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Institut für Kernphysik and Jülich Center for Hadron Physics,
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A large number of experimental discoveries especially in the heavy quarkonium sector that did not
meet the expectations of the until then very successful quark model led to a renaissance of hadron
spectroscopy. Among various explanations of the internal structure of these excitations, hadronic
molecules, being analogs of light nuclei, play a unique role since for those predictions can be made
with controlled uncertainty. Experimental evidence of various candidates of hadronic molecules and
methods of identifying such structures are reviewed. Nonrelativistic effective field theories are the
suitable framework for studying hadronic molecules and are discussed in both the continuum and
finite volumes. Also pertinent lattice QCD results are presented. Further, the production mechanisms
and decays of hadronic molecules are discussed and comments are given on the reliability of certain
assertions often made in the literature.
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I. INTRODUCTION

With the discovery of deuterium in 1931 and the neutron in
1932, the first bound state of two hadrons, i.e., the deuteron
composed of one proton and one neutron, became known. The
deuteron is very shallowly bound by a mere MeV per nucleon,
i.e., it is located just below the neutron-proton continuum
threshold. Furthermore, it has a sizable spatial extension.
These two features can be used for defining a hadronic

molecule. A more precise definition will be given in the
course of this review.
Then the first meson, the pion, as the carrier particle of the

nuclear force proposed in 1935 by Yukawa was discovered in
1947, followed by the discovery of a second meson, the kaon,
in the same year. Since then, many different hadrons have
been observed. Naturally hadronic molecules other than the
deuteron have been expected. The first identified meson-
baryon molecule, i.e., the Λð1405Þ resonance composed of
one kaon and one nucleon was predicted by Dalitz and Tuan
(1959) and observed in the hydrogen bubble chamber at
Berkeley in 1961 (Alston et al., 1961) several years before the
quark model was proposed. With the quark model developed
in the early 1960s, it became clear that hadrons are not
elementary particles, but composed of quarks and antiquarks.
In the classical quark model, a baryon is composed of three
quarks and a meson is composed of one quark and one
antiquark. In this picture, the Λð1405Þ resonance is an excited
state of a three-quark (uds) system with one quark in an orbital
P-wave excitation. Ten years later, the theory of strong
interactions, quantum chromodynamics (QCD), was proposed
to describe the interactions between quarks as well as gluons.
The gluons are the force carriers of the theory that also exhibit
self-interactions due to the non-Abelian nature of the under-
lying gauge group SUð3ÞC, where C denotes the color degree
of freedom. In QCD the basic constituents of the hadrons are
both quarks and gluons. Therefore, the structure of hadrons is
more complicated than the classical quark model allows.
There may be glueballs (which contain only valence gluons),
hybrids (which contain valence quarks as well as gluons), and
multiquark states (such as tetraquarks or pentaquarks). Note,
however, that in principle the quark model also allows for
certain types of multiquark states (Gell-Mann, 1964).
While the classical quark model is very successful in

explaining properties of the spatial ground states of the flavor
SU(3) vector meson nonet, baryon octet, and decuplet, it fails
badly even for the lowest spatial excited states in both meson
and baryon sectors.
In the meson sector, the lowest spatial excited SU(3) nonet

is supposed to be the lowest scalar nonet which includes the
f0ð500Þ, the κð800Þ, the a0ð980Þ, and the f0ð980Þ. In the
classical constituent quark model, these scalars should be
qq̄ðL ¼ 1Þ states, where L denotes the orbital angular
momentum, with the f0ð500Þ as an ðuūþ dd̄Þ= ffiffiffi

2
p

state,
the a00ð980Þ as an ðuū − dd̄Þ= ffiffiffi

2
p

state, and the f0ð980Þ as
mainly an ss̄ state. This picture, however, fails to explain why
the mass of the a0ð980Þ is degenerate with the f0ð980Þ instead
of being close to the f0ð500Þ, as is the case of ρ and ω in the
vector nonet. Instead, this kind of mass pattern can be easily
understood in the tetraquark picture (Jaffe, 1977a) or in a
scenario where these states are dynamically generated from
the meson-meson interaction (Weinstein and Isgur, 1982;
Janssen et al., 1995; Oller, Oset, and Ramos, 2000), with
the f0ð980Þ and the a0ð980Þ coupling strongly to the K̄K
channel with isospins 0 and 1, respectively.
In the baryon sector, a similar phenomenon also seems to be

happening (Zou, 2008). In the classical quark model, the
lowest spatial excited baryon is expected to be a (uud) N�

state with one quark in an orbital angular momentum L ¼ 1
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state to have spin parity 1=2−. However, experimentally, the
lowest negative parity N� resonance is found to be the
Nð1535Þ, which is heavier than two other spatial excited
baryons: the Λð1405Þ and the Nð1440Þ. This is the long-
standing mass reversal problem for the lowest spatial excited
baryons. Furthermore, it is also difficult to understand the
strange decay properties of the Nð1535Þ, which seems to
couple strongly to the final states with strangeness (Liu and
Zou, 2006), as well as the strange decay pattern of another
member of the 1=2− nonet, the Λð1670Þ, which has a coupling
toΛηmuch larger than toNK andΣπ according to its branching
ratios listed in the tables in theReviewof Particle Physics by the
Particle Data Group (PDG) (Patrignani et al., 2016). All these
difficulties can be easily understood by assuming large five-
quark components in them (Helminen andRiska, 2002; Liu and
Zou, 2006; Zou, 2008) or considering them to be dynamically
generated meson-baryon states (Kaiser, Siegel, and Weise,
1995; Oset and Ramos, 1998; Oller, Oset, and Ramos, 2000;
Oller and Meißner, 2001; Inoue, Oset, and Vicente Vacas,
2002; Hyodo et al., 2003; Garcia-Recio, Lutz, and Nieves,
2004; Magas, Oset, and Ramos, 2005; Huang et al., 2007;
Bruns, Mai, and Meißner, 2011).
No matter which configurations are realized in multiquark

states, such as colored diquark correlations or colorless
hadronic clusters, the mass and decay patterns for the lowest
meson and baryon nonets strongly suggest that one must go
beyond the classical, so-called quenched, quark model. The
unquenched picture has been further supported by more
examples of higher excited states in the light quark sector,
such as the f1ð1420Þ as aK�K̄molecule (Törnqvist, 1994), and
by many newly observed states with heavy quarks in the first
decade of the new century, such as the D�

s0ð2317Þ as a DK
molecule or tetraquark state, or Xð3872Þ as aD�D̄molecule or
tetraquark state (Chen, Chen et al., 2016). In fact, the possible
existence of hadronic molecules composed of two charmed
mesons was already proposed by Voloshin and Okun (1976)
and supported by Törnqvist (1994) later within a one-pion
exchange model.
Although many hadron resonances were proposed to be

dynamically generated states from various hadron-hadron
interactions ormultiquark states, most of them cannot be clearly
distinguished from classical quark model states due to tunable
ingredients and possible large mixing of various configurations
in thesemodels.An example is the alreadymentionedΛð1405Þ.
Until 2010, i.e., 40 years after it was predicted and observed as
the K̄Nmolecule, the PDG (Nakamura et al., 2010) still claimed
that “the clean Λc spectrum has in fact been taken to settle the
decades-long discussion about the nature of the Λð1405Þ—a
true three-quark state or mere K̄N threshold effect—unambig-
uously in favor of the first interpretation.” Only after many
analyses of various relevant processes, the PDG (Patrignani
et al., 2016) now acknowledges the two-pole structure of the
Λð1405Þ (Oller and Meißner, 2001) and thus a dynamical
generation is most probable.
One way to unambiguously identify a multiquark state

(including hadronic molecular configurations) is the obser-
vation of resonances decaying into a heavy quarkonium plus a
meson with nonzero isospin made of light quarks or plus a
baryon made of light quarks. Since 2008, several such states

have been claimed, six Zc states, two Zb states, and two Pc
states; details on the experimental situation are given in the
next section. Among these newly claimed states, the two Pc
states are quite close to the predicted hadronic molecular states
(Wu et al., 2010; Wang et al., 2011; Z.-C. Yang et al., 2012;
Xiao, Nieves, and Oset, 2013). However, many of those states
are challenged by some proposed kinematic explanations,
such as threshold cusp effects (Bugg, 2011; Swanson, 2015),
triangle singularity effects (Chen, Liu, and Matsuki, 2013;
Wang, Hanhart, and Zhao, 2013a; Guo et al., 2015), etc. Some
of these claims were challenged by Guo, Hanhart, Wang, and
Zhao (2015) where strong support is presented that at least
some of the signals indeed refer to S-matrix poles.
Further experimental as well as theoretical studies are

necessary to settle the question which of the claimed states
indeed exist. Nevertheless, the observation of at least some of
these new states opens a new window for the study of multi-
quark dynamics. Together with many other newly observed
states in the heavy quarkonium sector, they led to a renaissance
of hadron spectroscopy. Among various explanations of the
internal structure of these excitations, hadronic molecules,
being analogs of the deuteron, play a unique role since for
those states predictions canbemadewith controlled uncertainty,
especially for the states with one or both hadrons containing
heavy quark(s). In fact most of these observed exotic candidates
are indeed closely related to open-flavor S-wave thresholds. To
study these hadronic molecules, both nonrelativistic effective
field theories (EFTs) and pertinent lattice QCD calculations are
the suitable frameworks. Especially, Weinberg’s famous com-
positeness criterion (Weinberg, 1963a, 1963b) (and extensions
thereof), which pinned down the nature of the deuteron as a
proton-neutron bound state, is applicable here. The pole
location in the corresponding hadron-hadron scatteringSmatrix
could also shed light on the nature of the resonances as extended
hadronic molecules or compact states.
The revival of hadron spectroscopy is also reflected in a

number of review articles. A few years ago, Klempt and
collaborators gave two broad reviews on exotic mesons
(Klempt and Zaitsev, 2007) and baryons (Klempt and
Richard, 2010). Other more recent pertinent reviews include
Brambilla et al. (2011), Olsen (2015), Chen, Chen et al.
(2016), Hosaka et al. (2016), Oset et al. (2016), H.-X. Chen
et al. (2017), Dong, Faessler, and Lyubovitskij (2017),
Esposito, Pilloni, and Polosa (2017), Lebed, Mitchell, and
Swanson (2017), and Olsen, Skwarnicki, and Zieminska
(2018). Among various theoretical models for these new
hadrons, we mainly cite those focusing on hadronic molecules
and refer the interested reader to the previously mentioned
comprehensive reviews for more references on other models.
This paper is organized as follows: In Sec. II, we discuss the

experimental evidence for states that could possibly be
hadronic molecules. In Sec. III, after a short review of the
basic S-matrix properties, we give a general definition of
hadronic molecules and discuss related aspects. Then, in
Sec. IV, nonrelativistic effective field theories tailored to
investigate hadronic molecules are formulated, followed by
a brief discussion of hadronic molecules in lattice QCD in
Sec. V. Section VI is devoted to the discussion of phenom-
enological manifestations of hadronic molecules, with a
particular emphasis on clarifying certain statements from
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the literature that have been used to dismiss certain states as
possible hadronic molecules. We end with a short summary
and outlook in Sec. VII. We mention that this field is very
active and thus only references that appeared before April
2017 are included.

II. CANDIDATES OF HADRONIC MOLECULES:
EXPERIMENTAL EVIDENCE

In this section we briefly review what is known exper-
imentally about some of the most promising candidates for
exotic states. Already the fact that those are all located close
to some two-hadron continuum channels indicates that the
two-hadron continuum is of relevance for their existence.
We will show that many of those states are located near S-
wave thresholds in both light and heavy hadron spectros-
copy, which is not only a natural property of hadronic
molecules, which are QCD bound states of two hadrons (a
more proper definition will be given in Sec. III.B), but also
a prerequisite for their identification as will be discussed in
Sec. III. In the course of this review, we will present other
arguments why many of these states should be considered
as hadronic molecules and what additional experimental
input is needed to further confirm this assignment.
In Tables I and II we present the current status for exotic

candidates in the meson sector. Exotic candidates in the

baryon sector are listed later in Table IV. Besides the standard
properties we also quote for each state the nearest relevant
S-wave threshold as well as its distance to that threshold. Note
that only thresholds of narrow states are quoted since these are
the only ones of relevance here (Guo and Meißner, 2011).
Otherwise, the bound system would also be broad (Filin et al.,
2010). In addition, as a result of the centrifugal barrier one
expects that if hadronic molecules exist, they should first
appear in the S wave which is why in this review we do not
considerP or higher partial waves although there is no principle
reason for the nonexistence of molecular states in the P wave.

A. Light mesons

1. Scalars below 1 GeV

The lowest S-wave two-particle thresholds in the hadron
sector are those for two pseudoscalar mesons, ππ, πK, ηπ, and
KK̄. Those channels carry scalar quantum numbers. The pion
pair is in either an isoscalar or an isotensor state, and the
isovector state is necessarily in an odd partial wave. It turns
out that there is neither a resonant structure in the isotensor ππ
nor in the isospin 3=2 πK S-wave; however, there are
resonances observed experimentally in all other channels.
According to the conventional quark model, a scalar meson of
qq̄ with JP ¼ 0þ carries one unit of orbital angular momen-
tum. Thus, the mass range of the lowest scalars is expected to

TABLE I. Mesons that contain at most one heavy quark that cannot be easily accommodated in the qq̄ quark model. Their quantum numbers
IGðJPCÞ, masses, widths, the nearby S-wave thresholds, mthreshold, where we add in brackets M −mthreshold, and the observed decay modes are
listed in order. The data without references are taken from the 2016 edition of the Review of Particle Physics (Patrignani et al., 2016).

State IGðJPCÞ M (MeV) Γ (MeV) S-wave threshold(s) (MeV) Decay mode(s) [branching ratio(s)]

f0ð500Þa 0þð0þþÞ 449þ22
−16 550� 24 ππð173þ22

−16 Þ ππ (dominant)
γγ

κð800Þ 1
2
ð0þÞ 682� 29 547� 24 Kπð48� 29Þ πK

f0ð980Þ 0þð0þþÞ 990� 20 10–100 KþK−ð3� 20Þ ππ (dominant)
K0K̄0ð−5� 20Þ KK̄

γγ

a0ð980Þ 1−ð0þþÞ 980� 20 50–100 KK̄ð−11� 20Þ ηπ (dominant)
KK̄
γγ

f1ð1420Þ 0þð1þþÞ 1426.4� 0.9 54.9� 2.6 KK̄�ð39.1� 0.9Þ KK̄� (dominant)
ηππ (possibly seen)

ϕγ

a1ð1420Þ 1−ð1þþÞ 1414þ15
−13 153þ8

−23 KK̄�ð27þ15
−13 Þ f0ð980Þπ (seen)

Xð1835Þ ??ð0−þÞ 1835:8þ4.0
−3.2 112� 40 pp̄ð−40:7þ4.0

−3.2 Þ pp̄
η0ππ

K0
SK

0
Sη

D�
s0ð2317Þþ 0ð0þÞ 2317.7� 0.6 < 3.8 DKð−45.1� 0.6Þ Dþ

s π
0

Ds1ð2460Þþ 0ð1þÞ 2459.5� 0.6 < 3.5 D�Kð−44.7� 0.6Þ D�þ
s π0½ð48� 11Þ%�
Dþ

s γ½ð18� 4Þ%�
Dþ

s π
þπ−½ð4� 1Þ%�

D�
s0ð2317Þþγ½ð4þ5

−2 Þ%�
D�

s1ð2860Þþ 0ð1−Þ 2859� 27 159� 80 D1ð2420ÞKð−59� 27Þ DK
D�K

aThe mass and width are derived from the pole position quoted by Peláez (2016) via ffiffiffiffiffispp ¼ M − iΓ=2.
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TABLE II. Same as Table I but in the charmonium and bottomonium sectors. A blank in the fifth column means that there is no relevant nearby
S-wave threshold.

State IGðJPCÞ M (MeV) Γ (MeV)
S-wave threshold(s)

(MeV)
Observed mode(s)
(branching ratios)

Xð3872Þ 0þð1þþÞ 3871.69� 0.17 < 1.2 D�þD− þ c:c:ð−8.15� 0.20Þ B → K½D̄�0D0�ð> 24%Þ
D�0D̄0 þ c:c:ð0.00� 0.18Þ B → K½D0D̄0π0�ð> 32%Þ

B → K½J=ψπþπ−�ð> 2.6%Þ
B → K½J=ψπþπ−π0�
pp̄ → ½J=ψπþπ−�…
pp → ½J=ψπþπ−�…

B → K½J=ψω�ð> 1.9%Þ
B → ½J=ψγ�ð> 6 × 10−3Þ
B → ½ψð2SÞγ�ð> 3.0%Þ

Xð3940Þ ??ð???Þ 3942.0� 9 37þ27
−17 D�D̄�ð−75.1� 9Þ eþe− → J=ψ ½DD̄��

Xð4160Þ ??ð???Þ 4156þ29
−25 139þ110

−60 D�D̄�ð139þ29
−25 Þ eþe− → J=ψ ½D�D̄��

Zcð3900Þ 1þð1þ−Þ 3886.6� 2.4 28.1� 2.6 D�D̄ð10.8� 2.4Þ eþe− → π½DD̄� þ c:c:�
eþe− → π½J=ψπ�

Zcð4020Þ 1ð??Þ 4024.1� 1.9 13� 5 D�D̄�ð7.0� 2.4Þ eþe− → π½D�D̄��
eþe− → π½hcπ�
eþe− → π½ψ 0π�

Yð4260Þ ??ð1−−Þ 4251� 9 120� 12 D1D̄þ c:c:ð−38.2� 9.1Þ eþe− → J=ψππ
χc0ωð53.6� 9.0Þ eþe− → πDD̄� þ c:c:

eþe− → χc0ω

eþe− → Xð3872Þγ
Yð4360Þ ??ð1−−Þ 4346� 6 102� 10 D1D̄� þ c:c:ð−85� 6Þ eþe− → ψð2SÞπþπ−
Yð4660Þ ??ð1−−Þ 4643� 9 72� 11 ψð2SÞf0ð980Þð−33� 21Þ eþe− → ψð2SÞπþπ−

Λþ
c Λ−

c ð70� 6Þ
Zcð4430Þþ ?ð1þÞ 4478þ15

−18 181� 31 ψð2SÞρð17þ15
−18 Þ B → K½ψð2SÞπþ�

B → K½J=ψπþ�
Zcð4200Þþ ?ð1þÞ 4196þ35

−32 370þ100
−32 B̄0 → K−½J=ψπþ�

Zcð4050Þþ ?ð??Þ 4051þ24
−40 82þ50

−28 D�D̄�ð34þ24
−40 Þ B̄0 → K−½χc1πþ�

Zcð4250Þþ ?ð??Þ 4248þ190
−50 177þ320

−70 χc1ρð−37þ24
−50 Þ B̄0 → K−½χc1πþ�

Xð4140Þ (Aaij et al.,
2017a, 2017b)

0þð1þþÞ 4146.5� 4.5þ4.6
−2.8 83� 21þ21

−14 DsD̄�
sð−66:1þ4.9

−3.2 Þ Bþ → Kþ½J=ψϕ�

Xð4274Þ (Aaij et al.,
2017a, 2017b)

0þð1þþÞ 4273.3� 8.3þ17.2
−3.6 56� 11þ8

−11 D�
sD̄�

sð−49:1þ19.1
−9.1 Þ Bþ → Kþ½J=ψϕ�

Xð4500Þ (Aaij et al.,
2017a, 2017b)

0þð0þþÞ 4506� 11þ12
−15 92� 21þ21

−20 D�
s0ð2317ÞD̄�

s0ð2317Þð−129þ16
−19 Þ Bþ → Kþ½J=ψϕ�

Xð4700Þ (Aaij et al.,
2017a, 2017b)

0þð0þþÞ 4704� 10þ14
−24 120� 31þ42

−33 D�
s0ð2317ÞD̄�

s0ð2317Þð69þ17
−26 Þ Bþ → Kþ½J=ψϕ�

Zbð10610Þ 1þð1þÞ 10 607.2� 2.0 18.4� 2.4 BB̄� þ c:c:ð4.0� 3.2Þ ϒð10860Þ → π½BB̄� þ c:c:�
ϒð10860Þ → π½ϒð1SÞπ�
ϒð10860Þ → π½ϒð2SÞπ�
ϒð10860Þ → π½ϒð3SÞπ�
ϒð10860Þ → π½hbð1PÞπ�
ϒð10860Þ → π½hbð2PÞπ�

Zbð10650Þ 1þð1þÞ 10 652.2� 1.5 11.5� 2.2 B�B̄�ð2.9� 1.5Þ ϒð10860Þ → π½B�B̄��
ϒð10860Þ → π½ϒð1SÞπ�
ϒð10860Þ → π½ϒð2SÞπ�
ϒð10860Þ → π½ϒð3SÞπ�
ϒð10860Þ → π½hbð1PÞπ�
ϒð10860Þ → π½hbð2PÞπ�
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be higher than the lowest pseudoscalars or vectors of which
the orbital angular momentum is zero. However, the lightest
scalars have masses below those of the lightest vectors.
Moreover, the mass ordering of the lightest scalars apparently
violates the pattern of other qq̄ nonets: Instead of having the
isovectors be the lowest states, the isovector a0ð980Þ states are
almost degenerate with one of the isoscalar states f0ð980Þ, and
those are the heaviest states in the nonet. The other isoscalar
f0ð500Þ, also known as σ, has the lightest mass of the
multiplet and an extremely large width. The strange scalar
K�

0ð800Þ, also known as κ, has a large width as well. All these
indicate some nontrivial substructure beyond a simple qq̄
description.
The mass ordering of these lightest scalars is seen as strong

evidence for the tetraquark scenario proposed by Jaffe (1977a,
1977b). Meanwhile, they can also be described as dynami-
cally generated states through meson-meson scatterings
(Pennington and Protopopescu, 1973; Au, Morgan, and
Pennington, 1987; Morgan and Pennington, 1993). For a
theoretical understanding of the f0ð500Þ pole it is crucial to
recognize that as a consequence of the chiral symmetry of
QCD the scalar isoscalar ππ interaction is proportional to
ð2s −M2

πÞ=F2
π at the leading order (LO) in the chiral expan-

sion. HereMπðFπÞ denotes the pion mass (decay constant). As
a result, the LO scattering amplitude has already hit the
unitarity bound for moderate energies necessitating some type
of unitarization, which at the same time generates a resonance-
like structure (Meißner, 1991). This observation, deeply
nested in the symmetries of QCD, has indicated the signifi-
cance of the ππ interaction for the light scalar mesons. The
history and the modern developments regarding the f0ð500Þ
was recently reviewed by Peláez (2016). Similar to the
isoscalar scalar f0ð500Þ generated from the ππ scattering,
the whole light scalar nonet appears naturally from properly
unitarized chiral amplitudes for pseudoscalar-pseudoscalar
scatterings (Oller, Oset, and Peláez, 1998, 1999; Gomez
Nicola and Peláez, 2002). Similar conclusions also follow
from more phenomenological studies (Weinstein and Isgur,
1990; Janssen et al., 1995). One of the most interesting
observations about a0ð980Þ and f0ð980Þ is that their masses
are almost exactly located at the KK̄ threshold. The closeness
of theKK̄ threshold to a0ð980Þ and f0ð980Þ and their strong S-
wave couplings make both states good candidates for K̄K
molecular states (Weinstein and Isgur, 1990; Baru et al., 2004).

2. Axial vectors f 1ð1420Þ, a1ð1420Þ, and implications of the
triangle singularity

The S-wave pseudoscalar meson pair scatterings can be
extended to S-wave pseudoscalar-vector scatterings and vec-
tor-vector scatterings where again dynamically generated
states can be investigated. The S-wave pseudoscalar-vector
scatterings can access the quantum numbers JP ¼ 1þ, while
the vector-vector scatterings give JP ¼ 0þ, 1þ, and 2þ. This
suggests that some of the states with those quantum numbers
can be affected by the S-wave open thresholds if their masses
are close enough to the thresholds. Or it might be possible that
such scatterings can dynamically generate states as discussed
in the literature (Lutz and Kolomeitsev, 2004b; Roca, Oset,
and Singh, 2005; Geng and Oset, 2009). Note that not all

states found in these studies survive once a more sophisticated
and realistic treatment as outlined by Gülmez, Meißner, and
Oller (2017) is utilized.
In addition, the quark model also predicts regular qq̄

states in the same mass range such that it appears difficult to
identify the most prominent structure of the states.
Let us focus on the lowest 1þþ mesons. Despite the fact that

these states could be dynamically generated from the
resummed chiral interactions (Lutz and Kolomeitsev,
2004b; Roca, Oset, and Singh, 2005), there are various
experimental findings consistent with a usual qq̄ nature of
the members of the lightest axial nonet f1ð1420Þ, f1ð1285Þ,
a1ð1260Þ, and K1Að13P1Þ (Patrignani et al., 2016). However,
two recent experimental observations expose novel features in
their decay mechanisms which illustrate the relevance of
their couplings to the two-meson continua. The BESIII
Collaboration observed an anomalously large isospin sym-
metry breaking in ηð1405Þ=ηð1475Þ → 3π (Ablikim et al.,
2012), which could be accounted for by the so-called triangle
singularity (TS) mechanism as studied by Aceti et al. (2012)
and Wu et al. (2012). This special threshold phenomenon
arises in triangle (three-point loop) diagrams with special
kinematics detailed in Sec. IV.A. Physically, it emerges when
all the involved vertices in the triangle diagram can be
interpreted as classical processes. For it to happen, one
necessary condition is that all intermediate states in the
triangle diagram, K̄K�ðKÞ þ c:c: for the example at hand,
should be able to reach their on-shell condition simultane-
ously. As a consequence, the f1ð1420Þ, which is close to the
K̄K� threshold and couples to K̄K� in an S-wave as well,
should also have large isospin violations in f1ð1420Þ → 3π.
This contribution has not been included in the BESIII analysis
(Ablikim et al., 2012). However, a detailed partial-wave
analysis suggests the presence of the f1ð1420Þ contribution
via the TS mechanism (Wu et al., 2013). Moreover, the TS
mechanism predicts structures in different C parity and isospin
(or G parity) channels via the K̄K�ðKÞ þ c:c: triangle dia-
grams. The f1ð1420Þ was speculated a long time ago to be a
K̄�K molecule from a dynamical study of the KK̄π three-body
system (Longacre, 1990).
Apart from the I ¼ 0, JPC ¼ 1þþ state f1ð1420Þ, one

would expect that the TS will cause enhancements in I ¼ 1

channels with C ¼ �. It provides a natural explanation for the
newly observed a1ð1420Þ by the COMPASS Collaboration
(Adolph et al., 2015) in π−p → π−π−πþp and π−π0π0p
(Mikhasenko, Ketzer, and Sarantsev, 2015; Liu, Oka, and
Zhao, 2016). It should be noted that Aceti, Dai, and Oset
(2016), Cheng, Xie, and Cao (2016), and Debastiani, Aceti
et al. (2017) proposed the a1ð1420Þ enhancement to be caused
by the a1ð1260Þ together with the TS mechanism and
similarly f1ð1420Þ is produced by f1ð1285Þ. However, as
shown by the convincing experimental data from MARK-III,
BESII, BESIII, and the detailed partial-wave analysis of Wu
et al. (2013), the f1ð1420Þ matches the behavior of a genuine
state in the KK̄π channel that is distorted in other channels by
an interference with the TS. This appears to be a more
consistent picture to explain the existing data and underlying
mechanisms (Zhao, 2017). These issues are discussed further
in Sec. VI.
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B. Open heavy-flavor mesons

Since 2003, quite a few open heavy-flavor hadrons have been
observed experimentally. Some of them are consistent with the
excited states predicted in the potential quark model, while the
others are not [for a recent review, see H.-X. Chen et al. (2017)].
Particular interest has been paid to the positive-parity charm-
strange mesons D�

s0ð2317Þ and Ds1ð2460Þ observed in 2003
by the BABAR (Aubert et al., 2003) and CLEO (Besson et al.,
2003) Collaborations. The masses ofD�

s0ð2317Þ andDs1ð2460Þ
are below theDK andD�K thresholds, respectively, by about the
same amount, only 45 MeV (see Table I and reference therein),
which makes them natural candidates for hadronic molecules
(Barnes, Close, and Lipkin, 2003; Szczepaniak, 2003; van
Beveren and Rupp, 2003; Hofmann and Lutz, 2004;
Kolomeitsev and Lutz, 2004; Guo, Shen et al., 2006; Faessler
et al., 2007; Flynn and Nieves, 2007; Gamermann et al., 2007;
Guo, Shen, and Chiang, 2007; Cleven et al., 2011b; Wu and
Zhao, 2012; Cleven, Grießhammer et al., 2014; Albaladejo, Jido
et al., 2016), while also other explanations such as P-wave cs̄
states and tetraquarks exist in the literature. Wewill return to the
properties of these states occasionally in this review. Here we
collect the features supporting theDK=D�K molecular hypoth-
esis as follows:

• Their masses are about 160 and 70 MeV, respectively,
below the predicted 0þ and 1þ charm-strange mesons by
the Godfrey-Isgur quark model (Godfrey and Isgur, 1985;
Di Pierro and Eichten, 2001), making them not easy to be
accommodated by the conventional cs̄ states.

• The mass difference between these two states is equal to
the energy difference between the corresponding Dð�ÞK
thresholds. This appears to be a natural consequence in
the hadronic molecular scenario, since the involved
interaction is approximately heavy quark spin symmetric
(Guo, Hanhart, and Meißner, 2009a).

• The small widths of both D�
s0ð2317Þ and Ds1ð2460Þ can

be understood only if they are isoscalar states,1 for then,
since both of them are below the DK=D�K thresholds,
the only possible hadronic decay modes are the isovector
channels Dþ

s π
0 and D�þ

s π0, respectively. The molecular
nature together with the proximity to the DK=D�K
thresholds leads to a prediction for the width of the
states above 100 keV while other approaches give a
width of about 10 keV (Colangelo and De Fazio, 2003;
Godfrey, 2003). These issues are discussed in detail in
Secs. V.D and VI.A.3.

• Their radiative decays, i.e., D�
s0ð2317Þ → Dsγ and

Ds1ð2460Þ → Dð�Þ
s γ, and production in B decays proceed

via short-range interactions (Lutz and Soyeur, 2008;
Cleven, Grießhammer et al., 2014; Chen, Huo, and
Zhao, 2015). They are therefore insensitive to the
molecular component of the states.

• As will be discussed in Secs. III.B and V.D, the DK
scattering length extracted from LQCD calculations
(L. Liu et al., 2013) is compatible with the result
extracted in the molecular scenario for D�

s0ð2317Þ based
on Weinberg’s compositeness theorem.

The DsJð2860Þ observed by the BABAR Collaboration
(Aubert et al., 2006a) presents another example of an interest-
ing charm-strange meson. It decays into both DK and D�K
with similar branching fractions (Patrignani et al., 2016). One
notices that the difference between theDsJð2860Þ mass and the
D1ð2420ÞK threshold is similar to that between the D�

s0ð2317Þ
and DK. Assuming the D�

s0ð2317Þ to be a DK hadronic
molecule, an S-wave D1ð2420ÞK bound state with quantum
numbers JP ¼ 1− was predicted to have a mass
2870� 9 MeV, consistent with that of the DsJð2860Þ, in
Guo and Meißner (2011), where the ratio of its partial widths
into the DK and D�K also gets naturally explained. As a result
of heavy quark spin symmetry (HQSS), aD2ð2460ÞK hadronic
molecule with JP ¼ 2− and a mass of around 2.91 GeV was
predicted by Guo and Meißner (2011). A later analysis by the
LHCb Collaboration suggests that this structure corresponds to
two states:D�

s1ð2860Þ with JP ¼ 1− and D�
s3ð2860Þ with JP ¼

3− (Aaij et al., 2014b). Regular cs̄ interpretations for these two
states have been summarized in H.-X. Chen et al. (2017).
The most recently reported observation of an exotic singly

heavy meson candidate is a narrow structure in the B0
sπ

�
invariant mass distribution, named Xð5568Þ, by the D0
Collaboration (Abazov et al., 2016). Were it a hadronic state,
it would be an isovector meson containing four different
flavors of valence quarks ðb̄sūdÞ. However, the peak is located
at only about 50 MeVabove the Bsπ threshold. The existence
of a tetraquark, whether or not being a hadronic molecule, at
such a low mass is questioned from the quark model point of
view by Burns and Swanson (2016), and, more generally,
from chiral symmetry and heavy quark flavor symmetry in
Guo, Meißner, and Zou (2016). Both the LHCb (Aaij et al.,
2016b) and CMS (Sirunyan et al., 2017) Collaborations
quickly reported negative results on the existence of
Xð5568Þ in their data sets. An alternative explanation for
the Xð5568Þ observation is necessary. One possibility is
provided by Yang, Wang, and Meißner (2017). Because of
these controversial issues with the Xð5568Þ, we will not
discuss this structure any further.

C. Heavy quarkoniumlike states: XYZ

The possibility of hadronic molecules in the charmonium
mass region was suggested by Voloshin and Okun (1976) and
De Rujula, Georgi, and Glashow (1977) only a couple of years
after the “November revolution” due to the discovery of the
J=ψ . Such an idea became popular after the discovery of the
famous Xð3872Þ by Belle in 2003 (Choi et al., 2003).
Since then, numerous other exotic candidates have been

found in the heavy quarkonium sector as listed in Table II. In
fact, it is mainly due to the observation of these structures that
the study of hadron spectroscopy experienced a renaissance.
The naming scheme currently used in the literature for these
XYZ states assigns isoscalar JPC ¼ 1−− states as Y and the
isoscalar (isovector) states with other quantum numbers are
named as XðZÞ. Note that the charged heavy quarkoniumlike
states Zcð3900Þ�, Zcð4020Þ�, Zbð10610Þ�, Zbð10650Þ�, and
Zcð4430Þ� are already established as being exotic, since they
should contain at least two quarks and two antiquarks with the
hidden pair of cc̄ or bb̄ providing the dominant parts of their
masses.

1A negative result was reported in a search for the isospin partner
of the D�

s0ð2317Þ (Choi et al., 2015).
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In the heavy quarkonium mass region, there are quite a few
S-wave thresholds opened by narrow heavy-meson pairs. In
the charmonium mass region, the lowest-lying thresholds are
DD̄, DD̄�, and D�D̄�. They are particularly interesting for
understanding the X and Z states which can couple to them in
an Swave. The relevant quantum numbers are thus JPC ¼ 1þ−

and ð0; 1; 2Þþþ (for more details, see Sec. IV.B). The S-wave
thresholds for the XYZ exotic candidates are also shown in
Table II. In addition, the exotic candidates in the charmonium
sector and the S-wave open-charm thresholds are shown in
Fig. 1. Here the thresholds involving particles with a large
width ≳100 MeV have been neglected.
Since only S-wave hadronic molecules with small binding

energies are well defined (Sec. III.B), in the following, we will
focus on those candidates, i.e., Xð3872Þ, Zcð3900Þ, Zcð4020Þ,
and Yð4260Þ in the charmonium sector and Zbð10610Þ and
Zbð10650Þ in the bottomonium sector. All of them have

extremely close-by S-wave thresholds except for the
Yð4260Þ, as will be discussed. For the experimental status
and phenomenological models of other exotic candidates, we
refer to several recent reviews (Swanson, 2006; Eichten et al.,
2008; Brambilla et al., 2014; Esposito, Guerrieri, Piccinini
et al., 2015; Chen, Chen et al., 2016; Richard, 2016; Esposito,
Pilloni, and Polosa, 2017; Lebed, Mitchell, and Swanson,
2017; Olsen, Skwarnicki, and Zieminska, 2018) and references
therein.

1. Xð3872Þ
In 2003, the Belle Collaboration reported a narrow structure

Xð3872Þ in the J=ψπþπ− invariant mass distribution in the
B� → K�J=ψπþπ− (Choi et al., 2003) process. It was con-
firmed shortly after by BABAR (Aubert et al., 2005c, 2008) in
eþe− collisions, and by CDF (Acosta et al., 2004; Abulencia
et al., 2006, 2007; Aaltonen et al., 2009) and D0 (Abazov et al.,
2004) in pp̄ collisions. Recently LHCb also confirmed its
production in pp collisions (Aaij et al., 2012, 2013, 2014a,
2015c) and pinned down its quantum numbers to JPC ¼ 1þþ,
which are consistent with the observations of its radiative
decays (Abe et al., 2005; Aubert et al., 2006b; Bhardwaj et al.,
2011) and multipion transitions (Abe et al., 2005; Abulencia
et al., 2006; del Amo Sanchez et al., 2010). The negative result
of searching for its charged partner in B decays (Aubert et al.,
2005b) indicates that the Xð3872Þ is an isosinglet state.
The most salient feature of the Xð3872Þ is that its mass

coincides exactly with the D0D̄�0 threshold2 (Patrignani et al.,
2016)

MD0 þMD�0 −MXð3872Þ ¼ 0.00� 0.18 MeV; ð1Þ
which indicates the important role of the D0D̄�0 in the
Xð3872Þ dynamics. That this should be the case can be seen
most clearly from the large branching fraction (Gokhroo et al.,
2006; Aushev et al., 2010) (see Table II)

B(Xð3872Þ → D̄0D0π0) > 32%; ð2Þ
although the Xð3872Þ mass is so close to the D0D̄�0 and
D̄0D0π0 thresholds. These experimental facts lead naturally to
the interpretation of the Xð3872Þ as aDD̄� hadronic molecule3

(Törnqvist, 2003), which had been predicted by Törnqvist

FIG. 1. S-wave open-charm thresholds and candidates for exotic
states in the charmonium sector. The solid (red) (dashed blue)
horizontal lines indicate the thresholds for nonstrange (strange)
meson pairs. Two additional thresholds involving a charmonium
χc0ω and ψ 0f0ð980Þ are also shown as dotted green lines. The
exotic candidates are listed as black dots and green triangles with
the latter marking the states to be discussed here. Here Ds0, Ds1,
D0

s1, and Ds2 mean D�
s0ð2317Þ, Ds1ð2460Þ, Ds1ð2536Þ, and

Ds2ð2573Þ, respectively. All masses take the central values given
in Patrignani et al. (2016).

2Here we use the updated “OUR AVERAGE” values in PDG2016
for the masses: MD0 ¼ 1864.84� 0.05 MeV, MD�0 ¼ 2006.85�
0.05 MeV, and MX ¼ 3871.69� 0.17 MeV from the J=ψπþπ−

and J=ψω modes (Patrignani et al., 2016).
3See also Close and Page (2004), Pakvasa and Suzuki (2004),

Swanson (2004a, 2004b), Törnqvist (2004), Voloshin (2004b), Wong
(2004), AlFiky, Gabbiani, and Petrov (2006), Braaten and Lu (2007),
Fleming et al. (2007), Ding, Liu, and Yan (2009), Dong et al. (2009),
Lee et al. (2009, 2011), Liu et al. (2009), Zhang and Huang (2009),
Gamermann et al. (2010), Wang, Deng, and Chen (2010), Mehen and
Springer (2011), Nieves and Valderrama (2011, 2012), Li and Zhu
(2012), Sun, Liu et al. (2012), Sun, Luo et al. (2012), Guo et al.
(2013a), Hidalgo-Duque et al. (2013), N. Li et al. (2013), Wang and
Wang (2013), Yamaguchi et al. (2013), Guo, Hidalgo-Duque et al.
(2014), He (2014), Zhao, Ma, and Zhu (2014), Baru et al. (2015a,
2015b), Jansen, Hammer, and Jia (2015), Karliner and Rosner
(2015a), Molnar, Luiz, and Higa (2016), and Y.-C. Yang et al. (2017).
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with the correct mass a decade earlier (Törnqvist, 1994). As
discussed in Sec. VI, precise measurements of the partial
widths of the processes Xð3872Þ → D0D̄0π0 and Xð3872Þ →
D0D̄0γ are particularly important in understanding the long-
distance structure of the Xð3872Þ. In the D0D̄�0 hadronic
molecular scenario, one gets a tremendously large D0D̄�0

scattering length of ≥ 10 fm, cf. Eq. (18). However, a
precision measurement of its mass is necessary to really
distinguish a molecular Xð3872Þ from a tetraquark scenario
(Maiani et al., 2005; Esposito, Guerrieri, Piccinini et al.,
2015). This will be discussed further in Secs. III.B.3 and III.C.
Other observables are also measured which could be

sensitive to the internal structure of the Xð3872Þ. The ratio
of branching fractions

RI ≡ B(Xð3872Þ → J=ψπþπ−π0)
B(Xð3872Þ → J=ψπþπ−)

was measured to be 1.0� 0.4� 0.3 by Belle (Abe et al.,
2005) and 0.8� 0.3 by BABAR (del Amo Sanchez et al.,
2010). The value about unity means a significant isospin
breaking because the three and two pions are from the
isoscalar ω (Abe et al., 2005; del Amo Sanchez et al.,
2010) and from the isovector ρ (Abulencia et al., 2006),
respectively. Notice that there is a strong phase space
suppression on the isospin conserved three-pion transition
through the J=ψω channel. The fact that the molecular
scenario of Xð3872Þ provides a natural explanation for the
value of RI will be discussed in Sec. VI.A.3.
The experimental information available about the radiative

decays of the Xð3872Þ is (Aaij et al., 2014a)

B(Xð3872Þ → ψ 0γ)
B(Xð3872Þ → J=ψγ)

¼ 2.46� 0.64� 0.29: ð3Þ

A value larger than 1 for this ratio was argued to favor the
χc1ð23P1Þ interpretation (Swanson, 2004a) over the D0D̄�0

hadronic molecular picture. This, however, is not the case
(Mehen and Springer, 2011; Guo, Hanhart, Kalashnikova
et al., 2015) as will be demonstrated in Sec. VI.
The production rates of Xð3872Þ in B0 and B− decays was

measured by BABAR (Aubert et al., 2006c), i.e.,

B(B0 → Xð3872ÞK0 → J=ψπþπ−K0)

B(B− → Xð3872ÞK− → J=ψπþπ−K−)

¼ 0.50� 0.30� 0.05: ð4Þ

We show in Sec. VI that this value is also consistent with a
molecular nature of the Xð3872Þ.
One expects mirror images of charmoniumlike states to

be present in the bottomonium sector. The Zc and Zb states
discussed in the next section suggest that such phenomena
do exist. The analog of the Xð3872Þ in the bottom sector
Xb has not yet been identified. A search for the Xb was
carried out by the CMS Collaboration, but no signal was
observed in the ϒπþπ− channel (Chatrchyan et al., 2013b).
However, as pointed out by Guo et al. (2013a) before the
experimental results and stressed again by Guo et al.
(2014b) and Karliner and Rosner (2015b) afterward, the
Xb → ϒπþπ− decay requires an isospin breaking which
should be strongly suppressed due to the extremely small
mass differences between the charged and neutral bot-
tomed mesons and the large difference between the BB̄�

threshold and the ϒð1SÞω and ϒð1SÞρ thresholds. In
contrast, other channels such as Xb → ϒπþπ−π0, Xb →
χbJπ

þπ− (Guo et al., 2013a, 2014b; Karliner and Rosner,
2015b), and Xb → γϒðnSÞ (Li and Wang, 2014) should be
a lot more promising for an Xb search.

2. Zbð10610Þ, Zbð10650Þ and Zcð3900Þ, Zcð4020Þ
From an analysis of the ϒð10860Þ → πþπ−ðbb̄Þ processes

in 2011 the Belle Collaboration reported the discovery of two
charged states decaying into ϒðnSÞπ with n ¼ 1, 2, and 3 and
hbðmPÞπ with m ¼ 1 and 2 (Bondar et al., 2012). Their line
shapes in a few channels are shown in Fig. 2. A later analysis
at the same experiment allowed for an amplitude analysis
where the quantum numbers IGðJPÞ ¼ 1þð1þÞ were strongly
favored (Garmash et al., 2015).4 This together with the fact
that the Zbð10610Þ and Zbð10650Þ have masses very close to

(a) (b) (c) (d)

FIG. 2. Measured line shapes of the two Zb states in the BB̄�, B�B̄�, and hbð1P; 2PÞπ channels (Garmash et al., 2016) and a fit using
the parametrization of Hanhart et al. (2015) and Guo, Hanhart et al. (2016).

4The existence of an isovector bb̄qq̄ state with exactly these
quantum numbers was speculated a long time ago for explaining the
puzzling ϒð3SÞ → ϒð1SÞππ transition (Voloshin, 1983; Anisovich
et al., 1995). The Zb effects in dipion transitions amongϒ states were
recently reanalyzed using the dispersion technique by Y.-H. Chen
et al. (2016, 2017).
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the BB̄� and B�B̄� thresholds, respectively, makes both
excellent candidates for hadronic molecules (Bondar et al.,
2011).5 This statement finds further support in the observation
that both states also decay by far most probably into BB̄� and
B�B̄� (Garmash et al., 2016) (see Table III).6 The neutral
partner is so far observed only for the lighter state (Krokovny
et al., 2013). Recently, the Belle Collaboration reported the
invariant mass distributions of hbð1PÞπ and hbð2PÞπ channels
at ϒð11020Þ energy region (Abdesselam et al., 2016) (see
Fig. 3), showing a resonant enhancement in the Zb mass
region. However, due to the limited statistics it is impossible to
judge whether there are two peaks or just one.
Employing sums of BW functions for the resonance signals

the experimental analyses gave masses for both Zb states
slightly above the corresponding open-flavor thresholds
together with narrow widths. It seems in conflict with the
hadronic molecular picture and was claimed to be consistent
with the tetraquark approach (Esposito, Pilloni, and Polosa,
2016). It is therefore important to note that a recent analysis
based on a formalism consistent with unitarity and analyticity
leads for both states to below-threshold pole positions
(Hanhart et al., 2015; Guo, Hanhart et al., 2016).7

A few years after the discovery of Zbð10610Þ and
Zbð10650Þ in the Belle experiment, the BESIII and Belle

Collaborations almost simultaneously claimed the observation
of a charged state in the charmonium mass range Zcð3900Þ
(Ablikim et al., 2013a; Z. Q. Liu et al., 2013). It was shortly
after confirmed by a reanalysis of CLEO-c data (Xiao et al.,
2013), and its neutral partner was also reported by Xiao et al.
(2013) and Ablikim et al. (2015e). Soon after these observa-
tions, the BESIII Collaboration reported the discovery of
another charged state Zcð4020Þ (Ablikim et al., 2013b), and
its neutral partner was reported by Ablikim et al. (2014c).
These charmoniumlike states show in many respects similar
features as the heavier bottomoniumlike states discussed
previously, although there are also some differences. On
the one hand, while the Zcð3900Þ is seen in the J=ψπ channel
and Zcð4020Þ is seen in hcπ, there is no clear signal of
Zcð4020Þ in J=ψπ and Zcð3900Þ in hcπ, although in the latter
case there might be some indications of Zcð3900Þ → hcπ.
This pattern might reflect a strong mass dependence of the
production mechanism (Wang, Hanhart, and Zhao, 2013b).
On the other hand, in analogy to Zbð10610Þ and Zbð10650Þ,
Zcð3900Þ and Zcð4020Þ have masses very close to the DD̄�

and D�D̄� thresholds, respectively, and they couple most
prominently to these open-flavor channels regardless of the
significant phase space suppression (Ablikim et al., 2014a,
2014b, 2015c, 2015d). The two Zc states are also widely
regarded as hadronic molecules (Dong et al., 2013b; Guo
et al., 2013a; He et al., 2013; Ke, Wei, and Li, 2013; Li, 2013;
Voloshin, 2013; Wang, Hanhart, and Zhao, 2013a; Wilbring,
Hammer, and Meißner, 2013; Zhang, 2013; Cui et al., 2014;
W. Chen et al., 2015; Karliner and Rosner, 2015a; Gong, Guo
et al., 2016).
Analogous to the Zb case, the experimental analyses of the

two Zc states based on sums of BW distributions result in
masses above the continuum thresholds as well. However, this
does not allow the correct extraction of the pole locations. In
order to obtain reliable pole locations an analysis in the spirit
of Hanhart et al. (2015) and Guo, Hanhart et al. (2016) is
necessary for these charmoniumlike states. Such an analysis
was done for the Zcð3900Þ by Albaladejo, Guo et al. (2016).
By fitting to the available BESIII data in the Yð4260Þ →
J=ψπþπ− (Ablikim et al., 2013a) and the Yð4260Þ →
J=ψπþπ− (Ablikim et al., 2015a) modes, it was found that

(a) (b)

FIG. 3. The missing mass spectra for hbð1PÞπþπ− and
hbð2PÞπþπ− channels in the ϒð11020Þ region. The solid and
dashed histograms are the fits with the Zb signal fixed from the
ϒð10860Þ analysis and with only a phase space distribution,
respectively. From Abdesselam et al., 2016.

TABLE III. The reported branching fractions of the known decay
modes of Zbð10610Þþ and Zbð10650Þþ (Garmash et al., 2016) with
the statistical and systematical uncertainties in order.

Channel B of Zbð10610Þ (%) B of Zbð10650Þ (%)

ϒð1SÞπþ 0.54þ0.16þ0.11
−0.13−0.08 0.17þ0.07þ0.03

−0.06−0.02

ϒð2SÞπþ 3.62þ0.76þ0.79
−0.59−0.53 1.39þ0.48þ0.34

−0.38−0.23

ϒð3SÞπþ 2.15þ0.55þ0.60
−0.42−0.43 1.63þ0.53þ0.39

−0.42−0.28

hbð1PÞπþ 3.45þ0.87þ0.86
−0.71−0.63 8.41þ2.43þ1.49

−2.12−1.06

hbð2PÞπþ 4.67þ1.24þ1.18
−1.00−0.89 14:7þ3.2þ2.8

−2.8−2.3

BþB̄�0 þ B̄0B�þ 85:6þ1.5þ1.5
−2.0−2.1 � � �

B�þB̄�0 � � � 73:7þ3.4þ2.7
−4.4−3.5

5See also Cleven et al. (2011a), Sun et al. (2011), Zhang, Zhong,
and Huang (2011), Danilkin, Orlovsky, and Simonov (2012),
Ohkoda et al. (2012b), Y. Yang et al. (2012), Dong et al.
(2013a), Li, Shao et al. (2013), Wang and Huang (2014), Z.-G.
Wang (2014), Dias, Aceti, and Oset (2015), and Karliner and Rosner
(2015a).

6The branching fractions were measured by assuming that these
channels saturate the decay modes and using the Breit-Wigner (BW)
parametrization for the Zb structures (Garmash et al., 2016).
However, there could be non-negligible modes such as the ηbρ,
and the branching fractions measured in this way for near-threshold
states should not be used to calculate partial widths by simply
multiplying with the BW width. This point was discussed by Y.-H.
Chen et al. (2016) for the Zb case.

7Note that this, however, does not exclude the possibility of above-
threshold poles. In the parametrization used, the contact terms are
taken to be constants. The possibility of getting an above-threshold
pole is available once energy dependence is allowed in the contact
terms. Nevertheless, the analyses at least show that the below-
threshold-pole scenario is consistent with the current data.
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the current data are consistent with either an above-threshold
resonance pole or a below-threshold virtual state pole. A
comparison of the resonance pole obtained therein with
various determinations in experimental papers is shown
in Fig. 4.

3. Yð4260Þ and other vector states

At present, the vector channel with JPC ¼ 1−−, in both the
bottomonium and the charmonium sector, is the best inves-
tigated one experimentally, since it can be accessed directly in
eþe− annihilations. Note that a pair of ground-state open-
flavor mesons, such as DD̄, DD̄� þ c:c:, D�D̄�, DsD̄s, etc.,
carry positive parity in the S wave and thus cannot be directly
accessed in eþe− annihilations. Accordingly, if the S-wave
hadronic molecules exist in the vector channel, they should be
formed (predominantly) by constituents different from them.
In particular, it suggests that the S-wave molecular states in the
vector channel should be heavier than those thresholds opened
by a pair of ground-state Dð�Þ mesons.
As the first Y state, the Yð4260Þ was observed by the

BABAR Collaboration in the J=ψπþπ− channel in the initial
state radiation (ISR) process eþe− → γISRJ=ψπþπ− (Aubert
et al., 2005a). The fitted mass and width are 4259� 8þ2

−6 MeV
and 50–90 MeV, respectively. It was confirmed by CLEO-c
(He et al., 2006), Belle (Yuan et al., 2007), and an additional
analysis of BABAR (Lees et al., 2012) with, however, mass
values varying in different analyses. We note that a recent
combined analysis of the BESIII data in four different
channels eþe− → ωχc0 (Ablikim et al., 2016a), πþπ−hc
(Ablikim et al., 2017b), πþπ−J=ψ (Ablikim et al., 2017c),
and D0D�−πþ þ c:c: (Yuan, 2017) gives a mass of 4219.6�
3.3� 5.1 MeV and a width of 56.0� 3.6� 6.9 MeV (Gao,
Shen, and Yuan, 2017).
The Yð4260Þ was early recognized as a good candidate for

an exotic state since there are no quark model states predicted
around its mass. Moreover, it does not show a strong coupling

to DD̄ as generally expected for vector cc̄ states, and it does
not show up as a pronounced enhancement in the inclusive
cross sections for eþe− → hadrons (or the famous R value
plot). It is still believed to be a prime candidate for a hybrid
state (Close and Page, 2005) [for a recent discussion see
Kalashnikova and Nefediev (2016)] or a hadrocharmonium
state (Dubynskiy and Voloshin, 2008; Li and Voloshin, 2014).
However, it is also suggested to be a D1ð2420ÞD̄ molecular
state (Ding, 2009; G. Li and Liu, 2013; M.-T. Li et al., 2013;
Wang, Hanhart, and Zhao, 2013a; Cleven, Wang et al., 2014;
X.-G. Wu et al., 2014) [the hadrocharmonium picture and the
molecular picture are contrasted by Wang et al. (2014)]. This
picture is further supported by the fact that the recent high-
statistics data from BESIII (Ablikim et al., 2017c) (see Fig. 5)
show an enhancement at the D1ð2420ÞD̄ threshold in the
J=ψππ channel.8 The observations of Zcð3900Þπ (Sec. II.C.2)
and Xð3872Þγ (Ablikim et al., 2014d) in the mass region of
the Yð4260Þ provide further support for a sizable D1ð2420ÞD̄
component in its wave function as discussed in Sec. VI. The
suppression of an S-wave production, in the heavy quark limit,
of the 1−− D1ð2420ÞD̄ pair in eþe− collisions (Eichten et al.,
1978, 1980; Li and Voloshin, 2013) could be the reason for the
dip around the Yð4260Þ mass in the inclusive cross section of
eþe− → hadrons (Wang et al., 2014). In addition, the data
from Belle in eþe− → D̄D�π (Pakhlova et al., 2009) and from
BESIII on eþe− → hcππ (Ablikim et al., 2017b), χc0ω
(Ablikim et al., 2015f) are highly nontrivial (Fig. 6) and
are claimed to be consistent with the molecular picture
(Cleven, Wang et al., 2014; Cleven and Zhao, 2017). A
combined analysis of the BESIII data in different channels
was presented by Gao, Shen, and Yuan (2017).
The absence of a signal for Yð4260Þ in J=ψKK̄ (He et al.,

2006; Yuan et al., 2008; Shen et al., 2014) questions the
tetraquark picture of Yð4260Þ with a diquark-antidiquark

[MeV]

]
Ve

M[

FIG. 4. The poles determined by Albaladejo, Guo et al. (2016)
(0.5 and 1.0 GeV refer to the cutoff values used therein) in
comparison with the mass and width values for the Zcð3900Þ
reported by Ablikim et al. (2013a, 2014b, 2015a), Z. Q. Liu
et al. (2013), and Xiao et al. (2013). From Albaladejo, Guo
et al., 2016.

FIG. 5. The cross section of eþe− → πþπ−J=ψ for center-of-
mass energies from 3.77 to 4.6 GeV (Ablikim et al., 2017c). It
shows a clear shoulder around the D1D̄ threshold (marked by the
vertical gray band) as predicted by Cleven, Wang et al. (2014).
The solid red curve is from the analysis of BESIII (Ablikim et al.,
2017c). A comparison of these data with the BESIII scan data can
be found in Gao, Shen, and Yuan (2017).

8In this context note that the hybrid picture also predicts a large
coupling of Yð4260Þ to D1ð2420ÞD̄ (Barnes, Close, and Swanson,
1995; Close and Page, 2005; Kou and Pene, 2005), which could be
interpreted as the necessity of considering D1D̄ as a component.
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½cs�½c̄ s̄� configuration (Esposito, Guerrieri, Piccinini et al.,
2015). In addition, the ground state in the tetraquark picture
(Esposito, Guerrieri, Piccinini et al., 2015) Yð4008Þ is not
confirmed by the recent high-statistics data from BESIII
(Ablikim et al., 2017c). Meanwhile, the cross sections for
eþe− → ψ 0ππ (Aubert et al., 2007; Wang et al., 2007), η0J=ψ
(Ablikim et al., 2016b), ηJ=ψ , and π0J=ψ (Ablikim et al.,
2015b) do not show any structure around the Yð4260Þ energy
region. It remains to be seen if these findings allow for further
conclusions on the nature of the Yð4260Þ.
It is interesting to observe that some properties of the

Yð4260Þ, such as its proximity and strong coupling to theD1D̄
threshold, are mirror imaged by the ϒð11020Þ in the botto-
monium sector (Bondar and Voloshin, 2016). Belle II appears
to be an ideal instrument to investigate this connection in more
detail in the future (Bondar, Mizuk, and Voloshin, 2017).
Searching for new decay modes of the Yð4260Þ, BABAR

scanned the line shapes of eþe− → ψð2SÞπþπ− and found a
new structure, named Yð4360Þ with a mass of 4324�
24 MeV and a width of 172� 33 MeV (Aubert et al.,
2007). In the same year, the Belle Collaboration (Wang et al.,
2007) analyzed the same process and found two resonant
structures: a lower one consistent with Yð4360Þ and a higher
one, named Yð4660Þ, with a mass of 4664� 11� 5 MeV
and a width of 48� 15� 3 MeV. A combined fit (Liu, Qin,
and Yuan, 2008) to the cross sections of the process
eþe− → ψð2SÞπþπ− from both BABAR and Belle gives the
parameters for the two resonances MYð4360Þ ¼ 4355þ9

−10 � 9,

ΓYð4360Þ ¼103þ17
−15 �11 and MYð4660Þ ¼ 4661þ9

−8 � 6, ΓYð4660Þ ¼
42þ17

−12 � 6 MeV for Yð4360Þ and Yð4660Þ, respectively.
The fit at the same time provides an upper limit for
B(Yð4260Þ → ψð2SÞπþπ−)Γeþe− as 4.3 eV. Those measure-
ments were updated by Wang et al. (2015). Later on the Belle
Collaboration found a structure in the Λþ

c Λ−
c channel with a

peak position 30 MeV lower than that of Yð4660Þ (Pakhlova
et al., 2008), which might either point at an additional state,
called Yð4630Þ, or, be an additional decay channel of the
Yð4660Þ (Cotugno et al., 2010; Guo, Haidenbauer et al.,
2010). The latter is the view taken in the 2016 Review of

Particle Physics (Patrignani et al., 2016). Of particular interest
to this review is the observation of Guo, Haidenbauer et al.
(2010) that within the ψ 0f0ð980Þ hadronic molecular picture
(Guo, Hanhart, and Meißner, 2008; Wang and Zhang, 2010b)
the line shape of Yð4630Þ in the Λþ

c Λ−
c channel could be

understood as the signal of Yð4660Þ with the Λþ
c Λ−

c final state
interaction. As a byproduct, Guo, Hanhart, and Meißner
(2009a) predicted the properties of its spin partner, an
η0cf0ð980Þ hadronic molecule, at around 4.61 GeV.
As stressed by Wang, Hanhart, and Zhao (2013b) and

Bondar and Voloshin (2016) the production of Zcð3900Þ and
Zcð4020Þ in the mass region of Yð4260Þ and Yð4360Þ as well
as that of Zbð10610Þ and Zbð10650Þ in the mass region of
ϒð10860Þ and ϒð11020Þ, respectively, is sensitive to the TS
mechanism. A peculiar feature of such a mechanism is that
whether peaks appear in certain invariant mass distributions
depends strongly on the kinematics. The recent observation of
a peak in the ψ 0π invariant mass distribution by the BESIII
Collaboration (Ablikim et al., 2017a) shows exactly this
behavior. The correlations between the initial S-wave thresh-
olds and the final S-wave thresholds could be a key for
understanding the rich phenomena observed in this energy
region (Liu, Oka, and Zhao, 2016).

D. Baryon candidates for hadronic molecules

We now switch to the experimental evidence for hadronic
molecules in the baryon sector. In analogy to the meson sector
we focus on states which are located close to S-wave
thresholds of narrow meson-baryon pairs.9 In the light baryon
spectrum the Λð1405Þ has been broadly discussed as a K̄N
molecular state. A few charm baryons discovered in recent
years are close to S-wave thresholds, and they have been
suggested to be hadronic molecules in the literature. The
recently observed Pcð4450Þ and Pcð4380Þ have also been
proposed to be hadronic molecules with hidden charm.

FIG. 6. The left plot shows the cross sections of the eþe− → hcππ (solid red circles) from BESIII (Ablikim et al., 2013b) and the
eþe− → J=ψππ (hollow blue circles) from Belle (Z. Q. Liu et al., 2013) (note that the recent BESIII data for eþe− → J=ψππ have much
smaller errors as shown in Fig. 5). From Yuan, 2014. The middle one is the line shape for the DD̄�π channel within the D1D̄ molecular
picture (Cleven, Wang et al., 2014) compared to the Belle data (Pakhlova et al., 2009). The predicted line shape is similar to the solid line
of the right panel of Fig. 10 with unstable constituent in Sec. III [note that an updated analysis can be found in Qin, Xue, and Zhao
(2016) and the new data from BESIII can be found in Gao, Shen, and Yuan (2017)]. The right plot is the line shape of eþe− → χc0ω
measured by BESIII (Ablikim et al., 2015f) and the bands are theoretical calculations in the D1D̄ molecular picture (Cleven and
Zhao, 2017).

9Note that also P11ð1440Þ was proposed to have a prominent
f0ð500ÞN substructure (Krehl et al., 2000). However, the large width
of the f0ð500Þ prohibits a model-independent study of this claim.
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1. Candidates in the light baryon sector

The Λð1405Þ was discovered in the πΣ subsystems of
Kp → Σπππ (Alston et al., 1961) [see also Kim (1965) and
Hemingway (1985)]. Further experimental information about
this state comes from old scattering data (Humphrey and
Ross, 1962; Watson, Ferro-Luzzi, and Tripp, 1963; Sakitt
et al., 1965; Ciborowski et al., 1982) complemented by the
recent K̄N threshold amplitude extracted from data on kaonic
hydrogen (Bazzi et al., 2011, 2012) as well as the older
so-called threshold ratios (Tovee et al., 1971; Nowak
et al., 1978). There are further data on Σπ distributions from
pp → Σ�π∓Kþp (Zychor et al., 2008; Agakishiev et al.,
2013), the photoproduction γp → KþΣπ (Moriya et al.,
2014), and additional reactions. It appears also feasible that

high-energy experiments such as BABAR, Belle, BESIII, CDF,
D0, and LHCb investigate the Λð1405Þ via the decays of
heavy hadrons such as Λb → J=ψΛð1405Þ (Roca et al., 2015).
Note that a signal ofΛð1405Þwas clearly visible in an analysis
of Λb → J=ψKp performed by the LHCb Collaboration (Aaij
et al., 2015b).
The Λð1405Þ has strangeness S ¼ −1 with IðJPÞ ¼

0ð1=2−Þ and a mass about 30 MeV (see Table IV) below
the K̄N threshold. Note that a direct experimental determi-
nation of the spin-parity quantum numbers was given only
recently by the CLAS Collaboration (Moriya et al., 2014).
Since its mass is smaller than that of the nucleon counterpart
Nð1535Þ1=2− and the mass difference from its spin-splitting
partner state Λð1520Þ IðJPÞ ¼ 0ð3=2−Þ is larger than that
between Nð1535Þ1=2− and Nð1520Þ3=2−, it can hardly be

TABLE IV. The same as Table I but in the baryon sector.

State IðJPÞ M (MeV) Γ (MeV) S-wave threshold(s) (MeV)
Observed mode(s)
(branching ratios)

Λð1405Þ 0ð1
2
−Þ 1405:1þ1.3

−1.0 50.5� 2.0 NK̄ð−29:4þ1.3
−1.0 Þ Σπð100%Þ

Σπð76:2þ1.3
−1.0 Þ

Λð1520Þ 0ð3
2
−Þ 1519.5� 1.0 15.6� 1.0 Σð1385Þ−πþð−7.3� 1.1Þ NK̄ð45� 1Þ%

Σð1385Þþπ−ð−2.9� 1.1Þ Σπð42� 1Þ%
Σð1385Þ0π0ð0.8� 1.4Þ Λππð10� 1Þ%

Λð1670Þ 0ð1
2
−Þ ≈1670 ≈35 Ληð4Þ NK̄ð20–30Þ%

Σπð25–55Þ%
Ληð10–25Þ%

Λcð2595Þ 0ð1
2
−Þ 2592.25� 0.28 2.6� 0.6 Σcð2455Þþþπ−ð−1.04� 0.31Þ Σcð2455Þþþπ−ð24� 7Þ%

Σcð2455Þ0πþð−0.82� 0.31Þ Σcð2455Þ0πþð24� 7Þ%
Σcð2455Þþπ0ð4.62� 0.49Þ Λþ

c π
þπ−3 − bodyð18� 10Þ%

Λcð2625Þ 0ð3
2
−Þ 2628.11� 0.19 < 0.97 Σcð2455Þπð36.53� 0.24Þ Λþ

c π
þπ−ð67%Þ

Σcð2455Þþþπ−ð< 5%Þ
Σcð2455Þ0πþð< 5%Þ

Λcð2880Þ 0ð5
2
þÞ 2881.53� 0.35 5.8� 1.1 ND�ð−65.91� 0.35Þ Λþ

c π
þπ−

Σcð2455Þ0;þþπ�

Σcð2520Þ0;þþπ�

pD0

Λcð2940Þ 0ð3
2
−Þ 2939:3þ1.4

−1.5 17þ8
−6 ND�ð−8.1þ1.4

−1.5 Þ Σcð2455Þ0;þþπ�

Aaij et al. (2017d) pD0

Σcð2800Þ 1ð??Þ 2800þ5
−4 70þ23

−15 NDð−6� 5Þ Λþ
c π

Ξcð2970Þ 1
2
ð??Þ 2969.4� 1.7 19.0� 3.9 Σcð2455ÞKð20.2� 1.7Þ Λþ

c K̄π
Σcð2455ÞK̄

Ξc2π
Ξcð2645Þπ

Ξcð3055Þ ?ð??Þ 3055.1� 1.7 11� 4 Σcð2520ÞKð41.1� 1.7Þ
Ξcð2970Þπð−52.3� 2.4Þ

Ξcð3080Þ 1
2
ð??Þ 3078.4� 0.7 5.0� 1.3 Σcð2520ÞKð64.4� 0.7Þ Λþ

c K̄π
Ξcð2970Þπð−29.0� 1.8Þ Σcð2455ÞK̄

Σcð2520ÞK̄
Pcð4380Þ 1

2
ð3
2
?=5

2
?Þ 4380� 8� 29 205� 18� 86 Σcð2520ÞD̄ ð−6� 30Þ J=ψp

Aaij et al. (2015b) Σcð2455ÞD̄� ð−82� 30Þ
Pcð4450Þ 1

2
ð3
2
?=5

2
?Þ 4449.8� 1.7� 2.5 39� 5� 19 χc1p ð0.9� 3.0Þ J=ψp

Aaij et al. (2015b) Λcð2595ÞD̄ ð−9.9� 3.0Þ
Σcð2520ÞD̄� ð−77.2� 3.0Þ
Σcð2520ÞD̄ ð64.2� 3.0Þ

Σcð2455ÞD̄� ð−12.3� 3.0Þ
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accepted by the conventional three-quark picture of the
constituent quark model (Hyodo and Jido, 2012). It is fair
to say that the Λð1405Þ was most probably the first exotic
hadron observed (Alston et al., 1961). The theoretical aspects
of the Λð1405Þ will be discussed in Sec. VI.D.

2. Candidates in the charm baryon sector

The two light quarks in a charm baryon can be in either the
symmetric sextet or antisymmetric antitriplet representation of
SU(3). Since the color wave function is totally antisymmetric,
the spin-flavor-space wave functions must be symmetric.
Hence the light-quark system in the S-wave flavor sextet
(antitriplet) has spin 1 (0). After combining with a heavy
quark, the sextet and antitriplet give the B6ð1=2þÞ, B�

6ð3=2þÞ,
and B3̄ð1=2þÞ baryon multiplets, respectively, as (Yan et al.,
1992)

B6 ¼

0
BB@

Σcð2455Þþþ 1ffiffi
2

p Σcð2455Þþ 1ffiffi
2

p Ξ0þ
c

1ffiffi
2

p Σcð2455Þþ Σcð2455Þ0 1ffiffi
2

p Ξ00
c

1ffiffi
2

p Ξ0þ
c

1ffiffi
2

p Ξ00
c Ω0

c

1
CCA;

B�
6 ¼

0
BB@

Σcð2520Þþþ 1ffiffi
2

p Σcð2520Þþ 1ffiffi
2

p Ξcð2645Þþ
1ffiffi
2

p Σcð2520Þþ Σcð2520Þ0 1ffiffi
2

p Ξcð2645Þ0
1ffiffi
2

p Ξcð2645Þþ 1ffiffi
2

p Ξcð2645Þ0 Ωcð2770Þ0

1
CCA;

B3̄ ¼

0
B@

0 Λþ
c Ξþ

c

−Λþ
c 0 Ξ0

c

−Ξþ
c −Ξ0

c 0

1
CA:

All the ground-state charm baryons within these three
multiplets have been well established in experiments
(Patrignani et al., 2016). Among the other charm baryons,
Λcð2765Þ, Ξcð2815Þ, and Ξcð3123Þ are not well established
from the experimental analysis (Patrignani et al., 2016). The
P-wave 1=2− and 3=2− antitriplet states are identified as
½Λcð2595Þþ;Ξcð2790Þþ;Ξcð2790Þ0� (Cheng and Chua, 2007,
2015) and ½Λcð2625Þþ;Ξcð2815Þþ;Ξcð2815Þ0�, respectively
(Cheng and Chua, 2015). Among the remaining charm
baryons, the Λcð2880Þþ has a definite spin of 5=2
(Patrignani et al., 2016; Aaij et al., 2017d) and the quantum
numbers of the Λcð2940Þþ were measured to be JP ¼ 3=2−

(Aaij et al., 2017d). Besides these two charm baryons, LHCb
also measured another charm baryon Λcð2860Þþ which is
consistent with the predication of the orbital D-wave Λþ

c
excitation (Chen, Mao et al., 2016; Chen, Liu, and Zhang,
2017; B. Chen et al., 2017). The only available information of
other measured charm baryons is their masses and some of
their decay modes. For recent reviews on the heavy baryons,
see Klempt and Richard (2010) and H.-X. Chen et al. (2017).
Although the Λcð2595Þþ may be accommodated as a

regular three-quark baryon in quark models (Copley, Isgur,
and Karl, 1979; Pirjol and Yan, 1997; Tawfiq, O’Donnell, and
Korner, 1998; Zhu, 2000; Blechman et al., 2003; Migura
et al., 2006; Zhong and Zhao, 2008), one cannot neglect one
striking feature of it (Hyodo, 2013b) which could provide
other potential interpretations: It lies between the
Σcð2455Þþπ0 and Σcð2455Þ0πþ, Σcð2455Þþþπ− thresholds

as shown in Table IV. Thus, the Λcð2595Þ is proposed as a
dynamically generated state of the nearby Σcð2455Þπ coupling
with other possible higher channels (Lutz and Kolomeitsev,
2004a; Hofmann and Lutz, 2005; Mizutani and Ramos, 2006;
Garcia-Recio et al., 2009, 2015; Jimenez-Tejero, Ramos, and
Vidana, 2009; Haidenbauer et al., 2011; Romanets et al.,
2012; Liang et al., 2015; Lu et al., 2015; Long, 2016; Lu,
Chen et al., 2016), such asND, ND�, etc. The strong coupling
between the Λcð2595Þ and Σcð2455Þπ channels even leads to
a prediction of the existence of a three-body Σcππ resonance
in Long (2016) and Long, Wang, and Lyu (2017). The
analysis by Guo and Oller (2016b), however, indicates that
the compositeness of Σcð2455Þþπ0 is smaller than 10%
leaving Λcð2595Þ dominated by either other heavier hadronic
channels (such as ND and ND�) or compact quark-gluon
structures. Some other charm baryons, such as Λcð2880Þ
(Lutz and Kolomeitsev, 2004a), Λcð2940Þ (He et al., 2007,
2010; Ortega, Entem, and Fernandez, 2013; Zhang, 2014;
Zhao, Huang, and Ping, 2017), and Σcð2800Þ (Jimenez-
Tejero, Ramos, and Vidana, 2009; Jimenez-Tejero et al.,
2011; Zhang, 2014), have also been considered as dynami-
cally generated states from meson-baryon interactions. In
particular, the Λcð2940Þþ is very close to the ND� threshold
—it even overlaps with the threshold if using the recent LHCb
measurement (Aaij et al., 2017d), and it can couple to ND� in
an S wave. Both are favorable features for treating it as an
ND� hadronic molecule (Ortega, Entem, and Fernandez,
2013; Zhao, Huang, and Ping, 2017).

3. Pentaquarklike structures with hidden charm

Recently, LHCb reported two pentaquarklike structures
Pcð4380Þþ and Pcð4450Þþ in the J=ψp invariant mass dis-
tribution of Λb → J=ψpK− (Aaij et al., 2015b). Their masses
(widths) are 4380� 8� 29 MeV (205� 18� 86 MeV) and
4449.8� 1.7� 2.5 MeV (39� 5� 19 MeV), respectively.
In this analysis the Λ� states that appear in the crossed
channel were parametrized via BW functions. The LHCb
analysis reported preference of the spin-parity combinations
ð3=2−; 5=2þÞ, ð3=2þ; 5=2−Þ, or ð5=2þ; 3=2−Þ for these two
states, respectively. The branching ratio for Λb → J=ψpK−

was also measured (Aaij et al., 2016d).
The data for the Cabibbo suppressed process Λb →

J=ψpπ− are consistent with the existence of these two Pc
structures (Aaij et al., 2016a). The same experiment also
published a measurement of Λ0

b → ψð2SÞpK−, but no signals
for the Pc states were observed due to either the low statistics
or their absence in the ψð2SÞp channel (Aaij et al., 2016c).
The production mechanism and the decay pattern imply a

five-quark content of these two states with three light quarks
and a hidden heavy cc̄ component if they are hadronic states.
In fact, pentaquarklike states with hidden charm have been
predicted in the right mass region as dynamically generated in
meson-baryon interactions a few years before the LHCb
discovery (Wu et al., 2010, 2011). There are several thresh-
olds in the mass region of the two Pc structures, namely, χc1p,
Σcð2520ÞD̄, Σcð2455ÞD̄�, Λcð2595ÞD̄, and Σcð2520ÞD̄� (see
Table IV), although not all of them couple in S waves to the
reported preferred quantum numbers, suggesting different
interpretations of the two Pc states, such as Σcð2455ÞD̄�,
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Σcð2520ÞD̄, or Σcð2520ÞD̄� hadronic molecules (Chen, Chen
et al., 2015; R. Chen et al., 2015; Karliner and Rosner, 2015a;
Roca, Nieves, and Oset, 2015; Chen, Cui et al., 2016; He,
2016; Shimizu, Suenaga, and Harada, 2016; Ortega, Entem,
and Fernández, 2017). It has been suggested that their decay
patterns could be used to distinguish among various hadronic
molecular options (Lü and Dong, 2016; Shen et al., 2016;
G.-J. Wang et al., 2016; Lin et al., 2017). There are also other
dynamical studies with different channel bases (Azizi, Sarac,
and Sundu, 2017; Geng, Lu, and Valderrama, 2017; Xiao,
2017; Yamaguchi and Santopinto, 2017).
The extreme closeness of the Pcð4450Þ to the χc1p thresh-

old and to a TS from a Λ�ð1890Þχc1p triangle diagram was
pointed out by Guo et al. (2015). Bayar et al. (2016) stressed
that the χc1p needs to be in an S wave so as to produce a
narrow observable peak in the J=ψp invariant mass distribu-
tion, and correspondingly JP needs to be 1=2þ or 3=2þ. This
TS and other possible relevant TSs are also discussed by Guo
et al. (2016) and Liu, Wang, and Zhao (2016). It is worthwhile
to emphasize that the existence of TSs in the Pc region does
not exclude a possible existence of pentaquark states whether
or not they are hadronic molecules. Meißner and Oller (2015)
investigated the possibility that the Pcð4450Þ could be a χc1p
molecule.
In order to confirm the existence of the two Pc states and

distinguish them from pure kinematic singularities, cf. dis-
cussions in Sec. VI.A.4, one can either search for them in
other processes, such as Λb → χc1pK− (Guo et al., 2015),
photoproduction (Kubarovsky and Voloshin, 2015, 2016;
Wang, Liu, and Zhao, 2015; Gryniuk and Vanderhaeghen,
2016; Hiller Blin et al., 2016; Huang et al., 2016; Karliner and
Rosner, 2016), heavy ion collisions (R.-Q. Wang et al., 2016),
pion-nucleon reactions (Kim, Kim, and Hosaka, 2016; Liu
and Oka, 2016b; Lin et al., 2017), or search for their strange
(Feijoo et al., 2015, 2016; Chen, Liu, and Zhu, 2016; Lu,
Wang et al., 2016; Ramos, Feijoo, and Magas, 2016), neutral
(Lebed, 2015; Lü et al., 2016) and bottomonium (Xiao
and Meißner, 2015) partners. The Λb → χc1pK− decay
process has been observed at the LHCb experiment (Aaij
et al., 2017c).

III. IDENTIFYING HADRONIC MOLECULES

Hadronic molecules are analogs of light nuclei, most
notably the deuteron. They can be treated to a good approxi-
mation as composite systems made of two or more hadrons
which are bound together via the strong interactions. In this
section the general notion of a molecular state is introduced.
As demonstrated for near-threshold bound states this picture
can be put into a formal definition that even allows one to
relate observables directly to the probability to find the
molecular component in the bound state wave function.
However, it appears necessary to work with a more general
notion of hadronic molecules as also resonances can be of
molecular nature in the sense formulated above. Before we
proceed it appears necessary to review some general proper-
ties of the S matrix. In this section the terminology of a bound
state, a virtual state, and a resonance is discussed for these
notions are heavily used throughout this review.

A. Properties of the S matrix

The unitary operator that connects asymptotic in and out
states is called the S matrix. It is an analytic function in the
Mandelstam plane up to its branch points and poles. The
Smatrix is the quantity that encodes all physics about a certain
scattering or production reaction. In general it is assumed that
the S matrix is analytic up to the following:

• Branch points, which occur at each threshold. On the one
hand, there are the so-called right-hand cuts starting from
the branch points at the thresholds for an s-channel
kinematically allowed process (e.g., at the K̄K threshold
in the ππ scattering amplitude). On the other hand, when
reactions in the crossed channel become possible one
gets the left-hand cuts, which are usually located in the
unphysical region for the reaction studied but may still
significantly influence, e.g., the energy dependence of a
reaction cross section. Branch points can also be located
inside the complex plane of the unphysical Riemann
sheets: This is possible when the reaction goes via an
intermediate state formed by one or more unstable states.
It is clear that these threshold branch points and cuts are
kinematically determined and happen at the loop level of
Feynman diagrams.

In general, a loop Feynman diagram with more than
two intermediate particles has more complicated kin-
ematical singularities. They are called Landau singular-
ities (Landau, 1959); see, e.g., Eden et al. (1966), Chang
(1983), and Gribov, Dokshitzer, and Nyiri (2009). For
instance, in triangle diagrams the branch points of two
intermediate pairs can be very close to the physical
region simultaneously, and such a situation gives rise to
the so-called triangle singularity already introduced in
Sec. II. We return to those in Sec. IV.A.1.10

• Poles, which appear due to the interactions inherited in
the dynamics of the underlying theory. Depending on the
locations, poles can be further classified as follows:
(i) Bound states, which appear as poles on the

physical sheet. By causality they are only
allowed to occur on the real s axis below the
lowest threshold. The deuteron in the isospin-0
and spin-1 proton-neutron system, which can
be regarded as the first established hadronic
molecule, is a nice example.

(ii) Virtual states, which appear on the real s axis,
however, on the unphysical Riemann sheet. A
well-known example in nuclear physics is the
pole in the isospin-1 and spin-0 nucleon-nu-
cleon scattering. It is within 1 MeV from the
threshold and drives the scattering length to a
large value of about 24 fm.

(iii) Resonances, which appear as poles on an
unphysical Riemann sheet close to the physical
one. There is no restriction for the location of

10The Landau singularity can even be a pole if the one-loop
Feynman diagram has at least five intermediate particles (Gribov,
Dokshitzer, and Nyiri, 2009). However, this case is irrelevant for us
and will not be considered.
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poles on the unphysical sheets. Yet, Hermitian
analyticity requires that, if there is a pole at
some complex value of s there must be another
pole at its complex conjugate value s�. Nor-
mally, the pole with a negative imaginary part is
closer to the physical axis and thus influences
the observables in the vicinity of the resonance
region more strongly. However, at the threshold
both poles are always equally important. This is
illustrated in Fig. 7.

For a discussion of the analytic structure of the S matrix
with a focus on scattering experiments see Döring et al. (2009)
and references therein. Any of these singularities leads to
some structure in the observables. In a partial wave decom-
posed amplitude additional singularities not related to reso-
nance physics may emerge as a result of the partial-wave
projection. For a discussion see, e.g., Höhler (1983).
From this classification, it is clear that the branch points are

kinematical so that they depend completely on the masses of
the involved particles in a certain physical process, while the
poles are of dynamical origin so that they should appear in
many processes as long as they are allowed by quantum
numbers.
We call a structure observed experimentally a state if and

only if the origin of this structure is a pole in the S matrix due
to dynamics. On the one hand, this definition is quite general
as it allows us to also call the mentioned pole in the isovector
nucleon-nucleon scattering a state. From the point of view of
QCD, this definition appears to be quite natural since it takes
only a marginal change in the strength of the two-hadron
potential (e.g., via a small change in quark masses) to switch
from a shallow bound state to a near-threshold virtual state,
and both leave a striking imprint in observables (we return to
this in Sec. III.C). For example, various lattice QCD groups
observed the dineutron to become a bound state at quark
masses heavier than the physical value (Yamazaki et al., 2012,
2015; Beane et al., 2013; Berkowitz et al., 2017). On the other
hand, if a structure in the data finds its origin purely in a

kinematical singularity without a nearby pole, it would not be
called a state. There is currently a heated discussion going on
in the literature whether some of the XYZ states are just
threshold cusps or triangle singularities (Bugg, 2004; Chen
and Liu, 2011; Chen, Liu, and Matsuki, 2013; Swanson, 2015,
2016; Gong, Pang et al., 2016; Pilloni et al., 2017). It should
be stressed, however, that pronounced near-threshold signals
in the continuum channel related to that threshold must find
their origin in a nearby pole (Guo, Hanhart, Wang, and
Zhao, 2015).
In the physical world, basically all candidates for hadronic

molecules, except for nuclei, can decay strongly and thus
cannot be bound states in the rigorous sense of the word, since
the lowest threshold is defined by the production threshold of
the decay products. However, it still appears justified to call
the f0ð980Þ a KK̄ bound state, or a quasibound state in a more
rigorous sense, if the corresponding pole is located on the
physical sheet for the two-kaon system, or a virtual state if it is
on the unphysical sheet for the two-kaon system, although the
lowest threshold is the two-pion threshold.

B. Definition of hadronic molecules

In order to proceed it is necessary to first define the notion
of a molecular state. Naively one might be tempted to argue
that if data can be described by a model where all interactions
between continuum states come from s-channel pole terms,
the resulting states have to be interpreted as “elementary”
states. However, as we discuss, this is in general not correct.
Analogously, a model that contains only nonpole interactions
can still at the end lead to a pole structure of the S matrix that
needs to be interpreted as nonmolecular. The origin of the
failure of intuition in these circumstances is the fact that a
hadronic description of hadron dynamics can only be under-
stood in the sense of an effective field theory with limited
range of applicability. In particular the very short-ranged parts
of the wave function as well as the interaction potential are

FIG. 7. The imaginary part of a typical single-channel amplitude in the complex s plane. The solid dots indicate allowed positions for
resonance poles, the cross for a bound state. The solid line is the physical axis (shifted by iϵ into the physical sheet). The two sheets are
connected smoothly along their discontinuities.
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model dependent and cannot be controlled within the hadronic
prescription.
However, at least for near-threshold bound states (the term

“near” will be quantified in the next section) there is a unique
property of the wave function of a molecular state as long as it
is formed by a (nearly) stable particle pair in an S wave: The
fact that this particle pair can almost go on shell leaves an
imprint with observable consequences in the analytic structure
of the corresponding amplitude, a feature absent to all other
possible substructures. In fact, as a consequence of this
feature, hadronic molecules can be extended. To see this
observe that a bound state wave function at large distances
scales as expð−γrÞ=r, where r is the distance between the
constituents and γ denotes the typical momentum scale
defined via

γ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
; ð5Þ

where μ ¼ m1m2=ðm1 þm2Þ denotes the reduced mass of the
two-hadron system and

EB ¼ m1 þm2 −M ð6Þ

the binding energy of the state with mass M (note that
we chose EB positive so that the bound state is located at
E ¼ −EB with E the energy relative to the threshold). Thus,
the size R of a molecular state is given by R ∼ 1=γ.
Accordingly, if Xð3872Þ with a binding energy of less than
200 keV with respect to the D0D̄�0 threshold were a
molecule, it would be at least as large as 10 fm. For a
review of properties of systems with large scattering length
see Braaten and Hammer (2006).
All of these issues will be discussed in detail in the

following sections. The arguments start in Sec. III.B.1
from the classic definition introduced by Weinberg to
model independently capture the nature of the deuteron
as a proton-neutron bound state. A detailed discussion of
the derivation will allow us to explain at the same time the
limitations of this definition. Then in Sec. III.B.2 it is
demonstrated that the Weinberg criterion is actually iden-
tical to the pole counting arguments by Morgan. In
Sec. III.B.3 the generalization of the arguments to reso-
nances is prepared by a detailed discussion of pole
trajectories that emerge when some strength parameter
that controls the location of the S-matrix poles varies.
The compositeness criteria for resonances are briefly
discussed in Sec. III.B.4.

1. The Weinberg compositeness criterion

We start from the following ansatz for the physical wave
function of a bound state (Weinberg, 1965):

jΨi ¼
�

λjψ0i
χðkÞjh1h2i

�
; ð7Þ

where jψ0i denotes the compact component of the state and
jh1h2i its two-hadron component. Here compact denotes an
object whose size is controlled by the confinement radius
Rconf < 1 fm. Thus this component is assumed to be more

compact than R ∼ 1=γ, which denotes the characteristic size of
a shallow bound state.11 In addition, χðkÞ is the wave function
of the two-hadron part, where k denotes the relative momen-
tum of the two particles. In this parametrization, by definition
λ quantifies the contribution of the compact component of the
wave function to the physical wave function of the state.
Accordingly λ2 denotes the probability to find the compact
component of the wave function in the physical state, which
corresponds to the wave function renormalization constant Z
in quantum field theory. Thus, the goal is to relate λ to
observables.
In order to proceed one needs to define the interaction

Hamiltonian. As shown by Weinberg (1963b) under general
conditions one may write

ĤjΨi ¼ EjΨi; Ĥ ¼
�
Ĥc V̂

V̂ Ĥ0
hh

�
: ð8Þ

Equation (8) exploits the observation that it is possible by a
proper field redefinition to remove all hadron-hadron inter-
actions from the theory and to cast them into ψ0 (Weinberg,
1963a, 1963b). Then the two-hadron Hamiltonian is given
simply by the kinetic term Ĥ0

hh ¼ k2=ð2μÞ, where μ ¼
m1m2=ðm1 þm2Þ denotes the reduced mass of the two-
hadron system and mi denotes the mass of hadron hi.
Introducing the transition form factor,

hψ0jV̂jh1h2i ¼ fðkÞ; ð9Þ

one finds the wave function in momentum space as

χðkÞ ¼ λ
fðkÞ

E − k2=ð2μÞ : ð10Þ

The wave function of a physical bound state needs to be
normalized to have a probabilistic interpretation. We thus get

1 ¼ hΨjΨi ¼ λ2hψ0jψ0i þ
Z

d3k
ð2πÞ3 jχðkÞj

2hh1h2jh1h2i

¼ λ2
�
1þ

Z
d3k
ð2πÞ3

f2ðkÞ
½EB þ k2=ð2μÞ�2

�
: ð11Þ

As mentioned, λ2 is in fact the wave function renormalization
constant Z, since the integral in the last line of Eq. (11) is
nothing but the energy derivative of the self-energy. Because
of the positivity of the integral, λ2 is bound in the range
between 0 and 1 and thus allows for a physical probabilistic
interpretation for a bound state.
At this point a comment is necessary: in many textbooks on

quantum field theory it is written that the wave function
renormalization constant Z is scheme dependent and is to
be used to absorb the ultraviolet (UV) divergence of the
vertex corrections. Clearly this is correct. However, the
scheme dependence and UV divergence are only for the
terms analytic in E. What we find here is the LO piece of Z in

11Actually, we define the notion “shallow” by the request of
R > Rconf , which translates into EB < 1=ð2μR2

confÞ.
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an energy expansion around the threshold,12 and as this piece
is proportional to

ffiffiffiffi
E

p
it cannot be part of the Lagrangian.

Thus, the Weinberg criterion as outlined is based explicitly on
the presence of the two-particle cut which is responsible for
the appearance of the square root, whose presence is a distinct
feature of the two-hadron component.
The integral in Eq. (11) converges if fðkÞ is a constant.

The denominator contains solely model-independent para-
meters, while the momentum dependence of the numerator
is controlled by the relevant momentum range of the vertex
function that may be estimated by β, the inverse range of forces.
Thus, if β ≫ γ, the integral can be evaluated model independ-
ently for the case of S-wave coupling which implies the
constant g0 ¼ fð0Þ as the LO piece of fðkÞ.13 Then one finds

1 ¼ λ2
�
1þ μ2g20

2π
ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p þO
�
γ

β

��
: ð12Þ

From this we find the desired relation, namely,

g20 ¼
2πγ

μ2

�
1

λ2
− 1

�
; ð13Þ

which provides a relation between λ2, the probability of finding
the compact component of the wave function inside the
physical wave function, and g0, the bare coupling constant
of the physical state to the continuum, or λg0, the physical
coupling constant.
The quantity g0 also appears in the physical propagator of

the bound state since the self-energy is given by

ΣðEÞ ¼ −
Z

d3k
ð2πÞ3

f2ðkÞ
E − k2=ð2μÞ þ iϵ

¼ Σð−EBÞ þ ig20
μ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μEþ iϵ

p
þO

�
γ

β

�
: ð14Þ

We may therefore write for the T matrix of the two continuum
particles whose threshold is close to the location of the bound
state,

TNRðEÞ ¼
g20

E − E0 þ ΣðEÞ þ ðnonpole termsÞ; ð15Þ

where the subscript “NR” is a reminder of the nonrelativistic
normalization. As long as the pole is close to the threshold,
the amplitude near threshold should be dominated by the
pole term (the nonpole terms are again controlled quantitatively
by the range of forces). Using EB ¼ −E0 þ Σð−EBÞ −
g20μγ=ð2πÞ, which absorbs the (divergent) leading contribution
of the real part into the bare pole energy and at the same time
takes care of the fact that the analytic continuation of the
momentum term also contributes at the pole,14 we get

TNRðEÞ ¼
g20

Eþ EB þ g20μ=ð2πÞðikþ γÞ ; ð16Þ

where we introduced the two-hadron relative momentum
k ¼ ffiffiffiffiffiffiffiffiffi

2μE
p

. Note that Eq. (16) is nothing but the one-channel
version of the well-known Flatté parametrization (Flatté, 1976).
Thus, a measurement of near-threshold data allows one in
principle to measure the composition of the bound state wave
function, in line with the effective field theory analysis
discussed in Sec. VI, although in practice a reliable extraction
of the coupling might be hindered by a scale invariance of the
Flatté parametrization that appears for large couplings (Baru
et al., 2005). The phenomenological implications especially of
Eq. (13) on Eq. (16) and generalizations thereof will be
discussed in Sec. III.C.
To make the last statement explicit we match Eq. (16) onto

the effective range expansion

TNRðEÞ ¼ −
2π

μ

1

1=aþ ðr=2Þk2 − ik
; ð17Þ

and find

a ¼ −2
1 − λ2

2 − λ2

�
1

γ

�
þO

�
1

β

�
;

r ¼ −
λ2

1 − λ2

�
1

γ

�
þO

�
1

β

�
: ð18Þ

Thus, for a pure molecule (λ2 ¼ 0) one finds that the scattering
length gets maximal a ¼ −1=γ, and in addition r ¼ Oð1=βÞ,
where the latter term is typically positive, while for a compact
state (λ2 ¼ 1) one gets a ¼ −Oð1=βÞ (in the presence of a
bound state the scattering length is necessarily negative within
the sign convention chosen here) and r → −∞. These striking
differences have severe implications on the line shapes of
near-threshold states as discussed in Sec. III.C.
It is illustrative to apply the Weinberg criterion to the

deuteron, basically repeating the analysis presented already by
Weinberg (1965). The scattering length and effective range
extracted from proton-neutron scattering data in the deuteron
channel are (Klarsfeld, Martorell, and Sprung, 1984)

a ¼ −5.419ð7Þ fm and r ¼ 1.764ð8Þ fm; ð19Þ

where the sign of the scattering length was adapted to the
convention employed here. Furthermore, the deuteron binding
energy reads (Van Der Leun and Alderliesten, 1982)15

EB ¼ 2.22 MeV ⇒ γ ¼ 45.7 MeV ¼ 0.23 fm−1: ð20Þ

On the other hand, in case of the deuteron the range of forces
is provided by the pion mass—accordingly the range correc-
tions that appear in Eqs. (18) may in this case be estimated via

12More discussion on this point can be found in Sec. IV.B.
13Note that in some works a model for the form factor fðkÞ is

employed (Faessler et al., 2007).
14When E takes real values, the square root on the first sheet is

defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μEþ iϵ

p ¼ þi
ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
θð−EÞ þ ffiffiffiffiffiffiffiffiffi

2μE
p

θðEÞ.
15The reference quotes EB ¼ 2.224 575ð9Þ MeV; however, for the

analysis here such a high accuracy is not necessary.
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1

β
∼

1

Mπ
≃ 1.4 fm: ð21Þ

Thus the effective range is of the order of the range corrections
(and positive) as required by the compositness criterion for a
molecular state. Using λ2 ¼ 0 in the expression for the
scattering length we find

amol ¼ −ð4.3� 1.4Þ fm ð22Þ

also consistent with Eq. (19). Based on these considerations
Weinberg concluded that the deuteron is indeed composite.
As mentioned, a location of a molecular state very near a

threshold is quite natural, while a near-threshold compact state
is difficult to accomplish (Jaffe, 2007; Hanhart, Peláez, and
Ríos, 2014). This can now be illustrated on the basis of
Eqs. (17) and (18). By construction for k ¼ iγ the T matrix
develops a pole which may be read off from Eq. (17):

γ ¼ −
1

a
þ γ2r

2
: ð23Þ

For a (nearly) molecular state a≃ −1=γ and r ∼Oð1=βÞ.
Thus, for this case Eq. (23) is largely saturated by the
scattering length term, and the range term provides only a
small correction. However, for a predominantly genuine state
we have −1=a≃ β ≫ γ and r → −∞. Thus in this case a
subtle fine-tuning between the range term and the scattering
length term appears necessary for the pole to be located very
near threshold.
While the low-energy scattering of the hadrons that form

the bound state is controlled by the scattering length and
effective range, production reactions are sensitive to the
residue of the bound state pole, which serves as the effective
coupling constant, to be called geff , squared of the bound state
to the continuum. It is simply given by the bare coupling
constant g20 previously introduced multiplied by the wave
function renormalization constant Z, which is λ2 as explained,

g2NR ≡ Zg20 ¼
2πγ

μ2
ð1 − λ2Þ: ð24Þ

After switching to a relativistic normalization by multiplying
with ð ffiffiffiffiffiffiffiffiffi

2m1

p ffiffiffiffiffiffiffiffiffi
2m2

p ffiffiffiffiffiffiffi
2M

p Þ2, and dropping terms of the order of
ðEB=MÞ, we thus get

g2eff
4π

¼ 4M2

�
γ

μ

�
ð1 − λ2Þ: ð25Þ

What is interesting about Eq. (25) is that it is bounded from
above: The effective coupling constant of a bound system to
the continuum gets maximal for a pure two-hadron bound
state. Since 1 − λ2 is the probability of finding the two-hadron
composite state component in the physical wave function, it is
sometimes called “compositeness.” Using Eq. (18), the
effective coupling can be expressed in terms of the scattering
length

g2eff
4π

¼ 4M2

μ

−aγ
aþ 2=γ

; ð26Þ

which reduces to −4M2=μa in the limit of λ2 ¼ 0, reflecting
the universality of an S-wave system with a large scattering
length (Braaten and Hammer, 2006).
Before closing this section some comments are necessary.
• The approach allows for model-independent statements
only for S waves, since otherwise in the last integral of
Eq. (11) there appears in the numerator of the integrand
an additional factor k2L from the centrifugal barrier.
Accordingly, the integral can no longer be evaluated
model independently without introducing additional
parameters (regulator) to cope with the UV divergence.

• For the same reason the continuum channel needs to be a
two-body channel, since otherwise the momentum
dependence of the phase space calls for an additional
suppression of the integrand.

• The binding momentum must be small compared to the
inverse range of forces, since otherwise the range
corrections get larger than the terms that contain the
structure information.

• For the applicability of the formalism as outlined and an
unambiguous probabilistic interpretation, the state stud-
ied must be a bound state, since otherwise the normali-
zation condition of Eq. (11) is not applicable which is at
the very heart of the derivation. However, nowadays
there exist generalizations of the Weinberg approach also
to resonances which will be discussed in Sec. III.B.4.

• The constituents that form the bound state must be
narrow, since otherwise the bound system would also be
broad (Filin et al., 2010; Guo and Meißner, 2011).

For a long time it seemed that the conditions were satisfied
only by the deuteron and Weinberg therefore closed his paper
with the phrase (Weinberg, 1965): “One begins to suspect that
Nature is doing her best to keep us from learning whether the
“elementary” particles deserve that title.” However, as out-
lined in the Introduction, there are now various near-threshold
states confirmed experimentally that appear to be consistent
with those criteria, such as Xð3872Þ, D�

s0ð2317Þ and less
rigorously f0ð980Þ and others.
For illustration we compare what is known about the effect

of the D�
s0ð2317Þ on DK scattering to the Weinberg criterion.

Clearly, DK scattering cannot be measured directly in experi-
ment, however, it can be studied in lattice QCD using the so-
called Lüscher method (Lüscher, 1991). The first study using
this method for theDK system was presented by Mohler et al.
(2013). The scattering length and effective range extracted in
this work for the lowest pion mass (Mπ ¼ 156 MeV) are
−ð1.33� 0.20Þ and ð0.27� 0.17Þ fm, respectively. This
number is to be compared to the Weinberg prediction for a
purely molecular state of a ¼ −ð1� 0.3Þ fm and r ∼ 0.3 fm,
where the inverse ρ mass was assumed for the range of forces
and we used the fact that for molecular states the effective
range is positive and of the order of the range of forces.
Scattering lengths of the same size were also extracted from a
study of the scattering of the light pseudoscalars offDmesons
using unitarized chiral perturbation theory (L. Liu et al.,
2013). Thus from both chiral dynamics on the hadronic level
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and lattice QCD there are strong indications that D�
s0ð2317Þ

indeed is a DK molecule. The lattice aspects will be further
discussed in Sec. V. Clearly, a direct experimental confirma-
tion of the molecular assignment forD�

s0ð2317Þ is desirable. A
possible observable could be the hadronic width ofD�

s0ð2317Þ
as discussed in Sec. VI.A.3.
So far we focused only on bound states. However, also very

near-threshold poles on the second sheet not accompanied by
a first sheet pole, so-called virtual states, leave a striking
imprint in observables; cf. Sec. III.A. A T matrix that has its
pole on the second, instead of on the first, sheet reads, in
distinction to Eq. (16),

TNRðEÞ ¼
g20

Eþ Ev þ g20μ=ð2πÞðik − γÞ ; ð27Þ

where now the virtual pole is located on the second sheet at
E ¼ −Ev, with Ev > 0 and we still use γ to denote

ffiffiffiffiffiffiffiffiffiffiffi
2μEv

p
.

Here we use the fact that on the second sheet below threshold
the momentum is −ij ffiffiffiffiffiffiffiffiffi

2μE
p j.

2. The pole counting approach

One of the classic approaches put forward to distinguish
molecular states from genuine ones is the so-called pole
counting approach (Morgan, 1992), which can be summarized
as follows: A bound state that is dominated by its compact
component (in the language of the previous section this
implies λ2 close to 1) manifests itself in two near-threshold
singularities (one on the first sheet, one on the second) while a
predominantly molecular bound state gives rise only to a
single near-threshold pole on the first sheet.
To see that these criteria actually map perfectly on the

Weinberg criterion it is sufficient to observe that the poles of
Eq. (17) are given by

k1=2 ¼
i
r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

r2
−

2

ar

r
: ð28Þ

Based on the sign convention employed in this work,
cf. Eq. (17), in the presence of a bound state the scattering
length is negative. In addition, keeping only the leading terms
for both the scattering length a and the effective range r as
shown in Eqs. (18), one obtains

k1 ¼ iγ; k2 ¼ −iγ
�
2 − λ2

λ2

�
: ð29Þ

Thus it is easy to see that k1 and k2 are positive and negative
imaginary numbers, respectively, which implies that the
former is a pole on the first Riemann sheet (a bound state
pole), while the latter is located on the second sheet. When λ
approaches 0, which implies that the molecular component of
the state becomes increasingly important, the second pole
disappears toward negative imaginary infinity, which leaves k1
as the only relevant pole. In particular one gets from this for
the asymmetry of the pole locations

jk1j − jk2j
jk1j þ jk2j

¼ λ2 − 1: ð30Þ

Thus the asymmetry of the pole locations is a direct measure
of the amount of molecular admixture in the bound state wave
function (as defined within the Weinberg approach) in line
with the findings of Morgan (1992). The close relation
between the two approaches was first observed by Baru et al.
(2004).

3. Remarks about pole trajectories

QCD is characterized by a small number of parameters,
namely, the quark masses, the number of colors (Nc), and
ΛQCD (the running coupling constant). Accordingly those
parameters completely determine the hadron spectrum. With
advanced theoretical tools it became possible recently to
investigate the movement of the QCD poles as QCD param-
eters are varied. There exist studies for varying quark masses
as well as varying numbers of colors Nc—both of them
allowing for deeper insight into the structure of the inves-
tigated states.
Studies that vary the number of colors are available mostly

for light quark systems. For a recent review, see Peláez (2016).
In order to connect the Nc dependence of a given state in the
spectrum to QCD by Peláez (2016) a unitarized version of
chiral perturbation theory, the so-called inverse amplitude
method, is employed, where the fact is exploited that the
leading Nc behavior of the low-energy constants (LECs) is
known. Thus, once the unitarized amplitudes are fitted to phase
shifts, it is possible to investigate the impact of a varying Nc by
proper rescaling of these LECs. This kind of study was
pioneered by the work of Peláez (2004), where it was
demonstrated that the Nc scaling of the vector mesons ρ and
K� is in line with expectations for q̄q states; however, that of
f0ð500Þ and K�

0ð800Þ is completely at odds with them. While
the Nc studies allow one to distinguish the quark content of
different states, they do not allow one to disentangle hadronic
molecules from other four-quark structures. In addition, both
mentioned resonances are very broad and as such do not allow
one to straightforwardly quantify their molecular component
following the approach of the previous section.
Existing studies where quark masses are varied allow for a

more direct contact to the discussion of the previous section.
Understanding the quark mass dependence of hadrons with
different composition is not only interesting for its own sake, it
is also important since lattice QCD studies can be performed
at arbitrary quark masses (and in fact are often performed at
enlarged quark masses for practical reasons). Thus, as soon as
we can relate certain pole trajectories to the structure of the
hadron it becomes feasible to “measure” the nature of the state
using lattice QCD. More direct methods to use the lattice to
determine the nature of certain hadrons will be discussed
in Sec. V.
Let us consider pole trajectories of resonances as some

generic strength parameter is varied. Here we follow the
presentation of Hanhart, Peláez, and Ríos (2014). In this work
it was shown that in the presence of a pole the one-channel
Smatrix can be written as (for simplicity assuming the masses
of the continuum particles to be equal)
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S ¼ ðk − kp − iξÞðkþ kp − iξÞ
ðk − kp þ iξÞðkþ kp þ iξÞ

¼ k2 − ðk2p þ ξ2Þ − 2ikξ

k2 − ðk2p þ ξ2Þ þ 2ikξ

¼ s − s0 − 4iðs − 4m2Þ1=2ξ
s − s0 þ 4iðs − 4m2Þ1=2ξ ; ð31Þ

where ξ ≥ 0. The unimodular form of Eq. (31) is because of
the unitarity of the Smatrix. This parametrization accounts for
the fact that if the S matrix has a pole at some complex
momentum on the second sheet kp − iξ, it also has to have a
pole −kp − iξ, which is the realization of the Schwarz
reflection principle in momentum space, and that any pole
on the second sheet is accompanied by a zero on the first. As
shown by the last equality, the momentum space expression
can be straightforwardly mapped onto the s plane, where s0 ¼
4ðk2p þ ξ2 þm2Þ was introduced. In the s plane the Schwarz
reflection principle calls for poles at complex conjugate
points.
To investigate the general behavior of the pole trajectories it

is sufficient to vary the parameter k2p from some finite positive
value to some finite negative value. Typical trajectories are
shown in Fig. 8. The trajectories for S waves are depicted by
the solid lines and for higher partial waves by the dashed lines.
As long as k2p is positive (kp is real), Eq. (31) develops two
complex conjugate poles for all partial waves. When k2p
decreases, the poles approach each other and eventually, for
k2p ¼ 0, meet on the real axis. One of the poles switches to the
first sheet at the point where k2p þ ξ2 ¼ 0, which is the
threshold and at least for S waves requires a negative value
of k2p (kp is imaginary).
The first nontrivial observation that can be read off Eq. (31)

and Fig. 8 straightforwardly is that S waves and higher partial
waves behave very differently: The reason for this is the
centrifugal barrier that forces one to introduce a momentum
dependence into ξ according to

ξðkÞ ¼ ~ξk2L: ð32Þ

This has a striking impact on the pole trajectories: For any
L > 0 the ξ term is zero at k ¼ 0 and therefore the point where
the two pole trajectories meet (k2p ¼ 0) coincides with k ¼ 0

which denotes the threshold. This is different for S waves: in
this case the poles can meet somewhere below the threshold.
Then, when k2p is decreased further to negative values, both
poles move away from the meeting point, such that one
approaches the threshold while the other one goes away from
the threshold. This behavior can easily be interpreted via the
pole counting approach: The farther away from the threshold
the point is located where the two trajectories meet (this point
is determined by the value of ξ at the point where k2p ¼ 0), the
more asymmetric are the two poles once one of them has
switched to the first sheet, and thus the molecular component
of the state is more pronounced.
To make more explicit the connection between the trajec-

tories and the molecular nature of the states we study the
scattering length and the effective range that emerge from
Eq. (31):

a ¼ −
2ξ

ξ2 þ k2p
; r ¼ −

1

ξ
: ð33Þ

If we now use the fact that the binding momentum γ ¼ κp − ξ,
where κp ¼ ikp, we can read off the following from the
previous equations and Eq. (18):

λ2 ¼ 1 −
ξ

κp
: ð34Þ

To see the implications of Eq. (34) we parametrize the relevant
quantities via

γ ¼ ϵδ; ξ ¼ δ; κp ¼ ð1þ ϵÞδ → λ2 ¼ ϵ

1þ ϵ
; ð35Þ

where δ > 0 and ϵ > 0. Here it was already used that for a
bound state to exist with a finite binding energy κp must
exceed ξ. A vanishing binding momentum (γ → 0) can be
achieved by either ϵ → 0 for finite δ, which immediately
implies that λ2 → 0, so that the state is purely molecular, or
δ → 0 for finite ϵ. This case allows for a compact admixture of
the very near-threshold pole, however, at the price of an
extreme fine-tuning of κp and ξ as both then need to go to zero
simultaneously. This is the same kind of fine-tuning already
observed for nonmolecular near-threshold states below
Eq. (23) from a different perspective.
As an example Hanhart, Peláez, and Ríos (2014) explicitly

demonstrated that the pole trajectories of the f0ð500Þ meson
as well as the ρ meson that emerge when the quark masses are
varied can be easily parametrized in terms of the parameters ξ
and κp previously introduced. In particular it was shown that
while ξ changes only mildly in the parameter range studied, k2p
changes a lot and in particular ξ is sizable at the point where k2p
is zero in the f0ð500Þ channel. Accordingly Hanhart, Peláez,
and Ríos (2014) concluded that, at least for unphysically large
quark masses, the f0ð500Þ meson behaves like a hadronic
molecule.

Im(s)

2

s

Re(s)s=4m

FIG. 8. Typical pole trajectories for Swaves (solid red lines) and
for higher partial waves (dashed blue lines) in the second sheet of
the complex s plane. The thick line denotes the branch cut.
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What should be clear from these considerations is that states
born off hadron-hadron dynamics with poles above the
relevant threshold are necessarily broad; after all their cou-
pling to this continuum channel is maximal. This should also
be clear from the pole trajectories illustrated in Fig. 8. An
example for such a scenario is the very broad f0ð500Þ most
probably generated by nonperturbative ππ interactions. Such a
property is in contrast to the tetraquark picture advocated by
Esposito, Pilloni, and Polosa (2016), where they argued that
tetraquarks that are visible in experiment must be narrow and
slightly above threshold. It is therefore important that the pole
locations of exotic candidates are determined with high
precision.

4. Generalizations to resonances

The first work where the Weinberg approach was gener-
alized to resonances was by Baru et al. (2004), where the
spectral density was employed to supplement the parameter λ2

introduced for bound states. The subject was later elaborated
in various papers (Aceti and Oset, 2012; Hyodo, Jido, and
Hosaka, 2012; Hyodo, 2013a, 2013b; Sekihara, Hyodo, and
Jido, 2015; Guo and Oller, 2016a; Kang, Guo, and Oller,
2016; Xiao and Zhou, 2016, 2017a, 2017b; Sekihara, 2017);
however, what is common to all of them is that a quantitative,
probabilistic extraction of the level of compositeness is not
possible rigorously as soon as one moves to resonances. The
reason is that states that belong to poles on the second sheet
are not normalizable and as such one loses the condition of
Eq. (11) that is crucial for the probabilistic interpretation.
However, it still appears reasonable to take over the key

finding of Sec. III.B, namely, that the coupling of a state is
larger for a larger molecular component, also to resonance
states. As we will see, in certain situations this leads to quite
striking observable consequences. When being translated to
an effective field theory this observation implies that for
molecular states loop contributions always appear already at
LO. The resulting power counting will be detailed in Sec. IV.
When the state of interest is located below the production

threshold of the two hadrons that possibly form the molecular
state, one can still distinguish between quasibound states and
virtual states, depending on whether the leading pole is
located on the first or the second sheet with respect to the
mentioned two-hadron system. The phenomenological impli-
cations of this are discussed in Sec. III.C.

C. Characteristic line shapes of hadronic molecules

Besides the deuteron all other (candidates for) hadronic
molecules are unstable. Then the scattering T matrix needs to
be modified compared to the form discussed in Sec. III.B. In
particular, Eq. (16) now reads

T inðEÞ ¼
g2=2

E − Er þ ðg2=2Þðikþ γÞ þ iΓ0=2
; ð36Þ

where E ¼ k2=ð2μÞ and Γ0 accounts for inelasticities not
related to the channel whose threshold is nearby. Those
channels will be called inelastic channels. We also changed
the parameter that controls the pole location from EB to −Er

since it now refers to a resonance instead of a bound state.
Following the logic of the previous sections in the near-
threshold regime the dominant momentum dependence for
molecular states comes from the term proportional to g2 which
is very large in this case; cf. Eq. (13). On the contrary, for
compact states the k2 term controls the momentum depend-
ence. As a result of this in the former case the line shape of the
state that appears in any of the inelastic channels is asym-
metric while in the latter it is symmetric. The two scenarios are
sketched in Fig. 9. In addition, the line shape for the molecular
state shows a visible nonanalyticity at the two-particle thresh-
old which would be much weaker in the other case.16 Its
presence follows directly from Eq. (36), since

∂T inðEÞ
∂E ∝ −

1þ ðig2=2Þð∂k=∂EÞ
½E − Er þ g2=2ðikþ γÞ þ iΓ0=2�2

; ð37Þ

with ∂k=∂E ¼ ffiffiffiffiffiffiffiffiffiffiffi
μ=2E

p
. It is this derivative that is not

continuous when the energy crosses zero, the location of
the threshold. One might expect from this discussion that the
coupling g2 can be read off from the line shape directly
allowing for a direct interpretation of the structure of the
underlying state. However, a scale invariance of Eq. (37) for
the line shape appears as soon as the g2 term dominates, and it
hinders a quantitative study in practice (Baru et al., 2005). In
addition, even for large values of g2 the nonanalyticity might
not show up in the line shape since its visibility depends in
addition on a subtle interplay of Er, Γ0, and γ.
It was already mentioned at the end of Sec. III.B.2 that also

near-threshold virtual poles leave a striking impact on observ-
ables. In the presence of inelastic channels a virtual state
always leads to a peak of the line shape exactly at the
threshold while a near-threshold bound state still has strength
even below the threshold. For very near-threshold states such
as the Xð3872Þ these two scenarios might be difficult to
disentangle.
As first stressed by Braaten and Lu (2007) the line shapes in

the elastic channel might well be interesting if at least one of
the constituents of the system studied is unstable so that some

d

dM

σ

M

d

dM

σ

M

compact molecular

FIG. 9. Typical near-threshold line shapes that emerge for
compact (left panel) and molecular states (right panel). The
dashed perpendicular lines indicate the location of the threshold.
The x axis shows M ¼ m1 þm2 þ E.

16It is completely absent only if the coupling between the state
with the two hadrons vanishes. However, in this case the T matrix
given in Eq. (36) vanishes as well.
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strength of the amplitude leaks into the region below the
threshold.17 To be concrete: If a state is located near the
threshold of particles A and B and A decays to a and b, then
the spectra in the abB channel need to be studied both below
and above the nominal AB threshold. To implement the
necessary changes, in the formulas for narrow constituents
one may simply replace the momentum k in Eq. (36) by
(Braaten and Lu, 2007)

keff ¼
ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ Γ2=4
q

þ E

r

þ i
ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ Γ2=4
q

− E

r
; ð38Þ

where Γ denotes the width of the unstable constituent, and μ is
the reduced mass of the two-hadron system evaluated using
the mass of the unstable state. In addition, the subtraction term
γ needs to be replaced by

γeff ¼ � ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
r þ Γ2=4

q
− Er

r
; ð39Þ

where the upper sign leads to a (quasi)bound state while the
lower one to a virtual state. Clearly, for Γ → 0 these
expressions nicely map on those used for k and γ above
for Er < 0. Equations (38) and (39) hold as long as the line
shape for the unstable constituent is well described by a BW
distribution, namely, for Γ=2 ≪ mA −ma −mb. As soon as
the energy dependence of Γ starts to matter, more sophisti-
cated expressions need to be used; cf. Hanhart, Kalashnikova,
and Nefediev (2010). For simplicity we here use the expres-
sions previously given. The resulting line shapes in the elastic
channel are shown for various values of Γ in Fig. 10, where we
used the parameters

Er ¼ −0.5 MeV; Γ0 ¼ 1.5 MeV; g2 ¼ 0.1; μ ¼ 0.5:

ð40Þ

The left panel shows the results for the (quasi)bound state
(γeff > 0), and the right one is for the virtual state (γeff < 0).
Above the nominal two-hadron channel (E ¼ 0) the spectra in
the left and right panels look very much alike, however, for
Γ > 0 drastic differences appear between the two cases for
negative values of E.
Following the Weinberg criterion, for the bound state case it

is the relative height of the peak for E < 0 and the bump for
E > 0 which are difficult to distinguish for the largest value of
Γ, that is a measure of the molecular admixture of the studied
state. Therefore a high-resolution measurement of the line
shape of Xð3872Þ would be valuable to deduce its nature
(Braaten and Lu, 2007; Hanhart et al., 2007a; Hanhart,
Kalashnikova, and Nefediev, 2010; Meng et al., 2015;
Kang and Oller, 2017).
In this context it is interesting to note that a line shape

similar to the one shown in the left panel of Fig. 10 was also
predicted for Yð4260Þ → D�πD̄ under the assumption that

Yð4260Þ is a D1D̄ molecular state [note that D�π is the most
prominent decay channel of D1ð2420Þ] (Wang et al., 2014);
see the middle panel of Fig. 6. A similar line shape also shows
up in the calculation of Debastiani, Aceti et al. (2017) for the
f1ð1285Þ strongly coupled to K�K̄.
Everything stated so far had the implicit assumption that

there are at most two near-threshold poles on the two relevant
sheets. The possible line shapes change dramatically as soon
as additional poles are located in the near-threshold regime as
discussed by Artoisenet, Braaten, and Kang (2010), Baru et al.
(2010), and Hanhart, Kalashnikova, and Nefediev (2011).

D. Heavy quark spin symmetry

In the limit of infinitely heavy quarks, the spin of heavy
quarks decouples from the system and is conserved individu-
ally. As a result, the total angular momentum of the light
degrees of freedom becomes a good quantum number as well.
This gives rise to the so-called HQSS (Isgur and Wise, 1989).
In the real world quarks are not infinitely heavy; however,
heavy quark effective field theory allows one to systematically
include corrections that emerge from finite quark masses in a
systematic expansion in ΛQCD=MQ, where MQ denotes the
heavy quark mass. For an extensive review see Neubert
(1994). HQSS is the origin for the near degeneracy of D�

and D as well as B� and B. Similarly, it also straightforwardly
predicts multiplets of hadronic molecules made of a heavy
hadron or heavy quarkonium and light hadrons (Guo, Hanhart,
and Meißner, 2009a; Yamaguchi et al., 2015) and of hadro-
quarkonium as well (Cleven et al., 2015). In addition, HQSS
allows one to predict ratios of different transitions involving
heavy hadrons in the same spin multiplet, and, in particular,
transitions of hadronic molecules. Examples for those pre-
dictions can be found in Fleming and Mehen (2008, 2012)
where the decays of the Xð3872Þ into the final states χcJπ and
χcJππ are discussed in the XEFT framework which will be
discussed in Sec. IV.A. The ratios among various decays of the
Zbð10610Þ and Zbð10650Þ into hbðmPÞπ and χbJðmPÞγ (from
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FIG. 10. Line shapes that emerge for a bound state (left panel)
and for a virtual state (right panel) once one of the constituents is
unstable. The dotted, solid, and dashed lines show the results for
Γ ¼ 0, 0.1, and 1 MeV, respectively. The other parameters of the
calculation are given in Eq. (40).

17At the same time the nonanalyticity gets smeared out.
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the neutral Zb states) were computed in both XEFT (Mehen
and Powell, 2011) and NREFTI (Cleven et al., 2013) frame-
works to be discussed in the next section. They are consistent
with the result solely based on the HQSS (Ohkoda et al.,
2012a). For other predictions based on HQSS on the radiative
and strong decays of hadronic molecules in the heavy
quarkonium sector, see Ma et al. (2014, 2015).
In special cases HQSS also allows one to make predictions

for bound systems of two or more heavy mesons (Mehen and
Powell, 2011; Voloshin, 2011; Nieves and Valderrama, 2012;
Guo et al., 2013a; Liu, 2013; Baru et al., 2016) since certain
potentials get linked to each other. This will be discussed in
Sec. IV.B.

IV. NONRELATIVISTIC EFFECTIVE FIELD THEORIES

All the candidates for hadron resonances, and, in particular,
the candidates of hadronic molecules, which are the focus of
this review, were discovered via their strong decays into other
hadrons. Therefore, to understand these structures also
requires a study of their decays. Because of the nonperturba-
tive nature of QCD at hadronic energy scales, a first-principle
calculation of the spectrum of hadronic resonances at the level
of quarks and gluons can be done only using lattice QCD.
Although there has been tremendous progress in lattice QCD,
a reliable calculation of the full hadronic resonance spectrum
for physical quark masses is still out of reach. In addition,
even if such calculations were available, the interpretation of
the emerging spectra still requires additional theoretical
analyses.
Only in the special case discussed in Sec. III, i.e., for

shallow bound states coupling in an S wave to a nearby
continuum channel comprised of two stable or at least narrow
hadrons, one finds a direct and physical interpretation for the
leading and nonanalytic contribution of the wave function
renormalization constant Z as the (normalizable) probability
to find the continuum contribution in the physical state.
Because of the closeness of the threshold to the mass of
the physical composite state, such systems are ideal objects to
apply the concept of EFTs, which makes use of the separation
of scales and which per definition include a cutoff (Lepage,
1990). Of particular relevance here are the nonrelativistic
EFTs (NREFTs). Note that the general principles underlying
any EFT are formulated in Weinberg’s paper on phenomeno-
logical Lagrangians (Weinberg, 1979).
As mentioned in Sec. III, hadronic molecules are located

close to some strongly coupled thresholds. We denote the
low-energy (low-momentum) scale characterizing such a
system, given by the binding energy (binding momentum)
defined in Eq. (6) [Eq. (5)], generically by Q. All other
hadronic scales that we collectively label as Λ are thus
regarded as hard. This enables one to construct a perturbation
theory in Q=Λ, which for near-threshold states should be a
small number. As will become clear, it depends on the system
which scale is appropriate for Λ. For example, when
investigating the f0ð980Þ as a candidate for a K̄K molecular
state, the inverse range of forces, the natural candidate for Λ,
is given by the mass of the allowed lightest exchange meson,
the rho meson. A phenomenologically adequate value for the
binding energy is 10 MeV. It corresponds to a binding

momentum of 70 MeV, and thus Q=Λ ∼ 1=10 is a good
expansion parameter.18 Furthermore, the closeness to thresh-
old also means that the constituent hadrons can be treated
nonrelativistically.
As discussed in the preceding section, the most interesting

information about the structure of a near-threshold state is
contained in its coupling strength to the threshold channel,
which measures the probability of finding the two-body
bound state component in the physical state. This is con-
sistent with the intuition that a state is the more composite the
larger its coupling to the continuum. As shown in Eq. (25),
for a bound state the coupling reaches its maximal value, if
the physical state is purely an S-wave bound state, λ2 ¼ 0.
Hence, it is important to extract the value of the coupling
constant for understanding the nature of near-threshold
structures. In addition, a large coupling implies the promi-
nence of hadronic loops not only in the formation of the state
but also in transitions and decays. In this section, we discuss
the NREFT formalism which is a natural framework for
studying the transitions involving hadronic molecules with a
small energy release. It can also be used to compute the
universal long-distance part of the production and decay
processes of hadronic molecules, which will be discussed
in Sec. VI.
The analytic structure of the three-point scalar loop

integral (including the TS) will be discussed in
Sec. IV.A.1. The power counting rules for the NREFT
treating all intermediate particles on the same footing will
be detailed in Sec. IV.A.2. We denote such a theory as
NREFTI. When one of the intermediate particles is much
more off shell than the others, it can be integrated out from
NREFTI and one gets another effective field theory, here
called NREFTII, which was originally introduced as XEFT to
study the properties of the Xð3872Þ. The XEFT and its
relation to NREFTI will be discussed in Secs. IV.A.3 and
IV.A.4. Section IV.B is devoted to a description of the
formation of hadronic molecules.
The formation of hadronic molecules can be viewed as a

result of nonperturbative hadron-hadron interactions. It is
therefore natural to ask if there is also an impact of hadron
loops on the properties of more regular excited hadrons.
Indeed, for certain transitions the effective field theory
NREFTI predicts prominent loop effects. As examples, we
discuss single-pion or eta transitions and hindered M1

transitions between heavy quarkonia in Sec. IV.C. It will
become clear that whether the hadron-loop effects are
important for properties of an excited hadron is process
dependent. In particular, the location of an excited hadron
close to a threshold is a necessary but not a sufficient
condition.

A. Power counting schemes

As demonstrated in Sec. III, the decisive feature of
molecular states as compared to more compact structures is

18The subtle interplay of scales in molecular transitions was
discussed by Hanhart et al. (2007b) on the example of decays of
the f0ð980Þ.
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the prominence of a two-hadron cut. In some decays the cuts
induced by intermediate particles might also matter. To
illustrate this point, we start this section by a discussion of
the analytic structure of three-point loop functions. This will
shed light on the NREFT power counting as well.

1. Analytic structure of the three-point loop integral

If a hadronic molecule has at least one unstable constituent,
it can decay directly through the decays of that unstable
particle when phase space allows. It can also decay into
another heavy particle with a mass of the same order by
emitting light particles such as pions or photons from its
constituents. The mechanism for a transition accompanied by
the emission of a single light particle is depicted in Fig. 11. In
the figure the two vertical dashed lines show the relevant
branch cuts: They correspond to the time slices at which the
intermediate particles can go onto their mass shells.
We denote the intermediate particles as M1;2;3 with masses

m1;2;3, and the external particles as A, B, C with masses
mA;B;C, as shown in Fig. 11. If all intermediate particles are
nonrelativistic we can formulate a power counting based on
the velocities of the intermediate particles. Let us start from
the scalar triangle loop integral

IðqÞ ¼ i
Z

d4l
ð2πÞ4

1

ðl2 −m2
1 þ iϵÞ½ðP − lÞ2 −m2

2 þ iϵ�½ðl − qÞ2 −m2
3 þ iϵ�

≃ i
Nm

Z
dl0d3l
ð2πÞ4

1

½l0 − T1ðjljÞ þ iϵ�½P0 − l0 − T2ðjljÞ þ iϵ�½l0 − EC − T3ðjl − qjÞ þ iϵ� ; ð41Þ

where ϵ ¼ 0þ, Nm ¼ 8m1m2m3, TiðpÞ ¼ p2=2mi denotes the kinetic energy for a heavy meson with mass mi, and EC denotes
the energy of the particle C in the rest frame of the initial particle A. The second line is obtained by treating all the intermediate
states nonrelativistically in the rest frame of the initial particle. Performing the contour integration over l0, one gets a convergent
integral over the three-momentum. Defining μij ¼mimj=ðmiþmjÞ, b12 ¼m1þm2−mA, and b23 ¼m2þm3þEC−mA, one has

IðqÞ≃ 4μ12μ23
Nm

Z
d3l
ð2πÞ3

�
ðl2 þ c1 − iϵÞ

�
l2 þ c2 −

2μ23
m3

l · q − iϵ

��
−1
; ð42Þ

where c1 ¼ 2μ12b12 and c2 ¼ 2μ23b23 þ ðμ23=m3Þq2 with q≡ jqj. The two terms in the denominator of the integrand contain a
unitary cut each, as indicated by the vertical dashed lines in Fig. 11. The other two-body cut crossing the lines of M1 and M3

corresponds to the case in which the particle M3 is propagating back in time (we assume implicitly that it is M1 and not M2 that
can decay toM3 and C in near on-shell kinematics). This is a relativistic effect which is neglected here. The intermediate particles
M1 and M2 are on shell when l2 þ c1 ¼ 0; M2 and M3 (as well as C) are on shell for l2 þ c2 − 2μ23l · q=m3 ¼ 0. Accordingly,ffiffiffiffiffiffiffijc1j
p

and
ffiffiffiffiffiffiffijc2j

p
define two different momentum scales where the corresponding intermediate states go on shell. Their values

depend on all of the masses involved and may be very different from each other. For the nonrelativistic approximation to hold both
must be small compared to mi ði ¼ 1; 2; 3Þ.
The integral of Eq. (42) can be presented in closed form (Guo et al., 2011; Mehen, 2015)

IðqÞ ¼ N
1ffiffiffi
a

p
�
arctan

�
c2 − c1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc1 − iϵÞp

�
− arctan

�
c2 − c1 − 2a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc2 − a − iϵÞp

��
ð43Þ

¼ N
1ffiffiffi
a

p
�
arcsin

�
c2 − c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc2 − c1Þ2 þ 4ac1 − iϵ
p

�
− arcsin

�
c2 − c1 − 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc2 − c1Þ2 þ 4ac1 − iϵ
p

��
; ð44Þ

where N ¼ μ12μ23=ð2πm1m2m3Þ and a ¼ ðμ23=m3Þ2q2.
Especially Eq. (44) highlights the presence of a special
singularity at

ðc2 − c1Þ2 þ 4ac1 ¼ 0: ð45Þ

When rewriting the inverse trigonometric functions in
terms of logarithms, one finds that this is a logarithmic

divergence. The solution of Eq. (45) gives the leading
Landau singularity (Landau, 1959) [for early or recent
reviews, see Chang (1983), Eden et al. (1966), and
Aitchison (2015)] for a triangle diagram, also called
triangle singularity, evaluated in nonrelativistic kinematics
(Guo, Meißner, and Shen, 2014). The singularity location is
slightly shifted from that found by solving the relativistic
Landau equation. A comparison for a specific example can

FIG. 11. A triangle diagram illustrating the long-distance
contribution to the transition between two heavy particles A
and B with the emission of a light particle C. The two vertical
dashed lines denote the two relevant cuts.
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be found in the appendix of Guo, Meißner, and Shen
(2014).
Being nonlinear in all of the involved masses, Eq. (45) as

well as the Landau equation allows for different solutions.
However, a direct evaluation of the loop integral reveals that
only in a very restricted kinematics one of the solutions
produces an observable effect, namely, when this solution is
located on the physical boundary, i.e., the upper edge of the
branch cut in the first Riemann sheet or alternatively the lower
edge of the branch cut in the second (Schmid, 1967); see
Fig. 7. In this case, the TS can produce a narrow peak in the
invariant mass distribution, which may even mimic a reso-
nance. This effect was already indicated in Sec. II.A.2 and will
be further illustrated in Sec. VI.A.4. We therefore discuss now
under which circumstances the singularity appears on the
physical boundary. This case is contained in the Coleman-
Norton theorem (Coleman and Norton, 1965) [for triangle
diagrams see Bronzan (1964)]. The physical picture becomes
most transparent using the simple triangle singularity equation
derived by Bayar et al. (2016):

qonþ ¼ qa−; ð46Þ

where qonþ is the center-of-mass (c.m.) momentum of
particles M1 and M2 when they are on shell, and qa− is
the momentum of particle M2 in the rest frame of A when M2

and M3 are on shell (being on shell is necessary but not
sufficient to define qa−). One finds

qonþ ¼ 1

2mA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

A;m
2
1; m

2
2Þ

q
;

qa− ¼ γðβE�
2 − p�

2Þ; ð47Þ

where

E�
2 ¼

m2
B þm2

2 −m2
3

2mB
; p�

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
2; m

2
3Þ

p
2mB

; ð48Þ

are the energy and the magnitude of the three-momentum of
particle M2 in the rest frame of particle B, i.e., the c.m. frame
of the (M2, M3) system, respectively, β ¼ q=EB is the
magnitude of the velocity of particle B in the rest frame of

A, and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
¼ EB=mB is the Lorentz boost factor.

Equation (46) is the condition for the amplitude IðqÞ to have a
TS on the physical boundary. Note that if particle M1 can go
on shell simultaneously with M3 and C, it must be unstable.
Consequently, its width moves the logarithmic divergence into
the complex plane and the physical amplitude becomes finite.
Let us consider the kinematical region where the momen-

tum of particleM2 is positive so that Eq. (46) can be satisfied:
p2 ¼ qa− ¼ γðβE�

2 − p�
2Þ > 0. Then p3 ¼ γðβE�

3 þ p�
2Þ

(where E�
3 is the energy of particle M3 in the rest frame of

particle B), the momentum of particle M3 in the rest frame of
the initial particle is positive as well. This means that particles
M2 and M3 move in the same direction in that frame. The
corresponding velocities are given by

β2 ¼ β
E�
2 − p�

2=β
E�
2 − βp�

2

; β3 ¼ β
E�
3 þ p�

2=β
E�
3 þ βp�

2

. ð49Þ

It is easy to see that p2 > 0 leads to

β3 > β > β2; ð50Þ

which means that particleM3 moves faster thanM2 and in the
same direction in the rest frame of the initial particle A. This,
together with the requirement that all intermediate particles
are on their mass shells, gives the condition for having a TS on
the physical boundary. This is in fact the Coleman-Norton
theorem (Coleman and Norton, 1965) applied to the triangle
diagram: the singularity is on the physical boundary if and
only if the diagram can be interpreted as a classical process in
spacetime. For other discussions about TSs using the
Mandelstam variables, see Szczepaniak (2015) and Liu,
Oka, and Zhao (2016) and references therein.
To finish this section, we point out again that the TS

mechanism has been around for more than half a century, but
only in recent years has become a viable tool in hadron
physics phenomenology due to the data discussed in this
review. In fact, many of the calculations outlined in which the
TS plays a dominant role can be and often are done without
recourse to an EFT. Still, in a broader view it can nicely be
embedded in the framework outlined here. In any case,
whenever the TS can play a role it has to be included.

2. NREFTI

A key component for any EFT is the power counting in
terms of some dimensionless small quantity, which allows for
a systematic expansion and an estimate for the uncertainty of
the calculation caused by the truncation of the series at some
finite order. The natural small quantity in nonrelativistic
systems is the velocity v (measured in units of the speed of
light) which is much smaller than 1 by assumption.
As mentioned in Sec. IV.A.1, triangle diagrams with all three

intermediate particles being nonrelativistic in fact have two
momentum scales given by

ffiffiffiffiffiffiffijc1j
p

and
ffiffiffiffiffiffiffijc2j

p
. Accordingly, one

can define v1 ¼
ffiffiffiffiffiffiffijc1j

p
=ð2μ12Þ and v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijc2 − ajp
=ð2μ23Þ for

the velocities of the intermediate mesons.
From the previous analysis, three-point loop diagrams have

two kinds of singularities: two-body threshold cusps and TSs.
The two-body threshold singularities are encoded in the two
velocities previously defined. When the TS, with its location
implicitly defined via Eq. (45), is not in the considered
kinematic region, the loop function of Eq. (44) can be
expanded in a power series as

IðqÞ ¼ Nffiffiffi
a

p
��

π

2
−
2

ffiffiffiffiffiffiffi
ac1

p
c2 − c1

�
−
�
π

2
−
2

ffiffiffiffiffiffiffi
ac2

p
c2 − c1

�

þO
� ð4ac1Þ3=2
ðc2 − c1Þ3

��

¼ N
2ffiffiffiffiffi

c2
p þ ffiffiffiffiffi

c1
p þ � � � : ð51Þ

When the masses of all three intermediate particles are similar,
mi ∼m, the LO term in Eq. (51) may be written as
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IðqÞ ∼N
m

2

v1 þ v2
: ð52Þ

Thus the arithmetic mean of the two velocities characterizes
the size of the triangle loop. It is therefore the relevant
parameter to estimate the leading loop contribution for the
transition of a heavy state into a light state and another
heavy state.
The power counting in nonrelativistic velocities for a given

loop diagram can be obtained by applying the following rules:
The three-momentum of the intermediate nonrelativistic
particles counts as OðvÞ, the nonrelativistic energy counts
as Oðv2Þ, and each nonrelativistic propagator is of Oðv−2Þ.
Thus, IðqÞ scales asO(v5=ðv2Þ3) ¼ Oðv−1Þ. Comparing with
Eq. (52), one sees that the velocity in the power counting
should be understood as the average of v1 and v2 (Guo and
Meißner, 2012b). In addition to the parts discussed, the
amplitude for a given process can have factors of the external
momentum q. To be general we do not count the external
momentum q in powers of v, but keep it explicitly. This
defines the power counting as detailed by Guo, Hanhart, and
Meißner (2009c) and Guo et al. (2010, 2011). We denote this
theory as NREFTI.
In order to demonstrate how the power counting rules work,

we compare in Fig. 12 the values of 1=vwith v ¼ ðv1 þ v2Þ=2
and an explicit calculation of the loop function as given in
Eq. (43). The curves are normalized at mA ¼ 4.22 GeV. The
values used for the calculation are

m1 ¼ 2.420 GeV; m2 ¼ 1.867 GeV; m3 ¼ 2.009 GeV:

ð53Þ

For the external light particle we take mC ¼ 0.140 GeV for
Fig. 12(a) and mC ¼ 0 for Fig. 12(b). In addition, we take two

values formB, 3.886 and 3.872 GeV, and the results are shown
as (a) and (b), respectively. Then (a) and (b) correspond to the
loop integrals in the amplitudes for the Yð4260Þ → Zcð3900Þπ
and Yð4260Þ → Xð3872Þγ, respectively, which will be dis-
cussed in Sec. VI.A. Using Eq. (45) or (46), we find that for
mB ¼ 3.886 GeV there is a TS at mA ¼ 4.288 GeV, which is
the reason for the sharp peak in the dashed line in Fig. 12(a).
Note that in the plots the widths of the intermediate mesons
were neglected. For mB ¼ 3.872 GeV, which is smaller than
m2 þm3, and mC ¼ 0, the TS moves to the complex plane at
mA ¼ 4.301 − i0.018 GeV with a clearly visible effect on the
line shape; see the dashed line in Fig. 12(b). One sees from the
figure that the simple power counting rule of Eq. (52) agrees
remarkably well with the explicit calculation except for
energies very close to the TS.
In addition to counting the loop integral as discussed, one

also needs to take into account the vertices in order to obtain a
proper estimate for a given loop amplitude. To illustrate the
method let us start from the simplest two-point self-energy
diagram shown in Fig. 13. We assume that the mass of the
state is close to the threshold of the internal particles that can
therefore be treated nonrelativistically. If the coupling is in an
S wave, then the loop scales as O(v5=ðv2Þ2) ¼ OðvÞ.19 If the
coupling is in a P wave, each vertex contributes an additional
factor of v and the loop scales as Oðv3Þ. Of course, the real
part of the loop integral is divergent, and the resulting
correction to the mass is scale dependent. However, since
the scale dependence can be formally absorbed into the bare
mass of the state this discussion is not of relevance here. Thus,
we found that the effect of the two-hadron continuum on the
self-energy of heavy quarkonia is parametrically suppressed,
if the state is close to the threshold which implies a small value
of v, and that this suppression increases for increasing orbital
angular momentum of the two-hadron state.
Next we consider the one-loop diagram for the decay

process A → BC, with A and B heavy and C light, as depicted
in Fig. 11. To be concrete, we assume that C couples to the
intermediate states M1 and M3 in a P wave (such as the pion
couples to the ground-state heavy mesons). This coupling
structure leads to a factor of q (in the rest frame of A). The
generalization to other situations is easy. The power counting
rules for a few typical cases are then as follows:

(1) Both A and B couple to the intermediate states in an
S wave. As a result the final state particles B and C
must be in a P wave. Therefore Eq. (52) needs to be
multiplied by q. Still, the 1=v enhancement factor
quantifies the relative importance of the triangle
diagram for the transition: the closer both A and B

(a) (b)

FIG. 12. Comparison of the power counting rule for the scalar
three-point loop integral 1=v with the numerical result evaluated
using Eq. (43). The numerical result is normalized to 1=v at
mA ¼ 4.22 GeV. The involved masses are given in Eq. (53), and
the mass for the final heavy particle takes the value of (a) 3.886
and (b) 3.872 GeV.

FIG. 13. A one-loop two-point self-energy diagram.

19Here we focus only on the velocity scaling and neglect the
geometric factor of 1=ð4πÞ.
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to the corresponding thresholds, the more important
the intermediate states. On top of this may come an
additional enhancement driven, e.g., by large cou-
plings characteristic for molecular states as derived in
Sec. III.

(2) Either A or B couples to the intermediate states in an
S wave with the other one in a P wave. In this case,
because there is only one possible linearly indepen-
dent external momentum for two-body decays, the
internal momentum at the P-wave vertex must be
turned into an external momentum. The amplitude
scales as Oðq2=m2vÞ. Since the decay should be in an
S wave in this case, we introduced a factor 1=m2 to
balance the dimension of the q2 factor (Guo et al.,
2011) as in this case the loop contribution needs to be
compared to a constant tree-level contribution.

(3) Both A and B couple to the intermediate states in a
Pwave. Each P-wave vertex contributes a factor of the
internal momentum. In the power counting of
NREFTI, the external momentum is kept explicitly.
As a result, there are two possibilities for the scaling of
the P-wave vertices: Each P-wave vertex scales either
as mv or as the external momentum q. More insights
can be obtained if we take a closer look at the relevant
tensor loop integral:

IijðqÞ ¼ i
Z

d4l
ð2πÞ4 l

ilj × ½integrand of IðqÞ�: ð54Þ

In the rest frame of the initial particle, it can be
decomposed into an S-wave part and a D-wave part as

IijðqÞ ¼ Pij
S ISðqÞ þ Pij

DIDðqÞ; ð55Þ

where

Pij
S ¼ δijffiffiffi

3
p ; Pij

D ¼ 1ffiffiffi
6

p
�
3
qiqj

q2
− δij

�
; ð56Þ

are the S- and D-wave projectors, respectively, which
satisfy Pij

S P
ij
S ¼ 1, Pij

DP
ij
D ¼ 1, and Pij

S P
ij
D ¼ 0. Then

in the S-wave part ISðqÞ, the internal momentum
scales as OðvÞ, and ISðqÞ ∼OðvÞ. In the D-wave part
IDðqÞ, the internal momentum turns external, and one
gets IDðqÞ ∼Oðq2=m2vÞ, which would have the same
scaling as ISðqÞ if q=m ∼ v.20 For the decay amplitude,
the factor of q from the vertex coupling C to
intermediate states needs to be taken into account
additionally.

This nonrelativistic power counting scheme was proposed
by Guo, Hanhart, and Meißner (2009c) to study the coupled-
channel effects of charm-meson loops in charmonium tran-
sitions and studied in detail later (Guo et al., 2011).

Applications to transitions between two heavy quarkonium
states can be found in Guo et al. (2010), Guo, Hanhart, and
Meißner (2010), Guo and Meißner (2012a, 2012b), Mehen
and Yang (2012), and Guo, Meißner, and Shen (2014), and to
transitions involving one or two XYZ states in Cleven et al.
(2011a, 2013), Guo, Hanhart et al. (2013), Esposito,
Guerrieri, and Pilloni (2015), Mehen (2015), Abreu and
Lafayette Vasconcellos (2016), Huo and Chen (2016), Wu
et al. (2016), and Y.-H. Chen et al. (2017). In particular,
Cleven et al. (2013) demonstrated the implications of items (1)
and (2). It was shown that, while the transitions of the Zb
states to ϒðnSÞπ potentially suffer from large higher order
corrections, the transitions to hbðmPÞπ and χbJðmPÞπ should
be dominated by the triangle topology. The near-threshold
cross section for eþe− → DD̄ was studied by Chen and Zhao
(2013) using NREFT as well.
It is clear that the power counting can be applied only to

processes where the intermediate hadrons are nonrelativistic
and especially close to their mass shells. Otherwise the loop
diagrams receive contributions from large momenta and
cannot be treated in a simple EFT including only the hadronic
degrees of freedom of A, B, C, M1, M2, and M3.

3. NREFTII and XEFT

Because the Xð3872Þ is arguably the most important and
interesting candidate for a hadronic molecule, here we discuss
in some detail one NREFT designed specifically for studying
the properties of the Xð3872Þ. It is called XEFT and was
proposed by Fleming et al. (2007) following the Kaplan-
Savage-Wise approach to describe the nucleon-nucleon sys-
tem (Kaplan, Savage, and Wise, 1998a, 1998b). It can be
regarded as a special realization of NREFTII. Similar effective
theories can be constructed for other possible hadronic
molecules which are located very close to thresholds. For
instance, in the framework of a similar theory, the Zbð10610Þ
and Zbð10650Þ were studied by Mehen and Powell (2011,
2013) and the Zcð3900Þ by Wilbring, Hammer, and
Meißner (2013).
The XEFT assumes the Xð3872Þ to be a hadronic molecule

of D0D̄�0 þ c:c: The small binding energy (Patrignani et al.,
2016)

BX ¼ MD0 þMD�0 −MX ¼ 0.00� 0.18 MeV ð57Þ

implies that the long-distance part of the Xð3872Þ wave
function is universal and is insensitive to the binding mecha-
nism which takes place at a much shorter distance. The long-
distance degrees of freedom are D0, D�0, D̄0, D̄�0, and π0; all
of them are treated nonrelativistically. For processes domi-
nated by the long-distance scales such as the decays
Xð3872Þ → D0D̄0π0 and Xð3872Þ → D0D̄0γ which can occur
via the decay of the vector charm meson directly, the XEFT at
LO can reproduce the results from the effective range theory
which makes use of the universal two-body wave function of
the Xð3872Þ at asymptotically long distances (Voloshin,
2004b, 2006)

ψXðrÞ ∝
e−γ0r

r
; ð58Þ

20Noticing that Pij
S l

ilj ¼ l2=
ffiffiffi
3

p
and Pij

Dl
ilj ¼ 2l2P2ðcos θÞ=

ffiffiffi
6

p
with P2ðcos θÞ the second Legendre polynomial, it can be shown that
ISðqÞ is UV divergent while IDðqÞ is UV convergent (Albaladejo
et al., 2015; Shen et al., 2016). The power counting of the D-wave
part was not discussed by Guo et al. (2011).
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where the Xð3872Þ is assumed to be below the D0D̄�0

threshold, and γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0BX

p
≤ 20 MeV with μ0 the reduced

mass of D0 and D̄�0. Yet, it has the merit of being improvable
order by order by including local operators and pion
exchanges although unknown short-distance coefficients will
be involved. For processes involving shorter-distance scales
such as the decays of the Xð3872Þ into a charmonium and
light particles, the XEFT can still be used by parametrizing the
short-distance physics in terms of local operators employing
factorization theorems and the operator product expansion
(Braaten and Kusunoki, 2005b; Braaten and Lu, 2006). The
XEFT can also be used even if the Xð3872Þ is a virtual state
with a non-normalizable wave function (Hanhart et al., 2007a)
or a resonance above threshold.
The power counting and the next-to-leading order (NLO)

corrections to the decay Xð3872Þ → D0D̄0π0 were studied by
Fleming et al. (2007). The XEFT was also used to study the
decays of the Xð3872Þ to the χcJ with one and two pions
(Fleming and Mehen, 2008, 2012), the radiative transitions
Xð3872Þ → ψð2SÞγ, ψð4040Þ → Xð3872Þγ (Mehen and
Springer, 2011), and ψð4160Þ → Xð3872Þγ (Margaryan and
Springer, 2013), the scattering of an ultrasoft pion (Braaten,
Hammer, and Mehen, 2010) or D and D� (Canham, Hammer,
and Springer, 2009) off the Xð3872Þ, and the quark mass
dependence and finite-volume corrections of the Xð3872Þ
binding energy (Jansen, Hammer, and Jia, 2014, 2015). The
relation between the XEFT and the formalism of NREFTI was
clarified by Mehen (2015). As an extension of the XEFT in
Alhakami and Birse (2015) a modified power counting was
suggested to also take into account an expansion in the
ratio between the pion mass and the charm-meson masses.

The need for such an expansion is removed, however, as
soon as Galilean invariance is imposed on the interactions
(Braaten, 2015).
In the following, we use the decay Xð3872Þ → D0D̄0π0 as

an example to illustrate the power counting of the XEFT. The
binding momentum γ0 ≤ 20 MeV sets the long-distance
momentum scale in this theory. The typical momenta for
the D0 and D�0 are of the order of pD ∼ pD� ∼ γ0. The pion
kinetic energy is less than 7 MeV, and thus the momentum for
either an internal or external pion is also counted as pπ ∼ γ0.
Furthermore, the pion exchange introduces another small

scale μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −M2

π0

q
≃ 44 MeV, with Δ ¼ MD�0 −MD0 .

Denoting all the small momentum scales by Q, we have

fpD; pD� ; pπ; μ; γ0g ¼ OðQÞ: ð59Þ

Thus, the measure for a one-loop integral is of OðQ5Þ, and
each nonrelativistic propagator is of OðQ−2Þ. All Feynman
diagrams can then be assigned a power of Q.
The XEFT keeps as the degrees of freedom only those

modes with a very low momentum ∼γ0. The binding
momentum for the DþD�− þ c:c: channel at the Xð3872Þ
mass is γc ≃ 126 MeV. It is treated as a hard scale, and the
charged charm mesons are integrated out from the XEFT.
Denoting the field annihilating the D0, D̄0, D�0, and D̄�0

by D, D̄, D, and D̄, respectively, and taking the phase
convention that Xð3872Þ is ðD0D̄�0 þ D̄D�0Þ= ffiffiffi

2
p

, the rel-
evant Lagrangian for the calculation up to the NLO is written
as (Fleming et al., 2007)

LXEFT¼
X

ϕ¼D;D̄

ϕ†
�
i∂0þ

∇2

2MD�0

�
ϕþ

X
ϕ¼D;D̄

D†
�
i∂0þ

∇2

2MD0

�
Dþπ†

�
i∂0þ

∇2

2Mπ0
þδ

�
π

þ
�

g
2Fπ

1ffiffiffiffiffiffiffiffiffiffiffi
2Mπ0

p ðDD† ·∇πþD̄†D̄ ·∇π†ÞþH:c:

�

−
C0

2
ðD̄DþDD̄Þ† ·ðD̄DþDD̄Þþ

�
C2

16
ðD̄DþDD̄Þ† · ½D̄ð∇↔Þ2DþDð∇↔Þ2D̄�þH:c:

�

þ
�
B1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffi
2Mπ0

p ðD̄DþDD̄Þ† ·DD̄∇πþH:c:

�

þ Cπ

2Mπ0
ðD†π†DπþD̄†π†D̄πÞþC0DD†D̄†DD̄; ð60Þ

where δ ¼ Δ −Mπ0 ≃ 7 MeV and Fπ ¼ 92.2 MeV is the
pion decay constant. The first line contains the kinetic
terms for the pseudoscalar and vector charmmesons as well
as for the nonrelativistic pion, the second line is for the
axial coupling of the pion to charm mesons with g≃ 0.6
determined from the D� width, the third line contains the
LO and NLO contact interaction terms, and the fourth line
contains the terms for a short-distance emission of a pion.
The contact terms in the last line were not considered by
Fleming et al. (2007), but also contribute to Xð3872Þ →
D0D̄0π0 at NLO. In particular, the C0D term may have a

significant impact on the line shapes as will become clear in
the discussion to follow.
The Feynman diagrams relevant for the calculation of the

Xð3872Þ → D0D̄0π0 decay width up to NLO are shown in
Fig. 14. Figure 14(a) contributes at LO, Figs. 14(b) and 14(c)
and Figs. 14(e) and 14(f) are the NLO diagrams calculated by
Fleming et al. (2007), and Figs. 14(d) and 14(g) are two new
diagrams from the new terms in the last line of the Lagrangian
in Eq. (60). Here we discuss only the power counting for each
diagram and the contributions missing in the original work
(Fleming et al., 2007), and refer to Fleming et al. (2007) for
details of the calculation. One essential point of the XEFT is
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that the pion exchange is treated perturbatively based on the
observation that the two-pion exchange contribution is sup-
pressed relative to the one-pion exchange by

g2μ0μ
8πF2

π
≃ 1

20
–
1

10
: ð61Þ

Then the Xð3872Þ is generated through a resummation of the
DD̄� contact terms (the charge conjugated D̄D� channel is
always implied). The pole of the Xð3872Þ is at E ¼ −BX, and
thus at LO

1þ C0Σ0ð−BXÞ ¼ 0; ð62Þ

where

Σ0ðEÞ ¼ −
�
ΛPDS

2π

�
4−D Z

dD−1l
ð2πÞD−1

1

E − l2=ð2μ0Þ þ iϵ

¼ μ0
2π

ðΛPDS −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ0E − iϵ

p
Þ ð63Þ

is the two-point one-loop integral containing nonrelativistic
D0 and D̄�0 propagators in the power divergence subtraction
(PDS) scheme (Kaplan, Savage, and Wise, 1998a, 1998b),
where E is the energy defined relative to the threshold and
ΛPDS is the PDS scale. For Eq. (62) to be renormalization
group invariant, C0 needs to absorb the scale dependence of
the loop integral:

C0ðΛPDSÞ ¼
2π

μ0ðγ0 − ΛPDSÞ
: ð64Þ

Keeping only momentum modes of order Q, the power count-
ing for the loop integral is Σ0ðEÞ ¼ O(Q5=ðQ2Þ2) ¼ OðQÞ.

One sees that the scale-independent part of C0, C̄0 ¼
½ΛPDS þ 1=C0ðΛPDSÞ�−1 ¼ 2π=ðμ0γ0Þ, indeed scales as Q−1.
Now we consider the power counting of the decay ampli-

tudes from the diagrams in Fig. 14. The decay rate can be
obtained from these amplitudes properly taking into account
the wave function renormalization Z (Fleming et al., 2007)
which accounts for the insertion of the Xð3872Þ interpolating
field shown as circled crosses in Fig. 14. Note that for the
calculation of the decay rate up to the NLO, one needs Z up to
NLO (LO) for the LO (NLO) amplitude. The amplitude from
Fig. 14(a) scales as OðQ=Q2Þ ¼ OðQ−1Þ since there is one
nonrelativistic propagator and one P-wave vertex which gives
a factor of pπ ∼Q. Both one-loop diagrams [Figs. 14(b) and
14(c)] have four nonrelativistic propagators and three P-wave
vertices, and thus scale as OðQ0Þ, 1 order higher than the LO
diagram [Fig. 14(a)]. The coefficients C2 and B1 scale as Q−2

(Fleming et al., 2007). Noticing that there are two derivatives
in the C2 term and one derivative in the B1 term in the
Lagrangian, the amplitudes from Figs. 14(e) and 14(f) should
be counted as OðQ0Þ as well.
Let us discuss Figs. 14(d) and 14(g) which were missing in

the original calculation in Fleming et al. (2007). The Cπ

contact term can be matched to the chiral Lagrangian for the
interaction between heavy and light mesons (Burdman and
Donoghue, 1992; Wise, 1992; Yan et al., 1992; Guo et al.,
2008). At LO of the chiral expansion the interaction between
pions and pseudoscalar heavy mesons receives contributions
from the Born term from the exchange of D�, which con-
stitutes a subdiagram to Figs. 14(b) and 14(c), and the
Weinberg-Tomozawa term. It turns out that the amplitude
for D0π0 → D0π0 vanishes at LO. At NLO of the chiral
expansion, there are several operators (Guo et al., 2008; Guo,
Hanhart, and Meißner, 2009b). In particular, it is easy to see
that the h0 and h1 terms are proportional to the light quark
mass or equivalently toM2

π . The Feynman rule for theD0π0 →
D0π0 vertex from these two terms (using relativistic normali-
zation for all the fields) is

iAh0;h1 ¼ i
2

3
ð6h0 þ h1Þ

M2
π

F2
π
: ð65Þ

The value of h1 is fixed to be 0.42 from the mass splitting
between the Ds and D mesons, and the 1=Nc suppressed
parameter h0 ≃ 0.01 from fitting to the lattice data for the pion
mass dependence of charm-meson masses (L. Liu et al.,
2013). One sees Ah0;h1 ≃ 0.65. Hence, by matching to the
chiral Lagrangian, Cπ should scale as Q0, which leads to the
scaling of OðQ0Þ for Fig. 14(d).
Figure 14(g) involves a short-distance contact interaction

between D0 and D̄0. If the vertex C0D scales as Q0, then
diagram ðgÞ ¼ OðQ0Þ. However, the situation could be more
complicated. From the HQSS analysis of the Xð3872Þ in
Sec. III.D, the Xð3872Þ as a DD̄� hadronic molecule should
have three spin partners in the strict heavy quark limit; one of
them has quantum numbers JPC ¼ 0þþ and couples to DD̄
and D�D̄�. Therefore, there is the possibility that the DD̄
interaction needs to be resummed to generate a near-threshold
pole. In this case, C0D needs to be promoted to be OðQ−1Þ,

(a)

(c) (d)

(g)(f)(e)

FIG. 14. (a) LO and (b)–(g) NLO diagrams for the calculation of
the Xð3872Þ → D0D̄0π0 decay width. The circled crosses denote
an insertion of the Xð3872Þ, the thin and thick solid lines
represent the pseudoscalar and vector charm mesons, respec-
tively, and the dashed lines denote the pions.
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analogous to C0. Then Fig. 14(g) appears atOðQ−1Þmaking it
a LO contribution. Clearly this can cause a large correction to
the Xð3872Þ → D0D̄0π0 decay rate. This effect can be seen in
Fig. 15, which is the result obtained by Guo, Hidalgo-Duque
et al. (2014) using NREFTI in combination with the frame-
work discussed in Sec. IV.B. The unknown parameter C0a in
the figure parametrizes the isoscalar part of D†D̄†DD̄ contact
interaction [see Eq. (78)], playing a role similar to C0D
introduced in Eq. (60).
Since Xð3872Þ → D0D̄0π0 is an important process sensitive

to the long-distance structure of the Xð3872Þ, it would be
interesting to revisit it considering the missing diagrams in
XEFT. In particular, it was found that the nonanalytic
corrections from the pion-exchange diagrams of Figs. 14(b)
and 14(c) contribute only to ∼1% of the decay rate (Fleming
et al., 2007). Whether this remains true after considering
Fig. 14(d) remains to be seen.
It should be stressed that the role of nonperturbative pions

on the Xð3872Þ properties has been studied in various papers
(Baru et al., 2011, 2013, 2016) which in many cases confirm
the results of XEFT. However, also in these studies diagrams
of the types shown in Figs. 14(d) and 14(g) were not included.

4. From NREFTI to XEFT

From the previous discussions, we see that all momentum
scales much larger than γ0 ≤ 20 MeV have been integrated
out from the XEFT. This is different from NREFTI, where all
nonrelativistic modes are kept as effective degrees of freedom
including those with a momentum of the order of a few
hundred of MeV. NREFTI when applied to the Xð3872Þ can
be regarded as the high-energy theory for the XEFT. The
short-distance operators in XEFTat the scale of a few hundred
of MeV can be matched to NREFTI. This has been discussed
by Mehen (2015) in the context of calculations of the
reactions Xð3872Þ → χcJπ

0.

To show the relation between NREFTI and XEFT explicitly
let us consider the case c2 ≫ c1. The quantities c2 and c1
introduced in Eq. (42) define the locations of the two-body
cuts of the triangle diagram. In the low-momentum region
l ∼ ffiffiffiffiffi

c1
p

, the second factor in the integrand of Eq. (42) can be
expanded in powers of l2=c2 and one gets

IðqÞ ¼ 4μ12μ23
Nmc2

Z
Λ d3l
ð2πÞ3

1

l2 þ c1 − iϵ

�
1þO

�
c1
c2

��

≃ μ12
2πNm½b23 þ q2=ð2m3Þ�

ðΛPDS −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 − iϵ

p
Þ: ð66Þ

The resulting momentum integral in the first line is divergent
and needs to be regularized. The natural UV cutoff of the new
effective theory is set by Λ <

ffiffiffiffiffi
c2

p
. We denote such a theory as

NREFTII. It reduces to the XEFT when applied to the
Xð3872Þ. In order to compare with the XEFT, in the second
line of Eq. (66) we evaluate the integral in the PDS scheme
which is equivalent to the sharp cutoff regularization by letting
ΛPDS ¼ 2Λ=π and dropping the terms of Oð1=ΛÞ. For a
detailed comparison of dimensional versus cutoff regulariza-
tion see Phillips, Beane, and Birse (1999).
For m1 ¼ MD�0, m2 ¼ MD0 , EC ¼ Eπ , and mA ¼ MX, the

second line of Eq.(66) reduces to

−
1

NmðEπ þ ΔHÞ
1

C0ðΛPDSÞ
; ð67Þ

where ΔH ¼ MD0 þm3 −MX, and the term q2=ð2m3Þ has
been neglected. Terms of this form appear in the XEFT
amplitudes for transitions between the Xð3872Þ and a char-
monium with the emission of a light particle (Fleming and
Mehen, 2008; Mehen and Springer, 2011; Fleming and
Mehen, 2012; Margaryan and Springer, 2013).
The different power countings of XEFT and NREFTI have

various implications that we now illustrate by two examples.
Since NREFTI keeps all nonrelativistic modes explicitly,

the charged DD̄� channel which has a momentum of γc ≃
126 MeV needs to be kept as soft degrees of freedom. On the
contrary, the XEFT keeps only the ultrasoft neutral charm
mesons dynamically and the charged ones are integrated out.
It was pointed out by Mehen (2015) that it is crucial to take
into account the charged charm mesons for the calculation of
the Xð3872Þ → χcJπ

0 decay rate in NREFTI because their
contribution cancels to a large extent the one from the neutral
charm mesons as usual in isospin violating transitions (cf. the
discussion in Sec. VI.A.3).21 The situation for decays into an
isoscalar pion pair Xð3872Þ → χcJππ is different. We expect
that the charged and neutral channels are still of similar order,
but add up constructively.
Furthermore, in the XEFT calculation for Xð3872Þ →

χcJπ
0, there appears a new, reaction specific short-distance

operator, labeled by Cχ;0 in Fig. 16(c). To estimate its size it is
matched onto two contributions in heavy meson chiral
perturbation theory by Fleming and Mehen (2008, 2012).

[k
eV

]

FIG. 15. The decay width of the Xð3872Þ → D0D̄0π0 taking
into account theDD̄ final state interaction in the framework of the
Lippmann-Schwinger equation regularized by a Gaussian form
factor. Here the cutoff in the Gaussian regulator is taken to be
Λ ¼ 0.5 GeV, and C0a is the unknown isoscalar part of the DD̄
contact term. The gray and blue bands correspond to the
uncertainty bands without and with theDD̄ final state interaction,
respectively. The vertical line denotes the D0D̄0 threshold.
Adapted from Guo, Hidalgo-Duque et al., 2014.

21The role of the charged charm mesons for certain decays of the
Xð3872Þ was already stressed by Gamermann and Oset (2009).
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Those are given by the exchange of a charm meson, which is
proportional to the χcJHH̄ coupling constant g1, and a contact
term accompanied by a low-energy constant c1, shown in
Figs. 16(a) and 16(b), respectively. The final result in XEFT
then depends on the unknown ratio g1=c1. In NREFTI,
however, the two contributions appear at different orders,
since the amplitude from Fig. 16(b) is suppressed by v2

compared with that from Fig. 16(a).

B. Formation of hadronic molecules

While so far the focus has been on transitions of molecular
candidates, we now turn to their formation through two-
hadron scattering. For illustration we focus in this section on
the scattering of open-flavor heavy mesons off their anti-
particles in a framework of NREFT similar to the EFT for
nucleon-nucleon interactions (Epelbaum, Hammer, and
Meißner, 2009). The example of the formation of Λð1405Þ
from similar dynamics is discussed in Sec. VI.D. In this
section we mainly discuss the method used by Nieves and
Valderrama (2011, 2012), Valderrama (2012), Guo et al.
(2013a, 2013b), and Hidalgo-Duque, Nieves, and
Valderrama (2013). It is based on the Lippmann-Schwinger
equation (LSE) regularized using a Gaussian vertex form
factor. The coupled-channel LSE reads

TijðE; k0; kÞ ¼ Vijðk0; kÞ

þ
X
n

Z
d3l
ð2πÞ3

V inðk0; lÞTnjðE; l; kÞ
E − l2=ð2μnÞ − Δn1 þ iϵ

;

ð68Þ

where μn is the reduced mass in the nth channel, E is the
energy defined relative to the threshold of the first channel,
and Δn1 is the difference between the nth threshold and
the first one. When the potential takes a separable form
Vijðk0; kÞ ¼ ξiðk0ÞVijφjðkÞ, where the Vij are constants,
Eq. (68) can be greatly simplified. In addition, for very
near-threshold states one should expect a momentum expan-
sion for the potential to converge fast and a dominance of
S waves. Both the separability and the absence of higher
partial waves will be spoiled as soon as the one-pion exchange
is included on the potential level; this case will be discussed
later in this section.
With a UV regulator such as of the Gaussian form

(Epelbaum, Hammer, and Meißner, 2009),

Vijðk0; kÞ ¼ e−k
02=Λ2

Vije−k
2=Λ2

; ð69Þ

the LSE can be solved straightforwardly. If the T matrix has a
near-threshold bound state pole, the effective coupling of this
composite state to the constituents can be obtained by
calculating the residue of the T-matrix element at the pole.
For simplicity, we consider a single-channel problem with the
LO contact term Vðk0; kÞ ¼ C0e−k

02=Λ2

e−k
2=Λ2

. The nonrela-
tivistic T-matrix element for the scattering of the two hadrons
is then given by

TNRðEÞ ¼ ½C−1
0 þ ΣNRðEÞ�−1; ð70Þ

where

ΣNRðEÞ ¼
μ

2π

�
Λffiffiffiffiffi
2π

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μE − iϵ

p �
þOðΛ−1Þ ð71Þ

is the nonrelativistic two-point scalar loop function defined in
Eq. (63) but evaluated with a Gaussian regulator. After
renormalization by absorbing the cutoff dependence into
C0, we obtain

TNRðEÞ ¼
2π=μ

γ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μE − iϵ

p þOðΛ−1Þ: ð72Þ

The binding momentum γ was defined in Eq. (5). The
effective coupling is obtained by taking the residue at the
pole E ¼ −EB:

g2NR ¼ lim
E→−EB

ðEþ EBÞTNRðEÞ ¼ ½Σ0
NRð−EBÞ�−1

¼ 2πγ

μ2
: ð73Þ

It does not depend on C0, and is scale independent up to
terms suppressed by 1=Λ. Multiplying g2NR by the factor
8m1m2M to get the relativistic normalization, we recover the
expression for geff derived in Eq. (25) for λ2 ¼ 0. Thus we
found that a potential of the kind given in Eq. (69) generates
hadronic molecules. Deviations of this result behavior can be
induced by momentum dependent interactions (or terms of
order γ=Λ). This observation formed the basis for the
generalization of the Weinberg compositeness criterion
presented by Aceti and Oset (2012), Hyodo, Jido, and
Hosaka (2012), Hyodo (2013a), and Sekihara, Hyodo, and
Jido (2015).
To proceed we first need to say a few words about the

scattering of heavy mesons. For infinitely heavy quarks the
spin of the heavy quark decouples, and accordingly in a
reaction not only the total angular momentum is conserved but
also the spin of the heavy quark and thus the total angular
momentum of the light quark system as well. Therefore, a
heavy-light-quark system can be labeled by the total angular
momentum of the light quark system jl. Accordingly the
ground-state mesonsD andD� (B̄ and B̄�) form a doublet with
jPl ¼ 1=2−, where we deviate from the standard notation sPl to
remind the reader that the light quark part can be more
complicated than just a single quark. Candidates of the next

(a) (b) (c)

FIG. 16. Diagrams for calculating the decay rate for the process
Xð3872Þ → χc1π

0. The circled crosses denote an insertion of the
Xð3872Þ, the thin and thick solid lines represent the pseudoscalar
and vector charm mesons, respectively, the dashed lines represent
the pions, and the double lines correspond to the χc1.
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doublets of excited states are D�
0ð2400Þ22 and D1ð2430Þ (the

corresponding B mesons are still to be found), characterized
by jPl ¼ 1=2þ and a width of about 300 MeV, and D1ð2420Þ
and D�

2ð2460Þ [B̄1ð5721Þ and B̄�
2ð5747Þ] with jPl ¼ 3=2þ and

a width of about 30 MeV. Since the states with jPl ¼ 1=2þ are
too broad to support hadronic molecules (Filin et al., 2010;
Guo and Meißner, 2011), in what follows we focus on the
scattering of the ground-state mesons off their antiparticles as
well as on that of the jPl ¼ 3=2þ mesons off the ground-state
ones with one of them containing a heavy quark and the other
a heavy antiquark.
We start with the former system. To be concrete, we take the

charm mesons. In the particle basis, there are six S-wave
meson pairs with given JPC (Nieves and Valderrama, 2012):

0þþ∶ fDD̄ð1S0Þ; D�D̄�ð1S0Þg;
1þ−∶ fDD̄�ð3S1;−Þ; D�D̄�ð3S1Þg;
1þþ∶ fDD̄�ð3S1;þÞg;
2þþ∶ fD�D̄�ð5S2Þg; ð74Þ

where the individual partial waves are labeled as 2Sþ1LJ, with
S, L, and J denoting the total spin, the angular momentum,
and the total momentum of the two-meson system, respec-
tively. We define the C-parity eigenstates as

DD̄�ð�Þ ¼ 1ffiffiffi
2

p ðDD̄� �D�D̄Þ; ð75Þ

which comply with the convention23 for the C-parity trans-
formation ĈM ¼ M̄. Because of HQSS, the interaction at
LO is independent of the heavy quark spin and thus can be
described by the matrix elements hj01l; j02l; jljĤIjj1l; j2l; jli
where the light-quark systems get coupled to a total light-
quark angular momentum of the two-meson system jl. Thus,
for the systems under consideration, we have two independent
terms for each isospin (I ¼ 0 or 1): h1=2; 1=2; 0jĤI j1=2;
1=2; 0i and h1=2; 1=2; 1jĤIj1=2; 1=2; 1i. This simple obser-
vation leads to the conclusion that in the strict heavy-quark
limit the six pairs in Eq. (74) are grouped into two multiplets
with jl ¼ 0 and 1, respectively. In the heavy-quark limit, it is
convenient to use a basis of states characterized via
jPCl ⊗ sPCcc̄ , where scc̄ refers to the total spin of the c and c̄
pair. For the case of S-wave interactions only, both jPCl and
sPCcc̄ can only be in 0−þ or 1−−. Therefore, the spin multiplet
with jl ¼ 0 contains two states with quantum numbers:

0−þl ⊗ 0−þcc̄ ¼ 0þþ; 0−þl ⊗ 1−−cc̄ ¼ 1þ−; ð76Þ

and the spin multiplet for jl ¼ 1 has the following four states:

1−−l ⊗ 0−þcc̄ ¼ 1þ−; 1−−l ⊗ 1−−cc̄ ¼ 0þþ ⊕ 1þþ ⊕ 2þþ:

ð77Þ

It becomes clear that if the 1þþ state Xð3872Þ is a DD̄�

molecule, then it is in the multiplet with jl ¼ 1 (Voloshin,
2004a), and has three spin partners with JPC ¼ 0þþ, 2þþ, and
1þ− in the strict heavy quark limit as pointed out by Hidalgo-
Duque et al. (2013) and Baru et al. (2016). Based on an
analogous reasoning it was suggested already earlier that
Zbð10610Þ and Zbð10650Þ might have four more isovector

partners Wð0Þ
b0, Wb1, and Wb2 (Bondar et al., 2011; Mehen and

Powell, 2011; Voloshin, 2011). A detailed and quantitative
analysis of theseWbJ states can be found in Baru et al. (2017).
It is worthwhile to note that the two 1þ− states are in

different multiplets with jl ¼ 0 and 1, respectively, and thus
cannot be related to each other via HQSS. However, the
isovectors Zbð10610Þ and Zbð10650Þ are located with similar
distances to the BB̄� and B�B̄� thresholds, respectively. Such
an approximate degeneracy suggests that the isovector inter-
actions in the jl ¼ 0 and 1 sectors are approximately the
same, and the off-diagonal transition strength in the isovector
channel between the two meson pairs with JPC ¼ 1þ− in
Eq. (74) approximately vanishes. A fit to the Belle data of the
Zb line shapes with HQSS constraints implemented also leads
to nearly vanishing channel coupling (Guo, Hanhart et al.,
2016). This points toward an additional “light quark spin
symmetry” as proposed by Voloshin (2016b). While a deeper
understanding for such a phenomenon is still missing, it seems
to be realized in the charm sector as well for the charged
Zcð3900Þ (Ablikim et al., 2013a; Z. Q. Liu et al., 2013) and
Zcð4020Þ (Ablikim et al., 2013b) observed by the BESIII and
Belle Collaborations. Valderrama (2012) argued that channel
couplings are suppressed while Baru et al. (2016) claimed
they were important to keep a well-defined spin symmetry
limit. We come back to this controversy later in this section.
When the physical nondegenerate masses for the heavy

mesons are used, one needs to switch to the basis in terms of
physical states in Eq. (74). In this basis and for a given set of
quantum numbers fJPCg, the LO EFT potentials VðJPCÞ

LO ,
which respect HQSS, read (AlFiky, Gabbiani, and Petrov,
2006; Nieves and Valderrama, 2012; Valderrama, 2012)

Vð0þþÞ
LO ¼

�
C0a −

ffiffiffi
3

p
C0b

−
ffiffiffi
3

p
C0b C0a − 2C0b

�
; ð78Þ

Vð1þ−Þ
LO ¼

�
C0a − C0b 2C0b

2C0b C0a − C0b

�
; ð79Þ

Vð1þþÞ
LO ¼ C0a þ C0b; ð80Þ

Vð2þþÞ
LO ¼ C0a þ C0b; ð81Þ

where C0a and C0b are two independent low-energy constants.
Thus, since in the spin symmetry limit D and D� are
degenerate, implying that DD̄� and D�D̄� loops are equal,

22The DπS-wave resonant structure is probably more complicated
than a single broad resonance, as demonstrated by a two-pole
structure in Albaladejo, Fernandez-Soler et al. (2017).

23Note that a different convention for the C-parity operator was
used by Nieves and Valderrama (2012). As a consequence, the off-

diagonal transitions of Vð0þþÞ
LO in Nieves and Valderrama (2012) have

a different sign as compared to Eq. (78); see also Sec. VI.A in Guo,
Hanhart et al. (2016) for further details of our convention.
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the equality of the potentials in the 1þþ and 2þþ channels
immediately predicts equal binding energies for the two states
in this limit.
Once HQSS violation is introduced into the system by the

use of the physical masses, the two-multiplet pattern gets
changed; however, the close connection between the 1þþ and
2þþ states persists. An inclusion of the one-pion exchange
necessitates an extension of the basis, since now also Dwaves
need to be included. In fact, HQSS is preserved only if all
allowed D waves are kept in the system, even if the masses of
the open-flavor states are still kept degenerate (Baru et al.,
2016). The probably most striking effect of the Dwaves, once
theD� −Dmass difference is included, is that now transitions
of the 2þþ D�D̄� S-wave state to the DD̄ and DD̄� D wave
become possible. It allows for a width of this state of up to
several tens of MeV (Albaladejo et al., 2015; Baru et al.,
2016), which might be accompanied by a sizable shift in mass.
In addition, spin symmetry relations might get modified via
the coupling of the molecular states with regular charmonia as
discussed recently (Cincioglu et al., 2016).
For near-threshold states it is natural to assume that the

contact terms are independent of the heavy quark mass—
phenomenologically they can be viewed as parametrizing the
exchange of light meson resonances. Then one can also predict
the heavy-quark flavor partners of the Xð3872Þ. The heavy-
quark spin and flavor partners of theXð3872Þ predicted byGuo
et al. (2013a) with Λ ¼ 0.5 GeV are listed in Table V.
The Zbð10610Þ can be related to the Zbð10650Þ when the

off-diagonal interaction is neglected. Their hidden-charm
partners are found to be virtual states in this formalism
(Guo et al., 2013a), which may correspond to the
Zcð3900Þ and Zcð4020Þ. In fact, it was shown by
Albaladejo, Guo et al. (2016) that the BESIII data for the
Zcð3900Þ in both the J=ψπ (Ablikim et al., 2013a) and DD̄�

(Ablikim et al., 2015a) modes can be well fitted with either a
resonance above the DD̄� threshold or a virtual state below.
The number of the LO contact terms is larger for the

interaction between a pair of jl ¼ 1=2 and 3=2 heavy and
antiheavy mesons. For each isospin, 0 or 1, in the heavy-quark
limit there are four independent interactions denoted as
hj1l; j2l; jljĤIjj01l; j02l; jli, where now jl can take values
1 or 2:

Fd
Ijl

≡ h1
2
; 3
2
; jljĤIj12; 32; jli;

Fc
Ijl

≡ h1
2
; 3
2
; jljĤIj32; 12; jli: ð82Þ

The relevant combinations of these constants for a given
heavy-meson pair can be worked out by changing the basis by

means of a unitary transformation (Ohkoda et al., 2012a;
Xiao, Nieves, and Oset, 2013):

js1c; j1l; j1; s2c; j2l; j2; Ji
¼

X
scc̄;jl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j1 þ 1Þð2j2 þ 1Þð2scc̄ þ 1Þð2jl þ 1Þ

p

×

8<
:

s1c s2c scc̄
j1l j2l jl
j1 j2 J

9=
;js1c; s2c; scc̄; j1l; j2l; jl; Ji; ð83Þ

where j1 and j2 are the spins of the two heavy mesons, J is
the total angular momentum of the whole system, and s1c
and s2c are the spins of the heavy quark. Noticing that the
total spin of the heavy quark and antiquark scc̄ is conserved
in the heavy-quark limit, and combining the meson pairs
into eigenstates of C parity, one can obtain the contact terms
for the S-wave interaction between a pair of jl ¼ 1=2 and
3=2 heavy and antiheavy mesons. The diagonal ones are
listed in Table VI. One sees that the linear combinations are
different for all channels, and it is not as easy as in the case
of Xð3872Þ to predict spin partners for the Yð4260Þ based
on the assumption that it is predominantly a D1D̄ state. The
possibility of S-wave hadronic molecules with exotic quan-
tum numbers 1−þ was discussed by Q. Wang (2014).
However, one nontrivial prediction for the spectrum of

molecular states in the heavy quarkonium spectrum
becomes apparent immediately from the previous discus-
sion: Since the most bound states appear in S waves the
lightest negative parity vector state can be formed only
from jPl ¼ 1=2− and 3=2þ heavy and antiheavy mesons.

TABLE V. Predictions of the partners of the Xð3872Þ for Λ ¼
0.5 GeV in Guo et al. (2013a).

JPC States Thresholds (MeV) Masses (MeV)

1þþ 1ffiffi
2

p ðDD̄� þD�D̄Þ 3 875.87 3 871.68 (input)

2þþ D�D̄� 4 017.3 4012þ4
−5

1þþ 1ffiffi
2

p ðBB̄� þ B�B̄Þ 10 604.4 10 580þ9
−8

2þþ B�B̄� 10 650.2 10 626þ8
−9

2þ D�B� 7 333.7 7322þ6
−7

TABLE VI. The diagonal contact terms for the S-wave interaction
between a pair of jPl ¼ 1=2− and 3=2þ heavy and antiheavy mesons.

JPC Meson pairs Contact terms

1−− 1ffiffi
2

p ðDD̄1 −D1D̄Þ 1
8
ð−Fc

I1 − 5Fc
I2 þ 3Fd

I1 þ 5Fd
I2Þ

1ffiffi
2

p ðD�D̄1 −D1D̄�Þ 1
16
½5ðFc

I2 þ Fd
I2Þ − 7Fc

I1 þ 11Fd
I1�

1ffiffi
2

p ðD�D̄2 −D2D̄�Þ 1
16
ð−5Fc

I1 − Fc
I2 þ 15Fd

I1 þ Fd
I2Þ

0−− 1ffiffi
2

p ðD�D̄1 −D1D̄�Þ Fc
I1 þ Fd

I1

2−− 1ffiffi
2

p ðDD̄2 −D2D̄Þ 1
8
ð3Fc

I1 − Fc
I2 þ 3Fd

I1 þ 5Fd
I2Þ

1ffiffi
2

p ðD�D̄1 −D1D̄�Þ 1
16
ðFc

I1 − 3Fc
I2 þ Fd

I1 þ 15Fd
I2Þ

1ffiffi
2

p ðD�D̄2 −D2D̄�Þ 1
16
ð−9Fc

I1 − 5Fc
I2 þ 9Fd

I1 þ 7Fd
I2Þ

3−− 1ffiffi
2

p ðD�D̄2 −D2D̄�Þ Fd
I2 − Fc

I2

0−þ 1ffiffi
2

p ðD�D̄1 þD1D̄�Þ Fd
I1 − Fc

I1

1−þ 1ffiffi
2

p ðDD̄1 þD1D̄Þ 1
8
½5ðFc

I2 þ Fd
I2Þ þ Fc

I1 þ 3Fd
I1�

1ffiffi
2

p ðD�D̄1 þD1D̄�Þ 1
16
ð7Fc

I1 − 5Fc
I2 þ 11Fd

I1 þ 5Fd
I2Þ

1ffiffi
2

p ðD�D̄2 þD2D̄�Þ 1
16
ð5Fc

I1 þ Fc
I2 þ 15Fd

I1 þ Fd
I2Þ

2−þ 1ffiffi
2

p ðDD̄2 þD2D̄Þ 1
8
ð−3Fc

I1 þ Fc
I2 þ 3Fd

I1 þ 5Fd
I2Þ

1ffiffi
2

p ðD�D̄1 þD1D̄�Þ 1
16
½3ðFc

I2 þ 5Fd
I2Þ − Fc

I1 þ Fd
I1�

1ffiffi
2

p ðD�D̄2 þD2D̄�Þ 1
16
ð9Fc

I1 þ 5Fc
I2 þ 9Fd

I1 þ 7Fd
I2Þ

3−þ 1ffiffi
2

p ðD�D̄2 þD2D̄�Þ Fc
I2 þ Fd

I2

Guo et al.: Hadronic molecules

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015004-34



Therefore the mass difference of Xð3872Þ as a bound state
of two ground-state jPl ¼ 1−=2 mesons (D and D�) and the
lightest exotic vector state Yð4260Þ (388 MeV) should be
of the order of the mass difference of the lightest 3=2þ

state and the D� (410 MeV). Clearly this prediction is
nicely realized in nature. Note that from this reasoning it
also follows that if the Yð4008Þ indeed were to exist it
could not be a hadronic molecule. In this context it is
interesting to note that the most resent data from BESIII on
eþe− → J=ψππ (Ablikim et al., 2017c) do not seem to
show evidence for the Yð4008Þ; cf. Fig. 5.

C. Impact of hadron loops on regular quarkonia

In the previous sections we argued that meson loops
play a prominent role in both the formation and the decays
of hadronic molecules. One may wonder if they also have
an impact on the properties of regular charmonia. In this
section we demonstrate that certain processes for regular
hadrons, largely well described by the quark model, can
also be influenced by significant meson-loop effects, since
reaction rates can receive an enhancement due to the nearly
on-shell intermediate heavy mesons. The origin of this
mechanism is that for most heavy quarkonium transitions
MQQ̄ − 2MQq̄ ≪ MQq̄, where MQQ̄ and MQq̄ are the masses
of the heavy quarkonium and an open-flavor heavy meson,
respectively. As a result, the intermediate heavy mesons
are nonrelativistic with a small velocity

v ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMQQ̄ − 2mQq̄j=mQq̄

q
≪ 1; ð84Þ

and the meson loops in the transitions can be investigated
using NREFTI. We highlight this effect on two examples
in what follows.24

We start with the hindered M1 transitions between two P-
wave heavy quarkonia with different radial excitations, such
as the hcð2PÞ → γχcJð1PÞ. Guo and Meißner (2012a) and
Guo, Meißner, and Yang (2016) proposed that such transitions
are very sensitive to meson-loop effects, and the pertinent
partial widths provide a way to extract the coupling constants
between the P-wave heavy quarkonia and heavy open-flavor
mesons. In quark models the amplitude for such a transition is

proportional to the overlap of the wave functions of the initial
and final heavy quarkonia, which is small and quite model
dependent due to the different radial excitations—this is why
they are called “hindered.” This suppression is avoided in the
coupled-channel mechanism of heavy-meson loops. In this
mechanism, the initial and final P-wave heavy quarkonia
couple to the ground-state pseudoscalar and vector heavy
mesons in an S wave. A few diagrams contributing to this
mechanism are shown in Fig. 17. In Fig. 17(a), the photon is
emitted via its magnetic coupling to intermediate heavy
mesons. In Fig. 17(b), since the S-wave vertices do not have
any derivative at LO, the photon couples in a gauge invariant
way to one of the vertices in the two-point loop diagram.
Figures 17(c) and 17(d) are two typical two-loop diagrams.
From the power counting rules discussed in Sec. IV.A.2,
Fig. 17(a) provides the leading contribution, while Fig. 17(b)
is of higher order in the velocity counting because there is one
less nonrelativistic propagator. Their amplitudes scale as

AðaÞ ∼
Eγ

mQv
; AðbÞ ∼

Eγv

mQ
; ð85Þ

respectively, where Eγ is the photon energy, and the depend-
ence on the coupling constants is dropped. The 1=mQ

suppression comes from the fact that the polarization of a
heavy (anti)quark needs to be flipped in the M1 transitions.
For the two-loop diagram in Fig. 17(c), the amplitude scales as

AðcÞ ∼
ðv5Þ2
ðv2Þ5

g2

ð4πÞ2F2
π

Eγ

mQ
M2

H ¼ Eγ

mQ

�
gMH

Λχ

�
2

; ð86Þ

where the factor 1=ð4πÞ2 appears because there is one more
loop and the hadronic scale Λχ ¼ 4πFπ ∼ 1 GeV was intro-
duced as the hard scale for the chiral expansion. The factor of
M2

H was introduced to match dimensions with those of
Eqs. (85). Figure 17(d) has the same scaling as Fig. 17(c).
Since the axial coupling constant g≃ 0.6 for the charm case as
determined from the width of D� → Dπ, and about 0.5 for the
bottom (Flynn et al., 2016), one has gMD=Λχ ≲ 1 and

(c) (d)

(b)(a)

FIG. 17. Feynman diagrams for the coupled-channel effects for
the hindered M1 transitions between heavy quarkonia. The one-
loop contributions are given by (a) and (b). (c) and (d) are two
typical two-loop diagrams. The double, solid, wavy, and dashed
lines represent heavy quarkonia, heavy mesons, photons, and
pions, respectively. Adapted from Guo and Meißner, 2012a.

24The effects of meson loops in heavy quarkonium spectrum have
been investigated by Eichten et al. (1978, 1980), Ono and Törnqvist
(1984), Kalashnikova (2005), Eichten, Lane, and Quigg (2006),
Pennington and Wilson (2007), Barnes and Swanson (2008), Li,
Meng, and Chao (2009), Danilkin and Simonov (2010a, 2010b),
Ortega et al. (2010), Bali, Collins, and Ehmann (2011), Liu and Ding
(2012), Ferretti, Galatà, and Santopinto (2013, 2014), Ferretti and
Santopinto (2014), Zhou and Xiao (2014, 2017), Du, Meißner, and
Wang (2016), Hammer, Hanhart, and Nefediev (2016), and Lu,
Anwar, and Zou (2016, 2017), and in heavy quarkonium transitions
by Ono et al. (1985), Lipkin and Tuan (1988), Moxhay (1989), Zhou
and Kuang (1991), Li and Zhao (2008, 2011), Meng and Chao
(2008a, 2008b), Liu, Zhang, and Li (2009), Zhang, Li, and Zhao
(2009), Zhang and Zhao (2010), Wang, Liu, and Zhao (2011), Z.-k.
Guo et al. (2012), Wang, Li, and Zhao (2012), Li, Liu et al. (2013),
and Cao et al. (2016).
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gMB=Λχ ≃ 2. The value for v defined as ðv1 þ v2Þ=2 is about
0.4 for the transitions from the 2P to 1P charmonium states
(Guo and Meißner, 2012a), and ranges from 0.3 to 0.2 for the
transitions between 1P, 2P, and 3P bottomonia (Guo,
Meißner, and Yang, 2016). Hence, the two-loop diagrams
are suppressed in the charm sector, while they are of the same
order as Fig. 17(a) for the bottom sector. Therefore, one can
make predictions for the charmonium transitions by calculat-
ing the loops corresponding to Fig. 17(a). The results depend
on a product of two unknown coupling constants of the 1P and
2P charmonia to the charm mesons. Taking model values for
them, the decay width of the χc2ð2PÞ → γhcð1PÞ is of
Oð100 keVÞ, 2 orders of magnitude larger than the quark
model prediction, 1.3 keV (Barnes, Godfrey, and Swanson,
2005). Although quantitative predictions cannot be made for
the bottomonium transitions, it is expected that once such
transitions would be observed they must be due to coupled-
channel effects as the partial widths were predicted to be in the
range from a sub-eV to an eV level in a quark model
calculation that does not include meson-loop effects
(Godfrey and Moats, 2015). Guo and Meißner (2012a) and
Guo, Meißner, and Yang (2016) suggested that the coupled-
channel effects can be checked by comparing results from
both fully dynamical and quenched lattice QCD which has
and does not have coupled-channel effects, respectively.
Recent developments in lattice QCD calculations of radiative
decays (Dudek, Edwards, and Richards, 2006; Dudek,
Edwards, and Thomas, 2009; Meyer, 2011; Agadjanov et al.,
2014; Feng et al., 2015; Owen et al., 2015; Shultz, Dudek, and
Edwards, 2015; Briceño et al., 2016; Leskovec et al., 2016)
should be helpful in illuminating this issue.
There are other heavy quarkonium transitions driven mainly

by the coupled-channel effects. A detailed study on the
transitions between two charmonia (S and P waves) with
the emission of a pion or eta can be found in Guo et al. (2011).
It was found that whether the coupled-channel effects play a
sizable role depends on the process. This is a result of the
power counting analysis; see the itemized discussion in
Sec. IV.A.2. In particular, the single-pion or eta transitions
between two S-wave and P-wave charmonia receive important
contributions from charm-meson loops. Therefore, the long-
standing suggestion that the ψ 0 → J=ψ η=π0 transitions can be
used to extract the light quark mass ratio (Ioffe, 1979) needs to
be reexamined. In fact, if we assume that the triangle charm
meson-loop diagrams saturate the transitions, the resulting
prediction of Bðψ 0 → J=ψπ0Þ=Bðψ 0 → J=ψηÞ is consistent
with the experimental data. These transitions were revisited
considering both the loop and tree diagrams in Mehen and
Yang (2012). Again based on the same power counting rules it
was argued that the transitions ϒð4SÞ → hbπ0=η have only a
small pollution from the bottom-meson loops and are domi-
nated by a short-distance contribution proportional to the light
quark mass difference (Guo, Hanhart, and Meißner, 2010).
They could be used for the extraction of the light quark mass
ratio. Furthermore, the prediction made before the discovery
of the hbð1PÞ on the branching fraction of the order of 10−3

for the decay ϒð4SÞ → hbη was verified by the Belle
measurement ð2.18� 0.11� 0.18Þ × 10−3 (Tamponi
et al., 2015).

Parameter-free predictions can be made for the ratios of
partial widths of decays dominated by the coupled-channel
effects of heavy mesons in the same spin multiplet, since all
the coupling constants will get canceled in the ratios. Such
predictions on the hindered M1 transitions between P-wave
heavy quarkonia can be found in Guo and Meißner (2012a)
and Guo, Meißner, and Yang (2016).
Guo and Meißner (2012b) pointed out that coupled-channel

effects can even introduce sizable and nonanalytic pion mass
dependence in heavy quarkonium systems which couple to
open-flavor heavy-meson pairs in an S wave.
To summarize this section, we stress that whether meson-

loop effects are important for the properties of quarkonia or
not depends not only on the proximity to the relevant
threshold, it is also depends on the particular transition
studied.

V. HADRONIC MOLECULES IN LATTICE QCD

Lattice QCD is, in principle, the tool to calculate the
spectrum of QCD from first principles. There has been
remarkable progress in the last years in this field (Baron
et al., 2010; Dürr et al., 2008; Liu et al., 2012; Edwards et al.,
2011; Liu, 2017). Still, the extraction of the properties of
resonances and, in particular, of hadronic molecules from
finite-volume calculations poses severe challenges. When
QCD is put on a Euclidean spacetime lattice with a finite
spacetime volume, asymptotic states cannot be defined and
right-hand cuts are replaced by poles, thus preventing a direct
calculation of scattering and resonance properties. This
obstacle was overcome by Lüscher a long time ago. He
derived a relation between the energy shift in the finite volume
and the scattering phase shift in the continuum (Lüscher,
1986, 1991); see also Wiese (1989) and DeGrand (1991). This
approach has become known and used as Lüscher’s method.
More precisely, in order to determine the mass and width from
the measured spectrum, one first extracts the scattering phase
shift by using the Lüscher equation. In the next step, using
some parametrization for the K matrix (e.g., the effective
range expansion), a continuation into the complex energy
plane is performed. As noted in Sec. III.A, resonances
correspond to poles of the scattering T matrix on the second
Riemann sheet, and the real and imaginary parts of the pole
position define the mass and the width of a resonance. An
example is given by the ρ meson that has been considered
using Lüscher’s method; see, e.g., Aoki et al. (2011), Feng,
Jansen, and Renner (2011), Lang et al. (2011), and Dudek,
Edwards, and Thomas (2013). In these papers it was shown
that, even for such realistic calculations of a well-isolated
resonance, the inclusion of hadron-hadron-type interpolating
operators is mandatory, and it is simply not sufficient to
represent the decaying resonance by properly chosen quark
bilinears (for mesons). For the discussion of hadronic mol-
ecules (or most other hadron resonances), this method needs
to be extended in various directions, such as considering
higher partial waves and spins (Bernard et al., 2008; König,
Lee, and Hammer, 2011, 2012; Luu and Savage, 2011;
Göckeler et al., 2012; Briceño and Davoudi, 2013a), moving
frames (Rummukainen and Gottlieb, 1995; Bour et al., 2011;
Davoudi and Savage, 2011; Fu, 2012; Göckeler et al., 2012;
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Leskovec and Prelovsek, 2012), multichannel scattering (Liu,
Feng, and He, 2006; Lage, Meißner, and Rusetsky, 2009;
Bernard et al., 2011; Döring, Haidenbauer et al., 2011; P. Guo
et al., 2013; N. Li and Liu, 2013), including the use of
unitarized chiral perturbation theory (and related methods)
(Döring, Meißner et al., 2011; Albaladejo et al., 2012; Döring
and Meißner, 2012; Martínez Torres et al., 2012; J.-J. Wu
et al., 2014; Hu et al., 2016), and three-particle final states
(Kreuzer and Hammer, 2011; Polejaeva and Rusetsky, 2012;
Briceño and Davoudi, 2013b; Hansen and Sharpe, 2014,
2015, 2016a, 2016b, 2017; Meißner, Ríos, and Rusetsky,
2015; Guo and Gasparian, 2017).
Here we do not attempt to review the lattice QCD approach

to the hadron spectrum in any detail but just focus on what is
relevant for the investigation of possible hadronic molecules.
In Sec. V.A we summarize the Lüscher method and its
extension to the multichannel space, followed by a discussion
of the compositeness criterion in a finite volume; see Sec. V.C.
In Sec. V.B, we discuss how the quark mass dependence of
certain observables can be used to differentiate hadronic
molecules from more compact multiquark states and in
Sec. V.D we summarize pertinent lattice QCD calculations
for the possible molecular states containing charm quarks. A
final section is devoted to certain states made of light
quarks only.

A. Resonances in a finite volume

The essence of the Lüscher approach can be understood in a
simple nonrelativistic model for the scattering of identical,
spinless particles of mass m in 1þ 1 dimensions. In the c.m.
frame, the relative momentum is quantized according to
p ¼ ð2π=LÞn, with L the spatial lattice extension and n an
integer. In the case of no interactions between these particles,
the energy of the two-particle system is simply given by
E ¼ 2mþ p2=m, which means that the free energy level n
scales as n2=L2 with the volume and thus levels with different
n do not intersect. In the presence of interactions, this behavior
is modified. Let us assume that this interaction leads to a
narrow resonance at

ffiffiffiffiffi
sR

p ¼ ER − iΓR=2, that is ΓR ≪ ER. In
the infinite-volume limit, this interaction leads to a phase shift
δðpÞ in the asymptotic wave function. Furthermore, in the
presence of a resonance, the phase shift will change by π
[known as Levinson’s theorem (Levinson, 1949)]. In a finite
volume, this behavior translates into the boundary condition

pLþ 2δðpÞ ¼ 2πm; m ∈ Z: ð87Þ

This condition provides the link between the volume depend-
ence of the energy levels in the interacting system and the
continuum phase shift. If one follows an energy level inward
from the asymptotic region to smaller lattice sizes, in the
vicinity of a resonance, this boundary condition causes a
visible distortion, the so-called avoided level crossing; cf.
Fig. 18. The plateau, where the energy of the two-particle
system is almost volume independent, corresponds to the real
part of the pole ER. The imaginary part of the pole is given by
the slope according to dδðpÞ=dEjER

¼ 2=ΓR. Clearly, this
method can work only when certain conditions are fulfilled.

First, the method as described here is restricted to the elastic
two-particle case. Second, one has to make sure that the
interaction range of the particles is much smaller than the size
of the box to make the notion of asymptotic states possible.
Third, to suppress polarization effects that arise from the
interactions of the lightest particles in the theory with each
other around the torus, one has to choose L such
that 1=m ≪ L.
We now consider the extension of the Lüscher method to

the multichannel case, as most hadronic molecules are located
close to a two-particle threshold or between two close-by
thresholds. To achieve this extension, an appropriate tool is a
particular version of an NREFT, because up to the energies
where multiparticle inelastic states become significant, such a
framework is completely equivalent to the relativistic field
theory, provided the couplings in the nonrelativistic frame-
work are determined from matching to the relativistic S-matrix
elements; for details and further references, see Colangelo
et al. (2006), Bernard et al., (2008), and Gasser, Kubis, and
Rusetsky (2011). For the one-channel case, Beane et al.
(2005) already showed that using such an NREFT one obtains
a simple and transparent proof of Lüscher’s formula.
To keep the presentation simple, we first consider a two-

channel LSE in NREFT in the infinite volume. Let us consider
antikaon-nucleon scattering in the region of the Λð1405Þ
resonance K̄N → K̄N;Σπ. The channel number 1 refers to
K̄N and 2 to Σπ with total isospin I ¼ 0. The resonance
Λð1405Þ is located between two thresholds, on the second
Riemann sheet, close to the real axis. The two thresholds are
given by st ¼ ðmN þMKÞ2 and s0t ¼ ðmΣ þMπÞ2. We work
in the isospin limit and neglect the fact that there are really two
poles; see Oller and Meißner (2001) and Jido et al. (2003) and
Sec. VI.D.25 For energies above the K̄N threshold,
s > ðmN þMKÞ2, the coupled-channel LSE for the T-matrix
elements TijðsÞ in dimensionally regularized NREFT reads
(we consider only S waves here)
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FIG. 18. Energy levels of an interacting two-particle system. In
the case of a resonance in this system, the energy levels exhibit
the avoided level crossing (plateau) that allows one to read off the
resonance energy ER directly.

25Note that in this two-channel formulation one only has one pole
corresponding to one Λð1405Þ. To deal with the two-pole scenario
requires the inclusion of more channels and explicit isospin breaking.
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T11 ¼ H11 þH11iq1T11 þH12iq2T21;

T21 ¼ H21 þH21iq1T11 þH22iq2T21; ð88Þ

where q1 ¼ λ1=2ðs; m2
N;M

2
KÞ=ð2

ffiffiffi
s

p Þ, q2 ¼ λ1=2ðs; m2
Σ; M

2
πÞ=

ð2 ffiffiffi
s

p Þ, and λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx is the
Källén function. Furthermore, HijðsÞ denotes the driving
potential in the corresponding channel, i.e., the matrix element
of the interaction Hamiltonian between the free two-particle
states. Continuation of the c.m. momentum q1 below thresh-
old ðmΣ þMπÞ2 < s < ðmN þMKÞ2 is obtained via

iq1 → −κ1 ¼ −
½−λðs;M2

K;m
2
NÞ�1=2

2
ffiffiffi
s

p : ð89Þ

The resonance corresponds to a pole on the second Riemann
sheet in the complex s plane. Its position is given by the
solution of the secular equation

ΔðsÞ ¼ 1þ κR1H11 − κR2H22 − κR1 κ
R
2 ðH11H22 −H2

12Þ ð90Þ

with κR1 ¼ −½−λðsR;m2
N;M

2
KÞ�1=2=ð2

ffiffiffiffiffi
sR

p Þ and κR2 ¼ ½−λðsR;
m2

Σ;M
2
πÞ1=2�=ð2 ffiffiffiffiffi

sR
p Þ. The energy and width of the resonance

are then given by
ffiffiffiffiffi
sR

p ¼ ER − iΓR=2.
Consider next the same problem in a finite volume. Only

discrete values of the three-momentum are allowed, given by
k ¼ ð2π=LÞn, with n a triplet of integer numbers. Thus, we
replace the three-momentum integration in the loops by a
discrete sum (Bernard et al., 2008). The rotational symmetry
is broken to a cubic symmetry, so mixing of different partial
waves occurs. Here, however, we consider only S waves,
neglecting the small mixing to higher partial waves. If
necessary, the mixing can be easily included at a later stage
(Bernard et al., 2008; Döring et al., 2012). The finite-volume
version of the LSE Eq. (88) then takes the form

T11 ¼ H11 −
2Z00ð1; k21Þffiffiffi

π
p

L
H11T11 −

2Z00ð1; k22Þffiffiffi
π

p
L

H12T21;

T21 ¼ H21 −
2Z00ð1; k21Þffiffiffi

π
p

L
H21T11 −

2Z00ð1; k22Þffiffiffi
π

p
L

H22T21;

ð91Þ

with

k21=2 ¼
�
L
2π

�
2 λðs;M2

K=π; m
2
N=ΣÞ

4s
;

Z00ð1; k2Þ ¼
1ffiffiffiffiffi
4π

p lim
r→1

X
n∈R3

1

ðn2 − k2Þr : ð92Þ

Here we neglected the terms that vanish exponentially at large
L. The secular equation that determines the spectrum can be
brought into the form

1 −
2ffiffiffi
π

p
L
Z00ð1; k22ÞFðs; LÞ ¼ 0;

Fðs; LÞ ¼
�
H22 −

2Z00ð1; k21Þffiffiffi
π

p
L

ðH11H22 −H2
12Þ

�

×

�
1 −

2Z00ð1; k21Þffiffiffi
π

p
L

H11

�−1
: ð93Þ

This can be rewritten as

δðs; LÞ ¼ −ϕðk2Þ þ nπ; n ¼ 0; 1; 2;…;

ϕðk2Þ ¼ − arctan
π3=2k2

Z00ð1; k22Þ
; ð94Þ

with

tan δðs; LÞ ¼ q2ðsÞFðs; LÞ: ð95Þ

δðs; LÞ is called the pseudophase. The dependence of the
pseudophase on s and L is very different from that of the usual
scattering phase. Namely, the elastic phase extracted from the
lattice data by using Lüscher’s formula is independent of the
volume modulo terms that exponentially vanish at a large L.
Further, the energies where the phase passes through π=2 lie
close to the real resonance locations. In contrast with this, the
pseudophase contains the function Z00ð1; k21Þ, which does
not vanish exponentially at a large L and a positive k21.
Moreover, the tangent of the pseudophase contains a tower of
poles at the energies given by the roots of the equation
1 − ð2=πLÞZ00ð1; k21ÞH11 ¼ 0. On the other hand, in the
infinite volume this equation reduces to 1þ κR1H11 ¼ 0 [cf.
with Eq. (90)], which has only one root below threshold very
close to the position of the Λð1405Þ. Other roots in a finite
volume stem from oscillations of Z00ð1; k21Þ between −∞ and
þ∞ when the variable k21 varies along the positive semiaxis.
Their locations depend onH11 and thus contain information of
the infinite-volume interaction. This is an effect of discrete
energy levels in the “shielded” channel, which is the channel
with the lower threshold in the coupled-channel system. The
pseudophase depends on the three real functions H11, H12,
and H22. Based on synthetic data Lage, Meißner, and
Rusetsky (2009) showed that a measurement of the lowest
two eigenvalues at energies between 1.4 and 1.5 GeV allows
one to reconstruct the pseudophase and to extract in principle
the pole position. It was further pointed out in that work that
two-particle thresholds also lead to an avoided level crossing,
so the extraction of the resonance properties from the
corresponding plateaus in the energy dependence of certain
levels is no longer possible. In the case of real data, taking into
account the uncertainties of each measurements, one has to
measure more levels on a finer energy grid. To obtain a
sufficient amount of data in a given volume, twisting and
asymmetric boxes can also be helpful. First such calculations
have become available recently and will be discussed next.
An alternative formulation that allows the use of fully

relativistic two-particle propagators and can easily be matched
to the representation of a given scattering amplitude based on
unitarized chiral perturbation theory (UCHPT) was worked
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out by Döring, Meißner et al. (2011). The method is based on
the observation that in coupled-channel UCHPT certain
resonances are dynamically generated, e.g., the light scalar
mesons in the coupled ππ=K̄K system. The basic idea is to
consider this approach in a finite volume to produce the
volume-dependent discrete energy spectrum. Reversing the
argument, one is then able to fit the parameters of the chiral
potential to the measured energy spectrum on the lattice and,
in the next step, determine the resonance locations by solving
the scattering equations in the infinite volume. By construc-
tion, this method fulfills the constraints from chiral symmetry
such as the appearance of Adler zeros at certain unphysical
points. For recent developments using a relativistic frame-
work, see Briceño et al. (2015) and Briceño and Hansen
(2015, 2016).

B. Quark mass dependence

To reduce numerical noise as well as to speed up algo-
rithms, lattice calculations are often performed at unphysical
values of the light quark masses. While this at first sight may
appear as a disadvantage, it is indeed a virtue as it enables a
new handle on investigating the structure of certain states.
However, in the case of multiple coupled channels, one also
has to be aware that thresholds and poles can move very
strongly as a function of the quark masses. This intricate
interplay between S-wave thresholds and resonances needs to
be accounted for when one tries to extract the resonance
properties.
To address the first issue, we specifically consider the

charm-strange mesons D�
s0ð2317Þ and Ds1ð2460Þ. Cleven

et al. (2011b) showed that, in the molecular picture describing
these asDK andD�K bound states, a particular pion and kaon
mass dependence arises. Consider first the dependence on the
light quark masses that can be mapped onto the pion mass
dependence utilizing the Gell-Mann–Oakes–Renner relation
(Gell-Mann, Oakes, and Renner, 1968), M2

π� ¼ Bðmu þmdÞ
that naturally arises in QCD as the leading term in the chiral
expansion of the Goldstone boson mass. Here B is related to
the vacuum expectation value of the quark condensate. In fact,
this relation is fulfilled to better than 94% in QCD (Colangelo,
Gasser, and Leutwyler, 2001). Cleven et al. (2011b) showed
that the pion mass dependence of such a molecular state is
much more pronounced than for a simple cs̄ state. Even more
telling and unique is, however, the kaon mass dependence. For
that, consider theMK dependence of the mass of a bound state
of a kaon and some other hadron. The mass of such a kaonic
bound state is given by

M ¼ MK þMh − EB; ð96Þ

where Mh is the mass of the other hadron, and EB denotes the
binding energy. Although both Mh and EB have some kaon
mass dependence, it is expected to be a lot weaker than that of
the kaon itself. Thus, the important implication of this simple
formula is that the leading kaon mass dependence of a kaon-
hadron bound state is linear, and the slope is unity. The only
exception to this argument is if the other hadron is also a kaon
or antikaon. In this case, the leading kaon mass dependence is
still linear but with the slope being changed to 2. Hence, as for

the DK and D�K bound states, one expects that their masses
are linear in the kaon mass, and the slope is approximately 1.
This expectation is borne out by the explicit calculations
performed by Cleven et al. (2011b). Early lattice QCD
attempts to investigate this peculiar kaon mass dependence
have led to inconclusive results (McNeile, 2011). Other papers
that discuss methods to analyze the structure of states based on
their quark mass dependence or the behavior at large number
of colors are Peláez and Ríos (2006, 2010), Hanhart, Peláez,
and Ríos (2008), Bernard et al. (2011), Guo and Oller (2011),
Nebreda, Peláez, and Ríos (2011), Albaladejo and Oller
(2012), and Guo, Meißner, and Yao (2015).
The second issue we want to address is the intricate

interplay of S-wave thresholds and resonance pole positions
with varying quark masses, as detailed by Döring, Mai, and
Meißner (2013). In that paper, pion-nucleon scattering in the
JP ¼ 1=2− sector in the finite volume and at varying quark
masses based on UCHPT was studied. In the infinite volume,
both Nð1535Þ and Nð1650Þ are dynamically generated from
the coupled-channel dynamics of the isospin I ¼ 1=2 and
strangeness S ¼ 0 πN; ηN;KΛ, and KΣ system. Having fixed
the corresponding LECs in the infinite volume, one can
straightforwardly calculate the spectrum in the finite volume
provided one knows the octet Goldstone boson masses, the
masses of the ground-state octet baryons, and the meson decay
constants. Such sets of data at different quark masses are given
by the ETMC and QCDSF Collaborations. ETMC provides
masses and decay constants for Mπ ¼ 269 MeV and the kaon
mass close to its physical value (Alexandrou et al., 2009;
Ottnad et al., 2012). Quite differently, the QCDSF
Collaboration (Bietenholz et al., 2011) obtains the baryon
and meson masses from an alternative approach to tune the
quark masses. Most importantly, while the lattice size and
spacing are comparable to those of the ETMC, the strange
quark mass differs significantly from the physical value. The
latter results in a different ordering of the masses of the
ground-state octet mesons and, consequently, in a different
ordering of meson-baryon thresholds. For the ETMC param-
eters, all thresholds are moved to higher energies. The cusp at
the ηN threshold has become more pronounced, but no clear
resonance shapes are visible. Indeed, going to the complex
plane, one finds that the poles are hidden in the Riemann
sheets which are not directly connected to the physical one by
crossing the cut at the energies corresponding to the real parts
of the poles. Using the QCDSF parameters, the situation is
very different. In contrast to the ETMC case, a clear resonance
signal is visible below the KΛ threshold, that is the first
inelastic channel in this parameter setup. Indeed, one finds a
pole on the corresponding Riemann sheet. Unlike in the
ETMC case, it is not hidden behind a threshold. Between the
KΛ and the KΣ threshold, there is only a hidden pole. The KΣ
and ηN thresholds are almost degenerate, and on sheets
corresponding to these higher-lying thresholds one finds only
hidden poles. For more details, see Döring, Mai, and Meißner
(2013). In that paper, strategies to overcome such types of
difficulties are also discussed.
It is worthwhile to mention that the composition of a hadron

in general may vary when changing the quark masses.
However, as long as the quark masses are not very different
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from the physical values, the quark mass dependence is rather
suggestive toward revealing the internal structure as different
structures should result in different quark mass dependence.

C. Measuring compositeness on lattice

As discussed in Sec. III.B.1, the Weinberg compositeness
criterion offers a possibility to disentangle compact bound
states from loosely bound hadronic molecules. By measuring
the low-energy scattering observables in lattice using the
Lüscher formalism discussed before, one can extract the
compositeness by using Eqs. (18). For related work, see,
e.g., Suganuma et al. (2007), Martínez Torres et al. (2012),
Albaladejo et al. (2013), and Ozaki and Sasaki (2013).
Agadjanov et al. (2015) pointed out that the use of partially
twisted boundary conditions is easier than studying the
volume dependence in lattice for measuring the composite-
ness. The basic object in that work is the scattering amplitude
in the finite volume, which can be obtained from the
corresponding loop function ~Gθ

LðsÞ ¼ GðsÞ þ ΔGθ
LðsÞ

(Döring, Meißner et al., 2011), where ΔGθ
L can be related

to the modified Lüscher function Zθ
00 via

ΔGθ
LðsÞ ¼

1

8π
ffiffiffi
s

p
�
ik −

2ffiffiffi
π

p
L
Zθ
00ð1; k̂2Þ

�
þ � � � ; ð97Þ

with k̂ ¼ kL=ð2πÞ and the ellipsis denotes terms that are
exponentially suppressed with the lattice size L (Döring,
Meißner et al., 2011). Here, in case of twisted boundary
conditions, the momenta also depend on the twist angle θ
according to qn ¼ ð2π=LÞnþ ðθ=LÞ; 0 ≤ θi < 2π. In case of
a bound state with mass M in the infinite volume, the
scattering amplitude should have a pole at s ¼ M2, with
the corresponding binding momentum kB ≡ iκ, κ > 0, given
by

ψðk2BÞ þ κ ¼ −8πM½V−1ðM2Þ −GðM2Þ� ¼ 0; ð98Þ

with ψðk2Þ the analytic continuation of k cot δðkÞ for arbitrary
complex values of k2. From this, it is straightforward to
evaluate the pole position shift,

κL − κ ¼ 1

1− 2κψ 0ðk2BÞ
½−8πMLΔGθ

LðM2
LÞ þ ψ 0ðk2BÞðκL − κÞ2�;

ð99Þ

where the prime denotes differentiation with respect to k2.
Equation (99) gives the bound state pole position κL (and thus
the finite-volume mass ML) as a function of the infinite-
volume parameters g2 and κ. Having determined these
parameters from the bound state levels κL, one is then able
to determine the wave function renormalization constant Z in
the infinite volume. Agadjanov et al. (2015) scrutinized this
procedure using synthetic lattice data for a simple toy model
and a molecular model for the charm scalar mesonD�

s0ð2317Þ.
An important finding of this work is that the extraction of Z is
facilitated by using twisted boundary conditions, measuring
the dependence of the spectrum on the twist angle. Also, the
limitations of this approach are discussed in detail. It remains

to be seen how useful this method is for real lattice data. For
related papers, also making use of twisted boundary con-
ditions to explore the nature of states, see, e.g., Ozaki and
Sasaki (2013), Briceño et al. (2014), and Körber and Luu
(2016). A different approach to quantify compositeness in a
finite volume was recently given by Tsuchida and Hyodo
(2017). Using this method, the K̄N component of the Λð1405Þ
was found to be 58%, and the Σπ and other components also
contribute to its structure. This is interpreted as a reflection of
the two-pole scenario of the Λð1405Þ.

D. Lattice QCD results on the charm-strange mesons and XYZ
states

There have been quite a few studies of the charm-strange
mesons and some of the XYZ states in lattice QCD. However,
there are few conclusive results at present, so we expect that
this section will be the most quickly outdated.
Let us consider first the charm-strange mesons. A pioneer-

ing lattice study of the low-energy interaction between a light
pseudoscalar meson and a charmed pseudoscalar meson was
presented by L. Liu et al. (2013). The scattering lengths of the
five channels DK̄ðI ¼ 0Þ, DK̄ðI ¼ 1Þ, DsK, DπðI ¼ 3=2Þ,
and Dsπ were calculated based on four ensembles with pion
masses of 301, 364, 511, and 617 MeV. These channels are
free of contributions from disconnected diagrams. SU(3)
UCHPT as developed by Guo, Hanhart, and Meißner
(2009b) was used to perform the chiral extrapolation. The
LECs of the chiral Lagrangian were determined from a fit to
the lattice results. With the same set of LECs and the masses of
the involved mesons set to their physical values, predictions
for the other channels including DKðI ¼ 0Þ, DKðI ¼ 1Þ,
DπðI ¼ 1=2Þ, and DsK̄ were made. In particular, it was
found that the attractive interaction in the DKðI ¼ 0Þ channel
is strong enough so that a pole is generated in the unitarized
scattering amplitude. Within 1σ uncertainties of the param-
eters, the pole is at 2315þ18

−28 MeV, and it is always below the
DK threshold. From calculating the wave function normali-
zation constant, it was found that this pole is mainly an S-wave
DK bound state [the pertinent scattering length being close to
−1 fm as predicted by Guo, Hanhart, and Meißner (2009b)
for such a molecular state using Eq. (18)]. Further, a much
sharper prediction of the isospin breaking decay width of
D�

s0ð2317Þ → Dsπ could be given

Γ(D�
s0ð2317Þ → Dsπ) ¼ 133� 22 keV; ð100Þ

to be contrasted with the molecular prediction without lattice
data, Γ(D�

s0ð2317Þ → Dsπ) ¼ 180� 110 keV (Guo et al.,
2008), and typical quark model predictions for a cs̄ charm
scalar meson of the order of 10 keV (Godfrey, 2003; Faessler
et al., 2007). For a similar study using a covariant UCHPT
instead of the heavy-baryon formalism, see Altenbuchinger,
Geng, and Weise (2014).
A systematic study of the charm scalar and axial mesons at

lighter pion masses (Mπ ¼ 156 and 266 MeV) was performed
by Mohler et al. (2013), Mohler, Prelovsek, and Woloshyn
(2013), and Lang et al. (2014). These data were later
reanalyzed with the help of finite-volume UCHPT
(Martínez Torres et al., 2015). Most notably, the DK
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scattering with JP ¼ 0þ was investigated by Mohler et al.
(2013) using DK as well as cs̄ interpolating fields. Clear
evidence of a bound state below the DK threshold was
found and the corresponding scattering length was
a0 ¼ −1.33ð20Þ fm, consistent with the molecular scenario.
Martínez Torres et al. (2015) found a 70% DK (D�K)
component in the D�

s0ð2317Þ ½Ds1ð2460Þ� state.
The most systematic study in the coupled-channel Dπ; Dη,

and DsK̄ system with isospin 1=2 and 3=2 was reported by
Moir et al. (2016). Using a large basis of quark-antiquark and
meson-meson basis states, the finite-volume energy spectrum
could be calculated to high precision, allowing for the
extraction of the scattering amplitudes in the S, P, and
D waves. With the help of the coupled-channel Lüscher
formalism and various parametrizations of the T matrix,
three poles were found in the complex plane: a JP ¼ 0þ

near-threshold bound state, MS ¼ 2275.9� 0.9 MeV, with a
large coupling to Dπ, a deeply bound JP ¼ 1− state, MP ¼
2009� 2 MeV, and evidence for a JP ¼ 2þ narrow resonance
coupled predominantly to Dπ, MD ¼ 2527� 3 MeV. An
interesting observation was made by Albaladejo,
Fernandez-Soler et al. (2017). Using UCHPT, it was shown
that there are in fact two (I ¼ 1=2; JP ¼ 0þ) poles in the
region of the D�

0ð2400Þ in the coupled-channel Dπ, Dη, and
DsK̄ scattering amplitudes. They couple differently to the
involved channels and thus should be understood as two
states. Having all the parameters fixed from earlier studies in
L. Liu et al. (2013), the energy levels for the coupled-channel
system in a finite volume were predicted. These agree
remarkably well with the lattice QCD results by Moir et al.
(2016). The intricate interplay of close-by thresholds and
resonance poles already pointed out by Döring, Mai, and
Meißner (2013) was also found, and it was stressed that more
high-statistics data are needed to better determine the higher
mass pole.
We now turn to the XYZ states. Consider first the Xð3872Þ.

There have been a number of studies using diquark-diquark or
tetraquark interpolating fields over the years, but none of these
has been conclusive (Chiu and Hsieh, 2007; Yang et al.,
2013). Evidence for a bound state with JPC ¼ 1þþ 11�
7 MeV below the DD̄� threshold was reported by Prelovsek
and Leskovec (2013a). This establishes a candidate for the
Xð3872Þ in addition to the nearby scattering states DD̄� and
J=ψρ. This computation was performed at Mπ ¼ 266 MeV
but in a small volume L≃ 2 fm. This finding was validated
using the highly improved staggered quark action (Lee et al.,
2014). Finally, a refined study also allowing for the mixing of
tetraquark interpolators with c̄c components was presented by
Padmanath, Lang, and Prelovsek (2015). A candidate for the
Xð3872Þ with I ¼ 0 was observed very close to the exper-
imental state only if both c̄c and DD̄� interpolators are
included. However, the candidate is not found if diquark-
antidiquark and DD̄� are used in the absence of c̄c. Garzon
et al. (2014), Jansen, Hammer, and Jia (2014, 2015), and Baru
et al. (2015a) worked out strategies for extracting the proper-
ties of the Xð3872Þ from finite-volume data (at unphysical
quark masses).
Consider next the Zcð3900Þ. Various lattice calculations

have been performed, which, however, did not lead to

conclusive results (Prelovsek and Leskovec, 2013b; Chen
et al., 2014; Prelovsek et al., 2015; Ikeda et al., 2016). For
example, in recent work Ikeda et al. (2016) argued that this
state is most probably a threshold cusp. Also, a systematic
analysis of most of these data using a finite-volume version of
the framework in Albaladejo, Guo et al. (2016) did not allow
for a definite conclusion on the nature of the Zcð3900Þ
(Albaladejo, Fernandez-Soler, and Nieves, 2016).
The Chinese Lattice QCD Collaboration also studied D�D̄1

(Meng et al., 2009; T. Chen et al., 2016) and D�D̄ scattering
(Y. Chen et al., 2015) with the aim of investigating the
structure of Zcð4430Þ and Zcð4025Þ, respectively. These
studies were mostly exploratory and no definite statements
could be drawn.

E. Lattice QCD results on hadrons built from light quarks

Here we summarize some recent results on hadrons made
entirely of light u, d, and s quarks, more precisely, the scalar
mesons f0ð500Þ and a0ð980Þ as well as Λð1405Þ.
The first determination of the energy dependence of the

isoscalar ππ elastic scattering phase shift and the extraction
of the f0ð500Þ based on dynamical QCD using the methods
previously described was given by the Hadron Spectrum
Collaboration in Briceño et al. (2017). From the volume
dependence of the spectrum the S-wave phase shift up to
the KK̄ threshold could be extracted. The calculations were
performed at pion masses of 236 and 391 MeV. The
resulting amplitudes are described in terms of a scalar
meson which evolves from a bound state below the ππ
threshold at the heavier quark mass to a broad resonance at
the lighter quark mass. This is in line with the prediction of
Hanhart, Peláez, and Ríos (2008) based on UCHPT to one
loop. Earlier, the same collaboration had analyzed the
coupled-channel πη, KK̄, and πη0 system with isospin I ¼
1 and extracted properties of the a0ð980Þ meson (Dudek,
Edwards, and Wilson, 2016). The model-independent lattice
data on energy levels were reanalyzed using UCHPT by
Döring, Hu, and Mai (2016) and Guo et al. (2017). In
particular, Guo et al. (2017) pointed out some ambiguities
in the I ¼ 1 solution.
There have been quite a few studies of the Λð1405Þ as a

simple three-quark baryon state by various lattice collabo-
rations. In view of the intricacies of the coupled-channel
K−p scattering discussed earlier, we will not further con-
sider these as coupled-channel effects must be considered.
An exception is the analysis of Hall et al. (2015) based on
the PCAS-CS ensembles (Aoki et al., 2009) with three-
quark sources allowing for scalar and vector diquark
configurations that lead to the vanishing of the strange
magnetic form factor of Λð1405Þ at the physical pion mass.
It is argued that this can happen only if Λð1405Þ is mostly
an antikaon-nucleon molecule. This is further validated by
applying a finite-volume Hamiltonian approach to the
measured energy levels (J.-J. Wu et al., 2014). This lattice
QCD result appears to be at odds with the accepted two-
pole scenario. However, as pointed out in the UCHPT
analysis of Molina and Döring (2016), these results exhibit
some shortcomings. It is argued in that work that what is
really discussed in Hall et al. (2015) is the heavier of the
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two poles. In particular, the complete absence of the πΣ
threshold in these data is discussed, as this threshold would
couple stronger to the lighter pole. This effect is presumably
due to the neglect of the baryon-meson interpolating fields
in Hall et al. (2015). The required operators are also
specified in Molina and Döring (2016). It will be interesting
to see lattice QCD calculations including all the relevant
channels and required interpolating fields. We also point out
that better methods to calculate the matrix elements of
unstable states have been given by Bernard et al. (2012) and
Briceño and Hansen (2016).

VI. PHENOMENOLOGICAL MANIFESTATIONS OF
HADRONIC MOLECULES

A large number of theoretical studies on the recently
discovered exotic candidates focus on the computation of
masses (Brambilla et al., 2014; Chen, Chen et al., 2016;
Esposito, Pilloni, and Polosa, 2017; Lebed, Mitchell, and
Swanson, 2017). However, from the discussions in Secs. III
and IV, it is clear that the internal structure and especially
the molecular nature of a physical state manifest themselves
predominantly in some properly identified dynamical pro-
duction and decay processes. For near-threshold hadronic
molecules, the pertinent observables are provided by a set of
low-energy quantities: the scattering length and effective
range for the constituent-hadron system or, equivalently, the
effective coupling of the hadronic molecular candidate to its
constituents, since these quantities are heavily intertwined as
demonstrated in Sec. III. As discussed in detail there, the
probability to find the two-hadron component in the
physical state ð1 − λ2Þ can be extracted directly from these
quantities. However, due to the presence of various energy
scales driven by different physics aspects, not all production
and decay processes are sensitive to the effective coupling
as will be discussed with various examples mainly on the
XYZ states in this section. In addition, the implications of
heavy quark spin and flavor symmetries on the spectrum of
hadronic molecules as well as the interplay between
hadronic molecules and nearby triangle singularities are
presented.

A. Long-distance production and decay mechanisms

As in Sec. III, we denote the wave function of a
hadronic molecule candidate as Ψ. In order to allow for
a quantitatively controlled analysis, the state must be
located close to the relevant two-body threshold of h1
and h2. Then the long-distance momentum scale is given
by γ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μEB
p

; cf. Eq. (5) with γ ≪ β, where β is the
inverse of the range of forces. We define two classes of
production and decay processes, namely,

• long-distance processes, in which the momenta of all
particles in the c.m. frame of h1h2 are of OðγÞ;

• short-distance processes, which involve particles with a
momentum ≳β in the c.m. frame of h1h2.

It is shown in this section that only the former are sensitive
to the molecular component of the state investigated. The
complications in the latter will be discussed in the next
section.

1. Decays into the constituents and transitions between molecular
states

The long-distance processes involving hadronic mole-
cules can be computed using the EFT machinery intro-
duced in Sec. IV. When only the degrees of freedom with
momenta of OðγÞ are kept, the EFT is XEFT or, more
generally, NREFTII. When all particle energies are much
smaller than β2=ð2μÞ in the h1h2 c.m. frame, the ampli-
tudes involving pure molecular states for the pertinent
processes are at LO determined by the scattering length
universality (Braaten and Hammer, 2006). Decay ampli-
tudes are then proportional to the effective coupling geff
defined in Eq. (26) which can also be expressed in terms
of the scattering length. Clearly such an approach cannot
be simply applied to predominantly compact states since
then geff becomes small and short-distance mechanisms
become more important than hadronic loops.
For instance, as soon as the Xð3872Þ is treated as

a DD̄� molecule, the most important long-distance processes
are its decays into D0D̄�0 → D0½D̄0π0=D̄0γ�, discussed in
Sec. IV.A.4. The decay rates and the momentum distributions
of the final states serve as a good probe for the structure
of Xð3872Þ (Voloshin, 2004b).26 Higher order corrections
can be calculated using NREFTI detailed in Sec. IV.A.2. For
the Yð4260Þ, the most important process for the detection of
its D1D̄ component would be the decay into D1D̄ →
½D�π=D�γ�D̄ (Cleven, Wang et al., 2014; Qin, Xue, and
Zhao, 2016).
It may happen that two of the particles in the final states in

the mentioned three-body decays form another hadronic
molecule in the final state. The transition of a shallow bound
state into a light particle and another shallow bound state
receives two enhancements: large coupling constants for the
vertices involving the molecular states and the 1=v≃ 2=ðv1 þ
v2Þ factor as shown in Sec. IV.A.2, where v1 and v2 denote the
relative velocities of the heavy mesons before and after the
emission of the light particle [see Fig. 11 and Eq. (52)].
The possibility of a near-threshold pole in theDD̄ final state

interaction and its possible influence on the Xð3872Þ →
D0D̄0π0 transition was studied by Guo, Hidalgo-Duque et al.
(2014); cf. Fig. 15. Note that experimental information on this
distribution does not yet exist.27 However, the interplay of
hadronic molecules in the final and initial states might well
have been observed already as detailed in the remaining parts
of this section.
The D1ð2420ÞD̄ threshold in the JPC ¼ 1−− channel is the

closest S-wave open-charm threshold that the Yð4260Þ can
couple to. It is at the same time the lowest S-wave open-charm
threshold with vector quantum numbers, which provides a
natural explanation why the first (established) exotic vector

26These decays were also discussed by Swanson (2004b),
Voloshin (2006), Fleming et al. (2007), Meng and Chao (2007),
Braaten and Stapleton (2010), Liang, Molina, and Oset (2010), Baru
et al. (2011), Guo, Hidalgo-Duque et al. (2014), and Polosa (2015).

27A few calculations based on phenomenological models sug-
gested the possible existence of a DD̄ bound state (Wong, 2004;
Zhang et al., 2006; Fernández-Caramés, Valcarce, and Vijande, 2009;
Zhang and Huang, 2009; Liu et al., 2010; Li et al., 2012).
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state is significantly heavier than the Xð3872Þ. Assuming that
Yð4260Þ is a D1D̄ molecule and Xð3872Þ and Zcð3900Þ are
D�D̄ molecules with JPC ¼ 1þþ and 1þ−, respectively, the
decays of Yð4260Þ into Zcπ and Xð3872Þγ will occur through
the mechanisms shown in Figs. 19(a) and 19(b), where the
type of the light particle accompanying the hadronic molecu-
lar state is controlled by the positive and negative C parities
of the π0 and photon, respectively. Since v≲ 0.1 for both
transitions, 1=v indeed provides a large factor, shown as the
solid lines in Fig. 12. Therefore, a copious production of
Zcð3900Þ from Yð4260Þ → Zcð3900Þπ transitions as observed
at both BESIII and Belle (Ablikim et al., 2013a; Z. Q. Liu
et al., 2013) appears naturally within this dynamical picture
(Wang, Hanhart, and Zhao, 2013a). In addition, if this
explanation is indeed correct, the Xð3872Þ must also be
necessarily produced with a large rate for the production in
Yð4260Þ radiative decays (Guo, Hanhart et al., 2013). Indeed,
assuming that the Yð4260Þ and Xð3872Þ are pure bound states
of D1D̄ and D0D̄�0,28 respectively, one can get the coupling
strengths using the relation in Eq. (24) with λ2 ¼ Z ¼ 0:

jgNR;Xj ¼ ð0.20� 0.20� 0.03Þ GeV−1=2;

jgNR;Y j ¼ ð1.26� 0.09� 0.66Þ GeV−1=2; ð101Þ

where we have taken the Xð3872Þ binding energy to be
90� 90 keV, the first errors are from the uncertainties of the
binding energies, and the second ones are from the approxi-
mation of Eq. (24) due to neglecting terms suppressed by γ=β.
Here the inverse of the range of forces is conservatively
estimated by β ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2μΔth

p
, with Δth the difference between the

threshold of the components and the next close one, which is
MD�þ þMDþ −MD�0 −MD0 for the Xð3872Þ and MD1

þ
MD� −MD1

−MD for the Yð4260Þ, respectively. The partial
width for the Yð4260Þ → Xð3872Þγ in NREFTI can reach a
few tens of keV depending on the exact value of the Xð3872Þ
binding energy (Guo, Hanhart et al., 2013). The predicted
copious production of the Xð3872Þ in the Yð4260Þ radiative
decays was later confirmed by BESIII (Ablikim et al., 2014d).

It is worthwhile to mention that if the c.m. energy of the
eþe− collisions is very close to the D1ð2420ÞD̄ threshold at
around 4.29 GeV,29 the production of the Zcð3900Þ and
Xð3872Þ via the mechanism under consideration gets even
more enhanced since the kinematical condition for the TS
discussed in Sec. IV.A.1 is then (nearly) satisfied. However,
the resulting enhancement is balanced by the fact that the
energy is away from the peak of the Yð4260Þ spectral
function.
It should be mentioned that some experimental observa-

tions consistent with hadronic molecules are also claimed to
be consistent with other models. For instance, treating both the
Xð3872Þ and Yð4260Þ as tetraquarks also leads to a sizable
width for the radiative decay Yð4260Þ → Xð3872Þγ (Chen,
Maiani et al., 2015). However, large transitions to the
constituents of the hadronic molecules appear to be unique
signatures for the molecular states. In addition, their impor-
tance leaves visible imprints in the line shapes of states such as
the Yð4260Þ (Cleven, Wang et al., 2014; Qin, Xue, and
Zhao, 2016).

2. More on line shapes

The line shape of a hadronic molecule near its constituent
threshold reflects a long-distance phenomenon and can be
used as a criterion for establishing their nature. The energy
dependence of a hadronic molecule production line shape
generally does not appear to be trivial.
The data available at present for the line shapes of Xð3872Þ

appear to be insufficient for a unique conclusion about the
pole locations of the state. For example, a simultaneous fit of
the line shape of the Xð3872Þ in the J=ψππ and the D�0D̄0

invariant mass distributions employing a generalized Flatté
parametrization (Hanhart et al., 2007a) revealed that Xð3872Þ
is a virtual state. However, as soon as an explicit quarkonium
pole is included in the analysis, Kalashnikova and Nefediev
(2009), Zhang, Meng, and Zheng (2009), and Meng et al.
(2015) found that Xð3872Þ is the 23P1 charmonium with a
large coupling to theD0D̄�0 channel; in light of the discussion
of Sec. III.B one needs to conclude that also in this case the
Xð3872Þ has a sizable molecular admixture. It should also be
stressed that in Hanhart et al. (2007a) the width of the D� was
omitted, which might distort the line shapes (cf. Sec. III.C) as
was pointed out by Braaten and Lu (2007) and Braaten and
Stapleton (2010). According to these analyses, once this effect
is included, the fit favors a bound state solution. Another study
based on an improved Flatté formula (Artoisenet, Braaten, and
Kang, 2010) notices that the current data can accept Xð3872Þ
as both a D0D̄�0 hadronic molecule or the fine-tuned 23P1

charmonium coupled with the D0D̄�0 channel. Also the more
recent analysis of Kang and Oller (2017) finds solutions with
either a bound state pole or virtual states. Thus, to further

(a) (b)

FIG. 19. Schematic diagrams for the decays of the Yð4260Þ to
Zcð3900Þπ and to Xð3872Þγ assuming thatD1D̄ − c:c: dominates
the dynamics. The diagrams from the charge conjugated channel
are not shown.

28It was emphasized in Sec. IV.A.4 that the charged charm mesons
need to be taken into account for the Xð3872Þ in the framework of
NREFTI since they are below the hard scale and should be treated
explicitly. The reason for neglecting them here is that the rate for the
D0

1 → D�0γ is at least 1 order of magnitude larger than that for the
Dþ

1 → D�þγ from nonrelativistic quark model calculations (Fayya-
zuddin, and Mobarek, 1994; Close and Swanson, 2005; Godfrey,
2005).

29The production of an S-wave pair ofD1ð2420Þ and D̄, which are
jPl ¼ 3=2þ and jl ¼ 1=2− states, respectively, breaks HQSS (Li and
Voloshin, 2013). This point was in fact already noticed in the
classical papers of the Cornell model; see Table VI in Eichten et al.
(1978) and Table VIII in Eichten et al. (1980). However, in the energy
region about 4.2 GeV HQSS breaking can be sizable (Wang et al.,
2014).
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investigate the nature of Xð3872Þ a high-resolution scan of its
line shapes, especially within a few MeV of the D0D̄�0

threshold, is necessary.
A study of the line shapes of the two Zb states in

hbð1P; 2PÞπ channels has been presented by Cleven et al.
(2011a) based on the NREFTI framework discussed in
Sec. IV. By fitting to the hbð1P; 2PÞπ invariant mass
distribution, it was found that the current data are con-
sistent with the two Zb states being BB̄� and B�B̄� bound
states, respectively. Their line shapes in the elastic chan-
nels are also studied in the XEFT and NREFTII (see
Sec. IV.A.3) framework with the HQSS breaking operator
included explicitly in Mehen and Powell (2013) where,
however, no pole locations were extracted. The line shapes
of the two Zb states were investigated in both elastic and
inelastic channels in Hanhart et al. (2015) and Guo,
Hanhart et al. (2016) based on separable interactions;
see Fig. 2. An explicit calculation revealed that the line
shapes get distorted very little when a nonseparable
interaction is included, such as the one-pion-exchange
potential. Similar studies of the Zcð3900Þ line shape in
both J=ψπ and DD̄� can be found in Zhou and Xiao
(2015), Albaladejo, Guo et al. (2016), and Pilloni et al.
(2017). Based on these results one needs to state that the
data currently available for the Zcð3900Þ are also insuffi-
cient to pin down the pole locations.
The situation in which it is not easy to extract the pole

locations is partly because the observed peaks for the
Xð3872Þ, Zcð3900Þ, and Zb states are too close to the
thresholds. Being tens of MeV below the D1D̄ threshold,
which, however, also means a larger uncertainty, the
Yð4260Þ situation is different. One clearly sees a nontrivial
structure around the D1D̄ threshold in the Yð4260Þ line
shape in the J=ψππ invariant mass distribution; cf. Fig. 5.
It indicates that the coupling to the D1D̄ plays an essential
role in understanding the Yð4260Þ in line with the analysis
in Sec. III.C. Correspondingly the molecular picture
predicts a highly nontrivial energy dependence for eþe− →
D1D̄ → ½D�π�D (Cleven, Wang et al., 2014); cf. the middle
panel in Fig. 6 that awaits experimental confirmation at
BESIII.

3. Enhanced isospin violations in molecular transitions

As argued in Sec. III.B for molecular states the coupling
of the pole to the continuum channel that forms the state is
large. As a consequence of this loop effects get important
that can lead to very much enhanced isospin violations if
the molecular state is close to the relevant threshold. To be
concrete we start with a detailed discussion of the
implications of this observation for the f0–a0 mixing, first
discussed by Achasov, Devyanin, and Shestakov (1979). If
both the isoscalar f0ð980Þ and the isovector a0ð980Þ were
K̄K molecular states, the leading mixing effect of the two
scalar mesons would be the difference of the loop
functions of charged and neutral kaons as depicted in
Fig. 20 (in isospin conserving transitions the sum enters).
In the near-threshold regime we approximate the loops by
their leading energy dependence provided by the respective
unitarity cuts:

hf0jTja0i ¼ igf0KK̄ga0KK̄
ffiffiffi
s

p ðpK0 − pKþÞ
þOðp2

K0 − p2
KþÞ; ð102Þ

where pK denotes the modulus of the relative momentum
of the kaon pair. Obviously, this leading contribution
model independently provides a measure of the product
of the effective couplings of a0 and f0 to the kaons and
therefore, as discussed in Sec. III.B.1, to the molecular
admixture of both states. In the isospin limit the loops
cancel exactly. However, as soon as the masses of the two-
hadron states are different due to isospin violations
(MK0 −MKþ ¼ 4 MeV), there appears an offset in the
thresholds and the mentioned cancellation is no longer
complete. This results in a transition between different
isospins with all its strength located in between the two
thresholds. Hanhart, Kubis, and Peláez (2007) and Wu,
Zhao, and Zou (2007) predicted that this very peculiar
effect should show up prominently in the transition
J=ψ → ϕπ0η, if both f0ð980Þ and a0ð980Þ are KK̄ molecu-
lar states, since only then the coupling of the states to the
KK̄ is sufficiently strong for the effect to be observable. A
few years later the predicted very narrow signal was
measured at BESIII (Ablikim et al., 2011) providing
strong evidence for a prominent molecular admixture in
these light scalar mesons.
Another prominent example where a molecular nature of a

near-threshold state leads to a natural explanation of a large
isospin violation is the equal decay rate of the Xð3872Þ to the
isoscalar πππJ=ψ and the isovector ππJ=ψ channels, where in
both cases the few-pion systems carry vector quantum
numbers and thus may be viewed as coming from the decay
of an ω and a ρ0 meson, respectively. The argument goes as
follows: The mass of the Xð3872Þ is located 7 MeV below the
nominal ωJ=ψ threshold, but 5 MeVabove the nominal ρ0J=ψ
threshold. In addition, the width of the ω is only 8 MeV such
that the decay of the Xð3872Þ into the ρ0J=ψ channel is
strongly favored kinematically. Therefore, the Xð3872Þ cannot
have a significant isovector component in its wave function
since otherwise it would significantly more often decay into
the ρ0J=ψ than into the ωJ=ψ channel. However, a calculation
for an isoscalar Xð3872Þ that predominantly decays via D�D̄
loops naturally gives the experimental branching ratios for the
pion J=ψ channels simply because the close proximity of the
mass of the X to the neutral D�D̄ threshold automatically
produces an enhanced isospin violation in the necessary
strength, if the Xð3872Þ is a D�D̄ molecule, since only then
the coupling to continuum is strong enough (Gamermann and
Oset, 2009). An isoscalar nature of the Xð3872Þ is also
required from a study of other possible decay channels

af 00

K

K−

+

−
af 00

K

K0

0−

FIG. 20. Graphical illustration of the leading contribution to the
f0 − a0 mixing matrix element.

Guo et al.: Hadronic molecules

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015004-44



(Mehen, 2015), and its effective couplings to the charged and
neutral channels are basically the same (Hidalgo-Duque,
Nieves, and Valderrama, 2013; Guo, Hidalgo-Duque
et al., 2014).
As the last example in this context we mention the

hadronic width of the isoscalar D�
s0ð2317Þ. This state is

located below the DK threshold and as such can decay
strongly only via isospin violation into the isovector Dsπ
channel. The two most prominent decay mechanisms of
D�

s0ð2317Þ are an isospin conserving transition into Dsη,
followed by the isospin violating πη mixing amplitude, and
the isospin violating difference between aD0Kþ and aDþK0

loop [subleading contributions to this transition were studied
by Guo et al. (2008)]. The former mechanism should be
present regardless of the nature of the state, which typically
leads to widths of the order of 10 keV (Colangelo and De
Fazio, 2003). The latter mechanism, however, is large if
indeed the D�

s0ð2317Þ were a DK molecule. In fact typical
calculations for molecular states give a width of the order of
100 keV (Faessler et al., 2007; Lutz and Soyeur, 2008; L. Liu
et al., 2013); for more details see Sec. V.D. Thus, if this
admittedly small width could be measured, e.g., at P̄ANDA,
its value would provide direct experimental access to the
nature of D�

s0ð2317Þ.

4. Enhanced production of hadronic molecules and conventional
hadrons due to triangle singularities

From the analysis in Sec. IV.A.1, we see that the TS on
the physical boundary is always located close to the
threshold of the intermediate particles. Furthermore, its
effect is most pronounced if the two intermediate particles
are in an S wave, since otherwise the centrifugal barrier
suppresses small momenta. Hadronic molecules are located
naturally near thresholds as well, and in all cases consid-
ered couple in S wave to its constituents. Therefore, in the
course of this review there are two important aspects of TS
that need to be discussed: On the one hand, a TS may lead
to a pronounced structure in experimental observables that
could be mistaken as a state; on the other hand, a TS can
enhance the production of a hadronic molecule in a given
reaction. Note also that the production of the conventional
hadrons can be strongly enhanced by a TS within small
energy regions. This is accompanied by a significant
distortion of the line shapes since the location of the
TS depends on the invariant masses of the external states.
For example, the signal in the ηππ channel interpreted as
ηð1405Þ and the signal in the KK̄π interpreted as ηð1475Þ
could find their origin in a single pole accompanied by a
TS (Wu et al., 2012, 2013). We note that although P-wave
couplings are present in the triangle loop for the
ηð1405=1475Þ decays, the perfect satisfaction of the TS
condition, Eq. (46), causes detectable effects in these
decays.
Since the KK̄� system can contribute to both I ¼ 0 and

1 channels with JPC ¼ 1þþ and 1þ−, one expects that the
TS may cause enhancements also in these channels. In the
following we list those possible enhancements and their
quantum numbers which can be searched for in experi-
ment:

f1ð1420Þ; 0þ; 1þþ∶
1ffiffiffi
2

p ðK�K̄ − KK̄�Þ

→ KK̄π; ηππ; ½3π�;

a1ð1420Þ; 1−; 1þþ∶
1ffiffiffi
2

p ðK�K̄ − KK̄�Þ

→ KK̄π; 3π; ½ηππ�;
~h1ð1420Þ; 0−; 1þ−∶

1ffiffiffi
2

p ðK�K̄ þ KK̄�Þ

→ ρπ;ωη; ðϕηÞ; ½ωπ�; ½ρη�; ½ϕπ�;
~b1ð1420Þ; 1þ; 1þ−∶

1ffiffiffi
2

p ðK�K̄ þ KK̄�Þ

→ ϕπ;ωπ; ρη; ½ρπ�; ½ωη�; ð103Þ

where ~h1ð1420Þ and ~b1ð1420Þ refer to the TSs whether or
not there exist resonances around. Note that the f1ð1420Þ
needs to be taken into account for the angular distribution
in the J=ψ → γ3π process (Ablikim et al., 2012), and a
detailed partial-wave analysis suggests the presence of the
f1ð1420Þ resonance together with a TS mechanism (Wu
et al., 2013), while Debastiani, Aceti et al. (2017) argued
that the f1ð1420Þ is the manifestation of the f1ð1285Þ at
higher energies due to the TS. The a1ð1420Þ was reported
by the COMPASS Collaboration in π−p → π−π−πþp and
π−π0π0p (Adolph et al., 2015) and can be well explained
by the TS mechanism (Mikhasenko, Ketzer, and Sarantsev,
2015; Liu, Oka, and Zhao, 2016). The decay channels in
the square brackets are G-parity violating and those in the
round brackets are limited by the phase space. One notices
that there are states observed in the relevant mass regions,
namely, a1ð1260Þ, f1ð1285Þ, h1ð1170Þ, and b1ð1235Þ
(Patrignani et al., 2016). Although most of these states
have masses outside of the TS favored mass region, i.e.,
1.385–1.442 GeV (Liu, Oka, and Zhao, 2016), the
h1ð1380Þ is located at the edge of the TS kinematics
and some detectable effects could be expected (Guo,
Hanhart et al., 2013; Ablikim et al., 2014d). Note that
when there is a TS in action, the peak position for a
resonance could be shifted toward its location. Some
structures around thresholds of a pair of other light
hadrons were also suggested to be due to a TS, for
instance, the f2ð1810Þ around the K�K̄� threshold (Xie,
Geng, and Oset, 2017) and the ϕð2170Þ around the NΔ̄
threshold (Lorenz, Hammer, and Meißner, 2015).
In the heavy quarkonium sector, the most famous example

for an enhanced production rate via the TS is the observation
of the Zcð3900Þ at the mass region of Yð4260Þ (Liu and Li,
2013; Wang, Hanhart, and Zhao, 2013a, 2013b; Szczepaniak,
2015; Gong, Pang et al., 2016; Pilloni et al., 2017). In
addition, the sensitivity of the TS to the kinematics of the
reaction might well be the reason why the Zcð4020Þ is not
seen in the same decay (Wang, Hanhart, and Zhao, 2013a,
2013b). As discussed in Sec. VI.A, the same mechanism also
enhances the transition Yð4260Þ → γXð3872Þ (Guo, Hanhart
et al., 2013) and suggests that the rate for eþe− → γX2, which
can be used to search for the spin-2 partner of the Xð3872Þ, X2

(see Sec. IV.B), gets most enhanced if the eþe− collision
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energy is between 4.4 and 4.5 GeV (Guo, Meißner, and Yang,
2015).30 A candidate for the analog of Yð4260Þ in the
bottomonium sector is ϒð11020Þ, since it is located close
to the B1B̄ threshold (Wang, Hanhart, and Zhao, 2013b;
Bondar and Voloshin, 2016). Here the TS could affect both the
Zbð10610Þ and Zbð10650Þ (Wang, Hanhart, and Zhao,
2013b), although at the mass of ϒð11020Þ the production
of the lower Zb state is more favored since the corresponding
TS is closer (Bondar and Voloshin, 2016). Based on the
current statistics in Belle (Bondar and Voloshin, 2016), it is
difficult to judge whether there is one peak or two peaks
present in Fig. 3. Pakhlov and Uglov (2015) and Uglov and
Pakhlov (2016) claimed the structure identified as the charged
exotic Zcð4430Þ observed in the πψ 0 final states by Belle
(Mizuk et al., 2009; Chilikin et al., 2013) and LHCb (Aaij
et al., 2015a) was not to be connected to a pole but to owe its
existence to the presence of a TS.
Suggestions to search for resonancelike structures due to

the TS in the heavy meson and heavy quarkonium mass
regions can be found in Liu (2014), Liu and Oka (2016a), Liu,
Oka, and Zhao (2016), and Liu and Meißner (2017). In
particular, the recent BESIII results on the π�ψ 0 invariant mass
distributions for the eþe− → πþπ−ψ 0 process at different c.m.
energies seem in line with the predictions made by Liu (2014).
Some of the strongly favored triangle loops are listed in
Table VII.
The Pcð4450Þ structure observed by LHCb (Aaij et al.,

2015b) in Λb decays, no matter what its nature is, also
contains a TS contribution, as long as it strongly couples in an
S wave (Bayar et al., 2016) to either χc1p (Guo et al., 2015,
2016; Meißner and Oller, 2015; Liu, Wang, and Zhao, 2016)
or Λcð2595ÞD̄ (Liu, Wang, and Zhao, 2016). Recent dis-
cussions on the role of TSs in the light baryonic sector can be
found in Debastiani, Sakai, and Oset (2017), Roca and Oset
(2017), Samart, Liang, and Oset (2017), and Wang
et al. (2017).
It is worthwhile to emphasize that once the kinematics for a

process (nearly) satisfies the TS condition given in Eq. (46),

the enhancement in reaction rates due to a TS contribution is
always there and can produce a narrow peak once the relevant
coupling is in an S wave (Bayar et al., 2016). The only
question is whether it is strong enough to produce the
observed or an observable structure. Complications due to
the interference between the TS and a tree-level contribution
are discussed by Schmid (1967) and Goebel, Tuan, and
Simmons (1983) in the single-channel case, and in
Anisovich and Anisovich (1995) and Szczepaniak (2016)
for coupled channels. The key to distinguishing whether a
structure is solely due to a TS or originates from a genuine
resonance is the sensitivity of the TS on kinematics: If in
reactions with different kinematics the same structure is
observed, it most likely reflects the existence of a pole
(resonance).

B. Short-distance production and decay mechanisms

In Sec. VI.A we discussed both decay and production
mechanisms sensitive to the long-range parts of the wave
function of a state and therefore sensitive to its molecular
nature. Here we demonstrate that there are also decays and
production reactions that do not allow one to extract the
molecular component of a given state. We start with an
example of the former to then switch to the latter.
It was claimed long ago (Swanson, 2004a) that the ratio

B(Xð3872Þ → γψ 0)
B(Xð3872Þ → γJ=ψ)

;

with the measured value given in Eq. (3) is very sensitive to
the molecular component of the Xð3872Þ wave function. In
particular, using vector meson dominance and a quark model,
Swanson (2004a) predicted it to be about 4 × 10−3 if the
Xð3872Þ is a hadronic molecule with a dominant D0D̄�0

component plus a small admixture of the ρJ=ψ and ωJ=ψ .
However, as demonstrated by Guo, Hanhart, Kalashnikova
et al. (2015), when radiative decays of Xð3872Þ are calculated
using NREFTI (see Sec. IV.A.2) field theoretic consistency
calls for the inclusion of a counter term at LO. In other words,
the transitions are controlled by short-distance instead of long-
distance dynamics and therefore do not allow one to extract
any information on the molecular component of the Xð3872Þ
wave function.

TABLE VII. The triangle loops ½M1M2M3� corresponding to Fig. 11 which have shown large impact on the production of hadronic molecules
and conventional hadrons in experiment are listed in the first column. The second column is the measured process with the final states in
parentheses. The check marks in the last column indicate that the triangle singularity of the corresponding process locates in the physical region,
i.e., satisfying Eq. (46). Although the singularity of the process without a check mark is not located in the physical region, since it is not far away,
it can still enhance the corresponding production rate significantly.

½M1M2M3� A → BCð→ final statesÞ Eq. (46)

½K�KK� ηð1405=1475Þ → a0ð980Þπð→ 3πÞ (Wu et al., 2012, 2013) ✓
a1ð1420Þ → f0ð980Þπð→ ηππÞ (Mikhasenko, Ketzer, and Sarantsev, 2015; Liu, Oka, and Zhao, 2016) ✓

½D1DD�� Yð4260Þ → Xð3872Þγ (Guo, Hanhartet al., 2013)
Yð4260Þ → Zcð3900Þπ (Wang, Hanhart, and Zhao, 2013a, 2013b; Szczepaniak, 2015; Gong, Pang et al., 2016)

½Λð1890Þχc1p� Λb → Pcð4450ÞK (Guo et al., 2015; Bayar et al., 2016; Liu, Wang, and Zhao, 2016) ✓

½Ds3ð2860ÞΛcð2595ÞD� Λb → Pcð4450ÞK (Liu, Wang, and Zhao, 2016)

30This suggestion is based on the assumption that the X2 mass is
very close to theD�D̄� threshold. If its mass is tens of MeV below the
threshold as suggested by Baru et al. (2016), then the TS would be
farther away from the physical boundary and the production would
get less enhanced.
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There have also been many claims that production rates of
multiquark states in high-energy collisions are sensitive to a
molecular admixture of those states. The production of the
Xð3872Þ at hadron colliders was debated by Bignamini et al.
(2009, 2010), Artoisenet and Braaten (2010, 2011),
Butenschoen, He, and Kniehl (2013), Esposito et al.
(2013), and Meng, Han, and Chao (2017), and that of the
spin and flavor partners of the Xð3872Þ was discussed by
Bignamini et al. (2010), Guo, Meißner, and Wang (2014), and
Guo et al. (2014b). For the production of the Xð3872Þ in B
decays, see Braaten, Kusunoki, and Nussinov (2004), Braaten
and Kusunoki (2005a), Fan et al. (2012), Meng, Gao, and
Chao (2013), and Meng, Han, and Chao (2017). The pro-
duction of the Xð3872Þ in heavy ion collisions was discussed
by Cho and Lee (2013) and Martínez Torres et al. (2014) and
by the ExHIC Collaboration including other hadronic molecu-
lar candidates (Cho et al., 2011a, 2011b; Cho, Song, and Lee,
2015). Larionov, Strikman, and Bleicher (2015) proposed that
the hadronic molecular component of the Xð3872Þ could be
extracted from its production in antiproton-nucleus collisions.
Prompt productions of diquark-antidiquark tetraquarks at the
LHC were studied by Guerrieri et al. (2014). Here we discuss
to what extent high-energy reactions can be used to disen-
tangle the structure of a near-threshold state.
The underlying physics for the short-distance production

and decay processes of a shallow hadronic molecule is
characterized by vastly different scales. This allows for a
derivation of factorization formulas for the corresponding
amplitudes (Braaten, Kusunoki, and Nussinov, 2004; Braaten
and Kusunoki, 2005a, 2005b; Braaten and Lu, 2006).
We illustrate the production of a h1h2 pair and a near-

threshold state with wave function Ψ in Fig. 21, where Γ
denotes a short-distance source. The pair of h1 and h2 can be
directly produced at short distances shown as Fig. 21(a), and
through rescattering shown as Fig. 21(b). If the rescattering
strength were weak, the production would be well approxi-
mated by only the Γ term. There would also be no drastic
energy dependence in the near-threshold region, and the
strength of the S-wave cusp exactly at the threshold would
not be strong enough to produce a narrow peak (Guo, Hanhart,
Wang, and Zhao, 2015). However, if the rescattering is
strongly attractive, the amplitude T possesses a pole, which
we assume to be located close to the threshold with a small
binding energy EB. Then one gets for the production ampli-
tude of a given decay channel j of the state of interest:

Mjðk;EÞ ¼ ΓΛ
j ðk;EÞ

þ
X
i

Z
Λ

d3q
ð2πÞ3 Γ

Λ
i ðq;EÞGiðq;EÞTijðq; k;EÞ;

ð104Þ

where Gi (ΓΛ
i ) is the propagator (short-distance production

amplitude) for the ith intermediate channel and Λ denotes the
cutoff of the integral. In principle all dynamical degrees of
freedom below the energy scale Λ should be accounted for.
The short-distance contribution ΓΛ

i also serves to absorb the Λ
dependence, and as a result M is Λ independent.

Let us consider the kinematic situation in which the c.m.
momentum of h1 and h2 is very small, ∼γ, and Λ is much
larger than γ2=ð2μÞ but still small enough to prevent other
channels from being dynamical. In this case, the intermediate
state for Fig. 21(b) is h1h2. The LO term of the momentum
expansion of ΓΛ is simply a constant. The nonrelativistic two-
body propagator is Gðq;EÞ ¼ ½E − q2=ð2μÞ þ iϵ�−1, and the
T matrix is given by Eq. (70). Thus, one obtains

Mðk;EÞ ¼ ΓΛ
�
1þ Λ=

ffiffiffiffiffi
2π

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p þOðΛ−1Þ
γ −

ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
�
: ð105Þ

If ΓΛ ∝ Λ−1, the LO Λ dependence will be absorbed (Braaten
and Kusunoki, 2005a), and the factorization formula (Braaten,
Kusunoki, and Nussinov, 2004; Braaten and Kusunoki, 2005a,
2005b) for the production of the low-momentum h1h2 pair
follows:

Mðk;EÞ ¼ Γμ
ð2πÞ3=2 TNRðEÞ þOðΛ−1Þ; ð106Þ

where Γ≡ ΓΛΛ is the short-distance part, and the long-
distance part TNRðEÞ ¼ ð2π=μÞðγ − ffiffiffiffiffiffiffiffiffiffiffiffi

−2μE
p Þ−1 is provided

by the scattering T matrix. From the derivation in Braaten and
Lu (2006), it becomes clear that the short-distance part is the
Wilson coefficient of the operator production expansion in the
EFT. A similar factorization formula was derived by Guo et al.
(2014a) with the help of chiral symmetry for high-energy
productions of kaonic bound states predicted by Guo and
Meißner (2011).
The amplitude for the production of the near-threshold state

is obtained from Eq. (106) by replacing TNRðEÞ by the square
root of its residue g2NR given in Eq. (73) and multiplying the
factor 1=

ffiffiffiffiffi
2μ

p
to account for the difference in normalization

factors

MΨ ¼ Γ ffiffiffi
μ

p
4ðπÞ3=2 gNR þOðΛ−1Þ: ð107Þ

Hence, the production rate ∝ g2NR ∝
ffiffiffiffiffiffi
EB

p
[cf. Eq. (25)] seems

suppressed for very loosely bound states, which is consistent
with the common intuition (Braaten, Kusunoki, and Nussinov,
2004; Artoisenet and Braaten, 2010). In particular, one
expects a suppression of a loosely bound state in high-energy
reactions. The factorization as explained is the foundation for
the proposal to extract the short-distance production mecha-
nism of Xð3872Þ in Bc semileptonic and hadronic decays
(Wang and Zhao, 2016).

(b) (c)

FIG. 21. (a), (b) Production of a pair of hadrons and the
(c) hadronic molecule formed by them from a source Γ. Here
the shaded areas, the solid lines, and the double line denote the
source, the constituent hadrons, and the hadronic molecule,
respectively.
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Note that it is a straightforward consequence of Eq. (107)
that in ratios of short-distance production rates for two
hadronic molecules related to each other through some
symmetry the long-distance part containing the information
of the structure of the states cancels, and the remaining part
solely reflects the difference in the short-distance dynamics
and phase space. It could be misleading if such ratios are taken
as evidence in support of or against the dominantly composite
nature of given states.
All the derivations of the factorization formula are based on

the LO NREFTII so far, which allows self-consistently only
the possibility that Ψ is a composite system of h1 and h2; see
the discussion after Eq. (73). If we go to higher orders,
momentum-dependent terms need to be kept in the potential as
well as the short-distance production amplitude. The proba-
bility of Ψ to be a h1h2 composite system would be
1 − λ2 < 1, and thus one would also need to introduce a
contact production term for Ψ. These new terms parametrize
the short-distance physics though a detailed dynamics which
depends on the more fundamental theory that cannot be
specified within the EFT. Such contributions could be
interpreted as a short-distance core of the physical wave
function Ψ. The factorization and the related renormalization
at higher orders for the near-threshold production of h1h2 and
Ψ in short-distance processes remain to be worked out.
The long-distance contribution in Eqs. (106) and (107) is

calculable in NREFT, and the short-distance contribution is
subject to the more fundamental theories which are QCD and/
or electroweak theory. For inclusive high-energy hadron
collisions, one is not able to calculate the short-distance
contribution model independently [for estimates using
Monte Carlo event generators, see Bignamini et al. (2009,
2010), Artoisenet and Braaten (2010, 2011), Esposito et al.
(2013), Guo et al. (2014a, 2014b), and Guo, Meißner, and
Wang (2014)], and thus only the order of magnitude of the
production cross sections can be estimated. For the production
of hadronic molecules in heavy-meson decays such as B
decays, again one normally is able only to get an order-of-
magnitude estimate at best due to the nonperturbative nature
of QCD which dominates the hadronic effects in the short-
distance part. The production rate of the Xð3872Þ in B decays
was estimated in Braaten, Kusunoki, and Nussinov (2004) and
Braaten and Kusunoki (2005a). In particular, Braaten and
Kusunoki (2005a) predicted that the branching fraction of
B0 → Xð3872ÞK0 should be much smaller than that of Bþ →
Xð3872ÞKþ assuming that the Xð3872Þ is a D0D̄�0 hadronic
molecule. The prediction seems to be in contradiction with the
later measurements (Patrignani et al., 2016) summarized in
Sec. II giving a ratio of around 0.5; cf. Eq. (4). However, as
mentioned the Xð3872Þ is to a good approximation an
isoscalar state. Its couplings to the neutral D0D̄�0 and the
charged DþD�− channels are almost the same even if the
isospin breaking is taken into account (Gamermann and Oset,
2009; Guo, Hidalgo-Duque et al., 2014). Therefore Eq. (107)
needs to be generalized to coupled channels. In particular, the
production of Ψ gets modified to

MΨ ¼ 1

4ðπÞ3=2
X
i

Γi
ffiffiffiffi
μi

p
gNR;i þOðΛ−1Þ; ð108Þ

where the summation runs over all possible intermediate
channels below the cutoff Λ. Notably, gNR;i denotes the
coupling of the Ψ state to the ith channel. As a result, the
Xð3872Þ production rates in neutral and charged B decays
should be similar. This may also be understood as the short-
distance parts in Braaten and Kusunoki (2005a) should
include the charged channel and were not properly estimated.
We now turn to the discussion of production rates of

shallow bound states such as Xð3872Þ at hadron colliders.
It was claimed that the cross section for the inclusive Xð3872Þ
production at high pT at the Fermilab Tevatron in p̄p
collisions is too large to be consistent with the interpretation
of Xð3872Þ as aD0D̄�0 molecule (Bignamini et al., 2009). The
reasoning was based on the following estimate for an upper
bound of the cross section:

σðp̄p → XÞ ∼
				
Z

d3khXjD0D̄�0ðkÞihD0D̄�0ðkÞjp̄pi
				
2

≃
				
Z
R
d3khXjD0D̄�0ðkÞihD0D̄�0ðkÞjp̄pi

				
2

≤
Z
R
d3kjΨðkÞj2

Z
R
d3kjhD0D̄�0ðkÞjp̄pij2

≤
Z
R
d3kjhD0D̄�0ðkÞjp̄pij2

∼ σðp̄p → XÞmax; ð109Þ

where R means that the momentum integration receives
support only up to some characteristic scale R. The upper
bound previously quoted depends drastically on the value of
R. A value of R ¼ 35 MeV≃ γ, the binding momentum of
the Xð3872Þ, was chosen by Bignamini et al. (2009). The so-
estimated upper bound of 0.071 nb is orders of magnitude
smaller than the Fermilab Tevatron result of 37 to 115 nb.
However, for the derivation in Eq. (109) to be validR must

be large enough that the wave function of the bound state gets
largely probed for otherwise the symbol between the first and
the second integral needs to be changed from ≃ to ≫ and the
whole line of reasoning gets spoiled. But this requirement
calls for values ofRmuch larger than the binding momentum.
To demonstrate this claim we switch to the deuteron wave
function. Figure 22 shows the averaged deuteron wave
function calculated from Ψ̄ΛðRÞ ¼ R

R d3kΨΛðkÞ, where the
subindex Λ indicates that a regulator needs to be specified to
get a well-defined wave function [for more details, see Nogga
and Hanhart (2006)]. The right panel in the figure is a zoom in
linear scale to the relevantR range. From the figure, it is clear
that Ψ̄ΛðRÞ is far from being saturated for R≃ 45 MeV
which is the deuteron binding momentum. One needs to take
R ∼ 2Mπ ∼ 300 MeV, the order of the inverse range of forces
as pointed out by Artoisenet and Braaten (2010, 2011) based
on rescattering arguments, to get a reasonable estimate so that
the second line in Eq. (109) can be a good approximation of
the first line. With such a large support R, the upper bound
becomes consistent with the Fermilab Tevatron measurement
(Bignamini et al., 2009; Artoisenet and Braaten, 2010, 2011).
In addition, as discussed in the case of the B decays, the
charged channels need to be considered as well.
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In fact, with the factorization derived, it was suggested that
one can estimate the cross section by combining the use of
Monte Carlo event generators, such as PYTHIA (Sjostrand,
Mrenna, and Skands, 2008) and HERWIG (Bahr et al., 2008),
and EFT to get the short-distance and long-distance contri-
butions, respectively (Artoisenet and Braaten, 2010, 2011;
Guo et al., 2014b). In Table VIII, we show the estimates
obtained by Albaladejo, Guo et al. (2017). Indeed, if a small
cutoff is used, Λ ¼ 0.1 GeV, and only the neutral charmed
mesons are considered by using (Guo et al., 2014a, 2014b)

σðpp=p̄ → XÞ ≈ C2π2
				
Z

d3k
ð2πÞ3 ΨXðkÞ

				
2

¼ C2π2jgNR;XΣNRð−EBÞj2; ð110Þ

the obtained cross sections are orders of magnitude smaller
than the data, in line with the observation in Bignamini et al.
(2009). Here C ¼ ðdσ½D0D̄�0�=dkÞ=k2, playing the role of
jΓΛj2 in Eq. (105), is a constant determined from fitting to the
differential cross section of the direct production of the
charmed-meson pair from PYTHIA and HERWIG, ΨXðkÞ is
the momentum space wave function of the Xð3872Þ, gNR;X is
the coupling of the Xð3872Þ to D0D̄�0, and ΣNRð−EBÞ is the
loop function in Eq. (71) but keeping the full Λ dependence
from the Gaussian regulator. However, when a larger cutoff in
the range of [0.5, 1.0] GeV is used, the cross sections become
consistent with both the CDF and CMS measurements. One
important point is that the charged DþD�− þ c:c: channel
needs to be taken into account for this case as discussed. This
is because the binding momentum for the charged channel
γ� ≃ 126 MeV is well below the cutoff so that the charged
charmed mesons should also play a dynamical role.
Finally, in Esposito, Guerrieri, Maiani et al. (2015), the

cross sections for the production of light (hyper)nuclei at small
pT at ALICE (Adam et al., 2016) were extrapolated to large
pT , and it was found that they are much smaller than the
Xð3872Þ production at large pT at CMS (Chatrchyan et al.,
2013a). Since light (hyper)nuclei are loosely bound states of
baryons, they concluded that loosely bound states are hardly

produced at high pT , and therefore disfavored the hadronic
molecular interpretation of the Xð3872Þ. However, although
the long-distance contributions for these productions can be
managed in the EFT or universality framework, the short-
distance contribution for the Xð3872Þ is completely different
from that for light nuclei. This leads to a different energy
dependence of the cross sections for light nuclei and the
Xð3872Þ, and makes such a direct comparison questionable.
One essential difference is as follows: At short distances, the
Xð3872Þ can be produced through cc̄ or uūðdd̄Þ, which
hadronizes into a pair of charmed mesons at larger distances,
while the minimal quark number in the light nuclei is always
3N, with N the number of baryons, giving rise to a suppres-
sion. Therefore, it is natural that the Xð3872Þ production cross
section at very high pT is orders of magnitude larger than that
of light nuclei. This point also leads to the critique (Guo,
Meißner, and Wang, 2017),31 which was appreciated by
Voloshin (2016a), against the use of constituent counting
rules in hard exclusive processes as a way to identifying
mulqituark states with a hidden-flavor qq̄ pair (Kawamura,
Kumano, and Sekihara, 2013; Kawamura and Kumano,
2014; Brodsky and Lebed, 2015; Chang, Kumano, and
Sekihara, 2016).
To summarize, the production and decay processes with a

large energy release involve both long- and short-distance
scales. Only the long-distance part is sensitive to the low-
energy quantities, thus to the hadronic molecular structure,
and can be dealt with in the EFT framework. On the contrary,
high-energy production rates depend crucially on what hap-
pens at short distances, which is often unknown although in
principle could be extracted from other reactions depending
on the same short-distance physics. However, despite the fact
that it is hard to calculate the integrated production rates, the
differential invariant mass distributions around the near-
threshold states provide a direct access to their line shapes
and precise, high-resolution data on those are urgently called
for. This was discussed in general in Sec. III.C and also in
Sec. VI.A.2.

C. Implications of heavy quark spin and flavor symmetries

It turns out that HQSS, and especially its breaking, is also
an important diagnostic tool when it comes to understanding
the structure of certain states (Cleven et al., 2015). The most
straightforward example to illustrate this point is the spin

TABLE VIII. Integrated cross sections (in units of nb) reported by
Albaladejo, Guo et al. (2017) for the inclusive pp=p̄ → Xð3872Þ
processes in comparison with the CDF (Bauer, 2005) and CMS
(Chatrchyan et al., 2013a) data converted into cross sections (Guo
et al., 2014b). The ranges of the results cover those obtained using
both PYTHIA and HERWIG. Here we have converted the experimental
data into cross sections (Guo et al., 2014b).

σðpp=p̄ → XÞ Λ ¼ 0.1 GeV Λ ¼ ½0.5; 1� GeV Experiment

Tevatron 0.05–0.07 5–29 37–115
LHC 7 0.04–0.12 4–55 13–39

FIG. 22. Averaged deuteron wave functions for various cutoff
values: Λ ¼ 0.8, 1.5, and 4 GeV shown as black, red, and blue
curves, respectively. The solid (dashed) lines show the result for
the wave functions with (without) one-pion exchange. From
Albaladejo, Guo et al., 2017.

31For a response, see Brodsky, Lebed, and Lyubovitskij (2017).

Guo et al.: Hadronic molecules

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015004-49



doublet made of D�
s0ð2317Þ and Ds1ð2460Þ. On the one hand,

both are not only significantly lighter than the prediction of the
quark model as reported by Di Pierro and Eichten (2001), also
their spin splitting differs. On the other hand, the mass
difference of the two states agrees exactly with the mass
difference between the D and the D�, which would be a
natural result if Ds0ð2317Þ and D�

s1ð2460Þ were DK and D�K
molecular states, respectively, since at LO in the heavy quark
expansion the DK interaction agrees to the D�K interaction
(Kolomeitsev and Lutz, 2004). In complete analogy Guo,
Hanhart, and Meißner (2009a) argued that, if indeed the
JPC ¼ 1−− state Yð4660Þ were a bound system of ψ 0 and
f0ð980Þ as conjectured by Guo, Hanhart, and Meißner (2008),
there should exist a JPC ¼ 0−þ state which is a η0cf0ð980Þ
bound system. The mass difference of the latter state to the
η0cf0ð980Þ should agree to that of Yð4660Þ to the ψ 0f0ð980Þ
threshold,32 and it was even possible to estimate the decay
width of the state as well as a most suitable discovery channel.
For more discussion on the implications of HQSS for the
spectrum of exotic states see Cleven et al. (2015), where also
predictions from other approaches are contrasted to those of
the molecular picture.
More predictions can be made for heavy-flavor hadronic

molecules by using heavy quark flavor symmetry. The LO
predictions are rather straightforward if there is only a single
heavy quark in the system. For instance, one would expect the
D�

s0ð2317Þ as aDK bound state to have a bottom partner, a B̄K
bound state, with almost the same binding energy. This
prediction together with the one for the bottom partner of
theDs1ð2460Þ is given in the fourth and fifth rows in Table IX,
where the error of 16 MeVaccounts for the use of heavy quark
flavor symmetry and is estimated as 2ðMD þMK −
MD�

s0ð2317ÞÞ × ΛQCDðm−1
c −m−1

b Þ. Such simple predictions
are in remarkable agreement with the lattice results of the

lowest-lying 0þ and 1þ bottom-strange mesons: 5711� 13�
19 MeV for the B�

s0 and 5750� 17� 19 MeV for the Bs1

(Lang et al., 2015). This agreement may be regarded as further
support of the hadronic molecular nature of theD�

s0ð2317Þ and
Ds1ð2460Þ states. For more complicated predictions of these
two states using various versions of UCHPT, see Kolomeitsev
and Lutz (2004), Guo, Shen et al. (2006), Guo, Shen, and
Chiang (2007), Cleven et al. (2011b), Altenbuchinger, Geng,
and Weise (2014), Cleven, Grießhammer et al. (2014), and
Torres-Rincon, Tolos, and Romanets (2014).
A more detailed discussion of spin symmetry partners of

hadronic molecules formed by a pair of S-wave heavy mesons
can be found in Sec. IV.B. Some of the spectroscopic
consequences of HQSS and heavy quark flavor symmetry
for hadronic molecules are listed in Table IX.

D. Baryon candidates for hadronic molecules

For a discussion of and references for charmed baryons and
the Pc pentaquark structures as possible hadronic molecules
see Sec. II. The closing part of this section will be used to
describe the most recent developments about the Λð1405Þ
which basically settled the debate on the nature of this famous
state. What is described next is yet another example of how the
interplay of high quality data and systematic theoretical
investigations allows one to identify the nature of certain
states.
As already stressed in Sec. II.D.1, there are good reasons to

classify the Λð1405Þ as an exotic particle, since it does not at
all fit into the pattern of the otherwise in this mass range quite
successful quark models.
Using information on K̄N scattering the existence of the

Λð1405Þ was predicted by Dalitz and Tuan (1959, 1960)
before its observation. Already this study highlights the
importance of the K̄N dynamics for the Λð1405Þ. In most
modern investigations it appears as a dynamically generated
state through coupled-channel effects among all the ten
isospin channels (K−p, K̄0n, π0Λ, π0Σ0, πþΣ−, π−Σþ, ηΛ,

TABLE IX. Possible spin and flavor partners of heavy-flavor hadronic molecules. For the experimentally established states, the masses and
decay modes are from Patrignani et al. (2016). The predicted partners are denoted by question marks. The predictions from Guo et al. (2013a)
are those computed with a 0.5 GeV cutoff, and the result from Baru et al. (2016) is from the results with the cutoff limited between 0.8 and
1.0 GeV.

JPðCÞ State Main component Mass (MeV) (Expected) main decay mode(s)

0þ D�
s0ð2317Þ DK 2317.7� 0.6 Dþ

s π
0

1þ Ds1ð2460Þ D�K 2459.5� 0.6 D�þ
s π0; Dð�Þþ

s γ
0þ B�

s0ð?Þ BK̄ 5730� 16 B�0
s γ; B0

sπ
0

1þ Bs1ð?Þ B�K̄ 5776� 16 Bð�Þ0
s γ; B�0

s π0

1− D�
s1ð2860Þ D1ð2420ÞK 2859� 27 DK, D�K

2− D�
s2ð?Þ D2ð2460ÞK 2910� 9 (Guo and Meißner, 2011) D�K;D�

sη
1− B�

s1ð?Þ B1ð5720ÞK̄ 6151� 33 (Guo and Meißner, 2011) Bð�ÞK̄, Bð�Þ
s η

2− B�
s2ð?Þ B2ð5747ÞK̄ 6169� 33 (Guo and Meißner, 2011) B�K̄, B�

sη

1þþ Xð3872Þ DD̄� 3871.69� 0.17 D0D̄0π0, J=ψππ, J=ψπππ
2þþ X2ð?Þ D�D̄� 4012þ4

−5 (Guo et al., 2013a) DD̄ð�Þ; J=ψω
3980� 20 (Baru et al., 2016)

1þþ Xbð?Þ BB̄� 10580þ9
−8 (Guo et al., 2013a) ϒðnSÞω; χbJππ

2þþ Xb2ð?Þ B�B̄� 10626þ8
−9 (Guo et al., 2013a) BB̄ð�Þ;ϒðnSÞω; χbJππ

2þ Xbcð?Þ D�B� 7322þ6
−7 (Guo et al., 2013a) DB;DB�; D�B

32This prediction receives support from a calculation using QCD
sum rules (Wang and Zhang, 2010a).
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ηΣ0, KþΞ−, and K0Ξ0) or some of them, in other words, a
hadronic molecule. This coupled-channel problem has been
studied by solving the LSE or Bethe-Salpeter equation with
interaction kernels derived from chiral perturbation theory
within a given accuracy. This procedure was first proposed by
Kaiser, Siegel, and Weise (1995) and further refined by Oller
and Meißner (2001) and various follow-ups. The major
finding of Oller and Meißner (2001) was the fact that there
are indeed two poles, one stronger coupled to the K̄N channel
and the other to Σπ, which should thus be understood as two
distinct states. Both poles are located at the second Riemann
sheet and have shadow poles in the third one (Oller and
Meißner, 2001). This two-pole scenario can be understood by
considering the SU(3) limit and its subsequent breaking (Jido
et al., 2003). Presently, various groups performed calculations
to the NLO accuracy (Ikeda, Hyodo, and Weise, 2012; Guo
and Oller, 2013; Mai and Meißner, 2013); see also the recent
comparison of all these works in Cieplý et al. (2016) and the
minireview by the PDG (Patrignani et al., 2016). Including the
photoproduction data on γp → KþΣπ from CLAS (Moriya
et al., 2013), one finds that the heavier of the poles is fairly
well pinned down, while the lighter one still shows some
sizable spread in its mass and width (Mai and Meißner, 2015).
All this is captured in Fig. 23. Fitting only the scattering and
threshold ratio data with the NLO kernel, one finds two poles,
but with very limited precision (Borasoy, Meißner, and Nißler,
2006). Adding the precise kaonic hydrogen data, the situation
changes markedly, as shown by the different solutions found
by various groups (Ikeda, Hyodo, and Weise, 2012; Guo and
Oller, 2013; Mai and Meißner, 2013). Still, as first pointed out
by Mai and Meißner (2015), even with these data there is a
multitude of solutions with almost equal χ2, as depicted by the
boxes labeled 1;…; 8 in Fig. 23. However, the photoproduc-
tion data severely constrain this space of solutions. From the
eight solutions only two survive, the blue (solution 2) and the
green (solution 4) boxes in the figure from Mai and Meißner

(2015) as well as the modified LO solution depicted by the
spades from Roca and Oset (2013). This again is an example
that only through an interplay of various reactions one is able
to pin down the precise structure of hadronic molecules (or
other hadronic resonances). Clearly, more data on πΣ mass
distributions are needed to further sharpen these conclusions
(Ohnishi et al., 2016).

VII. SUMMARY AND OUTLOOK

In this review, we discussed the experimental indications
for and the theoretical approaches to hadronic molecules,
which are a particular manifestation of nonconventional states
in the spectrum of QCD. The observation that these multi-
hadron bound states appear close to or in between two-particle
thresholds allows one to write down nonrelativistic effective
field theories. This gives a systematic access to the production,
decay processes, and other reactions involving hadronic
molecules. In the last decade or so, through precise measure-
ments of the spectrum of QCD invloving charm and bottom
quarks, more and more potential hadronic molecules have
been observed. We have shown how explicit calculations of
various decay modes can be used to test this scenario. This is
the only way to eventually disentangle hadronic molecules
from other multiquark states such as tetraquarks. More
detailed and accurate measurements are therefore called for,
complemented by first-principle lattice QCD calculations with
parameters close to the physical point and accounting for the
involved coupled-channel dynamics related. More than
60 years after Weinberg’s groundbreaking work on the
question whether the deuteron is an elementary particle, we
are now in the position to identify many more of such loosely
bound states in the spectrum of QCD and to obtain a deeper
understanding of the mechanism underlying the appearance
and binding of hadronic molecules.
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Lü, Q.-F., and Y.-B. Dong, 2016, Phys. Rev. D 93, 074020.
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