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A celebrated and controversial hypothesis suggests that some biological systems—parts, aspects, or
groups of them—may extract important functional benefits from operating at the edge of instability,
halfway between order and disorder, i.e., in the vicinity of the critical point of a phase transition.
Criticality has been argued to provide biological systems with an optimal balance between robustness
against perturbations and flexibility to adapt to changing conditions as well as to confer on them
optimal computational capabilities, large dynamical repertoires, unparalleled sensitivity to stimuli,
etc. Criticality, with its concomitant scale invariance, can be conjectured to emerge in living systems
as the result of adaptive and evolutionary processes that, for reasons to be fully elucidated, select for it
as a template upon which further layers of complexity can rest. This hypothesis is suggestive as it
proposes that criticality could constitute a general and common organizing strategy in biology
stemming from the physics of phase transitions. However, despite its implications, this is still in its
infancy state as a well-founded theory and, as such, it has elicited some skepticism. From the
experimental side, the advent of high-throughput technologies has created new prospects in the
exploration of biological systems, and empirical evidence in favor of criticality has proliferated, with
examples ranging from endogenous brain activity and gene-expression patterns to flocks of birds and
insect-colony foraging, to name but a few. Some pieces of evidence are quite remarkable, while in
some other cases empirical data are limited, incomplete, or not fully convincing. More stringent
experimental setups and theoretical analyses are certainly needed to fully clarify the picture. In any
case, the time seems ripe for bridging the gap between this theoretical conjecture and its empirical
validation. Given the profound implications of shedding light on this issue, it is both pertinent and
timely to review the state of the art and to discuss future strategies and perspectives.
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I. INTRODUCTION: STATISTICAL PHYSICS OF
BIOLOGICAL SYSTEMS

One of the greatest challenges of science is to shed light on
the essence of the phenomenon that we call “life,” with all its
astonishing diversity and complexity. Cells, the basic building
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blocks of life, are intricate dynamical systems consisting of
thousands of types of interacting molecules, being created,
used, and destroyed every minute; multicellular organisms
rely on the perfectly orchestrated motion of up to trillions of
interacting cells, and communities assemble dozens of indi-
viduals, interacting in countless ways, forming entangled
ecosystems, and giving rise to a hierarchy of complexity.
The standard viewpoint in biology, stemming from the

reductionist tradition, is that each molecular component
(protein, nucleic acid, metabolite, etc.) is specific and requires
individualized scrutiny. This one-at-a-time approach has
successfully identified and quantified most of the components
and many of the basic interactions of life as we know it as
stressed by the rapid advance of the “omics” sciences
(genomics, proteomics, metabolomics, etc.). Still, unfortu-
nately, it offers no convincing explanation of how systemic
properties emerge (Sauer, Heinemann, and Zamboni, 2007).
Questions such as “how are those myriads of elements and
interactions coordinated together in complex living crea-
tures?” or “how does coherent behavior emerge out of such
a soup of highly heterogeneous components?” (Schrödinger,
1967) remain largely unanswered.
A complementary strategy consists of looking at complex

biological problems from a global perspective, shifting the
focus from specific details of the molecular machinery to
integral aspects (Hartwell et al., 1999; Alon, 2006; Kaneko,
2006; Sauer, Heinemann, and Zamboni, 2007; Goldenfeld and
Woese, 2011; Bialek, 2012). System approaches to biology
rely on the evidence that some of the most fascinating
phenomena of living systems, such as memory and the ability
to solve problems, are collective ones, stemming from the
interactions of many basic units and might not be reducible to
the understanding of elementary components on an individual
basis (Bialek, 2018). Theoreticians have long struggled to
elucidate whether simple and general principles, such as those
in physics, could be of any help in tackling biological
complexity. More specifically, they have long been seduced
by the idea of adapting concepts and methods from statistical
mechanics to shed light onto the large-scale organization of
biological systems1 (Schrödinger, 1967; Anderson et al.,
1972; Hopfield, 1982; Kelso, 1984; Haken, Kelso, and
Bunz, 1985; Amit, 1992; Parisi, 1993; Alon, 2006; Bialek,
2012; Sneppen, 2014).
One of the most striking consequences of interactions

among elementary constituents of matter (atoms, molecules,
electrons, etc.) is the emergence of diverse phases whose
behavior bears little resemblance to that of their basic
components or small groups of them (Anderson et al.,
1972; Stanley, 1987; Chaikin and Lubensky, 2000).
Systems consisting of very many (microscopic) components
may exhibit rather diverse types of (macroscopic) collective
behavior, i.e., phases, with different levels of internal order.
Moreover, slight changes in external conditions (e.g., temper-
ature, pression, etc.) or in the strength of interactions may

induce dramatic structural rearrangements, i.e., phase
transitions.
It is thus tempting to hypothesize that biological states

might be manifestations of similar collective phases and that
shifts between them could correspond to phase transitions
(Anderson et al., 1972; Hopfield, 1994). As a matter of fact,
phase transitions are a common theme in biology (Pollack and
Chin, 2008; Solé, 2011), as illustrated by the following
nonexhaustive list of examples: (i) synchronization phase
transitions in collective biological oscillators such as circadian
clocks (Garcia-Ojalvo, Elowitz, and Strogatz, 2004), (ii) per-
colation transitions of fibers in connective tissues such as
collagen (Forgacs et al., 1991; Newman et al., 2004; Alvarado
et al., 2013), (iii) melting phase transition in DNA strands
(Poland and Scheraga, 1970; Li and Retzloff, 2006), and
(iv) transitions between different dynamical regimes (oscil-
lations, bursting, etc.) in neuronal networks (Kelso, 1984;
Freeman and Holmes, 2005; Rabinovich et al., 2006; Werner,
2007; Freeman, 2013; Haken, 2013).
Life, guided by evolution, has found its way to exploit very

diverse types of order: crystalline structures (seashells, skel-
etons, etc.), liquid states (blood, lymph, sap, etc.), gels
(vitreous humor, cell cytoplasm), etc. However, some aspects
of biological systems (e.g., of neural networks or flocks of
birds) exhibit intermediate levels of organization, halfway
between order and disorder, and less regular than perfect
crystals but more structured than random gases. Remarkably,
it was conjectured that, under some circumstances, living
systems, i.e., parts, aspects, or groups of them, could draw
important functional advantages from operating right at the
borderline between ordered and disordered phases, i.e., at the
edge of a continuous phase transition or critical point2

(Kauffman, 1993; Bak, 1996; Beggs, 2008; Chialvo,
Balenzuela, and Fraiman, 2008; Chialvo, 2010; Plenz,
2013; Plenz and Niebur, 2014). For instance, rather generi-
cally, living systems need to achieve a trade-off between
robustness (resilience of the system state to external pertur-
bations, which is a property of ordered phase) and flexibility
(responsiveness to environmental stimuli, which is a feature of
disordered phases). An optimal balance between these two
conflicting tendencies can be accomplished by keeping the
system dynamical state at the borderline of an order-disorder
phase transition, i.e., at criticality. Signatures of criticality,
such as the spontaneous emergence of long-range spatiotem-
poral correlations and the exquisite sensitivity to stimuli, are
also susceptible to be exploited for functional purposes, e.g.,
to create coordinated global behavior, as we shall discuss in
what follows. The idea that, in some special circumstances,
evolution might have favored states close to the edge of a
phase transition is certainly tantalizing as it suggests that
operating near criticality could be an overarching strategy in

1The possibility that biological problems may stretch the frontiers
of physics by uncovering phenomena and mechanisms unknown in
purely physical systems is also inspiring (Goldenfeld and Woese,
2011; Frauenfelder, 2014).

2Phase transitions may occur in either a discontinuous or abrupt
fashion (Binney et al., 1993), with associate bistability of the two
different phases and an abrupt or discontinuous jump at the transition
point, or in a continuous or progressive way with an associated
critical point. Our main focus here is on continuous ones, but we also
encounter discontinuous transitions, which may also play a relevant
role in biology.
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biological organization (Kauffman, 1993; Bak, 1996; Beggs,
2008; Chialvo, 2010; Mora and Bialek, 2011; Plenz, 2013;
Plenz and Niebur, 2014).
Critical points have long been appreciated to exhibit

striking features. Still, given the need of careful fine-tuning
for them to be observed, they were long treated as rarities. The
development of some of the most remarkable intellectual
achievements of the second half of the 20th century, such as
the scaling hypothesis and the renormalization group theory
(Fisher, 1974; Wilson and Kogut, 1974), changed this view
and led to an elegant and precise theory of criticality, with
unsuspected implications in many fields, from particle physics
to polymer science.3 The chief conclusion is that many
features at critical points are quite robust and largely inde-
pendent of small-scale details, giving rise to universality in the
large-scale behavior. This has important consequences for
studies in biology, as criticality and its concomitant scale
invariance can be understood through simple stylized models,
neglecting many irrelevant details of individual components
and putting the emphasis on how they interact, paving the road
to the understanding of collective aspects of living systems in
relatively simple terms.
From the experimental side, the advent of high-throughput

techniques and big-data analyses have created new prospects
in the exploration of biological systems. This is true, for
example, in neuroscience, where it is now possible to record
activity from individual spiking neurons to entire brains with
previously unthinkable resolution (Sejnowski, Churchland,
and Movshon, 2014) and, similarly, in genomics (Lesk, 2017)
or in collective motion analyses (Cavagna et al., 2008). As a
result, recent years have witnessed an upsurge of empirical
works reporting on putative scale invariance and/or criticality
in diverse biological systems, supporting these theoretical
speculations. In some cases the evidence appears to be robust,
while in others it is marginal, incomplete, or, to say the least,
doubtful. In any case, the time seems to be ripe for bridging
the gap between the theoretical hypothesis and its empirical
validation.
The purpose of this Colloquium is to briefly review the

main ideas and motivation behind the criticality hypothesis as
a possible guiding principle in the collective organization of
living systems and to scrutinize and discuss in a critical way
the existing empirical evidence and prospects. It also aims at
providing a self-consistent view of what is criticality and what
is not, as well as an overview of the literature on this active and
fascinating research field with countless ramifications.
Excellent articles exist reviewing some of these topics to

different extents; the list includes the influential paper by
Mora and Bialek (2011) which popularized the subject, and
others focused on neural dynamics (Beggs, 2008; Chialvo,
Balenzuela, and Fraiman, 2008; Chialvo, 2010; Shew and
Plenz, 2013; Hesse and Gross, 2014; Plenz and Niebur, 2014;
Massobrio et al., 2015; Cocchi et al., 2017), gene networks
(Roli et al., 2015), and collective motion (Vicsek and
Zafeiris, 2012). This Colloquium aims at overviewing and

complementing them, putting the emphasis on dynamical
aspects and discussing together empirical evidence and
theoretical approaches.

II. CRITICALITY AND SCALE INVARIANCE

Many discussions about “criticality” are semantic ones.
Depending on authors and fields rather diverse contents are
assigned to terms such as “critical,” “quasicritical,” “dynami-
cally critical,” “generically critical,” or “self-organized criti-
cal.” Given the broad audience this Colloquium is aimed at,
we esteem that a section devoted to a synthetic overview of
basic concepts and to fix ideas and notation is necessary.4

A. Scale invariance and power laws

In a seminal paper entitled “Problems in Physics
with many scales of length” Wilson (1979) emphasized that
“one of the more conspicuous properties of nature is the great
diversity of size or length scales,” and cited oceans as an
example where phenomena at vastly disparate wavelengths
coexist. Different scales are usually decoupled and the
“physics” at each one can be separately studied. However,
there are situations, known as scale invariant or scale free,
where broadly diverse scales make contributions of equal
importance. A remarkable instance of this, but just an
example, are the critical points of continuous phase transitions
where the microscopic, mesoscopic, and macroscopic scales
are all alike.
Power-law (or Pareto) distributions such as PðxÞ ¼ Ax−α,

where α is a positive real number and A is a normalization
constant, are the statistical trademark of scale invariance or
scaling.5 Actually, they are the only probability distribution
functions for which a change of scale from x to Λx, for some
constant Λ, leaves the functional form of PðxÞ unaltered, i.e.,
PðΛxÞ ¼ AðΛxÞα ¼ AΛαxα ¼ ΛαPðxÞ, in such a way that the
ratio PðΛxÞ=PðxÞ ¼ Λ−α does not depend on the variable x,
i.e., it is scale invariant (Newman, 2005; Sornette, 2006). As
opposed to exponential distributions, power laws lack a
relevant characteristic scale, besides natural cutoffs.
Distributions with power-law tails appear in countless

scenarios, including the statistics of earthquakes, solar flares,
epidemic outbreaks, etc. (Mandelbrot, 1983; Newman, 2005;
Sornette, 2006; West, 2017). They are also a common theme
in biology (Goldberger, 1992; Gisiger, 2001; Goldberger
et al., 2002; West, 2010; Hu et al., 2012). For example,
physiological and clinical time-series data typically have a
spectrum that decays as a power of the frequency
(Mandelbrot, 2002) and mobility patterns often exhibit
scale-free features (Barabasi, 2005; Brockmann, Hufnagel,
and Geisel, 2006; Proekt et al., 2012). Moreover, a number of
commonly observed statistical patterns of natural-world data,

3See, e.g., De Gennes (1979), Stanley (1987), Binney et al.
(1993), Sethna (2006), Henkel, Hinrichsen, and Lübeck (2008),
Delamotte (2012), and Täuber (2017).

4For a more exhaustive introduction to critical phenomena see,
e.g., Stanley (1987), Binney et al. (1993), Marro and Dickman
(1999), Christensen andMoloney (2005), Sethna (2006), and Henkel,
Hinrichsen, and Lübeck (2008).

5Awell-known example is the Guttenberg-Richter equation for the
probability distribution of observing an earthquake of dissipated
energy E, PðEÞ ∝ E−α (Corral, 2004).
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such as Zipf’s law,6,7 (Marsili and Zhang, 1998; Sornette,
2006; Baek, Bernhardsson, and Minnhagen, 2011; Mora and
Bialek, 2011; Visser, 2013), Benford’s law (Benford, 1938;
Pietronero et al., 2001), and Taylor’s law (Taylor, 1961;
Cohen, Xu, and Schuster, 2012; Giometto et al., 2015), stem
from underlying power-law distributions.
Disputes on the validity and possible significance of power

laws have a long history in diverse research fields. For some
they reveal fundamental mechanisms, while some others
perceive them as largely uninformative (Kello et al., 2010;
Stumpf and Porter, 2012) or even “more-normal-than-normal”
distributions (Willinger et al., 2004). Still, in some cases, there
is robust evidence of scale invariance and it certainly provides
valuable insight.8

The detection and statistical characterization of power-law
distributions in real-world data is often hindered by sampling
problems since very rare but large events control the statistics.
Accordingly, the quality of power-law fits to empirical data
was recently scrutinized showing that many claims of scale
invariance actually lack statistical significance and presently
more stringent statistical tests have become a must (Clauset,
Shalizi, and Newman, 2009).
From the mathematical side, diverse explanatory mecha-

nisms for the emergence of scaling in empirical data have
come to light (Mitzenmacher, 2004; Newman, 2005; Sornette,
2009; Simkin and Roychowdhury, 2011; Marković and Gros,
2014). For example, random walks give rise to power laws in
the distribution of return times and “avalanche” sizes as
illustrated in Fig. 1. Other examples are as follows: (i) under-
lying multiplicative processes (Sornette and Cont, 1997;
Sornette, 1998; Richmond and Solomon, 2001; Reed and
Hughes, 2002), (ii) preferential attachment processes (Yule,
1925; Simon, 1955; Barabási and Albert, 1999), and (iii) opti-
mization and constrained optimization (Carlson and Doyle,
2000; Seoane and Solé, 2015).
Even if, as the previous enumeration illustrates, empirical

power-law distributions can in principle be ascribed to a
handful of possible different generative mechanisms, in the

forthcoming sections we discuss the most prominent and
general mechanism able to account for scale invariance in both
space and time in a rather robust, powerful, and universal way:
criticality.

B. Criticality in equilibrium systems and beyond

The concept of criticality was born in the context of systems
at thermodynamic equilibrium. A paradigmatic example is
ferromagnets. These exhibit a continuous or second-order
phase transition at a critical temperature Tc below which the
orientational symmetry of spins is spontaneously broken, i.e.,
a preferred direction emerges, and progressively more ordered
and magnetized states emerge as the temperature is lowered.
On the other hand, above Tc thermal fluctuations dominate
and the system remains disordered. This change in the
collective state is usually encoded in an order parameter
(e.g., the overall magnetization) which measures the degree of
order as the phase transition proceeds.
The described symmetry breaking is a collective phenome-

non that requires a system-wide coordination for the global
reorganization to emerge. This implies that the correlation
length among individual components needs to span the whole
system at criticality. Similarly, when the system is becoming
incipiently ordered, it is highly fluctuating in the orientation to
be chosen. For example, the classical experiment with liquid-
gas transitions (e.g., with CO2) shows that, right at criticality,
light of many different wavelengths scatters with internal
structures of the mixture (i.e., there are density fluctuations of
all possible length scales), causing the normally transparent
liquid to appear cloudy in a phenomenon called critical
opalescence (Stanley, 1987; Binney et al., 1993).
Importantly, the concepts and methods developed in the

context of equilibrium systems were soon extended to time-
dependent and nonequilibrium problems (Hohenberg and
Halperin, 1977; Marro and Dickman, 1999; Hinrichsen,
2000; Henkel, Hinrichsen, and Lübeck, 2008; Kamenev,

FIG. 1. Random walks, such as the one illustrated in the left
panel, lack a characteristic scale. As a consequence, the distri-
bution of return times to the origin T of the one-dimensional
(unbiased) random walk obeys PðTÞ ∼ T−α with α ¼ 3=2 and the
areas and sizes S covered by their excursions before returning to
the origin (i.e., “avalanches”) obey PðSÞ ∼ S−τ with τ ¼ 4=3
(right panels) (symbols stand for computational results, while
straight lines are theoretical fits) (Redner, 2001; di Santo et al.,
2017). Some biological systems exhibit scaling as a consequence
of an underlying random-walk process; see, e.g., Gerstein and
Mandelbrot (1964) and Berg (1993).

6,This states that the frequency with which a given pattern is
observed declines as a negative power law of its rank, i.e., its position
in the list of possible patterns ordered from the most frequent to the
rarest one (Zipf, 1949).

7An elegant and illuminating approach allowed Mora and Bialek
(2011) to map Zipf’s law to underlying statistical criticality in a
precise way. Within this setting, it was observed, however, that Zipf’s
law (and its concomitant statistical criticality) may emerge rather
generically if there is a fluctuating unobserved (hidden) variable that
affects the system such as a common input, even in systems not tuned
to criticality (Schwab, Nemenman, and Mehta, 2014; Aitchison,
Corradi, and Latham, 2016); see also Tkačik et al. (2015) for a
discussion of these issues and how they can influence the conclusions
about statistical criticality of empirical data.

8An important example is allometric scaling laws, which are
power-law relationships between different measures of anatomy and
physiology (Kleiber, 1932; West, Brown, and Enquist, 1997; Banavar
et al., 2010, 2014). These have been shown to stem from the
constraint that living systems have an underlying optimal (e.g.,
nutrient) transportation network (Banavar, Maritan, and Rinaldo,
1999; Simini et al., 2010).
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2011; Täuber, 2014, 2017). Throughout this Colloquium, we
adopt a view of criticality and phase transitions focused mostly
on dynamical and nonequilibrium aspects. This seems to be the
most natural choice to analyze living systems, which are
dynamical entities kept away from thermal equilibrium by
permanently exchanging energy andmatterwith their surround-
ings. It is important to underline the fact that there exists an
alternative “statistical-criticality” approach to the analysis of
biological data. It focuses on the statistics of existing configu-
rations (without regard to the temporal order in which they
appear,much as in equilibrium statisticalmechanics) rather than
on possible underlying dynamical processes, and it is only
briefly discussed here where we choose to focus on dynamical
aspects.

C. Nonequilibrium phase transitions: An example

In order to present a more formal approach, we describe in
detail, as a guiding example, one of the simplest possible
dynamical models exhibiting a nonequilibrium phase tran-
sition. The contact process is a prototypical toy model used to
study the dynamics of propagation of some type of activity
(as, e.g., infections in epidemic spreading); see Fig. 2 (Marro
and Dickman, 1999; Hinrichsen, 2000; Harris, 2002; Henkel,
Hinrichsen, and Lübeck, 2008). At any given time, each of the
nodes i ¼ 1; 2;…; N of a given network (which, in particular,
can be a lattice, a fully connected network, or one with a more
complex architecture describing the pattern of connections
among units or nodes) is in a state si that can be either
occupied or active (si ¼ 1) or empty or quiescent (si ¼ 0).
Occupied sites are emptied at the rate μ ¼ 1 and new active
nodes are created at (empty) randomly selected nearest
neighbors of active ones at the rate λ. Considering, for
simplicity, a fully connected network with N nodes and
performing a large-N expansion of the corresponding master
equation (Van Kampen, 1992), one readily obtains the
following “mean field” or deterministic equation:

_ρðtÞ ¼ λρðtÞ½1 − ρðtÞ� − ρðtÞ ¼ ðλ − 1ÞρðtÞ − λρ2ðtÞ; ð1Þ
where the dot stands for the time derivative of the activity
density ρ ¼ P

N
i¼1 si=N. This simple one-variable approxima-

tion already illustrates some of the essential features of
criticality. Equation (1) reveals the presence of a bifurcation
at a value λc ¼ 1, separating a subcritical (also called “absorb-
ing” or “quiescent”) phase (λ < 1) in which transient activity
decays to the only possible steady state ρst ¼ 0 from a
supercritical (or “active”) one (λ > 1) with a sustained activity
ρst ¼ 1 − 1=λ (see Fig. 2). Thus, defining δ ¼ jλ − 1j as the
distance to criticality, ρst ∼ δ for small δ. In the quiescent (or
absorbing) phase,9 an initial density decays exponentially,
ρðtÞ ¼ ρð0Þ expð−δtÞ, implying that there is a characteristic
time scale proportional to δ−1. Note that such time diverges at
criticality, i.e., it takes a long time for the system to “forget” its
initial state, reflecting a generic feature of criticality: the so-
called “critical slowing down.” Indeed, right at the critical point,
the activity decays asymptotically as a power law ρðtÞ ∼ t−1.

Introducing an external field that creates activity at empty
sites at rate h, the overall response or “susceptibility,” defined
as Ξ ¼ ∂ρst=∂hjh→0, is Ξ ∝ δ−1 that again diverges right at
δ ¼ 0 (i.e., λ ¼ 1), illustrating the diverging response to
infinitesimal perturbations, another important generic feature
of criticality.
A useful tool to analyze this type of transition consists of

performing “spreading experiments” inwhich the evolution of a
single localized seed of activity in an otherwise absorbing or
quiescent state is monitored [see Fig. 2(c)]. In this case, given
the small number of active sites, the dynamics is chiefly driven
by fluctuations and cannot be analyzed within the deterministic

FIG. 2. Sketch of the main aspects of the contact process.
(a) Dynamical rules. (b) Phase diagram, including a critical point.
(c) Temporal raster plots of activity (avalanches) in the different
regimes illustrating the complex patterns emerging at criticality
λ ¼ λc (central panel), involving many different scales. (d) Ava-
lanche size distributions in the different phases (main) and, right
at the critical point for different system sizes (inset), illustrating
finite-size scaling, i.e., the emergence at criticality, of a straight
line in a double-logarithmic plot, as corresponds to scale
invariance (see also Fig. 3).

9A similar argument holds in the active phase.
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approximation. Stochastic cascades of spatiotemporal activity
or avalanches of variable sizes and durations can be generated
from the initial seed before the system returns to the quiescent
state (extinction). In this framework the critical point separates a
regimeof sure extinction (absorbing phase) fromone of nonsure
extinction (active phase). Right at the critical point, the sizes and
durations of avalanches are distributed as power laws with
anomalously large (formally infinite) variance [Fig. 2(c)].10 To
understand this mathematically, one needs the next-to-leading
correction to Eq. (1) in the large-N expansion to include the
effect of “demographic” fluctuations. This leads to an additional
term þ ffiffiffi

ρ
p

ηðtÞ, where ηðtÞ is a Gaussian white noise of
variance σ2 ¼ ðλþ 1Þ=N.11

A simple analysis of the resulting stochastic equation12

shows that right at the critical point the time required to
return to the quiescent state, i.e., the avalanche durations T,
are distributed as power laws FðTÞ ∼ T−α with α ¼ 2;
similarly, avalanche sizes s obey PðSÞ ∼ S−τ, with τ ¼ 3=2
These mean-field exponents coincide with those of the
Galton-Watson unbiased branching process (Watson and
Galton, 1875; Harris, 2002; Liggett, 2004), introduced to
describe the statistics of family names and often employed to
illustrate the statistics of critical avalanches. Away from
criticality, as well as in finite systems, cutoffs appear in the
avalanche distributions (see Fig. 2). In particular, as a
reflection of the underlying scale invariance at criticality,
the finite-size cutoffs obey scaling laws such as

PðS; NÞ ∼ S−τGðS=NÞ; ð2Þ

where the power law S−τ is cut off by an unspecified function
G at an N-dependent scale (Binder, 1981; Stanley, 1987;
Binney et al., 1993). This enforces that plotting PðS; NÞSτ as a
function of the rescaled variable S=N should give a unique
curve into which all individual curves for different sizes N
collapse. This finite-size scaling method constitutes an impor-
tant tool for analyzing critical phenomena (both in computer
simulations and in experiments) as perfect power laws and
divergences can appear only in the infinite-size limit, not
reachable in biological problems. Indeed, while in finite
systems true criticality does not exist, still these may exhibit
a progressive transition between order and disorder. This can
be characterized by the existence of a peak in some quantity
such as the susceptibility or the correlation length that usually
diverges at (true) criticality; this is used as a proxy for
approximate criticality in finite systems.13

As a result of universality, all models exhibiting a phase
transition to an absorbing or quiescent phase (without any

additional symmetry or conservation law) share the same set
of critical exponents and scaling functions, i.e., the same type
of scale-invariant organization, with the contact process
(Henkel, Hinrichsen, and Lübeck, 2008).14

Even if the simple propagation model discussed is not
intended as a faithful description of the actual dynamics of any
specific biological system, in some cases, such as neural and
gene regulatory networks, it can constitute an adequate
effective representation of “damage spreading” experiments,
in which two identical replicas of the same system are
considered; a localized perturbation in the state of one unit
or node is introduced in one of the two, and the difference
between both replicas is monitored as a function of time
(Derrida and Pomeau, 1986). Depending on the system
dynamical state, such perturbations may grow (active phase),
shrink (quiescent phase), or fluctuate marginally (critical
point), providing a practical tool to gauge the level of internal
order.15 Even if the actual dynamics might be much more
complicated, the resulting damage spreading process is
susceptible to be described in simple terms if local effective
error “propagation” and error “healing” rates can be estimated.

D. Self-organization to criticality

As we have seen criticality requires of parameter fine-
tuning to a precise point to be observed. How is it possible that
natural systems (such as earthquakes, Barkhaussen noise, etc.)
exhibit signatures of criticality, but without any apparent need
for parameter tuning to settle them in at the edge of a phase
transition? To answer this question P. Bak and collaborators
introduced the important concept of self-organized criticality
(SOC) through a series of archetypical models (Bak and Tang,
1989; Bak, Chen, and Tang, 1990; Drossel and Schwabl,
1992; Olami, Feder, and Christensen, 1992; Corral et al.,
1995; Bak, 1996; Frette et al., 1996; Dhar, 1999), including its
most famous representative: the sandpile model (Bak, Tang,
and Wiesenfeld, 1987).
In the sandpile model a type of stress or energy (sand

grains) accumulates at a slow time scale at the sites of a (two-
dimensional) lattice, and when the accumulated stress over-
comes a local instability threshold, it is instantaneously
redistributed among nearest neighbor sites, and possibly
released or dissipated at the system boundaries. This can
create a cascade or avalanche of further instabilities.
Remarkably, the durations and sizes of such avalanches turn
out to be distributed as power laws, i.e., the system becomes
critical without any apparent need for fine-tuning16 (Bak,
Tang, and Wiesenfeld, 1987; Bak, 1996; Jensen, 1998;
Turcotte, 1999; Dickman et al., 2000; Christensen and

10The large variability of possible patterns is a generic key feature
of criticality. In particular, in systems at equilibrium, the divergence
at criticality of the specific heat reflects the large variability of
possible internal states (Binney et al., 1993).

11The square-root noise stems from the central limit theorem (Van
Kampen, 1992).

12See di Santo et al. (2017) for a pedagogical derivation of this.
13Similarly, systems in the presence of an external driving force

are not truly critical; in these cases, the Widom line, signaling the
position of maximal susceptibility or correlation, can be taken as a
surrogate of criticality (Williams-García et al., 2014).

14To study spatial effects one needs to replace ρðtÞ in Eq. (1) by a
field ρðx; tÞ and to introduce a diffusive coupling term (Hinrichsen,
2000; Henkel, Hinrichsen, and Lübeck, 2008; Ódor, 2008).

15The precise relationship between the damage spreading thresh-
old and the system’s actual critical point is an important and subtle
issue (Coniglio et al., 1989; Grassberger, 1995; Hinrichsen and
Domany, 1997).

16Stochastic variants of the original (deterministic) sandpile model
(Manna, 1991; Christensen et al., 1996) show much cleaner scaling
behavior than it (Ktitarev et al., 2000; Bagnoli et al., 2003).
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Moloney, 2005; Pruessner, 2012; Watkins et al., 2015). The
mechanism for self-organization to criticality in sandpile
models is described in Fig. 3. It can be seen that it is
characterized by a dynamical feedback that acts differentially
depending on the actual system state. This is just an example
of a broader class that has been extensively analyzed in the
context of control theory (Sornette, 1994; Moreau and Sontag,
2003; Magnasco, Piro, and Cecchi, 2009; di Santo et al.,
2016), which is likely to emerge in biological systems as we
shall discuss. Two important variants of this mechanism are as
follows:
(a) Self-organized quasicriticality is analogous to SOC but

occurs when the dynamics is nonconservative and/or when the
separation of time scales is not perfect (relevant for biological
problems). This self-organization mechanism drags the sys-
tem back and forth around the critical point without sitting
exactly at it and is able to generate effective scale invariance
across quite a few scales (Bonachela and Muñoz, 2009;
Kinouchi et al., 2018).

(b) Adaptive criticality is a variant of SOC from a network
perspective in which connections among nodes in a network
are susceptible to be added, removed, or rewired depending on
the system’s dynamical state, creating a feedback loop
between network architecture and dynamics in a sort of
coadaptive process.17 This mechanism can drive the dynamics

to criticality (Bianconi and Marsili, 2004; Liu and Bassler,
2006; Dorogovtsev, Goltsev, and Mendes, 2008) and in
parallel the network architecture develops a highly nonrandom
structure, thus capturing the feedback between dynamics and
architecture in actual biological networks.

E. Classes of criticality

Not all dynamical phase transitions of relevance in biology
occur between quiescent and active phases, nor can they be
described by an associated activity-propagation process, such
as the contact process. Other important classes of phase
transitions discussed in this Colloquium are (i) synchroniza-
tion transitions, at which coherent behavior of oscillators
emerges, as described by the prototypical Kuramoto model
(Kuramoto, 1975; Pikovsky, Rosenblum, and Kurths, 2003;
Acebrón et al., 2005); (ii) transitions to collective ordered
motion, as represented for instance by the Vicsek model
(Vicsek et al., 1995; Vicsek and Zafeiris, 2012) and its
variants; (iii) percolation transitions (Christensen and
Moloney, 2005), and (iv) even thermodynamic transitions
such as that of the Ising model (Binney et al., 1993), to name
but a few. Each of these classes has its own type of emerging
ordering and its own scaling features. However, all of them
share the basic features that constitute the fingerprints of
criticality, such as diverging correlations and response, large
variability, scale invariance, etc.

F. Criticality on complex networks

Thus far we discussed criticality in homogeneous systems.
However, in many biological problems the substrates on top of
which dynamical processes run are highly heterogeneous
(Albert and Barabási, 2002; Newman, 2003, 2010;
Caldarelli, 2007). In particular, complex systems, including
biological ones, can be described as networks, where nodes
represent units (neurons, genes, proteins, etc.) and links stand
for allowed pairwise interactions among them. Such complex
networks have been found to exhibit one or more of the
following important architectural features: (i) large hetero-
geneity with a few highly connected nodes and many loosely
connected ones, actually the distribution of connection can be
scale free (Barabási and Albert, 1999); (ii) the small-world
property (Watts and Strogatz, 1998); (iii) modular organiza-
tion18; (iv) hierarchical organization, etc. (Corominas-Murtra
et al., 2013). These structural features usually entail profound
implications on the dynamics of processes running on top of
them (Boccaletti et al., 2006; Barrat, Barthelemy, and
Vespignani, 2008; Dorogovtsev, Goltsev, and Mendes,
2008; Pastor-Satorras et al., 2015). For instance, synchroni-
zation transitions proceed in a stepped way on modular
networks (Arenas et al., 2008), and broad critical-like phases
can emerge in hierarchical modular networks [as discussed by
Muñoz et al. (2010) and Moretti and Muñoz (2013),
Appendix A].

FIG. 3. The self-organization-to-criticality (SOC) mechanism
works by establishing a feedback loop between the dynamics of
the activity and that of the control parameter (total accumulated
energy, stress, or sand grains) at separated time scales. In particular,
the control parameter itself becomes a dynamical variable that
operates in opposite ways depending on the system’s state: fast
dissipation (negative force) dominates while the control parameter
lies within the active phase and by slow driving dynamics (positive
force) dominates in the absorbing or quiescent phase. This feed-
back self-organizes the system to the critical point of its second-
order phase transition if the separation between slow and fast time
scales is infinitely large and the dynamics is conservative (Zapperi,
Lauritsen, and Stanley, 1995; Vespignani et al., 1998, 2000;
Dickman et al., 2000; Bonachela and Muñoz, 2009). Otherwise,
the system is just self-organized to the neighborhood of the critical
point with excursions around it, i.e., self-organized quasicriticality
(Bonachela and Muñoz, 2009; Dickman et al., 2000).

17Different variants of this idea have been proposed in the literature
(Bornholdt and Rohlf, 2000; Dorogovtsev and Mendes, 2002; Solé et
al., 2002; Gros, 2008; Gross and Blasius, 2008; Rohlf, 2008; Meisel
and Gross, 2009; Perotti et al., 2009; MacArthur, Sánchez-García, and
Maayan, 2010; Kuehn, 2012; Droste, Do, and Gross, 2013; Saito and
Kikuchi, 2013; Rybarsch and Bornholdt, 2014).

18Biology is “modular” in many aspects (Ravasz et al., 2002;
Alon, 2006), meaning that some components in biological networks
(nodes) are connected among themselves more often or more
strongly than they do with others (Alon, 2003).
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G. Generic scale invariance

We have discussed the paradigm of a critical point, with its
concomitant spatiotemporal scale invariance, separating two
alternative phases. However, in some systems with peculiar
symmetries, conservation laws, or structural disorder, critical-
like features may appear in extended regions in the phase
space and not just at a critical point. This is called generic
scale invariance (Grinstein, 1991) and can account for
empirically reported scale invariance in some biological
problems without the need to invoke precise tuning to
criticality. Mechanisms for the emergence of generic scale
invariance are discussed in Appendix A.

H. Statistical criticality

We now briefly discuss an already mentioned alternative
perspective to criticality, particularly useful to analyze the
wealth of high-quality data now available for living systems
(Mora and Bialek, 2011). It relies on the idea that some
fundamental questions in biology can be tackled within a
probabilistic setting (for instance, analyzing the statistics of
spiking patterns may help deciphering the way in which
neurons encode information) (Rieke, Bodnar, and Bialek,
1995). Bialek and co-workers developed a data-driven maxi-
mum-entropy (statistical physics) approach to biological
problems that consists of approximating the probability
distribution of different patterns in a given data set by a
probabilistic model that consistently reproduces its main
statistical features (e.g., mean values and pairwise correla-
tions, see Appendix B). The resulting models are akin to the
Ising models.19 Rather remarkably, Bialek and collaborators
observed that the emerging probabilistic models for a number
of high-dimensional problems, including biological ones from
retinal neural populations (Schneidman et al., 2006; Tkačik
et al., 2013, 2014, 2015) to flocks of birds (Bialek
et al., 2012) and the immune system (Mora et al., 2010),
for which excellent empirical data sets are available,
have parameter values sitting close to the edge of a phase
transition, i.e., the emerging probabilistic models seem to be
critical in a very precise sense (Mora and Bialek, 2011); see
Appendix B.

III. FUNCTIONAL ADVANTAGES OF CRITICALITY

Having discussed basic aspects of criticality and scale
invariance, we move on to ask what are the potential virtues
of them susceptible to be exploited by living systems to
enhance their functionality? To shed light on this, we first
describe a well-understood case in which both theoretical and
empirical evidence match, and where the essential and
beneficial role played by criticality in a biological
system is clear and illuminating. Later on we discuss a set
of possible functional advantages of criticality from a general
perspective.

A. Criticality in the auditory and other sensory systems

The inner ear of vertebrates is able to detect acoustic stimuli
with extraordinary sensitivity and exquisite frequency selec-
tivity across many scales (Hudspeth, 2014). At the basis of
these exceptional features there are hair cells, the ear’s sensory
receptors, which oscillate spontaneously even in the absence
of stimuli being able to resonate with acoustic inputs (Gold,
1948; Choe, Magnasco, and Hudspeth, 1998; Martin,
Hudspeth, and Jülicher, 2001). Intrinsic oscillations are either
damped or self-sustained depending on the concentration of
calcium ions, with a Hopf bifurcation separating these two
regimes. Empirical evidence reveals that the ion concentration
is regulated in such a way that hair cells operate in a regime
very close to the Hopf bifurcation (Camalet et al., 2000;
Ospeck, Eguíluz, and Magnasco, 2001). This has been argued
to entail important consequences for signal processing (Choe,
Magnasco, and Hudspeth, 1998; Eguíluz et al., 2000; Martin,
Hudspeth, and Jülicher, 2001; Hudspeth, Jülicher, and Martin,
2010), as we discuss now.
In the simplest possible setting, a hair cell can be effectively

described as a Hopf oscillator (Strogatz, 2014):

_ϕðtÞ ¼ ðaþ iω̃ÞϕðtÞ − jϕj2ϕðtÞ; ð3Þ

where ϕ is a complex number, ω̃ is the resonance frequency,
and a is the control parameter (ion concentration) setting the
dynamical regime. Equation (3) exhibits self-sustained oscil-
lations of the form ϕðtÞ ¼ ffiffiffi

a
p

eiω̃t if a > 0, while if a < 0
oscillations are damped.20 Introducing stimuli of the charac-
teristic frequency ω ¼ ω̃ and small amplitude F [i.e., adding
þFeiω̃t to Eq. (3)], and writing ϕðtÞ ¼ RðtÞeiωt, one finds

_RðtÞ ¼ RðtÞ½a − R2ðtÞ� þ F: ð4Þ

In the oscillatory regime a > 0, the response R is proportional
to the input amplitude F. However, at the bifurcation (or
critical) point, a ¼ 0, the response R is strongly nonlinear as
R ¼ F1=3 and, consequently, the response-to-signal ratio
R=F ¼ F−2=3 diverges at F → 0, leading to a large response
to small signals of the characteristic frequency. On the other
hand, if the input has some other frequency ω ≠ ω̃ the
response is much smaller. This entails an extremely efficient
frequency selection and amplification mechanism, vividly
illustrating the advantage of working close to the instabil-
ity point.
The described phenomenon involves a single hair cell with

a specific intrinsic frequency and it is thus not a collective
critical phenomenon. However, the cochlea is arranged in such
a way that it involves an almost unidimensional array of
diverse and coupled hair cells. Coupling many different Hopf
oscillators results in the emergence of a true phase transition,
i.e., a critical point with scale-free avalanches, entailing
sharpened frequency response (Duke and Jülicher, 2003;
Magnasco, 2003) and enhanced input sensitivity (Kern and
Stoop, 2003; Gomez, Lorimer, and Stoop, 2015; Stoop and
Gomez, 2016).

19And since the inferred interactions among “spins” have both
signs, they are a sort of spin glasses (Tkačik et al., 2009, 2013). 20See Kern and Stoop (2003) fromwhere this discussion is adapted.
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Summing up, working at criticality has been shown to be
essential to generate the extraordinary features of vertebrate
hearing, even the most intricate ones (Stoop and Gomez,
2016). Similar virtues of criticality have been explored in the
olfactory system (Bushdid et al., 2014) and the visual cortex
(Shew et al., 2015) [see also Chialvo (2006) and Friston,
Breakspear, and Deco (2012)].

B. Exploiting criticality

1. Maximal sensitivity and dynamic range

As previously discussed, an important trademark of critical
points is the divergence of the response (or susceptibility)
which is likely to be exploited in biological sensing systems,
needing to optimize their response to environmental cues. To
better quantify this, a related quantity called a dynamic range,
was introduced by Kinouchi and Copelli (2006). Consider a
model for activity propagation (similar to the contact process)
with a critical point (λc ¼ 1) running on a random network
under the action of an external stimulus h able to create
activity at empty nodes. The dynamic range Δ (see Fig. 4)
gauges the range of diverse stimuli intensities where variations
in input h can be robustly coded by variations in the response,
discarding stimuli that give almost indistinguishable outputs.
Δ turns out to exhibit a marked peak at λc ¼ 1, indicating that
at criticality discriminative outputs can be associated with a
very large variety of inputs, with functional advantages for
signal detection and processing.

2. Large correlations

The emergence of arbitrarily large correlation lengths at
criticality is an important feature susceptible to be exploited
by living systems in order to induce coordinated behavior of
individual units across space and time. This can be relevant for
coordination purposes in neural systems where coherent
behavior across extended areas is observed (Tagliazucchi
et al., 2012) in flocks of birds (Cavagna et al., 2010) and
in micro-organism colonies (De Palo, Yi, and Endres, 2017).
Similarly, the emergence of very large correlation times and a
critical slowing down may provide biological systems with a
useful mechanism for the generation of long-lasting and/or
slow-decaying memories at multiple time scales (Deco and
Jirsa, 2012).

3. Statistical complexity and large repertoires

The variability of possible spatiotemporal patterns is maxi-
mal at criticality (as illustrated in Fig. 2); this may allow
biological systems to exhibit a wide spectrum of possible
responses, sometimes called “dynamical repertoire” (Rämö,
Kesseli, and Yli-Harja, 2006; Rämö et al., 2007; Yang et al.,
2012). This is consistent with the finding that models for brain
activity reach the highest signal complexity, with a variety of
attractors and multistability when operating near criticality
(Deco and Jirsa, 2012;Haimovici et al., 2013). Similarly, (i) the
number of metastable states (Haldeman and Beggs, 2005),
(ii) the variability of attractors to support memories (Krawitz
and Shmulevich, 2007; de Arcangelis and Herrmann, 2010),
and (ii) the diversity in structure-dynamics relationships
(Nykter, Price, Larjo et al., 2008) have been predicted to be
maximized at criticality. All this suggests that in order to
spontaneously generate complex patterns, required to store
highly diverse tokens of information, operating near criticality
can be an excellent solution for living systems. As a conse-
quence, the capacity to store and process information is optimal
at criticality, as we discuss in more depth in what follows.

4. Computation exploiting criticality

It was long ago conjectured that the extraordinary “com-
putational power” of living systems could be the result of
collective behavior, emerging out of a large number of simple
components (Amari, 1972; Grossberg, 1982; Hopfield, 1982;
Carpenter and Grossberg, 2016). By “computation” it is
usually meant an algorithm or system that, with the aim of
performing some task, assigns outputs to inputs following
some internal logic. Thus, the computational power of a given
device is quantified by estimating the amount and diversity of
associations of inputs to outputs that it can support. As first
suggested by Turing (1950) and Ashby (1960) and much
further developed in the context of machine learning
(Crutchfield and Young, 1988; Packard, 1988; Langton,
1990; Li, Packard, and Langton, 1990) networked systems
operating at criticality can have exceptionally high computa-
tional capabilities. In particular, Langton formulated the
question: “under what conditions will physical systems
support the basic operations of information transmission,
storage, and modification, required to support computation?”
His answer was that systems21 operating at the “edge of
chaos” are especially suitable to perform complex computa-
tions.22 The edge of chaos or critical point (as called here) is
the borderline between two distinct phases or regimes: the
chaotic or disordered one in which perturbations and noise
propagate unboundedly (thereby corrupting information stor-
age) and the frozen or ordered phase whereas changes are
rapidly erased (hindering the capacity to react and transmit
information). Therefore, the critical point confers on comput-
ing devices composed of equivalent units an optimal trade-off
between information storage and information transmission,

FIG. 4. The behavior of the dynamic range defined as near a
critical point. (Left) Steady state density ρ as a function of the
driving force h (in log scale) for a given value of the control
parameter λ; the dynamic range Δ defined as Δ ¼ 10 log½hðρ ¼
0.9Þ=hðρ ¼ 0.1Þ� signals the interval where distinguishable
responses (i.e., values of ρ) can be measured. (Right) Δ exhibits
a pronounced peak at criticality.

21Cellular automata in this case (Wolfram, 2002).
22This proposal triggered a heated debate; see, e.g., Crutchfield

and Young (1988), Melanie, Crutchfield, and Hraber (1993), and
Crutchfield (2012).
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two of the key ingredients proposed by Turing as indispen-
sable for universal computing machines (Turing, 1950).
In artificial intelligence, criticality is exploited in so-called

“reservoir computing” (Lukoševičius, Jaeger, and Schrauwen,
2012) that was developed independently in the fields of
machine learning [“echo state networks” in Jaeger (2007)]
and computational neuroscience [“liquid state machine” in
Maass, Natschlager, and Markram (2002)]. These machines
consist of a network of nodes and links, “the reservoir,” where
each node represents an abstract “neuron” and links between
them mimic the connectivity of actual biological circuits.
A series of seminal works showed that such machines can
perform real-time computations, responding rapidly to time
varying input signals, in a coherent yet flexible way if they
operate near a critical point (Maass, Natschlager, and
Markram, 2002; Bertschinger and Natschlager, 2004;
Legenstein, 2005; Legenstein and Maass, 2007; Boedecker
et al., 2012).
These ideas are corroborated by information-

theoretic analyses (Cover and Thomas, 1991), which have
unveiled the fact that the overall transmission of information
between units in a network, as measured by diverse indica-
tors,23 is maximal if the underlying dynamical process is
critical.24

Let us also mention that (i) state-of-the-art deep
learning machines (LeCun, Bengio, and Hinton, 2015) may
rely on some form of intrinsic scale invariance or even
criticality (Mehta and Schwab, 2014; Lin and Tegmark,
2017; Oprisa and Toth, 2017a, 2017b; Song, Marsili, and
Jo, 2017; Ringel and de Bem, 2018), opening exciting
research avenues to understand how artificial-intelligence
machines achieve their extraordinary performance, and
(ii) from the empirical side, recent work has revealed that a
mechanism akin to reservoir computing enables neuronal
networks of the cerebellum to perform highly complex tasks
in an efficient way by operating at criticality (Rössert, Dean,
and Porrill, 2015).

IV. ALLEGED CRITICALITY AND SCALING IN
BIOLOGICAL SYSTEMS

Having discussed putative virtues of critical dynamics,
susceptible in principle to be exploited by biological systems,
we now start with some of the most remarkable existing
empirical evidence revealing signatures of criticality in such
systems. We warn the reader that, even if the aim is to present
a collection as extensive and exhaustive as possible, the
selection of topics as well as the extent in which they are
discussed might be biased by our own experience. Also,
importantly, even if some of the experiments and findings to

be discussed are appealing, evidence in many cases is not
complete and conclusions should always be taken with
caution. Indeed, for many of the forthcoming examples, we
also discuss existing criticisms and potential technical or
interpretative problems.

A. Neural activity and brain networks

1. Spontaneous cortical activity

The cerebral cortex of mammalians is never silent, not even
under resting conditions nor in the absence of stimuli; instead,
it exhibits a state of ceaseless spontaneous electrochemical
activity with very high variability and sensitivity (Arieli et al.,
1996; Yuste et al., 2005; Fox and Raichle, 2007; Raichle,
2011). Understanding the genesis and functionality of sponta-
neous cortical activity, which accounts for about 20% of the
total oxygen consumption of a person at rest, is key to
shedding light onto how the cortex processes information
and computes (Arieli et al., 1996; Deco, Jirsa, and McIntosh,
2011, 2013; He, 2014). Criticality might play a key role to
generate such a variable and sensitive activity as diverse
empirical results suggest.
An adult human brain consists of almost 1011 neurons and

up to 1015 synaptic connections among them, forming an
amazingly complex network through which electric signals
propagate (Keenan et al., 2007). Neurons integrate presynap-
tic excitatory and inhibitory inputs from other neurons and fire
an action potential when a given threshold is overcome,
stimulating further activity. This generates irregular cascades
or outbursts of activity interspersed by quiescent periods, as
empirically observed both in vitro (Sanchez-Vives and
McCormick, 2000; Segev and Ben-Jacob, 2001; Segev et al.,
2001; Tabak and Latham, 2003; Eytan and Marom, 2006) and
in vivo (Meister et al., 1991; Steriade, Nunez, and Amzica,
1993); see Fig. 5. Is this activity related to inherent critical
behavior? In what follows we discuss empirical pieces of
evidence suggesting diverse possible connections with differ-
ent types of phase transitions.

2. The edge of activity propagation: Avalanches

In a remarkable breakthrough, Beggs and Plenz (2003)
succeeded at resolving the internal spatiotemporal organiza-
tion of the outbursts of neuronal activity. They analyzed
mature cultures as well as acute slices of rat cortex and
recorded spontaneous local field potentials (LFPs), which
provide coarse-grained measurements of electrochemical
activity, at different locations and times. Local events of
activity are defined as (negative) peaks of the LFP signals,
which are indicative of local population spikes (Beggs and
Plenz, 2003). As illustrated in Fig. 5, events at different sites
have a tendency to cluster in time, producing network spikes
of activity. Each of these outbursts of activity when temporally
resolved consists of a cascade of successive local events,
organized as neuronal avalanches interspersed by periods of
quiescence (Beggs and Plenz, 2003, 2004). The avalanche
sizes (i.e., number of local events each one includes) and
durations were found to be distributed as power laws with
exponents τ ≈ 3=2 and α ≈ 2, respectively, with cutoffs that
increase with system size in a scale-invariant way [i.e., the

23Such as the transfer entropy (Solé and Miramontes, 1995; Lizier,
Prokopenko, and Zomaya, 2008b; Shriki and Yellin, 2016), Fisher
information (Wang, Lizier, and Prokopenko, 2011), and more in
general statistical complexity (as previously discussed) (Krawitz and
Shmulevich, 2007; Rämö et al., 2007; Lizier, Prokopenko, and
Zomaya, 2008a).

24See Li, Packard, and Langton (1990), Beggs (2008), Ribeiro
et al. (2008), Toyoizumi and Abbott (2011), Barnett et al. (2013), and
Prokopenko (2013) for a discrepant view.
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distributions obey finite-size scaling25; see Beggs and Plenz
(2003), Mazzoni et al. (2007), and Petermann et al. (2009)].
The observed exponents coincide with those of the mean-field
critical contact and branching processes as described and,
thus, seem to describe a marginal activity-propagation proc-
ess. Moreover, the mean temporal profile of neuronal ava-
lanches of widely varying durations is quantitatively described
by a single universal scaling function (Sethna, Dahmen, and
Myers, 2001; Friedman et al., 2012), and scaling relationships
between the measured exponents are fulfilled (Friedman et al.,
2012). Similar avalanches have been observed in vitro
(Mazzoni et al., 2007; Pasquale et al., 2008) and in vivo
for different species (Gireesh and Plenz, 2008; Petermann
et al., 2009; Hahn et al., 2010; Ribeiro et al., 2010; Yu et al.,

2011) and across resolution scales, from single neuron spikes
to rather coarse-grained measurements.26 The fact that at quite
different resolution scales similar results are reported is, by
itself, strongly supportive of the existence of underlying scale-
invariant dynamical processes.27

All this evidence regarding neuronal avalanches seems to
make a strong case in favor of criticality. However, some
caveats need to be made.
(i) Thresholding: A source of ambiguities in extracting

(discrete) events from (continuous) time-series analyses
comes from thresholding; i.e., signals at any given spatio-
temporal location need to overcome some threshold to be
declared an “event” of activity. Petermann et al. (2009)
compared results for different thresholds in LFPs time series
and found that exponent values remain unchanged, suggesting
the existence of a truly scale-invariant organization of events.
However, a word of caution is still required as recent works
have underlined the “perils” associated with thresholding,
which in some controlled cases has been shown to generate
spurious effects such as effective exponent values and corre-
lations in the timings of consecutive avalanches (; Laurson,
Illa, and Alava, 2009; Font-Clos et al., 2015; Janićević et al.,
2016). Further clarifying this issue is key to making solid
progress in the empirical analysis of avalanching systems.
(ii) Time binning: Avalanches can be defined only by

employing a criterion to establish when an avalanche starts
and when it ends. This requires setting a discrete time binning
to be applied to the data: an avalanche starts when a time bin
with some activity within it follows a series of preceding
consecutive quiescent ones and ends when a new quiescent
time bin appears (Beggs and Plenz, 2003); see Fig. 5. This
introduces some ambiguity, and the measured avalanche
exponents have been shown to be sensitive to the choice of
the time bin. However, taking the time bin to coincide with the
mean inter-event interval, the mean-field branching process
exponents seem to be systematically recovered (Beggs and
Plenz, 2003; Petermann et al., 2009; Tagliazucchi et al., 2012;
Haimovici et al., 2013). Further work is needed to math-
ematically clarify this important issue.
(iii) Subsampling: A related problem is that of subsampling

as a result of observational and resolution limitations. Owing
to these factors the statistic is not complete, and this might
affect the shape of the observed distributions. Priesemann,
Munk, and Wibral (2009) and Priesemann et al. (2013, 2014)
argued that, taking into consideration subsampling effects,
empirical data are best characterized by a slightly subcritical
dynamics (additionally driven my external forces) rather than
by a critical one.

FIG. 5. Illustration of how neuronal avalanches are measured
from local field potential (LFP). (Top) LFPs are measured at
different locations; negative peaks of the time series correlate
with large population spikes of the underlying neurons within
each local region. (Middle) Raster plot illustrating the times at
which peaks of the LPF occurs for different sites, revealing a high
degree of temporal clustering. (Bottom) Enhancing the temporal
resolution, it is possible to resolve the spatiotemporal organiza-
tion within apparently coherent large-scale events occurring in
the form of “neuronal avalanches” (shaded columns) interspersed
by periods of quiescence (white columns).

25Instead, if data are temporally reshuffled the distributions
become exponential ones, meaning that large coherent events
disappear (Beggs and Plenz, 2003; Plenz and Thiagarajan, 2007).

26This includes single unit recordings (Bellay et al., 2015), LFPs
(Beggs and Plenz, 2003; Petermann et al., 2009), electroencepha-
lography (EEG) (Freeman et al., 2003; Allegrini et al., 2010; Meisel
et al., 2013), electrocorticography (ECoG) (Solovey et al., 2012),
magnetoencephalography (MEG) (Novikov et al., 1997; Poil et al.,
2012; Palva et al., 2013; Shriki et al., 2013), and functional magnetic
resonance imaging (fMRI) (Tagliazucchi et al., 2012; Haimovici
et al., 2013).

27Some studies suggest that even single neurons can be intrinsi-
cally critical to optimize their inherent excitability (Gal and Marom,
2013; Gollo, Kinouchi, and Copelli, 2013).
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(iv) Limited scales: In general, no more than 2, at most 3,
orders of magnitude in avalanche statistics have been reported
which is somehow unsatisfactory. Obtaining much broader
regimes of scale invariance is technically challenging, but
would make a stronger case for actual scale invariance (Yu
et al., 2014).
(v) Some support different interpretations of the observed

power laws, which are unrelated to criticality (Bédard, Kröger,
and Destexhe, 2006; Destexhe, 2009; Touboul and Destexhe,
2010, 2017).
This series of observations, taken together, seem to shed

some doubts on evidence in favor of criticality relying on
avalanches. To further strengthen it, we now discuss other
complementary experimental signatures of criticality from
different perspectives.

3. The edge of neural synchronization

Much attention has been historically devoted to brain
rhythms observed in EEG, MEG, and LFP measurements
(Buzsaki, 2009). Such rhythms emerge owing to the transient
synchronization between different neural regions and circuits,
and they play a key role in neural function (Steriade, Amzica,
and Contreras, 1996). Clusters of neurons with coherent
neural activity have a much stronger coordinated effect on
other neuronal assemblies than asynchronous neurons do
(Kelso, Scholz, and Schöner, 1986; Scholz, Kelso, and
Schöner, 1987; Brunel and Hakim, 2008). Thus, phase
synchrony is essential for large-scale integration of informa-
tion (Varela et al., 2001), and abnormalities in the level of
synchronization, either by excess or by defect, are a signature
of pathologies such as epilepsy, Parkinson’s disease, schizo-
phrenia, or autism (Yang et al., 2012). Empirically, the
measured level of synchronization across resting brain regions
and across time has been found to be highly variable and
with strong long-range correlations. Such spatiotemporal
variability can be interpreted as a template to codify vastly
different tasks and to allow for a large dynamical repertoire
(Arieli et al., 1996) and has been observed to diminish when
the subject is engaged in a specific task (Tinker and
Velazquez, 2014).
The role that criticality might play in keeping intermediate

and variable levels of synchrony, which could, for example, be
essential to achieve a good balance between integration and
segregation (Tononi, Sporns, and Edelman, 1994), has been
empirically analyzed as we discuss now. Analyzing sponta-
neous bursts of coordinated activity (as in Fig. 5) (Segev and
Ben-Jacob, 2001; Segev et al., 2001), the overall level of
phase synchrony between different electrodes has been
recorded under different pharmacological conditions, ranging
from excitation-dominated to inhibition-dominated regimes. It
was observed that this is a critical point at which excitation
and inhibition balance (Yang et al., 2012). At such a point, i.e.,
at “the edge of synchrony” (Brunel, 2000; Deco et al., 2014;
Palmigiano et al., 2017), the level of synchronization vari-
ability is maximal and scale-free avalanches of activity can be
concomitantly observed (Gireesh and Plenz, 2008; Yang
et al., 2012). Actually, a recent theoretical work emphasized
that if the cortex operates at a critical point, it should
be a synchronization critical point, where marginal

synchronization and scale-free avalanches emerge together
(di Santo et al., 2018a). Last but not least, the detailed
computational model built within the large-scale collaborative
Blue brain project (Markram, 2006) also suggests that the
cortical dynamics operates at the edge of a synchronization
phase transition (Markram et al., 2015).

4. The edge of global stability

High temporal-resolution electrocorticography data from
humans reveal time-varying levels of activity across different
spatial locations (Magnasco, Piro, and Cecchi, 2009; Solovey
et al., 2012). Representing the system’s state at a given time as
a vector, its time evolution can be approximated as a series of
linear (matricial) transformations between successive time-
discrete vector states (Akaike, 1969). By employing an
eigenvector decomposition of each of such matrices, it is
possible to monitor the temporal dynamics of the leading
eigenvalues (Lyapunov exponents). In awake individuals, the
leading eigenvalue turns out to oscillate closely around the
threshold of instability, indicating that the dynamics is self-
regulated at the edge of a phase transition between stable and
unstable regimes. Quite remarkably, in anesthetized subjects
eigenvalues become much more stabilized, suggesting that
operating at the edge of stability is a property of a functional
brain and that deviations from such point can be used as a
measure of loss of consciousness (Alonso et al., 2014).

5. The edge of percolation

Cortical dynamics can be viewed as a sort of percolation
phenomenon. Tagliazucchi et al. (2012) analyzed a functional
magnetic resonance imaging (fMRI) time series at different
regions of resting humans. By thresholding them they
obtained discrete spatiotemporal maps of activity (much as
in Fig. 5). They found that using the density of active sites at a
given time as a control parameter, and the size of the largest
connected cluster at each time as a percolation order param-
eter, there is a value of the control parameter nearby where the
dynamics spends most of the time and, remarkably, it
corresponds to the value for which the total number of
different connected clusters as well as their size variability
are maximal as happens at the threshold of percolation
transitions. These empirical data reveal that the dynamics is
close to the critical percolation density value, but with broad
excursions to both subcritical and supercritical phases, sug-
gesting that regulatory mechanisms keep the system hovering
around a percolation transition (much as suggested by the
mechanism of self-organized quasicriticality discussed in
Sec. I). In other words, the resting brain spends most of its
time near the point of marginal percolation of activity, neither
too inactive nor exceedingly active.

6. The edge of a thermodynamic transition

The state of a neural network at a given small time window
can be represented by a binary vector encoding whether each
individual neuron has spiked or remained silent within it
(Tkačik et al., 2013). Questions of interest are how often does
a given simultaneous (i.e., within a given time bin) spike
pattern appear? What is the simplest probabilistic model
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(in the sense of equilibrium statistical mechanics) able to
reproduce such statistical patterns?
Pioneering empirical studies obtained data from large-scale

multielectrode array recordings to determine the statistics of
patterns of neural activity in large populations of retinal
(ganglion) cells of a salamander (Marre et al., 2012).
Employing such high-resolution data and inferring from them
maximum-entropy probabilistic (Ising-like) models (as
described in Appendix B), Tkačik et al. (2013) observed that
the associated specific heat diverges as a function of sample
size as occurs in thermodynamic critical points. Furthermore,
introducing an effective temperature they observed that
empirical data are poised near the critical point of the
temperature-dependent generalized model suggesting that
the visual cortex might operate in a close-to-critical regime
(Mora and Bialek, 2011; Tkačik et al., 2014, 2015; Mora,
Deny, and Marre, 2015).
A possible interpretation of these results, backed by recent

empirical evidence (Gautam et al., 2015; Shew et al., 2015),
is that adaptation to sensory inputs has tuned the visual cortex
to statistical criticality, thus optimizing its performance.
A competing view is that the observed signatures of criti-
cality could reflect an effective averaging over unobserved
variables (such as common external inputs in the case of
retinal populations), lacking thus any relationship with pos-
sible functional advantages (Aitchison, Corradi, and Latham,
2016; Nonnenmacher et al., 2017); see Appendix B. We refer
to Tkačik et al. (2015) and Nonnenmacher et al. (2017) for
more thorough discussions on these alternative viewpoints.

7. Large-scale cortical dynamics

Large research initiatives have allowed for the measurement
of network of physical (neuro-anatomical) connections
between different regions of the human brain, i.e., the “human
connectome network.”28

On the other hand, fMRI studies performed in the resting
state, i.e., while the subject is awake not performing any
specific task, reveal the emergence of spatiotemporal patterns
of strongly coherent fluctuations at the level of activity at the
large scale. This allows for the determination of so-called
“resting state networks,” encoding pairwise correlations
between different brain regions, or in other words brain
regions that become active or inactive together and that are
consistently found in healthy individuals.29

Diverse studies of simple dynamical models running on top
of the empirically determined human connectome network
revealed that spatiotemporal correlations similar to those of
the empirically measured resting state are reproduced only if
the models operate close to criticality (Fraiman et al., 2009;
Cabral et al., 2011; Haimovici et al., 2013; Plenz, 2013),

suggesting that resting state spatiotemporal patterns of activity
emerge from the interplay between critical dynamics and the
large-scale underlying architecture of the brain. Thus, resting
state networks reflect structured and critical fluctuations
among a set of possible attractors suggestive of a state of
alertness facilitating rapid task-dependent shifts (Ghosh et al.,
2008; Deco and Jirsa, 2012; Deco et al., 2013).
On the other hand, one could expect that scale invariance

emerges in broad regions of parameter space and not just at
critical points (see Appendix A), owing to the modular and
highly heterogeneous architecture of structural brain net-
works. This has indeed been verified to be true for models
of neural activity propagation (Moretti and Muñoz, 2013) as
well as for synchronization dynamics (Shanahan, 2010;
Villegas, Moretti, and Muñoz, 2014; Sadilek and Thurner,
2015) and implies that cortical dynamics might not be
required to be exactly critical to reproduce empirical findings,
but just to be located in a broad region in parameter space
exhibiting generic scale invariance (e.g., in a Griffiths phase,
see Appendix A).

8. Disruptions of criticality in pathological conditions

Important pieces of evidence that scale invariance and
criticality might be specific of awake and healthy brain
activity emerges from experimental analyses of neural activity
under pathology or modified physiological conditions. For
example, signatures of criticality have been reported to fade
away during epileptic seizures (Hobbs, Smith, and Beggs,
2010; Meisel et al., 2012) as well as during anomalously large
periods of wakefulness (Meisel et al., 2013) or while perform-
ing simple tasks (Tomen, Rotermund, and Ernst, 2014; Hahn
et al., 2017). Also, long-range temporal correlations, charac-
teristic of the awake state (Expert et al., 2011; He, 2011),
break down during anesthesia (Ribeiro et al., 2010; Bellay
et al., 2015), unconsciousness (Tagliazucchi et al., 2016), or
under deep sleep (Tagliazucchi et al., 2013), suggesting that
critical dynamics is specific to the state of wakefulness.
Interestingly, sleep has been interpreted as a mechanism to
restore the overall dynamics to a critical state (Pearlmutter and
Houghton, 2009).
By pharmacologically altering the ratio of excitation to

inhibition, i.e., breaking the balance condition that character-
izes functional neural networks (van Vreeswijk and
Sompolinsky, 1996; Rosenbaum and Doiron, 2014; Barral
and Reyes, 2016), induces a tendency to supercritical propa-
gation of activity, including many large system-spanning
avalanches, clearly disrupting scale-invariant behavior
(Beggs and Plenz, 2003; Mazzoni et al., 2007). Similarly,
only during naturally balanced conditions the dynamic range
(as defined) is empirically observed to be maximal (Shew
et al., 2009; Gautam et al., 2015).
There is also experimental evidence supporting the idea that

developing cortical networks go through different stages in the
process of maturating: they shift from being supercritical to
subcritical and then finally converge toward criticality only
when they become mature (Stewart and Plenz, 2008; Tetzlaff
et al., 2010).
Taken together, these observations suggest that criticality is

the baseline state of mature, healthy, and awake neural

28The resulting human connectome turns out to be a network
organized in a hierarchical modular way (Sporns et al., 2004; Sporns,
Tononi, and Kötter, 2005; Hagmann et al., 2008; Meunier,
Lambiotte, and Bullmore, 2010; Sporns, 2010; Kaiser, 2011; Betzel
et al., 2013; Breakspear, 2017).

29See the vast literature on this, e.g., Biswal et al. (1995), Raichle
et al. (2001), Greicius et al. (2003), Beckmann et al. (2005), Deco,
Jirsa, and McIntosh (2011, 2013), and Diez et al. (2015).
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networks and that deviations from criticality have profound
functional consequences (Massobrio et al., 2015).

9. Mathematical models of neurocriticality

Since the idea that the computational power of the brain
could emerge out of collective properties of neuronal assem-
blies (Hopfield, 1982; Hertz, Krogh, and Palmer, 1991), a
large and disparate number of modeling approaches have been
proposed to scrutinize neural dynamics (Amit, 1992; Amit and
Brunel, 1997; Kandel, Schwartz, and Jessel, 2000; Izhikevich,
2004; Dayan and Abbott, 2006; Izhikevich, 2007; Mattia and
Sanchez-Vives, 2012). These models uncovered a large
variety of phases and possible dynamical regimes such as
up and down states (Holcman and Tsodyks, 2006; Parga and
Abbott, 2007; Mejias, Kappen, and Torres, 2010; Hidalgo
et al., 2012; Mattia and Sanchez-Vives, 2012), synchronous
and asynchronous phases (Abbott and van Vreeswijk, 1993;
Brunel, 2000; Brunel and Hakim, 2008), as well as phase
transitions separating them. Our aim here is not to review them
exhaustively but rather to discuss those aimed at justifying the
possible emergence of criticality in actual neural networks.
P. Bak and collaborators are to be acknowledged for first

proposing that concepts of self-organization to criticality
could play a role in neural dynamics.30 Herz and Hopfield
(1995) realized that stylized integrate-and-fire models of
neuronal networks were mathematically equivalent to SOC
archetypes.
Short-time synaptic depression (Markram and Tsodyks,

1996; Tsodyks and Markram, 1997; Sussillo, Toyoizumi, and
Maass, 2007) was introduced in SOC-like neural-network
models (in which some form of neural stress is accumulated
and then released to connected units in a conserved way) as a
regulatory mechanism able to auto-organize them to the edge
of a phase transition (de Arcangelis, Perrone-Capano, and
Herrmann, 2006; Levina, Herrmann, and Geisel, 2007, 2009;
Gómez et al., 2009)31; synaptic resources become depleted
owing to network activity and remain so for a characteristic
recovery period, while they slowly recover to their baseline
level. The alternation of these activity-dependent mechanisms
(i.e., slow charging and fast dissipation) generates a feedback
loop that allegedly guides the networks to criticality, much as
in SOC (Fig. 3).
Alternative regulatory (homeostatic) mechanisms such as

spike-timing dependent plasticity (Shin and Kim, 2006;
Meisel and Gross, 2009; Rubinov et al., 2011; Effenberger,
Jost, and Levina, 2015), retrosynaptic signals (Hernandez-
Urbina and Herrmann, 2017), and Hebbian plasticity (de
Arcangelis and Herrmann, 2010; Uhlig et al., 2013) have been

proposed to explain self-organization to criticality
(Bienenstock and Lehmann, 1998).
However, these SOC-like approaches might not be bio-

logically plausible, as they rely on conservative or almost
conservative dynamics (while neurons and synapses are leaky)
and even more importantly they require an unrealistically
large (infinite) separation of time scales between dissipation
and recovering to actually self-tune the dynamics to a critical
state (Bonachela et al., 2010; de Andrade Costa, Copelli, and
Kinouchi, 2015). If the separation of time scales in these
models is fixed to moderate (finite) values, critical self-
organization is not achieved; instead, the system hovers
around the critical point with excursions to both sides of it,
as in the previously discussed self-organized quasicriticality
(Bonachela and Muñoz, 2009; Kinouchi et al., 2018), or may
become not critical at all (Bonachela et al., 2010).
To overcome these difficulties an influential model was

proposed to explain self-organized criticality without assum-
ing conservative dynamics nor an infinite separation of time
scales (Millman et al., 2010). This model (consisting of a
network of leaky integrate-and-fire neurons with synaptic
plasticity) exhibits a discontinuous phase transition, rather
than a continuous one with a critical point, between states of
high and low activity, respectively. This is neurobiologically
sound as similar “up” and “down” states are empirically
known to emerge under deep sleep or anesthesia (Steriade,
Nunez, and Amzica, 1993; Holcman and Tsodyks, 2006).
Remarkably, the model was also found to display scale-free
avalanches all across its active phase. This is puzzling from
the viewpoint of models of activity propagation, which
generate scale-free avalanches only at criticality.
This apparent paradox was recently solved: avalanches in

the model of Millman et al. are not the result of criticality; they
appear owing to the existence of generic scale invariance,
which is a consequence of an underlying neutral dynamics
(see Appendix A). Importantly, such neutral avalanches are
detected in computational models by employing information
about causal relationships on which the neuron triggers the
firing of each other (Martinello et al., 2017), and this type of
information is usually not accessible in experiments.32

Furthermore, if avalanches in the model of Millman et al.
are measured as in experiments (employing a time binning)
they are not scale free (Martinello et al., 2017). Thus, this
model, as well as some other similar ones (Stepp, Plenz, and
Srinivasa, 2015), does not describe empirical temporally
defined scale-free avalanches. More generally, these results
reveal a gap in the literature between time-binned defined
avalanches (in experiments) and causally defined avalanches
(in models).
What all of these approaches have in common is that they

identify neural criticality with the edge of an activity-propa-
gation phase transition. Recently, some other theoretical
models provided theoretical evidence that neural dynamics
should exhibit a synchronization phase transition, at which
neuronal avalanches and incipient oscillations coexist
(Gireesh and Plenz, 2008; Poil et al., 2012; Yang et al.,
2012; di Santo et al., 2018a). However, these models provide

30See, e.g., Stassinopoulos and Bak (1995), Bak (1996), Chialvo
and Bak (1999), Bak and Chialvo (2001), and Chialvo (2004). Also,
early work by Haken, Kelso, and co-workers brought about the role
that critical fluctuations and critical slowing down might play in
neural dynamics (Haken, 1977; Kelso, Scholz, and Schöner, 1986;
Scholz, Kelso, and Schöner, 1987; Haken, 2013).

31This allowed studies of the interplay between critical dynamics,
memory, and learning (de Arcangelis and Herrmann, 2010, 2012; de
Arcangelis, Lombardi, and Herrmann, 2014; de Arcangelis, 2011,
2012). 32See, however, Williams-Garcia, Beggs, and Ortiz (2017).
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no explanation other than a possible fine-tuning of why
the dynamics should operate precisely at the edge
synchronization.
Last but not least, the detailed computational model built

within the large-scale collaborative Blue brain project
(Markram, 2006) suggests that the cortical dynamics operates
at the edge of a phase transition between an asynchronous
phase and a synchronous one with emerging oscillations
(Markram et al., 2015). The regulation of calcium dynamics
has been cited as a possible responsible mechanism for
keeping the system close to such a critical state, operating
at a point at which a whole set of empirical results
can be quantitatively explained by the model (Markram
et al., 2015).
Finally, let us comment on two theoretical approaches, not

relying on criticality, proposed to account for scale-free
neuronal avalanches. The first one is a mechanism called
“stochastic amplification of fluctuations” which is able to
produce highly variable avalanches with an approximate but
not perfect or critical balance between excitatory and inhibi-
tory couplings together with inherent stochasticity (Murphy
and Miller, 2009; Benayoun et al., 2010). However, this
mechanism is not able to reproduce the empirically observed
exponent values (di Santo et al., 2018b).
The second is a recent work by Touboul and Destexhe

(2017), where it was proposed that scale-free avalanches can
naturally emerge in networks of neurons [described as a
balanced network with excitation and inhibition (Brunel,
2000), or even as simple Poissonian point processes] operat-
ing in synchronous irregular regimes away from criticality. In
our opinion, further work needs to be done to understand
how and under which circumstances this is true, and what
are the corresponding values of the resulting avalanche
exponents. Summing up, appealing empirical evidence as
well as sound dynamical models supporting the idea of
criticality in the brain exists; however, in many cases
empirical results are not fully convincing and alternative
theoretical interpretations are still under debate. Fully clar-
ifying the nature of the overall cortical dynamical state
remains an open challenge.

B. Gene regulatory networks

Setting aside neural networks, we move on to another type
of biological information-processing networks that also
exhibit signatures of criticality: genetic networks.
Living cells exhibit stable characteristic features which are

robust even under highly variable conditions. In parallel, they
also exhibit flexibility to adapt to environmental changes.
These two aspects are compatible owing to the fact that a
given set of genes (“genotype”) can give rise to different
cellular states (“phenotypes”), consisting of diverse gene-
expression patterns in which some genes are differentially
expressed or silenced. Since the pioneering work of Kauffman
(1993), cellular states have been identified as attractors of the
dynamics of gene regulatory networks, where the genes are
the network nodes and their mutual regulatory (activation or
repression) interactions are represented as directed links
between them. Cells can be thought of as “machines”
executing complex gene-expression programs that involve

the coordinated expression of thousands of genes33 (Crick,
1970; Kitano et al., 2001; Alon, 2006; Koonin, Wolf, and
Karev, 2006; Buchanan, 2010; Koonin, 2011). Consequently,
the study of information processing in cells shifted progres-
sively from single genes to increasingly complex circuits and
networks of genes and regulatory interactions, shedding light
on collective cellular states (Hartwell et al., 1999; Shmulevich
and Dougherty, 2010; Garcia-Ojalvo, 2011). The development
of powerful experimental high-throughput technologies in
molecular biology paved the way to the experimental inves-
tigation of gene-expression patterns in large regulatory net-
works (Filkov, 2005) and, in particular, provided empirical
evidence that sequences of cell states (apoptosis, proliferation,
differentiation, etc.) can be viewed as programs encoded in the
dynamical attractors of gene regulatory networks (Albert and
Othmer, 2003; Espinosa-Soto, Padilla-Longoria, and Alvarez-
Buylla, 2004; Li et al., 2004; Huang et al., 2005).

1. Models of genetic regulatory networks

Many genes are empirically observed to exhibit bistability,
i.e., their gene-expression levels can be approximated as either
“high” (on) or very “low” (off) depending on conditions. Such
binary states are believed to be the building blocks of genetic
logical circuits (Tyson, Chen, and Novak, 2003). Thus,
genetic regulatory networks have been traditionally modeled
as binary information-processing systems in which the
expression level of each gene is represented by a Boolean
(on/off) variable and their interactions are modeled as Boolean
functions whose inputs are the states of other genes (see
Fig. 6) (Kauffman, 1993; Shmulevich and Dougherty, 2010).34

Boolean descriptions constitute the most basic and crudest
approach to gene regulatory networks; still, they are particu-
larly adequate to analyze large networks as they reduce the
overwhelming complexity of the real problem to a logical one,
and they have been shown to successfully explain cell cycles
(Kauffman, 1993, 1996; De Jong, 2002; Aldana, 2003;
Bornholdt, 2005, 2008; Serra et al., 2007; Drossel, 2008;
Gros, 2008).
In the simplest setup, the network architecture is described

as a random directed network35 and regulatory interactions are
described as random Boolean functions (Kauffman, 1969,
1993; De Jong, 2002; Albert, 2004; Alon, 2006; Gros, 2008);
see Fig. 6. So defined random Boolean networks (RBNs) can
operate in different regimes, depending on their averaged
connectivity. The ordered (low connectivity) is characterized

33Individual genes are the basic information units of the genetic
code and occupy a central role in biological inheritance and
evolution. Gene information is transcribed into RNA molecules
and from them translated into proteins (i.e., “expressed”) which are
the final result of gene expression and the building blocks of
functionality (Crick, 1970).

34Alternatively, it is also standard to use continuous approaches,
based on reaction-kinetics differential equations (Kaneko and Ike-
gami, 1992; Furusawa and Kaneko, 2012b). See De Jong (2002) for a
review.

35More realistic network architectures including node hetero-
geneity and modularity have also been considered (Aldana, 2003;
Poblanno-Balp and Gershenson, 2011).
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by a small set of stable attractors which are largely robust to
perturbations, while in the disordered phase (large connec-
tivity) perturbations rapidly propagate and proliferate hinder-
ing the existence of truly stable states. Separating these two
phases there is a critical point at which perturbations propa-
gate marginally (Derrida and Pomeau, 1986). More complex
models, with stochasticity and/or continuous levels of activity,
also exhibit such two alternative phases (Rohlf and
Bornholdt, 2002).
Kauffman (1993, 1996) conjectured that models operating at

their critical pointmight provide thebest possible representation
of real gene regulatory networks, and that this might entail a
large variety of essential functional advantages (Kauffman
et al., 2003; Aldana et al., 2007; Krawitz and Shmulevich,
2007; Nykter, Price, Larjo et al., 2008; Ribeiro et al., 2008;
Torres-Sosa, Huang, and Aldana, 2012). In the ordered regime,
convergence in state space implies that distinctions between
different inputs are readily erased, precluding reliable discrimi-
nation of them. In the disordered phase, even small perturba-
tions lead to a very large divergence of trajectories in state space
precluding reliable action (Kauffman et al., 2003). Hence,
criticality might confer on such networks an optimal trade-off
between the robustness and accuracy that biological machinery
demands and responsiveness to environmental clues (Kauffman
et al., 2003). At larger evolutionary scales, criticality might
provide networks with an optimal balance between robustness
and evolvability under changing conditions (Wagner, 2005;
Aldana et al., 2007; Gershenson, 2012; Kaneko, 2012; Torres-
Sosa, Huang, and Aldana, 2012).

It remains to be clarified how could adaptive (Gell-Mann,
1994; Gros, 2008) and/or evolutionary (Nowak, 2006) mech-
anisms, specific of living systems,36 lead biological networks
to operate close to criticality. Theoretical approaches tackling
this question are discussed in Appendix C.

2. Gene knockout and damage spreading

DNAmicroarrays or “DNA chips” are devices allowing one
to measure the expression levels of large numbers of genes
within a cell as well as to quantify the differences in
expression levels between two cells (Brown and Botstein,
1999). Also, novel technologies made it possible to perform
gene knockout experiments in which individual genes are
silenced. Combining these two techniques it became possible
to perform damage-spreading experiments (Derrida and
Pomeau, 1986; Rohlf, Gulbahce, and Teuscher, 2007) in
which the difference in gene-expression levels between
perturbed and unperturbed cells in quantitatively monitored.
The statistics of the sizes of avalanches caused by single-gene
knockout experiments has been analyzed using empirical
gene-expression data from the yeast (Saccharomyces cerevi-
sae) (Hughes et al., 2000), with the conclusion that the best
correspondence between empirical results and (RBN) model
predictions is obtained for the model operating close to its
critical point (Serra, Villani, and Semeria, 2004; Rämö,
Kesseli, and Yli-Harja, 2006; Serra et al., 2007). However,
as a word of caution, let us stress that given that expression
levels are noisy it is necessary to introduce a threshold
expression level to declare when a gene is differentially
expressed in the two cells. A caveat is that it is not clear
what the influence of thresholding is on the definition of
avalanches and on their associated (size and duration) prob-
abilities. Thus, even if results are promising, more precise
analyses are still much needed.

3. Networks from DNA-microarray data

In a parallel endeavor, empirical analyses of hundreds of
DNA-microarray experiments allowed researchers to infer the
whole network of regulatory interactions among genes, i.e.,
who regulates whom in a given cell (Filkov, 2005). It has been
consistently found that the in-degree distribution of such
regulatory networks is Poissonian, while the out-degree
distribution is scale free (Aldana, 2003; Drossel and Greil,
2009). Performing damage-spreading computational analyses
of dynamical RBN models running on top of such networks,
with the empirically determined architecture of diverse organ-
isms such as S. cerevisiae and E. coli (Albert and Othmer,
2003), it was concluded that they all are indeed very close to
criticality in the sense of marginal propagation of perturba-
tions (Aldana et al., 2007; Balleza et al., 2008; Darabos et al.,
2009; Chowdhury et al., 2010).
Alternatively to inferring the architecture of the underlying

network of interactions, which is a difficult problem (Filkov,
2005), algorithmic information theory has also been employed
to asses the dynamical state directly from empirical

FIG. 6. The upper panel represents two gene regulatory net-
works: (left) a large-scale one [for E. Coli (Gama-Castro et al.,
2015)] and (right) a small-scale one [mouse embryonic stem-cell
subnetwork (Parfitt and Shen, 2014)]. In both cases, nodes stand
for genes and links between them for regulatory interactions (see
main text). The lower panel shows a sketch of random Boolean
networks as simple models of gene regulation. For low (high)
average connectivities they lie in the ordered (disordered) phase,
with a critical point occurring close toK ¼ 2. The table illustrates
a set of logical operations (associating an output to a set of three
different inputs) for a given node in a Boolean setting.

36This is, beyond purely self-organization mechanisms, such as
SOC, also exhibited by inanimate systems (Halley andWinkler, 2008).
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measurements from DNA-microarray data in a model-free
way (Kauffman et al., 2003; Shmulevich, Kauffman, and
Aldana, 2005).37 Analyses of empirical data (e.g., for the
macrophage) following these protocols produced results
compatible with marginality in the information flow, i.e.,
with critical dynamics (Nykter, Price, Aldana et al., 2008).38

4. Zipf’s law in gene-expression data

Inspection of gene-expression databases of diverse unicel-
lular organisms (such as yeast) reveals that the continuous-
valued abundance of expressed genes is distributed as a power
law with exponent close to −1, obeying Zipf’s law (Furusawa
and Kaneko, 2003).39 Furusawa and Kaneko (2012a) analyzed
an abstract dynamical (not Boolean) model describing a
cellular network (the network formed by the set of molecules
which interact with others to give products within the cell)
with nutrient uptake, and showed that Zipf’s law is a universal
feature of self-regulated cells optimizing their growth rate in
nutrient-rich environments. In this setting, cells seem to adapt
to criticality to achieve the maximal capacity to assimilate and
use nutrients for recursive formation of other products
(Kaneko, 2006; Stokić, Hanel, and Thurner, 2008; Hanel,
Pöchacker, and Thurner, 2010; Furusawa and Kaneko, 2012a;
Erez et al., 2017).

C. Collective behavior of cells

We have discussed the possibility of criticality within the
internal networks of individual cells. But, also ensembles of
cells, both in social unicellular organisms and in multicellular
ones, may exhibit signatures of scale invariance and criticality
in their collective behavior (Nadell et al., 2013). For instance,
in aggregates of the unicellular amoeba Dictyostelium dis-
coideum (the “slime mold”), local cell-cell coupling via
secreted chemicals may be tuned to a critical value (De
Palo, Yi, and Endres, 2017), resulting in emergent long-range
communication and enhanced sensitivity. In the following we
discuss some other examples in multicellular organisms.

1. Stem-cell pluripotency

Large diversity in gene-expression levels has been observed
in multipotent stem-cell populations of multicellular organisms
(Goodell, Nguyen, and Shroyer, 2015). Multipotent (hemato-
poietic) stem cells can differentiate onto either erythroid or
myeloid blood cells, with rather different functionalities,

depending on the expression level of a gene called Sca1
(Ridden et al., 2015). The empirically measured distribution
of expression levels of Sca1 within a population of stem cells
turns out to be very broad and with various local maxima. This
has been modeled as a stochastic process, and it has been found
that the model can exhibit two different regimes: either a stable
low-Sca1 or a stable high-Sca1 regime. Separating these phases
there is a line of discontinuous transitions (with bistability)
finishing at a critical point. Remarkably, the best fit to gene-
expression empirical data is obtained fixing model parameters
close to criticality, where maximal variability of the two
possible phenotypes is obtained. Thus, it seems that by adjust-
ing near to criticality, the stem-cell population is prompt to react
and produce either erythroid or myeloid cells in response to
changing demands in an optimal way (Ridden et al., 2015).
Similar ideas have been discussed in themore general context of
collective cell decision making (Halley, Burden, and Winkler,
2009; Lopez-Garcia et al., 2010; Garcia-Ojalvo and Arias,
2012; Yamaguchi, Kawaguchi, and Sagawa, 2017), aswell as in
cancer progression (Tsuchiya et al., 2015, 2016).

2. Morphogenesis I: Hydra regeneration

Morphogenesis is the biological process at the basis of the
development of multicellular organisms. It is achieved by a
precise control of cell growth, proliferation, and differentia-
tion. As first suggested in the seminal work of Turing (1952),
morphogenesis involves the creation of self-organized pat-
terns and shapes in the embryo. A prototypical organism
studied in this context is the Hydra polyp, which has a
remarkable regeneration power, as an entire new individual
can be spontaneously reassembled even from dissociated cells
from an adult individual (Bosch, 2007). Along such a
regeneration process, first a cell bilayer is formed with a
spherical (hollow) shape. How does the spherical symmetry
break down to form a well-defined foot-head axis in adults?
During this process, there is a gene called ks1 that becomes
progressively expressed and that can be transferred to neigh-
boring cells. It was empirically found that right at the time
when the spherical symmetry is broken, the size distribution of
ks1-rich domains of cells across the sphere becomes scale free
and that a spanning cluster emerges, much as in a percolation
phase transition (Soriano, Colombo, and Ott, 2006; Gamba
et al., 2012). Thus a critical percolationlike state with
collective fluctuations of gene-expression levels is exploited
to break the symmetry, defining a head-tail axis (Soriano,
Colombo, and Ott, 2006; Soriano et al., 2009).

3. Morphogenesis II: Gap genes in Drosophila

A set of so-called “gap” genes is responsible for the
emergence of spatial patterns of gene expression that are at
the origin of the formation of different segments along the
head-tail axis in the development of the fruit-fly (Drosophila)
embryo. Empirical scrutiny of the expression levels of gap
genes along the head-tail axis revealed a number of remark-
able features that include the following: slow dynamics,
correlations of expression-level fluctuations over large dis-
tances, non-Gaussianity in the distribution of such fluctua-
tions, etc. Krotov et al. (2014) proposed a simple dynamical
model in which the process is controlled by only two mutually

37For example, one such method relies on computing estimators of
the Kolmogorov complexity (Ming and Vitányi, 1990) of sets of gene-
expression time series in diverse microarrays, and computing how the
difference between the information content of any two system states
(Benedetto, Caglioti, and Loreto, 2002) changes over time.

38Similar analyses for Eukaryotic cells gave results compatible
with the dynamics being either ordered or critical but not disordered
(Shmulevich, Kauffman, and Aldana, 2005).

39Indeed, clonal populations of unicellular organisms such as
viruses or bacteria often exhibit phenotypic diversity, which con-
stitutes a sort of “bet-hedging” strategy to cope with unpredictable
environmental changes (Kussell and Leibler, 2005; Wolf, Vazirani,
and Arkin, 2005; Veening, Smits, and Kuipers, 2008).
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repressing gap genes. Assuming that a fixed point exists, and
performing a linear stability analysis to describe the fate of
fluctuations, one readily finds that there is an instability point
as the interaction strength between the two genes is varied.
Krotov et al. (2014) argued that if the dynamics of the coupled
system is tuned to operate at such an instability point, then it
constitutes an excellent qualitative description of all these
empirical findings, implying that the gene dynamics operates
at criticality. This suggests that criticality helps defining
patterns without a characteristic scale, as required for expand-
ing and developing systems [see Pal, Ghosh, and Bose (2014)
and Bose and Pal (2017) for a pedagogical discussion of these
ideas in the general context of cell differentiation].

D. Collective motion

Collective motion of large groups of individuals is a
phenomenon observed in a variety of social organisms such
as flocks of birds, fish schools, insect swarms, herds of
mammals, human crowds (Bonabeau, Dorigo, and Theraulaz,
1999; Krause and Ruxton, 2002; Couzin and Krause, 2003;
Sumpter, 2010;Berdahl et al., 2013) and also at smaller scales in
bacterial colonies (Sokolov et al., 2007; Ramaswamy, 2010;
Peruani et al., 2012; Nadell et al., 2013), and groups of cells in
general (Méhes and Vicsek, 2014). Flocking, schooling,
swarming, milling, and herding constitute outstanding exam-
ples of collective phases where simple interactions between
individuals give rise to fascinating emergent behavior at larger
scales, even in the absence of central coordination. Flock of
birds and fish schools behave as plastic entities able to exhibit
coherent motion, including rapid escape maneuvers when
attacked bypredators,which confers obvious fitness advantages
to the group as a whole (Couzin, 2007, 2009).
Such collective phenomena have attracted the attention of

statistical physicists who have tackled the problem employing
the following: (i) individual-based models of self-propelled
particles such as the one in Vicsek et al. (1995) which models
collective motion by assuming that an individual in a group
essentially follows the trajectory of its neighbors, with some
deviations treated as noise,40 and (ii) continuum (hydrody-
namic) theories, more amenable to theoretical analysis (Toner
and Tu, 1995; Toner, Tu, and Ramaswamy, 2005). These
approaches have in common the existence of phase transitions
between phases of coherent and incoherent motion. For
example, in the Vicsek model, a phase transition from an
ordered “flocking phase” to a disordered “swarming phase”
occurs when the density of individuals goes below a given
threshold or, for a fixed density, when the level of stochasticity
is large. This is consistent with experimental findings. Buhl
et al. (2006) investigated the social behavior of locusts and
reported on a density-driven phase transition from disordered
movement of individuals to highly aligned collective motion
as density is increased (Dyson et al., 2015). At a conceptual
level, marginally coordinated critical motion can be

hypothesized to constitute an optimal trade-off to deal with
conflicting imperatives such as (i) the need to behave
cohesively as a unique entity and (ii) being highly responsive
to information from transitorily well-informed individuals
(Couzin et al., 2005, 2011; Vanni, Luković, and Grigolini,
2011; De Vincenzo et al., 2017). Similar dichotomies exist in
the empirical examples we discuss now.

1. Flocks of birds

On the empirical side, the pioneering work by Cavagna,
Giardina, and collaborators (Ballerini et al., 2008; Cavagna
et al., 2010) on starling flocks allowed one to record
individual trajectories (with purposely devised tracking tech-
nology). By analyzing the fluctuations in individual velocity
with respect to the average velocity of the group, these studies
provided remarkable evidence that long-range scale-invariant
correlations may be a general feature in systems exhibiting
collective motion. In particular, experimentally measured
correlations, both in orientation and in speed fluctuations,
were found to grow with flock size in large flocks, suggesting
that a correlation length much larger than the interaction range
could be a common trait of self-organized groups needing to
achieve large-scale coordination (Cavagna et al., 2010). Let us
note that the scale-free correlations in the orientation might be
attributed to the broken continuous rotational symmetry,
which as discussed in Appendix A leads to generic scale
invariance. However, the presence of scale-free correlations in
the scalar speed fluctuations cannot be explained in this way,
suggesting that the flock might be tuned to a critical point with
maximal susceptibility.41 Furthermore, experiments on star-
ling flocks also allow one to measure how the information of
the turning of one individual propagates across the flock,
revealing that this occurs in a very fast and efficient way,
which can be taken as direct evidence of the existence of scale-
free correlations in flocks (Attanasi et al., 2014a).
Bialek et al. (2012) applied a maximum-entropy method to

construct a statistical model consistent with the empirically
measured correlations (see Appendix B). They concluded that
the interaction strength and the number of interacting neigh-
bors do not change with flock size in the probabilistic model;
and, more importantly, the model was able to reproduce scale-
free correlations in velocity fluctuations. It was observed (i.e.,
inferred from data) that this occurs as a result of the effective
model’s operating close to its critical point (Mora and Bialek,
2011; Bialek et al., 2014; Mora et al., 2016).

2. Insect swarms

Extensive field analyses of insect (midge) swarms, which
unlike birds traveling in a flock hover around a spot on the
ground, have also been performed (Attanasi et al., 2014b). By
employing finite-size analyses of the data, Attanasi et al.
showed that both the correlation length and the susceptibility

40See Grégoire and Chaté (2004), Chaté, Ginelli, Grégoire,
Peruani, and Raynaud (2008), Chaté, Ginelli, Grégoire, and Raynaud

)2008 ), and Ginelli (2016) for detailed statistical-mechanics analyses
of Vicsek models and variants of it.

41Similar results have been obtained for aggregates of a social
amoeba (slime mold) (De Palo, Yi, and Endres, 2017), as well as for
colonies of the bacteria Bacillus subtilis in the experimental setup of
Chen et al. (2012) [but not in that of Sokolov et al. (2007), which
reveals only short-range correlations].
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grow with the swarm size, while the spacing between midges
decreases. Moreover, such changes with swarm size occur as in
the Vicsek model for finite-size systems sitting near the
maximally correlated point of their transition region at each
finite size.42 Thus, midges obey spatiotemporal scaling and to
achieve it they seem to regulate their average distance or density
(which acts as a control parameter) so as to function close to
criticality (Attanasi et al., 2014b; Chaté and Muñoz, 2014;
Cavagna et al., 2017). On the contrary, laboratory experiments
of small swarms do not indicate critical behavior, which may
signal that it arises only in “natural conditions” or for larger sizes
(Kelley and Ouellette, 2013; Puckett and Ouellette, 2014).

3. Mammal herds

Social herbivores (Merino sheep) have also been studied in
well-controlled environments, revealing the existence of two
conflicting needs: (i) the protection from predators offered by
being part of a large cohesive group and (ii) the exploration of
foraging space by wandering individuals. Sheep resolve this
conflict by alternating a slow foraging phase, during which the
group spreads out, with fast packing events triggered by
individual behavioral shifts, leading to intermittent collective
dynamics with packing events of all accessible scales, i.e., a
“near critical” state (Ginelli et al., 2015).

4. Social-insect foraging strategies

Studies of ant foraging strategies have been recently
performed (Beekman, Sumpter, and Ratnieks, 2001;
Loengarov and Tereshko, 2008; Solé, 2011; Bhattacharya
and Vicsek, 2014; Li et al., 2014; Gallotti and Chialvo, 2017).
For ant colonies to achieve an efficient foraging strategy, a
trade-off needs to be reached between exploratory behavior of
some individuals and predominant compliance with the rules
(Feinerman and Korman, 2017). It has been found by using a
combination of experiments and theory that some ant groups
optimize their overall performance by sitting at the edge of a
phase transition between random exploration and gregarious
strategies, thus resulting in effective criticality. This entails
efficient group-level processing of information emerging out
of an optimal amplification of transient individual information
(Gelblum et al., 2015). Similar ideas are presently being
explored for the design of artificial systems, i.e., in swarm
robotics (Beni, 2004; Erskine and Herrmann, 2014).
To further enrich this bird’s-eye view over different aspects of

criticality in biological systems, a miscellaneous collection of
other examples from the literature is presented in Appendix C.

V. DISCUSSION

The hypothesis that living systems may operate in the
vicinity of critical points, with concomitant scale invariance,
has long inspired scientists. From a theoretical viewpoint this
conjecture is certainly appealing, as it suggests an overarching

mechanism exploited by biological systems to derive impor-
tant functional benefits essential in their strive to survive and
proliferate. The list of possible critical features susceptible to
be harnessed by living systems includes the unparalleled
sensitivity to stimuli, the existence of large dynamical
repertoires, maximal transmission and storage of information,
as well as optimal computational capabilities, among others.
When living systems are interpreted as information-process-
ing devices, needing to operate robustly but at the same time
having to cope with diverse environmental changes, the
virtues of critical behavior are undeniable. Criticality repre-
sents a simple strategy to achieve a balance between robust-
ness (order) and flexibility (disorder) needed to derive
functionality. Similar trade-offs, as discussed (e.g., between
stability and evolvability), underline the potential of operating
at the edge between different types of order.
Throughout we focused dynamical aspects of criticality,

meaning that in most of the discussed examples it is assumed,
either directly or indirectly, that there is an underlying
dynamical process at work, and that such a process, suscep-
tible to be mathematically modeled, operates in the vicinity of
a continuous phase transition at the borderline between two
alternative regimes. Such a dynamical perspective is essen-
tially different from the purely statistical (or static) one, as
described in Mora and Bialek (2011). In this latter, the focus is
on analyzing the statistics of existing patterns; it has the great
advantage that it harnesses existing high-quality empirical
data sets. On the other hand, it disregards the possible
dynamical generative mechanisms behind them and focuses
on an effective description (which can be very useful). Even if
both approaches have deep interconnections, here we chose to
focus mostly on the dynamical one.
Synthesizing (maybe oversynthesizing), one could argue

that the ultimate reason why putative criticality appears so
often in the scrutiny of complex biological systems is that it
constitutes the simplest physical or dynamical mechanism
generating complex spatiotemporal patterns spanning through
many different scales that are all correlated, implying system-
wide coherence and large responses to perturbations. From
this perspective, critical-like behavior, and the nested hier-
archy of spatiotemporal structures it spontaneously generates,
can be identified as a scaffold upon which multiscale
biological systems may build up further complexity.
Statistical physics teaches us that under some circumstances,

including systemswith some formof heterogeneity (relevant for
the study of brain networks), or in systems with continuous
symmetries (relevant in collectivemotion) the standard scenario
of a unique critical point separating diverse phases needs to be
replaced by that of extended critical-like regions (such as
Griffiths phases discussed for the overall brain dynamics)
where some form of scale invariance emerges in a generic
way. In such cases, it might suffice for biological systems to
operate in such phaseswithout the need to invoke precise tuning
to the edge of a phase transition to obtain functional benefits
stemming from spatiotemporal scale invariance.
From the experimental viewpoint, we tried to summarize

existing empirical pieces of evidence for each of the discussed
examples, stressing possible drawbacks and interpretative
problems, and underlining criticisms raised in the literature.
Readers will extract their own conclusions on whether each of

42The Vicsek model exhibits, at least for not-too-large sizes, a
wide regime where correlations peak at the transition and finite-size
scaling holds (Vicsek et al., 1995; Grégoire and Chaté, 2004; Chaté,
Ginelli, Grégoire, and Raynaud, 2008; Baglietto, Albano, and
Candia, 2012).
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the examples is sufficiently convincing or not. Our general
impression is that, in most of the cases, larger systems, more
accurate measurements, and less ambiguous analyses would
be needed to further confirm or disprove the existence of an
underlying dynamical critical process. For most of the leading
examples (i.e., neural systems, genetic regulatory networks,
and collective motion), our opinion is that as of today there is
not a fully convincing proof, where experimental evidence and
mathematical theory and modeling match perfectly; i.e., we
still do not have a “smoking gun.” Still, the existing collection
of remarkable pieces of evidence is extremely appealing and
hard to neglect.
Two important aspects should be considered in future

empirical analyses to make solid progress. One is that, given
that biological systems are finite, they cannot be truly critical
in the precise sense of statistical physics; thus it is important to
perform, whenever possible, finite-size analyses to prove the
existence of scale invariance within the experimentally acces-
sible ranges. A second aspect is that the two alternative phases
that the alleged criticality separates should be clearly iden-
tified in each case. From this view, we find particularly
appealing pieces of evidence (e.g., in neuroscience) in which,
by experimentally inducing alterations to standard conditions,
deviations from criticality are measured in otherwise critical-
looking systems.
A general criticism can be raised to some of the analyses

discussed along this work, specifically, to those in which the
evidence relies on the existence of a theoretical model that
provides, when tuned close to its critical point, the best
possible fit to empirical observations. The criticism is that, if
feature-rich empirical data with structures spanning over
broadly diverse scales are considered, then it seems almost
a tautology to conclude that the best possible representation of
them is obtained by fitting the proposed dynamical model to
operate close to its critical point, as this is typically the only
region in parameter space where complex (feature-rich)
patterns, with many scales, are generated. In contrast, from
the opposite perspective, if actual biological data are struc-
tured across many scales, it does not seem too far fetched to
assume, applying the Occam’s razor, that a general common
mechanism may underlie the emergence of such a hierarchy of
scales, and the main candidate mechanism for this consists in
operating at the edge of a continuous phase transition, i.e.,
being close to criticality. Thus, we are confronted with an
epistemological dichotomy: Is the putative criticality of living
systems just a reflection of the limitation of our models which
can possibly resemble large levels of complexity only at
criticality? Or, on the contrary, is criticality actually a common
organizing principle at the roots of the generation of many
levels of organization required for complex biological behav-
ior to emerge? Providing a satisfactory answer to these
questions is a problem of utmost importance to advance in
the theoretical understanding and modeling of complex living
systems.
Even if diverse biological systems were finally proved to be

genuinely critical, some researchers might still retain this
conclusion as largely uninformative or even irrelevant. It could
be asked: “so what?” What practical implications could be
derived from such knowledge? In our opinion, the design of
strategies to control neural or genetic networks, especially

those aiming at resolving pathologies, based on notions of
criticality, the construction of algorithms of artificial intelli-
gence exploiting scale invariance at different layers, or the
application of ideas of collective motion or intelligence to the
design of swarms of robots, could constitute important
avenues to provide constructive answers to this question.
Novel advances, at both the experimental and theoretical

sides, will help elucidating what is the actual role played by
criticality and scale invariance in biological systems; mean-
while the mere possibility remains as inspiring as ever and,
definitely, worth pursuing.
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APPENDIX A: GENERIC SCALE INVARIANCE

There are situations in which spatiotemporal scaling may
emerge without the need of parameter fine-tuning (Grinstein,
1991). (i) A well-known example is the breaking of a
continuous symmetry in low-dimensional systems, as it
happens in some models of magnetism in which each spin
can point in any arbitrary direction in a plane (Binney et al.,
1993). These systems, instead of the usual ordered phase at
low temperature, exhibit a broad “quasiordered” phase char-
acterized by local order together with generic power-law
decaying correlations (Grinstein, 1991). This type of ordering
is relevant for bacterial-colony patterns (Ramos et al., 2008) as
well as in the analysis of collective motion (see Sec. IV.C).
(ii) Generic scale invariance can also emerge in the presence

of structural disorder or heterogeneity. In statistical physics,
one refers to “quenched disorder” as the form of spatial-
dependent heterogeneity which is intrinsic to the microscopic
components and remains frozen in time, reflecting structural
heterogeneities. Quenched disorder can alter the nature of
phase transitions (Vojta, 2006; Villa Martín, Bonachela, and
Muñoz, 2014) and can also induce novel phases absent in
homogeneous systems. For instance, in the contact process,
quenched disorder can be implemented by considering a
lattice with some missing links, a more complex disordered
network of connections, and/or a node-dependent propagation
rate λ. In all these cases, a novel phase called aGriffiths phase,
characterized by critical-like features appearing all across the
phase and not just at a unique point, emerges (Moreira and
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Dickman, 1996; Cafiero, Gabrielli, and Muñoz, 1998; Vojta,
2006; Muñoz et al., 2010).
(iii) Another mechanism that produces a type of generic

scale invariance relevant in biological systems (see, e.g.,
Sec. IV.A.7) is “neutral dynamics.” Neutral theories play a
key role in population genetics (Kimura, 1984), population
ecology (Hubbell, 2001; Azaele et al., 2016), epidemics
(Pinto and Munoz, 2011), etc. They have in common the
fact that differences among possible coexisting “species” (let
them be alleles of a gene, types of trees, bacterial strains, etc.)
are neglected. In other words, all species are dynamically
equivalent or neutral (Dornic et al., 2001; Liggett, 2004;
Blythe and McKane, 2007). It was recently shown that in a
“multispecies” contact process that includes different types or
species of activity, if a new species, neutral to the exiting ones,
is introduced, it experiences a stochastic process in which its
total population does not have a net tendency to either grow or
shrink. This generates generically scale-free avalanches of the
focal species unfolding in a sea of activity of the other species,
without the need to invoke criticality (Martinello et al., 2017).

APPENDIX B: PROBABILISTIC MODELS AND
STATISTICAL CRITICALITY

Probabilistic models can be constructed such that they match
the statistics of observed empirical data (Rieke, Bodnar, and
Bialek, 1995). Without loss of generality, an empirically
observed pattern at a given time window can be codified as a
sequence of binary variables of length N: si ¼ 0, 1 for
i ¼ 1; 2;…; N. Denoting PðsÞ the unknown probability of
finding the system in the state s ¼ ðs1; s2;…; sNÞ it is possible
to approximate it by a distribution function with the constraint
that it reproduces the empiricallymeasuredmeanvalues hsii for
all i, as well as the covariances hsisji for all i and j. Imposing a
maximum entropy principle (i.e., selecting the model with the
smallest number of assumptions43) it is straightforward to derive
the explicit form of the optimal model

PðsÞ ¼ 1

Z
exp

�X
i<j

Jijsisj þ
X
i

hisi

�
; ðB1Þ

where Z ensures normalization and which coincides with the
Boltzmann equilibrium distribution of the Ising-likemodel, and
where the free parameters hi and Jij need to be fitted so that the
imposed constraints are satisfied (Ackley, Hinton, and
Sejnowski, 1985).44

Bialek and co-workers introduced an effective parameter β,
much as an inverse temperature in equilibrium statistical
mechanics,multiplying each estimatedparameter in the inferred
model equation (B1). Clearly, by varying β a relative change of

the weights assigned to different configurations is produced. In
this way one generates a family of β-dependent probability
distributions PðsjβgÞ interpolating between the low and high
temperature phases.45 At some intermediate value βc there is a
critical point (as identified by a peak in the susceptibility or the
specific heat). It was found that diverse inference problems
[from retinal populations (Schneidman et al., 2006; Tkačik
et al., 2013, 2014, 2015) to flocks of birds (Bialek et al., 2012),
and the immune system (Mora et al., 2010)] produce models in
which βc ≈ 1, or converges to 1 as the system size is enlarged,
i.e., that inferred models appear to be close to the very critical
point of the underlying Ising-like problem [seeMora andBialek
(2011) for a clear and pedagogical discussion of these issues].
Let us also mention that there is an ongoing debate on the

interpretation of these results. In particular, it was shown that
signatures of criticality may emerge naturally in inferred
models if there is a marginalization over nonobserved vari-
ables, such as correlated external inputs, even without the need
for direct interactions among units (Schwab, Nemenman, and
Mehta, 2014; Aitchison, Corradi, and Latham, 2016). In
general, Marsili and collaborators pointed out that the alleged
criticality of such models can be a consequence of the
inference procedure, meaning that inferred models fitting
real-world (“feature-rich” or “informative”) data do most
likely look critical when an effective probabilistic model is
constructed (Mastromatteo and Marsili, 2011; Marsili,
Mastromatteo, and Roudi, 2013; Tyrcha et al., 2013;
Haimovici and Marsili, 2015). We will not delve further into
the controversy about the meaning and significance of this
type of purely statistical approaches to criticality (see
also Sec. V).

APPENDIX C: ADAPTATION AND EVOLUTION
TOWARD CRITICALITY

To shed light onto the general problem of how information-
processing living systems tune themselves to operate near
critical points, Goudarzi et al. (2012) considered an ensemble
of individuals or “agents,” each represented as an internal
RBN, including some input nodes (able to read information
from the environment) and some readout nodes (providing
outputs and responses). Such agents evolve though a genetic
algorithm (Goldberg and Holland, 1988) that allocates larger
“fitness” values to agents that better perform a series of
computational tasks (each one consisting of assigning a given
output to each specific input), which are alternated in time.
The conclusion is that agents converge to a state close to
criticality; i.e., critical dynamics emerge as the optimal
solution under the combined selective pressures of having
to learn different tasks and being able to readily shift among
them, following changes in the tasks. Instead, in the presence
of noise, optimal agents tend to be slightly subcritical, rather
than critical, thus compensating for extrinsic sources of
variability (Villegas et al., 2016). In a similar approach,
Hidalgo et al. (2014) showed that communities of similar

43In information theory, the entropy of a probability distribution
quantifies the ignorance about the variable; thus, making no assump-
tions about the distribution is equivalent to maximizing the entropy
(Cover and Thomas, 1991; Banavar, Maritan, and Volkov, 2010).

44Obtaining the optimal parameter set, i.e., inferring effective
interactions from correlations, is a computationally costly task, usually
referred to as an “inverse Ising problem” (Schneidman et al., 2006;
Cocco, Leibler, and Monasson, 2009; Aurell and Ekeberg, 2012).

45At β ¼ 0 infinite temperature all configurations are equiprob-
able, while in the opposite limit all the weight concentrates on the
most likely fully ordered configuration.
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adaptive agents, whose task is to communicate with each other
(inferring their respective internal states) in an efficient way,
converge to quasicritical states. This result constitutes a
possible parsimonious explanation for the emergence of
critical-like behavior in groups of individuals coordinating
themselves as a collective entity (Hidalgo et al., 2016) [see
also Iliopoulos, Hintze, and Adami (2010)].

APPENDIX D: OTHER PUTATIVELY CRITICAL LIVING
SYSTEMS

Here we briefly discuss a sample of other biological
systems for which empirical evidences of criticality exist.
Cell membranes: Cell membranes are not just rigid impen-

etrable walls separating the interior of cells from the outside
environment; they regulate the kind, direction, and amount of
substances that can pass across them. Cell membranes are
permeable only at some locations and for this their local
composition needs to be heterogeneous (Hyman and Simons,
2012; Cicuta, 2013; Lee et al., 2013). There is compelling
empirical evidence that the mixture of lipids that constitute the
skeleton of cell membranes operates very close to the
demixing phase transition at which their different components
segregate (Veatch et al., 2007, 2008; Honerkamp-Smith et al.,
2008; Ehrig, Petrov, and Schwille, 2011; Cicuta, 2013). In this
way, composition fluctuations are extremely large, enabling
very diverse structural domains to appear, thus providing the
membrane with a large spectrum of possible local structures at
which different processes may occur and entailing a rich
repertoire of functionalities.
RNA viruses: RNA viruses are believed to replicate at the

edge of an “error catastrophe.” If the error rates for copying
the viral genome were very small, RNA viruses would have
little variability, hindering adaptation and evolution. Instead, if
they were too large then the fidelity of the replication
machinery would be compromised and it would not be
possible to maintain important genetic elements nor the
identity of the (quasi)species itself (Eigen and Schuster,
1979; Eigen, McCaskill, and Schuster, 1989). It was con-
jectured (Solé et al., 1996, 1999; Drake and Holland, 1999;
Eigen, 2002) and has been partially verified in recent experi-
ments (Crotty, Cameron, and Andino, 2001; Hart and
Ferguson, 2015) that RNA viruses might operate right at
the edge of the catastrophe, providing them with maximal
variability compatible with genotypic robustness.46

Physiological rhythms: The presence of temporal scale
invariance in physiological rhythms of healthy subjects, as
well as its breakdown in abnormal conditions, has long been
explored (Bassingthwaighte, Liebovitch, and West, 1994;
Losa, 1995; Goldberger et al., 2002). In particular, to mention
one example, a specific connection between the complex
fluctuations of human heart-rate variability and criticality has
been brought forward (Ivanov et al., 1999; Kiyono et al.,
2004, 2005; Ivanov, 2007). In the related context of blood-
pressure regulation, vaso-vagal syncopes have been identified

as large “avalanches” in a self-organized cardiovascular
regulatory system poised at criticality (Fortrat and Gharib,
2016). In general, such a regulation to scale-free behavior
seems to impart health advantages, including system integrity
and adaptability (Goldberger et al., 2002).
Miscellanea: Criticality has also been claimed to play a

relevant role in the immune system (Burgos and Moreno-
Tovar, 1996; Mora et al., 2010), cancer and carcenogenesis
(Solé, 2003; Solé and Deisboeck, 2004; Davies, Demetrius,
and Tuszynski, 2011; Rosenfeld, 2013), proteins (Phillips,
2009; Tang et al., 2017), mitochondria (Aon, Cortassa, and
O’Rourke, 2004; Zamponi et al., 2018), etc. Also, quantum
criticality and its relevance for the origin of life at the
microscopic scale has been the subject of a recent proposal
(Vattay et al., 2015). Finally, let us mention that ecosystems as
a whole have been studied, from a macroevolutionary view-
point, as dynamical structures lying at the edge of instability
(Bak and Sneppen, 1993; Adami, 1995; Sneppen et al., 1995;
Solé et al., 1999; Solé, Alonso, and McKane, 2002; Suweis
et al., 2013; Biroli, Bunin, and Cammarota, 2017), illustrating
that the ideas discussed here can be extended to larger scales
in the hierarchy of biological complexity.
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