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Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently
developed methods that address this problem by starting with the local, eminently important
correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations
on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead
of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT
long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be
addressed in strongly correlated electron systems. An overview is provided of the successes and results
achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic
material calculations.
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I. INTRODUCTION

The understanding of strongly correlated systems counts
among the most difficult problems of solid state physics,
since standard perturbation theory in terms of the bare
Coulomb interaction breaks down. Dynamical mean field
theory (DMFT) represents a breakthrough in this respect as
it includes a major part of electronic correlations: the local
ones. It does so in a nonperturbative way. For a three-
dimensional (3D) lattice at elevated temperature and in the
absence of a close-by second-order phase transition, the local

correlations (as described by DMFT) prevail. They bring
forth, among others, quasiparticle renormalizations, Mott-
Hubbard metal-insulator transitions, and orbital, charge, and
magnetic ordering; see Georges et al. (1996) for a review.
Building on its success, DMFT nowadays is routinely
employed for realistic material and nonequilibrium
calculations; for reviews see Held et al. (2006), Kotliar et al.
(2006), Held (2007), Katsnelson et al. (2008), and Aoki et al.
(2014). It also fostered the development of new impurity
solvers (Bulla, Costi, and Pruschke, 2008; Gull, Staar
et al., 2011).
Nonlocal correlations, on the other hand, are at the heart of

some of the most fascinating physical phenomena such as
high-temperature superconductivity (Bednorz and Müller,
1986) and quantum criticality (Löhneysen et al., 2007).
They are also responsible for the long-range correlations in
the vicinity of phase transitions or Lifshitz transitions
(Lifshitz, 1960) and play a crucial role in the physics of
graphene (Kotov et al., 2012) to name but a few. These
nonlocal correlations are missing in DMFT, which is mean
field in space but takes into account correlations in time. Often
we can understand nonlocal physics in terms of perturbation
theory or the ladder replication thereof.
Let us take, as a specific and illustrative example, the

elementary excitations of a ferromagnet: magnons. These
can be described by the repeated scattering of a minority-
spin electron at the prevalent majority-spin electrons; see
Fig. 1(a). This corresponds to ladder-type Feynman dia-
grams which allow us to calculate the magnetic susceptibil-
ity or to identify its spin wave poles as the collective
(bosonic) excitations of the system: the magnons. As
described by Hertz and Edwards (1973) one can diagram-
matically “close” the Green’s function in the majority-spin
channel by adding the dashed Green’s function line in Fig. 1,
which yields the minority-spin self-energy. This self-energy
describes the scattering of electronic quasiparticles with the
particle-hole excitations (magnons).1

In DMFT such magnon contributions to the self-energy are
contained only in their local version, where all sites in Fig. 1
are the same, i ¼ j ¼ � � � ¼ k. In k space, this translates into a
k-independent contribution. Instead of a magnon dispersion
relation EðkÞ, in DMFTwe have a single magnon energy and
a gap in the magnon spectrum. Consequently, the important
physics of low-energy long-range magnon fluctuations is not
captured correctly by the DMFT self-energy.
The same kind of diagrams, if one also includes the SU

(2)-related transversal spin fluctuations, describes the para-
magnons in the paramagnetic phase (Moriya, 1985). These
are nothing but the spin fluctuations dominating in the
vicinity of a magnetic phase transition. Their effect on the
spectrum and self-energy may be dramatic and may alter a
metallic into a (pseudo)gapped phase. Such physics is
missing in DMFT which does not feature any precursors

1Such feedback of collective excitations on the fermionic degrees
of freedom is crucially important for the nonquasiparticle states in the
spin gap of half-metallic ferromagnets. These are an important
limiting factor for spintronics applications; see Katsnelson et al.
(2008) for a review.

G. Rohringer et al.: Diagrammatic routes to nonlocal correlations …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 025003-2



of the incipient magnetic ordering. The spin fluctuations
may also serve as a pairing glue, an attractive interaction in the
particle-particle or cooperon channel, possibly leading to
high-temperature superconductivity (Scalapino, 2012). Also
at a quantum critical point the paramagnon contribution is
important. Indeed, it is at the basis of the Hertz (1976), Moriya
(1985), and Millis (1993) theory of quantum criticality.
The aim of the diagrammatic extensions of DMFT is to

describe the physics of long-ranged collective excitations,
but beyond the weak-coupling ladder diagrams of Fig. 1(a)
now also for strongly correlated systems. In fact, the key to
such physics lies in Feynman diagrams such as those in
Fig. 1(a), but with the bare interaction replaced by a strongly
renormalized, local two-particle vertex, as illustrated in
Fig. 1(b). This way the important local correlations can
be fully included through the local two-particle DMFT
vertex from the beginning and, through this vertex, also
affect the short- and long-range correlations. As we will see,
spin fluctuations and other nonlocal correlations such as the
critical fluctuations in the vicinity of a (quantum) critical
point can be described this way, even in strongly correlated
systems.

A. Brief history

Let us start with a brief synopsis of the various methods and
approaches that aim at extending DMFT to include nonlocal
correlations. We recall that DMFT becomes exact in the limit
of high coordination number or alternatively for dimension
d → ∞ (Metzner and Vollhardt, 1989). DMFT maps a lattice
model onto the self-consistent solution of an Anderson impu-
rity model (AIM) (Georges and Kotliar, 1992), allowing for an
essentially exact solution, e.g., by quantum Monte Carlo
(QMC) simulations (Jarrell, 1992).
From the very beginning, there have been attempts to

include nonlocal correlations beyond the local ones of

DMFT. The first such approach was the 1=d approach of
Schiller and Ingersent (1995) which includes all diagrams to
next-to-leading order in (1=d) and results in a two-site
impurity model. This way nonlocal correlations between
neighboring sites are included. A systematic expansion of
DMFT has also been proposed in the strong-coupling limit
by Stanescu and Kotliar (2004), following the lines of
Pairault, Sénéchal, and Tremblay (1998).
Particularly important and widely employed are cluster

extensions of DMFT: the dynamical cluster approximation
(DCA) by Hettler et al. (1998) and the cellular DMFT
(CDMFT) by Lichtenstein and Katsnelson (2000) and
Kotliar et al. (2001). These map a lattice model onto a
cluster of sites embedded in a dynamical mean field.
Thereby nonlocal correlations within the cluster are
accounted for, and those to the outside (described by a
generalized DMFT bath) are neglected. Impressive successes
of these approaches are the description of pseudogap physics
and unconventional superconductivity in the Hubbard
model. Indeed, cluster extensions of DMFT became an
integral part of the theory of high-temperature supercon-
ductivity [for more recent results and larger clusters see
Sordi, Haule, and Tremblay (2011), Sakai et al. (2012),
Gull, Parcollet, and Millis (2013), and Harland, Katsnelson,
and Lichtenstein (2016)]. A particular advantage of cluster
extensions of DMFT is that they systematically allow for
studying larger and larger clusters, providing a controlled
way of approaching the exact result (infinite cluster limit)
with the cluster size as a control parameter. In practice,
numerical limitations due to the exponential growth of the
cluster Hilbert space restrict the cluster extensions however
to relatively small clusters of about 10 × 10 sites. While
correlations are included nonperturbatively, they remain
short ranged even in two dimensions (2D) and for a single
orbital. Cluster extensions have been reviewed by T. Maier
et al. (2005). In this review we focus instead on the
complementary, diagrammatic extensions of DMFT.
In these approaches, corrections to the DMFT self-energy
are computed through Feynman diagrams, which allows one
to reach significantly larger lattice sizes, as illustrated
in Fig. 2.
Motivated by identifying particularly important

contributions missing in DMFT, the first diagrammatic
extensions supplemented the local DMFT self-energy by
the nonlocal one of another approach. For example, in the
GW þ DMFT approach (Sun and Kotliar, 2002; Biermann,
Aryasetiawan, and Georges, 2003), this is the nonlocal
screened exchange. Sadovskii et al. (2005) added spin
fluctuations contained in the spin-fermion model and
Kitatani, Tsuji, and Aoki (2015) added those of the
fluctuation exchange approximation (FLEX).
Dynamical vertex approaches, on the other hand, generate

both local and nonlocal electronic correlations from a common,
underlying entity: the local but frequency-dependent
(i.e., dynamical) two-particle vertex. This development started
with the dynamical vertex approximation (DΓA); see Toschi,
Katanin, and Held (2007) and the closely related work by
Kusunose (2006). DΓA assumes the locality of the n-particle
irreducible vertex, recovering DMFT for n ¼ 1 and generating
a nonlocal self-energy and susceptibility corrections for n ¼ 2.

(a)

(b)

FIG. 1. (a) Ladder series of Feynman diagrams describing the
repeated scattering of a minority (down) spin at the majority (up)
spins. Wiggly lines: (local) interaction at sites i, j, k, etc.; straight
lines: interacting Green’s functions. Closing the diagram by the
dashed Green’s function line yields the magnon contribution to
the self-energy. (b) In diagrammatic extensions of DMFT the
same kind of diagrams are generated with the nonperturbative
local vertex (gray boxes) instead of the bare interaction as a
building block. This local vertex contains the bare interaction and
all local vertex corrections.
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One can view this as a resummation of Feynman diagrams
not in terms of orders in the interaction, but in terms of the
locality of diagrams—an approach which reestablishes the
exact solution for n → ∞. In an independent development,
Rubtsov, Katsnelson, and Lichtenstein (2008) introduced the
dual fermion (DF) approach in which the lattice problem is
expressed in terms of a local reference system and a
coupling to the nonlocal degrees of freedom. A perturbation
theory around this solvable reference system is obtained by
decoupling the impurity by means of dual fields through a
Hubbard-Stratonovich transformation. The dual fermions
interact through the n ≥ 2-particle vertex functions of the
local reference system. In practice the three-particle and all
higher-order vertices are neglected in both DΓA and DF,
except for error estimates. Slezak et al. (2009) devised a
multiscale approach where short-range correlations are
treated on a DCA cluster and long-range correlations
diagrammatically. These groundbreaking works have laid
the foundation for further generalizations and developments
of the methods and various applications, of which we
provide a brief overview in the following.
The one-particle irreducible (1PI) approach by Rohringer

et al. (2013) is based on a functional in terms of the one-
particle irreducible vertex; it inherits properties of both
DΓA and DF. The dynamical mean field theory to the
functional renormalization group (DMF2RG) approach by
Taranto et al. (2014) exploits the functional renormalization
group (fRG) to generate the nonlocal diagrams beyond
DMFT. The triply irreducible local expansion (TRILEX)
of Ayral and Parcollet (2015) is based on the three-point
fermion-boson vertex. The nonlocal expansion scheme of Li
(2015) is a framework for expanding around a local
reference problem which includes DF and the cumulant
expansion as special cases.
Extensions to nonequilibrium (Muñoz, Bolech, and

Kirchner, 2013) and real-space formulations (Valli et al.,
2010; Takemori, Koga, and Hafermann, 2016) are also
possible. All of these approaches are closely related and

rely on the same concept of taking the local vertex and
generating nonlocal interactions from it as illustrated in
Fig. 1(b). They differ in the building blocks of the new
perturbation expansion, in particular, the vertex (e.g., irre-
ducible or full), the type of diagrams generated (e.g., ladder
or parquet), and the details of the self-consistency schemes;
cf. Table II for an overview. They allow us to describe the
same kind of physics contained in weak-coupling ladder
diagrams [Fig. 1(a)], but now strong DMFT correlations are
included through the vertex [Fig. 1(b)].
In a complementary development, Si and Smith (1996)

and Chitra and Kotliar (2000) devised the extended DMFT
(EDMFT), which describes the local correlations induced by
nonlocal interactions, which can actually be mapped onto
local bosonic degrees of freedom. The dual boson (DB)
approach of Rubtsov, Katsnelson, and Lichtenstein (2012)
also addresses nonlocal interactions, but it treats, in the spirit
of the DF approach, single- and two-particle excitations on
the same footing. DB explicitly includes long-range bosonic
modes and hence goes much beyond EDMFT. In DΓA the
nonlocal interaction can also be taken into account, in the
form of a bare nonlocal vertex which allows for realistic
ab initio DΓA material calculations (Toschi et al., 2011;
Galler, Thunström, Gunacker et al., 2017). This naturally
includes GW, DMFT, and nonlocal spin fluctuations. It is
the aim of this review to provide in Sec. III a comprehensive
overview of the different approaches as well as to draw a
clear picture of the physics they can describe.
In the following we mention a few highlights and appli-

cations and refer the interested reader to Sec. IV for a more
detailed discussion. The physical results obtained using the
diagrammatic extensions of DMFT are similar as for cluster
extensions regarding short-range nonlocal correlations.
However, the diagrammatic extensions also include long-
range correlations and hence allow us to address physical
problems that were not accessible before. This is illustrated by
Fig. 2 which shows the typical momentum resolution in
momentum space for cluster and diagrammatic extensions of
DMFT. The improved momentum resolution allowed
Rohringer et al. (2011) and Hirschmeier et al. (2015) to
calculate the critical exponents of the antiferromagnetic (AF)
phase transition in the 3D Hubbard model in DΓA and DF,
respectively. Here the long-range correlations are of particular
importance in the critical region close to a second-order phase
transition. As one may expect from universality, these critical
exponents are numerically compatible with those of the
Heisenberg model. In contrast, the critical exponents of the
Falicov-Kimball (FK) model as determined by Antipov, Gull,
and Kirchner (2014) are of the Ising universality class. Schäfer
et al. (2017) analyzed the quantum critical point in theHubbard
model which emerges when antiferromagnetism is suppressed
by doping and find unusual critical exponents because of Kohn
lines on the Fermi surface. The diagrammatic extensions of
DMFT also show that spin fluctuations suppress the Néel
temperature significantly in 3D (Katanin, Toschi, and Held,
2009; Rohringer et al., 2011; Otsuki, Hafermann, and
Lichtenstein, 2014). In 2D, the Mott-Hubbard transition can
be significantly reshaped or even completely suppressed since
the paramagnetic phase is always insulating at sufficiently low
temperature in the unfrustrated case (Schäfer et al., 2015).

FIG. 2. Typical momentum-space discretization for diagram-
matic (individual dots) and cluster extensions of DMFT (colored,
gray-scaled patches). Black lines show noninteracting Fermi
surfaces for the square lattice with hopping parameters t0=t¼0
and t0=t ¼ −0.3. The diagrammatic extensions allow one to
resolve fine details along the Fermi surface.
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Pertinent steps have also been taken toward our understanding
of high-temperature superconductivity: Otsuki, Hafermann,
and Lichtenstein (2014) and Kitatani, Tsuji, and Aoki (2015)
studied superconducting instabilities and Gunnarsson et al.
(2015) performed a diagnostics of the fluctuations responsible
for the pseudogap. Further highlights are the renormalization of
the plasmon dispersion by electronic correlations (van Loon,
Hafermann et al., 2014), disorder-induced weak localization
(Yang et al., 2014), Lifshitz transitions in dipolar ultracold
gases (van Loon, Katsnelson et al., 2016), and the flat band
formation (Fermi condensation) near van Hove filling (Yudin
et al., 2014).

B. Outline

This review is organized along the following lines: We first
focus, in Sec. II, on the two-particle vertex function as it is the
building block of the diagrammatic approaches. In particular,
Sec. II.A sets the stage and introduces the notation used
throughout the review. We define the various vertex functions,
discuss their symmetries, and introduce the Bethe-Salpeter
and parquet equations. Section II.B briefly recapitulates the
DMFT, which serves as the starting point for the diagrammatic
extensions. In Sec. II.C we discuss the physical contents of the
two-particle vertex and the origin of its asymptotic behavior
for large frequencies. Finally, Sec. II.D summarizes the
various methods for calculating the local two-particle vertex
numerically from the AIM.
In Sec. III we review the various methods developed in

recent years for calculating nonlocal correlations beyond
DMFT. Most of these have a two-particle vertex as a starting
point. We start, in Sec. III.A, with the historically first vertex
extension: the DΓA approach. Its parquet and ladder variants
are introduced in Secs. III.A.1 and III.A.2, respectively.
Extensions to nonlocal interactions and multiorbital models
are discussed in Sec. III.A.3, before turning to the closely
related functional integral formalism of the quadruply irre-
ducible local expansion (QUADRILEX) in Sec. III.A.4. In
Sec. III.B we present the DF approach, which performs a
diagrammatic expansion around a local reference system in
terms of dual fermions. We discuss, in particular, the DF
diagrammatics, the choice of the local reference system, as
well as scaling and convergence. The approach can be viewed
as a particular diagrammatic resummation in the nonlocal
expansion scheme discussed in Sec. III.B.5. We also discuss
the related superperturbation theory in Sec. III.B.5. The 1PI
approach can be considered as an intermediate approach in
between DΓA, which is based on the irreducible vertex, and
DF, which is based on the reducible vertex. It inherits
properties from both methods. The one-particle irreducible
formalism is obtained through a Legendre transformation of
the DF generating functional, as described in Sec. III.C. In
Sec. III.D we present a sophisticated alternative to generate
nonlocal correlations and vertices with the DMFT vertex as a
starting point: the fRG. As we discuss in Sec. III.E, all these
diagrammatic extensions can naturally be formulated using a
cluster instead of a single DMFT site as a starting point.
Section III.F is devoted to diagrammatic extensions of DMFT
that are based on a perturbation in the bare interaction instead
of the two-particle vertex. These approaches supplement the

DMFT self-energy with a nonlocal one. Diagrammatic exten-
sions of EDMFT are finally discussed in Sec. III.G: the
EDMFTþ GW approach in Sec. III.G.2, the dual boson
approach in Sec. III.G.3, and TRILEX in Sec. III.G.4. A
separate section, Sec. III.H, is devoted to conservation laws
and crossing symmetry.
In Sec. IV we review the main results achieved with

diagrammatic extensions of DMFT. The application to the
Hubbard model in three down to zero dimensions in Sec. IV.A
illustrates the physics these methods can describe and pro-
vides, at the same time, a unified picture for this fundamental
model of electronic correlations. The application to the Kondo
lattice model (KLM) in Sec. IV.B requires one to account for
the interplay between local Kondo physics and long-range
antiferromagnetic fluctuations and therefore is an ideal play-
ground for diagrammatic extensions. Applications to models
for annealed and quenched disorder, i.e., the Falicov-Kimball
model in Sec. IV.C and the Anderson-Hubbard model in
Sec. IV.D, illustrate the versatility of diagrammatic extensions.
Finally, Sec. IV.E discusses results for models and realistic
material calculations with nonlocal interactions and multiple
orbitals.
In Sec. V we provide an overview of open source codes that

are available for solving the AIM, the computation of the two-
particle vertex and for diagrammatic extensions of DMFT.
Finally, in Sec. VI we close with a summary and outlook and
with Table II providing a comparison of the various dia-
grammatic extensions.

II. DIAGRAMMATICS AT THE TWO-PARTICLE LEVEL

A. Formalism and symmetries

In the following we provide a concise overview of the two-
particle formalism. For further details and derivations we refer
the interested reader to Rohringer, Valli, and Toschi (2012).
The starting point for deriving the Feynman diagrammatic

formalism at the one- and two-particle level is the general
definition of the n-particle imaginary time Green’s function:

GðnÞ
i1���i2nðτ1;…; τ2nÞ
¼ ð−1ÞnhTτ½ci1ðτ1Þc†i2ðτ2Þci3ðτ3Þ � � � c†i2nðτ2nÞ�i; ð1Þ

where even indices correspond to creation (c†) and odd indices
to annihilation operators (c). Here h� � �i ¼ Trðe−βH � � �i=Z
denotes the thermal average with Z ¼ Trðe−βHÞ being the
partition function for Hamiltonian H, β ¼ 1=T is the inverse
temperature, and Tτ denotes the time ordering operator. The
indices ij ¼̂ ðrj=kj; lj; σj;…Þ encode the set of all degrees of
freedom of the system, e.g., space coordinate (lattice site) or
momentum, orbital, spin, etc. In the following wewill consider
mostly single-orbital systems.
From the general case, the usual one-particle Green’s

function in momentum space is derived as

GkðτÞ ¼ Gð1Þ
kσ;kσðτ; 0Þ ¼ −hTτ½ckσðτÞc†kσð0Þ�i;

Gkν ¼
Z

β

0

dτ eiντGkðτÞ; ð2Þ
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where ν ¼ ð2nþ 1Þπ=β with n ∈ Z is a fermionic Matsubara
frequency [later ω ¼ ð2mÞπ=β denotes a bosonic Matsubara
frequency]. Whenever convenient, we adopt the more com-
pact four-vector notation Gk ≡ Gkν with the generalized
fermionic k ¼̂ ðν;kÞ and bosonic momentum q ¼̂ ðω;qÞ.
For conciseness, we restrict ourselves here and in the
following to the time- and lattice-translationally invariant
SU(2)-symmetric (paramagnetic) case. Consequently, the
one-particle Green’s function is diagonal in generalized
momentum and spin space with Gkν↑↑ðτÞ ¼ Gkν↓↓ðτÞ ¼
GkνðτÞ. From Gkν and its noninteracting counterpart G0;kν,
the one-particle irreducible self-energy is calculated via the
standard Dyson equation

Σkν ¼ ½G0;kν�−1 − ½Gkν�−1: ð3Þ

For the two-particle Green’s function [n ¼ 2 in Eq. (1)]
we can drop one momentum and time index due to time and
lattice translational invariance and arrive at the compact
form

Gð2Þ
σσ0;kk0qðτ1; τ2; τ3Þ≡Gð2Þ

kσ;kþqσ;k0þqσ0;k0σ0 ðτ1; τ2; τ3; 0Þ;

Gð2Þ;νν0ω
σσ0;kk0q ¼

Z
β

0

dτ1dτ2dτ3eiντ1e−iðνþωÞτ2eiðν0þωÞτ3

× Gð2Þ
σσ0;kk0qðτ1; τ2; τ3Þ: ð4Þ

The way the frequencies are assigned to the Matsubara times
and, hence, to the creation and annihilation operators in Eq. (1)
is referred to as the particle-hole notation. In this notation the
two-particle Green’s function can be viewed as the scattering
amplitude of an incoming particle and hole with total energyω
and total momentum q; see the red (gray) lines in Fig. 3(a). It is

particularly convenient for describing systems where particle-
hole (e.g., spin or charge) fluctuations dominate. Systems with
strong particle-particle fluctuations, on the other hand, aremore
easily described exploiting the so-called particle-particle
representation of the two-particle Green’s function that is
illustrated in Fig. 3(b). In this notation the two-particle
Green’s function can be interpreted as the scattering amplitude
between two particles with total energy and momentum
qpp ¼ qþ kþ k0. Let us stress that the two-particle Green’s
function contains both (ph and pp) scattering processes
independent of its representation. The choice of the represen-
tation corresponds only to selecting the most convenient
“coordinate system” for the description of the problem
(Bickers, 2004; Gunnarsson et al., 2015).
The two-particle Green’s function depends on four spin

indices corresponding to 24 ¼ 16 spin components. Because
of the conservation of the total spin, ten of them vanish and,
from the remaining six, the two components σð−σÞσð−σÞ can
be expressed via σσð−σÞð−σÞ by means of the crossing
symmetry (see the last line in Table I; it originates from
the fact that we have the same Feynman diagrams when
exchanging the two incoming lines in Fig. 3). For the
remaining four components σσσ0σ0 we introduced the short-
hand notation σσ0 in Eq. (4). There are additional relations
between these due to SU(2) symmetry (see the second line in
Table I). However, as these relations involve shifts of
frequency and momenta, it is more convenient to work with
two (↑↑ and ↑↓) components explicitly.
From the one- and two-particle Green’s functions, the

generalized susceptibilities are readily obtained as

χνν
0ω

σσ0;kk0q ¼ Gð2Þ;νν0ω
σσ0;kk0q − βGkνGk0ν0δω0δq0;

χνν
0ω

c=s;kk0q ¼ χνν
0ω

↑↑;kk0q � χνν
0ω

↑↓;kk0q:
ð5Þ

TABLE I. Summary of the symmetry relations for the vertex
function F for single-orbital Hubbard-type models [in four-vector
notation k ¼̂ ðν;kÞ]. U denotes the local interaction parameter and μ
the chemical potential. The crossing symmetry can be understood by
considering the invariance under exchanging the two incoming lines
in Fig. 3(a); for a more detailed discussion and an illustration of the
crossing symmetry see Rohringer (2013) and Galler, Thunström,
Gunacker et al. (2017), respectively.

Symmetry Symmetry relation

Complex conjugation ðFkk0q
σσ0 Þ� ¼ Fð−k0Þð−kÞð−qÞ

σσ0

SU(2) symmetry
Fkk0q
σσ0 ¼ Fkk0q

ð−σÞð−σ0Þ ¼ Fkk0q
σ0σ ,

Fkk0q
σσ ¼ Fkk0q

σð−σÞ − FkðkþqÞðk0−kÞ
σð−σÞ

Time reversal symmetry Fkk0q
σσ0 ¼ Fk0kq

σ0σ ¼SUð2ÞFk0kq
σσ0

Particle-hole symmetry
ðμ ¼ U

2
onlyÞ

ðFkk0q
σσ0 Þ� ¼ Fkk0q

σσ0

SUð2ÞP symmetry
ðμ ¼ U

2
onlyÞ

Fkk0q
σσ ¼ Fkð−k0−qÞðk0−kÞ

σð−σÞ − Fkð−k0−qÞq
σð−σÞ

Crossing symmetry Fkk0q
σσ0σ0σ¼−FkðkþqÞðk0−kÞ

σσσ0σ0 ≡−FkðkþqÞðk0−kÞ
σσ0

(a)

(b)

FIG. 3. Illustration of a two-particle Green’s function from the
(a) particle-hole and (b) particle-particle perspectives, described
by the corresponding frequency notations. The red (gray) arrows
denote the particle and hole in (a) and the two particles in (b),
which are considered as the “incoming” ones. The total frequency
and momentum transferred in the scattering process are then
given by the generalized bosonic momentum q ¼ ðq;ωÞ and
qpp ¼ ðqpp;ωppÞ, respectively. (b) can be obtained from (a) by a
mere coordinate transformation in the space of the three frequen-
cies, momenta, i.e., q→qpp¼qþkþk0 (kpp¼k and k0pp ¼ k0).
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In the second line we introduced the charge (c) and spin (s)
components of the generalized susceptibility.2 From these the
corresponding physical susceptibilities (response functions)
are computed in the particle-hole sector by performing the
summation over all the fermionic variables:

χωr;q ¼
X
νν0
kk0

χνν
0ω

r;kk0q with r ¼ c; s; ð6Þ

where a proper normalization of the momentum and
frequency sums is implicitly assumed [i.e.,

P
k1 ¼ 1 andP

ν ¼̂ ð1=βÞPν]. An analogous definition holds for the
physical particle-particle susceptibility where the correspond-
ing summations have to be performed in particle-particle
notation.
In order to classify the different two-particle processes

diagrammatically, we can decompose the generalized suscep-
tibility into two parts (see Fig. 4): (i) a product of two one-
particle Green’s functions corresponding to an independent
propagation of the particle and the hole and (ii) vertex
corrections to the susceptibility. The latter describes all
the particle-hole scattering processes, which give rise to
collective excitations. The corresponding equation, depicted
diagrammatically in Fig. 4, reads

χνν
0ω

r;kk0q ¼ −βGkνGðkþqÞðνþωÞδνν0δkk0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
χνν

0ω
0;kk0q

− GkνGðkþqÞðνþωÞFνν0ω
r;kk0qGk0ν0Gðk0þqÞðν0þωÞ; ð7Þ

with r ¼ c, s and the signs have been chosen in such a way
that Fνν0ω

↑↓;kk0q → þU when the local interaction U → 0. Fνν0ω
r;kk0q

is the two-particle vertex function, which contains all Feynman
diagrams connecting all four external Green’s functions. In
the Fermi-liquid regime, F is proportional to the scattering
amplitude between quasiparticles (Abrikosov, Gorkov, and
Dzyaloshinski, 1975).

A refined classification is obtained by categorizing the
Feynman diagrams of F in terms of their two-particle reduc-
ibility. All Feynman diagrams contributing toF can be split into
four topologically distinct classes. They are either fully two-
particle irreducible or reducible in one of three channels:
particle-hole (ph), vertical particle-hole (ph), or particle-
particle (pp). For example, a diagram is said to be reducible
in the particle-hole channelwhen it can be split into twoparts by
cutting two lines corresponding to a particle-hole pair; see
Fig. 5. This decomposition is at the heart of the so-called
parquet equations which were first introduced by Diatlov,
Sudakov, and Ter-Martirosian (1957) [cf. De Dominicis
(1962), De Dominicis and Martin (1964a), Bickers and
White (1991), Janiš (2001), Bickers (2004), and Janiš,
Kauch, and Pokorný (2017)]. Denoting by Φνν0ω

l;r;kk0q;↑↓ the set

of diagrams which are two-particle reducible in channel l and
by Λνν0ω

r;kk0q the set of all fully irreducible diagrams, we have the
unique decomposition (cf. Fig. 5)

Fνν0ω
r;kk0q ¼Λνν0ω

r;kk0qþΦνν0ω
ph;r;kk0qþΦνν0ω

ph;r;kk0q
þΦνν0ω

pp;r;kk0q: ð8Þ

We stress that one has to clearly discriminate between the index
l which refers to a subset of diagrams for the full vertex with a
certain topology (reducible or irreducible in a given channel)
and the index r which represents just the spin arguments of the
vertex [specifically the linear combination as in Eq. (5) so that
without vertex corrections and a Hubbard interaction U:
Fd ¼ U, Fs ¼ −U]. In the literature both l and r are often
referred to as “channels” although these are completely different
concepts. In fact, the decomposition (8) holds independently of
the considered spin combination r.
Alternatively, the contributions to F can be divided into

only two parts, i.e., those which are reducible and those which
are irreducible in a given channel l:

Fνν0ω
r;kk0q ¼ Γνν0ω

l;r;kk0q þΦνν0ω
l;r;kk0q: ð9Þ

This defines the vertices Γνν0ω
l;r;kk0q which are two-particle

irreducible in channel l (see Fig. 5 for l ¼ ph). They are
related to the full vertex F through the Bethe-Salpeter
equations (BSEs).3 For the l ¼ ph channel (Bickers and
White, 1991; Bickers, 2004), the BSE explicitly reads

Fνν0ω
r;kk0q ¼Γνν0ω

ph;r;kk0qþ
X
k1ν1

Γνν1ω
ph;r;kk1q

Gk1ν1Gðk1þqÞðν1þωÞF
ν1ν

0ω
r;k1k0q:

ð10Þ

Note that due to SU(2) symmetry, the charge (r ¼ c) and the
spin (r ¼ s) sectors do not couple. From a diagrammatic
perspective the BSEs correspond to an infinite summation
of ladder diagrams. Physically, they describe collective

FIG. 4. Decomposition of the generalized susceptibility into a
disconnected and a connected part. The first part describes the
independent propagation of the particle-hole pair in the interact-
ing system, while the second originates from all possible
scattering processes between them. For readability of the diagram
we have adopted the four-vector notation.

2These components have a definite spin S and projection Sz of the
incoming particle-hole pair: The charge channel corresponds toS ¼ 0,
Sz ¼ 0, and the spin channel to S ¼ 1, Sz ¼ 0. The components with
↑↓↓↑ and ↓↑↑↓ correspond to S ¼ 1, Sz ¼ �1, and must be equal to
S ¼ 1, Sz ¼ 0 due to SU(2). It is hence convenient to work with the
two components (c=s) only. A similar decomposition into singlet and
triplet channels applies for the particle-particle channel.

3The BSEs can be equivalently formulated for the generalized
susceptibilities:

χνν
0ω

r;kk0q ¼ χνν
0ω

0;kk0q −
X
ν1ν2
k1k2

χνν1ω0;kk1q
Γν1ν2ω
l;r;k1k2q

χν2ν
0ω

r;k2k0q;

where the bare bubble χνν
0ω

0;kk0q has been defined in Eq. (7).
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excitations in the different scattering channels while the
parquet equation (8) provides for their mutual renormalization.
Equations (8)–(10) form a closed set of four equations for

F, Γl (l ¼ pp; ph; ph), and Λ, which can be solved self-
consistently, provided one of these five quantities and the one-
particle Green’s function are known (for the case in which Λ is
given, see the left part of Fig. 6). As we usually do not know
the exact vertex, we have to consider approximations. For
instance, the so-called parquet approximation assumes that the
fully irreducible vertex is replaced by the constant bare
interaction, i.e., Λkk0q ¼ U (Bickers, 2004); or in parquet
DΓA, Λkk0q is approximated by its local counterpart (Λνν0ω).
The set of four parquet equations corresponds to loop II in

Fig. 6 and needs to be supplemented by the self-consistent
calculation of the one-particle Green’s function and self-
energy (loop I in Fig. 6). For obtaining these one-particle
functions from the two-particle vertex, we exploit the relation
between Green’s functions of different particle number in the
(Heisenberg) equation of motion. This leads to the Schwinger-
Dyson equation, which connects the vertex F with the self-
energy Σ and reads for a Hubbard-like model with a local
interaction U [cf. Hamiltonian (12)]:

Σkν ¼
Un
2

−U
X
ν0ω
k0q

Fνν0ω
↑↓;kk0qGk0ν0Gðk0þqÞðν0þωÞGðkþqÞðνþωÞ:

ð11Þ

Here n denotes the particle density of the system. For the
generalization to multiple orbitals and nonlocal interactions,
see, for example, Galler, Thunström, Gunacker et al. (2017).
Equation (11) represents an exact relation between the two-
and one-particle correlation functions. Hence for a given Λ we
have altogether five equations and five unknowns which can
be calculated self-consistently as indicated in Fig. 6.
In diagrammatic extensions of DMFT discussed in Sec. III,

the Schwinger-Dyson equation (11) is also often used when
obtaining F via other (e.g., ladder) resummations of Feynman
diagrams. The Schwinger-Dyson equation also provides the
basis for the fluctuation diagnostics method. By performing
partial summations over k0 and ν0 in Eq. (11), the physical

origin of the spectral features in the self-energy can be
identified (Gunnarsson et al., 2015).
The dependence of two-particle Green’s and vertex func-

tions on several indices makes their numerical calculations,
postprocessing, and storage evidently much more challenging
than that of the single-particle Green’s functions. Hence
exploiting all the symmetries of the system is vital to reduce
the numerical and memory storage requirements. Various
symmetry relations are summarized in Table I for Hubbard-
type models. While the symmetry properties reported there are
valid for the vertices F and Λ, they do not hold in general for
the explicitly channel dependent quantities Φl and Γl since
the symmetry relations will mix one channel with the others.
For an exhaustive discussion of the specific symmetry proper-
ties of Φl and Γl, see Rohringer, Valli, and Toschi (2012) and
Rohringer (2013).
Starting with the next section, we also consider local vertex

functions, Green’s functions, and self-energies of an AIM
problem. These quantities are frequency but not momentum
dependent. In the following we distinguish such local vertices
from the lattice vertices by dropping the momentum index,
i.e., we write Fνν0ω

r for the full local vertex instead of Fνν0ω
r;kk0q

for the lattice quantity defined in Eq. (7), and the same holds

FIG. 5. Parquet decomposition of the one-particle irreducible vertex F into its two-particle fully irreducible contribution Λ and
the three contributions Φl reducible in the particle-hole (ph), vertical particle-hole (ph), and particle-particle channels (pp). The latter
can be separated into two parts by cutting two Green’s functions as indicated by the dashed lines. For instance, for the l ¼ ph channel,
the legs 12 and 34 are separated. The subsets of diagrams marked in violet (light gray) are part of the irreducible ph vertex Γl¼ph which
contains all diagrams that cannot be separated in channel l ¼ ph. Note that all diagrams in this figure are meant as so-called skeleton
diagrams, i.e., all lines correspond to fully interacting Green’s functions, except for the external legs that mark only the incoming and
outgoing generalized momenta. The red dots denote the bare Hubbard interaction U.

FIG. 6. Flow diagram for solving the parquet equations. Left: If
the fully irreducible vertex Λ is given, the parquet equation (8)
and the three BSEs (10) for l ¼ ph; ph; pp allow us to calculate
the four unknowns F, Γl. Right: As in the BSE (10) the
interacting Green’s function G also enters, we need to extend
the self-consistency loop by two additional unknowns (G and Σ)
and equations [the equation of motion (11) and the Dyson
equation (3)]. The latter has the noninteracting Green’s function
G0 as input.
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for Γνν0ω
r and Λνν0ω

r . For the one-particle Green’s functions and
self-energies we add a label “loc,” i.e., Gloc

ν (Σloc
ν ) for the local

problem [i.e., the associated AIM, see Sec. II.B] instead of
Gkν (Σkν) for the lattice problem. AsGloc

kν we denote the lattice
Green’s function that we obtained from the Dyson equation (3)
with Σloc

ν of the local problem as input.

B. Synopsis of dynamical mean field theory

For completeness, and for setting the stage for the dia-
grammatic extensions that follow, let us briefly outline the
DMFT approach here. For more details of the method and its
multiorbital extensions, see the reviews of Georges et al.
(1996) and Held (2007), and for a first reading Kotliar and
Vollhardt (2004). A series of lecture notes on the occasion of
25 years of DMFT can be found in Pavarini et al. (2014);
further reviews with a focus on DFT and DMFTare Held et al.
(2006) and Kotliar et al. (2006).
For simplicity, we consider here the single-band Hubbard

model with Hamiltonian

H ¼
X
ij;σ

tijc
†
iσcjσ þ U

X
i

ni↑ni↓; ð12Þ

where tij denotes the hopping amplitude between lattice sites i
and j, U the local Coulomb repulsion, and σ ∈ f↑;↓g the
spin; niσ ≡ c†iσciσ .
DMFT is a self-consistent theory at the one-particle level,

which approximates the one-particle vertex Σ to be local. This
local self-energy Σloc

ν and a local Green’s function Gloc
ν are

determined self-consistently.
In particular, the first DMFT self-consistency equation

calculates the local Green’s function from the local self-
energy Σloc

ν :

Gloc
ν ¼

X
k

Gloc
kν ; ð13Þ

where Gloc
kν is the DMFT lattice Green’s function obtained

from Σloc
ν via the Dyson equation (3) reformulated as

Gloc
kν ¼ ½iνþ μ − εk − Σloc

ν �−1: ð14Þ
Here εk is the Fourier transform of tij. This step allows us to
calculate Gloc

ν from the local, i.e., k-independent Σloc
ν . As we

will see in Sec. III, the DMFT lattice Green’s functionGloc
kν and

the differenceGloc
kν −Gloc

ν appear prominently in the context of
diagrammatic extensions of DMFT.
The second DMFT self-consistency equation is defined by

summing all skeleton Feynman diagrams in terms of the local
U and Gloc

ν to obtain the local DMFT self-energy Σloc
ν again

[cf. Fig. 10(a)]. These two steps are iterated until self-
consistency.
In practice, this second step is achieved through the

numerical solution of an AIM

H ¼
X
lσ

ϵla
†
lσalσ þ

X
lσ

Vla
†
lσcσ þ H:c:þ Un↑n↓; ð15Þ

which has the same interaction U as the Hubbard model (12)
but only on one site. This site ðc†Þ is coupled through the

hybridization Vl to a bath of conduction electrons a†lσ at
energies ϵl. If the interacting Green’s function of the AIM is
the same as Gloc

ν , it yields the same Feynman diagrammatic
contribution to the self-energy as DMFT: all local terms. To
achieve the latter (at self-consistency) one first calculates the
local noninteracting Green’s function Gν of the auxiliary AIM
(at the interacting site) via the Dyson equation for the AIM

ðGνÞ−1 ¼ ðGloc
ν Þ−1 þ Σloc

ν ð16Þ

¼ iνþ μ −
X
l

jVlj2
iνþ μ − ϵl|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≡Δν

; ð17Þ

which is directly related to a corresponding hybridization
function Δν. Then one solves the defined AIM for its Green’s
function Gloc

ν and uses the AIM Dyson equation (16) again to
obtain the AIM self-energy

Σloc
ν ¼ ðGνÞ−1 − ðGloc

ν Þ−1: ð18Þ

This closes the DMFT iteration loop and, at self-consis-
tency, Σloc

ν is the DMFT self-energy. The DMFT solution
yields the local Σloc

ν , Gloc
ν , and DMFT lattice Green’s

function Gloc
kν . At self-consistency we can also calculate

local two-particle Green’s and vertex functions as dis-
cussed in Sec. II.D.

C. Physical contents of the local vertex

The physical meaning of the one-particle Green’s function
and its 1PI counterpart, the self-energy, is nowadays standard
textbook knowledge; see, e.g., Abrikosov, Gorkov, and
Dzyaloshinski (1975) and Mahan (2000). Less information
is available about the physical content of the two-particle
Green’s function and its 1PI and 2PI counterparts, the so-called
vertex functions, whose definitions are given in Sec. II.A. Yet,
in recent years, the development of diagrammatic extensions of
DMFT has triggered significant progress in this direction.
In this section we discuss the frequency dependence of the

local DMFT vertex functions for models with a constant bare
interaction U and their microscopic interpretation. This
requires the analysis of the frequency structure of all possible
Feynman diagrams (Rohringer, Valli, and Toschi, 2012;
Rohringer, 2013; Wentzell et al., 2016). The dependence of
a certain diagram on the three external frequencies (ν; ν0;ω) is
controlled by its topology, i.e., by the way the particles and
holes enter. If two particle lines, or one particle and one hole
line, are attached to the same barevertex, the entire diagramwill
depend only on the sum or difference of their frequencies. This
can be seen, for example, in the diagram of Fig. 7(a) which
depends only on ω but not on ν and ν0. For a fixed ω it will,
hence, remain constant for arbitrarily large values of ν and ν0.
On the contrary, if an external particle or hole is

connected by the bare interaction to three internal lines, the
corresponding diagram will explicitly depend on its fre-
quency. This is illustrated in Fig. 7(c) where the lower
rightmost part of the diagram (circle) gives rise to the
expression

P
ν1ν2

Gloc
ν0þν1

Gloc
ν2þν1G

loc
ν2 � � � which, hence, explicitly

depends on ν0 and will decay for large values of ν0 as 1=ν0.
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Excluding the trivial situation when all four external lines
enter at the same interaction vertex (which gives just the
constant contribution U), these considerations suggest the
following threefold classification of the diagrams of F:
(i) The first group includes all diagrams where both the

incoming and outgoing particle-hole (or particle-particle)
pairs enter at the respective same bare interaction vertex;
see Fig. 7(a). Such diagrams depend only on the correspond-
ing frequency differences between the particle and hole
entering the diagram at the respective same bare vertex. In
the case of Fig. 7(a) this frequency is ω, which one can
see from the fact that all internal frequency summations in
Fig. 7(a) depend only on ω but not on ν and ν0. Note that the
diagram in Fig. 7(a) is reducible in theph channel; it belongs to
Φph in Fig. 5. The two other possibilities of how two external
legs can be pairwise attached to bare vertices are diagrams

reducible in theph andpp channels. These depend on only one
(bosonic) frequency (combination) ν−ν0 and νþν0þω, respec-
tively. In Fig. 8 (left), these diagrams are responsible for the
constant background (ω ¼ 0), the main (ν − ν0 ¼ 0), and
secondary (νþ ν0 þ ω ¼ 0) diagonals of the DMFT vertex
F. From a physical perspective, diagrams of type (i) correspond
to physical susceptibilities. For example, the contribution to F
originating from the sum of all diagrams of type Fig. 7(a)
corresponds to a ph (charge or spin) susceptibility (Rohringer,
Valli, and Toschi, 2012; Rohringer et al., 2013; Wentzell
et al., 2016).
(ii) The second class includes all diagrams where only

one pair of external lines is attached to the same bare vertex.
Their contribution depends on two (one bosonic and one
fermionic) Matsubara frequencies. For example, Fig. 7(b)
depends on ω and ν0 but not on ν. Such diagrammatic

(a) (b) (c)

FIG. 7. Categorization of diagrams according to their frequency dependence. (a) Diagram where the left and right pairs of external lines
are attached to the same two bare interaction vertices, (b) diagram where only the left external lines are connected to the same bare
vertex, and (c) diagram where all external lines enter at different bare vertices. The external frequencies, on which the diagram depends
explicitly, are marked in red (gray).

FIG. 8. DMFT results for the full local vertex (Fνν0ðω¼0Þ
c − U, left), the 2PI vertex in the ph charge channel (Γνν0ðω¼0Þ

c − U, middle), and

the fully 2PI vertex (Λνν0ðω¼0Þ
c − U, right) at Matsubara frequencies νð0Þ ¼ ð2nð0Þ þ 1Þπ=β. The calculations have been performed for the

Hubbard model on a square lattice with nearest-neighbor hopping t at T ¼ 0.4t, U ¼ 4.8t (lower panel) and U ¼ 5.08t (upper panel).
The intensity (color bar) is given in units of 4t. Adapted from Schäfer et al., 2016.
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contributions remain constant along one-dimensional lines
in the three-dimensional frequency space. For instance, for
the fixed value ω ¼ 0 and ν0 ¼ π=β in the density plot of F
[Fig. 8 (left)], such diagrams are responsible for the well-
defined þ-shaped structure, i.e., the enhanced scattering
rate along ν0, ν ¼ π=β. From a physical perspective, such
“eye”-shaped diagrams are related4 to a fermion-boson
coupling, as it appears in ladder DΓA (Katanin, Toschi, and
Held, 2009; Rohringer and Toschi, 2016), DB (Rubtsov,
Katsnelson, and Lichtenstein, 2012; van Loon, Lichtenstein
et al., 2014), and TRILEX (Ayral and Parcollet, 2015, 2016b).
(iii) The third class consists of all diagrams where all four

external lines enter at different bare vertices; see Fig. 7(c).
Their contribution to F depends on all three frequencies (as
illustrated by the circle for the ν0 dependence) and hence
decays in all directions of frequency space. This is important
for many-body algorithms based on local DMFT vertex
functions, because diagrams of this type need to be considered
for small frequencies only (Wentzell et al., 2016).
As diagrams of type (i) and (ii) in Figs. 7(a) and 7(b) are

two-particle reducible, all diagrams of the fully 2PI vertex Λ
belong to class (iii). Hence, Λνν0ω decays in all three directions
of frequency space except for a constant background U;
cf. Fig. 8 (right). In other words, the asymptotic behavior of F
originates from reducible diagrams only. Consequently, when
considering 2PI diagrams in one channel (Γr), one “loses” all
the asymptotic structures generated by the two-particle reduc-
ible diagrams in this channel, keeping only the high-frequency
features from the reducible diagrams in the complementary
channels (cf. Sec. II.A). This is illustrated by comparing the
DMFT data for F and Γc in Fig. 8 (upper panels), where
the disappearance of the ph ω ¼ 0 structure corresponds to
the vanishing background.
The simplification of the high-frequency asymptotics is a

helpful factor in the numerical manipulation of the 2PI vertex
functions. We should, however, note that at the same time the
low-frequency structure of the (2PI) vertices can become very
complicated—in certain parameter regimes. Specifically, as
reported in recent DMFT (and DCA) studies at the two-
particle level (Schäfer et al., 2013, 2016; Janiš and Pokorný,
2014; Gunnarsson et al., 2016; Ribic, Rohringer, and Held,
2016), Γc and Λ acquire strong low-frequency dependencies,
and even become divergent in certain cases. This can be seen
in the DMFT results of Fig. 8 (lower panel), computed for a U
just before a divergence (note the large values for Γc and Λ in
the color scale). These divergences occur already for rather
moderate U in DMFT for the Hubbard model (Schäfer et al.,
2013, 2016; Gunnarsson et al., 2016).
Figure 9 explicitly shows the multiple lines where Γc, Γpp,

andΛ diverge in the DMFT phase diagram. Their presence has
been demonstrated also in CDMFTor DCA calculations of the
Hubbard model (Gunnarsson et al., 2016; Vučičević et al.,
2018) as well as, more recently, for a pure AIM with a
constant electronic bath (Chalupa et al., 2017).

Analytical (or semianalytical) calculations for the Falicov-
Kimball model (Schäfer et al., 2013, 2016; Janiš and Pokorný,
2014; Ribic, Rohringer, and Held, 2016), for the one-point
model (Stan et al., 2015), or in the atomic limit (Schäfer et al.,
2013, 2016) prove that the observation of such divergences is
not a numerical artifact, but rather a general manifestation of
the breakdown of perturbation theory in correlated systems
(Gunnarsson et al., 2017). In fact, it has been shown (Kozik,
Ferrero, and Georges, 2015; Stan et al., 2015; Schäfer et al.,
2016; Gunnarsson et al., 2017; Vučičević et al., 2018) and
later rigorously proved in the Supplemental Material of
Gunnarsson et al. (2017) that, for the same parameter values
where the vertex divergences are observed, crossings between
the physical and different unphysical branches of the self-
energy functional Σ½G� can occur. This reflects the intrinsic
multivaluedness of the Luttinger-Ward formalism in the
many-body theory (Keiter and Leuders, 2000; Kozik,
Ferrero, and Georges, 2015), unless physical constraints for
Σ are explicitly considered (Pruschke, Metzner, and Vollhardt,
2001; Potthoff, 2006; Tarantino et al., 2017).
While the frequency structure of the full vertex F is nowwell

understood (see Fig. 7) (Rohringer, Valli, and Toschi, 2012;
Wentzell et al., 2016), the theoretical implications of the
multiple divergences of the 2PI vertex are not fully clarified
yet, representing a subject of ongoing discussion and research
(Kozik, Ferrero, and Georges, 2015; Stan et al., 2015;
Gunnarsson et al., 2016, 2017; Rossi et al., 2016; Schäfer et al.,
2016; Chalupa et al., 2017; Tarantino et al., 2017; Vučičević
et al., 2018). Let us note, however, that from the algorithmic
point of view, the divergences of the 2PI vertex Γ can be easily
circumvented for theBethe-Salpeter ladder resummations of the
diagrammatic extensions of DMFT (see Sec. III.A.2).

FIG. 9. DMFT phase diagram of the half-filled Hubbard model
(on a square lattice with half bandwidth D ¼ 4t ¼ 1): Here the
first seven lines, where the 2PI vertex Γc alone (red, dark gray) [or
simultaneously with Γpp (orange, light gray)] diverges for zero
transfer frequency (ω ¼ 0) have been reported. The dashed
straight lines correspond to the divergence conditions of the
atomic limit (scale on the right, Rohringer, 2013; Schäfer et al.,
2016), which is approached by the DMFT data for U; T ≫ D. At
lower T, the lines display a clear reentrance, roughly resembling
the shape of the Mott-Hubbard metal-insulator transition (MIT)
(blue line). Note that the first divergence line, marking the end of
the perturbative regime, is located well inside the correlated
metallic region. Adapted from Schäfer et al., 2016.

4Precisely, the fermion-boson vertices are obtained by eliminating
all internal susceptibilities, i.e., all internal subdiagrams of type (i),
i.e., dividing these diagrams by 1 −Uχω (Rohringer and Toschi,
2016).
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D. Calculation of the local vertex

In recent years, we have witnessed a staggering increase in
applications of two-particle Green’s functions and a corre-
spondingly rapid development of efficient algorithms to
compute them. To a large extent this has been driven by
the development of diagrammatic extensions of DMFT, as
well as increased computational resources. Here we provide a
summary of the different numerical methods for calculating
the local vertex and related response functions and provide
references for further reading.
The static (ω ¼ 0) component of the vertex has already been

calculated in the early days of DMFT for obtaining suscep-
tibilities (Jarrell, 1992). Pioneering attempts to compute the
dynamical and momentum structure of a two-particle vertex
were made by Tahvildar-Zadeh, Freericks, and Jarrell (1997)
and Maier, Jarrell, and Scalapino (2006) using QMCmethods.
Kusunose (2006) computed generalized susceptibilities using
second-order iterated perturbation theory (IPT). More recently
the vertex has also been obtained within functional renorm-
alization group calculations (Kinza and Honerkamp, 2013).
The most frequently used methods to calculate the vertex
however are exact diagonalization (ED) and QMC based
implementations, including continuous-time (CTQMC) var-
iants. These methods allow one to control the error. We discuss
them in the following with a focus on the developments
regarding the calculation of the two-particle vertex. A detailed
review of CTQMCmethods is beyond the scope of this article;
see the comprehensive review of Gull, Millis et al. (2011).
Open source implementations are publicly available for most
methods nowadays. We provide an overview in Sec. V.
Impurity solvers typically evaluate the two-particle Green’s

function from which vertex functions are extracted as
described in Sec. II.A. Their generalization to n-particle
correlation functions is, in principle, straightforward. Their
computation however quickly exhausts available computation
time and memory resources. While the Green’s functions can
be measured as a function of imaginary time, they are usually
evaluated on Matsubara frequencies. The number of required
sampling points for three independent times (or frequencies)
in the case of the two-particle Green’s function scales as β3,
which quickly becomes a computational and memory burden.
In addition, the treatment of the various discontinuities arising
from the anticommutation relations of the fermionic operators
is cumbersome.

1. Exact diagonalization

In ED, the two-particle Green’s function (1) can be
computed with a relatively simple algorithmic extension of
the standard ED implementation used in the context of DMFT
(Georges et al., 1996). It is most conveniently evaluated by
applying the Fourier transform (4) (from imaginary time to
Matsubara frequencies) to the Lehmann representation
(Abrikosov, Gorkov, and Dzyaloshinski, 1975; Mahan,
2000). The two-particle Green’s function can then be written
as a sum over products of the matrix elements of the four
creation and annihilation operators. The sums in the terms are
weighted with a function that depends on the eigenvalues and
the three external Matsubara frequencies; see the appendixes

of Toschi, Katanin, and Held (2007) and Hafermann, Kecker
et al. (2009). Because of the exponential increase of the
Hilbert space and the required fourfold nested sum over the
eigenstates, ED is essentially limited to single-orbital calcu-
lations and a maximal number of five sites (4 bathþ1 impurity
site). Calculations can be sped up through parallelization, by
using a lookup table for the exponential factors expð−βEiÞ, by
truncating the sums for terms in which the exponentials are
negligible, and most importantly, by exploiting symmetries.
The Lanczos algorithm (Georges et al., 1996), which sim-
plifies the calculation of the single-particle Green’s function,
cannot be directly applied to the two-particle Green’s function.
The reason is that transitions between two nearby states
at arbitrarily high energies contribute; this might be
circumvented, however, using the correction vector method
(Tanaka, 2016).

2. Quantum Monte Carlo

a. Hirsch-Fye and continuous-time auxiliary field algorithm

While ED and CTQMC are more commonly used nowa-
days, the Hirsch-Fye QMC algorithm (Hirsch and Fye, 1986)
has been also employed to calculate n-particle Green’s
functions. Here observables are intrinsically affected by the
Trotter decomposition error. Nevertheless, even the numeri-
cally delicate (diverging) fully 2PI vertex Λ can be extracted
with sufficient accuracy in physically relevant parameter
regimes of the single-band Hubbard model in DMFT and
DCA calculations (Maier, Jarrell, and Scalapino, 2006;
Gunnarsson et al., 2016). In addition, working on a dis-
crete-time grid avoids dealing with equal-time discontinuities
which arise in modern continuous-time algorithms.
At low temperatures, when controlling the Trotter error

becomes impractical, a CTQMC algorithm offers superior
performance. For instance, the continuous-time auxiliary-field
(CT-AUX) algorithm (Gull et al., 2008) is based on an
auxiliary-field decoupling of the interaction vertices similar
to the Hirsch-Fye algorithm, but samples a varying number of
fields at arbitrary times. CT-AUX is particularly efficient for
large cluster problems. The Fourier transform of the Green’s
function measurement to Matsubara frequencies can be sped
up significantly using a nonequidistant fast Fourier transform
algorithm (Staar, Maier, and Schulthess, 2012) when the
perturbation order is sufficiently large ð≳20Þ. This applies
to other continuous-time methods as well.

b. Continuous-time expansion in the interaction

In the continuous-time expansion in the interaction (CT-
INT), the measurement of two-particle Green’s functions
amounts to performing a Monte Carlo average over ratios
of determinants which differ by two rows and columns
(Rubtsov, Savkin, and Lichtenstein, 2005; Gull, Staar et al.,
2011) (instead of one for the single-particle function). Similar
to Hirsch-Fye QMC and CT-AUX, the measurement for a
particular correlation function can symbolically be obtained
by enumerating all Wick contractions of the operators
appearing in the definition of the correlation function and
replacing them by configuration-dependent quantities
Gτ̃1;…;τ̃N ðτ; τ0Þσσ

0
. Here N denotes the CT-INT perturbation
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order, and τ̃1;…; τ̃N denotes the continuous QMC times of the
Monte Carlo configuration. The Wick contraction yields

hTτcσðτ1Þc†σðτ2Þcσ0 ðτ3Þc†σ0 ð0Þi
→ Gσσ

τ̃1;…;τ̃N
ðτ1; τ2ÞGσ0σ0

τ̃1;…;τ̃N
ðτ3; 0Þ

− δσσ0Gσσ
τ̃1;…;τ̃N

ðτ1; 0ÞGσσ
τ̃1;…;τ̃N

ðτ3; τ2Þ: ð19Þ
By Fourier transform a measurement directly in frequency is
straightforwardly obtained. The latter can be factorized into
Gτ̃1;…;τ̃N ðν; ν0Þσσ

0
factors to speed up the calculation. With N,

Nν, and Nω denoting the perturbation order, the number of
fermionic and bosonic frequencies, respectively, the measure-
ment scales as OðN2N2

νÞ þOðN2
νNωÞ.

c. Continuous-time expansion in the hybridization

In the case of CTQMC with hybridization expansion
(CT-HYB) (Werner et al., 2006; Werner and Millis, 2006),
the partition function is expanded in terms of the AIM
hybridization function. Here the Monte Carlo weight is a
product of the determinant of hybridization functions and a
trace over the atomic states. In the original implementation,
the self-energies and vertex functions exhibit relatively large
fluctuations at intermediate to high frequencies (Gull et al.,
2007; Hafermann, Patton, and Werner, 2012). This problem
can be cured by expressing the self-energy as a ratio of two
correlation functions G and F (improved estimator), a relation
which follows from the equation of motion and corresponds to
F ¼ ΣG. This trick was first introduced in the numerical
renormalization group (NRG) context (Bulla, Hewson, and
Pruschke, 1998; Bulla, Costi, and Pruschke, 2008). Improved
estimators exist for the reducible vertex function as well
(Hafermann, Patton, and Werner, 2012), including impurity
models with spin-boson coupling (Otsuki, 2013), retarded
interactions (Hafermann, 2014), and multiorbital interactions
beyond density-density terms (Gunacker et al., 2016). Note
also that in CT-HYB, the conventional approach to obtain the
Green’s function and vertex is “removing” hybridization lines.
This procedure does not allow us to calculate all components
of the multiorbital vertex function, a limitation that was
overcome by Gunacker et al. (2015) using worm sampling.
Let us also note a first calculation of the local three-particle

vertex using CT-INT (Hafermann, Li et al., 2009), CT-AUX,
and CT-HYB (Ribic et al., 2017). Slices through this three-
particle vertex show similar structures as the two-particlevertex.

3. Handling vertex asymptotics

A generic problem of the numerical treatment of vertex
functions is the large memory size required to store the three-
frequency-dependent vertex. This limits the size of the fre-
quency box where the vertex can be treated exactly. However,
similar to single-particle quantities, the vertex approaches an
asymptotic behavior at high frequencies. This behavior can be
characterized by diagrams similar to the ones discussed in
Sec. II.C and exploited to simplify calculations.
Pioneering work in this direction was done by Kuneš

(2011) who, for calculating the DMFT susceptibility more
accurately, expressed the high-frequency asymptotic behavior
of the ω ¼ 0 vertex function irreducible in the particle-hole

channel in terms of the local dynamical susceptibility.
Extensions to more general cases can be found in
Tagliavini et al. (2018). Starting from the diagrammatic
considerations of Rohringer, Valli, and Toschi (2012), Li
et al. (2016) and Wentzell et al. (2016) derived more general
relations for the asymptotics of the three-frequency vertex
based on the parquet equations and proposed a parametriza-
tion scheme of the full high-frequency behavior of vertex
functions based on a diagrammatic analysis. Kaufmann,
Gunacker, and Held (2017) implemented the measurement
of these asymptotics in CT-HYB. The corresponding ED
expressions were reported by Tagliavini et al. (2018). The
asymptotic behavior of the vertex depends on two frequencies
and allows the calculation of the vertex in an arbitrarily large
frequency box with reduced statistical noise, while taking a
fraction of the numerical effort and storage required for the
full three-frequency-dependent vertex. The latter however is
still needed at low frequencies, where the vertex deviates from
this asymptotics.
Alternatively, correlation functions can be represented in a

Legendre polynomial basis (Boehnke et al., 2011) to obtain a
compact representation. For vertex functions it is advantageous
to use a mixed representation where the bosonic frequency
dependence is kept whereas the fermionic ones are projected
onto the Legendre polynomial basis. Provided a sufficiently
large cutoff Nl of polynomial coefficients, the Legendre
representation allows the calculation of the vertex at arbitrarily
high frequencies. The measurement scales as OðN2N2

l NωÞ.
Shinaoka et al. (2017) introduced an intermediate representa-
tion between the imaginary time and real-frequency domains.
It is based on sparse modeling of data in a basis that is derived
from the singular value decomposition of the kernel relating
the data in these domains (Otsuki et al., 2017). Interestingly, it
includes the Legendre representation as the high-temperature
limit, but requires even less coefficientsNl, in particular at low
temperatures. As for the Legendre basis, the transformation is
unitary, so that the entire calculation can in principle be
performed in this basis and only final results need to be
transformed back to Matsubara representation.

III. METHODS

After discussing the diagrammatics and physics of the
local vertex in the previous section, we are now ready to turn
to the recently developed diagrammatic vertex extensions of
DMFT (for an overview, see Sec. I.B and Table II in Sec. VI).
These have a common underlying principle, which follows
two steps:

• A local approximation is performed at the 2P level,
which corresponds to identifying the building block of
the specific approach. This (highly nonperturbative)
building block is one of the local vertices discussed in
the previous section.

• A diagrammatic approach is built around this local
building block to include nonlocal correlations beyond
DMFT into the self-energy and susceptibilities.

Out of this line fall diagrammatic extensions of DMFT
which simply combine the local DMFTwith the nonlocal self-
energy from another approach; such approaches are discussed
in Sec. III.F.
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A. Dynamical vertex approximation

The best way to understand the basic concepts of the DΓA
is to start by considering the diagrammatics of DMFT: DMFT
assumes the locality of all (skeleton) diagrams for the self-
energy; see Fig. 10(a). The self-energy, however, is nothing
but the one-particle (irreducible) vertex. Hence, a systematic
generalization of DMFT is directly obtained by requiring the
locality at then-particle level: Toschi,Katanin, andHeld (2007)
assumed the fully n-particle irreducible (nPI) n-particle vertex
to be local. Differently from DMFT, the self-energy or other
vertices with less than n particles do acquire nonlocal con-
tributions, as does the full n-particle vertex entering the
susceptibility or generally the kPI n-particle vertex for k < n.
Taking the limit n → ∞ (and a proper generalization of 2PI

defined in Sec. II.A to nPI) corresponds to considering all
diagrams for the Hubbard model or any other model with a
local interaction. Therefore the exact solution is recovered for
n → ∞. In practice one is however restricted to DΓA on the
n ¼ 2 particle level which is illustrated in Fig. 10(b). This
assumes the fully 2PI two-particle vertex Λ to be local (for the
definitions see Sec. II.A).
In principle, one can systematically improve the approach by

going to the n ¼ 3 particle vertex, etc. Actually doing so in
practice is difficult, but at least an error estimate for the standard
two-particle calculations seems feasible (Ribic et al., 2017).
Why a local Λ? Assuming that a local Λ is a good

approximation can be understood first from a Feynman
diagrammatic perspective: The fully irreducible diagrams
are topologically very compact and hence the most local
ones. Each Λ diagram generates many diagrams for the full
vertex F. For example, the bare (local) interaction U (as part
of Λ) generates, via the parquet equations, all Feynman
diagrams of up to third order in U as well as many higher-
order diagrams; even a local Λ generates a nonlocal F
including the typical ladder diagrams for spin fluctuations
of Fig. 1. The locality of Λ is also further supported by
numerical data in d ¼ 2: Even in the parameter regions with
strong nonlocal correlations in the self-energy Σ and the full
vertex F, Λ still remains local or k independent to a very good
approximation as shown in DCA calculations by Maier,
Jarrell, and Scalapino (2006).
From a physical perspective, this numerical evidence of a

purely local Λ can be attributed to the absence of any ladder
diagrams, which are typically associated with collective [spin
density wave (SDW), charge density wave (CDW), etc.]

modes of the system. As these modes are responsible for
strong nonlocal correlations, the momentum dependence of Λ
can be and often is particularly weak, consistent with the DΓA
assumption, even in situations where F is strongly momentum
dependent.
Our understanding of nonlocal physics is also often based

on ladder diagrams in terms of the bare U, e.g., the magnon
self-energy (Hertz and Edwards, 1973); see Fig. 1. However,
such approaches were restricted to weak coupling (Vilk and
Tremblay, 1997). Taking a local Λ instead of U in DΓA
includes all the strong local DMFT correlations (responsible
for quasiparticle renormalizations, Mott transitions, etc.), but
at the same time allows us to study nonlocal correlations and
collective excitations on all length scales.

1. Parquet DΓA

The locality assumption for Λ is the first step in the
construction of the DΓA. The second step is to define the
diagrams to be constructed from this local building block. For
the DΓA, this second step is naturally the application of the
parquet equations (Toschi, Katanin, and Held, 2007; Held,
2014) (see Fig. 6), which allow the calculation of the full
vertex F, self-energy Σ, etc. from Λ.
The algorithmic implementation of DΓA is realized through

the following steps [see Fig. 11 (left)], which we illustrate here
by a comparison with the more common DMFT algorithm in
Fig. 11 (middle): (i) First, we solve an AIM. In contrast to
DMFT, where only the one-particle Green’s function of the
AIM is calculated, in DΓA also the two-particle Green’s
function of the AIM needs to be computed. (ii) Second, we
extract from the AIM the irreducible building block of our
theory. In DΓA, this requires one to invert the parquet
equations of the AIM to compute the fully 2PI local vertex,
i.e., the three-frequency-dependent Λνν0ω. In DMFT this
corresponds to calculating the AIM’s local self-energy.
(iii) Third, in DΓA we use the Λνν0ω of the AIM as input
for the parquet equation (8) of the finite-d lattice system under
consideration. The self-consistent solution of this equation
together with the BSEs (10) and the Schwinger-Dyson
equation (11) yields the momentum-dependent self-energy
and correlation functions of the DΓA. This step corresponds in
DMFT to calculating the Green’s function, through the lattice
Dyson equation with the local DMFT self-energy as an input.
(iv) Finally, if the local DΓA Green’s function differs from the
input local Green’s function, the initial AIM is accordingly
updated (yielding a new Λ). Steps (i)–(iv) are repeated until
self-consistency, analogous to the DMFT self-consistency on
the one-particle level.
The richer physical content of DΓA is paid for by a higher

numerical effort compared to DMFT. This applies, in par-
ticular, to steps (i) the calculation of the local vertex and
(iii) solving the parquet plus BSE equations. For (i), one needs
to perform an accurate numerical calculation of the two-
particle Green’s function of the AIM with its full dependence
on three frequencies (cf. Sec. II.D), whereas in the DMFT loop
only the one-particle Green’s function is required. For (iii), we
recall that a numerical solution of the parquet equations for
lattice systems is highly demanding. Cutting-edge parquet
algorithms have been developed (Yang et al., 2009; Tam et al.,

(a)

(b)

FIG. 10. (a) In DMFT the fully 1PI one-particle vertex, i.e., the
self-energy Σ, is purely local. (b) In DΓA instead the fully 2PI
two-particle vertex Λ is approximated to be local (lines: interact-
ing Green’s function; dots: bare Hubbard interaction U; i repre-
sents a site index of the lattice).
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2013; Li et al., 2016) and first DΓA parquet calculations have
been presented for a benzene ring (Valli, Schäfer et al., 2015)
and the 2D Hubbard model (Li et al., 2016).

2. Ladder DΓA

A full parquet solution of the DΓA equations is still not
feasible (i) in the proximity of (quantum) phase transitions
which requires a fine k grid or (ii) for ab initio DΓA (Toschi
et al., 2011; Galler, Thunström, Gunacker et al., 2017)
calculations which require more orbitals. Hence, simplifica-
tions of the DΓA scheme are often needed. Here we discuss
the most commonly used approximation, the “ladder approxi-
mation,” and discuss its physical justification. This route was
followed by Kusunose (2006), Toschi, Katanin, and Held
(2007), and Slezak et al. (2009).
Starting from the parquet DΓA [see Eq. (8)], we recall that

the momentum dependence of its two-particle reducible terms
Φνν0ω

r;l;kk0q is crucial for describing second-order phase tran-
sitions, e.g., (anti)ferromagnetism (r ¼ s) and charge density
waves (r ¼ c) in the particle-hole sector (l ¼ ph or ph), or
singlet (r ¼ ↑↓) superconductivity (l ¼ pp). The proximity
of such an instability is indicated by a strong enhancement of
the momentum-dependent Φνν0ω

l;r;kk0q in the corresponding
scattering channel(s) defined by l and r. Hence, in all
situations where the leading instability of the system is known
a priori, one can consider a momentum-dependent Φνν0ω

l;r;kk0q
only in the relevant channel, keeping in the other channels the
local Φl;r’s of DMFT only. This approximation reduces the
parquet equations to the BSE and hence represents a ladder
approximation of DΓA.
In the following, we explicitly recapitulate the ladder-DΓA

equations (Toschi, Katanin, and Held, 2007; Rohringer, 2013)
for one of the most relevant situations: If magnetic fluctuations
dominate, we can restrict ourselves to the two ph channels

l ¼ ph; ph.5 This is also the implementation that has been
employed in most DΓA calculations hitherto (see Sec. IV);
Kusunose (2006) considered the l ¼ ph channel only.
As discussed, by applying the ladder approximation to the

two ph channels, i.e., ph and ph, we assume both Λ and Φpp

in Eq. (8) to be purely local. Hence, the expression for the full
vertex entering in the equation of motion [Eq. (11)] for the
DΓA self-energy reads

Fνν0ω
↑↓;kk0q ¼ Λνν0ω

↑↓ þΦνν0ω
ph;↑↓;kk0q þΦνν0ω

ph;↑↓;kk0q
þΦνν0ω

pp;↑↓: ð20Þ

While the momentum dependence of Φpp has been neglected,
it still needs to be calculated for Φph and Φph. This is possible
through the BSE (10). Within a full parquet approach the
corresponding irreducible vertices Γph;r and Γph;r would be
momentum dependent through mutual screening between the
channels. In our ladder DΓA approximation we do not
consider such renormalization effects and, hence, assume
Γph;r and Γph;r to be purely local:

Fνν0ω
lad;r;q ¼ Γνν0ω

r þΦνν0ω
r;q

¼ Γνν0ω
ph;r þ

X
k̃ ν̃

Γνν̃ω
ph;rG

loc
k̃ ν̃
Gloc

ðk̃þqÞðν̃þωÞF
ν̃ν0ω
lad;r;q; ð21Þ

where r ¼ c, s and Gloc
kν ¼ ½G−1

0;kν − Σloc
ν �−1 is the DMFT

Green’s function of Eq. (14). An analogous equation holds
for the ph channel which is exactly equivalent to Eq. (21) for
r ¼ s due to SU(2) and the crossing symmetry; see Table I.

FIG. 11. Flow diagram for parquet DΓA with or without the QUADRILEX self-consistency (in orange, light gray) for the interaction
(left), DMFT (middle), and ladder DΓA (right). Quantities obtained from (or defining) an auxiliary AIM are indicated in blue, dark gray.

5In principle, we could restrict ourselves also to the spin sector
r ¼ s neglecting nonlocal charge fluctuations r ¼ c. However, such a
simplification would break the crossing and SU(2) symmetry and,
hence, we consider r ¼ c on the same footing as r ¼ s.
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Equation (21) is a great algorithmic simplification with
respect to a full parquet treatment because Fνν0ω

lad;r;q depends on
the transferred momentum q only, rather than on all three
momenta in the parquet equation. Combining Eqs. (20) and
(21), the final expression for the full vertex reads

Fνν0ω
↑↓;kk0q ¼ 1

2
ðFνν0ω

lad;c;q − Fνν0ω
lad;s;qÞ − FνðνþωÞðν0−νÞ

lad;s;k0−k

− 1
2
ðFνν0ω

c − Fνν0ω
s Þ: ð22Þ

Here the purely local terms in the last line provide a double
counting correction of local contributions (Toschi, Katanin,
and Held, 2007; Rohringer, 2013). Inserting Eq. (22) for
Fνν0ω
↑↓;kk0q into the Schwinger-Dyson equation (11), we finally

obtain the following explicit expression for the ladder DΓA
self-energy:

Σkν ¼
Un
2

−U
X
ν0ω

X
k0q

Fνν0ω
↑↓;kk0qG

loc
k0ν0G

loc
ðk0þqÞðν0þωÞG

loc
ðkþqÞðνþωÞ:

ð23Þ

The practical implementation of Eqs. (20)–(23) is illustrated
by the flow diagram Fig. 11 (right); cf. Held, Katanin, and
Toschi (2008). The calculation steps are the following: (i) A
complete DMFT self-consistency cycle is performed as out-
lined in Fig. 11 (middle). (ii) After DMFT convergence the
local one- and two-particle Green’s functions of the AIM are
computed. (iii) The irreducible local vertices in the channel(s)
under consideration Γνν0ω

l;r are computed via the inversion of
BSEs for the AIM. (iv) The local irreducible vertex functions
Γνν0ω
l;r and the (momentum-dependent) DMFTGreen’s function

Gloc
kν serve as an input for the lattice BSEs which, in turn, yield

the ladder vertexFνν0ω
lad;r;q and the fullF via Eq. (22). (v) The self-

energy is derived from theDMFTGreen’s functionGloc
kν and the

vertex Fνν0ω
lad;r;q by means of the equation of motion (23).

Moriyaesque λ correction: The ladder DΓA algorithm
enormously reduces the numerical effort with respect to the
full parquet implementation. However, ladder DΓA leads to
violations of several sum rules for the susceptibilities which
are obtained from the BSE (20), since mutual screening effects
between different scattering channels are not taken into
account. One example of such a sum rule, which is not
fulfilled within ladder DΓA, is related to the total density of
the system and reads

X
ωq

χω↑↑;q ¼
X
ωq

1

2
ðχωc;q þ χωs;qÞ

¼ hn↑n↑i − hn↑ihn↑i ¼
n
2

�
1 −

n
2

�
: ð24Þ

This relation automatically guarantees the correct (1=ν) high-
frequency asymptotics of the self-energy in any scheme based
on the equation of motion (11). A corresponding violation of
Eq. (24) hence leads to an incorrect asymptotic behavior
which can be indeed observed in ladder DΓA (Toschi,
Katanin, and Held, 2007; Katanin, Toschi, and Held, 2009).

To overcome this problem the ladder DΓA susceptibilities
obtained from Eq. (20) are supplemented by means of a
Moriyasque λ correction. Considering the Ornstein-Zernike
form of charge and spin modes at momentum Qr

χω¼0
r;q ¼ A

ðq −QrÞ2 þ ξ−2r
; ð25Þ

and following the Moriya theory of itinerant magnetism
(Moriya, 1985) it is natural to apply a correction to χωr;q by
modifying the correlation length ξr (i.e., the mass) of the
propagator. This is consistent with the well-known fact that a
mean field theory such as DMFT overestimates the correlation
length of the system. It accounts for nonlocal contributions to
the particle-hole-irreducible vertices.
Since within the ladder DΓA scheme the propagator χωr;q

(without any correction and self-consistency) corresponds
exactly to the DMFT one, it is reasonable to reduce this
overrated DMFT correlation length of the mode r, fixing it to a
value such that condition (24) is fulfilled. In practice this is
done by applying the transformation

ðχωr;qÞ−1 → ðχωr;qÞ−1 þ λr ¼ ðχλ;ωr;q Þ−1: ð26Þ

Rewriting the ladder DΓA equation of motion in such a way
that it explicitly contains the physical susceptibility and
inserting the λ-corrected susceptibilities χλr;ωr;q into it leads to
the λ-corrected self-energy; see Katanin, Toschi, and Held
(2009) and Rohringer and Toschi (2016). The relation of this
procedure to the dual boson approach is discussed in
Sec. III.G.3.
Let us point out that the divergencies of vertex functions

Γr mentioned in Sec. II.C do not affect the ladder DΓA
algorithm. In fact, Γr ¼ Fr=ð1þ GlocGlocFrÞ and the Bethe-
Salpter equation (21) can be reformulated in terms of the full
vertex Fr [see, e.g., Rohringer (2013) and for multiorbital and
ab initio DΓA calculations, see Galler, Thunström, Gunacker
et al. (2017)]:

Fνν0ω
lad;r;q ¼ Fνν0ω

r þ
X
k̃ ν̃

Fνν̃ω
r G̃0;k̃ ν̃G̃0;ðk̃þqÞðν̃þωÞF

ν̃ν0ω
lad;r;q; ð27Þ

where G̃0;kν ¼ Gloc
kν − Gloc

ν ; cf. Eq. (39). This circumvents the
occurrence of any 2PI vertex divergence in the ladder-DΓA
scheme (and in the calculation of DMFT susceptibilities that
exploit identical Bethe-Salpeter expressions). At present, it
remains unclear whether the divergences of the 2PI vertex
functions can be circumvented similarly in parquet-based
algorithms, such as the parquet DΓA and QUADRILEX.

3. Ab initio DΓA for materials calculations

Up to this point, we have considered a single orbital and a
local interaction U in the DΓA approach. An extension to
nonlocal interactions and multiple orbitals has been developed
and implemented by Galler, Thunström, Gunacker et al.
(2017) and Galler, Thunström, Kaufmann et al. (2017), cf.
Galler et al. (2018), building upon earlier ideas put forward by
Toschi et al. (2011). Because of this ab initio material
calculations are also possible and have been performed for
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SrVO3, this variant is coined AbinitioDΓA. As a full parquet
DΓA for multiple orbitals is beyond what is feasible with
present-day computational resources, the key quantity in
AbinitioDΓA is the irreducible vertex Γ in the particle-hole
(and transversal particle-hole) channel just as in ladder DΓA.
The key assumption of AbinitioDΓA is to approximate Γ by

the corresponding local vertex plus the nonlocal Coulomb
interaction Vq, see Fig. 12:

Γkk0q
ph;σσ0;lmm0l0 ≡Γνν0ω

ph;σσ0;lmm0l0 þVq
σσ0;lmm0l0 −δσσ0Vk0−k

σσ;mm0ll0 : ð28Þ

Here l, m, m0, and l0 denote the orbital indices, and
Γνν0ω
ph;σσ0;lmm0l0 includes the local bare interaction U plus all

purely local vertex corrections. In calculations with strongly
and weakly correlated, say d and p orbitals, one can also
approximate the local vertex of the p orbital by U. This allows
calculations for more orbitals since the calculation of the local
vertex remains a large numerical effort. Alternatively one can
take the screening of an outer window of orbitals into account,
which translates into an additional frequency dependence for
U and Vq

σσ0;lmm0l0 .
As in ladder DΓA [Eqs. (20) and (21)], the full vertex is

constructed from the vertex (28) using the BSE in the particle
hole and transversal particle-hole channel, with a reformula-
tion in terms of F instead of Γ to avoid numerical obstacles
associated with the divergences in Γ discussed in Sec. II.C.
The multiorbital extension (Galler, Thunström, Gunacker

et al., 2017) of the Schwinger-Dyson equation (23) is
employed to obtain Σ from the calculated F, following the
ladder DΓA scheme. This Schwinger-Dyson equation has
various U and Vq terms and is not restricted any longer to the
↑↓-spin combination of F.
What is still neglected in AbinitioDΓA are nonlocal irre-

ducible vertex corrections. But since from Γkk0q in Eq. (28) the
particle-hole ladder and the transversal particle-hole ladder
diagrams are constructed, we still retrieve many correlations
originating from Vq: (i) Inserting the Vq term of Fig. 12 and
Eq. (28) into the particle-hole BSE ladder yields the random
phase approximation (RPA) screening, and from this screened
F the Schwinger-Dyson equation of motion assembles theGW
self-energy. (ii) From the local Γνν0ω and local Green’s function
in the subsequent equations, the DMFT self-energy is recov-
ered. Hence, AbinitioDΓA is a unifying framework which
naturally generates all GW diagrams and all DMFT diagrams.
(iii) Beyond GW and DMFT, further nonlocal correlations are
included: the nonlocal spin fluctuations of ladder DΓA, the

transversal particle-hole ladder in terms of Vq, and mixed
terms.

4. QUADRILEX: A functional integral perspective

The quadruply irreducible local expansion scheme by Ayral
and Parcollet (2016a) is closely related to the DΓA. It is
essentially an extension of DΓA in two respects: (i) it provides
the framework of a functional integral formalism and (ii) from
this functional an additional self-consistency for the two-
particle vertex. This self-consistency enters in addition to the
one for the one-particle Green’s function considered in DΓA
before; see Fig. 11. As DΓA, QUADRILEX is based on the
fully 2PI vertex and builds Feynman diagrams around it.6

For constructing a functional integral, Ayral and Parcollet
(2016a) employed an idea by De Dominicis and Martin
(1964b): The standard functional of Baym and Kadanoff
(1961) depends on the interacting one-particle Green’s func-
tion G and the bare interaction U. De Dominicis and Martin
(1964b) proposed a Legendre transformation to a functional
that depends on G and the two-particle Green’s function Gð2Þ

instead. As a nontrivial term it contains the set of all 2PI
energy diagrams K4½G;Gð2Þ� (Ayral and Parcollet, 2016a),
coined K2 by De Dominicis and Martin (1964b). In the
QUADRILEX formalism, Ayral and Parcollet (2016a)
approximated this functional by its local counterpart

K4½Gkν; G
ð2Þ;νν0ω
σσ0;kk0q� ≈K4½Gloc

ν ; Gð2Þ;νν0ω
σσ0 �: ð29Þ

This naturally extends the DMFT, which corresponds to a
Baym-Kadanoff functional that depends on Gloc

ν only; see
Janiš and Vollhardt (1992b). The fully 2PI vertex Λ can be
obtained from the functional derivative of K4 with respect to
Gð2Þ: Λ ¼ U − 2δK4=δG2. The approximation K4 ¼ 0 yields
Λ ¼ U and generates the parquet approximation. Using the
local approximation (29) instead yields by construction the
same Λ as in DΓA, namely, all local fully 2PI diagrams. But
the functional formalism also leads to an improved outer self-
consistency, which now includes both the one-particle and
two-particle levels on an equal footing.
This can be understood as follows: As in DMFT, the

approximated functional (29) can be determined by an
auxiliary impurity model. In order to match the local part
of the lattice Gð2Þ to the corresponding impurity quantity with
its full frequency dependence, one has to introduce an
adjustable, three-frequency-dependent interaction vertex
Uνν0ω into the impurity model in addition to the familiar
Weiss field G. Uνν0ω allows for including the feedback of
collective modes into the impurity model. The DΓA can be
understood as a special case of QUADRILEX with the
additional approximation Uνν0ω ≈ U. For the AIM in the outer
self-consistency cycle Fig. 11 envisages this additional step in
the self-consistency loop. For more details see Ayral and
Parcollet (2016a).

FIG. 12. In AbinitioDΓA the irreducible vertex Γ in the particle
hole and transversal particle-hole channel is approximated by the
bare nonlocal Coulomb interaction Vq and the local vertex Γloc
which depends on orbitals (l; m; ...) and frequencies (ν, ν0, ω) but
not momenta (k, k0, q) and includes the local Coulomb
interaction U.

6Note that in contrast Ayral and Parcollet (2016a) denoted this as
the four-particle irreducible level since there are four (incoming and
outgoing) legs associated with the two-particle (2PI in our notation)
vertex, hence the name QUADRILEX.
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The QUADRILEX scheme has not yet been implemented.
Notwithstanding possible convergence issues of the self-
consistency cycle or a possible sign problem incurred by
the retarded interaction, the implementation might be feasible
with today’s technology—at least for a single orbital.

B. Dual fermion theory

It is common wisdom that models of strongly correlated
electrons, such as the Hubbard model, are difficult to treat at
large scale and in the thermodynamic limit. The challenge
however is not the interaction per se, but the fact that the
hopping term and the interaction term are diagonal in different
bases, namely, inmomentum and lattice space. In the physically
most interesting regimes, both terms are generally of similar
order, so that an expansion around theweak- or strong-coupling
limit is not applicable. A powerful idea to approach the problem
is to separate it into nontrivial subproblems that can be treated
efficiently and (numerically) exactly and a coupling between
them. The splitting is ideally done in a way that this coupling
represents a small parameter of the theory, which can be treated
perturbatively. The simplest example of such a theory is DMFT
(see Sec. II.B). Here the lattice problem is decomposed into a
collection of local AIMs. In DMFT the coupling between
impurities is neglected. As we will see in the following, DMFT
can therefore be viewed as the lowest-order perturbative treat-
ment of the coupling between the local impurity and nonlocal
degrees of freedom of the system. A perturbative treatment of
the coupling reintroduces nonlocal correlations.
From a formal perspective, an action-based formalism

provides the most natural basis to achieve a decoupling into
local and nonlocal degrees of freedom. In the following we
will discuss this for the Hubbard model, although the concept
is more general and can be applied also to other models. See,
for example, Rubtsov (2006) for an application to ϕ4 theory.
The action of the Hubbard model (12) is given by

S½cþ; c� ¼
X
kνσ

½−iνþ εk − μ�cþkνσckνσ

þ U
X
i

Z
β

0

dτcþi↑ðτÞci↑ðτÞcþi↓ðτÞci↓ðτÞ; ð30Þ

where cðþÞ
iσ ðτÞ and cðþÞ

kνσ are the fermionic Grassmann fields

corresponding to the annihilation (creation) operators ĉð†Þiσ

and ĉð†Þkσ , respectively. In the spirit of the previous discussion
we introduce a local reference action which is diagonal in
lattice space:

Sloc½cþ; c� ¼
X
νσ

½−iνþ Δν − μ�cþνσcνσ

þ U
Z

β

0

dτcþ↑ ðτÞc↑ðτÞcþ↓ ðτÞc↓ðτÞ: ð31Þ

The Gaussian part Δν of the reference system is frequency
and in general site dependent, but we limit our presentation to
the homogeneous case. The rationale behind introducing an
AIM as the reference system is that we can compute its one-
and two-particle Green’s functions numerically exactly as
described in Sec. II.D.
Keeping in mind the idea of a separation into solvable parts

and a supposedly weak coupling between them, we express
the lattice action Eq. (30) in terms of the local reference
system Eq. (31) by formally adding and subtracting an
arbitrary hybridization function Δν:

S½cþ; c� ¼
X
i

Sloc½cþi ; ci� þ
X
kνσ

½εk − Δν�cþkνσckνσ : ð32Þ

The generating functional W½ηþ; η; η̃þ; η̃� ¼ lnZ½ηþ; η; η̃þ; η̃�
for the action (32) reads

Z½ηþ; η; η̃þ; η̃� ¼
Z

D½cþ; c� exp
�
−Sloc½cþ; c� −

X
kνσ

½εk − Δν�Cþ
kνσCkνσ þ

X
kνσ

cþkνσηkνσ þ ηþkνσckνσ

�
; ð33Þ

where CðþÞ
kνσ ¼ cðþÞ

kνσ þ b−1νσ η̃
ðþÞ
kνσ , and η̃ðþÞ

kνσ represent so-
called dual source fields which have been introduced
to better reveal the connection between dual and
physical fermion correlation functions. The coupling
bνσ denotes a—in principle arbitrary—function of spin
and Matsubara frequencies. The derivatives of the
functional (33) with respect to the source fields ηþ; η
yield the connected physical correlation functions of the

system. For example, the single-particle Green’s func-
tion is obtained as G ¼ ∂2W=∂ηþ∂ηjηðþÞ¼η̃ðþÞ¼0.
The central step of the DF derivation is to decouple the

reference system of impurities which are connected through
the term εk − Δν by introducing new fields c̃ðþÞ representing
the so-called dual fermions. This is achieved through the
Hubbard-Stratonovich transformation (Rubtsov, Katsnelson,
and Lichtenstein, 2008):

e−½εk−Δν�Cþ
kνσCkνσ ¼ −1Q

kνσb
2
νσ½εk−Δν�−1

Z
D½c̃þ; c̃�eb2νσ ½εk−Δν�−1c̃þkνσ c̃kνσþbνσ ½cþkνσ c̃kνσþc̃þkνσckνσ �þη̃þkνσ c̃kνσþc̃þkνσ η̃kνσ : ð34Þ

The label “dual” emphasizes that no approximation is made in this step, analogous to the transformation of a vector to the
dual vector space. Note that we use here the Hubbard-Stratonovich transformation in a rather unconventional way, namely,
to decouple the Gaussian rather than the interacting part of the action.

G. Rohringer et al.: Diagrammatic routes to nonlocal correlations …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 025003-18



When applying the transformation (34) to (33), the combi-
nation of the terms e−Sloc½cþ;c� and ebνσ ½c

þ
kνσ c̃kνσþc̃þkνσckνσ �, integrated

over the physical fields cþ and c, yields the functional
Wloc½bc̃þ; bc̃� ¼ lnZloc½bc̃þ; bc̃� which is diagonal in real
space:

Wloc½bc̃þ; bc̃�

¼ ln
Z

D½cþ; c�
Y
i

e−Sloc½cþi ;ci�e
P

νσ
bνσ ½cþiνσ c̃iνσþc̃þiνσciνσ �: ð35Þ

We aim to obtain a theory which contains dual (fermionic)
variables only. We therefore expandWloc in terms of the local
coupling between dual and physical fermions and formally
integrate out the latter. Because of the exponential containing
Sloc, this integral corresponds to an average over the reference
system. At expansion order 2n in the fields cþ and c, one
therefore obtains the connected part of the n-particle
impurity Green’s function. We use the freedom to choose
bνσ to obtain a particularly convenient form of the result.
Setting bνσ ¼ ðGloc

ν Þ−1, where Gloc
ν is the single-particle

impurity Green’s function, removes the external Green’s
function legs of the n-particle (connected) correlation func-
tions. The local generating functional can then be expressed in
the form

Wloc½bc̃þ; bc̃�

¼
X
i

�
lnZloc −

X
νσ

ðGloc
ν Þ−1c̃þiνσ c̃iνσ þ Veff ½c̃þi ; c̃i�

�
; ð36Þ

where we have defined the effective interaction between dual
fermions:

Veff ½c̃þi ;c̃i�¼
1

4

X
νν0ω
σσ0

ð2−δσσ0ÞFνν0ω
σσ0 c̃

þ
iνσ c̃iðνþωÞσ c̃þiðν0þωÞσ0 c̃iν0σ0 þ���.

ð37Þ
The interaction contains the local n-particle vertex functions of
the reference system. In particular, Fνν0ω

σσ0 is the two-particle
vertex function. We have omitted three-particle and higher-
order terms as these are often neglected in practical calculations.
We define the dual action S̃ through

S̃½c̃þ; c̃� ¼ −
X
kνσ

G̃−1
0;kνc̃

þ
kνσ c̃kνσ þ

X
i

Veff ½c̃þi ; c̃i�; ð38Þ

and introduce the bare dual Green’s function

G̃0;kν ¼ ½ðGloc
ν Þ−1 þ ðΔν − εkÞ�−1 − Gloc

ν : ð39Þ
With these definitions, the final form of the generating
functional in terms of dual fields is given by

W½ηþ;η;η̃þ;η̃�¼ ln
Z

D½c̃þ;c̃�e−S̃½c̃þ;c̃�−
P

kνσ
½εk−Δν�−1ðGloc

ν Þ−1½c̃þkνσηkνσþηþkνσ c̃kνσ �þ½εk−Δν�−1ηþkνσηkνσþη̃þkνσ c̃kνσþc̃þkνσ η̃kνσ : ð40Þ

From Eq. (40), the relation between the correlation func-
tions for real and dual fields is easily derived: the single-
particle propagator G̃kν ¼ −hc̃kνσ c̃þkνσi of the dual fields is
obtained from a functional derivative with respect to η̃þ and η̃
with the sources set to zero.
A closer look at the term in square brackets in Eq. (39)

reveals that it equals Gloc
kν , the lattice Green’s function with

the self-energy taken from the local reference problem, as
also defined in the context of DMFT [Eq. (14)]. The bare
dual Green’s function G̃0;kν ¼ Gloc

kν − Gloc
ν can be interpreted

as its nonlocal part. A diagrammatic expansion in terms of
the dual Green’s function accounts for nonlocal contribu-
tions, while the local ones are taken into account on the
level of the impurity model. It is intuitively clear that double
counting of local contributions is avoided with this con-
struction. The derivative of W½ηþ; η; η̃þ; η̃� with respect to
the sources ηþ and η yields, on the other hand, the physical
Green’s function Gkν. Applying this functional derivative to
Eq. (40) straightforwardly leads to

Gkν ¼ ½εk − Δν�−1ðGloc
ν Þ−1G̃kνðGloc

ν Þ−1½εk − Δν�−1
− ½εk − Δν�−1; ð41Þ

which can be rewritten as a relation between the dual and
the physical self-energy in the following form:

Σkν ¼ Σloc
ν þ Σ̃kν

1þ Gloc
ν Σ̃kν

: ð42Þ

Analogous relations between higher-order correlation func-
tions are obtained similarly from higher-order derivatives;
see Brener et al. (2008) and Rubtsov et al. (2009). Using
these exact relations, any result obtained in dual space can
be transformed back to the physical fermion space.
Because of the complicated form of the dual interaction

Veff , the benefits of the transformation to dual variables are not
immediately obvious. The idea is that the bare dual propagator
G̃ and the bare dual interaction Veff implicitly contain the local
physics through the underlying AIM and represent a much
better starting point for any kind of perturbative expansion
than the original action.
Note that since the hybridization is arbitrary, DF provides

an expansion around a generic AIM. In the particular case
where Δν equals its DMFT value, the DF approach represents
a diagrammatic expansion around DMFT. In this case it is
easy to see that inserting the corresponding G̃0;kν into Eq. (41)
indeed yields the DMFT Green’s function. DMFT therefore
corresponds to a system of noninteracting dual fermions and
appears as the lowest order in the approach. It is believed that
the DF series delivers a good practical convergence even in
cases where standard Feynman diagrammatic techniques fail.
In practice, two approximations are performed for the action

in Eq. (38): (i) The dual interaction is terminated at some finite
order, typically only the local two-particle vertex function
Fð4Þ ¼ F is taken into account, and (ii) an approximation to the
dual self-energy is constructed using Feynman diagrams.
To which extent (i) the truncation at the two-particle level is

justified is an open question. Hafermann, Li et al. (2009) and
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Ribic et al. (2017) calculated the three-particle vertex Fð6Þ,
allowing for an error estimate of a DF calculation truncated at
the two-particle vertex level. Their results for the 2D Hubbard
model indicate that DF corrections from Fð6Þ are small for
some parameters but can be sizable for others. Numerical
results and scaling considerations (see Sec. III.B.3) suggest
that contributions from higher-order vertices can often be
neglected. Certainly a more systematic study of the whole
parameter space is mandatory as is a similar analysis for the
other diagrammatic extensions of DMFT.

1. Selection of diagrams

The diagrammatic elements of the expansion are the dual
propagators G̃0 and the n-particle vertices of the local
reference model; see Fig. 13. In practice, the dual self-energy
is constructed from a subset of finite or infinite-order dual
diagrams. Generic examples are shown in Fig. 14. Since the n-
particle vertex functions in the dual interaction are fully
antisymmetric by virtue of the fermionic anticommutation
relations, the diagrammatic rules of the perturbation theory
(Negele and Orland, 1998; Hafermann, 2010) are similar to
those of Hugenholtz (1957). Because the coupling bν intro-
duced in Eq. (34) between physical and dual fermions is local
and spin diagonal, the choice of diagrams is very similar to
regular perturbation theory and can be guided by the physics.
The nonlocal expansion scheme discussed later shows that the
DF approach is in fact an efficient scheme to resum certain
classes of diagrams in lattice fermion space. Exact relations
between dual and physical fermions further guarantee that the
poles corresponding to two-particle excitations (and higher-
order processes) are the same for dual and physical fermions
(Brener et al., 2008).
The leading-order diagram of the expansion is the local

Hartree-Fock–type diagram shown in Fig. 14(a). This diagram
gives a local contribution which can be eliminated by a
specific choice of the hybridization function; see Sec. III.B.2.
The next-leading diagram shown in Fig. 14(b) defines the
second-order DF approximation DFð2Þ. Figure 14(c) is the
leading diagram containing the three-particle vertex. DFð2Þ

gives rise to a pseudogaplike behavior in the weak-to-
intermediate coupling regime of the 2D Hubbard model in

the symmetry broken phase (Rubtsov, Katsnelson, and
Lichtenstein, 2008). An important approximation is the ladder
DF approximation (Hafermann, Li et al., 2009), which sums
generic ladder diagrams shown in Fig. 14(d) to all orders. The
ladder approximation describes antiferromagnetic fluctuations
and the pseudogap in the paramagnetic phase and yields
accurate results in practice over a wide parameter range
(Gukelberger, Kozik, and Hafermann, 2017). The particle-
hole ladder DF self-energy is given by

Σ̃kν ¼ −
X
k0qr

ArFνν0ω
r G̃k0ν0G̃ðk0þqÞðν0þωÞG̃ðkþqÞðνþωÞ

×

�
Fνν0ω
lad;r;q −

1

2
Fνν0ω
r

�
: ð43Þ

Here we have introduced the notations Ac ¼ 1=2, As ¼ 3=2
for r ¼ c, s, where the factor of 3 accounts for the spin
degeneracy. The expression is obtained by incorporating
ladder diagrams from the ph and ph channels (cf. Sec. II.A)
into the lattice vertex in the dual Schwinger-Dyson equation.
Since the interaction here is fully antisymmetric, both
channels give identical contributions. Flad is the vertex in
the ladder approximation as defined in Eq. (21). The
latter can equivalently be obtained by solving a Bethe-
Salpeter equation written in terms of F and G̃ [see Eq. (27)]
(Brener et al., 2008).
Particle-particle fluctuations can be added straightfor-

wardly. When it is known a priori in which channel the
dominant instability occurs (magnetic, charge, superconduct-
ing) it is sufficient to construct ladder diagrams in this
channel, whereas for competing instabilities one has to resort
to parquet diagrams in dual space. To avoid a possible bias
through the restriction to a certain subset of diagrams, Iskakov,
Antipov, and Gull (2016) and Gukelberger, Kozik, and
Hafermann (2017) developed a method to sample DF dia-
grams with the two-particle vertex using diagrammatic
Monte Carlo, which shows good agreement with diagram-
matic determinant Monte Carlo benchmarks.

(a)

(b)

FIG. 13. Diagrammatic elements of the DF approach: (a) The
bare DF propagator G̃0 [Eq. (39)] given by the purely nonlocal
Green’s function and (b) the DF interaction represented by the
local connected n-particle vertex functions Fð2nÞ.

(a) (b)

(c)

(d)

FIG. 14. (a) DF Hartree-Fock and (b) second-order diagrams
constructed from the local two-particle vertex. (c) An example of
a diagram containing the three-particle vertex. (d) Generic DF
ladder diagram constructed from two-particle vertices.
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2. Choice of hybridization function

The hybridization functionΔν can be chosen arbitrarily, and
DMFT may or may not be the optimal starting point in the
presence of strong nonlocal correlations and in low dimen-
sions. Since the underlying AIM can be solved numerically
exactly, it is desirable to include a major part of the correlations
into this reference system. The hybridization of the AIM is
updated iteratively until it fulfills either the condition

X
k

Gkν ¼ Gloc
ν ; ð44Þ

with Gkν from Eq. (41), or the more commonly employed
condition

X
k

G̃kν ¼ 0: ð45Þ

The latter condition implies that nonlocal dual self-energy
contributions that yield contributions to the local dual Green’s
functionwill effectively be absorbed into the impurity problem.
Furthermore, the Hartree diagram, Fig. 14(a), and all diagrams
which contain a local loop vanish.
The effect of updating the impurity is particularly important

in low dimensions, where DMFT and the exact solution can
differ qualitatively. It is, for example, essential to capture the
Mott phase in one and two dimensions in the parameter region
whereDMFTyields ametallic solution. The insulating solution
shown in Fig. 32 has been obtained from a metallic DMFT
starting point using condition (45), while Eq. (44) yields a
strongly renormalized metal in this regime. Note that the final
hybridization in the former case is qualitatively different from
the DMFT one, because the impurity model itself becomes
insulating.When to applywhich self-consistency condition has
so far not been investigated systematically.
In practice, condition (44) or (45) is implemented in a self-

consistent scheme as shown in Fig. 15: (i) First, the local self-
energy Σloc and the local two-particle and possibly higher-
order vertex functions (F;Fð6Þ;…) are extracted from an
initial solution of the AIM. From the former, the bare dual
propagator G̃0;kν is constructed according to Eq. (39). Here the
bare dispersion εk or the noninteracting lattice Green’s
function G0;kν enters the flow diagram. (ii) The dual self-
energy Σ̃kν is calculated by means of dual perturbation theory,
which can include a self-consistent renormalization of the dual
Green’s function in the selected diagrams. (iii) From the dual
self-energy the dual Green’s function G̃kν is obtained via the
Dyson equation and finally the lattice Green’s function Gkν
via the transformation (41). (iv) The hybridization is updated
using either G̃kν or Gkν to fulfill the condition (44) or (45).
This closes the self-consistency cycle.

3. Scaling considerations and convergence

Since DF can be viewed as an expansion around DMFT, it
is further instructive to consider the scaling from the per-
spective of an expansion in 1=d. In large dimensions, the
hopping scales as t ∼Oð1= ffiffiffi

d
p Þ and hence the same holds for

the purely nonlocal G̃ ∼Oð1= ffiffiffi
d

p Þ. The leading second-order,

ladder diagrams [Fig. 14(d)] and parquet scale as Oð1= ffiffiffi
d

p
3Þ

in real space. The diagram Fig. 14(c) and other diagrams with
higher-order vertices are of Oð1=d2Þ.
The DF approach further converges quickly around

both noninteracting and strong-coupling limits. It essentially
inherits this property from DMFT. In the weak-coupling limit
U → 0 the vertex functions are small. In the atomic limit
εk → 0, the dual Green’s function for Δ≡ 0 becomes the
small parameter G̃kν ≈ εkðGloc

ν Þ2. For finite Δ ≠ 0 the leading
eigenvalue of the ladder in dual space is significantly
reduced compared to the one of the physical fermions also
at intermediate coupling, indicating faster convergence
(Hafermann, Li et al., 2009).

4. Generalizations

We have discussed the derivation of the DF approach for
translationally invariant lattices. The method can straightfor-
wardly be generalized to other scenarios. It can be derived in
real space (Takemori, 2016) to address spatially inhomo-
geneous and finite systems, to disordered systems (Sec. IV.D)
and the symmetry broken phase (Rubtsov et al., 2009).
Susceptibilities can be calculated to detect symmetry broken
phases (Brener et al., 2008; Li, Lee, and Monien, 2008). The
formalism can also be straightforwardly generalized to the
multiorbital case and to clusters, where the DF expansion is
performed around a small cluster as the reference system (see
Sec. III.E).

5. DF as a cluster solver

DF can be employed as an approximate solver for large
clusters occurring in the context of cluster extensions of
DMFT (T. Maier et al., 2005). We note that this is

FIG. 15. Flow diagram for DF calculations.
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conceptually different from expanding around a cluster
reference system, which we discuss in Sec. III.E. Here DF
implementations often work with a discretized grid and
Fourier transforms and hence solve large but finite lattices
with periodic boundary conditions. From this perspective, the
DF cluster must be embedded into a mean field for including
the third length scale beyond the extension of the cluster
(Yang et al., 2013). Performing the DCA coarse graining on
the DF lattice significantly enhances the convergence with
system size and facilitates reaching the thermodynamic limit.

a. Superperturbation theory

While DF can be viewed as a diagrammatic extension of
DMFT, the DF idea of performing a diagrammatic expansion
around a reference problem that can be easily solved is more
general. We refer to this kind of perturbation theory around a
nontrivial, for example, interacting, starting point as a
superperturbation.
We have the freedom to expand around a local reference

system (31) with a discrete hybridization Δν → ΔðNÞ
ν ¼P

N
l¼1 jVlj2=ðiν − ϵlÞ and a small number N of bath sites,

which can be solved with ED; see Sec. II.D. For N ¼ 0 we
obtain the strong-coupling expansion of the Hubbard model
(Pairault, Sénéchal, and Tremblay, 1998, 2000). For very
small N ¼ 1, 2 the DF perturbation also accounts for the local
physics not captured in the simple reference system. The
choice of the hybridization parameters is not unique (Jung,
2010). The solution however takes only seconds on a modern
PC and allows for analytical continuation using Padé approx-
imants (see Sec. IV.A).
The approach can also be applied as a solver for the local

impurity problem (31) itself, taking an impurity with hybridi-

zation ΔðNÞ
ν as the reference (Hafermann, Jung et al., 2009).

One can analytically show that a first-order approximation to
the dual self-energy reproduces the strongly hybridized weak-
coupling and the weakly hybridized strong-coupling limits.

For ΔðNÞ
ν ≡ 0 and in the limit of small hybridization Δν, it

reproduces the noninteracting limit and the result of a first-
order expansion of the Green’s function in the hybridization
G12 ≈ g12 þ g12βTr½gΔ� þ χ1234Δ43 (Dai, Haule, and Kotliar,
2005). The one- and two-particle Green’s functions g12 and
χ1234 of the reference system can be expressed in terms of the
ED eigenvalues and matrix elements and can be analytically
continued to the real axis (Jung et al., 2011). The naive
expansion exhibits a causality problem, which can however be
cured (Jung, 2010) by introducing a renormalization param-
eter (Krivenko et al., 2010).
Superperturbation theory can further be formulated on the

Keldysh contour (Jung et al., 2012), allowing for the non-
equilibrium solution of the AIM. Jung et al. (2012) studied
the time evolution after switching on the hybridization of the
AIM. Muñoz, Bolech, and Kirchner (2013) addressed the
nonlinear conductance through a quantum dot. They devel-
oped a first-order DF expansion around the symmetric,
interacting AIM as the reference system in terms of the level
energy Ed of the dot up to order OðV2Þ in the coupling V to
the leads. The reference system was solved within renormal-
ized perturbation theory around the strong-coupling fixed
point. Contrary to perturbation theory in U, which preserves

current conservation only in the particle-hole symmetric AIM,
the DF scheme is current conserving beyond OðV2Þ. Merker
et al. (2013) found good agreement with numerical renorm-
alization group calculations for the linear conductance.

b. Nonlocal expansion scheme

The nonlocal expansion scheme (Li, 2015) is a general
framework to construct approximations for strongly correlated
systems that includes fluctuations at all length scales. Closely
related to the DF approach, the action S [Eq. (30)] of a model
with local interaction is separated into an arbitrary local
reference system Sloc (not necessarily an impurity model)
and a term containing a nonlocal hybridization Vij;ν ≔ ½G−1

ν �ij
(which equals the nonlocal part of the bare propagator):

S½cþ; c� ¼
X
i

Sloc½cþi ; ci� þ
X
i≠j

X
νσ

cþiνσVijνcjνσ : ð46Þ

Instead of introducing dual variables, the nonlocal expansion
scheme is generated by expanding the lattice Green’s function
directly in the nonlocal hybridization:

Gkl;ν ¼ −
1

Z

YN
i¼1

Z
D½cþi ; ci�e−S

loc½cþi ;ci�
X∞
n¼0

ð−1Þn
n!

×

�X
i≠j

X
ν0σ0

cþiν0σ0Vij;ν0cjν0σ0
�
n
ckν0σ0c

þ
lν0σ0 : ð47Þ

The cumulant expansion (Sarker, 1988; Metzner, 1991) is
obtained for Vij ¼ tij. Similar to DF, the path integral over the
fermionic fields weighted with the exponential of the local
action generates the local correlation functions of the local
interacting system. The DF approach can be understood as a
particular diagrammatic resummation scheme in the nonlocal
expansion scheme: If we take the nonlocal hybridization Vij

as the Fourier transform of −ðΔν − εkÞ, the actions (32)
and (46) take the same form. The bare dual propagator
then corresponds to the renormalized hybridization Ṽij ¼
ð½V−1 − Gloc1�−1Þij [note that Li (2015) used couplings
bνσ ¼ 1]. Using the resummation Gkν ¼ Λkν=ð1 − VkνΛkνÞ
where Λkν contains 1PI diagrams in terms of V, one can
show that a DF approximation with given dual self-energy
Σ̃kν is equivalent to the nonlocal expansion scheme with
Λkν ¼ Gloc

ν þ Σ̃kν. The scheme therefore provides further
justification for the choice of diagrams based on physical
considerations.

C. One-particle irreducible approach

In the DF theory the interaction Veff [Eq. (37)] between the
dual electrons is given by the local n-particle vertices F of the
reference system. Except for the two-particle vertex, these
vertices in general contain one-particle reducible contribu-
tions. There are two questions associated with such terms in
the DF approach: (i) Consider the second-order diagram of DF
in Fig. 14(b), which contains only dual, i.e., nonlocal [see
Eq. (39)] propagators G̃. A corresponding diagram where one
of the three lines is the local Green’s function Gloc is shown in
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Fig. 16. This diagram is included in DF at the level of the local
three-particle vertex, which is typically neglected. It is not
obvious why such diagrams should not contribute to the dual
self-energy with the same order of magnitude as second-order
and ladder diagrams. (ii) The inclusion of the local three-
particle vertex within DF leads to seemingly spurious one-
particle reducible contributions to the self-energy as depicted
in Fig. 17. Such contributions are canceled by the trans-
formation Eq. (42) from the dual to the physical fermions
(Katanin, 2013). However, when three-particle local vertices
are neglected, Eq. (41) introduces rather than removes such
spurious contributions in the lattice Green’s functions of the
physical electrons.
The 1PI approach aims at eliminating all terms which stem

from the one-particle reducible vertices in the perturbative
expansion of the self-energy. We can switch from the one-
particle reducible of DF to a 1PI formalism by a Legendre

transformation of the generating functional Wloc [Eqs. (35),
(36)] from the Grassmann field for the dual fermions c̃ðþÞ to
new 1PI fields ϕðþÞ:

Γloc½ϕþ;ϕ� ¼Wloc½c̃þ; c̃�þ
X
iνσ

½c̃þiνσϕiνσþϕþ
iνσ c̃iνσ�;

ϕþ
iνσ ¼

δWloc½c̃þ; c̃�
δc̃iνσ

; ϕiνσ ¼−
δWloc½c̃þ; c̃�

δc̃þiνσ
: ð48Þ

The new functionalΓloc generates the local 1PI vertex functions
of the local problem; see Negele and Orland (1998). From the
very beginning this precludes the appearance of 1PI contribu-
tions in the three-particle and higher-order vertex functions.
Replacing Wloc in the generating functional of the DF
approach, Eq. (35), by Eq. (48) and expanding Γloc up to
fourth order inϕþ

i andϕi one can show (Rohringer et al., 2013;
Rohringer, 2013) that one obtains the action S1PI ¼ S1PI

0 þ
S1PI
I þ S1PI

s of the 1PI approach with

S1PI
0 ½ϕþ;ϕ;ψþ;ψ � ¼ −

X
kσ

fG−1
k ðϕþ

kσϕkσ þ ψþ
kσϕkσ þ ϕþ

kσψkσÞ þ ½G−1
k − ðGloc

ν Þ−1�ψþ
kσψkσg; ð49aÞ

S1PI
I ½ϕþ;ϕ;ψþ;ψ � ¼ 1

4

X
kk0q

X
σσ0

ð2 − δσσ0 ÞFνν0ω
σσ0 ½ϕþ

kσϕðkþqÞσϕþ
ðk0þqÞσ0ϕk0σ0 þ 2ψþ

kσϕðkþqÞσϕþ
ðk0þqÞσ0ϕk0σ0 þ 2ϕþ

kσϕðkþqÞσϕþ
ðk0þqÞσ0ψk0σ0 �

þ
X
i

Tr lnM½ϕþ
i ;ϕi�; ð49bÞ

S1PI
s ½ϕþ;ϕ;ψþ;ψ � ¼ −

X
kσ

½ðϕþ
kσ þ ψþ

kσÞηkσ þ ηþkσðϕkσ þ ψkσÞ�; ð49cÞ

where the four-vector notation has been adopted.
M½ϕþ

i ;ϕi� is the Jacobian of the transformation from the
variables c̃þ, c̃ to ϕþ, ϕ. Additional fields ψþ and ψ have been
introduced in Eqs. (49) that decouple three-particle interaction
terms for ϕþ and ϕ by means of a Hubbard-Stratonovich
transformation. The latter arise from the application of the
Legendre transform (48) to the Gaussian term in the dual
fields in Eq. (34) [for details, see Rohringer et al. (2013) and
Rohringer (2013)]. They describe the one-particle reducible
contributions of the three-particle and higher-order vertices to
the self-energy.
We can understand the ϕðþÞ and ψ ðþÞ as different parts of a

bare 1PI propagator:

G0;k ¼
1

β

� hϕþ
kσϕkσi hϕþ

kσψkσi
hψþ

kσϕkσi hψþ
kσψkσi

�
¼
�
Gloc

k −Gloc
ν Gloc

ν

Gloc
ν −Gloc

ν

�
;

ð50Þ

where Gloc
k is the lattice Green’s function which including the

local self-energy of the reference AIM model; see Eq. (14).
The propagator for the ϕðþÞ fields G̃0;kν ¼ Gloc

kν − Gloc
ν is

purely nonlocal and equals the dual Green’s function. The
propagator for the ψ ðþÞ fields, on the other hand, is given by
the local Green’s function Gloc

ν of the reference system. This
diagrammatic element is absent in DF. The diagrammatic

FIG. 17. Third-order diagram for the dual self-energy including
the local three-particle vertex (red, light gray). In terms of real
electrons this contribution appears to be spurious as it corre-
sponds to a one-particle reducible contribution to the self-energy.

FIG. 16. First-order DF diagram that includes the local three-
particle vertex (red, light gray). We show the particular example
of a three-particle vertex that is one-particle reducible [cutting the
Gloc line separates the red (light gray) part into two pieces]. Such
a vertex is included in DF but not in 1PI which is one-particle
irreducible.
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elements of Eqs. (49) and (50), which define the 1PI
perturbation theory, are illustrated graphically in Fig. 18.
Ladder approximation in the 1PI approach: Similarly to

DΓA and DF, we restrict our considerations to ladder
diagrams for the 1PI action, assuming that they describe
the most important physical processes. If we consider all
possible bubble diagrams constructed from the diagrammatic
elements depicted in Figs. 18(a) and 18(b), but omit con-
tributions that are canceled by counterterms of Fig. 18(c) and
terms that vanish because of the self-consistency condition
(45), the 1PI self-energy is eventually obtained as (Rohringer
et al., 2013; Rohringer, 2013)

Σ1PI;k ¼ Σloc
ν −

X
k0qr

ArΓνν0ω
r ½Gloc

k0 G
loc
k0þqF

ν0νω
lad;r;q

−Gloc
ν0 G

loc
ν0þωF

ν0νω
r �Gloc

kþq

þ 1

2

X
k0qr

ArFνν0ω
r G̃k0G̃k0þqFν0νω

r G̃kþq ð51Þ

with Ac ¼ 1=2, As ¼ 3=2 for r ¼ c, s as in Eq. (43), and
Fνν0ω
lad;r;q is the same BSE ladder vertex as in DΓA [Eq. (21)].

The last line of Eq. (51) subtracts the term counted twice in the
λ ¼ ph and λ ¼ ph ladders. Figure 19 provides an overview
of the diagrammatic differences between the ladder versions
of DF, 1PI, and DΓA, by explicitly comparing the third-order
diagrams in F.
The high-frequency behavior of the 1PI ladder self-energy

Σ1PI;k exhibits the very same violation of the exact 1=iν asymp-
totics as the corresponding ladder DΓA self-energy. The
problem requires the inclusion of the Moriya λ correction,
Eq. (26), as in DΓA. For further details, see Rohringer (2013)
and Rohringer et al. (2013).

D. DMFT plus functional renormalization group

The fRG approach [for a review, see Metzner et al. (2012)]
provides an alternative way for generating nonlocal correla-
tions beyond DMFT—through the fRG flow between the local
problem and the corresponding lattice problem. To generate
such a flow, the DMF2RG approach of Taranto et al. (2014)
considers the decomposition of the lattice action in the form
(32), where the coupling to the local reference problem is
controlled by the flow parameter Λ:

SΛ½cþ;c� ¼
X
i

Sloc½cþi ;ci�þΛ
X
νkσ

ðεk−ΔνÞcþνkσcνkσ: ð52Þ

SΛ interpolates between the local DMFT action Eq. (31) for
Λ ¼ 0 and the full action of the model at hand Eq. (30) for
Λ ¼ 1. The action (52) can be used to construct the flow
equations in the 1PI fRG approach for the Λ-dependent self-
energy ΣΛ;k and the two-particle vertex Fkk0q

Λ . In schematic
form, these flow equations read

dΣΛ

dΛ
¼ FΛ ∘ SΛ; ð53aÞ

dFΛ

dΛ
¼ FΛ ∘ ðSΛ ∘GΛÞ ∘ FΛ; ð53bÞ

where ∘ denotes a summation over intermediate momenta and
frequencies according to the standard diagrammatic rules and

SΛ;k ¼ G2
Λ;kðεk − ΔνÞ ð54Þ

is the so-called single-scale propagator with

GΛ;k ¼ ½iν − Λεk − ð1 − ΛÞΔν − ΣΛ;k�−1 ð55Þ

the flowing Green’s function. As in conventional fRG calcu-
lations, in Eqs. (53a) and (53b) we have truncated the infinite

(a) (b)

(c)

FIG. 19. Third-order diagrams in terms of the local vertex F for
(a) 1PI, (b) DF, and (c) DΓA. The red (light gray) parts mark
contributions that are included on the two-particle vertex level in
1PI and DΓA while in DF they require the inclusion of the one-
particle reducible three-particle vertex; cf. Fig. 17. In DΓA the
leftmost bare vertex U is only partially screened by F̄ (instead of
the full local vertex F) which contains all two-particle reducible
diagrams independent of the incoming fermionic frequency ν
(cf. Sec. II.C and Fig. 7).

(a)

(c)

(b)

FIG. 18. Diagrammatic elements of the 1PI approach: (a) The
bare propagators Eq. (50), (b) the interaction terms which are
given by the local vertex function F, and (c) terms that stem from
the Jacobian M½ϕþ

i ;ϕi�, providing for the cancellation of double-
counted local contributions; for more details see Rohringer
(2013). Solid and dashed lines correspond to ϕ and ψ fields,
respectively.
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hierarchy of fRG equations by neglecting the three-particle
vertices. The initial conditions for the differential equa-
tions (53) are determined through the local reference problem

ΣΛ¼0;k ¼ Σloc
ν and Fkk0q

Λ¼0;r ¼ Fνν0ω
r . By construction, the

DMF2RG method is free from double counting: the local
properties continuously evolve toward the corresponding
lattice counterparts. Note that contrary to the dual fermion
approach the method is formulated in terms of physical, and
not dual fermions, although a similar method can also be
applied in dual space (Katanin, 2015; Wentzell et al., 2015).
Differently from the parquet DΓA, the DMF2RG approach

performs the summation of parquet-type diagrams via the
solution of differential equations. At the same time it is based
on the local 1PI vertexF instead of the more cumbersome (and
potentially diverging) 2PI vertex Λ (not to be confused here
with the flow parameter Λ). The vertex F collects nonlocal
components through the fRG flow. In standard fRG, F grows
fast with increasing interaction strength so that the truncation of
the infinite hierarchy of fRG equations at the two-particle level
is less justified. The hope is that with DMFT presenting a good
correlated starting point, the actual fRG flowneeds to cover less
ground in DMF2RG than in standard fRG.
First DMF2RG calculations for the 2D Hubbard model at

half filling were performed by Taranto et al. (2014). From a
numerical point of view, the bottleneck of the fRG flow in
Eqs. (53) is a memory restriction because the vertex functions
that depend on three momenta and frequencies in different
channels are intertwined. This is similar as for the parquet
equations (8) and (10) and can be mitigated by using vertex
asymptotics (Wentzell et al., 2016).
At the same time, the latest theoretical advance (Kugler and

von Delft, 2018a, 2018b) has shown how it is possible, with a
reasonable numerical effort, to compute all n-loop contribu-
tions in the truncated fRG flow, which corresponds to fully
resumming all diagrams of the parquet approximation. Hence,
exploiting this “multiloop” treatment within the DMF2RG
scheme might provide an elegant way to circumvent the 2PI-
vertex divergences, even for parquet-based algortithms.
Recently, Katanin (2016) proposed to employ the 2PI fRG

approach to consider nonlocal corrections beyond EDMFT
(see Sec. III.G). This generalization is especially useful for the
treatment of nonlocal two-particle interactions in strongly
correlated systems. Using this approach one can consider the
evolution from the EDMFT local problem Eq. (61) to the
lattice problem Eq. (60). The resulting equations are similar,
but not identical to those in the DBγ approach of Stepanov,
van Loon et al. (2016): the 2PI approach includes the effect of
the one-particle reducible six-point and higher-order vertices
in the dual boson approach; cf. the discussion in Sec. III.C.

E. Extending vertex approaches to clusters

In the previous sections, we reviewed extensions of DMFT
that generate nonlocal correlations from a local vertex. All of
these approaches can be generalized quite naturally by taking
the vertex calculated on a small but finite cluster as the starting
point. This has the advantage that certain short-range corre-
lations that are difficult to capture diagrammatically, such as
the formation of a compound singlet by neighboring spins, can

be treated numerically in a more rigorous way. At the same
time, correlations on length scales that exceed numerically
feasible cluster sizes are treated diagrammatically. Using DCA
or cluster DMFT for a small cluster and DΓA, DF, etc., for a
large cluster, also offers the advantage that it is possible to
study the convergence with respect to the size of the small and
large clusters systematically.
Such cluster-based calculations have been pioneered by

Slezak et al. (2009) who proposed a multiscale many-body
approach. Correlations on short length scales are incorporated

by calculating the irreducible vertex Γkk0q
ph;r on a small DCA

cluster corresponding to a coarse k grid within QMC.
Correlations on larger length scales are accounted for by
solving the BSE equation for the approximate full vertex on a
larger cluster, in analogy to the ladder DΓA of Sec. III.A.2.
The self-energy is obtained through the Schwinger-Dyson
equation. Correlations exceeding the larger cluster are
accounted for on a mean field level. As calculating the vertex
on a cluster is a formidable numerical task, Slezak et al.

(2009) approximated Γkk0q
ph;r ≈ Γkk00

ph;r, neglecting the dependence
on the bosonic momentum and frequency. They also consid-
ered a simplifying ansatz for the self-energy and more
approximative solutions for the larger cluster. Further details
of the approach, its validation, and application to the 1D
Hubbard model can be found in Slezak et al. (2009).
In the cluster DF (CDF) approach by Hafermann et al.

(2008) the DF expansion is performed around the CDMFT
solution as the reference system. For the 1D Hubbard model,
the CDF is considerably closer than DF to the benchmark of
the density matrix renormalization group (DMRG)
(Hafermann et al., 2008). A disadvantage is that CDMFT
breaks translational invariance of the lattice. Hafermann
(2010) showed that the dual corrections however tend to
partially restore the translational invariance. Another conse-
quence of broken translational invariance is that the two-
particle vertex is a rank-4 tensor in the spatial indices. An
alternative is to perform a diagrammatic expansion around a
DCA cluster by embedding the latter in a DF lattice. The first
version of such a DFDCA approach was introduced by Yang
et al. (2011), where the vertex function depends on only three
cluster momenta and requires less memory. The DFDCA
results show that the second-order correction beyond a small
2 × 2 cluster significantly reduces the Néel temperature. The
results converge inversely with the linear cluster size Lc in
accordance with DCA convergence to the exact limit Lc → ∞.
Iskakov, Terletska, and Gull (2018) analyzed the approxima-
tions of the DFDCA method and identified DCA interaction
coarse graining as a primary source of error.
While the accuracy of these methods is controlled through

the cluster size, the recent cluster generalization of TRILEX
(Ayral, Vučičević, and Parcollet, 2017) employs a different
control parameter. It is based on the Fierz ambiguity and that,
with increasing cluster size, observables become independent
of the ratio of spin to charge fluctuations.

F. DMFT and nonlocal self-energy

In this section, we review DMFT + nonlocal self-energy
methods which supplement the local DMFT self-energy by
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nonlocal contributions obtained independently using another
method, typically within perturbation theory in the bare
interaction. This implies an explicit separation of the local
and nonlocal parts of the self-energy. These methods were
proposed earlier and are generally simpler than the DMFT
extensions described in the previous sections, which incor-
porate nonlocal correlations, more systematically, on the basis
of a local two-particle vertex.
The idea to augment DMFTwith a nonlocal self-energy was

first introduced for the nonlocal electron interaction in the
context of the GW þ DMFT and EDMFTþ GW approaches
(Sun and Kotliar, 2002; Biermann, Aryasetiawan, and
Georges, 2003). These supplement the local DMFT self-
energy by the screened exchange diagram of GW, which
offers an appealing route to realistic material calculations. We
discuss EDMFTþ GW together with other extensions of
EDMFT in Sec. III.G, and refer the interested reader to
Tomczak et al. (2017) for a tutorial review of GW þ DMFT.
In this context, let us briefly mention the self-energy

embedding theory (SEET) by Kananenka, Gull, and Zgid
(2015). Similar to GW þ DMFT, SEET defines one (or
several) correlated set(s) of orbitals within which the inter-
action is treated more accurately, e.g., in ED, while the
interaction with the rest of the orbitals (and between these
sets of orbitals) is treated in weak-coupling perturbation
theory such as in GW. The main difference is that the
correlated subspace in SEET is adjusted in terms of energy
or the one-particle density matrix, whereas it is defined in
terms of locality in GW þ DMFT; see Zgid and Gull (2017)
for the interrelation.
Let us now return to the DMFT + nonlocal self-energy

approaches. For the Hubbard model, the summation of an
infinite series of diagrams for the nonlocal self-energy was
considered in DMFTþ Σk (Kuchinskii, Nekrasov, and
Sadovskii, 2005, 2006; Sadovskii et al., 2005) and DMFTþ
FLEX (Gukelberger, Huang, and Werner, 2015; Kitatani,
Tsuji, and Aoki, 2015). As with all DMFT + nonlocal self-
energy methods, they are based on the separation

Σkν ¼ Σloc
ν þ Σnloc

kν ; ð56Þ

where Σloc includes contributions exclusively built from local
propagators and Σnloc

kν represents the contribution of nonlocal
correlations; it may or may not have its own local part.
The DMFTþ Σk method [see Kuchinskii, Nekrasov, and

Sadovskii (2012) for a review] considers the interaction of
electrons via bosonic excitations, which originate from the
same fermionic system. DMFTþ Σk performs an approximate
summation of an infinite number of Feynman diagrams
(beyond the ladder approximation), which is based on the
combinatorial rules for some specific form of the bosonic
propagator, relating diagrams of the same order with the
corresponding noncrossing diagrams. In particular, assuming
that in two dimensions the static bosonic propagator in the
magnetic channel has the form of a product of one-dimensional
propagators,

SðQþ qÞ ¼ Δ2
ξ−1

q2x þ ξ−2
ξ−1

q2y þ ξ−2
; ð57Þ

where Q is the order parameter wave vector, Δ characterizes
the strength of the electron-boson interaction, ξ corresponds
to the correlation length, and the relations vxkv

x
kþQ > 0 and

vykv
y
kþQ > 0 for the Fermi velocity components vk ¼ ðvxk; vykÞ

are fulfilled, one can show (Kuchinskii and Sadovskii, 1999;
Schmalian, Pines, and Stojković, 1999) that in the static
approximation for the bosonic propagator all diagrams of
the same order give equal contributions. At ξ → ∞ the problem
can then bemapped to onewith a single Gaussian field,while at
finite ξ recursion relations for the contribution of the diagrams
of different orders can be obtained. In particular, the contri-
bution of the orders ≥n of the perturbation theory to the
nonlocal self-energy are related through (Kuchinskii and
Sadovskii, 1999; Sadovskii et al., 2005)

ΣnlocðnÞ
kν ¼ sn

ν − εðnÞk þ invðnÞk ξ−1 − Σloc
ν − Σnlocðnþ1Þ

kν

; ð58Þ

where sn are the appropriate combinatorial factors, εðnÞk ¼ εk,

vðnÞk ¼ jvxkj þ jvykj for odd n, and εðnÞk ¼ εkþQ, vðnÞk ¼
jvxkþQj þ jvykþQj for even n. The physical nonlocal part of

the self-energy is Σnloc
kν ¼ Σnlocð1Þ

kν , i.e., the final self-energy of
the recursion relation (58). Diagrams of sufficiently high order
n ≫ 1 can be neglected, which provides the initial condition

ΣnlocðNÞ
kν ¼ 0 for Eq. (58). The inequalities vx;yk vx;ykþQ > 0 may

not be fulfilled for realistic dispersions; the corresponding
recursion relations are then only approximate.
Equation (58) represents a rough approximation for the spin

propagator in two dimensions. Indeed, its generalization leads
to a pseudogap as a precursor of antiferromagnetism even in
higher dimensions. For the more physical Ornstein-Zernike
form of the bosonic propagator near a (quantum) phase
transition,

SðQþ qÞ ¼ Δ2

q2 þ ξ−2
; ð59Þ

the recursion relations (58) become approximate for any
electronic dispersion and in principle should be replaced by
the corresponding integral equations (Katanin, 2005). The
DMFTþ Σk method using Eq. (58) was applied to describe
pseudogaps induced by antiferromagnetic correlations in 2D
(Kuchinskii, Nekrasov, and Sadovskii, 2005, 2006; Sadovskii
et al., 2005) and spectra of high-Tc superconductors (Nekrasov
et al., 2008; Nekrasov, Kuchinskii, and Sadovskii, 2011).
Beyond the self-energy, Kuchinskii, Nekrasov, and Sadovskii
(2007) also calculated two-particle properties such as the
optical conductivity in the DMFTþ Σk framework, and non-
local (Debye) phonons were taken into account in Kuchinskii,
Nekrasov, and Sadovskii (2009).
An alternative method to augment DMFT with a nonlocal

self-energy is to sample diagrams of the perturbation series
contributing to Σnloc

k using a bold diagrammatic Monte Carlo
(BDMC) algorithm (Pollet, Prokof’ev, and Svistunov, 2011).
The sampling procedure removes the potential bias incurred
by choosing a certain class of diagrams in the perturbation
theory. In DMFTþ BDMC the diagrams are constructed in
terms of dressed or “bold-line” propagators Gkν and bare
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interaction vertices. Since the propagators contain local self-
energy insertions, only skeleton diagrams are sampled up to a
given order. Double counting is avoided by requiring that at
least two vertices with different site indices and hence at least
one nonlocal propagator are accounted for in Σnloc

k . An
improvement of 104 in efficiency compared to conventional
BDMC has been demonstrated for the Anderson localization
problem in the nonperturbative regime. For the Hubbard
model, however, it has been shown that the bold-line dia-
grammatic series may converge to a wrong answer (Kozik,
Ferrero, and Georges, 2015).
In approaches where the resulting Σnloc

k has a nonzero
local part as in DMFTþ Σk and DMFTþ BDMC, an external
self-consistency is assumed: the local Green’s function calcu-
lated with the self-energy (56) is used to solve Σloc ¼ Σ½Gloc�
typically through the self-consistent solution of an Anderson
impurity model and the process is iterated until convergence is
reached.
In the DMFTþ FLEX method (Gukelberger, Huang, and

Werner, 2015; Kitatani, Tsuji, and Aoki, 2015) the summation
of the standard ladder and bubble diagrams of the FLEX type
is performed to obtain Σnloc

kν ; the local part of these diagrams is
subtracted to avoid double counting. This corresponds to the
lowest-order approximation for the fermionic self-energy
(with respect to fermion-boson coupling) in the DMFTþ
Σk approach, but with the bosonic propagator determined
microscopically as a sum of RPA diagrams. The considered
set of diagrams is similar to the ladder DΓA approach of
Sec. III.A, except that DMFTþ FLEX uses the bare vertex in
these diagrams instead of a local two-particle irreducible
vertex. Let us also note the work by Hague, Jarrell, and
Schulthess (2004), which supplements the DCA on a small
cluster by the FLEX solution on a large cluster.

G. EDMFT ++ theories

Many important effects regarding the physics of correlated
systems are based on nonlocal interactions in solids and
require a consistent description of collective excitations
(plasmons, magnons, orbitons, etc.), which can strongly affect
the original electronic degrees of freedom. The aim of
EDMFT (Sengupta and Georges, 1995; Kajueter, 1996; Si
and Smith, 1996; Smith and Si, 2000; Chitra and Kotliar,
2001; Sun and Kotliar, 2002) is to include such nonlocal
interactions and collective (bosonic) degrees of freedom into
the DMFT framework. The central quantities of interest in
EDMFT are the electronic self-energy and the polarization
operator (bosonic self-energy). The latter includes nonlocal
interaction effects and leads to a bosonic impurity problem
with frequency-dependent interaction. Akin to DMFT, the
fermionic and bosonic self-energies remain purely local. This
is often insufficient for describing fluctuations that are
inherently nonlocal in character; for example, EDMFT fails
to correctly describe plasmons (Hafermann et al., 2014).
Hence, there have been various attempts to include nonlocal
corrections beyond EDMFT. We sum them up under the term
EDMFTþþ theories. The cluster extension of EDMFT is an
example (Pixley, Cai, and Si, 2015). In the following, we
focus on diagrammatic EDMFTþþ methods, which include

the EDMFT + GW approach, the DB approach, and the
TRILEX. Before that, we recapitulate the EDMFT approach.
An extended Hubbard model with a nonlocal interaction

can be obtained from first-principles constrained RPA
(Aryasetiawan et al., 2004), where a frequency-dependent
nonlocal interaction for the correlated subspace arises from
screening by broadbands of conduction electrons. A corre-
sponding effective action takes the form

S ¼ −
X
kνσ

G−1
0;kνc

þ
kνσckνσ þ

1

2

X
qω

Uqωρ
�
qωρqω: ð60Þ

Here G0
kν ¼ ½iνþ μ − εk�−1 is the bare lattice Green’s func-

tion; the interaction Uqω ¼ Uω þ Vqω consists of the on-site
term U and nonlocal long-range Coulomb interaction V.
For simplicity we consider only charge fluctuations given by

the complex bosonic variable ρqω ¼ P
kνσ½cþkνσcðkþqÞðνþωÞσ −

hcþkνσckνσiδω0δq0� in the following.

1. EDMFT approach

In EDMFT the kinetic terms are scaled as 1=
ffiffiffiffi
D

p
as in

DMFT, but the nonlocal interaction also scales as 1=
ffiffiffiffi
D

p
(Smith and Si, 2000) instead of 1=D in DMFT (Müller-
Hartmann, 1989). This way, nonlocal quantum fluctuations
arising from the intersite interaction survive and are treated on
the same footing as the local ones. In particular, the self-
energy remains local since any nonlocal skeleton diagram that
contains a nonlocal interaction also contains a nonlocal
Green’s function and is subleading. As a consequence, the
self-energy, as well as local higher-order correlation functions
of the lattice problem, can be obtained from an effective
impurity problem of the form

Sloc ¼ −
X
νσ

cþνσ½iνþ μ − Δν�cνσ þ
1

2

X
ω

Uωρ
�
ωρω: ð61Þ

While the fermionic hybridization Δν acts as a fermionic bath
describing the dynamics of the local quantum fluctuations, the
intersite interactions induce fluctuations that give rise to a
bosonic local bath that eventually modifies the bare interaction
Uω → Uω. It can be viewed as a dynamical mean field on the
two-particle level. Note that the nonlocal interactions induce a
frequency dependence even when the frequency dependence
of the local and nonlocal interaction in Eq. (60) is neglected.
The impurity model can be solved using suitably general-

ized standard impurity solvers (see Sec. II.D) to treat the
retarded interactions. This allows one to obtain the local
impurity Green’s function Gloc

ν , susceptibility χω, and renor-
malized interaction Wω defined as follows:

Gloc
ν ¼ −hcνcþν iloc; ð62Þ

χω ¼ −hρωρ�ωiloc; Wω ¼ Uω þ Uω χωUω: ð63Þ

The average is taken with respect to the local action (61), and
the functions (62) and (63) are determined self-consistently
in EDMFT. Here Gloc

ν is related to a local self-energy Σloc
ν and

χω to a local polarization operator Πloc
ω ≡ ðχ−1ω þ UωÞ−1,
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respectively.With these local (fermionic and bosonic) EDMFT
self-energies, the lattice Green’s function Gloc

kν [as in Eq. (14)]
and screened interaction Wloc

qω are calculated according to

ðGloc
kνÞ−1 ¼ ðG0;kνÞ−1 − Σloc

ν ; ð64Þ

ðWloc
qωÞ−1 ¼ ðW0;qωÞ−1 − Πloc

ω : ð65Þ

HereW0 denotes the bare interaction, which is equal toUqω or
Vqω in the case of UV or V decoupling, respectively (Ayral,
Werner, and Biermann, 2012; Ayral, Biermann, and Werner,
2013). Finally, the local impurity problem is specified through
the self-consistency conditions

Gloc
ν ¼

X
k

Gloc
kν ; Wω ¼

X
q

Wloc
qω: ð66Þ

EDMFT can be employed to describe the second-order
transition to a charge-ordered insulator driven by the com-
petition between a local and a nearest-neighbor intersite
interaction V (Sun and Kotliar, 2002) and signaled by a
divergence of the susceptibility χqω ¼ 1=ð1=Πloc

ω þΛω−VqωÞ
at q ¼ ðπ; πÞ and ω ¼ 0. Here the difference to the corre-
sponding DMFT phase transition (Wahle et al., 1998) is the
additional local bosonic bath and a modified Πloc

ω .
EDMFT can be shown to be conserving in infinite dimen-

sions to order 1=D. The momentum dependence in the
susceptibility stems from the nonlocal interaction only. To
describe extended collective modes and to obtain a conserving
approximation in finite dimensions that fulfills Ward identities
however requires a momentum-dependent bosonic self-energy
(Hafermann et al., 2014). Diagrammatic extensions of
EDMFT supplement both the fermionic and bosonic self-
energies with a nonlocal part that is obtained within pertur-
bation theory, similarly as in diagrammatic extensions of
DMFT. The separation into local and nonlocal contributions
can be written in the form

Σkν ¼ Σloc
ν þ Σnloc

kν ; Πqω ¼ Πloc
ω þ Πnloc

qω : ð67Þ

The goal of EDMFTþþ theories is to approximate these
nonlocal functions with EDMFT as a starting point.

2. EDMFT + GW approach

In EDMFTþ GW (Sun and Kotliar, 2002; Biermann,
Aryasetiawan, and Georges, 2003; Ayral, Werner, and
Biermann, 2012; Tomczak et al., 2012, 2014; Ayral,
Biermann, and Werner, 2013; Hansmann et al., 2013;
Huang et al., 2014; Boehnke et al., 2016), Σ̃kν and Π̃qω are
given in terms of second-order diagrams (see Fig. 20). In
practice the bare interaction is taken instead of the local vertex.
The self-energy and polarization operator diagrams from the
GW approximation (Hedin, 1965, 1999; Aryasetiawan and
Gunnarsson, 1998) are added to the dynamical mean field
solution treating nonlocal correlations. Double counting of the
local impurity contributions is efficiently avoided by using only
the nonlocal part of these diagrams. Since the local propagators
are equal to those given through the local action (61) by virtue

of the self-consistency conditions (66), it is possible to express
the GW corrections solely in terms of nonlocal propagators.
The nonlocal parts Σnloc

kν and Πnloc
qω of the self-energies are

correspondingly replaced by

ΣGW
kν ¼ −

X
qω

G̃ðk−qÞðν−ωÞW̃qω;

ΠGW
qω ¼ 2

X
kν

G̃ðkþqÞðνþωÞG̃kν:
ð68Þ

Here the factor of 2 in the second line of Eq. (68) accounts for
the spin degeneracy, and the nonlocal propagators are explicitly
given by

G̃kν ¼ Gkν −Gloc
ν ; W̃qω ¼ Wqω −Wω: ð69Þ

In this construction, the local interactionU has already been
accounted for in the impurity problem. The bare nonlocal
interactionW0;qω enters Eq. (69) throughW−1

qω ¼ W−1
0;qω − Πqω.

For instance, it can be taken in the form of V decoupling
(W0;qω ¼ Vqω), which leads to a simple separation of local and
nonlocal contributions to the self-energy Σ̃kν. Unfortunately,
this form of renormalized interaction leads to an overestimation
of nonlocal correlation effects (Ayral, Werner, and Biermann,
2012; Ayral, Biermann, and Werner, 2013). On the other hand,
the UV decoupling (W0;qω ¼ Uω þ Vqω) is more consistent
with standard perturbation theory for the full Coulomb inter-
action, but leads to formal problems with separation of local
and nonlocal parts of the diagrams (Stepanov, Huber et al.,
2016). A simplified treatment of the screening using Thomas-
Fermi theory has been proposed by van Roekeghem et al.
(2014). The form of the renormalized interaction and theway to
avoid the double counting in general remain subject to
discussion (Gukelberger, Huang, and Werner, 2015).

3. Dual boson approach

The DB scheme by Rubtsov, Katsnelson, and Lichtenstein
(2012) aims to treat the action (60) in a similar spirit as the DF
approach. Analogously to the DF fields, dual bosonic fields
and a corresponding bosonic bath are introduced. These fields
decouple nonlocal interaction terms in models with long-
range interactions; the bosonic bath provides an effective
treatment of collective excitations.
In the following presentation of the DB method we exclude,

for simplicity, exchange interactions and local spin degrees of

(a) (b) (c)

FIG. 20. The lowest-order nonlocal self-energy diagrams treated
by the EDMFTþ GW method describing (a) the interaction of
the electron with the bosonic mode (wiggly line), (b) the
interelectron interaction, and (c) the correction to the polarization
operator. A shaded triangle denotes a fermion-boson vertex as
defined in Eq. (76), while the shaded diamond (square) corre-
sponds to an electron-electron vertex [see Eq. (7)]. All vertices are
taken in the local approximation. Adapted from Sun and Kotliar,
2002.
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freedom. They can be included with some care by introducing
vector spin bosons (Ayral and Parcollet, 2015). Moreover, we
consider only the single-band case, but a generalization of the
formalism to several orbitals or bands is straightforward.
First, completely analogous to the representation Eq. (32) of

the lattice action in DF, we rewrite Eq. (60) in terms of a local
reference action Sloc including a retarded interaction
[Eq. (61)] and nonlocal correction terms:

S½cþ; c� ¼
X
i

Sloc½cþi ; ci� þ
X
kνσ

½εk − Δν�cþkνσckνσ

þ 1

2

X
qω

½Uqω − Uω�ρ�qωρqω: ð70Þ

The local bare interaction is given by the sum of the local
part of the possibly frequency-dependent bare interaction
of the lattice model (Uω) and the bosonic bath (Λω),
i.e., Uω ¼ Uω þ Λω.

7

In the next step, we decouple the local and nonlocal
degrees of freedom in S [Eq. (70)] by means of a
fermionic (for

P
kνσ½εk − Δν�cþkνσckνσ) and a bosonic (for

1
2

P
qω½Uqω − Uω�ρ�qωρqω) Hubbard-Stratonovich transforma-

tion. The fermionic one is exactly the same as for the DF theory
in Eq. (34) which introduces the dual fermionic variables c̃þ

and c̃. The decoupling of the bosonic degrees of freedom is
done via the transform

e−ð1=2Þ½Uqω−Uω�ρ�qωρqω

¼ −α2ωð½Uqω − Uω�=2Þ−1

×
Z

D½ρ̃�; ρ̃�eα2ωð½Uqω−Uω�=2Þ−1ρ̃�qωρ̃qωþαω½ρ�ωρ̃ωþρ̃�ωρω�; ð71Þ

where the integration measure D½ρ̃�; ρ̃�≡Dρ̃�Dρ̃=π includes
the normalization factor 1=π, and αω is an arbitrary function of
ω [cf. bνσ in DF in Eq. (34)]. The sign in front of Uω − Uqω

within the integral has to be properly chosen in order to
guarantee the convergence of the integral (Rubtsov,
Katsnelson, and Lichtenstein, 2012). Alternatively one can
employ a decoupling introducing a real field (van Loon,
Lichtenstein et al., 2014).
The DB action can be written in the form

S̃½c̃þ; c̃; ρ̃�; ρ̃� ¼ −
X
kν

G̃−1
0;kνc̃

þ
kνσ c̃kνσ −

1

2

X
qω

W̃−1
0;qωρ̃

�
qωρ̃qω

þ
X
i

Veff ½c̃þi ; c̃i; ρ̃�i ; ρ̃i�; ð72Þ

where, similar to Eq. (69), the bare dual fermion and boson
propagators are given by

G̃0;kν ¼ ½ðGloc
ν Þ−1 þ Δν − εk�−1 − Gloc

ν ¼ Gloc
kν −Gloc

ν ; ð73Þ

W̃0;qω ¼ α−1ω ð½Uqω−Uω�−1−χωÞ−1α−1ω ¼Wloc
qω−W loc

ω : ð74Þ

For convenience, we choose αω ¼ Wω=Uω ¼ 1þ Uωχω as
the local renormalization factor.
The explicit form of the dual interaction Veff is obtained

analogously to DF by expanding the cþ; c-dependent part of
the partition function into a series and integrating out these
degrees of freedom (ρ�, ρ are built from cþ, c). In addition to
purely fermionic vertex functions, the result also contains
fermion-boson vertices. The corresponding lowest-order
terms in Veff are given by

Veff ½c̃þ; c̃; ρ̃�� ¼
X
νν0ω

γνωc̃þνþωc̃νρ̃
�
ω þ γνω�c̃þν c̃νþωρ̃ω

þ 1

4

X
νν0ω

Fνν0ωc̃þν c̃νþωc̃
þ
ν0þωc̃ν: ð75Þ

The spin dependence, which is the same as in Eq. (37), is
suppressed for clarity. The three-point fermion-boson vertex
γνω can be expressed as in TRILEX (Sec. III.G.4) in terms of
the original variables of the impurity reference system as
(Ayral and Parcollet, 2016a; Rohringer and Toschi, 2016)

γνω ¼ G−1
ν G−1

νþωα
−1
ω hcνcþνþωρωi; ð76Þ

and the four-point vertex function Fνν0ω is the same as in the
DF theory [Eq. (37)]. Note that the effective electron-boson
interaction never vanishes even if the local electron-electron
interaction goes to zero (van Loon, Lichtenstein et al., 2014).
The effective fermions always interact with the effective
bosons through a three-leg vertex which is of order unity.
From this viewpoint, DMFT appears to be a more robust
approximation in finite dimensions than EDMFT, which
requires at least additional GW-like diagrams. Even the static
nonlocal Fock term cannot be neglected (Ayral et al., 2017).
Free dual boson propagators correspond to the EDMFT

approximation. Corrections to EDMFT are obtained by con-
structing the dual self-energy Σ̃kν and polarization operator
Π̃qω as well as renormalized dual propagators, i.e., the dual
Green’s function G̃kν ¼ −hc̃kνc̃þkνi and the screened dual
interaction W̃qω ¼ −hρ̃qωρ̃�qωi from these building blocks
diagrammatically (Rubtsov, Katsnelson, and Lichtenstein,
2012; van Loon, Lichtenstein et al., 2014; Stepanov, van
Loon et al., 2016); see Fig. 21. The physical Green’s function
Gkν and the renormalized interaction Wqω of the original
model can be expressed in terms of the dual quantities as
follows:

G−1
kν ¼ ðGloc

kνÞ−1 − Σ̃kνð1þ Gloc
ν Σ̃kνÞ−1; ð77Þ

(a) (b)

FIG. 21. Second-order diagrams contributing to the nonlocal
(a) fermionic and (b) bosonic DB self-energies, i.e., to Σ̃kνσ and
Π̃qω, respectively.

7Considering that the full interaction of the lattice system is given
by Uqω ¼ Uω þ Vqω one has Uω − Uqω ¼ Λω − Vqω, which shows
that the method is independent of the selected decoupling scheme (U
or UV) (van Loon, Lichtenstein et al., 2014).
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W−1
qω ¼ ðWloc

qωÞ−1 − Π̃qωð1þW loc
ω Π̃qωÞ−1: ð78Þ

The fermionic and bosonic baths can be taken from a
converged EDMFT calculation (which is numerically less
costly) or can be determined self-consistently within DB
theory. The latter is possible via the EDMFT self-consistency
conditions (66) but also other conditions are discussed
(Stepanov, van Loon et al., 2016). The dual polarization
operator Π̃qω can be chosen as the sum of ladder diagrams
(Hafermann et al., 2014; van Loon, Hafermann et al., 2014;
van Loon, Lichtenstein et al., 2014; Stepanov, van Loon et al.,
2016):

Π̃qω ¼
X
νν0

γðνþωÞ−ωχ̃νωq ½I þ Fνν0ωχ̃ν
0ω
q �−1νν0γν

0ω; ð79Þ

where χ̃νωq ¼ P
kG̃kðνÞG̃kþqðνþ ωÞ.

Using ladder diagrams within the DB approach (Hafermann
et al., 2014; van Loon, Hafermann et al., 2014; van Loon,
Lichtenstein et al., 2014), one obtains the following physical
(lattice) susceptibility for the extended Hubbard model [see
Stepanov, van Loon et al. (2016) who used X instead of χ]:

χqω ¼ 1

1=Πð1Þ
qω þ Λω − Vqω

; ð80Þ

where Πð1Þ
qω ¼ χω þ χωΠ̃qω χω. This physical susceptibility

fulfills the important property of charge conservation
limq→0 χqω≠0 ¼ 0; see Hafermann et al. (2014) and
Stepanov, van Loon et al. (2016).
Equation (80) also allows us to make a close connection

to the Moriya λ correction in ladder DΓA (Sec. III.A.2).
When the interaction is local and nonlocal effects from the
self-energy on the internal fermionic lines are neglected,

Hafermann et al. (2014) showed that Πð1Þ
qω is equivalent to

the DMFT susceptibility. Hence with Vqω ¼ 0, the ladder DB
susceptibility (80) equals that of ladder DΓA if the DΓA
Moriya λ correction is taken as frequency dependent and equal
to the DB Λω.
Also note that the Λω in the susceptibility (80) allows us to

restore a property that is broken in DMFT (with Λω ¼ 0),
namely, that the double occupation calculated from the
susceptibility of the impurity problem equals that calculated
from the susceptibility of the lattice problem. The DB double
occupancy is closer to DCA benchmarks than either DMFT
result (van Loon, Krien et al., 2016). The momentum
dependence of the polarization operator introduced in DB
is important for a thermodynamically consistent treatment of
the charge response (van Loon et al., 2015). More applications
of the dual boson approach are discussed in Sec. IV.E.

4. TRILEX approach

The physical motivation for the triply irreducible local
expansion scheme by Ayral and Parcollet (2015, 2016a) is to
include both Mott and spin-fluctuation physics (long-range
bosonic modes), which are thought to be essential ingredients
to describe high-temperature superconductivity (Dagotto,

1994). It is based on a similar functional construction as
QUADRILEX (Sec. III.A.4), but now based on the functional
K3, which contains all three- and two-particle irreducible
diagrams (De Dominicis and Martin, 1964a), corresponding to
three Green’s function legs. The TRILEX approximation
restricts these diagrams to the local ones, i.e., approximates
K3 by its local counterpart (Ayral and Parcollet, 2016a)

K3½Gkν;Wqω; χνωkq� ≈K3½Gν; Wω; χνω�: ð81Þ

In addition to G and W, K3 is also a functional of the three-
point electron-boson correlation function χ, which should not
be confused with the local susceptibility. As in EDMFT, the
functional (81) can be obtained from a self-consistently
determined quantum impurity model which now includes a
dynamical electron-boson coupling λνω related to χ.
In the general framework, the fermionic and bosonic self-

energies are given by the Hedin (1965) equations

ð82Þ

where γνωkq is the exact three-point lattice vertex. Ayral and
Parcollet (2015) approximated this quantity by its local
counterpart

γνωkq ≈ γνω: ð83Þ

This vertex is computationally easier to handle than most
diagrammatic extensions discussed in this review, because γνω

depends on only two instead of three independent frequencies.
TRILEX bears some similarity to EDMFTþ GW, but the
nonlocal GW diagrams are now additionally dressed by γνω.
Application of the formalism to a purely fermionic model

such as the Hubbard model requires the introduction of
bosonic fields. To this end, the Coulomb interaction is
(arbitrarily) decomposed into one or more channels (charge
and spin in x, y, and z directions). By construction, the method
interpolates, for the charge channel, between the GW approxi-
mation at weak coupling and the atomic limit at strong
coupling. It yields Fermi arcs, spin fluctuations, and a
reduction of the mean field critical temperature (to what
extent depends on the chosen decoupling), but yields a slightly
larger critical U for the Mott transition than DMFT (Ayral and
Parcollet, 2016a).
One may speculate that TRILEX underestimates spatial

correlations because a local approximation to the three-leg
vertex is more restrictive. Indeed, DΓA has been formulated
also in the form of a three-leg vertex similar to Eq. (82); see
Katanin, Toschi, and Held (2009). But in DΓA γνωkq is obtained
from the BSE ladder [Eq. (21)] constructed from the local
two-particle (four-leg) vertex Γνν0ω

ph;r and is q dependent (non-
local). The same holds for DB.
There are also apparent similarities between the TRILEX

and DB approaches. Both introduce bosonic modes. But while
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in TRILEX the local three-leg vertex of the impurity model
enters the calculation and the two-particle polarization is
included through Eq. (82), in DB the local four-leg suscep-
tibility directly enters the calculation. One can reshuffle the
DB diagrams into a form with a three-leg vertex as in Eq. (82).
This DB three-leg vertex then includes the nonlocal W̃ and G̃
of DB and is again nonlocal.

H. Conservation laws and two-particle self-consistency

Within an ideally exact treatment of a correlated many-body
problem, rigorous equations relate the one- and two-particle
Green’s functions in specific ways. Some of these relations are
considered to be of particular importance, because they reflect
fundamental aspects of the underlying physics, as the con-
servation laws and the Pauli principle. For instance, in an exact
theory, the one- and two-particle Green’s functions must fulfill
all the continuity equations for the conserved quantities of the
theory (particle number, energy, etc.), as well as all the
crossing symmetries related to the Pauli principle. This
implies, in turn, the fulfillment of famous sum rules, such
as the f-sum rule for the optical conductivity (an example for
the first case) and the relation between the local and
instantaneous charge and spin susceptibilities and the elec-
tronic densities or the double occupancies [for an example of
the second case, see, e.g., Eq. (24)].
For approximate theories, such as the diagrammatic exten-

sions of DMFT, at least some of these exact relations are
violated. In fact, when considering a given many-body
approximation, it is always important to understand which
conservation laws and sum rules are preserved and which are
not. Usually, and consistent with these considerations, we
distinguish between two different classes of approaches: (i) the
ones which satisfy (all) conservation laws [and the related sum
rules (BaymandKadanoff, 1961)] and (ii) the oneswhich fulfill
sum rules for one- and two-particle Green’s functions based on
the Pauli principle (Vilk and Tremblay, 1997).
The former class of approximations, defined as “conserving,”

can be derived from the Luttinger-Ward functional expressed in
terms of the one-particle Green’s function Φ½G� by taking the
first and second functional derivatives with respect to G to
define the 1PI self-energy and 2PI vertex functions, respec-
tively. This procedure, referred to as Φ derivability (of a given
approach), guarantees that all conserved quantities at the
microscopic level (e.g., at each scattering event in the dia-
grammatic theory) are translated into corresponding continuity
equations and sum rules at the macroscopic level.
The latter class of sum rules, instead, is typically satisfied in

parquet-based (Bickers, 2004) approaches or explicit two-
particle self-consistent schemes (Vilk, Chen, and Tremblay,
1994). It has been conjectured (Janiš, 1999b; Bickers, 2004)
that no theoretical approach for correlated electrons should be
able to fulfill both requirements, except for the exact solution.
For instance, it has been stated (Smith, 1992; Janiš, 1999b)
that any parquet-based approximation, which in general
preserves the Pauli principle, is never conserving, unless
the exact fully irreducible vertex Λ is used as an input (which
generates the exact solution). Moreover, it has been demon-
strated that the set of diagrams fulfilling Ward identities differs
in finite orders from the set needed to preserve analytic

properties (causality) of the self-energy (Janiš and Kolorenč,
2004). Janiš (1998) and Janiš and Kolorenč (2016) suggested
ways to overcome such difficulties.
Whether conservation laws or the two-particle self-consis-

tent relations compatible with the Pauli principle are more
important for an approximate theoretical treatment cannot be
answered in general as it depends on the specific application
for which the approach is adopted: For the calculation of
transport properties or the description of plasmons the exact
fulfillment of (charge) conservation laws is expected to be
crucial, while for the analysis of (second-order) phase tran-
sitions and critical phenomena the two-particle self-consistent
relations, as those of the parquet equations, might be more
important.
As prototypical example, let us consider the RPA calcu-

lation of the susceptibilities. If this calculation is performed
together with a Hartree self-energy, the approximation is
conserving. Hence, charge conservation (as well as the gauge
invariance) of the results is guaranteed. At the same time, RPA
violates per construction the crossing symmetries related to
the Pauli principle and, in fact, it provides a rather poor (i.e.,
mean field) description of the transition temperatures and
critical properties.
Let us turn now to the specific case of the diagrammatic

extensions of DMFT. To this aim, it is convenient to start by
recapitulating the situation for DMFT. DMFT can be derived
from a Luttinger-Ward functional expressed in terms of a
purely local one-particle Green’s function Φ½Gloc� (Janiš and
Vollhardt, 1992b). Therefore, DMFT is a conserving
approach, and all quantities conserved at the microscopical
level are translated, thanks to its Φ derivability (Baym and
Kadanoff, 1961), into the corresponding continuity equations,
e.g., for the particle number and the energy8 and the related
sum rules (such as the f-sum rule), although care has to be
taken when deriving two- and more-particle Green’s functions
from Φ½G� in infinite dimensions (Janiš, 1999a). On the other
hand, whenever DMFT is used as an approximation for
treating finite dimensional systems it breaks several two-
particle self-consistent relations, including the ones preserving
the Pauli principle: This leads, for example, to a violation of
the χ-sum rule Eq. (24) and to intrinsic inconsistencies in the
calculation of the potential energy (Rohringer and Toschi,
2016; van Loon, Krien et al., 2016) depending on whether it is
computed directly from the two-particle Green’s function or
from one-particle quantities only via the Galitskii-Migdal
formula [see, e.g., Fig. 2 in van Loon, Krien et al. (2016)]. An
attempt to make DMFT two-particle self-consistent by adding
a dynamic interaction in the impurity model leads to incon-
sistencies at the one-particle level and violation of conserva-
tion laws (Krien et al., 2017).
The DΓA as well as the DF (in their parquet implementa-

tion) is based on the solution of the parquet equations and,

8Note that this is not the case for the momentum. In fact, because
of the purely local nature of the DMFT diagrammatics no momentum
conservation holds at the “microscopic” level (i.e., for each scattering
process in the diagrammatics). Hence, the Φ derivability of DMFT
does not guarantee the fulfillment of a continuity equation for the
momentum (Hettler et al., 2000).
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hence, two-particle self-consistent. Per construction they
preserve all the crossing relations. Consistent with the con-
jecture of Smith (1992) both are however per se not con-
serving. Cutting Green’s function lines of the DΓA or DF self-
energy (in the spirit of a Φ½G�-derivable theory) also implies
cutting internal Green’s function lines of the local, fully
irreducible vertex; but such cuts include diagrams that are
not taken into account in the susceptibilities. Similarly, the
QUADRILEX functional extension of DΓA cannot be written
in terms of the (local) one-particle Green’s function only, but it
explicitly includes the (local) two-particle Green’s function
and is not Φ derivable. It remains to be seen whether some
modifications as along the lines of Janiš, Kauch, and Pokorný
(2017) can actually lead to a conservering approximation.
For the DB approach and similarly for the λ correction of

the ladder DΓA additional equations arise which can be used
to fulfill conservation laws. While EDMFT is conserving in
infinite dimensions (Smith and Si, 2000), it violates local
conservation and breaks Ward identities in finite dimensions.
This is a consequence of the fact that the polarization operator
does not depend on momentum. In contrast, within the DB
approach it is possible to include diagrammatic corrections
that exactly restore the q2 behavior of the polarization for
small momenta as required by gauge invariance [while
maintaining a local self-energy (Hafermann et al., 2014)];
cf. Sec. IV.E. On the other hand, λ corrections of the ladder
DΓA (Katanin, Toschi, and Held, 2009) have been employed
to enforce the χ sum rule Eq. (24) and to guarantee the
consistency of the potential energy at the one- and two-particle
levels as well as the fulfillment of the f-sum rule (related to
charge conservation) (Rohringer and Toschi, 2016).

IV. APPLICATIONS AND RESULTS

A. Hubbard model

The Hubbard model is arguably the most fundamental
model for strongly correlated electrons. Let us recall its
Hamiltonian, Eq. (12):

H ¼
X
ij;σ

tijc
†
iσcjσ þ U

X
i

ni↑ni↓; ð84Þ

with hopping amplitude tij and local Coulomb repulsionU. The
model provides the basic physical description of the Mott-
Hubbard metal-insulator transitions (MIT) in bulk 3D systems
(Gebhard, 1997; Imada, Fujimori, and Tokura, 1998) as well as
of ferromagnetism (Mielke and Tasaki, 1993; Vollhardt et al.,
1998) and antiferromagnetism (Jarrell, 1992). In 2D, the
Hubbard model (84) is believed to capture the low-energy
physics of the superconducting cuprates (Dagotto, 1994;
Scalapino, 2012). Therefore the cases of 3D and 2D are of
particular interest. Despite its formal simplicity, an exact
solution is known only in 1D through the Bethe ansatz (Lieb
and Wu, 1968) and through DMFT in the limit of infinite
dimensions (Metzner andVollhardt, 1989;Georges et al., 1996).
In this section, we summarized the unified picture of the

Hubbard model physics in finite dimensions as it emerges
from the applications of diagrammatic extensions of DMFT;
we compared the results to those of other methods, wherever

available. Given that the starting point of diagrammatic
extensions is a DMFT solution, we first consider in the
following 3D system, which can be regarded as “closer” to the
physics of d ¼ ∞. We then subsequently lower the dimension
so that deviations from DMFT become progressively larger.

1. Three dimensions

The magnetic phase diagram of the unfrustrated 3D
Hubbard model at half filling, obtained by several approaches,
is shown in Fig. 22. At high T, the model shows a crossover
from a paramagnetic metal (PM) at weak coupling to a
paramagnetic insulator (PI) at strong coupling. As the temper-
ature is lowered, the model undergoes a second-order tran-
sition to an AF state; see Georges et al. (1996) and Kent et al.
(2005) for the DMFT phase diagram. Nonlocal corrections
beyond DMFT have been analyzed using DΓA (Rohringer
et al., 2011) and DF (Hirschmeier et al., 2015) in the ladder
approximation. The two approaches yield a rather coherent
picture of the underlying physics, for both the magnetic
transition and its critical properties.
In particular, DΓA and DF correctly predict a sizable

reduction of the Néel temperature TN w.r.t. DMFT in
Fig. 22, which is a direct consequence of nonlocal spin
fluctuations. The ratio of the reduction is, as expected, smaller
at weak coupling (Schauerte and van Dongen, 2002), and
larger (more than 30%) at intermediate to strong coupling.
Notably, TN from DΓA correctly approaches the behavior of
the Heisenberg model (Sandvik, 1998a) in the strong-coupling
limit. This is a significant improvement over DMFT which
approaches the Weiss mean field theory of the Heisenberg
model (Takahashi, 1977) in this limit. It also improves over
the two-particle self-consistent theory (TPSC) (Vilk and
Tremblay, 1997) which reaches a plateau for TN at large
U. Moreover, in the most interesting regime of intermediate
coupling 8t ≲U ≲ 12t, both methods agree remarkably well
with the DCA results by Kent et al. (2005) and diagrammatic
determinant Monte Carlo (DDMC) by Kozik et al. (2013), in
spite of the intrinsic differences between these methods.
Minor quantitative deviations between DF and DΓA are
observed only in the weak- and strong-coupling limits. At

FIG. 22. Phase diagram of the half-filled Hubbard model in 3D
with nearest-neighbor hopping (tij ¼ −t), as obtained by various
methods; see the text.
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weak coupling, DΓA has a smaller TN than DF, DCA (Kent
et al., 2005), TPSC (Daré and Albinet, 2000), and perturbation
theory (Schauerte and van Dongen, 2002). On the other hand,
it yields a result that is closer to the latest DDMC by Kozik
et al. (2013) which prevents a final judgment regarding the
accuracy of the different approximations in this parameter
regime. In the opposite limit, DF overestimates TN
(Hirschmeier et al., 2015). We suspect that this result is
not intrinsic to the method, but due either to the hybridization
not being computed self-consistently or because the vertex
function was computed at a single bosonic frequency. The
latter approximation is sufficient to investigate critical behav-
ior, but it can affect nonuniversal quantities such as TN .
Diagrammatic extensions of DMFT have also been used to

study the critical behavior of the 3DHubbardmodel (Rohringer
et al., 2011; Hirschmeier et al., 2015). Results for the critical
exponents γ and ν governing the T dependence of the diverging
susceptibility (χAF) and correlation length (ξ), respectively, are
shown in Fig. 23. They differ significantly from the mean field
exponents obtainedwithin theDMFTdescription.Whether this
is due to the dynamic (frequency-dependent) nature of the
vertex functions or due to the type of self-consistency (λ cor-
rections in DΓA); the inner or outer self-consistency in DF is
still a subject of investigation. In fact, a deviation from mean
field exponents can also be observed in TPSC (Daré and
Albinet, 2000). The latter is based on the bareU and originates
from enforcing two-particle self-consistency conditions.
Within the present numerical precision, the DF and DΓA

critical exponents appear to be compatible with the univer-
sality class of the 3D Heisenberg model (Holm and Janke,
1993) and with the scaling relation γ=ν ¼ 2 − η (the exponent
η is small and could not yet be precisely extracted). This
would be the expected result, as the Hubbard model maps onto
the Heisenberg model in the strong-coupling regime, and the
dimension and symmetry of the AF order parameter suggest

the same universality class. At the same time, the current
numerical uncertainty is already about 10% for a single-
exponent fitting function [e.g., χ−1AFðTÞ ¼ aðT − TNÞγ].
Allowing subleading order terms (Sémon and Tremblay,
2012) in the fitting function further increases the uncertainty:
In this framework, the fitted exponents might also become
compatible with the ratio of integers as in the case of TPSC
(Daré and Albinet, 2000).
The effects of antiferromagnetic fluctuations also show up in

other quantities such as spectral functions (Katanin, Toschi,
and Held, 2009; Fuchs et al., 2011; Rohringer et al., 2011;
Rohringer and Toschi, 2016) as well as in thermodynamic
(Rohringer and Toschi, 2016) and transport properties (Gull,
Staar et al., 2011). This can be seen in the T dependence of the
electronic scattering rate, defined as γk ¼ −ImΣðk;ω ¼ 0Þ.
Figure 24 shows results for γk in DMFT and DΓA (Rohringer
and Toschi, 2016) for an intermediate U value. In DMFT the
scattering rate decreases monotonously with decreasing T, as
expected for a Fermi liquid. Instead the DΓA results show a
nonmonotonous behavior of γk with a minimum of the
scattering rate at intermediate T. That is, as the phase transition
is approached, γk increases due to the enhanced scattering
at nonlocal spin fluctuations. An analogous behavior is
predicted at weak coupling by TPSC (Vilk and Tremblay,
1997) with the significant difference that γk diverges (loga-
rithmically) at TN while in DΓA such a singularity is cut off by
the local quasiparticle scattering rate of DMFT (Rohringer and
Toschi, 2016). This demonstrates that the inclusion of DMFT
physics qualitatively modifies the results obtained by pertur-
bative approaches even at weak coupling.
Motivated by the ability to describe the nontrivial physics of

the finite-T magnetic transition in the particle-hole symmetric
case, first calculations away from half filling have been recently
performed in 3D within DΓA by Schäfer et al. (2017). Beyond
the extension of the magnetic phase diagram in 3D, the main
interest here lies in the occurrence of a quantum critical point
(QCP); see Fig. 25. By progressively decreasing the electronic
density n at a fixed U ≃ 10t, one finds that (i) TN is
progressively reduced, (ii) the AF pattern becomes incom-
mensurate with an ordering vector Q ¼ ðπ; π; π −QzÞ, and
(iii) aQCP eventually emerges at about 20%of the hole doping.
The DΓA and analytical calculations in Schäfer et al. (2017)
further show how the corresponding quantum critical

FIG. 23. Left panels: DΓA inverse AF susceptibility χ−1AF (top)
and inverse correlation length ξ−1 (bottom) for the 3D Hubbard
model at half filling and U ≈ 12.2t. The corresponding critical
exponents γ and ν are obtained by the fit shown. Adapted from
Rohringer et al., 2011. Right panel: Critical exponents γ and ν vs
U from DF compared to the DΓA result from the left panels (and
a second fit to estimate the error). DF results for the Falicov-
Kimball model and the mean field critical exponents are shown
for comparison. Adapted from Hirschmeier et al., 2015.

FIG. 24. Scattering rates γk at the nodal kN ¼ ðπ=2; π=2; π=2Þ
and antinodal kA ¼ ð0; π=2; πÞ points in the 3D Hubbard model
as obtained by DΓA. Adapted from Rohringer and Toschi, 2016.
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properties are driven by Fermi-surface features (specifically by
lines of Kohn points in the present case). These properties yield
quite different exponents and scaling relations (ν ¼ 1, γ ¼ 0.5
as in an analytical RPA calculation) compared to those
predicted by conventional Hertz-Millis-Moriya theory (where
ν ¼ 0.75, γ ¼ 1.5) (Löhneysen et al., 2007).
A quantum phase transition between a paramagnetic semi-

metal and an antiferromagnetic insulator has also been ana-
lyzed most recently for the honeycomb lattice by Hirschmeier,
Hafermann, and Lichtenstein (2018). Their crossover line
between the non-Fermi-liquid regime and the renormalized
classical regime agrees with a variety of other numerical
methods.

2. Two dimensions: Square lattice at half filling

The two-dimensional case poses a stringent test on dia-
grammatic extensions of DMFT for two reasons: As a
consequence of the theorem by Mermin and Wagner
(1966), continuous symmetries cannot be spontaneously
broken in 2D at a finite temperature in systems with short-
range interaction. This means that (i) diagrammatic extensions
have to account for fluctuations at all length scales, because
they are essential for the proof of the theorem, and (ii) the
physics of the DMFT starting point is qualitatively incorrect
because it predicts a finite temperature mean field transition to
the AF-ordered state.
Cluster calculations struggle to account for long-range

fluctuations and are hampered by the sign problem away
from half filling. Diagrammatic extensions therefore provide a
valuable complementary viewpoint and fulfill the Mermin-
Wagner theorem (Katanin, Toschi, and Held, 2009). These
methods have mainly been applied to the square and frustrated
triangular lattices. Because these two lattices give rise to rather
different physics, we review them separately.

a. Metal-insulator transition or crossover

The occurrence of a MIT in the phase diagram of the 2D
Hubbard model, together with its physical interpretation, has

been intensely debated in the literature since the 1970s
(Castellani et al., 1979; Montorsi, 1992; Vekić and White,
1993; Boies, Bourbonnais, and Tremblay, 1995); Vilk and
Tremblay, 1996, 1997; Anderson, 1997; Mancini, 2000;
Moukouri et al., 2000; Avella, Mancini, and Münzner, 2001).
There is a general consensus about the AF ordering of the
ground state, which smoothly evolves from a nesting-
driven (Slater) to a superexchange-driven (Heisenberg)
AF insulator with increasing U. In the Heisenberg limit,
we have effective spin degrees of freedom coupled by the
exchange interaction J ¼ 4t2=U governing the low-energy
physics. In the view of Anderson (1997), the 2D Hubbard
physics would be similar to 1D and, thus, intrinsically
nonperturbative, with a gap present for all U > 0. In this
heuristic picture, which is in contrast with more rigorous
studies of the 1D → 2D crossover (Castellani, Di Castro,
and Metzner, 1992; Boies, Bourbonnais, and Tremblay,
1995), localized moments would form at sufficiently low
temperatures, open a spectral gap, and finally order
at T ¼ 0.
We discuss the phase diagram shown in Fig. 26 in view of

this background, starting from the purely local description of
DMFT, and adding the effect of nonlocal correlations over
progressively larger length scales. In DMFT, by enforcing the
PM solution, one finds the well-known first-order Mott MIT
[with associated coexistence region, see Georges et al.
(1996)], ending with a second-order critical end point at
Uc ≃ 10t (Blümer, 2002; Park, Haule, and Kotliar, 2008).
The low-T Mott PI is characterized by independent spin-1=2
magnetic moments with a high residual entropy of ln 2 per
site. As a result the transition line in Fig. 26 has a negative
slope.
When short-range (AF) correlations between the

moments are included, as in CDMFT (Park, Haule, and

FIG. 25. Magnetic phase diagram of the 3D Hubbard model as a
function of filling n and T at fixed U ¼ 9.78t. DΓA shows a
transition from commensurate (open squares, AF) to incommen-
surate ordering (filled square, SDW) as well as the emergence of a
quantum critical point at n ∼ 0.8. Inset: Degree of incommen-
surability vs n. Adapted from Schäfer et al., 2017.

FIG. 26. Phase diagram of the square lattice 2D Hubbard model
at half filling as obtained by various methods; see the text. The
two lines of DMFT, CDMFT, and DFð2Þ represent the border of
the corresponding coexistence regions (first-order transition),
whereas there is a smooth crossover in TPSC and DΓA (with
a pseudogap region shaded in red/light gray). The DMFT Néel
temperature is also given for reference (blue/dashed line). Inset
(from LeBlanc et al., 2015): Comparison of the self-energy at the
antinodal point for U=t ¼ 8 and T=t ¼ 0.5.
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Kotliar, 2008),9 variational cluster approximation (VCA)
(Schäfer et al., 2015), or second-order DF (DFð2Þ)
(Hafermann, 2010), several changes are observed in
Fig. 26: (i) Uc is considerably reduced, (ii) the width of
the coexistence region shrinks, and (iii) the entropy of the PI
phase is strongly reduced, so that the slope of the transition
line is reversed. The position, as well as the physical nature of
the MIT, changes further by including AF correlations of
progressively larger spatial extension. When even long-range
AF fluctuations are included, as in ladder DΓA, extrapolated
lattice QMC (Schäfer et al., 2015), ladder DF (van Loon,
Hafermann, and Katsnelson, 2018), TPSC (Vilk and
Tremblay, 1996, 1997), and the nonlinear sigma model
approach by Borejsza and Dupuis (2003, 2004), the MIT is
eventually transformed into a crossover located at a very small
U value, compatible10 with Uc → 0 for T → 0 (red colored,
light gray region in Fig. 26). As illustrated by the results
presented next, the physical origin of the low-T insulating
behavior in the 2D system is completely different from the one
behind the Mott insulating phase described by DMFT.

b. Physical observables and interpretation

While at high T and large U the results for the one-particle
self-energy (and spectral function) of DΓA and DF are very
similar to those of cluster methods (DCA) (see the inset of
Fig. 26) (LeBlanc et al., 2015), a more detailed discussion is
necessary at low temperatures. In particular, we start by noting
that in second-order DFð2Þ the diagrammatic contributions
decay rapidly in real space. Figure 27 shows the second-order

DFð2Þ results for the spectral function which demonstrates how
short-range correlations affect this quantity compared to
DMFT: At relatively large U values, just above the Mott
transition point, broad spectral structures appear in the vicinity
of the Γ point. Brener et al. (2008) attributed these “shadow
bands” [akin to the (red and blue) dispersion in Fig. 27] to
short-ranged dynamical AF correlations.
In the weak-coupling regime, complementary ladder DF

and DΓA results allow us to draw a clear-cut picture. First we
observe that the T dependence of the uniform magnetic
susceptibility computed in ladder DF in Fig. 28(a) displays
a downturn in the vicinity of TDMFT

N (LeBlanc et al., 2017; van
Loon, Hafermann, and Katsnelson, 2018). This temperature
approximately marks the onset of the PI phase, below which
AF fluctuations become particularly strong and a pseudogap
develops (Rost et al., 2012), as can also be seen in Fig. 28(b).
The downturn is absent in DMFT and DCA (LeBlanc et al.,
2017) but well matches lattice QMC results (Moreo, 1993),
which shows that extended AF fluctuations govern the physics
in this regime and reduce the FM susceptibility. As is evident
from Fig. 28(b), only high-order diagrams (n ≫ 2) in the
ladder expansion can describe such long-range fluctuations.
By contrast, the second-order calculation does not include
long-range correlations: there is no pseudogap in DFð2Þ, there
are only very weak finite-size effects in the susceptibility in

FIG. 27. Spectral function Aðk;ωÞ in DFð2Þ (left) and DMFT
(right) at T ¼ 0.22 for U ¼ 7 and U ¼ 10, respectively. The
frequency has been rescaled by the respective critical Uc, which
is finiteUc ¼ 6.64t for DFð2Þ andUc ¼ 9.35t for DMFT. Colored
lines show the bare dispersion εk (red/light gray) and εkþQ ¼
−εk (blue, dark gray) with Q ¼ ðπ; πÞ, which corresponds to a
folding of the band at the effective magnetic zone boundary. The
structures marked by arrows arise from dynamical short-range
antiferromagnetic correlations captured in DFð2Þ. From Brener
et al., 2008.

(a) (b)

(c) (d)

FIG. 28. (a) T dependence of the ferromagnetic susceptibility
for U ¼ 4t in DMFT, lattice QMC (Moreo, 1993) for an 8 × 8
lattice, and ladder DF for an 8 × 8 and 64 × 64 lattices. (b) Ladder
DF local spectrum AðωÞ at T=t ¼ 0.2 including ladder diagrams
up to order nþ 2 in the vertex F (n ¼ 0 corresponds to DFð2Þ)
(Hafermann, 2010). (c), (d) Real-space spin susceptibility χs
computed in ladder DΓA for U ¼ 2t in the PM (T ¼ 0.1t) (c) and
in the PI phase (T ¼ 0.04t) (d). (e), (f) Kinetic energy of the 2d
Hubbard model at (e) U ¼ 3t and (f) U=t ¼ 8 (Rohringer and
Toschi, 2016).

9CDMFT (Fratino et al., 2017) and DCA calculations (Moukouri
and Jarrell, 2001; Werner, 2013; Merino and Gunnarsson, 2014) not
shown in Fig. 26 also indicate a reduction of Uc with increasing
cluster size.

10The numerical determination of the crossover to a PI behavior is
particularly challenging in the U=t → 0 limit due to the increasing
length scales; for a specific discussion, see van Loon, Hafermann,
and Katsnelson (2018). In this respect the DΓA estimate at the lowest
U ¼ t (empty symbol) should be regarded, most likely, as an upper
bound limit for the crossover position.
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DFð2Þ (Brener et al., 2008; Li, Lee, andMonien, 2008), andUc
of the MIT is finite. The importance of long-range AF
fluctuations also in the intermediate coupling regime is
confirmed by extracting the magnon dispersion from ladder
DF, which matches available inelastic neutron scattering data
for La2CuO4 (LeBlanc et al., 2017).
The DΓA results for the spin susceptibility in real space

confirm this picture [see Figs. 28(c) and 28(d)]: In the weak-
coupling regime they show the typical AF oscillation pattern.
At high temperatures in the PM phase (c), it decays over a
short length scale ξ of a few lattice spacings (ξ ≃ 4). The onset
of PI behavior is instead associated with a large increase of ξ
to about ξ ≃ 1000 (d). We thus conclude that the weaker the
coupling, the larger the length scale of the AF fluctuations that
is needed to open the spectral gap. Consistent with the TPSC
approach by Vilk and Tremblay (1996, 1997), the PI behavior
for small U emerges in the low-temperature regime, where ξ
(Schäfer et al., 2015) and the antiferromagnetic susceptibility
(Otsuki, Hafermann, and Lichtenstein, 2014) grow exponen-
tially with 1=T as required by the Mermin-Wagner theorem.
Analytical approximations of the ladder-DΓA equations in the
limit of ξ → ∞ by Rohringer and Toschi (2016) demonstrate,
however, that the suppression of the spectral weight at the
Fermi energy is slower than the exponential behavior pre-
dicted by the TPSC, being consistent, instead, with an
electronic scattering rate ∼1=T2. Further weakening of the
spectral weight suppression at low T might eventually arise in
a full self-consistent DΓA or DF calculation, as suggested by
the most recent DF results (van Loon, Hafermann, and
Katsnelson, 2018) and by the comparison with the nonlinear
sigma model (Borejsza and Dupuis, 2004).
Figure 28(f) shows that at strong coupling U ¼ 8t anti-

ferromagnetic fluctuations in DΓA lead to a kinetic energy
gain in comparison with the PM DMFT solution. This is in
agreement with the Heisenberg picture where it corresponds to
a gain of superexchange energy. By contrast, at weak coupling
U ¼ 3t as in Fig. 28(e), the DΓA kinetic energy is smaller (in
absolute value) than the DMFTone. Here we have, however, a
gain of potential energy due to antiferromagnetic fluctuations,
as in a Slater antiferromagnet (Rohringer and Toschi, 2016;
van Loon, Hafermann, and Katsnelson, 2018). This demon-
strates that in the paramagnetic phase the AF fluctuations
evolve gradually from Slater to Heisenberg paramagnons with
increasing U, reflecting the properties of the underlying
ground state (Borejsza and Dupuis, 2004). The crossover
between the two regimes appears approximately located in the
parameter region, where the MIT in the CDMFT (plaquette)
calculation is found (Fratino et al., 2017).
Pseudogaps and the formation of Fermi arcs, i.e., the

destruction of quasiparticles near the antinodal region, has
been reproduced by various flavors of diagrammatic exten-
sions, including DF (Rubtsov et al., 2009), DΓA (Katanin,
Toschi, and Held, 2009), DMF2RG (Taranto et al., 2014), and
TRILEX (Ayral and Parcollet, 2015).
Figure 29 shows the self-energy as well as the momentum-

resolved spectral functions in the pseudogap regime.
Figures 29(c)–29(e) reveal that the Fermi surface is fully
gapped in both variational DF (Jung, 2010) and lattice QMC
extrapolated to the thermodynamic limit; for related

pseudogaps in DMFTþ Σk, see Nekrasov et al. (2008) and
Nekrasov, Kuchinskii, and Sadovskii (2011), for TPSC see
Moukouri et al. (2000), and for DΓA see Katanin, Toschi, and
Held (2009) and Rohringer and Toschi (2016). The opening of
the pseudogap is reflected in a transition from a z shape to an
inverse z-shape structure in the self-energy; see Fig. 29(a) and
Pudleiner et al. (2016). It is also connected to zeros in the
Green’s function (Sakai, Motome, and Imada, 2009). The
lattice QMC calculations of Fig. 29(a) and DΓA also show
that, except for the pseudogap itself, the ðkx; kyÞ dependence
of the self-energy can be expressed by a single parameter: the
energy-momentum dispersion εðkx;kyÞ.
Taken together, DΓA and DF are compatible in the regimes

of their applicability with lattice QMC, TPSC, and cluster
extensions of DMFT and yield the following physics: With
decreasing T, a pseudogap opens due to AF fluctuations first
in the antinodal and then in the nodal direction (Schäfer,
Toschi, and Held, 2016) marking the MIT of Fig. 26. For the
square lattice with perfect nesting this happens at arbitrarily
small interaction U.

3. Two dimensions: Square lattice off half filling

At finite doping, studies of superconductivity in the
Hubbard model are of primary interest. In this respect, the
arguably biggest success of cluster DMFT and DCA calcu-
lations has been the observation of superconductivity
(Lichtenstein and Katsnelson, 2000; T. A. Maier et al.,
2005; Capone and Kotliar, 2006; Haule and Kotliar, 2007;
Sordi et al., 2012; Gull, Parcollet, and Millis, 2013) which
helped establish the presence of superconductivity in the
Hubbard model. Superconductivity requires a framework
which captures both strong local dynamical correlations

FIG. 29. Imaginary part of (a) self-energy and (b) Green’s
function vs energy-momentum dispersion εk as obtained within
lattice QMC. From Pudleiner et al., 2016. Momentum-resolved
spectral function within (c) variational DF (from Jung, 2010) and
(e) lattice QMC (from Rost et al., 2012) along the high-symmetry
lines of the Brillouin zone. The latter shows a pseudogap at the
Fermi surface in (d) the momentum-integrated spectrum. The DF
spectral function also exhibits a waterfall. All panels are for the
2D Hubbard model at U ¼ 4t, T ≈ 0.2t, and half filling.

G. Rohringer et al.: Diagrammatic routes to nonlocal correlations …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 025003-36



and spatial fluctuations as offered by diagrammatic extensions
of DMFT. In DF, the effective pairing interaction has been
constructed similarly as in FLEX, namely, by inserting the
ladder diagrams of the horizontal and vertical particle-hole
channels (see Sec. III.B) into the irreducible particle-particle
vertex Γνν0ω

pp;α;kk0q (Hafermann, Kecker et al., 2009; Otsuki,
Hafermann, and Lichtenstein, 2014). The former incorporates
the charge as well as the longitudinal and transverse spin
fluctuations that are expected to be predominant at moderate
hole doping (Gunnarsson et al., 2015, 2016). The transition
temperature is found by computing the leading eigenvalue of a
linearized Eliashberg-like equation,

X
kω

Γνν0ω¼0
pp;r;kk0q¼0G̃ð−k0Þð−ωÞG̃k0ω0ϕk0ω0 ¼ ϕkω; ð85Þ

where r ¼ s, t stands for the singlet and triplet channels.
Results classified according to the different symmetries are
shown in Fig. 30 (top). The order parameter of the leading
instability has d-wave symmetry as illustrated through the
corresponding eigenfunction ϕk which is essentially the gap
function. Superconductivity is observed for hole doping δ ≤
0.18 for U=t ¼ 8. The transition temperature Tc ≲ 0.05t at
10% hole doping is compatible with the value 0.0518t
reported by Staar et al. (2013) for U=t ¼ 7. In the DF
calculation, superconductivity might however not be realized
for doping levels ≲15% due to the presence of phase
separation observed in the same study at higher T. DF shows
no superconducting dome structure with a downturn toward
half filling, even though the formation of the pseudogap at the
Fermi level feeds back into the calculation of the effective
pairing interaction through the dual Green’s functions.
In contrast, such a superconducting dome is found in other

diagrammatic extensions of DMFT such as DΓA (Kitatani
et al., 2018) [Fig. 30 (bottom left)], FLEXþ DMFT (Kitatani,
Tsuji, and Aoki, 2015) [Fig. 30 (bottom right)], EDMFTþ
GW and TRILEX (Vučičević, Ayral, and Parcollet, 2017), in
agreement with DCA (T. Maier et al., 2005) and TPSC
(Kyung, Landry, and Tremblay, 2003). Here the supercon-
ducting dome emerges from the competition of two effects
(Kitatani et al., 2018): (i) antiferromagnetic fluctuations and
hence the irreducible vertex in the pp channel get stronger
toward half filling, and (ii) the pseudogap around half filling
suppresses the Green’s function lines which connect these
vertices in the particle-particle BSE ladder. In Fig. 30 (bottom
left and right), the leading eigenvalue in the particle-particle
channel was computed via Eq. (85). While FLEXþ DMFT
and TRILEX overestimates the nonlocal self-energy and the
critical temperature, DΓA yields a reasonable Tc ≈ 40 K for
t ≈ 0.35 eV. As shown by Kitatani et al. (2018), the frequency
structure of the local vertex is indeed very important for the
actual value of Tc, leading to a considerably lower Tc and
agreement with experiment.
Hidden order in the form of a staggered flux state (of d-

density wave) is among several candidates for the origin of the
pseudogap (Chakravarty et al., 2001). DF calculations show
that the density wave with d-wave symmetry dominates over
density waves with other symmetries at lower T. However, the
susceptibility shows no divergence at the accessible

temperatures. The d-density wave state also appears to be
shadowed by the superconducting state, since its extrapolated
Tc is lower (Otsuki, Hafermann, and Lichtenstein, 2014).

4. Two dimensions: Triangular lattice

Frustrated strongly correlated electron systems such as the
Hubbard model on a triangular lattice are characterized by
macroscopically degenerate ground states that lead to strong
quantum fluctuations and a multitude of instabilities. Such
systems hence exhibit very rich phase diagrams comprised of
Mott insulating, superconducting, or resonating valence bond
(RVB) states, commensurate or incommensurate SDW, or
noncollinear magnetic order. Important experimental realiza-
tions are (i) the stacked triangular CoO2 layers in quasi-two-
dimensional sodium cobaltate NaxCoO2, (ii) the organic salt
κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 where two BEDT-TTF molecules
form spin S ¼ 1=2 dimers which in turn constitute a triangular
lattice, (iii) adatoms on a Si (111) surface, and (iv) bilayers of
transition metal oxide heterostructures grown in the (111)
direction. Diagrammatic extensions of DMFT are particularly

FIG. 30. Top: Temperature dependence of the leading eigen-
value in the particle-particle channel for the hole-doped 2D
Hubbard model in DF at U=t ¼ 8 and 14% hole doping,
separated into contributions for given symmetry. The eigenvalue
associated with singlet B1g symmetry crosses 1, implying a
transition to the superconducting state. The inset shows the
momentum dependence of the eigenfunction ϕkðω0Þ correspond-
ing to this eigenvalue at T ¼ 0.1, with apparent d-wave sym-
metry. From Otsuki, Hafermann, and Lichtenstein, 2014. Bottom
left: Filling dependence of the leading DΓA d-wave eigenvector λ
in the particle-particle channel for the 2D Hubbard model at
U ¼ 6t indicating superconducting order below T ¼ 0.01t
(λ ¼ 1). From Kitatani et al., 2018. Bottom right: Superconduct-
ing and antiferromagnetic critical temperature vs electron filling
in FLEXþ DMFT. From Kitatani, Tsuji, and Aoki, 2015.
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suited in this context, because spatial correlations are highly
relevant in the presence of frustration. Moreover, diagram-
matic approaches are not affected by the sign problem which,
in the presence of frustration, strongly hampers QMC sim-
ulations or cluster extensions of DMFT that employ QMC as a
solver.
Regarding the metal-insulator transition, Lee, Li, and

Monien (2008) showed that, compared to DMFT, the critical
U of the Mott transition is reduced down to Uc ∼ 7t in DFð2Þ,
which agrees with DCA results (Lee, Li, and Monien, 2008).
This is analogous to the effect described in Sec. IV.A.2 for the
square lattice. The difference is that here there is no perfect
nesting for the triangular lattice so that Uc stays finite and
even large because of the high frustration.

a. Magnetism

According to results from different many-body methods,
the triangular lattice Hubbard model favors the 120° Néel state
at large U=t ∼ 10 (Ohashi et al., 2008; Yoshioka, Koga, and
Kawakami, 2009), and this is also the case in the DFð2Þ

calculation by Lee, Li, and Monien (2008) as well as in the
DFð2Þ expansion around a DCA-like three-site cluster by
Antipov et al. (2011). The rich magnetic phase diagram
obtained by Li et al. (2014) is shown in Fig. 31. While the
observation of finite temperature transitions is likely an
artifact of the extrapolation method for the inverse suscep-
tibility, one can interpret the finite transition temperature as an
upper bound for a quasi-2D system of layers coupled in the
third dimension. Close to half filling and at large U, spiral
order is found which includes the 120° Néel state at half
filling. Interestingly, the frustration pushes the critical U for
ordering above the aforementioned Uc for the MIT so that a
nonmagnetic insulating phase is realized at half filling,
possibly a spin-liquid state (Morita, Watanabe, and Imada,
2002; Sahebsara and Sénéchal, 2008; Yang et al., 2010).
The spiral ordering is quickly destroyed upon doping, but

short-range order marked by a peak in the static susceptibility
at the corresponding wave vector survives. For electron
doping (hni > 1) the spiral correlations make way for FM
short-range and at large U also long-range ordering. Quite

asymmetrically, on the hole-doped side (hni < 1) the suscep-
tibility peaks at wave vector Q ¼ ðπ; πÞ corresponding to a
collinear AF. Laubach et al. (2015) tuned the lattice from
triangular to square by changing a “vertical” bond hopping t0

and found in DF an evolution from the 120° AF order of the
half-filled triangular lattice to the Q ¼ ðπ; πÞ collinear AF
order on the square lattice, in agreement with VCA.
Li et al. (2011) reported DFð2Þ results for the

Sn=Sið111Þ ffiffiffi
3

p
×

ffiffiffi
3

p
R30° surface system which can be

mapped onto a triangular lattice Hubbard model with a band
structure calculated within LDA. For this system, additional
frustration due to next-nearest-neighbor hopping however
suppresses the 120° AF in favor of the collinear AF.
Hansmann et al. (2013) used GW þ DMFT instead and
emphasized the importance of long-range Coulomb inter-
actions and charge ordering.

b. Energy and entropy

Antipov et al. (2011) showed that spatial correlations
significantly lower the energy of the spin-liquid state at half
filling, while leaving the energy of the Néel state essentially
unaffected. As for the entropy, Li et al. (2014) reported that it
increases with U at fixed T and ascribed this counterintuitive
trend (which is in contrast to that for the unfrustrated square
lattice) to a significant increase in the spin entropy due to
localization. This opens a new possibility for adiabatic cooling
in cold-atom experiments by tuning U. Note that the highest
entropy occurs at a filling hni ≈ 1.35 which coincides with the
optimal filling for superconductivity in sodium cobaltate
and signals the competition between the localized spin
and the charge degrees of freedom. The high entropy can
be related to the Seebeck coefficient through Kelvin’s formula
and might be an important contribution to the large thermo-
power of NaxCoO2 · 1.3H2O at hni ∼ 1.5 (Terasaki, Sasago,
and Uchinokura, 1997). Another factor favoring a large
thermopower is the enhancement of the electron-hole asym-
metry due to local electronic correlations which was found by
Wissgott et al. (2010, 2011) using density functional
theory (DFTþ DMFT).
Wilhelm et al. (2015) also used the DFT band structure of

the relevant a1g orbital as a starting point and found a spin-
polaron peak in DF near van Hove filling—possibly
explaining a weak absorption feature observed in optics
experiments of nearly ferromagnetic Na0.7CoO2 by Wang
et al. (2004). The spin-polaron excitation at Γ has been
traced back to the binding of quasiparticles with an FM
paramagnon (Boehnke and Lechermann, 2012) originating
from the spin channel of ladder DF. The interplay of many-
particle scattering incorporated through the DF self-energy
and nesting also leads to a band flattening near van Hove
singularities as reported by Yudin et al., 2014: In analogy
to a Bose-Einstein condensate, this highly degenerate
fermionic state is referred to as “Fermi condensation”
and possibly signals an instability at lower T.

5. One and zero dimensions

One- and zero-dimensional systems are arguably the most
challenging for diagrammatic approaches that start from

FIG. 31. Magnetic phase diagram of the doped triangular-lattice
Hubbard model at fixed temperature T ¼ 0.1t, as obtained within
DF. Long-range spiral and FM magnetic order is found at
sufficiently large values of U and collinear AF at low electron
fillings hni. From Li et al., 2014.
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DMFT, which as we recall is exact for d ¼ ∞. In 1D the Fermi
surface degenerates to two points. As a result of nesting, the
ladder diagram series typically diverges in several channels, so
that ladder approximations cannot be applied. The 1D
Hubbard model can nevertheless be studied using finite-order
diagrams as in DFð2Þ (Hafermann et al., 2008) or using the
parquet equations (Valli, Schäfer et al., 2015). A proper
description of the insulating state, which is the known ground
state for all U > 0, requires a fully self-consistent calculation,
in which the hybridization function changes from metallic
character in DMFT to insulating in DF.
Figure 32 shows such DFð2Þ calculations based on a single-

site DMFT that capture the insulating state. The second-order
diagrams however do not include the nonperturbative singlet
correlations needed for an accurate description of the 1D
physics. Hence, we see in Fig. 32 significant deviations from
the numerically exact DMRG.
An alternative route followed by Hafermann et al. (2008)

and Slezak et al. (2009) is to use a cluster instead of a DMFT
solution as a starting point as discussed in Sec. III.E. Already
the expansion around a two-site CDMFT solution captures
crucial aspects of the 1D dimer physics and yields quantitative
agreement with the DMRG benchmarks in Fig. 32. Whether
spin-charge separation as in a Luttinger liquid is captured by
such diagrammatic extensions is an open question, and 1D
calculations off half filling are imperative.
An equally challenging issue is the treatment of nonlocal

correlations in 0D (molecularlike) systems. Progress toward
the understanding of spatial correlations in finite, discrete
systems was recently achieved by means of a comparison
(Valli et al., 2012; Valli, Schäfer et al., 2015) between
nanoscopic (or real-space) DMFT, nanoscopic DΓA (Valli
et al., 2010), and the exact solution of small correlated
molecules (up to ten sites). In Fig. 33 we show the results
of the first parquet DΓA calculation, performed for a ring
molecule of 8-correlated equivalent sites (see the inset of
Fig. 33; it can also be considered as a 1D Hubbard model with
periodic boundary conditions). The comparison with DMFT
shows that a substantial, although not complete part of the

strong nonlocal correlations characterizing the exact solution
of this 0D system is actually captured by the parquet DΓA
calculation. The improvement with respect to the parquet
approximation solution and, thus, the importance of including
the full frequency dependence of the 2PI vertex function
depend strongly on the parameter regime considered. It
remains to be investigated whether the realization of an
external self-consistency cycle in DΓA (see Sec. III.A.4)
can close the remaining gap to the exact solution. The
systematic analysis of Valli et al. (2012) and Valli, Schäfer
et al. (2015) further identified situations where a DMFT
calculation is reliable. This can be used as a guide for the study
of more complex systems, such as quantum point contacts
with ∼100 atoms (Florens, 2007; Jacob, Haule, and Kotliar,
2010; Valli et al., 2010) or transition metal oxide nanoclusters
(Das et al., 2011; Valli, Das et al., 2015).

B. Heavy fermions and Kondo lattice model

Heavy fermion systems are intermetallic compounds in
which strongly correlated and localized electrons in partially
filled f shells of a rare earth or actinide element coexist with
weakly correlated electrons of much broader bands provided
by the other elements or orbitals. At elevated temperatures the
f-electron magnetic moments are weakly coupled to a Fermi
sea formed by s, p, or d electrons. At low temperatures,
however, localized moments and conduction electrons can
form new entities below the Kondo temperature TK , and
magnetic order or unconventional superconductivity may be
realized along with quantum critical points. The local Kondo
physics as well as magnetic ordering is already contained in
DMFT, but without spatial correlations that become important
at the critical point and that are the realm of diagrammatic
extensions of DMFT.

FIG. 32. Local Green’s function of the 1D Hubbard model
obtained within DFð2Þ and two-site cluster CDFð2Þ, in comparison
to numerically exact DMRG, CDMFT, and zero temperature
variational cluster approach (VCA) calculations as well as DMFT
(inset: zoom in). Adapted from Hafermann et al., 2008. FIG. 33. (Left) Imaginary and (right) real parts of the self-

energy vs Matsubara frequency νn for an 8-site Hubbard nanoring
(see bottom left inset) with nearest-neighbor hopping t and local
interaction U=t ¼ 2 at T=t ¼ 0.1 at half filling. (Upper pan-
els) Parquet DΓA, (lower panels) the exact solution, and (both
panels) DMFT are compared. From Valli, Schäfer et al., 2015.
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Let us consider the spin-1=2 Kondo lattice model (KLM),

H ¼
X
ij;σ

tijc
†
iσcjσ þ J

X
i

Si · si ð86Þ

(also known as the s-d model) which is a minimal
model for heavy fermion physics. Here Si are the local
and si ¼ ð1=2ÞPσσ0c

†
iσσσσ0ciσ0 the conduction electron spins,

respectively.
The DMFT solution of this model reproduces the qualita-

tively different behavior at high and low temperatures. At low
temperature, significantly smaller than TK , a well-defined
hybridization gap opens. Reducing J, Otsuki, Kusunose, and
Kuramoto (2009) found a quantum phase transition from
this Kondo insulator to an AF-ordered state at Jc ≃ 2.18.
If the conduction band is doped away from half filling,
the formation of heavy quasiparticles leads to a large
Fermi surface, which shows that the local moments in fact
contribute to the Fermi-surface volume (Otsuki, Kusunose,
and Kuramoto, 2009).
The KLM has been studied using the DF method at first by

Sweep, Rubtsov, and Katsnelson (2013). The corresponding
implementation is essentially the same as for the Hubbard
model, the only difference being the interaction term of the
underlying impurity model. Sweep, Rubtsov, and Katsnelson
(2013) employed a weak-coupling CTQMC impurity solver
using two bands for the localized and conduction electrons.
Their rough estimate of the critical exchange interaction Jc in
DF (at relatively high temperatures) yielded already a sig-
nificant (∼50%) reduction of Jc with respect to DMFT,
induced by nonlocal fluctuations.

In a more recent ladder DF study, Otsuki (2015) employed
an interaction-expansion-type CTQMC algorithm specifically
devised for the Coqblin-Schrieffer model and addressed the
competition between d- and p-wave superconductivity in the
2D KLM. On the square lattice and for a half-filled conduction
electron band, the perfect nesting of the Fermi surface favors
an AF ordering of the localized magnetic moments through
the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.
Hence similar to the 2D Hubbard model in Sec. IV.A.2, it
is natural to ask which type of superconductivity emerges in
heavy fermion materials near the AF quantum critical point.
Figure 34(a) shows the leading AF eigenvalue which has a

critical behavior 1 − λAFM ∝ e−Δ=T and a strong size depend-
ence for J ≤ 1.2. This indicates an AF ground state. For
sufficiently large J, AF is suppressed due to the Kondo effect
and the leading eigenvalue approaches a constant at low T; see
the right panel of Fig. 34(a). The estimated position of the
quantum critical point JDFc ¼ 1.35� 0.05 is close to the lattice
QMC value of Assaad (1999); see Fig. 34(b). This is another
example of the quantitative accuracy of results obtained by
means of diagrammatic methods.
Otsuki (2015) determined the superconducting transition

temperature by an eigenvalue analysis as described in
Sec. IV.A.2. The eigenvalues corresponding to eigenfunctions
of B1g (d-wave) and Eu (p-wave symmetry) are nearly
degenerate in a wide doping range. While d-wave super-
conductivity is realized for J ≲ 0.9, it is replaced by p-wave
superconductivity as the leading instability for J ≳ 0.9. In
both cases, AF fluctuations are likely to be the origin of the
pairing. Remarkably, the crossover from d-wave to p-wave
pairing correlates with the crossover from a small to the large
Fermi surface. For weak coupling, d-wave pairing is favor-
able, because the regions of high intensity of the eigenfunction
coincide with the van Hove points. As the hybridization band
is formed and a large Fermi surface develops, low-energy
excitations appear around k ¼ ðπ=2; π=2Þ and p-wave sym-
metry emerges as a consequence of the scattering between
them. The p-wave superconductivity is hence a consequence
of the formation of heavy quasiparticles, which distinguishes
the KLM from the Hubbard model.

C. Falicov-Kimball model

In the Falicov-Kimball (FK) model mobile electrons
interact with localized ones via a Hubbard-type interaction
U. This way it describes (annealed) disorder and represents
one of the simplest systems where correlation effects can be
observed. The Hamiltonian for the spinless FK model reads

H ¼
X
k

εkc
†
kck þ

X
i

εff
†
i fi þ

X
i

Uc†i cif
†
i fi; ð87Þ

whereU is the interaction strength, εk is the dispersion relation
for the mobile (c) electrons, and εf is the local potential of the
immobile (f) electrons; i labels the lattice sites.
The simple nature of the FK model compared to the

Hubbard model is seen from the Hamiltonian (87): every local
f-electron occupation operator wi ¼ f†i fi commutes with the
Hamiltonian, providing an extensive number of conserved

FIG. 34. (a) Critical scaling and lattice size dependence of the
leading eigenvalue λAFM for the KLM in DF theory, indicating the
presence of an AF ground state (left panel) while for J > Jc (right
panel) the Kondo effect suppresses AF fluctuations. (b) Critical
region defined by 1 − λAFM ≲ 10−2 exhibiting a dome shape
similar to the DMFT phase boundary, albeit significantly shrunk.
From Otsuki, 2015.
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degrees of freedom. This has a number of important conse-
quences. First, a set ofmathematically rigorous results including
the existence of a phase transition to the f-c checkerboard-
ordered phase of the Ising universality class in the particle-hole
symmetric model has been established (Brandt and Schmidt,
1986; Kennedy andLieb, 1986). Second, themodel is amenable
to a sign-problem free Monte Carlo sampling (Maśka and
Czajka, 2005, 2006; Žonda, Farkašovský, and Čenčariková,
2009; Antipov et al., 2016), providing exact predictions for
finite-size systems. Finally, the “impurity problem” solved in
DMFT is exactly solvable in both equilibrium (Brandt and
Mielsch, 1989) and nonequilibrium (Eckstein andKollar, 2008;
Eckstein, Kollar, and Werner, 2009).
For the FK model the free-energy functional in d ¼ ∞ and

the self-consistent equations, which later became known as the
DMFT equations, have also been derived for the first time in a
seminal paper by Janiš (1991). DMFT has been used to study,
among others, thermodynamics and spectral functions (Brandt
and Mielsch, 1989, 1990, 1991), phase separation upon
doping (Freericks and Lemański, 2000), dynamical properties
including a discontinuity at zero frequency (Freericks and
Miller, 2000), and the absence of thermalization (Eckstein and
Kollar, 2008; Eckstein, Kollar, and Werner, 2009). The
majority of these results is summarized in the review by
Freericks and Zlatić (2003).
The combination of these factors makes the FK model an

ideal test bed for computational approaches to strongly
correlated systems, including cluster extensions (Hettler et al.,
1998, 2000; T. Maier et al., 2005) and, of particular impor-
tance here, diagrammatic extensions of DMFT. The latter
profit from the fact that the interacting single-particle and
multiparticle Green’s functions of the DMFT impurity prob-
lem can be obtained analytically. The local single-particle
propagator reads

Gloc
ν ¼ wGν þ ð1 − wÞ½G−1

ν −U�−1; ð88Þ

where Gν ¼ ½iνþ μ − Δν�−1 is the noninteracting Green’s
function of the DMFT impurity problem, which can be
calculated self-consistently together with the lattice Dyson
equation and the f-electron occupation w. The DMFT
susceptibility and the local irreducible vertex in the par-
ticle-hole channel can be calculated as well (Freericks and
Zlatić, 2003). This corresponds to the following full vertex:

Fνν0ω ¼ βðδω0 − δνν0 Þaν0aνþω; ð89Þ

where aν¼ðΣloc
ν −UÞΣloc

ν =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð1−wÞp

U; see Ribic, Rohringer,
and Held (2016).
Using these simplifications a set of further results for the

analytical properties regarding the correlation functions of the
FK model has been obtained: Antipov, Gull, and Kirchner
(2014) calculated the antisymmetrized three-particle vertex
Fð6Þ;νν0ν00 ¼ wð1 − wÞð2w − 1ÞU3aνaν0aν00 which is zero at
particle-hole symmetry. Ribic, Rohringer, and Held (2017)
extended this to the full n-particle vertex for an arbitrary
number of particles n and estimated the error of truncating the
DF theory at the n ¼ 2 particle level. Diagrams emerging from
the three-particle vertex in DF theory may yield contributions
of the same magnitude. Shvaika (2000) and Ribic, Rohringer,

and Held (2016) also calculated the exact two-particle
reducible, irreducible in ph and pp channels, and the fully
irreducible vertex of the FK model. Schäfer et al. (2016)
identified the applicability of perturbation theory by studying
divergences of the DMFT vertex functions; below a single
energy scale ν�ðUÞ, the low-energy spectral properties of the
model have a nonperturbative nature. Related results have also
been reported by Janiš and Pokorný (2014) and Ribic,
Rohringer, and Held (2016).
Application of two-particle methods has demonstrated

important physical aspects of the model. Using 1PI and DF
Ribic, Rohringer, and Held (2016) showed how nonlocal
correlations emerge as precursors to the CDW transition.
These precursors lead to a more insulating solution and a four-
peak structure in the k-resolved spectral function in parts of
the Brillouin zone as seen in Fig. 35. These peaks have been
interpreted as a mixture of the DMFT metal-insulator tran-
sition caused by local correlations and nonlocal checkerboard
CDW correlations. Yang et al. (2014) analyzed the interac-
tion-driven crossover into the Mott phase and related it to the
CDW correlations.
Antipov, Gull, and Kirchner (2014) studied the critical

properties of the charge-ordering transition using the DF
method. The inverse charge susceptibility of the c electrons of
the FK model in Fig. 36 shows different power laws (i.e.,
different critical exponents) at the phase transition for different
dimensions d. These critical exponents are also different from
those for the Hubbard model; see Fig. 23. But as for the
Hubbard model in three dimensions, the critical exponents γ
[susceptibility, Fig. 36(b)], ν [correlation length, Fig. 36(c)],
and anomalous dimension exponent η ¼ 2=ν − γ extracted for
U > 5 agree with the expected exact values, i.e., in this case
the values for the Ising universality class. These results show
that the diagrammatic extensions of DMFT can provide
microscopic details of strongly correlated systems and at
the same time correctly capture their critical properties.
The interest in the FK model has reappeared at different

times. From the initial proposals of describing metal-insulator
transitions in f-electron systems (Falicov and Kimball, 1969;

FIG. 35. Spectral functions of the FK model along a path
through the Brillouin zone and as a function of the real frequency
ω at U ¼ 1t, T ¼ 0.07t, and half filling, which can be compared
to the corresponding result for the Hubbard model, Fig. 27. The
red (dark gray) line in the plane is the bare dispersion and the
green (light gray) line that of a CDW checkerboard phase with a
doubling of the unit cell. From Ribic, Rohringer, and Held, 2016.
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Ramirez, Falicov, and Kimball, 1970) and testing various
methods for strongly correlated electron systems, the recent
interest is fueled by the progress in manufacturing artificial
cold-atom systems and various manifestations of Anderson
localization. In particular, multiband systems with large mass
imbalance recently became available (Greif et al., 2015; Jotzu
et al., 2015). Monte Carlo simulations by Liu and Wang
(2015) indicate an Ising-type AF ordering in the case of a mass
imbalance between the two spin species; Philipp et al. (2017)
concluded that there is a Kondo effect for an arbitrary small
hopping of the more localized electrons. In other words, the
mass imbalanced Hubbard model resembles the FK model
regarding the symmetry of the ordering parameter, but the
Hubbard model regarding the MIT. At the same time, the
existence of Anderson localization in the absence of explicit
disorder was recently shown by Antipov et al. (2016).

D. Models of disorder

Out of the many possible nonlocal effects, disorder plays a
special role in condensed matter physics as it is ubiquitous in
electronic materials. A spatially random potential reduces the
extent of electronic wave functions to a localization length ξl,
changing the motion of charge carriers and increasing the
resistivity of the system. When ξl becomes smaller than the
linear system size L the disorder renders an otherwise metallic
system insulating (Anderson, 1958; Thouless, 1974), a phe-
nomenon known as Anderson transition.
On the technical side, disorder or at least a local disorder

potential is closely related to the FK model of the previous
section. The difference is that here the disorder distribution is
externally given (quenched disorder) whereas in the FK model
the localized electrons are thermodynamically distributed
(annealed disorder). For disorder problems, DMFT corre-
sponds to the coherent potential approximation (CPA) of
Taylor (1967) and Soven (1969) as was shown by Vlaming
and Vollhardt (1992), while the relevance of the inverse of the
coordination number was already pointed out by Schwartz and
Siggia (1972). The CPA has the same averaging as in Eq. (88)
but for a fixed (quenched) w; see Janiš and Vollhardt (1992a).

If the electrons also interact, a combination of CPA and
DMFT is possible. Among others, it yields information about
the local density of states (Byczuk et al., 2009) and the
geometrically averaged density of states in the typical medium
theory (Dobrosavljević, Pastor, and Nikolić, 2003). The decay
and the probability distribution of the latter quantity indicate
the Anderson transition. Improved estimates of local and
geometric densities of state (DOS and critical disorder
strengths can be obtained through cluster extensions of these
theories (Jarrell and Krishnamurthy, 2001; Ekuma et al., 2014;
Terletska et al., 2014).
The simplest model to incorporate the quenched disorder

effects is the Anderson model, which reads

H ¼
X
k

εknk þ
X
i

vini; ð90Þ

where random potentials v are distributed with a distribu-
tion pðvÞ.
Similar to the case of clean systems, the self-consistent

description at the single-particle level lacks some of the
important physics present in the problem. For example, the
vanishing conductivity in Anderson insulators needs a descrip-
tion at the two-particle level that is absent in CPA (Jarrell and
Krishnamurthy, 2001) and requires additional diagrammatic
calculations (Kroha, 1990; Janiš and Kolorenč, 2005).
Diagrammatic extensions of the CPA for model (90) were
pioneered by Janiš (2001),whodeveloped a parquet approach to
calculate the two-particle vertex and the conductivity. Using the
local irreducible vertex and the local Green’s function from the
CPA, self-consistent equations for the full vertex, the nonlocal
Green’s function and the self-energy are derived and evaluated.
The vertex corrections to the conductivity from this method
have been calculated by Janiš and Pokorný (2010) and Pokorny
and Janis (2013). The results for 3D and binary disorder are
shown in Fig. 37 (top). Vertex corrections always reduce the
conductivity, and the leading-order correction renders the
conductivity negative at a large disorder strength W.
A complementary DF extension of CPA for the Anderson

model (90) was put forward by Terletska et al. (2013). Using
the “replica trick” relation lnZ ¼ limm→0m−1ðZm − 1Þ, the
effect of disorder is replaced by a local elastic effective
interaction between electrons in different replicas:

Wdis ¼
X∞
l¼2

κlðvÞ
l!

�X
m

Z
dτnmi ðτÞ

�
l
: ð91Þ

Here κlðvÞ is the lth order cumulant of the disorder distribu-
tion pðvÞ and m is the replica index reformulated in the
language of multiple scattering theory. Since the disorder-
induced interaction is local, the complexity of the problem at
hand is similar to the Hubbard and Falicov-Kimball models,
described in Secs. IV.A and IV.C, respectively. The remaining
ladder DF steps follow Sec. III.B. Terletska et al. (2013) used
a box disorder distribution and showed that weak localization
effects suppress the conductivity in 1D and 2D; see the bottom
panels of Fig. 37. Note that the DF extension of CPA can be
done also without a replica trick as shown by Osipov and
Rubtsov (2013).

(a) (b) (c)

FIG. 36. (a) Inverse static c-electron charge susceptibility in
d ¼ 2, 3, and 4 as a function of T − Tc at U ¼ 14t. The slope of
the double logarithmic plot yields the critical exponent γ shown in
(b) for different values of U > 5t. Lines in (b) indicate the
prediction for the Ising universality class. Error bars represent the
regression errors. (c) Corresponding exponent ν for the correla-
tion length vs predictions for the Ising model (dashed lines) and
DMFT results (solid line) as a function of U. From Antipov, Gull,
and Kirchner, 2014.
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The advantage of the diagrammatic extensions of CPA is
that they can be straightforwardly extended to interacting
systems with disorder. This was done by Janiš and Pokorný
(2014), Yang et al. (2014), and Haase et al. (2017), who
considered the Anderson-Falicov-Kimball and Anderson-
Hubbard models. Even a clean FK model exhibits localization
effects due to the intrinsic annealed disorder, i.e., the scatter-
ing at the immobile f electrons (Antipov et al., 2016). Yang
et al. (2014) showed that the added quenched disorder in the
Anderson-FK model also localizes the system. Janiš and
Pokorný (2014) obtained the full phase diagram of the FK
model in infinite dimensions and showed that the critical
disorder-driven metal-insulator transition shares its universal
critical behavior with the interaction-driven Mott transition.
Haase et al. (2017) showed in DF that the disorder in the
Hubbard model at small disorder strength tends to increase the
impact of antiferromagnetism by raising the Néel temperature,
increases the U value of the Mott transition, and at large
disorder strengths brings the conductivity of the 3D system to
zero in agreement with the picture of an Anderson transition.
The phase diagram of this Anderson-Hubbard model with
metallic, Anderson insulating and Mott insulating phases was
also determined before by Byczuk, Hofstetter, and Vollhardt
(2005) using DMFT and a geometrically averaged (“typical”)
DOS as well as by Kuchinskii et al. (2010) employing
DMFTþ Σk.

E. Nonlocal interactions and multiorbitals

Despite the success of the Hubbard model to capture
important physical aspects of correlated electrons and materi-
als, it misses some interesting physics such as plasmons and
inhomogeneous charge density waves. These effects are
related to nonlocal interactions, which are included in the
extended Hubbard model

H ¼
X
ij;σ

tijc
†
iσcjσ þ U

X
i

ni↑ni↓ þ
1

2

X
ijσσ0

Vijniσnjσ0 : ð92Þ

The nonlocal interaction Vij can be sizable, with a magnitude
reaching up to 60% of the on-site Coulomb interaction. As a
result graphene, for example, appears metallic, even though it
would be on the verge of the insulating state if only the local
Coulomb interaction was considered (Wehling et al., 2011).
For certain surface systems, the nonlocal interaction may also
exhibit a slow 1=r decay with distance r, rendering long-range
contributions important (Hansmann et al., 2013, 2016).
Addressing dynamical screening and long-range physics in

correlated fermionic systems is challenging since QMC
simulations typically suffer from the sign problem. In
DMFT, on the other hand, the nonlocal interaction is restricted
to its static Hartree contribution. Cluster extensions of DMFT
naturally face the difficulty to treat interaction terms that
extend beyond the finite cluster. Hence, intercluster inter-
actions are either truncated [e.g., in Jiang et al. (2017)], coarse
grained [e.g., in Arita et al. (2004) and Terletska, Chen, and
Gull (2017)], or treated through a mean field decoupling [e.g.,
in Bolech, Kancharla, and Kotliar (2003) and Reymbaut et al.
(2016)] similar to the variational cluster perturbation theory
(Aichhorn et al., 2004). In essence, the range of the interaction
is limited by the size of the cluster.
This restriction is lifted in EDMFT (Sengupta and Georges,

1995; Kajueter, 1996; Si and Smith, 1996; Chitra and Kotliar,
2000, 2001; Smith and Si, 2000) and GW þ DMFT (Sun and
Kotliar, 2002, 2004; Biermann, Aryasetiawan, and Georges,
2003), where the nonlocal interaction can have arbitrary
momentum dependence and range. These methods capture
theMott transition and at the same time the effects of screening
and the charge-order transition driven by the intersite inter-
action. The GW þ DMFT self-energy describes band renorm-
alization effects and Hubbard satellites; EDMFT, on the other
hand, captures the local correlations induced by the nonlocal
interaction. Both methods, EDMFTandGW þ DMFT, require
the calculation of a local impurity problem with a frequency-
dependent interaction, which is quite straightforward in
CTQMC for a density-density type of interaction (Werner
and Millis, 2007, 2010).
A highlight of EDMFT has been establishing the picture

of local quantum criticality. Figure 38 shows the results by
Zhu, Grempel, and Si (2003) for the Kondo lattice model (86)
with an additional spin-dependent nonlocal interaction I of
Ising type. At zero temperature there is a quantum critical
point separating the Kondo phase with a large Fermi surface at
small I and the magnetic phase for large I. Grempel and Si
(2003) determined the corresponding critical exponent
α ≈ 0.7, which is outside the standard Hertz-Millis-Moriya
theory (Löhneysen et al., 2007).
Regarding GW þ DMFT, Ayral, Werner, and Biermann

(2012) showed that a fully self-consistent treatment of the
GW þ DMFT cures some of the deficiencies of self-consistent
GW, such as the failure to describe plasmon satellites. Werner
et al. (2012) incorporated the frequency-dependent interaction
obtained from constrained RPA into LDAþ DMFT. This
scheme may be viewed as a simplified version of GW þ
DMFT where the self-energy is local and the two-particle

FIG. 37. Conductivity σ as a function of the disorder strengthW.
Top: Results for 3D at T ¼ 0 with leading-order vertex correction
(σ0) compared to the bubble contribution (σð0Þ) and the DOS at
the Fermi level (ρF). Adapted from Pokorny and Janis, 2013.
Bottom: DF vs CPA results for d ¼ 1 (left) and d ¼ 2 (right) at
T ¼ 0.02t. From Terletska et al., 2013.
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quantities are evaluated at a non-self-consistent level.
Application to the normal phase of the iron pnictide super-
conductor BaFe2As2 showed that the dynamical screening of
the interaction significantly affects the low-energy electronic
structure. A second effect beyond standard DFTþ DMFT are
exchange contributions to the self-energy that stem from the
nonlocality of the interaction. These nonlocal self-energies
were shown to be significant in BaFe2As2, other iron
pnictides, and chalcogenides (Tomczak, van Schilfgaarde,
and Kotliar, 2012), as well as in transition metal oxides
(Tomczak et al., 2012; Miyake et al., 2013).
These realistic calculations as well as GW þ EDMFT

model calculations for the extended Hubbard Hamiltonian
(92) by Ayral, Biermann, and Werner (2013) show that the
dynamical screening leads to plasmonic features in the
spectral function. Huang et al. (2014) further found that
including nonlocal interactions up to the third-nearest neigh-
bors destabilizes the charge-ordered state, which may be
viewed as a kind of frustration effect. Tomczak et al.
(2012, 2014) and Boehnke et al. (2016) studied the spectral
properties of the prototypical correlated metal SrVO3 using
GW þ DMFT and self-consistent GW þ EDMFT, respec-
tively. They found that the effective local interaction is
considerably reduced due to dynamical screening effects in
RPA and conclude that the spectral function exhibits a
plasmon satellite in the region of the previously reported
upper Hubbard band. In the dielectric function, Fig. 39, this
plasmon peak is around 5 eV. This and the larger plasmon
peak around 14 eV agree with the electron-energy-loss
spectrum (EELS) of Kohiki et al. (2000).
Despite the success of EDMFT and GW þ EDMFT, they

do not provide a complete description of plasmons. This is
due to an inconsistent treatment of the single- and two-
particle properties, which breaks local charge conservation
and gauge invariance. In particular, from the continuity
equation ω2hnn�iqω ¼ q2hjj�iqω it follows that the polariza-
tion behaves as q2=ω2 for small q and finite (Matsubara)
frequencies ωm. This is the case for the Lindhardt function in
RPA, non-self-consistent GW (so-called G0W0), quasiparticle

self-consistent GW (QSGW) (Faleev, van Schilfgaarde, and
Kotani, 2004), and QSGW þ DMFT (Tomczak, 2015), but
not in EDMFT and GW þ DMFT. In EDMFT, the polariza-
tion is momentum independent and the plasmon dispersion
diverges for q → 0 in the presence of long-range Coulomb
interaction. Vertex corrections from a local but frequency-
dependent irreducible vertex are necessary to fulfill the Ward
identity. In the DB approach (Sec. III.G.3), such vertex
corrections can be constructed diagrammatically via nonlocal
polarization corrections. The resulting polarization Πω van-
ishes for small q as q2 (Rubtsov, Katsnelson, and Lichtenstein,
2012; Hafermann, 2014; Stepanov, van Loon et al., 2016).
Hence, the solution of the plasmon pole defined by
1þ VðqÞΠωðqÞ ¼ 0 yields the correct dispersion relation
ωðqÞ ¼ ωp þ aq2 at small q. Here a is a constant and ωp

is the plasma frequency.
Using DB, van Loon, Hafermann et al. (2014) showed that

the two-particle excitations exhibit both a renormalization of
the dispersion and a spectral weight transfer. This is similar to
the analogous interaction effects known for single-particle
excitations. Figure 40 shows the inverse dielectric function

FIG. 39. Inverse dielectric function of SrVO3 in RPA as a
function of frequency, showing plasmon peaks at 5 and 14 eV.
From Tomczak et al., 2014.

FIG. 40. Inverse dielectric function of the extended 2D Hubbard
model with long-range Coulomb interaction as a function of
momentum and energy for three different values of the effective
on-site interaction U�. The two-particle excitations show a
renormalized dispersion and spectral weight transfer. From
van Loon, Hafermann et al., 2014.

FIG. 38. (Left) Néel temperature TN and Kondo breakdown
scale E�

loc as a function of the nonlocal interaction I relative to the
Kondo scale T0

K for the Kondo lattice model with nonlocal spin
interaction. The Kondo effect vanishes simultaneously with the
magnetic phase transition. (Right) Fermi-surface volume collapse
at the quantum critical point from a large Fermi surface where the
f electrons contribute to the Fermi surface because of the Kondo
effect (for E�

loc > 0) to a small Fermi surface of the conduction
electrons only. From Zhu, Grempel, and Si, 2003.
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−Imϵ−1q ðEÞ of 2D surface plasmons in the presence of long-
range interaction VðqÞ. For weak interaction one observes a
broad particle-hole continuum and the expected ωpðqÞ ∼ ffiffiffi

q
p

dispersion of the 2D plasmon at small q. As the interaction is
increased (Fig. 40 middle), the plasmon dispersion is renor-
malized, and spectral weight is transferred to a second
branch which now becomes visible at larger energies.
Above U� ∼ 2.4 the system is a Mott insulator, and only
the weakly dispersing second band at energy U� associated
with doublon-holon excitations survives.
The extended Hubbard model with nearest-neighbor inter-

action V also shows a transition to a CDW ordering, which
was studied in lattice Monte Carlo calculations by Zhang and
Callaway (1989), in DMFT byWahle et al. (1998), in EDMFT
by Sun and Kotliar (2002), and in the two-particle self-
consistent approach by Davoudi and Tremblay (2007). In DB,
the momentum dependence of the polarization corrections is
also included. This shifts the DB CDW transition to smaller V
values compared to EDMFTand agrees with RPA in the weak-
coupling limit (van Loon, Lichtenstein et al., 2014).
Long-range nonlocal interactions can also play a crucial

role for ultracold quantum gases in optical lattices (Bloch,
Dalibard, and Zwerger, 2008; Bloch, Dalibard, and
Nascimbène, 2012; Lewenstein, Sanpera, and Ahufinger,
2012). For example, these highly tunable systems allow
one to realize the dipolar Fermi Hubbard model (Baranov,
2008; Lahaye et al., 2009; Baranov et al., 2012; Lewenstein,
Sanpera, and Ahufinger, 2012) which corresponds to the
Hamiltonian (92) with an anisotropic long-range dipolar
interaction Vjk ∼ ½1 − 3ð r̂jk ·d̂Þ2�=ðrjkÞ3. Here r̂jk is the direc-
tion and rjk the magnitude of the lattice vector from site j to k,
and all dipoles are assumed to point in the same direction d̂.
Using the DB approach, van Loon, Katsnelson, and Lemeshko
(2015) found that for sufficiently large dipole strengths and
dipoles oriented perpendicular to the lattice plane ðϕ ¼ 0Þ, a
transition to checkerboard order occurs, while a striped phase
emerges when they point to nearest neighbors ðϕ ¼ π=2Þ. For
dipoles pointing along the diagonal ðϕ ¼ π=4Þ, van Loon,
Katsnelson et al., 2016 found a novel ultra-long-range-
ordered phase which can alter the topological properties
and lead to a Lifshitz transition (Fig. 41).

A major advantage of diagrammatic extensions of DMFT is
that multiorbital and realistic material calculations are much
more feasible than in cluster extensions of DMFT which
are restricted to a very few lattice sites (Biermann et al., 2005;
Lee et al., 2012). Against this background it is maybe
surprising that there is hitherto only a single multiorbital
calculation by Galler, Thunström, Gunacker et al. (2017).11

One reason for this is that the calculation of the local
multiorbital vertex requires considerable effort, requiring
worm sampling in CT-HYB (Gunacker et al., 2015) for
actually calculating all contributions of the vertex. Within
the DΓA framework, nonlocal interactions Vq can be taken
into account as part of the irreducible vertex so that these are
naturally included in ab initio material calculations; see
Sec. III.A.3. This way all DMFT and GW Feynman diagrams
are included as well as nonlocal correlations beyond both.
In their AbinitioDΓA calculation of SrVO3, Galler,

Thunström, Gunacker et al. (2017) took the local vertex of
all three vanadium t2g orbitals into account and calculate from
it through ladder DΓA diagrams the self-energy which
becomes momentum dependent; for computational details,
cf. Galler, Thunström, Kaufmann et al. (2017). Bulk SrVO3 is
a strongly correlated metal and, at least at elevated temper-
atures, far away from any (e.g., magnetic) ordering. Hence,
one would expect for such a 3D material rather weak effects of
nonlocal correlations, with the exception of GW-like screen-
ing effects. But even for Vq ¼ 0 (i.e., without such GW
contributions), Galler, Thunström, Gunacker et al. (2017)
found a momentum differentiation larger than 0.2 eV in the
real part of the self-energy [see Fig. 42(a)], while the
k dependence of its imaginary part and of the quasiparticle

(a) (b)

(c) (d)

FIG. 42. AbinitioDΓA for SrVO3 showing the momentum
dependence of (a) the real and (b) imaginary parts of the self-
energy at the lowest Matsubara frequency (iν0) for the x-y orbital
in the kz ¼ 0 plane; (c) corresponding scattering rate γk and
(d) quasiparticle weight Zk. From Galler, Thunström, Gunacker
et al., 2017.

(a) (b)

FIG. 41. Spectral function of the dipolar fermion Hubbard
model superimposed over two different paths in the Brillouin
zone via the X and Y points, respectively. In the symmetric case,
both paths are equivalent (left). The dipolar interaction drives the
Lifshitz transition by breaking the symmetry between the X and Y
points (right). From van Loon, Katsnelson et al., 2016.

11Compare our discussion of Wilhelm et al. (2015) for a one-band
calculation with DFT-derived parameters and Hirschmeier, Hafer-
mann, and Lichtenstein (2018) for a one-band DF calculation with
two lattice sites in the unit cell.
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weight and scattering rate is much weaker [cf. related findings
for the 3D Hubbard model (Schäfer, Toschi, and Tomczak,
2015)]. In essence, the momentum (and orbital) differentiation
of the real part of the self-energy pushes the occupied and
unoccupied states farther away from each other. This shows
that even far away from a phase transition and even beyond
GW type of diagrams (Vq ¼ 0), nonlocal correlations play a
role in actual materials. Much larger effects are to be expected
in the vicinity of second-order phase transitions and for 2D or
layered materials. The AbinitioDΓA approach presents a
promising route to model such materials. We hence expect
realistic multiorbital calculations that include nonlocal charge
and spin fluctuations beyond GW þ DMFT to thrive in the
future.

V. OPEN SOURCE IMPLEMENTATIONS

The increasing complexity of numerical methods requires
expert knowledge and leads to increasing implementation
efforts. For these reasons, and to ensure reproducibility of
results, it is vital to make codes publicly accessible. We
encourage such efforts and believe they should be rewarded.
In recent years, a number of open source libraries and codes
have appeared or will appear in the near future. We can
separate these into program packages that (i) solve a local
impurity problem and allow calculating the two-particle vertex
and that (ii) calculate nonlocal correlations beyond DMFT
diagrammatically.
For step (i), solving the AIM, let us mention six program

packages: ALPS (Bauer et al., 2011; Gaenko et al., 2017), IQIST
(Huang et al., 2015), POMEROL (Antipov and Krivenko, 2015),
TRIQS (Parcollet et al., 2015), EDMFTF (Haule, 2007), and
W2DYNAMICS (Parragh et al., 2012; Wallerberger et al., 2018).
The ALPS and TRIQS libraries aim to provide a reusable set of
components to facilitate the implementation of algorithms for
strongly correlated systems. Strong-coupling CTQMC impu-
rity solvers based on ALPS are available (Gull, Werner et al.,
2011; Hafermann, Werner, and Gull, 2013; Shinaoka, Gull,
and Werner, 2017). The IQIST package (Huang et al., 2015)
provides a collection of impurity solvers and preprocessing
and postprocessing tools, allowing also for the computation of
two-particle functions. The POMEROL code (Antipov and
Krivenko, 2015) provides an optimized implementation of
the ED method to compute vertex functions. The TRIQS

package includes weak- and strong-coupling CTQMC (Seth
et al., 2016) and has been extended to two-particle quantities
with the development of TRILEX (Ayral and Parcollet, 2015,
2016b) and QUADRILEX (Ayral and Parcollet, 2016a). The
EDMFTF code (Haule, 2007) aims at DFTþ DMFT materials
calculations with a special emphasis on realizing the
Luttinger-Ward functional of Haule and Birol (2015).
The W2DYNAMICS package is also based on CTQMC in the
hybridization expansion and uses improved estimators and
worm sampling for calculating all components of the two-
particle multiorbital vertex (Gunacker et al., 2015, 2016) as
well as vertex asymptotics (Kaufmann, Gunacker, and
Held, 2017).
As for (ii), diagrammatic extensions of DMFT,

publicly available codes only start to emerge. OPENDF

(Antipov, LeBlanc, and Gull, 2015) is the first open source

implementation of the DF approach, LADDERDΓA (Rohringer
et al., 2018) and ABINITODΓA (Galler, Thunström, Kaufmann
et al., 2017) solve the ladder DΓA equations for a single orbital
including a Moriya λ correction (see Sec. III.A.2) and multiple
orbitals, respectively. ABINITODΓA also includes nonlocal
Coulomb interactions. PARQUET (Yang et al., 2009) and
VICTORY (Li et al., 2017) are program packages to solve the
parquet equations for a given fully irreducible vertex Λ as it is
used, for example, in DΓA. They differ in the way the vertex
at large frequencies outside the initial frequency box is
treated (periodic versus asymptotic boundary conditions for
frequencies).
Let us also mention some auxiliary codes: GFTOOLS

(Antipov, 2013) for manipulating Green’s functions (similar
tools are also included in ALPS and TRIQS) and several codes for
an analytical continuation with the maximum entropy method
(MaxEnt): MEM (Jarrell andGubernatis, 1996), MAXENT (Levy,
LeBlanc, and Gull, 2017), OMEGAMAXENT (Bergeron and
Tremblay, 2016), and W2DYNAMICS (Parragh et al., 2012;
Wallerberger et al., 2018) which incorporates MaxEnt with
optimization techniques developed by Sandvik (1998b).

VI. CONCLUSION AND OUTLOOK

Diagrammatic extensions of DMFT appealingly combine
numerical and analytical techniques for studying strongly
correlated electron systems. Local correlations are treated by
the method which is arguably best at this: DMFT or a more
general self-consistent (numerical) solution of an AIM. On top
of this, nonlocal correlations in the self-energy and suscep-
tibilities are constructed through Feynman diagrams.
Historically this development started with methods that
supplemented the local DMFT self-energy by a nonlocal
one from another method such as spin-boson theory, FLEX, or
GW. These combinations are discussed in Secs. III.F and
III.G.2, respectively. More recently, we have seen the rise of
methods which more intimately connect the local and non-
local parts. These approaches calculate a dynamical fre-
quency-dependent local vertex by solving an impurity
model numerically and derive nonlocal correlations therefrom
diagrammatically. One can envisage this as raising the DMFT
concept of the locality of the one-particle (irreducible) vertex
(i.e., the self-energy) to the next, i.e., two-particle vertex level.
All of these dynamical vertex approaches are closely related
and rely on the same concept, but they differ in which local
two-particle vertex is taken and how the diagrams are
constructed. One may compare this to the difference between
different cluster extensions of DMFT, say DCA versus
CDMFT. Table II provides an overview of the various
approaches.
In Sec. IV, we extensively compared these vertex

approaches with each other and against other state-of-the-
art approaches such as cluster extensions of DMFT and lattice
QMC. The application to the Hubbard model has shown a
qualitatively consistent picture for the self-energy, suscep-
tibility, and its phase diagram, e.g., regarding coherent
quasiparticle excitations and the suppression of long-range
order in comparison with DMFT. The methods have been
shown to reproduce highly nontrivial effects such as the
pseudogap. In some cases where benchmarks are available, we
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have even seen quantitative agreement. In general, one finds
that, while the second-order diagram already contains non-
trivial effects of dynamical short-range correlations, ladder
diagrams are important for a quantitative description. The
fluctuation diagnostics of the self-energy can be exploited to
choose which ladder should be considered. As expected, the
one-dimensional case turned out to be the most challenging
for an extension of (dynamical) mean field theory. However it
is encouraging that the corresponding results are improved
substantially by using the vertex on a cluster of sites as a
starting point. The application to the (extended) Hubbard,
Falicov-Kimball, Kondo lattice, and Anderson models dem-
onstrates that these methods are versatile.
A unique feature of diagrammatic extensions is that they

combine the nonperturbative physics of local correlations à la
DMFT with truly long-ranged correlations over hundreds or
thousands of sites. In addition, they obviously donot suffer from
a sign problem.Wehave seen resultswhichwould be difficult or
even impossible to obtain using other methods. Examples are
the numerical calculation of (quantum) critical exponents of
models for strongly correlated electrons, the absence of a Mott
transition in the two-dimensional Hubbard model, or the rich
phase diagram of the frustrated triangular-lattice Hubbard
model. Another highlight is the renormalization of the
dispersion and spectral weight transfer of collective modes.
The application to theKondo latticemodel revealed an interplay
of local Kondo physics and long-range antiferromagnetic
correlations around the quantum critical point. These results
establish the complementarity of diagrammatic extensions to
other many-body methods, in particular, cluster extensions.
After roughly ten years of development, we have seen

only the tip of the iceberg of diagrammatic extensions of
DMFT. The field is dynamic and many new results emerged
even during the preparation of this review. We expect to see
many more applications in the future. This is driven by
a growing community of users of these methods and

techniques as well as by methodological advances. These
have already allowed the treatment of nonlocal interactions in
AbinitioDΓA or DB. Recent advances in impurity solvers
have triggered a first realistic multiorbital AbinitioDΓA
calculation for SrVO3, which offers the prospects of improv-
ing even upon GW þ DMFT. Indeed diagrammatic exten-
sions of DMFT are much more promising for ab initio
materials calculations than cluster extensions of DMFT, which
are numerically feasible only for a few cluster sites if multiple
orbitals need to be taken into account. Another forthcoming
topic is the calculation of vertex corrections to the electrical
conductivity. Using the real-space formulation of these meth-
ods one can imagine applications to ultracold atoms in
harmonic trapping potentials or topological insulators.
Thanks to new technical developments, the calculation of

the local three-particle vertex has become possible. This
allowed for the calculation of selected diagrams and an
estimate of the error when the DF vertex is truncated at the
two-particle level. Further diagrams need to be derived and
considered, and a similar analysis still needs to be done for 1PI
and DΓA. But the first results already show that a systematic
improvement of the diagrammatic extensions of DMFT is
feasible, albeit to a limited extent. Besides, this development
may lead to new insight and the discovery of physical effects
originating from three-particle excitations. On the other hand,
diagrammatic extensions that expand around a DCA or
CDMFT cluster as a starting point have been shown to be
doable and it is clear that such calculations will become more
prevalent in the future. The combination of diagrammatic
extensions with the functional renormalization group is
appealing from a theoretical point of view, which should
be further explored. The DMF2RG has shown first encour-
aging results.
Last but not least, we believe that the reviewed diagram-

matic approaches offer a new route to the thriving field of
strongly correlated electron systems out of equilibrium.

TABLE II. Summary of the various closely related diagrammatic extensions of DMFT. The first column denotes the method and the second
column the local vertex function that serves as a starting point; these are the different two-particle vertices defined in Sec. II.Aa and the bosonic
three-leg vertex γνω. The third column identifies the Green’s function lines connecting these local building blocks via the Feynman diagrams of
the fourth column.b The last column denotes the fundamental functionalK or the action S of the functional integral the method is based on. Here
DF and DB introduce dual fermionic c̃ð†Þ and bosonic variables ρ̃ð�Þ. For further details we refer the reader to the corresponding sections.

Method Local vertex Green’s function Diagrams Action or functional

Parquet DΓA (Sec. III.A.1) Two-particle irreducible Λνν0ω Gkν Parquet

QUADRILEX (Sec. III.A.4) K4½Gloc
ν ; Gð2Þ;νν0ω

σσ0 �, Eq. (29)
Ladder DΓA (Sec. III.A.2) 2PI in channel r: Γνν0ω

r Gkν Ladder � � �
DF (Sec. III.B) One-particle reducible Fνν0ω G̃0;kν Second order, ladder,

parquet
S̃½c̃þ; c̃�, Eq. (38)

1PI (Sec. III.C) One-particle irreduciblea Fνν0ω G̃0;kν, Gloc
ν Ladder S1PI, Eq. (49)

DMF2RG (Sec. III.D) One-particle irreduciblea Fνν0ω GΛ;kν, SΛ;kν RG flow in Λ SΛ½cþ; c�, Eq. (52)
TRILEX (Sec. III.G.4) Three-leg vertex γνω Gkν, Wqω Hedin equations (82) K3½Gν;Wω; χνω�, Eq. (81)
DB (Sec. III.G.3) Fνν0ω, γνω G̃0;kν, W̃0;qω Second order, ladder S̃½c̃þ; c̃; ρ̃�; ρ̃�, Eq. (72)

a1PI and DMF2RG expand in terms of 1PI vertices, which for the two-particle vertex happens to be identical to the full vertex F used
in DF. Even if truncated at the two-particle level, the difference in the expansion scheme leads nonetheless to distinct 1PI and DF
methods; see Sec. III.C.

bGloc
ν is the local propagator of the reference system and G̃0;kν the nonlocal lattice propagator constructed with the local self-energy of

the reference system [Eqs. (39), (50), and (73)]; W̃0;qω is a corresponding bosonic (interaction) propagator [Eq. (74)].
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In the past, these methods were used by a number of
specialized groups. Because these methods deal with vertex
functions they are technically more involved than other
approaches. This barrier will become much less important
in the near future, not least due to efforts to release codes into
the public domain. We are convinced that these methods will
become standard tools in the research of strongly correlated
systems and hope that this review will encourage our readers
to use one of these methods in their research.
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Schäfer, T., S. Ciuchi,M.Wallerberger, P. Thunström,O. Gunnarsson,
G. Sangiovanni,G. Rohringer, andA. Toschi, 2016, Phys. Rev. B 94,
235108.
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Vollhardt, D., N. Blümer, K. Held, M. Kollar, J. Schlipf, M. Ulmke,
and J. Wahle, 1998, Adv. Solid State Phys. 38, 383.

Vučičević, J., T. Ayral, and O. Parcollet, 2017, Phys. Rev. B 96,
104504.

Vučičević, J., N. Wentzell, M. Ferrero, and O. Parcollet, 2018, Phys.
Rev. B 97, 125141.
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