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The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single
field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes
in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the
ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach
those frontiers requires insight into the physics underlying the interaction of strong high-frequency
(optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this
insight. Introduction to the foundations of strong-field phenomena defines and compares regimes
of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and
semiconductor superlattices, followed by a review of recent experimental advances in the study of
strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling
electronic processes up to petahertz frequencies are discussed.
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I. INTRODUCTION

The description of a particle in a periodic potential has been
one of the greatest successes of quantum mechanics, revolu-
tionizing solid-state physics and triggering the evolution of
modern electronics, which forms the basis of our life. First
works on band theory (Bethe, 1928; Bloch, 1929; Kronig
and Penney, 1931), localized electronic states (Wannier, 1960,
1962), and electron dynamics in the presence of an external
field (Zener, 1934; Houston, 1940; Kane, 1960; Keldysh,
1965) contributed to the foundations of strong-field semi-
conductor physics and its numerous industrial applications.
Progress in studies of optical and transport phenomena

in solids governed the evolution of modern electronics. While
first-generation semiconductor devices were based on a
diffusive transport, today’s nano-MOSFETs (metal-oxide-
semiconductor field-effect transistor) operate in the quasibal-
listic and high-field regimes (Frank et al., 2001; Martin,
Bournel, and Dollfus, 2004; Palestri et al., 2005; Datta, 2012).
As a result of the continued miniaturization of semiconductor
integrated circuits (Ionescu and Riel, 2011; Taur and Ning,
2013), microelectronics has approached operating regimes
where dissipation phenomena limit the rate of information
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processing (Pop, 2010; Markov, 2014). For example, in spite
of ballistic transport within nm-scale semiconductor channels,
the clock frequency in contemporary digital electronics cannot
be increased beyond several gigahertz because of excessive
energy dissipation in the contacts (Pop, 2010; Datta, 2012).
Recent developments in the synthesis of intense light pulses

with a precisely controlled electric field in the terahertz (Liu,
Park, and Weiner, 1996; Ferguson and Zhang, 2002; Kohler
et al., 2002; Chan et al., 2011), infrared, and visible domains
(Baltuska et al., 2003; Goulielmakis et al., 2008; Huang et al.,
2011; Fattahi et al., 2014) present a new approach to under-
standing and, possibly, overcoming the speed limits of ultra-
fast solid-state metrology and spectroscopy (Agostini and
DiMauro, 2004; Krausz and Ivanov, 2009; Krausz and
Stockman, 2014). Strong light fields are able to substantially
and nondestructively modify electronic and optical properties
of a solid within a single oscillation of the field (Schiffrin
et al., 2013; Schultze et al., 2013; Schubert et al., 2014;
Lucchini et al., 2016). The relevant effects may last only as
long as the external field is present, as in the case of the
dynamic Franz-Keldysh effect (FKE), or they may be fol-
lowed by relatively slow relaxation dynamics, as in the case of
interband excitations. Strong fields also enable novel appli-
cations, such as the high-harmonic generation in bulk solids
(Ghimire et al., 2011a; Schubert et al., 2014; Vampa et al.,
2014; Luu et al., 2015; Ndabashimiye et al., 2016; Hammond
et al., 2017), two-dimensional (2D) materials (Al-Naib, Sipe,
and Dignam, 2014; Cox, Marini, and de Abajo, 2017; Liu
et al., 2017), and artificially designed plasmonic structures
(Han et al., 2016; Ciappina et al., 2017; Sivis et al., 2017;
Vampa et al., 2017).
Attosecond metrology offers experimental means for study-

ing and steering processes that unfold within a cycle of an
optical field, promising direct access to light-controlled
electron motion in a regime where quantum coherence is
preserved. Nevertheless, pushing the frontiers of solid-state
metrology to multi-PHz bandwidths and sub-100-attosecond
temporal resolution is a major challenge that requires further
technological progress and new insight into the basic physics
of light-driven electron motion. In this context, valuable
lessons can be learned from research on artificial periodic
structures, such as semiconductor superlattices (Ivchenko
and Pikus, 1997; Leo, 2003; Tsu, 2011) and optical lattices
(Bloch, 2005; Lewenstein, Sanpera, and Ahufinger, 2012;
Gardiner and Zoller, 2015), where similar physical processes
take place under conditions more convenient for experiments.
Reviewing the basic physical phenomena that may affect
the future evolution of ultrafast metrology and signal process-
ing, we combine insight from several disparate scientific
communities.
This Colloquium is structured as follows. This Introduction

is followed by a classification of field-matter interaction
regimes in terms of dimensionless parameters, where we also
recapitulate the key approximations for simplified modeling
of ultrafast phenomena in periodic systems (Sec. II). In
Sec. III, we review widely known strong-field phenomena
in periodic structures. Discussing similarities and differences
between natural and artificial systems, we focus on bulk solids
and semiconductor superlattices. We address new measure-
ment and control techniques offered by attosecond science,

such as field-resolved control of transport properties at optical
frequencies, high-order harmonic radiation spectroscopy,
and real-time probing of the electronic processes unfolding
under the influence of strong, controlled optical fields. Finally,
we conclude with an outlook into the future of attosecond
solid-state physics (Sec. IV).

II. INTERACTION REGIMES

A. Basic concepts

In our Colloquium, we discuss a range of light-matter
interaction regimes that involve different theoretical
approaches and physical interpretations. Searching for a
unified description of these regimes, we classify them using
a set of dimensionless parameters, each of which is a ratio
of two characteristic frequencies. They describe the incident
light, the solid, and the most basic physical phenomena
observed in the solid interacting with light. We frequently
refer to these dimensionless quantities as adiabaticity param-
eters (Mostafazadeh, 1997). For example, the ratio of the
fundamental band gap Eg to a photon energy ℏω0 is one such
parameter. It quantifies the degree of adiabaticity because
the characteristic response time of valence electrons to an
external perturbation is inversely proportional to the band gap.
So, if N ¼ Eg/ℏω0 ≫ 1, then the wave function of a valence
electron adiabatically adapts itself to the external field unless
the field is strong enough to let the electron escape the binding
potential. The concept of adiabaticity has proven to be a
valuable analysis tool, giving insight into the dynamics of
complex systems whenever very different and thus well-
separable temporal or spatial scales are involved.
For an electron driven by an homogeneous electric field

FðtÞ in a spatially periodic lattice potential, intraband motion
constitutes an important example of adiabatic dynamics. In
accord with its name, this is the motion of an electron within a
particular band. If, by virtue of approximations, the electron
is not allowed to undergo transitions to other bands, then
the only degree of freedom left for carrier dynamics is the
intraband motion, which obeys the following equations
(Bloch, 1929):

K̇ ¼ −
e
ℏ
FðtÞ; ð1aÞ

ṙn ¼
1

ℏ
∇KEnðKÞ; ð1bÞ

where e > 0 is the elementary charge, n is a band index, and
EnðkÞ is the dependence of charge-carrier energy on a crystal
momentum, which is referred to as band dispersion.
The first equation (1a) is known as the acceleration

theorem. It resembles the classical Newton’s equation
Ṗ ¼ −eℏ−1FðtÞ, describing the kinetic momentum of a free
electron in an external electric field. Nevertheless, Eq. (1a) is
an inherently quantum-mechanical result (Rossi and Kuhn,
2002). The general solution of this equation is

KðtÞ ¼ Kðt0Þ −
e
ℏ

Z
t

t0

Fðt1Þdt1: ð2Þ
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This result is equally applicable if the carrier’s initial state is
given by a pure Bloch state or by a wave packet with a central
crystal momentum Kðt0Þ ¼ k (Ashcroft and Mermin, 1976).
By contrast, the second equation of motion (1b) is valid only
for a spatially localized wave packet with well-defined center-
of-mass coordinate rn and group velocity vn(KðtÞ)≡ ṙn.
Within the approximation of a purely intraband motion, an

oscillating electric field periodically changes the electron’s
energy. The cycle-averaged energy of intraband motion is
known as the ponderomotive energy. For a monochromatic
electric field with frequency ω0, we consider a reciprocal-
space trajectory KðtÞ oscillating around crystal momentum k.
Averaging the nth band energy En over a period of
T0 ¼ 2π/ω0, we obtain

UðnÞ
p ðkÞ ¼ 1

T0

Z
T0

0

½En(KðtÞ)−EnðkÞ�dt¼ En(KðtÞ)−EnðkÞ:

ð3Þ

As we will show in Sec. II.B, the probabilities of transitions
between two energy bands depend on the effective band
gap Ecv(KðtÞ) ¼ Ec(KðtÞ) − Ev(KðtÞ), which is influenced
by the intraband motion. To evaluate the cycle-averaged
band gap, one needs to subtract the ponderomotive energy
in the initial state from that in the final state UpðkÞ ¼
UðcÞ

p ðkÞ − UðvÞ
p ðkÞ, where n ¼ c and n ¼ v denote the lowest

conduction and highest valence band, respectively. This
difference yields the ponderomotive energy of an electron-
hole pair

UpðkÞ ¼ Ecv(KðtÞ) − EcvðkÞ; ð4Þ

where EcvðkÞ is the band gap at crystal momentum k. In
direct-band-gap materials, Ecvð0Þ ¼ Eg.
We use the term “electron-hole pair” because on the time

scales much shorter than those of momentum scattering and
dephasing emerging carriers are described by a coherent
superposition of states in the valence and conduction bands
and thus cannot be considered as independent particles.
Equation (2) applies equally to a conduction-band (CB)
electron and the hole left in the valence band, hence their
intraband motion after excitation is correlated, even though
the external field tends to separate them in real space.
In the effective-mass approximation (EMA), the band

energies are given by (Yu and Cardona, 2010)

EðEMAÞ
n ðkÞ ¼ ℏ2k2

2mn
; ð5Þ

where, for simplicity, we assumed an isotropic medium. Using
Eq. (5) we obtain the following expression for the ponder-
omotive energy of an electron-hole pair:

UðEMAÞ
p ¼ e2F2

0ð1þ β2Þ
4mω2

0

; ð6Þ

where F0 is the amplitude of the oscillating electric field,

β ¼ jFþj − jF−j
jFþj þ jF−j

is the ellipticity, and Fþ and F− are the amplitudes of left- and
right-rotating components, respectively. In particular, β ¼ 0

stands for the linear polarization and β ¼ �1 corresponds to
the circular one. Equation (6) involves the reduced effective
mass of an electron-hole pair:

1

m
¼ 1

mc
−

1

mv
¼ 1

mc
þ 1

mh
; ð7Þ

where mh ¼ −mv is the hole mass. Ponderomotive energy is
also well defined for nonparabolic bands. In Appendix A, we
provided an analytical expression for Up in the tight-binding
approximation.
An important characteristic frequency that we use in our

classification scheme is inversely proportional to the time it
takes KðtÞ to make a round-trip through the first Brillouin
zone (BZ) in a static field F0. For any reciprocal lattice vector
G, crystal momenta k and kþ G are equivalent, so in the
absence of interband transitions, the wave function of an
electron exposed to a static external field parallel to G would
oscillate with a frequency known as the Bloch frequency:

ωB ¼ 2πjeF0j
ℏG

¼ jeF0ja
ℏ

; ð8Þ

where a is the lattice constant.
Finally, we also use the peak Rabi frequency

ωR ¼ jeF0 · ξ
ðmaxÞ
cv j

ℏ
ð9Þ

to classify strong-field phenomena occurring in a nearly

resonant field with amplitude F0. Here jξðmaxÞ
cv j ¼

maxkjξcvðkÞj is the peak absolute value of the interband
matrix element, which we define later by Eq. (17).
Considering the ratios of characteristic frequencies, we

obtain a set of dimensionless parameters summarized in
Table I that describe various regimes of interaction between
an optical field and a solid. The exact definitions and physical
interpretations of these parameters are given in the rest of this
section where we discuss physical processes inherent to
different regimes.
Since the concept of adiabaticity plays an important role for

strong-field phenomena, we briefly review the corresponding

TABLE I. Characteristic frequencies and dimensionless parameters
describing the regimes (adiabatic or diabatic limits) of laser field
interaction with periodic potentials. The parameters are proportional
to the ratio of the frequencies from the upper row and the left column.

Eg/ℏ Up/ℏ ωB ωR

ω0 N γNP γDL γð0ÞRF

Eg/ℏ γ−2K γBH γðgÞRF

Up/ℏ γBP γRP
ωB γRB
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quantum-mechanical formalism. Let the Hamilton operator
be ĤðtÞ ¼ Ĥ0 þ V̂ðtÞ, where Ĥ0 is the Hamiltonian of the
unperturbed quantum system, and V̂ðtÞ accounts for the
interaction with an external time-dependent field that is
present only during a finite interval of time. The interaction
is not necessarily weak, and we describe it with the time-
dependent Schrödinger equation (TDSE):

iℏ
dΨðr; tÞ

dt
¼ ĤðtÞΨðr; tÞ: ð10Þ

If the system is initially in an eigenstate of Ĥ0, then the
adiabatic theorem of quantum mechanics (Born and Fock,
1928) dictates that the system must remain in an adiabatic
(instantaneous) eigenstate of the time-dependent Hamiltonian
as long as the interaction potential V̂ðtÞ changes sufficiently
slowly and the state is nondegenerate. Frequently, the
Hamiltonian depends on the time via a set of adiabatic
parameters ΛðtÞ: ĤðtÞ≡ Ĥ(ΛðtÞ). Then the adiabatic states
are defined by the following eigenvalue problem:

Ĥ(ΛðtÞ)ψn(ΛðtÞ) ¼ En(ΛðtÞ)ψn(ΛðtÞ): ð11Þ

For the simplest case of discrete and nondegenerate levels, this
approximation is well justified if the potential V̂ðtÞ changes on
a time scale much longer than the characteristic time τ ¼
2πℏ/jEn(ΛðtÞ) − Em(ΛðtÞ)j (Sakurai and Napolitano, 2013):

τ

���� ∂V̂ðtÞ∂t
���� ≪ jV̂ðtÞj:

Also, there are modern generalizations of the adiabatic
theorem that allow for degeneracies (Avron and Elgart,
1999; Rigolin and Ortiz, 2012).
A rapidly varying V̂ðtÞ can prevent the wave function from

adapting to it. Hence the system will undergo transitions
between adiabatic states. This type of evolution is called
diabatic or, equivalently, nonadiabatic. A general evolution of
a quantum system can be described by a superposition of
adiabatic states:

Ψðr; tÞ ¼
X
n

anðtÞψn(ΛðtÞ): ð12Þ

Substituting Eq. (12) into the TDSE (10) yields equations for
the probability amplitudes anðtÞ. This procedure provides a
general framework for iterative solution of the TDSE in the
basis of adiabatic eigenstates known as adiabatic perturbation
theory (Bransden and Joachain, 2000; Teufel, 2003; Rigolin,
Ortiz, and Ponce, 2008; Sakurai and Napolitano, 2013).
For a specific problem, one can arrive at various adiabatic

bases by taking advantage of the gauge freedom, that is, by
applying unitary transformations to the Hamiltonian. Such a
transformation consists of replacingΨ with ÛΨ and ĤðtÞwith
Û Ĥ Û† − iℏÛð∂Û†/∂tÞ, where Û is a unitary operator.
Let us now consider a single electron moving in a periodic

lattice potential, the field-free eigenstates of which are given

by Bloch functions ψ ðBÞ
n;k ðrÞ ¼ un;kðrÞeik⋅r. We begin by

writing the time-dependent Hamiltonian in the velocity gauge
and the dipole approximation:

ĤðtÞ ¼ ½p̂þ eAðtÞ�2
2m0

þ V̂ lattðrÞ;

where m0 is the free-electron mass, p̂ is the momentum
operator,

AðtÞ ¼ −
Z

t

t0

Fðt0Þdt0 ð13Þ

is the vector potential, and V̂ lattðrÞ is an effective periodic
lattice potential created by ions and other electrons. For
simplicity, we assume the lattice potential to be static and
local. By using Û1 ¼ e−ik⋅r as a unitary transformation, we
arrive at

ĤðtÞ ¼ ½p̂þ ℏKðtÞ�2
2m0

þ V̂ lattðrÞ: ð14Þ

The transformed eigenstates of Eq. (14) are nothing else but
periodic parts of the Bloch functions un;KðtÞðrÞ, where the
field-free crystal momentum k is replaced by the kinetic
one KðtÞ.
This form of the Hamiltonian, where KðtÞ is an adiabatic

parameter that conforms to the acceleration theorem, is a
starting point for applying the adiabatic perturbation theory to
electrons in periodic potentials (Bychkov and Dykhne, 1970;
Zak, 1989; Xiao, Chang, and Niu, 2010). With the trans-
formation Û2 ¼ eiKðtÞ⋅r, one obtains the adiabatic solutions

ψ ðHÞ
n;k ðr; tÞ ¼ un;KðtÞðrÞeiKðtÞ·reiϕn;kðt;t0Þeiγn;kðt;t0Þ ð15Þ

known as Houston states in the length gauge (Houston, 1940;
Berry, 1984; Zak, 1989). Here

ϕn;kðt; t0Þ ¼ −
1

ℏ

Z
t

t0

En(Kðt1Þ)dt1

is the dynamic phase,

γn;kðt; t0Þ ¼ −
e
ℏ

Z
t

t0

Fðt1Þ · ξnn(Kðt1Þ)dt1 ð16Þ

is the geometric phase (Pancharatnam, 1956; Berry, 1984),
EnðkÞ is the energy of the nth band, and

ξnmðkÞ ¼
i
v

Z
v
u�n;kðrÞ∇kum;kðrÞd3r ð17Þ

is the matrix element of the crystal-coordinate operator
evaluated by integration over the volume v of a unit cell.
A diagonal element of this matrix ξnnðkÞ is the Berry
connection of the nth band. We discuss effects related to
the Berry connection in Sec. III.E.
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B. Interband transitions in strong nonresonant fields

Transparent media are particularly well suited for studying
highly nonlinear nondestructive phenomena because most of
the energy of a laser pulse escapes the medium. In dielectrics
and semiconductors that are transparent within the bandwidth
of a laser pulse, single-photon transitions are prohibited by
the band gap. Consequently, a valence-band electron can be
excited to a conduction band only if several photons are
absorbed at the same time.
For moderately intense light, these transitions may be well

described by the conventional perturbation theory constructed
in the basis of the unperturbed Hamiltonian eigenstates. In
this approach, corrections to the wave function are found as
terms of the Taylor expansion with respect to electric-field
amplitude F0. This series converges if the matrix element of a
perturbation is smaller than the energy difference between

unperturbed states jVnmðtÞj < jEð0Þ
n − Eð0Þ

m j (Bransden and
Joachain, 2000). This condition defines the perturbative
regime. At sufficiently high intensities, the perturbative
expansion with respect to the field amplitude fails (e.g., it
may diverge or give qualitatively wrong predictions), in which
case we refer to the regime as “nonperturbative.” We note,
however, that this term restricts only the applicability of the
conventional perturbation theory. Corrections in the adiabatic
perturbation theory may include nonanalytical smooth func-
tions of the field amplitude, e.g., expð−α/jF0jÞ, describing
nonperturbative phenomena.
An example of such a theory is the analytical approach to

strong-field ionization of atoms and interband transitions in
solids developed by Keldysh in his seminal paper (Keldysh,
1965), which was followed by many related works (Bychkov
and Dykhne, 1970; Kovarskii and Perlin, 1971; Faisal, 1973;
Reiss, 1980; Minasian and Avetisian, 1986; Mishima et al.,
2002; Gruzdev, 2007; Vanne and Saenz, 2007; Hawkins and
Ivanov, 2013; Shcheblanov et al., 2017). The key approximation
of this theory is the neglect of the Coulomb interaction between
an electron excited to the conduction band and the positively
charged hole left behind in the valence band. In atomic physics,
this has become known as the strong-field approximation (SFA)
(Reiss, 1980). For solids, the SFA translates into the neglect of
excitonic effects. This is a good approximation if the exciton
binding energy Eex is much smaller than the work that the
external field does on an electron over an excitonBohr radiusaB,
i.e., Eex ≪ jeF0jaB. For example, in silicon, where aB ≈
4.5 nm and Eex ≈ 15 meV, the SFA is well justifiable for field
amplitudes jF0j ≫ 3.3 V/μm.
The main result of the Keldysh theory is an analytical

expression for the cycle-averaged rate of the interband
transitions in a monochromatic electric field of arbitrary
strength. This expression, which we do not reproduce here,
contains an important dimensionless parameter known as the
Keldysh parameter:

γK ¼
ffiffiffiffiffiffiffiffiffi
Eg

4Up

s
: ð18Þ

In the effective-mass approximation [see Eq. (6)], it can be
written as

γK ¼ ω0

jeF0j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mEg

1þ β2

s
;

where m is the reduced effective mass defined by Eq. (7).
This parameter classifies the regimes of interband transi-

tions into adiabatic tunneling for γK ≪ 1, diabatic tunneling
for γK ∼ 1 (Nakamura, 1992; Yudin and Ivanov, 2001; Ivanov,
Spanner, and Smirnova, 2005), and multiphoton excitations
for γK ≫ 1. Figure 1 illustrates these regimes for atomic and
lattice potentials in real-space representation. In the adiabatic
tunneling regime, the external field changes so slowly that the
wave functions of bound electrons have sufficient time to
adjust themselves to the evolving potentials. The electron
penetrates the partially suppressed potential barrier “horizon-
tally,” i.e., without changing its total energy. In this regime,
transition probabilities are well estimated by integrating static-
field transition rates over time, which has been referred to
as the quasistatic or adiabatic tunneling approximation.
By contrast, transitions in the multiphoton regime occur
“vertically,” without any penetration into classically forbidden
regions; see Fig. 1. These two opposite limits smoothly pass
into each other in the intermediate regime known in the
literature as diabatic tunneling, where the external potential
changes too fast for the wave function of the electron to
adjust, while the classically forbidden region is still involved
in the process. As a result, an electron gradually acquires

(b)

Tunneling
Bloch oscillations

Multiphoton transition

Adiabatic tunneling

Diabatic tunneling

Multiphoton transition

(a)

eF(t)x

VB
CB

CB2

FIG. 1. Schematic real-space representation of various regimes
of (a) atomic photoionization and (b) interband and intraband
transitions in periodic potential exposed to an oscillating electric
field. Here VB, CB, and CB2 denote the highest valence band,
and the first and second conduction bands, respectively. In the
multiphoton regime (γK ≫ 1), electrons are predominantly ex-
cited via absorption of energy from multiple field quanta (solid
arrows). In the diabatic tunneling regime (γK ∼ 1), the interaction
with an oscillating potential barrier transfers energy to a moving
electron (long-dashed arrows). In the regime of adiabatic tunnel-
ing (γK ≪ 1), an electron tunnels through the potential barrier
without changing its energy (horizontal short-dashed arrows).
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some energy that facilitates its transition into the continuum
of free states.
Keldysh obtained his results in the two-band approxima-

tion, assuming that the electric field predominantly excites
electrons from the highest valence band to the lowest con-
duction band. Substitution of Eqs. (12) and (15) into the
TDSE (10) yields the following expression for the occupation
probability amplitude of the conduction-band Houston state in
the two-band model (Bychkov and Dykhne, 1970; Krieger
and Iafrate, 1986):

að1Þc;kðtÞ ¼ −
i
ℏ

Z
t

t0

Vcvðt1Þeiϕ0
cvðk;t1;t0Þdt1; ð19Þ

where

VcvðtÞ ¼ eFðtÞ · ξcv(KðtÞ) ð20Þ

is the nondiagonal matrix element of interaction with the field,

ϕ0
cvðk; t1; t0Þ ¼

1

ℏ

Z
t1

t0

E0
cv(Kðt2Þ)dt2 ð21Þ

is the relative phase of the electron in a quantum state
oscillating between the conduction and valence bands,
ξcvðkÞ is the interband matrix element, and E0

cv(KðtÞ) ¼
E0
c(KðtÞ) − E0

v(KðtÞ) is the time-dependent band gap.
Following Kane (1960) and Argyres (1962), we simplified
our notation by introducing the modified band energies

E0
n(KðtÞ) ¼ En(KðtÞ)þ eFðtÞ · ξnn(KðtÞ) ð22Þ

and combining the dynamic and geometric phases
ϕ0
n;k ¼ ϕn;k þ γn;k.
The probability amplitude given by Eq. (19) is a result of

the first-order adiabatic perturbation theory (Bransden and
Joachain, 2000; Sakurai and Napolitano, 2013), where the role
of the adiabatic parameter is played by the time-dependent
crystal momentum KðtÞ. Using the Dyson series (Sakurai and
Napolitano, 2013), it is also straightforward to derive the
evolution operator and corrections of an arbitrary order (see
Appendix B).
Equations (19)–(21) show that electron dynamics in strong

fields emerge from a nontrivial combination of interband and
intraband motion. Their mutual influence becomes particu-
larly clear in the Houston basis, where the probability
amplitude of conduction-band occupation (19) includes the
time-dependent band gap E0

cv(KðtÞ) and interband matrix
element ξcv(KðtÞ), both depending on a crystal momentum
KðtÞ that describes intraband motion. In the subsequent text
we omit, for simplicity, the geometric-phase contribution
(E0

cv → Ecv;ϕ0
cv → ϕcv). We will return to its discussion in

Sec. III.E.
For a monochromatic field, the integral in Eq. (19) can be

evaluated analytically using the saddle-point approximation
(Keldysh, 1965) or the residue theorem (Mishima et al., 2002;
Vanne and Saenz, 2007). In his original paper, Keldysh
used analytical expressions of energy bands and optical
matrix element from the second order of the two-band

k · p-perturbation theory (Kane, 1960; Yu and Cardona,
2010). In this model, the band gap monotonically increases
with jkj to infinity as

EcvðkÞ ¼ Eg

�
1þ ℏ2k2

mEg

�
1/2

; ð23Þ

while the magnitude of the interband matrix element is
estimated by

ξcv(KðtÞ) ≈ ξcvð0Þ ¼
ℏ

2
ffiffiffiffiffiffiffiffiffi
mEg

p : ð24Þ

The ratio of the ponderomotive and photon energies (see
Table I)

γNP ¼ Up

ℏω0

ð25Þ

is called the nonperturbative intensity parameter (Reiss,
1992) because it naturally appears in a perturbative expansion
of strong-field theories (Keldysh, 1965; Faisal, 1973; Reiss,
1980). At the same time, this parameter describes the number
of additional photons that must be involved in the excitation
of an electron-hole pair to overcome the increase of the band
gap due to intraband motion [see Eq. (4)].
Cycle-averaged transition rates derived from Eq. (19) have

particularly large values if the following energy conservation
law is satisfied (Keldysh, 1965):

Ecv(KðtÞ) ¼ Ñℏω0; ð26Þ

i.e., when exactly an integer number of photons is required to
overcome the cycle-averaged band gap. Near the Γ point,
Eq. (26) reduces to Ẽg ¼ Ñℏω0 where, according to Eq. (4),
Ẽg ¼ Eg þ Up is the effective band gap in the presence of the
driving field. Thus the number of photons that must participate
in a multiphoton transition is given by (Keldysh, 1965)

Ñ ¼
�
Eg þ Up

ℏω0

þ 1

�
; ð27Þ

where bxc denotes the floor function (the largest integer less
than or equal to x).
As the field amplitude F0 grows, Ñ increases stepwise. At

each of these steps, the number of photons required for
multiphoton transitions increases by 1, which makes the
cycle-averaged transition rate a locally decreasing function
of F0. This nonperturbative phenomenon is important for
γNP ≳ 1 and has become known as multiphoton channel
closing (Reiss, 1980; Story, Duncan, and Gallagher, 1994;
Paulus et al., 2001; Kopold et al., 2002). We illustrate
multiphoton channel closing in Fig. 2, which compares
the general expression for the excitation rate derived by
Keldysh (1965) with the static-field Zener tunneling rate
(Zener, 1934). At moderately strong fields, the general
excitation rate is approximately proportional to F2Ñ

0 between
consecutive channel closings. Since only an integer number
of photons can be absorbed, channel closing leads to a
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sawtoothlike dependence of the rate on the field amplitude.
We note that, by itself, the γK ≫ 1 condition does not
guarantee the applicability of the conventional perturbation
theory where the small parameter is proportional to F0 (Reiss,
1992). For example, Fig. 2 shows that the perturbative scaling
law ∝ F10

0 describing multiphoton absorption starts diverging
from the total excitation rate at γNP ¼ 1, even though, at this
field strength, γK ≈ 2.

C. Bloch oscillations and Wannier-Stark localization

Once an external field drives an electron to the boundary
of the Brillouin zone, the electron’s de Broglie wavelength
becomes equal to twice the lattice period:

jKðk ¼ 0; tÞj ¼ π

a
¼ 2π

λ
⇒ λ ¼ 2a;

which is a condition for Bragg scattering on the lattice
potential. In the reduced zone scheme, an electron’s trajectory
terminates at the boundary of the first Brillouin zone and
continues on the opposite side of the zone. If KðtÞ traverses the
Brillouin zone several times per optical cycle, then an electron
confined to a particular band is said to perform Bloch
oscillations. In real space, Bragg scattering of an electron
wave packet rapidly changes its group velocity according to
Eq. (1b). Multiple coherent scattering events of this type
reduce the wave packet’s width and displacement, which is
called Wannier-Stark localization.
The probability of Bragg scattering is small if the driving

field is polarized along a crystallographic direction where the
lattice potential is particularly weak. In this case, the band gap

between the first and second conduction (valence) bands is
small,1 and the tunneling probability between them is close
to 1. However, for a particular band, there are always
crystallographic directions where this degeneracy is lifted
by a lattice potential, so that the band becomes isolated from
the others and has a finite bandwidth Δn.
If an electron’s reciprocal-space trajectory passes near an

avoided crossing between two energy bands, then there is a
nonzero interband transition probability. The stronger is the
electric field, the faster KðtÞ changes, increasing the proba-
bilities of such transitions. Figure 3 schematically illustrates
the transition of an electron wave packet through a BZ
boundary, where two bands have a small gap between them.
The Landau-Zener dynamics are best illustrated in the
extended zone scheme, which we use for Fig. 3(a). The same
dynamics in the reduced zone scheme are illustrated in
Fig. 3(b).
The Keldysh theory was initially developed for bands

approximated by Eq. (23), which implies that the probability
of coherent scattering on the lattice potential is negligibly
small. However, it is not negligible in real solids, and even a
small fraction of Bragg-reflected electrons can lead to detect-
able outcomes, where high-harmonic generation is a promi-
nent example (Ghimire et al., 2011a). Analytical approaches
to strong-field dynamics beyond the effective-mass approxi-
mation were developed by many, including Krieger and Iafrate
(1986), Rotvig, Jauho, and Smith (1995), Gruzdev (2007),
Hawkins and Ivanov (2013), Zhokhov and Zheltikov
(2014), and McDonald et al. (2017). Also, a purely adiabatic
evolution was considered by , e.g., Wannier (1962), Dunlap
and Kenkre (1986), and Holthaus (1992).
The physical interpretation of several phenomena that we

discuss becomes particularly clear in real space. For a linearly
polarized field, it is advantageous to limit the real-space
analysis to the direction along the field, so that we do not lose
advantages of the reciprocal-space representation for direc-
tions orthogonal to the field. This is possible in the hybrid
representation (Argyres, 1962; Sgiarovello, Peressi, and
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−

∝

∝

FIG. 2. Log-log plot of the cycle-averaged excitation rate (solid
blue curve) calculated using the formalism of Keldysh (1965) for
crystalline α-SiO2 (Eg ≈ 9 eV) exposed to a monochromatic laser
field with frequency ℏω0 ¼ 1.8 eV, so that N ¼ 5. The upper
x axis shows the values of the Keldysh parameter γK correspond-
ing to the field amplitudes of the lower x axis. Up to γNP ≤ 1, five-
photon absorption is the dominant excitation mechanism, so this
rate is ∝F10

0 (dashed green line). The first multiphoton channel
closing occurs at γNP ≈ 1, where the excitation rate first drops and
then resumes its growth at a higher slope ∝ F12

0 . For comparison,
the static-field Zener tunneling rate is plotted with the short-
dashed red curve. In the adiabatic limit, γK ≪ 1, the two rates
approach each other.

( )xE k ( )xE k(b)(a)

−0.5 0 0.5 −0.5 0 0.51

xk G xk G

FIG. 3. Interplay between Bloch oscillations and interband
tunneling of charge carriers in the (a) extended and (b) reduced
zone schemes. Solid arrows depict the intraband motion of
carriers leading to Bloch oscillations, and dashed arrows depict
interband tunneling. Here G ¼ 2π/a denotes the BZ width, and a
is the lattice constant.

1If the gap is zero, it is convenient to combine the degenerate
bands into a single band in the extended BZ.
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Resta, 2001; Marzari et al., 2012) where the wave functions
and operators are transformed to the coordinate space only
over the component of crystal momentum pointing along the
field polarization. Let this direction be the x axis. In the hybrid
representation (Fritsche, 1966), a Houston function (15) can
be expanded into a series of functions known as Kane states
(Kane, 1960; Fritsche, 1966; Glutsch, 2004):

ψ ðHÞ
n;k ðr; tÞ ¼

1ffiffiffiffi
G

p
Xþ∞

l¼−∞
φðKÞ
n;l ðk⊥; rÞe−ði/ℏÞE

ðKÞ
n;l ðk⊥Þt; ð28Þ

where l enumerates lattice sites, k⊥ is the part of the crystal
momentum perpendicular to the field, and G ¼ 2π/a denotes
the BZ width in the kx direction. Equation (28) shows that the

Houston state ψ ðHÞ
n;k is a generating function of the Kane states

φðKÞ
n;l . Alternatively, the hybrid Kane functions can be derived

from the solutions of an adiabatic eigenproblem in the length
gauge and in the single-band approximation. This is rigor-
ously discussed in Appendix C.
The energies of Kane states are given by

EðKÞ
n;l ðk⊥Þ ¼ Ē0

nðk⊥Þ þ
2πljeF0j

G
: ð29Þ

The right-hand side of Eq. (29) consists of the continuous
part Ē0

nðk⊥Þ [see Eq. (C5)] and the discrete components
2πleF0/G ¼ leaF0 ¼ ℏlωB, separated by multiples of
Bloch frequency and known as the Wannier-Stark ladder.
Representations of electron dynamics in the Houston and

Kane bases are schematically shown in Fig. 4. Each Kane state
is a time-independent function; dynamics emerge once we
consider their superpositions. While the coherent superposi-
tion of an infinite number of Kane states forms a delocalized

Houston function [see Eq. (28)], a finite number of Kane states
forms a spatially localized electron wave packet. In both cases,
the result is a temporally periodic wave function that oscillates
with the Bloch frequency. Figure 4(a) illustrates these oscil-
lations in reciprocal space. In real space, a localized wave
packet oscillates within the range occupied by the selected
Kane states [see Fig. 4(b)]. Because of the spatial overlap of
these states, the width of this wave packet can be smaller than
the range of its motion.
The spatial extent of a Kane state in the nth band is given by

(Glutsch, 1999, 2004)

LðKÞ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½LðSCÞ

n �2 þ ½LðWÞ
n �2

q
: ð30Þ

Figure 5 shows that in the weak-field limit Eq. (30)
approaches

LðSCÞ
n ¼ Δn

jeF0j
; ð31Þ

which is a well-known semiclassical (SC) formula used by
many (Mendez, Agulló-Rueda, and Hong, 1988; Voisin et al.,
1988; Dignam, Sipe, and Shah, 1994; Schiffrin et al., 2013).
In the strong-field limit F0 → �∞, Eq. (30) asymptotically
approaches the extent of a maximally localized Wannier

function LðWÞ
n (Glutsch, 1999; Marzari et al., 2012).

Interband transitions in static or slowly varying fields can
be interpreted, in real space, as transitions between Kane
states. Indeed, each Kane function is formed from the
Bloch states of a particular band [see Eq. (C1)], so
interband dynamics can be described as transitions between

subsets of Kane functions φðKÞ
n;l ≡ jn; li corresponding to

different bands. The probabilities of these transitions are
determined by the real-space optical matrix elements

B
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FIG. 4. Two equivalent representations of strong-field electron
dynamics in periodic potentials using two adiabatic bases.
(a) Reciprocal-space picture in the Houston basis. The motion
of an electron-hole pair is determined by inter- and intraband
transitions, which depend on the time-dependent energy gap
Ecv(KxðtÞ), optical matrix element Xcv(KxðtÞ)≡ ex · ξcv(KðtÞ),
and crystal momentum KxðtÞ. (b) Real-space picture in the Kane
basis. Electronic states are separated by the Bloch energy
ℏωB ¼ jeF0ja. Solid arrows depict the intraband motion due
to tunneling between lattice sites, while the dashed arrows
represent the interband transitions. Their probabilities are deter-
mined by the hopping integrals tn;l and the real-space optical
matrix elements Ξcv;l, respectively. Widths of the energy bands
are given by the sum over hopping integrals Δn ¼ j4P∞

l¼1 tn;lj.

FIG. 5. Spatial extent of an electron in the first conduction
band of α-SiO2 as a function of the field calculated according to
fully quantum-mechanical (30) (solid blue curve) and semi-
classical models (31) (dashed red curve). The spatial extent of

the Kane function LðKÞ
c approaches the extent of a maximally

localized Wannier function LðWÞ
c (short-dashed black line) in the

strong-field limit. Here we assumed the following material

parameters Δc ≈ 3.3 eV (Kresse et al., 2012) and LðWÞ
c ≈ 3 Å

(Mustafa et al., 2015).
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Ξnm;lðF0Þ ¼ hn;ljxjm; 0i depending on the electric field.
Stronger fields allow interband tunneling between closer sites,
but they also make Kane functions more localized, which
tends to reduce jΞnm;lðF0Þj.
Once a static electric field reaches a strength for which a

pair of valence- and conduction-band Kane states localized
at different lattice sites has the same energy, adiabatic
tunneling between them becomes allowed by the energy
conservation law. This occurs for lℏωB/Eg ¼ lγBH ¼ 1, that
is, lajeF0j ¼ Eg, where l ¼ jl1 − l2j ¼ 1; 2;… denotes the
distance between lattice sites. We refer to γBH, introduced in
Table I, as the band hybridization parameter. Note that, in
time-dependent fields, purely adiabatic transitions coexist
with diabatic tunneling and multiphoton processes; therefore
realistic simulations of strong-field phenomena for ultrashort
laser pulses must include all possible excitation mechanisms.
Wannier-Stark ladders for coupled bands can be approxi-

mated by the roots of the following secular equation (Bastard
et al., 1994; Grecchi and Sacchetti, 1995):

detðVnm;l − EδnmÞ ¼ 0; ð32Þ

where Vnm;l ¼ eF0Ξnm;l is the interaction term describing
interband transitions. In the simplest case of two bands, the
analytical solution is well known:

EðWSÞ
�;l ¼ 1

2

�
EðKÞ
c;i þ EðKÞ

v;iþl

	
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
EðKÞ
c;i − EðKÞ

v;iþl

	
2 þ 4jVcv;lj2

r
;

ð33Þ

where the energy gap at an anticrossing is given by 2jVcv;lj
[see Fig. 6(b)].
Accounting for transitions between bands when solving

the adiabatic eigenproblem removes degeneracies in the
Wannier-Stark ladder, turning them into anticrossings
[Figs. 6(b) and 7(b)] (Avron, 1982; Leo, 2003; Glutsch,
2004). Under the assumption that an electron is confined to
a certain finite subset of energy bands, the adiabatic wave
functions obtained by solving the corresponding eigenpro-
blem are known as Wannier-Stark states. Within this basis, the
adiabatic transition through an avoided crossing transforms a
state that is mainly constructed from the wave functions of one
band into a state that is predominantly formed by the wave
functions of another band. Therefore, the adiabatic transitions
[along the solid lines in Fig. 6(b)] in the two-band Wannier-
Stark basis represent interband tunneling (Apalkov and
Stockman, 2012, 2015), while diabatic transitions (along
the dashed lines) correspond to intraband motion. Note that
this is opposite to the picture of carrier dynamics in the single-
band bases of Houston or Kane functions, where adiabatic
evolution means staying in the same energy band (see Fig. 4).
Wannier-Stark states are always defined for a limited subset

of bands n ¼ fn1; n2;…; nmaxg. Any transitions outside this
subset turn these states into metastable resonances with a

complex-valued energy spectrum EðWSÞ
n;l − iΓn;l/2, where Γn;l

is the rate at which the population is transferred from the
subset n to other bands. In spectroscopic measurements,
the real and imaginary parts of Wannier-Stark resonances

correspond to the spectral positions and linewidths, respec-
tively (Avron, 1976; Nenciu, 1991; Glück, Kolovsky, and
Korsch, 1999; Rosam et al., 2003). This is demonstrated in
Fig. 7, where the single- and multiple-band calculations for
semiconductor superlattices are compared. In stronger fields,
the linewidths increase, which is a signature of eigenfunction
delocalization and transitions to higher bands due to the
Zener breakdown (Glutsch and Bechstedt, 1999). In general,
Wannier-Stark resonances can be calculated from the complex
poles of a rigorously constructed S matrix (Glück, Kolovsky,
and Korsch, 2002) or via diagonalization of a non-Hermitian
Hamiltonian (Moiseyev, 2011). To the best of our knowledge,
ab initio calculations of Wannier-Stark resonances have so far
been reported only for artificial periodic structures and model
potentials, rather than real solids.
In a periodic potential exposed to a static electric field,

Wannier-Stark localization naturally occurs if an electron
remains in a subset of bands (Wannier, 1962). For an
oscillating linearly polarized field, the spatial extent of a

(a) (b)

FIG. 6. (a) Lattice potential in an external field at 2γBH ¼ 1,
where adiabatic tunneling to the second neighbor is allowed.
(b) Wannier-Stark ladders in one- and two-band approximations
as a function of the electric-field amplitude. Dashed lines depict

the energies of one-band (diabatic) Kane states EðKÞ
n;l , and solid

curves show the energies of two-band (adiabatic) Wannier-Stark

states EðWSÞ
� .

FIG. 7. Derivative of the optical density of states dD/dω in
the GaAs/GaAlAs superlattice as a function of the transition
energy ℏω and the field strength F. (a) The single-band (Kane)
approximation. (b) The Wannier-Stark ladder calculated numeri-
cally including a few minibands and transitions between them.
From Glutsch and Bechstedt, 1999.
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localized wave packet usually increases over each period.
Indeed, Wannier-Stark localization might occur at the crests of
the field, but it plays no role at its zero crossings. Nevertheless,
nonspreading wave packets may exist even in oscillating
fields: the displacement and spatial extent of such a wave
packet oscillate within certain limits. This phenomenon is
known as dynamic localization. It was predicted by Dunlap
and Kenkre (1986), who used a single-band nearest-neighbor
tight-binding model and found solutions of the TDSE where
wave packets remain localized in a direction along the field
polarization. For sinusoidal fields, these solutions exist if the
ratio γDL ¼ ωB/ω0 is one of the roots of the zeroth order
Bessel function J0 (the first zero of the function is at
≈2.405); consequently, no localization occurs if γDL ≪ 1.
Hence, γDL is known as the dynamic localization parameter
(see Table I).
In real crystals, hopping between distant neighbors and

interband transitions prevent perfect localization. Nevertheless,
the nearest-neighbor hopping is dominant in most systems, so a
significant reduction of a wave packet spread takes place when
γDL is a root of J0, a less significant reduction takes place when
2γDL is a root of J0, and so on (Dunlap and Kenkre, 1986).
The parameter γDL also describes the nonlinearity of a

wave packet’s group velocity, and thus it plays an essential
role in the high-field transport phenomena and high-harmonic
generation in superlattices and solids (Tsu and Esaki, 1971;
Ignatov and Romanov, 1976; Pronin, Bandrauk, and
Ovchinnikov, 1994; Feise and Citrin, 1999; Wegener, 2005;
Golde, Meier, and Koch, 2008; Ghimire et al., 2011a; Luu
et al., 2015; Hammond et al., 2017). In particular, it appears in
the cutoff condition

Ncutoff ¼ lmaxγDL ð34Þ

for the high-frequency plateaus generated by the intraband
motion of electrons. In the tight-binding approximation, lmax
is the maximal number of distant neighbors (spatial harmon-
ics) contributing to the band dispersion. According to recent
measurements on wide-band-gap materials (ZnO, SiO2)
exposed to IR pulses, Ncutoff may extend up to 25 orders
involving about lmax ¼ 6 neighbors (Ghimire et al., 2011a;
Luu et al., 2015; Garg et al., 2016).
Let us illustrate two opposite limits defined by γDL with

a simple one-dimensional single-band model (Pronin,
Bandrauk, and Ovchinnikov, 1994; Feise and Citrin, 1999;
Golde, Meier, and Koch, 2008; Ghimire et al., 2011a; Mücke,
2011; Luu et al., 2015). An electron wave packet with a large
spatial extent has a small spread of crystal momenta. Thus it is
easier to evaluate its group velocity and displacement using
the acceleration theorem (1a), without decomposing the wave
packet into a large number of Kane states.
The eigenvalues of the tight-binding Hamiltonian with

distant-neighbor hopping (Stockhofe and Schmelcher, 2015),

ĤTB ¼
X
n

X∞
i¼−∞



Viâ

†
n;iân;i −

Xlmax

l¼1

tn;lðâ†n;iân;iþl þ â†n;iþlan;iÞ
�

ð35Þ

form the energy bands

EnðkxÞ ¼
Xlmax

l¼0

εn;l cosðkxlaÞ; ð36Þ

where εn;l ≡ −2tn;l are hopping integrals between the
Wannier states separated by l lattice constants, εn;0 is a band
offset, â†i and âi denote creation and annihilation operators,
and Vi is a local scalar potential at site i.
The instantaneous group velocity of an electron wave

packet driven by a strong field in the band with dispersion
(36) is given by (Luu et al., 2015)

vn(KxðtÞ) ¼
1

ℏ
∂En

∂kx
����
KxðtÞ

¼ −
1

ℏ

Xlmax

l¼0

lεn;l sin½KxðtÞla�: ð37Þ

By integrating the group velocity over time, one obtains the
relative displacement of the wave packet’s center of mass:

Δxn(KxðtÞ) ¼
Z

t

t0

vn(Kxðt1Þ)dt1: ð38Þ

If lγDL ≪ 1, the argument of the sine function in Eq. (37) is
small, and the sin x ≈ x approximation yields the following
expression for the group velocity of carriers in the nth
band:

vðEMAÞ
n (KxðtÞ) ¼

ℏ
mn

KxðtÞ ¼
1

mn
½ℏkx þ eAðtÞ�: ð39Þ

The increment of the velocity is proportional to the vector
potential (13) [see Figs. 8(a) and 8(b)]. The corresponding
relative displacement is given by

ΔxðEMAÞ
n (KxðtÞ) ¼

1

mn



ℏkxðt − t0Þ þ e

Z
t

t0

Aðt1Þdt1
�
: ð40Þ

These expressions can also be obtained in the EMA, where the
band dispersion law is given by Eq. (5).
In the opposite case of lγDL ≫ 1, one recovers the

quasistatic-field limit for the lth distant neighbor, where a
field-driven electron confined to a particular band performs a
few Bloch oscillations per optical cycle. Hereafter, we refer to
Bloch oscillations driven by a time-dependent field in this
regime as dynamic Bloch oscillations. Figures 8(c) and 8(d)
show that wave packet’s group velocity and relative displace-
ment are much smaller than those predicted by the EMA. The
decelerated intraband motion results in a negative differential
conductance (Esaki and Tsu, 1970; Tsu and Esaki, 1971; Tsu,
2011) and the emission of high-energy photons with frequen-
cies up to lmaxωB in high-order harmonic generation (HHG)
experiments (Golde, Meier, and Koch, 2008; Ghimire et al.,
2011a; Luu et al., 2015).
The ratio of Bloch and ponderomotive energies gives the

parameter γBP (see Table I), which we include into our
classification scheme for completeness, but for which we
do not currently have a clear physical example illustrating its
significance. In general terms, this parameter describes the
balance between the field-induced intraband motion, which

Kruchinin, Krausz, and Yakovlev: Colloquium: Strong-field phenomena in …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 021002-10



tends to delocalize an electron wave packet, and Bloch
oscillations, which tend to localize it.

D. Interaction with a nearly resonant field

A sufficiently strong laser field with a carrier frequency
close to resonance with the band gap of a solid may transfer
population back and forth between the valence and conduction
bands. These Rabi oscillations rely on coherence between the
involved quantum states and hence can occur only on time
scales shorter than the decay of quantum coherence. The peak
frequency of these oscillations is given by Eq. (9).
In the resonant case, the adiabaticity parameter distinguish-

ing interaction regimes is the ratio of the instantaneous Rabi
frequency ωR at the peak of the laser pulse to the laser
frequency ω0 (see Table I):

γð0ÞRF ¼ ωR

ω0

:

This parameter counts the number of Rabi cycles within one

laser field oscillation. The weak-field limit γð0ÞRF ≪ 1 corre-

sponds to the envelope Rabi flopping (ERF); γð0ÞRF ≫ 1 is the

tunneling limit (Takagahara, 2003; Kärtner, 2004); at γð0ÞRF ∼ 1,
these two pictures merge in the intermediate regime known
as carrier-wave Rabi flopping (CWRF) (Hughes, 1998).
Alternatively, one can distinguish these limits by taking the

ratio of the Rabi and transition frequencies γðgÞRF ¼ ℏωR/Eg.

Ratios γð0ÞRF and γ
ðgÞ
RF naturally appear as small parameters of the

conventional perturbation theory constructed in the field-free
basis (Lamb, Schlicher, and Scully, 1987; Aversa and Sipe,
1995; Boyd, 2013).

We start our discussion with a brief review of the two-level
model. These results can be directly generalized for a
two-band model of periodic systems in a single-particle
approximation, but only for moderate intensities at which
the intraband motion is still negligible. In the weak-field limit,
an analytical solution of the two-level TDSE or Bloch
equations for the density matrix can be obtained in a closed
analytical form within the rotating-wave approximation
(RWA). Initially, this approach was employed in the Rabi
theory of a nuclear magnetic resonance (Rabi, 1936) and then
in the Jaynes-Cummings model (Jaynes and Cummings,
1963) describing a two-level atom interacting with a single
mode of an optical cavity.
For a monochromatic field

FðtÞ ¼ F0

2
ðeiω0t þ e−iω0tÞ;

the probability amplitudes in the two-level model form the
following system of two equations:

iℏ
da1
dt

¼ e
2
F0 · r12½e−iðω0þω21Þt þ eiðω0−ω21Þt�a2;

iℏ
da2
dt

¼ e
2
F0 · r21½e−iðω0−ω21Þt þ eiðω0þω21Þt�a1;

where ω21 ¼ −ω12 is the transition frequency, and r12 is
the optical matrix element. Near the resonance, where
Δ ¼ ω21 − ω0 ≪ ω0, the corotating (resonant) terms
∼e�iðω0−ω21Þt oscillate much slower than the laser field, while
the counterrotating (nonresonant) ones ∼e�iðω0þω21Þt oscillate
much faster and can be neglected at weak intensities (Haug
and Koch, 2009; Allen and Eberly, 2012). Introducing the
population inversion wðtÞ ¼ ja2ðtÞj2 − ja1ðtÞj2, one obtains
the classical result of Rabi wðtÞ ¼ − cosðΩ̃RtÞ showing that
the population oscillates between the two states with the
generalized envelope Rabi frequency Ω̃R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃2
R þ Δ2

p
,

where ω̃R ¼ jeF0 · r12j/ℏ.
RWA can also be considered as a special case of the adiabatic

eigenproblem. Diagonalization of the RWA Hamiltonian yields
adiabatic eigenstates that are shifted and split in comparison to
the field-free atomic levels (Haug and Koch, 2009)

E1;�¼E1þ
ℏ
2
ðΔ� Ω̃RÞ; E2;�¼E2−

ℏ
2
ðΔ∓ Ω̃RÞ: ð41Þ

Renormalized energy levels described by Eq. (41) can
be observed as modifications of an absorption or emission
spectrum known as the Autler-Townes or dynamic Stark effect
(Autler and Townes, 1955; Delone and Krainov, 1999).
The resulting spectrum of an atom shows the Mollow triplet
(Wu et al., 1977) consisting of the peak at ω0 and two
sidebands at ω0 � Ω̃R (see Fig. 9). It can also be regarded as
the resonant analog of self-phase modulation (Wegener,
2005). This triplet was experimentally observed for discrete
levels of an atom, as well as for energy bands of a semi-
conductor resonantly excited by an intense ultrashort laser
pulse (Vu et al., 2004).
Envelope and carrier-wave Rabi flopping regimes are

compared in Fig. 10. Here the Bloch vector orbits around

(a)

(b)

(c)

(d)

FIG. 8. Instantaneous group velocity vc and relative displace-
ment Δxc of an electron wave packet driven by (a), (b) weak and
(c), (d) strong laser pulses in the first conduction band of SiO2

from k ¼ 0 along the Γ −M direction. Dashed curves depict
the results obtained within the effective-mass approximation
[Eqs. (39) and (40)], and solid curves correspond to the entire
band dispersion [Eqs. (37) and (38)]. In the weak-field limit
(F0 ¼ 0.05 V/Å, γDL ≈ 0.15), both expressions coincide, but in
the strong field (F0 ¼ 1 V/Å, γDL ≈ 3) Eqs. (37) and (38)
significantly deviate from the EMA result and demonstrate
nonlinearities due to dynamic Bloch oscillations.
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the equatorial plane with the transition frequency and slowly
rotates between the south and north poles with the Rabi
frequency. The population inversion wðtÞ exhibits a super-
position of one slow oscillation ∼ cos Ω̃R with rapid and weak
Bloch-Siegert oscillations (Bloch and Siegert, 1940; Yan, Lü,
and Zheng, 2015). The latter ones are small corrections
from the counterrotating terms, which can be considered
via the adiabatic perturbation theory (Ostrovsky and Horsdal-
Pedersen, 2004).
When the Rabi frequency is comparable to or larger than the

laser frequency γRF ≳ 1, the contribution of counterrotating
terms is more prominent, and the trajectory of the Bloch
vector becomes sophisticated [Fig. 10(b)]. The population
inversion wðtÞ now oscillates with the frequency comparable
to that of the carrier wave and does not return to the initial
value for 2πn pulses. Thus the envelope area theorem no
longer applies (Hughes, 1998).
The resonant effects discussed also take place in periodic

potentials. In the regime defined by conditions γRF ≳ 1

and γNP ¼ Up/ðℏω0Þ≳ 1, one observes a complex interplay
between intraband motion and phenomena where quantum
coherence plays an essential role, such as Rabi oscillations
(Wismer et al., 2016). Using the TDSE in the Houston basis,
we define a generalized Rabi frequency applicable for periodic
potentials and short pulses, which includes time dependence
of the optical matrix element ξcv(KðtÞ) and instantaneous
detuning Δ(KðtÞ) ¼ Ecv(KðtÞ)/ℏ − ω0 due to field-induced
intraband motion:

ΩRðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
RðtÞ þ Δ2(KðtÞ)

q
; ð42Þ

where ωRðtÞ ¼ jeFðtÞ · ξcv(KðtÞ)j. The generalized pulse area
can now be defined as

A ¼
Z

∞

−∞
ΩRðtÞdt: ð43Þ

Numerical calculations (Wismer et al., 2016) show that
the condition A ¼ 2πn approximately coincides with the
completion of an integer number of Rabi cycles at the Γ
point as long as jΔ(KðtÞ)j≲ ωRðtÞ. For higher fields,

A/ð2πÞ no longer counts Rabi cycles even if transitions
to higher bands are neglected. Near the resonance
(ℏω0 ≈ Eg), the cycle-averaged detuning is given by

Δ(KðtÞ) ≈ ½Ecv(KðtÞ) − Eg�/ℏ ¼ Up/ℏ. Thus the applicabil-
ity limit for the generalized Rabi frequency (42) and pulse
area (43) can be estimated by the following condition (see
Table I):

γRP ¼ ℏωR

Up
> 1: ð44Þ

The last adiabaticity parameter in Table I that classifies
field-matter interactions is γRB, constructed as a ratio of the
peak Rabi ωR and Bloch ωB frequencies. This parameter
describes an interplay between field-driven interband and
intraband dynamics. If interband and intraband transitions are
induced by the same field, this is simply the ratio of the peak
absolute value of the interband matrix element to the lattice
constant:

γRB ¼ ωR

ωB
¼ jξðmaxÞ

cv j
a

;

and thus this is the only parameter in Table I that depends
exclusively on material properties.
The values of γRB for a few representative solids can be

obtained from the data in Table II. For the wide band-gap
dielectrics, the largest value of the interband matrix element
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FIG. 9. Schematic drawing of level splitting in the (a) two-level
system and in a (b) solid excited by a nearly resonant strong field
and described within the RWA. (a) Possible optical transitions.
Long-dashed lines denote the Stark shifts of unperturbed states by
�ℏΔ/2. Short-dashed lines denote the field-free bands, and the
shaded areas show the light-induced gaps.
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FIG. 10. Evolution of (upper plots) Bloch vector and (lower
plots) population inversion in the envelope- and carrier-wave Rabi
flopping regimes of a two-level system (Mücke et al., 2001). Here
uðtÞ ¼ 2Reða�1a2Þ, vðtÞ ¼ 2Imða�2a1Þ, and wðtÞ ¼ ja2j2 − ja1j2
are the components of the Bloch vector. (a) Envelope Rabi flopping
(ERF) in the weak field (γRF ¼ 0.05) for a 2π pulse. Numerically
calculated inversion wðtÞ closely reproduces the RWA result
wðtÞ ¼ − cosðΩ̃RtÞ. It is modulated by the Bloch-Siegert oscil-
lations due to the counterrotating term omitted in the RWA. (b) In
the CWRF regime (γRF ∼ 1), the contribution from the counter-
rotating term becomes significant, and the two-cycle pulse causes
oscillations of inversion with a period comparable to that of an
optical oscillation T0 ¼ 2.8 fs. From Ciappina et al., 2015.
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can be much smaller than the lattice constant, while they are
very close in semiconductors.
Materials with smaller band gap and effective masses tend

to have larger γRB, as predicted by Eq. (24), but remarkably all
of them have γRB < 1. This condition guarantees that the
electron traverses a large fraction of the Brillouin zone on a
time scale that is short compared to that of interband
transitions (ωR < ωB), which is a necessary condition for
the applicability of single-band models. For γRB ≳ 1, one may
expect an unusually strong dynamic Stark effect and inappli-
cability of results derived in the approximation of isolated
bands, including the Houston and Kane states. To the best of
our knowledge, this limit does not exist in natural solids, but it
might be realized in artificial periodic potentials and thus
presents an interesting topic for future research.
Near a resonance, γRB counts the number of Rabi cycles per

one Bloch period. To illustrate the physical meaning of γRB
far from a resonance, we compare in Fig. 11 the time-
dependent excitation probability evaluated for α-SiO2 with
that where we artificially doubled the amplitudes of optical
matrix elements. As one can see from Fig. 11, the simulation
with the doubled matrix elements shows an overall increase
of the CB population, as well as an increase of the ratio of

the peak transient population to the residual one fðmaxÞ
CB /fðresÞCB

from 1.8 to 3.8. An increased amplitude of the matrix
elements jξnmðkÞj yields larger nondiagonal terms of the
field-matter interaction V̂nmðtÞ ¼ eFðtÞ · ξnm(KðtÞ), which
results in higher population transfer during and after the
laser pulse. This can be understood as a consequence of
larger anticrossing gaps of the Wannier-Stark ladders in
the nonresonant case (Fig. 6) or in terms of larger dynamic
Stark shifts near the resonance (Fig. 9).
These observations suggest that materials with high ampli-

tudes of optical matrix elements (γRB ≲ 1), e.g., III-V and
nitride-based semiconductors, enter the tunneling regime at
lower field intensities than insulators, where γRB ≪ 1. From
this point of view, the semiconductors might be more
promising for potential applications relying on reversibility
of the light-matter interaction (Novelli et al., 2013; Schultze
et al., 2013; Lucchini et al., 2016; Sommer et al., 2016).
On the other hand, studying these phenomena in solids with
smaller band gaps requires laser pulses in the mid-IR and THz
domains.
Let us analyze how the adiabaticity parameters describing

the nonresonant strong-field processes relate to the ones that
characterize the near-resonant interaction. Apart from obvious
N ≈ 1, γNP approaches 4γ−2K because ℏω0 ≈ Eg. Using the
explicit formula for the interband matrix element (24), one can
express γK via the peak Rabi frequency:

γK ¼ ω0

eF0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mEg

1þ β2

s
¼ ω0

2ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p ¼ 1

2γð0ÞRF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p : ð45Þ

This relation confirms that the adiabatic perturbation theory
is dual to the conventional one employing the field-free basis,
and the corresponding small parameters are inversely propor-
tional to each other (Frasca, 1998).
The dimensionless adiabaticity parameters introduced so

far are summarized in Table I. As one can see, all the field-
matter interaction regimes discussed can be viewed from a
single perspective as adiabatic or diabatic limits of one
characteristic oscillatory motion with respect to another.
Our classification takes into account the latest developments
in ultrafast laser spectroscopy, summarizes the well-
established results, and indicates opportunities for further
experimental and theoretical studies.

E. Coherent dynamics and relaxation

In the previous sections, we focused on perfectly coherent
oscillatory processes. However, this is an abstraction because
all quantum-mechanical systems are connected to a dissipative
environment and experience an irreversible decay of state
population and quantum coherence. These processes define
another set of regimes, which are discussed next.
The time scales characterizing various scattering mecha-

nisms in the electronic subsystem of solids excited by laser
pulses cover more than 9 orders of magnitude: from nano-
second interband relaxation due to spontaneous photoemis-
sion to carrier-carrier scattering occurring on attosecond
time scales. According to Shah (1999), the carrier relaxation
processes can be classified into four temporally overlapping

TABLE II. A few representative materials commonly studied by
modern ultrafast spectroscopy and their parameters. The absolute
values of matrix elements jξðmaxÞ

c;lh j are calculated using the VASP code
(Kresse and Furthmüller, 1996) with the TB09 meta-GGA functional
(Tran and Blaha, 2009) for a transition from the light hole band (lh) to
the first conduction band (c). Band gaps and lattice constants are given
according toLandolt-Börnstein (2002) for a temperature ofT ¼ 300 K.
Crystal structures are denoted as follows: “zb” is zinc blende, “wz” is
wurtzite, “fcc” is face-centered cubic, and “trig” is trigonal.

Material Structure Eg (eV) a, c (Å) jξðmaxÞ
c;lh j (Å)

GaAs zb 1.43 5.65 3.42
α-GaN wz 3.45 3.19, 5.19 1.74
ZnO wz 3.3 3.26, 5.22 1.46
C (diamond) fcc 7.4 3.57 1.06
MgO fcc 7.8 4.2 0.96
α-SiO2 trig 9 4.9, 5.4 0.37
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FIG. 11. Total population of six conduction bands for a few-
cycle laser pulse with a sine-square envelope (λ0 ¼ 750 nm,
F0 ¼ 1 V/Å, FWHM ¼ 3.7 fs). As optical matrix elements, we
used those calculated with the meta-GGATB09 functional (lower
curve) and their artificially doubled values (upper curve).
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regimes, which are summarized in Table III together with
some typical processes. The time scale for each event strongly
depends on other parameters such as band structure, lattice
temperature, carrier density, etc.
Relaxation processes strongly influence optical properties

of solids and place requirements on temporal characteristics of
laser pulses for observing a particular ultrafast phenomenon.
The main requirement here is that some characteristic time of
light-matter interaction T should be much smaller than the
population relaxation time T1 and, for phase-sensitive proc-
esses, it should also be smaller than the phase relaxation time
T2. These conditions can be fulfilled by using shorter and
stronger laser pulses. It is also possible to study the same
physical phenomena in an artificial periodic structure with
much longer relaxation times than those in natural solids, e.g.,
T1 ∼ 100 ms in optical lattices.
Currently, modeling of ultrafast phenomena is based on

the numerical solution of the TDSE (Bachau et al., 2006;
Korbman, Kruchinin, and Yakovlev, 2013; Wu et al., 2015),
density-matrix method (Lindberg and Koch, 1988; Haug
and Koch, 2009), and time-dependent Kohn-Sham equations
(Yabana et al., 2012; Andrade et al., 2015; Otobe
et al., 2016; Tancogne-Dejean et al., 2017). In strong laser
fields, charge carriers are often treated as independent (quasi)
particles, and their interaction with the environment is
neglected. The assumption of purely coherent dynamics on
a few-fs time scale was motivated by previous experimental
studies of relaxation phenomena in semiconductors, where the
measured dephasing time T2 varies from tens to hundreds of
femtoseconds (Oudar et al., 1985; Becker et al., 1988; Prabhu
et al., 1997). Laser pulses of a much shorter duration are
routinely available nowadays, so the phase relaxation is not
expected to significantly influence coherent dynamics during
a time interval much shorter than T2.
Nevertheless, comparison of simulations with the recent

experimental data on high-harmonic generation in solids
(Ghimire et al., 2011a; Schubert et al., 2014; Vampa et al.,
2014; Luu et al., 2015) demonstrated the significance of

dephasing in the presence of a strong field. Remarkably,
this phenomenon was also demonstrated experimentally
in 2D materials (Cox, Marini, and de Abajo, 2017; Liu
et al., 2017). These results suggest that interband polarization
is overestimated in the independent-particle approximation,
and decoherence phenomena are still important on a few-fs
time scale.
The problem with overestimated interband coherencies was

addressed phenomenologically in the density-matrix models,
where dephasing is introduced in the Markov approximation
with T2 as a free parameter (Golde, Meier, and Koch, 2008;
Higuchi, Stockman, and Hommelhoff, 2014; Schubert et al.,
2014; Vampa et al., 2014; Luu et al., 2015; Pati, Wahyutama,
and Pfeiffer, 2015; Langer et al., 2017). Reaching an agree-
ment with experimental data required very short dephasing
times T2 ∼ 1–3 fs. Intense laser pulses drive the charge
carriers within a large part of the BZ and induce a highly
nonequilibrium population distribution, which may extend up
to several conduction and valence bands. In such conditions,
the probability of various scattering processes can be much
higher than that in weaker fields.
To illustrate the physical consequences of dephasing, we

compared two quantum-mechanical simulations. Figure 12(a)
shows the evolution of the population induced by the laser
field interacting with a crystal in the model without dephasing.
It features the field-resolved oscillations and multiple inter-
ference fringes on the population distribution during and after
the pulse. Figure 12(b), calculated with T2 ¼ 2 fs, shows a
single Gaussian-like wave packet moving according to the
acceleration theorem and predicts a much higher residual
population. Thus the ultrafast decay of interband coherencies
makes the quantum evolution of electrons closer to the
semiclassical model based on Boltzmann equations, where
nondiagonal density-matrix elements are neglected and inter-
band transitions are described by rates of population change
(Jacoboni, 2010; Rossi, 2011).
The ultrafast scattering times as short as a few femto-

seconds previously appeared in theoretical treatments of
high-field transport in dielectrics (Fischetti et al., 1987;
Arnold, Cartier, and DiMaria, 1994) and electron-hole plasma
in optically excited semiconductors (Binder et al., 1992; Scott,
Binder, and Koch, 1992). These results were inconsistent with
the experimentally measured values of T2 ∼ 20–100 fs (Oudar
et al., 1985; Prabhu et al., 1997). For that problem, the
Markov approximation was identified as the main source of
the unexpectedly fast dephasing.

TABLE III. Four relaxation regimes in photoexcited semiconduc-
tors and some typical processes (Shah, 1999).

Coherent regime (≲200 fs)
Carrier-carrier scattering
Momentum scattering
Intervalley scattering (Γ → L; X)
Hole-optical-phonon scattering

Nonthermal regime (≲2 ps)
Electron-hole scattering
Electron-optical-phonon scattering
Intervalley scattering (L;X → Γ)
Carrier capture in quantum wells
Intersubband scattering (ΔE > ℏωLO)

Hot-excitation regime (∼1–100 ps)
Hot-carrier-phonon interactions
Decay of optical phonons
Carrier-acoustic-phonon scattering
Intersubband scattering (ΔE < ℏωLO)

Isothermal regime (≳100 ps)
Carrier recombination
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FIG. 12. Simulations of population evolution in the BZ of
wurtzite GaN (a) without dephasing and (b) for T2 ¼ 2 fs. Field
amplitude is F0 ¼ 0.5 V/Å, and other pulse parameters are the
same as in Fig. 11.
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It is well known that both Boltzmann’s Stoßzahl ansatz and
the Markov approximation rely on the existence of two well-
separated time scales: a slow time scale of the system and a
fast time scale characterizing the decay of bath correlation
functions (Carmichael, 2013). In other words, all collision
processes are considered to be pointlike and instantaneous: the
mean scattering time τs between two successive collisions
should be much longer than the collision duration τc (Rossi,
2011). Obviously, this condition is not satisfied in modern
experiments with few-cycle laser pulses, where charge carriers
can be controlled on the attosecond time scale. Another
scattering process may start before the completion of a
previous one, which cannot be adequately described within
the completed-collision and Markov approximations.
The problem of unphysically fast dephasing was previously

solved by employing more advanced quantum-kinetic models
describing screened carrier-carrier scattering beyond the
Markov approximation (Hohenester and Pötz, 1997; Bányai
et al., 1998; Kremp et al., 1999; Gartner, Bányai, and Haug,
2000; Haug and Jauho, 2008; Bonitz, 2016) and taking into
account the finite time required for the formation of screening
“clouds” around individual particles. This phenomenon was
confirmed later by experimental observations (Huber et al.,
2001), and it is neglected in the Markov approximation, where
all scattering events are treated as instantaneous.
The major role of electron-electron interaction in the

decay of interband coherence is supported by a recent
comparison of experimental data to simulations of HHG in
SiO2 with semiconductor Bloch equations including the
Hartree-Fock terms (Garg et al., 2016). It was shown that
interband polarization in the presence of an interaction
became significantly smaller than that in the independent-
particle approximation. Nevertheless, it is still an open
question if the ultrafast dephasing is physically meaningful
for solids exposed to intense few-cycle pulses and which
quantum-kinetic model gives the best compromise between
the computational complexity and completeness of theoretical
description.

III. STRONG-FIELD PHENOMENA AND MODERN
ULTRAFAST SPECTROSCOPY

In this section, we discuss a few recently investigated
strong-field phenomena in solids. Wherever appropriate, we
point out differences to similar studies on artificial periodic
structures. In the final part, we discuss the phenomena related
to a geometric phase and perspectives for their investigation in
bulk and low-dimensional materials with the modern methods
of ultrafast laser spectroscopy.

A. Bloch-Zener oscillations and high-harmonic generation

Already in the early work on band theory, Bloch (1929)
showed that, in the absence of scattering, the crystal momen-
tum KðtÞ of an electron in a constant electric field is a linear
function of time. The infinite growth of KðtÞ, which also
follows from the acceleration theorem (1a), is a feature of the
extended zone scheme. In the reduced zone scheme, the
crystal momentum oscillates with a frequency of ωB¼jeF0ja.
Each time an electron wave packet crosses the BZ boundary,

its group velocity changes its sign in agreement with Eq. (1b)
and the periodicity of band dispersion. These predictions were
not confirmed by experimental observations for several
decades because Bloch oscillations can be detected only if
a sufficient number of Bloch cycles TB ¼ 2πℏ/ðjeF0jaÞ is
completed within the momentum relaxation time T intra

1 ∼100fs,
and the Bloch frequency exceeds the rate of interband
transitions. These conditions were first realized experimen-
tally in artificial superlattices (Esaki and Tsu, 1970), which
consist of alternating layers of semiconductors with different
band gaps. The period of potential in the growth direction is
given by the sum d ¼ aþ b of layer thicknesses a and b.
Typical values of d are from a few to tens of nanometers,
which is by 1 or 2 orders of magnitude larger than the lattice
constant of bulk crystals. This additional periodicity modifies
the energy spectrum and creates minibands. The correspond-
ing Brillouin minizone size 2π/d is much smaller than that in a
bulk semiconductor, which allows the condition TB ≪ T intra

1

to be satisfied at field amplitudes much lower than necessary
in bulk solids. Therefore, in superlattices, charge carriers
more easily reach the upper part of the conduction band
before being incoherently scattered, which makes these
quasi-one-dimensional structures ideal for studying various
strong-field phenomena (Ivchenko and Pikus, 1997; Leo,
2003; Tsu, 2011).
In addition to various scattering processes, the periodic

motion of carriers is impeded by interband transitions. The
simple models considering only one or two isolated bands
within the nearest-neighbor tight-binding model usually
predict Wannier-Stark localization and band collapse in the
strong-field limit (Wannier, 1937; Dunlap and Kenkre, 1986;
Holthaus, 1992; Gruzdev, 2007; Apalkov and Stockman,
2012). However, numerical simulations with a sufficient
number of bands as well as electro-optical measurements in
superlattices demonstrate splitting and delocalization of elec-
trons in high fields due to Zener breakdown (Sibille, Palmier,
and Laruelle, 1998; Glutsch and Bechstedt, 1999; Rosam
et al., 2001; Breid, Witthaut, and Korsch, 2006; Dreisow
et al., 2009; Longhi, 2012). Therefore, in a realistic system,
there is always an interplay between Bloch oscillations and
tunneling to other bands—when a wave packet crosses the
Brillouin-zone boundary, it splits into two parts. In the
literature, this phenomenon is known as the Bloch-Zener
oscillations.
As already mentioned in Sec. II.C, Bloch oscillations limit

the translational motion of an electron wave packet and its
spatial extent. These localization dynamics are known as
oscillating and breathing modes, respectively. Figure 13
shows that both of these modes are in interplay with interband
transitions (Zener tunneling). This interplay splits the real-
space density distribution and creates interference fringes.
Recent progress in the generation of ultrashort laser pulses

has enabled experimental investigation of dynamic Bloch
oscillations in bulk solids via high-order harmonics emitted by
highly nonlinear field-induced intraband currents (Ghimire
et al., 2011a; Schubert et al., 2014; Luu et al., 2015; Garg
et al., 2016; You, Reis, and Ghimire, 2017). Remarkably, the
measurements in solids have demonstrated a much higher
influence of distant neighbors (up to lmax ¼ 6) than in
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superlattices. This can be explained by the fact that the lattice
period in solids (a ∼ 5 Å) is smaller by 1 or 2 orders of
magnitude than that in superlattices (d ∼ 1–10 nm), while the
coherence length is nearly the same.
HHG in atoms was understood within a simple semi-

classical three-step model including ionization, acceleration,
and recollision of electrons with the original atom (Corkum,
1993; Lewenstein et al., 1994). The physics of HHG in solids
is more sophisticated, and its description requires a compre-
hensive quantum-mechanical modeling of electron dynamics
in a periodic potential. The generation of harmonics in solids
can be attributed to both interband and intraband components
of the total current, while their relative contribution strongly
depends on material, driving pulse parameters, and the
spectral range where harmonics are observed. Currently, the
following mechanisms of HHG are commonly discussed:
a generalization of the three-step model considering the
electron-hole recollision in the real- and reciprocal-space
pictures (Higuchi, Stockman, and Hommelhoff, 2014;
Vampa et al., 2015a; Osika et al., 2017), direct interband
transitions and their interference due to the presence of
multiple valence and conduction bands (Hawkins, Ivanov,
and Yakovlev, 2015; Hohenleutner et al., 2015; Wu et al.,
2016; Du and Bian, 2017), and deceleration of carrier’s
intraband motion due to Bragg reflections on the lattice
potential (Feise and Citrin, 1999; Ghimire et al., 2011a;
Mücke, 2011; Luu et al., 2015; Luu and Wörner, 2016).
Both interband and intraband components may feature a

linear scaling of the cutoff frequency with the field (Ghimire
et al., 2011a; Hohenleutner et al., 2015; Luu et al., 2015;
Vampa et al., 2015b), which hampers unambiguous identi-
fication of the dominant contribution and requires further
analysis as well as comparison of experimental data with

rigorous numerical simulations. In the recent publications, the
following additional characteristics of HHG radiation have
been discussed: frequency dependence of the group delay
(Hohenleutner et al., 2015; Garg et al., 2016; Wu et al., 2016)
and the scaling of individual harmonics peak intensity with
the driving field amplitude (Ghimire et al., 2011a; Schubert
et al., 2014; Hohenleutner et al., 2015; Luu et al., 2015).
High-harmonic spectroscopy presents a valuable alternative

to scanning tunneling microscopy (STM), electron diffraction,
and angle-resolved photoemission spectroscopy (ARPES).
Because of the high sensitivity of high-order harmonics to
crystallographic orientations (Ghimire et al., 2011a; Luu
et al., 2015; Langer et al., 2017; You, Reis, and Ghimire,
2017) and the joint density of states (Tancogne-Dejean et al.,
2017), the electronic band structure and lattice potential can be
reconstructed from the high-harmonic spectra (Luu et al.,
2015; Vampa et al., 2015a). Moreover, it offers the ability to
explore dynamic changes of this structure under the influence
of strong fields.

B. Light-waveform control of electric current

Even though the motion of an electron in the field of a laser
pulse is determined by the electric field, experimental observ-
ables frequently depend only on cycle-averaged quantities. In
this case, the envelope and the instantaneous frequency of the
pulse fully determine measurement outcomes. The develop-
ment of experimental techniques sensitive to the carrier-
envelope phase (and hence the waveform) of laser pulses in
the visible and infrared spectral ranges marked an important
milestone in ultrafast optics and served as a basis for attosecond
science (Brabec and Krausz, 2000). Light-waveform control of
phase-sensitive processes consists of driving them with con-
trolled optical fields. In atomic and molecular physics, light-
waveform control of electron motion has revolutionized
time-resolved measurements (Krausz and Ivanov, 2009). This
type of control in solids is a relatively new development, but it
may have a similar long-term impact on ultrafast metrology and
spectroscopy (Krausz and Stockman, 2014).
A precursor of this development was coherent control

of photocurrents in molecular chains and semiconductors
(Kurizki, Shapiro, and Brumer, 1989; Atanasov et al.,
1996; Haché et al., 1997; Rioux and Sipe, 2012; Shapiro
and Brumer, 2012). It was found that a current can be induced
in an unbiased semiconductor by exciting charge carriers with
two pulses that have different frequencies, while the direction
of the current depends on their relative phase. Typically, the
pulses would have central frequencies ω and 2ω, and the
second harmonic would be resonant with the transition
between the upper valence and the lower conduction bands
of the semiconductor. The interference between one- and two-
photon transitions breaks the symmetry of interband excita-
tions, so the band population at a crystal momentum k may be
different from that at −k. A similar kind of interference has
also been observed with carrier-envelope-phase- (CEP-)
stabilized laser pulses that had a spectral width exceeding
an optical octave, so that components at frequencies ω and 2ω
could be found within a single pulse (Fortier et al., 2004).
The interference between one- and two-photon transitions

induced by relatively weak fields has a straightforward

FIG. 13. Dynamics of oscillating and breathing Bloch-Zener
modes for spatially localized wave packets exposed to a constant
electric field (two-band model). The probability density jψðr; tÞj2
of a double-periodic lattice plotted vs coordinate and time.
Oscillations with a smaller period take place due to the intraband
motion only in the lowest band, while those with a larger period
are due to Bragg reflections after tunneling to the second band.
(a) The initial state is a broad Gaussian distribution in real space
(the FWHM is about ten lattice sites). The plot demonstrates the
Bloch oscillations of translational motion and splitting of the
wave packet in real space, which occurs as the wave packet
crosses the BZ edges in reciprocal space (see Fig. 3). (b) The
wave packet is initially located at a single lattice site and
demonstrates oscillations of its width. From Breid, Witthaut,
and Korsch, 2006.
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generalization for shorter and stronger nonresonant pulses
(γK ≳ 1) as the interference between n- and m-photon
transitions driven by CEP-stabilized pulses (n and m are
integer numbers of opposite parity). Multiphoton transi-
tions require a high intensity of the laser pulse, but if its
central frequency is well below the absorption edge, the
pulse spectrum can be contained within the transparency
window and therefore the solid can withstand the high
intensity. The interference of multiphoton excitation path-
ways as a mechanism of CEP control was proposed by
Kruchinin, Korbman, and Yakovlev (2013) and further
developed experimentally and theoretically by Paasch-
Colberg et al. (2016).
At yet higher intensities (γK ≲ 1), the transition from the

multiphoton to the tunneling regime facilitates the sensitivity
of the excitation rate to the pulse waveform. Light-field
control of a current in this regime was first demonstrated in
a dielectric (SiO2) exposed to few-cycle near-infrared linearly
polarized laser pulses (Schiffrin et al., 2013). The dielectric
sample was placed between two electrodes, and even though
no bias was applied the circuit connecting the electrodes
detected that sufficiently intense laser pulses induced a
charge displacement equal to the absolute value of a total
residual polarization including both interband and intraband
contributions:

Q ¼ jPðt → þ∞Þj ¼ S
Z þ∞

−∞
JðtÞdt:

Here S is an effective surface area that is perpendicular to the
total current density JðtÞ.
Experiments with isolated CEP-stabilized laser pulses

[Fig. 14(a)] showed that the residual polarization can be
controlled by the carrier-envelope phase. To obtain temporal
resolution, these measurements were also performed in a
pump-probe fashion, where an intense laser pulse FðiÞ polar-
ized along the electrodes injected electrons from valence to

conduction bands, while an orthogonally polarized weak drive
pulse FðdÞ displaced the excited carriers toward the electrodes
[Fig. 14(b)]. The dependence of the transferred charge on the
delay resembled the drive waveforms, providing evidence for
light-field control and suggesting that the charge-carrier
injection occurs on a ∼1 fs time scale.
The physical mechanism leading to the light-waveform

controlled current has been a matter of debate. The proposed
interpretations engage the dynamic formation of Wannier-
Stark states in the adiabatic tunneling limit (Schiffrin
et al., 2013; Kwon et al., 2016), the interference of excitation
channels in the multiphoton and tunneling regimes
(Kruchinin, Korbman, and Yakovlev, 2013; Paasch-Colberg
et al., 2016), the field-driven intraband motion of charge
carriers after their excitation (Földi, Benedict, and Yakovlev,
2013; Yakovlev et al., 2016), and the dynamics of virtual
electron-hole pairs (Yablonovitch et al., 1989; Krausz and
Stockman, 2014; Khurgin, 2016). Models based on these
concepts differ in the assumptions and representations that
they use, so the physical insights that they give are particularly
relevant in different regimes and limiting cases. The status
quo is that, in general, light-field controlled charge transfer
emerges as a result of interplay between interband and
intraband dynamics.
In comparison to the general concept of coherent control,

light-waveform control of the electric current relies on a
nearly adiabatic evolution of some quantity describing
carrier dynamics with respect to the laser field. The type
and degree of adiabaticity can be analyzed using the param-
eters discussed in Sec. II. For example, the Keldysh parameter
γK determines the applicability of the quasistatic approxima-
tion to a carrier excitation rate. The dynamic localization
parameter is particularly important in this context: for
γDL ≪ 1, the applicability of the effective-mass approxima-
tion justifies the adiabaticity of instantaneous group velocity
vn(KðtÞ) with respect to the field waveform, while γDL ≳ 1

calls for taking into account the dynamic Bloch oscillations
(see Sec. II.C).
In the pump-probe experiments, light-field control naturally

emerges if the carrier excitation by an injection pulse occurs
during a time interval much shorter than the period of a weak
drive field. In this case, the interband and intraband dynamics
occur on different time scales and thus become adiabatically
decoupled. If the drive field is weak enough (γDL ≪ 1),
the group velocity of carriers is given by Eq. (39), and the
transferred charge can be written as a convolution of the
vector potential of the drive field inside a solid AðdÞðtÞ ¼
−
R
t
−∞ FðdÞðt1Þdt1 with the time-dependent band population

fnðk; tÞ (Paasch-Colberg et al., 2016):

QðEMAÞðΔtÞ ≈
X
n;k

2e2S
mn

Z þ∞

−∞
fnðk; tÞAðdÞðt − ΔtÞdt: ð46Þ

Here Δt is the delay between injection and drive pulses.
The deconvolution of Eq. (46) resolves the real-time

waveform of the drive field in a crystal. This expression also
reveals a close analogy between the two-pulse measurement
of QðΔtÞ in a dielectric and attosecond streaking in vacuum

FIG. 14. Schematic illustration of light-waveform control
experiments in a solid. (a) Single-pulse arrangement. A dielectric
surface patterned with gold electrodes was exposed to a
CEP-controlled few-cycle near-IR pulse FðtÞ. The pulse CEP
was changed by varying the propagation length Δl in the fused-
silica wedges. (b) Injection-drive arrangement. Two orthogonally
polarized laser pulses, delayed by Δt, irradiate a metal-dielectric-
metal junction. The strong injection pulse with FðiÞ ∼ 1 V/Å
excites charge carriers in a dielectric, and the weak drive field
FðdÞ ∼ 0.05 V/Å displaces them toward the electrodes.
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(Itatani et al., 2002; Kienberger et al., 2004). However, in the
limit of a strong drive field (lγDL ≫ 1), one does not have
such a simple relation, and the deconvolution of QðΔtÞ will
also require prior knowledge of carrier group velocities in the
entire BZ.
Several recent publications have identified potential

applications for waveform-controlled electric currents.
One of them is a solid-state device for measuring the
carrier-envelope phase (Paasch-Colberg et al., 2014) and
waveform (Schiffrin et al., 2013; Paasch-Colberg et al.,
2016) of few-cycle laser pulses. This application exemplifies
time-resolved measurements with a subfemtosecond sam-
pling signal, which is referred to as attosecond metrology
(Hentschel et al., 2001; Krausz and Stockman, 2014).
Employing the waveform control to investigate and possibly
push the frontiers of signal processing in electronics is
another intriguing idea (Krausz and Stockman, 2014;
Wachter et al., 2015; Lee, Yun, and Park, 2016). Even from
a purely academic perspective, studying the nonequilibrium
electron dynamics on the femtosecond scale presents numer-
ous research opportunities, one of which is the transition
from ballistic to dissipative electron transport in a pump-
probe setting (Wachter et al., 2014).

C. Dynamic Franz-Keldysh effect

A constant electric field applied to a semiconductor or
insulator changes the optical properties of the solid: the
absorption edge shifts to smaller energies, and the spectrum
above the band edge acquires an oscillatory behavior.
Theoretically, these effects can be described as field-induced
renormalization of electronic wave functions in a tilted lattice
potential. Using Eqs. (C1) and (C2), one can show that, in the
effective-mass approximation (5), the component of hybrid
Kane functions that is parallel to the field polarization is given
by the Airy function, while the other two components remain
the Bloch waves (Tharmalingam, 1963). The electronic wave
function of valence and conduction bands coupled by a static
field can be written as

φðk⊥; rÞ ∝ Ai

�jeF0jx − ϵ

ℏθx

�
eiðkyyþkzzÞ;

ℏθx ¼

ðeF0ℏÞ2

2m

�
1/3

; ϵ ¼ E −
ℏ2ðk2y þ k2zÞ

2m
:

ð47Þ

The Airy function features an exponential tail leaking inside
the forbidden energy gap as well as decaying oscillations
outside it [Fig. 15(a)]. The formation of these features has a
profound effect on both real and imaginary parts of dielectric
permittivity, which can be probed by a weak resonant field
[Fig. 15(b)]. As a result, the photon-assisted tunneling with
absorption below the band gap ℏω < Eg becomes allowed,
and the field-dependent absorption coefficient can be approxi-
mated by the following expression (Franz, 1958; Keldysh,
1958; Tharmalingam, 1963):

αðω; F0Þ ∝
θ3/2x

Eg − ℏω
exp



−
4

3

�
Eg − ℏω

ℏθx

�
3/2
�
. ð48Þ

Promptly following the theoretical predictions by Franz
(1958) and Keldysh (1958), the FKE was confirmed by
experimental observations in bulk semiconductors (Böer,
Hänsch, and Kümmel, 1958, 1959). Further developments
addressed contributions from multiple bands and band non-
parabolicities (Aspnes, 1974; Hader, Linder, and Döhler,
1997), excitonic effects (Ralph, 1968; Dow and Redfield,
1970; Rowe and Aspnes, 1970; Blossey, 1971; Duque-Gomez
and Sipe, 2015; Pedersen, 2015), quantum confinement in
semiconductor nanostructures (Miller, Chemla, and Schmitt-
Rink, 1986; Hache, Ricard, and Flytzanis, 1989; Schmeller
et al., 1994; Hughes and Citrin, 2000), phonon-assisted and
multiphoton transitions (Penchina, 1965; Hassan and Moussa,
1975; Wahlstrand, Cundiff, and Sipe, 2011), and harmonically
varying strong fields (Jauho and Johnsen, 1996; Haug and
Jauho, 2008; Otobe et al., 2016).
The experimental study of the FKE in static electric fields

applied to semiconductors is restricted to field strengths on the
order of ∼105–106 V/cm due to Zener breakdown. Dielectric
permittivity changes little in these fields, which makes it
difficult to observe the exponential tail and oscillations shown
in Fig. 15(b). The change in permittivity can be measured with
high accuracy by applying an oscillating electric field and
using a lock-in amplifier (Hamaguchi, 2013). This method,
known as electromodulation spectroscopy, has been used
since the 1960s to provide valuable information on the density
of states and band structure of semiconductors (Frova et al.,
1966; Aspnes, 1972, 1973). Field strengths substantially
exceeding 105 V/cm were achieved by using short and intense
laser pulses with a central photon energy much smaller than
the fundamental band gap (Nordstrom et al., 1997; Hughes
and Citrin, 1999; Chin, Calderón, and Kono, 2001).
An important parameter describing the Franz-Keldysh

effect in a time-dependent pump field is the ratio of the
ponderomotive energy Up to the pump photon energy, that is,
γNP. The static FKE corresponds to γNP ≫ 1. For γNP ≪ 1,
the induced change of absorption is due to multiphoton
processes. The intermediate regime γNP ∼ 1 is known as the
dynamic Franz-Keldysh effect (DFKE) (Jauho and Johnsen,
1996; Nordstrom et al., 1997, 1998; Haug and Jauho, 2008).

FIG. 15. Schematic illustration of the Franz-Keldysh effect.
(a) The wave functions of the valence and conduction bands
(lower red and upper blue curves, respectively) in a constant field
are approximately given by the Airy function, which exponen-
tially decays into the band gap and oscillates in the allowed
regions. (b) The absorption spectra of a bulk semiconductor with
(lower curve) and without the external field (dashed black curve)
and their difference Δα ¼ αðω; F0Þ − αðω; 0Þ (upper curve).
From A. Leitenstorfer and Ch. Schmidt, University of Konstanz.
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The strong-field approximation (Keldysh, 1965; Reiss, 1980)
discussed in Sec. II.B shows that, in this regime, the lowest-
order multiphoton excitation channel is closing due to the
increase of the effective band gap Ẽg ¼ Eg þ Up, and electron
wave functions start penetrating the classically forbidden
regions. Thus the diabatic tunneling regime is a minimal
prerequisite for observing the DFKE.
Modern studies of the DFKE, in both theory (Jauho and

Johnsen, 1996; Nordstrom et al., 1997; Platero and Aguado,
2004; Otobe et al., 2016) and experiment (Ghimire et al.,
2011b; Novelli et al., 2013; Schultze et al., 2013, 2014;
Lucchini et al., 2016), are focused on the subcycle control
of optical properties of semiconductors and dielectrics by
employing intense THz or IR few-cycle pulses. The waveform
control of absorption is achieved closer to the adiabatic
tunneling limit, where γK ≪ 1 and γNP ≫ 1, and it usually
requires higher pump fields.
The Franz-Keldysh effect is at the heart of modern electro-

absorption modulators, which are able to operate at low
voltage (only a few volts) and with modulation bandwidth
up to tens of gigahertz (Lach, Schuh, and Schmidt, 2005).
These devices are widely used in optical fiber communications
and integrated optoelectronics (Chuang, 2009; Ebeling, 2012).
The experimentally demonstrated switching of optical absorp-
tion on the subfemtosecond time scale may pave the way
toward the extension of light modulation and thereby optical
signal processing from the gigahertz to the terahertz and
petahertz regimes.

D. Energy transfer between light and matter

Employing strong-field phenomena for high-speed metrol-
ogy and signal processing has a major challenge: irreversible
energy transfer per switching cycle. At the same time,
transient energy exchange is a prerequisite for reversible
nonlinear processes. Therefore it is necessary to precisely
measure and understand minuscule amounts of energy trans-
ferred between light and matter. The energy flow is deter-
mined by the electric field FðtÞ of a light pulse and the
polarization response PðtÞ of the medium:

dW
dt

¼ FðtÞ · dP
dt

¼ FðtÞ · JðtÞ: ð49Þ

Here W is work per unit volume. We do not distinguish
between bound and free charge carriers, so JðtÞ includes the
displacement current. For a sample so thin that FðtÞ changes
little during propagation, JðtÞ can be reconstructed from the
incident and transmitted fields provided that these fields are
measured unambiguously and with a sufficient accuracy. Until
not long ago, such measurements were feasible only in the
terahertz domain. Nowadays, attosecond technology provides
an excellent means for measuring optical waveforms. In the
visible domain, attosecond streaking has recently reached
subattosecond accuracy (Ossiander et al., 2017). For longer
near-IR and mid-IR wavelengths, electro-optical sampling is
an attractive alternative that does not require a vacuum setup
(Keiber et al., 2016). A general name for the class of
measurements enabling a direct access to the polarization

response in the optical domain is attosecond polarization
spectroscopy.
Figure 16 shows the real-time energy exchange between an

intense few-cycle infrared laser pulse and fused silica, which
was measured using attosecond polarization spectroscopy
(Sommer et al., 2016). To prepare this figure, the linear
component of the polarization was subtracted from PðtÞ,
and the nonlinear component of the work performed by the
electric field was evaluated by integrating Eq. (49). These
results reveal that the amount of energy irreversibly dissi-
pated in the sample crucially depends on the maximum
applied field strength. At 2.1 V/Å, the dissipated energy is
smaller than the uncertainty of its nominal value, while the
peak energy transiently transferred from the light pulse to the
sample is comparable to that measured at the highest laser
intensity, which was approximately 10% below the damage
threshold. For peak laser fields stronger than 2.1 V/Å, a
significant amount of energy is transferred from light to
matter in the form of residual electronic excitations. We
denote this work, accumulated by the end of the interaction,
as Wirrev. The difference between the peak value of the work
Wmax and Wirrev characterizes the transient nonlinear energy
transfer. At this moment, it is an open question how to exploit
a transient transfer of a large amount of energy from light
to a medium for metrology or signal processing, but we
recognize such reversible processes as an opportunity for
future applications.

E. Adiabatic evolution and topology of Bloch bands

Geometric and topological properties of Bloch bands,
which originate from the Berry connection ξnnðkÞ, enrich
the physics of electron motion steered by an electromagnetic
field. In particular, if the Berry curvature, defined by

ΩnðkÞ ¼ ∇ × ξnnðkÞ;

is nonzero, then the velocity of a wave packet accelerated by
an electric field acquires an additional component known as
the anomalous velocity (Karplus and Luttinger, 1954):
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FIG. 16. Nonlinear energy exchange between a 3.1-fs 750-nm
pulse and a fused-silica sample, measured by attosecond polari-
zation spectroscopy. Adapted from Sommer et al., 2016.
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vðaÞn ¼ −K̇ ×ΩnðKÞ ¼
e
ℏ
FðtÞ ×ΩnðKÞ:

In the absence of the magnetic field, the anomalous velocity is
orthogonal to the electric field. In the presence of both electric
FðtÞ and magnetic BðtÞ fields, the motion of an electron wave
packet obeys the following equations [cf. Eq. (1)] (Sundaram
and Niu, 1999):

K̇ ¼ −
e
ℏ
½FðtÞ þ ṙn × BðtÞ�; ð50aÞ

ṙn ¼
1

ℏ
∇KEnðKÞ − K̇ ×ΩnðKÞ: ð50bÞ

The Berry connection also determines the geometric phase,
which we defined in Eq. (16). For a long time, it was argued
that such a phase factor accumulated by a wave function
during adiabatic evolution is physically meaningless and can
be removed by a gauge transform. In his seminal paper, Berry
(1984) showed that this is true only if the path followed by a
set of adiabatic parameters ΛðtÞ remains open. If the path is
closed, i.e., returns to its starting point Λðt0Þ, then the
accumulated phase change is gauge invariant and therefore
presents a physical observable. It was then realized that the
geometric phase γn;kðt; t0Þ of an electron in a Bloch band is
responsible for measurable changes of material properties,
e.g., polarization (King-Smith and Vanderbilt, 1993; Resta,
1994), orbital magnetization (Thonhauser et al., 2005), and
density of states (Xiao, Shi, and Niu, 2005). The concept
of a geometric phase also offered a new physical approach to
such phenomena as the quantum Hall, Aharonov-Bohm, and
Jahn-Teller effects (Bohm et al., 2013). The integration of the
geometric phase or the Berry curvature over the Brillouin zone
yields topological invariants of Bloch bands (see Appendix D
for more details).
The role of the geometric phase in the interaction of a solid

with a constant external electric field was studied by Zak
(1989), who identified it in the Wannier-Stark ladder. Without
neglecting γn;kðt; t0Þ in Eq. (15), the quantization of Bloch
oscillations yields the following generalized expression for
the Wannier-Stark ladder (Resta, 2000; Bohm et al., 2013;
Lee and Park, 2015):

En;l ¼ Ēn þ eaF0

�
lþ γðZÞn

2π

�
: ð51Þ

Here

γðZÞn ¼
I
∂Σ

ξnnðkÞ · dk

is known as the Zak phase, and the integral is taken over
an arbitrary closed loop ∂Σ going around the entire
Brillouin zone.
Unlike the Berry connection ξnnðkÞ, the Zak phase and the

Berry curvature do not depend on the gauge (phase choice)
of the Bloch amplitudes un;kðrÞ and thus can be measured.
Experimental studies of phenomena related to a geometric
phase form an active field of research in artificial periodic

systems. Recent works have demonstrated the measurements
of the Zak phase (Atala et al., 2013; Duca et al., 2015) and
oscillations of an effective mass of a particle in an optical
lattice driven by an external force (Chang et al., 2014). In a
recent paper (Li et al., 2016), Bloch state tomography was
applied for measurements of the Berry curvature and topo-
logical invariants in the case of degenerate bands.
During the past decades, similar studies in solids were

primarily focused on various kinds of the Hall effect,
especially in 2D systems (quantum wells and graphenelike
structures) exposed to strong magnetic fields (Klitzing, Dorda,
and Pepper, 1980; Thouless et al., 1982; Haldane, 1988;
Nagaosa et al., 2010). The emerging possibilities to drive and
track electron motion on time scales where momentum
scattering is negligible enable studies of the anomalous group
velocity and topological properties of Bloch bands with strong
electric fields. For example, effects of the Zak phase in
graphene exposed to circularly polarized femtosecond pulses
were measured using ARPES (Liu et al., 2011) and theoreti-
cally investigated by Kelardeh, Apalkov, and Stockman
(2016). The Berry curvature manifests itself in the electric
current induced by the anomalous velocity component in a
quantum well exposed to a circularly polarized ultrashort
laser pulse (Virk and Sipe, 2011). Similar ideas were recently
realized in experiments on undoped GaAs quantum wells
(Priyadarshi, Pierz, and Bieler, 2015) and atomically thin
MoS2 (Liu et al., 2017).

IV. SUMMARY AND OUTLOOK

The ultimate physical speed limits of electron-based met-
rology and signal processing are defined by how fast the
electric or optical properties of materials can be manipulated.
Direct time-resolved access to the underlying phenomena in
bulk systems and a comprehensive insight into their inter-
action with electromagnetic radiation on extremely short
time scales are the keys to clarifying and, possibly, pushing
these limits. Attosecond techniques promise such access and
insight.
An important opportunity for metrological applications,

such as optical-field sampling, is the possibility to confine the
excitation of charge carriers to a time interval shorter than a
femtosecond. Subsequent steering of carrier motion with the
electric field of light enables subcycle trajectory control,
which is the basis of attosecond metrology. Quantum coher-
ence plays an important role on a few-femtosecond time scale,
even if experiments are performed at room temperature. How
to take advantage of the quantum nature of a light-driven
electron wave packet is one of the major open questions for
future applications.
While excitation of charge carriers can be very fast, their

interband recombination is a very slow process. Especially
for signal processing, phenomena that enable light-field-
controlled manipulation of physical properties of a solid
without substantial electronic excitations are going to play
a central role. Such phenomena imply reversible energy
transfer, where the quantum states of electrons adapt to the
external field, while the properties of “field-dressed” or
adiabatic states significantly differ from those of the unper-
turbed ones. This perspective is also the reason why we
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emphasize the concept of adiabaticity in this Colloquium.
From the experimental side, the recently emerged capability of
measuring the energy flow between light and matter with
attosecond resolution is likely to play an instrumental role in
minimizing irreversible and maximizing transient nonlinear
energy transfer.
The current focus of petahertz photonics is the exploration

of relevant phenomena using the tools that have recently
become available. These phenomena include well-known
effects, such as interband tunneling, and recently discovered
ones, such as high-harmonic generation in solids. Since
dissipation and dephasing present major obstacles to potential
applications, there is a strong demand for a better under-
standing of their microscopic origins. Recent experiments
indicate that the presence of a strong field may significantly
accelerate the decay of interband coherence. By exploring
the underlying physics, future research should clarify the
possibilities for coherent manipulation of electron wave
packets in solid-state materials.
We presented an up-to-date classification of laser-matter

interaction regimes summarizing both classical results and
recent discoveries in strong-field physics. Even though our
scheme may not exhaust all the possibilities, it serves as
guidance for well-known strong-field phenomena and offers a
framework for analyzing effects that may become important in
the future.
Summarizing our outlook, a better understanding of how

electrons behave in new regimes of light-matter interaction
may open up new paths toward performing electronic oper-
ations with both unprecedented speed and low energy dep-
osition into the material. This may, in the long run, pave the
way to petahertz electronic and photonic devices. In the nearer
future, these research efforts will spawn novel high-speed
metrology based on solid-state detectors.

LIST OF SYMBOLS AND ABBREVIATIONS

ARPES Angle-resolved photoemission spectroscopy
BH Band hybridization (parameter)
BP Bloch-to-ponderomotive (ratio of energies)
BZ Brillouin zone
CB Conduction band
CEP Carrier-envelope phase
CWRF Carrier-wave Rabi flopping
DFKE Dynamic Franz-Keldysh effect
DL Dynamic localization
EMA Effective-mass approximation
ERF Envelope Rabi flopping
FWHM Full width at half maximum
IR Infrared radiation
HHG High-order harmonic generation
MOSFET Metal-oxide-semiconductor field-effect transistor
NP Nonperturbative
PHz Petahertz (frequency)
RB Rabi-to-Bloch (ratio of frequencies)
RF Rabi flopping
RWA Rotating-wave approximation
SC Semiclassical

SFA Strong-field approximation
TDSE Time-dependent Schrödinger equation
THz Terahertz (frequency)
WS Wannier-Stark (ladder, resonances, states)
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APPENDIX A: PONDEROMOTIVE ENERGY IN THE
TIGHT-BINDING APPROXIMATION

Breakdown of the EMA for carriers that approach the edges
of BZ and do not tunnel to higher bands requires a generalized
definition of the ponderomotive energy. Substitution of
Eq. (36) into the general formula (4) yields the following
analytical result:

Up ¼
Xlmax

l¼0

εcv;lJ0

�
lωB

ω0

�
− Eg; ðA1Þ

where εcv;l ¼ εc;l − εv;l is the difference of hopping integrals
for conduction and valence bands.
As expected, in the weak-field limit, Eq. (A1) follows

a parabolic dependence on the field amplitude (Fig. 17),
while in the strong-field limit Up deviates from it and starts
oscillating around a half difference of the conduction and
valence band widths:

FIG. 17. Ponderomotive energy of an electron-hole pair moving
along the Γ −M direction of SiO2 in the lowest conduction and
highest valence bands, calculated in the EMA (dashed curve), as
well as for the exact band dispersion (solid curve). At high fields,
where the electron approaches the BZ edges and stays in the same
band, Up oscillates around one-half of the difference between
the bandwidths of the conduction and valence bands Δcv/2
(short-dashed line).
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Δcv

2
¼ Δc − Δv

2
¼

Xlmax

l¼1

εcv;l:

APPENDIX B: ARBITRARY-ORDER CORRECTIONS
OF ADIABATIC PERTURBATION THEORY

Introducing the interband interaction potential
ṼcvðtnÞ ¼ VcvðtnÞeiϕ0

cvðk;tn;t0Þ and the time-ordering operator
T̂ , one derives the nth order correction (Sakurai and
Napolitano, 2013)

aðnÞc;k ðk; tÞ ¼
�
−
i
ℏ

�
n
Z

t

t0

dt1 � � �
Z

tn−1

t0

dtnṼcvðt1Þ � � � ṼcvðtnÞ

ðB1Þ

and the time evolution operator

Ûðt; t0Þ ¼ T̂ exp



−
i
ℏ

Z
t

t0

ṼcvðτÞdτ
�
: ðB2Þ

APPENDIX C: HYBRID KANE FUNCTIONS

Wave functions of electrons in the lattice tilted by a
static external field can be approximated using the
hybrid Kane functions (Kane, 1960; Fritsche, 1966;
Glutsch, 2004)

φðKÞ
n;l ðk⊥; rÞ ¼

Z
π/a

−π/a
ηn;lðkÞψ ðBÞ

n;k ðrÞdkx; ðC1Þ

where the transformation of Bloch functions ψ ðBÞ
n;k ðrÞ ¼

un;kðrÞeik⋅r to real space is taken only over the kx component,
which is directed along the field polarization. Here

ηn;lðkÞ ¼ exp

�
−

i
eF0

Z
kx

0

½En;lðk⊥Þ − E0
nðkÞ�dkx


ðC2Þ

are the solutions of an adiabatic eigenvalue problem

½E0
nðkÞ þ ieF0∂kx �ηn;lðkÞ ¼ En;lðk⊥Þηn;lðkÞ ðC3Þ

for the Hamiltonian

Ĥ ¼ −
ℏ2∇2

2m0

þ V̂lattðrÞ þ eF0x ðC4Þ

in the momentum representation and in the single-band
approximation x ¼ ∂kx þ iXnnðkÞ, XnmðkÞ ¼ 0, n ≠ m.
The continuous part of En;lðk⊥Þ [see Eq. (29)] is given by

Ē0
nðk⊥Þ ¼

a
2π

Z
π/a

−π/a
E0
n(KðtÞ)dkx; ðC5Þ

where

E0
nðkÞ ¼ EnðkÞ þ eF0Xnn(KðtÞ);

KðtÞ ¼ KxðtÞ þ k⊥; KxðtÞ ¼
�
kx −

eF0

ℏ
t

�
mod G;

XnnðkÞ ¼ hun;kji∂kx jun;ki:

The Kane functions are orthonormal and complete:

Z þ∞

−∞
φðKÞ�
n;l ðk⊥; rÞφðKÞ

n0;l0 ðk⊥; rÞd3r ¼ δnn0δll0 ; ðC6Þ

and they satisfy the ladder property:

φðKÞ
n;l ðk⊥; rÞ ¼ φðKÞ

n;0 ðk⊥; r − laÞ: ðC7Þ

The hybrid Kane functions converge to the Wannier
functions

wn;lðk⊥; rÞ ¼
a
2π

Z
π/a

−π/a
ψ ðBÞ
n;k ðrÞe−ikxladkx ðC8Þ

in the limit of the infinite electric field

lim
F0→∞

φðKÞ
n;l ðk⊥; rÞ ¼ wn;lðk⊥; rÞ ðC9Þ

or in the limit of dispersionless bands EnðkÞ ¼ const, which is
true for the core states (Glutsch, 2004).

APPENDIX D: BERRY CURVATURE AND
TOPOLOGICAL INVARIANTS

In general, the Berry curvature is not a vector, but a rank-2
antisymmetric tensor defined as an exterior derivative of the
Berry connection

Ωμν ¼ ∂μξν − ∂νξμ þ i½ξμ; ξν�; ðD1Þ

similarly to the electromagnetic field tensor (Landau and
Lifshitz, 1975). Here the band indices were omitted for
simplicity, ν and μ enumerate coordinates, and ∂μ ≡ ∂/∂kμ.
Unlike the electromagnetic field, which has an Abelian

gauge symmetry Uð1Þ, the Berry connection and curvature
have multiple components in a subspace of degenerate Bloch
bands, so that they become matrices with a non-Abelian gauge
structure (Wilczek and Zee, 1984; Xiao, Chang, and Niu,
2010; Yu et al., 2011; Alexandradinata and Bernevig, 2016;
Li et al., 2016). This results in a nonvanishing commutator
between components of the Berry connection [see Eq. (D1)].
The Berry curvature is proportional to an imaginary part

of a more general object known as the quantum geometric
tensor

Qμν ¼ Fμν −
i
2
Ωμν; ðD2Þ

which was initially introduced by Provost and Vallee (1980) in
the framework of a geometric approach to quantum mechan-
ics. The real part of this tensor defines the Fubini-Study metric
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Fμν, which characterizes the quantum distance between two
infinitesimally separated states:

ds2 ¼ 1 − jhΨðkÞjΨðkþ dkÞij2 ¼
X
μν

Fμνdkμdkν: ðD3Þ

Modern developments of condensed matter theory
employing the mathematical methods of differential geometry
and topology have led to the formulation of the topological
band theory (Hasan and Kane, 2010; Bansil, Lin, and Das,
2016), where Bloch bands are characterized with a new
class of quantum numbers, the topological invariants
(Nakahara, 2003).
An illustrative example of a topological invariant is the first

Chern number Cn counting the number of vortices (Dirac
points) in the band. It is defined by integration of the Berry
curvature over a closed surface Σ around the Brillouin zone
(Gradhand et al., 2012)

Cn ¼
1

2π

Z Z
Σ
ΩnðkÞdS; ðD4Þ

where dS is an oriented surface element in reciprocal space. If
the Bloch functions are smooth with respect to k, one can
employ the Stokes theorem (Nakahara, 2003) and express the
Chern number via the Zak phase:

Cn ¼
γðZÞn

2π
: ðD5Þ

The Chern number appears in condensed matter physics as
a parameter determining the quantization of Hall conductivity
in a 2D electron gas (Thouless et al., 1982; Xiao, Chang, and
Niu, 2010)

σxy ¼
e2

ℏ

X
n∈occ

Cn;

where the summation is taken over occupied bands.
From Eqs. (51) and (D5), it is clear that the Chern number

emerges in the quantization law for the Wannier-Stark
resonances (51) and provides a classification between the
topologically trivial (Cn ¼ 0) and nontrivial (Cn ≠ 0) cases
(Lee and Park, 2015). Recently, it has been proven (Brouder
et al., 2007; Panati and Pisante, 2013) that the equality Cn ¼ 0

for all bands gives a necessary and sufficient condition for
the existence of the maximally localized Wannier functions
(Marzari et al., 2012). For example, this is the case for systems
with time-reversal symmetry.
The Z2 topological invariant ν encodes the time-reversal

invariance properties of the bulk band structure (Kane and
Mele, 2005; Fu and Kane, 2006) and distinguishes between
the trivial (ν ¼ 0) and topological materials (ν ¼ 1). In a 2D
system, it can be expressed in the following general form
(Soluyanov and Vanderbilt, 2011; Bansil, Lin, and Das,
2016):

ν ¼ 1

2π

X
n∈occ


I
∂τ
ξnnðkÞdk −

Z Z
τ
ΩnðkÞdS

�
mod 2; ðD6Þ

where the integrals are taken over one-half of the BZ τ and
the boundary of that half ∂τ.
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Haché, A., Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and
H. M. van Driel, 1997, Phys. Rev. Lett. 78, 306.

Hader, J., N. Linder, and G. H. Döhler, 1997, Phys. Rev. B 55,
6960.

Haldane, F. D. M., 1988, Phys. Rev. Lett. 61, 2015.
Hamaguchi, C., 2013, Basic Semiconductor Physics (Springer,
Berlin/Heidelberg).
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