows very similar energies for BChls 2 and 5. These two
BChls have weaker axial interactions (a water molecule for
BChl 2 and a carbonyl group belonging to the protein
backbone for BChl 5) with respect to the other pigments,
which are coordinated with the nitrogen of a histidine residue.
In the latter cases, the site energies are redshifted by about
160 cm−1 when including the QM residues. In principle, the
QM/MMPol description should be able to describe both the
bulk effect of the protein and the specific electrostatic
interactions of the closer residues. Indeed, the QM/MMPol
and the (me)QM/PCM site energies are in good agreement for
all pigments except for BChl 6. Also note that, for such a
pigment, a positively charged residue (an arginine) directly
interacts with the side group of the porphyrin ring. In this case,
the description of this residue at a QM level allows to include
nonclassical interactions (such as possible charge transfers)
between the BChl and the protein, which can significantly
affect the electronic excitation.
In summary, the inclusion of the interaction with the protein

environment results in a redshift of the excitation energies of
BChls in the FMO complex, but in ways depending on different
local environments. Thus, a simple continuum model alone is
not able to properly account for both short- and long-range

environmental effects. This point is also supported by a detailed
electrostatic analysis of the site energy funnel in the FMO
complex (Müh et al., 2007), which showed that the electric field
from theα helices defines the directionof excitation energy flow
in the FMO protein, whereas the effects of amino acid side
chains largely compensate each other. Thus, it is important to
have a complete and balanced picture of the fine tuning by
protein environments in order to characterize the FMOcomplex
properly.An effective and still practicalway for this is to include
the residues more strongly interacting with the pigments in the
definition of the QM subsystem, while keeping a continuum
description for the rest. Nonclassical short-range effects can in
fact have a non-negligible contribution to the pattern of BChl
excitation energies in the FMO complex. In addition, the BChl
phythyl chain can play a subtle but significant role, given the
small differences found in the energies of the pigments. In
particular, the largest effects are found when a folded con-
formation close to the porphyrin ring is possible, such as for
BChl 1 and 4. The effects of the tail can be explained as a
combination of overlap interaction at the quantum level and
electrostatic plus polarization at the purely classical level. It is
worthwhile to note that the latter components can be recovered
by using an MMPol description of the chain.

2. The LH2 complex

The early atomistic level calculations (Hu et al., 1997,
2002; Krueger, Scholes, and Fleming, 1998; Hsu, Walla et al.,
2001) were based on the x-ray crystal structures (McDermott
et al., 1995; Koepke et al., 1996) and focused on calculating
electronic coupling constants between excitations. The out-
comes of these calculations, in combination with empirical
correction factors to complement numerical errors, laid the
foundation for many exciton models that followed. In addi-
tion, already in 2002, all-atomistic MD simulation of the LH2
complex was shown to be feasible (Damjanović et al., 2002),
providing the basis for more recent advances (Olbrich and
Kleinekathöfer, 2010; Jang, Rivera, and Montemayor, 2015;
Cupellini et al., 2016; Sisto et al., 2017; Montemayor, Rivera,
and Jang, 2018). In this section, some of the outcomes of these
recent computational studies for the LH2 antenna complex of
Rps. acidophila are summarized.
QM/MM calculations (Cupellini et al., 2016) have been

performed using (i) the crystal structure resolved at 2.0 Å
(Protein Data Bank code: 1NKZ) (Papiz et al., 2003) and (ii) the
configurations extracted from a room-temperature sampling,
carried out through an MD simulation of the LH2 complex
within a solvated lipid membrane. Environmental effects on the
calculations of the excitonic parameters have been introduced in
terms of the polarizable (MMPol) embedding combined with a
TD-DFT description based on the CAM-B3LYP functional and
the 6-31G(d) basis set. The comparison of a “static” description
using a single crystal structure with a “dynamic” one including
structural and electronic fluctuations of the pigments coupled to
electrostatic and polarization fluctuations of the environment
allows detailed and molecular-level investigation of the key
factors contributing to the characteristics of excitons and their
changes in temperature.
For the case of the dynamic model, a different Hamiltonian

matrix was calculated for each of the 88 configurations
extracted from the MD simulation and the resulting

FIG. 10. Site energies (eV) for the 1–7 BChls computed on the
crystal structure including the environment effects at the PCM
(dotted line) and MMPol (full line) levels. A third (me)QM/PCM
model combining PCM with a QM description of the interacting
residues is also shown (dashed line).
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“instantaneous” excitonic parameters were finally averaged to
be compared with those obtained on the single crystal
structure. Indeed, the two sets of data show significant
differences. The B850 exciton splitting decreases from
1517 to 1275 cm−1 (−16%) moving from the static descrip-
tion based on the crystal structure to that based on the MD
simulation, which is consistent with experimental variation
between low- and room-temperature Davydov splittings
(−13%) (Pajusalu et al., 2011). This behavior is also reflected
in the absorption spectrum, where the B850 band blueshifts
when the temperature is increased, whereas the B800 peak
does not shift (Trinkunas et al., 2012). These results suggest
that the B850 blueshift is mainly due to a reduction of the
interpigment couplings. In addition, the site energy difference
between B800 and B850 pigments is also reduced on average
by ∼50 cm−1 in the calculation based on the MD simulation.
The static and the dynamic models also give different

descriptions of the environment effects. Using the crystal
structure, the inclusion of the MMPol environment causes a
redshift of the BChls’ excitations of ∼880 cm−1, with small
differences among the different pigment types (<25 cm−1). A
redshift is also obtained for the structures coming from the
MD trajectory. However, in this case, the shift in the excitation
energies of α and β BChls of the B850 unit is about 830 cm−1,
whereas the shift for B800 is only 610 cm−1. When consid-
ered within the approximation of transition dipole moments,
an interesting environment effect can be observed with respect
to their orientations. In both models, the environment does not
affect the out-of-plane tilt, but it has a non-negligible influence
on the in-plane tilt. The changes are almost the same for α and
β BChls of the B850 unit.
The different features that can be found between the two

static and dynamic models are well reflected in the exciton
delocalization. There are various measures of exciton delo-
calization (Dahlbom et al., 2001; Jang, Dempster, and Silbey,
2001), and a well-known measure is the following inverse
participation ratio (IPR):

LIPR
D ¼

��X
k
ðUjkÞ4

��
−1
; ð35Þ

where Ujk is the unitary transformation as defined before
Eq. (3), j is the index for each exciton state, k is the index for
each site excitation state, and h� � �i represents averaging over
all exciton states with proper thermal weights. By definition,
LIPR
D ranges from 1, for a fully localized state, to the number of

total sites for a completely delocalized state.
Because of the CN symmetry (with N ¼ 8–10) of the LH2

complex, in the absence of disorder, the exciton states are all
doubly degenerate with the exception of the lowest energy
exciton states for both the B850 and B800 units (plus the
highest exciton state for B850 with odd N). In such a perfectly
symmetric arrangement forN ¼ 9, for example, the maximum
delocalization lengths are 18 (9) for the nondegenerate states
of the B850 (B800) unit, and 12 (6) for the doubly degenerate
states. The calculations in the static model indeed give
delocalization lengths which are close to the maximum values,
even in the B800 unit, despite small electronic couplings
between BChls. However, adding disorder in the BChls’ site

energies through the dynamic model results in a localization
of the excitons with a general reduction of LIPR

D . In the B850
unit, the large couplings allow the exciton to remain delo-
calized even in the presence of disorder but with a significant
reduction of LIPR

D to an average value of typically 8� 2. On
the contrary, in the B800 ring the average delocalization
length reduces to ∼1.4.
Although LIPR

D is a well-established measure of delocaliza-
tion, its physical implication in the partially delocalized
regime is not always clear. For this reason, different measures
of delocalization length have been tested, which have different
degrees of sensitivity (Dahlbom et al., 2001; Jang, Dempster,
and Silbey, 2001). For example, a simple alternative measure
can be defined as follows:

LJDS
D ¼

�X
k

minf1; NcU2
jkg

�
: ð36Þ

This measure does not give a weight of more than one for each
site unlike LIPR

D while approaching the same values in both
fully localized and delocalized limits. For the B850 unit (Jang,
Dempster, and Silbey, 2001), this measure was shown to be
more sensitive than LIPR

D to the nature of the disorder and also
results in a larger estimate of the delocalization length.
The computational results obtained for both the single

crystal structure and the MD configuration can also be used to
simulate the CD spectrum of the LH2 complex. The CD
spectrum represents a fingerprint that is unique for each LHC
as it is determined by the nature of the excitons and the
geometrical characteristics of the aggregate of pigments.
Figure 11 compares the two calculated CD spectra with those
measured at low (77 K) and room temperature. In the case of
the dynamic model based on the MD simulation, the spectrum
reported in Fig. 11 is the average of the instantaneous spectra
obtained for each of the 88 configurations.
The experimental CD spectrum is characterized by two

“couplets” corresponding to the excitonic signal due to the
B800 and B850 rings, respectively. Because of the increase of
the temperature (from 77 K to room temperature) both the
broadening and the relative intensities of the couplets change.
In particular, the B800 positive band almost vanishes. The CD
spectrum is sensitive to the inter-ring coupling, and the B850
couplet borrows intensity from the B800 band. The small
B800–B850 mixing happens despite the site energy
differences and the static disorder, and breaks the symmetry
of the B800 and B850 couplets. The only way to reproduce the
asymmetrical B800 couplet is to consider some B800–B850
mixing. Unlike the spectrum obtained from the crystal
structure, here the B800 couplet amplitude is nearly half of
the B850 couplet. This can be explained as an effect due to the
disorder in excitation energy of each BChl, combined with the
small intra–B800 coupling.
The modeling of the CD spectra suggests the static and the

dynamic models can be effectively used to represent the LH2
complex in two different situations, namely, at the zero-
temperature limit and at room temperature. The main features
of the CD spectra and their temperature dependence are in fact
well reproduced. Moreover, this analysis indicates that the
difference in the exciton structure of the LH2 complex at low

Seogjoo J. Jang and Benedetta Mennucci: Delocalized excitons in natural light- …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035003-20



and room temperatures are mainly related to fluctuations in the
relative orientations of the BChls (and of the corresponding
couplings), rather than changes in the ring size as previously
suggested (Pajusalu et al., 2011).
Despite impressive advances as described and recent

demonstrations of the capability of on-the-fly calculations
(Sisto et al., 2017), further improvements in accuracy and
efficiency are still needed. Some of the key issues to be
addressed in this respect include the differences in the
excitation energies of α-, β-, and γ-BChls, solvatochromic
shift due to hydrogen bonding, and contribution of carote-
noids. Although some of the early exciton models based on
the x-ray crystal structure suggested that (Rancova, Sulskus,
and Abramavicius, 2012) α- and β-BChls have about
300 cm−1 difference in their excitation energies, QM/MM
calculations for configurations extracted from MD simulation
showed that the two energies are virtually the same in
actual protein environments (Cupellini et al., 2016). The
combination of MD simulation and DFT calculations also
demonstrated that hydrogen bonding can cause a redshift of
excitation energies by about 500 cm−1 or larger (Jang, Rivera,
and Montemayor, 2015; Montemayor, Rivera, and Jang,
2018). Moreover, accounting for the contribution of the
possible multiconfigurational character of ground and excited
states of the pigments can lead to new insights with respect to
DFT-based investigations as shown by recent ab initio multi-
reference calculations on BChls and carotenoids of the LH2
complex (Anda, Hansen, and Vico, 2016; Segatta et al., 2017).

3. PE545

The effect of the protein (and the surrounding solvent) on
the excitonic properties of PE545 has been investigated
through QM/MMPol calculations for a series of structures
extracted from a classical MD simulation of the LHC in water
at room temperature (Curutchet et al., 2011). The QM/MMPol

results were complemented with those based on a continuum
(PCM) description of the protein and water environment. The
comparison between the two sets of calculations can in fact be
used to show how the heterogeneous properties of the protein
can modify the local screening of the electronic couplings
between the bound pigments. MMPol results were averaged
over 140 configurations of PE545 and water molecules
extracted from the MD simulation, whereas PCM results
were obtained using the cluster of the pigments as found in the
ultrahigh resolution crystal structure of the complex. In all
cases, the first low-lying π − π� excited state of the eight bilins
were computed together with all the corresponding electronic
couplings between them. The full transition densities of the
pigments were used for these calculations employing
Eqs. (28), (31), and (32). A comprehensive set of calculation
results performed at the CIS/6-31G level are available
(Curutchet et al., 2011).
The heterogeneous nature of the protein environment can

significantly modulate the coupling through changes both in
the transition density of each pigment and in the extent of
screening of the corresponding interactions. In the QM/
MMPol approach, these effects are included in the coupling
term by considering both interchromophore distances and
orientations, as well as the heterogeneous polarization of the
protein and solvent environment. For more quantitative
understanding, it is useful to compare the screening factor
(and a related effective permittivity) defined differently for
each pair j and k as follows:

sjk ¼
1

ϵjk
¼ Jcjk þ Jr;MMPol

jk

Jcjk
; ð37Þ

where Jcjk is the Coulomb interaction given by Eq. (28), which
includes the implicit effect of the environment on transition
densities, whereas Jr;MMPol

jk is the explicit MMPol term as
described in Eq. (32).
As illustrated in Fig. 12, PCM values of ϵjk are similar for

all pairs while MMPol values present a significant spread
(from 2.6 to 1.2). On the other hand, PCM and MMPol values
become very similar when averaged over all pairs. The
agreement between averaged results can be explained through
a careful analysis of the components of each model. In the
continuum method, the screening is described in terms of a set
of induced charges spreading on the surfaces of the cavities
embedding the pigments. These charges represent the polari-
zation of the environment induced by the electronic transition
in the donor. These are calculated in terms of the optical
component of the dielectric permittivity used to represent the
mixed protein-water environment (namely, 2.0). In the
MMPol approach, instead, the screening is calculated in
terms of induced dipoles originating from the electronic
transition in the donor. Within this description, the induced
dipoles are determined by the atomic polarizabilities used to
mimic the protein (and the water) atoms. The latter, when used
to simulate the macroscopic polarization of the whole envi-
ronment, gives an effective permittivity of 2.3, which is very
close to that used in the PCM model. The similarity between
the continuum and the atomistic model, however, disappears
when the pigment pairs are analyzed separately. Each of them

FIG. 11. Upper panel: The crystal structure used in the static
model (left) and examples of configurations extracted from MD
used in the dynamic model (right) of the LH2 complex. Lower
panel: (left) measured CD spectra at 77 K (dotted line) and room-
temperature (full line) and (right) calculated TD-DFT/MMPol
spectra using the static model (dotted line) and the dynamic
model (full line).
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in fact is expected to feel a different local environment
determined by the variety of residues, respectively, presenting
a different degree of polarization.
The smallest effective permittivity (1.35) is experienced by

the peripheral DBV19A–DBV19B pair. On the contrary, for the
central PEB50=61C − PEB50=61D pair, the coupling is signifi-
cantly more attenuated by the protein than in other pairs and
the resulting effective permittivity is the highest (2.57). To
understand the origin of these differences, the screening
obtained by the MMPol approach can be dissected into
contributions arising from the different protein residues and
waters. Examination of the central pair shows that all the
polypeptide chains, together with waters, act to reduce the
interaction, resulting in a large screening effect. A completely
different picture appears for the peripheral pair. In this case, it
seems that the protein is organized in such a way as to enhance
the electronic coupling while the further effect of the sur-
rounding water adds a strong screening contribution.

D. Bath spectral density

As represented by Eq. (23), the contribution to the bath
modes for a molecule embedded in a flexible environment can
be classified into two different sources, one from the internal
vibrations of the molecule and the other from the motions of
the molecule within the environment. Conventionally, it is
assumed that the internal vibrations constitute only high-
frequency underdamped modes, which are reflected in sharp
peaks of the spectral density. The low-frequency intermo-
lecular modes are often viewed as being induced entirely by
the surrounding environment, resulting in a continuous con-
tribution to the spectral density. However, for the case of
pigment molecules in LHCs, intramolecular vibrations are
also shown to make significant contributions to the low-
frequency modes.
Accurate determination of spectral densities J jkðωÞ of

Eq. (22) is a difficult task in general, let alone confirming the
validity of the form of the ĤLHC as assumed in Eq. (21). For
the case where there is only one pigment molecule, the

corresponding spectral density can be determined experimen-
tally using either spectral hole burning (SHB) or fluorescence
line narrowing (FLN). The former removes inhomogeneity by
burning a specific zero-phonon transition and the latter by
obtaining the fluorescence line shape following excitation at
the red edge of the ensemble absorption line shape. Model
spectral densities fitted to these experimental ones have been
used for the construction of EBHs.
A popular example of the model bath spectral density is the

following Ohmic spectral density with a Drude cutoff:

J DrudeðωÞ ¼ 2λ
ω=ωc

1þ ðω=ωcÞ2
: ð38Þ

For this spectral density, the well-known choice of parameters
for the FMO complex is λ ¼ 35 and ℏωc ¼ 106 cm−1.
Although not as widely used as in the case of the FMO
complex, this spectral density was also used for the LH2
complex (Meier, Chernyak, and Mukamel, 1997a; Zhang
et al., 1998; Chen et al., 2009) with λ ¼ 240 cm−1 and ℏωc ¼
40.8 cm−1 based on the fitting (Meier, Chernyak, and
Mukamel, 1997a) of photon-echo data (Jimenez et al.,
1997). Another well-known form is the Ohmic or super-
Ohmic spectral density with exponential cutoff. A combina-
tion of these forms was constructed for the B850 unit of the
LH2 complex based on the fitting of fluorescence-line
narrowing data as follows:

J JNSðωÞ ¼ πℏ

�
γ1ωe−ω=ωc;1 þ γ2

ω2

ωc;2
e−ω=ωc;2

þγ3
ω3

ω2
c;3

e−ω=ωc;3

�
; ð39Þ

with γ1 ¼ 0.22, γ2 ¼ 0.78, γ3 ¼ 0.31, ℏωc;1 ¼ 170, ℏωc;2 ¼
34 , and ℏωc;3 ¼ 69 cm−1. The spectral density (or the simpler
version with only the Ohmic term) was used for the modeling
of low-temperature SMS line shapes (Jang and Silbey, 2003a;
Jang et al., 2011; Kumar and Jang, 2013) and calculation of
exciton transfer rates (Jang, Newton, and Silbey, 2004, 2007;
Jang et al., 2014).
Recently, a more refined experimental technique called the

Δ-FLN, which combines the merits of SHB and FNL, was
developed (Timpmann, Rätsep et al., 2004; Rätsep and
Freiberg, 2007) and applied to various LHCs (Rätsep et al.,
2008; Pieper et al., 2011; Kell et al., 2013). In particular, a
recent analysis (Kell et al., 2013) suggested that the low-
frequency region of the model Ohmic spectral density is not
consistent with the experimental line shape, proposing a new
form with log-normal distribution in the low-frequency limit.
While this exposes a potential deficiency of conventional
model spectral densities that typically assume algebraic
behavior in the small frequency limit, it is not yet clear
whether such a log-normal distribution is an apparent effect
of the residual degree of inhomogeneity and anharmonic
contribution of the bath. In addition, for general LHCs with
more than one pigment molecule with similar excitation
energies, it is not yet clear how even the Δ-FLN approach

FIG. 12. Effective dielectric constant corresponding to each pair
(ϵik) reported as a function of the interchromophore distance:
circles refer to the average QM/MMPol@MD data and squares to
the QM/PCM calculations on the crystal structure. The dotted line
indicates the average value obtained on all MMPol@MD values.
The two insets indicate the two pairs showing the smallest
(DBV19A − DBV19B) and largest (PEB50=61C − PEB50=61D) ϵik
values.
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can accurately determine site-specific spectral densities rep-
resented by Eq. (22).
Computational determination of the spectral densities are

feasible, but are also beset with a few theoretical and practical
issues. A well-known approach is to use a mixed quantum-
classical approach assuming that the bath is classical and to
calculate the following bath energy-gap correlation function
through classical MD simulation (Zwier, Shorb, and Krueger,
2007; Olbrich et al., 2011b; Shim et al., 2012; Aghtar et al.,
2013; Viani et al., 2014; Chandrasekaran et al., 2015):

CclE;jkðtÞ ¼ hΔEjðtÞΔEkð0Þicl; ð40Þ

where ΔEjðtÞ is the difference of the bath energy for jsji,
which is created at time t ¼ 0, and that for the ground
electronic state. Assuming that this is related to the real part
of the quantum correlation function of B̂jk defined in Eq. (20),
one can calculate the spectral density using the following
relation (Olbrich et al., 2011b):

J jkðωÞ ¼
2

ℏ
tanh

�
βℏω
2

�Z
∞

0

dtCclE;jkðtÞ cosðωtÞ: ð41Þ

On the other hand, if we rely on the approximation of Eq. (21)
and introduce the mass-weighted normal mode Qn such that

ℏωjgj;nðbn þ b†nÞ ¼
ffiffiffiffiffiffi
2ℏ

p
ω3=2
n gj;nQn, it is straightforward to

show that

CclE;jkðtÞ ¼ 2ℏ
X
n

gj;ngk;nω3
nhQnðtÞQnð0Þicl

¼ 2

πβ

Z
∞

0

dωJ jkðωÞ
cosðωtÞ

ω
: ð42Þ

Then, through cosine transformation,

J jkðωÞ ¼ βω

Z
∞

0

dtCclE;jkðtÞ cosðωtÞ: ð43Þ

While this becomes equivalent to Eq. (41) if the vibrational
quanta of all the bath modes are smaller than the thermal
energy, the discrepancy between the two becomes substantial
for high-frequency vibrational modes. Given that the har-
monic oscillator approximation is more appropriate for high-
frequency modes, which result mostly from intramolecular
vibration, Eq. (43), known as the harmonic approximation, is
considered more reliable than Eq. (41) in general (Valleau,
Eisfeld, and Asupuru-Guzik, 2012; Chandrasekaran, Pothula,
and Kleinekathöfer, 2017). For the bath modes coming from
protein environments, this may not be necessarily true because
of anharmonic and nonlinear effects.
Another important issue is that a long time window is

required in order to achieve a complete sampling for low-
frequency vibrations. For example, a vibration at ∼10 cm−1
has a period of ∼3 ps, requiring a sampling time window of at
least 100 ps. Conversely, to sample intramolecular modes, one
needs a rather short time step, i.e., ≤ 5 fs (Shim et al., 2012;
Valleau, Eisfeld, and Asupuru-Guzik, 2012; Chandrasekaran
et al., 2015). These two opposing factors make the mixed
approach computationally very expensive, requiring tens of

thousands of electronic structure calculations for a single
spectral density.
The most concerning issue of the mixed quantum-classical

approach is the quality of the MD trajectory involved. In fact,
an assumption of the spectral density approach is that the
relevant dynamics come from the evolution of the energy gap
dictated by the ground-state Hamiltonian. However, the
dimensions of the systems under study and the time scales
involved compel the nuclear trajectory to be computed with
a classical force field, i.e., using fitted parameters, whereas
the energy gap is calculated with a quantum-mechanical
Hamiltonian. The Hamiltonian used to propagate the nuclear
positions may be critically different from the one used in the
calculation of the energy gap, leading to an effective excited-
state PES that is completely different from the “real” quantum-
mechanical one. The ground-state PES could differ in equi-
librium position, normal modes, and frequencies. All of these
factors contribute to the shape of the spectral density (Zwier,
Shorb, and Krueger, 2007; Kim, Park, and Rhee, 2015; Lee,
Huo, and Coker, 2016). Indeed, it was observed that
the resulting spectral density is strongly dependent on the
force-field parameters, rather than on the quantum-mechanical
Hamiltonian (Aghtar et al., 2013; Chandrasekaran et al.,
2015; Wang et al., 2015). For this reason, in order to
effectively use the mixed quantum-classical method, one
should carefully assess the quality of the force-field param-
eters by comparing them to the quantum-mechanically calcu-
lated PES and possibly develop ad hoc parameters specifically
designed for subsequent excitation energy calculations
(Prandi et al., 2016).
Another well-established approach to the calculation of

spectral densities is the direct calculation of Huang-Rhys
factors from the gradient of the excited-state PES at the
ground-state equilibrium geometry. The peaks of the spectral
density can be broadened by Gaussian or Lorentzian functions
in order to take into account the finite vibrational lifetime and
the inhomogeneous distribution of vibrational frequencies
(Lee, Huo, and Coker, 2016). Usually, only the discrete part
of the spectral density can be included in such a treatment, but
the effect of the surrounding environment on the normal mode
frequencies and Huang-Rhys factors can be included by using
multiscale approaches (Lee, Huo, and Coker, 2016).
At the ground-state equilibrium, the gradient of the excited-

state PES is equal to the gradient of the energy gap U. In this
position, the excited-state gradient is often called the vertical
gradient (VG). For multiple modes, the energy gap can be
expressed, in mass-weighted coordinates, as follows:

ΔEjðQÞ ¼ Ej − Eg −
X
n

�
ω2
ndj;nQn þ

1

2
ω2
nd2j;n

�
; ð44Þ

where the displacement dj;n of mode n is related to the
derivative fj;n of the excited-state PES by dj;n ¼ −fj;n=ω2

n.
The VG in normal coordinates f̃j can be obtained from the
Cartesian VG fc;j as follows:

f̃j ¼ P†M1=2fc;j; ð45Þ
whereM is a diagonal matrix containing nuclear masses and P
is a rectangular matrix whose columns are the normal modes
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expressed in mass-weighted Cartesian coordinates. Finally,
the Huang-Rhys factor of each mode can be calculated by

Sj;n ¼
λj;n
ℏωn

¼ ωnd2j;n
2ℏ

¼ f2j;n
2ℏω3

n
: ð46Þ

In this explicit approach, the linear dependence of the
energy gap on all normal coordinates can be assessed.
More recently, it was confirmed that the mixed approach of
the MD simulation and direct calculation of Huang-Rhys
factor results in a spectral density in fairly good agreement
with experimental results (Lee and Coker, 2016). Notably, the
Huang-Rhys factors may be explicitly calculated also for
the intermolecular motions. The dimensions of the system,
however, do not allow a quantum-mechanical calculation
of normal modes and vertical gradients, which can instead
be obtained through classical modeling of the PES and the
pigment-protein interactions (Renger et al., 2012). However,
the intermolecular motions may not be well described by
harmonic potentials, and the energy gap could be highly
nonlinear with the intermolecular coordinates.
Recently, an extension of the method was presented by

combining VG with force-field based MD (Lee, Bravaya, and
Coker, 2017): the sampled configurations are used to initiate
QM ground-state optimization of chromophore geometries in
the presence of the instantaneous local fields provided by the
MM partial charges of the surrounding protein environment.
Ground- and excited-state properties are then computed at
these optimized geometries to parametrize an ensemble of
instantaneous local system-bath model Hamiltonians. The
method was successfully applied to two phycobiliprotein
structures, namely, PE545 and PC645 complexes.
Contrary to the discrete part of the spectral density, the

continuous, low-frequency part is much more challenging to
be computed at the QM level, and it may require extensive
calculations along an MD trajectory. Moreover, the intermo-
lecular motions that give rise to the low-frequency part are
strongly dependent on the temperature, as some barriers
become accessible only when enough thermal energy is
present in the system. Therefore, the size and shape of the
continuous spectral density may indeed be dependent on
temperature (Rancova and Abramavicius, 2014).
As an alternative approach, Rhee and co-workers recently

developed (Park and Rhee, 2012; Kim and Rhee, 2016) a new
scheme that combines interpolated DFT-level calculations of
pigment and molecular mechanics calculations of protein
environments. This approach constructs an on-the-fly quan-
tum portion of the potential energy surface through interpo-
lation from a precalculated database, and is efficient while
maintaining reasonable accuracy of the dynamics. As a result,
dynamics lasting up to about 100 ns has been shown to be
possible (Kim, Choi, and Rhee, 2018). Figure 13 compares the
spectral densities calculated in this manner with that based on
the mixed MD and VG calculation method (Lee and Coker,
2016). Although there is a discrepancy between the two
theoretical approaches, which can be related to motional
narrowing effects and different force fields and conditions,
both of these are in reasonable agreement with the exper-
imental results. Although the issues of anharmonic and

nonlinear coupling effects of the bath still need to be examined
more carefully, the level of agreement as can be seen in Fig. 13
provides a strong support for the validity of the conventional
EBH for the FMO complex.

V. EXCITON-RADIATION INTERACTION, LINE-SHAPE
FUNCTIONS, AND RESPONSE FUNCTIONS

The total Hamiltonian for the LHC in the presence of
radiation is the sum of Eq. (20) and the matter-radiation
interaction Hamiltonian ĤintðtÞ and is as follows:

ĤTðtÞ ¼ Egjgihgj þ Ĥex þ ĤintðtÞ; ð47Þ

where Ĥex is the single-exciton-bath Hamiltonian defined by
Eq. (20). In general, double-exciton states should also be
included for a complete description of general four-wave-
mixing spectroscopy. While this is straightforward, we omit
this contribution here for simplicity. We denote the transition
dipole vector for the excitation from jgi to jski as μk. Then the
total electronic polarization operator for the transitions to the
single-exciton space is given by

P̂ ¼
X

k

μkðjskihgj þ jgihskjÞ

¼
X
j

ðDjjφjihgj þ jgihφjjDjÞ; ð48Þ

where Dj ¼
P

kμkU
�
kj.

The theories of absorption and emission line shapes for
Eq. (47) are well established. For example, for the case of
radiation with frequency ω and polarization η, the absorption
line-shape function is given by

IðωÞ ¼ 1

π
Re

Z
∞

0

dteiωt

× heði=ℏÞtEgTrfe−ði=ℏÞtĤex jDihDjρ̂beði=ℏÞtĤbgi; ð49Þ
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FIG. 13. Bath spectral densities for BChl-3 of the FMO
complex. “Exp.” represents the experimental Δ-FNL data of
Rätsep and Freiberg (2007), “Simulation (LC)” the theoretical
spectral density of Lee and Coker (2016), and “Simulation
(KWC)” the theoretical spectral density of Kim, Choi, and Rhee
(2018). The inset shows a close-up of the lower frequency region.
All the data have been provided by Young Min Rhee.
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where jDi ¼ P
jη ·Djjφji and h� � �i represents all averaging

over the disorder within the ensemble of the sample and
polarization direction. For completeness, Appendix C pro-
vides a derivation of Eq. (49) starting from a more general
time-dependent Hamiltonian. Alternatively, one can obtain
Eq. (49) from the time correlation function of the polarization
operator, Eq. (C5). Similarly, the emission line-shape function
is given by

EðωÞ ¼ 1

π
Re

Z
∞

0

dte−iωt

× he−ði=ℏÞtEgTrfe−ði=ℏÞtĤb jDihDjρ̂exeði=ℏÞtĤexgi; ð50Þ

where ρ̂ex ¼ e−βĤex=Trfe−βĤexg. Appendix C provides a
derivation of Eq. (50) as well.
Four-wave-mixing spectroscopies are useful for interrogat-

ing the dynamics of excitons because they offer more selective
information on the exciton space with appropriate choice of
pulse sequences and phase-matching conditions. Theories of
four-wave-mixing and multidimensional electronic spectros-
copy are well established (Mukamel, 1995; Cho, 2008;
Abramavicius et al., 2009). However, in comparison to 2D
vibrational spectroscopy for which accurate computational
modeling of signals have been shown to be feasible for a broad
range of systems, accurate modeling of 2DES remains
challenging for most of systems.
Appendix C provides a general expression for the third-

order polarization, Eq. (C40), the major observable of four-
wave-mixing spectroscopy and detailed expressions for its
components, Eqs. (C43)–(C46). The key quantities containing
the information on the material system are the third-order
response functions defined by Eqs. (C43)–(C46). 2DES is a
collection of resulting third-order polarizations, typically
represented with respect to two frequencies of the Fourier
transform for the initial and final coherence times t2 − t1 and
tm − t3, respectively (see Appendix C for the definition of
these times). In the absence of time-dependent fluctuations
and considering only transitions between the ground elec-
tronic state and single-exciton states, the four response
functions can be expressed as (see Appendix C for the details
of derivation)

χð1Þðtm; t; t0; t00Þ ¼ heði=ℏÞðt0−t00ÞEge−ði=ℏÞðtm−tÞEg

× Trfe−ði=ℏÞðtm−t0ÞĤb jDmihD2je−ði=ℏÞðt0−t00ÞĤex

× ρ̂bjD1ihD3jeði=ℏÞðt−t00ÞĤbeði=ℏÞðtm−tÞĤexgi;
ð51Þ

χð2Þðtm; t; t0; t00Þ ¼ he−ði=ℏÞðtm−tÞEgeði=ℏÞðt0−t00ÞEg

× Trfe−ði=ℏÞðtm−tÞĤb jDmihD3je−ði=ℏÞðt−t00ÞĤex

× ρ̂bjD1ihD2jeði=ℏÞðt0−t00ÞĤbeði=ℏÞðtm−t0ÞĤexgi;
ð52Þ

χð3Þðtm; t; t0; t00Þ ¼ he−ði=ℏÞðtm−tÞEge−ði=ℏÞðt0−t00ÞEg

× Trfe−ði=ℏÞðtm−tÞĤb jDmihD3je−ði=ℏÞðt−t0ÞĤex

× ρ̂bjD2ihD1jeði=ℏÞðt00−t0ÞĤbeði=ℏÞðtm−t00ÞĤexgi;
ð53Þ

χð4Þðtm;t; t0; t00Þ ¼ he−ði=ℏÞðtm−tÞEge−ði=ℏÞðt0−t00ÞEg

×Trfe−ði=ℏÞðtm−t00ÞĤb jDmihD1jρ̂beði=ℏÞðt0−t00ÞĤex

×jD2ihD3jeði=ℏÞðt−t0ÞĤbeði=ℏÞðtm−tÞĤexgi: ð54Þ

Figure 14 provides diagrammatic representations of the
four response functions, which are rephasing and nonrephas-
ing terms of the ground-state bleaching and stimulated
emission terms. Excited-state absorption processes are not
shown because we limited the consideration to only single-
exciton states here.
Despite recent advances, theoretical understanding of 2DES

signals for the exciton states of LHCs remains challenging.
Vibronic couplings of pigment molecules in protein environ-
ments are more pronounced than those of isolated pigment
molecules. Their contribution to spectroscopic signals can be
significant even for BChls that are known to have very small
HR factors. Because of the fact that the exciton Hamiltonian
does not commute with the exciton-bath coupling in general, a
specific exciton state jφji created by an incoming photon
starts decohering and relaxing to other exciton states almost
immediately. These are depicted explicitly in Fig. 14 by
dashed (blue) lines. In addition, the states of the bath can be
complicated in the exciton manifold because of nonadiabatic
effects associated with multiple electronic states. In LHCs, the
rates of these decoherence and relaxation processes, which are
due to vibronic couplings, are comparable to those due to
purely electronic couplings that can happen if a specific site
excitation state jsji can be created. Furthermore, additional
complications can arise due to the fact that excitations created
spectroscopically in LHCs are far from localized site excita-
tion states in general.
Even for a highly tuned excitation wavelength, what is

being created is most likely to be a subensemble of exciton
states mixed together, which are degenerate in energy but have
different extent in linear combinations of exciton states and in
vibronic contributions. Selection of specific polarizations can
reduce the size of the subensemble, but the qualitative nature
of the subensemble is expected to remain the same. As a
result, any attempt to detect the electronic coherence directly
from 2DES in time is expected to be significantly hampered
by the effect of subensemble dephasing.
There are additional complications that can arise in the four-

wave-mixing spectroscopy of excitons in LHCs. For the
simple case with a well-isolated single excited state, dephas-
ing due to the disorder in the excitation energy is canceled in
the rephasing signal when t2 − t1 ¼ tm − t3. However, as
can be seen from Eqs. (51) and (52) [and also Figs. 14(a)
and 14(b)], the rephasing signal contains multiple contribu-
tions involving closely spaced exciton states. Therefore, full
recovery of the phase relation is not possible in this case
because the disorder affects different exciton states within
the subensemble in a different manner. In addition, the
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contributions of vibrational modes in both the ground elec-
tronic state and single-exciton states are non-negligible.
Unlike the electronic coherence, vibrational coherence is less
susceptible to dephasing and can survive longer.
The initial interpretation that 2DES beating signals (Engel

et al., 2007; Collini et al., 2010) might reflect purely
electronic coherence is based on the assumption that vibronic
couplings are negligible. Even if this is the case, such
coherence may not have a significant implication in the
context of exciton dynamics unless it links exciton states that
are spatially well separated. Let alone the question of how

much the 2DES signal reflects the creation and evolution
of excitons under natural irradiation of sunlight, unambiguous
interpretation of beating signals in general requires clear
resolution of the major features of the underlying
Hamiltonian governing the dynamics of excitons and details
of the matter-radiation interaction (Ginsberg, Cheng, and
Fleming, 2009). Unambiguous interpretation of spectroscopic
signals and detailed computational study of the spatiotemporal
evolution of excitons are important in this respect. Significant
advances have been made in dealing with these issues in the
past decade, but much still needs to be accomplished.

VI. THEORETICAL DESCRIPTION OF EXCITON
DYNAMICS AND SPECTROSCOPIC OBSERVABLES

A. Overview of theoretical and computational approaches

Theoretical research on the dynamics of excitons has a long
history dating back to the early days of quantum mechanics. In
particular, for excitons formed in molecular aggregates and
solids, there have been extensive theoretical and computa-
tional efforts to understand exciton migration kinetics and
absorption and emission spectroscopic data (Silbey, 1976;
Agranovich and Galanin, 1982; Agranovich and Hochstrasser,
1982; Kenkre and Reineker, 1982). While these have laid a
fundamental basis for modern research on the dynamics of
molecular excitons, they have relied heavily on phenomeno-
logical treatment of exciton relaxation and dephasing dynam-
ics and have focused mostly on steady-state properties. In
addition, because systems that were studied consisted of either
identical molecules or binary mixtures of host and guest
molecules at most, the underlying exciton Hamiltonians have
had rather simple features.
With the exception of the chlorosome of green sulfur

bacteria, which is a superaggregate of BChls, all LHCs can
be viewed as host-guest systems of 10–100 nm length scale
sizes. Proteins serve as host environments, and pigment
molecules are guest molecules, serving as a site basis for
excitations. The distinctive nature of LHCs compared to
simple molecular host-guest systems is that protein hosts
play an active role in tuning excitation energies and control
spatial arrangement of pigment molecules to a great extent.
Therefore, accurate specification of the exciton Hamiltonian,
exciton-bath coupling, and bath Hamiltonian terms them-
selves are important for reliable characterization of LHCs.
Because the magnitudes of these parameters are in the
intermediate range, well-established theoretical approaches
developed for simple or limiting situations are either inappro-
priate or in need of verification by more advanced approaches.
In this regard, LHCs have motivated new advances in theories
and computational methods.
Theoretical approaches to describe and simulate exciton

dynamics can be classified into three classes, depending on the
level of information and the degree of accuracy sought after.
The minimal approach is to consider the time evolution of
excitation or exciton populations. Broadly, this can be called
the master equation (ME) approach. The next level of
description is to consider the time evolution of a reduced
exciton density operator (RDO) here called the RDO
approach. Finally, the most complete but expensive one is

FIG. 14. Diagrams representing four terms contributing to the
third-order polarization. The first two terms (a) and (b) correspond
to echo signals satisfying the phase-matching condition of km ¼
k3 þ k2 − k1 and are in general called rephasing terms. The last
two terms (c) and (d) satisfy a different phase-matching condition
of km ¼ k3 − k2 − k1 and are in general called nonrephasing
terms. Blue dashed curves represent relaxation and decoherence
caused by the bath that continue propagating across interaction
with a radiation pulse, and Rk with different k represents a
different bath relaxation operator. Bg represents the bath of the
ground electronic state and Be the bath of the manifold of the
single-exciton states. Different bath states created following
interaction with the radiation are expressed as different numbers
of primes in the superscripts.
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to describe the time evolution of the full density operator
(FDO) representing both the exciton and the bath. In practice,
this FDO approach relies on being able to effectively represent
a bath of infinite size in terms of finite ones. Next we provide a
brief overview of the three major approaches, and then explain
how the outcomes of these theoretical calculations enable new
understanding of the nature of excitons in LHCs.

1. Master equation approach and rate description

In the ME approach, the physical observables of interest are
exciton populations, which are sufficient for calculating
exciton mobility and the extent of delocalization. An obvious
choice of the unit of exciton here is each pigment. In principle,
it is possible to formally construct an exact and generalized
ME (Kenkre and Knox, 1974) as follows:

d
dt

pjðtÞ ¼
X
k≠j

fWk→jðtÞpkðtÞ −Wj→kðtÞpjðtÞg; ð55Þ

where pjðtÞ is the exciton population at the jth pigment
molecule and Wj→kðtÞ is the transfer rate of exciton pop-
ulation from the jth to the kth pigment that can be defined to
be formally exact by accounting for all possible pathways.
This approach can serve as a general methodology for all
LHCs if accurate rate expressions are available. However, in
practice, calculating the exact rate kernel entails accounting
for all the many-body quantum interactions and thus remains a
challenging theoretical task.
If the electronic couplings between site excitations of

pigment molecules are small compared to other parameters
and the steady-state limit is assumed, one can approximate
Wj→kðtÞ with the following Förster resonance energy-transfer
(FRET) rate expression (Förster, 1948, 1959):

kFj→k ¼
J2jk
2πℏ2

Z
∞

−∞
dωLjðωÞIkðωÞ; ð56Þ

where we adopted a more general definition of FRET by
assuming that Jjk is not limited to transition dipole inter-
actions. In Eq. (56), LjðωÞ and IkðωÞ are line-shape functions
for the emission of the jth pigment and absorption of the kth
pigment. For example, let us assume that Eq. (20) can be
simplified as

ĤLHC ¼ Egjgihgj þ
XNc

j¼1

Ejjsjihsjj þ
XNc

j¼1

X
k≠j

Jjkjsjihskj

þ
XNc

j¼1

ðB̂jjsjihsjj þ Ĥb;jÞ; ð57Þ

where B̂j and Ĥb;j are the exciton-bath coupling and the bath
Hamiltonian localized to the site exciton state jsji. Then the
line-shape functions introduced in Eq. (56) are defined as

LjðωÞ¼
Z

∞

−∞
dte−iωtþiðEj−EgÞt=ℏ

×
1

Zb;j
0Trb;jfeiðĤb;jþB̂jÞt=ℏe−iĤb;jt=ℏe−βðĤb;jþB̂jÞg; ð58Þ

IkðωÞ ¼
Z

∞

−∞
dteiωt−iðEk−EgÞt=ℏ

×
1

Zb;k
Trb;kfeiĤb;kt=ℏe−iðĤb;kþB̂kÞt=ℏe−βĤb;kg; ð59Þ

where Zb;j
0 ¼ Trb;jfe−βðĤb;jþB̂jÞg and Zb;k ¼ Trb;kfe−βĤb;kg.

The normalized emission line shape [in the unit of
ν̃ ¼ ω=ð2πcÞ] for the jth pigment is expressed as

fjðν̃Þ ¼ τj
25π3nj;rμ2jc

3ℏ
ν̃3Ljð2πcν̃Þ; ð60Þ

where nj;r is the refractive index around the jth chromophore.
The molar extinction coefficient for the kth pigment is related
to the line-shape function by the following relation:

Ikð2πcν̃Þ ¼
3000ðln 10Þnk;rℏ
ð2πÞ2NAμ

2
kν̃

ϵkðν̃Þ; ð61Þ

where nk;r is the refractive index around the kth pigment. Then
Eq. (56) can be expressed as

kFj→k ¼
9000ðln 10Þ
128π5NAτj

nj;r
nk;r

J2jk
μ2jμ

2
k

Z
∞

−∞
dν̃

fjðν̃Þϵkðν̃Þ
ν̃4

: ð62Þ

This expression becomes the well-known Förster’s spectral-
overlap expression (Förster, 1948) in the limit where Jjk is due
to the transition dipole-dipole interaction and the dielectric
constants around the jth and kth chromophores are the same.
More general expressions than Eq. (56), which include

nonequilibrium (Jang, Jung, and Silbey, 2002; Jang and
Cheng, 2013) and inelastic effects (Jang, 2007; Jang and
Cheng, 2013), are also available. However, the FRET rate
expression or its generalizations, which are based on the
second-order approximation with respect to the electronic
coupling between a pair of pigment molecules, are inappro-
priate for many LHCs because not many excitons are localized
at single chromophores.
Alternatively, one can extend the unit of exciton population

as that residing in a group of strongly coupled pigment
molecules. If groups of chromophores can be identified such
that electronic couplings between pigment molecules in
different groups are weak enough, the rates of exciton transfer
between them can be calculated, again employing a second-
order approximation with respect to the intergroup electronic
couplings. This is the idea behind the multichromophoric
FRET (MC-FRET) (Sumi, 1999; Jang, Newton, and Silbey,
2004), which was recently rederived and tested more exten-
sively (Ma and Cao, 2015).
The use of MC-FRET rates as kernels of the ME was

formulated more rigorously by introducing the concept of
modular excitons (Jang et al., 2014). Under the assumption
that all the pigment molecules constituting an LHC can be
divided into disjoint modules and that only the coarse-grained
overall exciton population of each module p̃nðtÞ (modular
exciton density) is of interest, one can consider the following
generalized ME:
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d
dt

p̃nðtÞ ¼
X
m≠n

fW̃m→nðtÞp̃mðtÞ − W̃n→mðtÞp̃nðtÞg: ð63Þ

As in the case of Eq. (55), the exact formal expression for
W̃n→mðtÞ can be easily found (Jang et al., 2014). In practice,
approximations are needed. Under the assumption that the
intermodule electronic couplings are small compared to other
parameters and that the exciton density within each module
reaches the stationary limit quickly, it is possible to show that
(Jang et al., 2014)

W̃n→mðtÞ¼
X
j0j00

X
k0k00

Jj0k0Jj00k00

2πℏ2

Z
∞

−∞
dωLn

j00j0 ðt;ωÞImk0k00 ðωÞ; ð64Þ

where Ln
j00j0 ðt;ωÞ and Imk0k00 ðωÞ are line-shape matrix elements

representing the time-dependent emission of module n and the
absorption of module m. These are, respectively, expressed as

Ln
j00j0 ðt;ωÞ≡2Re

�Z
t

0

dt0e−iωt0−iEgt0=ℏ

×Trbnfhsn;j00 je−iĤb;nt0=ℏρnseiĤnt0=ℏjsn;j0 ig
�
; ð65Þ

Imk0k00 ðωÞ≡
Z

∞

−∞
dteiωtþiEgt=ℏ

× Trbmfhsm;k0 jeiĤb;mt0=ℏe−iĤmt0=ℏρgbmjsm;k00 ig; ð66Þ

where Ĥn (Ĥm) and Ĥb;n (Ĥb;m) are, respectively, the EBH in
the single-exciton space and the bath Hamiltonian of the nth
(mth) module. In the limit of t → ∞, Eq. (64) approaches the
MC-FRET rate (Jang, Newton, and Silbey, 2004; Jang
et al., 2014).

2. Reduced density operator approach

For pigment molecules with moderate or strong electronic
couplings, the description of the dynamics at the level of a
RDO in the exciton manifold serves as a better platform than
restricting the focus to the exciton population only. Let us
denote the RDO at time as σ̂ðtÞ. Then the quantum master
equation (QME) governing the time evolution equation of σ̂ðtÞ
can in general be expressed as

d
dt

σ̂ðtÞ ¼ −
i
ℏ
½Ĥe; σ̂ðtÞ� − R̂½t; σ̂� þ Î ½t�; ð67Þ

where the first term represents the dynamics due to the exciton
Hamiltonian, R̂½t; σ̂� accounts for the relaxation and dephas-
ing due to environments, and Î ½t� is the inhomogeneous term
that reflects the effect of the initial condition.
There is a large body of literature available on the derivation

of formally exact QME and approximations. For example,
for the case of the interaction picture RDO defined as
σ̂IðtÞ ¼ Trbfρ̂IðtÞg, where ρ̂IðtÞ is the total density operator
in the interaction picture, the following formally exact QME is
well known:

d
dt
σ̂IðtÞ¼−iTrb

	
L̂eb;IðtÞexpðþÞ

�
−i

Z
t

0

dτQL̂eb;IðτÞ
�
Qρ̂Ið0Þ




−
Z

t

0

dτTrb

	
L̂eb;IðtÞexpðþÞ

�
−i

Z
t

τ
dτ0QL̂eb;Iðτ0Þ

�

×QL̂eb;IðτÞρb


σ̂IðτÞ: ð68Þ

In Eq. (68), L̂eb;Ið·Þ ¼ ½Ĥeb;IðtÞ; ð·Þ�=ℏ, Qð·Þ ¼ 1 − Trbfð·Þg.
Equation (68), although exact, is not useful in practice

because expðþÞ½−i
R
t
τ dτ

0QL̂eb;Iðτ0Þ� cannot be determined
without full information on the system and bath degrees of
freedom. For practical calculations, approximations are made
in general, although recent theoretical advances (Shi and
Geva, 2004; Zhang, Ka, and E. Geva, 2006; Cohen, Wilner,
and Rabani, 2013; Kelly et al., 2016) suggest that exact
numerical evaluation of this term is feasible.
One of the simplest and most popular approximations is the

second-order approximation with respect to L̂eb;IðtÞ, which
results in

d
dt

σ̂IðtÞ ¼ −iTrbfL̂sb;IðtÞρ̂Ið0Þg

−
Z

t

0

dτTrbfL̂sb;IðtÞL̂sb;IðτÞQρ̂Ið0Þg

−
Z

t

0

dτTrbfLsb;IðtÞLsb;IðτÞρbgσIðt�Þ; ð69Þ

where t� can be either τ or t. In the former case, Eq. (69)
becomes time nonlocal (TN). In the latter case, it becomes
time local (TL). Which choice works better depends on the
nature of the system-bath couplings and the bath dynamics,
but most numerical examples so far suggest that the TL
equation performs better than the TN equation, at least at room
temperature where the bath dynamics become most likely
Gaussian (Palenberg et al., 2001; Chen et al., 2009). Analyses
of the fourth-order QME (Jang, Cao, and Silbey, 2002) and
steady-state limits (Fleming and Cummings, 2011) suggest
that this is because the second-order TL equation can account
for some of the effects of the fourth-order terms of the TN
equations.
In Eq. (69), the superoperator involving the second-

order correlations of LsbðtÞ, which appears commonly in
both inhomogeneous and homogeneous terms, can be
expressed as

Z
t

0

dτTrbfL̂sb;IðtÞL̂sb;IðτÞρbgð·Þ

¼
X
j

X
k

Z
t

0

dτCjkðt − τÞ½ŝjðtÞ; ŝkðτÞð·Þ� þ H:c:; ð70Þ

where H.c. denotes Hermitian conjugates of all the previous
terms ŝjðtÞ ¼ eiHet=ℏjsjihsjje−iHet=ℏ, and CjkðtÞ is the bath
correlation function for sites j and k defined as

Seogjoo J. Jang and Benedetta Mennucci: Delocalized excitons in natural light- …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035003-28



CjkðtÞ¼
X
n

ω2
ngj;ngk;n

×Trbfðbne−iωntþb†neiωntÞðbnþb†nÞρbg

¼ 1

πℏ

Z
∞

0

dωJ jkðωÞ
�
coth

�
βℏω
2

�
cosðωtÞ− isinðωtÞ

�
;

ð71Þ

where J jkðωÞ is the bath spectral densities defined by
Eq. (22). The second-order QMEs in various forms and
approximations have served as major theoretical tools for
describing exciton dynamics and calculating spectroscopic
data in early pioneering quantum dynamical studies on LHCs
and still remain as key theoretical methods offering qualitative
and/or semiquantitative information.
As is well known, the second-order approximation with

respect to the system-bath interaction causes the QME to be
nonpositive definite, without the rotating wave approximation
(Pechukas, 1994; Kohen, Marston, and Tannor, 1997) and to
be unreliable as the system-bath interaction becomes larger.
An alternative approach addressing this issue but still based on
the assumption of weak system-bath coupling is the Lindblad
equation (Lindblad, 1976). Having been constructed axio-
matically, the Lindblad equation guarantees complete pos-
itivity and thus can be used to model the effects of
environments on any quantum system. For this reason, it
has been used extensively in the quantum information
community and was brought to the study of the FMO complex
following the 2DES spectroscopy (Engel et al., 2007).
However, due to the assumption of a Markovian bath intrinsic
in the theory and the phenomenological nature of relaxation
and dephasing superoperators used, it has primarily served as
a useful analysis tool rather than a quantitative modeling
method. Of course, it is possible to obtain some microscopic
expressions for the terms of Lindblad equation, for example,
from the second-order QME. However, this involves addi-
tional approximations of which the physical implications are
not always clear.
Considering the typically moderate nature of system-bath

interactions found in most LHCs, it is not likely that the errors
caused by QMEs based on perturbative approximations are
substantial. However, in general, assessment of the accuracy
of the second-order QMEs is possible only when bench-
marked against more accurate approaches. For this reason,
different approaches employing higher-order approximations
or nonperturbative methods have been applied to LHCs.
Among various higher-order methods developed for dec-

ades, the hierarchical equations of motion (HEOM) approach
(Tanimura and Mukamel, 1993; Tanimura, 2006, 2015) has
gained popularity recently and its results are considered as
benchmark data by many researchers. The HEOM approach
was originally formulated and developed within the path
integral influence functional formalism for open system
quantum dynamics, and is based on the idea that higher-order
terms of the system-bath interactions can be accounted for by
introducing a hierarchy of coupled auxiliary operators, an
assumption valid as long as the bath correlation functions have
exponential functional form. With further advances in prac-
tical schemes (Tanimura, 2006; Ishizaki and Fleming, 2009b;

Zheng et al., 2012; Schröter et al., 2015) to bring closure to
the hierarchy and computational power, application of the
HEOM approach to LHCs became feasible recently.
There are also other approaches that have been developed

more recently and can account for higher-order system-bath
interactions in a different manner. These include the polaron-
transformed QME approach (Nazir, 2009; Jang, 2011;
McCutcheon and Nazir, 2011; Jang, Berkelbach, and
Reichman, 2013), the generalized QME approach (Shi and
Geva, 2004; Zhang, Ka, and Geva, 2006; Cohen, Wilner, and
Rabani, 2013; Kelly et al., 2016), and the transfer tensor
approach (Kananeka et al., 2016; Rosenbach et al., 2016).
Well-known variations of QME approaches with modified
definitions of system (Iles-Smith, Lambert, and Nazir, 2014;
Iles-Smith et al., 2016) or system-bath couplings (Hwang-Fu,
Chen, and Cheng, 2015; Novoderezhkin and van Grondelle,
2017) have also been demonstrated to be accurate enough with
appropriate corrections.
While QME approaches are in general appropriate for

describing the effects of the quantum-mechanical bath, they
tend to neglect the effects of classical and stochastic fluctua-
tions, which cannot be captured well in the form of the
Hamiltonian but may still be substantial in actual environ-
ments. For example, for LHCs embedded in a membrane,
there can be various noises being propagated from distant
sources but having effects on the dynamics around pigment
molecules. In addition, some of the anharmonic and nonlinear
effects of the bath, which are neglected in constructing the
model Hamiltonian with a harmonic oscillator bath, may still
affect the dynamics by appearing in the form of uncontrollable
noises due to the chaotic and irregular nature of the trajectories
they incur in general multidimensional space. The effects of
these noises can be significant at ambient conditions and may
have to be included along with the quantum bath. While the
contributions of these noises to the exciton dynamics can be
treated at a simple phenomenological level such as the Haken-
Strobl equation (Haken and Strobl, 1973), a more satisfactory
QME level description incorporating them into a consistent
quantum description of the bath is not available to the best of
our knowledge. Functional integration (Ritschel et al., 2011)
and Heisenberg picture time evolution (Ghosh, Yu, and Nori,
2009) approaches, which invoke somewhat different approx-
imations but are general otherwise, may be better suited to
this end.

3. Full density operator approaches

The QME and the HEOM approaches, despite having been
successful, are limited mostly to the harmonic oscillator
bath model. Little is understood regarding the effects of the
anharmonic contribution of the bath Hamiltonian on the nature
and dynamics of excitons in LHCs. For a satisfactory account
of these effects, it is often necessary to consider the dynamics of
the FDO representing the system and the bath. In addition, even
for the bath of harmonic oscillators, an accurate calculation of
higher-order response functions in general requires time
evolution of FDO unless new kinds of coupled QMEs are
developed. Well-known FDO approaches are semiclassical
dynamicsmethods (Miller, 2001;Huo andCoker, 2010; Cotton
and Miller, 2016) and mixed quantum-classical approaches
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(Tully, 2012; Zheng et al., 2017) such as surface hopping and
mean-field approximations. While these offer a more realistic
treatment of the bath degrees of freedom and their interactions
with excitons, they entail different levels of approximations in
the quantum dynamics. In addition, the bath has to be finite for
practical calculations. Given that these approximations and
issues are well addressed, the results of these FDO approaches
can offer important information for LHCs that are not acces-
sible through QME and HEOM approaches.

4. Computational methods for line-shape and response functions

All the QME approaches can be used to calculate the
absorption and emission line shapes, employing the product of
the transition dipole and the density operator in either the
ground or excited state as an initial condition. Alternatively, a
specific QME method can be modified to derive an appro-
priate line-shape theory using the coherent term of the density
operator as the initial condition and applying mixed time
evolutions, one on the ground electronic state and the other
on the manifold of excited electronic states, respectively,
to the two different sides of the density operator. One
popular approach for calculating the line shape is the so-
called modified Redfield equation (Zhang et al., 1998;
Kleinekathöfer and Schreiber, 2006), which includes the
diagonal components of the exciton-bath coupling as part
of the effective system Hamiltonian and treats the off-diagonal
components in a perturbative manner. Most recently, this
approach was extended further to account for the finite
relaxation time of nuclei (Dinh and Renger, 2016). The
modified Redfield equation can also be extended for the
simulation of exciton dynamics (Yang and Fleming, 2002;
Hwang-Fu, Chen, and Cheng, 2015; Novoderezhkin and van
Grondelle, 2017), although care should be taken in identifying
the unit of population in this case.
An important issue is that response functions of four-wave-

mixing spectroscopy cannot be calculated exactly even at a
formal level using a conventional QME approach without
modification. The diagrams in Fig. 14 clarify the reason for
this. Each interaction with a pulse corresponds to the creation
of a nonequilibrium state, which also depends on previous
time evolution of both the excitons and the bath that are again
dependent on the nature of previous pulses. For this reason,
the relaxation and dephasing terms due to the bath are
expected to be functionals of a whole sequence of pulses,
which are in general different from those of the equilibrium
bath. Therefore an FDO approach is necessary in general
(McRobbie and Geva, 2009). A perturbative approach
addressing this issue has also been formulated (Jang, 2012).

B. Applications

1. The FMO complex

Early theoretical works on the FMO complex employed the
second-order ME and QME approaches. Application of the
Redfield equation (Redfield, 1957), the second-order TL-
QME in the Markovian bath limit, with the secular approxi-
mation (Renger andMay, 1998), showed that the approach can
reproduce the major features of temperature dependence in the
absorption line shape and the time dependence of pump-probe

spectroscopic data. They also provided an estimate for the
relaxation of a higher exciton state (fourth state) to be about
2 ps. This approach was later combined with an optimal
control theory (Brüggemann and May, 2004) to explore the
possibility of controlling the exciton dynamics in the FMO
complex through pulse shaping. On the other hand, the ME
approach in the exciton basis was employed (Vulto et al.,
1999) to describe time-resolved absorption difference spectra
and the exciton population dynamics. They have also iden-
tified various relaxation time scales of exciton dynamics
ranging from sub-100 fs up to about 2.3 ps. The phenom-
enological assumption used in this model Hamiltonian was
later justified microscopically (Adolphs et al., 2008).
The suggestion of quantum information processing (Engel

et al., 2007) motivated new theoretical works (Mohseni et al.,
2008; Plenio and Huelga, 2008; Caruso et al., 2009, 2010;
Palmieri, Abramavicius, and Mukamel, 2009; Rebentrost,
Mohseni, and Aspuru-Guzik, 2009; Rebentrost et al., 2009;
Chin et al., 2010; Sarovar et al., 2010; Skochdopole and
Mazziotti, 2011; Pelzer et al., 2012) aimed at understanding
the role of entanglement, quantum coherence, and noise.
Earlier versions of these (Mohseni et al., 2008; Plenio and
Huelga, 2008; Caruso et al., 2009; Rebentrost et al., 2009)
employed the Lindblad equation (Lindblad, 1976) or its
stochastic implementation, which are based on the assumption
of a weak system-bath coupling and a Markovian bath. Later
works improved these by including the effects of a non-
Markovian bath (Rebentrost, Chakraborty, and Aspuru-Guzik,
2009; Caruso et al., 2010; Chin et al., 2010), correlated bath
fluctuations (Rebentrost, Mohseni, and Aspuru-Guzik, 2009),
and full consideration of system-bath coupling at the level of
HEOM (Sarovar et al., 2010). According to these studies, the
effect of entanglement, which is limited to mode entangle-
ment, is not significant for single excitons in the FMO
complex. On the other hand, dephasing and noise were
identified as significant factors for the overall efficiency of
energy transport, as espoused by new terms such as environ-
ment-assisted quantum transport (Rebentrost et al., 2009;
Lambert et al., 2013) and dephasing-assisted transport (Chin
et al., 2010). Studies based on the Haken-Strobl equation
(Hoyer, Sarovar, and Whaley, 2010; Vlaming and Silbey,
2012) have also offered new insight into the potential
complications and effects of noise. It was also suggested that
the redundancy (Skochdopole and Mazziotti, 2011) of energy
transfer pathways plays an important role.
Because of the intermediate nature of the exciton-bath

coupling in the FMO complex, the Lindblad equation and the
second-order ME/QME approaches were not perceived as
quantitatively reliable. HEOM calculations were performed to
investigate the population dynamics (Ishizaki and Fleming,
2009a), which served as the first set of key benchmark data in
this respect. This work showed that coherent population
dynamics persists up to several hundred femtoseconds even
at room temperature. Calculations (Chin et al., 2013) based on
the density matrix renormalization group technique (Prior
et al., 2010) also support this result and suggest the con-
tribution of significant nonequilibrium effects. Later, other
approaches have been employed to calculate the excitation
dynamics. For example, non-Markovian quantum-state dif-
fusion (Ritschel et al., 2011), the mixed quantum-classical
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Poisson-bracket-mapping-equation approach (Kelly and
Rhee, 2011), and quasiclassical dynamics (Cotton and
Miller, 2016) have been shown to produce results in reason-
able agreement with the HEOM approach. These approaches
are applicable to more general exciton-bath couplings and
bath Hamiltonians and can be used to understand the
anharmonic effects of the bath modes and nonlinear exci-
ton-bath couplings.
Theoretical observation of coherent real-time dynamics for

the FMO complex was an important step for elucidating the
quantumdynamical details of exciton dynamics. However, such
oscillatory population dynamics were mostly between proxi-
mateBChlswith significant electronic couplings and did not yet
imply a long-range “wavelike”motion of excitons. On the other
hand, for the overall description of exciton dynamics and
calculation of ensemble-averaged spectroscopic observables,
simpler perturbative ME and QME approaches seemed to offer
reasonable answers (Moix et al., 2011; Schmidt amBusch et al.,
2011; Wu et al., 2012). Most recently, a full HEOM calculation
for trimers (Wilkins and Dattani, 2015) demonstrated that the
time scale of exciton transport is similar to that based on a simple
ME approach using the FRET rate as its kernel. This result
suggests that the interpretation based on earlier theoretical
studies based on approximate theories is valid in general.
There has been further progress in theoretical modeling of

spectroscopic data. While theoretical calculation of linear
spectroscopic data was well established and could be used
for the refinement of model parameters (Adolphs and Renger,
2006; Jansen and Knoester, 2009; Schmidt am Busch et al.,
2011), accurate modeling and unambiguous interpretation of
2DES signals has remained challenging. One of the earliest
simulations of 2DES was based on the equation of motion
approach, while assuming a simple Redfield tensor and secular
approximation for the bath relaxation (Sharp, Egorova, and
Domcke, 2010). This suggested that it is difficult to explain the
off-diagonal beating signal observed from 2DES (Engel et al.,
2007). A different theoretical modeling based on the secular
Redfield equation led to a similar conclusion,while allowing the
possibility of a contribution of a correlated bath (Abramavicius
and Mukamel, 2011). Another theoretical modeling based on
the Redfield equation and including the vibronic states explic-
itly suggested that the beating signal may have originated from
vibrational motion (Christensson et al., 2012). HEOM calcu-
lations of absorption spectra (Hein et al., 2012) and 2DES echo
spectra (Hein et al., 2012; Kreisbeck and Kramer, 2012) on the
other hand provided support for a coherence signal of electronic
nature lasting up to about 500 fs, but in the absence of static
disorder and other sources of fluctuations. Although based on a
rather simple model Hamiltonian, careful analysis (Tiwari,
Peters, and Jonas, 2013) demonstrated that electronic coherence
can easily dephase when the effect of reasonable magnitude of
disorder is taken into consideration, whereas beating that
originates from vibrational motion can last much longer. The
contribution of vibronic terms can be another possibility
(Plenio, Almeida, and Huelga, 2013; Mourokh and Nori,
2015). As yet, because of the sensitivity of 2DES signals to
various factors and the lack of fully reliable model and quantum
dynamics methods, a definite assessment of the implications of
2DES signals remains open.

From the functionality point of view, to what extent the
quantum effects contribute to the overall efficiency of the
exciton migration remains a central question even to date
(Wu et al., 2012). Accurate determination of the spectral
density of the bath has a significant implication in answering
this question. High-frequency modes of the spectral density
in general do not affect the mechanistic details of exciton
dynamics (Abramavicius and Abramavicius, 2014). However,
low-frequency modes with energies comparable to the exciton
bandwidth and their coupling strengths can be detrimental to
the exciton dynamics mechanism and the interpretation of
2DES spectroscopic data. There have been various efforts to
address these issues through all-atomistic simulations
(Olbrich et al., 2011a; Shim et al., 2012) and direct calculation
of Huang-Rhys factors (Adolphs and Renger, 2006). The
contributions of correlated fluctuations (Olbrich et al., 2011a)
and non-Gaussian bath fluctuations (Jansen and Knoester,
2009) were also suggested as potentially significant factors
that can complicate the exciton dynamics. As yet, depending
on the approximations and assumptions involved, the assess-
ment of the bath spectral density can be different. It was once
suggested that the exciton-bath coupling might be too strong
to allow any coherent dynamics unless the dynamics starts
from a coherent initial state (Mühlbacher and Kleinekathöfer,
2012). However, more recent calculations based on different
methods indicate weaker bath spectral densities that are more
in tune with older models. Ultimately, on-the-fly ab initio
nonadiabatic dynamics but with sufficient accuracy may be
necessary to settle this issue. New development in first
principles linear scaling ab initio calculation can be a
promising avenue to explore in achieving this goal (Cole
et al., 2013).

2. The LH2 complex

Soon after the structural information of the LH2 complex
became available, advanced quantum dynamical theories,
for example, addressing the exciton coherence length
(Leegwater, 1996; Meier et al., 1997), superradiance
(Meier et al., 1997), and four-wave-mixing spectroscopy
signals (Meier, Chernyak, and Mukamel, 1997b; Zhang et al.,
1998) have been developed. Although based on exciton-bath
Hamiltonians of appropriate features but yet with quite
simplified forms, these works have not produced quantitative
modeling of linear spectroscopic data. Instead, earlier
attempts to fit experimental line shapes used simple exciton
Hamiltonians with disorder terms (Hu et al., 1997), while
dressing each exciton peak with phenomenologically chosen
line-shape functions (Alden et al., 1997; Wu and Small, 1998;
Georgakopoulou et al., 2002). These produced reasonable
fitting of linear ensemble line shapes, which indicates that the
inhomogeneous broadening due to disorder is large enough to
screen the line broadening due to the exciton-bath coupling.
As yet, the disorder is still in the moderate regime that makes it
difficult to tell what types of disorder, diagonal or off diagonal
in the site excitation basis, are dominant (Jang, Dempster,
and Silbey, 2001). In addition, detailed information on the
disorder was shown to be important for proper interpretation
of nonlinear spectroscopic data (Yang, Agarwal, and
Fleming, 2001).
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The SMS data (van Oijen et al., 1999) for the LH2 complex
offered the first direct evidence for the delocalized nature of
excitons in its B850 unit and new opportunities and challenges
for theoretical and computational modeling. On the one hand,
large gaps between two major excitonic peaks of the B850
unit were inexplicable based on existing exciton models. This
initially led to the suggestion of elliptic distortion of the LH2
complex (van Oijen et al., 1999; Mostovoy and Knoester,
2000; Dempster, Jang, and Silbey, 2001). Later, it was
explained by models with modulation in site energies
(Ketelaars et al., 2001; Hofmann, Aartsma, and Köhler,
2004) and correlated disorder (Jang et al., 2011). Another
important theoretical issue was elucidating details of SMS line
shapes. The first step to understand the physical implication of
such line shapes is to calculate the effects of exciton-bath
coupling at each single LH2 complex level. To this end, an
exciton-bath model (Jang and Silbey, 2003a) incorporating the
bath spectral density (Renger and Marcus, 2002) extracted
from spectroscopic data was developed. Line shapes were then
calculated by using the second-order TN-QME approximation
(Jang and Silbey, 2003a, 2003b). The features of the theo-
retical line shapes (Jang and Silbey, 2003a) were in qualitative
agreement with experimental ones (van Oijen et al., 1999).
However, the widths of the former were much narrower than
the latter. This was attributed to fluctuations during the long
SMS measurement time scales, which are possible even in the
very low-temperature limit because of numerous excitation
and deexcitation processes needed to collect the photons.
Another source for the discrepancy is the approximate nature
of the second-order TN-QME. Indeed, later calculations of
absorption line shapes by alternative or higher-order methods
(Kleinekathöfer and Schreiber, 2006; Chen et al., 2009), while
based on somewhat different bath spectral densities and
calculated at higher temperatures, showed that the second-
order TN-QME approach underestimates the broadening due
to exciton-phonon couplings. Application of these approaches
with improved spectral densities may allow better explanation
of SMS line shapes.
In parallel, there have been advances in the modeling of

2DES spectroscopy data of the LH2 complex, for example,
providing intriguing insights into anharmonic effects of the
bath (Rancova and Abramavicius, 2014). More recently, all-
atomistic modeling has offered detailed information on
physical implications of 2DES signals (van der Vegte et al.,
2015; Segatta et al., 2017). The dark states of carotenoids of
the LH2 complex, which had long been speculated to be
present, were investigated recently based on quantum chemi-
cal calculations and simulation of 2DES spectroscopic data
(Feng et al., 2017; Segatta et al., 2017). However, the results
obtained so far are not yet sufficient to lead to a general
consensus. Thus, further investigations are needed.
In a given LH2 complex, the exciton dynamics within

B800, between B800 and B850, and within B850 all have
different characteristics. It is generally accepted that the
dynamics within B800 can be well described by a hopping
model of excitons localized at each BChl. The exciton transfer
from B800 to B850 can also be described by hopping
dynamics, but the coherent delocalization of the exciton in
the B850 unit has to be taken into consideration. Two early
theoretical studies (Mukai, Abe, and Sumi, 1999; Scholes and

Fleming, 2000) accounted for this by employing approximate
versions of the MC-FRET theory (Sumi, 1999; Jang, Newton,
and Silbey, 2004), which included only the contribution of
population terms in the exciton basis and used phenomeno-
logical line-shape functions. Later works (Jang, Newton, and
Silbey, 2004, 2007) employing a more satisfactory exciton-
bath Hamiltonian (Jang and Silbey, 2003a) and full MC effect
within the second-order TN-QME approach (Jang and Silbey,
2003a, 2003b) confirmed that neglecting coherence terms in
the exciton basis of the MC-FRET theory does not have
significant effect on the distribution of transfer rates. In
addition, these works (Jang, Newton, and Silbey, 2004,
2007) provided more solid evidence that the theoretical results
based on the exciton-bath model (Jang and Silbey, 2003a) and
the MC-FRET theory (Sumi, 1999; Jang, Newton, and Silbey,
2004) are indeed consistent with experimental results
(Jimenez et al., 1996; Pullerits et al., 1997).
The exciton dynamics within the B850 unit requires a full

quantum dynamical approach. Although hopping dynamics
(Abramavicius, Valkunas, and van Grondelle, 2004) and the
Haken-Strobl approach (Liuolia, Valkunas, and van
Grondelle, 1997) provided some insight, an accurate theo-
retical description has remained challenging. Recent applica-
tions of the HEOM approach (Chen et al., 2009; Strümpfer
and Schulten, 2009, 2012; Yeh, Zhu, and Kais, 2012) are
important advances in this respect and confirm fast
decoherence and relaxation of excitons in the range of
100–200 fs time scales as seen experimentally (Book et al.,
2000; Agarwal et al., 2002). However, these calculations are
still based on rather simplified spectral densities. In addition,
these have made no or limited consideration of the effects of
the disorder. On the other hand, it was demonstrated that the
ensemble dephasing due to disorder, while using relatively
simple dynamics theory, is sufficient to explain fast anisotropy
decay in the LH2 complex (Stross et al., 2016). Thus, to
clarify which of the two factors determines major time-
resolved experimental data on the B850 unit, large-scale
HEOM calculations sampled over sufficient number of real-
izations of the disorder is necessary. Some advances have
already been made in this direction for the calculation of
absorption and emission line shapes (Jing et al., 2013).
The dynamics of excitons between LH2 complexes and

aggregates of LH2 complexes have important implications for
the overall energy collection efficiency and have been the
subject of various computational studies (Ritz, Park, and
Schulten, 2001; Strümpfer and Schulten, 2009, 2012;
Caycedo-Soler et al., 2010; Xiong, Xiong, and Zhao, 2012;
Yang et al., 2012; Jang et al., 2014; Jang, Rivera, and
Montemayor, 2015). The earliest in this endeavor was the
kinetic Monte Carlo simulation of exciton dynamics in simple
aggregates of the LH2, LH3, and LH1 complexes (Ritz, Park,
and Schulten, 2001). In this work, a fixed value of the LH2-
complex–LH2-complex exciton transfer time of 10 ps was
used, which was calculated based on an approximate version of
the MC-FRET theory (Sumi, 1999; Jang, Newton, and Silbey,
2004) for a single LH2-complex–LH2-complex distance (Ritz,
Park, and Schulten, 2001). This transfer time was also adopted
in a later simulation of exciton dynamics in the entire photo-
synthetic unit of purple bacteria (Caycedo-Soler et al., 2010).
While the value has been validated to be in reasonable
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agreement with an accurate calculation based on the HEOM
approach (Strümpfer and Schulten, 2009), it is not yet repre-
sentative of all the inter-LH2-complex exciton transfer dynam-
ics that are plausible. An HEOM calculation demonstrated
significant potential effect of the correlation of the bath
(Strümpfer and Schulten, 2012). Application of the GME-
MED approach (Jang et al., 2014; Jang, Rivera, and
Montemayor, 2015) showed that the rate can change signifi-
cantly depending on the realization of the disorder and the inter-
LH2-complex distances that are consistent with AFM images.
Figure 15 shows the distribution of rates at 300 K between two
LH2 complexes separated by a center-to-center distance of
7.5 nm. In this result, the distribution of rates is purely due to the
Gaussian disorder in the excitation energy of each BChl with a
standard deviation of 200 cm−1. Consideration of the distri-
bution of inter-LH2-complex distances will result in a wider
distribution of rates (Jang, Rivera, and Montemayor, 2015).

3. PBPs

A modified Redfield equation was employed
(Novoderezhkin et al., 2010) to model linear spectroscopic
data, excitation anisotropy measurements, and transient
absorption spectra, and then to deduce excitation energy
transfer kinetics based on these modelings. Following the
observation of the beating signal from the 2DES result (Collini
et al., 2010), an FDO quantum dynamics method called the
iterative density matrix propagation approach was used for the
simulation of the exciton population dynamics (Huo and
Coker, 2011). The results of this work supported the obser-
vation from the 2DES (Collini et al., 2010) that the electronic
coherence between central dimers lasts up to about 400 fs, but
also showed that such coherence does not have a significant
effect on the exciton population dynamics of peripheral
pigment molecules. On the other hand, it was also suggested
that quantum vibrational modes have a significant effect on
the exciton transfer (O’Reilly and Olya-Castro, 2014).
QM/MM approaches (Curutchet et al., 2013; Aghtar et al.,

2014, 2017; Lee, Bravaya, and Coker, 2017) were used to

model spectroscopic data and to simulate the exciton transfer
dynamics. The earliest effort was focused on investigating
the nature of the bath spectral density, and employed a
quantum-classical dynamics simulation by conducting
wave-packet dynamics on fluctuating potential energy surfa-
ces (Curutchet et al., 2013). It was also confirmed that a
significant portion of the bath spectral density results from the
intramolecular vibrations (Aghtar et al., 2014). The popula-
tion dynamics were also shown to be nonoscillatory, even
much less than that of the FMO complex.
The methodology of QM/MM simulation has progressed to

the level of constructing comprehensive EBH models for
PBPs of both PE545 and PC645 with reasonable accuracy
(Lee, Bravaya, and Coker, 2017). These models were then
combined with line-shape theories employing the second-
order TL-QME approach so as to model the absorption and
CD spectra (Lee, Bravaya, and Coker, 2017), demonstrating
satisfactory agreement between theory and experiment.
Analyses based on these calculations confirmed the significant
effects of vibronic couplings, and also suggested the potential
importance of correlated fluctuations of the site excitation
energies. A different QM/MM study, also including the effects
of the polarizable medium, showed that fluctuations in
couplings and site energies do not have significant effects
on the overall exciton dynamics (Aghtar et al., 2017).
Theoretical analysis of a recent 2DES spectroscopy for
PC645 (Dean et al., 2016) also suggests that vibronic
redistribution enhances the exciton transfer rate by about a
factor of 3.5.

VII. DISCUSSION

LHCs have characteristics and challenges that are distinc-
tively different from any other biological complexes in
relation to their specific function. While the importance of
structural information for LHCs is inarguable, it is necessary
to recognize that the functionality of an LHC is determined by
how and where excitons are formed and how fast and
efficiently the excitons move from one region to another,
while conserving their energies as much as possible even in
the presence of disorder and fluctuations. Elucidating these
details requires reliable information on the energetics and the
dynamics of excitons in the excited potential energy surfaces.
In addition to structural data, a comprehensive collection of
spectroscopic and computational data is needed even for
establishing a Hamiltonian that can represent the behavior
of excitons with reasonable accuracy. Calculation and simu-
lation of the quantum dynamical evolution of excitons in these
systems are equally challenging due to their complexity and
sizes. Furthermore, the disorder and environmental fluctua-
tions are important factors to consider because they can have
significant effects on how excitons are formed and evolve in
time. They also make significant contributions to spectro-
scopic observables.
Ideally, a spectroscopic measurement with both nanoscale

spatial resolution and femtosecond time resolution or an on-
the-fly ab initio quantum dynamical simulation with sufficient
accuracy (with errors less than 100 cm−1 in energy) and
efficiency (to run up to tens of picoseconds and to be repeated
over many realizations of disorder) is needed to probe excitons
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FIG. 15. Distribution of LH2-complex–LH2-complex rates (left
panel) and average population decay (right panel) of excitons on
the initial LH2 complex. More details can be found in Jang,
Rivera, and Montemayor (2015).
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in LHCs directly. However, in the absence of feasible
spectroscopic and computational tools meeting these needs
at present, the best strategy is to develop a well-designed
theory-experiment collaboration focused on addressing
prominent issues and testing important assumptions.
Advances made for the FMO complex, the LH2 complex,
and the PBPs of cryptophyte algae as reviewed here provide
lessons and future guidelines that can be applied to other
LHCs with more complexity and larger scales.
The results of various investigations on these three LHCs

serve as concrete examples for addressing many important
issues concerning the excitons in LHCs. Among them, we
discuss here three topics that are in fact intimately connected
and have generated heated discussion and investigation in the
past decade, namely, optimality (Jang, Newton, and Silbey,
2007; Cao and Silbey, 2009; Jang and Cheng, 2013; Mohseni
et al., 2014; Jang, Rivera, and Montemayor, 2015), quantum
coherence (Olaya-Castro, Nazir, and Fleming, 2012; Kassal,
Yuen-Zhou, and Rahimi-Keshari, 2013), and robustness (Wu
et al., 2012; Chen et al., 2013; Cleary et al., 2013; Huh et al.,
2014; Mohseni et al., 2014).
In a sense, the fact that delocalized Frenkel excitons can be

identified and used to understand spectroscopic data is good
evidence that the electronic quantum coherence, defined here
simply as having the quality of coherent superposition of site
excitation states, plays a significant role in the functionality of
LHCs. However, this does not necessarily mean that a specific
phase relationship defining a certain exciton state should be
preserved, or changed coherently, during a time interval
comparable to that of exciton migration. Rather, the behavior
of electronic quantum coherence can be dynamic or inhomo-
geneous (Ishizaki and Fleming, 2011). These two features
make it extremely difficult to directly detect quantum coher-
ences that are active in real time through a spectroscopic
measurement. On the other hand, such features may in fact
play a crucial role in positive and cost-effective utilization of
quantum coherence for robust and optimal exciton dynamics.
In other words, the vast parameter space of quantum super-
position makes it possible for excitons to migrate through
different regions while conserving energy. In such dynamics,
quantum coherence offers (i) redundancy to seek for alter-
natives when one path is blocked and (ii) a buffering
mechanism to help counteract the negative effects of disorder
and fluctuations. Thus, genuine understanding of efficient and
robust exciton migration in LHCs seems to require quantita-
tive elucidation of such redundancy and buffering mecha-
nisms, which in turn require a holistic approach that considers
structure, energetics, dynamics, disorder, and fluctuations all
together.
The fact that the rate-based ME approach provides a good

description of exciton transfer dynamics in some LHCs (or
some of their parts) does not necessarily mean that quantum
coherence does not play a role as has been often assumed. On
the contrary, the rate behavior can be a manifestation of the
cumulation or averaging of all possible effects of quantum
coherences. In other words, the extent to which certain
signatures of quantum coherences become explicit can be
different depending on the starting point or level of averaging.
However, even when an apparent signature cannot be
observed, underneath the apparent classical-like

phenomenology, quantum dynamical processes taking advan-
tage of the coherently delocalized excitons can play impor-
tant roles.
There are two issues that have significant implications but

were not addressed carefully in this work. One is the
consideration of multiple exciton states and the other is the
dynamics of excitons under natural light conditions. For a
complete description of four-wave-mixing spectroscopy and
2DES, in particular, it is necessary to include the double-
exciton space in order to account for excited-state absorption.
Three kinds of double excitons can be created in general:
(i) double excitation of a pigment molecule, (ii) double
exciton in the same LHC, and (iii) single excitons in almost
two independent LHCs within the ensemble of spectroscopic
measurements. Except for the trivial case of (iii), calculating
energies and couplings that are relevant to (i) and (ii) are
challenging and can make the determination of the
Hamiltonian much more complicated. Nonetheless, investi-
gation of the characteristics of the double excitons and their
dynamics have been shown to be useful even for under-
standing the behavior of single excitons (Brüggemann et al.,
2001; Trinkunas et al., 2001).
Another important issue is the understanding of the nature

and the dynamics of excitons under natural incoherent light
sources from the sun and also how and whether lessons
learned from femtosecond laser spectroscopy can be used to
understand this issue (Brumer and Shapiro, 2012; Chenu,
Mal’y, and Mancal, 2014; Chenu, Branczyk, and Scholes,
2015). To this end, formulations involving excitations by
steady incoherent light sources have been developed (Grinev
and Brumer, 2015; Chenu and Brumer, 2016). Understanding
this issue involves describing photons and their quantum-
mechanical interactions with nanoscale objects and can best
be studied through quantum optics experiments of clean and
more well-controlled nanoscale experimental objects.

VIII. CONCLUSION AND OUTLOOK

Experimental and theoretical evidence accumulated so far
supports the fact that the majority of excitons residing in
pigment molecules of LHCs can be well described by the
Frenkel exciton theory. This is in contrast to the excitons
found in most man-made solar energy conversion systems. For
example, excitons created in the first generation semiconduc-
tor-based materials are dominantly Wannier excitons. Even
for organic photovoltaic devices consisting of conjugated
organic molecules, excitons tend to have intermediate char-
acter and cannot be represented by simple Frenkel exciton
Hamiltonians. Why nature takes special advantage of Frenkel
excitons, which have been difficult to utilize in man-made
systems so far, is an interesting issue to investigate. A possible
explanation based on current experimental and theoretical
evidence is that it is related to the properties of proteins as
insulating media and to their superb capability to fine-tune
excitation energies and spatial arrangement of pigment mol-
ecules. In other words, despite the short coherence length and
fragility of Frenkel excitons compared to Wannier excitons,
the versatility of proteins as hosting environments allows one
to connect excitons in energetically and dynamically favorable
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ways, thereby making it possible to create efficient and robust
exciton-relaying mechanisms.
The three LHCs reviewed here exemplify different ways

proteins can tune the properties of Frenkel excitons. For the
case of the FMO complex, the main mechanism appears to be
the downhill structure of site excitation energies through
subtle interaction of BChl-protein interactions, whereas
weaker electronic couplings and exciton-bath couplings, also
realized through protein’s capability to control arrangements
of BChls, play supporting roles. For the case of the LH2
complex, a circular arrangement of tens of BChls with nearest
electronic couplings on the order of 200–300 cm−1 in the
B850 unit, maintained through stable coordination and hydro-
gen bonds to protein residues, seems to be the key feature.
Because the excitation-bath couplings are of moderate mag-
nitudes (on the order of 100 cm−1), the discrete Frenkel
exciton states spanning the band of about 1000 cm−1 are
dynamically well connected yet without losing their identity.
Because of alternating in-plane directions of transition dipoles
of α- and β-BChls, the lowest exciton state remains almost a
dark state, preventing radiative loss through superradiance.
For the case of PBPs, the downhill structure of excitation
energies by using different pigment molecules and large
enough excitation-bath coupling (Killoran, Huelga, and
Plenio, 2015; Dean et al., 2016) realized through covalent
bonds provides efficient pathways for the migration of Frenkel
excitons.
Another important point to consider and, potentially, a good

lesson for developing a new generation of photovoltaic
systems comes from the observation of how LH and CS
domains are put together in natural photosynthetic systems. In
all the cases known so far, the two domains are always
separate, and the back exciton transfer pathway from the CS
domain to the LH domain is blocked as much as possible
through ingenious mechanisms. There is also a “moderating”
mechanism of exciton transfer from LH to the reaction center
so as to prevent too fast exciton transfer dynamics that can
damage the CS capability. For purple bacteria, the moderating
function is performed by the size of the LH1 complex; for
green sulfur bacteria, the FMO complex serves such a role by
acting as a moderating “valve” of excitons between the
chlorosome and reaction centers.
In summary, LHCs are valuable natural systems that offer

great insight into the quantum dynamics of coherently
delocalized excitons in disordered and insulating host media.
Experimental and theoretical studies of LHCs involve chal-
lenging issues of large-scale excited-state quantum dynamics
in condensed and complex environments and provide strong
motivation and resources for further advances in these areas of
research. Clear molecular-level assessment of the natural
design principles of LHCs should be based on outcomes of
these studies, which in turn can guide the development of
genuinely biomimetic solar-light-harvesting systems.
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APPENDIX A: FROM MOLECULAR HAMILTONIAN TO
EXCITON-BATH HAMILTONIAN

For the jth pigment molecule, jΨji is defined as the full and
general molecular quantum state. We also abbreviate the
collective position state of all the nuclear coordinates of the
jth chromophore asRcj and define the corresponding position
state as follows:

jRcji≡ jRj;1i � � � jRj;Lj
i; ðA1Þ

where the right-hand side represents a direct product of states
representing Lj (three-dimensional) nuclear coordinates con-
stituting the jth pigment, as has been indicated in the main
text. Then

hRcj jĤjjΨji ¼ ½Tj;nð∇cjÞ þ Vj;nnðRcjÞ
þ Ĥj;eðRcjÞ�hRcj jΨji; ðA2Þ

where

Tj;nð∇cjÞ ¼ −
XLj

l¼1

ℏ2

2Mj;l
∇2

j;l; ðA3Þ

Vj;nnðRcjÞ ¼
1

2

XLj

l¼1

XLj

l0≠l

Zj;lZj;l0e2

jRj;l −Rj;l0 j
; ðA4Þ

Ĥj;eðRcjÞ ¼ T̂j;e þ V̂j;enðRcjÞ þ V̂j;ee: ðA5Þ

In Eq. (A5), the definitions of T̂j;e and V̂j;ee can be found from
Eq. (11). In addition, V̂j;enðRcjÞ is a quantum operator with
respect to the electronic degree of freedom, while depending
parametrically on nuclear coordinates as follows:

V̂j;enðRcjÞ ¼ −
XLj

l¼1

XNj

i¼1

Zj;le2

jRj;l − r̂j;ij
: ðA6Þ

1. Adiabatic approximation for each chromophore

We denote the αth adiabatic electronic state of the jth
chromophore atRcj with eigenvalue Ej;αðRcjÞ as jEj;αðRcjÞi.
Thus,

Ĥj;eðRcjÞjEj;αðRcjÞi ¼ Ej;αðRcjÞjEj;αðRcjÞi: ðA7Þ
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Given that electrons are in one of the adiabatic electronic
states jEj;αðRcjÞi for nuclei at Rcj ,

hRcj jΨji ¼ Φj;αðRcjÞjEj;αðRcjÞi; ðA8Þ

where Φj;αðRcjÞ is the nuclear wave function for the αth
adiabatic state of the jth pigment. Alternatively, one can
introduce a nuclear state jΦj;αi such that

Φj;αðRcjÞ ¼ hRcj jΦj;αi: ðA9Þ

Inserting Eqs. (A8) and (A9) into the right-hand side of
Eq. (A2), we obtain

½Tj;nð∇cjÞ þ Vj;nnðRcjÞ þ Ĥj;eðRcjÞ�Φj;αðRcjÞjEj;αðRcjÞi
¼ jEj;αðRcjÞi½Tj;nð∇cjÞ þ Uj;αðRcjÞ�Φj;αðRcjÞ

−
XLj

l¼1

ℏ2

Mj;l
½∇j;lΦj;αðRcjÞ� · ½∇j;ljEj;αðRcjÞi�

−
XLj

l¼1

ℏ2

2Mj;l
Φj;αðRcjÞ∇2

j;ljEj;αðRcjÞi; ðA10Þ

where Uj;αðRcjÞ is the effective nuclear potential energy for
the αth adiabatic state of the jth pigment. It is the sum of the
nuclear potential energy and the electronic energy as follows:

Uj;αðRcjÞ ¼ Vj;nnðRcjÞ þ Ej;αðRcjÞ: ðA11Þ

Within the Born-Oppenheimer approximation, the deriva-
tives of jEj;αðRcjÞi with respect to Rcj can be neglected. In
addition, assuming that the adiabatic electronic state is
insensitive to the small displacements of the nuclear coor-
dinate around a reference nuclear coordinate R0

cj , we can
approximate that

jEj;αðRcjÞi ≈ jEj;αðR0
cjÞi≡ jEj;αi; ðA12Þ

where we assumed that R0
cj can be defined commonly for all

adiabatic states, namely, independent of α, for the jth pigment.
Taking the inner product of hEj;αj with Eq. (A2), employing

Eqs. (A8) and (A10), and applying the Born-Oppenheimer
approximation, we obtain

hEj;αjhRcj jĤjjΨji ¼ ½Tj;nð∇cjÞ þ Uj;αðRcjÞ�Φj;αðRcjÞ
¼ hRcj j½T̂j;n þ Uj;αðR̂cjÞ�jΦj;αi: ðA13Þ

Equation (A13) holds for any value of Rcj [within the
approximation of Eq. (A12)], and thus leads to the following
identity:

hEj;αjĤjjΨji ¼ ½T̂j;n þ Uj;αðR̂cjÞ�jΦj;αi: ðA14Þ

Applying the same procedure as described above for all
other adiabatic electronic states and considering a linear
combination of them, we can express the general molecular
quantum state of the jth chromophore as follows:

jΨji ¼
X
α

Cj;αjΦj;αijEj;αi; ðA15Þ

where Cj;α are complex coefficients satisfying the normali-
zation condition

P
αjCj;αj2 ¼ 1. Applying Ĥj to Eq. (A15)

and invoking the Born-Oppenheimer approximation for each
adiabatic electronic state, we obtain

ĤjjΨji ¼
X
α

Cj;αðT̂j;n þ Uj;αðR̂cjÞÞjΦj;αijEj;αi: ðA16Þ

Equation (A16) is equivalent to the following representation
of the Hamiltonian of the jth pigment molecule:

Ĥj ¼
X
α

½T̂j;n þ Uj;αðR̂cjÞ�jEj;αihEj;αj: ðA17Þ

The set of jEj;αi forms a complete basis and constitutes the site
basis of the Frenkel exciton states.
In the direct product space of the electronic states con-

stituting the jth and kth pigment molecules, the identity
resolution for the electronic degrees of freedom can be
expressed as

1̂jk;e ¼
X
α

X
α0

jEj;αihEj;αj ⊗ jEk;α0 ihEk;α0 j

¼
X
α

X
α0

jEj;αijEk;α0 ihEj;αjhEk;α0 j: ðA18Þ

Each term constituting Ĥjk of Eq. (12) can be projected into
this basis of electronic states. The first term representing
nuclear-nuclear repulsion V̂jk;nn remains the same and diago-
nal in the electronic basis. The second term representing the
attraction between electrons in the jth pigment and nuclei in
the kth pigment can be expressed as

V̂jk;ne ¼
X
α

X
α0;α00

Vα0α00
jk;neðR̂cjÞjEj;αijEk;α0 ihEj;αjhEk;α00 j; ðA19Þ

where

Vα0α00
jk;neðR̂cjÞ ¼ −

XLj

l¼1

XNk

i¼1

hEk;α0 j
Zj;le2

jR̂j;l − r̂k;ij
jEk;α00 i: ðA20Þ

Similarly, the third term representing the attraction between
electrons of the jth pigment and the nuclei of the kth pigment
can be expressed as

V̂jk;en ¼
X
α;α0

X
α00

Vαα0
jk;enðR̂ckÞjEj;αijEk;α00 ihEj;α0 jhEk;α00 j; ðA21Þ

where

Vαα0
jk;enðR̂ckÞ ¼ −

XLk

l¼1

XNj

i¼1

hEj;αj
Zk;le2

jR̂k;l − r̂j;ij
jEj;α0 i: ðA22Þ

Finally, the fourth term representing repulsion between
electrons of the jth and kth pigment can be expressed as
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V̂jk;ee ¼
X
α;α0

X
α00;α000

Vαα0;α00α000
jk;ee jEj;αijEk;α00 ihEj;α0 jhEk;α000 j; ðA23Þ

where

Vαα0;α00α000
jk;ee ¼

XNj

i¼1

XNk

i0¼1

hEj;αj
�
Ek;α00

���� e2

jr̂j;i − r̂k;i0 j
����Ej;α0

�
jEk;α000 i:

ðA24Þ

We here define the following electron density matrix
function:

ρα
00α0

j ðrj;1Þ ¼ Nj

Z �YNj

i¼2

drj;i

�
hEj;α0 jrcjihrcj jEj;α00 i; ðA25Þ

where rcj refers to the collection of all the electron coordinates
of the jth pigment. For α0 ¼ α00, this corresponds to the single
electron density at rj;1. On the other hand, for α0 ≠ α00, it
becomes the transition density. All the interaction terms
between different pigment molecules can then be expressed
in terms of the above electron density matrix. First, Eq. (A20)
can be shown to be

Vα0α00
jk;neðR̂cjÞ¼−

Z
drck

XLj

l¼1

XNk

i¼1

hEk;α0 jrcki
*
rck

���� Zj;le2

jR̂j;l− r̂k;ij

����Ek;α00

+

¼−
XLj

l¼1

Z
drρα

00α0
k ðrÞ Zj;le2

jR̂j;l−rj: ðA26Þ

Similarly,

Vαα0
jk;enðR̂ckÞ¼−

Z
drcj

XLk

l¼1

XNj

i¼1

hEj;αjrcji
�
rcj

���� Zk;le2

jR̂k;l− r̂j;ij

����Ej;α0

�

¼−
XLk

l¼1

Z
drρα

0α
j ðrÞ Zk;le2

jR̂k;l−rj: ðA27Þ

Finally, it is easy to show that

Vαα0;α00α000
jk;ee ¼

Z
drdr0ρα0αj ðrÞρα000α00k ðr0Þ e2

jr − r0j : ðA28Þ

This corresponds to the Coulomb interaction term between
the α → α0 electronic transition of the jth pigment and the
α00 → α000 electronic transition of the kth pigment.

2. Hamiltonian in the site excitation basis

The site basis for the electronic states of the aggregates of
pigments can be constructed by taking the direct product of all
the adiabatic electronic states. For simplicity, we assume that
the index α can be represented by non-negative integers and
there is no degeneracy in the ground and the first excited
adiabatic electronic states of each pigment. Thus, α ¼ 0
represents the ground electronic state and α ¼ 1 the first
excited state of each pigment. First, the ground electronic state
of the aggregates can be expressed as

jgi ¼
YNc

j¼1

jEj;0i: ðA29Þ

The state where only the jth pigment is excited (site excitation
state) is defined as

jsji ¼
�Y

k≠j
jEk;0i

�
jEj;1i; ðA30Þ

where the product is over all k ¼ 1;…; Nc except for j.
The molecular Hamiltonian for the aggregate of pigments

Ĥc can be expressed in the basis spanned by jgi and jsji as
defined by employing the expressions obtained in the previous
section. First, the diagonal elements of Ĥc in the site excitation
basis are given by

hgjĤcjgi ¼
XNc

j¼1

½T̂j;n þ Uj;0ðR̂cjÞ�

þ 1

2

XNc

j¼1

X
k≠j

½Vjk;nnðR̂cj ; R̂ckÞ þ V00
jk;neðR̂cjÞ

þ V00
jk;enðR̂ckÞ þ V00;00

jk;ee �; ðA31Þ

hsjjĤcjsji ¼ hgjĤcjgi þ Uj;1ðR̂cjÞ −Uj;0ðR̂cjÞ

þ 1

2

XNc

k≠j
½V11

kj;neðR̂cjÞ − V00
kj;neðR̂cjÞ

þ V11
jk;enðR̂cjÞ − V00

jk;enðR̂cjÞ
þ V00;11

kj;ee − V00;00
kj;ee þ V11;00

jk;ee − V00;00
jk;ee �: ðA32Þ

On the other hand, the off-diagonal elements are given by

hsjjĤcjgi¼
1

2

XNc

k≠j
½V10

kj;neðR̂ckÞþV10
jk;enðR̂ckÞ� ¼ Ĵc;0jg ; ðA33Þ

hgjĤcjsji¼
1

2

XNc

k≠j
½V01

kj;neðR̂ckÞþV01
jk;enðR̂ckÞ� ¼ Ĵc;0gj ; ðA34Þ

hsjjĤcjski ¼ V10;01
jk;ee ¼ Jc;0jk ; for j ≠ k: ðA35Þ

In Eqs. (A33) and (A34), the fact that V00;10
kj;ee ¼ V10;00

jk;ee ¼
V00;01
kj;ee ¼ V01;00

jk;ee ¼ 0 has been used, which can be proved from
the fact that the integration of the transition density over the
entire electronic coordinates becomes zero.
Let us define

Ec;0
g ¼

XNc

j¼1

Uj;0ðR̂0
cjÞ

þ 1

2

XNc

j¼1

X
k≠j

½Vjk;nnðR̂0
cj ; R̂

0
ckÞ þ V00

jk;neðR̂0
cjÞ

þ V00
jk;enðR̂0

ckÞ þ V00;00
jk;ee �; ðA36Þ
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Ec;0
j ¼ Ec;0

g þ Uj;1ðR̂0
cjÞ − Uj;0ðR̂0

cjÞ

þ 1

2

XNc

k≠j
½V11

kj;neðR̂0
ckÞ − V00

kj;neðR̂0
ckÞ

þ V11
jk;enðR̂0

ckÞ − V00
jk;enðR̂0

ckÞ
þ V00;11

kj;ee − V00;00
kj;ee þ V11;00

jk;ee − V00;00
jk;ee �: ðA37Þ

Collecting all the terms involving nuclear degrees of freedom,
we can also define

Ĥ0
c;b ¼

XNc

j¼1

½T̂j;n þ Uj;0ðR̂cjÞ − Uj;0ðR̂0
cjÞ�

þ 1

2

XNc

j¼1

X
k≠j

½Vjk;nnðR̂cj ; R̂ckÞ − Vjk;nnðR̂0
cj ; R̂

0
ckÞ

þ V00
jk;neðR̂cjÞ − V00

jk;neðR̂0
cjÞ

þ V00
jk;enðR̂ckÞ − V00

jk;enðR̂0
ckÞ�; ðA38Þ

B̂0
c;j ¼ Uj;1ðR̂cjÞ − Uj;0ðR̂cjÞ −Uj;1ðR̂0

cjÞ þ Uj;0ðR̂0
cjÞ

þ 1

2

XNc

k≠j
½V11

kj;neðR̂ckÞ − V11
kj;neðR̂0

ckÞ

− V00
kj;neðR̂ckÞ þ V00

kj;neðR̂0
ckÞ

þ V11
jk;enðR̂ckÞ − V11

jk;enðR̂0
ckÞ

− V00
jk;enðR̂ckÞ þ V00

jk;enðR̂0
ckÞ�: ðA39Þ

Collecting all these terms, we obtain the exciton-bath
Hamiltonian defined by Eqs. (13). It is important to note
that the ground electronic state and the single-exciton state in
this section have been defined as direct products of those of
independent pigment molecules. In practice, these can be
improved further by defining them as those accounting for the
implicit effect of the other pigment molecules in the ground
electronic states.

APPENDIX B: MODELING OF ENVIRONMENTAL
EFFECTS

In the context of the modeling of electronic processes in
embedded systems, a very effective approach combines a QM
description of the chromophores with a classical description of
the environment. The success of such a hybrid formulation is
mostly related to the accuracy with which the interactions
between the QM and the classical parts are treated. Generally
speaking, we can identify two different classes of classical
formulations, namely, that describing the environment as a
continuum, in terms of its macroscopic properties, and that
keeping an atomistic description through MM force fields.
Both methods allow one to account for the presence of the
environment in the description of a molecular system at an
affordable computational cost, increasing both the possibil-
ities of molecular modeling and the manifold of treatable
systems. In both versions of QM/classical models, an impor-
tant common aspect is that the QM part can be modified in its

electronic and nuclear degrees of freedom by the presence of
the classical part. From a QM point of view, the Hamiltonian
of the whole system can be written as

Ĥ ¼ ĤQM þ Ĥenv þ Ĥint; ðB1Þ

where ĤQM is the Hamiltonian of the gas-phase (isolated)
QM subsystem, Ĥenv is the Hamiltonian of the rest of the
system, which is purely classical, and finally Ĥint represents
the interaction between the QM and the classical parts. In the
QM and classical models the degrees of freedom of the
sole environment are not of great relevance. In continuum
solvation models, the solvent atomistic nature disappears
together with the Ĥenv term. In the case of the QM/MM
approach, Ĥenv is maintained, but such term adds only a
constant term to the total energy.
In continuum models, the QM subsystem is placed in a

suitably shaped molecular cavity C immersed in the dielectric
medium representing the environment. The polarization
response of the medium to the QM charge distribution is
obtained by solving the Poisson equation of classical electro-
statics (Tomasi, Mennucci, and Cammi, 2005). If we assume
that the charge distribution (ρ) of the QM subsystem is entirely
contained inside the cavity and that the dielectric outside the
cavity is characterized by a scalar dielectric constant, we
obtain

−∇2VðrÞ ¼ 4πρðrÞ within the cavity;

− ϵ∇2VðrÞ ¼ 0 outside the cavity:
ðB2Þ

A possible strategy to solve Eq. (B2) is to write the
electrostatic potential V as a sum of the solute potential plus
the contribution due to the reaction of the environment (i.e.,
the polarization of the dielectric). Among the possible
approaches to define the reaction potential, an effective one
is the apparent surface charges (ASC) approach, where an
apparent surface density σðsÞ spread on the cavity surface Γ is
used to represent the reaction (polarization) of the dielectric
(Tomasi, Mennucci, and Cammi, 2005). From a computa-
tional point of view, the solution is achieved by partitioning
the cavity surface into a set of finite elements and substituting
σðsÞ with a set of point charges (qt), each corresponding to a
surface element. There have been different definitions of qt
proposed, leading to different formulations of the so-called
polarizable continuum models (PCMs) (Mennucci, 2012), or
to a conductorlike screening model (Klamt, 2011). Within this
framework, the operator Ĥint in Eq. (B1) represents the
electrostatic interaction between the QM charge density and
the apparent charges on the surface of the cavity:

Ĥint ¼ ĤQM=PCM ¼
X
t

qtV̂QMðrtÞ; ðB3Þ

where qt is the ASC at position rt in the Cartesian coordinate
system, and V̂QMðrtÞ is the electrostatic potential operator due
to the QM charge density calculated at rt. The summation runs
over all the Nt surface elements. Since ĤQM=PCM depends on
the QM charge density which is modified by the environment
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through Ĥint, a nonlinear problem is obtained and its solution
leads to a mutually polarized QM or continuum system.
Continuum models are often the ideal strategy to account

for the bulk effects of the environment. On the other hand, the
use of a structureless medium does not allow one to include
the effects of the heterogeneity as well as specific interactions
between the two parts. In particular, when the heterogeneity of
the environment acts at a small scale as in a protein matrix,
where each position or orientation of the QM subsystem feels
a different local environment or in the presence of specific
interactions such as hydrogen bonds, an atomistic description
is preferred. In these cases, QM/MM models represent an
effective strategy. However, they also suffer from a drawback:
the QM-environment interaction depends critically on the
configuration of the environment, particularly that at short
range. Therefore, to correctly account for the dynamical
nature of the interactions, several configurations of the whole
system need to be taken into consideration. This is not needed
when a continuum approach is employed since it implicitly
gives a configurationally sampled effect due to the use of
macroscopic properties. Indeed, the sampling issue may
introduce an additional difficulty related to the fact that it
often involves classical MD simulation, which can incur errors
resulting from the inaccuracy of the force field used and the
intrinsic approximation of classical MM simulations.
In the most common formulation, the MM part of QM/MM

systems is described through a set of fixed point charges,
generally placed at the atoms of the environment. The QM and
classical interactions are therefore of an electrostatic nature.
The MM charges are chosen to best represent the molecular
electrostatic properties. Eventually, higher multipole moments
can be used to improve the electrostatic description.
The Ĥint term in Eq. (B1) is given by the interaction

between the electronic density of the QM subsystem ρsðrÞ and
the MM charge distribution (ĤQM=MM). Namely,

Ĥint ¼ ĤQM=MM ¼
X
m

qmV̂QMðrmÞ; ðB4Þ

where qm are the fixed partial charges placed at position rm in
the Cartesian coordinate system and V̂QMðrmÞ is the electro-
static potential operator due to the QM charge density
calculated at rm. The summation runs over all the number
of charges. This scheme is also known as “electrostatic
embedding” in the sense that the electronic structure of the
QM part is modified by the presence of the charge distribution
representing the environment and consequentially is polarized
by it. However, the use of fixed point charges to describe the
MM system implies that, while the QM density is polarized by
the MM one, the opposite is not true. This is a serious
limitation as the explicit response arising from the environ-
ment polarization can be crucial, particularly when charged or
very polar systems are studied or when electronic excitation
processes are considered. In order to improve the QM/MM
description, a possible strategy is to use a “flexible” MM
model which can be polarized back by the QM charge
distribution. Three main groups of methods include these
mutual polarization effects (Senn and Thiel, 2009; Mennucci,
2013). In the induced-dipole (ID) approach, atomic

polarizabilities are assigned to atoms that lead to induced
dipoles in the presence of an electric field. The sources of the
electric field are the QM charge distribution, the MM point
charges, and the induced dipoles themselves. A self-consistent
procedure is required to solve the QM/MM problem because
the dipoles interact with each other and act back on the QM
electron density. The parameters to be defined in addition to
the MM charges are the atomic polarizabilities. If Drude
oscillators (DO) are used instead, atoms are represented by a
pair of point charges separated by a variable distance (namely,
a spring). When interacting with an electric field, a dipole is
generated. The parameters are the magnitude of the mobile
charge and the force constant of the spring. Finally, when the
fluctuating charges (FQ) model is used, charges placed on the
atoms are allowed to fluctuate so as to represent the charge
flow within the molecule. Two sets of atomic parameters are
needed (hardness and electronegativities) as the model is
based on the electronegativity equalization principle, which
states that, at equilibrium, the instantaneous electronegativity
of each atom has the same value.
In the ID approach, a set of atomic polarizabilities is assigned

to MM atoms. The polarizability αi is a 3 × 3 tensor. However,
in most formulations of the model, only the isotropic compo-
nent αiso is used. Within this framework, the induced dipole
moment μ at the MM site i can be written as

μi ¼ αisoi

�
Eext
i −

XNp

j≠i
Tijμj

�
; ðB5Þ

whereEext
i is the electric field due to the QM subsystem and the

set of MM atomic charges. The Tij is known as the dipole-
dipole interaction tensor and is defined as

Tij ¼
fe
r3ij

I −
3ft
r5ij

2
664

r2x rxry rxrz

ryrx r2y ryrz

rzrx rzry r2z

3
775; ðB6Þ

where I is the 3 × 3 unit tensor and rx, ry, and rz are Cartesian
components of the vector connecting the two atoms i and j. The
fe and ft factors are distance-dependent screening functions
that depend on the specific dipole interaction models.
In recent years, atomistic (MM) and continuum approaches

have been coupled to give fully polarizable QM/MM and
continuum approaches (Lipparini and Barone, 2011; Steindal
et al., 2011; Boulanger and Thiel, 2012; Caprasecca,
Curutchet, and Mennucci, 2012). In these methods, on top
of the polarizable discrete model, one adds a further external
polarizable continuum layer coupled to the former. In this way
the continuum description of the environment is combined
together with the polarizable QM/MM, thus obtaining a three
level model which allows one to exploit the advantages of
each method. The polarizable MM model is used to describe
short-range directional interactions, whereas the continuum
one accounts for long-range (or bulk) effects.
When hybrid QM and classical models are used to describe

ultrafast processes such as electronic excitations in embedded
chromophores, a new aspect regarding the characteristic
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response time of the environmental degrees of freedom has to
be taken into account. When a vertical excitation occurs, in
fact, the electronic (or dynamic) component of the response,
which is assumed to be sufficiently fast, immediately follows
any change in the chromophore charge distribution. On the
contrary, the slower (or inertial) response that arises from
nuclear and molecular motions remains frozen in its initial
state. The possible delay of the slower component results in a
nonequilibrium regime, which eventually relaxes into a new
equilibrium where all the degrees of freedom of the environ-
ment reach the equilibrium with the excited-state chromo-
phore. Especially for highly polar environments, equilibrium
and nonequilibrium regimes represent very different configu-
rations and their energy difference is generally known as
“reorganization energy.”
The nonequilibrium regime can be properly taken into

account with both the QM/continuum and QM/MM models.
In the first case, if we adopt the ASC framework, the fast (or
dynamic) response will be represented in terms of apparent
charges obtained from the optical component (ϵ∞) of the
dielectric permittivity instead of the static one. By contrast, the
slow response is obtained as the difference of the equilibrium
charges and the dynamic ones. In the QM/MM framework
instead the slow component is automatically taken into
account if the MM charge distribution does not change during
the excitation process (charges are fixed in position and in
value). For what concerns the fast component, this can be
properly taken into account only if a polarizable embedding is
considered.

APPENDIX C: LINE-SHAPE AND RESPONSE
FUNCTIONS

The model considered here is more general than what is
considered in the main text because we assume here that the
EBH can have additional time dependence due to fluctuating
energies and couplings. Thus, the total Hamiltonian including
interaction with the radiation has the following form:

ĤTðtÞ ¼ EgðtÞjgihgj þ ĤexðtÞ þ ĤintðtÞ; ðC1Þ

where ĤintðtÞ is the matter-radiation interaction Hamiltonian
and

ĤexðtÞ ¼ ĤeðtÞ þ
XNc

j¼1

XNc

k¼1

B̂jkjsjihskj þ Ĥb; ðC2Þ

with

ĤeðtÞ ¼
XNc

j¼1

EjðtÞjsji
�
sj

����þXNc

j¼1

X
k≠j

JjkðtÞ
����sj

�
hskj: ðC3Þ

The time dependences in EgðtÞ, EjðtÞ, and JjkðtÞ represent the
influence of all other sources that are not represented by the
bath Hamiltonian. The details of these time-dependent terms
depend on specific experimental conditions under which a
specific spectroscopic measurement is made.

The eigenstates of ĤeðtÞ are denoted as jφjðtÞi, and we
introduce MkjðtÞ ¼ hskjφjðtÞi. Thus,

jski ¼
X
j

M�
kjðtÞjφjðtÞi: ðC4Þ

The transition dipole vector μk for the excitation from jgi to
jski is assumed to be time dependent in general. Then the
polarization operator for the transitions to the single-exciton
space at time t is given by

P̂ðtÞ ¼
X
k

μkðtÞ½jskihgj þ jgihskj�

¼
X
j

½DjðtÞjφjðtÞihgj þ jgihφjðtÞjDjðtÞ�; ðC5Þ

where DjðtÞ ¼
P

kμkðtÞM�
kjðtÞ.

The time evolution operator for the total Hamiltonian
equation (C1) is denoted as

ÛTðt; t0Þ ¼ expðþÞ

	
−
i
ℏ

Z
t

t0

dt0ĤTðt0Þ


; ðC6Þ

where (þ) represents chronological time ordering.
Thus, given that the total density operator at time t0 is

prepared to be ρ̂ðt0Þ, at time t, it evolves into

ρ̂ðtÞ ¼ ÛTðt; t0Þρ̂ðt0ÞÛ†
Tðt; t0Þ: ðC7Þ

For the discussion that follows, it is convenient to introduce
the total Hamiltonian (without matter-radiation interaction) in
the ground electronic state and the manifold of single-exciton
states as follows:

ĤgðtÞ ¼ EgðtÞjgihgj þ Ĥb; ðC8Þ

ĤðtÞ ¼ EgðtÞjgihgj þ ĤexðtÞ: ðC9Þ

We also denote the collection of all the time-dependent
parameters as

ΓðtÞ≡ (EgðtÞ; EjðtÞ’s; JjkðtÞ’s; μkðtÞ’s). ðC10Þ

1. Absorption

For t ≤ t0, the system is in the ground electronic state and
the bath is in thermal equilibrium. Therefore,

ρ̂ðt0Þ ¼ jgihgjρb; ðC11Þ

where ρ̂b ¼ e−βĤb=Trbfe−βĤbg with β ¼ 1=kBT. For a mono-
chromatic radiation with frequency ω and polarization η, the
matter-radiation interaction Hamiltonian (within the semi-
classical approximation for the radiation and the rotating wave
approximation) can be expressed as
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ĤintðtÞ ¼ Ae−iωtjDðtÞihgj þ A�eiωtjgihDðtÞj; ðC12Þ

where A is the amplitude of the radiation including the wave
vector, and

jDðtÞi ¼
X
j

η · DjðtÞjφjðtÞi: ðC13Þ

Expanding Eq. (C7) up to the second order of ĤintðtÞ and
introducing the following identity operator in the single-
exciton space:

Îe ¼
X
j

jsjihsjj; ðC14Þ

the probability to find the population of exciton at time t,
when approximated up to the second order of matter-radiation
interaction, becomes

PeðtÞ ¼
1

ℏ2

Z
t

t0

dt0
Z

t

t0

dt00TrfÎeÛðt; t0ÞĤintðt0Þ

× Ûðt0; t0Þρ̂ðt0ÞÛ†ðt00; t0ÞĤintðt00ÞÛ†ðt; t00Þg

¼ jAj2
ℏ2

Z
t

t0

dt0
Z

t

t0

dt00eiωðt00−t0ÞTrfÛgðt0; t00ÞjgihDðt00Þj

× Ûexðt00; t0ÞjDðt0ÞihgjÛgðt0; t0Þρ̂ðt0Þg; ðC15Þ

where

Ûðt; t0Þ ¼ expðþÞ

	
−
i
ℏ

Z
t

t0

dt0Ĥðt0Þ


; ðC16Þ

Ûgðt; t0Þ ¼ e
−ði=ℏÞ

R
t

t0
dτEgðτÞjgihgje−ði=ℏÞĤbðt−t0Þ; ðC17Þ

Ûexðt; t0Þ ¼ expðþÞ

	
−
i
ℏ

Z
t

t0

dt0Ĥexðt0Þ


: ðC18Þ

Taking the time derivative of Eq. (C15), one obtains

d
dt

PeðtÞ ¼ 2
jAj2
ℏ2

Re
Z

t

t0

dt0eiωðt−t0ÞTrfÛgðt0; tÞ

× jgihDðtÞjÛexðt; t0ÞjDðt0ÞihgjÛgðt0; t0Þρ̂ðt0Þg:
ðC19Þ

Let us introduce the following “ideal” line shape by
dividing the above time derivative with the appropriate
normalization factor:

Iid½ω;ΓðtÞ� ¼
ℏ2

2πjAj2
d
dt

PeðtÞ

¼ 1

π
Re

Z
t

t0

dt0eiωðt−t0Þeði=ℏÞ
R

t

t0 dτ
0Egðτ0Þ

× TrfÛexðt; t0ÞjDðt0ÞihDðtÞjρ̂beði=ℏÞHbðt−t0Þg:
ðC20Þ

In general, the absorption line shape can be defined as

IðωÞ ¼ lim
t→ts

hIid½ω;ΓðtÞ�iΓðtÞ: ðC21Þ

For the simple case where there is no time-dependent
fluctuation of EgðtÞ and parameters constituting ĤexðtÞ,
Eq. (C20) reduces to

IidðωÞ ¼
1

π
Re

Z
t−t0

0

dτeiωτeði=ℏÞτEg

× Trfe−ði=ℏÞτĤex jDihDjρ̂beði=ℏÞτHbg: ðC22Þ

Taking the limit of t − t0 → ∞ and making an average over
the disorder, orientation, and polarization leads to Eq. (49).

2. Emission

Assume that the matter is in single-exciton space and is in
equilibrium at time t0. Then the initial density operator can be
expressed as

ρ̂ðt0Þ ¼
e−βĤexðt0Þ

Trfe−βĤexðt0Þg : ðC23Þ

For the initial density operator, following a procedure similar
to obtaining Eq. (C15), the population of the ground state at
time t, when approximated up to the second order of matter-
radiation interaction, can be shown to be

PgðtÞ ¼
1

ℏ2

Z
t

t0

dt0
Z

t

t0

dt00TrfjgihgjÛðt; t0ÞĤintðt0Þ

× Ûðt0; t0Þρ̂ðt0ÞÛ†ðt00; t0ÞĤintðt00ÞÛ†ðt; t00Þg

¼ jAj2
ℏ2

Z
t

t0

dt0
Z

t

t0

dt00eiωðt0−t00ÞTrfÛexðt0; t00ÞjDðt00Þihgj

× Ûgðt00; t0ÞjgihDðt0ÞjÛexðt0; t0Þρ̂ðt0Þg: ðC24Þ

Then

Eid½ω;ΓðtÞ�

¼ ℏ2

2πjAj2
d
dt
PgðtÞ

¼ 1

π
Re

Z
t

t0

dt0e−iωðt−t0Þe−ði=ℏÞ
R

t

t0 dτ
0Egðτ0Þ

×TrfÛexðt0; tÞe−ði=ℏÞðt−t0ÞĤb jDðtÞihDðt0ÞjÛexðt0; t0Þρ̂ðt0Þg.
ðC25Þ

In general, the emission line shape can be defined as

EðωÞ ¼ lim
t→ts

hEid½ω;ΓðtÞ�iΓðtÞ: ðC26Þ

For the simple case where there is no time-dependent
fluctuation of EgðtÞ and parameters constituting ĤexðtÞ,
Eq. (C25) reduces to
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Eid½ω;ΓðtÞ� ¼
1

π
Re

Z
t−t0

0

dτe−iωτe−ði=ℏÞτEg

× Trfe−ði=ℏÞτĤb jDihDjρ̂exeði=ℏÞτĤexg; ðC27Þ

where ρ̂ex ¼ e−βĤex=Trfe−βĤexg. Taking the limit of t − t0 →
∞ and making an average over the disorder, orientation, and
polarization of the above expression leads to Eq. (50).

3. Four-wave-mixing spectroscopy

For three incoming pulses, the matter-radiation interaction
Hamiltonian is given by

ĤintðtÞ ¼
X3
ν¼1

X
j

Eνðt − tνÞ · DjðtÞjφjðtÞihgjeikν·r−iωνt þ H:c:

¼
X3
ν¼1

Eνðt − tνÞjDνðtÞihgjeikν ·r−iωνt þ H:c: ðC28Þ

In Eq. (C28), Eνðt − tνÞ ¼ Eνðt − tνÞην, with Eνðt − tνÞ and
ην, respectively, defining the amplitude and unit polarization
vector of the νth pulse. It is assumed that t3 ≥ t2 ≥ t1. In the
last line of Eq. (C28), jDνðtÞi is the sum of all the exciton
states weighted by the components of the transition dipoles
along the direction ην and has the following expression:

jDνðtÞi ¼
X
j

ην ·DjðtÞjφjðtÞi: ðC29Þ

In representing the final expressions, it is useful to introduce
the following polarization operators:

P̂gνðtÞ ¼ jgihDνðtÞj; ðC30Þ

P̂νgðtÞ ¼ jDνðtÞihgj ¼ P̂†
gνðtÞ: ðC31Þ

Expanding ÛTðt; t0Þ and Û†
Tðt; t0Þ with respect to ĤintðtÞ

and collecting all the terms of the third order, we find the
following third-order components of the density operator:

ρ̂ð3ÞðtmÞ ¼ ρ̂IðtmÞ þ ρ̂†I ðtmÞ þ ρ̂IIðtmÞ þ ρ̂†IIðtmÞ; ðC32Þ

where

ρ̂IðtmÞ ¼ −
i
ℏ3

Z
tm

0

dt
Z

t

0

dt0
Z

tm

0

dt00Ûðtm; tÞ

× ĤintðtÞÛðt; t0ÞĤintðt0ÞÛðt0; t0Þρ̂ðt0Þ
× Û†ðt00; t0ÞĤintðt00ÞÛ†ðtm; t00Þ; ðC33Þ

ρ̂IIðtmÞ ¼ −
i
ℏ3

Z
tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00Ûðtm; t0Þρ̂ðt0Þ

× Û†ðt00; t0ÞĤintðt00ÞÛ†ðt0; t00ÞĤintðt0Þ
× Û†ðt; t0ÞĤintðtÞÛ†ðtm; tÞ: ðC34Þ

In Eq. (C33), the integration over t00 can be split into three
regions 0 < t00 < t0, t0 < t00 < t, and t < t00 < tm. Relabeling
the dummy time integration variables in each region such that

t ≥ t0 ≥ t00, the three terms can be rewritten so as to have the
same time integration boundaries as ρIIðtmÞ. The resulting
third-order components can therefore be expressed as

ρ̂ð3ÞðtmÞ ¼ −
i
ℏ3

Z
tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00
X4
j¼1

T̂ jðtm; t; t0; t00Þ

þ H:c:; ðC35Þ

where

T̂ 1ðtm; t; t0; t00Þ≡ Ûðtm; t0ÞĤintðt0ÞÛðt0; t00ÞĤintðt00Þ
× Ûðt00; t0Þρ̂ðt0ÞU†ðt; t0ÞĤintðtÞU†ðtm; tÞ;

ðC36Þ

T̂ 2ðtm; t; t0; t00Þ≡ Ûðtm; tÞĤintðtÞÛðt; t00ÞĤintðt00Þ
× Ûðt00; t0Þρ̂ðt0ÞÛ†ðt0; t0ÞĤintðt0ÞÛ†ðtm; t0Þ;

ðC37Þ

T̂ 3ðtm; t; t0; t00Þ≡ Ûðtm; tÞĤintðtÞÛðt; t0ÞĤintðt0Þ
× Ûðt0; t0Þρ̂ðt0ÞÛ†ðt00; t0ÞĤintðt00ÞÛðtm; t00Þ;

ðC38Þ

T̂ 4ðtm; t; t0; t00Þ≡ Ûðtm; t0Þρ̂ðt0ÞÛ†ðt00; t0ÞĤintðt00Þ
× Û†ðt0; t00ÞĤintðt0ÞÛ†ðt; t0ÞĤintðtÞÛ†ðtm; tÞ:

ðC39Þ

The corresponding third-order contribution to the polari-
zation can be calculated by taking the trace of the scalar
product between P̂ðtmÞ, Eq. (C5), and ρ̂ð3ÞðtmÞ, Eq. (C35). The
resulting expression for the third-order polarization at time tm
can be shown to be

P̄ð3ÞðtmÞ≡TrfP̂ðtmÞρ̂ð3ÞðtmÞg¼
2

ℏ3
Im

X4
j¼1

Z
tm

0

dt

×
Z

t

0

dt0
Z

t0

0

dt00TrfP̂ðtmÞT̂ jðtm; t; t0; t00Þg; ðC40Þ

where “Im” implies the imaginary part of the complex
function.
Let us assume that we are interested in the polarization

along the direction of ηm at time tm and also define

jDmðtmÞi ¼
X
j

ηm · DjðtÞjφjðtÞi; ðC41Þ

P̂mgðtmÞ ¼ jDmðtmÞihgj: ðC42Þ

Then taking the scalar product of ηm with the integrand
of Eq. (C40) and considering only those terms where
interactions with E1, E2, and E3 occur in the chronological
order at t00, t0, and t, respectively, we obtain the following
general expressions:
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Z
tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00ηm · TrfP̂T̂ 1ðtm;t; t0; t00Þg

¼ e−iðk3þk2−k1Þ·reiðω3t3þω2t2−ω1t1Þ
Z

tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00χð1Þðtm;t; t0; t00ÞE�
3ðt− t3Þeiω3ðt−t3ÞE�

2ðt0− t2Þeiω2ðt0−t2ÞE1ðt00− t1Þe−iωðt00−t1Þ;

ðC43ÞZ
tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00ηm · TrfP̂T̂ 2ðtm;t; t0; t00Þg

¼ e−iðk3þk2−k1Þ·reiðω3t3þω2t2−ω1t1Þ
Z

tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00χð2Þðtm;t; t0; t00ÞE�
3ðt− t3Þeiω3ðt−t3ÞE�

2ðt0− t2Þeiω2ðt0−t2ÞE1ðt00− t1Þe−iω1ðt00−t1Þ;

ðC44ÞZ
tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00ηm · TrfP̂T̂ 3ðtm;t; t0; t00Þg

¼ e−iðk3−k2þk1Þ·reiðω3t3−ω2t2þω1t1Þ
Z

tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00χð3Þðtm;t; t0; t00ÞE�
3ðt− t3Þeiω3ðt−t3ÞE2ðt0− t2Þe−iω2ðt0−t2ÞE�

1ðt00− t1Þeiω1ðt00−t1Þ;

ðC45ÞZ
tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00ηm ·TrfP̂T̂ 4ðtm;t;t0;t00Þg

¼e−iðk3−k2þk1Þ·reiðω3t3−ω2t2þω1t1Þ
Z

tm

0

dt
Z

t

0

dt0
Z

t0

0

dt00χð4Þðtm;t;t0;t00ÞE�
3ðt− t3Þeiω3ðt−t3ÞE2ðt0− t2Þe−iω2ðt0−t2ÞE�

1ðt00− t1Þeiω1ðt00−t1Þ;

ðC46Þ
where χðkÞ and k ¼ 1–4 are response functions. Under the assumption that excited-state absorption or double-exciton formation
can be neglected, these can be expressed as

χð1Þðtm; t; t0; t00Þ ¼ TrfÛgðtm; t0ÞP̂g2ðt0ÞÛexðt0; t00ÞP̂1gðt00ÞÛgðt00; t0Þρ̂ðt0ÞÛ†
gðt; t0ÞP̂g3ðtÞÛ†

exðtm; tÞP̂mgðtmÞg; ðC47Þ

χð2Þðtm; t; t0; t00Þ ¼ TrfÛgðtm; tÞP̂g3ðtÞÛexðt; t00ÞP̂1gðt00ÞÛgðt00; t0Þρ̂ðt0ÞÛ†
gðt0; t0ÞP̂g2ðt0ÞÛ†

exðtm; t0ÞP̂mgðtmÞg; ðC48Þ

χð3Þðtm; t; t0; t00Þ ¼ TrfÛgðtm; tÞP̂g3ðtÞÛexðt; t0ÞP̂2gðt0ÞÛgðt0; t0Þρ̂ðt0ÞÛ†
gðt00; t0ÞP̂g1ðt00ÞÛ†

exðtm; t00ÞP̂mgðtmÞg; ðC49Þ

χð4Þðtm; t; t0; t00Þ ¼ TrfÛgðtm; t0Þρ̂ðt0ÞÛ†
gðt00; t0ÞP̂g1ðt00ÞÛ†

exðt0; t00ÞP̂2gðt0ÞÛ†
gðt; t0ÞP̂g3ðtÞÛ†

exðtm; tÞP̂mgðtmÞg: ðC50Þ

The general expressions for the response functions given above are equivalent to those in previous works (Mukamel, 1995; Jonas,
2003; Cho et al., 2005; Cho, 2008; Schlau-Cohen, Ishizaki, and Fleming, 2011) within the assumption that only single-exciton
states contribute. Fourier transforms of these with respect to t0 − t00 and tm − t can be related to the spectra of 2DES if proper
averaging over the ensemble of disorder is made.
Now for the initial state given by Eq. (C11), the response functions can be simplified as follows:

χð1Þðtm; t; t0; t00Þ ¼ eði=ℏÞ
R

t0
t00 dτEgðτÞe−ði=ℏÞ

R
tm
t

dτEgðτÞTrfe−ði=ℏÞðtm−t0ÞĤb jDmðtmÞihD2ðt0ÞjÛexðt0; t00Þ
× ρ̂bjD1ðt00ÞihD3ðtÞjeði=ℏÞðt−t00ÞĤb Û†

exðtm; tÞg; ðC51Þ

χð2Þðtm; t; t0; t00Þ ¼ e−ði=ℏÞ
R

tm
t

dτEgðτÞeði=ℏÞ
R

t0
t00 dτEgðτÞ

× Trfe−ði=ℏÞðtm−tÞĤb jDmðtmÞihD3ðtÞjÛexðt; t00Þρ̂bjD1ðt00ÞihD2ðt0Þjeði=ℏÞðt0−t00ÞĤb Û†
exðtm; t0Þg; ðC52Þ

χð3Þðtm; t; t0; t00Þ ¼ e−ði=ℏÞ
R

tm
t

dτEgðτÞe−ði=ℏÞ
R

t0
t00 dτEgðτÞ

× Trfe−ði=ℏÞðtm−tÞĤb jDmðtmÞihD3ðtÞjÛexðt; t0Þρ̂bjD2ðt0ÞihD1ðt00Þjeði=ℏÞðt00−t0ÞĤb Û†
exðtm; t00Þg; ðC53Þ

χð4Þðtm; t; t0; t00Þ ¼ e−ði=ℏÞ
R

tm
t

dτEgðτÞe−ði=ℏÞ
R

t0
t00 dτEgðτÞ

× Trfe−ði=ℏÞðtm−t00ÞĤb jDmðtmÞihD1ðt00Þjρ̂bÛ†
exðt0; t00ÞjD2ðt0ÞihD3ðtÞjeði=ℏÞðt−t0ÞĤb Û†

exðtm; tÞg: ðC54Þ

For the case where the Hamiltonians are time independent, these expressions become Eqs. (51)–(54).
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Aghtar, M., J. Strümpfer, C. Olbrich, K. Schulten, and U.
Kleinekathöfer, 2014, J. Phys. Chem. Lett. 5, 3131.

Agranovich, V. M., and M. D. Galanin, 1982, Modern Problems in
Condensed Matter Sciences Vol. 3, Electronic Excitation Energy
Transfer in Condensed Matter (North-Holland, Amsterdam).

Agranovich, V. M., and R. M. Hochstrasser, 1982, Eds., Modern
Problems in Condensed Matter Sciences Vol. 4, Spectroscopy and
Excitation Dynamics of Condensed Molecular Systems (North-
Holland, Amsterdam).

Alden, R., E. Johnson, V. Nagarajan, W.W. Parson, C. J. Law, and R.
J. Cogdell, 1997, J. Phys. Chem. B 101, 4667.

Anda, A., T. Hansen, and L. D. Vico, 2016, J. Chem. Theory
Comput. 12, 1305.

Andreussi, O., S. Knecht, C. M. Marian, J. Kongsted, and B.
Mennucci, 2015, J. Chem. Theory Comput. 11, 655.

Bahatyrova, S., R. N. Frese, C. A. Siebert, J. D. Olsen, K. O. van der
Werf, R. van Grondelle, R. A. Niederman, P. A. Bullough, C. Otto,
and N. Hunter, 2004, Nature (London) 430, 1058.

Berlin, Y., A. Burin, J. Friedrich, and J. Köhler, 2007, Phys. Life Rev.
4, 64.

Blankenship, R. E., 2014, Molecular Mechanisms of Photosynthesis
(Wiley Blackwell, Oxford), 2nd ed.

Book, L. D., A. E. Ostafin, N. Ponomarenko, J. R. Norris, and N. F.
Scherer, 2000, J. Phys. Chem. B 104, 8295.

Bopp, M. A., Y. Jia, L. Li, R. J. Cogdell, and R. M. Hochstrasser,
1997, Proc. Natl. Acad. Sci. U.S.A. 94, 10630.

Bopp, M. A., A. Sytnik, T. D. Howard, R. J. Cogdell, and R. M.
Hochstrasser, 1999, Proc. Natl. Acad. Sci. U.S.A. 96, 11271.

Boulanger, E., and W. Thiel, 2012, J. Chem. Theory Comput. 8,
4527.

Bricker, W. P., and C. S. Lo, 2014, J. Phys. Chem. B 118, 9141.
Bricker, W. P., and C. S. Lo, 2015, J. Phys. Chem. B 119, 5755.
Brixner, T., J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship,
and G. R. Fleming, 2005, Nature (London) 434, 625.

Brotosudamo, T. H. P., R. Kunz, P. Böhm, A. T. Gardiner, V.
Moulisová, R. J. Cogdell, and J. Köhler, 2009, Biophys. J. 97, 1491.
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Olbrich, C., J. Strümpfer, K. Schulten, and U. Kleinekathöfer, 2011a,
J. Phys. Chem. B 115, 8609.
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