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The ability to effectively control brain dynamics holds great promise for the enhancement of cognitive
function in humans and the betterment of their quality of life. Yet, successfully controlling dynamics
in neural systems is challenging, in part due to the immense complexity of the brain and the large set
of interactions that can drive any single change. While some understanding has been gained of the
control of single neurons, the control of large-scale neural systems—networks of multiply interacting
components—remains poorly understood. Efforts to address this gap include the construction of
tools for the control of brain networks, mostly adapted from control and dynamical systems theory.
Informed by current opportunities for practical intervention, these theoretical contributions provide
models that draw from a wide array of mathematical approaches. Recent developments are presented
for effective strategies of control in dynamic brain networks, and potential mechanisms are also
described that underlie such processes. Efforts are reviewed on the control of general neurophysi-
ological processes with implications for brain development and cognitive function, as well as the
control of altered neurophysiological processes in medical contexts such as anesthesia administration,
seizure suppression, and deep-brain stimulation for Parkinson’s disease. This Colloquium is
concluded with a forward-looking discussion regarding how emerging results from network control,
especially approaches that deal with nonlinear dynamics or more realistic trajectories for control
transitions, could be used to directly address pressing questions in neuroscience.
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I. INTRODUCTION

The brain displays a wealth of complex dynamics across
various spatial and temporal scales (Kopell et al., 2014; Betzel
and Bassett, 2017). From 302 neurons in the nematode worm
C. elegans (Varier and Kaiser, 2011; Bentley et al., 2016) to
some 86 × 109 neurons in the adult human (Herculano-Houzel
et al., 2007; von Bartheld, Bahney, and Herculano-Houzel,
2016), the units that drive brain function are large in their
number but even more complicated in their interactions. Far
from the canonical models in statistical mechanics stemming
from either crystalline or random structure, the brain displays
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a heterogeneous pattern of interconnections (Fraiman et al.,
2009; Castellana and Bialek, 2014; Bassett and Bullmore,
2016) that fundamentally constrains the propagation of
activity. Understanding these dynamics remains of primary
interest in the field of neurophysics (Scott, 1977; Gao and
Ganguli, 2015). An underlying assumption of these inves-
tigations is that such dynamics or observed neural activity can
contain structure that forms representations about incoming
stimuli or underlying neural processes. An emerging and
increasingly tractable avenue for understanding the mecha-
nisms of these dynamics lies in the notion of control or how to
effectively guide neural dynamics. How are brain dynamics
controlled intrinsically in the awake, behaving animal? Can
we harness natural principles of control in neural systems to
better guide therapeutic interventions?
The increase in available experimental neurotechnologies

(Chang, 2015; Nag and Thakor, 2016; Patil and Thakor, 2016),
as well as more sophisticated computational tools (Glaser and
Kording, 2016; Marblestone, Wayne, and Kording, 2016) and
theoretical models (Giusti, Ghrist, and Bassett, 2016), has
recently made it possible to tackle these questions from
fundamentally new angles. While at present there is no
comprehensive theory of control in the brain that we can refer
to, the pursuit of such a theory remains critically important,
having implications for our understanding of healthy neuro-
physiological processes and our ability to intervene when those
healthy processes go awry in neurological disease and psychi-
atric disorders (Johnson et al., 2013; Chen et al., 2014; Bassett
and Khambhati, 2017). Several recent models propose new
ways to control neural activity and neural rhythms and further
provide mechanistic insight into the rules by which brain
dynamics are (and can be) guided. Hence, it is timely to discuss
these emerging developments and to seek to tie them together
into a meaningful theoretical field that can be used to tackle
current open questions in neuroscience and medicine.
Motivated by recent progress in understanding brain func-

tion from the perspective of interacting networks (Bassett and
Bullmore, 2006, 2009; Kaiser, 2011; Bullmore and Sporns,
2012), we focused on systems-level control of either local
neural circuits or whole-brain connectomes (Sporns, Tononi,
and Kotter, 2005; Fornito and Bullmore, 2015). Here we use
the term “network” in the sense that is common in network
science (Newman, 2010). A brain network is a graph whose
nodes represent units of the brain that perform a specific
function such as vision or audition (Bullmore and Bassett,
2011). At the large scale, these units may be several centi-
meters of tissue, while at the small scale, these units may be
individual neurons. In structural brain graphs, the edges can
represent structural links such as fiber bundles at the large scale
(Hagmann et al., 2008; Bassett et al., 2011) or synapses at the
small scale. In functional brain graphs, the edges represent
synchronized dynamics that form functional links (Stam, 2004;
Achard et al., 2006) between these units. While both structural
and functional links can be measured directly from structural
and functional data, respectively, extensive efforts have also
sought to address the questions of (i) whether structural
topology can be inferred from functional traces (using, for
example, structural equation modeling), and (ii) whether func-
tional traces can be inferred from structural linkage patterns
(using, for example, neural mass models). Throughout this

exposition, we will assume that structural links have been
directly measured, rather than inferred.
The use of the network formalism to probe brain dynamics

has a rich and pervasive heritage in seminal work at the
intersection between physics and neuroscience. One particu-
larly impactful contribution was that of Hopfield, who success-
fully connected dynamical processes to neural representations
in an Ising model (Hopfield, 1982). States that minimized the
energy function formed dynamical attractors and representa-
tions of memory. This early contribution was extended and
formalized by Amit, Gutfreund, and Sompolinsky (1985) and
Gardner (1987), clearly demonstrating the power of interacting
networks in the modeling of complex neural processes. Herewe
expand the link between physics and neuroscience in the
context of the network formalism by focusing on the control
of brain networks, enabling us to build a theoretical under-
standing regarding biological processes and associated dynam-
ics that occur across spatially distributed neural systems. In
addition, strategies for intervention and control targets can be
designed through modeling dynamics in networks of neurons or
brain regions. Should the reader instead be searching for an
excellent treatment of various control methods for single
neurons or for ensembles of neurons, we direct them to the
recent textbook by Schiff (2012). For further details on
emerging control technologies in the brain, especially invasive
electrical and optical stimulation at rapid time scales (milli-
seconds or below), and associated modeling approaches, see
Ritt and Ching (2015).
The remainder of this Colloquium is organized as follows.

In Sec. II we present an understanding for control of brain
networks by considering how the brain itself enacts intrinsic
control. In particular, we briefly discuss important computa-
tional paradigms of cognitive control, a basic ability that each
of us has to control our neural activity and by extension
our behavior. This discussion motivates the introduction of
network control theory in Sec. III, which offers a useful
theoretical framework in which to probe control in brain
networks constructed from neuroimaging data. In Sec. IV we
detail a few examples of how we can use network control
theory, or its extensions, to understand healthy brain function.
In Sec. V, we describe the utility of network control in
targeting interventions when healthy brain function goes awry.
We next turn in Sec. VI to modeling the controlled versus
uncontrolled trajectories of neural dynamics, and we close in
Sec. VII by outlining emerging frontiers at the intersection
of dynamical systems theory, control theory, and complex
systems. Throughout, we keep neuroscience jargon to a
minimum, although some terminology specific to the tech-
nique or context remains unavoidable. Our goal is to stimulate
discussion through reviewing existing work (rather than
presenting new data), in order to encourage further work
from physicists, control theorists, practitioners, and others in
this exciting and rapidly developing field.

II. HOW DOES THE BRAIN CONTROL ITSELF?

While there may be many ways of tackling the question of
how to control brain dynamics, arguably one of the simplest is
to ask how the brain controls itself. Perhaps by understanding
intrinsic mechanisms of control in the brain, we could harness
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that knowledge to inform therapeutic interventions for people
with mental illness. In considering this idea, it is useful to
distinguish between external control, which is enacted on the
system from the outside, and internal control, which is a
feature of the system itself. In the brain, internal control
processes include phenomena as conceptually diverse as
homeostasis, which refers to processes that maintain equilib-
rium of dynamics (Nelson and Turrigiano, 2008; Nelson and
Valakh, 2015), and cognitive control, which refers to proc-
esses that exert top-down influence to drive the system
between various dynamical states (Heatherton and Wagner,
2011; Botvinick and Braver, 2015).
Here we focus on cognitive control because it is concep-

tually akin to the idea of extrinsic control: driving dynamics
from one type to another. What can we learn from cognitive
control that might help us to develop a theory for external
control? To answer that question, we begin by turning to
history. An early computational model that explained the
production of decisions based on a given set of inputs was the
perceptron (Rosenblatt, 1958; Freund and Schapire, 1999), a
simple artificial neural network (McCulloch and Pitts, 1943;
Bishop, 1995). The perceptron and associated notions were
developed by proponents of connectionism (Medler, 1998),
which suggests that cognition is an emergent process of
interconnected networks. The complexity of the connection
architecture in these models was thought to support a com-
plexity of brain dynamics, such as the separation of parallel
neural processes and distributed neural representations pro-
pounded by the parallel distributed processing (PDP) model
(Rumelhart, McClelland, and Group, 1986). The PDP model
holds that cognitive processes can be explained by activation
flowing through networks that link nodes together. Every new
event changes the strength of connections among relevant
units by altering the connection weights.
Notably, the PDP model offers conceptual explanations for

the processes characteristic of cognitive control (Botvinick
and Cohen, 2014). These ideas are built on the notion that
the development of control systems in the brain (Chai et al.,
2017) can be seen as responding to the structure of naturalistic
tasks, and therefore that control can be defined as the optimal
parametrization of task processing. Within such a parametri-
zation, two specific features of cognitive control appear
particularly critical: (i) its remarkable flexibility, which sup-
ports diverse behaviors, and (ii) its clear constraints, which
limit the number of control-demanding behaviors that can
be executed simultaneously. Addressing these two features,
models inspired by the PDP approach allow for cognitive
control as instantiated in processes of selection from com-
peting inputs or adaptation based on reward (Fig. 1).
These and related computational models emphasize the

role of specific brain areas in cognitive control, including the
prefrontal cortex, the anterior cingulate, the parietal cortex,
and the brain stem. Yet, studying any of these areas in
isolation will likely provide an impoverished understanding
of the system’s function. Indeed, Eisenreich, Akaishi, and
Hayden (2017) argued that control in the brain is not localized
to small regions or modules, but is instead very broadly
distributed, enabling versatility in both information transfer
and executive control. Such a distributed, and even perhaps
overlapping, network architecture can also offer usefully fuzzy

boundaries between controllers and processors (Haykin and
Fuster, 2014; Eisenreich, Akaishi, and Hayden, 2017). How
exactly information is processed on these distributed systems
remains an open question, but some promising modeling
approaches include those that use Bayesian inference, sparse
coding, and information entropy to characterize control
(Haykin and Fuster, 2014). Specifically, a few recent efforts
draw heavily from the idea of probabilistic reasoning to
formulate a model for risk control, posited to be an overarching
function of the prefrontal cortex, characterized by a closed-loop
feedback structure describing executive attention.
To briefly summarize, previous computational models of

cognitive control have included the eclectic notions of neural
networks, regional localization, distributed processing, and
information theory. Collectively, these notions motivate the
construction of a model or theory that explicitly builds on the
emerging capability to measure the brain’s true network
structure to better understand control. In the next section,
we describe recent developments in dynamical systems and
control theory as applied to complex networks, whose
application to the brain may offer explanatory mechanisms
of neural dynamics and provide insight into the distributed
nature of cognitive control.

III. NETWORK CONTROL THEORY

Conceptually, it is interesting to ask the question whether
and to what degree cognitive control (as defined by neuro-
scientists) is similar to network control (as defined by
physicists, mathematicians, and engineers). To address this
interesting question, we must first define what it is that we

FIG. 1. Model for adaptive cognitive control showing distinct
mechanisms between different brain regions. Schematic of a
neural network connecting the prefrontal cortex, which executes
much of the “top-down” control actions to other brain regions.
Another part of the brain, the anterior cingulate cortex, serves as a
conflict monitoring mechanism that modulates the activity of
control representations. Meanwhile, an adaptive gating mecha-
nism regulates the updating of control representations in the
prefrontal cortex through dopaminergic (DA) projections from
the ventral tegmental area (VTA) that can also be facilitated
through reinforcement learning (red asterisk). From Botvinick
and Cohen, 2014.
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mean by network control. Controllability of a dynamical
system refers to the possibility of driving the current state
of the system to a specific target state by means of an external
control input; see Kalman, Ho, and Narendra (1963).
Developments in engineering and physics have recently
extended these ideas to the control of networks, as we describe
in more detail.

A. Control of linear dynamics

We begin by describing a general framework for the control
of linear dynamics on a complex network. Consider a network
represented by the directed graph G ¼ ðV; EÞ, where V and E
are the vertex and edge sets, respectively. Let aij be the weight
associated with the edge ði; jÞ ∈ E and define the weighted
adjacency matrix of G as A ¼ ½aij�, where aij ¼ 0 whenever
ði; jÞ ∉ E. We associate a real valued (state) with each node,
collect the node states into a vector (network state), and define
the map x∶N≥0 → Rn to describe the evolution (network
dynamics) of the network state over time. A simple way to
begin is to describe the network dynamics by a discrete time,
linear, and time-invariant recursion

xðtþ 1Þ ¼ AxðtÞ: ð1Þ

Let a subset of nodes K ¼ fk1;…; kmg be independently
controlled and let

BK ≔ ½ ek1 � � � ekm � ð2Þ

be the input matrix, where ei denotes the ith canonical vector
of dimension n. The network with control nodes K reads as

xðtþ 1Þ ¼ AxðtÞ þ BKuKðtÞ; ð3Þ

where uK∶ N≥0 → R is the control signal injected into the
network via the nodes K (see Fig. 2). The network (3) is
controllable in T steps by the nodes K if, for every state xf,
there exists a control input uK such that xðTÞ ¼ xf with
xð0Þ ¼ 0 (Kailath, 1980).
Controllability of this type of system can be ensured by

different structural conditions (Kailath, 1980; Reinschke,

1988). For instance, let CK;T be the controllability matrix
defined as

CK;T ≔ ½BK ABK � � � AT−1BK �:

The network (3) is controllable in T steps by the nodes K if
and only if CK;T is of full row rank, where T is typically taken
to be at least as large as the system size n.

B. Key driver nodes

Recently Liu, Slotine, and Barabási (2011) demonstrated that
the analytical framework described in the previous section
could be used to study large, complex networks. In that study,
they explored common patterns in a wide variety of networks
from technological, biological, and social systems. Under
certain conditions in these weighted and directed networks,
the set of driver nodes capable of guiding the dynamics of the
entire system could be directly estimated from the degree
distribution. Since that study, others have shown that under
other conditions, and in other networks, the degree distribution
alone may not provide enough information to adequately
determine the set of driver nodes. Instead, that knowledge
regarding the network’s structure must be complemented with
considerations of the network’s dynamics or reasonable approx-
imations of those dynamics at each node (Cowan et al., 2012).
In these studies, networks are allowed to contain real-

valued weights on each edge. However, for some real-world
networks, knowledge of the edge weights is uncertain. For
such scenarios, a complementary framework is provided by
structural controllability which evaluates the controllability
of binary networks (Kailath, 1980; Reinschke, 1988). By
studying the underlying “structure,” i.e., distinguishing
merely between which edges are absent (zero) versus present
(nonzero), these methods allow the identification of minimal
structures or control points that allow for full controllability
of the network. Recent efforts have extended these ideas to
large-scale systems and to the problem of identifying the
minimum number of nodes that need to be driven in order
to achieve structural controllability (Pequito, Kar, and
Aguiar, 2016).
In recent work, Pequito et al. (2016) extended the notion of

structural controllability to situations in which edges evolve
dynamically, and they identified the minimum number of
driven nodes for full controllability of the system. Their
methods appeared particularly relevant in situations similar to
those observed by Khambhati et al. (2015), where dynamic
functional connectivity in epileptic patients was characterized
by edges within seizure-generating areas that were almost
constant over time, whereas edges outside these areas in
healthy tissue exhibited higher variability over time. An
important potential goal of control would then be to steer
function on these edges away from pathological regimes
(Pequito et al., 2016), i.e., toward dynamics that demonstrate
more edge weight variability.
While network control and structural controllability are

particularly relevant concepts for brain network control, many
other key contributions have been made to the study of control
in complex networks, which lie outside the scope of this
Colloquium. We point interested readers to the following

FIG. 2. Controlling a simple network. This small network can
be controlled by an input vector uK ¼ (u1ðtÞ; u2ðtÞ)T (left),
allowing us to move the network within the state space from its
initial state to some desired final state (right). From Liu, Slotine,
and Barabási, 2011.
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reviews that focus entirely on network control tools. For a
review of methods to identify control points to affect particular
dynamics such as synchrony, see Chen (2014). For more
general background and detail on network control in complex
systems, the recent review by Liu and Barabási (2016)
provides an excellent summary of the latest developments.

C. Control energy and metrics

Another important area of work lies in the development of
metrics that characterize different control strategies for real
networks. We define the controllability WK;T as

WK;T ¼
XT−1
τ¼0

AτBKBT
KðATÞτ ð4Þ

¼ CK;TCT
K;T ; ð5Þ

which has to be full rank for the network (3) with the set of
network nodes K to be controllable, equivalent to the con-
dition for the controllability matrix in Sec. III.A.
In practical applications, controllable networks featuring

small Gramian eigenvalues cannot be steered to certain states
because the control energy is limited. This fact motivated
Pasqualetti, Zampieri, and Bullo (2014) to propose certain
control strategies and associated metrics based on minimizing
the control energy; these include average, modal, and boun-
dary controllability.
To define these control metrics, we first let the network

be controllable in T steps and let xf ¼ xðTÞ be the desired
final state in time T, with kxfk2 ¼ 1, where the subscript

denotes the Euclidean norm, i.e., kvk2 ≔
ffiffiffiffiffiffiffi
vTv

p
. Following

from Eq. 3, where uK is the injected control signal, we can
define the energy of the control input uK as

EðuK; TÞ ¼ kuKk22;T ¼
XT−1
τ¼0

kuKðτÞk22; ð6Þ

where T is the control horizon. The unique control input that
steers the network state from xð0Þ ¼ 0 to xðTÞ ¼ xf with
minimum energy is (Kailath, 1980)

u�
KðtÞ ¼ BT

KðATÞT−t−1W−1
K;Txf ð7Þ

with t ∈ f0;…; T − 1g. Then it can be seen that

EðuK� ; TÞ ¼
XT−1
τ¼0

ku�
KðτÞk22 ¼ xT

fW
−1
K;Txf ≤ λ−1minðWK;TÞ; ð8Þ

where λmin is the smallest eigenvalue. Note that equality is
achieved whenever xf is an eigenvector of WK;T associated
with λminðWK;TÞ (Pasqualetti, Zampieri, and Bullo, 2014).
Average controllability identifies network nodes that, on

average, can steer the system into different states with little
effort (i.e., input energy); see Fig. 3. The average control-
lability in a network, formally defined as TraceðW−1

K;TÞ, equals

the average input energy from a set of control nodes and over
all possible target states (Marx, Koenig, and Georges, 2004;
Shaker and Tahavori, 2012). Instead, TraceðWK;TÞ is often
adopted as a measure of average controllability, motivated by
the relation TraceðW−1

K;TÞ ≥ N2=TraceðWK;TÞ (Summers and
Lygeros, 2014), and the fact that WK;T is close to singularity
even for networks of small cardinality. Note that the maxi-
mization of TraceðWK;TÞ does not automatically ensure
controllability. However, independent tests to verify the
controllability can be made using Eq. (4) and were done
for individual regions in brain networks (Gu et al., 2015)
[and more generally by Menara et al., (2017)]. Note that
TraceðWK;TÞ encodes a well-defined control metric, namely,
the energy of the network impulse response or, equivalently,
the network H2 norm (Kailath, 1980). For practical compu-
tations, the limit of T → ∞ and A satisfying Schur stability
is used, as this permits a closed-form solution and easier
analysis. Intuitively, network nodes with high average con-
trollability are most influential in the control of network
dynamics over all possible target states.
Modal controllability identifies network nodes that can

push the network activity into difficult-to-reach states, which
are those that require substantial input energy. To quantify
modal controllability, we first note that the behavior of a
dynamical system is fully determined by the eigenvalues
(modes) and eigenvectors of its system matrix. Regarding
controllability, the Popov-Belovich-Hautus (PBH) test
ensures that a system with matrix A is controllable by an
input matrix B if and only if all its modes are controllable or,
equivalently, if and only if there exists no left eigenvector
of A orthogonal to the columns of B (Kailath, 1980).
By extension from this PBH test, if the entry vij is small,
then the jth mode is poorly controllable from node i.
Hence Pasqualetti, Zampieri, and Bullo (2014) defined ϕi ¼P

j½1 − ξ2jðAÞ�v2ij as a scaled measure of the modal control-
lability of all N modes ξ0ðAÞ;…; ξN−1ðAÞ from the brain
region i. Intuitively, network nodes with high modal control-
lability are able to control all of the dynamic modes of the
network and hence to drive the dynamics toward hard-to-reach
configurations.

Energy 

Modal controllability: 
Distant transitions 

Average controllability: 
Nearby transitions 

Control  
trajectory 

Control input 

FIG. 3. Energetic costs of controllabilitry metrics. Pasqualetti,
Zampieri, and Bullo (2014) proposed realistic control strategies that
include the energetic costs of control (8). Average controllability
describes transitions nearby on an energy landscape, while modal
controllability describes transitions distant on this landscape.
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Boundary controllability identifies network nodes that lie at
the boundaries between network communities, beginning from
communities at the largest scale and moving down across
consecutive hierarchical levels of community structure, and
thus intuitively measures the ability to control the integration
and segregation of network modules. This metric depends on
the choice of a method for detecting boundary control points,
for which an algorithm was proposed by Pasqualetti, Zampieri,
and Bullo (2014). This algorithm can be altered as needed for
the physical system under study, e.g., to enhance the accuracy
in estimating an initial partition of the network into commun-
ities and to sharpen or loosen the boundary point criteria.
Intuitively, network nodes with high boundary controllability
are able to gate information between different communities,
across topological scales in the network.
Overall, these three metrics provide useful estimates for real

systems especially when considering dynamics over the whole
network (Wu-Yan et al., 2018). Further work could be done to
investigate other scenarios such as dynamics in just parts of
the network, or how different patterns of community structure
change the resulting controllability. These and more general
questions about the relationship between network topology
and the resulting dynamics remain open areas of study, which
we discuss in more detail at the end of this Colloquium.

D. Application to brain networks

To use these methods to answer questions in neuroscience,
we begin by constructing networks based on our knowledge of
brain connectivity. At the large scale, network nodes in the
brain are often defined based on regional differences in
cellular architecture (Brodmann, 1909; Glasser et al., 2016)
or local gradients in fine-scale functional connectivity (Power
et al., 2011; Yeo et al., 2011). Connectivity between these
nodes can be estimated with emerging neurotechnologies,
which we illustrate with the following examples. In humans,
one particularly powerful noninvasive probe of connectivity
uses magnetic resonance imaging (MRI) to infer structural
pathways in the brain (Wedeen et al., 2012) by exploiting
molecular resonances of water molecules as they diffuse along
white matter tracts (Basser, Mattiello, and LeBihan, 1994;
Makris et al., 1997); see Fig. 4. By reconstructing the
pathways that exist between brain regions and by estimating
the strengths of those pathways, a brain network (weighted,
symmetric graph) is obtained where the network edges are
given by the interregional connection strengths (Hagmann
et al., 2008; Bassett et al., 2011). Similar techniques can be
used in rodents, cats, dogs, and nonhuman primates by way of
a small-bore magnet (Duong, 2010). Of course, tract-tracing
techniques and other invasive methods are also a powerful
way to image structural pathways in nonhuman animals
(Markov et al., 2011; Okano and Mitra, 2015).
Recently, Gu et al. (2015) applied network control theory to

such whole-brain structural networks in humans. Using net-
works composed of between 83 and 1015 nodes, they studied
the three controllability metrics of average, modal, and
boundary controllability (Pasqualetti, Zampieri, and Bullo,
2014) discussed in the previous section. Their work and others
will be discussed in detail in the next section on understanding
healthy brain function. While these techniques have not yet

been ubiquitously applied to nonhuman imaging (Tang et al.,
2012; Badhwar and Bagler, 2015), the mathematics is general-
izable to any estimate of structural connectivity in a neural
system. Conceptually, this approach supports the general
study of the kinds of dynamics predicted by the constraints
of structural connectivity, particularly for the scenario in
which a given brain region is acting as a control point for
the rest of the network. On a methodological note, the results
reported by Gu et al. (2015) were verified across a range of
network sizes. Although the connectivity studied was at a
relatively coarse scale, it would be interesting to complement
these observations with studies at cellular resolutions (Wiles
et al., 2017; Yan et al., 2017).
An integral aspect of control theory is that of system

observability, which examines how measurable the system is
to an observer. It is dual to system controllability; hence limits
on the observability of the system will naturally impair efforts
to control the system. This fact has important implications
in neuroscience, where the lack of complete and constant
detection, especially in living, behaving systems introduces
nontrivial uncertainty in both data and models. In noninvasive
neuroimaging, systematic biases in data acquisition and
processing may hamper accurate predictions built from
individual measurements, e.g., that arise from the physical
embedding of the brain (Morris, Embleton, and Parker, 2008;
Yamada, 2009). Common attempts to combat this possibility
include verifying the reproducibility of results under a variety
of choices made in the estimation of anatomical connectivity
and in the construction of brain networks, for instance by
comparing the results from multiple brain parcellations or
tractography procedures. In time-varying networks, it should
be verified that any conclusions hold over several time
window lengths, and a minimum length of window should
be chosen to ensure statistical significance. Still, further work

Diffusion tensor imaging 

Connectivity between 
regions 

Tractography

Brain network 

(a) (b)

(d) (c)

FIG. 4. Construction of a human brain structural network.
(a) Diffusion imaging measures the direction of water diffusion
in the human brain. (b) From these data, white matter stream-
lines can be reconstructed that connect brain regions. (c) An
adjacency matrix representation of the structural connectivity:
entries denote the estimated strength of white matter connec-
tivity between brain regions. (d) The resulting brain network
where nodes are brain regions, and where edges are the
connection strengths between them.
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should be done to quantify how systematic biases in data
acquisition or system observability, such as the effects of the
physical embedding of the brain, result in bounds on the
possible control predictions.

IV. UNDERSTANDING HEALTHY BRAIN FUNCTION
THROUGH CONTROL THEORY

In this section, we explore the utility of network control
theory for offering mechanisms of cognitive control, providing
explanations for individual differences in cognitive control
across people, and capturing the evolution of control as we
grow from children to adults. We close this section by
discussing open questions in cognitive neuroscience that appear
particularly amenable to extensions of network control theory.

A. Network control as a partial mechanism for cognitive control

A simple question to ask about any theory is whether or not
it offers predictions of observed processes. One particularly
straightforward and testable hypothesis is that the common
control strategies studied in control and dynamical systems
theory are strategies that the brain uses to control its own
intrinsic dynamics. In a recent study, Gu et al. (2015)
addressed this hypothesis by first calculating the controllabil-
ity strengths for each brain region and then by identifying the
preferences of each brain region for different types of control.
They found that strong average controllers, strong modal
controllers, and strong boundary controllers were located in
quite different areas of the brain; see Fig. 5.
Notably, the different sorts of controllers appeared to map on

to the types of function that each brain region is thought to
perform. For example, strong average controllers were dispro-
portionately located in the default mode system, which is a
spatially distributed set of brain regions that are markedly active
when a person is simply resting (Raichle, 2015). This obser-
vation is particularly interesting because it suggests that areas of
the brain that are active in the “ground state” are also areas that
are structurally predicted to optimally push the system into

many easily reachable states, nearby on the underlying energy
landscape. Furthermore, strong modal controllers were dispro-
portionately located in cognitive control systems, including
both the frontoparietal and cingulo-opercular systems. This
observation is particularly interesting because it suggests that
the areas of the brain that are active during tasks that demand
high levels of cognitive control or task switching (Botvinick and
Braver, 2015) are structurally predicted to optimally push the
system into distant states, far away on the underlying energy
landscape. Finally, strong boundary controllers were dispro-
portionately located in regions implicated in attention (Corbetta
and Shulman, 2002), supporting their predicted role in gating
(Eldar, Cohen, and Niv, 2013;Womelsdorf and Everling, 2015)
information between network communities.
This study offers a possible mechanistic explanation for

how the brain might move between cognitive states that
depends fundamentally on white matter microstructure. The
work suggests that structural network differences between
the default mode, cognitive control, and attentional control
systems dictate their distinct roles in brain network function.
While the results need to be validated in other species and data
sets, the broad trends indicate the relevance of control theory
for capturing canonical concepts in cognitive control.

B. Network control and cognitive performance

In the previous section, we reviewed evidence that notions
from network control applied to neuroimaging data can
provide insight into the roles that brain regions may play
in the control of neural dynamics. Here we ask the more
specific question of whether the brain in one person (or
animal) might be optimized for a different type of control than
the brain in another person (Kim et al., 2018). That is, can
controllability metrics explain why cognitive performance
differs across individuals (Cornblath et al., 2018)?
While still an open question, two recent studies suggest that

indeed each brain displays a different profile of control, and
differences across people are correlated with differences in
their cognitive capacities. In one study in healthy adult

FIG. 5. Cognitive control hubs are differentially located across cognitive systems. (a) Hubs of average controllability are preferentially
located in the default mode system. (b) Hubs of modal controllability are predominantly located in cognitive control systems, including
both the frontoparietal and cingulo-opercular systems. (c) Hubs of boundary controllability are distributed throughout all systems, with
the two predominant systems being ventral and dorsal attention systems. From Gu et al., 2015.
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humans, Medaglia et al. (2016) compared the predictions
from network control theory applied to individual brain
images to the performance of these same individuals on
traditional cognitive control tasks. More specifically, they
calculated modal and boundary controllability (see Sec. III.C)
on brain networks obtained from diffusion imaging, and they
also tested the performance of subjects in cognitive control
tasks that measure the inhibition of behavior, the shifting of
attention, vigilance, and working memory capacity. The study
reports key regional controllers in the brain whose control-
lability strength is correlated with task performance measures
across individuals, thus providing a second line of evidence
that network control may be a partial mechanism for cognitive
control in humans.
Turning from adults to children, Tang et al. (2017)

evaluated the controllability strength of brain regions as well
as more general cognitive performance (not specific to
cognitive control) in a community-based sample of healthy
youth. They found that the relative strength of average
controllers in subcortical versus cortical regions (which are
the earliest evolving and latest evolving brain areas, respec-
tively) is an important predictor of improved cognitive
performance. This relationship held true even when account-
ing for differences in age across the cohort, suggesting that it
is a fundamental characteristic of human brain structure and
dynamics. A follow-up study further tied these differences
to individual differences in cognitive control specifically
(Cornblath et al., 2018).

C. Evolution of network control in development

The identification of age-invariant relationships between
controllability metrics and cognitive function begs the ques-
tion of whether controllability metrics of brain networks
change with age, either in their magnitude or in their spatial
distribution. To address this question, Tang et al. (2017)
studied the controllability metrics of average controllability
and modal controllability in 882 healthy youth from 8 to
22 years of age and quantified a single value of controllability
for a person as given by the average of controllability
strengths across all brain regions. This coarse-graining of
the data enabled them to study how brain networks facilitate
energetically easy transitions (average controllability) as well
as energetically costly ones (modal controllability).
They found that brain networks are highly optimized to

support a diverse range of possible dynamics (as compared
with randomized versions of the networks) and that this range
of supported dynamics increases with age; see Fig. 6. Seeking
to investigate structural mechanisms that support these
changes, they simulated network evolution with a set of
growth rules to find that all brain networks—from child to
adult—become increasingly structured in a manner highly
optimized for network control. These results suggest key
neurophysiological changes that may be occurring during
development, driving the system toward an increasing capabil-
ity to traverse a larger surface of the energy landscape. It
would be interesting in the future to assess whether these
metrics are altered in youth with neuropsychiatric disorders or
whether they could be used to predict transition to psychosis
(Jeganathan et al., 2018).

D. Open questions in control and cognition

It is important to note that linear models of neural dynamics
(Galán, 2008; Honey et al., 2009) for use in network control
theory have both advantages and disadvantages. Their advan-
tage is that one has access to a wide array of theoretical
observations that can offer intuition about the system’s
(controlled) dynamics, particularly around an operating point
(Gu et al., 2015). The disadvantage is that they cannot speak
to neural processes that transition from one dynamical regime
(limit cycles, fixed points, attractors) to another (Deco and
Jirsa, 2012; Golos, Jirsa, and Dauce, 2015; Muldoon et al.,
2016). In these cases, developing additional methods for
control of nonlinear systems may be necessary.
One simple scenario in which limit cycles, or transitions

between them, may be particularly important for the processes
of cognitive control is that of human decision making (Chand
and Dhamala, 2016; Chand, Lamichhane, and Dhamala,
2016). For example, oscillatory activity in specific brain
regions has been linked to rational versus irrational decision
making in a task that requires financial judgements (akin to
gambling). Sacr et al. (2016) studied a group of human
subjects in which multiple depth electrodes were implanted in
deep-brain structures as a part of routine presurgical evalu-
ation for medically refractory epilepsy. By recording the local
field potentials at each of these electrodes, they were able to
monitor the activity of neuronal ensembles in the precuneus
and show that high-frequency activity (70–100 Hz) increased
when irrational decisions were made. Further, transitions
between various mental states such as rational or irrational
decision making could be described using a state space model
of activity from these electrodes, illustrating the network
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FIG. 6. Controllability metrics are positively correlated with age,
with older youth displaying greater average and modal control-
lability than younger youth. Each data point represents the average
strength of controllability metrics calculated on the brain network
of a single individual, in a cohort of 882 healthy youth from ages
8 to 22 years. Brain networks were found to be optimized to
support energetically easy transitions (average controllability) as
well as energetically costly ones (modal controllability). There is a
significant correlation between age and the ability to support this
diverse range of dynamics: see inset or color (online) that denotes
the age of the subjects. Note that modal controllability being a
weighted sum of normalized eigenvectors is always capped at 1,
hence its smaller range as compared to average controllability is
not meaningful; rather, the relative differences between the values
are meaningful here. From Tang et al., 2017.
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aspect of concerted activity between regions. This and similar
studies in other areas of higher-order cognitive function that
depend upon synchronized oscillatory activity in neuronal
ensembles (Kopell et al., 2000; Bassett et al., 2009) suggest
the possibility that control strategies could be devised that
use brain stimulation to alter the frequency of neuronal
synchrony to modulate cognitive processes (Medaglia et al.,
2018). Such a possibility will depend on accurately extending
linear control models to nonlinear ones, isolating the dynam-
ics relevant for the cognitive process of interest, and localizing
the region that is most impacted.
The studies mentioned in this section cover a range of

experimental probes from noninvasive neuroimaging to
implanted electrodes, and computational models from linear
models to nonlinear models. Together, they illustrate the
breadth of scenarios in healthy cognitive function available
for further investigation, and invite further work that identifies
connections or common themes within these studies.

V. TARGETING THERAPEUTIC INTERVENTIONS TO
MAXIMIZE BENEFICIAL OUTCOMES TO PATIENTS

In this section, we broaden our focus from linear models of
network control in order to more generally discuss emerging
engineering approaches for the control of brain dynamics in
the context of clinical medicine. We separate our discussion
into methods for modulating consciousness via anesthesia
administration, methods for ongoing monitoring and treat-
ment of Parkinson’s disease, methods for noninvasive stimu-
lation, and methods for the control of transient epileptic
seizures. These topics are in no way meant to be compre-
hensive of the field, but simply to highlight important
directions of clinical relevance. Examples are chosen based
on their focus on distributed control and analysis over many
brain regions, in view of the system as an interacting whole,
where network models are often explicitly employed.

A. Anesthesia titration

Anesthesia is used in medical institutions to modulate
consciousness through drugs during surgery, potentially by
altering distributed circuitry (Crone et al., 2016). Accurately
titrating the levels of anesthetic for each person, and at each
time point during the surgery, is critically important for the
comfort, health, and survival of the patient. Recent efforts
seek to optimize this titration using a closed-loop system
(Ching et al., 2013), where the challenge is to maintain a
medically induced coma by delivering propofol via an
intravenous catheter or pump. Using a computer to control
this delivery system, precise amounts of anesthetic can be
chosen, administered, and adapted in a time-dependent
manner, potentially reducing the incidence of propofol over-
dose which is accompanied by debilitating side effects.
Building on their earlier biophysical model, Ching et al.

(2013) demonstrated the real-time monitoring and control of the
brain’s burst suppression state from the electroencephalogram
(see Fig. 7), which indicates a state of highly reduced electrical
and metabolic activity (Ching et al., 2012) and allows tracking
of the level of consciousness. This state is illustrated via small
model networks of two principal cell types: cortical pyramidal
cells and inhibitory interneurons. Control of this state can then
be done using an on-line parameter estimation procedure and
proportional-integral controller. The technique has already
been validated in rodents, where it can be used to successfully
monitor and control the burst suppression state. Translating this
work into humans will require more extensive computational
estimation of model parameters and empirical validation over
periods of several hours.

B. Deep-brain stimulation for Parkinson’s disease

High-frequency deep-brain stimulation (DBS), com-
monly used to treat Parkinson’s disease, is one of the oldest

FIG. 7. Burst suppression phenomenology. (a) A typical recording of burst suppression from a human subject anesthetized with
propofol, a type of general anesthesia. The bursts manifest concurrently across the scalp (here, shown for left and right frontal
electrodes). (b) Spectrogram for a frontal electrode during deep, but not burst suppression, general anesthesia. (c) At a deeper level of
general anesthesia, burst suppression is achieved, and the spectrogram clearly displays epochs of quiescence. From Ching et al., 2012.
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examples of successful dynamical manipulation of brain
function to alleviate clinical symptoms. Yet it remains
unclear exactly how and why it works so well. Control
and systems theory approaches are useful for modeling
the underlying circuitry to understand the mechanisms by
which deep-brain stimulation affects behavioral phenotypes
(Tass et al., 1998; Santaniello et al., 2015; Wilson and
Moehlis, 2015).
Recent work has highlighted the network-level mechanisms

of the diseased dynamics and the control necessary to treat them.
For example, Santaniello et al. (2015) moved from localized
functions to the relevant circuitry, positing that DBS increases
the regularity of firing patterns in the basal ganglia, thereby
decreasing symptoms of Parkinson’s disease (Chiken and
Nambu, 2014). They suggested that high-frequency stimulation
of 130 Hz in DBS is effective because it is a resonant frequency
of the overall cortico-basal ganglia-thalamo-cortical loop. They
explored the effects of different stimulation conditions by
simulating hundreds of biophysically realistic neurons from
different regions of the circuitry that are thought to have very
different functions. Their results suggest a loop-based reinforce-
ment model, where DBS proximally or distally does not
individually account for resulting pattern changes, but instead
relies on a combined impact across the circuit. This observation
could inform the choice of stimulation frequency and location
when using DBS clinically (Johnson et al., 2013).
While identifying the resonant frequency of a critical circuit

may provide a useful target for control, other mechanisms may
also exist, and it is possible that interventions targeting more
than one mechanism could be more effective than targeting
one mechanism alone. Other candidate mechanisms include
coupling between peripheral tremor rhythms, and the phase
locking of the activity of primary and secondary motor areas.
For example, Tass et al. (1998) proposed two techniques to
identify the relative phase locking between two magneto-
encephalography signals, thereby detecting synchronization
of neuronal activity and mapping its relationship to peripheral
tremors. Other attempts to uncover mechanisms include the
investigation of entrainment and desynchronization dynamics,
both seen in populations of neurons, as a result of DBS.
Wilson and Moehlis (2015) studied a population of model
neurons and the effects of stimulation to observe underlying
low-dimensional patterns that can illuminate collective proc-
esses in spiking neurons. The simplicity of that particular
model affords theoretical insight into a potential mechanism
that governs DBS.
Once the optimal mechanism(s) have been identified, a

key goal is the use of control theory to create a closed-loop
system for more effective treatment. Holt and Netoff (2014)
identified their goal for DBS as the suppression of pathologi-
cal frequencies that occur during Parkinson’s disease. They
simulated the physiology of the basal ganglia using a network
model to create a mean-field description of the closed-loop
system, which allows for the tuning of stimulation parameters
based on patient physiology. This setup provides significant
advantages over the current method of trial-and-error tuning,
which is based on the clinician’s past experience. If such a
model can be empirically validated, it would be an important
step toward improving the efficacy of DBS for patients with
Parkinson’s disease.

C. Noninvasive transcranial stimulation

While such invasive monitoring and stimulation paradigms
are not accessible to most humans, other noninvasive methods
of brain stimulation are becoming increasingly feasible. The
most common is that of transcranial magnetic (electric)
stimulation, which is the application of a magnetic (electric)
field through the scalp for a short period of time (Bikson et al.,
2016). While the effects of transcranial stimulation tend to be
diffuse, they have demonstrated utility in treating depression
and other neurological and psychiatric disorders (Kedzior
et al., 2016). In healthy subjects, transcranial electric stimu-
lation has been shown to differentially affect endogenous
versus exogenous attention in human subjects (Hopfinger,
Parsons, and Fröhlich, 2017). These and similar effects
can be understood to some degree by employing computa-
tional models of oscillatory and state-dependent dynamics
(Alagapan et al., 2016). Computational work has also begun
to directly bridge mathematical models of nonlinear neural
dynamics with the predictions of network control theory in the
context of such exogeneous stimulation (Muldoon et al.,
2016). The tractability of computational studies and the
pervasive empirical use of noninvasive stimulation opens
the possibility of building mechanistic models that provide
a deeper understanding of stimulation’s effects on the brain
(Johnson et al., 2013), and of the rules by which stimulation
parameters and location can be optimized to enhance brain
function (Medaglia et al., 2018).
One study directly bridges mathematical models of non-

linear neural dynamics and the predictions of network
control theory in the context of such exogeneous stimulation.
Muldoon et al. (2016) considered the effects of electrical
stimulation to a specific brain region using a model of
nonlinear oscillators connected by a coupling matrix estimated
from measured diffusion imaging data (Fig. 4). By simulating
dynamics in this network of Wilson-Cowan oscillators, they
can test for different regimes of desired functional outcomes
supported by the network—if the effects of stimulation remain
focal or spread globally—and compare these with the pre-
dictions from network control theory using the controllability
metrics described in Sec. III.C. Importantly, their results
validate linear network control predictions over eight subjects
and more generally provide a model that can be used or tested
in clinical settings in order to strengthen the connection
between theory and clinical practice.

D. Seizure suppression in epilepsy

Both invasive and noninvasive stimulation methods have
been considered for the treatment of medically intractable
epilepsy. This multiplicity of methods is due in part to the
difficulties inherent in localizing the regions involved in
seizures: different brain regions can play diverse roles in
the production and propagation of epileptiform dynamics
(Bartolomei et al., 2017). Both types of interventions would
seem to be preferable to the current clinical practice of
resecting large sections of neural tissue thought to cause
the seizure, although of course this statement is speculative
(Stacey and Litt, 2008). Instead, stimulation may have the
potential to suppress seizures (Berényi et al., 2012; Ching,
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Brown, and Kramer, 2012), particularly if tailored to the
underlying brain connectivity (Taylor et al., 2015) and/or its
associated dynamics (Khambhati et al., 2016). In a recent
practical demonstration, work from the group of Berényi et al.
(2012) showed the efficacy of brain stimulation in seizure
suppression in a rat model for epilepsy; see Fig. 8. Their
application of transcranial electrical stimulation using a
closed-loop system reduces seizure duration, on average,
by 60%. These results show great promise for the develop-
ment of closed-loop stimulation that leaves other aspects of
brain function unaffected and paves the way for the use of
such therapies in humans.
For seizure suppression, some techniques appear to be

effective for distributed control and others appear to be
effective for local control. Theoretical modeling of the former
case was done by Ching, Brown, and Kramer (2012), who
employed a grid of stimulating electrodes that acted as
actuators to help stem and direct the propagation of electrical
activity. To model mesoscale cortical dynamics, they used a
network of Wilson-Cowan oscillators, with both diffusive
and synaptic coupling. By modeling the placement of several
actuators, they demonstrated the ability to limit pathological
activity (the spreading of electrical activity across a patch). By
slowing the spread of activity, their method can be used in
conjunction with pharmacological agents or allow time for
other self-correcting mechanisms in the brain. Naturally, their
method would depend on how well the actuators contact and
target the underlying tissue, as well as on accurate monitoring
of seizure activity and the ability to control the system in real
time. An alternative approach was put forth by Taylor et al.
(2015), whose model covered a larger spatial area and used
connectivity derived from patient MRI to facilitate person-
alization of stimulation. A simple dynamical model described
regional activity including epileptic spike wave dynamics, and
a pseudospectral method generated time-varying stimuli to
halt simulated seizures.
When considering translating some of these techniques to

the clinic, it is useful to contrast them with existing clinical
procedures. Generally speaking, clinical interventions for
epilepsy can come in the form of (i) carefully modifying
neural structure and dynamics, (ii) entirely quieting dynamics
over short periods of time, or (iii) removing tissue to ensure
silence over a lifetime. Khambhati et al. (2016) studied
methods to treat epilepsy via either short term “lesioning”
(meaning quieting dynamics using stimulation) or long term
“resection” (actually surgically removing the tissue). They

developed methods for the identification of suitable lesion
points that affect the ability of the network to sustain
synchronous activity associated with the occurrence of a
seizure; see Fig. 9. These inferences are based on a measure
of synchronizability of the network—the ratio of the largest
and smallest eigenvalues of the graph Laplacian (Barahona
and Pecora, 2002). Virtual resection of individual brain
regions in silico can pinpoint control regions that strongly
synchronize or desynchronize network dynamics, while
revealing a principle of push-pull antagonism that provides
a possible explanation for why seizures spread. Still, fully
synchronized states occur only in a subset of seizure types,
and it is therefore very likely that different sorts of control will
be required for different sorts of seizure etiologies. Hence, the
mapping from control type to seizure type will need to be
validated experimentally, and further work is needed to clarify
the translational applicability of this approach.
Considering the large variability of epileptic synods and

seizures (focal and generalized), these methods could add to
the suite of possible interventions that include local control.
The range of models in this section illustrated many possible
direct applications of control theory to important medical
questions and the potential gains that could be made through
the successful control of aberrant dynamics. This possibility
for clinical impact is perhaps the most immediate motivation
to study the control of brain dynamics, and we hope these
examples will encourage new efforts in these areas.

FIG. 8. Closed-loop stimulation for seizure suppression in a rat. Recordings from channels a, b, and c in the cortex are filtered for spike
detection, where signals exceeding the predetermined amplitude threshold are detected. These thresholded signals are used to trigger
transcranial electric stimulation, which is applied through the scalp. From Berényi et al., 2012.

FIG. 9. Schematics of patient electrophysiology and epileptic
model. Left: Intracranial electrophysiology of patients with
neocortical epilepsy. Each sensor (red dot) can be treated as a
node within a functional network that uses magnitude squared
coherence between sensors as network edges. Right: A model of
the epileptic network, comprised of a seizure-generating system
and a hypothesized regulatory system that controls the spread of
pathologic seizure activity. From Khambhati et al., 2016.
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VI. CONTROL OF SPECIFIC NEURAL DYNAMICS
OR PATHWAYS

The example contexts in clinical medicine that we dis-
cussed in the previous sections highlighted the great diversity
of neural network dynamics in both health and disease. In
this section, we focus on two specific types of network
dynamics for which simple mathematical models can be
studied, and for which control strategies can be examined
analytically. The first context is that of neural synchrony, or
rhythmic oscillations of neural ensembles. The second context
is state transitions, where the activation profile of the brain
moves from one pattern to another. We concluded the section
by describing a few empirical tools that can be used to
modulate these dynamics and to test predictions from network
control theory.

A. Synchrony of neural populations

1. Dynamical characteristics and clinical relevance

When considering the control of specific dynamics, a
natural place to start in neural systems is synchrony, which
occurs when populations of neurons or brain regions exhibit
the same dynamics sðtÞ, i.e., x1ðtÞ¼ ���¼xnðtÞ¼ sðtÞ; see
Fig. 10(a). In many organisms, synchrony manifests as strong
time-locked patterns, such as circadian rhythms and gait
regularity. Moreover, the transition between synchrony and
desynchrony has implications for treating epilepsy (Jirsa et al.,
2014), Parkinson’s disease, or other pathological conditions.
Hence the propensity toward synchrony or the ease of
transitioning in and out of a synchronous state is of great
interest, both in local neuronal ensembles (Nabi and Moehlis,
2011; Davison, Dey, and Leonard, 2016) and in distributed
whole-brain networks (Tang et al., 2017).
While this field is too large to do justice to in this small

space, we highlighted the work of Nabi and Moehlis (2011) as
an excellent example describing the process of desynchroni-
zation in two models of coupled units (Kuramoto and a
reduced phase Hodgkin-Huxley with electrotonic coupling),
through the dynamic programming of inputs to a single
neuron in the population. This work offers a possible
mechanism for deep-brain stimulation in Parkinson’s disease,

where stimulation represents a single input that can affect
desynchronization. Importantly, the model includes global
(all-to-all) coupling between neurons, and therefore the use
of more heterogeneous couplings that are characteristic of
empirically measured brain networks could be an interesting
future direction.
While understanding desynchronization processes is criti-

cally important, another relevant question pertains to the
conditions under which synchrony can occur. While some
efforts seek to address this question through the analysis of
Lyapunov functions (Davison, Dey, and Leonard, 2016), the
bounds are often of limited value as they are far from the
regime in which we expect neural dynamics to take place.
Alternatively, transient regimes toward synchrony and per-
turbative methods on synchronizability can be used to
describe more realistic regimes.

2. Structural drivers of synchrony: Graph architecture
and symmetries

One framework to study the perturbative stability of a
synchronous state or transients toward synchrony takes an
explicitly structural approach. For instance, Pecora and Carroll
(1998) proposed the master stability function (MSF) to analyze
the stability of this state on a network of oscillators. A
schematic of this function for a generic network of identical
oscillators is given in Fig. 10(a). Within this framework,
linear stability depends on the positive eigenvalues fλig,
i ¼ 1;…; N − 1 of the graph Laplacian L defined by
Lij ¼ δij

P
kAik − Aij, where A is the network adjacency

matrix defined in Sec. III.A. More specifically, stability under
perturbations exists when this function is negative for all
positive eigenvalues of the Laplacian matrix.
Without a detailed specification of the properties of the

dynamical units, a larger spread of Laplacian eigenvalues
will typically make the system more difficult to synchronize
than a smaller spread. Therefore, one natural measure of
global synchronizability is the inverse variance 1=σ2ðfλigÞ, as
proposed by Nishikawa and Motter (2010):

σ2 ¼
P

N−1
i¼1 jλi − λ̄j2
d2ðN − 1Þ ; where λ̄ ≔

1

N − 1

XN−1

i¼1

λi; ð9Þ
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FIG. 10. Synchronizability of structural brain networks and a negative correlation with age. (a) Schematic of a master stability function
(MSF) for a generic network of oscillators, which gives the perturbative stability of a globally synchronous state (Pecora and Carroll,
1998). Such a state is stable when the MSF is negative for all positive eigenvalues of the graph Laplacian, hence the inverse spread of the
Laplacian eigenvalues 1=σ2ðfλigÞ provides an estimate of synchronizability (or stability under synchrony); see Nishikawa and Motter
(2010). (b) Synchronizability in structural brain networks estimated from diffusion imaging in a large cohort of 882 youth is found to be
anticorrelated with mean average controllability as well as with age (see inset, or color online). From Tang et al., 2017.
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and

d ≔
1

N

X
i

X
j≠i

Aij;

the average coupling strength per node, which effectively
normalizes the overall network strength.
Tang et al. (2017) used this metric of global synchroniz-

ability to study the brain networks of 882 typically developing
youth from the ages of 8 to 22 years. They found that brain
networks that are more synchronizable tend to display lower
average controllability [Fig. 10(b)] as well as lower modal
controllability. While no known relationship between syn-
chronizability and controllability exists, the correlation is
intuitive in that it suggests that individuals who are theoreti-
cally predicted to more easily transition into a variety of
dynamical states are less susceptible to having many regions
locked in synchrony. Interestingly, the relationship between
synchronizability and controllability is partially explained
by age: synchronizability decreases as children age; see
Fig. 10(b). These results suggested that as the brain matures,
its network architecture supports a larger range of dynamics
(from nearby to distant states) perhaps necessary for the adult
repertoire of cognitive functions, and is less able to support
globally synchronized states that are instead characteristic of
pathological conditions such as epilepsy.
The emergence of local patterns of synchronization can

follow different paths depending on the graph architecture
and hence suggest the existence of particular control strategies
that may enact the desired path. Gómez-Gardeñes, Moreno,
and Arenas (2007) probed this dependence on the network
coupling strength and topology, as well as patterns in the
transition to synchrony in a network representing structural
measurements from a cat cerebral cortex (Gómez-Gardeñes
et al., 2010). Such considerations that move beyond the linear
stability of the synchronized state can provide insight into the
design of real-world networks that often display small-world
topologies. The concept of basin stability that can describe
nonlocal and nonlinear systems is a powerful example,
successfully describing features of neural networks such as
the macaque or cat cortex (Menck et al., 2013). The control
of synchrony hence has strong connections with nonlinear
control, also exemplified when considering the role of
structural symmetries. Indeed, critical work from Whalen
et al. (2015) demonstrated that symmetries and motifs in the
network structure have a nontrivial impact on the potential to
control the system’s dynamics. Their work addressing three-
node motifs (see Fig. 11) explored the possibility of intro-
ducing a group-theoretic component to the existing algebra
of control theory. They conducted simulations of the motifs
using biophysical neuronal models characterized by nonlinear
dynamics as described by the Fitzhugh-Nagumo equations,
which comprised a general representation of excitable neuro-
nal membranes. They explored several dynamical regimes
including a chaotic, pulsed limit cycle, and a constant input
limit cycle, to see how different types of symmetries (such
as rotational or mirror) affected the resulting controllability.
Further work is needed to determine whether these effects
on controllability generalize to scenarios in which the same

three-node motifs are embedded in a larger network, or in
which the model of dynamics is changed from a cellular-level
model to a macroscale model of neuronal activity. In addition,
other factors besides anatomical connectivity or network
coupling strength (such as local dynamics or neurotransmitter
levels) could also contribute to synchrony and dynamics and
provide interesting directions for future investigation.

B. The cost of controlling specific trajectories

While the control metrics defined earlier (Sec. III.C) con-
sider the cost of control, they necessarily coarse grain over
many different state transitions: average controllability mea-
sures the ability to move the system to all local states on the
energy landscape, while modal controllability measures the
ability to move the system to all distant states on the energy
landscape. However, there are circumstances in real-world
networks—and particularly in brain networks—in which we
would like to understand how to move the system from a
specified initial state to a specified target state. In this general
scenario, we wish to be able to compare the shape of different
trajectories within state space, thereby providing intuitions
regarding the feasibility of a specific transition and the
accessibility of certain final states.
In the context of the linear network system described earlier

[Eq. (3)], one proposed solution to this problem considers
the trajectory from an initial state x0 (one pattern of regional
activation) to a target state xT (another pattern of regional
activation); see Fig. 12. Our goal is to infer a control input
function uðtÞ that minimizes the energy of the transition and
the distance of the current state from the target (final) state:

min
u

Z
T

0

f½ðxT − xðtÞ�T ½xT − xðtÞ� þ ρuðtÞTuðtÞgdt;

s:t: _xðtÞ ¼ AxðtÞ þ BuðtÞ;
xð0Þ ¼ x0;

xðTÞ ¼ xT; ð10Þ

where T is the control horizon, ρ ∈ R>0, and xT − xðtÞ is the
distance between the state at time t and the target state.
Using this formulation, Gu et al. (2017) studied the energy

landscape of finite-time control trajectories from the brain’s

FIG. 11. Motif structures that occur within networks. The motif
structures studied by Whalen et al. (2015), through simulations
of nonlinear biophysical neuronal models and their resulting
controllability.

Evelyn Tang and Danielle S. Bassett: Colloquium: Control of dynamics in brain networks

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 031003-13



baseline activation state to states with heightened activity in
cortical areas devoted to vision, audition, and motor function.
Interestingly, they observed that the most efficient drivers
of these transitions were nodes in the network (or regions
of the brain) with high communicability to the target state.
Communicability examines the weighted sum of walks of all
lengths, i.e.,

Gij ¼
X∞
k¼0

�
Ak

k!

�
ij
¼ ðeAÞij

in a binary network. The generalization to weighted networks
is Gw

ij ¼ eA
0

ij , where A
0 ¼ D−1=2AD−1=2 and D is the diagonal

matrix with Dii ¼
P

jAij. Their results indicated the impor-
tance of long-distance walks on the network for efficient
control. Moreover, by studying changes in the energetic
impact of nodes on certain control actions, they also found
that patients with mild traumatic brain injury showed a loss of
specificity in the putative control processes that their brain
networks support. This work sheds light on the mechanisms
that drive brain state transitions in healthy cognition and their
alteration following injury.
Similarly, Betzel et al. (2016) simulated control trajectories

among states characterized by the activation of various
cognitive systems in the brain: systems devoted to visual,
auditory, motor, baseline, cognitive control, salience, and
attention-related functions. The goal was to compare energetic
costs of these transitions and to determine how this cost
depends on the number of controllers used. They identified the
brain regions that contributed most strongly to changes in
energetic cost and compared these with predictions from
network control theory. In particular, they identified a group
of control regions that are located in the rich club: a set of
high-degree nodes that tend to also connect to one another
(Colizza et al., 2006). Notably, these rich-club hubs acting as
control regions most altered energetic outcomes when the
brain’s rich-club organization was destroyed by simulated
lesioning, an increasingly common model of neurodegener-
ative disease (Alstott et al., 2009).

Within this modeling framework, a choice of which
trajectories to be simulated has to be made. Further work
remains to identify the most useful trajectories for simulation
that can reveal actual brain dynamics, thereby increasing
biophysical relevance.

C. Empirical tools for control of specific neural dynamics
or pathways

In the previous sections, we outlined theoretical frame-
works and computational methods to model and interrogate
the control of neural synchrony and brain state transitions. In
each of these cases, it is and will remain important to inform
and validate theories and models with empirical data, using
experimental tools for control. Earlier in this Colloquium,
we highlighted several of these tools in the form of brain
stimulation, which have proven especially relevant for thera-
peutic interventions. However, in addition to these relatively
large-scale tools that are already being linked to control
theory, there also exist fine-scale tools for the manipulation
of single neuronal cell types (Lee et al., 2010), which could
benefit from additional theoretical work.
Arguably one of the most powerful recently developed tools

for the manipulation of single-cell types is optogenetics.
Optogenetics offers millisecond-scale optical control of
neural activity in defined cell types during animal behavior
(Grosenick, Marshel, and Deisseroth, 2015). Its marked
precision, in some cases at single-cell resolution, allows the
possibility to guide activity in awake animals and provide a
causal investigation of neural circuitry; see Fig. 13. While
mostly used in rodents, these techniques are increasingly
being used in primates as well to probe basic principles of
neural function and to test strategies for therapeutic inter-
ventions such as the interruption of seizures; for further details
see Grosenick, Marshel, and Deisseroth (2015).
Meanwhile, technologies for simultaneously recording cell

activity and targeting stimulation are constantly improving and
hence now allow the possibility for closed-loop control in
animals. The specificity of the stimulation and the targeted cells
means that at present specific design choices about intended

x1

x3

x2

Uncontrolled trajectory
Controlled trajectory

xT

x0

xT

FIG. 12. Example trajectory through state space. With external
input (control signals), the system at state x0 is driven into the
desired target state xT ; without input the system’s passive
dynamics leads to another state xT , where random brain regions
are more active than others. From Betzel et al., 2016.

FIG. 13. Setup for optogenetic control in a rat. Left: Fiber
photometry setup showing a light path for fluorescence excitation
and emission through a single 400 μm fiber optic implanted in the
ventral tegmental area (VTA). Right: Recombinase-dependent
viral targeting of GCaMP5 to VTA dopamine neurons. From
Grosenick, Marshel, and Deisseroth, 2015.
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outcomes have to be made. For instance, the same stimulation
that evokes gamma oscillations (>60 Hz) at the circuit level
using a relatively slow opsin variant ChR2(H134R) cannot
always reliably drive individual pyramidal cells at such
frequencies. Still, the ability to use such stimulation to direct
behavior in animals suggests tremendous potential for closed-
loop optogenetics to reveal mechanisms for cognition.
The examples that we discussed in this section demonstrated

new insights obtained through the modeling and probing of
specific pathways and circuits in brain networks and provided a
controlled study of their role and contribution to the overall
function of the brain. Further work could investigate how these
pathways and circuits work in a concerted manner to affect
cognitive function as well as underlying principles in the design
and use of these circuits.

VII. EMERGINGCONTROLMETHODSWITH POTENTIAL
UTILITY IN NEUROSCIENCE

Many of these recently introduced theoretical frameworks to
model the control of brain activity rest on linear or simplified
models of dynamics. While they already provide useful
conceptual insights and analytical descriptions for controlling
neural activity, the large repertoire of dynamics in the brain
requires more flexible models to capture its complexity. To
close this Colloquium, we focus on two broad directions of
advances in network control theory that appear particularly
relevant for addressing this gap. The first is the extension of
network control theory to describe a broader range of dynami-
cal regimes, such as nonlinear dynamics or time-dependent
control, or the study of controlmetrics to estimate the feasibility
of control trajectories. The second examines new approaches in
network control theory that exploit specific properties of the
problem to better achieve desired targets, whichmaywell differ
based on the problem at hand. These include the use of
perturbations, stochasticity in the system, or aspects of the
network topology, to design control strategies.

A. Broader control regimes

1. Nonlinear dynamics

Brain activity is highly nonlinear, which can be seen
especially at the level of single neurons or small groups of

neurons. A recent analytical development that is mathemati-
cally exact for a broad range of nonlinear dynamics is that
of feedback vertex sets (FVS) (Fiedler et al., 2013). It only
requires a few conditions (e.g., continuous, dissipative, and
decaying) that are typically satisfied by many real systems.
This formalism identifies the set of nodes in a directed
network that can control all the dynamics of the network
and can steer it to the desired trajectories. Open-loop control
applied to the nodes of an FVS allows for switching the
dynamics of the whole system from one attractor to some
other attractor.
Zañudo et al. (2017) provided an instructive discussion of the

differences between structural controllability and control using
FVS, as illustrated in Fig. 14. They used the FVS formalism to
study several real networks. By comparing its predictions to
those of classical structural controllability, they identified the
topological characteristics that underlie the observed
differences. In addition, they applied the FVS formalism to
study dynamic models of gene regulation in which directed
networks can be used to model gene interactions.
In cases where both the function and structure of the

network are known, one can use simplified dynamical models
such as logical dynamics (on or off states similar to the Ising
model) to identify stable motifs that can control the dynamics
of the network. Indeed, Zañudo and Albert (2015) demon-
strated that such an approach need only be applied transiently
for the network to reach and remain in the desired state. They
illustrated this method using a leukemia signaling network
and a network for cell differentiation, giving rise to several
predicted interventions that are supported by experiments.

2. Time-dependent control

Given a possible lack of complete information about the
network, which is usually the case when one is estimating a
brain network from empirical data, it is possible to identify
strategies based on available data to define an uncertainty set
containing all networks that are coherent with empirical
observations. Indeed, Han et al. (2015) proposed a method
to control the spread of a viral epidemic, taking place in a
directed contact network with unknown contact rates. They
assumed that they have access to time series data describing the
evolution of the spreading process and proposed a data-driven

FIG. 14. Comparison between structural controllability and control using feedback vertex sets. (a) In structural controllability, the
objective is to drive the network from an arbitrary initial state to any desired final state by acting on the network with an external signal
uðtÞ. The dynamics are considered to be well approximated by linear dynamics. (b) In feedback vertex set control, the objective is to
drive the network from an arbitrary initial state to any desired dynamical attractor (e.g., a fixed point) by overriding the state of certain
nodes. From Zañudo et al., 2017.
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optimization framework to find the optimal allocation of
protection resources. This method is illustrated using partial
data about the dynamics of a hypothetical epidemic outbreak
over a finite period of time—paving the way for inferring
control strategies based on limited observational data over finite
periods of time. These or similar methods may be particularly
relevant for the control of seizure spread in the human brain
given that the “resource” of brain stimulation is limited by the
fact that too much stimulation causes heating of the tissue and
eventual cell death.
Indeed, the question of cost and limited resources was

further investigated by Li et al. (2016), who pointed out the
possibility to take advantage of dynamically changing edges
in a network to inform time-dependent control strategies
that may actually reach controllability faster than time-
independent control strategies. This idea is based on the
premise of energy savings in such strategies, by exploiting the
changing topology to avoid energetically costly directions.
For instance, they exerted control toward the desired final state
when the topology renders the energy cost acceptable and
paused when the topology makes the cost prohibitive. While
suggestive of new designs for time-dependent control strat-
egies that may prove more effective than static strategies,
further work is needed to examine their relevance and
feasibility in real neural systems.

3. Realistic control trajectories

Sun and Motter (2013) investigated the control of dynami-
cal trajectories in practice and what determines their ener-
getics or feasibility. In particular, they pointed to the condition
number of the controllability Gramian (5) as crucial for
understanding control in practice, even if the corresponding
Kalman’s controllability matrix is well conditioned.
Furthermore, they pointed out that numerical control fails
even for linear systems if the Gramian is ill conditioned, and
that control trajectories are generally nonlocal in the phase
space; see Fig. 15. Further, they provided a condition for the
numerical success rate of control strategies that depends on the

number of control inputs, which they termed the numerical
controllability transition. Their work points toward additional
criteria that would be relevant when considering the practi-
cality of various control strategies in real systems.

B. Exploiting system properties

1. Compensatory perturbations or noise

It is important to note that the study of control of brain
network dynamics could also benefit from other methods that
target neither nodes nor edges but instead identify effective
parameters to design new strategies for control. The advantage
of such approaches is their applicability for realistic regimes
including nonlinear dynamics or stochastic systems. One such
method proposed by Cornelius, Kath, and Motter (2013) uses
compensatory perturbations to steer the system to desired
states: that is, perturbations to state variables that bring the
system to the basin of attraction of the desired target state.
They presented methods to iteratively identify such compen-
satory perturbations, through consideration of the physically
admissible perturbations, and through nonlinear optimization
on this space of possible changes. Their approach is effective
in bringing the system to a desired target state even when this
state is not directly accessible, as they demonstrated through
the mitigation of cascading failures in a power grid and the
identification of drug targets in a cancer signaling network.
Another such method identifies interventions that can

reshape the topography of the underlying quasipotential in a
desired way (Wells, Kath, and Motter, 2015). This is achieved
by determining the minimum action paths, those followed by
the likely noise-induced transition trajectories, and the corre-
sponding transition rates between all pairs of stable states. By
optimizing these transition rates, they effectively altered qua-
sipotential barriers between different stable states, which
could be achieved biologically through, for example, a genome
editing approach. This proposal exploited the response of
biological systems to noise to induce a desired cell state and
thereby to predict and control noise-induced switching in
genetic networks. While this method was demonstrated on
models of cell differentiation, it is potentially useful for control
in other classes of noisy complex networks.

2. Network topology

Finally, understanding control in brain networks could
benefit greatly from a better understanding of which topo-
logical features and symmetries determine the controllability
of a network. Recent work on this front was pioneered by
Bianchin, Pasqualetti, and Zampieri (2015), who studied the
controllability degree of complex networks as a function of the
network diameter and the weights. By examining the energy
required by a group of nodes to control the network to a
desired state, they found that networks with a long diameter
and anisotropic weights are easier to control than networks
with a short diameter or isotropic weights. Here weights are
defined as isotropic if they allow a control signal to propagate
equally in all directions and anisotropic otherwise.
Separately, Ruths and Ruths (2014) discussed control

profiles in real networks, by identifying topological features
of the network (such as sources and sinks) that correlate with

FIG. 15. Two-dimensional example of nonlocal trajectories.
Example systems _x1 ¼ x1 þ u1ðtÞ, _x2 ¼ x1, where the curves
indicate minimal-energy control trajectories for the given initial
state (open symbol) and target states (solid symbols). Back-
ground arrows indicate the vector field in the absence of control.
From Sun and Motter, 2013.
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control properties. Building on these ideas, Campbell
et al. (2015) showed that the number of source and sink
nodes, the form of the in- and out-degree distributions, and
local complexity (e.g., cycles) shaped the control profile in
empirical networks. Pósfai et al. (2013) examined the effects
of clustering, modularity, and degree correlations on the
minimal number of driver nodes required to control a network
[similar to the problem posed by Liu, Slotine, and Barabási
(2011)]. They found that under certain conditions, only degree
correlations have a discernible effect.
Lastly, DeVille and Lerman (2015) investigated analytical

relationships between network modularity or symmetries, and
the resulting dynamics. They showed that continuous time
network dynamics can be decomposed into collections of
interacting local control systems, and that a class of maps
called graph fibrations give rise to conjugate dynamical
systems. Their work provided a robust mathematical formal-
ism to generalize existing understanding such as the relation-
ship between symmetries and synchrony, through the broad
notion of modularity.

VIII. CONCLUSION

We have discussed many new developments in the exciting
field of controlling brain network dynamics and, more
importantly, attempted to highlight some of the many remain-
ing open questions. This is an exciting time that has seen rapid
theoretical and technological progress in methods of brain
network control or innovations that could be useful for brain
network control. By outlining the potential in this young and
emerging field, we hope to entice new practitioners and further
efforts toward this important goal of controlling brain network
dynamics that has great implications for the bettering of our
health and cognitive function.
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