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Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations
that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have
generated much recent interest. Deep connections exist with particle physics models of relativistic
chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their
characteristic electronic properties lead to protected surface states and novel responses to applied
electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations
in solid-state systems, and recent experiments on candidate materials as well as their relation to other
states of matter are reviewed.
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I. INTRODUCTION

In 1928 P. A. M. Dirac proposed, in the first successful
reconciliation of special relativity and quantum mechanics, his
now eponymous Dirac equation (Dirac, 1928). Its form
resulted from the constraints of relativity that space and time
derivatives must appear in the same order in the equations
of motion, as well as constraints from the probabilistic
interpretation of the wave function that the equations of
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motion depend only on the first derivative of time. Dirac’s
solution used 4 × 4 complex matrices that in their modern
form are referred to as gamma matrices and a four component
wave function. The four components allowed for both positive
and negative charge solutions and up and down spin. This
epochal moment in theoretical physics, originating in these
simple considerations, led to a new understanding of the
concept of spin, predicted the existence of antimatter, and was
the invention of quantum field theory itself. A number of
variations of the Dirac equation quickly followed. In 1929, the
mathematician Hermann Weyl proposed a simplified version
that described massless fermions with a definite chirality (or
handedness) (Weyl, 1929). In 1937, Ettore Majorana found a
modification using real numbers, which described a neutral
particle that was its own antiparticle (Majorana, 1937; Elliott
and Franz, 2015). These developments have found vast
application in modern particle physics. The Dirac equation
is now the fundamental equation describing relativistic elec-
trons and the Majorana equations are a candidate to describe
neutrinos. The Dirac equation is also a key concept leading to
topological phenomena such as zero modes and anomalies in
quantum field theories. Unfortunately in the nearly 90
intervening years no candidate Weyl fermions have been
observed as fundamental particles in high-energy particle
physics experiments.
In condensed matter physics, where one is interested in

energy scales much smaller than the rest mass of the electron,
it would appear that a nonrelativistic description, perhaps with
minor corrections, would suffice and that Dirac physics would
not play an important role. However, the propagation of even
slow electrons through the periodic potential of a crystal leads
to a dressing of the electronic states. In certain instances this
results in an effective low-energy description that once again
resembles the Dirac equation. Perhaps the best known
example of this phenomena is in graphene, where a linear
momentum dispersion relation is captured by the massless
two-dimensional Dirac equation. These 2D carbon sheets
provide a condensed matter analog of (2þ 1)-dimensional
quantum electrodynamics (QED) (Semenoff, 1984) and with
the contemporary isolation of single layer graphene sheets has
resulted in a large body of work on their electronic properties
(Novoselov et al., 2004, 2005; Zhang et al., 2005; Neto et al.,
2009; Geim, 2012). Recent work has found evidence for
Majorana bound states in 1D superconducting wires (Mourik
et al., 2012; Elliott and Franz, 2015). In this review we are
mainly concerned with analogous physics in three-dimen-
sional crystals with linearly dispersing fermionic excitations
that are described by the massless 3D Weyl and Dirac
equations. These solid-state realizations offer a platform
where predictions made by relativistic theories can be tested,
but at the same time entirely new properties that exist only in a
condensed matter context emerge, such as Fermi arc surface
states at the boundary of the material. Moreover, the fact that
the strict symmetries of free space do not necessarily hold in a
lattice means that new fermion types with no counterpart in
high-energy physics (Soluyanov et al., 2015; Xu, Zhang, and
Zhang, 2015; Bradlyn et al., 2016; Wieder et al., 2016) can
emerge (e.g., type-II Weyl, spin-1 Weyl, double Dirac, etc.).
Let us further review the history of the three-dimensional

Weyl equation (Weyl, 1929), its relation to Dirac and

Majorana fermions, and their manifestation in condensed
matter systems. In 1929, shortly after Dirac wrote down his
equation for the electron which involved these complex 4 × 4
matrices, Weyl pointed out a simplified relativistic equation
utilizing just the 2 × 2 complex Pauli matrices σn. This
simplification required the fermions to be massless. Weyl
fermions are associated with a chirality or handedness, and a
pair of opposite chirality Weyl fermions can be combined to
obtain a Dirac fermion. It had been believed that neutrinos
might be Weyl fermions. However, with the discovery of a
nonvanishing neutrino mass (Kajita, 2016; McDonald, 2016),
there are no fundamental particles currently believed to be
massless Weyl fermions. As mentioned Majorana also found a
modification of the Dirac equation that used real numbers and
described a neutral particle that was its own antiparticle
(Majorana, 1937; Elliott and Franz, 2015).
In a seemingly unrelated line of reasoning, the conditions

under which degeneracies occur in electronic band structures
were investigated by Herring (1937). It was noted that even in
the absence of any symmetry one could obtain accidental
twofold degeneracies of bands in a three-dimensional solid.
The dispersion in the vicinity of these band touching points is
generically linear and resembles the Weyl equation, modulo
the lack of strict Lorentz invariance. Remarkably several of the
defining physical properties of Weyl fermions, such as the so-
called chiral anomaly, continue to hold in this nonrelativistic
condensed matter context. The chiral anomaly discussed by
Adler (1969) and Bell and Jackiw (1969) is an example of a
quantum anomaly which in its simplest incarnation demon-
strates that a single Weyl fermion coupled to an electromag-
netic field results in the nonconservation of electric charge. To
evade this unphysical consequence, the net chirality of a set of
Weyl fermions must vanish in a lattice realization, an example
of the fermion doubling theorem. However, even in this setting
it was realized that the chiral anomaly can have a nontrivial
effect (Nielsen and Ninomiya, 1983), which cemented the link
between band touchings in three-dimensional crystals and
chiral fermions. These band touchings of Herring were named
“Weyl nodes” by Wan et al. (2011). The electrodynamic
properties of these and other band touching points had been
studied by Abrikosov and Beneslavskii (1971a).
Topological consequences of Weyl nodes began to be

explored with the realization that Berry curvature plays a
key role in determining the Hall effect (Karplus and Luttinger,
1954; Thouless et al., 1982), and the Weyl nodes are related to
“diabolic points” discussed by Berry as sources of Berry flux
(Berry, 1985). The fact that diabolic points are monopoles of
Berry curvature and could influence the Hall effect in
ferromagnets was emphasized by Fang et al. (2003) and
Nagaosa et al. (2010). In a different context, realizations of
Weyl nodes in superfluids and superconductors have been
discussed (Volovik, 1987; Murakami and Nagaosa, 2003). In
particular, Volovik (1987) pointed out that the A phase of
superfluid He3 realizes nodes in the pairing function leading to
a realization of Weyl fermions.
The prediction and discovery of topological insulators (TIs)

in two and three dimensions (Haldane, 1988; Kane and Mele,
2005; Bernevig, Hughes, and Zhang, 2006; Fu and Kane,
2007; Fu, Kane, and Mele, 2007; Moore and Balents, 2007;
Hsieh et al., 2008; Chen et al., 2009; Roy, 2009; Y. Xia et al.,
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2009; Zhang et al., 2009) has led to an explosion of activity in
the study of topological aspects of band structures (Hasan and
Kane, 2010; Qi and Zhang, 2011). While initially confined to
the study of band insulators, where topological properties could
be sharply delineated due to the presence of an energy gap,
interesting connections to gapless states have begun to emerge.
For one, the surfaces of topological insulators in 3D feature a
gapless Dirac dispersion, analogous to the two-dimensional
semimetal graphene, but with important differences in the
number of nodal points. The transition between topological and
trivial phases proceeds through a gapless state, for example, a
3D topological to trivial insulator transition, in the presence of
both time reversal and inversion symmetry proceeds through
the 3D Dirac dispersion (Murakami, 2007). If inversion
symmetry is lost, then the critical point expands into a gapless
phase with Weyl nodes that migrate across the Brillouin zone
(BZ) and annihilate with an opposite chirality partner, leading
to the change in topology.
A direct manifestation of the topological aspects of Weyl

fermions appeared with the realization that Weyl nodes lead to
exotic surface states in the form of Fermi arcs (Wan et al.,
2011). The name “Weyl semimetal” (WSM) was introduced to
describe a phase where the chemical potential is near the Weyl
nodes and a potential realization of such a state in a family of
materials, the pyrochlore iridates, was proposed along with the
prediction of a special all-in, all-out magnetic ordering pattern
(Wan et al., 2011). A subsequent proposed realization of Weyl
semimetals in magnetic systems includes the spinel HgCr2Se4
(a double Weyl) (G. Xu et al., 2011), heterostructures of
ferromagnets and topological insulators (Burkov and Balents,
2011), and Hg1−x−yCdxMnyTe films (Bulmash, Liu, and Qi,
2014). Although a clear-cut demonstration of a magnetic
WSM remains outstanding, the search for inversion-breaking
Weyl systems as envisaged by Murakami (2007) and Halász
and Balents (2012) reached fruition with the prediction and
discovery of TaAs as a WSM (S.-M. Huang et al., 2015; Lv
et al., 2015b, 2015c; Weng, Fang et al., 2015; Xu et al.,
2015b) [and other members in this material class (Xu et al.,
2015a, 2015c; N. Xu et al., 2016)], and the observation of
Fermi arc surface states attached to the bulk Weyl points.
For the case of 3Dmaterial systemsdescribed by themassless

Dirac equation, the possibility of stable fourfold-degenerate
Dirac points (DP) was raised by Abrikosov and Beneslavskii
(1971a) and more recently by Wang et al. (2012) and Young
et al. (2012). Unlike the case of Weyl points, this degeneracy is
not topologically protected since its net Chern number is zero
and residual momentum-conserving terms in the Hamiltonian
can potentiallymix these terms and gap the electronic spectrum.
However, in particular situations this mixing can be forbidden
by space group symmetries in which case the nodes remain
intact as symmetry-protected degeneracies. For instance this can
occur at a phase transition between TI and non-TI phases in a
crystal system that preserves inversion (Murakami, 2007;
Murakami et al., 2007). However, as pointed out by Wang
et al. (2012), Young et al. (2012), and Steinberg et al. (2014) a
Dirac semimetal (DSM) can also appear as a robust electronic
phase that is stable over a range of Hamiltonian control
parameters. Such systems are called DSMs. A number of
material realizations of such symmetry-protected DSMs have

been discovered (Borisenko et al., 2014; Z. Liu et al., 2014a,
2014b; Neupane et al., 2014; Xu et al., 2015b).
There are a number of excellent reviews on related topics in

this general area. Basic concepts related to Weyl semimetals
were reviewed by Turner and Vishwanath (2013) as well as by
Witten (2015). Transport properties of Weyl semimetals were
reviewed by Hosur and Qi (2013) and Burkov (2015a), while
the extensive contributions of ab initio techniques to the
discovery of topological materials (including Weyl and
Dirac states) were reviewed by Bansil, Lin, and Das (2016)
and Weng, Dai, and Fang (2016). Kharzeev (2014) reviewed
connections ofWeyl fermions in solid-state physics to the chiral
anomaly in quantum chromodynamics. A number of other
shorter reviews on specific aspects of topological semimetals
have appeared recently (Witczak-Krempa et al., 2014; Hasan,
Xu, and Bian, 2015; Burkov, 2016, 2017; Jia, Xu, and Hasan,
2016; Hasan et al., 2017; Šmejkal, Jungwirth, and Sinova,
2017; Yan and Felser, 2017; Syzranov and Radzihovsky, 2018)
and connections to related systems such as nodal supercon-
ductors have been reviewed by Vafek and Vishwanath (2014),
Wehling, Black-Schaffer, and Balatsky (2014), and Schnyder
andBrydon (2015). In this review, we attempt to summarize the
theoretical, material, and experimental situations of 3D Dirac
and Weyl semimetals with an emphasis on general features
independent of specific material systems. There have been
many interesting developments in this area in the last few years,
in regards to the theoretical proposals, the development of new
materials, and the study of experimental phenomena. Although
we have been attentive to matters of priority, the experimental
data we include are not necessarily the first that were shown to
demonstrate some phenomenon, but this is our estimation of
that most illustrative effect. Unfortunately even in the relatively
well-defined scope of the current topic, the literature is vast and
we cannot hope to cover all work. Important omissions are
regrettable but inevitable.

II. PROPERTIES OF WEYL SEMIMETALS

A. Background

Here we first review two seemingly unrelated topics that
originated in the early days of quantum mechanics: the
problem of level repulsion and accidental degeneracies and
the relativistic wave equations for fermions. We will see that
these provide complementary perspectives on Weyl semimet-
als and are unified by the identification of their topological
aspects. Toward this end we will review topological invariants
of insulators in the third part of this section.

1. Accidental degeneracies

As a starting point, consider the basic question of when
accidental degeneracies arise in an energy spectrum (von
Neuman and Wigner, 1929). We focus on a pair of energy
levels and ask if one can bring these levels into degeneracy by
tuning Hamiltonian parameters. The energy levels (up to
an overall constant) are determined by the most general
2 × 2 Hamiltonian H ¼ f1σx þ f2σy þ f3σz, with an energy

splitting between the levels ΔE ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22 þ f23

p
. In gen-

eral in the absence of any symmetry, this cannot be
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accomplished by tuning just one parameter; degeneracy
requires tuning all three terms to give zero simultaneously.
If we focus on real Hamiltonians with time reversal symmetry,
we can exclude the imaginary Pauli matrix. Then, a pair of
levels can be brought into coincidence typically by tuning two
parameters, since we can typically solve two equations ϵx ¼ 0
and ϵz ¼ 0 with two variables. But in the absence of any such
symmetry, we need to tune three independent parameters to
achieve a degeneracy. As mentioned, these points of degen-
eracy in the extended two or three parameter space are termed
diabolic points and have been discussed in the context of
Berry’s phase (Berry, 1985) and not surprisingly will be
associated with a topological property as we discuss next.

2. Weyl and Dirac fermions

The Dirac equation in d spatial dimension and effective
speed of light c ¼ 1 is

ðiγμ∂μ −mÞψ ¼ 0; ð1Þ

where μ ¼ 0; 1;…; d label time and space dimensions, and the
dþ 1 gamma matrices satisfy the anticommutation relation
fγμ; γνg ¼ 0 for μ ≠ ν and ðγ0Þ2 ¼ −ðγiÞ2 ¼ I, where
i ¼ 1;…; d. I is the 2 × 2 unit matrix. The minimal sized
matrices that satisfy this property depend of course on the
dimension and are (2kþ1 × 2kþ1)-dimensional matrices in both
spatial dimensions d ¼ 2kþ 1 and 2kþ 2.
Weyl noticed that this equation can be further simplified in

certain cases in odd spatial dimensions (Weyl, 1929). For
simplicity consider d ¼ 1. Then one needs only two anti-
commuting matrices, e.g., the 2 × 2 Pauli matrices, e.g., γ0 ¼
σz and γ1 ¼ iσy. Therefore the Dirac equation in 1þ 1

dimension involves a two component spinor and can be
written as i∂tψ ¼ ðγ0γ1pþmγ0Þψ , where p ¼ −i∂x. If one
were describing a massless particle m ¼ 0, this equation can
be further simplified by simply picking eigenstates of the
Hermitian matrix γ5 ¼ γ0γ1 ¼ σx, if γ5ψ� ¼ �ψ�. One then
has the 1D Weyl equation

i∂tψ� ¼ �pψ�. ð2Þ

The resulting dispersion is simply E�ðpÞ ¼ �p which
denotes a right (left) moving particle, which are termed chiral
or Weyl fermions. Analogous dispersions arise at the one-
dimensional edge of an integer quantum Hall state, but are not
allowed in an isolated one-dimensional system where chiral
fermions must appear in opposite pairs. The fermion mass
term interconverts opposite chiralities. We will see that an
analogous situation prevails in 3þ 1 dimensions and indeed
the analogy with 1D fermions will be a theme that we will
repeatedly return to.
In any odd spatial dimension d ¼ 2kþ 1 one can form the

Hermitian matrix γ5 ¼ ikγ0γ1 � � � γd. This is guaranteed to
commute with the “velocity” matrices γ0γi, which can be
simultaneously diagonalized along with the massless Dirac
equation. At the same time it differs from the identity matrix
since it anticommutes with γ0. In even spatial dimensions, the
latter property no longer holds, since all the gamma matrices
are utilized, and their product is just the identity.

Let us now specialize to d ¼ 3. The gamma matrices are, as
Dirac found, now 4 × 4 matrices and can be represented as
γ0 ¼ I ⊗ τx, γi ¼ σi ⊗ iτy, and γ5 ¼ −I ⊗ τz. Again, if we
identify chiral components γ5ψ� ¼ �ψ�, where ψ� are
effectively two component vectors, we have for the massless
Dirac equation

i∂tψ� ¼ H�ψ�;

H� ¼ ∓p⃗ · σ⃗. ð3Þ

Thus Weyl fermions propagate parallel (or antiparallel) to
their spin, which defines their chirality. We will see that a
single chirality of Weyl fermions cannot be realized in 3D, but
momentum separated pairs can arise. These are the Weyl
semimetals.

3. Topological invariants for band insulators

Band theory describes the electronic states within a crystal in
terms of one particle Bloch wave functions junðkÞi that are
defined within the unit cell and are labeled by a crystal
momentum k and band index n. The Berry phase of the
Bloch wave functions within a single band n is captured by
the line integral of the Berry connection AnðkÞ ¼
−ihunðkÞj∇kjunðkÞi, or equivalently the surface integral of
the Berry flux F ab

n ðkÞ ¼ ∂kaA
b
n − ∂kbA

a
n. For a two-dimen-

sional insulator, the Berry flux for each isolated bandF xy
n ¼ F n

is effectively a single component object, and the net Berry flux is
quantized to integers values since

Z
d2k
2π

F nðkÞ ¼ Nn. ð4Þ

The quantizedHall conductance is obtained by summing over all
occupied bands. In a three-dimensional crystal, the Berry flux
behaves like a dual magnetic field ϵabcBcðkÞ ¼ F abðkÞ,
switching the roles of position andmomentum (with suppressed
band index n). The semiclassical equations of motion for an
electron now take the following symmetric form (Xiao, Chang,
and Niu, 2010):

_r ¼ v − _p × B; ð5Þ

_p ¼ eEþ e_r ×B; ð6Þ

where v is an appropriately defined renormalized band velocity
and E, B are externally applied electric and magnetic fields.
Note the Berry flux restores the symmetry r ↔ p of these
equations of motion, which is otherwise broken by the Lorentz
force. However, there is an important difference betweenB and
B. Unlike the physical magnetic field, the Berry field B is
allowed to have magnetic monopoles. We will see that these
precisely correspond to the Weyl points in the band structure.

B. Topological aspects of Weyl semimetals

In Weyl semimetals, the conduction and valence bands
coincide in energy over some region of the Brillouin zone.
Furthermore, this band touching is stable at least to small
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variations of parameters. A key input in determining conditions
for such band touchings is the degeneracy of bands, which in
turn is determined by symmetry. If spin rotation symmetry is
assumed, e.g., by ignoring spin-orbit coupling, the bands are
doubly degenerate. Alternatively, doubly degenerate bands
also arise if both time reversal T and inversion symmetry P
(r → −r) are simultaneously present or their combined PT
symmetry is. Then, under the operation ~T ¼ PT , crystal
momenta are invariant and moreover ~T 2 ¼ −1, which ensures
double degeneracy. On the other hand, if only T is present,
bands are generally nondegenerate since crystal momentum is
reversed under its action. Only at the time reversal invariant
momenta (TRIM), where k≡ −k, is a Kramers degeneracy
present. Similarly, if time reversal is broken, and only inversion
is present, the bands are typically nondegenerate. As discussed,
the conditions for a pair of such nondegenerate bands to touch
can be captured by discussing just a pair of levels whose
effective Hamiltonian can generically be expanded as
HðkÞ ¼ f0ðkÞIþ f1ðkÞσx þ f2ðkÞσy þ f3ðkÞσz. To bring
the bands in coincidencewe need to adjust all three coefficients
f1 ¼ f2 ¼ f3 ¼ 0 simultaneously, which by the arguments of
the previous section requires that we have three independent
variables, i.e., thatwe are in three spatial dimensions. Aswe can
then expect band touchings without any special fine-tuning, we
can readily argue that the existence of Weyl nodes is stable to
small perturbations of Hamiltonian parameters. The location of
the Weyl nodes can be geometrically visualized as follows. We
consider the real function f1ðkÞ and ask where it vanishes in
momentum space; typically this will be a 2D surface that
separates positive and negative values of the function. If we
demand a simultaneous zero of f2ðkÞ; f3ðkÞ, this specifies the
intersection of three independent surfaces, which will typically
occur at a point. Now, consider a perturbation that changes the
functions fa by a small amount. This will also move the zero
surfaces and their points of intersection by a small amount, but
the intersection will persist, just at a different crystal momen-
tum. The Weyl nodes cannot be removed by any small
perturbation and may disappear only by annihilation with
another Weyl node. Next we describe a topological perspective
that makes this fact obvious.
Based on this reasoning it may appear that all we need to do

to realize a WSM is to find a 3D crystal with nondegenerate
bands by breaking appropriate symmetries. While indeed
Weyl nodes are quite natural, typically one also imposes an
additional requirement—that they be close to the Fermi
energy, so this also requires that we find candidates for which
f0ðkÞ is nearly zero. We can further discuss the generic
dispersion near the band touching point, by expanding the
Hamiltonian about k ¼ δkþ k0. This gives

HðkÞ ∼ f0ðk0ÞIþ v0 · δkIþ
X

a¼x;y;z

va · δkσa; ð7Þ

where vμ ¼ ∇kfμðkÞjk¼k0
(with μ ¼ 0;…; 3) are effective

velocities which are typically nonvanishing in the absence of
additional symmetries. Note if we revert to the special limit
where v0 ¼ 0 and va ¼ v0â (a ¼ 1;…; 3), we obtain the Weyl
equation (3). We therefore refer to these band touchings as

Weyl nodes. While this makes a connection to Weyl fermions
with a fixed chirality [C ¼ signðvx · vy × vzÞ] it remains
unclear why Weyl nodes should come in opposite chirality
pairs. To realize this we need a topological characterization of
Weyl nodes which is furnished by calculating the Berry flux
on a surface surrounding the Weyl point.
Furthermore, we can check that the Berry flux piercing any

surface enclosing the point k0 is exactly 2πC, where C is the
chirality, e.g., Weyl points are monopoles of Berry flux. If we
consider the sphere surrounding a Weyl point and consider its
2D band structure, it has a nonvanishing Chern number
C ¼ �1. However, if we expand this surface so that it covers
the entire Brillouin zone, then by periodicity it is actually
equivalent to a point and must have net Chern number zero.
Therefore, the net Chern number of all Weyl points in the
Brillouin zone must vanish. This can be seen from Fig. 1
where we isolate band touchings within the volumes Vi. The
integral of ∇k · BðkÞ ¼ 0 over this volume vanishes, but can
be expressed as an integral over the surfaces of the excluded
volumes

P
i

H
∂Vi

BðkÞ · dSk ¼ −2π
P

iCi which must vanish.
In the continuum, one can define a single Weyl node, since the
momentum space is no longer compact. However, in lattice
model realizations of Weyl fermions the net chirality must
vanish. This also shows that Weyl nodes can be eliminated
only by distortions to the Hamiltonian in a pairwise fashion,
e.g., by annihilation with another Weyl node of opposite
chirality. Note also the Berry flux must be an integer multiple
of 2π which allows, for example, band touching with C ¼ �2,
which corresponds to “double Weyl” nodes, which do not
have a linear dispersion in all directions.
To build intuition and make the possibilities more explicit in

the space of 4 × 4 Hamiltonians (Burkov, Hook, and Balents,
2011), we can consider a simple continuum system with two
orbitals plus spin, which describes the cases of WSMs, “line
node” semimetals,1 as well as conventional gapped magnetic
semiconductors. Expanding around the Γ point, we consider a
4 × 4 Hamiltonian matrix,

Excluded Volumes Vi

FIG. 1. Net chirality of Weyl nodes must be zero, which is a
consequence of the fact that the net Berry flux integrated over the
Brillouin zone (a closed volume) must vanish.

1As pointed out elsewhere (Burkov, Hook, and Balents, 2011), this
term is an oxymoron. Yet it persists.
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H ¼ vτxðσ · kÞ þmτz þ bσz þ b0τzσx

¼
�
mIþ bσz þ b0σx vσ · k

vσ · k −mIþ bσz − b0σx

�
; ð8Þ

where k ¼ ðkx; ky; kzÞ is the momentum, and the τn’s are Pauli
matrices for the pseudospin orbital degrees of freedom. Here
m is a mass parameter, and b and b0 are Zeeman fields that
physically can correspond to magnetic fields in the z and x
directions, respectively. A number of interesting and relevant
cases can be obtained as a function of m, b, and b0. For b0

equal to zero, one obtains the eigenvalues

εsμðkÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ b2 þ v2k2 þ μ2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2z þm2

qr
; ð9Þ

where k ¼ jkj, and s ¼ �1 and μ ¼ �1. The spectrum for
εsμð0; ky; kzÞ is plotted in Fig. 2 for cases (far left)m ¼ b ¼ 0,
which corresponds to a Dirac semimetal composed of a pair of
degenerate linear bands, which touch at k ¼ 0, (center
left) jmj > jbj describes a gapped magnetic semiconductor,

where the energy bands are gapped in the range
jEj < jmj − jbj, and (center right) jbj > jmj that represents
the WSM where the middle bands touch at a pair of isolated
point nodes k ¼ ð0; 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −m2

p
=vÞ. Further plots from

Tabert and Carbotte (2016) are shown in Fig. 3 that reflects
different regimes in the m and b parameter space.
For the case of m ¼ b ¼ 0, but b0 finite, one obtains the

eigenvalues

εsμðkÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2x þ

h
v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
þ μb0

i
2

r
; ð10Þ

where the zero energy contour becomes a circle at kx ¼ 0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
¼ b0=v as shown in Fig. 2 (far right). The spectrum

is immediately gapped for kx away from 0.
Although idealized here as T breaking fields in this

continuum model, b and b0 are representative of the
symmetry breaking perturbations that may be encountered
in lattices, which may require different considerations; see,

FIG. 2. (Left to right) Energy spectra of εsμð0; py; pzÞ for the Dirac semimetal (m ¼ b ¼ b0 ¼ 0), magnetic semiconductor
(m ¼ 1; b ¼ 0.5; b0 ¼ 0), Weyl semimetal (m ¼ 0.5; b ¼ 1; b0 ¼ 0), and line node semimetal (m ¼ 0; b ¼ 0; b0 ¼ 1) for the
Hamiltonian equation (8). From Koshino and Hizbullah, 2016.

FIG. 3. (Left) Band structure from Eq. (8) for values ofm=b for the s ¼ þ and μ ¼ � bands for increasingm=b in the WSM phase. For
finite m the μ ¼ þ band is gapped, while μ ¼ − contains two Weyl nodes. (Center) The s ¼ þ and μ ¼ − bands near the phase
transition atm=b ¼ 1. (Right) Phase diagram of Eq. (8). Atm=b < 1, the system is a WSM, whilem=b > 1, a gapped semimetal exists.
Along b ¼ 0, a degenerate massive DSM is observed. At m ¼ b ¼ 0, massless degenerate Dirac fermions exist. From Tabert and
Carbotte, 2016.
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for example, Carter et al. (2012). It is also important to note
that in general it is impossible to apply laboratory magnetic
fields large enough to generate Zeeman splittings of the
Weyl nodes that are substantial fractions of the Brillouin
zone. Therefore, the fields b and b0 should be considered as
effective internal fields.
To gain further intuition into the physics, it is instructive to

consider a real space model of a WSM. As a simplest realistic
model for a T broken WSM Burkov and Balents (2011)
considered a repeating structure of period d of normal
insulators and TIs in which T was broken through a
Zeeman field. As shown in Fig. 4, one can model such
system with two different tunneling matrix elements for
tunneling between surface states on the same layer (ΔS)
and between surface states on neighboring layers (ΔD). With
no magnetism this system shows a topological–normal band
inversion transition as a function of the relative strength of ΔS
and ΔD. The multilayer is a bulk 3D TI when ΔD > ΔS and a
normal insulator for ΔD < ΔS. If the layers are magnetized
giving a spin splitting b, one finds a WSM phase for values of
ΔS near ΔD. The Weyl nodes are found at

k�z ¼ π

d
� 1

d
arccos

�
Δ2

S þ Δ2
D − b2

2ΔSΔD

�
: ð11Þ

One can see that as a function of ΔS, ΔD, and b the Weyl
nodes move through the BZ and can annihilate at the BZ edge
for a critical value of b giving a fully magnetized state and as
discussed later for a quantized anomalous Hall conductivity.
A related construction is possible for P breaking WSMs
(Halász and Balents, 2012). These layered models not only
suggest a possible route toward creating new WSM states but
also provide an alternate viewpoint on WSMs as a state of
matter with a periodically inverted and uninverted “local
band gap.” With this perspective, aspects such as the pre-
sence of Fermi arcs and the anomalous Hall effect follow
naturally. Related schemes for building up 3D topological
semimetals by stacking one-dimensional primitives based on
the Aubry-Andre-Harper model have also been studied
(Ganeshan and Das Sarma, 2015).

1. Weyl semimetals with broken T symmetry

The simplest setting to discuss a WSM is to assume broken
time reversal symmetry, but to preserve inversion. This allows
for the minimal number of Weyl nodes, i.e., two with opposite
chirality. Inversion symmetry guarantees they are at the same
energy and furthermore provides a simple criterion to diag-
nose the existence of Weyl points based on the parity
eigenvalues at the TRIM.
Let us discuss this in the context of the following toy model.

We envision a magnetically ordered system so the bands have
no spin degeneracy, but with a pair of orbitals on each site of a
simple cubic lattice. Further assume that the orbitals have
opposite parity (e.g., s, p orbitals), so τz, which is diagonal in
the orbital basis, is required in the definition of inversion
symmetry HðkÞ → τzHð−kÞτz. The Hamiltonian is

HðkÞ ¼ tzð2 − cos kxa − cos kyaþ γ − cos kzaÞτz
þ txðsin kxaÞτx þ tyðsin kyaÞτy: ð12Þ

For −1 < γ < 1 we have a pair of Weyl nodes at location
�k0 ¼ ð0; 0;�k0Þ where cos k0 ¼ γ. The low-energy excita-
tions are obtained by approximating H�ðkÞ ≈Hð�k0 þ qÞ
where we assume small jqj ≪ k0. Then H� ¼Pav

�
a qaτa

where v� ¼ ðtx; ty; tz sin k0Þ.
Note at the eight TRIM momenta ðnx; ny; nzÞπ=a, where

na ¼ 0, 1, only the first term in the Hamiltonian is active, and
if γ > 1 the parity eigenvalues of all the TRIM are the same
and the bands are not inverted. However, at γ ¼ 0, the parity
eigenvalue of the Γ point shows the bands are inverted and it is
readily shown that this immediately implies Weyl nodes, i.e.,
an odd number of inverted parity eigenvalues is a diagnostic of
Weyl physics (Hughes, Prodan, and Bernevig, 2011; Turner
et al., 2012; Z. Wang, Vergniory et al., 2016). At the same
time let us compare the Chern numbers ΩðkzÞ of two planes in
momentum space kz ¼ 0 and kz ¼ π=a. Then the Chern
number vanishes at Ωðkz ¼ π=aÞ ¼ 0, but Ωðkz ¼ 0Þ ¼ 1.
Starting at γ ¼ −1, Weyl nodes form at the BZ boundaries and
move toward each other before annihilating at the zone center
at γ ¼ 1. As γ → 1, the entire Brillouin zone is filled with a
unit Chern number along the kz direction, and a three-
dimensional version of the integer quantum Hall state is
realized (Halperin, 1987). Therefore the WSM appears as a
transitional state between a trivial insulator and a TI.
When the chemical potential is at EF ¼ 0, the Fermi surface

consists solely of two points �k0. On increasing EF, two
nearly spherical Fermi surfaces appear around the Weyl points
and a metal exists. The Fermi surfaces are closed two-
dimensional manifolds within the Brillouin zone. One can
therefore define the total Berry flux penetrating each, which
by general arguments is required to be an integer, and in the
present case is quantized to �1, which is a particular feature
characteristic of a Weyl metal. When EF > E� ¼ tzð1 − γÞ the
Fermi surfaces merge through a Lifshitz transition and the net
Chern number on a Fermi surface vanishes. At this point, one
would cease to call this phase a Weyl metal. This discussion
highlights the importance of the Weyl nodes being sufficiently
close to the chemical potential as compared to E�. Ideally, we
want the chemical potential to be tuned to the location of the

FIG. 4. A heterostructure model of a Weyl semimetal of
topological and normal insulators. Doped magnetic impurities
are shown by arrows. d is the real space periodicity of the lattice.
ΔS and ΔD are tunneling between topological surface states on
the same topological insulator layer and between different layers,
respectively. From Burkov, 2015a.
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Weyl nodes just from stoichiometry, as occurs for ideal
graphene.

2. Weyl semimetals with broken P symmetry

If T is preserved then inversion symmetry must be broken
to realize a WSM. A key difference from the case of the T
brokenWSM is that the total number of Weyl points must now
be a multiple of four. This occurs since under time reversal a
Weyl node at k0 is converted into a Weyl node at −k0 with the
same chirality. Since the net chirality must vanish, there must
be another pair with the opposite chirality. Although poten-
tially more complicated with their greater number of nodes,
such WSMs may be more experimentally compatible as
external fringe fields from a ferromagnet may be problematic
for angle-resolved photoemission spectroscopy’s (ARPES)
momentum resolution. Additionally, without the complica-
tions of magnetism in principle some properties of the system
should be simpler under strong magnetic field.
A useful perspective on T symmetric WSMs is to view

them as the transition between a 3D topological insulator and
a trivial insulator. When a 3D TI possesses both time reversal
symmetry and inversion there is a simple “parity” criterion to
diagnose its band topology (Fu and Kane, 2007). To achieve a
transition between topological and trivial states, Kramers
doublets with opposite parities must cross each other at
one of the TRIM. Since these pairs of states have opposite
parity eigenvalues, level repulsion is absent and they can be
made to cross by tuning just one parameter. At the transition
point, a fourfold degeneracy occurs at the TRIM, leading
generically to a Dirac dispersion. Hence the transition between
a trivial and a topological insulator, in the presence of
inversion, proceeds via a Dirac point. However, on breaking
inversion, the Kramers doublets at the TRIM points can no
longer cross each other while adjusting just a single tuning
parameter. How then does the transition proceed? The key
observation is that the bands are now nondegenerate away
from the TRIM, and by our previous counting can be brought
into coincidence by tuning the crystal momenta. Tuning an
additional parameter to drive the transition involves moving
the Weyl nodes toward each other and annihilating them as
described by Murakami and Kuga (2008). For example, when
an inversion symmetry breaking staggered potential is applied
to the Fu-Kane-Mele model of the 3D TI, the transition
between weak and strong TI becomes a WSM phase. It was
recently argued that the band closing transition of a semi-
conductor lacking inversion symmetry always proceeds
through a gapless phase, consisting of either Weyl points
or nodal lines (Murakami et al., 2017).
The velocity parameter v0 in Eq. (7) introduces an overall

tilt of the Weyl cone. Such a term is forbidden by Lorentz
symmetry for the Weyl Hamiltonian in vacuum but it can
generically appear in a linearized long wavelength theory near
an isolated twofold band crossing in a crystal (Wan et al.,
2011; Soluyanov et al., 2015). Small v0 simply induces a
crystal field anisotropy into the band dispersion near a Weyl
point. However, sufficiently large v0 produces a qualitatively
new momentum space geometry wherein the constant energy
surfaces are open rather than closed and the resulting electron
and hole pocket contact at a point as shown in Fig. 5. This new

semimetallic phase has been termed a “type II” Weyl
semimetal [or structured Weyl semimetal (Xu, Zhang, and
Zhang, 2015)], in contrast to a “type I” semimetal with closed
constant energy surfaces. Although type I and type II WSMs
cannot be smoothly deformed into each other, they share
electronic behavior that derives from the presence of an
isolated band contact point in their bulk spectra.
Interestingly the topological character of the Weyl point is
still fully controlled by the last term in Eq. (7) and persists
even for type II Weyl semimetals. Thus type II Weyl
semimetals support surface Fermi arcs that terminate on the
surface projections of their band contact points which are the
signature of the topological nature of the semimetallic state. In
addition to arcs, McCormick, Kimchi, and Trivedi (2017)
showed that type II WSMs support an additional class of
surface states they call “track states.” These are closed
contours that are degenerate with the arcs but do not share
their topological properties. They can be generated when the
connectivity of Weyl nodes changes as one tunes the param-
eters in a system with multiple sets of Weyl points.
Type II systems are also expected to support a variant of the

chiral anomaly when the magnetic field direction is well
aligned with the tilt direction, have a density of states different
than the usual form, possess novel quantum oscillations (QO)
due to momentum space Klein tunneling, and a modified
anomalous Hall conductivity (Soluyanov et al., 2015; O’Brien,
Diez, and Beenakker, 2016; Udagawa and Bergholtz, 2016;
Zyuzin and Tiwari, 2016). It is proposed that tilting of the cones
has a strong effect on the transport Fano factor F (the ratio of
shot noise power and current) (Trescher et al., 2015). Type I and
type II nodes of opposite chirality can be merged and
annihilate. And it is likely that some materials can undergo
type I to type II transitions with doping or under pressure.
Claims for a type II state have been made recently in MoTe2
(Deng et al., 2016; L. Huang et al., 2016; Liang et al., 2016b;
Tamai et al., 2016; Jiang et al., 2017), WTe2 (C. Wang et al.,
2016), their alloy MoxW1−xTe2 (Belopolski et al., 2016a,
2016b), and TaIrTe4 (Belopolski et al., 2016d; Haubold
et al., 2016; Koepernik et al., 2016), although the evidence
in the case of WTe2 is controversial as discussed later (Bruno
et al., 2016).

FIG. 5. (Left) Conventional type I Weyl point with pointlike
Fermi surface. (Right) Type II Weyl point is the touching point
between electron and hole pockets. Red and blue (highlighted)
isoenergy contours denote the Fermi surface coming from
electron and hole pockets with chemical potential tuned to the
touching point.
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C. Physical consequences of topology

We have seen that there are topological aspects of WSMs
which are most simply stated in terms of them being
monopoles of Berry curvature. Here we explore some of
the consequences of that topology. From experience with
topological insulators and quantum Hall states, we are used to
two different manifestations of topology. The first is to look
for nontrivial surface states, and the second is to study the
response to an applied electric and/or magnetic field. We
follow these general guidelines in this case. WSMs have
special surface states called Fermi arcs and an unusual
response to electric and magnetic fields due to the previously
discussed chiral anomaly.

1. Fermi arc surface states

Surface states are usually associated with band insulators.
Well-defined surface states can exist within the bulk band gap
and are typically exponentially localized near the surface. How
can we define surface states when the bulk is gapless, as in
WSMs? For this we need to further assume translational
invariance, so we label surface states by crystal momenta
within the 2D surface Brillouin zone (sBZ). Then we require
only that there are regions of the sBZ that are free of bulk states
at the same energy. Indeed if we consider the idealized limit of a
pair of Weyl nodes at the chemical potential (EF ¼ 0) at
momenta �k�

0 in the sBZ, one can define surface states at the
same energy at all momenta except at the projection of theWeyl
points onto the sBZ (Fig. 6, top left). At those two points,
surface states can leak into the bulk even at EF ¼ 0 and are not
well defined. If one considers other energies, the momentum
region occupied by bulk states grows as shown at the bottom of
Fig. 6. The presence of these bulk states allows for surface
states that are impossible to realize in both strictly 2D and on the

surface of any three-dimensional insulator, where there is a
finite energy gap throughout the entire Brillouin zone.
We can now discuss the nature of the surface states that

arise in WSMs, which at EF ¼ 0 are Fermi arcs that terminate
at �k�

0. These are a direct consequence of the fact that Weyl
nodes are sources and sinks of Berry flux. Hence, we consider
a pair of planes at kz ¼ 0 and kz ¼ π=a in the model given in
Eq. (12). Since they enclose a Weyl node, or Berry monopole,
there must be a difference in Berry flux piercing these two
planes that accounts for this source. Indeed, in the model of
Eq. (12) we see that kz ¼ 0 (kz ¼ π=a) has Chern number
C ¼ 1 (C ¼ 0). In fact, any plane −k0 < kz < k0 will have
Chern number C ¼ 1, so each of the of 2D Hamiltonians
Hkzðkx; kyÞ represents a 2D Chern insulator. If we consider a
surface perpendicular to the x direction, we can still label
states by kz, ky. The 2D Chern insulators Hkz will each have a
chiral edge mode that will disperse as ϵ ∼ vky near the Fermi
energy as shown also in Fig. 7(c). In the simplest model, v is
independent of kz as long as it is between the Weyl nodes. The
Fermi energy EF ¼ 0 crosses these states at ky ¼ 0 for all
−k0 < kz < k0, leading to a Fermi arc that ends at the Weyl
node projections on the sBZ, and in this particular model is a
straight line. An alternative continuum derivation of the Fermi
arc surface states was given byWitten (2015), where boundary
conditions are formulated to characterize scattering of Weyl
electrons from the boundary of the solid.
On changing the chemical potential away from the Weyl

nodes, the Fermi arc is displaced by virtue of its finite
velocity. The surface states all disperse in the same direction
and inherit the chiral property of the Chern insulator edge
states. At the same time, the bulk Fermi surface now
encloses a nonvanishing volume, and their projection onto
the sBZ is now a pair of filled disks that encloses the Weyl
node momenta. How are the Fermi arc surface states
attached to the projection of the bulk Fermi surface? In
the top right of Fig. 6, a plot of both surface (pink) and bulk
bands projected to the sBZ is shown, and sections of this
dispersion at two energies resemble the two left figures at
the bottom of Fig. 6. In a conventional 2D electron
dispersion traversing a band around a closed isoenergetic
contour in momentum space returns one to the starting
momentum. In contrast, in a WSM system, on following a
closed contour around an end point of the Fermi arc one
moves between the valence and conduction bands. A useful
analogy is the Riemann surface generated by a multivalued
function (Fang et al., 2016). Therefore, such a band
structure, although impossible in 2D, is allowed as a surface
state since the surface states can be absorbed by bulk bands
on moving away from the Weyl nodes in energy.
Haldane (2014) argued that the Fermi arc surface states

must be tangent to the bulk Fermi surfaces projected onto the
sBZ. This follows from the fact that the surface states must
convert seamlessly into the bulk states as they approach their
termination points. Putting this differently, the evanescent
depth of the surface state wave function grows until at the
point of projection onto the bulk states the surface states
merge with the bulk states. They should inherit the velocity of
the bulk states, which implies they must be attached tangen-
tially to the bulk Fermi surface projections as shown in Fig. 6.

FIG. 6. (Top left) Chern number, Weyl points, and surface Fermi
arcs. (Top right) Connection of surface states to bulk Weyl points.
(Bottom) Evolution of the Fermi arc with chemical potential in a
particular microscopic model on raising the chemical potential
from the nodal energy (E ¼ 0). Fermi arcs are tangent to the bulk
Fermi surface projections and may persist even after they merge
into a trivial bulk Fermi surface. From Balents, 2011, Wan et al.,
2011, and Haldane, 2014.
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Surface states calculated in the Haldane (2014) model also
show that Fermi arcs could continue to exist above the Lifshitz
transition, when the Fermi surfaces surrounding the two Weyl
points merge. However, Fermi arc surface states bridging
disconnected Fermi surfaces imply that they carry a nontrivial
Chern number. This suggests an experimental diagnostic to
determine the existence of a Weyl metal. Consider a closed k-
space curve at constant energy in the surface Brillouin zone
and determine the electronic states intersected by it. If an odd
number of surface states are encountered, and no bulk states,
then one is required to have a nontrivial Chern number on the
bulk Fermi surface enclosed by the curve (Lv et al., 2015b;
Belopolski et al., 2016c) and hence we can define this as a
“Weyl metal.” The surface states intersected need to be
counted in a sign sensitive fashion, with �1 depending on
whether their velocity is along or opposite to the direction of
traversal of the contour. This quantity is related to the total
Chern number of Fermi surfaces enclosed by the contour.
A useful alternate viewpoint on Fermi arc surface states is to

imagine growing the three-dimensional bulk beginning with a
thin slab. Initially, the opposite surfaces are close to one
another, and viewed as a 2D system this should have a
conventional closed Fermi surface. As the separation between
the opposite faces increases, opposite halves of the Fermi
surface migrate to opposite surfaces, leading to the Fermi arcs.

This is analogous to obtaining a single Dirac node on the
surface of a topological insulator by starting with a pair of
Dirac nodes in 2D and gradually separating them to opposite
surfaces (Wu et al., 2013). One important distinction for the
Fermi arc case is that the surface states must become extended
into the bulk at the termination point of the Fermi arc. One can
utilize this viewpoint to construct models of WSMs with any
given surface Fermi arc dispersion as in Hosur (2012). A more
mathematical perspective on Fermi arc surface states was
described by Mathai and Thiang (2017).
The most direct observation of Fermi arc surface states has

been achieved through ARPES and more recently scanning
tunneling microscopy (STM) studies on the WSM candidate
TaAs, which are reviewed later. Another standard probe of
Fermi surfaces is quantum oscillations, which can also be used
to study Fermi arc surface states. However, as the correspond-
ing theory involves both Fermi arcs and chiral Landau levels
(LLs), stitched together in a consistent fashion, we discuss this
in Sec. II.C.5.

2. The chiral anomaly

In a WSM with a pair of Weyl nodes of opposite chirality,
the number of electrons in the vicinity of each is modified in
the presence of electric and magnetic fields via

FIG. 7. (a) Opposite Weyl nodes in a T-breaking WSM in the absence of fields. (b) Spectrum in a magnetic field along the z axis
displaying Landau levels that disperse along the field. The zeroth Landau levels are chiral. In addition, an electric field along z generates
valley imbalance. (c) Anomalous Hall effect from chiral Fermi arc surface states whose magnitude is determined by the Weyl node
separation in momentum space, when the chemical potential is at the Weyl nodes. (d) On moving the chemical potential away from the
Weyl nodes, the anomalous Hall conductivity changes but only marginally in the model considered by Burkov (2014) up to the chemical
potential when the Fermi surfaces enclosing the two Weyl points merge.
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dn3DR=L
dt

¼ � e2

h2
E ·B; ð13Þ

where we inserted the superscript to remind us that we are
dealing with 3D Weyl fermions. Therefore, even in the
presence of spatially uniform fields, which may be oriented
in an arbitrary direction relative to the separation of the Weyl
nodes, the density of electrons at an individual node is not
conserved. In particular, this immediately tells us that a single
Weyl node, or any set with an unbalanced chirality, is
problematic, since it will lead to nonconservation of electric
charge. However, if the chirality is balanced, as happens for
any lattice realization, the opposite Weyl nodes act as sources
and sinks of electrons, leading to nodal (or valley) polar-
izations, while preserving the total charge. To give some
intuition for how this arises, let us first consider the one-
dimensional analog (the chiral anomaly appears in any odd
spatial dimension). The number density at a pair of one-
dimensional Weyl nodes will correspondingly obey

dðn1DR=LÞ
dt

¼ � e
h
E. ð14Þ

This is readily derived from the semiclassical equation of
motion which will accelerate electrons along the field
_k ¼ eE=ℏ. When this change of momentum equals the
spacing between momentum states 2π=L, an extra electron
is added (removed) from the right moving (left moving) Weyl
point leading to Eq. (14). The key ingredient of course is the
fact that in a condensed matter context the left and right Weyl
points are not really distinct entities in a lattice model, rather
they are connected beneath (and above) the Fermi level, so one
cannot clearly separate electrons associated with one group
or the other at arbitrarily high energies. In fact the one-
dimensional chiral anomaly is an essential ingredient in
generating electrical conductivity. If we associate a scattering
mechanism that relaxes any density imbalance between the
two nodes with a rate 1=τa, then we can write the following
modified rate equation:

dðn1DR − n1DL Þ
dt

¼ 2
e
h
E −

n1DR − n1DL
τa

. ð15Þ

In steady state this leads to a current I ¼ 2e2El=h, where the
scattering length l ¼ vFτa. A similar calculation can be
applied to metals in 2D or 3D, where the different points
of the Fermi surface can be regarded as one-dimensional chiral
fermions propagating along the local Fermi velocity, and the
shift of the Fermi surface in an electric field being just
the manifestation of the 1D chiral anomaly. However, the
three-dimensional chiral anomaly is rather distinct and requires
the application of both electric and magnetic fields. A simple
way to understand the 3D chiral anomaly is to first consider the
effect of the magnetic field in the clean system, which leads to
Landau levels that disperse only along the field direction. The
zeroth Landau can be shown to be chiral, i.e., it propagates only
along or opposite to the field direction, with reversed velocities
at the two opposite chirality Weyl nodes. Consider a single
isotropic Weyl node with chirality C ¼ �1 that is minimally
coupled to an external magnetic field B ¼ Bẑ,

HC ¼ CvFðp − eAÞ · σ. ð16Þ

Labeling the conservedmomentum along the fieldpB ¼ p · B,
we can set this to zerowherewe recover the problem of a single
2D Dirac node in a field, which is known to have the spectrum
ϵn ¼ ðvFℏ=lBÞsgnðnÞ

ffiffiffiffiffiffijnjp
. In particular, the zeroth Landau

level is at zero energy and is polarized along the B̂ direction
with eigenvalue of σ · B̂ being σB ¼ þ1. This corresponds for
the case of graphene to the sublattice-valley polarization of the
zeroth Landau level. However, in the present context it has the
following remarkable consequence. Reintroducing the
dispersion along the field

Hn¼0
C ¼ CvFpBσB; ð17Þ

we see that for polarizing the spin σB ¼ þ1 implies a one way
propagation of electrons along the magnetic field for C ¼ þ1
and the opposite propagation at the opposite Weyl node
(C ¼ −1). The n ≠ 0 Landau levels in contrast display a
conventional dispersion as shown in Fig. 7(b). Therefore we
can relate the problem of aWSM in 3D in amagnetic field to an
effectively one-dimensional problem where the electrons
propagate purely along the magnetic field lines, forming chiral
one-dimensional channels. Thus, we can utilize the 1D chiral
anomaly formula (14) with the electric field applied along the
magnetic field E ¼ E · B̂. Finally we convert the result into a
three-dimensional density n3DR=L ¼ ð1=AÞn1DR=L, utilizing the
fact that the one-dimensional channels have a cross-sectional
area occupied by a magnetic flux quantum (A ¼ ϕ0=B). This
gives us the result mentioned at the beginning of this section
[Eq. (13)] and previously identified by Nielsen and Ninomiya
(1983). Before we turn to experimental consequences of the
chiral anomaly in the solid-state context, let us discuss a closely
related effect—the chiral magnetic effect (CME).
Consider a WSM which has an effective chemical potential

difference (Δϵ) between the two Weyl nodes and a magnetic
field applied in the direction connecting them (Zyuzin and
Burkov, 2012; Chernodub et al., 2014). A naive application of
the above arguments would suggest that there is a current
along the magnetic field arising from the unequal occupation
of left and right moving chiral modes, giving a current of

jc ¼
e2

h2
BΔϵ: ð18Þ

If such a current exists, it cannot be an equilibrium dc
transport current as no voltage is applied. Moreover it also
cannot be a magnetization current (jmag ¼ ∇ ×M) since this
would imply the transverse components M⊥ ∝ A⊥ (Levitov,
Nazarov, and Eliashberg, 1985). The latter violates gauge
invariance since it is a physical quantity that directly depends
on the vector potential. Indeed in any equilibrium situation the
current must vanish when all contributions from filled
electronic states are taken into account (Kohn, 1964;
Vazifeh and Franz, 2013). However, in a nonequilibrium
setting the current could be nonvanishing. For instance, if an
electric field oscillates at a frequency ω that is faster than the
internode relaxation rate, then a chemical potential difference
between nodes can be induced and an oscillating chiral current
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can occur (Jian-Hui et al., 2013; Burkov, 2015a; Ma and
Pesin, 2015; Zhong, Moore, and Souza, 2016). Note that there
is a similar, but ultimately different effect that can occur in
chiral metals in response to time varying magnetic fields that
has been called the gyrotropic magnetic effect (Ma and Pesin,
2015; Zhong, Moore, and Souza, 2016). It is governed by the
intrinsic magnetic moment of the Bloch states on the Fermi
surface and is distinct from the CME.
A related nonequilibrium situation occurs when a density

difference of electrons in the two opposite Weyl nodes is
created by the chiral anomaly that can pump charge between
nodes in the presence of parallel electric and magnetic fields.
It leads to different effective chemical potentials for the Weyl
nodes that can lead to observable consequences of the CME
mentioned previously (Aji, 2012; Son and Spivak, 2013;
Burkov, 2015a). The density difference is determined by the
balance between the chiral pumping and the rate of inter-Weyl
node scattering (1=τa), which results in a finite steady state
density difference between nodes proportional to E ·B. The
natural assumption here is that intranode scattering is much
faster than internode scattering. This gives an effective chiral
chemical potential difference between nodes that when
combined with the CME [Eq. (18)] gives a chiral current
jc ∝ BE ·Bτa. This contribution to the dc effect can be seen
to arise from what is effectively two successive uses of the
E ·B form, the first that establishes the chiral chemical
potential difference between nodes and the second that gives
a current. The complete expression is given later but this
simplified treatment exemplifies some of the key features. The
magnetoconductivity tensor is quadratic in magnetic field
δσab ∝ BaBb, e.g., it has a quadratic dependence on the
magnetic field that is anisotropic and maximal for transport
along the field direction. Thus, along the magnetic field
direction the conductivity is modified from its zero field
value as (Son and Spivak, 2013; Burkov, 2015a)

σðBÞ ¼ σ0 þ
e4B2τa
4π4gðϵFÞ

: ð19Þ

Therefore the magnetoconductivity is predicted to positive
(and magnetoresistance negative). It is remarkable that
Eq. (19) can be arrived at through both the quantum limit
calculation and the one done in the framework of semiclassical
kinetics (Son and Spivak, 2013), e.g., Landau levels are not
required. Although such an effect has been proposed to be
used as a signature of a WSM, as discussed there are
dominating experimental artifacts that may obscure such a
dependence. What is particularly diagnostic of the effect is a
strong dependence on intervalley scattering τa. A strongly
disordered WSM with mixing between opposite Weyl nodes
should not exhibit any transport signature of an isolated Weyl
node—indeed in the limit of small τa the magnetoresistance
(MR) is also small. However, as the intervalley scattering time
increases and the Weyl nature becomes more pronounced, the
chiral contribution will dominate and may lead to large
negative magnetoresistance. In addition to the experimental
issues, one potential intrinsic complication is that the chiral
current can also be relaxed by reaching the surface where it
can be converted into electrons at the opposite Weyl node by

sliding along the Fermi arc surface state. Indeed as discussed
by Ominato and Koshino (2016) this is the origin of chiral
current relaxation in the absence of direct internode scattering,
but leads to unusual scaling with system size. However, the
presence of any bulk scattering mechanism between opposite
Weyl nodes will eventually dominate in the large volume limit
since the Fermi arc relaxation mechanism is a surface effect.
Analogous phenomena in thermoelectric transport have also
been predicted (Lundgren, Laurell, and Fiete, 2014; Lucas,
Davison, and Sachdev, 2016; Spivak and Andreev, 2016) and
explored experimentally (Hirschberger et al., 2016).

3. Anomalous Hall effect

The simplest manifestation of Weyl physics arises from the
anomalous Hall effect (Yang, Lu, and Ran, 2011). Of course
this requires explicit T breaking. However, we note that it may
also be excluded even in magnetic WSMs where, for example,
cubic symmetry is preserved. Consider the simplest example
of a pair of Weyl nodes in a magnetic system, separated along
the z direction by a crystal wave vector q ¼ 2k0ẑ, where we
directed the vector from positive to negative chirality Weyl
nodes. As discussed in Sec. II.C.1, in such a situation one can
view each kx, ky plane for −k0 < kz < k0 as a 2D Chern
insulator. Each 2D Chern insulator will have a chiral edge
mode near the Fermi energy contributing a Hall conductance
e2=h as shown in Fig. 7(c). Therefore the anomalous Hall
effect is particularly simple when the chemical potential is at
the Weyl nodes and for generic positions of the pair of Weyl
nodes one has

σab ¼ ϵabc
e2

2πh
qc ð20Þ

assuming q ¼ 2k0ẑ, this reduces to σxy ¼ ðe2=2πhÞ2k0. Note
q is only defined modulo reciprocal lattice vectors G. This is
physically related to the property that the Hall conductance
calculated by Eq. (20) is only determined modulo quantized
Hall conductances arising from filled bands which may lead to
three-dimensional quantum Hall states (Halperin, 1987)
which are also characterized by a reciprocal lattice vector
G. On moving the chemical potential away in energy, it was
argued that the change of anomalous Hall conductance can be
small (Burkov, 2014) until the Fermi surfaces surrounding the
opposite Weyl points merge [Fig. 7(d)]. In a crystal with cubic
symmetry, where T breaking Weyl nodes may appear as
proposed in the pyrochlore iridates (Wan et al., 2011;
Witczak-Krempa and Kim, 2012; Wang, Go, and Millis,
2017), symmetry enforces vanishing of the anomalous Hall
effect due to the absence of a preferred axis. However, on
applying a uniaxial strain that lowers the symmetry, an
anomalous Hall signal should appear proportional to the
degree of symmetry breaking for small strain. This was
proposed as a probe of cubic magnetic Weyl semimetals in
Yang, Lu, and Ran (2011). Note that, although newly
appreciated, this may be a common mechanism for generating
an anomalous Hall effect. Two Fermi pockets are predicted to
surround isolated Weyl points in bcc iron and are believed to
give a major contribution to its anomalous Hall effect
(Gosálbez-Martínez, Souza, and Vanderbilt, 2015). It has also
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been appreciated that competing interactions in these materi-
als can stabilize other interesting magnetic states that generi-
cally support the anomalous Hall effect (Goswami, Roy, and
Das Sarma, 2017).

4. Axion electrodynamics of Weyl semimetals

Both CME and the anomalous Hall effect in WSMs can be
represented compactly by the addition of the so-called axion
term to the electromagnetic Lagrangian (Grushin, 2012; Son
and Yamamoto, 2012; Zyuzin and Burkov, 2012; Zyuzin, Wu,
and Burkov, 2012; Goswami and Tewari, 2013; Vazifeh and
Franz, 2013). The action is

Sθ ¼
1

2π

e2

h

Z
dtdrθðr; tÞE ·B: ð21Þ

This is similar to the formalism used in describing the
electromagnetic response of topological insulators (Qi,
Hughes, and Zhang, 2008; Essin, Moore, and Vanderbilt,
2009; Wu et al., 2016). For TIs the effect is felt only when
there the spatial or temporal gradients of θ are finite, e.g., at
surfaces where in the presence of T breaking field it generates
a half quantum Hall effect from a single surface. In the present
case the θ term has time and bulk position dependence and in
its simplest form it is

θðr; tÞ ¼ 2ðk0 · r − b0tÞ; ð22Þ

where k0 is the position of the Weyl nodes and 2b0 is the
chemical potential shift between Weyl nodes. Unlike related
terms in topological insulators, it leads to observable effects in
the bulk of the material. Minimizing the action in the standard
fashion [see supplementary information of Wu et al. (2016),
for example] leads to the following equations of motion for the
charge density and current:

ρ ¼ 1

2π

e2

h
2k0 · B; ð23Þ

J ¼ 1

2π

e2

h
ð2k0 ×E − 2b0BÞ: ð24Þ

Equation (23) and the first term in Eq. (24) represent the
anomalous Hall effect that is expected to occur in a Weyl
semimetal with broken T and is equivalent to Eq. (20). The
second term in Eq. (24) describes the CME discussed above
whereby a current is proportional to the applied magnetic field
B and is equivalent to Eq. (18) where the energy difference
Δϵ ¼ 2ℏb0. The existence of this CME term may present a
conundrum as discussed above. Such a term proportional to
the magnetic field with no voltage applied cannot represent an
equilibrium current. Generally Eq. (24) needs to be supple-
mented by an equation describing the relaxation of the chiral
charge (Burkov, 2017). However, Eq. (24) remains valid for
dynamics fast compared to the internode scattering time, while
the CME vanishes in the dc limit in equilibrium. There are a
host of other, particularly optical, effects that have been
predicted on the basis of this physics (Hosur and Qi, 2015;
Kargarian, Randeria, and Trivedi, 2015; Zhou, Chang, and

Xiao, 2015; Cortijo, 2016a). For a detailed discussion of the
CME in both condensed matter and particle physics contexts
please see Gynther et al. (2011) and Burkov (2017).

5. Interplay between chiral anomaly and surface Fermi arcs

Quantum oscillation experiments, which involve measuring
the variation of a physical property such as magnetization or
conductivity as a function of applied magnetic field, are
sensitive probes of Fermi surface geometry. It is natural to
expect that the unusual Fermi arc surface states of Weyl
semimetals will display nontrivial quantum oscillation sig-
natures. Indeed this expectation is consistent with recent
theoretical studies (Potter, Kimchi, and Vishwanath, 2014;
Gorbar et al., 2016; Y. Zhang et al., 2016) described next,
which predict a semiclassical trajectory, “Weyl orbits,” that
weave together surfaces and bulk states.
Consider the simplest T broken Weyl semimetal with a pair

of Weyl nodes displaced by k0 along the kx direction.
Applying a magnetic field along the z direction as shown
in Fig. 8 leads to Lorentz force acting on the surface electrons
that makes them slide along the Fermi arc. For a conventional
Fermi surface, the cyclotron motion leads to a closed path
which can then be quantized leading to oscillations. However,
in the case of Fermi arcs, the electron at the tip of the arc has
nowhere to go on the surface. Instead, we would expect it to
tunnel into the bulk. Indeed, studying the previously obtained
bulk spectrum in the presence of a magnetic field, the chiral
Landau levels of Eq. (17) are precisely the bulk modes that can
absorb the electron and convey it to the bottom surface where
it proceeds to rotate along the opposite Fermi arc and returns
to the top surface along the oppositely propagating chiral
Landau level of the other Weyl node. These trajectories are the
Weyl orbits and to describe their properties let us assume for
simplicity that we are in the quantum limit for the bulk, so
there is no contribution from bulk Fermi surfaces (which are
anyway easily distinguished from surface oscillations which
only depend on the perpendicular component of field). A
numerically calculated quantum oscillation trace is shown in
Fig. 8(c), which results from the surface-bulk hybrid orbit (Y.
Zhang et al., 2016). The peaks in the quantum oscillation
occur at magnetic fields Bn set by

1

Bn
¼ e

Sk

�
2πðnþ γÞẑ · B̂ − Lz

�
k0 · B̂þ 2μ

v∥

��
; ð25Þ

where Sk is the area enclosed between the top and bottom
surface Fermi arcs and μ is the chemical potential measured
from the Weyl nodes. This is further simplified if the field is
parallel to the z axis, when we can write

B−1
n ¼ 2πe

Sk
ðnþ γÞ þΦ½Lz�;

where the frequency of quantum oscillation is set by Sk, with a
thickness dependent phase offset Φ ¼ −Lzð2μ=vzÞ. This is
simply the phase accumulated on traversing the bulk—indeed
this expression can be obtained most simply by considering
the phase accumulated by the semiclassical trajectories and
quantizing it using the Bohr-Sommerfeld condition. While a
simple estimate can be made using energy-time quantization
as in Potter, Kimchi, and Vishwanath (2014), the complete
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expression is obtained from a phase space quantization
(Y. Zhang et al., 2016).
The unusual nature of these Weyl orbits is the fact that they

behave both like surface states (the oscillations depend on the
vertical component of themagnetic field) while at the same time
the thickness dependence appears in the phase offset. Note thus
far we assumed a perfectly clean system—in the presence of
impurities, scattering in the bulk will lead to an exponential
suppression of the quantum oscillation signal whichwill also be
thickness dependent. Different scattering processes can degrade
the signal—in the weak field limit scattering between the chiral
Landau level mode and other nonchiral modes [as in Fig. 7(b)]
can arise even from forward scattering. In the quantum limit,
backscattering requires scattering by the large wave vector k0,
but even in the absence of such scattering, differing disorder
induced path lengths can lead to interference and contribute to
suppression of the quantum oscillation signal (Y. Zhang et al.,
2016). Experimental investigation of Fermi arc quantum
oscillations is described in Sec. V.C.
The sensitivity of quantum oscillations to disorder stems

from the requirement for coherent electron motion over the
periodic trajectory. On the other hand, forward scattering
between Landau level modes does not affect the current which
continues to propagate along the same direction. This led to
the prediction of effects (Baum et al., 2015) that depend on the
current pattern related to the semiclassical orbits, which can
show robust and unusual signatures as shown in Figs. 9(a) and
9(b). For example, resonant transmission of electromagnetic
waves through the slab at frequencies determined by the

FIG. 8. Weyl semimetal slab in an applied magnetic field. (a) Weyl cyclotron orbits depicted in hybrid real space (z) and momentum
space (kx, ky). Electrons slide along the surface Fermi arcs and are absorbed by the chiral bulk Landau level which propagates them to
the opposite surface. From Potter, Kimchi, and Vishwanath, 2014. Numerically calculated (b) wave function of Weyl orbits, showing
their hybrid surface-bulk character and (c) quantum oscillations in density of states from Weyl orbits. From Y. Zhang et al., 2016.

FIG. 9. Theoretical proposals of nonlocal transport in WSMs.
Weyl cyclotron orbits lead to (a) a voltage difference on the lower
pair of contacts when the current is injected between contacts on the
top surface and (b) resonances in transmission of electromagnetic
waves at frequencies controlled by the magnetic field. From Baum
et al., 2015. (c)An alternate proposal for nonlocal transport utilizing
the choral anomaly. A source-drain current Isd is injected into a
WSM slab of thickness d via tunneling contacts of thickness Lg. In
the presence of a local generation magnetic field Bg, a valley
imbalance Δμ is created via the chiral anomaly and diffuses a
distance L ≫ d away. If a “detection” fieldBd is applied, the valley
imbalance can be converted into a potential difference Vnl between
top and bottomcontacts of sizeLd. FromParameswaran et al., 2014.
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intersurface cyclotron orbits is predicted which is estimated to
be in the microwave or THz range for experimentally relevant
parameters. Nonlocal dc transport that relies on the intersur-
face cyclotron orbits was also proposed in the same work.
A different approach to generating nonlocal voltage based on
the chiral anomaly appeared in Parameswaran et al. (2014)
[see Fig. 9(c)] and a preliminary experimental report claiming
to observe this effect has appeared in C. Zhang et al. (2017) on
the DSM system Cd3As2.

D. Disorder effects on Weyl semimetals

In a WSM where all Weyl nodes are exactly at the chemical
potential, and other bands are removed in energy, the density
of states vanishes. An interesting question is the evolution of
the density of states as the system is disordered. In the
analogous problem of disordered graphene in 2D, a finite
density of states immediately appears even at weak disorder
(Neto et al., 2009). Analogous calculations for 3D semimetals
show a vanishing density of states persisting up to a finite
value of disorder strength (Fradkin, 1986; Goswami and
Chakravarty, 2011; Hosur, Parameswaran, and Vishwanath,
2012; Pixley, Goswami, and Das Sarma, 2016) beyond which
a metallic state is expected. The critical properties of this
interesting semimetal-metal transition have been discussed in
several recent works (Kobayashi et al., 2014; Pixley,
Goswami, and Das Sarma, 2015; Sbierski, Bergholtz, and
Brouwer, 2015; Syzranov, Radzihovsky, and Gurarie, 2015;
Altland and Bagrets, 2016; Bera, Sau, and Roy, 2016; Louvet,
Carpentier, and Fedorenko, 2016; Shapourian and Hughes,
2016; Syzranov, Ostrovsky et al., 2016) which used different
numerical and renormalization group (RG) based analytical
approaches. For example, a relatively simple limit to study the
problem was introduced by Louvet, Carpentier, and
Fedorenko (2016) by mapping the problem to a Gross-
Neveu-Yukawa theory in 4 − ϵ dimensions which can be
studied by conventional RG techniques and yields a continu-
ous transition between a disordered semimetal and a diffusive
metal. On the other hand, rare events that are not accounted for
in perturbative RG approaches can have a singular effect by
inducing a small density of states even at weak disorder
(Nandkishore, Huse, and Sondhi, 2014; Pixley, Huse, and Das
Sarma, 2016) that ultimately rounds off the transition at the
longest scales. This implies there is no sharp distinction
between the semimetal and metallic regions; nevertheless,
there is a wide range of length scales where the system is
controlled by the previously discussed critical point, before
being eventually rounded off at the largest scales (Pixley et al.,
2017) by flow to the metallic fixed point. These issues were
reviewed recently by Syzranov and Radzihovsky (2018). It
was proposed that optical conductivity may be a useful probe
in studying the critical properties of the disorder-driven phase
transition in Weyl semimetals (Roy, Juričić, and Sarma, 2016).

III. DIRAC SEMIMETALS IN THREE DIMENSIONS

As discussed, Weyl points can occur in three-dimensional
materials only when either time reversal or inversion sym-
metries are broken.When inversion symmetry is present aWeyl
node at kmust be accompanied by a partner node at −k at the

same energy that carries the opposite topological charge
(Burkov and Balents, 2011; Wan et al., 2011). Conversely,
time reversal symmetry requires that nodes at these momenta
are time reversed partners which carry the same topological
charge (Halász and Balents, 2012). Since the net topological
charge enclosed within the Brillouin zone is zero, this latter
situation further requires the existence of two additional
compensating partner Weyl nodes (Murakami, 2007; Halász
and Balents, 2012). The presence of both inversion and time
reversal symmetries excludes the possibility of a twofold
degeneracy at a Weyl point in the spectrum.
Nevertheless when both symmetries are present energeti-

cally degenerate Weyl nodes carrying opposite charges can be
stabilized at the same crystal momentum. This produces a
composite point singularity hosting a fourfold degeneracy.
This degeneracy is not topologically protected since its net
Chern number is zero and residual momentum-conserving
terms in the Hamiltonian projected into the degenerate sub-
space can potentially mix these states and gap the electronic
spectrum. However, in special situations this mixing can be
forbidden by space group symmetries in which case the nodes
remain intact as symmetry-protected degeneracies. This is of
fundamental interest since the stable merger of two low-
energy Weyl nodes provides a solid-state realization of the
(3þ 1)-dimensional Dirac vacuum and materials that support
this degeneracy are called Dirac semimetals. This can occur
at a quantum critical point where a three-dimensional
Hamiltonian is parametrically fine-tuned to the bulk gap
closure that separates conventional and Z2 topological insu-
lating states (Murakami, 2007; Murakami et al., 2007). These
topological semimetals are sometimes described as “three-
dimensional graphenes” although this moniker is inappropri-
ate because unlike the situation in graphene (Kane and Mele,
2005) the Fermi surface point of a DSM is a symmetry-
protected degeneracy in the presence of (possibly strong) spin-
orbit interactions. In graphene this degeneracy is removed by
spin-orbit coupling and its gapped phase is the prototype
quantum spin Hall insulator (Kane and Mele, 2005).
One can demonstrate how this arises in a simple model

(Fu, Kane, and Mele, 2007) which analyzes the spectrum of a
spin-orbit coupled tight binding bands on the diamond lattice.
In this model one isotropic s orbital with two spin polarizations
is assigned to each of two sites in the primitive cell. The
Hamiltonian for this system is

H ¼ t
X
hiji;s

c†i;scj;s þ i
λso
a2

X
⟪ij⟫;s;s0

c†i;sðσ̂ · dð1Þ
ij × dð2Þ

ij Þcj;s0 ð26Þ

with a scalar coupling strength t between nearest neighbor sites
hi; ji and spin-orbit coupling strength λso between second
neighbor sites ⟪i; j⟫ bridged by successive nearest neighbor

hops along the bond vectorsdð1Þ
ij anddð2Þ

ij coupled to operators σ̂
that act on the spin degree of freedom. When t is isotropic (the
same value on each nearest neighbor bond) the spectrum
supports a point of fourfold degeneracy at E ¼ 0 at each of
the three distinct X points located on centers of the Brillouin
zone faces. The fourfold degeneracy is lifted at linear order ink
producing a pair of doubly degenerate linear dispersing bands.
Uniaxial strain breaks the cubic symmetry and can gap this
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spectrum. For example, under a compressive strain along a
body diagonal the hopping amplitudes depend on the bond
orientations t111 > t11̄ 1̄ ¼ t1̄11̄ ¼ t1̄ 1̄ 1, which opens a gap at
half filling to create a strong topological insulator. In the
complementary situation where tensile strain reduces t111 <
t11̄ 1̄ the degeneracy is again lifted but the gapped state is instead
a weak topological insulator composed of weakly coupled
(111) bilayers in two-dimensional quantum spin Hall states. A
conventional insulator can also be created near this state,
although it is not perturbatively accessible from it since this
requires introducing a staggered on-site scalar potential
exceeding the nonzero spin-orbit scale λso.
Material realizations of a DSM at a quantum critical point

occur in normal-topological insulator transitions tuned by
composition (Sato et al., 2011; S.-Y. Xu et al., 2011; Brahlek
et al., 2012; Wu et al., 2013; Novak et al., 2015; Zeljkovic
et al., 2015; Salehi et al., 2016) and by strain (Young et al.,
2011). However, a DSM can also appear as a robust electronic
phase that is stable over a range of Hamiltonian control
parameters. There are at least two different ways of accom-
plishing this. (Class I) One can exclude the possibility of mass
terms appearing in a band-inverted Bloch Hamiltonian HðkÞ
for k lying along a symmetry axis (Wang et al., 2012, 2013).
We refer to this as the “band inversion” mechanism. (Class II)
One can search for space groups that support small groups
with four-dimensional irreducible representations (FDIR) at
discrete high-symmetry momenta kn. We refer to this as the
“symmetry-enforced” mechanism (Young et al., 2012;
Steinberg et al., 2014; Zaheer, 2014). In the band inversion
mechanism the Dirac semimetal is not truly a symmetry-
protected state since it actually contains a pair of DPs and one
may continuously tune parameters to uninvert the bands
without changing the space group. This eliminates the two
DPs by their merger and pairwise annihilation. However, in
the symmetry-enforced mechanism the appearance of the DP
is an unavoidable consequence of the space group of the
material.2 We discuss these in more detail later.

A. Dirac semimetal from band inversion

The band inversion mechanism provides perhaps the most
direct route to formation of a Dirac semimetal. The energy
eigenvalues in the nth band are related by time reversal
symmetry En;↑ðkÞ ¼ En;↓ð−kÞ and by inversion symmetry
En;σðkÞ ¼ En;σð−kÞ. The combined operation of both
symmetries requires that En;↑ðkÞ ¼ En;↓ðkÞ so that each band
remains doubly degenerate locally at everyk. A Dirac node can
occur if two such branches undergo an accidental band crossing
at a point. Since the small group is trivial at a low symmetry k
point in the Brillouin zone, the intersection of a pair of doubly
degenerate bands is generically prevented by an avoided

crossing. However, when k lies along a symmetry line, lattice
symmetries intervene by constraining the possible interactions
within this multiplet. For example, if the crossing states trans-
form according to different irreducible representations of the
group of the symmetry line their hybridization is prevented and
a fourfold degeneracy at this point of intersection is symmetry
protected.
Figure 10 illustrates how this situation can arise naturally

near a band inversion transition. The uninverted [Fig. 10(a)]
and inverted [Fig. 10(b)] band structures reverse the parities
and band curvatures of their k ¼ 0 eigenstates. Generally,
these states are allowed to mix at k ≠ 0 as shown in
Fig. 10(b) which produces an avoided crossing and fully
gaps the state with a “Mexican-hat” dispersion. However, if
these states transform along a symmetry direction according
to different irreducible representations of the group of the
symmetry line, the spectrum retains a gap closure on the
symmetry line as shown in Fig. 10(c). Note that this
mechanism generically produces pairs of fourfold degenerate
points along this line. If one tunes parameters to uninvert the
bands, these two Dirac points merge and annihilate and the
system reverts to a fully gapped state shown in Fig. 10(a).
Generally Dirac systems are very sensitive to symmetry
breaking terms. First principles calculations show that even a
1% compression in the y direction opens an approximately
6 meV energy gap in Na3Bi (Wang et al., 2012).
The band inversion mechanism can be understood more

quantitatively by adopting a four-state Hamiltonian for a
system near a band inversion transition (Yang and Nagaosa,
2014; Z. Gao et al., 2016)

HðkÞ ¼
X
ij

aijðkÞσi ⊗ τj; ð27Þ

FIG. 10. Development of a Dirac semimetal in an inverted band
structure. The band inversion transition reverses the parities (�)
of the k ¼ 0 eigenstates in the (a) uninverted and (b) inverted
level orderings. (b) The inverted bands are twofold degenerate
and undergo an avoided crossing at k ≠ 0 which gaps the
spectrum. (c) The mixing is forbidden along a symmetry line
by the different rotational symmetries of the intersecting bands.
This leaves two points each with a fourfold point degeneracy at
k ¼ �kD along the symmetry line that is lifted to linear order in
k − kD. Uninverting the bands produces a pairwise annihilation
of the Dirac points and the system reverts to the conventional
insulating state as shown in (a).

2Gibson et al. (2015) mentioned a third mechanism, whereby 2D
graphenelike layers are stacked in such a fashion as to give minimal
3D coupling and only small gaps. As even graphene itself has a small
gap due to spin orbit coupling (SOC), irrespective of 3D couplings
these systems will always have small gaps and are not strictly
speaking Dirac systems. Therefore such materials are not discussed
in this review.
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where σ and τ are Pauli matrices that act in the spin and
orbital spaces, respectively. When k lies along an n-fold
symmetry axis the local Hamiltonian HðkÞ commutes with
the n-fold rotations Cn so one can work in a basis where
the eigenstates are labeled by rotational quantum numbers
Jz. In this basis, and for a momentum kz along this symmetry
line, theHamiltonian can bewritten as a sumof commuting terms

HðkzÞ ¼ c0 þ c1τ3 þ c2σ3τ3; ð28Þ
where cnðkz; mÞ are real functions of kz and a mass parameter
m that describes the band inversion. The gap in this model is
ΔE ¼ 2minðjc1 � c2jÞ and since its eigenvalues appear in
degenerate pairs either c1 or c2 are automatically zero. The
constraint ΔE ¼ 0 then defines a parametric curve in the
ðm; kzÞ plane on which the system is gapless and supports a
fourfold degeneracy. Any solution on this curve defines a
Dirac semimetal that is stable to small variations of the band
inversion parameter m → mþ δm.
Band inversion is predicted to be the mechanism for Dirac

semimetal states in the alkali pnictides A3B [where A ¼
ðNa;K;RbÞ (Wang et al., 2012; Z. K. Liu et al., 2014b) and
B ¼ ðAs; Sb;BiÞ] and in Cd3As2 (Wang et al., 2013; Z. K. Liu
et al., 2014a; Neupane et al., 2014). In both families of
compounds the low-energy physics is controlled by a single
band inversion occurring near the Γ point of the Brillouin
zone. The band structure in the prototypical case of Na3Bi
shown in Fig. 11 has been calculated using density functional
theory (Wang et al., 2012). The results can be usefully mapped
onto a four-state model in the form of Eq. (27) by studying the
low momentum symmetry-allowed couplings between the
four spin orbitals involved in the band inversion. Using the Γ
point state vectors as a basis these orbitals can be indexed by
their parities and transformations under rotations about a

symmetry axis. For Na3Bi in space group P63=mmc (D4
6h) the

low-energy basis functions can be constructed from bonding
and antibonding combinations of the Na 2s and the crystal
field split Bi 6p orbitals. Crucially in this four component
basis their transformations under rotations about the c axis
span four different Jz eigenvalues: fjSþ1=2; 1=2i; jP−

3=2; 3=2i;
jP−

3=2;−3=2i; jSþ1=2;−1=2ig. For momentum kz along the
Γ − A symmetry line the states are split with a mass term

MðkzÞ ¼ Mo −M1k2z ; ð29Þ

where MoM1 > 0 describes a band-inverted state. This
reveals a pair of gap closure points at kz ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mo=M1

p
which

are protected by the symmetry under c-axis rotations. For
Na3Bi, Mo ≈ −0.087 eV and M1 ≈ −10.64 eVÅ2 giving a
pair of DPs at momenta symmetrically shifted with respect to
the Γ point by kz ¼ �0:090 Å−1 which is approximately one-
quarter of the way to the zone boundary at A (Wang et al.,
2012). This DSM is a stable phase over a range of Hamiltonian
parameters that preserve the band inversion.
Similar physics occurs for the DSM in Cd3As2 (Wang et al.,

2013; Borisenko et al., 2014; Z. K. Liu et al., 2014a) although
there the situation is further complicated by the presence of
1=4 Cd site vacancies which can be ordered at room temper-
ature to form crystals with very large unit cells. There is a type I
structure, which is tetragonal with P42=nmc symmetry, and a
type II structure, which is a body-centered tetragonal crystal
with I41=acd symmetry. The latter is energetically favored and
is inversion symmetric. The vacancy ordering was imaged by
Butler et al. (2017). Despite their enlarged unit cells both
structures should feature the same level inversion at the Γ point
which reverses the conventional energy ordering of the Γ6 and
Γ7 states which reside mainly on the Cd 5s and As 4p
states. The low-energy physics is again represented by a mini-
mal four band model spanned by basis functions fjS1=2; 1=2i;
jP3=2; 3=2i; jP3=2; −3=2i; jS1=2; −1=2ig. This inverted band
structure supports two fourfold-degenerate gap closures along
the Γ − Z direction slightly displaced from the zone center
kz ¼ �kD ∼�0:03 Å−1 with degeneracy protected by a C4

rotational symmetry about the c axis.3

A related route to a DSM is the lifting of fourfold
degeneracy on a Dirac line node by spin-orbit coupling.
This can occur in a space group that hosts a k-space curve on

FIG. 11. Formation of a Dirac semimetal by the band in-
version mechanism in Na3Bi. Band structure calculations
(left) without and (right) with spin-orbit coupling both show a
band inversion transition at the zone center illustrated by tracking
the Nað3sÞ character of the eigenstates [bold (red) circles]. An
expanded view of the dispersion along the Γ − A direction (inset)
shows the symmetry-protected intersection of two twofold
degenerate branches with distinct Jz rotational eigenvalues at
a Dirac point along the symmetry axis. Adapted from Wang
et al., 2012.

3The precise crystal structure of Cd3As2 has been a matter of
debate. It was believed that it had the noncentrosymmetric I41cd
structure proposed by Steigmann and Goodyear (1968). However,
recent single-crystal x-ray diffraction studies (Ali et al., 2014) show
that the structure possesses an inversion center and is I41=acd. The
location of the Dirac nodes is difficult to predict reliably, since it
depends on the magnitude of a small band inversion which is sensitive
to the calculated lattice constant and the type and degree of vacancy
ordering on the cation sublattice (Aubin, Caron, and Jaygerin, 1977;
Caron, Jaygerin, and Aubin, 1977; Plenkiewicz, Wallace, and Plen-
kiewicz, 1984; Zhang et al., 2015). As an example of this sensitivity,
density functional calculations for the Cd3As2 structure with no cation
vacancies predict a normal energy level ordering and therefore no
Dirac semimetallic state (Wang et al., 2013).
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which the band structure is fourfold degenerate in the absence
of spin-orbit coupling. When a spin-orbit potential is intro-
duced these degeneracies are pairwise lifted at generic k
points but can persist where the nodal line intersects a
symmetry axis. Cu3PdN in an antiperovskite structure has
been proposed as a material that exemplifies this type of multi-
Dirac material, with three pairs of Dirac points appearing
along three Cartesian symmetry directions in the Brillouin
zone (Yu et al., 2015). A similar multi-Dirac point band
structure is predicted for the Ca3PbO family of materials in a
cubic inverse perovskite structure (Kariyado and Ogata,
2011). These Dirac points also rely on a band inversion
and can be removed by “shrinking” the parent nodal line to a
point so that the Dirac points pairwise annihilate.
The space of candidate DSMs produced by band inversion

is enlarged by considering ternary compounds (Kariyado and
Ogata, 2011; Du et al., 2015; Gibson et al., 2015; Sklyadneva
et al., 2016; Weng, Dai, and Fang, 2016). In principle this
allows one to develop criteria for choosing chemically
optimized DSMs. Key considerations are the orbital character
of states that permit a Dirac degeneracy along a symmetry
line, a stoichiometry where the Dirac states do not overlap the
Fermi surface from other nontopological bands, and the
chemical stability of the material. This has been illustrated
in a survey of materials in the ZrBeSi family which crystallize
in the same space group as Na3Bi and exist in a family of
materials sufficiently large to allow a separation of candidate
Dirac and non-Dirac phases (Du et al., 2015; Gibson et al.,
2015) based on cation electronegativity differences (Gibson
et al., 2015). Such materials considerations will be inves-
tigated in more detail in Sec. IV.
The minimal models describing the Dirac point physics in

these materials are similar in their structure to the four band
models frequently used to describe topological insulators in
2D quantum wells (Bernevig, Hughes, and Zhang, 2006) and
in layered 3D materials in the Bi2Se3 family (Zhang et al.,
2009). In those cases the minimal four band models also
describe band inversion in a manifold of spin-orbit and crystal
field-split basis states of opposite parity. Crucially, for the TIs
this manifold is spanned by orbitals with Jz ¼ �1=2 only so
that pairs of states with common rotational eigenvalues are
allowed to hybridize so when the band structure is inverted the
system remains fully gapped. By contrast for the DSM their
basis states carry different rotational eigenvalues and the
degeneracy is symmetry protected. Nonetheless in this latter
case lowering of the symmetry by in-plane strain or by
spatially modulated potentials can mix states within the
degenerate manifold and revert to a gapped phase (Ortix
et al., 2014; Yu et al., 2015). A related phenomenon can occur
for thin films with the rotational symmetry axis aligned with
the surface normal which allows intervalley scattering
between partner DPs at �kz as found in calculations for thin
films in the A3Bi family (Narayan et al., 2014).

B. Symmetry-enforced Dirac semimetals

Although DSMs produced by the band inversion mecha-
nism are generally stable to some range of Hamiltonian
parameters, the presence of such a state is not necessarily
assured as one may tune such a system through a band

inversion transition and remove these Dirac singularities
without changing the symmetry of the Hamiltonian. One is
therefore motivated to ask whether space groups exist that
require unremovable Dirac singularities in their band struc-
tures and further whether the band filling in possible material
realizations allows the chemical potential to reside at or near
these singular points. We refer to this class as symmetry-
enforced Dirac semimetals. Space groups that allow such
point degeneracies have been studied (Michel and Zak, 1999)
and identified for specific crystal structures both with and
without spin-orbit coupling in two (Young and Kane, 2015;
Damljanovic and Gajic, 2016) and in three dimensions
(Mañes, 2012; Young et al., 2012; Steinberg et al., 2014).
Material realizations that also satisfy the band filling con-
straint have been proposed (Young et al., 2012; Steinberg
et al., 2014; Gibson et al., 2015; Young and Kane, 2015).
The search for candidate Hamiltonians satisfying the first

requirement can be carried out systematically by identifying
three-dimensional space groups G that contain FDIRs in their
small groups Gk at specified momenta k. Interestingly this
possibility can be excluded for any of the symmorphic space
group in three dimensions. In these space groups FDIRs
appear only in their double groups and then only in the double
groups for crystals with cubic symmetry. However, for
symmorphic lattices with cubic symmetry a FDIR must reside
on a threefold symmetry axis. The basis for the FDIR can be
indexed by quantum numbers spanning the set Jz ¼
f�3=2;�1=2g which in the presence of threefold symmetry
requires a nonvanishing Berry’s flux through a closed k space
surface surrounding the point of degeneracy. Therefore, a
FDIR on a threefold axis cannot describe the stable merger of
two Weyl points with opposite handedness. Instead it
describes a merger of two Weyl points carrying the same
topological charge, a situation that has been dubbed a “multi-
Weyl” semimetal (Fang et al., 2012).
The space of candidate momenta that can support FDIRs is

enlarged by considering the nonsymmorphic space groups
containing lattice symmetries such as glide planes and screw
axes which combine point operations Ri and nonprimitive
translations τi: gi ¼ fRijτig. The action of any such operation
on a Bloch state ψk can be represented as the product of a
unitary operator UkðRiÞ acting in the state space and an
overall phase factor due to the displacement in the manner

fRijτigψk ¼ e−ik·τiUkðRiÞψkðrÞ. ð30Þ

Then the multiplication rule

fR1jτigfR2jτ2g ¼ fR1R2jR1τ2 þ τ1g ð31Þ

gives a product rule for the U’s

UkðR1R2Þ ¼ eiðR−1
1
k−kÞ·rUkðR1ÞUkðR2Þ. ð32Þ

If R1 and R2 are operations in the small groupGk then the shift
of the wave vector is a reciprocal lattice vector
Δk ¼ R−1

1 k − k ∈ fGg. If the shift Δk in Eq. (32) is non-
zero, it defines a nontrivial factor system for a projective
representation of Gk (Hamermesh, 1964). Note that when
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Δk ¼ 0 the phase factor is unity and this reduces to the
regular representation of the small group. This occurs auto-
matically at the zone center and also at generic low symmetry
points in the Brillouin zone. As noted, the regular represen-
tations of space groups admit FDIRs only in the special case of
the cubic groups with the FDIR occurring along a threefold
symmetry axis (Bradley and Cracknell, 1972), in which case
they carry a nonzero Berry’s flux and do not describe Dirac
points. However, on the faces of the Brillouin zone where
Δk ∈ fGg ≠ 0 the factor system is nontrivial and identifies a
projective representation of Gk that can allow symmetry-
enforced FDIRs. This possibility is thereby excluded for any
point in the interior of the Brillouin zone.
One concludes that a necessary condition for a symmetry-

enforced DSM is the presence of a nonsymmorphic space
group, which hosts a small group Gkn

at zone boundary points
kn that host FDIRs. This is not a sufficient condition, since
one needs to additionally verify that the degeneracy is broken
to linear order in momentum k − kn near the point of
degeneracy. To guarantee this, the symmetric Kronecker
product of the FDIR with itself must contain the vector
representation ofGkn

. Finally one needs to verify that the band
velocities are nonzero at the FDIR so that the valence and
conduction branches are not degenerate away from the FDIR.
A table of possible space groups and locations of their

Brillouin zone boundary points that host FDIRs has been
compiled by Zaheer (2014). One finds that 99 of the 230 space
groups have double groups that satisfy the first two symmetry
conditions. Approximately one-third of these candidate FDIRs
are “false positives” because they lie along a threefold
symmetry axis and describe multi-Weyl points instead of
Dirac points. Figure 12 shows the possible decompositions
of an FDIR into linearly dispersing branches in the vicinity of
the degeneracy: Fig. 12(a) 4 → 2þ 2, Fig. 12(b) 4 →
1þ 1þ 1þ 1, and Figs. 12(c) and 12(d) 4 → 2þ 1þ 1.
Figure 12(a) is the generic dispersion of a fourfold Dirac point
splitting into a pair of twofold degenerate branches as required
for T andP symmetric material. Figure 12(b) occurs when the
FDIR occurs in a system that lacks inversion symmetry.
Figures 12(c) and 12(d) are inversion broken spectra that are

distinguished by whether the band crossing occurs at a TRIM
kn [Fig. 12(d)] or not [Fig. 12(c)]. In the former situation, if the
FDIR occurs at a TRIM the spectrum must be an even function
of k − kn and the single twofold degenerate branch in the
spectrum has zero velocity at the TRIM.
Material realizations of symmetry-enforced DSMs need to

satisfy three design criteria: (1) The lattice structure must be
stable in one of the active nonsymmorphic space groups that
support FDIRs on a zone boundary. (2) Ideally the Dirac
points should be spectrally isolated to avoid overlapping
Fermi surfaces from other nontopological bands. (3) The
stoichiometry must give a band filling for which the Fermi
energy is located at (or near) its Dirac points. These consid-
erations often conflict with each other. For example, the band
filling constraint (3) requires an even number of electrons per
primitive cell but for a nonsymmorphic space group with
sublattice symmetry this may translate into an odd number of
electrons per formula unit. This presents an example of a
“filling enforced semimetal” (Parameswaran et al., 2013;
Parameswaran, 2015; Watanabe et al., 2015), where the zone
boundary degeneracy requires that electron count for a filled
band actually results in a gapless state where the conduction
and valence bands contact each other. This can conflict
with stability requirement (1) since such a structure can be
susceptible to a symmetry lowering reconstruction that pro-
duces a gapped spectrum with completely filled bands. Note
that since three-dimensional DSMs have point Fermi surfaces
they can be perturbatively stable with respect to this kind
of reconstruction. However, one concludes that material
realizations of symmetry-enforced DSMs can generally
involve interactions that can coax elements into nonoptimized
oxidation states.

C. Classification of four band models for Dirac semimetals

A unified treatment of band-inverted and symmetry-
enforced DSMs can be developed by studying the combined
action of time reversal symmetry T , uniaxial rotational
symmetry Cn, and inversion symmetry P on a minimal
four-state Hamiltonian that couples 2 spin and 2 orbital
degrees of freedom (Yang and Nagaosa, 2014; Z. Gao et al.,
2016). For this purpose one examines the Hamiltonian of
Eq. (27) which can be written explicitly as

HðkÞ ¼
X
ij

aijðkÞσi ⊗ τj ¼
� h↑↑ðkÞ h↑↓ðkÞ
h↓↑ðkÞ h↓↓ðkÞ

�
; ð33Þ

where hσ;σ0 are 2 × 2 matrix-valued operators expanded in the
basis fτg which act on the orbital degrees of freedom. In this
basis the time reversal operator Θ ¼ iσyK, where K is
complex conjugation. T symmetry and the use of Θ allows
one to express HðkÞ as

HðkÞ ¼
� h↑↑ðkÞ h↑↓ðkÞ
−h�↑↓ð−kÞ h�↑↑ð−kÞ

�
: ð34Þ

Dirac points occur at accidental band crossings between
pairs of twofold degenerate branches in the spectrum ofHðkÞ.
This is forbidden for a general wave vector k but it can occur

FIG. 12. Possible linear dispersions of energy (vertical) vs
momentum (horizontal) near a symmetry-enforced Dirac point
at the zone boundary of a lattice with a nonsymmorphic space
group. (a) The FDIR occurs at a TRIM and the fourfold
degeneracy is lifted to form two twofold degenerate branches
(bold). (b) Inversion symmetry is absent and four linearly
dispersing branches merge at a FDIR. (c), (d) The degeneracy
of the FDIR is lifted to form a twofold degenerate and two
nondegenerate branches. (c) The FDIR does not occur at a TRIM
while in (d) the twofold degenerate branch has zero slope
indicating quadratic dispersion of the FDIR occurs at a TRIM.
Adapted from Young et al., 2012.
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along high-symmetry lines or points. The presence of a n-fold
uniaxial rotational symmetry Cn along a symmetry line
allows one to label the energy eigenstates by their rotational
eigenvalues Jz ¼fuA↑;uB↑;uA↓;uB↓g. Furthermore, inversion
symmetry relates

Hð−kÞ ¼ PHðkÞP−1: ð35Þ

Here one can distinguish between two situations based on the
allowed matrix representation of the parity operator P (Yang
and Nagaosa, 2014). When P has a diagonal form (�τ0;�τz),
band crossings, if present, occur in pairs along the symmetry
line. When P is off diagonal (�τx) inversion interchanges the
orbital degrees of freedom and then a band touching point is
possible only at a (single) high-symmetry point on a zone face
along the symmetry line. Band inversion DSMs (class I) are
members of the first class and symmetry-enforced (class II)
DSMs are members of the second class. In the former case
one finds that rotational eigenvalues are paired in twofold-
degenerate branches with the combinations fuA↑; uA↓g;
fuB↑; uB↓g while in the latter case they are exchanged and
paired fuA↑; uB↓g; fuB↑; uA↓g. These four eigenvalues are
not independent. In both cases because of T symmetry they
occur in complex conjugate pairs (i.e., uA;↓ ¼ u�A;↑) and for
the class II DSMs one has an additional constraint
uB↑ ¼ −uA↑. An accidental band crossing can occur only if
these groups contain no common eigenvalues, e.g.,

Class I∶ fuA↑; uA↓g ∩ fuB↑; uB↓g ¼ 0;

Class II∶ fuA↑; uB↓g ∩ fuB↑; uA↓g ¼ 0. ð36Þ

This representation allows one to understand how the
various properties of DSMs are controlled by the type of

rotational symmetry. Tables I and II catalog results obtained
for both classes of DSMs, listed by their rotational symmetry
about the z axis and their matrix representations of P. For each
entry the tables list the rotational eigenvalues (two indepen-
dent eigenvalues for class I and one for class II) and
expressions from which the low-energy Hamiltonian near
the Dirac point can be reconstructed. An important character-
istic of class I DSMs is that they support quantized topological
invariants despite being gapless phases. Their kz ¼ 0 plane is
a time reversal invariant plane on which a 2D Z2 invariant can
be defined. When n is even (and greater than 2) it is also a
mirror plane and a mirror Chern number can also be defined.
Table I for class I DSMs lists the relevant topological
invariants, e.g., the Z2 invariant ν2D on the kz ¼ 0 plane
for n ¼ 3 and the mirror Chern number nM for n ¼ 4, 6.
For class I DSMs, the Hamiltonian is an even function of kz

along the symmetry axis and the DPs therefore appear in pairs
symmetrically displaced about its center. This allows one to
continuously tune the locations of the band crossings as a
function of Hamiltonian control parameters. For example, in
the band inversion mechanism in Sec. III.A the inversion
parameter m provides one such degree of freedom that can be
used to shift or even to pairwise eliminate these points of
intersection.
Class I accidental band crossings cannot occur at all as

protected degeneracies on a twofold symmetry axis since the
condition in Eq. (36) cannot be satisfied. For higher rotational
symmetries class I DSMs can exist and in fact they can occur
for band inversions between states of the same (P ¼ �τ0) and
of opposite (P ¼ �τz) parities. These two situations are not
distinguished by the rotational eigenvalue criterion in
Sec. III.A but they can be physically distinguished by 2D
topological invariants on their kz ¼ 0 symmetry planes which
in turn determine the number of topologically protected

TABLE I. Classification table for 3D topological Dirac semimetals obtained by an accidental band crossing in systems having Cn
rotational symmetry with respect to the z axis. . Here Cn ¼ diag½uA;↑; uB;↑; uA;↓ ¼ u�A;↑; uB;↓ ¼ u�B;↑� and β, γ, η, and ξ are complex
numbers. For compact presentation, uA;↑ and uB;↑ are arranged in a way that 0 < argðuB;↑Þ < argðuA;↑Þ ≤ π. ν2D (nM) indicates the 2D
Z2 invariant (mirror Chern number) defined on the kz ¼ 0 plane (nM ¼ ν2D mod 2). The 2 × 2 Hamiltonian
h↑↑ðkÞ ¼ fðkÞτþ þ f�ðkÞτ− þ a5ðkÞτz. In the case of h↑↓ðkÞ, h↑↓ðkÞ ¼ gðkÞτx when P ¼ �τz while h↑↓ðkÞ ¼ gðkÞτy when
P ¼ �τ0. The leading order terms of fðkÞ and gðkÞ are shown. HDiracðqÞ describes the effective Hamiltonian near the bulk Dirac
point, which is either HDiracðqÞ ¼ υxqxΓ1 þ υyqyΓ2 þ υzqzΓ3 (linear Dirac) or HDiracðqÞ ¼ υxðq2x − q2yÞΓ1 þ 2υyqxqyΓ2 þ υzqzΓ3 (quad-
ratic Dirac), where Γ1;2;3 are mutually anticommuting 4 × 4 gamma matrices and υx;y;z are real constants. Here the momentum q is
measured with respect to the bulk Dirac point. Adapted from Yang and Nagaosa, 2014.

Cn jPj ðuA;↑; uB;↑Þ fðk�; kzÞ gðk�; kzÞ 2D topological invariant HDiracðqÞ
C2 τz � � � � � � � � � � � � Not allowed
C2 τ0 � � � � � � � � � � � � Not allowed

C3 τz ðeiπ ; eiðπ=3ÞÞ βkþ γk− ν2D ¼ 1 Linear Dirac
C3 τ0 ðeiπ ; eiðπ=3ÞÞ βkzkþ þ γk2− ηkzk− þ ξk2þ ν2D ¼ 0 Linear Dirac

C4 τz ðeið3π=4Þ; eiðπ=4ÞÞ ηkþ βkzk2þ þ γkzk2− nM ¼ �1 Linear Dirac
C4 τ0 ðeið3π=4Þ; eiðπ=4ÞÞ ηkzkþ βk2þ þ γk2− nM ¼ 2sgnðjβj − jγjÞ Linear Dirac

C6 τz ðeiðπ=2Þ; eiðπ=6ÞÞ βkþ γkzk2þ nM ¼ �1 Linear Dirac
C6 τ0 ðeiðπ=2Þ; eiðπ=6ÞÞ βkzkþ γk2þ nM ¼ �2 Linear Dirac

C6 τz ðeið5π=6Þ; eiðπ=2ÞÞ βkþ γkzk2− nM ¼ �1 Linear Dirac
C6 τ0 ðeið5π=6Þ; eiðπ=2ÞÞ βkzkþ γk2− nM ¼ �2 Linear Dirac

C6 τz ðeið5π=6Þ; eiðπ=6ÞÞ ηkzk2þ βk3þ þ γk3− nM ¼ 3sgnðjβj − jγjÞ Quadratic Dirac
C6 τ0 ðeið5π=6Þ; eiðπ=6ÞÞ ηk2þ βkzk3þ þ γkzk3− nM ¼ �2 Quadratic Dirac
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surface modes that appear on surfaces parallel to the z axis.
The case of an inversion between states of opposite parity is
operative in the case of Na3Bi. Class I DSMs on a sixfold
symmetry axis can also support a more exotic bulk Dirac point
( labeled “quadratic Dirac” in Table I) with linear dispersion
along the z axis but quadratic dispersion in the two transverse
directions. These can be regarded as the stable merger of
double Weyl points that each carry Chern number �2.
For class II DSMs the Hamiltonian along the symmetry line

is instead an odd function of kz (Table II) and a single DP
occurs at a TRIM. Since the possibility of a symmetry-
enforced class II Dirac point can be excluded at the Γ point4

class II DPs must be pinned to a zone boundary face, edge, or
corner and cannot be eliminated without changing the lattice
symmetry. Note that a fourfold degeneracy at Γ that can occur
at a band inversion transition is not symmetry protected in this
manner since it does not describe a stable phase, but requires
fine-tuning parameters to a quantum critical point.
Class II DPs are allowed for a TRIM on a twofold

symmetry axis and in fact the singularity predicted at the T
point in the body-centered orthorhombic BiZnSiO4 [space
group 74 (Imma)] is an just such an example (Steinberg et al.,
2014). By contrast DPs for TRIMs on a threefold symmetry
axis are forbidden since they cannot have a nonzero Chern
number. Interestingly, a class II DSM with an FDIR on a
sixfold axis can occur with a linear Dirac node or a cubic Dirac
node. The latter describes a stable merger of two multi-Weyl
nodes that carry Chern numbers �3 (“triple-Weyl” points)
(Ahn, Mele, and Min, 2017). In this situation the low-energy
dispersion near the DP is linear in qz along the symmetry axis
and cubic in the two transverse directions with a sixfold
symmetry around the rotation axis.
The classification scheme presented in Table II applies to

inversion symmetric lattices where the matrix representation
of the parity operator (P ¼ �τx) can be associated with a
sublattice exchange produced by a nonprimitive translation in
a nonsymmorphic space group. A related classification

scheme can be developed in the case of an antiunitary
representation of the inversion operator (P ¼ �iτy) (Z. Gao
et al., 2016) and gives the same constraints on the rotational
symmetries that can host a DSM. Note also that nonsymmor-
phic space groups can support FDIRs on TRIMs where the
sublattice exchange is generated by a screw or glide plane
symmetry in the space group (Yang, Morimoto, and Furusaki,
2015). Creation and annihilation rules for Dirac points
stabilized by rotational symmetries in both class I and class
II DSMs have been identified (Koshino, Morimoto, and Sato,
2014). The tenfold symmetry classification of Hamiltonians
based on their global time reversal, particle-hole, and chiral
symmetries can be extended to treat gapless systems protected
by reflection symmetry (Chiu and Schnyder, 2014).

D. Phenomena of Dirac semimetals

There are both similarities and differences in the phenom-
ena exhibited in DSMs versus WSMs. Certain of these effects
which depend on aspects such as the 3D linear dispersion can
be imported directly to the Dirac case. Other effects such as
those of surface states and transport features such as the chiral
anomaly need to be considered more carefully.

1. Fermi arcs in Dirac semimetals

As discussed, the Fermi arc on the surface of a Weyl
semimetal is a striking manifestation of the topological
singularities in its bulk band structure. These boundary states
connect the surface k-space projections of two bulk Weyl
nodes of opposite handedness and are unremovable from
any surface where these bulk nodes do not project onto the
same surface momentum. The possibility of Fermi arcs at
the surface of a Dirac semimetal is more subtle because the
analogous bulk node is fourfold degenerate and carries Chern
number zero so it is not similarly topologically protected.
It can be regarded as the stable merger of two compensated
Weyl points that project to the same surface momentum.
Nonetheless, as detailed in Table I, the bulk Hamiltonian for a
class I DSM on the kz ¼ 0 plane can support a gapped 2D
state with a nontrivial topology which requires boundary edge

TABLE II. Classification table for 3D topological Dirac semimetals in systems having Cn rotational symmetry with respect to the z axis when
P ¼ �τx. In this DSM phase, the location of the 3D Dirac point is fixed at either the center or the edge of the rotation axis, i.e., at a TRIM on the
rotation axis. Here Cn ¼ diag½uA;↑; uB;↑; uA;↓; uB;↓� ¼ diag½uA;↑;−uA;↑; u�A;↑;−u�A;↑� and α, β are complex numbers. For compact presentation,

argðuA;↑Þ is fixed to be −π=2 ≤ argðuA;↑Þ ≤ π=2. But the same result holds even if argðuA;↑Þ is shifted by π. The real functions Fð1;2;3Þ are given
by Fð1Þ

i¼1;2 ¼ cð1Þi kx þ dð1Þi ky, F
ð2Þ
i¼1;2 ¼ cð2Þi ðk2x þ k2yÞ þ dð2Þi kxky, and Fð3Þ

i¼1;2;3;4 ¼ cð3Þi ðk3þ þ k3−Þ þ idð3Þi ðk3þ − k3−Þ, where cð1;2;3Þi and dð1;2;3Þi are
real constants. The 2 × 2 Hamiltonian h↑↑ðkÞ ¼ fðkÞτþ þ f�ðkÞτ− þ a1ðkÞτz, where a1ðkÞ ¼ υkz with a real constant υ, and
h↑↓ðkÞ ¼ gzðkÞτz. The leading order terms of fðkÞ and gzðkÞ are shown. HDiracðqÞ describes the effective Hamiltonian near the bulk Dirac
point, which is either HDiracðqÞ ¼ υxqxΓ1 þ υyqyΓ2 þ υzqzΓ3 (linear Dirac) or HDiracðqÞ ¼ υxðq3þ þ q3−ÞΓ1 þ iυyðq3þ − q3−ÞΓ2 þ υzqzΓ3 (cubic
Dirac), where the momentum q is measured with respect to the bulk Dirac point with q� ¼ qx � iqy. Here Γ1;2;3 are mutually anticommuting
4 × 4 gamma matrices and υx;y;z are real constants. Adapted from Yang and Nagaosa, 2014.

Cn jPj uA;↑ fðk�; kzÞ gzðk�; kzÞ HDiracðqÞ
C2 τx eiðπ=2Þ kzF

ð1Þ
1 ðkx;yÞ − iFð1Þ

2 ðkx;yÞ αkx þ βky Linear Dirac

C3 τx � � � � � � � � � Not allowed
C4 τx e�iðπ=4Þ Fð2Þ

1 ðkx;yÞ − ikzF
ð2Þ
2 ðkx;yÞ αk�

C6 τx e�iðπ=6Þ kzF
ð3Þ
1 ðkx;yÞ þ iFð3Þ

2 ðkx;yÞ αk� Linear Dirac

C6 τx eið3π=6Þ kzF
ð3Þ
1 ðkx;yÞ þ iFð3Þ

2 ðkx;yÞ Fð3Þ
3 ðkx;yÞ þ iFð3Þ

4 ðkx;yÞ Cubic Dirac

4FDIRs occur only as projective representations of space groups
which using Eq. (32) cannot occur at k ¼ 0.
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modes to occur on this symmetry plane (Yang and Nagaosa,
2014). A key issue is therefore whether these edge modes
actually reside on open or closed constant energy contours.
The former lines can be combined to form double Fermi arcs,
i.e., they are members of a doubled Weyl system where pairs
of protected surface modes connect the Weyl points embedded
in partner Dirac nodes (Wang et al., 2012, 2013) as illustrated
in Fig. 13(a). By contrast in the latter case these branches
are not tied to singularities in the bulk band structure and
therefore can be deformed and even collapsed to a point on the
symmetry plane by a continuous change of the Hamiltonian
[Figs. 13(b) and 13(c)]. ARPES measurements detect double
Fermi arcs on side surfaces of the prototypical class I DSMs
Na3Bi (Xu et al., 2015b) and Cd3As2 (Yi et al., 2014) and
have been interpreted as evidence for the former scenario.
Theory further suggests that measurement of ARPES inten-
sities from these modes in a nonequilibrium state with applied
fields E ·B ≠ 0 could be used in principle to visualize an
induced chiral current in both the WSM and DSM states5

(Behrends et al., 2016).
Recent work has focused attention on the fragility of the

Fermi arcs on the boundaries of DSMs (Potter, Kimchi, and
Vishwanath, 2014; Fang et al., 2016; Kargarian, Randeria,
and Lu, 2016). The possibility of having double Fermi arcs on
a DSM that are pinned to its Dirac nodes is problematic
because these nodes are protected only by a bulk spatial
(rotational) symmetry.6 One may argue that close to the

contact point these surface modes penetrate deeply into the
bulk so their properties are controlled by the bulk symmetries.
This suggests that the contact points, although not topologi-
cally protected, may be perturbatively stable with respect to
symmetry lowering at the boundary (Potter, Kimchi, and
Vishwanath, 2014). However, this intuitive picture is not
supported by symmetry analysis within a four band model
that allows for additional bulk perturbations that anticom-
mute with the DSM Hamiltonian and allow one to contin-
uously deform the Hamiltonians for kz Fermi arc and non-
Fermi arc sectors into each other (Kargarian, Randeria, and
Lu, 2016). Thus the pinning of the topological band to the
Dirac point is not symmetry protected and the Fermi contour
may dissociate from the underlying projected Dirac points
[Figs. 13(b)–13(d)]. In this interpretation the double Fermi
arcs observed in Na3Bi (Xu et al., 2015b) and Cd3As2
(Yi et al., 2014) are to be regarded as slightly displaced from
the underlying Dirac singularities possibly manifesting the
smallness of the allowed residual mass term. Although the
surface Fermi line is unpinned from the projected Dirac
points, it cannot be removed completely since the plane
kz ¼ 0 has a higher symmetry which requires an edge mode
on the symmetry plane. In principle the surface Fermi line
can be shrunk down to a point on this symmetry plane while
maintaining all spatial symmetries and producing a new
Dirac cone in the surface spectrum. In material realizations
where the chemical potential is not aligned with the bulk
Dirac points, the occupied bulk states project to a finite area
disk on the surface into which the surface mode can
disappear [Figs. 13(e) and 13(f)] preempting a possible
intersection with the Dirac point.
The topological stability (fragility) of Fermi arcs on Weyl

(Dirac) semimetals can also be demonstrated by modeling
their dispersions as helicoidal surfaces in the complex

FIG. 13. Fermi arcs on the surface of DSMs. (a) A schematic of a DSM showing Dirac nodes along the kz axis in the bulk BZ and
double Fermi arcs on the surface BZs. Note that surfaces perpendicular to the z axis have no arcs. A 2D slice of the bulk BZ
perpendicular to the kz axis is shown as a shaded (green) plane, which projects to the dashed (green) line on the surface BZ. (b)–(d) A
symmetry-allowed mass term at the surface admits backscattering between these branches at the contact point which dissociates the
surface band from the projected Dirac point. These surface branches can be deformed but not removed from the time reversal symmetric
plane at kz ¼ 0. If the chemical potential is not aligned with the bulk Dirac points the surface Fermi arcs disappear by merging with the
bulk continuum (e), (f). Adapted from Kargarian, Randeria, and Lu, 2016.

5Note that this proposal would require an ARPES setup for a
sample immersed in a magnetic field, which would destroy angular
resolution.

6This issue is entirely avoided in certain glide symmetry-protected
Dirac nodes which are compatible with surfaces hosting Fermi arcs as
discussed at the end of the section.
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~q ¼ qx þ iqy plane (Fang et al., 2016). This mapping takes its
simplest form near a Weyl point with topological charge �1
where the energy dispersion on the surface can be mapped to
the phase of a holomorphic function of ~q:

Eð ~qÞ ∼ Im½logð ~q�1Þ�: ð37Þ

A pair of compensated Weyl points is a “Weyl dipole”where a
single Fermi arc is launched and terminated on the two branch
points of the function log½ð ~q − ~KþÞ=ð ~q − ~K−Þ�. A Dirac point
regarded as a stable merger of two Weyl points produces
double Fermi arcs corresponding to the analogous mapping of
the holomorphic function

Eð ~qÞ ∼ Im
n
log
h
~qþ ~q−1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q − ~q−1Þ2

q io
. ð38Þ

Equation (38) describes the phase evolution on a double
helicoid (an overlapping helicoid or antihelicoid pair) and
illustrates an essential fragility of the state. In the double
helicoid the two branches of Eq. (38) intersect on a line where
they can be gapped out by symmetry-allowed momentum-
conserving terms in the Hamiltonian. For energies outside the
gap the system retains double Fermi arcs while inside the gap
they disappear. The hybridization of these branches on their
line of intersection can be prevented in special two-dimen-
sional space groups that support a glide reflection symmetry
on the surface. This occurs in four of the 17 wallpaper groups
which define the lattice systems that host unremovable Fermi
arcs for the DSM (Fang et al., 2016).

2. The chiral anomaly in Dirac semimetals

We have seen in Sec. II.C.2 that the defining properties of the
chiral anomaly in WSMs in transport require that the scattering
rate between nodes of opposite chirality 1=τa is small compared
to the current relaxation rate, which determines the conduc-
tivity. In WSMs this is achieved by separating Weyl nodes in
momentum space so that they cannot be connected by small
momentum transfer scattering. However, in Dirac semimetals,
opposite chiralities coexist at the same crystal momentum and
are protected instead by symmetries involving rotations and
reflections. Thus the nodes of opposite chirality are now
protected not by translation symmetry, but by the same point
group elements that forbid Dirac mass terms. It has been stated
that in a magnetic field the individual Weyl nodes composing a
Dirac point will be pulled apart in the Brillouin zone separating
the nodes in momentum space. Although in principle one can
make a distinction now between intervalley and intravalley
scattering, for typical physical parameters this momentum
separation is expected to be very small due to the tremendous
disparity in energy scales between Zeeman splitting and a
typical band dispersion. Instead if the relaxation is to be small
between states of opposite chirality at the same k0 in a DSM
(Burkov, 2015b), this is presumably because scattering is
suppressed by the same symmetries that protect the Dirac
node itself. Impurities can scatter between these states and even
spherically symmetric impurities induce some degree of mixing
(Parameswaran et al., 2014), but ab initio and other studies of
the role of impurities should be further explored. If the g factors

are large and bands weakly dispersing, or the effects of a
magnetic field are amplified by the presence of magnetic ions, a
splitting of the bands to make a Weyl state may lead to
observable effects as discussed in the somewhat different
context of quadratic band touching (QBT) systems
(Hirschberger et al., 2016; Cano et al., 2017).
Transport in Dirac semimetals with an approximately

conserved spin are expected to have additional consequences
as discussed by Burkov and Kim (2016) due to the DSM Z2

topological invariant that gives a Z2 topological charge. The
expectation is that such systems could have a spin current
proportional to B, a spin Hall effect, and inverse spin Hall
effect. These effects may also influence the conventional
chiral anomaly to give a stronger angular dependence than
E ·B and which have been proposed to be the source of the
observed deviations from the expected angular dependence.

IV. MATERIALS CONSIDERATIONS

Given the theoretical considerations one may look for actual
real materials that exhibit WSM and DSM phases. In this
regard, ab initio calculations have proven extremely powerful
in identifying real materials that exhibit not just these, butmany
topological phases (Bansil, Lin, and Das, 2016). Still various
more empiricalmaterials science considerations can be brought
to bear in the search for these states of matter. At the most basic
level, the design considerations are similar to those for
topological insulators. One is looking for materials with the
appropriate crystal structures, with the heavy elements and the
required energetics of the valence and conduction orbitals that
give overlapping bands (in the case ofWSMandDSM) or band
gaps with inversion (in the case of topological insulators).
Generally the band gap’s magnitude and sign depends on

both the atomic number (Z) (which changes the ordering of
bands via spin-orbit coupling) and the electronegativity differ-
ence (ΔEn) of constituents. A small electronegativity differ-
ence tends to decrease band gaps because for smallΔEn orbital
overlap increases. Materials with strongly electronegative
atomic bonds are associated with wide band gaps. Therefore
Z=ΔEn is perhaps a good figure of merit for band overlap
between valence and conduction bands as large Z and small
ΔEn increase the tendency for bands to be inverted.One can see
the role of electronegativity difference for instance in a
comparison between Na3Sb and Na3Bi. Both have closed shell
configurations with six valence electrons, but the electroneg-
ativity of Bi is smaller than Sb, which in part makes Na3Bi a
DSM rather than a semiconductor like Na3Sb (Ettema and de
Groot, 2000). It is also beneficial (but not required) to have
direct gaps at an odd number of points in the Brillouin zone,
such as at the L points in Bi1−xSbx (Fu and Kane, 2007), or at
the Γ point (particularly in inversion symmetric systems).
The general ideas are illustrated in the XYZ half-Heusler

class of compounds. These are materials that may be described
as a tetrahedral zinc blende-like YZ−n structure, the charge of
which is compensated by a slightly ionic Xþn species, giving
three interpenetrating fcc lattices (Jung, Koo, and Whangbo,
2000). For instance, the eight valence electron compounds
such as LiMgN can be written as Liþ þ ðMgNÞ−. The ðMgNÞ−
forms a zinc blende lattice and is isoelectronic to Si2. Because
of their ternary nature, these materials are an extremely tunable
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class of materials that show a vast array of interesting semi-
conducting and semimetal [and even superconducting (Goll
et al., 2008)] behavior with broad applications potential (Casper
et al., 2012; Chen and Ren, 2013). Typically the least
electronegative element (usually a main group element, a
transition metal, or a rare earth) is listed first as X. The half-
Heusler phases generally crystallize in a noncentrosymmetric
structure corresponding to the space group F4̄3m. Their band
gaps can be tuned over a wide energy range by choosing
different XYZ combinations and have been proposed to host a
variety of topological states (Al-Sawai et al., 2010; Chadov
et al., 2010; Lin et al., 2010; Xiao et al., 2010).
In the LiYZ compounds, the calculated gap size is larger for

compounds with a large Pauli electronegativity difference of
the Y and Z species (Kandpal, Felser, and Seshadri, 2006).
Similar trends are seen in other series. Figure 14 shows the
calculated energy difference EΓ6 − EΓ8 (Es − Ep3=2) between
the s- and p-symmetry bands as a function of the average
nuclear charge Z for many different half-Heuslers. For Z ≈ 65

the bands are predicted to be inverted from the conventional
(e.g., CdTe and GaAs) ordering. Note that even with band
inversion a TI state is formed in these materials only by
breaking the cubic symmetry of these compound by, e.g.,
putting them in a quantum-well structure, under strain, or in a
film geometry. Otherwise at charge neutrality the chemical
potential sits inside the p3=2 manifold forming a zero gap
system with a quadratic band touching. Systems that could be
tuned to precisely the band inversion point (possibly by
substitution and mixing variants on either side of the inver-
sion) are described by the Kane model, which can be related to
the Dirac equation (Kane, 1957; Orlita et al., 2014).7 Note that
in these half-Heusler systems rare earth metals can be readily
introduced as the f states of the rare earth are strongly

localized and do not change the gross scheme of the electronic
structure. Half-Heuslers with rare earth metals readily show
magnetic effects (Canfield et al., 1991). For instance, GdPtBi
shows a Néel transition around 9 K (Suzuki et al., 2016). With
the quadratic band touching of the inverted system, it is
believed that GdPtBi can be turned into a Weyl state under
applied magnetic field (Hirschberger et al., 2016; Suzuki
et al., 2016; Cano et al., 2017) [possibly enhanced by the
effects of the Gd moments (Shekhar et al., 2016)].

A. Weyl semimetals

1. Noncentrosymmetric Weyl semimetals

Based on the previous general ideas, one can set out some
general design considerations when considering materials that
may exhibit a WSM phase. As discussed, the appearance of a
WSM phase is possible only if the product of parity and time
reversal is not a symmetry. Onewants a material that is close to
a band inversion transition and which breaks either T or P
symmetry. However, unlike the case of some Dirac systems the
existence of Weyl nodes is accidental which can make a
systematic search for them challenging. Moreover, because
the band touchings can occur at a generic momentum positions
they can be over looked in band structure calculations.
As discussed, a particularly straightforward mechanism for

creation of a WSM phase occurs generically in the band
inversion transition between a trivial and a topological insulator
if the material’s space group breaks inversion symmetry
(Murakami, 2007; Murakami et al., 2017). On the approach
to the band gap inversion transition, thematerial becomes either
a (i) Weyl semimetal or a (ii) nodal line semimetal for an
extended region of parameter space, but there is no direct
transition between the two insulating states. The symmetry of
the space group and the wave vector where the gap closes
uniquely determine which possibility occurs (Murakami et al.,
2017). In case (i), the number of Weyl node pairs produced at
the band inversion ranges from 1 to 6 depending on symmetry.
In (ii) (as discussed later) the nodal line is protected by a mirror
symmetry. Liu and Vanderbilt (2014) proposed to realize a
WSM in this fashion in LaBi1−xSbxTe3 and LuBi1−xSbxTe3 by
doping close to the band inversion transition for a range of
dopings near x ∼ 38%–45%.
This inversion symmetry breaking mechanism may be seen

in the pressure tuned transition in Pb1−xSnxTe. The inversion
symmetry broken Pb-based rock salts have been identified as
topological crystalline insulators with surface states protected
by mirror symmetry (Ando and Fu, 2015). Pb1−xSnxTe has an
insulator-to-metal transition at approximately 12 kbar that is
believed to be a band closing transition occurring at the L
points of the Brillouin zone. The metallic phase is stable until
about 25 kbar and is reasonably interpreted as an intermediate
Weyl phase occurring between topological and trivial regimes
(T. Liang et al., 2017).
A large number of materials that are WSMs through the

inversion symmetry breaking mechanism have recently been
predicted and discovered. S.-M. Huang et al. (2015) and
Weng, Fang et al. (2015) predicted that TaAs, TaP, NbAs, and
NbP are materials in the type I class of WSM. Although such
systems are predicted to have 24 Weyl points, this family of

FIG. 14. (Left) Calculated band gaps as a function of the
average nuclear charge hZi for various half-Heusler phases.
(Right) Schematic band ordering of normal and inverted bands
in cubic semiconductors. From Müchler et al., 2012.

7The Kane model was originally used to describe tetrahedrally
bonded cubic semiconductors and describes at the transition point
linearly dispersing Dirac-like bands that are bisected by a quadratic
band.
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materials is completely stoichiometric without any additional
doping, external strain, or pressure needed to fine-tune the
state. Signatures of the Weyl state were seen by ARPES in
TaAs and related materials soon afterward (Lv et al., 2015b,
2015c; Xu et al., 2015a, 2015b, 2015c; L. Yang et al., 2015;
N. Xu et al., 2016). These experiments will be discussed
in more detail next. Symmetry provides a helpful route in
organizing and understanding the origin of nodes in WSMs.
There are 24 Weyl nodes in the band structure of the TaAs
class of compounds (Yan and Felser, 2017). The TaAs
structure (Fig. 15) has two mirror planes Mx and My, T ,
and a (nonsymmorphic) C4 rotation symmetry. Considering,
for instance, a Weyl point at (kx, ky, kz) with chirality C ¼ 1.
Each mirror operation taken by itself reverses the chirality and
gives Weyl points with C ¼ −1 at (−kx; ky; kz) and
(kx;−ky; kz). Performing two simultaneous mirror operations
gives a Weyl point at (−kx;−ky; kz) with C ¼ 1. T preserves
chirality and gives the four time reversed partners of these four
Weyl points at (�kx;�ky;�kz). Finally these eight Weyl
points at (�kx;�ky;�kz) produce another eight partners at
(�kx;�ky;�kz) when considering the C4 rotation, which also
maintains chirality. Band structure calculations show that
there are two groups of points, one (labeled W1) that is in
either the kz ¼ 0 plane or on the BZ face (depending on the
size of the nodal loop) and the other at a nonsymmetric
intermediate kz (labeled W2).8

The Weyl points form through the interplay of mirror
symmetries and SOC. As shown Fig. 16, in the absence of
SOC, the conduction and valence bands would intersect on
four closed nodal lines in the kx ¼ 0 and ky ¼ 0mirror planes.
The addition of SOC gaps the bands on the mirror planes, but
creates degeneracies at points slightly displaced from the
planes.
With these considerations one gets eight W1 Weyl points

and 16W2 points. Although all materials in this class have the
same general band structure, their different energetics, lattice
constants, and SOC can lead to differences in their topological
structures. For instance, compared to TaAs (Arnold, Naumann
et al., 2016), in TaP (Arnold et al., 2016; N. Xu et al., 2016)
the bulk pairs of theW2Weyl nodes, which are well separated
in momentum space, are located near the chemical potential
while the poorly separated ones W1 are 60 meV below the
chemical potential and so are enclosed by a single Fermi
surface. This gives for the W1 points a Fermi Chern number
(the net topological charge enclosed by a Fermi surface) for
TaP of zero in a manner shown in Fig. 17 (Xu et al., 2015c; N.
Xu et al., 2016). There may also be differences in the kz
position of W1 between the Nb and Ta compounds. In some
calculations (S.-M. Huang et al., 2015; Lee et al., 2015;
Belopolski et al., 2016c), the nodal loops of the Ta compounds
are predicted to be smaller making them not extend from one
BZ to the next. This means that for the Ta compounds theW1
point should be on the z axis BZ face (see Fig. 16), whereas
for the Nb materials theW1 point is on the kz ¼ 0 plane (as in
Fig. 15). Such an effect will result in a “chirality switching” of
the W1 points in the BZ when comparing Ta and As
compounds (cf. Figs. 15 and 16). However, different calcu-
lations show different results in this regard (S.-M. Huang
et al., 2015; Weng, Fang et al., 2015; Yan and Felser, 2017)
and there is no resolution on this point. There may be an
extreme sensitivity to the lattice constants used. Moreover,
note that although ARPES has in general been powerful in

FIG. 15. (a) Crystal structure (space group I41md, No. 109) of
the noncentrosymmetric lattice in the TaAs family of compounds.
It is a body-centered tetragonal structure consisting of interpen-
etrating Ta and As sublattices, where the two are shifted by
ða=2; a=2;∼c=12Þ. For TaAs the lattice constants are a ¼
3.437 Å and c ¼ 11.656 Å. (b) The first Brillouin zone showing
12 pairs of Weyl points. The red and blue spheres (identified by
arrows in black and white) represent theWeyl points withC ¼ �1
chirality.Note that this pattern of node chiralitiesmay represent the
situation more appropriately for the Nb compounds (S.-M. Huang
et al., 2015; Lee et al., 2015; Belopolski et al., 2016c). See the
discussion in the text. From Yan and Felser, 2017.

FIG. 16. Nodal structure of TaAs. Without SOC, the conduction
and valence bands would intersect on the indicated four closed
nodal lines on the kx ¼ 0 (red) and ky ¼ 0 (blue) mirror planes.
SOC has the effect of gapping the bands on the mirror planes, but
giving nodes slightly displaced from the planes. Black and white
denote chiralities of the nodes. From Hasan, Xu, and Bian, 2015.

8Note that the literature is inconsistent with regards to which sets
of Weyl points in the TaAs class are labeled W1 and which are
labeled W2. We have chosen and used figures that have used the
convention that the poorly separated points with kz ¼ 0; 2π=c are
labeled W1. In this regard, we changed the labeling of Fig. 17 from
how it originally appeared in the literature to be consistent with this
scheme.
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finding topological band structures, it may not generally have
the energy and momentum resolution to see make well-
defined statements about chirality of Fermi surfaces. As
discussed, quantum oscillation experiments can be useful in
this regard (Arnold, Naumann et al., 2016).
Despite these successes, the search for a more ideal family

of WSM materials continues. As noted, the 24 Weyl nodes in
the TaAs family of compounds comes in two nonsymmetry
equivalent sets (Weng, Dai, and Fang, 2016), which with their
large number and possible energy offsets give rise to poten-
tially complicated transport and spectroscopic properties.
Moreover, in the TaAs material class, all Weyl physics occur
in a narrow range of energies. This requires careful material
preparation to ensure the Fermi level falls in this range. In this
regard, Weyl semimetals with larger characteristic energy
scales are desirable. There has been an ongoing search for
simpler Weyl semimetals with the minimum four Weyl nodes
at the Fermi level for inversion-breaking systems that have
preferably large momentum and energy separations from other
bands. It has been proposed that HgTe and half-Heusler
compounds under compressive strain will realize a near ideal
Weyl semimetal with four pairs of Weyl nodes (Ruan, Jian,
Yao et al., 2016) near the Fermi energy.
More recently, type II WSMs which have strongly tilted

Weyl cones have been proposed to exist in the layered
transition-metal dichalcogenides WTe2 (Soluyanov et al.,
2015), MoTe2 (Sun et al., 2015; Z. Wang, Gresch et al.,
2016), and their alloysMoxW1−xTe2 (T.-R. Chang et al., 2016).
Such materials are believed to have band structures sensitive
to strain and pressure, which may make experimental identi-
fication difficult. Sun et al. (2015) predicted four pairs of Weyl
points in the kz ¼ 0 plane. Calculations using only slightly
smaller lattice parameters showed that two pairs were

annihilated by merging along the Γ − X line leaving only
two pairs of Weyl points (Sun et al., 2015). Experiments on
these materials will be discussed next. There have also been
proposals and experimental claims for type II WSMs in
LaAlGe (G. Chang et al., 2016; S.-Y. Xu et al., 2016a).

2. Magnetic Weyl semimetals

An ongoing search has been for materials that are good
examples of a WSM through the T breaking mechanism. The
first proposed WSM was of this class in the magnetic
pyrochlores A2Ir2O7 (Wan et al., 2011) (where A ¼ Y or a
rare earth element Eu, Nd, Sm, or Pr). Ab initio (LDAþ U)
calculations predicted an “all-in, all-out” (AIAO) magnetic
structure, which is an unusual Ising ordering that preserves
cubic symmetry but breaks T . Depending on the strength of
correlations U, a Mott insulating phase with this magnetic
structure or Weyl semimetal phase with 24 Weyl nodes (all at
the Fermi energy) were predicted (Wan et al., 2011). The role
of the chemical species A was related to the strength of
correlations (Yanagishima and Maeno, 2001), with larger
ionic radii (such as A ¼ Pr) implying weaker correlations.
An extra complication is that, in addition to the electrons on
the Ir sites, local moments on the rare earth atoms order but at
a lower temperature. In this regard the A ¼ Y, Eu are the
simplest in not having f shell moments.
Experimentally, several pyrochlore iridates are observed to

undergo magnetic ordering, and experiments have now con-
firmed that the order is of the predicted AIAO form
(Sagayama et al., 2013; Disseler, 2014; Donnerer et al.,
2016; Guo, Ritter, and Komarek, 2016). The magnetically
ordered pyrochlores such as A ¼ Eu, Nd are seen, in clean
samples, to be insulating at low temperatures (Ishikawa,
O’Farrell, and Nakatsuji, 2012; Tafti et al., 2012; Ueda et al.,
2012, 2015; Tian et al., 2016). The metallic phase above the
magnetic ordering temperature is expected have quadratic
doubly degenerate bands that touch at the Γ point (Witczak-
Krempa and Kim, 2012; Kondo et al., 2015; Nakayama et al.,
2016), a state we term a Luttinger semimetal (Abrikosov and
Beneslavskii, 1971a; Moon et al., 2013). In A ¼ Pr, which
remains a nonmagnetic metal down to low temperatures
(Nakatsuji et al., 2006; Machida et al., 2010), a quadratic
band touching has been found in recent experiments (Kondo
et al., 2015); see Sec. VI.C for further discussion of the
Luttinger semimetal. No direct evidence for Weyl nodes has
been found so far in stoichiometric pyrochlore iridates.
However, it is expected that a weak AIAO order imposed
on the Luttinger semimetal would lead to Weyl nodes that
move through the BZ as the order parameter increases,
eventually annihilating leading to an insulating state. Given
the continuous magnetic ordering transition observed in the
pyrochlore iridates, an intervening Weyl phase should occur
just below the ordering temperature. The temperatures
involved are relatively low, compared to the band structure
scales, so one should still be able to distinguish a Weyl
semimetal band structure. This WSM remains to be found
experimentally (Nakayama et al., 2016) and some numerical
studies indicate a direct first order transition between metallic
and insulating states (Shinaoka et al., 2015). Experimental
evidence for first-order-like behavior was reported by

FIG. 17. Energy dispersions for W1 and W2. (a) For TaAs the
Fermi surfaces enclose single chiral Weyl nodes and the Fermi
Chern numbers (CFS) are �1. (b) For TaP, one Fermi surface is
believed to enclose two W1 Weyl nodes with opposite chirality
and hence the CFS is zero. Note that the labeling of W1 and W2
has been changed with respect to how it appeared originally in the
literature so as to make it consistent with the convention used
elsewhere in the literature and in the text. From N. Xu et al., 2016.
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Ueda, Fujioka, Terakura, and Tokura (2015). However,
proximity of a Weyl phase is indicated in other experiments
including A ¼ Eu under pressure (Tafti et al., 2012), and
alloying with rhodium (that substitutes for iridium) leads to a
state where linear in frequency optical conductivity is
observed as expected in a WSM (Ueda et al., 2012). A recent
comparative study of optical conductivity of pyrochlore
iridates with different A ions is contained in Ueda, Fujioka,
and Tokura (2016). It has also been shown in mixed Nd-Pr
materials that the application of a [001] magnetic field
decreases the resistivity and produces a unique Hall response
and for a field parallel to [111] the resistivity exhibits
saturation at a relatively high value typical of a semimetal
(Ueda et al., 2017). Because of uniaxial magnetic anisotropies
of these cubic materials, different field directions can drive
different magnetically ordered states (all in, all out to two in,
two out for a [100] field and three in, three out for [111]). The
observed resistivity changes have been interpreted as the
emergence of different WSMs with varying numbers of Weyl
points and line nodes in respective spin configurations.
The only metallic member in the pyrochlore iridate

Pr2Ir2O7 is a semimetallic cousin of the quantum spin ice
candidate Pr2Zr2O7 (Kimura et al., 2013) and is believed to
have a low temperature chiral spin liquid phase, where a
spontaneous Hall effect is observed (Machida et al., 2010). Its
quadratic band touching has been proposed to convert to a
magnetic Weyl semimetal phase due to other unconventional
broken symmetry states at low temperatures such as spin
icelike (Goswami, Roy, and Das Sarma, 2017) or quadrupolar
order (Lee, Paramekanti, and Kim, 2013).
The presence of Weyl nodes in the bulk implies Fermi arc

surface states not only on surfaces, but also on magnetic
domain walls across which the chirality of Weyl nodes switch.
The domain walls are therefore expected to be conducting, and
Yamaji and Imada (2014) argued that the metallic character of
domain walls may survive even when the Weyl nodes have
annihilated to form a bulk insulator. Indeed such metallic
domain wall conduction was reported in A ¼ Nd pyrochlore
iridates (Ueda et al., 2014; Ma et al., 2015; Fujita et al., 2016)
indicating proximity to a Weyl semimetal.
In another family of materials, it was proposed that

YbMnBi2 may be an example (Borisenko et al., 2015;
Chinotti et al., 2016) of a magnetic Weyl semimetal.
Materials in this AMnBi2 family are expected to host highly
anisotropic Dirac dispersions with a finite gap at the Dirac
point due to SOC from first principles DFT band calculations.
Unfortunately, it appears that the canting of the magnetic
moment (10°) from the c axis that is believed to be required to
split the DSM degeneracies does not exist (A. Wang et al.,
2016; Chaudhuri et al., 2017). Thus YbMnBi2 is likely a DSM
(perhaps with a small mass).
Recently, G. Chang et al. (2016e) and Z. Wang, Vergniory

et al. (2016) proposed candidates for magnetic Weyl semi-
metals based on the Co-based magnetic Heusler compounds
XCo2Z (X ¼ V, Zr, Ti, Nb, Hf, Z ¼ Si, Ge, Sn), VCo2Al, and
VCo2Ga. For spontaneous magnetization along the [110]
direction (confirmed by experiment) they predicted only
two Weyl nodes that are formed by bands of opposite C2

eigenvalues. Importantly, these nodes are predicted to be near
the Fermi level and separated by distances of the order of the

BZ size. The antiferromagnetic (AF) half-Heusler compounds
GdPtBi and NdPtBi have been predicted to be magnetic Weyl
semimetals (Hirschberger et al., 2016; Shekhar et al., 2016;
Suzuki et al., 2016) under applied magnetic field.
Of particular note is the recent work on Mn3Sn and Mn3Ge,

which are AFs with a noncollinear 120° spin order that exhibit
a large anomalous Hall conductivity (Nakatsuji, Kiyohara, and
Higo, 2015; Kiyohara, Tomita, and Nakatsuji, 2016). They
have been predicted (Yang et al., 2017; Y. Zhang, Sun et al.,
2017) to be WSMs with several Weyl points as well as trivial
bands near the Fermi level. As discussed, systems with a
combined PT symmetry are constrained to have doubly
degenerate bands and therefore while PT symmetric AFs
may be DSMs, they cannot be WSMs. The Mn3Sn class is
nonsymmorphic with either mirror reflection My or inversion
plus a half-lattice translation being a symmetry and hence like
all WSM AFs they break PT symmetry. Although there are
similarities in the band structures of Mn3Sn and Mn3Ge, it is
predicted that Mn3Sn has fewer Weyl points (3 families of
symmetry equivalent points versus 9). Paradoxically this may
be because its stronger SOC leads to many of the Weyl points
annihilating each other (Yang et al., 2017). In accord with
what is expected for WSMs with broken T , these systems
show a large anomalous Hall effect (Kübler and Felser, 2014;
Yang et al., 2017; Y. Zhang, Sun et al., 2017) that is naturally
explained by the Berry phase mechanism in these systems.
Note that despite the fact that these systems are believed to
have a small net magnetic moment of 0.005μB per unit cell,
the small moment has the effect of only moving the position of
the Weyl nodes slightly from their positions in the ideal AF
structure. It is not believed to give an appreciable contribution
to the anomalous Hall effect. Also note that these materials
exhibit their anomalous Hall effect up to temperatures near
Néel transition near 400 K (Nakatsuji, Kiyohara, and Higo,
2015; Kiyohara, Tomita, and Nakatsuji, 2016). This suggests
that magnetic Weyl fermions can be available at room
temperature and beyond and this family of materials may
be useful in spin-current conversion and domain wall effects,
which are a topical subject in the field of antiferromagnetic
spintronics (Šmejkal, Jungwirth, and Sinova, 2017).
With regards to predicting phases, Hughes, Prodan, and

Bernevig (2011), Turner et al. (2012), and Z. Wang, Vergniory
et al. (2016) gave a particularly simple diagnostic to determine
if an inversion symmetric system with broken T hosts an odd
number of pairs of Weyl nodes. One takes the product of the
inversion eigenvalue ζnðKiÞ of all bands n below the Fermi
level at all inversion symmetric points Ki,Y

K⃗i¼−K⃗i

Y
n bands withEnðKiÞ<Ef

ζnðKiÞ. ð39Þ

If this number ¼ −1 then an odd number of pairs of Weyl
points must exist in the bulk. If this number is 1 then it is not
possible with only inversion symmetry to deduce if a nonzero
number of pairs exists.
Two other interesting (and thus far unrealized) proposals

mentioned are to create Weyl (and presumably Dirac states as
well) states via growing heterostructures of magnetically
doped 3D TIs and normal insulators (Burkov and Balents,
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2011), inversion symmetry broken heterostructures (Halász
and Balents, 2012), and superlattices of alternating layers with
odd and even parity orbitals (Das, 2013). There have also been
proposals to create a WSM in strained Hg1−x−yCdxMnyTe
films (Bulmash, Liu, and Qi, 2014). Here a small applied field
would align the Mn spins and if the system is Cd doped to be
close to the band inversion transition, the system is expected to
result in a WSM with two Weyl points near EF.

B. Dirac semimetals

With regards to DSMs, the most straightforward manifes-
tation of this state will be found at the phase boundary
between a topological insulator and a trivial one when the
crystal structure preserves both inversion and T . The expect-
ation is that the alloying of known topological insulators with
lighter elements by tuning spin-orbit coupling or lattice
constant can cause the bulk band gap to close and invert at
a quantum critical point where the topological class changes.
This physics has been investigated in both TlBiSe2−xSx (Sato
et al., 2011; S.-Y. Xu et al., 2011; Souma et al., 2012) and
Bi2−xInxSe3 (Brahlek et al., 2012; Wu et al., 2013), where
evidence of topological phase transition as a function of x
between two phases has been found. In each of these cases,
one end member of the series is a topological insulator and the
other is a trivial insulator.
Although such systems should in principle show all the

physics of a DSM, , one wants to identify phases that do not
require (or are susceptible to) fine-tuning. Moreover, except
for materials such as SrSn2As2 (Gibson et al., 2015) and
ZrTe5 (Q. Li et al., 2016; X. Yuan et al., 2016) which are
materials believed to exist naturally near the critical point
between TI and non-TI, all the nonstochiometric systems may
exhibit additional effects due to disorder. For instance,
Bi2−xInxSe3 crystals appear to show a tendency for In
segregation in single-crystal form (Liu and Vanderbilt,
2013), although thin films seem to be largely free of such
effect (Brahlek et al., 2012; Wu et al., 2013). However, as
discussed in Sec. III, the conditions for a stable 3D DSM as a
phase are rather specific. In order to not form a gap, it is
essential that crossing bands belong to different irreducible
representations of the double group (Elliott, 1954) along a line
of symmetry. Therefore all crystal structures are not equally
likely to host DSMs (Gibson et al., 2015). For example, in the
tetragonal group I4=mcm, the Hamiltonian at a general wave
vector along the c axis has C2v symmetry. As the C2v double
group has only one irreducible representation, all states have
the same symmetry and so such tetragonal crystals cannot host
a DSM. In contrast, in the tetragonal space group P4=mmm,
degeneracies along the c axis are protected by C4 symmetry
and a Dirac point is allowed. The c axes in canonical Dirac
systems Cd3As2 (I41=acd) and Na3Bi (P63=mmc) have C4

and C6 that support double groups with multiple irreducible
representations and hence a DSM is allowed. ARPES experi-
ments have now confirmed both Na3Bi (Z. Liu et al., 2014b;
Xu et al., 2015d) and Cd3As2 (Borisenko et al., 2014; Z. Liu
et al., 2014a; Neupane et al., 2014) as DSMs. Because of the
single irreducible representations of the double groups in
orthorhombic, monoclinic, or triclinic space groups Dirac
semimetals are not possible in such crystal systems.

However, except in the case of the symmetry-enforced
states, symmetry alone does not definitely predict the presence
of a DP. Notably the same minimal models that describe the
Dirac point physics in these materials are used to describe
topological insulators in layered materials in the Bi2Se3
family. In that case the c axis has a C3v symmetry, but
different symmetries are allowed for the bands. However, for
the TI the low-energy bands have common eigenvalues under
C3 rotations and an avoided crossing occurs forming a
topological insulator and not a DSM. Thus it is hard to make
definitive statements, but one wants to look for materials
with heavy elements and the required overlap of the valence
and conduction bands that have hexagonal, rhombohedral,
tetragonal, or cubic symmetry.
Within a particular material class trends can be followed

that allow one to predict the presence of Dirac semimetals
independent of explicit calculations. Figure 18 (Gibson et al.,
2015) shows how the calculated electronic properties of
ZrBeSi-type compounds change as a function of the total
atomic number (Z) divided by the Pauling electronegativity
difference (ΔEn). This is the figure of merit for band inversion
previously discussed. ZrBeSi-type compounds have a hex-
agonal (P63=mmc) space group (the same as Na3Bi) with a
simple crystal structure, with layers of BeSi hexagonal net
separated by large cations. Similar to the discussed half-
Heusler compounds, it is found empirically that once this
Z=ΔEn metric reaches a certain value, band structure calcu-
lations predict that these materials will exhibit a Dirac cone in
their band structure. Note that not all these materials are
equally good candidates as their near EF density of states is
predicted to vary widely due to presence of other near EF

FIG. 18. The electronic phase diagram of the ZrBeSi family
showing the calculated density of states at EF as a function of the
total Z (atomic number) divided by the electronegativity differ-
ence between the large cation (e.g., Baþ2) and the average of the
anionic honeycomb sublattice (e.g., Agþ1Bi−3). The squares
(orange) represent compounds having a calculated Dirac cone
and circles (red) represent compounds with none. Calculations
were performed with a Perdew-Burke-Ernzerhof parametrization
of the generalized gradient approximation functional. From
Gibson et al., 2015.
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bands. An ideal DSM would have a near EF density of states
of zero.
As discussed in Sec. III.B a number of possibly competing

conditions must be met in order to achieve symmetry-enforced
DSMs in a real material. In addition to the symmetry
constraints, one must find compounds with an odd number
of electrons per formula unit in orbital states well isolated
from other orbitals. Candidate DSM materials designed to
satisfy both the symmetry and the band filling requirements
have been proposed for diamond lattice structures (space
group 227, Fd3m) (Young et al., 2012). This lattice supports a
DSM at half filling in the prototype s-state Hamiltonian of
Eq. (26) which yields the spectrum shown in Fig. 19(d).
Materials that form in this crystal structure are typically sp
bonded insulators (e.g., C, Si, SiO2, etc.), where the related
Dirac singularity occurs “buried” deep in the occupied
spectrum and the band edge valence states derive from
bonding combinations of the atomic p orbitals. Theoretical
searches for DSMs in this crystal structure have therefore
focused on strategies that decorate the lattice with species that
serve the dual roles of (1) boosting the bonding-antibonding

splitting in the p manifold to high energy displacing them
away from the Fermi energy and (2) selecting a stoichiometry
that fills the topological band precisely to the Dirac point.
Hypothetical group-V oxides MO2, M ¼ fAs; Sb;Big in

the β-crystobalite crystal structure where the O atoms occupy
bridging sites between fourfold-coordinatedM vertices satisfy
the requirements as shown in Figs. 19(a)–19(c) (Young et al.,
2012). The symmetry-enforced FDIRs occur at the centers of
the Brillouin zone faces at the three X points and in BiO2 the
enhanced spin-orbit scale protects its Dirac-like dispersion
near the FDIR on an experimentally useful energy scale
∼200 meV. Comparison of Figs. 19(c) and 19(d) show that
the band structure bears a striking resemblance to the spectrum
of the prototypical Hamiltonian of Eq. (26). Total energy
calculations show that the BiO2 is a locally stable structure
although it has a substantially higher energy than the denser
oxide Bi2O4 in the cervantite structure (Young et al., 2012).
Related and possibly more stable forms of Bi-derived DSMs
have also been predicted for quarternary compounds in the
family BiBSiO4 with B ¼ fZn;Ca;Mgg in a distorted spinel
structure (Steinberg et al., 2014). Here the Bi species occupy

FIG. 19. Band structures of (a) AsO2, (b) SbO2, (c) BiO2 in the β-crystobalite structure, and (d) the Hamiltonian of Eq. (26) for spin-
orbit coupled s states on the diamond lattice. All the spectra feature a symmetry-enforced Dirac point in an FDIR at the zone boundary X
point. From Young et al., 2012.
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two symmetry-related fourfold-coordinated sites in the primi-
tive cell as in the diamond lattice, but the lattice breaks the
symmetry of the spinel structure (space group 227) to form an
orthorhombic body-centered lattice [space group 74 (Imma)].
This lower symmetry removes the fourfold degeneracy of the
parent spinel lattice at two X points but it retains an FDIR at a
single zone boundary T point. Similar to the situation in BiO2

the spin-orbit scale provided by Bi is robust and is expected to
support Dirac physics on a scale of hundreds of meV
(Steinberg et al., 2014).
As noted, the nonsymmorphic character of these DSMs

generally leads to situations with an odd number of electrons
per formula unit and chemical species in unconventional
oxidation states. A possible work-around has been to explore
low-dimensional donor-acceptor structures where a desired
band filling can be selected without compromising structural
stability. Instead of having an odd number of electrons per
atom, which tends to be either chemically unstable or highly
localized, one can use one electron per molecular orbital as
occurs in cluster compounds. Similar approaches have
been made recently in attempts to stabilize frustrated magnets
and prevent Jahn-Teller instabilities and orbital ordering
(Sheckelton et al., 2012): for example, the donor-acceptor
family of materials AMo3X3 (A ¼ fNa;K;Rb; In;Tlg,
X ¼ fSe;Teg) that exists in structures containing twisted
stacks of Mo3 clusters with a screw axis symmetry. Indeed
the band structure features quasi-one-dimensional dispersive
bands along the chain direction with symmetry-enforced zone
boundary contact points (Michel and Zak, 1999) and a band
filling that can be selected to some extent by the choice of the
A site cation (Gibson et al., 2015). These are DSM candidates,
although their one-dimensional character inevitably sup-
presses band velocities in the transverse directions and may
leave these materials susceptible to a transition to an insulating
state by a Peierls instability. Generalizations of these consid-
erations relating to electron filling and searches of materials’
databases in an efficient way has led to candidate Dirac
semimetals (Chen et al., 2017).
In particular, main group elements are not usually found in

valence states with odd numbers of electrons. Configurations
such as Biþ4 are unstable. Transition metals are found in odd
valence states; however, they are prone to various instabilities
such as charge density waves in NbSe2 and TaSe2. Moreover,
they are typically found with a number of d orbitals that are
close to overlapping each other energetically. Irþ4 in the
nonsymmorphic pyrochlore lattice has a half-filled J1=2 orbital
that is removed in energy from other d orbitals and although it
is proposed to be a DSM, it and many other odd electron
numbered transition-metal ions exhibit tendencies toward
localized magnetism.
Another possibility to resolve the band filling problem in

nonsymmorphic crystals is with intermetallic compounds.
One example is the nonsymmorphic paramagnetic metal
Cr2B (space group Fddd) that contains interlocking honey-
comblike nets of Cr atoms related to each other by glide
planes. Band structure calculations reveal many bands cross-
ing the Fermi energy, with DPs expected to be present. It is
believed that through B deficiency the DP may be brought to
EF (Schoop et al., 2014; Gibson et al., 2015). Through Hall

effect experiments on polycrystalline Cr2B it is believed that
high-mobility n-type carriers can be resolved in transport
experiments.

V. EXPERIMENTAL RESULTS

With these theoretical and materials considerations, we can
now turn to the considerable experimental literature on WSM
and DSM systems. Similar to other large material classes,
characterization has benefited from the application of a large
number of different experimental techniques. Each has their
strengths or limitations in revealing aspects of the underlying
physics.

A. Identifying Dirac and Weyl systems through their band
structure

ARPES, STM, magneto-optical transport, and quantum
oscillations have all proven to be useful in determining aspects
of the band structures of these materials. In particular, ARPES
has emerged as a premier tool for experimentally identifying
topological band structures. Within the framework of certain
accepted approximations, this technique measures the single
particle spectral function as function of energy and momentum
(Damascelli, Hussain, and Shen, 2003). For the weakly
interacting compounds that comprise most studied topological
materials, it gives a direct measure of the band structure.
Because of momentum selection rules in the photoexcitation
process, the technique is best suited for 2D materials and has
played a central role in the identification of topological
insulator surface states (Hasan and Kane, 2010) and in probing
the physics of quasi-2D superconductors such as cuprates
(Damascelli, Hussain, and Shen, 2003). Its use in 3D materials
like most WSM or DSM systems requires more care, as kz
sensitivity is achieved by tuning the incident photon energy.
But it has proved to be equally useful in the identification of
material realizations of these states of matter. It has the
constraint of being primarily a surface sensitive probe, but if
surfaces have natural cleavage planes then in many circum-
stances experiments can be done that are reflective of the bulk.
In the case of topological materials spin-resolved measure-
ments have been particularly useful (Hasan and Kane, 2010).
The first relevant ARPES experiments were on the DSM

systems Na3Bi (Z. Liu et al., 2014b; Xu et al., 2015d) and
Cd3As2 (Borisenko et al., 2014; Z. Liu et al., 2014a; Neupane
et al., 2014). Experiments on (100) oriented Na3Bi single
crystals have shown a pair of linearly dispersing three-
dimensional Dirac points that are displaced from each other
on the (001) line passing through the Γ point (Z. Liu et al.,
2014a). On the (100) surface, the two bulk Dirac nodes are
separated from each other in the (001) direction as shown in
Fig. 20. At higher binding energies, the two Dirac points were
found to enlarge into holelike contours, whereas the two
surface Fermi arcs shrank in an electronlike fashion. These
observations were in accord with the theoretical prediction
(Wang et al., 2012). Figure 21 shows ARPES spectra from the
(001) surface. The linear Dirac dispersion is clearly seen, but
because the two bulk Dirac nodes project onto the same point
in the surface BZ the Fermi arc surface states discussed in
Sec. III.D.1 are not expected.
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For Cd3As2 there have been discrepancies about the details
of the band structure. It is believed that there are a pair of
symmetry-protected 3D Dirac nodes near the Γ point, but there
have been disagreements about location, size, anisotropy, and
tilt of these bands. ARPES studies imply cones extending over
a few hundred meV (Borisenko et al., 2014; Neupane et al.,
2014) or even up to an eV (Z. Liu et al., 2014a). However, STM

has estimated Dirac cones with energies an order of magnitude
smaller (Jeon et al., 2014). Most recently the magneto-optics
measurements of Akrap et al. (2016) demonstrated that the
band structure likely includes two types of conical features, one
a high-energy scale, and the second on the small-energy scale.
The higher energy structure can be explained within the Kane
model that is widely applied to describe the band structure of

FIG. 20. (a) Fermi surface map of the Na3Bi sample on (100) surface at photon energy 55 eV. BDP1 and BDP2 denote the two bulk
Dirac points. (b) Constant energy ARPES spectra as a function of binding energy. (c) ARPES dispersion cuts α, β, and γ as defined in
(b). (d) Schematic Fermi surface of Na3Bi. The shaded (red) areas and the gray (orange) lines represent the bulk and surface states,
respectively. (e) Calculated band structure along cuts α (γ) and β. Adapted from Xu et al., 2015d.

FIG. 21. ARPES spectra near the Γ point on the (001) surface. (e) Fermi surface mapping. (f) Photoemission spectra measured along
the seven momentum cuts labeled as red lines 1 to 7 in (e). The gray (red) dashed lines are curves fitted to the Dirac dispersion
expectation. (g) 3D view of the evolution of Fermi surface and constant energy contours at different binding energies.
The gray (red) lines are guides to the eye. Displayed images are second derivatives of the original data with respect to energy.
Adapted from Liang et al., 2016a.
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cubic zinc-blende–type semiconductors (Kane, 1957). At low
energies this cone “splits” and Dirac fermions emerge that can
be described in the context of the “Bodnar” model (Bodnar,
1977) that retains the standard Kane parameters (band gap Eg,
interband matrix element P, and spin-orbit coupling Δ), while
also introducing a crystal field splitting δ that in this case
reflects the tetragonal symmetry of Cd3As2.
Despite early predictions, good material realizations and

experimental data for a WSM were longer coming. After the
prediction (S.-M. Huang et al., 2015; Weng, Fang et al.,
2015), a number of groups found evidence in TaAs for a WSM
(Lv et al., 2015b, 2015c; Xu et al., 2015b; L. Yang et al.,
2015; S.-Y. Xu et al., 2016b). Subsequently, similar evidence
was found for other compounds in this material class (Xu
et al., 2015a, 2015c; N. Xu et al., 2016). As shown in Fig. 22,
one can see representative ARPES data for TaAs (Belopolski
et al., 2016c). One can see the characteristic “lollipop” and
“bow tie” shaped Fermi surfaces (FSs) of the As terminated
surface. The same general shapes are found in all measured
materials in the TaAs material class as shown in Figs. 23 and
25. Although rough agreement of ARPES with band structure

calculations has been taken as evidence for aWSM,Belopolski
et al. (2016c) presented a set of conditions for the ARPES
measured surface state band structure to meet to establish the
presence of a WSM. Some of the TaAs class of materials may
not rigorously meet this standard due to the energetic position
of the nodes in the manner of Fig. 17. To establish a nonzero
Chern number, one such condition is to add up the signs of the
Fermi velocities of all surface states around a closed loop in the
surface BZ in a momentum region where the bulk band
structure is everywhere gapped, assigningþ1 for right movers
and−1 for left movers. An odd sum establishes theWeyl point.
As shown in Fig. 22 for TaAs, one can consider two paths in
momentum space that are denoted as C and P. However,
because two W2 nodes project onto the sBZs (001) surface,
their projection will terminate two Fermi surface arcs.
Therefore around loop C the expectation is that the net
Chern number is þ3, however, it is experimentally observed
to be þ2. This can be explained by considering the small
separation between theW1Weyl points where the single Fermi
surface arc is not resolved. However, around P the path
encloses only the well-spaced Weyl points W2 and one finds
a Chern number þ2, consistent with expectation of two W2
points projecting to the surface BZ. This establishes the WSM
state. However, one should take note of the extremely nontrivial
shapes of the Fermi arcs in thesematerials and compare them to
the prediction of the simple model Hamiltonians of Sec. II.B,
which have a Fermi arc that is a straight line connecting the
projection of theWeyl nodes onto the surface. This shows that,
although the WSM may be realized in such systems, careful
analysis will generally have to be done to reveal the universal
aspects of the WSM state. Particular experiments may be more
sensitive to particular complexities of the band structure.
Although all materials in this class have the same general

band structure, their different spin-orbit coupling and other
energetics can lead to differences in their topological proper-
ties. One may also study the evolution of the electronic
structure with increasing spin-orbit coupling strength (Liu
et al., 2016). As seen in the systematic comparison between
three members of the monopnictide family (NbP, TaP, TaAs) in
Fig. 23, increasing SOC has the effect of pushing theW2Weyl
points with opposite chirality away from the mirror plane. As
seen in Fig. 23(e), the splitting of these Weyl points (ΔK1) and
the splitting of the band dispersions (ΔK2), which causes the
splitting of the Fermi arcs, also increases with the SOC in the
various compounds. Quantum oscillation experiments have
also been important in this regard as even aside from the
possible phase offsets (Sec. V.C.1), angle-dependent quantum
oscillations are a powerful tool to determine the FS topology in
such materials. They have been able to (in conjunction with
band structure calculations) establish fine details about the
location of the Fermi energy with respect to the Weyl nodes in
the different materials and show for instance that, despite
having the same general band structure but different size of
SOCs, NbP (Klotz et al., 2016) and TaP (Arnold et al., 2016)
have FSs that encircle twoWeyl nodes giving zero net chirality
to these FSs sections, while TaAs (Arnold, Naumann et al.,
2016) has a Fermi energy close enough to both sets of Weyl
points to generate chiral particles at EF.
As in the case for topological insulators with their well-

known “spin-momentum” locking, spin textures are expected

FIG. 22. (Top left) Fermi surface of TaAs ARPES, at incident
photon energy hν ¼ 90 eV, on the (001) surface of TaAs. (Top
right) Again FS of TaAs but with Weyl points indicated and BZ
marked. Two paths in momentum space are denoted as C and P.
(Bottom right) Measured ARPES spectral function along C, with
chiralities of edge modes marked by the arrows. The net Chern
number appears to be þ2, inconsistent with the expectation (two
W2 nodes project to the surface). This can be explained by
considering the small separation between the W1 Weyl points.
(Bottom left) Measured ARPES spectral function along P. The
path encloses only the well-spaced Weyl points and one finds a
Chern number þ2, consistent with expectation. From Belopolski
et al., 2016c.

N. P. Armitage, E. J. Mele, and Ashvin Vishwanath: Weyl and Dirac semimetals in three- …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015001-32



and observed (Fig. 24) for the FS arcs in the WSM case
(Lv et al., 2015a; S.-Y. Xu et al., 2016b). However, unlike in
the TI case, topological properties cannot be inferred directly
from the spin texture of the Fermi arcs. There is no model-free
relationship between the chirality of the Weyl points and the
Fermi arc spin texture, other than those mandated by the
crystal symmetry itself. For instance, in TaAs the Fermi arcs
that intersect the Γ − Y line have a mirror symmetry Mx that
constrain the spin to be in-plane polarized. The total spin
polarization is as large as 80% in TaAs (S.-Y. Xu et al.,
2016b), which compared to the total spin polarization of
Bi2Se3 surface states is only about 40% (Sánchez-Barriga
et al., 2014). This is because in the Bi2Se3 case the spin

textures of the p orbitals interfere partially destructively,
whereas in TaAs there is constructive interference. Lv et al.
(2015a) demonstrated (Fig. 24) consistency between the spin
texture and Weyl node chirality as compared to their ARPES
data, but it is important to note that the relation between spin
texture of surface states and the chirality of Weyl nodes was
determined by comparison to experiment in their calculation
and not set independently as can be done in TIs.9

The inherent inversion symmetry breaking of the TaAs
material class reveals itself in an asymmetry in the photo-
emission spectra of the top and bottom surfaces as the spectra
from the (001) direction is different than the (001̄) direction
(Sun, Wu, and Yan, 2015; Souma et al., 2016). In the ARPES
technique crystals are typically cleaved in vacuum to reveal a
clean surface. In the case of NbP, this cleaving occurs easier
by breaking two Nb-P bonds per unit cell instead of breaking
four bonds (Fig. 25), so the (001) surface is preferentially Nb
terminated and the (001̄) surface P terminated. As discussed
there exist two kinds of Weyl points in this material class.
Because of the fact that W2 nodes are located in pairs at

FIG. 23. (a) Schematic showing the projection of a pair of Weyl points on the (001) surface BZ and the Fermi arc (gray curves)
connecting them for materials with increasing SOC strength. (ii)–(iv) A comparison of the calculated (left) and ARPES measurement
(right) of the spoonlike FSs. The red and blue dots denote the chirality of Weyl points. (b)–(d) ARPES measurements of the (i) spoonlike
FS and (ii), (iii) band dispersions for NbP, TaP, and TaAs, respectively. The positions of the band dispersions presented in (ii) and (iii) are
indicated by the dotted red lines in (i). (e) Summary of the extracted ΔK1 and ΔK2 [from (b)–(d)] from the three compounds, plotted
against a rough measure of the strength of SOC. ΔK1 and ΔK2 represent the separation between the Weyl points and Fermi arcs,
respectively. From Liu et al., 2016.

FIG. 24. (a) Spin-integrated FS map near Γ − Y recorded with a
spin-resolved ARPES system for TaAs. The gray (red) arrows
indicate the direction of measured in-plane spin polarizations of
the Fermi arc b2 at C4. (b) Corresponding theoretical spin texture
of surface states. Dashed circles (red and yellow) indicate the
Weyl nodesW1 inferred to have negative and positive chiralities,
respectively. From Lv et al., 2015a.

9We caution that in general great care must be brought to bear in
the interpretation of spin-resolved photoemission data. Even in P and
T symmetric systems that are ensured to have overall twofold spin
degeneracy, pronounced spin polarizations can be observed in spin
ARPES. This arises from local inversion symmetry breaking within
the unit cell (Zhang et al., 2014). As photoemission is a strongly
surface sensitive technique it can preferentially sample a fraction of
the unit cell giving the possibility of a spin polarized signal in
systems which do not have spin split bands (Bawden et al., 2016) or
anomalous spin textures that do reflect unit cell averages (Zhu et al.,
2013). This effect interferes with a straightforward interpretation of
the spin-resolved ARPES data.
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positive and negative kz, their projection onto either surface
terminates two Fermi arcs, whereas the projection of W1

terminates a single Fermi arc. These broad aspects are
independent of the surface termination. However, the particu-
lar way in which the Fermi arcs connect the projected Weyl
points depends on the surface. These differences can be seen
directly in the photoemission spectra. As shown in Fig. 25 a
number of FSs are seen. Fermi surfaces S2, S8, and S9 are
believed to be Fermi arcs, whereas S1, S3, S4, S6, and S7 from
trivial Fermi surfaces.
Scanning tunneling spectroscopy is a real space surface

measurement technique that measures the density of states as a
function of position. However, it can provide momentum
space information through Fourier transform of the spatial
dependence of impurity- or boundary-induced states. Because
it is directly sensitive to scattering it provides information
about pseudospin scattering constraints and chirality of
quasiparticles even when the pseudospin vector is not neces-
sarily associated with the electron spin. A number of mea-
surements have reported signatures of scattering patterns
consistent with Fermi arcs on the surface Weyl semimetals

such as TaAs (Batabyal et al., 2016; G. Chang et al., 2016d;
Gyenis et al., 2016; Inoue et al., 2016; Zheng et al., 2016).
These measurements gave evidence not only for the particular
spin dependent scattering function indicative of Weyl Fermi
arcs, but also the momentum dependent delocalization of the
arc states into the bulk of the sample that occur at their
projection on the bulk Weyl nodes.
Finally, it was proposed that a Weyl state can emerge from

the touching of electron and hole pockets in a state that is
distinct from the idealized type I Weyl semimetals with their
pointlike Fermi surface (Soluyanov et al., 2015). The Weyl
cone in this type II semimetal is strongly tilted and as a
function of chemical potential the Fermi surface undergoes a
Lifshitz transition. Although type I and type II WSMs cannot
be smoothly deformed into each other, they share electronic
behavior that originates in the isolated band contact point in
their bulk spectra. They are anticipated to have a number of
different properties including a variant of the chiral anomaly
when the magnetic field is well aligned with the tilt direction,
have a density of states different than the usual form, possess
novel quantum oscillations due to momentum space Klein
tunneling, and a modified anomalous Hall conductivity
(Soluyanov et al., 2015; O’Brien, Diez, and Beenakker,
2016; Udagawa and Bergholtz, 2016; Zyuzin and Tiwari,
2016). Evidence for a type II state has been given in MoTe2
(Deng et al., 2016; L. Huang et al., 2016; Liang et al., 2016b;
Tamai et al., 2016; Jiang et al., 2017), the alloy MoxW1−xTe2
(Belopolski et al., 2016a, 2016b), and TaIrTe4 (Belopolski
et al., 2016d; Haubold et al., 2016; Koepernik et al., 2016).
Detection of the type II state in the MoTe2 class of materials is
challenging. Although evidence has been claimed for WTe2 in
C. Wang et al. (2016), it is controversial. As emphasized by
Bruno et al. (2016), although the bulk band structure is
sensitive to small changes in lattice parameters that push the
material in and out of the Weyl state, the feature identified as
surface “Fermi arcs” in WTe2 are largely independent of these
changes and are therefore trivial and cannot be used to show
the system is in the nontrivial phase. The topological Fermi
arcs in WTe2 are predicted to be too small to be observed
experimentally. The situation is somewhat more favorable,
although still challenging, in MoTe2. There is again the same
large trivial Fermi arclike feature, but also small arcs that have
been observed which are consistent with being topological via
band structure calculations (Deng et al., 2016; Tamai et al.,
2016; Jiang et al., 2017).

B. Semiclassical transport and optics

1. General considerations

As mentioned, 3D Dirac and Weyl systems are predicted to
have a number of interesting semiclassical transport and
optical effects that are diagnostic for this state of matter
(Burkov and Balents, 2011; Hosur, Parameswaran, and
Vishwanath, 2012). (Effects related to quantum transport such
as the chiral anomaly are discussed in Sec. V.C.) With small
modifications, most of these results apply equally to Weyl and
Dirac systems.
In the absence of impurities and interactions the free

fermion result for the conductivity in the low-energy limit

FIG. 25. (a) (Left) Crystal structure of NbP that has two
different surfaces. (Right) Schematics of the experimental AR-
PES momentum space mapping near the X point for the Nb- and
P-terminated surfaces. The bulk Weyl nodes (W1 and W2)
projections are illustrated by circles. (b) A comparison of
experimental FS between Nb-terminated (central horizontal loop,
blue) and P-terminated (central vertical loop, red) surfaces.
Projection of Weyl nodes W2 at the intersection of FSs for
opposite surfaces is shown by filled circles, whereas other
intersections are shown by open circles. Weyl nodes W1 are
indicated with diamonds. Fermi surfaces S2, S8, and S9
are believed to be Fermi arcs, whereas S1, S3, S4, S6, and S7
are from trivial Fermi surfaces. From Souma et al., 2016.
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(where quadratic or higher order terms in the dispersion can
be neglected) that arises from interband transitions across the
Weyl or Dirac node when the chemical potential (EF) is at the
Weyl or Dirac point is

σ1ðωÞ ¼ N
e2

12h
jωj
vF

; ð40Þ

where vF is the Fermi velocity and N is the number of nodes
(Burkov and Balents, 2011; Wan et al., 2011; Hosur,
Parameswaran, and Vishwanath, 2012; Hosur and Qi, 2013;
Tabert, Carbotte, and Nicol, 2016). This prediction is closely
related to the prediction and observation in 2D Dirac systems
of single layer graphene that for interband transitions its
optical conductance should be G1ðωÞ ¼ e2=ℏ, giving a
frequency independent transmission that is quantized in terms
of the fine-structure constant α as TðωÞ ¼ 1 − πα (Ando,
Zheng, and Suzuura, 2002; Kuzmenko et al., 2008; Nair et al.,
2008). In a 2D material like graphene the Kubo-Greenwood
expression for the conductance from interband transitions can
be written (for the chemical potential at the Dirac point and
T ¼ 0) as G1ðωÞ ¼ ðπe2=ωÞjvðωÞj2DðωÞ, where vðωÞ is the
velocity matrix element between states with energies �ℏω=2
and gðωÞ is the 2D joint density of states. The universal
conductance arises because the Fermi velocity factors that
come into the matrix element are canceled by their inverse
dependence in the density of states. In these 3D Dirac systems,
another factor of ω comes in the density of states yield-
ing Eq. (40).
Note that Eq. (40) implies a logarithmic divergence of the

real part of the dielectric constant through Kramers-Kronig
considerations (Rosenstein and Lewkowicz, 2013; Jenkins
et al., 2016). The corresponding imaginary conductivity is

σ2ðωÞ ¼ −
2

π
N

e2

12h
jωj
vF

log
2ΛvF
ω

; ð41Þ

where Λ is a UV momentum cutoff.
Quite generally, in noninteracting electron systems con-

sisting of two symmetric bands that touch each other at the
Fermi energy the optical conductivity generically has power-
law frequency dependence with exponent ðd − 2Þ=z, where d
is the dimensionality of the system and z is the power law
of the band dispersion (Bácsi and Virosztek, 2013). Such
power-law behavior is a consequence of the scale-free nature
of such systems. It has been argued (Fisher, Fisher, and Huse,
1991) that at a conventional continuous transition the optical
conductivity should scale as ðd − z − 2Þ=z. Because of
their scale-free nature one may regard Dirac systems as
intrinsically quantum critical with a dynamic exponent equal
to the band dispersion power law. With the usual substitution
for the effective dimensionality of a quantum critical system
deff ¼ dþ z the generic power-law expression for the Dirac
conductivity follows.
In the presence of impurities or interactions the expectation

of Eq. (40) is modified. Impurities in the form of dopants can
shift the chemical potential of the system away from the Dirac
point, leading to a Pauli-blocked edge at approximately 2EF
below which Eq. (40) is not observed (Tabert, Carbotte, and

Nicol, 2016). For finite scattering introduced by disorder one
will generally find a zero frequency peak which can give a
finite dc conductance and additional optical response. Its
scaling form or even the existence of a metallic state at all in
the limit of EF → 0 is strongly dependent on the dimension-
ality, the power law of the dispersion, and the kind of
scattering (screened, unscreened, or short-ranged) that is
being considered (Das Sarma and Hwang, 2015).
The effect of weak disorder scattering on the finite-

frequency conductivity also depends on whether ω ≫ T or
ω ≪ T. Various theoretical approaches (Boltzmann, quantum
Boltzmann, and Kubo) are generally in agreement with each
other. Solving the linearized Boltzmann equation for short-
range disorder with the energy-dependent momentum relax-
ation rate, the ω ≪ T Drude-like peak in the optical conduc-
tivity has a temperature-dependent spectral weight and width,
the latter of which is predicted to scale as T2 with a temper-
ature-independent dc limit of σdc ¼ e2v2F=3γh (Burkov and
Balents, 2011). In the low ω limit an unusual shape for the
conductivity is predicted (Burkov, Hook, and Balents, 2011),
the real part is given by

ReσðωÞ ≈ e2v2F
3γh

 
1 −

1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωv3Fh

3

2γT2

s !
: ð42Þ

Note that this is a prediction for a temperature dependence to
elastic scattering, which is again quite different from the usual
case in metals and arises due to the strongly energy-dependent
density of states in these systems. In the opposite ω ≫ T limit
the calculation (Hosur, Parameswaran, and Vishwanath, 2012)
gives

Reσðω; TÞ ≈ N
e2

12h
ω

vF

�
1 −

16Nγω

15π2v3F
þO(ðω=ωNÞ2)

�
:

ð43Þ
The leading term is independent of disorder and is
identical to the interband response for the same system in

FIG. 26. Conductivity calculated within the linearized Boltz-
mann formalism of a single Weyl node with disorder, in units of
e2v2F=hγ as a function of frequency at different temperatures.
Frequencies and temperatures are in units of ω0 ¼ 2πv3F=γ. One
can see that the functional dependence changes at ω ∼ T (given
by the thin black line). Note that at the highest temperature
plotted deviations from the temperature-independent dc result are
found. From Hosur, Parameswaran, and Vishwanath, 2012.
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the noninteracting, clean limit. These functional dependences
of the various regimes for the optical conductivity are sum-
marized in Fig. 26. Note that ω ∼ T manifests itself as a
crossover scale between the behavior of Eqs. (42) and (43).And
that strong disorder in a WSM may necessitate other consid-
erations for the optical response (Roy, Juričić, and
Sarma, 2016).
In the absence of umklapp scattering, electron-

electron interactions have a small effect on the optical
conductivity of conventional metals as they conserve the
total momentum and hence the current. But in Dirac
systems, due to particle-hole symmetry there can be current
carrying states with zero total momentum (Fritz et al., 2008;
Goswami and Chakravarty, 2011). This allows interactions
to relax the current with zero net momentum transfer. A
quantum Boltzmann calculation (Hosur, Parameswaran, and
Vishwanath, 2012) gives the following expression for the
optical conductivity:

σðω; TÞ ¼ N
e2

h

�
kBT
ℏvF

�
1.8

−iðℏω=kBTÞ6.6þ Nα2 ln α−1
:

ð44Þ

Here v and α are the Fermi velocity and fine-structure
constant renormalized (logarithmically) to energy kBT.
Equation (44) assumes the low frequency limit
ℏω=kBT ≪ α2. The dc limit of Eq. (44) can be motivated
in a relaxation time approximation via the fact that the
temperature-dependent density of states goes as T2, whereas
on dimensional grounds the transport lifetime is expected
to go as 1=α2T. It is interesting to note the relative
temperature dependences of the Drude peak widths that
go as T vs T2 in the interacting versus disordered cases,
respectively.
Lundgren, Laurell, and Fiete (2014) computed various

thermal transport coefficients using the semiclassical
approach. With interactions they found that the longitudinal
thermal conductivity has a quadratic temperature depend-
ence, in contrast to a linear dependence on the temperature
for either charged impurities or short-range disorder (similar
to normal metals). For kBT ≫ EF, both Boltzmann transport
(Lundgren, Laurell, and Fiete, 2014) and Kubo formalism
(Tabert, Carbotte, and Nicol, 2016) calculations give a
Lorenz number enhanced by interactions from the Fermi
liquid value. Lundgren, Laurell, and Fiete (2014) also
considered the effect of electric and magnetic fields on
the thermoelectric coefficients. With the temperature gra-
dient perpendicular to the magnetic field the transverse
thermal conductivity is linear in the magnetic field and the
longitudinal thermal conductivity has a negative contribution
that goes as the square of the magnetic field. When the
temperature gradient is in the direction of the magnetic field
there is an increasing quadratic magnetic field dependence
for the longitudinal thermal conductivity and zero transverse
thermal conductivity. The presence of a finite electric field
is predicted to not change these dependences as long as
there is no internode scattering.

2. Experiments

These predictions have been investigated in a number of
WSM and DSM systems. A number of experimental works
have reported verification of Eq. (40) (Timusk et al., 2013;
Orlita et al., 2014; R. Y. Chen et al., 2015; Sushkov et al.,
2015). ZrTe5 (Q. Li et al., 2016; X. Yuan et al., 2016) is a
semimetal with an extremely small and light ellipsoidal
Fermi surface that is centered in the bulk BZ. It is believed to
be naturally tuned near a band inversion transition. A linear
optical conductivity consistent with Eq. (40) has been found
(R. Y. Chen et al., 2015) over a range of 50–1200 cm−1

(6–150 meV), albeit with a slope that is some 30 times higher
than that expected from the velocities observed in ARPES. It
may be that the quasi-two-dimensionality of this material is
playing a role. Linearity over the large range from 50 to
350 meV has also been observed in the zero gapped tuned
Hg0.83Cd0.17Te (Orlita et al., 2014). This system has been
termed as a Kane fermion system as its band structure
includes an additional nearly flat band contribution from a
flat Γ8 band that lives between the linearly dispersing bands
at the Brillouin zone center. Much closer agreement between
the expected linearly increasing absorption and theory has
been obtained in this system. Akrap et al. (2016) demon-
strated linear conductivity over a large energy range in
Cd3As2, but this was, as mentioned in Sec. V.A, sampling
a region of the spectrum describable by the, also conical,
Kane dispersion and not a Dirac one. Elsewhere deviations
from linearity for Cd3As2 have been reported (Neubauer
et al., 2016).
The Weyl semimetal state was first predicted to occur in the

antiferromagnetic state of the pyrochlore iridates (Wan et al.,
2011). Sushkov et al. (2015) found that Eu2Ir2O7 has an
approximately linear frequency dependence of the optical
conductivity down to 3 meV. Below TN, the Drude spectral
weight diminishes consistent with the reduced thermal exci-
tations of a Weyl semimetal. The data sets can be modeled,
assuming a WSM, with 24 Weyl points and an average Fermi
velocity of vF ¼ 4 × 107 cm=s. A recent optical conductivity
study on several pyrochlore iridates (Ueda, Fujioka, and
Tokura, 2016), however, classifies this material as an insulator.
In TaAs, it was claimed (B. Xu et al., 2016) that the low
frequency Drude response exhibits a T2 dependence to its
width, although neither the strongly temperature-dependent
spectral weight nor the unusual line shape of Eq. (42) was
observed. TaAs also shows (B. Xu et al., 2016) a linear in
frequency σ1 up to 1000 cm−1, which is reasonably associated
with the interband transitions associated with the four pairs
(of 12) ofW1Weyl points and are predicted to be only 2 meV
above the Fermi energy [Fig. 27(b)].
It is important to keep in mind that the observability of

many of these predictions relies on some idealities of the
band structure that may or may not be present in real
materials. For instance it has been claimed that the lack of
a threshold for Dirac cone interband transitions at 2EF in
the purported Dirac system Na3Bi is due to very large
Dirac cone anisotropies (Jenkins et al., 2016). Moreover, it
is not clear that even if materials such as YbMnBi2 are T
breaking Weyl semimetals it is possible to see linear in ω
optical conductivity due to certain nonidealities that are
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certainly present in their band structures and the presence
of nontoplogical bands (Chinotti et al., 2016; Chaudhuri
et al., 2017). Also note that different regions of linear in ω
absorption may be seen that correspond to different linear
(or otherwise) parts of the band structure as pointed out by
Tabert and Carbotte (2016); see Fig. 28. This appears to be
the case in Cd3As2 where optics sees a linear in ω
conductivity but it is sampling the part of the spectrum
that is described by the Kane dispersion, not the lower
energy Dirac dispersion (Akrap et al., 2016).
An interesting suggestion is that the linear conductivity

seen in the optical response of many quasicrystal compounds
arises from the fact that these may be realizations of Weyl
semimetals (Timusk et al., 2013). For instance, in the AlCuFe
system the conductivity rises linearly with a slope of
5750 cm−1=eV. A comparison to Eq. (40) gives, with the
assumption that the Weyl points are located on the faces of the
icosahedron with spin degeneracy N ¼ 40, the reasonable

estimate for the Fermi velocity of 4.3 × 107 cm=s. This idea of
the WSM state hiding inside quasicrystals deserves further
consideration.
Interaction effects may also reveal themselves in an

interesting fashion in optical conductivity. Jenkins et al.
(2016) observed the presence of sideband features in the
optical response of the Dirac semimetal candidate Na3Bi that
they assign to a coupled quasiparticle-plasmon excitation,
e.g., a plasmaron (Lundqvist, 1967) that has also been seen in
the optical conductivity of the massive Dirac semimetal
elemental bismuth (Tediosi et al., 2007; Armitage et al.,
2010). Such a coupling is a form of electron-electron
interaction, can cause mass renormalizations, and may be
ubiquitous in slightly doped WSM and DSM systems.

C. Quantum mechanical effects in transport

1. Quantum oscillations

When one puts an electronic system in a magnetic field, LL
quantization occurs and as the field is ramped, the density
of states at EF undergoes QO resulting in the variation of
physical quantities as a function of 1=B. Measurements of
quantities such as resistivity [e.g., Shubinikov–de Haas (SdH)

(a)

(b) (c) (d)

FIG. 28. Interband optical conductivity from the Weyl semi-
metal to gapped semimetal phase transition. Here m is a Dirac
mass parameter and b is an intrinsic Zeeman-field-like parameter.
The Hamiltonian is the same as appears in Eq. (8). From Tabert
and Carbotte, 2016.

FIG. 27. (Top) The optical conductivity of ZrTe5 at 8 K at
frequencies below 1200 cm−1. The dotted (red) line is the linear
fitting of σ1ðωÞ. From R. Y. Chen et al., 2015. (Bottom) Optical
conductivity for TaAs at 5 K. The steep (blue) and shallow (black)
solid lines through the data are linear guides to the eye. The steep
(blue) line shows the Weyl part of the spectrum, while the shallow
(black) line comes from higher energy non-Weyl states. The inset
shows the spectral weight as a function of frequency at 5 K (solid
red curve), which follows an ω2 behavior (dashed blue line).
From B. Xu et al., 2016.
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oscillations] explicitly measure the rate at which the LLs are
depopulated as the field is increased. The condition for LL
formation is given by a generalized Lifshitz-Onsager quan-
tization expression

AF
ℏ
eB

¼ 2π

�
nþ 1

2
þ β þ δ

�
;

where AF is the cross-sectional area of the Fermi surface
normal to the field and n is the Landau level index that
depends inversely on B. δ is an additional phase shift that
results from three-dimensional warpings of the Fermi surface
that is 0 for a 2D cylindrical FS and �1=8 for a 3D FS
(Shoenberg, 1984; Murakawa et al., 2013).
The additional phase shift β equals zero in conventional

parabolic bands. However, Roth (1966) showed that for
arbitrary dispersions other values can occur, which can be
calculated with knowledge of the Bloch functions. Mikitik and
Sharlai (1999) showed that the expressions of Roth (1966)
could be recast in a form such that β can be equivalent to the
Berry’s phase experienced by an electron as it travels around a
closed loop in momentum space (Mikitik and Sharlai, 1999).
One of the distinguishing features of Dirac electrons is this
nontrivial Berry’s phase, which in principle can be revealed by
QO experiments.
Such SdH oscillation experiments have appeared exten-

sively in studies of 2D materials such as graphene (Novoselov
et al., 2005; Zhang et al., 2005) and topological insulator
surface states (Analytis et al., 2010; Qu et al., 2010; Sacépé
et al., 2011; Taskin and Ando, 2011). For a 2D gapless Dirac
system such as graphene, the Dirac point plays the role of an
infinitely thin solenoid in momentum space with a fictitious
effective magnetic field, which is the Berry curvature. In
related massive Dirac systems (for instance boron nitride) the
Berry curvature is spread over a region in momentum space
near the band minimum. The effect is still felt in regions of
zero Berry curvature through an effective vector potential—
the Berry connection (Xiao, Yao, and Niu, 2007). Therefore a
closed path that encircles a region of net Berry curvature picks
up a Berry’s phase that can be identified as β. In 3D, it is in a
similar sense that Weyl points can be considered as sources of
Berry curvature as discussed.
In graphene (Zhang et al., 2005), one locates the peaks and

valleys of the SdH oscillations as a function of 1=B and plots
them against Landau index n in a “fan” diagram. In the ideal
case this results in straight lines, with a slope that is the SdH
oscillation frequency (which gives the FS area) and an
intercept with the n axis that gives the Berry’s phase β in
units of π. In practice, curvature of the bands can lead to
deviations from linearity. In graphene, this is a minor effect,
but the intercept is most accurately quantified if low LL
indices are measured. For this high fields and low carrier
densities are required. Generally, the latter is more achievable
in 2D systems, which can be gated.
In 3D materials, it is generally less straightforward to

determine the Landau indices without a detailed analysis.
First, generally densities are high enough that it is difficult to
access low LL indices. Second, many materials of interest
have complex band structures with both linear and quadratic

dispersions in the relevant energy range. This is particularly
true in the complex band structures of real materials such as
WSM and DSM candidates. Nonidealities in various models
and the effect of gap opening terms (e.g., Zeeman fields) have
been discussed by Wright and McKenzie (2013) and Wang,
Lu, and Shen (2016). It is only in certain limits that a clear
picture can be obtained.
Even for idealized band structures, interpretation may be

complicated. For instance, Wang, Lu, and Shen (2016)
considered a simple model of a WSM in which one can
explicitly tune the relative contribution of linear (EA) and
quadratic (EM) terms to the energy spectrum. The presence of
a quadratic contribution arising in this fashion is more
appropriate in modeling quantum oscillation experiments than
the continuum Dirac model considered in Sec. II.B. A number
of the complications pointed out can be seen explicitly even in
this relatively simple band structure. From the numerical
simulations shown in Fig. 29 for a T breaking WSM, for the
energy range where EA < EM the phase shift β is a strong
function of EF. Moreover, even for small values of EF, the
phase shift is a strong function of the band parameters and is
not simply related to the number of Weyl nodes encircled by a
FS contour. It is only in the EF → 0 and ∞ limits does the
numerical simulation recover the simplest analytic results of
β ¼ −1=8 and −5=8 phase shifts for 3D linear and quadratic
bands, respectively. The phase shift even becomes nonmono-
tonic in the region where EF is near the Lifshitz transition.
Near the Lifshitz transition for EA ≈ EM pronounced “beats”
could be found in the spectra making the whole scheme break
down altogether. Such simulations show that quantum oscil-
lation experiments described by even such a simple band
structure must be interpreted carefully.
A number of additional complications associated with the

measurements themselves need to be addressed. As LLs form,
the density of states at EF changes giving oscillations in various

FIG. 29. The quantum oscillation phase shift β (labeled ϕ and
given in units of 1=8) vs EF for different relative strengths of
linear (EA) and quadratic (EM ¼ 0.05 eV) terms in the energy
spectra. The curves break because β cannot be fit in the parameter
range where beats form. The insets indicate the location of Fermi
energy with respect to the model band structure. The vertical
dashed line marks the Lifshitz transition where the system goes
from two Weyl pockets to a single larger one. From Wang, Lu,
and Shen, 2016.
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quantities as a function of 1=B. In resistivity measurements it
was debated whether one wants to fit minima or maxima in the
resistivity. This depends on a number of issues, including
whether or not ρxx is greater or lesser than ρxy (Hu et al.,
2016). Wang, Lu, and Shen (2016) argued that even for the
longitudinal geometry the maximum resistivity would be found
when EF is near the Landau level edge due to the vanishing
velocity there and hence resistivity maximum should be used.
Moreover, even more complications arise in materials with
multiple bands that cross EF. In addition to simply just
complicating the oscillation patternwith additional backgrounds
andoscillations, asLLs depopulatewith increasing field, charges
may move between bands to lower the total energy. This was
documented long ago (Woollam, 1971) [and more recently
(Schneider et al., 2009)] in graphitewhere the relativemovement
of the Fermi energy between bands can be considerable as the

quantum limit is approached giving oscillations that are not
periodic in 1=B. This obviously interferes with a straightforward
extrapolation of 1=B to infinite field.
Despite all of this, quantum oscillations have been mea-

sured in various WSMs and DSMs, and although the inter-
pretation is challenging there is some evidence for nontrivial
Berry’s phase effects. See Wright and McKenzie (2013) or
the SI of Wang, Lu, and Shen (2016) for a review of
experimentally observed phase offsets. Representative data
for quantum oscillations in a DSM can be seen in Fig. 30
for Cd3As2 The index plot can be linearly fitted for both
samples measured, giving intercepts of 0.56 and 0.58
providing evidence for a Berry phase’s offset of order π
(He et al., 2014). Similar data can be found elsewhere
(Desrat et al., 2015; Narayanan et al., 2015). Some evidence
exists for a crossover to a trivial Berry phase regime at
higher field under high magnetic fields that are directed
away from the 001 direction (Cao et al., 2015). Such a field
can cause a gap to form as it breaks the rotational symmetry
that protects the Dirac point (Wang et al., 2012). Evidence
for a nontrivial phase also exists in the quasi-2D system
purported Dirac system ZrTe5 (X. Yuan et al., 2016),
although it is still unclear if this system has a small band
gap and is in fact trivial (Y. Zhang et al., 2017). This system
is believed to be close to a band touching transition (Weng,
Dai, and Fang, 2014) and may be sensitive to materials
preparation.
Interpretation of similar experiments on the TaAs class

of materials is much more complicated. For instance,
de Haas–van Alphen measurements (Sergelius et al.,
2016) on NbP show signs of multiple bands some of
which are Weyl FS candidates with low cyclotron masses
and a nontrivial Berry phase, and some of which are
parabolic with a higher effective mass and close to trivial
Berry phase. For fields applied in the [100] and [010]
directions the “β” band is identified as a Weyl FS with a
nontrivial Berry phase’s offset of 0.48π. This band was
believed to come from the W2 Weyl pocket. However,
showing the complexity of the interpretation of such
experiments, an unidentified “θ” band with a Berry phase
of 0.54π was found from fields applied in the [001]
direction. This feature is not straightforwardly assigned
to the W1 Weyl node as it is expected to be ∼60 meV
below EF in a manner shown in Fig. 17 showing the
limitations inherent in using this technique for a definitive
topological characterization in a multiband system. A
number of other bands were found with intercepts of less
than 0.25π that are likely deriving from conventional
parabolic bands. Similar results have been obtained using
Shubnikov–de Haas oscillations (Hu et al., 2016). The
situation seems to be simpler in TaAs due to the more
favorable positioning of EF, but even there there are three
different types of Fermi surface pocket oscillations found
in magnetization, magnetic torque, and magnetoresistance
measurements (Arnold, Naumann et al., 2016). From a
comparison to band structure calculations, two appear to
be topologically nontrivial electron pockets around the W1
and W2 points and one is a trivial hole pocket.
In principle magneto-optical experiments have the

possibility of revealing the Berry’s phase in semimetals

FIG. 30. (Top) The oscillatory component of the resistance Rxx
of Cd3As2 as a function of 1=B extracted from Rxx. A smooth
background has been subtracted. (Bottom) Landau index n
plotted against 1=B. The closed circles denote the integer index
(Rxx valley), and the open circles indicate the half integer index
(Rxx peak) for two different samples. The index plot can be
linearly fitted for both samples measured, giving intercepts of
0.56 and 0.58. Adapted from He et al., 2014.
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(Illes, Carbotte, and Nicol, 2015; Malcolm and Nicol, 2015),
but such experiments and analysis have not been attempted in
WSM or DSM candidates. They have given important
information in graphene (Orlita and Potemski, 2010).

2. The chiral anomaly

As discussed in Sec. II, one of the much touted properties of
the WSM and DSM systems has been that of the chiral
magnetoresistance effect. This is an effect that derives from a
nonzero E ·B that can pump charges from one Weyl cone to
the other through their band structure connection below EF.
The axial charge pumping creates an out-of-equilibrium
distribution of charges between the Weyl nodes. In steady
state, the charge pumping is relaxed through internode
scattering. The chiral anomaly in a WSM will lead to a
negative magnetoresistance when the magnetic field is parallel
to the current. In contrast in metals or conventional semi-
conductors, the longitudinal MR is typically weak, positive,
and usually not very sensitive to the magnetic field direction.
Therefore, a negative longitudinal MR which depends on the
relative orientation of E and B has been regarded as the most
prominent signature in transport of the existence of 3D Weyl
points. A strong negative angular longitudinal MR has been
reported for TaAs, NbAs, TaP, and NbP and interpreted as this
chiral magnetic effect (X. Huang et al., 2015; Shekhar et al.,
2015; X. Yang et al., 2015; Du et al., 2016; Wang et al., 2016;
C.-L. Zhang et al., 2016). Shown in Fig. 31 is some
representative data from C.-L. Zhang et al. (2016). Three
principle regions are seen as a function of the magnetic field.
At fields close to zero, an initial sharp increase in the

resistance is seen. Although the low field MR has a shape
that corresponds to the low temperature −

ffiffiffiffi
B

p
contribution to

the magnetoconductance of the weak-antilocalization effect
expected in a WSM (Lu and Shen, 2015), the fitted coefficient
is far larger than expected. At intermediate fields, the negative
longitudinal MR is found.
At even higher fields, the longitudinal MR starts to increase

again. These features were found to be largely independent of
the direction of the applied fields with respect to crystallo-
graphic axes as long as E and B were coaligned. As discussed
in Sec. II.C.2, in the CME the negative longitudinal MR can
be fitted with a contribution to the magnetoconductance that
goes as ΔσCME ¼ NCWB2, where N is the number of Weyl
nodes and CW is the chiral coefficient, the simplest form of
which is e4τa=4π4ℏ4E2

F (Son and Spivak, 2013; Burkov,
2015a). Here τa is the internode relaxation time. As shown in
Fig. 31 the fitted chiral coefficient was found by C.-L. Zhang

FIG. 31. (Top) Inferred longitudinal MR for TaAs samples at
2 K for E and B in the a crystallographic direction. The short
(green) curve is a fit to the longitudinal MR data in the
semiclassical regime based on a chiral anomaly model. (Bottom
left) Chemical potential dependence of the chiral coefficient CW .
(Bottom right) Angular dependence of the chiral coefficient CW .
Adapted from C.-L. Zhang et al., 2016.

FIG. 32. (Left) Inferred magnetoresistance of Na3Bi when B
lies in the x-z plane at an angle θ with respect to E that points in
the x direction. Plotted as a function of the field for different
angles. (Right) Magnetoconductance plotted as a function of the
angle for different fields. Adapted from Xiong et al., 2015.
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et al. (2016) to have a strong dependence both on the relative
angle between E and B and on the sample’s Fermi energy.
Similar behavior has been seen in DSMs such as

Bi0.97Sb0.03 (Kim et al., 2013), Na3Bi (Xiong et al., 2015),
Cd3As2 (Feng et al., 2015; Li et al., 2015; Liang et al., 2015;
H. Li et al., 2016; C. Zhang et al., 2017), and ZrTe5 (Q. Li
et al., 2016), and the quadratic band touching system
(Hirschberger et al., 2016). In these systems a magnetic field
may create Weyl nodes which allows charge to be pumped
from one node to the other in a way that is forbidden in a DSM
in zero field. As discussed in Sec. III.D.2, unlike the WSM
case it is not the momentum difference between nodes but the
same symmetry that protects the Dirac node that is expected to
suppress the intervalley scattering. In Fig. 32, we show some
representative data on Na3Bi. One can see the same character-
istic strong dependence of a negative longitudinal MR signal
on the relative angle of E and B as in TaAs. It is interesting to
note that these data do not have the large positive longitudinal
MR at low and high B characteristic of TaAs and its family
members.
Although such data have been extensively interpreted as

evidence for the CME, it is not clear that in most cases the
materials are in a regime in which the effect can be easily
realized. First, in materials such as TaP, it appears (Arnold
et al., 2016) that EF is such that the electron and hole Fermi
surface pockets surrounding the W1 nodes contain a pair of
Weyl nodes and hence the total Berry flux through the Fermi
surface is zero. Second, it was pointed out recently that many
of these materials have a large enough transverse magneto-
resistance to have the effect corrupted by the classic “current
jetting” phenomenon in compensated semiconductors (Dos
Reis et al., 2016; Z. Yuan et al., 2016) in which the current
becomes narrowly directed along the applied field due to a
very large field-induced transverse resistance. Historically, the
observed effect was known as “anomalous longitudinal
magnetoresistance” in materials such as antimony and bis-
muth (Steele, 1955; Babiskin, 1957; Yoshida, 1976), but was
later shown to arise from current inhomogeneity inside the
sample from large transverse magnetoresistance. It is a strong
effect in materials that possess a large field-induced
anisotropy of the conductivity, such as almost compensated
high-mobility semimetals (Pippard, 1989). In compounds
such as bismuth the transverse MR can be larger than as
107 at 4.2 K in 5 T (Alers and Webber, 1953) causing current
to flow in the direction of the applied magnetic field and
almost independent of the direction of E. Different mecha-
nisms can give rise to strong transverse MR, but all predict it
to be enhanced in low density systems. Classic two-band
magnetotransport predicts a parabolic-field-dependent mag-
netoresistance with a magnitude that is enhanced with
increasing mobility. For exactly compensated semiconductors,
this classic transverse MR should not saturate. In another
mechanism, Abrikosov (1998) predicted that a linear field
dependence of the MR is expected near a linear band touching
when the magnetic field is beyond the quantum limit. Spatial
mobility fluctuation has also been predicted to cause linear
MR anisotropy (Parish and Littlewood, 2003). Also note that
the possibility of similar phenomena has been suggested for a
more generic 3D Fermi surface without the topology of aWeyl

node in the presence of parallel electric and magnetic fields
(Goswami, Pixley, and Das Sarma, 2015; Andreev and
Spivak, 2017). Moreover, it was pointed out that even
materials that have their chemical potential above the van
Hove point in the Weyl band structure have a nontrivial Berry
curvature (despite there being no well-defined chirality),
which may give a quadratic in field contribution to the
magnetoconductivity (Cortijo, 2016a).
The possibility of current jetting deserves further discus-

sion. For samples with a large conductivity anisotropy A ¼
σzz=σxx current flows predominantly in the high conductivity
direction. Large conductance anisotropies can occur in sys-
tems with large transverse MR, such as compensated semi-
metals (Pippard, 1989). It is known that for small contacts and
samples with a nonideal aspect ratio and for cases of a very
strong anisotropy the current forms a “jet” between the
contacts. This nonuniform current distribution inside the
sample means that the experimentally measured potential
difference between voltage contacts placed between the
current contacts is not proportional to the intrinsic resistance.
The inhomogeneous current distribution manifests itself in
additional characteristics, such as a strong dependence of the
inferred longitudinal MR on the position of the contacts and
strong angular dependences. Even negative total resistances
can be observed if the magnetic field is not extremely well
aligned with the current direction (Dos Reis et al., 2016).
Shown in Fig. 33 is a simulation for the potential distribution
for different conductivity anisotropies A, which may reflect
strong transverse magnetoresistance from a magnetic field in
the ẑ direction (Dos Reis et al., 2016). A large MR anisotropy
strongly distorts the equipotential lines. Even for anisotropies
as low as 10, the effect is visible in even this close to ideal
geometry with the l=w aspect ratio close to 5.
The TaAs material class has both extremely high mobility

(∼105 cm2=V s) and large transverse magnetoresistance
(∼80 000%) at low temperature (X. Huang et al., 2015) in
all cases making it likely that current jetting dominates even
for a large aspect ratio Hall bar geometry. In the TaAs case, the
negative MR disappeared as the field was rotated only 2° away
from the current (X. Huang et al., 2015). Moreover, the strong
dependence of the observed negative longitudinal MR on
1=EF from Fig. 31 can naturally be explained in terms of the

FIG. 33. Simulated potential distribution for different conduc-
tivity anisotropies A ¼ σzz=σxx and a geometry of 0.4 × 0.3 ×
2.0 mm3 (w × t × l). The lines are contour lines of the equi-
potentials. The increased MR anisotropy strongly distorts the
equipotential lines. From Dos Reis et al., 2016.
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strong transverse magnetoresistance of an almost compen-
sated semiconductor being projected into the longitudinal
direction. Strong negative longitudinal MR has also been
inferred recently for non-WSM non-DSM systems such as
TaAs2 and NbAs2 (Luo et al., 2016; Z. Yuan et al., 2016).
Convincing evidence for current jetting in this material class
has been shown that by simply putting voltage probes across
the whole sample (Z. Yuan et al., 2016) the effective negative
MR could be made to disappear (Fig. 34). It is fair to say that
currently there is no convincing evidence of the chiral
anomaly in WSM systems. All existing experiments appear
to be dominated by the current jetting effect.
Although the situation may be less severe in the DSMs with

lower mobilities [μ ∼ 2600 cm2=V s in Na3Bi (Xiong et al.,
2015), but still as high as 9 × 106 cm2=V s in Cd3As2 (Liang
et al., 2015)] and smaller transverse MRs [approximately 10 at
10 T in Na3Bi (Xiong et al., 2015), but greater than 200 in
ZrTe5 (Q. Li et al., 2016), and almost 1000 in Cd3As2 (Liang
et al., 2015) at approximately the same field], the anisotropy
can still be appreciable. Moreover some of the experiments
performed on these materials have been on samples with far
less than the ideal shape that would minimize the effects of
current jetting. These issues may be resolved by experiments
that vary the sample shape and position of the contacts.
Current jetting is expected to be less of a concern in the
quadratic band touching system GdPtBi (the transverse MR is

only of the order of 3) (Hirschberger et al., 2016; Shekhar
et al., 2016; Suzuki et al., 2016) and some checks for
inhomogeneous current have been performed (Hirschberger
et al., 2016). It was proposed (Shekhar et al., 2016) that the
mechanism for turning a quadratic band touching into a Weyl
system in the field was enhanced by the role of Gd moments
(even with the large g factor of 40 in GdPtBi, the Zeeman scale
is too small to split the nodes appreciably) as no such negative
MR was seen in the YPtBi system (Fig. 35). However, one
must bear in mind as this is a magnetic system and possible
alternative origins of the angular dependence are directional
magnetoresistance. In such a mechanism, the spin is assumed
to follow the direction of the applied field and spin-orbit
coupling gives an anisotropy in the scattering rate when the
current is aligned along or perpendicular to this direction (Van
Gorkom et al., 2001).
To what extent can current jetting account for the negative

longitudinal MR of DSMs and quadratic band touching
systems? This is an important open question for future
investigation. Since current jetting can manifest even for
small anisotropy ratios A when geometries are nonideal,
further experiments are needed to clarify the origin of
longitudinal MR. We also note that in virtually every experi-
ment to date the relative angular dependence is much stronger
than the E · B form would suggest. Although there have been
proposals about how such deviations may arise intrinsically in
a DSM (Burkov and Kim, 2016) (see Sec. III.D.2), as an
exceedingly strong angular dependence is the precise expect-
ation from current jetting, any deviations from cos θ need to be
carefully considered.
Given all these considerations, is it still possible to extract

information about the chiral magnetic effect? One must ensure
current homogeneity inside the sample. As shown in Fig. 34,
one may improve the reliability of the measurement by using
both voltage and current probes that reach across the sample,
but even then it can still be challenging to get a homogenous
current. Even for uniformly applied silver paste contacts
applied on the entire end of the sample, the current tends
to enter where the local contact resistance is minimum. In
classic experiments on samples such as potassium metal that
have a very large transverse magnetoresistance, Lass (1970)
used contacts made with liquid Hg that made an amalgamated
bond with a long skinny sample, but even there it was judged

FIG. 35. Angular dependence of magnetoresistance of GdPtBi
and YPtBi. Adapted from Shekhar et al., 2016.

FIG. 34. Demonstration of the current jetting effect in the non-WSM or DSM system TaAs2. (a) Measured apparent longitudinal MR
for when the contacts are not fully crossing the sample. (b) The same sample but for contacts placed such that fully cross the sample.
From Z. Yuan et al., 2016.
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that the current distribution inside was inhomogeneous. To do
such measurements, one wants to use an ideal geometry with
large aspect ratio l=w. The resistance anisotropy can be
viewed as an effective changing of the aspect ratio by a
factor of 1=

ffiffiffiffi
A

p
(Pippard, 1989). Anisotropy ratios of 103 in

the WSM such as TaAs put severe constraints on sample
geometries. And with conventional aspect ratios of the order
of 5, the effects of inhomogeneous current distribution can
manifest even with the comparatively low anisotropies found
in DSM systems. We believe these issues make it hard to
demonstrate conclusive signatures of the CME in the longi-
tudinal MR for high-mobility systems. Other (noncontact)
probes of “dc” transport are essential. In this regard, the older
classic literature may be a guide (Simpson, 1973).
One intriguing result that may be evidence for the chiral

anomaly is the observation of the large magneto-optical Kerr
effect in Cd3As2 crystals the size of which is dependent on the
applied in-plane E ·B. Even up to room temperature, C.
Zhang et al. (2017) found that the Kerr rotation followed an
almost pure cos θ dependence of E ·B with a maximum Kerr
rotation of over 0.04°. Putting aside its unexplained extremely
large value [which is even greater than that found in some
ferromagnets (J. Xia et al., 2009)] this result closely follows
the prediction of Hosur and Qi (2015), in which coaligned
electric and magnetic fields will pump charge into one Weyl
node from another, allowing the intrinsic gyrotropic coeffi-
cient of a node to manifest, giving net optical activity.

3. Surface state transport

As discussed, the surfaces of WSM and DSM systems are
expected to have unique properties. Unfortunately, due to the
inherently conducting nature of the bulk of these materials,
surface transport signatures are hard to isolate. This is unlike
the case of topological insulators, where after sufficiently
insulating bulk materials were grown, definitive surface
transport signatures soon followed (Analytis et al., 2010;
Checkelsky et al., 2011; Xu et al., 2014; Wu et al., 2016).
One of the most promising avenues to isolate the surface

transport is through measurements that take advantage of the
hybridization between surface and bulk states. As discussed in
Sec. II.C.5, Potter, Kimchi, and Vishwanath (2014) proposed
a unique form of quantum oscillations in WSMs that involves
the hybrid motion of electrons through half an orbit on the
surface via a Fermi arc, transport through the bulk to the
bottom surface, half an orbit on the other surface via the other
Fermi arc, and then transport back to the beginning of the arc
on the top surface. The relevant quantization condition is
given in Eq. (25). The orbit is different from the typical closed
path that electrons take on going around a conventional Fermi
surface. Because of phase factors accumulated in the propa-
gation through the bulk (where no Lorentz force is experi-
enced) there is an explicit dependence to the observed signal
on the thickness of the sample and/or the length of the
classical trajectory.
Moll et al. (2016) investigated the possibilities of these

unique orbits in Cd3As2 by performing transport experiments
on focused ion beam machined nanostructures of a variety of
shapes and size scales (∼150 nm). As discussed, Cd3As2 is a
DSM and to manifest this physics requires the material

functioning as two independent Weyl subsystems overlapping
in k space. Experiments on these samples gave evidence for
these unconventional orbits in a few different ways. When the
field is applied in the long direction of the sample, quantum
oscillations are exhibited, the frequency FB is in good
agreement with previous measurements of bulk crystals
(He et al., 2014). However, when the field is applied in the
thin direction of the sample, a second oscillation frequency
FS ¼ 61.5 T appears that can be distinguished from the
higher harmonics of the bulk. This higher frequency exhibits

FIG. 36. (a) Scanning electron microscope image of triangular
and rectangular devices used to observe hybrid surface-bulk
quantum oscillations. The rectangular sample is 0.8 μm wide,
3.2 μm tall, and 5 μm long. The other device features an
equilateral triangular cross section with a base of a ¼ 2.7 μm.
Both devices have a similar cross-sectional area and circum-
ference of the cross section. The crystallographic direction
perpendicular to the surface of the rectangular device is [102]
and [010] parallel to the surface. (b) Sketch of the hybrid surface-
bulk Weyl orbits for rectangular and triangular cross sections.
(c) Frequency spectrum of the triangular and rectangular samples
for field orientations perpendicular to each of the surfaces (0° for
the rectangle and 60° for the triangle). From Moll et al., 2016.

N. P. Armitage, E. J. Mele, and Ashvin Vishwanath: Weyl and Dirac semimetals in three- …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015001-43



a distinct 1= cos θ variation with the angle of the applied field
that is emblematic of two-dimensional Fermi surfaces.
However, the frequency spectrum of the additional quantum
oscillations is found to be strongly thickness dependent and is
observed only in samples where the sample thickness is
shorter than the bulk mean-free path showing the bulk plays
an essential role in the fashion anticipated.
Shown in Fig. 36(a) from Moll et al. (2016) is a scanning

electron microscope of two devices made with triangular and
rectangular cross sections. Both devices have a similar cross-
sectional area and circumference. As sketched in Fig. 36(b),
the expectation is that the unconventional orbits for the two
devices should be different. In the data the rectangular device
shows frequencies that reveal the presence of both unconven-
tional orbit and the conventional bulk one, but the triangular
device shows only the bulk frequency. Presumably this occurs
because in the triangular device destructive interference
results from the sum of oscillations with random phases,
rendering the quantum oscillations unobservable in experi-
ment. However, given that Cd3As2 is a DSM, it would be
important to reproduce this experiment, particularly on a
WSM material.
Evidence for surface state transport has also been inferred

from transport measurements on low carrier concentration
Cd3As2 nanowires that have a large surface-to-volume ratio
(L.-X. Wang et al., 2016). When a large enough field is
applied along the length of the nanowire, they found that the
conductance oscillates as a function of magnetic flux with
peaks at Φ ¼ ðnþ 1=2Þh=e, e.g., peaks at odd integers of
h=2ewith a period of h=e. The 1=2 is interpreted as in the case
of topological insulator nanoribbons (Peng et al., 2010) as
indicative of a π Berry’s phase (Bardarson, Brouwer, and
Moore, 2010; Zhang and Vishwanath, 2010).

4. Nonlinear probes

In addition to the considerable contribution that optical
techniques in the limit of linear response can make to the study
of these systems, it appears that nonlinear optical probes may
be able to give particular insight. Generally these effects such
as high harmonic generation, photovoltaic effects, shift (dc)
currents, and nonlinear Kerr rotations are related to the Berry
connection and Berry curvature (Moore and Orenstein, 2010;
Hosur, 2011). For instance, it can be shown that the second
harmonic generation (SHG) signal can be related to the shift
vector R, which is a gauge-invariant length formed from the
momentum derivative of the phase of the velocity matrix
element and the difference in the Berry connection (Morimoto
and Nagaosa, 2016). It was predicted (Morimoto et al., 2016;
Wu et al., 2016) that transitions that arise near Weyl nodes
between bands with nearly linear dispersion should give a near
universal prediction in the low ω limit for the nonlinear
susceptibility as

χð2Þ ¼ gðωÞhv2Ri
2iω3ϵ0

. ð45Þ

With the density of states gðωÞ proportional to ω2, the SHG
signal is predicted to diverge as 1=ω. Although this result is
reminiscent of the ω dependence of the optical conductivity

discussed in Sec. V.B.1, the 1=ω divergence is a unique
signature for inversion-breaking WSMs, in particular,
because it vanishes in DSMs. However, similar to the case
of the linear in ω conductivity, the SHG divergence will be cut
off by disorder and nonzero Fermi energy in real materials.
Recently Wu et al. (2016) found a giant, anisotropic χð2Þ at
800 nm (1.55 eV) in TaAs, TaP, and NbAs, which may be
related to this effect. In the spectral range measured, the effect
is of the order of 7000 pm=V, which is an order magnitude
larger than in GaAs, which is the material with the next largest
coefficient. In the future it is important to probe SHG and the
shift current at even lower frequency to look for the
dependence of ω. Other effects have been proposed such
as a nonlinear Hall effect arising from an effective dipole
moment of the Berry curvature in momentum space
(Sodemann and Fu, 2015) and a photoinduced anomalous
Hall effect (Chan et al., 2016) for WSMs and photogalvanic
effects (Cortijo, 2016b) in DSMs.
In DSM systems there is no direct photocurrent without

driving electric field (Shao and Yang, 2015), but because of
their spin selective transitions the photoconductivity is aniso-
tropic for polarized radiation. Chan et al. (2017) proposed that
inversion symmetry breaking WSMs with tilted Weyl cones
(type II most effectively) and doped away from the Weyl point
will be efficient generators of photocurrent and can be used as
low frequency IR detectors. Such a photocurrent was recently
demonstrated via the circular photogalvanic effect (CPGE)
(Xie et al., 2017) in TaAs. The CPGE is the part of a
photocurrent that switches its direction with changes to the
handedness of incident circular polarization. It can be shown
(Moore and Orenstein, 2010) to be sensitive to the anomalous
velocity derived by Karplus and Luttinger (1954) that was
later interpreted as a Berry phase effect (Sundaram and Niu,
1999; Jungwirth, Niu, and MacDonald, 2002). Xie et al.
(2017) also pointed out that such experiments can uniquely
measure the distribution of Weyl fermion chirality in the BZ.
An interesting proposal of de Juan et al. (2017) was that

of a quantized response also in the CPGE of inversion
symmetry broken WSMs that possess no mirror planes or
fourfold improper rotation symmetries (e.g., structurally
chiral). The CPGE usually depends on nonuniversal
material details. Morimoto et al. (2016) and de Juan et al.
(2017) predicted that in Weyl semimetals and three-dimen-
sional Rashba materials without inversion and mirror
symmetries the trace of the CPGE is quantized (modulo
multiband effects that were argued to be small) in units of
the fundamental physical constants. It was proposed that
the currents obey the following relation:

1

2

�
dj↻
dt

−
dj↺
dt

�
¼ C

2πe3

h2cϵ0
I; ð46Þ

where C is the integer-valued topological charge of the
Weyl point and I is the applied intensity. Alternatively, the
right-hand side of the equation can be expressed as
Cð4παe=hÞI, where α is the fine-structure constant. In
Eq. (46), the currents for left and right circular polarization
are perpendicular to the polarization plane. Alternatively
the quantity jsat↺ − jsat↻ may be measured if the relaxation
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time τ is sufficiently long and known independently. An
attractive property of this response is that it is related to
the chiral charge on a single node. The total node chirality
in the BZ must of course be zero; however, this does not
prevent a CPGE. In a P breaking material with no mirror
planes, the Weyl nodes of opposite chirality do not need to
be at the same energy. One node can be Pauli blocked
rendering it inert and giving a quantized response for some
finite range in frequencies. The proposed double Weyl
system SrSi2 (S.-M. Huang et al., 2016) that has no mirror
planes (unlike TaAs) or RhSi (Chang et al., 2017) (which
is predicted to have sixfold-degenerate double spin-1 Weyl
nodes and a fourfold-degenerate node) may be good
candidates for this effect. Its predicted magnitude is well
within the range of current experiments. Using the uni-
versal coefficient e3=ℏ2cϵ0 ¼ 22.2 A=Wps, de Juan et al.
(2017) predicted for τ ∼ 1 ps a steady state photocurrent
of ∼2 nA=ðW=cm2Þ, which is approximately 100 times
that found in the topological insulator films (Okada
et al., 2016).
It has been appreciated that the low-energy linear dispersion

of WSMs and DSMs make them potentially useful for
plasmonic applications particularly in the retarded (low
frequency) limit (Hofmann, Barnes, and Das Sarma, 2015;
Hofmann and Das Sarma, 2015, 2016; Zhou, Chang, and
Xiao, 2015). T brokenWeyl phases can support nonreciprocal
one-way surface plasmon polaritons (Zyuzin and Zyuzin,
2015; Hofmann and Das Sarma, 2016).

VI. RELATED STATES OF MATTER

The electronic WSM and DSM states of matter dis-
cussed here provide inspiration and a source for analogies
for related realizations in other physical systems. There
may be Weyl or Dirac-like states of matter that do not have
electrons as their fundamental degrees of freedom [for
instance, photons (Khanikaev et al., 2013), phonons (Xiao
et al., 2015; Rocklin et al., 2016; Yang and Zhang, 2016),
or magnons (F.-Y. Li et al., 2016; Mook, Henk, and
Mertig, 2016)]. Or WSM and DSM systems may serve as
platforms for phenomena such as new forms of super-
conductivity (Meng and Balents, 2012; Yang, Pan, and
Zhang, 2014; Li and Haldane, 2015). It is also the case in
which some aspects of DSMs and WSMs were anticipated
in essential aspects of exotic superconductors or super-
fluids (Volovik, 1987, 2003; Schnyder and Brydon, 2015)
and important connections can be made here. Moreover the
stable band touchings found in WSMs and DSMs are just
two of the possibilities for interesting semimetal states of
matter. Here we discuss some of these related states in
detail.

A. Topological line nodes

In addition to Weyl and Dirac nodes, other zero gap
semimetal possibilities exist. In Weyl and Dirac semimetals
bands touch at points in the 3D BZ. If the band touchings
occur along lines in the 3D BZ, these states are termed
topological nodal line semimetals (Burkov, Hook, and
Balents, 2011) and have been reviewed by Fang et al.

(2016). Nodal line semimetals are expected to have
particular transport properties including a number of
different conduction regimes as a function of temperature,
doping, and impurity concentration that arise from a
Coulomb interaction that falls as 1=r2 over a large range
in r and a weak-localization correction with a strongly
anisotropic dependence on the magnetic field (Syzranov
and Skinner, 2017). They may have been observed in
ZrSiS (Neupane et al., 2016; Schoop et al., 2016),
PbTaSe2 (Bian et al., 2016a), HfSiS (Takane et al.,
2016), and TlTaSe2 (Bian et al., 2016b) via ARPES.
Next we discuss some basic aspects of these systems.
First, we note that typically the band touching lines are not
expected to be at the same energy so the Fermi surface
itself is not expected to be a line in the 3D BZ, but rather a
collection of 2D surfaces. Under what conditions can line
nodes appear? There are two distinct scenarios, depending
on whether we neglect or include spin-orbit coupling.

1. Nodal lines in the absence of spin-orbit coupling

In the absence of spin-orbit coupling (or in the limit where it
is small), the spin SU(2) symmetry is retained and we can
effectively ignore this degeneracy of the bands. If in addition
we have both time reversal and inversion symmetry P, the
combined action ~T ¼ T P leaves the crystal momentum
unchanged and acts as a local time reversal symmetry in
the BZ. Furthermore, we can set T 2 ¼ þ1 since we ignore the
spin degree of freedom. With the same symmetries it is known
that the 2D graphene Dirac nodes cannot be gapped, sug-
gesting that it is a 2D topological semimetal. By extension, we
should expect a line node in 3D with these symmetries. Indeed
as discussed by Kim et al. (2015) there is a Z2 index
associated with loops in the BZ that encircle line nodes.
This ensures the stability of the line nodes and also implies
that graphene is a topological semimetal. Surprisingly, there is

TABLE III. Periodic table of topological insulators and super-
conductors. The ten symmetry classes are labeled using the notation
of Altland and Zirnbauer (1997) (AZ) and are specified by the
presence or absence of T symmetry, Ξ particle-hole symmetry, and
Π ¼ T Ξ chiral symmetry. Here �1 and 0 denote the presence and
absence of symmetry, with �1 specifying the value of T 2 and Ξ2. As
a function of symmetry and space dimensionality d, the topological
classifications (Z, Z2, and 0) show a regular pattern that repeats
when d → dþ 8. Bold entries are referred to in the text. From
Ryu et al., 2010.

Symmetry d

AZ T Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0
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a second Z2 invariant associated with surfaces in momentum
space, much like that used to characterize Weyl nodes (Fang
et al., 2015).
To understand these in a unified fashion, let us revisit the

procedure to identify topological semimetals, using Weyl
semimetals as an example. We first choose a submanifold in
thed-dimensional BZ that has dimension d0 < d, where there is
a band gap. We can then treat the band structure on this
submanifold like that of a gapped insulator and use the
classification scheme for band insulators summarized in
Table III. For the case of Weyl semimetals, d ¼ 3; d0 ¼ 2
and the absence of symmetry puts us in class A. The existence
of an integer Z classification of d0 ¼ 2 insulators by Chern
number implies that if there is a nontrivial Chern number on the
surface, it leads to Weyl semimetals with point nodes.
Extending this to other situations with symmetry requires
the symmetry to be present for any choice of submanifold. The
combination ~T ¼ T P fixes the crystal momentum, and one
may then expect semimetals with this symmetry to be classified
by the class AI for which ~T 2 ¼ þ1. However, unlike regular
time reversal, the crystal momentum remains invariant under
this effective time reversal, which does not allow us to read off
the answer directly from the table. However, one can make the
following adjustment—we can interpret the momentum as a
real space coordinate which would naturally be left invariant
under time reversal. Then, followingTeo andKane (2010),who
considered space dependent band structuresHðk; rÞ to account
for topological defects, the space coordinates can be treated as
“negative” dimensions. This is meaningful because of the
periodicity in dimension of the classification shown in
Table III. Therefore, nodal lines in 3D can be captured by
considering a d0 ¼ 1 submanifolds, which can be classified
according to (−1þ 8 ¼ 7)-dimensional topological insulators
in classAI. This has aZ2 classification consistent with themore
direct calculation of Morimoto and Furusaki (2014) and Fang
et al. (2015). However, we also noticed that a Z2 index for the
six-dimensional insulator corresponds to a d0 ¼ 2 submani-
fold. Indeed, there is an additional invariant for nodal lines in
3D that does not allow us to simply shrink a nodal line to zero
(Fang et al., 2015). As with Weyl nodes, these nodal “monop-
oles” must come in pairs to give net zero charge in the BZ.
Material candidates in this class of nodal semimetals

necessarily involve light elements for which the spin-orbit
interaction is expected to be weak. In graphene, this is
believed to be the case, and some of the early proposals of
3D line node semimetals also involved carbon based struc-
tures (Y. Chen et al., 2015; Weng, Liang et al., 2015), models
based on generalized 3D honeycomb networks in the absence
of spin-orbit coupling (Ezawa, 2016). Other proposals include
a new form of Ca3P2 (Xie et al., 2015). A review of materials
candidates is contained in Fang et al. (2016) and Yu
et al. (2016).

2. Nodal lines in spin-orbit coupled crystals

When spin-orbit interactions are included, the combination
of inversion and time reversal alone is insufficient to protect
nodal lines. Instead one necessarily requires a glide or twofold
screw symmetry which can protect a double nodal line, where
two sets of doubly degenerate bands cross each other. When

two orthogonal glides are simultaneously present, such nodal
line band touchings are symmetry enforced (Chen, Kim, and
Kee, 2016). An example of such a nodal line semimetal is
furnished by SrIrO3 (Fang et al., 2015; Chen, Kim, and
Kee, 2016).
Generally, topological semimetals are expected to be

accompanied by surface states such as Fermi arcs in the case
of Weyl semimetals. An additional requirement here is that the
surfaces preserve the symmetries that protect the semimetal
dispersion. In general the nodal line band touchings are not all
at the same energy. However, if particle-hole symmetry were
additionally present, which would pin the entire nodal line at
the same energy, the associated “drumhead” surface states
involve a flat band over the surface BZ enclosed by the
projection of the nodal line. In the absence of this additional
symmetry, one may still discern nearly flat surface bands
(Burkov, Hook, and Balents, 2011). However, in supercon-
ductors with nodal lines, the additional symmetry is indeed
present as we discuss next.
In either case, when the bulk system is doped so that the

Fermi surface surrounds the nodal line its Fermi surface may
be susceptible to various interaction driven instabilities. This
problem was studied by Nandkishore (2016) who suggested
that the leading instability on a toroidal Fermi surface in
the particle-particle channel would lead to a fully gapped
T -breaking chiral superconductor. At lower density, instabil-
ities in the particle-hole channel lead to gapless states that
can break either mirror or rotational symmetries (Sur and
Nandkishore, 2016).

B. Relation to nodal superconductors and superfluids

While there has been much recent effort dedicated to
studying and realizing topological superconductors, with a
full gap in the bulk and gapless modes at the edge, there is of
course extensive history of work on nodal superconductors
and superfluids, where the energy gap closes at points or lines
in the BZ (Leggett, 1975; Hu, 1994; Volovik, 2003). These
can then be understood in the framework of topological
semimetals, albeit with additional symmetries arising from
the superconducting nature of the gap. This can lead to
protected states at the boundary that are precisely at zero
energy. Here we focus on a few examples that are physically
relevant; a more general discussion can be found in Schnyder
and Brydon (2015).
Superfluid He-3 at milliKelvin temperatures forms a

paired superfluid. While at ambient pressure a fully gapped
topological superfluid is realized (the B phase), at higher
pressures a different A phase is obtained and is believed to be
described by the Anderson-Brinkman-Morel order param-
eter. This pairing spontaneously breaks time reversal sym-
metry and leads to a pair of nodal points where the gap
vanishes (Leggett, 1975). Qualitatively it may be understood
as a px þ ipy superfluid where spin up fermions pair (spins
being defined along the z axis) with the same pairing
function between spin down fermions. At the north and
south poles of the Fermi surface where px ¼ 0, py ¼ 0, and
pz ¼ �pF, the pairing function vanishes and leads to
opposite Weyl nodes. These are the superconducting analog
of Weyl nodes; their relation to chiral fermions was
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investigated by Volovik (1987, 2003). Here the role of charge
conservation is played by spin rotation invariance about the z
axis, which is respected by the pairing function. A direct
consequence is the presence of Fermi arc surface states at the
boundaries of the superfluid, as in Weyl semimetals, which
will be pinned at zero energy (Heikkilä, Kopnin, and
Volovik, 2011). Other nodal superconductors can realize
line nodes in the 3D BZ, and realize zero energy Andreev
bound states at the surface BZ momenta that lie within the
projections of these line nodes (Schnyder and Ryu, 2011).
Noncentrosymmetric superconductors such as CePt3Si
(Bauer et al., 2004) have been proposed as candidate
materials realizing this physics (Schnyder and Brydon,
2015). In a 2D system, the equivalent is a point node in
the gap. The best known example of this is the d-wave spin
singlet superconducting gap of the cuprates. Here too there is
a topological origin for the gap protection which leads to
zero energy modes (Hu, 1994; Wang and Lee, 2012) along
certain edges that have been observed in several tunneling
experiments (Walsh, 1992).
A related set of questions involves the properties of

Weyl semimetals in the presence of superconductivity. For
magnetic Weyl semimetals, the single Fermi arc surface
state splits into a pair of chiral Majorana modes, which are
attached to different gapless bulk nodes and can be moved
independently of one another (Meng and Balents, 2012).
Turning to pairing in T symmetric Weyl semimetals, time
reversal invariant pairing is expected to gap the nodes but
could potentially lead directly to topological superconduc-
tivity as discussed by Qi, Hughes, and Zhang (2010),
Hosur et al. (2014), and Li and Haldane (2015). For a
Weyl metal with Fermi surface Chern numbers Ci (the
Fermi surfaces being labeled with the index i) and time
reversal symmetric superconducting pairing gaps Δi on the
different Fermi surfaces, the resulting topological super-
conductor is labeled by an integer topological index ν
which can be expressed as

ν ¼ 1

2

X
i

CisignðΔiÞ. ð47Þ

Thus for the minimal situation of four Weyl nodes, if the
pairing changes sign between the pair with Ci ¼ 1 and the
pair with Ci ¼ −1, this leads to a topological super-
conductor with ν ¼ 2.
The interesting case of pairing between Fermi surfaces

surrounding nodes of opposite Chern number was discussed
by Li and Haldane (2015). In this case, the complex-valued
gap function cannot be globally well defined over the entire
Fermi surface; its distribution exhibits nonzero total vorticity
and hence the gap function must have nodes. However, the
pairing symmetry cannot be described by the usual spherical
harmonic functions (or their lattice analogs) since these
describe regular functions over the Fermi surface. It determines
a novel topological class characterized by monopole charge
rather than the usual unconventional nodal superconductivity
which is typically characterized by angular-momentum quan-
tum numbers. Notably this monopole superconductivity is
determined by the normal state topology alone, rather than any

particular pairing mechanism and thus should be robust.
Although pairing in T broken superconductors takes special
consideration, if it exists in a T broken WSM (even through
conventional electron-phonon mechanisms or via a proximity
effect) a nodal structure is mandated.

C. Quadratic band touchings and the Luttinger semimetal

One can generally understand the physics of linear Weyl
and Dirac semimetals within the framework of weakly
interacting fermion theories. In contrast one expects a number
of important interaction effects to intervene in 3D QBT
systems. Such effects are expected to be more pronounced
than in linear band crossing systems due to the scaling of the
density of states with energy and thus QBT systems are
expected to be strongly interacting. Seminal work by
Abrikosov and Beneslavskii (1971a, 1971b) showed that, in
the vicinity of the band edge, quadratic band touching systems
are always strongly interacting and that at energies well below
the exciton scale (2μe4=ε2∞ℏ2) the single particle concept is
inapplicable. Here μ is the reduced mass of the conduction-
valence band system and ε∞ is a background dielectric
constant. This was a remarkable demonstration almost 50
years ago of a non-Fermi-liquid conductor. Taking advantage
of the inherent scale-free criticality in such a system and using
an ϵ expansion about four spatial dimensions, Abrikosov
(1974) derived scaling relations and the forms for various
observables. More recently Moon et al. (2013) argued that for
the 3D case the Coulomb interactions may form a new stable
non-Fermi-liquid phase, rather than driving the system to an
instability. They showed that it can be understood as a balance
of the screening of Coulomb interactions by electron-hole
pairs and mass enhancement of the quasiparticles dressed by
the same virtual pairs. However, a number of other effects are
possible. Even more recently it was argued that in 3D and for
the single band touching found in known materials the
quadratic band touchings are unstable at low energies to
opening a gapped nematic (Herbut and Janssen, 2014; Janssen
and Herbut, 2015) or T breaking phase (Lai, Roy, and
Goswami, 2014). A nematic phase has not been observed
in experiment, although possibly relevant magnetic phases are
observed in iridate pyrochlores (Matsuhira et al., 2007). It has
also been argued that because short-range correlated dis-
order scales identically to Coulomb interactions at tree level,
and dominates them in a one-loop RG analysis, the
Abrikosov-Beneslavskii phase is unstable to disorder and
may result ultimately in a localized phase (Nandkishore and
Parameswaran, 2017).
In the absence of low temperature phase transitions,

quadratic contact points between bands can be protected, as
they are in the 3D massless Dirac case, by point group and
time reversal (T ) symmetries that enforce a particular degen-
eracy. Their valence and conduction bands belong to the same
irreducible representation of the symmetry groups and the
fourfold degeneracy at the touching point cannot be removed
unless the symmetries are broken. This is the case in well-
known materials such as α-Sn and HgTe. Of course, these
materials have been of recent interest also because they are
near a topological band inversion transition that can be
accessed under uniaxial strain or in a thin film geometry.
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In their fully symmetric cubic state they posses a QBT at the
zone center. In the noninteracting, disorder free, case these
systems can be described in a minimal band structure by the
Luttinger Hamiltonian for inverted gap semiconductors
(Luttinger, 1956) and so we term this phase with a stable
QBT a Luttinger semimetal.
Although in principle the strong interactions proposed by

Abrikosov (1974) should exist in the classic HgTe and α-Sn
systems, such effects were never observed. One expectation is
that due to virtual excitations across the band touching the
dielectric constant can become greatly enhanced. Broad bands
decrease the overall scale of the interaction effects and
residual doping giving a finite chemical potential EF was
sufficient to cut off the divergences associated with these zero
energy transitions. In classic QBT systems such as α-Sn and
HgTe the dielectric enhancement was relatively modest
(~ε ∼ 3.5 and 7, respectively) (Wagner and Ewald, 1971;
Grynberg, Le Toullec, and Balkanski, 1974). It was recently
shown by ARPES (Kondo et al., 2015) that the pyrochlore
oxide Pr2Ir2O7 (Machida et al., 2007; Balicas et al., 2011;
Tokiwa et al., 2014) possesses a QBT (Fig. 37). The QBT is
believed to be formed between J ¼ 3=2 bands in the same
fashion as the classic systems. The effective mass of the
conduction band was found to be approximately 6.3me, which
is almost 300 times that of α-Sn (Wagner and Ewald, 1971).
Larger mass enhances the relative role of interaction and opens
the possibility of probing the strongly interacting regime.
Recent optics work on Pr2Ir2O7 showed that the dielectric
constant in this material becomes of the order of 200 at low
temperatures demonstrating that this material is in the strongly
interacting regime (Cheng et al., 2017). Recent magnetotran-
sport measurements showed that the purported quadratic band
touching system GdPtBi has a mass of about 1.8me and an EF
of about 3.1 meV (Hirschberger et al., 2016), which may also
put this material in the strongly interacting regime.
Quadratic band touching points that are not topologically

protected are generically unstable to cubic symmetry or T
breaking perturbations and in this regard these systems can be

viewed as “parent” states to a number of topological phases
(Moon et al., 2013; Cano et al., 2017). For example, uniaxial
strain induces a gapped 3D TI phase as observed in HgTe
(Brüne et al., 2011). An applied magnetic field allows
nondegenerate bands to cross along the applied field direction
and for fields in the (001) direction give a pair of double Weyl
points with linear dispersion along the applied field direction
axis and quadratic dispersion normal to it (Moon et al., 2013).
These Weyl points correspond to �2 monopoles in momen-
tum space. Although the quadratic dispersion normal to the
field is due to symmetry, the touching itself is protected by
topology in the standard Weyl fashion. The low frequency
optical response of topologically protected double and triple
Weyl nodes has been calculated (Ahn, Mele, and Min,
2017) and reveals power-law scaling in the parallel and
perpendicular components of the low frequency conductivity
that can be used to distinguish these states from linear WSMs.
Note that creating a double WSM with a magnetic field in this
manner is a fine-tuned situation. Fields tipped away from the
(001) direction will cause the double Weyl point to split into
two single Weyl points. The consequences of this anisotropy
on Landau quantization of the spectrum in strong magnetic
fields have also been considered (Li, Roy, and Das Sarma,
2016). An analogous route to realizing Weyl semimetals by
straining HgTe was discussed by Ruan, Jian, Yao et al. (2016).

D. Kramers-Weyl nodes and “new” fermions

As discussed, WSMs are robust against small perturbations
that preserve translational invariance. However, one may
destroy the semimetal state by changing Hamiltonian param-
eters (such as SOC) to uninvert their bands, as in all previously
known WSM states band inversion is an essential feature for
the system’s realization. When tuning the SOC, Weyl nodes
may move and eventually pairwise annihilate to drive the
system into a gapped trivial phase, while preserving all
symmetries. In contrast, in T -symmetric chiral crystals,
Weyl nodes based on Kramers doublets can be locked at
time reversal invariant points in the BZ, which makes them
stable against annihilation with opposite Weyl nodes. Space
groups in which such “Kramers-Weyl fermions” could appear
were analyzed by G. Chang et al. (2016a) and density
functional theory calculations were employed to identify
materials candidates such as Ag3BO3. However, the splitting
between bands arising from breaking of inversion symmetry is
typically weak. As a result, although Fermi surfaces with
Chern numbers are expected, they will typically occur in
opposite Chern number pairs closely separated in momentum.
Characteristics associated with the Fermi surface Chern
number are then observable only if impurity induced mixing
between the two Fermi surfaces can be neglected.
One may ask what other degenerate band touchings

protected by crystal symmetry are allowed in addition to
the ones discussed in this review (Weyl, Dirac, nodal line,
double Weyl, and quadratic)? Bradlyn et al. (2016) showed
that in condensed matter systems the usual field theoretic
categorizations of the three kinds of fermions of free space
(Majorana, Weyl, and Dirac) are incomplete and that there are
more possibilities that are stabilized by crystal symmetries,
e.g., new fermions. It was shown that in the presence of T the

FIG. 37. (Left) ARPES measured dispersion curves along the kx
direction measured at photon energies of 7, 8, 9, and 10 eV. (The
corresponding momentum cuts are indicated by the colored lines
on the right figure.) The dispersion curve obtained by the band
calculations is superimposed (gray curve). The data close to EF
are fitted by a parabolic function shown as the dotted (light blue)
curve. The estimated effective mass at the Γ point is 6.3
free electron masses. (Right) The calculated band dispersion in
the kx − k111 sheet. The ARPES data from the left panel are
overlayed. From Kondo et al., 2015.
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only possibilities are two-, three-, four-, six-, and eightfold
degenerate band touchings. These phases are stabilized as a
consequence of nonsymmorphic symmetries. It was also
recently shown that threefold degeneracies can be stabilized
by rotation and mirror symmetries (G. Chang et al., 2016c;
Weng et al., 2016; Zhu et al., 2016) even in symmorphic
structures. The band touching is pinned to a high-symmetry
line that it can move along by tuning a Hamiltonian parameter.
These three component fermions are intermediate between
two component WSMs and four component DSMs and should
have properties that are different from either. There has been
recent claims to have observed such triply degenerate points in
MoP (Lv et al., 2017) and in tungsten carbide WC (Ma et al.,
2017). These states are important in the general framework of
WSM and DSM phases as in some cases they can be seen as
an intermediate phase separating Dirac and Weyl semimetals
in materials with a C3v-symmetric line.
In contrast to the band crossing induced threefold degen-

eracies, one may regard the symmetry protected threefold
crossings as spin-1 Weyl points as their Hamiltonian at low
energies has the form of H ¼ k · S, where instead of the spin-
1=2 Dirac matrices one has the spin-1 S matrices. Such
degeneracies give a natural generalization of “conventional”
Weyl fermions. To leading order these spin-1 Weyl points are
formed by two linearly dispersing bands bisected by a flat
band. If one computes the Berry curvature as discussed in
Sec. II, one finds monopoles of charge �2 as compared to the
usual Weyl case of �1. In contrast to the band crossing
induced threefold degeneracies, the symmetry enforced chiral
spin-1 Weyl fermions proposed in Bradlyn et al. (2016) occur
at high symmetry points in the Brillouin zone and can only
appear in certain nonsymmorphic cubic space groups.
Furthermore, these are necessarily accompanied by topologi-
cal surface states similar to the Fermi arcs of Weyl semimetals.
Obtaining experimental candidates with well isolated spin-1
Weyl fermions is however challenging. In related space groups
the combination of T and inversion results in a sixfold
degenerate spin-1 Dirac system that is two copies of a
spin-1 Weyl system with opposite chirality pinned on top
of each other. These can be seen as threefold degeneracies that
are doubled by the presence of T symmetry. These are a
symmetry-protected version of the sixfold degenerate Kane
fermions that are expected at the fine-tuned point of the band
inversion transition in Hg1−xCdxTe (Orlita et al., 2014).
Ab initio calculations have been carried out and a number
of different materials realizations have been made (Bradlyn
et al., 2016). In keeping with this general picture, earlier
Wieder et al. (2016) proposed the existence of “double-Dirac”
semimetals with an eightfold degenerate touching in crystals
with a nonsymmorphic space group. This double-Dirac
semimetal can be gapped into a trivial or topological insulator
by applying strain. It is important to note that all these
analyses have been carried out only for nonmagnetic groups.
In principle the inclusion of broken T makes the possibilities
even richer. A particularly promising family of materials that
is expected to combine multiple types of band touching and
long Fermi arcs on certain surfaces may be found in the AB
material class (A ¼ Co, Rh and B ¼ Si; Ge) (Chang et al.,
2017; Tang, Zhou, and Zhang, 2017).

E. Possible realizations in nonelectronic systems

Motivated by the interest in topological states for electronic
systems, a rapidly emerging area is the realization of topo-
logical states for photonic systems (Haldane and Raghu, 2008;
Wang et al., 2009; Umucalılar and Carusotto, 2011; Hafezi
et al., 2013; Khanikaev et al., 2013; Rechtsman et al., 2013;
Lu, Joannopoulos, and Soljačić, 2014). To make a WSM-like
system, Lu et al. (2015) fabricated a precise array of holes into
several ceramic layers (see Fig. 38), which they stacked
together in an interpenetrating double-gyroid structure to
make a 3D photonic crystal with broken inversion symmetry.
This structure is predicted to host the electromagnetic analog
of type I Weyl nodes, which can be accessed by tuning the
frequency of incident microwaves to the frequency where the
Weyl node occurs. Lu et al. (2015) performed angle-resolved
microwave transmission measurements and showed that the
bulk had two linear dispersing bands touching at four isolated
points in the three-dimensional BZ, indicating the observation
ofWeyl points. Using a 3D structure consisting of laser-written
waveguides, Noh et al. (2017) observed photonic type II Weyl
points at optical frequencies, in a 3D photonic crystal structure
consisting of evanescently coupled waveguides. There are
proposals for realizing Dirac dispersions in hyperbolic pho-
tonic (Narimanov, 2015) and metamaterial crystals (Xiao, Lin,
and Fan, 2016) and nonsymmorphic (H.-X. Wang et al., 2016)
and other photonic crystals (H. Wang et al., 2016). In general
there is interest in studying Weyl and Dirac points in photonic
systems as they may potentially be used for large-
volume single-mode lasing (Bravo-Abad, Joannopoulos, and
Soljačić, 2012).

FIG. 38. (a) Gyroids can be fabricated by drilling holes along
the x, y, and z directions. Shown is a bcc unit cell in which a
single gyroid structure can be approximated by drilling holes.
(b) The double-gyroid structure is made by stacking layers along
the [101] direction. The structure is made with two inversion
counterparts interpenetrating each other. Inversion symmetry is
broken by reducing the vertical connections to the thin cylinders
for the first and third (red) gyroids. (c) Shown on the left is the
assembled structure. A magnified view from top is shown on the
right with a centimeter ruler in the background. From
Lu et al., 2015.
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In a homogeneously magnetized plasma, the cyclotron
frequency can exceed the plasma frequency, which results
in crossing points between the helical propagating mode at the
plasma frequency and the longitudinal plasmon mode. These
crossing points in the momentum space are Weyl points with a
finite Berry curvature and can in principle give nontrivial
topological features (W. Gao et al., 2016). Such a system is
expected to have electromagnetic effects in reflection with no
analog in electronic systems.
There have also been proposals to realize topological

semimetal systems in ultracold atoms in optical lattices
(Jiang, 2012; Sun et al., 2012; Dubček et al., 2015; Li
and Das Sarma, 2015). One would use laser-assisted tunnel-
ing to engineer the complex tunneling parameters between
lattice sites. For instance, Syzranov, Wall et al. (2016)
proposed that Weyl-like dispersions can emerge in 3D arrays
of dipolar particles in the presence of a weak magnetic field
due to dipole interaction induced transitions between internal
angular-momentum J ¼ 0 and 1 states. Of particular interest
here is that although the single particle properties of such a
system would be expected to be the same as electronic Weyl
systems, their many-particle properties are expected to be
different, opening up the possibilities for new functionalities
and applications beyond those accessible with solid-state
systems.
In acoustic systems, it was proposed that inversion sym-

metry breaking through structurally engineering interlayer
couplings can generate an effective gauge field (Xiao et al.,
2015). In 2D this can give an acoustic analog of the
topological Haldane model (Haldane, 1988). In 3D these
acoustic systems possess topological Weyl points and are thus
realization of the Weyl Hamiltonian in sound waves. Recently
it was proposed that a class of noncentrosymmetric crystals
will have double Weyl points in both their acoustic and optical
phonon spectra (T. Zhang et al., 2017).

VII. CONCLUDING REMARKS

Going forward there are many possible interesting avenues
in the field of WSMs and DSMs. First and foremost, we still
need to find a truly ideal WSM realization, e.g., the “gra-
phene” of WSMs. One wants to find a material in which all
Weyl nodes are symmetry related and close to EF with a large
momentum separation and no nontopological bands near in
energy. Indeed, these are properties of the graphene band
structure that have proved useful in isolating the Dirac node
physics in 2D. Further, one may require a small number of
Weyl nodes, for example, just the minimal pair of opposite
chirality nodes allowed for magnetic WSMs. Although
proposals for such systems exist (Ruan, Jian, Zhang et al.,
2016; Z. Wang, Vergniory et al., 2016), all known realizations
fall short of this ideal. As discussed, there have been recent
attempts to optimize the screening of materials candidates
focusing on promising space groups, supplemented with a
filling condition which constrains chemical formulas (Gibson
et al., 2015; Chen et al., 2017). These directions combined
with traditional materials searches, particularly in magneti-
cally ordered systems which may host magnetic WSMs, will
hopefully lead to materials that can accurately be termed “3D
graphene.” It is interesting in this context to note how common

topological band touchings are. First principles calculations
have shown that even bcc iron appears to have many such
band touchings (some deep in the band structure) of the Weyl,
double Weyl, and nodal loop variety (Gosálbez-Martínez,
Souza, and Vanderbilt, 2015). Two Fermi pockets surround
isolated Weyl points and are likely to give a major contribution
to its anomalous Hall effect. Furthermore we note that while
there has been rapid theoretical development in classifying
topological semimetal phases, and identifying materials can-
didates, the equally important work of characterizing them by
identifying their signature properties and distinct phenom-
enology awaits a similar degree of development.
The analysis of topological semimetals discussed in this

review has been developed using the band theoretic lan-
guage of free fermion theories on the lattice. A conceptual
frontier is to expand this to better understand the role of
interactions. Treated at the mean-field level, interactions are
important in driving states that violate T . This was a key
feature in the early development of this subject and in the
pyrochlore iridates where the interaction scale is comparable
to the spin-orbit scale (Wan et al., 2011; Witczak-Krempa
and Kim, 2012) which leads to a rich mean-field phase
diagram featuring topological insulating and semimetallic
phases with transitions driven by the type of magnetic order.
Yet one recognizes for interacting systems at strong cou-
pling other gapped ground states are possible that, while
lacking a simple band theoretic representation, may none-
theless admit a useful topological classification. A proof of
principle is the demonstration of fermion fractionalization in
toy models of two-dimensional fractional topological insula-
tors (Levin and Stern, 2009). The investigation of similar
effects in 3D systems even at the level of model
Hamiltonians is in its infancy. The evolution of toy models
into theories of real materials and their ultimate material
realizations poses an outstanding challenge to modern
condensed matter science.
There may also be potential applications for these systems.

For instance, it was recently proposed that one may utilize
topological electronic states to enhance catalytic activity. In
this regard, it was shown that the combination of topological
surface states and large room temperature carrier mobility
(both of which originate from bulk bands of the WSM and
DSM) may be a recipe for high activity hydrogen evolution
reaction catalysts and may be used in solar energy harvesting
to produce hydrogen from water (Rajamathi et al., 2016). In
the device domain, it was proposed that WSMs in thin film
form can be used to build a spin-filter transistor with a
controllable spin polarized current. A loop device made of 2D
WSMs with inserted controllable flux to control the polarized
current has been demonstrated (Shi, Wang, and Wu, 2015).
The device has good on and off ratios with controllable
chemical potential induced by a liquid ion gate. Other
possibilities for spintronics exist (Šmejkal, Jungwirth, and
Sinova, 2017). For instance, it was predicted that in an
antiferromagnet DSM charges can be controlled by the
spin-orbit torque reorientation of the Néel vector (Šmejkal
et al., 2017). Valley degrees of freedom inWSMs also open up
further possibilities for chiral and valleytronics applications in
3D systems (Kharzeev and Yee, 2013; Schaibley et al., 2016).
These systems have a unique coupling to electromagnetic
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radiation that can be exploited. For instance, it was proposed
that inversion symmetry breaking WSMs with tilted Weyl
cones will be efficient generators of photocurrent and may be
used as IR detectors (Chan et al., 2017). And as noted the
WSM systems TaAs, TaP, and NbAs have the largest ever
recorded SHG χð2Þ coefficient (Wu et al., 2017). In the
photonic Weyl systems discussed, the number of optical
modes has an unusual scaling with the volume of the photonic
crystal, which may allow for the construction of large-volume
single-mode lasers.
One of the remarkable and continuing themes in physics is

that concepts and mathematical structures are repeated in
different contexts across vastly different length scales. The
realization of real three-dimensional materials described by
the Weyl and Dirac equations is an extraordinary part of this
particular story that began with Dirac’s intellectual leap almost
90 years ago. Whether nature chooses to repeat itself on this
occasion with the realization of Weyl fermions as fundamental
particles of the vacuum of free space is an open question.
However, in the meantime we can continue to marvel at the
possibilities and rich phenomena that the different “vacuums”
of solid-state systems provide.
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