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This Colloquium describes a new paradigm for creating strong quantum interactions of light and
matter by way of single atoms and photons in nanoscopic lattices. Beyond the possibilities for
quantitative improvements for familiar phenomena in atomic physics and quantum optics, there is
a growing research community that is exploring novel quantum phases and phenomena that arise
from atom-photon interactions in one- and two-dimensional nanophotonic lattices. Nanophotonic
structures offer the intriguing possibility to control atom-photon interactions by engineering the
medium properties through which they interact. An important aspect of these new research lines
is that they have become possible only by pushing the state-of-the-art capabilities in nano-
photonic device fabrication and by the integration of these capabilities into the realm of ultracold
atoms. This Colloquium attempts to inform a broad physics community of the emerging
opportunities in this new field on both theoretical and experimental fronts. The research is
inherently multidisciplinary, spanning the fields of nanophotonics, atomic physics, quantum
optics, and condensed matter physics.
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I. INTRODUCTION

Achieving and controlling interactions between atoms and
photons at the quantum level has been a central goal in the
fields of atomic physics and quantum optics for decades.
Atomic systems have long provided a platform to observe
many fundamental quantum phenomena, such as nonclassical
statistics of light emitted by single atoms (Kimble, Dagenais,
and Mandel, 1977) and reversible vacuum Rabi oscillations
between a single atom and a photon (Rempe, Walther, and
Klein, 1987; Thompson, Rempe, and Kimble, 1992; Brune
et al., 1996). Such early examples of the capability to observe
and generate quantum effects gained new importance with the
rise of fields such as quantum information processing and
quantum metrology, making already well-studied atom-light
interfaces a promising route toward realization. There have
been spectacular demonstrations as diverse as single-photon
switching (O’Shea et al., 2013; Shomroni et al., 2014) and
basic quantum networks (Ritter et al., 2012) using atoms
coupled to high-finesse optical cavities, and quantum memo-
ries for light (Liu et al., 2001; Phillips et al., 2001; Julsgaard
et al., 2004; Chou et al., 2007) and entanglement-enhanced
magnetometry using atomic ensembles (Wasilewski et al.,
2010). Beyond these applications, the combination of com-
plex interactions that can occur in atom-light interfaces and
the level of experimental control that can be reached also
makes these systems promising to investigate new types of
many-body phenomena and opens up interesting links with
fields such as quantum information theory and condensed
matter. Active areas of interest along these lines include self-
organization of atoms due to the interplay between atomic
scattering of light and optical forces (Domokos and Ritsch,
2002; Black, Chan, and Vuletic, 2003; Gopalakrishnan, Lev,
and Goldbart, 2009; Baumann et al., 2010), the behavior of
strongly interacting photon “gases” (Peyronel et al., 2012;
Bienias et al., 2014; Zeuthen et al., 2017), and even the
exploration of quantum information scrambling (Swingle
et al., 2016).
Historically, atom-light interfaces have consisted of macro-

scopic, free-space setups. Despite many experimental suc-
cesses, there has also been an effort for over a decade to
migrate from free space to microphotonic and nanophotonic
platforms (Aoki et al., 2006; Nayak et al., 2007; Vetsch et al.,
2010; Volz et al., 2011; Goban et al., 2012, 2014; O’Shea
et al., 2013; Thompson et al., 2013; Shomroni et al., 2014) for
a number of motivations. For example, the ability to confine

light to small dimensions directly increases the per-photon
field intensities and thus the interaction strengths with matter.
At the same time, using photonic systems fabricated from
state-of-the-art lithographic techniques provides a possible
route toward robustness and scalability, perhaps even even-
tually leading to atomic physics and quantum optics on a chip.
While experimental efforts began over a decade ago, success
proved to be quite challenging. In particular, the nature of
fields confined in nanophotonic systems, such as their
polarization and dispersion relation, can be quite different
than in free space. Thus, the large atomic physics toolbox built
up for free-space atom loading, cooling, and trapping in
general does not immediately apply when it comes to
confining atoms within nanoscale regions of dielectric struc-
tures. The development of elegant schemes, such as traps
formed from evanescent fields at two very different wave-
lengths or from light reflected from dielectric interfaces, was
critical to experimental progress. Promisingly, important
figures of merit for atom-light interactions, such as optical
depth or a cavity “cooperativity” factor, are now competitive
with or even exceed what is possible in free space (Tiecke
et al., 2014), representing a significant milestone for the field.
While the original motivation of migrating to nanopho-

tonics largely centered on improving upon free-space
approaches, the complexity of fields in nanophotonic systems
also turns out to give rise to unanticipated opportunities. In
particular, an increasing body of work demonstrates the
possibility to create fundamentally new paradigms for quan-
tum atom-light interactions, which have no obvious prior
analog in free-space settings. This provides new routes toward
building exotic quantum matter from atoms and photons,
quantum simulation, and the transfer and manipulation of
quantum information. For example, it has been shown that it is
possible to realize chiral interactions between atoms and light,
where atoms couple to photons (and thus to each other) in a
directionally dependent way, even if the system is nominally
mirror symmetric (Mitsch et al., 2014; Sayrin, Junge et al.,
2015). It is also possible to realize atom-photon bound states,
where an atom is surrounded by a localized photonic “cloud,”
and which can serve as a mediator of coherent long-range
interactions between atoms.
Within this context, the goal of this Colloquium is to

provide an overview of the progress, challenges, and new
techniques involved in interfacing atomic physics and nano-
photonics, and of the potential opportunities made possible by
these emerging systems. We begin in Sec. II by reviewing the
various approaches in free space to efficiently couple atoms
and photons, which later will enable a better understanding of
nanophotonics-based approaches. An overview of nanopho-
tonic systems and the potential improvements in figures of
merit over free space are discussed in Sec. III. In Sec. IV, we
introduce the novel classes of paradigms that have emerged in
recent years to control and manipulate atom-light interactions
using nanophotonic systems, which can be roughly classified
into three categories: the utilization of collective dissipation,
chiral atom-light interactions, and interactions within a pho-
tonic “band gap.” A more in-depth look is provided in the
remainder of the Colloquium. In Sec. V, we introduce a
theoretical formalism that enables one to conveniently capture
atom-photon interactions in complex dielectric environments,
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while in Sec. VI we describe different experimental tech-
niques to create and load atomic traps near dielectric nano-
structures. In the remaining sections, we return to the themes
of collective dissipation, chiral interactions, and physics
within a photonic band gap, introducing the minimal theo-
retical models that characterize each situation and providing
simple examples of the applications and phenomena that
emerge (see Fig. 1).
As a final note, while we specifically focus on work to

interface neutral atoms with nanophotonic systems, many of
the conceptual paradigms that emerge to control light-matter
interactions can also be applied to other settings. These
include molecules (Hwang et al., 2009; Faez et al., 2014),
quantum dots and other solid-state emitters coupled to nano-
photonic systems (Lodahl, Mahmoodian, and Stobbe, 2015),
and superconducting qubits coupled to devices in the micro-
wave domain (van Loo et al., 2013; Liu and Houck, 2017).
The general applicability of the paradigms presented here
should become apparent (e.g., via the simple effective
Hamiltonians governing them), while we refer readers to
the references previously cited to learn the details of these
other nonatomic systems.

II. CONVENTIONAL STRONG ATOM-PHOTON
INTERACTIONS

Efficient interactions between atoms and light constitute the
key enabling mechanism for applications with atomic sys-
tems, ranging from quantum information processing to met-
rology to nonlinear optics (Chang, Vuletic, and Lukin, 2014).
We begin by reviewing several important concepts to achieve
efficient interactions and highlighting some of the approaches
used historically for atoms in free space.

The simplest model for an atom, which already elucidates
the important physics, involves just two electronic levels, a
ground state jgi and an excited state jei, which are connected
through an optical dipole transition. The two-level nature
implies that atoms can only emit and absorb single photons at
a time, which has long been known to yield interesting
nonlinear optical effects such as self-induced transparency
(McCall and Hahn, 1969). Pioneering studies in fact showed
that single-photon emission from an atom is intrinsically
nonclassical, in both its intensity correlation statistics (“anti-
bunching”) (Kimble, Dagenais, and Mandel, 1977) and its
photon number distributions (Short and Mandel, 1983).
Together with nonclassical light from atomic ensembles
(Freedman and Clauser, 1972; Clauser, 1974), these early
experiments set the stage to make atomic systems one of the
preferred avenues toward implementation of quantum infor-
mation science.
One of the great incongruities, however, is that although

single atoms naturally produce quantum states of light, getting
a single atom and a photon to interact deterministically is very
unnatural. An important parameter to characterize the inter-
action probability is the resonant scattering cross section σsc
of a single atom [see Fig. 2(a)]. Here a weak incident laser
beam, whose frequency is tuned to be resonant with
the atomic transition ωeg (with corresponding wavelength
λeg ¼ 2πc=ωeg), is focused with an area Aeff onto a single
atom. The probability P that a photon in the beam is absorbed
by the atom and rescattered into other directions in the
paraxial approximation is P ¼ σsc=Aeff . For an ideal two-
level system, σsc ¼ 3λ2eg=2π is the maximum allowed by the
unitarity limit and depends only on the transition wavelength
of the atom but not its detailed microscopic properties (de
Vries, van Coevorden, and Lagendijk, 1998). The difficulty of
achieving a high probability of interaction lies in the fact that

FIG. 1. Overview. Recent developments in experimental and
theoretical techniques bring forth new atom-light interfaces
(Sec. III) that can simultaneously achieve stable atom trapping
and strong atom-photon interactions beyond conventional set-
tings (Sec. II), and offer surprising new paradigms in atomic
physics, cavity QED, and waveguide QED (Sec. IV). In this
Colloquium we discuss these new possibilities, including a
hybrid atom trap and vacuum lattices (Sec. VI), collective
dissipation engineering (Sec. VII), chiral quantum optics
(Sec. VIII), and many-body physics with atom-atom (Sec. IX),
spin-motion (Sec. X), and photon-photon (Sec. XI) interactions.

(a) (b)

(c)

Tight focusing Cavity QED

Atomic ensembles (d) Rydberg Ensemble

FIG. 2. Conventional approaches in quantum optics to achieve
strong atom-photon interactions. (a) Diffraction-limited focusing
of an optical beam onto a tightly trapped atom, (b) cavity QED,
where the interaction is enhanced by a large number of photon
round-trips, (c) atomic ensemble, where a large atom number
results in high probability of interaction with a single photon, and
(d) atomic ensemble of Rydberg atoms.
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in free space, the diffraction limit sets the lower limit of
focusing to Aeff ≳ λ2eg.
Given this fundamental observation, a number of

approaches have been developed to increase P in free space
(Chang, Vuletic, and Lukin, 2014).
(i) Tight focusing: Following the analysis of van Enk and

Kimble (2001), pioneering efforts were made to tightly trap
single atoms and to focus free-space beams onto them with
high numerical aperture optics (Darquie et al., 2005; Tey
et al., 2008; Hetet et al., 2011), as shown in Fig. 2(a). It was
observed that a single atom could attenuate the transmission of
near-resonant light by up to P ∼ 10%.
(ii) Cavity QED: The predominant approach has been that

of cavity quantum electrodynamics (QED), where single
atoms are positioned within two mirrors that form a high-
finesse optical cavity [Fig. 2(b)]. Here the probability of
interaction is enhanced by the number of round-trips that the
photon makes across the atom due to reflection off the mirrors.
The resulting figure of merit C ∝ σscNtrips=Aeff of course loses
its meaning as a probability of interaction when C ≳ 1, but as
we show later, this cavity cooperativity factor defines a rather
universal parameter to characterize the efficacy of a cavity
QED system. It is also convenient to rewrite Ntrips ¼ c=κL in
terms of the cavity length L and decay rate κ, such that
C ∝ σscNtrips=Aeff ∝ Qλ3eg=Veff . Here Q ¼ ωc=κ is the quality
factor of the cavity (we assume the cavity resonance frequency
ωc is comparable to ωeg), and Veff is the cavity mode volume.
Thus the desired ingredients for efficient interaction are a
long photon lifetime and high degree of spatial confinement
of light.
As cavity QED constitutes such an important paradigm

within atomic physics, we will present some key theoretical
aspects here, followed by a discussion of experimental state
of the art. This will enable a more detailed comparison with
nanophotonics setups later. For additional details on cavity
QED, we refer to Haroche and Raimond (2006) and Reiserer
and Rempe (2015). The Jaynes-Cummings model (Jaynes and
Cummings, 1963) is a model Hamiltonian that describes the
interaction of a single atom and photons occupying a single
optical mode and is given by

HJC ¼ ℏδJCσee þ ℏgJC cos kxðσegaþ a†σgeÞ: ð1Þ

Here the atomic operators are defined as σαβ ¼ jαihβj and
δJC ¼ ωeg − ωc is the frequency difference between the cavity
resonance and atomic transition. The cavity mode is taken to
be a standing wave, although in this section we assume that
the atomic position x satisfies cos kx ¼ 1, i.e., the atom sits at
an antinode. On resonance (δJC ¼ 0), the Hamiltonian allows
for an atom to transition from its ground state to excited state
by absorbing a cavity photon and to subsequently reemit it
at a rate gJC (the so-called vacuum Rabi splitting). In terms
of microscopic parameters, gJC is related to the atomic
dipole matrix element ℘ ¼ hejdjgi and mode volume by
gJC ¼ ℘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=2ϵ0ℏVeff

p
. In general, HJC conserves the total

number of excitations (atomic excitations plus photons) and is
thus easily diagonalizable.
One relevant limit is when the cavity detuning jδJCj is large

compared to gJC, in which case the atom and photons nearly

decouple. Then, for one total excitation, one of the eigenstates
is mostly an atomic excitation jψþi ≈ je; 0i − ðgJC=δJCÞjg; 1i
with corresponding eigenvalue ωþ ≈ δJC þ g2JC=δJC. Here jni
denotes the Fock state of n cavity photons. The excited-state
frequency is shifted by an amount g2JC=δJC compared to its
bare value, due to the dressing by a small amount ðgJC=δJCÞ2
of photon population. For multiple atoms coupled to the cavity
at positions xi, this common virtual photon gives rise to an
effective “spin” interaction between atoms if the photon is
integrated out (Goldstein and Meystre, 1997),

HJC;eff ¼
X
jl

g2JC
δJC

cos kxj cos kxlσ
j
egσlge: ð2Þ

This Hamiltonian describes the exchange of atomic excita-
tions and is infinite range, as the photon mediating the
interaction resides equally between the two cavity mirrors
and thus the physical separation between the atoms is
irrelevant (aside from the standing-wave modulation).
Besides the ideal coherent evolution under HJC;eff, a

realistic system also exhibits two fundamental dissipation
mechanisms [Fig. 2(b)]. First, an excited atom can sponta-
neously emit a photon into free space at a rate Γ0, since the
cavity is not closed. For realistic Fabry-Perot cavities in the
optical domain, the cavity mode subtends a small fraction
of the total solid angle into which the atom can emit
and thus Γ0 is comparable to the vacuum emission rate
Γ0 ¼ ω3

eg℘2=ð3πϵ0ℏc3Þ. In addition, the cavity photon can
decay at a rate κ. We now provide an example of how the
cooperativity emerges as the figure of merit when optimizing a
desired process in the presence of losses. In particular, we
consider two atoms coupled via HJC;eff and investigate the
maximum spin-exchange fidelity to the state jgei, assuming
that the initial state is jegi. The time for exchange is given by
τ ≈ πδJC=2g2JC, while the loss rate is Γtot ≈ Γ0 þ κðgJC=δJCÞ2
(the weighted average of the atomic and photonic population
and their respective decay rates). The total error probability
E ≈ τΓtot during the exchange can be minimized with respect
to δJC to yield Emin ¼ π=

ffiffiffiffi
C

p
, where C≡ g2JC=κΓ0 is the single-

atom cooperativity. Since Γ0 ≈ Γ0, one can readily show that
C ∝ λ3egQ=Veff , which confirms the validity of the intuitive
scattering cross-section argument presented earlier.
In conventional Fabry-Perot cavities (Miller et al., 2005;

Reiserer and Rempe, 2015), it is possible to achieve a
cooperativity on the order of C ∼ 10–100. As cavities in
these experiments already support an extremely high finesse
of Ntrips > 105, in the past 20 years numerous groups have
begun exploring different types of cavities in order to reduce
the mode volume Veff . These included whispering-gallery-
mode resonators (Vernooy et al., 1998; Aoki et al., 2006;
O’Shea et al., 2013; Shomroni et al., 2014) and fiber-based
cavities (Colombe et al., 2007; Volz et al., 2011; Kato and
Aoki, 2015), which increased cooperativities by an order of
magnitude. These miniaturized cavities were also an impor-
tant stepping stone toward nanophotonic systems.
(iii) Atomic ensembles: A third approach to increasing the

interaction probability of a photon with atomic media is to use
a large number of atoms Na, in which case the resulting figure
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of merit is OD ¼ ðσsc=AeffÞNa. This defines the “optical
depth” of an atomic ensemble and characterizes the degree
of exponential attenuation in transmitted intensity for a
resonant incident beam T ¼ expð−ODÞ. While exponential
attenuation (arising from scattering into other directions) is not
particularly useful, it can be shown that the optical depth still
retains importance once the ensemble is functionalized
(Hammerer, Sørensen, and Polzik, 2010) (for example, by
using three-level atoms and implementing electromagnetically
induced transparency, discussed later). Even when function-
alized, however, an ensemble with high optical depth gen-
erally does not have the same power as a high-cooperativity
cavity. In particular, a single two-level atom is intrinsically
nonlinear and generates nonclassical states of light, and
increasing the cooperativity in cavity QED enables one to
directly exploit this property. However, increasing OD with
many atoms typically makes the system highly linear (as now
up to ∼Na photons are needed to saturate all the atoms). Thus,
weak light pulses interacting with atomic ensembles are
usually characterized by linear or Gaussian dynamics
(Hammerer, Sørensen, and Polzik, 2010). This regime in
itself has many applications, including quantum memories
for light (Fleischhauer and Lukin, 2000; Liu et al., 2001;
Julsgaard et al., 2004; Choi et al., 2008), spin squeezing
(Kuzmich, Mandel, and Bigelow, 2000), or probabilistic
schemes for quantum information processing (Duan et al.,
2001; Kuzmich et al., 2003; Chaneliere et al., 2005; Duan and
Monroe, 2008). However, demonstrated nonlinear interaction
strengths thus far in atomic ensembles (aside from Rydberg
gases, described next) are about 2 orders of magnitude below
that needed for single photons to interact (Bajcsy et al., 2009).
It should be noted that although a single atom can have a
reasonably large optical depth of OD ∼ 0.1 (Darquie et al.,
2005; Tey et al., 2008), this per-atom OD cannot be extended
to ensembles as a tightly focused beam rapidly diverges in
area (Tanji-Suzuki et al., 2011; Baragiola et al., 2014; Qi
et al., 2016). The challenge of achieving high atomic densities
and long interaction lengths typically limits free-space ensem-
bles to optical depths of OD≲ 102.
(iv) Rydberg gases: As argued, an atomic ensemble

typically enables efficient interactions with single photons
at the cost of making the system highly linear. A remarkable
approach to achieving strong nonlinear interactions in ensem-
bles was pursued in recent years (Lukin et al., 2001). The key
idea is to utilize the efficient atom-light interactions to map
single photons into highly excited Rydberg levels of atoms
(Saffman, Walker, andMølmer, 2010), as illustrated in Fig. 2(d)
(Pritchard, Weatherill, and Adams, 2013; Firstenberg, Adams,
and Hofferberth, 2016; Murray and Pohl, 2016). Here photons
in a probe beam near resonance with the jgi − jei transition can
be coherently absorbed into a Rydberg state jri, through a two-
photon transition mediated by a strong classical pump beam Ω.
The transfer of an atom into the metastable state jri suppresses
the usual strong absorption and rescattering associated with
two-level atoms and results in the process of “electromag-
netically induced transparency” (EIT) (Fleischhauer,
Imamoglu, and Marangos, 2005). This process is efficient
only if the sum of probe and pump frequencies matches the
transition energy from jgi to jri. Once a Rydberg excitation is

created, however, it shifts the energy of the Rydberg level of
nearby atoms by an amount VðrÞ due to strong van der Waals
interactions. This shift prevents the resonance condition from
being matched for a second probe photon, within a certain
Rydberg “blockade” radius rb. This second photon effec-
tively sees only a two-level medium of jgi-jei and is strongly
scattered. The resulting output state of the probe beam can
then exhibit nonclassical correlations, as it contains only
single photons within a given spatial region (Pritchard et al.,
2010; Dudin and Kuzmich, 2012; Peyronel et al., 2012). This
Rydberg blockade was successfully used to realize effects
such as single-photon switching (Gorniaczyk et al., 2014;
Tiarks et al., 2014).

III. A NEW WAY FORWARD: ATOMS AND
NANOPHOTONICS

In the previous section, we presented an overview of the
(mostly orthogonal) approaches toward achieving efficient
atom-photon interactions: tight focusing of beams, multiple
round-trips, many atoms, and atom-atom interactions, and we
discussed some of the technical challenges faced in these
various strategies. This background facilitates a comparison
with nanophotonic systems. In this section, we begin by
introducing some important nanophotonic structures, such as
nanofibers, photonic crystal waveguides, and photonic crystal
cavities. At a minimum, directly mapping existing paradigms
(such as cavity QED) onto such structures can result in
significantly improved figures of merit, due to factors such
as strong confinement of optical fields. We will discuss the
current and potential figures of merit associated with nano-
photonic structures here. Importantly, however, we will also
see that nanophotonic systems provide the opportunity to
engineer the dispersion and modal properties of light and the
dimensionality in which atoms and photons “see” each other.
These considerations will be important in later sections, when
we discuss how one can create new paradigms for atom-light
interactions, which have no prior analog in atomic physics and
quantum optics.

A. Overview of nanophotonics

Perhaps the simplest nanophotonic structure, which serves
as a starting point to understand more complex structures, is
an optical nanofiber [Fig. 3(a)]. In a ray optics picture, a fiber
guides light within a high refractive index core, surrounded by
a lower index cladding (in our case vacuum), through total
internal reflection. The dispersion relation of the guided mode
frequency f versus wave vector k along the propagation axis
of a cylindrical nanofiber of radius rfiber ¼ 250 nm is illus-
trated in Fig. 3(b). For sufficiently small core radii krfiber ≲ 2,
the fiber supports only a single transverse spatial mode,
labeled “HE11” in the figure, at a given frequency.
Interestingly, there is no cutoff for small radius (in contrast
to a microwave waveguide) (Jackson, 1999). To respect the
diffraction limit of Aeff ≳ λ2, a significant evanescent field
then forms outside the core, which can extend in the transverse
direction far beyond the radial size rfiber (Le Kien, Balykin,
and Hakuta, 2004), as shown in Fig. 3(c). As we discuss later,
this evanescent field provides a mechanism to trap atoms in
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the vacuum region near the fiber and create high interaction
probability between individual atoms and resonant propagat-
ing photons guided within the fiber.
The dispersion relation of a fiber is featureless over very

large bandwidths, indicating its ability to guide light of very
different wavelengths and with little distortion. On the other
hand, for many applications within classical optics it might be
desirable to tailor the dispersion relation, for example, to
realize frequency filters or compact delay lines. One powerful
way to modify the dispersion relation of a translationally
invariant fiber or dielectric waveguide is to periodically
modulate the dielectric profile ϵðrÞ along the propagation
axis [such as by sinusoidal variation of the structure width as
illustrated in Fig. 4(a)], thus realizing a “photonic crystal”
waveguide (PCW) (Joannopoulos et al., 2008). While a single
cycle of modulation behaves as a simple scatterer for guided
fields, the multiple interference in scattering from a periodic
array can behave in a much more complex manner. In this
case, Bloch’s theorem serves as a convenient way to describe
propagation through this periodic “potential.” In particular,
the dispersion relation ωðkÞ of guided modes is characterized
by a Bloch wave vector k along the propagation axis (taking
the values jkj ≤ π=a in the first Brillouin zone) and set of
bands [see Fig. 4(b)]. In analogy with electrons propagating
through a periodic crystal potential in solid-state systems, a

characteristic feature of band structure is the emergence of
band gaps, a frequency range over which no guided modes
exist, due to the strong constructive interference in reflection
from the periodic dielectric modulation. An interesting feature
of a guided band, as it approaches in frequency toward a band
edge, is that its group velocity vg ¼ dω=dk can in principle
approach zero. This reduced propagation speed arises due to
multiple reflections that light makes, while it maintains a net
propagation direction.
Another structure of interest is a photonic crystal cavity

(PCC); see Fig. 5. Such a structure can be realized by
introducing a local defect into a PCW, for example,
by locally altering the size of the periodic modulation of
the waveguide as seen in Fig. 5(b). This defect can seed a set
of discrete cavity modes whose resonance frequencies are
situated within the band gap of the surrounding structure, thus
spatially localizing the modes around the defect. The asso-
ciated mode volumes can easily reach the diffraction limit
Veff ≲ λ3. Thus, such a platform has proven to be attractive in
recent years for achieving strong light-matter interactions in a
number of settings beyond atoms. For example, the structure
in Fig. 5(b) enables strong optomechanical coupling between
photons and a colocalized mechanical mode of the structure
(Safavi-Naeini et al., 2011).
Finally, it should be mentioned that the concepts associated

with the progression from nanofibers to photonic crystal
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FIG. 3. (a) Schematic of a SiO2 nanofiber of radius
rfiber ¼ 250 nm, with atoms trapped approximately 230 nm from
the surface. Adapted from Vetsch et al., 2010. (b) Dispersion
relation of the guided mode frequency f vs axial wave vector k (in
units of 2π=rfiber) for the nanofiber. For sufficiently small fibers
or low frequencies, all modes except the HE11 mode are cut off.
The transition frequencies associated with the Cs D1 and D2 lines
are also shown for reference. (c) Intensity distribution jEj2 (in
arbitrary units) for the fundamental HE11 mode of the nanofiber
(Le Kien, Balykin, and Hakuta, 2004). (d) (Left) Ratio of
emission rate Γ1D into the guided mode to total emission Γtot
of an atom trapped near a nanofiber of radius rfiber ¼ 200 nm, as
a function of dimensionless distance r=rfiber. The curves corre-
spond to different magnetic sublevels of Cs. (Right) Same ratio,
calculated as a function of fiber radius (normalized by the
resonant wave vector k0 ¼ ωeg=c in vacuum), for an atom on
top of the fiber surface. From Le Kien et al., 2005.

FIG. 4. The quasi-1D “alligator” photonic crystal waveguide
(APCW). (a) Schematic illustration of a section of the APCW
(Si3N4 dielectric) and its dimensions, with one atom trapped per
unit cell (green spheres). (b) Dispersion relation of frequency ν vs
wave vector kx (normalized by π=a, where a is the lattice
constant) for the lowest order TE and TM modes (black and
gray curves, respectively). A band gap (red shaded region)
appears for the TE mode near the D1 and D2 transition
frequencies of atomic Cs (dotted lines), in which the TE field
cannot propagate but evanescently decays. The decay constant κx
(normalized by a−1) is shown in red. From Hood et al., 2016.
(c) Intensity profile jEj2 (in arbitrary units) for the TE mode at the
lower band edge. (d) Total spontaneous emission rate Γtot (into
both free space and guided modes), normalized by the vacuum
rate Γ0, for a single atom located at the center of a unit cell in the
middle of a APCW composed of Ncells ¼ 150 unit cells. The
dashed vertical line indicates the frequency of the band edge.
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waveguides to cavities also extend to two-dimensional struc-
tures. In particular, a thin film dielectric membrane supports a
set of modes guided by total internal reflection, and adding
a dielectric modulation such as a set of holes results in a
photonic crystal structure described by a two-dimensional
Bloch band structure (Painter et al., 1999; Joannopoulos et al.,
2008). Likewise, adding a defect to such a structure, such as
by omitting a set of holes over a finite region [see Fig. 5(c)],
results in a discrete cavity mode confined to this region
(Yoshie et al., 2004), whose mode volume can also be
diffraction limited. We now discuss the interface of atoms
with these various types of nanophotonic systems.

B. Optical nanofibers

While a substantial single-atom interaction probability of
P ∼ 0.1 is achievable using a tightly focused laser beam and
one trapped atom (Darquie et al., 2005; Tey et al., 2008; Hetet
et al., 2011), this technique does not extend to many atoms

due to the rapid divergence of the beam waist under tight
focusing. Researchers (Nayak et al., 2007) thus began to
explore techniques to maintain the tight confinement of beams
over long distances through the use of optical nanofibers and
thereby potentially realize significant optical depths in atomic
ensembles using relatively few atoms.
As illustrated in Fig. 3(c), for a SiO2 nanofiber of radius

rfiber ¼ 200 nm, a significant amount of the guided mode
intensity extends evanescently into the surrounding vacuum
region. Because of the diffraction-limited mode area
Aeff ∼ λ2eg, an atom within this evanescent tail can have a
large interaction probability with a single guided photon on
resonance. Atom-light interactions in nanofibers were first
observed using untrapped atoms in an atomic gas surrounding
the nanofiber (Nayak et al., 2007). A major breakthrough
occurred when it was demonstrated thatNa ∼ 103 atoms could
be cooled into lattice sites created by a two-color trap from a
surrounding magneto-optical trap (MOT) (Vetsch et al.,
2010), which dramatically increased the number of atoms
interacting with the guided mode, as illustrated schematically
in Fig. 3(a) (see Sec. VI for more details on trapping). Initial
experiments observed optical depths per atom of OD ¼
0.0064 (Vetsch et al., 2010) and OD ¼ 0.08 (Goban et al.,
2012). With Na ≈ f4000; 800g atoms, respectively, trapped
along the nanofiber in these experiments, the overall optical
depths were OD ≈ f13; 66g, which compares favorably to
typical cold-atom ensembles in free space. The per-atom
optical depth in these experiments arises from the efficient
emission rate Γ1D into the guided modes compared to free
space (Γ0) as OD ≈ 2Γ1D=Γ0 for Γ1D ≪ Γ0 (Asenjo-Garcia,
Hood et al., 2017). The theoretically calculated ratio of guided
to total emission (Le Kien et al., 2005) Γ1D=Γtot is plotted in
Fig. 3(d). The ratio is evaluated both as a function of distance
to the fiber (left panel), which clearly shows the evanescent
decay of the field away from the fiber surface, and as a
function of fiber radius (right panel), which exhibits a
maximum when the field confinement Aeff is optimized.
Beyond these proof-of-principle interfaces of atoms and
nanofibers, some experiments have proceeded recently to
implement basic quantum coherent phenomena, such as slow
light and coherent photon storage (Gouraud et al., 2015;
Sayrin, Clausen et al., 2015; Solano et al., 2017).

C. 1D and 2D photonic crystal waveguides

The ability to tailor the modal properties and dispersion
relation of a PCW significantly beyond that of a conventional
waveguide also offers a greatly expanded toolbox for con-
trolling atom-light interactions. Recall that single photons in a
nanofiber interface are limited to a single-atom optical depth
of OD ∼ 0.1 on a single pass. This coupling can be greatly
enhanced by exploiting the reduced group velocity vg ¼
dω=dk of PCW guided modes near a band edge (John and
Quang, 1994; Lund-Hansen et al., 2008). As discussed earlier,
this slow group velocity arises as light reflects multiple times
off the dielectric modulation while it propagates. Thus, a
photon effectively experiences an extended interaction time
with an atom relative to free space, which is given by the
group index ng ¼ c=vg for the PCW. The emission rate into

FIG. 5. Photonic crystal cavities. (a) A scanning electron
microscope (SEM) image (upper panel) and simulation of mode
intensity (lower) of a defect cavity defined in a one-dimensional
photonic crystal beam. On the left of the upper panel is a tapered
nanofiber used for coupling light into and out of the cavity. In
Thompson et al. (2013), atoms were optically trapped nearby in
the interference fringe formed by reflecting a tightly focused
beam from the structure (inset). (b) An “optomechanical crystal”
SEM image of a defect cavity in a one-dimensional photonic
crystal beam. The panel below shows a zoom-in of the defect
region, with variations in the sizes of the holes. This defect
creates localized resonances both for photons and phonons as
seen in the two bottom panels illustrating the cavity mode
intensity and acoustic “breathing” modes. From Safavi-Naeini
et al., 2011. (c) Cavity mode defined in a 2D photonic crystal
membrane. In Yoshie et al. (2004), the defect is formed by the
omission of three holes from the otherwise periodic structure.
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the waveguide is subsequently enhanced by an approximate
factor Γ1D → ngΓ1D (with a corresponding enhancement
OD → ngOD while Γ1D ≲ Γ0). Such an enhancement, first
seen experimentally with quantum dot emitters (Lund-Hansen
et al., 2008; Arcari et al., 2014), becomes particularly
interesting in the limit that Γ1D ≫ Γ0, such that free-space
coupling is negligible. This essentially realizes quantum
electrodynamics in propagating 1D channels, for which rich
theoretical phenomena have been predicted (Shen and Fan,
2005; Chang et al., 2007; Ramos et al., 2014; Ringel,
Pletyukhov, and Gritsev, 2014) but thus far largely lacks
experimental realization.
In the context of atoms, the first experiments to observe

enhanced emission associated with a band edge used a so-
called “alligator” photonic crystal waveguide (APCW), illus-
trated in Fig. 4(a). The APCW consists of two parallel,
modulated silicon nitride (Si3N4) dielectric waveguides,
which are in close enough vicinity that their modes interact
and hybridize. The APCW is designed such that the edge of a
transverse-electric- (TE-) like band aligns closely with the
atomic transition frequency of Cs. The guided mode intensity
profile at the band edge, shown in Fig. 4(c), exhibits a high
concentration between the two waveguides and further
increases the interaction probability in the case that a single
atom can be localized there.
Single atoms have been trapped along such an APCW

structure and enhanced values with Γ1D=Γ0 ≈ 1 have been
achieved (Goban et al., 2015). For average atom number
N̄A ≈ 3, superradiant emission has been observed with rates in
good agreement with predictions obtained from numerical
simulations. Some representative results from these simula-
tions, discussed further in Sec. V, are shown in Fig. 4(d). Here
the predicted single-atom ratio of Γtot=Γ0 ¼ ðΓ1D þ Γ0Þ=Γ0 is
plotted, as a function of detuning from the band edge, for the
actual finite system. The general trend of enhancement for Γ1D
near the band edge is observed; however, the ideal (unlimited)
enhancement by ng ¼ c=vg due to vg → 0 at the band edge of
an infinite structure is interrupted by a set of resonances
associated with the finite length and imperfect impedance
matching at the ends. Improved trapping and design of PCWs
could lead to values Γ1D=Γ0 ∼ 102 (Zang et al., 2016).
While much of quantum optics with atoms has focused on

enhancing the interactions with preferred optical modes,
PCWs offer the opportunity to simultaneously engineer
structures with suppressed emission Γ0 into undesired guided
modes and free space. While such suppression has been
observed in atomic physics (Haroche and Kleppner, 1989), the
effect is negligible in conventional optical cavities (e.g.,
spherical mirror Fabry-Perot resonators) due to the small
solid angle subtended by the cavity mode (i.e., Γ0 deviates
from the rate Γ0 of an isolated atom by only a part in 105)
(Miller et al., 2005). However, due to their nanoscopic unit
cells, PCWs capture a large solid angle of atomic radiative
emission. Furthermore, the dielectric medium surrounding
trapped atoms can be engineered to have a band gap at
frequencies around relevant atomic transitions, thereby sup-
pressing what would otherwise be free-space loss. Analogous
effects have already been exploited in quantum dots coupled
to PCWs (Arcari et al., 2014); here it is estimated that the

structure suppresses Γ0 by an order of magnitude and leads to
record ratios of Γ1D=Γ0 in the optical domain.
Extension to 2D PCWs can lead to strong atom-field

interactions and rich physics resulting from band structure
engineering. For example, the aforementioned near-unity
quantum dot-PCW coupling efficiency was in fact realized
in a 1D line defect embedded in a 2D photonic crystal [shown
similarly in Fig. 3(c) but with an entire line of missing air
holes]. Because of strong mode mixing in line defects
(Notomi et al., 2001; Li et al., 2008), it has been exper-
imentally demonstrated that a very flat band resulting from an
avoided band crossing can exhibit extremely slow light
propagation (vg ≈ c=300) (Vlasov et al., 2005) with a broad
bandwidth. This effect could in principle be utilized to further
improve upon the atom-photon interaction probability P.
Separately, it has been proposed and experimentally demon-
strated that a complete band gap for both TE and transverse-
magnetic (TM) polarizations can be engineered in a 2D PCW
(Cassagne, Jouanin, and Bertho, 1996; Wang et al., 2001;
Takayama et al., 2005). Embedding an atomic transition in a
full photonic band gap could provide better suppression of the
unwanted emission rate Γ0 and enables the exploration of
coherent atom-photon interactions inside a band gap as
discussed in the following sections.

D. Nanophotonic optical cavities

As described in Sec. II, for more than a decade numerous
groups have been exploring alternatives to Fabry-Perot
cavities for efficient atom-light interactions, which would
offer reduction in mode volumes Veff and a corresponding
increase in vacuum Rabi splittings gJC and cooperativities C
(Vernooy et al., 1998; Aoki et al., 2006; Volz et al., 2011;
O’Shea et al., 2013; Shomroni et al., 2014). Parallel efforts
also took place to integrate atomlike solid-state emitters such
as quantum dots with small lithographically fabricated cavities
(Pelton et al., 2002), and PCCs with diffraction-limited mode
volumes rapidly emerged as a leading approach (Yoshie et al.,
2004; Badolato et al., 2005; Fushman et al., 2008; Laucht
et al., 2009). Quantum dot-coupled cavities in GaAs now
routinely reachQ > 104 (Laucht et al., 2009), while advances
in design (Srinivasan and Painter, 2002; Akahane et al., 2005)
and fabrication (Asano, Song, and Noda, 2006; Sekoguchi
et al., 2014) have now led to observations of Q ≈ 107 in bare
silicon PCCs (Sekoguchi et al., 2014).
Projection of these parameters to atomic systems would

lead to unprecedented figures of merit compared to Fabry-
Perot cavities (see Fig. 6). For example, for an atomic cesium
transition, a well-designed cavity with diffraction-limited
mode volume Veff < λ3eg would yield a vacuum Rabi splitting
of gJC=2π ∼ 10 GHz (Hung et al., 2013; Douglas et al.,
2015), leading to a cooperativity of C ∼ 104 for a cavity of
Q ¼ 2 × 105. The first experiments to interface single atoms
with PCCs defined in Si3N4 beams were reported by
Thompson et al. (2013) and Tiecke et al. (2014). Here single
atoms were trapped in tightly focused optical tweezers, and
the beam was subsequently steered over the PCC. Interference
between the beam and its reflection yields a periodic intensity
modulation above the structure, and the atom can be con-
trollably loaded into the first fringe about 200 nm above the
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device [Fig. 5(a), also see more detailed discussion of trapping
in Sec. VI]. These initial structures demonstrated values of
gJC=2π ∼ 1 GHz (lower than the maximum as the atom is
trapped in the evanescent tail of the cavity field) and cavity
dissipation-limited quality factors ofQ ∼ 105. The potential of
PCCs for cavity QED is seen in the demonstration of a
quantum phase switch (Tiecke et al., 2014) just one year after
initial proof-of-principle coupling.

E. Imperfections

Thus far, our discussion on atom-photon interactions in
nanophotonics largely assumes “perfect” structures. However,
nanofibers, 1D and 2D PCWs, PC cavities, and other
structures push state-of-the-art capabilities on various fronts
of fabrication and characterization. The consequences of
imperfections can indeed influence the resulting atom-photon
interactions. Perhaps the most prominent and universal effect
that can arise is Anderson localization, wherein scattering
disorder can cause light that would be guided in a perfectly
periodic structure to become confined over some characteristic
“localization length” LA. Anderson localization in PCWs
has already been extensively studied (Topolancik, Ilic, and
Vollmer, 2007; Mazoyer, Hugonin, and Lalanne, 2009;

Patterson et al., 2009; Garcia et al., 2010); we will not repeat
the rather technical details here. To minimize such effects, it is
certainly important that LA exceeds the system size or any
emergent length scale over which atoms interact via photons.
On the other hand, Anderson localization may also prove to be
a feature of such systems allowing the investigation of atom-
photon interactions in disordered environments. A more
elaborate discussion of Anderson localization relevant to
atomic physics can be found by Goban et al. (2014) and
Douglas et al. (2015).
A second source of imperfection arises from defects due to

atomic adsorption on the surface of the nanophotonic struc-
ture. There are two possible impacts. First, it is known that
surface-adsorbed alkali atoms act as electric dipoles that
generate electric field fluctuations, potentially contributing
to decoherence and heating of trapped atoms near the surface
(McGuirk et al., 2004). However, for insulating dielectric
materials such as silica and silicon nitride that do not strip out
the valence electron from an adsorbed atom, only a small
electric dipole moment will be induced. Experimental results
by McGuirk et al. (2004) suggest that a single adsorbed atom
generates an electric field < 0.2 μV=cm at a distance of
around 10 μm from a glass surface. Assuming a point dipole
source, this translates to an estimated electric field strength
of ∼0.2 V=cm at a distance of 100 nm from the surface,
leading to an insignificant static dipole-dipole energy shift
< h × 2 mHz (due to one surface adatom) on trapped atoms.
The second and perhaps the most prominent impact due to

surface adsorption is the modification of dielectric properties,
such as the effective refractive index. As the number of
adsorbed atoms increases, the photonic band edge or a high-Q
optical resonance can be shifted significantly (Barclay et al.,
2006). Surface adsorption can also induce optical loss and
deteriorate the mode quality (Ritter et al., 2015). A work-
around is by constantly heating the nanostructure to remove
surface-adsorbed atoms. A more effective and permanent
solution could be to coat the nanostructure with an atomically
thin protective layer such as sapphire (Al2O3), which has
been reported to significantly increase the lifetime of a
nanostructure against surface adsorption (Ritter et al., 2016).
Beyond nanophotonic imperfections, nonideal atomic

localization can also result in imperfect atom-photon inter-
actions. This is due to rapid variation in an electric field mode
profile near a nanostructure [Figs. 3(c) and 4(c)]. Specifically,
in-trap atomic thermal motion can cause Γ1D (or gJC) to vary
significantly [e.g., by a factor ∼Oð2Þ in experiments with
temperature ∼100 μK due to motion in the axial and trans-
verse directions relative to the nanostructure]. Moreover,
atomic thermal motion also limits the coherence time. In a
nanofiber, Reitz et al. (2013) reported that trap inhomo-
geneous broadening and trap heating can reduce the coherence
time T2 < 1 ms. In order to remedy these imperfections,
further cooling in these tight traps may be necessary. Recently,
it was demonstrated that the unique polarization character-
istics of tightly confined fields around an optical nanofiber
allow for the implementation of novel cooling mechanisms
that bring the motion of trapped atoms close to their quantum
ground states (Albrecht et al., 2016).
Moreover, several new paradigms require arrays of trapped

atoms at specific lattice constants. As discussed in Sec. VII, the
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FIG. 6. Comparison of cooperativity factors C ¼ g2JC=κΓ0 for
different cavity QED and atomic interfaces. With initial designs
and reasonable Q ≈ 20 000, a nanoscopic photonic crystal cavity
(red diamond) (Tiecke et al., 2014) and an APCW band-gap atom
cavity (red star) (Hood et al., 2016) have already achieved
cooperativity parameters C > 1 that are comparable with state-of-
the-art macroscopic and microscopic resonators, which include
mirror Fabry-Perot cavities [triangles, 1 (Miller et al., 2005); 2
(Sames et al., 2014)], fiber-based cavities [circles, 1 (Colombe et
al., 2007); 2 (Kato and Aoki, 2015)], microtoroid, microsphere,
and bottle whispering-gallery-mode resonators [squares, 1 (Aoki
et al., 2006); 2 (Shomroni et al., 2014); 3 (O’Shea et al., 2013);
open squares: projections using intrinsic Q]. Here the dashed
lines mark constant quality factors Q ¼ 104, 105, 106, 107, and
108 in increasing order. Blue stars mark projected improvements
by (1) improved trap loading to minimize the effective mode area
(Hung et al., 2013; Goban et al., 2015); (2) increased quality
factor to Q ¼ 2 × 105 as well as 10-fold reduction in the band
curvature to reduce effective mode volume (Douglas et al., 2015;
Zang et al., 2016); (3) further suppression of Γ0 (Hung et al.,
2013; Gonzalez-Tudela, Hung et al., 2015).
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ideal lattice spacing can be realized either by PCW band
structure engineering (Hung et al., 2013) or by using near-
detuned traps (Corzo et al., 2016) or structuringpulses (Sorensen
et al., 2016) as demonstrated in recent nanofiber experiments. A
much more stringent requirement, however, must be considered
in Sec. IX, where, for example, unit filling of lattice sites is
required to explore spin models. This imposes greater exper-
imental challenges since laser cooling fills individual sites
randomly with either 0 or 1 atoms due to a collisional blockade
(Schlosser et al., 2001). A small number of uniformly filled sites
may be attainable using an auxiliary laser beam tomodify in-trap
collision dynamics (Grünzweig et al., 2010; Lester et al., 2015).
To form a large atomic lattice, a moving “sorter” beam (Barredo
et al., 2016) or a reconfigurable tweezer array (Endres et al.,
2016) may be implemented as both schemes have successfully
achieved large defect-free lattices in free space.

IV. A SURPRISING FUTURE FOR ATOM-PHOTON
PHYSICS

Having described how nanophotonic systems can push the
figures of merit associated with conventional paradigms for
atom-light interactions, we now devote the remainder of this
Colloquium to how such systems can realize new paradigms.
These paradigms potentially provide novel routes toward
applications such as manipulation of quantum information, or
toward creating exotic many-body states of light and matter. In
this section, we give a brief summary for more casual readers of
these possibilities and intuitive descriptions of the key under-
lying physics. Subsequent sections provide a more rigorous
discussion.
A major historical motivation for the migration to nanofibers

and photonic crystal waveguides is to generate a favorable
collection efficiency of emission from a single atom into the
preferred guided modes over unwanted free-space emission. In
recent years, it has been recognized that with more atoms, one
can take advantage of this large, collective dissipation channel to
generate and manipulate quantum coherence among atoms and
interesting quantum optical states. An additional tuning knob,
which arises naturally in nanophotonic systems, is the ability to
utilize the polarization of tightly confined fields to realize chiral
dissipation channels, in which an atom emits preferentially in
one direction even if the nanophotonic device itself is mirror
symmetric. The classes of novel phenomena and applications
that have emerged based upon collective dissipation and “chiral”
quantum optics are introduced in Secs. IV.A and IV.B, respec-
tively. Perhaps counterintuitively, novel paradigms can also
arise by turning off emission into a nanophotonic structure. In
particular, by aligning a transition within the band gap of a
photonic crystal, an excited atom cannot emit a radiating photon,
but still couples strongly to the nanophotonic system via the
formation of an atom-photon bound state. The photonic part,
unable to propagate, then facilitates tunable and coherent long-
range interactions between atoms. Phenomena and applications
based upon this effect are discussed in Sec. IV.C.

A. Quantum coherence in a strongly dissipative regime

The intuition behind collective dissipation can be qualita-
tively understood from Fig. 7(a). In general, a photon emitted

from atom j acquires a phase factor eik0jzj−zlj as it propagates
to atom l, where k0 ¼ kðωegÞ represents the guided mode
wave vector at the atomic resonant frequency. In the special
case that atoms are trapped with lattice constant a equal to the
guided mode wavelength itself (i.e., a ¼ 2π=k0), the phase
factor between any pair of atoms is e2iπq ¼ 1 (where q is an
integer). Thus, incoming fields couple only to a single,
symmetric and superradiant collective mode of the atoms,
whose emission rate into the fiber is enhanced asNaΓ1D, while
the emission rate of this mode to free space Γ0 remains that of
a single atom.
While collective enhancement is prevalently used in atomic

ensembles (Hammerer, Sørensen, and Polzik, 2010), this
manifestation in a 1D waveguide has particularly interesting
consequences. For example, the negligible coupling to free
space NΓ1D ≫ Γ0 implies that the high interaction probability
with a resonant guided photon causes it to be coherently
reflected, rather than being scattered into other directions.
Ideally, the fraction of light that is not reflected scales as
≈2Γ0=NaΓ1D, indicating that the atomic array acts as a nearly
perfect mirror (Chang et al., 2012; Le Kien and
Rauschenbeutel, 2014). This effect was recently observed
in different experiments (Corzo et al., 2016; Sorensen et al.,
2016). Corzo et al. (2016) used a near-resonant guided field to
trap atoms with a lattice constant near the ideal condition. As

(a)

(b)

FIG. 7. (a) Atoms coupled to a PCW with the atomic transition
frequency ωeg lying within a band of guided modes. Strong
quantum coherence effects can emerge from collective dissipa-
tion through the waveguide, particularly when atoms are trapped
at a spacing equal to integer multiples of half the resonant guided
wavelength π=kðωegÞ, such that the phase factor eikðωegÞjzj−zlj ¼
�1 between any pair of atoms. (b) Experimentally measured
reflectance from an atomic ensemble coupled to an optical
nanofiber when atoms are trapped near the ideal spacing. The
reflectance (red curve) and optical depth (gray) are shown as a
function of time. Both quantities decrease in time due to a
decrease in the number of atoms (number of atoms shown in the
inset). From Corzo et al., 2016.
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shown in Fig. 7(b), up to 75% reflectance can be seen using
merely Na ≈ 2000 atoms, which is due to significantly higher
OD per atom compared to atomic Bragg mirrors in free space
(Deutsch et al., 1995; Andre and Lukin, 2002); see, for
example, Birkl et al. (1995), Bajcsy, Zibrov, and Lukin
(2003), and Schilke et al. (2011).
This high reflectance and coupling to the superradiant mode

gain additional power with more sophisticated protocols
(Chang et al., 2012; Gonzalez-Tudela, Paulisch et al.,
2015; Paulisch, Kimble, and Gonzalez-Tudela, 2016;
Gonzalez-Tudela et al., 2017). For example, using two atomic
ensembles serving as separate “mirrors,” one can implement
cavity QED protocols, but where the mirrors themselves now
have quantum functionality (Chang et al., 2012). It is also
possible to coherently manipulate quantum information
within the large space of “subradiant” atomic modes that
are decoupled from the waveguide and to subsequently map
these states out efficiently by transforming to the superradiant
mode (Gonzalez-Tudela, Paulisch et al., 2015; Gonzalez-
Tudela et al., 2017). Such schemes are discussed in detail in
Sec. VII.

B. Chiral quantum optics

A second example of the surprising physics enabled by
nanofibers is chiral coupling between atoms and light. For a
recent review on this subject, see Lodahl et al. (2017). In
particular, even if a nanofiber is mirror symmetric, it has been
experimentally demonstrated that an excited atom can emit a
photon into the waveguide almost purely into just a single
direction (Mitsch et al., 2014).
This novel effect arises from the peculiar polarization

exhibited by tightly confined optical fields. Specifically, while
a plane wave is well known to have a polarization orthogonal
to its wave vector (i.e., direction of propagation), a tightly
focused beam must necessarily consist of wave vectors that
are not purely parallel to its net propagation direction. The
beam polarization can thus acquire a component of the electric
field along the direction of propagation, which can have π=2
phase difference with the transversely oriented components
(Lin et al., 2013; Rodriguez-Fortuno et al., 2013; Petersen,
Volz, and Rauschenbeutel, 2014). Elliptically polarized light
is thereby generated in a plane containing the propagation
direction and the transverse field. As illustrated in Fig. 8(a) for
a nanofiber (Petersen, Volz, and Rauschenbeutel, 2014), the
polarization for the electric field external to the fiber can be
highly circular with an opposite sense of rotation on opposite
sides of the nanofiber. Reversing the propagation direction
z → −z reverses the rotation directions of the field on the two
sides of the fiber. This phenomenon is also known as spin-
orbit coupling of light.
While the fields in nanofibers and other nanophotonic

waveguides satisfy time-reversal invariance (for permeability
μ ¼ 1), an atom with nontrivial internal spin structure trapped
near these devices can lead to violations of time-reversal
invariance for the composite system of waveguide and atom.
This means that reversing the direction of propagation of the
waveguide modes while keeping the same state in the emitter
can lead to nonreciprocal propagation in the forward or
backward direction. The first experimental observation of

this effect was reported by Mitsch et al. (2014), where through
a combination of optical pumping and excitation with well-
defined polarization atoms were effectively excited into
states of a given Zeeman level mF0 . For maximum jmF0 j,
the excited atom couples only to σþ or σ− polarization and
hence emits light only along þz or −z. Figure 8(b) shows the
measured and predicted difference in right- and left-going
emitted intensities, normalized by the total guided intensity
D ¼ ðjERj2 − jELj2Þ=ðjERj2 þ jELj2Þ and demonstrates a
degree of directionality of D ≈ 0.85 for the maximum jmF0 j
states (Mitsch et al., 2014).
The situation where many atoms are coupled to a chiral

waveguide, so that each atom only “sees” the emission from
other atoms situated to one side, also realizes an interesting
class of collective dissipative models, known as a “cascaded”
open system (Carmichael, 1993; Gardiner, 1993; Stannigel,
Rabl, and Zoller, 2012). Their natural realization in nano-
photonic systems has led to novel devices such as nano-
photonic optical isolators (Sayrin, Junge et al., 2015).
Furthermore, it would allow for the generation of exotic
many-body states, provided that the emitted photons are
channeled almost completely into the waveguide (Ramos
et al., 2014), as discussed further in Sec. VIII.
While the probability of atomic emission into the guided

modes of nanofibers is small, Γ1D=Γ0 < 0.1 (Mitsch et al.,
2014), novel PCW designs coupled to quantum dots
have achieved both high yield Γ1D=Γ0 ≫ 1 and directional
β factor βdir ≈ 98% (Sollner et al., 2015), defined as
βdir ¼ max½ΓR;ΓL�=ðΓR þ ΓL þ Γ0Þ. Nonreciprocal photon

(a)

(b)

FIG. 8. (a) Interplay between the direction of propagation and
polarization of the guided modes of an optical nanofiber, as
illustrated in Petersen, Volz, and Rauschenbeutel (2014). A field
propagating in one direction can have near circular polarization of
different orientations on opposite sides of the fiber. The ori-
entation of circular polarization is reversed in the lab frame for
fields propagating in the opposite direction. (b) Measured
(circles) and predicted (bars) difference in right- and left-going
emitted intensities from different Zeeman levels mF0 (jmF0 j ≤ 5
for atomic Cs), normalized by the total guided intensity. From
Mitsch et al., 2014.
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transport using a Mach-Zehnder interferometer and chiral
coupling with quantum dots has also been proposed (Sollner
et al., 2015).
Beyond these prospects for chiral quantum optics within

the dispersive bands of PCWs, see also Sec. IX.A. There
we review possibilities for achieving full quantum control
within the band gap of PCWs (as in the following section),
including for atom-atom interactions that violate time-reversal
symmetry.

C. Quantum many-body physics for atomic spins in a band gap

The enhancement of emission into a preferred channel
Γ1D=Γ0 ≫ 1 is motivated by the quest to efficiently map
between atomic and photonic states. However, there is another
regime that has been theoretically considered since the
“invention” of photonic crystals, if largely overlooked, which
is the behavior of atoms when their transition frequency is
situated within a band gap.
Clearly, in this case a single atom cannot emit a propagating

photon into the PCW. However, pioneering work in 1990
predicted that ideally, a stable “bound state” could form
between an excited atom and a photon, around the atomic
position over a length scale L [Fig. 9(a)] (John and Wang,
1990; Kurizki, 1990). These ideas gained renewed interest
in recent years, as it was shown that the photonic component
of these bound states could enable tunable, long-range

interactions between atoms (John and Quang, 1996; Bay,
Lambropoulos, and Molmer, 1997; Lambropoulos et al.,
2000; Shahmoon and Kurizki, 2013; Douglas et al., 2015;
Gonzalez-Tudela, Hung et al., 2015). As illustrated in Fig. 9(a),
a second atom initially in its ground state and positioned within
the bound-state size of the first excited atom can absorb the
photon, thus realizing an effective spin-exchange interaction
jegi → jgei between internal states of the atoms. These
coherent interactions can dominate over dissipative mecha-
nisms provided that a high cooperativity is achieved (Douglas
et al., 2015; Gonzalez-Tudela, Hung et al., 2015), analogous
to the spin-exchange interaction in cavity QED, discussed in
Sec. II. Compared to cavity QED, however, PCWs naturally
enable interactions of a finite, tunable range (whereas in cavity
QED the interaction is naturally infinite range) and with a
strength of interaction potentially much greater, owing to the
tight confinement of the mediating photon.
An initial experiment to observe signatures of coherent

many-body interactions within a band gap was described by
Hood et al. (2016). Using the APCW structure discussed in
Sec. III, the TE-like band-edge frequency (ωBE) was fine-
tuned in situ to place the atomic transition frequency (ωeg)
inside the band gap [i.e., ΔBE ¼ ωeg − ωBE > 0; see
Fig. 9(a)]. For the band-edge detunings ΔBE used in the
experiment, the bound photon length L was much larger
than the separation between atoms trapped along the APCW.
The atomic spins thus effectively interacted through a spin
Hamiltonian in the form of Eq. (2) with a uniform peak
interaction strength J1D. Inside the band gap, it was observed
that J1D persists even as the dissipative rate Γ1D is exponen-
tially suppressed versus ΔBE [Fig. 9(b)]. A minimum ratio
of Γ1D=J1D ¼ 0.05� 0.17 was inferred, in good agreement
with theory (Asenjo-Garcia, Hood et al., 2017). In this
realization, the free-space emission rate remains comparable
to the band-gap-mediated interaction strength Γ0 ∼ N̄aJ1D.
Further enhancement of coherent atom-photon coupling
(Hood et al., 2016), or suppression on the emission rate Γ0

(Hung et al., 2013; Lodahl, Mahmoodian, and Stobbe, 2015),
is required to bring such systems into regimes dominated by
coherent quantum dynamics.
Taking advantage of the toolbox of quantum optics and the

flexible engineering of PCWs, band-gap-mediated inter-
actions allow rather general Hamiltonians of the form H ¼P

j;lUðrj; rlÞσðjÞσðlÞ to be realized (Douglas et al., 2015;
Gonzalez-Tudela, Hung et al., 2015; Hung et al., 2016). Here
σðjÞσðlÞ denotes some type of spin interaction (e.g., XX or
Ising) between pairs of atoms j, l, while Uðrj; rlÞ denotes
some interaction of a desired shape and range mediated by the
bound photon. The underlying physics will be discussed in
greater detail in Sec. IX. This Hamiltonian potentially enables
access to a broad range of interesting phenomena. In particu-
lar, if the atomic positions are fixed in place, then H describes
interactions between spins that can potentially be long range.
On the other hand, the positions ri could be treated as
dynamical variables, in which case H describes strong
interatomic potentials that depend on the internal atomic
state. Finally, the PCW enables efficient spin-photon inter-
actions in that an incoming photon can interact with the
atomic internal states with high efficiency. Thus, in total,

(a)

(b)

FIG. 9. Quantum many-body physics for atomic transition
frequencies in a band gap. (a) Schematic illustration of excited
atom and associated photon bound state, with spatial extent L. A
second atom nearby in ground state g can be excited by an
“exchange” interaction with the first atom. Inset: Band structure
with atomic frequency ωeg within a band gap, detuned by ΔBE

from the band edge. (b) Measurements showing the collectively
enhanced emission rates N̄aΓ1D (green curve) and coherent
interaction strengths N̄aJ1D (blue curve) near a band edge, both
normalized by the vacuum emission rate Γ0. For detunings
ΔBE > 0, the atomic frequency lies within a band gap, which
strongly suppresses emission into the waveguide while coherent
interactions persist. Here N̄a ≃ 3 atoms. From Hood et al., 2016.
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aligning atomic transition frequencies within band gaps opens
up multiphysics coupling between spins, phonons (atomic
motion), and photons. Some specific examples of novel
phenomena will be discussed in Secs. X and XI.

D. Coupled cavity arrays

One of the earliest sets of proposals to investigate novel
physics using atomic systems and nanophotonics involved the
potential for scaling to many atom-cavity systems on a single
chip. In particular, whereas a single coupled atom-cavity
system is described by the well-known Jaynes-Cummings
model, nanophotonics could in principle offer a way to realize
a large array, where the cavities are in close enough proximity
that photons could “hop” from one to another. Just as the
experimental realization of the Bose-Hubbard model with
ultracold atoms in optical lattices (Greiner et al., 2002)
stimulated intense theoretical and experimental activity with
degenerate quantum gases, the question emerged as to whether
such a “Jaynes-Cummings-Hubbard”model would be capable
of realizing phase transitions or other nontrivial many-body
phenomena involving photons (Greentree et al., 2006;
Hartmann, Brandao, and Plenio, 2006; Angelakis, Santos,
and Bose, 2007). One of the important subtleties of these
photonic systems is that they are inherently out of equilibrium,
as they require external driving to populate with photons,
making theoretical efforts to study such systems correspond-
ingly rich and challenging. The field of many-body physics
with photons in coupled cavity arrays already constitutes an
active field with a number of thorough reviews (Carusotto and
Ciuti, 2013; Noh and Angelakis, 2017), and we direct readers
interested in this topic to them. Much of this physics also
extends to the microwave domain, where, for example,
recently a chain of 72 cavities coupled to superconducting
qubits was realized (Fitzpatrick et al., 2017).

V. ATOM-LIGHT INTERACTIONS IN DIELECTRICS:
A GREEN’S-FUNCTION-BASED APPROACH

Having qualitatively described some of the physics that can
be realized with atoms coupled to nanophotonic systems,
we now turn to the important question of how atom-light
interactions in these complex optical structures can be
rigorously and quantitatively described. Developing fully
quantized theories for atom-light interactions in dielectric
environments has been a historic open problem in quantum
optics. One general strategy relies on finding normal mode
decompositions for the field and to subsequently quantize
them (Glauber and Lewenstein, 1991; Bhat and Sipe, 2006).
This is particularly difficult, however, if the dielectric material
itself has losses and dispersion (Bhat and Sipe, 2006) or if the
geometry is too complex to solve explicitly for the modes.
An alternative approach is to base the quantized description
upon the classical electromagnetic Green’s function (Agarwal,
1975), a technique formalized in recent years by Welsch
and co-workers (Gruner and Welsch, 1996; Knoll, Scheel,
and Welsch, 2000; Dung, Knoll, and Welsch, 2002; Wubs,
Suttorp, and Lagendijk, 2004; Buhmann and Welsch, 2007).
We summarize the main features next, as it has proven

to be quite powerful for quantitatively describing atom-
nanophotonics interfaces.
Formally, the Green’s function represents the electric

field at point r due to a normalized dipole source at r0 and
oscillating at frequency ω and is the solution to

½ð∇ × ∇×Þ − ϵðr;ωÞω2=c2�Gαβðr; r0;ωÞ ¼ δðr − r0Þ ⊗ I: ð3Þ

Here ϵðr;ωÞ is the dimensionless electric permittivity, allowed
to be position and frequency dependent. G is a tensor quantity
(α; β ¼ x, y, z), with α denoting the possible polarizations of
the field at r and β the possible source orientations. We refer
readers to Buhmann and Welsch (2007) for details of how
electrodynamics can be quantized within a Green’s function
language. However, the essential idea is that in the transition
from classical to quantum theory the sources (such as atoms
and noise) take on quantum properties, but the fields produced
by classical and quantum sources propagate in the same way
as they both obey Maxwell’s equations.
Thus, for a collection of two-level atoms, the quantum field

in the Heisenberg picture is intuitively given by (Asenjo-
Garcia, Hood et al., 2017)

Êðr; tÞ ¼ Êinðr; tÞ þ μ0ω
2
0

X
j

Gðr; rj;ωegÞ · ℘σjgeðtÞ: ð4Þ

This equation simply states that the total field is the sum of the
homogeneous solution (the “input,” defined absent the atoms
but including the dielectric) plus that radiated by the atoms.
Such input-output equations were first formally developed
within cavity QED (Gardiner and Collett, 1985), allowing the
quantum field exiting a cavity to be completely describable in
terms of correlations of the atoms and input field alone.
Equation (4) can be viewed as a generalization to arbitrary
dielectric environments. Just as the calculation of a cavity
output field now represents a textbook problem, the power of
casting the field generally in this form is that it enables well-
developed theoretical approaches to open systems, such as the
quantum regression theorem, to be directly applied (Gardiner
and Zoller, 2004). What remains then is to describe the
dynamics of atoms interacting via the fields. It can be shown
that integrating out the field [Eq. (4)] results in an effective
master equation describing dipole-dipole interactions
_ρ ¼ −i½Hdd; ρ� þ Ldd½ρ�, where (Knoll, Scheel, and Welsch,
2000; Asenjo-Garcia, Hood et al., 2017)

Hdd ¼ −μ0ω2
eg

X
j;l

℘� · ReGðrj; rl;ωegÞ · ℘σjegσlge; ð5Þ

Ldd½ρ� ¼
X
j;l

μ0ω
2
eg℘� · ImGðrj; rl;ωegÞ · ℘

× ð2σjgeρσleg − σjegσlgeρ − ρσjegσlgeÞ: ð6Þ

The Hamiltonian Hdd describes the coherent exchange of
atomic excitations via photons, while Ldd describes sponta-
neous emission. The effective master equation takes an
identical form as its free-space counterpart (Lehmberg,
1970). It should also be noted that the spontaneous emission
term captures collective effects (Gross and Haroche, 1982) as
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it involves correlations σjegσlge between different atoms (j ≠ l).
The dependence of the coherent interactions and dissipation
on the real and imaginary parts of G has an elegant classical
analogy, in that the field components in and out of phase with
an oscillating dipole store time-averaged energy and perform
time-averaged work, respectively. We refer to the combination
of Eqs. (4), (5), and (6) as the “spin model” of atom-light
interactions. We can also group the deterministic part of the
evolution (σjegσlgeρ and ρσjegσlge terms) of Ldd with Hdd, such

that _ρdet ¼ −iðH̃ddρ − ρH̃†
ddÞ, where H̃dd simply contains the

full Green’s function

H̃dd ¼ −μ0ω2
eg

X
j;l

℘� ·Gðrj; rl;ωegÞ · ℘σjegσlge: ð7Þ

For notational convenience, we often just deal with H̃dd, with
the understanding that the full dynamics involves Eqs. (5)
and (6), or alternatively, that evolution under H̃dd must be
supplemented with stochastic “quantum jumps” to capture the
final unaccounted term in Ldd½ρ� (Carmichael, 1993).
The form of Eq. (5) has already appeared implicitly in

Sec. II, when we derived the dipole interactions in a Fabry-
Perot cavity via the Jaynes-Cummings model, Eq. (2).
Intuitively the Green’s function in a cavity takes the spatial
form Gðrj; rl;ωÞ ∝ cos kxj cos kxl as both atoms must be
positioned away from a node of the standing wave in order to
interact [the equivalence between the Jaynes-Cummings
model and the spin model is described in detail by Asenjo-
Garcia, Hood et al. (2017)]. One also sees from the case of the
Jaynes-Cummings model that the spin model is approximate.
In particular, G in the spin model is evaluated only at a single
frequency ωeg, which assumes that the dispersion of the
dielectric surroundings within the bandwidth of the atomic
dynamics is negligible. Consequently, the field in Eq. (4)
depends instantaneously on the atomic properties. Within the
context of cavity QED, one must then avoid the strong
coupling regime gJC > jδJCj; κ, where the excited-state pop-
ulation of a single atom can undergo oscillations [whereas
Eq. (6) predicts monotonic decay]. Nonetheless, the spin
model is valid in a wide variety of scenarios and provides a
critical tool for understanding atom-nanophotonics interfaces.
Various elements of the spin model have a long history

within atomic physics and quantum optics. For example, in
the case of a single atom at position r, the excited-state
spontaneous emission rate is given from Eq. (6) by Γtot ¼
2μ0ω

2
eg℘� · ImGðr; r;ωegÞ · ℘. This has long been used to

calculate emission rates in simple geometries where the
Green’s function is exactly solvable, such as near planar
surfaces (Agarwal, 1975; Chance, Prock, and Silbey, 2007)
and cylindrical nanofibers (Søndergaard and Tromborg, 2001;
Klimov and Ducloy, 2004; Le Kien et al., 2005), and is used to
evaluate the emission rate near a nanofiber in Fig. 3(d). The
Green’s function can be numerically evaluated for more com-
plex geometries. For nanophotonic structures, one popular
approach is finite-difference time domain (FDTD) (Sullivan,
2013). Here Maxwell’s equations are solved on a discrete grid
of space and time, and the Green’s function can be found
by inserting a pointlike source into the simulation. This is a
standard technique to evaluate the emission rate of quantumdots

and other quantum emitters coupled to nanophotonic cavities
andwaveguides (Badolato et al., 2005;MangaRao andHughes,
2007;Yao,MangaRao, andHughes, 2010) andwas also used to
evaluate the emission rates of atoms near the APCW (Goban
et al., 2015) and similar structures (Hung et al., 2013) as shown
in Fig. 4(d).
The spin model has also been used to describe various

collective atomic phenomena, ranging from superradiant
decay (Gross and Haroche, 1982; Araujo et al., 2016) to
entanglement generation in photonic structures (Dzsotjan,
Sorensen, and Fleischhauer, 2010; Shahmoon and Kurizki,
2013). The idea that field correlations are encoded in atomic
correlations was also noticed early on, such as in the theory of
single-atom resonance fluorescence (Kimble and Mandel,
1976) or the interference of two-atom emission at close
distances (Ficek and Swain, 2002). In later sections, we show
that properly combining these various elements constitutes
a powerful tool for qualitatively and quantitatively under-
standing atom-nanophotonics interfaces, even at the many-
body limit.

VI. ATOM TRAPPING WITHIN DIELECTRIC
NANOSTRUCTURES

Before we present more details on surprising new physics,
in this section we take a necessary detour to discuss various
schemes to trap arrays of cold atoms within dielectric nano-
structures. In Figs. 3(a) and 4(a), we take the artistic license of
adding spheres to depict atoms trapped near and interacting
strongly with tightly confined, guided fields. Critical to the
successful integration of cold atoms with nanophotonics is the
development of new trapping techniques and generations of
nanophotonic structures that enable these “cartoons” to
become reality. These previous and ongoing efforts are aimed
at localizing atoms at precisely defined positions, where the
atom-photon interactions are optimal. As we will also discuss,
one of the big challenges in creating stable traps is the impact
of the surface Casimir-Polder force (Casimir and Polder,
1948). The Green’s function formalism and numerical meth-
ods (both introduced in Sec. V) actually allow us to precisely
compute the potential resulting from Casimir-Polder inter-
action and even design novel surface traps.

A. Overview of optical traps for nanophotonics

In conventional settings in atomic physics, atoms are
trapped using optical dipole forces (Grimm, Weidemuller,
and Ovchinnikov, 2000). As with dielectric nanoparticles,
atoms experience an effective potential due to a spatially
inhomogeneous electromagnetic field of frequency ω given by
UðrÞ ¼ −αRðωÞjEðr;ωÞj2, where αRðωÞ is the real part of the
(scalar) atomic polarizability (Grimm, Weidemuller, and
Ovchinnikov, 2000). For a two-level system, αRðωÞ is positive
(negative) for frequencies ω below (above) the transition
frequency ωeg, implying that the atom is attracted toward
points of maximum (minimum) intensity. In practice, the field
frequency is typically quite different from the resonant
frequency, to form a far-off resonant trap (FORT), which
suppresses the unwanted effect of motional heating from the
recoil momentum kicks associated with scattered photons.

D. E. Chang et al.: Colloquium: Quantum matter built from …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 031002-14



Successful trapping techniques involving nanophotonic
systems thus far have utilized two separate strategies. The first
employs interference between an external side-illumination
fieldESIðr;ωÞ and the reflection of this field from the dielectric
Erðr;ωÞ. In this case, it is instructive to consider a dielectric
half-space, with ESI a plane wave that is normally incident on
the dielectric surface from vacuum. The total intensity in the
vacuum space is IðrÞ ∝ jESIðrÞ þ ErðrÞj2, which has a field
maximum at distance zA ¼ λ0=4 from the dielectric surface,
with λ0 the vacuum wavelength of the side-illumination beam.
For “red” detuning ω < ωeg, atoms can be trapped around this
plane of maximum intensity at distance zA ∼ 200 nm from the
surface of the dielectric.
For a nanoscopic dielectric, the same strategy can be

employed, but now with Erðr;ωÞ calculated numerically
and in general varying rapidly around the dielectric surface
(Thompson et al., 2013; Goban et al., 2015). An illustration of
such a trap is shown in the inset of Fig. 5(a), where a tightly
focused beam is reflected from a photonic crystal cavity. In
this case the distance to the first interference antinode may
be fine-tuned by adjusting the thickness of the illuminated
nanostructure, therefore changing the optical phase of the
reflected field Er relative to ESI. Tuning the antinode to
zA < 100 nm from the surface becomes difficult because of
the complex near-field response of the dielectric surfaces and
the atom-surface Casimir-Polder interactions.
To date, cold atoms have been successfully loaded into side-

illumination traps either stochastically by direct overlapping
with a cloud of cold atoms in a MOT (Goban et al., 2015) or
deterministically by using the steering optical tweezer method
(Thompson et al., 2013) discussed in Sec. III.B. Such a
method seems promising in light of separate successful efforts
in recent years to load individual atoms into arrays of optical
tweezers in free space (Muldoon et al., 2012; Nogrette et al.,
2014; Lester et al., 2015; Kim et al., 2016), and to even
deterministically realize arrays without “defect” vacancies
(Barredo et al., 2016; Endres et al., 2016). Adapting such
techniques to the side-illumination scheme could in principle
enable ordered arrays of atoms to be trapped near and coupled
to nanophotonic structures.
A related solution for transport and trapping with precise

control of atomic localization near nanoscale dielectrics is
based upon an optical “conveyer” lattice formed by two
counterpropagating beams from opposite sides of the dielec-
tric, which are phase coherent but offset in frequency. Atoms
can then be coherently transported while trapped in the
moving lattice. In this way it becomes possible to place
atoms into the vacuum spaces of complex dielectric structures
(Gonzalez-Tudela, Hung et al., 2015).
A second distinct strategy for atom trapping is to use the

spatially varying guided mode fields of dielectric structures
themselves. For trapping external to a waveguide, the evan-
escent components of one or more guided modes can be
combined to achieve stable optical traps (Ovchinnikov,
Shul’ga, and Balykin, 1991; Mabuchi and Kimble, 1994).
The case of a cylindrical nanofiber is an important example
(Dowling and Gea-Banacloche, 1996; Le Kien, Balykin, and
Hakuta, 2004). Given that the evanescent field is maximum at
the fiber surface, a guided mode that is red detuned (ω < ωeg)

attracts atoms toward the surface, while a blue-detuned
beam (ω > ωeg) repels atoms. As originally proposed by
Dowling and Gea-Banacloche (1996) and Le Kien, Balykin,
and Hakuta (2004) and realized by Vetsch et al. (2010) and
Goban et al. (2012), a stable trap near the dielectric surface
can then be created by a suitable combination of the two,
provided that the two beams have sufficiently different
wavelengths so that their spatial profiles are not identical.
Because of the relatively simple intensity profile of nano-

fibers, in such a system optical traps via guided modes
necessarily must employ two frequencies and localize atoms
in evanescent tails that reduce the interaction probability with
near-resonant guided photons. Guided mode optical traps in
more complex structures, however, can provide superior
dipole coupling between trapped atoms and the electric fields
of desired guided modes that facilitate near-resonant atom-
photon interactions. Exploiting the design flexibility of PCWs
(Hung et al., 2013), for example, stable blue- (red-) detuned
FORTs in principle can be formed with just a single
propagating mode, whose electric field amplitude of its
Bloch wave function jukxðrÞj exhibits local minima (maxima)
in the vacuum space within the structure. Such guided modes
can be found in photonic bands, typically of high order (Hung
et al., 2013), with proper mirror symmetries about the
principal planes intersecting at the center of a unit cell (the
trap center) to offer transverse trapping.
PCWs potentially offer other hybrid approaches to trapping

as well, which take advantage of their unique designability.
For example, it was proposed that one can combine a guided
mode FORT and Casimir-Polder surface attraction to create
stable traps in 3D (Hung et al., 2013; Goban et al., 2014). This
can be implemented with fundamental guided modes in a
simple PCW such as the double-beam structure of Fig. 10(a).
Here, a blue-detuned guided FORT provides a periodic set of
points with field intensity minima, and thus stable confine-
ment of atoms in the x-y plane of the structure [see Fig. 10(b)].
Cuts of the trapping potential through the trap center along
the x and y directions are shown in Figs. 10(d) and 10(e).
However, the intensity profile from the trap center out of the
plane along z has a local maximum or is at best homogeneous,
preventing optical trapping in this direction. The trap becomes
closed along this direction only through the inclusion of
the surface Casimir-Polder potential, as shown in Figs. 10(c)
and 10(f). The calculation of these potentials is discussed in
greater detail in the next section. Qualitatively, however, as
these forces attract an atom in its ground state toward
dielectric surfaces, an atom prefers to sit at z ¼ 0 instead
of far away from the structure. Of course, this implies that
Casimir-Polder forces want to pull atoms away from the
symmetry plane y ¼ 0 toward one of the dielectric beams, but
this effect can be overcome with sufficiently large optical
forces. In this particular structure, a modest optical intensity of
several mWcm−2 is expected to create a deep FORT with
>1 mK trap depth along the tightest confining dimension. The
Casimir-Polder potential, on the other hand, limits the overall
trap depth to ∼30 μK for an atom located at the center of a
g ¼ 250 nm air gap [Fig. 10(a)].
One advantage of this approach is that additional guided

modes supported by the structure can exhibit local electric
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field maxima near the trap center, which provides for an
increase in interaction probability with near-resonant photons.
Trapped atoms in such a system can observe an effective probe
mode area as small as Aeff ∼ 0.1λ2, which is unprecedented in
other trapping methods and greatly increases the atom-photon
interaction probability. Finally, it should be mentioned that
for all of the optical trapping strategies discussed, the internal
and external degrees of freedom for trapped atoms can be
largely decoupled by using guided modes at “magic” wave-
lengths for the transition of interest for atom-photon inter-
actions (Ye, Kimble, and Katori, 2008; Goban et al., 2012;
Hung et al., 2013).

B. Casimir-Polder potentials

As made clear by Fig. 10, to localize atoms at submicron
distances away from structured dielectrics, it is essential to
include the effect of Casimir-Polder surface interactions
(Casimir and Polder, 1948; Buhmann and Welsch, 2007) into
trap calculations. Casimir-Polder interactions arise from an
atomic dipole interacting with electromagnetic vacuum fluc-
tuations near structured dielectrics. For ground-state atoms,

the Casimir-Polder potential yields strong attraction toward a
proximal dielectric surface and can weaken or completely
open an otherwise stable FORT potential. To provide a sense
of scales, one can consider an atom near a planar dielectric
surface, for which an approximate potential (Shimizu, 2001;
Friedrich, Jacoby, and Meister, 2002) VCPðdÞ ¼ −C4=d3ðdþ
ƛÞ can be used in place of full QED calculations (Lifshitz,
1956; Agarwal, 1975; Buhmann and Welsch, 2007). Here d is
the distance between an atom and the proximal dielectric
surface, C4 is the coefficient for the retarded 1=d4 long-range
potential, and ƛ is the effective atomic transition wavelength
divided by 2π, a distance below which VCP transitions into 1=d3

dependence. For alkali atoms such as rubidium or cesium
near silica or silicon-nitride surfaces, C4=kB∼5 nKμm4 and
ƛ ∼ 100 nm (Friedrich, Jacoby, and Meister, 2002; Bender
et al., 2010; Stern, Alton, and Kimble, 2011), resulting in a
substantial potential energy variation ΔVCP ∼ −kB × 250 μK
as d changes from 100 to 50 nm.
For complex nanogeometries, analytical calculations for

VCP are largely unavailable. Various numerical techniques
based on a scattering Green’s tensor formalism have been
developed to compute Casimir-Polder interactions with gen-
eral structures; for recent reviews, see Dalvit et al. (2011) and
Woods et al. (2016). Specifically, FDTD (Rodriguez et al.,
2009; McCauley et al., 2010) and boundary element (Reid
et al., 2009) methods have been implemented to compute
atom-nanostructure surface interactions (Hung et al., 2013).
For atomic ground states, the Casimir-Polder interaction

can be understood as an energy shift resulting from counter-
rotating terms in the full atom-field interaction Hamiltonian,
which allows for fluctuations involving the simultaneous
creation of a photon and transition to the excited state. As
this energy shift of the ground state is position dependent, it
can also be interpreted as a motional potential. Excited-state
potentials can also be calculated and utilized for atom
trapping (Chang et al., 2014), but will not be discussed
further here.
Utilizing the fluctuation-dissipation theorem and assuming

that the temperature of the nanostructure is much smaller than
the atomic transition energies kBT ≪ ℏωj, the ground-state
potential can be written as (Buhmann and Welsch, 2007)

VCPðrÞ ¼ −
μ0ℏ
2π

Im
Z

∞

0

dωω2TrfαðωÞ ·GscðωÞg; ð8Þ

where GscðωÞ≡Gðr; r;ωÞ −G0ðr; r;ωÞ is the difference
between the full Green’s function at atomic position r in
the presence of the nanostructure and the Green’s function G0

in vacuum. The dynamic polarizability α in Eq. (8) is defined
as (Buhmann and Welsch, 2007)

αðωÞ≡ lim
ϵ→0

1

ℏ

X
j

2ωjd0jdj0

ω2
j − ω2 − iωϵ

; ð9Þ

where ωj is the transition frequency from the ground state to
state j, and dj0 is the corresponding transition dipole moment.
In Eq. (8), the integral over frequencies directly reflects the
fact that the virtual photon involved in the process can have

(c) (d)

(e)

(f )

c)

(a) (b)

FIG. 10. A hybrid optical and Casimir-Polder trap in a double-
beam PCW. (a) Schematic illustration of the waveguide structure.
(b) Intensity profile of the blue-detuned guided mode. Green
spheres indicate the location of the trap minima. (c) Casimir-
Polder potential (top) and the total trap potential (bottom) in the
y-z plane. (d)–(f) Line cuts of the Casimir-Polder potential (solid
red lines), FORT (dashed blue lines), and total potential (solid
blue lines) through the trap center. Adapted from Hung et al.,
2013.
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any frequency (in contrast to the spontaneous emission rate,
for example, where the Green’s function is evaluated only at
the atomic frequency). Using the property that the Green’s
function is analytic, in analytical calculations it is often
convenient to transform Eq. (8) to an integral over imaginary
frequencies (Buhmann and Welsch, 2007) or to an integral
over a more general path in the complex plane in the case of
numerical calculations (Rodriguez et al., 2009; Hung
et al., 2013).

C. 2D vacuum lattices

Apart from representing obstacles to atom trapping via the
guided modes of PCWs, Casimir-Polder interactions between
an atom and the dielectric environment can be exploited to
achieve novel capabilities beyond those possible with either
free space or guided optical fields. One example is the creation
of 2D “vacuum lattices,” where atoms are trapped with a
lattice constant much smaller than the free-space wavelength
d ≪ λeg=2. Gonzalez-Tudela, Hung et al. (2015) showed
theoretically that such vacuum lattices in the x, y plane
parallel to the surface of a 2D photonic crystal membrane
can yield energy scales for quantum many-body physics (e.g.,
Bose-Hubbard interactions) roughly 2 orders of magnitude
larger than a free-space optical lattice.
The spirit of the idea can already be seen in Contreras-

Reyes et al. (2010), which calculated the Casimir-Polder
interaction of an atom positioned above a 1D dielectric
grating made of silicon, as illustrated in Fig. 11(a). The key
idea is that a periodic modulation nðxÞ of refractive index
“writes” the same periodicity VCPðx; zÞ into the potential.
For a sufficiently close distance zA to the surface (chosen to
be zA ¼ 300 nm in the calculation), the modulation in the
potential can be significant as illustrated in Fig. 11(b).
Importantly, as the periodicity is enforced by that of the
underlying dielectric modulation, it is not subject to a
minimum “diffraction limit.”
In the previous example, the atomic distance zA to the

surface is fixed “by hand,” but a scheme for a full 3D trap was
proposed by Gonzalez-Tudela, Hung et al. (2015) and is
schematically illustrated in Fig. 11(c). Here a Rb atom is
trapped above a gallium phosphide (GaP) structure consisting
of a 2D periodic array of cylindrical posts in a deeply
subwavelength regime with lattice constant d ¼ 50 nm. In
analogy to the previous case, the 2D dielectric modulation
creates a 2D lattice arising from the Casimir-Polder potential
in the x-y plane. As the potential attracts atoms toward the
surface, a fixed distance zA is maintained by simultaneously
illuminating the structure with two counterpropagating side-
illumination beams, which provide a stabilizing optical
force along z. A cut of the total potential V totðx; y; zAÞ ¼
VCPðx; y; zAÞ þ VSIðx; y; zAÞ along y is shown in Fig. 11(d) at
a trapping height of zA ≈ 32.5 nm, as is the optical contribu-
tion alone. It can be seen that while the optical potential itself
is modulated due to scattering from the periodic structure, its
modulation depth is weak compared to the dominant Casimir-
Polder forces.
The trap depth of this 2D vacuum lattice can be dynamically

tuned over a wide range by adjusting the vertical trap position
zA. The trap depth Vd and frequencies ωt for Fig. 11(d) are

fVd;xy; Vd;zg=2π ≈ f3.5; 20.8g MHz and fωt;xy;ωt;zg=2π ≈
f1.7; 4.2g MHz. In the x, y plane, the trapping depth is
≈15ER, which guarantees the possibility of having localized
Wannier modes in the lattice. The side-illumination FORT
alone would produce a trap depth of ≈3ER, which does not
lead to localization in a unit cell. The associated photon
scattering rate for the chosen parameters is ≈2π × 10 Hz.

VII. COLLECTIVE DISSIPATION

In the remaining sections, we return in more detail to the
novel paradigms for atom-light interactions introduced in
Sec. IV, beginning here with the manipulation of atomic and
quantum optical states via collective dissipation. The key idea
is that if a single atom has a significant probability of emitting
a photon into a waveguide, then the one-dimensional character
of the photonic field guarantees that another atom has a large
probability of interacting with the same photon. This quasi-
deterministic emission and reabsorption can occur multiple
times leading to collective dissipation that can be exploited to
obtain interesting many-body states and to trigger multiphoton
emission as we will see.

A. Effective description

Let us first consider the simplest paradigm, in which atoms
are coupled symmetrically to left- and right-going modes
of a broadband 1D waveguide. In such a 1D system and
neglecting retardation, a source at z0 simply emits a plane

(a) (b)
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FIG. 11. (a) Schematic of a Rb atom sitting at a fixed distance zA
above a one-dimensional dielectric grating made of silicon.
(b) Calculation of Casimir-Polder potential in this geometry
along the lateral x direction. The potential UðxA; zAÞ is normal-
ized by the value for a flat interface Uð0ÞðzA − a=2Þ. The
dimensions taken for the calculation are a ¼ 100 nm and
d ¼ 2s ¼ 2zA ¼ 6a. (a), (b) From Contreras-Reyes et al.,
2010. (c) Schematic of a GaP dielectric slab of thickness W
with dielectric posts of height h. (d) Cut along y of the total
potential (solid black) and side-illumination potential (dotted
blue) at zA ¼ 32.5 nm for the case of a 87Rb atom. The chosen
dimensions of the structure are d ¼ 50 nm, R ¼ 0.2d, and
W ¼ h ¼ 119 nm. (c), (d) From Gonzalez-Tudela, Hung
et al., 2015.
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wave Gðz; z0Þ ∝ eikðωÞjz−z0 j, which following Eq. (7) motivates
the following effective Hamiltonian (Dzsotjan, Sorensen, and
Fleischhauer, 2010; Gonzalez-Tudela et al., 2011; Chang
et al., 2012; Lalumiere et al., 2013):

H̃1D ¼ −iðΓ1D=2Þ
X
j;l

eik0jzj−zljσjegσlge − iðΓ0=2Þ
X
j

σjee: ð10Þ

Here k0 ¼ kðωegÞ represents the propagation wave vector at
the atomic resonance frequency. In addition to the atomic
interaction mediated by waveguide photons, we have added a
phenomenological independent emission rate Γ0 of excited
atoms into free space. This provides a minimal “toy model” to
realistically describe 1D atom-light interfaces, in which the
Purcell factor or branching ratio P1D ¼ Γ1D=Γ0 can be
considered as the main figure of merit of the system. To
connect to an actual specific system, the precise value of P1D
and the validity of Eq. (10) can be established by a full
numerical or analytical calculation of the Green’s function. It
is important to note that coupling to radiative waveguide fields
results in an intrinsically dissipative Hamiltonian H̃1D. For
example, for a single atom H̃1D ¼ −ði=2ÞðΓ1D þ Γ0Þσee is
purely anti-Hermitian and describes excited-state spontaneous
emission at a total rate Γ1D þ Γ0.
As pointed out in Sec. IV.A, choosing the atomic positions

in waveguide QED such that the propagation phase ϕij
between any two atoms located at zi, zj satisfies ϕij ¼ jzi −
zjjk0 ¼ 2πq with integer q results in a high probability for
photon interaction. In this case, guided mode photons couple
to a single collective atomic mode with rate NaΓ1D, while
atoms emit to free space still with an individual rate Γ0. This
situation is described by the effective Hamiltonian

H̃1D ≡ H̃Dicke ¼ −i
NaΓ1D

2
SegSge − i

Γ0

2

X
j

σjee; ð11Þ

where

Sαβ ¼
1ffiffiffiffiffiffi
Na

p
X
j

σjαβ

denote collective spin operators. This scenario realizes what is
commonly known as the pure Dicke model (Dicke, 1954), a
paradigmatic model in quantum optics whose main effects,
i.e., superradiance and subradiance (Gross and Haroche,
1982), have remained elusive experimentally in free space
due to the complication of additional coherent dipole-dipole
interactions in that setting. Waveguide QED allows one to
eliminate such detrimental dipole-dipole interactions by pre-
cisely positioning the atoms, and furthermore ensures that the
superradiant emission goes into the preferred guided modes,
as opposed to free space.
The fact that a single collective and superradiant atomic

mode couples to the waveguide leads to an interesting linear
optical response. In particular, since an incoming guided field
couples only to the collective state Sge, and because this state
couples with increasing efficiency into the waveguide (at a
rate NaΓ1D vs Γ0 into free space) with increasing Na, the

system becomes increasingly one dimensional in its response
to light. Specifically, a near-resonant photon is unlikely to be
scattered into free space but is instead coherently reflected.
Using the input-output equation (4), it can be shown that
on resonance the fraction of intensity reflected is given
by ðNaΓ1DÞ2=ðNaΓ1D þ Γ0Þ2.
This system also reveals interesting characteristics beyond

its linear response (i.e., the single-excitation manifold). An
important characteristic of the Dicke model is that all
symmetric states of N atoms containing m excitations (the
so-called Dicke states jEmi ∝ symfjgiN−m ⊗ jeimg) decay
with an enhanced rate due to the presence of the other atoms,
namely, ΓEm

≈mN for m ≪ N, which is the limit of interest
here. On the other hand, the states satisfying SgejΨi ¼ 0 are
dark (subradiant) with respect to the collective dissipation
induced by the waveguide and comprise the so-called
decoherence-free subspace (Zanardi and Rasetti, 1997;
Lidar, Chuang, and Whaley, 1998), and have lifetimes limited
only by residual free-space emission Γ0. Intuitively, these
states are odd with respect to permutation of particles, which
causes emission into the waveguide to cancel. For example,
for N ¼ 2 there is only a single dark state with one excitation
given by ðjegi − jgeiÞ= ffiffiffi

2
p

.

B. Dynamics within decoherence-free subspaces

These subradiant states cannot be directly probed by the
waveguide modes because they are decoupled from them.
However, when a weak perturbation provided by an external
laser is applied to the system (with a corresponding
Hamiltonian kHLk ≪ Γ1D), the collective dissipation of the
waveguide projects the dynamics from HL into the
decoherence-free subspaces due to the so-called quantum
Zeno effect (Misra and Sudarshan, 1977; Beige et al., 2000;
Facchi and Pascazio, 2002). This effect gives rise to an
effective Hamiltonian HL;eff ¼ PDFSHLPDFS that connects
to first order in jjHLjj=Γ1D only the states within the
decoherence-free subspaces and which allows one to obtain
interesting many-body states without being affected by the
collective dissipation of the waveguide.
To illustrate how we can move within decoherence-free

subspaces exploiting quantum Zeno dynamics, we start with a
simple example as depicted in Fig. 12(a). Let us consider two
two-level atoms strongly coupled to a waveguide in the Dicke
regime. In this case, the effect of the interaction of the
waveguide is to renormalize the decay rates of the different
states. Namely, the symmetric combination of excitations
jeei and jþi ¼ ðjegi þ jgeiÞ= ffiffiffi

2
p

experience an enhanced
decay of 2Γ1D, whereas the antisymmetric one j−i ¼ ðjegi −
jgeiÞ= ffiffiffi

2
p

and jggi are decoupled from the waveguide. Hence,
when we address the two atoms with lasers with Rabi
frequencies jΩ1;2j ≪ 2Γ1D, all the population in states coupled
to the waveguide will quickly decay into jggi. The dynamics
is thus projected only into the decoherence-free states giving
rise to a unitary dynamics within this subspace:

HL;eff ≈
�
Ω1 −Ω2ffiffiffi

2
p jggih−j þ H:c:

�
.
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By choosing an appropriate pulse timing or amplitude for the
locally applied lasers, one can prepare the entangled state j−i
from an unentangled one jggi. Notice that by performing a
local phase change, one can execute the transformation
j−i → jþi, which subsequently triggers the emission of a
single photon into the waveguide jþi → jggij1wgi. The same
argument holds for Na > 2 with the advantage that the
dimension of the decoherence-free subspaces grows exponen-
tially with Na and allows one to have subradiant states with
more than one excitation. For example, with Na ¼ 4 six
subradiant states emerge, three sharing a single excitation
and three with two excitations. Using these states one can
encode two logical qubits and define a universal set of
quantum gates to build more complex states (Paulisch,
Kimble, and Gonzalez-Tudela, 2016), which can be used to
trigger the emission of two-photon states.
An intriguing question is whether this idea can be extended

with increasing Na to move around in a dark-state subspace
and finally generate an arbitrary photon Fock state or super-
position of Fock states. Using only two-level systems, the
complexity of the Hilbert space makes it difficult to go to large
numbers of excitation or photons. Fortunately, the possibility
of having several metastable states and optical transitions
allows one to define a set of states where this can be readily
accomplished. In particular, we now consider a Λ level
structure as depicted in Fig. 12(b) in which one optical
transition jei ↔ jgi couples to the waveguide with rate
Γ1D, whereas the other one jei ↔ jsi couples to a classical
field with Rabi frequency Ωn.
Consider the superposition state jψmi ¼

P
m
p¼0 dpjSpi for

Na atoms sharing up to m excitations, where the metastable
states jSmi ∝ symfjgiNa−mjsimg. It can be shown that jψmi
can be efficiently mapped to multiphoton states (Porras
and Cirac, 2008; Gonzalez-Tudela, Paulisch et al., 2015)
by performing a fast π pulse with Ωn ≫ Γ1D such that
jSmi → jEmi → ðA†

k0
Þmjmi ⊗ jgiNa , where jEmi are the

Dicke states defined in the previous section. This state rapidly
decays to the atomic state jgiNa , while simultaneously emit-
ting a single-mode photon pulse described by Ak0 into the
waveguide, with a very favorable error scaling as ∝ 1=NaP1D
due to superradiant effects.
Of course, the generation of the entangled atomic state jSmi

with a fixed excitation number m is difficult in conventional
settings because an atomic ensemble with many atoms
behaves like a linear system. However, Gonzalez-Tudela,
Paulisch et al. (2015) showed that one can exploit atom-
waveguide QED characteristics to generate jSmi by using a
configuration as shown in Fig. 12(b). Here a source atom is
placed far from the atomic target ensemble in which we want
to generate jSmi. Although remotely located, the source atom
is still strongly coupled to the same waveguide mode as the
target ensemble. Starting with the source atom in jsi, and the
atomic ensemble in jgiNa , one can exploit quantum Zeno
dynamics to transfer the spin excitation jsi collectively to the
target ensemble only using subradiant states. By reinitializing
the source atom and repeating this process M times, one can
indeed obtain any arbitrary superposition

P
M
m¼0 dmjSmi in the

ensemble, which can be reversibly mapped to photons to
generate an arbitrary superposition in the output photon field.
For completeness, let us mention that in both the two-level

and the Λ configurations there are two main sources of errors,
which arise from the decay of subradiant states to free space
through Γ0 and from the small populations of superradiant
states (which scale with ∝ jΩj2=Γ1D). These two sources give
rise to an error in photon state generation ∝ 1=

ffiffiffiffiffiffiffiffi
P1D

p
, similar

to other quantum information protocols in cavity QED (Beige,
Braun, and Knight, 2000). By using extra auxiliary atoms
and heralding measurements exploiting the high-collection
efficiency of the waveguide photons, one can considerably
improve the error scaling (e.g., error ∝ 1=NaP1D) at the
expense of making the process probabilistic (Gonzalez-
Tudela et al., 2017).

VIII. SPIN-ORBIT COUPLING OF LIGHT

While the previous toy-model description of an atom-
waveguide setup through H̃1D is reasonable for many sit-
uations, it neglects the vector nature of the electromagnetic
field and thus the unique polarization properties that tightly
guided modes can have. As discussed in Secs. III and VI, the
local polarization of the fields of nanostructures can become
connected to the direction of propagation of light, leading to
chiral light-matter interactions [see Lodahl et al. (2017) for a
review on the subject]. With appropriate design, it then
becomes possible to separately tailor the atomic emission
into right- and left-propagating modes.

A. Effective description for a chiral setup

A minimal description for chiral coupling assumes that an
optical transition jgi-jei of a single atom emits into the left-
and right-propagating modes at rates ΓL=R, respectively. The
guided modes in each direction can be adiabatically elimi-
nated, leading to a cascaded quantum system (Carmichael,
1993; Gardiner, 1993; Pichler et al., 2015) whose effective

(a)

(b)

FIG. 12. (a) Schematic of two two-level atoms coupled to a
waveguide and individually addressed by lasers Ω1;2. The single-
atom level structure consists of atomic ground and excited states
jg; ei, where jei decays into the waveguide and free space with
rates Γ1D and Γ0, respectively. (b) Scheme for quantum state
engineering: one single atom is separated several wavelengths
apart such that it can be individually addressed with respect to an
atomic ensemble of N atoms that is collectively driven.
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Hamiltonians H̃L=R describe dynamics in which atoms interact
only with atoms to the right or left (Ramos et al., 2014; Pichler
et al., 2015):

H̃L=R ¼ −i
ΓL=R

2

X
j>l=j<l

ðeik0jzj−zljσjegσlge − H:c:Þ − i
Γ0

2

X
j

σjee:

ð12Þ

Again, we added a phenomenological independent decay rateΓ0

to describe free-space emission. One can define two figures of
merit βL=R ¼ ΓL=R=ðΓL þ ΓR þ Γ0Þ, which characterize the
amount of left or right emission compared to the total one. In
the extreme casewhere βR=L ¼ 1 (and βL=R ¼ 0), the atoms see
the rest of the atoms only on their right or left, due to the ordering
j > l or j < l appearing in the sumof Eq. (12). The bidirectional
situation is recovered by setting ΓR ¼ ΓL ¼ Γ1D=2.

B. Nonreciprocal photon transport

In the bidirectional situation described in Sec. VII, a photon
propagating in the left or right direction will scatter in the
same way with an atom independent of the direction of
propagation, e.g., it will be perfectly reflected in the case
Γ0 ¼ 0. In the chiral configuration, even for Γ0 ¼ 0, the right
or left transmission and reflection coefficients are given by

tR=L ¼ 1 − 2βR=L; ð13Þ

rR=L ¼ −2
ffiffiffiffiffiffiffiffiffiffi
βRβL

p
; ð14Þ

and thus the system can exhibit an asymmetric optical
response if βR ≠ βL, without the need of using magneto-
optical materials. This asymmetry was exploited by Sayrin,
Junge et al. (2015) for an optical nanofiber to achieve
nonreciprocal photon transport with both atomic ensembles
and single atoms with a V-type level structure. The idea is to
use a magnetic field such that one optical transition couples
resonantly with right-moving photons with right circular
polarization, while making off-resonant linear and left-
circularly polarized atomic transitions as shown in the inset
of Fig. 8(b). Hence, when a photon propagates right (left)
there is a strong (weak) interaction with the emitter, enabling a
demonstration of βR=βL ¼ 11.5 for the optical transition
of interest. In order to increase the probability of interaction,
they used either an atomic ensemble with N ≈ 27 atoms or
a whispering-gallery-mode resonator, being able to obtain
experimental isolations of 7.8 and 9.1 dB, respectively, while
maintaining high forward transmission.
Sayrin, Junge et al. (2015) scattered away a “blocked”

photon incoherently. While this functions as a classical optical
isolator, for quantum applications it would instead be desir-
able to realize a unitary nonreciprocal device, which preserves
the quantum properties of the input and output channels. Such
a scheme was proposed by Sollner et al. (2015). Here a single
quantum emitter is placed into one arm of an interferometer,
and a π shift associated with chiral transmission is then used to
route photons coherently depending on their direction of

propagation. This would enable one to create coherent super-
positions of having been routed or not.

C. Many-body entangled steady states

Instead of probing the atomic system through few-photon
scattering, an interesting alternative consists of driving the
emitters with classical fields (Ficek and Tanas, 2002), such as
external fields transverse to the waveguide or through the
waveguide with an auxiliary (nonchiral) guided mode. In that
case, one might expect interesting steady states to emerge
resulting from the interplay between the chiral collective
dissipation and driving. The driving is described by an
additional Hamiltonian:

H̃S þHlas ¼
X
j

δjσ
j
ee þ

X
j

Ωjðσjeg þ σjgeÞ; ð15Þ

where δj ¼ ωeg − ωL is the detuning between the atomic and
laser frequencies. For a bidirectional waveguide, steady-state
entanglement was predicted by driving the atoms resonantly
δj ¼ 0 (Gonzalez-Tudela et al., 2011; Gonzalez-Tudela and
Porras, 2013). However, the resulting state was mixed and
therefore not maximally entangled. Recently, in a series of
works (Ramos et al., 2014; Pichler et al., 2015) it was shown
that chiral light-matter couplings together with suitable optical
detuning patterns fδjg can give rise to pure many-body
entangled states. To provide a simple illustration of this effect,
we consider just two atoms and choose Ω1 ¼ Ω2 ≡Ω and
δ1 ¼ −δ2 ≡ δ. In the idealized limit where Γ0 ¼ 0, it can
readily be verified that there exists a dark state jDi, which
is an eigenstate of the total (non-Hermitian) effective
Hamiltonian with zero decay rate into the waveguide. This
state is given by

jDi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαj2

p ðjggi þ αj−iÞ; ð16Þ

where j−i is a singlet state of the two atoms. Being the unique
dark state, the system is deterministically driven to jDi as the
steady state. The parameter α ¼ −2

ffiffiffi
2

p
Ω=½2δþ iðΓR − ΓLÞ�

gives the singlet fraction and can be controlled through either
the laser amplitude and/or detuning. The situation for systems
N > 2 is more intricate as different nonequivalent dark states
may appear. On the one hand, there is a trivial generalization
of the N ¼ 2 case in which the atoms form singlets in pairs.
On the other hand, by choosing the detuning pattern appro-
priately, k-particle entangled states can emerge, which cannot
be obtained using only bidirectional waveguides.

IX. BAND-GAP PHYSICS

In Secs. VII and VIII we described the prospects for
utilizing collective dissipation, associated with large and
possibly directional emission rates into a waveguide, to realize
interesting quantum states of matter and light. On the other
hand, it would be highly desirable to realize purely coherent
dynamics as well, with a strength that is large relative to the
emission rate Γ0 into free space, but where dissipation due to
emission of photons into the waveguide is switched off. It is
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helpful to recognize that this dissipation results from the
continuum of guided modes at the atomic resonance fre-
quency, and thus a tantalizing “fix” is to shift the atomic
frequency away from the propagating modes of a PCW band
edge and into the band gap. We now discuss this scenario in
this section.
Theoretical investigations of atom-light interactions within a

band gap began not long after the “discovery” of photonic
crystals (John and Wang, 1990, 1991; Kurizki, 1990; Bay,
Lambropoulos, andMolmer, 1997; Lambropoulos et al., 2000).
Formally, the typical approach was to consider a hypothetical
set of photon modes k (an index for wave vector, for example)
described by annihilation operators âk, which couple
to an atom at position r, Hband ¼ ℏ

P
kωka

†
kak þ ℏωegσeeþ

ℏ
P

kðakeik·rσeg þ H:c:Þ. If one chooses a simple gapped
dispersion relation, such as ωðkÞ ¼ ωBE½1 − αðk=kbÞ2� (where
ωBE < ωge, so that the atomic frequency lies within the band
gap), then the single-excitation manifold is exactly solvable.
One of the surprising features is the emergence of an eigenstate
jψbi ¼ cos θje; 0i þ sin θjg; 1i that is a superposition of an
excited atom and a photon localized around the atomic position,
i.e., an atom-photon bound state (John and Wang, 1990); see
Fig. 9(a). Qualitatively, the dressing of an excited atom by a
localized photon enables this excitation to hop to nearby atoms,
thus realizing an effective spin-exchange interaction. The
corresponding effective Hamiltonian for the atoms would
then be purely coherent and dissipation free as already noted
in many works (Kurizki, 1990; John and Wang, 1991; Bay,
Lambropoulos, and Molmer, 1997; Lambropoulos et al., 2000;
Shahmoon and Kurizki, 2013).
As these works considered highly idealized dispersion

relations, it was not possible to account for “real” systems,
which not only see the gapped guided modes of the PCW
but free-space modes as well (and thus a dissipation Γ0). The
effects of free-space emission, photon decay, band structure,
and electric field profiles for realistic PCWs in 1D and 2D
were added to such simple models in Douglas et al. (2015)
and Gonzalez-Tudela, Hung et al. (2015). Significantly, it was
shown that for 1D waveguides, an intuitive, effective model
could achieve good quantitative agreement with numerical
simulations of the full Green’s function (Douglas et al., 2015).
We thus present the effective model here, which is already

suggested by the form of the eigenstate jψbi. In particular,
this eigenstate looks identical in form to one of the dressed
eigenstates jψþi of the Jaynes-Cummings model (see Sec. II).
This mapping can in fact be made formal—the photon confined
around the atom has the same functionality as the mode of
an actual cavity. The effective vacuum-Rabi splitting gJC is
identical to that of a real cavity whose mode volume is the same
as the bound photon size Veff ¼ AeffL, where Aeff andL are the
transverse mode areas associated with the PCWand the bound
state length [Fig. 9(a)], respectively. The effective atom-cavity
detuning δJC ¼ 2ΔBE ¼ 2ðωeg − ωBEÞ is twice the detuning
between the atomic frequency and the band edge. The length L
itself is in principle tunable, as it is dictated by the detuning from

the band edge and the band curvature L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αωBE=k2bΔBE

q
.

Thus, for example, a more localized photon arises with larger
detuning ΔBE or flatter bands.

Utilizing this mapping to cavity QED, one can then
immediately conclude that an effective spin interaction such
as Eq. (2) is possible using the PCW, except that now the
spatial range reflects the shape of the localized photonic cloud:

Hbg ¼ ðℏg2JC=δJCÞ
X
j;l

e−jzj−zlj=LuðzjÞuðzlÞσjegσlge: ð17Þ

Here the exponential envelope results from the localization
of the bound photon, while uðzÞ is a periodic function
associated with the shape of the Bloch modes around the
band edge [in generic structures, uðzÞ ¼ cos kz has the same
sinusoidal modulation as a Fabry-Perot cavity, see Fig. 4(c)].
Alternatively, in the language of the spin model this inter-
action arises from the Green’s function Gðz; z0Þ ∝ e−jz−z0 j=L in
the band gap.
Finally, the cavity QED mapping enables one to qualita-

tively understand the role of dissipation. As in our analysis of
two atoms in the Jaynes-Cummings model, two atoms
interacting via a band gap would be able to exchange a spin
excitation with a minimum error of E ∝ 1=

ffiffiffiffi
C

p
, where C ¼

λ3egQ=Veff depends on the quality factor of the localized
photon and its confinement. One can explicitly separate out
the photon length dependence C ¼ Cλðλeg=LÞ, where Cλ

represents the cooperativity for a photon confined to a length
L ¼ λeg. The quality factor Q of the bound photon, defined as
the ratio of its frequency and decay rate Q ¼ ωeg=κ, is limited
by absorption and scattering from defects in the PCWand thus
far has not been directly measured. However, one would
intuitively expect a similar decay rate κ as can be achieved in
an actual photonic crystal cavity made from the same material
and fabrication processes. The projected cooperativities of
Cλ ∼ 104 point to the potential to realize coherent interactions
with a highly tunable range, which is not readily achievable
using other interaction mechanisms.
The same concepts discussed for one-dimensional PCWs

also extend to two-dimensional structures with atomic tran-
sition frequencies in a band gap. Assuming an isotropic
dispersion around the edge of the band, the resulting envelope
of the atom-atom interactions scales as (Gonzalez-Tudela,
Hung et al., 2015) f2Dðzj; zlÞ ∝ K0ðjzj − zlj=LÞ, where K0ðxÞ
is the Hankel function. This function in turn scales as K0ðxÞ ∼
e−x=

ffiffiffi
x

p
and logð1=xÞ when x ≪ 1 and x ≫ 1, respectively.

The overall coupling strength gJC is again set by the effective
mode volume, which now scales as Veff ¼ L2Leff . Here L is
the linear extent of the photon bound state in the 2D plane,
while Leff represents the out-of-plane confinement length.
Likewise, the mode volume also dictates the effective coop-
erativity. In 2D one obtains a scaling of C2D ¼ Cλðλ=LÞ2,
such that C2D ≥ 100 over an interaction length of L ≲ 10λeg.
However, as the interaction extends now over a plane, the
number of atoms that could be coupled while maintaining
such C2D will be similar as for the 1D case.

A. Designing band-gap interactions with
the atomic physics toolbox

The natural form of the band-gap-mediated interactions
between atoms is to decay exponentially with atomic
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separation. In the thermodynamic limit, as the system size
approaches infinity, these interactions are designated as short
ranged. However, in practice the decay length can be on the
same scale as the length of the PCW itself and can thus
effectively appear long ranged. Long-range interacting spin
systems have been of great interest recently. For example,
quantum correlations propagate at a distinctly different speed
in the presence of long-range interactions, i.e., for power law
decay 1=rα with α smaller than the system dimensionality
(Hauke and Tagliacozzo, 2013; Schachenmayer et al., 2013;
Gong et al., 2014; Jurcevic et al., 2014; Richerme et al.,
2014). One limitation to investigations of such physics within
the context of photonic crystals is that for two-level systems
the type of spin interaction (of exchange type) is fixed, as
is the interaction range L for a given structure design, unless the
structure itself exhibits some dynamic tunability [for example,
via piezoeletric strain (Wong et al., 2004) or optomechanical
forces (Rosenberg, Lin, and Painter, 2009)]. In addition, a
typical excited state Γ0 decays on a scale that would make
measurements difficult. We discuss how these issues can be
circumvented using the toolbox of atomic physics.

1. Dynamically shaping interactions with Raman lasers

One possible approach is to exploit multilevel atomic
structure. For example, dynamical control of the couplings
can be achieved by using an atomic Λ transition as depicted in
Fig. 13(a), where the excited state apart from being coupled
through the waveguide to jgi, is off-resonantly driven with
detuning δL by a Raman laser with Rabi frequency Ω from
another auxiliary metastable state jsi (Douglas et al., 2015;
Gonzalez-Tudela, Hung et al., 2015). When jδLj ≫ jΩj, the
excited state can be adiabatically eliminated giving rise to an
XY interaction between the effective spin system defined by
fjgi; jsig, i.e.,

HXY ¼ ℏ
ḡ2JC
ΔL

XN
j;l

σjsgσlgsfðzj; zlÞ: ð18Þ

The coupling strength is reduced by the Raman factor
ḡJC ¼ gJCðΩ=δLÞ, while the virtual excited-state population
scales as ðΩ=δLÞ2, thereby leading to the same cooperativity
as in the two-level case. Importantly, the effective detuning
ΔL ¼ ωeg − δL − ωBE (see Fig. 13) from the band edge can be
dynamically changed by adjusting the frequency of the Raman
laser. This configuration has considerable advantages as
follows: (i) the spin systems are defined in metastable states
and are therefore long lived; (ii) the interaction can be turned
on or off at will via a time-dependent ΩðtÞ, which is very
useful to freeze the dynamics at a certain time for measure-
ment; and (iii) the interaction range L ∝ 1=

ffiffiffiffiffiffi
ΔL

p
may be

dynamically tuned for a fixed nanostructure such that one does
not have to rely completely on nanoengineering.
Moreover, Douglas et al. (2015) showed that if several

Raman lasers are used with different detunings, the interaction
obtained between them is a combination of exponentials
with different lengths as the adiabatic elimination of fields
is additive, such that fðzj; zlÞ ¼

P
βe

−jzj−zlj=Lβ ∼ 1=jzj − zljα
can mimic power law decays over a finite-size system. It is

also possible to realize other types of spin interactions, such as
Ising, by using different laser configurations or level structures
(Douglas et al., 2015; Gonzalez-Tudela, Hung et al., 2015).

2. Full control of spin interactions

Beyond the functional forms derived from the multilevel
control schemes, it is possible using magnetic fields to fully
control the spin interactions. As illustrated in Fig. 13(a), by
applying a magnetic-field gradient, relative, spatially depen-
dent shifts Δjl of the metastable state s are created between
atoms j and l (Hung et al., 2016). Spin interactions can then
be engineered selectively between pairs of atoms by intro-
ducing sidebands in the Raman control laser Ω that match
these shifts. It is thereby possible to engineer a Hamiltonian
with pairwise tunable, long-range spin interactions

HXY;full ¼ ℏ
X
j;l

Jjlσ
j
sgσlgs; ð19Þ

where the amplitude and phase of the coupling amplitudes Jjl
are determined by external fieldsΩðtÞ ¼ P

αΩ̃αeiωαt. Through
a global rotation of the spin basis, pairwise ZZ interactions
can also be engineered stroboscopically.
This highly tunable platform opens a number of avenues for

exploration. For example, full control of spin interactions
allows for the investigation of frustrated magnetism with long-
range interactions or the engineering of periodic boundary
conditions, e.g., to realize the Haldane-Shastry spin chain as

(a)

(b)

FIG. 13. (a) Dynamical control of atom-atom interactions using
a Λ atomic level scheme. The transition jgi-jei is coupled to the
modes of the PCW, while the transition jsi-jei is off-resonantly
driven (detuning δL) by an external laser Ω. Atoms j and l may
then exchange excitations in level s via the illustrated two-photon
processes. When this exchange occurs within the band gap, the
detuning ΔL from the band edge (blue curve) tunes the range of
the effective spin-exchange interaction. Furthermore, for full
control of atom-atom interactions, arbitrary long-range spin-
exchange interaction between atoms j and l may be engineered.
In particular, a relative shift of the s level of atom l by Δjl

matched by a sideband of the Raman laser Ω̃ (shown in gray),
selectively creates an interaction between these two atoms. (b) By
engineering the interactions (red arrows mark nearest-neighbor
interactions) between the atoms at each end of a finite linear chain
using this full control technique, the system can be mapped to a
chain with periodic boundary conditions.
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shown in Fig. 13(b). Similar to the Raman-addressing schemes
already developed in cold atoms and trapped ions (Jaksch and
Zoller, 2003; Bermudez, Schaetz, and Porras, 2011; Kolovsky,
2011; Aidelsburger et al., 2013; Miyake et al., 2013), here the
interaction coefficients Jjl can also acquire a complex phase
Jjl ¼ jJjljeiϕjl by properly arranging the propagation phases of
the Raman sidebands. This allows the engineering of geometric
phases in the spin model that mimic the effect of strong
magnetic fields acting on charged particles, thereby breaking
time-reversal symmetry and inducing nontrivial topological
phases (Hung et al., 2016). A principal manifestation of such
topological phases is the existence of edge states that support
directional transport and are robust against disorder (Lu,
Joannopoulos, and Soljacic, 2014, 2016). In the optical domain,
topological edge states have been observed in a number of linear
photonic systems (absent atoms) such as helical waveguides
(Rechtsman et al., 2013) and coupled resonator arrays (Hafezi
et al., 2013). Adding atoms potentially provides a route toward
interacting quantum topological photonic systems.

B. Perspective: Multiphysics coupling

Overall, aligning atomic transition frequencies in PhC band
gaps leads to coherent Hamiltonians of the general form
Hbg ∼ ℏ

P
jlfðzj; zlÞσjσl, while highly suppressing the effects

of unwanted dissipation mechanisms. The sum of possibilities
encoded in Hbg is rich, going beyond the exploration of long-
range interacting spin systems previously described. For
example, the atomic positions may also be treated as dynami-
cal variables, in which case fðzj; zlÞ represents a mechanical
potential, and Hbg a system where the interatomic forces
depend on their spin correlations. The associated forces can be
very large compared to typical external traps, since they are
derived from the vacuum-Rabi splitting gJC associated with
photons confined to the nanoscale. Finally, these nanopho-
tonic interfaces are also able to achieve efficient photon-atom
coupling. PhCs then potentially enable one to broadly explore
novel quantum systems where atomic internal states (spins),
motion (phonons), and photons are all strongly and coherently
coupled. With these new possibilities in mind, in the following
two sections we discuss some ways in which this multiphysics
coupling can manifest itself.

X. SPINS AND MOTION: SEMICLASSICAL AND
QUANTUM SELF-ORGANIZATION

In this section, we describe how strongly correlated states of
spin and motion arise when the positions of the atoms in the
band-gap interaction Hamiltonian [e.g., Eq. (18)] are treated
as dynamical variables rather than being fixed. This builds
upon an already rich body of work investigating “self-
organization” of atoms, where the interplay between the
scattering of light, the forces exerted, and the atomic positions
are treated self-consistently.
Early pioneering work on self-organization investigated the

case of atoms in a high-finesse cavity (Domokos and Ritsch,
2002; Black, Chan, and Vuletic, 2003), where atoms are
driven by an external pump field propagating orthogonally to
the cavity axis. Qualitatively, the atoms preferentially scatter

photons from the pump into the cavity mode. This in turn
builds up a standing-wave intensity whose force pushes atoms
toward the antinodes and further enhances the atom-cavity
coupling. Surprisingly, the steady-state configuration is one in
which a spontaneously broken symmetry emerges, as atoms
will organize into every other antinode. The origin of this
effect is that the external pump drives atoms with the same
phase, and that the cavity emission from dipoles in every other
antinode would constructively interfere, while emission from
every antinode would destructively interfere. Self-organiza-
tion is also possible in other configurations, such as in a cavity
where the pump field itself forms a standing wave, resulting in
a Dicke quantum phase transition (Baumann et al., 2010),
multimode cavities (Gopalakrishnan, Lev, and Goldbart,
2009), or in one-dimensional waveguides (Chang, Cirac, and
Kimble, 2013).
In previously considered systems, the spin degree of free-

dom is treated only classically, with the coherence operator
σge being approximated as a number such that the response
of atoms to light is formally identical to that of a classical
oscillating dipole. This can be justified on a number of
grounds, for example, if the atoms are only weakly driven
such that they mostly remain in the ground state, or if
dissipation is sufficiently strong that spin correlations cannot
build up. However, by using PCWs with atomic transitions in
the band gap, it is possible for coherent spin interactions to
strongly dominate over dissipation. If the atomic positions are
dynamical variables, it might then be possible that a quantum
self-organization can emerge, in which the stable spatial
patterns of atoms, and the forces “binding” these patterns
together, are due to entanglement in the spins. This also
represents a highly exotic situation compared to typical
materials, where the energy scales of crystallization and spin
physics are completely different.
A simple example of such an effect can already be seen with

just two atoms. Here we will consider the Raman scheme
discussed in Sec. IX.A.1, where the band-gap interactions are
used to facilitate coherent interactions within a ground-state
manifold. This is necessary as for typical atomic excited
states, both the interaction strength and emission rates are
much larger than frequencies associated with motion. Using
the Raman scheme it becomes possible to tune the interaction
strengths to become comparable to motional scales, while
incoherent loss rates become substantially smaller.
In a generic PCW, the spatial dependence of the interaction

for frequencies within the band gap is fðzj; zlÞ ¼
e−jzj−zlj=L cos kzj cos kzl, resulting from the combination of
the standing-wave structure of the Bloch mode and an
exponential envelope for the two-point Green’s function.
Supposing that the atoms can be treated as point particles
for now, one can consider adding an external trapping
potential VT ¼ V0

P
jsin

2kTzj, where kT ¼ k=2 is chosen
for conceptual simplicity to trap atoms at every other node
of the APCW interaction, as illustrated in Fig. 14(a). This
nominally results in zero interaction energy if atoms were
to remain at the nodes. However, for two atoms, the spin part

of the interaction in Eq. (18), σð1Þsg σ
ð2Þ
gs þ H:c:, has extremal

eigenvalues of �1 for the entangled triplet and singlet states
j�i ¼ ðjsgi � jgsiÞ= ffiffiffi

2
p

), respectively. Thus, the interaction

D. E. Chang et al.: Colloquium: Quantum matter built from …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 031002-23



energy can always become negative, if each atom were to
displace in one direction away from the nodes [left (L) or right
(R)] and form an appropriate entangled state, as shown in
Fig. 14(a). Without the exponential dependence of fðzj; zlÞ,
four possible combinations would be degenerate in energy.
However, the exponential most favors the two atoms becom-
ing closer together in space, such that they form a spatial
“dimer” jRLi, which is associated with spin triplet jþi. This
effect is reminiscent of the spin-Peierls model (Peierls, 1955)
in condensed matter physics, a simple one-dimensional model
where a lattice instability arises due to spin-phonon coupling.
The interesting behavior seen at the level of two atoms

naturally motivates an exploration of the many-body phase
diagram, with one trapped atom per node. One limiting
case, which was investigated analytically and numerically
(Manzoni, Mathey, and Chang, 2017), consists of an inter-
action range L that is sufficiently small so that the nearest-
neighbor approximation can be made. The motional degree of
freedom is also treated quantum mechanically, projected into
the two lowest bands of the external potential (for a deep

lattice, the Wannier functions associated with these bands
resemble the ground and first excited states of a harmonic
oscillator potential, superpositions of which enable an atomic
wave packet to be displaced to the left or right of the center
of the trap).
The resulting phase diagram is qualitatively illustrated in

Fig. 14(b). For sufficiently large band-gap interaction
strength, the many-body ground state is gapped and undergoes
a spontaneous symmetry breaking, with pairs of atoms
forming spatial dimers, and the reduced two-atom density
matrix exhibiting large overlap with the triplet jþi spin state
(as might be anticipated from the two-atom example).
Interestingly, for low interaction strength, the spins do not
become noninteracting, as would be expected from classical
point particles that sit exactly at the nodes of the PCW.
Instead, the quantum zero-point motion enables spin inter-
actions mediated by virtual excitation and annihilation of
phonons and yields a ground state of antiferromagnetic or
Néel spin ordering. Manzoni, Mathey, and Chang (2017) also
considered the presence of an external magnetic field, which
was found to yield additional exotic phases, including a
gapped phase where atoms form spatial trimers accompanied
by a fractional magnetization, and a “spin-motion fluid” phase
where spin excitations and phonons form composite particles.
While the previous analysis focused on very specific

parameter regimes, spin-motion coupling is expected to be
an important effect in many settings. This is due to the
combination of wavelength-scale spatial variations in the
PCW-mediated interactions fðzj; zlÞ, and interaction strengths
that can greatly exceed external trapping potentials, which
yield strong spin-dependent forces. This mechanism has
hardly been explored and should serve as a rich topic for
future investigation.

XI. QUANTUM DIELECTRICS: PHOTON-PHOTON
INTERACTIONS

We now discuss a different example of multiphysics
coupling, wherein the band-gap-mediated spin interactions
in a PCW can effectively result in interactions between
propagating photons. A similar effect can already occur in
light propagation through a Rydberg ensemble, as discussed
in Sec. II, and which has produced beautiful demonstrations of
highly nonlinear effects such as photon blockade. In that case,
large nonlocal interactions between atoms excited to high-
lying Rydberg levels map to strong interactions between the
photons. In free space, the necessity to access high-lying
Rydberg states is due to the combination of lifetime and
interaction range that such states provide. PCWs offer a
complementary approach, where by engineering the
dispersion of light itself, even a normal atomic excited state
has the required range of interactions and ratio of interaction
strength to decay rate.
At first sight, band-gap-mediated interactions may not seem

ideal for creating interactions between propagating photons
as photons cannot propagate in a band gap. However, this
problem is avoided by exploiting the multimode nature of
realistic PCWs. For example, the APCW supports TM and TE
modes as shown in Fig. 4(b), where the band gaps for the
different modes occur over different frequency ranges. A

(a)

(b)

(c)

FIG. 14. (a) Trapping scheme to explore spin-motion coupling.
The atoms (green) are trapped by an external potential (blue) at
every second node of the Bloch function (red) of the PCW.
(b) Considering a pair of atoms, interactions mediated by the
photonic band gap lead the atoms to have lower energy if they
displace from the nodes of the Bloch function (to the left jLi or
right jRi) and form either a spin triplet (jþi) or singlet (j−i).
Without the exponential decay of the band-gap interactions the
four possible configurations shown here would be degenerate.
The exponential dependence of the band-gap interactions causes
the state jRL;þi to be the lowest-energy configuration.
(c) Many-body phase diagram. For weak band-gap interactions,
the atomic wave packets are centered around the minimum of the
external trapping potential, and the spins exhibit an antifero-
magnetic Néel ordering. For larger interaction strengths, a
spontaneously broken symmetry emerges where consecutive
pairs of atoms form spatial dimers, while the internal spin state
of the pair exhibits a large spin triplet fraction.
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photon with frequency in the propagating band of the TM
mode, and near resonant with an atomic transition frequency,
can then be launched into the PCW and efficiently mapped
into a spin excitation. This excitation can at the same time
interact coherently via the band gap of the TE mode with other
photon-spin polaritons. The novelty of this system can already
be seen in the limit of infinite-range interactions as would be
produced in conventional cavity QED. Such a system then
effectively represents an atomic ensemble simultaneously
coupled to a nanofiber (the TM mode) and cavity (the TE
mode), which is a very difficult hybrid system to create in
conventional settings.
By engineering the range and type of band-gap interaction

as described in Sec. IX.A, the propagation of photons in the
TM mode is affected in diverse ways. For example, in the case
of two-level atoms with transition jgi-jei coupled resonantly
to the probe, interactions of the form Σj≠lfðzj; zlÞσjeeσlee mean
that excitation of atom j via the absorption of a single photon
shifts the transition frequency of atoms l in the vicinity by an
amount fðzj; zlÞ. Note that through the dependence of
fðzj; zlÞ ∼ cos kzj cos kzl on the Bloch functions, atoms could
be shifted in an alternating manner after the excitation of atom
j, leading to an effective period doubling and a new effective
band structure seen by subsequent photons (Albrecht, Caneva,
and Chang, 2017). Alternatively, interactions of the form
Σj≠lfðzj; zlÞσjegσlge lead to anharmonicity in the excitation
structure of the atomic ensemble, and for strong interactions
the medium can act like a giant two-level system (Munro,
Kwek, and Chang, 2017).
Before discussing a specific example in more detail, it is

worthwhile to discuss techniques of solving for the dynamics of
strongly interacting photons. Treating the propagating quantum
field explicitly, and its interaction with atoms, represents an
open, nonequilibrium quantum field theory, whose general
solution is unknown. The spin model formalism described in
Sec. V, specifically Eqs. (4)–(6), provides a promising alter-
native, through the realization that the field is not an indepen-
dent degree of freedom [see Eq. (4)], but rather its properties are
encoded in the dynamics of a finite (but possibly large) number
of atomic spins evolving under Eqs. (5) and (6). Furthermore,
reducing the problem to a system of spins potentially allows
an extensive toolbox of condensed matter techniques to be
applied to the photon propagation problem,where, for example,
using matrix product states (Schollwock, 2011) one can access
the dynamics of the many-body photon state (Manzoni, Chang,
and Douglas, 2017).
For the case at hand, light propagation in a 1D waveguide

with band-gap-mediated interactions can be modeled using a
collection of spins evolving under the effective Hamiltonian
Hspin ¼ H̃1D þHatom þHpump þHbg. Here H̃1D, given by
Eq. (10), models the coupling of atoms to the TM mode,
Hbg is the band-gap interaction, Hatom is the Hamiltonian of
the bare atoms, and Hpump describes the coupling of the atoms
to input light. Often in experiments the input probe light is a
coherent state and this coupling can be described by

Hpump ¼ −ℏEinðtÞ
ffiffiffiffiffiffiffiffi
Γ1D

2

r X
j

ðσjegeikpzj þ σjgee−ikpzjÞ

for input pulse envelope EinðtÞ (Mollow, 1975). Once the spin
dynamics are solved by evolving the system according toHspin

(along with the associated dissipative terms), the output field

Eoðz; tÞ ¼ Einðz; tÞ þ εinðz; tÞ þ i

ffiffiffiffiffiffiffiffi
Γ1D

2

r XN
j¼1

σjgeðtÞeikpðz−zjÞ

is fully determined by the coherent input (classical part Ein and
vacuum fluctuations εin) and the atomic coherence σjge. The
calculation of output intensity I ¼ hE†

oEoi or higher order
correlation functions such as gð2Þ then reduces to evaluation of
atomic correlation functions.
In the spin model, the nature of Hatom is not constrained,

and it can be used, for example, to study light propagation in
ensembles of atoms in the EIT configuration discussed in
Sec. II [see Fig. 2(d)]. In that figure, for atoms with three
internal levels jgi-jei-jri, EIT is modified by the presence of
strong Rydberg interactions between the r levels. In the PCW
case, instead of a Rydberg level, one uses a metastable state jsi
as the third level [see the inset of Fig. 15(a)] and engineers
a dispersive interaction similar to Rydberg states using a
band gap Σj≠lfðzj; zlÞσjssσlss (Douglas, Caneva, and Chang,
2016; Shahmoon et al., 2016). Given the extra tunability of
atom-atom interactions mediated by nanophotonic interfaces,

(a)

(c)

(b)(a)

(c)

(b)

FIG. 15. (a) Imaginary part of the linear susceptibility (in
arbitrary units) of an atom in the EIT configuration as a function
of input probe detuning Δp ¼ ωp − ωeg. The imaginary part of
the susceptibility is zero at zero detuning, indicating zero
absorption of a continuous probe. Inset: The level structure of
EIT, showing a probe field (red) on the jgi-jei transition and a
control field on the jsi-jei transition. (b) A shift of the level s
(inset) leads to a shifted atomic response where zero absorption is
now achieved at a detuning Δp ≠ 0. (c) In a PCW, the shift of
level s can occur via interactions with other atoms in level s.
These interaction-induced shifts create new transparencies for
different components of the input probe. Here we see the single-
photon transmission I1 is unaffected by the shift, while the two-
photon transparency is shifted to the right as a result of uniform
interactions U ¼ 0.5Γ. Transmission is shown for an input
coherent state and normalized by the input single-photon and
two-photon intensities for control Rabi frequency Ω ¼ 1.9Γ and
an ensemble optical depth of 400.
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combining them with EIT potentially allows for a more
diverse range of nonlinear effects to be realized than with
Rydberg atoms where the spatial dependence of the inter-
action is fixed by the Rydberg state.
The simplest example of a situation that cannot readily be

achieved using (short-range) Rydberg interactions is a spa-
tially uniform interaction across the atomic ensemble
fðzj; zlÞ ¼ U (Caneva et al., 2015; Douglas, Caneva, and
Chang, 2016). In this case the transmission of single
photons is unaffected by the interaction, where an individual
photon entering the medium sees the normal EIT response of
an atom shown in Fig. 15(a). In particular, perfect trans-
parency results when the difference in frequencies between
the probe and control fields matches the frequency differ-
ence between the states g and s. However, the presence of
one polariton in the medium shifts the s levels of the atoms
[Fig. 15(b)], and hence the EIT transparency condition for a
second photon that enters. New EIT resonances then become
available in the system, where two or more polaritons can
propagate together if their combined detunings from the
bare EIT resonance compensate for the shift resulting from
the interaction. This behavior is shown in Fig. 15(c), where
it is seen that the peak in the spectrum for the simulated
transmitted intensity I ¼ hE†

oEoi of a weak continuous input
field occurs at a different detuning than the peak in the
two-photon “intensity” I2 ¼ hE†

oE
†
oEoEoi. More generally,

for spatially dependent interactions these “correlated trans-
parency windows” also depend on the position of the
polartitons in the atomic ensemble. For example, by design-
ing the interaction between the atoms to have a minimum at
a finite atomic separation d, the two-photon transparent state
takes the form of a photon molecule, where two photons
propagate through the system separated by d (Douglas,
Caneva, and Chang, 2016).
Going beyond a few photons, the many-body behavior of

photons propagating in PCW systems is expected to display
rich phenomena. A first step has been made in this direction,
by a perturbative treatment that reveals weak crystal-like
correlations in the many-body excitations of the photons
(Shahmoon et al., 2016). Developing a more general under-
standing of the dynamics of strongly interacting photons, in
PCWs and in other platforms, is challenging and constitutes
one of the exciting frontiers of quantum optics (Noh and
Angelakis, 2017).

XII. OUTLOOK

In this Colloquium, we described some of the major new
paradigms for controlling atom-light interactions within nano-
photonic systems and their potential toward applications and
realizing novel many-body phenomena. These possibilities are
made possible by a combination of advances in nanophotonics
design and fabrication, atomic trapping techniques, and theory
of quantum light-matter interactions. A number of impressive
proof-of-principle experiments already demonstrate the power
of these interfaces. We have also tried to highlight the room
for further technical and technological advances, which will
help to turn the interface of atoms and nanophotonics into a
mature field.

As an outlook, we speculate that ideas born within this field
might also find impact in and infuse with other fields. For
example, the possibility to realize chiral atom-light inter-
actions (Mitsch et al., 2014) already has stimulated inves-
tigations of many-body behavior in exotic chiral open systems
(Lodahl et al., 2017). The ability to tailor atom-light inter-
actions using photonic crystals and dispersion engineering
will likely be useful in other settings, such as “circuit QED”
with superconducting qubits or in quantum optomechanical
networks. In the case of circuit QED, for example, coupling of
single qubits to waveguides (open transmission lines) can
routinely reach ratios of Γ1D=Γ0 ∼ 102 (van Loo et al., 2013),
and recently a single qubit has also been coupled to a
microwave photonic crystal consisting of 14 unit cells (Liu
and Houck, 2017). There has also been extensive work
recently to realize topological effects in systems such as
arrays of photonic resonators (Hafezi et al., 2013) or of
optomechanical elements defined in photonic crystals (Peano
et al., 2015). While these effects thus far are classical, adding
atoms would be a natural way to bring such systems into the
quantum regime.
An additional intriguing possibility is that the theoretical

tools developed to treat atom-light interactions in complex
dielectric environments (Sec. V) might find use in much more
general settings. In particular, Eqs. (4) and (7) imply that
atom-light interactions are formally encoded in the solution to
an interacting open spin system. This in turn invites a separate
set of techniques and insight, originating from the condensed
matter community, to interpret atomic effects. For example,
the dynamics of one-dimensional spin systems can be numeri-
cally simulated using matrix product states (Schollwock,
2011) providing a route toward near-exact solutions for
photon propagation that go beyond previous perturbative or
low-photon treatments (Sanchez-Burillo et al., 2014;
Manzoni, Chang, and Douglas, 2017). Separately, using this
formalism, it has been shown that an ordered array of atoms
(Barredo et al., 2016; Endres et al., 2016) in free space can by
itself be a photonic crystal, supporting guided modes that do
not spontaneously emit away energy (Zoubi and Ritsch, 2010;
Sutherland and Robicheaux, 2016; Asenjo-Garcia, Moreno-
Cardoner et al., 2017; Shahmoon et al., 2017). Taken together,
this body of theoretical and experimental progress, and of
potential connections to other fields, certainly points to an
unexpected and much richer future for atoms and nano-
photonics as compared to when efforts first began in this field.
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