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A fully analytical description of the allowed β spectrum shape is given in view of ongoing and
planned measurements. Its study forms an invaluable tool in the search for physics beyond the
standard electroweak model and the weak magnetism recoil term. Contributions stemming from finite
size corrections, mass effects, and radiative corrections are reviewed. Particular focus is placed on
atomic and chemical effects, where the existing description is extended and analytically provided. The
effects of QCD-induced recoil terms are discussed, and cross-checks were performed for different
theoretical formalisms. Special attention was given to a comparison of the treatment of nuclear
structure effects in different formalisms. Corrections were derived for both Fermi and Gamow-Teller
transitions, and methods of analytical evaluation thoroughly discussed. In its integrated form,
calculated f values were in agreement with the most precise numerical results within the aimed for
precision. The need for an accurate evaluation of weak magnetism contributions was stressed, and the
possible significance of the oft-neglected induced pseudoscalar interaction was noted. Together with
improved atomic corrections, an analytical description was presented of the allowed β spectrum shape
accurate to a few parts in 10−4 down to 1 keV for low to medium Z nuclei, thereby extending the work
by previous authors by nearly an order of magnitude.
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I. INTRODUCTION

The study of β decay played a pivotal role in uncovering the
nature of the left-handed V-A weak interaction, and by
extension the electroweak sector of the standard model
(SM) (Weinberg, 2009), half a century ago. Over the follow-
ing decades, the continuous development of new experimental
techniques has kept research on β decay at the forefront of
revealing the structure of the SM and its inner workings
(Severijns, Beck, and Naviliat-Cuncic, 2006; Vos, Wilschut,
and Timmermans, 2015). Probing an array of different
observables, such as correlation coefficients or the F t value,
allows for a sensitive investigation of several beyond standard
model (BSM) influences. Deviations from pure V-A theory
can occur as manifestations of exotic interactions, such as
right-handed currents involving new heavy particles. Through
investigation of sidereal variations of experimental observ-
ables it additionally allows for a study of Lorentz invariance
violation (Noordmans, Wilschut, and Timmermans, 2013).
In the LHC era, competitive results can be extracted from

pp → eþMET þ X reaction channels (Khachatryan et al.,
2015). In the past decade, the development of so-called
effective field theories has seen a tremendous amount of

work and interest where, through inclusion of a new physics
scale ΛBSM ≫ ΛLHC, both high- and low-energy experimental
results can be interpreted in the same theoretical framework
(Bhattacharya et al., 2012; Cirigliano, González-Alonso, and
Graesser, 2013). The Lee-Yang Hamiltonian (Lee and Yang,
1956) is generalized to a form where couplings with
higher dimensional combinations of SM field operators are
categorized according to their transformation properties; see,
e.g., the work by Bhattacharya et al. (2012). Several com-
parative reviews have been presented in the past few years
(Cirigliano, Gardner, and Holstein, 2013; Naviliat-Cuncic
and González-Alonso, 2013; Holstein, 2014a, 2014b;
Severijns, 2014).
Recently, renewed interest has arisen in the β spectrum

(Kuzminov and Osetrova, 2000; Towner and Hardy, 2005;
Dawson et al., 2009; Loidl et al., 2010; George et al., 2014;
Mougeot and Bisch, 2014; Severijns, 2014; Severin et al.,
2014; Mougeot, 2015; Huyan et al., 2016) as a tool for
precision measurements searching for exotic currents beyond
the standard electroweak model and investigating QCD-
induced form factors. The latter are related to the fact that
the quark involved in β decay is not a free particle but is
embedded in a nucleon. Beyond standard model scalar and
tensor coupling constants appear in the mathematical descrip-
tion of the β spectrum shape via the so-called Fierz interfer-
ence term (Jackson, Treiman, and Wyld, 1957)

bFierz≃� 1

1þ ρ2

�
Re

�
CSþC0

S

CV

�
þ ρ2Re

�
CT þC0

T

CA

��
; ð1Þ

with the upper (lower) sign for electron (positron) decay,

respectively, and Cð0Þ
S;T are the coupling constants for possible

scalar- or tensor-type weak interactions. Further, Cð0Þ
V;A are the

coupling constants for the SM vector and axial-vector inter-
actions and ρ ¼ CAMGT=CVMF is the ratio of the Gamow-
Teller and Fermi fractions in the β decay, with MGT and MF
being the respective nuclear matrix elements. For pure Fermi
and Gamow-Teller transitions this reduces to, respectively,

bFierz;F ≃�Re

�
CS þ C0

S

CV

�
; ð2aÞ

bFierz;GT ≃�Re

�
CT þ C0

T

CA

�
; ð2bÞ

i.e., searches for beyond standard model currents become
independent (to first order) of the nuclear matrix elements. In
order to improve existing limits on these scalar or tensor
coupling constants (Severijns and Naviliat-Cuncic, 2011;
Holstein, 2014a; Vos, Wilschut, and Timmermans, 2015) a
precision of typically 0.5% is required when determining bFierz
(Severijns and Naviliat-Cuncic, 2013).
As the required experimental precision increases, QCD-

induced form factors have to be taken into account in order not
to limit the sensitivity to BSM physics (Pitcairn et al., 2009;
Wauters et al., 2009, 2010; Severijns and Naviliat-Cuncic,
2013; Soti et al., 2014; Sternberg et al., 2015; Fenker, 2016).
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These form factors are part of the SM and are dominated by
the so-called weak magnetism term bwm. Its inclusion is
typically sufficient to be accurate below the 10−3 level, while
higher-order terms can be incorporated should the need arise.
Conversely, similar experimental precision has to be reached
in order to test these corrections.
The Fierz and weak magnetism terms modify the shape of

the β spectrum as follows:

NðWÞdW ∝pWðW0−WÞ2×
�
1þ γme

W
bFierz�

4

3

W
M

bwm

�
dW;

ð3Þ

with p, W, and W0 the β particle momentum, its total energy,
and total energy at the spectrum end point, respectively.
Additionally, γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðαZÞ2

p
with α the fine-structure con-

stant, Z the atomic number of the daughter nucleus, and me
andM the rest mass of the electron and the average mass of the
mother and daughter nuclei, respectively. It is clear that, in
order to search for new physics or when trying to establish the
effect of weak magnetism, the β spectrum has to be suffi-
ciently well understood theoretically in order to avoid other
SM effects mimicking a nonzero Fierz term or behaving like a
weak magnetism contribution. A description of the β spectrum
reliable at the 10−4 level is then required.
In the past a detailed description of the β spectrum was

provided by Behrens and collaborators (Bühring, 1963, 1965;
Bühring and Schülke, 1965; Behrens and Jänecke, 1969;
Behrens and Bühring, 1971, 1982; Behrens et al., 1978),
based on the formalism by Stech and Schülke (Schülke, 1964;
Stech and Schülke, 1964), by Holstein (Holstein, 1971, 1972a,
1972b, 1974a, 1974c; Holstein, Shanahan, and Treiman,
1972; Holstein and Treiman, 1971; ) and more recently by
Wilkinson (1982, 1989, 1990, 1993a, 1993b, 1993c, 1995a,
1995b, 1997). The work by Behrens et al., while rigorous and
complete, relies on numerical solutions of the Dirac equation
for the outgoing leptons, whereas that by Wilkinson provided
analytical parametrizations of the dominant effects.
In this work special attention has been given to improve the

analytical description of atomic effects. The theoretical work
performed by Bühring concerning screening effects was
combined with high precision atomic potentials to guarantee
good behavior for all Z values. An analytical fit is proposed
for the atomic exchange effect, based on state-of-the-art
numerical calculations. Its contribution can easily exceed

20% in the lowest energy regions for higher Z, and so is
not to be neglected. The effects of shakeup and shakeoff have
been reviewed, as well as their influence on the aforemen-
tioned atomic effects. Because of the aim for precision in this
work, molecular effects have been explored and discussed.
Limited analytical work is presented which can act as a
guideline for estimating the error associated with a neglect of
these influences.
The effects of nuclear structure and spatial variations of the

final state wave functions inside the nuclear volume have been
reviewed and we propose a new correction combining the
transparency of the Holstein formalism with the rigor of the
Behrens-Bühring formalism. Bundling all this information,
the analytical atomic β spectrum shape presented here is
expected to be accurate at the few parts in 104 level down to
1 keV for low to medium Z nuclei.
In the following, the β spectrum shape is discussed by first

providing an overview of the full description in Sec. II.
Several sections treat the different electromagnetic and kin-
ematic corrections, discussing the Fermi function (Sec. III),
followed by the effects of the finite size and mass of the
nucleus (Sec. IV), radiative corrections (Sec. V), and finally
different atomic and chemical effects (Sec. VII). Another
important part deals with corrections related to nuclear
structure (Sec. VI), where considerable attention has been
given to its correct evaluation. To this end a comparison was
made between different approaches. It is here the weak
magnetism contribution is reviewed and complete expressions
are given for both Fermi and Gamow-Teller decays.
Significant attention was given to the correct evaluation of
the matrix elements in the nuclear structure dependent terms.
Finally, the precision required to search for scalar and tensor
weak interactions and to study the effect of weak magnetism
will be discussed. In the appendixes a comparison is given
between the electromagnetic corrections in the Behrens-
Bühring and Holstein formalisms and further elaborated on
the correct evaluation of nuclear structure dependent effects.

II. COMPLETE EXPRESSION

Apart from the electromagnetic corrections to the β spec-
trum shape, several other smaller corrections are to be
included when a precision at the 10−4 level is required.
The detailed description of the allowed β spectrum shape,
including these smaller corrections, is given by

NðWÞdW ¼ G2
VV

2
ud

2π3
F0ðZ;WÞL0ðZ;WÞUðZ;WÞDFSðZ;W; β2ÞRðW;W0ÞRNðW;W0;MÞ

×QðZ;WÞSðZ;WÞXðZ;WÞrðZ;WÞCðZ;WÞDCðZ;W; β2ÞpWðW0 −WÞ2dW

≡ G2
VV

2
ud

2π3
KðZ;W;W0;MÞAðZ;WÞC0ðZ;WÞpWðW0 −WÞ2dW: ð4Þ

Here Z is the proton number of the daughter nucleus,
W ¼ E=mec2 þ 1 is the total β particle energy in units of
the electron rest mass,W0 is the total energy at the spectrum
end point, p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 − 1

p
is the β particle momentum in

units of mec, GV is the vector coupling strength in nuclei,
and V2

ud ¼ cos2 θC, with θC the Cabibbo angle, is the
square of the up-down matrix element of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix.
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The factor F0ðZ;WÞ is the point charge Fermi function
that takes into account the Coulomb interaction between
the β particle and the daughter nucleus. The product
L0ðZ;WÞUðZ;WÞDFSðZ;W; β2Þ describes the required cor-
rections to this Fermi function after evaluation at the origin,
which depend on the size and shape of the daughter nucleus
(Sec. IV). Whereas previous effects are electrostatic in origin,
RðW;W0Þ takes into account radiative corrections calculated
using quantum electrodynamics (QED) (Sec. V). Moving
from an infinitely massive nucleus to one of finite mass
introduces further kinematical corrections described by RN
and Q. All these factors are combined into the factor
KðZ;W;W0;MÞ. The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have to
be taken into account. Here SðZ;WÞ is the screening correc-
tion (Sec. VII.A), XðZ;WÞ takes into account the so-called
atomic exchange effect (Sec. VII.B) while rðZ;WÞ accounts
for the atomic mismatch (Sec. VII.D). These effects are
combined into AðZ;WÞ. Finally, the nuclear structure-
sensitive effects are written as CðZ;WÞ, with DC its corre-
sponding nuclear deformation correction. These are
extensively discussed in Sec. VI.
We comment here on the different effects encompassed by

the name “finite size effects” used by different authors. For
this, we must first realize the Fermi function comes about by
extracting the electron amplitude at either the origin or the
nuclear radius from the transition amplitude. We will perform
the former in this work. As the nucleus is an object of finite
size and the electron wave function is not a constant within
this surface, this extraction requires corrections from con-
voluting its wave function with that of initial and final states.
As the extracted Fermi function is typically written down in
analytical form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of the
daughter nucleus. We call these effects “electrostatic finite
size” corrections in order to clearly distinguish their origin and
describe them mathematically through L0, U, and DFS. This
simply amounts to the extraction of a more correct electron
wave function evaluated at the origin. We still require a
convolution of the correct wave function through the nuclear
volume via initial and final nuclear states contributing to the
decay. This involves a convolution with all relevant operators
contributing to the decay, which we do not artificially separate
but write completely as C. As this depends on the electron
wave function behavior inside the nucleus, Coulomb effects
are present in the calculation thereof. In the approach by
Holstein (1974b), Calaprice and Holstein (1976), and others
these are artificially separated into nuclear structure and
Coulomb sensitive factors when describing the spectral
functions. Together with the electrostatic finite size effects
previously defined, these are collectively called finite size
corrections. In the works inspired by Behrens and Bühring
(1982), on the other hand, only the part involving the leptonic
convolution is typically referred to as the finite size correction.
Others still refer to only electrostatic finite size effects. By
specifying the electrostatic origin of these corrections, we
hope to put these confusions to rest. As the nuclear structure-
sensitive correction C is nonzero even for point nuclei, we
refrain from calling these finite size effects altogether even
though we recognize the finite nuclear wave function

influences these results. Appendix E, in particular, aims to
further discuss the overlap and differences in the different
formalisms commonly found in the literature.
In the entire treatment natural units suited for β decay are

used, i.e., c ¼ ℏ ¼ me ¼ 1. In all formulas presented we
define Z as a positive quantity and distinguish between β− and
βþ explicitly unless mentioned otherwise. When estimates of
the magnitude of different corrections are given, it represents
the relative change in the phase space integral after inclusion
of the effect unless mentioned otherwise. As the detailed
description of β decay was developed over a period of several
decades with several different formalisms being used, we also
attempt here to relate different theoretical results and trace
their origin in order to avoid double counting issues. The
appendixes further elaborate on this idea.
Finally, all formulas presented have been implemented in a

custom C++ program (Hayen and Severijns, 2018). Based on
simple configuration files describing the decay parameters and
basic nuclear properties, the allowed β spectrum shape and
corresponding (anti)neutrino spectrum can be automatically
calculated. This includes the nuclear structure-sensitive terms,
allowing for its evaluation in the extreme single-particle
approximation as well as through connections with a shell
model of mean-field software packages. The former approach
is shown here to work very well once one moves to a properly
deformed potential rather than a spherical harmonic oscillator
potential. Results specific to nuclear structure related param-
eters utilizing this code are discussed elsewhere (Severijns
et al., 2018).

III. FERMI FUNCTION

The Hamiltonian that governs all types of β decay must
include not only the weak interaction responsible for the actual
decay, but also the electromagnetic interaction of the β particle
with its surroundings. As the latter is much stronger than the
former, it cannot be treated in perturbation theory (Halpern,
1970; Holstein, 1979). Writing down the transition matrix
element to first order in the weak Hamiltonian we find

Mfi ¼ −2πiδðEf − EiÞhfjT
�
exp

�
−i

Z
∞

0

dtHZðtÞ
��

×Hβð0ÞT
�
exp

�
−i

Z
0

−∞
dtHZ0 ðtÞ

��
jii ð5Þ

with T ensuring a time-ordered product and Z0 (Z) the charge
of the mother (daughter). The typical approximation made in
dealing with β decay equates initial and final Coulomb
interactions, replacing it instead with only the final. This is
then corrected for by including radiative corrections and
atomic final state influences discussed later. We choose to
follow this approach, such that Eq. (5) corresponds to using
the solution of the Dirac equation with an electrostatic
potential rather than a plane wave for the electron (Roman,
1965). It is this change that requires the introduction of the so-
called Fermi function. Denoted by FðZ;WÞ, it takes into
account the distortion of the electron radial wave function by
the nuclear charge, i.e., the Coulomb interaction between the β
particle and the daughter nucleus. Many (Konopinski and
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Uhlenbeck, 1941; Behrens and Jänecke, 1969) start from the
point charge Fermi function introduced by Fermi (1934).1

F0ðZ;WÞ ¼ 4ð2pRÞ2ðγ−1Þeπy jΓðγ þ iyÞj2
½Γð1þ 2γÞ�2 ; ð6Þ

with

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðαZÞ2

q
; y ¼ �αZW=p: ð7Þ

Here R is the cutoff radius in the evaluation of the Dirac
equation for the electron or positron necessitated by its slight
divergence at the origin for a fictitious point charge. This
cutoff radius is taken to represent the radius of the daughter
nucleus, although it has in fact no real physical significance.
Throughout the vast literature of β decay many different

definitions of the Fermi function have appeared. We attempt to
provide a short overview of the most frequently used and
stress that no formulation is in itself superior. Each requires
additional corrections stemming from the finite size of the
nucleus and its precise shape. These have been estimated to
various orders of precision and are discussed in the next
sections. This is not to say the Fermi function as written, for
example, in Eq. (6) carries no merit. It absorbs most of the Z
and W dependence of the tree-order Coulomb interaction,
whereas additional corrections are typically limited to at most
a few percent.
Before we summarize the different Fermi functions, we

briefly discuss the relativistic solution of an electron inside a
spherical Coulomb potential. The seminal work by Rose
(1961) elaborates on a fully analytical solution of the Dirac
equation for an electron in a hydrogenic approximation. In
general the solution can be written as

Ψκ ¼

0
B@

signðκÞfκðrÞ
P
μ
χμ−κ

gκðrÞ
P
μ
χμκ

1
CA; ð8Þ

with χμκ the traditional spin-angular functions, and κ the
eigenvalue of the operator2 K ¼ βðσ ⋅ Lþ 1Þ. For allowed
decay all states with j ¼ 1=2 contribute, meaning κ ¼ −1 for
s1=2 and κ ¼ 1 for p1=2 orbitals. All Coulombic information is
then encoded in the radial wave functions fκðrÞ and gκðrÞ.
When calculating the transition matrix element, one typically
extracts the dominant terms of the square of the electron wave
function throughout the nucleus, evaluated at some radius r, to
define3

FðZ;W; rÞ ¼ f21ðrÞ þ g2−1ðrÞ
2p2

: ð9Þ

Historically, this has been evaluated either at the origin or at
the nuclear radius. Using the analytical solutions of the Dirac
equation in a central Coulomb potential, one finds the factor 4
in Eq. (6) replaced by ð1þ γÞ=2. This was noted by
Konopinski and Uhlenbeck (1941) and has since been adopted
by Blatt and Weisskopf (1952), Fano (1952), Konopinski
(1966), and Wilkinson (1989). Others (Greuling, 1942;
Dismuke et al., 1952), including the seminal textbooks of
Schopper (1966) and Behrens and Bühring (1982), adhere to
the formulation of Eq. (6). The factor ð1þ γÞ=2 is then
absorbed into an L0 correction, which is also responsible for
modifications due to the finite nuclear size. To remain
consistent with the latter works, we opted to do the same
and use Eq. (6) as our Fermi function and discuss among
others the L0 correction factor in the following sections.
Additional definitions of the Fermi function have attempted

to extend Eq. (6) by including finite size corrections, through
evaluation at the origin or both.4 A frequent formulation that
performs both of these is that by Behrens and Jänecke (1969)

FBJðZ;WÞ ¼ F0ðZ;WÞ
�
1 ∓ 13

15
αZWRþ � � �

�
; ð10Þ

discussed by Calaprice and Holstein (1976). The additional
term can easily be traced from the power expansions of f1 and
g−1 inside the nucleus by (Huffaker and Laird, 1967)

�
g−1ðrÞ
f1ðrÞ

�
∝ ½p2F0ðZ;WÞ�1=2

×

�
1 −

�
13

30
þ 1

2

�
r
R

�
2
�
×αZWR −

1

6
ðprÞ2

�
ð11Þ

and understood as a rough electrostatic finite size correction.
The additional correction stemming from the convolution of
the leptonic wave functions with the weak charge distribution
then brings about nuclear structure-sensitive hr2i terms.
Calaprice and Holstein (1976) treated this with slightly higher
accuracy. Since the expansion performed by Huffaker and
Laird (1967) neglects terms of the order of ðαZÞ2, the
aforementioned factor ð1þ γÞ=2 is absent. The error intro-
duced by this is of the order of 0.5% for Z ¼ 20.
As mentioned, we split up all corrections in the current

work. The finite size corrections are split up into an electro-
static finite size correction, stemming from the electric
potential difference, and a convolution finite size correction
from an integration over the nuclear volume and sensitive to
nuclear structure. A discussion of the latter is postponed
until Sec. VI.

1An English summary of the Fermi theory was presented by
Konopinski and Uhlenbeck (1935) and Konopinski (1943).

2Here 1 is a 4 × 4 unit matrix, σ⃗ stands for the Pauli matrices in
four dimensions, L⃗ is the orbital angular momentum operator, and β
is the equal to the γ0 Dirac matrix. For s orbitals this evaluates to
κ ¼ −1.

3Additional corrections stemming from the “small” terms f−1 and
g1 can be written as a multiplication of Eq. (9) and some power
expansion in pr and αZ and are included in the convolution finite size
correction discussed in Sec. VI.

4Tabulations by Bhalla and Rose (1961) and Bhalla (1964) have
been shown to contain errors for βþ decay and have issues with
double counting (Huffaker and Laird, 1967), thereby requiring a large
correction (Calaprice and Holstein, 1976). We therefore do not
consider the Bhalla-Rose Fermi function.

Hayen et al.: High precision analytical description of the …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015008-5



In order to facilitate the discussion of the correction terms
on Eq. (6), we take Eq. (9) one step further. The results
obtained by Fermi (1934) and Konopinski and Uhlenbeck
(1941)) used analytical solutions of the Dirac equation in a
simple Coulomb potential for a point charge. Once we move
away from this simple picture to include the finite nuclear size
or atomic screening, no such analytical solutions are available.
Even when this is impossible, however, the behavior of the
electron radial wave functions can be developed in a power
expansion close to the origin (Behrens and Bühring, 1971)

�
fκðrÞ
gκðrÞ

�
¼ακfð2jκj−1Þ!!g−1ðprÞjκj−1×

X∞
n¼0

�
aκn
bκn

�
rn; ð12Þ

where the electrostatic information is now contained in the so-
called “Coulomb amplitudes” ακ, and aκn; bκn are iteratively
defined parameters. In this picture, we are not any more
hampered in evaluating the electron wave function at the
origin and write instead (Behrens and Bühring, 1982)

F0L0 ¼
α2−1 þ α21

2p2
: ð13Þ

This result is valid, regardless of the charge distribution of the
nucleus even though only a point charge solution is analyti-
cally solvable.

IV. FINITE MASS AND ELECTROSTATIC
FINITE SIZE EFFECTS

Attributing a finite mass to the nucleas opens up the decay
kinematics from a two-body to a three-body process. This has
consequences for both the outgoing energy of the lepton fields
and the electromagnetic corrections where one considered the
nuclear Coulomb potential as static. Giving the nucleus now a
finite size introduces several more corrections on the S matrix
as its nuclear volume is not any more a simple delta function.
As discussed in the previous section the traditional Fermi
function is calculated based on an infinitely heavy point-
charge model of the nucleus. As a consequence the electron
radial wave functions diverge slightly at the origin and are
instead evaluated at the nuclear radius R. This requires several
corrections, stemming from the finite size of the nucleus. We
stress again the ambiguity in the available literature when
discussing the so-called finite size corrections. For this reason,
we explicitly separated this into electrostatic and convolution
parts. The former originates from a difference in the electro-
static potential when moving to a more realistic nuclear shape,
whereas the latter takes into account the integration of the
leptonic wave functions throughout the nuclear volume and
includes the small Coulomb terms f−1 and g1. We focus here
on the electrostatic finite size corrections and leave the
convolution part for Sec. VI.

A. L0ðZ;WÞ, UðZ;WÞ, and DFSðZ;W;β2Þ: Electrostatic finite
nuclear size corrections

The deviation from a point-charge distribution inherently
changes the electron density inside the nucleus and as such

introduces additional electromagnetic corrections to the Fermi
function. We discuss the consequence on Eq. (13) from
moving to a uniformly charged sphere through L0, and go
even further to a Fermi distribution in U. Wilkinson (1990,
1993b) discussed the former effects in detail and provided
analytical expressions for each of them. Finally, we discuss the
electrostatic effect of nuclear deformation DFS.

1. L0ðZ;WÞ
When considering instead of a point nucleus one of finite

size, the electron and positron wave functions become finite at
the center of the nucleus. Any other description but a point
charge is, however, not analytically solvable, and so an
approximate correction factor L0ðZ;WÞ is introduced to be
used in combination with the analytical Fermi function. In
order to remain consistent with the formulation of the original
Fermi function in Eq. (6), the nucleus is presented by a
uniformly charged sphere of radius R that is adjusted to give
the experimental hr2i1=2 of the daughter nucleus, i.e.,

R ¼
ffiffiffiffiffiffiffiffi
5=3

p
hr2i1=2: ð14Þ

According to Eq. (13), L0 is defined as embracing all
information that is not contained in the Fermi function of
Eq. (6) when evaluating the dominant electron components at
the origin. As discussed in the previous section, this entails the
fact that even when considering a point charge, L0 differs from
unity since L0 ∼ ð1þ γÞ=2. Analogous to the expansion of f1
and g−1 in Eq. (11), Behrens and Bühring (1982) performed an
expansion to higher order [see Eqs. (12) and (13)] and found
after a straightforward calculation

L0 ≃ 1þ γ

2

�
1 ∓ αZWRþ 7

15
ðαZ2Þ − 1

2
γ
αZR
W

�

≃ 1 ∓ αZWRþ 13

60
ðαZ2Þ − 1

2

αZR
W

ð15Þ

for Z sufficiently low. Here 1 − γ was approximated as 1
2
ðαZ2Þ

and γ as unity. More precise numerical calculations were
tabulated by Behrens and Jänecke (1969) using R ¼
1.20A1=2 fm close to the valley of stability. This was extended
by Wilkinson (1990) to cover all isotopes between the proton
and neutron drip lines for Z ≤ 60. Together with a slight
generalization of the prefactors in Eq. (15) (keeping terms
proportional to γ alive rather than approximate them to unity),
numerical results were fitted after inclusion of simple power
expansions. The result was presented in analytical form as

L0ðZ;WÞ ¼ 1þ 13

60
ðαZÞ2 ∓ αZWRð41 − 26γÞ

½15ð2γ − 1Þ�

∓ αZRγð17 − 2γÞ
½30Wð2γ − 1Þ� þ a−1

R
W

þ
X5
n¼0

anðWRÞn

þ 0.41ðR − 0.0164ÞðαZÞ4.5; ð16Þ

for electrons, while for positrons the 0.41 in the last term of
this equation is to be replaced by 0.22. The an values
(n ¼ −1; 0; 1;…; 5) are given by the parametrization
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an ¼
X6
x¼1

bx;nðαZÞx; ð17Þ

with bx;n (x ¼ 1;…; 6) being listed in Tables 1 and 2 of
Wilkinson (1990) for electrons and positrons, respectively,
and reproduced here in Tables I and II.5 [Note that in Table II
0.066 483 under b2 was replaced by 0.066 463 and 2.836 06
under b4 was replaced by 2.636 06 (Wilkinson, 1993b).]
These parametrizations yield L0ðZ;WÞ accurately to 1 part
in 104 for p ≤ 45 and for jZj ≤ 60. The effect of L0ðZ;WÞ
ranges from a few 0.1% up to several % and so is everywhere
highly significant.

2. UðZ;WÞ
In the previous section we reported on the finite size

correction when the nuclear shape was assumed to be
uniformly spherical with a fixed radius R. In reality the
nuclear charge distribution is smeared out over a certain
distance. This in turn introduces an additional, smaller,
correction term from replacing the uniform spherical charge
distribution that defines L0ðZ;WÞ with a more realistic one
having the same hr2i1=2 (Behrens and Bühring, 1970, 1972).
Throughout time several different distributions have been
proposed, ranging from a simple Yukawa form to Fermi
functions and even Gudermannian combinations (Asai and
Ogata, 1974; Ogata and Asai, 1974). An extensive overview
of oft-encountered charge distributions in nuclear physics is
given by Andrae (2000), together with some basic properties.
We explicitly consider here the modified Gaussian and Fermi
potentials. The first is given by

ρMGðrÞ ¼ N0

n
1þ A

	r
2



2
o
e−ðr=aÞ2 ; ð18Þ

where

N0 ¼
8

2þ 3A
a−3π−1=2 ð19Þ

is a normalization constant and a is constrained by hr2i ¼
3=5R2 to find

a ¼ R½5
2
ð2þ 5AÞ=ð2þ 3AÞ�−1=2: ð20Þ

Here A is a free parameter. The second is a basic Fermi
distribution

ρFðrÞ ∼ f1þ exp ½ðr − cÞ=a�g−1: ð21Þ

The former agrees well with charge distributions of low p-
shell and sd-shell nuclei, while the latter more accurately
resembles the shape of heavier nuclei.
We can now provide an analytical approximation of the

induced effect by calculating the L0 correction for different
charge distributions for low Z. The calculation is analogous to
that required to obtain Eq. (15). Canceling common normali-
zation factors and constants, we find

L0
0

L0

¼ α021 þ α02−1
α21 þ α2−1

ð22Þ

¼ B0−2
1 þ B0−2−1
B−2
1 þ B−2

−1
; ð23Þ

where we neglected terms of the order of OðWR2Þ, and the
primes stand for the more advanced charge distributions. Now

Bð0Þ
�1 is given by

TABLE I. Coefficients for the parametrization of L0ðZ;WÞ for electrons. Reproduction of Table 1 in Wilkinson (1990).

b1 b2 b3 b4 b5 b6

a−1 0.115 −1.812 3 8.249 8 −11.223 −14.854 32.086
a0 −0.000 62 0.007 165 0.018 41 −0.53736 1.2691 −1.5467
a1 0.024 82 −0.597 5 4.841 99 −15.3374 23.9774 −12.6534
a2 −0.140 38 3.649 53 −38.814 3 172.1368 −346.708 288.7873
a3 0.008 152 −1.156 64 49.966 3 −273.711 657.6292 −603.7033
a4 1.214 5 −23.993 1 149.971 8 −471.2985 662.1909 −305.6804
a5 −1.563 2 33.419 2 −255.133 3 938.5297 −1641.2845 1095.358

TABLE II. Coefficients for the parametrization of L0ðZ;WÞ for positrons. Reproduction of Table I in Wilkinson (1990), with small
modifications as discussed in the text. The signs used in odd powers of Z have been flipped to agree with the convention used in this work.

b1 b2 b3 b4 b5 b6

a−1 0.070 1 −2.572 27.597 1 −128.658 272.264 −214.925
a0 −0.002 308 0.066 463 −0.640 7 2.63606 −5.6317 4.0011
a1 0.079 36 −2.092 84 18.454 62 −80.9375 160.8384 −124.8927
a2 −0.938 32 22.025 13 −197.002 21 807.1878 −1566.6077 1156.3287
a3 4.276 181 −96.824 11 835.265 05 −3355.8441 6411.3255 −4681.573
a4 −8.213 5 179.086 2 −1492.129 5 5872.5362 −11038.7299 7963.4701
a5 5.458 3 −115.892 2 940.830 5 −3633.9181 6727.6296 −4795.0481

5Note that the signs of odd powers of Z have been flipped for
positrons to remain consistent with our initial notation. Specifically,
Z is always defined as a positive quantity, with the upper (lower) sign
for β− (βþ) decay.
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Bð0Þ
�1 ¼ �fI�1ðRÞg02ðRÞ − gI�1ðRÞf02ðRÞ: ð24Þ

Here the superscript I denotes the wave functions inside the
nucleus, and f02 and g02 are radial Coulomb functions that
depend on the sign of κ. The functions inside the nucleus can
be found through a series expansion of the solution according
to Eq. (12) and matching powers in the Dirac equation. This
gives a recursive relationship for an and bn. The last quantity
needed depends on the order of the potential. In the case of a
uniformly charged sphere, i.e., a second order dependence, the
large wave functions must be expanded up to n ¼ 6. In
general this is n ¼ 2ðmþ 1Þ, where m is the largest, relevant
radial order of the potential. The radial expansion of the
Coulomb functions f02 and g02 is known and can be plugged
in. Expanding results up to order OðαZRÞ, O(ðWRÞ2),
and O(ðαZÞ2), we find after a tedious but straightforward
calculation

UðZ;WÞ≡ L0
0

L0

≈ 1þ αZWRΔ1 þ
γ

W
αZRΔ2

þ ðαZÞ2Δ3 − ðWRÞ2Δ4; ð25Þ

where

Δ1 ¼ 4
3
Δv0 þ 17

30
Δv2 þ 25

63
Δv4; ð26aÞ

Δ2 ¼ 2
3
Δv0 þ 7

12
Δv2 þ 11

63
Δv4; ð26bÞ

Δ3 ¼ 1
3
Δv20 þ 1

15
Δv22 þ 1

35
Δv24 þ 1

6
Δv2v0

þ 1
9
Δv4v0 þ 1

20
Δv4v2 þ 1

5
Δv2 þ 1

7
Δv4; ð26cÞ

Δ4 ¼ 4
3
Δv0 þ 4

5
Δv2 þ 4

7
Δv4; ð26dÞ

taking into account even-r potentials up to fourth order and
defining Δvn ¼ v0n − vn. Here we define vn through

VðrÞ ¼
X∞
n¼0

Vnrn ¼
X∞
n¼0

�
−

αZ
Rnþ1

�
vnrn: ð27Þ

As an example, the electrostatic potential of the modified
Gaussian distribution of Eq. (18) is

VðrÞ ¼ −αZ
�
erfðr=aÞ

r
−

2A
ð2þ 3AÞa ffiffiffi

π
p exp½−ðr=aÞ2�

�
;

where erf is the error function. Expanding all terms we find

v0 ¼
ffiffiffi
5

2

r
4ð1þ AÞð2þ 5AÞ1=2ffiffiffi

π
p ð2þ 3AÞ3=2 ; ð28aÞ

v2 ¼ −
4

3ð3Aþ 2Þ ffiffiffi
π

p
�
5ð2þ 5AÞ
2ð2þ 3AÞ

�
3=2

; ð28bÞ

v4 ¼
2 − 7A

5ð3Aþ 2Þ ffiffiffi
π

p
�
5ð2þ 5AÞ
2ð2þ 3AÞ

�
5=2

; ð28cÞ

compared to v0 ¼ 3=2, v2 ¼ −1=2, and v4 ¼ 0 for the
uniformly charged sphere. For sufficiently low Z, Eq. (25)
can be employed for any charge distribution.
For higher Z the contributions from higher-order terms

neglected in Eq. (25) cannot be any more ignored, and
computational methods must be employed. Wilkinson
(1993b) has done this for the Fermi distribution of Eq. (21)
with a≃ 0.55 fm as it agrees quite well with Hartree-Fock
calculations and experimental data. The correction is then
written as

UðZ;WÞ ¼ 1þ
X2
n¼0

anpn; ð29Þ

where

a0 ¼ −5.6 × 10−5 ∓ 4.94 × 10−5Z þ 6.23 × 10−8Z2;

a1 ¼ 5.17 × 10−6 � 2.517 × 10−6Z þ 2.00 × 10−8Z2;

a2 ¼ −9.17 × 10−8 � 5.53 × 10−9Z þ 1.25 × 10−10Z2 ð30Þ

in natural units. The effect of UðZ;WÞ amounts to some 0.1%
for medium-high masses and so cannot be neglected. As the
precise shape of the nucleus remains model dependent, some
uncertainty remains. Experimental electron scattering data
have, however, been fitted and tabulated by De Vries,
De Jager, and De Vries (1987), allowing one to make a very
good estimate. Much work in mean-field theories has also
been presented over the years (Anni and Co’, 1995; Anni, Co’,
and Pellegrino, 1995; Möller et al., 2016).
Interesting to note is the applicability of Eq. (25) when used

in combination with Eq. (29), for example, in describing the
correction due to the oft-used three-parameter Fermi function,
also known as the “wine-bottle” distribution (Andrae, 2000;
Towner and Hardy, 2015)

ρðrÞ ¼ ρ0ð1þ wðr=cÞ2Þf1þ exp½ðr − cÞ=a�g−1; ð31Þ

where w describes the central depression. As this distribution
closely resembles that of the normal Fermi distribution for
small w, Eq. (29) can be used as a first approximation, after
which Eq. (25) describes the difference in two Fermi dis-
tributions. As the difference in vn will be small, Eq. (25)
remains relevant even for higher Z.

3. DFSðZ;W;β2Þ
As in the previous section wherein we considered the

change in the Fermi function due to a more realistic, although
still spherically symmetric, charge distribution, we must
account for a possible nuclear deformation. We limit ourselves
here to axially symmetric deformations, writing the surface of
our ellipsoid as6

6This is merely an approximation, as our factor unity should be
replaced by a0 ¼ 1 − β22=4π to conserve the total volume of the
undistorted sphere to second order. This effect is negligible, however,
and we continue with Eq. (32).
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Rðθ;ϕÞ ¼ R0½1þ β2Y0
2ðθ;ϕÞ�; ð32Þ

with β2 the traditional measure of quadrupole deformation
(Davidson, 1968; Eisenberg and Greiner, 1975). In the case
β2 > 0, the nucleus has a prolate shape while it is oblate for
β2 < 0. This deformation gives rise to a nonzero intrinsic
electric quadrupole moment typically parametrized as

Q0 ¼ 3

ffiffiffiffiffi
α

5π

r
R2
0Zβ2ð1þ 0.16β2Þ ð33Þ

in our natural units. This implies experimental β2 values can
be obtained from measured electric quadrupole measurements
or from theoretical models such as the work by Möller et al.
(2016). Following the approach of Wilkinson (1994), we
define a and b to be the axes perpendicular and along the
symmetry axis, respectively, such that b=a > 1 for prolate
deformations. Combining Eq. (33) with Eq. (25) from
Wilkinson (1994) we find

b
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C
1 − C=2

s
ð34Þ

with

C ¼ 5

3

ffiffiffi
5

π

r
β2ð1þ 0.16β2Þ: ð35Þ

Together with the requirement that

hr2i ¼ 1
5
ðb2 þ 2a2Þ; ð36Þ

a and b are uniquely determined. Defining an angle-averaged
charge distribution as

ρðrÞ ¼
(
ρ0 for 0 ≤ r ≤ a;

ρ0
	
1 − b

r

h
r2−a2
b2−a2

i
1=2



for a < r ≤ b;

ð37Þ

where

ρ0 ¼
3

4π

Z
a2b

; ð38Þ

we transitioned from a deformed to a spherically symmetric
charge distribution with which we can continue.7 We define ρ0
such that the total charge is equal to Z. Because of the
expected smallness of the correction, we continue in an
analytical fashion and consider the charge distribution as a
continuous superposition of uniform spheres of radius r and
density dρ=dr. We then write a modified finite size correction

L0ðZ;W; β2Þ� ¼
4

3
πR2ð1−γÞ

×
Z

∞

0

r3
dρ
dr

L0ðZ;W; rÞr2ðγ−1Þdr; ð39Þ

where L0ðZ;W; rÞ denotes the use of Eq. (16) with R replaced
by the continuous variable. In the case of a uniformly charged
sphere we have dρ=dr ¼ ð3=4πR3ÞδðRÞ with δðxÞ the Dirac
delta function, trivially satisfying Eq. (39). The ratio

DFSðZ;W; βÞ ¼ L0ðZ;W; β2Þ�
L0ðZ;WÞ ð40Þ

then constitutes the deformed nuclear shape correction to the
Fermi function. Figure 1 shows the magnitude of the effect for
different Z at several momenta for a reasonably large
deformation β2 ¼ 0.2. Important to note is that this has to
be combined with the other deformation-dependent effects,
discussed in the nuclear structure of Sec. VI.F. This decreases
the overall effect and cannot be neglected.

B. RNðW;W0;MÞ and QðZ;W;MÞ: Finite nuclear
mass corrections

Up to now we approximated β decay as a two-body phase
space, whereas it should in fact be a three-body phase space
opened up by the recoil of the nucleus. It was thus previously
assumed that the nucleus is infinitely massive. The deviation
from an infinitely massive nucleus introduces a kinematic

FIG. 1. Several examples of DFS for different momenta, using
β2 ¼ 0.2. Interesting to note is the reversal of the energy
dependence when switching between β− and βþ decay. Important
to note is that even though DFS can grow to several parts per 103,
it has to be combined with DC from Sec. VI.F, which decreases
the overall effect.

7Equation (37) is valid for prolate deformations. For an oblate
nucleus, one simply interchanges a and b in the r ranges and reverses
the signs in the square brackets. We assume prolate deformations
unless otherwise specified.
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recoil correction RN and a subsequent small electromagnetic
correction Q. We briefly discuss both in part.

1. RNðW;W0;MÞ
The effect of the recoil after β decay of a nucleus of finite

mass M (M ¼ AMnucleon − B, with Mnucleon ¼ 1837.4 the
mass of the nucleon in units of mec2, and B the binding
energy) is to multiply the phase space by a factor8

RNðW;W0; MÞ (Horowitz, Kofoed-Hansen, and Lindhard,
1948; Kofoed-Hansen, 1948; Shekhter, 1959; Wilkinson,
1982, 1990)

RNðW;W0;MÞ ¼ 1þ r0 þ r1=W þ r2W þ r3=W2; ð41Þ

where for vector decay (Fermi transitions)

rV0 ¼ W2
0=ð2M2Þ − 11=ð6M2Þ; ð42aÞ

rV1 ¼ W0=ð3M2Þ; ð42bÞ

rV2 ¼ 2=M − 4W0=ð3M2Þ; ð42cÞ

rV3 ¼ 16=ð3M2Þ; ð42dÞ

and for axial decay (Gamow-Teller transitions)

rA0 ¼ −2W0=ð3MÞ −W2
0=ð6M2Þ − 77=ð18M2Þ; ð43aÞ

rA1 ¼ −2=ð3MÞ þ 7W0=ð9M2Þ; ð43bÞ

rA2 ¼ 10=ð3MÞ − 28W0=ð9M2Þ; ð43cÞ

rA3 ¼ 88=ð9M2Þ: ð43dÞ

This is a small effect of the order of 10−5 to 10−3 at most [see
Fig. 1 by Wilkinson (1990)]. For mixed transitions these
corrections can simply be added together with the appropriate
weighting factors

1

1þ ρ2
and

1

1þ ρ−2
ð44Þ

for Fermi and Gamow-Teller transitions, respectively, and
with ρ ¼ CAMGT=CVMF as defined before.

2. QðZ;W;MÞ
A final consequence of the finite nuclear mass and con-

sequent recoil is a change in the Coulomb field in which the
departing electron or positron moves. It is not fixed in space
but is itself recoiling against the combined lepton momenta so
that the field experienced by the β particle differs with time
from what it would have been if the nucleus would not be
recoiling, as is assumed for the Fermi function in Eq. (6).
Wilkinson (1982, 1993b) calculated the effect of this retreat of

the source of the Coulomb field from the combined lepton
momenta for a pure vector (Fermi) transition. This can be
generalized for mixed Fermi and Gamow-Teller transitions to
(Wilkinson, 1982)

QðZ;W;MÞ≃ 1 ∓ παZ
M

1

p

�
1þ a

W0 −W
3W

�
; ð45Þ

with a the β−ν correlation coefficient, a¼ð1−ρ2=3Þ=ð1þρ2Þ
(Jackson, Treiman, and Wyld, 1957). For pure vector
transitions one has a ¼ 1, while for pure Gamow-Teller
transitions we find a ¼ −1=3 (Jackson, Treiman, and Wyld,
1957). The size of this correction amounts at most to a
few percent of the typical error in the phase space factor f due
to the uncertainty in the QEC value and so is typically
negligible, although Wilkinson retained it in the calcula-
tion of f values for the superallowed Fermi transitions
(Wilkinson, 1993b).

V. RADIATIVE CORRECTIONS

We started this work with a discussion concerning the
Fermi function, a consequence of the electrostatic interaction
of the daughter nucleus with the departing β particle. Within
the context of QED, the continuous exchange of photons is not
the only radiative process occurring after the decay. These
radiative corrections to the β spectrum shape have a long
history (Berman, 1958; Källén, 1967) and took a leap forward
with the work by Sirlin (1967). A distinction was made
between “inner” and “outer” radiative corrections, where the
former is sensitive to the actual underlying weak interaction
whereas the latter carries some nuclear dependence. The inner
corrections can be calculated to high precision with standard
electroweak methods and are typically incorporated into
effective coupling constants. The outer corrections, on the
other hand, include energy-dependent terms and are our main
concern here. Writing the uncorrected β spectrum as dΓ0=dW
we have then

dΓ
dW

¼ dΓ0

dW
ð1þ ΔV=A

R Þ½1þ δRðW;W0Þ�; ð46Þ

where ΔV=A
R and δRðW;W0Þ stand for inner and outer radiative

corrections, respectively. The former has played an important
role in establishing the universality of the electroweak
interaction through comparison of the decay strength of muon
decay (Sirlin and Ferroglia, 2013). Its calculation was
addressed twice by Marciano and Sirlin (1986, 2006), the
second time with improved precision, leading to the value
ΔV

R ¼ ð2.361� 0.038Þ%. For the axial-vector case the inner
radiative correction is simply incorporated into the experi-
mental value of gA from neutron decay.
As mentioned, we are concerned here only with the outer

radiative corrections, seeing as to how they are both energy
and nucleus dependent. These corrections, contributing on top
of those already included in the Fermi function, typically
amount to a few percent and clearly cannot be neglected.
Contributions are treated in a Feynman-diagram fashion and
concern both virtual photon exchange as well as one or more
real photons in the final state. Seeing as to how these are

8Note that we added the subscript N to this factor originally
defined as RðW;W0;MÞ in Wilkinson (1989) to differentiate it from
the radiative corrections.
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experimentally relevant due to their possible detection, we
briefly elaborate on the so-called inner bremsstrahlung. As
this section contains no new results, we limit ourselves to
listing the results obtained through decades of intensive study
by a series of different authors. Excellent reviews have been
provided by Wilkinson (1995b, 1997), Towner and Hardy
(2008), and Sirlin and Ferroglia (2013). For completeness, we
briefly comment on the radiative corrections for the neutrino
due to its relevance in the reactor neutrino oscillation studies.

A. Total spectral influence

We discuss here the energy-dependent part of the outer
radiative correction to various orders in Znαm. Outside of the
terms for which m ¼ n which are already contained in the
Fermi function, it was found thatmmust always be larger than
n (Bég, Bernstein, and Sirlin, 1972). This is a crucial result, as
Z2α terms can easily exceed unity and overthrow the con-
served vector current (CVC) hypothesis. Great attention has
been given to the three lowest m ¼ nþ 1 terms, each written
as δm. The outer radiative correction is typically expressed as

RðW;W0Þ ¼ 1þ δRðW;W0Þ: ð47Þ

Previously (Wilkinson, 1982, 1997; Towner and Hardy, 2002;
Hardy and Towner, 2005a, 2005b), δ0R was simply the sum of
δ1, δ2, and δ3. Recently, however, significant improvements
have been made by Marciano and Sirlin (1986) and Czarnecki,
Marciano, and Sirlin (2004), where the leading order con-
tributions O(αnlnnðMN=2W0Þ) have been summed via
renormalization group analysis. This allows one to write
(Towner and Hardy, 2008; Sirlin and Ferroglia, 2013)

1þ δR ¼
�
1þ α

2π

�
gðW0; WÞ − 3 ln

mp

2W0

��
× fLð2W0; mpÞ þ δ2 þ δ3g; ð48Þ

where mp is the proton mass,

Lð2W0; mpÞ ¼ 1.026 725

�
1 −

2α

3π
ln 2W0

�
9=4

; ð49Þ

and gðW0;WÞ is described later. We discuss each of the δm
separately.

1. Order α correction

The lowest order radiative correction corresponds to one
(virtual-)photon Feynman diagrams. This includes a renorm-
alization of the weak vertex, electron, and proton propagators
but also internal brehmsstrahlung, discussed next. The rel-
evant Feynman diagrams are shown in Fig. 2. Because of the
zero photon mass, both the renormalization and inner brems-
strahlung processes individually create an infrared divergence
which is canceled when both contributions are added. Usually
δ1 is noted with the well-known gðW0; WÞ function (Sirlin,
1967; Sirlin and Ferroglia, 2013)

gðW0;WÞ ¼ 3 lnðmpÞ−
3

4
þ 4

β
Ls

�
2β

1þ β

�

þ 4

�
tanh−1β

β
− 1

��
W0 −W
3W

−
3

2
þ ln½2ðW0 −WÞ�

�

þ tanh−1β
β

�
2ð1þ β2Þþ ðW0 −WÞ2

6W2
− 4tanh−1β

�
ð50Þ

with tanh−1 the inverse hyperbolic tangent function, MN the
nucleon mass, β ¼ p=W, and

Ls ¼
Z

x

0

lnð1 − tÞ
t

dt ¼ −
Xk¼∞

k¼1

xk

k2
≡ −Li2ðxÞ; ð51Þ

the Spence function, also known as the dilogarithm. Its large
W0 limit is (Wilkinson, 1995b)

gðW0 → ∞;WÞ ¼
�
3 ln

�
MN

2W0

�
þ 81

10
−
4π2

3

�
; ð52Þ

which is dominated by the first term. Equation (50) is
universal in the sense that is the same for both electrons
and positrons, and Fermi and Gamow-Teller decays indepen-
dent of the nucleus. It is exact except for small terms of the
order ofO(αðW=MÞ lnðM=WÞ) andOðαq=MÞ, where q is the
momentum transferred to the (anti)neutrino.
Finally, we comment on a peculiar logarithmic divergence

for W ¼ W0 in Eq. (50). In the integration over the phase
space this is clearly not a problem, but it points to a possible
shortcoming in the analysis. It was shown that it is related to
the emission of soft real photons (Repko and Wu, 1983). Two

FIG. 2. Feynman diagrams for the order α corrections. The final two diagrams display the inner bremsstrahlung corrections, discussed
separately (Sec. V.C). This entails the fact that when the final state photon goes undetected or can be distinguished from the β particle,
the spectrum of the latter is appropriately corrected for.
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possibilities have been proposed to remove this divergence
due to its relevance in the end-point-sensitive tritium β decay.
The first (Repko and Wu, 1983) proposes to sum these soft
real photon contributions to all orders of perturbation theory,
leading to the replacement

tðβÞ lnðW0 −WÞ → ðW0 −WÞtðβÞ − 1; ð53Þ

where

tðβÞ ¼ 2α

π

�
tanh−1β

β
− 1

�
: ð54Þ

The change in the tritium β spectrum shape is negligible due
to its low end point; however, for higher energies the
change in the ft value can become several parts in 104 and
so cannot always be neglected. The second possibility of
resolving the divergence takes into account the finite
detector resolution (Gardner, Bernard, and Meißner,
2004). In the treatment by Sirlin, the outgoing β particle
and γ are always distinguishable, which is equivalent to an
energy resolution of zero. If we instead consider a finite
energy resolution, the distinguishability of the real photon
depends on its energy, implying the same conclusion to the
β spectrum correction. This assumes an absorption of the γ
particle, however, an effect which is completely negligible
in most experimental setups. We thus use Eq. (53) in our
current description.

2. Order Zα2 correction

Spurred on by the high precision measurements of super-
allowed Fermi decays, two pioneering papers were published
by Jaus and Rasche (1970) and Jaus (1972) discussing the
higher-order radiative corrections. In subsequent years some
tension arose between numerical and analytical methods
(Sirlin and Zucchini, 1986), until finally both approaches
agreed after a correction in the former (Jaus and Rasche,
1987). Using the notation of the latter one writes

δ2ðZ;WÞ ¼ Zα2
X4
i¼1

ΔiðWÞ: ð55Þ

The first three terms in the sum concern the graphs shown in
Fig. 3, with Δ3 coming specifically from the axial-vector
component. All of these depend on the nucleus considered as
was to be expected from any correction involving interaction
with the nucleus. The explicit weak interaction dynamics is,
however, contained in the inner radiative correction, and the
terms in Eq. (55) depend only on the shape and radius of the
charge distribution. The Feynman diagrams for the fourth
term, on the other hand, are not explicitly shown, as they are
nonleading and present the interaction of the photon with only
the electron through vacuum polarization and renormalization
of the β particle propagator.
The terms of leading order in the nucleon mass MN called

Zα2Δ1 in Eq. (55) are difficult to evaluate and depend on
the nuclear form factor Fðq2Þ. Using the trivial identity
F ¼ 1þ ðF − 1Þ, Δ1 was split up into Δ1 ¼ Δ0

1 þ ΔF
1 , where

the first term is now energy dependent but nucleus indepen-
dent and vice versa for the second. The first is then typically
combined with that other “purely QED” term Δ4. Expressions
have been derived for Δ0

1 in both the nonrelativistic (assuming
zero β particle momentum) and extreme-relativistic approxi-
mation [neglecting terms of OðW=MÞ] so that (Sirlin and
Zucchini, 1986)

Δ0
1 þ Δ4 ¼NRA lnMN −

2

3
lnð2WÞ þ 35

9
þ π2

6
− 6 ln 2

¼ERA lnMN −
5

3
lnð2WÞ þ 43

18
: ð56Þ

Results based on the extreme-relativistic approximation were
compared to the numerical results of Jaus and Rasche (1987)
by Sirlin (1987) and a general good agreement was found.
Differences in the decay rate for Z ¼ 26 were found to be on
the few 10−4 level. For higher Z then, we expect a better
agreement using a proper interpolation between the non-
relativistic and extreme-relativistic results should this be
needed. The remaining terms have been evaluated using
different models for the charge distribution ρðrÞ. We list here
the integral forms together with their evaluation for a
uniformly charged sphere. Normalizing ρ as

R
ρðrÞr2dr¼ 1,

we find (Sirlin, 1987)

ΔF
1 ¼ 1 − γE − 4π

Z
∞

0

ρðrÞr2 lnðMNrÞdr − ð8=MNÞ

×
Z

∞

0

ρðrÞr½1þ γE þ lnðMNrÞ�dr; ð57Þ

Δ2 ¼ ð4=MNÞ
Z

∞

0

ρðrÞr
�
1 −

π

4MNr

�
; ð58Þ

Δ3 ¼
8gAgM
MN

Z
∞

0

ρðrÞr
�
γE þ lnðMNrÞ −

1

2
þ π

8MNr

�
. ð59Þ

The other Δi have been evaluated using different models
for the charge distribution ρðrÞ. For the uniformly charged
sphere of radius R ¼ ð5=3hr2iÞ1=2 ¼ ffiffiffiffiffi

10
p

=Λ, one has
(Sirlin, 1987)

FIG. 3. Dominant Feynman diagrams for the order Zα2 cor-
rections. The first of these already contains a correction present in
the product F0δ1 and has to be explicitly subtracted. Three more
diagrams contribute to the order OðZα2Þ correction, but are
nondominant. These can be found in Sirlin and Zucchini (1986)
and discuss the vacuum polarization of the brehmsstrahlung
photon and the two possibilities for the renormalization of the
electron propagator.
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ΔF
1 ¼ ln

�
Λ
MN

�
− κ2 −

3ffiffiffiffiffi
10

p
π

Λ
MN

×

�
1

2
þ γE þ ln

ffiffiffiffiffi
10

p
þ ln

�
MN

Λ

��
; ð60Þ

Δ2 ¼
3

2
ffiffiffiffiffi
10

p
π

Λ
MN

�
1 −

π

2
ffiffiffiffiffi
10

p Λ
MN

�
; ð61Þ

Δ3 ¼
3ffiffiffiffiffi
10

p
π
gAgM

Λ
MN

�
γE−1þ ln

ffiffiffiffiffi
10

p
þ ln

MN

Λ
þ π

4
ffiffiffiffiffi
10

p Λ
MN

�
;

ð62Þ

with κ2≡γE−4=3þln
ffiffiffiffiffi
10

p ¼0.395, gA ¼ 1.270, gM ¼ 4.706,
and γE ≃ 0.5772. Further, Λ≡ ffiffiffi

6
p

=
ffiffiffiffiffiffiffiffi
hr2i

p
with the rms

nuclear charge radius hr2i in natural units, with Λ ranging
from about 400 at A ¼ 10 to about 160 at A ¼ 250.
For the modified Gaussian model for the charge distribution

ρðrÞ (Sirlin, 1987) more extended expressions are obtained.
Both models give, however, similar results for the super-
allowed Fermi transitions ranging from 14O to 54Co corre-
sponding to differences in the averages hδ2ðEÞi over the
energy spectrum of less than 10−4 (Sirlin, 1987). Using a
Fermi distribution for heavier nuclei, the difference can then
be expected to be even smaller.

3. Order Z2α3 correction

The reasoning for the order Z2α3 corrections is analogous
to that discussed, with the relevant Feynman diagrams
shown in Fig. 4. Technically its evaluation is extremely
challenging, however, and Sirlin (1987) proposed only a
so-called “heuristic” correction. This is written as

δhe3 ¼ Z2α3
�
a ln

�
Λ
W

�
þbfðWÞþ 4π

3
gðWÞ− 0.649 lnð2W0Þ

�
;

ð63Þ
where

a ¼ π

3
−

3

2π
½footnote 10 in Sirlin ð1987Þ�; ð64Þ

b ¼ 4

3π

�
11

4
− γE −

π2

6

�
; ð65Þ

fðWÞ ¼ lnð2WÞ − 5=6; ð66Þ

gðWÞ ¼ 1
2
½ln2ðRÞ − ln2ð2WÞ� þ 5

3
lnð2RWÞ: ð67Þ

4. Higher-order corrections

Because of the computational complexity, little is known
about the higher-order corrections of the type Zmαmþ1. Based
on the leading order behavior of the previously discussed
terms, Wilkinson (1997) has put forward a very approximate
estimate

δ̄Znαm ≈ ZnαmKnmlnm−n Λ
W
; ð68Þ

and suggested for Knm an average value of 0.50 from these
results. If Knm is given a fixed value the summed effect of all
the higher-order terms is (Wilkinson, 1997)

δ̄higher ≈
Xn¼∞

n¼3

δ̄Znαnþ1 ¼ δ̄Z3α4=ð1 − ZαÞ; ð69Þ

with δZ3α4 evaluated using Eq. (68). It is clear these corrections
become relevant for higher Z.

B. Neutrino radiative corrections

Even though the outgoing (anti)neutrino has no direct
interaction with the surrounding electric field, it is indirectly
influenced through virtual photon exchange and energy
conservation from inner brehmsstrahlung. Because of the
recent interest in the proper conversion of the cumulative β
spectrum emerging from a nuclear reactor, these have been
treated explicitly by Sirlin (2011). The former case is
essentially unchanged relative to the e∓ spectrum, after
substitution of We → W0 −Wν in all relevant quantities.
The treatment of the internal bremsstrahlung differs, however,
and the subsequent total OðαÞ radiative correction is much
smaller. One finds

RνðZ;W;W0Þ ¼ 1þ α

2π

�
3 ln

�
mp

me

�
þ23

4

−
8

β̂
Li2

�
2β̂

1þ β̂

�
þ8

�
tanh−1β̂

β̂
−1

�
ln

�
2Ŵ β̂

me

�

þ4
tanh−1β̂

β̂

�
7þ3β̂2

8
−2tanh−1β̂

��
; ð70Þ

where analogous to the electron we have

Ŵ ¼ W0 −Wν; p̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŵ2 −m2

e

q
; β̂ ¼ p̂

Ŵ
; ð71Þ

with Wν the energy of the outgoing (anti)neutrino.

C. Radiative β decay: Internal bremsstrahlung

The radiative corrections previously discussed include
the effects of inner bremsstrahlung, otherwise known as
radiative β decay where an additional photon is created in
the final state

n → pþ e− þ ν̄e þ γ; ð72ÞFIG. 4. Dominant Feynman diagrams for the order Z2α3

corrections.
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where the energy of the γ ray follows a continuous spectrum
thereby reducing the β particle energy. This is typically
understood as a two-step process, where an electron is first
ejected with energyW0, and subsequently emits a photon with
energy ω. Classically, this can simply be understood from the
sudden acceleration of the β particle during which it emits
radiation. This effect has been extensively described by Bloch
(1936) and Knipp and Uhlenbeck (1936) and is commonly
referred to as the KUB theory. Using results from classical
electrodynamics one can write the photon ejection probability
as (Schopper, 1966)

ΦðW;ωÞ ¼ αp
πωp0

�
W2 þW02

W0p
lnðW þ pÞ − 2

�
; ð73Þ

with W ¼ W0 − ω and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W02 − 1

p
its correspondingly

redefined momentum. In order to find the photon spectrum we
must average over all intermediate virtual states to find

SðωÞ ¼
Z

W0

1þω
NðW0ÞΦðW0;ωÞdW0; ð74Þ

where ω is the final photon energy and NðW0Þ is the β
spectrum. Equations (73) and (74) immediately reveal the
dependence on the end-point energy of the β transition and its
rapid falloff toward higher photon energies.
In this initial approach Coulomb effects with the daughter

nucleus were neglected, however, and all results were evalu-
ated using plane waves. Nilsson (1956), Lewis and Ford
(1957), and Spruch and Gold (1959) introduced this correc-
tion and obtained expressions for its energy spectrum and
angular correlation. This roughly translates to introducing the
Fermi function into Eq. (74). Felsner (1963) has produced
more rigorous work on this and shows a much improved
agreement with experimental data. Recent theoretical work
was performed by Ivanov et al. (2014) describing the QED
tree-level contributions to the internal bremsstrahlung spec-
trum of 35S. This amounts to changing Eq. (73) by Eq. (16) in
the aforementioned work, where additional terms of order
Oðω=WÞ, Oðα2Z2=W2Þ, and OðW=MÞ are introduced.
Further research was performed specifically for the neutron
to investigate the influence of recoil order terms and weak
magnetism (Ivanov, Pitschmann, and Troitskaya, 2013;
Ivanov et al., 2017). Even though its inclusion shows up
stronger in the internal brehmsstrahlung compared to the
regular branching ratio, its magnitude is still far below the
currently available experimental precision.
Detection of this radiation reveals underlying weak inter-

action physics and is both correlated with the outgoing lepton
momenta and carries a degree of circular polarization
(Cutkosky, 1954; Berman, 1958; Kinoshita and Sirlin,
1959; Batkin and Churakova, 1992; Mao et al., 2011).
Consequently, its experimental detection has been an interest-
ing observable for several decades (Boehm and Wu, 1954;
Goldhaber, Grodzins, and Sunyar, 1957; Basavaraju, 1983;
Budick, Chen, and Lin, 1992; Khalil, 2011a, 2011b; Singh
and Dhaliwal, 2014, 2015). Recent experimental branching
ratios for the neutron find BRβγ ∼ 3 × 10−3 (Bales et al.,
2016), and also for higher Z significant branching ratios were

found such as for 32P at 2 × 10−3 (Berenyi and Varga, 1969). It
was studied intensively following electron capture, reviewed
extensively by Bambynek et al. (1977). Its relevance in the
analysis of the tritium β spectrum measurements has been
theoretically discussed by Gardner, Bernard, and Meißner
(2004) and continues to garner interest through the study of
correlation parameters (Gardner and He, 2012, 2013) looking
for T and CP violation.

VI. NUCLEAR STRUCTURE EFFECTS:
THE SHAPE FACTOR

In the foregoing, nuclear structure effects have been ignored
and we focused instead on electromagnetic corrections and
kinematics. When considering the nucleus as a nontrivial
system with a finite size, nuclear structure and spatial
variations of leptonic wave functions become deeply inter-
twined. The exact treatment of this fact has undergone careful
study by several authors and different formalisms over several
decades (Konopinski and Uhlenbeck, 1941; Rose and Osborn,
1954a; Weidenmüller, 1961; Bühring, 1963; 1965; Huffaker
and Greuling, 1963; Schülke, 1964; Bühring and Schülke,
1965; Konopinski, 1966; Schopper, 1966; Huffaker and Laird,
1967; Behrens and Jänecke, 1969; Behrens and Bühring,
1970, 1982; Blin-Stoyle, 1973; Morita, 1973; Holstein,
1974a, 1974b, 1974c; Calaprice, Chung, and Wildenthal,
1977; Kleppinger, Calaprice, and Holstein, 1977; Behrens
et al., 1978). In essence, we have finally arrived at the heart of
nuclear β decay. Our starting point lies in the elementary
particle approach and from this we branch out into the
Behrens-Bühring and Holstein formalisms. We utilize the
accurate calculational machinery of the former and transform
our results to the clean notation of the latter.

A. Introduction

The β decay Hamiltonian is traditionally constructed as a
current-current interaction

HβðxÞ ¼
G cos θCffiffiffi

2
p ½J†μðxÞLμðxÞ þ H:c:�; ð75Þ

where θC is the Cabibbo angle and JμðxÞ and LμðxÞ are the
nuclear and lepton currents, respectively. This is plugged into
the S matrix of Eq. (5) as a first-order perturbation. As we
discussed in Sec. III, the introduction of electromagnetism
requires a change in the lepton current Lμ exchanging the β
particle wave function. So the strong interaction requires a
change in the nuclear current from its pure V-A shape. We
have then the generalizations

J†μðxÞ ¼ hfjVμðxÞ þ AμðxÞjii; ð76Þ

LμðxÞ ¼ iϕ̄eðxÞγμð1þ γ5ÞvνðxÞ; ð77Þ

where ϕe is the solution of the β particle wave function in a
Coulomb potential. The transition matrix element (TME)
constructed from this Hamiltonian is constrained by angular
momentum coupling rules for the spin transition Jπii → J

πf
f ,
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allowing decays of different multipole orders K within the
vector triangle ðJi; Jf; KÞ. It is natural then to write the TME
as a sum over all possible K with complementary projection
operators acting on both lepton and nuclear spaces. This
approach allows for the definition of form factors FK that
absorb all the nuclear structure information. These form
factors are a function of q2 ≡ ðpf − piÞ2, the only Lorentz
invariant scalar available. With form factors the treatment can
continue without any model dependence, which is also known
as the elementary particle approach practiced by many (Kim
and Primakoff, 1965; Armstrong and Kim, 1972b; Holstein,
1974a; Behrens and Bühring, 1982). Specifically this trans-
lates into an expression of the following type (Schülke, 1964;
Schopper, 1966):

hfjVμ − Aμjii ∝
X
KM

X
s;L¼K−1

ð−1ÞJf−MfþMð−iÞL

×
ffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p �
Jf K Ji

−Mf M Mi

�

×
ðqRÞL

ð2Lþ 1Þ!!FKLsðq2Þ; ð78Þ

where K corresponds to the multipole order of the transition
and K, L, and s have to form a vector triangle. The form
factors FKLsðq2Þ contain the actual nuclear information and
can be expanded as a function of ðqRÞ2. Since for β decay this
quantity is very small, the expansion can typically be stopped
after the first order. A similar expression is obtained in the
Holstein formalism [see Holstein (1974a) for a discussion and
comparison]. In the case of a nontrivial lepton current, a
similar expansion9 is made such that the TME can be written
down to different orders of precision. In the aforementioned
formalisms, all information other than the phase space factor
and Fermi function are typically grouped in a so-called shape
factor CðZ;WÞ:

NðWÞdW ∝ pWðW0 −WÞ2FðZ;WÞCðZ;WÞ: ð79Þ

In some formalisms the Fermi function and/or the finite size
effect is also included in CðZ;WÞ. Here we, however, adhere
to the notation in Eq. (79). Now CðZ;WÞ effectively includes
a combination of two effects: The first is the spatial variation
of the leptonic and nuclear wave functions inside the finite
nuclear volume, the second is the effect of raw nuclear
structure. It should be understood that all additional correc-
tions discussed in the previous sections are not included in this
original formulation and can be considered higher-order
corrections. Before we continue with an analytical description,
we discuss the nature and evaluation of the form fac-
tors FKLsðq2Þ.

B. Form factors

1. Introduction

The form factors describe rather generally the nuclear
structure and allow for a model-independent analysis of β
decay observables. These can then be deduced from exper-
imental measurement, and in theory we could stop the
discussion. Using the impulse approximation we can, how-
ever, continue and express these form factors in terms of
nuclear matrix elements. This entails that we treat the nucleus
as an assembly of noninteracting nucleons that all couple to
the β decay Hamiltonian as if they were free particles.
Generally speaking, we have then a collection of one-body
operators OKLs that can be written as

OKLs ¼
X
α;β

hαjOKLsjβia†αaβ; ð80Þ

where a†α creates a nucleon in state α, and aβ annihilates a
nucleon in state β. We have then

hfjOKLsjii ¼
X
α;β

hαjOKLsjβihfja†αaβjii: ð81Þ

The last factors in this equation are called the one-body
density matrix elements which can be calculated using the
shell model. In special cases this formulation can be further
simplified and allow for immediate analytical evaluation. An
example will be given. After the brief discussion of the
impulse approximation, we are able to explicitly write the
form factors in terms of nuclear matrix elements [see Sec. 6.2
in Behrens and Bühring (1982) for a more thorough dis-
cussion]. As an example, consider Table III where the
correspondence between form factor coefficients10 and
nuclear matrix elements is shown, as well as the possible
spin changes and “forbidden” transitions for which the form
factor coefficient is identically zero. For simplicity, induced
currents (see Sec. VI.B.2) have been neglected here. A more

extensive overview of FðnÞ
KLs with selection rules can be found

in Behrens and Jänecke (1969).

2. Induced currents

Before we continue with the explicit calculation of the shape
factor CðZ;WÞ, we address the issue of induced currents.
Because the decaying nucleon sits inside a nuclear potential,
influences from QCD seep into the weak vertex. Assuming the
weak interaction to be purely V-A, several Lorentz invariant
terms can be added that transform in the same way. For the
simpleneutrondecay this iswritten in theBehrens-Bühring (BB)
(Behrens and Bühring, 1982) and Holstein (HS) (Holstein,
1974b) formalisms as11

9Nontrivial here means Coulomb corrected wave functions rather
than simple free Dirac spinors. In this case an expansion can be made
in terms of r, αZ, meR, and WeR. This is discussed in the next
section.

10These are related to the more general form factors via the

expansion FKLsðq2Þ ¼
P

nAðn; LÞðqRÞ2nFðnÞ
KLs, where Aðn; LÞ is a

trivial prefactor. As Fð0Þ
KLs and Fð1Þ

KLs are typically of similar magni-
tude, it is clear that FKLsðq2Þ is dominated by the former.

11Here q ¼ −ið∇f − ∇iÞ when written in operator form. In the
presence of an electromagnetic field gauge invariance requires
qμ→∂=∂χμ→∂=∂χμ−ieAμ where Aμ ¼ ðA; iϕÞ is the potential of
the electromagnetic field; see Behrens andBühring (1971) andHolstein
(1974a).
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JBBμ ¼ ihūpjCVγμ − fMσμνqν þ ifSqμ −
CA

CV
γμγ5

− fTσμνγ5qν þ ifPγ5qμjuni; ð82Þ

JHSμ ¼ ihūpjgVγμ −
gM − gV
2M

σμνqν þ i
gS
2M

qμ þ gAγ5γμ

−
gII
2M

σμνγ5qν þ i
gP
2M

γ5qμjuni; ð83Þ

where12 σμν ¼ −ði=2Þ½γμ; γν� and allC and g are functions of q2.
It is here the elementary particle treatment shines, as the
entire formulation in terms of form factors can be retained
simply by redefining them and including these induced
currents (Bühring, 1965). The two approaches, while inherently
different, are completely equivalent,13 and the redefinitions
of the different FðnÞ

KLs can be found in Bühring and Schülke
(1965) and Behrens and Bühring (1971, 1982). As an example
VFð0Þ

000 now becomes

VFð0Þ
000 →

VMð0Þ
000 �

fS
R

�
W0R� 6

5
αZ

�
VMð0Þ

000; ð84Þ

whereMKLs are the actual nuclear matrix elements as written in
the second column of Table III. When neglecting induced
currents it is clear that both notations coincide. Just as the work
of Behrens and collaborators continues with the more general
formulation using V=AFKLsðq2Þ, it introduces Holstein general
form factors. Here the total TME is expanded into a combination
of form factors labeled a; b; c; d; e; f; h; g, and j2;3, all of which

have some nontrivial q2 dependence14 (Holstein, 1971, 1974c;
Holstein and Treiman, 1971). These are now the Fermi (a),
weak magnetism (b), Gamow-Teller (c), induced tensor (d),
induced scalar (e), and further higher-order corrections,
respectively. When expanding in terms of q2 the influence
of higher-order terms can be neglected except for the leading
Fermi and Gamow-Teller form factors written as

aðq2Þ ¼ a1 þ a2q2 þ � � � ; ð85Þ

cðq2Þ ¼ c1 þ c2q2 þ � � � . ð86Þ

Each of these form factors is a combination of the BB form
factors discussed previously, with the additional advantage that
unlike the BB form factors these are manifestly covariant and
more clearly reveal underlying symmetries.
Table IV lists these form factors in terms of the nuclear

matrix elements which are listed in Table V, as predicted by
the impulse approximation. These again have to be provided
by the shell model unless we can treat them approximately as
is explained in Sec. VI.D.

3. Validity of the impulse approximation

In the previous section we discussed the possibility of
transforming the model-independent form factors to one-body
matrix elements using the impulse approximation. The latter
assumes that all nucleons in the nucleus interact with the weak
vertex as if they were free, thereby neglecting many-body
effects such as meson exchange and core polarization.
Armstrong and Kim (1972a) showed that meson exchange
need not even be invoked to show the breakdown using only
the partially conserved axial current (PCAC). It comes then as
no surprise that the impulse approximation breaks down once
sufficient accuracy is required. For the vector matrix element

TABLE III. Definitions of the nuclear matrix elements ( Behrens et al., 1978) for allowed transitions. Here the form factors are written in their
symbolic integral notation. The possible spin changes are shown explicitly, together with “forbidden” transitions for which the form factor
coefficient is automatically zero. Here α is constructed with the Pauli matrices, and σ on its off-diagonal elements. We have neglected second-
class contributions and terms of order O(gM=ðMNRÞ2).
Form factor (BB) Cartesian form ΔJ Forbidden Type

VFð0Þ
000

þgV
R
1 0 � � �

Allowed
AFð0Þ

101
∓gA

R
σ 0,1 0 − 0

VFð1Þ
000

þgV
R ðrRÞ2 0 � � �

Main correction terms
AFð1Þ

101
∓gA

R
σðrRÞ2 � gP

2ðMNRÞ2
R
σ 0,1 0 − 0

AFð0Þ
121 ∓gA 3ffiffi

2
p R ðσ·rÞr−ð1=3Þσ·r2

R2 � gP5
ffiffi
2

p
ð2MNRÞ2 R σ 0,1 0 − 0

VFð0Þ
011

þgV
R
i α·rR 0 � � �

Relativistic correction terms
VFð0Þ

111 −gV
ffiffi
3
2

q R
α×r
R − gM−gV

2MNR

ffiffiffi
3

p R
σ 0,1 0 − 0

AFð0Þ
110 �gA

ffiffiffi
3

p R
γ5

ir
R � gP

ffiffi
3

p
ð2MNRÞ2 ½W0R� 6

5
αZ� R σ 0,1 0 − 0

12The original results by Holstein are written using the conven-
tions by Bjorken and Drell (1964), which differs in both the metric
used and the sign of q. We have written Eq. (83) in the metric and
notation by Behrens and Bühring (1982) to show the correspondence
in the definition of the constants.

13This can be seen from Eqs. (7) and (8) in Holstein (1974c)
and is thoroughly discussed in Sec. 9.2 in Behrens and Bühring
(1982).

14A careful distinction must be made as the form factors are
expanded as a function of 3-momentum q2 in the BB formalism,
while it is performed with the 4-momentum q2 ¼ W2

0 − q2 in that of
Holstein.
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VF000 the impulse approximation is a valid approach, as the
current is conserved. Next we discuss the divergence of the
axial current and its relation to the pion field, for which
we have to calculate QCD matrix elements. Corrections to the
simple shell model methods are historically split up into two
categories: meson exchange effects and “nuclear” effects, the
latter of which comprises core polarization, relativistic effects,
and configuration mixing stemming from an insufficient
knowledge of the nuclear wave functions. The distinction is
artificial, however, as the nuclear potential relies on an
incorporation of mesonic degrees of freedom. This fact was
emphasized by Wilkinson (1974). The study of mesonic
contributions has a long history and includes pioneering
works by Blin-Stoyle, Gupta, and Primakoff (1959),
Chemtob and Rho (1971), Delorme and Rho (1971), and
Rho (1974), but falls outside of the scope of this work.
Reviews can be found by Blin-Stoyle (1978), Ejiri and Fujita
(1978), and Towner (1987). Effects of core polarization, on
the other hand, result from a truncation of the set of basis
states by considering the nucleus as an inert core with some
valence nucleons (Shimizu, Ichimura, and Arima, 1974). In
many cases this is not an appropriate approximation, and
significant corrections occur from allowing particle-hole
excitations across shell gaps (Barroso and Blin-Stoyle,
1975; Koshigiri, Ohtsubo, and Morita, 1981). This is a
complicated matter, however, as severe cancellations occur
between core polarization and meson exchange effects, while
remaining careful for double counting (Towner and Khanna,
1979). Individual effects can easily range to 40%, but due to

cancellations in allowed decays these largely correspond to
the impulse approximation results (Morita, 1985). For for-
bidden decays, however, this cancellation is much less
pronounced and significant deviations are encountered when
using the impulse approximation (Baumann et al., 1998).
For allowed decays then one typically remedies the sit-

uation in an ad hoc way by renormalizing the coupling
constants to produce effective couplings (Wilkinson, 1973a,
1973b, 1974; Towner, 1992; Warburton and Towner, 1992).
Based on this reasoning, we expect the effective coupling
constant to decrease for increasingly heavy nuclei. This is the
case for the sd shell, where gA is set to 1.1 and to unity in
fp-shell nuclei (Martínez-Pinedo et al., 1996). New exper-
imental measurements of highly forbidden decays push this
value even farther downward to gA ≈ 0.9 (Haaranen, Kotila,
and Suhonen, 2017). Statistical methods have been applied by
Deppisch and Suhonen (2016), where an overview of the
quenching of gA is provided for different methods in different
mass regions. Because of the g4A dependence of the 0νββ cross
section, its study has received renewed appreciation
(Kostensalo, Haaranen, and Suhonen, 2017). Interesting to
note here is the use of the β spectrum as the prime means of
deducing gA as its shape depends only on the relative values of
the involved nuclear matrix elements.
Less known is the subsequent renormalization of the

induced pseudoscalar coupling, for which the original inter-
action is typically seen as an exchange of a virtual pion
(Ericson, Figureau, and Thévenet, 1973). The subsequent
interaction then depends on the pion propagator, which is
however modified by its interaction with the surrounding
nuclear matter. This is a delicate matter and contains severe
model dependence (Delorme et al., 1976). In an extreme case
the pseudoscalar coupling constant can be quenched by as
much as 80%, which is significantly larger than the connected
quenching of gA. Great care is then required when evaluating
matrix elements containing a pseudoscalar component.
Finally, we stress the model dependence of the quenching

of the coupling constants, as it originates from a failure to
directly take into account many-body effects and correlations.
This can, for example, clearly be seen from a difference in
effective gA when using the shell model or the interacting
boson model (Haaranen, Kotila, and Suhonen, 2017). Ab initio
methods such as Green’s function Monte Carlo provide a more
systematic framework and circumvent the need for quenching

TABLE IV. Summary of the a, e, b, c1, c2, d, and h form factors and their relation to the nuclear matrix elements defined in Table V. Here CVC
and SCC refer to conserved vector current hypothesis and second-class currents (see Sec. VI.C), respectively. In this table the impulse
approximation is given only to first order, and the relativistic matrix elements are neglected as is done by Holstein (1974c).

Form factor Formula in impulse approximation Remark Type

a a ≅ gVMF gV ¼ 1 (CVC) (Ademollo and Gatto, 1964)
Vectore e ≅ gVðMF � AgSÞ e ¼ 0 (CVC, SCC)

b b ≅ AðgMMGT þ gVMLÞ gM ≅ 4.706

c1 c1 ≅ gAMGT gA → gA;eff ¼ 1 (Towner, 1987)

Axial vector

c2 c2 ≅ 1
6
gA½Mσr2 þ 1ffiffiffiffi

10
p M1y� c2 ∼ R2

d d ≅ AðgAMσL � gIIMGTÞ gII ∼ gT ≅ 0 (SCC)
≡dI � dII dI ¼ 0 (analog states)

h h ≅ −2ffiffiffiffi
10

p M2gAM1y − A2gPMGT gP;free ≈ −229 → gP;eff ¼uncertain

TABLE V. Definitions of the nuclear matrix elements by Calaprice
et al. (1977). Here τ denotes the typical isospin ladder operator, and
an explicit sum over all nucleons is included. Note that the BB matrix
elements from Table III are dimensionless due to appropriate powers
of R, unlike those of Holstein presented here.

Matrix element Operator form

MF hβ∥Στ�i ∥αi
MGT hβ∥Στ�i σ⃗i∥αi
ML hβ∥Στ�i l⃗i∥αi
Mσr2 hβ∥Στ�i σ⃗ir2i ∥αi
MσL hβ∥Στ�i iσ⃗i × l⃗i∥αi
MKy ð16π

5
Þ1=2hβ∥Στ�i r2i Cnn0k

12k σinY
n0
2 ðr̂iÞ∥αi
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by taking into account many-body correlations (Brida, Pieper,
and Wiringa, 2011). This falls outside of the scope of this
review and the interested reader is referred to Pieper and
Wiringa (2001) and Carlson et al. (2015).

C. Symmetries

In dealing with allowed β decay, one finds that results are
significantly constrained and simplified through the applica-
tion of symmetries. The first we discuss here is the CVC
hypothesis (Feynman and Gell-Mann, 1958), after which we
briefly comment on second-class currents. Discussions on
T invariance and partially conserved axial current can be
found in Holstein (1974b) and Behrens and Bühring (1982).

1. Conserved vector current

As with the electromagnetic interaction, the conservation of
the vector current allows us to derive simple relations for
different form factors. In the most trivial example one finds

hJfMfjV0ð0ÞjJiMii¼ VF000ðq2ÞδJiJfδMiMf

¼hTfT3fjT∓jTiT3iiδJiJfδMiMf

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTi�T3iÞðTi ∓T3iþ1Þ

p
×δJiJfδMiMf

ð87Þ

with V0 the temporal part of the vector current and T3 the third
component of the isospin vector, meaning

VF000 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTi � T3iÞðTi ∓ T3i þ 1Þ

p
¼ VMð0Þ

000: ð88Þ

Comparing this to Eq. (84), we find that CVC excludes any
induced scalar currents.
Further, this can be used to find relationships between

different vector form factors, as discussed by Behrens and
Bühring (1971). A relationship relevant to our further dis-
cussion is the following15:

−2NVFN−1
011 ¼ ½W0 ∓ ðmn −mpÞ�RVFN

000

þ� αZ

�Z 	r
R



2N
UðrÞY0

0

�
: ð89Þ

Here mn and mp stand for the neutron and proton masses,
respectively, and the integration is performed with the nuclear
wave functions which were omitted for notational conven-
ience. Further, UðrÞ is defined via VðrÞ ¼ −αZ=RUðrÞ with
VðrÞ the electronic potential, and Y0

0 is the constant spherical
harmonic function coming from the expansion of the lepton
current.
Through its likeness with the electromagnetism, a deeper

connection can be constructed between weak and electro-
magnetic observables. As both divergenceless currents behave
quasi-identically, matrix elements can be interrelated. Behrens

and Bühring (1982) discussed this in our adopted form factor
formalism and showed that VFKK0ðq2Þ and VFKK1ðq2Þ are
related to elastic electron scattering reduced transition
strengths for electric and magnetic types, respectively. This
entails that we can evaluate these matrix elements using the
charge distribution rather than the weak charge distribution.
Theweak magnetism form factor, mentioned in the previous

section, provides the largest contribution of the form factors
induced by the strong interaction. Its main contribution comes
from the VF111ðq2Þ form factor which is related to a magnetic
matrix element, hence the name. In the general nuclear current
decomposition as written by Holstein (1974b), this is now
written as bðq2Þ rather than gM. For β transitions between
analog states the CVC hypothesis relates this form factor to
electromagnetic properties of the β transition, allowing one to
calculate b on the basis of experimental data. Thus, for the so-
called mirror β transitions between isospin T ¼ 1=2 mirror
nuclei we write (Calaprice and Holstein, 1976)

b∓ ¼ A

ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
μ∓; μ∓ ¼ ∓ðμ1 − μ2Þ; ð90Þ

whereA is themass number, J is the angularmomentum, andμ1
and μ2 are the magnetic moments of the mother and daughter
nuclei, respectively.
Further, for the pure Gamow-Teller transitions within

isospin triplet states the CVC hypothesis allows calculating
the weak magnetism form factor from the width Γiso

M1 of the
analog isovector part of the γ transition withM1 multipolarity
via (Calaprice and Holstein, 1976)

b2γ ¼ η6
Γiso
M1M

2

E3
γα

; ð91Þ

with Eγ the energy of the γ transition, M the average nuclear
mass of mother and daughter, α the fine-structure constant,
and η a constant. The latter is unity if the final states of β� and
γ processes are equal, while it becomes ð2Jγi þ 1Þ=ð2Jγf þ 1Þ
when reversed to correct for the proper degeneracy in the
phase space of the M1 transition.
A new compilation of experimental data and subsequent

discussion on weak magnetism behavior throughout the mass
range was performed by Severijns et al., 2018.

2. Partially conserved axial current

The application of partially conserved axial current typi-
cally results in the Goldberger-Treiman relation (Goldberger
and Treiman, 1958), relating the pion-nucleon coupling to gA.
This is generally not of much use unless one knows the pion
matrix element. This relation can, however, be translated into a
condition for gP:

gPðq2Þ ¼ −gAð0Þ
ð2MnÞ2
m2

π − q2
: ð92Þ

Simply using experimental results for nucleon and pion
masses at q2 ¼ 0 one obtains gPð0Þ ≈ −229. This expression
is only valid assuming isospin invariance, and much work has
been done [see Gorringe and Fearing (2003) and Bhattacharya

15This formula is a simplification of the general form factor
coefficient VFN−1

011 ðke; m; n; ρÞ which can be found in Behrens and
Bühring (1971).
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et al. (2012) and references therein] to provide higher-order
corrections to this result. These corrections are small and
change gP on the 5% level. Experimentally measurements
have been performed for muon capture, for which
q2 ¼ 0.88m2

μ, and so can be roughly translated using
Eq. (92). Currently, the most accurate results from chiral
perturbation theory are in sufficient agreement with exper-
imental results to warrant using the PCAC results (Gorringe
and Fearing, 2003). We again point to the importance of the
quenching of gP due the meson exchange effects in the nuclear
medium. Thus, Eq. (92) is valid only for the free nucleon, and
significant care must be taken when evaluating pseudoscalar
currents for nuclear decays.

3. Second-class currents

We can classify terms in the expansion of the nuclear
current following their transformation properties under the G-
parity operation G ¼ CeiπTy , i.e., the product of a charge
conjugation operation C and a rotation by π around the y axis
in isospin space (Weinberg, 1958). Only two terms in Eq. (83)
transform differently compared to their main vector or axial-
vector analogs. These are called second-class currents, as
opposed to their first-class counterparts. The first is the
induced scalar interaction, which was already eliminated
because of CVC. The second is the induced tensor interaction,
for which no similar constraint is available. As can be seen
from Table IV the axial tensor form factor d contains both a
so-called first-class term, i.e., dI , and a second-class term dII .
If both the vector and axial-vector weak nucleon currents Vμ

and Aμ have a definite G parity the induced terms (and thus
also the one related to the d form factor) are expected to hold
the G symmetry, that is, the decay of a proton and a neutron in
a nucleus should be symmetric. Experimentally no indication
for the existence of second-class currents has been found
as yet (Grenacs, 1985; Shiomi, 1996; Wilkinson, 2000;
Minamisono et al., 2001, 2011; Sumikama et al., 2011), so
that second-class currents can be ignored, i.e., dII ≡ 0. The d
form factor then reduces to its first-class part, i.e., d ¼ dI ,
which is only nonzero for transitions between nonanalog
states (i.e., belonging to a different isotopic multiplet), as the
matrix element MσL in dI can be shown to vanish for
transitions between analog states (Holstein, 1974a).

D. Analytical matrix elements

In the introduction of Sec. VI.B.1 we mentioned the
decomposition of a general operator OKLs into its single-
particle constituents. Using the form factor formalism, this
now has a more concrete meaning, and using the impulse
approximation we can build on this foundation. Following the
work of De-Shalit and Talmi (1963) and its discussion by
Behrens and Bühring (1982), we can write many-particle
matrix elements in terms of single-particle matrix elements by
introducing a factor CðKÞ that absorbs all many-particle
effects and which depends only on the tensor rank K. For
a simple configuration with two nucleons in initial and
final states in an orbital with total angular momentum j
one finds

hϕðj2; JfTfT3fÞj
����X
n¼1;2

fOKLst−gn
����jϕðj2; JiTiT3iÞi

¼ CðKÞhjjjOKLsjjji; ð93Þ

where CðKÞ is a simple combination of spin and isospin
variables. For a nontrivial system of an actual nucleus, we
typically employ the shell model and consider the interacting
nucleons to be in different orbitals outside a fixed core.
Writing the total wave function for a nucleus with spin J,
isospin T, and N active particles as

ΨðNJTÞ ¼
X
k

akϕkðNJTÞ ð94Þ

with ϕkðNJTÞ antisymmetric single-particle wave functions,
we find Eq. (93) generalizes directly to

hΨfðNJfTfÞjjOKLsjjΨiðNJiTiÞi
¼

X
k;l

akalCklðKÞhjljjOKLsjjjki; ð95Þ

where Ckl describes the coefficients of fractional parentage
relevant for kl configuration (De-Shalit and Talmi, 1963).
Comparing this to Eq. (81) we identify the prefactors as
the one-body density matrix elements. In the following
discussion we are not concerned with the absolute calcu-
lation of matrix elements, but rather in the ratio between
two different ones. When taking a ratio of two many-
particle matrix elements of rank K, we see the complex
many-body dynamics described by CðKÞ in Eq. (93) drops
out if both operators are of the same rank K. If the shell
model state of Eq. (94) is dominated by a single configu-
ration this result holds approximately. We will extensively
use this fact in the analytical calculation of the shape
factor CðZ;WÞ.
It remains then to write down the shape factor in an

analytical form. Here we stand before a crossing, as we
can attempt to split up CðZ;WÞ into a purely leptonic
convolution part and a nuclear structure part, or make no
attempt at decoupling and stick with the full formulation. The
former is done by Holstein, whereas in the seminal work by
Behrens and Bühring (1982) the two parts remain coupled. We
continue here with this approach as it provides the greatest
precision results, but present the final results in the notation of
Holstein. This allows for easy inspection and a clear con-
nection to the aforementioned symmetries. In Appendix E we
compare both approaches.

E. Isospin invariant shape factor

In the beginning of this section we introduced the concept
of a shape factor denoted by CðZ;WÞ. This is not to be
confused with the many-particle coupling coefficients in
Eq. (93). It encompasses the information introduced by the
expansion of the nuclear and lepton current in the transition
matrix element, and as such for a large part determines the
shape of the spectrum. In the formalism by Behrens and
Bühring (1982) CðZ;WÞ is written as
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CðZ;WÞ ¼
X

ke;kν;K

λke

�
M2

Kðke; kνÞ þm2
Kðke; kνÞ

−
2μkeγke
keW

MKðke; kνÞmKðke; kνÞ
�
; ð96Þ

where

λke ¼
α2−ke þ α2þke

α2−1 þ α2þ1

; ð97Þ

μke ¼
α2−ke − α2þke

α2−ke þ α2þke

keW
γke

; ð98Þ

are Coulomb functions depending on αk [see Eq. (13)], while
MKðke; kνÞ andmKðke; kνÞ contain the convolution of leptonic
wave functions and nuclear structure information encoded as
form factors, discussed in the previous section. The integers ke
and kν are defined as jκe;νj, where κe;ν is related to the angular
momenta in the usual way.16 It is a well-known fact that the
solution to the Dirac equation does not contain a definite
parity, such that we consider the outgoing leptonic wave
functions as spherical waves. The integerK corresponds to the
multipolarity of the transition and must form a vector triangle
with je and jν as well as with the nuclear spins Ji and Jf. For
allowed transitions we have then jJi − Jfj ≤ K ≤ Ji þ Jf
from the nuclear vector triangle.
In this coupled approach all leptonic information is still

contained within MK and mK . Even though the nuclear
decompositions are completely equivalent in both the HS
and BB formalisms, the treatment of the leptonic current is
not. In the latter, a rigorous expansion of the radial wave
functions is made in r2, ðmeRÞa; ðWRÞb, and ðαZÞc thereby
introducing a function Iðke; m; n; ρ; rÞ that is sensitive to
nuclear shape information.17 This function is tabulated both
in the general case and for a uniformly charged sphere in
Tables 4.2 and 4.3 in Behrens and Bühring (1982), respec-
tively. As it also includes nuclear structure information, this is

typically combined with the original form factors FðnÞ
KLs and is

written as18 FðnÞ
KLsðke; m; n; ρÞ.

This now allows to better understand the structure of
CðZ;WÞ and continue with its analytical formulation. In
the notation by Behrens and Bühring, capital letters are used
for large components, while lower case terms represent small
components. Developing MK and mK in terms of WR we can
after a tedious but straightforward calculation write a general
shape factor (Behrens et al., 1978; Behrens and Bühring,

1982). In the approach by BB, all constant factors are divided
out and one arrives at

CðZ;WÞ ¼ 1þ aW þ b
μ1γ

W
þ cW2; ð99Þ

where a, b, and c are given by Eqs. (14.117)–(14.119) in
Behrens and Bühring (1982). We will, however, divide

out only the main matrix elements VFð0Þ
000 ≡ gVMF and

AFð0Þ
101≡ ∓ gAMGT and adjust our shape factor accordingly.
This leaves us with a series of other, often more compli-

cated, nuclear matrix elements which require evaluation
somehow. Assuming isospin invariance and CVC, however,
we can link these matrix elements to electromagnetic matrix
elements. This entails that instead of using initial and final
state nuclear wave functions, one can use the full charge
distribution as discussed in Sec. VI.C. This corresponds to
using F1111 ¼ 27=35, F1221 ¼ 57=70, F1222 ¼ 233=210,
and F1211 ¼ −3=70. This approach can be improved
when using a more realistic charge distribution. Several of
these possible replacements have been discussed in the
electrostatic finite size corrections in Sec. IV, specifically
when discussing the U correction factor. This is elaborated
upon in Appendix A.

1. Superallowed 0+ → 0+ Fermi decay

In the case of superallowed Fermi decay, only terms with
K ¼ 0 contribute. We deal then only with different form factor
coefficients of the form VF1

000ð1; m; n; ρÞ. We use the expan-
sion of M0ð1; 1Þ and m0ð1; 1Þ valid to orders ðαZÞ2, R2, αZR
to calculate CðZ;WÞ from Eq. (96). Here the Coulomb
function μ1 can be safely assumed to correspond to unity
to our current order of precision (Behrens and Jänecke, 1969).
After extraction of VF0

000 we can write the shape factor
CðZ;WÞ in the following expansion:

VCðZ;WÞ0 ≃ 1þ VC0 þ VC1Wþ VC−1=W þ VC2W2; ð100Þ

where

VC0 ¼ −
233

630
ðαZÞ2 − 1

5
ðW0RÞ2 ∓ 6

35
αZW0R; ð101aÞ

VC1 ¼ ∓ 13

35
αZRþ 4

15
W0R2; ð101bÞ

VC−1 ¼
2

15
W0R2 � 1

70
αZR; ð101cÞ

VC2 ¼ −
4

15
R2: ð101dÞ

2. Pure Gamow-Teller decay

In pure Gamow-Teller decay the situation becomes more
complicated, and we now have contributions from K ≥ 1
terms. For notational convenience and clarity we first intro-
duce the Holstein variables and the translation used between
Holstein’s and the Behrens-Bühring formalism in which the
calculations were performed. We have used

16Here κ is the eigenvalue of the operator K ¼ βðσ ⋅ Lþ 1Þ, such
that k ¼ jκj ¼ jþ 1=2; κ ¼ −l − 1 if l ¼ jþ 1=2, and κ ¼ l if
l ¼ j − 1=2.

17Here m ¼ aþ bþ c represents the total power of mR;WR, and
αZ, n ¼ bþ c is the total power of WR and αZ, and ρ ¼ c is the
power of αZ.

18This is presented in Eqs. (6.159)–(6.166) in Behrens and
Bühring (1982). As Iðke; m; n; 0Þ ¼ 1, we have FðnÞ

KLsðke; m; n; 0Þ ¼
FðnÞ
KLs.
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AFð0Þ
101 ¼ ∓c1; ð102aÞ

VFð0Þ
111 ¼ −

ffiffiffi
3

2

r
1

MR
b; ð102bÞ

AFð0Þ
110 ¼ −

ffiffiffi
3

p

2MR
d; ð102cÞ

where the relevant Holstein form factors to the appropriate
order in q2 are defined in Table IV. Extracting now the main

Gamow-Teller form factor AFð0Þ
101 we can derive a similar

result19

ACðZ;WÞ0 ≃ 1þ AC0 þ AC1W þ AC−1=W

þ AC2W2 þΦPðZ;WÞ; ð105Þ

where

AC0 ¼ −
1

5
ðW0RÞ2 þ

4

9
R2

�
1 −

1

20
Λ
�

þ 1

3

W0

Mc1
ð∓ 2bþ dÞ � 2

5
αZ

1

MRc1
ð�2bþ dÞ

� 2

35
αZW0Rð1 − ΛÞ − 233

630
ðαZÞ2; ð106aÞ

AC1 ¼ � 4

3

b
Mc1

þ 4

9
W0R2

�
1 −

1

10
Λ
�

∓ 4

7
αZR

�
1 −

1

10
Λ
�
;

ð106bÞ

AC−1¼−
1

3Mc1
ð�2bþdÞ− 2

45
W0R2ð1−ΛÞ∓αZR

70
; ð106cÞ

AC2 ¼ −4
9
R2ð1 − 1

10
ΛÞ; ð106dÞ

and

Λ ¼
ffiffiffi
2

p

3
10

Mð0Þ
121

Mð0Þ
101

: ð107Þ

In order to stress its importance, we separated out one part of
Eq. (105), written as ΦPðZ;WÞ. Here Φ is

Φ ¼ gP
gA

1

ð2MNRÞ2
ð108Þ

and represents the typically ignored induced pseudoscalar
contribution. Using the free nucleon values obtained from
PCAC we find Φ ≈ −0.13 for a typical medium-Z nucleus
with R ∼ 0.01. This raises serious questions about the validity
of neglecting induced pseudoscalar effects when high pre-
cision is required, even when assuming a strongly quenched
gP value.20 Now PðZ;WÞ is a polynomial arising from the
contributions of AF1

101ðke;m; n; ρÞ, AF0
110ðke; m; n; ρÞ, and

AF0
121ðke; m; n; ρÞ as can be seen from Table IV. The gener-

alization from the bare form factors AF1Ls to the form factor
coefficients is straightforward and is tabulated in Table 7 by
Behrens and Bühring (1971). The nonrelativistic approxima-
tion is derived using standard methods, and P is then given by

PðZ;WÞ ¼ P0 þ P1W þ P−1=W; ð109Þ

where

P0 ¼ � 2
25
αZW0Rþ 51

250
ðαZÞ2; ð110aÞ

P1 ¼ � 2
25
αZR; ð110bÞ

P−1 ¼ −2
3
γW0R2 � 26

25
αZRγ. ð110cÞ

Many of the factors in these equations can be large enough to
be significant on the few parts in 104 or even more. Clearly,
care has to be taken when performing high precision spectrum
shape measurements, and, in particular, when extracting ft
values from mirror transitions. The quenching of gP in nuclear
matter is expected to be nucleus dependent, just like gA, such
that its inclusion can introduce shifts in the overall F t values.
Contributions coming from K ≥ 2 contribute only at the

few 10−6 level, such that for our current precision we do not
take it into account.

F. Isospin breakdown and nuclear structure

The results presented in the previous section depended on
isospin invariance to replace the nuclear wave functions in the
matrix elements by the complete charge distribution. Isospin
is, however, not an exact symmetry and its breakdown is
significant on the level of precision we aim for. This break-
down manifests itself in the form of an isovector correction
and further requires the explicit calculation of several single-
particle matrix elements in the Gamow-Teller shape factor.

1. Isovector correction

The use of CVC and isospin invariance links weak matrix
elements to electromagnetic variables, specifically to the

19Care must be taken when precisely comparing the evaluation of
h and AF121. The latter can be written as

AF0
121 ¼∓ gAM0

121 ∓ gP
2MnR

5

ffiffiffi
2

3

r
N 0

110; ð103Þ

where upon careful evaluation we find M0
121 ∝ −M1y, and N 0

110 is
the relativistic matrix element

N 0
110 ¼

ffiffiffi
3

p Z
βγ5

ir
R
: ð104Þ

We use either a Foldy-Wouthuysen transformation (Foldy and
Wouthuysen, 1950; Bjorken and Drell, 1964; Roman, 1965) or
reduce fðrÞ using the nonrelativistic limit of the Dirac equation to
reduce βγ5. Converting the angular momenta coupling, we finally
obtain N 0

110 ¼ −ð ffiffiffi
3

p
=2MNRÞM0

101. In order to precisely show the
influence of the oft-ignored induced pseudoscalar current, we
separate them in Eqs. (106a)–(106d).

20See also González-Alonso and Martin Camalich (2014).
Important to note is the distinction between gP as it is defined here
and that of the fundamental pseudoscalar interaction described there.
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so-called isovector component. Because of the breakdown of
isospin, we introduce a further modification called the iso-
vector correction based on the approach by Wilkinson
(1993b). In order to put the correction on a clearer footing,
we take a look at the problem before using a perturbative
expansion of the wave functions. This can more easily be seen
in the notation of Hardy and Towner (2005b) where MK is
written as

MKðke; kνÞ ¼
ffiffiffiffiffi
4π

p

K̂Ĵi

X
Ls

ð−ÞK−LhjαjjFðrÞT̂KLsjjjβi; ð111Þ

with FðrÞ a combination of lepton wave functions. The
dominant contributions for the Fermi and Gamow-
Teller matrix elements come from its temporal and spatial
components, respectively. In this notation, both are propor-
tional to

LL ¼ C
Z

∞

0

RαðrÞFðrÞRβðrÞr2dr; ð112Þ

where all constants related to angular momentum coupling
have been absorbed by C and RαðβÞ stands for the initial
(final) nuclear wave function. These states tend to have a
higher hr2i value compared to the entire charge distribution.
Combined with the decrease of the leptonic wave functions
inside the nuclear volume, this results in an overestimation of
the ratio of form factors in Eqs. (100) and (105). We
generalize the correction proposed by Wilkinson (1993b)
and write

CðZ;WÞI ¼
½R∞

0 drΨeΨνρw�2
½R∞

0 drΨeΨνρch�2
; ð113Þ

where ρw is the nuclear density distribution participating in
the decay process, the so-called weak charge distribution,
and ρch the charge distribution. An expansion of the lepton
wave functions gives rise to terms of order r2, such that
estimates of the weak rms radii enter in the equation, denoted
by hr2iw. We write the radial part of the weak charge
distribution as a product of initial and final wave functions,
each consisting of a sum of weighted harmonic oscillator
functions21

ρwðrÞ ¼ CN

X
nln0l0

αnlβn0l0RnlðrÞRn0l0 ðrÞ; ð114Þ

where CN is a normalization constant, and RnlðrÞ is the
harmonic oscillator radial wave function for quantum num-
bers n and l, such that

R
R2
nldr ¼ 1. In closed form these are

written as

RnlðrÞ ¼ Nrlþ1 exp ð−νr2ÞLlþ1=2
k ð2νr2Þ; ð115aÞ

N ¼
��

2ν3

π

�
1=2 2kþ2lþ3k!νl

ð2kþ 2lþ 1Þ!!
�
1=2

; ð115bÞ

k ¼ n − 1; ð115cÞ

where LðαÞ
n ðxÞ is the generalized Laguerre polynomial, and ν

is a free parameter. An additional advantage of these
functions is the availability of a closed formula for the radial
integrals which will be necessary in the following treatment
(Nilsson, 1955):

hnflfjrLjnilii ¼ ð−1Þniþnfð2νÞL=2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðniÞΓðnfÞ

Γðni þ t − τiÞΓðnf þ t − τfÞ

s
τi!τf!

×
X
σ

�
Γðtþ σ þ 1Þ

σ!ðni − σ − 1Þ!ðnf − σ − 1Þ!

×
1

ðσ þ τi − ni þ 1Þ!ðσ þ τf − nf þ 1Þ!
�
;

ð116Þ

where

τi ¼ 1
2
ðlf − li þ LÞ; ð117aÞ

τf ¼ 1
2
ðli − lf þ LÞ; ð117bÞ

t ¼ 1
2
ðli þ lf þ Lþ 1Þ; ð117cÞ

with the upper and lower limits of σ:

maxðni− τi−1;nf− τf −1Þ≤ σ ≤minðni−1;nf −1Þ: ð118Þ

For the specific case when n ¼ n0 and l ¼ l0, we find the
well-known relation

hr2inl ¼
1

4ν
ð4nþ 2l − 1Þ: ð119Þ

The free parameter ν is related to the traditional oscillator
parameter through b ¼ ffiffiffiffiffi

2ν
p

. It can now be constrained
through its relation with the nuclear radius. Summing the
contribution of Eq. (119) for all nucleons and equating it to the
nuclear rms radius, one finds b ¼ 27=63−1=65−1=2RA−1=6 ≈
0.836RA−1=3. This corresponds to the traditional approxima-
tion ℏω ¼ 41A−1=3 MeV when using R ¼ r0A1=3.
The CI correction as defined in Eq. (113) can be calculated

using a more explicit formulation of the lepton wave func-
tions. In the nonrelativistic approximation we write the latter
as the large part of the radial behavior. For the j ¼ 1=2 β
particle and (anti)neutrino this is g−1ðrÞ and j0ðqrÞ, respec-
tively, where j0 is a spherical Bessel function and q is the
(anti)neutrino momentum. In the standard way of expanding
in powers of r and equating terms, one finds to order r2:

21The harmonic oscillator wave functions can be trivially extended
to include a spin-1=2 contribution and leave the radial part of the
Hamiltonian unchanged. The possible l ðl0Þ will thus be restricted to
j� 1=2 of initial and final particle states. In case j is not a good
quantum number any more, such as an axially deformed potential,
more l values enter. This is discussed in Sec. VI.H.
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ΨeðrÞ ≈ 1 − 1
6
½ðW � V0Þ2 − 1�r2; ð120aÞ

ΨνðrÞ ≈ 1 − 1
6
ðW0 −WÞ2r2; ð120bÞ

for a uniformly charged sphere, with V0 ¼ �3αZ=ð2RÞ the
electrostatic potential at the origin. Equation (113) then
reduces to

CðZ;WÞI ¼CN

X
nln0l0

α2nlβ
2
n0l0I

n0l0
nl ðIn

0l0
nl −2ξhr2in0l0nl Þ×

�
1þ6

5
ξR2

�

ð121Þ

to first order in ξ, where In
0l0

nl ¼ R
∞
0 RnlRn0l0dr and

ξ ¼ 1
6
½ðW0 −WÞ2 þ ðW þ V0Þ2 − 1�: ð122Þ

Here we used our definition that hr2i ¼ ð3=5ÞR2 for any
charge distribution. In the extreme single-particle approxima-
tion in j-j coupling (1s, 1p, 1d5=2, 2s, …) this expression
drastically simplifies and the sum in Eq. (121) disappears.
Further assuming the initial and final particles to be in the
same nl state, we find

CI ¼ 1 −
1

2ν
ξð4nþ 2l − 1Þ þ 6

5
ξR2. ð123Þ

When considering the modified Gaussian function of Eq. (18)
as a charge distribution, we can relate ν to the A fit parameter
using the same idea as that of Wilkinson (1993b). We can
interpret the constant term in Eq. (18) as the l ¼ 0 contribution
while the Aðr=aÞ2 then necessarily stands for l ≠ 0. Assuming
n ¼ 1 and l ¼ 0 as done there, we must have 3=ð4νÞ ¼ 3a2=2
after proper normalization of the l ¼ 0 part of ρMG.
Reordering terms we find then from Eq. (123) his result

CðZ;WÞI ¼ 1 −
8

5
wξR2

1

5A0 þ 2
; ð124Þ

where

w ¼ ð4nþ 2l − 1Þ=5: ð125Þ

Our more general expression [Eq. (121)] does not rely on a
specific charge distribution and should employ the same
charge distribution as was used to evaluate the V=AF1mnρ
terms in the previous section. This is discussed further in
Appendix A.
In case of vector transitions we can simply apply CI to the

entire shape factor VC of the previous section. It is slightly
more complicated for Gamow-Teller transitions as we have
assumed the nuclear wave functions to correspond to the
charge distribution only for form factors of the type
AFð0Þ

101ð1; m; n; ρÞ, analogous to the vector result. In order to
avoid double counting then we can split up ACðZ;WÞ into a
nuclear structure dependent part A

nsCðZ;WÞ containing all
terms proportional to b, d, and Λ, and all other shape
dependent terms A

shCðZ;WÞ. We properly apply the isovector
correction using

ACðZ;WÞ → CIðZ;WÞAshCðZ;WÞ þ A
nsCðZ;WÞ: ð126Þ

The terms corresponding to A
shC are written by Wilkinson

(1990) and discussed in Appendix A.

2. Single-particle matrix elements

In the nuclear structure shape function of pure Gamow-
Teller decay A

nsC we are sensitive to several ratios of nontrivial
form factors. The weak magnetism contribution, denoted
by b, can be constrained by CVC for specific transitions,
while d can be shown to vanish for analog transitions.
We have no such constrictions for Λ, defined in Eq. (107),
and so we must rely on the explicit calculation of the matrix
elements. Specifically, we need to calculate the ratio between

Mð0Þ
121 and Mð0Þ

101. Explicit expressions have been provided in

Appendix B. As an example, we write the ratio Mð0Þ
121=M

ð0Þ
101

here for several allowed scenarios

Mð0Þ
121

Mð0Þ
101

¼

8>>><
>>>:

−l
ffiffi
2

p
2lþ3

hr2i
R2 jf ¼ ji ¼ lþ 1

2
;

−ðlþ 1Þ
ffiffi
2

p
2l−1

hr2i
R2 jf ¼ ji ¼ l − 1

2
;

1
23=2

hr2i
R2 jf ¼ l� 1

2
ji ¼ l ∓ 1

2
.

ð127Þ

We can test the validity of Eq. (127) in the simpler cases
where we expect our single-particle approximation through
j-j coupling to work. This can be done by comparing results
for the weak magnetism contributions for which experimental
data are available. As an example, we consider the mirror
decays of six isotopes throughout the lower mass range [see
Severijns et al., 2018 and references therein] In the extreme
single-particle approximation for mirror nuclei the weak
magnetism current is easily calculated, and one finds b=Ac1 ¼
1=gAðlþ 1þ gMÞ and −1=gAðl − gMÞ for jf ¼ ji ¼ l� 1=2,
respectively. Results are shown in Table VI.
We conclude that, for this investigated mass range where

the single-particle behavior can be reasonably well assumed,
the nonrelativistic impulse approximation evaluation yields
results consistent within 15% except for the d3=2 orbital in the

TABLE VI. Examples of T ¼ 1=2 mirror transitions for which we
compare experimental b=Ac1 values to their pure single-particle
analogs throughout the mass range 3 < A < 59. We have some
freedom in choosing gA for the higher lying states. For 3H we used
gA ¼ 1.2723 while for all sd nuclei we used gA ¼ 1.1 based on
standard works (Wildenthal, 1984; Brown andWildenthal, 1988) and
gA ¼ 1 for the fp shell (Martínez-Pinedo et al., 1996; Siiskonen,
Hjorth-Jensen, and Suhonen, 2001).

Nucleus Jπ ðb=Ac1Þexp ðb=Ac1Þsp
3H 1=2þ 4.2212(24) 4.48
13N 1=2− 3.1816(75) 3.37
31S 1=2þ 5.351(14) 5.18
39Ca a

3=2þ 1.2349(28) 2.46
45V 7=2− 7.51(23) 8.70
59Zn 3=2− 6.68(33) 6.71

aThe electromagnetic moments of 39Ca do not agree very well
with the Schmidt values (Minamisono et al., 1976; Matsuta et al.,
1999), implying larger deviations were expected to occur.
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case of 39Ca. From its magnetic moment and that of its related
neighbor 37Ar (Pitt et al., 1988), we could however already
conclude that a single-particle approach is not justified.
Indeed, despite having only one hole outside a double magic
nucleus, core polarization and meson exchange effects are
significantly enlarged (Barroso and Blin-Stoyle, 1975).
We can conclude this to be a very good agreement for a

simple approach. This assumes a careful study of the magnetic
moments and ground state properties, however, taking into
account possible orbital reversals through strong deformations.
We assume the matrix element evaluation in Eq. (127) to
perform similarly, justifying our single-particle approach in this
mass range given the previously discussed requirements.

G. Relativistic terms in superallowed decays

In the previous section, when dealing with superallowed
0þ → 0þ decay, we ignored contributions from relativistic
matrix elements, as is typically done. For the Gamow-Teller
decay we made no such approximation and immediately
implemented their properties. To recapitulate, by relativistic
we mean matrix operators directly or indirectly containing γ5.
This is because these operators connect the small f and large g
radial wave functions when treating the transforming nucleon
relativistically as in Eq. (8). Specifically, we calculate matrix
elements of the form

Z
∞

0

gfðrÞϕðrÞfiðrÞr2dr; ð128Þ

where ϕðrÞ is equal to jLðqrÞ or ðr=RÞLþ2NIðke; m; n; ρ; rÞ,
and f and g can be interchanged. One then typically
introduces a further nonrelativistic approximation (Brysk,
1952; Talmi, 1953; Rose and Osborn, 1954a, 1954b;
Eichler, 1963; Lipnik and Sunier, 1966; Hardy and Towner,
2005a). In this nonrelativistic approach the small f component
can be transformed such that gκðrÞ is a solution of the
Schrödinger equation, as done in footnote 19 when discussing
Eq. (105). Typically, a factor 1=MNR ≈ 1=20 appears, sup-
pressing the relativistic influence significantly. In the simple
case of superallowed Fermi decay we can write

CðZ;WÞ ¼ CðZ;WÞNR þ
VFð0Þ

011

VFð0Þ
000

f2ðWÞ þ
VFð1Þ

011

VFð0Þ
000

f3ðWÞ þ � � � ;

ð129Þ

in the notation of Behrens and Buhring (1967), where fiðWÞ
are simple functions of the lepton momenta and slowly
varying Coulomb functions, proportional to R, and where
the subscript NR stands for nonrelativistic. These Coulomb
functions are described for Fermi transitions in Appendix D.
Using the results in our discussion of CVC, we can approxi-
mate Eq. (89) to write22 (Fujita, 1962)

2NVFðN−1Þ
011 ¼ −f½W0 ∓ ðmn −mpÞ�R� 6

5
αZgVFðNÞ

000: ð130Þ

It is then immediately clear why we have initially chosen to
neglect these matrix elements, as the prefactor is exactly zero
in the case of isospin invariance. Here 6αZ=5R is the differ-
ence in Coulomb energy assuming a uniformly charged
sphere. Isospin is, however, not an exact symmetry nor is
the nucleus a perfectly homogeneous sphere, and Wilkinson
(1993b) has treated this with much care, providing upper
limits on the magnitude of the effect averaged over the full
spectrum. This was again done using the assumption of an
extreme single-particle interaction in the nucleus. In this case
this results in a conservative estimate, as the effect increases
for higher lying orbitals. For the heaviest nucleus considered
54Co, the upper limit was set at 0.01%, while for the lightest
14O, it was put at 0.001%. The end-point energy for the former
is 8243.12 keV, so that an average slope would be in the
10−5 MeV−1 range as the dominant terms in f2ðWÞ are linear
inW. This gives a general idea of the involved magnitudes. As
is done for Gamow-Teller decays discussed, we can attempt to
evaluate these matrix elements explicitly using single-particle
values. This is elaborated upon in Appendix D.

H. Nuclear deformation

As previously discussed in Sec. IV.A.3, a deviation in the
spherical shape of the nucleus introduces profound effects on
the β decay rate on the few 10−4 level. This influence extends
toward the terms sensitive to nuclear structure previously
discussed.

1. Leptonic convolution

The most obvious change occurs in the convolution of the
lepton and nuclear wave functions, where we initially assumed
a uniform charge density. Here we used the rough expansion
of the lepton wave functions near the origin of Eqs. (120a) and
(120b). This uniform density is then replaced by that of
Eq. (37), from which we can calculate the electric potential at
the center of the nucleus, yielding (Wilkinson, 1994)

V0d ¼
3αZ
2a

ðΦ2 − 1Þ−1=2 ln ½ðΦ2 − 1Þ1=2 þΦ� ð131Þ

for the prolate case and

V0d ¼
3αZ
2a

ð1 −Φ2Þ−1=2 arcsinð1 −Φ2Þ1=2 ð132Þ

for the oblate case, where

Φ ¼ b
a

ð133Þ

as discussed before. We follow the approach of Wilkinson
(1994) and write

ζi ¼ 1
10
½ðW0 −WÞ2 þ ðW � V0iÞ2 − 1�; ð134Þ

such that we define

22This relation is not exact and can in fact vary significantly, as
discussed by Damgaard and Winther (1966). An exact treatment can
be found in Behrens and Buhring (1967). We are here, however, only
interested in an order of magnitude estimation.
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DCðZ;W; β2Þ ¼
1 − ζdR2

1 − ζsR2
; ð135Þ

where V0s ¼ �3αZ=ð2RÞ. The effect of DC largely compen-
sates that of DFS defined in Sec. IV.A.3, so that the effect is
typically on the order of a few 10−4 for extreme deformations.
Finally, we discuss the influence of deformation on our so-

called isovector correction CI . Here we account for the fact
that the decaying nucleon sits in an orbital with limited
overlap with the full charge distribution. We considered this
nucleon to sit in the highest occupied orbital according to the
typical j-j coupling. In the deformed case, however, j is not
any more a good quantum number and the sum in Eq. (121)
extends over several l rather than just j� 1=2. This can create
significant deviations in the expectation values for hr2iw. We
briefly discuss the deformed harmonic oscillator in the
following section and comment on the modification of CI
in the final overview and cross-check in Sec. VIII.

2. Deformed single-particle matrix elements

In the case of Gamow-Teller transitions we are sensitive to
matrix elements which cannot be reduced to their electro-
magnetic analogs through the use of CVC and are calculated
using single-particle matrix elements. In the case of nuclear
deformation, our initial harmonic oscillator wave functions are
not any more good approximations of the nuclear wave
function, as l is not a good quantum number. The single-
particle wave function is then a normalized linear combination
(Davidson, 1968)

χΩðr0Þ ¼
X
j

CjΩϕðjΩÞ ð136Þ

withΩ the projection of the single-particle angular momentum
on the symmetry axis of the deformed nucleus, and r0 the
radial coordinate in the body-fixed frame. The coefficients
CjΩ are tabulated by Nilsson (1955) and Davidson (1968) for
different values of β2. The ϕðjΩÞ are solutions of the spherical
single-particle orbital with the proper spin-angular functions

ϕðjΩÞ ¼ gðr0; κÞχΩκ ð137Þ

such that we can keep using the harmonic oscillator radial
wave functions in the calculation of matrix elements. We use
the result of Behrens and Bühring (1982) to find

hϕðJfKf;ΩfÞjjOKLsjjϕðJiKi;ΩiÞi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Jf þ 1Þð2Ji þ 1Þ
ð1þ δKf0

Þð1þ δKi0
Þ

s X
jfji

CjfΩf
CjiΩi

×

�
ð−1ÞJf−Kfþjf−Ωf

�
Jf K Ji
−Kf Ωf − Ωi Ki

�

×

�
jf K ji

−Ωf Ωf − Ωi Ωi

�
þ
�

Jf K Ji
Kf −Ωf − Ωi Ki

�

×

�
jf K ji
Ωf −Ωf − Ωi Ωi

��
hjfjjOKLsjjjii; ð138Þ

where the last factor is again the single-particle matrix
element, and K is the projection of the combined angular
momentum I ¼ Lþ j on the symmetry axis, with L the
angular momentum of the deformed core, and j that of the
single particle. In the rotational ground state for an odd-A
nucleus K ¼ Ω. In both even-even and odd-odd nuclei the
active particles couple to K ¼ 0 in the ground state.
Equation (138) imposes an additional selection rule as
K ≥ jKf − Kij. As an example, consider the weak magnetism
form factor b=Ac1 for the heavily deformed 19Ne mirror
isotope. Its ground state is 1=2þ, consistent with a deforma-
tion of β2 ¼ 0.269 of Möller et al. (2016), meaning the
unpaired nucleon sits in the 1=2þ½220� orbital. From Davidson
(1968), we find the wave function is dominated by the 1d5=2
harmonic oscillator function, combined with parts from 2s1=2
and 1d3=2. From our deliberations of Eq. (127) we know that
only cross-terms with li ¼ lf will survive. As 19F has a nearly
identical deformation, we assume CjfΩf

¼ CjiΩi
. We find then

b=Ac1 ¼ 5.55 rather than 7.01 when assuming a pure d5=2
occupation. This is much closer to the value we get from CVC
ðb=Ac1ÞCVC ¼ 4.9129ð25Þ and entails that even for very
strong deformations, we are able to predict these quantities
in a single-particle estimate within 15%. This is more
extensively discussed elsewhere (Severijns et al., 2018).

I. Summary

We presented in a fully analytical form the so-called shape
factor correction to the β spectrum, both for Fermi and for the
first time for Gamow-Teller decays. Calculations were per-
formed in the Behrens-Bühring formalism and coupled to the
work of Holstein. This allows one to obtain the highest
precision results due to an improved treatment of the lepton
wave functions while maintaining notational clarity. In doing
so, we expounded on the symmetry properties that underlie
the relevant form factors and discussed their calculation,
focusing on both the reduction to single-particle matrix
elements and their careful evaluation. As the move toward
sub-per mille precision requires, we further discussed the
evaluation of deformation influences, the breakdown of
isospin invariance, and pointed to the relevance of induced
interactions. We attempted to do this while preserving trans-
parency in our calculations in the complex and at times
convoluted methods required for the shape factor evaluation.
The oft-neglected induced pseudoscalar interaction was kept
alive in our formulation, and we showed the need for its
careful evaluation. Despite nontrivial quenching in the nuclear
medium, its significance cannot be underestimated when high
precision results are required.
The move toward the formulation of Holstein allows for an

easier interpretation of and use with experimental results. In
the appendixes we showed the correspondence between our
improved results and the earlier conclusions of Holstein and
others to put aside any possibility for double counting. We
believe we presented a more complete, transparent, and clear-
cut integration of the final state Coulombic effects without
the artificial separation of nuclear structure and leptonic
convolution effects.

Hayen et al.: High precision analytical description of the …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015008-25



For many experimentally interesting cases we have no use
for CVC to derive precise values for the induced currents,
raising the question of the required precision on these
observables. As many spectral shape measurements are intent
on measuring a possible Fierz contribution, the main induced
spectral distortions come from the term linear in W. Given
values of b=Ac1 ∼Oð5Þ, the slope is influenced mainly
by the weak magnetism contribution, averaging around
0.4% MeV−1. The next largest contribution comes from the
2αZRx=35 term, where we have to carefully evaluate both the

Mð0Þ
121 matrix element and the induced pseudoscalar contri-

bution [Eq. (107)]. For both weak magnetism and Λ of
Eq. (107), an extreme single-particle calculation can be
sufficient to bring the required precision into the 10−4 domain,
given that it is a valid approximation. We have seen in
Sec. VI.F.2 that this is not always the case. Its legitimacy
can be deduced from a study of the magnetic moments. When
we are not able to confidently trust the extreme single-particle
limit, however, one requires shell model input. Care then has
to be taken to avoid double counting with deformation effects.
Spectral measurements, in particular, have an advantage in
that all terms linear in W in the shape factor have a strongly
suppressed influence from Λ, putting the focus on b=Ac1 for
which explicit experimental data are available.

VII. ATOMIC AND CHEMICAL EFFECTS

The nucleus cannot be completely separated from its orbiting
electrons as the decay is governed by the total Hamiltonian.
Even though the interaction point lies within the nucleus, the
emitted β particle undergoes continuous interaction with the
atomic electrons that surround it. The screened Coulomb field
both changes the interaction density within the nuclear volume
and opens possibilities for more discrete interactions such as
shake-off and exchange effects. These discrete processes all
originate from a nonorthogonality between initial and final
atomic states. We discuss in turn the screening correction, the
exchange effect, shake-up and shake-off processes, the atomic
mismatch correction, possible bound state β decay, and explore
the molecular effects on the β spectrum and decay rate. The
bulk of the effects is typically located in the low-energy region,
as expected from the Compton wavelength of the outgoing
electron. However, experiments sensitive to explicit energy
dependences in the β spectrum shape cannot ignore atomic
effects even at higher energies.
The description of screening has been known for several

decades and is now combined with numerical results from
atomic physics. In addition, a new analytical fit of the exchange
effect is proposed here, based on precise numerical calculations.
Finally, we discuss and review molecular effects on the

outgoing β spectrum. As the decaying atom can reside in
many different chemical environments, the consequent
molecular effects have to be evaluated in a case by case
manner. We discuss general features and point to possible
problematic areas in an analytic fashion.

A. Screening corrections

When the β particle is created inside the nucleus, it sees
not only the nuclear charge but also the atomic electrons

surrounding it. The electromagnetic potential is altered at the
site, enhanced by the nonzero probability of finding an s
electron inside the nucleus. The effective charge as seen by the
β particle is screened because of atomic electrons. Whereas
the inclusion of the Fermi function is a first-order Coulomb
correction, effects coming from a screened nuclear charge are
higher-order effects. This is because the largest deviation in
the screened electronic potential lies at the atomic rather than
nuclear radius. Considering the Fermi function equivalent to
switching the electron radial wave function in the S matrix
from plane wave to Coulomb function, an analytical treatment
of screening requires an analytical solution of the Dirac
equation in a screened Coulomb potential. Unfortunately,
this is inherently impossible (Rose, 1961). The Schrödinger
and Klein-Gordon equations allow for an analytical solution in
a simple screened Coulomb potential (Durand, 1964), but the
validity of this can be questioned when considering a high
precision description.
To overcome this hurdle, initial results were obtained by

Rose (1936) using the Wentzel-Kramers-Brillouin (WKB)
argument, arguing a simple rescaling of the total β particle
energy

~W ¼ W − V0; ~p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~W2 − 1

p
; ð139Þ

where V0 is the potential shift due to screening at the origin.
The screening correction is then ~p ~W ~F =pWF. Even though
this approach is strictly valid only for energies going toward
infinity, good behavior was nevertheless found when compar-
ing to numerical results (Matese and Johnson, 1966).
However, due to the rescaling of the energy the correction
is not defined for energies lower than V0, resulting in
discontinuities for energies typically lower than 10 keV.
Further study of electronic screening has been a subject of
intensive research over several decades (Longmire and Brown,
1949; Good, 1954; Brown, 1964; Durand, 1964; Bühring,
1965, 1984b; Wilkinson, 1970; Lopez and Durand, 1988),
including using the Feynman diagram technique (Durand and
Lopez, 1987). There appears to be some confusion, however,
in the evaluation of V0, specifically whether it corresponds to
the potential shift relative to the daughter or mother atom as it
was not clearly stated in the initial article by Rose (1936). As
described by different authors, V0 is defined as (Lopez and
Durand, 1988; Saenz and Froelich, 1997a)

V0 ¼ �αhχj
XZp

i¼1

1

ri
jχi; ð140Þ

where Zp and jχi correspond to the charge and electronic
wave function of the parent atom, rather than the daughter
atom. This was noted as well by Bühring (1984a). The result
of Eq. (140) is obtained after applying the sudden approxi-
mation, i.e., the charge change of the nucleus is instantaneous
compared to the static electronic distribution and closure for
the final atomic states. To first order in αZ they then found

SðZ;WÞ ¼ 1þWV0

p2
þ V0

W
; ð141Þ
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which corresponds to the result initially obtained by Rose
(1936). Instead of performing a Lippmann-Schwinger expan-
sion of the Coulomb interaction, one can move beyond
perturbation theory, as discussed by Halpern (1970). The
latter shows that Coulomb interaction before and after the β
decay has the effect of changing the β wave functions from a
plane wave to an exact solution of the Dirac equation in a
screened Coulomb field. This fact will be used when deriving
a more elaborate screening correction.
Of paramount importance for a consistent description of

screening is an accurate atomic potential in the region of the
nucleus. Several potentials were proposed over the past few
decades, many of which are based on the Thomas-Fermi or
Thomas-Fermi-Dirac potential describing the atom with a
nonrelativistic statistical model (Fermi, 1927; Thomas, 1927;
Dirac, 1930; Bonham and Strand, 1963; Gross and Dreizler,
1979; Bethe and Jackiw, 1997). These potentials typically fail,
however, for regions of large potential gradients and low
electron densities. This makes them unreliable for distances
close to but also far away from the nucleus (Salvat et al.,
1987), precisely the region where screening will be most
important.
Of particular theoretical importance due to its simplicity is

the Hulthén screening potential

VHðrÞ ¼∓ αZλ½expðλrÞ − 1�−1; ð142Þ

with a single parameter λ that depends on Zp, the charge
of the parent nucleus. This dependence is typically written as
(Bühring, 1983a, 1983b, 1984a)

λðZpÞ ¼ 2CðjZpjÞαjZpj1=3me; ð143Þ

with CðjZpjÞ a slowly increasing function of Zp of order
unity.23 This potential has been used in several theoretical
treatments of screening, with the analysis by Bühring (1984b)
being of significant interest to us. In contrast to the work by
Durand (1964), here the Dirac equation was used to inves-
tigate the effect.
This is made possible because of a distinct advantage in the

analysis of electronic screening. The wave functions have to
be well known only in the nuclear region rather than the entire
space. The birth of the β particle happens inside the nucleus,
so that the decay rate is affected by the depth of the potential
well at this site. As electromagnetism is conservative, this
means any potential energy lost while traveling through the
atom will be regained at infinity. It is exactly this reason why
the electronic screening effect is a second-order effect com-
pared to the Fermi function. This locality of the interaction
allows for a power expansion of the wave function near the
origin. In this way an analytical description for the electron
radial wave function over the full space can be avoided and
one does not have to rely on approximate WKB methods.
Such a power expansion was performed by Bühring (1984b)

using the Hulthén potential defined in Eq. (142). The screen-
ing correction was found to be

SðZ;WÞ ¼ Xð ~W=WÞjΓðγ þ i~yÞ=Γðγ þ iyÞj2
× jΓðγ þ 2i ~p=λÞ=Γð1þ 2ip=λÞj2
× expð−πyÞð2p=λÞ2ð1−γÞ; ð144Þ

where24

X ¼ ½1þ 1
4
ðλ=pÞ2�−1f1þ 1

8
½ð ~W þ γÞ= ~W�ðλ=pÞ2

þ 1
2
γ2½1þ (1 ∓ αZλ=ðW þ 1Þ)1=2�2

× ½ðW − 1Þ= ~W�ðλ=pÞ2
× ½1 − 1

8
ð1 − γÞð1=γÞðλ=pÞ2�g; ð145Þ

and

~W ¼W ∓ 1

2
αZλ; y¼�αZW

p
;

~p¼ 1

2
pþ 1

2
½p2 ∓ 2αZ ~Wλ�1=2; ~y¼�αZ ~W

~p
: ð146Þ

Here ð1=2ÞαZλ is the potential shift due to screening at the
origin. This choice of potential has several inherent weak-
nesses however. First, using only a single parameter severely
limits its utility over the entire space, but the main obstacle lies
in the evaluation of λ from Eq. (143). The correct calculation
of CðjZpjÞ is problematic, since estimates vary wildly, as
discussed by Bühring (1984b) and references therein.
The potential used in this work is that by Salvat et al.

(1987). The screening potential is numerically calculated
using Dirac-Hartree-Fock-Slater techniques for Z ¼ 1–92
and is then fitted with a sum of three Yukawa potentials

VSðrÞ ¼ ∓ αZ
r

X3
i¼1

αi expð−βirÞ: ð147Þ

It includes relativistic effects and obtains high precision
results. Even though it provides a better agreement with
the spatial electronic distribution than aforementioned poten-
tials, it cannot fully account for the oscillatory features of
individual orbitals. The influence hereof can, however, safely
be assumed to be negligible as its dominant contribution
occurs within the nucleus.
The potential shift due to screening for r → 0 is then

�αZ
X3
i¼1

αiβi; ð148Þ

where αi and βi belong to the parent atom, such that via the
substitution λ ¼ 2

P
iαiβi the entire machinery developed by

Bühring (1984b) and Eqs. (144) and (146) transfers identi-
cally. Figure 5 shows the comparison of precise numerical
calculations using Eq. (147) and analytical descriptions for23Here we implicitly used the sudden approximation in using Zp

rather than Zp � 1 of the daughter atom since the atomic electrons are
considered to be in parental orbitals. 24Note that X ¼ 1þOðλ2Þ as λ → 0.
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both screening strengths. It was originally noted by Bühring
(1984b) that setting X [Eq. (145)] equal to unity in Eq. (144)
gives better results at low energies for Z ¼ 80. We checked
this for a series of isotopes after comparison to numerical
calculations, and this appears to indeed give a better descrip-
tion. We therefore assume X ¼ 1 to be the better approxima-
tion. This could be understood by considering the limitations
of the analytical description relative to the numerical pro-
cedure. In the former, the influence of the atomic potential is
limited to the value at the origin through Eq. (148). While this
is certainly the dominant effect, a further radial dependence of
the screening potential induces additional change of the wave
function at the origin. This effect can easily be seen to be small
as αiβ2i ∼Oðα2Þ. The combination of Eqs. (25) and (147) can
be utilized to further show the smallness of the effect.
Analogous to this, the effect of screening on the spatial
integration over the lepton wave functions contained in the
shape factor CðZ;WÞ previously discussed can be seen to be
of similar magnitude. Further comments can be found in
Appendix A.
Recently a different screening correction by Mougeot and

Bisch (2014) has come forward, proposing instead

SðZ;WÞ ¼ fsc
funsc

; ð149Þ

where f is defined as25

f ¼ g2κ
g2κ þ f2−κ

; ð150Þ

where the bar stands for the average over the entire space.
Starting rigorously from the β decay Hamiltonian and the

corresponding S matrix, it is seemingly impossible to arrive at
an expression resembling Eq. (149). Further, the proposed
energy dependence is completely opposite in sign to that of
Eqs. (141) and (144) and of larger magnitude. As applying this
correction for superallowed Fermi decays is in direct violation
of the CVC hypothesis and Cabibbo-Kobayashi-Maskawa
(CKM) unitarity, a critical comment is necessary. This screen-
ing correction was originally proposed as a possible explan-
ation in order to reproduce the measured spectra of 63Ni and
241Pu, the first measurements ever of such high precision at
low energy, referring only to the interpretation of f as the
probability of an electron emerging in an s state after decay
when κ ¼ −1. While this is approximately true for f evaluated
at the nuclear radius, the same cannot be said for an average
over the entire space as the electron’s creation lies within the
nucleus. As it is ejected from the nucleus as a j ¼ 1=2 particle,
both κ ¼ �1 states should contribute since the solution of the
Dirac equation (8) does not have a defined orbital angular
momentum. A screening correction must then also have
contributions from both, analogous to the Fermi function,
Eq. (9). It is noteworthy that the exchange correction in
Mougeot and Bisch (2014) considered only the contribution
from the atomic κ ¼ −1 orbitals. Good agreement with the
measured spectra of 63Ni and 241Pu appears then as a
compensation of the neglect of atomic exchange effects with
κ ¼ 1 orbitals, as well as further contributions from nuclear
structure and atomic corrections discussed later. Therefore, the
use of this screening correction is not recommended for high
precision studies of β decays.

B. Atomic exchange effects

The nonorthogonality of initial and final state atomic wave
functions in β decay allows for additional indirect processes
throughwhich electrons can be emitted into a continuum state. In
case of the exchange effect, this nonorthogonality leaves a
possibility for a β particle to be emitted directly into a bound
state of the daughter atom, thereby expelling an initially bound
electron into the continuum. Experimentally it is impossible to
distinguish this indirect process from regular β− decay, so that an
additional correction to the experimentally measured spectrum is
required (Bahcall, 1962, 1963c, 1963a, 1963b; Haxton, 1985).

1. Formalism and procedure

We present here an analytical parametrization of this
exchange correction fitted to precise numerical data. The
formalism laid out here follows that of Harston and Pyper
(1992). Whereas in principle all occupied orbitals in the
mother atom can contribute, we consider here only allowed β
decay, so that only contributions from s and p̄≡ p1=2 orbitals
play a part. In this case, the exchange effect is written as

XðEÞ ¼ 1þ ηTexðEÞ; ð151Þ

with

ηTexðEÞ ¼ fsð2Ts þ T2
sÞ þ ð1 − fsÞð2Tp̄ þ T2

p̄Þ: ð152Þ

Here fs is defined as

FIG. 5. Comparison of the screening correction for four differ-
ent methods: Rose correction, screening evaluated with Eq. (143)
(Hulthén) showing the area of uncertainty due to the uncertainty
in CðjZjÞ, screening evaluated with Eq. (148) (Salvat), and
numerical results using the potential from Eq. (147).

25A typing error is present in the original work (Mougeot and
Bisch, 2014) in the sign of κ for fκ, as it does otherwise not agree with
the formalism by Harston and Pyper (1992) on which it is based and
loses its interpretation as the probability of emerging in a s state when
evaluated at the nuclear radius for κ ¼ −1.
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fs ¼
gc−1ðRÞ2

gc−1ðRÞ2 þ fc1ðRÞ2
ð153Þ

and

Ts ¼ −
X
ns0∈γ

hEs0jnsi g
b
n;−1ðRÞ
gc−1ðRÞ

; ð154Þ

Tp̄ ¼ −
X
np̄0∈γ

hEp̄0jnp̄i f
b
n;1ðRÞ
fc1ðRÞ

ð155Þ

sum over the different occupied s and p̄ shells in the parent
state, denoted by γ. We implicitly used that κ is −1 and 1 for s
and p̄ orbitals, respectively.26 The quantities in Eqs. (153)–
(155) are evaluated at the nuclear radius R using bound
(superscript b) and continuous (superscript c) solutions of the
Dirac equation, as written in Eq. (8). Continuum wave
functions are normalized on the energy scale, while bound
states are normalized to unity. The factor hEs0jnsi stands for
the integration of the overlap of bound and continuum state
wave functions over the full space. In the nonrelativistic
hydrogenic approximation the general overlap integral can be
written down analytically as (Harston and Pyper, 1992)

hZf; EljZinli ¼
ðZi − ZfÞe2iðlþ1−nÞ arctanðp=Z̄iÞ

ð−1Þn−l−1ð2lþ 1Þ!pðp2 þ Z̄2
i Þlþ2

× 22lþ3ðpZ̄iÞlþ3=2jΓ(lþ 1 − iðZf=pÞ)j
× eπZf=2pe−ð2Zf=pÞ arctanðp=Z̄iÞ

× 2F1(lþ 1þ iðZf=pÞ; lþ 1 − n;

2lþ 2;−4ipZ̄i=ðZ̄i − ipÞ2); ð156Þ

where Zi (Zf) is the initial (final) effective charge seen by the
participating orbitals, Z̄i ¼ Zi=n, and 2F1 is the confluent
hypergeometric function. Some examples for l ¼ 0 are given
by Harston and Pyper (1992) and will not be repeated here.
A quick glance at Eq. (156) reveals the downward trend
for increasing n, meaning the exchange process is mainly
dominated by the 1s orbital as is intuitively expected. While a
useful first estimate, both approximations made to achieve
Eq. (156) are much too coarse to provide the precision we are
after. We move from a hydrogenic approximation to a proper
atomic potential and use the solution of the Dirac equation in
this potential to further include relativistic effects.
As will be shown explicitly, the choice of potential is of

crucial importance for a consistent description of the exchange
effect. Here it was chosen to use the potential described by
Behrens and Bühring, in the explicit formulation by Mougeot
and Bisch (2014). It is a combination of a spherical intranu-
clear part, a numerical screening potential by Salvat et al.
(1987), and an exchange potential as was introduced histor-
ically by Slater (1951). The latter is evaluated using the same
electron density functions described in Salvat et al. (1987) and

combined with a more elaborate approach to the approxima-
tion by Latter (1955) to ensure good behavior for r → ∞. The
exchange potential, introduced to remove electrostatic self-
interaction and ensure antisymmetry of the fermion wave
function, is not to be confused with the exchange effect
described here. One free parameter in this potential was varied
to give agreement with numerically calculated binding ener-
gies27 within 0.1% or 0.1 eV. These binding energies can
easily be interchanged with experimental data when available.
Results for screened and unscreened Coulomb functions
tabulated by Behrens and Jänecke (1969) were cross-checked
and showed an overall excellent agreement.
The electron radial wave functions rgκðrÞ and rfκðrÞ are

calculated numerically using a power expansion for both
singular points of the Dirac equation at r ¼ 0;∞ and
connected via rescaling of the inner solution with ακ [see
Eqs. (12) and (13)]. The general approach is outlined by
Behrens and Bühring (1982) and more specifically by Salvat,
Fernfindez-varea, and Williamson (1995). The Fortran 77
package RADIAL (Salvat, Fernfindez-varea, and Williamson,
1995) was slightly modified and interfaced with a custom
code to calculate the exchange effect. As the free and bound
state wave functions are typically solved on different grids, a
common grid is constructed and evaluated using exact results
or via Lagrangian three point interpolation. The integral
hEs0jnsi in Eqs. (154) and (155) can then be evaluated
directly. Care has to be taken to make the grid sufficiently
dense such that interpolation on the common grid does not
introduce systematic errors.
As an example, the full exchange correction to the β− decay

of 45Ca is presented in Fig. 6, explicitly showing the
contributions from different orbitals. At very low energies
of typically about 1 keV or lower, contributions from higher-
lying orbitals can become negative, lowering the total cor-
rection by several percentage points, as seen at the extreme left
in Fig. 6. It is clear from the magnitude of the effect at the
lowest energies (few keV region) that an accurate description
is a necessity for any work performed in the low-energy
region. For low end-point energy transitions the phase space
integrals can be significantly altered, e.g., by up to 30% for
transitions such as 241Pu. The effect drops off quickly,
however, and is typically negligible at energies of several
hundred of keV.

2. Contribution from exchange with p1=2 orbitals

As the electron is ejected with j ¼ 1=2 after allowed β−

decay, the exchange effect occurs with all bound j ¼ 1=2
states. Typically the p1=2 exchange contribution is ignored for
small to medium masses (Harston and Pyper, 1992; Mougeot
and Bisch, 2014), however, this approximation is not any
more viable for the precision we aim for over the full nuclear
chart. Examining the behavior of Eq. (156) for different l
reveals the overlap integrals to be of similar magnitude, using

26Here κ is the eigenvalue of the K ¼ βðσ ⋅ Lþ 1Þ operator.
Further σ is the typical combination of Pauli matrices, L is the orbital
angular momentum operator, and 1 is a 4 × 4 unit matrix.

27Here we prefer the precise relativistic local density approxima-
tion calculations by Kotochigova et al. (1997a, 1997b) tabulated up
to Z ¼ 92. From this point onward we switch to those calculated by
Desclaux (1973), which appear to be in agreement with the former
within 1% for the innermost orbitals.
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2F1ðα; β; γ; zÞ ≈ 1þ ðαβ=γÞz for jzj ≪ 1. The p̄ contribution
is fundamentally suppressed by the factor 1 − fs with fs close
to unity, since Ts and Tp̄ are of similar magnitude. To our
knowledge, this contribution has not been explicitly discussed
in the literature. As an example we consider the exchange
correction to the β− decay of 241Pu by all standards a high
mass decay. The result is shown Fig. 7 together with the
specific contributions from the occupied p1=2 orbitals.
The contribution of the latter is highly relevant in the lowest

energy regions, where its contribution can grow up to 2%, or
nearly 10% of the full exchange effect. It continues to be non-
negligible for our purposes throughout the entire decay

spectrum. As an example of a lightmass nucleus, themaximum
contribution of exchange with p1=2 for the decay of 45Ca never
exceeds a few parts in 105, leaving it completely negligible.We
include the contribution, small though it may be, in all
following results.

3. Influence of the atomic potential

As mentioned, the choice of potential is a critical compo-
nent in the description of the exchange correction. Three
different potentials were compared, with increasing steps of
complexity. Initial theoretical results used simple Coulomb
solutions of Schrödinger (Harston and Pyper, 1992) and Dirac
(Mougeot et al., 2012) equations and introduced a rough effect
of screening by assuming an effective charge for each orbital.
The simplest potential utilized here considers a simple
exponentially screened field. The screening strength can be
adjusted to give the best agreement with bound state energies,
with decreasing importance for increasing main quantum
numbers.28 A second potential was constructed as a slight
extension of the first, consisting of three Yukawa potentials,
the coefficients of which were fitted to numerical data from
Dirac-Hartree-Fock-Slater calculations (Salvat et al., 1987)
as in the previous section. Finally, the complete potential
previously described was used. For the latter the optimization
of the exchange term was turned both on (optimized) and off
(unoptimized). Results are shown in Fig. 8 for the exchange
corrections thus obtained for the β decay of 63Ni. The general
trend is replicated by all potentials, apart from the very lowest
energies where some orbitals can give large negative con-
tributions. The total net magnitude is a delicate quantity in
the lowest energy regions, as even for the most complex
potential an optimization of the exchange potential can
have significant effects. Without this optimization the binding
energies for higher-lying orbitals can be seriously in error and
consequently give incorrect contributions to the exchange
correction.
The choice of the atomic potential reveals another key

ingredient when looking at Eqs. (154) and (155) in the nuclear
radius. It is imperative to know how strongly the exchange
corrections depend on its precise value, as many charge radii
are not experimentally known (Angeli and Marinova, 2013).
For this purpose, we take up the case of 63Ni as in the previous
section and vary the radius by 10% in both directions. This is
far larger than what can be predicted using current methods
(Bao et al., 2016), where the uncertainty is estimated to be
around 0.03 fm, or about 0.8% in the case of 63Ni. The result is
shown in the bottom half of Fig. 8. The discrepancy grows
toward lower energies and only crosses 10−4 at roughly 1 keV.
In the extreme case of 241Pu, spectral differences cross only the
10−4 level at roughly 5 keV, but introduce a constant offset
that can reach several parts in 10−4 for the same procedure.
The difference shows a reasonably linear behavior on ΔR,

FIG. 7. Total exchange correction to the β− decay of 241Pu
showing the explicit contributions from the different orbitals
(top), together with the specific contribution of the p1=2 orbitals
(bottom). The former reaches ∼29% at 100 eV, while the latter
rises to nearly 2% at 100 eV, indicating that it is definitely not to
be neglected. The p1=2 influence continues to be felt over a range
of tens of keV at the precision we are aiming for.

FIG. 6. Exchange correction to β− decay of 45Ca showing the
explicit contributions from different s orbitals. The total effect
rises to nearly 10% in the few keV region and drops significantly
in the 100 eV region due to negative contributions from higher-
lying orbitals, in this case 2s.

28It can frequently occur in this approach that tuning the screening
parameter to match the 1s binding energies results in unbound
higher ns states. As the lowest s states give the highest contribution
throughout most of the spectrum, we choose to neglect this
detrimental effect in this rough method.
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such that extrapolation to reasonable uncertainties brings it to
below the few 10−5 effect.

4. Analytical parametrization

The calculations required to arrive at the results shown in
Fig. 6 are involved and in the spirit of this work we would like
to have a completely analytical description of the β spectrum
shape. The immediate issue with the case at hand resides in the
integration in Eqs. (154) and (155). Whereas for most other
effects, the radial wave functions have to be known only near
the origin, thereby allowing power expansions even for
nontrivial potentials. The exchange correction requires knowl-
edge of the radial wave functions of both continuum and
bound states for the entire space and for arbitrary potentials.
The results in Fig. 8 show that a hydrogenic approach with
simple screening potentials is not sufficient when high
precision is required, and the analytical results of Eq. (156)
for pure Coulomb fields do not allow for easy insertion of fit
parameters. This is further hindered by the evaluation of the
confluent hypergeometric function, the evaluation of which is
in itself a significant hurdle. More importantly, the magnitude
of the exchange effect is a complex interplay between atomic
shell effects (through the binding energy sensitivity; see
Fig. 8), spatial increase of the potential, and spatial extension
of the bound states for different n. An example of this can be
seen in Fig. 9. Here the argon, krypton, and xenon shell
closures have been specified. This complex Z dependence
poses a significant challenge to a sufficiently precise analyti-
cal fit valid over the full Z and W range. Other external
parameters based on tabulated values would have to be
provided as input to the fit function. We therefore choose
to tabulate the required fit parameters for each Z individually.
The analytical fit for the exchange correction as a function of
W contains nine fit parameters and is written as

XðWÞ ≈ 1þ a=W0 þ b=W02 þ c expð−dW0Þ
þ e sin½ðW − fÞg þ h�=Wi; ð157Þ

with W0 ≡W − 1. The fit parameters can be found in the
Supplemental Material and show excellent agreement over the
full tested energy range [338]. The latter was chosen at 1 MeV,
where all contributions dip below the 10−4 level. The maximal
differences are on the order of a few 10−4, with average
residuals located at the < 10−5 level. The influence on the
phase space integrals agrees typically on the order of a few
10−5 in absolute terms. Special care was taken to avoid steep
slopes over small energy ranges in the relative differences to
allow for precise measurements of the energy dependence in
the β spectrum shape.

C. Shakeoff and shakeup processes: The end-point shift

The change of atomic orbitals due to the aforementioned
effects also has a direct consequence on the internal house-
keeping of the atom. Initial and final states belonging to
different quantum numbers are not any more orthogonal,
allowing discrete excitations into higher allowed states
(shakeup) and even the continuum (shakeoff). This then
reduces the available energy for the lepton pair and changes
the final state interaction with the β particle. In deriving the
results in the previous sections, these effects have typically
been ignored on the basis of their relative importance
compared to the magnitude of the higher-order effect. For
the precision aimed at in this work, this is not always valid.
The probabilities for shakeup and shakeoff depend strongly on
Z, with the former (latter) becoming subsequently less (more)
important for increasing Z.

1. Shakeup

Instead of double ionization of the shakeoff process, atomic
electrons in the final states can simply be excited into higher

FIG. 9. Demonstration of atomic shell effects on the exchange
contributions from the 1s and 2s orbitals evaluated at 3 keV. The
increased binding energy at higher Z reduces the spatial extension
of the bound states and thus decreases the spatial overlap between
bound and continuum electron radial wave functions at low
energies.

FIG. 8. Comparison of the exchange effect for 63Ni shown for
different atomic potentials (top), and absolute differences in the
total exchange correction when varying the nuclear radius by 10%
with the optimized potential (bottom). Results vary wildly,
stressing the need for an accurate atomic potential. Particularly
interesting is the large discrepancy stemming from the optimiza-
tion of the binding energy. The different potentials used are defined
in the text.
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states. The probability of this process can typically be reduced
to integrals of the radial wave functions of initial and final
bound states, where the shakeoff probability can simply be
calculated as the deviation from unity when summing all
aforementioned probabilities. Decays of few-electron systems
are particularly prone to this effect, as for instance in the
tritium system. Here the single electron in the final state has a
significant probability to end up in the 2s orbital or even
higher ones (Williams and Koonin, 1983; Arafune and
Watanabe, 1986; Hargrove, Paterson, and Batkin, 1999).
Additionally, the recoil momentum of the daughter nucleus
can induce excitations due to the sudden acceleration. One can
show (Feagin, Merzbacher, and Thompson, 1979) that the
average excitation energy due to the aforementioned effect is
equal to

ΔER ¼ 1

2
Zmev2R ¼ ZER

me

M
; ð158Þ

withM the nuclear mass and vR and ER the recoil velocity and
energy, respectively. For Z ¼ 50 and a maximum recoil
energy of 1 keV, there is an average excitation energy of
roughly 0.25 eV. Considering atomic excitations are on the
order of tens of eV, it is clear then that incomplete overlap
between initial and final atomic states is the dominant effect in
the full shakeup picture.
The Q value of the decay is subsequently reduced by the

mean excitation energy

ΔEex ¼
X
f

PfEf; ð159Þ

where Ef is the excitation energy of the final state f and Pf the
probability to populate that level.

a. Effect on screening and exchange corrections

Possible excitations in the final state also change the
screening correction, where instead of Eq. (141), we should
write now in the notation of Saenz and Froelich (1997a)

SðZ;WÞ ¼ 1 −
�
W
p2

þ 1

W

�
α
X
n

hφ0jϕni2hϕnj
XZp

i¼1

1

ri
jφ0i

¼ 1 −
�
W
p2

þ 1

W

�
V 0
0; ð160Þ

where jϕn0 i represents the n0th final electronic state, and jφ0i
is the initial electronic state. The value for the screening
potential can change by as much as 20% in the special case of
tritium β− decay, simply because the atomic Coulomb
interaction is limited to a single electron (Hargrove,
Paterson, and Batkin, 1999). For systems with a higher
number of electrons, the relative change in the electronic
distribution decreases. The magnitude of the effect is, how-
ever, also proportional to Z, such that errors introduced from
neglecting shakeup are of the order of 1 × 10−4.
In the case of the exchange correction the situation is

slightly more complicated. For medium to high Z nuclei, the
probability for shakeup is negligible at the 10−3 level, as

explicitly calculated by Harston and Pyper (1992). For lower
Z nuclei shakeup probabilities can be significant (e.g., around
25% in tritium β− decay), and exchange with higher-lying ns
orbitals should be taken into account even if they were not
occupied in the initial state (Harston and Pyper, 1993). In the
extreme case of tritium, this inclusion changes the exchange
correction at the few 10−4 level down to 0.5 keV. Except for
this special case then, we can safely neglect shakeup
influences on the exchange correction.

2. Shakeoff

Just as in the previous section, nonorthogonality of initial
and final atomic states allows for excitations in the final state,
including the continuum. Whereas in the tritium system the
probability for additional ionization is an order of magnitude
smaller than that of shakeup, this balance quickly changes
when going to higher Z. One of the underlying reasons for this
is the following: The possibility for shakeup depends on
atomic overlap integrals between shells with differing main
quantum numbers. Because of the Pauli principle, excitations
are possible only to unfilled shells, for which the overlap
integrals quickly disappear for inner electrons. Outer shells are
close to the continuum, and electronic excitations are typically
unbound for higher Z.
The description of shakeoff has seen significant theoretical

(Levinger, 1953; Schwartz, 1953; Green, 1957; Stephas and
Crasemann, 1967, 1971; Carlson et al., 1968; Freedman,
1974; Law and Suzuki, 1982; Suzuki and Jaw, 1982; Frolov
and Ruiz, 2010; Ruiz, 2013; Ruiz, Margraf, and Frolov, 2013)
and experimental (Snell and Pleasonton, 1957; Carlson,
Pleasonton, and Johnson, 1963; Carlson, 1963a, 1963b;
Schupp and Freedman, 1980; Scielzo et al., 2003; Couratin
et al., 2012, 2013) effort. For practical reasons, this has mainly
focused on the calculation of electron ejection from the K
shell, which is a small effect in all nuclei29 and not in our
current interests. The seminal work by Carlson et al. (1968),
even though theoretically significant improvements have been
made, illustrates the general principles we are concerned with
as follows: (i) For a given main quantum number the shakeoff
probability decreases with increasing Z, due to the reasoning
mentioned earlier. (ii) For a given atom, the shakeoff prob-
ability increases with increasing main quantum number.
(iii) The total shakeoff probability is reasonably independent
of Z, occurring for approximately 20%–30% on all decays.30

Neglecting shakeup and collisional ionization (Carlson,
1963a; Freedman, 1974), this can be described by the one-
electron ionization probability (Couratin et al., 2013)

pi ≃ 1 −
X

n0≤nmax

fjhϕD
n0li

jϕM
nili

ij2 þ K2jhϕD
n0li�1

jrjϕM
nili

ij2

− K2RehϕD
n0li

jϕM
nili

i�hϕD
n0li

jr2jϕM
nili

ig; ð161Þ

29The probability for K ejection for 3H decay is on the order of
2 × 10−3, while for higher Z it is of the order of a few 10−4.

30With exception to the lightest systems such as 3H and 6He, where
shakeup and nondissociative resonances are much more important;
see the previous section.
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with ϕDðMÞ
nl the daughter (mother) wave function with primary

quantum numbers ðn; lÞ and K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ER=M

p
for a nucleus

with recoil energy ER and mass M. Rather than calculate the
probabilities of excitation into the continuum, it is easier to
simply consider the atomic overlap and approximate all
deviations from unity as coming from shakeoff. Holes created
by shakeoff are filled through emission of x rays or Auger
electrons. The rate of these two competing processes is
regulated by so-called fluorescence yields and is reviewed
by Krause (1979), Hubbell et al. (1994), and Schönfeld and
Janßen (1996).
For simplicity, we first briefly discuss the single ionization

process with a β particle and an electron in the final state. In
the case of β− decay, the two outgoing electrons are indis-
tinguishable, which has to be reflected in the decay amplitude
through a coherence term (Law and Campbell, 1972a, 1972b).
The decay is properly treated as a single step such that the full
energy available has to be shared between all final states. The
probability for shakeoff is thus dependent on the β energy and
decreases for increasing energy. This was first emphasized by
Stephas and Crasemann (1967), even though one typically
forgets about the phase space dependent effects and instead
determines the integrated ejection probability. The mean
energy of the ejected electron is similar to its binding energy
(Feinberg, 1941), such that the largest spectral change occurs
in the low-energy region [see, e.g., the Kurie plots in Law and
Campbell (1972b)]. In case the ejection occurs from one of the
outer shells, the typical binding energy is on the order of a few
tens of eV, such that to first order the change in spectral shape
can be approximated as an additional decrease in W0 by the
mean excitation energy weighted with the probability for
ejection. From the results of Couratin et al. (2013) combined
with the binding energies of Desclaux (1973), we found the
mean energy loss due to shakeoff per decay around 5 eV for
chlorine.31 Because of the arguments listed, we expect this
effect to be of similar magnitude for all Z.

a. Effect on screening and exchange corrections

The screening and exchange corrections presented
[Eqs. (144) and (157)] depend strongly on the final atomic
potential. In the case of shakeoff electron ejection, at least one
additional hole is created through a single-step process,
thereby altering the electronic density at the nucleus as well
as the wave functions of all remaining occupied orbitals. For
both corrections, the magnitude of the contribution decreases
with increasing n, while the probability for shakeoff is
proportional with n. We can then reasonably approximate
the shakeoff influence as coming from events originating from
the outer shell as we have done before. Using the screening
potential as defined in Eq. (160) [see also, e.g., Pyper and
Harston (1988)], the change in screening due to a hole in the
outer shells is

V0 − VSO

V0

¼ hfjr−1jii −P
f0 hf0jii2hf0jr−1jii

hfjr−1jii

≈
P

f0 hf0jii2ð1 − ΔZeffÞhnljr−1jnli
hfjr−1jii ; ð162Þ

where jf0i is the final state with a hole in an orbital denoted by
n and l. We assumed the inner orbitals to remain unchanged in
the event of shakeoff in the outer shell and allowed for a
difference in effective charge seen by the remaining electron in
the outer shell through ΔZeff . Using results by Law et al., this
change is approximately 0.3–0.4. We use the general result for
hydrogenic orbitals hr−1i ¼ Zeff=n2, such that Eq. (162)
transforms to

V0 − VSO

V0

≈
1

hfjr−1jii
X
n

hf0jii2Zeffð1 − ΔZeffÞ
n2

: ð163Þ

Effective charges seen by orbitals can be calculated from the
mean radii as noted in Harston and Pyper (1992). For a
specific example of Ru1þ, Eq. (163) yields approximately
0.1%, which subsequently pushes the relative change in
spectral shape to the few 10−5 level in the lowest energy
range. These approximations are crude, but have to yield
results precise only within a factor of 2 for us to neglect it.
For exchange the situation is again more complicated,

because of both the magnitude of the effect and the sensitivity
to the wave function over the entire space. Rigorously, we
have to combine the approach taken by Law and Campbell
(1972a, 1972b) with that of Harston and Pyper (1992), by
introducing the indistinguishability of the outgoing electrons
from the former approach in the exchange terms described by
the latter. Harston and Pyper (1993) described this situation for
the tritium system, but this was ignored in their former work
(Harston and Pyper, 1992). Exchange can occur only because
of the combination of the indistinguishability of electrons and
the Pauli principle, such that in allowed β− decay only
exchange with bound states having angular momentum
j ¼ 1=2 can occur. In the medium to high Z nuclei, the
probability for shakeoff to occur in an s1=2 or p1=2 state is
smaller than 0.1% (Harston and Pyper, 1992). The effect of
shakeoff on exchange then decreases for increasing Z. For
lower Z the effect of a single shakeoff electron of energy W0

can be approximated by including the following term in
Eq. (152), using the notation of Harston and Pyper (1992):

χcontex ðEÞ ¼
Z

Emax

E0¼0

ϕðE; E0ÞdE0; ð164Þ

where

ϕðE; E0Þ ¼
X
A

�
−hγujγ0vihγ0vðA → E0sÞjγui

gcE0;s

gcE;s

þ hγ0vðA → E0sÞjγui2
�
gcE0;s

gcE;s

�
2
�
W0

p0 ; ð165Þ

where the summation over A runs over all s states, neglecting
the p1=2 state. When making the approximation that shakeoff

31Charge states created due to emission of Auger electrons do not
contribute to our correction as they emerge with a fixed energy
independent of the β decay. The mean energy is then obtained by
summing over the holes created for different charge states, using
ĒSO ≈ 1.8Bnl with Bnl the binding energy (Feinberg, 1941).
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mainly occurs for the outer shell, we can limit the sum over A
to the final ns shell. The evaluation of the integral in Eq. (164)
is explained in Harston and Pyper (1993). For the tritium
decay, χcontex has a maximum value of −0.01% at 1 keV. Using
again the decay of 35Ar as an example (Couratin et al., 2013)
for hole creation in ns states in the final state, we can safely
assume this correction can be neglected at the current order
of precision.

D. Atomic overlap: Alternative atomic excitation correction

The β decay of a nucleus results in a sudden change of the
nuclear potential, due to both a charge difference and a recoil
effect. Both effects on the spectrum of the emitted β particle
are described elsewhere. As the eigenstates for initial and final
states belong to slightly different Hamiltonians, the initial and
final atomic orbital wave functions only partially overlap. This
allows for discrete effects such as shakeoff and shakeup
discussed in the previous section, which decrease the decay
rate as the phase space becomes smaller.
The description of the effect can in a first approach be

reduced to a difference in atomic binding energies. This
analysis was first performed by Bahcall (1963c, 1963b, 1965)
and is also recently included in detailed F t analyses (Hardy
and Towner, 2009). A correction is constructed by looking at
the relative change in the spectrum shape when changing W0

withW0 − ΔEex. In this formalism, the correction can then be
written as

rðZ;WÞ ¼ 1 −
1

W0 −W
∂2

∂Z2
BðGÞ; ð166Þ

where BðGÞ is the total atomic binding energy for a neutral
atom with Z � 1 protons in the case of β∓ decay. The second
derivative of this quantity is related to the average excitation
energy due to orbital mismatch via

ΔEex ¼ −
1

2

∂2

∂Z2
BðGÞ. ð167Þ

It can easily be parametrized as a function of Z using
numerical values by Carlson et al. (1970) and Desclaux
(1973) or Kotochigova et al. (1997b),

∂2

∂Z2
BðGÞ ¼ 44.200Z0.41 þ 2.3196 × 10−7Z4.45 eV: ð168Þ

Bambynek et al. (1977) reviewed the approach by Bahcall and
its effect on electron capture ratios and found generally good
agreement. Discussion and improvements have been pre-
sented by Faessler et al. (1970) and Vatai (1970) who are
mainly concerned with proper evaluation of the overlap
integrals in the case of holes in the final state.
For completeness we also discuss a small correction to

rðZ;WÞ. In the analysis performed by Bahcall (1963c), one
implicitly uses the sudden approximation, i.e., the change in
the nuclear charge is instantaneous compared to atomic orbital
velocities. For higher Z this is no longer true for low-lying
electrons, as K electrons can achieve relativistic speeds. This
was treated by Feagin, Merzbacher, and Thompson (1979),

who introduced an additional quantity to be combined with
ΔEex previously discussed. This is written as

ΔEK ¼ 2ðC0 þ C1Þ; ð169Þ

where C0 and C1 are described in detail byWilkinson (1993a).
Its influence on the Q value is on the order of a few eV
(Feagin, Merzbacher, and Thompson, 1979). In the notation of
Wilkinson we extend the parametrization of KðZÞ to include
the full Z range

KðZÞ ¼ −0.872þ 1.270Z0.097 þ 9.062 × 10−11Z4.5: ð170Þ

The correction rðZ;WÞ then becomes

rðZ;WÞ¼1−
2

W0−W

�
1

2

∂2

∂Z2
BðGÞþ2ðC0þC1Þ

�
: ð171Þ

Its influence is felt mainly near the end point of the transition,
where it cannot be neglected, as ð∂2=∂Z2ÞBðGÞ can become
as large as a few hundred of eV. It is thus particularly
important for low-energy transitions such as 63Ni (end-point
energy 67.2 keV) and 241Pu (end-point energy 20.8 keV). For
the former the correction reaches 1% at 15 keV before the end
point and increases rapidly from that point onward to the
end point.

E. Bound state β decay

Finally, we comment on the possibility of two-body bound
state β decay. As the electron is created inside an electronic
potential well, there exists a possibility for the β decay to be
captured inside the potential well and produce an electron in a
bound atomic state, effectively reducing the decay to a two-
body problem. This was first studied by Daudel, Jean, and
Lecoin (1947) and was later expanded upon by Bahcall (1961)
and Kabir (1967) and finally by Budick (1983) and Pyper and
Harston (1988). As this is a relevant issue in the analysis of F t
values, we briefly comment on it here. In the notation by
Bahcall the ratio of probabilities can be written as

Γb

Γc
¼ πðαZÞ3

fðZ;W0Þ
ðW0 − 1Þ2Σ; ð172Þ

where Σ can be found in Bahcall (1961) and depends on the
binding energy of the bound orbital, atomic overlap integrals
and the orbital wave functions evaluated at the nuclear surface.
For free neutron decay, this ratio is approximately 4.2 × 10−6

and is completely negligible. For tritium decay, however, this
ratio becomes roughly 1% for Tþ and 0.5% for T in the initial
state. Higher W0 values lead to smaller ratios, as the phase
space integral f is roughly proportional to W0 to the fifth
power. The kinematic dependence for Γb=Γc then approx-
imately follows a W−3

0 behavior. Nuclei studied in 0þ → 0þ

superallowed decays have Q values of several MeV, rendering
the bound state decay probability completely negligible. For
low-energy decays and (partially) ionized initial states, this
correction can grow significantly, however. This does not
affect the β spectrum shape, as it is a separate final state in the
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calculation of the S matrix. It enters the equation when
considering the F t analysis, and so cannot always be
neglected.

F. Chemical influences

In many experiments, the decaying atom is bound within a
molecule. Therefore, the electronic structure is modified as
electrons rearrange themselves in molecular orbitals. The
presence of additional electrons and spectator nuclei
influences the Coulombic final state interactions, while rota-
tional and vibrational states open up more possibilities for
energy transfer to the molecular final state (Cantwell, 1956).
These effects can be considered even as higher-order correc-
tions, but prove essential in the determination of the anti-
neutrino mass in the tritium system. After comments by
Bergkvist (1971), an extensive amount of literature was
produced on the atomic and molecular effects on the end-
point energy of tritium (Law, 1981; Kaplan, Smutny, and
Smelov, 1982; Budick, 1983; Williams and Koonin, 1983;
Strobel, Pearson, and Chao, 1984; Fackler et al., 1985;
Jeziorski et al., 1985; Kolos et al., 1985, 1988; Arafune
andWatanabe, 1986; Lindhard and Hansen, 1986; Durand and
Lopez, 1987; Szalewicz et al., 1987; Lopez and Durand, 1988;
Claxton, Schafroth, and Meier, 1992; Froelich et al., 1993;
Harston and Pyper, 1993; Froelich and Saenz, 1996;
Glushkov, Khetselius, and Lovett, 2009). Driven by exper-
imental discrepancies (Backe et al., 1993; Belesev et al.,
1995; Lobashev et al., 1999; Weinheimer et al., 1999), this
culminated in the seminal works by Saenz and Froelich (Saenz
and Froelich, 1997a, 1997b; Jonsell, Saenz, and Froelich,
1999; Saenz, Jonsell, and Froelich, 2000; Doss et al., 2006;
Doss, 2007), describing in an ab initio and analytical way the
influence of additional molecular electrons and spectator
nuclei. There the effects of all electrons and nuclei within
the molecule were treated on equal footing. The main results
are summarized here.

1. Recoil corrections

In the case of β decay inside a molecule, the recoiling
daughter nucleus moves inside the molecular potential rather
than a vacuum. This potential is typically described with a
Born-Oppenheimer energy curve, which can be modeled
using a Lennard-Jones–type potential. When placed inside,
the recoiling daughter nucleus kicks the molecule in a
(predissociative) rovibrational state. Dissociation can occur
for rovibrational states with a total energy larger than the
dissociation energy, or through electronic excitation into a
resonant continuum state. The typical energy scale of the
former is of the order of a few eV (Jeziorski et al., 1985;
Jonsell, Saenz, and Froelich, 1999) while for the latter is on
the order of tens to a few hundred of eV (Kaplan, Smutny, and
Smelov, 1982; Claxton, Schafroth, and Meier, 1992; Saenz
and Froelich, 1997b; Jonsell, Saenz, and Froelich, 1999;
Saenz, Jonsell, and Froelich, 2000; Doss et al., 2006). The
integrated probability of the molecular continuum depends on
the end-point energy of the transition, as a higher end-point
energy implies a higher recoil energy, thereby typically ending
up in the dissociative regime (Cantwell, 1956). In the case of a

final bound state with some angular momentum J, the energy
of the β particle is reduced due to the rovibrational excitation
and the center-of-mass movement of the entire molecule rather
than merely that of the recoiling atom. For isotropic emission
of the β particle relative to the molecular orientation, the
majority of the energy deposited will be placed into rovibra-
tional motion rather than center-of-mass of movement. We
assume then that the mass used in the recoil corrections does
not significantly change. At the precision aimed for in this
work we neglect this effect, as it forms a small correction on
already small corrections (see Sec. IV.B.1 for RN and
Sec. IV.B.2 for Q).
In case the recoiling daughter atom is to be detected (e.g., in

the measurement of the β-neutrino correlation aβν), the
situation is not so simple. As the recoil energy is inversely
proportional to its mass, the probability for dissociation
decreases with increasing Z. There is also a clear dependence
on the β − ν angular correlation, as higher recoil momenta
tend to populate higher rotational and vibrational bands and
vice versa. This intuitive picture is also confirmed for diatomic
molecules as shown by Cantwell (1956). Its evolution in the
molecular potential has the effect of partially randomizing the
outgoing angle, as well as an energy transfer to its molecular
partners. This effect can at least partially be included by
simulating the response of a recoiling nucleus in a Lennard-
Jones potential using Monte Carlo techniques, as was done by
Vorobel et al. (2003) and Vetter et al. (2008). In the most
precise analysis, this effect introduces a systematic error of
0.05%, pointing to the need for a more detailed understanding
of molecular and dynamic effects in the future.

2. Influence on the Q value

Whereas previously theQ value of the decay was decreased
because of shakeup and shakeoff within the atom, inclusion of
molecular effects adds a further decrease because of rotational
and vibrational excitations. Numerical results have mainly
been published for the ditritium molecule T2, due to the high
precision required in the determination of the antineutrino
mass. The molecular influence then has the effect of changing
the excitation possibilities to a broad continuum with reso-
nances, and provide further broadening through population of
rovibrational states. As mentioned, the width of the populated
rovibrational energy spectrum lies in the few eV region and
can typically be neglected. Excitation into the continuum now
becomes nontrivial, however, as was explicitly demonstrated
in the case of T2 by Doss et al. (2006). Averaged over
the entire continuum spectrum, differences between several
tritium-substituted molecules is on the order of a few eV,
including atomic tritium (Kaplan, Smutny, and Smelov, 1982).
The spectral shape depends on W2

0, such that the relative error
goes like 2σQ=Q. For the study of F t values, this dependence
is even heightened as the statistical rate function depends onQ
through a fifth power. The required precision onQ should then
be studied case by case to determine the required accuracy. In
the lowest energy transitions, such as those of tritium, 63Ni, or
241Pu, a substantial error on the Q value on the few 10−4 to
10−3 level can be crudely expected for σQ on the order of a
few tens of eV. The change in the decay rate was treated
approximately by Pyper and Harston (1988), who found
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Δλ
λ

≈
3ΔW0

W0

�
1þ 1

6
γW0

�
; ð173Þ

where ΔW0 is the difference in mean end-point energy
after averaging over all final states between two chemical
states.

3. Molecular screening

In the approach by Saenz and Froelich (1997a), all
Coulombic effects are treated equally to first order. This
effect is typically split into an electronic and nuclear part,
where the former can be written down as in Eq. (140) with the
sum extending over all molecular electrons, and the latter as

Pð0;1Þ
nuc ðpÞ ¼

X
n

αjhφ0jϕnij2
�
Z

�
8W
πp

þ 8p
3πW

�

þ
X
S

ZS

�
W
p2

þ 1

W

�
hξ0000j

1

RS
jξ0000i

�
; ð174Þ

where the sum n extends over all final states, the sum S takes
into account all spectator nuclei in the molecule, jξ0000i is the
rovibronic ground state of the molecule, and RS is the distance
operator between the decaying atom and the spectator nucleus
S. The first part in this equation represents the Fermi function
to first order and is larger by a factor p than the effects of the
spectator nuclei simply from the prefactor. We could stop here
and let the influences of molecular electrons and spectator
nuclei be calculated numerically using standard quantum
chemical calculations (Yamanouchi, 2001).
In the spirit of this work, however, we intend to arrive at an

analytical approximation to the required order of precision. In
order to obtain an estimate for the change in screening due to
molecular effects, we ignore the energy difference in final
atomic states and use closure to perform the sum over n
(which is to first order corrected for by using the atomic
mismatch correction, see Sec. VII.D). For each atom in the
molecule, we can consider it to have an inert atomic inner
structure for its electronic configuration, coupled with a
shared wave function describing the valence electrons par-
ticipating in chemical bonds.32 The full electronic part of the
molecular wave function with i atoms can be written as

ψ el
Mol ¼ jvalencei ×

Y
i

jinertii; ð175Þ

where we implicitly used the Born-Oppenheimer approxima-
tion, and i ¼ 0 corresponds to the decaying nucleus. For
notation, we write jinerti≡ jii and jvalencei≡ jvi. The latter
can be described in a typical quantum chemical treatment
using molecular orbitals (Roothaan, 1951; Lichten, 1967;
Bransden and Joachain, 1983; Levine, 2000). Using the

clamped-nuclei approximation33 for the rovibrational ground
state we write

hξ0000j
1

RS
jξ0000i ≈

1

RS;e
ð176Þ

with RS;e the equilibrium distance between decaying and
spectator nucleus S, such that we can write the total
Coulombic influence as

Pð0;1Þ
tot ðpÞ ≈ α

�
Z

�
8W
πp

þ 8p
3πW

�

þ
�
W
p2

þ 1

W

��X
S

ðZS − ZS;inÞ
1

RS;e

− 0hij
X
Zin

1

r
jii0 − hvj

X
Zval

1

r
jvi

��
; ð177Þ

where we used that

i>0hij
1

r
jiii>0 ≈

1

RS;e
.

We now explicitly introduced a screened spectator nucleus
with charge ZS − ZS;in which can be easily evaluated when
RS;e can be estimated to sufficient accuracy. The influence of
molecular charge distributions can then be written as

ΔSMol ¼ α

�
W
p2

þ 1

W

��X
S

ðZS − ZS;inÞ
1

RS;e
−Zeffhr−1iVal

�
;

ð178Þ

where Zeff ¼ ZVal − ðZ − ZinÞ and hr−1iVal corresponds to the
average inverse distance of all valence electrons relative to
the decaying nucleus. Then ΔSMol should be added with the
regular electronic screening correction of Eq. (144).
As an example, consider the decay of 45Ca bound inside

CaCl2, with calcium doubly oxidized Ca(II). The bond length
for CaCl was measured to be 2.437 Å, which we can use as a
rough estimate, while ZS ¼ 17 and ZS;in ¼ 16 as only one
electron participates in the bonding. In natural units we have
then RCl;e ∼ 600, such that the first term in Eq. (178) is
roughly proportional to 3 × 10−5, i.e., 2 orders of magnitude
smaller than V0. In the evaluation of the second term keep in
mind that it constitutes both the valence electrons and the
absence of the valence electrons of the decaying atom. We
have then Zeff ¼ 2, while hr−1iVal will be of the same order of
magnitude as the bond length since the valence electrons will
be located mainly near the Cl atoms. The effect from the
second term will thus also be on the order of 2 × 10−5 with
opposite sign to that of the spectator nuclei. The deviation

32We are able to make this approximation because of three
restrictions on the participating states, the first two of which depend
on the properties of the overlap integral (Atkins, 1984): (i) they must
have the same rotational symmetry around the internucleus axis,
(ii) they cannot be too diffuse nor too compact, and (iii) the energies
must be similar.

33This entails treating the nuclei in a molecular system as infinitely
massive compared to the surrounding electrons. Effectively this
also means a decoupling of nuclear and electronic motion as in the
Born-Oppenheimer approximation; see, e.g., Bransden and Joachain
(1983).
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from molecular structure on the electronic screening potential
is then of the order of 2 × 10−5. As the screening correction is
typically on the (sub)percent level at its maximum, molecular
deviations are expected to have an upper limit at the few
10−4 level.

4. Molecular exchange effect

The atomic exchange process represents the possibility for a
direct β decay into a bound orbital of the final electronic state.
In the case of a molecule, the electronic phase space is greatly
enlarged and perturbed relative to the single atomic electronic
state. In particular, electrons can now reside in molecular,
rather than atomic orbitals, while binding energies for other
orbitals can change. As shown explicitly in Eqs. (154) and
(155), the probability for the exchange process into a certain
orbital depends on the spatial overlap between continuum and
bound state. The continuum state tends to oscillate rapidly for
distances large compared to its Compton wavelength. Because
of this oscillatory nature, however, we are much more
sensitive to the shape of the wave function as compared to
the previous section, where we were interested only in the
hr−1i matrix element. This in turn allowed us to approximate
the electronic distribution as in Eq. (175). At the level of
precision we are aiming at, combined with the magnitude of
the exchange effect at low energies, this is no longer sufficient.
Molecular wave functions for all but the trivial Hþ

2 system
have to be calculated numerically, however, which leaves us
with limited possibilities in an analytical description. We will
nonetheless introduce the approximation of Eq. (175), and
qualitatively describe the behavior of the valence electrons.
An important feature to aid us in this matter is the symmetry
group of the molecule.
Molecular orbitals can in a qualitatively enlightening way be

constructed from a linear combination of atomic orbitals
(LCAO)34 (Bransden and Joachain, 1983). In general we
can write all electron wave functions as a LCAO and minimize
the coefficients to provide the lowest energy in a Hartree-Fock
scheme. For argument sake, however, we introduce the addi-
tional approximation that the internal orbitals for all atoms are
the same in the molecular as in the atomic case. The molecular
valence orbitals are then a combination of occupied atomic
valence orbitals and energetically close atomic excited states.35

We assume then the contributions of the inner orbitals to the
exchange effect are unchanged, while that of the final occupied
orbital will be perturbed. As the electron density near the
decaying atom can both increase and decrease in a molecular
bond, the overlap integral in Eqs. (154) and (155) will do the
same. Here we reach the limit of the analytical description, and

the molecular bonding possibilities are too extensive to provide
parametrizations for the effect. When the valence electron is
nearly fully removed in an ionic bond, the exchange effect will
be approximately zero, as the internuclear distances are much
larger than the β Compton wavelength where the wave function
rapidly oscillates. In the reverse extreme situation, the valence
electron density is doubled. This then naively doubles the
exchange correction. Conservatively, then, we treat the contri-
bution of the last orbital with a 100% error bar. This way, in all
but the most extreme ionic bonds, we additionally absorb small
errors coming from small binding energy changes in the inner
atomic orbitals. Taking Fig. 6 as an example, this introduces a
<1 × 10−4 error from 15 keVonward and grows to a 0.5% error
at 1 keV. For 241Pu, the valence orbital participating in exchange
is 7s, whose contribution drops to below 10−4 after 3 keVwhile
its maximum quickly grows to 1% in the first 0.5 keV. An
estimate for the effect can be obtained from the analytical results
first obtained by Harston and Pyper (1992) using screened
hydrogenic orbitals. The effects of the change of the wave
function in a lattice versus that of a gas have been studied by
Kolos et al. (1988) in the case of tritium, and results showed no
significant change. Because of our conservative error bar, this
effect is completely absorbed and can be neglected.

VIII. OVERVIEW AND CROSS-CHECK

Table VII shows all effects included in our description of
the β spectrum shape with corresponding references to the
equations used. It remains then to be considered how well our
description stacks up against others results from the literature.
There exists limited information on precise shape factor
evaluation, other than what has been performed by Behrens
et al. (1978), which is, however limited to the shape factor
evaluation in an approximate manner.
This is an interesting moment to compare what we have

done so far to precise F t values for superallowed Fermi
transitions calculated by Hardy and Towner (2015) and
Towner and Hardy (2015). A ratio of f values calculated
within our framework relative to the results of Hardy and
Towner (2015) is shown in Fig. 10.
In general we have excellent results, and all residuals are in

the few 10−4 region. This is particularly interesting, as for the
heaviest nuclei in question we have moved far away from
stability, with 74Rb being 11 neutrons away from its closest
stable isotope and subject to strong deformations and shape
coexistence. The daughter nuclei of the last four nuclei
investigated, 62Ga, 66As, 70Br, and 74Rb, have deformations
with β2 equal to 0.195, 0.208, −0.307, and 0.401, respec-
tively36 (Möller et al., 2016). We conclude that as we are in the
aimed-for range for even these extremely exotic nuclei, and34For a quantitative description one has to rely on Hartree-Fock

and Kohn-Sham calculations with large basis sets; see, e.g., Jansík
et al. (2009) and Ide, Kato, and Yamanouchi (2014). This is beyond
the scope of this review, and we must content ourselves with a
qualitative outset.

35This is a reasonable approximation, except for when there is
degeneracy in the different atomic orbitals. When the same atom is
present several times in the molecule and is related through
symmetry, different LCAO change the spatial behavior of the wave
functions while the energy stays the same.

36Clearly this is an interesting and challenging region, as exper-
imental evidence is often not in agreement with theoretical predic-
tions. Specifically in the case of 70Se, the daughter nucleus of our
largest deviation, the sign of β2 is contested (Hurst et al., 2007). The
total influence of deformation on the ft value is, however, symmetric
relative to β2 [see Fig. 2 byWilkinson (1994)], such that we are not as
sensitive to the sign. Either way, the last proton will end up in the g9=2
orbital in the Nilsson model.
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we can trust the validity of our approach for pure Fermi decays
in a completely analytical manner without the need for
additional computation.
An additional measure that also tests the Gamow-Teller

parts can be found in the compilation of mirror decays. Its
importance cannot be overstated (Severijns et al., 2008), as
experimental precision is ever improving. Here the final F t
value depends on the mixing ratio ρ and the ratio of vector and
axial-vector f values

F tmirror ≡ 2F t0
þ→0þ

1þ ðfA=fVÞρ2
: ð179Þ

The separate f values have been calculated by Towner and
Hardy (2015) using the same methods as those used in Fig. 10.
We have now two possibilities to compare our results. As
these are all mirror nuclei, the Holstein form factor d vanishes
identically and CVC allows us to precisely calculate the weak
magnetism term from existing experimental data (Severijns
et al., 2018). On the other hand, we are able to approximate
the latter using single-particle matrix elements as discussed in
Sec. VI.F.2. Both results are shown in Fig. 11.
As expected from the results for superallowed decays, the

agreement in the vector sector is exquisite, with all differences
smaller than 4 × 10−4. For the axial-vector part the general
agreement is good, but there are some distinct features. We see
that for cases where the extreme single-particle approach is
justified, the deviation is in the 10−4 range for both CVC and

TABLE VII. Overview of the features present in the β spectrum shape [Eq. (4)], and the effects incorporated into the beta spectrum generator
code (Hayen and Severijns, 2018). Here the magnitudes are listed as the maximal typical deviation for medium Z nuclei with a few MeVend-
point energy. Some of these corrections fall off very quickly (e.g., the exchange correction X) but can be sizable in a small energy region.
Varying Z or W0 can obviously allow for some migration within categories for several correction terms.

Item Effect Formula Magnitude

1 Phase space factor pWðW0 −WÞ2
Unity or larger2 Traditional Fermi function F0 [Eq. (6)]

3 Finite size of the nucleus L0 [Eq. (16)]

10−1–10−2
4 Radiative corrections R [Eq. (47)]
5 Shape factor C [Eqs. (100) and (105)]
6 Atomic exchange X [Eq. (157)]
7 Atomic mismatch r [Eq. (171)]

8 Atomic screening S [Eq. (144)]a

10−3–10−4

9 Shakeup See item 7 and Eq. (160)b

10 Shakeoff See item 7, Eq. (163), and χcontex [Eq. (164)]c

11 Isovector correction CI [Eq. (113)]
12 Distorted Coulomb potential due to recoil Q [Eq. (45)]
13 Diffuse nuclear surface U [Eqs. (25) and (29)]
14 Nuclear deformation DFS [Eq. (40)] and DC [Eq. (135)]
15 Recoiling nucleus RN [Eq. (41)]
16 Molecular screening ΔSMol [Eq. (178)]
17 Molecular exchange Case by case

18 Bound state β decay Γb=Γc [Eq. (172)]d Smaller than
1 × 10−4

19 Neutrino mass Negligible
20 Forbidden decays Not incorporated

aHere the Salvat potential of Eq. (147) is used with X [Eq. (145)] set to unity.
bThe effect of shakeup on screening was discussed in Sec. VII.C.1 with Eq. (160).
cShakeoff influences on screening and exchange corrections were discussed separately in Sec. VII.C.2. This has to be evaluated in a

case by case scenario.
dThis does not affect the spectral shape, as discussed in Sec. VII.E, but does enter the F t analysis.

FIG. 10. Ratio of f values for all superallowed 0þ → 0þ Fermi
decays up tomass 74 included in the analysis byHardy and Towner
(2015). Uncertainties mainly result from the uncertainties on Q
values to illustrate the importance of possible deviations on the Vud
analysis. For the heaviest nuclei we show results for both the
spherical shell and a deformed shell filling. These last four nuclei
(62Ga, 66As, 70Br, and 74Rb) all have their valence nucleons outside
theN ¼ Z ¼ 28 shell closure. These nuclei are, however, extremely
exotic and show strong deformations and shape coexistence. In the
Nilsson model a complex interplay between the 2p1=2, 1f5=2, and
1g9=2 orbitals arises. A reversal between the first two would not
influence our isovector correction asw is equal. The same is not true
in case the 1g9=2 becomes filled, as is the case for 70Br.
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single-particle results. In the cases where this is absolutely not
the case, such as the outliers at 33Cl and 35Ar, the disagreement
reaches 1%. A similar failure is then expected in the
evaluation of the ratio of matrix elements in Λ, defined in
Eq. (107). Important to note, however, is that the shell model
has issues pinning down the right values in these cases as well
(Severijns et al., 2018). The accuracy with which the shell
model is able to explain these values is found to be on the
order of 10% (Severijns et al., 2018), meaning deviations
away from unity in our comparison do not necessarily stem
from a failure in our evaluation of Λ and are at least in part due
to the dominant weak magnetism correction. Judging from the
comparison between the CVC and single-particle results, one
would conclude there to be a complete failure of the extreme
single-particle model to accurately predict the weak magnet-
ism contribution. A surprising yet pleasant result is found,
however, when one moves from a spherical harmonic oscil-
lator to a deformed Woods-Saxon (DWS) potential but retains
the extreme single-particle approximation (Severijns et al.,
2018). Excellent agreement is found throughout the entire
region for which experimental results are available, and even
the outliers can be nicely reproduced when introducing strong
oblate deformations based on mean-field results (Möller et al.,
2016). Using this approach to calculate all relevant matrix
elements, we show the new results for fA=fV in Fig. 12. While
not any more analytically available, it shows a remarkable

agreement with much more advanced shell model calculations
while using the extreme single-particle approximation.
Remaining uncertainties can safely be attributed to

differences in the exact value of weak magnetism, for which
the shell model is shown to perform only marginally better
than our deformed single-particle approach (Severijns et al.,
2018). Combined with the excellent agreement in the vector
sector through a comparison of fV , these results show both the
potential of the extreme single-particle method and the
consistency of the developed formalism described here.
On the other hand, this raises important questions on the

accuracy of the fA=fV calculations when experimental results
enter this domain. Seeing as to how differences in weak
magnetism predictions can shift these values by several parts
in 103, this undermines the claims of reaching 0.01% in
theoretical calculations (Towner and Hardy, 2015). The cur-
rently most precisely measured mirror F t isotope 19Ne is seen
to behave rather well under the single-particle approximation
and is not so much affected by this concern. Experimental
campaigns are under way, however, for precision measure-
ments of the β − ν correlation of 32Ar, 19Ne, 35Ar (Couratin
et al., 2013; Liénard et al., 2015; Severijns and Blank, 2017)
and the β-asymmetry parameter of 35Ar (Severijns and Blank,
2017) and 37K (Fenker, 2016). For the extraction of Vud to be
valid, a significant amount of attention needs to be given to a
precise evaluation of the Λ factor in Eq. (107). When this
can be done reliably, the formalism developed here can be
combined with the experimentally determined weak magnet-
ism contribution. Following this, we comment once more on

FIG. 11. Comparison of pure fV (top) and fA=fV (bottom) values
for mirror decays as calculated by Towner and Hardy (2015) and by
using our formalism described here. We see an excellent agreement
for the fV values, with differences being smaller than 4 × 10−4, as
expected from the results in Fig. 10. For the calculation of fA=fV ,
the weak magnetism contributions were calculated using CVC in
one case and the single-particle estimates discussed in Sec. VI.F.2.
Overall a good agreement is found except for special cases where
the spherical harmonic oscillator evaluation breaks down, i.e., for
Z ¼ 17 and 18. The importance of an accurate representation of
weak magnetism is underlined by these 33Cl and 35Ar isotopes, for
which the shell model is also unable to correctly calculate b=Ac1.

FIG. 12. Comparison of fA=fV values as calculated by Towner
and Hardy (2015) and those by using our formalism described
here, with the addition of a DWS result as described in the text.
We retained the same vertical scale of Fig. 11 to show the vast
improvement over the spherical harmonic oscillator results. The
calculations of the nuclear matrix elements, while still evaluated
in an extreme single-particle fashion, are now not any more
analytically available. The single-particle wave function is ex-
panded in a spherical harmonic oscillator basis for which the
coefficients have to be calculated by numerical diagonalization of
the deformed Hamiltonian. This is performed automatically by
the C++ code accompanying this work (Hayen and Severijns,
2018). As shell model calculations reach only a slightly better
precision in estimating b=Ac1 (around 10%) (Severijns et al.,
2018), the observed deviations from unity when using CVC
results can be attributed to this fact.
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the significance of the induced pseudoscalar component in
Eq. (107). Its contribution, assuming the free nucleon value
gP ¼ −229, is comparable to that of the ratio of matrix
elements, meaning strong deviations are expected to occur.
It is possible that shifts can occur even on the per mille level.
When ignoring this contribution, a reasonable error must be
attributed to all fA=fV calculations until a way is found to
accurately account for this effect.
The results shown when moving to a deformed Woods-

Saxon potential were obtained by the custom code that
calculates the full β and (anti)neutrino spectrum shape. It
allows for a calculation of all nuclear relevant matrix V=AMKLs
in an extreme single-particle fashion, with several options for
customization in order to correctly specify the single-particle
state. It allows for a coupling with more advanced shell model
and mean-field codes by expressing the transition matrix
elements in a single-particle basis. It is properly discussed in a
separate publication and will be publicly available (Hayen and
Severijns, 2018). Results concerning weak magnetism includ-
ing contributions from this custom code are discussed else-
where (Severijns et al., 2018).

IX. β SPECTRUM SHAPE SENSITIVITY TO WEAK
MAGNETISM AND FIERZ TERMS

In the previous section we showed our independent
correspondence with the currently best numerically calculated
f values in the work by Towner and Hardy (2015). We can
then reliably use the expressions found in this document and
use them as the basis in looking for new physics results
at the per mille level. As mentioned in the Introduction,
investigation of the Fierz term has the important advantage of
looking for deviations linear in new, exotic coupling con-
stants. The β spectrum shape is an ideal observable for this as
the sensitivity to the Fierz term varies as 1=E while the effect
of weak magnetism on the β spectrum shape varies propor-
tional to E.

A. Spectral sensitivity

The weak magnetism and a possible nonzero Fierz inter-
ference term both modify the shape of the β spectrum in an
energy-dependent fashion. Historically, this was investigated
experimentally by defining a so-called shape factor after
which one defines the slope of the resultant ratio [see, e.g.,
Calaprice and Holstein (1976)]. Experimentally an unnormal-
ized shape factor is obtained by dividing the number of
counts observed for each β-particle energy by the quantity
KðZ;W;W0;MÞpWðW −W0Þ2 [see Eq. (4)] which is then
normalized to unity at some energy Wnorm by dividing these
unnormalized values by the value at Wnorm to yield the
normalized shape factor37 (Calaprice and Holstein, 1976)

SðWÞ ¼ CðZ;WÞ=CðZ;WnormÞ: ð180Þ

The slope dS=dW then provides the physics information.
A similar ratio can be constructed for the Fierz term. A typical
value for b=Ac1 is about 5 (Wauters et al., 2010). For
bFierz a precision of 1% or better is typically required in view

of current constraints on Cð0Þ
S or Cð0Þ

T coupling constants
(Severijns, Beck, and Naviliat-Cuncic, 2006; Naviliat-
Cuncic and González-Alonso, 2013; Vos, Wilschut, and
Timmermans, 2015). Moreover, as was shown recently, at a
precision of about 0.1% measurements of bFierz in nuclear β
decay and neutron decay remain competitive with direct
searches for new bosons related to scalar and tensor type
weak interactions at the LHC collider in the channel pþ p →
eþMETþ X (with MET standing for the missing transverse
energy) which has an underlying dynamics similar to β decay
at the parton level (Naviliat-Cuncic and González-Alonso,
2013; Khachatryan et al., 2015). To generate some perspective
on the magnitude of this slope when introducing a Fierz or
weak magnetism term, we show in Fig. 13 an example shape
factor SðWÞ for b=Ac1 ¼ 5 and 3, and bFierz ¼ 0.005 and
0.001. This clearly stresses the need for an accurate value of
b=Ac1 when extracting Fierz information. Further, this
requires an excellent theoretical description of the β spectrum
shape, as has been presented here. The slope for bFierz ¼ 0.005
over the first 250 keV interval is equal to−0.33% MeV−1. The
energy-dependent information of the theoretical spectrum
must thus be accurate enough to guarantee all remaining
slope artifacts to be <0.1% MeV−1. Special attention has
been given when describing atomic corrections to avoid any
residual energy-dependent slopes.
At the lowest energies, care has to be taken when inter-

preting experimental results, as the Fierz term spectral
modification is approximately linear in this regime.
Experiments are then sensitive to ∼ðbwm − bFierzÞE, and
there is no way to decouple the separate contributions from
their energy-dependent behavior. This again underlines the
required precision and accuracy in evaluating the weak

FIG. 13. Example of the effects of a weak magnetism and Fierz
term on the β spectrum shape. Both effects are normalized at
100 keV, i.e., a ratio is constructed as in Eq. (180). This shows
the advantage of measuring low-energy transitions for Fierz,
while high-energy end-point transitions are favorable for weak
magnetism studies.

37To remain consistent with our notation, we wrote the shape
factor as C instead of the spectral function h1 as per Holstein and
coauthors.
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magnetism contribution when searching for new physics
(Gonzalez-Alonso and Naviliat-Cuncic, 2016).

B. Effective field theory approaches

The traditional search for exotic interactions in β decay is
described by introducing additional coupling constants and
currents in the β decay Hamiltonian. This makes direct
comparison with results from high-energy colliders such as
the LHC difficult. It is here that effective field theories can
bridge the gap. Assuming the mass scale of new physics ΛBSM
to be beyond what is probed right now at the LHC, both high-
and low-energy experiments can be directly compared in an
effective field theory. Here additional coupling constants are
introduced that are sensitive to exotic currents in higher-order
operators. A significant amount of effort has been put into its
development, showing that both low- and high-energy fron-
tiers can be competitive in their current experimental stages
(Erler and Ramsey-Musolf, 2005; Ramsey-Musolf and Su,
2008; Bhattacharya et al., 2012; Cirigliano, Gardner, and
Holstein, 2013; Cirigliano, González-Alonso, and Graesser,
2013; Naviliat-Cuncic and González-Alonso, 2013; Holstein,
2014a; Vos, Wilschut, and Timmermans, 2015). The classical
β correlation terms of Jackson, Treiman, and Wyld (1957)
have been written in terms of these extra coupling terms,
allowing both energy frontiers to provide an upper limit on the
same parameters.
Care has to be taken to avoid overlap when combining the

formalism presented here with that of Bhattacharya et al.
(2012). As an example, the Fierz term bFierz for neutron
decay presented therein carries a nonzero SM contribution
[Eq. (B15) in Bhattacharya et al. (2012)]

bSM ¼ −
me

MN

1þ 2μVλþ λ2

1þ 3λ2
; ð181Þ

where μV is the difference between proton and neutron
magnetic moment, and λ ¼ gA=gV . The full correction term
is written as mebSM=Ee. The presence of μV points to a weak
magnetism contribution, and consequently the term can
indeed be retraced to the equivalent terms in Eq. (105).

X. CONCLUSIONS AND OUTLOOK

In this review, we presented a fully analytical description of
the β spectrum shape, for the first time combining kinematical,
electromagnetic, nuclear, and atomic corrections to a few parts
in 104. These corrections are expected to hold from 1 keV to
the end point. The importance of the atomic corrections was
underlined, showing that although the largest deviations are
found at low energy, their influence can be seen at high
energy. The theoretical framework for the description of
atomic screening was combined with precise Dirac-Hartree-
Fock-Slater calculations and showed excellent agreement with
numerical results down to the lowest energies. This avoids the
ambiguous evaluation of the screening exponent as described
before. Atomic exchange calculations were performed for the
entire atomic number chain, and a fit was provided to enable
analytical evaluation with high precision. The oft-neglected
contributions stemming from exchange with atomic p1=2

orbitals was shown to be significant and included into our
analytical description. Further atomic corrections from differ-
ent sources were combined with the work done by Wilkinson
dealing with electromagnetic finite size corrections.
An overview of the corrections sensitive to nuclear structure

was given and a full correction was derived for both Fermi and
Gamow-Teller decay. We presented these results in the
transparent notation by Holstein while maintaining the pre-
cision of the lepton wave function and nuclear current
decomposition by Behrens and Bühring. Besides the weak
magnetism contribution, we remain sensitive to nuclear
structure information through the explicit evaluation of several
matrix elements and the proposed isovector correction. We
showed that the former can be analytically calculated to a
sufficient precision given that the state is properly described in
a spherical extreme single-particle manner. When this is not
the case, it was shown that moving to a deformed Woods-
Saxon potential while retaining the extreme single-particle
approach provides excellent agreement. If wanted, more
extensive methods such as the shell model can provide the
relevant matrix elements which can directly be incorporated
into the formulae presented here. Further, we note the
influence of the induced pseudoscalar contribution to the
Gamow-Teller shape factor and point to the importance of its
correct evaluation when experimental precision for mirror
decays reaches that of the superallowed transitions.
The formalism presented here was compared against the

most precise numerical calculations of the total integral of
the β spectra performed by Towner and co-authors. For both
the superallowed and mirror decays, good agreement was
found throughout the entire investigated mass range. Even for
the most exotic cases where deformation effects provide a
significant contribution, excellent agreement was found. The
calculation of the Gamow-Teller spectrum is more difficult as
here we are directly influenced by nuclear structure influences
we can circumvent in the vector sector. Using the extreme
single-particle approach, good results nevertheless were
obtained for the cases where this is reasonably justified based
on electromagnetic moment data. When this is not the case,
significant deviations occur, as expected. Moving to a proper
deformed potential alleviates these problems for the inves-
tigated cases. Important to note is, however, that the shell
model calculations which were used to compare against
cannot also reliably predict the weak magnetism contribution
to the argued precision. This raises serious questions on the
validity and accuracy of the presently available calculations.
We therefore conclude that the work presented here can

accurately describe the β spectrum shape to the required
precision given that the nuclear structure input can be reliably
calculated, be that through use of CVC, the extreme single-
particle approximation, or more advanced methods. Spectral
shape measurements have an additional advantage here in that
they are not as sensitive to nuclear structure effects outside of
the weak magnetism effect, and can thus be the basis for
experimental beyond standard model searches exploring the
per mille regime.
When looking for Fierz contributions one must remain

wary, since standard model effects such as the weak magnet-
ism contribution and their corresponding uncertainties can
interfere destructively with our ability to extract meaningful
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results. Great control in its evaluation is required in case CVC
cannot be invoked and one must rely on alternate methods of
calculating the relevant matrix elements. Ideally this value is
known to about 10% in order to look for per mille level Fierz
contributions, as discussed in the previous section. This is
clearly a difficult task and is currently the largest uncertainty
by almost an order of magnitude in the precise determination
of the β spectrum shape, unless it can be determined through
CVC arguments. Even so, one must be careful in the
evaluation of the CVC result, as only the isovector component
is of relevance.
The full calculation of the work presented here was

automated in a custom code, discussed in a separate pub-
lication (Hayen and Severijns, 2018). Based on simple
configuration files, it aims for flexibility and user friendliness
in the use of this vast size of work.
Nevertheless, the importance of an accurate β spectrum

shape cannot be understated in the search for beyond standard
model physics in the electroweak sector due to the linearity of
exotic coupling constants in the observables. Assuming no
exotic currents it is conversely also a perfect tool to study the
weak magnetism contribution. Particularly for higher masses
little is known experimentally about about its magnitude. This
also forms an important ingredient in the analysis of the
reactor antineutrino anomaly (Mueller et al., 2011). In the
current analysis, a constant value is assumed for weak
magnetism throughout the entire fission fragment region.
Clearly, this is not an optimal method of treating this complex
effect, as can already be deduced from the discussion on
single-particle matrix elements given in this document.
Additionally, a correct treatment of higher-order effects in
the translation from electron to antineutrino spectra forms the
basis of a correct analysis procedure. The formulas presented
here serve as the basis for this analysis, where we note the
added complexity of the shape factor compared to its usual
treatment. Atomic effects, though mainly confined to the
lower energy regions, become transported to the end of the
antineutrino spectrum and remain highly relevant. This further
underlines the importance of a precise description of atomic
effects at low energy and will no doubt be the subject of
further research.
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APPENDIX A: GENERAL SHAPE FACTOR

In Sec. VI.E we gave results assuming isospin invariance in
that we replaced the nuclear wave functions with the full
charge distribution in the evaluation of the nuclear matrix
elements. Doing so leaves us with the question of how to
accurately treat said charge distribution. The general equations
for superallowed Fermi decay are the following:

VC0 ¼ −
ðW0RÞ2

3
VF1110 ∓ 2

9
αZW0RVF1111

−
ðαZÞ2
3

VF1222; ðA1aÞ

VC1 ¼ 4
9
W0R2VF1110 ∓ 2

3
αZRðVF1221 − 1

3
VF1111Þ; ðA1bÞ

VC−1 ¼
2

9
W0R2VF1110 ∓ αZR

3
VF1211; ðA1cÞ

VC2 ¼ −4
9
R2VF1110; ðA1dÞ

using the notation by Wilkinson (1993b) to write

VFkemnρ ¼
VFð1Þ

000ðke; m; n; ρÞ
VFð0Þ

000

: ðA2Þ

Because of the property that Iðke;m; n; 0Þ≡ 1, we have
simply

VF1110 ¼
VFð1Þ

000

VFð0Þ
000

¼ hr2i
R2

: ðA3Þ

The results of Eq. (100) assumed a uniformly charged sphere
with radius R such that hr2iexp ¼ 3R2=5. We can, however, do
better than this. One method uses the modified Gaussian
distribution of Eq. (18), where we now have one fit parameter
A. This can be calculated using the method outlined by
Wilkinson (1993c) from which the different ratios can be
calculated using

F1111 ¼ 0.757þ 0.0069½1 − expð−A=1.008Þ�; ðA4Þ

F1221 ¼ 0.844 − 0.0182½1 − expð−A=1.974Þ�; ðA5Þ

F1222 ¼ 1.219 − 0.0640½1 − expð−A=1.550Þ�; ðA6Þ

such that we are consistent with our isovector correction
employing a modified Gaussian charge distribution.
The Gamow-Teller shape factor was evaluated in the same

spirit. Here the situation is more complicated, however, as we
have more than one type of form factor contributing. The most
general expression can be written as

AC0¼−1
3
ðW2

0−1ÞR2AFð1Þ
101� 2

3
αZ

	 ffiffi
1
3

q
AFð0Þ

110þ
ffiffi
2
3

q
VFð0Þ

111



∓ 2

27
αZW0R½−AFð1Þ

101ð1;1;1;1Þþ2
ffiffiffi
2

p
AFð0Þ

121ð1;1;1;1Þ�
− 1

3
ðαZÞ2AFð1Þ

101ð1;2;2;2Þ− 2
3
W0R

	
−

ffiffi
1
3

q
AFð0Þ

110þ
ffiffi
2
3

q
VFð0Þ

111



þ 1

9
R2ð11

3
AFð1Þ

101−
4
3

ffiffiffi
2

p
AFð0Þ

121Þ; ðA7aÞ

AC1 ¼ 4
3

ffiffiffi
2

p
RVFð0Þ

111 −
4
27
W0R2ð−5AFð1Þ

101 þ
ffiffiffi
2

p
AFð0Þ

121Þ
∓ 2

3
αZR½1

9
AFð1Þ

101ð1; 1; 1; 1Þ − 2
9

ffiffiffi
2

p
AFð0Þ

121ð1; 1; 1; 1Þ
þ AFð0Þ

101ð1; 2; 2; 1Þ�; ðA7bÞ
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AC−1 ¼ −
2

3
R

� ffiffiffi
1

3

r
AFð0Þ

110 þ
ffiffiffi
2

3

r
VFð0Þ

111

�

þ 2

27
W0R2ð−AFð1Þ

101 þ 2
ffiffiffi
2

p
AFð0Þ

121Þ

� αZR
3

AFð1Þ
101ð1; 2; 1; 1Þ; ðA7cÞ

AC2 ¼ −R2ð20
27

AFð1Þ
101 −

4
27

ffiffiffi
2

p
AFð0Þ

121Þ; ðA7dÞ

where we omitted a common division by AFð0Þ
101 in all terms for

notational clarity. As mentioned in Sec. VI.F, the treatment of
the Gamow-Teller shape factor is slightly more complex,
since different types of form factors are present. There we
split up the nuclear structure dependent parts, i.e., terms

containing VFð0Þ
111,

AFð0Þ
110, and

AFð0Þ
121, from the terms containing

AFð0Þ
101ð1; m; n; ρÞ. For the ratios of the latter we can use the

same parametrization as for vector decay in Eqs. (A4)–(A6).
The evaluation of the nuclear structure dependent terms can
occur in the standard way via single-particle estimates or shell
model calculations.
In this treatment we assumed only a nuclear charge

distribution and neglected the influence of atomic electrons
on the electrostatic potential. The largest effect was, however,
already taken care of when introducing the screening correc-
tion in Sec. VII.A as the modification of the Fermi function,
Eq. (9), due to screening. Further, due to the nature of the form
factors coefficients all results are written in an expansion of
the root mean square radius, which is matched to the
experimental value for all chosen charge distributions. In
order to estimate the relevance of the spatially averaged
screening effect, we consider as an example the two largest
contributors

Iðk; 1; 1; 1; rÞ ¼ ð2kþ 1Þr−2k−1
Z

r

0

x2kUðxÞdx; ðA8Þ

Iðk; 2; 2; 1; rÞ ¼ 2ð2kþ 1Þr−2
Z

r

0

UðyÞy−2k ðA9Þ

×
Z

y

0

x2kUðxÞdxdy; ðA10Þ

where UðxÞ is defined by

VðxÞ ¼ −
αZ
R

UðxÞ: ðA11Þ

Assuming now that the difference between the screened
potential of Eq. (147) and that of a point charge holds also
within the nucleus, the first-order expansion results in a
difference ΔU ¼ P

iαiβi ∼OðαÞ. It can be checked numeri-
cally that the shape factor of Eq. (100) changes by a few parts
in 104 up to large Z. In these high Z cases the order of
perturbation to which all expressions are derived is insufficient
to provide the highest level of precision, such that these
changes are insignificant. In order to guarantee the best
performance in this situation, a further expansion is required
or replaced instead with a fully numerical approach.

APPENDIX B: SINGLE-PARTICLE MATRIX ELEMENTS

The Gamow-Teller shape factor contains several weak form
factors which cannot always be transformed to their electro-
magnetic analogs through the use of CVC. In the notation of

Behrens and Bühring these are VFð0Þ
111,

AFð0Þ
110, and

AFð0Þ
121. The

former two are known as the weak magnetism and induced
tensor contributions and can be related only to CVC results for
specific transitions as discussed in Sec. VI.C. The latter needs
to be evaluated in our definition ofΛ in Eq. (107). For all these
form factors we require their ratio with the main Gamow-

Teller form factor AFð0Þ
101. As seen in Sec. VI.D, these form

factors can be written as a combination of single-particle
matrix elements when employing the impulse approximation.
These results were compiled by Behrens and Bühring (1971)
such that one has

AMð0Þ
1L1 ≈

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p G1L1ðκf; κiÞ
hrLi
RL ; ðB1Þ

A=VMð0Þ
11s ≈

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�
signðκiÞG11sðκf;−κiÞ × hgfj

�
r
R

�
jfii

þ signðκfÞG11sð−κf; κiÞhffj
�
r
R

�
jgii

�
; ðB2Þ

with s ¼ 1 for VMð0Þ
111 and s ¼ 0 for AM110. Here GKLsðκf; κiÞ

capture all spin-angular information of the reduced matrix
elements. These coefficients were introduced byWeidenmüller

(1961) and are listed in Behrens and Bühring (1982). For AFð0Þ
121

and VFð0Þ
111,K and s are equal to those of AFð0Þ

101 such that the ratio
considerably simplifies. For the former, thismeans the ratio can
be written as

G121ðκf; κiÞ
G101ðκf; κiÞ

¼ −
CðlðκfÞlðκiÞ2; 00Þ
CðlðκfÞlðκiÞ0; 00Þ

8><
>:

1 1 2

jf 1
2

lðκfÞ
ji

1
2

lðκiÞ

9>=
>;

×

8><
>:

1 1 0

jf
1
2

lðκfÞ
ji 1

2
lðκiÞ

9>=
>;

−1

hrLi
RL ; ðB3Þ

where Cð� � �Þ is a regular Clebsch-Gordan coefficient, and the
quantities in brackets are Wigner-9j symbols. Here lðκÞ ¼ κ if
κ > 0 and lðκÞ ¼ jκj − 1 if κ < 0.
For convenience, we list the relevant results from

Appendix F of Behrens et al. (1978). These can be directly
deduced from Eqs. (B1) and (B2) using the nonrelativistic
approximation to express the small radial function fðrÞ as a
function of gðrÞ. These are categorized by the initial and final
single-particle spins participating in the correction
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ji ¼ jf ¼ lþ 1
2
;

M0
101 ¼

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�ðlþ 1Þð2lþ 3Þ

2lþ 1

�
1=2

I;

M0
121 ¼ −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p l

�
2ðlþ 1Þ

ð2lþ 1Þð2lþ 3Þ
�
1=2 hr2i

R2
;

M0
111 ¼ −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p ðlþ 1Þ
�
6ðlþ 1Þð2lþ 3Þ

2lþ 1

�
1=2

×
1

2MNR
I;

M0
110 ¼ −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�

3ðlþ 1Þ
ð2lþ 1Þð2lþ 3Þ

�
1=2

ξ
hr2i
2R

;

ji ¼ jf ¼ l− 1
2
;

M0
101 ¼ −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�
lð2l− 1Þ
2lþ 1

�
1=2

I;

M0
121 ¼

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p ðlþ 1Þ
�

2l
ð2l− 1Þð2lþ 1Þ

�
1=2 hr2i

R2
;

M0
111 ¼ −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p l

�
6lð2l− 1Þ
2lþ 1

�
1=2

×
1

2MNR
I;

M0
110 ¼ −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�

3l
ð2lþ 1Þð2l − 1Þ

�
1=2

ξ
hr2i
2R

;

jf ¼ l� 1
2

ji ¼ l ∓ 1
2
;

M0
101 ¼∓

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p 2

�
lðlþ 1Þ
2lþ 1

�
1=2

I;

M0
121 ¼ ∓

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�
lðlþ 1Þ
2ð2lþ 1Þ

�
1=2 hr2i

R2
;

M0
111 ¼ �

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�
3lðlþ 1Þ
2ð2lþ 1Þ

�
1=2

×
1

MNR
I;

M0
110 ¼ �

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ji þ 1

p
�
3lðlþ 1Þ
2lþ 1

�
1=2

×

�
� 2lþ 1

2MNR
I þ ξ

hr2i
2R

�
;

with I ¼ R
gfðrÞgiðrÞr2dr ≈ 1 in the nonrelativistic approxi-

mation. Here ξhr2i=R2 is the evaluation of

Z
∞

0

gffEi − Ef − ðVi − VfÞg
�
r
R

�
2

gir2dr ðB4Þ

for a spherical harmonic oscillator wave function to give

ξ ¼ 2ν

MN
½2ðni − nfÞ þ li − lf� ðB5Þ

with ν the harmonic oscillator parameter defined as in
Eq. (115a).
Assuming a spherical extreme single-particle approach, we

then recover the results of Eq. (127). In the deformed case as
discussed in Sec. VI.H.2, however, the situation is not as
straightforward and we require full expressions for the differ-
ent matrix elements.

APPENDIX C: MANY-PARTICLE MATRIX ELEMENTS
IN jj COUPLING

The formulas presented in Secs. VI.F.2, VI.H.2, and
Appendix B dealt with odd-A β decays, which in the extreme
single-particle approach considers initial and final states
consisting of one single nucleon. In Sec. VI.D we discussed
that the many-particle angular momentum couplings reside in
a factor CðKÞ, which depends only on the tensor rank K of the
operator. This fact is of great assistance, as it drops out
completely when taking the ratio of two form factors with
identical rank. In the spirit of the extreme single-particle
approach, it is worthwhile to discuss odd-Z, odd-N (o-o) to
even-Z, even-N (e-e) β decays and vice versa. For this we use
the results by Rose and Osborn (1954a), written using the
isospin formalism (Wilkinson, 1969). In line with our previous
extreme single-particle methods, we consider now two par-
ticles in initial and final states, coupled to a core isospin. We
then write for o-o to e-e transitions

hj2j2JfMfTfT3fj
X
n¼1;2

fOM
KLsτ�gnjj1j2JiMiTiT3ii

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĵi Ĵf T̂i T̂f

1þ δj1j2

s
ð−ÞJf−Mf

�
Jf K Ji

−Mf M Mi

�
ð−ÞTf−T3f

×

�
Tf 1 Ti

−T3f �1 T3i

�
ð−ÞK

� 1
2

Tf
1
2
ðTi þ TfÞ

Ti
1
2

1

�

×

�
2

�
j2 Jf j2
Ji j1 K

�
hj2jjOKLsjjj1i þ ½1− ð−Þj1þj2 �

×

�
j2 Jf j1
Ji j2 K

�
hj2jjOKLsjjj2iδj1j2

��
1

2

����jtj
����12

; ðC1Þ

where the quantities in braces are Wigner-6j symbols.
We explicitly extracted the results from the Wigner-Eckart
theorem in both spin and isospin spaces. For a final matrix
element one has to average over initial spin projections
and sum over the final Mf. The isospin components can be

directly evaluated, using h1=2j jtj j1=2i ¼ ffiffiffiffiffiffiffiffi
3=2

p
. An equiv-

alent formula can be written down for e-e to o-o β decays.
In the case of deformation the angular momentum J is no

longer a good quantum number, and Eq. (C1) has to be
rewritten. Using the results of Berthier and Lipnik (1966),
the spin-reduced matrix element for even-even to odd-odd
decays is

hϕðJfKf;ΩfÞj
����X
n¼1;2

fOKLsτ
�
n g

����jϕðJiKi ¼ 0;Ωi ¼ 0Þi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĵi Ĵf
2ð1þ δKf0

Þ

s �
Jf K Ji
−Kf Kf 0

�
× ½1þ ð−1ÞJi �

×
X
j2j1

Cj2−Ω2
Cj1Ω1

ð−1Þj2−Ω2

�
j2 K j1

−Ω2 Kf −Ω1

�

× hj2jjOKLsjjj1i; ðC2Þ
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while the reverse case can be found in several publications
(Berthier and Lipnik, 1966; Behrens and Bühring, 1982). Here
CjΩ ¼ ð−Þ1=2−jπΩCj−Ω with πΩ the parity of the Ω orbital.

APPENDIX D: RELATIVISTIC COULOMB AMPLITUDES

In Sec. VI.G we discussed the influence of the relativistic
matrix elements and concluded that for spectral shape mea-
surements these are insignificant on the aimed-for level of
precision. We discuss them briefly for completeness. These
contributions consist of two parts, the nuclear structure
embedded into the ratio of form factors and the electromag-
netic influence through the slowly varying Coulomb
functions. We specify here for Fermi transitions the energy-
dependent functions using the older leptonic wave expansion
by Behrens and Jänecke (1969) as shown in Table VIII.
The leading order Coulomb functions for pure Fermi

transitions can be written as

VCðZ;WÞrel ¼
VFð0Þ

011

VFð0Þ
000

Vf2ðWÞ þ
VFð1Þ

011

VFð0Þ
000

Vf3ðWÞ: ðD1Þ

The Coulomb functions f2 and f3 are written in terms of the
elements in Table VIII as

Vf2ðWÞ ¼ −2ðD1 þ N1Þ þ 2
μ1γ

W
d1; ðD2aÞ

Vf3ðWÞ ¼ −2ðD3 þ N1H2 − N2D1 − N3Þ
þ 2

mu1γ
W

ðd3 − N2d1Þ. ðD2bÞ

It is worth noting here that D1ð1Þ þ N1ð1Þ ¼ αZ=2þW0R=3
is independent of W. Typical values for fiðWÞ for several
0þ → 0þ transitions can be found in Behrens and Buhring
(1967) and are usually on the percent level of smaller. The

relativistic matrix elements VFðNÞ
011 obey recursion relations

after invoking CVC, specified in Eq. (89).

APPENDIX E: COMPARISON OF FINITE SIZE EFFECTS
AND ELECTROMAGNETIC CORRECTIONS IN THE
BEHRENS-BÜHRING AND HOLSTEIN FORMALISMS

As discussed in Sec. II, there is some confusion in the term
“finite size effects” as it entails different things for different
authors. Here we mainly based our approach on the rigorous
work of Behrens and Bühring, culminating in the standard
work by the same authors (Behrens and Bühring, 1982). We
wrote some of these results in the more transparent formalism
of Holstein. In light of transparency and their increasing
importance in other fields not directly related to nuclear
physics, we attempted to elucidate this more quantitatively.

1. Generalization including electrostatics

The simplest β decay Hamiltonian is written down as a
simple current-current interaction

Hβ ¼
G cos θCffiffiffi

2
p ūðpÞγμð1þ γ5ÞvðlÞhfp2

jVμ þ Aμji0i þ H:c:;

ðE1Þ

where plane waves have been used for the leptons, and p2 and
0 denote final and initial nuclear momenta. The S matrix is
developed to first order and the corresponding spectrum is
calculated using standard techniques. Given that the nucleus
interacts electromagnetically with the outgoing leptons, one
must incorporate the Coulomb interaction. As it is several
times stronger than the weak interaction it cannot be treated
perturbatively (Halpern, 1970). Neglecting the difference
between initial and final Coulomb fields, the lepton wave
functions are considered solutions of the Dirac equation in the
final Coulomb field.38

As discussed, the Behrens-Bühring formalism starts from
the results of Halpern (1970). The approach taken by Holstein
(1974a) and Calaprice and Holstein (1976) starts from the
generalized matrix element as described by Armstrong and
Kim (1972b) (Holstein, 1979)

M ¼ G cos θCffiffiffi
2

p
Z

d3rΨ̄eðr;pÞγμð1þ γ5ÞvðlÞ

×
Z

d3k
ð2π3Þ e

ir·khfp2þp−kjVμ þ Aμji0i; ðE2Þ

where Ψ̄e is the electron wave function in the presence of a
nuclear Coulomb potential. Both results are identical up to this
point after neglecting the difference in initial and final
Coulomb potentials. In both the Holstein and Behrens-
Bühring formalisms the nuclear current is now expanded
using a series of form factors, replacing the impulse approxi-
mation results of Eqs. (83). Those of the former are useful for
allowed transitions whereas those of the latter make no
inherent distinction between the order of the transitions.
Translation tables between both descriptions can be found
in several publications (Behrens et al., 1978; Behrens and
Bühring, 1982) and will not be repeated here. Terms relevant

TABLE VIII. The coefficients H2σ ; D2σþ1; h2σ , Nσ , and d2σþ1 used
in the expansion of the leptonic radial wave functions.

W̄e ¼ We � 3αZ=ð2RÞ p̄2
e ¼ W̄2

e − 1
H2σ ¼ D2σþ1 ¼ 0 for σ < 0 H2σþ1 ¼ D2σ for all σ

H0ðkeÞ ¼ 1 h0ðkeÞ ¼ 0

H2ðkeÞ ¼ − ðp̄RÞ2
2ð2keþ1Þ

h2ðkeÞ ¼ 0

h4ðkeÞ ¼ �αZR
2ð2keþ1Þð2keþ3Þ

D1ðkeÞ ¼ W̄eR
2keþ1

d1ðkeÞ ¼ R
2keþ1

D3ðkeÞ ¼ − W̄eRðp̄eRÞ2
2ð2keþ1Þð2keþ3Þ ∓ αZ

2ð2keþ3Þ d3ðkeÞ ¼ − Rðp̄eRÞ2
2ð2keþ1Þð2keþ3Þ

N0ðkνÞ ¼ 1 N1ðkνÞ ¼ pνR
2kνþ1

N2ðkνÞ ¼ − ðpνRÞ2
2ð2kνþ1Þ

38As discussed in Sec. III, neglecting this difference is corrected
for in the radiative corrections of Sec. V.
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for the discussion can be easily deduced from Tables III
and IV.
Both approaches use as a starting point the so-called

Behrens-Jänecke Fermi function, which corresponds to
Eq. (9). In works by Holstein and derivatives thereof it is
typically expressed as the point charge Fermi function F0

times some correction factor as discussed in Sec. III. The
crucial difference between both approaches, however, now lies
in two points, both in favor of the Behrens-Bühring formu-
lation. The first is the expansion of the electron wave function
and the corresponding electrostatic finite size corrections
discussed in Sec. IV. The second concerns the combination
of the expansion of the nuclear current with that of the lepton
wave function.

2. Approximations by Holstein and notes for the wary

We concern ourselves first with the expansion of the
electron wave function. As mentioned in Secs. III and
VI.E, the Behrens-Bühring approach expands these as a
function of ðαZÞρ, ðWRÞν−ρ, and ðmeRÞμ−ν with the coef-
ficients of these expansions encoded in the functions
Iðjκj; μ; ν; ρ; rÞ. The latter are sensitive to the nuclear potential
and examples can be found in Behrens and Bühring (1970). In
the Holstein (1974a) approach one expands Ψ̄e keeping only
leading j ¼ 1=2 and 3=2 terms, such that it becomes a
function of fκ, gκ with κ ∈ f−2;−1; 1; 2g. Specific results
of the expansion can be found in Armstrong and Kim (1972b)
and Holstein (1974a, 1974c). Here the first difference occurs
as the expansion of the latter is performed only for a uniformly
charged sphere. Our discussion in Sec. IV shows that this is
not sufficient, and effects of moving to a diffuse charge
distribution cannot be ignored.
The calculation proceeds analogously to that of Armstrong

and Kim (1972b) where a weak charge density is defined
through the Fourier transform of the leading order expansion
of the nuclear current. We have then

M ¼ G cos θCffiffiffi
2

p
Z

d3rΨ̄eðr;pÞγμð1þ γ5ÞvðlÞρμðrÞ; ðE3Þ

where ρμðrÞ is simply the Fourier transform of the involved
form factors

ρμðrÞ ¼
Z

d3s
ð2πÞ2 e

ir·shfp2þp−kjVμ þ Aμji0i: ðE4Þ

The second difference now appears in the expansion of the
nuclear current and the consequent artificial split of nuclear
structure terms and the Coulomb corrections in the Holstein
approach. This is in part because Coulomb corrections to
induced corrections were neglected (Holstein, 1974a), such
that for Gamow-Teller decay it is approximated as

hfp2
jVμ þ Aμji0i ≈ −gμκcðW2

0 − p2
2ÞCM0κ;M

J01;J ; ðE5Þ

with C a regular Clebsch-Gordan coefficient. The weak charge
density is then typically normalized by extracting a fac-
tor cð0Þ.

Here once again great care must be taken when comparing
to the Holstein formalism, as the corrections are written
differently in different papers (Holstein, 1974a, 1974c,
1979; Calaprice and Holstein, 1976) by the same authors.
In particular, the Fermi function used differs by a factor
ð1þ γÞ=2 depending on the publication, resulting in changes
of order ðαZÞ2 when naively comparing formulas. Further, the
redefinition of the so-called spectral functions taking into
account Coulomb interactions has been written in two
different ways. The first (Holstein, 1974c) replaces

hð0Þi ðWÞ → FðZ;WÞ½hð0Þi ðWÞ þ ΔhiðWÞ�; ðE6Þ

where FðZ;WÞ ¼ ð1þ γÞ=2F0, withΔhiðWÞ defined in those
works. The later works (Calaprice and Holstein, 1976;
Holstein, 1979) artificially split the transition matrix element
of Eq. (E3) into a nuclear structure part and their Coulomb
corrections

NðWÞdW ∝ ~h1ðWÞ
�
jAj2þjBj2þjCj2þjDj2

þ2

3
ReðA�DþB�CÞ

þ2
me

W
Re

�
A�BþC�Dþ1

3
A�Cþ1

3
B�D

�

−
2

9

p
W

ReðA�F−B�Gþ3F�D−3G�CÞ
�
; ðE7Þ

with

~h1ðWÞ ¼ c21 −
2

3

W0

M
c1ðc1 þ d� bÞ þ 2

3

W
M

½c1ð5c1 � 2bÞ�

−
m2

e

3MW

�
2c21þc1ðd� 2bÞ − c1h

W0 −W
2M

�
; ðE8Þ

and A–G denoting integrals of the different parts of the
leptonic expansion with the weak charge distribution of
Eq. (E4). These are given by Holstein (1974c) and will not
be repeated here for brevity. Here the Fermi function con-
sistently refers to the so-called Behrens-Jänecke Fermi func-
tion, discussed in more detail in the following section. It is
Eqs. (E7) and (E8) that should be compared against the
combination F0L0UC in the current work. For clarity, we
continue with the later results of Eqs. (E7) and (E8) and refer
only to the older works when necessary in Appendix F.
Expanding Eq. (E5) to zeroth order will introduce the Fermi

function, while the first order introduces the leptonic con-
volution. These will be discussed separately. Finally, the
inclusion of the Coulomb corrections to induced currents is
briefly touched upon.

3. Fermi function and finite size correction

The Coulomb corrections of Eq. (E7) depend on the precise
evaluation of the integrals A–G, which are in turn dependent
on the weak charge distribution of Eq. (E4) (Calaprice and
Holstein, 1976). In a first approximation we define the
Gamow-Teller form factor cðq2Þ as a constant, in which case
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ρðrÞ becomes a simple Dirac delta function. Now only A and
B survive such that

jAj2 þ jBj2 ¼ 1

2
N2

2me

W

Z
d3rδ3ðrÞ×

�
g2−1ðrÞ þ

�
W
p

�
2

f21ðrÞ
�

¼ F0L0 ðE9Þ

when taking into account the differing normalization defi-
nitions of the wave functions in the Behrens-Bühring and
Holstein formalisms. As f1 and g−1 have been approximated
only for a uniformly charged sphere for low Z in the Holstein
approach, the expression obtained by Huffaker and Laird
(1967) and Calaprice and Holstein (1976)

jAj2 þ jBj2 ≈ F0½1 ∓ 13
15
αZWR� ðE10Þ

is clearly less precise than our Eq. (16) as was discussed
already in Sec. III. The term can easily be recognized as a
simplified version of that found in Eq. (16). Further, it
contains no corrections stemming from a diffuse nuclear
charge, for which we derived explicit expressions and ana-
lytical parametrizations in Sec. IV.A.2.

4. Nuclear and leptonic convolution

The finite nuclear size does not only affect the Coulomb
potential as felt by the charged lepton but also the behavior of
its wave function near the origin. The interaction volume
becomes a sphere with radius R, and thus the matrix element
requires an average for all the nucleon positions. This is
clearly visible in Eq. (E3) and is inherently present in our
definition of the C factor of Sec. VI.E. In the initial results by
Huffaker and Laird (1967) the shape factor contains an
additional term

C0ðWÞ ¼ hr2i
R2

αZWR; ðE11Þ

as a remnant of explicit averaging of f1 and g−1 inside
the nuclear volume. For a constant nuclear wave function,
i.e., a rectangle of width R, one finds hr2i ¼ ð3=5ÞR2 so that
C0ðWÞ ¼ ð3=5ÞαZWR. The approach of Holstein and co-
authors builds on this result and provides a more consistent
discussion by introducing the elementary particle treatment.
We move beyond the approximation of the previous section
and now expand Eq. (E5) to first order in q2, cðq2Þ ≈
c1 þ c2q2 to find

ρ ≈
Z

d3k
ð2πÞ3 e

ir·k
	
1þ c2

c1
q2



¼
	
1þ c2

c1
ðW2

0 þ∇2Þ


δ3ðrÞ; ðE12Þ

where ∇ is the gradient operator. In this manner, all further
expansions in q2 will always result in a constant factor
times δ3ðrÞ as F ½qn� ∝ ∇nδ3ðrÞ. This entails that all leptonic
radial wave functions will still be evaluated at the nuclear
center, be it multiplied with some constant factor depending
on nuclear structure. As such, all results will always be

proportional to the Fermi function defined at the origin, such
that it can always be meaningfully extracted as we have
always done so far. Again the results presented by Holstein
and colleagues have been listed only for uniformly charged
spheres. Using Eq. (E12) we find only A, D, and F integrals
survive, all of which are proportional to the square root of the
Fermi function as expected (Calaprice and Holstein, 1976).
Equations (13) and (A.16) in Calaprice and Holstein (1976)
are then to be compared against Eqs. (E11) and (106d). A
critical ingredient in the quantitative connection between the
different formalisms lies in the evaluation of c2=c1. In the
impulse approximation it can be written as (Calaprice and
Holstein, 1976)

c2
c1

≈
1

6

hβjjτ�σr2jjαi
hβjjτ�σjjαi

þ 1

6
ffiffiffiffiffi
10

p
hβjjτ�½σ ×

ffiffiffiffiffiffiffi
16
5
π

q
Y2ðrÞ�jjαi

hβjjτ�σjjαi ðE13Þ

and is related to the shape of nuclear wave functions. In the
initial isospin invariant formalism, these were always treated
as rectangles with only nonzero values for r < R, i.e.,
a uniformly charged sphere with radius R. Using this, one
arrives at c2=c1 ¼ ð1=10ÞR2. The correction factor to the
Behrens-Jänecke Fermi function (i.e., F0L0 in our formalism)
in the Holstein formalism is then written as

HSCðZ;WÞ0 ≈ 1þ R2=5 − ðW0RÞ2=5 − 9
20
ðαZÞ2

� 2
15
αZW0R ∓ 11

15
αZWR

þ 2
5
W0R2W − 2

5
R2W2: ðE14Þ

If we use the older expansion of Ψ̄e (Behrens and Jänecke,
1969; Wilkinson, 1990), for Gamow-Teller decay

oldCðZ;WÞ0 ¼ 1þ AC0 þ AC1W þ AC2W2; ðE15Þ

where

AC0 ¼ − 9
20
ðαZÞ2 − ðW0RÞ2=5� αZW0R=15þ R2=5;

AC1 ¼ ∓2αZR=3þ 4W0R2=9;
AC2 ¼ −4R2=9: ðE16Þ

It is clear every term can be identified with a similar one
in Eq. (E14), except for a factor of 2 difference in the
αZW0R term. All of these results are again valid only for a
uniformly charged sphere, both in the expansion of the lepton
wave function and in the calculation of the weak charge
density. In Sec. Awe looked at the deviation of the former due
to a more realistic charge distribution. Further, to correct for
the breakdown of the latter we introduced the isovector
correction CI in Sec. VI.F. Because of its large contribution
this can for certain not be neglected. In combination with
a more precise expansion of the lepton wave functions, it is
clear the approach presented in this work is superior to that
of Holstein.
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5. Induced terms

Finally, the Holstein formalism requires an adjustment for
the approximation introduced in Eq. (E5). Initially, Coulomb
corrections to the induced terms in the nuclear current were
neglected as the latter are already suppressed by a factor q=M.
As discussed by Bottino, Ciochetti, and Ciocchetti (1973) and
Bottino, Ciochetti, and Kim (1974), however, this approxi-
mation is not strictly valid. The reasoning starts from the
result by Armstrong and Kim (1972b) showing that hfðpfÞj
should be replaced by hfðpf þ pe − pÞj, where p is an
internal momentum of the Fourier transform. This has the
consequence that induced terms are now a function of q0 ¼
ðpf þ pe − pÞ − pi rather than q ¼ pf − pi, thereby intro-
ducing Coulomb corrections to the induced terms. This can be
seen from the fact that the additional term

1

ð2πÞ3
Z

dp⃗

�Z
dr⃗

�
Ψ̄eðr;peÞ
ūeðpeÞ

�
eir·p

�

×
FMðq0Þ
2mp

× σαβðpe − pÞβ ðE17Þ

becomes identically zero when Ψ̄e reduces to e−ir·pe ūeðpeÞ in
the absence of Coulomb interactions. The correction factor
given by Holstein (1974b) and Calaprice and Holstein (1976)

δh1ðZÞ ≈
ffiffiffiffiffi
10

p

6

αZ
MR

c1ð2bþ dII � dI � c1Þ ðE18Þ

can be obtained from the results of Eqs. (9) and (13) in
Bottino, Ciochetti, and Kim (1974) after proper conversion
from FM (FA) to b (c) using the definition of the nuclear
currents [Eq. (5) in Bottino, Ciochetti, and Kim (1974) and
Eq. (1) in Holstein (1974a)], with an exception of the dI and
dII terms. The results from (Bottino, Ciochetti, and Kim
(1974) can easily be extended to include this result, and a
quick glance toward the behavior of b and d terms leads
directly to Eq. (E18). A discussion on the signs for electron
and positron decay can be found in Holstein (1974a). As there
is no artificial separation of nuclear structure and Coulombic
terms and all terms of the nuclear current are retained, these
corrections occur naturally in the C factor of the Behrens-
Bühring formalism followed in this work.

6. Summary

While the Holstein formalism initially profits from a more
transparent description of the different factors and their origins
participating in the β spectrum shape, several approximations
introduced along the way limit the usefulness of the quoted
final formulas when requiring a high precision description.
Several terms have to be added, such as Coulomb corrections
to induced currents, thereby introducing confusion as to the
origin of these terms and how they play with the other results.
This is further hindered by a difference in definitions
throughout several papers about the correct manner of
introducing Coulomb corrections. We have looked at indi-
vidual parts of the calculation and for each of them discussed
the superiority of the formalism presented in this work.

To facilitate the interpretation of experimental results and
reduce notational clutter, the formulas in Sec. VI.E, while
calculated in the Behrens-Bühring formalism, are presented
using the well-known Holstein form factors.

APPENDIX F: VALIDITY OF HARMONIC OSCILLATOR
FUNCTIONS

Recently the issue of finite size corrections was addressed
by Wang, Friar, and Hayes (2016), incorporating density
functional theory (DFT) results to calculate the weak charge
density. The analytical formulation to first order in αZ and R
by Holstein (1974a) was used and rewritten in terms of nuclear
Zemach moments (Zemach, 1956)

δWang
FS ¼ −

αZ
3

�
4Whrið2Þ þWhrirð2Þ −

Wνhrirð2Þ
3

þ 1

W
ð2hrið2Þ − hrirð2ÞÞ

�
; ðF1Þ

where hrið2Þ and hrirð2Þ are defined as

hrið2Þ ¼
Z

d3ss
Z

d3rρwðrÞρchðjr⃗ − s⃗ jÞ; ðF2Þ

hrirð2Þ ¼
Z

d3ss
Z

d3rρwðrÞr
∂
∂r ρchðjr⃗ − s⃗ jÞ: ðF3Þ

Here ρw and ρch are the weak and regular charge densities,
respectively. As discussed in the previous section, care must
be taken when looking to compare Eq. (F1) to those presented
here. Holstein (1974a) defined the Coulomb correction to the
spectral function through Eq. (E6), where Δh1ðWÞ is given by
a simplified version of the Coulomb terms of Eq. (E7) without
the last term and subtracting the Fermi function ð1þ γÞ=2F0.
This is then developed to only first order in αZ to yield
Eq. (25) in Holstein (1974a). It is thus a combination of
electrostatic finite size effects contained in L0 and the leptonic
convolution. The previous section discussed the improve-
ments made by both formalisms, and we will not spend any
more time on explicitly showing the correspondence to the
formulas presented there. We will instead treat the evaluation
of the Zemach moments in a purely spherical harmonic
oscillator fashion and compare the results with those of
Wang, Friar, and Hayes (2016) obtained through DFT. This
will serve as a benchmark for the validity of using harmonic
oscillator wave functions in the evaluation of our expanded
results.
As previously discussed, a uniform density is not appro-

priate for the weak charge density. As a result, we added the
CI correction discussed in Sec. VI.F. Here we introduced the
rms radius of the weak charge density hr2iw as the essential
parameter in our correction. Wang, Friar, and Hayes (2016)
calculated this quantity for a series of nuclei ranging from
A ¼ 14 to 120 using both DFT and uniformly charged radius
results. We presented the way to analytically calculate these
radii using a charge-insensitive harmonic oscillator distribu-
tion model. We used the charge radii listed by Wang, Friar,
and Hayes (2016) to obtain an optimal comparison of our
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method. This was plugged into Eq. (115a) to evaluate hr2iw
for the last occupied transforming nucleon. We used the
approximation termed as “Behrens-Bühring,” which involves
approximating the form factor cðq2Þ ≈ c1ð1þ hr2iw=6Þ. The
Zemach moments are then reduced to

hrið2Þ ≈ hrich þ
hr2iwhr−1ich

3
; ðF4Þ

hrirð2Þ ≈
2hr2iwhr−1ich

3
. ðF5Þ

The last of these is a poor approximation, as can be seen from
numerical results listed by Wang, Friar, and Hayes (2016). If
we attempt to extend this approximation by expanding c to
Oðq4Þ, dimensional analysis tells us this factor will be
proportional to −hr4iwhr−3ich, which is not convergent. We
thus keep in mind that Eq. (F5) tends to overestimate the
integral by about 30%. Table IX shows a comparison of our
analytical methods with DFT results for the relevant param-
eters in our corrections.
While the agreement is fair for lower masses, differences

appear for the highest masses that were investigated. The
reason for this is twofold.

(1) The approximation we used by considering only the
final decaying neutron is not any more valid for the
higher mass A > 100 regions. Here the difference
between quantum numbers for proton and neutron
orbitals becomes too large and Eq. (115a) is an
unsustainable estimate. A more correct approach
is then to calculate the actual overlap integralR
drr2Rα

nlR
β
n0l0=

R
drRα

nlR
β
n0l0 where α and β are the

neutron and proton harmonic oscillator wave functions.
(2) Our harmonic oscillator functions are charge insensi-

tive, while the DFT results are not. We expect then an
additional effect arising from the breakdown of isospin
invariance, introducing the so-called nuclear mismatch
δC (Towner and Hardy, 2010). This has a strong Z
dependent behavior as is to be expected, and is a

worthy subject in its own right. This is, however,
beyond the scope of the work here.

Application of point 1 yields results accurate to within 10%
of the DFT results. The remaining discrepancy we attribute
to inherent limitations of the harmonic oscillator treatment and
to a lesser extent the nuclear mismatch problem of point 2.
The latter can be assumed to drop out to first order when
taking ratios of matrix elements suffering from the same issue.
This precision is, however, sufficient for our current purposes,
and we conclude the harmonic oscillator wave functions
yield appropriate results. An extension of the latter to
deformed nuclei is straightforward, as discussed in several
places throughout this text. Results obtained in a deformed
Woods-Saxon potential using harmonic oscillator basis func-
tions show excellent agreement with experimental weak
magnetism data, extensively discussed by Severijns et al.,
2018. This allows us to put our trust into the approach
presented here.
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